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ABSTRACT 
 

During the last decade, breakthroughs in the fields of machine vision and reinforce-
ment learning have been made possible thanks to the advancements in machine learn-
ing algorithms. ‘Machines’ now can recognize an object with human accuracy; this im-
plies they could play video games by just having access to the pixels of a screen. In this 
work a combination of state-of-the-art technologies of deep learning are exploited to 
detect, track and remotely control a vehicle under realistic conditions. A linear estima-
tor (Kalman filter) is proposed as an application-specific solution to a common problem 
that is the delay of sensory input – in the present case, the latency introduced by the 
machine vision system. The thesis presents the proposed system design and practical 
considerations along with detailed experimental results as a proof of concept. The ad-
vantages of the proposed solution are established through comparative evaluation with 
the results of other ‘naive’ solutions. 
 

KEYWORDS: Machine Learning, Machine Vision, Reinforcement learning, Deep 
Neural Networks, CNN, DQN, YOLOv3, Linear Estimator, Kalman Filter, Motion de-
tection, Motion tracking, Vehicle control 
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ΠΕΡΙΛΗΨΗ 

 

Η πρόοδος στον τομέα της μηχανικής μάθησης στην προηγούμενη δεκαετία, έκανε 
δυνατά σημαντικά επιτεύγματα στους τομείς της μηχανικής όρασης και της ενισχυ-
μένης εκμάθησης. Μέσω καταλλήλων αλγορίθμων, οι ‘μηχανές’ μπορούν πλέον να 
αναγνωρίσουν αντικείμενα το ίδιο καλά με ανθρώπους – πράγμα που σημαίνει ότι θα 
μπορούσαν π.χ. να παίζουν βιντεοπαιχνίδια απλά έχοντας πρόσβαση στα pixels μιας 
οθόνης. Στην παρούσα εργασία αξιοποιούνται οι πλέον σύγχρονοι αλγόριθμοι βαθιάς 
μάθησης για τον εντοπισμό, την παρακολούθηση και τον απομακρυσμένο έλεγχο ε-
νός οχήματος σε ρεαλιστικές συνθήκες. Επίσης προτείνεται η χρησιμοποίηση ενός 
γραμμικού εκτιμητή (φίλτρο Kalman) ως λύση σε ένα συγκεκριμένο πρόβλημα - εκείνο 
της καθυστέρησης της λήψης δεδομένων από τον αισθητήρα, δηλαδή της καθυστέρη-
σης που εισάγει το σύστημα μηχανικής όρασης. Παρουσιάζονται αναλυτικά οι λε-
πτομέρειες της σχεδίασης, οι προκλήσεις που αντιμετωπίστηκαν και τα πειραματικά 
αποτελέσματα. Τέλος τα πλεονεκτήματα της προτεινόμενης λύσης  τεκμηριώνονται 
μέσω συγκριτικής αξιολόγησης με τα αποτελέσματα άλλων «απλοϊκών» λύσεων. 
 

ΛΕΞΕΙΣ – ΚΛΕΙΔΙΑ: Μηχανική Μάθηση, Μηχανική Όραση, Ενισχυμένη Εκμάθηση, 
Βαθιά Νευρωνικά Δίκτυα, CNN, DQN, YOLOv3, Γραμμικός Εκτιμητής, Φίλτρο Kal-
man, Ανίχνευση Κίνησης, Παρακολούθηση Κίνησης, Έλεγχος οχήματος 
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CHAPTER 1: 

Introduction and Existing Research 
 

1 Introduction and Existing Research 

The aim of this thesis is to develop and train algorithms to detect, track and remotely 

control a vehicle moving on a 2-D plane, under realistic conditions, using a combination 

of state-of-the-art technologies of deep learning. Furthermore, a linear estimator (Kalman 

filter) is proposed and introduced as an application-specific solution to a recognized prob-

lem of such applications, namely, the delay of sensory input – in the present case, the la-

tency introduced by the machine vision system. The thesis presents the proposed system 

design and discusses practical considerations. A prototype is constructed and detailed ex-

perimental results are presented as a proof of concept. The advantages of the proposed so-

lution are established through comparative evaluation with the results of other ‘naive’ so-

lutions. 

The recent advances in deep learning have brought significant research gains in the 

fields of object detection within images (Agarwal, Terrail, & Jurie, 2018) and in reinforce-

ment learning (Li, 2018). This was made possible thanks to advances in (micro-)computer 

architecture, namely, thanks to the massive parallelization of CUDA cores (CUDA, n.d.) 

inside a desktop workstation in the form of a Graphics Processing Unit (GPU) that allows 

experimentation with novel architectures of increased performance, accuracy and “super 

human” speed. Progress in deep learning has relied in the increased efficiency of artificial 

neural networks (ANN) of the convolutional type. These networks are essentially algo-

rithms that make feasible the running of visual recognition tasks on compact low cost com-

puters (Jetson Nano DK, n.d.). The multi core architecture of those miniature computers 

that may perform ANN-based inference within milliseconds is equally effective. 
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ANNs constitute a family of Soft Computing algorithms whose success relies critically 

on a ‘training’ or ‘learning’ phase, where the algorithm’s parameters are iteratively adjusted 

on the basis of a ‘rich’ training set of examples, each tagged with the correct ‘answer’ (out-

put value or class). A variety of learning algorithms have been proposed and tested on var-

ious use cases. They are essentially optimization methods, where the optimization criterion 

is a function of the error between actual and correct ‘answers’ (ANN output values or clas-

ses). Reinforcement learning (RL) is a current and promising development along these 

lines.  

The basic idea behind reinforcement learning is to train a software algorithm (an 

‘agent’) by maximizing the accumulated rewards of a policy π. The training of the agent is 

a tradeoff between exploration and exploitation of the agent’s environment. The field of 

application of RL is vast, ranging from economics to medicine and autonomous vehicle 

control. It was Mnih et al. (2013) that has first combined the achievements of RL with deep 

neural networks. An RL agent could compete or even exceed human agents in playing 

Atari 2600 games. The RL agent would outperform human agents based on knowledge of 

raw pixel values alone; it knew nothing of the game’s inner dynamics.   

The same technology combined with Monte Carlo methods gave RL the title of the 

‘Go’ champion (Silver et al., 2016). ‘Go’ is a traditional Chinese game that is famous for its 

vagueness and its huge number of combinations. This type of game is clearly suited for 

human intelligence, so it was a surprise when AlphaGo, a software developed by Deep-

Mind won the world champion by four to one (Sang-Hun, 2016). This was a rare case when 

state of the art research has been up in the news headlines. 

The difficulties of training an RL agent are not restricted only in the algorithm selection 

and the hyper parameters fine tuning; the large number of ‘episodes’, in the order of tens 

of thousands, along which the agent should be able to explore its environment is also a big 

challenge. Unlike the Atari 2600 games, some environments are not available for 



 

14 
MSc by Research in Electrical & Electronics Engineering,  

MSc Thesis, Georgios Charkoftakis, Reg. nr. MSCRES-0019 

experiment using a real (physical) agent, such as a moving vehicle; a simulated agent should 

be used instead, for training and evaluation. The restrictions do not come only from the 

fact that a real agent may be expensive or the environment may be unavailable, as in the 

case of a spacecraft. It is also possible that each episode may be unfolded (‘run’) for hours 

or even days. The real agent may be deployed after a certain level of confidence is reached, 

following exhaustive performance evaluation with a simulated agent.  

Object detection in digital images is known to be one of the most challenging tasks for 

intelligent algorithms, since it demands the detection of a variety of objects within a mixed 

background. The objects may vary in size (scale), from just a few pixels (where most of the 

information is lost) up to the occupation of a large portion of the image. Moreover, the 

objects may be rotated, or partially obscured by other objects under varying lighting con-

ditions. The successful detection of objects by ‘machines’ (algorithms) using cameras has 

drawn significant research attention and effort, due to its numerous applications. Through 

the use of this technology, today computers may extract semantic information from the 

surrounding environment; this in turn allows for successful machine interaction. As the 

highly optimized semiconductors necessary for performing inference tasks are getting 

cheaper (Nardo, Petrosino, & Santopietro, 2018; Pena, Forembski, Xu, & Moloney, 2017) 

the wide deployment of this technology is imminent.  

The traditional approach to object detection within images has been the extraction of 

object characteristics in the form of empirically defined features. This approach has had 

the side benefit of the reduction of the problem space dimension. The compression thus 

achieved has been more than welcome: in fact, it was a necessity, given the performance 

limitations of the available hardware.  

Since the 1990’s, the convolutional neural networks (CNN) have been successfully used 

for specific tasks like recognition of hand written characters  (LeCun et al., 1990). After 

years of experimentation, CNNs lost interest in favour of SVNs. The work on image 
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recognition in the first years of 2010’s relied on the methods of Histogram of Oriented 

gradients (HOG) (Dalal & Triggs, 2005) and Scale Invariant Featute Transform (SIFT)  

(Lowe, 2004); unfortunately, the progress results suggested a stalemate. 

Krizhevsky, Sutskever, & Hinton (2012) found that a high number of image character-

istics could be processed by an equally complex network with a large number of parame-

ters. They trained a CNN using a training set of 1.2 million images of ImageNet, belonging 

to 1000 categories. This team (‘SuperVision’) won the ILSVRC2012 contest and set a new 

classification (Task 1) record of top-5 and top-1 accuracies at 16.4% and 38.1% respectively. 

The ILSVRC2012 Task 2 is an object localization task where the SuperVision team achieved 

an equally important top-5 error of 33.5%. Unfortunately details of the localization method 

employed are not included in the publication. 

Krizhevsky’s work shifted again the interest of the researches towards CNNs. This 

achievement has become feasible thanks to the advent of high performance CUDA GPUs 

that could massively perform highly optimized 2D convolutions and stochastic gradient 

descent (SGD)  algorithm runs, necessary for network training. The Krizhevsky’s CNN is 

named ‘AlexNet’ and contains 5 convolutional layers and 3 fully connected layers resulting 

in 60 million parameters and 650 thousand neurons. The good results of AlexNet in the 

image classification and object localization tasks mentioned earlier were achieved thanks 

to introduction in the training algorithms of measures that combat overfitting – a problem 

that is common in networks of that scale. During training, the AlexNet training algorithm 

used patches of the original images of 224x224 pixels, plus the horizontal reflections of 

them. Another anti-overfitting measure employed is the ‘dropout’ where a proportion of 

the neurons remain inactive, meaning their output is zero, during training. This forces 

these neurons to adjust on their own than to rely on the activation of other neurons.  

At this point it was clear that network architect choices have a great impact on CNN 

performance. Drawbacks of AlexNet identified included the vast amount of annotated data 
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required for supervised learning (network training), the large memory needed, the high 

computational requirements and the fixed size of the input images (224x224 pixels). 

The major interest behind RL and object detection in general is the feasibility of real 

time control applications. Even if a state of the art object detection algorithm is employed, 

still there is a significant delay between the issue of the execution command and its actual 

effects.  When training is completed and the network is used for testing, i.e. inference, it is 

seen that the performance of inference algorithms, even if  a hardware accelerator like a 

GPU is employed, takes tens of milliseconds because of the multilayer nature of the CNN. 

In an attempt to analyze and further break down the actual delays, when a commercial 

USB camera is employed, it is estimated that the delay for the image transfer to the com-

puter memory can be hundreds of milliseconds. Low-latency, industrial-grade USB and 

Ethernet cameras have a prohibitive cost for large scale deployment. Moreover, the per-

formance of these high speed cameras depends on the existence of ideal lighting conditions. 

In non-ideal conditions, the exposure time increases thus mitigating their advantage. In 

brief, the problem with the use of machine vision algorithms for real time problems lies at 

the nature of each application in itself (e.g., poor lighting conditions) and cannot always be 

overcome by the selection of expensive hardware. 

In addition to the challenges mentioned before, the use of RL in real time control is 

faced with extra difficulties:  the deployment of a real application, such as object detection 

and control, undergoes the constraints of inference execution time, the delay of the com-

mand to reach the agent and the effort to build a simulated environment. The delays that 

accumulate in either case (real or simulated agent) may cause loss of control due to loop 

instability. 

In light of the above discussion, it would be of great value to combine both technolo-

gies, object detection and RL, for the real time control of an agent (e.g., a moving vehicle) 

through the selection and use of the appropriate set of existing methods and tools to 
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overcome the difficulties of actual deployment. The aim of the present research is to show 

that efficient remote control and navigation of vehicles is feasible using low cost computing 

platforms. Furthermore, this can be achieved with robustness using a combination of avail-

able technology of reinforcement learning, visual object detection and linear estimators.  

  



 

18 
MSc by Research in Electrical & Electronics Engineering,  

MSc Thesis, Georgios Charkoftakis, Reg. nr. MSCRES-0019 

 

CHAPTER 2: 

Problem Statement and Specifications 
 

2 Problem Statement and Specifications 

In order to remotely control a vehicle using an RL agent and object detection technol-

ogy what is required is the flawless integration of all the subsystems involved, i.e.,  the 

vehicle, the camera, an object detection process, an RL agent and a communications sys-

tem. The interconnection and interoperability of these components should be efficient 

enough to cope with the problems mentioned earlier. The control loop should be stable, 

the vehicle should reach a designated target and while getting there it should not move off 

limits. The control should be optimal, the agent should not wait for a stable feedback signal 

(position) to decide for the control signal due to the object detection latency. The RL agent 

and the object detection system should be fast enough to decide the new control signal 

within a fraction of a time step. The communications system should pass the control signal 

to the vehicle with close to zero delay. 

Previous work examines the use of RL methods in the presence of delayed feedback 

(Walsh, Nouri, Li, & Littman, 2008) or when there is action delay (Firoiu, Ju, & Tenen-

baum, 2018). Walsh et al. showed that the augmentation method when a Constant Delay 

Markov Decision Process (CMDP) is mapped to MDP (Bertsekas, 2017; Katsikopoulos & 

Engelbrecht, 2003) blows up exponentially the memory / computational requirements and 

thus renders the problem insolvable. They proposed the Model Based Simulation (MBS) 

planning method, when the CMDP is finite and in conjunction with Model Parameter 

Approximation (MPA) when the CMDP is continuous. MPA is a no-delay model-based RL 

algorithm that complements the MBS.  

In a real case scenario the MBS+MPA have some disadvantages:  
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1. The MPA should be used to extract matrices P and R - something that is not feasible for 

many real world problems.  

2. This setup is oriented towards problems where the time delay TL is a multiple k of the 

time step ΔT. When k=0 the CMDP is an MDP without delay. In some real time prob-

lems, where k=0, the observation St is available at time t0+γ   where γ<ΔT and solving 

the problem by getting St  at t0+ ΔT (k=1) is a suboptimal solution.  

3. The MBS method does not address the problem of time jitter that is common when 

observations arrive asynchronously.  

4. The MBS does not cope with lost observations, where sometimes the feedback signal is 

lost. 

Due to the lack of a generic theoretic approach, an application specific solution is pro-

posed in the present research that can address the practical problem as described above. A 

remotely controlled ground vehicle (the robot) is guided by an RL-trained agent to its tar-

get. The robot can move with a time step of ΔT =1sec towards three directions: left, right 

or forward. The positioning system incorporates the machine vision subsystem which de-

tects an object on top of the robot and extracts a feature vector with its planar coordinates. 

The object detection system runs a YOLOv3 Tiny algorithm (Redmon & Farhadi, 2018) 

and has position update frequency of 15 positions per second and a lag of TL ~ 260 msec.  

The feature vector is fed to a Kalman filter that serves a double purpose.  

• First, it compensates for lost samples since the object detection system may fail to detect 

the robot under varying conditions of lighting and view angle.  

• Second, it predicts the current position St + TL   ahead of the provided position St.  

When the robot reaches its target, an acknowledge signal is issued; this is received through 

the control channel without delay. At the time of its arrival, though, the provided position 

already lags by TL. If there is no compensation for this lag, then the algorithm should either 

wait for TL (until the RL agent will have yielded a stable position reading) or should treat 



 

20 
MSc by Research in Electrical & Electronics Engineering,  

MSc Thesis, Georgios Charkoftakis, Reg. nr. MSCRES-0019 

the delayed CDMDP as an MDP and ignore the delay. This solution does not cope with the 

problem of missed position data and is therefore suboptimal, since it has to either cause a 

delay to the vehicle movement or result in the vehicle missing its target and moving out of 

the detection field. The object detection subsystem produces position vectors much faster 

than the time step ΔΤ. This can be exploited by a linear estimator like the Kalman filter 

that is suited for tracking moving targets.   
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CHAPTER 3: 

Methods and Tools 
 

3 Methods and Tools 

Figure 1 shows a block diagram of the experiment setup built for the purposes of 

this research. A personal computer is hosting the Object Detection Server (ODS) with 

YOLOv3 Tiny. It runs asynchronously to the vehicle control agent and provides coor-

dinates using socket based inter-process communication. The ODS is trained to provide 

the position of a remotely controlled vehicle via a camera mounted vertically in a fixed 

position above the vehicle testing ground.  

The vehicle coordinates are fed to a control agent that decides the next move of the 

vehicle. This setup facilitates the investigation of solutions and tools needed in order to 

apply the modern methods of object detection and reinforcement learning to a real 

world problem, as described in the previous sections. The algorithms are selected to 

realize a state-of-the-art approach with robust solutions. The control agent will use a 

reliable Deep Q Learning algorithm in conjunction with a two-stage Kalman filtering 

that will assist in estimating the true position from the time delayed ODS provided 

position.   

In next paragraphs, the subsystems of the experimental prototype are briefly intro-

duced and discussed. Application-specific details of the implementation along with the 

experimental results follow. 
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Figure 1: Experiment setup. The Host Computer runs the ODS and the Control Agent 
software. The ODS is using the Neural Compute Stick 2 (NCS2) as an accelerator for 
the YOLOv3 Tiny. The Camera is a typical commercial USB Web Camera (Logitech 

C920 HD Pro). 
 

3.1. Object Detection with the YOLOv3 

The early attempts to object detection in images using CNNs relied on double stage 

detectors like R-CNN (Girshick, Donahue, Darrell, & Malik, 2013), Fast R-CNN 

(Girshick, 2015), Faster R-CNN (Ren, He, Girshick, & Sun, 2015) and R-FCN (Dai, Li, 

He, & Sun, 2016). This double setup with a region proposal network followed by a clas-

sification network proved to have superior accuracy at the cost of poor speed; thus it 

was not suitable for real time video processing. The advent of single stage detectors with 

the most prominent works of Redmon (2015) who employed YOLO & derivative algo-

rithm and Liu et al. (2016) who used SSD, have made real time applications feasible. 

Among the members of this family of algorithms, the YOLOv3 Tiny algorithm is chosen 

for this research work. 

YOLO (Redmon, Divvala, Girshick, & Farhadi, 2015) along with its incremental 

improvements known as YOLOv2, YOLO9000 (Redmon & Farhadi, 2016) and YOLOv3 
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(Redmon & Farhadi, 2018) offer the best real time performance at 22msec (45fps) exe-

cution time. 

The idea behind YOLO is simple: the same (single) network is used for detection 

and region proposals. The image under processing is split into a grid of SxS. For each 

grid cell, B bounded boxes are created along with their confidence and C conditional 

class probabilities. For the actual YOLO implementation, the parameter values are S=7, 

B=2 and C=20, meaning that for each of the 7x7 cells, 2 bounding boxes are proposed, 

with a confidence metric and a vector of size of 20 containing the probability for each 

class. Each bounding box has 4 coordinates and a confidence number associated with 

it. The output of the network, therefore, is 7 x 7 x ( 2 x 5 + 20) = 1470 proposals. The 

output of the network is then processed to eliminate duplicate boxes or boxes that con-

tain classes with very low probabilities.  

The architectural structure of the original YOLO implementation, based on Goog-

LeNet (Szegedy et al., 2015), has 24 convolutional layers that feed 2 fully connected 

layers. An alternative Fast YOLO implementation contains only 9 convolutional layers 

and achieves a processing rate of 155 frames per second, at the cost of reduced accuracy. 

The mean average precision (mAP) of YOLO is 63.4% and that of Fast YOLO is 52.7% 

mAP using the PASCAL VOC2007 test set (Redmon et al., 2015). By its design, each 

grid cell of YOLO may contain only one class. This means that only a limited number 

of objects may be detected. YOLO is not able to detect small objects that are located 

close to each other. On the other hand, since the size of bounding boxes is arbitrary 

and they may have practically any size, YOLO generalizes well on the image content, 

meaning that there are few background errors. 

Tough competition with SSD (Liu et al., 2016) brought a new version of YOLO, 

YOLOv2 and YOLO9000 (Redmon & Farhadi, 2016). YOLOv2 incorporates several 

modifications to cope with the main disadvantage of YOLO that is localization errors. 
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The last fully connected layers were removed and replaced by convolutional layers so 

that the network could adapt to various image resolutions. Now it could be trained with 

a mix of high and low resolution images to provide finer detection. The arbitrary 

bounding boxes were replaced by boxes automatically adjusted during training. Mixed 

classification and object detection data was used for training as a method to achieve 

robust detection. 

The YOLO CNN required 8.5 billion operations to complete a forward pass. 

YOLOv2 replaced this architecture with a novel architecture called Darknet-19 that 

has 19 convolutional layers and 5 max pooling layers. This required 5.6 billion opera-

tions for a forward pass resulting in a speed boost while keeping top accuracy perfor-

mance of 78.6% mAP at 40fps. Using the combined dataset of COCO (Lin et al., 2014) 

and ImageNet, Redmon proposed YOLO9000 that can detect 9000 object categories 

with 19.7% mAP. 

The next incremental proposal of YOLOv3 (Redmon & Farhadi, 2018) trades speed 

for improved accuracy. Darknet-19 is replaced by a 53-layer CNN unsurprisingly 

named Darknet-53. Softmax classification is replaced by independent logistic classifiers. 

Since classes are not mutual exclusive, overlapping labels may coexist allowing for 

training on other data sets (Kuznetsova et al., 2018).  Using a similar idea from FPN 

(Lin, Dollar, et al., 2017) boxes are predicted at 3 different scales to improve small object 

detection. Its accuracy score (AP) is close to the top accuracy performer RetinaNet (Lin, 

Goyal, Girshick, He, & Dollár, 2017) and SSD (Liu et al., 2016) but being three times 

faster.  

YOLOv3 Tiny is a reduced version suitable for resource-constrained systems. It is 

based on Darknet19 architecture with input images of 412x412. It includes 13 convo-

lutional layers and can achieve a maximum processing rate of 220fps (Redmon, n.d.). 
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3.2.  Kalman Filter 

The Kalman filter (Kalman, 1960) is used to compute accurate estimates of unknown 

variables based on a series of available measurements. It is intended to be used with 

systems of linear dynamics that can be described by state space equations and can cope 

with measurements contaminated by Gaussian noise. The mean and covariance of the 

system state are predicted and updated through each time step. The Kalman filter algo-

rithm consists of two steps, (i) the prediction step and (ii) the correction or update of 

the estimates step. Eqn.s 3-1 and 3-2 are the prediction step and eqn.s 3-3, 3-4 and 3-5 

are the update step. This distinction is important, since in the case there is no new 

measurement, the estimated state is predicted by the dynamics of the system as de-

scribed in eqn 3-1. If a new measurement does become available, then the uncertainty 

is mitigated since the estimated state produced by the prediction step is combined with 

the measured state, as in eqn 3-4. The two steps are outlined below. 

(i) Prediction Step: 

3-1)  𝑋𝑘
− = 𝐴𝑋𝑘−1

+ + 𝐵𝑈𝑘−1 + 𝑊𝑘−1  

Where: 𝑋𝑘
−is the predicted state vector at time step k 

A is the state transition matrix 

𝑋𝑘−1
+ is the updated state vector from time step k-1 

B is the control input matrix 

Uk-1 is the control vector at time step k-1 

Wk-1 is white Gaussian noise process vector from time step k-1 

 

3-2)  𝑃𝑘 = 𝐴 𝑃𝑘−1
+ 𝐴𝑇 +  𝑄 

Where: Pk  is the error covariance matrix at time step k 

𝑃𝑘−1
+ is the updated error covariance matrix from time step k-1 

Q  is the covariance matrix of the noise process vector 
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(ii) Update Step: 

3-3)   𝐾𝑘 = 𝑃𝑘  𝐻𝑇 (𝐻  𝑃𝑘   𝐻𝑇 + 𝑅 )−1  

Where: Kk is the Kalman Gain at time step k 

H is the observation matrix 

R is the covariance matrix of measurement noise vector 

 

3-4)   𝑋𝑘
+ = 𝑋𝑘

− + 𝐾𝑘(𝑌 − 𝐻𝑋𝑘−1) 

Where: 𝑋𝑘
+ is the updated state vector at time step k 

              Y is the measurement vector 

3-5)   𝑃𝑘
+ = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘 

Where:  𝑃𝑘
+is the updated error covariance matrix 

State and output noise covariance matrices Q and R are considered known. The Kalman 

filter is an iterative algorithm on k that converges to a state vector after appropriate 

initialization of the involved matrices for k=0.  

3.3.  Deep Q Learning 

Reinforcement Learning (RL) has its origins in the problems of optimal control 

(Bellman, 1957) and is a development out of  the widely used mathematical process 

known as dynamic programming (DP). Dynamic programming methods can be used 

only if the dynamics of the system are known. A method that learns the dynamics of 

the system of interest by itself was not easy to perceive a few years ago. The bases of 

modern RL were set during the 1980’s, when distinct research concepts converged to 

the seminal work of (Watkins, 1989) that introduced the Q-Learning algorithm and its 

convergence properties (Watkins & Dayan, 1992). 

RL algorithms are divided in model free and model based ones. In the model-based 

RL algorithms, the model of the environment is considered known and the algorithm 

is trying to find the optimal policy that will maximize the ‘reward’. Using this setup, a 
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model can be used to evaluate the results of an action without taking the action. In the 

model-free RL algorithms, the results of an action are not known a-priori and a trial-

and-error behavior (exploration) is necessary. 

RL is based on the formalization of Markov Decision Processes (MDP). MDP is a 

decision-making policy that breaks down every system into a set of states, actions and 

rewards. At each time step t, an ‘agent’ is positioned within the environment with a 

state St. The agent is trainable. Using this state St, the agent should decide its next action 

At.  At time step t+1, the agent will end up in state St+1 with probability P[St+1| St, At] and 

will be rewarded with Rt+1. This MDP framework can be summarized as a tuple <S, A, 

p, r, γ> where S is a set of states, A is a set of actions, p= P[s, a, s´] is a state transition 

matrix, r=R[s´, a] is the reward function and γ is the discount factor. The agent should 

select actions from within the action set A on the basis of a policy π. The goal is to find 

the optimal policy π* that maximizes the accumulated reward Gt as shown in eqn 3-6 . 

 

3-6)  𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ⋯+ 𝛾𝛵−1𝑅𝛵 

 

A well known example of ‘learning a policy’ is the training of an agent (a software 

program) to play a digital strategy game. The RL approach to training the agent is to 

lead the agent to discover the best policy by having the agent play a large number of 

game sessions while adjusting its policy.  

There are two main approaches to learning a policy. One approach that led to the 

policy gradient method  (Sutton, McAllester, Singh, & Mansour, 2000; Williams, 1992) 

is to learn the policy directly as a distribution over actions. The other approach is value-

based. Here, the policy is derived by following an ε-greedy policy on functions of the 

states, 𝑣(s), (eqn 3-7) or functions of the state s and action a, q(s,a), (eqn 3-8). When the 

state-action function q(s,a) is defined as in the Bellman optimality equation (eqn 3-9), 
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then the Q-learning algorithm can be used to obtain the optimal policy π that maxim-

izes q* using an iterative update (eqn 3-10). 

 

3-7)  𝑣𝜋(𝑠) = 𝛦𝜋[𝐺𝑡|𝑆𝑡 = 𝑠] =  𝛦𝜋[∑ 𝛾𝑘 𝑅𝑡+𝑘+1|𝑆 = 𝑠∞
𝑘=0 ] ∀ 𝑠 ∈ 𝑆  

 

3-8) 𝑞𝜋(𝑠, 𝛼) = 𝛦𝜋[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 ] =  𝛦𝜋[∑ 𝛾𝑘 𝑅𝑡+𝑘+1|𝑆 = 𝑠∞
𝑘=0 ] ∀ 𝑠, 𝑎 ∈ 𝑆, 𝐴   

 

3-9) 𝑞∗(𝑠, 𝛼) = 𝛦𝜋 [𝑅𝑡 + 𝑚𝑎𝑥
𝑎′

𝑞∗(𝑆𝑡+1, 𝑎
′)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]∀ 𝑠, 𝑎 ∈ 𝑆, 𝐴   

 

 3-10) 𝑞∗(𝑆𝑡, 𝐴𝑡) ← 𝑞∗(𝑆𝑡, 𝐴𝑡) + 𝑎 (𝑅𝑡 + 𝛾 𝑚𝑎𝑥
𝑎′

𝑞∗(𝑆𝑡+1, 𝑎
′) −𝑞∗(𝑆𝑡 , 𝐴𝑡)) 

 

Eqn 3-10 implies that an RL problem can be solved by keeping a table for every q(s, a). 

This is practical only for MDPs that have limited number of (state, action) pairs. If the 

number of pairs is very large or infinite, then a function approximation method should 

be used that typically can be a linear combination of features or an artificial neural 

network (ANN). The linear combination of features (Bertsekas, 2012) requires the use 

of extracted features while the neural network has been proven to work with raw sen-

sory input (Mnih et al., 2013). The use of a function approximation method has also the 

advantage that an RL system can cope with state-action pairs never seen before.  

Consider a Deep Q Network (DQN) that is using an ANN with weights w as a func-

tion approximator. The weights are found by the Stochastic Gradient Descent (Ruder, 

2017) to minimize the loss function (eqn 3-11). 

 

3-11)  𝐿(𝑤) = 𝛦 [(𝑦(𝑤̅) − 𝑞(𝑆𝑡, 𝐴𝑡; 𝑤))
2
] 
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Where the target value is : 

 

3-12)  𝑦(𝑤̅) = {
𝑅𝑡 , 𝑖𝑓 𝑠 𝑖𝑠 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙

𝑅𝑡 + 𝛾 𝑚𝑎𝑥
𝑎′

𝑞𝑤̅(𝑆𝑡+1, 𝑎
′; 𝑤) , 𝑖𝑓 𝑠 𝑖𝑠 𝑛𝑜𝑛 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙  

 

The computer memory is used to store a large number of (St, At, Rt, St+1) samples. The 

SGD optimization is used with a random batch of samples from this memory. This 

method is called experience replay (Lin, 1992) and it is an effective measure to mini-

mize the correlation when training with recent trajectories. From eqn 3-11 and eqn 3-

12 it is shown that two distinct ANN weights are used, 𝑤  that is called the on-line 

network and  𝑤̅ that is called the target network. The gradient descent optimization is 

applied only to the online network that is used as a forward pass during exploitation 

where the target network is updated periodically from the online network. This duality 

of target and online networks ensures stability during training. Many improvements 

have been proposed to the DQN algorithm (Hessel, 2017); however, the basic setup as 

described here is adequate for the context of the present work. 
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CHAPTER 4: 

 Deep Networks Training and System Integration 
 

 

4 Deep Networks Training and System Integration 

In this chapter are presented the training of the two neural networks, the object detec-

tion algorithm YOLOv3 Tiny and the DQN RL agent.  

4.1. The remote controlled vehicle 

A three wheel vehicle is remotely controlled by a Bluetooth Low Energy (BLE) com-

munications link as shown in Figure 2. The vehicle has a free running wheel and two 

wheels driven by DC motors (Figure 3). The supply of the DC motors is provided by an 

H bridge controlled by IoT Multi Sensor Development Kit (IoT MSDK). The IoT MSDK 

(“DA14585 IoT Multi Sensor Development Kit,” 2018) contains a number of sensors 

with an extension connector, from which 2 general purpose IO’s (GPIO’s) are used to 

control the H bridge. The power source of the motors is a pack of batteries that provide 

3.6V and it is not the same power source of IoT MSDK that includes 2 AAA batteries. 

The IoT MSDK is a BLE peripheral with a GATT server. It contains a control charac-

teristic, for which three custom commands are used for the three allowable movements 

(forward, left and right) plus a disable/enable all command. All actions last for 1 second, 

then a completion acknowledgement is sent back to the central device. The BLE central 

device is a Dialog Semiconductor DA14585 Kit Basic (“DA14585 Development Kit-

Basic,” 2017), for which a GATT client application is developed that sends commands 

to IoT MSDK (GATT server) and awaits for acknowledgment. The central device com-

municates with the central computer using a virtual RS232 communication port over a 

USB connection. 
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Figure 2: The remote control of the guided vehicle. A Bluetooth Low Energy link is 
used. The central device (GATT Client) is communicating with the host computer 
using a virtual UART over USB communications port. The Central device automat-

ically scans and connects with the existing peripheral device (GATT Server). 

 

 

Figure 3: The remotely controlled vehicle. The ODS detects not the robot itself but 
the IoT MSDK attached on top. The vehicle chassis can thus be altered without 
having to retrain the ODS. The IoT MSDK Controls the H Bridge of the motors 

with its GPIO’s. 

4.2. Training YOLOv3 Tiny 

YOLOv3 Tiny is the ODS algorithm of choice. It  is suited for real time applications due 

to its frame rate performance, at least x4 compared to YOLOv3-320 (Redmon & Far-

hadi, 2018). The training environment of choice is the Darknet open source neural 
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network software package (“Darknet: Open Source Neural Networks in C,” n.d.) that is 

maintained by Redmon. Darknet provides all the necessary components to train and 

run any flavor of YOLO, such as training configurations, runtime/inference for the ex-

tracted weights and automatic usage of a GPU. To train a CNN like YOLO, a large num-

ber of pictures have to be available and marked for every object class to be detected. 

There is not a strict rule on how many pictures are needed, the more the better. In 

practice, training with 300 images for a single object class provides acceptable results. 

The software used for marking images is YOLO Mark (AlexeyAB, n.d.). Marking means 

drawing a rectangle that encompasses the object of interest. For each picture a new file 

is created that contains the coordinates of the rectangle.  For this procedure the follow-

ing rules were applied: 

• The marking should be tight but precise, meaning that the rectangle should nei-

ther encompass unnecessary space nor exclude any part of the object. Precision 

is important. 

• If the object exists more than once in an image, it should be marked in all its 

instances. 

• The object should be pictured, if possible, in all possible angles, lighting condi-

tions and backgrounds that may occur during inference. 

• To reduce false positives, not all images should be marked; images with plain 

background should also be used. 

Using a DSLR camera, a set of 359 pictures of the IoT MSDK were taken and marked 

using the above rules (Figure 4). Each picture had 0 to 4 instances of IoT MSDK. Instead 

of 80 classes of the standard YOLOv3 configuration, a single class was used - the one of 

IoT MSDK. The rule of thumb for training YOLOv3 is that 2000 rounds per class are 

needed. The agent was trained for 5000 rounds (Figure 5) that took 16 hours on a PC 

equipped with a GPU. Longer training is not desirable since it might lead to overfitting. 
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After the completion of training, intermediate steps are needed to convert the Darknet 

CNN weights to the weights format needed by NCS2. 

NCS2  (Neural Compute Stick 2, n.d.) is a neural network accelerator that comes in 

a USB stick form and offers the flexibility to work with different platforms. The soft-

ware development platform for NCS2 is OpenVINO Toolkit (OpenVINO, n.d.). 

 

Figure 4: Marking through the Yolo Mark utility is time consuming: at least 300 
pictures per category should be marked. Precision is important: the rectangles 

should accurately enclose the objects. 
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Figure 5: Training YOLOv3 Tiny loss versus iterations. The rule of thumb is that at 
least 2000 iterations are needed per object category. It was trained for a single cate-

gory for at least 5000 iterations. 

 

The Darknet weights should be converted to Tensorflow weights (Kapica, n.d.). At first 

the YOLOv3 was trained using a modified Darknet configuration file for one class of 

objects (IoT MSDK). In order to be compatible with the conversion utility, it was then 

retrained using the 20 class configuration that is provided for the VOC dataset. The 

Tensorflow weights are converted to the IR model used by NCS2 via the IR Model 

Optimizer utility provided by OpenVINO. 

Both YOLOv3 Tiny using Darknet Demo and NCS2 provided demo for YOLOv3 

Tiny were benchmarked. A significant speed increase was noted by using the NCS2. 

The Darknet Demo exhibited maximum performance at ~10fps (Figure 6) versus the 

~15fps of NCS2 (Figure 7). The NCS2 is using an FP16 accelerator versus the FP32 GPU 

exploited by Darknet. Moreover, the NCS2 YOLOv3 Tiny demo is running in optimized 

asynchronous mode where the images are pipelined in the stages of acquisition, transfer 

and inference. As shown in Figure 7, the extracted coordinates of the NCS2 port lack 
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accuracy, this can be explained by the rounding errors of the IR Model Optimizer. This 

did not have an impact in the present experiments because only the center of the object 

position is used while the extensions of the rectangle boundaries are symmetric. 

 

 

Figure 6: Running YOLOv3 Tiny natively with Darknet using a GPU. 

 

Figure 7: Running YOLOv3 Tiny with NCS2. The weights are converted to NCS2 
format using the provided OpenVINO utilities. 

 

4.3. Training the RL agent 
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The ‘environment’ considered here is  a ground vehicle monitored by an object detec-

tion system that provides coordinates (Xt, Yt ) at every time step ΔΤ. The objective is το 

train an RL agent that can guide the vehicle from a starting point to its target (destina-

tion point) located at (XTRG, YTRG). The target is fixed at each episode. Each episode ends 

when the vehicle reaches the target or when it moves out of bounds, meaning that it 

has left the field of view of the camera. The ODS is developed as described in Section 

4.2. The state of the system is defined as vector St  : 

 

4-1)  𝑆𝑡 = (𝑋𝑡 , 𝑌𝑡 , 𝑋𝑡−1, 𝑌𝑡−1, 𝑋𝑇𝑅𝐺 , 𝑌𝑇𝑅𝐺)𝑇 

Where: Xt, Yt are the vehicle Cartesian coordinates of the vehicle at time step t 

Xt-1, Yt-1 are the vehicle Cartesian coordinates of the vehicle at time step t-ΔΤ. 

XTRG, YTRG are the target Cartesian coordinates that do not change over time. 

 

The RL agent is trained using Deep Q Learning to control the vehicle in order to be 

able to accomplish a ‘mission’, that is to set off from its origin position and reach the 

target. The ODS camera is positioned vertically 2m above the level of the vehicle and 

has a field of view of 1.7mx1.3m with an analysis of 640 x 480 pixels. As shown in 

Figure 8, the starting point of the vehicle is at coordinates (60, 240) at 0 degrees angle 

and the target could be any point within the rectangle coordinates (420, 60) and (580, 

420).  
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Figure 8: Training environment setup. This is the field of the expected view of the 
camera, the plane that the RC vehicle moves. The target area is on the right hand 
side. The plane area is 640x480 pixels, this resolution gives enough detail for the 

ODS to recognize the IoT MSDK on top of the RC vehicle but also delivers enough 
frame rate to run in real time. 

 

At each time step t, the RL prompts for one of the 3 actions available, namely, ‘move 

forward’, ‘move left 40º’ or ‘move right 40º’. All actions last for time ΔΤ=1 second. In 

order to train the agent, first an OpenAI Gym (Gym, n.d.) compatible environment is 

developed that simulates the movement of the vehicle. This compatibility ensures the 

reuse of this work for future research with other agents. In order to facilitate explora-

tion, convergence and robustness the developed Gym environment followed these 

rules: 

 

(60,240) 

Vehicle starting  
point 

(420,60) 

(420,420) 

(580,60) 

(580,420) 

Target area 

640 

480 
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▪ When the vehicle reaches the target, the starting position becomes the new tar-

get. When the vehicle reaches the starting position, a new random target is gen-

erated. This ‘round-trip’ is considered a mission. The episode ends when the 

simulated vehicle goes out of bounds. Typically an episode may last for many 

missions. 

▪ The state vector St  (eqn 4-1) has 6 additional inputs reserved for future use. 

▪ The magnitude of the speed vector is a uniform random variable between 55 

and 65 pixels per second. 

▪ The reward for reaching a target is 100, for moving towards the target -1, -2 

otherwise. 

 

To find the optimal architecture and hyperparameters for the ANN a two stage evalu-

ation method is applied. A decision was taken to keep the number of layers constant 

(Table 1) and experiment with the number of cells and learning rate as shown in Table 

2. Τhe rest of the hyperparameters of  Table 3 kept constant. 

 

Table 1: There is a single hidden layer and the number of cells in layers 1 and 2 is 
the same. To enhance the robustness and avoid overfitting a Gaussian noise genera-

tor is added prior to activation function. The Gaussian noise generator is active 
only during training. 

Layer 
Number 

Size 
Number of cells 

Activation Notes 

1 N, 12 inputs ReLU 

Input Cells, output is disturbed by additive Gaussian 
noise of standard deviation of 0.01. 6 inputs are 

used, the other 6 are always zero and added for re-
dundancy in future research. 

2 N ReLU 
Hidden Cells,  output is disturbed by additive Gauss-

ian noise of standard deviation of 0.01 

3 3 Linear Output Cells 
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Table 2: The hyperparameters that will be tested to find the best candidate. 

Hyperparameters Values 

Number of Cells N N=16, 32, 64, 128 

lr, Learning Rate 0.0005, 0.001, 0.005, 0.01 

 

Table 3: The hyperparameters of the ANN that are kept constant through the train-
ing process. 

Hyperparameters Value Notes 

ε 
max=1.0, 
min=0.1,  

decay=0.99995 
Exploration rate 

γ 0.98 Discount factor 

Batch Size/Epoch 128/1 
A random sample of Batch Size is used every 

KTR time to perform a single fit operation. 

Memory Length 100000 
Memory Length, used for experience replay 

(Lin, 1992) 

KTR 4 
Every KTR number of steps a training opera-

tion is performed. 

Loss Function MSE Mean Squared Error 

Optimizer Adam Kingma & Lei Ba, 2014 

 

A training agent with Keras/Tensorflow (Keras, n.d.) environment was developed and 

ran the Q Learning algorithm for at least 120K episodes. The first 8K episodes were 

running with ε=1 (exploration only) to get enough samples in experience memory. The 

accumulated reward and snapshot weights were logged and saved every 100 episodes 

to be used in later evaluation. As an example for N=128 and lr=0.001 (Figure 9) the re-

ward quickly escalated after episode round 45000 and made a dip around episode round 

70000. The training procedure was visualized where, the trajectories of the agent were 

drawn with different colors depending on the reward acquired, a snapshot of a training 

procedure with color explanation is shown in Figure 10.  
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Figure 9:  The episode reward versus the number of episodes (N=128, lr=0.001). The 
reward is a moving average of the last 100 episodes reward. After certain number 
of episodes where the agent is trained enough, it completes a number of missions 
until episode termination, this is why the reward is reaching levels much larger 

than 100 that is the prize for reaching the target. 

 

Since the stability of the resulted weights was not ensured, a second evaluation stage 

was added. From the log files, the top ten performers per hyperparameter combination 

were identified with respect to the logged reward. 160 files containing architectures 

and weights were passed through a second level of evaluation. 

For each file, a set of 3 episodes was ran for 10 times. Each episode in a set started 

with a different target position from within the set of {(500, 60), (500,240), (500,420)}. 

When the first mission was accomplished, the new target was generated randomly 

within the target range limits (Figure 8). During evaluation, thousands of missions were 

thus included in an episode. The number of missions and reward per episode were 

logged. A flow of the training procedure is shown in Figure 11 while the final results 

from the evaluation are shown in Table 4.  
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Result #1 is a clear winner since it is ranked first with respect to average rounds and 

average score per episode. Also it has very low standard deviation (0.50% of average 

score), although result #3 is slightly better with 0.44%. 16 out of 20 results of Table 4 

are of N = 128 and the rest 4 are of N = 64 starting from position #16. With respect to 

learning rate, the top 6 results are of lr  = 0.0005 and N = 128, while lr  = 0.001 appears 6 

times (with N = 64 and N = 128) and lr   = 0.005 one time with N = 64. 

In Table 4 the first entries of N =32 and N =16 are shown at positions 22 and 51 

respectively. From the results it is shown that the hyperparameter combination of N = 

64 and lr  = 0.0005 is a sweet spot that gives the best results according to our simulated 

evaluation. Also note that with a try of N = 64 and lr = 0.0001 the agent failed to train. 

This may be fixed by readjusting the hyperparameters of Table 3 with lower ε decay 

but this will lead to lengthier training time. 
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Figure 10: A snapshot from the training procedure. The agent performs multiple 
missions until it leaves the canvas (above left). The agent starts from center left, is 
guided to the target and then gets back to its origin. The colors are set to visualize 
the gains acquired: blue is -1 (distance from the designated target decreases), grey 

is -2 (distance from the designated target increases) and green is 100 (target 
reached). Note that the designated target will become the starting position (center 

left) after it reaches a random target (right). 

 

 

Figure 11: The flow of training and evaluation. For different combinations of N (16, 
32, 64, 128) and lr  (0.0005, 0.001, 0.005, 0,01) the agent is trained for at least 120k 

episodes. The top ten performers per combination are passed through a second 
level evaluation that includes 30 simulated episodes per saved weight. 
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Table 4 : The evaluation results ranked with respect to average rounds. The stand-
ard deviation is used as an indication for the stability of the result. It is clear that 

N=128 and lr=0.005 give the best results while N =16/32 are not good hyperparame-
ters for our application  

Rank Episode# N lr AVERAGE 
ROUNDS 

AVERAGE 
ROUNDS 
stdev% 

AVERAGE 
SCORE 

AVERAGE 
SCORE 
stdev% 

1 124600 128 0.0005 3297.9 22.60 215381.97 0.50 

2 120300 128 0.0005 3274.4 22.80 214069.00 5.95 

3 107900 128 0.0005 3270.0 22.65 213401.23 0.44 

4 123000 128 0.0005 3265.3 22.74 213393.97 6.08 

5 113100 128 0.0005 3214.7 22.98 209897.37 7.29 

6 100800 128 0.0005 3207.9 22.80 209241.33 5.06 

7 196400 128 0.001 3159.5 23.91 207032.23 15.90 

8 114700 128 0.0005 3162.8 23.68 206530.13 12.89 

9 168300 128 0.001 3147.3 24.02 206378.87 17.50 

10 122600 128 0.0005 3146.2 23.75 205536.90 14.05 

11 161900 128 0.001 3143.1 23.76 205389.70 14.76 

12 89000 128 0.0005 3127.0 22.52 200238.77 8.00 

13 97800 128 0.0005 3112.8 23.04 202795.37 9.61 

14 71600 128 0.0005 3097.1 22.56 201017.67 0.54 

15 147900 64 0.0005 3088.7 22.68 195301.40 16.68 

16 99400 128 0.001 3039.0 23.58 198752.67 13.95 

17 86700 64 0.001 3036.6 22.58 196686.80 0.40 

18 77300 64 0.001 3010.9 22.55 194852.03 0.38 

19 87300 64 0.005 2989.9 24.80 195341.07 20.80 

20 94900 128 0.0005 2967.3 24.87 194112.63 21.86 

22 142100 32 0.001 2954.9 23.16 191436.56 9.13 

52 184200 16 0.005 2388.2 30.6 148910.26 34.45 

 

4.4. Integration 

A number of software modules should be integrated to close the control loop (Figure 

12). The following software components need to exchange data: 
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• The ODS needed to acquire images from the USB camera. 

• The control agent needed to acquire the vehicle coordinates from ODS when 

available. 

• The control agent needed to send the commands over the wireless link to the 

vehicle 

The ODS used is a modified C++ demo software that was provided by Intel. This soft-

ware uses OpenCV (OpenCV, n.d.) and NCS2 drivers to automatically detect and use 

an attached USB camera and the NCS2 USB stick. The ZeroMQ interprocess messaging 

library (ZeroMQ, n.d.) was used to implement a client/server architecture. The client 

was the control agent and the server was the ODS. The client was blocking for a specific 

time Tods until it could get a pair of coordinates from the ODS. If there was a timeout 

then the agent concluded that there were no coordinate pairs available, meaning that 

the presence of the vehicle could not be detected within the viewing angle. 

The control agent was the central data fusion and control system.  

 

▪ It got the ODS coordinates or detected absence of measured coordinates 

▪ It estimated the current position of the vehicle 

▪ It ran the deep RL agent using the estimated position along with the previous 

position to extract a new command. 

▪ It detected the end-to-end communication with the remote vehicle and sent 

commands. 

▪ It waited for an acknowledgement from the vehicle’s IoT MSDK for every com-

mand that was completed at each time step. 

The control agent is written in Python and it uses a number of libraries to communicate 

with ODS and the RC vehicle. The BLE link acts transparently related to the control 
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agent, the BLE client forwards ASCII commands to the IoT MSDK and waits for an 

ASCII reply.  

The inference engine for the RL is based on Tensorflow/Keras and does not require the 

existence of a GPU. The inference time is measured to be less than 5msec, even for a 

low-end CPU. This is because of the small number of layers used. This is an advantage 

because the deployment can be done even on a very small computer with limited re-

sources, provided that it can execute the ODS. The Kalman filter with KALMANx1 and 

KALMANxN prediction function has been custom developed for this work, as an ap-

plication-specific library. 

 

Figure 12: The ODS (C++) and the Control Agent (Python) were running in paral-
lel as separated processes. Interprocess messaging was done by ZeroMQ library us-
ing a Linux Host machine. ODS integrated the camera interface and OpenVINO 
thus providing ~15 object positions per second. The Control Agent was not using 

hardware accelerator for the Deep RL algorithm. The RC vehicle was transparently 
controlled via a UART (Section 4.1).  
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CHAPTER 5: 

Experiments 
 

5 Experiments 

 

Figure 13: The camera is suspended 2m above the ground, with a 1.7x1.3m field of 
view. 

 

A number of experiments are conducted using different agents and environment setups. 

The resulted trajectories are logged and analyzed. The basic experiment setup is shown 

in Figure 14 where the camera is mounted vertically with its axis perpendicular to the 

running floor. Detailed explanation for each agent model and environment will be pro-

vided in the subsequent sections. The tests start from a starting point (SP1) towards 

destination points (DP) named P1, P2, P3 (P1, P2, P3|SP1). A planar view   of source 

and destination points are shown in Figure 14. 
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Table 5: Coordinates of source and destination points. 

Source and Destina-
tion Points 

Values 
x,y (pixels) 

SP1 70, 400 

P1 480,100 

P2 80,100 

P3 580,240 

P4 480,380 

 

Although the system is tested using the agent with the training setup of Figure 8 (P1, 

P3, P4|SP0) the experiments are performed with a slightly different setup. 

First it is demonstrated that the trained RL agent is not overfitted and that it can 

cope with unseen environments. While P1 and P3 lie within the target training range, 

P2 has never been seen as a target. Second, by selecting SP1 instead of the trained SP0= 

(60, 240) the agent is allowed to travel a large distance towards P1, P3 and take a long 

turn towards P2. 

 

Figure 14: Planar view of source (SP0,SP1) and destination (P1,P2,P3,P4) points 

 

For each test at least 10 trajectories are logged and averaged, compared and analyzed. 

Placing the vehicle with 1 pixel accuracy has not been possible, so during the 
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experiments the initial starting point (SP1) and angle of the vehicle lie within an ac-

ceptable small range. The environment of the vehicle was mildly stochastic meaning 

that P[s, a, s´] < 1. Τhe distance and turn angle per time step are normally distributed 

(eqn 5-1 and eqn 5-2). The actual ΔT = 1.0 sec for forward action and ΔΤ = 1.1 sec for 

left or right action. The vehicle first rotates for ΔΤR  = 0.1 and then moves forward for 

ΔΤS   = 1.0 second (eqn 5-3). 

 

5-1) sΔΤS~Ν(SΔΤS, σ2sΔΤS)  = Ν( 51.9, 109.1 )   

Where :  sΔΤS  is a sampled distance ran by the vehicle for ΔΤS 

 SΔΤS  is the mean distance ran by the vehicle for ΔTS 

 σ2ΔΤS  is the variance of the distance ran by the vehicle for ΔTS  

 

5-2) θΔΤR~Ν(ΘΔΤR, σ2θΔΤR) = Ν(29.8 , 17.3) 

  Where : θΔΤS  is a sampled rotation angle in degrees of the vehicle for ΔΤR 

   ΘΔΤS  is the mean rotation angle in degrees of the vehicle for ΔΤR 

   σ2ΔΤS  is variance of the rotation angle of the vehicle for ΔΤR 

 

5-3) ΔΤ =ΔΤS+ΔTR  

Where : ΔΤ is the duration of a command, that is 1.0 or 1.1 second 

ΔΤR is the duration of rotation that is 0.1 second if the command is turn left or 

right 

ΔΤS is the duration of forward movement, always 1.0 second 

 

The actual distance and angle depend on the friction of the wheels, the starting torque 

of the motors and the momentary drop of the battery voltage. The IoT MSDK has the 

ability to detect orientation, thus an accurate angle turn can be forced; yet, this would 
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impose delays for accurate angle adjustment. Thus it has been decided not to use this 

approach and to favor swift turns and also avoid the requirement for an accurate inertial 

sensor. The vehicle guidance was based on the accuracy of the machine vision system 

and the RL agent and not on any on-board sensor. 

Every trajectory is logged and the trajectory point Pdmin with the closest distance dmin, to 

the target PN is computed. The trajectory distance and time from SP1 to Pdmin are calcu-

lated as Sdmin  and Tdmin , respectively.  

The default delay imposed by the USB camera and the ODS software was measured to 

be TL=260msec. Any additional delay was emulated as a FIFO pipeline of the machine 

vision system. Thus  TL can be increased in multiples of Tods=1/15fps=67msec. 

5.1. The Wait Agent 

The wait agent shown in Figure 15 is converting the CDMDP to MDP by waiting for 

TL  at the end of each time step ΔΤ. Thus if the trajectory is comprised of K time steps, 

the additional time delay will be K ·ΔT. Using the wait agent, a number of trajectories 

are recorded for the trained setup P1, P3, P4 | SP0. From Figure 16 it can be seen that 

the agent adopts a hook shaped strategy, whereby it approaches the targets in such a 

way that it could return back to its starting point.  
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Figure 15: The wait agent is bypassing the problem of delay by waiting by TL at the 
end of each time step thus imposing a total delay of K·ΔT. 

 

 

Figure 16: Experiments using the trained setup with P1, P3, P4|SP0, TL=250msec. 
The agent adopted a hook like strategy to be able to return to the start point. 

 

The next experiment approach is P1, P3, P4 | SP1 and TL   = 250msec. This approach is 

one way episodes, from starting point to destination point, to allow for traveling longer 

distances. Since with this experiment the agent was driven without having been 
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affected by the delay TL, under ideal conditions but with suboptimal travel time Tdmin, 

these results are considered as reference results for the following experiments. The cen-

troids PNcw=P1cw, P2cw and P3cw for each target were calculated from the Pdmin’s based on 

the wait agent results (Figure 17). Tracking the trajectories using the wait agent is not 

required, it is used only for analysis of the result. 

 

Figure 17: The wait agent trajectories for TL=250ms using setup P1,P2,P3|SP1. No-
tice that the wait agent keeps the “hook” like trajectories. This allows to test with a 

more complex maneuvering than the shortest path that would be a straight line. 

 

Table 6: The wait agent results for TL=250msec. The centroid coordinates PNcw for 
each test are calculated. A Hotelling T2 test is performed that shows the difference 

between P1,P2 and P3 and the centroids P1cw, P2cw and P3cw. 

Centroid 
PNcw 

Coordinates 
of PNcw 

X,Y (pixels) 

Target 
X,Y (pixels) 

Distance from 
target dmin 

(pixels)/stdev 

T2/F/F-crit Average 
Sdmin 

(pixels)/stdev 

Average 
Tdmin 

(msec)/setdev 

P1cw250 467,110 P1 (480,100) 16/8.8 61.6/27.4/ 4.5 650/24 17475/748 

P2cw250 100,100 P2 (80,100) 20/10.3 47.9/21.0/4.7 471/31 10905/850 

P3cw250 585,246 P3 (580,240) 16/5.4 148.4/66.0/4.5 706/24 17046/648 

 

5.2. The Naive Agent 

The naive agent (Figure 18) treats the CDMDP like an MDP ignoring the TL. When the 

vehicle sends a message that the step has been completed, the agent immediately pro-

ceeds to its inference step and uses the latest acquired coordinates sample from ODS. 
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Trajectories are logged for TL=250, 500, 750 and 1000msec (Figure 19 through Figure 

22). Tracking the trajectories in the naive agent is not required, it is used only for anal-

ysis of the result. 

 

 

Figure 18: The naive agent treats the CDMDP like an MDP and ignors the delay TL. 

 

 

Figure 19: The naive agent with TL=250msec 
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Figure 20: The naive agent with TL=500msec 

 

 

Figure 21: The naive agent with TL=750msec 

 

 

Figure 22: The naive agent with TL=1000msec. 1/3 of the episodes of P1 ended 
when the vehicle left the field of view of the camera. 
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Table 7: Measurements using the naive agent with TL =250, 500, 750 and 1000 msec 

Centroid 
PNcn 

Coordinates 
of PNcn 

X,Y (pixels) 

Target 
X,Y (pixels) 

Distance 
from target,  

dmin 
(pixels)/stdev 

T2/F/F-crit Average 
Sdmin 

(pixels)/stdev 

Average 
Tdmin 

(msec)/stdev 

P1cn250 475,111 P1 (480,100) 
  

12/17.0 1.9/0.8/4.5 735/54 14292/1507 

P1cn500 453,135 43/21.7 86.3/38.4/4.5 745/43 15248/1027 

P1cn750 448,153 62/22.7 49.3/20.6/5.8 786/64 16963/1305 

P1cn1000 457,110 73/21.5 94.7/41.4/4.7 816/68 17829/1907 

P2cn250 63,109 P2 (80,100) 19/7.7 64.1/28.5/4.5 478/13 9718/386 

P2cn500 46,122 40/18.5 128.6/57.1/4.5 496/18 10515/686 

P2cn750 56,134 41/26.1 36.5/16.2/4.5 473/30 10354/608 

P2cn1000 78,155 55/26.7 60.2/26.8/4.5 455/27 9764/745 

P3cn250 574,245 P3 (580,240) 8/11.4 2.6/1.14/4.5 758/46 14607/960 

P3cn500 584,234 7/14.6 1.7/0.7/4.5 830/54 1726/1037 

P3cn750 587,220 20/17.8 7.5/3.4/4.5 830/37 17467/1081 

P3cn1000 586,222 19/21.7 7.2/3.2/4.5 868/41 18281/836 

 
 

Table 7 summarizes the measurements using the naive agent. It is noted that PNcn dis-

tance from target (dmin) increased when increasing TL for every destination point. The 

average Sdmin also increased with the exception of P2cn where the agent was always tak-

ing a continuous turn. The same applies with Tdmin where with the exception of P2cn , 

the time to target was increased from 14 seconds to 18 seconds. 

A result that is not described in Table 7 but is shown in Figure 21 and Figure 22 is that 

almost 1/3 of the trajectories of P2 left the field of view, thus terminating the episodes 

without reaching the target. It is clear to us that this is the limit where the naive agent 

can reliably control the vehicle. If TL ≥750 three problems are seen,  

▪ The distance to target dmin, the travel distance to target  Sdmin and the time to tar-

get Tdmin increase when TL increases, thus leading to suboptimal control 

▪ The vehicle can leave the field of view when the maneuvering takes place 

close to the edge of the canvas (e.g. P1). 



 

55 
MSc by Research in Electrical & Electronics Engineering,  

MSc Thesis, Georgios Charkoftakis, Reg. nr. MSCRES-0019 

▪ After TL ≥1250  no successful episode successful episode could be recorded, all 

trajectories ended up in loops or out of the field of view. The control loop be-

came unstable and the vehicle uncontrollable. 

5.3. The Kalman Agent 

As a result of the shortcomings of the naive agent our idea is to use a Kalman filter to 

mitigate the results of the delay TL. The data flow path is shown in Figure 23, the 

ODS_CLIENT is continuously feeding the KALMANx1 filter with position measure-

ments. If there is a missing measurement due to inability to detect the vehicle the KAL-

MANx1 works in prediction only mode (eqn 3-1 and eqn 3-2). The KALMANxN filter 

always predicts xN steps ahead using the estimation of KALMANx1 filter. The N is a 

multiplication factor of TODS sampling time, e.g. if TL =1000msec, N= (TL/67)-1. In prac-

tice since the naive agent with TL =250msec works, to reduce prediction errors the val-

ues in Table 8 are used. 

Table 8: Number of predictions of KALMANxN filter for every TL  

Delay Time TL 

(msec) 

KALMANxN 
Prediction steps N 

250 0 

500 4 

750 8 

1000 12 

1250 16 

 

The DQN running process is working only with the KALMANxN provided values, thus 

every input is linearly filtered. Unlike the wait and naive agent, this agent needs to be 

continuously fed with vehicle position measurements, so when the vehicle sends the 

command completion signal, the KALMANxN should be able to provide an estimate to 

the DQN run time. 
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Figure 23: The Kalman agent. The Kalman filter works with x1 update and xN pre-
diction depending on TL.  

 

The design methodology of the Kalman filter should be explained. At first the filter 

should estimate position, speed and acceleration from position measurements only. Sec-

ond the measurement noise covariance matrix R (eqn 3-3) and process noise covariance 

matrix Q (eqn-3-2) should be found. R could be computed since measurements were 

readily available. On the other hand an effort was made to find Q by simulating an agent 
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with logged trajectories and trying to find the closest match of xN prediction with the 

original trajectory by using a mean squared error metric. This did not worked as 

planned in practice and finally Q was tuned running a number of experiments with TL 

=1000msec   using the simulation values as a starting point. A sample from these exper-

iments is shown in Figure 24 while the full set of the Kalman filter matrices are shown 

from eqn 5-5 through eqn 5-10. 

 

5-5)  𝐴 =

[
 
 
 
 
 
1 0 𝑇𝑜𝑑𝑠 0 𝑇𝑜𝑑𝑠

2 0

0 1 0 𝑇𝑜𝑑𝑠 0 𝑇𝑜𝑑𝑠
2

0 0 1 0 𝑇𝑜𝑑𝑠 0
0 0 0 1 0 𝑇𝑜𝑑𝑠

0 0 0 0 1 0
0 0 0 0 0 1 ]

 
 
 
 
 

 

where: Tods= 0.067 second 

 

5-6)  𝑃 =

[
 
 
 
 
 
 
𝛥𝑥2 0 0 0 0 0
0 𝛥𝑦2 0 0 0 0

0 0 𝛥𝑉𝑥
2 0 0 0

0 0 0 𝛥𝑉𝑦
2 0 0

0 0 0 0 𝛥𝐴𝑥
2 0

0 0 0 0 0 𝛥𝐴𝑥
2]
 
 
 
 
 
 

 

where: P is the initial error covariance matrix.  

 

5-7) 𝐻 = [
1 0 0 0 0 0
0 1 0 0 0 0

] 

where: H is the observation matrix 

 

5-8) 𝑅 = [
𝛥𝑥2 0
0 𝛥𝑦2] 

where: R is the covariance matrix of measurement noise vector, with initial values 

Δx2=Δy2=0.4 
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5-9) 𝐼 =

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

 

where: I is the identity matrix used in eqn 3-5 

 

5-10)  𝑄 =

[
 
 
 
 
 
 
𝜎𝑥2 0 0 0 0 0
0 𝜎𝑦2 0 0 0 0

0 0 𝜎𝑉𝑥
2 0 0 0

0 0 0 𝜎𝑉𝑦
2 0 0

0 0 0 0 𝜎𝐴𝑥
2 0

0 0 0 0 0 𝜎𝐴𝑥
2]
 
 
 
 
 
 

 

where: Q is the covariance matrix of process noise vector, with initial values 

σx2=σy2=10, 𝜎𝑉𝑥
2=𝜎𝑉𝑦

2=1.0 and 𝜎𝐴𝑥
2=𝜎𝐴𝑥

2=1.0. 

 

 

Figure 24: Samples of Kalman agent trajectories for TL =1000msec. The blue line is 
the KALMANxN filter prediction. The green empty circles are the waypoints. 

 

Using the Kalman agent a number of experiments were performed from TL =250msec to 

TL =1250msec. All the trajectories were logged and shown from Figure 25 to Figure 29. 

The experiment with P1| TL =1250msec resulted in some trajectories leaving the plane, 

though the control was improved compared to the naive agent. This does not mean that 

the Kalman agent cannot perform well with TL =1250msec with an optimized set of pa-

rameters. The full results, except TL =1250msec, are shown in Table 9. 
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Figure 25: The Kalman agent with TL =250msec 

 

 

Figure 26: The Kalman agent with TL =500msec 

 

 

Figure 27: The Kalman agent with TL =750msec 
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Figure 28: The Kalman agent with TL =1000msec 

 

 

Figure 29: The Kalman agent with TL =1250msec 

 

Table 9: Measurements with the Kalman agent, TL=250, 500, 750 and 1000 msec 

Centroid 
PNck 

Coordinates 
of PNck 

X,Y (pixels) 

Target 
X,Y (pixels) 

Distance from 
target,  dmin 
(pixels)/stdev 

T2/F/F-crit Average 
Sdmin 

(pixels)/stdev 

Average 
Tdmin 

(msec)/stdev 

P1ck250 461,108 P1 (480,100) 
  

20/16.4 15.3/6.9/4.3 656/33 12357/663 

P1ck500 455,108 26/13.9 21.9/9.8/4.5 666/32 12384/520 

P1ck750 467,109 16/11.2 27.2/12.6/3.9 698/35 12888/745 

P1ck1000 454,114 30/16.3 62.3/28.1/4.3 639/33 12779/562 

P2ck250 108,91 P2 (80,100) 29/10.9 91.9/41.4/4,3 482/11 9449/229 

P2ck500 94,119 24/5.0 141.9/62.1/4.7 490/11 9725/273 

P2ck750 90.120 22/12.0 47.1/21.2/4.3 504/28 9860/766 

P2ck1000 96,110 19/16.0 14.8/6.6/4.5 479/40 10038/840 

P3ck250 565,520 P3 (580,240) 18/9.3 45.6/20.5/4.3 669/20 13290/981 

P3ck500 572,245 9/11.8 1.9/0.9/4.1 717/60 13433/1023 

P3ck750 589,239 9/5.9 12.8/5.8/4.5 813/23 14761/580 

P3ck1000 567,240 11/16.3 3.1/1.4/4.5 711/49 13968/931 
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Two slightly modified environment setups using the Kalman agent were evaluated. 

First the camera was tilted by 45 degrees (Figure 30) and proceeded with 

P1,P2,P3|SP1,TL =250msec. Surprisingly, the agent performed well – except for the 

case of P2 (Figure 31) where the ODS could not always provide a position result. The 

measurement results are shown in Table 10. 

 

 

 

Figure 30: The camera is titled relatively to its axis and moved at the side of the 
running plane. Right is the real time monitor, the red circle is the target and the 

green dots are the waypoints. 

 

 

Figure 31: The Kalman agent with TL =250msec, the camera is tilted 45 degrees. 
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Table 10 : Measurements using the Kalman agent, TL =250, the camera is tilted. 

Centroid 
PNck 

Coordinates 
of PNck 

X,Y (pixels) 

Target 
X,Y (pixels) 

Distance 
from target,  

dmin 
(pixels)/stdev 

T2/F/F-crit Average 
Sdmin 

(pixels)/stdev 

Average 
Tdmin 

(msec)/stdev 

P1ck250 472,102 P1 (480,100) 8.0/7.0 9.9/4.4/4.5 589/11 13299/550 

P2ck250 93,105 P2 (80,100) 13/16.8 3.0/1.3/4.3 562/64 13552/1588 

P3ck250 602,232 P3 (580,240) 23/7.8 141.8/63.0/33.9 703/25 15391/801 

 

Moving the camera back to vertical, the next experiment was to randomly reduce the 

number of available ODS positions by 50%, while the missing 50% was estimated by 

the KALMANx1 filter prediction.  This test was performed with TL =500 msec, the tra-

jectories are shown in Figure 32 and the measurements in Table 11. A high variance of 

the trajectory shapes is noticed; since the number of sample available is reduced the 

estimation of the Kalman filter is less accurate forcing the RL agent into more unseen 

states.  

 

Figure 32: The Kalman agent with TL=500msec, randomly missing 50% of ODS 
samples. 
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Table 11 : Measurements using the Kalman agent with TL =500msec, there are 50% 
missing ODS samples. 

Centroid 
PNck 

Coordinates 
of PNck 

X,Y (pixels) 

Target 
X,Y (pixels) 

Distance 
from target,  

dmin 
(pixels)/stdev 

T2/F/F-crit Average 
Sdmin 

(pixels)/stdev 

Average 
Tdmin 

(msec)/stdev 

P1ck500 469,108 P1 (480,100) 13/13.7 7.6/3.5/4.1 780/162 13205/1101 

P2ck500 109,91 P2 (80,100) 30/18.6 20.5/9.2/4.3 575/165 9947/938 

P3ck500 572,249 P3 (580,240) 12/10.0 3.2/1.4/4.7 805/183 13997/1357 

 

5.4. Analysis of the Experiment Results  

The results from Table 6 through Table 11 are grouped side by side in Figure 33, Figure 

34 and Figure 35. Figure 33 show how the naive agent is affected, when TL increases 

the centroids PNc of the resulted trajectories move away from the target. In every case 

the variance is high and this is due to the fact that the environment is stochastic and 

the agent does not take any special measures (e.g. reducing speed or time step) while 

approaching the target. 

▪ The performance of the Kalman agent is better than the performance of the na-

ive agent for TL >500msec for every target.  

▪ The Kalman agent for P1 and P2 it is better than the naive agent for TL = 

500msec. 

▪ For TL = 250msec the agents perform almost the same with exception of the Kal-

man agent with 45 degrees environment that is slightly worse when targeting 

P3. 

▪ The Kalman agent with 50% Loss environment and TL = 500msec is equal or 

better compared to the naive agent setup. This means that the Kalman agent is 

suitable not only to counter delays as expressed by TL but also environments with 

feedback information that arrives in varying time steps. 
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Figure 33: Distance of centroids (PNc) from their targets for every agent and envi-
ronment setup.   

 

In Figure 34 it is shown that the average distance ran by the agent is not significantly 

affected by increasing TL. The Kalman agent always performs equally well or better than 

the naive agent.  

▪ Performance on P2 stays almost the same for every TL , this due to the fact that 

the path to P2 is a long turn performed almost the same way among agents and 

environments. 

▪ For the 50% Loss environment, the variance of the distance to P2 is suffering 

because the KALMANx1 filter works 50% of the time on prediction thus feeding 

the KALMANxN filter with less accurate information than the no-loss environ-

ment. 
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Figure 34: Average distance ran from start point to centroid (PNc)  for every agent 
and environment setup.   

 

Figure 35 shows the average time the vehicle takes to reach its target (centroid). For P1 

and P3, the time to reach the target increases proportionally to TL. 

▪ The Kalman agent is exceptionally stable for every TL and much better than the 

naive agent for P1 and P3. 

▪ For P2 the naive and Kalman agents are a match, since the trajectory to P2 is 

almost always the same. 

▪ For P2 the Kalman agent for the 45 degrees environment is struggling with ODS 

detection thus imposing delays. 

▪ As expected, the wait agent has the worst performance for TL = 250msec.  
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Figure 35: Average time ran from start point to centroid (PNc) for every agent and 
environment setup. 
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CHAPTER 6: 

Conclusion 
 

6 Conclusion 

In contrast to the experimental setup of Atari 2600 agents, the raw sensory input of the 

image is decoupled from the RL agent to make it feasible to deploy a real world appli-

cation. In the previous chapters have been described the tools, methods and consider-

ations to design the machine vision system and the RL agent to remote control a vehicle 

under realistic conditions. The experimental setups showed that combining readily 

available tools and methods, like a linear estimator such as the Kalman filter, one can 

improve the control under the imposition of a time lag. This is a typical condition in 

local networks were the control signal can be passed almost instantly while the sensor 

measurements (like an object detection system) may arrive with a considerable delay. 

The Kalman filter is applied as an add-on module and it is not integrated with the con-

trol agent. Its operation relies only on position measurements thus limiting its depend-

ency from the RL algorithm used. 

It is also shown that for this application an RL agent can be designed and that will 

perform robustly. Our agent performed very well in environments not previously 

‘seen’, like the 45 degrees environment – even when it used starting and destination 

points other than the ones that it was trained for. Specific measures were taken to assure 

this performance, e.g., during training Gaussian noise was injected between layers and 

randomness into the simulated environment. Also, after training, an exhaustive evalu-

ation procedure was performed that has yielded not only the best candidate RL weights 

for the experiments, but also a guide of what hyperparameters to use in future experi-

ments. The present work included at least 400 logged trajectories that can be used in 
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future simulations, along with many lines of code to automatically illustrate and ana-

lyze the results for better intuition. 

The object detection system worked with real time performance and performed 

well within the assumptions it was trained under. The detection ratio was almost 100% 

and the frame rate was solid above 15fps. Since the machine vision system was off 

loaded to an external USB device and the RL agent had 5msec inference time, our setup 

could run on low cost PCs thus making it feasible for wide deployment. The ODS can 

be trained to detect targets and obstacles. Preliminary work showed that by using trans-

fer learning and the spared inputs of the state vector St the agent can learn to avoid an 

obstacle that can be engulfed by a rectangle. One can think of many improvements, 

like using the IoT MSDK on board sensors to perform dead reckoning in shaded areas 

or using another estimator like an Extended Kalman Filter or an RNN. 

  



 

69 
MSc by Research in Electrical & Electronics Engineering,  

MSc Thesis, Georgios Charkoftakis, Reg. nr. MSCRES-0019 

 

References 

 

Agarwal, S., Terrail, J. O. D., & Jurie, F. (2018). Recent Advances in Object Detection 

in the Age of Deep Convolutional Neural Networks. ArXiv:1809.03193 [Cs]. 
AlexeyAB. (n.d.). Yolo_mark. https://github.com/AlexeyAB/Yolo_mark. 

CUDA. (n.d.). https://developer.nvidia.com/cuda-gpus: NVIDIA. 

DA14585 Development Kit-Basic. (2017, June 29). [Text]. 

DA14585 IoT Multi Sensor Development Kit. (2018, June 25). [Text]. 

Dai, J., Li, Y., He, K., & Sun, J. (2016). R-FCN: Object Detection via Region-based 

Fully Convolutional Networks. ArXiv:1605.06409 [Cs]. 
Dalal, N., & Triggs, B. (2005). Histograms of Oriented Gradients for Human Detec-

tion. In 2005 IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition (CVPR’05) (Vol. 1, pp. 886–893). San Diego, CA, USA: 

IEEE. 

Darknet: Open Source Neural Networks in C. (n.d.). 

Dimitri P. Bertsekas. (2012). Dynamic Programming and Optimal Control (Vol. 2). 

Dimitri P. Bertsekas. (2017). Dynamic Programming and Optimal Control (Vol. 1). 

Firoiu, V., Ju, T., & Tenenbaum, J. (2018). At Human Speed: Deep Reinforcement 

Learning with Action Delay. ArXiv:1810.07286 [Cs]. 
Girshick, R. (2015). Fast R-CNN. ArXiv:1504.08083 [Cs]. 
Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2013). Rich feature hierarchies for 

accurate object detection and semantic segmentation. ArXiv:1311.2524 [Cs]. 
Gym. (n.d.). Available from : https://gym.openai.com/. 

Jetson Nano DK. (n.d.). Availlable from : https://developer.nvidia.com/embedded/jet-

son-nano-developer-kit. 

Kalman. (1960). A New Approach to Linear Filtering and Prediction Problems. Trans-
actions of the ASME–Journal of Basic Engineering,. 

Kapica, P. (n.d.). convert_weights. https://github.com/mystic123/tensorflow-yolo-v3. 

Katsikopoulos, K. V., & Engelbrecht, S. E. (2003). Markov decision processes with de-

lays and asynchronous cost collection. IEEE Transactions on Automatic Con-
trol, 48(4), 568–574. 

Keras. (n.d.). Available from : https://keras.io/. 

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with 

deep convolutional neural networks. Communications of the ACM, 60(6), 84–

90. 



 

70 
MSc by Research in Electrical & Electronics Engineering,  

MSc Thesis, Georgios Charkoftakis, Reg. nr. MSCRES-0019 

Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, I., Pont-Tuset, J., … Ferrari, 

V. (2018). The Open Images Dataset V4: Unified image classification, object 

detection, and visual relationship detection at scale. ArXiv:1811.00982 [Cs]. 
LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. E., 

& Jackel, L. D. (1990). Handwritten Digit Recognition with a Back-Propaga-

tion Network. In D. S. Touretzky (Ed.), Advances in Neural Information Pro-
cessing Systems 2 (pp. 396–404). Morgan-Kaufmann. 

Li, Y. (2018). Deep Reinforcement Learning: An Overview. ArXiv:1701.07274 [Cs]. 
Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Fea-

ture Pyramid Networks for Object Detection. In 2017 IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR) (pp. 936–944). Honolulu, 

HI: IEEE. 

Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal Loss for Dense 

Object Detection. ArXiv:1708.02002 [Cs]. 
Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., … Dollár, P. 

(2014). Microsoft COCO: Common Objects in Context. ArXiv:1405.0312 [Cs]. 
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. 

(2016). SSD: Single Shot MultiBox Detector. ArXiv:1512.02325 [Cs], 9905, 21–

37. 

Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. Inter-
national Journal of Computer Vision, 60(2), 91–110. 

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & 

Riedmiller, M. (2013). Playing Atari with Deep Reinforcement Learning. 

ArXiv:1312.5602 [Cs]. 
Nardo, E. D., Petrosino, A., & Santopietro, V. (2018). Embedded Deep Learning for 

Face Detection and Emotion Recognition with Intel© Movidius (TM) Neural 

Compute Stick. 

Neural Compute Stick 2. (n.d.). https://software.intel.com/en-us/neural-compute-

stick: Intel. 

OpenCV. (n.d.). https://opencv.org/. 

OpenVINO. (n.d.). https://software.intel.com/en-us/openvino-toolkit: Intel. 

Pena, D., Forembski, A., Xu, X., & Moloney, D. (2017). Benchmarking of CNNs for 

Low-Cost, Low-Power Robotics Applications, 5. 

Redmon. (n.d.). YOLOv3 Tiny. https://pjreddie.com/darknet/yolo/. 

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2015). You Only Look Once: Uni-

fied, Real-Time Object Detection. ArXiv:1506.02640 [Cs]. 
Redmon, J., & Farhadi, A. (2016). YOLO9000: Better, Faster, Stronger. 

ArXiv:1612.08242 [Cs]. 



 

71 
MSc by Research in Electrical & Electronics Engineering,  

MSc Thesis, Georgios Charkoftakis, Reg. nr. MSCRES-0019 

Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement. 

ArXiv:1804.02767 [Cs]. 
Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards Real-Time Ob-

ject Detection with Region Proposal Networks. In C. Cortes, N. D. Lawrence, 

D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in Neural Information 
Processing Systems 28 (pp. 91–99). Curran Associates, Inc. 

Richard Bellman. (1957). Dynamic Programming. Princeton University Press. 
Ruder, S. (2017). An overview of gradient descent optimization algorithms. 

ArXiv:1609.04747 [Cs]. 
Sang-Hun, C. (2016, March 15). Google’s Computer Program Beats Lee Se-dol in Go 

Tournament. The New York Times. 
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., … 

Hassabis, D. (2016). Mastering the game of Go with deep neural networks and 

tree search. Nature, 529(7587), 484–489. 

Sutton, R. S., McAllester, D. A., Singh, S. P., & Mansour, Y. (2000). Policy Gradient 

Methods for Reinforcement Learning with Function Approximation. In S. A. 

Solla, T. K. Leen, & K. Müller (Eds.), Advances in Neural Information Pro-
cessing Systems 12 (pp. 1057–1063). MIT Press. 

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., … Rabinovich, A. 

(2015). Going Deeper With Convolutions (pp. 1–9). Presented at the Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition. 

Walsh, T. J., Nouri, A., Li, L., & Littman, M. L. (2008). Learning and planning in envi-

ronments with delayed feedback. Autonomous Agents and Multi-Agent Sys-
tems, 18(1), 83. 

Watkins, C. J. C. H. (1989). Learning From Delayed Rewards.  

Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3), 279–

292. 

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connection-

ist reinforcement learning. Machine Learning, 8(3), 229–256. 

ZeroMQ. (n.d.). Available from : https://zeromq.org/. 

 


		2022-01-21T14:16:08+0200
	Maria Ragkousi


		2022-01-21T15:01:40+0200
	Xenofon-Dionysios Kandris


		2022-01-21T18:29:04+0200
	Nikolaos-Alexandros Tatlas




