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ABSTRACT

During the last decade, breakthroughs in the fields of machine vision and reinforce-
ment learning have been made possible thanks to the advancements in machine learn-
ing algorithms. ‘Machines’ now can recognize an object with human accuracy; this im-
plies they could play video games by just having access to the pixels of a screen. In this
work a combination of state-of-the-art technologies of deep learning are exploited to
detect, track and remotely control a vehicle under realistic conditions. A linear estima-
tor (Kalman filter) is proposed as an application-specific solution to a common problem
that is the delay of sensory input — in the present case, the latency introduced by the
machine vision system. The thesis presents the proposed system design and practical
considerations along with detailed experimental results as a proof of concept. The ad-
vantages of the proposed solution are established through comparative evaluation with
the results of other ‘naive’ solutions.

KEYWORDS: Machine Learning, Machine Vision, Reinforcement learning, Deep
Neural Networks, CNN, DQN, YOLOv3, Linear Estimator, Kalman Filter, Motion de-
tection, Motion tracking, Vehicle control
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ITEPIAHYH

H mpdodoc¢ orov touéa ¢ unyavikijc uabnonc oty mponyovusvn SEKAETIA, EKAVE
SVVaTA ONUAVTIKA EMTEVYUATA OTOVS TOMEIS TN MY AVIKIIC CPAOTC KA TIC EVIOY V-
HEVNCS exuabnone. Méow karaldijdov alyopibuwv, ot unyavéc’ umopovv mAéov va
avayvwploovy avTiKelueva 1o (810 kald ue avlpomovs — mpdyua mov onuaiver ot O
umopovoayv m.x. va mai{ovv Pivreomaty vidiax amAa Eyovrag mpoofaocn ora pixels uiag
obovne. Xmyv mapovoa epyacia aélomrotovvrat ot mAéov ovyypovor alydptGuor fabiac
uabnone yia tov evromoud, myv rapakodovbnon kat Tov amrouaxpvouEvo EAeyyo e-
VO¢ oynjuaroc o€ peadiorikéc ovvlijxec. Emione mpoteivetau n xpnowomnoinon evog
ypouuxov extuntj (pidtpo Kalman) o¢ Avon oe éva ovykekpiuévo mpopAnua - exeivo
¢ kabvotépnonc e Ajync Sedouévwv amd tov auotntripa, SnAadij e kabvotépn-
On¢ MOV EITAYEL TO CVOTHUA unyavikijc dpaong. Ilapovaialovrar avalvtika ot Ae-
TTTOUEPEIEC TIC TYESIAOTIC, Ol TPOKATITEIS TOV AVTIUETOTIOTNKAV KAl TA TTEPOUATIKA
arotedéouara. TENOC Ta TAEOVEKTIUATA TIC TPOTEIVOUEVIC AVONC  TEKUNPIEOVOVTAL
Héow ovyxpritikiic aétoAdynonc ue ta arotedéouara aAwv «amdoikdv» Avoewv.

AEEEIY — KAEIAIA: Mpyavixiy Ma6non, Mnyavixijy Opaon, Evicyvuévn Exuatnon,
Babia Nevpowvika Aikrva, CNN, DQN, YOLOV3, ITpapuuxoc Extuntijc, Pidtpo Kal-
man, Aviyvevon Kivnong, IlapaxolovOnon Kivnonc, EAeyyoc oyrjuaroc
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CHAPTER 1:
Introduction and Existing Research

The aim of this thesis is to develop and train algorithms to detect, track and remotely
control a vehicle moving on a 2-D plane, under realistic conditions, using a combination
of state-of-the-art technologies of deep learning. Furthermore, a linear estimator (Kalman
filter) is proposed and introduced as an application-specific solution to a recognized prob-
lem of such applications, namely, the delay of sensory input — in the present case, the la-
tency introduced by the machine vision system. The thesis presents the proposed system
design and discusses practical considerations. A prototype is constructed and detailed ex-
perimental results are presented as a proof of concept. The advantages of the proposed so-
lution are established through comparative evaluation with the results of other ‘naive’ so-
lutions.

The recent advances in deep learning have brought significant research gains in the
fields of object detection within images (Agarwal, Terrail, & Jurie, 2018) and in reinforce-
ment learning (Li, 2018). This was made possible thanks to advances in (micro-)computer
architecture, namely, thanks to the massive parallelization of CUDA cores (CUDA, n.d.)
inside a desktop workstation in the form of a Graphics Processing Unit (GPU) that allows
experimentation with novel architectures of increased performance, accuracy and “super
human” speed. Progress in deep learning has relied in the increased efficiency of artificial
neural networks (ANN) of the convolutional type. These networks are essentially algo-
rithms that make feasible the running of visual recognition tasks on compact low cost com-
puters (Jetson Nano DK, n.d.). The multi core architecture of those miniature computers
that may perform ANN-based inference within milliseconds is equally effective.

12
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ANNSs constitute a family of Soft Computing algorithms whose success relies critically
on a ‘training’ or ‘learning’ phase, where the algorithm’s parameters are iteratively adjusted
on the basis of a ‘rich’ training set of examples, each tagged with the correct ‘answer’ (out-
put value or class). A variety of learning algorithms have been proposed and tested on var-
ious use cases. They are essentially optimization methods, where the optimization criterion
is a function of the error between actual and correct ‘answers’ (ANN output values or clas-
ses). Reinforcement learning (RL) is a current and promising development along these
lines.

The basic idea behind reinforcement learning is to train a software algorithm (an
‘agent’) by maximizing the accumulated rewards of a policy 7 The training of the agent is
a tradeoff between exploration and exploitation of the agent’s environment. The field of
application of RL is vast, ranging from economics to medicine and autonomous vehicle
control. It was Mnih et al. (2013) that has first combined the achievements of RL with deep
neural networks. An RL agent could compete or even exceed human agents in playing
Atari 2600 games. The RL agent would outperform human agents based on knowledge of
raw pixel values alone; it knew nothing of the game’s inner dynamics.

The same technology combined with Monte Carlo methods gave RL the title of the
‘Go’ champion (Silver et al., 2016). ‘Go’ is a traditional Chinese game that is famous for its
vagueness and its huge number of combinations. This type of game is clearly suited for
human intelligence, so it was a surprise when AlphaGo, a software developed by Deep-
Mind won the world champion by four to one (Sang-Hun, 2016). This was a rare case when
state of the art research has been up in the news headlines.

The difficulties of training an RL agent are not restricted only in the algorithm selection
and the hyper parameters fine tuning; the large number of ‘episodes’, in the order of tens
of thousands, along which the agent should be able to explore its environment is also a big

challenge. Unlike the Atari 2600 games, some environments are not available for
13
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experiment using a real (physical) agent, such as a moving vehicle; a simulated agent should
be used instead, for training and evaluation. The restrictions do not come only from the
fact that a real agent may be expensive or the environment may be unavailable, as in the
case of a spacecraft. It is also possible that each episode may be unfolded (‘run’) for hours
or even days. The real agent may be deployed after a certain level of confidence is reached,
following exhaustive performance evaluation with a simulated agent.

Object detection in digital images is known to be one of the most challenging tasks for
intelligent algorithms, since it demands the detection of a variety of objects within a mixed
background. The objects may vary in size (scale), from just a few pixels (where most of the
information is lost) up to the occupation of a large portion of the image. Moreover, the
objects may be rotated, or partially obscured by other objects under varying lighting con-
ditions. The successful detection of objects by ‘machines’ (algorithms) using cameras has
drawn significant research attention and effort, due to its numerous applications. Through
the use of this technology, today computers may extract semantic information from the
surrounding environment; this in turn allows for successful machine interaction. As the
highly optimized semiconductors necessary for performing inference tasks are getting
cheaper (Nardo, Petrosino, & Santopietro, 2018; Pena, Forembski, Xu, & Moloney, 2017)
the wide deployment of this technology is imminent.

The traditional approach to object detection within images has been the extraction of
object characteristics in the form of empirically defined features. This approach has had
the side benefit of the reduction of the problem space dimension. The compression thus
achieved has been more than welcome: in fact, it was a necessity, given the performance
limitations of the available hardware.

Since the 1990’s, the convolutional neural networks (CNN) have been successfully used
for specific tasks like recognition of hand written characters (LeCun et al., 1990). After

years of experimentation, CNNs lost interest in favour of SVNs. The work on image
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recognition in the first years of 2010’s relied on the methods of Histogram of Oriented
gradients (HOG) (Dalal & Triggs, 2005) and Scale Invariant Featute Transform (SIFT)
(Lowe, 2004); unfortunately, the progress results suggested a stalemate.

Krizhevsky, Sutskever, & Hinton (2012) found that a high number of image character-
istics could be processed by an equally complex network with a large number of parame-
ters. They trained a CNN using a training set of 1.2 million images of ImageNet, belonging
to 1000 categories. This team (‘SuperVision’) won the ILSVRC2012 contest and set a new
classification (Task 1) record of top-5 and top-1 accuracies at 16.4% and 38.1% respectively.
The ILSVRC2012 Task 2 is an object localization task where the SuperVision team achieved
an equally important top-5 error of 33.5%. Unfortunately details of the localization method
employed are not included in the publication.

Krizhevsky’s work shifted again the interest of the researches towards CNNs. This
achievement has become feasible thanks to the advent of high performance CUDA GPUs
that could massively perform highly optimized 2D convolutions and stochastic gradient
descent (SGD) algorithm runs, necessary for network training. The Krizhevsky’s CNN is
named ‘AlexNet’ and contains 5 convolutional layers and 3 fully connected layers resulting
in 60 million parameters and 650 thousand neurons. The good results of AlexNet in the
image classification and object localization tasks mentioned earlier were achieved thanks
to introduction in the training algorithms of measures that combat overfitting —a problem
that is common in networks of that scale. During training, the AlexNet training algorithm
used patches of the original images of 224x224 pixels, plus the horizontal reflections of
them. Another anti-overfitting measure employed is the ‘dropout’ where a proportion of
the neurons remain inactive, meaning their output is zero, during training. This forces
these neurons to adjust on their own than to rely on the activation of other neurons.

At this point it was clear that network architect choices have a great impact on CNN

performance. Drawbacks of AlexNet identified included the vast amount of annotated data

15
MSc by Research in Electrical & Electronics Engineering,
MSc Thesis, Georgios Charkoftakis, Reg. nr. MSCRES-0019



required for supervised learning (network training), the large memory needed, the high
computational requirements and the fixed size of the input images (224x224 pixels).

The major interest behind RL and object detection in general is the feasibility of real
time control applications. Even if a state of the art object detection algorithm is employed,
still there is a significant delay between the issue of the execution command and its actual
effects. When training is completed and the network is used for testing, i.e. inference, it is
seen that the performance of inference algorithms, even if a hardware accelerator like a
GPU is employed, takes tens of milliseconds because of the multilayer nature of the CNN.
In an attempt to analyze and further break down the actual delays, when a commercial
USB camera is employed, it is estimated that the delay for the image transfer to the com-
puter memory can be hundreds of milliseconds. Low-latency, industrial-grade USB and
Ethernet cameras have a prohibitive cost for large scale deployment. Moreover, the per-
formance of these high speed cameras depends on the existence of ideal lighting conditions.
In non-ideal conditions, the exposure time increases thus mitigating their advantage. In
brief, the problem with the use of machine vision algorithms for real time problems lies at
the nature of each application in itself (e.g., poor lighting conditions) and cannot always be
overcome by the selection of expensive hardware.

In addition to the challenges mentioned before, the use of RL in real time control is
faced with extra difficulties: the deployment of a real application, such as object detection
and control, undergoes the constraints of inference execution time, the delay of the com-
mand to reach the agent and the effort to build a simulated environment. The delays that
accumulate in either case (real or simulated agent) may cause loss of control due to loop
instability.

In light of the above discussion, it would be of great value to combine both technolo-
gies, object detection and RL, for the real time control of an agent (e.g., a moving vehicle)

through the selection and use of the appropriate set of existing methods and tools to
16

MSc by Research in Electrical & Electronics Engineering,
MSc Thesis, Georgios Charkoftakis, Reg. nr. MSCRES-0019



overcome the difficulties of actual deployment. The aim of the present research is to show
that efficient remote control and navigation of vehicles is feasible using low cost computing
platforms. Furthermore, this can be achieved with robustness using a combination of avail-

able technology of reinforcement learning, visual object detection and linear estimators.
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CHAPTER 2:
Problem Statement and Specifications

In order to remotely control a vehicle using an RL agent and object detection technol-
ogy what is required is the flawless integration of all the subsystems involved, i.e., the
vehicle, the camera, an object detection process, an RL agent and a communications sys-
tem. The interconnection and interoperability of these components should be efficient
enough to cope with the problems mentioned earlier. The control loop should be stable,
the vehicle should reach a designated target and while getting there it should not move off
limits. The control should be optimal, the agent should not wait for a stable feedback signal
(position) to decide for the control signal due to the object detection latency. The RL agent
and the object detection system should be fast enough to decide the new control signal
within a fraction of a time step. The communications system should pass the control signal
to the vehicle with close to zero delay.

Previous work examines the use of RL methods in the presence of delayed feedback
(Walsh, Nouri, Li, & Littman, 2008) or when there is action delay (Firoiu, Ju, & Tenen-
baum, 2018). Walsh et al. showed that the augmentation method when a Constant Delay
Markov Decision Process (CMDP) is mapped to MDP (Bertsekas, 2017; Katsikopoulos &
Engelbrecht, 2003) blows up exponentially the memory / computational requirements and
thus renders the problem insolvable. They proposed the Model Based Simulation (MBS)
planning method, when the CMDP is finite and in conjunction with Model Parameter
Approximation (MPA) when the CMDP is continuous. MPA is a no-delay model-based RL
algorithm that complements the MBS.

In a real case scenario the MBS+MPA have some disadvantages:

18
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1. The MPA should be used to extract matrices Pand R - something that is not feasible for
many real world problems.

2. This setup is oriented towards problems where the time delay 7;is a multiple k of the
time step 47. When k=0 the CMDP is an MDP without delay. In some real time prob-
lems, where k=0, the observation S;is available at time #+y where y<4Tand solving
the problem by getting S; at &+ 47 (k=1) is a suboptimal solution.

3. The MBS method does not address the problem of time jitter that is common when
observations arrive asynchronously.

4. The MBS does not cope with lost observations, where sometimes the feedback signal is
lost.

Due to the lack of a generic theoretic approach, an application specific solution is pro-
posed in the present research that can address the practical problem as described above. A
remotely controlled ground vehicle (the robot) is guided by an RL-trained agent to its tar-
get. The robot can move with a time step of 47=1sec towards three directions: left, right
or forward. The positioning system incorporates the machine vision subsystem which de-
tects an object on top of the robot and extracts a feature vector with its planar coordinates.
The object detection system runs a YOLOv3 Tiny algorithm (Redmon & Farhadi, 2018)
and has position update frequency of 15 positions per second and a lag of 7, ~260 msec.

The feature vector is fed to a Kalman filter that serves a double purpose.

e First, it compensates for lost samples since the object detection system may fail to detect
the robot under varying conditions of lighting and view angle.

e Second, it predicts the current position S; + 7, ahead of the provided position S

When the robot reaches its target, an acknowledge signal is issued; this is received through

the control channel without delay. At the time of its arrival, though, the provided position

already lags by 7;. If there is no compensation for this lag, then the algorithm should either

wait for 7;(until the RL agent will have yielded a stable position reading) or should treat
19
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the delayed CDMDP as an MDP and ignore the delay. This solution does not cope with the
problem of missed position data and is therefore suboptimal, since it has to either cause a
delay to the vehicle movement or result in the vehicle missing its target and moving out of
the detection field. The object detection subsystem produces position vectors much faster
than the time step A7 This can be exploited by a linear estimator like the Kalman filter

that is suited for tracking moving targets.

20
MSc by Research in Electrical & Electronics Engineering,
MSc Thesis, Georgios Charkoftakis, Reg. nr. MSCRES-0019



CHAPTER 3:
Methods and Tools

Figure 1 shows a block diagram of the experiment setup built for the purposes of
this research. A personal computer is hosting the Object Detection Server (ODS) with
YOLOv3 Tiny. It runs asynchronously to the vehicle control agent and provides coor-
dinates using socket based inter-process communication. The ODS is trained to provide
the position of a remotely controlled vehicle via a camera mounted vertically in a fixed
position above the vehicle testing ground.

The vehicle coordinates are fed to a control agent that decides the next move of the
vehicle. This setup facilitates the investigation of solutions and tools needed in order to
apply the modern methods of object detection and reinforcement learning to a real
world problem, as described in the previous sections. The algorithms are selected to
realize a state-of-the-art approach with robust solutions. The control agent will use a
reliable Deep Q Learning algorithm in conjunction with a two-stage Kalman filtering
that will assist in estimating the true position from the time delayed ODS provided
position.

In next paragraphs, the subsystems of the experimental prototype are briefly intro-
duced and discussed. Application-specific details of the implementation along with the

experimental results follow.
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CAMERA

HOST COMPUTER NCS2

ODS SERVER
RC VEHICLE
CONTROLAGENT |~ "

Figure 1: Experiment setup. The Host Computer runs the ODS and the Control Agent
software. The ODS is using the Neural Compute Stick 2 (NCSZ2) as an accelerator for
the YOLOvS3 Tiny. The Camera is a typical commercial USB Web Camera (Logitech

€920 HD Pro).

3.1.0bject Detection with the YOLOv3

The early attempts to object detection in images using CNNs relied on double stage
detectors like R-CNN (Girshick, Donahue, Darrell, & Malik, 2013), Fast R-CNN
(Girshick, 2015), Faster R-CNN (Ren, He, Girshick, & Sun, 2015) and R-FCN (Dai, Li,
He, & Sun, 2016). This double setup with a region proposal network followed by a clas-
sification network proved to have superior accuracy at the cost of poor speed; thus it
was not suitable for real time video processing. The advent of single stage detectors with
the most prominent works of Redmon (2015) who employed YOLO & derivative algo-
rithm and Liu et al. (2016) who used SSD, have made real time applications feasible.
Among the members of this family of algorithms, the YOLOv3 Tiny algorithmis chosen
for this research work.

YOLO (Redmon, Divvala, Girshick, & Farhadi, 2015) along with its incremental
improvements known as YOLOv2, YOLO9000 (Redmon & Farhadi, 2016) and YOLOv3
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(Redmon & Farhadi, 2018) offer the best real time performance at 22msec (45fps) exe-
cution time.

The idea behind YOLO is simple: the same (single) network is used for detection
and region proposals. The image under processing is split into a grid of SxS. For each
grid cell, B bounded boxes are created along with their confidence and C conditional
class probabilities. For the actual YOLO implementation, the parameter values are S=7,
B=2 and C=20, meaning that for each of the 7x7 cells, 2 bounding boxes are proposed,
with a confidence metric and a vector of size of 20 containing the probability for each
class. Each bounding box has 4 coordinates and a confidence number associated with
it. The output of the network, therefore, is 7 x 7 x ( 2 x 5 + 20) = 1470 proposals. The
output of the network is then processed to eliminate duplicate boxes or boxes that con-
tain classes with very low probabilities.

The architectural structure of the original YOLO implementation, based on Goog-
LeNet (Szegedy et al., 2015), has 24 convolutional layers that feed 2 fully connected
layers. An alternative Fast YOLO implementation contains only 9 convolutional layers
and achieves a processing rate of 155 frames per second, at the cost of reduced accuracy.
The mean average precision (mAP) of YOLO is 63.4% and that of Fast YOLO is 52.7%
mAP using the PASCAL VOC2007 test set (Redmon et al., 2015). By its design, each
grid cell of YOLO may contain only one class. This means that only a limited number
of objects may be detected. YOLO is not able to detect small objects that are located
close to each other. On the other hand, since the size of bounding boxes is arbitrary
and they may have practically any size, YOLO generalizes well on the image content,
meaning that there are few background errors.

Tough competition with SSD (Liu et al., 2016) brought a new version of YOLO,
YOLOv2 and YOLO9000 (Redmon & Farhadi, 2016). YOLOv2 incorporates several

modifications to cope with the main disadvantage of YOLO that is localization errors.
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The last fully connected layers were removed and replaced by convolutional layers so
that the network could adapt to various image resolutions. Now it could be trained with
a mix of high and low resolution images to provide finer detection. The arbitrary
bounding boxes were replaced by boxes automatically adjusted during training. Mixed
classification and object detection data was used for training as a method to achieve
robust detection.

The YOLO CNN required 8.5 billion operations to complete a forward pass.
YOLOV2 replaced this architecture with a novel architecture called Darknet-19 that
has 19 convolutional layers and 5 max pooling layers. This required 5.6 billion opera-
tions for a forward pass resulting in a speed boost while keeping top accuracy perfor-
mance of 78.6% mAP at 40fps. Using the combined dataset of COCO (Lin et al., 2014)
and ImageNet, Redmon proposed YOLO9000 that can detect 9000 object categories
with 19.7% mAP.

The next incremental proposal of YOLOv3 (Redmon & Farhadi, 2018) trades speed
for improved accuracy. Darknet-19 is replaced by a 53-layer CNN unsurprisingly
named Darknet-53. Softmax classification is replaced by independent logistic classifiers.
Since classes are not mutual exclusive, overlapping labels may coexist allowing for
training on other data sets (Kuznetsova et al., 2018). Using a similar idea from FPN
(Lin, Dollar, et al., 2017) boxes are predicted at 3 different scales to improve small object
detection. Its accuracy score (AP) is close to the top accuracy performer RetinaNet (Lin,
Goyal, Girshick, He, & Dollar, 2017) and SSD (Liu et al., 2016) but being three times
faster.

YOLOvV3 Tiny is a reduced version suitable for resource-constrained systems. It is
based on Darknet19 architecture with input images of 412x412. It includes 13 convo-

lutional layers and can achieve a maximum processing rate of 220fps (Redmon, n.d.).

24
MSc by Research in Electrical & Electronics Engineering,
MSc Thesis, Georgios Charkoftakis, Reg. nr. MSCRES-0019



3.2. Kalman Filter

The Kalman filter (Kalman, 1960) is used to compute accurate estimates of unknown
variables based on a series of available measurements. It is intended to be used with
systems of linear dynamics that can be described by state space equations and can cope
with measurements contaminated by Gaussian noise. The mean and covariance of the
system state are predicted and updated through each time step. The Kalman filter algo-
rithm consists of two steps, (i) the prediction step and (ii) the correction or update of
the estimates step. Eqn.s 3-1 and 3-2 are the prediction step and eqn.s 3-3, 3-4 and 3-5
are the update step. This distinction is important, since in the case there is no new
measurement, the estimated state is predicted by the dynamics of the system as de-
scribed in eqn 3-1. If a new measurement does become available, then the uncertainty
is mitigated since the estimated state produced by the prediction step is combined with
the measured state, as in eqn 3-4. The two steps are outlined below.

§)) Prediction Step:

3-1) Xy = AXj_; + BUy_1 + Wy_4

Where: X is the predicted state vector at time step &
Ais the state transition matrix
Xit_,is the updated state vector from time step k-7
Bis the control input matrix
Uk1is the control vector at time step k-7

Wi.1is white Gaussian noise process vector from time step k-1

3-2) P, =AP AT+ Q
Where: P is the error covariance matrix at time step k&

P;_,is the updated error covariance matrix from time step k-7

Q is the covariance matrix of the noise process vector
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(ii) Update Step:

3-3) K, =P, HT (H P, HT +R)™1

Where: K;is the Kalman Gain at time step &
His the observation matrix

Ris the covariance matrix of measurement noise vector

3-4) Xj =Xp + Ko (Y — HX;_y)

Where: X}t is the updated state vector at time step k
Yis the measurement vector

3-5) P{ = —-KH)P,

Where: Pis the updated error covariance matrix

State and output noise covariance matrices Q and R are considered known. The Kalman
filter is an iterative algorithm on & that converges to a state vector after appropriate
initialization of the involved matrices for 4=0.

3.3. Deep Q Learning

Reinforcement Learning (RL) has its origins in the problems of optimal control
(Bellman, 1957) and is a development out of the widely used mathematical process
known as dynamic programming (DP). Dynamic programming methods can be used
only if the dynamics of the system are known. A method that learns the dynamics of
the system of interest by itself was not easy to perceive a few years ago. The bases of
modern RL were set during the 1980’s, when distinct research concepts converged to
the seminal work of (Watkins, 1989) that introduced the Q-Learning algorithm and its
convergence properties (Watkins & Dayan, 1992).

RL algorithms are divided in model free and model based ones. In the model-based
RL algorithms, the model of the environment is considered known and the algorithm

is trying to find the optimal policy that will maximize the ‘reward’. Using this setup, a
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model can be used to evaluate the results of an action without taking the action. In the
model-free RL algorithms, the results of an action are not known a-priori and a trial-
and-error behavior (exploration) is necessary.

RL is based on the formalization of Markov Decision Processes (MDP). MDP is a
decision-making policy that breaks down every system into a set of states, actions and
rewards. At each time step ¢ an ‘agent’ is positioned within the environment with a
state S. The agent is trainable. Using this state S, the agent should decide its next action
Ae At time step t+1, the agent will end up in state S..; with probability A S| S, A and
will be rewarded with Rw:. This MDP framework can be summarized as a tuple <S, A,
D, I, y>where Sis a set of states, A is a set of actions, p= F/s, a, s "/ is a state transition
matrix, r=R/s ', a/is the reward function and yis the discount factor. The agent should
select actions from within the action set A on the basis of a policy m The goal is to find

the optimal policy 7*that maximizes the accumulated reward Gras shown in eqn 3-6.

3-6) Gy = Riy1 +VRep2 +V*Reps + -+ v 'Ry

A well known example of ‘learning a policy’ is the training of an agent (a software
program) to play a digital strategy game. The RL approach to training the agent is to
lead the agent to discover the best policy by having the agent play a large number of
game sessions while adjusting its policy.

There are two main approaches to learning a policy. One approach that led to the
policy gradient method (Sutton, McAllester, Singh, & Mansour, 2000; Williams, 1992)
is to learn the policy directly as a distribution over actions. The other approach is value-
based. Here, the policy is derived by following an &greedy policy on functions of the
states, v(s), (eqn 3-7) or functions of the state s and action a, g(s,a), (eqn 3-8). When the

state-action function g(s,a) is defined as in the Bellman optimality equation (eqn 3-9),
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then the Q-learning algorithm can be used to obtain the optimal policy 7 that maxim-

izes g*using an iterative update (eqn 3-10).
3-7) vn(s) = Ex[Ge|Se = 5] = Ex[Yi=oV* Resis1lS =s]Vs €S
3-8) qr(s,a) = Ex[G¢|Se = 5,A; = a] = Ex[¥i-0 Yk Riyk+1lS=5s]Vs,a €S, A

3-9) q*(s,a) = E, [Rt + max q.(S¢+1,a)|Se = 5,4 = a] Vs,a€SA

3-10) " (S, Ap) < q.(Sp, A) + a <Rt + Vma‘}x q«(Ses1,a') — Q*(StrAt))

Eqn 3-10 implies that an RL problem can be solved by keeping a table for every ¢g(s, a).
This is practical only for MDPs that have limited number of (state, action) pairs. If the
number of pairs is very large or infinite, then a function approximation method should
be used that typically can be a linear combination of features or an artificial neural
network (ANN). The linear combination of features (Bertsekas, 2012) requires the use
of extracted features while the neural network has been proven to work with raw sen-
sory input (Mnih et al., 2013). The use of a function approximation method has also the
advantage that an RL system can cope with state-action pairs never seen before.
Consider a Deep Q Network (DQN) that is using an ANN with weights was a func-
tion approximator. The weights are found by the Stochastic Gradient Descent (Ruder,

2017) to minimize the loss function (eqn 3-11).

3-11) L(w) =E [(y(W) —q(Sp, Ag; W))Z]
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Where the target value is -

_ R;,if sis terminal
3-12) y(w) = R +ymax qw(Ses1,a’; W), if s is non terminal
a

The computer memory is used to store a large number of (S, A:, R:, S:z) samples. The
SGD optimization is used with a random batch of samples from this memory. This
method is called experience replay (Lin, 1992) and it is an effective measure to mini-
mize the correlation when training with recent trajectories. From eqn 3-11 and eqn 3-
12 it is shown that two distinct ANN weights are used, w that is called the on-line
network and w that is called the target network. The gradient descent optimization is
applied only to the online network that is used as a forward pass during exploitation
where the target network is updated periodically from the online network. This duality
of target and online networks ensures stability during training. Many improvements
have been proposed to the DQN algorithm (Hessel, 2017); however, the basic setup as

described here is adequate for the context of the present work.
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CHAPTER 4:
Deep Networks Training and System Integration

In this chapter are presented the training of the two neural networks, the object detec-

tion algorithm YOLOv3 Tiny and the DQN RL agent.

4.1.The remote controlled vehicle
A three wheel vehicle is remotely controlled by a Bluetooth Low Energy (BLE) com-

munications link as shown in Figure 2. The vehicle has a free running wheel and two
wheels driven by DC motors (Figure 3). The supply of the DC motors is provided by an
H bridge controlled by IoT Multi Sensor Development Kit (IoT MSDK). The IoT MSDK
("DA14585 IoT Multi Sensor Development Kit,” 2018) contains a number of sensors
with an extension connector, from which 2 general purpose 10’s (GPIO’s) are used to
control the H bridge. The power source of the motors is a pack of batteries that provide
3.6V and it is not the same power source of IoT MSDK that includes 2 AAA batteries.
The IoT MSDK is a BLE peripheral with a GATT server. It contains a control charac-
teristic, for which three custom commands are used for the three allowable movements
(forward, left and right) plus a disable/enable all command. All actions last for 1 second,
then a completion acknowledgement is sent back to the central device. The BLE central
device is a Dialog Semiconductor DA14585 Kit Basic (“DA14585 Development Kit-
Basic,” 2017), for which a GATT client application is developed that sends commands
to IoT MSDK (GATT server) and awaits for acknowledgment. The central device com-
municates with the central computer using a virtual RS232 communication port over a

USB connection.
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Figure 2: The remote control of the guided vehicle. A Bluetooth Low Energy link is

used. The central device (GATT Client) is communicating with the host computer

using a virtual UART over USB communications port. The Central device automat-
Ically scans and connects with the existing peripheral device (GATT Server).

Figure 3: The remotely controlled vehicle. The ODS detects not the robot itself but
the IoT MSDK attached on top. The vehicle chassis can thus be altered without
having to retrain the ODS. The IoT MSDK Controls the H Bridge of the motors

with its GPIO’s.

4.2. Training YOLOv3 Tiny
YOLOV3 Tiny is the ODS algorithm of choice. It is suited for real time applications due
to its frame rate performance, at least x4 compared to YOLOv3-320 (Redmon & Far-
hadi, 2018). The training environment of choice is the Darknet open source neural
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network software package (“Darknet: Open Source Neural Networks in C,” n.d.) that is
maintained by Redmon. Darknet provides all the necessary components to train and
run any flavor of YOLO, such as training configurations, runtime/inference for the ex-
tracted weights and automatic usage of a GPU. To train a CNN like YOLO, a large num-
ber of pictures have to be available and marked for every object class to be detected.
There is not a strict rule on how many pictures are needed, the more the better. In
practice, training with 300 images for a single object class provides acceptable results.
The software used for marking images is YOLO Mark (AlexeyAB, n.d.). Marking means
drawing a rectangle that encompasses the object of interest. For each picture a new file
is created that contains the coordinates of the rectangle. For this procedure the follow-
ing rules were applied:

e The marking should be tight but precise, meaning that the rectangle should nei-
ther encompass unnecessary space nor exclude any part of the object. Precision
1s important.

o If the object exists more than once in an image, it should be marked in all its
instances.

e The object should be pictured, if possible, in all possible angles, lighting condi-
tions and backgrounds that may occur during inference.

e To reduce false positives, not all images should be marked; images with plain
background should also be used.

Using a DSLR camera, a set of 359 pictures of the IoT MSDK were taken and marked
using the above rules (Figure 4). Each picture had 0 to 4 instances of IoT MSDK. Instead
of 80 classes of the standard YOLOv3 configuration, a single class was used - the one of
IoT MSDK. The rule of thumb for training YOLOv3 is that 2000 rounds per class are
needed. The agent was trained for 5000 rounds (Figure 5) that took 16 hours on a PC

equipped with a GPU. Longer training is not desirable since it might lead to overfitting.
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After the completion of training, intermediate steps are needed to convert the Darknet
CNN weights to the weights format needed by NCS2.

NCS2 (Neural Compute Stick 2, n.d.) is a neural network accelerator that comes in
a USB stick form and offers the flexibility to work with different platforms. The soft-

ware development platform for NCS2 is OpenVINO Toolkit (OpenVINO, n.d.).

o x

Figure 4: Marking through the Yolo Mark utility is time consuming: at least 300
pictures per category should be marked. Precision is important: the rectangles
should accurately enclose the objects.
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Figure 5: Training YOLOV3 Tiny loss versus iterations. The rule of thumb is that at
least 2000 iterations are needed per object category. It was trained for a single cate-
gory for at least 5000 iterations.

The Darknet weights should be converted to Tensorflow weights (Kapica, n.d.). At first
the YOLOv3 was trained using a modified Darknet configuration file for one class of
objects (IoT MSDK). In order to be compatible with the conversion utility, it was then
retrained using the 20 class configuration that is provided for the VOC dataset. The
Tensorflow weights are converted to the IR model used by NCS2 via the IR Model
Optimizer utility provided by OpenVINO.

Both YOLOv3 Tiny using Darknet Demo and NCS2 provided demo for YOLOv3
Tiny were benchmarked. A significant speed increase was noted by using the NCS2.
The Darknet Demo exhibited maximum performance at ~10fps (Figure 6) versus the
~15fps of NCS2 (Figure 7). The NCS2 is using an FP16 accelerator versus the FP32 GPU
exploited by Darknet. Moreover, the NCS2 YOLOv3 Tiny demo is running in optimized
asynchronous mode where the images are pipelined in the stages of acquisition, transfer

and inference. As shown in Figure 7, the extracted coordinates of the NCS2 port lack
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accuracy, this can be explained by the rounding errors of the IR Model Optimizer. This

did not have an impact in the present experiments because only the center of the object

position is used while the extensions of the rectangle boundaries are symmetric.

Figure 6: Running YOLOv3 Tiny natively with Darknet using a GPU.

Figure 7: Running YOLOv3 Tiny with NCSZ2. The weights are converted to NCS2
format using the provided OpenVINO utilities.

4.3.Training the RL agent
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The ‘environment’ considered here is a ground vehicle monitored by an object detec-
tion system that provides coordinates (X, ;) at every time step 47. The objective is To
train an RL agent that can guide the vehicle from a starting point to its target (destina-
tion point) located at (X7zq Y7re). The target is fixed at each episode. Each episode ends
when the vehicle reaches the target or when it moves out of bounds, meaning that it
has left the field of view of the camera. The ODS is developed as described in Section

4.2. The state of the system is defined as vector S; :

4-1) Se = (thYt'Xt—liyt—erTRG'YTRG)T
Where: X, Y:are the vehicle Cartesian coordinates of the vehicle at time step ¢
X1, Yerare the vehicle Cartesian coordinates of the vehicle at time step +-4T.

Xrre, Yrre are the target Cartesian coordinates that do not change over time.

The RL agent is trained using Deep Q Learning to control the vehicle in order to be
able to accomplish a ‘mission’, that is to set off from its origin position and reach the
target. The ODS camera is positioned vertically 2m above the level of the vehicle and
has a field of view of 1.7mx1.3m with an analysis of 640 x 480 pixels. As shown in
Figure 8, the starting point of the vehicle is at coordinates (60, 240) at 0 degrees angle
and the target could be any point within the rectangle coordinates (420, 60) and (580,

420).
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Figure 8: Training environment setup. This is the field of the expected view of the
camera, the plane that the RC vehicle moves. The target area is on the right hand
side. The plane area is 640x480 pixels, this resolution gives enough detail for the
ODS to recognize the loT MSDK on top of the RC vehicle but also delivers enough
frame rate to run in real time.

At each time step ¢, the RL prompts for one of the 3 actions available, namely, ‘move
forward’, ‘move left 402" or ‘move right 40°". All actions last for time 47=1 second. In
order to train the agent, first an OpenAl Gym (Gym, n.d.) compatible environment is
developed that simulates the movement of the vehicle. This compatibility ensures the
reuse of this work for future research with other agents. In order to facilitate explora-
tion, convergence and robustness the developed Gym environment followed these

rules:
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* When the vehicle reaches the target, the starting position becomes the new tar-
get. When the vehicle reaches the starting position, a new random target is gen-
erated. This ‘round-trip’ is considered a mission. The episode ends when the
simulated vehicle goes out of bounds. Typically an episode may last for many
missions.

* The state vector S; (eqn 4-1) has 6 additional inputs reserved for future use.

* The magnitude of the speed vector is a uniform random variable between 55
and 65 pixels per second.

* The reward for reaching a target is 100, for moving towards the target -1, -2

otherwise.

To find the optimal architecture and hyperparameters for the ANN a two stage evalu-
ation method is applied. A decision was taken to keep the number of layers constant
(Table 1) and experiment with the number of cells and learning rate as shown in Table

2. The rest of the hyperparameters of Table 3 kept constant.

Table 1: There is a single hidden layer and the number of cells in layers 1 and 2 is
the same. To enhance the robustness and avoid overfitting a Gaussian noise genera-
tor is added prior to activation function. The Gaussian noise generator is active
only during training.

Layer Size Activation Notes
Number | Number of cells

Input Cells, output is disturbed by additive Gaussian
noise of standard deviation of 0.01. 6 inputs are
used, the other 6 are always zero and added for re-
dundancy in future research.

ReLU Hidden Cells, output is disturbed by additive Gauss

ian noise of standard deviation of 0.01
Linear Output Cells

N, 12 inputs RelLU
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Table 2: The hyperparameters that will be tested to find the best candidate.

Hyperparameters Values
Number of Cells N N=16, 32, 64, 128
l 1, Leamning Rate 0.0005, 0.001, 0.005, 0.01 ]

Table 3: The hyperparameters of the ANN that are kept constant through the train-
ing process.

Hyperparameters Value Notes

max=1.0,
min=0.1, Exploration rate
decay=0.99995

4 0.98 Discount factor
A random sample of Batch Size is used eve

Batch Size/Epoch 128/1

Krrtime to perform a single fit operation.
Memory Length, used for experience replay
(Lin, 1992)

Every Krr number of steps a training opera-
tion is performed.

Loss Function Mean Squared Error
Optimizer Kingma & Lei Ba, 2014

Memory Length 100000

Krr 4

A training agent with Keras/Tensorflow (Keras, n.d.) environment was developed and
ran the Q Learning algorithm for at least 120K episodes. The first 8K episodes were
running with e=1 (exploration only) to get enough samples in experience memory. The
accumulated reward and snapshot weights were logged and saved every 100 episodes
to be used in later evaluation. As an example for /=128 and /=0.001 (Figure 9) the re-
ward quickly escalated after episode round 45000 and made a dip around episode round
70000. The training procedure was visualized where, the trajectories of the agent were
drawn with different colors depending on the reward acquired, a snapshot of a training

procedure with color explanation is shown in Figure 10.
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Cumulative Reward using Q-Learning
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Figure 9: The episode reward versus the number of episodes (N=128, [,=0.001). The
reward is a moving average of the last 100 episodes reward. After certain number
of episodes where the agent is trained enough, it completes a number of missions

until episode termination, this is why the reward is reaching levels much larger
than 100 that is the prize for reaching the target.

Since the stability of the resulted weights was not ensured, a second evaluation stage
was added. From the log files, the top ten performers per hyperparameter combination
were identified with respect to the logged reward. 160 files containing architectures
and weights were passed through a second level of evaluation.

For each file, a set of 3 episodes was ran for 10 times. Each episode in a set started
with a different target position from within the set of {(500, 60), (500,240), (500,420)}.
When the first mission was accomplished, the new target was generated randomly
within the target range limits (Figure 8). During evaluation, thousands of missions were
thus included in an episode. The number of missions and reward per episode were
logged. A flow of the training procedure is shown in Figure 11 while the final results

from the evaluation are shown in Table 4.
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Result #1 is a clear winner since it is ranked first with respect to average rounds and
average score per episode. Also it has very low standard deviation (0.50% of average
score), although result #3 is slightly better with 0.44%. 16 out of 20 results of Table 4
are of V=128 and the rest 4 are of V= 64 starting from position #16. With respect to
learning rate, the top 6 results are of /- = 0.0005 and N =128, while /. = 0.001 appears 6
times (with V=64 and N=128) and /- = 0.005 one time with N= 64.

In Table 4 the first entries of N =32 and N =16 are shown at positions 22 and 51
respectively. From the results it is shown that the hyperparameter combination of N =
64 and /- = 0.0005 is a sweet spot that gives the best results according to our simulated
evaluation. Also note that with a try of ¥= 64 and /.= 0.0001 the agent failed to train.
This may be fixed by readjusting the hyperparameters of Table 3 with lower £ decay

but this will lead to lengthier training time.
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Figure 10: A snapshot from the training procedure. The agent performs multiple
missions until it leaves the canvas (above left). The agent starts from center left, is
guided to the target and then gets back to its origin. The colors are set to visualize
the gains acquired: blue is -1 (distance from the designated target decreases), grey

1s -2 (distance from the designated target increases) and green is 100 (target
reached). Note that the designated target will become the starting position (center
left) after it reaches a random target (right).

Top 10 per

combination Get the best

performer to
- use in field

experiment
tests.

Figure 11: The flow of training and evaluation. For different combinations of N (16,
32, 64, 128) and I (0.0005, 0.001, 0.005, 0,01) the agent is trained for at least 120k
episodes. The top ten performers per combination are passed through a second
level evaluation that includes 30 simulated episodes per saved weight.
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Table 4 : The evaluation results ranked with respect to average rounds. The stand-
ard deviation is used as an indication for the stability of the result. It is clear that
N=128 and ,=0.005 give the best results while N =16/32 are not good hyperparame-

Episode#

ters for our application

AVERAGE
ROUNDS

AVERAGE
ROUNDS
stdev%

AVERAGE
SCORE

AVERAGE
SCORE
stdev%

0.0005 3297.9 22.60
0.0005 3274.4 22.80
0.0005 3270.0 22.65
0.0005 3265.3 22.74
113100 0.0005 3214.7 22.98
100800 0.0005 3207.9 22.80
196400 0.001 3159.5 23.91
114700 0.0005 3162.8 23.68

215381.97 0.50
214069.00 5.95
213401.23 0.44
213393.97 6.08

—_

124600
120300
107900
123000

209897.37 7.29
209241.33 5.06
207032.23 15.90
206530.13 12.89

O |l N ||l | |l ]DN

168300 0.001 3147.3 24.02
122600 0.0005 3146.2 23.75
161900 0.001 31431 23.76
89000 0.0005 3127.0 22.52
97800 0.0005 3112.8 23.04
71600 0.0005 3097.1 22.56
147900 0.0005 3088.7 22.68
99400 0.001 3039.0 23.58

206378.87 17.50
205536.90 14.05
205389.70 14.76
200238.77 8.00

—
o

—_
—_

—_
N

202795.37 9.61

201017.67 0.54
195301.40 16.68
198752.67 13.95

196686.80 0.40
194852.03 0.38
195341.07 20.80
194112.63 21.86

86700 0.001 3036.6 22.58
77300 0.001 3010.9 22.55
2989.9 24.80
2967.3 24.87
2954.9 23.16
2388.2 30.6

87300 0.005
94900 0.0005

191436.56 9.13
148910.26 34.45

142100 0.001
184200 0.005

4.4.Integration

A number of software modules should be integrated to close the control loop (Figure
12). The following software components need to exchange data:
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e The ODS needed to acquire images from the USB camera.
e The control agent needed to acquire the vehicle coordinates from ODS when
available.
e The control agent needed to send the commands over the wireless link to the
vehicle
The ODS used is a modified C++ demo software that was provided by Intel. This soft-
ware uses OpenCV (OpenCV, n.d.) and NCS2 drivers to automatically detect and use
an attached USB camera and the NCS2 USB stick. The ZeroMQ interprocess messaging
library (ZeroMQ, n.d.) was used to implement a client/server architecture. The client
was the control agent and the server was the ODS. The client was blocking for a specific
time 7,4until it could get a pair of coordinates from the ODS. If there was a timeout
then the agent concluded that there were no coordinate pairs available, meaning that
the presence of the vehicle could not be detected within the viewing angle.

The control agent was the central data fusion and control system.

» It got the ODS coordinates or detected absence of measured coordinates

» It estimated the current position of the vehicle

* It ran the deep RL agent using the estimated position along with the previous
position to extract a new command.

* It detected the end-to-end communication with the remote vehicle and sent
commands.

* [t waited for an acknowledgement from the vehicle’s IoT MSDK for every com-
mand that was completed at each time step.

The control agent is written in Python and it uses a number of libraries to communicate

with ODS and the RC vehicle. The BLE link acts transparently related to the control
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agent, the BLE client forwards ASCII commands to the IoT MSDK and waits for an
ASCII reply.

The inference engine for the RL is based on Tensorflow/Keras and does not require the
existence of a GPU. The inference time is measured to be less than 5msec, even for a
low-end CPU. This is because of the small number of layers used. This is an advantage
because the deployment can be done even on a very small computer with limited re-
sources, provided that it can execute the ODS. The Kalman filter with KALMANx1 and
KALMANxN prediction function has been custom developed for this work, as an ap-

plication-specific library.

HOST COMPUTER

CONTROL
AGENT

ODS
SERVER

CA VE

ME HI

Figure 12: The ODS (C++) and the Control Agent (Python) were running in paral-
lel as separated processes. Interprocess messaging was done by ZeroMQ library us-
ing a Linux Host machine. ODS integrated the camera interface and OpenVINO
thus providing ~15 object positions per second. The Control Agent was not using
hardware accelerator for the Deep RL algorithm. The RC vehicle was transparently
controlled via a UART (Section 4.1).

45

MSc by Research in Electrical & Electronics Engineering,
MSc Thesis, Georgios Charkoftakis, Reg. nr. MSCRES-0019



CHAPTER 5:
Experiments

Figure 13: The camera is suspended 2m above the ground, with a 1.7x1.3m field of
view.

A number of experiments are conducted using different agents and environment setups.
The resulted trajectories are logged and analyzed. The basic experiment setup is shown
in Figure 14 where the camera is mounted vertically with its axis perpendicular to the
running floor. Detailed explanation for each agent model and environment will be pro-
vided in the subsequent sections. The tests start from a starting point (SP1) towards
destination points (DP) named P1, P2, P3 (P1, P2, P3|SP1). A planar view of source

and destination points are shown in Figure 14.
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Table 5: Coordinates of source and destination points.

Source and Destina- Values
tion Points X,y (pixels)
SP1 70, 400
P1 480,100
P2 80,100
P3 580,240
P4 480,380

Although the system is tested using the agent with the training setup of Figure 8 (P1,
P3, P4|SP0) the experiments are performed with a slightly different setup.

First it is demonstrated that the trained RL agent is not overfitted and that it can
cope with unseen environments. While P1 and P3 lie within the target training range,
P2 has never been seen as a target. Second, by selecting SP1 instead of the trained SPO=
(60, 240) the agent is allowed to travel a large distance towards P1, P3 and take a long

turn towards P2.

(420,60) (580,60)

o

P2=(80,100) P1=(480,100)

Target area
Vehicle starting point (Training)
during training (SP0)
o

g O (o]

(60,240) P3=(580;240)

Vehicle starting
point (SP1)

(o 2 o
(70,400) P4=(480,380)

(420,420) (580,420)
640

Figure 14: Planar view of source (SP0,SP1) and destination (P1,P2,P3,P4) points

For each test at least 10 trajectories are logged and averaged, compared and analyzed.
Placing the vehicle with 1 pixel accuracy has not been possible, so during the
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experiments the initial starting point (SP1) and angle of the vehicle lie within an ac-
ceptable small range. The environment of the vehicle was mildly stochastic meaning
that P/s, a, s/ < 1. The distance and turn angle per time step are normally distributed
(eqn 5-1 and eqn 5-2). The actual 47= 1.0 sec for forward action and A7'= 1.1 sec for
left or right action. The vehicle first rotates for 473 = 0.1 and then moves forward for

ATs = 1.0 second (eqn 5-3).

5-1) SATS"’N(SATS, O'ZMTS) = N(519, 109.1 )
Where : sars is a sampled distance ran by the vehicle for 475
Sars is the mean distance ran by the vehicle for 47%

oZars is the variance of the distance ran by the vehicle for 47

5-2) Oarr~N(Barx, 0?0a1r) = N(29.8 ,17.3)
Where : 8,75 is a sampled rotation angle in degrees of the vehicle for 47%
Oars is the mean rotation angle in degrees of the vehicle for 47%

o0Z47s is variance of the rotation angle of the vehicle for A7z

5-3) AT =ATs+ATx

Where : ATis the duration of a command, that is 1.0 or 1.1 second
ATris the duration of rotation that is 0.1 second if the command is turn left or
right

ATsis the duration of forward movement, always 1.0 second

The actual distance and angle depend on the friction of the wheels, the starting torque
of the motors and the momentary drop of the battery voltage. The IoT MSDK has the

ability to detect orientation, thus an accurate angle turn can be forced; yet, this would
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impose delays for accurate angle adjustment. Thus it has been decided not to use this
approach and to favor swift turns and also avoid the requirement for an accurate inertial
sensor. The vehicle guidance was based on the accuracy of the machine vision system
and the RL agent and not on any on-board sensor.

Every trajectory is logged and the trajectory point Pumi» with the closest distance dpin to
the target PN is computed. The trajectory distance and time from SP1 to Pumi» are calcu-
lated as Sumin and Tumi , respectively.

The default delay imposed by the USB camera and the ODS software was measured to
be 7;=260msec. Any additional delay was emulated as a FIFO pipeline of the machine

vision system. Thus 7} can be increased in multiples of 7,4=1/15fps=67msec.

5.1.The Wait Agent
The wait agent shown in Figure 15 is converting the CDMDP to MDP by waiting for

T, at the end of each time step 47 Thus if the trajectory is comprised of K time steps,
the additional time delay will be K -AT. Using the wait agent, a number of trajectories
are recorded for the trained setup P1, P3, P4 | SPO. From Figure 16 it can be seen that
the agent adopts a hook shaped strategy, whereby it approaches the targets in such a

way that it could return back to its starting point.
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Figure 15: The wait agent is bypassing the problem of delay by waiting by T, at the
end of each time step thus imposing a total delay of K-AT.
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Figure 16: Experiments using the trained setup with P1, P3, P4/SPO, T:=250msec.
The agent adopted a hook like strategy to be able to return to the start point.

The next experiment approach is P1, P3, P4 | SP1 and 7; = 250msec. This approach is

one way episodes, from starting point to destination point, to allow for traveling longer

distances. Since with this experiment the agent was driven without having been
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affected by the delay 7, under ideal conditions but with suboptimal travel time 7zmin,
these results are considered as reference results for the following experiments. The cen-
troids PNew=P1cw, P2cw and P3cw for each target were calculated from the Punix's based on
the wait agent results (Figure 17). Tracking the trajectories using the wait agent is not

required, it is used only for analysis of the result.

P1 Wait Agent 250msec P2 Wait Agent 250msec P3 Wait Agent 250msec

7
400 'y = J’
» ) P
4
\;
320 o L ——
‘l: frle snnl
! ‘if Y 7
i L WY ./J Y
240 ‘)5‘ }\, !!v
.‘ X
i \ |
160 J:’ } 4
. [ @ start Point (sP) R @ start Point (SP) g @ start Point (SP)
@ Destination Point P1 Bl @ Destination Point P2 @ Destination Point P3
QO Centroid of Pdmin Q Ccentroid of Pdmin QO centroid of Pdmin
0

400 480 560

Figure 17: The wait agent trajectories for T;=250ms using setup P1,P2,P3/SP1. No-
tice that the wait agent keeps the “hook” like trajectories. This allows to test with a
more complex maneuvering than the shortest path that would be a straight Iine.

Table 6: The wait agent results for T,=250msec. The centroid coordinates PNcw for
each test are calculated. A Hotelling T? test is performed that shows the difference
between P1,P2 and P3 and the centroids Plew, P2ew and P3cw.

Centroid
PNcw

Coordinates
of PNcw
XY (pixels)

Target
XY (pixels)

Distance from
target dinin
(pixels)/stdev

T2 /E/F-crit

Average
Sdmin
pixels)/stdev

Average
Tomin
(msec)/setde

P 1 cw250

467,110

P1 (480,100)

16/8.8

61.6/27.4/ 4.5

650/24

17475/748

P2cw250

100,100

P2 (80,100)

20/10.3

47.9/21.0/4.7

471/31

10905/850

P3cwaso

585,246

P3 (580,240)

16/5.4

148.4/66.0/4.5

706/24

17046/648

5.2.The Naive Agent
The naive agent (Figure 18) treats the CDMDP like an MDP ignoring the 7;. When the

vehicle sends a message that the step has been completed, the agent immediately pro-
ceeds to its inference step and uses the latest acquired coordinates sample from ODS.
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Trajectories are logged for 7;=250, 500, 750 and 1000msec (Figure 19 through Figure
22). Tracking the trajectories in the naive agent is not required, it is used only for anal-

ysis of the result.

ODS |ODS_CLIENT] [Dan|  [VEHICLE]

FINISHED STEP
_POSITION REQ \

VEHICLE INFORMS FOR END
] DaMN is fed without delay OF MOVEMENT,
POS|T|ON RESF).; with the latest position HOWEVER CAMERA

POSITION LAGS AT

POSITION .
| PERFORM INFERENCE D
DAN HAS KEPT A COPY OF
PREVIOUS POSITION r COMMAND
| >
: MOVEMENT
b FINISHED STEP

[~ I I

Figure 18: The naive agent treats the CDMDP like an MDP and ignors the delay T;.
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Figure 19: The naive agent with T;=250msec
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Figure 20: The naive agent with T;=500msec
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Figure 21: The naive agent with T;=750msec
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Figure 22: The naive agent with T;,=1000msec. 1/3 of the episodes of Pl ended
when the vehicle left the field of view of the camera.
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Table 7: Measurements using the naive agent with T, =250, 500, 750 and 1000 msec

Centroid
PNcn

Coordinates

of PNcn
XY (pixels)

Target
X,Y (pixels)

Distance
from target,
dmin
(pixels)/stdev

T2 /F/F-crit

Average
Sdmin
(pixels)/stdev

Average
T dmin
(msec)/stdev

Plen2so

475,111

Plensoo

453,135

Plearso

448,153

P1catooo

457,110

P1 (480,100)

12/17.0

1.9/0.8/4.5

735/54

14292/1507

43/21.7

86.3/38.4/4.5

745/43

15248/1027

62/22.7

49.3/20.6/5.8

786/64

16963/1305

73/21.5

94.7/41.4/14.7

816/68

178291907

P2cn2s0

63,109

P2cns00

46,122

56,134

78,155

19/7.7

64.1/28.5/4.5

478/13

9718/386

40/18.5

128.6/57.1/4.5

496/18

10515/686

41/26.1

36.5/16.2/4.5

473/30

10354/608

55/26.7

60.2/26.8/4.5

455/27

9764/745

574,245

584,234

587,220

586,222

P3 (580,240)

8/11.4

2.611.14/4.5

758/46

14607/960

7114.6

1.7/0.7/4.5

830/54

1726/1037

20/17.8

7.5/3.4/4.5

830/37

17467/1081

19/21.7

7.213.214.5

868/41

18281/836

Table 7 summarizes the measurements using the naive agent. It is noted that PNe dis-

tance from target (dm») increased when increasing 7, for every destination point. The

average Simin also increased with the exception of P2« where the agent was always tak-

ing a continuous turn. The same applies with Zumnwhere with the exception of P2,

the time to target was increased from 14 seconds to 18 seconds.

A result that is not described in Table 7 but is shown in Figure 21 and Figure 22 is that

almost 1/3 of the trajectories of P2 left the field of view, thus terminating the episodes

without reaching the target. It is clear to us that this is the limit where the naive agent

can reliably control the vehicle. If 7; >750 three problems are seen,

= The distance to target du the travel distance to target Siminand the time to tar-

get Taminincrease when 7zincreases, thus leading to suboptimal control

» The vehicle can leave the field of view when the maneuvering takes place

close to the edge of the canvas (e.g. P1).
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= After 7221250 no successful episode successful episode could be recorded, all
trajectories ended up in loops or out of the field of view. The control loop be-

came unstable and the vehicle uncontrollable.

5.3.The Kalman Agent

As a result of the shortcomings of the naive agent our idea is to use a Kalman filter to
mitigate the results of the delay 7;. The data flow path is shown in Figure 23, the
ODS_CLIENT is continuously feeding the KALMANXI1 filter with position measure-
ments. If there is a missing measurement due to inability to detect the vehicle the KAL-
MANx1 works in prediction only mode (eqn 3-1 and eqn 3-2). The KALMANXN filter
always predicts xN steps ahead using the estimation of KALMANX1 filter. The N is a
multiplication factor of 7ups sampling time, e.g. if 7, =1000msec, N= (7;/67)-1. In prac-
tice since the naive agent with 7; =250msec works, to reduce prediction errors the val-

ues in Table 8 are used.

Table 8: Number of predictions of KALMANXxN filter for every T},

Delay Time 7} KALMANxXN
(msec) Prediction steps N
250

500
750

1000
1250

The DQN running process is working only with the KALMANxN provided values, thus
every input is linearly filtered. Unlike the wait and naive agent, this agent needs to be
continuously fed with vehicle position measurements, so when the vehicle sends the
command completion signal, the KALMANxN should be able to provide an estimate to

the DQN run time.
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Figure 23: The Kalman agent. The Kalman filter works with x1 update and xN pre-
diction depending on T}.

The design methodology of the Kalman filter should be explained. At first the filter
should estimate position, speed and acceleration from position measurements only. Sec-
ond the measurement noise covariance matrix R (eqn 3-3) and process noise covariance
matrix Q (eqn-3-2) should be found. R could be computed since measurements were

readily available. On the other hand an effort was made to find @by simulating an agent
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with logged trajectories and trying to find the closest match of xN prediction with the
original trajectory by using a mean squared error metric. This did not worked as
planned in practice and finally ¢ was tuned running a number of experiments with 7;
=1000msec using the simulation values as a starting point. A sample from these exper-
iments is shown in Figure 24 while the full set of the Kalman filter matrices are shown

from eqn 5-5 through eqn 5-10.

1 0 T,gye O TZs O
0 1 0 Toas 0 Tozds
55) 4=[0 0 1 0 T,y O
0 0 O 1 0 Tyhus
0 0 O 0 1 0
0 0 O 0 0 1
where: T,q4~0.067 second
Ax? 0 0 0 0 0 7
0 Ay? 0 0 0 0
p 0 0 A2 0 0 0
OP=1o o o a0 0
0 0 0 0 442 0
[ 0 0 0 0 0 AA2]

where: Pis the initial error covariance matrix.

7y 508

where: His the observation matrix

5-8) R = [sz 0 ]

0 Ay?
where: Ris the covariance matrix of measurement noise vector, with initial values

Ax=Ay?=0.4

57
MSc by Research in Electrical & Electronics Engineering,
MSc Thesis, Georgios Charkoftakis, Reg. nr. MSCRES-0019



00 0 0 0
01000 0
o o100 o0
NI=10 00 1 0 o
lo 0 0 0 1 o
00000 1

x> 0 0 0 0 0]
0 oy> 0 0 0 0
0 0 o2 0 0 0
X1)Q=16 o 0o 2 0 o0
0 0 0 0 oAZ 0

o 0 0 0o o0 oA

where: Qis the covariance matrix of process noise vector, with initial values

ox?=0y?=10, oV}=0V?=1.0and 0d45=0A4%=1.0.
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Figure 24: Samples of Kalman agent trajectories for T, =1000msec. The blue line is
the KALMANxN filter prediction. The green empty circles are the waypoints.

Using the Kalman agent a number of experiments were performed from 7;=250msec to
7:=1250msec. All the trajectories were logged and shown from Figure 25 to Figure 29.
The experiment with P1| 7,=1250msec resulted in some trajectories leaving the plane,
though the control was improved compared to the naive agent. This does not mean that
the Kalman agent cannot perform well with 7;=1250msec with an optimized set of pa-
rameters. The full results, except 7;,=1250msec, are shown in Table 9.
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Figure 25: The Kalman agent with T, =250msec
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Figure 26: The Kalman agent with T, =500msec
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Figure 27: The Kalman agent with T, =750msec
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Figure 29: The Kalman agent with T, =1250msec

Table 9: Measurements with the Kalman agent, TL=250, 500, 750 and 1000 msec

Centroid
Pch

Coordinates

Of Pch
XY (pixels)

Target
X,Y (pixels)

Distance from
target, duin
(pixels)/stdev

T2 /F/F-crit

Average

Sdmin
(pixels)/stdev

Average

T, dmin
(msec)/stdev

Plaoso

461,108

Plasoo

455,108

Plamso

467,109

P1aio00

454,114

P1 (480,100)

20/16.4 15.3/6.9/4.3

656/33

12357/663

26/13.9 21.9/9.8/4.5

666/32

12384/520

16/11.2 27.2112.6/3.9

698/35

12888/745

30/16.3 62.3/28.1/4.3

639/33

12779/562

P2aos0

108,91

P2as00

94,119

P2as0

90.120

P2cx1000

96,110

29/10.9 91.9/41.4/4,3

482/11

9449/229

24/5.0 141.9/62.1/4.7

490/11

9725/273

22112.0 47.1/21.2/14.3

504/28

9860/766

19/16.0 14.8/6.6/4.5

479/40

10038/840

P3aoso

565,520

P3as0o

572,245

P3arso

589,239

P3cxi000

567,240

P3 (580,240)

18/9.3 45.6/20.5/4.3

669/20

13290/981

9/11.8 1.9/0.9/4.1

717160

13433/1023

9/5.9 12.8/5.8/4.5

813/23

14761/580

11/16.3 3.11.4/4.5
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Two slightly modified environment setups using the Kalman agent were evaluated.
First the camera was tilted by 45 degrees (Figure 30) and proceeded with
P1,P2,P3|SP1,7,=250msec. Surprisingly, the agent performed well — except for the
case of P2 (Figure 31) where the ODS could not always provide a position result. The
measurement results are shown in Table 10.

Detection results

Figure 30: The camera is titled relatively to its axis and moved at the side of the
running plane. Right is the real time monitor, the red circle is the target and the
green dots are the waypoints.

P1 Kalman Agent 45deg CAM/250msec P2 Kalman Agent 45deg CAM/250msec P3 Kalman Agent 45deg CAM/250msec
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Figure 31: The Kalman agent with T, =250msec, the camera is tilted 45 degrees.
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Table 10 : Measurements using the Kalman agent, T, =250, the camera is tilted.

Centroid |Coordinates| Target Distance | 72/F/F-crit | Average Average
PNck of PNk XY (pixels) | from target, Stimin Timin
XY (pixels) domin (pixels)/stdev | (msec)/stdev
(pixels)/stdev
Plaoso 472,102 P1(480,100) 8.0/7.0 9.9/4.4/4.5 589/11 13299/550
P2us0 93105 | P2(80,100) 13/16.8 3.0113/43 562/64 13552/1588
P3as0 602232 | P3(580,240) 23178 141.8/630/33.9  703/25 15391/801

Moving the camera back to vertical, the next experiment was to randomly reduce the

number of available ODS positions by 50%, while the missing 50% was estimated by

the KALMANX] filter prediction. This test was performed with 7; =500 msec, the tra-

jectories are shown in Figure 32 and the measurements in Table 11. A high variance of

the trajectory shapes is noticed; since the number of sample available is reduced the

estimation of the Kalman filter is less accurate forcing the RL agent into more unseen

states.

P1 Kalman Agent 50% Loss/500msec

P2 Kalman Agent 50% Loss/500msec

P3 Kalman Agent 50% Loss/500msec
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Figure 32: The Kalman agent with T:=500msec, randomly missing 50% of ODS

samples.
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Table 11 : Measurements using the Kalman agent with T, =500msec, there are 50%
missing ODS samples.

Centroid
Pch

Coordinates

of PN«
X.Y (pixels)

Target
X,Y (pixels)

Distance
from target,
dmin

(pixels)/stdev

12/F/F-crit

Average
Sdmin
(pixels)/stdev

Average

Timin
(msec)/stdev

I P1eaksoo

469,108

P1 (480,100)

13113.7

7.6/3.5/4.1

780/162

13205/1101 |

109,91

P2 (80,100)

30/18.6

20.5/9.2/4.3

575/165

9947/938

572,249

P3 (580,240)

12110.0

3.21.414.7

805/183

13997/1357

5.4. Analysis of the Experiment Results
The results from Table 6 through Table 11 are grouped side by side in Figure 33, Figure

34 and Figure 35. Figure 33 show how the naive agent is affected, when 7} increases
the centroids PNc of the resulted trajectories move away from the target. In every case
the variance is high and this is due to the fact that the environment is stochastic and
the agent does not take any special measures (e.g. reducing speed or time step) while
approaching the target.
= The performance of the Kalman agent is better than the performance of the na-
ive agent for 7;, >500msec for every target.
= The Kalman agent for P1 and P2 it is better than the naive agent for 7, =
500msec.
=  For 7, =250msec the agents perform almost the same with exception of the Kal-
man agent with 45 degrees environment that is slightly worse when targeting
P3.
® The Kalman agent with 50% Loss environment and 7; = 500msec is equal or
better compared to the naive agent setup. This means that the Kalman agent is
suitable not only to counter delays as expressed by 7;butalso environments with

feedback information that arrives in varying time steps.
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Figure 33: Distance of centroids (PN.) from their targets for every agent and envi-
ronment setup.

In Figure 34 it is shown that the average distance ran by the agent is not significantly

affected by increasing 7;. The Kalman agent always performs equally well or better than
the naive agent.

Performance on P2 stays almost the same for every 7, this due to the fact that
the path to P2 is a long turn performed almost the same way among agents and
environments.

For the 50% Loss environment, the variance of the distance to P2 is suffering
because the KALMANX1 filter works 50% of the time on prediction thus feeding

the KALMANXN filter with less accurate information than the no-loss environ-
ment.
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Figure 34: Average distance ran from start point to centroid (PN.) for every agent
and environment setup.

Figure 35 shows the average time the vehicle takes to reach its target (centroid). For P1

and P3, the time to reach the target increases proportionally to 7.

The Kalman agent is exceptionally stable for every 7;and much better than the

naive agent for P1 and P3.

For P2 the naive and Kalman agents are a match, since the trajectory to P2 is

almost always the same.

For P2 the Kalman agent for the 45 degrees environment is struggling with ODS

detection thus imposing delays.

As expected, the wait agent has the worst performance for 7;=250msec.
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Figure 35: Average time ran from start point to centroid (PNc) for every agent and
environment setup.
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CHAPTER 6:
Conclusion

In contrast to the experimental setup of Atari 2600 agents, the raw sensory input of the
image is decoupled from the RL agent to make it feasible to deploy a real world appli-
cation. In the previous chapters have been described the tools, methods and consider-
ations to design the machine vision system and the RL agent to remote control a vehicle
under realistic conditions. The experimental setups showed that combining readily
available tools and methods, like a linear estimator such as the Kalman filter, one can
improve the control under the imposition of a time lag. This is a typical condition in
local networks were the control signal can be passed almost instantly while the sensor
measurements (like an object detection system) may arrive with a considerable delay.
The Kalman filter is applied as an add-on module and it is not integrated with the con-
trol agent. Its operation relies only on position measurements thus limiting its depend-
ency from the RL algorithm used.

It is also shown that for this application an RL agent can be designed and that will
perform robustly. Our agent performed very well in environments not previously
‘seen’, like the 45 degrees environment — even when it used starting and destination
points other than the ones that it was trained for. Specific measures were taken to assure
this performance, e.g., during training Gaussian noise was injected between layers and
randomness into the simulated environment. Also, after training, an exhaustive evalu-
ation procedure was performed that has yielded not only the best candidate RL weights
for the experiments, but also a guide of what hyperparameters to use in future experi-

ments. The present work included at least 400 logged trajectories that can be used in
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future simulations, along with many lines of code to automatically illustrate and ana-
lyze the results for better intuition.

The object detection system worked with real time performance and performed
well within the assumptions it was trained under. The detection ratio was almost 100%
and the frame rate was solid above 15fps. Since the machine vision system was off
loaded to an external USB device and the RL agent had 5msec inference time, our setup
could run on low cost PCs thus making it feasible for wide deployment. The ODS can
be trained to detect targets and obstacles. Preliminary work showed that by using trans-
fer learning and the spared inputs of the state vector S;the agent can learn to avoid an
obstacle that can be engulfed by a rectangle. One can think of many improvements,
like using the IoT MSDK on board sensors to perform dead reckoning in shaded areas

or using another estimator like an Extended Kalman Filter or an RNN.
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