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ABSTRACT 

 

Sentiment Αnalysis is a well-known field of Natural Language Processing that 

is concerned with text classification. There is a vast number of papers, especially 

for the English language, that present state-of-the-art results on many different 

datasets using a variety of classification models. The aim of this work is to compare 

machine learning models on different datasets in both Greek and English. In order 

to achieve this aim, we used the well-known IMDb dataset from Stanford University, 

which is very often used for the evaluation of new text classification models, and 

one equivalent new dataset that we created in Greek from the Athinorama website. 

For our experiments, we used the following models: Logistic Regression, Support 

Vector Machine, Naïve Bayes, Decision Trees, XGBoost, Convolutional Neural 

Network, Long Short-Term Memory, Gated Recurrent Units, and Bidirectional 

Encoder Representations from Transformers (BERT). The first five models were 

combined with the TF-IDF vectorization technique, while the rest were combined 

with the Word Embeddings vectorization technique. The results show that the best 

classifier for sentiment analysis for both English and Greek is the pretrained BERT 

model. The difference in language does not seem to have a significant impact on 

the results, whereas the quality, the size, and the level of pre-processing of the data 

appear to play a significant role in the classification process. The reason we chose 

to deal with this work is the lack of research for the Greek language and our 

contribution is the Athinorama Light dataset that could play a significant role in 

future works for Greek language classification issues. 
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1. INTRODUCTION 

 
 For thousands of years, people have been working on speech decoding in a way that 
other people could recognise and understand in order to render something intangible like 
the human voice into something tangible and easily manageable like a written text. The 
first samples of this process were found in Mesopotamia and Egypt between 3400 and 
3100 BC., with the invention of Cuneiform and Hieroglyphics respectively as the earliest 
forms of writing. In the following centuries, new ideas and new necessities gave birth to 
new forms of writing that consisted of alphabets and decimal numeral systems, with each 
step of the development leading to a higher level of written form of the language. From 
the Renaissance until the end of the Industrial Revolution, the development of linguistics 
led to the creation of some less essential parts of writing in order to adapt to new 
technologies such as the invention of typography which spread the use of fonts. All these 
developments, along with others exclusively invented for the new digital revolution, 
proved to be useful tools for Natural Language Processing. 
 Natural Language Processing (NLP) is the part of computer science that deals with 
the automatic analysis and representation of the human language (Cambria & White, 
2014). It started in 1950 with Alan Turing's paper “Computing Machinery and Intelligence” 
(Turing, 1950), which led the race that was later started by the scientific community 
regarding the development of algorithms and hardware in order to make machines solve 
problems that normally need human-like reasoning to solve, not only in NLP but also in 
other parts of Computer Science and Artificial Intelligence. 

In 1954, the Georgetown–IBM experiment (Hutchins, 2004) achieved the first 
encouraging results regarding machine translation, where sixty sentences in Russian 
were translated into English. However, the rule-based approach proved to be inadequate 
and future development in this area failed to meet expectations. 
 In the middle of the 1960s, the first chatbot named ELIZA was created at MIT by 
Joseph Weizenbaum (Amity University et al., 2020). ELIZA was the first attempt at 
creating a machine that could communicate on a basic level with a human in chat form. 
Its structure was quite simple, without many capabilities besides answering questions in 
a generic way using keywords from the user's previous messages. Nevertheless, in 1972 
Kenneth Colby created a new implementation of the ELIZA chatbot named PARRY, which 
was programmed to mimic the behavior of a patient suffering from paranoid 
schizophrenia. PARRY managed to pass the Turing Test 52% of the time when it was 
tested during the 1970s (Amity University et al., 2020). 

In the 1980s, we witnessed the introduction of machine learning algorithms in NLP 
due to the increase in the computational power of computers. That meant that the field of 
NLP was moving away from the rule-based architecture of the programs, which was very 
restrictive, and was entering a world with unlimited potential based on statistical methods. 
The first samples of this new approach to NLP appeared in the field of machine translation 
in 1988 at IBM Research Division (P.Brown et al, 1988), where statistical methods where 
applied to large multilingual textual corpora created by the Parliament of Canada. The 
results were a step forward compared to previous approaches; however, the problem was 
not considered solved due to the non-generalizability of the system. 
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 In the late 1990s, Deep Neural Networks began to appear in real-world problems 
such as speech recognition, where a new recurrent neural network called Long Short-
Term Memory (Hochreiter & Schmidhuber, 1997) managed to avoid the vanishing 
gradient problem and achieved great results at the time. In the following years, the 
research was directed towards neural networks with new models such as the 
Convolutional Neural Networks and Transformers (Vaswani et al., 2017). 
 Over the last decade, the growth of social media platforms and online encyclopedias 
such as Twitter and Wikipedia, alongside the creation of many coding tools and 
frameworks like NLTK, made NLP applications very popular in non-academic fields, 
especially in the digital industry. 

Major research organizations such as Alphabet Inc.1, OpenAI2 and Big Tech 
companies3 developed great applications such as Google Translate, which works very 
well, especially with small texts, Amazon’s and Apple’s virtual assistants, which can 
answer questions, make recommendations and perform actions as well as Facebook’s 
Ad Targeting, which can target consumers based on their Facebook posts. 

Apart from these technological giants, it is now quite common even for small 
commercial companies to have their own efficient chatbot on their websites or their own 
data science team whose job is to analyze data extracted from social media monitoring 
and customer reviews in order to improve their decision-making skills. Furthermore, in 
recent years, NLP has emerged in the political field where sentiment analysis techniques 
are used to predict voters’ intentions based on the comments they post on online social 
networks. 

In this work, we focus on sentiment analysis of text data with the use of supervised 
machine learning algorithms. Sentiment Analysis is a part of Artificial Intelligence that lies 
in the intersection of NLP and Natural Language Understanding. Its main purpose is to 
extract and analyze the affective states of a text’s content (Cambria et al., 2016). This 
issue is divided into three main categories: a) the identification of sentiment polarity, 
where the goal is to classify the content of a given text as positive, negative, or neutral, 
b) the identification as objective or subjective text, and c) the emotion detection, where 
the goal is to identify emotions in a text as furious, cheerful, depressed, disgusted etc. 
(Cambria, 2016; Markopoulos et al., 2015; Nandwani & Verma, 2021; Tsakalidis et al., 
2018). The most popular techniques for performing sentiment analysis are the following 
three: knowledge-based techniques, statistical methods, and hybrid approaches. 
Knowledge-based techniques are usually applied with the use of a Sentiment Lexicon, 
which is a list of semantic features for words and phrases that are applied to the texts we 
want to analyze. Statistical methods are based on machine learning algorithms such as 
SVM and Logistic Regression, or deep learning models such as CNNs, RNNs, and 
pretrained models such as BERT. Finally, the hybrid approaches are a combination of 
both knowledge-based and statistical methods. These techniques encompass a large part 
of the machine learning spectrum (for sentiment analysis) since knowledge-based 
techniques and statistical methods are classified as unsupervised and supervised 
methods, respectively. In addition to politics and social media monitoring, sentiment 

                                                           
1 https://en.wikipedia.org/wiki/Alphabet_Inc. 
2 https://en.wikipedia.org/wiki/OpenAI 
3 https://en.wikipedia.org/wiki/Big_Tech 
 

https://en.wikipedia.org/wiki/Alphabet_Inc
https://en.wikipedia.org/wiki/OpenAI
https://en.wikipedia.org/wiki/OpenAI
https://en.wikipedia.org/wiki/OpenAI
https://en.wikipedia.org/wiki/OpenAI
https://en.wikipedia.org/wiki/OpenAI
https://en.wikipedia.org/wiki/OpenAI
https://en.wikipedia.org/wiki/OpenAI
https://en.wikipedia.org/wiki/OpenAI
https://en.wikipedia.org/wiki/OpenAI
https://en.wikipedia.org/wiki/OpenAI
https://en.wikipedia.org/wiki/OpenAI
https://en.wikipedia.org/wiki/Big_Tech
https://en.wikipedia.org/wiki/Big_Tech
https://en.wikipedia.org/wiki/Big_Tech
https://en.wikipedia.org/wiki/Big_Tech
https://en.wikipedia.org/wiki/Big_Tech
https://en.wikipedia.org/wiki/Big_Tech
https://en.wikipedia.org/wiki/Big_Tech
https://en.wikipedia.org/wiki/Big_Tech
https://en.wikipedia.org/wiki/Big_Tech
https://en.wikipedia.org/wiki/Big_Tech
https://en.wikipedia.org/wiki/Big_Tech
https://en.wikipedia.org/wiki/Big_Tech
https://en.wikipedia.org/wiki/Big_Tech
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analysis is used both in product analysis and market & competitor research. The objective 
of this work is the application of sentiment analysis with supervised statistical methods in 
movie reviews both in Greek and in English. 

In the past, the research on sentiment analysis regarding the English language 
achieved exceptionally good results in many cases, but for the Greek language the effort 
was poor due to the absence of labeled datasets that even today are difficult to find as 
well as the absence of coding tools for the preprocessing of text data in the Greek 
language. Today, neither of these problems are considered insurmountable as web 
scraping techniques and the proliferation of websites with reviews in Greek can solve the 
first problem, while the creation of spaCy, which can support the Greek language, can 
solve the second one. 
 

2. TEXT CLASSIFICATION MODELS 

2.1. Logistic Regression 
 
 

Logistic Regression is a statistical model relevant to the Linear Regression model, 
which depicts the relationship between an independent and a dependent variable with a 
straight line in the following manner. Given a data set in the following form: 

 

                                                      {𝑦𝑖 , 𝑥𝑖1, 𝑥𝑖2, . . . 𝑥𝑖𝑝}
𝑛

𝑖 = 1
  

 
of n paradigms where Y is the dependent variable and 𝑋𝑡 is the independent variables, 
the Linear Regression model assumes that the relationship between Y and  𝑋𝑡 is linear 
and is given by the following equation: 
 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 +⋯+ 𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖 

 
where i = 1, 2, 3, …, n and ε is the error or the “noise” of the model (ε essentially gives us 
the parallel shift of the paradigm from the line). Τhis relationship can be visualized as 
follows: 

 
Figure 1 Linear Regression Graph (Image source Wikipedia) 
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The optimization of the model is given by the minimization of the error. As a result of this 
process, we have the change of the weights of the mentioned equation. Now the model 
can predict the Y value of a paradigm by applying 𝑋𝑡 to the resulting equation. This 
statistical model is very useful when the dependent variable Y is continuous, but it is not 
effective with a categorical dependent variable (for example True or False). Here enters 
Logistic Regression which solves the problem with a logistic equation instead of a linear 
one. The following equation enables us to manage binary problems: 
 

log(
𝑌

1 − 𝑌
) = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝 

 
Now for a certain paradigm  𝑋𝑡 the result is a number between 0 and 1 or, in other words, 
a probability that gives us the opportunity to classify a paradigm in distinct groups. The 
logistic equation is visualized in the graph below: 
 

 
Figure 2 Logistic Regression Graph (Image source Wikipedia) 

 
 

Here the default threshold is 0.5. Everything above 0.5 is classified as 1 and everything 
below 0.5 is classified as 0. All these features render this model ideal for classification 
problems (Jianqiang & Xiaolin, 2017; Tripathi et al., 2020). Other applications that use the 
Logistic Regression model, are, apart from text classification, image segmentation and 
handwriting recognition. 
 

2.2. Support Vector Machine 
 
Support Vector Machine (SVM) in machine learning is a supervised learning model 

that uses a decision boundary as an essential element to classify data. In the case of 
linearly separable data, the model works as follows. Given a dataset in the following form: 

 

{𝑦𝑖, 𝑥𝑖1, 𝑥𝑖2, . . . 𝑥𝑖𝑝}
𝑛

𝑖 = 1
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of n paradigms where Y is the dependent variable (labels, 𝑦1 = 1 and 𝑦2 = −1) and 𝑋𝑡is 
the independent variables (attributes), SVM creates a separating hyperplane that splits 
the data into two sets with the largest possible margin. The hyperplane’s function has the 
following form: 

 
 𝑓(𝑋) = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝 

 

𝑦𝑖 = {
1,∧ 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝 ≥ 0

−1,∧ 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝 < 0
 

 
  
and the decision boundary is given by the solution of the following equation: 
 

0 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝 

 
The correct location of the hyperplane is given by maximizing the margin which is defined 
by the data of the two different sets. The following graph visualizes the result of this 
procedure: 
 

 
Figure 3 Support Vector Machines, Decision Boundary (Image source Wikipedia) 

 
If the data are not linearly separable, then a nonlinear mapping is used to transform the 
data in another space of higher dimension, so a linear boundary can separate them. In 
Sentiment Analysis, SVM is probably one of the most successful machine learning models 
(Gautam & Yadav, 2014; Markopoulos et al., 2015; Rumelli et al., 2019; Neethu & 
Rajasree, 2013), but it is also used in several other machine learning problems like face 
recognition, image classification and handwriting recognition. 
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2.3. Naïve Bayes 
 

Naïve Bayes is another classifier borrowed from statistics based on Bayes theorem 
that answers the following probabilistic problem: what is the probability of an event 
happening based on prior knowledge of conditions that might be related to that event? 
This problem is visualized with the following equation: 

 
 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
=
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
 

 
where A and B are events and 𝑃(𝐵) ≠ 0 

 
In simple words, this model demonstrates that if there are two events A and B, then the 
probability of A happening, given that B has already happened, can be calculated by 
dividing the probability of the intersection of the two events by the probability of B. In a 
classification problem that could be translated as follows. Given a data set: 
 

{𝑦𝑖, 𝑥𝑖1, 𝑥𝑖2, . . . 𝑥𝑖𝑝}
𝑛

𝑖 = 1
 

 

of n paradigms where Y is the dependent variable (set) and 𝑋𝑡is the independent variables 
(attributes), then the probability of the paradigm x belonging in the class y is 𝑃(𝑦|𝑥). 
Although Naïve Bayes is a well-known classifier for sentiment analysis (Jianqiang & 
Xiaolin, 2017; Tripathi et al., 2020), it is also often used in medical classification, multi-
class classification and real time prediction due to the low computational needs of the 
algorithm. 
 

2.4. Decision Tree 
 

 Decision Tree is a decision model used in statistics and machine learning based on 
observations (or variables) about an item that are represented as the branches of a tree 
and conclusions (or labels) about the item that are represented as the leaves of the tree. 
There are two types of decision trees: a) regression trees, where the target variable can 
take continuous values, and b) classification trees, where the target variable can take 
distinct values and essentially represents the labels. Classification trees are used in this 
work because of the nature of the problem which requires a segmentation of the space 
of the paradigms based on their features in a distinct way. This procedure can be 
visualized by the following graph: 
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Figure 4 Decision Tree, Boundaries (Xiaoli Fern, 2008) 

 

The benefit of decision trees is that the data do not require a lot of preprocessing as this 
type of models can handle both numerical and categorical data. Another advantage of 
decision trees is that the data that we want to classify do not need to be linearly separable, 
as shown in the graph above. However, the main disadvantage of decision trees is that a 
large dataset could create a very complex tree which would be very sensitive to overfitting. 
 
 

2.5. XGBoost 
 

 XGBoost, or Extreme Gradient Boosting, is a classification and regression algorithm. 
It is based on the gradient boosting technique which employs a combination of weak 
prediction models (most of the time, decision trees) in order to create a stronger model 
with better performance avoiding the above-mentioned overfitting problem. XGBoost was 
created by Tianqi Chen (Chen, 2016) with the basic goal of the scalability of the algorithm 
in all scenarios. Experiments showed that the system runs more than ten times faster 
than existing popular solutions on a single machine (Chen, 2016) and most of the times 
it achieves state-of-the-art results. Therefore, XGBoost has been a very popular algorithm 
in recent years (Afifah et al., 2021; Hu et al., 2021) in many fields of machine learning 
with great success in problems like store sales prediction, web text classification, 
customer behavior prediction, and malware classification. 
 

2.6. Neural Networks 
 

Neural Networks are computing systems inspired by the biological neural 
networks. A neural network is based on a collection of connected units or nodes called 
artificial neurons, which loosely model the neurons in a biological brain. Each connection, 
like the synapses in a biological brain, can transmit a signal to other neurons. An artificial 
neuron receives a signal, processes it and then signals neurons connected to it. The 
"signal" at a connection is a number, and the output of each neuron is computed by some 
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non-linear function of the sum of its inputs. The connections are called edges. Neurons 
and edges typically have a weight that adjusts as learning proceeds. The weight increases 
or decreases the strength of the signal at a connection. Neurons may have a threshold 
such that a signal is sent only if the aggregate signal crosses that threshold. Typically, 
neurons are aggregated into layers. Different layers may perform different 
transformations on their inputs. Signals travel from the first layer (the input layer) to the 
last layer (the output layer), possibly after traversing the layers multiple times. Neural 
networks are trained by processing examples, each of which contains a known "input" 
and "result", forming probability-weighted associations between the two which are stored 
within the data structure of the net itself. The training of a neural network from a given 
example is usually conducted by determining the difference between the processed 
output of the network (often a prediction) and a target output. This difference is the error. 
The network then adjusts its weighted associations according to a learning rule and uses 
this error value. Successive adjustments will cause the neural network to produce output 
which is increasingly similar to the target output. After a sufficient number of these 
adjustments, the training can be terminated based upon certain criteria. 

 

2.7. Convolutional Neural Network (CNN) 
 

Convolutional Neural Network (CNN) is an artificial neural network that specializes 
in processing data that have a grid-like topology such as images. CNNs are made up of 
three kinds of layers; the convolutional layers, the pooling layers, and the fully connected 
layer. The convolutional layer is the first layer of a convolutional network and it is where 
the majority of computation occurs. The components it requires are input data, a filter, 
and a feature map. The pooling layer performs dimensionality reduction, reducing the 
number of parameters in the input. In the fully-connected layer, each node in the output 
layer connects directly to a node in the previous layer. This layer performs the task of 
classification based on the features extracted through the previous layers and their 
different filters. CNNs are very efficient in problems related to image recognition and 
image classification as they are designed to perform in such problems, but they have also 
achieved great results in other parts of AI like NLP (Haque et al., 2019; Yenter & Verma, 
2017). Τhe following image shows the structure of a simple CNN: 
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Figure 5 Convolutional Neural Network Structure (Image source Brilliant.org4) 

 
 

2.8. Recurrent Neural Network (RNN) 
 

A Recurrent Neural Network, or RNN, is a type of artificial neural network which 
uses sequential data or time series data. Like feedforward and CNNs, RNNs utilize 
training data to learn. They are distinguished by their “memory” as they take information 
from prior inputs to influence the current input and output. Well-known RNNs are Long 
Short-Term Memory, or LSTM, and Gated Recurrent Units, or GRU. In this work, we used 
both models in our experiments. Long Short-Term Memory, or LSTM, (Hochreiter & 
Schmidhuber, 1997) is a recurrent neural network used in the field of deep learning. Unlike 
standard feedforward neural networks, LSTM has feedback connections and can process 
not only single data points such as images, but also entire sequences of data such as 
speech or video. LSTMs are specifically designed to avoid the long-term dependency 
problem. A typical feature of an LSTM is that it can retain information for long periods of 
time, something that is very useful in text classification problems. Gated Recurrent Units, 
or GRU, (Merri, 2013) is a recurrent neural network that aims to solve the vanishing 
gradient problem resulting from a standard recurrent neural network. GRU can also be 
considered a variation of LSTM because both are designed similarly and, in some cases, 
achieve equally excellent results. RNNs are specially designed for applications related to 
NLP and they have great success in problems such as text classification, speech 
recognition and machine translation. 

   

2.9. Bidirectional Encoder Representations from Transformers (BERT) 
 

Bidirectional Encoder Representations from Transformers, or BERT, is a 
transformer-based machine learning model for NLP developed by Google (Devlin et al., 
2019). BERT is designed to pretrain deep bidirectional representations from unlabeled 
text by jointly conditioning on both left and right context in all layers. As a result, the pre-
trained BERT model can be fine-tuned with just one additional output layer to create state-

                                                           
4 https://brilliant.org/wiki/convolutional-neural-network/ 
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of-the-art models for a wide range of tasks such as question answering and language 
inference, without substantial task-specific architecture modifications. In this work, we will 
also use the Greek BERT5 which is the Greek edition of BERT’s model created by the 
Natural Language Processing Group of Athens University of Economics and Business6. 
BERT is a relatively new algorithm, but it has managed to achieve great results in many 
cases related to NLP including sentiment analysis on the IMDb dataset that we will use 
in this work (Gao et al., 2019; Sanh et al., 2019; Sousa et al., 2019; Sun et al., 2019) 
 

3. RELATED WORK ON SENTIMENT ANALYSIS 

 
The essential idea behind this work is twofold: first, the application of supervised 

machine learning models for sentiment analysis on an English dataset that is well 
established and has produced excellent results in the past, and second, the application 
of these models on a new Greek dataset that was made with the same principles as the 
ones employed for the English one in order to evaluate and compare the results and draw 
useful conclusions for applications in real problems, mainly in the Greek language. 
Therefore, this part of this work is divided into two sections; the first section is dedicated 
to research work on sentiment analysis for the English language, and the second one is 
dedicated to research work on sentiment analysis for the Greek language.   
 

3.1. Machine Learning Methods 
 

In this first part of the related work concerning the English language, we will 
examine papers that deal with machine learning models for sentiment analysis such as 
Support-Vector Machines and Naive Bayes. Such techniques were applied in the 
following paper where the researchers tried to analyze posts about electronic products 
like mobile phones, laptops, etc. using a machine learning approach (Neethu & Rajasree, 
2013) on a dataset that was created from Twitter. Twitter sentiment analysis is very difficult 
compared to general sentiment analysis because of the nature of the data that come from 
this platform. These data are very limited in length (only 140 characters each) and usually 
contain slang and spelling mistakes. The dataset that the researchers created using 
Twitter’s API contained 1,000 tweets for training (500 positive and 500 negative) and 200 
tweets for testing (100 positive and 100 negative) which were manually annotated. The 
pre-processing part of the process included the removal of the URLs, the correction of 
the spelling mistakes, and the replacement of the slang words. The feature extraction was 
performed in two steps. First, the researchers gave weights on hashtags and emoticons 
because these characteristics can provide a lot of information about the sentiment of a 
tweet, and then they described the tweets as a collection of words using unigrams. After 
the creation of the feature vectors, they trained four different models: Naive Bayes, 
Support Vector Machine, Maximum Entropy, and Ensemble classifiers. Ensemble 

                                                           
5 https://github.com/nlpaueb/greek-bert 
6 http://nlp.cs.aueb.gr/ 
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classifiers, as the name suggests, is the combination of classifiers with the classification 
results being given by the voting rule. In our case, they used the Naive Bayes, Support 
Vector Machine, and Maximum Entropy classifiers. The results showed that all these 
models had a similar performance except for Naïve Bayes which achieved slightly better 
results in precision but worse results in accuracy and recall. In addition, the results 
showed that all these models and preprocessing techniques performed well in tweets 
classification. These algorithms were implemented using built-in Matlab functions except 
for the Maximum Entropy model that was implemented using the MaxEnt software.   

Another paper on sentiment analysis with similar models applied to tweets is the 
following (Gautam & Yadav, 2014), where the researchers deal with sentiment analysis 
of customer reviews. The data that were used in this paper concerned labeled tweets that 
were split into two high polarity categories (positive and negative) using the unigram 
feature extraction technique. The dataset contained 19,340 tweets; 18,340 for the training 
of the models and 1,000 for the testing. In the preprocessing stage, the repeated words, 
stop words and punctuation symbols were removed in order to increase the quality of the 
dataset. The feature extraction method that the researchers used extracted the aspect 
(adjective) from the text. Later, this adjective was used to show the positive and negative 
polarity in a sentence, which is useful for determining the opinion of the individuals, using 
the unigram model. Finally, the classification process was performed with three models: 
Naive Bayes, Maximum Entropy, and Support Vector Machine. The results of the 
experiments were good regarding accuracy, with 88.2% for Naïve Bayes, 85.5% for 
Support Vector Machine and 83.8% for Maximum Entropy, but things were not as good 
regarding precision where the results ranged between 33% and 50%. For the 
preprocessing of the data and the implementation of the models, the researchers used 
Python and the Natural Language Tool Kit. 

The third and final paper regarding machine learning models for sentiment analysis 
for the English language that we will examine has to do with sentiment analysis of movie 
reviews using the very famous IMDb dataset (Tripathi et al., 2020). The researchers used 
text classification techniques in the above-mentioned IMDb dataset that was taken from 
Kaggle’s Challenge called Bag of Words Meets Bag of Popcorn. In the preprocessing 
stage of the procedure, they cleaned the reviews from HTML tags, removed the stop 
words and applied text normalization. In the feature extraction stage, the researchers 
worked towards the limitation of the amount of the text of each review as the number of 
features would become so big that the models could suffer from overfitting. For the 
vectorization of the data, they used two techniques based on the Bag of Words model. 
The first technique is called Count and the second one is called Term Frequency-Inverse 
Document Frequency, or TF-IDF. These techniques can determine the importance of a 
word in a review based on its frequency of occurrence on the dataset. In the final step, 
the researchers applied the classification models that they had chosen, which, for this 
work, were the following four: Logistic Regression, Naive Bayes, Decision Tree, and 
Random Forest. The performance of these models was measured with five different 
metrics, and more specifically, accuracy, Area Under Curve (AUC), F1- score, recall, and 
precision. The results are presented in the following table: 
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Table 1 Classification Results (Tripathi et al., 2020) 

 
 
As we can see, Logistic Regression combined with TF-IDF had the best performance in 
every metric that they used. 
 

3.2. Deep Learning Methods 
 
 In this second part of the related work for the English language, we will focus on 
papers that deal with deep learning models for sentiment analysis such as Long Short-
Term Memory and Convolution Neural Networks. In the first paper that we will examine, 
the researchers introduced a word embeddings method obtained by unsupervised 
learning based on large Twitter corpora (Jianqiang et al., 2018). Sentiment analysis was 
applied on five different datasets collected from Twitter that had previously been used for 
sentiment analysis in academic research. More specifically, they used five different 
datasets: the Stanford Twitter Sentiment Test (STSTd) dataset, which consisted of 359 
tweets split in 182 positive and 177 negative ones, the SE2014 dataset, which consisted 
of 5,892 tweets labeled as positive and negative, the Stanford Twitter Sentiment Gold 
(STSGd) dataset, which consisted of 2,034 tweets and that were manually labeled as 
positive and negative, the Sentiment Evaluation Dataset (SED), which consisted of 2,648 
tweets split in two categories, 1,658 positive and 990 negative ones, labeled by 
Mechanical Turk workers, and finally, the Sentiment Strength Twitter dataset (SSTd), 
which consisted of 2,289 positive and 1,037 negative tweets, also labeled manually. The 
main goal of this paper was to reach conclusions on the effect of different types of 
embeddings on different machine learning algorithms such as Support-Vector Machines 
(SVM), Logistic Regression (LR) and Deep Convolution Neural Networks (DCNN), and 
the comparison of the results of these algorithms on various datasets as the ones we 
have already mentioned. The researchers used two types of techniques for word 
vectorization: the above-mentioned Bag of Words, or BoW, and the GloVe-based 
technique, which is a model for the pretraining of Word Embeddings. During the data 
preprocessing stage of the text classification process, the researchers removed all the 
non-ASCII and non-English characters, URL links, numbers and stop words. 
Subsequently, they replaced the negative references like the word “can’t” with the original 
“cannot” as well as the emoticons and emoji icons with their original text form using an 
emoticon dictionary. Finally, they expanded the acronyms and replaced the slang words 
with their standard form. After the vectorization stage that we have already mentioned, 

Accuracy Precision Recall F-score AUV Accuracy Precision Recall F-score AUV

Logistic 

Regression
0.8728 0.8708 0.8777 0.8742 0.94

Logistic 

Regression
0.8914 0.882 0.9055 0.8936 0.96

Naïve 

Bayes
0.8594 0.8566 0.8658 0.8612 -

Naïve 

Bayes
0.8228 0.8285 0.8174 0.823 0.85

Decission 

Tree 

Classifier

0.7134 0.7218 0.7014 0.7114 0.71

Decission 

Tree 

Classifier

0.7066 0.7098 0.7098 0.7114 0.71

Rnadom 

Forest 

Classifier

0.8584 0.862 0.8558 0.8589 0.93

Rnadom 

Forest 

Classifier

0.8562 0.8597 0.8539 0.8568 0.93

Results With Count (Metrics) Results With TF-IDF (Metrics)
ML Models ML Models
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the classification was applied to five combinations of models and vectorization 
techniques. These models were BoW-SVM, BoW-LR (machine learning models 
combined with Bag of Words), GloVe-SVM, GloVe-LR and GloVe-DCNN (machine 
learning models combined with GloVe). At this point, we will focus a little more on the 
latest model GloVe-DCNN, particularly on its architecture. The DCNN model contained 
one input layer, three hidden layers along with three pooling layers and one output layer 
that generated a probability value which determined the positive or negative class. On the 
fully connected layers, dropout regularization was applied to avoid overfitting. The 
hyperparameters for the DCNN were the following: the batch size was 128, the learning 
rate was 0.001, the dropout rate was 0.5 and the activation function that they used was 
the ReLU. In all of the experiments, 10-fold cross validation was applied and the models 
were evaluated by the average accuracy of each experiment. The results showed that the 
model with the best performance undoubtedly was GloVe-DCNN, with 87.62% accuracy, 
which was accomplished on the STSTd dataset. On average, GloVe-DCNN achieved a 
maximum improvement in accuracy of 19.14%. The conclusion of this paper was that the 
Deep Neural Networks have a much better performance than other machine learning 
models, especially when they utilize pre-trained word vectors. 
 In the second paper that concerns sentiment analysis for the English language with 
deep learning models, the researchers applied text classification with the use of a Long 
Short-Term Memory model with the well-known IMDb dataset that we have already 
discussed (Qaisar, 2020). The researchers chose to use only 10,000 out of the 50,000 
reviews. They split these reviews into 80% training data and 20% testing data. 
Additionally, they used 10-fold cross validation to avoid the potential bias in the results. 
In the preprocessing stage of the classification workflow, they removed the punctuation 
symbols, stop words and hybrid links, all letters on the dataset were converted into 
lowercase and, finally, they applied stemming to the words to convert them into their 
original form. The vectorization of the data was done by a Python library called Genism, 
which provided the Doc2Vec tool. For the classification process, the researchers used an 
LSTM neural network with tree layers. The results have shown an 89.9% accuracy. 

In the next paper, the researchers focused on an algorithm that combined a CNN 
and an LSTM architecture in order to achieve better sentiment analysis performance on 
the IMDb dataset (Yenter & Verma, 2017). In this paper, the preprocessing of the data 
was performed with a method from Python’s Keras library. For this procedure, only a D 
number of the most common words of the dataset constituted the dictionary that the 
researchers used for the vectorization process that followed. The reviews were padded 
in a certain length with the largest of these being cut to fit this length and the shorter ones 
being filled with zeros. The hyperparameters they used for the preprocessing and the 
embedding of the data were the following: the number of the words that constituted the 
dictionary were 5,000, the length of the vectors was 500, and the dimensions of the 
embedded words were 32. As we have already mentioned, the architecture of the models 
consisted of CNN and LSTM characteristics. More specifically, the first layer of this model 
was the embedding layer with the hyperparameters we have already discussed. The 
results of the first layer were given to a b number of branches where each one started 
with a 1-dimensional convolutional layer with a c size kernel. The following layer of each 
branch was an activation layer with ReLU activation function. The next layers were a max 
pooling and a dropout layer which protected the model from overfitting. The next and final 
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layer before the LSTM layer was a batch normalization layer. The LSTM layer was used 
because it can process sequences of data, a feature which is very important for text data 
processing as the context of a word depends on other words in a sentence and not only 
the neighboring ones. After the LSTM layer, what followed was a concatenation layer that 
simply merged the results of each branch into an array.  The last layer was a dense layer 
with a sigmoid activation function that classified the reviews into two classes; 0 for 
negative sentiment and 1 for positive sentiment. The researchers performed a lot of 
experiments with various hyperparameters, but the best results were achieved by a model 
with a batch size of 128 and a number of branches (of the model) of 4. The optimal number 
of kernels for the convolutional layer was 3,5,7, and 9 and for the pooling layer was 2, the 
dropout was set at a rate of 0.5, each LSTM layer had 128 units, and the learning rate 
was between 0.001 and 0.01 for the Adam and RMSprop optimizers. The best 
performance of these algorithms achieved 89.5% accuracy, which, at the time, was a 
great result on the specific dataset. The researchers mentioned that the biggest challenge 
of this work was to avoid the overfitting of the model. 

In the last paper on deep learning models for sentiment analysis for the English 
language that we will examine, the researchers performed sentiment analysis on the 
IMDb dataset, with three models which had a similar architecture to models that we have 
already seen (Haque et al., 2019). The models that they used were CNN, LSTM, and a 
hybrid LSTM-CNN. Here, we will focus on the results of the models as a reference point 
for our work. The results are presented in the following table: 

 
 

Table 2 Classification Results (Haque et al., 2019) 

 
 

 

The conclusion that the researchers reached was that the CNN model outperformed the 
LSTM and LSTM-CNN models on the sentiment analysis classification problem, but the 
results are not far apart. 
 

3.3. Methods based on Pre-Trained Models 
 
 Closing this section of papers which deal with sentiment analysis for the English 
language, we will focus on pretrained models, particularly on Bidirectional Encoder 
Representations from Transformers (BERT), which is a pretrained model based on 
Transformers, specifically made for Natural Language Processing. The reason we will 
mention this model is that there is an equivalent pretrained model that supports the Greek 
language called GreekBERT and which we will use later in this work. BERT is a relatively 
new technology, which is why not much work has been done on sentiment analysis with 

Evaluation 

Measure
CNN LSTM LSTM-CNN

Accuracy 0.90 0.88 0.89

Recall 0.95 0.82 0.90

Specificity 0.84 0.90 0.87

Precision 0.87 0.90 0.87

F1-Score 0.91 0.86 0.88
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this algorithm. However, in these few papers that have been written, the results were 
impressively good and have been state-of-the-art in many cases (Gao et al., 2019). 
 In the first paper that deals with the BERT model (Sousa et al., 2019), the researchers 
created a procedure that contained, among others, sentiment analysis to evaluate 
information from news articles in order to provide relevant information for decision-making 
in the stock market, especially the Dow Jones Industrial (DJI) Index. This procedure 
consisted of three stages. Firstly, the researchers collected and preprocessed the texts 
of the news articles, secondly, they applied sentiment analysis based on the BERT model 
and, finally, they concluded on the decision-making based on the results of the two 
previous stages of the procedure. The news articles were collected with the use of the 
Selenium framework from various websites such as the New York Times, the Washington 
Post and Business Insider, among others. Selenium is a very popular and powerful tool 
for web scraping and web browser automation that supports various programming 
languages like Java and Python. With the use of the tools that we have already 
mentioned, the researchers collected text data and manually labeled them positive, 
negative, and neutral. After the labeling process, they tokenized the data with the use of 
the WordPiece algorithm. For the vectorization process, they used a vocabulary of 30,000 
tokens that came up from the dataset. The next step of the procedure was the fine-tuning 
of the BERT BASE model where they used 10-fold cross-validation with the following 
parameters: 12 layers, 768 hidden layers and 12 heads.  The researchers compared the 
results of the classification with other algorithms with various vectorization techniques 
such as SVM combined with Bag of Words, SVM combined with TF-IDF, Naïve Bayes 
combined with Bag of Words, Naïve Bayes combined with TF-IDF and textCNN combined 
with fastText. The results are presented in the following table: 

 

Table 3 Classification Results (Sousa et al., 2019) 

 
 
 
Clearly, BERT outperformed every other algorithm. The final step of the procedure was 
the analysis of the results in order to predict the stock market prices and trends, but the 
examination of this topic is beyond the scope of this work. 
 In the last paper on sentiment analysis for the English language that we will examine, 
the researchers investigated how to fine-tune BERT for text classification (Sun et al., 
2019). The way they approached this task was by performing various experiments with 
different fine-tuning methods on many different datasets for text classification, with the 
result of this process being a general solution for BERT fine-tuning. The experiments were 
performed in two different languages, English and Chinese, on 8 different datasets, with 
7 of them being in English and 1 of them being in Chinese. The models that the 
researchers used for these experiments were the uncased BERT-base model and the 

Algorithm Accuracy Precision Recall F1-score

NB bow 0.610 0.593 0.557 0.503

SVM bow 0.628 0.627 0.609 0.601

NB tf-idf 0.610 0.607 0.568 0.542

SVM tf-idf 0.624 0.631 0.595 0.578

textCNN 0.739 0.703 0.500 0.569

BERT 0.825 0.750 0.713 0.725
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Chinese BERT-base model. The experiments included three different text classification 
tasks, and more specifically, sentiment analysis, question classification, and topic 
classification. In the first part of the workflow, they preprocessed the data with the use of 
the WordPiece embeddings algorithm with a 30,000 token vocabulary. In the 
hyperparameters area, they used the BERT-base model with 768 hidden layers, 12 
Transformer blocks and 12 self-attention heads. They further pre-trained the model, with 
a batch size of 32, a max sequence length of 128, a learning rate of 5e-5, train steps of 
100,000 and warm-up steps of 10,000. The dropout probability was always 0.1, the 
optimizer that was used was Adam optimizer with β1 = 0.9 and β2 = 0.999, the base 
learning rate was 2e-5, and the warm-up proportion was 0.1. Finally, they set the max 
number of the epoch to 4. The results showed that the most important layer for text 
classification is the first. Also, further pretraining of the model can boost its performance 
and with a decreasing learning rate, BERT can overcome the catastrophic interference 
problem. The researchers reported that they achieved state-of-the-art performances on 
eight popular text classification datasets.   
 

3.4. Sentiment Analysis for Greek Language 
 

In this first part of the related work concerning the Greek language, we will provide 
a brief overview of the work that has been done on sentiment analysis for the Greek 
language. There are some papers that deal with this matter, but only a handful of these 
are concerned with sentiment analysis with supervised methods. 

In the first paper that we will examine, the researchers compared two different 
methods of performing sentiment analysis (Markopoulos et al., 2015). The first method 
was the one which we have already mentioned several times and that has to do with text 
classification by machine learning algorithms such as the popular SVM (which they used 
in this work), and the second one is a technique that employs a sentiment lexicon in order 
to characterize a text as positive or negative by counting the frequency of specific polarity 
words. This comparison is very important for this area because it shows the pros and 
cons of a supervised method such as the machine learning-based one and an 
unsupervised method like the lexicon-based one. To apply their methods, the researchers 
created a dataset of hotel reviews that they collected from a travel website which is the 
Greek equivalent of TripAdvisor. It consisted of 1,800 reviews split into two categories; 
900 positive and 900 negative ones. The researchers excluded reviews that were 
translated into Greek or reviews that were too short or too long in length, and more 
specifically, with less than 30 or more than 250 words respectively. They manually 
corrected the punctuation and spelling errors, and finally, they assigned a label (positive 
or negative) based on their perception and the rate of the reviewer in order to create, as 
they characteristically stated, ‘a proper training set’. The algorithms were applied with the 
RapidMiner software, and more specifically, with its text mining extension. In the 
preprocessing stage of the procedure, they tokenized the data, excluded words with less 
than 4 and more than 25 characters and stop words which did not seem to make a 
significant contribution to the training stage. In the vectorization stage, for the first method 
they used TF-IDF, which is a way to vectorize data by giving a weight to each word with 
a statistical method that reflects the importance of this word to the dataset. For the second 
method, they used the Term Occurrence approach, or TO, which is a way to classify data 
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by counting the polarity of each word that the text contains. To implement the TO method, 
they created a Greek sentiment lexicon of 27,388 positive words and 41,410 negative 
ones. For the implementation of the machine learning algorithm, they used 10-fold cross-
validation, and for the evaluation of the results, they used the measures of accuracy, recall 
and precision. As expected, the results showed a better performance with the supervised 
method (accuracy 95.78%) and considerably poorer results with the unsupervised 
method. In general, the results showed that the supervised method had a much better 
performance, but it needed time and labeled data in order to work, while the lexicon-
based method did not achieve great results, but it was fast and could be applied on the 
spot without training. The results are presented in the following table: 

 

Table 4 Classification Results (Markopoulos et al., 2015) 

 
 

 

In the next paper (Spatiotis et al., 2016), the researchers applied a multi-level 
sentiment analysis on a text dataset with five different categories; very negative opinion, 
negative, neutral, positive and very positive. They used 5 text classification algorithms, 
and more specifically, J48, IBk, Multilayer Perceptron, PolyKernel and RBFKernel. The 
dataset that they used consisted of 11,156 user-generated comments, each of which was 
manually labeled; 133 of these were labeled negative, 584 were labeled unsatisfactory, 
3,737 were labeled neutral, 3,217 were labeled satisfactory, and 3,485 were labeled very 
positive. The following table shows the results which are presented with the accuracy 
percentage of every algorithm: 
 
 

Table 5 Classification Results (Spatiotis et al., 2016) 

 
 
 

Predicted 

negative

Predicted 

positive

Predicted 

negative

Predicted 

positive

Negative cases 880 20 323 481

Positive cases 56 844 0 899

Accuracy 95.78% 71.76%

Recall 93.78% 100%

Precision 97.69% 65.14%

TF-IDF TO

Results

Classes J48 Ibk MLP_N_500 PolyKernel_

C_1

PolyKernel_

C_10

RBF 

Kernel_C_1

RBF 

Kernel_C_10

Class A 6% 7.50% 3.80% 0% 0% 0% 0%

Class B 18.70% 18% 10.80% 1.20% 1% 0% 0%

Class C 60.80% 55.70% 62.20% 62% 63.10% 51.50% 61%

Class D 49.50% 51.40% 57.60% 32.70% 32.80% 12% 31.10%

Class E 65% 65.40% 52.70% 72.70% 72.30% 79.90% 73.40%

Average 56% 54.90% 54.50% 53% 53.20% 45.70% 52.40%
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The results showed that the J48 algorithm had the best performance in terms of average 
accuracy. This group of researchers followed up this work with a new paper (Spatiotis et 
al., 2019) that aimed to improve the results of the previous one using discretization 
techniques which are methods that change the values that are in a continuous form into 
a discrete form in order to execute analysis processes. By applying text preprocessing 
and by using discretization techniques, they managed to improve the performance of the 
J48 algorithm on the same dataset but not substantially. Also, they concluded that 
discretization techniques could reduce the time of making a classification model. 
 Finally, in the last paper that we will examine, the researchers’ goal was to evaluate 
a vast amount of techniques that consisted of supervised and unsupervised methods 
(Tsakalidis et al., 2018). More precisely, three experiments were performed on three 
different sentiment-related tasks. The first task was sentiment analysis, where the goal 
was to classify data into three sentiment classes; positive sentiment, negative sentiment, 
and neutral sentiment. The second task was emotion analysis, where the goal was to 
classify data into six emotion classes such as happy, unhappy, disgusted, etc. The third 
and final task was sarcasm detection, where the goal was to classify data into two classes; 
text with sarcastic content and text with non-sarcastic content. For these tasks, many 
different datasets were used. For the first task, the researchers used three different 
datasets. The first two were ‘TIFF’ and ‘TDF’ that were borrowed from a paper written by 
Schinas and Herzig (Schinas & Herzig, 2013) and contained tweets in English and Greek 
from two different festivals held in Thessaloniki - the first one was a film festival and the 
second was a documentary film festival (for these datasets only the Greek tweets were 
kept for the implementation of the classification). Finally, the third dataset that they used 
was ‘GRGE’ that concerned the 2015 Greek legislative election and consisted of 2,309 
tweets which were manually labeled. For the second task, the researchers used a dataset 
made by Kalamatianos (Kalamatianos et al., 2015) that consisted of 681 tweets which 
were manually labeled (the ‘disgusted’ and ‘angry’ emotions were excluded from the 
experiment because of the low agreement of the annotators). For the third task, the 
researchers created a dataset which was manually labeled and that consisted of 3,000 
tweets. In the preprocessing stage, they performed procedures such as the lowercasing 
of the words, replacement of URLs and usernames, tokenization of the text and removal 
of all non-alphanumeric characters. In these experiments, the researchers did not perform 
stemming or removal of the stop words because “these steps were found to have no or 
negative influence on the sentiment analysis tasks” as they noted. For the experiments, 
they used several algorithms such as Logistic Regression (LR), Random Forest (RF) and 
Support Vector Machines (SVM) for the first and third task, and LASSO, Random Forest 
for Regression (RFR), and Support Vector Regression (SVR) for the second task. The 
results were very encouraging for all tasks, but as the researchers claimed “the major 
advantage of our resources is highlighted in the cross-domain sentiment analysis task, 
which is the task that motivates the creation of such resources. Given that it is impossible 
to have annotated datasets for all domains and purposes, creating lexicons and resources 
that can be used in a new domain is of the utmost importance in sentiment analysis.” 
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4. METHODOLOGY 

4.1. Datasets 

English Dataset 

  
Internet Movie Database (IMDb) is a well-known online database that contains 

information and ratings for movies, TV series, video games, etc. created in 1993 in Wales. 
In addition to other features of the website, there is a public section where users can 
review and rate movies, TV series, etc. This means that it is possible to create a dataset 
of tens of thousands of movie reviews with labels already defined by the users of the 
website. This is exactly what was done in 2011 by a team from Stanford University (Maas 
et al., 2011), where a dataset of 50,000 reviews was created. It was split into two 
categories; 25,000 reviews with a positive label and 25,000 with a negative one. 

IMDb has a rating system of ten categories from 1 to 10, so the researchers initially 
separated the reviews in three categories based on the score of the rate in order to create 
a set of high polarity data the way they desired. Reviews with a score of less than 4 would 
be the negative category, reviews with a score greater than 5 would be the positive 
category and reviews with a score of 4 or 5 would be the neutral category. Of these 
reviews, they kept only 25.000 of the negative and 25.000 of the positive reviews on 
condition that the reviews for each movie did not exceed the number 30. Over the next 
decade to date, this dataset would be considered one of the most popular datasets for 
testing sentiment analysis algorithms (Haque et al., 2019; Qaisar, 2020; Untawale & 
Choudhari, 2019; Yenter & Verma, 2017) and the results of these tests would become the 
benchmark for future applications and the evaluation of new models. 

 

Greek Dataset 

 
 The aim of this work is to compare the results and the performance of sentiment 
analysis algorithms in two different languages, English and Greek. In order to achieve 
that aim, we had to apply these algorithms to two different datasets with similarities not 
only in the way they were created, but also in the essence of their content. As there are 
not many labeled datasets in the Greek language, many options were considered for the 
creation of a dataset that would meet the requirements of this work. Among these options 
were Skroutz 7, which is the largest online shopping platform in Greece, the Greek part 
of Twitter, Insomnia8, which is a very popular online Greek forum, and Athinorama 9, which 
is the Greek counterpart of IMDb. Εach option had its pros and cons. The Greek part of 
Twitter had millions of Greek messages to choose from, but there were no labels, which 
was an essential element for this work. Skroutz contained a lot of rated reviews of many 
different shops and products submitted by customers, but the anti-bot protection of the 

                                                           
7 https://www.skroutz.gr/ 
8 https://www.insomnia.gr/ 
9 https://www.athinorama.gr/ 
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website would make the creation of the dataset very time-consuming and practically 
impossible for the size of the dataset we intended to use in this work. Insomnia had 
various text data, some with labels and some without, but the essence of these text data 
were unique, and we were not able to find corresponding text data in the English 
language. Τhat is the reason we came up with the Athinorama dataset, which overcame 
all these problems as the website did not have anti-bot defense, the reviews had already 
been rated by the viewers and there was an equivalent dataset in English with movie 
reviews from IMDb. The IMDb dataset would play a very significant role in this work as it 
would be the dataset used to apply different algorithms in order to create a benchmark 
for the experiments on the Greek language dataset. For this reason, our intention was to 
create the Athinorama dataset based on the same principles employed in the creation of 
the IMDb dataset.   

Following these principles, we created a dataset using a web scraping program 
made in Python. This program ran for 2 days, from 20/10/2021 to 22/10/2021, and 
collected all the movie reviews of the website with the following restrictions: a) only 
reviews in the Greek language were collected (reviews in Greeklish, English or with 
English majority text were excluded), b) only rated reviews were collected, and c) only 
reviews with a text length greater than 2 were collected in order to avoid reviews that 
contained only a rate without text. In this first version of the Athinorama dataset, 15 
categories of data were collected for each review as we can see in the following vector 
['id number', 'greek title', 'original title', 'category', 'director', 'movie length', 'movie date', 
'author', 'review date', 'review', 'stars', 'label', 'mean of stars', 'number of reviews', 'url']. 
Analyzing each category, 'id number' is an increasing number for each review, 'greek title' 
is the Greek version of the title of the reviewed movie, 'original title' is the original title of 
the reviewed movie, 'category' is the genre of film, 'director' is the director’s name, 'movie 
length' is the length of the movie in minutes, 'movie date' is the date of the movie only in 
years, 'author' is the nickname or the real name of the viewer, 'review date' is the review 
date in years, 'review' is the raw review in Greek, 'stars' is the rate written in full, 'label' is 
the rate of the movie on a scale from 0 to 5, 'mean of stars' is the mean of the rates of the 
reviews for a certain movie, but only of the ones that we used for this dataset (the rates 
of the reviews that we excluded were not counted), 'number of reviews' is the number of 
the reviews we extracted from the website for each movie and the last category is the 
URL of each movie. With this process, we managed to extract about 150,000 reviews of 
6,481 different movies. This first version of the Athinorama dataset was full of different 
data but it was not equivalent to the IMDb one, so we created a second Light version that 
consisted of only two columns, the ‘review’ column and the ‘label’ column, and which met 
the other conditions of the IMDb dataset, as previously mentioned. The Athinorama 
website has a rating system with a scale from 0 to 5 which includes the following rates, 
0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5 and 5, which means that we had 11 classes instead of 
10 – which is how many classes the IMDb website has. In order to create a high polarity 
dataset, we decided to create three classes; one with the top 4 ratings (ratings > 3), which 
would be the positive class, one with the bottom 4 ratings (ratings < 2), which would be 
the negative class, and one with the middle three (2, 2.5 and 3), which would be the 
neutral class. From these reviews, we randomly kept only 25,000 of the positive and 
25,000 of the negative reviews. The restriction of less than 30 reviews for each movie 
was not applied due to the limited number of reviews. This Athinorama Light dataset was 
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used for all the experiments on sentiment analysis we performed regarding the Greek 
language. 

 

Data Analysis 

 
These two datasets show a lot of commonalities, but they have some differences 

as well. The biggest structural difference between these two datasets, apart from the 
different language, is the length of the reviews. The IMDb dataset has reviews with more 
tokens per review than the Athinorama Light dataset which has shorter reviews in general. 
More precisely, the IMDb dataset consists of reviews with 267 tokens per review and the 
Athinorama Light dataset consists of reviews with 51 tokens per review. This is a fact that 
can affect the results of the classification as it seems that the IMDb reviews contain more 
information about the sentiment of the message than the respective Athinorama Light 
reviews. 

 
 

 
Figure 6 Mean tokens per review, for IMDb and Athinorama Light 

  
The second and most critical difference between these datasets is obviously the 
languages and, more precisely, the structure of these languages. The English language 
is a Germanic language with Latin influences that has many similarities to German and 
French as they share a large part of their vocabulary. The Greek language does not share 
these commonalities with English. There is only a small part of common vocabulary and 
it is limited to scientific or artistic words. The Greek language also has other 
characteristics like accentuation, which does not exist in English, as well as a different 
inflection, which greatly affects the form of the words. The following image shows the 
most common words in the IMDb dataset, with the restriction that only words with more 
than four letters are depicted: 
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Figure 7 Most frequent words in IMDb 

 
As we can see, words like ‘movie’, ‘character’, ‘story’ and ‘scene’ are really 

common, as was to be expected. The following image shows the most common words of 
the Athinorama dataset, with the restriction that only words with more than five letters are 
depicted: 
 
 

 
Figure 8 Most frequent words in Athinorama Light 
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We see words like ‘ταινία’, ‘σενάριο’, ‘σκηνοθεσία’ και ‘σινεμά’ which are the most 

common on a movie dataset, but we observed that words like ‘ταινια’, ‘ταινία’, ‘ταινίες’ and 
‘ταινίας’ are also depicted at the same time. Τhe same word appears with different 
inflections and with or without accent, something that could affect the classification 
models. 
 

Table 6 Datasets comparison  

Dataset name Athinorama Athinorama Light IMDb 

Number of Reviews 148,795 50,000 50,000 

Number of Labels/ 
Classes 

11 2 2 

Tokens per Review 56 51 267 

Columns/ 
Categories 

['id number', 'greek 
title', 'original title', 

'category', 'director', 
'movie length', 
'movie date', 

'author', 'review 
date', 'review', 
'stars', 'label', 

'mean of stars', 
'number of reviews', 

'url'] 

[review, label] [review, label] 

Unique Values 
(Reviews) 

143,912 48,929 49,581 

Reviews per class 5.0    33,541 
4.0    25,116 
3.0    17,687 
0.0    15,244 
2.0    12,014 
1.0     9,810 
3.5     9,796 
4.5     9,632 
2.5     6,514 
0.5     5,158 
1.5     4,283 

Positive 25,000 
Negative 25,000 

Positive 25,000 
Negative 25,000 

 
 

4.2. Preprocessing 
 

Leaving the datasets area and entering the first parts of the sentiment analysis 
workflow such as the data preprocessing stage, we could face problems like sarcasm 
detection and metaphor understanding, both of which are concepts that can affect the 
results of the classification process. In the following paper (Cambria et al., 2017), the 
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researchers tried to discover the reasons that artificial intelligence did not manage to 
achieve human-like performance in the above mentioned problems along with a detailed 
description of the data preprocessing that consists of a) Microtext Normalization, which 
concerns the nature of short reviews or chat messages that tend to be misspelled and  
contain slang and emoticons (Xue et al., 2011) - features that make them unsuitable for 
classification problems, b) Part-of-Speech Tagging, which categorizes each word of a 
sentence based on its part of speech (e.g. adjective, verb and noun), c) Lemmatization, 
which converts each word into its base form, and finally d) Subjectivity Detection, which 
aims to remove content that does not affect the results of the classification (Chaturvedi et 
al., 2018) in order to make the algorithms more efficient. Application and evaluation of all 
these techniques can be seen in the work of Jianqiang and Xiaolin (Jianqiang & Xiaolin, 
2017) where the researchers tried to evaluate several well-known preprocessing 
techniques. One of these techniques was the replacement of negative mentions with their 
corresponding words because these words were important for the definition of the 
emotion of a message, for example, the replacement of “can’t” with the word ‘cannot’. 
Other techniques that they used was the removal of URLs, numbers, stop words, and 
spelling correction where possible, especially in cases where letters were repeated in 
words. For example, in Twitter messages, it is very common to use words like “cooool”. 
This word can be replaced with the word “coool” and later with the correct word “cool” 
with a simple algorithm that replaces letters that are repeated three times with only two 
of the letters that are repeated. One last technique that was used was the expansion of 
acronyms and the replacement of slang words with their standard forms with the aid of 
an acronym dictionary. The researchers concluded that of all these techniques, only the 
expansion of acronyms and the replacement of negative mentions and slang words affect 
the result of the classification. On the other hand, the removal of URLs, numbers and stop 
words were proven not to be very important for this kind of problems. Many of these 
techniques along with the vectorization part of the sentiment analysis workflow that 
follows will be used in some form in this work. 

For this work, we performed experiments that included the preprocessing of the 
text data, but we also included experiments with text data that were not fully 
preprocessed. In both cases, we removed the HTML tags and URLs, which are tokens 
without meaning, and we also removed the emojis from the Athinorama Light dataset 
because these were tokens that did not exist in the IMDb dataset and we wanted both 
datasets to have similar content.  For the experiments with full preprocessing, we added 
the following workflow. We applied the lemmatization process, which converted each 
word to its base form except for the pronouns. Then, we converted each word into its 
lower-case form to prevent the algorithm from being confused by the same words. Finally, 
the tokenization process took place at the same time as the exclusion of the stop words 
and punctuation symbols. In the following table, we can see some examples of the full 
preprocessing of some reviews both in English and in Greek. 
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Table 7 Greek language example 

Original review Movie Images Vectorized review 

ανεπανάληπτο 3D 
καρτούν. Μιλάμε έπαθα 
πλάκα. Ενα μικρούλικο 

αθώο κοτοπουλάκι 
εναντίον μοχθηρών 

εξωήινων που θέλουν να 
κατακτήσουν το πλανήτη 

και να στερήσουν την 
ελευθερία από τους 

κατοίκους του. Θα ζήσει 
ευτυχισμένο μαζί με τους 

φίλους του ή θα το ψήσουν 
ζωντανό οι κακοί; Δεν θα 
σας πω μην καταστρέψω 
τις πάμπολλες σεναριακές 
εκπλήξεις που έχει αυτό το 
μικρούλικο έπος.  Μιλάμε 
για τρελό κλάσιμο! Λέω 
μάλιστα να πάω να το 

ξαναδώ αυτή τη φορά με 
την παρέα μου. Είμαι 

σίγουρος ότι θα 
ενθουσιαστούν, θα 

γελάσουν, θα 
τραγουδήσουν και θα 

ξεχάσουν για μιάμισι ώρα 
τα βάρη της 

καθημερινότητας.  Είναι 
από τις ταινίες που λες ότι 
και δεκαπέντε ευρώ να είχε 

το εισιτήριο θα τα 
πλήρωνα ευχαρίστως. Μην 

το χάσετε για τίποτα! 

 
 
 
 
 

 
(Image source IMDb) 

['ανεπανάληπτος', '3d', 
'καρτώ', 'μιλώ', 

'παθαίνω', 'πλάκα', 
'ενα', 'μικρούλικος', 

'αθώο', 'κοτοπουλάκι', 
'μοχθηρής', 'εξωήινας', 

'θέλω', 'κατακτώ', 
'πλανήτης', 'στερώ', 

'ελευθερία', 'κατοίκος', 
'ζήσω', 'ευτυχισμένο', 

'φίλος', 'ή', 'ψήσω', 
'ζωντανό', 'κακός', 

'λέω', 'καταστρέψω', 
'πάμπολλες', 
'σεναριακός', 

'εκπλήξη', 
'μικρούλικος', 'έπος', 

'μιλάμε', 'τρελό', 
'κλάσιμο', 'λέω', 'πάω', 

'ξαναδώ', 'φορά', 
'παρέα', 'σίγουρος', 

'ενθουσιαστώ', 
'γελάσω', 'τραγουδώ', 

'ξεχάσω', 'μιάμισι', 
'ώρα', 'βάρη', 

'καθημερινότητα', 
'ταινία', 'λες', 

'δεκαπέντε', 'ευρώ', 
'εισιτήριο', 'πλήρωνος', 
'ευχαρίστως', 'χάσω'] 

 

As we can see, some words are not in the form that we expected in the vectorized review. 

For example, ‘πλήρωνα’ after the preprocessing became ‘πλήρωνος’, which is not the 

word that we expected. The correct word should have been ‘πληρώνω’. That is a problem 

resulting from spaCy and, more precisely, from the lemmatization function of the library. 

The lemma_ function that we used for the lemmatization process provided the base form 

of a token, with no inflectional suffixes. spaCy, especially in Greek, was pretrained in a 

certain amount of data that may not contain some of the words of our dataset. That means 

that in these cases, spaCy will try to guess the word that has to return with doubtful 



 

31 
 

results. In English, things are much better probably because of the simpler grammar of 

the language and the absence of many different inflectional suffixes for each word. 

Nevertheless, this is a feature that would affect smaller datasets and not so much our 

case where our datasets contain tens of thousands of reviews. 

 

Table 8 English language example 

Original review Movie Image Vectorized review 

Let me start off by saying I 
love Japanese cinema, 

literature and culture 
generally. I've seen many 

Japanese movies and 
enjoyed them, but 

""Portrait of Hell"" (aka 
Jigokuhen) makes itself 

ridiculous. The two 
characters who dominate 

the action -- the ""evil 
lord"" in his privileged 

bubble and the ""stubborn, 
crazy artist"" are pure 

types with zero subtlety or 
nuance, and all their 

actions emanate from 
cartoonish extremes. The 
film wants to show horrible 

scenes of violence and 
raw emotion but many of 
these scenes are so over 

the top they actually 
become laughable and the 
overall feeling is that of a 
made-for-TV movie that 
went off the rails. If this 

rarely screened movie falls 
in your hands or comes to 
your town, spare yourself 

and give it a pass. 

 
 

 
 

 

 
(Image source Wikipedia) 

['let', 'start', 'love', 
'japanese', 'cinema', 
'literature', 'culture', 

'generally', 'japanese', 
'movie', 'enjoy', 

'portrait', 'hell', 'aka', 
'jigokuhen', 
'ridiculous', 
'character', 

'dominate', 'action', '--
', 'evil', 'lord', 

'privileged', 'bubble', 
'stubborn', 'crazy', 

'artist', 'pure', 'type', 
'zero', 'subtlety', 

'nuance', 'action', 
'emanate', 

'cartoonish', 
'extreme', 'film', 
'want', 'horrible', 

'scene', 'violence', 
'raw', 'emotion', 

'scene', 'actually', 
'laughable', 'overall', 
'feeling', 'tv', 'movie', 
'rail', 'rarely', 'screen', 
'movie', 'fall', 'hand', 

'come', 'town', 'spare', 
'pass'] 

 

4.3. Vectorization 
 

Machine learning models are designed to manipulate numbers and make 
predictions. For this reason, in order to apply these models, we need numerical data. For 
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text-related classification problems, a very important step in the classification process is 
to convert the data we want to use into a format consisting of numbers instead of text. 
This process is called vectorization and there are many different techniques for doing it. 
In the next section of this work, we will focus on some of the techniques that we applied 
in our experiments. 

In the vectorization stage we used two different techniques, the first one being 
Term Frequency – Inverse Document Frequency, or TF-IDF (Markopoulos et al., 2015), 
and the second one being Word Embeddings. TF-IDF is a vectorization technique that is 
based on the Bag of Words, or BoW, technique (Harris, 1954), so in order to explain TF-
IDF, we had to start with BoW. 

In the BoW technique, a vocabulary that contains all the unique words of the 
dataset is created and the goal is to vectorize each review of the dataset by using that 
vocabulary. The length of each vector is equal to the number of the unique words of the 
vocabulary. Every word of the vocabulary has a certain position in that vector; if the word 
exists in a review, then the number of the appearance of this word in that review is placed 
in the corresponding position of the vector, otherwise the number 0 is placed. For 
example, if we have the following vocabulary (you, nice, is, ice, scream, cream, all, that, 
girl, boy), then the sentence ‘I scream, you scream, we all scream for ice cream’ could be 
represented as (1,0,0,1,3,1,1,0,0,0). The problem with Bag of Words is that the 
importance of the words results from the frequency with which they appear in a review, 
which does not necessarily mean that it is the right criterion for the evaluation of words. 
The solution to this problem is the TF-IDF technique which offers a better perspective in 
placing weights on words. In this technique, there are two scores that are combined in 
order to give the weight of a word. The first one is Term Frequency (TF), which is the 
number of repetitions of a word in a review divided by the number of the words of that 
review, and the second one is Inverse Document Frequency, which is the logarithm of the 
number of the reviews of the dataset divided by the number of the reviews that contain 
the word we have already mentioned. The key idea behind IDF is that words that appear 
infrequently in a collection of documents tend to be more informative than the words that 
appear frequently across many documents. Hence, each term in a document receives a 
specific weight by multiplying these two scores. 

The Word Embeddings technique uses n-dimensional word embedding vectors 
instead of weights for each word of a review. Each dimension represents a general feature 
to which a number from 0 to 1 is attached depending on how relevant this feature is to 
this word. The reason we are doing this with Word Embeddings is because we want to 
create an embedding space in which the words with similar meaning are relatively close 
to each other, something that proves to be very efficient when training an algorithm (Tang 
et al., 2016). 
 

4.4. Accuracy Metrics 
 
 For the evaluation of our experiments, we used four different metrics: accuracy, 
precision, recall, and F1-score. Most of the times, we used the classification ‘accuracy’ to 
measure the performance of our model; however, accuracy is not enough to truly judge a 
classification model, so for that reason, we also used the other three metrics. 

For the description of these metrics, we will need four rates: the True Positive (TP), 
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the True Negative (TN), the False Positive (FP) and the False Negative (FN). 

 
Accuracy is the ratio of correctly predicted observations to the total observations.   
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

 
 

Precision is the ratio of correctly predicted positive observations to the total predicted 
positive observations. 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 
 
Recall is the ratio of correctly predicted positive observations to all observations in actual 
class. 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 
F1 Score is the weighted average of Precision and Recall. 
 

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2
𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

 

4.5. Tools and Libraries 
 

For the web scraping program, we used the Python programing language along 
with the Beautiful Soup library, which is capable of pulling data out of HTML files, the 
requests library, which allows us to send HTTP requests, and the langdetect library, 
which was used for the detection of the Greek reviews and the rejection of those written 
in English or Greeklish. For the preprocessing of the data, we used a relatively new 
technology called spaCy, which is an open-source library written in Python for natural 
language processing and which supports many languages, including Greek. spaCy uses 
pipelines that are trained on written web text (blogs, news, comments) that include 
vocabulary, syntax, and entities. There are many trained pipelines for each language. For 
example, in Greek there is the el_core_news_sm (small), the el_core_news_md 
(medium) and the el_core_news_lg (large) which differ in the size of the data that they 
have been trained with. For this work, we used only the el_core_news_sm (small) and 
the equivalent English one, the en_core_web_sm (small), as they are lighter than the 
other two, and the vectorization techniques that we used for this work do not require the 
use of more heavily-trained pipelines. For the punctuation symbols for both the Greek 
and English text, we used the string library and its operation String.punctuation which 
includes the following symbols: !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~. For the stop words for 
the English text, we used the STOP_WORDS operation of the spaCy library. For the 
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Greek text, we used a collection of stop words that were manually collected10. The 
implementation of the models was achieved with Python libraries such as scikit-learn, 
transformers and Keras, which are created for the development and the evaluation of 
machine and deep learning models. 

5. EXPERIMENTS 

For this work, we used nine different models: Support Vector Machine (SVM), 
Logistic Regression (LR), Naïve Bayes (NB), Decision Trees (DT) and XGBoost (XGB), 
which we combined with the TF-IDF vectorization technique and Convolutional Neural 
Network (CNN), Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU) and 
Bidirectional Encoder Representations from Transformers (BERT11), which we combined 
with the Word Embeddings (WE) technique. 

As we have already mentioned, the goal of this work is to compare machine 
learning models on different datasets in Greek and English, so the architecture and 
hyperparameters of these models must be identical in order for us to draw useful 
conclusions. For this reason, we created nine different models that we used in both of our 
datasets and we ran four experiments for each model. Half of these experiments had a 
full preprocessed workflow for every review that included the lemmatization and the lower 
casing of the words along with the exclusion of the stop words and punctuation symbols. 
The other half of the experiments ran without any of these preprocessing steps, with the 
exception of the lower casing of the words. 

The experiments ran on three different programs. In the first program called 
ML_models.py, five models were deployed using the sklearn and xgb libraries. In most 
of these models, we used the default hyperparameters of the corresponding classes, the 
only exception being the XGBoost. 

 

• More precisely, for the SVM, we used the LinearSVC class with loss function 
equal to ‘squared_hinge’, tolerance for stopping criteria equal ‘1e-4’ and 
maximum number of iterations equal to ‘1000’. 

• For the Logistic Regression, we used the LogisticRegression class with 
solver equal to ‘lbfgs’ and maximum number of iterations taken for the 
solvers to converge equal to ‘100’. 

• For the Decision Trees, we used the DecisionTreeClassifier class with 
function to measure the quality of a split equal to ‘gini’ and splitter equal to 
‘best’. 

• For the Naïve Bayes, we used the MultinomialNB class with smoothing 
parameter equal to ‘1.0’, fit_prior equal to ‘True’ and class_prior equal to 
‘None’. 

• Finally, for the XGBoost, we used the XGBClassifier class of the xgb library 
with max_depth equal to ‘7’, n_estimators equal to ‘300’ and objective equal 
to ‘binary:logistic’. 

                                                           
10 https://github.com/explosion/spaCy/blob/master/spacy/lang/el/stop_words.py 
11 https://towardsdatascience.com/sentiment-analysis-in-10-minutes-with-bert-and-hugging-face-294e8a04b671 
 

https://github.com/explosion/spaCy/blob/master/spacy/lang/el/stop_words.py
https://towardsdatascience.com/sentiment-analysis-in-10-minutes-with-bert-and-hugging-face-294e8a04b671
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  In the second program called DL_models.py, we deployed three different deep 
learning models using the Keras library. For all these models, we used the same five 
hyperparameters. More precisely, the embedding vector length was 32, the maximum 
length of the reviews was 100, the number of words of the vocabulary was 10000, the 
batches’ size was 32 and all models ran for 10 epochs. For each of these models, we 
used the ‘adam’ optimizer and the ‘binary_crossentropy’ loss function. 
  Finally, the third program called BERT_model.py concerns the BERT pretrained 
model. For this program, we used the transformers library and the bert-base-uncased 
(Kenton et al., 1953) pretrained model for the English experiments and the bert-base-
greek-uncased-v112 pretrained model for the Greek ones. For hyperparameters, we used 
learning_rate equal to ‘3e-5’ and epsilon equal to ‘1e-08’. 

To sum up, we examined four different experiments on two different datasets with 
nine different models. One experiment on the nine models with the IMDb dataset with no 
preprocessing of the reviews, a second experiment with the same dataset with full 
preprocessed reviews, a third experiment on the nine models with the Athinorama Light 
dataset with no preprocessing of the reviews, and finally, a fourth experiment with the 
Athinorama Light dataset with full preprocessed reviews. For all our experiments, we split 
our data into 90% training data and 10% testing data. 

 

6. RESULTS 

6.1. Results for the English Language 
 

 Starting with the experiments on IMDb datasets with no preprocessing, most of the 

models achieved excellent results, ranging between 80 and 91 percent, apart from the 

Decision Trees model, which did not achieve good results, reaching just 72 to 73 percent 

in all metrics. As far as the equilibrium between these four metrics is concerned, the most 

balanced models were SVM+TF-IDF, LG+TFIDF, LSTM+WE and DT+TF-IDF. In this part 

of the experiments, the model with the best performance was SVM combined with the TF-

IDF vectorization technique, which achieved 90.6% accuracy and 90.7% F1-score, with 

all other metrics giving a result over 90%. 

 

 

 

 

 

 

                                                           
12 https://huggingface.co/nlpaueb/bert-base-greek-uncased-v1 
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Table 9 Results of IMDb experiments – No Preprocessing 

IMDb - No Preprocessing 

  Accuracy Precision Recall F1-score 

SVM+TF-IDF 0.906 0.901 0.914 0.907 

LG+TF-IDF 0.899 0.893 0.909 0.901 

DT+TF-IDF 0.724 0.725 0.730 0.728 

NB+TF-IDF 0.865 0.889 0.838 0.863 

XGB+TF-IDF 0.873 0.865 0.887 0.876 

GRU+WE 0.900 0.892 0.910 0.901 

LSTM+WE 0.886 0.891 0.880 0.886 

CNN+WE 0.821 0.808 0.840 0.824 

BERT+WE 0.898 0.889 0.910 0.900 

 

 

Figure 9 Graph of IMDb experiments – No Preprocessing 

 

 In the experiments with the IMDb dataset with full preprocessing, the results are 

similar, albeit slightly worse. Again, the majority of the models achieved great results with 

the exception of Decision Trees, but this time the model with the best performance was 

BERT combined with the Word Embeddings vectorization technique, which achieved 90% 

accuracy and F1-score. As far as the equilibrium between these four metrics is concerned 
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the most balanced models were CNN+WE, BERT+WE and DT+TF-IDF.  Also, BERT 

achieved results close to 90% in all other metrics. 

 

Table 10 Results of IMDb experiments – Full Preprocessing 

IMDb - Full Preprocessing 

  Accuracy Precision Recall F1-score 

SVM+TF-IDF 0.893 0.887 0.904 0.895 

LG+TF-IDF 0.888 0.878 0.903 0.891 

DT+TF-IDF 0.723 0.726 0.727 0.727 

NB+TF-IDF 0.855 0.863 0.847 0.855 

XGB+TF-IDF 0.871 0.864 0.885 0.874 

GRU+WE 0.865 0.892 0.830 0.860 

LSTM+WE 0.862 0.824 0.920 0.869 

CNN+WE 0.855 0.858 0.850 0.854 

BERT+WE 0.900 0.904 0.895 0.900 
 

 

Figure 10 Graph of IMDb experiments – No Preprocessing 
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experiments for the Greek language with no preprocessing, the results were not as good 
as the results for the English language. The majority of the models achieved worse results 
than the equivalent for the IMDb dataset. The only exception was the BERT model 
combined with the Word Embeddings vectorization technique, which achieved the best 
classification results, 92.3% accuracy and 92.2% F1-score, percentages that are the 
highest of all experiments regardless of language. The rest of the models achieved results 
between 84% and 87%, with the exception of the Decision Trees model that achieved the 
worst results, close to 72.2%. As far as the equilibrium between these four metrics is 
concerned, the most balanced models were NB+TF-IDF, GRU+WE and BERT+WE.   
 
 

Table 11 Results of Athinorama Light experiments – No Preprocessing 

Athinorama Light - No Preprocessing 

  Accuracy Precision Recall F1-score 

SVM+TF-IDF 0.869 0.876 0.864 0.870 

LG+TF-IDF 0.864 0.878 0.848 0.863 

DT+TF-IDF 0.722 0.728 0.717 0.723 

NB+TF-IDF 0.871 0.874 0.870 0.872 

XGB+TF-IDF 0.839 0.860 0.814 0.836 

GRU+WE 0.862 0.858 0.868 0.863 

LSTM+WE 0.841 0.807 0.896 0.849 

CNN+WE 0.861 0.869 0.850 0.859 

BERT+WE 0.923 0.930 0.914 0.922 

 

 
Figure 11 Graph of Athinorama Light experiments – No Preprocessing 
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 Finally, for the last experiments, the results regarding the Greek dataset with full 
preprocessing were slightly worse than the one with no preprocessing. Again, the best 
results were a product of the BERT model that was combined with the Word Embeddings 
vectorization technique with 88.9% accuracy and 88.7 F1-score. The rest of the models 
achieved results between 82% and 86%, apart from the Decision Trees model that 
achieved the worst results, close to 72% accuracy. As far as the equilibrium between 
these four metrics, the most balanced models were SVM+TF-IDF, LG+WE and CNN+WE.   

 
Table 12 Results of Athinorama Light experiments – Full Preprocessing 

Athinorama Light – Full Preprocessing 

  Accuracy Precision Recall F1-score 

SVM+TF-IDF 0.855 0.855 0.86 0.858 

LG+TF-IDF 0.859 0.862 0.858 0.860 

DT+TF-IDF 0.720 0.719 0.733 0.726 

NB+TF-IDF 0.854 0.844 0.872 0.858 

XGB+TF-IDF 0.822 0.832 0.811 0.821 

GRU+WE 0.836 0.849 0.818 0.833 

LSTM+WE 0.840 0.825 0.862 0.843 

CNN+WE 0.837 0.839 0.834 0.837 

BERT+WE 0.889 0.903 0.872 0.887 

 

 
Figure 12 Graph of Athinorama Light experiments – Full Preprocessing 
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In the last part of the results section of this work, we compared the F1 Score for all 
our experiments because this metric could provide us with a general evaluation of our 
models. In the following table, we can see that the model with the best F1 score is, as 
expected, BERT combined with the Word Embeddings vectorization technique. The only 
exception is the results for the IMDb dataset without preprocessing as other models such 
as SVM, LG and GRU achieved slightly better results. 
 

  
Table 13 F1-score Comparison 

Comparison of F1-score 

  Athinorama-NP Athinorama-FP IMDb - NP IMDb - FP 

SVM+TF-IDF 0.870 0.858 0.907 0.895 

LG+TF-IDF 0.863 0.860 0.901 0.891 

DT+TF-IDF 0.723 0.726 0.728 0.727 

NB+TF-IDF 0.872 0.858 0.863 0.855 

XGB+TF-IDF 0.836 0.821 0.876 0.874 

GRU+WE 0.863 0.833 0.901 0.860 

LSTM+WE 0.849 0.843 0.886 0.869 

CNN+WE 0.859 0.837 0.824 0.854 

BERT+WE 0.922 0.887 0.900 0.900 
 

 

 
Figure 13 Graphs of F1-score Comparison 
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7. CONCLUSIONS 

In this work, we focused on the sentiment analysis of movie reviews for the Greek 
and English language. We used two different datasets, one in the English language from 
IMDb and another one in the Greek language from Athinorama which we managed to 
create with the use of web scraping techniques. The Athinorama dataset was made under 
the principles of IMDb because the goal was to compare the results of our classification 
models in Greek and English texts, which meant that the two datasets should have the 
same structure and content. For the practical part of this work, we used the Python 
programing language along with various libraries and tools such as Beautiful Soup, 
requests, spaCy, Keras and scikit-learn. We performed two kinds of experiments; one 
with texts with limited preprocessing that included only the removal of the HTML tags, 
URLs, emojis and the lowercasing of the words, and a second one with fully preprocessed 
texts that included, in addition to the above, the lemmatization of the words and the 
exclusion of the stop words and punctuation symbols. 

The results of the experiments were really encouraging for both English and Greek. 
In terms of accuracy, most of our models achieved results of between 82 and 92 percent. 
More precisely, our top two models were the BERT model combined with the Word 
Embeddings technique and the SVM model combined with the TF-IDF technique. Both 
models achieved results of around 90 percent for the English dataset in all metrics. For 
the Greek dataset, BERT achieved results close to or higher than 90 percent in all metrics, 
and SVM achieved results of between 85.5 and 87 percent depending on the 
preprocessing of the texts. 

Starting with some general conclusions of our work, we can see that the 
preprocessing of the data (lemmatization, stop words removal, etc.) does not contribute 
significantly to a problem which contains such a large number of reviews. On the contrary, 
the results of the experiments without preprocessing were better. It makes sense for 
problems with limited data to use preprocessing because limited data means embedding 
space with limited dimensions which is sensitive to frequently occurring words (such as 
the stop words), but in our case with datasets with tens of thousands of reviews there is 
no such need because we have the necessary size to train our models successfully. The 
only thing we can achieve with preprocessing is to lose important information from our 
data. 

A second conclusion is that the Decision Trees model does not perform well in a 
text classification problem. In all our experiments it was by far the worst classifier. The 
rest of the models achieved, more or less, the same results with the exception of the 
BERT model that was the most successful of all and the model that we recommend for 
text classification problems for both the English and Greek language. 

Finally, we observed a constant difference in the results of all of the classification 
models in favor of the IMDb dataset (compared with the Athinorama Light), with the only 
exception being the BERT pretrained model. We believe that this difference is not due to 
the different languages (although this is a factor that influences the results), but mainly to 
the different number of tokens of the reviews on the datasets we used. In the English 
dataset we had 267 tokens per review, while in the Athinorama Light dataset we had 51 
tokens per review, which meant that the IMDb dataset consisted of much more 
information in each of the reviews than the Athinorama Light, which made the 
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classification task easier for it. 
In conclusion, we believe that the BERT pretrained model, especially its Greek 

version that is of interest to us, is a model that can cope with the needs of sentiment 
analysis for the Greek language and the results are just as good as for their English 
counterparts. 

 Future extensions of this work could include the creation of new datasets in the 
Greek language from different sources with different contents and the implementation of 
much more supervised and unsupervised classification techniques. 
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gonstate.edu/~xfern/classes/cs434/slides/decisiontree-4.pdf 

Appendix 

ML_models.py 
 

import pandas as pd 

import spacy 

from spacy.lang.en.stop_words import STOP_WORDS 

from sklearn.feature_extraction.text import TfidfVectorizer 

from sklearn.pipeline import Pipeline 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import confusion_matrix 

import string 

 

stopwords_english = list(STOP_WORDS) 

stopwords_greek = set( 

    """ 

αδιάκοπα αι ακόμα ακόμη ακριβώς άλλα αλλά αλλαχού άλλες άλλη άλλην 

άλλης αλλιώς αλλιώτικα άλλο άλλοι αλλοιώς αλλοιώτικα άλλον άλλος άλλοτε αλλού 

άλλους άλλων άμα άμεσα αμέσως αν ανά ανάμεσα αναμεταξύ άνευ αντί αντίπερα αντίς 

άνω ανωτέρω άξαφνα απ απέναντι από απόψε άρα άραγε αρκετά αρκετές 

αρχικά ας αύριο αυτά αυτές αυτή αυτήν αυτής αυτό αυτοί αυτόν αυτός αυτού αυτούς 

αυτών αφότου αφού 

βέβαια βεβαιότατα 

γι για γιατί γρήγορα γύρω 

δα δε δείνα δεν δεξιά δήθεν δηλαδή δι δια διαρκώς δικά δικό δικοί δικός δικού 

δικούς διόλου δίπλα δίχως 

εάν εαυτό εαυτόν εαυτού εαυτούς εαυτών έγκαιρα εγκαίρως εγώ εδώ ειδεμή είθε είμαι 

http://web.engr.oregonstate.edu/~xfern/classes/cs434/slides/decisiontree-4.pdf
http://web.engr.oregonstate.edu/~xfern/classes/cs434/slides/decisiontree-4.pdf
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είμαστε είναι εις είσαι είσαστε είστε είτε είχα είχαμε είχαν είχατε είχε είχες έκαστα 

έκαστες έκαστη έκαστην έκαστης έκαστο έκαστοι έκαστον έκαστος εκάστου εκάστους εκά-

στων 

εκεί εκείνα εκείνες εκείνη εκείνην εκείνης εκείνο εκείνοι εκείνον εκείνος εκείνου 

εκείνους εκείνων εκτός εμάς εμείς εμένα εμπρός εν ένα έναν ένας ενός εντελώς εντός 

εναντίον  εξής  εξαιτίας  επιπλέον επόμενη εντωμεταξύ ενώ εξ έξαφνα εξήσ εξίσου έξω 

επάνω 

επειδή έπειτα επί επίσης επομένως εσάς εσείς εσένα έστω εσύ ετέρα ετέραι ετέρας έτε-

ρες 

έτερη έτερης έτερο έτεροι έτερον έτερος ετέρου έτερους ετέρων ετούτα ετούτες ετούτη 

ετούτην 

ετούτης ετούτο ετούτοι ετούτον ετούτος ετούτου ετούτους ετούτων έτσι εύγε ευθύς ευτυ-

χώς εφεξής 

έχει έχεις έχετε έχομε έχουμε έχουν εχτές έχω έως έγιναν  έγινε  έκανε  έξι  έχοντας 

η ήδη ήμασταν ήμαστε ήμουν ήσασταν ήσαστε ήσουν ήταν ήτανε ήτοι ήττον 

θα 

ι ιδία ίδια ίδιαν ιδίας ίδιες ίδιο ίδιοι ίδιον ίδιοσ ίδιος ιδίου ίδιους ίδιων ιδίως 

ιι ιιι 

ίσαμε ίσια ίσως 

κάθε καθεμία καθεμίας καθένα καθένας καθενός καθετί καθόλου καθώς και κακά κακώς καλά 

καλώς καμία καμίαν καμίας κάμποσα κάμποσες κάμποση κάμποσην κάμποσης κάμποσο κάμποσοι 

κάμποσον κάμποσος κάμποσου κάμποσους κάμποσων κανείς κάνεν κανένα κανέναν κανένας 

κανενός κάποια κάποιαν κάποιας κάποιες κάποιο κάποιοι κάποιον κάποιος κάποιου κά-

ποιους 

κάποιων κάποτε κάπου κάπως κατ κατά κάτι κατιτί κατόπιν κάτω κιόλας κλπ κοντά κτλ κυ-

ρίως 

λιγάκι λίγο λιγότερο λόγω λοιπά λοιπόν 

μα μαζί μακάρι μακρυά μάλιστα μάλλον μας με μεθαύριο μείον μέλει μέλλεται μεμιάς μεν 

μερικά μερικές μερικοί μερικούς μερικών μέσα μετ μετά μεταξύ μέχρι μη μήδε μην μήπως 

μήτε μια μιαν μιας μόλις μολονότι μονάχα μόνες μόνη μόνην μόνης μόνο μόνοι μονομιάς 

μόνος μόνου μόνους μόνων μου μπορεί μπορούν μπρος μέσω  μία  μεσώ 

να ναι νωρίς 

ξανά ξαφνικά 

ο οι όλα όλες όλη όλην όλης όλο ολόγυρα όλοι όλον ολονέν όλος ολότελα όλου όλους όλων 

όλως ολωσδιόλου όμως όποια οποιαδήποτε οποίαν οποιανδήποτε οποίας οποίος οποιασδήποτε 

οποιδήποτε 

όποιες οποιεσδήποτε όποιο οποιοδηήποτε όποιοι όποιον οποιονδήποτε όποιος οποιοσδήποτε 

οποίου οποιουδήποτε οποίους οποιουσδήποτε οποίων οποιωνδήποτε όποτε οποτεδήποτε όπου 

οπουδήποτε όπως ορισμένα ορισμένες ορισμένων ορισμένως όσα οσαδήποτε όσες οσεσδήποτε 

όση οσηδήποτε όσην οσηνδήποτε όσης οσησδήποτε όσο οσοδήποτε όσοι οσοιδήποτε όσον ο-

σονδήποτε 

όσος οσοσδήποτε όσου οσουδήποτε όσους οσουσδήποτε όσων οσωνδήποτε όταν ότι οτιδήποτε 

ότου ου ουδέ ούτε όχι οποία  οποίες  οποίο  οποίοι  οπότε  ος 

πάνω  παρά  περί  πολλά  πολλές  πολλοί  πολλούς  που  πρώτα  πρώ-

τες  πρώτη  πρώτο  πρώτος  πως 
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πάλι πάντα πάντοτε παντού πάντως πάρα πέρα πέρι περίπου περισσότερο πέρσι πέρυσι πια 

πιθανόν 

πιο πίσω πλάι πλέον πλην ποιά ποιάν ποιάς ποιές ποιό ποιοί ποιόν ποιός ποιού ποιούς 

ποιών πολύ πόσες πόση πόσην πόσης πόσοι πόσος πόσους πότε ποτέ πού πούθε πουθενά πρέ-

πει 

πριν προ προκειμένου πρόκειται πρόπερσι προς προτού προχθές προχτές πρωτύτερα πώς 

σαν σας σε σεις σου στα στη στην στης στις στο στον στου στους στων συγχρόνως 

συν συνάμα συνεπώς συχνάς συχνές συχνή συχνήν συχνής συχνό συχνοί συχνόν 

συχνός συχνού συχνούς συχνών συχνώς σχεδόν 

τα τάδε ταύτα ταύτες ταύτη ταύτην ταύτης ταύτοταύτον ταύτος ταύτου ταύτων τάχα τάχατε 

τελευταία  τελευταίο  τελευταίος  τού  τρία  τρίτη  τρεις τελικά τελικώς τες τέτοια 

τέτοιαν 

τέτοιας τέτοιες τέτοιο τέτοιοι τέτοιον τέτοιος τέτοιου 

τέτοιους τέτοιων τη την της τι τίποτα τίποτε τις το τοι τον τοσ τόσα τόσες τόση τόσην 

τόσης τόσο τόσοι τόσον τόσος τόσου τόσους τόσων τότε του τουλάχιστο τουλάχιστον τους 

τούς τούτα 

τούτες τούτη τούτην τούτης τούτο τούτοι τούτοις τούτον τούτος τούτου τούτους τούτων 

τυχόν 

των τώρα 

υπ υπέρ υπό υπόψη υπόψιν ύστερα 

χωρίς χωριστά 

ω ως ωσάν ωσότου ώσπου ώστε ωστόσο ωχ 

""".split() 

) 

 

punct = string.punctuation 

 

nlp_greek = spacy.load('el_core_news_sm') 

nlp_english = spacy.load('en_core_web_sm') 

 

flag_1 = True 

while flag_1 == True: 

    dataset_selection = int(input("Select the dataset you want to use: give 0 for the 

IMDb and 1 for the Athinorama ")) 

    if dataset_selection == 0: 

        df = pd.read_csv('IMDb_50.000.csv') 

        flag_1 =False 

    elif dataset_selection == 1: 

        df = pd.read_csv('Athinorama_50.000.csv') 

        flag_1 =False 

    else: 

        print("Wrong number") 

 

df['label'].replace({'negative':0, 'positive':1}, inplace=True) 
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flag_2 = True 

while flag_2 == True: 

    num_of_reviews = int(input("Give the number of reviews you want to use for Senti-

ment Analysis. (The number of reviews must be even and greater than 100) ")) 

    if num_of_reviews%2==0 and num_of_reviews>=100: 

        df_0_labels = df[df['label']==0] 

        df_1_labels = df[df['label']==1] 

        df_0_sample = df_0_labels.sample(int(num_of_reviews/2)) 

        df_1_sample = df_1_labels.sample(int(num_of_reviews/2)) 

        df = df_0_sample.append(df_1_sample) 

        print(df['label'].value_counts()) 

        flag_2 = False 

    else: 

        print("Remember the number of reviews must be even and greater than 100") 

 

def text_data_cleaning(sentence): 

    if dataset_selection == 0: 

        doc = nlp_english(sentence) 

    elif dataset_selection == 1: 

        doc = nlp_greek(sentence) 

    tokens = [] 

    for token in doc: 

        if token.lemma_ !="-PRON-": 

            temp = token.lemma_.lower().strip() 

        else: 

            temp = token.lower_ 

        tokens.append(temp) 

    cleaned_tokens = [] 

    for token in tokens: 

        if dataset_selection == 0: 

            if token not in stopwords_english and token not in punct: 

                cleaned_tokens.append(token) 

        elif dataset_selection == 1: 

            if token not in stopwords_greek and token not in punct: 

                cleaned_tokens.append(token) 

    return cleaned_tokens 

 

def text_data_cleaning_no_lemmatization(sentence): 

    if dataset_selection == 0: 

        doc = nlp_english(sentence) 

    elif dataset_selection == 1: 

        doc = nlp_greek(sentence) 

    tokens = [] 

    for token in doc: 

        if token.lemma_ !="-PRON-": 
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            temp = token.lower_ 

        else: 

            temp = token.lower_ 

        tokens.append(temp) 

    cleaned_tokens = [] 

    for token in tokens: 

        if token  not in punct: 

            cleaned_tokens.append(token) 

    return cleaned_tokens 

 

flag_3 = True 

while flag_3 == True: 

    lemma_no_stop_words = int(input("You want to apply lemmatization and stop words 

removal? Give 1 for Yes or 0 for No ")) 

    if lemma_no_stop_words == 1: 

        tfidf = TfidfVectorizer(tokenizer = text_data_cleaning) 

        flag_3 = False 

    elif lemma_no_stop_words == 0: 

        tfidf = TfidfVectorizer(tokenizer = text_data_cleaning_no_lemmatization) 

        flag_3 = False 

    else: 

        print("Give 1 for Yes or 0 for No") 

 

X = df['review'] 

y = df['label'] 

 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.1, ran-

dom_state = 42) 

 

print('1 SVM') 

from sklearn.svm import LinearSVC 

 

classifier = LinearSVC() 

clf = Pipeline([('tfidf',tfidf), ('clf', classifier)]) 

clf.fit(X_train, y_train) 

y_pred = clf.predict(X_test) 

 

tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel() 

accuracy = (tp+tn)/(tp+fp+fn+tn) 

precision = tp/(tp+fp) 

recall = tp/(tp+fn) 

f1score = 2*((recall*precision)/(recall+precision)) 

print(confusion_matrix(y_test, y_pred)) 

print('Accuracy: {:.2f}%'.format(accuracy*100)) 

print('Precision: {:.2f}%'.format(precision*100)) 
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print('Recall: {:.2f}%'.format(recall*100)) 

print('F1-score: {:.2f}%'.format(f1score*100)) 

 

print('') 

print('2 Logistic Regression') 

from sklearn.linear_model import LogisticRegression 

 

classifier = LogisticRegression() 

logreg = Pipeline([('tfidf',tfidf), ('logreg', classifier)]) 

logreg.fit(X_train, y_train) 

y_pred = logreg.predict(X_test) 

 

tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel() 

accuracy = (tp+tn)/(tp+fp+fn+tn) 

precision = tp/(tp+fp) 

recall = tp/(tp+fn) 

f1score = 2*((recall*precision)/(recall+precision)) 

print(confusion_matrix(y_test, y_pred)) 

print('Accuracy: {:.2f}%'.format(accuracy*100)) 

print('Precision: {:.2f}%'.format(precision*100)) 

print('Recall: {:.2f}%'.format(recall*100)) 

print('F1-score: {:.2f}%'.format(f1score*100)) 

 

print('') 

print('3 Decision Trees') 

from sklearn.tree import DecisionTreeClassifier 

 

classifier = DecisionTreeClassifier() 

dtc = Pipeline([('tfidf',tfidf), ('dtc', classifier)]) 

dtc.fit(X_train, y_train) 

y_pred = dtc.predict(X_test) 

 

tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel() 

accuracy = (tp+tn)/(tp+fp+fn+tn) 

precision = tp/(tp+fp) 

recall = tp/(tp+fn) 

f1score = 2*((recall*precision)/(recall+precision)) 

print(confusion_matrix(y_test, y_pred)) 

print('Accuracy: {:.2f}%'.format(accuracy*100)) 

print('Precision: {:.2f}%'.format(precision*100)) 

print('Recall: {:.2f}%'.format(recall*100)) 

print('F1-score: {:.2f}%'.format(f1score*100)) 

 

print('') 

print('4 Naïve Bayes') 
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from sklearn.naive_bayes import MultinomialNB 

 

classifier = MultinomialNB() 

mnb = Pipeline([('tfidf',tfidf), ('mnb', classifier)]) 

mnb.fit(X_train, y_train) 

y_pred = mnb.predict(X_test) 

 

tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel() 

accuracy = (tp+tn)/(tp+fp+fn+tn) 

precision = tp/(tp+fp) 

recall = tp/(tp+fn) 

f1score = 2*((recall*precision)/(recall+precision)) 

print(confusion_matrix(y_test, y_pred)) 

print('Accuracy: {:.2f}%'.format(accuracy*100)) 

print('Precision: {:.2f}%'.format(precision*100)) 

print('Recall: {:.2f}%'.format(recall*100)) 

print('F1-score: {:.2f}%'.format(f1score*100)) 

 

print('') 

print('5 XGBoost') 

import xgboost as xgb 

 

classifier = xgb.XGBClassifier(max_depth=7, n_estimators=300, objective="binary:lo-

gistic", random_state=42) 

XGB = Pipeline([('tfidf',tfidf), ('XGB', classifier)]) 

XGB.fit(X_train, y_train) 

y_pred = XGB.predict(X_test) 

 

tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel() 

accuracy = (tp+tn)/(tp+fp+fn+tn) 

precision = tp/(tp+fp) 

recall = tp/(tp+fn) 

f1score = 2*((recall*precision)/(recall+precision)) 

print(confusion_matrix(y_test, y_pred)) 

print('Accuracy: {:.2f}%'.format(accuracy*100)) 

print('Precision: {:.2f}%'.format(precision*100)) 

print('Recall: {:.2f}%'.format(recall*100)) 

print('F1-score: {:.2f}%'.format(f1score*100)) 
 

DL_models.py 
 

import numpy as np 

import pandas as pd 

import spacy 
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from spacy.lang.en.stop_words import STOP_WORDS 

from tensorflow.keras.layers import * 

from tensorflow.keras.models import * 

from tensorflow.keras.optimizers import * 

from tensorflow.keras.preprocessing.text import Tokenizer as tk 

from keras.models import Sequential 

from keras.layers import Dense 

from sklearn.preprocessing import LabelEncoder 

from sklearn.model_selection import train_test_split 

from tensorflow.keras.preprocessing.sequence import pad_sequences 

from sklearn.metrics import confusion_matrix 

import string 

 

stopwords_english = list(STOP_WORDS) 

stopwords_greek = set( 

    """ 

αδιάκοπα αι ακόμα ακόμη ακριβώς άλλα αλλά αλλαχού άλλες άλλη άλλην 

άλλης αλλιώς αλλιώτικα άλλο άλλοι αλλοιώς αλλοιώτικα άλλον άλλος άλλοτε αλλού 

άλλους άλλων άμα άμεσα αμέσως αν ανά ανάμεσα αναμεταξύ άνευ αντί αντίπερα αντίς 

άνω ανωτέρω άξαφνα απ απέναντι από απόψε άρα άραγε αρκετά αρκετές 

αρχικά ας αύριο αυτά αυτές αυτή αυτήν αυτής αυτό αυτοί αυτόν αυτός αυτού αυτούς 

αυτών αφότου αφού 

βέβαια βεβαιότατα 

γι για γιατί γρήγορα γύρω 

δα δε δείνα δεν δεξιά δήθεν δηλαδή δι δια διαρκώς δικά δικό δικοί δικός δικού 

δικούς διόλου δίπλα δίχως 

εάν εαυτό εαυτόν εαυτού εαυτούς εαυτών έγκαιρα εγκαίρως εγώ εδώ ειδεμή είθε είμαι 

είμαστε είναι εις είσαι είσαστε είστε είτε είχα είχαμε είχαν είχατε είχε είχες έκαστα 

έκαστες έκαστη έκαστην έκαστης έκαστο έκαστοι έκαστον έκαστος εκάστου εκάστους εκά-

στων 

εκεί εκείνα εκείνες εκείνη εκείνην εκείνης εκείνο εκείνοι εκείνον εκείνος εκείνου 

εκείνους εκείνων εκτός εμάς εμείς εμένα εμπρός εν ένα έναν ένας ενός εντελώς εντός 

εναντίον  εξής  εξαιτίας  επιπλέον επόμενη εντωμεταξύ ενώ εξ έξαφνα εξήσ εξίσου έξω 

επάνω 

επειδή έπειτα επί επίσης επομένως εσάς εσείς εσένα έστω εσύ ετέρα ετέραι ετέρας έτε-

ρες 

έτερη έτερης έτερο έτεροι έτερον έτερος ετέρου έτερους ετέρων ετούτα ετούτες ετούτη 

ετούτην 

ετούτης ετούτο ετούτοι ετούτον ετούτος ετούτου ετούτους ετούτων έτσι εύγε ευθύς ευτυ-

χώς εφεξής 

έχει έχεις έχετε έχομε έχουμε έχουν εχτές έχω έως έγιναν  έγινε  έκανε  έξι  έχοντας 

η ήδη ήμασταν ήμαστε ήμουν ήσασταν ήσαστε ήσουν ήταν ήτανε ήτοι ήττον 

θα 

ι ιδία ίδια ίδιαν ιδίας ίδιες ίδιο ίδιοι ίδιον ίδιοσ ίδιος ιδίου ίδιους ίδιων ιδίως 

ιι ιιι 
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ίσαμε ίσια ίσως 

κάθε καθεμία καθεμίας καθένα καθένας καθενός καθετί καθόλου καθώς και κακά κακώς καλά 

καλώς καμία καμίαν καμίας κάμποσα κάμποσες κάμποση κάμποσην κάμποσης κάμποσο κάμποσοι 

κάμποσον κάμποσος κάμποσου κάμποσους κάμποσων κανείς κάνεν κανένα κανέναν κανένας 

κανενός κάποια κάποιαν κάποιας κάποιες κάποιο κάποιοι κάποιον κάποιος κάποιου κά-

ποιους 

κάποιων κάποτε κάπου κάπως κατ κατά κάτι κατιτί κατόπιν κάτω κιόλας κλπ κοντά κτλ κυ-

ρίως 

λιγάκι λίγο λιγότερο λόγω λοιπά λοιπόν 

μα μαζί μακάρι μακρυά μάλιστα μάλλον μας με μεθαύριο μείον μέλει μέλλεται μεμιάς μεν 

μερικά μερικές μερικοί μερικούς μερικών μέσα μετ μετά μεταξύ μέχρι μη μήδε μην μήπως 

μήτε μια μιαν μιας μόλις μολονότι μονάχα μόνες μόνη μόνην μόνης μόνο μόνοι μονομιάς 

μόνος μόνου μόνους μόνων μου μπορεί μπορούν μπρος μέσω  μία  μεσώ 

να ναι νωρίς 

ξανά ξαφνικά 

ο οι όλα όλες όλη όλην όλης όλο ολόγυρα όλοι όλον ολονέν όλος ολότελα όλου όλους όλων 

όλως ολωσδιόλου όμως όποια οποιαδήποτε οποίαν οποιανδήποτε οποίας οποίος οποιασδήποτε 

οποιδήποτε 

όποιες οποιεσδήποτε όποιο οποιοδηήποτε όποιοι όποιον οποιονδήποτε όποιος οποιοσδήποτε 

οποίου οποιουδήποτε οποίους οποιουσδήποτε οποίων οποιωνδήποτε όποτε οποτεδήποτε όπου 

οπουδήποτε όπως ορισμένα ορισμένες ορισμένων ορισμένως όσα οσαδήποτε όσες οσεσδήποτε 

όση οσηδήποτε όσην οσηνδήποτε όσης οσησδήποτε όσο οσοδήποτε όσοι οσοιδήποτε όσον ο-

σονδήποτε 

όσος οσοσδήποτε όσου οσουδήποτε όσους οσουσδήποτε όσων οσωνδήποτε όταν ότι οτιδήποτε 

ότου ου ουδέ ούτε όχι οποία  οποίες  οποίο  οποίοι  οπότε  ος 

πάνω  παρά  περί  πολλά  πολλές  πολλοί  πολλούς  που  πρώτα  πρώ-

τες  πρώτη  πρώτο  πρώτος  πως 

πάλι πάντα πάντοτε παντού πάντως πάρα πέρα πέρι περίπου περισσότερο πέρσι πέρυσι πια 

πιθανόν 

πιο πίσω πλάι πλέον πλην ποιά ποιάν ποιάς ποιές ποιό ποιοί ποιόν ποιός ποιού ποιούς 

ποιών πολύ πόσες πόση πόσην πόσης πόσοι πόσος πόσους πότε ποτέ πού πούθε πουθενά πρέ-

πει 

πριν προ προκειμένου πρόκειται πρόπερσι προς προτού προχθές προχτές πρωτύτερα πώς 

σαν σας σε σεις σου στα στη στην στης στις στο στον στου στους στων συγχρόνως 

συν συνάμα συνεπώς συχνάς συχνές συχνή συχνήν συχνής συχνό συχνοί συχνόν 

συχνός συχνού συχνούς συχνών συχνώς σχεδόν 

τα τάδε ταύτα ταύτες ταύτη ταύτην ταύτης ταύτοταύτον ταύτος ταύτου ταύτων τάχα τάχατε 

τελευταία  τελευταίο  τελευταίος  τού  τρία  τρίτη  τρεις τελικά τελικώς τες τέτοια 

τέτοιαν 

τέτοιας τέτοιες τέτοιο τέτοιοι τέτοιον τέτοιος τέτοιου 

τέτοιους τέτοιων τη την της τι τίποτα τίποτε τις το τοι τον τοσ τόσα τόσες τόση τόσην 

τόσης τόσο τόσοι τόσον τόσος τόσου τόσους τόσων τότε του τουλάχιστο τουλάχιστον τους 

τούς τούτα 

τούτες τούτη τούτην τούτης τούτο τούτοι τούτοις τούτον τούτος τούτου τούτους τούτων 

τυχόν 
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των τώρα 

υπ υπέρ υπό υπόψη υπόψιν ύστερα 

χωρίς χωριστά 

ω ως ωσάν ωσότου ώσπου ώστε ωστόσο ωχ 

""".split() 

) 

 

punct = string.punctuation 

 

encoder = LabelEncoder() 

nlp_greek = spacy.load("el_core_news_sm") 

nlp_english = spacy.load("en_core_web_sm") 

 

flag_1 = True 

while flag_1 == True: 

    dataset_selection = int(input("Select the dataset you want to use: give 0 for the 

IMDb and 1 for the Athinorama ")) 

    if dataset_selection == 0: 

        df = pd.read_csv('IMDb_50.000.csv') 

        flag_1 =False 

    elif dataset_selection == 1: 

        df = pd.read_csv('Athinorama_50.000.csv') 

        flag_1 =False 

    else: 

        print('Wrong number') 

 

df['label'].replace({'negative':0, 'positive':1}, inplace=True) 

 

flag_2 = True 

while flag_2 == True: 

    num_of_reviews = int(input("Give the number of reviews you want to use for Senti-

ment Analysis. (The number of reviews must be even and greater than 100) ")) 

    if num_of_reviews%2==0 and num_of_reviews>=100: 

        df_0_labels = df[df['label']==0] 

        df_1_labels = df[df['label']==1] 

        df_0_sample = df_0_labels.sample(int(num_of_reviews/2)) 

        df_1_sample = df_1_labels.sample(int(num_of_reviews/2)) 

        df = df_0_sample.append(df_1_sample) 

        print(df['label'].value_counts()) 

        flag_2 = False 

    else: 

        print("Remember the number of reviews must be even and greater than 100") 

 

def text_data_cleaning(sentence): 

    if dataset_selection == 0: 
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        doc = nlp_english(sentence) 

    elif dataset_selection == 1: 

        doc = nlp_greek(sentence) 

    tokens = [] 

    for token in doc: 

        if token.lemma_ !="-PRON-": 

            temp = token.lemma_.lower().strip() 

        else: 

            temp = token.lower_ 

        tokens.append(temp) 

    cleaned_tokens = [] 

    for token in tokens: 

        if dataset_selection == 0: 

            if token not in stopwords_english and token not in punct: 

                cleaned_tokens.append(token) 

        elif dataset_selection == 1: 

            if token not in stopwords_greek and token not in punct: 

                cleaned_tokens.append(token) 

    return cleaned_tokens 

 

flag_3 = True 

while flag_3 == True: 

    preprocessing = int(input("You want preprocessing? Give 0 for No and 1 for Yes 

")) 

    if preprocessing == 1: 

        X = [] 

        counter = 0 

        for review in df['review']: 

            cleaned_review = '' 

            if counter<10: 

                print(counter,review) 

            review = text_data_cleaning(review) 

            for word in review: 

                cleaned_review += ' '+word 

            if counter<10: 

                print(counter,cleaned_review) 

                counter +=1 

            X.append(cleaned_review) 

        y = np.array(df['label']) 

        flag_3 = False 

    elif preprocessing == 0: 

        X = df['review'] 

        y = df['label'] 

        flag_3 = False 

    else: 
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        print("Remember! Give True for Yes and False for No ") 

 

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True, test_size = 

0.1, stratify=y, random_state = 42) 

 

#Deep Learning hyperparameters 

embedding_vector_length = 32 

max_review_length = 100 

NUM_WORDS = 10000 

batch_size = 32 

epochs = 10 

 

tok=tk(num_words=NUM_WORDS, filters='!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n', 

lower=True, split=' ', char_level=False, oov_token='Farid') 

tok.fit_on_texts(X_train) 

X_train1 = tok.texts_to_sequences(X_train) 

X_test1 = tok.texts_to_sequences(X_test) 

X_train2 = pad_sequences(X_train1, max_review_length, padding='post', truncat-

ing='post') 

X_test2 = pad_sequences(X_test1, max_review_length, padding='post', truncat-

ing='post') 

X_train3 = np.flip(X_train2, 1) 

X_test3 = np.flip(X_test2, 1) 

 

print('') 

print('6 GRU') 

 

model_1 = Sequential() 

model_1.add(Embedding(input_dim=NUM_WORDS, output_dim=embedding_vector_length, in-

put_length=max_review_length)) 

model_1.add(Conv1D(filters=100, kernel_size=3, padding='same', activation='relu')) 

model_1.add(MaxPooling1D()) 

model_1.add(GRU(50, return_sequences=True)) 

model_1.add(GRU(50)) 

model_1.add(Dropout(0.5)) 

model_1.add(Dense(100,activation='relu')) 

model_1.add(Dense(1, activation='sigmoid')) 

model_1.compile(optimizer='adam', loss='binary_crossentropy',metrics='accuracy') 

model_1.summary() 

model_1.fit(X_train3, y_train, batch_size=batch_size, epochs=epochs) 

 

y_pred_test = (model_1.predict(X_test3) > 0.5).astype('int32').reshape(len(X_test3)) 

tn, fp, fn, tp = confusion_matrix(y_test, y_pred_test).ravel() 

accuracy = (tp+tn)/(tp+fp+fn+tn) 

precision = tp/(tp+fp) 
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recall = tp/(tp+fn) 

f1score = 2*((recall*precision)/(recall+precision)) 

print(confusion_matrix(y_test, y_pred_test)) 

print('Accuracy: {:.2f}%'.format(accuracy*100)) 

print('Precision: {:.2f}%'.format(precision*100)) 

print('Recall: {:.2f}%'.format(recall*100)) 

print('F1-score: {:.2f}%'.format(f1score*100)) 

 

print('') 

print('7 LSTM') 

 

model_2 = Sequential() 

model_2.add(Embedding(input_dim=NUM_WORDS, output_dim=embedding_vector_length, in-

put_length=max_review_length)) 

model_2.add(Dropout(0.2)) 

model_2.add(LSTM(32)) 

model_2.add(Dense(units=256, activation='relu')) 

model_2.add(Dropout(0.2)) 

model_2.add(Dense(units=1, activation='sigmoid')) 

model_2.summary() 

model_2.compile(loss='binary_crossentropy', optimizer='adam',metrics=['accuracy']) 

model_2.fit(X_train3, y_train, batch_size=batch_size, epochs=epochs) 

 

y_pred_test = (model_2.predict(X_test3) > 0.5).astype('int32').reshape(len(X_test3)) 

tn, fp, fn, tp = confusion_matrix(y_test, y_pred_test).ravel() 

accuracy = (tp+tn)/(tp+fp+fn+tn) 

precision = tp/(tp+fp) 

recall = tp/(tp+fn) 

f1score = 2*((recall*precision)/(recall+precision)) 

print(confusion_matrix(y_test, y_pred_test)) 

print('Accuracy: {:.2f}%'.format(accuracy*100)) 

print('Precision: {:.2f}%'.format(precision*100)) 

print('Recall: {:.2f}%'.format(recall*100)) 

print('F1-score: {:.2f}%'.format(f1score*100)) 

 

print('') 

print('8 CNN') 

 

model_3 = Sequential() 

model_3.add(Embedding(NUM_WORDS, 100, input_length=max_review_length)) 

model_3.add(Conv1D(1024, 3, padding='valid', activation='relu', strides=1)) 

model_3.add(GlobalMaxPooling1D()) 

model_3.add(Dropout(0.5)) 

model_3.add(BatchNormalization()) 

model_3.add(Dropout(0.5)) 
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model_3.add(Dense(2048, activation='relu')) 

model_3.add(Dropout(0.5)) 

model_3.add(BatchNormalization()) 

model_3.add(Dropout(0.5)) 

model_3.add(Dense(1, activation='sigmoid')) 

model_3.summary() 

model_3.compile(loss='binary_crossentropy', optimizer='adam',metrics=['accuracy']) 

model_3.fit(X_train3, y_train, batch_size=batch_size, epochs=epochs) 

 

y_pred_test = (model_3.predict(X_test3) > 0.5).astype('int32').reshape(len(X_test3)) 

tn, fp, fn, tp = confusion_matrix(y_test, y_pred_test).ravel() 

accuracy = (tp+tn)/(tp+fp+fn+tn) 

precision = tp/(tp+fp) 

recall = tp/(tp+fn) 

f1score = 2*((recall*precision)/(recall+precision)) 

print(confusion_matrix(y_test, y_pred_test)) 

print('Accuracy: {:.2f}%'.format(accuracy*100)) 

print('Precision: {:.2f}%'.format(precision*100)) 

print('Recall: {:.2f}%'.format(recall*100)) 

print('F1-score: {:.2f}%'.format(f1score*100)) 
 

BERT_models.py (colab code) 
 

# !pip install transformers 

# !pip install --upgrade spacy 

# !pip install https://github.com/explosion/spacy-models/releases/down-

load/en_core_web_sm-3.0.0/en_core_web_sm-3.0.0.tar.gz 

 

import spacy.cli 

spacy.cli.download("el_core_news_sm") 

 

import tensorflow as tf 

import numpy as np 

import pandas as pd 

import spacy 

from spacy.lang.en.stop_words import STOP_WORDS 

import string 

from transformers import BertTokenizer, TFBertForSequenceClassification 

from transformers import InputExample, InputFeatures 

from transformers import AutoTokenizer 

 

from google.colab import drive 

drive.mount('/content/drive') 
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stopwords_english = list(STOP_WORDS) 

stopwords_greek = set( 

    """ 

αδιάκοπα αι ακόμα ακόμη ακριβώς άλλα αλλά αλλαχού άλλες άλλη άλλην 

άλλης αλλιώς αλλιώτικα άλλο άλλοι αλλοιώς αλλοιώτικα άλλον άλλος άλλοτε αλλού 

άλλους άλλων άμα άμεσα αμέσως αν ανά ανάμεσα αναμεταξύ άνευ αντί αντίπερα αντίς 

άνω ανωτέρω άξαφνα απ απέναντι από απόψε άρα άραγε αρκετά αρκετές 

αρχικά ας αύριο αυτά αυτές αυτή αυτήν αυτής αυτό αυτοί αυτόν αυτός αυτού αυτούς 

αυτών αφότου αφού 

βέβαια βεβαιότατα 

γι για γιατί γρήγορα γύρω 

δα δε δείνα δεν δεξιά δήθεν δηλαδή δι δια διαρκώς δικά δικό δικοί δικός δικού 

δικούς διόλου δίπλα δίχως 

εάν εαυτό εαυτόν εαυτού εαυτούς εαυτών έγκαιρα εγκαίρως εγώ εδώ ειδεμή είθε είμαι 

είμαστε είναι εις είσαι είσαστε είστε είτε είχα είχαμε είχαν είχατε είχε είχες έκαστα 

έκαστες έκαστη έκαστην έκαστης έκαστο έκαστοι έκαστον έκαστος εκάστου εκάστους εκά-

στων 

εκεί εκείνα εκείνες εκείνη εκείνην εκείνης εκείνο εκείνοι εκείνον εκείνος εκείνου 

εκείνους εκείνων εκτός εμάς εμείς εμένα εμπρός εν ένα έναν ένας ενός εντελώς εντός 

εναντίον  εξής  εξαιτίας  επιπλέον επόμενη εντωμεταξύ ενώ εξ έξαφνα εξήσ εξίσου έξω 

επάνω 

επειδή έπειτα επί επίσης επομένως εσάς εσείς εσένα έστω εσύ ετέρα ετέραι ετέρας έτε-

ρες 

έτερη έτερης έτερο έτεροι έτερον έτερος ετέρου έτερους ετέρων ετούτα ετούτες ετούτη 

ετούτην 

ετούτης ετούτο ετούτοι ετούτον ετούτος ετούτου ετούτους ετούτων έτσι εύγε ευθύς ευτυ-

χώς εφεξής 

έχει έχεις έχετε έχομε έχουμε έχουν εχτές έχω έως έγιναν  έγινε  έκανε  έξι  έχοντας 

η ήδη ήμασταν ήμαστε ήμουν ήσασταν ήσαστε ήσουν ήταν ήτανε ήτοι ήττον 

θα 

ι ιδία ίδια ίδιαν ιδίας ίδιες ίδιο ίδιοι ίδιον ίδιοσ ίδιος ιδίου ίδιους ίδιων ιδίως 

ιι ιιι 

ίσαμε ίσια ίσως 

κάθε καθεμία καθεμίας καθένα καθένας καθενός καθετί καθόλου καθώς και κακά κακώς καλά 

καλώς καμία καμίαν καμίας κάμποσα κάμποσες κάμποση κάμποσην κάμποσης κάμποσο κάμποσοι 

κάμποσον κάμποσος κάμποσου κάμποσους κάμποσων κανείς κάνεν κανένα κανέναν κανένας 

κανενός κάποια κάποιαν κάποιας κάποιες κάποιο κάποιοι κάποιον κάποιος κάποιου κά-

ποιους 

κάποιων κάποτε κάπου κάπως κατ κατά κάτι κατιτί κατόπιν κάτω κιόλας κλπ κοντά κτλ κυ-

ρίως 

λιγάκι λίγο λιγότερο λόγω λοιπά λοιπόν 

μα μαζί μακάρι μακρυά μάλιστα μάλλον μας με μεθαύριο μείον μέλει μέλλεται μεμιάς μεν 

μερικά μερικές μερικοί μερικούς μερικών μέσα μετ μετά μεταξύ μέχρι μη μήδε μην μήπως 

μήτε μια μιαν μιας μόλις μολονότι μονάχα μόνες μόνη μόνην μόνης μόνο μόνοι μονομιάς 

μόνος μόνου μόνους μόνων μου μπορεί μπορούν μπρος μέσω  μία  μεσώ 
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να ναι νωρίς 

ξανά ξαφνικά 

ο οι όλα όλες όλη όλην όλης όλο ολόγυρα όλοι όλον ολονέν όλος ολότελα όλου όλους όλων 

όλως ολωσδιόλου όμως όποια οποιαδήποτε οποίαν οποιανδήποτε οποίας οποίος οποιασδήποτε 

οποιδήποτε 

όποιες οποιεσδήποτε όποιο οποιοδηήποτε όποιοι όποιον οποιονδήποτε όποιος οποιοσδήποτε 

οποίου οποιουδήποτε οποίους οποιουσδήποτε οποίων οποιωνδήποτε όποτε οποτεδήποτε όπου 

οπουδήποτε όπως ορισμένα ορισμένες ορισμένων ορισμένως όσα οσαδήποτε όσες οσεσδήποτε 

όση οσηδήποτε όσην οσηνδήποτε όσης οσησδήποτε όσο οσοδήποτε όσοι οσοιδήποτε όσον ο-

σονδήποτε 

όσος οσοσδήποτε όσου οσουδήποτε όσους οσουσδήποτε όσων οσωνδήποτε όταν ότι οτιδήποτε 

ότου ου ουδέ ούτε όχι οποία  οποίες  οποίο  οποίοι  οπότε  ος 

πάνω  παρά  περί  πολλά  πολλές  πολλοί  πολλούς  που  πρώτα  πρώ-

τες  πρώτη  πρώτο  πρώτος  πως 

πάλι πάντα πάντοτε παντού πάντως πάρα πέρα πέρι περίπου περισσότερο πέρσι πέρυσι πια 

πιθανόν 

πιο πίσω πλάι πλέον πλην ποιά ποιάν ποιάς ποιές ποιό ποιοί ποιόν ποιός ποιού ποιούς 

ποιών πολύ πόσες πόση πόσην πόσης πόσοι πόσος πόσους πότε ποτέ πού πούθε πουθενά πρέ-

πει 

πριν προ προκειμένου πρόκειται πρόπερσι προς προτού προχθές προχτές πρωτύτερα πώς 

σαν σας σε σεις σου στα στη στην στης στις στο στον στου στους στων συγχρόνως 

συν συνάμα συνεπώς συχνάς συχνές συχνή συχνήν συχνής συχνό συχνοί συχνόν 

συχνός συχνού συχνούς συχνών συχνώς σχεδόν 

τα τάδε ταύτα ταύτες ταύτη ταύτην ταύτης ταύτοταύτον ταύτος ταύτου ταύτων τάχα τάχατε 

τελευταία  τελευταίο  τελευταίος  τού  τρία  τρίτη  τρεις τελικά τελικώς τες τέτοια 

τέτοιαν 

τέτοιας τέτοιες τέτοιο τέτοιοι τέτοιον τέτοιος τέτοιου 

τέτοιους τέτοιων τη την της τι τίποτα τίποτε τις το τοι τον τοσ τόσα τόσες τόση τόσην 

τόσης τόσο τόσοι τόσον τόσος τόσου τόσους τόσων τότε του τουλάχιστο τουλάχιστον τους 

τούς τούτα 

τούτες τούτη τούτην τούτης τούτο τούτοι τούτοις τούτον τούτος τούτου τούτους τούτων 

τυχόν 

των τώρα 

υπ υπέρ υπό υπόψη υπόψιν ύστερα 

χωρίς χωριστά 

ω ως ωσάν ωσότου ώσπου ώστε ωστόσο ωχ 

""".split() 

) 

 

punct = string.punctuation 

 

nlp_greek = spacy.load("el_core_news_sm") 

nlp_english = spacy.load("en_core_web_sm") 

 

flag_1 = True 
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while flag_1 == True: 

    dataset_selection = int(input("Select the dataset you want to use: give 0 for the 

IMDb and 1 for the Athinorama ")) 

    if dataset_selection == 0: 

        df = pd.read_csv('/content/drive/MyDrive/Datasets/IMDb_50.000.csv') 

        model = TFBertForSequenceClassification.from_pretrained("bert-base-uncased") 

        tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") 

        flag_1 =False 

    elif dataset_selection == 1: 

        df = pd.read_csv(r'/content/drive/MyDrive/Datasets/Athinorama_50.000.csv') 

        tokenizer = AutoTokenizer.from_pretrained("nlpaueb/bert-base-greek-uncased-

v1") 

        model = TFBertForSequenceClassification.from_pretrained("nlpaueb/bert-base-

greek-uncased-v1") 

        flag_1 =False 

    else: 

        print('Wrong number') 

 

df['label'].replace({'negative':0, 'positive':1}, inplace=True) 

 

flag_2 = True 

while flag_2 == True: 

    num_of_reviews = int(input("Give the number of reviews you want to use for Senti-

ment Analysis. (The number of reviews must be even and greater than 100) ")) 

    if num_of_reviews%2==0 and num_of_reviews>=100: 

        df_0_labels = df[df['label']==0] 

        df_1_labels = df[df['label']==1] 

        df_0_sample = df_0_labels.sample(int(num_of_reviews/2)) 

        df_1_sample = df_1_labels.sample(int(num_of_reviews/2)) 

        df = df_0_sample.append(df_1_sample) 

        print(df['label'].value_counts()) 

        flag_2 = False 

    else: 

        print("Remember the number of reviews must be even and greater than 100") 

 

def text_data_cleaning(sentence): 

    if dataset_selection == 0: 

        doc = nlp_english(sentence) 

    elif dataset_selection == 1: 

        doc = nlp_greek(sentence) 

    tokens = [] 

    for token in doc: 

        if token.lemma_ !="-PRON-": 

            temp = token.lemma_.lower().strip() 

        else: 
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            temp = token.lower_ 

        tokens.append(temp) 

    cleaned_tokens = [] 

    for token in tokens: 

        if dataset_selection == 0: 

            if token not in stopwords_english and token not in punct: 

                cleaned_tokens.append(token) 

        elif dataset_selection == 1: 

            if token not in stopwords_greek and token not in punct: 

                cleaned_tokens.append(token) 

    return cleaned_tokens 

 

flag_3 = True 

while flag_3 == True: 

    preprocessing = int(input("You want preprocessing? Give 0 for No and 1 for Yes 

")) 

    if preprocessing == 1: 

        X = [] 

        counter = 0 

        for review in df['review']: 

            cleaned_review = '' 

            if counter<10: 

                print(counter,review) 

            review = text_data_cleaning(review) 

            for word in review: 

                cleaned_review += ' '+word 

            if counter<10: 

                print(counter,cleaned_review) 

                counter +=1 

            X.append(cleaned_review) 

        y = np.array(df['label']) 

        flag_3 = False 

    elif preprocessing == 0: 

        X = df['review'] 

        y = df['label'] 

        flag_3 = False 

    else: 

        print("Remember! Give True for Yes and False for No ") 

 

df_review = pd.DataFrame(X) 

df_label = pd.DataFrame(y) 

df = df_review.assign(label=df_label) 

 

df = df.rename(columns={'review': 'DATA_COLUMN', 'label': 'LABEL_COLUMN'}) 
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df_0 = df[df['LABEL_COLUMN']==0] 

df_1 = df[df['LABEL_COLUMN']==1] 

 

df_train_0 = df_0.iloc[:22500,:] 

df_train_1 = df_1.iloc[:22500,:] 

train = df_train_0.append(df_train_1) 

 

df_test_0 = df_0.iloc[22500:25000,:] 

df_test_1 = df_1.iloc[22500:25000,:] 

test = df_test_0.append(df_test_1) 

 

train = train.sample(frac=1) 

test = test.sample(frac=1) 

 

def convert_data_to_examples(train, test, DATA_COLUMN, LABEL_COLUMN): 

  train_InputExamples = train.apply(lambda x: InputExample(guid=None, # Globally 

unique ID for bookkeeping, unused in this case 

                                                          text_a = x[DATA_COLUMN], 

                                                          text_b = None, 

                                                          label = x[LABEL_COLUMN]), 

axis = 1) 

 

  test_InputExamples = test.apply(lambda x: InputExample(guid=None, # Globally unique 

ID for bookkeeping, unused in this case 

                                                          text_a = x[DATA_COLUMN], 

                                                          text_b = None, 

                                                          label = x[LABEL_COLUMN]), 

axis = 1) 

  

  return train_InputExamples, test_InputExamples 

 

  train_InputExamples, test_InputExamples = convert_data_to_examples(train, 

                                                                           test, 

                                                                           'DATA_COLU

MN', 

                                                                           'LA-

BEL_COLUMN') 

  

def convert_examples_to_tf_dataset(examples, tokenizer, max_length=128): 

    features = [] # -> will hold InputFeatures to be converted later 

 

    for e in examples: 

        # Documentation is really strong for this method, so please take a look at it  

        input_dict = tokenizer.encode_plus( 

            e.text_a, 
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            add_special_tokens=True, 

            max_length=max_length, # truncates if len(s) > max_length 

            return_token_type_ids=True, 

            return_attention_mask=True, 

            pad_to_max_length=True, # pads to the right by default # CHECK THIS for 

pad_to_max_length 

            truncation=True 

        ) 

 

        input_ids, token_type_ids, attention_mask = (input_dict["input_ids"], 

            input_dict["token_type_ids"], input_dict['attention_mask']) 

 

        features.append( 

            InputFeatures( 

                input_ids=input_ids, attention_mask=attention_mask, to-

ken_type_ids=token_type_ids, label=e.label 

            ) 

        ) 

 

    def gen(): 

        for f in features: 

            yield ( 

                { 

                    "input_ids": f.input_ids, 

                    "attention_mask": f.attention_mask, 

                    "token_type_ids": f.token_type_ids, 

                }, 

                f.label, 

            ) 

 

    return tf.data.Dataset.from_generator( 

        gen, 

        ({"input_ids": tf.int32, "attention_mask": tf.int32, "token_type_ids": 

tf.int32}, tf.int64), 

        ( 

            { 

                "input_ids": tf.TensorShape([None]), 

                "attention_mask": tf.TensorShape([None]), 

                "token_type_ids": tf.TensorShape([None]), 

            }, 

            tf.TensorShape([]), 

        ), 

    ) 

 

DATA_COLUMN = 'DATA_COLUMN' 
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LABEL_COLUMN = 'LABEL_COLUMN' 

 

train_InputExamples, test_InputExamples = convert_data_to_examples(train, test, 

DATA_COLUMN, LABEL_COLUMN) 

 

train_data = convert_examples_to_tf_dataset(list(train_InputExamples), tokenizer) 

train_data = train_data.shuffle(100).batch(32).repeat(2) 

 

test_data = convert_examples_to_tf_dataset(list(test_InputExamples), tokenizer) 

test_data = test_data.batch(32) 

 

model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, 

clipnorm=1.0), 

              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)) 

 

model.fit(train_data, epochs=1) 

 

tp = 0 

fp = 0 

tn = 0 

fn = 0 

for review, label in zip(test['DATA_COLUMN'], test['LABEL_COLUMN']): 

  tf_batch = tokenizer(review, max_length=128, padding=True, truncation=True, re-

turn_tensors='tf') 

  tf_outputs = model(tf_batch) 

  tf_predictions = tf.nn.softmax(tf_outputs[0], axis=-1) 

  pred_label = tf.argmax(tf_predictions, axis=1) 

  if pred_label == 1 and label == 1: 

    tp +=1 

  elif pred_label == 1 and label == 0: 

    fp +=1 

  elif pred_label == 0 and label == 0: 

    tn +=1 

  else: 

    fn +=1 

 

accuracy = (tp+tn)/(tp+fp+fn+tn) 

precision = tp/(tp+fp) 

recall = tp/(tp+fn) 

f1score = 2*((recall*precision)/(recall+precision)) 

print([tp,fn]) 

print([fp,tn]) 

print('Accuracy: {:.2f}%'.format(accuracy*100)) 

print('Precision: {:.2f}%'.format(precision*100)) 

print('Recall: {:.2f}%'.format(recall*100)) 
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print('F1-score: {:.2f}%'.format(f1score*100)) 
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