

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ

Διπλωματική εργασία

Βελτιστοποίηση της ευστάθειας μετά από βλάβη επιβατηγού - οχηματαγωγού πλοίου

OPTIMIZATION OF DAMAGE STABILITY OF ROPAX SHIP

Συγγραφέας:

ΑΠΟΣΤΟΛΟΣ ΣΙΦΝΑΙΟΣ

A.M.: 51116096

Επιβλέπων: Ιωάννης Τίγκας, Επίκουρος Καθηγητής

Αιγάλεω, 2022

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΤΗΣ ΕΥΣΤΑΘΕΙΑΣ ΜΕΤΑ ΑΠΟ ΒΛΑΒΗ ΕΠΙΒΑΤΗΓΟΥ – ΟΧΗΜΑΤΑΓΩΓΟΥ ΠΛΟΙΟΥ

OPTIMIZATION OF DAMAGE STABILITY OF ROPAX SHIP

ΣΥΓΓΡΑΦΕΑΣ

ΑΠΟΣΤΟΛΟΣ ΣΙΦΝΑΙΟΣ (Α.Μ.: 51116096)

ΕΠΙΒΛΕΠΩΝ

Ιωάννης Τίγκας,

Επικ. Καθηγητής ΠΑ.Δ.Α.

ΗΜΕΡΟΜΗΝΙΑ ΕΞΕΤΑΣΗΣ

27/05/2022

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ

Ιωάννης Τίγκας, Θεόδωρος Γεροστάθης, Θωμάς Μαζαράκος,
Επικ. Καθηγητής ΠΑ.Δ.Α. Αναπ. Καθηγητής ΠΑ.Δ.Α. Επικ. Καθηγητής ΠΑ.Δ.Α.

ΔΗΛΩΣΗ ΣΥΓΓΡΑΦΕΑ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ

Ο κάτωθι υπογεγραμμένος Σιφναίος Αποστόλης του Γρηγορίου, με αριθμό μητρώου 51116096 φοιτητής του Πανεπιστημίου Δυτικής Αττικής της Σχολής Μηχανικών του Τμήματος Ναυπηγών Μηχανικών, δηλώνω υπεύθυνα ότι:

«Είμαι συγγραφέας αυτής της διπλωματικής εργασίας και ότι κάθε βοήθεια την οποία είχα για την προετοιμασία της είναι πλήρως αναγνωρισμένη και αναφέρεται στην εργασία. Επίσης, οι όποιες πηγές από τις οποίες έκανα χρήση δεδομένων, ιδεών ή λέξεων, είτε ακριβώς είτε παραφρασμένες, αναφέρονται στο σύνολό τους, με πλήρη αναφορά στους συγγραφείς, τον εκδοτικό οίκο ή το περιοδικό, συμπεριλαμβανομένων και των πηγών που ενδεχομένως χρησιμοποιήθηκαν από το διαδίκτυο. Επίσης, βεβαιώνω ότι αυτή η εργασία έχει συγγραφεί από μένα αποκλειστικά και αποτελεί προϊόν πνευματικής ιδιοκτησίας τόσο δικής μου, όσο και του Ιδρύματος.

Παράβαση της ανωτέρω ακαδημαϊκής μου ευθύνης αποτελεί ουσιώδη λόγο για την ανάκληση του διπλώματός μου».

Ο Δηλών

Απόστολος Σιφναίος

ΕΥΧΑΡΙΣΤΙΕΣ

Στο σημείο αυτό θα ήθελα να ευχαριστήσω τον καθηγητή μου κύριο Ιωάννη Τίγκα που ήταν ο επιβλέπων της διπλωματικής εργασίας για την καθοδήγηση και την εποικοδομητική παρέμβασή του σε όλη τη διάρκεια της διατριβής καθώς και για τις χρήσιμες συμβουλές που μου έδινε όλον αυτό το καιρό. Ευχαριστώ επίσης την οικογένειά μου, τον αδερφό μου και τους φίλους μου για την υποστήριξη και την κατανόησή τους σε όλη τη διάρκεια της φοίτησης μου στο Τμήμα Ναυπηγών Μηχανικών του Πανεπιστημίου Δυτικής Αττικής.

ΠΕΡΙΛΗΨΗ

Σκοπός της παρούσας διπλωματικής εργασίας είναι η βελτιστοποίηση της ευστάθειας μετά από βλάβη ενός επιβατηγού οχηματαγωγού πλοίου τύπου EU ROPAX 3000 με χρήση κατάλληλου υδροστατικού προγράμματος.

Κατ' επέκταση έγινε τροποποίηση της γάστρας του πλοίου ώστε να υπάρχει βελτιστοποίηση της ευστάθειας του και της επιβιωσιμότητάς του λαμβάνοντας υπόψη διαφορετικά σενάρια κατάκλυσης. Έτσι, συγκρίνονται κρίσιμα υδροστατικά χαρακτηριστικά του πλοίου.

Για την ανάλυση της ευστάθειας μετά από βλάβη εξάγονται αποτελέσματα από το ντετερμινιστικό και το πιθανοθεωρητικό μοντέλο ανάλυσης ώστε να υπάρχει μια καλύτερη εικόνα της ανάλυσης.

Κατά την πορεία της διπλωματικής εργασίας δημιουργήθηκαν τα σχέδια γενικής διάταξης, τα damage zones και βασικά χαρακτηριστικά του πλοίου ώστε να αναλυθούν τα μοντέλα ανάλυσης.

Οι τροποποιήσεις εξετάστηκαν και με οικονομικά στοιχεία. Έτσι βρέθηκε η πιο καλή λύση για την βελτίωση της ευστάθειας μετά από βλάβη. Συνεπώς, όποια πλοία δεν ικανοποιούν τα οικονομικά κριτήρια δεν προτείνονται ως βέλτιστες σχεδιάσεις λόγω μεγάλου κόστους τροποποίησης.

Τέλος, εξετάστηκαν τροποποιημένες εσωτερικές διαμορφώσεις του πλοίου για να μελετηθούν με το πιθανοθεωρητικό μοντέλο.

Τα προγράμματα που χρησιμοποιήθηκαν είναι το Maxsurf, Rhino 3D και το Microsoft Excel Worksheet.

Λέξεις κλειδιά- : Βελτιστοποίηση, Ευστάθεια μετά από βλάβη, lightship, σχέδιο γενικής διάταξης, καμπύλη ευστάθειας, οικονομικά στοιχεία, κατάστρωμα οχημάτων

ABSTRACT

The purpose of this dissertation is to optimize the stability after damage of an EU ROPAX 3000 passenger car ferry using an appropriate hydrostatic program.

As a result, the hull of the ship was modified to optimize its stability and survival, taking into account different damage cases. This compares the crucial hydrostatic characteristics of the ship.

For the analysis of stability after damage, results are extracted from the deterministic and probabilistic analysis model so that there is a better picture of the analysis.

In the course of the dissertation, the general layout plans, the damage zones and the basic characteristics of the ship were created in order to analyze the analysis models.

The modifications were examined and with financial data so the best solution was found to improve the stability after damage. So, any ships that do not meet the economic criteria are not proposed as optimal designs due to high modification costs.

Finally, modified interior configurations of the ship were examined to be studied with the probabilistic model.

The programs used are Maxsurf, Rhino 3D and Microsoft Excel Worksheet.

Keywords: Optimization, Damage stability, lightship, layout design, stability curve, financial data, vehicle deck

ΣΤΟΧΟΙ

- Μελέτη της ευστάθειας μετά από βλάβη σε επιβατηγό οχηματαγωγό πλοίο τύπου EU ROPAX 3000.
- Αλλαγή της γάστρας του πλοίου ώστε να υπάρξει βελτιστοποίηση της ευστάθειας λαμβάνοντας σενάρια κατάκλυσης και συγκρίνοντας υδροστατικά χαρακτηριστικά.
- Βελτιστοποίηση λαμβάνοντας υπόψη το οικονομικό κομμάτι. Έτσι, όποια πλοία δεν ικανοποιούν τα οικονομικά κριτήρια δεν προτείνονται ως βέλτιστες σχεδιάσεις λόγω μεγάλου κόστους τροποποίησης.
- Βελτιστοποίηση αλλάζοντας την εσωτερική διάταξη του πλοίου με μόνιμους πλευρικούς χώρους πάνω στο κατάστρωμα οχημάτων ή χώρους στην πλώρη και στην πρύμνη του πλοίου (casings).

ΟΡΙΣΜΟΙ

- GZ: Ο μοχλοβραχίονας επαναφοράς του πλοίου μετά από κλίση (roll).
- Μετάκεντρο: Το θεωρητικό σημείο τομής της γραμμής που ενεργεί η άντωση με τον κατακόρυφο άξονα του πλοίου.
- GM: Το μετακεντρικό ύψος είναι η απόσταση από το μετάκεντρο μέχρι το κέντρο βάρους του πλοίου.
- Φmax: Γωνία απώλειας ευστάθειας είναι η γωνία στην οποία ο GZ λαμβάνει μέγιστη τιμή.
- φν: Γωνία απώλειας ευστάθειας είναι η γωνία στην οποία ο GZ μηδενίζεται.
- Heel: Εγκάρσια κλίση του πλοίου.
- Trim: Διαμήκης κλίση του πλοίου (Διαγωγή)
- Lightship: Το βάρος του πλοίου έτοιμο να ταξιδέψει χωρίς φορτίο, πλήρωμα και αναλώσιμα.
- DWT: Το νεκρό βάρος του πλοίου. Περιλαμβάνει το φορτίο, το βάρος του πληρώματος, των αναλώσιμων και των εφοδίων.
- Δ: Το εκτόπισμα είναι το βάρος του πλοίου στην κατάσταση φόρτωσης. Ισχύει $\Delta = Lightship + DWT$
- DWL: Ίσαλος σχεδίασης.
- Aft Perp.: Είναι η πρυμναία κάθετος που περνά από τον άξονα του πηδαλίου.
- **Fwd Perp.**: Είναι η πρωραία κάθετος που περνά από το σημείο τομής της DWL του πλοίου.

CONTENTS	
ΚΕΦΑΛΑΙΟ 1 : Εισαγωγή	20
1.1. ΙΣΤΟΡΙΚΗ ΑΝΑΔΡΟΜΗ ΚΑΙ ΚΑΝΟΝΙΣΜΟΙ	20
1.2. Μέθοδοι μελέτης της κατάστασης του πλοίου μετά από βλάβη	23
1.3. Η ΕΠΙΔΡΑΣΗ ΤΩΝ ΕΛΕΥΘΕΡΩΝ ΕΠΙΦΑΝΕΙΩΝ	23
1.4. ΜΕΘΟΔΟΙ ΕΚΤΙΜΗΣΗΣ ΕΥΣΤΑΘΕΙΑΣ ΚΑΤΟΠΙΝ ΒΛΑΒΗΣ	24
ΚΕΦΑΛΑΙΟ 2 : ΠΙΘΑΝΟΘΕΩΡΗΤΙΚΟ ΜΟΝΤΕΛΟ	25
2.1. Ανάλυση Πιθανοθεωρητικού Μοντέλου	25
2.2. Απαιτούμενος δείκτης υποδιαίρεσης R	27
2.3. Προσδιορισμός του αναθεωρημένου και εφαρμοστέου απαιτούμενου δείκτη υποδ για επιβατηγά πλοία (2018)	ιαίρεσης R 28
ΚΕΦΑΛΑΙΟ 3 : ΠΛΟΙΑ ΤΥΠΟΥ RO-PAX	28
3.1. ΣΥΝΤΟΜΗ ΑΝΑΦΟΡΑ	28
3.2. Ιστορική εξέλιξη	
3.3. Προβλήματα ασφάλειας των πλοίων Ro-Pax	
ΚΕΦΑΛΑΙΟ 4 : ΜΕΛΕΤΗ ΕΥΣΤΑΘΕΙΑΣ ΕU-ROPAX 3000 ΜΕΤΑ ΑΠΟ ΒΛΑΒΗ	
4.1. Σχεδίαση πλοίου	
4.1.1. Προσδιορισμός κύριων χαρακτηριστικών	
4.1.2. Γάστρα πλοίου αναφοράς	
4.1.3. Υπολογισμός υδροστατικών στοιχείων	
4.1.4. Γενική Διάταξη	
4.2 RISK CONTROL OPTIONS – ΒΕΛΤΙΩΣΗ ΕΥΣΤΑΘΕΙΑΣ	
4.2.1. ΣΕΝΑΡΙΑ ΒΛΑΒΗΣ	
4.3 ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΟ ΜΟΝΤΕΛΟ	41
4.3.1. Καταστάσεις Φόρτωσης	
4.3.2. Εναλλακτικές Σχεδιάσεις	
4.3.3. Αξιολόγηση	
4.4 ΠΙΘΑΝΟΘΕΩΡΗΤΙΚΟ ΜΟΝΤΕΛΟ	
4.4.1. Καταστάσεις Φόρτωσης	
4.4.2. Εφαρμογή Πιθανοθεωρητικού Μοντέλου	50
4.4.3. ΥΠΟΔΙΑΙΡΕΣΗ ΤΟΥ ΠΛΟΙΟΥ	50
4.4.4. Αποτελέσματα Εναλλακτικών σχεδιάσεων	51
4.5 Υπολογισμός πιθανότητας απώλειας ζωής (PLL)	54
4.6 Οικονομικά στοιχεία	55
ΚΕΦΑΛΑΙΟ 5: ΜΕΛΕΤΗ ΣΥΜΠΕΡΙΦΟΡΑΣ ΣΕ ΤΡΟΠΟΠΟΙΗΜΕΝΕΣ ΔΙΑΤΑΞΕΙΣ ΤΟΥ ΠΛΟΙΟΥ ΑΝΛ	۹ΦΟΡΑΣ 56
5.1 ΑΠΛΟΠΟΙΗΜΕΝΗ ΔΙΑΤΑΞΗ	58
5.1.1 ΑΠΛΟΠΟΙΗΜΕΝΗ ΔΙΑΤΑΞΗ ΧΩΡΙΣ CASINGS ΣΤΟ ΚΑΤΑΣΤΡΩΜΑ ΟΧΗΜΑΤΩΝ	58
5.1.1.1 ΠΕΡΙΓΡΑΦΗ	58
5.1.1.2. ΥΠΟΔΙΑΙΡΕΣΗ ΤΟΥ ΠΛΟΙΟΥ	59
5.1.1.3. ΕΦΑΡΜΟΓΗ ΠΙΘΑΝΟΘΕΩΡΗΤΙΚΟΥ ΜΟΝΤΕΛΟΥ ΤΗΣ SOLAS 2009	60

5.1.2 ΑΠΛΟΠΟΙΗΜΕΝΗ ΔΙΑΤΑΞΗ ΜΕ CASINGS ΣΤΟ ΚΑΤΑΣΤΡΩΜΑ ΟΧΗΜΑΤΩΝ	61
5.1.2.1. ΠΕΡΙΓΡΑΦΗ	61
5.1.2.2. ΥΠΟΔΙΑΙΡΕΣΗ ΤΟΥ ΠΛΟΙΟΥ	63
5.1.2.3. ΕΦΑΡΜΟΓΗ ΠΙΘΑΝΟΘΕΩΡΗΤΙΚΟΥ ΜΟΝΤΕΛΟΥ ΤΗΣ SOLAS 2009	63
5.2 ΑΠΛΟΠΟΙΗΜΕΝΗ ΔΙΑΤΑΞΗ ΓΙΑ ΜΕΓΙΣΤΗ ΤΡΟΠΟΠΟΙΗΣΗ ΠΛΑΤΟΥΣ	64
5.2.1 ΑΠΛΟΠΟΙΗΜΕΝΗ ΔΙΑΤΑΞΗ ΧΩΡΙΣ CASINGS ΣΤΟ ΚΑΤΑΣΤΡΩΜΑ ΟΧΗΜΑΤΩΝ	64
5.2.1.1. ПЕРІГРАФН	64
5.2.1.2 . ΥΠΟΔΙΑΙΡΕΣΗ ΤΟΥ ΠΛΟΙΟΥ	65
5.2.1.3. ΕΦΑΡΜΟΓΗ ΠΙΘΑΝΟΘΕΩΡΗΤΙΚΟΥ ΜΟΝΤΕΛΟΥ ΤΗΣ SOLAS 2009	65
5.2.2. ΑΠΛΟΠΟΙΗΜΕΝΗ ΔΙΑΤΑΞΗ ΜΕ CASINGS ΣΤΟ ΚΑΤΑΣΤΡΩΜΑ ΟΧΗΜΑΤΩΝ	66
5.2.2.1. ПЕРІГРАФН	66
5.2.2.2. ΥΠΟΔΙΑΙΡΕΣΗ ΤΟΥ ΠΛΟΙΟΥ	67
5.2.2.3 . ΕΦΑΡΜΟΓΗ ΠΙΘΑΝΟΘΕΩΡΗΤΙΚΟΥ ΜΟΝΤΕΛΟΥ ΤΗΣ SOLAS 2009	67
5.3. ΔΙΑΤΑΞΗ ME SIDE CASINGS	68
5.3.1. ПЕРІГРАФН	68
5.3.2. ΥΠΟΔΙΑΙΡΕΣΗ ΤΟΥ ΠΛΟΙΟΥ	70
5.3.3. ΕΦΑΡΜΟΓΗ ΠΙΘΑΝΟΘΕΩΡΗΤΙΚΟΥ ΜΟΝΤΕΛΟΥ ΤΗΣ SOLAS 2009	71
5.4. ΣΥΓΚΡΙΣΗ ΤΡΟΠΟΠΟΙΗΜΕΝΩΝ ΔΙΑΤΑΞΕΩΝ	74
ΚΕΦΑΛΑΙΟ 6: ΜΕΛΕΤΗ ΕΠΙΡΡΟΗΣ ΤΩΝ CROSS FLOODING PIPES ΣΤΗΝ ΕΓΚΑΡΣΙΑ ΚΛΙΣΗ ΤΟΥ ΠΛΟΙΟ)Y.76
6.1 Σύγκριση καμπύλης ευστάθειας μεταξύ ROPAX 1 – ROPAX 16	78
ΚΕΦΑΛΑΙΟ 7 : ΑΝΑΚΕΦΑΛΑΙΩΣΗ / ΣΥΜΠΕΡΑΣΜΑΤΑ. ΠΡΟΤΑΣΕΙΣ ΓΙΑ ΕΡΕΥΝΑ	79
Bibliography	82
ΠΑΡΑΡΤΗΜΑ	83
ΠΑΡΑΡΤΗΜΑ Α: ΣΤΟΙΧΕΙΑ ΚΡΙΤΗΡΙΩΝ SOLAS ΓΙΑ ΤΟ ΠΛΟΙΟ ΑΝΑΦΟΡΑΣ	83
ΠΑΡΑΡΤΗΜΑ Β: Intact Stability πλοίου αναφοράς	87
ΠΑΡΑΡΤΗΜΑ Γ: Ντετερμινιστικός έλεγχος Κριτηρίων ROPAX 1	90
ΠΑΡΑΡΤΗΜΑ Δ: ΣΤΟΙΧΕΙΑ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΧΕΔΙΑΣΕΩΝ	96
ROPAX 2	96
ROPAX 3	99
ROPAX 4	102
ROPAX 5	105
ROPAX 6	108
ROPAX 7	111
ROPAX 8	114
ROPAX 9	117
ROPAX 10	120

ΠΕΡΙΕΧΟΜΕΝΑ ΠΙΝΑΚΩΝ

Πίνακας 1: Ιστορική αναφορά κανονισμών	21
Πίνακας 2: Διάσταση Βλάβης (Vasileiou, 2019, p. 25)	22
Πίνακας 3: Διαχωρητότητα (Vasileiou, 2019, p. 26)	22
Πίνακας 4: Ατυχήματα πλοίων ROPAX (Κανελοπούλου, 2013, p. 40)	23
Πίνακας 5: Διαφορές Μεθόδων εκτίμησης ευστάθειας κατόπιν βλάβης (Κανελοπούλου, 2013, 47-48)	рр. 24
Πίνακας 6: Regulation 6 - Required subdivision index R (Ιωάννης Τίγκας (PhD, 2021)	28
Πίνακας 7: Κύρια χαρακτηριστικά πλοίου αναφοράς	33
Πίνακας 8: Υδροστατικός πίνακας πλοίου αναφοράς	36
Πίνακας 9: Διαμερίσματα του πλοίου αναφοράς EU ROPAX 3000_1	38
Πίνακας 10: Risk Control Options	40
Πίνακας 11: Κατάσταση Φόρτωσης για Full Departure	42
Πίνακας 12: Κατάσταση Φόρτωσης για 50% Departure	43
Πίνακας 13: Κατάσταση Φόρτωσης για 10% Arrival	44
Πίνακας 14: Βασικά στοιχεία της κατάστασης αναχώρησης με 100% αναλώσιμα για Damage 2	44
Πίνακας 15: Κατάσταση Φόρτωσης για το Deepest Subdivision Draught (ds)	48
Πίνακας 16: Κατάσταση Φόρτωσης για το Partial Subdivision Draught (dp)	49
Πίνακας 17: Κατάσταση Φόρτωσης για το Lightest Subdivision Draught (dl)	50
Πίνακας 18: Ζώνες Υποδιαίρεσης του πλοίου αναφοράς	51
Πίνακας 19: Α – Index για το πλοίο ROPAX 1	52
Πίνακας 20: Α - Index για τις εναλλακτικές σχεδιάσεις	52
Πίνακας 21: Παράγοντες που επηρεάζουν το PLL (Roussou, 2015, p. 40)	54
Πίνακας 22: Οικονομικά στοιχεία για όλες τις εναλλακτικές σχεδιάσεις	55
Πίνακας 23: Διαμερίσματα του πλοίου ROPAX 11	59
Πίνακας 24: Ζώνες Υποδιαίρεσης του πλοίου ROPAX 11	59
Πίνακας 25: Α – Index (SOLAS 2009) για το πλοίο ROPAX 11	60
Πίνακας 26: Διαμερίσματα του πλοίου ROPAX 12	62
Πίνακας 27: Α – Index για το πλοίο ROPAX 12	64
Πίνακας 28: Διαμερίσματα του πλοίου ROPAX 13	64
Πίνακας 29: Ζώνες Υποδιαίρεσης (Damage Zones) του πλοίου ROPAX 13	65
Πίνακας 30: Α – Index (SOLAS 2009) για το πλοίο ROPAX 13	66
Πίνακας 31: Α – Index (SOLAS 2009) για το πλοίο ROPAX 14	68
Πίνακας 32: Διαμερίσματα του πλοίου ROPAX 15	69
Πίνακας 33: Ζώνες Υποδιαίρεσης (Damage Zones) του πλοίου ROPAX 15	70
Πίνακας 34: Κατάσταση Φόρτωσης για το Deepest Subdivision Draught (ds)	72
Πίνακας 35: Κατάσταση Φόρτωσης για το Partial Subdivision Draught (dp)	72
Πίνακας 36: Κατάσταση Φόρτωσης για το Lightest Subdivision Draught (dl)	73
Πίνακας 37: Α – Index (SOLAS 2009) για το πλοίο ROPAX 15	74
Πίνακας 38: Α – Index (SOLAS 2009) για όλες τις τροποποιήσεις στη διάταξη	74

Πίνακας 39: Διαμερίσματα που επικοινωνούν CFP76
Πίνακας 40: Αποτελέσματα με CFP για το πλοίο ROPAX 1677
Πίνακας 41: Criteria_ ROPAX 1679
Πίνακας 42: Ντετεμινιστικά Κριτήρια για Load case (100%), Damage 190
Πίνακας 43: Ντετεμινιστικά Κριτήρια για Load case (50%), Damage 191
Πίνακας 44: Ντετεμινιστικά Κριτήρια για Load case (10%), Damage 192
Πίνακας 45: Ντετεμινιστικά Κριτήρια για Load case (100%), Damage 293
Πίνακας 46: Ντετεμινιστικά Κριτήρια για Load case (50%), Damage 294
Πίνακας 47: Ντετεμινιστικά Κριτήρια για Load case (10%), Damage 295
Πίνακας 48: Υδροστατικά ROPAX 296
Πίνακας 49: Probabilistic Damage calculation - ROPAX 298
Πίνακας 50: Υδροστατικά ROPAX 399
Πίνακας 51: Probabilistic Damage calculation - ROPAX_3101
Πίνακας 52: Υδροστατικά ROPAX 4102
Πίνακας 53: Probabilistic Damage calculation - ROPAX_4104
Πίνακας 54: Υδροστατικά ROPAX 5105
Πίνακας 55: Probabilistic Damage calculation - ROPAX_5107
Πίνακας 56: Υδροστατικά ROPAX 6108
Πίνακας 57: Probabilistic Damage calculation - ROPAX _ 6110
Πίνακας 58: Υδροστατικά ROPAX 7111
Πίνακας 59: Probabilistic Damage calculation - ROPAX _ 7113
Πίνακας 60: Υδροστατικά ROPAX 8114
Πίνακας 61: Probabilistic Damage calculation - ROPAX _ 8116
Πίνακας 62: Υδροστατικά ROPAX 9117
Πίνακας 63: Probabilistic Damage calculation - ROPAX _ 9119
Πίνακας 64: Υδροστατικά ROPAX 10120
Πίνακας 65: Probabilistic Damage calculation - ROPAX _ 10122

ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΚΟΝΩΝ

Εικόνα 1: Απεικόνιση των υδατοστεγών φρακτών του Τιτανικός (Τζαμπίρας, 2015)	20
Εικόνα 2: Estonia damage (Τζαμπίρας, 2015)	22
Εικόνα 3: Ελεύθερες Επιφάνειες (pocketing) (Σπύρου, 2015)	24
Εικόνα 4: Ναυτικά ατυχήματα και αρχικό συμβάν (Επιτρωπή διερευνήσεων, 2019)	25
Εικόνα 5: Παράγοντες που επηρεάζουν την ασφάλεια του πλοίου (Roussou, 2015, p. 18)	27
Εικόνα 6: Πλοίο Ro-Pax χωρητικότητας 63.600 κόρων (Stena Hollandica) (Roussou, 2015, p. 3)	29
Εικόνα 7: Μέσα φορτοεκφόρτωσης οχημάτων Ro – Pax (Roussou, 2015, p. 4)	29
Εικόνα 8: Ε/Γ – Ο/Γ πλοίο καταμαράν με ταχύτητα 40 κόμβους (Roussou, 2015, p. 5)	30
Εικόνα 9: Διάταξη καταστρωμάτων Ro – Pax (Roussou, 2015, p. 6)	31
Εικόνα 10: Aft Perp και το Fwd Perp και το DWL στο maxsurf	34
Εικόνα 11: Stations	34
Εικόνα 12: Γάστρα του πλοίου αναφοράς EU – ROPAX 3000_1	35
Εικόνα 13: Γάστρα του πλοίου αναφοράς διαμόρφωση πρύμνης	35
Εικόνα 14: Resistance – Perspective 3D modeler	35
Εικόνα 15: Σχέδιο Γενικής Διάταξης του πλοίο αναφοράς EU ROPAX 300	39
Εικόνα 16: Σενάριο βλάβης 1 (Damage Case 1)	41
Εικόνα 17: Σενάριο βλάβης 2 (Damage Case 2)	41
Εικόνα 18: Καμπύλη GZ για ROPAX 1 και για ROPAX 7 (Damage 2)	46
Εικόνα 19: Καμπύλη GZ για ROPAX 1 και για ROPAX 7 (Damage 1)	47
Εικόνα 20: Απεικόνιση των Damage Zones για το πλοίο αναφοράς	51
Εικόνα 21: Τροποποιημένες Διατάξεις (Τζαμπίρας, 2015)	58
Εικόνα 22: Σχέδιο Γενικής Διάταξης του πλοίου ROPAX 11	59
Εικόνα 23: Απεικόνιση των Damage Zones για το πλοίο ROPAX 11	60
Εικόνα 24: Τρίγωνα πιθανοτήτων κατάκλυσης του ROPAX 11 για τη SOLAS 2009	60
Εικόνα 25: Σχέδιο Γενικής Διάταξης του πλοίου ROPAX 12	63
Εικόνα 26: Απεικόνιση των Damage Zones για το πλοίο ROPAX 12	63
Εικόνα 27: Σχέδιο Γενικής Διάταξης του πλοίου ROPAX 13	65
Εικόνα 28: Απεικόνιση των Damage Zones για το πλοίο ROPAX 13	65
Εικόνα 29: Σχέδιο Γενικής Διάταξης του πλοίου ROPAX 14	67
Εικόνα 30: Απεικόνιση των Damage Zones για το πλοίο ROPAX 14	67
Εικόνα 31: Τρίγωνα πιθανοτήτων κατάκλυσης του ROPAX 14 για τη SOLAS 2009	68
Εικόνα 32: Σχέδιο Γενικής Διάταξης του πλοίου ROPAX 15	70
Εικόνα 33: Απεικόνιση των Damage Zones για το πλοίο ROPAX 15	71
Εικόνα 34: Σχέδιο Διάταξης που επικοινωνούν τα διαμερίσματα για το πλοίο ROPAX 16	76
Εικόνα 35: Κατάσταση Ισορροπίας του πλοίου ROPAX 16	77
Εικόνα 36: Stability calculation - ROPAX 1	78
Εικόνα 37: Stability calculation - ROPAX 16	78
Εικόνα 38: Area 30 to 40	83
Εικόνα 39: Max GZ at 30 or greater	83

Εικόνα 40: 8.2.3.1: Range of residual positive stability83
Εικόνα 41: Maximum residual GZ84
Εικόνα 42: 8.6.2: Heel angle
Εικόνα 43: Wind
Εικόνα 44: Turning
Εικόνα 45: Pax crowding
Εικόνα 46: Required and Value GM85
Εικόνα 47: 1.6: Maximum residual GZ86
Εικόνα 48: Intact Stability – 100% Departure
Εικόνα 49: Intact Stability - Summer Arrival Partial88
Εικόνα 50: Intact Stability - Ballast Arrival Lightest89
Εικόνα 51: Stability Calculation, Load case (100%), Damage 190
Εικόνα 52: Stability Calculation, Load case (50%), Damage 191
Εικόνα 53: Stability Calculation, Load case (10%), Damage 192
Εικόνα 54: Stability Calculation, Load case (100%), Damage 293
Εικόνα 55: Stability Calculation, Load case (50%), Damage 294
Εικόνα 56: Stability Calculation, Load case (10%), Damage 295
Εικόνα 57: Χαρακτηριστικά ROPAX 296
Εικόνα 58: Χαρακτηριστικά ROPAX 399
Εικόνα 59: Χαρακτηριστικά ROPAX 4102
Εικόνα 60: Χαρακτηριστικά ROPAX 5105
Εικόνα 61: Χαρακτηριστικά ROPAX 6108
Εικόνα 62: Χαρακτηριστικά ROPAX 7111
Εικόνα 63: Χαρακτηριστικά ROPAX 8114
Εικόνα 64: Χαρακτηριστικά ROPAX 9117
Εικόνα 65: Χαρακτηριστικά ROPAX 10120

ΠΕΡΙΕΧΟΜΕΝΑ ΔΙΑΓΡΑΜΜΑΤΩΝ

Διαγραμμα 1: Υδροστατικό διάγραμμα πλοίου αναφορά	37
Διαγραμμα 2: Σύγκριση GM των εναλλακτικών σχεδιάσεων	45
Διαγραμμα 3: Σύγκριση GZ max των εναλλακτικών σχεδιάσεων	45
Διαγραμμα 4: GZ max - Β	
Διάγραμμα 5: A–Index - GMs	53
Διάγραμμα 6: Α – Index για εναλλακτικές σχεδιάσεις	53
Διάγραμμα 7: GCAF (m\$) vs PLL για εναλλακτικές σχεδιάσεις	56
Διάγραμμα 8: Α – Index για τις τροποποιημένες εσωτερικές διατάξεις	75
Διάγραμμα 9: Α – Index (SOLAS 2009) για εναλλακτικές σχεδιάσεις	80
Διάγραμμα 10: Τρίγωνα κατάκλυσης ROPAX 2	97
Διάγραμμα 11: Τρίγωνα κατάκλυσης ROPAX 3	100
Διάγραμμα 12: Τρίγωνα κατάκλυσης ROPAX 4	103
Διάγραμμα 13: Τρίγωνα κατάκλυσης ROPAX 5	106
Διάγραμμα 14: Τρίγωνα κατάκλυσης ROPAX 6	109
Διάγραμμα 15: Τρίγωνα κατάκλυσης ROPAX 7	112
Διάγραμμα 16: Τρίγωνα κατάκλυσης ROPAX 8	115
Διάγραμμα 17: Τρίγωνα κατάκλυσης ROPAX 9	118
Διάγραμμα 18: Τρίγωνα κατάκλυσης ROPAX 10	121

κεφαλαίο 1: εισαγωγή

Η κατάκλυση του εσωτερικού χώρου ενός πλοίου μετά από βλάβη έχει σοβαρές συνέπειες στην ευστάθεια του. Γι΄αυτό το λόγο η επιτυχημένη μελέτη και σχεδίαση πρέπει, εκτός της άθικτης κατάστασης, να προσφέρει ικανοποιητική ασφάλεια κατόπιν βλάβης ώστε να μειώνεται ο κίνδυνος ανατροπής ή βύθισης του. Γι΄αυτό υπάρχουν πολλοί κανονισμοί και κανόνες που εφαρμόζονται για την διαφύλαξη της ανθρώπινης ζωής. Μετά από κάποιο ναυτικό ατύχημα υπάρχει μια αύξηση της ασφάλειας και λόγω της εξέλιξης της τεχνολογίας αυτό οδηγεί στο να θεσμοθετούνται αυστηρότεροι κανονισμοί.

1.1. ΙΣΤΟΡΙΚΗ ΑΝΑΔΡΟΜΗ ΚΑΙ ΚΑΝΟΝΙΣΜΟΙ

Η υδατοστεγής υποδιαίρεση εξετάζεται για πρώτη φορά την διακαετία του 1830.

Μία σειρά ατυχημάτων (120 χαλύβδινα ατμόπλοια την περίοδο 1881 – 1883) οδήγησαν στους πρώτους κανόνες για το επιτρεπόμενο ύψος εξάλων και στη πρώτη εκδοχή του κανονισμού Γραμμή Φόρτωσης.

Σημαντική έρευνα της επίδρασης των ελεύθερων επιφανειών διεξήχθη από τον καθηγητή Jenkins στο Πανεπιστήμιο της Γλασκώβης το 1889. (Σπύρου, 2015)

Μετά τη βύθιση του Τιτανικού το 1912, η νομοθεσία απαιτούσε κοινή δράση και το πρώτο συνέδριο για την ασφάλεια της ανθρώπινης ζωής στη θάλασσα, γνωστό ως SOLAS (Ασφάλεια της Ζωής στη Θάλασσα), πραγματοποιήθηκε το 1914.

Εικόνα 1: Απεικόνιση των υδατοστεγών φρακτών του Τιτανικός (Τζαμπίρας, 2015)

Το 1948 ιδρύθηκε με την αρχική ονομασία IMCO (Διακυβερνητικός Ναυτιλιακός Συμβουλευτικός Οργανισμός). Αργότερα μετονομάστηκε σε Διεθνή Ναυτιλιακό Οργανισμό (IMO).

Η ιδέα των πιθανοτικών μεθόδων προτάθηκε για πρώτη φορά από τον Γερμανό καθηγητή Kurt Wendell το 1960 και έχει αποτελέσει αντικείμενο εικασιών. Οι Comstock & Robertson (1961), ο Volkov (1963), Wendel (1968) επεξεργάστηκαν και ανέπτυξαν περαιτέρω την αρχική ιδέα αφού συνέλεξαν ορισμένα στατιστικά στοιχεία που σχετίζονται με ατυχήματα.

Λίγα χρόνια αργότερα, οι κανονισμοί γνωστοί ως οι «ισοδύναμοι κανονισμοί υποδιαίρεσης και ευστάθειας» [IMO (1974)] εγκρίθηκαν επίσημα ως εναλλακτική μεθοδολογία της ευστάθειας μετά απο βλάβη.

Το 1990 νέα αυστηρότερα κριτήρια περιλαμβάνονται στη SOLAS 1974 (SOLAS 1990).

Η ανατροπή του επιβατηγού – οχηματαγωγού πλοίου Estonia, το 1994. Η επιτροπή του ΙΜΟ πρότεινε μία σειρά από νέους κανονισμούς οι οποίοι περιέχουν επιβίωση του πλοίου με την ύπαρξη μίας ορισμένης ποσότητας νερού στο κατάστρωμα οχημάτων. Το 1996 στη Στοκχόλμη έγινε αποδεκτή από επτά χώρες ΒΔ Ευρώπης.

Το 2000 η βύθιση του ελληνικού επιβατηγού – οχηματαγωγού πλοίου Express Samina που ουσιαστικά θέτει την συνθήκη στη Στοκχόλμη στις υπόλοιπες θαλάσσιες περιοχές στα ύδατα της Ευραωπαικής Ένωσης.

2000 – 2004 Συμπεριλήφθηκαν εκτιμήσεις εναλλακτικών τρόπων υπολογισμού ευστάθειας μετά από βλάβη με βάση το πιθανοθεωρητικό μοντέλο.

Παρακάτω αναφέρεται μια ιστορική αναφορά σε διάφορους ντετερμινιστικούς κανονισμούς της SOLAS.

1914 – SOLAS Στεγανή Υποδιαίρεση

 Προσδιορίζει την τιμή του συντελεστή υποδιαίρεσης F. Πολλαπλασιάζοντας τον συντελεστή υποδιαίρεσης με το μήκος κατάκλυσης, παίρνουμε το επιτρεπόμενο μήκος του διαμερίσματος.

1929 – 2η συνδιάσκεψη SOLAS Οι πρώτοι διεθνείς κανονισμοί που αφορούν τη στεγανή υποδιαίρεση ενός πλοίου.

- Το F 1.0 0.5 χαρακτηρίζεται από ένα "one compartment standard" που μπορεί να αντέξει κατάκλυση σε ένα στεγανό διαμέρισμα.
- "two compartment standard" μεταξύ 0,33 0,5 μπορεί να αντέξει κατάκλυση έως και δύο διαδοχικά διαμερίσματα.
 - Μεταξύ 0,33 0.25 είναι "three compartment standard"

SOLAS 90

Διάσταση βλάβης

Διαχωρητότητες (ποσοστά κατά τα οποία μπορεί να γεμίσει νερό ο χώρος).

Ντετερμινιστικά κριτήρια που αφορούν το GZ.

Τελική γωνία κλίσης όχι μεγαλύτερη από 7°, ή 15°.

Τελικό μετακεντρικό ύψος τουλάχιστον 0,05 m.

η μέγιστη γωνία τελικής ισορροπίας είναι 7° για ένα διαμέρισμα κατάκλυσης.

Η μέγιστη γωνία τελικής ισορροπίας για δύο διαμερίσματα που εισέρχονται στο νερό είναι 12°.

Η επιφάνεια κάτω από το μοχλοβραχίονα επαναφοράς τουλάχιστον 0,015 m rad.

Η μέγιστη τιμή του μοχλοβραχίονα δεν πρέπει να είναι μικρότερη από 0,1 m.

Πρέπει να είναι τουλάχιστον 0,04 m μεγαλύτερο από τον μοχλοβραχίονα και μεγαλύτερο από τις ακόλουθες ροπές:

1. Καθώς ο επιβάτης μετακινείται προς τη μία πλευρά.

2. Καθώς εκτοξεύτηκε σωσίβια λέμβος.

3. Λόγω του ανέμου.

1994: Estonia Κανονισμός ο οποίος λαμβάνει ποσότητα νερού στο κατάστρωμα οχημάτων.

Πίνακας 1: Ιστορική αναφορά κανονισμών

Στον παρακάτω πίνακα βλέπουμε την προτεινόμενη έκταση βλάβης που πρέπει να εξετάζεται το πλοίο με βάση το ντετερμινιστικό μοντέλο.

Επίπεδο Αναφοράς	Διάσταση Βλάβης
Διαμήκης Έκταση	min{0.03L+3[m]/11[m]}
Εγκάρσια Έκταση	B/5[m] από το εξωτερικό περίβλημα
Κατακόρυφη Έκταση	Από τη βασική γραμμή αναφοράς (BL) προς τα πάνω χωρίς περιορισμό

Πίνακας 2: Διάσταση Βλάβης (Vasileiou, 2019, p. 25)

Στον πίνακα βλέπουμε τα ποσοστά διαχωρητότητας που ορίζει η SOLAS.

Χώροι	Διαχωρητότητα
Φορτίο, γαιάνθρακες, αποθήκη	0.6
Ενδιαίτηση	0.95
Μηχανές	0.85
Υγρά	0 ή 0.95 [το αυστηρότερο]

Πίνακας 3: Διαχωρητότητα (Vasileiou, 2019, p. 26)

Στην εικόνα παρουσιάζεται η περίπτωση βλάβης του πλοίου Estonia.

Εικόνα 2: Estonia damage (Τζαμπίρας, 2015)

Τα ατυχήματα που έχουν συμβεί σε επιβατηγά οχηματαγωγά πλοία είναι αρκετά και σε πολλές περιπτώσεις έχουν χάσει την ζωή τους πολλοί άνθρωποι και για αυτό το λόγο υπάρχουν αυστηροί κανονισμοί που έχουν να κάνουν με την ασφάλεια των πλοίων. Από την προμελέτη του πλοίου γίνεται μια ανάλυση της ευστάθειας μετά από βλάβη στην οποία γίνεται μελέτη της κατασκευής του πλοίου.

Παρακάτω αναφέρονται μερικά ατυχήματα με τον αριθμό των απωλειών και το είδος του ατυχήματος.

A/A	Όνομα Πλοίου	Αρ. Απωλειών	Έτος	Είδος ναυτικού ατυχήματος
1	Ηράκλειον	217	1966	Εισροή υδάτων – Βύθιση
1	Χρυσή Αυγή	28	1983	Μετατόπιση Φορτίου - Έκρηξη - Βύθιση
3	Jubiter	4	1988	Σύγκρουση - Βύθιση
4	Express Samina	81	2000	Πρόσκρουση - Βύθιση
5	Sea Diamond	2	2007	Προσάραξη - Βύθιση
	Σύνολο	332		

Πίνακας 4: Ατυχήματα πλοίων ROPAX (Κανελοπούλου, 2013, p. 40)

1.2. ΜΕΘΟΔΟΙ ΜΕΛΕΤΗΣ ΤΗΣ ΚΑΤΑΣΤΑΣΗΣ ΤΟΥ ΠΛΟΙΟΥ ΜΕΤΑ ΑΠΟ ΒΛΑΒΗ

Μέθοδος 1η , της χαμένης άντωσης:

- Το διαμέρισμα που έχει κατακλυσθεί δεν παρέχει άντωση
- Το νέρο εντός του διαμερίσματος ασκεί πιέσεις ίσες και αντίθετες με το νερό που είναι έξω από το διαμέρισμα.
- Η δύναμη άντωσης ακυρώνεται από τη δύναμη του βάρους του νερού
- Ο όγκος του διαμερίσματος δεν «ανήκει» στο πλοίο
- Το πλοίο θα πρέπει να αλλάξει θέση έτσι ώστε να υπάρξει νέα θέση ισορροπίας
- Σταθερό το εκτόπισμα και το KG του πλοίου.
- Δεν υπάρχει επίδραση ελευθέρων επιφανειών

Μέθοδος 2η, του πρόσθετου βάρους:

- Το νερό που εισέρχεται στο διαμέρισμα «ανήκει» στο πλοίο, οπότε η μάζα του (βάρος) θα προστεθεί στο εκτόπισμα του.
- Το νέο κέντρο βάρους προκύπτει από τις ροπές του άθικου πλοίου και του νερού κατάκλυσης
- Υφίσταται η επίδραση των ελευθέρων επιφανειών

1.3. Η ΕΠΙΔΡΑΣΗ ΤΩΝ ΕΛΕΥΘΕΡΩΝ ΕΠΙΦΑΝΕΙΩΝ

Από τη σκοπιά της μεθόδου πρόσθετου βάρους, διερευνάται το πρόβλημα της ευστάθειας του πλοίου και είναι πολύ σημαντικό να κατανοήσουμε την επίδραση της ελεύθερης επιφάνειας. Όταν μια δεξαμενή κάποιου υγρού δεν είναι γεμάτη τότε δημιουργείται ελεύθερη επιφάνεια, η οποία λαμβάνει ίδια κλίση με το πλοίο. Το αποτέλεσμα αυτού είναι η ακούσια μεταφορά βάρους, η οποία μειώνει την ευστάθεια του πλοίου. Σε περιπτώσεις όπου το υγρό μέσα σε ένα πλοίο βρίσκεται σε άμεση επικοινωνία με το θαλάσσιο περιβάλλον, όπως στην περίπτωση των κατακλύσεων, το ιδιαίτερο φαινόμενο του όρου είναι ότι ο όγκος του νερού μέσα στο πλοίο ποικίλλει με βάση τη διαμήκη, εγκάρσια κλίση, τον χρόνο της έναρξης της κατάκλυσης και του μεγέθους του ανοίγματος.

Η επίδραση των ελεύθερων επιφανειών στη ευστάθεια του πλοίου είναι ένα σύγχρονο ζήτημα. Πιο σημαντική έρευνα διεξήχθη από τον καθηγητή Jenkins στο Πανεπιστήμιο της Γλασκώβης, ο οποίος το 1889 καθιέρωσε την τότε διάσημη σχέση: (Σπύρου, 2015)

$$GM_v = GM - \frac{\gamma_F I_F}{\Delta}$$

Αυτό σημαίνει ότι δεν υπάρχει κάποια σχέση μεταξύ των ελεύθερων επιφανειών και της ποσότητας του νερού και μπορεί να εκφραστεί ως μείωση στο αρχικό μετακεντρικό ύψος GM (γF είναι το ειδικό

βάρος του υγρού και το IF η δεύτερη επιφανειακή ροπή, Δ είναι το εκτόπισμα λόγω του ρευστού, η μετατόπιση του πλοίου και GMv Πρόσφατα χαμηλωμένο μετακεντρικού ύψους). (Σπύρου, 2015)

Υπάρχουν ορισμένοι παράγοντες για την επίδραση μιας ελεύθερης επιφάνειας. Αρχικά, όταν η επιφάνεια του ρευστού τέμνει τον πυθμένα ή την κορυφή της κλειστής δεξαμενής, το πλάτος της ελεύθερης επιφάνειας μειώνεται, μετριάζοντας την επίδρασή της στη ευστάθεια του πλοίου. Αυτό το φαινόμενο ονομάζεται «pocketing» και απεικονίζεται στην εικόνα 3.

Εικόνα 3: Ελεύθερες Επιφάνειες (pocketing) (Σπύρου, 2015)

Κάτι ακόμα που μπορεί να επηρεάσει τη ροπή ελεύθερης επιφάνειας είναι η επιφανειακή διαπερατότητα του ρευστού και η επαγόμενη μείωση της ευστάθειάς του. Ένα μέτρο για την αντιμετώπιση των δυσμενών επιπτώσεων των ελεύθερων επιφανειών είναι η κατασκευή διαμήκους και εγκάρσιων φραχτών.

Αυτό έφερε νέες απαιτήσεις στους κανονισμούς της SOLAS που επηρέασαν στη σχεδίαση των πλοίων Ε/Γ και Ε/Γ – Ο/Γ.

1.4. ΜΕΘΟΔΟΙ ΕΚΤΙΜΗΣΗΣ ΕΥΣΤΑΘΕΙΑΣ ΚΑΤΟΠΙΝ ΒΛΑΒΗΣ

Η εισαγωγή των νέων απαιτήσεων έχει επηρεάσει τα χαρακτηριστικά των πλοίων Ε/Γ και Ε/Γ – Ο/Γ.

Οι κανονισμοί ευστάθειας πλοίων κατόπιν βλάβης εντάσσονται σε δύο βασικούς τύπους: την προσδιοριστική προσέγγιση και την πιθανοθεωρητική. Οι δύο μέθοδοι παρουσιάζουν αρκετές διαφορές μεταξύ τους, τόσο στο θεωρητικό υπόβαθρο, όσο και στη διαδικασία εφαρμογής, μερικές από τις οποίες συνοψίζονται στη συνέχεια.

ΠΙΘΑΝΟΘΕΩΡΙΤΙΚΗ ΜΕΘΟΔΟΣ	ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΗ ΜΕΘΟΔΟΣ
Επιστημονική προσέγγιση	Ημιεμπειρική βάση
Βλάβη και σε σημαντικά μεγαλύτερη έκταση	Περιπτώσεις βλάβης μέσα στα προβλεπόμενα
	όρια
Είναι δυνατόν να υπάρχουν συνδυασμοί	Δυσμενέστερη αρχική κατάσταση πλεύσης και
αρχικής κατάστασης και περίπτωσης βλάβης	περίπτωσης βλάβης
Οδηγεί σε πλοία με συνολικά αναβαθμισμένο	Η προσοχή του μελετητή κατευθύνεται κυρίως
επίπεδο ασφαλείας.	σε συγκεκριμένες περιοχές του πλοίου
Μπορούν να προκύψουν μεμονωμένες	Εξασφαλίζεται ότι και στη δυσμενέστερη
περιπτώσεις βλάβης με μειωμένη	περίπτωση βλάβης το πλοίο θα έχει τη
επιβιωσιμότητα, εξυπηρετούνται άλλες	δυνατότητα να επιβιώσει
απαιτήσεις του πλοίου	
Διερεύνηση πολλών εκατοντάδων περιπτώσεων	Προβλεπόμενος αριθμός περιπτώσεων βλάβης
βλάβης, η εφαρμογή ιδιαίτερα επίπονη ακόμη	ακόμα και για μεγάλα Ε/Γ – Ο/Γ
και για μεσαίου μεγέθους πλοία	

Πίνακας 5: Διαφορές Μεθόδων εκτίμησης ευστάθειας κατόπιν βλάβης (Κανελοπούλου, 2013, pp. 47-48)

Στις παραπάνω παραγράφους παρατίθενται ορισμένα στοιχεία για την προσδιοριστική μέθοδο που εφαρμόστηκαν στην παρούσα διπλωματική.

ΚΕΦΑΛΑΙΟ 2: ΠΙΘΑΝΟΘΕΩΡΗΤΙΚΟ ΜΟΝΤΕΛΟ

2.1. ΑΝΑΛΥΣΗ ΠΙΘΑΝΟΘΕΩΡΗΤΙΚΟΥ ΜΟΝΤΕΛΟΥ

Η ιδέα των πιθανοτικών μεθόδων προτάθηκε για πρώτη φορά από τον Γερμανό καθηγητή Kurt Wendell το 1960 και έχει αποτελέσει αντικείμενο εικασιών. Οι Comstock & Robertson (1961), ο Volkov (1963), Wendel (1968) επεξεργάστηκαν και ανέπτυξαν περαιτέρω την αρχική ιδέα αφού συνέλεξαν ορισμένα στατιστικά στοιχεία που σχετίζονται με ατυχήματα. Λίγα χρόνια αργότερα, οι «ισοδύναμες διατάξεις υποδιαίρεσης και ευστάθειας» για τα επιβατηγά πλοία [IMO (1974)] (Ψήφισμα Συνέλευσης Α.265) εγκρίθηκαν επίσημα ως εναλλακτική της προσέγγισης που ορίζει η SOLAS. (Roussou, 2015)

Οι υπολογισμοί δεν έλαβαν υπόψιν όλες τις πιθανότητες που θα μπορούσαν να θέσουν το σκάφος σε κίνδυνο. Η επιβίωση του πλοίου μετράει μόνο αστοχίες λόγω περιστατικών σύγκρουσης. Αυτή η στρατηγική υιοθετήθηκε λόγω του μεγάλου αριθμού τέτοιων περιστατικών με αποτέλεσμα την ολική απώλεια του σκάφους. Ακόμη και σήμερα, οι συγκρούσεις εξακολουθούν να είναι μια κοινή αιτία ολικής απώλειας πλοίων, όπως επιβεβαιώνει η επιτροπή διερεύνησης ναυτικών ατυχημάτων και συμβάντων 2014-2019. Όπως φαίνεται, οι συγκρούσεις αντιπροσώπευαν το 15% των συνολικών απωλειών πλοίων, ποσοστό που αντιστοιχεί περίπου σε 15-20 πλοία ετησίως σε όλο το κόσμο. (Roussou, 2015)

Εικόνα 4: Ναυτικά ατυχήματα και αρχικό συμβάν (Επιτρωπή διερευνήσεων, 2019)

Στην περίπτωση βλαβών που προκαλούνται από προσάραξη ή εμβολή, αντιμετωπίζονται με την εισαγωγή προσδιοριστικών περιορισμών. Η ασφάλεια του πλοίου έναντι της προσάραξης διασφαλίζεται με προσδιορισμό ντετερμινιστικού ελάχιστου ύψους διπυθμένων, ενώ η θέση της πρωραίας φρακτής (collision bulkhead) βελτιώνει την απόκριση του πλοίου όταν εμβολίσει ένα άλλο πλοίο.

Η τοποθεσία και η έκταση των αστοχιών θεωρούνται τυχαίες μεταβλητές. Η αντίστοιχη ζημιά περιγράφεται πλήρως από τη θέση του κέντρου του κατά μήκος του πλοίου και τη διαμήκη περιοχή του, τη διείσδυση κατά το πλάτος του σκάφους. Τα παραπάνω δεδομένα σφάλματος σχετίζονται με τους συντελεστές pi, ri και vi που εμφανίζονται κατά τον υπολογισμό του δείκτη Α, αντίστοιχα.

Ο Δείκτης Επίτευξης Υποδιαίρεσης αντιστοιχεί στο άθροισμα όλων των περιπτώσεων (wfi · Ai) για όλες τις πιθανές καταστάσεις αστοχίας σε πολλές συγκεκριμένες αρχικές καταστάσεις φόρτωσης. Ο παράγοντας Α έχει τιμή μεταξύ Ο και 1 και δύο πλοία με τον ίδιο δείκτη Α θεωρούνται εξίσου ασφαλή. Οι τύποι υπολογισμού του δείκτη Α είναι οι εξής:

$$A = \sum_{i=1}^{t} wfi * Ai$$

Όπου:

Αι: Δείκτης υποδιαίρεσης προσέγγισης για κάθε κατάσταση φόρτωσης (βύθισης).

wfi: συντελεστής στάθμισης για την τρέχουσα κατάσταση φόρτωσης

Η συμβολή κάθε συνθήκης σφάλματος δίνεται από:

$$Ai = \sum_{i=1}^{t} pi * vi * si$$

Όπου:

i: Σενάριο αποτυχίας υπό εξέταση

t: σύνολο σεναρίων αποτυχίας

pi: Πιθανότητα να βυθιστεί μόνο ο χώρος σε μια συγκεκριμένη διαμήκη θέση του πλοίου, αγνοώντας την οριζόντια υποδιαίρεση. Ο συντελεστής pi περιλαμβάνει επίσης τον συντελεστή ri, ο οποίος στην περίπτωση των διαμήκων περιφράξεων αντιπροσωπεύει την πιθανότητα να μην κατακλυστεί ο εσωτερικός χώρος.

vi: πιθανότητα να μην κατακλυστεί ο χώρος πάνω από την κάθετη υποδιαίρεση

si: η πιθανότητα το πλοίο να μην ανατραπεί και να βυθιστεί μετά την αντίστοιχη κατάκλυση

Ο συντελεστής pi εξαρτάται μόνο από τη γεωμετρία της στεγανής υποδιαίρεσης του πλοίου με εγκάρσιες και διαμήκεις φραχτές.

Ο παράγοντας vi εξαρτάται από την οριζόντια στεγανή υποδιαίρεση του καταστρωμένου πλοίου και τη βύθιση στην αρχική φόρτωση.

Ο παράγοντας si εξαρτάται από τα χαρακτηριστικά ευστάθειας του πλοίου μετά από βλάβη υπό συγκεκριμένες συνθήκες φόρτωσης. Εκφράζει την πιθανότητα επιβίωσης του πλοίου, δηλαδή να μην ανατραπεί και βυθιστεί μετά από κατάκλυση.

Όταν si = 0, το πλοίο χάνεται και όταν si = 1, το πλοίο θεωρείται ότι έχει 100% πιθανότητα επιβίωσης. Για ενδιάμεσες τιμές, είναι δυνατό το σκάφος να επιβιώσει.

Ο δείκτης si υπολογίζεται από τον τύπο:

 $S_i = minimum\{S_{intermediate,i} ~ \acute{\eta} ~ S_{final,i} * S_{mom,i}\}$

Όπου,

 $S_{intermediate,i}$: η πιθανότητα επιβίωσης του πλοίου όλων των σταδίων κατάκλυσης

$$S_{\text{intermediate,i}} = \left[\frac{\text{GZmax}}{0.05} * \frac{\text{Range}}{7}\right]^{1/4}$$

Σε περίπτωση που η γωνία κλίσης ξεπεράσει τις 15° τότε $S_{intermediate,i} = 0$

 $S_{final,i}$: η πιθανότητα επιβίωσης στο τελικό στάδιο κατάκλυσης

$$S_{\text{final},i} = K * \left[\frac{\text{GZmax}}{0,12} * \frac{\text{Range}}{16} \right]^{\frac{1}{4}},$$

Όπου, K = 1, αν $\theta_e \le 7$, K = $\left[\frac{15-\theta_e}{8}\right]^{\frac{1}{2}}$, αν 7 < θ_e < 15, K = 0, αν $\theta_e \ge 15$

 $S_{mom,i}$: η πιθανότητα επιβίωσης υπό εγκάρσια ροπή

$$S_{mom,i} = \frac{(GZ_{max} - 0.04) * Displacement}{Mheel}$$

Όπου, Displacement αντιστοιχεί στο εκτόπισμα στο βύθισμα και Mheel είναι η μέγιστη εγκάρσια ροπή.

Ο Επιτευχθείς Δείκτης Υποδιαίρεσης Α συγκρίνεται με τον Απαιτούμενο Δείκτη Υποδιαίρεσης R (Required Subdivision Index), και πρέπει να ισχύει η ανισότητα A>R για να θεωρείται ένα πλοίο ασφαλές. (Roussou, 2015)

2.2. ΑΠΑΙΤΟΥΜΕΝΟΣ ΔΕΙΚΤΗΣ ΥΠΟΔΙΑΙΡΕΣΗΣ R

Για να εξετάστεί αν ένα πλοίο είναι ασφαλές συγκρίνεται ο επιτευχθείς δείκτης υποδιαίρεσης Α με τον απαιτούμενο δείκτη υποδιαίρεσης R. Οι τροποποιήσεις του δείκτη βασίζονται γενικά στο γεγονός ότι η απαιτούμενη ασφάλεια ενός πλοίου εξαρτάται από μια σειρά παραγόντων, όπως ο αριθμός των επιβατών, το φορτίο και το περιβάλλον. Η αλληλεπίδραση κάθε παράγοντα φαίνεται στο παρακάτω σχήμα (SOLAS, 2009):

Εικόνα 5: Παράγοντες που επηρεάζουν την ασφάλεια του πλοίου (Roussou, 2015, p. 18)

Για τα επιβατηγά πλοία ο δείκτης R δίνεται από τον τύπο (MSC.216(82)):

$$R = 1 - \frac{5000}{L_s + 2.5 * N_p + 15.225}$$

Όπου:

Ls: το μήκος υποδιαίρεσης

 $Np = N1 + 2 \cdot N2$

Ν1: Αριθμός επιβαινόντων, για τους οποίους παρέχονται σωσίβιες λέμβους

N2: Εκτός από το N1, ο αριθμός των επιβατών στο πλοίο (συμπεριλαμβανομένων των αξιωματικών και του πληρώματος).

2.3. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΑΝΑΘΕΩΡΗΜΕΝΟΥ ΚΑΙ ΕΦΑΡΜΟΣΤΕΟΥ ΑΠΑΙΤΟΥΜΕΝΟΥ ΔΕΙΚΤΗ ΥΠΟΔΙΑΙΡΕΣΗΣ R ΓΙΑ ΕΠΙΒΑΤΗΓΑ ΠΛΟΙΑ (2018)

Σύμφωνα με τους καινούριους κανονισμούς (SOLAS - Chapter II-1 - subdivision and stability - Part B-1 Regulation 6 - Required subdivision index R) για τον υπολογισμό του απαιτούμενου δείκτη υποδιαίρεσης R για τα επιβατηγά πλοία ο υπολογισμός γίνεται με βάση τον παρακάτω πίνακα MSC.421(98):

Persons on board	R
<i>N</i> < 400	<i>R</i> = 0.722
$400 \leq N \leq 1,350$	R = N / 7,580 + 0.66923
$1,350 < N \le 6,000$	$R = 0.0369 \times Ln (N + 89.048) + 0.579$
N > 6,000	$R = 1 - (852.5 + 0.03875 \times N) / (N + 5,000)$

Πίνακας 6: Regulation 6 - Required subdivision index R (MSC.421(98))

Όπου Ν = ο ολικός αριθμός επιβατών στο πλοίο.

Στην παρούσα διπλωματική εργασία επειδή το πλοίο αναφοράς καλύπτει τους παλιούς κανονισμούς για τον υπολογισμό του απαιτούμενου δείκτη υποδιαίρεσης R χρησιμοποιήθηκε ο τύπος του δείκτη R (MSC.216(82)) από το υποκεφάλαιο 2.2.

ΚΕΦΑΛΑΙΟ 3: ΠΛΟΙΑ ΤΥΠΟΥ RO-PAX

3.1. ΣΥΝΤΟΜΗ ΑΝΑΦΟΡΑ

Επιβατηγά πλοία θεωρούνται εκείνα που είναι κατάλληλα για τη μεταφορά 13 ή περισσότερων επιβατών. (SOLAS, 2009) Μια υποκατηγορία επιβατηγών πλοίων είναι το Ro-Pax, το οποίο είναι ο κύριος τρόπος μεταφοράς επιβατών και οχημάτων. Τέτοια πλοία είναι συνυφασμένα με την παροχή οικονομικών και υψηλής ποιότητας υπηρεσιών επιβατών. Αυτά τα χαρακτηριστικά, σε συνδυασμό με την υπηρεσία υψηλής ταχύτητας, καταδεικνύουν πλήρως την ηγετική θέση της Ro-Pax στις μεταφορές μικρών αποστάσεων. (Roussou, 2015, p. 3)

Τα πλοία Ro-Pax έχουν σχεδιαστεί για να φιλοξενούν επιβάτες ενώ μπορούν να φορτώνουν και να ξεφορτώνουν μηχανοκίνητα οχήματα (κύλιση σε τροχούς) χωρίς να χρειάζονται άλλα μέσα φόρτωσης και εκφόρτωσης.

Διαφέρουν σε μέγεθος και σχεδιασμό ανάλογα με τη διαδρομή που εξυπηρετούν. Πιο συγκεκριμένα, μικρά σκάφη συνολικής ιπποδύναμης 400 ίππων μπορούν να κάνουν σύντομα ταξίδια μεταξύ κοντινών λιμανιών και να μεταφέρουν περίπου 300 επιβάτες. Μεγαλύτερα σκάφη είναι τα ταχύπλοα Ε/Γ-Ο/Γ χωρητικότητας επιβατών από 1.000 έως 2.000 επιβάτες. Συνολικά, τα σκάφη Ro-Pax μπορούν να επιτύχουν υψηλές ταχύτητες από 20 έως 40 κόμβους παρά το αυξημένο λειτουργικό κόστος.

Εικόνα 6: Πλοίο Ro-Pax χωρητικότητας 63.600 κόρων (Stena Hollandica) (Roussou, 2015, p. 3)

Η γενική τους διάταξη χωρίζεται σε τρία κύρια επίπεδα προκειμένου να εξυπηρετηθεί καλύτερα ο σκοπός αυτών των πλοίων. Ο πυθμένας τους περιλαμβάνει κυρίως τον χώρο της καμπίνας. Το άμεσο άνω κατάστρωμα περιλαμβάνει το κατάστρωμα των οχημάτων, ενώ το ανώτατο κατάστρωμα περιλαμβάνει το κατάστρωμα των οχημάτων, ενώ το ανώτατο κατάστρωμα περιλαμβάνει το κατάστρωμα των οχημάτων, ενώ το ανώτατο κατάστρωμα περιλαμβάνει το κατάστρωμα των οχημάτων, ενώ το ανώτατο κατάστρωμα περιλαμβάνει το κατάστρωμα των οχημάτων.

Όσον αφορά τη μεταφορική ικανότητα του πλοίου τύπου Ro-Pax, ποικίλλει ανάλογα με τη διαδρομή που εξυπηρετεί το σκάφος και εκφράζεται ως προς το συνολικό μήκος φόρτωσης φορτηγών οχημάτων (lanes in meters). Η διαδικασία φόρτωσης και εκφόρτωσης του οχήματος, καθώς και των επιβατών, πραγματοποιείται μέσω ειδικών ανοιγμάτων, θυρών εξοπλισμένων με ειδικούς καταπέλτες.

Στην περίπτωση πολλαπλών καταστρωμάτων, η μεταξύ τους επικοινωνία επιτυγχάνεται μέσω ειδικών ραμπών. Η διαδικασία φόρτωσης και εκφόρτωσης επί του σκάφους μπορεί να επιταχυνθεί με την εγκατάσταση ράμπων στο μπροστινό μέρος και στην πρύμνη του σκάφους. Εκτός από το σύντομο χρόνο που απαιτείται για τη διεξαγωγή της διαδικασίας φόρτωσης και εκφόρτωσης, επιτυγχάνεται βέλτιστη χρήση του χώρου.

Εικόνα 7: Μέσα φορτοεκφόρτωσης οχημάτων Ro – Pax (Roussou, 2015, p. 4)

Τα σκάφη Ro-Pax μπορούν επίσης να χωριστούν σε «ανοιχτά» και «κλειστά» ανάλογα με τη διαμόρφωση του καταστρώματος του οχήματος. Το ανοιχτό πλοίο χαρακτηρίζεται από το γεγονός ότι μόνο ένα κύριο κατάστρωμα είναι ανοιχτό, δηλαδή δεν προστατεύεται από πάνω. Τα εκτεθειμένα καταστρώματα επηρεάζουν αρνητικά την ασφάλεια αυτών των πλοίων, τα οποία είναι συνήθως μικρά σε χωρητικότητα και υπόκεινται στους περισσότερους περιορισμούς. Από την άλλη πλευρά, τα κλειστά πλοία καλύπτουν το κατάστρωμα των οχημάτων, γεγονός που τα καθιστά ασφαλέστερα στην ανοιχτή θάλασσα παρά στα ανοιχτά πλοία. Ως εκ τούτου, τα σημερινά μεγάλα πλοία ro-ro εξυπηρετούν κυρίως τουριστική κίνηση και μεταφορές εισαγωγών και εξαγωγών που εκτελούνται μεταξύ χωρών.

3.2. ΙΣΤΟΡΙΚΗ ΕΞΕΛΙΞΗ

Κατά τις δεκαετίες του 1970 και του 1980, η οικονομική ανάπτυξη και η ευημερία στην Ευρώπη αντικατοπτρίστηκαν στην ανάπτυξη όλων των τρόπων μεταφοράς, συμπεριλαμβανομένου του Ro-Pax. Στην πραγματικότητα, ο σχεδιασμός τους έχει υποστεί σημαντικές αλλαγές για να καλύψει την ανάγκη για συχνότερες συνδέσεις μεταξύ σημαντικών λιμανιών, περισσότερο χώρο για μηχανοκίνητες μεταφορές και καλύτερη διαμονή για ταξιδιώτες αναψυχής. Τις επόμενες δεκαετίες κατασκευάστηκαν πολλά περισσότερα πλοία, τα σχέδια των οποίων επηρεάστηκαν άμεσα από μεγάλες τεχνολογικές εξελίξεις. Ένα αισθητά βελτιωμένο χαρακτηριστικό του Ro-Pax λόγω των τεχνολογικών εξελίξεων είναι η ταχύτητα λειτουργίας, η οποία αρχικά έφτασε τους 25 κόμβους και αργότερα ανέβηκε στους 30 κόμβους. Ωστόσο, εκτός από την τεχνολογική εξέλιξη, σημαντικό ρόλο στην αύξηση της ταχύτητας έχει παίξει και το χαμηλό κόστος των καυσίμων. Η συνεχής ζήτηση της αγοράς για μικρότερους χρόνους διέλευσης οδήγησε στον σχεδιασμό πλοίων με διαφορετικές μορφές κύτους, όπως τα καταμαράν, επιτρέποντας πολύ υψηλές ταχύτητες εξυπηρέτησης για αυτά τα πλοία. (Roussou, 2015)

Εικόνα 8: Ε/Γ – Ο/Γ πλοίο καταμαράν με ταχύτητα 40 κόμβους (Roussou, 2015, p. 5)

3.3. ΠΡΟΒΛΗΜΑΤΑ ΑΣΦΑΛΕΙΑΣ ΤΩΝ ΠΛΟΙΩΝ RO-PAX

Παρά την εμπορική επιτυχία των σκαφών Ro-Pax, από την πρώτη στιγμή που εμφανίστηκαν, αμφισβητήθηκε το επίπεδο ασφάλειας που παρείχαν. Οι ιδιαιτερότητες του σχεδιασμού τους τα κάνουν πολύ διαφορετικά από άλλα είδη σκαφών.

Το πρώτο και κύριο χαρακτηριστικό των σκαφών Ro-Pax είναι η απουσία εσωτερικών φρακτών στον χώρο των οχημάτων. Η συμβολή εγκάρσιων φρακτών στα πλοία είναι διπλή και εξίσου σημαντική. Η φρακτή ενισχύει τη μεταλλική κατασκευή ενώ μειώνει την ποσότητα κατάκλυσης σε περίπτωση ρήγματος. Ακόμα και αν η μείωση του όγκου κατάκλυσης δεν είναι αρκετή για να επιτρέψει στο πλοίο να επιβιώσει από την αστοχία, ο διαθέσιμος χρόνος για την εκκένωση του πλοίου θα αυξηθεί. Ωστόσο, στην περίπτωση των Ro-Pax, αυτό δεν μπορεί να γίνει στον επιθυμητό βαθμό, καθώς έχουν σχεδιαστεί για να επιτρέπουν στο όχημα να κινείται από την πρύμνη στην πλώρη και αντίστροφα. Η απουσία εγκάρσιων φρακτών είχε ως αποτέλεσμα μεγάλους ανοιχτούς χώρους και σε περίπτωση πυρκαγιάς ή κατάκλυσης, η μείωση του προβλήματος είναι πολύ δύσκολη.

Εικόνα 9: Διάταξη καταστρωμάτων Ro – Pax (Roussou, 2015, p. 6)

Μειονέκτημα είναι η ύπαρξη θύρων για φόρτωση και εκφόρτωση στα άκρα και ακόμη και στις πλευρές των πλοίων αυτού του τύπου. Ο κίνδυνος εισροής νερού λόγω ζημιάς σε αυτές τις περιοχές αυξάνεται λόγω της κόπωσης των εξαρτημάτων που φέρουν το βάρος του οχήματος κατά τη φόρτωση και την εκφόρτωση. Ένας άλλος παράγοντας που το διαφοροποιεί από άλλους τύπους πλοίων είναι η φόρτωση του φορτίου. Αν στο σκάφος φορτωθούν βαρέα οχήματα, αναμένεται να τα ασφαλίσουν ειδικοί ιμάντες. Αν όμως δεν τηρηθούν οι προβλεπόμενες διαδικασίες λόγω κακών καιρικών συνθηκών, μπορεί να κυλήσει στο κατάστρωμα και να προκαλέσει ζημιά στο κατάστρωμα ή ακόμα και ρωγμές. Τέλος, η εξωτερική διαμόρφωση της υπερκατασκευής και το πολύ υψηλό ύψος της είναι άλλο ένα ιδιαίτερο χαρακτηριστικό του Ro-Pax που επηρεάζει αρνητικά την ασφάλειά του, καθώς δυσκολεύει την καθέλκυση της σωσίβιας λέμβου, ειδικά στις σημαντικές κλίσεις του πλοίου. Λαμβάνοντας υπόψη όλα τα προαναφερθέντα ιδιαίτερα χαρακτηριστικά του Ro-Pax, είναι σαφές ότι πρέπει να αποφευχθεί οποιοδήποτε ανθρώπινο λάθος.

ΚΕΦΑΛΑΙΟ 4 : ΜΕΛΕΤΗ ΕΥΣΤΑΘΕΙΑΣ ΕU-ROPAX 3000 ΜΕΤΑ ΑΠΟ ΒΛΑΒΗ

Σκοπός της παρούσας διπλωματικής είναι η βελτιστοποίηση του πλοίου EuRoPax 3000 στην ευστάθεια μετά από βλάβη σε συνδυασμό με την εξασφάλιση των κανονισμών της SOLAS.

Αρχικά, περάστηκε και επεξεργάστηκε η γάστρα του πλοίου στο πρόγραμμα Maxsurf έγινε η δημιουργία της γενικής διάταξης του πλοίου, ορίστηκαν τα στεγανά διαμερίσματα του πλοίου, η θέση των διαμερισμάτων και των δεξαμενών θέτοντας τις διαστάσεις καθώς στη συνέχεια πραγματοποιήθηκαν και εξετάστηκαν σενάρια βλάβης.

Στην συνέχεια για την βελτιστοποίηση δημιουργήθηκαν 9 εναλλακτικές σχεδιάσεις του αρχικού πλοίου χωρίς να γίνουν αλλαγές στην γενική διάταξή του. Έγιναν αλλαγές μόνο στα κύρια χαρακτηριστικά του πλοίου στο πλάτος και στο κοίλο.

Έπειτα, εξετάστηκε αν οι τροποποιήσεις στη σχεδίαση του πλοίου μπορούν να επιτύχουν GZ max αρκετά μεγαλύτερο του αρχικού μοντέλου σε διάφορες περιπτώσεις κατάκλυσης σύμφωνα με την ντετερμινιστική μέθοδο. Συγκεκριμένα εξετάστηκαν 2 περιπτώσεις κατάκλυσης με βάση τους κανονισμούς. Εξετάστηκαν οι καταστάσεις φόρτωσης του πλοίου για αναχώρηση με 100% αναλώσιμα, 50% αναλώσιμα και άφοιξη με 10% αναλώσιμα. Το πλοίο αναφοράς δημιουργήθηκε με τη βοήθεια του ναυπηγικού λογισμικού maxsurf (MAXSURF CONNECT Edition V23) και ορίστηκαν όλα τα απαραίτητα στοιχεία για την εφαρμογή της SOLAS.

Στην συνέχεια δημιουργήθηκαν διάφορα σενάρια βλάβης και υπολογίστηκε η καινούρια θέση που θα ισσοροπίσει το πλοίο και έτσι βρέθηκαν κάποια σημαντικά χαρακτηριστικά του πλοίου όπως το GM. Ύστερα από τις καμπύλες ευστάθειας GZ φ μετά από βλάβη, βρέθηκε πως μεταβάλλεται το GZ max και οι γωνίες της μέγιστης κλίσης και της γωνίας απώλειας ευστάθειας για να έχουμε μια εικόνα της ευστάθειας μετά από βλάβη του κάθε μοντέλου.

Στο επόμενο κεφάλαιο μελετήθηκε η βελτιστοποίηση ευστάθειας μετά από βλάβη χρησιμοποιώντας την πιθανοθεωρητική μέθοδο ώστε να επιτευχθεί δείκτης Α υψηλότερος του αρχικού. Πραγματοποιήθηκε, επίσης, μια οικονομική ανάλυση της σχεδίασης για να μην είναι οικονομικά ασύμφορη μια τέτοια βελτιστοποίηση.

Στο τελευταίο κεφάλαιο έγιναν κάποιες εναλλακτικές σχεδιάσεις στην γενική διάταξη του πλοίου αυτή την φορά για να δούμε την συμπεριφορά της ευστάθειας μετά από βλάβη με την πιθανοθεωρητική μέθοδο. Το πλοίο που εξετάστηκε ήταν το αρχικό μοντέλο.

4.1. ΣΧΕΔΙΑΣΗ ΠΛΟΙΟΥ

Στον παρακάτω πίνακα αναφέρονται κάποια κύρια χαρακτηριστικά :

Particulars	Γ	
	EuRoPax 3000	
Dimensions	<u> </u>	
LOA	189,5 m	
LBP	186,64m	
BOA	28,5 m	
Depth	21,4 m	
Drafts		
Design	6,80 m	
Scantling	7,00 m	
DWT max	8000 t	
Main engines	28.000 kW	
Speed	24 kn	
Cargo Deck Loads		
Axle Load	15 t	
Stores	40 t	
Suitcases	0,025 t	
Capacities		
Dk 1	410 lm	
Dk 2	1214 lm	
Dk 3	1376 lm	
Dk 5	400 lm	
Total	3.400 lm	
Accommodation		
Passenger total	1.500 pax	
Crew number	500 cr.	

Πίνακας 7: Κύρια χαρακτηριστικά πλοίου αναφοράς

Στο maxsurf το μοντέλο που αντιστοιχεί στο πλοίο αναφοράς ονομάστηκε, EUROPAX 3000_1.

Το πλοίο αναφοράς βρέθηκε μετά από έρευνα στον παρακάτω σύνδεσμο. Το αρχείο είχε σχέδια της γενικής διάταξης του πλοίου και τα βασικά χαρακτηριστικά του.

http://www.scandinaos.com/DESSO/WP4/WP4%20Final%20Report.pdf

4.1.1. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΚΥΡΙΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ

Στην εικόνα 10 παρουσιάζονται οι επιλογές που έχουν γίνει στο πρόγραμμα maxsurf modeler για διάφορα χαρκτηριστικά του πλοίου όπως το Aft Perp και το Fwd Perp και το DWL.

Frame of Refere	ence and Zero point		\times
Referen <mark>/Col.m.</mark> Zon pl.		MS	DWL _{FP} Baselin
Longitudinal D	atum	Vertical Datum	
Aft Perp.	0 m Set to DWL	ODWL 6,8 m	
Midships	93,32 m	Baseline 0 m	Find Base
O Fwd Perp.	186.64 m Set to DWL	Other Om	
Other	-1,234 m Aft extent Fwd extent		
Label AP	🗸 Default	Label Baseline	✓ Default
		ОК	Cancel

Εικόνα 10: Aft Perp και το Fwd Perp και το DWL στο maxsurf

Παρακάτω κατασκευάζονται τα stations που θα βοηθήσουν στην συνέχεια για τη δημιουργία της γενικής διάταξης του πλοίου δηλαδή στις διαστάσεις των διαμερισμάτων και των δεξαμενών.

Εικόνα 11: Stations

4.1.2. ΓΑΣΤΡΑ ΠΛΟΙΟΥ ΑΝΑΦΟΡΑΣ

Βρέθηκε η μισή γάστρα του πλοίου και περάστηκε και επεξεργάστηκε στο πρόγραμμα maxsurf.

Η γάστρα του πλοίου EU ROPAX 3000_1 που χρησιμοποιήθηκε για τη μελέτη ευστάθειας κατόπιν βλάβης φαίνεται στις παρακάτω εικόνες.

Εικόνα 12: Γάστρα του πλοίου αναφοράς EU - ROPAX 3000_1

Εικόνα 13: Γάστρα του πλοίου αναφοράς διαμόρφωση πρύμνης

Εικόνα 14: Resistance – Perspective 3D modeler

Στην εικόνα 14 υπολογίστηκε η αντίσταση του πλοίου στο πρόγραμμα maxsurf resistance.
4.1.3. ΥΠΟΛΟΓΙΣΜΟΣ ΥΔΡΟΣΤΑΤΙΚΩΝ ΣΤΟΙΧΕΙΩΝ

Στο πρόγραμμα maxsurf επιλέχθηκε το βύθισμα και η διαγωγή του πλοίου. Βύθισμα (draft) από 4 εώς 7 μέτρα και μηδενική διαγωγή (trim).

Trim = 0 m

Draft Amidships	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
m										
Displacement t	9332	10379	11462	12580	13734	14924	16153	17421	18731	20076
Heel deg	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Draft at FP m	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
Draft at AP m	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
Draft at LCF m	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
Trim (+ve by stern) m	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
WL Length m	176,140	176,219	176,298	176,373	176,333	176,293	176,714	179,054	180,821	178,230
Beam max extents on WL m	26,249	26,292	26,335	26,378	26,421	26,464	26,507	26,551	26,594	26,637
Wetted Area m ²	3764,402	3948,619	4134,101	4319,761	4507,192	4702,239	4903,934	5113,064	5331,001	5506,377
Waterpl. Area m ²	3009,567	3115,924	3221,389	3324,793	3427,918	3537,236	3651,420	3770,653	3893,401	3966,484
Prismatic coeff. (Cp)	0,505	0,517	0,529	0,541	0,553	0,565	0,575	0,579	0,585	0,605
Block coeff. (Cb)	0,492	0,504	0,516	0,528	0,539	0,551	0,561	0,564	0,570	0,589
Max Sect. area coeff. (Cm)	0,974	0,975	0,975	0,975	0,975	0,975	0,975	0,975	0,974	0,974
Waterpl. area coeff. (Cwp)	0,651	0,673	0,694	0,715	0,736	0,758	0,780	0,793	0,810	0,835
LCB from zero pt. (+ve fwd) m	90,811	90,417	89,994	89,542	89,064	88,556	88,014	87,431	86,805	86,164
LCF from zero pt. (+ve fwd) m	87,374	86,429	85,414	84,376	83,297	82,067	80,725	79,276	77,689	77,059
KBm	2,236	2,431	2,627	2,823	3,020	3,218	3,417	3,617	3,819	4,021
KGm	6,800	6,800	6,800	6,800	6,800	6,800	6,800	6,800	6,800	6,800
BMt m	14,618	13,920	13,308	12,767	12,287	11,865	11,499	11,180	10,883	10,532
BML m	454,497	441,038	430,385	421,471	414,571	411,603	411,372	413,590	417,265	406,183
GMt m	10,054	9,551	9,135	8,790	8,507	8,283	8,115	7,997	7,902	7,753
GML m	449,934	436,669	426,212	417,494	410,791	408,021	407,989	410,407	414,284	403,404
KMt m	16,854	16,351	15,935	15,590	15,307	15,083	14,915	14,797	14,702	14,553
KML m	456,734	443,469	433,012	424,294	417,591	414,821	414,789	417,207	421,084	410,204
Immersion (TPc) tonne/cm	30,848	31,938	33,019	34,079	35,136	36,257	37,427	38,649	39,907	40,656
MTc tonne.m	224,970	242,828	261,742	281,408	302,288	326,268	353,090	383,074	415,769	433,932
RM at 1deg = GMt.Disp.sin (1) tonne.m	1637,539	1730,079	1827,326	1929,857	2039,074	2157,471	2287,713	2431,436	2583,004	2716,426
Trim angle (+ve by stern) deg	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

Πίνακας 8: Υδροστατικός πίνακας πλοίου αναφοράς

Διαγραμμα 1: Υδροστατικό διάγραμμα πλοίου αναφορά

4.1.4. ΓΕΝΙΚΗ ΔΙΑΤΑΞΗ

Αρχικά καθορίστηκαν οι διαστάσεις και η θέση των διαμερισμάτων επί του σκάφους και ακολούθησαν ορισμένα πρόσθετα χαρακτηριστικά, όπως φαίνεται στον πίνακα 8. Ο πίνακας δείχνει την ταξινόμηση των διαμερισμάτων ανάλογα με τις λειτουργίες που εξυπηρετούν και τα χαρακτηριστικά κάθε κατηγορίας διαμερισμάτων (πυκνότητα φορτίων που περιέχουν, απόσταση χωρισμάτων κ.λπ.). Η εισαγωγή των διαμερισμάτων και των δεξαμενών έγινε μέσω του Maxsurf.

Name	Туре	Intact Perm. %	Damaged Perm. %	Specific gravity	Fluid type	Aft m	Fore m	F. Port m	F. Stbd m	F. Top m	F. Bott m
comp1	Compartment	95	95			-2,537	5	-15	15	10	0
comp2	Compartment	95	95			5	17,5	-15	15	10	0
comp3	Compartment	95	95			17 5	30	-8	8	10	0
comp3	Compartment	05	55			20	40	15	10	4 25	0
comp4	compartment	55	93			50	40	-15	15	4,23	0
comp16	Compartment	95	95			165	186,962	-15	15	15,95	0
comp15	Compartment	95	95			155	165	-15	15	10	0
comp14	Compartment	95	95			145	155	-15	15	10	0
comp13	Compartment	95	95			135	145	-8	8	4,25	0
comp12	Compartment	95	95			125	135	-8	8	4,25	0
comp11	Compartment	95	95			115	125	-8	8	4.25	0
comp10	Compartment	95	95			102 5	115	-8	8	4 25	0
comp10	Compartment	05	55			102,5	102 5	0	0	4.25	0
compa	compartment	95	95			90	102,5	-0	0	4,25	0
comp8	Compartment	95	95			75	90	-8	8	2	0
comp7	Compartment	95	95			60	75	-8	8	2	0
comp6	Compartment	95	95			50	60	-8	8	4,25	0
comp5	Compartment	95	95			40	50	-8	8	4,25	0
RO RO 1	Compartment	90	90			30	145	-8	8	10	4,25
RO RO 2	Compartment	90	90			-2 537	165	-12	12	15 95	10
RO RO 2	Compartment	00	00			2,557	106 062	12	12	21.4	15.05
NO NO S	compartment	90	90			-2,557	100,902	-12	12	21,4	13,95
comp1/	Compartment	95	95			17,5	30	-15	-8	10	2
comp18	Compartment	95	95			17,5	30	8	15	10	2
comp19	Compartment	95	95			30	40	-15	-8	10	4,25
comp20	Compartment	95	95			30	40	8	15	10	4,25
comp21	Compartment	95	95			40	50	-15	-8	10	2
comp22	Compartment	05	05			40	50		15	10	2
comp22	Compartment	55	55			40	50	45	15	10	2
comp23	Compartment	95	95			50	60	-15	-8	10	U
comp24	Compartment	95	95			50	60	8	15	10	0
comp25	Compartment	85	85			60	75	-15	-8	10	0
comp26	Compartment	85	85			60	75	8	15	10	0
comp27	Compartment	85	85			75	90	-15	-8	10	0
comp28	Compartment	85	85			75	90	8	15	10	0
comp29	Compartment	100	100			90	102.5	-15	-8	10	0
comp25	Compartment	100	100			00	102,5	-15	14.25	10	0
compsu	compartment	100	100			90	102,5	0	14,25	10	0
comp31	Compartment	100	100			102,5	115	-15	-8	10	0
comp32	Compartment	100	100			102,5	115	8	15	10	0
comp33	Compartment	100	100			115	125	-15	-8	10	0
comp34	Compartment	100	100			115	125	8	15	10	0
comp35	Compartment	100	100			125	135	-15	-8	10	0
comp36	Compartment	100	100			125	125	20	15	10	0
comp30	Compartment	100	100			125	145	15	15	10	0
comp37	Compartment	100	100			135	145	-15	-8	10	0
comp38	Compartment	100	100			135	145	8	15	10	0
WB 1	Tank	100	95	1,025	Water Bal	40	47,5	-8	8	2	0
MDO - P	Tank	100	95	0,84	Diesel	50	57,5	-8	0	2	0
MDO - ST	Tank	100	95	0,84	Diesel	50	57,5	0	8	2	0
HFO 1 - P	Tank	100	95	0,9443	Fuel Oil	80	85.5	-8	-4	2	0
HEO 2 - P	Tank	100	95	0 9443	Fuel Oil	80	85.5	-4	0	2	0
	Tank	100	05	0,0442	Fuel Oil	00	05,5		0		0
HF0 3 - 31		100	93	0,9443	Fuel Oil	00	05,5	4	0	2	0
HFU 4 - 51	Tank	100	95	0,9443	Fuel OII	80	85,5	0	4	2	U
HFO 5	Tank	100	95	0,9443	Fuel Oil	85,5	90	-8	8	2	0
HFO 6	Tank	100	95	0,9443	Fuel Oil	92,5	102,5	-8	8	2	0
HFO 7	Tank	100	95	0,9443	Fuel Oil	105	115	-8	8	2	0
WB 2	Tank	100	95	1,025	Water Bal	115	125	-8	8	2	0
WB 3	Tank	100	95	1.025	Water Bal	125	135	-7	7	2	0
WB 4	Tank	100	05	1 025	Water Bal	125	142 5	. 5	, 5	2	n
E\A/	Tank	100	05	1,025	Eroch M/at	1/5	100			10	
	Taul	100	95	1	i resil wat	145	105	-8	8	10	
VVB 5	тапк	100	95	1,025	vvater Bal	165	185	-8	8	13	0
WB 6	Tank	100	95	1,025	Water Bal	135	142,5	-15	-5	4,25	0
WB 7	Tank	100	95	1,025	Water Bal	135	142,5	5	15	4,25	0
WB 8	Tank	100	95	1,025	Water Bal	125	135	-15	-7	4,25	0
WB 9	Tank	100	95	1,025	Water Bal	125	135	7	15	4,25	0
WB 10	Tank	100	95	1 025	Water Bal	115	125	-15	-R	4 25	0
WB 11	Tank	100	05	1 025	Water Bal	115	125		15	1,25	0
WD 11	Tank	100	33	1,025	Water D-	175	125	0	13	4,23	0
VVD 13		100	95	1,025	water Bal			-8	8	8	0
HEEL TANK	Tank	100	95	0,8883	ANS Crude	50	60	-15	-8	4,25	0
HEEL TANK	Tank	100	95	0,8883	ANS Crude	50	60	8	15	4,25	0
WB 14	Tank	100	95	1,025	Water Bal	40	50	-15	-8	4,25	0
WB 15	Tank	100	95	1,025	Water Bal	40	50	8	15	4,25	0
space 2	Compartment	60	60			-2.537	177.5	-15	-12	23	15.95
space 3	Compartment	60	60			-2 537	177 5	12	15	23	15 95
space 4	Compartment		200 20			_2,557	165	_15	-17	15.05	10
space 4	Compartment	60	60			-2,537	105	-12	-12	15,95	10
space 5	compartment	60	60			-2,537	165	12	15	15,95	10
eng1	Compartment	95	95			60	75	-8	8	4,25	2
eng2	Compartment	95	95			75	90	-8	8	4 25	2

Πίνακας 9: Διαμερίσματα του πλοίου αναφοράς EU ROPAX 3000_1

Εικόνα 15: Σχέδιο Γενικής Διάταξης του πλοίο αναφοράς EU ROPAX 3000

4.2 RISK CONTROL OPTIONS - ΒΕΛΤΙΩΣΗ ΕΥΣΤΑΘΕΙΑΣ

Για τη μελέτη της ευστάθειας μετά από βλάβη χρησιμοποιήθηκε αρχικά το πλοίο αναφοράς EUROPAX 3000. Στη συνέχεια έγινε μια σειρά τροποποιήσεων (Risk Control Options – RCO) στο βασικό σχεδιασμό, ώστε να μελετηθεί η ευστάθεια κατόπιν βλάβης.

Οι μετατροπές έγιναν με τη βοήθεια του maxsurf όπου εισήχθησαν οι επιθυμητές αλλαγές μεταβάλλοντας το μέγεθος των επιφανειών.

Οι τροποποιήσεις φαίνονται αναλυτικά στον πίνακα, με δΒ και δD να αντιστοιχούν στην αλλαγή του πλάτους Β και του κοίλου D (όσον αφορά το κατάστρωμα στεγανών φρακτών) αντίστοιχα. Με αυτό τον τρόπο δημιουργήθηκαν αρκετά μοντέλα πλοίων, ώστε να αξιολογηθεί η ευστάθεια μετά από βλάβη και η επιρροή των διαστάσεων σε αυτή.

RCO	Description
EU ROPAX 3000_1	δB = 0.00 m / δD = 0.00 m
EU ROPAX 3000_2	δB = 0.00 m / δD = 0.20 m
EU ROPAX 3000_3	δB = 0.20 m / δD = 0.00 m
EU ROPAX 3000_4	δB = 0.20 m / δD = 0.20 m
EU ROPAX 3000_5	δB = 0.20 m / δD = 0.40 m
EU ROPAX 3000_6	δB = 0.20 m / δD = 0.60 m
EU ROPAX 3000_7	δB = 0.40 m / δD = 0.00 m
EU ROPAX 3000_8	δB = 0.40 m / δD = 0.20 m
EU ROPAX 3000_9	δB = 0.40 m / δD = 0.40 m
EU ROPAX 3000_10	δB = 0.40 m / δD = 0.60 m

Πίνακας 10: Risk Control Options

Αφού δημιουργήθηκαν τα μοντέλα έπρεπε να γίνει επιλογή της δυσμενέστερης κατάστασης βλάβης.

4.2.1. ΣΕΝΑΡΙΑ ΒΛΑΒΗΣ

Παρακάτω παρουσιάζονται τα διάφορα σενάρια κατάκλυσης που θα εξεταστούν.

Damage 1

Οι διαστάσεις του ρήγματος θεωρούνται ως εξής:

Μήκος ρήγματος: Δύο παρακείμενα διαμερίσματα έχουν υποστεί κατάκλυση

Εισχώρηση ρήγματος: B/5 (m)

Κατακόρυφη έκταση ρήγματος: από την BL προς τα πάνω χωρίς κάποιο περιορισμό

Εικόνα 16: Σενάριο βλάβης 1 (Damage Case 1)

Damage 2

Δύο παρακείμενα διαμερίσματα έχουν υποστεί ζημιά

Εισχώρηση ρήγματος: B/2 (m)

Κατακόρυφη έκταση ρήγματος: από την BL προς τα πάνω χωρίς κάποιο περιορισμό

Εικόνα 17: Σενάριο βλάβης 2 (Damage Case 2)

4.3 ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΟ ΜΟΝΤΕΛΟ

Σε αυτό το σημείο εφαρμόστηκαν τα ντετερμινιστικά κριτήρια για τη μελέτη της ευστάθειας μετά από βλάβη. Με τη βοήθεια του Maxsurf και των δυνατοτήτων του, με βάση την ντετερμινιστική μέθοδο, μελετήθηκε η θέση ισορροπίας μετά από βλάβη (Equilibrium) και οι καμπύλες ευστάθειας.

Στο πρόγραμμα maxsurf επιλέχθηκε το Equilibrium και το σενάριο βλάβης που εξετάζεται έτσι τρέχοντας το πρόγραμμα υπολογίστηκε η θέση ισορροπίας του πλοίου.

Εξετάστηκαν τα παραπάνω σενάρια κατάκλυσης για να μελετηθεί η ευστάθεια μετά από βλάβη και να ελεγχθούν τα ντετερμινιστικά κριτήρια.

Έγινε εφαρμογή του ντετερμινιστικού μοντέλου στο πλοίο αναφοράς EU ROPAX 3000_ 1 για να ελεγχθεί εάν ικανοποιεί τα κριτήρια ευστάθειας με βάση τις απαιτήσεις των κανονισμών όπως έχει αναφερθεί στο πρώτο κεφάλαιο. Το πλοίο αναφοράς ικανοποιεί του κανονισμούς για όλα τα σενάρια βλάβης. Αναλυτικά φαίνονται στο παράρτημα οι θέσεις ισορροπίας και οι καμπύλες ευστάθειας για κάθε περίπτωση.

4.3.1. ΚΑΤΑΣΤΑΣΕΙΣ ΦΟΡΤΩΣΗΣ

Εξετάστηκαν τρία βυθίσματα. Αυτά αντιστοιχούν σε αναχώρηση με 100% αναλώσιμα, 50% αναλώσιμα και επιστροφή 10% με αναλώσιμα.

Η διαδικασία αυτή πραγματοποιήθηκε στο υποσύστημα Load case window του Maxsurf. Θεωρούμε ότι το εκτόπισμα παραμένει το ίδιο ανεξάρτητα από τις τροποποιήσεις στο πλοίο. Οι καταστάσεις για το EU ROPAX 3000_1 φαίνονται στους πίνακες που ακολουθούν.

Load case – <u>100% Departure</u>

Item Name	Quantity	Unit Mass	Total Mass	Total	Long.	Trans.	Vert. Arm	Unit FSM	Total FSM	FSM Type
		tonne	tonne	volume	Arm	Arm	m	tonne.m	tonne.m	
Lightship	1	12957 846	12957 846	III 3	82 000	0.000	13 800	0.000	0.000	Liser Specified
nassenger	1500	0.075	112 500		101,000	0,000	21 000	0,000	0,000	User Specified
passenger suitcases	1500	0.025	37,500		101,000	0,000	21,000	0,000	0,000	User Specified
cars	1000	1.250	1250.000		90.000	0.000	19.000	0.000	0.000	User Specified
trucks	50	4.000	200.000		90.000	0.000	8.000	0.000	0.000	User Specified
Trailer	1	1510.000	1510.000		64,540	0.000	10.200	0.000	0.000	User Specified
crew	500	0,075	37,500		85,000	0,000	18,000	0,000	0,000	User Specified
stores	1	40,000	40,000		101,000	0,000	6,800	0,000	0,000	User Specified
Axle Load	1	15,000	15,000		101,000	0,000	6,800	0,000	0,000	User Specified
WB 1	0%	64,180	0,000	0,000	47,439	0,000	0,000	n/a	0,000	Maximum
MDO - P	100%	69,388	69,388	82,605	54,016	-3,430	1,256	n/a	0,000	Maximum
MDO - ST	100%	69,388	69,388	82,605	54,016	3,430	1,256	n/a	0,000	Maximum
HFO 1 - P	98%	41,549	40,718	43,120	82,751	-6,000	0,980	n/a	0,000	Maximum
HFO 2 - P	98%	41,549	40,718	43,120	82,751	-2,000	0,980	n/a	0,000	Maximum
HFO 3 - ST	98%	41,549	40,718	43,120	82,751	6,000	0,980	n/a	0,000	Maximum
HFO 4 - ST	98%	41,549	40,718	43,120	82,751	2,000	0,980	n/a	0,000	Maximum
HFO 5	98%	135,979	133,260	141,120	87,751	0,000	0,980	n/a	0,000	Maximum
HFO 6	98%	302,176	296,132	313,600	97,503	0,000	0,980	n/a	0,000	Maximum
HFO 7	98%	299,102	293,120	310,409	109,973	0,000	0,989	n/a	0,000	Maximum
WB 2	0%	286,318	0,000	0,000	124,943	0,000	0,000	n/a	0,000	Maximum
WB 3	0%	205,890	0,000	0,000	134,943	0,000	0,000	n/a	0,000	Maximum
WB 4	0%	111,146	0,000	0,000	142,439	0,000	0,000	n/a	0,000	Maximum
FW	100%	1075,913	1075,913	1075,913	149,768	0,000	6,106	n/a	0,000	Maximum
WB 5	100%	837,086	837,086	816,670	170,732	0,000	8,285	n/a	0,000	Maximum
WB 6	0%	23,371	0,000	0,000	135,043	-3,333	1,441	n/a	0,000	Maximum
WB 7	0%	23,371	0,000	0,000	135,043	3,333	1,441	n/a	0,000	Maximum
WB 8	0%	27,323	0,000	0,000	125,057	-4,667	1,435	n/a	0,000	Maximum
WB 9	0%	27,323	0,000	0,000	125,057	4,667	1,435	n/a	0,000	Maximum
WB 10	0%	56,094	0,000	0,000	115,057	-5,334	0,650	n/a	0,000	Maximum
WB 11	0%	56,094	0,000	0,000	115,057	5,334	0,650	n/a	0,000	Maximum
WB 13	100%	903,861	903,861	881,816	24,059	0,000	5,583	n/a	0,000	Maximum
HEEL TANK -P	98%	90,386	88,578	99,717	55,449	-9,956	3,037	n/a	0,000	Maximum
HEEL TANK -ST	98%	90,386	88,578	99,717	55,449	9,956	3,037	n/a	0,000	Maximum
WB 14	0%	55,231	0,000	0,000	49,943	-5,334	1,754	n/a	0,000	Maximum
WB 15	0%	55,231	0,000	0,000	49,943	5,334	1,754	n/a	0,000	Maximum
Total Loadcase			20178,524	4076,651	86,418	0,000	12,087		0,000	

Πίνακας 11: Κατάσταση Φόρτωσης για Full Departure

Load case – 50% Departure

Item Name	Quantity	Unit Mass	Total Mass	Total	Long.	Trans.	Vert. Arm	Unit FSM	Total FSM	FSM Type
		tonne	tonne	Volume	Arm	Arm	m	tonne.m	tonne.m	
				m^3	m	m				
Lightship	1	12957,846	12957,846		82,000	0,000	13,800	0,000	0,000	User Specified
passenger	1000	0,075	75,000		101,000	0,000	21,000	0,000	0,000	User Specified
passenger suitcases	1000	0,025	25,000		101,000	0,000	21,000	0,000	0,000	User Specified
cars	800	1,250	1000,000		90,000	0,000	19,000	0,000	0,000	User Specified
trucks	50	4,000	200,000		90,000	0,000	8,000	0,000	0,000	User Specified
Trailer	1	1510,000	1510,000		64,540	0,000	10,200	0,000	0,000	User Specified
crew	500	0,075	37,500		85,000	0,000	18,000	0,000	0,000	User Specified
stores	1	40,000	40,000		101,000	0,000	6,800	0,000	0,000	User Specified
Axle Load	1	15,000	15,000		101,000	0,000	6,800	0,000	0,000	User Specified
WB 1	50%	64,180	32,090	31,307	44,372	0,000	0,996	n/a	1153,573	Maximum
MDO - P	50%	69,388	34,694	41,302	54,215	-2,901	0,858	n/a	268,800	Maximum
MDO - ST	50%	69,388	34,694	41,302	54,215	2,901	0,858	n/a	268,800	Maximum
HFO 1 - P	50%	41,549	20,775	22,000	82,737	-6,000	0,500	n/a	27,700	Maximum

Item Name	Quantity	Unit Mass	Total Mass	Total	Long.	Trans.	Vert. Arm	Unit FSM	Total FSM	FSM Type
		tonne	tonne	Volume	Arm	Arm	m	tonne.m	tonne.m	
HEO 2 - P	50%	41.549	20.775	22.000	82,737	-2.000	0.500	n/a	27,700	Maximum
HFO 3 - ST	50%	41.549	20.775	22.000	82.737	6.000	0.500	n/a	27.700	Maximum
HFO 4 - ST	50%	41,549	20,775	22,000	82,737	2,000	0,500	n/a	27,700	Maximum
HFO 5	50%	135,979	67,990	72,000	87,741	0,000	0,500	n/a	1450,464	Maximum
HFO 6	50%	302,176	151,088	160,000	97,457	0,000	0,500	n/a	3223,253	Maximum
HFO 7	50%	299,102	149,551	158,372	109,897	0,000	0,513	n/a	3223,253	Maximum
WB 2	50%	286,318	143,159	139,667	119,640	0,000	0,597	n/a	3484,935	Maximum
WB 3	50%	205,890	102,945	100,434	129,603	0,000	0,660	n/a	1960,376	Maximum
WB 4	50%	111,146	55,573	54,217	138,530	0,000	0,696	n/a	601,075	Maximum
FW	50%	1075,913	537,957	537,957	149,645	0,000	3,925	n/a	3413,333	Maximum
WB 5	50%	837,086	418,543	408,335	171,281	0,000	5,223	n/a	1897,197	Maximum
WB 6	50%	23,371	11,686	11,401	137,806	-5,659	2,935	n/a	11,019	Maximum
WB 7	50%	23,371	11,686	11,401	137,806	5,659	2,935	n/a	11,019	Maximum
WB 8	50%	27,323	13,661	13,328	128,087	-7,706	3,006	n/a	14,554	Maximum
WB 9	50%	27,323	13,661	13,328	128,087	7,706	3,006	n/a	14,554	Maximum
WB 10	50%	56,094	28,047	27,363	118,684	-8,947	2,558	n/a	35,160	Maximum
WB 11	50%	56,094	28,047	27,363	118,684	8,947	2,558	n/a	35,160	Maximum
WB 13	50%	903,861	451,931	440,908	24,339	0,000	4,267	n/a	4373,391	Maximum
HEEL TANK -P	50%	90,386	45,193	50,876	55,735	-9,596	2,405	n/a	87,702	Maximum
HEEL TANK -ST	50%	90,386	45,193	50,876	55,735	9,596	2,405	n/a	87,702	Maximum
WB 14	50%	55,231	27,616	26,942	46,057	-9,345	3,094	n/a	76,911	Maximum
WB 15	50%	55,231	27,616	26,942	46,057	9,345	3,094	n/a	76,911	Maximum
Total Loadcase			18376,064	2533,622	84,803	0,000	12,265		25879,940	

Πίνακας 12: Κατάσταση Φόρτωσης για 50% Departure

Load case – 10% Arrival

Item Name	Quantity	Unit Mass tonne	Total Mass tonne	Total Volume m^3	Long. Arm m	Trans. Arm m	Vert. Arm m	Unit FSM tonne.m	Total FSM tonne.m	FSM Type
Lightship	1	12957,846	12957,846		82,000	0,000	13,800	0,000	0,000	User Specified
passenger	800	0,075	60,000		101,000	0,000	21,000	0,000	0,000	User Specified
passenger suitcases	800	0,025	20,000		101,000	0,000	21,000	0,000	0,000	User Specified
cars	800	1,250	1000,000		90,000	0,000	19,000	0,000	0,000	User Specified
trucks	30	4,000	120,000		90,000	0,000	8,000	0,000	0,000	User Specified
Trailer	1	450,000	450,000		64,540	0,000	10,200	0,000	0,000	User Specified
crew	500	0,075	37,500		85,000	0,000	18,000	0,000	0,000	User Specified
stores	1	40,000	40,000		101,000	0,000	6,800	0,000	0,000	User Specified
Axle Load	1	15,000	15,000		101,000	0,000	6,800	0,000	0,000	User Specified
WB 1	50%	64,180	32,090	31,307	44,349	0,000	0,996	n/a	1153,573	Maximum
MDO - P	10%	69,388	6,939	8,260	54,567	-1,499	0,381	n/a	268,800	Maximum
MDO - ST	10%	69,388	6,939	8,260	54,567	1,499	0,381	n/a	268,800	Maximum
HFO 1 - P	10%	41,549	4,155	4,400	82,643	-6,000	0,100	n/a	27,700	Maximum
HFO 2 - P	10%	41,549	4,155	4,400	82,643	-2,000	0,100	n/a	27,700	Maximum
HFO 3 - ST	10%	41,549	4,155	4,400	82,643	6,000	0,100	n/a	27,700	Maximum
HFO 4 - ST	10%	41,549	4,155	4,400	82,643	2,000	0,100	n/a	27,700	Maximum
HFO 5	10%	135,979	13,598	14,400	87,679	0,000	0,100	n/a	1450,497	Maximum
HFO 6	10%	302,176	30,218	32,000	97,147	0,000	0,101	n/a	3223,326	Maximum
HFO 7	10%	299,102	29,910	31,674	109,449	0,000	0,111	n/a	3223,211	Maximum
WB 2	50%	286,318	143,159	139,667	119,611	0,000	0,598	n/a	3484,935	Maximum
WB 3	50%	205,890	102,945	100,434	129,572	0,000	0,660	n/a	1960,376	Maximum
WB 4	50%	111,146	55,573	54,217	138,513	0,000	0,696	n/a	601,075	Maximum
FW	10%	1075,913	107,591	107,591	149,571	0,000	1,343	n/a	3413,333	Maximum
WB 5	50%	837,086	418,543	408,335	171,273	0,000	5,224	n/a	1897,197	Maximum
WB 6	50%	23,371	11,686	11,401	137,789	-5,661	2,935	n/a	11,019	Maximum
WB 7	50%	23,371	11,686	11,401	137,789	5,661	2,935	n/a	11,019	Maximum
WB 8	50%	27,323	13,661	13,328	128,059	-7,710	3,006	n/a	14,554	Maximum
WB 9	50%	27,323	13,661	13,328	128,059	7,710	3,006	n/a	14,554	Maximum
WB 10	50%	56,094	28,047	27,363	118,661	-8,949	2,558	n/a	35,160	Maximum
WB 11	50%	56,094	28,047	27,363	118,661	8,949	2,558	n/a	35,160	Maximum
WB 13	50%	903,861	451,931	440,908	24,319	0,000	4,268	n/a	4373,490	Maximum
HEEL TANK -P	10%	90,386	9,039	10,175	56,897	-8,933	1,593	n/a	87,702	Maximum

Item Name	Quantity	Unit Mass tonne	Total Mass tonne	Total Volume m^3	Long. Arm m	Trans. Arm m	Vert. Arm m	Unit FSM tonne.m	Total FSM tonne.m	FSM Type
HEEL TANK -ST	10%	90,386	9,039	10,175	56,897	8,933	1,593	n/a	87,702	Maximum
WB 14	50%	55,231	27,616	26,942	46,021	-9,343	3,094	n/a	76,911	Maximum
WB 15	50%	55,231	27,616	26,942	46,021	9,343	3,094	n/a	76,911	Maximum
Total Loadcase			16296,498	1573,074	84,315	0,000	12,953		25880,107	

Πίνακας 13: Κατάσταση Φόρτωσης για 10% Arrival

Επομένως βρέθηκαν τα βυθίσματα, η διαγωγή και τα μετακεντρικά ύψη GM.

4.3.2. ΕΝΑΛΛΑΚΤΙΚΕΣ ΣΧΕΔΙΑΣΕΙΣ

Όπως έχει αναφερθεί με βάση τα Risk Control Options έγιναν μετατροπές στο πλοίο, προκειμένου να βελτιστοποιηθεί η επιβιωσιμότητά του. Όσον αφορά τις καταστάσεις φόρτωσης αλλάζουν κάθε φορά. Αυτό που παραμένει ίδιο είναι το εκτόπισμα, ενώ αλλάζουν το lightship και η θέση του κέντρου βάρους (KG).

Η κατάσταση φόρτωσης που θα εξεταστεί είναι η αναχώρηση με 100% αναλώσιμα για το σενάριο βλάβης 2 (Damage case 2) που θεωρείται το δυσμενέστερο από το προηγούμνεο κεφάλαιο. Οπότε παρακάτω θα εξεταστούν δύο βασικά χαρακτηριστικά του πλοίου το μετακεντρικό ύψος (GM) και το GZ max που έχουν βρεθεί για κάθε μοντέλο.

Τα αποτελέσματα των κύριων γεωμετρικών χαρακτηριστικών και βασικά υδροστατικά στοιχεία για την κατάσταση φόρτωσης με 100% αναλώσιμα παρατίθεται συνοπτικά στον πίνακα 13 που ακολουθεί.

Damage 2	Beam	Depth	GM - 100% Dep.	GZ max - 100% Dep.	Φ max (deg)	Heel (deg)
ROPAX 1	28,5	21,4	2,674	0,368	39,1	9,8
ROPAX 2	28,5	21,6	2,116	0,343	39,1	10,8
ROPAX 3	28,7	21,4	3,412	0,436	39,1	8,9
ROPAX 4	28,7	21,6	3,067	0,411	39,1	9,2
ROPAX 5	28,7	21,8	2,629	0,387	40	9,8
ROPAX 6	28,7	22	2,248	0,364	40	10,3
ROPAX 7	28,9	21,4	4,214	0,505	39,1	8,1
ROPAX 8	28,9	21,6	3,723	0,479	39,1	8,6
ROPAX 9	28,9	21,8	3,382	0,455	40	8,8
ROPAX10	28,9	22	3,023	0,431	40	9,2

Πίνακας 14: Βασικά στοιχεία της κατάστασης αναχώρησης με 100% αναλώσιμα για Damage 2

Όπως γίνεται αντιληπτό από τα στοιχεία του πίνακα, το πλάτος Β είναι το μέγεθος που παίζει καθοριστικό παράγοντα στην ευστάθεια του πλοίου, με αισθητή αύξηση του GZ max αλλά και αρκετά μεγάλη αύξηση του μετακεντρικού κέντρου GM. Έτσι υπάρχει μείωση της γωνίας εγκάρσιας κλίσης (Heel) όπώς φαίνεται και στον πίνακα 13 στα ROPAX 3 και ROPAX 7 που γίνεται η αύξηση του πλάτους. Παρακάτω γίνεται η σύγκριση των βασικών υδροστατικών χαρακτηριστικών του GM και του GZ max.

Διαγραμμα 2: Σύγκριση GM των εναλλακτικών σχεδιάσεων

Η αύξηση του κοίλου επιφέρει σημαντική αύξηση του κέντρου βάρους του πλοίου με αποτέλεσμα να μειώνεται το GM.

Διαγραμμα 3: Σύγκριση GZ max των εναλλακτικών σχεδιάσεων

Στο παραπάνω διάγραμμα μπορούμε να δούμε ότι με την αύξηση του πλάτους αυξάνεται το GZ max. Αντίθετα η μικρή αύξηση του κοίλου μειώνει ελάχιστα το GZ max. Καθώς αυξάνουμε και άλλο το κοίλο έχουμε πιο δραστική μείωση του GZ max.

Πρέπει να προσέξουμε το γεγονός ότι η υπερβολική αύξηση του πλάτους μπορεί να επηρεάσει αρνητικά την ταχύτητα του σκάφους ειδικά σε συνθήκες υψηλής αντίστασης κυμάτων αλλά και όχι μόνο.

Βέβαια με αύξηση του πλάτους παρατηρείται μεγάλη αύξηση του μετακεντρικού ύψους GM που έχει ως αποτέλεσμα την μείωση της γωνίας εγκάρσιας κλίσης όπου έχει ιδιαίτερη σημασία καθώς σχετίζεται άμεσα με την ασφάλεια του.

4.3.3. ΑΞΙΟΛΟΓΗΣΗ

Συμπερασματικά το πλάτος επηρεάζει άμεσα την ευστάθεια του πλοίου αφού έχουμε ταυτόχρονη αύξηση του GZ max και του GM. Παρακάτω παρουσιάζεται το διάγραμμα του GZ max σε συνάρτηση με το πλάτος του πλοίου.

Διαγραμμα 4: GZ max - B

Άρα το ROPAX 7 είναι η εναλλακτική σχεδίαση που μας βελτιστοποιεί την ευστάθεια μετά από βλάβη.

Στο σημείο αυτό εξετάζονται σενάρια βλάβης που έχουν αναφερθεί, για τα πλοία ROPAX1 και ROPAX7 που έχουμε την μεγαλύτερη τροποποίηση πλάτους. Έτσι θα συγκρίνουμε τις καμπύλες ευστάθειας μετά από βλάβη για την κατάσταση αναχώρησης με 100% αναλώσιμα και για τα δύο σενάρια βλάβης που έχουν αναφερθεί.

Εικόνα 18: Καμπύλη GZ για ROPAX 1 και για ROPAX 7 (Damage 2)

Βλέπουμε ότι με την αύξηση του πλάτους έχουμε αύξηση του GZ max (GZ max= 0,368 σε 0,505m), έχουμε μια μικρή αύξηση της γωνίας απώλειας ευστάθειας (της γωνίας κλίσης στην οποία ο GZ μηδενίζεται) (φv= 54 deg σε 56 deg) και σε συνδυασμό της μείωσης της γωνίας ισορροπίας, δηλαδή απο 10,2 deg σε 8,8 deg, έχουμε αύξηση της ευστάθειας.

Εικόνα 19: Καμπύλη GZ για ROPAX 1 και για ROPAX 7 (Damage 1)

Βλέπουμε ότι με την αύξηση του πλάτους έχουμε αύξηση του GZ max (GZ max= 1,149 σε 1,258), έχουμε μια μικρή αύξηση της γωνίας απώλειας ευστάθειας (της γωνίας κλίσης στην οποία ο GZ μηδενίζεται) (φν= 57 deg σε 60 deg) και μείωση της γωνίας ισορροπίας, δηλαδή απο 6,7 deg σε 6,4 deg. Από τα παραπάνω συμπεραίνουμε ότι έχουμε αύξηση της ευστάθειας.

4.4 ΠΙΘΑΝΟΘΕΩΡΗΤΙΚΟ ΜΟΝΤΕΛΟ

Σε αυτό το κεφάλαιο μελετήθηκε το πιθανοθεωρητικό μοντέλο, για την εύρεση του Α – Index σε όλες τις εναλλακτικές σχεδιάσεις του πλοίου αναφοράς. Έτσι ώστε να επιτευχθεί δείκτης Α αρκετά υψηλότερος του αρχικού.

4.4.1. ΚΑΤΑΣΤΑΣΕΙΣ ΦΟΡΤΩΣΗΣ

Τα βυθίσματα με τα οποία έγινε ο υπολογισμός του δείκτη υποδιαίρεσης Α αντιστοιχούν στο μέγιστο βύθισμα του πλοίου (Deepest Subdivision Draught, ds), το ελάχιστο βύθισμα του πλοίου (Lightest Subdivision Draught, dl) και το ενδιάμεσο βύθισμα (Partial Subdivision Draught, dp).

Η διαδικασία αυτή πραγματοποιήθηκε στο υποσύστημα Load case window του Maxsurf. Οι πίνακες που ακουλουθούν είναι η εισαγωγή των δεδομένων στο πρόγραμμα. Θεωρούμε ότι το εκτόπισμα παραμένει το ίδιο ανεξάρτητα από τις τροποποιήσεις στο πλοίο. Οι καταστάσεις για το EU ROPAX 3000_1 φαίνονται στους πίνακες που ακολουθούν.

Item Name	Quantity	Unit Mass	Total Mass	Total	Long.	Trans.	Vert. Arm	Unit FSM	Total FSM	FSM Type
		tonne	tonne	Volume	Arm	Arm	m	tonne.m	tonne.m	
				m^3	m	m				
Lightship	1	12957,846	12957,846		82,000	0,000	13,800	0,000	0,000	User Specified
passenger	1500	0,075	112,500		101,000	0,000	21,000	0,000	0,000	User Specified
passenger suitcases	1500	0,025	37,500		101,000	0,000	21,000	0,000	0,000	User Specified
cars	1000	1,250	1250,000		90,000	0,000	19,000	0,000	0,000	User Specified
trucks	50	4,000	200,000		90,000	0,000	8,000	0,000	0,000	User Specified
Trailer	1	1510,000	1510,000		64,540	0,000	10,200	0,000	0,000	User Specified
crew	500	0,075	37,500		85,000	0,000	18,000	0,000	0,000	User Specified
stores	1	40,000	40,000		101,000	0,000	6,800	0,000	0,000	User Specified
Axle Load	1	15,000	15,000		101,000	0,000	6,800	0,000	0,000	User Specified
WB 1	0%	57,762	0,000	0,000	40,085	0,000	0,000	n/a	0,000	Maximum
MDO - P	100%	62,449	62,449	74,344	54,016	-3,430	1,256	n/a	0,000	Maximum
MDO - ST	100%	62,449	62,449	74,344	54,016	3,430	1,256	n/a	0,000	Maximum
HFO 1 - P	98%	37,394	37,394	39,600	82,750	-6,000	1,000	n/a	0,000	Maximum
HFO 2 - P	98%	37,394	37,394	39,600	82,750	-2,000	1,000	n/a	0,000	Maximum
HFO 3 - ST	98%	37,394	37,394	39,600	82,750	6,000	1,000	n/a	0,000	Maximum
HFO 4 - ST	98%	37,394	37,394	39,600	82,750	2,000	1,000	n/a	0,000	Maximum
HFO 5	98%	122,381	122,381	129,600	87,750	0,000	1,000	n/a	0,000	Maximum
HFO 6	98%	271,958	271,958	288,000	97,500	0,000	1,000	n/a	0,000	Maximum
HFO 7	98%	269,192	269,192	285,070	109,970	0,000	1,009	n/a	0,000	Maximum
WB 2	0%	257,686	0,000	0,000	115,057	0,000	0,000	n/a	0,000	Maximum
WB 3	0%	185,301	0,000	0,000	125,057	0,000	0,000	n/a	0,000	Maximum
WB 4	0%	100,031	0,000	0,000	135,085	0,000	0,000	n/a	0,000	Maximum
FW	100%	968,322	968,322	968,322	149,768	0,000	6,106	n/a	0,000	Maximum
WB 5	100%	753,378	753,378	735,003	170,731	0,000	8,285	n/a	0,000	Maximum
WB 6	0%	21,034	0,000	0,000	135,043	-3,333	1,441	n/a	0,000	Maximum
WB 7	0%	21,034	0,000	0,000	135,043	3,333	1,441	n/a	0,000	Maximum
WB 8	0%	24,591	0,000	0,000	125,057	-4,667	1,435	n/a	0,000	Maximum
WB 9	0%	24,591	0,000	0,000	125,057	4,667	1,435	n/a	0,000	Maximum
WB 10	0%	50,484	0,000	0,000	115,057	-5,334	0,650	n/a	0,000	Maximum
WB 11	0%	50,484	0,000	0,000	115,057	5,334	0,650	n/a	0,000	Maximum
WB 13	100%	813,475	813,475	793,634	24,059	0,000	5,583	n/a	0,000	Maximum
HEEL TANK -P	100%	81,348	81,348	91,577	55,437	-9,966	3,061	n/a	0,000	Maximum
HEEL TANK -ST	100%	81,348	81,348	91,577	55,437	9,966	3,061	n/a	0,000	Maximum
WB 14	0%	49,708	0,000	0,000	49,943	-5,334	1,754	n/a	0,000	Maximum
WB 15	0%	49,708	0,000	0,000	49,943	5,334	1,754	n/a	0,000	Maximum
Total Loadcase			19796,222	3689,870	86,007	0,000	12,221		0,000	

Load case – Full Load Summer Departure (ds)

Πίνακας 15: Κατάσταση Φόρτωσης για το Deepest Subdivision Draught (ds)

Item Name	Quantity	Unit Mass	Total Mass	Total	Long.	Trans.	Vert. Arm	Unit FSM	Total FSM	FSM Type
		tonne	tonne	Volume	Arm	Arm	m	tonne.m	tonne.m	
				m^3	m	m				
Lightship	1	12957,846	12957,846		82,000	0,000	13,800	0,000	0,000	User Specified
passenger	800	0,075	60,000		101,000	0,000	21,000	0,000	0,000	User Specified
passenger suitcases	800	0,025	20,000		101,000	0,000	21,000	0,000	0,000	User Specified
cars	800	1,250	1000,000		90,000	0,000	19,000	0,000	0,000	User Specified
trucks	30	4,000	120,000		90,000	0,000	8,000	0,000	0,000	User Specified
Trailer	1	450,000	450,000		64,540	0,000	10,200	0,000	0,000	User Specified
crew	500	0,075	37,500		85,000	0,000	18,000	0,000	0,000	User Specified
stores	1	40,000	40,000		101,000	0,000	6,800	0,000	0,000	User Specified
Axle Load	1	15,000	15,000		101,000	0,000	6,800	0,000	0,000	User Specified

Load case - Summer Arrival Partial (dp)

Item Name	Quantity	Unit Mass	Total Mass	Total Volume	Long. Arm	Trans. Arm	Vert. Arm	Unit FSM	Total FSM	FSM Type
		tonne	tonne	m^3	m	m		torme.im	tonno.ini	
WB 1	100%	57,762	57,762	56,353	44,385	0,000	1,397	n/a	0,000	Maximum
MDO - P	50%	62,449	31,225	37,172	54,270	-2,907	0,857	n/a	268,800	Maximum
MDO - ST	50%	62,449	31,225	37,172	54,270	2,907	0,857	n/a	268,800	Maximum
HFO 1 - P	49%	37,394	18,323	19,404	82,760	-6,000	0,490	n/a	27,700	Maximum
HFO 2 - P	49%	37,394	18,323	19,404	82,760	-2,000	0,490	n/a	27,700	Maximum
HFO 3 - ST	49%	37,394	18,323	19,404	82,760	6,000	0,490	n/a	27,700	Maximum
HFO 4 - ST	49%	37,394	18,323	19,404	82,760	2,000	0,490	n/a	27,700	Maximum
HFO 5	49%	122,381	59,967	63,504	87,756	0,000	0,490	n/a	1450,455	Maximum
HFO 6	49%	271,958	133,260	141,120	97,532	0,000	0,490	n/a	3223,234	Maximum
HFO 7	49%	269,192	131,904	139,684	109,971	0,000	0,503	n/a	3223,234	Maximum
WB 2	100%	257,686	257,686	251,401	119,803	0,000	1,078	n/a	0,000	Maximum
WB 3	100%	185,301	185,301	180,782	129,698	0,000	1,131	n/a	0,000	Maximum
WB 4	100%	100,031	100,031	97,591	138,591	0,000	1,157	n/a	0,000	Maximum
FW	100%	968,322	968,322	968,322	149,768	0,000	6,106	n/a	0,000	Maximum
WB 5	100%	753,378	753,378	735,003	170,732	0,000	8,285	n/a	0,000	Maximum
WB 6	100%	21,034	21,034	20,521	138,055	-5,880	3,421	n/a	0,000	Maximum
WB 7	100%	21,034	21,034	20,521	138,055	5,880	3,421	n/a	0,000	Maximum
WB 8	100%	24,591	24,591	23,991	128,613	-7,898	3,469	n/a	0,000	Maximum
WB 9	100%	24,591	24,591	23,991	128,613	7,898	3,469	n/a	0,000	Maximum
WB 10	100%	50,484	50,484	49,253	119,086	-9,225	3,179	n/a	0,000	Maximum
WB 11	100%	50,484	50,484	49,253	119,086	9,225	3,179	n/a	0,000	Maximum
WB 13	100%	813,475	813,475	793,634	24,059	0,000	5,583	n/a	0,000	Maximum
HEEL TANK -P	50%	81,348	40,674	45,788	55,796	-9,599	2,405	n/a	87,702	Maximum
HEEL TANK -ST	50%	81,348	40,674	45,788	55,796	9,599	2,405	n/a	87,702	Maximum
WB 14	100%	49,708	49,708	48,496	45,664	-9,708	3,513	n/a	0,000	Maximum
WB 15	100%	49,708	49,708	48,496	45,664	9,708	3,513	n/a	0,000	Maximum
Total Loadcase			18670,156	3955,453	88,334	0,000	12,046		8720,724	

Πίνακας 16: Κατάσταση Φόρτωσης για το Partial Subdivision Draught (dp)

Load case – Ballast Arrival Lightest (dL)

Item Name	Quantity	Unit Mass	Total Mass	Total	Long.	Trans.	Vert. Arm	Unit FSM	Total FSM	FSM Type
		tonne	tonne	Volume	Arm	Arm	m	tonne.m	tonne.m	
L indutedain	4	40057.040	40057.040	m^3	m		40.000	0.000	0.000	Lis an One siffs d
Lightship	1	12957,846	12957,846		82,000	0,000	13,800	0,000	0,000	User Specified
passenger	800	0,075	60,000		101,000	0,000	21,000	0,000	0,000	User Specified
passenger suitcases	800	0,025	20,000		101,000	0,000	21,000	0,000	0,000	User Specified
cars	0	1,250	0,000		90,000	0,000	19,000	0,000	0,000	User Specified
trucks	0	4,000	0,000		90,000	0,000	8,000	0,000	0,000	User Specified
Trailer	0	1510,000	0,000		64,540	0,000	10,200	0,000	0,000	User Specified
crew	500	0,075	37,500		85,000	0,000	18,000	0,000	0,000	User Specified
stores	1	40,000	40,000		101,000	0,000	6,800	0,000	0,000	User Specified
Axle Load	1	15,000	15,000		101,000	0,000	6,800	0,000	0,000	User Specified
WB 1	100%	57,762	57,762	56,353	44,385	0,000	1,397	n/a	0,000	Maximum
MDO - P	50%	62,449	31,225	37,172	54,229	-2,903	0,857	n/a	268,800	Maximum
MDO - ST	50%	62,449	31,225	37,172	54,229	2,903	0,857	n/a	268,800	Maximum
HFO 1 - P	49%	37,394	18,323	19,404	82,743	-6,000	0,490	n/a	27,700	Maximum
HFO 2 - P	49%	37,394	18,323	19,404	82,743	-2,000	0,490	n/a	27,700	Maximum
HFO 3 - ST	49%	37,394	18,323	19,404	82,743	6,000	0,490	n/a	27,700	Maximum
HFO 4 - ST	49%	37,394	18,323	19,404	82,743	2,000	0,490	n/a	27,700	Maximum
HFO 5	49%	122,381	59,967	63,504	87,745	0,000	0,490	n/a	1450,451	Maximum
HFO 6	49%	271,958	133,260	141,120	97,475	0,000	0,490	n/a	3223,224	Maximum
HFO 7	49%	269,192	131,904	139,684	109,914	0,000	0,503	n/a	3223,224	Maximum
WB 2	100%	257,686	257,686	251,401	119,803	0,000	1,078	n/a	0,000	Maximum
WB 3	100%	185,301	185,301	180,782	129,698	0,000	1,131	n/a	0,000	Maximum
WB 4	100%	100,031	100,031	97,591	138,591	0,000	1,157	n/a	0,000	Maximum
FW	39%	968,322	377,646	377,646	149,642	0,000	3,336	n/a	3413,333	Maximum
WB 5	100%	753,378	753,378	735,003	170,730	0,000	8,285	n/a	0,000	Maximum
WB 6	100%	21,034	21,034	20,521	138,055	-5,880	3,421	n/a	0,000	Maximum
WB 7	100%	21,034	21,034	20,521	138,055	5,880	3,421	n/a	0,000	Maximum
WB 8	100%	24,591	24,591	23,991	128,613	-7,898	3,469	n/a	0,000	Maximum
WB 9	100%	24,591	24,591	23,991	128,613	7,898	3,469	n/a	0,000	Maximum

Item Name	Quantity	Unit Mass	Total Mass	Total	Long.	Trans.	Vert. Arm	Unit FSM	Total FSM	FSM Type
		tonne	tonne	Volume	Arm	Arm	m	tonne.m	tonne.m	
				m^3	m	m				
WB 10	100%	50,484	50,484	49,253	119,086	-9,225	3,179	n/a	0,000	Maximum
WB 11	100%	50,484	50,484	49,253	119,086	9,225	3,179	n/a	0,000	Maximum
WB 13	100%	813,475	813,475	793,634	24,059	0,000	5,583	n/a	0,000	Maximum
HEEL TANK -P	50%	81,348	40,674	45,788	55,750	-9,597	2,405	n/a	87,702	Maximum
HEEL TANK -ST	50%	81,348	40,674	45,788	55,750	9,597	2,405	n/a	87,702	Maximum
WB 14	100%	49,708	49,708	48,496	45,664	-9,708	3,513	n/a	0,000	Maximum
WB 15	100%	49,708	49,708	48,496	45,664	9,708	3,513	n/a	0,000	Maximum
Total Loadcase			16509,479	3364,777	86,668	0,000	11,854		12134,034	

Πίνακας 17: Κατάσταση Φόρτωσης για το Lightest Subdivision Draught (dl)

Επομένως βρέθηκαν βυθίσματα, διαγωγή και τα μετακεντρικά ύψη GM.

4.4.2. ΕΦΑΡΜΟΓΗ ΠΙΘΑΝΟΘΕΩΡΗΤΙΚΟΥ ΜΟΝΤΕΛΟΥ

Αρχικά, επιλέγουμε το τύπο του πλοίου μας (passenger/ROPAX) και παραμέτρους όπως το N1, ο αριθμός των ανθρώπων πάνω στο πλοίο, για τους οποίους παρέχονται σωσίβιες λέμβοι (N1 = 0, διότι δεν υπάρχουν σωσίβιες λέμβοι πάνω στο πλοίο, αλλά εφαρμόζεται το σύστημα **MES – Marine Evacuation System**).Το MES είναι ένα σύστημα εκκένωσης με φουσκωτές σωσίβιες σχεδίες και κατακόρυφα κανάλια που διογκώνονται αυτόματα. (SOLAS, 2009)

N2, ο αριθμός των ανθρώπων (συμπεριλαμβανομένων των αξιωματικών και του πληρώματος) που επιτρέπονται πάνω στο πλοίο, ανεξάρτητα από τις σωσίβιες λέμβους.

Np = N1 + 2*N2, ο αριθμός των ανθρώπων, με βάση τον οποίο υπολογίζεται ο απαιτούμενος δείκτης υποδιαίρεσης R.

 ${\rm Mε}\,R = 1 - \frac{_{5000}}{_{L_s+2.5N_p+15225}} \; (και \, L_s, το \, μήκος υποδιαίρεσης)$

Στην συνέχεια, επιλέγουμε τις καταστάσεις κατάκλυσης σε αυτή την μέθοδο διαλέγουμε όλες τις πιθανές βλάβες που μπορει να συμβούν και επιλέγουμε επίσης την διαχωρητότητα Ps, διαχωρητότητα για το Deepest Subdivision Draught, Pp, διαχωρητότητα για το Partial και Pl, διαχωρητότητα για το Lightest Subdivision Draught (Ps = 0.9, Pp = 0,9 και Pl = 0.95). Οι τιμές αυτές επιλέχθηκαν από την βιβλιογραφία. (SOLAS, 2009) Τα διαμερίσματα που έχουν χαρακτηριστεί ως Ro-Ro spaces θεωρούμε ότι δεν έχουν την ίδια διαχωρητότητα και στις τρεις καταστάσεις φόρτωσης. Για το λόγο αυτό ο ορισμός της διαχωρητότητας αυτών των χώρων για την εκάστοτε φόρτωση έγινε παραμετρικά.

Το πρόγραμμα εκτελεί για πιθανή κατάκληση διαμερισμάτων εώς εγκάρσια ζημιά B/5 και δεύτερο σενάριο εώς B/2 για ζημιά εώς και δύο διαδοχικών διαμερισμάτων. Αξίζει να σημειωθεί ότι σύμφωνα με τη μεθοδολογία η συνεισφορά της κατάστασης Lightest είναι υποβιβασμένη σε σχέση με των άλλων δύο με συντελεστή βαρύτητας ίσο με 0,2 με βάση την βιβλιογραφία. (SOLAS, 2009)

4.4.3. ΥΠΟΔΙΑΙΡΕΣΗ ΤΟΥ ΠΛΟΙΟΥ

Πραγματοποιήθηκε η δημιουργία των ζωνών υποδιαίρεσης (damage zones) με βάση τα καταστρώματα, τα διαμερίσματα και τις εγκάρσιες φρακτές. Καθορίζονται οι ζώνες που θα χρησιμοποιηθούν για τα σενάρια βλάβης στο πιθανοθεωρητικό μοντέλο.

Ο τρόπος για την δημιουργία της υποδιαίρεσης αναφέρεται παρακάτω.

Επιλέγουμε εγκάρσια στο πλοίο την θέση των ζωνών υποδιαίρεσης με βάση τις εγκάρσιες φρακτές. Μετά το χωρίζουμε σύμφωνα με τις διαμήκες φρακτές και με βάση τα καταστρώματα του πλοίου.

Η εισαγωγή των ζωνών υποδιαίρεσης όπως φαίνεται στον πίνακα 18 έγινε μέσω του Maxsurf.

	Name	Aft	Fwd	Length	Centre		Zones	Shell half-beam	Num. L.Bhds	b 1
		m	m	m	m	4	4			m
1	Zone 1	-5,000	5,000	10,000	0,000	1	1 adjacent zone		-	
2	Zone 2	5,000	17,500	12,500	11,250	2	Zone 1, 1	14,250	0	n/a
3	Zone 3	17,500	30,000	12,500	23,750	3	Zone 2, 1	14,250	0	n/a
4	Zone 4	30,000	40,000	10,000	35,000	4	Zone 3, 1	14,250	1	6,250
5	Zone 5	40 000	50,000	10,000	45 000	5	Zone 4, 1	14,250	1	6,250
6	Zono G	50,000	60,000	10,000	EE 000	6	Zone 5, 1	14,250	1	6,250
0	Zone o	50,000	00,000	10,000	03,000	7	Zone 6, 1	14,250	1	6,250
1	Zone /	60,000	75,000	15,000	67,500	8	Zone 7, 1	14,250	1	6,250
8	Zone 8	75,000	90,000	15,000	82,500	9	Zone 8, 1	14.250	1	6.250
9	Zone 9	90,000	102,500	12,500	96,250	10	Zone 9, 1	14.250	1	6.250
10	Zone 10	102,500	115,000	12,500	108,750	11	Zone 10, 1	14,250	1	6,250
11	Zone 11	115,000	125,000	10,000	120,000	12	Zone 11, 1	14.250	1	6.250
12	Zone 12	125,000	135,000	10,000	130,000	13	Zone 12, 1	14,250	1	6.250
13	Zone 13	135,000	145,000	10,000	140,000	14	Zone 13, 1	14,250	1	6,250
14	Zone 14	145,000	155,000	10,000	150,000	15	Zone 14, 1	14,250	0	n/a
15	Zone 15	155,000	165,000	10,000	160,000	16	Zone 15, 1	14,250	0	n/a
16	Zone 16	165,000	185,000	20,000	175,000	17	Zone 16, 1	14,250	0	n/a

	7	New Dealer	H 1	H 2	H 3	H 4
	Zones	Num. Decks	m	m	m	m
1	1 adjace					
2	Zone 1, 1	2	10,000	15,950	n/a	n/a
3	Zone 2, 1	2	10,000	15,950	n/a	n/a
4	Zone 3, 1	2	10,000	15,950	n/a	n/a
5	Zone 4, 1	3	4,250	10,000	15,950	n/a
6	Zone 5, 1	3	4,250	10,000	15,950	n/a
7	Zone 6, 1	3	4,250	10,000	15,950	n/a
8	Zone 7, 1	4	2,000	10,000	15,950	4,250
9	Zone 8, 1	4	2,000	10,000	15,950	4,250
10	Zone 9, 1	3	4,250	10,000	15,950	n/a
11	Zone 10,	3	4,250	10,000	15,950	n/a
12	Zone 11,	3	4,250	10,000	15,950	n/a
13	Zone 12,	3	4,250	10,000	15,950	n/a
14	Zone 13,	3	4,250	10,000	15,950	n/a
15	Zone 14,	2	10,000	15,950	n/a	n/a
16	Zone 15,	2	10,000	15,950	n/a	n/a
17	Zone 16,	1	15,950	n/a	n/a	n/a

Πίνακας 18: Ζώνες Υποδιαίρεσης του πλοίου αναφοράς

Εικόνα 20: Απεικόνιση των Damage Zones για το πλοίο αναφοράς

4.4.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΧΕΔΙΑΣΕΩΝ

Με βάση τα Risk Control Options (RCO) έγιναν ορισμένες μετατροπές στο πλοίο αναφοράς, προκειμένου να μελετηθεί και να βελτιστοποιηθεί η επιβιωσημότητα. Η μέθοδος που εφαρμόστηε για αυτό το σκοπό, στο συγκεκριμένο κεφάλαιο, είναι το πιθανοθεωρητικό μοντέλο της SOLAS 2009.

Από τις καταστάσεις φόρτωσης κρατάμε σταθερό το εκτόπισμα και για τα τρία βυθίσματα ds, dp, dl.

Στον παρακάτω πίνακα παρατίθενται τα αποτελέσματα για το πλοίο αναφοράς. Αναγράφεται το μήκος υποδιαίρεσης, το πλάτος, ο αριθμός των ατόμων, ο απαιτούμενος δείκτης R, ο επιτευχθείς δείκτης A.

ATTAINED AND REQUIRED SUBDIVISION INDEX						
μήκος υποδιαίρεσης	190 m					
Το πλάτος της γραμμής φόρτωσης	28,5 m					
Αριθμός ατόμων Ν1	0					
Αριθμός ατόμων Ν2	2000					
Επιθυμητός δείκτης R	0,8033					
Επιτευχθείς δείκτης Α	0,855121					

A-Index για το πλοίο αναφοράς

Πίνακας 19: Α - Index για το πλοίο ROPAX 1

Ο επιτευχθείς δείκτης υποδιαίρεσης κρίνεται ικανοποιητικός καθώς A>R.

Στο παράθυρο αποτελεσμάτων στο πρόγραμμα maxsurf για κάθε συνδυασμό βυθισμάτων και damaged zone έχουμε αναφορά της κατάστασης για την ολοκλήρωση της ανάλυσης με επιτυχία. Στην επόμενη στήλη μια λίστα με τα διαμερίσματα και τις δεξαμενές που έχουν υποστεί κατάκλυση. Στήλες με τους παράγοντες πιθανότητας για διαμήκη, εγκάρσια και κατακόρυφη εκτεταμένη βλάβη. Τις ενδιάμεσες τιμές των κριτηρίων των καμπύλων GZ και τέλος ο υπολογισμός του παράγοντα s (s factor). Έτσι υπολογίζεται ο επιτευχθείς δείκτης υποδιαίρεσης για τις καταστάσεις φόρτωσης μέγιστο βύθισμα του πλοίου (Deepest Subdivision Draught, ds), το ελάχιστο βύθισμα του πλοίου (Lightest Subdivision Draught, dl) και το ενδιάμεσο βύθισμα (Partial Subdivision Draught, dp). Στο τέλος του παραθύρου βλέπουμε τον συνολικό επιτευχθείς δείκτης Α (A – Index) ο οποίος υπολογίζεται από όλες τις καταστάσεις φόρτωσης μαζί για 40% του μέγιστου βυθισματος του πλοίου, 40% για το ενδιάμεσο βύθισμα του πλοίου.

Ο υπολογισμός για τον δείκτη Α γίνεται σε κάθε εναλλακτική σχεδίαση και ήταν μια αρκετά χρονοβόρα διαδικασία αφού εξετάζονται όλες οι πιθανές βλάβες που μπορούν να συμβούν για να υπολογιστεί ο επιτευχθείς δείκτης υποδιαίρεσης Α.

Στον παρακάτω πίνακα παρουσιάζεται το αποτέλεσμα του Α – Index για κάθε εναλλακτική σχεδίαση με βάση το πιθανοθεωρητικό μοντέλο της SOLAS 2009 καθώς επίσης το βύθισμα (Τ) σε κάθε κατάσταση φόρτωσης και το μετακεντρικό ύψος (GM) που υπολογίζονται βρίσκοντας την θέση ισορροπίας του πλοίου κάθε φορά από την επιλογή equilibrium στο πρόγραμμα maxsurf stability.

Version	Beam	Depth	Ts	Тр	TI	GMs	GMp	GMI	A - SOLAS
ROPAX1	28,5	21,4	7,037	6,845	6,173	2,437	2,06	2,531	0,85512
ROPAX2	28,5	21,6	7,052	6,859	6,185	2,403	2,01	2,475	0,85434
ROPAX3	28,7	21,4	7,002	6,811	6,142	2,616	2,23	2,716	0,8769
ROPAX4	28,7	21,6	7,016	6,825	6,154	2,58	2,179	2,661	0,87637
ROPAX5	28,7	21,8	7,03	6,838	6,167	2,546	2,128	2,606	0,87571
ROPAX6	28,7	22	7,044	6,852	6,179	2,508	2,077	2,552	0,87489
ROPAX7	28,9	21,4	6,966	6,777	6,112	2,797	2,401	2,905	0,89798
ROPAX8	28,9	21,6	6,98	6,791	6,124	2,761	2,348	2,849	0,89759
ROPAX9	28,9	21,8	6,995	6,804	6,136	2,722	2,298	2,795	0,89716
ROPAX10	28,9	22	7,008	6,818	6,148	2,682	2,246	2,74	0,89666

Πίνακας 20: A - Index για τις εναλλακτικές σχεδιάσεις

Στο παρακάτω σχήμα παρουσιάζεται ο δείκτης Α με το GMs που αντιστοιχεί για μέγιστο βύθισμα του πλοίου (Deepest Subdivision Draught, ds).

Διάγραμμα 5: A–Index - GMs

Παρατηρούμε πως το πλάτος είναι το μέγεθος που επηρεάζει άμεσα την ευστάθεια του πλοίου. Με μικρή αλλαγή του κοίλου έχουμε μικρή πτώση του δείκτη Α και σε περίπτωση μεγάλης αύξησης του κοίλου ο δείκτης Α παρουσιάζει πιο δραστική πτώση λόγω της μείωσης του GM.

Στο διάγραμμα που ακολουθεί φαίνονται οι τιμές του δείκτη Α.

Διάγραμμα 6: Α - Index για εναλλακτικές σχεδιάσεις

Στο **ROPAX 2** παρατηρείται ότι με την αύξηση του ύψους του καταστρώματος στεγανών φρακτών, μειώνεται και ο Επιτευχθείς Δείκτης Υποδιαίρεσης A-Index.

Με την τροποποίηση του κοίλου αλλάζουν το μετακεντρικό ύψος (GM) που μειώνεται, το βύθισμα το οποίο αυξάνεται κάτι που δικαιολογεί την μείωση του GZ max και στις 3 καταστάσεις φόρτωσης άρα και την μείωση του A-Index.

Στο **ROPAX 3** έχουμε μία αύξηση του A-Index όπου η διαφορά είναι αρκετά μεγάλη. Αυτό οφείλεται στο γεγονός ότι η αλλαγή που έγινε στο πλάτος Β έπαιξε καθοριστικό ρόλο για το A-Index.

Με την τροποποίηση του πλάτους αλλάζουν το μετακεντρικό ύψος που αυξάνεται, το βύθισμα το οποίο μειώνεται κάτι που δικαιολογεί και την μεγάλη αλλαγή του A-Index.

Στο **ROPAX 4** έχουμε μια μικρή πτώση του A-Index. Εδώ το πλάτος παραμένει ίδιο ενώ το κοίλο αυξάνει που όπως είδαμε μας μειώνει το δείκτη υποδιαίρεσης. Το κοίλο του πλοίου D είναι ένα μέγεθος που δεν είναι τόσο καθοριστικό για το A-Index.

Με την μετατροπή του κοίλου έχουμε μικρή αύξηση των βυθισμάτων και μικρή μείωση του GM κάτι που οδηγεί στην πτώση του δείκτη.

Αντίστοιχα και στα **ROPAX 5 και 6** που έχουμε πιο δραστική μείωση του GM έχουμε και πιο δραστική μείωση του δείκτη A-Index. Η ελάττωση των GM είναι αρκετά μεγάλη και η αλλαγή του κοίλου δεν προσδίδει καμία ουσιαστική θετική αλλαγή στον δείκτη.

Στο **ROPAX 7** που έχουμε αύξηση του πλάτους όπως και στο ROPAX 3 έχουμε αύξηση του A-Index.

Αντίστοιχα όπως και στα ROPAX 4, 5 και 6 στα **ROPAX 8, 9 και 10** έχουμε πτώση του δείκτη λόγω της δραστικής μείωσης του GM.

4.5 ΥΠΟΛΟΓΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ ΑΠΩΛΕΙΑΣ ΖΩΗΣ (PLL)

Στα πλαίσια της παρούσας διπλωματικής εργασίας σκοπός ήταν η βελτιστοποίηση επιβατηγού – οχηματαγωγού πλοίου. Για τη αξιολόγηση της ασφάλειας των επιβατών στο πλοίο λαμβάνεται υπόψη η πιθανότητα απώλειεας ζωής, σε συνάρτηση με τον επιτυγχανόμενο δείκτη υποδιαίρεσης Α. Ο υπολογισμός της απώλειας ζωής επιβατών (PLL) εξαρτάται από τους παράγοντες που αναφέρονται στον πίνακα παρακάτω και δίνεται από τον τύπο που παρατίθεται. Σε αυτή τη μελέτη, αυτοί οι παράγοντες προέκυψαν από μια στατιστική ανάλυση ατυχημάτων στα οποία εμπλέκονται σκάφη Ro-Pax που εκτελούν δρομολόγια σε ευρωπαϊκά ύδατα. (Roussou, 2015)

Παράγοντες που επηρεάζουν το PLL

Συχνότητα σύγκρουσης για πλοία Ro-Pax > 1.000 GT	Рс	7,778*10^-3
Πιθανότητα πλοίο να χτυπηθεί	Ps	0,689655
Περιοχή λειτουργίας τη στιγμή του ατυχήματος	Pr	Σε πορεία (4%)
	PI	Σε περιορισμένα ύδατα(23%)
	Pt	Σε λιμάνι (73%)
Πιθανότητα εισροής υδάτων όταν το πλοίο πλέει ή είναι σε περιορισμένα ύδατα	P1	0,423077
Πιθανότητα εισροής υδάτων όταν το πλοίο βρίσκεται σε λιμάνι.	P2	0,117647
Πιθανότητα αργής/γρήγορης βύθισης	Psl/Pf	0,5/0,5
Απώλειες σε περίπτωση αργής/γρήγορης βύθισης	Fs/Ff	5%/80%
Ποσοστό συνολικού αριθμού επιβατών στο πλοίο		75%
Πιθανότητα ανατροπής/ / βύθισης		1- A
Διάρκεια ζωής πλοίου (χρόνια)	Lt	30
Μέγιστος αριθμός επιβαινόντων στο πλοίο	Ν	2000

Πίνακας 21: Παράγοντες που επηρεάζουν το PLL (Roussou, 2015, p. 40)

Το PLL δίνεται από τον τύπο:

PLL = [Pf * (Pr * P1 + Pl * P1 + Pt * P2) * Pc * Ps * (1 - A) * Ff +

P sl * (P r * P 1 + P l * P 1 + P t * P 2) * P c * P s * (1 – A) * F s] * (N * 0,75) * Lt

Για κάθε σκάφος που μελετάται, οι διαφορετικοί παράγοντες είναι οι τρεις τελευταίοι [P (1-A), Lt, N] του πίνακα. Το PLL για το πλοίο αναφοράς υπολογίζεται με βάση μια εκτιμώμενη ωφέλιμη ζωή 30 ετών, πιθανότητα βύθισης P(1-A) = 0,144879 που έχει βρεθεί στο προηγούμενο κεφάλαιο με τον υπολογισμό του A – Index για το ROPAX 1, (A-index = 0,85512), και μέγιστο αριθμό επιβατών N = 2000:

PLL= 4,02178

Συνεπώς στη διάρκεια ζωής του πλοίου εκτιμάται ότι είναι πιθανό να χαθούν 4,02178 ανθρώπινες ζωές επιβαινόντων.

4.6 ΟΙΚΟΝΟΜΙΚΑ ΣΤΟΙΧΕΙΑ

Ένας από τους στόχους της διπλωματικής εργασίας είναι να γίνει και βελτιστοποίηση λαμβάνοντας υπόψιν το οικονομικό κομμάτι. Έτσι όποια πλοία δεν ικανοποιούν τα οικονομικά κριτήρια δεν προτείνονται ως βέλτιστες σχεδιάσεις λόγω μεγάλου κόστους κατασκευής.

Το πιο σημαντικό κριτήριο είναι η σύγκριση του επενδυτικού κόστους που απαιτείται για την υλοποίηση κάθε υποψήφιας εναλλακτικής σχεδίασης, σε σχέση με το βαθμό μείωσης του κινδύνου που επιφέρει. Ο υπολογισμός αυτού του κόστους γίνεται μέσω του δείκτη GCAF (Total Cost of Death Averted), ο οποίος λαμβάνεται σύμφωνα με τις κατευθυντήριες οδηγίες του IMO FSA (MSC 83 / INF.2, 2007) και ορίζεται ως ο λόγος του κόστους για πρόσθετες δαπάνες προς την μείωση του κινδύνου:

$$GCAF = \frac{\Delta C}{\Delta R}$$

Όπου ΔC είναι η πρόσθετη δαπάνη για την κατασκευή και λειτουργία των εναλλακτικών σχεδιάσεων και ΔR είναι η μείωση του κινδύνου για το πλοίο, από την άποψη του ΔPLL, δηλαδή:

$$\Delta R = \Delta P L L$$

Όπου PLL η πιθανότητα απώλειας ζωής που έχει αναλυθεί στο προηγούμενο κεφάλαιο.

Στα πλαίσια της έρευνας το όριο GCAF έχει ενημερωθεί και η τιμή του είναι \$7,45 εκατομμύρια/ απώλεια ζωής. Η τιμή αυτή έχει υιοθετηθεί ως το όριο του GCAF για τη μελέτη στη συγκεκριμένη διπλωματική με βάση την βιβλιογραφία. (Roussou, 2015)

Με βάση τα οικονομικά στοιχεία στον παρακάτω πίνακα παρατίθενται αναλυτικά τα αποτελέσματα για όλα τα τροποποιημένα πλοία όπου απεικονίζεται το GCAF σε σχέση με το PLL.

Version	Beam	Depth	A - SOLAS	ΔC m\$	PLL	GCAF
ROPAX1	28,5	21,4	0,85512	0	4,022	0,00
ROPAX2	28,5	21,6	0,85434	1,76	3,967	32,33
ROPAX3	28,7	21,4	0,8769	2,98	3,460	5,31
ROPAX4	28,7	21,6	0,87637	4,75	3,334	6,91
ROPAX5	28,7	21,8	0,87571	6,53	3,343	9,63
ROPAX6	28,7	22	0,87489	8,32	3,489	15,61
ROPAX7	28,9	21,4	0,89798	7,68	2,650	5,60
ROPAX8	28,9	21,6	0,89759	9,5	2,548	6,45
ROPAX9	28,9	21,8	0,89716	11,31	2,638	8,17
ROPAX10	28,9	22	0,89666	13,13	2,664	9,67

Πίνακας 22: Οικονομικά στοιχεία για όλες τις εναλλακτικές σχεδιάσεις

Διάγραμμα 7: GCAF (m\$) vs PLL για εναλλακτικές σχεδιάσεις

Το όριο που έχει τεθεί για το μέγεθος GCAF, υπερβαίνουν τα πλοία ROPAX 2, ROPAX 5, ROPAX 6, ROPAX 9 και ROPAX 10. Επομένως ο περιορισμός καλύπτεται μόνο από τα πλοία ROPAX 3, ROPAX 4, ROPAX 7 και ROPAX 8 από τα οποία το χαμηλότερο PLL έχει το ROPAX 8.

Η αύξηση του πλάτους έχει ως αποτέλεσμα την βελτίωση της ευστάθειας του πλοίου και την μείωση του PLL, με αποτέλεσμα να ελαττώνεται η πιθανότητα απώλειας ζωής. Με αύξηση του πλάτους είμαστε μέσα στα όρια που έχουν τεθεί.

Με αλλαγή του κοίλου, όμως δεν παρατηρούμε τα ίδια αποτελέσματα. Το κοίλο δεν επιδρά θετικά στο δείκτη Α, ενώ με μικρή αύξηση του κοίλου για τα ROPAX 4 και ROPAX 8 είμαστε μέσα στο όριο που έχει τεθεί στο παραπάνω διάγραμμα.

Ενώ με μεγαλύτερη αύξηση του κοίλου μεγαλώνει το GCAF και ξεπερνάει το όριο που έχει τεθεί.

Όπως βλέπουμε η βέλτιστη σχεδίαση εξαρτάται από διάφορους παράγοντες, μέσα στους οποίους είναι και το οικονομικό.

ΚΕΦΑΛΑΙΟ 5: ΜΕΛΕΤΗ ΣΥΜΠΕΡΙΦΟΡΑΣ ΣΕ ΤΡΟΠΟΠΟΙΗΜΕΝΕΣ ΔΙΑΤΑΞΕΙΣ ΤΟΥ ΠΛΟΙΟΥ ΑΝΑΦΟΡΑΣ

Υπάρχουν πολλές επιλογές για την αύξηση της ευστάθειας μετά από βλάβη πλοίου τύπου RO/RO. Εκτός από τη σωστή τοποθέτηση των φρακτών, εδώ είναι μια περίληψη ορισμένων από τις δυνατότητες που υπάρχουν:

α) Εσωτερική υποδιαίρεση του χώρου πάνω από το κατάστρωμα των οχημάτων (μη επιθυμητό μέτρο καθώς δυσκολεύει πολύ τη κυκλοφορία οχημάτων).

β) Μείωση του KG αποστραγγίζοντας το νερό που συλλέγεται στο κατάστρωμα των οχημάτων, προς τα κάτω διαμερίσματα. Στη χειρότερη περίπτωση, θα πρέπει να επιτευχθεί τουλάχιστον μια ισορροπημένη κατάκλυση.

γ) Αύξηση της ευστάθειας στην άθικτη κατάσταση, επιτρέποντας καλύτερη ευστάθεια μετά τη βλάβη.

δ) Επιλογή νομέων σε σχήμα V που αυξάνουν το KM.

ε) Επίσης, είναι γνωστό ότι η αύξηση της ροπής αδράνειας των ελεύθερων επιφανειών μπορεί να βελτιώσει την άθικτη ευστάθεια. Ωστόσο, μετά την κατάκλυση, αυτό το μέτρο είναι αναποτελεσματικό εκτός εάν υπάρχει μεγάλο υπολειπόμενο ύψος εξάλλων.

στ) Σε γενικές γραμμές, το πιο αποτελεσματικό μέτρο είναι η αύξηση του ύψους των εξάλλων και ο πιο άμεσος τρόπος είναι η μείωση του βυθίσματος, που σημαίνει επίσης μείωση του ωφέλιμου φορτίου.

ζ) Η εγκατάσταση μόνιμων κατασκευών («sponsons») μπορεί να είναι πολύ ευεργετική, αρκεί να είναι επαρκούς πλάτους και να εκτείνονται πάνω από το νερό. Θεωρούνται μόνο μια καλή πρακτική επιλογή για υπάρχοντα πλοία.

Ενώ οι τροποποιήσεις του σχεδιασμού συχνά οδηγούν σε μεγαλύτερο βάρος και μειωμένο ωφέλιμο φορτίο, πιστεύεται ότι μπορούν ακόμη και να αυξήσουν το ωφέλιμο φορτίο εάν σχεδιαστούν σωστά. Για να αποφευχθεί η ασύμμετρη κατάκλυση, το εσωτερικό πρέπει να είναι διαχωρισμένο με εκτεταμένες πλευρικές φράχτες. Ωστόσο, τα sponsons μπορούν να δημιουργήσουν αρκετά προβλήματα: εάν το GM αυξηθεί σημαντικά, θα έχουμε υψηλή επιτάχυνση και δεν θα υπάρχει άνεση για τους επιβάτες. Τα sponsons προσθέτουν επίσης αντίσταση.

Η χρήση πλευρικής μόνιμης ή κινητής περίφραξης στα καταστρώματα οχημάτων είναι συχνά πολύ αποτελεσματική. Θα πρέπει ωστόσο να σημειωθεί ότι τέτοια μέτρα ενδέχεται να αυξήσουν σημαντικά το λειτουργικό κόστος για πλοία που πλέουν συχνά σε μικρές αποστάσεις.

Οι διαμήκεις φρακτές πάνω από το κατάστρωμα του οχήματος πρέπει να συνοδεύονται από μια πυκνή υποδιαίρεση του πλευρικού χώρου. Αυτό είναι αρκετά αυστηρό, καθώς σημαίνει ότι αυτοί οι χώροι δεν μπορούν να χρησιμοποιηθούν εύκολα για αυτοκίνητα.

Η παρουσία διαμερίσματος μπροστά από το χώρο στο κατάστρωμα οχημάτων μπορεί να βελτιώσει τη ευστάθεια, ειδικά εάν η κατάκλυση δεν διεισδύει στο κεντρικό διαμέρισμα. Η εγκατάσταση «χώρου πτέρυγας» κάτω από το κατάστρωμα στεγανών μπορεί επίσης να έχει θετική επίδραση σε κάποιο βαθμό. Ωστόσο, εάν μια τέτοια διάταξη συνδυαστεί με την έλλειψη οριζόντιας υποδιαίρεσης μετά το Β/5, η πιθανότητα εκτεταμένης κατάκλυσης και ενδεχόμενης ανατροπής θα αυξηθεί πολύ.

Επομένως, γενικά, δεν συνιστάται η παρουσία μακριού κεντρικού διαμερίσματος (μέσω B/5). Τα παθητικά συστήματα αποστράγγισης και οι ηλεκτρονικές ή υδραυλικές θύρες ελέγχου που αντλούν νερό από το κατάστρωμα είναι μερικές από τις μηχανικές συσκευές που μπορούν να χρησιμοποιηθούν. Ωστόσο, η αξιοπιστία αυτών των συστημάτων όταν λειτουργούν με μεγάλους όγκους νερού δεν έχει αποδειχθεί.

Είναι γνωστό ότι οι ανθρώπινοι παράγοντες παίζουν καθοριστικό ρόλο τόσο στην εμφάνιση όσο και στην επιτυχή αντιμετώπιση των ατυχημάτων.

Το κόστος μετατροπής μπορεί να είναι αρκετά υψηλό και είναι τεχνικό και οικονομικό ερώτημα εάν είναι προς το συμφέρον του παλιού πλοίου να πραγματοποιήσει αυτή τη διαδικασία.

Εικόνα 21: Τροποποιημένες Διατάξεις (Τζαμπίρας, 2015)

Σε αυτό το κεφάλαιο θα μελετηθεί η ευστάθεια μετά από βλάβη σε τροποποιημένες διατάξεις του βασικού πλοίου με βάση τον συντελεστή A-Index. Οι εναλλακτικές διατάξεις που θα εξεταστούν αφορούν στην αρχική σχεδιάση EU ROPAX 3000_1.

5.1 ΑΠΛΟΠΟΙΗΜΕΝΗ ΔΙΑΤΑΞΗ

5.1.1 ΑΠΛΟΠΟΙΗΜΕΝΗ ΔΙΑΤΑΞΗ ΧΩΡΙΣ CASINGS ΣΤΟ ΚΑΤΑΣΤΡΩΜΑ ΟΧΗΜΑΤΩΝ

Σε αυτό το σημείο θα μελετηθεί η συμπεριφορά του δείκτη Α στην αρχή της κατασκευής του πλοίου, όπου υπάρχουν μόνο τα καταστρώματα και οι εγκάρσιες φρακτές. Με αυτό τον τρόπο θα δούμε την εικόνα του A-Index σε αρχικό στάδιο, ώστε να δοθεί προσοχή στην κατασκευή της εσωτερικής διάταξης του πλοίου. Η σχεδίαση που θα μελετηθεί θα καλείται **EU ROPAX 3000_11.**

5.1.1.1 ΠΕΡΙΓΡΑΦΗ

Η σχεδίαση της γενικής διάταξης του πλοίου ήταν ίδια αλλά αρκετά απλοποιημένη λόγω της έλλειψης των πολύπλοκων δεξαμενών. Αρχικά ορίστηκαν τα καταστρώματα και τα διαμερίσματα μαζί με τους χώρους των οχημάτων.

Στον παρακάτω πίνακα φαίνονται αναλυτικά τα διαμερίσματα του πλοίου EU ROPAX 3000_11, με όλα τα χαρακτηριστικά τους. Ο πίνακας δημιουργήθηκε στο maxsurf με την βοήθεια του σχεδίου της γενικής διάταξης του πλοίου.

	Name	Тире	Intact	Damaged	Specific	Fluid	Boundary	Aft	Fore	F.Port	F.Stbd.	F.Top	F.Bott.
	Name	туре	Perm. %	Perm. %	gravity	type	Surfaces	m	m	m	m	m	m
1	comp1	Compartment	90	90			none	-5,000	5,000	-15,000	15,000	10,000	0,000
2	comp2	Compartment	90	90			none	5,000	17,500	-15,000	15,000	10,000	0,000
3	comp3	Compartment	90	90			none	17,500	30,000	-15,000	15,000	10,000	0,000
4	comp4	Compartment	90	90			none	30,000	40,000	-15,000	15,000	4,250	0,000
5	comp16	Compartment	90	90			none	165,000	187,499	-15,000	15,000	15,950	0,000
6	comp15	Compartment	90	90			none	155,000	165,000	-15,000	15,000	10,000	0,000
7	comp14	Compartment	90	90			none	145,000	155,000	-15,000	15,000	10,000	0,000
8	comp13	Compartment	90	90			none	135,000	145,000	-15,000	15,000	4,250	0,000
9	comp12	Compartment	90	90			none	125,000	135,000	-15,000	15,000	4,250	0,000
10	comp11	Compartment	90	90			none	115,000	125,000	-15,000	15,000	4,250	0,000
11	comp10	Compartment	90	90			none	102,500	115,000	-15,000	15,000	4,250	0,000
12	comp9	Compartment	90	90			none	90,000	102,500	-15,000	15,000	4,250	0,000
13	comp8	Compartment	90	90			none	75,000	90,000	-15,000	15,000	2,000	0,000
14	comp7	Compartment	90	90			none	60,000	75,000	-15,000	15,000	2,000	0,000
15	comp6	Compartment	90	90			none	50,000	60,000	-15,000	15,000	4,250	0,000
16	comp5	Compartment	90	90			none	40,000	50,000	-15,000	15,000	4,250	0,000
17	RO RO 2	Compartment	90	90			none	-5,000	165,000	-15,000	15,000	15,950	10,000
18	RO RO 3	Compartment	90	90			none	-5,000	187,499	-15,000	15,000	21,400	15,950
19	comp19	Compartment	90	90			none	30,000	40,000	-15,000	15,000	10,000	4,250
20	comp21	Compartment	90	90			none	40,000	50,000	-15,000	15,000	10,000	4,250
21	comp23	Compartment	90	90			none	50,000	60,000	-15,000	15,000	10,000	4,250
22	comp25	Compartment	90	90			none	60,000	75,000	-15,000	15,000	10,000	4,250
23	comp27	Compartment	90	90			none	75,000	90,000	-15,000	15,000	10,000	4,250
24	comp29	Compartment	90	90			none	90,000	102,500	-15,000	15,000	10,000	4,250
25	comp31	Compartment	90	90			none	102,500	115,000	-15,000	15,000	10,000	4,250
26	comp34	Compartment	90	90			none	115,000	125,000	-15,000	15,000	10,000	4,250
27	comp36	Compartment	90	90			none	125,000	135,000	-15,000	15,000	10,000	4,250
28	comp38	Compartment	90	90			none	135,000	145,000	-15,000	15,000	10,000	4,250
29	eng1	Compartment	90	90			none	60,000	75,000	-15,000	15,000	4,250	2,000
30	eng2	Compartment	90	90			none	75,000	90,000	-15,000	15,000	4,250	2,000

Πίνακας 23: Διαμερίσματα του πλοίου ROPAX 11

Τα διαμερίσματα που έχουν οριστεί αποτελούν όλο το χώρο του πλοίου μέχρι το κατάστρωμα, διότι η μελέτη προυποθέτει τον ορισμό όλων των χώρων του πλοίου, ώστε να ληφθούν υπόψιν σε περίπτωση κατάκλυσης.

Το σχέδιο γενικής διάταξης του ΕU ROPAX 3000_11 φαίνεται παρακάτω:

Εικόνα 22: Σχέδιο Γενικής Διάταξης του πλοίου ROPAX 11

5.1.1.2. ΥΠΟΔΙΑΙΡΕΣΗ ΤΟΥ ΠΛΟΙΟΥ

Καθορίστηκαν οι ζώνες που θα χρησιμοποιηθούν για τη δημιουργία σεναρίων βλάβης του πλοίου με την απλοποιημένη διάταξη, στο πιθανοθεωρητικό μοντέλο.

	N	Aft	Fwd	Length	Centre		Zones	Num Docks	H 1	H 2	H 3	H 4
	Name	m	m	m	m		Zones	Num. Decks	m	m	m	m
1	Zone 1	-5,000	5,000	10,000	0,000	1	1 adjace					
2	Zone 2	5,000	17,500	12,500	11,250	2	Zone 1, 1	2	10,000	15,950	n/a	n/a
3	Zone 3	17,500	30,000	12,500	23,750	3	Zone 2, 1	2	10,000	15,950	n/a	n/a
4	Zone 4	30 000	40 000	10 000	35 000	4	Zone 3, 1	2	10,000	15,950	n/a	n/a
5	Zone 5	40,000	50,000	10,000	45 000	5	Zone 4, 1	3	4,250	10,000	15,950	n/a
6	Zono 6	50,000	60,000	10,000	55 000	6	Zone 5, 1	3	4,250	10,000	15,950	n/a
7	Zone 7	60,000	75 000	16,000	67 600	7	Zone 6, 1	3	4,250	10,000	15,950	n/a
/	Zone 7	50,000	15,000	15,000	07,500	8	Zone 7, 1	4	2,000	4,250	10,000	15,950
8	Zone 8	75,000	90,000	15,000	82,500	9	Zone 8, 1	4	2,000	4,250	10,000	15,950
9	Zone 9	90,000	102,500	12,500	96,250	10	Zone 9, 1	3	4,250	10,000	15,950	n/a
10	Zone 10	102,500	115,000	12,500	108,750	11	Zone 10,	3	4,250	10,000	15,950	n/a
11	Zone 11	115,000	125,000	10,000	120,000	12	Zone 11,	3	4,250	10,000	15,950	n/a
12	Zone 12	125,000	135,000	10,000	130,000	13	Zone 12,	3	4,250	10,000	15,950	n/a
13	Zone 13	135,000	145,000	10,000	140,000	14	Zone 13,	3	4,250	10,000	15,950	n/a
14	Zone 14	145,000	155,000	10,000	150,000	15	Zone 14,	2	10,000	15,950	n/a	n/a
15	Zone 15	155,000	165,000	10,000	160,000	16	Zone 15,	2	10,000	15,950	n/a	n/a
16	Zone 16	165,000	185,000	20,000	175,000	17	Zone 16,	1	15,950	n/a	n/a	n/a

Πίνακας 24: Ζώνες Υποδιαίρεσης του πλοίου ROPAX 11

Εικόνα 23: Απεικόνιση των Damage Zones για το πλοίο ROPAX 11

5.1.1.3. ΕΦΑΡΜΟΓΗ ΠΙΘΑΝΟΘΕΩΡΗΤΙΚΟΥ ΜΟΝΤΕΛΟΥ ΤΗΣ SOLAS 2009

Σε αυτό το σημείο εισάγονται οι καταστάσεις φόρτωσης για την μελέτη της ευστάθειας μετά από βλάβη στο απλοποιημένο πλοίο, στην αρχή της κατασκευής.

Οι καταστάσεις φόρτωσης του ROPAX 11 ταυτίζονται σχεδόν με αυτές που έχουν υπολογιστεί για το ROPAX 1 και τα χαρακτηριστικά τους φαίνονται αναλυτικά παρακάτω.

Load cases -Deepest subdivision draft (summer load line) Load case: ds

Partial subdivision draft Load case: dp

Light service draft Load case: dL

Fluid analysis method: Simulate fluid movement

Heel to starboard; heel range: from -30 deg to 180 deg in steps of 10 deg.

ATTAINED AND REQUIRED SUBDIVISION INDEX						
μήκος υποδιαίρεσης	190 m					
Το πλάτος της γραμμής φόρτωσης	28,5 m					
Αριθμός ατόμων Ν1	0					
Αριθμός ατόμων Ν2	2000					
Επιθυμητός δείκτης R	0,8033					
Επιτευχθείς δείκτης Α	0,8172					

Πίνακας 25: A - Index (SOLAS 2009) για το πλοίο ROPAX 11

Εικόνα 24: Τρίγωνα πιθανοτήτων κατάκλυσης του ROPAX 11 για τη SOLAS 2009

Σύμφωνα με τα αποτελέσματα για το πλοίο ROPAX 11 παρατηρείται πως ο δείκτης Α είναι αρκετά υψηλός στην αρχή της κατασκευής του πλοίου, όπου έχουν τοποθετηθεί μόνο εγκάρσιες φρακτές και καταστρώματα, ξεπερνώντας ελαφρά τον απαιτούμενο δείκτη R.

Με βάση τα παραπάνω αποτελέσματα, διαπιστώνεται ότι η ευστάθεια του πλοίου στο αρχικό επίπεδο της κατασκευής είναι αρκετά καλή. Αυτό στο οποίο θα δοθεί προσοχή, για να υπάρξει αύξηση του δείκτη, στη συνέχεια της σχεδίασης, είναι η προσεκτική τοποθέτηση των διαμήκων φρακτών για τα υπόλοιπα διαμερίσματα που θα κατασκευαστούν.

Συγκεκριμένα, θα πρέπει οι δεξαμενές να είναι συμμετρικά τοποθετημένες προς τη Center Line, για να αποφευχθεί η εμφάνιση μεγάλης εγκάρσιας κλίσης κατά την ασύμμετρη κατάκλυση, όπου επηρεάζει αρνητικά την ευστάθεια ενός πλοίου μετά από βλάβη.

Επομένως η εσωτερική διαρρύθμιση του πλοίου επηρεάζει σημαντικά το δείκτη Α. Ο ναύπηγος θα πρέπει να δώσει αρκετή προσοχή στη δημιουργία της εσωτερικής διάταξης και κυρίως, να σχεδιάσει διαμερίσματα συμμετρικά μεταξύ τους, για να μειωθεί η εγκάρσια κλίση και να βελτιωθεί η ευστάθεια του πλοίου σε κατάσταση βλάβης.

5.1.2 ΑΠΛΟΠΟΙΗΜΕΝΗ ΔΙΑΤΑΞΗ ΜΕ CASINGS ΣΤΟ ΚΑΤΑΣΤΡΩΜΑ ΟΧΗΜΑΤΩΝ

5.1.2.1. ΠΕΡΙΓΡΑΦΗ

Σε αυτό το κεφάλαιο θα εξεταστεί η συμπεριφορά του δείκτη Α για το πλοίο αναφοράς με τροποποιημένη εσωτερική διάταξη. Η μετατροπή που πραγματοποιήθηκε ήταν η προσθήκη μόνιμων χώρων στο κατάστρωμα οχημάτων (casings). Το νέο τροποποιημένο πλοίο που θα εξεταστεί καλείται **EU ROPAX 3000_12**.

Η σχεδίαση της γενικής διάταξης του πλοίου ήταν ίδια αλλά με πρωραία και πρυμναία casings. Δηλαδή χώροι στο κατάστρωμα οχημάτων όπου σε περίπτωση κατάκλυσης κατακλύζονται αυτοί οι χώροι και όχι όλο το κατάστρωμα οχημάτων. Αρχικά ορίστηκαν τα καταστρώματα και τα διαμερίσματα μαζί με τους χώρους των οχημάτων. Θεωρείται ότι δεν υπάρχει άλλη αλλαγή.

Στον παρακάτω πίνακα φαίνονται αναλυτικά τα διαμερίσματα του πλοίου EU ROPAX 3000_12, με όλα τα χαρακτηριστικά τους. Με κόκκινο χρώμα επισημαίνονται τα νέα διαμερίσματα και οι τροποποιήσεις.

Name	Туре	Aft m	Fore m	F. Port m	F. Stbd m	F. Top m	F. Bott m
comp1	Compartment	-2,537	5	-15	15	10	0
comp2	Compartment	5	17,5	-15	15	10	0
comp3	Compartment	17,5	30	-15	15	10	0
comp4	Compartment	30	40	-15	15	4,25	0
comp16	Compartment	165	186,962	-15	15	15,95	0
comp15	Compartment	155	165	-15	15	10	0
comp14	Compartment	145	155	-15	15	10	0
comp13	Compartment	135	145	-15	15	4,25	0
comp12	Compartment	125	135	-15	15	4,25	0
comp11	Compartment	115	125	-15	15	4,25	0
comp10	Compartment	102,5	115	-15	15	4,25	0
comp9	Compartment	90	102,5	-15	15	4,25	0
comp8	Compartment	75	90	-15	15	2	0

comp7	Compartment	60	75	-15	15	2	0
comp6	Compartment	50	60	-15	15	4,25	0
comp5	Compartment	40	50	-15	15	4,25	0
RO RO 2	Compartment	30	145	-15	15	15,95	10
RO RO 3	Compartment	30	145	-15	15	21,4	15,95
comp19	Compartment	30	40	-15	15	10	4,25
comp21	Compartment	40	50	-15	15	10	4,25
comp23	Compartment	50	60	-15	15	10	4,25
comp25	Compartment	60	75	-15	15	10	4,25
comp27	Compartment	75	90	-15	15	10	4,25
comp29	Compartment	90	102,5	-15	15	10	4,25
comp31	Compartment	102,5	115	-15	15	10	4,25
comp34	Compartment	115	125	-15	15	10	4,25
comp36	Compartment	125	135	-15	15	10	4,25
comp38	Compartment	135	145	-15	15	10	4,25
eng1	Compartment	60	75	-15	15	4,25	2
eng2	Compartment	75	90	-15	15	4,25	2
casings 1	Compartment	-2,537	30	-15	-8	15,95	10
casings 2	Compartment	-2,537	30	8	15	15,95	10
casings 3	Compartment	145	155	-15	-5	15,95	10
casings 31	Compartment	155	165	-15	-5	15,95	10
casings 4	Compartment	145	155	5	15	15,95	10
casings 41	Compartment	155	165	5	15	15,95	10
casings 5	Compartment	-2,537	30	-15	-8	21,4	15,95
casings 6	Compartment	-2,537	30	8	15	21,4	15,95
casings 7	Compartment	145	155	-15	-5	21,4	15,95
casings 71	Compartment	155	165	-15	-5	21,4	15,95
casings 72	Compartment	165	186,962	-15	-5	21,4	15,95
casings 8	Compartment	145	155	5	15	21,4	15,95
casings 81	Compartment	155	165	5	15	21,4	15,95
casings 82	Compartment	165	186,962	5	15	21,4	15,95
roro 1-2	Compartment	-2,537	30	-8	8	15,95	10
roro 2-3	Compartment	-2,537	30	-8	8	21,4	15,95
roro 3-4	Compartment	145	165	-5	5	15,95	10
roro 4-5	Compartment	145	186,962	-5	5	21,4	15,95

Πίνακας 26: Διαμερίσματα του πλοίου ROPAX 12

Εικόνα 25: Σχέδιο Γενικής Διάταξης του πλοίου ROPAX 12

5.1.2.2. ΥΠΟΔΙΑΙΡΕΣΗ ΤΟΥ ΠΛΟΙΟΥ

Τα damage zones που επιλέχθηκαν παρατίθενται αναλυτικά.

Εικόνα 26: Απεικόνιση των Damage Zones για το πλοίο ROPAX 12

5.1.2.3. ΕΦΑΡΜΟΓΗ ΠΙΘΑΝΟΘΕΩΡΗΤΙΚΟΥ ΜΟΝΤΕΛΟΥ ΤΗΣ SOLAS 2009

Load cases -Deepest subdivision draft (summer load line) Load case: ds

Partial subdivision draft Load case: dp

Light service draft Load case: dL

Fluid analysis method: Simulate fluid movement

Heel to starboard; heel range: from -30 deg to 180 deg in steps of 10 deg.

ATTAINED AND REQUIRED SUBDIVISION INDEX								
μήκος υποδιαίρεσης	190 m							
Το πλάτος της γραμμής φόρτωσης	28,5 m							
Αριθμός ατόμων Ν1	0							
Αριθμός ατόμων Ν2	2000							
Επιθυμητός δείκτης R	0,8033							
Επιτευχθείς δείκτης Α	0,860078							

Πίνακας 27: Α – Index για το πλοίο ROPAX 12

Σύμφωνα με τα αποτελέσματα παρατηρείται πως ο δείκτης Α είναι αρκετά υψηλός όταν στο κατάστρωμα οχημάτων προστίθενται casings, ξεπερνώντας μάλιστα τον δείκτη κατά πολύ.

Διαπιστώνεται ότι η ευστάθεια του πλοίου στο αρχικό επίπεδο της κατασκευής είναι αρκετά καλή, ιδίως όταν υπάρχουν casings στο κατάστρωμα οχημάτων, διότι ελαττώνεται η πιθανότητα να κατακλυστεί.

Θα πρέπει οι δεξαμενές να είναι συμμετρικά τοποθετημένες προς τη Center Line και μια καλή ιδέα θα ήταν να επικοινωνούν μεταξύ τους, ώστε να αποφευχθεί η εμφάνιση μεγάλης εγκάρσιας κλίσης.

5.2 ΑΠΛΟΠΟΙΗΜΕΝΗ ΔΙΑΤΑΞΗ ΓΙΑ ΜΕΓΙΣΤΗ ΤΡΟΠΟΠΟΙΗΣΗ ΠΛΑΤΟΥΣ

5.2.1 ΑΠΛΟΠΟΙΗΜΕΝΗ ΔΙΑΤΑΞΗ ΧΩΡΙΣ CASINGS ΣΤΟ ΚΑΤΑΣΤΡΩΜΑ ΟΧΗΜΑΤΩΝ

Σε αυτό το σημείο θα γίνει μελέτη της συμπεριφοράς του δείκτη Α στην αρχή της κατασκευής του πλοίου με μέγιστο πλάτος, όπου υπάρχουν μόνο τα καταστρώματα και οι εγκάρσιες φρακτές. Έτσι θα δοθεί προσοχή στην κατασκευή της εσωτερικής διάταξης του πλοίου. Το όνομα του πλοίου θα καλείται **EU ROPAX 3000_13**.

5.2.1.1. ΠΕΡΙΓΡΑΦΗ

Η σχεδίαση της γενικής διάταξης του πλοίου ήταν ίδια αλλά αρκετά απλοποιημένη λόγω της έλλειψης των πολύπλοκων δεξαμενών. Αρχικά ορίστηκαν τα καταστρώματα και τα διαμερίσματα μαζί με τους χώρους των οχημάτων.

Στον παρακάτω πίνακα φαίνονται αναλυτικά τα διαμερίσματα του πλοίου EU ROPAX 3000_13, με όλα τα χαρακτηριστικά τους.

	Name	Type	Intact	Damaged	Specific	Fluid	Boundary	Aft	Fore	F.Port	F.Stbd.	F.Top	F.Bott.
		.,,-	Perm. %	Perm. %	gravity	type	Surfaces	m	m	m	m	m	m
1	comp1	Compartment	90	90			none	-5,000	5,000	-15,000	15,000	10,000	0,000
2	comp2	Compartment	90	90			none	5,000	17,500	-15,000	15,000	10,000	0,000
3	comp3	Compartment	90	90			none	17,500	30,000	-15,000	15,000	10,000	0,000
4	comp4	Compartment	90	90			none	30,000	40,000	-15,000	15,000	4,250	0,000
5	comp16	Compartment	90	90			none	165,000	187,499	-15,000	15,000	15,950	0,000
6	comp15	Compartment	90	90			none	155,000	165,000	-15,000	15,000	10,000	0,000
7	comp14	Compartment	90	90			none	145,000	155,000	-15,000	15,000	10,000	0,000
8	comp13	Compartment	90	90			none	135,000	145,000	-15,000	15,000	4,250	0,000
9	comp12	Compartment	90	90			none	125,000	135,000	-15,000	15,000	4,250	0,000
10	comp11	Compartment	90	90			none	115,000	125,000	-15,000	15,000	4,250	0,000
11	comp10	Compartment	90	90			none	102,500	115,000	-15,000	15,000	4,250	0,000
12	comp9	Compartment	90	90			none	90,000	102,500	-15,000	15,000	4,250	0,000
13	comp8	Compartment	90	90			none	75,000	90,000	-15,000	15,000	2,000	0,000
14	comp7	Compartment	90	90			none	60,000	75,000	-15,000	15,000	2,000	0,000
15	comp6	Compartment	90	90			none	50,000	60,000	-15,000	15,000	4,250	0,000
16	comp5	Compartment	90	90			none	40,000	50,000	-15,000	15,000	4,250	0,000
17	RO RO 2	Compartment	90	90			none	-5,000	165,000	-15,000	15,000	15,950	10,000
18	RO RO 3	Compartment	90	90			none	-5,000	187,499	-15,000	15,000	21,400	15,950
19	comp19	Compartment	90	90			none	30,000	40,000	-15,000	15,000	10,000	4,250
20	comp21	Compartment	90	90			none	40,000	50,000	-15,000	15,000	10,000	4,250
21	comp23	Compartment	90	90			none	50,000	60,000	-15,000	15,000	10,000	4,250
22	comp25	Compartment	90	90			none	60,000	75,000	-15,000	15,000	10,000	4,250
23	comp27	Compartment	90	90			none	75,000	90,000	-15,000	15,000	10,000	4,250
24	comp29	Compartment	90	90			none	90,000	102,500	-15,000	15,000	10,000	4,250
25	comp31	Compartment	90	90			none	102,500	115,000	-15,000	15,000	10,000	4,250
26	comp34	Compartment	90	90			none	115,000	125,000	-15,000	15,000	10,000	4,250
27	comp36	Compartment	90	90			none	125,000	135,000	-15,000	15,000	10,000	4,250
28	comp38	Compartment	90	90			none	135,000	145,000	-15,000	15,000	10,000	4,250
29	eng1	Compartment	90	90			none	60,000	75,000	-15,000	15,000	4,250	2,000
30	eng2	Compartment	90	90			none	75,000	90,000	-15,000	15,000	4.250	2,000

Πίνακας 28: Διαμερίσματα του πλοίου ROPAX 13

Τα διαμερίσματα που έχουν οριστεί αποτελούν όλο το χώρο του πλοίου μέχρι το κατάστρωμα, διότι η μελέτη προυποθέτει τον ορισμό όλων των χώρων του πλοίου, ώστε να ληφθούν υπόψιν σε περίπτωση κατάκλυσης.

Το σχέδιο γενικής διάταξης του ΕU ROPAX 3000_13 φαίνεται παρακάτω:

Εικόνα 27: Σχέδιο Γενικής Διάταξης του πλοίου ROPAX 13

5.2.1.2. ΥΠΟΔΙΑΙΡΕΣΗ ΤΟΥ ΠΛΟΙΟΥ

Καθορίστηκαν οι ζώνες που θα χρησιμοποιηθούν για τη δημιουργία σεναρίων βλάβης του πλοίου με την απλοποιημένη διάταξη, στο πιθανοθεωρητικό μοντέλο.

	Name	Aft	Fwd	Length	Centre		Zonos	Num Docke	H 1	H 2	H 3	H 4
	Name	m	m	m	m		Zones	Num. Decks	m	m	m	m
1	Zone 1	-5,000	5,000	10,000	0,000	1	1 adjace					
2	Zone 2	5,000	17,500	12,500	11,250	2	Zone 1, 1	2	10,000	15,950	n/a	n/a
3	Zone 3	17,500	30,000	12,500	23,750	3	Zone 2, 1	2	10,000	15,950	n/a	n/a
4	Zone 4	30,000	40.000	10.000	35.000	4	Zone 3, 1	2	10,000	15,950	n/a	n/a
5	Zone 5	40,000	50,000	10,000	45,000	5	Zone 4, 1	3	4,250	10,000	15,950	n/a
6	Zone 6	50,000	60,000	10,000	55 000	6	Zone 5, 1	3	4,250	10,000	15,950	n/a
7	Zone 7	60,000	75,000	15,000	67 500	7	Zone 6, 1	3	4,250	10,000	15,950	n/a
0	Zono 8	75 000	90,000	15,000	82 500	8	Zone 7, 1	4	2,000	4,250	10,000	15,950
0	Zone 0	00,000	102 500	10,000	02,000	9	Zone 8, 1	4	2,000	4,250	10,000	15,950
9	Zone 9	30,000	102,500	12,500	30,230	10	Zone 9, 1	3	4,250	10,000	15,950	n/a
10	Zone 10	102,500	115,000	12,500	108,750	11	Zone 10,	3	4,250	10,000	15,950	n/a
11	Zone 11	115,000	125,000	10,000	120,000	12	Zone 11,	3	4,250	10,000	15,950	n/a
12	Zone 12	125,000	135,000	10,000	130,000	13	Zone 12,	3	4,250	10,000	15,950	n/a
13	Zone 13	135,000	145,000	10,000	140,000	14	Zone 13,	3	4,250	10,000	15,950	n/a
14	Zone 14	145,000	155,000	10,000	150,000	15	Zone 14,	2	10,000	15,950	n/a	n/a
15	Zone 15	155,000	165,000	10,000	160,000	16	Zone 15,	2	10,000	15,950	n/a	n/a
16	Zone 16	165,000	185,000	20,000	175,000	17	Zone 16,	1	15,950	n/a	n/a	n/a

Πίνακας 29: Ζώνες Υποδιαίρεσης (Damage Zones) του πλοίου ROPAX 13

5.2.1.3. ΕΦΑΡΜΟΓΗ ΠΙΘΑΝΟΘΕΩΡΗΤΙΚΟΥ ΜΟΝΤΕΛΟΥ ΤΗΣ SOLAS 2009

Σε αυτό το σημείο είναι απαραίτητο η εύρεση τριών καταστάσεων φόρτωσης για την μελέτη της ευστάθειας μετά από βλάβη στο απλοποιημένο πλοίο, στην αρχή της κατασκευής.

Οι καταστάσεις φόρτωσης του ROPAX 13 ταυτίζονται σχεδόν με αυτές που έχουν υπολογιστεί για το ROPAX 7 αφού το ROPAX 7 είναι η εναλλακτική σχεδίαση με μέγιστη τροποποίηση πλάτους και τα χαρακτηριστικά τους φαίνονται αναλυτικά.

Load cases

Deepest subdivision draft (summer load line) Load case: ds

Partial subdivision draft Load case: dp

Light service draft Load case: dL

Fluid analysis method: Simulate fluid movement

Heel to starboard; heel range: from -30 deg to 180 deg in steps of 10 deg.

ATTAINED AND REQUIRED SUBDIVISION INDEX								
μήκος υποδιαίρεσης	190 m							
Το πλάτος της γραμμής φόρτωσης	28,9 m							
Αριθμός ατόμων Ν1	0							
Αριθμός ατόμων Ν2	2000							
Επιθυμητός δείκτης R	0,8033							
Επιτευχθείς δείκτης Α	0,890190							

Πίνακας 30: A – Index (SOLAS 2009) για το πλοίο ROPAX 13

Σύμφωνα με τα αποτελέσματα για το πλοίο ROPAX 13 παρατηρείται πως ο δείκτης Α είναι αρκετά υψηλός στην αρχή της κατασκευής του πλοίου, όπου έχουν τοποθετηθεί μόνο εγκάρσιες φρακτές και καταστρώματα.

Με βάση τα παραπάνω αποτελέσματα, διαπιστώνεται ότι η ευστάθεια του πλοίου στο αρχικό επίπεδο της κατασκευής είναι αρκετά καλή. Αυτό στο οποίο θα δοθεί προσοχή, για να υπάρξει αύξηση του δείκτη υποδιαίρεσης, στη συνέχεια της σχεδίασης, είναι η προσεκτική τοποθέτηση των διαμήκων φρακτών για τα υπόλοιπα διαμερίσματα που θα κατασκευαστούν.

5.2.2. ΑΠΛΟΠΟΙΗΜΕΝΗ ΔΙΑΤΑΞΗ ΜΕ CASINGS ΣΤΟ ΚΑΤΑΣΤΡΩΜΑ ΟΧΗΜΑΤΩΝ

5.2.2.1. ΠΕΡΙΓΡΑΦΗ

Σε αυτό το κεφάλαιο θα εξεταστεί η συμπεριφορά του δείκτη Α για το πλοίο αναφοράς με τροποποιημένη εσωτερική διάταξη. Η διαφορά με το EU ROPAX_13 είναι η διατήρηση των casings. Το νέο τροποποιημένο πλοίο που θα εξεταστεί καλείται **EU ROPAX 3000_14**.

Η σχεδίαση της γενικής διάταξης του πλοίου ήταν ίδια αλλά με casings. Αρχικά ορίστηκαν τα καταστρώματα και τα διαμερίσματα μαζί με τους χώρους των οχημάτων. Θεωρείται ότι δεν υπάρχει άλλη αλλαγή.

Στο σχέδιο γενικής διάταξης φαίνονται αναλυτικά τα διαμερίσματα του πλοίου EU ROPAX 3000_14, με όλα τα χαρακτηριστικά τους. Με κόκκινο χρώμα επισημαίνονται τα νέα διαμερίσματα και οι τροποποιήσεις.

Εικόνα 29: Σχέδιο Γενικής Διάταξης του πλοίου ROPAX 14

5.2.2.2. ΥΠΟΔΙΑΙΡΕΣΗ ΤΟΥ ΠΛΟΙΟΥ

Καθορίστηκαν οι ζώνες που χρησιμοποιήθηκαν για τη δημιουργία των σεναρίων βλάβης για απλοποιημένη διάταξη. Έτσι παρακάτω έχουμε τα damage zones και οι αλλαγές που έγιναν.

Εικόνα 30: Απεικόνιση των Damage Zones για το πλοίο ROPAX 14

5.2.2.3. ΕΦΑΡΜΟΓΗ ΠΙΘΑΝΟΘΕΩΡΗΤΙΚΟΥ ΜΟΝΤΕΛΟΥ ΤΗΣ SOLAS 2009

Load cases

Deepest subdivision draft (summer load line) Load case: ds

Partial subdivision draft Load case: dp

Light service draft Load case: dL

Fluid analysis method: Simulate fluid movement

Heel to starboard; heel range: from -30 deg to 180 deg in steps of 10 deg.

ATTAINED AND REQUIRED SUBDIVISION INDEX							
μήκος υποδιαίρεσης	190 m						
Το πλάτος της γραμμής φόρτωσης	28,9 m						
Αριθμός ατόμων Ν1	0						
Αριθμός ατόμων Ν2	2000						
Επιθυμητός δείκτης R	0,8033						
Επιτευχθείς δείκτης Α	0,925500						

Πίνακας 31: A – Index (SOLAS 2009) για το πλοίο ROPAX 14

Εικόνα 31: Τρίγωνα πιθανοτήτων κατάκλυσης του ROPAX 14 για τη SOLAS 2009

Με βάση τα αποτελέσματα για το πλοίο ROPAX 14 παρατηρούμε πως ο δείκτης Α με αυξημένο πλάτος κατά 0,40m είναι αρκετά υψηλός ειδικά όταν προστίθενται casings, ξεπερνώντας μάλιστα τον δείκτη Α κατά πολύ.

Η ευστάθεια του πλοίου βλέπουμε ότι είναι πάρα πολύ καλή ειδικά όταν υπάρχουν casings γιατί μειώνεται η πιθανότητα να κατακλυστεί το κατάστρωμα οχημάτων.

5.3. ΔIATAEH ME SIDE CASINGS

Θα εξεταστεί η συμπεριφορά του δείκτη Α για το πλοίο αναφοράς ROPAX 1 με τροποποίηση εσωτερικής διάταξης. Θα γίνει προσθήκη side casings. Το νέο μοντέλο θα καλείται **EU ROPAX 3000_15**.

5.3.1. ΠΕΡΙΓΡΑΦΗ

Η γενική διάταξη του επιβατηγού – οχηματαγωγού πλοίου είναι ίδια με αυτή για το ROPAX_1 αλλά με τοποθέτηση πλευρικών casings. Δηλαδή πλευρικοί χώροι που θα κατακλύζονται αυτοί και όχι όλος ο χώρος των οχημάτων. Δεν υπάρχει άλλη αλλαγή.

Στον πίνακα υπάρχουν αναλυτικά τα διαμερίσματα του EU ROPAX 3000_15 με όλα τα χαρακτηριστικά όπως ονομασία, φορτίο, χωρητικότητα και κέντρο βάρους. Με κόκκινο χρώμα φαίνονται τα πλευρικά casings στο σχέδιο γενικής διάταξης.

	Name	Туре	Intact Perm. %	Damaged Perm, %	Specific gravity	Fluid type	Boundary Surfaces	Aft m	Fore m	F.Port m	F.Stbd. m	F.Top m	F.Bott.
1	comp1	Compartment	90	90	gravity	- gpo	none	-5,000	5,000	-15,000	15,000	10,000	0,000
2	comp2	Compartment	50	50			none	5,000	17,500	-15,000	15,000	10,000	0,000
3	comp3	Compartment	90	90			none	17,500	30,000	-8,000	8,000	10,000	0,000
5	comp16	Compartment	90	90			none	165,000	187,499	-15,000	15,000	15,950	0,000
6	comp15	Compartment	90	90			none	155,000	165,000	-15,000	15,000	10,000	0,000
7	comp14	Compartment	90	90			none	145,000	155,000	-15,000	15,000	10,000	0,000
9	comp13	Compartment	90	90			none	135,000	145,000	-8,000	8,000	4,250	0,000
10	comp11	Compartment	90	90			none	115,000	125,000	-8,000	8,000	4,250	0,000
11	comp10	Compartment	90	90			none	102,500	115,000	-8,000	8,000	4,250	0,000
12	comp9	Compartment	90	90			none	90,000	102,500	-8,000	8,000	4,250	0,000
13	comp8	Compartment	90	90			none	75,000	90,000	-8,000	8,000	2,000	0,000
15	comp6	Compartment	90	90			none	50,000	60,000	-8,000	8,000	4,250	0,000
16	comp5	Compartment	90	90			none	40,000	50,000	-8,000	8,000	4,250	0,000
17	RO RO 1	Compartment	90	90			none	30,000	145,000	-8,000	8,000	10,000	4,250
18	RO RO 2	Compartment	90	90			none	30,000	145,000	-12,000	12,000	15,950	10,000
20	comp17	Compartment	90	90			none	17 500	30 000	-12,000	-8 000	21,400	2 000
21	comp18	Compartment	90	90			none	17,500	30,000	8,000	15,000	10,000	2,000
22	comp19	Compartment	90	90			none	30,000	40,000	-15,000	-8,000	10,000	4,250
23	comp20	Compartment	90	90			none	30,000	40,000	8,000	15,000	10,000	4,250
24	comp21	Compartment	90	90			none	40,000	50,000	-15,000 8,000	-6,000	10,000	2,000
26	comp23	Compartment	90	90			none	50,000	60,000	-15,000	-8,000	10,000	0,000
27	comp24	Compartment	90	90			none	50,000	60,000	8,000	15,000	10,000	0,000
28	comp25	Compartment	90	90			none	60,000	75,000	-15,000	-8,000	10,000	0,000
29	comp26	Compartment	90	90			none	60,000	75,000	8,000	15,000	10,000	0,000
31	comp28	Compartment	90 90	90 90			none	75.000	90.000	8.000	15.000	10,000	0.000
32	comp29	Compartment	90	90			none	90,000	102,500	-15,000	-8,000	10,000	0,000
33	comp30	Compartment	90	90			none	90,000	102,500	8,000	14,250	10,000	0,000
34	comp31	Compartment	90	90			none	102,500	115,000	-15,000	-8,000	10,000	0,000
36	comp32	Compartment	90 90	90			none	115,000	125,000	-15 000	15,000	10,000	0,000
37	comp34	Compartment	90	90			none	115,000	125,000	8,000	15,000	10,000	0,000
38	comp35	Compartment	90	90			none	125,000	135,000	-15,000	-8,000	10,000	0,000
39	comp36	Compartment	90	90			none	125,000	135,000	8,000	15,000	10,000	0.000
40	comp38	Compartment	90	90			none	135,000	145,000	8.000	-6,000	10,000	0,000
42	WB 1	Tank	90	90	1,025	Water Ballast	none	40,000	47,500	-8,000	8,000	2,000	0,000
43	MDO - P	Tank	90	90	0,84	Diesel	none	50,000	57,500	-8,000	0,000	2,000	0,000
44	MDO - ST	Tank	90	90	0,84	Diesel	none	50,000	57,500	0,000	8,000	2,000	0,000
45	HFO 1 - P	Tank	90	90	0,9443	Fuel Oil	none	80,000	85,500	-8,000	-4,000	2,000	0,000
40	HFO 3 - ST	Tank	90	90	0,9443	Fuel Oil	none	80,000	85,500	4,000	8,000	2,000	0,000
48	HFO 4 - ST	Tank	90	90	0,9443	Fuel Oil	none	80,000	85,500	0,000	4,000	2,000	0,000
49	HFO 5	Tank	90	90	0,9443	Fuel Oil	none	85,500	90,000	-8,000	8,000	2,000	0,000
50	HFO 6	Tank	90	90	0,9443	Fuel Oil	none	92,500	102,500	-8,000	8,000	2,000	0,000
52	WB 2	Tank	90	90	1.025	Water Ballast	none	115.000	125.000	-8,000	8,000	2,000	0,000
53	WB 3	Tank	90	90	1,025	Water Ballast	none	125,000	135,000	-7,000	7,000	2,000	0,000
54	WB 4	Tank	90	90	1,025	Water Ballast	none	135,000	142,500	-5,000	5,000	2,000	0,000
55	FW	Tank	90	90	1	Fresh Water	none	145,000	155,000	-8,000	8,000	10,000	0,000
50 57	WB 6	Tank	90	90 90	1,025	Water Ballast	none	135,000	142 500	-6,000	-5 000	10,000	0,000
58	WB 7	Tank	90	90	1,025	Water Ballast	none	135,000	142,500	5,000	15,000	10,000	0,000
59	WB 8	Tank	90	90	1,025	Water Ballast	none	125,000	135,000	-15,000	-7,000	4,250	0,000
60	WB 9	Tank	90	90	1,025	Water Ballast	none	125,000	135,000	7,000	15,000	4,250	0,000
62	WB 10	Tank	90	90	1,025	Water Ballast	none	115,000	125,000	-15,000 8,000	-6,000	4,250	0,000
63	WB 13	Tank	90	90	1,025	Water Ballast	none	17,500	30,000	-8,000	8,000	8,000	0,000
64	HEEL TANK -P	Tank	90	90	0,8883	ANS Crude	none	50,000	60,000	-15,000	-8,000	4,250	0,000
65	HEEL TANK -ST	Tank	90	90	0,8883	ANS Crude	none	50,000	60,000	8,000	15,000	4,250	0,000
66 67	WB 15	Tank Tank	90	90	1,025	Water Ballast	none	40,000	50,000	-15,000	-8,000	4,250	0,000
68	eng1	Compartment	90 90	90	1,020	vvaler DallaSt	none	60.000	75.000	-8.000	8.000	4,250	2.000
69	eng2	Compartment	90	90			none	75,000	90,000	-8,000	8,000	4,250	2,000
70	casings 1	Compartment	90	90			none	-5,000	30,000	-15,000	-8,000	15,950	10,000
/1 72	casings 2 casings 3	Compartment	90	90			none	-5,000	30,000	8,000	15,000	15,950	10,000
73	casings 31	Compartment	90 90	90			none	145,000	165,000	-15,000	-5,000	15,950	10,000
74	casings 4	Compartment	90	90			none	145,000	155,000	5,000	15,000	15,950	10,000
75	casings 41	Compartment	90	90			none	155,000	165,000	5,000	15,000	15,950	10,000
76	casings 5	Compartment	90	90			none	-5,000	30,000	-15,000	-8,000	21,400	15,950
78	casings 6	Compartment	90 90	90 90			none	-5,000	155 000	-15 000	-5 000	21,400	15,950
79	casings 71	Compartment	90	90			none	155,000	165,000	-15,000	-5,000	21,400	15,950
80	casings 72	Compartment	90	90			none	165,000	187,499	-15,000	-5,000	21,400	15,950
82	casings o casings 81	Compartment Compartment	90 90	90 90			none	145,000	165 000	5,000	15,000	21,400	15,950
83	casings 82	Compartment	90	90			none	165,000	187,499	5,000	15,000	21,400	15,950
84	roro 1-2	Compartment	90	90			none	-5,000	30,000	-8,000	8,000	15,950	10,000
65 86	roro 2-3 roro 3-4	Compartment	90 90	90 90			none	-5,000 145,000	30,000	-8,000 -5,000	8,000	21,400	15,950
87	roro 4-5	Compartment	90	90			none	145,000	187,499	-5,000	5,000	21,400	15,950
88	side casings 1	Compartment	90	90			none	50,000	120,000	12,000	15,000	21,400	15,950
89 90	side casings 2 side casings 3	Compartment	90	90			none	50,000	120,000	-15,000	-12,000	21,400	15,950
91	side casings 4	Compartment	90	90			none	50,000	120,000	-15,000	-12,000	15,950	10,000
92	side 1	Compartment	90	90			none	30,000	50,000	12,000	15,000	21,400	15,950
93 94	side 2 side 3	Compartment	90	90			none	30,000	50,000	-15,000	-12,000	21,400	15,950
95	side 4	Compartment	90 90	90			none	120,000	145,000	-15,000	-12,000	21,400	15,950
96	side 5	Compartment	90	90			none	30,000	50,000	12,000	15,000	15,950	10,000
97	side 6	Compartment	90	90			none	30,000	50,000	-15,000	-12,000	15,950	10,000
99	side 8	Compartment	90	90			none	120,000	145,000	-15,000	-12,000	15,950	10,000

Πίνακας 32: Διαμερίσματα του πλοίου ROPAX 15

Στο σχήμα παρακάτω φαίνεται το σχέδιο γενικής διάταξης του πλοίου.

Εικόνα 32: Σχέδιο Γενικής Διάταξης του πλοίου ROPAX 15

5.3.2. ΥΠΟΔΙΑΙΡΕΣΗ ΤΟΥ ΠΛΟΙΟΥ

Οι damage zones είναι ίδιες με αυτές του πλοίου αναφοράς. Οι ζώνες είναι 16 και φαίνονται αναλυτικά στον παρακάτω πίνακα.

	Name	Aft	Fwd	Length	Centre		Zones	Shell half-beam	Num. L.Bhds	b 1	b 2	b 3
4	7 4	E 000	E 000	10,000	0.000	4	1 adiacent zone					
1	Zone 1	-5,000	5,000	10,000	0,000	1	T adjacent zone					
2	Zone 2	5,000	17,500	12,500	11,250	2	Zone 1, 1	14,250	1	6,250	n/a	n/a
3	Zone 3	17,500	30,000	12,500	23,750	3	Zone 2, 1	14,250	1	6,250	n/a	n/a
4	Zone 4	30,000	40,000	10,000	35,000	4	Zone 3, 1	14,250	1	6,250	n/a	n/a
5	Zone 5	40.000	50.000	10.000	45.000	5	Zone 4, 1	14,250	2	2,250	6,250	n/a
6	Zone 6	50 000	60 000	10 000	55 000	6	Zone 5, 1	14,250	2	2,250	6,250	n/a
7	Zone 7	60,000	75,000	15,000	67,500	7	Zone 6, 1	14,250	2	2,250	6,250	n/a
0	Zone 0	76 000	00,000	15,000	07,500	8	Zone 7, 1	14,250	2	2,250	6,250	n/a
0	Zone o	15,000	30,000	15,000	02,500	9	Zone 8, 1	14,250	2	2,250	6,250	n/a
9	Zone 9	90,000	102,500	12,500	96,250	10	Zone 9. 1	14.250	2	2.250	6.250	n/a
10	Zone 10	102,500	115,000	12,500	108,750	11	Zone 10, 1	14.250	2	2.250	6.250	n/a
11	Zone 11	115,000	125,000	10,000	120,000	12	Zone 11 1	14 250	2	2 250	6 250	n/a
12	Zone 12	125,000	135,000	10,000	130,000	13	Zone 12 1	14 250	2	2 250	6 250	n/a
13	Zone 13	135,000	145,000	10,000	140,000	14	Zone 13 1	14 250	2	2 250	6 250	n/a
14	Zone 14	145,000	155,000	10.000	150,000	15	Zone 14 1	14,250	1	9 250	n/a	n/a
15	Zone 15	155,000	165.000	10.000	160.000	16	Zone 15, 1	14,250	1	9 250	n/a	n/a
16	Zone 16	165,000	185,000	20,000	175,000	17	Zone 16, 1	14,250	1	9.250	n/a	n/a

Πίνακας 33: Ζώνες Υποδιαίρεσης (Damage Zones) του πλοίου ROPAX 15

Εικόνα 33: Απεικόνιση των Damage Zones για το πλοίο ROPAX 15

5.3.3. ΕΦΑΡΜΟΓΗ ΠΙΘΑΝΟΘΕΩΡΗΤΙΚΟΥ ΜΟΝΤΕΛΟΥ ΤΗΣ SOLAS 2009

Στη ενότητα αυτή θα γίνει εφαρμογή του πιθανοθεωρητικού μοντέλου της SOLAS 2009 στο EU ROPAX 3000_15, με side casings, για την ευστάθεια μετά από βλάβη.

Οι καραστάσεις φόρτωσης ταυτίζονται με αυτές του επιβατηγού – οχηματαγωγού πλοίου EU ROPAX 3000_1. Τα χαρακτηριστικά φαίνονται αναλυτικά στους παρακάτω πίνακες.

Item Name	Quantity	Unit Mass	Total Mass	Total	Long.	Trans.	Vert. Arm	Unit FSM	Total FSM	FSM Type
		tonne	tonne	Volume	Arm	Arm	m	tonne.m	tonne.m	
Lightship	1	12057 8/6	12057 8/6	m^3	m 82.000	m 0.000	13 800	0.000	0.000	Liser Specified
Lightship	1500	0.075	112 500		101.000	0,000	21,000	0,000	0,000	User Specified
passenger suiteasos	1500	0,075	27 500		101,000	0,000	21,000	0,000	0,000	User Specified
care	1000	1 250	1250,000		90,000	0,000	19,000	0,000	0,000	User Specified
trucks	50	4 000	200,000		90,000	0,000	8,000	0,000	0,000	User Specified
Trailer	1	1510,000	1510,000		64 540	0,000	10,200	0,000	0,000	User Specified
crew	500	0.075	37 500		85,000	0,000	18,000	0,000	0,000	User Specified
stores	1	40,000	40,000		101 000	0,000	6 800	0,000	0,000	User Specified
Axle Load	1	15,000	15,000		101,000	0,000	6,800	0,000	0.000	User Specified
WB 1	0%	57.762	0.000	0.000	40.085	0.000	0.000	n/a	0.000	Maximum
MDO - P	100%	62,449	62,449	74.344	54.016	-3,430	1,256	n/a	0.000	Maximum
MDO - ST	100%	62,449	62.449	74.344	54.016	3.430	1.256	n/a	0.000	Maximum
HFO 1 - P	100%	37.394	37.394	39,600	82,750	-6.000	1.000	n/a	0.000	Maximum
HFO 2 - P	100%	37,394	37,394	39,600	82,750	-2,000	1,000	n/a	0,000	Maximum
HFO 3 - ST	100%	37,394	37,394	39,600	82,750	6,000	1,000	n/a	0,000	Maximum
HFO 4 - ST	100%	37,394	37,394	39,600	82,750	2,000	1,000	n/a	0,000	Maximum
HFO 5	100%	122,381	122,381	129,600	87,750	0,000	1,000	n/a	0,000	Maximum
HFO 6	100%	271,958	271,958	288,000	97,500	0,000	1,000	n/a	0,000	Maximum
HFO 7	100%	269,192	269,192	285,070	109,970	0,000	1,009	n/a	0,000	Maximum
WB 2	0%	257,686	0,000	0,000	115,057	0,000	0,000	n/a	0,000	Maximum
WB 3	0%	185,301	0,000	0,000	125,057	0,000	0,000	n/a	0,000	Maximum
WB 4	0%	100,031	0,000	0,000	135,085	0,000	0,000	n/a	0,000	Maximum
FW	100%	968,322	968,322	968,322	149,768	0,000	6,106	n/a	0,000	Maximum
WB 5	100%	753,378	753,378	735,003	170,731	0,000	8,285	n/a	0,000	Maximum
WB 6	0%	21,034	0,000	0,000	135,043	-3,333	1,441	n/a	0,000	Maximum
WB 7	0%	21,034	0,000	0,000	135,043	3,333	1,441	n/a	0,000	Maximum
WB 8	0%	24,591	0,000	0,000	125,057	-4,667	1,435	n/a	0,000	Maximum
WB 9	0%	24,591	0,000	0,000	125,057	4,667	1,435	n/a	0,000	Maximum
WB 10	0%	50,484	0,000	0,000	115,057	-5,334	0,650	n/a	0,000	Maximum
WB 11	0%	50,484	0,000	0,000	115,057	5,334	0,650	n/a	0,000	Maximum
WB 13	100%	813,475	813,475	793,634	24,059	0,000	5,583	n/a	0,000	Maximum
HEEL TANK -P	100%	81,348	81,348	91,577	55,437	-9,966	3,061	n/a	0,000	Maximum
Item Name	Quantity	Unit Mass tonne	Total Mass tonne	Total Volume m^3	Long. Arm m	Trans. Arm m	Vert. Arm m	Unit FSM tonne.m	Total FSM tonne.m	FSM Type
----------------	----------	--------------------	---------------------	------------------------	-------------------	--------------------	----------------	---------------------	-------------------	----------
HEEL TANK -ST	100%	81,348	81,348	91,577	55,437	9,966	3,061	n/a	0,000	Maximum
WB 14	0%	49,708	0,000	0,000	49,943	-5,334	1,754	n/a	0,000	Maximum
WB 15	0%	49,708	0,000	0,000	49,943	5,334	1,754	n/a	0,000	Maximum
Total Loadcase			19796,222	3689,870	86,007	0,000	12,221		0,000	

Πίνακας 34: Κατάσταση Φόρτωσης για το Deepest Subdivision Draught (ds)

Item Name	Quantity	Unit Mass	Total Mass	Total	Long.	Trans.	Vert. Arm	Unit FSM	Total FSM	FSM Type
		tonne	tonne	Volume	Arm	Arm	m	tonne.m	tonne.m	
Lightship	1	12957 846	12957 846	III3	82,000	0.000	13 800	0.000	0.000	User Specified
nassenger	800	0.075	60,000		101.000	0,000	21 000	0,000	0,000	User Specified
passenger suitcases	800	0.025	20,000		101,000	0,000	21,000	0,000	0,000	User Specified
cars	800	1.250	1000.000		90.000	0.000	19.000	0.000	0.000	User Specified
trucks	30	4.000	120.000		90.000	0.000	8.000	0.000	0.000	User Specified
Trailer	1	450,000	450,000		64,540	0,000	10,200	0,000	0,000	User Specified
crew	500	0,075	37,500		85,000	0,000	18,000	0,000	0,000	User Specified
stores	1	40,000	40,000		101,000	0,000	6,800	0,000	0,000	User Specified
Axle Load	1	15,000	15,000		101,000	0,000	6,800	0,000	0,000	User Specified
WB 1	100%	57,762	57,762	56,353	44,385	0,000	1,397	n/a	0,000	Maximum
MDO - P	50%	62,449	31,225	37,172	54,270	-2,907	0,857	n/a	268,800	Maximum
MDO - ST	50%	62,449	31,225	37,172	54,270	2,907	0,857	n/a	268,800	Maximum
HFO 1 - P	49%	37,394	18,323	19,404	82,760	-6,000	0,490	n/a	27,700	Maximum
HFO 2 - P	49%	37,394	18,323	19,404	82,760	-2,000	0,490	n/a	27,700	Maximum
HFO 3 - ST	49%	37,394	18,323	19,404	82,760	6,000	0,490	n/a	27,700	Maximum
HFO 4 - ST	49%	37,394	18,323	19,404	82,760	2,000	0,490	n/a	27,700	Maximum
HFO 5	49%	122,381	59,967	63,504	87,756	0,000	0,490	n/a	1450,455	Maximum
HFO 6	49%	271,958	133,260	141,120	97,532	0,000	0,490	n/a	3223,234	Maximum
HFO 7	49%	269,192	131,904	139,684	109,971	0,000	0,503	n/a	3223,234	Maximum
WB 2	100%	257,686	257,686	251,401	119,803	0,000	1,078	n/a	0,000	Maximum
WB 3	100%	185,301	185,301	180,782	129,698	0,000	1,131	n/a	0,000	Maximum
WB 4	100%	100,031	100,031	97,591	138,591	0,000	1,157	n/a	0,000	Maximum
FW	100%	968,322	968,322	968,322	149,768	0,000	6,106	n/a	0,000	Maximum
WB 5	100%	753,378	753,378	735,003	170,732	0,000	8,285	n/a	0,000	Maximum
WB 6	100%	21,034	21,034	20,521	138,055	-5,880	3,421	n/a	0,000	Maximum
WB 7	100%	21,034	21,034	20,521	138,055	5,880	3,421	n/a	0,000	Maximum
WB 8	100%	24,591	24,591	23,991	128,613	-7,898	3,469	n/a	0,000	Maximum
WB 9	100%	24,591	24,591	23,991	128,613	7,898	3,469	n/a	0,000	Maximum
WB 10	100%	50,484	50,484	49,253	119,086	-9,225	3,179	n/a	0,000	Maximum
WB 11	100%	50,484	50,484	49,253	119,086	9,225	3,179	n/a	0,000	Maximum
WB 13	100%	813,475	813,475	793,634	24,059	0,000	5,583	n/a	0,000	Maximum
HEEL TANK -P	50%	81,348	40,674	45,788	55,796	-9,599	2,405	n/a	87,702	Maximum
HEEL TANK -ST	50%	81,348	40,674	45,788	55,796	9,599	2,405	n/a	87,702	Maximum
WB 14	100%	49,708	49,708	48,496	45,664	-9,708	3,513	n/a	0,000	Maximum
WB 15	100%	49,708	49,708	48,496	45,664	9,708	3,513	n/a	0,000	Maximum
Total Loadcase			18670,156	3955,453	88,334	0,000	12,046		8720,724	

Πίνακας 35: Κατάσταση Φόρτωσης για το Partial Subdivision Draught (dp)

Item Name	Quantity	Unit Mass	Total Mass	Total	Long.	Trans.	Vert. Arm	Unit FSM	Total FSM	FSM Type
		tonne	tonne	Volume	Arm	Arm	m	tonne.m	tonne.m	
				m^3	m	m				
Lightship	1	12957,846	12957,846		82,000	0,000	13,800	0,000	0,000	User Specified
passenger	800	0,075	60,000		101,000	0,000	21,000	0,000	0,000	User Specified
passenger suitcases	800	0,025	20,000		101,000	0,000	21,000	0,000	0,000	User Specified
cars	0	1,250	0,000		90,000	0,000	19,000	0,000	0,000	User Specified
trucks	0	4,000	0,000		90,000	0,000	8,000	0,000	0,000	User Specified
Trailer	0	1510,000	0,000		64,540	0,000	10,200	0,000	0,000	User Specified
crew	500	0,075	37,500		85,000	0,000	18,000	0,000	0,000	User Specified
stores	1	40,000	40,000		101,000	0,000	6,800	0,000	0,000	User Specified
Axle Load	1	15,000	15,000		101,000	0,000	6,800	0,000	0,000	User Specified
WB 1	100%	57,762	57,762	56,353	44,385	0,000	1,397	n/a	0,000	Maximum

Item Name	Quantity	Unit Mass tonne	Total Mass tonne	Total Volume	Long. Arm	Trans. Arm	Vert. Arm m	Unit FSM tonne.m	Total FSM tonne.m	FSM Type
MDO - P	50%	62,449	31,225	37,172	54,229	-2.903	0.857	n/a	268,800	Maximum
MDO - ST	50%	62,449	31.225	37.172	54.229	2,903	0.857	n/a	268.800	Maximum
HFO 1 - P	49%	37.394	18.323	19,404	82,743	-6.000	0,490	n/a	27.700	Maximum
HFO 2 - P	49%	37,394	18,323	19,404	82,743	-2,000	0,490	n/a	27,700	Maximum
HFO 3 - ST	49%	37,394	18,323	19,404	82,743	6,000	0,490	n/a	27,700	Maximum
HFO 4 - ST	49%	37,394	18,323	19,404	82,743	2,000	0,490	n/a	27,700	Maximum
HFO 5	49%	122,381	59,967	63,504	87,745	0,000	0,490	n/a	1450,451	Maximum
HFO 6	49%	271,958	133,260	141,120	97,475	0,000	0,490	n/a	3223,224	Maximum
HFO 7	49%	269,192	131,904	139,684	109,914	0,000	0,503	n/a	3223,224	Maximum
WB 2	100%	257,686	257,686	251,401	119,803	0,000	1,078	n/a	0,000	Maximum
WB 3	100%	185,301	185,301	180,782	129,698	0,000	1,131	n/a	0,000	Maximum
WB 4	100%	100,031	100,031	97,591	138,591	0,000	1,157	n/a	0,000	Maximum
FW	39%	968,322	377,646	377,646	149,642	0,000	3,336	n/a	3413,333	Maximum
WB 5	100%	753,378	753,378	735,003	170,730	0,000	8,285	n/a	0,000	Maximum
WB 6	100%	21,034	21,034	20,521	138,055	-5,880	3,421	n/a	0,000	Maximum
WB 7	100%	21,034	21,034	20,521	138,055	5,880	3,421	n/a	0,000	Maximum
WB 8	100%	24,591	24,591	23,991	128,613	-7,898	3,469	n/a	0,000	Maximum
WB 9	100%	24,591	24,591	23,991	128,613	7,898	3,469	n/a	0,000	Maximum
WB 10	100%	50,484	50,484	49,253	119,086	-9,225	3,179	n/a	0,000	Maximum
WB 11	100%	50,484	50,484	49,253	119,086	9,225	3,179	n/a	0,000	Maximum
WB 13	100%	813,475	813,475	793,634	24,059	0,000	5,583	n/a	0,000	Maximum
HEEL TANK -P	50%	81,348	40,674	45,788	55,750	-9,597	2,405	n/a	87,702	Maximum
HEEL TANK -ST	50%	81,348	40,674	45,788	55,750	9,597	2,405	n/a	87,702	Maximum
WB 14	100%	49,708	49,708	48,496	45,664	-9,708	3,513	n/a	0,000	Maximum
WB 15	100%	49,708	49,708	48,496	45,664	9,708	3,513	n/a	0,000	Maximum
Total Loadcase			16509,479	3364,777	86,668	0,000	11,854		12134,034	

Πίνακας 36: Κατάσταση Φόρτωσης για το Lightest Subdivision Draught (dl)

Και για αυτό το ROPAX 15 χρησιμοποιήθηκαν τα ίδια χαρακτηριστικά για την δημιουργία του ROPAX 1. Το πλήθος των επιβατών, τα βυθίσματα, τα μετακεντρικά ύψη GM, η διαγωγή, οι διαχωρητότητες παρέμειναν σταθερά.

Οι ζώνες υποδιαίρεσης του πλοίου έχουν οριστεί και για τα side casings όπως έχουν οριστεί.

Στα διαμερίσματα έχουν οριστεί επίσης τα casings όπως φαίνεται και στην παραπάνω ενότητα.

Στη συνέχεια υπολογίζουμε το Α – Index ακολουθώντας τους κανόνες.

Load cases

Deepest subdivision draft (summer load line) Load case: ds

Partial subdivision draft Load case: dp

Light service draft Load case: dL

Fluid analysis method: Simulate fluid movement

Heel to starboard; heel range: from -30 deg to 180 deg in steps of 10 deg.

ATTAINED AND REQUIRED SUBDIVISION INDEX							
μήκος υποδιαίρεσης	190 m						
Το πλάτος της γραμμής φόρτωσης	28,5 m						
Αριθμός ατόμων Ν1	0						
Αριθμός ατόμων Ν2	2000						
Επιθυμητός δείκτης R	0,8033						
Επιτευχθείς δείκτης Α	0,868211						

Πίνακας 37: A – Index (SOLAS 2009) για το πλοίο ROPAX 15

Για το EU ROPAX 3000_15 ο δείκτης Α είναι μεγαλύτερος για την περίπτωση με side casings.

Η ευστάθεια του πλοίου βελτιώνεται δραστικά σε σχέση με τις αλλαγές που πραγματοποιήθηκαν στις διαστάσεις.

Tα side casings σίγουρα είναι ένας τρόπος να αυξηθεί ο δείκτης Α, κάτι που σημαίνει ότι η εσωτερική διάταξη είναι αρκετά σημαντική για την ευστάθεια του πλοίου μετά από βλάβη.

Άλλος ένας τρόπος λοιπόν για την βελτίωση της ευστάθειας είναι να υπάρχουν side casings, για να μειωθεί η πιθανότητα εισχώρησης υδάτων στο χώρο οχημάτων και σε κατάσταση βλάβης θα πληγούν αυτά αντί για το χώρο RO – RO απευθείας.

5.4. ΣΥΓΚΡΙΣΗ ΤΡΟΠΟΠΟΙΗΜΕΝΩΝ ΔΙΑΤΑΞΕΩΝ

Με βάση τα παραπάνω αποτελέσματα εξάγεται το συμπέρασμα πως η ευστάθεια του πλοίου βελτιώνεται δραστικά σε σχέση με τις αλλαγές που έγιναν στις διαστάσεις.

Η κατάσταση side casings σίγουρα είναι ένας τρόπος αύξησης, κάτι που μας δείχνει ότι η εσωτερική διάταξη του πλοίου είναι αρκετά σημαντική για την ευστάθεια του πλοίου μετά από βλάβη.

Σε αυτό το σημείο θα γίνει μια σύγκριση των διατάξεων που εξετάστηκαν, με βάση το δείκτη Α. Τα αποτελέσματα παρουσιάζονται συνοπτικά στον παρακάτω πίνακα και απεικονίζονται γραφικά.

Version	Beam	Depth	Ds	Dp	DI	GMs	GMp	GMI	A - SOLAS
ROPAX 11	28,5	21,4	20179	19111	16885	2,437	2,06	2,531	0,8172
ROPAX 12	28,5	21,4	20179	19111	16885	2,437	2,06	2,531	0,860078
ROPAX 13	28,9	21,4	20179	19111	16885	2,797	2,401	2,905	0,89019
ROPAX 14	28,9	21,4	20179	19111	16885	2,797	2,401	2,905	0,9255
ROPAX 15	28,5	21,4	20179	19111	16885	2,437	2,06	2,531	0,868211

Πίνακας 38: A – Index (SOLAS 2009) για όλες τις τροποποιήσεις στη διάταξη

Στον παραπάνω πίνακα παρατίθενται κάποια βασικά χαρακτηριστικά των πλοίων με τροποποίηση στην εσωτερική διάταξη. Παρατηρούμε πως το εκτόπισμα παραμένει ίδιο αφού είναι αυτό που κρατάμε σταθερό στα μοντέλα που σχεδιάστηκαν, το μετακεντρικό ύψος αλλάζει για τα μοντέλα με την τροποποίηση στο πλάτος Β.

Διάγραμμα 8: A – Index για τις τροποποιημένες εσωτερικές διατάξεις

Παρατηρούμε πως η απλοποιημένη διάταξη **ROPAX 11** σε σχέση με το πλοίο ROPAX 1 εμφανίζει χαμηλότερο δείκτη Α αλλά ικανοποιεί τον κανονισμό (A=0,8172>R=0,8033). Ο δείκτης είναι αρκετά υψηλός γιατί σε αυτή την απλοποιημένη διάταξη η κατάκλιση οδηγεί σε μηδενική εγκάρσια κλίση. Ο δείκτης βέβαια του ROPAX 1 είναι μεγαλύτερος γιατί στο πλοίο ROPAX 11 είναι μεγαλύτερη η πιθανότητα εισχώρησης ύδατος στο RO – RO spaces.

Το **ROPAX 12** που διαθέτει στο κατάστρωμα οχημάτων στο πίσω και το μπροστινό μέρος casings εμφανίζει μεγαλύτερο δείκτη Α από το πλοίο ROPAX 1. Με την τοποθέτηση των χώρων αυτών μειώνεται η πιθανότητα κατάκλυσης του πολύ μεγάλου όγκου του καταστρώματος οχημάτων που σε περίπτωση κατάκλυσης θα είχε ως αποτέλεσμα την ανατροπή και ισορροπία του πλοίου ανάποδα.

Το **ROPAX 13** εμφανίζει μεγαλύτερο δείκτη Α από το ROPAX 1, το πλοίο αυτό έχει αυξημένο πλάτος κατά 0,4m. Αυτό γίνεται εξαιτίας της μείωσης εγκάρσιας κλίσης. Το πλοίο **ROPAX 14** με τους επιπλέον χώρους πλευρικά σε σχέση με το ROPAX 13 παρουσιάζει πολύ μεγαλύτερο δείκτη υποδιαίρεσης Α, που είναι αναμενόμενο γιατί μειώνουμε την εγκάρσια κλίση και την πιθανότητα εισχώρησης ύδατος στο κατάστρωμα οχημάτων.

To **ROPAX 15** έχει πλευρικά casings. Ο δείκτης Α είναι και εδώ αρκετά μεγαλύτερος γιατί και πάλι μειώνεται η πιθανότητα εισχώρησης νερού στο κατάστρωμα οχημάτων.

ΚΕΦΑΛΑΙΟ 6: ΜΕΛΕΤΗ ΕΠΙΡΡΟΗΣ ΤΩΝ CROSS FLOODING PIPES ΣΤΗΝ ΕΓΚΑΡΣΙΑ ΚΛΙΣΗ ΤΟΥ ΠΛΟΙΟΥ

Κάτι που παρατηρούμε είναι το πρόβλημα της μεγάλης εγκάρσιας κλίσης που μπορεί να πάρει το πλοίο μας λόγω της κατάκλυσης μόνο από την μια μεριά του πλοίου μιας και τα διαμερίσματα χωρίζονται από διαμήκης φρακτές. Ένας τρόπος αντιμετώπισης των μεγάλων κλίσεων είναι τα συμμετρικά διαμερίσματα του πλοίου να επικοινωνούν μεταξύ τους ώστε σε περίπτωση βλάβης να κατακλύζονται και αυτά και έτσι να μην υπάρχει μεγάλη ασύμμετρη κατάκλυση και συνεπώς εγκάρσια κλίση.

Για να αποφευχθούν μεγάλες κλίσεις του πλοίου μετά από τέτοια ζημιά, έχει τοποθετηθεί crossflooding pipes (CFP) συμμετρικά συνδεδεμένα με το διαμέρισμα της κεντρικής γραμμής. Τα διαμερίσματα συνδέονται με CFP, έτσι ώστε το διαμέρισμα που βρίσκεται στην απέναντι πλευρά του ρήγματος να κατακλύζεται, με σκοπό να μειωθεί η μεγάλη ασύμμετρη κατάκλυση του πλοίου και να υπάρξει αποφυγή της βύθισης.

Σε αυτό το σημείο θα εξεταστεί η συμπεριφορά της εγκάρσιας κλίσης για το πλοίο αναφοράς EU ROPAX 3000_1, αλλά με ενωμένα ορισμένα διαμερίσματα, με τη βοήθεια CFP. Το νέο μοντέλο πλοίου που θα εξεταστεί καλείται **EU ROPAX 3000_16**.

Name 💌	A Room 🔻	A Long.Pos. m 🔻	A Offset m 👻	A Height m 👻	B Room 👻	B Long.Pos. m 🔻	B Offset m 👻	B Height m 👻
CFP1	comp22	45	-11,5	6	comp21	45	11,5	6
CFP2	comp24	55	-11,5	6	comp23	55	11,5	6
CFP3	comp27	82,5	-11,5	6	comp28	82,5	11,5	6
CFP4	comp33	120	-11,5	6	comp34	120	11,5	6
CFP5	comp31	108,75	-11,5	6	comp32	108,75	11,5	6

Στον παρακάτω πίνακα φαίνονται τα διαμερίσματα που επικοινωνούν με τη βοήθεια CFP.

Πίνακας 39: Διαμερίσματα που επικοινωνούν CFP

Εικόνα 34: Σχέδιο Διάταξης που επικοινωνούν τα διαμερίσματα για το πλοίο ROPAX 16

Με μπλέ χρώμα μπορούμε να δούμε τα διαμερίσματα που συνδέονται μεταξύ τους. Επιλέγουμε στο maxsurf τα διαμερίσματα που θέλουμε να συνδέονται και σε πιο σημείο θέλουμε όπως φαίνεται στον πίνακα 38.

Θα πρέπει να δούμε ότι δεν συνδέονται όλα τα συμμετρικά διαμερίσματα μεταξύ τους. Αυτή η επιλογή γίνεται για τον λόγο ότι στα διαμερίσματα που βρίσκονται οι κύριες μηχανές του πλοίου δεν θέλουμε να κατακλύζονται. Έτσι θα πρέπει να γίνει με προσοχή η σύνδεση των διαμερισμάτων μεταξύ τους και να δούμε εάν τελικά βελτιώνεται η ευστάθεια του πλοίου.

Η διαδικασία γίνεται αυτόματα με το maxsurf έως την τελική ισορροπία του πλοίου αφού έχουν περάσει ενδιάμεσα στάδια.

Παρακάτω θα εξεταστεί το παράδειγμα της βλάβης εώς B/2 όπως έγινε σε προηγούμενο κεφάλαιο που εξετάσαμε το πρόβλημα με την ντετερμινιστική μέθοδο.

Hydrostatics	Before Cross-	Intermediat	Intermediat	After Cross-
	Flood	e	е	Flood
Draft Arridahina an	0.705	I = 60 S	I = 600 s	0.040
Draft Amidships m	8,795	8,872	9,224	9,213
	19805	19806	19805	19805
Reel deg	9,8	5,0	0,2	0,1
Draft at FP m	10,167	10,024	10,811	10,731
Draft at AP m	7,423	7,719	7,637	7,695
Draft at LCF m	8,470	8,601	8,746	8,772
I rim (+ve by stern) m	-2,743	-2,305	-3,173	-3,036
WL Length m	170,799	170,170	170,587	170,562
Beam max extents on WL m	28,922	28,610	28,668	28,614
Wetted Area m ²	5685,929	5696,143	5839,997	5833,870
Waterpl. Area m ²	1938,400	2038,622	1857,437	1940,079
Prismatic coeff. (Cp)	0,376	0,375	0,357	0,358
Block coeff. (Cb)	0,309	0,319	0,296	0,298
Max Sect. area coeff. (Cm)	0,821	0,889	0,877	0,892
Waterpl. area coeff. (Cwp)	0,392	0,419	0,380	0,398
LCB from zero pt. (+ve fwd) m	88,775	88,762	88,772	88,770
LCF from zero pt. (+ve fwd) m	67,661	67,844	61,954	62,891
KBm	4,760	4,849	5,019	5,015
KG solid m	9,470	9,470	9,470	9,470
BMt m	7,452	8,549	7,954	8,238
BML m	250,347	272,213	222,323	226,754
GMt corrected m	2,674	3,908	3,475	3,766
GML m	245,569	267,572	217,844	222,282
KMt m	12,102	13,364	12,925	13,219
KML m	251,421	275,993	226,005	230,831
Immersion (TPc) tonne/cm	19,869	20,896	19,039	19,886
MTc tonne.m	218,961	238,594	194,242	198,197
RM at 1deg = GMt.Disp.sin (1) tonne.m	737,621	1078,020	958,601	1038,780
Max deck inclination deg	9,8434	5,0791	6,2859	5,2130
Trim angle (+ve by stern) deg	-0,8867	-0,7451	-1,0256	-0,9813

Πίνακας 40: Αποτελέσματα με CFP για το πλοίο ROPAX 16

Εικόνα 35: Κατάσταση Ισορροπίας του πλοίου ROPAX 16

Όπως βλέπουμε η εγκάρσια κλίση μειώνεται παρόλα αυτά η ευστάθεια του πλοίου εξαρτάται πάρα πολύ από τα στεγανά διαμερίσματα και την υποδιαίρεση άρα η κατασκευή διαμερισμάτων που ενώνονται είναι αρνητικός παράγοντας για την ευστάθεια, διότι μπορεί να προκύψει διαδοχική κατάκλυση πολλών και σημαντικών διαμερισμάτων και να επεκταθεί σε μεγάλο βαθμό η βλάβη.

Επομένως, θα πρέπει να γίνει σωστή προμελέτη και σχεδίαση, ώστε να αποφευχθούν τέτοια προβλήματα, που μπορούν να οδηγήσουν σε προβλήματα στην ευστάθεια και εν τέλη να βυθιστεί το πλοίο.

6.1 ΣΥΓΚΡΙΣΗ ΚΑΜΠΥΛΗΣ ΕΥΣΤΑΘΕΙΑΣ ΜΕΤΑΞΥ ROPAX 1 - ROPAX 16

Stability calculation - ROPAX 1

Stability calculation - ROPAX 16

Εικόνα 37: Stability calculation - ROPAX 16

Καθώς παρατηρούμε τις δύο καμπύλες βλέπουμε ότι τελικά η προσθήκη CFP βελτιώνει την ευστάθεια τουλάχιστον για την δυσμενέστερη κατάσταση φόρτωσης. Η εγκάρσια κλίση του πλοίου μειώθηκε (10,2 σε 6,4 deg) και παράλληλα αυξήθηκε το GM (2,549 σε 3,441 m). Επίσης το GZ max αυξήθηκε κάτι που είναι πολύ σημαντικό για την ευστάθεια του πλοίου μετά από βλάβη με βάση την ντετερμινιστική μέθοδο (0,368 σε 0,473 deg). Σημαντική παρατήρηση είναι, επίσης, ότι έχουμε αύξηση και του εύρους ευστάθειας μιας και έχουμε μεγαλύτερη γωνία μηδενικής ευστάθειας (52 σε 55 deg) αλλά αυτό έχει σαν αποτέλεσμα η γωνία που παρατηρούμε μέγιστο GZ να μειώνεται ελάχιστα (39,1 σε 37,3).

Παρακάτω στον πίνακα βλέπουμε ότι το ROPAX 16 καλύπτει και τα ντετερμινιστικά κριτήρια άρα μπορεί να επιβιώσει.

Code	Criteria	Value	Units	Actual	Status	Margin
MY GROYP	Copy of Required GM	1,265	m			70
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	48,8	Pass	+225,35
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 2 - manual calc.)	0,100	m	0,473	Pass	+373,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ based	12,0	deg	6,4	Pass	+45,24
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 30 to 40	1,7189	m.deg	4,5597	Pass	+165,27
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.2: Max GZ at 30 or greater	0,200	m	0,473	Pass	+136,50
MY GROYP	Copy of Value of GMt at	1,265	m	3,441	Pass	+167,21
MY GROYP	1.6: Maximum residual GZ				Pass	
	Wind + Turning	0,040	m	0,153	Pass	+282,50
	Wind + Paxcrowding	0,040	m	0,149	Pass	+272,50

Πίνακας 41: Criteria_ ROPAX 16

κεφαλαίο 7: Ανακεφαλαίωση / Συμπερασματά. Προτάσεις για έρευνα

Το ερευνητικό αντικείμενο αυτής της διπλωματικής είναι η ευστάθεια μετά από βλάβη, ιδιαίτερα οι ντετερμινιστικές και πιθανοθεωρητικές μέθοδοι επιβατηγού οχηματαγωγού πλοίου.

Το μοντέλο EU ROPAX 3000 δημιουργήθηκε αρχικά με τη βοήθεια του ναυπηγικού λογισμικού Maxsurf. Στη συνέχεια, μελετώντας τους κανονισμούς της SOLAS, καταλήξαμε στο συμπέρασμα ότι το σκάφος συμμορφώνεται με τους κανονισμούς και έχει δυνατότητα επιβίωσης μετά από κατάκλυση.

Για τη βελτίωση της ευστάθειας εισάχθηκαν Risk Control Options (RCOs), που αφορούν τις βασικές διαστάσεις του πλοίου όπως ποιο συγκεκριμένα, το πλάτος και το κοίλο του. Έτσι έγιναν αρκετές τροποποιήσεις, ώστε να μελετηθεί η συμπεριφορά του πλοίου με την ντετερμινιστική μέθοδο τόσο στην καινούρια θέση ισορροπίας του πλοίου όσο και μέσα από την καμπύλη ευστάθειας και το GZ max. Το πλάτος ήταν αυτό που παίζει καθοριστικό ρόλο στην αύξηση του GZ max και της γωνίας απώλειας ευστάθειας (vanishing). Η αύξηση του κοίλου οδηγεί σε μείωση του GZ max αλλά και σε μεγάλη αύξηση της γωνίας vanishing άρα επιτυγχάνεται μεγαλύτερο εύρος ευστάθειας. Η αύξηση του ύψους του καταστρώματος με την αύξηση του κοίλου έχει ως αποτέλεσμα μια αύξηση του κέντρου βάρους (KG) του πλοίου, με αποτέλεσμα τη μείωση του ύψους GM, το οποίο παρατηρείται στα γραφήματα, όταν αυξάνουμε το κοίλο υπάρχει πτώση.

Στην συνέχεια μελετήσαμε την ευστάθεια μετά από βλάβη με την πιθανοθεωρητική μέθοδο. Πραγματοποιήθηκαν έτσι οι τροποποιήσεις, ώστε να μελετηθεί η συμπεριφορά του επιτευχθέντα δείκτη υποδιαίρεσης Α σε σχέση με τις διαστάσεις του πλοίου και παρατηρήσαμε πως το πλάτος έχει καθοριστικό ρόλο στην αύξηση του δείκτη αυτού. Παρακάτω φαίνεται το διάγραμμα που φαίνεται η επιρροή του πλάτους Β στον επιτευχθέντα δείκτη υποδιαίρεσης Α.

Διάγραμμα 9: Α – Index (SOLAS 2009) για εναλλακτικές σχεδιάσεις

Συγκρίνοντας τις δύο μεθόδους μεταξύ τους βλέπουμε ότι έχουν αρκετές διαφορές. Από την μία με την πιθανοθεωρητική μέθοδο έχουμε μια καλύτερη εικόνα των καταστάσεων βλάβης σε πολλά damage σενάρια. Βέβαια επειδή έχουμε τόσες πολλές καταστάσεις βλάβης είναι πολύ χρονοβόρα σε αντίθεση με την ντετερμινιστική μέθοδο που τρέχουμε την δυσμενέστερη κατάσταση μόνο. Επίσης στην πιθανοθεωρητική μέθοδο απλά πρέπει να βγάλουμε τον δείκτη Α μεγαλύτερο του R οπότε χάνουμε την συμπεριφορά κάποιων γεωμετρικών στοιχείων που έχουν να κάνουν με την ευστάθεια μετά από βλάβη.

Επιπλέον, στην πιθανοθεωριτική μέθοδο εξετάζουμε τρεις καταστάσεις φόρτωσης και από αυτές τις τρεις υπολογίζουμε τον δείκτη Α. Άρα κατά την διαδικασία της βελτιστοποίησης όταν αλλάζουμε το πλάτος και το κοίλο μπορεί στην μία κατάσταση φόρτωσης, το GZ να ανεβαίνει ενώ στις άλλες δύο καταστάσεις να υπάρχει πτώση του GZ οπότε σε αυτή την περίπτωση ο δείκτης Α μεταβάλλεται με βάση την βαρύτητα που έχουμε δώσει σε κάθε κατάσταση φόρτωσης, όπως αυτή ορίζεται απο την SOLAS. Στο πλοίο αναφοράς η Light κατάσταση φόρτωσης έχει 0,2 συντελεστή βαρύτητας βέβαια σε αυτό το πλοίο με αυτές τις καταστάσεις φόρτωσης δεν υπάρχει τέτοια περίπτωση αφού όταν για παράδειγμα αυξάνουμε το κοίλο υπήρχε πτώση σε όλες τις καταστάσεις φόρτωσης αλλά υπάρχει περίπτωση σε διαφορετικές καταστάσεις να μην είναι όμοια.

Εκτός από το πιθανοθεωρητικό μοντέλο εξετάστηκαν και με οικονομικά στοιχεία οι τροποποιήσεις. Έτσι βρέθηκε η πιο καλή λύση για την βελτίωση της ευστάθειας μετά από βλάβη. Οι παράμετροι είναι ο δείκτης Α, το κόστος για την αποφυγή ενός θανάτου GCAF και η πιθανότητα απώλειας ζωής PLL. Με όριο για το GCAF \$7,45εκατομμύρια/ απώλεια ζωή του GCAF.

Όπως επισημάνθηκε δεν ικανοποιούν όλα τα διαφορετικά πλοία που εξετάστηκαν το κριτήριο του GCAF και έτσι δεν προτείνονται ως βέλτιστες σχεδιάσεις λόγω μεγάλου κόστους.

Εξετάστηκαν επίσης τροποποιημένες εσωτερικές διαμορφώσεις του πλοίου για να μελετηθεί η συμπεριφορά του επιτευχθέντα δείκτη υποδιαίρεσης Α. Μελετήθηκε η απλοποιημένη διάταξη στο πλοίο αναφοράς και το πλοίο με αυξημένο πλάτος και μια άλλη απλοποιημένη διάταξη, η οποία στο κατάστρωμα οχημάτων είχε πρωραίους και πρυμναίους μόνιμους χώρους (casings).

Έγιναν αλλαγές, επίσης, στην ήδη υπάρχουσα διάταξη. Δημιουργήθηκαν δύο πλευρικά casings, ενώ μελετήθηκαν τα CROSS FLOODING PIPES που κατακλύζονται τα διαμερίσματα που ενώνονται με αυτές.

Το συμπέρασμα που προέκυψε ήταν ότι στην αρχή το πλοίο έχει δείκτη Α αρκετά υψηλό. Όταν στο κατάστρωμα οχημάτων δημιουργήθηκαν μόνιμοι χώροι άντωσης (casings) είτε πρωραία και πρυμναία είτε πλευρικά ο δείκτης Α αυξήθηκε αρκετά. Τέλος, αν τα διαμερίσματα τα οποία ενώνονται με CFP κατακλύζονταν θα είχαμε κλιμακωτή κατάκλυση. Έτσι η εγκάρσια κλίση του πλοίου μειώνεται κάτι που θέλουμε και είναι θετικό γιατί ένα πλοίο ROPAX μπορεί να υποστεί βλάβη και να κατακλυστούν διαμερίσματα που βρίσκονται μόνο από τη μια μεριά του πλοίου (port ή/ starboard) και έτσι να πάρει

μεγάλες εγκάρσιες κλίσεις παρά το γεγονός ότι ο όγκος νερού που έχει εισχωρήσει είναι σχετικά μικρός. Από την άλλη μεριά μπορεί να οδηγήσει σε πτώση του δείκτη Α μέχρι και εκτός ορίων γιατί μπορεί προκύψει διαδοχική κατάκλυση πολλών και σημαντικών διαμερισμάτων και να επεκταθεί σε μεγάλο βαθμό η βλάβη. Άρα θα πρέπει να γίνει σωστή τοποθέτηση των CFP και σωστή σχεδίαση κατά την προμελέτη του πλοίου.

Στο πλοίο αναφοράς βέβαια δεν παρατηρήθηκε ότι τα CFP μειώνουν την ευστάθεια αλλά αντίθετα παρατηρήθηκε βελτίωση της ευστάθειας μέσα από την καμπύλη ευστάθειας μετά από μελέτη με την ντετερμινιστική μέθοδο. Είδαμε πως καλύπτουμε τα ντετερμινιστικά κριτήρια άρα η εναλλακτική σχεδίαση ROPAX 16 μπορεί να επιβιώσει με βάση την ντετερμινιστική μέθοδο.

Επομένως, στη διπλωματική μελετήθηκε το ντετερμινιστικό και πιθανοθεωρητικό μοντέλο και εισάχθηκαν ορισμένα Risk Control Options. Επίσης έγιναν τροποποιήσεις και στην εσωτερική διάταξη του πλοίου. Ορισμένες προτάσεις για συνέχιση της έρευνας είναι οι εξής:

Μελέτη πλοίου τροποποιημένης εσωτερικής διάταξης

i.Watertight doors (επιπλέον στεγανοποίηση διαμερισμάτων)
 ii.Δεξαμενές που περιέχουν ειδικά υλικά (στεγανωποίηση των δεξαμενών)
 iii.Προσθήκη εγκάρσιων και διαμήκων φρακτών
 iv.Αλλαγή/ Προσθήκη ύψους διπυθμένου

ο Μελέτη ROPAX διαφορετικού μεγέθους και διαφορετικών καταστάσεων φόρτωσης

 Μελέτη ROPAX 16 παρούσας εργασίας και με την πιθανοθεωριτική μέθοδο και σύγκριση αποτελεσμάτων.

Μελέτη του προβλήματος, εκτός από το πιθανοθεωρητικό μοντέλο της SOLAS 2009,
 με την μέθοδο GOALDS που αποτελεί ένα από τα ερευνητικά προγράμματα της Ε.Ε. σχετικά
 με την αναθεώρηση των κανονισμών ασφαλείας.

BIBLIC	OGRAPHY					
•	Per Fagerlund, Available at:	G., 2006. http://www.scandin	DESSO aos.com/DESS	<i>ROPAX 1</i> 50/WP4/WP4%2	Design. [Online OFinal%20Report.pe	e] df
	[Accessed 5 Februar	y 2022].				
٠	Roussou, C., 2015.	Συστηματική μελέτ	η ευστάθειας	πλοίου ROPA	Κ μετά από βλάβ	ŋ,
	προπτυχιακή	διπλωματικι	ń	εργασία.	[Online	e]
	Available				а	t:
	https://dspace.lib.nt	ua.gr/xmlui/bitstrean	n/handle/1234	56789/40459/%	ce%94%ce%b9%cf%	6
	80%ce%bb%cf%89%	ce%bc%ce%b1%cf%8	4%ce%b9%ce%	6ba%ce%ae%20%	%ce%95%cf%81%ce	

%b3%ce%b1%cf%83%ce%af%ce%b11.pdf?sequence=1&isAllowed=y

[Accessed 17 January 2022].

- SOLAS, 2., 2009. *SOLAS 2009.* [Online] Available at: https://www.imo.org/en/OurWork/Safety/Pages/DamageStability.aspx
- Vasileiou, E., 2019. Διερεύνηση της ευστάθειας κατόπιν βλάβης και ενεργειακής αποδοτικότητας επιβατηγού-οχηματαγωγού πλοίου, προπτυχιακή διπλωματική εργασία. [Online] Available https://dspace.lib.ntua.gr/xmlui/bitstream/handle/123456789/51197/%ce%94%ce%b9%cf% <u>80%ce%bb%cf%89%ce%bc%ce%b1%cf%84%ce%b9%ce%ba%ce%ae%20 %ce%92%ce%b1%cf</u> <u>%83%ce%b9%ce%bb%ce%b5%ce%af%ce%bf%cf%85.pdf?sequence=1&isAllowed=y</u> [Accessed 17 January 2022].
- Επιτρωπή διερευνήσεων, α., 2019. Επιτρωπή διερεύνησης ναυτικών ατυχημάτων. [Online] Available http://www.maic.gov.cy/mcw/dms/maic/maic.nsf/All/5A2B16FDE3ED16C4C22585AC003FCF 6C/\$file/ETHSIA%20EKTHESI%20EDNAS%202019.pdf [Accessed 3 Φεβρουάριος 2022].
- Ιωάννης Τίγκας (PhD, M. F. C., 2021. Πιθανοτική μέθοδος εκτίμησης της ευστάθειας πλοίου μετά από βλάβη. [Online] Available at: <u>https://eclass.uniwa.gr/modules/document/file.php/NA255/Damaged_Stability_Part%204%</u> <u>20%28Rev2%29.pdf</u> [Accessed 2022].
- Κανελοπούλου, Α., 2013. Έρευνα για ευστάθεια μετά από βλάβη σε επιβατηγό οχηματαγωγό πλοίο με χρήση του ναυπηγικού προγράμματος NAPA, προπτυχιακή διπλωματική εργασία. [Online] Available <u>https://dspace.lib.ntua.gr/xmlui/bitstream/handle/123456789/38330/kanellopoulou_ropax.</u> <u>pdf?sequence=1</u> [Accessed 19 January 2022].
- Σπύρου, Κ., 2015. Δυναμική ευστάθεια πλοίου. [Online] Available at: <u>https://repository.kallipos.gr/bitstream/11419/5206/3/9694%20-</u> <u>%20Kostantinos%20Spyrou.pdf</u> [Accessed 1 January 2022].
- Τζαμπίρας, Γ., 2015. Υδροστατική και ευστάθεια πλοίου. [Online] Available at: <u>https://repository.kallipos.gr/handle/11419/550</u> [Accessed 3 Φεβρουάριος 2022].

ΠΑΡΑΡΤΗΜΑ

ΠΑΡΑΡΤΗΜΑ Α: ΣΤΟΙΧΕΙΑ ΚΡΙΤΗΡΙΩΝ SOLAS ΓΙΑ ΤΟ ΠΛΟΙΟ ΑΝΑΦΟΡΑΣ

	A.749(18) Ch3 - Design criteria applicable to all ships 3.1.2.1: Area 30 to 40	Value	Units
1	from the greater of		
2	spec. heel angle	30,0	deg
3	angle of equilibrium		deg
4	to the lesser of		
5	spec. heel angle	40,0	deg
6	spec. angle above equilibrium	0,0	deg
7	angle of first GZ peak		deg
8	angle of max. GZ		deg
9	first flooding angle of the	DownfloodingPoints	deg
10	immersion angle of	DeckEdge	deg
11	angle of vanishing stability		deg
12	shall not be less than (>=)	1,7189	m.de

Εικόνα 38: Area 30 to 40

	A.749(18) Ch3 - Design criteria applicable to all ships 3.1.2.2: Max GZ at 30 or greater	Value	Units
1	in the range from the greater of		
2	spec. heel angle	30,0	deg
3	angle of equilibrium		deg
4	to the lesser of		
5	spec. heel angle	90,0	deg
6	spec. angle above equilibrium	0,0	deg
7	angle of first GZ peak		deg
8	angle of max. GZ		deg
9	first flooding angle of the	DownfloodingPoints	deg
10	shall not be less than (>=)	0,200	m

Εικόνα 39: Max GZ at 30 or greater

	SOLAS, II-1/8 8.2.3.1: Range of residual positive stability	Value	Units
1	from the greater of		
2	spec. heel angle	0,0	deg
3	angle of equilibrium		deg
4	to the lesser of		
5	first flooding angle of the	DownfloodingPoints	deg
6	immersion angle of	Marginline	deg
7	angle of vanishing stability		deg
8	shall not be less than (>=)	15,0	deg

Εικόνα 40: 8.2.3.1: Range of residual positive stability

		SOLAS, II-1/8 8.2.3.3: Maximum residual GZ (method 2 - manual calc.)	Value	Units
1		in the range from the greater of		
2	\checkmark	spec. heel angle	0,0	deg
3		angle of equilibrium		deg
4		to the lesser of		
5		spec. heel angle	90,0	deg
6		spec. angle above equilibrium	0,0	deg
7		angle of first GZ peak		deg
8	\checkmark	angle of max. GZ		deg
9		first flooding angle of the	DownfloodingPoints	deg
10		shall not be less than (>=)	0,100	m

Εικόνα 41: Maximum residual GZ

	SOLAS, II-1/8 8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ based	Value	Units
1	shall not be greater than (<=)	12,0	deg

Εικόνα 42: 8.6.2: Heel angle

		MY GROYP Wind	Value	Units
1		Wind arm = a P A (h - H) / (g disp.) cos^n(phi)		
2		constant: a =	0,99997	
3		wind model	Pressure	
4		wind pressure: P =	500,0	Pa
5	\checkmark	area centroid height (from zero point): h =	20,000	m
6		approx. area centroid height: h = A/Lwl + TmidWL		m
7		total area: A =	0,000	m^2
8	\checkmark	additional area: A =	40,000	m^2
9		height of lateral resistance: H =	0,000	m
10	\checkmark	H = mean draft / 2		m
11		H = vert. centre of projected lat. u'water area		m
12		H = waterline		m
13		H = baseline		m
14		cosine power: n =	0	
15		gust ratio	1,5	

Εικόνα 43: Wind

		MY GROYP Turning	Value	Units
1		Turn arm = a v^2 / (R g) h cos^n(phi)		
2		constant: a =	0,9996	
3		vessel speed: v =	24,000	kn
4	\square	turn radius: R =	800,000	m
5		turn radius, R, as percentage of Lwl	510,00	%
6		Vertical lever: h =	0,000	m
7		h = KG		m
8	\checkmark	h = KG - mean draft / 2		m
9		h = KG - vert. centre of projected lat. u'water area		m
10		cosine power: n =	0	

Εικόνα 44: Turning

	MY GROYP Paxcrowding	Value	Units
1	Pass. crowding arm = nPass M / disp. D cos^n(phi)		
2	number of passengers: nPass =	2000	
3	passenger mass: M =	0,075	tonne
4	distance from centre line: D =	14,000	m
5	cosine power: n =	0	

Εικόνα 45: Pax crowding

		MY GROYP Copy of Required GM	Value	Units
1		GM = a . [cos^n(phi0) / sin(phi0)]		
2		a = lever magnitude	0,300	m
3		Amplitude is heeling moment (ie divide by disp.)		
4	\checkmark	Apply heel correction with angle, phi0: the lesser of t		
5	\checkmark	Spec. heel angle	14,0	deg
6	\checkmark	Fraction of immersion angle of	DeckEdge	deg
7		Fraction of immersion angle	50,00	%
8		cosine power: n =	1	
9		sine power: m =	1	
10		Evaluates to	1,203	m

	MY GROYP Copy of Value of GMt at	Value	Units
1	spec. heel angle	0,0	deg
2	angle of equilibrium		deg
3	Copy of Required GM	1,203	m
4	shall be greater than (>)	1,203	m

Εικόνα 46: Required and Value GM

		MY GROYP	Value	Units
1		Wind		
2		Turning		
3		Paxcrowding		
4		in the range from the greater of		
5		spec, heel angle	0.0	dea
6		spec, angle above equilibrium	0.0	dea
7		spec. angle above equilibrium with heel arm	0.0	dea
8		to the lesser of		v
9		fraction of upper angle	100,00	%
10		spec. heel angle	90,0	deg
11		spec. angle above equilibrium (with heel arm)	15,0	deg
12		angle of first GZ peak		deg
13		angle of max. GZ		deg
14		angle of max. GZ above heel arm		deg
15		angle of margin line immersion		deg
16		angle of deck edge immersion		deg
17	\checkmark	first flooding angle of the	DownfloodingPoints	deg
18		Criteria: max GZ above heel arm shall not be le		
19		Wind	0,040	m
20		Turning	0,040	m
21		Paxcrowding	0,040	m
22		Wind + Turning	0,040	m
23		Wind + Paxcrowding	0,040	m
24		Turning + Paxcrowding	0,040	m
25		Wind + Turning + Paxcrowding	0,040	m

Εικόνα 47: 1.6: Maximum residual GZ

ΠΑΡΑΡΤΗΜΑ Β: INTACT STABILITY ΠΛΟΙΟΥ ΑΝΑΦΟΡΑΣ

Equilibrium calculation - Stability calculation

Load case – Full Load summer Departure

Damage Case - Intact

Draft Amidships m	7,037
Displacement t	20179
Heel deg	0,0
Draft at FP m	7,108
Draft at AP m	6,966
Draft at LCF m	7,025
Trim (+ve by stern) m	-0,142
WL Length m	177,515
Beam max extents on WL m	26,641
Wetted Area m ²	5519,091
Waterpl. Area m^2	3969,823
Prismatic coeff. (Cp)	0,608
Block coeff. (Cb)	0,586
Max Sect. area coeff. (Cm)	0,974
Waterpl. area coeff. (Cwp)	0,839
LCB from zero pt. (+ve fwd) m	86,426
LCF from zero pt. (+ve fwd) m	77,178
KBm	4,036
KG solid m	12,087
BMt m	10,489
BML m	404,675
GMt corrected m	2,437
GML m	396,623
KMt m	14,525
KML m	408,711
Immersion (TPc) tonne/cm	40,691
MTc tonne.m	428,809
RM at 1deg = GMt.Disp.sin (1) tonne.m	858,354
Max deck inclination deg	0,0436
Trim angle (+ve by stern) deg	-0,0436

Εικόνα 48: Intact Stability – 100% Departure

Load case - Summer Arrival Partial

Damage Case – Intact

Draft Amidships m	6,845
Displacement t	19111
Heel deg	0,0
Draft at FP m	7,374
Draft at AP m	6,316
Draft at LCF m	6,769
Trim (+ve by stern) m	-1,058
WL Length m	173,960
Beam max extents on WL m	26,611
Wetted Area m ²	5320,701
Waterpl. Area m ²	3831,175
Prismatic coeff. (Cp)	0,608
Block coeff. (Cb)	0,552
Max Sect. area coeff. (Cm)	0,974
Waterpl. area coeff. (Cwp)	0,828
LCB from zero pt. (+ve fwd) m	88,900
LCF from zero pt. (+ve fwd) m	79,937
KBm	3,883
KG solid m	11,878
BMt m	10,511
BML m	387,269
GMt corrected m	2,060
GML m	378,817
KMt m	14,394
KML m	391,145
Immersion (TPc) tonne/cm	39,270
MTc tonne.m	387,894
RM at 1deg = GMt.Disp.sin (1) tonne.m	687,069
Max deck inclination deg	0,3247
Trim angle (+ve by stern) deg	-0,3247

Εικόνα 49: Intact Stability - Summer Arrival Partial

Load case – Ballast Arrival Lightest

Damage Case – Intact

Draft Amidships m	6,173
Displacement t	16885
Heel deg	0,0
Draft at FP m	6,030
Draft at AP m	6,316
Draft at LCF m	6,194
Trim (+ve by stern) m	0,286
WL Length m	179,223
Beam max extents on WL m	26,532
Wetted Area m ²	5042,169
Waterpl. Area m^2	3745,585
Prismatic coeff. (Cp)	0,574
Block coeff. (Cb)	0,550
Max Sect. area coeff. (Cm)	0,975
Waterpl. area coeff. (Cwp)	0,788
LCB from zero pt. (+ve fwd) m	87,040
LCF from zero pt. (+ve fwd) m	79,203
KBm	3,534
KG solid m	11,684
BMt m	11,400
BML m	421,060
GMt corrected m	2,531
GML m	412,191
KMt m	14,934
KML m	424,593
Immersion (TPc) tonne/cm	38,392
MTc tonne.m	372,901
RM at 1deg = GMt.Disp.sin (1) tonne.m	745,912
Max deck inclination deg	0,0877
Trim angle (+ve by stern) deg	0,0877

Εικόνα 50: Intact Stability - Ballast Arrival Lightest

ΠΑΡΑΡΤΗΜΑ Γ: ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΟΣ ΕΛΕΓΧΟΣ ΚΡΙΤΗΡΙΩΝ ROPAX 1

Stability calculation

DAMAGE CASE 1

100% Departure

Εικόνα 51: Stability Calculation, Load case (100%), Damage 1

Code	Criteria	Value	Units	Actual	Status	Margin
						%
MY GROYP	Copy of Required GM	1,203	m			
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	51,6	Pass	+243,86
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 2 - manual calc.)	0,100	m	1,148	Pass	+1048,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding	15,0	deg	6,7	Pass	+55,29
A.749(18) Ch3	3.1.2.1: Area 30 to 40	1,7189	mdeg	9,7019	Pass	+464,42
A.749(18) Ch3	3.1.2.2: Max GZ at 30 or greater	0,200	m	1,096	Pass	+448,00
MY GROYP	Copy of Value of GMt at	1,203	m	5,355	Pass	+345,05
MY GROYP	1.6: Maximum residual GZ				Pass	
	Wind + Turning	0,040	m	0,897	Pass	+2142,50
	Wind + Paxcrowding	0,040	m	0,910	Pass	+2175,00

Πίνακας 42: Ντετεμινιστικά Κριτήρια για Load case (100%), Damage 1

50% Departure

Code	Criteria	Value	Units	Actual	Statu	Margin
					S	%
MY GROYP	Copy of Required GM	1,203	m			
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	55,5	Pass	+270,11
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 2 - manual calc.)	0,100	m	1,307	Pass	+1207,00
SOLAS, II-1/8 8.6.2: Heel angle at equilibrium for unsymmetrical flooding				6,7	Pass	+55,45
A.749(18) Ch3	749(18) Ch3 3.1.2.1: Area 30 to 40			11,614	Pass	+575,69
A.749(18) Ch3	3.1.2.2: Max GZ at 30 or greater	0,200	m	1,276	Pass	+538,00
MY GROYP	Copy of Value of GMt at	1,203	m	4,964	Pass	+312,55
MY GROYP	1.6: Maximum residual GZ				Pass	
	Wind + Turning	0,040	m	1,039	Pass	+2497,50
	Wind + Paxcrowding	0,040	m	1,043	Pass	+2507,50

Πίνακας 43: Ντετεμινιστικά Κριτήρια για Load case (50%), Damage 1

10% Arrival

Εικόνα 53: Stability Calculation, Load case (10%), Damage 1

Code	Criteria	Value	Units	Actual	Status	Margin %	
MY GROYP	Copy of Required GM	1,203	m				
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	46,6	Pass	+210,54	
SOLAS, II-1/8	S, II-1/8 8.2.3.3: Maximum residual GZ (method 2 - manual calc.)		m	1,151	Pass	+1051,0	
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding	15,0	deg	7,0	Pass	+53,37	
A.749(18) Ch3	3.1.2.1: Area 30 to 40	1,7189	m.deg	9,1510	Pass	+432,38	
A.749(18) Ch3	3.1.2.2: Max GZ at 30 or greater	0,200	m	1,084	Pass	+442,00	
MY GROYP	Copy of Value of GMt at	1,203	m	4,922	Pass	+309,06	
MY GROYP	1.6: Maximum residual GZ				Pass		
	Wind + Turning	0,040	m	0,863	Pass	+2057,5	
	Wind + Paxcrowding	0,040	m	0,881	Pass	+2102,5	

Πίνακας 44: Ντετεμινιστικά Κριτήρια για Load case (10%), Damage 1

DAMAGE CASE 2

100% Departure

Εικόνα 54: Stability Calculation, Load case (100%), Damage 2

Code	Criteria	Value	Units	Actual	Status	Margin %
MY GROYP	Copy of Required GM	1,203	m			70
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	73,6	Pass	+390,77
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 2 - manual calc.)	0,100	m	4,565	Pass	+4465,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ based	12,0	deg	6,4	Pass	+46,79
MY GROYP	Copy of Value of GMt at	1,203	m	6,011	Pass	+399,57
MY GROYP	1.6: Maximum residual GZ				Pass	
	Wind	0,040	m	1,620	Pass	+3950,00
	Turning	0,040	m	1,618	Pass	+3945,00
	Paxcrowding	0,040	m	1,620	Pass	+3950,00

Πίνακας 45: Ντετεμινιστικά Κριτήρια για Load case (100%), Damage 2

50% Departure

Εικόνα 55: Stability Calculation, Load case (50%), Damage 2

Code	Criteria	Value	Units	Actual	Status	Margin
						%
MY GROYP	Copy of Required GM	1,203	m			
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	51,2	Pass	+241,1
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 2 - manual calc.)	0,100	m	0,623	Pass	+523,0
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding	15,0	deg	8,5	Pass	+43,50
A.749(18) Ch3	3.1.2.1: Area 30 to 40	1,718	m.deg	5,7207	Pass	+232,8
A.749(18) Ch3	3.1.2.2: Max GZ at 30 or greater	0,200	m	0,623	Pass	+211,5
MY GROYP	Copy of Value of GMt at	1,203	m	3,425	Pass	+184,6
MY GROYP	1.6: Maximum residual GZ				Pass	
	Wind + Turning		m	0,221	Pass	+452,5
	Wind + Paxcrowding		m	0,214	Pass	+435,0

Πίνακας 46: Ντετεμινιστικά Κριτήρια για Load case (50%), Damage 2

10% Arrival

Code	Criteria	Value	Units	Actual	Statu	Margin
					S	%
MY GROYP	Copy of Required GM	1,203	m			
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	39,9	Pass	+166,13
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 2 - manual calc.)	0,100	m	0,483	Pass	+383,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding	15,0	deg	7,6	Pass	+49,03
A.749(18) Ch3	3.1.2.1: Area 30 to 40	1,7189	m.deg	3,3384	Pass	+94,22
A.749(18) Ch3	3.1.2.2: Max GZ at 30 or greater	0,200	m	0,390	Pass	+95,00
MY GROYP	Copy of Value of GMt at	1,203	m	4,775	Pass	+296,85
MY GROYP	1.6: Maximum residual GZ				Pass	
	Wind + Turning	0,040	m	0,227	Pass	+467,50
	Wind + Paxcrowding	0,040	m	0,230	Pass	+475,00

Πίνακας 47: Ντετεμινιστικά Κριτήρια για Load case (10%), Damage 2

ΠΑΡΑΡΤΗΜΑ Δ: ΣΤΟΙΧΕΙΑ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΧΕΔΙΑΣΕΩΝ

ROPAX 2

<u>ΚΥΡΙΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ</u>

Frame of Reference and Zero point	× Size Surfaces	×
Longludnal Datum Ms © AB Perp. On Mdahpa 33.2 m Mdahpa 33.2 m Pred Perp. 186.4 m Other 1.234 m Pad solant Label Label AP Other 0.0	Select Surfaces to resize Select All Upper bow upper how stern upper bow Flat of Side lower bowcone upper bowcone bottom midsection bottom bow	e: sselect All Proportional Scaling I 189.5 m Length 28.5 m Beam 21.6 m Depth re-scale Markers re-scale Curves OK Cancel

Εικόνα 57: Χαρακτηριστικά ROPAX 2

ΥΔΡΟΣΤΑΤΙΚΑ ΣΤΟΙΧΕΙΑ

Draft Amidships	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
Displacement t	9304	10347	11425	12539	13688	14872	16094	17355	18658	19998
Heel deg	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Draft at FP m	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
Draft at AP m	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
Draft at LCF m	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
Trim (+ve by stern) m	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
WL Length m	176,128	176,209	176,288	176,367	176,339	176,299	176,336	178,668	180,583	179,113
Beam max extents on WL m	26,244	26,287	26,329	26,372	26,415	26,458	26,500	26,543	26,586	26,628
Wetted Area m ²	3753,498	3937,075	4120,996	4306,192	4493,098	4684,796	4885,373	5091,492	5306,199	5496,154
Waterpl. Area m^2	2997,683	3103,499	3207,417	3310,486	3413,266	3519,205	3632,422	3750,369	3869,311	3956,888
Prismatic coeff. (Cp)	0,504	0,516	0,528	0,539	0,551	0,563	0,574	0,578	0,584	0,600
Block coeff. (Cb)	0,491	0,503	0,515	0,526	0,538	0,549	0,560	0,564	0,569	0,584
Max Sect. area Coeff. (Cm)	0,974	0,975	0,975	0,975	0,975	0,975	0,975	0,975	0,974	0,974
Waterpl. area coeff. (Cwp)	0,649	0,670	0,691	0,712	0,733	0,754	0,777	0,791	0,806	0,830
LCB from zero pt. (+ve fwd.) m	90,852	90,466	90,050	89,606	89,136	88,638	88,107	87,537	86,924	86,284
LCF from zero pt. (+ve fwd.) m	87,474	86,539	85,555	84,521	83,446	82,279	80,945	79,517	78,013	77,072
KBm	2,235	2,430	2,626	2,822	3,019	3,216	3,415	3,615	3,817	4,019
KG m	6,800	6,800	6,800	6,800	6,800	6,800	6,800	6,800	6,800	6,800
BMt m	14,565	13,870	13,258	12,719	12,242	11,818	11,449	11,126	10,835	10,515
BML m	451,980	438,528	427,500	418,676	411,852	407,872	407,546	409,583	412,267	405,687
GMt m	10,001	9,500	9,084	8,741	8,460	8,235	8,064	7,941	7,852	7,734
GML m	447,415	434,158	423,326	414,698	408,070	404,289	404,161	406,398	409,283	402,905
KMt m	16,801	16,300	15,884	15,541	15,260	15,035	14,864	14,741	14,652	14,534
KML m	454,215	440,958	430,126	421,498	414,870	411,089	410,961	413,198	416,083	409,705
Immersion (TPc) tonne/cm	30,726	31,811	32,876	33,932	34,986	36,072	37,232	38,441	39,660	40,558
MTc tonne.m	223,041	240,684	259,139	278,603	299,269	322,154	348,511	377,904	409,151	431,710
RM at 1deg = GMt.Disp.sin (1) tonne.m	1623,927	1715,525	1811,283	1912,841	2021,047	2137,354	2265,149	2405,409	2556,674	2699,194
Max deck inclination deg	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Trim angle (+ve by stern) deg	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

Πίνακας 48: Υδροστατικά ROPAX 2

ΤΡΙΓΩΝΑ ΚΑΤΑΚΛΥΣΗΣ

Probabilistic Damage calculation - ROPAX 2

Load cases -

Deepest subdivision draft (summer load line) Load case: ds Partial subdivision draft Load case: dp Light service draft Load case: dL Fluid analysis method: Simulate fluid movement Heel to starboard; heel range: from -30 deg to 180 deg in steps of 10 deg.

Διάγραμμα 10: Τρίγωνα κατάκλυσης ROPAX 2

	Zones	Total v	v 1	v 2	v 3	v 4	v 5
1	1 adjacent zone						
2	Zone 1, 1	1,000000	0,383069	0,497140	0,119790		
3	Zone 2, 1	1,000000	0,383069	0,497140	0,119790		
4	Zone 3, 1	1,000000	0,383069	0,497140	0,119790		
5	Zone 4, 1	1,000000	deck below WL: 16,825 m	0,383069	0,497140	0,119790	
6	Zone 5, 1	1,000000	deck below WL: 16,825 m	0,383069	0,497140	0,119790	
7	Zone 6, 1	1,000000	deck below WL: 16,825 m	0,383069	0,497140	0,119790	
8	Zone 7, 1	1,000000	deck below WL: 16,825 m	0,383069	0,497140	0,119790	
9	Zone 8, 1	1,000000	deck below WL: 16,825 m	0,383069	0,497140	0,119790	
10	Zone 9, 1	1,000000	deck below WL: 16,825 m	0,383069	0,497140	0,119790	
11	Zone 10, 1	1,000000	deck below WL: 16,825 m	0,383069	0,497140	0,119790	
12	Zone 11, 1	1,000000	deck below WL: 16,825 m	0,383069	0,497140	0,119790	
13	Zone 12, 1	1,000000	deck below WL: 16,825 m	0,383069	0,497140	0,119790	
14	Zone 13, 1	1,000000	deck below WL: 16,825 m	0,383069	0,497140	0,119790	
15	Zone 14, 1	1,000000	0,383069	0,497140	0,119790		
16	Zone 15, 1	1,000000	0,383069	0,497140	0,119790		
17	Zone 16, 1	1,000000	0,880210	0,119790			
18				0			
19							
20	2 adjacent zones						
21	Zone 1, 2	1,000000	0,383069	0,497140	0,119790		
22	Zone 2, 2	1,000000	0,383069	0,497140	0,119790		
23	Zone 3, 2	1,000000	deck below WL: 16,825 m	0,383069	0,497140	0,119790	
24	Zone 4, 2	1,000000	deck below WL: 16,825 m	0,383069	0,497140	0,119790	
25	Zone 5, 2	1,000000	deck below WL: 16,825 m	0,383069	0,497140	0,119790	
26	Zone 6, 2	1,000000	deck below WL: 16,825 m	0,383069	0,497140	0,119790	
27	Zone 7, 2	1,000000	deck below WL: 16,825 m	deck bel	0,383069	0,497140	0,119790
28	Zone 8, 2	1,000000	deck below WL: 16,825 m	0,383069	0,497140	0,119790	
29	Zone 9, 2	1,000000	deck below WL: 16,825 m	deck bel	0,383069	0,497140	0,119790
30	Zone 10, 2	1,000000	deck below WL: 16,825 m	0,383069	0,497140	0,119790	
31	Zone 11, 2	1,000000	deck below WL: 16,825 m	0,383069	0,497140	0,119790	
32	Zone 12, 2	1,000000	deck below WL: 16,825 m	0,383069	0,497140	0,119790	
33	Zone 13, 2	1,000000	deck below WL: 16,825 m	0,383069	0,497140	0,119790	
34	Zone 14, 2	1,000000	0,383069	0,497140	0,119790		
35	Zone 15, 2	1,000000	0,383069	0,497140	0,119790		

Πίνακας 49: Probabilistic Damage calculation - ROPAX 2

ROPAX 3

ΚΥΡΙΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ

Εικόνα 58: Χαρακτηριστικά ROPAX 3

ΥΔΡΟΣΤΑΤΙΚΑ ΣΤΟ	ΥΔΡΟΣΤΑΤΙΚΑ ΣΤΟΙΧΕΙΑ									
Draft Amidships	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
Displacement t	9398	10452	11542	12669	13831	15029	16266	17543	18862	20217
Heel deg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Draft at FP m	4.000	4,333	4.667	5.000	5.333	5.667	6.000	6.333	6,667	7.000
Draft at AP m	4.000	4,333	4.667	5.000	5.333	5.667	6.000	6.333	6.667	7.000
Draft at LCF m	4.000	4.333	4.667	5.000	5.333	5.667	6.000	6.333	6.667	7.000
Trim (+ve by stern) m	0,000	0,000	0,000	0,000	0,000	0,000	0.000	0,000	0,000	0,000
WL Length m	176,140	176,219	176,298	176,373	176,333	176,293	176,714	179,054	180,821	178,230
Beam max extents on WL m	26,433	26,476	26,520	26,563	26,607	26,650	26,693	26,737	26,780	26,824
Wetted Area m ²	3783,751	3968,580	4154,674	4340,938	4528,979	4724,684	4927,078	5136,949	5355,677	5531,536
Waterpl. Area m ²	3030,687	3137,790	3243,995	3348,125	3451,974	3562,058	3677,044	3797,114	3920,723	3994,319
Prismatic coeff. (Cp)	0,505	0,517	0,529	0,541	0,553	0,565	0,575	0,579	0,585	0,605
Block coeff. (Cb)	0,492	0,504	0,516	0,528	0,539	0,551	0,561	0,564	0,570	0,589
Max Sect. area Coeff. (Cm)	0,974	0,975	0,975	0,975	0,975	0,975	0,975	0,975	0,974	0,974
Waterpl. area coeff. (Cwp)	0,651	0,673	0,694	0,715	0,736	0,758	0,780	0,793	0,810	0,835
LCB from zero pt. (+ve fwd.) m	90,811	90,417	89,994	89,542	89,064	88,556	88,014	87,431	86,805	86,164
LCF from zero pt. (+ve fwd.) m	87,374	86,429	85,414	84,376	83,297	82,067	80,725	79,276	77,689	77,059
KB m	2,236	2,431	2,627	2,823	3,020	3,218	3,417	3,617	3,819	4,021
KG m	6,800	6,800	6,800	6,800	6,800	6,800	6,800	6,800	6,800	6,800
BMt m	14,824	14,116	13,496	12,947	12,460	12,033	11,661	11,338	11,036	10,680
BML m	454,497	441,038	430,385	421,471	414,571	411,603	411,372	413,590	417,265	406,183
GMt m	10,260	9,747	9,322	8,970	8,680	8,450	8,277	8,155	8,055	7,901
GML m	449,934	436,669	426,212	417,494	410,791	408,021	407,989	410,407	414,284	403,404
KMt m	17,060	16,547	16,122	15,770	15,480	15,250	15,077	14,955	14,855	14,701
KML m	456,734	443,469	433,012	424,294	417,591	414,821	414,789	417,207	421,084	410,204
Immersion (TPc) tonne/cm	31,065	32,162	33,251	34,318	35,383	36,511	37,690	38,920	40,187	40,942
MTc tonne.m	226,549	244,532	263,579	283,383	304,409	328,558	355,568	385,762	418,687	436,977
RM at 1deg = GMt.Disp.sin (1) tonne.m	1682,798	1777,982	1877,907	1983,156	2095,155	2216,445	2349,741	2496,710	2651,588	2787,828
Max deck inclination deg	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Trim angle (+ve by stern) deg	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
	Πίνακας 50: Υδροστατικά ΒΟΡΑΧ 3									

ις 5 ορ

ΤΡΙΓΩΝΑ ΚΑΤΑΚΛΥΣΗΣ

Probabilistic Damage calculation - ROPAX_3

Load cases -

Deepest subdivision draft (summer load line) Load case: ds Partial subdivision draft Load case: dp Light service draft Load case: dL Fluid analysis method: Simulate fluid movement Heel to starboard; heel range: from -30 deg to 180 deg in steps of 10 deg.

Διάγραμμα 11: Τρίγωνα κατάκλυσης ROPAX 3

	Zones	Total v	v 1	v 2	v 3	v 4	v 5
1	1 adjacent zone						
2	Zone 1, 1	1,000000	0,387883	0,494324	0,117793		
3	Zone 2, 1	1,000000	0,387883	0,494324	0,117793		
4	Zone 3, 1	1,000000	0,387883	0,494324	0,117793		
5	Zone 4, 1	1,000000	deck below WL: 16,778 m	0,387883	0,494324	0,117793	
6	Zone 5, 1	1,000000	deck below WL: 16,778 m	0,387883	0,494324	0,117793	
7	Zone 6, 1	1,000000	deck below WL: 16,778 m	0,387883	0,494324	0,117793	
8	Zone 7, 1	1,000000	deck below WL: 16,778 m	0,387883	0,494324	0,117793	
9	Zone 8, 1	1,000000	deck below WL: 16,778 m	0,387883	0,494324	0,117793	
10	Zone 9, 1	1,000000	deck below WL: 16,778 m	0,387883	0,494324	0,117793	
11	Zone 10, 1	1,000000	deck below WL: 16,778 m	0,387883	0,494324	0,117793	
12	Zone 11, 1	1,000000	deck below WL: 16,778 m	0,387883	0,494324	0,117793	
13	Zone 12, 1	1,000000	deck below WL: 16,778 m	0,387883	0,494324	0,117793	
14	Zone 13, 1	1,000000	deck below WL: 16,778 m	0,387883	0,494324	0,117793	
15	Zone 14, 1	1,000000	0,387883	0,494324	0,117793		
16	Zone 15, 1	1,000000	0,387883	0,494324	0,117793		
17	Zone 16, 1	1,000000	0,882207	0,117793			
18							
19							
20	2 adjacent zones			0			
21	Zone 1, 2	1,000000	0,387883	0,494324	0,117793		
22	Zone 2, 2	1,000000	0,387883	0,494324	0,117793		
23	Zone 3, 2	1,000000	deck below WL: 16,778 m	0,387883	0,494324	0,117793	
24	Zone 4, 2	1,000000	deck below WL: 16,778 m	0,387883	0,494324	0,117793	
25	Zone 5, 2	1,000000	deck below WL: 16,778 m	0,387883	0,494324	0,117793	
26	Zone 6, 2	1,000000	deck below WL: 16,778 m	0,387883	0,494324	0,117793	
27	Zone 7, 2	1,000000	deck below WL: 16,778 m	deck bel	0,387883	0,494324	0,117793
28	Zone 8, 2	1,000000	deck below WL: 16,778 m	0,387883	0,494324	0,117793	
29	Zone 9, 2	1,000000	deck below WL: 16,778 m	deck bel	0,387883	0,494324	0,117793
30	Zone 10, 2	1,000000	deck below WL: 16,778 m	0,387883	0,494324	0,117793	
31	Zone 11, 2	1,000000	deck below WL: 16,778 m	0,387883	0,494324	0,117793	
32	Zone 12, 2	1,000000	deck below WL: 16,778 m	0,387883	0,494324	0,117793	
33	Zone 13, 2	1,000000	deck below WL: 16,778 m	0,387883	0,494324	0,117793	
34	Zone 14, 2	1,000000	0,387883	0,494324	0,117793		
35	Zone 15, 2	1,000000	0,387883	0,494324	0,117793		

Πίνακας 51: Probabilistic Damage calculation - ROPAX_3

ROPAX 4

<u>ΚΥΡΙΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ</u>

Frame of Reference and Zero point	Size Surfaces	×
Longludnal Datum MS 23ab Longludnal Datum Workcal Datum @ Alt Poip Om @ Alt Poip Om @ Midships 33.22 m © Gher 1234 m @ Default Label Baseline Ordeaut	Select Surfaces to resize: Select All Deselect All upper bow stern upper midsection Lower midsection lower bow Flat of Side lower bowcone upper bowcone bottom midsection bottom bow	Proportional Scaling 189,5 m ↓ Length 28,7 m ↓ Beam 21,6 m ↓ Depth re-scale Markers re-scale Curves OK Cancel

Εικόνα 59: Χαρακτηριστικά ROPAX 4

Draft Amidships	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
m										
Displacement t	9369	10419	11505	12627	13784	14977	16207	17477	18789	20139
Heel deg	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Draft at FP m	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
Draft at AP m	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
Draft at LCF m	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
Trim (+ve by stern) m	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
WL Length m	176,128	176,209	176,288	176,367	176,339	176,299	176,336	178,668	180,583	179,113
Beam max extents on WL m	26,428	26,471	26,514	26,557	26,600	26,643	26,686	26,729	26,772	26,815
Wetted Area m ²	3772,723	3956,907	4141,429	4327,226	4514,737	4707,070	4908,337	5115,177	5330,654	5521,195
Waterpl. Area m ²	3018,719	3125,278	3229,925	3333,718	3437,219	3543,901	3657,913	3776,687	3896,464	3984,656
Prismatic coeff. (Cp)	0,504	0,516	0,528	0,539	0,551	0,563	0,574	0,578	0,584	0,600
Block coeff. (Cb)	0,491	0,503	0,515	0,526	0,538	0,549	0,560	0,564	0,569	0,584
Max Sect. area Coeff. (Cm)	0,974	0,975	0,975	0,975	0,975	0,975	0,975	0,975	0,974	0,974
Waterpl. area coeff. (Cwp)	0,649	0,670	0,691	0,712	0,733	0,754	0,777	0,791	0,806	0,830
LCB from zero pt. (+ve fwd.) m	90,852	90,466	90,050	89,606	89,136	88,638	88,107	87,537	86,924	86,284
LCF from zero pt. (+ve fwd.) m	87,474	86,539	85,555	84,521	83,446	82,279	80,945	79,517	78,013	77,072
KB m	2,235	2,430	2,626	2,822	3,019	3,216	3,415	3,615	3,817	4,019
KG m	6,800	6,800	6,800	6,800	6,800	6,800	6,800	6,800	6,800	6,800
BMt m	14,771	14,066	13,445	12,899	12,414	11,985	11,611	11,283	10,988	10,663
BML m	451,980	438,528	427,500	418,676	411,852	407,872	407,546	409,583	412,267	405,687
GMt m	10,206	9,696	9,271	8,920	8,633	8,401	8,226	8,098	8,004	7,882
GML m	447,415	434,158	423,326	414,698	408,070	404,289	404,161	406,398	409,283	402,905
KMt m	17,006	16,496	16,071	15,720	15,433	15,201	15,026	14,898	14,804	14,682
KML m	454,215	440,958	430,126	421,498	414,870	411,089	410,961	413,198	416,083	409,705
Immersion (TPc) tonne/cm	30,942	32,034	33,107	34,171	35,231	36,325	37,494	38,711	39,939	40,843
MTc tonne.m	224,607	242,373	260,958	280,559	301,369	324,415	350,956	380,556	412,022	434,740
RM at 1deg = GMt.Disp.sin (1) tonne.m	1668,868	1763,087	1861,489	1965,743	2076,707	2195,860	2326,656	2470,088	2624,656	2770,186
Max deck inclination deg	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Trim angle (+ve by stern) deg	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

ΥΔΡΟΣΤΑΤΙΚΑ ΣΤΟΙΧΕΙΑ

Πίνακας 52: Υδροστατικά ROPAX 4

ΤΡΙΓΩΝΑ ΚΑΤΑΚΛΥΣΗΣ

Probabilistic Damage calculation - ROPAX_4

Load cases -

Deepest subdivision draft (summer load line) Load case: ds Partial subdivision draft Load case: dp Light service draft Load case: dL Fluid analysis method: Simulate fluid movement Heel to starboard; heel range: from -30 deg to 180 deg in steps of 10 deg.

Διάγραμμα 12: Τρίγωνα κατάκλυσης ROPAX 4

	Zones	Total v	v 1	v 2	v 3	v 4	v 5
1	1 adjacent zone						
2	Zone 1, 1	1,000000	0,386408	0,495187	0,118405		
3	Zone 2, 1	1,000000	0,386408	0,495187	0,118405		
4	Zone 3, 1	1,000000	0,386408	0,495187	0,118405		
5	Zone 4, 1	1,000000	deck below WL: 16,792 m	0,386408	0,495187	0,118405	
6	Zone 5, 1	1,000000	deck below WL: 16,792 m	0,386408	0,495187	0,118405	
7	Zone 6, 1	1,000000	deck below WL: 16,792 m	0,386408	0,495187	0,118405	
8	Zone 7, 1	1,000000	deck below WL: 16,792 m	0,386408	0,495187	0,118405	
9	Zone 8, 1	1,000000	deck below WL: 16,792 m	0,386408	0,495187	0,118405	
10	Zone 9, 1	1,000000	deck below WL: 16,792 m	0,386408	0,495187	0,118405	
11	Zone 10, 1	1,000000	deck below WL: 16,792 m	0,386408	0,495187	0,118405	
12	Zone 11, 1	1,000000	deck below WL: 16,792 m	0,386408	0,495187	0,118405	
13	Zone 12, 1	1,000000	deck below WL: 16,792 m	0,386408	0,495187	0,118405	
14	Zone 13, 1	1,000000	deck below WL: 16,792 m	0,386408	0,495187	0,118405	
15	Zone 14, 1	1,000000	0,386408	0,495187	0,118405		
16	Zone 15, 1	1,000000	0,386408	0,495187	0,118405		
17	Zone 16, 1	1,000000	0,881595	0,118405			
18							
19				0			
20	2 adjacent zones						
21	Zone 1, 2	1,000000	0,386408	0,495187	0,118405		
22	Zone 2, 2	1,000000	0,386408	0,495187	0,118405		
23	Zone 3, 2	1,000000	deck below WL: 16,792 m	0,386408	0,495187	0,118405	
24	Zone 4, 2	1,000000	deck below WL: 16,792 m	0,386408	0,495187	0,118405	
25	Zone 5, 2	1,000000	deck below WL: 16,792 m	0,386408	0,495187	0,118405	
26	Zone 6, 2	1,000000	deck below WL: 16,792 m	0,386408	0,495187	0,118405	
27	Zone 7, 2	1,000000	deck below WL: 16,792 m	deck bel	0,386408	0,495187	0,118405
28	Zone 8, 2	1,000000	deck below WL: 16,792 m	0,386408	0,495187	0,118405	
29	Zone 9, 2	1,000000	deck below WL: 16,792 m	deck bel	0,386408	0,495187	0,118405
30	Zone 10, 2	1,000000	deck below WL: 16,792 m	0,386408	0,495187	0,118405	
31	Zone 11, 2	1,000000	deck below WL: 16,792 m	0,386408	0,495187	0,118405	
32	Zone 12, 2	1,000000	deck below WL: 16,792 m	0,386408	0,495187	0,118405	
33	Zone 13, 2	1,000000	deck below WL: 16,792 m	0,386408	0,495187	0,118405	
34	Zone 14, 2	1,000000	0,386408	0,495187	0,118405		
35	Zone 15, 2	1,000000	0,386408	0,495187	0,118405		

Πίνακας 53: Probabilistic Damage calculation - ROPAX_4

ROPAX 5

<u>ΚΥΡΙΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ</u>

Frame of Reference and Zero point	×	Size Surfaces X
Roden and a Manager and a M	MS	Select Surfaces to resize: Select All Deselect All upper bow Proportional stern Scaling upper midsection 189.5 m Lower midsection 189.5 m Jower bow Flat of Side
Longitudinal Datum	Vertical Datum	
Aft Perp. Om Set to DWL	O DWL 6.8 m	bottom midsection 21,8 m Depth
Midships 93.32 m	Baseline Dm Find Base	bottom bow
Fwd Perp. 186,64 m Set to DWL	Other Om	
Other -1.234 m Aft extent Fwd extent		re-scale Curves
Label AP Cefault	Label Baseline Default	OK Cancel

Εικόνα 60: Χαρακτηριστικά ROPAX 5

ΥΔΡΟΣΤΑΤΙΚΑ ΣΤΟΙΧΕΙΑ

Draft Amidships	4,000	4,333	4,666	4,999	5,332	5,665	5,998	6,331	6,664	6,997
Displacement t	9342	10386	11467	12582	13733	14919	16142	17403	18706	20048
Heel deg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Draft at FP m	4.000	4.333	4.666	4.999	5.332	5.665	5.998	6.331	6.664	6.997
Draft at AP m	4,000	4,333	4,666	4,999	5,332	5,665	5,998	6,331	6,664	6,997
Draft at LCF m	4,000	4,333	4,666	4,999	5,332	5,665	5,998	6,331	6,664	6,997
Trim (+ve by stern) m	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
WL Length m	176,105	176,200	176,278	176,355	176,345	176,305	176,189	178,222	180,234	179,801
Beam max extents on WL m	26,423	26,466	26,509	26,551	26,594	26,636	26,679	26,721	26,764	26,807
Wetted Area m ²	3761,712	3945,229	4127,950	4312,853	4499,558	4689,417	4887,894	5092,198	5305,954	5507,078
Waterpl. Area m ²	3006,825	3112,879	3215,864	3318,961	3421,924	3526,304	3637,806	3753,087	3873,753	3974,924
Prismatic coeff. (Cp)	0,503	0,515	0,526	0,538	0,549	0,561	0,573	0,578	0,583	0,595
Block coeff. (Cb)	0,490	0,501	0,513	0,524	0,536	0,547	0,559	0,563	0,568	0,580
Max Sect. area Coeff. (Cm)	0,974	0,975	0,975	0,975	0,975	0,975	0,975	0,975	0,975	0,974
Waterpl. area coeff. (Cwp)	0,646	0,668	0,688	0,709	0,730	0,751	0,774	0,788	0,803	0,825
LCB from zero pt. (+ve fwd.) m	90,892	90,513	90,105	89,670	89,208	88,720	88,200	87,643	87,043	86,410
LCF from zero pt. (+ve fwd.) m	87,574	86,646	85,697	84,672	83,604	82,479	81,189	79,817	78,307	77,122
KBm	2,234	2,429	2,624	2,820	3,017	3,214	3,412	3,612	3,813	4,015
KG m	6,800	6,800	6,800	6,800	6,800	6,800	6,800	6,800	6,800	6,800
BMt m	14,719	14,015	13,398	12,852	12,369	11,941	11,566	11,236	10,946	10,646
BML m	449,441	436,114	424,653	415,865	409,101	404,502	403,606	404,726	408,041	405,669
GMt m	10,153	9,644	9,222	8,872	8,586	8,355	8,178	8,048	7,959	7,861
GML m	444,875	431,743	420,477	411,885	405,317	400,916	400,218	401,538	405,054	402,884
KMt m	16,953	16,444	16,022	15,672	15,386	15,155	14,978	14,848	14,759	14,661
KML m	451,675	438,543	427,277	418,685	412,117	407,716	407,018	408,338	411,854	409,684
Immersion (TPc) tonne/cm	30,820	31,907	32,963	34,019	35,075	36,145	37,288	38,469	39,706	40,743
MTc tonne.m	222,671	240,262	258,333	277,674	298,233	320,471	346,132	374,418	405,970	432,766
RM at 1deg = GMt.Disp.sin (1) tonne.m	1655,336	1748,189	1845,592	1948,273	2057,811	2175,473	2303,786	2444,362	2598,211	2750,563
Max deck inclination deg	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Trim angle (+ve by stern) deg	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

Πίνακας 54: Υδροστατικά ROPAX 5

ΤΡΙΓΩΝΑ ΚΑΤΑΚΛΥΣΗΣ

Probabilistic Damage calculation - ROPAX_5

Load cases -

Deepest subdivision draft (summer load line) Load case: ds Partial subdivision draft Load case: dp Light service draft Load case: dL Fluid analysis method: Simulate fluid movement Heel to starboard; heel range: from -30 deg to 180 deg in steps of 10 deg.

Διάγραμμα 13: Τρίγωνα κατάκλυσης ROPAX 5

	Zones	Total v	v 1	v 2	v 3	v 4	v 5
1	1 adjacent zone						
2	Zone 1, 1	1,000000	0,384937	0,496048	0,119016		
3	Zone 2, 1	1,000000	0,384937	0,496048	0,119016		
4	Zone 3, 1	1,000000	0,384937	0,496048	0,119016		
5	Zone 4, 1	1,000000	deck below WL: 16,806 m	0,384937	0,496048	0,119016	
6	Zone 5, 1	1,000000	deck below WL: 16,806 m	0,384937	0,496048	0,119016	
7	Zone 6, 1	1,000000	deck below WL: 16,806 m	0,384937	0,496048	0,119016	
8	Zone 7, 1	1,000000	deck below WL: 16,806 m	0,384937	0,496048	0,119016	
9	Zone 8, 1	1,000000	deck below WL: 16,806 m	0,384937	0,496048	0,119016	
10	Zone 9, 1	1,000000	deck below WL: 16,806 m	0,384937	0,496048	0,119016	
11	Zone 10, 1	1,000000	deck below WL: 16,806 m	0,384937	0,496048	0,119016	
12	Zone 11, 1	1,000000	deck below WL: 16,806 m	0,384937	0,496048	0,119016	
13	Zone 12, 1	1,000000	deck below WL: 16,806 m	0,384937	0,496048	0,119016	
14	Zone 13, 1	1,000000	deck below WL: 16,806 m	0,384937	0,496048	0,119016	
15	Zone 14, 1	1,000000	0,384937	0,496048	0,119016		
16	Zone 15, 1	1,000000	0,384937	0,496048	0,119016		
17	Zone 16, 1	1,000000	0,880984	0,119016			
18							
19				0			
20	2 adjacent zones						
21	Zone 1, 2	1,000000	0,384937	0,496048	0,119016		
22	Zone 2, 2	1,000000	0,384937	0,496048	0,119016		
23	Zone 3, 2	1,000000	deck below WL: 16,806 m	0,384937	0,496048	0,119016	
24	Zone 4, 2	1,000000	deck below WL: 16,806 m	0,384937	0,496048	0,119016	
25	Zone 5, 2	1,000000	deck below WL: 16,806 m	0,384937	0,496048	0,119016	
26	Zone 6, 2	1,000000	deck below WL: 16,806 m	0,384937	0,496048	0,119016	
27	Zone 7, 2	1,000000	deck below WL: 16,806 m	deck bel	0,384937	0,496048	0,119016
28	Zone 8, 2	1,000000	deck below WL: 16,806 m	0,384937	0,496048	0,119016	
29	Zone 9, 2	1,000000	deck below WL: 16,806 m	deck bel	0,384937	0,496048	0,119016
30	Zone 10, 2	1,000000	deck below WL: 16,806 m	0,384937	0,496048	0,119016	
31	Zone 11, 2	1,000000	deck below WL: 16,806 m	0,384937	0,496048	0,119016	
32	Zone 12, 2	1,000000	deck below WL: 16,806 m	0,384937	0,496048	0,119016	
33	Zone 13, 2	1,000000	deck below WL: 16,806 m	0,384937	0,496048	0,119016	
34	Zone 14, 2	1,000000	0,384937	0,496048	0,119016		
35	Zone 15, 2	1,000000	0,384937	0,496048	0,119016		

Πίνακας 55: Probabilistic Damage calculation - ROPAX_5
<u>ΚΥΡΙΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ</u>

Frame of Reference and Zero point	×	Size Surfaces X
Polytown - Mo	DWL FPBaselin	Select Surfaces to resize: Select All Deselect All upper bow Proportional stem Scaling upper midsection 189.5 m Lower midsection 189.5 m Jower bow 189.5 m Flat of Side 28.7 m
Longhadinal Datum Verical Datum	d Base	✓ lower bowcone : ✓ upper bowcone : ✓ bottom midsection 22 m ↓ Depth
Find Perp. 186.64 m Set to DWL Other 0 m Other -1234 m Aft output Find extent		re-scale Markers
Label AP	efault Cancel	OK Cancel

Εικόνα 61: Χαρακτηριστικά ROPAX 6

	-	-				-				
Draft Amidships	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
m										
Displacement t	9315	10356	11434	12546	13693	14875	16093	17349	18646	19983
Heel deg	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Draft at FP m	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
Draft at AP m	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
Draft at LCF m	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
Trim (+ve by stern) m	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
WL Length m	176,084	176,191	176,268	176,345	176,350	176,311	176,230	177,818	179,912	180,218
Beam max extents on WL m	26,419	26,461	26,503	26,545	26,588	26,630	26,672	26,714	26,757	26,799
Wetted Area m ²	3750,999	3934,167	4116,685	4299,987	4485,788	4674,984	4869,370	5073,526	5291,944	5493,502
Waterpl. Area m^2	2995,259	3100,919	3203,754	3305,177	3407,231	3510,904	3618,256	3733,703	3857,246	3962,764
Prismatic coeff. (Cp)	0,501	0,513	0,525	0,536	0,548	0,559	0,571	0,577	0,582	0,592
Block coeff. (Cb)	0,488	0,500	0,512	0,523	0,534	0,545	0,557	0,563	0,567	0,577
Max Sect. area Coeff. (Cm)	0,974	0,975	0,975	0,975	0,975	0,975	0,975	0,975	0,975	0,974
Waterpl. area coeff. (Cwp)	0,644	0,665	0,686	0,706	0,727	0,748	0,770	0,786	0,801	0,821
LCB from zero pt. (+ve fwd.) m	90,934	90,562	90,160	89,732	89,278	88,797	88,287	87,740	87,153	86,527
LCF from zero pt. (+ve fwd.) m	87,681	86,760	85,814	84,823	83,768	82,646	81,436	80,056	78,484	77,214
KB m	2,234	2,428	2,623	2,819	3,016	3,214	3,412	3,612	3,813	4,015
KG m	6,800	6,800	6,800	6,800	6,800	6,800	6,800	6,800	6,800	6,800
BMt m	14,668	13,964	13,349	12,804	12,319	11,891	11,513	11,186	10,892	10,612
BML m	447,101	433,817	422,473	413,159	406,248	401,535	399,371	400,748	405,154	404,211
GMt m	10,101	9,593	9,172	8,824	8,535	8,304	8,125	7,997	7,905	7,826
GML m	442,535	429,445	418,296	409,179	402,464	397,948	395,983	397,560	402,167	401,426
KMt m	16,901	16,393	15,972	15,624	15,335	15,104	14,925	14,797	14,705	14,626
KML m	449,335	436,245	425,096	415,979	409,264	404,748	402,783	404,360	408,967	408,226
Immersion (TPc) tonne/cm	30,701	31,784	32,838	33,878	34,924	35,987	37,087	38,270	39,537	40,618
MTc tonne.m	220,861	238,294	256,252	275,050	295,267	317,157	341,436	369,559	401,786	429,804
RM at 1deg = GMt.Disp.sin (1) tonne.m	1642,163	1733,820	1830,242	1931,992	2039,712	2155,751	2282,053	2421,475	2572,399	2729,538
Max deck inclination deg	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Trim angle (+ve by stern) deg	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

ΥΔΡΟΣΤΑΤΙΚΑ ΣΤΟΙΧΕΙΑ

Πίνακας 56: Υδροστατικά ROPAX 6

Probabilistic Damage calculation - ROPAX _ 6

Load cases -

Deepest subdivision draft (summer load line) Load case: ds Partial subdivision draft Load case: dp Light service draft Load case: dL Fluid analysis method: Simulate fluid movement Heel to starboard; heel range: from -30 deg to 180 deg in steps of 10 deg.

Διάγραμμα 14: Τρίγωνα κατάκλυσης ROPAX 6

	Zones	Total v	v 1	v 2	v 3	v 4	v 5
1	1 adjacent zone						
2	Zone 1, 1	1,000000	0,383475	0,496903	0,119622		
3	Zone 2, 1	1,000000	0,383475	0,496903	0,119622		
4	Zone 3, 1	1,000000	0,383475	0,496903	0,119622		
5	Zone 4, 1	1,000000	deck below WL: 16,821 m	0,383475	0,496903	0,119622	
6	Zone 5, 1	1,000000	deck below WL: 16,821 m	0,383475	0,496903	0,119622	
7	Zone 6, 1	1,000000	deck below WL: 16,821 m	0,383475	0,496903	0,119622	
8	Zone 7, 1	1,000000	deck below WL: 16,821 m	0,383475	0,496903	0,119622	
9	Zone 8, 1	1,000000	deck below WL: 16,821 m	0,383475	0,496903	0,119622	
10	Zone 9, 1	1,000000	deck below WL: 16,821 m	0,383475	0,496903	0,119622	
11	Zone 10, 1	1,000000	deck below WL: 16,821 m	0,383475	0,496903	0,119622	
12	Zone 11, 1	1,000000	deck below WL: 16,821 m	0,383475	0,496903	0,119622	
13	Zone 12, 1	1,000000	deck below WL: 16,821 m	0,383475	0,496903	0,119622	
14	Zone 13, 1	1,000000	deck below WL: 16,821 m	0,383475	0,496903	0,119622	
15	Zone 14, 1	1,000000	0,383475	0,496903	0,119622		
16	Zone 15, 1	1,000000	0,383475	0,496903	0,119622		
17	Zone 16, 1	1,000000	0,880378	0,119622			
18							
19					0		
20	2 adjacent zones						
21	Zone 1, 2	1,000000	0,383475	0,496903	0,119622		
22	Zone 2, 2	1,000000	0,383475	0,496903	0,119622		
23	Zone 3, 2	1,000000	deck below WL: 16,821 m	0,383475	0,496903	0,119622	
24	Zone 4, 2	1,000000	deck below WL: 16,821 m	0,383475	0,496903	0,119622	
25	Zone 5, 2	1,000000	deck below WL: 16,821 m	0,383475	0,496903	0,119622	
26	Zone 6, 2	1,000000	deck below WL: 16,821 m	0,383475	0,496903	0,119622	
27	Zone 7, 2	1,000000	deck below WL: 16,821 m	deck bel	0,383475	0,496903	0,119622
28	Zone 8, 2	1,000000	deck below WL: 16,821 m	0,383475	0,496903	0,119622	
29	Zone 9, 2	1,000000	deck below WL: 16,821 m	deck bel	0,383475	0,496903	0,119622
30	Zone 10, 2	1,000000	deck below WL: 16,821 m	0,383475	0,496903	0,119622	
31	Zone 11, 2	1,000000	deck below WL: 16,821 m	0,383475	0,496903	0,119622	
32	Zone 12, 2	1,000000	deck below WL: 16,821 m	0,383475	0,496903	0,119622	
33	Zone 13, 2	1,000000	deck below WL: 16,821 m	0,383475	0,496903	0,119622	
34	Zone 14, 2	1,000000	0,383475	0,496903	0,119622		
35	Zone 15, 2	1,000000	0,383475	0,496903	0,119622		

Πίνακας 57: Probabilistic Damage calculation - ROPAX _ 6

<u>ΚΥΡΙΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ</u>

Frame of Reference and Zero point	×	Size Surfaces
Rolevice, Ren Zd ^{ar} je		Select Surfaces to resize: Select All Deselect All upper bow Proportional stem Scaling upper midsection 189.5 m Lower midsection 189.5 m Issue bow 28.9 m
Longitudinal Datum	Vertical Datum	upper bowcone :
Midehine 93.32 m	Baseline Om Eind Base	bottom midsection 21.4 m
O Fwd Perp. 186,64 m Set to DWL	Other 0 m	J bottom bow
Other 1.234 m Aft extent Fwd extent		re-scale Markers
Label AP Default	Label Baseline Default OK Cancel	OK Cancel

Εικόνα 62: Χαρακτηριστικά ROPAX 7

Draft Amidships	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
m										
Displacement t	9463	10525	11623	12757	13927	15134	16379	17665	18994	20358
Heel deg	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Draft at FP m	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
Draft at AP m	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
Draft at LCF m	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
Trim (+ve by stern) m	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
WL Length m	176,140	176,219	176,298	176,373	176,333	176,293	176,714	179,054	180,821	178,230
Beam max extents on WL m	26,617	26,661	26,705	26,748	26,792	26,836	26,879	26,923	26,967	27,011
Wetted Area m ²	3803,082	3988,523	4175,229	4362,099	4550,750	4747,114	4950,206	5160,820	5380,340	5556,682
Waterpl. Area m^2	3051,806	3159,656	3266,601	3371,457	3476,029	3586,881	3702,668	3823,575	3948,045	4022,154
Prismatic coeff. (Cp)	0,505	0,517	0,529	0,541	0,553	0,565	0,575	0,579	0,585	0,605
Block coeff. (Cb)	0,492	0,504	0,516	0,528	0,539	0,551	0,561	0,564	0,570	0,589
Max Sect. area Coeff. (Cm)	0,974	0,975	0,975	0,975	0,975	0,975	0,975	0,975	0,974	0,974
Waterpl. area coeff. (Cwp)	0,651	0,673	0,694	0,715	0,736	0,758	0,780	0,793	0,810	0,835
LCB from zero pt. (+ve fwd.) m	90,811	90,417	89,994	89,542	89,064	88,556	88,014	87,431	86,805	86,164
LCF from zero pt. (+ve fwd.) m	87,374	86,429	85,414	84,376	83,297	82,067	80,725	79,276	77,689	77,059
KBm	2,236	2,431	2,627	2,823	3,020	3,218	3,417	3,617	3,819	4,021
KGm	6,800	6,800	6,800	6,800	6,800	6,800	6,800	6,800	6,800	6,800
BMt m	15,031	14,314	13,685	13,128	12,634	12,201	11,824	11,496	11,190	10,830
BML m	454,497	441,038	430,385	421,471	414,571	411,603	411,372	413,590	417,265	406,183
GMt m	10,468	9,945	9,511	9,151	8,854	8,619	8,440	8,313	8,209	8,050
GML m	449,934	436,669	426,212	417,494	410,791	408,021	407,989	410,407	414,284	403,404
KMt m	17,268	16,745	16,311	15,951	15,654	15,419	15,240	15,113	15,009	14,850
KML m	456,734	443,469	433,012	424,294	417,591	414,821	414,789	417,207	421,084	410,204
Immersion (TPc) tonne/cm	31,281	32,386	33,483	34,557	35,629	36,766	37,952	39,192	40,467	41,227
MTc tonne.m	228,128	246,236	265,416	285,358	306,530	330,847	358,046	388,450	421,605	440,022
RM at 1deg = GMt.Disp.sin (1) tone	1728,766	1826,635	1929,280	2037,289	2152,112	2276,339	2412,734	2562,995	2721,231	2860,327
Max deck inclination deg	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Trim angle (+ve by stern) deg	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

ΥΔΡΟΣΤΑΤΙΚΑ ΣΤΟΙΧΕΙΑ

Πίνακας 58: Υδροστατικά ROPAX 7

Probabilistic Damage calculation - ROPAX _ 7

Load cases -

Deepest subdivision draft (summer load line) Load case: ds Partial subdivision draft Load case: dp Light service draft Load case: dL Fluid analysis method: Simulate fluid movement Heel to starboard; heel range: from -30 deg to 180 deg in steps of 10 deg.

Διάγραμμα 15: Τρίγωνα κατάκλυσης ROPAX 7

	Zones	Total v	v 1	v 2	v 3	v 4	v 5
1	1 adjacent zone						
2	Zone 1, 1	1,000000	0,391175	0,492397	0,116427		
3	Zone 2, 1	1,000000	0,391175	0,492397	0,116427		
4	Zone 3, 1	1,000000	0,391175	0,492397	0,116427		
5	Zone 4, 1	1,000000	deck below WL: 16,746 m	0,391175	0,492397	0,116427	
6	Zone 5, 1	1,000000	deck below WL: 16,746 m	0,391175	0,492397	0,116427	
7	Zone 6, 1	1,000000	deck below WL: 16,746 m	0,391175	0,492397	0,116427	
8	Zone 7, 1	1,00000	deck below WL: 16,746 m	0,391175	0,492397	0,116427	
9	Zone 8, 1	1,000000	deck below WL: 16,746 m	0,391175	0,492397	0,116427	
10	Zone 9, 1	1,00000	deck below WL: 16,746 m	0,391175	0,492397	0,116427	
11	Zone 10, 1	1,000000	deck below WL: 16,746 m	0,391175	0,492397	0,116427	
12	Zone 11, 1	1,000000	deck below WL: 16,746 m	0,391175	0,492397	0,116427	
13	Zone 12, 1	1,000000	deck below WL: 16,746 m	0,391175	0,492397	0,116427	
14	Zone 13, 1	1,000000	deck below WL: 16,746 m	0,391175	0,492397	0,116427	
15	Zone 14, 1	1,000000	0,391175	0,492397	0,116427		
16	Zone 15, 1	1,000000	0,391175	0,492397	0,116427		
17	Zone 16, 1	1,000000	0,883573	0,116427			
18							
19							
20	2 adjacent zones						
21	Zone 1, 2	1,000000	0,391175	0,492397	0,116427		
22	Zone 2, 2	1,000000	0,391175	0,492397	0,116427		
23	Zone 3, 2	1,000000	deck below WL: 16,746 m	0,391175	0,492397	0,116427	
24	Zone 4, 2	1,000000	deck below WL: 16,746 m	0,391175	0,492397	0,116427	
25	Zone 5, 2	1,000000	deck below WL: 16,746 m	0,391175	0,492397	0,116427	
26	Zone 6, 2	1,000000	deck below WL: 16,746 m	0,391175	0,492397	0,116427	
27	Zone 7, 2	1,000000	deck below WL: 16,746 m	deck bel	0,391175	0,492397	0,116427
28	Zone 8, 2	1,000000	deck below WL: 16,746 m	0,391175	0,492397	0,116427	
29	Zone 9, 2	1,000000	deck below WL: 16,746 m	deck bel	0,391175	0,492397	0,116427
30	Zone 10, 2	1,000000	deck below WL: 16,746 m	0,391175	0,492397	0,116427	
31	Zone 11, 2	1,000000	deck below WL: 16,746 m	0,391175	0,492397	0,116427	
32	Zone 12, 2	1,000000	deck below WL: 16,746 m	0,391175	0,492397	0,116427	
33	Zone 13, 2	1,000000	deck below WL: 16,746 m	0,391175	0,492397	0,116427	
34	Zone 14, 2	1,000000	0,391175	0,492397	0,116427		
35	Zone 15, 2	1,000000	0,391175	0,492397	0,116427		

Πίνακας 59: Probabilistic Damage calculation - ROPAX _ 7

<u>ΚΥΡΙΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ</u>

Frame of Reference and Zero point	×	Size Surfaces	\times
Reference Ref	MS	Select Surfaces to resize: Select All Deselect All upper bow stern upper midsection Lower midsection lower bow Flat of Side lower bowcone	Proportional Scaling 189.5 m • Length : 28.9 m • Beam
AR Perp. 0m Setto DWL Midshps 93.32m Fwd Perp. 186.54m Set to DWL At ussert Fad extent Set to DWL Dther 1234 Detern Detern Detern	DWL 68m Find Base 0m Find Base 0m Find Base 0m Find Base 0m	J upper bowcone J bottom midsection J bottom bow	☐ 21.6 m Depth
Label Control Default	OK Cancel		OK Cancel

Εικόνα 63: Χαρακτηριστικά ROPAX 8

Draft Amidships	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
m		,		,			,	,	,	· ·
Displacement t	9435	10492	11586	12715	13880	15081	16320	17599	18920	20279
Heel deg	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Draft at FP m	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
Draft at AP m	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
Draft at LCF m	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
Trim (+ve by stern) m	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
WL Length m	176,128	176,209	176,288	176,367	176,339	176,299	176,336	178,668	180,583	179,113
Beam max extents on WL m	26,612	26,656	26,699	26,742	26,786	26,829	26,872	26,916	26,959	27,002
Wetted Area m ²	3791,964	3976,756	4161,879	4348,279	4536,397	4729,363	4931,322	5138,885	5355,131	5546,259
Waterpl. Area m^2	3039,756	3147,057	3252,433	3356,949	3461,172	3568,597	3683,403	3803,006	3923,617	4012,424
Prismatic coeff. (Cp)	0,504	0,516	0,528	0,539	0,551	0,563	0,574	0,578	0,584	0,600
Block coeff. (Cb)	0,491	0,503	0,515	0,526	0,538	0,549	0,560	0,564	0,569	0,584
Max Sect. area Coeff. (Cm)	0,974	0,975	0,975	0,975	0,975	0,975	0,975	0,975	0,974	0,974
Waterpl. area coeff. (Cwp)	0,649	0,670	0,691	0,712	0,733	0,754	0,777	0,791	0,806	0,830
LCB from zero pt. (+ve fwd.) m	90,852	90,466	90,050	89,606	89,136	88,638	88,107	87,537	86,924	86,284
LCF from zero pt. (+ve fwd.) m	87,474	86,539	85,555	84,521	83,446	82,279	80,945	79,517	78,013	77,072
KB m	2,235	2,430	2,626	2,822	3,019	3,216	3,415	3,615	3,817	4,019
KG m	6,800	6,800	6,800	6,800	6,800	6,800	6,800	6,800	6,800	6,800
BMt m	14,977	14,262	13,633	13,079	12,588	12,152	11,773	11,441	11,141	10,812
BML m	451,980	438,528	427,500	418,676	411,852	407,872	407,546	409,583	412,267	405,687
GMt m	10,412	9,892	9,459	9,101	8,806	8,569	8,388	8,256	8,158	8,031
GML m	447,415	434,158	423,326	414,698	408,070	404,289	404,161	406,398	409,283	402,905
KMt m	17,212	16,692	16,259	15,901	15,606	15,369	15,188	15,056	14,958	14,831
KML m	454,215	440,958	430,126	421,498	414,870	411,089	410,961	413,198	416,083	409,705
Immersion (TPc) tonne/cm	31,157	32,257	33,337	34,409	35,477	36,578	37,755	38,981	40,217	41,127
MTc tonne.m	226,172	244,062	262,776	282,514	303,469	326,676	353,402	383,208	414,893	437,770
RM at 1deg = GMt.Disp.sin (1) tonne.m	1714,513	1811,394	1912,482	2019,472	2133,237	2255,279	2389,121	2535,769	2693,688	2842,271
Max deck inclination deg	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Trim angle (+ve by stern) deg	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

ΥΔΡΟΣΤΑΤΙΚΑ ΣΤΟΙΧΕΙΑ

Πίνακας 60: Υδροστατικά ROPAX 8

Probabilistic Damage calculation - ROPAX _ 8

Load cases -

Deepest subdivision draft (summer load line) Load case: ds Partial subdivision draft load case: dp Light service draft load case: dL Fluid analysis method: Simulate fluid movement Heel to starboard; heel range: from -30 deg to 180 deg in steps of 10 deg.

Διάγραμμα 16: Τρίγωνα κατάκλυσης ROPAX 8

	Zones	Total v	v 1	v 2	v 3	v 4	v 5
1	1 adjacent zone						
2	Zone 1, 1	1,000000	0,389708	0,493256	0,117036		
3	Zone 2, 1	1,000000	0,389708	0,493256	0,117036		
4	Zone 3, 1	1,000000	0,389708	0,493256	0,117036		
5	Zone 4, 1	1,000000	deck below WL: 16,76 m	0,389708	0,493256	0,117036	
6	Zone 5, 1	1,000000	deck below WL: 16,76 m	0,389708	0,493256	0,117036	
7	Zone 6, 1	1,000000	deck below WL: 16,76 m	0,389708	0,493256	0,117036	
8	Zone 7, 1	1,000000	deck below WL: 16,76 m	0,389708	0,493256	0,117036	
9	Zone 8, 1	1,000000	deck below WL: 16,76 m	0,389708	0,493256	0,117036	
10	Zone 9, 1	1,000000	deck below WL: 16,76 m	0,389708	0,493256	0,117036	
11	Zone 10, 1	1,000000	deck below WL: 16,76 m	0,389708	0,493256	0,117036	
12	Zone 11, 1	1,000000	deck below WL: 16,76 m	0,389708	0,493256	0,117036	
13	Zone 12, 1	1,000000	deck below WL: 16,76 m	0,389708	0,493256	0,117036	
14	Zone 13, 1	1,000000	deck below WL: 16,76 m	0,389708	0,493256	0,117036	
15	Zone 14, 1	1,000000	0,389708	0,493256	0,117036		
16	Zone 15, 1	1,000000	0,389708	0,493256	0,117036		
17	Zone 16, 1	1,000000	0,882964	0,117036			
18							
19							
20	2 adjacent zones						
21	Zone 1, 2	1,000000	0,389708	0,493256	0,117036		
22	Zone 2, 2	1,000000	0,389708	0,493256	0,117036		
23	Zone 3, 2	1,000000	deck below WL: 16,76 m	0,389708	0,493256	0,117036	
24	Zone 4, 2	1,000000	deck below WL: 16,76 m	0,389708	0,493256	0,117036	
25	Zone 5, 2	1,000000	deck below WL: 16,76 m	0,389708	0,493256	0,117036	
26	Zone 6, 2	1,000000	deck below WL: 16,76 m	0,389708	0,493256	0,117036	
27	Zone 7, 2	1,000000	deck below WL: 16,76 m	deck bel	0,389708	0,493256	0,117036
28	Zone 8, 2	1,000000	deck below WL: 16,76 m	0,389708	0,493256	0,117036	
29	Zone 9, 2	1,000000	deck below WL: 16,76 m	deck bel	0,389708	0,493256	0,117036
30	Zone 10, 2	1,000000	deck below WL: 16,76 m	0,389708	0,493256	0,117036	
31	Zone 11, 2	1,000000	deck below WL: 16,76 m	0,389708	0,493256	0,117036	
32	Zone 12, 2	1,000000	deck below WL: 16,76 m	0,389708	0,493256	0,117036	
33	Zone 13, 2	1,000000	deck below WL: 16,76 m	0,389708	0,493256	0,117036	
34	Zone 14, 2	1,000000	0,389708	0,493256	0,117036		
35	Zone 15, 2	1,000000	0,389708	0,493256	0,117036		

Πίνακας 61: Probabilistic Damage calculation - ROPAX _ 8

<u>ΚΥΡΙΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ</u>

Frame of Reference and Zero point	×	Size Surfaces	×
Reder des las	DWL T Baselin	Select Surfaces to resize: Select All Deselect All upper bow stem upper midsection Lower midsection lower bow Flat of Side lower bowcone	Proportional Scaling 189,5 m • Length : 28,9 m • Beam
Longitudinal Datum	Vertical Datum	upper bowcone	:
Aft Perp. Om Set to DWL	O DWL 6.8 m	bottom midsection	21.8 m Depth
Midships 93,32 m	Baseline Dm Find Base	bottom bow	
O Fwd Perp. 186.64 m Set to DWL	Other 0 m		re-scale Markers
Other -1.234 m Aft extent Fwd extent			re-scale Curves
Label AP Default	Label Baseline Default		OK Cancel

Εικόνα 64: Χαρακτηριστικά ROPAX 9

Draft Amidships	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
m										
Displacement t	9407	10460	11549	12674	13833	15029	16262	17534	18847	20200
Heel deg	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Draft at FP m	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
Draft at AP m	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
Draft at LCF m	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
Trim (+ve by stern) m	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
WL Length m	176,105	176,200	176,278	176,356	176,345	176,305	176,187	178,239	180,249	179,780
Beam max extents on WL m	26,607	26,650	26,693	26,736	26,779	26,822	26,865	26,908	26,951	26,994
Wetted Area m ²	3780,862	3965,165	4148,652	4334,354	4521,854	4712,523	4911,974	5117,199	5332,008	5533,509
Waterpl. Area m^2	3027,779	3134,675	3238,470	3342,403	3446,185	3551,387	3663,879	3780,067	3901,729	4003,106
Prismatic coeff. (Cp)	0,503	0,515	0,526	0,538	0,550	0,561	0,573	0,578	0,583	0,595
Block coeff. (Cb)	0,490	0,501	0,513	0,524	0,536	0,547	0,559	0,563	0,568	0,580
Max Sect. area Coeff. (Cm)	0,974	0,975	0,975	0,975	0,975	0,975	0,975	0,975	0,975	0,974
Waterpl. area coeff. (Cwp)	0,646	0,668	0,688	0,709	0,730	0,751	0,774	0,788	0,803	0,825
LCB from zero pt. (+ve fwd.) m	90,892	90,513	90,104	89,668	89,206	88,717	88,197	87,639	87,038	86,404
LCF from zero pt. (+ve fwd.) m	87,574	86,646	85,695	84,669	83,599	82,473	81,180	79,808	78,294	77,119
KBm	2,234	2,429	2,624	2,821	3,017	3,215	3,413	3,613	3,815	4,017
KG m	6,800	6,800	6,800	6,800	6,800	6,800	6,800	6,800	6,800	6,800
BMt m	14,925	14,211	13,584	13,030	12,541	12,106	11,725	11,391	11,097	10,792
BML m	449,441	436,101	424,628	415,842	409,077	404,476	403,620	404,741	408,070	405,517
GMt m	10,359	9,840	9,409	9,051	8,758	8,521	8,339	8,204	8,111	8,009
GML m	444,875	431,730	420,452	411,863	405,294	400,891	400,234	401,555	405,085	402,734
KMt m	17,159	16,640	16,209	15,851	15,558	15,321	15,139	15,004	14,911	14,809
KML m	451,675	438,530	427,252	418,663	412,094	407,691	407,034	408,355	411,885	409,534
Immersion (TPc) tonne/cm	31,035	32,130	33,194	34,260	35,323	36,402	37,555	38,746	39,993	41,032
MTc tonne.m	224,223	241,954	260,168	279,670	300,396	322,814	348,719	377,238	409,062	435,885
RM at 1deg = GMt.Disp.sin (1) tonne.m	1700,666	1796,249	1896,418	2001,918	2114,373	2235,051	2366,532	2510,455	2667,972	2823,361
Max deck inclination deg	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Trim angle (+ve by stern) deg	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

ΥΔΡΟΣΤΑΤΙΚΑ ΣΤΟΙΧΕΙΑ

Πίνακας 62: Υδροστατικά ROPAX 9

Probabilistic Damage calculation - ROPAX _ 9

Load cases -

Deepest subdivision draft (summer load line) load case: ds Partial subdivision draft load case: dp Light service draft load case: dL Fluid analysis method: Simulate fluid movement Heel to starboard; heel range: from -30 deg to 180 deg in steps of 10 deg.

Διάγραμμα 17: Τρίγωνα κατάκλυσης ROPAX 9

	Zones	Total v	v 1	v 2	v 3	v 4	v 5
1	1 adjacent zone						
2	Zone 1, 1	1,000000	0,388246	0,494111	0,117643		
3	Zone 2, 1	1,000000	0,388246	0,494111	0,117643		
4	Zone 3, 1	1,000000	0,388246	0,494111	0,117643		
5	Zone 4, 1	1,000000	deck below WL: 16,774 m	0,388246	0,494111	0,117643	
6	Zone 5, 1	1,000000	deck below WL: 16,774 m	0,388246	0,494111	0,117643	
7	Zone 6, 1	1,000000	deck below WL: 16,774 m	0,388246	0,494111	0,117643	
8	Zone 7, 1	1,000000	deck below WL: 16,774 m	0,388246	0,494111	0,117643	
9	Zone 8, 1	1,000000	deck below WL: 16,774 m	0,388246	0,494111	0,117643	
10	Zone 9, 1	1,000000	deck below WL: 16,774 m	0,388246	0,494111	0,117643	
11	Zone 10, 1	1,000000	deck below WL: 16,774 m	0,388246	0,494111	0,117643	
12	Zone 11, 1	1,000000	deck below WL: 16,774 m	0,388246	0,494111	0,117643	
13	Zone 12, 1	1,000000	deck below WL: 16,774 m	0,388246	0,494111	0,117643	
14	Zone 13, 1	1,000000	deck below WL: 16,774 m	0,388246	0,494111	0,117643	
15	Zone 14, 1	1,000000	0,388246	0,494111	0,117643		
16	Zone 15, 1	1,000000	0,388246	0,494111	0,117643		
17	Zone 16, 1	1,000000	0,882357	0,117643			
18							
19				0	0		
20	2 adjacent zones						
21	Zone 1, 2	1,000000	0,388246	0,494111	0,117643		
22	Zone 2, 2	1,000000	0,388246	0,494111	0,117643		
23	Zone 3, 2	1,000000	deck below WL: 16,774 m	0,388246	0,494111	0,117643	
24	Zone 4, 2	1,000000	deck below WL: 16,774 m	0,388246	0,494111	0,117643	
25	Zone 5, 2	1,000000	deck below WL: 16,774 m	0,388246	0,494111	0,117643	
26	Zone 6, 2	1,000000	deck below WL: 16,774 m	0,388246	0,494111	0,117643	
27	Zone 7, 2	1,000000	deck below WL: 16,774 m	deck bel	0,388246	0,494111	0,117643
28	Zone 8, 2	1,000000	deck below WL: 16,774 m	0,388246	0,494111	0,117643	
29	Zone 9, 2	1,000000	deck below WL: 16,774 m	deck bel	0,388246	0,494111	0,117643
30	Zone 10, 2	1,000000	deck below WL: 16,774 m	0,388246	0,494111	0,117643	
31	Zone 11, 2	1,000000	deck below WL: 16,774 m	0,388246	0,494111	0,117643	
32	Zone 12, 2	1,000000	deck below WL: 16,774 m	0,388246	0,494111	0,117643	
33	Zone 13, 2	1,000000	deck below WL: 16,774 m	0,388246	0,494111	0,117643	
34	Zone 14, 2	1,000000	0,388246	0,494111	0,117643		
35	Zone 15, 2	1,000000	0,388246	0,494111	0,117643		

Πίνακας 63: Probabilistic Damage calculation - ROPAX _ 9

<u>ΚΥΡΙΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ</u>

Frame of Reference and Zero point	× Size Surfaces	\times
Longitudinal Datum Werical Datum © AA Perp. 0m Mdshipes 93.2m Prud Perp. 1254 m Other 1123 m Feed automic Label AP Default	Select Surfaces to resize: Select All upper bow stem upper midsection Lower midsection lower bow Flat of Side lower bowcone upper bowcone bottom midsection bottom midsection bottom bow Calma Deselect All Proportional Scaling upper identification image: provide the state of the state o	Length Length Beam Depth Cancel

Εικόνα 65: Χαρακτηριστικά ROPAX 10

Draft Amidships	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
m Dianta com catal	0000	40.400	44540	10000	40700	4.4070	10005	47470	40770	00400
	9380	10429	11513	12633	13788	14978	16205	17470	18776	20123
Heel deg	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Draft at FP m	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
Draft at AP m	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
Draft at LCF m	4,000	4,333	4,667	5,000	5,333	5,667	6,000	6,333	6,667	7,000
Trim (+ve by stern) m	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
WL Length m	176,084	176,191	176,268	176,345	176,350	176,311	176,230	177,818	179,912	180,218
Beam max extents on WL m	26,603	26,645	26,688	26,730	26,773	26,815	26,858	26,901	26,943	26,986
Wetted Area m ²	3770,067	3953,836	4136,940	4320,827	4507,223	4697,031	4892,059	5096,920	5316,131	5518,356
Waterpl. Area m ²	3016,131	3122,528	3226,079	3328,210	3430,975	3535,370	3643,470	3759,722	3884,125	3990,379
Prismatic coeff. (Cp)	0,501	0,513	0,525	0,536	0,548	0,559	0,571	0,577	0,582	0,592
Block coeff. (Cb)	0,488	0,500	0,512	0,523	0,534	0,545	0,557	0,563	0,567	0,577
Max Sect. area Coeff. (Cm)	0,974	0,975	0,975	0,975	0,975	0,975	0,975	0,975	0,975	0,974
Waterpl. area coeff. (Cwp)	0,644	0,665	0,686	0,706	0,727	0,748	0,770	0,786	0,801	0,821
LCB from zero pt. (+ve fwd.) m	90,934	90,562	90,160	89,732	89,278	88,797	88,287	87,740	87,153	86,527
LCF from zero pt. (+ve fwd.) m	87,681	86,760	85,814	84,823	83,768	82,646	81,436	80,056	78,484	77,214
KB m	2,234	2,428	2,623	2,819	3,016	3,214	3,412	3,612	3,813	4,015
KG m	6,800	6,800	6,800	6,800	6,800	6,800	6,800	6,800	6,800	6,800
BMt m	14,873	14,160	13,535	12,983	12,492	12,057	11,674	11,342	11,045	10,760
BML m	447,101	433,817	422,473	413,159	406,248	401,535	399,371	400,748	405,154	404,211
GMt m	10,307	9,788	9,359	9,003	8,708	8,470	8,286	8,154	8,057	7,975
GML m	442,535	429,445	418,296	409,179	402,464	397,948	395,983	397,560	402,167	401,426
KMt m	17,107	16,588	16,159	15,803	15,508	15,270	15,086	14,954	14,857	14,775
KML m	449,335	436,245	425,096	415,979	409,264	404,748	402,783	404,360	408,967	408,226
Immersion (TPc) tonne/cm	30,915	32,006	33,067	34,114	35,167	36,238	37,346	38,537	39,812	40,901
MTc tonne.m	222,401	239,955	258,037	276,966	297,325	319,367	343,815	372,135	404,586	432,799
RM at 1deg = GMt.Disp.sin (1) tonne.m	1687,188	1781,448	1880,509	1984,938	2095,386	2214,246	2343,496	2486,048	2640,244	2800,680
Max deck inclination deg	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Trim angle (+ve by stern) deg	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

ΥΔΡΟΣΤΑΤΙΚΑ ΣΤΟΙΧΕΙΑ

Πίνακας 64: Υδροστατικά ROPAX 10

Probabilistic Damage calculation - ROPAX _ 10

Load cases -

Deepest subdivision draft (summer load line) load case: ds Partial subdivision draft load case: dp Light service draft load case: dL Fluid analysis method: Simulate fluid movement Heel to starboard; heel range: from -30 deg to 180 deg in steps of 10 deg.

Διάγραμμα 18: Τρίγωνα κατάκλυσης ROPAX 10

	Zones	Total v	v 1	v 2	v 3	v 4	v 5
1	1 adjacent zone						
2	Zone 1, 1	1,000000	0,386793	0,494962	0,118246		
3	Zone 2, 1	1,000000	0,386793	0,494962	0,118246		
4	Zone 3, 1	1,000000	0,386793	0,494962	0,118246		
5	Zone 4, 1	1,000000	deck below WL: 16,788 m	0,386793	0,494962	0,118246	
6	Zone 5, 1	1,000000	deck below WL: 16,788 m	0,386793	0,494962	0,118246	
7	Zone 6, 1	1,000000	deck below WL: 16,788 m	0,386793	0,494962	0,118246	
8	Zone 7, 1	1,000000	deck below WL: 16,788 m	0,386793	0,494962	0,118246	
9	Zone 8, 1	1,000000	deck below WL: 16,788 m	0,386793	0,494962	0,118246	
10	Zone 9, 1	1,000000	deck below WL: 16,788 m	0,386793	0,494962	0,118246	
11	Zone 10, 1	1,000000	deck below WL: 16,788 m	0,386793	0,494962	0,118246	
12	Zone 11, 1	1,000000	deck below WL: 16,788 m	0,386793	0,494962	0,118246	
13	Zone 12, 1	1,000000	deck below WL: 16,788 m	0,386793	0,494962	0,118246	
14	Zone 13, 1	1,000000	deck below WL: 16,788 m	0,386793	0,494962	0,118246	
15	Zone 14, 1	1,000000	0,386793	0,494962	0,118246		
16	Zone 15, 1	1,000000	0,386793	0,494962	0,118246		
17	Zone 16, 1	1,000000	0,881754	0,118246	1		
18							
19					·····		
20	2 adjacent zones						
21	Zone 1, 2	1,000000	0,386793	0,494962	0,118246		
22	Zone 2, 2	1,000000	0,386793	0,494962	0,118246		
23	Zone 3, 2	1,000000	deck below WL: 16,788 m	0,386793	0,494962	0,118246	
24	Zone 4, 2	1,000000	deck below WL: 16,788 m	0,386793	0,494962	0,118246	
25	Zone 5, 2	1,000000	deck below WL: 16,788 m	0,386793	0,494962	0,118246	
26	Zone 6, 2	1,000000	deck below WL: 16,788 m	0,386793	0,494962	0,118246	
27	Zone 7, 2	1,000000	deck below WL: 16,788 m	deck bel	0,386793	0,494962	0,118246
28	Zone 8, 2	1,000000	deck below WL: 16,788 m	0,386793	0,494962	0,118246	
29	Zone 9, 2	1,000000	deck below WL: 16,788 m	deck bel	0,386793	0,494962	0,118246
30	Zone 10, 2	1,000000	deck below WL: 16,788 m	0,386793	0,494962	0,118246	
31	Zone 11, 2	1,000000	deck below WL: 16,788 m	0,386793	0,494962	0,118246	
32	Zone 12, 2	1,000000	deck below WL: 16,788 m	0,386793	0,494962	0,118246	
33	Zone 13, 2	1,000000	deck below WL: 16,788 m	0,386793	0,494962	0,118246	
34	Zone 14, 2	1,000000	0,386793	0,494962	0,118246		
35	Zone 15, 2	1,000000	0,386793	0,494962	0,118246		

Πίνακας 65: Probabilistic Damage calculation - ROPAX $_$ 10