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AHAQZH ZYITPADOEA METANTYXIAKHZ EPTAZIAZ

O katwbL umoyeypappévog lwavvng Apilng tou Kwvotavtivou pe oplBud pnTpwou
206682005, doutntg Tou MMpoypdaupato¢ Metamtuylakwy moudwv  «Alaxeiplon
MAnpodoplwv oe BipAloBnkeg, Apxeia, Mouoeia Tou TuAuotog Apxelovopliog,
BiBALoBnkovopuiag kat Zuotnudtwy MAnpodopnong tng ZxoAng Atotkntikwy, OLKOVOULKWY Kol
Kowwvikwyv emotnpwy tou Naveniotnuiov Autikng Attikig, SnAwvw otL:

«Elpal cuyypadEag auTh¢ NG LETAMTUXLAKAG Epyaciog kat 0tL kaBes BonBela tnv omola siya
yla TNV TPOETOLLAcia TNG, €lval MANPWG avayvwpLopévn Kol avadEpPETal oTny gpyaocia.
Emiong, oL Oomoleg TnyEC amd TIG omoieg ékava xpnon dedopévwy, WOewv 1N Aé€swv, eite
oKpLBWG eite Mapadbpaopéves, avadpEpovtol 0To CUVOAO TOUG, HE TTANPN avadopd oTtoug
ouyypadeig, Tov eKSOTIKO 0iKo N TO MEPLOSIKO, CUMMEPAAUPBAVOUEVWY KL TWV TINYWV TTOU
evbeyouEvwe xpnotuomolndnkav amod to dladiktuo. Emiong, Bepfatwvw OTL auth n epyocia
£xeL cuyypodel amd pévo amoKAELOTIKA Kal amoteAel MPOIOV MVEUUATLKAG LBLoKTNoilag TOGo
S1KAG pou, 600 Kal tou I6pupatoc.

MapaBaocn t™¢ avwTépw akadnuaikng pou guBuvng amoteAel ouowwdn Adyo ylo thv
OVAKANGN TOU TTTUXLOU HOUY.

ABnva, 01/07/2022

lwavvng Apilng

—iii—



Acknowledgements

| would like to thank Professor loannis Triantafyllou for giving me the chance to draft this
dissertation. The dissertation’s topic allowed me to learn the Python programming language,
and to get involved with basic features of Machine Learning, mostly related to Text
Classification. This enhanced my skills in understanding and implementing complex coding
concepts, which are necessary in most contemporary business needs. Also, | would like to
thank the master’s selection committee for accepting my participation in this master. The
master’s curriculum provided me with theoretical and practical knowledge related to
Information Management in Libraries, Archives and Museums. Modern societies are more and
more dependent to Information and Information management, thus, this master boosted my

capabilities and helped me to understand better the related concepts.

01/07/2022

loannis Drizis

—jv—



Abstract in English

The Classical Machine Learning and Deep Learning models are used to provide solutions in
everyday technologies, like weather prediction, stock price prediction, voice-to-text
conversion, fraud detection, quality assurance, etc. These implementations are only a part of

a broad range of applications where these algorithms can offer unique services.

In this dissertation, Classical Machine Learning models will be compared with Deep Learning
Neural Network models, within the frame of Text Classification. This comparison will be done
by using three different feature selection metrics, namely tf.idf, chi square (x?) and
devmax.DF. Also, different Neural Network Deep Learning architectures are tested and
compared, as well as different parameters (input vector size, topology architecture, etc.),

which are applied in Neural Networks.

Keywords: Machine Learning, Deep Learning, Text Preprocessing, Text Classification,

Devmax.DF



NepiAnyn (Abstract in Greek)

H Mnxaviki Maénon kat n BabBwd Mnyaviky Madnon, sdbappolovial o TeXVOAOYIeG
KOONUEPLVAC XPNONC, OMWC Ol UETEWPOAOYLKEC TPOPAEDEL, N TPOPAEdN NG TIUAG HLOG
LETOXNG, N LETOTPOTIH NXOU OFE KELEVO, N OVAYVWPELON amtdtng, N dtaodaALon moldtnTog, KAT.
AUTEC oL ebapPUOYEG AMOTEAOUV povAXA £Va HIKPO KOUUATL 0o TO TEPAOTLO VP0G, OOV
ebappolovral povieha Mnyxavikig Mabnong kat BaBidg Mabnong.

Y& auTh TNV TTuxLlakn, o cuykplBolv KAQOGLKA povTEAD Mnxavikng Mdadnong pe poviéha
Babiag Mabnong, yéca oto mAaiolo tng Katnyoplomoinong Kelpévou. H olykplon Ba AaBet
XWPO PE TN XpHon Tplwv SLopopeTIKWY UETPLKWV e€aywyng XapoKTtnploTtikwy: tnv tf.idf,
X- TeTpdywvo (x?) kat devmax.DF. ErumAéov, Ba efstaotolv kat Ba cuykplBoUV SLadopEeTIKEG
opXLTEKTOVIKEG Neupwvikwv Alktiwv Babldg Mdabnong, onmwg emiong kot SadopeTIKES
TAPAUETPOUC (HEyeBOC SLaVUOUATOC ELOCOYWYNC, APXLTEKTOVLKA TOTOAOYyLOC, KATL.), OL Omoleg

epapudlovral oe Nevpwvika Aiktua.

NE€elg KAewda: Mnyavikn Madnon, Babua Mnxaviky Mabénon, Mpoenefepyaocia Kelpévwy,

Katnyoplomoinon Kewwévwyv, Devmax.DF
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Chapter 1. Introduction

Classical Machine Learning models and Deep Learning models are used more and more to
everyday applications (Sarker, 2021). Thus, there is an interest of further searching their
capabilities and potential. In this dissertation, a comparison of classical Machine Learning
models and Deep Learning models will be performed, within the context of Text Classification.
Regarding the classical Machine Learning models, the following models will be tested: Naive
Bayes, k-NN, SVM, Random Forest and Logistic Regression. In Deep Learning, different model
schemas will be tested, and the results will be compared with those of the Classical Machine

Learning tests.

Three different feature selection metrics will be used during this procedure, namely tf.idf, chi
square (x?) and devmax.DF. The latter is a newly introduced feature selection metric for Text
Classification, which has produced great results (Triantafyllou, Drivas, & Giannakopoulos,
2020). Specifically, this metric was tested on a dataset that consists mobile application
reviews, with the use of classical Machine Learning models. That paper shows that devmax.DF

outperformed other feature selection metrics, such as tf.idf and x2.



Chapter 2. Theory

In this chapter, an overview of the theory is given, regarding Machine Learning (ML) and Text
Classification (TC) concepts. This is necessary so the reader can understand the basic concepts
of the topic. In general, the relevant literature can be distinguished into two categories. The
first one, encompasses bibliography with a more abstract approach of ML and Deep Learning
(DL) concepts and terminologies. In the second one, the bibliography is oriented more into

Natural Language Processing (NLP) concepts (but withing the framework of ML).

2.1 Machine Learning and Deep Learning

The term Machine Learning is used to describe algorithms that “learn” from data (Geron,
2019, p. 3). The term appeared for the first time in the 50’ (Samuel, 1959), but only the last
10-20 years ML has prevailed as a significant filed in computer science. ML is a subcategory of
Artificial Intelligence (Al). The latter is defined as the process to automate intellectual tasks
normally performed by humans. Thus, Al is considered as a more abstract concept, which

includes Machine Learning (Chollet F., 2017, p. 1).

Deep Learning belongs to the ML family, but it is considered as a subcategory of ML
(Goodfellow, Bengio, & Courville, 2016). The different feature in DL is that the learning process
is achieved through consecutive layers. Except from the input and output layer, one may insert
a handful or even hundreds of layers that in various ways achieve to reach high scores in

predictions (Chollet F., 2017, pp. 6-10). An overview of Al, ML and DL is depicted in Figure 1.

Artificial Intelligence

Machine Learning

Deep Learning

Figure 1: Overview of Al, ML and DL



Machine Learning algorithms “learn” from data and generate predictions based on the
learning process. This learn-and-predict process is the key-value in ML, compared to other
algorithms like “Symbolic Al”, which is not much more than a huge set of rules implemented
into an algorithm (Chollet F. , 2017, p. 3). In ML, the user doesn’t have to create rules. The
rules are created via the learning process (Figure 2). So, in general, one may use ML for
different tasks, such as Optical Character Recognition (OCR), face recognition, voice

recognition, price prediction, spam e-mail detection, etc.

Rules --> :

Classical

) --> Answers
Programming

Data -->
Data --> .

Machine

L . --> Rules

Answers --> £arning

Figure 2: Classical programming vs machine learning

Furthermore, one may distinguish four different “branches” in Machine Learning: Supervised,
Unsupervised, Self-Supervised and Reinforcement learning (Chollet F. , 2017, pp. 85-87) as
shown in Figure 3. Supervised ML refers to a learning process, in which the data is already
labelled (by humans), thus the model tries to figure out what is needed to correctly predict
the labelled dataset. Unsupervised ML models cluster the data based on specific algorithms
and may provide useful insight into the dataset, such as trends, anomalies, clusters, etc.
Unsupervised ML is usually used to handle data this is not labelled. Self-Supervised models
are actually supervised models, but the labels are created algorithmically (and not by a
human). For example, one may use an Unsupervised ML model to categorize the data, and
then implement a Supervised ML model on it. Lastly, Reinforcement Learning (Russell &
Norvig, 2016; Sutton & Barto, 2018) is a process, through which the model understands its
environment and optimizes actions which lead to a higher score. For the moment,
Reinforcement Learning hasn’t been developed as much as the other “branches”, but it has

been widely used in the gaming industry.



Supervised Unsupervised

Self- Reinforcment
supervised training

Figure 3: "Branches" of Machine Learning
In this dissertation, the focus will be on the supervised “branch” of Machine Learning.

In addition, the training procedure may take place with two different ways (Geron, 2019, pp.
14-17). The first one is called “batch learning” and the second one “online training”. In batch
learning the model receives all the data in a one-off procedure. On the other hand, in online
training, the model is “fed” with data step by step, so the model “learns” incrementally. This
learning procedure is usually chosen whenever there is a continuous flow of data (e.g., stock

exchange, cryptocurrency, etc.).

Lastly, another remark related to Machine Learning models, is that their input data should be
a list of numbers (Chollet F. , 2017, pp. 93, 295). So, information from real world should
somehow be transformed into a list of numbers (e.g., text, pictures and voice should be

converted into numbers, etc.). Only if this task is done, can one proceed further.

2.1.1 Classical Machine Learning

There are many ML models. Each of them operates algorithmically in a different way. In this
paragraph, you may find a brief introduction into the way some of the classical ML Classifiers

“think”, without analyzing the mathematical background of their procedure.

Probabilistic models

A handful of Classification models calculate the probability of an entity to belong in a category
(Kubat, 2017, pp. 19-42), based on the data provided during the training procedure. The Naive
Bayes Classifier (Webb, 2011) and the Logistic Regression Classifier (Hastie, Friedman, &
Tibshirani, 2001) belong to this kind of models.




k-Nearest Neighbors (kNN)

The k-Nearest Neighbors Classifier (Altman, 1992) categorizes the data according to the k
nearest data points (Kubat, 2017, pp. 43-46). For example, imagine a binary dataset with blue
and red labels. A new data point (marked with an asterisk in Figure 4) will be labeled according

to the k criteria that were introduced into the Classifier’s parameters.

Test Data
120 - e
110 -
100 - o ®
90
)
=
=)
g 80 °
70 - ® * o s
e
60 - e
®
50 -
®
T T T T T T T T
140 150 160 170 180 190 200 210
height

Figure 4: Example of a k-NN Classifier

So, if k=1 the algorithm tries to find the 1 nearest datapoint. In the above Figure 4, it seems
that the nearest datapoint is the blue one. In this case, the Classifier will categorize this new
entity into the blue class. One may substitute k to any integer, but one should have in mind
that it is preferred to assign to k an odd integer. This resolves possible conflict that would
trigger with an even k, in case for example k is equal to 2, and one of the nearest neighbors is
True (red) and the other one is False (blue). The Classifier won’t be able to reach a logical
conclusion. Of course, more parameters can be added to that, such as to consider the distance
between the two datapoints. In that case, long distance won’t be as important as the short

distance.
Kernel methods

A group of Classifiers belong to the Kernel methods, such as the Support Vector Machine

(SVM), the kernel Fisher discriminant analysis, the kernel principal component analysis (PCA),



(Muller, Mika, Ratsch, Tsuda, & Scholkopf, 2001). All of these implement the “kernel trick”,
which allows to intergrade a high-level of polynomial features of a dataset, without the need

to actually add them, thus saving a lot of calculation resources.

The Support Vector Machine model is the most known kernel model, developed in the late
nineties (90’) that provides solutions to linear and non-linear tasks. SVMs map the data into a

new high-dimensional area and then create a decision boundary (Chollet F., 2017, pp. 13-14).

Though SVMs perform very well, they are not preferred for large datasets, due to the high
amount of time they need to get trained. Also, they usually need beforehand a good feature
extraction technique. SVMs can also be used for regression and for outlier detection (Geron,

2019, p. 153).

When creating an SVM model, a decision boundary is drafted as said before. Sometimes, the
dataset is too complex, and it might be useful to “allow” some mistakes while the model is
drafting the boundary. This strategy is called “soft margin classification” and it is common to
use it in SVMs (Geron, 2019, pp. 154-156). Actually, the model creator allows some margin

violations.

When non-linear SVM models are applied, another parameter can be implemented. This is
the degree parameter of the model, which is equal to the degree of the equation that is

created in order to draft a non-linear parameter (Geron, 2019, pp. 158-159).

Decision Tree — Random Forest

Though Decision Trees (DT) were studied previously (Breiman, Friedman, Olshen, & Stone,
1984), they gained attention in the early 2000 and by the end of that decade they were
preferred over the kernel methods. They are easier to explain and to depict. Decision Trees
are flowchart-alike and reach a decision by parsing sequences of “if” statements, as shown in
Figure 5 (Chollet F. , 2017, pp. 14-15). Decision trees have a parameter called “depth”. The
depth is equal to the maximum length of the sequence of “if” statements within the model
(Geron, 2019, pp. 176-178). In the example of Figure 5, the model’s depth is equal to two.
There is no specific rule, regarding how deep should be a Decision Tree. One may experiment

with the data and the model to find the optimum number of the depth parameter.



if a>1 then
go left
Ise
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if b>?tthen if b> }O then
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return True return True return True alca
else else else return False
return False return False return False

Figure 5: Example of a Decision Tree Classifier

A Random Forest (RF) consist of multiple Decision Trees (Geron, 2019, p. 197; Ho, 1995). Each
DT yields a prediction, and in the end the class with the most votes is the “winner”. The
procedure of combining different Machine Learning algorithms is called “ensemble” (Geron,

2019, p. 189). So, Random Forest is an ensemble of Decision Trees.

2.1.2 Deep Learning

Deep Learning (DL) belongs to the ML family, as said previously. Alternative names that could
be given to this subcategory of Machine learning are “layered representations learning” or
“hierarchical representations learning” (Chollet F. , 2017, pp. 6-7), because the learning
process is achieved via layers. The number of layers is considered as the “depth” of the model.
A few layers means that the model is “shallow”. On the other hand, State of the Art Deep
Learning algorithms consist of hundreds of layers or even more. Furthermore, each
connection from one layer to the next has its unique weights, which are initially arbitrary, but
via the learning process, the weights are adapting to the optimum values. Most DL models are
Neural Networks, which “remind” human brain neurons.

In Figure 6, an arbitrary Deep Learning Neural Network model is depicted with an input layer

of five values and an output layer of two values. In between there are two layers, which are

called “hidden layers”; in this model, each hidden layer consists of three hidden units. Hidden



units (Chollet F. , 2017, p. 63) are also known as neurons (Geron, 2019, p. 325) or nodes
(Vajjala, Majumder, Gupta, & Surana, 2020, p. 28) and represent a single datapoint. The first
value of the input layer is connected with the three hidden units of the first hidden layer (this
occurs also for the other input values; the second value of the input layer is also connected
with the three hidden units of the first hidden layer, as well as the third value of the input
layer is connected with the three hidden units of the first hidden layer, etc.). This means that
the information of each input value is transferred to the next layer. Each connection has a
weight, which at the beginning is random. The weights play a key-role in the procedure, as

these are used to calculate the output from one layer to another, until the final output.

Input Layer Hidden Layers Output Layer

Figure 6: Example of Deep Learning Neural Network layers

Note that another two parameters are important in the creation of a Deep Learning

architecture (Chollet F. , 2017, pp. 63-66):

e The way each layer connects with the next one.
A Dense layer is chosen when the aim is to create a full connection between the layers
(and specifically with the preceding layer). A CNN (Convolutional Neural Network)
layer is chosen for pattern recognition (e.g. pictures) or sequence understanding that

can be used for Text Classification (Chollet F. , 2017, pp. 244-245). An LSTM



(Long-Short Term Memory) layer can also be used for sequence recognition (Chollet

F.,2017, pp. 187, 208).

e The activation function of each layer.
An activation functions such as “relu” or “softmax”, regulates the flow of data by
activating or not a hidden unit and by further passing the value with specific

parameters.

Furthermore, Deep Learning models “operate” circle-wise (Figure 7). To completely
understand the basic concepts of DL, one should become familiar with DL’s terms such as loss
score, loss function, optimizer, batch size and epochs (Chollet F. , 2017, pp. 7-9). During the
learning process Deep Learning algorithms predict a value, which is the model’s outcome. The
outcome is compared with the actual value. This comparison results to a “loss score” (the
“distance” between the actual value and the predicted value). The loss score is calculated
thanks to a functionality of Deep Learning named “loss function”. The loss score is used to
re-calculate the layers’ weights, thanks to another functionality of DL: the “optimizer”. The
learning process is achieved by running the learning process n-times. Each repetition is
considered as one “epoch”. One must find the ideal epochs for a specific DL model (not too
few, nor too many, so to avoid overfitting or underfitting)®. In each epoch the weights adapt
more and more to the data, and by this way the model becomes more successful in
predictions. Finally, one may add the batch size parameter into the Deep Learning model
(Geron, 2019, p. 326). The batch size refers to the amount of the instances that are trained in
an epoch. For example, a dataset with 1,000 instances and a DL model with a training batch
size of 100 will be trained in one epoch 1,000/100 = 10 times. The main difference between
epochs and batch size, is that the epoch refers to the training procedure in the whole dataset,

whereas the batch size refers to the chunks of the data that is trained in one epoch.

In page 16 you can find more details regarding overfitting and underfitting.
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Figure 7: The Learning Process of Deep Learning

Further to the above, DL models may have more parameters to regulate overfitting or
underfitting, such as one or more Dropout layers, and/or the Early Stopping feature (Geron,
2019, pp. 141, 365). The Dropout layer may span between 0% and 100%. This represents the
chance of a hidden unit, to be ignored during training. Interestingly, this enhances
performance. Some use a combination of models that were trained with Dropout layers. This
is called “Monte Carlo” Dropout, which increases performance. On the other hand, the Early
Stopping feature is also used during training to prevent overfitting. Early stopping allows the
model to stop further training when there is no performance improvement, thus, to avoid the

model’s adaptation to specific training-data.

As it is noticed, the creation of a Deep Learning architecture involves thinking of:

e How many layers should be inserted, and of what length?

e Which loss function shall be used?

e  Which optimizer shall be used?

e What other parameters should be introduced?
Francois Chollet (2017, p. 54) claims that creating a Deep Learning structure is more Art than
Science. Since implementing Deep Learning is mostly an experimental field and lacks theory
(Chollet F., 2017, pp. 17-18), could one argue with this claim?
In general, DL models are considered as the best solution for big volumes of data. There is no
high demand of complex feature engineering -some argue that there is no need for feature

engineering at all in Text Classification (Vajjala, Majumder, Gupta, & Surana, 2020, p. 62)-,
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plus there is a worldwide trend in moving to the Deep Learning model prediction, due to its
efficiency. For example, CERN has switched from Decision Trees and SVM to Deep Learning

models (Chollet F., 2017, p. 16).

2.1.3 Types of Predictions

Machine Learning and Deep Learning models can predict a value as part of a regression task
(Chollet F. , 2017, p. 78) or may predict the class in which an instance of data should be

categorized, which is called “classification task”.

Predicting a value as part of a regression task is useful to estimate house prices, stock-prices,
temperature of the atmosphere for weather forecasting, etc. and has no further complexity
in describing it. On the other hand, classification problems vary and can be further
distinguished to “binary”, “multi-class”, “multi-label” and “multi-output” (Geron, 2019, pp.
88, 100, 106-108).

Binary classification models are used when the data is split between only two categories.

Some ML models, such as Logistic Regression and Support Vector Machine classifiers can

perform only binary classification.

Multi-class classification models learn to distinguish data between n-categories. Such
classifiers can be used for Optical Character Recognition (OCR) to determine if a character
belongs to the range of characters: “0-9”. In this case, a character cannot belong to more than

one category, but the model must decide to which category it belongs.

Multi-label classification models are used when the dataset can have more than one label. For
example, news articles can have multiple labels simultaneously. These classifiers can label an

instance with more than one class.

Multi-output classification models are like multi-label classification models, but they can

handle multiple classes for each label.

2.1.4 Evaluating Machine Learning models

There is at least a handful of metrics and features that are used to evaluate the efficiency of
Machine Learning models, such as accuracy, the confusion matrix, precision, recall, the
Fi-score (Geron, 2019, pp. 88-100) and the ROC curve (Fawcett, 2006). These metrics provide
feedback on how successful a model is in predicting the right class. For regression tasks there

are other metrics, such as calculating the distance between actual and predicted value.
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Nevertheless, in this dissertation the focus will be on a Classification task, thus, in the rest of

this paragraph, only the main classification metrics are demonstrated.

Accuracy

Accuracy provides information on how accurate the predictions are. It is calculated by dividing
the correctly predicted values to the total sum of dataset (total predictions), as shown in
equation 1.

correct predictions

(1)

accuracy = —
y total predictions

Confusion Matrix

The Confusion Matrix provides a better insight in model performance evaluation, because it
depicts the outcome in a more detailed way. Particularly, it shows the model’s predictions,
and which of these were correctly or incorrectly predicted. The table contains values of the

True Positive, True Negative, False Positive and False Negative predictions (Table 1).

Table 1: Example of Confusion Matrix

Predicted
Positive | Negative
. True False
Positive .. .
Actuall Positive | Negative
¥ Negative False True
& Positive | Negative

Precision

The Precision metric is equal to the True Positive value divided by the sum of True and False
Positive values (Equation 2). If there is no False Positive value, then the precision scores a

100%.

o True Positive (2)
recision =
p True Positive + False Positive

Recall

Recall, also known as Sensitivity or True Positive Rate (TPR) is equal to the True Positive Value
divided by the sum of True Positive and False Negative values (Equation 3). If there is no False
Negative value, then the recall scores a 100%.

I True Positive (3)
recall =
True Positive + False Negative
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Fi-score
The Fi-score is equal to the harmonic mean of Precision and Recall (Equation 4). It is widely
used because it includes information for both False Positive and False Negative values.

2 precision * recall TP

Fi-score = =2 =
! 1 1 precision + recall Tp 4 ENtFP (4)
2

precision  recall
Note that both Precision and Recall (and consequently Fi;-score) are mainly affected by the
True Positive instances. If the dataset has only a few TP instances, a False Negative or a False

Positive will strongly affect the results.
Training Set — Validation Set — Test Set

Machine Learning models are trained with data. By training a model with all the dataset’s

instances (data rows) will not provide the appropriate information regarding its performance.

To tackle this issue, Machine Learning Specialists split the dataset into “Training Set” —
“Validation Set” — “Test Set”. The goal is to train the model with the training set and to initially
evaluate-validate the model with the validation set. Lastly, the test set is used to perform a
final check regarding the model’s performance (Chollet F. , 2017, pp. 89-92), before

implementing the model into the real-world business task.

There are two major types of picking up and implementing the training-validation set “rule”.
The first one is named “simple hold-out validation” and the second one “k-fold cross
validation” (Berrar, 2018). The simple hold-out validation split is an approach, though which
the dataset is split only into two parts. One Training Set and one Validation Set (Figure 8). The
model is trained with data from the training set, and its performance is calculated with the

data of the validation set.

training set validation set

Figure 8: A simple training-validation set example
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In the k-fold cross validation split, the dataset is split into k parts. The model is trained and

evaluated k-times by using the k-1 instances as training data and the k' part as validation set

(Figure 9).
1st fold training training validation
set set set
2nd fold training validation training
set set set
3rd fold B validation training training

set set set

Figure 9: A k-folds cross validation example

The model loops through the folds until every fold is used. For each loop the score of accuracy,
recall and precision is calculated. These scores are used in the end to estimate their average.
By this way the Machine Learning Specialist may evaluate the model and if needed he can run

again the procedure with different parameters in order to reach higher scores.

Another goal of splitting the data into train-validation-test set is because a huge dataset may
consist of millions of rows of data. It is time-consuming to use it all and to train a model with
such a huge dataset, thus it is preferred to keep a portion of the dataset as training-validation

set and to test the models’ performance via these sets.

A common approach in splitting the dataset into training and test set is to splititin an analogy
of 80% - 20%. This may take place in small and medium size datasets. For bigger datasets, one
has to estimate the ideal volume of the training set. As said before, it is difficult to train a
model with a dataset that consists of millions of rows of data. Thus, one should slice it and
train the model with a smaller proportion. There are no specific rules; the volume of the

training dataset depends mostly on the Machine Learning Specialist’s intuition.
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2.1.5 General Machine Learning Issues

Machine Learning might fail to produce the excellent results, or even a moderate result if
some basic factors are not taken into account (Geron, 2019, pp. 23-30). There are two main
reasons why a Machine Learning model may fail in scoring high. The first one is a “bad

algorithm” and the second one is “bad data”.

First, the training set might be too small. Machine Learning is a data-driven field; thus, a small
volume of training set wouldn’t be able to yield good results. In Figure 10? you may see an

abstract view on the correlation between ML Performance and Amount of data.

A

Deep neural networks

Medium neural networks

Performance

Shallow neural networks

Traditional machine learning

>

Amount of data
Figure 10: Performance vs Amount of Data in Machine Learning
Secondly, the training data might not reflect the general picture of the whole dataset. In
particular, the training set should be proportionate to the dataset. One should not deliberately
or by accident create a training set, which has not the right analogies of the whole dataset.
Furthermore, poor-quality data might affect the results. Data with poor quality might involve

data entirely irrelevant to the task or data that contain too many missing values. One should

2 Figure received from paper “Canadian Association of Radiologists White Paper on Artificial
Intelligence in Radiology” (2018), reference within paper:
Bahnsen AC. Easy Solutions, Inc. Building Al applications using deep learning. Available at:

http://blog.easysol.net/building-ai-applications. Accessed January 28, 2018.
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assess the dataset prior using it and accordingly disregard it entirely or handle possible errors

or missing values.

Another problematic issue that might affect the models’ performance is a low-quality of
feature selection or feature extraction method. Machine Learning models use data to learn
patterns and create rules. If they are not given the right data and in the best format, they

cannot produce the optimum.

Lastly, it is important to mention that a model may overfit or underfit to the training dataset.
Both result to low performance. The first one (overfitting) occurs when the model fits too
much to the training set (high scores); but so much that it cannot reach high scores when new
data is introduced. Literally, the model adapts too much to the data of the training set, that it
won’t recognize new data easily. The second one (underfitting) occurs when the model’s
parameters are wrongly set, resulting a model that can’t reach high scores nor in the training

set, neither in the test set.

2.2. Pre-Processing for Text Classification

Text Classification is the procedure of categorizing text into specific classes. It is considered as
one of the most popular features in the field of Natural Language Processing (NLP). Text
Classification is also known as “topic classification”, “text categorization” or “document
categorization” and its applications vary in many fields, such as “Content Classification and

”ou

organization”, “Customer Support”, “E-commerce”, “language identification”, etc. (Vajjala,

Majumder, Gupta, & Surana, 2020, pp. 119-123).

The procedure for creating Text Classification Systems could be described as this:

1. Collect and pre-process the dataset

2. Split the dataset into training and test set

3. Transform text into vectors

4, Apply and train a Classifier

5. Evaluate the results

6. Deploy the model into new data and evaluate its performance.

In the following paragraphs, you may find more details related to Text Classification. This will

help the reader to understand the basic concepts of the topic.
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2.2.1 Text Pre-processing

In Text Classification the dataset consists of letters, words, paragraphs, punctuation, etc. One
should pre-process the text, so it shall become easier to analyse it further and to perform
feature engineering in a later stage, in the most efficient way. There is a handful of
pre-processing practices which are described below (Vajjala, Majumder, Gupta, & Surana,

2020, p. 49).
Word Tokenization

Word Tokenization refers to the method of splitting the text into pieces (Vajjala, Majumder,
Gupta, & Surana, 2020, pp. 51-92). Tokenization can be as simple as just to split the text
whenever a white space is found, or as complex as to simultaneously remove unnecessary
punctuation and/or to ignore numeric values. Of course, in other languages this can be more
challenging, like in Chinese language where there is no “space” between words as it is
perceived in the English language (Webster & Kit, 1992). By tokenizing the text, the user

receives a list of words, which can be further exploited.
Lowercasing - Uppercasing

It is common to lowercase or uppercase all the dataset’s words, in an early stage (Vajjala,
Majumder, Gupta, & Surana, 2020, pp. 52-53). By this way the dataset is homogenized and

possible issues with comparison of case sensitive programming mechanisms is solved.
Stemming — Lemmatization

Words may have suffixes and/or may have the same lemma with other words. Sometimes, it
is useful to “cut” the words’ suffixes or to find the words’ lemma (Jivani, 2011). Particularly,
the stemming method removes the words’ suffixes, and the lemmatization method returns
the word’s lemma. This procedure reduces the dataset’s variation of features, which in return
makes it easier to further analyse the data.

Removing stop-words

Some words do not offer any special information regarding the Classification needs. In the
English language, words like “a”, “the”, “of”, etc. are named “stop words” and they are usually
removed from the dataset (Vajjala, Majumder, Gupta, & Surana, 2020, pp. 52-53). One may

find complex techniques to remove stop-words in the literature (Ladani & Desai, 2020;

Gunasekara & Haddela, 2018; Kaur & Buttar, 2018).

Once the text is tokenized, stemmed, lemmatized, lowercased (or uppercased) and once the

stop words are removed, the user has created a list of words, which contains all the features,
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and from which one may extract useful information and train the Machine Learning model
(Lane, Howard, & Hapke, 2019, pp. 71-76). This can be named as the corpus Dictionary,

Lexicon or Bag of Words.

2.2.2 Feature Selection - Feature Extraction - Vectorizing

Machine Learning performance is dependent on the features, which are selected or/and
extracted from a dataset. In the case of Text Classification, one has to select the optimal
features from text and create a vector with features that will “feed” the ML model. In Deep
Learning, there is an opinion that feature selection is not needed in Text Classification (Vajjala,
Majumder, Gupta, & Surana, 2020, pp. 60-61), because DL has the ability to understand the

features and to take into account the significant and to ignore the insignificant ones.

Selecting or transforming the dataset’s features is named feature engineering. There are three
types of feature engineering practices (Geron, 2019, p. 27). Firstly, one may select specific
features from a dataset (feature selection). Secondly, one may produce or combine features
by exploiting the already gathered features of a dataset (feature extraction) and lastly

sometimes it is needed to search for new data and find new features.

Text consists of letters, words, and punctuation, so one has to decide what should be kept or
not from the dataset and what can be further exploited. There are different
techniques/metrics which may allow the selection of the words that will be used in the
creation of the vector and in the training and implementation of the Machine Learning model,

such as “tf-idf”, “chi square” and “devmax.DF”.

Tf.idf

The metric Term Frequency-Inverse Document Frequency (tf-idf, Equation 5) is used to
highlight the importance of a term within a document/corpus (Vajjala, Majumder, Gupta, &

Surana, 2020, pp. 90-92).
(tf-idf)y = tf xidf (5)
where tf (Equation 6) is the term frequency of the term k:

. Total sum of occurrences of term k in document
k =

(6)

Total sum of terms in document

and idf (Equation 7) the inverse document frequency of term k:
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] Total sum of Documents in corpus
=lo
4 Sum of documents with term k in them

idfy (7)

Chi square — x?

Chi square (Equation 8) is another metric that is used for feature extraction in Text

Classification (Triantafyllou, Drivas, & Giannakopoulos, 2020, p. 8).
c
0; — E;)?
o= Z i —E) (8)
. E;
i=1

where 0; = DF; and E; = D—CF (DF is the sum of the instances that contain the term Fin class i
and c is the sum of the classes).
Devmax.DF

Devmax-df (Equation 9) is a newly introduced feature extraction metric that can be used in

Text Classification (Triantafyllou, Drivas, & Giannakopoulos, 2020, pp. 8-9).

(9)

Devmax.df = ma;c * log (DF)

DF

D'i, c is equal with the sum of the classes, DF is the sum of the
1A

Where max = maximumj_,

instances that contain the term F in class i and D the sum of documents for class i.

Data into Vector

After calculating the metrics, one may extract n-features with the highest score. For each
metric there will be a differentiation in the features that were extracted (Table 2). One can

experiment on how each metric performs and so decide which fits best to his ML model.

Table 2: Lexicon example

Tf-idf X2 Dev.max
- Word?2 Word?2
Word2 Word5 Word12
Word3 Word8 Word13
Word4 - i
Wrod5 Word9 Word5
worde | (iGN | WO |
Word7 Word11 Word4
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Notice that in the above arbitrary table, some words are unique in their column, and some
are common in two or three columns. Different feature extraction metrics produce different

results.

The features which are extracted will be further used to transform each text/document into
a vector as described in the following tables. When creating a vector, the user may choose
different approaches of calculating the instances of a word within a text. Here two approaches
are presented. In the first approach, each word that is found within the text is marked with
the number one (1), even if this word can be found more than once in the text (Table 3). This
method is called one-hot encoding (Vajjala, Majumder, Gupta, & Surana, 2020, p. 85).
Alternatively, the vector may depict all the words’ occurrences in the text (Lane, Howard, &
Hapke, 2019, pp. 71-76). In that case the vector will be conveying the information about the
occurrences into the model, which is actually a bare metric of the document’s term frequency

(Table 4).

Table 3: One-hot encoding example

Word1 | Word2 | Word3 | Word4 | Word5 | Word6 | Word7 | Word8 | Word9
Word1 1 0 0 0 0 0 0 0 0
Word?2 0 1 0 0 0 0 0 0 0
Word3 0 0 1 0 0 0 0 0 0
Word4 0 0 0 1 0 0 0 0 0

Table 4: Vector with Bag of Words

Wordl | Word2 | Word3 | Word4 | Word5 | Word6 | Word7 | Word8 | Word9
Textl 10 0 0 5 0 0 3 1 15
Text2 0 0 2 4 0 0 4 0 0
Text3 3 2 10 5 0 0 0 0 0
Textd 0 0 0 0 3 1 3 0 0

Once the text is transformed into numeric vectors, the data shall be trained with one or more
Machine Learning models. The models may be further used in new documents for evaluation.
The one with the best evaluation scores shall be considered as the “winner” of the text
classification task. Of course, it is always suggested to re-arrange the models’ parameters, so
to tackle overfitting or underfitting. Also, one has to slightly change some of the parameters

so to optimize the models’ prediction capabilities.
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Chapter 3. Methodology

Implementing Machine Learning from theory into practice is not always easy. One may find
proprietary or open-source tools that provide user friendly solutions (North, 2012).
Alternately, it is possible to create “hand-crafted” algorithms and/or to exploit powerful
programming language libraries. On both occasions, to reach safe conclusions, one has to

experiment with different parameters (Langey, 1988).
In this paragraph, the methodology will be analyzed and specifically:

e the dataset thatis used

e theresources (hardware and software)

e the preprocessing procedure

e the feature engineering practices

e the configurations of Classical Machine Learning and Deep Learning models’

parameters

Dataset

The same dataset that was used in paper “How to Utilize my App Reviews? A Novel Topics
Extraction Machine Learning Schema for Strategic Business Purposes” (Triantafyllou, Drivas, &
Giannakopoulos, 2020) is used?. This dataset consists of reviews of mobile applications. It
contains 7,754 reviews, which are categorized between twelve (12) classes. A lot of reviews
do not belong to any class (3,713 belong to at least one class — 4,040 do not belong to any
class). Nevertheless, they were kept within the dataset as was done in the above-mentioned
paper, so to ease comparison with it. The distribution of the classes is shown in Figure 11. The

mean per category is equal to 492.25 and you can notice that the dataset in imbalanced.

3 Retrieved from:

https://github.com/panichella/UserReviewReference-Replication-Package/tree/URR-v1.0
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Figure 11: Class distribution of dataset used in ML and DL

The reviews may belong to more than one class; this means that the Classification Task is

characterized as “Multi-label Classification”.

Software Resources

To perform all the necessary tasks related to the Classification assignment, the Python*
programming language (version 3.9) is used via JetBrains’s Free Community user IDE

PyCharm?®, alongside with useful programming libraries such as:

e Google’s TensorFlow® (Abadi, Agarwal, Barham, & others, 2016) and TensorFlow’s
Keras’” API (Chollet & others, 2015), which exploit’s computer GPU and allows
together with Nvidia’s CUDA toolkit and its libraries to run faster Deep Learning

models up to five times.

4 https://www.python.org/
® https://www.jetbrains.com/pycharm/
6 https://www.tensorflow.org/learn

" https://keras.io/
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e Scikit-learn® (sklearn) which is a powerful library (Buitinck & others, 2013) with a
wide range of tools for classical Machine Learning and Deep Learning tasks
(Pedregosa & others, 2011).

e NumPy® which is a powerful framework for scientific computing in Python (Harris,
Millman, van der Walt, & others, 2020).

e NLTK? (Natural Language Toolkit), which is widely used for Natural Language

Processing (NLP) (Bird, Steven, Loper, & Klein, 2009).

Hardware Resources

The programme was initially run (results of paragraph 4.1) with an Asus laptop with the

following characteristics:

e CPU: Intel Core i7-7700HQ CPU @ 2.80 Ghz
e RAM: 16 GB

e GPU: Nvidia GeForce GTX 1050, 2781 MB

e Windows 10, 64-bit

Cloud Resources

Results of paragraph 4.2 were produced by running the Python script in Google’s Colab cloud
service (Bisong, 2019), where one can upload and run Python scripts offline and save files,
such as results, directly into user’s Google Drive. The cloud service was chosen to boost
execution speed and to exploit higher amounts of GPU memory, when computer’s memory is
not enough to run the Machine Learning scripts. Moreover, via Colab, one may use TPU!

processors, which are designed specifically for Deep Learning.

Pipeline

The flow of the procedure is drafted and implemented in such a way that it can be run one-off

and within loops (each loop has different parameters). Every step is connected with the next

8 https://scikit-learn.org/stable/

% https://numpy.org/
10 https://www.nltk.org/

11 Tensor Processing Units
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one. This procedure saved a lot of time in running the dataset with different parameters. The

pipeline can be described in a very abstract way as shown in Figure 12.

Dataset pre-processing c:ae::l;irc?n

K
ﬁ 3Lexicons | [ LexiconLength) [ ML models \\

tf.idf 100 k-NN
chi square 200 Naive Bayes
devmax.tf 300 SVM
\. J
400 Random Forest
\. J
Linear Regression

Deep Learning
\ & Jj

Figure 12: Flow-chart of the Text Classification training pipeline

The script performs three big loops; one through the 3 Lexicons, one through the Lexicons’
length parameters and one through the ML models. Each repetition runs seventy-two times
(3*4*6=72) and vyields 72 results. Each result reflects the models’ performance with

parameters of Lexicon, Lexicon length and ML model.

Each one-off run has stable parameters of pre-processing methods, feature selection methods

and Machine Learning Parameters.

Pre-processing

The dataset was pre-processed with the use of tokenization, lowercasing, and stemming
methods. Also, stop words were removed. The pre-processing procedure was achieved via the
NLTK library for Python programming language. More specifically, tokenization was
performed by using Regular Expression method of NLTK (RegexpTokenizer), with the following

regex pattern:
\w+(?:-\w+)*
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The above-mentioned pattern, groups all consecutive characters (letters and numbers), even

" u

if they are connected with a hyphen
The method PorterStemmer of the NLTK programming library is used to stem words.

The lemmatization method was not used, so to distinguish words such as “good”, “better” and

“best”. Lemmatization would transform the words “best” and “better” into “good”.

The above procedure produced a list of words. These words were further grouped based on
their similarity. More specifically, words with length of more than 4 characters were grouped
together, provided that 2/3 of their average length -average(length(word1), length(word2))-

is identical.

In the Appendix you may find the code in the Python programming language. More
specifically:

e |n Appendix — C you may find the code that understands if two words are similar.

e In Appendix — D you may find the code that is used for data preprocessing.

e In Appendix - E you may find the code that creates a Lexicon with all corpus words.

Feature selection

After pre-processing the reviews, a list of words (and group of words) is created much alike a
Lexicon. Each word has a different distribution among the whole corpus of the reviews, within
each review and amongst the classes. The unique words extracted from the dataset by
implementing the pre-processing steps count 6,963 (total words: 100,820 -after using
stemming-). After grouping the words, a list of 5,559 records is created (unique and grouped
words). So, eventually 6,963-5,559 = 1,404 words were grouped into different groups. This
number may vary with other parameters during the pre-processing procedure. Different pre-

processing procedure parameters will yield different results most likely.

In this dissertation the metrics of tf.idf, x> and devmax.DF are used to select the features with
the n-highest score, and specifically the first 100, 200, 300 and 400 words with the highest

score of each of the three Lexicons.

Though in DL, it is argued that feature selection is not needed (Vajjala, Majumder, Gupta, &
Surana, 2020, p. 60), the selected features will be further used also in DL. This will allow

comparison by using the same pre-processing and modeling parameters.
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Data into ML models (Vectorizing)

Once the Lexicons are created, the reviews are transformed into vectors (lists of numbers), by

implementing the Bag of Words method, by not using frequency counter, but 0 and 1 instead.

The algorithm searches into each review for a word that is within the Lexicon. If found, it
appends the value one (1) in the corresponding position of the word in the Lexicon. By default,
all vectors’ values are given the zero value (0). In the end, each review corresponds to a
numeric vector with zero-one values (0-1). This vector is the input value for the Machine

Learning and Deep Learning modes.

ML and DL models’ parameters

Initially, the dataset is introduced into the ML and DL models with the use of Scikit-Learn

library. The following parameters were set for each of the Machine Learning Models:
¢ Naive Bayes: the multinominal Naive Bayes was chosen
e  k-NN: the parameter of k=1 was chosen
e SVM: kernel was set to “linear”, C12=1, degree=3
e Random Forest: the depth was set equal to 15
e Logistic Regression: no parameters

e Deep Learning: The “relu” activation function was chosen; the “adam” optimizer was
chosen; a batch size of thirty-three (33) was set and a hidden layer with one hundred
(100) hidden units was incorporated; early stopping was activated that stops training

when validation score is not improving.

No fine tuning is attempted at this stage.

In Appendix — F and Appendix — G you may find some part of the code that produced the

results. The code was created with the Python programming.

The results are demonstrated in paragraph 4.1.

12 Cis the margin violation hyperparameter. For more details consult chapter 2.1.1
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Testing Different DL architectures

After assessing the results (weighted F-score), different DL architectures will be tested with
DL NN models with the use of TensorFlow and Keras. TensorFlow is used for Deep Learning
because its speed is faster compared to the sklearn library; TensorFlow can exploit computer’s
GPU and with the use of the right software drivers and programming libraries, DL models’

fitting speed may be up to x5 times faster.

Finding the optimum combination of Deep Learning Neural Network’s hyperparameters, such
as the number of hidden layers, the number of neurons per hidden layer and the batch size
can be tough. Heaton (2008, pp. 128-129) provided some “rules” on that. Nevertheless, it is
argued that there are no rules carved in stone on the approach; one may follow different paths
until an optimum architecture is found (Geron, 2019, pp. 320-327). In this dissertation the

following approaches will be implemented:

e Pyramid approach, where the number of the hidden units per layer decreases in
each consecutive hidden layer (Geron, 2019, p. 325). For the purpose of
simplification, the pyramid approach will be symbolized as “>”

e Reverse pyramid approach, where the number of the hidden units per layer increase
in each consecutive hidden layer. For the purpose of simplification, the reverse
pyramid approach will be symbolized as “<”

e A combination of pyramid and reverse pyramid architectures. More specifically, four
different combinations will be tested:

o A combination of a pyramid and reverse pyramid approach, which will be
symbolized as “><”

o A combination of reverse pyramid and pyramid approach, which will be
symbolized as “<>"

o Two consecutive pyramid architectures, symbolized “>>"

o Two consecutive reverse pyramid architectures, symbolized “<<”

Linear, where the number of hidden units is stable for each hidden layer (Geron,

2019, p. 325). This architecture will be symbolized as “| | |”

One hidden layer approach (Geron, 2019, p. 323), with symbol “|”

All of these approaches will be tested by using the “Sequential” method of the Keras APl and
a “Dense connection” between all hidden layers. The input layer’s size will be equal to the
best input layer size used in Classical ML tests. Also, on every test and on every hidden layer

the “selu” activation function will be used and a dropout layer in between of all hidden layers
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will be added, with 30% chance of activating it. Moreover, in all architectures the “sigmoid”
activation function will be added in the end, which will be considered as the output layer. The
model will be compiled with the “Adam” optimizer and the “binary cross-entropy” loss
function. Lastly, the model will be tested by using a validation split of 10%, a batch size of 32,

shuffle, early stopping®?, and by integrating the dataset’s class weights.

Because of using as input, a one-hot encoding input layer that was created with feature
selection metrics, with a specific size, which does not represent sequence, DL NN cannot be
implemented with alternative connection practices, such as LSTM**. LSTM needs data that is
in sequence, thus much more data and time to be trained and in general a different approach

in data preparation. (Vajjala, Majumder, Gupta, & Surana, 2020, p. 144).

The feature selection metric that will perform better during the experiments with the Classical

ML models will be further used in Deep Learning.
Pyramid >

More specifically, in the pyramid approach, a minimum of 2 and a maximum of 15 hidden
layers will be tested. So, eventually the model with the pyramid architecture will be tested 14
times (e.g., testl: 2 layers, test2: 3 layers, test3: 4 layers, etc.); for each consecutive layer, the
number of hidden units will be reduced by 5%. In Figure 13 you may find an example of this

architecture.

13 Maximum epochs are equal to 100 and patience equal to 4. The validation loss will be

monitored to refer if the model should not be further trained.

14 Long-Short Term Memory
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Figure 13: Example of pyramid architecture in a DL NN
Reverse pyramid <
In the reverse pyramid approach, a minimum of 2 and a maximum of 15 layers will be tested.
So, eventually the model with the reverse pyramid architecture will be tested 14 times (e.g.,

testl: 2 layers, test2: 3 layers, test3: 4 layers, etc.); for each consecutive layer, the number of

hidden units will be increased by 5%. In Figure 14 you may see an example of this architecture.
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Input Layer Hidden layers Output layer

O
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Figure 14: Example of reverse pyramid architecture in a DL NN

QOO

Combination of pyramid and reverse pyramid approach >< <> >> <<

Combining the pyramid and the reverse pyramid approach can result into many different layer
architectures. Nevertheless, one could distinguish 4 main approaches. The first one starts with
the pyramid approach and continues with the reverse pyramid architecture (e.g., Figure 15).
The second one starts with the reverse pyramid approach, and it continues with the pyramid
approach. The third one consists of two consecutive pyramid architectures and the last one
of two consecutive reverse pyramid architectures. A total length of hidden layers amounting
from 4 to 30 with a step of 2 will be tested (2 to 15, for each pyramid architecture). In each
layer the increase/decrease of the hidden units will be at 5% of the previous layer’s hidden

units.
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Figure 15: Example of combination of pyramid architecture in DL NN

Linear | | |

Among the tested architectures is also the “linear” one. In this approach, the number of the
hidden units will be the same along the length of the Neural Network (Figure 16). The result
of this approach has no major difference compared to the pyramid approach according to
Geron (Geron, 2019, p. 325) and sometimes it even performs better. A series of 2 to 15 layers
will be added with a stable number of hidden layers each time. The number of the hidden

layers will be stable during these tests and equal to 300 (as the length of the input data).

Input layer Hidden layers Output layer

OO0O00
OOO000C

OO0O00

Figure 16: Example of a "linear" architecture in DL NN
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One hidden layer approach |

Though a typical Neural Network consists of more than one hidden layer, one may start finding
the ideal architecture by creating a one hidden layer Neural Network of Deep Learning. In
some cases, the one hidden layer approach preforms very well (Geron, 2019, p. 323). For each

feature selection metric, the one hidden layer will be tested.

Further testing DL Hyperparameters

After performing the above mentioned tests of DL NN, the architectures with the best results,

will be further tested by implementing different hyperparameters, such as:

e Different number of hidden layers’ units (e.g. double, triple, quadruple etc. of the
size of the input layer)
e Different chances of dropout layer (from 10% chance to 90% chance)

n o« ” o«

o Different activation functions, namely “relu”, “selu”, “sigmoid”, “softplus”,

”n

“softsign”, “tanh”, “elu” and “exponentia

I”

, Which are callable via TensorFlow’s

Keras API.*

Last tests

Finally, further simple tests will be performed to compare them with the previous results and

to have a general view on their potential. More particularly:

e Assaid in page 27, it is argued that DL doesn’t need feature extraction, because DL
NN can recognize which features are important or not to the model. Thus, five tests
will be performed with all dataset’s grouped features, by using a simple DL NN

architecture that achieved the best F-score in previous tests with Deep Learning.

e Asimple CNN and a simple LSTM DL NN architecture will be tested, five times.

Final Remark

In Appendix —H You may find some piece of the code created with the Python programming
language that runs the DL models, namely a pyramid architecture-topology, with the Keras

programming library.

15 Advise https://keras.io/api/layers/activations/ for further details on these functions.
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Overview of Methodology

Given all the above, an overview of the methodology is depicted in Figure 17. You may notice
that the focus is more on the classical Machine learning and the Deep Learning models with
dense connections. Further analyzing all possible Deep Learning topologies would over-extend
the length of the dissertation. Thus, it was decided to keep this approach and to analyze more

in-depth the rest of the Deep Learning methods in a future work.

testing
different size
of neurons

testing classical ML

NON-SEQUENCE DATA & further testing best
(with feature selection) 3\ DL topology

festing different
dense DL topologies

NON-SEQUENCE DATA testing DL without
(no feature selection) feature selection

testing different
CNN DL topologies

SEQUENCIAL DATA
(with feature selechion)

testing different
LSTM DL topologies

Figure 17: Overview of methodology
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Chapter 4. Findings

As said in chapter 2, the Machine Learning models were initially trained and validated with
simple or default parameters, via the sklearn library by using the Python programming
language. Later, the dataset is tested with different NN Deep Learning models, with the use

of TensorFlow and the Keras API.

4.1 Testing classical ML and DL models

The findings are demonstrated per Classifier. The results of Precision, Recall and Fi-score are
the weighted results, which means that the distribution of the classes was taken into account
to calculate them.

In matrices from 5 to 10 you may find the results of the Naive Bayes, k-Nearest Neighbours,

Support Vector Machine, Random Forest, Logistic Regression and Deep Learning Classifiers.
As you can see in Table 5, the chi square (x?) metric “produces” the highest weighted Fi-score
(72,8%) compared to devmax.DF and tf.idf.

Table 5: Results of testing Naive Bayes with different feature selection metrics and different input
vector size (words)

metric Vector Size wPrecision wRecall | wFscore
x"2 100 83,2% 62,0% 70,3%
xA2 200 76,6% 69,9% 72,8%
xA2 300 73,6% 71,4% 72,2%
X2 400 67,0% 71,8% 69,0%
tf-idf 100 53,0% 30,9% 38,3%
tf-idf 200 66,1% 53,8% 59,1%
tf-idf 300 63,2% 60,7% 61,7%
tf-idf 400 61,5% 65,5% 63,1%
devmax 100 81,0% 64,8% 71,1%
devmax 200 70,4% 70,0% 69,6%
devmax 300 67,8% 72,6% 69,7%
devmax 400 66,1% 72,4% 68,7%
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In Table 6 you can notice that by using the Fi-score metric, devmax.DF outperformed chi
square and tf.idf. Nevertheless, it seems that the k-Nearest Neighbors model, with k=1 does

not perform as well as the Naive Bayes model.

Table 6: Results of testing kNN with different feature selection metrics and different input vector size

(words)

metric | Vector Size | wPrecision | wRecall | wFscore
x"2 100 54,8% 23,8% 32,8%
xA2 200 65,7% 18,8% 28,6%
xA2 300 71,0% 16,9% 26,3%
x"2 400 71,8% 16,1% 25,2%
tf-idf 100 30,8% 17,6% 21,9%
tf-idf 200 46,7% 17,7% 25,2%
tf-idf 300 53,4% 17,4% 25,5%
tf-idf 400 59,7% 16,3% 24,6%
devmax 100 57,6% 52,9% 52,5%
devmax 200 60,5% 40,2% 46,4%
devmax 300 77,0% 34,9% 47,6%
devmax 400 77,5% 31,4% 44,2%

In Table 7 you can notice that by using the Fi-score metric, chi square outperformed

devmax.DF and tf.idf.

Table 7: Results of testing SVM with different feature selection metrics and different input vector size

(words)
metric | Vector Size | wPrecision | wRecall | wFscore
X2 100 86,7% 69,9% 75,5%
X2 200 85,2% 79,5% 81,7%
xA2 300 74,4% 78,3% 76,0%
X2 400 69,7% 77,5% 73,1%
tf-idf 100 49,0% 33,9% 39,5%
tf-idf 200 71,2% 61,1% 64,7%
tf-idf 300 70,1% 66,2% 67,4%
tf-idf 400 64,9% 70,5% 67,1%
devmax 100 83,9% 75,6% 79,1%
devmax 200 80,9% 79,6% 79,9%
devmax 300 76,2% 80,1% 77,9%
devmax 400 72,9% 79,5% 75,9%
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In Table 8, it seems that devmax.DF outperformed the other metrics. Moreover, it is noticed

that this Random Forest model reached high precision scores.

Table 8: Results of testing Random Forest with different feature selection metrics and different input
vector size (words)

metric | Vector Size | wPrecision | wRecall | wFscore
X2 100 90,2% 63,3% 72,7%
x"2 200 91,9% 64,8% 75,2%
X2 300 93,9% 54,8% 67,9%
X2 400 94,2% 50,3% 64,1%
tf-idf 100 52,2% 30,5% 37,7%
tf-idf 200 83,9% 51,9% 62,2%
tf-idf 300 90,3% 47,4% 59,9%
tf-idf 400 92,8% 43,8% 57,4%
devmax 100 89,5% 70,8% 78,3%
devmax 200 91,9% 67,1% 76,8%
devmax 300 93,5% 59,2% 71,5%
devmax 400 94,5% 51,1% 65,0%

In Table 9, devmax.DF outperformed the other metrics. Moreover, it seems that Logistic
Regression reached high weighted F-scores, compared to the previous Machine Learning

models.

Table 9: Results of testing Logistic Regression with different feature selection metrics and different
input vector size (words)

metric | Vector Size | wPrecision | wRecall | wFscore
xA2 100 85,8% 67,9% 74,5%
xA2 200 87,3% 76,2% 80,9%
X2 300 86,7% 76,9% 81,3%
x"2 400 87,0% 76,6% 81,2%
tf-idf 100 54,5% 33,6% 40,1%
tf-idf 200 74,7% 58,4% 64,8%
tf-idf 300 80,2% 65,0% 71,2%
tf-idf 400 83,1% 70,6% 76,0%
devmax 100 87,2% 73,2% 79,1%
devmax 200 87,4% 76,9% 81,6%
devmax 300 87,4% 78,6% 82,6%
devmax 400 87,8% 78,3% 82,5%
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Lastly, in Table 10 you can notice that devmax.DF reached better results (regarding the
weighted Fi-score metric), compared to the other metrics. It is reminded, that this Deep
Learning model is shallow and there was no effort to make it more complex at this stage. Later,
a Deep Learning model will be trained and tested again, with different and more complex

hyperparameters.

Table 10: Results of testing Deep Learning (simple layer) with different feature selection metrics and
different input vector size (words)

metric Vector Size | wPrecision | wRecall | wFscore
xA2 100 84,5% 67,2% 73,5%
x"2 200 85,3% 76,1% 80,1%
xA2 300 85,3% 75,1% 79,5%
XA2 400 84,5% 75,2% | 79,3%
tf-idf 100 54,8% 33,4% 39,3%
tf-idf 200 73,4% 56,9% 63,1%
tf-idf 300 77,0% 61,6% 67,5%
tf-idf 400 79,8% 67,9% 72,8%
devmax 100 85,4% 72,5% 78,0%
devmax 200 84,6% 76,0% 79,9%
devmax 300 84,1% 78,7% 81,1%
devmax 400 84,5% 76,9% 80,2%

In Table 11 you may find an overview of the highest weighted F-score per classifier from Table

5to Table 10.

Table 11: Best weighted F-scores of running Classical ML models and DL via the sci-kit Python Library
with different parameters

Classifier | metric | Vector Size | Precision | Recall | F-score
NB xXA2 200 76,6% | 69,9% | 72,8%
k-NN devmax 100 57,6% 52,9% | 52,5%
SVM x"2 200 85,2% | 79,5% | 81,7%
RF devmax 100 89,5% | 70,8% | 78,3%

LR devmax 300 87,4% | 78,6% | 82,6%

DL devmax 300 84,1% | 78,7% | 81,1%

Conclusions:

e The highest weighted F;-score (82,6%) is with the devmax.DF feature selection metric,
with a Logistic Regression ML model and a Lexicon of 300 terms.

e The metric Devmax.DF achieved higher F-score with kNN, RF, LR, and DL models,
whereas the x? metric achieved higher F-score with NB and SVM.

e Performance in DL (Table 10) between devmax.DF and x? is relatively close (1%).
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4.2 Testing different DL NN architectures

In this paragraph you may find the results of running different DL NN architectures. Only the

feature selection metrics x? and devmax.DF are further tested because they performed better

than tf.idf according to the results of paragraph 4.1. Moreover, it seems that x* and devmax.DF

had a close match (Table 10 & Table 11). Thus, it is reasonable to use them both in the initial

stage of the further tests.

Itis reminded that:

A Sequential model of Keras API is used with Dense connection between the hidden
layers.

The “Selu” activation function is used.

A dropout layer is added between all hidden layers, with a dropout chance of 30%.
The input layer’s length is equal to 300, because this input layer length performed
better compared to other lengths in the initial test of DL (Table 10).

The output layer uses the “sigmoid” activation function.

The model is compiled with the “Adam” optimizer (learning rate =0.0001) and the
“binary crossentropy” loss function.

Early stopping is activated, which prevents further training when cross validation loss
is not improving; a batch size of 32 was used; shuffle was enabled (which

automatically shuffles the data with each training cross validation).

The architectures to be tested are split into 9 categories:

1.
2
3
4
5.
6
7
8

“Pyramid approach” >

“Reverse pyramid approach” <

Combination of “pyramid and reverse pyramid approach” ><
Combination of “reverse pyramid and pyramid approach” <>
Combination of “two consecutive pyramid approaches” >>
Combination of “two consecutive reverse pyramid approaches” <<
“Linear approach” |||

“One-layer approach” |
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Chi square (x?)
After running 99 times different DL architectures, you may find in Table 12 the best F-scores

for each DL architecture that was tested. You can find the whole matrix in the Appendix - A.

Table 12: Best F-scores per DL architecture by using the x? feature extraction metric

Architecture Hidden layers | wPrecision | wRecall | wFscore

reverse pyramid < 2 85,9% 80,9% 82,2%
pyramid > 2 85,9% 80,9% 82,2%
combination of pyramids >< 4 86,0% 79,3% 80,9%
combination of pyramids <> 4 85,9% 79,6% 81,2%
combination of pyramids >> 4 86,4% 79,6% 81,3%
combination of pyramids << 4 86,2% 80,0% 81,5%
linear metric | | | 3 86,1% 80,7% 82,1%

one layer approach metric | 1 86,0% 81,9% 82,9%

Devmax.DF

After running 99 times different DL architectures, you may find in Table 13 the best F-scores

for each DL architecture that was tested. You can find the whole matrix in the Appendix - A.

Table 13: Best F-scores per DL architecture by using devmax.DF feature extraction metric

Architecture Hidden layers | wPrecision | wRecall | wFscore
pyramid > 2 85,7% 84,0% 84,2%
85,6% 84,0% 84,2%
86,1% 82,6% 83,3%
85,9% 82,9% 83,6%
85,5% 82,8% 83,2%
85,7% 83,4% 83,8%
86,1% 83,9% 84,2%
86,2% 84,6% 84,9%

reverse pyramid <
combination of pyramids ><
combination of pyramids <>
combination of pyramids >>
combination of pyramids <<
linear metric | | |
one layer approach metric |

RIWis PPN

In Figure 18 you can see the weighted F-scores of chi square and devmax.DF as shown in
Tables 12 and 13. You can notice in Figure 18 that devmax.DF outperformed chi square.
Moreover, in Figure 19 there is a 3D demonstration of the weighted F-score results as shown

in Tables 12 and 13.
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Figure 18: Best F-scores per DL architecture by using chi square and devmax.DF feature extraction
metric
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Figure 19: 3D demonstration of best F-scores per DL architecture by using chi square and devmax.DF
feature extraction metric

40




Conclusions:

e The one-layer architecture performed better than the other architectures (Figure
17).

e The metric Devmax.DF performed better than x? (Figure 17).

e DL architectures with fewer hidden layers performed better than DL architectures

with more hidden layers.
Remark:

Since the feature extraction metric devmax.DF performed better than the x? metric, hereafter

only the devmax.DF metric will be used for further testing.

Further testing the one-layer approach

In Table 13, it is shown that a DL NN with only one hidden layer performed the best F-score.
To further examine the capabilities of the one-layer approach, it will be tested with different
volumes of units (of the one hidden layer). Particularly, the tests will be performed by
increasing in each test the hidden layer’s units by 2, 3, 4, ..., and up to 200 times of the length
of the input value (=300). In Figure 20 you can see an overview of the results, while in the

Appendix — B you can find the whole dataset.
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Figure 20: Weighted F-scores, by using only one hidden layer, and by increasing the hidden layer’s
units with a multiplier
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Conclusions:

e The weighted F-scores span between 84.11% and 85.00%.

e Though the range between maximum and minimum weighted F-score is insignificant,
the top weighted 10 F-scores were achieved with a smaller multiplier than a higher
one.

e The highest weighted F-score is achieved with a multiplier of 9, which resulted a

weighted F-score of 85%.

Further testing the pyramid approaches and the linear approach

In Table 13, you can notice that the second best F-score was achieved with the pyramid,
reverse pyramid, and linear architecture (all of them reached a weighed 84.2% F-score). A
further analysis of the data of the table in the Appendix - A, shows that the reverse pyramid
and the linear architecture is more persistence to F-score drop while the number of the hidden

layers increases (Figure 21).
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X
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weighted F-score

65,0%
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< 84,2%/84,0% 83,7% 82,7% 82,5%/81,1% 81,7% 78,4% 78,6% 79,2% 76,2% 72,0% 70,8% 70,6%

|1 84,1% 84,2% 83,7% 82,8% 82,2% 81,3% 80,6% 79,9% 77,4% 74,2% 71,3% 71,1% 68,9% 68,7%
Number of Hidden Layers

Figure 21: Weighted F-scores of 3 NN DL architectures, by increasing the number of the hidden layers,
and by using the devmax.DF feature selection metric
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Given the above, the pyramid, reverse pyramid and linear approach will be further tested. All

test were performed with a two-hidden layer NN DL model. More particularly:

e The pyramid architecture is tested with different sizes of the first hidden layer’s units.

Particularly, the first layer will be multiplied by 2, 3, 4, ..., 10 times more than the size

of the input layer’s size. The second layer’s units will remain equal to the input layer’s

size.

e Thereverse pyramid is tested by increasing the second hidden layer’s units, by 2, 3, 4,

..., 10 times. The first hidden layer’s units will remain equal to the input layer’s size.

e The linear approach architecture is tested by increasing all the hidden layers’ units by

2, 3,4, ..., 10 times more than the size of the first hidden layer’s units.

In Figure 22 you can see the results.
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4 5 6 7 8
84,7%  84,6%  84,7%  84,1%  84,2%
83,9%  84,0%  83,8% 84,0% 84,1%
84,2%  84,1%  84,0% @ 84,0% | 83,8%

Multiplier of input layer's size

9 10
84,0%  84,5%
83,8%  84,0%
84,0%  84,0%

Figure 22: Weighted F-scores of the pyramid, reverse pyramid, and linear architectures with different

sizes of hidden units, by using the devmax.DF feature selection metric
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Conclusions:

e It seems that there is no tendency that can lead to higher weighted F-scores.

e For multipliers 2, 3 and 4, the weighted F-scores are very close, with all DL NN
architectures.

e Performance of reverse pyramid “<”, is more stable while the multiplier increases,
compared to the other architectures, which perform worse while the multiplier
increases.

e The one-layer architecture performed better (85.00% weighted F-score) than the

pyramid, reverse pyramid, and linear architecture.
Remark:

Since the one-hidden layer architecture performed better, hereafter only this architecture will

be further tested.

Dropout & multiplier with one-hidden layer DL NN

Further tests were performed with the one-hidden layer architecture. Particularly, this
schema was tested with different hidden units’ size (multiplied by 1, 2, 3, ..., 50 of the input

size) and different dropout chance (from 10% to 90%) of the hidden layer’s units (Table 14).
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Table 14: Weighted F-score performance of a one-hidden layer DL NN, testing it with different hidden
units’ size and different dropout chance

Dropout Chance

10% 20% 30% 40% 50% 60% 70% 80% 90%

1 | 84,7% | 85,0% | 84,7% | 84,6% | 84,7% 84,5% 84,1% | 83,2% 76,1%

2 | 84,7% | 85,0% | 84,8% | 84,8% | 84,8% 84,7% 84,7% | 84,2% 82,8%

3 | 850% | 84,8% | 84,8% | 84,9% | 84,7% | 85,1% | 84,8% | 84,6% 83,8%

4 | 84,8% | 84,9% | 84,9% | 84,9% | 84,7% 85,0% 85,0% | 84,6% 84,4%

5 | 84,7% | 84,8% | 84,8% | 84,9% | 85,0% 84,9% 85,0% | 84,9% 84,3%

6 | 84,9% | 84,9% | 84,9% | 84,9% | 85,0% 84,8% 84,8% | 84,9% 84,6%

7 | 84,8% | 84,8% | 84,9% | 84,9% | 85,0% 84,9% 85,0% | 85,0% 84,7%

8 | 84,8% | 84,8% | 85,0% | 850% | 85,0% 85,0% 84,8% | 84,8% 84,6%

9 | 84,8% | 84,9% | 850% | 84,9% | 84,8% 84,8% 84,8% | 84,9% 84,8%
10 | 84,9% | 84,9% | 85,0% | 85,0% | 84,9% 84,9% 84,9% | 85,0% 84,8%
11 | 84,8% | 85,0% | 84,9% | 84,9% | 84,8% 84,9% 84,9% | 85,0% 84,7%
12 | 84,8% | 84,9% | 84,9% | 84,9% | 84,9% 84,9% 84,9% | 85,0% 84,9%
13 | 84,9% | 84,9% | 84,8% | 84,9% | 84,8% 85,0% 84,9% | 85,1% 84,8%
14 | 84,8% | 84,8% | 84,9% | 84,8% | 84,9% 84,9% 85,0% | 84,9% 84,9%
15 | 84,8% | 84,9% | 84,8% | 84,8% | 84,8% 85,0% 84,9% | 85,0% 85,0%
16 | 84,9% | 84,8% | 84,8% | 84,8% | 85,0% 85,1% 85,0% | 85,0% 84,8%
17 | 84,8% | 84,8% | 84,8% | 84,8% | 84,9% 84,9% 85,1% | 84,9% 84,9%
18 | 84,8% | 84,9% | 84,8% | 84,9% | 84,9% 85,0% 84,8% | 84,9% 84,7%
19 | 84,8% | 84,9% | 84,8% | 84,9% | 85,0% 84,9% 84,9% | 85,0% 84,9%
20 | 84,8% | 84,8% | 84,9% | 84,8% | 84,8% 85,0% 85,0% | 84,9% 84,9%
21 | 84,8% | 84,8% | 84,8% | 84,9% | 85,0% 84,8% 84,9% | 85,0% 84,9%
§ 22 | 84,6% | 84,8% | 84,9% | 84,8% | 84,9% 84,9% 84,9% | 85,1% 85,0%
q; 23 | 84,9% | 84,9% | 84,9% | 85,0% | 84,8% 84,9% 85,0% | 84,7% 85,0%
2 | 24| 850% | 84,7% | 84,8% | 84,8% | 84,8% 84,8% 84,9% | 84,9% 84,9%
§ 25 | 84,9% | 84,7% | 84,7% | 85,0% | 84,9% 85,0% 85,0% | 84,8% 84,9%
“ | 26 | 84,8% | 84,8% | 84,8% | 84,9% | 84,8% 85,1% 84,9% | 84,9% 85,0%
B | 27 | 84,9% | 84,8% | 84,9% | 84,8% | 84,8% 85,0% 84,9% | 85,0% 84,9%
S | 28 | 84,8% | 84,7% | 84,7% | 85,0% | 84,9% 84,8% 84,9% | 85,0% 84,9%
g 29 | 84,8% | 84,8% | 84,9% | 84,8% | 84,7% 84,8% 85,0% | 84,9% 85,0%
30 | 84,7% | 84,8% | 84,7% | 84,9% | 84,8% 84,8% 84,9% | 85,0% 85,1%
31 | 84,7% | 84,9% | 84,8% | 84,7% | 84,9% 84,9% 85,0% | 85,0% 85,0%
32 | 84,7% | 84,8% | 84,9% | 84,8% | 84,8% 84,8% 84,9% | 84,8% 85,1%
33 | 84,7% | 84,9% | 84,8% | 84,8% | 84,8% 84,9% 84,9% | 85,0% 85,1%
34 | 84,6% | 84,7% | 84,9% | 84,7% | 84,8% 84,9% 85,0% | 84,8% 85,0%
35 | 84,7% | 84,7% | 84,7% | 84,7% | 84,8% 85,0% 85,0% | 84,9% 85,0%
36 | 84,5% | 84,8% | 84,7% | 84,9% | 84,7% 84,8% 85,0% | 84,8% 85,0%
37 | 84,7% | 84,9% | 84,6% | 84,8% | 84,9% 84,8% 85,0% | 85,1% 84,9%
38 | 84,6% | 84,9% | 84,6% | 84,8% | 84,7% 84,7% 84,9% | 85,0% 85,0%
39 | 84,8% | 84,7% | 84,9% | 84,8% | 84,9% 84,9% 84,9% | 84,8% 85,0%
40 | 84,6% | 84,8% | 84,8% | 84,8% | 84,7% 84,8% 84,9% | 85,0% 84,9%
41 | 84,6% | 84,7% | 84,8% | 84,9% | 84,8% 84,7% 84,9% | 84,9% 85,1%
42 | 84,7% | 84,5% | 84,6% | 84,9% | 84,9% 84,8% 85,0% | 84,9% 85,1%
43 | 84,7% | 84,7% | 84,8% | 84,8% | 84,8% 84,8% 85,0% | 85,0% 85,1%
44 | 84,6% | 84,7% | 84,8% | 84,7% | 84,8% 84,7% 85,0% | 84,9% 85,1%
45 | 84,6% | 84,5% | 84,8% | 84,9% | 84,8% 84,9% 84,8% | 85,0% | 85,2%
46 | 84,8% | 84,6% | 84,6% | 84,8% | 84,9% 84,9% 84,9% | 84,9% 85,0%
47 | 84,7% | 84,8% | 84,6% | 84,8% | 84,9% 84,7% 84,9% | 85,0% 85,1%
48 | 84,6% | 84,4% | 84,9% | 84,8% | 84,7% 84,9% 84,8% | 85,1% 85,0%
49 | 84,7% | 84,5% | 84,8% | 84,6% | 85,0% 84,8% 84,8% | 85,0% 85,1%
50 | 84,5% | 84,7% | 84,5% | 84,5% | 84,8% 84,6% 84,7% | 84,6% 84,6%
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Conclusions:

e The average weighted F-score of these tests is equal to 84.8%, spanning in a range
between 76.1% and 85.2%.
e The highest weighted F-score was achieved with a hidden unit’s length equal to the

input layers size multiplied by 45 and a dropout chance of 90%.
Remarks:

e Though, the best weighted F-score was achieved with a 90% dropout chance and
hidden units’ size equal to the input layer size multiplied by 45, these parameters
won’t be used further. The 90% dropout chance in too high and the X45 multiplier will
increase computational needs more computational power.

e Alternatively, hereafter a DL NN of one-hidden layer and hidden units’ size equal to
the input layer size multiplied by 3 and a dropout layer with 60% will be used. This

schema performed relatively good as you can notice in Table 14.

Testing different Activation Functions

Furthermore, different activation functions were tested by using a one-hidden layer DL NN

with hidden units equal to 3X(300)* and a dropout layer of 60% chance. More specifically, the

” u ” u

available activation functions of Keras were used, namely “relu”, “selu”, “sigmoid”, “softplus”,

”n u

“softsign”, “tanh”, “elu” and “exponentia

III

. You can see the results in Table 15. It seems, that
“selu”, “softsign”, “tanh” and “elu” perform better than the other activation functions, for this

specific dataset/task.

Table 15: Performance of testing different activation functions with a one-hidden layer DL NN

afc:::/cat:::‘n wPrecision | wRecall | wFscore
relu 87,1% 82,4% 83,9%
selu 87,0% 83,6% 84,5%
sigmoid 87,2% 71,8% 75,6%
softplus 87,7% 74,0% 77,5%
softsign 86,5% 83,7% 84,4%
tanh 86,3% 83,8% 84,4%
elu 86,2% 84,0% 84,5%
exponential 87,3% 74,2% 77,4%

16 The input layer size is equal to 300.
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Further tests

Further tests were performed to give a more round view on different DL NN architectures and

methods, and to highlight their potential to the extend it is possible within this dissertation.

Firstly, five different simple tests with a simple DL NN of one-hidden layer and hidden units
equalto 1,2, 3, 4, 5X(length of input layer) and a dropout layer of 60% chance are performed
by using all dataset’s grouped features, which are 5,559 (Table 16). These tests are performed
because as said previously, it is argued that in DL one should not use feature selection,

because DL NN can recognize important and ignore unimportant features.

Secondly, five simple CNN DL architectures were tested with an Embedding®’ layer and a
ConvlD'® layer (Table 17). To create the Embedding layer, the dataset’s rows were
transformed into vectors, by using a Lexicon size equal to 300 (and by using devmax.DF). This
is the same Lexicon that was created and used in the previous tests. Each word of the sentence
is represented with the Lexicon’s index number. Those words from each sentence that were
not found in the Lexicon of the 300 words were ignored and were not put into the sentence’s
vector. After transforming each row of data into a vector, it is noted that the minimum
sentence length is 0, the maximum sentence length is equal to 51, the average 4,64 and the
standard deviation of the dataset is equal to 4,48. Having the above in mind the Embedding

layer’s parameters were set as:

e input_dim =300 (which corresponds to the Lexicon’s length that was used in

previous tests)
e output_dim =51 (which is equal to the maximum(Sentence length of dataset))
e input_length =51 (which is equal to the maximum(Sentence length of dataset))

Also, a CNN layer was added with parameters:
e Filter_Size = 300 (which corresponds to the Lexicon’s length that was used)
e Kernel_size = 4 (groups 4 vectors in each sentence. Actually, captures statistics of 4
consecutive words)

e The “relu” activation functions is used.

Finally, a GlobalMaxPool1D? layer is added.

17 https://keras.io/api/layers/core_layers/embedding/
18 https://keras.io/api/layers/convolution_layers/convolution1d/

19 https://keras.io/api/layers/pooling_layers/global_max_pooling1d/
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In Figure 23, you can find an example of the topology related to the CNN model. As you can
see, the input layer has a specific length (input length = 7). If there are less words in a review,
like in the example of Figure 21, the rest of the layer contains zero values. Further, each Input
layer of 1% Matrix is transformed into a 2-dimensional array via the Embedding layer (2™
Matrix). The new dimension is dependent on the “outpud_dim” parameter of the Embedding
layer. In the example the output_dim is set equal to 4. Thus, in this demonstrated example
the word “dont” became a four-length vector equal to [0.9, 0.22, 0.1, 0.11]. Similarly, the other
word became a four-length vector. The whole Review (1% Matrix) eventually became a 2-

dimensional array with dimensions 7 X 4 (where 7 = input_length and 4 = output_dim).

The 3" Matrix of the example is the CNN layer with parameters filter_size=128 and kernel=4.
The filter size as said above, is actually the layer’s output. The kernel defines the grouping of
consecutive data from the Embedding layer (2" Matrix). So, if kernel=4 then one can retrieve
4 groups of data (A, B, C, D). Group A is colored with a smooth blue color in the example (2™
Matrix). In each group, arbitrary weights and biases are applied via the CNN layer, and finally
the output of each group is put in the 3™ Matrix in the way it is depicted. The filter size is equal
to 128, so this procedure is repeated 128 times. Finally, the GlobalMaxPooling layer (4"
Matrix), filters each row of the CNN layer (3" Matrix) and outputs the maximum number of
each row. After this procedure one may add any other hidden layer, such as a Dense layer, or

even a second CNN layer right after the first CNN layer.

=

1st Matrix 2nd Matrix 3rd Matrix 4th Matrix
groups
ABCD
Embedding with output dim =4 1D Convolution (kernel-2)
Review |Input layer 1 2 3 4 A B C D Global Max pooling
i 5 -> 0.01 0.25 0.05 0.7 | 11]02]|06|012| 0.7 | -> 1 0.7
T dont 20 > 09 |022] 01 | o011 ]] | 2 2 > 2
£ like 300 > | 042 [ 082 008 [ 055 || | | | 3 | 3
5 this 187 -> | 098 0.2 047 | 007 || | | | X 4 > 4
5 | mobile a4 | 002 | 07 | 076 | 083 |11 e | 5
21 app 22 > [ 022 | 023 ] 024 | 05 L E .. >
0 -> 0 0 0 0 | 128 -> 128

further layers

Figure 23: Demonstration example of a CNN layer

Tests of CNN are performed by using different filter sizes, namely multiplies of the Lexicon’s
length and by keeping all other parameters stable. In Appendix — | you can find some of the

code that was used to create the CNN model.

Finally, five simple LSTM DL architectures were tested with Embedding layer and LSTM layer

(Table 18). The Embedding layer parameters are the same as those used in the CNN previously.

Furthermore, an LSTM layer is added with the following parameters:
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e Units =300
e Dropout=0.2
e Activation function = “tanh”

e Return_sequence = True

Tests of LSTM are performed by using different unit sizes, namely multiplies of the Lexicon’s

length and by keeping all other parameters stable.

Table 16: Weighted F-scores of testing a simple one hidden-Dense layer with all dataset’s vector size

(grouped features/words 5,559) and with hidden layer’s size multiplied by 1, 2, 3, 4, 5 times.

Multiplier wF-score
1 79,9%
2 80,0%
3 80,4%
4 80,1%
5 80,0%

Table 17: Weighted F-scores of testing a simple CNN layer, by changing the hidden layer’s “Filter size”
(layer’s output) with each test

Multiplier wF-score
1 83,5%
2 83,7%
3 83,8%
4 83,7%
5 83,5%

Table 18: Weighted F-scores of testing a simple LSTM layer, by changing the hidden layer’s “units”
(layer’s output) with each test

Multiplier wF-score
1 74,9%
2 77,4%
3 77,4%
4 78,1%
5 76,7%
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Remarks:
® Results of Table 16 show that using all dataset’s features can provide relatively good
results (around 80% weighted F-score), compared to the simple DL NN architecture
that was tested, which produced 81,1% weighted F-score (Table 11). Further research
with different hyperparameters and more hidden layers, may provide even better

results, thus, further research is needed to confirm that.

® Results of Table 17 show that a simple CNN schema provided good results (83,8%
weighted F-score). Further research with different hyperparameters and/or more

hidden layers, may lead to even better performance.

® Results of Table 18 show that a simple LSTM does not perform well. Further research
is needed with different hyperparameters and more hidden layers, to evaluate more

complex LSTM topology architectures, that may provide better results.

® The above-mentioned models (CNN, LSTM and models by using all dataset’s features)

will be further investigated in a future work study.
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Chapter 5. Conclusion - Further Discussion

Asingle-hidden layer Deep Learning Neural Network model reached a higher weighted F-score
(85,2%) than the weighted F-scores of the classical Machine Learning models, as shown in
Table 19. Also, the devmax.DF feature selection metric reached higher scores in most
Classification models. The DL classifier that achieved 85,2 % weighted F-score consists of a
one-hidden layer DL NN, with a volume of hidden units equal to the input layer’s size

multiplied by 45 and by using a dropout layer of 90% chance.

Table 19: Results of DL & Classical ML models for text classification

Classifier metric Vector Size | wPrecision | wRecall | wF-score

NB XA2 200 76,6% 69,9% 72,8%
k-NN Devmax.DF 100 57,6% 52,9% 52,5%
SVM x"2 200 85,2% 79,5% 81,7%

RF Devmax.DF 100 89,5% 70,8% 78,3%

LR Devmax.DF 300 87,4% 78,6% 82,6%

DL (simple)?®® | Devmax.DF 300 84,1% 78,7% 81,1%
DLA Devmax.DF 300 86,8% 84,7% 85,2%

Though a single-hidden layer of NN DL performed better on this specific dataset, the findings
cannot be further generalized. Further research is needed with numerous datasets, and
different types of datasets (binary, multiclass, multilabel, multioutput). The same applies for
the findings related to devmax.DF feature selection metric. Devmax.DF outperformed tf.idf

and x?, but further research is needed with more datasets to confirm devmax.DF’s potential.

Also, different tests were performed by using all dataset’s features with a simple DL NN, a
simple CNN model and a simple LSTM model (see pages 48-50). The results indicate that there
might be a potential for higher F-scores. Nevertheless, further tests are needed with more
complex topologies and different hyperparameters. These experiments will be performed in

a future work study.

Lastly, itis possible that the models have overfitted the dataset. Other techniques are needed,

such as “simple hold-out validation” method, to verify the models’ generalization capabilities.

20 Results from Table 11. This F-score was achieved with a simple DL NN.

21 The highest weighted F-score is shown in Table 14.
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Appendix

Appendix - A

In the table below, you can find the results of testing different DL architecture-topologies
(schema), with different number of hidden layers, and with the use of different feature

selection metrics, namely chi square and devmax.DF.

Hidden >> chi square 28 10,6% 34,6% 15,4%

Schema Metric Layers wPrecision wRecall wFscore > chi square 30 11,2% 33,0% 14,2%
N chi square 2 85.9% 30,9% 82.2% << ch? square 4 86,2% 80,0% 81,5%
> chi square 3 86,4% 80,4% 81,9% << chi square 6 86,0% 77,4% 79,4%
N chi square 4 86,0% 79,6% | 8L1% << chi square 8 84,3% 76,8% | 78,7%
S chi square 5 86,2% 78,2% 80,2% << ch! square 10 79,8% 71,7% 73,4%
N chi square 5 85,2% 76,4% 78,4% << ch! square 12 75,4% 70,2% 71,4%
S chi square 7 84,4% 74,9% 76.8% << ch! square 14 72,3% 67,9% 69,2%
N chi square 8 81,8% 73,2% 74,7% << ch! square 16 60,5% 57,7% 57,3%
S chi square ) 78.2% 70.7% 72.3% << ch! square 18 28,8% 25,4% 20,7%
> chi square 10 73,4% 68,2% 69,9% << chi square 20 22,6% 27,0% 20,1%
> chi square 11 71,5% 67,9% 69,2% << chi square 22 14,9% 30,1% 17,4%
> chi square ) 71,4% 65,4% | 67,3% << chi square 24 10,8% 30,6% | 14,3%
S chi square P 69.6% 62.2% 64.3% << ch! square 26 10,1% 32,3% 13,7%
> chi square 14 61,3% 56,3% 57,6% << chi square 28 10,2% 30,2% 13,1%
> chi square 15 33,4% 20,6% | 30,4% << chi square 30 9,0% 309% | 13,1%
< chi square 2 85,9% 80,9% 82,2% I ch! square 2 86,0% 80,7% 82,1%
< chi square 3 85,9% 80,4% | 8L8% L chi square 3 86,1% 807% | 82,1%
< chi square 4 86,2% 80,1% 81,6% I chi square 4 86,3% 80,4% 81,8%
< chi square 5 86,3% 78,7% 80,6% il chi square 5 86,4% 78,0% 80,3%
< chi square 6 85,8% 77,5% 79,4% 1 chi square 6 85,7% 79,0% 80,5%
< chi square 7 84,9% 77,9% 79,7% L chi square 7 84,8% 76,6% 78,4%
< chi square 8 84,5% 75,9% 77,8% 1l chi square 8 84,9% 76,2% 78,2%
< chi square 9 84,2% 75,5% | 77,4% I chi square El 83,5% 756% | 77,3%
< chi square 10 82,2% 73,5% 75,4% 1l chi square 10 78,5% 71,2% 72,9%
< chi square 1 80,2% 72,0% | 73,7% I chi square 1 75,8% 682% | 703%
< chi square 12 76,4% 70,5% 71,9% 1l chi square 12 72,2% 67,7% 69,2%
< chi square 13 74,4% 69,0% | 70,2% L chi square 13 71,6% 67,2% | 68,6%
< chi square 14 72,8% 68,4% 69,8% il chi square 14 70,9% 67,9% 68,8%
< chi square 15 69,4% 65,0% 65,6% I chi square 15 59,8% 57,7% 56,8%
>< chi square 4 86,0% 79,3% 80,9% | chi square 1 86,0% 81,9% 82,9%
< chi square 5 85,8% 77.2% 79.1% > devmax.DF 2 85,7% 84,0% 84,2%
>< chi square B 83,6% 73,9% 75,6% > devmax.DF 3 85,8% 83,6% 83,9%
>< chi square 10 76,0% 69,7% 71,2% > devmax.DF 4 85,6% 83,2% 83,5%
>< chi square 12 73,0% 67,8% 69,3% > devmax.DF 5 85,2% 81,6% 82,3%
< chi square 14 68,9% 64,3% 65,6% > devmax.DF 6 85,3% 80,6% 81,7%
>< chi square 16 32,5% 38,0% 27,4% > devmax.DF 7 85,2% 79,0% 80,5%
< chi square 18 23,2% 32,5% | 155% > devmax.DF 8 85,0% 79,4% | 80,8%
>< chi square 20 14,3% 31,9% 13,8% > devmax.DF el 81,4% 75,3% 76,7%
>< chi square 22 10,4% 32,8% 13,6% > devmax.DF 10 77,9% 72,4% 73,6%
>< chi square 24 11,0% 32,7% 13,6% > devmax.DF 11 75,5% 70,4% 7L,7%
>< chi square 26 10,4% 32,9% 13,4% > devmax.DF 12 72,3% 67,0% 68,9%
>< chi square 28 14,7% 33,9% 15,0% > devmax.DF 13 69,9% 66,7% 67,7%
>< chi square 30 11,5% 34,0% 15,0% > devmax.DF 14 66,3% 61,6% 62,9%
- chi square 2 85.9% 79.6% 81.2% > devmax.DF 15 59,5% 55,8% 56,7%
- chi square 6 85,3% 78,6% | 80,1% < devmax.DF 2 85,6% 84,0% | 84,2%
P chi square 8 85,2% 752% | 77,2% < devmax.DF 3 85,7% 83,8% | 84,0%
P chi square 10 80,7% 72,1% 74,0% < devmax.DF 4 85,6% 83,4% 83,7%
P chi square 2 72,8% 68,1% | 69,8% < devmax.DF 5 85,9% 8L7% | 82,7%
P chi square 14 71,9% 66,6% 67,9% < devmax.DF 6 85,2% 81,8% 82,5%
P chi square 16 64,1% 59,2% 59,9% < devmax.DF 7 84,8% 80,5% 81,1%
P chi square 18 33,3% 38,9% 29,9% < devmax.DF 8 84,7% 80,8% 81,7%
< chi square 20 20,6% 25,8% 16,0% < devmax.DF El 84,6% 76,4% 78,4%
< chi square 2 12,3% 31,4% | 150% < devmax.DF 10 83,9% 76,5% | 78,6%
< chi square 2% 13,9% 32,3% | 13,4% < devmax.DF 11 83,8% 77,3% | 79,2%
— i square e 5.1% e 3o < devmax.DF 12 80,6% 74,1% 76,2%
= chi square 28 9.3% 32.5% 13.1% < devmax.DF 13 75,2% 70,8% 72,0%
— <l square m 5.5% e 3% < devmax.DF 14 75,0% 69,3% 70,8%
. chi square 2 86,4% 79.6% 81.3% < devmax.DF 15 74,0% 69,4% 70,6%
— <l square c S8 =y 7559 >< devmax.DF 4 86,1% 82,6% 83,3%
. chi square 3 83.6% 74.3% 76,0% >< devmax.DF 6 85,2% 81,4% 82,2%
>> chi square 10 75,7% 69,6% 71,2% >< devmax.DF 8 85,2% 80,3% 81,6%
>> chi square 12 72,8% 67,9% 69,7% >< devmax.DF 10 78,5% 73,5% 74,8%
— i square m 7% 0% e >< devmax.DF 12 73,1% 69,5% 70,3%
= o square T 29°0% Se8% 205% >< devmax.DF 14 71,2% 68,1% 68,8%
— i square s oo 5% e >< devmax.DF 16 41,4% 45,7% 39,2%
= i square > 2% 2% % >< devmax.DF 18 26,9% 40,1% 25,6%
— i square > e 5% e >< devmax.DF 20 21,5% 28,1% 16,9%
= o square . 3% 3% 4T% >< devmax.DF 2 10,8% 29,4% 13,7%
>> chi square 26 12,6% 32,8% 13,4% >< devmax.DF 24 9,9% 32,6% 13,4%
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>< devmax.DF 26 10,1% 32,7% 13,3% << devmax.DF 6 85,1% 80,7% 81,7%
>< devmax.DF 28 11,2% 34,0% 14,9% << devmax.DF 8 84,7% 79,6% 80,9%
>< devmax.DF 30 10,6% 32,8% 14,2% << devmax.DF 10 84,7% 78,0% 80,1%
<> devmax.DF 4 85,9% 82,9% 83,6% << devmax.DF 12 76,1% 70,5% 72,1%
<> devmax.DF 6 85,1% 81,5% 82,2% << devmax.DF 14 72,3% 69,3% 70,2%
<> devmax.DF 8 84,5% 80,0% 80,9% << devmax.DF 16 68,1% 65,6% 65,2%
<> devmax.DF 10 84,0% 77,6% 79,3% << devmax.DF 18 44,9% 43,2% 39,5%
<> devmax.DF 12 77,8% 72,4% 74,2% << devmax.DF 20 31,2% 27,1% 25,2%
< devmax.DF 14 74,2% 69,3% 70,6% <«< devmax.DF 22 22,0% 27,0% 18,0%
<> devmax.DF 16 69,7% 67,7% 68,3% << devmax.DF 24 17,7% 26,1% 17,7%
< devmax.DF 18 45,7% 49,9% 44,8% <«< devmax.DF 26 15,2% 29,4% 17,4%
<> devmax.DF 20 27,8% 35,5% 26,4% << devmax.DF 28 10,0% 31,0% 14,5%
< devmax.DF 22 21,8% 30,1% 19,3% <«< devmax.DF 30 12,0% 33,1% 15,8%
<> devmax.DF 24 13,6% 30,1% 15,0% |1 devmax.DF 2 85,6% 83,9% 84,1%
< devmax.DF 26 9,3% 31,8% 14,0% [ devmax.DF 3 86,1% 83,9% 84,2%
<> devmax.DF 28 8,5% 32,7% 13,1% |1 devmax.DF 4 85,9% 83,4% 83,7%
< devmax.DF 30 8,4% 32,9% 13,4% [ devmax.DF 5 85,8% 81,8% 82,8%
>> devmax.DF 4 85,5% 82,8% 83,2% |1 devmax.DF 6 85,5% 81,1% 82,2%
>> devmax.DF 6 85,3% 81,0% 81,8% [ devmax.DF 7 84,8% 80,3% 81,3%
>> devmax.DF 8 84,6% 79,9% 80,9% |1 devmax.DF 8 84,8% 79,3% 80,6%
>> devmax.DF 10 78,7% 72,2% 73,8% [ devmax.DF 9 83,8% 78,5% 79,9%
>> devmax.DF 12 73,6% 68,5% 70,0% |1 devmax.DF 10 83,4% 75,6% 77,4%
>> devmax.DF 14 70,3% 65,6% 67,4% [ devmax.DF 11 79,3% 72,9% 74,2%
>> devmax.DF 16 46,0% 49,9% 44,4% |1 devmax.DF 12 75,7% 70,3% 71,3%
>> devmax.DF 18 28,7% 34,7% 20,1% |1 devmax.DF 13 73,8% 70,1% 71,1%
>> devmax.DF 20 16,2% 32,1% 15,1% 111 devmax.DF 14 71,3% 67,9% 68,9%
>> devmax.DF 22 13,6% 29,2% 12,6% I devmax.DF 15 70,7% 67,7% 68,7%
>> devmax.DF 24 13,5% 32,8% 13,7% | devmax.DF 1 86,2% 84,6% 84,9%
>> devmax.DF 26 11,4% 32,6% 13,3%

>> devmax.DF 28 13,4% 32,8% 13,6%

>> devmax.DF 30 9,8% 32,9% 14,1%

<< devmax.DF 4 85,7% 83,4% 83,8%

Appendix - B

In the table below you can find the results of testing a simple one-hidden layer Deep Learning
Neural Network, with different sizes of hidden layer’s units. The multiplier increases the initial
size, by 1, 2, 3, ... 200 times of the Lexicon’s length (=300) that was used in the Bag of Words.
So, for example the hidden layer with a multiplier 5, is referring to a hidden layer with

size =300*5 = 1500

35 85,8% 84,4% 84,6%

multiplier wPrecision wRecall wFscore 36 85,5% 84,4% 84,5%
1 86.2% 84.6% 84,9% 37 85,6% 84,5% 84,6%
3 86.1% 54.6% 84.6% 38 85,5% 84,7% 84,6%
3 85,9% 84.7% 84,8% 39 85,6% 84,7% 84,7%
2 85.6% 5.1% 85.0% 40 85,5% 84,6% 84,6%
5 85,5% 84,9% 34,5% 41 85,5% 84,8% 84,6%
. 85.5% 85.0% 84.8% 42 85,3% 84,8% 84,5%
7 85.4% 85.1% 84,8% 43 85,8% 84,5% 84,7%
s 85.5% 35.0% 8.5% 44 85,7% 84,7% 84,7%
) 85,8% 85.1% 85,0% 45 85,4% 84,5% 84,4%
0 a56% 84.7% 805% 46 85,2% 84,5% 84,4%
1 85,6% 84,9% 84,8% 47 85,7% 84,3% 84,5%
2 85.5% a5.1% 8.9% 48 85,4% 84,6% 84,6%
13 85,4% 84,0% 84,7% 49 85,4% 84,5% 84,5%
14 85.6% 85.1% 84.9% 50 85,5% 84,4% 84,5%
5 85.2% 85.1% 84,7% 51 85,5% 84,6% 84,6%
G 8.9% 85.3% 8.7% 52 84,9% 84,9% 84,4%
17 35,0% 85,2% 34,6% 53 85,6% 84,7% 84,7%
18 853% a5.2% 5% 54 85,4% 84,7% 84,5%
19 85,0% 85.2% 84,7% 55 85,7% 84,6% 84,7%
2 851% a5.2% 8.7% 56 85,4% 84,7% 84,6%
21 85,3% 85,3% 84,9% 57 85,3% 84,5% 84,5%
» 85.2% 85.1% 84.7% 58 85,6% 84,5% 84,6%
23 85,4% 85,2% 34,9% 59 85,6% 84,3% 84,5%
24 85,3% 85,0% 84,7% 60 85,4% 84,8% 84,7%
25 85,0% 85,1% 34,6% 61 85,4% 84,7% 84,5%
26 85,3% 85,0% 34,8% 62 85,6% 84,4% 84,5%
27 85,2% 85,1% 34,7% 63 85,1% 84,7% 84,4%
28 85,1% 85,1% 84,7% 64 85,4% 84,5% 84,5%
29 85,4% 85,1% 34,8% 65 85,4% 84,7% 84,6%
20 85.8% 84.5% 84.7% 66 85,5% 84,7% 84,7%
31 85,7% 84,5% 84,6% 67 85,2% 84,8% 84,6%
32 85.5% 84.5% 84,5% 68 85,3% 84,8% 84,6%
33 85,6% 34,3% 34,5% 69 85,3% 84,5% 84,5%
3 85.8% 84,7% 84,7% 70 84,9% 84,8% 84,4%
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140 85,0% 84,9% 84,6%
141 84,2% 85,2% 84,3%
142 84,7% 85,1% 84,5%
143 84,3% 85,2% 84,3%
144 84,9% 84,8% 84,4%
145 84,9% 84,7% 84,4%
146 84,3% 85,0% 84,3%
147 84,5% 85,0% 84,4%
148 84,3% 85,0% 84,2%
149 84,8% 85,3% 84,7%
150 84,7% 85,1% 84,5%
151 84,4% 84,9% 84,3%
152 84,2% 85,1% 84,2%
153 84,2% 85,2% 84,2%
154 84,7% 85,0% 84,5%
155 84,3% 85,0% 84,3%
156 84,6% 85,1% 84,5%
157 85,0% 85,1% 84,7%
158 84,0% 85,3% 84,2%
159 84,7% 84,9% 84,3%
160 84,4% 85,1% 84,4%
161 84,7% 85,2% 84,6%
162 84,8% 84,9% 84,4%
163 84,6% 84,8% 84,2%
164 84,6% 85,0% 84,4%
165 84,8% 85,1% 84,6%
166 84,4% 85,2% 84,4%
167 84,5% 85,0% 84,3%
168 84,0% 85,3% 84,3%
169 85,1% 85,0% 84,6%
170 84,3% 85,2% 84,3%
171 84,1% 85,1% 84,2%
172 84,4% 85,0% 84,3%
173 84,6% 84,8% 84,3%
174 84,8% 84,6% 84,3%
175 84,9% 84,9% 84,5%
176 84,3% 85,1% 84,3%
177 84,2% 85,1% 84,3%
178 84,8% 84,9% 84,4%
179 84,3% 85,4% 84,4%
180 84,4% 85,1% 84,4%
181 84,2% 84,9% 84,1%
182 84,5% 85,2% 84,4%
183 84,2% 85,0% 84,2%
184 84,2% 85,1% 84,3%
185 84,4% 85,1% 84,3%
186 84,5% 84,9% 84,3%
187 84,3% 85,3% 84,4%
188 84,3% 85,3% 84,4%
189 84,6% 84,5% 84,1%
190 84,3% 85,4% 84,5%
191 84,4% 84,9% 84,3%
192 84,4% 85,0% 84,4%
193 84,2% 85,4% 84,4%
194 84,2% 85,4% 84,4%
195 84,2% 84,9% 84,1%
196 84,6% 84,6% 84,2%
197 84,6% 84,8% 84,3%
198 84,0% 85,2% 84,2%
199 84,7% 84,7% 84,3%
200 84,4% 84,8% 84,2%

71 85,5% 84,3% 84,4%
72 85,4% 84,6% 84,5%
73 85,2% 84,8% 84,5%
74 85,6% 84,3% 84,5%
75 85,4% 84,7% 84,6%
76 85,1% 84,8% 84,5%
77 85,1% 84,6% 84,4%
78 85,2% 84,3% 84,3%
79 85,1% 84,9% 84,6%
80 85,3% 84,4% 84,4%
81 85,0% 84,8% 84,5%
82 85,0% 84,9% 84,5%
83 84,9% 84,6% 84,3%
84 85,1% 84,4% 84,3%
85 85,2% 84,3% 84,3%
86 85,0% 84,5% 84,3%
87 84,9% 84,5% 84,3%
88 85,2% 84,9% 84,6%
89 85,1% 84,5% 84,3%
90 85,1% 84,7% 84,4%
91 85,4% 84,8% 84,6%
92 85,4% 84,4% 84,5%
93 84,8% 84,8% 84,4%
94 85,2% 85,0% 84,6%
95 85,3% 84,5% 84,5%
9 85,2% 84,7% 84,5%
97 84,9% 84,9% 84,5%
98 85,0% 84,7% 84,4%
99 85,1% 84,4% 84,3%
100 85,5% 84,2% 84,4%
101 84,4% 85,5% 84,6%
102 84,6% 85,0% 84,4%
103 84,8% 85,2% 84,6%
104 84,8% 85,3% 84,7%
105 84,8% 85,2% 84,6%
106 85,2% 85,2% 84,8%
107 85,0% 85,1% 84,6%
108 84,7% 85,1% 84,5%
109 85,0% 84,9% 84,5%
110 84,5% 85,2% 84,4%
111 84,9% 85,0% 84,5%
112 84,8% 85,0% 84,5%
113 85,1% 85,0% 84,6%
114 84,9% 85,1% 84,6%
115 84,7% 85,1% 84,5%
116 84,4% 85,0% 84,3%
117 84,8% 85,3% 84,6%
118 85,1% 85,2% 84,7%
119 85,0% 84,9% 84,6%
120 85,0% 84,8% 84,5%
121 84,7% 85,2% 84,6%
122 84,7% 85,2% 84,5%
123 85,1% 85,1% 84,7%
124 84,8% 85,0% 84,5%
125 84,9% 85,2% 84,6%
126 84,3% 85,3% 84,4%
127 84,9% 85,1% 84,5%
128 84,7% 84,7% 84,3%
129 84,4% 85,2% 84,4%
130 84,6% 84,9% 84,3%
131 84,3% 85,2% 84,4%
132 85,1% 84,9% 84,6%
133 84,9% 85,1% 84,6%
134 84,5% 85,0% 84,3%
135 84,6% 85,1% 84,5%
136 84,7% 84,9% 84,4%
137 84,6% 85,0% 84,4%
138 84,9% 85,0% 84,6%
139 84,7% 85,3% 84,6%
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Appendix - C

The function below (created with Python language) checks if two words are similar, given

some criteria. More specifically, this function:

receives two parameters, wl and w2

calculates their average length and assigns the result to array L

1.
2
3. calculates the 66% (2/3) of the average length, and assigns the result to array match
4. checks if wl and w2 have both a length over four

5

checks if the left part of w1l and w2 (from the first character until the number that is
stored in the match variable) are exactly the same

o

If steps 4 and 5 are True, then the function returns True, otherwise it returns False.

7. The method math.ceil() rounds a float to the upper integer and returns an integer.

match = math.ceil (

wl[:match]
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Appendix - D

The function below (created with Python language) transforms text into tokens. More

specifically it:

1. receives the file path of a csv file
2. reads each line of the csv files and append the data to an array All_Data
3. Parses the All_Data array and:

a. performs tokenization by using regular expressions

b. lowers all words’ letters

c. stems the words

d. ignores stop word of the English language

4. stores and returns the tokenized data

Porte
emmer ()
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Appendix - E

The code below (created with Python language) creates a Python dictionary with all words

that appear in the given data. More specifically:

1. |Ititerates through the saved data
2. ltignores words with a length of 1

3. Itaddsinthe dictionary a word as the dictionary’s key. In parallel, it counts the term
frequency and the frequency in each category for the specific word.

4. Right after, for each word in Lexicon in calculates the sum of the frequency it
appears in each category, and the document frequency

Normalized
item([
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Appendix - F

The code below (created with Python language) iterates through different Lexicon sizes and
through some classical ML models and one simple DL model. This procedure saved time.

Instead of running multiple times the script, with this iteration it run all models in a one-off

procedure.

MultinomialNB ()

learnmod
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Appendix - G

The code below (created with Python language) activates the sklearnmodels() function that is
called in the code of Appendix — F. For each category it runs the model. The y_train data is

created ad hoc, because not all models are capable of running multilabel classification. Thus,

the models run in a binary form. In the end it returns the results of the iteration.
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Appendix - H

The code below (created with Python language), which is part of a bigger amount of code,
runs and saves the data of a “pyramid” DL NN model. The k value is increasing in each iteration,

adding more layers in each iteration. In Parallel, the more layers are added the fewer are the

hidden layer’s units in each iteration (-5%). Also, it runs the model 10 times, one for each fold.

=(metric

The code below (created with Python language) runs the function ReturnTrainTest() that is

called in the above code. It returns the corresponding fold that need to be trained-tested in
the DL mode.

The code below (created with Python language), which is part of a bigger amount of code,
runs the function RunModel() that is called in the first code presented in Appendix — H. It adds

the last layer (output layer), compiles the model, fits it, and created predictions.
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Appendix - 1

The code below (created with Python language), which is part of a bigger amount of code,

runs a CNN model in 10-folds.

63



		2022-07-14T19:54:34+0300
	Ioannis Triantafyllou


		2022-07-15T04:00:11+0300
	Sarantos Kapidakis


		2022-07-15T09:18:00+0300
	Dimitrios Kouis




