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Abstract

The aim of this thesis is the study of the quasilinear damped wave equation of
Kirchhoff’s type with variable diffusion coefficient in all of RV, For the functional
analysis of the time dependent problem, we make use of the homogeneous Sobolev
spaces and of the generalized Sobolev embeddings, followed by the preceding studies
of the Kirchhoff’s type problem. In strong connection with the corresponding natural
phenomena, we obtain results concerning the local (unique) existence of the solutions
using the Faedo-Galerkin approximation and the Banach Fixed-Point Theorem. We
also prove the global existence and energy estimates of the solutions using the method
of the modified potential well. We complete our study with the blow-up analysis of
the solutions for initial data of negative energy using the concavity method, where for
the discrete case (a=2) we prove the modification of the upper-bound of the time T.

Keywords: Infinite Dimensional Dynamical Systems, Quasilinear Hyperbolic Wave
Equations, Nonlinear Problems, Dissipation, Semigroup Theory, Banach Fixed-Point
Theorem, Galerkin Method, Faedo-Galerkin Approximation, Unbounded Domains,
Homogeneous Sobolev Spaces, Weighted Lebesgue-Sobolev Spaces, Generalized
Poincare Inequality, Generalized Sobolev Embeddings, Blow-Up, Concavity Method,
Potential Well, Modified Potential Well, Kirchhoff’s Strings.



Notation. We denote by By the open ball of RN with center 0 and radius R.
Sometimes for simplicity we use the symbols LP, 1 < p < o, D12, respectively, for
the spaces L? (RV), D*(RN), respectively; || - ||, for the norm || - llp &My BY

LV, W) or sometimes by Z(V,W) we denote the space of linear operators from V to
W. Also, sometimes differentiation with respect to time is denoted by a dot over the
function. Furthermore, we have used the notation 3 and &N for the spaces R and R”,
respectively. All the constants are considered in a generic sense. The end of the proofs
is denoted by Q.E.D (quod erat demonstrandum = which had to be shown) and the
end of a theorem or lemma whose proof is not given, is denoted by m.
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A. Preliminary

1. Functional Analysis

In mathematics, the word “function” is being handled as a map from one space into
another or as an operator that acts on the elements of some properly defined space.
The study of the physical phenomena that rule the known limits of our world invokes
primarily the study of the space in which these phenomena are domiciled. As any
mathematical problem of several variables becomes properly a problem in vector
calculus the mentioned spaces are called by thy name “vector spaces” or “linear
spaces”, and in this chapter, we will delve into the aspects of the most known vector
spaces that are used frequently in this work and in applied mathematics generally.

1.1 Banach Spaces
In our notation throughout this section, we denote by V a real linear space’.

Definition 1.1.1. Given a linear space V, a mapping || |[:V — [0, o) is called a
norm if the following properties are satisfied.

(i) |lul| = 0 forany u € V, and ||u|| = 0 if and only if u =0,
(i) |lau|| = |al|lu|| forany u € V and a € S,
(iii) llu + vl < ||ull + |lv|| for any u,v € V, known as the triangle inequality.

The symbol & in property (ii) denotes the scalar field (& or ).
Hereafter we assume V is a normed linear space, and we adapt the notation (V, || |]).

Remark. A norm induces a metric, i.e., a way of taking the distance between two
elements of the space. So we regard every normed space as a metric space, in which
the distance d(u, ») between uand vis ||u — v||. The properties of the distance are

Q) 0 <d(u, v) < oo forall uandv,
(i) d(u,v) =0ifandonly if u = v,
@iii)  d(u, ») =d(v, u) for all u and o,
(iv)  d(u,») <d(u, w) +d(w, o) for all u, v, w.

1. See in References [4].
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Definition 1.1.2. We say a sequence {u, }r—, < V converges to u € V, written

Uy 2 U,

lim||lu, — n|| = 0.
k— o0

Definition 1.1.3. (a) A sequence {u,}r=,; < V is called a Cauchy sequence if for every
¢ > 0 there exists N > 0 such that

|lur —wll <eforallk, [ >N.

(b) A normed space V is said to be complete if every Cauchy sequence from the space
converges to an element in the space, i.e., if {u;}y-, © V is a Cauchy sequence, and
there exists u € V such that {u,;};-, converging to u then the space V is complete.
(c) A complete normed space is called a Banach space.

Definition 1.1.4. (a) Let K be a subset of a normed vector space V. We say K is
compact if, for every open covering of K, there is a finite subcover that also covers K.
This is equivalently regarded as K having the Borel-Heine property.

(b) Equivalently, K is compact if every sequence {u;}r-, < K contains a convergent
subsequence which converges to an elementu € V.

Definition 1.1.5. Let K1 c K3 be two subsets in a normed space V. We say the set K1
is dense in K if for any u € Kz and any ¢ > 0, there is a v € Kz such that d(u, v) <e.

Remark. The geometrical interpretation of the Definition 1.1.5 is that we can select
any positive number which will denote the accuracy of closeness (density) between
two subsets of a normed vector space.

Definition 1.1.6. A normed vector space is called separable if it contains a countable
dense subset.

1.2 Hilbert Spaces
Definition 1.2.1. Given a real linear space V, a mapping (.,.):V X V— [0, «©) is
called an inner product if the following properties are satisfied.

Q) (u,u) = 0and (w,u) =0 ifandonly if u =0; foranyu e V,
(i) (u,v) = (v,u)foranyu eV,
@iii)  (au+ pv,w) = a(u,w) + B(v,w), forany u,v,w € V and a, € K.

The space V equipped with the inner product (.,.) is called an inner product space.
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An inner product (.,.) induces a norm through the formula

[lul| := /(u,u),u €V.

Remark. In verifying the triangle inequality for the above quantity, we need to use
the Schwarz inequality; |(u,v)| < (v, w)(v,v) Yu,v EV.
Definition 1.2.2. A complete inner product space is called a Hilbert space. This

means that an inner product space V is a Hilbert space if V is a Banach space under
the norm induced by the inner product.

1.3 LP and Sobolev Spaces

In introductory calculus the integrability over a properly defined region deals with the
values of the integrable function over a volume. The physical correspondence and in a
matter of fact the information behind the function in the region of interest denotes a
finite value necessity as infinity is hiding more than itself.

This means that if @ < &N is a non-empty open set of N-dimensional Euclidean
space, the integration over Q of a properly defined measurable function, f: Q — &,
needs to be finite, i.e.,

ﬂff(x)dx < oo,

Having set the characteristics of our function we are able to construct a space for
these functions with the above property.

Definition 1.3.1. Let Q < RN be a non-empty open set. For p € [1, ), we define the
space of all Lebesgue integrable functions as follows

P(2)={u:0-R| Jlu@)IP dx < oo},

Proposition. (a) The LP spaces are Banach spaces under the norm

1/
lullpy = [[,lu@)IP dx]? < oo,

and the space L™ (2) consists of all essentially bounded measurable functions
equipped with the norm

lwll ooy = inf sup|u(x)| < oo.

(b) In the case p = 2, L spaces are also Hilbert spaces with the inner product



[4] A. PRELIMINARY

(u,v) = fu(x)v(x) dx.m
0

Of equivalent importance are the so called weighted-Lebesgue spaces or the LZ spaces
as we usually refer to; the definition of those is given below.

Definition 1.3.2. Let g be a positive continuous function on ©, called a weight-
function. We can define weighted spaces LZ (1) as follows

LZ(.Q) := {umeasurable| fﬂg(x)|u(x)|p dx < oo}, for 1 <p<ow
Ly (2) == {u measurable|ess sup g(x)|u(x)| < oo}.

Proposition. The LZ spaces are Banach spaces with the norms

y
lullpg: = {[, 9O Iu@)|P dx} " for 1 <p<oo
lullco,g: = ess sup g(x)|u(x)| forx € 2. m

Before we procced with the definitions of the Sobolev spaces, firstly we will
develop briefly the background that brought them out.

In the study of PDESs an “operator” treatment, i.e., the recasting of a partial
differential equation as an operator acting on appropriate linear spaces with the
operator encoding the structure of the PDE, postulates a specific treatment in the
choice of the proper spaces. The honorable mathematician Sergei Lvovich Sobolev
constructed the spaces (which took their name after him) and set the proper
framework of the “operator” treatment.

Definition 1.3.3. Let k be a nonnegative integer and p € [1, o]. The Sobolev
space WP () is defined as follows

WkP() == {u € LP ()| 92u € LP(R), for each |a| < k},
where a denotes a multi-index, i.e., an ordered collection of N non-negative integers,
a=(ayaz...an), the quantity |a| = YN, a; is said to be the length of &, and the

expression 62u denotes the ath weak derivative of u?.

Proposition. (a) The norm in the space W*? () is defined as

1/p
93u||P , 1<p<ow
el s = [Z|a|sk” ||me)] P

maxq <k |[9%ul| o), = 0.

2. For the definition of weak derivatives, see in Chapter 7 of [4], or in Chapter 5 of [5].
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(b) When p = 2, we use the notation H*(2) for the Sobolev spaces W2 (). m

The following theorem provides us with the concept of completeness of Sobolev
spaces (for the proof see Chapter 7 of [4]).

Theorem 1.3.4. The Sobolev space W*? () is a Banach space. m

Before we procced in the concepts of linear operators we give another property of
major importance for the Sobolev space H*(12).

Corollary 1.3.5. The Sobolev space H*(R) is a Hilbert space with the inner product
(w,v)y = fQZIaIsk 9%u(x) 9% (x)dx, u,v € H¥ (D).

More about the Sobolev spaces we will see in Chapter Il of this work.

1.4 Bounded and compact linear operators

In the previous section we referred to “operators” as mappings from one space into
another that enclose the structure of a PDE. The concept of operator is important in
our study and is worth little of our time to review some of their basic properties.

Let us assume that X, and Y are two sets and T an operator from X to Y. This means
that @ is a function which assigns to each element in a subset of X a unique element
inYy.

Definition 1.4.1. (a) The domain D (T) of T is the set of all elements of X in where
@ is properly defined, i.e.,

D (@) = {u € X| T(u) is defined}.
(b) The range R (@) of T is the set of all the elements in Y generated by T, i.e.,
R(T)={v eY|v=T() for some u € D(T)}.

(c) The null set V(T) of T is defined as the set of elements of X in where T is
mapping to the zero element, i.e.,

N(T) = {u € X| T(u) = 0}.

Definition 1.4.2. An operator from X to Y is called bijective if it is injective (one-to-
one) and surjective, i.e., iIf u; #u, >T(uy) # T(uy,)and R(T) =Y, respectively.
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Definition 1.4.3. An operator T: X — Y is called linear if
T(Auy +puy)=2T (uy) +p T (uy)
forall u,,u, € X, A, u € B.

Proposition. A linear operator T: X — Y is bounded (or continuous since for a
linear operator boundedness = continuity) if and only if there exists a constant ¢ > 0
such that

[Cully <clullx VuelX.

For the proof of the above inequality see Section 2.2 (Continuous linear operators) of
[4]. m

Throughout this work we will use the notation Z (X, Y) for the set of all the
continuous (or bounded) linear operators from X to Y, and since this set is a linear
space induces a norm over the space.

Definition 1.4.4. If T e Z (X, Y) then the operator norm of @ is given by
IT|Ix, v = sup {||Tu|v / ||u||x} for 0 #u € X
and having the following compatibility property
ITully < ||T||x, v [ul|lx VY ueX.

Before we give the definition for the compactness of a linear operator, we will
emphasize in the set Z (X, Y).

When dealing with mappings over normed vector spaces the concept of
approximation induces that of convergence, i.e., the question about if a normed vector
space is complete under the equipped norm.

Someone obviously may wonder why do we need approximations, but before going
there, let us assume that we have an equation of the following form

Tu =,

whereT: X > Y, ueXandveY.

The operator may be an integral operator (so the above is an integral-equation), a
differential operator (and so the above is a differential equation) or a combination of
those.

In many cases the difficulty with proceeding with the analysis of a given problem that
takes the above form, has to do with the operator itself. In such cases the integral or
differential operator is often approximated by a sequence of operators of a simpler
form.
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Since we have explained the necessity of approximations, we may return to the
question of whether the set Z (X, Y) is a complete space.

Theorem 1.4.5. Let X be a normed space, and Y a Banach space. Then, the set Z (X,
Y) is a Banach space (the proof can be found in Section 2.2.1 (Z (X, Y) as a Banach
space) in [4]).

We will end this introduction on Functional analysis with the definition of
compactness of an operator.

Definition 1.4.6. An operator A€ Z (X, Y) is called compact if for each bounded
sequence {ug}r=; < X, the sequence {Auy};-, is pre-compact in Y, i.e., if there

[o9] [o9]

such that {Aukj} convergesin.

exists a subsequence {ukj}
j=1

J=1
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2. Embeddings and inequalities

In the study of PDEs the framework of operator analysis induces, as we saw, the study
and selection of the proper spaces on where the operator acts. According to our
problem and the characteristics of our operator, the existence of embeddings is rising
from the fact that some properties of the operator may be valid in larger spaces.
Having so a relation between more treatable spaces with the spaces that define the
framework of our problem, and using the extension theorems to develop an
embedding-chain among them we are able to continue with the study of our problem
(see more in Chapter I1).

2.1 Definitions

Definition 2.1.1. We say a space X is embedded in Y and we use the notation X c Y
provided

lully <k l|lully for everyu € X and k > 0.

The geometrical interpretation of the Definition 2.1.1 points out a metric relation
between the spaces X and Y, i.e., the metric of the space Y is less or equal than the
metric of the space X times a positive constant k for every element of the embedded
space.

Definition 2.1.2. Let X and Y be Banach spaces, and X c Y. The space X is
compactly embedded in Y, using the notation X cc Y, if the two following conditions
are satisfied
Q) |lully <kllully for everyu € Xand k >0
and
(i) each bounded sequence in X is pre-compact in Y.

These two definitions are fundamental for our application of the previous material in
the study of our problem and we will refer to them quite often in Chapter I1.
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2.2 Useful inequalities

In this section we introduce a collection of fundamental inequalities which are
employed mainly in Chapter Il of this work.
The proofs of those are given in Appendix B.2 in [5].

a. Cauchy’s inequality.
aZ 2
b<—+—
W=7

where a,b € R.

b. Cauchy’s inequality with &.
2

ab < ea® + —
4¢

where a,b > 0, > 0.
c. Young’s inequality. Let 1 < p,q < oo,% + i = 1. Then

a? b4
ab < —+ —
q
where a, b > 0.

d. Young’s inequality with €. For a,b > 0,e > 0, and the previous conditions on p,
g we have
ab < eaP + (ep)~9Pq~tbA.

e. Holder’s inequality. Assume 1 < p,q < oo,% + % = 1. Then if u € LP(Q),
v € L9(Q), we have

f uvl dx < llulle@llollo.
n

f. General Holder’s inequality. Let 1 < p; < p, < -+ < p, < oo, with pi +—+

1 P2

.+ — =1, and assume u, € LPk(Q) fork = 1,---,n. Then

Pn
n
f|u1 Uyl dx < Hllukllmm)-
) k=1
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g. Minkowski’s inequality. Assume 1 <p < coand u,v € LP(Q). Then
lu+vllr) < llullie) + VILe).-

Remark. Inequality g is the triangle inequality for the || [|,»(o) defined in
subsection 1.3, Proposition (a).

h. Interpolation inequality for LP-norms. Assume1 <s<r <t < oo,

% = % + @ and u € L°(2) N LE(R). Thenu € L7 (), and

lull oy < ||”||§S(ﬂ)”u“it_(?2)'

i. Gronwall’s inequality (differential form).
(@) Let n(-) be a nonnegative, absolutely continuous function on [0, T], which
satisfies for almost every t the differential inequality

d
2610 = 9On(®) + ()

where @(t) and ¥ (t) are nonnegative, summable functions on [0, T]. Then

n(t) < efotfp(S)dS In(o) + ftlp(s)dsl
0

forall t € [0,T].
(b) More precisely, if
n'() < e(©)n(t) on [0,T] and n(0) = 0
then
n=0on]0,T].

2.3 Sobolev inequalities?®

According to our discussion in subsection 1.3, the elements of Sobolev spaces are
locally summable functions with weak derivatives that belong to the Lebesgue spaces.
Since the importance of changing the spaces in our problem is rising from the
“validity” of our invoked functions, the query about the natural extension of the
functions which belong to Sobolev spaces in other spaces automatically brings the
embeddings theorems back to our mind.

In this section we will therefore give the so-called “Sobolev inequalities” in order to
define embeddings of various Sobolev spaces into others.

3. See more in Section 5.6 in [5].
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Theorem 2.3.1 (Gagliardo-Nirenberg-Sobolev inequality). Let 1 <p < n and the
Sobolev conjugate of p defined as
.. .
P = p’ p >Dp.
Then, there exists a constant K, depending only on p and n, such that

2ell gy < KIID2l oy
forall u € C}(RN).

In Theorem 2.3.1 the quantity “Du” denotes the gradient vector of u, i.e., the partial
derivatives of u with respect to its spatial arguments; Du = (uyq, =", Uy ), and the
space CL(RN) denotes the space of functions which, together with their first-order
derivatives are continuous in &N and has compact support* in it.

Theorem 2.3.2 (Estimates for WP ,1 < p < n). Assume Q is a bounded, open
subset of N, and suppose 9Q (the boundary of Q) is C*. Assume 1 < p <n,andu €

WP (Q). Then u € LP (), with the estimate
ell gy < Klltlly 1o g
the constant K depending only on p, n, and Q.

Definition 2.3.3. We denote by W,*P(Q) the closure of C°(Q) in WP (Q).

Thusu € WO"”’(Q) if and only if there exist functions u,, € C;°(Q) such that u,,, - u
in Wke (Q).

The space Wok"’(Q) consists of those function that belong to W*? (Q) and have the
following property

“D%u = 00onvQ” forall |a| < k —1.

Theorem 2.3.4 (Estimates for Wol’p, 1 < p < n). Assume Q is a bounded, open

subset of N, Suppose also u € Wol'p(Q) for some 1 < p < n. Then we have the
following estimate

llwllLacoy < KlIDullpp(q)

for each g € [1,p*], with the constant K depending only on p, n, g and Q.

4. Given a function u € Q, its support is defined to be

supp(u) = {x € 2| u(x) # 0}.

We say a function u has compact support if supp(u) is a proper subset of Q, i.e., if supp(u) is
bounded; that means that there exist a, b € 2 such that supp(u) < [a, b].
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Remark. Forall 1 < p < oo,
lull ey < KlIDullp(q)-

This estimate is called Poincaré’s inequality.
In view of this estimate, on Wol’p(Q) the norm [[Dul| p (o) is equivalent to [[u|ly 1p(g),
if Q is bounded.

Assume Q c RN is openand 0 < y < 1. We say a function u satisfying the
following inequality is said to be Holder continuous with exponent y.

lu(x) —u()| < kllx —y|¥, forx,y € Q.
Definition 2.3.5. For m € Z, and y € (0,1], we define the Holder space
C™ () ={u e c™2)| 9% € C®Y () Va with |a| = m }.
This is a Banach space with respect to the norm

llullemy @y = max|q<mll9%ullc@)

+

la]l=m

97w (x) — 9%u(y)| }
S X,y € Q,x #
{ =y Y y

where [|ull¢ @) = supxen|u(x)|.

So, the space C™Y (2) consists of those functions u that are m-times continuously
differentiable and whose k'-partial derivatives are bounded and Holder continuous
with exponent y.

Theorem 2.3.6. Assume n < p < oo, Then there exists a constant K, depending only
on p and n, such that
lull o (gmy < Kllutlly s ey

for all u € Ct (BRN), where y :== 1 — n/p.

Theorem 2.3.7 (General Sobolev inequalities). Assume Q < &N is bounded and
open, and suppose 92 (the boundary of Q) is C1. Assume also u € W*P (Q).
Q) If
k<n/p
then u € L9 (Q), where

S| =
S| &

1
q



[13] A. PRELIMINARY

and we have also the estimate

ellacay < Kllllyn gy,
where the constant K depending only on k, p, n and Q.
(i) If

k>n/p
then u € Ck_[E]_l’y(ﬁ), where

n n . n
[—] +1——,if —isnot an integer
_ p p P

n
any positive number < 1,if 5 is an integer.

In addition, we have the following estimate

u < K|\|ullyykp/ o,
[P

where the constant K depending only on k, p, n, y and Q.
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3. Calculus on normed vector spaces®

Calculus has always been the pioneer of change in our modern theories of science as
with its notion of differentiation and integration we gave shape in uncounted physical
concepts. In the present section we will extend the properties of calculus beyond the
two-dimensional space and propose the equivalent theorems in the whole space of
RN,

3.1 Smoothness of the boundary

Sobolev spaces among the many properties they have, require also specific
smoothness-arguments concerning the boundary of the domain for their properties to
hold.

In order to explain the things a little further let us assume a vector field in two-
dimensional space. We will make the assumption that the “source” of the field takes
place in the origin of our space and that we have an isotropic propagation, i.e., equally
distribution of propagation among the directions. Obviously, the field has the shape of
a circle with the vectors pointing outward propagating the action (or flow) equally
throughout the space, like a wave.

When referring to the regularity of the boundary of a domain we mean the continuity
of propagation in the limits (of the domain) as defined by the “transmission-rules” of
the setting framework of action, i.e., the continuity of the derivatives of points
belonging to the boundary.

Definition 3.1.1. Assume Q c &N be open and bounded, k € {1, 2, -+ }. We say the
boundary 9Q is CX if for each point x° belonging to the boundary there exists r > 0
and a Ck-function g : ®N! — 3R such that upon a transformation of the coordinate
system, if necessary, we have

NDNnBx%r)={x€eB&’%)|xy>g(xy, -, xy_1)}

Here B(x°, 1) denotes the N-dimensional ball centered at x° with radiusr.

5. See more on Chapter 7 of [4], Appendix C in [5], and for a general reading in [11].
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Q

Q)

RN— 1

Figure 1. Smoothness of the boundary of Q c &N,

Remark. (i) If 9Q is C!, then along the boundary of Q we can define the outward
pointing unit normal vector field v = (v1,---,v").

The unit normal at any point x° belonging to the boundary is v(x%) = (v?,---,v3).
(i) Assume u belonging to C*(2). We define by

Ju/9v :=v-Du
the (outward) normal derivative of u.

3.2. Gauss-Green Theorem

By our previous notes on smoothness and outward normal vectors the integration of a
function belonging to C* over the boundary of the domain is properly defined.

In this subsection we will take Q to be a bounded, open subset of 3N and the
boundary of Q to be C*.

Theorem 3.2.1 (Gauss-Green Theorem). (i) Assume u belonging to C*(2). Then

Juxi dx = f uvtdS (i=1,---,N).
90

0

where u,, denotes the partial derivatives of u with respect to the spatial dimensions,

and v* the outward pointing unit normal vector field, integrated with respect to the
boundary of Q.
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(if) We also have

fdivudx=f u-vdsS

0 90

for each vector field u = (ut,---,u") € C*(2; RN), which is referred as the
Divergence Theorem. m

Theorem 3.2.2 (Integration by parts). Assume u,v € C1(£2). Therefore

fuxiv dx = —fvxiu dx +f wvtdS (i=1,-,N).
0 0 90
Proof. We begin by integrating over Q the quantity (uv)s..

j(uv)xi dx & f(uxiv + v, u) dx = j Uy, U dx + jvxiu dx (1)
2 2

0 0

where the first equality is valid from the product rule.
Applying the previous theorem to uv, we get

![(uv)xi dx =Lﬂuvvi as (2)

From (1) and (2) we take the integration by parts formula. Q.E.D.

Theorem 3.2.3 (Green’s formulas). Assume u,v € C%(2). Then

; — |
(l)f”Audx_Lgﬁ” ds,

.. YJv

(it) [,Du-Dvdx = —fﬂuAvdx+Lﬂl9—vudS,
Jv Ju
(iit) [, ubv — vAudx = Lﬂau—avdb‘,

where D denotes the Hamilton operator

)
Ve — (i=1,-,N).
o, (i ). m
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4. Measure Theory

In subsection 1.3 we referred to Lebesgue integrable functions and defined the
Lebesgue spaces (see Def. 1.3.1). In this section we make a brief outline of some
fundamental properties of measure theory and more specifically of the concepts of
Lebesgue measure and Lebesgue integration. For a general studying on measure
theory see [2] or Lecture 6 -Multiple Integrals: Lebesgue Integration- in [12]. For a
short introduction see Chapter 1 in [4] or Appendix E in [5].

4.1 Lebesgue Measure

According to the dimensionality of the space the measure appears as a generalization
of the “length”, “area”, “volume” or an affinal generalization.

Definition 4.1.1. Assume Q is an open set and @ a closed set. We define the
Lebesgue measure of the sets Q and @ respectively by

m[)zfdv anqub:fdv.
Q @

Theorem 4.1.2. Assume the set E lying in an open set Q. We say E is measurable if
there exist a sequence of closed sets Fx included in E and a sequence of open sets
containing E, such that

m(Q, —F,)—>0as k> oco. m
For the proof of Theorem 4.1.2 see pp.104-105 in [12].

Remark. Assume F are closed sets included in E and £ are open sets containing E. If
the set E is measurable, then

mE = sup mF = infm{).
FCE EcCn
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Proposition 4.1.3. For any two measurable sets E1 and E», the following relation
holds

mE1 + mEZ = m(E1 + Ez) + m(ElEz),
where by E; E, is denoted their intersection. m
Hence, we see that the sum and intersection of two measurable sets are always
measurable.
Remark. If there are open sets ©k containing E with infm,, = 0, then according to
the previous remark, mE = 0. Conversely, any set having zero measure can be

included in an open set with measure as small as we please.

Theorem 4.1.4. If on a bounded open set Q a sequence of measurable sets {E } is
given with no common points, then the sum of these sets E = ), E}, is measurable

with
mE = Z mE,. m
k=1

For the proof see pp.112 in [12].
4.2 Lebesgue Integration

Following the concept of measurable sets, we procced with the definition of the
measurable functions.

Definition 4.2.1. Assume Q is a bounded open set and f a function defined on that
set. We say f is measurable if and only if there exist closed sets Fx with measure close
to that of Q according to our will, on which f is continuous, and

mf) —mF, <e¢,
where ¢ is any positive number.
Definition 4.2.2. If a non-negative function f has an inner integral® in an open set Q,
then we say f is integrable, or summable in the Lebesgue sense on the domain Q, with

its inner integral representing then its Lebesgue integral with the notation of an
ordinary integral.

6. Assume f an arbitrary non-negative function defined on a bounded open set Q. Consider all
the closed sets F included in Q on which f is continuous and define the upper bound of the
integrals of f taken over the sets F; supy fFf dy.

We shall call this upper bound, if it exists and is finite, the inner integral on the set Q of f and
we shall use the notation

(in)![fdv.
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We will complete this outline by giving two of the most important theorems that
characterize Lebesgue integration.

Theorem 4.2.3 (Lebesgue Dominated Convergence Theorem). Suppose {f}« is a
sequence of summable function converging almost everywhere in the open set Q to a
limit function f. If the functions |f;| < g, where g a certain summable function, then
the function f is summable with

ffdv:%imffkdv.
0 0

Theorem 4.2.4 (Fubini’s Theorem). Assume 2, c &N and 2, < R’ are Lebesgue
measurable sets, and let f be a summable function defined on 2 = 2, X ,. Then for
almost every x € £, the function f(x,) is Lebesgue integrable on £2,, fﬂz f(x,y)dy

is integrable on £2,, and

f [ f(xy) dyl dx = f f(x,y) dxdy.
0, 2

24

Similarly, for almost every y € 0,, the function f (-, y) is Lebesgue integrable on £,
fﬂl f(x,y) dx is integrable on 2,, and

f [ f(x,y) dxl dy = f f(x,y) dxdy.
04 2
2,

From the validity of the proof of the above two theorems follows the admissibility of
passing to the limit under the integral sign, the criterion for the convergence in the
mean of a sequence of function, and the possibility of changing the order of
integration in a multiple integral.
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5. Semigroup Theory’

In our previous concerns we briefly talked about the recasting of an PDE in an
operator equation, with the operator encoding the structure of our original equation.
The validity of our problem upon the recasting procedure must be preserved, i.e., the
information regarding boundary or initial conditions, in addition to the prescription of
the arguments of our equation must be properly redefined without being affected. Sine
qua non of this treatment is the construction of a time-dependent family of operators
in order to represent the evolution of our system in proper manner with respect to our
initial conditions.

In this section we construct the pillars of this treatment and outline some of the
most vital elements of the theory of semigroups.

5.1 Definitions and properties

We assume X is a real Banach space, and we consider the initial-value problem

{ u(t) = Au(t), t=0
u(0) = u,

where - = %, u € X is our initial data, and A is a linear operator. Suppose, also, that
the domain of A, D (A), is a linear subspace of X. Therefore, we have

A:D(A)cX X

Our intention is to study the existence and uniqueness of a solution of the following
form

u: [0,00) - X.

We propose for the moment that u : [0, ) — X is indeed a solution of the initial-
value problem and that for each initial data u there exists a unique solution.

7. See Chapter 2 and 6 in [4], or Chapter 7 in [5].
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Definition 5.1.1. We denote the solution as
u(t) =S{t)u, t =0,

to represent the dependence of our solution on the initial data.
By this notation we may regard S(t) as a time-dependent mapping from X into itself.

Proposition. (a) The family of operators {S(t)}:s( is linear with
(D S(0)u = u foreach u € X,

i.e., S(0) =1, where I: X — X is the identity mapping.
(b) Our initial-value problem has a unique solution for each initial data, i.e.,

(2) St+s)u=St)S(s)u=S)S()u (t,s =0,u € X).

The solution of our problem as we denoted is u(t) := S(t)u, t = 0.

We have u(ty) = S(ty)u and S(t)u(ty) is the solution of the differential equation
on [t,, T] with the initial condition u(t,) at t,. By the uniqueness of the solution,
S(u(ty) = u(t +ty), i.e., S(t1)S(ty)u = S(t; + ty)u, since u € X is arbitrary,
S(t; +ty) = S(t1)S(ty). Q.E.D.

(c) For each u € X the mapping t — S(t)u is continuous from [0, oo) into X,

Definition 5.1.2. We say a family of bounded linear operators {S(t)}:-o mapping X

into X is a semigroup if and only if the conditions of the above proposition are

satisfied.

Remark. In addition, we say {S(t)};s, IS a contraction semigroup if and only if
IS <1 (t=0),

where [|-]| denoting the operator norm defined in section 1 (see Def. 1.4.4). Thus

IS@ull < |lull, t =0,u € X.

Definition 5.1.3. Wesay 4 : D (A) c X — X is the infinitesimal generator of the
semigroup {S(t)}¢so With

D(A) = {u EX| tlirgks(t)# exists in X}
and
Ay = lim S (u € D(4)).

t—07t t
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Theorem 5.1.4. Assume u € D (A). Therefore, we have
(i) S(tH)ue D(A)foreacht = 0.
(ii) AS(t)u = S(t)Au foreach t > 0.
(iii) The mapping t — S(t)u is differentiable for each t > 0.
(iv) %S(t)u =AS(Hu,t>0.m
For the proof see pp. 435-436 in [5].

Remark. From property (iv) and the fact that t — AS(t)u = S(t)Au is continuous,
the mapping t — S(t)u is Ctin (0, ), if u € D (A).

Theorem 5.1.5. Under the previous assumption we have
(i) The domain of the operator A is dense in X
and
(ii) the operator A is closed, i.e., if for any sequence {v,} ¢ D (4), v, — v and
A(vy) > wask - oo,wehavev e D(A)andw = A(v). m
For the proof see pp. 436-437 in [5].

Definition 5.1.6. (a) We say a real number 4 belongs to the resolvent set of A, p(4),
provided the operator
M—A:DA)->X
is bijective.
(b) If 2 € p(A), the resolvent operator R; : X — X is defined by

Ryu = (Al — A) tu.

Remark. According to the Closed Graph Theorem®, R; : X » D (A) € X isa
bounded linear operator, and furthermore for u € D (A) we have, AR;u = R; Au.

The importance of defining the resolvent set and the resolvent operator is rising from
the existence of solutions of equations of the following form

(AU —Au = f,

where f is a given function defined on X and A a real positive number.

Obviously, the solution takes the form, u = (A — A)~1f and therefore the
consideration of the set of all real numbers A for which such a solution is valid, i.e.,
the inverse operator (Al — A)~1 exists on X to D (4) < X, defines the resolvent set.

Definition 5.1.7. The set that remains after the exclusion of the resolvent set from the
set of real numbers is called the spectrum of A, i.e., a(4) = B — p(4).

8. (Closed Graph Theorem): Assume A : X — Y be a closed, linear operator. Then A is
bounded.



[23] A. PRELIMINARY

Theorem 5.1.8. (a) If A, u € p(A), we have

Ry — R, = (u— DRyR, (resolvent identity)
and
RARM = R#RA.
(b) If A > 0, then A € p(A4),

Ryu = f e MS(Hudt (u€X),
0

and so ||Ry|l < /11 [ ]
Thus, the resolvent operator is the Laplace transform® of the semigroup (see Example
8, pp. 203 in [5]). For the proof see pp. 438-439 in [5].

So far, we talked about semigroups, and the relation between them and the operators
of the posed problem. A significant account about relating these two concepts is
which operator generates a contraction semigroup. In the following theorem which is
also referred as Hille-Yosida Theorem we give the necessary conditions.

Theorem 5.1.9. Assume A to be a closed, densely-defined linear operator on X. Then
we say, A generates a contraction semigroup {S(t)}:s, if and only if

(0,0) € p(A) and [|R;l| < 3 for 1> 0. m

For the proof see pp. 439-441 in [5].

8. Assume u € LY(R*). We define its Laplace transform using the notation Zu = u as

u(s) = fooo e Stu(t)dt (s =0).
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6. The Banach fixed-point theorem

In this section we investigate the existence of solutions to operator equations lacking
the property of linearity and which take the following form

TUu)=u,uevV,

where the space V is a subset of a real Banach space X, and the operator T is a
mapping from V to X.

Obviously, according to the equation, the points that satisfy the above condition
remain unchanged under the action of @, i.e., the solutions of this equation may be
regarded as fixed-points of the operator @.

It should be also mentioned that if we take a closer look on our problem then we
will notice that the analysis of the solvability is based on the analysis of the operator,
as the fixed-points of an operator may not be fixed for another operator, i.e., the
treatment should be made on the operator itself.

By this statement we begin our analysis assuming X to be a real Banach space
equipped with the norm ||-||x, V to be a subset of X, and @ an operator from V to X.

Definition. We say an operator @ : V c X — X is contractive with contractivity-
constant 0 < a < 1 if

ITU) — TO)||Ix < allu—ollx YU, o€ V.

Remark. From a geometrical point of view, the above inequality points out that the
distance of the image of two elements is less or equal than the distance of the
elements itself, i.e., a “distance-contraction” between two elements is accomplished.

Theorem. (a) Existence and uniqueness:

Assume V is a non-empty closed set in a real Banach space X, and also, that
@: V - Vis a contractive mapping with contractivity-constant o, 0 < a < 1.
Therefore, there exists a unique u € V such that T(u) = u.
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If we are also interested in approximating the solution of the fixed-point problem by
following an iterative method then we get also the following result;
(b) Convergence and error estimates of the iteration:

For any initial guess u, € V, the sequence {u,} c V defined by the iteration

formula uy,,; = T(ug), k=0, 1, ..., converges to U; ||u, —ully = 0 as k — oo.
For the error estimates, we have the following valid bounds:

k
. a
(1) llug —ullx < T luo — wqllx,

- a
(i) flug —ullx < T lug—1 — ugllx,

(i) flug —ullx < allug-1 —ullx.

Proof. (a) Since @ is a mapping from V to V, the sequence {u,} is well-defined.
Firstly, we prove that {u; } is a Cauchy-sequence. From the contractivity of the
operator T we have
d (U1, w) = d(@(uy), T”ug-1))
[T (uk) — Tlug-1)lIx
< aflug — ug-1llx
= ad(T(ug-1), Tuk-2))
< o Jlug—q — ug—2llx

< a® d(uy, up).
Therefore, forany [ > k > 1,

I—k—1
d(u, ) < Z . d (ks jr1s Uper j)
]:

-k-1
< z a®t d(uy, up)
j=0

ak

< d(uq, ug).

1—a

Since 0 < a < 1, d(u;, u,) —» 0as I, k —» oo; thus {u,} is a Cauchy-sequence. From
the fact that V is a closed set in the Banach space X, {u;} converges to an element
u € V. Taking the limit k - oo in uy,; = T(uy), we see that u = T(u) by the
continuity of @, i.e., we proved that u is a fixed-point of T.

To complete the first part of our proof we need to show the uniqueness of our
solution. For this, suppose that u;, u, € V are both fixed-points of the operator T.
Then from this statement we obtain; u; = T(u,) and u, = T(u,) or

U — Uy = Tuy) — Tuy).
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Taking the norm on both gquantities we get
luy — wallx = 1T(uy) — Tu)lIx < a flug — usllyx

which implies since 0 < a < 1, that d(uy,u,) = 0, i.e., u; = u,. So, we proved that
a fixed-point of a contractive mapping is unique.

(b) In the second part of our proof, we need to prove the validity of the error
estimates. By our previous calculations we showed that

k

a
d(u,uy) < T

d(uy, up).
s (1, uo)

Letting [ — oo and using the convergence u; — u and the (iii)-property of the distance
between two elements we get the first error estimate.
From

llug — ullx = [T(ug-1) — T(W|Ix < a flug-y — ullx
we obtain the third estimate. Using this, together with
llug—1 — ullx < llug—y — wellx + llue —ullx
we get the second estimate. Q.E.D.

This theorem is known as the Banach fixed-point theorem or as contractive mapping
theorem.
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7. The Galerkin method

In many problems involving nonlinear partial differential equations, the use of
numerical methods is the lapis primus of our study. In this section we will make a
briefly introduction to the Galerkin method and discuss the approximation techniques
used for the weak-solutions of a problem. For a general study on the Galerkin method
and some of its variants see Chapter 9 in [4]. For an application on hyperbolic
initial/boundary-value problems see Chapter 7 in [5].

7.1 Introduction

The formulation of a problem with initial, boundary, or a combination of these
conditions, concerning the behavior of our unknown function, in the type of a system
composed by a partial differential equation and the mentioned conditions is regarded
as a classical formulation. On the other hand, if we properly remove the smoothness
requirements of the solution we derive the weak formulation of our problem, which is
equivalent to our original one, but more treatable.

To understand the “transition” from classical to weak formulation let us see two
examples of some linear elliptic boundary-value problems.

Example 7.1.1. Suppose that we are given the following elliptic boundary-value
problem which corresponds to the Poisson equation® with the homogeneous Dirichlet
boundary condition

{ —Au = finf,
u = 0in610.

To derive the weak formulation, we multiply the differential equation by a smooth test
function, i.e., by an arbitrary function v belonging to C;° (£2), and integrate with
respect to Q.

9. The Poisson equation in the nonlinear form —Au = f is the non-homogeneous Laplace
equation which can be used to describe among others steady state heat conduction,
electrostatics, gravity potential in free space, etc. See more in [5].
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This leads to

N
According to the Green’s second formula we have

—fAuvdx= ffvdx.
0

Jv
VuVvdx — | —udS = dx,
bfuvx Lﬂﬁvu ![fvx

and by the compact support of v (v = 0, in 802) the equation is reduced to

fVqudx=ffvdx.
0

0

The term on the left-hand side of the equation points out that the functions u, » should
belong to the Sobolev space H} () - instead of the space C%(2) N C(2) which is the
proper space in our classical formulation - and from the right-hand side term f €
L?(£2) in order for the last equation to have a meaning. Under these assumptions we
have a weak formulation of our problem:

u,v € H&(Q),fVqu dx = jfv dx, f € L*(Q).
2 2

If in addition we assume X = H3(Q), a( , ) : X X X — R, the bilinear form defined
by

a(u,v) = fVqudx foru,v € X,
0

and [ : X — R, the linear functional defined by
l(v) = va dx forv € X,
)

the weak formulation of the problem takes the form
a(u,v) = l(v) Vv E X,
where u € X is the solution.
Example 7.1.2. Consider the Helmholtz equation with the homogeneous Dirichlet
boundary condition

{—Au+u=fin.(2,
u=0ind910.

(For a study in Helmholtz equation see [5]).
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Following the previous procedure, we derive the equation
— f(Auv +uv)dx = ffv dx.
2 0]
As before, using Green'’s second formula and the compact support of » we take

}!-(Vqu +uv)dx = ![fv dx.

Obviously, the validity of this equation holds if u,v € H}(Q) and f € L?(0).
Therefore, the weak formulation of our problem is

u,v € H} (), f(Vqu +uv)dx = jfv dx, f € L*(),
2 0

and if we take into consideration our previous notation we have
a(u,v) = l(v),

for X = H5(Q), u,v € X and a(w,v) = [,(VuVv + w) dx, l(v) = [, fvdx.

The significance of the weak formulation is that we can use the Galerkin method,
which we develop in the next subsection, to approximate the weak solutions of our
problem.

7.2 The method

Assume X = H(Q), a(, ) : X x X > R abilinear form, and [ : X —» R a linear
functional. We consider our previous notation on the weak formulation of our
problem

a(u,v) = l(v) Yu,v € X,
and the following two conditions
(i) a(, )isbounded,i.e., |a(u,v)| < K|lullxllvlx Yu,v € X,

and
(i) V-elliptic, i.e., a(v,v) = kollv||% Vv € X.

Therefore, according to the Lax-Milgram Lemma, our problem has a unique solution.
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Even though the existence and uniqueness of the weak solution has been secured by
the above lemma, the exact solution may not be easily found due to the infinite-
dimensionality of our space. To overcome this “peculiarity” we project our problem
to a finite-dimensional subspace and using the Lax-Milgram Lemma we secure again
the existence and uniqueness of the solution. Thus, assuming X, < X to be our N-
dimensional projection we get

a(uy,v) = l(v) Yuy,v € Xy.

We may actually make our work much easier if we recast our problem in the form of
a linear system. To do this, we take {w;}_, to be a basis'® of X, and write

N
Uy = Z d]W]
j=1

Taking v € Xy to be each of the basis-functions w;, and substituting to the problem
we take
N
a (Z d]W],Wl> = l(Wl)
j=1

(a(wj,wi)) (d)) = twy)

or

where using the following notation

A= (a(wj, Wi)) € RN = the stiffness matrix
d = (d;) € BN =the unknown vector
b = l(w;) € BN =the load vector

we derive the equivalent linear system, Ad = b.

Following the prescribed procedure for an expanding sequence of subspaces we can
increase the accuracy of approximation, and use Céa’s lemma' for error estimates.

By this we complete our introduction to the Galerkin method, a variant of which we
shall see in Chapter II.

10. A basis is a set of independent vectors such that any vector in the space can be written as
a linear combination of them. See more on Chapter 1 in [4].
11. See Proposition 9.1.3 in [4].
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B. Introduction

Our aim in this work is to study the existence of global solutions and blow-up
phenomena in finite time of the following quasilinear dissipative Kirchhoff’s string
problem with initial conditions

{utt — o) |[Vu®)|?Au + 6u, = f(u), x€RN,t>0
u(x,0) = up(x), u(x,0) =u;(x), xRV

where (¢(x))7! = g(x) € LN2(RY) n L*(RY), N > 3, § the resistance modules
and f the external force.

The equation was firstly proposed by Gustav Kirchhoff for the study of vibrating
stings (one-dimensional), membranes (two-dimensional), or elastic solids (three-
dimensional) with § = f = 0, and takes the form

h192u_ +Eh L(ﬁu)zd 9%u
Phoez =70 2r ), \ox) “foxz

for0<x <L, t=0.
The physical interpretation of u = u(x, t) is the displacement in some direction of

the point x at time, t > 0, where by E we denote the Young-modules'?, p the mass
density, h the cross-section area, L the length, and p, the initial axial tension. When
po = 0 the equation is considered to be of degenerate type, i.e., an unstretched string
or its higher dimensional generalization; otherwise, it is of non-degenerate type and
the equation models a stretched string or its higher dimensional generalization (See
more in [9], [10].).

12. Elasticity’s modules or Young-modules is the proportion coefficient between stress and
strain (deformation) and represents the stress that causes ¢ = 1, i.e., the displacement of the
string is equal to its initial length; AL = L . We use the notation E = 6/ = FL/hAL, where
F is the force exerted on an object under tension, h the actual cross-sectional area, AL the
displacement of the length of the object, and L its initial length. Is measured in Pa (1 Pa =

1 N/m? =1 kg/ms?). In material science we distinguish elasticity’s modules in tension
and compression.
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For the purposes of this work, we have made the following arrangement: In Chapter |
we introduce the dynamical system, -the framework of analysis of evolution equation-
and give an example from classical mechanics to specify the concept of phase space.
In Chapter Il we begin the study of our problem. In the first section we make a brief
review in the natural background of hyperbolic equations with non-constant diffusion
coefficient, and give some known results concerning the study of our problem. In the
next section we represent the space setting of the problem and the necessary
embeddings for the continuation of our study. In the third section, we prove the
existence and uniqueness of the weak-solutions, in the fourth section we study the
existence of global-solutions and the energy estimates of those, using the potential
well method. In the fifth section we end our study by giving some results concerning
the blow-up phenomena of the solutions of our problem using the concavity method

(see [3]).
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|. Dynamical Systems

The ““space-time-condition” as primus principle of validity of motion presupposes the
existence of one or more elementary factors which represent the connection of events.
Since our concepts of change are based upon this connection, defining a “framework
of change”, i.e., a space that represents rates of change depending on the initial data at
some given time, is as a matter of fact one-way. Even though this is an arbitrary
definition, this framework is actually what we usually call a dynamical system.
Throughout this chapter we follow the mathematical description of a dynamical
system, and in section 2 we will return to our preceding definition in order to explain
in depth the concept of phase space or state space as it may also be found in
literature.

1. Definitions, and elementary properties

In the case of continuous time®® we have the following definition
Definition 1.1.(a) A family of maps {M;};s¢: X = X such that M, = I and
Mi s = My o Mg, Vt,s =0

is called a semi-flow.
(b) A family of maps {M,};cg: X — X such that M, = I and

Mt‘l'S = Mt o MS' Vt,S ER

is called a flow.
We say that a family of maps {M,} that is a semi-flow or a flow is a dynamical

system with continuous time.

Remark. If {M,} is a flow, then M; o M_, = M_, o« M, = M, = I, and therefore each
map M, is invertible with its inverse given by M1 = M_,.

13. See Chapter 2 in [6] for a description of dynamical systems for discrete and continuous
time.
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Proposition 1.2. Assume F: 8N — 38N is a continuous function such that, given
uy € RN, the initial-value problem

{ u(t) = F(w)
u(0) = u,

has a unique solution u(t, u,) defined for t € R&. Therefore, the family of maps {M,}
from B’Nto BN defined for each t € R by

M, (uo) = u(t, up)

isaflow. m
For the proof see Proposition 2.3 in [6].

Relating this result with the definition for the semigroup of operators (see in
preliminary), the semigroup {S(t)}:»o defines a dynamical system in X if and only if
the operators are continuous maps from X to X, i.e., the family of maps {S(t)};s¢ is a
flow. From this point of view, we may in addition review the concept of orbits which
represent, as we shall, see the evolution of our solutions.

Definition 1.3.(a) For a semi-flow {M,};s, of X, given a point x in X, we define the
positive semi-orbit of x by the set,

Y () =yu () = (M (x): t = 0}.
Similarly, we define for a flow {M,};cg the negative semi-orbit by the set
Y~ () =y (x) = {M_(x): t = 0}.
Thus, the orbit of x is given by
y(x) =yu(x) = {M(x): t € R}.

(b) In the same way, for every point u in X, the positive semi-orbit of the dynamical
system, or the orbit that begins from u is given by the set

e = Jsou,
t=0
and the negative semi-orbit, or the orbit that ends in u is given by the set
= Js¢-ou
t=0

The orbit of the dynamical system defined by {S(t)};s, is obviously the union of
these semi-orbits, i.e.,

=y Jrw.
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S(to)u

Figure 2: The orbit of a dynamical system with initial condition w(0) = wu.

In figure 2 the time-axis is defined as strictly positive, i.e., the negative semi-axis is
understood as taking time with minus sign to express the inversibility property of
{S(t)}:>0. Consequently, the negative semi-orbit is valid if and only if the dynamical
system possesses the backwards uniqueness property; S(t) is one-to-one.

2. Phase space

In Proposition 1.2. we assumed that our function is a continuous vector-valued
function defined in BN, This means that the function u which satisfies the initial-value
problem will be a vector function, e.g., u = (uq, -+, uy). We may take this vector as
a row-vector, i.e., u = (uq, -+, uy); Or as a column-vector, i.e., u = (uy, -, uy)’
depending on the validity of our calculations.

Such a function may be considered as a parametrical representation of the N-
dimensional generalization of the curve in the plane u,u, --- uy_;uy, and usually we
interpret this representation as an orbit of a single particle in &N with velocity given
by the differential equation. The plane u,u, --- uy_,uy is regarded as the phase space
or state space of our dynamical system, and a venerable collection of orbits determine
the behavior of the evolution of the system.

In order to clarify in a more explicit way the concept of phase space we consider a
single particle moving in &N, Apparently, the position, the velocity and the
acceleration of our particle will be represented by vectors in &N as we have already
introduced. Therefore, we have respectively,

X1 X1 X1
x=|:i |, u=zx=[:] a=z=x=|: |
XN XN XN
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Under these assumptions, Newton s second law (F = ma) takes the form
F(x(t),x(t)) = mx(t),

where m is the mass of the particle, and F: &N x ®N — BN, expresses the force law,
which may depend on both the position and velocity of the particle.

Assuming that our force is velocity-independent we can “integrate” our second-
order differential equation and receive a pair of first-order differential equations,
using the velocity of our particle as a new variable. Thus, we take the following
system

x(t) = u(t)
. F(x(®)
u(t) = o

If x(t) is the solution to the first equation and substitute x(t) for u(t) in the second
equation, then we see that x(t) satisfies Newton s second law. The pairs of the form
(x(t), u(t)) that satisfy this system are regarded as the phase space or state space of
the particle in RN,

Clearly these pairs are represented in a 32N space with the evolution given by the
equations using in addition some appropriate initial condition, usually x(0) = x,,
u(0) = u,, where x,, u, € &N are the initial position and velocity vectors,
respectively.

If in addition we consider the Hamiltonian approach of classical mechanics the
position-velocity pair is replaced by the position-momentum pair, and therefore the
above system takes the form

) 9IH
x(t) = %
) IH

with
Hxp) = @m)™ Y p?+ V@)
j=1

be the energy function (kinetic plus potential energy)** of the system, which is
referred as the “Hamiltonian” of our system.

14. We write € = %Z?’zl muf = %Z?’:lpf to express the kinetic energy of a particle in &N
with p; denoting the momentum of the particle, and V (x) the potential energy function with
—9V/9x =F.
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Similarly, the set of possible pairs of the form (x(t), p(t)) are regarded as the phase
space of the particle in &N, with the appropriate initial conditions to be x(0) = x,,
p(0) = p,y, where x,, p, € BN are the initial position and momentum vectors,
respectively.

The phase space therefore represents all the possible states of the dynamical system
which describe the evolution according to the differential system of equations and the
initial conditions.

Example 2.1. Consider the motion of a single particle in &N with no force acting
upon it. Therefore, we may take the potential IV to be identically equal to zero.
According to Hamilton’s equations, then, we have

I()'c(t) = ’Z—H = 191 (2m)~t i pit=(m)™" i p;=m)~"'p
4 p P j=1 j=1

5(6) = 1917'[_0
PRU= "% =

This means that the momentum of the particle is independent of time, which indicates
that the position of the particle is linear in time. Explicitly we write

dx;

d_t] = (m)~'p; = dx; = (m) 'p;dt = J dx; = J(m)"lpjdt +¢ =

xj = (M) 'p;t +¢,
and taking the initial conditions x;(0) = x,,p;(0) = po, we have

{xj(t) = (m)™'pot + xo
pj(t) = po-

Expressing the solution pair (xj(t), Dj (t)) using matrix-notation we get

t+
m

ACI PR IAQ)
[ | =_[pN:(O)

(O] [P
.pN:(w] i L»N:m)]'

To simplify the representation of our phase space we can use conserved quantities or
constant of motions as may also be found in literature. The significance of those lies
in the fact that if we are able to determine them, then each solution of the system must
lie entirely in the level surface of the defined conserved quantity. For instance, instead
of representing the above solution pair in the original phase space 32N we can use the

x1§0)]

2 (6). xy (0)
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conservation of the Hamiltonian A and of the angular momentum (7 to represent the
trajectories inside the joint level sets of H and J. Obviously, the simplification
depends on the determination of the conserved quantities and by extension upon the
dimensionality of the joint level sets of them.

For a further reading see Chapter 2 in [1], and Chapter 9 in [14].
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[1. Existence of global solutions

In this chapter we will study the solvability of a hyperbolic wave type problem with
initial conditions in ]&N. In the first section we review the physical background of the
problem and give some known results concerning the global solutions and blow-up
phenomena. The functional setting of the problem takes place in the second section
where as we shall see the energy space X, := D(A) x D?(RN) introduced to
overcome the non-compactness of the operators which arise in unbounded domains.
In the third and fourth section we prove the existence and uniqueness of global
solutions and the energy estimates of those. In the fifth section we complete our study
with the blow-up phenomena analysis of the problem.

1. The equation and some known results

In various areas in mathematical physics the study of wave phenomena is connected
with the study of equations of the following form*®

U — Au = f(u),

where u = u(x, t) is the unknown, the Laplacian operator A is taken with respect to
the spatial variables, and the real-valued function f defined in the space of the
unknown function represents the external force. The above equation is referred as the
nonhomogeneous wave equation in literature and modifications of this equation give
rise to further studies of wave phenomena.

In this chapter we will study a modification of the nonhomogeneous wave equation
which is referred as the quasilinear dissipative Kirchhoff’s type problem with initial
conditions and takes the following form

{ e — @O ||Vu(®)||?Au + du, = f(u), xRV, t >0 (1.1)
u(x,0) = ug(x), us(x,0) =u;(x), xRN (1.2)

where u = u(x, t) is the unknown, § > 0 the damping term, ¢(x) is the non-constant
diffusion coefficient which represents the wave propagation in nonhomogeneous
medium (changeable density), and f is the external force which takes the subcritical
power nonlinearity form; f(u) = |u|?u.

15. See more in (Section 2.4 and Chapter 12 in [5]).
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For a widely description of physical phenomena that lead to relative mathematical
problems of the above type we refer to [7], [8], [9], [10], and for a further reading we
recommend the references of the paper [10], mentioned in Chapter 3. Indicatively we
mention the Ginzburg-Landau theory®, where in the case of a nonhomogeneous
superconductor the diffusion coefficient -which represents the coherence length of the
superconductive electrons- is considered to be non-constant with respect to spatial
variable.

16. The first observations regarding the effacing of the electric resistance of pure metals at
very low temperatures, which set forth the emergence of the superconductivity phenomenon,
were made by H. Kamerlingh Onnes in the paper “The liquefication of helium” (KNAW,
Proceedings, 11, 1908-1909, Amsterdam, 1909, pp. 168-185) followed by the paper series
“Further experiments with liquid helium” (KNAW, Proceedings, 1910-1923). On the next
decade, and more precisely in 1933, Meissner W. and Ochsenfeld R. published a paper in Die
Naturwissenschaften 21 787, under the title, “A new effect concerning the onset of
superconductivity” (“Eh neuer Effekt bei Eintritt der Supraleitfiihigkeit™). According to this
if one places a cylindrical superconductor, e.g., lead or tin, below its transition temperature in
a uniform magnetic field perpendicular to the cylinder axis the field-line pattern in the region
outside the superconductor changes almost to that which would be expected if the
permeability of the superconductor was zero, or the diamagnetic susceptibility was -1/(4x),
which contradicts the views of “frozen in”” magnetic fields in superconductors (See Meissner
and Ochsenfeld revisited by Allister M. Forrest; Department of Physics, Paisley College of
Technology, Paisley, Renfrewshire, Scotland; Received July 1983). The theoretical
description of the electromagnetic field in a superconductor was given the following year, by
F. and H. London in their paper, “The Electromagnetic Equations of the Supraconductors”
(Clarendon Laboratory, Oxford, communicated by F. A. Lindemann, F.R.S.; Received
October 23, 1934), which was consistent with Meissner’s effect, and clarified the dependance
of the superconducting current with the field. In comparison with the electromagnetic effects
in a superconductor, the thermoelectric effects were still a living problem, and only 16 years
later and specifically in 1950 London’s theory generalized to overcome the difficulties
regarding its application in stronger magnetic fields, the negative values of the surface energy
at the interface between normal and superconducting phases etc. The P-theory of
superconductivity or the Ginzburg-Landau theory as may also be found in literature was the
answer to this generalization; the basis of this was the preceding theory on phase transitions
proposed by L. Landau, and the paper on superfluidity (May 15, 1941) which referred to
superconductivity as the superfluidity of electron liquid in metals (“On Superconductivity
and Superfluidity”, Nobel Lecture, December 8, 2003; by Vitaly L. Ginsburg, P. N. Lebedev
Physics Institute, Russian Academy of Sciences, Moscow, Russia). The quantum approach of
the theory was already proposed by F. London and as Ginsburg-Landau theory was quasi-
macroscopic, the microscopic theory of superconductivity was the next link of the chain. This
theory was given in 1957 and is widely known as the BCS theory (“Theory of
Superconductivity” by J. Bardeen, L. N. Cooper, and J. R. Schrieffer; Dept. of Physics,
University of Illinois, Urbana, Illinois; Physical Review, Vol. 108, N. 5; December 1, 1957).
Many efforts have been made since the advent of the BCS theory on the radical elevation of
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Concerning the solvability and blow-up phenomena of the Cauchy-type problem for
nonlinear hyperbolic equations in papers [7], and [8] we see the study of the global
existence, the blow-up and the asymptotic behavior of the solutions of quasilinear
wave equations with weak damping in 3N. Specifically, in [8] we see that under
certain assumptions on the initial data, solutions exist globally in the energy space
DLZ(RN) x LZ(RN). In this paper the existence of a weak solution to the problem is
obtained using the Faedo-Galerkin approximation (see [8]) where the use of the
Banach fixed-point theorem is used to obtain the uniqueness of the solution. The
global existence is proved using the method of modified potential well (we shall see
this method explicitly in the following sections) and the proof of blow-up of solutions
in finite time is given on the consideration of negative initial energy. For a widely
description of some known results, see paper [10].

2. Functional analysis of the problem

In the study of problems of the type (1.1), (1.2) the functional importance of the
differential operator —¢(x)A and the asymptotic behavior of the diffusion coefficient
-which depends on the equation that describes the physical phenomenon- constitute
the primus axes of the solvability procedure.

In this case, we consider the non-constant coefficient ¢ (x) with the following form

P =co+ ) aelxl), e>0,
k=1

where if we assume that ¢ is sufficiently small, then ¢ (x) represents the slowly
varying wave velocity around the velocity c,. These kinds of bounded functions g, where
g(x) = (@)™ - 0, as |x| = oo -with slow rate-, it could be considered to belong in
a Lebesgue space of the type LP (RY) n L* (R"), for some p > 0. More precisely we
assume that the function ¢: RY — R satisfies the following condition

(%) @(x) >0, vx € R and (p(x)) ™" = g(x) € L"*(R") n L*(R").

For the study of the problem (1.1), (1.2) as a dynamical system we introduce the
phase space X, = D“2(RN) x D(A), where the space D'/2(R") is defined as the
closure of C5°(R") functions with respect to the “energy norm”

||u||%12 = fRNIVuIZ dx.

the critical temperature and the construction of high and room-temperature superconductors
(HTSC and RTSC) but the main objection against these efforts is the crystal stability
condition (see “On Superconductivity and Superfluidity”, Nobel Lecture, December 8, 2003;
by Vitaly L. Ginsburg, P. N. Lebedev Physics Institute, Russian Academy of Sciences,
Moscow, Russia).
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It is well known®” that DV2(RV) := {u € L2V/N=2(RN): Vu € (L?(RM))"} and that
D2 is embedded continuously in L?N/(N=2) 'je. 3k > 0 such that

lull 2v < kllullp:2 (2.1)

N
N-2
The space D2(RY) is also a separable Hilbert space (see Def. 1.1.6 in Preliminary)
equipped with the inner product

(W, v)p12 = f VuVv dx.
]RN

Remark 2.1 (a) In the case of a bounded domain €, we have the relation
D2(Q) = H}(R) & {u € L3(N): % €L3(), i= 1,---,N}.

(b) In the case of an unbounded domain, i.e., a domain with infinite volume, or the
whole &N, the following embedding occurs

Hl(RN) cC Dl’Z(RN).
Before we proceed with the analysis of the problem, we shall give the following

generalized version of Poincare’s inequality (see Remark on pp.12).
Lemma 2.2. Assume g € L"/*(R"). Then there exist £ > 0, such that

for every u € C°(RY).

Proof. Since g € L"/*(R") and u € €&°(RY), we can use the Hélder inequality (see
pp. 9; inequality [e]) with p == and q = — (where the g-factor is valid from the
definition of the D12 (RM)). This leads to

2 N-2

N N

] glu? dx < j 1g1M/2 dx J w2V W=D gt =l gllylleliZy vy
RN RN RN

17. See Reference_67 of the paper [10], mentioned in section 3.2. We also recommend the
paper “New estimates for the steady-state Stokes problem in exterior domains with
applications to the Navier-Stokes problem”, by G.P. Galdi, and C.G. Simader (Differential
and Integral Equations, VVol. 7, N. 3, May 1994, pp. 847-861); where we see that for g €

(1, o) the homogeneous Sobolev space Dé‘q (2) is defined as the completion of C;°(£2)

. . 1
with respect to the semi-norm |u|, , o = (fQIVulq) /q-
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From the embedding inequality (2.1), we obtain

f lglu? dx < K2llglly 2 llul3z.
]RN

Therefore, we can easily find that, & = k‘zllgllg,}z. Q.E.D.

An elementary step for the continuation of our study are the compact embeddings (see
pp. 8, Def. 2.1.2.) where as we shall see elucidate the connection between the spaces
of our problem, and constitute the pillars of the evolution-triple (see Theorem 2.4).

Lemma 2.3. Assume g € L"/*(R") n L”(R"). Then the embedding D'? < L is
compact.

Proof. From the Def. 2.1.2 we know that the space D" is compactly embedded in L
if and only if,

(@) ||u||L§ < C |lullp12 forevery u € D% and C > 0,
and

(b) each bounded sequence in D2 is pre-compact in L2, i.e., if {uj};:l isa
sequence in D" with supj[w]| ., < oo, then there exists some subsequence
e}, , € {uj}jzlwhich converges to some limit u in L2; this means that,
lmmwj—uméza

f—00

The first condition is satisfied since we already have seen (Lemma 2.2) that
||u||i§ < C||u||%1,2 with C = k2||g||N/2. To prove the second condition, we need to

show that a bounded sequence of D2 is a Cauchy sequence® in L%, and use the
property that in finite dimensional space any Cauchy sequence is convergent®.

For this purpose, we assume that {u,} is the bounded sequence of D*2(R"). For all
the positive integers m and n we have

j g2 — ) dx = j 9t — ) (i + ) dlx,
RN RN

and by Hélder inequality for p = == and g = — we obtain

j 92 — u2) dx < 119 — ) lowsvsa) liem + tmllan /v—2)-
]RN

From the embedding inequality (2.1) we derive

18. See [Def. 1.1.3(a); pp. 2]
19. See [4] pp. 14.
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f 92 —u2) dx < kllg(ttn — wd)llaw/ovs2) 1t + tellpaz,
]RN

and from the generalized version of Poincare’s inequality (Lemma 2.2) we get

[ 96k~ k) dx < #llgn = unlaw/cus

RN
where £ = E"lllgll;%zllun + umlng, and the constants are considered in a generic
sense.

Since {u, } is a bounded sequence of D¥?(RY), by Remark 2.1 (a) we have that
{u,.} is also a bounded sequence in H3 (Bg), where By is any open ball of RVwith
center 0 and radius R. Therefore, by the classical Sobolev embeddings®® we conclude
that {u,,} has a convergent subsequence in L?(Bg); consequently, and in
L2N/(N+2)(BpY. In continuation, following a diagonalization process®! we can find a
subsequence (for convenient we shall use the same notation {u,,}), which converges in
L2N/(N+2) (B, for each R > 0.

Assume ¢ a strictly-positive number, i.e., e > 0. Then we have

N+2
2N
2N 2N
”g(un - um)”ZN/(N+2) = f |g(un - um)|N+2 dx + f |g(un - um)|N+2 dx
|x|<R [x|>R
< NgCup —updll 2+ llgQun —up)ll 2n
LN+2(RN-Bg) LN+2(BR)

For the first integral we have that

g (un — wn)ll 2nvsaveey g gy S NG llpnvz gy _p)llten = wnll vz g _p .-
Since {u,} is a bounded sequence of D2 and g € L"/?
sufficiently large, such that

, We can choose a R,

”g(un - um)”LZN/(NH)(RN_BR) <e&/2, Ym,n, if R>R,.
For the second integral we obtain

lg(u, — um)”LZN/(N“)(BRO) < ||g||L°°(BR0)||un - um”LZN/(N+2)(BR0) <e/2

20. See Section 2.3 in Preliminary.

21. See Gray, Robert (1994), "Georg Cantor and Transcendental Numbers", American
Mathematical Monthly, 101 (9): 819-832. For a further reading on the theory of transfinite
numbers see “Contributions to the Founding of the Theory of Transfinite Numbers” (Dover
Books on Mathematics) -1st Edition- by Georg Cantor, Philip Jourdain (Translator);
Published 1955.
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under the presupposition that m and n are sufficiently large. Therefore, {u,} is a
Cauchy sequence in L (RY). Q.E.D.

In further examination of the operator —¢A, we observe that its symmetry property
with respect to the inner product of L?(R") is not satisfied, i.e.,

(—pAu,v) ;2 # (u, —pAv),2 for all u,v € D(—¢A),

where D(—¢A) is the domain of the operator —¢@A.

To overcome this difficulty??, we have to study the operator in a weighted space
L5 (= pr_l)). Following this, is the analysis of the weight-¢ (), and more precisely
its boundness characteristics, since if we can clarify its behavior as |x| — oo, we can
define the physical functional environment of the problems in which such weighted-
functions take place.

More explicitly, if the weight ¢ (x) is of the form

0<c S9(x) <cy,

then it is obvious, that the respective levels are equivalent. Relevant is the case, when
the problem is studied in bounded domains, independently from the boundness
characteristics of the function ¢ (x). Especially, in the case where the space is the RY
and the diffusion coefficient ¢ (x) = o, as |x| = oo, the conclusions are different.

Following the Friedrichs’ Extension Theorem (See Theorem 2.4.) for the studied
operator we shall prove that the functional analysis of the problem (1.1), (1.2) takes
place in the space X,.

Theorem 2.4. Assume the operator Ay: D(4,) € X — X, where dimX = oo and
D(A) = X, is symmetric in the (real) Hilbert space X and that the operator A, is
strongly monotone, i.e.,

(Aou,u)x = cllull, Yu € D(Ap)

and where ¢ > 0.
Then there exists a self-adjoint extension A: D(A) € Xz € X — X of the operator 4,
where X is the energetic space of A, which satisfies the following conditions

(1) the operator is strongly monotone, i.e.,
(Au,u)x = cllullk, Yu € D(A),

(2) the inverse operator A~1: X — X exists and is linear, continuous and self-
adjoint. This means that the equation
Au=f, ueD(A), feX,
has the unique solution; u = A71f,

22. See pp. 44 in [10].
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(3) the operator A=1: X — X[ is linear and continuous,

(4) the embeddings Xz c X < X} are continuous,

(5) the operator A has the extension Ag: X — X5, where Ag is the dual
representation of Xg, i.e., Ag is a homeomorphism and

(Agu,u) = |[ullz, Yu € Xg.
We also have that

ATlf = AZYf, Vu€eX,

(6) if the embedding X; < X is compact, then the operator A™1: X — X is also
compact. m

Let us consider the equation
—p()Au(x) =n(x), x€RY, (2.2)

without boundary condition. Obvious for every u, v € C5°(RY), we have

(—pAu, U)Lg = — jggoAuv dx = — fAuv dx
RN RN

and using Green's second formula and the compact support of u, v we obtain

(—goAu,v)Lé = jVuVU dx. (2.3)
RN

By the definition of the space LZ(RY) and (2.3) it is natural to consider the equation
(1.4), as an operator equation

Agu =1, Ag:D(4y) € IZ(RV) - L2 (RY), (2.4)

where A4, == —@A with domain of definition D(4,) = C5°(R"), and € L (RY).
Relation (2.3) implies that the operator A, is symmetric with respect to the inner
product of the weighted space L and not symmetric in the standard Lebesgue space

L?. From Lemma 2.2. and equation (2.3) we have
(Aou,u)Lé = fquIzdx > ¢ fguz dx
RN RN
or

(Aou, u)z 2 fllullfé. vu € D(4y), (2.5)

where & > 0 is the constant fixed in Lemma 2.2, i.e., the operator A, is strongly
monotone.
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Therefore, the assumptions for the Friedrichs’ Extension Theorem (see Theorem 2.4.)
are satisfied. Consequently, we can define the energetic inner product given by the
equation (2.3) as follows

(u,v)g = f VuVu dx.
RN
The energetic space X is defined as the completion of D (A4,) with respect to the

product (u,v)g, i.e., the energetic space coincides with the homogeneous Sobolev
space D% (RN). The energetic extension of the operator 4,

Ap = —pA: DV2(RN) » D12(RM),

is defined as the duality mapping of D¥?(RY), and according to the Theorem 2.4, for
every n € D~12(RN), the equation (2.2) has a unique solution. We also define the set
D(A) as the set of all the solutions u of the equation

Agu =1, 1€ L;(RY).

Hence, the Friedrichs’ extension A of A, is defined as the restriction of the energetic
extension A to the set D(A). The operator A is self-adjoint? and therefore graph-
closed?*, This implies that the set D(A) is a Hilbert space with respect to the graph
inner product

(W, v)peay = (W, )z + (Au, Av) gz,

for every u,v € D(A).
The norm induced by the inner product (u, v) () is

1/2
lulloga =1 [ glu?ax+ [plauaxt
RN RN
which is equivalent to the norm®
1/2
laullg =1 [ plaul? dx
]RN

The weak formulation?® of the equation (2.2) is

23. See [Section 2.6; pp. 85-90] in [4].

24. (Closed Graph Theorem). Let A: X — Y, where X, Y are Banach spaces be a closed, linear
operator. Then A is bounded.

25. See pp. 46 in [10].

26. See pp. 27.



[48] CHAPTER II

f VuVvdx = f gnv dx,
]RN ]RN

where v € DV2(R"), for each u € C°(RY).
From Lemma 2.3 and the results (4) and (6) of Theorem 2.4, it turns out that the
embeddings

D(4) c D**(RY) c LZ(RY) c D~H*(RY), (2.6)

are compact and dense. Henceforth, the embedding relations (2.6) define an
evolution-quadruple which forms the basis for the further study of the problem

(1.1), (1.2).

For the general eigenvalue problem of the Friedrichs’ extension operator A we may
derive usefull results using the continuous embeddings of (2.6) and the condition (6)
of Theorem 2.4 (see pp. 47 in [10]). More precisely, for the eigenvalue problem

—p(x)Au = pu, x € RV, 2.7)

there exists a complete system of eigen-solutions {w,, u,,} satisfying the following
relations

O0<u; <p; <, pj > o, asj - o,

The eigenfunctions w;, j = 1,2, ..., belong of course in D>*(R") and are also eigen-
solutions of the weak-eigenvalue problem

fVqu dx =u fguv dx, v € DV2(RN),
IRN

RN

for each u € C3°(RY). We also have to note that, the eigenfunctionsw;, j = 1,2,...,
constitute a complete orthonormal system for the space L (RY). For information
regarding the asymptotic behavior of the solution u of the problem (2.7) we refer to
pp. 47 in [10]; where it is mentioned that under specific arguments it can be proved
that every solution of the eigenvalue-problem (2.7) converges to zero as |x| — oo.

For the positive?’ self-adjoint operator A = —@A, we can define the powers of
operators as follows: for every s € R, the operator A° is an unbounded strictly-
positive operator, self-adjoint in the space L%, with domain of definition the set
D(A®), which is a dense subset of LZ.

27. An operator A is said to be positive if for all p € D(A), with i # 0, the following
inequality holds

Wy, Ay) > 0.
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The space D (A%), is also a Hilbert space with respect to the inner product
—— S N
(u, U)D(AS) = (A u, A U)Lé'

To define a proper relation between the spaces of the evolution-quadruple (2.6) and
the domains of the operator A5 (for every s € R), we may use the notation V,, =
D (A®), with the following identities

V_1/, = D(A7Y/?) = D~Y2(RV)
Vo = D(A°) = LZ(R")
V; = D(AY?) = DV2(RY),

where for every s;, s, € R, with s; > s,, the embeddings D(A5t) c D(A%2) are
compact. For a further reading regarding the powers of operators we refer to pp. 48 in
[10] or the paper [7].

Having determined the functional background of the problem (1.1), (1.2), we are able
to give the definition of the weak-solution for the problem, using the evolution-
quadruple (2.6).

Definition 2.5. A weak-solution of the problem (1.1), (1.2), is a function u(x, t)
such that

(i)  w€el?[0,T;D(A)], u, € L*[0,T; DV2(RV)], u, € L?[0,T; L3 (RV)],
(i)  forevery function v € C°([0,T] x (RY)), satisfies the generalized
equation

[IVu(®)||? fVu(r)Vu(r) dx dt

RN

+5] (ue (), v(1)) , dt —j (f(u(®),v(r)),, dr =0, (2.8)
0 Ly 0 Ly

]OT(utt(T):U(T))Lé dt + Jo

where we have that; f(s) = |s|?s, and
(iii)  satisfies the initial conditions

u(x,0) = ug(x) € D(4), u.(x,0) =u,(x) € D¥2(RV).

Remark 2.6. Using proper density arguments, we may prove that the generalized
equation (2.8) is satisfied for every v € L2[0, T; D*?(R")]. By the compactness and
density of the embeddings in the evolution-quadruple (2.6), we have that, as in [10,
Remark 3.2.5; pp. 48], the above Definition 2.5 of weak solutions implies that

u € C[0,T; D¥*(RY)] and u, € C[0, T; L3 (R")].
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Remark 2.7. Although the definition of the weak solution requires the external action
to belong in the weighted space LZ (R"), this claim is not restrictive. Indeed, by the
definition of the weighted space Lg(RN) and the condition (®) results that

I2(RM) € I2(RY). (2.9)

The relation (2.9) in combination with the Remark 2.1 (b) indicate, that the
solvability of the problem can be obtained in a widely class of external forces.

3. Local solution and estimates

Before we proceed with the proof of the existence of the local solution, we shall give
some additional information regarding the functional spaces of the problem.

2N

Lemma 3.1. Assume that g € Lz2N-pN+2p(RM), Then the following continuous
embedding D*(R") c LY (RY) is valid, for every 1 < p < 2N/(N — 2).

Proof. By Definition 2.1.1 (pp. 8) we know that the embedding D**(R") c Ly (R")
is valid if and only if

lull,» < C |lullp2 for every u € D*?* and € > 0.
g

2N 2N .
——— and B = we derive
2N-pN+2p (N-2)p

Using Holder inequality with a =

1

IS

||u||2’5 = jgup dx < jg“ dx flulpﬁ dx
]RN

RN RN

RIm
N

< jg“dx fquIzdx ,
]RN

]RN
where in the last inequality we have used the inequality (2.1). Q.E.D.

Remark 3.2. The assumption of Lemma 3.1 is satisfied under the hypothesis (®), if
p=2.

Lemma 3.3. Let g satisfy condition (®). If 1 < g <p <p = 2N/(N — 2), then the
following weighted inequality
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161, 116
lullp = Collull g~ llullpsz, (3.1

is valid, for every 8 € (0,1), for which 1/p = ? +% and C, = k°.

Proof. Using the weighted interpolation inequality

lulle < llllz® el %5, (See, pp. 49 in [10])
g g g

and the inequality (2.1) we obtain

1 1-6 (4
q p
fglulpdx < fglulq dx fglulﬁdx
RN RN RN
1-6 (N-2)6
2N
2N
< fglulq dx ngulﬁdx
RN RN

1-6 0 1-6 0
= llullya " llull” 2y < kOllulla lullpe.

Therefore, |lull,» < k9||u||i;9||u||%1,z, where C, = k?. Q.E.D.
g g

Lemma 3.4. Assume g € L'(R") n L*(R"). Then the following continuous
embeddings Ly (RY) c L (RY) are valid, for every 1 < g < p < o.

Proof. Using Hélder inequality we derive

1 1

a
f glul dx < f(g")“dx f(gﬂumﬁdx ,
RN RN RN

where by the Hélder-exponentials relation?, we have for the constants the values a =
p/(p—q)and B = p/q. Thereby for 6 = (p — q)/p and T = q/p we obtain the

embedding inequality [[ull g < Cllull,p, with the constant € = | gl|P~ 9P QED,

28. Recall that according to Hélder inequality (See pp. 9) the exponentials p, q, where 1 < p

and g < oo must satisfy the condition below
1 1
—+—-=1
P q

so that the inequality to be valid.
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In order to obtain a local existence result for the problem (1.1), (1.2), we need
information concerning the solvability of the corresponding nonhomogeneous
linearized problem around the function v, where (v,v.) € C(0,T; D(A) x D1?) is
given, restricted in the sphere Bj:

( U — @IV (OII*Au + Su, = |v|*v, (x,t) € B x (0,T),

32 u(x,0) = uy(x), u.(x,0) =u,(x), x € Bg,
(3.2) i u(x,t) =0, (x,t) € 9Bg x (0,T),
v € C(0,T; D(A4)), v, € C(0,T; DY?),

where by 9B we denote the boundary of the sphere Bg.

Proposition 3.5. Assume that the initial data u, € D(A4), u; € D¥*(RY) and a = 2.
Then the linear wave equation (3.2) has a unique solution such that

u € C(0,T;D(A)), u, € C(0,T; D 2(Bg)).

Proof. We shall prove existence by means of the classical energy method (Faedo-
Galerkin approximation). For this we consider the basis of D(A) generated by the
eigenfunctions of A (see pp. 48) and we construct an approximating sequence of
solutions

n
w0 =) bu(Ow,
i=1
solving the Galerkin-system:

(uit, Wi)Lg(BR) + [|[vut||? fVu"VWi dx + 6 (ut, Wi)L@(BR) — (Ju™?u™, Wi)Lf,(BR) =0,
Br
un(xl O) = ?nuO (x)l u?('x' 0) = :Pnul (x)l

where P, is the continuous orthogonal projector operator of D(A) — span{w;:i =
1,2, ...,n} and of DY2(Bg) — span{w;:i = 1,2, ...,n}*°. Multiplying the equation by
b;,, () and summing from 1 to n, we obtain

1d IVu™||? d

§$||u?||i§(3R) > 4 ||un||12>1,2(3R) + 6”1‘?”25(3,3) = (Ju™?

n n
u-,us )Lé(BR)'

29. The span of wy, w,, ..., w,, € DY2(RN) is defined to be the set of all the linear
combinations of these eigenfunctions:

n
spanf{w;, wy, ..., Wy} = {Z kiwiikieK 1<i< n}
i=1

where K is the scalar-field, which could be the set of the real numbers (R) or of the complex
numbers (C).
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Since ||[Vu™||? = ||u"||%1,2(BR), the equation takes the form

1d njy2 1d nj2 2 ny2 nj2,n ,n
57t s gy + 7 g7 | (I M aay ) |+ OuP I oy = (P w5

Under the assumption that |f(u™)] := ||u™|?u™| < c|u™|?, we derive for the last term
of the above equality

J.gf(u")u?dx <c fgl/zgl/z [u™?|ult|ldx <¢ fglun|4dx+6 fglu{‘lzdx
BR BR BR BR

1/a 2

<¢ fg“dx fIVu"Ide +é fglu{‘lzdx
Br

Br Br

or

(u™u™ u) iz ()

< { gl acor I sz gy + 10212 5,0 )

where in the second inequality we have used Cauchy’s inequality (see pp. 9) with
¢ = c¢/2 and in the third the Lemma 3.1. Therefore, according to this we obtain the
inequality below where € = C(¢, 8, |l gll12(sp))

d/dt (Il (s + 1™ 12 ) < € (Iu™ sy + Iuf 2 5y )

The rest of the proof follows the steps in (Lemma 3.1, pp. 189-192; [7]). Q.E.D.
Next, we will prove the following theorem.

Theorem 3.6. Assume that f(u) = |u|?u is a nonlinear C-function such that
If'(w)| < kqlul?. If (ug,uy) € D(A) X DV2(RN) and satisfy the nondegenerate
condition

IVuoll > 0,

then there exists time T = T(|luollpcay, 1IVu4lI?) > 0, such that the problem
(1.1), (1.2) admits a unique local weak solution u, satisfying

u € C(0,T;D(A)), u, € C(0,T; D2).
Moreover, at least one of the following statements holds true, either
0] T = oo,0r

(i) lim eu(®) = Jim (lue©l130z + a3 ) = .

Proof. The proof is based on the Banach fixed-point theorem (see pp.24-26).
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To apply this theorem, we introduce the two-parameter space of solutions

__(vec(,T;D(4)): v, € C(O, T; D12),v(0) = uy,
TR { v,(0) =uy, e(v(t)) <R% Vte[0,T] }

which is a complete metric space under the distance function

d(u,v) := sup el(u(t) — v(t)), where e; (v) = ||vt||i§ + ”U”%LZ;
0stsT

forany givenT >0, R > 0.

Next, we introduce the non-linear mapping S in the following way. Given v € X7 »
we define u = Sv to be the unique solution of the linear wave equation (3.2). In the
following we shall show that there exist T > 0, R > 0 such that the conditions below
to be valid

(a) S maps X7 into itself, i.e., S: X7z = X7 k.
(b) S is a contraction with respect to the metric d( -, ).

We set 2M,, := ||[Vu,l|? > 0 and denote by
Ty == sup{t € [0,0): ||[Vu(s)||> > My, for0<s<t}
Then we have
T, > 0 and ||Vu(©)||? = M, forall t € [0, T,]. (3.3)

To prove condition (a), we multiply (3.2) by —2Au, (in the sense of the inner product
in the space L?) and integrate over RY, to obtain

-2 jAututt dx + 2||Vv||? J(p(x)AutAudx
RN RN

— 26 JAutut dx =—2 jlvlszut dx. (3.4)
RN RN

Setting,
e3(u(®) = 1Vu (O + IV I lu) 1

(3.4) takes the form

d * 2 d 2 2 2
o3+ 261Vuell? = (S0l lulid e — 2000, 00). (35)

We observe that the following estimate holds

e; (W) = [IVu (OII” + Mollu(® I3y = cr%e(w), (3.6)
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with ¢; = (max{1, My })/2. To proceed further, we notice that

d
(G170 1l = 2 [ BovepCg ) dalluliy e
RN

1/2 1/2
<2( [olaorax) | [gllax)| Il
RN RN

1/2 1/2
< 2(Iwl3e) " (el ) ™ lu@ e

< 2Rk (llvell3sz) e(u(t))
< 2R?kc?e;(u) < cyR%e;(u), (3.7)
with ¢, = 2 kcf, where k is the constant of the embedding D*? c LZ. We also have

that

—2(Jv|?v, Au,) = =2 jlvlszut dx =2 JV(lUlZU)Vut dx
RN RN

(3.8) =2 Jf’(u)VvVut dx < 2k1||v||i2N||VU||L13N IVuell,
—2
RN

where we used Holder inequality withp~* = 1/N,q"t = (N — 2)/2N and r~! =
1/2. Then, from Lemma 3.1 and the embeddings (2.6) we get

lvllfzv < R?, IIV1)||L13_1_V2 < lvllpay S R, and |[Vull < e()?.  (3.9)

Using estimates (3.7)-(3.9), we get from equation (3.5) that

d
aeg‘(u) < c,R?e;(u) + c3R3e§(u(t))1/2,

with c3 := 2k, c;. Hence, from Gronwall’s inequality, we derive

T

e3(u) < elo 2R7ds [eﬁ(u(O)) + f 63R3e§(u(s))1/2 dsl
0

2
< e2RT [ei‘(u(O))l/2 + C3R3T] :
According to estimate (3.6), we receive the following relation

2
e(u) < c? [e;(u(O))l/2 + c3R3T] eC2R°T = BT ks (3.10)
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forany t € [0,T], with T < T,. Therefore, if we assume that
B7 r < R?,
then condition (a) is valid, i.e., S maps Xr z into itself.

To prove condition (b), we take v,,v, € X1 and denote by u; = Svy, u, = Sv,.
Henceforth, we suppose that 87 < R?, i.e., uy,u; € Xrg, and set w = u; — u,. The
function w satisfies the following relation

Wee — @IV, [IPAw + Sw, = @{[[Vuy||? = [IVu, |12 }Au, + |vg [P0y = [v,]%0,,
w(0) =0, w:(0) = 0.
Multiplying this equation by 2gw, and integrating over RY we obtain

2 fthth dx —2 fIIVvlllewwt dx + 26 fgwtz dx
RN RN RN

= 2([IVulI? = IV0,117} f Auigw, dx
RN
+2 fg{lvllzvl—lvzlzvz}wtdx- (3.11)
RN

Setting,
es,(w(®) = IIWt(t)IIié + vy )12z Iw ()| 1.2,

(3.11) takes the form

d d
r e W)+ 268lwe i = 27 VoLl IVwI + 2{1IVoy1” = [V |1}

X (Aug, wy) + 2(Jvg vy — |U2|2U2'Wt)L§]
= 1,(0) + L(t) + L;(b). (3.12)
We also observe that
ey, (W) 2 ”Wt”ié + Molwllgez = ¢ %er (w). (3.13)
As in (3.7), we notice that
L(t) < c;R%ey, (W) (3.14)

L) < 2(R +R)e(v; —v,)1? JIAuZIIWtI dx. (3.15)
]RN
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For the last term of (3.15), from estimation (3.13), we have that

1/2 1/2
[ 1w liwlo 202G dx < (@l 0) " (w11
RN

< Re;(w(D)Y? < Rcye (W)Y, (3.16)
Therefore, from (3.15) and (3.16), we derive that
L(t) < cyR* e, (vg — Uz)l/zesl (W)l/z, (3.17)

where c, := 4c;. Applying the generalized Poincaré’s inequality (Lemma 2.2) and
the embeddings (2.6), we obtain

I3(6) < 2ko& ™ (IVUL 17 + VO IDIV (1 — v2) lIwell
< cgR%e; (v — Uz)l/zei;kl (w)?/2, (3.18)

where cg = 4k ey, & = k72| glly ), the Poincaré’s embedding constant (see
Lemma 2.2) and k, is a constant derived from the formula of f. From estimates
(3.14), (3.17) and (3.18) we get the following estimate for the relation (3.12)

d
ae{jl(w) < c;R%ey; (W) + (c4R* + csR?) ey (vg — vz)l/ze{jl(w)l/z.

Gronwall’s inequality and the fact that e; (w(0)) = 0, imply

ey, (W) < (c,R* + ceR?)2T2e%2R*T sup e, (v4(t) — v,(0)). (3.19)
0<t<T

Therefore, from (3.10) and (3.19), we derive
d(uy, uz) < Brrd(vy,vz), (3.20)

where
Vu || =2
Brg = 4max{1,%} R*T2(1 + kok?|| g||N/2)2 @2kciR?T

by substituting ¢, ¢,, ¢4, cs. From this we conclude that the map S is a contraction if

We note that the two inequalities 87 < R* and Bz < 1, are justified at the same
time, if the parameter R is sufficiently large and T is sufficiently small. Applying
Banach fixed-point theorem we obtain the local existence result. The second
statement of Theorem 3.6 is proved by a standard continuation argument (see pp. 54
in [10]). Q.E.D.
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Next, we shall prove that the relation
IVu(®)ll > 0,
is valid for all t = 0. For this we consider the general equation
U — @(O)|Vu(®)||?Au + Su; + f(w) =0, x € RV, t >0, (3.21)

with initial conditions u(x, 0) = uy(x) and u;(x, 0) = u,(x), in the case where N >
> 3,8 = 0and f(u) anonlinear C*-function such that

jf(u)u dx > kg* jF(u) dx >0, F(u) =2 juf(n) dn (3.22)
RN RN 0
If @] < kqlul®?, |f' W] < kplul®, (3.23)

where kg, kq, k, > 1 for a > 0. In our case, where f(u) = |u|?u, we can take
ko =4,k, =1,and k, = 3 (see pp. 54 in [10]).

To define the energy related to equation (3.21), we multiply the equation by 2gu;
and integrate over RY to obtain the following relation (for simplicity we have set § =
1)

2 fgututt dx — 2||Vu(t)])? jutAudx +2 fgu?dx +2 jgutlulzudx = 0.
RN RN RN RN

Using some derivative arguments, we derive

d 1
T @I + @l + [ Fdxf+ 2@l =0, (324

RN

Then, we define as the energy functional of (3.21) the quantity

2 1 4
Et) = E(u(®), () = lue®lfz + 5 lu®lipz + f Fwdx.  (3.25)

RN

Thereby (3.24) may be written as follows
d 2
2 E@O + 2lue (Ol = 0. (3.26)

From this we observe that the energy functional has a negative derivative which
indicates an upper bound. Explicitly, this means that E(t) < E(0), since the rate of
change is decreasing in time and depends on the initial data. Therefore, we may take
the following estimate for the quantity ||Vu(t)]|:
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IVu(@®)Il < (2E(®)}* < {2E(0)}*/*. (3.27)
Having made these notations, we are able to prove the following lemma.

Lemma 3.7. Assume that f(u) = |u|?u is a nonlinear C1-function, and N > 3. If the
initial data (ug,u;) € D(4) x DY?(RY) and satisfy the condition

IVu, |l # 0,
then we have that
IVu(®)|| >0, vt=0.
Proof. Consider u(t) the unique solution of (3.21), by Theorem 3.6 in the space
[0, T). Multiplying equation (3.21) by —2Au, and integrating over RN we derive

-2 fAututt dx + 2||Vu(t)||? jgo(x)AutAu dx
RN RN

—26 futAutdx -2 quIZuAut dx = 0.
RN RN
Setting for simplicity § = 1 and using some derivative arguments we obtain the

following relation

d d
2 IV O + IVu@I* — (O34

+ 2|IVu (O + 2(Jul?u, Au.(t)) = 0. (3.28)
Since ||Vu,|| > 0 and ||[Vug|| # 0, we observe that ||Vu(t)|| > 0 near t = 0. Let
T := sup{t € [0,00): |[Vu(s)|| >0, for0<s<t}
Thus T > 0 and ||[Vu(t)|| > 0for 0 <t < T. If we assume that T < oo, then we have
tllrglqu(t)ll = 0. (3.29)
Making a variable change (t := T — t = 1), we derive that the function 7i(t) =
u(T —t) = u(r), satisfies the problem:
il (£) — VA |12A8(E) — T, (¢) + f(T(t)) =0, x e RV, £ >0, (3.30)
#(0) = 0 and %i,(0) = 0, x € R",

where u’' = du/drt.
We observe that @i € C°([0,T]; D(4)) n C1([0, T]; D'?). Multiplying equation
(3.30) by 2g1i, and integrating over RY, we obtain an equation analogous to (3.26):
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d
T E(@®,1.0) = 2llu (Ol < 2E (@), % (). (331)

Integrating (3.31) over [0, t], we obtain that
t

E(t(t), i, (t)) < 2 f E(@(s), @' (s)) ds,
0

for 0 < ¢ < T. Since E(4(0),%'(0)) = 0, we can apply Gronwall’s inequality to
derive that

E(@(e), @' (t)) =0, Vt€[0,T],

i.e., ||[Vu(T — t)]| = 0 at [0, T] which comes in contradiction with ||Vu,]|| = 0.
Therefore, T = oo and ||Vu(t)|| > 0, forall t = 0. Q.E.D.

4. Global solution and energy estimates

Two subjects related with the asymptotic behavior of the solutions of evolutionary
equations are the existence of global solutions and the blow-up phenomena. In this
section we study the global solution and energy estimate for the initial value problem
(1.1), (1.2) and in the next section the existence of blow-up phenomena.

Let us consider for the moment that there exists a maximally defined with respect to
time function/solution of (1.1), (1.2) with the associated mapping u: [0, T] = D(4)
defining by

[u(®)](x) =ulx,t) (x€RY,0<t<T).

If T < oo, then the solution is referred as local as we have already seen in preceding
sections, but if we can determine the exact conditions which must be satisfied by the
initial data of our problem and the functional E (+) -which is related with the energy
function of the physical phenomenon behind the mathematical prescription-, such that
the local solution to be expanded in [0, «), then we have answered the questions
concerning global existence issues.

The method that we will follow in order to prove the global existence is the
potential well method*® which may be understood in the following sense:

“Consider a particle moving in R in the presence of a potential V that is zero for 0 <

x < L and Q (which denotes a sufficiently large constant value) on the rest of the real
line. According to classical mechanics the motion in the area of Q is valid if and only
if € > Q, where &€ denotes the energy of the particle. In quantum mechanics the result

30. See more in the paper “Saddle Points and Instability of Non-linear Hyperbolic Equations”
by L. E. Payne and D. H. Sattinger; Israel J math., 22, (1975), 273-303.
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is similar and the validity of motion outside of 0 < x < L is interpreted by means of
wave functions, which correspond to each point of the real line intensity probabilities.
More explicitly if we have a solution of the time-independent Schrédinger equation®!
Hp = & for this potential (with € «< Q), then we expect the wave function to decay
rapidly for x outside of the “box”. Especially in the case where Q — oo,y = 0 for x €
(=0,0) U (L,©)andy — 0 as x = 0, L (see Figure 3).

V(X)={0, Sl Qs &

w, x <0,x=>1L

v
X‘
0 = L i
A
a ° O

Figure 3: Infinite potential well

The above prescription relates the behavior of a particle moving in R under the
predefined potential with the existence of global solution, in the sense of the enclosure
of the solution in a potential well, in order to obtain the valid solvability expansion.
Obviously, if € > Q the particle can move in the region outside of the “box” and in
that case the stability and global existence questions are open”.

From this correlation we observe that the determination of the energy and potential
for the problem (1.1), (1.2) is required to proceed with the analysis of the global
existence. For this we multiply equation (1.1) by 2gu, and integrate over RY to
obtain the following equation

I +5 @l 3 IO} + 25l @Iz, =0, @
dt t Lz "y ECE L t L% ' '

Therefore, we define as the energy of the problem (1.1), (1.2) the quantity:

31. See Chapter 3in [1].
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1 1
E(t) = E(u(®),u:(0) = lu: (Ol + > lu(®)llp2 — 3 lu®l.  (42)

Hence, equation (4.1) may be written as

d
d—tE(t) + 26||ut(t)||i§ = 0. (4.3)

Furthermore, we introduce the potential of the problem (1.1), (1.2) as follows

PG = = [u(Ollz — 5 [u(OI, (4.4
2 2 g
So, from equation (4.1) and definitions (4.2), (4.4) we derive the relation below
E(t) = ||ut(t)||f§ + P(w). (4.5)
Finally, we introduce a version of the modified potential well®2, by
W= {u € D(A); Kw) = [lu(®llp1z — IIu(t)Ilfgfz > O} u{0}. (4.6)

Thereinafter we give two auxiliary lemmas concerning the behavior of the potential
well.

Lemma4.l.If 2 <a < 4/(N — 2),then W is an open neighborhood of 0 in the
space D2 (RM).

Proof. Since 2 < a <4/(N — 2), by Lemma 3.3 and Lemma 2.2 we have that

2 1-6 +2 +2)0
lullFZ < Collullyy™ ™" llully:”

1-0)(a+2 +2)0—-4
< Collullyy™ P lull iz llull

< Co& Ml S PNl GEP O el
< Co& Mlullgadllullzaz. (4.7)
Therefore, from (4.7) we derive
K (W) = llullpz — IIullfgfz > (1= Co& Mlullpes) llullpaz. (4.8)

Hence, if the following is valid

1
- -2 —2 - 1N
Coé Hullpe: < 1= |lullpiz < EC5H = llullpre < (EC5Ha-2,

where by substituting & = k2||glly/, and C, = k? we obtain

32. See pp. 40-41, and 57 in [10].
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1
lullprz < (k=*~Cllglly/2)*2,
then % (u) = 0 and 0 belongs in W. Q.E.D.
Remark 4.2. The condition 2 < a < 4/(N — 2) implies that N = 3.

Remark 4.3. In the limit case where a = 2 we observe that, IIuII‘ng < 605‘1||u||4731,z

and X'(u) = (1 — Cof‘l)llulljﬁ_‘,l,z. This means that we have a degeneration as
F(u) = 0 and 0 belongs in W if k®*2||g|ly,, < 1is valid for 6 € (0,1).

Lemmad.4. Ifu e W, N = 3 and a > 2, then we have

a—2 - -
0< m”u”%12 < ?(u) < E(u,ut), (49)

where P () = S lu(Oli3ee — oo @A and £(u,ug) = luc(O11F; +Pw), the
potential and energy of the problem (1.1), (1.2) with f(u) = |u|%u, respectively.

Proof. Since a > 2, from the definitions of the potential and of the modified
potential well, for any u € W, we have that

D) - a+2
P =3 IIuIIDu P l[ull a2
> 1 4 C -1
=3 ||u||1)1.2 Ty 12 ¢ ||u||912||u||l)12
1 2
4 - - 4
= > llullpz — 712 Co&™1¢Cs Hlullpaz
1 a—
> — o — 42 = ———|ull® 2.
=5 ”u”DLZ a+2 ||u||1)1,2 2(a + 2) I ||Dl,2
Therefore, P(u) > 2(a+2) lullf12. Q.E.D.

Remark 4.5. In the limit case where a = 2 we observe that

1 1,
P@) = llullpsz — S Ilulljs

1 1 1
E ||u||7312 5 Co$™ ||u||1)12

1- 9+2||g||N )
( / >||u||%1.2

v
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and that the relation (4.9) is reduced to 0 < mllull%u < P(u) < E(t), where m =
(1 —k%*2||glly,2)/2, for 6 € (0,1).

Concerning the time behavior of the energy we have the following remarks.
Integrate equation (4.3) over [0, t], to derive

E(®) + zsf e (D17, dx = E(0). (4.10)
0

Let us note that, if u € W, then by definition E (u, u,) = 0, whereas, if E(u,u;) <0,
then u & W. From equation (4.3) and definition (4.2) we obtain that

d
aE(u,ut) = —25||ut(t)||f§ <0. (4.11)

Therefore, the energy E (t) is a nonincreasing function of t. Hence, we have that
E(t) <E(0), Vte[0,T). (4.12)

In the theorem below we shall prove the global existence and the energy decay
properties for the problem (1.1), (1.2).

Theorem 4.6. Assume that N = 3, 8/3 < a < 4, uy € W(c D(A)) and u,; € D*2.
Also suppose that the following inequality is valid

1/p2
E(O)S( ) if 8/3<a<4andp,>0. (4.13)

Collgl
Then
a) forp,; == (2(a+2)—3a)/2 and p, := (3a — 8)/8 there exists a unique
global solution u € W of the problem (1.1), (1.2) satisfying

u € C([0,); D(A)) and u, € C([0,); DV2(RN). (4.14)

b) Moreover, this solution satisfies the following estimate
luellZy + -t 1Vull® < EQu,u) < {Eug u) ™2 +d5 e =11}, (415)
where d, == 2(a+ 2)/(a—2)and dy = 1, i.e,,
IVull* < C.(1+1)77, (4.16)
where C, is some constant depending on ||u0||4Dl,2 and ||u1||L5.

Proof. (a) To show that the local solution given by Theorem 3.6, remains in the
modified potential well W, as long as it exists, we shall argue by contradiction.
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Assume that there exists time T* > 0, such that u(t) € W, where 0 <t < T* and
u(T*) € YW. Then K(u(T*)) = 0 and u(T*) # 0. We multiply equation (1.1) by
gu and integrate over R" to obtain the equation

fguutt dx — ||[Vu(®)||? quu dx +6 fguut dx = fglulau2 dx.
]RN ]RN ]RN ]RN

Using some derivative arguments, this gives
d §d
%(u(t),ut(t))% - Ilut(t)llfg oo IIu(t)Ilié + lu(®)llp2z

- [ gem@ieax =o. 417)

RN

By integrating (4.17) over [0, t], for some t € [0, T), we derive

]Ot {% (u(s),ut(s))Lé}ds - fotllut(s)lli5 ds + gfot {% [OTAYE

t
+j lu(s) 512 ds—j
0 0

t
f 9GOl dx b ds = o,
]RN

or
‘ 2 4 2 2
(u(®), u(0)) 5 = (1(0), 1 (0)) , - fo luc ()11 ds + 5 {lu(lf; = luO)II} ]
t t
+f IIu(s)II%LZ ds —f fg(x)lu(s)l“+2 dx pds = 0.
0 0 RN
Using Young’s inequality for € = §/2 in the first term of the last relation we get
2 < 2 4 2 1 2
Sllu®)llzz < 8l +2 7 w7z + gllut(t)ll%

t
+ 2(“0'u1)L§ + Zf IIut(s)IIfé ds. (4.18)
0

Since u(t) € W, we integrate equation (4.1) taking a in the general case, i.e.,

2
a+?2

d 1
Sl @12, + 5 (@ lgse - —— a2} + 2610 @12 =0

over [0, t] to receive:
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2
a-+ 2

1 1
2
lue @17z = Nl + > lu(®)llp2 — > lluollpez — [G] e

+

t
— luollZg + 25]0 e ()11 ds = 0.

From definition (4.2), where we have used for simplicity the same notation for the
energy in the general case of a and in the discrete case (a = 2), we have that

a+2

2 1 4
E(0) = E(u(0),uc(0) = llus ll7 + 7 luolipee = llto ll;ave.

a+?2

Therefore, from the previous relation we obtain the following estimate

1 t
3Ol +8 | (I ds < ) (4.19)
From relations (4.18), (4.19) we get that

2 4
(I3, < ${oIu(IZ; + 200w + 3 EO) =1 @20)

Using Lemma 3.3 and relation (4.20) we obtain the inequality

lu@lIg? < Cong™ ™ (@)l

- 09—
< CouS PN uNGE e w1512

o~ (a+2)9_
< Cou{ OBy x Hu(®)]|? 1

oY ~ (a+2)6
< Copg PR (@ llpae, (4.21)
where, according to Lemma 3.3, the constants are

( g = 3a
T 2(a+2)’
2 2) —
\ pr=(a+2)(1-6) = (a+2) Se
._(a+2)9_1_3a—8

Thus, we have that
IIu(t)Iligfz < Copb E(0)P2[|u(O) [|51,2- (4.22)

Assume that the hypothesis (4.13) is valid. Then we get that, Coub*E(0)P2 < 1.
Setting &, = Coub*E(0)P2, for t = T, the inequality (4.21) implies
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K (u(T) = T lprz = T

> [[u(T)llpsz = 81 llu(T)Ipre = (1 = SDNu(T)Ipez >0,  (4.23)

which contradicts the preceding assumption that, K (u(T*)) = 0.

(b) To show the decay condition of the energy E (t) associated with equation (1.1),
we assume for simplicity that § = 1. Integrating equation (4.3) over [¢t, t + 1], we
obtain

Zf IIut(s)IIfé ds=E({t)—E(t+1) (:= 2D2(t)). (4.24)

Therefore, there exist t; € [t,t + 1/4], t, € [t + 3/4,t + 1] such that

||ut(ti)||L§ < 2D(t) fori=1,2. (4.25)

Multiplying equation (1.1) by gu and integrating over RY, we have that

fguutt dx — ||[Vu(®)||? quu dx + 6 fguut dx = fglulau2 dx.
RN RN RN RN

For simplicity setting § = 1 and using some derivative arguments we obtain
d
2t @ ®) 5 = @Il + lu®@llp + (WO w®),, = @l
From (4.6) the above relation takes the form
5 = eI — <= (u(®), 1(0),, — (u®), 1) (4.26)
= el = g (i uel0)) g = 1l el |

Integrating (4.26) over [t;, t,], it follows from (4.23), (4.24) and (4.25) that

1t
EL ||u(s)||%1z ds Sj

1 t1

t+1

t2
?C(u(s))ds SJ ||ut(s)||i§ ds

t

1
t+1 5 2
* (f lue ()12 ds) D Tl b sup (sl
¢ g P t<s<t+1

< D?(t) + 5D(t)a"(d.E(t))"/4, (4.27)

where d, = 2(a + 2)/(a — 2) and the Lemma 4.4 is used in the last inequality.
Therefore, from (4.5), (4.24) and (4.27) we have that

j "E(s)ds < j 2 {Iee ()12 + ()12} ds < D2(8) +2(D3(8) + 5D(Ba~ (d.E(£) V),

t1
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or

ts
f E(s)ds < 3D?(t) + 10D (t)a"(d.E(t))V*. (4.28)
t

1

On the other hand, integrating (4.3) -for § = 1- over [t, t,] and using (4.24), (4.28)
we obtain that

t2

PO = E@)+2 [ Tl ds

t

t2

2
< Zf E(s) ds+2f IIut(s)IIfé ds
t t

1

< 2(3D2(t) + 10D (t)aY(d.E(t))Y*) + 2D3(t)
< 8D2(t) + %dE(ZOa‘lD(t))“‘B + (2e)ED),

where Young’s inequality is used for p~t = 3/4 and ¢! = 1/4. Hence
E(t) < 2{8D%3(t) + d?(20a1)*3}D*/3(¢). (4.29)
Since 2D2%(t) = E(t) —E(t+ 1) < E(t) < E(0) (< 1), it follows from (4.29) that
E(t) < 2{8(E(0)/2)'/3 + d2(20a~1)*/3}D*3(t) = Cs D*/3(t), (4.30)

where Cs == 2{8(E(0)/2)*/3 + d?(20a~1)*/3}. Also, from relation (4.24) we have
that

D*3(t) = 2723(E(t) — E(t + 1))%/3. (4.31)
Thus from (4.31), relation (4.30) becomes

E32(t) < 271¢*(E(t) — E(t + 1)). (4.32)
To complete our proof, we shall use the following Lemma (see pp. 61 in [10]).

Lemma 4.7. Let ¢ be a non-increasing and non-negative function on [0, o)
satisfying

sup ()" < kfp(®) — ot + D},

t<s<t+1

forr >0and k > 0. Then
p(®) < {p(0)" +rk [t — 1T}/,

forr>=0.m
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Therefore, applying Lemma 4.7 we can derive the decay estimate of the energy E(t),
such that

E(t) < {E0)~Y2 +d3'[t —1]*} ", (4.33)
where dq = 2%/2{8(E(0)/2)/3 + d?(20a~1)*3}*"* (> 1). Hence,
IVull* < C.(1+ )7,
with some constant C, depending on [|u ||z and lluallz. QE.D.

Remark 4.8. In the case where a = 2, we have the following observations:
Q) To derive (4.18) we use the estimate

QIR

- fg(x)lu(t)l‘*dxﬁ— fg“dx fIVuIZ dx
RN RN RN
1
a

- - j gedx | [Ivul? j|Vu|2dx,

RN RN

where ¢ = 2N /(8 — 2N) from Lemma 3.1 for p = 4 and the assumption that the

equality is valid for » = 1, setting
1/

o= Jg“ dx )
RN
to obtain the identity
@l = [ gGolu@*dx =0,
RN
in relation (4.17).
(i) In relation (4.21), the constants take the values,

0 =3/4,
plzli

Hence, (4.22) takes the following form
IIu(t)Ilig < CotoE(0)*[lu(®lprz,

whereas we notice that the estimate (4.13) is modified, since p, < 0.
(iii)  According to Remark 4.5 the last inequality in relation (4.27) becomes
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1 rtz t,
> [ Ol as < [ Cae(u)as

21 t1

1

t+1 t+1 3
<[ M s+ {( [ o ds>
t t

2
+Z||ut<ti>||Lg,] sup [lu(s)ll,g
i=1

t<s<t+1

< D%(t) + 5D(t)E Yullprz < D3(t) + SD(t)E‘l(m‘lE(u))%,

where the constants®® £(2 a) and s, are the fixed constants in Lemma 2.2 and
Remark 4.5 respectively, i.e., € := k™2?||glly}, and m == (1 — k9*2||glly/2)/2.
From this we obtain the rest of the proof with the difference that d, is replaced by m
and the notation ¢ by a.

5. Blow-up results

In this section we complete our study with the blowing-up property of the solution for
the initial value problem (1.1), (1.2). As in the preceding section where we adapt the
method of the modified potential well to show the global-existence of our solution in
the same way we adopt the concavity method introduced by Levine in [3], to study the
blow-up properties of the solution.

The method is based on the following Theorem. For the proof see Theorem I in [3].

Theorem 5.1. Consider the initial value problem

{ Puy = —A@u(t) + F(u(®)), t€[0,T)
u(0) = ug, u(0) = vy,

with the following hypotheses:

(A-1) A(t): D € H - H, is a symmetric linear operator, H a Hilbert space with the
associated inner product ( , ) and norm || ||, respectively, and D a dense Hilbert
subspace with respect to ( , )p, continuously embedded in H.

(A-1D (x, A(t)x) = 0ifx € D.

(A-111) If v: [0, 0) — H is strongly continuously differentiable and if for all t > 0,
v(t) and du(t)/dt € D, then (v(t), A(t)v(t)) is continuously differentiable and, for
allt >0,

94w, v)(6) = (d/dt)(v(D), A(Dv(t)) — 2(dv(t)/dt, A(D)v(E)) < 0.

33. To be consistent with the notation used in (4.27).
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Assume also that

(P-1) P: D, — H, is a symmetric operator with D € Dp € H.

(P-11) (x,Px) > 0 forall x € Dp, x # 0.

(F-1) F: D - H is continuously differentiable, with bounded symmetric Fréchet
derivative3* F, linear operator on H and x — F, a strongly continuous map from D
into L(H).

(F-11) Let G(x) = fol(T(px),x) dp denote the potential associated with F,

and that the following conditions are valid:
(C-D) (x,F(x)) = 2(2a + 1)G(x) fora > 0,and all x € D,
(C-11) G(v(®) = G(v(O) = [;(F (W), vy (m)) dn.

Let u: [0,T) — H be a solution to this problem, and assume that the preceding
hypotheses hold. Then, each of the following statements are valid:
(@) If

Bo = 2{G(uo) — 1/2 [(ug, A(0)up) + (v, Pvo)]} > 0,
then the solution exists only on [0, T) and tllrp_(u(t),?u(t)) = 400, where
T < Tg, = a{[Bo (o, Puig) + (o, Pue)212 + (g, Pug)} (o, Pg).
(b) If
G(uo) = 1/2[(ug, A0)up) + (vo, Pvo)],
(o, Pvo)/ (ug, Pug) = 1> 0,

then the solution exists only on [0, T') and tlir? (u(t), Pu(t)) = +oo, where

T <(ad)™’ m

According to the proof of Theorem 5.1 the idea of the concavity method is based on
the construction of some positive smooth functional Z (t) -defined in terms of the
local solution of the problem- which satisfies the following inequality

Z"®)zZ@) -1 +a)[Z2'(®)]* =0, (5.1)

fort >0,a>0,Z2(0)>0and Z’'(0) > 0. Then Z(t) — oo for a finite time T".
Equivalently we can select Z(t), such that z(t) :== 2177 (¢t) for y > 1 to be a concave
function, i.e.,

z'"(t)<0,t>0 and z(0)>0,z'(0) <O0. (5.2)

Then3IT*,0 <T*<ocosuchthatz(t) > 0ast->T" t<T".

34. See in [4], [11].
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From (4.2), (4.10) we define®® (see in [10], pp. 62) the functional Z(t) as
t
Z(t) = ||u(t)||f§ +46 {f llu(S)llfé ds + (Tp — t)”“o”ié} +rt+1?% (5.3)
0

where t € [0,T,] and Ty, r, T are positive constants, to be specified latter. Since every
term in the above definition is positive, we have that Z(t) > 0,

d t
Z'(t) = E(nu(t)nié +5 { f ()17, ds + (T, — t)uuouizg} +r(t+ r>2>
0

= 2(u(®,w (®) 5 + Slu@®llzz = Slluolliz +2r (e +7)

t
=2 {(u(t),ut(t))% + Sf (u(s),ut(s))Lé ds +r(t+ T)}, (5.4)
0
where we have used the relation below

28 t ds=2§ 4 2, ds=6 2, =48 2
J| (@), ds = & | Z @I, ds = SOl - Sllualy
and
d t
Z"(t) = 2E<(u(t)’uf(t))ﬂ + 6f (u(s),ut(s))L2 ds +r(t+ T))
g 0 g
d d (* d
= Za (u(t),ut(t))L2 + ZSEJ (u(s),ut(s))L2 ds + 2 Er(t + 1)
g 0 g
= 2(ut(t),ut(t))L5 + Z(u(t),utt(t))Lz + 26(u(t),ut(t))L§ + 2r
= 2{(u®, ue(®) , + IO + (@O w®), +7}. G5

If u is a solution of (1.1), -with f(u) = |u|%u- then multiplying (1.1) by gu and
integrating over RY, we have that

35. We also recommend the papers (a) “Non-existence of Global Solutions to Nonlinear Wave
Equations with Positive Initial Energy” by Bilgesu A. Bilgin and Varga K. Kalantarov;
Communications on Pure and Applied Analysis, Vol. 17, No. 3, May 2018, pp. 987-999 and
(b) “Blow-up of Solutions to Ordinary Differential Equations arising in Nonlinear Dispersive
Problems” by Milena Dimova, Natalia Kolkovska, Nikolai Kutev; Electronic Journal of
Differential Equations, VVol. 2018 (2018), No. 68, pp. 1-16. ISSN: 1072-6691.
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J.guuttdx— IVu(t)||? quudx+6 fguutdx = fglul‘”zdx,
RN RN RN RN

and after using some derivative arguments we derive

1d
—5=—

(u(t)»utt(t))Lg = =lIvu@®II* 2dt

lu(OIZ + @53 (56)

Therefore, combining relations (5.5) and (5.6) we obtain that
2 = 2 {~IVu®I* + Ol + IOl +7}.  (67)

To continue with the proof of the concavity character we define a new functional as
follows:

t
V(t) = {llu(t)llfé + 6] IIu(s)IIfé ds +r(t+ T)Z}
0
t
x {nut(t)ni; +6 [ TuIE ds + r} - {®u©),,
0 9

t 2
+5] (u(s),ut(s))L2 ds +r(t + T)} . (5.8)
0 g
We observe that V(t) > 0 and from relation (5.4), (5.8) becomes

V() = {2(0) - 6(Ty — D)lluo |17}

t
1
x {nut(t)ni5 +6 [ TuIE ds + } -2
0
or

2/ = 4|{Z(®) = 8Ty = Dlluol%,}

t
X {nut(wug +3 f e ()17, ds + r} - vm]. (5.9)
0
Hence, from equation (5.9) we get

zan%o—e+gzwyzz@w%o—m+@

X {Ilut(t)llié + 6f IIut(s)IIfé ds + r}l (5.10)
0
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Since Z(t) > 0, we have to show the positiveness of the term inside the brackets. For
this we define

t
H():=2Z"(t) — (a+4)x {Ilut(t)llié + 6f IIut(s)llié ds + r}. (5.11)
0
From relations (4.10) and (5.7), we observe that

H(® = 2 {~IVu@I1* + @l + lu O, +7)

t
~(a+4)x {nut(t)nig +6 [ eIl ds + r}
0

2
—u@IIgA + ) - 207u(o)*

> ~(a+2) x {llue @I, +E©) — E@) +
a—2
= —(a+2){E(0) + 1} + ——IVu®)I*, (5.12)

where we have used the relation,

2

1
E(®) = el +5 Tu®li3ee - —— @Il
in the last equality (see Lemma 4.4 and relation (4.2)).
Fixing r = —E(0) > 0, inequality (5.12) becomes
a—2 4
H®) 2 ——Vu@®I* = 2®). (5.13)
Then, from relations (5.10) and (5.13), we derive
Z(OZ"(t) - (% +1)2'(1)? 2 2(t) Q1) 2 0, (5.14)

which implies the concavity character of the functional Z(t), i.e.,

a~ !’

(z)7%) = —%Z(t)_%_z {2z - (% +1)2'(0?} <0, (5.15)

Having set the framework of the concavity argument we are able to state and prove
the blow-up result.

Theorem 5.2. Suppose that a > 2, N > 3 and the initial energy E (u,, u,) is negative.
Then there exists a time T, where

-1
0<TC< a_z(_E(uo,lh)) [{(25”110”%5 - a(uo,u1)L§)2

+ az(—E(uO,ul)) ||uo||i§}1/2 + 25””0”% - a(uo,u1)L§]' (5.16)
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such that the (unique) solution of the problem (1.1), (1.2) blows-up attime T, i.e.,

. 2
Jm [lu(®llz = . (5.17)

Proof. We choose T, such that

4Z(0)

2Z00) <T,. (5.18)

We observe that Z(0) = (1 + 6T0)||u0||f§ + 772 > 0 and from (5.3), (5.4) we have

that Z2'(0) = 2 {(uoﬂh)Lg + rr} > 0, for sufficiently large 7. Thus, for all ¢ for

which u(t) exists, Z2~4(t) < 2-%*4(0) — (a/4) tZ'(0)Z~%*~1(0), since the
graph of a concave function must lie below any tangent line of it. Hence

4/a

, (5.19)

4za/4+1(0) }

2(6) 2 {42(0) —az'(0)¢

and therefore as t — T(< 4Z(0)/aZ'(0)) from below (if Z’(0) > 0), we note that
Z(t) = +oo. This is the crux of the concavity argument (see pp. 6 in [3]).
Consequently, there exists some T € (0, T,], such that

t
. 2 2 _ : : 2 _
Jim {Ilu(t)IILg + 6f0 ()i dS} =00, i.e. tlgp_llu(t)ll@ = 0o,

which proves relation (5.17).
Finally, to determine the upper bound for the blow-up time we use the relations (5.3),
(5.4), (for t = 0) and the inequality (5.18). From this we obtain (setting r = —E (0))

41+ 8Tl l1Z, + (~E(0)7?]

2a|(uo, uy) 1z + (—E(0))z]

< Ty

or

ool

T(r) = <
a| o u) sz + (—E ()] - 26lluol?; °

The proper value 7, of T for the blow-up, corresponds to the minimum value of T(t).
Since
2 [Iluollizg + (—E(O))TZ] o M@ON (D) = M@ON' (@)

T'(1) = o . ,
a| o wn) g + (~EO)7| - 281uo1Z; N (@)
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where

M@ = 2|l + (~E©)7?),

N @) = a|(uoun)yg + (~EO)t] - 28lluo17,
we have that
4E0)7 | 28lluollZ; — aluo,un)z | + 2aE(0) luolI7; + 2aE?(0)r2

T'(7) = i
{a [(uo,ul)% + (—E(O))T] - 25||u0||§§}

. (5.21)
Setting T'(t) = 0, we derive that T(7) takes the minimum value on the interval
(0, ) at the value T = t, where
-2 -1 2 2
70 = (=B ) [{(261uoll?; — atuo,u)yz)

1/2
+ @2 (=E) llugllZ ) + 28luoliZ, — aluo,ur)y3]. QED.

Remark 5.3. In the case where a = 2, we have the following observations:

(i) H®=-(a+2{EQO) +7}+ (a—2)[IVu@®)*/2

2—a
=—{E0) +71}— 2t D) IVu(e)l|*
> —{E(0) + 71} — G J_r ;) E(0)
_ (4E(0) o
= _{a e + r} o {E(0) + 1},

where we have used (3.27) in the third line.
Setting

1 t
rim g I+ [ Tl ds >0
0

and using inequality (4.19), we observe that H (t) > 0.
(i) The concavity character (5.15) takes the following form
(Z(®)V2)" = —1/22(t)"52(2()2"(t) = 3/2 2" (1)?} < 0,
and by (5.18) for
2(0) = lluollF + 8Tolluollfs +1/2 llus 1752
Z'(0) = 2{(110'”1)1@ +1/2 ”ut(t)”%‘f}.
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inequality (5.20) becomes

2|luolI? Uy ||% 2
| 0”L§,+” 1||L§

T(r) = < T,.

2| tor )iz, = SlluollZy | + llualZy 7
From this we derive that
sl 72 + 4Cup, wp) g llus 125 T = 2l |17 I 17 [1 + 267]

T'(7) = - — ,
(2 [@uow)z = Sluoll?, | + llus Iz )

and that T () takes the minimum value on the interval (0, o) at the value T = 7,
where

7 = a {2 [6lluoll? — o, u)z] +V2
2 1/2
x| (8l = uorw)iz)” + /2 luolly }

From Theorem 5.2 and Remark 5.3 we conclude that as t — T_ the solution u =

u(x, t) of the problem (1.1)-(1.2), blows-up, i.e., the natural system described by this
mathematical model goes through a transitional change®. For instance, in the case
where the solution represents the transverse displacement of a string, the blow-up
corresponds to the breaking of the string.

36. See “Contemporary Issues in Systems Science and Engineering” by MengChu Zhou, Han-
Xiong Li, Margot Weijnen, Wiley-IEEE Press, April 2015, ISBN: 978-1-118-27186-5; pp.
82.
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