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Abstract 

The aim of this thesis is the study of the quasilinear damped wave equation of 

Kirchhoff’s type with variable diffusion coefficient in all of ℝ𝑁. For the functional 

analysis of the time dependent problem, we make use of the homogeneous Sobolev 

spaces and of the generalized Sobolev embeddings, followed by the preceding studies 

of the Kirchhoff’s type problem. In strong connection with the corresponding natural 

phenomena, we obtain results concerning the local (unique) existence of the solutions 

using the Faedo-Galerkin approximation and the Banach Fixed-Point Theorem. We 

also prove the global existence and energy estimates of the solutions using the method 

of the modified potential well. We complete our study with the blow-up analysis of 

the solutions for initial data of negative energy using the concavity method, where for 

the discrete case (a=2) we prove the modification of the upper-bound of the time T.  

Keywords: Infinite Dimensional Dynamical Systems, Quasilinear Hyperbolic Wave 

Equations, Nonlinear Problems, Dissipation, Semigroup Theory, Banach Fixed-Point 

Theorem, Galerkin Method, Faedo-Galerkin Approximation, Unbounded Domains, 

Homogeneous Sobolev Spaces, Weighted Lebesgue-Sobolev Spaces, Generalized 

Poincare Inequality, Generalized Sobolev Embeddings, Blow-Up, Concavity Method, 

Potential Well, Modified Potential Well, Kirchhoff’s Strings. 

 

  



 
 

 

 

Notation. We denote by 𝐵𝑅 the open ball of ℝ𝑁 with center 0 and radius R. 

Sometimes for simplicity we use the symbols  𝐿𝑝, 1 ≤ 𝑝 ≤ ∞, 𝒟1.2, respectively, for 

the spaces 𝐿𝑝(ℝ𝑁), 𝒟1.2(ℝ𝑁), respectively; ‖ ∙ ‖𝑝 for the norm ‖ ∙ ‖𝐿𝑝(ℝ𝑁). By 

ℒ(𝑉,𝑊) or sometimes by L(V,W) we denote the space of linear operators from V to 

W. Also, sometimes differentiation with respect to time is denoted by a dot over the 

function. Furthermore, we have used the notation R and RN for the spaces ℝ and ℝ𝑁, 

respectively. All the constants are considered in a generic sense. The end of the proofs 

is denoted by Q.E.D (quod erat demonstrandum = which had to be shown) and the 

end of a theorem or lemma whose proof is not given, is denoted by ∎. 
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A. Preliminary 

       

1. Functional Analysis 

 

 

In mathematics, the word “function” is being handled as a map from one space into 

another or as an operator that acts on the elements of some properly defined space. 

The study of the physical phenomena that rule the known limits of our world invokes 

primarily the study of the space in which these phenomena are domiciled. As any 

mathematical problem of several variables becomes properly a problem in vector 

calculus the mentioned spaces are called by thy name “vector spaces” or “linear 

spaces”, and in this chapter, we will delve into the aspects of the most known vector 

spaces that are used frequently in this work and in applied mathematics generally. 

 

1.1 Banach Spaces 

In our notation throughout this section, we denote by V a real linear space1. 

Definition 1.1.1.  Given a linear space V, a mapping ‖ ‖:V → [0, ∞) is called a 

norm if the following properties are satisfied. 

(i) ‖𝑢‖ ≥ 0 for any 𝑢 ∈ 𝑉, and ‖𝑢‖ = 0 if and only if u = 0, 

(ii) ‖𝑎𝑢‖ = |𝑎|‖𝑢‖ for any 𝑢 ∈ 𝑉 and 𝑎 ∈ S, 

(iii)  ‖𝑢 + 𝜐‖ ≤ ‖𝑢‖ + ‖𝜐‖  for any 𝑢, 𝜐 ∈ 𝑉, known as the triangle inequality. 

The symbol S in property (ii) denotes the scalar field (R or C). 

Hereafter we assume V is a normed linear space, and we adapt the notation (V, ‖ ‖). 

Remark.  A norm induces a metric, i.e., a way of taking the distance between two 

elements of the space. So we regard every normed space as a metric space, in which 

the distance d(u, υ) between u and υ is ‖𝑢 − 𝜐‖. The properties of the distance are 

(i) 0 ≤ d(u, υ) < ∞ for all u and υ, 

(ii) d(u, υ) = 0 if and only if u = υ, 
(iii) d(u, υ) = d(υ, u) for all u and υ, 
(iv) d(u, υ) ≤ d(u, w) + d(w, υ) for all u, υ, w. 

 

1. See in References [4]. 
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Definition 1.1.2.  We say a sequence {𝑢𝑘}𝑘=1
∞ ⊂ V converges to 𝑢 ∈ 𝑉, written 

𝑢𝑘 → 𝑢, 

if  

𝑙𝑖𝑚
𝑘→∞

‖𝑢𝑘 − 𝑛‖ = 0. 

Definition 1.1.3. (a) A sequence {𝑢𝑘}𝑘=1
∞ ⊂ V is called a Cauchy sequence if for every 

ε > 0 there exists N > 0 such that 

‖𝑢𝑘 − 𝑢𝑙‖ < ε for all k, l ≥ N. 

(b) A normed space V is said to be complete if every Cauchy sequence from the space 

converges to an element in the space, i.e., if  {𝑢𝑘}𝑘=1
∞ ⊂ V is a Cauchy sequence, and 

there exists 𝑢 ∈ 𝑉 such that  {𝑢𝑘}𝑘=1
∞  converging to u then the space V is complete. 

(c) A complete normed space is called a Banach space. 

 

Definition 1.1.4. (a) Let K be a subset of a normed vector space V. We say K is 

compact if, for every open covering of K, there is a finite subcover that also covers K. 

This is equivalently regarded as K having the Borel-Heine property. 

(b) Equivalently, K is compact if every sequence  {𝑢𝑘}𝑘=1
∞ ⊂ K contains a convergent 

subsequence which converges to an element 𝑢 ∈ 𝑉. 

 

Definition 1.1.5.  Let K1 ⊂ K2 be two subsets in a normed space V. We say the set K1 

is dense in K2 if for any 𝑢 ∈ K2 and any ε > 0, there is a υ ∈ K1 such that d(u, υ) < ε. 

 

Remark. The geometrical interpretation of the Definition 1.1.5 is that we can select 

any positive number which will denote the accuracy of closeness (density) between 

two subsets of a normed vector space. 

 

Definition 1.1.6.  A normed vector space is called separable if it contains a countable 

dense subset. 

 

 

1.2 Hilbert Spaces 

 
Definition 1.2.1.  Given a real linear space V, a mapping (. , . ): 𝑉 × 𝑉→ [0, ∞) is 

called an inner product if the following properties are satisfied. 

(i) (𝑢, 𝑢)  ≥ 0 and (𝑢, 𝑢) = 0 if and only if u = 0; for any 𝑢 ∈ 𝑉, 

(ii) (𝑢, 𝜐) =  (𝜐, 𝑢) for any 𝑢 ∈ 𝑉, 

(iii) (𝛼𝑢 + 𝛽𝜐, 𝑤) =  𝛼(𝑢,𝑤) + 𝛽(𝜐, 𝑤), for any 𝑢, 𝜐, 𝑤 ∈ 𝑉 and 𝛼, 𝛽 ∈ R. 

The space V equipped with the inner product (. , . ) is called an inner product space. 
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An inner product (. , . ) induces a norm through the formula 

 

‖𝑢‖ ∶=  √(𝑢, 𝑢), 𝑢 ∈ 𝑉. 
 

Remark. In verifying the triangle inequality for the above quantity, we need to use 

the Schwarz inequality; |(𝑢, 𝜐)|  ≤  √(𝑢, 𝑢)(𝜐, 𝜐)  ∀𝑢, 𝜐 ∈ 𝑉. 

 

Definition 1.2.2.  A complete inner product space is called a Hilbert space. This 

means that an inner product space V is a Hilbert space if V is a Banach space under 

the norm induced by the inner product. 

 

 

1.3 Lp and Sobolev Spaces 

 
In introductory calculus the integrability over a properly defined region deals with the 

values of the integrable function over a volume. The physical correspondence and in a 

matter of fact the information behind the function in the region of interest denotes a 

finite value necessity as infinity is hiding more than itself.  

This means that if Ω ⊂ RN is a non-empty open set of N-dimensional Euclidean 

space, the integration over Ω of a properly defined measurable function, f : Ω → R, 

needs to be finite, i.e.,  

 

∫𝑓(𝑥) ⅆ𝑥

𝛺

< ∞. 

. 

Having set the characteristics of our function we are able to construct a space for 

these functions with the above property. 

 

Definition 1.3.1.  Let Ω ⊂ RN be a non-empty open set. For 𝑝 ∈ [1,∞), we define the 

space of all Lebesgue integrable functions as follows 

 

𝐿𝑝(𝛺) ≔ {𝑢 ∶ 𝛺 → ℝ| ∫ |𝑢(𝑥)|𝑝 ⅆ𝑥
𝛺

< ∞}. 

 

Proposition. (a) The Lp spaces are Banach spaces under the norm 

 

‖𝑢‖𝐿𝑝(𝛺) ≔ [∫ |𝑢(𝑥)|𝑝 ⅆ𝑥
𝛺

]
1/𝑝

< ∞, 

 

and the space L∞ (Ω) consists of all essentially bounded measurable functions 

equipped with the norm  

 
‖𝑢‖𝐿∞(𝛺) ≔ 𝑖𝑛𝑓 𝑠𝑢𝑝|𝑢(𝑥)| < ∞. 

 

(b) In the case p = 2, Lp spaces are also Hilbert spaces with the inner product 
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(𝑢, 𝜐) ≔ ∫𝑢(𝑥)𝜐(𝑥)ⅆ𝑥.

𝛺

∎ 

 

Of equivalent importance are the so called weighted-Lebesgue spaces or the 𝐿𝑔
𝑝

 spaces 

as we usually refer to; the definition of those is given below. 

 

Definition 1.3.2.  Let g be a positive continuous function on Ω, called a weight-

function. We can define weighted spaces 𝐿𝑔
𝑝(𝛺) as follows 

 

𝐿𝑔
𝑝(𝛺) ≔ {𝑢 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒| ∫ 𝑔(𝑥)|𝑢(𝑥)|𝑝 ⅆ𝑥

𝛺
< ∞}, for 1 ≤ p < ∞ 

               

              𝐿𝑔
∞(𝛺) ≔ {𝑢 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒|𝑒𝑠𝑠 sup𝑔(𝑥)|𝑢(𝑥)| < ∞}. 

 

Proposition.  The 𝐿𝑔
𝑝

 spaces are Banach spaces with the norms 

 

‖𝑢‖𝑝,𝑔: = {∫ 𝑔(𝑥)|𝑢(𝑥)|𝑝 ⅆ𝑥
𝛺

}
1/𝑝

 for 1 ≤ p < ∞ 

 
‖𝑢‖∞,𝑔: = 𝑒𝑠𝑠 sup𝑔(𝑥)|𝑢(𝑥)|   for 𝑥 ∈ 𝛺.∎  

 

   Before we procced with the definitions of the Sobolev spaces, firstly we will 

develop briefly the background that brought them out.  

   In the study of PDEs an “operator” treatment, i.e., the recasting of a partial 

differential equation as an operator acting on appropriate linear spaces with the 

operator encoding the structure of the PDE, postulates a specific treatment in the 

choice of the proper spaces. The honorable mathematician Sergei Lvovich Sobolev 

constructed the spaces (which took their name after him) and set the proper 

framework of the “operator” treatment.  

 

Definition 1.3.3.  Let k be a nonnegative integer and 𝑝 ∈ [1,∞].  The Sobolev 

space 𝑊𝑘,𝑝 (𝛺) is defined as follows 

 

𝑊𝑘,𝑝(𝛺) ≔ {𝑢 ∈ 𝐿𝑝(𝛺)| 𝜗a𝑢 ∈ 𝐿𝑝(𝛺), 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ |a| ≤ 𝑘}, 
 

where a denotes a multi-index, i.e., an ordered collection of N non-negative integers, 

a = (a1, a2, . . ., aN), the quantity |a| =  ∑ a𝑖
𝑁
𝑖=1  is said to be the length of a, and the 

expression 𝜃a𝑢 denotes the ath weak derivative of u2. 

 

Proposition. (a) The norm in the space 𝑊𝑘,𝑝 (𝛺) is defined as  

 

‖𝑢‖𝑊𝑘,𝑝(𝛺): =  {
[∑ ‖𝜗a𝑢‖𝐿𝑝(𝛺)

𝑝

|𝑎|≤𝑘
]

1/𝑝

,   1 ≤ 𝑝 < ∞

𝑚𝑎𝑥|𝑎|≤𝑘‖𝜗
a𝑢‖𝐿∞(𝛺) ,   𝑝 =  ∞.

 

 

2. For the definition of weak derivatives, see in Chapter 7 of [4], or in Chapter 5 of [5]. 
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(b) When p = 2, we use the notation 𝐻𝑘(𝛺) for the Sobolev spaces 𝑊𝑘,2 (𝛺).  ∎  

 

The following theorem provides us with the concept of completeness of Sobolev 

spaces (for the proof see Chapter 7 of [4]). 

 

Theorem 1.3.4.  The Sobolev space 𝑊𝑘,𝑝 (𝛺) is a Banach space. ∎ 

 

Before we procced in the concepts of linear operators we give another property of 

major importance for the Sobolev space 𝐻𝑘(𝛺). 
  

Corollary 1.3.5.  The Sobolev space 𝐻𝑘(𝛺) is a Hilbert space with the inner product 

 

(𝑢, 𝜐)𝑘 ≔ ∫ ∑ 𝜗𝑎𝑢(𝑥)|𝑎|≤𝑘 𝜗𝑎𝜐(𝑥)ⅆ𝑥,   
𝛺

𝑢, 𝜐 ∈ 𝐻𝑘(𝛺). 

 

More about the Sobolev spaces we will see in Chapter II of this work.  

 

 

1.4 Bounded and compact linear operators 

 
In the previous section we referred to “operators” as mappings from one space into 

another that enclose the structure of a PDE. The concept of operator is important in 

our study and is worth little of our time to review some of their basic properties. 

Let us assume that X, and Y are two sets and T an operator from X to Y. This means 

that T is a function which assigns to each element in a subset of X a unique element 

in Y.  

 

Definition 1.4.1. (a) The domain D (T) of T is the set of all elements of X in where 

T is properly defined, i.e.,  

 

D (T) = {𝑢 ∈ 𝑋| T(u) is defined}. 

 

(b) The range R (T) of T is the set of all the elements in Y generated by T, i.e.,  

 

R (T) = {𝜐 ∈ 𝑌| υ = T(u) for some 𝑢 ∈ D (T)}. 

 

(c) The null set N (T) of T is defined as the set of elements of X in where T is 

mapping to the zero element, i.e.,  

 

N (T) = {𝑢 ∈ 𝑋| T(u) = 0}. 

 

Definition 1.4.2.  An operator from X to Y is called bijective if it is injective (one-to-

one) and surjective, i.e., if  𝑢1 ≠ 𝑢2 → T (𝑢1 ) ≠ T (𝑢2 ) and R (T) = Y, respectively. 
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Definition 1.4.3.  An operator T: X → Y is called linear if  

 

T(𝜆𝑢1 + 𝜇𝑢2) = 𝜆 T (𝑢1 ) + 𝜇 T (𝑢2 ) 
 

for all 𝑢1 , 𝑢2 ∈ X, 𝜆, 𝜇 ∈ R. 

  

Proposition.  A linear operator T: X → Y is bounded (or continuous since for a 

linear operator boundedness ≡ continuity) if and only if there exists a constant c ≥ 0 

such that 

 

||Tu||Y ≤ c ||u||X   ∀ 𝑢 𝜖 𝑋. 

 

For the proof of the above inequality see Section 2.2 (Continuous linear operators) of 

[4]. ∎ 

 

Throughout this work we will use the notation L (X, Y) for the set of all the 

continuous (or bounded) linear operators from X to Y, and since this set is a linear 

space induces a norm over the space. 

 

Definition 1.4.4.  If T 𝜖 L (X, Y) then the operator norm of T is given by 

 

||T||X, Y = sup {||Tu||Y / ||u||X} for  0 ≠ 𝑢 ∈ 𝑋 

 

and having the following compatibility property 

 

||Tu||Y ≤ ||T||X, Y ||u||X   ∀ 𝑢 𝜖 𝑋. 

 

Before we give the definition for the compactness of a linear operator, we will 

emphasize in the set L (X, Y).  

  When dealing with mappings over normed vector spaces the concept of 

approximation induces that of convergence, i.e., the question about if a normed vector 

space is complete under the equipped norm.  

Someone obviously may wonder why do we need approximations, but before going 

there, let us assume that we have an equation of the following form 

 

Tu = υ, 

 

where T: X → Y, 𝑢 𝜖 𝑋 and 𝜐 𝜖 𝑌. 

  The operator may be an integral operator (so the above is an integral-equation), a 

differential operator (and so the above is a differential equation) or a combination of 

those. 

In many cases the difficulty with proceeding with the analysis of a given problem that 

takes the above form, has to do with the operator itself. In such cases the integral or 

differential operator is often approximated by a sequence of operators of a simpler 

form. 
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Since we have explained the necessity of approximations, we may return to the 

question of whether the set L (X, Y) is a complete space. 

 

Theorem 1.4.5.  Let X be a normed space, and Y a Banach space. Then, the set L (X, 

Y) is a Banach space (the proof can be found in Section 2.2.1 (L (X, Y) as a Banach 

space) in [4]). 

 

We will end this introduction on Functional analysis with the definition of 

compactness of an operator. 

 

Definition 1.4.6.  An operator A 𝜖 L (X, Y) is called compact if for each bounded 

sequence {𝑢𝑘}𝑘=1
∞  ⊂  X, the sequence {𝐴𝑢𝑘}𝑘=1

∞  is pre-compact in Y, i.e., if there 

exists a subsequence {𝑢𝑘𝑗}𝑗=1

∞

 

such that  {𝐴𝑢𝑘𝑗}𝑗=1

∞

 

converges in Y. 
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2. Embeddings and inequalities 

 

 

 

 

 

In the study of PDEs the framework of operator analysis induces, as we saw, the study 

and selection of the proper spaces on where the operator acts. According to our 

problem and the characteristics of our operator, the existence of embeddings is rising 

from the fact that some properties of the operator may be valid in larger spaces. 

Having so a relation between more treatable spaces with the spaces that define the 

framework of our problem, and using the extension theorems to develop an 

embedding-chain among them we are able to continue with the study of our problem 

(see more in Chapter II). 

 

 

2.1 Definitions 
 

Definition 2.1.1.  We say a space X is embedded in Y and we use the notation 𝑋 ⊂ 𝑌 

provided 

 

‖𝑢‖𝑌 ≤ 𝑘 ‖𝑢‖𝑋 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑢 ∈ 𝑋 𝑎𝑛ⅆ 𝑘 > 0. 
 

The geometrical interpretation of the Definition 2.1.1 points out a metric relation 

between the spaces X and Y, i.e., the metric of the space Y is less or equal than the 

metric of the space X times a positive constant k for every element of the embedded 

space. 

 

Definition 2.1.2.  Let X and Y be Banach spaces, and 𝑋 ⊂ 𝑌. The space X is 

compactly embedded in Y, using the notation 𝑋 ⊂⊂ 𝑌, if the two following conditions 

are satisfied 

(i) ‖𝑢‖𝑌 ≤ 𝑘 ‖𝑢‖𝑋 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑢 ∈ 𝑋 𝑎𝑛ⅆ 𝑘 > 0 

and 

(ii) each bounded sequence in X is pre-compact in Y. 

 

These two definitions are fundamental for our application of the previous material in 

the study of our problem and we will refer to them quite often in Chapter II. 
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2.2 Useful inequalities 

 
In this section we introduce a collection of fundamental inequalities which are 

employed mainly in Chapter II of this work. 

The proofs of those are given in Appendix B.2 in [5].  

 

a. Cauchy’s inequality. 

𝑎𝑏 ≤
𝛼2

2
+
𝑏2

2
 

where 𝑎, 𝑏 ∈ R. 

 

b. Cauchy’s inequality with ε. 

𝑎𝑏 ≤ 휀𝑎2 +
𝑏2

4휀
 

where 𝑎, 𝑏 > 0, 휀 > 0. 

 

c. Young’s inequality. Let 1 < 𝑝, 𝑞 < ∞,
1

𝑝
+

1

𝑞
= 1. Then 

 

𝑎𝑏 ≤
𝛼𝑝

𝑝
+
𝑏𝑞

𝑞
 

where 𝑎, 𝑏 > 0. 
 

d. Young’s inequality with ε.  For 𝑎, 𝑏 > 0, 휀 > 0, and the previous conditions on p, 

q we have 

𝑎𝑏 ≤ 휀𝑎𝑝 + (휀𝑝)−𝑞/𝑝𝑞−1𝑏𝑞. 

 

e. Hölder’s inequality. Assume 1 ≤ 𝑝, 𝑞 ≤ ∞,
1

𝑝
+

1

𝑞
= 1. Then if 𝑢 ∈ Lp (Ω),  

𝜐 ∈ Lq (Ω), we have 

∫|𝑢𝑣| ⅆ𝑥

𝛺

≤ ‖𝑢‖𝐿𝑝(𝛺)‖𝜐‖𝐿𝑞(𝛺). 

 

f. General Hölder’s inequality. Let 1 ≤ 𝑝1 ≤ 𝑝2 ≤ ⋯ ≤ 𝑝𝑛 ≤ ∞, with 
1

𝑝1
+

1

𝑝2
+

⋯+
1

𝑝𝑛
= 1, and assume 𝑢𝑘 ∈ 𝐿

𝑝𝑘(𝛺) for 𝑘 = 1,⋯ , 𝑛. Then 

 

∫|𝑢1⋯𝑢𝑛| ⅆ𝑥

𝛺

≤ ∏‖𝑢𝑘‖𝐿𝑝𝑘(𝛺)

𝑛

𝑘=1

. 
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g. Minkowski’s inequality.  Assume 1 ≤ 𝑝 ≤ ∞ and 𝑢, 𝜐 ∈ Lp (Ω). Then 

 

‖𝑢 + 𝜐‖𝐿𝑝(𝛺) ≤ ‖𝑢‖𝐿𝑝(𝛺) + ‖𝜐‖𝐿𝑝(𝛺). 

 

Remark. Inequality g is the triangle inequality for the ‖ ‖𝐿𝑝(𝛺) defined in 

subsection 1.3, Proposition (a). 

 

h. Interpolation inequality for Lp-norms.  Assume 1 ≤ 𝑠 ≤ 𝑟 ≤ 𝑡 ≤ ∞,  
1

𝑟
=

𝜃

𝑠
+
(1−𝜃)

𝑡
  and 𝑢 ∈ 𝐿𝑠(𝛺) ∩ 𝐿𝑡(𝛺). Then 𝑢 ∈ 𝐿𝑟(𝛺), and 

 

‖𝑢‖𝐿𝑟(𝛺) ≤ ‖𝑢‖𝐿𝑠(𝛺)
𝜃 ‖𝑢‖𝐿𝑡(𝛺)

1−𝜃 . 

 

i. Gronwall’s inequality (differential form).  

   (a) Let 𝜂(⋅) be a nonnegative, absolutely continuous function on [0, 𝑇], which 

satisfies for almost every t the differential inequality 

 

ⅆ

ⅆ𝑡
𝜂(𝑡) ≤ 𝜑(𝑡)𝜂(𝑡) + 𝜓(𝑡) 

 

where  𝜑(𝑡) and 𝜓(𝑡) are nonnegative, summable functions on [0, 𝑇]. Then 

 

𝜂(𝑡) ≤  𝑒∫ 𝜑(𝑠)𝑑𝑠
𝑡
0 [𝜂(0) + ∫ 𝜓(𝑠)ⅆ𝑠

𝑡

0

] 

for all 𝑡 ∈ [0, 𝑇]. 
   (b) More precisely, if  

𝜂′(𝑡) ≤ 𝜑(𝑡)𝜂(𝑡) on [0, 𝑇] and 𝜂(0) = 0 

then 

𝜂 ≡ 0 on [0, 𝑇]. 
 

2.3 Sobolev inequalities3 

 

   According to our discussion in subsection 1.3, the elements of Sobolev spaces are 

locally summable functions with weak derivatives that belong to the Lebesgue spaces. 

Since the importance of changing the spaces in our problem is rising from the 

“validity” of our invoked functions, the query about the natural extension of the 

functions which belong to Sobolev spaces in other spaces automatically brings the 

embeddings theorems back to our mind. 

  In this section we will therefore give the so-called “Sobolev inequalities” in order to 

define embeddings of various Sobolev spaces into others. 

 

 3. See more in Section 5.6 in [5].  
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Theorem 2.3.1 (Gagliardo-Nirenberg-Sobolev inequality).  Let 1 ≤ 𝑝 < 𝑛 and the 

Sobolev conjugate of p defined as 

𝑝∗ ≔ 
𝑛𝑝

𝑛 − 𝑝
, 𝑝∗ > 𝑝. 

Then, there exists a constant K, depending only on p and n, such that 

 

‖𝑢‖
𝐿𝑝

∗
(𝑅𝑛)

≤ 𝐾‖𝐷𝑢‖𝐿𝑝(𝑅𝑛) 

for all 𝑢 ∈ 𝐶𝑐
1(RN). 

   In Theorem 2.3.1 the quantity “Du” denotes the gradient vector of u, i.e., the partial 

derivatives of u with respect to its spatial arguments; 𝐷𝑢 ≔ (𝑢𝑥1, ⋯ , 𝑢𝑥𝑛), and the 

space 𝐶𝑐
1(RN) denotes the space of functions which, together with their first-order 

derivatives are continuous in RN and has compact support4 in it. 

 

Theorem 2.3.2 (Estimates for 𝑾𝟏,𝒑 , 𝟏 ≤ 𝒑 < 𝒏).  Assume Ω is a bounded, open 

subset of RN, and suppose θΩ (the boundary of Ω) is C1. Assume 1 ≤ 𝑝 < 𝑛, and 𝑢 ∈

𝑊1,𝑝 (Ω). Then 𝑢 ∈ 𝐿𝑝
∗
(Ω), with the estimate 

 
‖𝑢‖

𝐿𝑝
∗
(𝛺)

≤ 𝛫‖𝑢‖𝑊1,𝑝(𝛺) 

 
the constant K depending only on p, n, and Ω. 
 

Definition 2.3.3. We denote by 𝑊0
𝑘,𝑝

(Ω) the closure of 𝐶𝑐
∞(Ω) in 𝑊𝑘,𝑝 (Ω). 

Thus 𝑢 ∈ 𝑊0
𝑘,𝑝

(Ω) if and only if there exist functions 𝑢𝑚 ∈ 𝐶𝑐
∞(Ω) such that 𝑢𝑚 → 𝑢 

in 𝑊𝑘,𝑝 (Ω).  

The space 𝑊0
𝑘,𝑝

(Ω) consists of those function that belong to 𝑊𝑘,𝑝 (Ω) and have the 

following property 
 

“𝐷𝑎𝑢 = 0 on θΩ” for all |𝑎| ≤ 𝑘 − 1. 
 

Theorem 2.3.4 (Estimates for 𝑊0
1,𝑝, 𝟏 ≤ 𝒑 < 𝒏).  Assume Ω is a bounded, open 

subset of RN. Suppose also 𝑢 ∈ 𝑊0
1,𝑝

(Ω) for some 1 ≤ 𝑝 < 𝑛. Then we have the 

following estimate 

 
‖𝑢‖𝐿𝑞(𝛺) ≤ 𝐾‖𝐷𝑢‖𝐿𝑝(𝛺) 

 

for each 𝑞 ∈ [1, 𝑝∗], with the constant K depending only on p, n, q and Ω. 

 

 

4. Given a function 𝑢 ∈ Ω, its support is defined to be 

𝑠𝑢𝑝𝑝(𝑢) ≔ {𝒙 ∈ 𝛺| 𝑢(𝒙) ≠ 0}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

We say a function u has compact support if supp(u) is a proper subset of Ω, i.e., if supp(u) is 

bounded; that means that there exist 𝑎, 𝑏 ∈ 𝛺 such that 𝑠𝑢𝑝𝑝(𝑢) ⊆ [𝑎, 𝑏]. 
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Remark. For all 1 ≤ 𝑝 ≤ ∞,  
 
                                                        ‖𝑢‖𝐿𝑝(𝛺) ≤ 𝐾‖𝐷𝑢‖𝐿𝑝(𝛺). 
 
This estimate is called Poincaré’s inequality. 

In view of this estimate, on 𝑊0
1,𝑝

(Ω) the norm ‖𝐷𝑢‖𝐿𝑝(𝛺) is equivalent to ‖𝑢‖𝑊1,𝑝(𝛺), 

if Ω is bounded. 

 

    Assume Ω ⊂ RN is open and 0 < 𝛾 ≤ 1. We say a function u satisfying the 

following inequality is said to be Hölder continuous with exponent γ. 

 
|𝑢(𝒙) − 𝑢(𝒚)| ≤ 𝑘‖𝒙 − 𝒚‖𝛾, for x, y ∈ Ω. 

 

Definition 2.3.5.  For 𝑚 ∈ ℤ+ and γ ∈ (0,1], we define the Hölder space 

 

𝐶𝑚,𝛾(�̅�) ≔ {𝑢 ∈ 𝐶𝑚(�̅�)| 𝜗𝛼𝑢 ∈ 𝐶0,𝛾(�̅�) ∀𝛼 𝑤𝑖𝑡ℎ |𝑎| = 𝑚 }. 
 

This is a Banach space with respect to the norm 

 

‖𝑢‖𝐶𝑚,𝛾(�̅�) ≔ 𝑚𝑎𝑥|𝛼|≤𝑚‖𝜗
𝛼𝑢‖𝐶(�̅�) 

 

+ ∑ 𝑠𝑢𝑝 {
|𝜗𝛼𝑢(𝒙) − 𝜗𝛼𝑢(𝒚)|

‖𝒙 − 𝒚‖𝛾
| 𝒙, 𝒚 ∈  Ω, 𝒙 ≠ 𝒚}

|𝑎|=𝑚

 

 

where ‖𝑢‖𝐶(�̅�) ≔ sup𝑥∈𝛺|u(x)|. 

 

    So, the space 𝐶𝑚,𝛾(�̅�) consists of those functions u that are m-times continuously 

differentiable and whose kth-partial derivatives are bounded and Hölder continuous 

with exponent γ. 

 

Theorem 2.3.6.  Assume 𝑛 < 𝑝 ≤ ∞. Then there exists a constant K, depending only 

on p and n, such that 
‖𝑢‖𝐶0,𝛾(𝑅𝑁) ≤ 𝛫‖𝑢‖𝑊1,𝑝(𝑅𝑁) 

 
for all 𝑢 ∈ C1 (RN), where 𝛾 ≔ 1 − 𝑛/𝑝. 
 

Theorem 2.3.7 (General Sobolev inequalities).  Assume Ω ⊂ RN is bounded and 

open, and suppose θΩ (the boundary of Ω) is C1. Assume also 𝑢 ∈ 𝑊𝑘,𝑝 (Ω). 

(i) If  

𝑘 < 𝑛/𝑝 

then 𝑢 ∈ Lq (Ω), where 

1

𝑞
=
1

𝑝
−
𝑘

𝑛
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and we have also the estimate 

 
‖𝑢‖𝐿𝑞(𝛺) ≤ 𝛫‖𝑢‖𝑊𝑘,𝑝(𝛺), 

 
where the constant K depending only on k, p, n and Ω. 
 

(ii) If 
 

𝑘 > 𝑛/𝑝 

 

then 𝑢 ∈ 𝐶
𝑘−[

𝑛

𝑝
]−1,𝛾

(�̅�), where 

 

𝛾 = {

[
𝑛

𝑝
] + 1 −

𝑛

𝑝
, 𝑖𝑓

𝑛

𝑝
𝑖𝑠 𝑛𝑜𝑡 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

𝑎𝑛𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 < 1, 𝑖𝑓
𝑛

𝑝
𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟.

 

In addition, we have the following estimate 

 

‖𝑢‖
𝐶
𝑘−

𝑛
𝑝−1,𝛾(�̅�)

≤ 𝛫‖𝑢‖𝑊𝑘,𝑝(𝛺), 

 
where the constant K depending only on k, p, n, γ and Ω. 
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3. Calculus on normed vector spaces5 

 

 

 

 

Calculus has always been the pioneer of change in our modern theories of science as 

with its notion of differentiation and integration we gave shape in uncounted physical 

concepts. In the present section we will extend the properties of calculus beyond the 

two-dimensional space and propose the equivalent theorems in the whole space of 

RN.  

 

3.1 Smoothness of the boundary 

   Sobolev spaces among the many properties they have, require also specific 

smoothness-arguments concerning the boundary of the domain for their properties to 

hold.  

   In order to explain the things a little further let us assume a vector field in two-

dimensional space. We will make the assumption that the “source” of the field takes 

place in the origin of our space and that we have an isotropic propagation, i.e., equally 

distribution of propagation among the directions. Obviously, the field has the shape of 

a circle with the vectors pointing outward propagating the action (or flow) equally 

throughout the space, like a wave.  

  When referring to the regularity of the boundary of a domain we mean the continuity 

of propagation in the limits (of the domain) as defined by the “transmission-rules” of 

the setting framework of action, i.e., the continuity of the derivatives of points 

belonging to the boundary. 

    

Definition 3.1.1. Assume Ω ⊂ RN be open and bounded, 𝑘 ∈ {1, 2,⋯ }. We say the 

boundary θΩ is Ck if for each point 𝒙0 belonging to the boundary there exists 𝑟 > 0 

and a Ck-function 𝑔 ∶ RN-1 → R such that upon a transformation of the coordinate 

system, if necessary, we have 

 

𝛺 ∩ 𝛣(𝒙0, 𝑟) = {𝑥 ∈ 𝐵(𝒙0, 𝑟)| 𝑥𝑁 > 𝑔(𝑥1, ⋯ , 𝑥𝑁−1)}. 
      

Here 𝛣(𝒙0, 𝑟) denotes the N-dimensional ball centered at 𝒙0 with radius 𝑟. 

5. See more on Chapter 7 of [4], Appendix C in [5], and for a general reading in [11]. 
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Figure 1. Smoothness of the boundary of Ω ⊂ RN. 

 

 Remark. (i) If θΩ is C1, then along the boundary of Ω we can define the outward 

pointing unit normal vector field 𝒗 = (𝑣1, ⋯ , 𝑣𝑁). 
The unit normal at any point 𝒙0 belonging to the boundary is 𝒗(𝒙0) = (𝑣1

0, ⋯ , 𝑣𝑁
0  ). 

(ii) Assume u belonging to 𝐶1(�̅�). We define by 

  

𝜗𝑢 𝜗𝑣⁄ ≔ 𝑣 ∙ 𝐷𝑢 

 

the (outward) normal derivative of u. 

 

3.2. Gauss-Green Theorem 

 
By our previous notes on smoothness and outward normal vectors the integration of a 

function belonging to 𝐶1 over the boundary of the domain is properly defined. 

   In this subsection we will take Ω to be a bounded, open subset of RN and the 

boundary of Ω to be C1. 

 

Theorem 3.2.1 (Gauss-Green Theorem).  (i) Assume u belonging to 𝐶1(�̅�). Then 

 

∫𝑢𝑥𝑖 ⅆ𝑥

𝛺

= ∫ 𝑢
𝜗𝛺

𝑣𝑖ⅆ𝑆 (𝑖 = 1,⋯ ,𝑁). 

 

where 𝑢𝑥𝑖 denotes the partial derivatives of u with respect to the spatial dimensions, 

and 𝑣𝑖 the outward pointing unit normal vector field, integrated with respect to the 

boundary of Ω. 
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(ii) We also have 

 

∫ⅆ𝑖𝑣 𝒖 ⅆ𝑥

𝛺

= ∫ 𝒖
𝜗𝛺

∙ 𝑣 ⅆ𝑆 

 

for each vector field 𝒖 = (𝑢1, ⋯ , 𝑢𝑁) ∈ 𝐶1(�̅� ; RN), which is referred as the 

Divergence Theorem. ∎ 

 

Theorem 3.2.2 (Integration by parts). Assume 𝑢, 𝜐 ∈ 𝐶1(�̅�). Therefore  

 

∫𝑢𝑥𝑖𝜐 ⅆ𝑥

𝛺

= −∫𝜐𝑥𝑖𝑢 ⅆ𝑥

𝛺

+∫ 𝑢𝜐𝑣𝑖

𝜗𝛺

ⅆ𝑆 (𝑖 = 1,⋯ ,𝑁). 

 

Proof.  We begin by integrating over Ω the quantity (𝑢𝜐)𝑥𝑖. 

 

∫(𝑢𝜐)𝑥𝑖 ⅆ𝑥 ≝

𝛺

∫(𝑢𝑥𝑖𝜐 + 𝜐𝑥𝑖𝑢)ⅆ𝑥 =

𝛺

∫𝑢𝑥𝑖𝜐 ⅆ𝑥

𝛺

+ ∫𝜐𝑥𝑖𝑢 ⅆ𝑥   (1)

𝛺

 

 

where the first equality is valid from the product rule. 

Applying the previous theorem to 𝑢𝜐, we get 

 

∫(𝑢𝜐)𝑥𝑖 ⅆ𝑥 =

𝛺

∫ 𝑢𝜐𝑣𝑖

𝜗𝛺

ⅆ𝑆   (2) 

 

From (1) and (2) we take the integration by parts formula.    Q.E.D. 

 

Theorem 3.2.3 (Green’s formulas).  Assume 𝑢, 𝜐 ∈ 𝐶2(�̅�). Then 

        (𝑖) ∫ ∆𝑢 ⅆ𝑥
𝛺

= ∫
𝜗𝑢

𝜗𝑣
𝜗𝛺

 ⅆ𝑆, 

       (𝑖𝑖) ∫ 𝐷𝑢 ∙ 𝐷𝜐 ⅆ𝑥
𝛺

= −∫ 𝑢∆𝜐 ⅆ𝑥
𝛺

+∫
𝜗𝜐

𝜗𝑣
𝜗𝛺

𝑢 ⅆ𝑆, 

       (𝑖𝑖𝑖) ∫ 𝑢∆𝜐 − 𝜐∆𝑢 ⅆ𝑥
𝛺

= ∫
𝜗𝜐

𝜗𝑣
𝜗𝛺

𝑢 −
𝜗𝑢

𝜗𝑣
𝜐ⅆ𝑆,  

where 𝐷 denotes the Hamilton operator 

 

∇ ≝  
𝜗

𝜗𝑥𝑖
 (𝑖 = 1,⋯ ,𝑁).∎ 
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4. Measure Theory 

 

 

 

 

 

 

 

In subsection 1.3 we referred to Lebesgue integrable functions and defined the 

Lebesgue spaces (see Def. 1.3.1). In this section we make a brief outline of some 

fundamental properties of measure theory and more specifically of the concepts of 

Lebesgue measure and Lebesgue integration. For a general studying on measure 

theory see [2] or Lecture 6 -Multiple Integrals: Lebesgue Integration- in [12]. For a 

short introduction see Chapter 1 in [4] or Appendix E in [5].  

 

 

4.1 Lebesgue Measure 
 

According to the dimensionality of the space the measure appears as a generalization 

of the “length”, “area”, “volume” or an affinal generalization.  

 

Definition 4.1.1.  Assume Ω is an open set and Φ a closed set. We define the 

Lebesgue measure of the sets Ω and Φ respectively by 

 

𝑚𝛺 = ∫ⅆ𝜐 

𝛺

𝑎𝑛ⅆ 𝑚𝛷 = ∫ⅆ𝜐.

𝛷

 

 

Theorem 4.1.2.  Assume the set E lying in an open set Ω. We say E is measurable if 

there exist a sequence of closed sets Fk included in E and a sequence of open sets Ωk 

containing E, such that 

 

𝑚(𝛺𝑘 − 𝐹𝑘) → 0 as  𝑘 → ∞. ∎ 

 

For the proof of Theorem 4.1.2 see pp.104-105 in [12]. 

 

Remark. Assume F are closed sets included in E and Ω are open sets containing E. If 

the set E is measurable, then 

 

                                                      𝑚𝐸 = 𝑠𝑢𝑝
𝐹⊆𝐸

 𝑚𝐹 = 𝑖𝑛𝑓
𝛦⊆𝛺

𝑚𝛺. 
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Proposition 4.1.3.  For any two measurable sets E1 and E2, the following relation 

holds 

 

𝑚𝐸1 +𝑚𝐸2 = 𝑚(𝐸1 + 𝐸2) + 𝑚(𝐸1𝐸2), 
 

where by 𝐸1𝐸2 is denoted their intersection. ∎ 

    Hence, we see that the sum and intersection of two measurable sets are always 

measurable. 

 

Remark. If there are open sets Ωk containing E with inf𝑚𝛺𝑘 = 0, then according to 

the previous remark, 𝑚𝐸 = 0. Conversely, any set having zero measure can be 

included in an open set with measure as small as we please. 

 

Theorem 4.1.4.  If on a bounded open set Ω a sequence of measurable sets {𝐸𝑘}𝑘 is 

given with no common points, then the sum of these sets 𝐸 = ∑ 𝐸𝑘𝑘  is measurable 

with  

𝑚𝐸 =∑𝑚𝐸𝑘.

∞

𝑘=1

∎ 

For the proof see pp.112 in [12]. 

 

4.2 Lebesgue Integration 

 
Following the concept of measurable sets, we procced with the definition of the 

measurable functions. 

  

Definition 4.2.1.  Assume Ω is a bounded open set and f a function defined on that 

set. We say f is measurable if and only if there exist closed sets Fk with measure close 

to that of Ω according to our will, on which f is continuous, and 

 

𝑚𝛺 −𝑚𝐹𝑘 ≤ 휀, 
 

where 휀 is any positive number.  

 

Definition 4.2.2.  If a non-negative function f has an inner integral6 in an open set Ω, 

then we say f is integrable, or summable in the Lebesgue sense on the domain Ω, with 

its inner integral representing then its Lebesgue integral with the notation of an 

ordinary integral. 

 

6. Assume f an arbitrary non-negative function defined on a bounded open set Ω. Consider all 

the closed sets F included in Ω on which f is continuous and define the upper bound of the 

integrals of f taken over the sets F; 𝑠𝑢𝑝𝐹 ∫ 𝑓
𝐹

ⅆ𝑈.  

We shall call this upper bound, if it exists and is finite, the inner integral on the set Ω of f and 

we shall use the notation 

(𝑖𝑛) ∫𝑓

𝛺

ⅆ𝜐. 
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We will complete this outline by giving two of the most important theorems that 

characterize Lebesgue integration. 

 

Theorem 4.2.3 (Lebesgue Dominated Convergence Theorem).  Suppose {𝑓𝑘}𝑘 is a 

sequence of summable function converging almost everywhere in the open set Ω to a 

limit function f. If the functions |𝑓𝑘| ≤ 𝑔, where 𝑔 a certain summable function, then 

the function f is summable with  

 

∫𝑓

𝛺

ⅆ𝜐 = lim
𝑘→∞

∫𝑓𝑘ⅆ𝜐

𝛺

. 

 

Theorem 4.2.4 (Fubini’s Theorem).  Assume 𝛺1 ⊂ RN1 and 𝛺2 ⊂ RN2 are Lebesgue 

measurable sets, and let f  be a summable function defined on 𝛺 = 𝛺1 × 𝛺2. Then for 

almost every 𝒙 ∈ 𝛺1, the function 𝑓(𝒙,⋅) is Lebesgue integrable on 𝛺2, ∫ 𝑓(𝒙, 𝒚)
𝛺2

ⅆ𝑦 

is integrable on 𝛺1, and 

 

∫[∫ 𝑓(𝒙, 𝒚) ⅆ𝑦
𝛺2

] ⅆ𝑥

𝛺1

= ∫ 𝑓(𝒙, 𝒚)

𝛺

ⅆ𝑥ⅆ𝑦. 

 

Similarly, for almost every 𝒚 ∈ 𝛺2, the function 𝑓(⋅, 𝒚) is Lebesgue integrable on 𝛺1, 

∫ 𝑓(𝒙, 𝒚)
𝛺1

ⅆ𝑥 is integrable on 𝛺2, and 

 

∫[∫ 𝑓(𝒙, 𝒚) ⅆ𝑥
𝛺1

] ⅆ𝑦

𝛺2

= ∫ 𝑓(𝒙, 𝒚)

𝛺

ⅆ𝑥ⅆ𝑦. 

 

From the validity of the proof of the above two theorems follows the admissibility of 

passing to the limit under the integral sign, the criterion for the convergence in the 

mean of a sequence of function, and the possibility of changing the order of 

integration in a multiple integral. 
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5. Semigroup Theory7 

 

 

 

 

In our previous concerns we briefly talked about the recasting of an PDE in an 

operator equation, with the operator encoding the structure of our original equation. 

The validity of our problem upon the recasting procedure must be preserved, i.e., the 

information regarding boundary or initial conditions, in addition to the prescription of 

the arguments of our equation must be properly redefined without being affected. Sine 

qua non of this treatment is the construction of a time-dependent family of operators 

in order to represent the evolution of our system in proper manner with respect to our 

initial conditions.  

    In this section we construct the pillars of this treatment and outline some of the 

most vital elements of the theory of semigroups.    

 

 

5.1 Definitions and properties 

 

We assume X is a real Banach space, and we consider the initial-value problem 

 

{  
�̇�(𝑡) = 𝐴𝒖(𝑡),   𝑡 ≥ 0

𝒖(0) = 𝑢,
 

 

where ∙ =
𝑑

𝑑𝑡
, 𝑢 ∈ 𝑋 is our initial data, and 𝐴 is a linear operator. Suppose, also, that 

the domain of 𝐴, D (𝐴), is a linear subspace of X. Therefore, we have  
 

𝐴 ∶ D (𝐴) ⊂ X → X. 

 

Our intention is to study the existence and uniqueness of a solution of the following 

form 

 

𝒖 ∶ [0,∞) → X. 

 

We propose for the moment that 𝒖 ∶ [0,∞) → X is indeed a solution of the initial-

value problem and that for each initial data 𝑢 there exists a unique solution. 

 

7. See Chapter 2 and 6 in [4], or Chapter 7 in [5]. 
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Definition 5.1.1. We denote the solution as  

 

𝒖(𝑡) ≔ 𝑆(𝑡)𝑢, 𝑡 ≥ 0, 

 

to represent the dependence of our solution on the initial data.  

By this notation we may regard 𝑆(𝑡) as a time-dependent mapping from X into itself. 

 

Proposition. (a) The family of operators {𝑆(𝑡)}𝑡≥0 is linear with  

 
(1)                                               𝑆(0)𝑢 = 𝑢 for each 𝑢 ∈ 𝑋,  

 

i.e., 𝑆(0) = 𝐼, where 𝐼: 𝑋 → 𝑋 is the identity mapping. 

(b) Our initial-value problem has a unique solution for each initial data, i.e.,  

 
(2)                      𝑆(𝑡 + 𝑠)𝑢 = 𝑆(𝑡)𝑆(𝑠)𝑢 = 𝑆(𝑠)𝑆(𝑡)𝑢  (𝑡, 𝑠 ≥ 0, 𝑢 ∈ 𝑋). 

 

The solution of our problem as we denoted is 𝒖(𝑡) ≔ 𝑆(𝑡)𝑢, 𝑡 ≥ 0.  

    We have 𝒖(𝑡0) = 𝑆(𝑡0)𝑢 and 𝑆(𝑡)𝑢(𝑡0) is the solution of the differential equation 

on [𝑡0, 𝑇] with the initial condition 𝑢(𝑡0) at 𝑡0. By the uniqueness of the solution, 

𝑆(𝑡)𝑢(𝑡0) = 𝒖(𝑡 + 𝑡0), i.e., 𝑆(𝑡1)𝑆(𝑡0)𝑢 = 𝑆(𝑡1 + 𝑡0)𝑢, since 𝑢 ∈ 𝑋 is arbitrary, 

𝑆(𝑡1 + 𝑡0) =  𝑆(𝑡1)𝑆(𝑡0).  Q.E.D. 

(c) For each 𝑢 ∈ 𝑋 the mapping 𝑡 → 𝑆(𝑡)𝑢 is continuous from [0,∞) into X. 

 

Definition 5.1.2.  We say a family of bounded linear operators {𝑆(𝑡)}𝑡≥0 mapping X 

into X is a semigroup if and only if the conditions of the above proposition are 

satisfied. 

 

Remark. In addition, we say {𝑆(𝑡)}𝑡≥0 is a contraction semigroup if and only if 

 
‖𝑆(𝑡)‖ ≤ 1  (𝑡 ≥ 0), 

 

where ‖∙‖ denoting the operator norm defined in section 1 (see Def. 1.4.4). Thus 

 
‖𝑆(𝑡)𝑢‖ ≤ ‖𝑢‖, 𝑡 ≥ 0, 𝑢 ∈ 𝑋. 

 

Definition 5.1.3.  We say 𝐴 ∶ D (𝐴) ⊂ X → X is the infinitesimal generator of the 

semigroup {𝑆(𝑡)}𝑡≥0 with 

D (𝐴) ≔ {𝑢 ∈ 𝑋 | lim
𝑡→0+

𝑆(𝑡)𝑢−𝑢

𝑡
 𝑒𝑥𝑖𝑠𝑡𝑠 𝑖𝑛 𝑋} 

and 

𝐴𝑢 ≔ lim
                   𝑡→0+

𝑆(𝑡)𝑢−𝑢

𝑡
  (𝑢 ∈ D (𝐴)). 
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Theorem 5.1.4.  Assume 𝑢 ∈ D (𝐴). Therefore, we have 

(i) 𝑆(𝑡)𝑢 ∈ D (𝐴) for each 𝑡 ≥ 0. 

(ii) 𝐴𝑆(𝑡)𝑢 = 𝑆(𝑡)𝐴𝑢 for each 𝑡 ≥ 0. 

(iii) The mapping 𝑡 → 𝑆(𝑡)𝑢 is differentiable for each 𝑡 > 0. 

(iv)  
𝑑

𝑑𝑡
𝑆(𝑡)𝑢 = 𝐴𝑆(𝑡)𝑢, 𝑡 > 0. ∎ 

For the proof see pp. 435-436 in [5]. 

 

Remark. From property (iv) and the fact that 𝑡 → 𝐴𝑆(𝑡)𝑢 = 𝑆(𝑡)𝐴𝑢 is continuous, 

the mapping 𝑡 → 𝑆(𝑡)𝑢 is C1 in (0,∞), if 𝑢 ∈ D (𝐴). 

 

Theorem 5.1.5.  Under the previous assumption we have 

(i) The domain of the operator A is dense in X 

and 

(ii) the operator A is closed, i.e., if for any sequence {𝜐𝑘} ⊂ D (𝐴), 𝜐𝑘 → 𝜐 and 

𝐴(𝜐𝑘) → 𝑤 as 𝑘 → ∞, we have 𝜐 ∈ D (𝐴) and 𝑤 = 𝐴(𝜐). ∎ 

For the proof see pp. 436-437 in [5]. 

 

Definition 5.1.6. (a)  We say a real number λ belongs to the resolvent set of A, ρ(Α), 

provided the operator 

𝜆𝐼 − 𝐴 ∶ D (𝐴) → 𝑋 

is bijective. 

(b) If 𝜆 ∈ 𝜌(𝛢), the resolvent operator 𝑅𝜆 ∶ Χ → Χ  is defined by 

 

𝑅𝜆𝑢 ≔ (𝜆𝐼 − 𝐴)−1𝑢. 

 

Remark.  According to the Closed Graph Theorem8, 𝑅𝜆 ∶ Χ → D (𝐴) ⊆ X is a 

bounded linear operator, and furthermore for 𝑢 ∈ D (𝐴) we have, 𝐴𝑅𝜆𝑢 = 𝑅𝜆𝐴𝑢. 

  

The importance of defining the resolvent set and the resolvent operator is rising from 

the existence of solutions of equations of the following form 

 
(𝜆𝐼 − 𝐴)𝑢 = 𝑓, 

 

where 𝑓 is a given function defined on X and λ a real positive number. 

   Obviously, the solution takes the form, 𝑢 =  (𝜆𝐼 − 𝐴)−1𝑓 and therefore the 

consideration of the set of all real numbers λ for which such a solution is valid, i.e., 

the inverse operator (𝜆𝐼 − 𝐴)−1 exists on X to D (𝐴) ⊆ X, defines the resolvent set. 

 

Definition 5.1.7.  The set that remains after the exclusion of the resolvent set from the 

set of real numbers is called the spectrum of A, i.e., 𝜎(𝐴) = R − 𝜌(𝐴). 
 

8. (Closed Graph Theorem): Assume 𝐴 ∶ 𝑋 → 𝑌 be a closed, linear operator. Then A is 

bounded.  
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Theorem 5.1.8. (a)  If 𝜆, 𝜇 ∈ 𝜌(𝛢), we have 

 

𝑅𝜆 − 𝑅𝜇 = (𝜇 − 𝜆)𝑅𝜆𝑅𝜇  (resolvent identity) 

and 

𝑅𝜆𝑅𝜇 = 𝑅𝜇𝑅𝜆. 

(b) If 𝜆 > 0, then 𝜆 ∈ 𝜌(𝛢), 
 

𝑅𝜆𝑢 = ∫ 𝑒−𝜆𝑡𝑆(𝑡)𝑢 ⅆ𝑡   (𝑢 ∈ 𝑋),
∞

0

 

and so  ‖𝑅𝜆‖ ≤  
1

𝜆
. ∎ 

Thus, the resolvent operator is the Laplace transform9 of the semigroup (see Example 

8, pp. 203 in [5]). For the proof see pp. 438-439 in [5]. 

 

So far, we talked about semigroups, and the relation between them and the operators 

of the posed problem. A significant account about relating these two concepts is 

which operator generates a contraction semigroup. In the following theorem which is 

also referred as Hille-Yosida Theorem we give the necessary conditions. 

 

Theorem 5.1.9.  Assume A to be a closed, densely-defined linear operator on X. Then 

we say, A generates a contraction semigroup {𝑆(𝑡)}𝑡≥0 if and only if 

 

(0,∞) ⊂ 𝜌(𝛢) and ‖𝑅𝜆‖ ≤  
1

𝜆
  for 𝜆 > 0.∎ 

 

For the proof see pp. 439-441 in [5].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. Assume 𝑢 ∈ L1(R+). We define its Laplace transform using the notation ℒ 𝑢 = u as 

 

u(𝑠) ≔  ∫ 𝑒−𝑠𝑡𝑢(𝑡)ⅆ𝑡   (𝑠 ≥ 0).
∞

0
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6. The Banach fixed-point theorem 

 

 

 

 

 

 

 

In this section we investigate the existence of solutions to operator equations lacking 

the property of linearity and which take the following form 

 

T(u) = u, u ∈ V, 

 

where the space V is a subset of a real Banach space X, and the operator T is a 

mapping from V to X. 

   Obviously, according to the equation, the points that satisfy the above condition 

remain unchanged under the action of T, i.e., the solutions of this equation may be 

regarded as fixed-points of the operator T.  

   It should be also mentioned that if we take a closer look on our problem then we 

will notice that the analysis of the solvability is based on the analysis of the operator, 

as the fixed-points of an operator may not be fixed for another operator, i.e., the 

treatment should be made on the operator itself. 

    By this statement we begin our analysis assuming X to be a real Banach space 

equipped with the norm ‖∙‖𝑋, V to be a subset of X, and T an operator from V to X.  

 

Definition.  We say an operator T ∶ V ⊂ X → X is contractive with contractivity-

constant 0 ≤ α < 1 if 

 

||T(u) ─ T(υ)||X ≤ α ||u ─ υ||X   ∀u, υ ∈ V. 

 

Remark.  From a geometrical point of view, the above inequality points out that the 

distance of the image of two elements is less or equal than the distance of the 

elements itself, i.e., a “distance-contraction” between two elements is accomplished.  

 

Theorem. (a) Existence and uniqueness:  

    Assume V is a non-empty closed set in a real Banach space X, and also, that  

T ∶ V → V is a contractive mapping with contractivity-constant α, 0 ≤ α < 1. 

Therefore, there exists a unique u ∈ V such that T(u) = u. 
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If we are also interested in approximating the solution of the fixed-point problem by 

following an iterative method then we get also the following result; 

(b) Convergence and error estimates of the iteration:  

      For any initial guess 𝑢0 ∈ V, the sequence {𝑢𝑘} ⊂ V defined by the iteration 

formula 𝑢𝑘+1 = T(𝑢𝑘), k = 0, 1, …, converges to u; ‖𝑢𝑘 − 𝑢‖𝑋 → 0 as 𝑘 → ∞. 

For the error estimates, we have the following valid bounds: 

(i) ‖𝑢𝑘 − 𝑢‖𝑋 ≤
𝛼𝑘

1−𝛼
‖𝑢0 − 𝑢1‖𝑋 , 

(ii) ‖𝑢𝑘 − 𝑢‖𝑋 ≤
𝛼

1−𝛼
‖𝑢𝑘−1 − 𝑢𝑘‖𝑋 , 

(iii) ‖𝑢𝑘 − 𝑢‖𝑋 ≤ 𝛼‖𝑢𝑘−1 − 𝑢‖𝑋 .  

 

Proof.  (a) Since T is a mapping from V to V, the sequence {𝑢𝑘} is well-defined.  

Firstly, we prove that {𝑢𝑘} is a Cauchy-sequence. From the contractivity of the 

operator T we have 

ⅆ(𝑢𝑘+1, 𝑢𝑘) = ⅆ(T(𝑢𝑘), T(𝑢𝑘−1)) 

                      = ||T(𝑢𝑘) − T(𝑢𝑘−1)||X 

              ≤ α ‖𝑢𝑘 − 𝑢𝑘−1‖𝑋 

                         = 𝑎ⅆ(T(𝑢𝑘−1), T(𝑢𝑘−2)) 

                  ≤ α2 ‖𝑢𝑘−1 − 𝑢𝑘−2‖𝑋 

⋮  

       ≤ 𝛼𝑘 ⅆ(𝑢1, 𝑢0). 

Therefore, for any 𝑙 ≥ 𝑘 ≥ 1, 

ⅆ(𝑢𝑙 , 𝑢𝑘) ≤∑ ⅆ(𝑢𝑘+𝑗+1, 𝑢𝑘+𝑗)
𝑙−𝑘−1

𝑗=0
 

 

≤∑ 𝛼𝑘+𝑗  ⅆ(𝑢1, 𝑢0)
𝑙−𝑘−1

𝑗=0
 

 

                                                      ≤  
𝑎𝑘

1 − 𝑎
 ⅆ(𝑢1, 𝑢0).   

. 

Since 0 ≤ α < 1, ⅆ(𝑢𝑙 , 𝑢𝑘) → 0 as 𝑙, 𝑘 → ∞; thus {𝑢𝑘} is a Cauchy-sequence. From 

the fact that V is a closed set in the Banach space X, {𝑢𝑘} converges to an element 

𝑢 ∈ V. Taking the limit 𝑘 → ∞ in 𝑢𝑘+1 = T(𝑢𝑘), we see that 𝑢 = T(𝑢) by the 

continuity of T, i.e., we proved that u is a fixed-point of T. 

   To complete the first part of our proof we need to show the uniqueness of our 

solution. For this, suppose that 𝑢1, 𝑢2 ∈ V are both fixed-points of the operator T. 

Then from this statement we obtain; 𝑢1 = T(𝑢1) and 𝑢2 = T(𝑢2) or  

 

𝑢1 −  𝑢2 = T(𝑢1) − T(𝑢2). 
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Taking the norm on both quantities we get 

 

‖𝑢1 −  𝑢2‖𝑋 = ||T(𝑢1) − T(𝑢2)||X ≤ α ‖𝑢1 − 𝑢2‖𝑋 

 

which implies since 0 ≤ α < 1, that ⅆ(𝑢1, 𝑢2) = 0, i.e., 𝑢1 = 𝑢2. So, we proved that 

a fixed-point of a contractive mapping is unique. 

    (b) In the second part of our proof, we need to prove the validity of the error 

estimates. By our previous calculations we showed that  

 

ⅆ(𝑢𝑙, 𝑢𝑘) ≤
𝑎𝑘

1 − 𝑎
 ⅆ(𝑢1, 𝑢0).   

 

Letting 𝑙 → ∞ and using the convergence 𝑢𝑙 → 𝑢 and the (iii)-property of the distance 

between two elements we get the first error estimate. 

From  

 

‖𝑢𝑘 − 𝑢‖𝑋 = ||T(𝑢𝑘−1) − T(𝑢)||X ≤ α ‖𝑢𝑘−1 − 𝑢‖𝑋 

 

we obtain the third estimate. Using this, together with  

 

‖𝑢𝑘−1 − 𝑢‖𝑋 ≤ ‖𝑢𝑘−1 − 𝑢𝑘‖𝑋 + ‖𝑢𝑘 − 𝑢‖𝑋 

 

we get the second estimate.   Q.E.D.  

 

This theorem is known as the Banach fixed-point theorem or as contractive mapping 

theorem. 
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7. The Galerkin method 

 

 

 

In many problems involving nonlinear partial differential equations, the use of 

numerical methods is the lapis primus of our study. In this section we will make a 

briefly introduction to the Galerkin method and discuss the approximation techniques 

used for the weak-solutions of a problem. For a general study on the Galerkin method 

and some of its variants see Chapter 9 in [4]. For an application on hyperbolic 

initial/boundary-value problems see Chapter 7 in [5].  

 

 

7.1 Introduction 

 
The formulation of a problem with initial, boundary, or a combination of these 

conditions, concerning the behavior of our unknown function, in the type of a system 

composed by a partial differential equation and the mentioned conditions is regarded 

as a classical formulation. On the other hand, if we properly remove the smoothness 

requirements of the solution we derive the weak formulation of our problem, which is 

equivalent to our original one, but more treatable.  

   To understand the “transition” from classical to weak formulation let us see two 

examples of some linear elliptic boundary-value problems.  

 

Example 7.1.1.  Suppose that we are given the following elliptic boundary-value 

problem which corresponds to the Poisson equation9 with the homogeneous Dirichlet 

boundary condition 

 

{
−∆𝑢 = 𝑓 in 𝛺,
         𝑢 = 0 in 𝜃𝛺.

 

 

To derive the weak formulation, we multiply the differential equation by a smooth test 

function, i.e., by an arbitrary function υ belonging to 𝐶0
∞(𝛺), and integrate with 

respect to Ω. 

 

 

9. The Poisson equation in the nonlinear form −∆𝑢 = 𝑓 is the non-homogeneous Laplace 

equation which can be used to describe among others steady state heat conduction, 

electrostatics, gravity potential in free space, etc. See more in [5].  
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This leads to  

−∫𝛥𝑢𝜐 ⅆ𝑥

𝛺

= ∫𝑓𝜐 ⅆ𝑥

𝛺

. 

According to the Green’s second formula we have 

∫∇𝑢∇𝜐 ⅆ𝑥

𝛺

−∫
𝜗𝜐

𝜗𝑣𝜗𝛺

𝑢 ⅆ𝑆 = ∫𝑓𝜐 ⅆ𝑥

𝛺

, 

and by the compact support of υ (𝜐 = 0, 𝑖𝑛 𝜃𝛺) the equation is reduced to 

∫∇𝑢∇𝜐 ⅆ𝑥

𝛺

= ∫𝑓𝜐 ⅆ𝑥

𝛺

. 

 

The term on the left-hand side of the equation points out that the functions u, υ should 

belong to the Sobolev space 𝐻0
1(𝛺) - instead of the space 𝐶2(𝛺) ∩ 𝐶(�̅�) which is the 

proper space in our classical formulation - and from the right-hand side term 𝑓 ∈
𝐿2(𝛺) in order for the last equation to have a meaning. Under these assumptions we 

have a weak formulation of our problem: 

 

𝑢, 𝜐 ∈ 𝐻0
1(𝛺), ∫∇𝑢∇𝜐 ⅆ𝑥

𝛺

= ∫𝑓𝜐 ⅆ𝑥,

𝛺

  𝑓 ∈ 𝐿2(𝛺).   

 

If in addition we assume X = H0
1(Ω), 𝛼(  , ) ∶ 𝛸 × 𝛸 → R, the bilinear form defined 

by  

𝛼(𝑢, 𝜐) = ∫∇𝑢∇𝜐 ⅆ𝑥

𝛺

  𝑓𝑜𝑟 𝑢, 𝜐 ∈ 𝑋, 

and 𝑙 ∶ 𝛸 → R, the linear functional defined by 

𝑙(𝜐) = ∫𝑓𝜐 ⅆ𝑥 𝑓𝑜𝑟 𝜐 ∈ 𝑋,

𝛺

 

the weak formulation of the problem takes the form 

𝛼(𝑢, 𝜐) =  𝑙(𝜐)  ∀𝜐 ∈ 𝑋, 

where  𝑢 ∈ 𝑋 is the solution. 

Example 7.1.2.  Consider the Helmholtz equation with the homogeneous Dirichlet 

boundary condition 

 

{
−∆𝑢 + 𝑢 = 𝑓 in 𝛺,
         𝑢 = 0 in 𝜗𝛺.

 

 

 (For a study in Helmholtz equation see [5]). 
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Following the previous procedure, we derive the equation 

 

−∫(𝛥𝑢𝜐 + 𝑢𝜐) ⅆ𝑥

𝛺

= ∫𝑓𝜐 ⅆ𝑥

𝛺

. 

 

As before, using Green’s second formula and the compact support of υ we take 

 

∫(∇𝑢∇𝜐 + 𝑢𝜐) ⅆ𝑥

𝛺

= ∫𝑓𝜐 ⅆ𝑥

𝛺

. 

 

Obviously, the validity of this equation holds if 𝑢, 𝜐 ∈ 𝐻0
1(𝛺) and 𝑓 ∈ 𝐿2(𝛺). 

Therefore, the weak formulation of our problem is  

 

𝑢, 𝜐 ∈ 𝐻0
1(𝛺), ∫(∇𝑢∇𝜐 + 𝑢𝜐) ⅆ𝑥

𝛺

= ∫𝑓𝜐 ⅆ𝑥,

𝛺

  𝑓 ∈ 𝐿2(𝛺),   

 

and if we take into consideration our previous notation we have    

 

𝛼(𝑢, 𝜐) =  𝑙(𝜐), 
 

for X = H0
1(Ω), 𝑢, 𝜐 ∈ 𝑋 and 𝛼(𝑢, 𝜐) = ∫ (∇𝑢∇𝜐 + 𝑢𝜐) ⅆ𝑥,   

𝛺
𝑙(𝜐) = ∫ 𝑓𝜐 ⅆ𝑥.

𝛺
 

 

The significance of the weak formulation is that we can use the Galerkin method, 

which we develop in the next subsection, to approximate the weak solutions of our 

problem. 

 

7.2 The method 

 

Assume X = H0
1(Ω), 𝛼(  , ) ∶ 𝛸 × 𝛸 → R a bilinear form, and 𝑙 ∶ 𝛸 → R a linear 

functional. We consider our previous notation on the weak formulation of our 

problem   

 

𝛼(𝑢, 𝜐) =  𝑙(𝜐)  ∀𝑢, 𝜐 ∈ 𝑋, 
 

and the following two conditions 

 

(i) 𝛼(  , ) is bounded, i.e., |𝛼(𝑢, 𝜐)| ≤ 𝐾‖𝑢‖𝛸‖𝜐‖𝛸 ∀𝑢, 𝜐 ∈ 𝛸, 
and 

(ii) V-elliptic, i.e., 𝛼(𝜐, 𝜐) ≥ 𝑘0‖𝜐‖𝑋
2  ∀𝜐 ∈ 𝛸. 

 

Therefore, according to the Lax-Milgram Lemma, our problem has a unique solution. 
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Even though the existence and uniqueness of the weak solution has been secured by 

the above lemma, the exact solution may not be easily found due to the infinite-

dimensionality of our space. To overcome this “peculiarity” we project our problem 

to a finite-dimensional subspace and using the Lax-Milgram Lemma we secure again 

the existence and uniqueness of the solution. Thus, assuming 𝑋𝑁 ⊂ 𝑋 to be our N-

dimensional projection we get 

  

𝛼(𝑢𝑁 , 𝜐) =  𝑙(𝜐)  ∀𝑢𝑁 , 𝜐 ∈ 𝑋𝑁. 

 

We may actually make our work much easier if we recast our problem in the form of 

a linear system. To do this, we take {𝑤𝑖}𝑖=1
𝑁  to be a basis10 of 𝑋𝑁, and write 

 

𝑢𝑁 =∑ ⅆ𝑗𝑤𝑗 .
𝑁

𝑗=1
 

 

Taking 𝜐 ∈ 𝑋𝑁 to be each of the basis-functions 𝑤𝑖, and substituting to the problem 

we take 

𝑎 (∑ ⅆ𝑗𝑤𝑗,
𝑁

𝑗=1
𝑤𝑖) = 𝑙(𝑤𝑖) 

or 

 

(𝑎(𝑤𝑗 , 𝑤𝑖)) (ⅆ𝑗) = 𝑙(𝑤𝑖)    

 

where using the following notation  

𝐴 = (𝑎(𝑤𝑗, 𝑤𝑖)) ∈ RNxN ≡ the stiffness matrix 

𝒅 = (ⅆ𝑗) ∈ RN ≡ the unknown vector 

𝒃 = 𝑙(𝑤𝑖) ∈ RN ≡ the load vector 

we derive the equivalent linear system, 𝐴𝒅 = 𝒃. 

 

Following the prescribed procedure for an expanding sequence of subspaces we can 

increase the accuracy of approximation, and use Céa’s lemma11 for error estimates.  

 

By this we complete our introduction to the Galerkin method, a variant of which we 

shall see in Chapter II. 

 

 

10.  A basis is a set of independent vectors such that any vector in the space can be written as 

a linear combination of them. See more on Chapter 1 in [4]. 

11. See Proposition 9.1.3 in [4].  
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B. Introduction 

 
 

 

 

 

 

Our aim in this work is to study the existence of global solutions and blow-up 

phenomena in finite time of the following quasilinear dissipative Kirchhoff’s string 

problem with initial conditions   

 

{
𝑢𝑡𝑡 − 𝜑(𝑥)‖∇𝑢(𝑡)‖

2∆𝑢 + 𝛿𝑢𝑡 = 𝑓(𝑢),        𝑥 ∈ ℝ𝑁 , 𝑡 ≥ 0

𝑢(𝑥, 0) = 𝑢0(𝑥),    𝑢𝑡(𝑥, 0) = 𝑢1(𝑥),   𝑥 ∈ ℝ
𝑁  

 

 

where (𝜑(𝑥))−1 ≔ 𝑔(𝑥) ∈ 𝐿𝑁 2⁄ (ℝ𝑁) ∩ 𝐿∞(ℝ𝑁), 𝑁 ≥ 3, 𝛿 the resistance modules 

and 𝑓 the external force. 

   The equation was firstly proposed by Gustav Kirchhoff for the study of vibrating 

stings (one-dimensional), membranes (two-dimensional), or elastic solids (three-

dimensional) with 𝛿 = 𝑓 = 0, and takes the form 

 

𝑝ℎ
𝜗2𝑢

𝜗𝑡2
= {𝑝0 +

𝐸ℎ

2𝐿
∫ (

𝜗𝑢

𝜗𝑥
)
2

ⅆ𝑥
𝐿

0

}
𝜗2𝑢

𝜗𝑥2
. 

 

for 0 < 𝑥 < 𝐿, 𝑡 ≥ 0.  

   The physical interpretation of 𝑢 = 𝑢(𝑥, 𝑡) is the displacement in some direction of 

the point 𝑥 at time, 𝑡 ≥ 0, where by 𝐸 we denote the Young-modules12, 𝑝 the mass 

density, ℎ the cross-section area, 𝐿 the length, and 𝑝0 the initial axial tension. When 

𝑝0 = 0 the equation is considered to be of degenerate type, i.e., an unstretched string 

or its higher dimensional generalization; otherwise, it is of non-degenerate type and 

the equation models a stretched string or its higher dimensional generalization (See 

more in [9], [10].). 

 

12. Elasticity’s modules or Young-modules is the proportion coefficient between stress and 

strain (deformation) and represents the stress that causes 휀 = 1, i.e., the displacement of the 

string is equal to its initial length; 𝛥𝐿 = 𝐿 . We use the notation 𝐸 = 𝜎 휀⁄ =  𝐹𝐿 ℎ𝛥𝐿⁄ , where 

F is the force exerted on an object under tension, h the actual cross-sectional area, ΔL the 

displacement of the length of the object, and L its initial length. Is measured in Pa (1 𝑃𝑎 =

1 𝑁 𝑚2⁄ = 1 𝑘𝑔 𝑚𝑠2⁄ ). In material science we distinguish elasticity’s modules in tension 

and compression. 
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For the purposes of this work, we have made the following arrangement: In Chapter I 

we introduce the dynamical system, -the framework of analysis of evolution equation-

and give an example from classical mechanics to specify the concept of phase space. 

In Chapter II we begin the study of our problem. In the first section we make a brief 

review in the natural background of hyperbolic equations with non-constant diffusion 

coefficient, and give some known results concerning the study of our problem. In the 

next section we represent the space setting of the problem and the necessary 

embeddings for the continuation of our study. In the third section, we prove the 

existence and uniqueness of the weak-solutions, in the fourth section we study the 

existence of global-solutions and the energy estimates of those, using the potential 

well method. In the fifth section we end our study by giving some results concerning 

the blow-up phenomena of the solutions of our problem using the concavity method 

(see [3]).    
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I. Dynamical Systems 
 

 

 

 

 

The “space-time-condition” as primus principle of validity of motion presupposes the 

existence of one or more elementary factors which represent the connection of events. 

Since our concepts of change are based upon this connection, defining a “framework 

of change”, i.e., a space that represents rates of change depending on the initial data at 

some given time, is as a matter of fact one-way. Even though this is an arbitrary 

definition, this framework is actually what we usually call a dynamical system. 

Throughout this chapter we follow the mathematical description of a dynamical 

system, and in section 2 we will return to our preceding definition in order to explain 

in depth the concept of phase space or state space as it may also be found in 

literature. 

 

 

1. Definitions, and elementary properties 

 

In the case of continuous time13 we have the following definition 

 

Definition 1.1.(a) A family of maps {𝑀𝑡}𝑡≥0: 𝑋 → 𝑋 such that 𝑀0 = 𝐼 and 

 

𝑀𝑡+𝑠 = 𝑀𝑡 ∘ 𝑀𝑠, ∀𝑡, 𝑠 ≥ 0  

 

is called a semi-flow.  

(b) A family of maps {𝑀𝑡}𝑡∈ℝ: 𝑋 → 𝑋 such that 𝑀0 = 𝐼 and 

 

𝑀𝑡+𝑠 = 𝑀𝑡 ∘ 𝑀𝑠, ∀𝑡, 𝑠 ∈ ℝ  

 

is called a flow.  

   We say that a family of maps {𝑀𝑡} that is a semi-flow or a flow is a dynamical 

system with continuous time. 

 

Remark. If {𝑀𝑡} is a flow, then 𝑀𝑡 ∘ 𝑀−𝑡 = 𝑀−𝑡 ∘ 𝑀𝑡 = 𝑀0 = 𝐼, and therefore each 

map 𝑀𝑡 is invertible with its inverse given by 𝑀𝑡
−1 = 𝑀−𝑡. 

 

13. See Chapter 2 in [6] for a description of dynamical systems for discrete and continuous 

time. 
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Proposition 1.2. Assume F: RN → RN is a continuous function such that, given  

𝑢0 ∈ RN, the initial-value problem  

 

{
     �̇�(𝑡) = 𝐹(𝑢)

𝑢(0) = 𝑢0
 

 

has a unique solution 𝑢(𝑡, 𝑢0) defined for 𝑡 ∈ R. Therefore, the family of maps {𝑀𝑡} 
from RN to RN defined for each 𝑡 ∈ R by  

 

𝑀𝑡(𝑢0) = 𝑢(𝑡, 𝑢0) 
 

is a flow. ■ 

For the proof see Proposition 2.3 in [6].  

 

Relating this result with the definition for the semigroup of operators (see in 

preliminary), the semigroup {𝑆(𝑡)}𝑡≥0 defines a dynamical system in X if and only if 

the operators are continuous maps from X to X, i.e., the family of maps {𝑆(𝑡)}𝑡≥0 is a 

flow. From this point of view, we may in addition review the concept of orbits which 

represent, as we shall, see the evolution of our solutions. 

 

Definition 1.3.(a) For a semi-flow {𝑀𝑡}𝑡≥0 of X, given a point x in X, we define the 

positive semi-orbit of x by the set, 

𝛾+(𝑥) = 𝛾𝛭
+(𝑥) = {𝑀𝑡(𝑥): 𝑡 ≥ 0}. 

Similarly, we define for a flow {𝑀𝑡}𝑡∈ℝ the negative semi-orbit by the set 

𝛾−(𝑥) = 𝛾𝛭
−(𝑥) = {𝑀−𝑡(𝑥): 𝑡 ≥ 0}. 

 Thus, the orbit of x is given by  

𝛾(𝑥) = 𝛾𝛭(𝑥) = {𝑀𝑡(𝑥): 𝑡 ∈ ℝ}. 

(b) In the same way, for every point u in X, the positive semi-orbit of the dynamical 

system, or the orbit that begins from u is given by the set 

𝛾+(𝑢) =⋃𝑆(𝑡)𝑢,

𝑡≥0

 

and the negative semi-orbit, or the orbit that ends in u is given by the set   

𝛾−(𝑢) =⋃𝑆(−𝑡)𝑢.

𝑡≥0

 

The orbit of the dynamical system defined by {𝑆(𝑡)}𝑡≥0 is obviously the union of 

these semi-orbits, i.e., 

𝛾(𝑢) = 𝛾+(𝑢)⋃𝛾−(𝑢). 
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Figure 2: The orbit of a dynamical system with initial condition 𝒖(0) = 𝑢. 

 

In figure 2 the time-axis is defined as strictly positive, i.e., the negative semi-axis is 

understood as taking time with minus sign to express the inversibility property of 

{𝑆(𝑡)}𝑡≥0. Consequently, the negative semi-orbit is valid if and only if the dynamical 

system possesses the backwards uniqueness property; 𝑆(𝑡) is one-to-one. 

 

2. Phase space 

 

In Proposition 1.2. we assumed that our function is a continuous vector-valued 

function defined in RN. This means that the function u which satisfies the initial-value 

problem will be a vector function, e.g.,  𝑢 = (𝑢1, ⋯ , 𝑢𝑁). We may take this vector as 

a row-vector, i.e., 𝑢 = (𝑢1, ⋯ , 𝑢𝑁); or as a column-vector, i.e., 𝑢 = (𝑢1, ⋯ , 𝑢𝑁)
𝑇 

depending on the validity of our calculations.  

    Such a function may be considered as a parametrical representation of the N-

dimensional generalization of the curve in the plane 𝑢1𝑢2⋯𝑢𝑁−1𝑢𝑁 , and usually we 

interpret this representation as an orbit of a single particle in RN with velocity given 

by the differential equation. The plane 𝑢1𝑢2⋯𝑢𝑁−1𝑢𝑁 is regarded as the phase space 

or state space of our dynamical system, and a venerable collection of orbits determine 

the behavior of the evolution of the system.  

   In order to clarify in a more explicit way the concept of phase space we consider a 

single particle moving in RN. Apparently, the position, the velocity and the 

acceleration of our particle will be represented by vectors in RN as we have already 

introduced. Therefore, we have respectively, 

 

𝒙 = (

𝑥1
⋮
𝑥𝑁
) ,   𝒖 ≡ �̇� = (

�̇�1
⋮
�̇�𝑁

) ,   𝒂 ≡ �̈� = (
�̈�1
⋮
�̈�𝑁

).  
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Under these assumptions, Newton’s second law (𝐹 = 𝑚𝑎) takes the form 

𝑭(𝒙(𝑡), �̇�(𝑡)) = 𝑚�̈�(𝑡), 

where 𝑚 is the mass of the particle, and 𝑭: RN × RN → RN, expresses the force law, 

which may depend on both the position and velocity of the particle. 

   Assuming that our force is velocity-independent we can “integrate” our second-

order differential equation and receive a pair of first-order differential equations, 

using the velocity of our particle as a new variable. Thus, we take the following 

system 

{

�̇�(𝑡) = 𝒖(𝑡)

         �̇�(𝑡) =
𝑭(𝒙(𝑡))

𝑚
.
   

If 𝒙(𝑡) is the solution to the first equation and substitute �̇�(𝑡) for 𝒖(𝑡) in the second 

equation, then we see that 𝒙(𝑡) satisfies Newton’s second law. The pairs of the form 

(𝒙(𝑡), 𝒖(𝑡)) that satisfy this system are regarded as the phase space or state space of 

the particle in RN.  

   Clearly these pairs are represented in a R2N space with the evolution given by the 

equations using in addition some appropriate initial condition, usually 𝒙(0) = 𝒙0,

𝒖(0) = 𝒖0, where 𝒙0, 𝒖0 ∈ RN are the initial position and velocity vectors, 

respectively.  

   If in addition we consider the Hamiltonian approach of classical mechanics the 

position-velocity pair is replaced by the position-momentum pair, and therefore the 

above system takes the form 

{
 

 �̇�(𝑡) =
𝜗ℋ

𝜗𝒑

      �̇�(𝑡) = −
𝜗ℋ

𝜗𝒙
,

 

with  

ℋ(𝒙, 𝒑) = (2𝑚)−1∑𝑝𝑗
2 + 𝑉(𝒙)

𝑁

𝑗=1

 

be the energy function (kinetic plus potential energy)14 of the system, which is 

referred as the “Hamiltonian” of our system. 

 

14. We write 𝓚 =
1

2
∑ 𝑚𝑗𝑢𝑗

2 =𝑁
𝑗=1

1

2𝑚
∑ 𝑝𝑗

2𝑁
𝑗=1  to express the kinetic energy of a particle in RN 

with 𝑝𝑗 denoting the momentum of the particle, and 𝑉(𝒙) the potential energy function with 

−𝜗𝑉/𝜗𝒙 = 𝑭. 
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Similarly, the set of possible pairs of the form (𝒙(𝑡), 𝒑(𝑡)) are regarded as the phase 

space of the particle in RN, with the appropriate initial conditions to be 𝒙(0) = 𝒙0,

𝒑(0) = 𝒑0, where 𝒙0, 𝒑0 ∈ RN are the initial position and momentum vectors, 

respectively. 

   The phase space therefore represents all the possible states of the dynamical system 

which describe the evolution according to the differential system of equations and the 

initial conditions. 

 

Example 2.1.  Consider the motion of a single particle in RN with no force acting 

upon it. Therefore, we may take the potential 𝑉 to be identically equal to zero. 

According to Hamilton’s equations, then, we have 

{
 
 

 
 
�̇�(𝑡) =

𝜗ℋ

𝜗𝒑
=
𝜗

𝜗𝒑
{(2𝑚)−1∑𝑝𝑗

2

𝑁

𝑗=1

} = (𝑚)−1∑𝑝𝑗 = (𝑚)
−1𝒑

𝑁

𝑗=1

      �̇�(𝑡) = −
𝜗ℋ

𝜗𝒙
= 0.

 

This means that the momentum of the particle is independent of time, which indicates 

that the position of the particle is linear in time. Explicitly we write 

ⅆ𝑥𝑗

ⅆ𝑡
= (𝑚)−1𝑝𝑗 ⇒ ⅆ𝑥𝑗 = (𝑚)

−1𝑝𝑗ⅆ𝑡 ⇒ ∫ⅆ𝑥𝑗 = ∫(𝑚)
−1𝑝𝑗ⅆ𝑡 + 𝑐𝑗 ⇒ 

𝑥𝑗 = (𝑚)−1𝑝𝑗𝑡 + 𝑐𝑗, 

and taking the initial conditions 𝑥𝑗(0) = 𝑥0, 𝑝𝑗(0) = 𝑝0 we have 

{
𝑥𝑗(𝑡) = (𝑚)−1𝑝0𝑡 + 𝑥0

𝑝𝑗(𝑡) = 𝑝0.
 

Expressing the solution pair (𝑥𝑗(𝑡), 𝑝𝑗(𝑡)) using matrix-notation we get 

[
𝑥1(𝑡)
⋮

𝑥𝑁(𝑡)
] =

1

𝑚
[
𝑝1(0)
⋮

𝑝𝑁(0)
] 𝑡 + [

𝑥1(0)
⋮

𝑥𝑁(0)
] 

[
𝑝1(𝑡)
⋮

𝑝𝑁(𝑡)
] = [

𝑝1(0)
⋮

𝑝𝑁(0)
]. 

To simplify the representation of our phase space we can use conserved quantities or 

constant of motions as may also be found in literature. The significance of those lies 

in the fact that if we are able to determine them, then each solution of the system must 

lie entirely in the level surface of the defined conserved quantity. For instance, instead 

of representing the above solution pair in the original phase space R2N we can use the  
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conservation of the Hamiltonian ℋ and of the angular momentum 𝒥 to represent the 

trajectories inside the joint level sets of ℋ and 𝒥. Obviously, the simplification 

depends on the determination of the conserved quantities and by extension upon the 

dimensionality of the joint level sets of them.  

For a further reading see Chapter 2 in [1], and Chapter 9 in [14].  
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II. Existence of global solutions 

 

 
In this chapter we will study the solvability of a hyperbolic wave type problem with 

initial conditions in RN. In the first section we review the physical background of the 

problem and give some known results concerning the global solutions and blow-up 

phenomena. The functional setting of the problem takes place in the second section 

where as we shall see the energy space 𝒳0 ≔ 𝐷(𝐴) × 𝒟1,2(ℝ𝑁) introduced to 

overcome the non-compactness of the operators which arise in unbounded domains. 

In the third and fourth section we prove the existence and uniqueness of global 

solutions and the energy estimates of those. In the fifth section we complete our study 

with the blow-up phenomena analysis of the problem. 

 

 

1. The equation and some known results 

 

In various areas in mathematical physics the study of wave phenomena is connected 

with the study of equations of the following form15   

𝑢𝑡𝑡 − ∆𝑢 = 𝑓(𝑢), 

where 𝑢 = 𝑢(𝑥, 𝑡) is the unknown, the Laplacian operator ∆ is taken with respect to 

the spatial variables, and the real-valued function 𝑓 defined in the space of the 

unknown function represents the external force. The above equation is referred as the 

nonhomogeneous wave equation in literature and modifications of this equation give 

rise to further studies of wave phenomena. 

In this chapter we will study a modification of the nonhomogeneous wave equation 

which is referred as the quasilinear dissipative Kirchhoff’s type problem with initial 

conditions and takes the following form 

 

{   
𝑢𝑡𝑡 − 𝜑(𝑥)‖∇𝑢(𝑡)‖

2∆𝑢 + 𝛿𝑢𝑡 = 𝑓(𝑢),   𝑥 ∈ ℝ𝑁 , 𝑡 ≥ 0    (1.1)

𝑢(𝑥, 0) = 𝑢0(𝑥),    𝑢𝑡(𝑥, 0) = 𝑢1(𝑥),   𝑥 ∈ ℝ
𝑁                      (1.2) 

   

where 𝑢 = 𝑢(𝑥, 𝑡) is the unknown, 𝛿 > 0 the damping term, 𝜑(𝑥) is the non-constant 

diffusion coefficient which represents the wave propagation in nonhomogeneous 

medium (changeable density), and 𝑓 is the external force which takes the subcritical 

power nonlinearity form; 𝑓(𝑢) = |𝑢|2𝑢. 

 

15. See more in (Section 2.4 and Chapter 12 in [5]). 
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For a widely description of physical phenomena that lead to relative mathematical 

problems of the above type we refer to [7], [8], [9], [10], and for a further reading we 

recommend the references of the paper [10], mentioned in Chapter 3. Indicatively we 

mention the Ginzburg-Landau theory16, where in the case of a nonhomogeneous 

superconductor the diffusion coefficient -which represents the coherence length of the 

superconductive electrons- is considered to be non-constant with respect to spatial 

variable. 

 

16. The first observations regarding the effacing of the electric resistance of pure metals at 

very low temperatures, which set forth the emergence of the superconductivity phenomenon, 

were made by H. Kamerlingh Onnes in the paper “The liquefication of helium” (KNAW, 

Proceedings, 11, 1908-1909, Amsterdam, 1909, pp. 168-185) followed by the paper series 

“Further experiments with liquid helium” (KNAW, Proceedings, 1910-1923). On the next 

decade, and more precisely in 1933, Meissner W. and Ochsenfeld R. published a paper in Die 

Naturwissenschaften 21 787, under the title, “A new effect concerning the onset of 

superconductivity” (“Eh neuer Effekt bei Eintritt der Supraleitfiihigkeit”). According to this 

if one places a cylindrical superconductor, e.g., lead or tin, below its transition temperature in 

a uniform magnetic field perpendicular to the cylinder axis the field-line pattern in the region 

outside the superconductor changes almost to that which would be expected if the 

permeability of the superconductor was zero, or the diamagnetic susceptibility was -1/(4π), 

which contradicts the views of “frozen in” magnetic fields in superconductors (See Meissner 

and Ochsenfeld revisited by Allister M. Forrest; Department of Physics, Paisley College of 

Technology, Paisley, Renfrewshire, Scotland; Received July 1983). The theoretical 

description of the electromagnetic field in a superconductor was given the following year, by 

F. and H. London in their paper, “The Electromagnetic Equations of the Supraconductors” 

(Clarendon Laboratory, Oxford, communicated by F. A. Lindemann, F.R.S.; Received 

October 23, 1934), which was consistent with Meissner’s effect, and clarified the dependance 

of the superconducting current with the field. In comparison with the electromagnetic effects 

in a superconductor, the thermoelectric effects were still a living problem, and only 16 years 

later and specifically in 1950 London’s theory generalized to overcome the difficulties 

regarding its application in stronger magnetic fields, the negative values of the surface energy 

at the interface between normal and superconducting phases etc. The Ψ-theory of 

superconductivity or the Ginzburg-Landau theory as may also be found in literature was the 

answer to this generalization; the basis of this was the preceding theory on phase transitions 

proposed by L. Landau, and the paper on superfluidity (May 15, 1941) which referred to 

superconductivity as the superfluidity of electron liquid in metals (“On Superconductivity 

and Superfluidity”, Nobel Lecture, December 8, 2003; by Vitaly L. Ginsburg, P. N. Lebedev 

Physics Institute, Russian Academy of Sciences, Moscow, Russia). The quantum approach of 

the theory was already proposed by F. London and as Ginsburg-Landau theory was quasi-

macroscopic, the microscopic theory of superconductivity was the next link of the chain. This 

theory was given in 1957 and is widely known as the BCS theory (“Theory of 

Superconductivity” by J. Bardeen, L. N. Cooper, and J. R. Schrieffer; Dept. of Physics, 

University of Illinois, Urbana, Illinois; Physical Review, Vol. 108, N. 5; December 1, 1957). 

Many efforts have been made since the advent of the BCS theory on the radical elevation of  
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Concerning the solvability and blow-up phenomena of the Cauchy-type problem for 

nonlinear hyperbolic equations in papers [7], and [8] we see the study of the global 

existence, the blow-up and the asymptotic behavior of the solutions of quasilinear 

wave equations with weak damping in RN. Specifically, in [8] we see that under 

certain assumptions on the initial data, solutions exist globally in the energy space 

𝒟1,2(ℝ𝑁) × 𝐿𝑔
2 (ℝ𝑁). In this paper the existence of a weak solution to the problem is 

obtained using the Faedo-Galerkin approximation (see [8]) where the use of the 

Banach fixed-point theorem is used to obtain the uniqueness of the solution. The 

global existence is proved using the method of modified potential well (we shall see 

this method explicitly in the following sections) and the proof of blow-up of solutions 

in finite time is given on the consideration of negative initial energy. For a widely 

description of some known results, see paper [10].  

 

2. Functional analysis of the problem 
 

In the study of problems of the type (1.1), (1.2) the functional importance of the 

differential operator −𝜑(𝑥)∆ and the asymptotic behavior of the diffusion coefficient 

-which depends on the equation that describes the physical phenomenon- constitute 

the primus axes of the solvability procedure.  

   In this case, we consider the non-constant coefficient 𝜑(𝑥) with the following form 

𝜑(𝑥) = 𝑐0 +∑ 𝑐𝑘(휀|𝑥|
𝑘),   휀 > 0,

∞

𝑘=1
 

where if we assume that 휀 is sufficiently small, then 𝜑(𝑥) represents the slowly 

varying wave velocity around the velocity 𝑐0. These kinds of bounded functions 𝑔, where 

𝑔(𝑥) ≡ (𝜑(𝑥))−1 → 0, as |𝑥| → ∞ -with slow rate-, it could be considered to belong in 

a Lebesgue space of the type 𝐿𝑝(ℝ𝑁) ∩ 𝐿∞(ℝ𝑁), for some 𝑝 > 0. More precisely we 

assume that the function 𝜑: ℝ𝑁 → ℝ satisfies the following condition 

(𝔊)            𝜑(𝑥) > 0,   ∀𝑥 ∈ ℝ𝑁 and (𝜑(𝑥))−1 ≔ 𝑔(𝑥) ∈ 𝐿𝑁 2⁄
(ℝ𝑁)∩ 𝐿∞(ℝ𝑁). 

   For the study of the problem (1.1), (1.2) as a dynamical system we introduce the 

phase space 𝒳0 ≔ 𝒟1,2(ℝ𝑁) × 𝒟(𝐴), where the space 𝒟1 2⁄ (ℝ𝑁) is defined as the 

closure of 𝐶0
∞(ℝ𝑁) functions with respect to the “energy norm”  

‖𝑢‖𝒟1,2
2 ≔ ∫ |∇𝑢|2 ⅆ𝑥

ℝ𝑁
. 

the critical temperature and the construction of high and room-temperature superconductors 

(HTSC and RTSC) but the main objection against these efforts is the crystal stability 

condition (see “On Superconductivity and Superfluidity”, Nobel Lecture, December 8, 2003; 

by Vitaly L. Ginsburg, P. N. Lebedev Physics Institute, Russian Academy of Sciences, 

Moscow, Russia). 
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It is well known17 that 𝒟1,2(ℝ𝑁) ≔ {𝑢 ∈ 𝐿2𝑁 (𝑁−2)⁄ (ℝ𝑁):  ∇𝑢 ∈ (𝐿2(ℝ𝑁))𝑁} and that 

𝒟1,2 is embedded continuously in  𝐿2𝑁 (𝑁−2)⁄ , i.e., ∃𝑘 > 0 such that 

                                                        ‖𝑢‖ 2𝑁
𝑁−2

≤ 𝑘‖𝑢‖𝒟1,2                                                       (2.1) 

The space 𝒟1,2(ℝ𝑁) is also a separable Hilbert space (see Def. 1.1.6 in Preliminary) 

equipped with the inner product 

(𝑢, 𝜐)𝒟1,2 ≔ ∫∇𝑢∇𝜐 ⅆ𝑥.

ℝ𝑁

 

Remark 2.1 (a) In the case of a bounded domain Ω, we have the relation 

𝒟1,2(𝛺) ≡ 𝐻0
1(𝛺) ≝ {𝑢 ∈ 𝐿0

2(𝛺):  
𝜗𝑢

𝜗𝑥𝑖
∈ 𝐿0

2(𝛺),   𝑖 = 1,⋯ , 𝑁}. 

(b) In the case of an unbounded domain, i.e., a domain with infinite volume, or the 

whole RN, the following embedding occurs 

𝐻1(ℝ𝑁) ⊂ 𝒟1,2(ℝ𝑁). 

Before we proceed with the analysis of the problem, we shall give the following 

generalized version of Poincare’s inequality (see Remark on pp.12). 

Lemma 2.2.  Assume 𝑔 ∈ 𝐿𝑁 2⁄
(ℝ𝑁). Then there exist 𝜉 > 0, such that 

∫|∇𝑢|2 ⅆ𝑥

ℝ𝑁

≥ 𝜉 ∫𝑔𝑢2 ⅆ𝑥

ℝ𝑁

 

for every 𝑢 ∈ 𝐶0
∞(ℝ𝑁). 

Proof.  Since 𝑔 ∈ 𝐿𝑁 2⁄
(ℝ𝑁) and 𝑢 ∈ 𝐶0

∞(ℝ𝑁), we can use the Hölder inequality (see 

pp. 9; inequality [e]) with 𝑝 =
𝑁

2
  and 𝑞 =

2𝑁

𝑁−2
 (where the 𝑞-factor is valid from the 

definition of the 𝒟1,2(ℝ𝑁)). This leads to 

∫|𝑔|𝑢2 ⅆ𝑥 ≤

ℝ𝑁

{ ∫|𝑔|𝑁 2⁄ ⅆ𝑥

ℝ𝑁

}

2
𝑁

{ ∫𝑢2𝑁 (𝑁−2)⁄ ⅆ𝑥

ℝ𝑁

}

𝑁−2
𝑁

= ‖𝑔‖𝑁 2⁄ ‖𝑢‖2𝑁 (𝑁−2)⁄
2 . 

 

17. See Reference_67 of the paper [10], mentioned in section 3.2. We also recommend the 

paper “New estimates for the steady-state Stokes problem in exterior domains with 

applications to the Navier-Stokes problem”, by G.P. Galdi, and C.G. Simader (Differential 

and Integral Equations, Vol. 7, N. 3, May 1994, pp. 847-861); where we see that for 𝑞 ∈

(1,∞) the homogeneous Sobolev space 𝒟0
1,𝑞(𝛺) is defined as the completion of 𝐶0

∞(𝛺) 

with respect to the semi-norm |𝑢|1,𝑞,𝛺 ≡ (∫ |∇𝑢|
𝑞

𝛺
)
1/𝑞

. 
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From the embedding inequality (2.1), we obtain  

∫|𝑔|𝑢2 ⅆ𝑥 ≤

ℝ𝑁

𝑘2‖𝑔‖𝑁 2⁄ ‖𝑢‖𝒟1,2
2 . 

Therefore, we can easily find that, 𝜉 = 𝑘−2‖𝑔‖𝑁 2⁄
−1 .  Q.E.D. 

An elementary step for the continuation of our study are the compact embeddings (see 

pp. 8, Def. 2.1.2.) where as we shall see elucidate the connection between the spaces 

of our problem, and constitute the pillars of the evolution-triple (see Theorem 2.4).  

Lemma 2.3.  Assume 𝑔 ∈ 𝐿𝑁 2⁄
(ℝ𝑁)∩ 𝐿∞(ℝ𝑁). Then the embedding 𝒟1,2 ⊂ 𝐿𝑔

2  is 

compact. 

Proof.  From the Def. 2.1.2 we know that the space 𝒟1,2 is compactly embedded in 𝐿𝑔
2  

if and only if,  

(a) ‖𝑢‖𝐿𝑔2  ≤ 𝐶 ‖𝑢‖𝒟1,2 for every 𝑢 ∈ 𝒟1,2 and 𝐶 > 0,  

and  

      (b) each bounded sequence in 𝒟1,2 is pre-compact in 𝐿𝑔
2 , i.e., if {𝑢𝑗}𝑗=1

∞
 is a 

sequence in 𝒟1,2 with 𝑠𝑢𝑝𝑗‖𝑢𝑗‖𝒟1,2 < ∞, then there exists some subsequence 

{𝑢𝑗,ℓ}ℓ=1
∞

⊆ {𝑢𝑗}𝑗=1
∞

which converges to some limit 𝑢 in 𝐿𝑔
2 ; this means that, 

lim
ℓ→∞

‖𝑢𝑗,ℓ − 𝑢‖𝐿𝑔2  
= 0. 

   The first condition is satisfied since we already have seen (Lemma 2.2) that 

‖𝑢‖𝐿𝑔2
2 ≤ 𝐶‖𝑢‖𝒟1,2

2  with 𝐶 = 𝑘2‖𝑔‖𝑁 2⁄ . To prove the second condition, we need to 

show that a bounded sequence of 𝒟1,2 is a Cauchy sequence18 in 𝐿𝑔
2 , and use the 

property that in finite dimensional space any Cauchy sequence is convergent19. 

   For this purpose, we assume that {𝑢𝑛} is the bounded sequence of 𝒟1,2(ℝ𝑁). For all 

the positive integers 𝑚 and 𝑛 we have 

∫𝑔(𝑢𝑛
2 − 𝑢𝑚

2 ) ⅆ𝑥 =

ℝ𝑁

∫𝑔(𝑢𝑛 − 𝑢𝑚)(𝑢𝑛 + 𝑢𝑚) ⅆ𝑥,

ℝ𝑁

 

and by Hölder inequality for 𝑝 =
2𝑁

𝑁+2
  and 𝑞 =

2𝑁

𝑁−2
 we obtain  

∫𝑔(𝑢𝑛
2 − 𝑢𝑚

2 ) ⅆ𝑥 ≤ ‖𝑔(𝑢𝑛 − 𝑢𝑚)‖2𝑁 (𝑁+2)⁄ ‖𝑢𝑛 + 𝑢𝑚‖2𝑁 (𝑁−2)⁄ .

ℝ𝑁

 

From the embedding inequality (2.1) we derive  

 

18. See [Def. 1.1.3(a); pp. 2].  

19. See [4] pp. 14. 
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∫𝑔(𝑢𝑛
2 − 𝑢𝑚

2 ) ⅆ𝑥 ≤ 𝑘‖𝑔(𝑢𝑛 − 𝑢𝑚)‖2𝑁 (𝑁+2)⁄ ‖𝑢𝑛 + 𝑢𝑚‖𝒟1,2 ,

ℝ𝑁

 

and from the generalized version of Poincare’s inequality (Lemma 2.2) we get  

∫𝑔(𝑢𝑛
2 − 𝑢𝑚

2 ) ⅆ𝑥 ≤ 𝓀‖𝑔(𝑢𝑛 − 𝑢𝑚)‖2𝑁 (𝑁+2)⁄ ,

ℝ𝑁

 

where 𝓀 = �̃�−1‖𝑔‖𝑁 2⁄
−1/2‖𝑢𝑛 + 𝑢𝑚‖𝐿𝑔2 , and the constants are considered in a generic 

sense. 

   Since {𝑢𝑛} is a bounded sequence of 𝒟1,2(ℝ𝑁), by Remark 2.1 (a) we have that 

{𝑢𝑛} is also a bounded sequence in 𝐻0
1(𝐵𝑅), where 𝐵𝑅 is any open ball of ℝ𝑁with 

center 0 and radius R. Therefore, by the classical Sobolev embeddings20 we conclude 

that {𝑢𝑛} has a convergent subsequence in 𝐿2(𝐵𝑅); consequently, and in 

𝐿2𝑁/(𝑁+2)(𝐵𝑅). In continuation, following a diagonalization process21 we can find a 

subsequence (for convenient we shall use the same notation {𝑢𝑛}), which converges in 

𝐿2𝑁/(𝑁+2)(𝐵𝑅), for each 𝑅 > 0.  

   Assume 휀 a strictly-positive number, i.e., 휀 > 0. Then we have 

        ‖𝑔(𝑢𝑛 − 𝑢𝑚)‖2𝑁 (𝑁+2)⁄ = { ∫ |𝑔(𝑢𝑛 − 𝑢𝑚)|
2𝑁
𝑁+2 ⅆ𝑥 + ∫ |𝑔(𝑢𝑛 − 𝑢𝑚)|

2𝑁
𝑁+2 ⅆ𝑥

|𝑥|>𝑅|𝑥|≤𝑅

}

𝑁+2
2𝑁

 

 

                                       ≤  ‖𝑔(𝑢𝑛 − 𝑢𝑚)‖
𝐿
2𝑁
𝑁+2(ℝ𝑁−𝐵𝑅)

+ ‖𝑔(𝑢𝑛 − 𝑢𝑚)‖
𝐿
2𝑁
𝑁+2(𝐵𝑅)

 

For the first integral we have that  

‖𝑔(𝑢𝑛 − 𝑢𝑚)‖𝐿2𝑁 (𝑁+2)⁄ (ℝ𝑁−𝐵𝑅)
≤ ‖𝑔‖𝐿𝑁 2⁄ (ℝ𝑁−𝐵𝑅)

‖𝑢𝑛 − 𝑢𝑚‖𝐿𝑁 2⁄ (ℝ𝑁−𝐵𝑅)
. 

Since {𝑢𝑛} is a bounded sequence of 𝒟1,2 and 𝑔 ∈ 𝐿𝑁 2⁄
, we can choose a 𝑅0 

sufficiently large, such that  

‖𝑔(𝑢𝑛 − 𝑢𝑚)‖𝐿2𝑁 (𝑁+2)⁄ (ℝ𝑁−𝐵𝑅)
≤ 휀 2⁄ ,   ∀𝑚, 𝑛,   if  𝑅 > 𝑅0. 

For the second integral we obtain 

‖𝑔(𝑢𝑛 − 𝑢𝑚)‖𝐿2𝑁 (𝑁+2)⁄ (𝐵𝑅0)
≤ ‖𝑔‖𝐿∞(𝐵𝑅0)

‖𝑢𝑛 − 𝑢𝑚‖𝐿2𝑁 (𝑁+2)⁄ (𝐵𝑅0)
< 휀 2⁄  

20. See Section 2.3 in Preliminary. 

21. See Gray, Robert (1994), "Georg Cantor and Transcendental Numbers", American 

Mathematical Monthly, 101 (9): 819–832. For a further reading on the theory of transfinite 

numbers see “Contributions to the Founding of the Theory of Transfinite Numbers” (Dover 

Books on Mathematics) -1st Edition- by Georg Cantor, Philip Jourdain (Translator); 

Published 1955. 
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under the presupposition that 𝑚 and 𝑛 are sufficiently large. Therefore, {𝑢𝑛} is a 

Cauchy sequence in 𝐿𝑔
2 (ℝ𝑁).  Q.E.D. 

In further examination of the operator −𝜑∆, we observe that its symmetry property 

with respect to the inner product of 𝐿2(ℝ𝑁) is not satisfied, i.e.,  

(−𝜑∆𝑢, 𝜐)𝐿2 ≠ (𝑢, −𝜑∆𝜐)𝐿2  for all  𝑢, 𝜐 ∈ 𝐷(−𝜑∆), 

where 𝐷(−𝜑∆) is the domain of the operator −𝜑∆. 

   To overcome this difficulty22, we have to study the operator in a weighted space 

(𝐿𝑔
2 (≡ 𝐿𝜑−1

2 )). Following this, is the analysis of the weight-𝜑(𝑥), and more precisely 

its boundness characteristics, since if we can clarify its behavior as |𝑥| → ∞, we can 

define the physical functional environment of the problems in which such weighted-

functions take place.  

More explicitly, if the weight 𝜑(𝑥) is of the form  

0 < 𝑐1 ≤ 𝜑(𝑥) ≤ 𝑐2, 

then it is obvious, that the respective levels are equivalent. Relevant is the case, when 

the problem is studied in bounded domains, independently from the boundness 

characteristics of the function 𝜑(𝑥). Especially, in the case where the space is the ℝ𝑁 

and the diffusion coefficient 𝜑(𝑥) → ∞, as |𝑥| → ∞, the conclusions are different.  

   Following the Friedrichs’ Extension Theorem (see Theorem 2.4.) for the studied 

operator we shall prove that the functional analysis of the problem (1.1), (1.2) takes 

place in the space 𝒳0.   

Theorem 2.4. Assume the operator 𝐴0: 𝐷(𝐴0) ⊆ 𝑋 ⟶ 𝑋, where ⅆ𝑖𝑚𝑋 = ∞ and 

𝐷(𝐴)̅̅ ̅̅ ̅̅ ̅ = 𝑋, is symmetric in the (real) Hilbert space 𝑋 and that the operator 𝐴0 is 

strongly monotone, i.e.,  

(𝐴0𝑢, 𝑢)𝑋 ≥ 𝑐‖𝑢‖𝑋
2 ,   ∀𝑢 ∈ 𝐷(𝐴0) 

and where 𝑐 > 0. 

   Then there exists a self-adjoint extension 𝐴:𝐷(𝐴) ⊆ 𝑋𝐸 ⊆ 𝑋 → 𝑋 of the operator 𝐴0 

where 𝑋𝐸 is the energetic space of 𝐴0, which satisfies the following conditions 

(1) the operator is strongly monotone, i.e.,  

(𝐴𝑢, 𝑢)𝑋 ≥ 𝑐‖𝑢‖𝑋
2 ,   ∀𝑢 ∈ 𝐷(𝐴), 

(2) the inverse operator 𝐴−1: 𝑋 → 𝑋 exists and is linear, continuous and self-

adjoint. This means that the equation 

𝐴𝑢 = 𝑓,    𝑢 ∈ 𝐷(𝐴),   𝑓 ∈ 𝑋, 

has the unique solution; 𝑢 = 𝐴−1𝑓, 

 

22. See pp. 44 in [10]. 
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(3) the operator 𝐴−1: 𝑋 → 𝑋𝐸 is linear and continuous, 

(4) the embeddings  𝑋𝐸 ⊂ 𝑋 ⊂ 𝑋𝐸
∗  are continuous, 

(5) the operator 𝐴 has the extension 𝐴𝐸: 𝑋𝐸 → 𝑋𝐸
∗ , where 𝐴𝐸  is the dual 

representation of 𝑋𝐸, i.e., 𝐴𝐸  is a homeomorphism and  

〈𝐴𝐸𝑢, 𝑢〉 = ‖𝑢‖𝐸
2 ,   ∀𝑢 ∈ 𝑋𝐸 . 

     We also have that 

𝐴−1𝑓 = 𝐴𝐸
−1𝑓,   ∀𝑢 ∈ 𝑋, 

(6) if the embedding 𝑋𝐸 ⊂ 𝑋 is compact, then the operator 𝐴−1: 𝑋 → 𝑋 is also 

compact. ∎ 

 

Let us consider the equation 

                                                −𝜑(𝑥)∆𝑢(𝑥) = 𝜂(𝑥),    𝑥 ∈ ℝ𝑁 ,                                        (2.2) 

without boundary condition. Obvious for every 𝑢, 𝜐 ∈ 𝐶0
∞(ℝ𝑁), we have 

(−𝜑∆𝑢, 𝜐)𝐿𝑔2 = − ∫𝑔𝜑∆𝑢𝜐 ⅆ𝑥 =

ℝ𝑁

− ∫∆𝑢𝜐 ⅆ𝑥

ℝ𝑁

 

and using Green’s second formula and the compact support of 𝑢, 𝜐 we obtain 

                                                   (−𝜑∆𝑢, 𝜐)𝐿𝑔2 = ∫∇𝑢∇𝜐 ⅆ𝑥.

ℝ𝑁

                                          (2.3) 

By the definition of the space 𝐿𝑔
2 (ℝ𝑁) and (2.3) it is natural to consider the equation 

(1.4), as an operator equation 

                                       𝐴0𝑢 = 𝜂,   𝐴0: 𝐷(𝐴0) ⊆ 𝐿𝑔
2 (ℝ𝑁) → 𝐿𝑔

2 (ℝ𝑁),                           (2.4) 

where 𝐴0 ≔ −𝜑∆ with domain of definition 𝐷(𝐴0) = 𝐶0
∞(ℝ𝑁), and 𝜂 ∈ 𝐿𝑔

2 (ℝ𝑁). 

Relation (2.3) implies that the operator 𝐴0 is symmetric with respect to the inner 

product of the weighted space 𝐿𝑔
2  and not symmetric in the standard Lebesgue space 

𝐿2. From Lemma 2.2. and equation (2.3) we have 

(𝐴0𝑢, 𝑢)𝐿𝑔2 = ∫|∇𝑢|2 ⅆ𝑥 ≥

ℝ𝑁

 𝜉 ∫𝑔𝑢2 ⅆ𝑥

ℝ𝑁

 

or  

                                             (𝐴0𝑢, 𝑢)𝐿𝑔2 ≥ 𝜉‖𝑢‖𝐿𝑔2
2 ,    ∀𝑢 ∈ 𝐷(𝐴0),                                  (2.5) 

where 𝜉 > 0 is the constant fixed in Lemma 2.2, i.e., the operator 𝐴0 is strongly 

monotone. 
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Therefore, the assumptions for the Friedrichs’ Extension Theorem (see Theorem 2.4.) 

are satisfied. Consequently, we can define the energetic inner product given by the 

equation (2.3) as follows 

(𝑢, 𝜐)𝐸 = ∫∇𝑢∇𝜐 ⅆ𝑥.

ℝ𝑁

 

The energetic space 𝑋𝐸 is defined as the completion of 𝐷(𝐴0) with respect to the 

product (𝑢, 𝜐)𝐸, i.e., the energetic space coincides with the homogeneous Sobolev 

space 𝒟1,2(ℝ𝑁). The energetic extension of the operator 𝐴0 

𝐴𝐸 ≔ −𝜑∆: 𝒟1,2(ℝ𝑁) → 𝒟−1,2(ℝ𝑁), 

is defined as the duality mapping of 𝒟1,2(ℝ𝑁), and according to the Theorem 2.4, for 

every 𝜂 ∈ 𝒟−1,2(ℝ𝑁), the equation (2.2) has a unique solution. We also define the set 

𝐷(𝐴) as the set of all the solutions 𝑢 of the equation 

𝐴𝐸𝑢 = 𝜂,   𝜂 ∈ 𝐿𝑔
2 (ℝ𝑁). 

Hence, the Friedrichs’ extension 𝐴 of 𝐴0 is defined as the restriction of the energetic 

extension 𝐴𝐸  to the set 𝐷(𝐴). The operator 𝐴 is self-adjoint23 and therefore graph-

closed24,25. This implies that the set 𝐷(𝐴) is a Hilbert space with respect to the graph 

inner product 

(𝑢, 𝜐)𝐷(𝐴) ≔ (𝑢, 𝜐)𝐿𝑔2 + (𝐴𝑢, 𝐴𝜐)𝐿𝑔2 , 

for every 𝑢, 𝜐 ∈ 𝐷(𝐴). 

The norm induced by the inner product (𝑢, 𝜐)𝐷(𝐴) is 

‖𝑢‖𝐷(𝐴) ≔ { ∫𝑔|𝑢|2 ⅆ𝑥 +

ℝ𝑁

∫𝜑|∆𝑢|2 ⅆ𝑥

ℝ𝑁

}

1/2

, 

which is equivalent to the norm25 

‖𝐴𝑢‖𝐿𝑔2 ≔ { ∫𝜑|∆𝑢|2 ⅆ𝑥

ℝ𝑁

}

1 2⁄

. 

The weak formulation26 of the equation (2.2) is 

 

23. See [Section 2.6; pp. 85-90] in [4]. 

24. (Closed Graph Theorem). Let 𝐴:𝑋 → 𝑌, where 𝑋, 𝑌 are Banach spaces be a closed, linear 

operator. Then 𝐴 is bounded.  

25. See pp. 46 in [10]. 

26. See pp. 27. 
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∫∇𝑢∇𝜐 ⅆ𝑥 =

ℝ𝑁

∫𝑔𝜂𝜐 ⅆ𝑥,

ℝ𝑁

 

where 𝜐 ∈ 𝒟1,2(ℝ𝑁), for each 𝑢 ∈ 𝐶0
∞(ℝ𝑁). 

   From Lemma 2.3 and the results (4) and (6) of Theorem 2.4, it turns out that the 

embeddings  

                                    𝐷(𝐴) ⊂ 𝒟1,2(ℝ𝑁) ⊂ 𝐿𝑔
2 (ℝ𝑁) ⊂ 𝒟−1,2(ℝ𝑁),                              (2.6) 

are compact and dense. Henceforth, the embedding relations (2.6) define an 

evolution-quadruple which forms the basis for the further study of the problem 

(1.1), (1.2).  

   For the general eigenvalue problem of the Friedrichs’ extension operator 𝐴 we may 

derive usefull results using the continuous embeddings of (2.6) and the condition (6) 

of Theorem 2.4 (see pp. 47 in [10]). More precisely, for the eigenvalue problem 

                                                −𝜑(𝑥)∆𝑢 = 𝜇𝑢,   𝑥 ∈ ℝ𝑁 ,                                                   (2.7) 

there exists a complete system of eigen-solutions {𝑤𝑛, 𝜇𝑛} satisfying the following 

relations 

{
−𝜑∆𝑤𝑗 = 𝜇𝑗𝑤𝑗 ,   𝑗 = 1, 2, …,   𝑤𝑗 ∈ 𝐷(𝐴),

0 < 𝜇1 ≤ 𝜇2 ≤ ⋯,   𝜇𝑗 → ∞,   𝑎𝑠 𝑗 → ∞.
    

The eigenfunctions 𝑤𝑗 , 𝑗 = 1, 2, …, belong of course in 𝒟1,2(ℝ𝑁) and are also eigen-

solutions of the weak-eigenvalue problem 

∫∇𝑢∇𝜐 ⅆ𝑥 =

ℝ𝑁

𝜇 ∫𝑔𝑢𝜐 ⅆ𝑥,

ℝ𝑁

  𝜐 ∈ 𝒟1,2(ℝ𝑁), 

for each 𝑢 ∈ 𝐶0
∞(ℝ𝑁). We also have to note that, the eigenfunctions 𝑤𝑗 , 𝑗 = 1, 2, …, 

constitute a complete orthonormal system for the space 𝐿𝑔
2 (ℝ𝑁). For information 

regarding the asymptotic behavior of the solution 𝑢 of the problem (2.7) we refer to 

pp. 47 in [10]; where it is mentioned that under specific arguments it can be proved 

that every solution of the eigenvalue-problem (2.7) converges to zero as |𝑥| → ∞. 

   For the positive27 self-adjoint operator 𝐴 = −𝜑∆, we can define the powers of 

operators as follows: for every 𝑠 ∈ ℝ, the operator 𝐴𝑠 is an unbounded strictly-

positive operator, self-adjoint in the space 𝐿𝑔
2 , with domain of definition the set 

𝐷(𝐴𝑠), which is a dense subset of  𝐿𝑔
2 . 

 

27. An operator 𝐴 is said to be positive if for all 𝜓 ∈ 𝐷(𝐴), with 𝜓 ≠ 0, the following 

inequality holds 

(𝜓, 𝐴𝜓) > 0. 
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The space 𝐷(𝐴𝑠), is also a Hilbert space with respect to the inner product  

(𝑢, 𝜐)𝐷(𝐴𝑠) ≔ (𝐴𝑠𝑢, 𝐴𝑠𝜐)𝐿𝑔2 . 

To define a proper relation between the spaces of the evolution-quadruple (2.6) and 

the domains of the operator 𝐴𝑠 (for every 𝑠 ∈ ℝ), we may use the notation 𝑉2𝑠 =

𝐷(𝐴𝑠), with the following identities 

{

       𝑉−1 2⁄ = 𝐷(𝐴−1 2⁄ ) = 𝒟−1,2(ℝ𝑁)

 𝑉0 = 𝐷(𝐴0) = 𝐿𝑔
2 (ℝ𝑁)

         𝑉1 = 𝐷(𝐴
1 2⁄ ) = 𝒟1,2(ℝ𝑁),

 

where for every 𝑠1, 𝑠2 ∈ ℝ, with 𝑠1 > 𝑠2, the embeddings 𝐷(𝐴𝑠1) ⊂ 𝐷(𝐴𝑠2) are 

compact. For a further reading regarding the powers of operators we refer to pp. 48 in 

[10] or the paper [7]. 

Having determined the functional background of the problem (1.1), (1.2), we are able 

to give the definition of the weak-solution for the problem, using the evolution-

quadruple (2.6). 

Definition 2.5.  A weak-solution of the problem (1.1), (1.2), is a function 𝑢(𝑥, 𝑡) 

such that 

(i) 𝑢 ∈ 𝐿2[0, 𝑇; 𝐷(𝐴)],   𝑢𝑡 ∈ 𝐿
2[0, 𝑇; 𝒟1,2(ℝ𝑁)], 𝑢𝑡𝑡 ∈ 𝐿

2[0, 𝑇; 𝐿𝑔
2 (ℝ𝑁)], 

(ii) for every function  𝜐 ∈ 𝐶0
∞([0, 𝑇] × (ℝ𝑁)), satisfies the generalized 

equation 

∫ (𝑢𝑡𝑡(𝜏), 𝜐(𝜏))𝐿𝑔2
ⅆ𝜏 + ∫ (‖∇𝑢(𝑡)‖2 ∫∇𝑢(𝜏)∇𝜐(𝜏) ⅆ𝑥 ⅆ𝜏

ℝ𝑁

)
𝑇

0

𝑇

0

 

+𝛿∫ (𝑢𝑡(𝜏), 𝜐(𝜏))𝐿𝑔2
ⅆ𝜏 − ∫ (𝑓(𝑢(𝜏)), 𝜐(𝜏))

𝐿𝑔
2 ⅆ𝜏 = 0,

𝑇

0

𝑇

0

              (2.8) 

 

where we have that; 𝑓(𝑠) = |𝑠|2𝑠, and 

(iii) satisfies the initial conditions 

             𝑢(𝑥, 0) = 𝑢0(𝑥) ∈ 𝐷(𝐴),     𝑢𝑡(𝑥, 0) = 𝑢1(𝑥) ∈ 𝒟
1,2(ℝ𝑁). 

Remark 2.6. Using proper density arguments, we may prove that the generalized 

equation (2.8) is satisfied for every 𝜐 ∈ 𝐿2[0, 𝑇; 𝒟1,2(ℝ𝑁)]. By the compactness and 

density of the embeddings in the evolution-quadruple (2.6), we have that, as in [10, 

Remark 3.2.5; pp. 48], the above Definition 2.5 of weak solutions implies that  

𝑢 ∈ 𝐶[0, 𝑇; 𝒟1,2(ℝ𝑁)] and 𝑢𝑡 ∈ 𝐶[0, 𝑇; 𝐿𝑔
2 (ℝ𝑁)]. 
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Remark 2.7. Although the definition of the weak solution requires the external action 

to belong in the weighted space 𝐿𝑔
2 (ℝ𝑁), this claim is not restrictive. Indeed, by the 

definition of the weighted space 𝐿𝑔
2 (ℝ𝑁) and the condition (𝔊) results that  

 

                                                           𝐿2(ℝ𝑁) ⊂ 𝐿𝑔
2 (ℝ𝑁).                                                    (2.9) 

The relation (2.9) in combination with the Remark 2.1 (b) indicate, that the 

solvability of the problem can be obtained in a widely class of external forces. 

 

3. Local solution and estimates 

Before we proceed with the proof of the existence of the local solution, we shall give 

some additional information regarding the functional spaces of the problem. 

Lemma 3.1. Assume that 𝑔 ∈ 𝐿
2𝑁

2𝑁−𝑝𝑁+2𝑝(ℝ𝑁). Then the following continuous 

embedding 𝒟1,2(ℝ𝑁) ⊂ 𝐿𝑔
𝑝(ℝ𝑁) is valid, for every 1 ≤ 𝑝 ≤ 2𝑁 (𝑁 − 2)⁄ . 

Proof.   By Definition 2.1.1 (pp. 8) we know that the embedding 𝒟1,2(ℝ𝑁) ⊂ 𝐿𝑔
𝑝(ℝ𝑁) 

is valid if and only if 

‖𝑢‖𝐿𝑔
𝑝
 ≤ 𝐶 ‖𝑢‖𝒟1,2 for every 𝑢 ∈ 𝒟1,2 and 𝐶 > 0. 

Using Hölder inequality with 𝛼 =
2𝑁

2𝑁−𝑝𝑁+2𝑝
  and 𝛽 =

2𝑁

(𝑁−2)𝑝
 we derive 

‖𝑢‖
𝐿𝑔
𝑝
𝑝
≔ ∫𝑔𝑢𝑝 ⅆ𝑥

ℝ𝑁

≤ ( ∫𝑔𝛼 ⅆ𝑥

ℝ𝑁

)

1
𝛼

( ∫|𝑢|𝑝𝛽 ⅆ𝑥

ℝ𝑁

)

1
𝛽

 

                                       ≤ ( ∫𝑔𝛼 ⅆ𝑥

ℝ𝑁

)

1
𝛼

( ∫|∇𝑢|2 ⅆ𝑥

ℝ𝑁

)

𝑝
2

, 

where in the last inequality we have used the inequality (2.1).   Q.E.D. 

Remark 3.2. The assumption of Lemma 3.1 is satisfied under the hypothesis (𝔊), if 

𝑝 ≥ 2. 

Lemma 3.3.  Let 𝑔 satisfy condition (𝔊). If 1 ≤ 𝑞 < 𝑝 < 𝑝 = 2𝑁 (𝑁 − 2)⁄ , then the 

following weighted inequality 
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                                                   ‖𝑢‖𝐿𝑔
𝑝 ≤ 𝐶0‖𝑢‖𝐿𝑔

𝑞
1−𝜃‖𝑢‖𝒟1,2

𝜃 ,                                             (3.1) 

is valid, for every 𝜃 ∈ (0,1), for which 1 𝑝⁄ =
1−𝜃

𝑞
+
𝜃

�̃�
  and 𝐶0 = 𝑘𝜃. 

Proof.  Using the weighted interpolation inequality  

‖𝑢‖𝐿𝑔
𝑝 ≤ ‖𝑢‖

𝐿𝑔
𝑞
1−𝜃‖𝑢‖

𝐿𝑔
�̃�
𝜃 ,  (See, pp. 49 in [10]) 

and the inequality (2.1) we obtain 

( ∫𝑔|𝑢|𝑝ⅆ𝑥

ℝ𝑁

)

1
𝑝

≤ ( ∫𝑔|𝑢|𝑞 ⅆ𝑥

ℝ𝑁

)

1−𝜃
𝑞

( ∫𝑔|𝑢|�̃� ⅆ𝑥

ℝ𝑁

)

𝜃
�̃�

 

                                             ≤ ( ∫𝑔|𝑢|𝑞 ⅆ𝑥

ℝ𝑁

)

1−𝜃
𝑞

( ∫𝑔|𝑢|
2𝑁
𝑁−2 ⅆ𝑥

ℝ𝑁

)

(𝑁−2)𝜃
2𝑁

 

                                   = ‖𝑢‖
𝐿𝑔
𝑞
1−𝜃‖𝑢‖ 2𝛮

(𝛮−2)

𝜃 ≤ 𝑘𝜃‖𝑢‖
𝐿𝑔
𝑞
1−𝜃‖𝑢‖𝒟1,2

𝜃 . 

Therefore, ‖𝑢‖𝐿𝑔
𝑝 ≤ 𝑘𝜃‖𝑢‖

𝐿𝑔
𝑞
1−𝜃‖𝑢‖𝒟1,2

𝜃 , where 𝐶0 = 𝑘𝜃.  Q.E.D. 

Lemma 3.4.  Assume 𝑔 ∈ 𝐿1(ℝ𝑁) ∩ 𝐿∞(ℝ𝑁). Then the following continuous 

embeddings 𝐿𝑔
𝑝(ℝ𝑁) ⊂ 𝐿𝑔

𝑞 (ℝ𝑁) are valid, for every 1 ≤ 𝑞 ≤ 𝑝 < ∞. 

Proof. Using Hölder inequality we derive 

∫𝑔|𝑢|𝑞 ⅆ𝑥

ℝ𝑁

≤ ( ∫(𝑔𝜎)𝛼 ⅆ𝑥

ℝ𝑁

)

1
𝛼

( ∫(𝑔𝜏|𝑢|𝑞)𝛽 ⅆ𝑥

ℝ𝑁

)

1
𝛽

, 

where by the Hölder-exponentials relation28, we have for the constants the values 𝛼 =

𝑝/(𝑝 − 𝑞) and 𝛽 = 𝑝/𝑞. Thereby for σ = (𝑝 − 𝑞)/𝑝 and 𝜏 = 𝑞/𝑝 we obtain the 

embedding inequality ‖𝑢‖𝐿𝑔
𝑞 ≤ �̃�‖𝑢‖𝐿𝑔

𝑝 , with the constant �̃� = ‖𝑔‖1
(𝑝−𝑞)/𝑝𝑞

.  Q.E.D. 

 

28. Recall that according to Hölder inequality (see pp. 9) the exponentials 𝑝, 𝑞, where 1 ≤ 𝑝 

and 𝑞 ≤ ∞ must satisfy the condition below 
1

𝑝
+
1

𝑞
= 1. 

so that the inequality to be valid.   
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In order to obtain a local existence result for the problem (1.1), (1.2), we need 

information concerning the solvability of the corresponding nonhomogeneous 

linearized problem around the function 𝜐, where (𝜐, 𝜐𝑡) ∈ 𝐶(0, 𝑇; 𝐷(𝐴) × 𝒟
1,2) is 

given, restricted in the sphere 𝐵𝑅: 

(3.2)          

{
 

 

   

𝑢𝑡𝑡 − 𝜑(𝑥)‖∇𝜐(𝑡)‖
2∆𝑢 + 𝛿𝑢𝑡 = |𝜐|𝑎𝜐,   (𝑥, 𝑡) ∈ 𝐵𝑅 × (0, 𝑇),    

𝑢(𝑥, 0) = 𝑢0(𝑥),    𝑢𝑡(𝑥, 0) = 𝑢1(𝑥),   𝑥 ∈ 𝐵𝑅 ,             

      𝑢(𝑥, 𝑡) = 0,   (𝑥, 𝑡) ∈ 𝜗𝐵𝑅 × (0, 𝑇),   

𝜐 ∈ 𝐶(0, 𝑇; 𝐷(𝐴)),   𝜐𝑡 ∈ 𝐶(0, 𝑇;𝒟
1,2),

 

where by 𝜗𝐵𝑅 we denote the boundary of the sphere 𝐵𝑅.  

Proposition 3.5.  Assume that the initial data 𝑢0 ∈ 𝐷(𝐴), 𝑢1 ∈ 𝒟
1,2(ℝ𝑁) and 𝑎 = 2. 

Then the linear wave equation (3.2) has a unique solution such that  

𝑢 ∈ 𝐶(0, 𝑇; 𝐷(𝐴)),   𝑢𝑡 ∈ 𝐶(0, 𝑇;𝒟
1,2(𝐵𝑅)). 

Proof.  We shall prove existence by means of the classical energy method (Faedo-

Galerkin approximation). For this we consider the basis of 𝐷(𝐴) generated by the 

eigenfunctions of 𝐴 (see pp. 48) and we construct an approximating sequence of 

solutions 

𝑢𝑛(𝑥, 𝑡) =∑ 𝑏𝑖𝑛(𝑡)𝑤𝑖,
𝑛

𝑖=1
 

solving the Galerkin-system: 

{
(𝑢𝑡𝑡

𝑛 , 𝑤𝑖)𝐿𝑔2 (𝐵𝑅) + ‖∇𝑢
𝑛‖2 ∫∇𝑢𝑛∇𝑤𝑖 ⅆ𝑥 +

𝐵𝑅

𝛿(𝑢𝑡
𝑛, 𝑤𝑖)𝐿𝑔2 (𝐵𝑅) − (|𝑢

𝑛|2𝑢𝑛, 𝑤𝑖)𝐿𝑔2 (𝐵𝑅) = 0,

𝑢𝑛(𝑥, 0) = 𝒫𝑛𝑢0(𝑥),    𝑢𝑡
𝑛(𝑥, 0) = 𝒫𝑛𝑢1(𝑥),

 

where 𝒫𝑛 is the continuous orthogonal projector operator of 𝐷(𝐴) → 𝑠𝑝𝑎𝑛{𝑤𝑖: 𝑖 =

1,2, … , 𝑛} and of 𝒟1,2(𝐵𝑅) → 𝑠𝑝𝑎𝑛{𝑤𝑖: 𝑖 = 1,2, … , 𝑛}
29. Multiplying the equation by 

�̇�𝑖𝑛(𝑡) and summing from 1 to n, we obtain 

1

2

ⅆ

ⅆ𝑡
‖𝑢𝑡

𝑛‖
𝐿𝑔
2 (𝐵𝑅)
2 +

‖∇𝑢𝑛‖2

2

ⅆ

ⅆ𝑡
‖𝑢𝑛‖𝒟1,2(𝐵𝑅)

2 + 𝛿‖𝑢𝑡
𝑛‖

𝐿𝑔
2 (𝐵𝑅)
2 = (|𝑢𝑛|2𝑢𝑛, 𝑢𝑡

𝑛)𝐿𝑔2 (𝐵𝑅). 

 

29. The span of 𝑤1, 𝑤2, … , 𝑤𝑛 ∈ 𝒟
1,2(ℝ𝑁) is defined to be the set of all the linear 

combinations of these eigenfunctions: 

𝑠𝑝𝑎𝑛{𝑤1, 𝑤2, … , 𝑤𝑛} ≔ {∑ 𝑘𝑖
𝑛

𝑖=1
𝑤𝑖: 𝑘𝑖 ∈ 𝕂,   1 ≤ 𝑖 ≤ 𝑛} 

where 𝕂 is the scalar-field, which could be the set of the real numbers (ℝ) or of the complex 

numbers (ℂ). 
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Since ‖∇𝑢𝑛‖2 ≡ ‖𝑢𝑛‖𝒟1,2(𝐵𝑅)
2 , the equation takes the form 

1

2

ⅆ

ⅆ𝑡
‖𝑢𝑡

𝑛‖
𝐿𝑔
2 (𝐵𝑅)
2 +

1

4

ⅆ

ⅆ𝑡
[(‖𝑢𝑛‖𝒟1,2(𝐵𝑅)

2 )
2

] + 𝛿‖𝑢𝑡
𝑛‖

𝐿𝑔
2 (𝐵𝑅)
2 = (|𝑢𝑛|2𝑢𝑛, 𝑢𝑡

𝑛)𝐿𝑔2 (𝐵𝑅). 

Under the assumption that |𝑓(𝑢𝑛)| ≔ ||𝑢𝑛|2𝑢𝑛| ≤ 𝒸|𝑢𝑛|2, we derive for the last term 

of the above equality 

| ∫ g 𝑓(𝑢𝑛)𝑢𝑡
𝑛ⅆ𝑥

𝐵𝑅

| ≤ 𝒸 ∫g1/2𝑔1/2 |𝑢𝑛|2|𝑢𝑡
𝑛|ⅆ𝑥

𝐵𝑅

 ≤ �̃� ∫ g |𝑢𝑛|4ⅆ𝑥

𝐵𝑅

+ �̃� ∫𝑔 |𝑢𝑡
𝑛|2ⅆ𝑥

𝐵𝑅

 

               ≤ �̃� ( ∫𝑔𝒶ⅆ𝑥

𝐵𝑅

)

1/𝒶

( ∫ |∇𝑢𝑛|2ⅆ𝑥

𝐵𝑅

)

2

+ �̃� ∫𝑔 |𝑢𝑡
𝑛|2ⅆ𝑥

𝐵𝑅

 

or 

 |(|𝑢𝑛|2𝑢𝑛, 𝑢𝑡
𝑛)𝐿𝑔2 (𝐵𝑅)| ≤ �̃� {‖𝑔‖𝐿𝒶(𝐵𝑅)‖𝑢

𝑛‖
𝒟1,2(𝐵𝑅)
4 + ‖𝑢𝑡

𝑛‖
𝐿𝑔
2 (𝐵𝑅)
2 }, 

where in the second inequality we have used Cauchy’s inequality (see pp. 9) with  

�̃� = 𝑐/2 and in the third the Lemma 3.1. Therefore, according to this we obtain the 

inequality below where 𝒞 = 𝒞(�̃�, 𝛿, ‖𝑔‖𝐿𝒶(𝐵𝑅)) 

ⅆ ⅆ𝑡⁄ (‖𝑢𝑡
𝑛‖

𝐿𝑔
2 (𝐵𝑅)
2 + ‖𝑢𝑛‖𝒟1,2(𝐵𝑅)

4 ) ≤ 𝒞 (‖𝑢𝑛‖𝒟1,2(𝐵𝑅)
4 + ‖𝑢𝑡

𝑛‖
𝐿𝑔
2 (𝐵𝑅)
2 ). 

The rest of the proof follows the steps in (Lemma 3.1, pp. 189-192; [7]).     Q.E.D. 

Next, we will prove the following theorem. 

Theorem 3.6. Assume that 𝑓(𝑢) = |𝑢|2𝑢 is a nonlinear 𝐶1-function such that 

|𝑓′(𝑢)| ≤ 𝑘1|𝑢|
2. If (𝑢0, 𝑢1) ∈ 𝐷(𝐴) × 𝒟

1,2(ℝ𝑁) and satisfy the nondegenerate 

condition 

‖∇𝑢0‖ > 0, 

then there exists time 𝑇 = 𝑇(‖𝑢0‖𝐷(𝐴), ‖∇𝑢1‖
2) > 0, such that the problem 

(1.1), (1.2) admits a unique local weak solution 𝑢, satisfying 

𝑢 ∈ 𝐶(0, 𝑇; 𝐷(𝐴)),   𝑢𝑡 ∈ 𝐶(0, 𝑇;𝒟
1,2). 

Moreover, at least one of the following statements holds true, either 

(i) 𝑇 = ∞, or 

(ii) lim
𝑡→𝑇−

𝑒(𝑢(𝑡)) ≡ lim
𝑡→𝑇−

(‖𝑢𝑡(𝑡)‖𝒟1,2
2 + ‖𝑢(𝑡)‖𝐷(𝐴)

2 ) = ∞. 

Proof. The proof is based on the Banach fixed-point theorem (see pp.24-26). 



 
 

[54]                                                                                                             CHAPTER II 

 

To apply this theorem, we introduce the two-parameter space of solutions 

𝑋𝑇,𝑅 ≔ {
𝜐 ∈ 𝐶(0, 𝑇; 𝐷(𝐴)): 𝜐𝑡 ∈ 𝐶(0, 𝑇;𝒟

1,2), 𝜐(0) = 𝑢0,

 𝜐𝑡(0) = 𝑢1,   𝑒(𝜐(𝑡)) ≤ 𝑅2,   ∀ 𝑡 ∈ [0, 𝑇]
}, 

which is a complete metric space under the distance function 

ⅆ(𝑢, 𝜐) ≔ sup
0≤𝑡≤𝑇

𝑒1(𝑢(𝑡) − 𝜐(𝑡)),  where 𝑒1(𝜐) ≔ ‖𝜐𝑡‖𝐿𝑔2
2 + ‖𝜐‖𝒟1,2

2 , 

for any given 𝑇 > 0, 𝑅 > 0. 

   Next, we introduce the non-linear mapping 𝑆 in the following way. Given 𝜐 ∈ 𝑋𝑇,𝑅 

we define 𝑢 = 𝑆𝜐 to be the unique solution of the linear wave equation (3.2). In the 

following we shall show that there exist 𝑇 > 0, 𝑅 > 0 such that the conditions below 

to be valid 

(a) 𝑆 maps 𝑋𝑇,𝑅 into itself, i.e.,  𝑆: 𝑋𝑇,𝑅 → 𝑋𝑇,𝑅.    

(b) 𝑆 is a contraction with respect to the metric ⅆ( ∙ , ∙ ). 

We set 2𝑀0 ≔ ‖∇𝑢0‖
2 > 0 and denote by  

𝑇0 ≔ sup{𝑡 ∈ [0,∞): ‖∇𝜐(𝑠)‖2 > 𝑀0,   𝑓𝑜𝑟 0 ≤ 𝑠 ≤ 𝑡 }. 

Then we have 

                               𝑇0 > 0 and ‖∇𝜐(𝑡)‖2 ≥ 𝑀0 for all 𝑡 ∈ [0, 𝑇0].                               (3.3) 

To prove condition (a), we multiply (3.2) by −2∆𝑢𝑡 (in the sense of the inner product 

in the space 𝐿2) and integrate over ℝ𝑁, to obtain 

      −2 ∫∆𝑢𝑡𝑢𝑡𝑡 ⅆ𝑥 + 2‖∇𝜐‖
2

ℝ𝑁

∫𝜑(𝑥)∆𝑢𝑡∆𝑢 ⅆ𝑥                                 

ℝ𝑁

− 2𝛿 ∫∆𝑢𝑡𝑢𝑡 ⅆ𝑥 = − 2

ℝ𝑁

∫|𝜐|2𝜐∆𝑢𝑡 ⅆ𝑥

ℝ𝑁

.                                            (3.4) 

Setting, 

          𝑒2
∗(𝑢(𝑡)) ≔ ‖∇𝑢𝑡(𝑡)‖

2 + ‖∇𝜐(𝑡)‖2‖𝑢(𝑡)‖𝐷(𝐴)
2     

(3.4) takes the form 

                     
ⅆ

ⅆ𝑡
𝑒2
∗(𝑢) + 2𝛿‖∇𝑢𝑡‖

2 = (
ⅆ

ⅆ𝑡
‖∇𝜐‖2) ‖𝑢‖𝐷(𝐴)

2 − 2(|𝜐|2𝜐, ∆𝑢𝑡).           (3.5) 

We observe that the following estimate holds 

                          𝑒2
∗(𝑢) ≥ ‖∇𝑢𝑡(𝑡)‖

2 +𝑀0‖𝑢(𝑡)‖𝐷(𝐴)
2 ≥ 𝑐1

−2𝑒(𝑢),                               (3.6) 
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with 𝑐1 ≔ (max{1,𝑀0
−1})1/2. To proceed further, we notice that 

                      (
ⅆ

ⅆ𝑡
‖∇𝜐‖2) ‖𝑢‖𝐷(𝐴)

2 = 2 ∫∆𝜐𝜐𝑡𝜑(𝑥)𝑔(𝑥) ⅆ𝑥‖𝑢‖𝐷(𝐴)
2

ℝ𝑁

 

                                                           ≤ 2( ∫𝜑|∆𝜐|2 ⅆ𝑥

ℝ𝑁

)

1/2

( ∫𝑔|𝜐𝑡|
2 ⅆ𝑥

ℝ𝑁

)

1/2

‖𝑢‖𝐷(𝐴)
2  

                                      ≤ 2(‖𝜐‖𝐷(𝐴)
2 )

1/2
(‖𝜐𝑡‖𝐿𝑔2

2 )
1/2

‖𝑢(𝑡)‖𝐷(𝐴)
2  

          ≤ 2𝑅𝑘 (‖𝜐𝑡‖𝒟1,2
2 ) 𝑒(𝑢(𝑡)) 

 ≤ 2𝑅2𝑘𝑐1
2𝑒2

∗(𝑢) ≤ 𝑐2𝑅
2𝑒2

∗(𝑢),                               (3.7) 

with 𝑐2 = 2 𝑘𝑐1
2, where 𝑘 is the constant of the embedding 𝒟1,2 ⊂ 𝐿𝑔

2 . We also have 

that  

−2(|𝜐|2𝜐, ∆𝑢𝑡) = −2 ∫|𝜐|2𝜐∆𝑢𝑡 ⅆ𝑥

ℝ𝑁

= 2 ∫∇(|𝜐|2𝜐)∇𝑢𝑡 ⅆ𝑥

ℝ𝑁

   

(3.8)                                        = 2 ∫𝑓′(𝜐)∇𝜐∇𝑢𝑡 ⅆ𝑥 ≤ 2𝑘1‖𝜐‖𝐿2𝑁
2 ‖∇𝜐‖

𝐿
2𝑁
𝑁−2
‖∇𝑢𝑡‖,

ℝ𝑁

 

where we used Hölder inequality with 𝑝−1 = 1/𝑁, 𝑞−1 = (𝑁 − 2)/2𝑁 and 𝑟−1 =

1/2. Then, from Lemma 3.1 and the embeddings (2.6) we get 

                   ‖𝜐‖
𝐿2𝑁
2 ≤ 𝑅2,   ‖∇𝜐‖

𝐿
2𝑁
𝑁−2

≤ ‖𝜐‖𝐷(𝐴) ≤ 𝑅,   𝑎𝑛ⅆ  ‖∇𝑢𝑡‖ ≤ 𝑒(𝑢)1 2⁄ .      (3.9) 

Using estimates (3.7)-(3.9), we get from equation (3.5) that  

ⅆ

ⅆ𝑡
𝑒2
∗(𝑢) ≤ 𝑐2𝑅

2𝑒2
∗(𝑢) + 𝑐3𝑅

3𝑒2
∗(𝑢(𝑡))

1 2⁄
, 

with 𝑐3 ≔ 2𝑘1𝑐1. Hence, from Gronwall’s inequality, we derive 

𝑒2
∗(𝑢) ≤ 𝑒∫ 𝑐2𝑅

2 𝑑𝑠
𝑇
0 [𝑒2

∗(𝑢(0)) + ∫ 𝑐3𝑅
3𝑒2

∗(𝑢(𝑠))
1 2⁄

ⅆ𝑠
𝑇

0

] 

                                      ≤ 𝑒𝑐2𝑅
2𝑇 [𝑒2

∗(𝑢(0))
1 2⁄

+ 𝑐3𝑅
3𝑇]

2

.  

According to estimate (3.6), we receive the following relation 

                           𝑒(𝑢) ≤ 𝑐1
2 [𝑒2

∗(𝑢(0))
1 2⁄

+ 𝑐3𝑅
3𝑇]

2

𝑒𝑐2𝑅
2𝑇 ≔ 𝔅𝑇,𝑅

∗ ,                       (3.10) 



 
 

[56]                                                                                                             CHAPTER II 

 

for any  𝑡 ∈ [0, 𝑇], with 𝑇 ≤ 𝑇0. Therefore, if we assume that 

                      𝔅𝑇,𝑅
∗ < 𝑅2,                             

then condition (a) is valid, i.e., 𝑆 maps 𝑋𝑇,𝑅 into itself. 

To prove condition (b), we take 𝜐1, 𝜐2 ∈ 𝑋𝑇,𝑅 and denote by 𝑢1 = 𝑆𝜐1, 𝑢2 = 𝑆𝜐2. 

Henceforth, we suppose that 𝔅𝑇,𝑅
∗ < 𝑅2, i.e., 𝑢1, 𝑢2 ∈ 𝑋𝑇,𝑅, and set 𝑤 = 𝑢1 − 𝑢2. The 

function 𝑤 satisfies the following relation 

𝑤𝑡𝑡 −𝜑‖∇𝜐1‖
2∆𝑤 + 𝛿𝑤𝑡 = 𝜑{‖∇𝜐1‖

2 − ‖∇𝜐2‖
2}∆𝑢2 + |𝜐1|

2𝜐1 − |𝜐2|
2𝜐2, 

𝑤(0) = 0, 𝑤𝑡(0) = 0. 

Multiplying this equation by 2𝑔𝑤𝑡 and integrating over ℝ𝑁 we obtain 

2 ∫𝑔𝑤𝑡𝑤𝑡𝑡 ⅆ𝑥 −

ℝ𝑁

2 ∫‖∇𝜐1‖
2∆𝑤𝑤𝑡 ⅆ𝑥 + 2𝛿

ℝ𝑁

∫𝑔𝑤𝑡
2 ⅆ𝑥

ℝ𝑁

=    2{‖∇𝜐1‖
2 − ‖∇𝜐2‖

2} ∫∆𝑢2𝑤𝑡 ⅆ𝑥

ℝ𝑁

+ 2 ∫𝑔{|𝜐1|
2𝜐1 − |𝜐2|

2𝜐2}𝑤𝑡 ⅆ𝑥.                                                     (3.11)

ℝ𝑁

 

Setting, 

𝑒𝜐1
∗ (𝑤(𝑡)) ≔ ‖𝑤𝑡(𝑡)‖𝐿𝑔2

2 + ‖𝜐1(𝑡)‖𝒟1,2
2 ‖𝑤(𝑡)‖𝒟1,2

2 , 

(3.11) takes the form 

ⅆ

ⅆ𝑡
𝑒𝜐1
∗ (𝑤) + 2𝛿‖𝑤𝑡‖𝐿𝑔2

2 =
ⅆ

ⅆ𝑡
(‖∇𝜐1‖

2)‖∇𝑤‖2 + 2{‖∇𝜐1‖
2 − ‖∇𝜐2‖

2} 

× (∆𝑢2, 𝑤𝑡) + 2(|𝜐1|
2𝜐1 − |𝜐2|

2𝜐2, 𝑤𝑡)𝐿𝑔2  

                                        ≡ 𝐼1(𝑡) + 𝐼2(𝑡) + 𝐼3(𝑡).                                                             (3.12) 

We also observe that  

                                  𝑒𝜐1
∗ (𝑤) ≥ ‖𝑤𝑡‖𝐿𝑔2

2 +𝑀0‖𝑤‖𝒟1,2
2 ≥ 𝑐1

−2𝑒1(𝑤).                           (3.13) 

As in (3.7), we notice that 

                                                    𝐼1(𝑡) ≤ 𝑐2𝑅
2𝑒𝜐1

∗ (𝑤)                                                       (3.14) 

                                𝐼2(𝑡) ≤ 2(𝑅 + 𝑅)𝑒(𝜐1 − 𝜐2)
1 2⁄ ∫|∆𝑢2||𝑤𝑡| ⅆ𝑥.                      (3.15)

ℝ𝑁
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For the last term of (3.15), from estimation (3.13), we have that 

∫|∆𝑢2||𝑤𝑡|𝜑
1/2𝜑1/2𝑔ⅆ𝑥 ≤ (‖𝑢2(𝑡)‖𝐷(𝐴)

2 )
1/2
 (‖𝑤𝑡(𝑡)‖𝐿𝑔2

2 )
1/2

 

ℝ𝑁

 

                                                                     < 𝑅𝑒1(𝑤(𝑡))
1/2 <  𝑅𝑐1𝑒𝜐1

∗ (𝑤)1/2.            (3.16) 

Therefore, from (3.15) and (3.16), we derive that 

                                    𝐼2(𝑡) ≤ 𝑐4𝑅
2 𝑒1(𝜐1 − 𝜐2)

1 2⁄ 𝑒𝜐1
∗ (𝑤)1 2⁄ ,                                    (3.17) 

where 𝑐4 ≔ 4𝑐1. Applying the generalized Poincaré’s inequality (Lemma 2.2) and 

the embeddings (2.6), we obtain 

𝐼3(𝑡) ≤ 2𝑘0𝜉
−1(‖∇𝜐1‖

2 + ‖∇𝜐2‖
2)‖∇(𝜐1 − 𝜐2)‖‖𝑤𝑡‖𝐿𝑔2  

                                     ≤ 𝑐6𝑅
2𝑒1(𝜐1 − 𝜐2)

1 2⁄ 𝑒𝜐1
∗ (𝑤)1 2⁄ ,                                               (3.18) 

where 𝑐6 ≔ 4𝑘0𝜉
−1𝑐1, 𝜉 = 𝑘−2‖𝑔‖𝑁 2⁄

−1  the Poincaré’s embedding constant (see 

Lemma 2.2) and 𝑘0 is a constant derived from the formula of 𝑓. From estimates 

(3.14), (3.17) and (3.18) we get the following estimate for the relation (3.12) 

ⅆ

ⅆ𝑡
𝑒𝜐1
∗ (𝑤) ≤ 𝑐2𝑅

2𝑒𝜐1
∗ (𝑤) + (𝑐4𝑅

2 + 𝑐6𝑅
2)𝑒1(𝜐1 − 𝜐2)

1 2⁄ 𝑒𝜐1
∗ (𝑤)1 2⁄ . 

Gronwall’s inequality and the fact that 𝑒𝜐1
∗ (𝑤(0)) = 0, imply 

               𝑒𝜐1
∗ (𝑤) ≤ (𝑐4𝑅

2 + 𝑐6𝑅
2)2𝑇2𝑒𝑐2𝑅

2𝑇 sup
0≤𝑡≤𝑇

𝑒1( 𝜐1(𝑡) − 𝜐2(𝑡)).                  (3.19) 

Therefore, from (3.10) and (3.19), we derive 

                                              ⅆ(𝑢1, 𝑢2) ≤ 𝔅𝑇,𝑅ⅆ(𝜐1, 𝜐2),                                                 (3.20) 

where 

𝔅𝑇,𝑅 ≔ 4max {1,
‖∇𝑢0‖

−2

2
}𝑅4𝑇2(1 + 𝑘0𝑘

2‖𝑔‖𝑁 2⁄ )
2
𝑒2𝑘𝑐1

2𝑅2𝑇 , 

by substituting 𝑐1, 𝑐2, 𝑐4, 𝑐6. From this we conclude that the map 𝑆 is a contraction if  

𝔅𝑇,𝑅 < 1. 

We note that the two inequalities 𝔅𝑇,𝑅
∗ < 𝑅2 and 𝔅𝑇,𝑅 < 1, are justified at the same 

time, if the parameter 𝑅 is sufficiently large and 𝑇 is sufficiently small. Applying 

Banach fixed-point theorem we obtain the local existence result. The second 

statement of Theorem 3.6 is proved by a standard continuation argument (see pp. 54 

in [10]).   Q.E.D. 
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Next, we shall prove that the relation 

‖∇𝑢(𝑡)‖ > 0, 

is valid for all 𝑡 ≥ 0. For this we consider the general equation 

              𝑢𝑡𝑡 − 𝜑(𝑥)‖∇𝑢(𝑡)‖
2∆𝑢 + 𝛿𝑢𝑡 + 𝑓(𝑢) = 0,   𝑥 ∈ ℝ𝑁 , 𝑡 ≥ 0,                    (3.21) 

with initial conditions 𝑢(𝑥, 0) = 𝑢0(𝑥) and 𝑢𝑡(𝑥, 0) = 𝑢1(𝑥), in the case where 𝑁 ≥

≥ 3, 𝛿 ≥ 0 and 𝑓(𝑢) a nonlinear 𝐶1-function such that   

               ∫ 𝑓(𝑢)𝑢 ⅆ𝑥 ≥ 𝑘0
−1

ℝ𝑁

∫𝐹(𝑢) ⅆ𝑥 ≥ 0,   𝐹(𝑢) ≡ 

ℝ𝑁

2∫ 𝑓(𝜂) ⅆ𝜂
𝑢

0

                  (3.22) 

                                  |𝑓(𝑢)| ≤ 𝑘1|𝑢|
𝑎+1,   |𝑓′(𝑢)| ≤ 𝑘2|𝑢|

𝑎,                                       (3.23) 

where 𝑘0, 𝑘1, 𝑘2 ≥ 1 for 𝑎 ≥ 0. In our case, where 𝑓(𝑢) = |𝑢|2𝑢, we can take 

𝑘0 = 4, 𝑘1 = 1, and 𝑘2 = 3 (see pp. 54 in [10]).  

   To define the energy related to equation (3.21), we multiply the equation by 2𝑔𝑢𝑡 

and integrate over ℝ𝑁 to obtain the following relation (for simplicity we have set 𝛿 =

1) 

2 ∫𝑔𝑢𝑡𝑢𝑡𝑡 ⅆ𝑥 − 2‖∇𝑢(𝑡)‖
2

ℝ𝑁

∫𝑢𝑡∆𝑢ⅆ𝑥 +

ℝ𝑁

2 ∫𝑔𝑢𝑡
2ⅆ𝑥 +

ℝ𝑁

2 ∫𝑔𝑢𝑡|𝑢|
2𝑢ⅆ𝑥 = 0

ℝ𝑁

. 

Using some derivative arguments, we derive  

            
ⅆ

ⅆ𝑡
{‖𝑢𝑡(𝑡)‖𝐿𝑔2

2 +
1

2
‖𝑢(𝑡)‖𝒟1,2

4 + ∫𝐹(𝑢) ⅆ𝑥

ℝ𝑁

} + 2‖𝑢𝑡(𝑡)‖𝐿𝑔2
2 = 0.            (3.24) 

Then, we define as the energy functional of (3.21) the quantity  

 

          𝐸(𝑡) ≔ 𝐸(𝑢(𝑡), 𝑢𝑡(𝑡)) ≔ ‖𝑢𝑡(𝑡)‖𝐿𝑔2
2 +

1

2
‖𝑢(𝑡)‖𝒟1,2

4 + ∫𝐹(𝑢) ⅆ𝑥.          (3.25)

ℝ𝑁

 

Thereby (3.24) may be written as follows 

                                                
ⅆ

ⅆ𝑡
𝐸(𝑡) + 2‖𝑢𝑡(𝑡)‖𝐿𝑔2

2 = 0.                                              (3.26) 

From this we observe that the energy functional has a negative derivative which 

indicates an upper bound. Explicitly, this means that 𝐸(𝑡) ≤ 𝐸(0), since the rate of 

change is decreasing in time and depends on the initial data. Therefore, we may take 

the following estimate for the quantity ‖∇𝑢(𝑡)‖: 



 
 

[59]                                                                                                             CHAPTER II 

 

                                         ‖∇𝑢(𝑡)‖ ≤ {2𝐸(𝑡)}1 4⁄ ≤ {2𝐸(0)}1 4⁄ .                                 (3.27) 

Having made these notations, we are able to prove the following lemma. 

Lemma 3.7. Assume that 𝑓(𝑢) = |𝑢|2𝑢 is a nonlinear 𝐶1-function, and 𝑁 ≥ 3. If the 

initial data (𝑢0, 𝑢1) ∈ 𝐷(𝐴) × 𝒟
1,2(ℝ𝑁) and satisfy the condition 

‖∇𝑢0‖ ≠ 0, 

then we have that 

‖∇𝑢(𝑡)‖ > 0,   ∀ 𝑡 ≥ 0. 

Proof. Consider 𝑢(𝑡) the unique solution of (3.21), by Theorem 3.6 in the space 

[0, 𝑇). Multiplying equation (3.21) by −2∆𝑢𝑡 and integrating over ℝ𝑁 we derive 

                       −2 ∫∆𝑢𝑡𝑢𝑡𝑡 ⅆ𝑥 + 2‖∇𝑢(𝑡)‖
2

ℝ𝑁

∫𝜑(𝑥)∆𝑢𝑡∆𝑢 ⅆ𝑥

ℝ𝑁

 

                               −2𝛿 ∫𝑢𝑡∆𝑢𝑡ⅆ𝑥 −

ℝ𝑁

2 ∫|𝑢|2𝑢∆𝑢𝑡 ⅆ𝑥 = 0

ℝ𝑁

. 

Setting for simplicity 𝛿 = 1 and using some derivative arguments we obtain the 

following relation  

                             
ⅆ

ⅆ𝑡
‖∇𝑢𝑡(𝑡)‖

2 + ‖∇𝑢(𝑡)‖2
ⅆ

ⅆ𝑡
‖𝑢(𝑡)‖𝐷(𝐴)

2  

                                                       + 2‖∇𝑢𝑡(𝑡)‖
2 + 2(|𝑢|2𝑢, ∆𝑢𝑡(𝑡)) = 0.                 (3.28) 

Since ‖∇𝑢0‖ > 0 and ‖∇𝑢0‖ ≠ 0, we observe that ‖∇𝑢(𝑡)‖ > 0 near 𝑡 = 0. Let  

𝑇 ≔ sup{𝑡 ∈ [0,∞): ‖∇𝑢(𝑠)‖ > 0,   𝑓𝑜𝑟 0 ≤ 𝑠 < 𝑡 }. 

Thus 𝑇 > 0 and ‖∇𝑢(𝑡)‖ > 0 for 0 ≤ 𝑡 < 𝑇. If we assume that 𝑇 < ∞, then we have  

                                                             lim
𝑡→𝑇−

‖∇𝑢(𝑡)‖ = 0.                                                  (3.29) 

Making a variable change (𝑡 ≔ 𝑇 − 𝑡 ≡ 𝜏), we derive that the function �̃�(𝑡) =

𝑢(𝑇 − 𝑡) = 𝑢(𝜏), satisfies the problem:  

  �̃�𝑡𝑡(𝑡) − 𝜑(𝑥)‖∇�̃�(𝑡)‖
2∆�̃�(𝑡) − �̃�𝑡(𝑡) + 𝑓(�̃�(𝑡)) = 0,   𝑥 ∈ ℝ

𝑁 , 𝑡 ≥ 0,            (3.30) 

        �̃�(0) = 0  and �̃�𝑡(0) = 0, 𝑥 ∈ ℝ𝑁 ,      

where 𝑢′ = ⅆ𝑢 ⅆ𝜏⁄ . 

We observe that �̃� ∈ 𝐶0([0, 𝑇]; 𝐷(𝐴)) ∩ 𝐶1([0, 𝑇]; 𝒟1,2). Multiplying equation 

(3.30) by 2𝑔�̃�𝑡 and integrating over ℝ𝑁, we obtain an equation analogous to (3.26): 



 
 

[60]                                                                                                             CHAPTER II 

 

                             
ⅆ

ⅆ𝑡
𝐸(�̃�(𝑡), �̃�𝑡(𝑡)) = 2‖𝑢𝑡(𝑡)‖𝐿𝑔2

2 ≤ 2𝐸(�̃�(𝑡), �̃�𝑡(𝑡)).                   (3.31) 

Integrating (3.31) over [0, 𝑡], we obtain that  

𝐸(�̃�(𝑡), �̃�𝑡(𝑡)) ≤ 2∫ 𝐸(�̃�(𝑠), �̃�′(𝑠)) ⅆ𝑠
𝑡

0

, 

for  0 ≤ 𝑡 ≤ 𝑇. Since 𝐸(�̃�(0), �̃�′(0)) = 0, we can apply Gronwall’s inequality to 

derive that 

𝐸(�̃�(𝑡), �̃�′(𝑡)) = 0,   ∀ 𝑡 ∈ [0, 𝑇], 

i.e., ‖∇𝑢(𝑇 − 𝑡)‖ = 0 at [0, 𝑇] which comes in contradiction with ‖∇𝑢0‖ ≠ 0. 

Therefore, 𝑇 = ∞ and ‖∇𝑢(𝑡)‖ > 0, for all 𝑡 ≥ 0.  Q.E.D. 

 

4. Global solution and energy estimates 

Two subjects related with the asymptotic behavior of the solutions of evolutionary 

equations are the existence of global solutions and the blow-up phenomena. In this 

section we study the global solution and energy estimate for the initial value problem 

(1.1), (1.2) and in the next section the existence of blow-up phenomena.  

   Let us consider for the moment that there exists a maximally defined with respect to 

time function/solution of (1.1), (1.2) with the associated mapping 𝒖: [0, 𝑇] → 𝐷(𝐴) 

defining by 

[𝒖(𝑡)](𝑥) ≔ 𝑢(𝑥, 𝑡)  (𝑥 ∈ ℝ𝑁 , 0 ≤ 𝑡 ≤ 𝑇). 

If  𝑇 < ∞, then the solution is referred as local as we have already seen in preceding 

sections, but if we can determine the exact conditions which must be satisfied by the 

initial data of our problem and the functional 𝐸(∙) -which is related with the energy 

function of the physical phenomenon behind the mathematical prescription-, such that 

the local solution to be expanded in [0,∞), then we have answered the questions 

concerning global existence issues.  

   The method that we will follow in order to prove the global existence is the 

potential well method30 which may be understood in the following sense: 

“Consider a particle moving in ℝ in the presence of a potential 𝑉 that is zero for 0 ≤

𝑥 ≤ 𝐿 and 𝒬 (which denotes a sufficiently large constant value) on the rest of the real 

line. According to classical mechanics the motion in the area of 𝒬 is valid if and only 

if ℰ > 𝒬, where ℰ denotes the energy of the particle. In quantum mechanics the result 

30. See more in the paper “Saddle Points and Instability of Non-linear Hyperbolic Equations” 

by L. E. Payne and D. H. Sattinger; Israel J math., 22, (1975), 273-303. 
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is similar and the validity of motion outside of 0 ≤ 𝑥 ≤ 𝐿 is interpreted by means of 

wave functions, which correspond to each point of the real line intensity probabilities. 

More explicitly if we have a solution of the time-independent Schrödinger equation31 

ℋ̂𝜓 = ℰ𝜓 for this potential (with ℰ ≪ 𝒬), then we expect the wave function to decay 

rapidly for 𝑥 outside of the “box”. Especially in the case where 𝒬 → ∞, 𝜓 ≡ 0 for 𝑥 ∈

(−∞, 0) ∪ (𝐿,∞) and 𝜓 → 0 as 𝑥 → 0, 𝐿 (see Figure 3). 

 

Figure 3: Infinite potential well 

The above prescription relates the behavior of a particle moving in ℝ under the 

predefined potential with the existence of global solution, in the sense of the enclosure 

of the solution in a potential well, in order to obtain the valid solvability expansion. 

Obviously, if  ℰ > 𝒬 the particle can move in the region outside of the “box” and in 

that case the stability and global existence questions are open”.    

From this correlation we observe that the determination of the energy and potential 

for the problem (1.1), (1.2) is required to proceed with the analysis of the global 

existence. For this we multiply equation (1.1) by 2𝑔𝑢𝑡 and integrate over ℝ𝑁 to 

obtain the following equation 

             
ⅆ

ⅆ𝑡
{‖𝑢𝑡(𝑡)‖𝐿𝑔2

2 +
1

2
‖𝑢(𝑡)‖𝒟1,2

4 −
1

2
‖𝑢(𝑡)‖𝐿𝑔4

4 } + 2𝛿‖𝑢𝑡(𝑡)‖𝐿𝑔2
2 = 0.              (4.1) 

Therefore, we define as the energy of the problem (1.1), (1.2) the quantity: 

 

31. See Chapter 3 in [1]. 
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               𝐸(𝑡) ≔ 𝐸(𝑢(𝑡), 𝑢𝑡(𝑡)) ≔ ‖𝑢𝑡(𝑡)‖𝐿𝑔2
2 +

1

2
‖𝑢(𝑡)‖𝒟1,2

4 −
1

2
‖𝑢(𝑡)‖𝐿𝑔4

4 .         (4.2) 

Hence, equation (4.1) may be written as 

                                                   
ⅆ

ⅆ𝑡
𝐸(𝑡) + 2𝛿‖𝑢𝑡(𝑡)‖𝐿𝑔2

2 = 0.                                           (4.3) 

Furthermore, we introduce the potential of the problem (1.1), (1.2) as follows 

                                            𝒫(𝑢) ≔
1

2
‖𝑢(𝑡)‖𝒟1,2

4 −
1

2
‖𝑢(𝑡)‖𝐿𝑔4

4 .                                     (4.4) 

So, from equation (4.1) and definitions (4.2), (4.4) we derive the relation below 

                                                   𝐸(𝑡) = ‖𝑢𝑡(𝑡)‖𝐿𝑔2
2 +  𝒫(𝑢).                                             (4.5) 

Finally, we introduce a version of the modified potential well32, by 

                  𝒲 ≔ {𝑢 ∈ 𝐷(𝐴);  𝒦(𝑢) ≔ ‖𝑢(𝑡)‖𝒟1,2
4 − ‖𝑢(𝑡)‖𝐿𝑔𝑎+2

𝑎+2 > 0} ∪ {0}.      (4.6) 

Thereinafter we give two auxiliary lemmas concerning the behavior of the potential 

well. 

Lemma 4.1. If  2 < 𝑎 < 4/(𝑁 − 2), then 𝒲 is an open neighborhood of 0 in the 

space 𝒟1,2(ℝ𝑁). 

Proof.  Since 2 < 𝑎 < 4/(𝑁 − 2), by Lemma 3.3 and Lemma 2.2 we have that 

‖𝑢‖𝐿𝑔𝑎+2
𝑎+2 ≤ 𝐶0‖𝑢‖𝐿𝑔2

(1−𝜃)(𝑎+2)‖𝑢‖
𝒟1,2
(𝑎+2)𝜃

 

                               ≤ 𝐶0‖𝑢‖𝐿𝑔2
(1−𝜃)(𝑎+2)‖𝑢‖

𝒟1,2
(𝑎+2)𝜃−4‖𝑢‖𝒟1,2

4  

                                         ≤ 𝐶0𝜉
−1‖𝑢‖

𝒟1,2
(1−𝜃)(𝑎+2)‖𝑢‖

𝒟1,2
(𝑎+2)𝜃−4‖𝑢‖𝒟1,2

4  

                                                            ≤ 𝐶0𝜉
−1‖𝑢‖𝒟1,2

𝑎−2‖𝑢‖𝒟1,2
4 .                                          (4.7) 

Therefore, from (4.7) we derive 

                     𝒦(𝑢) ≔ ‖𝑢‖𝒟1,2
4 − ‖𝑢‖𝐿𝑔𝑎+2

𝑎+2 ≥ (1 − 𝐶0𝜉
−1‖𝑢‖𝒟1,2

𝑎−2)‖𝑢‖𝒟1,2
4 .                (4.8) 

Hence, if the following is valid 

𝐶0𝜉
−1‖𝑢‖𝒟1,2

𝑎−2 ≤ 1 ⟹ ‖𝑢‖𝒟1,2
𝑎−2 ≤ 𝜉𝐶0

−1 ⟹ ‖𝑢‖𝒟1,2 ≤ (𝜉𝐶0
−1)

1
𝑎−2, 

where by substituting 𝜉 = 𝑘−2‖𝑔‖𝑁 2⁄
−1  and 𝐶0 = 𝑘𝜃 we obtain 

32. See pp. 40-41, and 57 in [10]. 
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‖𝑢‖𝒟1,2 ≤ (𝑘−2−𝜃‖𝑔‖𝑁 2⁄
−1 )

1
𝑎−2, 

then 𝒦(𝑢) ≥ 0 and 0 belongs in 𝒲.  Q.E.D. 

Remark 4.2. The condition 2 < 𝑎 < 4/(𝑁 − 2) implies that 𝑁 = 3.  

Remark 4.3. In the limit case where 𝑎 = 2 we observe that, ‖𝑢‖𝐿𝑔4
4 ≤ 𝐶0𝜉

−1‖𝑢‖𝒟1,2
4  

and 𝒦(𝑢) ≥ (1 − 𝐶0𝜉
−1)‖𝑢‖𝒟1,2

4 . This means that we have a degeneration as 

𝒦(𝑢) ≥ 0 and 0 belongs in 𝒲 if  𝑘𝜃+2‖𝑔‖𝑁/2 ≤ 1 is valid for 𝜃 ∈ (0,1). 

Lemma 4.4. If 𝑢 ∈ 𝒲, 𝑁 = 3 and 𝑎 > 2, then we have 

                                          0 ≤
𝑎 − 2

2(𝑎 + 2)
‖𝑢‖𝒟1,2

4 ≤ �̃�(𝑢) ≤ �̃�(𝑢, 𝑢𝑡),                          (4.9) 

where �̃�(𝑢) ≔
1

2
‖𝑢(𝑡)‖𝒟1,2

4 −
2

𝑎+2
‖𝑢(𝑡)‖𝐿𝑔𝑎+2

𝑎+2  and �̃�(𝑢, 𝑢𝑡) ≔ ‖𝑢𝑡(𝑡)‖𝐿𝑔2
2 + �̃�(𝑢), the 

potential and energy of the problem (1.1), (1.2) with 𝑓(𝑢) = |𝑢|𝑎𝑢, respectively. 

Proof.  Since 𝑎 > 2, from the definitions of the potential and of the modified 

potential well, for any 𝑢 ∈ 𝒲, we have that 

�̃�(𝑢) =
1

2
‖𝑢‖𝒟1,2

4 −
2

𝑎 + 2
‖𝑢‖𝐿𝑔𝑎+2

𝑎+2  

                                    ≥
1

2
‖𝑢‖𝒟1,2

4 −
2

𝑎 + 2
𝐶0𝜉

−1‖𝑢‖𝒟1,2
𝑎−2‖𝑢‖𝒟1,2

4  

                                ≥
1

2
‖𝑢‖𝒟1,2

4 −
2

𝑎 + 2
𝐶0𝜉

−1𝜉𝐶0
−1‖𝑢‖𝒟1,2

4  

                                                 ≥
1

2
‖𝑢‖𝒟1,2

4 −
2

𝑎 + 2
‖𝑢‖𝒟1,2

4 ≡
𝛼 − 2

2(𝛼 + 2)
‖𝑢‖𝒟1,2

4 . 

Therefore, �̃�(𝑢) ≥ 
𝛼−2

2(𝛼+2)
‖𝑢‖𝒟1,2

4 .  Q.E.D. 

Remark 4.5. In the limit case where 𝑎 = 2 we observe that  

𝒫(𝑢) =
1

2
‖𝑢‖𝒟1,2

4 −
1

2
‖𝑢‖𝐿𝑔4

4  

                        ≥
1

2
‖𝑢‖𝒟1,2

4 −
1

2
𝐶0𝜉

−1‖𝑢‖𝒟1,2
4  

                       ≥ (
1 − 𝑘𝜃+2‖𝑔‖𝑁/2

2
) ‖𝑢‖𝒟1,2

4  
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and that the relation (4.9) is reduced to 0 ≤ 𝓂‖𝑢‖𝒟1,2
4 ≤ 𝒫(𝑢) ≤ 𝐸(𝑡), where 𝓂 ≔

(1 − 𝑘𝜃+2‖𝑔‖𝑁/2) 2⁄ , for 𝜃 ∈ (0,1). 

Concerning the time behavior of the energy we have the following remarks.  

Integrate equation (4.3) over [0, 𝑡], to derive 

                                             𝐸(𝑡) + 2𝛿 ∫ ‖𝑢𝑡(𝑡)‖𝐿𝑔2
2 ⅆ𝑥

𝑡

0

= 𝐸(0).                                 (4.10) 

Let us note that, if 𝑢 ∈ 𝒲, then by definition 𝐸(𝑢, 𝑢𝑡) ≥ 0, whereas, if 𝐸(𝑢, 𝑢𝑡) < 0, 

then 𝑢 ∉ �̅�. From equation (4.3) and definition (4.2) we obtain that 

                                               
ⅆ

ⅆ𝑡
𝐸(𝑢, 𝑢𝑡) = −2𝛿‖𝑢𝑡(𝑡)‖𝐿𝑔2

2 ≤ 0.                                  (4.11) 

Therefore, the energy 𝐸(𝑡) is a nonincreasing function of 𝑡. Hence, we have that  

                                                     𝐸(𝑡) ≤ 𝐸(0),   ∀ 𝑡 ∈ [0, 𝑇).                                         (4.12) 

In the theorem below we shall prove the global existence and the energy decay 

properties for the problem (1.1), (1.2).  

Theorem 4.6. Assume that 𝑁 = 3, 8 3⁄ < 𝑎 < 4, 𝑢0 ∈ 𝒲(⊂ 𝐷(𝐴)) and 𝑢1 ∈ 𝒟
1,2. 

Also suppose that the following inequality is valid 

                                  𝐸(0) ≤ (
1

𝐶0𝜇0
𝑝1
)

1 𝑝2⁄

𝑖𝑓  8 3⁄ < 𝑎 < 4 𝑎𝑛ⅆ 𝑝2 > 0.                (4.13) 

Then 

a) for 𝑝1 ≔ (2(𝑎 + 2) − 3𝑎)/2 and 𝑝2 ≔ (3𝑎 − 8)/8 there exists a unique 

global solution 𝑢 ∈ 𝒲 of the problem (1.1), (1.2) satisfying 

 

                 𝑢 ∈ 𝐶([0,∞);𝐷(𝐴))  𝑎𝑛ⅆ  𝑢𝑡 ∈ 𝐶([0,∞); 𝒟
1,2(ℝ𝑁).                (4.14) 

 

b) Moreover, this solution satisfies the following estimate  

‖𝑢𝑡‖𝐿𝑔2
2 + ⅆ∗

−1‖∇𝑢‖4 ≤ 𝐸(𝑢, 𝑢𝑡) ≤ {𝐸(𝑢0, 𝑢1)
−1 2⁄ + ⅆ0

−1[𝑡 − 1]+}
−2
,   (4.15) 

           where ⅆ∗ ≔ 2(𝑎 + 2)/(𝑎 − 2) and ⅆ0 ≥ 1, i.e., 

                                                    ‖∇𝑢‖4 ≤ 𝐶∗(1 + 𝑡)
−1,                                                   (4.16) 

           where 𝐶∗ is some constant depending on ‖𝑢0‖𝒟1,2
4  and ‖𝑢1‖𝐿𝑔2 . 

Proof.  (a) To show that the local solution given by Theorem 3.6, remains in the 

modified potential well 𝒲, as long as it exists, we shall argue by contradiction.  
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Assume that there exists time 𝑇∗ > 0, such that 𝑢(𝑡) ∈ 𝒲, where 0 ≤ 𝑡 < 𝑇∗ and 

𝑢(𝑇∗) ∈ 𝜗𝒲. Then 𝒦(𝑢(𝑇∗)) = 0 and 𝑢(𝑇∗) ≠ 0. We multiply equation (1.1) by 

𝑔𝑢 and integrate over ℝ𝑁 to obtain the equation 

∫𝑔𝑢𝑢𝑡𝑡 ⅆ𝑥

ℝ𝑁

− ‖∇𝑢(𝑡)‖2 ∫𝑢∆𝑢 ⅆ𝑥

ℝ𝑁

+ 𝛿 ∫𝑔𝑢𝑢𝑡 ⅆ𝑥

ℝ𝑁

= ∫𝑔|𝑢|𝑎𝑢2 ⅆ𝑥.

ℝ𝑁

 

Using some derivative arguments, this gives 

ⅆ

ⅆ𝑡
(𝑢(𝑡), 𝑢𝑡(𝑡))𝐿𝑔2

− ‖𝑢𝑡(𝑡)‖𝐿𝑔2
2 +

𝛿

2

ⅆ

ⅆ𝑡
‖𝑢(𝑡)‖𝐿𝑔2

2 + ‖𝑢(𝑡)‖𝒟1,2
4  

                                                        − ∫𝑔(𝑥)|𝑢(𝑡)|𝑎+2 ⅆ𝑥 = 0.                                    (4.17)

ℝ𝑁

 

By integrating (4.17) over [0, 𝑡], for some 𝑡 ∈ [0, 𝑇), we derive 

      ∫ {
ⅆ

ⅆ𝑡
(𝑢(𝑠), 𝑢𝑡(𝑠))𝐿𝑔2

} ⅆ𝑠
𝑡

0

−∫ ‖𝑢𝑡(𝑠)‖𝐿𝑔2
2 ⅆ𝑠

𝑡

0

+
𝛿

2
∫ {

ⅆ

ⅆ𝑡
‖𝑢(𝑠)‖𝐿𝑔2

2 } ⅆ𝑠
𝑡

0

        

      +∫ ‖𝑢(𝑠)‖𝒟1,2
4 ⅆ𝑠

𝑡

0

−∫ { ∫𝑔(𝑥)|𝑢(𝑠)|𝑎+2 ⅆ𝑥

ℝ𝑁

}
𝑡

0

ⅆ𝑠 = 0, 

or 

(𝑢(𝑡), 𝑢𝑡(𝑡))𝐿𝑔2
− (𝑢(0), 𝑢𝑡(0))𝐿𝑔2

−∫ ‖𝑢𝑡(𝑠)‖𝐿𝑔2
2 ⅆ𝑠

𝑡

0

+
𝛿

2
{‖𝑢(𝑡)‖𝐿𝑔2

2 − ‖𝑢(0)‖𝐿𝑔2
2 }

+ ∫ ‖𝑢(𝑠)‖𝒟1,2
4 ⅆ𝑠

𝑡

0

−∫ { ∫𝑔(𝑥)|𝑢(𝑠)|𝑎+2 ⅆ𝑥

ℝ𝑁

}
𝑡

0

ⅆ𝑠 = 0. 

Using Young’s inequality for  휀 = 𝛿 2⁄  in the first term of the last relation we get  

𝛿‖𝑢(𝑡)‖𝐿𝑔2
2 ≤ 𝛿‖𝑢(0)‖𝐿𝑔2

2 + 2(
𝛿

4
‖𝑢(𝑡)‖𝐿𝑔2

2 +
1

𝛿
‖𝑢𝑡(𝑡)‖𝐿𝑔2

2 ) 

                                                                        + 2(𝑢0, 𝑢1)𝐿𝑔2 + 2∫ ‖𝑢𝑡(𝑠)‖𝐿𝑔2
2 ⅆ𝑠

𝑡

0

.       (4.18) 

Since 𝑢(𝑡) ∈ 𝒲, we integrate equation (4.1) taking 𝑎 in the general case, i.e.,  

ⅆ

ⅆ𝑡
{‖𝑢𝑡(𝑡)‖𝐿𝑔2

2 +
1

2
‖𝑢(𝑡)‖𝒟1,2

4 −
2

𝑎 + 2
‖𝑢(𝑡)‖𝐿𝑔𝑎+2

𝑎+2 } + 2𝛿‖𝑢𝑡(𝑡)‖𝐿𝑔2
2 = 0, 

over [0, 𝑡] to receive: 
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‖𝑢𝑡(𝑡)‖𝐿𝑔2
2 − ‖𝑢1‖𝐿𝑔2

2 +
1

2
‖𝑢(𝑡)‖𝒟1,2

4 −
1

2
‖𝑢0‖𝒟1,2

4 −
2

𝑎 + 2
‖𝑢(𝑡)‖𝐿𝑔𝑎+2

𝑎+2          

                        +
2

𝑎 + 2
‖𝑢0‖𝐿𝑔𝑎+2

𝑎+2 + 2𝛿∫ ‖𝑢𝑡(𝑠)‖𝐿𝑔2
2 ⅆ𝑠 = 0.

𝑡

0

 

From definition (4.2), where we have used for simplicity the same notation for the 

energy in the general case of 𝑎 and in the discrete case (𝑎 = 2), we have that  

𝐸(0) ≔ 𝐸(𝑢(0), 𝑢𝑡(0)) ≔ ‖𝑢1‖𝐿𝑔2
2 +

1

2
‖𝑢0‖𝒟1,2

4 −
2

𝑎 + 2
‖𝑢0‖𝐿𝑔𝑎+2

𝑎+2 . 

Therefore, from the previous relation we obtain the following estimate 

                                        
1

2
‖𝑢𝑡(𝑡)‖𝐿𝑔2

2 + 𝛿∫ ‖𝑢𝑡(𝑠)‖𝐿𝑔2
2 ⅆ𝑠 ≤ 𝐸(0).

𝑡

0

                           (4.19) 

From relations (4.18), (4.19) we get that 

                          ‖𝑢(𝑡)‖𝐿𝑔2
2 ≤

2

𝛿
{𝛿‖𝑢(0)‖𝐿𝑔2

2 + 2(𝑢0, 𝑢1)𝐿𝑔2 +
4

𝛿
𝐸(0)} ≔ 𝜇0

2.           (4.20) 

Using Lemma 3.3 and relation (4.20) we obtain the inequality 

                          ‖𝑢(𝑡)‖𝐿𝑔𝑎+2
𝑎+2 ≤ 𝐶0𝜇0

(𝑎+2)(1−𝜃)‖𝑢(𝑡)‖
𝒟1,2
(𝑎+2)𝜃

 

                 ≤ 𝐶0𝜇0
(𝑎+2)(1−𝜃)‖𝑢(𝑡)‖

𝒟1,2
(𝑎+2)𝜃−4‖𝑢(𝑡)‖𝒟1,2

4  

             ≤ 𝐶0𝜇0
(𝑎+2)(1−𝜃)�̃�(𝑢)

(𝑎+2)𝜃
4

−1‖𝑢(𝑡)‖𝒟1,2
4  

                                               ≤ 𝐶0𝜇0
(𝑎+2)(1−𝜃)�̃�(0)

(𝑎+2)𝜃
4

−1‖𝑢(𝑡)‖𝒟1,2
4 ,                      (4.21) 

where, according to Lemma 3.3, the constants are 

{
  
 

  
 𝜃 ≔

3𝑎

2(𝑎 + 2)
,

                  𝑝1 ≔ (𝑎 + 2)(1 − 𝜃) =
2(𝑎 + 2) − 3𝑎

2
,

𝑝2 ≔
(𝑎 + 2)𝜃

4
− 1 =

3𝑎 − 8

8
.

 

Thus, we have that 

                                        ‖𝑢(𝑡)‖𝐿𝑔𝑎+2
𝑎+2 ≤ 𝐶0𝜇0

𝑝1�̃�(0)𝑝2‖𝑢(𝑡)‖𝒟1,2
4 .                                 (4.22) 

Assume that the hypothesis (4.13) is valid. Then we get that, 𝐶0𝜇0
𝑝1�̃�(0)𝑝2 ≤ 1. 

Setting 𝛿1 ≔ 𝐶0𝜇0
𝑝1�̃�(0)𝑝2, for 𝑡 = 𝑇∗, the inequality (4.21) implies 
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    𝒦(𝑢(𝑇∗)) = ‖𝑢(𝑇∗)‖𝒟1,2
4 − ‖𝑢(𝑇∗)‖𝐿𝑔𝑎+2

𝑎+2  

                        ≥ ‖𝑢(𝑇∗)‖𝒟1,2
4 − 𝛿1‖𝑢(𝑇

∗)‖
𝒟1,2
4 = (1 − 𝛿1)‖𝑢(𝑇

∗)‖
𝒟1,2
4 > 0,       (4.23) 

which contradicts the preceding assumption that, 𝒦(𝑢(𝑇∗)) = 0. 

(b) To show the decay condition of the energy 𝐸(𝑡) associated with equation (1.1), 

we assume for simplicity that 𝛿 = 1. Integrating equation (4.3) over [𝑡, 𝑡 + 1], we 

obtain 

                            2∫ ‖𝑢𝑡(𝑠)‖𝐿𝑔2
2 ⅆ𝑠 = 𝐸(𝑡) − 𝐸(𝑡 + 1) (≔ 2𝐷2(𝑡)).                 (4.24)

𝑡+1

𝑡

 

Therefore, there exist 𝑡1 ∈ [𝑡, 𝑡 + 1 4⁄ ], 𝑡2 ∈ [𝑡 + 3/4, 𝑡 + 1] such that  

                                                 ‖𝑢𝑡(𝑡𝑖)‖𝐿𝑔2 ≤ 2𝐷(𝑡)  for 𝑖 = 1,2.                                   (4.25) 

Multiplying equation (1.1) by 𝑔𝑢 and integrating over ℝ𝑁, we have that 

∫𝑔𝑢𝑢𝑡𝑡 ⅆ𝑥

ℝ𝑁

− ‖∇𝑢(𝑡)‖2 ∫𝑢∆𝑢 ⅆ𝑥

ℝ𝑁

+ 𝛿 ∫𝑔𝑢𝑢𝑡 ⅆ𝑥

ℝ𝑁

= ∫𝑔|𝑢|𝑎𝑢2 ⅆ𝑥.

ℝ𝑁

 

For simplicity setting 𝛿 = 1 and using some derivative arguments we obtain 

ⅆ

ⅆ𝑡
(𝑢(𝑡), 𝑢𝑡(𝑡))𝐿𝑔2

− ‖𝑢𝑡(𝑡)‖𝐿𝑔2
2 + ‖𝑢(𝑡)‖𝒟1,2

4 + (𝑢(𝑡), 𝑢𝑡(𝑡))𝐿𝑔2
= ‖𝑢(𝑡)‖𝐿𝑔𝑎+2

𝑎+2 . 

From (4.6) the above relation takes the form 

                          𝒦 = ‖𝑢𝑡(𝑡)‖𝐿𝑔2
2 −

ⅆ

ⅆ𝑡
(𝑢(𝑡), 𝑢𝑡(𝑡))𝐿𝑔2

− (𝑢(𝑡), 𝑢𝑡(𝑡))𝐿𝑔2
.                 (4.26) 

Integrating (4.26) over [𝑡1, 𝑡2], it follows from (4.23), (4.24) and (4.25) that 

1

2
∫ ‖𝑢(𝑠)‖𝒟1,2

4 ⅆ𝑠 ≤
𝑡2

𝑡1

∫ 𝒦(𝑢(𝑠))ⅆ𝑠 ≤
𝑡2

𝑡1

∫ ‖𝑢𝑡(𝑠)‖𝐿𝑔2
2 ⅆ𝑠

𝑡+1

𝑡

 

+{(∫ ‖𝑢𝑡(𝑠)‖𝐿𝑔2
2 ⅆ𝑠

𝑡+1

𝑡

)

1
2

+∑‖𝑢𝑡(𝑡𝑖)‖𝐿𝑔2

2

𝑖=1

} sup
𝑡≤𝑠≤𝑡+1

‖𝑢(𝑠)‖𝐿𝑔2  

                                      ≤ 𝐷2(𝑡) + 5𝐷(𝑡)𝑎−1(ⅆ∗𝐸(𝑡))
1 4⁄ ,                                           (4.27) 

where ⅆ∗ ≔ 2(𝑎 + 2)/(𝑎 − 2) and the Lemma 4.4 is used in the last inequality. 

Therefore, from (4.5), (4.24) and (4.27) we have that 

∫ 𝐸(𝑠)ⅆ𝑠 ≤ ∫ {‖𝑢𝑡(𝑠)‖𝐿𝑔2
2 + ‖𝑢(𝑠)‖𝒟1,2

4 } ⅆ𝑠 ≤ 𝐷2(𝑡) + 2(𝐷2(𝑡) + 5𝐷(𝑡)𝑎−1(ⅆ∗𝐸(𝑡))
1 4⁄ )

𝑡2

𝑡1

𝑡2

𝑡1

, 
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or  

                             ∫ 𝐸(𝑠)ⅆ𝑠 ≤ 3𝐷2(𝑡) + 10𝐷(𝑡)𝑎−1(ⅆ∗𝐸(𝑡))
1 4⁄ .                          (4.28)

𝑡2

𝑡1

 

On the other hand, integrating (4.3) -for 𝛿 = 1- over [𝑡, 𝑡2] and using (4.24), (4.28) 

we obtain that 

𝐸(𝑡) = 𝐸(𝑡2) + 2∫ ‖𝑢𝑡(𝑠)‖𝐿𝑔2
2 ⅆ𝑠

𝑡2

𝑡

 

                       ≤ 2∫ 𝐸(𝑠) ⅆ𝑠 +
𝑡2

𝑡1

2∫ ‖𝑢𝑡(𝑠)‖𝐿𝑔2
2 ⅆ𝑠

𝑡2

𝑡

 

                                                  ≤ 2(3𝐷2(𝑡) + 10𝐷(𝑡)𝑎−1(ⅆ∗𝐸(𝑡))
1 4⁄ ) + 2𝐷2(𝑡)     

                                             ≤ 8𝐷2(𝑡) +
휀1
2
ⅆ∗
2(20𝑎−1𝐷(𝑡))4 3⁄ + (2휀1)

−1𝐸(𝑡), 

where Young’s inequality is used for 𝑝−1 = 3/4 and 𝑞−1 = 1/4. Hence 

                                𝐸(𝑡) ≤ 2{8𝐷2 3⁄ (𝑡) + ⅆ∗
2(20𝑎−1)4 3⁄ }𝐷4 3⁄ (𝑡).                           (4.29) 

Since 2𝐷2(𝑡) = 𝐸(𝑡) − 𝐸(𝑡 + 1) ≤ 𝐸(𝑡) ≤ 𝐸(0) (≤ 1), it follows from (4.29) that  

                  𝐸(𝑡) ≤ 2{8(𝐸(0) 2⁄ )1 3⁄ + ⅆ∗
2(20𝑎−1)4 3⁄ }𝐷4 3⁄ (𝑡) = 𝐶5 𝐷

4 3⁄ (𝑡),      (4.30) 

where 𝐶5 ≔ 2{8(𝐸(0) 2⁄ )1 3⁄ + ⅆ∗
2(20𝑎−1)4 3⁄ }. Also, from relation (4.24) we have 

that 

                                          𝐷4 3⁄ (𝑡) = 2−2/3(𝐸(𝑡) − 𝐸(𝑡 + 1))2/3.                               (4.31) 

Thus from (4.31), relation (4.30) becomes 

                                          𝐸3 2⁄ (𝑡) ≤ 2−1𝐶5
3 2⁄ (𝐸(𝑡) − 𝐸(𝑡 + 1)).                               (4.32) 

To complete our proof, we shall use the following Lemma (see pp. 61 in [10]). 

Lemma 4.7. Let 𝜑 be a non-increasing and non-negative function on [0,∞) 

satisfying 

sup
𝑡≤𝑠≤𝑡+1

𝜑(𝑠)1+𝑟 ≤ 𝑘{𝜑(𝑡) − 𝜑(𝑡 + 1)}, 

for 𝑟 > 0 and 𝑘 > 0. Then  

𝜑(𝑡) ≤ {𝜑(0)−𝑟 + 𝑟𝑘−1[𝑡 − 1]+}−1 𝑟⁄ , 

for 𝑟 ≥ 0. ∎ 
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Therefore, applying Lemma 4.7 we can derive the decay estimate of the energy 𝐸(𝑡), 

such that 

                                          𝐸(𝑡) ≤ {𝐸(0)−1 2⁄ + ⅆ0
−1[𝑡 − 1]+}

−2
,                                  (4.33) 

where ⅆ0 ≔ 23 2⁄ {8(𝐸(0) 2⁄ )1 3⁄ + ⅆ∗
2(20𝑎−1)4 3⁄ }

3 2⁄
  (≥ 1). Hence,  

‖∇𝑢‖4 ≤ 𝐶∗(1 + 𝑡)
−1, 

with some constant 𝐶∗ depending on ‖𝑢0‖𝒟1,2
4  and ‖𝑢1‖𝐿𝑔2 .  Q.E.D. 

Remark 4.8. In the case where 𝑎 = 2, we have the following observations: 

(i) To derive (4.18) we use the estimate 

− ∫𝑔(𝑥)|𝑢(𝑡)|4 ⅆ𝑥 ≤

ℝ𝑁

− ( ∫𝑔𝛼 ⅆ𝑥

ℝ𝑁

)

1
𝛼

( ∫|∇𝑢|2 ⅆ𝑥

ℝ𝑁

)

2

 

                                            = −( ∫𝑔𝛼 ⅆ𝑥

ℝ𝑁

)

1
𝛼

‖∇𝑢‖2 ∫|∇𝑢|2 ⅆ𝑥,

ℝ𝑁

 

where 𝛼 = 2𝑁/(8 − 2𝑁) from Lemma 3.1 for  𝑝 = 4 and the assumption that the 

equality is valid for 𝓇 = 1, setting 

𝓇 ≔ ( ∫𝑔𝛼 ⅆ𝑥

ℝ𝑁

)

1 𝛼⁄

, 

to obtain the identity  

‖𝑢(𝑡)‖𝒟1,2
4 − ∫𝑔(𝑥)|𝑢(𝑡)|4ⅆ𝑥 = 0

ℝ𝑁

, 

in relation (4.17). 

(ii) In relation (4.21), the constants take the values, 

{
   𝜃 = 3 4⁄ ,
𝑝1 = 1,

     𝑝2 = −1 4⁄ .
 

Hence, (4.22) takes the following form 

‖𝑢(𝑡)‖𝐿𝑔4
4 ≤ 𝐶0𝜇0𝐸(0)

−1 4⁄ ‖𝑢(𝑡)‖𝒟1,2
4 ,     

whereas we notice that the estimate (4.13) is modified, since 𝑝2 < 0. 

(iii) According to Remark 4.5 the last inequality in relation (4.27) becomes 
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1

2
∫ ‖𝑢(𝑠)‖𝒟1,2

4 ⅆ𝑠 ≤
𝑡2

𝑡1

∫ 𝒦(𝑢(𝑠))ⅆ𝑠
𝑡2

𝑡1

 

    ≤ ∫ ‖𝑢𝑡(𝑠)‖𝐿𝑔2
2 ⅆ𝑠

𝑡+1

𝑡

+ {(∫ ‖𝑢𝑡(𝑠)‖𝐿𝑔2
2 ⅆ𝑠

𝑡+1

𝑡

)

1
2

 

+∑‖𝑢𝑡(𝑡𝑖)‖𝐿𝑔2

2

𝑖=1

} sup
𝑡≤𝑠≤𝑡+1

‖𝑢(𝑠)‖𝐿𝑔2  

                                    ≤ 𝐷2(𝑡) + 5𝐷(𝑡)𝜉−1‖𝑢‖𝒟1,2 ≤ 𝐷
2(𝑡) + 5𝐷(𝑡)𝜉−1(𝓂−1𝐸(𝑢))

1
4, 

where the constants33 𝜉(≜ 𝑎) and 𝓂, are the fixed constants in Lemma 2.2 and 

Remark 4.5 respectively, i.e., 𝜉 ≔ 𝑘−2‖𝑔‖𝑁 2⁄
−1  and 𝓂 ≔ (1 − 𝑘𝜃+2‖𝑔‖𝑁/2) 2⁄ .  

From this we obtain the rest of the proof with the difference that ⅆ∗ is replaced by 𝓂 

and the notation 𝜉 by 𝑎. 

 

5. Blow-up results 

In this section we complete our study with the blowing-up property of the solution for 

the initial value problem (1.1), (1.2). As in the preceding section where we adapt the 

method of the modified potential well to show the global-existence of our solution in 

the same way we adopt the concavity method introduced by Levine in [3], to study the 

blow-up properties of the solution.   

The method is based on the following Theorem. For the proof see Theorem I in [3]. 

Theorem 5.1. Consider the initial value problem 

{   
𝒫𝑢𝑡𝑡 = −𝒜(𝑡)𝑢(𝑡) + ℱ(𝑢(𝑡)),   𝑡 ∈ [0, 𝑇)    

𝑢(0) = 𝑢0,    𝑢𝑡(0) = 𝜐0,                      
 

with the following hypotheses: 

(A-I) 𝒜(𝑡): 𝐷 ⊆ 𝐻 → 𝐻, is a symmetric linear operator, 𝐻 a Hilbert space with the 

associated inner product (  , ) and norm ‖ ‖, respectively, and 𝐷 a dense Hilbert 

subspace with respect to (  , )𝐷, continuously embedded in 𝐻. 

(A-II) (𝑥,𝒜(𝑡)𝑥) ≥ 0 if 𝑥 ∈ 𝐷. 

(A-III) If 𝜐: [0,∞) → 𝐻 is strongly continuously differentiable and if for all 𝑡 ≥ 0, 

𝜐(𝑡) and ⅆ𝜐(𝑡)/ⅆ𝑡 ∈ 𝐷, then (𝜐(𝑡),𝒜(𝑡)𝜐(𝑡)) is continuously differentiable and, for 

all 𝑡 ≥ 0, 

𝒬𝐴(𝜐, 𝜐)(𝑡) ≡ (ⅆ ⅆ𝑡⁄ )(𝜐(𝑡),𝒜(𝑡)𝜐(𝑡)) − 2(ⅆ𝜐(𝑡)/ⅆ𝑡,𝒜(𝑡)𝜐(𝑡)) ≤ 0. 

33. To be consistent with the notation used in (4.27). 
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Assume also that 

(P-I) 𝒫:𝐷𝑝 → 𝐻, is a symmetric operator with 𝐷 ⊆ 𝐷𝑃 ⊆ 𝐻. 

(P-II) (𝑥, 𝒫𝑥) > 0 for all 𝑥 ∈ 𝐷𝑃, 𝑥 ≠ 0. 

(F-I) ℱ:𝐷 → 𝐻 is continuously differentiable, with bounded symmetric Fréchet 

derivative34 ℱ𝑥 linear operator on 𝐻 and 𝑥 → ℱ𝑥 a strongly continuous map from 𝐷 

into ℒ(𝐻). 

(F-II) Let 𝒢(𝑥) ≡ ∫ (ℱ(𝜌𝑥), 𝑥) ⅆ𝜌
1

0
 denote the potential associated with ℱ, 

and that the following conditions are valid: 

(C-I) (𝑥, ℱ(𝑥)) ≥ 2(2𝑎 + 1)𝒢(𝑥) for 𝑎 > 0, and all 𝑥 ∈ 𝐷, 

(C-II) 𝒢(𝜐(𝑡)) − 𝒢(𝜐(0)) = ∫ (ℱ(𝜐(𝜂)), 𝜐𝜂(𝜂)) ⅆ𝜂
𝑡

0
. 

Let 𝑢: [0, 𝑇) → 𝐻 be a solution to this problem, and assume that the preceding 

hypotheses hold. Then, each of the following statements are valid: 

(a) If 

𝛽0 ≡ 2{𝒢(𝑢0) − 1 2⁄ [(𝑢0, 𝒜(0)𝑢0) + (𝜐0, 𝒫𝜐0)]} > 0, 

then the solution exists only on [0, 𝑇) and lim
𝑡→𝑇−

(𝑢(𝑡),𝒫𝑢(𝑡)) = +∞, where 

𝑇 ≤ 𝑇𝛽0 ≡ 𝑎−1{[𝛽0(𝑢0, 𝒫𝑢0) + (𝑢0, 𝒫𝜐0)
2]1 2⁄ + (𝑢0, 𝒫𝜐0)}

−1
(𝑢0, 𝒫𝑢0). 

(b) If 

𝒢(𝑢0) = 1 2⁄ [(𝑢0, 𝒜(0)𝑢0) + (𝜐0, 𝒫𝜐0)], 

(𝑢0, 𝒫𝜐0) (𝑢0, 𝒫𝑢0)⁄ = 𝜆 > 0, 

then the solution exists only on [0, 𝑇) and lim
𝑡→𝑇−

(𝑢(𝑡),𝒫𝑢(𝑡)) = +∞, where  

𝑇 ≤ (2𝑎𝜆)−1.    ∎ 

According to the proof of Theorem 5.1 the idea of the concavity method is based on 

the construction of some positive smooth functional 𝒵(𝑡) -defined in terms of the 

local solution of the problem- which satisfies the following inequality 

                                              𝒵′′(𝑡)𝒵(𝑡) − (1 + 𝑎)[𝒵′(𝑡)]2 ≥ 0,                                    (5.1) 

for 𝑡 > 0, 𝑎 > 0, 𝒵(0) > 0 and 𝒵′(0) > 0. Then 𝒵(𝑡) → ∞ for a finite time 𝑇∗. 

Equivalently we can select 𝒵(𝑡), such that 𝑧(𝑡) ≔ 𝒵1−𝛾(𝑡) for 𝛾 > 1 to be a concave 

function, i.e.,  

                                     𝑧′′(𝑡) ≤ 0, 𝑡 > 0   and   𝑧(0) > 0, 𝑧′(0) < 0.                         (5.2) 

Then ∃ 𝑇∗, 0 < 𝑇∗ < ∞ such that 𝑧(𝑡) → 0 as 𝑡 → 𝑇∗, 𝑡 < 𝑇∗.  

34. See in [4], [11]. 
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From (4.2), (4.10) we define35 (see in [10], pp. 62) the functional 𝒵(𝑡) as  

          𝒵(𝑡) ≔ ‖𝑢(𝑡)‖𝐿𝑔2
2 + 𝛿 {∫ ‖𝑢(𝑠)‖𝐿𝑔2

2 ⅆ𝑠 + (𝑇0 − 𝑡)‖𝑢0‖𝐿𝑔2
2

𝑡

0

} + 𝑟(𝑡 + 𝜏)2,     (5.3) 

where 𝑡 ∈ [0, 𝑇0] and 𝑇0, 𝑟, 𝜏 are positive constants, to be specified latter. Since every 

term in the above definition is positive, we have that 𝒵(𝑡) > 0,   

              𝒵′(𝑡) =
ⅆ

ⅆ𝑡
(‖𝑢(𝑡)‖𝐿𝑔2

2 + 𝛿 {∫ ‖𝑢(𝑠)‖𝐿𝑔2
2 ⅆ𝑠 + (𝑇0 − 𝑡)‖𝑢0‖𝐿𝑔2

2
𝑡

0

} + 𝑟(𝑡 + 𝜏)2) 

= 2(𝑢(𝑡), 𝑢𝑡(𝑡))𝐿𝑔2
+ 𝛿‖𝑢(𝑡)‖𝐿𝑔2

2 − 𝛿‖𝑢0‖𝐿𝑔2
2 + 2𝑟(𝑡 + 𝜏) 

                          = 2 {(𝑢(𝑡), 𝑢𝑡(𝑡))𝐿𝑔2
+ 𝛿∫ (𝑢(𝑠), 𝑢𝑡(𝑠))𝐿𝑔2

ⅆ𝑠 +
𝑡

0

𝑟(𝑡 + 𝜏)},          (5.4) 

where we have used the relation below  

2𝛿 ∫ (𝑢(𝑠), 𝑢𝑡(𝑠))𝐿𝑔2
ⅆ𝑠 = 𝛿∫

ⅆ

ⅆ𝑡
‖𝑢(𝑠)‖𝐿𝑔2

2 ⅆ𝑠 = 𝛿‖𝑢(𝑡)‖𝐿𝑔2
2 − 𝛿‖𝑢0‖𝐿𝑔2

2 ,
𝑡

0

𝑡

0

 

and 

𝒵′′(𝑡) = 2
ⅆ

ⅆ𝑡
((𝑢(𝑡), 𝑢𝑡(𝑡))𝐿𝑔2

+ 𝛿∫ (𝑢(𝑠), 𝑢𝑡(𝑠))𝐿𝑔2
ⅆ𝑠 +

𝑡

0

𝑟(𝑡 + 𝜏)) 

                        = 2
ⅆ

ⅆ𝑡
(𝑢(𝑡), 𝑢𝑡(𝑡))𝐿𝑔2

+ 2𝛿
ⅆ

ⅆ𝑡
∫ (𝑢(𝑠), 𝑢𝑡(𝑠))𝐿𝑔2

ⅆ𝑠 + 2
ⅆ

ⅆ𝑡

𝑡

0

𝑟(𝑡 + 𝜏) 

                    = 2(𝑢𝑡(𝑡), 𝑢𝑡(𝑡))𝐿𝑔2
+ 2(𝑢(𝑡), 𝑢𝑡𝑡(𝑡))𝐿𝑔2

+ 2𝛿(𝑢(𝑡), 𝑢𝑡(𝑡))𝐿𝑔2
+ 2𝑟 

                           = 2 {(𝑢(𝑡), 𝑢𝑡𝑡(𝑡))𝐿𝑔2
+ ‖𝑢𝑡(𝑡)‖𝐿𝑔2

2 + 𝛿(𝑢(𝑡), 𝑢𝑡(𝑡))𝐿𝑔2
+ 𝑟}.          (5.5) 

If 𝑢 is a solution of (1.1), -with  𝑓(𝑢) = |𝑢|𝑎𝑢- then multiplying (1.1) by 𝑔𝑢 and 

integrating over ℝ𝑁, we have that 

35. We also recommend the papers (a) “Non-existence of Global Solutions to Nonlinear Wave 

Equations with Positive Initial Energy” by Bilgesu A. Bilgin and Varga K. Kalantarov; 

Communications on Pure and Applied Analysis, Vol. 17, No. 3, May 2018, pp. 987–999 and 

(b) “Blow-up of Solutions to Ordinary Differential Equations arising in Nonlinear Dispersive 

Problems” by Milena Dimova, Natalia Kolkovska, Nikolai Kutev; Electronic Journal of 

Differential Equations, Vol. 2018 (2018), No. 68, pp. 1–16. ISSN: 1072-6691. 

 



 
 

[73]                                                                                                             CHAPTER II 

 

∫𝑔𝑢𝑢𝑡𝑡ⅆ𝑥

ℝ𝑁

− ‖∇𝑢(𝑡)‖2 ∫𝑢

ℝ𝑁

∆𝑢ⅆ𝑥 + 𝛿 ∫𝑔𝑢𝑢𝑡ⅆ𝑥

ℝ𝑁

= ∫𝑔|𝑢|𝑎+2ⅆ𝑥

ℝ𝑁

,  

and after using some derivative arguments we derive 

                    (𝑢(𝑡), 𝑢𝑡𝑡(𝑡))𝐿𝑔2 = −‖∇𝑢(𝑡)‖4 − 𝛿
1

2

ⅆ

ⅆ𝑡
‖𝑢(𝑡)‖𝐿𝑔2

2 + ‖𝑢(𝑡)‖𝐿𝑔𝑎+2
𝑎+2 .         (5.6) 

Therefore, combining relations (5.5) and (5.6) we obtain that 

                             𝒵′′(𝑡) = 2 {−‖∇𝑢(𝑡)‖4 + ‖𝑢(𝑡)‖𝐿𝑔𝑎+2
𝑎+2 + ‖𝑢𝑡(𝑡)‖𝐿𝑔2

2 + 𝑟}.             (5.7) 

To continue with the proof of the concavity character we define a new functional as 

follows: 

                   𝒱(𝑡) ≔ {‖𝑢(𝑡)‖𝐿𝑔2
2 + 𝛿∫ ‖𝑢(𝑠)‖𝐿𝑔2

2 ⅆ𝑠
𝑡

0

+ 𝑟(𝑡 + 𝜏)2} 

            × {‖𝑢𝑡(𝑡)‖𝐿𝑔2
2 + 𝛿∫ ‖𝑢𝑡(𝑠)‖𝐿𝑔2

2 ⅆ𝑠
𝑡

0

+ 𝑟} − {(𝑢(𝑡), 𝑢𝑡(𝑡))𝐿𝑔2
 

                              +𝛿 ∫ (𝑢(𝑠), 𝑢𝑡(𝑠))𝐿𝑔2
ⅆ𝑠 +

𝑡

0

𝑟(𝑡 + 𝜏)}

2

.                                            (5.8) 

We observe that 𝒱(𝑡) ≥ 0 and from relation (5.4), (5.8) becomes 

                     𝒱(𝑡) = {𝒵(𝑡) − 𝛿(𝑇0 − 𝑡)‖𝑢0‖𝐿𝑔2
2 } 

          × {‖𝑢𝑡(𝑡)‖𝐿𝑔2
2 + 𝛿∫ ‖𝑢𝑡(𝑠)‖𝐿𝑔2

2 ⅆ𝑠
𝑡

0

+ 𝑟} −
1

4
𝒵′(𝑡)2, 

or 

                  𝒵′(𝑡)2 = 4 [{𝒵(𝑡) − 𝛿(𝑇0 − 𝑡)‖𝑢0‖𝐿𝑔2
2 } 

                                    × {‖𝑢𝑡(𝑡)‖𝐿𝑔2
2 + 𝛿∫ ‖𝑢𝑡(𝑠)‖𝐿𝑔2

2 ⅆ𝑠
𝑡

0

+ 𝑟} − 𝒱(𝑡)].                    (5.9) 

Hence, from equation (5.9) we get 

𝒵(𝑡)𝒵′′(𝑡) − (
𝑎

4
+ 1)𝒵′(𝑡)2 ≥ 𝒵(𝑡)[𝒵′′(𝑡) − (𝑎 + 4) 

                                                            × {‖𝑢𝑡(𝑡)‖𝐿𝑔2
2 + 𝛿∫ ‖𝑢𝑡(𝑠)‖𝐿𝑔2

2 ⅆ𝑠
𝑡

0

+ 𝑟}].       (5.10) 
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Since 𝒵(𝑡) > 0, we have to show the positiveness of the term inside the brackets. For 

this we define  

                 ℋ(𝑡) ≔ 𝒵′′(𝑡) − (𝑎 + 4) × {‖𝑢𝑡(𝑡)‖𝐿𝑔2
2 + 𝛿∫ ‖𝑢𝑡(𝑠)‖𝐿𝑔2

2 ⅆ𝑠
𝑡

0

+ 𝑟}.   (5.11) 

From relations (4.10) and (5.7), we observe that 

ℋ(𝑡) = 2 {−‖∇𝑢(𝑡)‖4 + ‖𝑢(𝑡)‖𝐿𝑔𝑎+2
𝑎+2 + ‖𝑢𝑡(𝑡)‖𝐿𝑔2

2 + 𝑟} 

               −(𝑎 + 4) × {‖𝑢𝑡(𝑡)‖𝐿𝑔2
2 + 𝛿∫ ‖𝑢𝑡(𝑠)‖𝐿𝑔2

2 ⅆ𝑠
𝑡

0

+ 𝑟}  

       ≥ −(𝑎 + 2) × {‖𝑢𝑡(𝑡)‖𝐿𝑔2
2 + 𝐸(0) − 𝐸(𝑡) +

2

𝑎 + 2
‖𝑢(𝑡)‖𝐿𝑔𝑎+2

𝑎+2 + 𝑟} − 2‖∇𝑢(𝑡)‖4 

       = −(𝑎 + 2){𝐸(0) + 𝑟} +
𝑎 − 2

2
‖∇𝑢(𝑡)‖4,                                                           (5.12) 

where we have used the relation,  

𝐸(𝑡) = ‖𝑢𝑡(𝑡)‖𝐿𝑔2
2 +

1

2
‖𝑢(𝑡)‖𝒟1,2

4 −
2

𝑎 + 2
‖𝑢(𝑡)‖𝐿𝑔𝑎+2

𝑎+2  

in the last equality (see Lemma 4.4 and relation (4.2)). 

Fixing 𝑟 = −𝐸(0) > 0, inequality (5.12) becomes 

                                             ℋ(𝑡) ≥
𝑎 − 2

2
‖∇𝑢(𝑡)‖4 ≔ 𝒬(𝑡).                                      (5.13) 

Then, from relations (5.10) and (5.13), we derive 

                                𝒵(𝑡)𝒵′′(𝑡) − (
𝑎

4
+ 1)𝒵′(𝑡)2 ≥ 𝒵(𝑡) 𝒬(𝑡) ≥ 0,                        (5.14) 

which implies the concavity character of the functional 𝒵(𝑡), i.e.,  

                  (𝒵(𝑡)−
𝑎
4)
′′

≔ −
𝑎

4
𝒵(𝑡)−

𝑎
4
−2 {𝒵(𝑡)𝒵′′(𝑡) − (

𝑎

4
+ 1)𝒵′(𝑡)2} ≤ 0.      (5.15) 

Having set the framework of the concavity argument we are able to state and prove 

the blow-up result. 

Theorem 5.2. Suppose that 𝑎 ≥ 2, 𝑁 ≥ 3 and the initial energy 𝐸(𝑢0, 𝑢1) is negative. 

Then there exists a time 𝑇, where 

0 < 𝑇 ≤ 𝑎−2(−𝐸(𝑢0, 𝑢1))
−1
[{(2𝛿‖𝑢0‖𝐿𝑔2

2 − 𝑎(𝑢0, 𝑢1)𝐿𝑔2 )
2 

             + 𝑎2(−𝐸(𝑢0, 𝑢1)) ‖𝑢0‖𝐿𝑔2
2 }1/2 + 2𝛿‖𝑢0‖𝐿𝑔2

2 − 𝑎(𝑢0, 𝑢1)𝐿𝑔2 ],                       (5.16) 
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such that the (unique) solution of the problem (1.1), (1.2) blows-up at time 𝑇, i.e.,  

                                                   lim
𝑡→𝑇−

‖𝑢(𝑡)‖𝐿𝑔2
2 = ∞.                                                   (5.17) 

Proof. We choose 𝑇0 such that 

                                                                     
4𝒵(0)

𝑎𝒵′(0)
≤ 𝑇0.                                                   (5.18) 

We observe that 𝒵(0) = (1 + 𝛿𝑇0)‖𝑢0‖𝐿𝑔2
2 + 𝑟𝜏2 > 0 and from (5.3), (5.4) we have 

that 𝒵′(0) = 2 {(𝑢0, 𝑢1)𝐿𝑔2 + 𝑟𝜏} > 0, for sufficiently large 𝜏. Thus, for all 𝑡 for 

which 𝑢(𝑡) exists, 𝒵−𝑎 4⁄ (𝑡) ≤ 𝒵−𝑎 4⁄ (0) − (𝑎 4)⁄ 𝑡𝒵′(0)𝒵−𝑎 4⁄ −1(0), since the 

graph of a concave function must lie below any tangent line of it. Hence  

                                                 𝒵(𝑡) ≥ {
4𝒵𝑎 4⁄ +1(0)

4𝒵(0) − 𝑎𝒵′(0)𝑡
}

4 𝑎⁄

,                                   (5.19) 

and therefore as 𝑡 → 𝑇(≤ 4𝒵(0) 𝑎𝒵′(0)⁄ ) from below (if 𝒵′(0) > 0), we note that 

𝒵(𝑡) → +∞. This is the crux of the concavity argument (see pp. 6 in [3]). 

Consequently, there exists some 𝑇 ∈ (0, 𝑇0], such that 

lim
𝑡→𝑇−

{‖𝑢(𝑡)‖𝐿𝑔2
2 + 𝛿∫ ‖𝑢(𝑠)‖𝐿𝑔2

2 ⅆ𝑠
𝑡

0

} = ∞,   𝑖. 𝑒.  lim
𝑡→𝑇−

‖𝑢(𝑡)‖𝐿𝑔2
2 = ∞, 

which proves relation (5.17). 

Finally, to determine the upper bound for the blow-up time we use the relations (5.3), 

(5.4),  (for 𝑡 = 0) and the inequality (5.18). From this we obtain (setting 𝑟 = −𝐸(0)) 

4 [(1 + 𝛿𝑇0)‖𝑢0‖𝐿𝑔2
2 + (−𝐸(0))𝜏2]

2𝑎 [(𝑢0, 𝑢1)𝐿𝑔2 + (−𝐸(0))𝜏]
≤ 𝑇0, 

or 

                        𝑇(𝜏) ≡
2 [‖𝑢0‖𝐿𝑔2

2 + (−𝐸(0))𝜏2]

𝑎 [(𝑢0, 𝑢1)𝐿𝑔2 + (−𝐸(0))𝜏] − 2𝛿‖𝑢0‖𝐿𝑔2
2
≤ 𝑇0.                     (5.20) 

The proper value 𝜏0 of 𝜏 for the blow-up, corresponds to the minimum value of 𝑇(𝜏). 

Since 

𝑇′(𝜏) ≔ {
2 [‖𝑢0‖𝐿𝑔2

2 + (−𝐸(0))𝜏2]

𝑎 [(𝑢0, 𝑢1)𝐿𝑔2 + (−𝐸(0))𝜏] − 2𝛿‖𝑢0‖𝐿𝑔2
2
}

′

≝
ℳ′(𝜏)𝒩(𝜏) −ℳ(𝜏)𝒩′(𝜏)

𝒩(𝜏)2
, 
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where  

ℳ(𝜏) ≔ 2 [‖𝑢0‖𝐿𝑔2
2 + (−𝐸(0))𝜏2] ,

                          𝒩(𝜏) ≔ 𝑎 [(𝑢0, 𝑢1)𝐿𝑔2 + (−𝐸(0))𝜏] − 2𝛿‖𝑢0‖𝐿𝑔2
2 ,

 

we have that  

 𝑇′(𝜏) =
4𝐸(0)𝜏 [2𝛿‖𝑢0‖𝐿𝑔2

2 − 𝑎(𝑢0, 𝑢1)𝐿𝑔2 ] + 2𝑎𝐸(0)‖𝑢0‖𝐿𝑔2
2 + 2𝑎𝐸2(0)𝜏2

{𝑎 [(𝑢0, 𝑢1)𝐿𝑔2 + (−𝐸(0))𝜏] − 2𝛿‖𝑢0‖𝐿𝑔2
2 }

2 .   (5.21) 

Setting 𝑇′(𝜏) = 0, we derive that 𝑇(𝜏) takes the minimum value on the interval 

(0,∞) at the value 𝜏 = 𝜏0, where 

        𝜏0 ≡ 𝑎
−2(−𝐸(0))−1 [{(2𝛿‖𝑢0‖𝐿𝑔2

2 − 𝑎(𝑢0, 𝑢1)𝐿𝑔2 )
2

 

                                   + 𝑎2(−𝐸(0)) ‖𝑢0‖𝐿𝑔2
2 }

1/2

+ 2𝛿‖𝑢0‖𝐿𝑔2
2 − 𝑎(𝑢0, 𝑢1)𝐿𝑔2 ].    Q.E.D. 

Remark 5.3. In the case where 𝑎 = 2, we have the following observations: 

(i) ℋ(𝑡) ≥ −(𝑎 + 2){𝐸(0) + 𝑟} + (𝑎 − 2) ‖∇𝑢(𝑡)‖4 2⁄  

           = −{𝐸(0) + 𝑟} −
2 − 𝑎

2(𝑎 + 2)
‖∇𝑢(𝑡)‖4 

           ≥ −{𝐸(0) + 𝑟} −
2 − 𝑎

(𝑎 + 2)
𝐸(0) 

           = −{
4𝐸(0)

𝑎 + 2
+ 𝑟} =

(𝑎=2)
−{𝐸(0) + 𝑟}, 

where we have used (3.27) in the third line. 

Setting 

𝑟 ≔
1

2
‖𝑢𝑡(𝑡)‖𝐿𝑔2

2 + 𝛿∫ ‖𝑢𝑡(𝑠)‖𝐿𝑔2
2 ⅆ𝑠 > 0

𝑡

0

, 

and using inequality (4.19), we observe that ℋ(𝑡) > 0. 

(ii) The concavity character (5.15) takes the following form 

 

          (𝒵(𝑡)−1 2⁄ )
′′
≔ −1 2⁄ 𝒵(𝑡)−5 2⁄ {𝒵(𝑡)𝒵′′(𝑡) − 3 2⁄ 𝒵′(𝑡)2} ≤ 0, 

and by (5.18) for  

{
           𝒵(0) = ‖𝑢0‖𝐿𝑔2

2 + 𝛿𝛵0‖𝑢0‖𝐿𝑔2
2 + 1 2⁄ ‖𝑢1‖𝐿𝑔2

2 𝜏2

𝒵′(0) = 2{(𝑢0, 𝑢1)𝐿𝑔2 + 1 2⁄ ‖𝑢𝑡(𝑡)‖𝐿𝑔2
2 𝜏},
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inequality (5.20) becomes 

𝑇(𝜏) ≡
2‖𝑢0‖𝐿𝑔2

2 + ‖𝑢1‖𝐿𝑔2
2 𝜏2

2 [(𝑢0, 𝑢1)𝐿𝑔2 − 𝛿‖𝑢0‖𝐿𝑔2
2 ] + ‖𝑢1‖𝐿𝑔2

2 𝜏
≤ 𝑇0. 

From this we derive that 

𝑇′(𝜏) =
‖𝑢1‖𝐿𝑔2

4 𝜏2 + 4(𝑢0, 𝑢1)𝐿𝑔2‖𝑢1‖𝐿𝑔2
2 𝜏 − 2‖𝑢0‖𝐿𝑔2

2 ‖𝑢1‖𝐿𝑔2
2 [1 + 2𝛿𝜏]

{2 [(𝑢0, 𝑢1)𝐿𝑔2 − 𝛿‖𝑢0‖𝐿𝑔2
2 ] + ‖𝑢1‖𝐿𝑔2

2 𝜏}
2 , 

and that 𝑇(𝜏) takes the minimum value on the interval (0,∞) at the value 𝜏 = 𝜏0
′ , 

where 

𝜏0
′ ≔ 𝑎−1 {2 [𝛿‖𝑢0‖𝐿𝑔2

2 − (𝑢0, 𝑢1)𝐿𝑔2 ] + √2

× [(𝛿‖𝑢0‖𝐿𝑔2
2 − (𝑢0, 𝑢1)𝐿𝑔2 )

2

+ 𝛼 2⁄ ‖𝑢0‖𝐿𝑔2
2 ]

1 2⁄

}. 

From Theorem 5.2 and Remark 5.3 we conclude that as 𝑡 → 𝑇− the solution 𝑢 ≔

𝑢(𝑥, 𝑡) of the problem (1.1)-(1.2), blows-up, i.e., the natural system described by this 

mathematical model goes through a transitional change36. For instance, in the case 

where the solution represents the transverse displacement of a string, the blow-up 

corresponds to the breaking of the string. 

 

 

 

 

 

 

 

 

 

 

36. See “Contemporary Issues in Systems Science and Engineering” by MengChu Zhou, Han-

Xiong Li, Margot Weijnen, Wiley-IEEE Press, April 2015, ISBN: 978-1-118-27186-5; pp. 

82. 
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