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ABSTRACT 

 The use of supervised Machine Learning algorithms is widespread in the science of fires. 

The objective of this postgraduate thesis was to conduct three experiments utilizing only 

weather variables for the region of the Attica basin. More specifically, the prediction of the 

probability of fire occurrence (binary classification) for 12, 4 and 2 weather variables 

respectively, was implemented as first experiment, the prediction of the fire scale (multi-class 

classification: small fire, medium fire, large fire, wildfire) for 12 weather variables as second 

experiment and the prediction of the size of the burned area of forest fires for 12 and 4 

weather variables as third experiment (regression task). Initially, a new dataset named 

“wildfire” was synthesized that included the prevailing weather conditions during the forest 

fires occurrences   in the Attica basin. Based on this, an attempt was made to conduct the 

three experiments with the resulting predictions proving to be particularly impressive. The 

performance of the formed wildfire dataset was compared with the known prior art 

Montesinho dataset in order to evaluate which of the two functioned best in the application 

of supervised Machine Learning algorithms. 

 The comparative results showed that for all 12 weather variables extracted by the wildfire 

dataset, a tuned Random Forest model (70%) outperformed other classification models 

regarding prediction accuracy of fire occurrence. In alternative embodiments for the best 4 

and 2 selected weather features correspondingly the Extreme Gradient Boosting (XGBoost) 

prediction model achieved the best accuracy (67.4%) in terms of fire occurrence prediction 

and the Neural Networks performed marginally better (63.6%) than the Random Forest 

(63.3%). As for the problem of multi-class classification of fire scale prediction (small fire, 

medium fire, large fire, wildfire), it demonstrated that the model of the K- nearest neighbors 

implemented better (50%) than the other prediction models.  The findings for forecasting of 

size of burned area of forest fires turned out that by using all the weather variables the K-

nearest neighbors (r² score value 70%) outperformed other regression models while for 4 

chosen weather features poor outcomes were provided by regression models with only the 

Linear Regression algorithm to carry out better than others (r² score value 2%). 

 Finally, a comparison was made with the known prior art Montesinho dataset for 4 and 2 

selected weather variables for the first experiment, as well as for 4 weather variables for the 

third experiment. The results showed that the newly created wildfire dataset functioned 

much better when applying the supervised Machine Learning algorithms. 

 

Key words: machine learning, wildfire, random forest, support vector machine, logistic 

regression, linear regression, neural network, decision trees, extreme gradient boosting, k -

nearest neighbors, fire occurrence, fire scale, burned area. 
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CHAPTER 1 -- Introduction 
 

1.1 Historical data of fires 
Forest fires are today the most well-known common problem faced by our forests and 

the natural environment destroying important ecosystems and areas of social importance every 

year. Fighting forest fires is a specialized issue that requires special knowledge and planning. The 

main purpose of this study is to further contribute to the investigation of this important issue. 

The problem in our country is acute, with occasional extreme disasters and climatic as well as 

meteorological conditions being a determining factor for both the onset and the evolution of a 

forest fire. The collection and analysis of fire data becomes imperative in order to have 

knowledge which can be integrated into the design of fire prevention and suppression but also 

the restoration of burned areas. All the catastrophes that have been caused by fires in recent 

years make us painfully realize that the Mediterranean area is intertwined with fires. In this scope 

of mind, the specific study was realized and in the hope of contributing, at least in part, to 

alleviating the intense problem of fires. 

By looking at the records of officially recorded fires some very useful information can be 

retrieved regarding the months, days, hours of fire occurrence and prevailing weather conditions. 

For instance, the total losses of agricultural and forest areas from fires in the Prefecture of Attica 

amount to 761,428 acres for the period 1983 -2008  [1] with the most destructive fire being 

recorded on 11/8/1985 with a total of 78,067 burning acres. In particular, the fire broke out in a 

forest with fully grassy soil and dense tree vegetation in an area at an elevation of 580 m, with 

strong soil slopes (60-80%). The cause was a malicious arson, but the perpetrator was not 

identified. The intervention time of the fire brigade was 30 minutes, and it took 4 days and 8 

hours to extinguish it. The fire burned 78,067 acres of forest and agricultural land (49,800 acres 

of forest and 28,267 acres) and a house. On the day of the event the relative humidity was 31% 

and the temperature was 33 ° C with strong northly winds of 4.1-7.0 BF. The fire developed into 

a mixed form and was extinguished only by ground means. In the following map is being 

illustrated the average annual number of fires in the Prefectures of Greece (period 1983-2008). 

Additionally, from the distribution of forest fires based on the month of their event, most 

appeared from July to September. Within this quarter 62% was recorded of the country's fires, 

which caused the 85% of its burned areas. The average monthly intensity of fires was also 

maximized during this period, ranging from 299 in September to 639 in July. August was the most 

fire prone month of the year, as it accounted for 24% of the incidents and 36% of the burned 

areas of the country. There was also a clear differentiation of the percentages of burned areas   

caused by fires, with start day on Sunday but also on Saturday. Specifically, Sunday fires were 

responsible for 20% of the burned areas of the country and Saturday for 17%, while all on the 

other days the corresponding percentages ranged from 12% to 14%. Thus, fires were caused on 

Saturday but mainly on Sunday were characterized by great severity (400 acres and 457 acres 

burned per incident), versus of the remaining days (values less than 343 acres of burnt area per 
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incident). In addition to the time of the event, it was observed that 51% of the country's forest 

fires occurred between 12:00 and 16:00 with a significant spate of fire occurrences at 14:00 (12% 

of the total), smaller numbers in the morning and afternoon, and few at night. 

 

 

Figure 1 : Map average annual number of fires in the Prefectures of Greece (time period 1983-2008).  

 

 Analyzing the causes of forest fires for the period 1983-2008, 47% of the burned areas 

came from incidents of unknown causes. With the malicious arson following and being 

responsible for 18% of the burned areas. Although fires by arsonists and psychopaths were 

recorded as quite rare and accounted for about 1% of the burned areas, they were nevertheless 

quite severe with an average intensity of 2110 acres of burned area per incident. Less 

catastrophic were the lightning fires with an average of intensity 876 acres of burned area per 

incident. 

As for the magnitude of the damage caused to the country's forest areas, the losses in 

human lives but also in animals should not be ignored. The deadly fire of July 23 2018, in Mati 

Average annual 

number of fires 
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Attica left behind 102 dead, being the second largest tragedy in number of victims of natural 

disaster related to the weather in our country, after the heat of July 1987. The prevailing 

meteorological conditions in combination with the topography of the area, made the fire 

extreme and uncontrollable. On the fateful day, the temperature on the east coast of Attica 

reached 39 degrees, the humidity dropped to 19% before the fire broke out, while the gusts of 

wind exceeded 95 kilometers per hour. In essence, the Mati fire broke out under extreme fire-

meteorological conditions and exhibited extreme fire behavior, rendering ineffective the effort 

made to limit and control it. 

In recent years, catastrophic fires in Greece continue unabated, with an average of 21,207 

hectares of burned forest areas from 2008 to 2020 and with 107,117 hectares for 2021 exceeding 

the average burned forest areas of the previous 13 years. The following chart shows the total 

burned area by fires in Mediterranean countries of Southern Europe such as Turkey, Greece, 

Spain, and Portugal for the period 2008 - 2021. 

 

Figure 2: Total burned area in Southern European countries, (time period 2008-2021). 
https://www.statista.com/chart/25504/hectares-burned-in-wildfires-in-europe/ 

 

1.2 The climate of Greece 
Greece located in the eastern of Mediterranean basin, belongs to this climatic type, the 

general characteristics of which is the presence mild and rainy winters, the relatively warm and 

dry summers and the almost sunshine all year. In the summer months there are few to no rainfall 

and the dry season can often start as early as April. For the study period 1983-2008 [1], some 

substantial conclusions were drawn regarding the weather variables (relative humidity, 

temperature, wind, rainfall) both for the fire occurrences and their intensity. 

Relative humidity is a weather factor quite decisive in the occurrence or non-occurrence of 

fires. In conditions of high relative humidity, the atmosphere becomes wetter with the 

https://www.statista.com/chart/25504/hectares-burned-in-wildfires-in-europe/
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consequence that the burnt areas are reduced. When humid conditions prevailed (relative 

humidity> 80%), a few fires occurred (5.3% of the total) and low intensity (average value 99 acres 

of burned area per incident), with the result that the total damage corresponded to only 1.5% of 

the burned area of country, for the period 1983-2008. On the contrary in dryer atmospheric 

conditions (relative humidity < 40%) fires had increased severity (482 acres burned per incident) 

for the same period.  

Accordingly, the temperature affects the severity of the fires. The most fires (32.1%) occurred 

at air temperatures from 25 ° C to 30 ° C, with an average intensity of 321 acres of burnt area per 

incident for the period 1983-2008. At daily temperatures 30-35 ° C the incidents were less (21.8% 

of the total), but they caused the most disasters (34.3% of all burns areas). However, fires were 

more severe in extremely hot conditions (> 35 ° C), with average intensity 939 acres of burned 

area per incident.  

There is also a clear correlation between the wind and the severity of forest fires. More 

specifically, the severity of the fires appears an increasing trend proportionally with the intensity 

of the wind. The frequency of forest fires in Greece is maximized under moderate wind conditions 

(1,1-4,0 BF). However, more rarely though, the most catastrophic incidents were associated with 

stormy winds (> 9.1 BF) and had an average intensity of 2,326 acres area per incident. The most 

catastrophic fires of the period 1983-2008 were recorded with northerly winds and had an 

average intensity of 416 acres of burned area per incident. Whereas in conditions of apnea and 

prevailing east winds, incidents of fires were scarcer.  

Another influential factor in the occurrence of fires is the daily rainfall. Annual rainfall ranges 

from 381 to 1630 mm and is more at higher altitudes in western Greece where these specific 

areas have more than 100 rainy days per year. The annual rainfall can exceed 2000 mm. On the 

contrary, the southeastern part of Greece, has frequent annual rainfall less than 400 mm, which 

is among the lowest in Europe. As a result, this territory usually faces serious drought problems 

and fire risk [2]. 

 

1.3 The subject -matter of the study 
Forest disasters always cause great human losses. Therefore, the purpose of this work was to 

develop supervised Machine Learning algorithms for predicting the probability of fire occurrence, 

the fire scale and the size of the burned forest areas respectively based on daily weather 

variables. The present study includes the synthesis of a dataset for conducting the above 

predictions, consisting of the daily prevailing weather variables during the fire occurrences for 

the period 2010-2019 and for the most fire prone months May to August in Attica basin. 

The aims of this study were to compare the results obtained from the applied supervised 

Machine Learning models in terms of 1) identifying the most influential weather variables caused 

fire occurrence, the size of burned areas in the study area 2) modelling the probability of fire 

occurrence (experiment one), fire scale (experiment two) and size of burned area (experiment 
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three) correspondingly. More particularly, from the 12 total weather variables, the 4 best 

variables were chosen in the first phase and then the 2 best variables to predict the probability 

of fire occurrence and the size of the burned forest areas. Then a comparison and selection of 

the best Classifier / Regressor was performed to determine which provided the best results. 

Moreover, a comparison with known Montesinho natural park dataset was conducted for 4 and 

2 best weather variables respectively in order to draw conclusions which dataset functioned 

optimally. 

Despite the growing needs and interests in fire prevention, there is still much work to be done 

on this particular problem in the field of Machine Learning. The main contribution of this study 

is the use of state-of-the-art supervised Machine Learning algorithms for the realization of the 

before-mentioned predictions using only weather variables. The results proved to be very 

encouraging as they offered an adequate solution to the problem of fires that has plagued Greece 

in recent years. 

 

1.4 Study structure 

Chapter 2 comprises an exhaustive literature review by defining other works that have 

been done on the same subject matter. Additionally, it was analyzed the methodology of 

retrieving the relevant prior art documents. Chapter 3 presents the dataset used to conduct the 

predictions, as well as the known Montesinho natural park dataset where the comparisons were 

made. Chapter 4 reveals the models and the supervised Machine Learning algorithms utilized for 

realizing the mentioned predictions, while the overall experimental results were summarized. 

Finally, Chapter 5 addresses the conclusions of the work. Possible directions for expansion and 

optimization are also discussed, as well as future survey. 

 

 

 `   
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CHAPTER 2 -- Relevant literature 
 

2.1 Literature search 

 A literature search was performed in ResearchGate and Google Scholars databases by 

using a combination of words such as "wildfire", "forest fires", "conflagration", "fire weather", 

“fire occurrence”, “fire prediction/forecast”, “deep learning", "Machine learning", "Artificial 

Intelligence" for retrieving relevant prior art documents. An extra inquiry was carried out in a 

cluster of patent databases (European Patent Office QUEry, Derwent Word Patent Index, Non- 

Patent Literature) to repossess state of the art patents relevant to the fire occurrence prediction. 

A mix of keywords and technical classification terms was employed for regaining the closest prior 

art patent documents. An exemplary list of search statements in a cluster of databases (EWN) is 

being shown as follows. 

The classification term is a code system that group the inventions to the technical field, 

which means that similar inventions are grouped in the same classification. This results in easy 

search and retrieval of patent documents. Regarding the topic of the study, it is demonstrated 

the fire occurrence and burned area prediction documents are classified in the following 

technical fields in Cooperative Patent Classification and Derwent Word Patent Index. 

$EWN   SS 
Status  

 Results   Query  

1     5.360   AND [WILD,]FIRE?, (OR PREDICT+,FORECAST+)  

2     107   AND 1,G06N20/00/LOW/C/IC  

3     5   AND 2,(OR CLIMATE,WEATHER)  

4     5.372   AND (OR [WILD,]FIRE?,CONFLAGRATION,A62C3/0271/C,G08B17/005/C),(OR PREDICT+,FORECAST+)  

5     354   AND 4,(OR G06N20/00/LOW/C/IC,G06N3/08/C/IC,G06N3/02/C/IC,G06N3/0454/C,G06N5/003/C)  

6     369   AND 4,(OR G06N20/00/LOW/C/IC,G06N3/08/C/IC,G06N3/02/C/IC,G06N3/0454/C,G06N5/003/C,T01-
J16C2/MC)  

7     19   AND 6,(OR CLIMATE,WEATHER,S03-D05/MC,G01W1/10/C/IC)  

8     7   AND 7,(OR HISTORIC+,G08B31/00/C/IC)  

Table 1 : A list of search statements for retrieving relevant prior art documents. 

 

G06N20/00 

Machine learning  

     

  G06N20/10  • using kernel methods, e.g. support vector machines [SVM]  

  G06N20/20  • Ensemble learning 

 

G06N3/00 
Computing arrangements based on biological models  

       

  G06N3/02  • using neural network models  

https://worldwide.espacenet.com/classification?locale=en_EP#!/CPC=G06N20/00
javascript:void(0)
https://worldwide.espacenet.com/classification?locale=en_EP#!/CPC=G06N20/10
javascript:void(0)
https://worldwide.espacenet.com/classification?locale=en_EP#!/CPC=G06N20/20
https://worldwide.espacenet.com/classification?locale=en_EP#!/CPC=G06N3/00
javascript:void(0)
https://worldwide.espacenet.com/classification?locale=en_EP#!/CPC=G06N3/02
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  G06N3/08  • • Learning methods 

 

G06N3/04  • • Architectures, e.g. interconnection topology  

G06N3/0454  • • • using a combination of multiple neural nets 

 

A62C3/00 

Fire prevention, containment or extinguishing specially adapted for particular objects or places 

(in oil wells E21B29/08, A62C35/00; in mines or tunnels E21F5/00 ; for nuclear reactors 

G21C9/04)  

      

  A62C3/02  • for area conflagrations, e.g. forest fires, subterranean fires  

  A62C3/0271  • • 
Detection of area conflagration fires (fire alarms for forest fires 

G08B17/005) 

 

G08B17/00 
Fire alarms; Alarms responsive to explosion  

     

  G08B17/005  • 
for forest fires, e.g. detecting fires spread over a large or outdoors 

area (fire fighting forest fires A62C3/02) 

 

G08B31/00 
Predictive alarm systems characterised by extrapolation or other computation using updated 

historic data 

 

T01-J     Data processing systems  

T01-J16    •   Artificial intelligence (AI)  

T01-J16C    •  •   Knowledge processing  

T01-J16C2    •  •  •  Learning  

A total of 23 documents were recovered pertinent about predicting the possibility of fire 

occurrence, the fire scale, and the size of the burned forest areas. 

 

2.2 Literature review 

A detailed scoping review of 300 papers related to the application of Machine Learning 

algorithms in the science and management of forest wildfires was implemented by Piyush & al 

[3]. Their attempt based on the identified challenges during wildfire management with the 

ultimate goal of improving knowledge of Machine Learning models in the specific field. It is widely 

accepted that both the quality and the quantity of the datasets greatly affect the performance of 

the Machine Learning algorithms. Therefore, it could not be answered with certainty which was 

the most appropriate model of Machine Learning as it always depends on the impending problem 

javascript:void(0)
https://worldwide.espacenet.com/classification?locale=en_EP#!/CPC=G06N3/08
https://worldwide.espacenet.com/classification?locale=en_EP#!/CPC=G06N3/04
https://worldwide.espacenet.com/classification?locale=en_EP#!/CPC=G06N3/0454
https://worldwide.espacenet.com/classification?locale=en_EP#!/CPC=A62C3/00
https://worldwide.espacenet.com/classification?locale=en_EP#!/CPC=E21B29/08
https://worldwide.espacenet.com/classification?locale=en_EP#!/CPC=A62C35/00
https://worldwide.espacenet.com/classification?locale=en_EP#!/CPC=E21F5/00
https://worldwide.espacenet.com/classification?locale=en_EP#!/CPC=G21C9/04
javascript:void(0)
https://worldwide.espacenet.com/classification?locale=en_EP#!/CPC=A62C3/02
javascript:void(0)
https://worldwide.espacenet.com/classification?locale=en_EP#!/CPC=A62C3/0271
https://worldwide.espacenet.com/classification?locale=en_EP#!/CPC=G08B17/005
https://worldwide.espacenet.com/classification?locale=en_EP#!/CPC=G08B17/00
javascript:void(0)
https://worldwide.espacenet.com/classification?locale=en_EP#!/CPC=G08B17/005
https://worldwide.espacenet.com/classification?locale=en_EP#!/CPC=A62C3/02
https://worldwide.espacenet.com/classification?locale=en_EP#!/CPC=G08B31/00
sfpluscla://WPICLA/T01-J
sfpluscla://WPICLA/T01-J16
sfpluscla://WPICLA/T01-J16C
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of fire management but also mainly on the available datasets. The fire occurrence is due to a 

combination of factors such as climatic conditions, topography, fuel, ignition source, etc. 

Focusing our interest on wildfire occurrence and burned area predictions concerning prevailing 

weather conditions, it was proved through the research that the relative humidity, the 

accumulated precipitation, the high temperature, the prolonged period of drought, the 

topography and the meteorological, climatic, and lightning characteristics identified as quite 

important factors. A remarkable conclusion drawn from the scoping review is that despite the 

growing number of Machine Learning methods have been applied in various areas of fire science 

little effort has been devoted to predicting fire occurrence. While they ended up that machine 

learning algorithms are suitable in fire science and in general problem management only when 

there is sufficient and high-quality data. 

The study of (J. Xiong, J. Wu, Z. Chen) [4]  focalized on predicting wildfire size grounded 

on climatic data using Machine Learning algorithms. The analysis was conducted by processing a 

Kaggle dataset containing more than 1.8 million fires in the United States. 12 climatic 

characteristics (different wind speeds at different height, precipitation, temperature 

measurements, vegetation) and 2 geometric characteristics (longitude and latitude) of the 

location were retrieved for analysis with the aim of determining the weather conditions at that 

time of fire occurrence. Various Machine Learning methods were applied such as (Random 

Forest, Support Vector Machine (Linear), Decision Trees, K nearest neighbors) with the best 

prediction accuracy being of 32% and achieved with the use Gradient Boosting Trees (GBT) and 

Deep Neural Networks. The pretty poor accuracy results were attributed to the unpredictable 

human factor as the main cause of fires as well as the high degree of bias of the data regarding 

the fire severity and lack of geographical features. 

Sakr et al [5] tried to develop a mechanism for predicting the fire occurrence suitable for 

developing countries that lacked technical infrastructure using only two weather parameters, 

relative humidity and cumulative precipitation. More specifically, in an effort to reduce costs as 

well as to eliminate the need for weather forecasting mechanisms and to avoid errors due to 

inaccurate forecasting, the number of monitored weather features was reduced to two features. 

A dataset from the territory of Lebanon for the period 2000 - 2008 was utilized and for the season 

of June to October. Support Vector Machine and Artificial Neural Network were implemented for 

multiclass fire occurrence prediction with the latter performed marginally better. In case of 

binary classification (fire/no fire) SVM outperformed over the ANN. In a similar vein, the same 

group of authors [6] introduced a fire index, having no dependence of any weather prediction 

mechanism, corresponding to the potential number of fires that could be break out on a specific 

day. By applying Support Vector Machine (linear) a satisfactory prediction achieved as for the 

number of fires and their scale whereas for binary classification (fire/ no fire) the accuracy 

reached up to 96%. 

Arias et al [7] focusing their study interest on fire occurrence due to lightning. With a 

study area the central plateau of the Iberian Peninsula and data sources extracted from the 
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period 2000-2010 in the specific area for the months of May-September it was turned out that 

the type of vegetation played a major role in fire prediction. By implementing two Machine 

Learning algorithms (Logistic Regression, Random Forest) for common five variables (percentage 

of coniferous forests, percentage of mixed forests and agriculture crops, altitude, slope and mean 

peak current of negative flashes), Random Forest performed slightly better. What is more the 

most influential variables regarding the fire occurrence proved to be the percentage of 

coniferous forests and agricultural crops. Moreover, regarding the topographic variables, the 

slope of the ground seems to have an effect on the fire occurrence due to lightning, while it was 

demonstrated that as the altitude increased, the probability of fire decreased. Finally, the mean 

peak current of negative flashes and the average number of thunderstorms had a significant role 

in contrast to the polarity of lightning activity. 

Researching in the same technical field Blouin et al [8] attempted by combining 

geographic and temporal variables with weather observations to generate a series of 6-h and 24-

hours lightning forecast models for the Alberta province of Canada from April to October of 

period 1999-2011. In particular, focusing their study on the Boreal and Foothill zones, Balanced 

Random Forest models were constructed for two time frames (6h, 24h) by processing training 

data from seven randomly selected years (1999, 2000, 2002, 2004, 2006, 2007, 2009) using as 

predictors weather data (air temperature, winds, surface pressure, humidity, precipitable water) 

and geographical and temporal data (latitude, longitude, Julian day, time of day, elevation, 

convective available potential energy). Predictions were made with the best-fit Random Forest 

models utilizing validation data form the 6 remaining years (2001,2003,2005,2008,2010,2011).  

The Showalter Index constituted a crucial predictor for all applicable models. The daily (24h) 

lightning prediction model for the Foothills zone achieved the best overall performance 

associated with the five most important variables (Showalter Index, latitude, longitude, 

elevation, Julian day). 

Asley & al [9] evaluated the significance of fire dynamics in the tropical zone in Caribbean 

and more specifically in Puerto Rico. Climate data (minimum-maximum temperature, 

precipitation, wind speed), socio-economic data (unemployment rate), historical fire data for the 

period 2003-2011 were processed and used as inputs in Random Forest Machine Learning 

algorithm to predict both fire occurrence and the extent of the fire. Daily precipitation was the 

most important factor in predicting the occurrence and extent of fire. Also crucial were the 

minimum temperature and the historical fire data regarding the prediction of fire occurrence, 

while regarding the prediction of the extent of the fire, the maximum temperature and the wind 

speed contributed significantly. It was also shown that the selection of the unemployment rate 

did not contribute effectively to the prediction of fire occurrence in contrast to periods of 

extended drought (especially in winter season) where the probability of fire increased 

remarkably. 

Aldersley et al [10] used a range of ecological, climatic, socio-economic datasets with the 

aim of the investigating to what extent the relationship between burned areas and climate was 
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influenced by the human factor both globally and regionally.  As data source ten variables were 

utilized (burned area, tree cover, cropland and pasture cover, population density, Gross Domestic 

Product, road density, lightning, climatic data) with reference year in 2000 and with the research 

area to have been delineated to 14 sub-continental regions. Regression Trees and Random Forest 

were applied for processing multifaceted data. Regarding the global analysis, this model got 

climatic conditions very seriously. Especially the determination of the average monthly 

temperature in combination with the percentage of wet days was an important drive in the effect 

of the average burned area. In addition, the rate of cumulative precipitation and Gross Domestic 

Product had been shown to suppress fires. The latter was considered as the only measure of 

human influence. In terms of the regional analysis, it was confirmed that although climate 

variables played a significant role, temperature was not a significant factor. On the other hand, 

lightning and wet days had a special effect on the occurrence of fires. Summarizing the present 

work proved the application of the Random Forest model yielded high predictive power. 

Moreover, climatic factors were shown to be superior to human factors in the global analysis 

while in the regional analysis, the high variability in the interaction between environmental and 

anthropogenic variables was a deterrent to the development of effective predictive models. 

On the same wavelength, Guo et al [11] applied Logistic Regression and Random Forest 

Machine Learning algorithms for determining biophysical and human activity factors as main 

causes of anthropogenic fire occurrence in boreal forest in China. During processing of predictor 

variables included climate factors (mean temperature, daily precipitation, relative humidity), 

forest type, topographic features, human infrastructure (distance to settlement, distance to 

railway, distance to roadway) and socio-economic factors (unemployment rate, Gross domestic 

Product, population density) in the applied Logistic Regression and Random Forest models 

respectively it was demonstrated that Random Forest outperformed. In more detail, quantifying 

the predictive ability of the LR, RF models by utilizing the Receiver Operating Characteristic and 

Area Under Curve, it was revealed that the correct prediction rates 60.8% for LR and 70.8% for 

RF. In addition, in this study, the distance to the railway and the type of forest were identified as 

the most important factors for the anthropogenic fire occurrence for both models. The distance 

to settlement and road network were useful information for the RF model. Socio-economic 

factors, on the other hand, did not seem to have much of an impact on anthropogenic fire 

prediction models, thus confirming that such fires are more likely to occur near railways, roads 

and settlements depending on the type of vegetation at a time. 

Li-Ming et al [12] built a forest fire prediction modeling method in Japan territory based 

on artificial intelligence neural networks using population density and weather data (relative 

humidity, wind speed, daily hours of sunshine). Since most of the influencing factors had non-

linear relationships with the risk of forest fire, neural networks emerged as the ideal solution as 

they have the ability to manage non-linear problems. When first correlating the probability of 

forest fire with population density and subsequently the probability of forest fire and 

combinations of population density with weather parameters, it was shown that Back 
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Propagation Neural Networks better captured this non-linearity of the influencing factors and 

gave better results in comparison with polynomial regression. 

Preeti et al [13] preprocessed a Kaggle data set considering fire meteorological 

parameters for extracting variables such as temperature, relative humidity and wind speed. By 

applying regression Machine Learning techniques such as Random Forest (RMSE:0,07), Decision 

Trees, Support Vector Regression and Artificial neural Network they verified that high 

temperatures, mild humidity and strong wind speeds are the most essential parameters for 

predicting the occurrence of fire. 

Stojanova et al [14] employed an improved fire forecasting model for the country of 

Slovenia by processing data from the Geographic Information System, telescopic imagery data 

and weather data from the ALADIN forecasting model. More specifically, datasets were 

processed from the continental part, coastal and Kras region of the territory of Slovenia, applying 

Machine Learning algorithms to predict the fire occurrence. Modeling of the relationships 

between the threat of fire and the influencing factors (weather conditions, climate data, 

direction-wind speed) was considered important for the prediction of the possibility of fire 

occurrence. In the present work, a variety of classifiers were implemented, both single (KNN, 

Logistic Regression, SVM) and ensemble methods (Boosting, Bagging and Random Forest) in 

order to evaluate the most appropriate with the best fire prediction performance. The ensemble 

bagging Decision Trees appeared to outperform other models. 

Cortez and Morais [15] proposed a data mining approach using only meteorological data 

as detected in real time by local meteorological station sensors. A research area was a 

Montesinho natural park in the Northeast territory of Portugal so as to predict the size of the 

burned areas of forest fires. The data were collected from two databases, with the first one from 

the park surveillance area receiving information such as time, date, location, vegetation type and 

six spatial and temporal components of the Fire Weather Index (fine fuel moisture code, duff 

moisture code, drought code, initial spread index, build up index, fire weather index) while the 

second one from the Polytechnic Institute weather station collecting weather observations. For 

the formed regression dataset, Root Mean Squared Error and Mean Absolute Deviation utilized 

as global metrics to evaluate the overall performance of the models for four feature selections 

(combinations of spatial, temporal, Fire Weather Index elements and meteorological variables). 

Various Machine Learning (Decision Trees, Random Forest, Neural Network, Support Vector 

Machine) techniques were applied for regression tasks with Support Vector Machine proving to 

be the best at predicting small fires only for four weather variables (temperature, rain, relative 

humidity, wind speed). In a similar fashion Xie and Peng [16] explored the ensemble learning 

methods potential for accurate prediction of both burned area of forest fires and large-scale 

forest fires for the same study area and dataset. As for the prediction of the burned areas the 

Random Forest proved to have outperformed other regression models. Regarding the 

classification models for the prediction of large-scale fires, it was demonstrated that the Extreme 
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Gradient Boosting and more specifically the Gradient Boosting Regression Tree performed much 

better than any other model. 

Bisquert et al [17] studied for the region of Galicia in Spain the prediction of fire danger 

using MODIS images (Moderate resolution imaging spectroradiometer) to obtain remote sensing 

data such as land surface temperature (LST) and enhanced vegetation index (EVI). The input 

variables that were analyzed to assess the forest fire danger were: 16 day EVI composition, 16 

day EVI variations compositions, average and maximum LST compositions of different days and 

LST variations, difference between punctual values of EVI and LST, a period of year and fire 

history. Logistic regression was implemented to find the best combination of the above variables 

(8 day LST, fire history, period of year) for introducing them in an artificial intelligence network 

in order to predict the fire danger at three levels (low, medium, high danger). It was turned out 

the artificial intelligence network performed much better than logistic regression with accuracy 

76% and precision 66% respectively. 

Regarding Greek territory Vasilakos et al [18] presented a fire ignition forecasting system 

for the island of Lesvos in the northeastern Aegean sea based on meteorological data, vegetation, 

topographic data, human factor and remote sensing data. A large-scale fire ignition prediction 

system was developed using neural networks, taking as inputs the Fire Weather Index, Fire Risk 

Index and Fire Risk Index and giving as an output the Fire Ignition Index.  

Concerning the published patents, Tohidi et al [19] disclosed a fire monitoring system and 

method for estimating the state of fire (fire perimeter, fire intensity, flame height) when taking 

dynamic characteristics such as satellite imagery, weather variables (wind speed and direction, 

temperature, humidity, cloud cover) but also static characteristics such as land use, slope, 

elevation, soil moisture, vegetation, fuel type. The current fire situation could be assessed and 

modified in real time by receiving constant information while together with a model of predicting 

fire due to lightning, ember modeling and instability parameters, the rate of fire evolution was 

predicted. The combination of the fire-related inputs (physical model) together with the Machine 

Learning algorithms (Logistic Regression, Random Forest, Deep Neural Networks, Support Vector 

Machine) gave a satisfactory accuracy from 70% to 92% for the prediction of fire occurrence and 

its evolution. Minglang [20] used a neural network (LSTM) to predict forest fires in the mountains 

by constructing an automatic feature extraction and combining the collected meteorological data 

with spatial data. Dan [21] utilized deep learning (Convolutional Neural Network and Recurrent 

Neural network) for early warning of mountain fires grounded on meteorological and remote 

sensing data. White et al [22] disclosed a method of a gridded prediction of a wildfire occurrence 

and extent of fire in a geographical defined area and time period by processing weather, climate, 

historical and remote sensing data. Li Jinsong et al [23] revealed a forecasting method of a forest 

fire risk grade for a power transmission line crossing a mountain. A gradient boosting tree was 

applied by processing historical, meteorological, remote sensing data and vegetation types. Guo 
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Shuchang et al [24] deployed a lightning forecasting method suitable for forest fire prevention 

based on convolutional neural network. Watt et al [25] divulged a neural network architecture 

comprising either a plurality of Recurrent Neural Network elements and at least one Long Short-

Term Memory or a transformer element connected in series or a parallel. The purpose of this 

neural network was to model mainly the climate, weather data and location data. 
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CHAPTER 3 -- Study area and Datasets 
 

3.1 Attica basin 

 As a study area was defined the Attica basin with a latitude of 37.98, a longitude of 23.72 

. The extent of the capital region is 427 km2 and with an estimated population approximately to 

4 million. Geographically the Attica basin is bounded by four large mountains of Aigaleo, Parnitha, 

Hymettus, Penteli and the Saronic Gulf to the southwest. The Attica region has experienced the 

last two decades several wildfires resulting in having been burned down important parts of the 

forest national park of Parnitha, Penteli and Hymettus and causing great side-effects on the fauna 

and flora. What is more, the air quality of the capital has been affected significantly raising 

worries about living conditions. Administratively the Attica basin is divided in western, northern, 

and eastern Attica belonging to Attica prefecture the rest of Piraeus prefecture where they 

belong by administrative point of view Salamis, Aegina, Hydra, Poros, Spetses, Kythera and 

Antikythera, and the province Troizinias located in the Peloponnese. 

 

Figure 3: A map of Attica basin. 

Athens is the hottest city in mainland Europe with an average temperature of 19.8° C. Its 

climate is featured by prolonged hot, dry summers and mild winters with moderate rainfall. The 

months of July and August are characterized as the driest and most dangerous for fires. 

Furthermore, annual precipitation of Athens is lower than most other parts of Greece. The urban 
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area of Athens suffers from the phenomenon of urban heat island effect due to human activity.  

Some of the highest temperatures have also been recorded in the Attica basin with the highest 

ever recorded in Europe 48° C, on 10/7/1977 in the areas of Elefsina and Tatoi. The extreme 

climate data for the period 1955-2010 in Athens (Nea Filadelfeia meteorological station) is being 

depicted in the following table. 

 

Figure 4: Extreme recorded climate data in Attica basin (time period 1955-2010). 
https://en.wikipedia.org/wiki/Athens 

Given the purpose of the present study were taken the weather conditions of Attica basin 

into consideration for implementing predictions of the probability of fire occurrence (experiment 

one), fire scale (experiment two) and the size of the burned area (experiment three). In particular, 

the dynamic meteorological parameters that analyzed are: 

• mean, minimum, maximum temperature (° C) 

• mean, minimum, maximum relative humidity (%) 

• mean, minimum, maximum atmospheric pressure (hPa) 

• daily rainfall (mm) 

• mean wind speed (km/h) 

• wind gust (km/h) 

 

3.2 Wildfire dataset 

 For the realization of the present work, the daily weather variables that were retrieved 

from the National Observatory of Athens Institute of Environmental Research and Sustainable 

Development were pieced together with the officially recorded forest fire incidents from the 

files of the fire brigade in the region of the Attica basin. The collected data refer to the period 

2010-2019 and for the fire-prone months May to August. The specific dataset is named 

"wildfire dataset" created in csv form and has the configuration of the following table by 

enforcing it in the python platform. 

https://en.wikipedia.org/wiki/Athens
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Figure 5 : “Wildfire dataset” including daily weather variables of Attica basin with corresponding officially recorded fire 
incidents. 

In essence, a temporal alignment of the daily weather variables of the Attica basin with 

the officially recorded cases of forest fires took place. The wildfire dataset consists of 1400 

entries and 19 columns namely date, mean-min-max temperature, mean-min-max relative 

humidity, mean-min-max atmospheric pressure, daily rainfall, mean wind speed, wind 

direction, wind gust, prefecture, municipality, start time of fire incident, burned area in acres 

and declaration of fire occurrence. In case of fire occurrence, it was denoted by 1 otherwise 

0. In addition, some assumptions were taken during the composition of the mentioned 

wildfire dataset such as that in cases where we had a fire incident but negligible burned forest 

areas were considered as non-fire occurrence. Also, the data of the fires in the landfill were 

not included. Even for recorded incidents of fire at different times for the same area it was 

considered as the time of event the first reported time and as a burned area the total sum of 

incidents in acres. Finally, although administratively the islands of Aegina and Salamina 

belong to the Piraeus prefecture, however, for gathering more data on the fire occurrence, 

they were included as incidents that generally belong to the Attica prefecture. 

By performing data exploration in this specific dataset was easily seen that there was not 

a null value while the type of data was a mix of floats and integers number except for the 

date, wind direction, prefecture, and municipality columns respectively which were objects 

(figure 6). Substantial information was extracted from the display of correlation matrix (figure 

7), understanding the dependence among two weather variables and how they moved 

together. For instance, there was a positive correlation among mean-min-max temperature 

with mean wind speed and wind gust correspondingly. Similarly, the mean-min-max relative 

humidity had positive correlation with daily rainfall. The mean-min-max pressure appeared 

positive correlation with the mean wind speed and wind gust but negative correlation with 

the mean-min-max temperature and the daily rainfall. The latter means that when pressure 

increases the temperature or daily rainfall probably goes down. Of particular interest is the 

control of the variable of daily rainfall as in prolonged periods of drought there is a high risk 

of fires. Bearing in our mind the conclusions of [5],[6] that two weather variable such as the 

relative humidity and cumulative precipitation are enough for fire occurrence prediction, a 
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plot of minimum relative humidity and daily rainfall was formed (figure 8). A plurality of 

scatter plot graphs can be sought into {appendix code_1, code_6}. 

 

 

Figure 6: Wildfire dataset -data type 

Continuing a further data exploratory analysis distribution graphs (figure 9) provided useful 

information. The highest mean temperature seemed to have been recorded of 27-29° C for 340 

observations, the mean relative humidity of 42% for 310 observations, the mean atmospheric 

pressure of 1015 hPa for 390 observations and the mean wind speed 5 km/h for over 800 

observations. Quite interesting was the daily rainfall graph where the absence of rainfall was 

recorded for over 1300 observations, an ominous element and indicative factor for fire 

occurrence incidents, {extra information in appendix code_1, code_6, code_7}. 

As for the size of burned area in association with municipalities located in Attica prefecture a 

thought-provoking graph (figure 10) revealed that the Megara, Oropos and Penteli were 

considerably fire prone areas. 
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Figure 7 : Wildfire dataset -correlation matrix 

 

 

Figure 8: Fire occurrence incidents corresponding to daily rainfall and minimum relative humidity 
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Figure 9 : Wildfire distribution graphs  
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Figure 10: Size of burned area associated with the municipalities 

 

3.3 Montesinho Dataset 

 The Montesinho natural park dataset is introduced for comparison with wildfire dataset 

to find out which performs better based only on dynamic weather variables. Montesinho dataset 

[15] comprises 517 entries and 13 columns namely two geographic features (X,Y), temporal 

parameters such month and day, Fine Fuel Moisture Code which influences ignition and fire 

spread, Duff Moisture Code and Drought Code which affect the fire intensity, Initial Spread Index 

that correlates with fire velocity spread, four weather variables (temperature, relative humidity, 

wind, rain) and the burned area which denotes the total burned area in hectares. Its form when 

it was enforced in python platform is being shown in figure 11. The data type is a mix of objects 

integer and float numbers (figure 12). For reasons of comparison of similar things between the 

two under consideration datasets the comparison was limited to the 4 weather variables as well 

as 2 best selected weather variables. The correlation matrix (figure 13) shown that daily rainfall 
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had a positive correlation with temperature, relative humidity and wind, while temperature had 

a negative correlation with relative humidity and wind respectively. 

 

Figure 11: Montesinho dataset 

 

Figure 12 : Montesinho dataset -data type 

In accordance with the graphs (figure 14), it was pointed out that the temperature ranged 

from 17 to 21° C  for 130 observations, the relative humidity from 30 to 40% for 130 observations, 

the wind from 5 to 5.9 km / h for 120 observations while the daily rainfall was zero for 510 

observations. An exemplary plot between relative humidity and rain is being illustrated in figure 

15 summarizing that in times of drought more fires occurred. Any extra information can be 

retrieved by Montesinho notebook, {appendix code_5, code_10} 
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Figure 13 : Montesinho dataset -correlation matrix 

 

Figure 14 : Montesinho distribution graphs  
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Figure 15 : Fire occurrence incidents corresponding to daily rain and relative humidity in Montesinho dataset. 
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CHAPTER 4 -- Machine Learning and experimental results 
 

4.1 Definition 

 Machine Learning refers to the field of computer science, enabling them to learn 

automatically without specific programming and without human intervention by adapting their 

actions accordingly. Through exploratory data analysis and the use of computer algorithms they 

can learn and generate basic behavior patterns for different classes, train the data and generate 

predictions for them. The learning process begins with observations that are examples or 

empirical results so that patterns can be identified in the data and the best decisions can be made 

in the future based on the examples we have. Machine Learning and exploratory data analysis 

are concepts that complement each other since classification and regression are used in both 

before-mentioned concepts. So, Machine Learning on the one hand is linked to mathematical 

optimization techniques, and on the other hand does not lose the advantages that computers 

give [2]. Therefore, the creation of models or patterns from a dataset and a computer system, is 

called Machine Learning, with the most well-known techniques that have been developed and 

used depending on the nature of the problem to be classification and regression. 

 In the present work, supervised Machine Learning algorithms were applied to implement 

either classification or regression data prediction. Supervised Machine Learning algorithms 

construct functions that map given inputs to known desired outputs (training set) with the 

ultimate goal of generalizing this function to inputs with unknown output. A function is used to 

predict the value of a variable grounded on the values of a set of input variables. In general, the 

system is provided with a set of known examples, i.e. a set of situations into which the network 

may fall along with the results we want the network to give for these situations. As mentioned 

above in supervised Machine Learning methods, the learning algorithm takes as input the prior 

knowledge that exists about the problem and the training data, examines the hypothesis area, 

and returns the final hypothesis (model) as a result. It is therefore essential that prior knowledge 

and training data are effectively represented to enable the efficient use and production of new 

knowledge. 

 Having determined the dataset to be used (wildfire dataset) our purpose is through 

supervised Machine Learning to process the information contained in this dataset to acquire 

knowledge when interacting with it and the ability to improve the way is executed an action 

(hence the accuracy) through repetition. In other words, our goal is to create systems that can 

be trained from empirical past data (weather variables), in order to perform the work for which 

they are intended more effectively. 

System architecture is being depicted in figure 16 where after splitting the data into 

training and test data, a feature extraction was carried out for choosing only the 12 daily weather 

variables (4 or 2 depending on the case study). Then, suitable classifiers /regressors models were 

selected on the basis of the dataset while by taking the testing data an evaluation of each model 

was implemented. In our study both classifiers and regressors were trained on up to 70% of the 
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available data and 30% was reserved for testing the classifiers and regressors correspondingly. 

Utilizing appropriate metrics such as accuracy or root mean square error of data prediction for 

each model, a comparative study was conducted of the applied different supervised Machine 

Learning algorithms with the view to ending up to the best model. 

 

Figure 16 : Diagram of system architecture  

 

4.2 Classification – Regression algorithms  

In the current study a plurality of different classifiers was carried out for predicting the 

probability of fire occurrence and fire scale correspondingly and several regressors for predicting 

the size of burned area with respect firstly to the wildfire dataset and secondly to Montesinho 

dataset. The popular algorithms used to perform the classification and regression tasks are 

described in detail below. 
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Figure 17 : Diagram showing the applied supervised Machine Learning algorithms for the applications of binary classification of 
fire occurrence, multiclass classification of fire scale and regression in terms of the size of burned area.  

 

4.2.1 K -nearest neighbors 

The K-nearest neighbor classifier is considered to be the simplest classification method as 

it is non-parametric. It is based on the principle that cases that are in the immediate vicinity of 

others have similar properties, so for the classification of unclassified cases it suffices to check 

the nearest neighbors. Consequently, their class is defined by the nearest neighbor’s majority. In 

other words, the KNN algorithm uses ‘feature similarity’ to predict the values of any new data 

points. This means that the new point is assigned a value based on how closely it resembles the 

points in the training set. In the third experiment for predicting the size of burned area of forests 

fires (regression problem) the KNN was turned out to work best for 5 neighbors, {appendix 

code_8}. 

 

4.2.2 Logistic Regression – Linear regression 

 Logistic regression is a powerful supervised Machine Learning algorithm utilized for binary 

classification problems suitable for investigating the non-linear effect of a dependent categorical 

variable with respect to the action of many independent variables. The range of logistic 

regression is bounded between 0 and 1. The difference with the linear regression is that the latter 

is associated with a model predicting the numerical value of a continuous response variable and 
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it also requires a linear relationship among inputs and outputs variables. Independent variables 

are those that can take any value and are used to predict the dependent variable. Therefore, a 

logistic regression is used for predicting the class of an observation whereas the linear regression 

focuses mostly on how the standard value of a dependent response variable changes. For the 

needs of the work the independent variables were considered the 12 dynamic daily weather 

variables while the dependent target variables depending on the task each time were the 

probability of fire occurrence (binary classification) and the size of the burned area in terms of 

the regression. 

 

4.2.3 Support Vector Machines 

 Support Vector Machines is a popular supervised machine learning method, consisting of 

models and algorithms capable of analyzing any information and incorporating pattern 

recognition techniques for regression and classification problems. For example, in a binary 

classification problem, the SVM method seeks to create a maximum margin hyperplane that acts 

as a dividing boundary between the individual classes. The aim is for this hyperplane to be as far 

away as possible from the examples of the dividing classes. Furthermore, in linearly separable 

problems this hyperplane is defined by a finite number of instances of the training set called 

support vectors. The SVM classifier therefore tries to find a decision hyperplane that separates 

all the training examples in such a way that the examples belonging to the same category are on 

the same side of the hyperplane. Among all the possible hyperplanes, the one for which the 

distance from the nearest example is the maximum is sought. In addition, through kernel 

functions (polynomial, radial basis function, linear, sigmoid), SVMs can transform the initial case 

space so that non-linearly separable problems can be modified into linearly separable problems 

and finally solved with same methodology. 

 

4.2.4 Decision Trees 

 Decision Trees are a dynamic and popular tool suitable for classification and regression 

tasks. When constructing decision trees the different attributes are evaluated retrospectively and 

that attribute is used in each node that separates the data better. That is to say, in decision trees 

we seek to separate the training sample using the features that work best for the task. With the 

ultimate goal of accurately capturing the input-output relationships using the smallest possible 

tree that avoids overfitting. In decision trees data is initially introduced along with the best 

feature into the root node so as to be separated according to their metrics (Gini Index). Thus, 

successive intermediate nodes are created with greater homogeneity till to the final nodes of the 

tree, where the predictions of a category or a numerical value are made. 

 The following figure 18 illustrates for the first experiment carried out in the present work, 

binary classification prediction of fire probability occurrence, the overall growth of decision trees. 

Having defined as metrics Gini index and maximum depth of the tree equal to 3, at the root node 

the weather feature that best separated the training sample (979) was the mean relative 
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humidity (X[3]). This resulted in two nodes, one with Gini of 0.48 and the other with Gini of 0.406. 

In the sequel different best features were utilized for splitting the intermediate nodes till to final 

nodes of the tree. The features that gave the best results (lowest Gini Index) were maximum 

temperature (X[2]) and mean temperature (X[0]), {appendix code_1}. 

Figure 18 : Decision tree built for binary classification (experiment one – 12 weather variables) for the wildfire dataset. 

4.2.5 Random Forest 

 Another great Machine Learning algorithm that is widely used in classification and 

regression is random forests since they can be employed both in categorical as well as continuous 

variables. In practice, this algorithm is essentially a collection of decision trees that run in parallel 

where in case of classification the predicted class is the most common class in node (majority 

vote) while in an event of regression the predicted value on a node is the average. Some basic 

hyperparameters applied to this algorithm are the method of collecting samples from a dataset 

(bootstrap), the number of trees in the forest (n_estimator), the maximum number of features 

taken into account for splitting a node (max_features), the maximum depth expressing the 
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number of levels in each decision tree (max_depth), the minimum number of data points placed 

on a node before splitting (min_samples_split) as well as the minimum number of data points 

allowed in a leaf node (min_sample_leaf). 

 More detailed, in the case of the first experiment (figure 19) of the fire probability 

prediction (binary classification, fire / no fire) for 12 dynamic daily weather variables, after 

hyperparameter’s tuning by applying RandomizedSearchCV and GridSearchCV, a forest of 400 

trees was developed, where a random sample of training data was deployed for each tree 

according to the bootstrap sampling method. This technique made it possible to create more 

than one set of training data from a single dataset, resulting in many different trees and therefore 

many training datasets. At each node, features were randomly selected from all 12 possible 

weather variables (at least 4 features), then the best splitting was found in the selected features, 

the forest was developed at a maximum depth of 50 levels, in the sequel the average of trees for 

new data predictions was calculated, giving the total prediction output by majority voting 

(classification) of all individually trained trees. In the case of regression, the average response 

would have been the prediction output, {appendix, code_1}. 

  
Figure 19 : Random Forest built for binary classification (experiment one -12 weather variables) for the wildfire dataset/ 
(alternatively for regression). 

4.2.6 Extreme Gradient Boosting 
Extreme Gradient Boosting (XGBoost) is an implementation of gradient boosting algorithm, a 

common technique in ensemble learning. This algorithm learns a model faster than many other 
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machine learning models and functions well on categorical data and limited datasets. In Gradient 

boosting the trees grow in a sequential way and turns the weak learners into strong learners by 

adding weights, while reducing the weights of the strong learners. Thus, each tree learns and is 

strengthened by the previous tree that was developed. In boosting technique, the new created 

models predict the residuals or errors of prior models, correct them and then added them 

together to make the final prediction. It is an extremely flexible and agile tool that can work 

through most forms of regression and classification. Some essential hyperparameters of XGBoost 

are the number of trees (n_estimator), learning rate, gamma which is the minimum loss 

reduction required to make a further partition on a leaf node of the tree, column subsampling 

(colsample_bytree) which is the subsample ratio of columns when constructing each tree, the 

maximum depth of a tree (max_depth), minimum sum of instance weight (min_child_weight) 

needed in a child and the used method to sample the training instances (sub_sample).  

 For instance, in case of the first experiment and for the prediction of the possibility of fire 

occurrence (binary classification, fire/no fire) for the 4 best selected weather variables (minimum 

temperature, minimum relative humidity, daily rainfall, average wind speed) the successive 

configuration of trees is being shown in figure 20. After hyperparameter's tuning 600 trees grew 

with learning rate 0.02 and maximum depth of tree to 4. Setting subsampling to 0.6 which 

denotes the fraction of observations to be randomly samples for each tree with the view to 

preventing overfitting, defining the minimum sum of weights of all observations required in a 

child to 1, gamma equal to 1 and finally denoting the fraction of columns to be randomly samples 

for each tree equals to 0.6,{appendix code_4}. 

 

Figure 20 : Extreme Gradient Boosting built for binary classification (experiment one -4 best weather variables) for the wildfire 
dataset. 
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4.2.7 Artificial Neural Networks 

 The relationship among weather variables and depending each time on the experiments 

like binary classification (fire/no fire), fire scale and the size of burned area of forest fires is a 

nonlinear relationship. In case of the exact correlations between variables are not clear neural 

networks seem to be ideal for modeling complex relationships. A typical architecture of neural 

network is consisted of a plurality of connecting nodes separated into input, hidden and output 

layers. As more complex the problem is, more neurons and multiple layers need to use. The 

weather variables as inputs are inserted through input layers and distributed to each of the 

neurons in the next layer which is the hidden layer. The value from each input neuron is 

multiplied by initial random value of a weight. The resulting weighted sum is transformed via a 

transfer function and fed into the next layer. During training, the computed output is compared 

with the actual response of the inputs and the weights are modified so as to reduce the error 

function (gradient descent). The process is repeated many times till the error becomes minimized 

and tolerable. The designed topology of neural networks in the present study is a feed forward 

which adopts the back-propagation algorithm. 

 In particular, for the case of the first experiment of binary classification (fire / no fire) 

where a neural network architecture (figure 21) composed of three fully connected layers and 

ReLu as activation function acting on hidden layers was fed with two weather variables (minimum 

relative humidity, daily rainfall) as inputs through 128/12/8 connecting nodes. The activation 

function for output layer is Sigmoid, a very common function for classification. The default loss 

function binary_crossentropy was used taking the binary classification fire / no fire prediction 

into consideration while an Adam optimizer was utilized as a training optimizer for the suggested 

model to maximize its performance.   During the training procedure a validation dataset was 

applied including cases that were not used in training whereas the rate and speed of the training 

were controlled by setting the learning rate to 0.01 and batch size equal to 100. The training 

process stopped at 50 epochs when the validation loss stopped improving, an indication that the 

network had a good generalization and an overfitting to training dataset had been eliminated. 

{appendix code_2}. 
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Figure 21 : Backpropagation Neural Network structure built for binary classification (experiment one -2 best weather variables) 
for the wildfire dataset. 

 

4.3 Experimental results 

The structure of the experimental part of the present study was implemented as follows: 

➢ Experiment one: Prediction of fire occurrence probability (binary classification, fire/ no 

fire) for all weather variables - for the 4 best selected weather variables - for the 2 best 

selected weather variables, in association with the newly created wildfire dataset and 

comparison of the performances between the applied supervised Machine Learning 

algorithms. Comparison of the results with the known state of the art Montesinho dataset 

for 4 and 2 best weather variables respectively so that could be checked which dataset 

functioned optimally, {appendix: code_1, code_2, code_3, code_4, code_5}. 

➢ Experiment two: Prediction of the fire scale (multiclass classification, 

low/medium/large/wildfire) according to the wildfire dataset, {appendix code_6}. 

➢ Experiment three: Size of the burned area of forest fires prediction for all weather 

variables - the 4 best selected variables - the 4 manually selected variables identical to 

the Montesinho dataset according to the wildfire dataset and comparison of the applied 

Machine Learning algorithms (regression problem). Comparison of the results with the 

known state of the art Montesinho dataset for 4 weather variables so that could be 

checked which dataset functioned optimally, {appendix code_7, code_8, code_9, 

code_10}. 
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4.3.1 Experiment one: Binary classification fire/no fire 

 For binary classification, the metrics of performance are grounded on the four values of 

the contingency table (True Positive, False positive, True Negative, False Negative) acquired by 

putting in practice the classifier to the testing data. The standard performance metrics are 

defined as follows 

Accuracy: the proportion of correct fire occurrence predictions (both true positives and true 

negatives) 

 Accuracy = (TP + TN)/ (TP + FP + TN + FN). 

Precision: the proportion of true positives against all the positive predictions, both true positives 

and false positives 

 Precision= TP / (TP + FP). 

Recall: the proportion of the true positives against all positives, the true positives and false 

negatives. 

Recall =TP / (TP + FN). 

The metrics of precision and recall are quite essential because a high precision means a small 

number of false alarms which is interpreted as a number of predicted fire occurrences that never 

broke out. On the other hand, a high Recall (or sensitivity for binary classification) denotes the 

probability that a fire outbreak is indeed predicted as positive. Non-predicted fire occurrences 

can have serious side effects in the environment and society and that is why they are very 

important in the sensitivity of fire occurrence predictions. Prior to the implementation of the first 

experiment, the distributions of fire / no fire observations were verified to have been balanced. 

Each fire incident was declared as 1 while no fire as 0, figure 22. 

 

Figure 22 : Balanced data distribution of wildfire dataset for binary classification. 
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Therefore, by applying several supervised Machine Learning algorithms for conducting fire 

occurrence predictions for the whole 12 weather variables (mean, minimum, 

maximum_temperature - mean, minimum, maximum_ relative humidity -mean, minimum, 

maximum_(atmospheric) pressure, mean wind speed, wind gust, daily rainfall), the overall 

performance of each individual model is being depicted in the next table 2. From the below it can 

be clearly seen that the Random Forest model outperformed the other models, achieving 71% 

accuracy, precision for a small number of false alarms 69% and recall for a low number of 

unpredictable fires 67%, {appendix code_1}. 

As mentioned before in order to construct the classifier model according to which the 

data will be classified, a dataset of known observations is used for model training (training set) 

and another set for its control (test set), so as to make it possible to classify future data. In cases 

where there is not a large dataset to train the model, a technique called N-fold cross-validation 

is used. According to it, the set of examples is divided into N subsets, and then each of them is 

used sequentially as a control set, while the remaining N-1 subsets are combined and used as a 

training set. At the end of the N trainings, the results are used to get an average accuracy for the 

model.  

Choosing Random Forest as a best model for binary classification, hyperparameter tuning 

was executed with the view to optimizing its performance. The implementation was done by 

using initially RandomizedSearchCV algorithm and defining a grid of hyperparameter ranges (best  

 

Table 2 : Overall performance for each individual model using 12 weather variables by wildfire dataset for conducting binary 

classification. 

                            

 F 0. 0 0.  1 0.  3

 F tuned 0. 00 0.  5 0. 8 

  M(rbf) 0. 88 0. 18 0.5  

Knn 0.   0.  1 0. 8 

   oost 0.  2 0. 2 0.   

  M(linear) 0.  0 0. 20 0.580

 ogis c  egression 0.  0 0. 0 0.  3

Neural Networ 0. 33 0. 8 0.3 3

 ecision  ree 0. 33 0.5 2 0. 8 

  M(sigmoid) 0.530 0.00 0.00

  M(polynomial) 0.  0 0.  0 1.00



45 
 

parameters -n_estimators:400, max_features:auto, max_depth:90, min_sample_split:5, 

mean_sample_leaf:1, bootstrap: True), {appendix code_3}. In our case there were 4320 possible 

combinations but the benefit of RandomizedSearchCV was that it did not try every combination 

but selected at random a wide range of values so as to narrow down the range of values for each 

hyperparameter. Secondly a GridSearchCV applied focusing upon the best parameters of the 

RandomizedSearchCV so as to evaluate all the designated possible combinations (best 

parameters -n_estimators:400, max_features:12, max_depth:50, min_sample_split:4, 

mean_sample_leaf:1, bootstrap: True). The accuracy of RF_tuned marginally decreased to 70% 

but the recall (sensitivity) increased up to 69%. The confusion matrix on the test data with respect 

to RF and RF_tuned are being shown in figure 23 respectively. 

 

Figure 23 : RF and RF_tuned confusion matrices. 

Comparing the two confusion matrices it is being noticed that after hyperparameters tuning the 

sensitivity (False Negatives:65) improved but at the same time the precision (False Positives: 61) 

decreased. Another interesting diagram (figure 24) is the following which illustrates the feature 

importance of the whole 12 weather variables by employing the Random Forest model. It 

explains which of the features of wildfire dataset are the most useful towards fire prediction 

binary classification. Consequently, for all 12 weather variables it is being revealed that the 

average and maximum relative humidity as well as the wind gust are of relative importance in 

predicting the possibility of fire occurrence. 
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Figure 24 :  Feature importance. 

 

Quite intriguing conclusions can be also derived from the table 2. Of particular interest in 

terms of sensitivity were the models Decision Trees (69%), Knn (68%) and XGboost (68%) 

correspondingly. As for precision, Support Vector Machine(rbf) implemented to 72% while 

Neural Network to 69%. 

 

4.3.1.1 Experiment one: Binary classification fire/no fire using the best 4 selected weather 

variables extracted from wildfire dataset 

 Then it was tried to find the 4 best weather variables by applying Sequential Forward 

Selection, an algorithm which is to automatically select a subset of features that is most relevant 

to the problem. As it can be seen from the next figure 25 the algorithm is initialized with an empty 

set and returns a subset of a predefined number of selected features. In the candidate feature 

subset, the performance of each feature is evaluated each time, with the consequence that the 

ones related to the best performance of the classifier are maintained. 
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Figure 25 : Sequential Forward Selection – best 4 weather variables in wildfire dataset.  

 

Hence, in accordance with the next comparative table 3 is being presented that the 

Extreme Gradient Boosting algorithm performed quite better than any other supervised Machine 

Learning algorithm. By employing the Sequential Forward Selection with the XGBoost classifier 

the features minimum temperature, minimum relative humidity, daily rainfall, mean wind speed 

were chosen as the 4 best features providing accuracy of 67%, precision of 65% and recall of 64% 

{appendix code_4}. In this alternative embodiment of using the best 4 chosen weather features 

was pointed out that hyperparameter tuning applying GridSearchCV (best parameters – 

colsample_bytree: 0.6, gamma:1, max_depth:4, min_child_weight:1, subsample:0.6) worsened 

the corresponding metrics, figure 26 confusion matrices of XGBoost and tuned_XGBoost. In the 

 e uen al Forward  elec on ( F )

 e uen al
Forward
 elec on

candidate
feature
subset

12 weather variables

a
d
d

 ni al  feature set
12 weather
variables

candidate feature
subset

add feature with
the highest

eva lua on s core

termina on
condi on is
sa s ed 

op mal  feature
set ( /2)

select the feature
with the highest
evalua on score

y
e
s

n
o



48 
 

event that our interest is focalized on high sensitivity, very good results (Recall: 86%) are being 

presented by the neural network for the same 4 weather variables, figure 26. 

 

 

model weather variables accuracy precision recall 

XGBoost min_temp, min_RH, 

daily_rainfall, 

mean_wind_speed  

0.6738  0.6545 0.6378  

tuned_XGBoost min_temp, min_RH, 

daily_rainfall,mean_wind_speed 

0.6571 0.6368 0.6173 

Neural Network min_temp, min_RH, 

daily_rainfall, 

mean_wind_speed  

0.6310 0.5695 0.8571 

RF mean_pressure, min_RH, 

daily_rainfall, mean_RH  

0.6381  0.6089  0.6276 

SVM (rbf) mean_temp, mean_RH, 

wind_gust, mean_wind_speed 

0.6400  0.6100 0.6300 

 

Table 3 : Overall performance for each individual model using 4 weather variables by wildfire dataset for conducting binary 

classification. 

 

 

Figure 26 : XGBoost, tuned_XGBoost and Neural Network confusion matrices. 
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In the sequel based on the experimental performances and selected best 4 weather 

features extracted from the wildfire dataset as cited and in chapter 3, a comparison was made 

with known Montesinho dataset.  This dataset appears to be balanced and appropriate for binary 

classification tasks such as fire occurrence predictions, figure 27. In Montesinho study case 

several supervised Machine learning algorithms developed for only 4 selected weather variables 

(temperature, rain, wind, relative humidity) concluding that the Extreme Gradient Boosting 

algorithm as in wildfire dataset achieved better accuracy of 56%, precision of 58% and recall of 

41%, table 4 {appendix code_5}. Although Random Forest model succeeded better in sensitivity. 

 

Figure 27 : Balanced data distribution of Montesinho dataset for binary classification. 

 

When comparing the 2 examined datasets, it is obvious that for the same applied XGBoost 

algorithm and for the partially identical 4 weather variables, the newly created wildfire dataset 

gives much better predictions of fire occurrence probability. 

 

Table 4 : Overall performance for each individual model using 4 weather variables by Montesinho dataset for conducting binary 

classification. 

 

                                       

   oost 0.558 0.582 0. 10

 F 0.558 0.5 5 0.500

  M(rbf) 0.500 0.0 0.0

Neural Networ 0.538 0.588 0.25 
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4.3.1.2 Experiment one: Binary classification fire/no fire using the best 2 selected weather 

variables 

 In a similar vein carrying on experiments and trying to verify the critical conclusions of 

[5],[6] a challenge was designated to find the best 2 weather variables for the wildfire dataset. 

The final purpose was to be checked whether my experimental results coincided with referred 

prior art documents in terms of weather variables and if they were sufficient to predict the 

probability of fire occurrence.  Implementing in the same way Sequential Forward Selection with 

an RF model for the selection of the best 2 weather variables, it emerged as with the state-of-

the-art documents that they were the minimum relative humidity and the daily rainfall, figure 28 

{appendix code_1}. Employing for the specific 2 weather variables a Radom Forest model and 

Neural Network as described in chapter 4.2.7 it resulted that the latter performed marginally 

better in terms of accuracy (63.5%) and precision (63%) but not for recall (54%), {appendix 

code_2}. In the event of our interest is centered around the sensitivity then the RF seems to be 

an ideal model, table 5 {appendix code_1}. In figure 29 is being illustrated The Neural Network 

confusion matrix on the test data and the training process.  

 

Figure 28 : Sequential Forward Selection – best 2 weather variables in wildfire dataset.  

 

 

Table 5 : Overall performance for each individual model using 2 best weather variables by wildfire dataset for conducting binary 
classification. 

                            

Neural
Networ 

0. 35 0. 2 2 0.5 08

 F 0. 333 0. 0 1 0. 0 1

tuned NN 0. 310 0. 881 0.382 
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Figure 29 : Neural Network confusion matrix and training process. 

 

In the effort to improve the performance of the neural network GridSearchCV was used for 

hyperparameters tuning.  The accuracy reduced marginally, and the sensitivity deteriorated 

greatly. On the contrary, the precision improved significantly. The optimal resulting 

hyperparameter values were epochs: 50, batch size:10, learning rate: 0.001, activation function: 

sigmoid, number of neurons:100 and optimizer:  Adam, {appendix code_3}. 

 By the same logic, deploying Sequential Forward Selection with either RF or XGBoost 

model in Montesinho dataset the best 2 selected weather variables   turned out to be different 

features (rain and wind, figure 30), {appendix code_5} compared to wildfire dataset. In this case 

RF model proved to carry out slightly better than XGBoost while the neural network failed to 

provide reliable results, table 6. And in this case, it is clearly proved that wildfire dataset 

functioned much better for the two best selected weather variables in relation to known prior 

art Montesinho dataset. 

 

 

Figure 30 : Sequential Forward Selection – best 2 weather variables in Montesinho dataset.  

            
     

                       

 F 0.538 0.5 8 0.320

   oost 0.532 0.551 0.3  

NN 0.5 0.0 0.0



52 
 

 

Table 6 : Overall performance for each individual model using 2 best weather variables by Montesinho dataset for conducting 
binary classification. 

 

4.3.2 Experiment two: Fire scale prediction (multiclass classification) 

 In the second experiment, an attempt was made to forecast the fire scale. Given from the 

statistical data of wildfire dataset that the maximum burned area is 50650 acres, the scale of the 

fire was arbitrarily defined as: 

small fire (class: 0), provided that the burned area <50 acres   

medium fire (class: 1), provided that 50 < burned area < 500 acres 

large fire (class: 2), provided that 500 < burned area < 5000 acres  

and wildfire (class: 3), provided that burned area > 5000 acres. 

The biggest problem that arose from the above predefined scaling was that the data in wildfire 

dataset appeared imbalanced. More specifically in a number of 1400 entries the data distribution 

regarding the scale was 1320 observations for small fire, 45 observations for medium fire, 15 

observations for large fire and 19 observations for wildfire. The following figure 31 illustrates 

exactly the distribution of imbalanced data where the four classes were highly imbalanced. 

 

Figure 31 : Imbalanced data distribution of wildfire dataset for multiclass classification. 

 

           
     

                       

 F 0.538 0.5 8 0.320

   oost 0.532 0.551 0.3  

NN 0.5 0.0 0.0
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Data imbalance has consequences to lead classifiers to bias towards majority class at the expense 

of underrepresented minority class. To deal with this situation a random under sampling (figure 

32) was applied with the aim of balancing class distribution by randomly removing majority class 

samples. By this approach it was managed to cut down the number of examples from the majority 

class and match them with the number of examples in the minority class. By using this technique 

is reduced the risk of bias toward the majority. However, a possible drawback might be that 

essential information is expelled during the transformation of majority class into equal with the 

rest minority classes, since we have a significant loss of data. In the current experiment during 

the application of the technique the 1400 observations were limited to 60 observations (44 

training and 16 test). 

Moreover, for the imbalanced wildfire dataset a new metric F1 score was introduced so 

as to compare the applied supervised Machine Learning algorithms. This metric considers not 

only the number of prediction errors but also the type of errors that are made. In essence the 

average of precision and recall is calculated 

F1 score= 2* (precision*recall)/ (precision + recall). 

By employing several Machine Learning algorithms, it was determined that the K nearest 

neighbor algorithm implemented better than the others with a F1 score of 45%, table 7, 

{appendix code_6}. As shown in Figure 33 for K=4 nearest neighbors achieved the minimum error, 

{appendix code_6}. 

 

Figure 32 : Random undersampling. 

Class 0Class 1 Class 2 Class 3 Class 0 Class 1 Class 2 Class 3
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Figure 33 : Knn model performance for multiclass classification and corresponding confusion matrix. 

 

Table 7 : Overall performance for each individual model using 12 weather variables by wildfire dataset for conducting multiclass 
classification. 

 

4.3.3 Experiment three: Size of the burned area of forest fires (regression problem) 

 As is well known the adverse effects of conflagrations have a great impact on our quality 

of life. Another important objective of this current study is the prediction of the size of burned 

area caused by fire occurrences. The main purpose of third experiment was to explore and 

evaluate supervised machine learning regressors with the view to accurately forecasting the 

burned area. Fruitful inferences were drawn based on the wildfire dataset by comparing the 

predictive performance of the regressors concerning all the weather variables and the best 4 of 

them. In the end, similarly with the first experiment, a comparison was carried out with the 

known prior art Montesinho dataset for the 4 selected weather variables. By scrutinizing the 

formed scatter plot graph (figure 34-last series) being shown the relationship between burned 

area and weather variables, it became obvious that burned area generally increased under 

                     

Knn 0.500 0. 53

 ecision  ree 0. 3 0.3 3

  M(linear) 0.380 0.3 5

 ecision  ree tuned 0.3 5 0.380

 F tuned 0.3 5 0.3 5

   oost tuned 0.312 0.2 2

  M(rbf) 0.310 0.210

  M(sigmoid) 0.250 0.100

  M(polynomial) 0.250 0.100
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conditions of high mean temperatures and high mean atmospheric pressures respectively, low 

mean relative humidity, low daily rainfall and low mean wind speed as well as strong wind gusts. 

Once again to begin with the exploration of wildfire dataset was seen that the distribution 

of data regarding the burned area was imbalanced. In figure 35 most fires presenting small and 

medium scale. In order to improve the symmetry of data a random under sampling was applied 

as in the second experiment limited the total 1400 observations to 101 (64 training and 37 test), 

{appendix code_7}. The overall performance of the applied regressors was computed by Root 

mean   uared error and r² score.  oot Mean   uare Error is an extension of the mean squared 

error and depicts how far apart the predicted values are from the actual values in a dataset, on 

average while r² score indicates the proportion of variance in the response variable of a 

regression model that can be explained by the predictor variables. In each case the desirable is 

to effect a high accuracy implying lower value of  M E and a higher value of r² score. So, putting 

in practice several supervised Machine Learning regression algorithms the table 8 indicates that 

k nearest neighbors outperformed other models for the undersampled data.  More detailed, for 

K equal to 5 nearest neighbors the model achieved RMSE of 1982.59 and r² score of 70%, figure 

36b), {appendix code_8}. According to the data statistics the total burned area ranges from 0 to 

50650 acres, a useful information for calculating the normalized value of RMSE. Figure 36a) 

indicates the actual burned area and burned area predicted by Knn model. The dash line shows 

the 1:1 correspondence. 

 

4.3.3.1 Experiment three: Size of the burned area of forest fires using the best 4 selected 

weather variables extracted from wildfire dataset 

 In similar fashion by implementing Sequential Forward Selection with either RF or 

XGBoost model the best 4 selected weather features were computed as minimum temperature, 

mean relative humidity, minimum relative humidity and daily rainfall. The application of the 

relevant algorithms demonstrated that the models according to table 9 did not follow the trend 

of data and failed to fit them. An explanation of the negative results can be given to the fact that 

r² score value increases only by adding independent variables and not by subtracting {appendix 

code_9}. 

 

                                

Knn 0. 00 1 82.5 0.0 

 inear  egression 0.10 3 21.  0.0 

Neural Networ  0.003 3 25. 0 0.0 

  M  0.0 5 385 .  0.08

 F  0.13 385 .  0.08
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Table 8 : Overall performance for each individual model using 12 weather variables by wildfire dataset for predicting the size of 
burned area. 

 

Table 9 : Overall performance for each individual model using the best 4 weather variables by wildfire dataset for predicting the 
size of burned area. 

                                

 inear  egression  0.02 3 58.0 0.0 2

 F  0.05 3 18.0 0.0 3

  M  0.0 3 88.8 0.0 5

 eep Neural
Networ 

 0.02 3 5 .  0.0 2

Knn  0. 0  5 3. 8 0.0 0
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Figure 34 : Scatter plot graph – burned area Vs weather variables (last series). 

 

Alternatively, a manual selection of the 4 weather variables (mean temperature, mean 

relative humidity, daily rainfall, mean wind speed) was attempted with the aim of being as close 

as possible to the weather variables with Montesinho dataset. There was a slight improvement 

in the forecast of size of burned areas by applying the Linear Regression model (r² score: 2%, 

RMSE: 3584.70) but not capable enough to reliably fit the dataset. 
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Figure 35 : Imbalanced data distribution of wildfire dataset for forecasting the size of burned area. 

 

 

Figure 36 : a) Actual burned area and burned area predicted by the Knn model.  b) RMSE values against K values.  

 

In a similar manner as the first experiment a comparison was conducted with the 

Montesinho dataset for 4 selected weather variables. Likewise, the Montesinho dataset 

appeared to be imbalanced with the majority of burned area less than 200 hectares, figure 37. 

Before modeling the problem as a regression task there was a need to synthesize a balanced 

Montesinho dataset. By implementing random undersampling as in previous cases the number 

of observations limited to 85 (51 training, 34 test). After that by employing the supervised 

Machine Learning regressors was proved that for the 4 chosen weather features (rain, wind, 

temperature, relative humidity) the models failed to fit the data, table 10. The negative value of 

r² score could be possible attributed to the small dataset. Among the applied regressors Support 

Vector Machine seemed to perform better (r² score: -6%, RMSE: 69.06), {appendix code_10} , 

figure 38. What can be seen is that on the one hand random undersampling managed to provide 

symmetry to the data but the resulting small dataset both in wildfire and Montesinho dataset 

was an insurmountable drawback for fitting the data. 
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Figure 37 : Imbalanced data distribution of Montesinho dataset for forecasting the size of burned area. 

Montesinho_model          RMSE Normalized_RMSE 

SVM -0.059 69.065 0.06 

Linear Regression -0.221 74.14 0.07 

Neural Network -0.213 73.90 0.07 

RF -0.930 93.34 0.08 

XGBoost -1.341 102.67 0.09 

Knn -2.01 116.42 0.11 

Table 10 : Overall performance for each individual model using 4 weather variables by Montesinho dataset for predicting the 
size of burned area. 
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Figure 38 : Actual burned area and burned area predicted by the SVM model in Montesinho dataset. 
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CHAPTER 5 -- Conclusions and future challenges 

5.1 Conclusions 

This chapter summarizes the contribution of this postgraduate thesis investigating the 

influence of dynamic weather variables on fire occurrence probability, prediction of fire scale and 

the size of burned area in Attica basin. The deployment of the present study was based on the 

idea of applying as much as possible supervised Machine Learning algorithms concerning the task 

each time so that can be proved a useful guide for future research. A synthesis of a new dataset 

named “wildfire” was done including the exact prevailing weather conditions during the 

occurrence of forest fires for the period 2010-2019 and for the months from May to August in 

Attica basin. Three specific problems in a row were modeled using this concrete wildfire dataset 

1) a binary classification (experiment one) where the scope was the prediction of fire occurrence 

probability 2) a multiclass classification work (experiment two) where the purpose was the fire 

scale prediction 3) a regression task (experiment three) where the main objective was the 

forecast of the size of burned area of forest fires. Then a comparative analysis was conducted to 

extract the best supervised Machine Learning models in relation with their performance. In the 

context of the research to analyze whether the quality of the created wildfire dataset was 

considered satisfactory, a comparison was made with the known prior art Montesinho dataset 

grounded always on weather features. 

Firstly, taking all the weather variables (mean, minimum, maximum- temperature/ mean, 

minimum, maximum- relative humidity/ mean, minimum, maximum-(atmospheric) pressure/ 

daily rainfall/ mean wind speed and wind gust) into consideration (1400 observations) quite 

impressive results were acquired for binary classification and regression tasks respectively. In 

experiment one using as performance metrics accuracy, precision (directly correlated to the rate 

of false alarms in forecasting fire occurrences), recall (directly correlated to the rate of failed to 

predict fire outbreaks), the configured tuned Random Forest model (RandomizedSearchCV, 

GridSearchCV) achieved accuracy of 70%, precision of 67% and recall of 69%. Additionally, of the 

whole 12 weather variables in Random Forest model, the mean, minimum relative humidity and 

wind gust were of particular importance. Furthermore, in experiment two for implementing fire 

scale prediction (small fire, medium fire, large fire, wildfire), due to the fact the wildfire dataset 

appeared imbalanced a random undersampling technique was carried out limited the number of 

observations down to 60. An extra metric of F1 score was introduced in order to assure the 

correct comparison among the supervised Machine Learning algorithms providing as a best 

model the K-nearest neighbors (K=4) with F1 score up to 45%.  Even more sensational in case of 

experiment three regardless the imbalanced dataset and by executing once again a random 

undersampling (101 observations) the K -nearest neighbors model (K=5) outperformed the 

others achieving r² score value of  0% and  MSE of 1982,59. In the mentioned third experiment 

it was clearly shown that despite the small under-sampled dataset the K nearest neighbors model 

managed to deliver significant efficiencies. All the above experiments demonstrated both the 

reliable quality of the newly created wildfire dataset and that the random undersampling 
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technique contributed positively to the prediction of fire scale and size of burned area of forest 

fires correspondingly.  

Thereinafter, in first experiment for different combination of most relevant weather 

inputs variables a Sequential Forward Selection algorithm was employed for choosing the best 4 

weather features (minimum temperature, minimum relative humidity, daily rainfall, mean wind 

speed) with the view to conducting a binary classification.  According to the well-founded results 

the XGBoost classifier proved to outperform other classification models with accuracy of 67%, 

precision of 65% and recall of 65%. It is noteworthy that for the given 4 best weather variables 

the neural networks although had lower accuracy (64%) and precision (57%) showed much better 

sensitivity (86%). Respectively the known prior art Montesinho dataset for 4 weather variables 

(temperature, relative humidity, rain, wind) similarly proved that the XGBoost classifier 

performed better in terms of accuracy (56%) and precision (58%) but not in recall (41%) where 

Random Forest achieved 50%, (same accuracy 56% and lower precision 56%). One of the 

paradoxes was pointed out was the fact that tuned XGBoost classifier (GridSearchCV) in wildfire 

dataset deteriorated the results instead of improving them, (accuracy 66%, precision 64%, recall 

62%). 

In the event of predicting the size of the burned areas, the application of the Sequential 

Forward Selection algorithm computed as the best 4 weather variables the minimum 

temperature, the average relative humidity, the minimum relative humidity and the daily rainfall. 

In addition to the fact that due to the imbalance of the wildfire dataset a random undersampling 

was carried out again, the final results showed that the models (Linear Regression, Random 

Forest, Support Vector Machine, Neural Network, K -nearest neighbors) failed to fit the wildfire 

dataset. Even in the manual selection of the 4 weather variables (mean temperature, mean 

relative humidity, daily rainfall, mean wind speed) to be comparatively closer to the known 

Montesinho dataset there was a slight improvement in Linear Regression (r² score value of 2%, 

RMSE of 3584.70). Similarly, for the Montesinho dataset with 4 selected weather variables 

(temperature, relative humidity, rain, wind), a random undersampling was executed to provide 

symmetry to the dataset (observations limited from 517 to 85) but regression models (Linear 

Regression, Support Vector Machine, Neural Network, Random Forest, Extreme Gradient 

Boosting, K -nearest neighbors) flunked to fit the referred dataset.  Somehow the SVM model 

seems to have better performance than the rest (r² score value of -6%, RMSE of 69.065). It is 

obvious that reducing the number of data to achieve symmetry in the dataset played a significant 

role in the performance of the models of predicting the size of the burned area for both wildfire 

and Montesinho datasets. Another possible cause for those poor outcomes could be the possible 

low correlation of weather variables with fire in terms of predicting the size of burned forest 

areas. 

Forecasting fire outbreaks and the size of burned area according to the number of used 

weather variables was a continuous challenging task for the current study. In order to verify the 

results of [5],[6] that the 2 specific variables, the relative humidity and the cumulative 
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precipitation suffice to accurately predict of fire occurrence, a Sequential Forward Selection 

algorithm applied in wildfire dataset to extract the best 2 features and to check the outcomes 

achieved. Indeed, the minimum relative humidity and the daily rainfall were chosen as the best 

2 weather variables. That is, the 2 main weather features that essentially determine the periods 

of drought in the Attica basin. Prolonged drought period means that the area under study is 

considered more vulnerable to fires.  In this case study, it seems that the Neural Networks 

performed better accuracy (63.6%) and precision (63%) in relation to the Random Forest (63.3% 

- 61%) but not better sensitivity (NN: 54%, RF: 61%). Conclusions that show that Neural Networks 

and Random Forest models took into account the non-linear relationships between the 

independent weather variables, managing to create patterns between these weather features 

and fire occurrence probability so that they were able to generalize well. 

 

5.2 Future challenges 

 The variety of alternative approaches presented in this study prepare the ground for 

further improvements and extensions in solving the problems considered. Taking into account 

the positive results obtained from the best applied supervised Machine Learning models on a 

case-by-case basis, the interaction of these models with variables other than weather could be 

investigated. A future project can be further expanded on other under examination factors such 

as topology, vegetation, the time of intervention and extinguishing, the starting point of the fire 

outbreak, the form of fire but mainly the human factor and activities, especially 

➢ The topographic elements: The anaglyph of the Attica basin area contributes greatly to 

the spread of the fire, as there is intense mountain formation (Aigaleo, Parnitha, 

Hymettus, Penteli). In particular, the elevation associated with the vegetation and 

humidity as well as the slope of the ground affect seriously the speed of fire spread. 

Elevation and terrain slope are important factors for the evolution of forest fires, as they 

affect the growth of tree vegetation, but also determine the topoclimate. It seems, then, 

that the topography information of Attica basin location may create a potentially 

dangerous situation for forest fires and, therefore, the analysis of the above parameters 

is necessary to be considered in the analysis of fire data. 

➢ Vegetation: The description of the vegetation in the geographical region of Attica leads 

to the conclusion that the ecosystems of the Mediterranean region are the most 

vulnerable to fires. It has been pointed out that the shrubby form of vegetation makes it 

more vulnerable to fires. Elements such as lawn density, vegetation density should be 

included as important causes of fire outbreaks. 

➢ Starting point of fire and time of intervention and extinguishing: The recording of the 

locations where the forest fires break out, is considered essential for the organization of 

protection and extinguishment. These actions are determined by the intervention and 

extinguishment times. Statistics show that forest areas are the most common starting 

point for forest fires, but episodes in livestock farms are considered more catastrophic. 
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➢ The form of fire: Forest fires in relation to the way they spread and depending on the level 

that appear relative to the soil surface are divided into ground or underground, creeping, 

crowning and mixed fires. Ground fires move relatively slowly, burning the deposited 

biomass in the forest soil. Creeping fires cause burning mainly of plant elements of the 

subsoil consisting of shrubby vegetation and expanding relatively faster than the previous 

ones. Crowning fire spread through the canopy of trees and can carry relatively large 

jumps. Their expansion is quite fast. Finally, mixed fires combine all the above forms of 

spread and are more common. 

➢ Human factor: Anthropogenic causes of fires (cigarette, malignant arson, pyromaniac 

energy, short circuit) are a field of further research and analysis. The way in which the 

human factor is determined according to the state of the art varies. Either as a population 

density of an area [12], or based on the determined distance from railways, road networks 

and settlements [16] or through Gross Domestic Product (GDP) density [10]. More and 

more studies converge to the fact that the Human-induced factors outweigh weather 

variables as main causes of fire occurrences [3]. 

Therefore, possibly a combination of alternative selected features for the Attica basin area 

with different supervised Machine Learning algorithms can lead to even greater accuracy in 

predicting fire occurrences, fire scale and size of burnt forests. 

 

5.3 Future survey 

During the study elaboration on the development of supervised Machine Learning 

algorithms for the prediction of fires based on weather variables, the idea of formulating a model 

that would be gradually released from the dependence of weather variables until their complete 

abolition emerged. That is to say, the generation of a model that would be trained in such a way 

as to be independent of sensory measurements. In essence, the deployment of a neural network 

that can integrate data from two sources. In the present project, a wildfire dataset was created, 

including the prevailing weather conditions during the fire occurrences in Attica basin. In a 

hypothetical scenario we could assume that this dataset was the first data source in a neural 

network.  As a second data source we could receive a set of fire digital photographs/images 

corresponding to each officially recorded forest fire incident for the same period in Attica basin. 

When integrating this data into the neural network and training it to produce a kind of hybrid fire 

photo/image comprising the prevailing weather variables, figure 39. The new hybrid variables 

were then fed as data to a secondary neural network that would be trained based on them. So 

that the gradual supply of the second neural network only with digital fire photos/images to make 

it able to evaluate the possibility of how close a photo/image was without containing weather 

features to a photo/image comprising weather features. Therefore, depending on whether a 

threshold value was satisfied the weather variables of closer fire photo/image could be provided. 

This would mean the final independence from the weather variables where only by using a digital 

fire photo/image could the prevailing weather conditions be extracted. The recommended idea 
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is at an early stage and is simply formulated as a proposal for further research and 

implementation in the future by researchers in the field. 

 

Figure 39 : Low level recommended architecture for generating a hybrid variable and a fire photo integrated with prevailing 
weather conditions.  
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Appendix 
 

▪ Code_1: Implementation of RF, SVM, Knn, DT, XGBoost, Logistic Regression for 12 
weather variables retrieved by wildfire dataset for conducting binary    classification. Also, 
RF for the 2 best selected weather variables. 

 

▪ Code_2: Implementation of Neural Networks for 12/2 weather variables retrieved by 
wildfire dataset for conducting binary classification. 

 
▪ Code_3: Model tuning and hyperparameter optimization for RF with 12 weather variables 

and Neural Network for 2 weather variables, respectively. 
 

▪ Code_4: Implementation of RF, XGBoost, SVM and Neural Network for the best 4 
selected weather variables for conducting binary classification, XGBoost Model tuning. 

 
▪ Code_5: Implementation of RF, XGBoost, SVM, Neural Network for 4/2 selected weather 

variables retrieved by Montesinho dataset for conducting binary classification . 

 

▪ Code_6: Implementation of Knn, DT, SVM, RF, XGBoost for 12 weather variables 
retrieved by wildfire dataset for conducting prediction of fire scale. 

 

▪ Code_7: Implementation of Knn, Linear Regression, SVM, RF, Neural Network for 
12 weather variables retrieved by wildfire dataset for conducting prediction of size of 

burned area of forest fires. 

 

▪ Code_8: Knn best regressor for 12 weather variables retrieved by wildfire dataset for 
conducting forecast of burned area. 
 

▪ Code_9: Implementation of Knn, Linear Regression, SVM, RF, Neural Network for the best 
4 selected weather variables retrieved by wildfire dataset for conducting forecast of 
burned area. 
 

▪ Code_10: Implementation of Knn, Linear Regression,SVM, RF, XGBoost, Neural Network 
for the 4 selected weather variables retrieved by Montesinho dataset for conducting 
forecast of burned area. 
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