ПАNЕПIГTHMIO \triangle YTIKH乏 ATTIKH乏

ХРЯMATA каı ПРОНГMENA ПОАYMEPH

$\Delta І П \wedge \Omega M A T I K H$ ЕРГАЕIA

TH乏

NIOBHइ－K Ω N $\Sigma T A N T I N A \Sigma \Phi \Theta E N A K H$

ПANEПIइTHMIO \triangle YTIKH Σ ATTIKHг

ХРЯМАТА Каı ПРОНГМЕNА ПОАҮМЕРН
 DYESTUFFS and ADVANCED POLYMERS

$\Delta I П \wedge \Omega M A T I K H$ ЕРГАЕIA
THE
NIOBH亡－K Ω NLTANTINA乏 © $\Theta E N A K H$

ЕПIВАЕПОҮГА KАӨНГНТРІА
П．Г．Фраүкои́入n

ПANEПIइTHMIO \triangle YTIKHェ ATTIKHг

ХРЯМАТА каı ПРОНГMENA ПОАҮMEPH

DYESTUFFS and ADVANCED POLYMERS

$\Delta І П \wedge \Omega$ МАТІКН ЕРГАГІА

TH乏

NIOBH乏－K Ω N $\Sigma T A N T I N A \Sigma ~ Ф \Theta E N A K H$

TPIMEへH乏 EПITPOПH A三IOへO「HटH乏

Digitally signed by Stavros Alexiadis

ПАNEПIITHMIO \triangle YTIKHI ATTIKH工

АНАЛЕН ЕҮГГРАФЕIA $\triangle I \Pi \Lambda \Omega M A T I K H \Sigma ~ E P Г A \Sigma I A \Sigma ~$

 $\delta \eta \lambda \omega ́ v \omega$ vлعט́0vva óт兀：

 $\alpha v \alpha \varphi о \rho \alpha ́ \quad \sigma \tau о v \varsigma ~ \sigma о \gamma \gamma \rho \alpha \varphi \varepsilon i ́ s, ~ \tau о v ~ \varepsilon к \delta о \tau ь к о ́ ~ о і ́ к о ~ \eta ́ ~ \tau о ~ \pi \varepsilon \rho ь о \delta 七 к ́, ~$

 тov Iסри́ $\mu \alpha \tau$ оऽ．
 $\alpha v \alpha ́ \kappa \lambda \eta \sigma \eta ~ \tau о v ~ \pi \tau v \chi i ́ o v ~ \mu о v »$.

H $\Delta \eta \lambda \lambda 0 v ́ \sigma \alpha$

Nióß η－K＠vбтаvтíva ФӨєvóкๆ

EYXAPILTIE Σ

 Bıoн $\chi \alpha v ı \kappa \eta ́ s ~ \Sigma \chi \varepsilon \delta i ́ \alpha \sigma \eta \varsigma ~ к \alpha ı ~ П \alpha \rho \alpha \gamma \omega \gamma \eta ́ \varsigma ~ \tau о v ~ П \alpha v \varepsilon \pi \iota \sigma \tau \eta \mu i ́ o v ~ \Delta v \tau ı \kappa \eta ́ s ~ A \tau \tau ı к \eta ́ \varsigma ~ v ı \omega ́ \theta \omega ~$

 Өєтıкळ́v $\alpha v \alpha \mu \nu \eta ́ \sigma \varepsilon \omega v ~ \alpha \pi o ́ ~ \tau \eta ~ \varphi о \iota \tau \eta \tau \iota к \eta ́ ~ \mu о v ~ \zeta \omega \dot{\eta}$.

 $\pi о v \alpha v \varepsilon ́ \lambda \alpha \beta \varepsilon ~ \tau \eta v ~ \varepsilon \pi i ́ \beta \lambda \varepsilon \psi \eta ~ \tau \eta \varsigma ~ \varepsilon к \pi о ́ v \eta \sigma \eta \varsigma ~ \tau \eta \varsigma ~ \pi \alpha \rho о v ́ \sigma \alpha \varsigma ~ \delta ı \pi \lambda \omega \mu \alpha \tau \iota \kappa \eta ́ \varsigma ~ \mu о v ~ \varepsilon \rho \gamma \alpha \sigma i \alpha \varsigma . ~ H ~$

 одокдทрळ́бш тп้ врүабі́ $\mu о$.

ПЕРІАНЧН

 $\alpha v \alpha \kappa \alpha ́ \lambda v \psi \eta ~ v \varepsilon ́ \omega v ~ \mu \varepsilon \theta o ́ \delta \omega v ~ \beta ı о \mu \eta \chi \alpha v ı к ŋ ́ s ~ \pi \alpha \rho \alpha \gamma \omega \gamma \eta ́ s . ~ \Delta i ́ v \varepsilon \tau \alpha ı ~ \varepsilon ́ \mu \varphi \alpha \sigma \eta ~ \sigma \tau ı s ~$

 opyavı $\sigma \mu$ ต́v.

SYNOPSIS

In this work the structure, the chemical composition and properties of advanced polymers are studied. Production methods and techniques are discussed, as well as the scientific research that led to their discovery. Examples of their application are reported, highlighting the contribution of advanced polymers both in the development of other scientific fields (such as medicine, natural sciences, biology, aeronautics), as well as in the discovery of new methods of industrial production. Emphasis is given to the possibilities provided by nanotechnology for the creation of innovative polymers and hybrid organic/inorganic or composite materials.

The concept of colour, according to the quantum theory and the theory of molecular orbitals, is investigated and the colour-structure direct relation of objects is realized. The categories, the structure and chemical composition of dyestuffs that are used to colorize advanced polymers are determined. The methods of creating selfcoloured polymers and their properties are described. The advantages provided by the control of significant parameters during production procedure are pointed out. Examples of self-coloured advanced polymers and their corresponding applications in significant production sectors are listed and positive effects of their use in the protection of environment and living organisms are mentioned.

Keywords: advanced polymers, dyestuffs, self-coloured polymers.

КАТААОГОГ Σ YNTOMOГРАФI $\boldsymbol{\Omega}$

ェYNTMHエH	
CD	Compact Disc
DNA	Deoxyribonucleic acid
DVD	Digital Versatile Disc
FOLED	Flexible Organic Lighting Emitting Diode
ITO	Indium Tin Oxide
KEVLAR ${ }^{\circledR}$	Poly（p－phenylene terephthalamide）
LASER	Light Amplification by Stimulated Emission Radiation
LCD	Liquid Crystal Display
LED	Light Emitting Diode
nm	Nanometer
OLED	Organic Light Emitting Diode
PCL	Poly（ ε－caprolactone）
PDA	Polydiacetylene
PDLCD	Polymer Disperse Liquid Crystal Display
PE	Polyethylene
PEG	Polyethylene Glycol
PET	Polyethylene Terepthalate
pHEMA	Polyhydroxyethylmethacrylate
PLA	Polylactic Acid
PLGA	Poly（Lactic－co－Glycolic Acid）
PMA	Polymethacrylate
PMMA	Poly（Methyl Methacrylate）
PP	Polypropylene
PPV	Polyphenylenevinylene
PT	Polythiophene
PTCDA	Perylenetetracarboxylic Dianydride
PVA	Polyvinyl Alcohol
RNA	Ribonucleic Acid
RPT	Rapid prototyping
SAM	Self－Assembled Monolayers
SAP	Superabsorbent Polymer
SGC	Solid Ground Curing
TOLED	Transparent OLED
WHOLED	White Emitting OLED

Еג入ŋขıко́¢＇Opos

чұріако́я Δ íбкоя
$\Delta \varepsilon о \xi \cup \rho ı \beta$ оvоик $\lambda \varepsilon$ к̈ко́ О ξ и́
Чпрıкко́я Подихрךбтıко́s Δ íбкоऽ

O ξ cíठıo тov Ivסíov
Подv（ $\pi-\Phi \alpha ı v \nu \lambda \varepsilon v о \tau \varepsilon \rho \varepsilon \varphi \theta \alpha \lambda \alpha \mu i ́ \delta ı)$

Актıvoßодías
O日óvๆ Y $\gamma \rho \dot{\rho} v$ K $\rho v \sigma \tau \alpha ́ \lambda \lambda \omega v$
Δ íoঠоऽ Еклоили́ऽ Фюто́ऽ
Novó $\mu \varepsilon \tau \rho о$

Подv（ $\varepsilon-\kappa \alpha \pi \rho о \lambda \alpha \kappa \tau о ́ v \eta)$

Oөóvך Y $\gamma \rho \omega ́ v$ K $\rho \cup \sigma \tau \alpha ́ \lambda \lambda \omega v$ Aı $\omega \rho \eta \not \mu \alpha \tau \sigma \varsigma$
Подицєрои́я
Подข๙ıӨvえغ́vio
Подvaı θ и $\lambda \varepsilon$ соү $\lambda \cup к о ́ \lambda \eta ~$

Подиүадактько́ O ξv

ПодицєӨакридıко́ц Ебтє́ $\alpha \varsigma$
Подง（МєӨакридıко́ऽ МєӨv $\varepsilon \varepsilon \sigma \tau \varepsilon ́ \rho \alpha \varsigma) ~$
Подขлролиде́vio

Подv日єıораívıo

Пєридєvíov

P_{1} ßоvovк $\lambda \varepsilon$ їко́ O گ́v
ПробӨєтькŋ́ К $\alpha \tau \alpha \sigma к \varepsilon \cup \eta ́ ~$
Аvто－$\Sigma v v \alpha 0 \rho о \iota \sigma \mu \varepsilon ́ v \varepsilon \varsigma ~ М о v о \mu о р ı \alpha к \varepsilon ́ \varsigma ~ \Sigma \tau о ъ \beta \alpha ́ \delta \varepsilon \varsigma ~$
Үлєралороочŋтько́ Подขцєрє́ऽ

（Фఉтолодvนєрои́ऽ）
Δ lapavŋ́ऽ OLED
OLED Еклонли́я $\Lambda \varepsilon \cup к о и ́ ~ Ф \omega \tau o ́ s ~$

KATA $\boldsymbol{\Lambda} O \Gamma O \Sigma \Sigma X H M A T \Omega N$

$\sigma \varepsilon \lambda$.
 8
2. Архıко́ $\sigma \tau \alpha ́ \delta ı о ~ \pi о \lambda \nu \mu \varepsilon \rho ı \sigma \mu о v ́ ~ \mu \varepsilon ~ \varepsilon \lambda \varepsilon v ́ \theta \varepsilon \rho \varepsilon \varsigma ~ \rho i ́ \zeta \varepsilon \varsigma . ~ H ~ \rho i ́ \zeta \alpha ~ R \cdot \pi \rho о к v ́ \pi \tau \varepsilon ı ~ \alpha \pi o ́ ~ \varepsilon ́ v \alpha ~$ 10$\varepsilon \pi i ́ \delta \rho \alpha \sigma \eta$ $\alpha \kappa \tau \imath v o \beta о \lambda i ́ \alpha \varsigma) . ~ H ~ \rho i ́ \zeta \alpha ~ \alpha v \tau ı \delta \rho \alpha ́ ~ \mu \varepsilon ~ \varepsilon ́ v \alpha ~ \mu о v о \mu \varepsilon \rho \varepsilon ́ \varsigma ~ \alpha ı \theta \varepsilon v i ́ o v, ~$
 13
4. $\Sigma \chi \eta \mu \alpha \tau \iota \kappa \emptyset ́ \alpha \pi \varepsilon \iota \kappa o ́ v ı \sigma \eta ~ \delta є \varepsilon \gamma \varepsilon \rho \mu \varepsilon ́ v \omega v ~ \kappa \alpha \tau \alpha \sigma \tau \alpha ́ \sigma \varepsilon \omega v ~ \eta \lambda \varepsilon \kappa \tau \rho о v i ́ \omega v ~ \pi о v ~ \varepsilon \pi \iota \varphi \varepsilon ́ \rho о \nu \nu$ $\varepsilon \kappa \pi о \mu \pi \eta ́ ~ \varphi \theta о \rho ı \sigma \mu о v ́ ~ \eta ́ ~ \varphi \omega \sigma \varphi о \rho ı \sigma \mu о v ́ ~ \kappa \alpha \tau \alpha ́ ~ \tau \eta \nu ~ \varepsilon \pi \alpha \nu \alpha \varphi о \rho \alpha ́ ~ \tau о v \varsigma ~ \sigma \tau \eta ~ \theta \varepsilon \mu \varepsilon \lambda ı \omega ́ \delta \eta ~$ $\kappa \alpha \tau \alpha ́ \sigma \tau \alpha \sigma \eta$.
 19 $\alpha \iota \theta \cup \lambda \varepsilon v \varepsilon \sigma \tau \varepsilon ́ \rho \alpha)(\mathrm{PET})$.
 20 $\delta 1 \varepsilon v \theta 0 ́ v \sigma \varepsilon 1 \varsigma, \alpha \nu \tau i ́ \sigma \tau 0 \imath \chi \alpha$.
 22
 24 $\varepsilon \mu \varphi \alpha v i \zeta \varepsilon \iota 1 \delta$ ı́т $\tau \tau \varepsilon \varsigma \alpha \gamma \omega \gamma \mu$ о́т $\tau \tau \alpha \varsigma \kappa \alpha \imath \chi \rho \omega \mu \iota \kappa о ́ \tau \eta \tau \alpha \varsigma$.
 26 $\tau \eta \gamma \mu \alpha \tau о \varsigma$.
 27
 29 $\sigma \tau \alpha \theta \varepsilon \rho о v ์$ vлобтр$\oplus \mu \alpha \tau о \varsigma ~ \varepsilon i ́ \tau \varepsilon ~ \mu \varepsilon ~ i n ~ s i t u ~ \pi о \lambda v \mu \varepsilon \rho ı \sigma \mu o ́ ~ \varepsilon i ́ \tau \varepsilon ~ \mu \varepsilon ~ \tau \eta ~ \chi \rho \eta ́ \sigma \eta ~$ отоі́ $\varsigma \varsigma ~ \alpha \nu \tau \iota \delta \rho о и ́ v ~ \mu \varepsilon ~ \delta \rho \alpha \sigma \tau ı \kappa \varepsilon ́ \varsigma ~ о \mu \alpha ́ \delta \varepsilon \varsigma ~ \tau \eta \zeta ~ \kappa \alpha \tau \alpha ́ \lambda \lambda \eta \lambda \alpha ~ \delta ı \alpha \mu о \rho \varphi \omega \mu \varepsilon ́ v \eta \varsigma ~ \delta о \mu \eta ́ \varsigma ~$ $\tau \eta \zeta \varepsilon \pi \iota \varphi \alpha ́ v \varepsilon \iota \alpha \varsigma ~ \tau о v$ v $\pi о \sigma \tau \rho \dot{\mu \alpha} \mu \tau \circ \varsigma$.
12. Aлєıкóvıбך тov $\mu \alpha \kappa \rho о \mu о \rho i ́ o v ~ \tau \eta \varsigma ~ \sigma เ \lambda ı к о ́ v \eta \varsigma . ~$ 30
 42
14. О $\chi \rho \omega \mu \alpha \tau \iota \kappa$ ќ ки́к $\lambda о \varsigma$. 43
 46$\pi \alpha \rho \alpha \sigma \kappa \varepsilon \cup \eta ́ ~ к i ́ \tau \rho ı v o v ~ \alpha \zeta \omega \chi \rho \omega ́ \mu \alpha \tau о \varsigma ~ к \alpha ı ~(~ \beta) ~ \tau \omega v ~ \mu о \rho i ́ \omega v ~ \delta v ́ о ~ \chi \alpha \rho \alpha к \tau \eta \rho ı \sigma \tau ı к ळ ́ v ~$
 48

 єvӨv́ $\rho \alpha \mu \mu \eta$ trans- $\mu о \rho \varphi \eta$, (β) عvӨv́ $\gamma \rho \alpha \mu \mu \eta$ cis- $\mu о \rho \varphi \eta$, (γ) $\gamma \omega v \downarrow \alpha к \eta$ cis$\delta ı \mu о ́ \rho \varphi \omega \sigma \eta$, (δ) $\gamma \omega v \iota \alpha \kappa \eta$ trans- $\delta \iota \alpha \mu о ́ \rho \varphi \omega \sigma \eta$.
 $\pi \alpha \rho \alpha \gamma \omega ́ \gamma o v \chi \rho \omega ́ \mu \alpha \tau \circ \varsigma \delta 10 \xi \alpha$ ̧̌iv $\rceil \varsigma$ C.I. Pigment Violet 23.

 $\alpha \zeta \omega \chi \rho \omega \mu \alpha ́ \tau \omega v$.

ПЕPIEXOMENA

1．ПРОАОГОЕ 1
2．EIइAГ $\boldsymbol{2}$ ． 3
3．ПРОНГМЕNА ПОАYМЕРН 6
A．ПOАYMEPEI Σ EN $\Omega \Sigma E I \Sigma$ 6
 6
β ．T $\alpha \xi ı$ о́ $\mu \eta \sigma \eta$－I $\delta ı$ о́ $\eta \tau \varepsilon \varsigma ~-~ Х \eta \mu ı \kappa \eta ́ ~ \sigma v ́ v \delta \varepsilon \sigma \eta ~$ 6
γ ．Гє $\quad \mu \varepsilon \tau \rho \iota к \emptyset$ Ібоцє́ $\varepsilon є ı \alpha$ 8
δ ．Аv $\downarrow \iota \delta \rho \alpha ́ \sigma \varepsilon ı \varsigma ~ П о \lambda v \mu \varepsilon \rho ı \sigma \mu о v ́ ~$ 9
є．Мє́б П Пŋŋю́́бєळऽ 11
B．ПРОНГМЕNE Σ ПOИYMEPIKE Σ EN $\Omega \Sigma E I \Sigma$ 11
α ．Opıб μ ós－Пגєоvєктท́ $\mu \alpha \tau \alpha$ 11
 11
 14
 18
 －Ефариоүє́s
 21
 25
 26
 27
そ／$\kappa \alpha \iota$ М $\eta \uparrow \tau \alpha$
 30
1．Подข 31
ı ．Подvиєрıкоí A甲рои́ 32
ı β ．Y $\delta \rho о \gamma \varepsilon ́ \lambda \varepsilon \varsigma$ 34
$\imath \gamma$ ．Bıоӥ $\lambda \imath \kappa \alpha ́$ 36
4．ХРЯМАТА каІ ПРОНГМЕNА ПОАҮМЕРН 40
A．H ENNOIA TOY XPSMATO 40
α ．H $\Delta \iota \tau \tau \eta$ Фv́бף $\tau 0 v \Phi \omega \tau o ́ \varsigma ~-~ \Sigma v ́ \gamma \chi \rho o v \varepsilon \varsigma ~ \Theta \varepsilon \omega \rho i ́ \varepsilon \varsigma ~$ 40
 41
Орүаvıкદ́ऽ Evต́бદıs
 44
В．ХРЯМАТА КАТАААНАА ГІА ПРОНГМЕNE Σ ПОАYМЕРIKЕ Σ 45 ENSEEI』
α ． $\mathrm{A} \zeta \omega \chi \rho \omega ́ \mu \alpha \tau \alpha$ 45
β ．Х $\rho \oplus ́ \mu \alpha \tau \alpha$ AvӨракıvóvŋร 47
子. Хрต́ $\mu \alpha \tau \alpha$ Ivঠıкои́ 49
 51
 53
$\sigma \tau$. Хрต́ $\mu \alpha \tau \alpha$ Пєридєvíov 54
Г. TPOПOI $\Sigma Y N \Delta E \Sigma H \Sigma$ MOPI 56
 56
 57
 58
ПОАYMEP
5. $\Sigma Y Z H T H \Sigma H-\Sigma Y M \Pi E P A \Sigma M A T A$ 64
6. ВІВАІОГРАФІА 67

1. ПРОАОГОェ

 $\sigma \eta \mu \alpha \nu \tau \iota \kappa \varepsilon ́ \varsigma ~ \alpha \lambda \lambda \alpha \gamma \varepsilon ́ \varsigma ~ \sigma \tau \eta \nu ~ \kappa \alpha \theta \eta \mu \varepsilon \rho เ v \eta ́ ~ \zeta \omega \eta ́ ~ \tau \omega v ~ \alpha v \theta \rho \omega ́ \pi \omega v$ (ó $\pi \omega \varsigma ~ \sigma \tau о ~ \pi \alpha \rho \varepsilon \lambda \theta o ́ v ~ \eta$

 бףцıоирүía $\beta \varepsilon \lambda \tau \iota \omega \mu \varepsilon ́ v \omega v ~ \chi \rho \omega \sigma \tau ı к ळ ́ v, ~ \tau \alpha ~ \mu o ́ \rho ı \alpha ~ \tau \omega v ~ о \pi о i ́ \omega v ~ \sigma u v \delta \varepsilon ́ o v \tau \alpha ı ~ \mu \varepsilon ~ \tau о ~$ vло́бтрю $\mu \alpha, \varepsilon \mu \varphi \alpha v i ́ \zeta o v \tau \alpha \varsigma ~ \mu \varepsilon \gamma \alpha \lambda v ́ \tau \varepsilon \rho \eta ~ \sigma \tau \alpha \theta \varepsilon \rho о ́ \tau \eta \tau \alpha ~ к \alpha ı ~ \alpha \nu \tau о \chi ף ́ ~ \tau о v ~ \chi \rho \omega \mu \alpha \tau \iota \sigma \mu о v ́, ~$
 (о́ $\pi \omega \varsigma ~ \alpha \nu \tau ı \pi \nu \rho ı к \eta ́ ~ \pi \rho о \sigma \tau \alpha \sigma i \alpha) . ~ Е \pi ı \pi \lambda \varepsilon ́ o v, ~ \alpha v \alpha \pi \tau ט ́ \chi \theta \eta \kappa \alpha \nu ~ \mu \varepsilon ́ \theta o \delta o ı ~ \pi \alpha \rho \alpha \sigma \kappa \varepsilon v \eta ́ s ~$

2. EIEAГ $\boldsymbol{2}$ ГН

 $\sigma \tau \alpha$ охŋ́ $\mu \alpha \tau \alpha$ [1].

 $\chi \eta \mu \kappa o ́ \varsigma ~ P a u l ~ J o h n ~ F l o r y ~(1910-1985) ~ \mu \varepsilon \lambda \varepsilon ́ \tau \eta \sigma \varepsilon, ~ \mu \varepsilon \tau \alpha \xi ์ ์ ~ \alpha ́ \lambda \lambda \omega v, ~ \tau o v ~ \tau \rho o ́ \pi o ~ \sigma o ́ v \theta \varepsilon \sigma \eta \varsigma ~$

 $\mu \varepsilon \gamma \alpha \lambda \dot{\tau \varepsilon \rho \eta ~ \alpha \nu \tau о \chi \eta ́, ~ \mu ı к р о ́ \tau \varepsilon \rho о ~ \beta \alpha ́ \rho о \varsigma, ~ \mu к к \rho о ́ \tau \varepsilon \rho о ~ к о ́ \sigma \tau о \varsigma ~ \pi \alpha \rho \alpha \gamma ต \gamma \eta ̆ \varsigma, ~ \delta v v \alpha \tau o ́ \tau \eta \tau \alpha ~}$ $\tau \alpha \chi \cup ́ \tau \varepsilon \rho \eta \varsigma ~ \pi \alpha \rho \alpha \gamma \omega \gamma \eta ́ s ~ \kappa \alpha ı ~ \sigma \varepsilon ~ \varepsilon \pi \imath \theta \nu \mu \eta \tau \varepsilon ́ \varsigma ~ \pi о \sigma o ́ \tau \eta \tau \varepsilon \varsigma . ~ П \alpha \rho \alpha ́ \lambda \lambda \eta \lambda \alpha, \alpha \dot{\alpha} \rho \chi ı \alpha \nu v \alpha$

 $\pi i \varepsilon \sigma \eta \varsigma ~ \eta ́ ~ \theta \varepsilon \rho \mu о к \rho \alpha \sigma i ́ \alpha \varsigma), \kappa \alpha \theta \omega ́ \varsigma ~ \sigma \tau \eta \nu \tau \alpha ́ \xi \eta \eta ~ \tau \omega \nu \pi \rho о \eta \gamma \mu \varepsilon ́ v \omega \nu ~ \sigma v \mu \pi \varepsilon \rho ı \lambda \alpha \mu \beta \alpha ́ v o v \tau \alpha \iota$

 vаvок $\lambda \dot{\mu} \alpha к а \varsigma ~[8] . ~$

То غ́tos $1998 \pi \alpha \rho \alpha \sigma \kappa \varepsilon v \alpha ́ \sigma \tau \eta \kappa \alpha \nu ~ \tau \alpha ~ \pi \rho ต ́ \tau \alpha ~ v \alpha v o \sigma ט ́ v \theta \varepsilon \tau \alpha ~ \pi о \lambda \nu \mu \varepsilon \rho ı к \alpha ́ ~ v \lambda ı \kappa \alpha ́, ~$ $\alpha v o i ́ \gamma o v \tau \alpha \varsigma ~ \tau о ~ \delta \rho о ́ \mu о ~ к \alpha ı ~ \gamma ı \alpha ~ \tau \eta \nu ~ v \lambda о \pi о і ́ \eta \sigma \eta ~ \sigma \chi \varepsilon \delta i ́ \omega v ~ \delta \eta \mu ı о и \rho \gamma i ́ \alpha \varsigma ~ v \beta \rho ı \delta ı к ळ ́ v ~$

 $\sigma \tau \alpha \tau \varepsilon \lambda ル \alpha \dot{\alpha} \pi \rho о$ ióv $\tau \alpha$ [9].

 $\pi \rho о \sigma \varphi \varepsilon ́ \rho о \nu \tau \alpha \varsigma ~ \varepsilon ́ \tau \sigma \iota ~ \sigma \eta \mu \alpha \nu \tau \iota \kappa \alpha ́ ~ о \varphi \varepsilon ́ \lambda \eta ~ \alpha v \alpha \varphi о \rho ı к \alpha ́ ~ \mu \varepsilon ~ \tau \eta \nu ~ \varepsilon \xi ̆ о ю к о v o ́ \mu \eta \sigma \eta ~ \chi \rho o ́ v о v, ~$ $\varepsilon v \varepsilon ́ \rho \gamma \varepsilon เ \alpha \varsigma ~ \alpha \lambda \lambda \alpha ́ ~ \kappa \alpha ı ~ \tau \eta ~ \mu \varepsilon i ́ \omega \sigma \eta ~ \tau о v ~ к о ́ \sigma \tau о \cup \varsigma ~ \pi \alpha \rho \alpha \gamma \omega \gamma \eta ́ \varsigma . ~$

3. ПРОНГМЕNA ПО

A. ПOАYMEPEI Σ EN $\Omega \Sigma E I \Sigma$

α. Oрıбио́ऽ - Пعрıүрафท́

 т'่ $\gamma \mu \alpha \tau \circ \varsigma$ [5].

 $\alpha v \alpha \delta \iota \pi \lambda \omega ́ v \varepsilon \tau \alpha \iota \mu \varepsilon \tau \eta v \varepsilon \pi i ́ \delta \rho \alpha \sigma \eta$ Ө $\rho \mu \iota \kappa \dot{v} \alpha \lambda \lambda \alpha \gamma \dot{\omega} v[10]$.

β T T $\boldsymbol{\xi} ı v o ́ \mu \eta \sigma \eta-I \delta ı o ́ \tau \eta \tau \varepsilon \varsigma-X \eta \mu \iota \kappa \eta ์ \sigma v ์ v \delta \varepsilon \sigma \eta$

 $\kappa \alpha ı ~ \sigma v v \theta \varepsilon \tau \iota \kappa \alpha ́(\tau \varepsilon \chi \vee \eta \tau \alpha ́ ~ к \alpha ı ~ \tau \rho о \pi о т о џ \eta \mu \varepsilon ́ v \alpha ~ \varphi v \sigma ı \kappa \alpha ́) ~[5,11] . ~$.

 $\mu \alpha к \rho о \mu о р ı \alpha к \eta ́ ~ \alpha \lambda v \sigma i \delta \alpha ~ \sigma \varepsilon: ~ i) ~ \varepsilon v \alpha \lambda \lambda \alpha \sigma \sigma o ́ \mu \varepsilon v \alpha, ~ i i) ~ \mu \varepsilon ~ \delta 1 \alpha ́ \tau \alpha \xi \xi \eta ~ \tau v \chi \alpha i ́ \alpha ~ \eta ́ ~ \beta \alpha ́ \sigma \varepsilon є ~$ $\sigma \tau \alpha \tau \iota \sigma \tau \iota \kappa 0 v ́^{\kappa \alpha v o ́ v \alpha, ~ i i i) ~} \kappa \alpha \tau \alpha ́ \alpha v \sigma \tau \alpha ́ \delta \varepsilon \varsigma$, iv）$\varepsilon \mu \beta 0 \lambda ı \alpha \sigma \mu \varepsilon ́ v \alpha$ ．

 $\sigma \tau \eta \vee \pi о \lambda \nu \mu \varepsilon \rho ⿺ 𠃊 \emptyset ́ \alpha \lambda \nu \sigma i ́ \delta \alpha$ ．
 $\theta \varepsilon \rho \mu о \sigma \kappa \lambda \eta \rho v v o ́ \mu \varepsilon v \alpha$ ．

 $\sigma \varepsilon \alpha \nu \tau i \theta \varepsilon \sigma \eta \mu \varepsilon \tau \alpha \varepsilon \lambda \alpha \sigma \tau о \mu \varepsilon \rho \eta$ ．
 （ $\alpha \nu \tau о \chi \eta ́ \quad \sigma \varepsilon ~ \varepsilon \varphi \varepsilon \lambda \kappa v \sigma \mu o ́, ~ к \alpha ́ \mu \psi \eta, ~ \varepsilon \lambda \alpha \sigma \tau ı к о ́ \tau \eta \tau \alpha), ~ \eta ~ \theta \varepsilon \rho \mu о к \rho \alpha \sigma i ́ \alpha ~ v \alpha \lambda \omega ́ \delta о v \varsigma ~$

 $\pi о \lambda \nu \mu \varepsilon \rho ⿺ к и ́ \varsigma ~ \alpha \lambda \cup \sigma i ́ \delta \alpha \varsigma ~[5,13] . ~$

$\mu \varepsilon ́ \sigma \alpha ~ \sigma \tau о ~ \chi \omega ́ \rho o, ~ \delta \eta \lambda \alpha \delta \delta \dot{\eta} \eta$ $\delta ı \varepsilon v \theta \varepsilon ́ \tau \eta \sigma \eta ~ \eta ́ ~ \mu \eta ~ \tau \omega v ~ \alpha \tau o ́ \mu \omega v ~ \sigma v ́ \mu \varphi \omega v \alpha ~ \mu \varepsilon ~ \tau \eta$

 $\theta \varepsilon \rho \mu о \pi \lambda \alpha \sigma \tau \iota \kappa \alpha ́ ~ \eta ́ ~ \varepsilon \lambda \alpha \sigma \tau о \mu \varepsilon \rho \dot{~}[11,13]$.

 $\mu \varepsilon ́ \sigma \alpha$ бто $\mu \alpha к \rho о \mu о ́ \rho ı o ~[5,13]$.

$\gamma . ~ Г \varepsilon \omega \mu \varepsilon \tau \rho เ к \eta ́ ~ \iota б о \mu \varepsilon ́ \rho \varepsilon เ \alpha ~$

 орүаvıкó μ ópıo $\alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ t \alpha ı ~ \alpha \pi o ́ ~ \varepsilon ́ v \alpha ~ \delta \varepsilon \sigma \mu o ́ ~ \pi ~ к \alpha ı ~ \varepsilon ́ v \alpha ~ \delta \varepsilon \sigma \mu o ́ ~ \sigma, ~ v \pi \alpha ́ \rho \chi \varepsilon ı ~ \eta ~ \delta v v \alpha \tau o ́ \tau \eta \tau \alpha ~$

 trans.

cis- β ovđévıo 2

trans- β ov ε ย́vıo 2
$\Sigma \chi \eta ́ \mu \alpha 1 . ~ Г \varepsilon \omega \mu \varepsilon \tau \rho ı к \alpha ́ ~ \imath \sigma о \mu \varepsilon \rho \eta ́ ~ \tau о v ~ \beta o v \tau \varepsilon v i ́ o v-2 . ~$

Н $\pi \alpha \rho \alpha \gamma \omega \gamma \eta ́ ~ \tau \omega \nu ~ \sigma \nu v \theta \varepsilon \tau \iota \kappa \omega ́ v ~ \pi о \lambda \nu \mu \varepsilon \rho \omega ́ v ~ \pi \rho \alpha \gamma \mu \alpha \tau о \pi о є \varepsilon i ́ \tau \alpha ı ~ \mu \varepsilon ~ \tau \eta ~ \beta о \eta ́ \theta \varepsilon ı \alpha$

 $\alpha \nu \tau \iota \delta \rho \alpha ́ \sigma \varepsilon ı \varsigma ~ \pi о \lambda \cup \sigma v \mu \pi v ́ \kappa \nu \omega \sigma \eta \varsigma, ~ \varepsilon \kappa \tau o ́ \varsigma ~ \alpha \pi o ́ ~ \tau о ~ \varepsilon \pi ı \theta v \mu \eta \tau o ́ ~ \pi о \lambda \nu \mu \varepsilon \rho \varepsilon ́ \varsigma, ~$
 vброх $\lambda \dot{\rho} \rho ı$.
β) $\alpha v \alpha ́ \lambda о \gamma \alpha \mu \varepsilon$ то $\mu \eta \chi \alpha v ı \sigma \mu o ́ ~ \tau о v \varsigma: ~ \sigma \varepsilon ~ \alpha \lambda v \sigma \omega \tau \varepsilon ́ \varsigma ~ к \alpha ı ~ \sigma \tau \alpha \delta ı \alpha \kappa \varepsilon ́ \varsigma ~ \alpha v \tau \iota \delta \rho \alpha ́ \sigma \varepsilon ı \varsigma ~$
 ठı́́крıбๆ.
$\Sigma \tau ı \zeta ~ \sigma \tau \alpha \delta ı \alpha \kappa \varepsilon ́ \varsigma ~ \alpha \nu \tau \iota \delta \rho \alpha ́ \sigma \varepsilon \iota \varsigma, ~ \tau о ~ \pi о \lambda \nu \mu \varepsilon \rho \varepsilon ́ \varsigma ~ \sigma \chi \eta \mu \alpha \tau i \zeta \varepsilon \tau \alpha \iota ~ \sigma \tau \alpha \delta ı \alpha \kappa \alpha ́ ~ \alpha \pi o ́ ~$

 $\alpha v \tau \iota \delta \rho \alpha ́ \sigma \varepsilon ı \varsigma \alpha v \tau \varepsilon ́ \varsigma ~ \tau \alpha \xi ı v o \mu о v ́ v \tau \alpha ı ~ \pi \varepsilon \rho \alpha ı \tau \varepsilon ́ \rho \omega: ~ \sigma \varepsilon ~ \alpha v \tau \iota \delta \rho \alpha ́ \sigma \varepsilon ı \varsigma ~ \delta v ́ o ~ \mu о v о \mu \varepsilon \rho ஸ ́ v ~ \mu \varepsilon ~ \delta v ́ o ~$

 олоі́оऽ $\chi \alpha \rho \alpha \kappa \tau \eta \rho i ́ \zeta \varepsilon є \alpha \iota ~ \alpha \pi o ́ ~ \mu \varepsilon \gamma \alpha ́ \lambda \eta ~ \sigma \tau \alpha \theta \varepsilon \rho о ́ \tau \eta \tau \alpha[5,11] . ~ М \varepsilon ~ \sigma \tau \alpha \delta ı \alpha к \varepsilon ́ \varsigma ~ \alpha v \tau \iota \delta \rho \alpha ́ \sigma \varepsilon ı \varsigma ~$

 $\rho \eta \tau i v \varepsilon \varsigma ~ \varphi \alpha ı v o ́ \lambda \eta \varsigma-\varphi о \rho \mu \alpha \lambda \delta \varepsilon \ddot{\delta} \delta \eta \zeta(\theta \varepsilon \rho \mu о \pi \lambda \alpha \sigma \tau ו \kappa \alpha ́)$.

- $\tau \circ \vee \tau \varepsilon \rho \mu \alpha \tau \iota \sigma \mu$ [5].

 $\alpha ı \theta \backslash \lambda \varepsilon v i ́ o v$.

Oı $\mu \varepsilon ́ \theta$ oסoı $\varepsilon \pi i ́ \tau \varepsilon v \xi \eta \varsigma ~ \sigma \tau \alpha \delta ı \alpha к о v ́ ~ \pi о \lambda v \mu \varepsilon \rho ı \sigma \mu о v ́ ~ \sigma \tau ı \varsigma ~ \beta ı о \mu \eta \chi \alpha v ı к \varepsilon ́ \varsigma ~ \mu о v \alpha ́ \delta \varepsilon \varsigma ~$ ठıккрívoviаı бє:

 $\pi о \lambda \nu \mu \varepsilon \rho \eta ́ \theta \varepsilon \rho \mu о \sigma \tau \alpha \theta \varepsilon \rho \alpha ́ ~ v \lambda ı \alpha \alpha$, о́ $\pi \omega \varsigma ~ \tau \alpha ~ \pi о \lambda \nu \alpha \mu i ́ \delta ı \alpha$.

 $\alpha \lambda \lambda \alpha \dot{\alpha}) \mu \varepsilon$ то $\mu \alpha к \rho о \mu о ́ \rho ı о ~ \pi о ข ~ \alpha v \alpha \pi \tau v ́ \sigma \sigma \varepsilon \tau \alpha ı ~ \sigma \tau \eta ~ \mu \varepsilon \sigma \varepsilon \pi \iota \varphi \alpha ́ v \varepsilon ı \alpha ~ \tau \omega v ~ \delta v ́ o ~ v \gamma \rho ळ ́ v ~$ [10,13].
$\Sigma \varepsilon$ ó $\lambda \varepsilon \varsigma ~ \tau ı \zeta ~ \alpha v \tau ı \delta \rho \alpha ́ \sigma \varepsilon ı \zeta ~ \pi о \lambda \nu \mu \varepsilon \rho ı \sigma \mu о ט ́, ~ \pi \rho о к \varepsilon щ \varepsilon ́ v о v ~ v \alpha ~ \pi \alpha \rho \alpha \chi \theta \varepsilon i ́ ~ \tau о ~$

ع. Мє́ $\sigma \alpha \pi \lambda \eta \rho \omega ́ \sigma \varepsilon \omega \varsigma$

 $\pi \rho о \sigma \tau i ́ \theta \varepsilon v \tau \alpha \iota ~ \kappa \alpha ı ~ \alpha ́ \lambda \lambda \varepsilon \varsigma ~ \chi \eta \mu ル \varepsilon ́ \varsigma ~ \varepsilon v ต ́ \sigma \varepsilon ı \varsigma ~(\mu \varepsilon ́ \sigma \alpha ~ \pi \lambda \eta \rho ต ́ \sigma \varepsilon \omega \varsigma), ~ \pi о v ~ \sigma v v \delta \varepsilon ́ o v \tau \alpha ı ~ \sigma \tau \eta \nu$

B. ПРОНГМЕNE ПОИYMEPIKE Σ EN $\Omega \Sigma E I \Sigma$

 аขтохต́v.

 ŋ́т $\alpha \nu$ v $\beta \rho \varepsilon \theta \varepsilon i ́ ~ \eta ~ \delta о \mu \eta ́ ~ \pi о v ~ \theta \alpha ~ \varepsilon \pi ı \tau \rho \varepsilon ́ \pi \varepsilon ı ~ \tau \eta \nu ~ \varepsilon \lambda \varepsilon v ́ \theta \varepsilon \rho \eta ~ к i ́ v \eta \sigma \eta ~ \eta \lambda \varepsilon к \tau \rho о v i ́ \omega v ~ \sigma \tau \eta ~$

 $\pi \cup \rho \eta ́ v \varepsilon \varsigma, ~ \varepsilon v \omega ́ ~ \delta v ́ o ~ \mu \eta ~ v ß \rho \iota \delta о \pi о ı \eta \mu \varepsilon ́ v \alpha ~ p ~ \tau \rho о \chi ı к \alpha ́ ~ \alpha \lambda \lambda \eta \lambda \varepsilon \pi \iota к \alpha \lambda v ́ \pi \tau о \nu \tau \alpha l ~ к \alpha ı ~$
 $\alpha \tau о \mu \iota \kappa о v ́ \varsigma ~ \pi \cup \rho \eta ́ v \varepsilon \varsigma$.
 $\kappa \alpha ı ~ \delta ı \pi \lambda о v ́ s ~ \delta \varepsilon \sigma \mu о v ́ s ~ \kappa \alpha ı ~ \eta ~ \delta ı \alpha \mu о ́ \rho \varphi \omega \sigma \eta ~ \alpha v \tau \eta ์ ~ о \varphi \varepsilon i ́ \lambda \varepsilon \tau \alpha ı ~ \sigma \varepsilon ~ \eta \lambda \varepsilon \kappa \tau \rho о v ı к \varepsilon ́ \varsigma ~ \mu \varepsilon \tau \alpha \tau о \pi i ́ \sigma \varepsilon ı \varsigma ~$

 $\eta \lambda \varepsilon \kappa \tau \rho ı \kappa о и ́ ~ \varphi о \rho \tau i ́ o v, ~ \mu \varepsilon ~ \alpha \pi о \tau \varepsilon ́ \lambda \varepsilon \sigma \mu \alpha ~ o ́ \tau \alpha v ~ \alpha v క ̧ \alpha ́ v \varepsilon \tau \alpha \iota ~ о ~ \alpha \rho ı \theta \mu o ́ s ~ \tau \omega v ~ \pi ~ \eta \lambda \varepsilon \kappa \tau \rho о v i ́ \omega v ~ v \alpha$ $\alpha v \xi \alpha ́ v \varepsilon \tau \alpha \iota ~ \kappa \alpha ı \eta ~ \alpha \gamma \omega \gamma \mu$ о́тๆ $\tau \alpha$ тоข v $\lambda ı \kappa о и ́ ~[14] . ~$

Нцıаүต́үца орүаvıка́ v入ıка́ $\delta \eta \mu ı$ роүои́vтаı:
 оद彑єı $\delta i ́ \omega v, \gamma \rho \alpha \varphi i ́ \tau \eta)$.
ß) $\mu \varepsilon \alpha \pi \varepsilon \lambda \varepsilon v \theta \varepsilon ́ \rho \omega \sigma \eta$, $\mu \varepsilon \tau \alpha \varphi о \rho \alpha ́ ~ \eta ́ ~ \delta \varepsilon ́ \sigma \mu \varepsilon v \sigma \eta ~$ ı́vт ωv, $\varrho \sigma \tau \varepsilon ~ \eta ~ \alpha \gamma \omega \gamma ц о ́ \tau \eta \tau \alpha ~ v \alpha ~$

 $\mu \varepsilon \tau \alpha \varphi о \rho \alpha ́ ~ \varphi о \rho \tau i ́ \omega v ~ \alpha v \alpha ́ \mu \varepsilon \sigma \alpha ́ ~ \tau о v \varsigma . ~ М \varepsilon ~ \tau \eta ~ \mu \varepsilon ́ ध o \delta o ~ \alpha v \tau \eta ́ ~ \delta \eta \mu ı о ч \rho \gamma о v ́ v \tau \alpha ı ~ \eta \mu ı \alpha \gamma \omega \gamma o i ́ ~$ tútov p.

 $\delta \varepsilon \sigma \mu \dot{v}$, $\alpha \lambda \lambda \alpha \dot{\alpha} \alpha \pi \alpha ı \varepsilon i ́ \tau \alpha ı ~ \varepsilon \pi ı \pi \rho о \sigma \theta \varepsilon ́ \tau \omega \varsigma ~ \eta ~ о \xi \varepsilon i \delta \omega \sigma \eta ~ \eta ́ ~ \alpha v \alpha \gamma \omega \gamma \eta ́ ~ \tau \eta \varsigma ~ \pi о \lambda \nu \mu \varepsilon \rho ı \kappa \eta ́ s ~$

 $\varepsilon \pi i \pi \varepsilon \delta о$ а $\alpha \omega \gamma \mu$ о́тптаऽ [14].

 $\eta \lambda \varepsilon \kappa \tau \rho о v i ́ \omega v$, о́тоv $\lambda \alpha \mu \beta \alpha ́ v \varepsilon \imath ~ \chi \omega ́ \rho \alpha ~ \eta ~ \mu \varepsilon \tau \alpha \xi ์ ́ ~ \tau о v \varsigma ~ \mu \varepsilon \tau \alpha \varphi о \rho \alpha ́ ~ \varphi о \rho \tau i ́ \omega v . ~ ' E \chi \varepsilon ı ~$
 vлєраүตүцо́тๆта бто v $\lambda \iota к о ́ ~[14] . ~$

 $\pi о \lambda v \alpha v \lambda \lambda i v \eta ~[14]$.
(α)

- $\quad \eta \lambda \varepsilon \kappa \tau \rho ⿺ \kappa \dot{́ v} \kappa о \kappa \lambda \omega \mu \alpha ́ \tau \omega v$,

 $\sigma v \sigma \tau \eta ́ \mu \alpha \tau \alpha$ ع $\lambda \varepsilon \gamma \chi о ́ \mu \varepsilon v \eta \varsigma ~ \chi о \rho \eta ́ \gamma \eta \sigma \eta \varsigma ~ \varphi \alpha \rho \mu \alpha ́ \kappa \omega v)$,

- δ เó $\delta \omega v \varepsilon \kappa \pi о \mu \pi \dot{\prime} \varsigma ~ \varphi \omega \tau o ́ \varsigma ~(o ́ \pi \omega \varsigma ~ \lambda \alpha ́ \mu \pi \varepsilon \varsigma ~ L E D), ~$
- $\lambda \varepsilon \pi \tau \dot{\omega} v$ o日ovóv (OLED, TOLEDs PLDC, LCDs, PDLCDs, $\pi \lambda \alpha ́ \sigma \mu \alpha \tau o \varsigma) \gamma 1 \alpha$

 $\left.\mu \pi \alpha \tau \alpha \rho^{\varepsilon} \varepsilon \varsigma \alpha v \tau о к ı v \grave{\tau} \tau \omega v\right)$,

 $\mu о \rho \varphi \eta ́ ~ \varphi \omega \tau о v i ́ \omega v) ~ \kappa \alpha \tau \alpha ́ ~ \tau \eta \nu \alpha \pi о \delta \iota \varepsilon ́ \gamma \varepsilon \rho \sigma \eta ~ \tau \omega v \alpha \pi \varepsilon v \tau о \pi \iota \sigma \mu \varepsilon ́ v \omega v \eta \lambda \varepsilon \kappa \tau \rho о v i ́ \omega v \tau \sigma \varsigma, \tau \alpha$ отоі́ о́ о́ $\omega \varsigma$ б $\delta \varepsilon \gamma \varepsilon ́ \rho \theta \eta \kappa \alpha v \chi \omega \rho i ́ \varsigma ~ v \alpha ~ \tau о \cup \varsigma ~ \pi \rho о \sigma \delta о \theta \varepsilon i ́ ~ \theta \varepsilon \rho \mu о ́ \tau \eta \tau \alpha ~[17] . ~$.

 $\chi \rho o ́ v o v 10^{-9} \omega \varsigma 10^{-12} \sec \alpha \pi$ о́ $\tau \eta \nu \alpha \pi о \rho \rho o ́ \varphi \eta \sigma \eta ~ \omega \varsigma ~ \tau \eta \nu \varepsilon \kappa \pi о \mu \pi \eta ́ ~ \varphi \omega \tau o ́ \varsigma . ~ A v \tau i ́ \theta \varepsilon \tau \alpha, \eta$

[^0]

 opató [18].

 $\sigma \tau ı \varsigma ~ \varepsilon v \delta ı \alpha ́ \mu \varepsilon \sigma \varepsilon \varsigma ~ \kappa \alpha \tau \alpha \sigma \tau \alpha ́ \sigma \varepsilon \iota \varsigma ~ \kappa \alpha ı \mu \varepsilon ́ \chi \rho ı ~ \tau \eta ~ \mu \varepsilon \tau \alpha ́ \pi \tau \omega \sigma \eta ~ \sigma \tau \eta ~ \theta \varepsilon \mu \varepsilon \lambda ı ต ́ \delta \eta ~ \pi \alpha \rho \alpha \tau \eta \rho о v ́ v \tau \alpha ı$
 єvદ́pүєıas [17].

О $\varphi \theta$ орı $\sigma \mu$ о́ $\varepsilon \pi \eta \rho \varepsilon \alpha ́ \zeta \varepsilon \tau \alpha \iota ~ \sigma \eta \mu \alpha \nu \tau \iota \kappa \alpha ́ \alpha ~ \alpha \pi o ́ ~ \pi \alpha \rho \alpha ́ \gamma о \nu \tau \varepsilon \varsigma ~ o ́ \pi \omega \varsigma: ~$

 $\delta \varepsilon v \varphi \theta$ о́ícı).

 $\lambda \alpha \mu \beta \alpha ́ v \varepsilon \iota ~ \chi \omega ́ \rho \alpha ~ \eta ~ \varepsilon \pi \alpha v \alpha \sigma ט ́ v \delta \varepsilon \sigma \eta ~ \tau \omega v ~ \zeta \varepsilon \cup \gamma ต ́ v ~ \eta \lambda \varepsilon \kappa \tau \rho о v i ́ \omega v ~ \kappa \alpha ı ~ о \pi \omega ́ v ~ к \alpha \tau \alpha ́ ~ \tau \eta \nu$

 $\chi \rho \omega \mu \alpha ́ \tau \omega v$.
 $\tau \omega v$ led, $\omega \sigma \tau \varepsilon v \alpha \pi \alpha \rho \alpha ́ \gamma o v v ~ \tau о ~ \varepsilon \kappa \pi \varepsilon \mu \pi o ́ \mu \varepsilon v o ~ \varphi \omega \varsigma . ~ O \imath ~ \sigma v \sigma \kappa \varepsilon v \varepsilon ́ \varsigma ~ \varphi \omega \tau ı \sigma \mu о v ́ ~ W H O L E D s ~$ (White Emitting OLEDs), $\alpha \pi о \tau \varepsilon \lambda о ⿱ ㇒ v ~ \varepsilon \pi i ́ \pi \varepsilon \delta \varepsilon \varsigma ~ \delta ı \alpha \tau \alpha ́ \xi \varepsilon ı \varsigma ~ \varepsilon \pi \alpha ́ \lambda \lambda \eta \eta \lambda \omega v ~ \pi о \lambda \nu \mu \varepsilon \rho ı к ळ ́ v$

 $\pi \lambda \alpha \kappa ळ ́ v . ~ К \alpha ́ \theta \varepsilon ~ к \varepsilon \lambda i ́ ~ \delta ı \alpha \theta \varepsilon ́ \tau \varepsilon ı ~ \chi \omega \rho ı \sigma \tau \alpha ́ ~ \eta \lambda \varepsilon \kappa \tau г o ́ \delta ı \alpha ~ \kappa \alpha ı ~ \varepsilon \pi \imath \kappa \alpha ́ \lambda \nu \psi \eta ~ \mu \varepsilon ~ \varphi \omega \sigma \varphi о р і ́ \zeta о \nu ~$

 ข入ıко́, $\mu \varepsilon \alpha \pi о \tau \varepsilon ̇ \lambda \varepsilon \sigma \mu \alpha \kappa \alpha ́ \theta \varepsilon$ к $\lambda \lambda i ́ v \alpha$ $\varphi \omega \tau i ́ \zeta \varepsilon \tau \alpha ı ~ \chi \omega \rho ı \sigma \tau \alpha ́ ~ \varepsilon \pi ı \tau v \gamma \chi \alpha ́ v o v \tau \alpha \varsigma ~ \varepsilon \cup к \rho i ́ v \varepsilon ı \alpha, ~$

O ópos Laser $\alpha \pi о \tau \varepsilon \lambda \varepsilon$ є́ τ о $\alpha к \rho \omega v$ о́ μ о $\tau \omega v ~ \lambda \varepsilon ́ \xi \xi \varepsilon \omega v$ Light Amplification by Stimulated Emission Radiation, π оט $\alpha \pi о \delta i \delta \varepsilon \tau \alpha \iota ~ \sigma \tau \alpha ~ \varepsilon \lambda \lambda \eta v ı \kappa \alpha ́ \sigma \alpha v ~ \varepsilon v i ́ \sigma \chi \nu \sigma \eta ~ \varphi \omega \tau o ́ \varsigma ~ \mu \varepsilon$

 Laser vүрǿv, $\alpha \varepsilon \rho i ́ \omega v$.

 $\tau \alpha \alpha v \theta \rho \alpha \kappa \varepsilon ์ v ı \alpha)$. Н $\chi \rho \omega \sigma \tau \iota \kappa \eta ́ ~ \delta ı \alpha \lambda v ́ \varepsilon \tau \alpha \imath ~ \sigma \varepsilon ~ v \varepsilon \rho o ́, ~ \alpha ı \theta \alpha v o ́ \lambda \eta ~ \eta ́ ~ \mu \varepsilon \theta \alpha v o ́ \lambda \eta ~ к \alpha ı ~ \tau \alpha ~ \mu o ́ \rho ı \alpha ́ ~$

Iסıóтŋлєє - Е $\varphi \alpha \rho \mu о \gamma \varepsilon ́ \varsigma$

 «นєбо́ $\mu о \rho \varphi \eta » ~(v \gamma \rho о к \rho v \sigma \tau \alpha \lambda \lambda ı к \eta ́) ~ к \alpha \tau \alpha ́ \sigma \tau \alpha \sigma \eta ~ o ́ \tau \alpha v ~ v \pi о ́ к \varepsilon ı v \tau \alpha l ~ \sigma \varepsilon ~ \varepsilon v \delta ı \alpha ́ \mu \varepsilon \sigma \varepsilon \varsigma ~$ $\mu \varepsilon \tau \alpha \pi \tau \omega \sigma \varepsilon \iota \varsigma ~ \alpha \pi o ́ ~ \tau \eta ~ \sigma \tau \varepsilon \rho \varepsilon \eta ์ ~ \omega \varsigma ~ \tau \eta \nu ~ v \gamma \rho \eta ́ ~ \varphi \alpha ́ \sigma \eta, ~ \varepsilon \mu \varphi \alpha v i ́ ̧ o v \tau \alpha \varsigma ~ \sigma \chi \varepsilon \tau \iota к o ́ ~$

 $\mu \varepsilon \tau \alpha \beta \lambda \eta \theta \varepsilon i ́ ~ \mu \varepsilon ~ \tau \eta v ~ \varepsilon \varphi \alpha \rho \mu о \gamma \eta ́ ~ \eta \lambda \varepsilon \kappa \tau \rho ı к о v ́ ~ \pi \varepsilon \delta i ́ o v ~[14] . ~ Г 1 \alpha ~ \tau о ~ \sigma к о т о ́ ~ \alpha v \tau o ́ ~$
 $\pi о v \quad \varepsilon \mu \varphi \alpha v i ́ \zeta o v v ~ \tau \eta ~ \mu \varepsilon \sigma o ́ \mu о р \varphi \eta ~ к \alpha \tau \alpha ́ \sigma \tau \alpha \sigma \eta ~ \sigma \varepsilon ~ \delta 1 \alpha ́ \lambda v \mu \alpha ~ \mu \varepsilon ~ \sigma v \gamma к \varepsilon к р ц ц \varepsilon ́ v \eta$

 $\alpha 1 \theta \nu \lambda \varepsilon v \varepsilon \sigma \tau \varepsilon ́ \rho \alpha)$ (PET).

 FOLEDs, то π о $\lambda \omega \tau \iota \kappa o ́ ~ v \lambda ı к o ́ ~ \varepsilon \varphi \alpha \rho \mu o ́ \zeta \varepsilon \tau \alpha ı ~ \pi \alpha ́ v \omega ~ \sigma \varepsilon ~ \varepsilon v ́ к \alpha \mu \pi \tau о ~ v \pi o ́ \sigma \tau \rho \omega \mu \alpha ~(o ́ \pi \omega \varsigma ~ P E T ~$

 up assembly of photonic crystals, Chemical Society Reviews, 42 (7), 2528-2554 (2013)].

 $\tau \eta \nu \kappa \alpha \tau \varepsilon v ์ \theta v \vee \sigma \eta ~ \tau \eta \varsigma ~ \pi \varepsilon \rho 1 \circ \delta ı \kappa o ́ \tau \eta \tau \alpha \varsigma ~[14] . ~$

 ко́ $\mu \alpha \tau$ тоя [14].
 عívaı $\alpha v \alpha ́ \lambda o \gamma \eta ~ \tau о v ~ \alpha \rho ı \theta \mu о v ́ ~ \tau \omega v ~ \sigma \tau \rho \omega \mu \alpha ́ \tau \omega v ~ \tau о v ~ v \mu \varepsilon v i ́ o v ~ к \alpha ı ~ \tau \eta \varsigma ~ \delta ı \alpha \varphi o \rho \alpha ́ \varsigma ~ \tau \omega v ~$

 $\chi \rho \eta ́ \sigma \tau \varepsilon \varsigma ~[25] . ~$

Мє $\alpha v \tau \alpha ́ ~ \tau \alpha ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \alpha, ~ \theta \varepsilon \omega \rho \varepsilon i ́ \tau \alpha ı ~ \pi о \lambda \lambda \alpha ́ ~ v \pi о \sigma \chi о ́ \mu \varepsilon v \eta ~ \eta ~ \sigma v \mu ß о \lambda \eta ́ ~ \tau о v \varsigma ~ \sigma \tau \eta \nu ~$

 $\varepsilon к \mu \varepsilon \tau \alpha \lambda \lambda \varepsilon v ́ \sigma \mu \varepsilon \varsigma$ عíval ol $\delta v v \alpha \tau o ́ \tau \eta \tau \varepsilon ́ \varsigma ~ \tau о \cup \varsigma ~ \gamma l \alpha ~ \tau \eta ~ \delta \eta \mu ı о \rho \gamma i ́ \alpha ~ \alpha ı \sigma Ө \eta \tau \eta ́ \rho \omega v . ~$

غ. Фютохршнки́,
 Өєриохршикки́,
 Ндєкт $о \boldsymbol{\chi \rho \omega \mu \iota к \alpha ́ , ~}$

 $\mu \varepsilon \rho о к и \alpha v i ́ v \eta \varsigma ~ v \pi o ́ ~ \tau \eta v ~ \varepsilon \pi i ́ \delta \rho \alpha \sigma \eta ~ v \pi \varepsilon \rho ı ต ́ \delta o v \varsigma ~ \alpha к \tau \imath v o ß о \lambda i ́ \alpha \varsigma . ~$

 $\tau \eta \mu \varepsilon \tau \alpha \tau \rho о \pi \eta ́ ~ \tau о v \mu о \rho i ́ o v ~ \sigma \varepsilon \mu \varepsilon \rho о к v \alpha v i ́ v \eta, ~ \tau \eta \nu ~ \iota \sigma о \mu \varepsilon \rho \eta ́ ~ \mu о \rho \varphi \eta ́ ~ \pi о v ~ о \varphi \varepsilon i ́ \lambda \varepsilon ı ~ \tau \eta \nu$

 opatov́ [29].

 фютохршикои́я факои́я [28].

 $\alpha v \alpha \sigma \tau \rho \varepsilon ́ \psi \not \mu \alpha$ [34].

(α

(β)

 $\alpha \gamma \omega \gamma \mu$ о́тптає ка兀 $\chi \rho \omega \mu \kappa$ ко́тๆтає.

 O ópos $\pi \rho о \sigma \theta \varepsilon \tau \iota к \varepsilon ́ \varsigma ~ к \alpha \tau \alpha \sigma к \varepsilon v \varepsilon ́ \varsigma ~(R P T, ~ R a p i d ~ P r o t o t y p i n g) ~ \chi \rho \eta \sigma ц \mu о \pi о є i ́ \tau \alpha ı ~ \gamma ı \alpha ~ v \alpha ~$

 v $\lambda \iota \alpha \alpha ́ \omega \varsigma \pi \rho \omega ́ \tau \eta ~ ט ́ \lambda \eta$.

 $\pi \rho о \gamma \rho \alpha ́ \mu \mu \alpha \tau о \varsigma ̧ ~ \kappa \alpha ı ~ \varepsilon ı \delta ı \kappa о v ́ ~ \alpha \rho \chi \varepsilon ́ ́ o v ~ \eta \lambda \varepsilon к \tau \rho о v ı к о v ́ ~ v \pi о \lambda о \gamma ı \sigma \tau \eta ́ ~(о ́ \pi о v ~ \pi \varepsilon \rho ı \varepsilon ́ \chi о v \tau \alpha ı ~$
 ка兀абкєvŋ́ $\alpha v \tau \iota \kappa \varepsilon \mu \mu \varepsilon ́ v \circ v) ~[36]$.

 $\sigma \tau \alpha \theta \varepsilon \rho \eta ́ ~ \varepsilon \pi \iota \varphi \alpha ́ v \varepsilon ı \alpha ~ \kappa \alpha ı ~ \mu ı \alpha ~ \alpha \kappa \tau i ́ v \alpha ~ L a s e r ~ \delta i ́ v \varepsilon ı ~ \sigma \chi \eta ́ \mu \alpha, ~ \pi \alpha ́ \lambda ı ~ \sigma ט ́ \mu \varphi \omega v \alpha \mu \varepsilon \tau \imath \varsigma ~ \varepsilon \nu \tau о \lambda \varepsilon ́ \varsigma ~$

 [36].

 $\varepsilon \pi \imath \theta \nu \mu \eta \tau о$ 人́ $\alpha v \tau ı \kappa \varepsilon \not \mu \varepsilon ́ v o v ~[36] . ~$
 кик $\lambda \omega \mu \alpha ́ \tau \omega \nu \mu \varepsilon \pi \rho \omega ́ \tau \eta ~ v ́ \lambda \eta ~ \alpha \gamma ต ́ \gamma \mu \alpha ~ \pi о \lambda \nu \mu \varepsilon \rho \grave{\eta}$.

 актішоßодí $\alpha[4,37]$.

($\boldsymbol{\alpha}$) Nylon-66

($\boldsymbol{\beta}) \mathrm{Kevlar}{ }^{\circledR}$

 $\alpha \mu \delta \iota \kappa о v ́ s ~ \delta \varepsilon \sigma \mu о v ́ \varsigma, ~ \pi \rho о \sigma \delta i ́ \delta \varepsilon ı ~ \mu \varepsilon \gamma \alpha ́ \lambda \eta ~ \alpha v \tau о \chi \eta ́ ~ \sigma \tau о v ~ \varepsilon \varphi \varepsilon \lambda к ข \sigma \mu o ́ ~ к \alpha ı ~ \sigma \tau \eta \nu ~ v \psi \eta \lambda \eta ́ ~$

 $\pi \rho о \sigma \alpha v \alpha \tau о \lambda \imath \sigma \mu$ о́ $\tau \omega v \mu \alpha к \rho о \mu о \rho i ́ \omega v ~ \tau о v \varsigma ~[4,37]$.

$\eta ́ / \kappa \alpha \iota \mu \eta ́ \tau \rho \alpha$

 $\mu \varepsilon \rho \dot{v})$, о́лоv:

 тоv عívaı $\mu \varepsilon \gamma \alpha \lambda$ и́тєрך $\alpha \pi$ о́ 10\%.
 $\varepsilon \pi \iota \varphi \alpha ́ v \varepsilon 1 \alpha \mu \varepsilon \tau \alpha \xi 勹 ́ ~ \tau o v s$.

 óт αv то $\zeta \eta \tau о v ́ \mu \varepsilon v o ~ \varepsilon i ́ v \alpha ı ~ o l ~ \alpha v \xi \eta \mu \varepsilon ́ v \varepsilon \varsigma ~ \mu \eta \chi \alpha v ı к \varepsilon ́ \varsigma ~ ı \delta ı o ́ \tau \eta \tau \varepsilon \varsigma), ~ \pi \rho о \varepsilon \rho \chi о ́ \mu \varepsilon v \varepsilon \varsigma ~ \varepsilon i ́ t \varepsilon ~ \alpha \pi o ́ ~$

 $\delta \iota \alpha ́ \beta \rho \omega \sigma \eta)$.

 тоv $\pi \lambda \eta \rho \omega \tau \iota \kappa о и ์ ~ v \lambda ı к о ์ ~ \varepsilon ́ \chi \varepsilon ı ~ \delta ı \alpha \sigma \tau \alpha ́ \sigma \varepsilon ı \varsigma ~ v \alpha v о к \lambda i ́ \mu \alpha к \alpha \varsigma ~ к \alpha ı ~ \mu о \rho \varphi \eta ́ ~ к о ́ к к о v ~$

 тov í $\delta 10 v ~ \delta 1 \alpha \lambda v ́ \tau \eta) ~ \alpha v \alpha \mu \imath \gamma v ์ o v \tau \alpha 1, ~ \kappa \alpha l ~ \mu \varepsilon \tau \alpha ́ ~ \tau \eta v ~ \varepsilon \xi \alpha ́ \tau \mu i \sigma \eta ~ \tau о v ~ \delta ı \alpha \lambda v ́ \tau \eta ~$

- $\alpha v \alpha ́ \mu ı \xi ŋ \eta ~ \theta \varepsilon \rho \mu о \pi \lambda \alpha \sigma \tau ı к о v ́ ~ v \lambda ı к о и ́ ~(\sigma \varepsilon ~ \theta \varepsilon \rho \mu о к \rho \alpha \sigma i ́ \alpha ~ \mu \varepsilon \gamma \alpha \lambda ט ́ \tau \varepsilon \rho \eta ~ \alpha \pi o ́ ~ \tau о ~ \sigma \eta \mu \varepsilon i ́ o ~$

 ขтобтрө́натоц.
 situ polymerization), $\mu \varepsilon \alpha \pi \circ \tau \varepsilon ́ \lambda \varepsilon \sigma \mu \alpha$ v $\alpha \pi \alpha \rho \alpha ́ \gamma \varepsilon \tau \alpha ı ~ \varepsilon \mu \beta \circ \lambda ı \alpha \sigma \mu \varepsilon ́ v o ~ \pi о \lambda v \mu \varepsilon \rho \varepsilon ́ \varsigma ~$ ($\delta 1 \alpha \theta \varepsilon ́ \tau \varepsilon 1$ ह́v人 $\mu \varepsilon ́ \rho o \varsigma ~ \varepsilon \mu \beta \circ \lambda ı \alpha \sigma \mu \varepsilon ́ v o ~ \kappa \alpha ı ~ \varepsilon ́ v \alpha ~ \mu \varepsilon ́ \rho o \varsigma ~ \varepsilon \lambda \varepsilon v ́ \theta \varepsilon \rho o) ~ \pi \alpha ́ v \omega ~ \sigma \tau \eta \nu ~ \varepsilon \pi ı \varphi \alpha ́ v \varepsilon ı \alpha ~$
 $\pi \varepsilon \rho \iota \varepsilon \kappa \tau \iota к о ́ \tau \eta \tau \alpha \sigma \varepsilon \pi \lambda \eta \rho \omega \tau \iota к о ́ v \lambda \iota \kappa o ́ ~[39]$.

 $\mu о$ оонєро́v $\gamma 1 \alpha$ тоv $\varepsilon \mu \beta$ одı $\alpha \sigma \mu o ́ ~[39] . ~$

Ө. Avópүaveऽ $\pi о \lambda v \mu \varepsilon \rho ı \kappa \varepsilon ́ \varsigma ~ \varepsilon v ळ ́ \sigma \varepsilon ı \varsigma ~$

 $\alpha \gamma \omega \gamma \mu$ о́тๆ $\tau \alpha$ [40].

 бтıऽ $\mu ⿺ \kappa \rho о ́ \tau \varepsilon \rho \varepsilon \varsigma ~ \delta \cup v \alpha \tau \varepsilon ́ \varsigma ~ \delta ı \alpha \sigma \tau \alpha ́ \sigma \varepsilon ı \varsigma . ~ Н ~ к \alpha \lambda \eta ́ ~ \alpha \pi o ́ \delta о \sigma \eta ~ \tau о v ~ \tau \varepsilon \lambda ı к о v ́ ~ \pi \rho о і ̈ о ́ v \tau о \varsigma, ~ \eta ~$

 $\alpha \nu \alpha ́ \mu \varepsilon \sigma \alpha$ бта $\theta \varepsilon \rho \mu о \pi \lambda \alpha \sigma \tau \iota \kappa \alpha ́$ (о́ $\pi \omega \varsigma ~ \pi о \lambda \nu \sigma \tau v \rho \varepsilon ́ v ı, ~ \pi о \lambda v \pi \rho о \pi \nu \lambda \varepsilon ́ v ı, ~ \pi о \lambda \nu \alpha \mu i ́ \delta ı о, ~$

Avá $\lambda \mathrm{o} \gamma \alpha \mu \varepsilon \tau \eta \nu \alpha \lambda \lambda \eta \lambda \varepsilon \pi i ́ \delta \rho \alpha \sigma \eta$ $\tau \eta \zeta$ орү $\alpha v i \kappa \eta ́ s ~ \mu \varepsilon ~ \tau \eta \nu ~ \alpha v o ́ \rho \gamma \alpha v \eta ~ \varphi \alpha ́ \sigma \eta ~$

 $\alpha \lambda \lambda \eta \lambda \varepsilon \pi \iota \delta \rho \circ \frac{v}{v} \mu \varepsilon \alpha \sigma \theta \varepsilon v \varepsilon i ́ \varsigma ~ \eta \lambda \varepsilon \kappa \tau \rho о \sigma \tau \alpha \tau \iota \kappa \varepsilon ́ \varsigma ~ \delta v v \alpha ́ \mu \varepsilon ı \varsigma ~ \eta ~ \delta v v \alpha ́ \mu \varepsilon ı \varsigma ~ V a n ~ d e r ~ W a a l s ~$ [41,42].

 $\varepsilon \pi \eta \rho \varepsilon \alpha ́ \zeta \varepsilon 1 ~ \tau \eta v ~ \pi \cup \kappa v o ́ \tau \eta \tau \alpha, ~ \tau о ~ \delta \varepsilon i ́ \kappa \tau \eta ~ \delta 1 \alpha ́ \theta \lambda \alpha \sigma \eta \varsigma, ~ \tau \eta ~ \mu \eta \chi \alpha v ı \kappa \eta ́, ~ \mu \alpha \gamma \nu \eta \tau ו \kappa \eta ́$,
 [41].

 $\alpha \nu \alpha ́ \lambda о \gamma \alpha \mu \varepsilon \tau$ то $\varepsilon \pi \imath \theta \nu \mu \eta \tau o ́ ~ \chi \rho \omega ́ \mu \alpha), ~ \alpha \nu \tau \imath \eta \lambda ı \alpha \kappa \alpha ́ ~ \pi \rho о і ̈ о ́ v \tau \alpha ~(\pi о \lambda \nu \beta ı v \nu \lambda о \pi v \rho \rho о \lambda ı \delta o ́ v \eta ~ к \alpha ı ~$

 $\alpha \pi о \delta \varepsilon ́ \sigma \mu \varepsilon v \sigma \eta \varsigma ~ \varphi \alpha \rho \mu \alpha ́ \kappa \omega v) ~[42] . ~$

ı α. Подvцєрикои́ $\alpha \varphi \rho о$ и́

О $\pi о \lambda \cup \mu \varepsilon \rho ı к о ́ s ~ \alpha \varphi \rho o ́ s ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \delta ı \varphi \alpha \sigma ı к o ́ ~ \mu i ́ \gamma \mu \alpha ~ \alpha \varepsilon р i ́ o v / \sigma \tau \varepsilon \rho \varepsilon о v ́ ~ \pi о v ~$

 ót $\alpha \nu$ ך $\theta \varepsilon \rho \mu о к \rho \alpha \sigma i ́ \alpha ~ \tau о v ~ \tau \eta ́ \gamma \mu \alpha \tau о \varsigma ~ \xi \varepsilon \pi \varepsilon \rho \alpha ́ \sigma \varepsilon є ~ \tau \eta ~ Ө \varepsilon \rho \mu о к р \alpha \sigma i ́ \alpha ~ \alpha \pi о \sigma ט ́ v \theta \varepsilon \sigma \eta \varsigma ~ \tau \eta ร ~$

 vع $\rho \circ$ (43].
 $\sigma \chi \eta ́ \mu \alpha$ ६ $\xi \alpha ı \tau i \alpha \varsigma ~ \tau \eta \varsigma ~ \tau \alpha ́ \sigma \eta \varsigma ~ \tau \eta \varsigma ~ \alpha \sigma \theta \varepsilon v o v ́ s ~ \alpha \varepsilon ́ p ı \alpha \varsigma ~ \varphi \alpha ́ \sigma \eta \varsigma ~ v \alpha ~ \delta ı \alpha \tau \eta \rho \eta \theta \varepsilon i ́ ~ \mu \varepsilon ́ \sigma \alpha ~ \sigma \tau \eta \nu ~ \pi v к v \eta ́ ~$

 $\pi о \lambda \nu \mu \varepsilon \rho \eta$, $\mu \varepsilon \sigma v v \eta \theta \varepsilon ́ \sigma \tau \varepsilon \rho \eta$ тๆ $\chi \rho \eta ́ \sigma \eta ~ \tau \omega v ~ \theta \varepsilon \rho \mu о \pi \lambda \alpha \sigma \tau \iota \kappa ळ ́ v: ~ \pi о \lambda v \alpha ı \theta \nu \lambda \varepsilon v i ́ o v, ~$

 v入ıкои́ (каӨஸ́s то $\sigma v \sigma \sigma \omega \mu \alpha ́ \tau \omega \mu \alpha ~ \pi \rho о \sigma \pi \alpha \theta \varepsilon i ́ ~ v \alpha ~ \varphi \tau \alpha ́ \sigma \varepsilon є ~ \sigma \varepsilon ~ ъ \sigma о \rho \rho о \pi i ́ \alpha ~ \mu \varepsilon ~ \tau \eta \nu$ $\alpha \tau \mu o ́ \sigma \varphi \alpha ı \rho \alpha) \kappa \alpha ı v \alpha \alpha v \tau ı \kappa \alpha \tau \alpha \sigma \tau \alpha \theta \varepsilon i ́ ~ \sigma \tau ı \varsigma ~ \kappa v \psi \varepsilon \lambda i ́ \delta \varepsilon \varsigma ~ \alpha \pi o ́ ~ \alpha \varepsilon ́ \rho \alpha ~[43] . ~$.

 $\delta ı \alpha \sigma \pi о \rho \alpha ́ ~ \theta \varepsilon \rho \mu \alpha i v \varepsilon \tau \alpha 1 ~ \kappa \alpha l ~ v \pi o ́ ~ \sigma v v \varepsilon \chi \eta ́ ~ \alpha v \alpha ́ \delta \varepsilon v \sigma \eta ~ \sigma \chi \eta \mu \alpha \tau i ́ \zeta o v \tau \alpha l ~ \sigma \varphi \alpha ı \rho i ́ \delta ı \alpha ~ \pi о v ~$

 $\varepsilon \pi \varepsilon v \delta v ́ \sigma \varepsilon \omega v$ бє $\pi \rho о \sigma \tau \alpha \tau \varepsilon v \tau \kappa \kappa \alpha ́ ~ \kappa \rho \alpha ́ v \eta, \pi \rho о \sigma \tau \alpha \tau \varepsilon v \tau \iota \kappa ळ ́ v ~ \mu \varepsilon \rho \dot{v} \varepsilon \pi i ́ \tau \lambda \omega v, \sigma \tau \rho \omega \mu \alpha ́ \tau \omega v$,

 оvбíç) [43].

 [43,44].

ı β. Y $\delta \rho о \gamma \varepsilon ́ \lambda \varepsilon \varsigma$

 ($\pi \lambda \varepsilon ́ \gamma \mu \alpha$) $\pi \rho о к$ ќлтєı $\alpha \pi o ́ ~ \tau \eta ~ \sigma \tau \alpha v \rho о \sigma v ́ v \delta \varepsilon \sigma \eta ~(c r o s s l i n k i n g) ~ \mu \alpha к р о \mu о р i ́ ~ \omega v, ~ \tau \alpha ~ о \pi о і ́ \alpha ~$
 [45-47].

 $\kappa \alpha ı ~ \varepsilon \pi \varepsilon ́ \rho \chi \varepsilon \tau \alpha ı ~ \chi \alpha \lambda \alpha \rho o ́ \tau \varepsilon \rho \eta ~ \sigma o ́ v \delta \varepsilon \sigma \eta ~ \tau \omega v ~ \pi \lambda \varepsilon \gamma \mu \alpha ́ \tau \omega v, \mu \varepsilon \pi ı \theta \alpha v o ́ \tau \eta \tau \alpha ~ \alpha \pi о \sigma v ́ v \delta \varepsilon \sigma \eta ́ ~ \tau о v \varsigma$

 «बขтобטvарнодоүои́ $\mu \varepsilon v o v » ~ \beta ı \lambda о \gamma ı к о v ́ ~ \pi \lambda \varepsilon ́ \gamma \mu \alpha \tau о \varsigma ~ \mu \varepsilon ~ \sigma ט \gamma к \varepsilon к р ц \mu \varepsilon ́ v \eta ~ \alpha \lambda \lambda \eta \lambda о v \chi i ́ \alpha ~$

 $\delta ı \alpha \sigma \tau \alpha \nu \rho о и ́ \mu \varepsilon v o ı ~ \delta \varepsilon \sigma \mu \circ i ́ ~ \mu \varepsilon \tau \alpha \xi v ́ ~ \tau \omega v ~ \alpha \lambda v \sigma i ́ \delta \omega v ~ \pi \alpha \rho \varepsilon ́ \chi o v v ~ \tau \eta v ~ \alpha \pi \alpha \rho \alpha i ́ \tau \eta \tau \eta ~ \alpha \nu \tau о \chi \eta ~ \gamma 1 \alpha$

 боиŋ́ тоv [45-47].

Н бvvo入ıќ $\pi о \sigma o ́ \tau \eta \tau \alpha ~ \tau о v ~ \delta \varepsilon \sigma \mu \varepsilon v \mu \varepsilon ́ v o v ~ \sigma \tau о ~ \pi \lambda \varepsilon ́ \gamma \mu \alpha ~ v \varepsilon \rho о и ́ ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \varepsilon i ́ v \alpha ı ~$ $\pi о \lambda v ́ \mu \varepsilon \gamma \alpha ́ \lambda \eta ~ \sigma \varepsilon ~ \sigma \chi \varepsilon ́ \sigma \eta ~ \mu \varepsilon \tau \eta ~ \mu \alpha ́ \zeta \alpha ~ o ́ \lambda \omega v ~ \tau \omega v ~ \mu \alpha к \rho о \mu о р i ́ \omega v ~ \tau o v ~ \delta ı \tau \tau ט ́ o v, ~ \varepsilon v \omega ́ ~ \varepsilon ́ \chi о v v ~$ $\pi \alpha \rho \alpha \sigma \kappa \varepsilon v \alpha \sigma \tau \varepsilon i ́ v \pi \varepsilon \rho \alpha \pi о \rho \rho о \varphi \eta \tau \iota \kappa \alpha ́$ (SAPs, Super Absorbent Polymers) $\sigma v \sigma \tau \eta \not \mu \alpha \tau \alpha \mu \varepsilon$

 [45,47-49].

A $\pi \lambda \varepsilon ́ \varsigma ~ v \delta \rho о \gamma \varepsilon ́ \lambda \varepsilon \varsigma ~ \pi \alpha \rho \alpha ́ \gamma \sigma v \tau \alpha ı ~ \mu \varepsilon ~ \tau \eta ~ \delta 1 \alpha \delta ı \kappa \alpha \sigma i ́ \alpha ~ s o l ~ g e l, ~ \delta \eta \lambda \alpha \alpha \delta \eta ́ ~ \mu \varepsilon ~ \tau \eta$

 бขбта兀ıкои́ $[45,46]$.
'О $\tau \alpha \nu$ о́ $\mu \omega \varsigma ~ \pi \rho o ́ к \varepsilon ı \tau \alpha 1 ~ \gamma l \alpha ~ \tau \eta v ~ \pi \alpha \rho \alpha \sigma \kappa \varepsilon v \eta ́ ~ v \delta \rho о \gamma \varepsilon \lambda \omega ́ v ~ \mu \varepsilon ~ \alpha v \xi ̧ \eta \mu \varepsilon ́ v \varepsilon \varsigma ~ \eta ́ ~$
 о́л $\omega \varsigma$:

- $\psi ט ์ \xi \eta / \alpha \pi o ́ \psi v \xi \eta \eta, \sigma v \sigma \sigma \omega \mu \alpha ́ \tau \omega \sigma \eta ~ \mu \varepsilon ~ \theta \varepsilon \rho \mu о ́ \tau \eta \tau \alpha \kappa$ к. $\lambda \pi$., о́т $\alpha v \pi \rho o ́ \kappa \varepsilon \iota \tau \alpha 1 ~ \gamma 1 \alpha ~ \varphi v \sigma ı к \eta ́$

 PVA/aци́ $\lambda о v, ~ P V A / \chi ı \tau o \zeta ̆ \alpha ́ v \eta \varsigma ~ \kappa . \alpha ́ . ~$

 $\pi \varepsilon \rho 1 \varepsilon ́ \chi \circ \vee \tau \alpha \imath$ бто $\delta \varepsilon \sigma \mu \varepsilon \cup \mu \varepsilon ́ v o ~ v \varepsilon \rho o ́ ~ \delta ı \alpha \lambda \nu \mu \varepsilon ́ v \alpha ~ \varphi v \tau о \varphi \alpha ́ \rho \mu \alpha к \alpha ~ \eta ́ ~ \lambda ı \pi \alpha ́ \sigma \mu \alpha \tau \alpha$. Oı

 $\chi \varrho ́ \mu \alpha \gamma i ́ v \varepsilon \tau \alpha 1$ «бтє $\downarrow v o ́ »[45]$.

ı γ. Bıö̈ $\lambda \iota \kappa \alpha ́$

 $\delta \eta \lambda \alpha \delta \eta$:
 $\alpha \pi \circ \beta$ одท́s tous,
 $\alpha v \tau ו \kappa \alpha \tau \alpha \sigma \tau \eta ์ \sigma o v v$,

 $\tau \eta \varsigma \pi \rho \circ \varepsilon ́ \lambda \varepsilon \varepsilon \cup \sigma \eta ́ \varsigma ~ \tau o v \varsigma . ~ E \pi ı \pi \lambda \varepsilon ́ o v:$

- $\pi \varepsilon \rho เ \varepsilon ́ \chi \circ v \nu \pi \mathrm{o} \lambda \lambda \varepsilon ́ \varsigma ~ о \mu \alpha ́ \delta \varepsilon \varsigma ~-О Н ~ к \alpha ı ~-N H ~ \pi о v ~ \alpha v \xi \alpha ́ v o v v ~ \tau \eta ~ \delta v v \alpha \tau o ́ \tau \eta \tau \alpha ~$

 [44,51].

 $\pi \lambda \alpha \sigma \tau ו \kappa \eta ́ s ~ \chi \varepsilon ו \rho о и \rho \gamma ו к \eta ́ s$.

 $\mu \alpha \lambda \alpha \kappa \omega ́ v ~ \imath \tau \omega \dot{v})[44,51]$.

 $\pi \varepsilon \rho i ́ \pi \tau \omega \sigma \eta ~ \chi \rho \eta ́ \sigma \eta \varsigma ~ v \alpha v о \kappa \alpha ́ \psi о \cup \lambda \alpha \varsigma ~ \kappa \alpha \tau \alpha ́ \lambda \lambda \eta \lambda$ оv $\mu \varepsilon \gamma \varepsilon ́ \theta o v \varsigma ~(\gamma 1 \alpha ~ v \alpha ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha$

[42,45,52].

 $\varepsilon \lambda \varepsilon \gamma \chi o ́ \mu \varepsilon v \eta \mu \varepsilon \tau \alpha \varphi о \rho \alpha ́ ~ \varphi \alpha \rho \mu \alpha ́ \kappa \omega v), \eta \pi о \lambda v \alpha \imath \theta v v \sigma \gamma \lambda v \kappa o ́ \lambda \eta$ (PEG, ка兀о́ $\lambda \lambda \eta \lambda \eta \gamma 1 \alpha \tau \eta$

 β юо орі́ ωv т $\alpha v \tau о ́ \chi \rho о v \alpha$ [54].

4. ХРЛМАТА каı ПРОНГМЕNА ПОАҮМЕРН

A. H ENNOIA TOY XPSMATO

а. H $\delta \iota \tau \tau \eta ์ ~ \varphi v ́ \sigma \eta ~ \tau o v ~ \varphi \omega \tau o ́ \varsigma ~-~ \Sigma v ́ \gamma \chi \rho o v e \varsigma ~ \theta \varepsilon \omega \rho i ́ \varepsilon \varsigma ~$

 $\nu \alpha \alpha \nu \tau \alpha \pi о к \rho \imath \theta \varepsilon i ́ ~ \sigma \tau о ~ о \pi \tau \iota к o ́ ~ \varepsilon \rho \varepsilon ́ \theta \imath \sigma \mu \alpha$.

 $\pi о \rho \tau о к \alpha \lambda i ́, \kappa i ́ t \rho \imath v o, \pi \rho \alpha ́ \sigma \imath v o, ~ к v \alpha v o ́, ~ \beta \alpha \theta v ́ ~ к v \alpha v o ́ ~ к \alpha ı ~ \imath ต ́ \delta \varepsilon \varsigma, ~ \varepsilon v ต ́ ~ \tau о ~ \lambda \varepsilon v к o ́ ~ \chi \rho \omega ́ \mu \alpha ~$ $\pi \rho о к и ́ \pi \tau \varepsilon \iota ~ \alpha \pi o ́ ~ \tau \eta ~ \sigma ט ́ v \theta \varepsilon \sigma \eta ~ \delta ı \alpha ~ \pi \rho о \sigma \theta \varepsilon ́ \sigma \varepsilon \omega \varsigma ~ o ́ \lambda \omega v ~ \tau \omega v ~ \alpha к \tau \imath v o ß о \lambda ı \omega ́ v ~ \tau о v ~ о \rho \alpha \tau о v ́ ~$ фо́б $\mu \alpha \tau о \varsigma$.

 غ́ $\rho \varepsilon \cup v \varepsilon \varsigma ~ \kappa \alpha ı ~ \pi \alpha \rho \alpha \tau \eta \rho \eta ́ \sigma \varepsilon ı \varsigma ~ \gamma ı \alpha ~ \tau \eta ~ \sigma \chi \varepsilon ́ \sigma \eta ~ \pi о v ~ v \pi \alpha ́ \rho \chi \varepsilon ı ~ \alpha v \alpha ́ \mu \varepsilon \sigma \alpha ~ \sigma \tau о ~ \chi \rho \omega ́ \mu \alpha ~ к \alpha ı ~ \tau \eta ~ \delta о \mu \eta ́$

 $\kappa \alpha \tau \alpha ́ \sigma \tau \alpha \sigma \eta ~ v \pi \alpha ́ \rho \chi \varepsilon \iota ~ \delta \iota \alpha \varphi o \rho \alpha ́ ~ \varepsilon v \varepsilon ́ \rho \gamma \varepsilon ı \alpha \varsigma ~ \pi о v ~ \delta i ́ v \varepsilon \tau \alpha ı ~ \alpha \pi o ́ ~ \tau \eta ~ \sigma \chi \varepsilon ́ \sigma \eta ~ B o h r: ~$

$$
\Delta \mathrm{E}=\mathrm{h} \times \mathrm{c} / \lambda,
$$

 $\tau \eta \varsigma ~ \alpha \pi о \rho р о ф ळ ́ \mu \varepsilon \imath \eta \varsigma ~ \alpha к \tau \imath v о ß о \lambda i ́ \alpha \varsigma . ~$

орүаvเкย́ऽ $\varepsilon v \omega ́ \sigma \varepsilon เ \varsigma ~$

 $\delta ı \varepsilon \gamma \varepsilon ́ \rho \sigma \varepsilon เ \varsigma:$

 $\kappa \alpha ı ~ \varepsilon \mu \varphi \alpha v i \zeta \varepsilon \tau \alpha \iota ~ \sigma \varepsilon \mu \kappa \rho \alpha ́ \mu \eta ́ \kappa \eta ~ к ט ́ \mu \alpha \tau о \varsigma ~ \mu \varepsilon ~ \alpha \pi о \tau \varepsilon ́ \lambda \varepsilon \sigma \mu \alpha$ ol $\varepsilon v \omega ́ \sigma \varepsilon ı \varsigma ~ \alpha v \tau \varepsilon ́ \varsigma ~ v \alpha ~ \varepsilon i ́ v \alpha ı ~$ $\alpha ́ \chi \rho \omega \mu \varepsilon \varsigma$.

 κ ќ $\mu \alpha \tau о \varsigma$ [20].

Мף́коৎ ки́ $\mu \boldsymbol{\tau} \boldsymbol{\tau}$ ¢ (nm)

 غ́ $\chi \varepsilon \iota ~ \alpha \pi о \rho \rho о \varphi \eta ́ \sigma \varepsilon ı ~[20] . ~$.

 $\pi \varepsilon \rho i ́ t o v ~ 300 \mathrm{~nm})$.

 $\sigma v v \alpha v \tau \dot{v} \tau \tau \alpha \iota \sigma \tau \eta \mu \tau \alpha \dot{\beta} \alpha \sigma \eta \pi \rightarrow \pi^{*}[\mathbf{2 0}]$.

$\gamma . Х \rho \omega \mu о \emptyset о ́ \rho \varepsilon \varsigma ~ к \alpha \iota ~ \alpha v \xi$ о́ $\chi \rho \omega \mu \varepsilon \varsigma ~ о \mu \alpha ́ \delta \varepsilon \varsigma$

 $\nu \tau \tau \rho о \mu \alpha ́ \delta \alpha\left(-\mathrm{NO}_{2}\right), \eta ~ \mu \imath \nu о \mu \alpha ́ \delta \alpha(-\mathrm{N}=\mathrm{C}<)[\mathbf{2 0 , 5 5}]$.
 $\mu o ́ \rho ı \alpha$ ठı $\alpha \kappa \rho i ́ v o v \tau \alpha l ~ \sigma \varepsilon ~ \mu o ́ \rho ı \alpha ~ \pi о v ~ \delta 1 \alpha \theta \varepsilon ́ \tau o v v: ~$
 (о́ $\tau \omega \varsigma ~ \alpha \zeta \omega о \mu \alpha ́ \delta \alpha, ~ v ı \tau \rho о \mu \alpha ́ \delta \alpha, ~ v ı \tau \rho \omega \delta о \mu \alpha ́ \delta \alpha, ~ \kappa \alpha \rho \beta о v \nu \lambda о \mu \alpha ́ \delta \alpha, ~, ~ \mu i ́ v \eta), ~$

- $\quad \chi \rho \omega \mu о \varphi о ́ \rho \alpha$ о $\mu \alpha ́ \delta \alpha$ бótๆ $\eta \lambda \varepsilon \kappa \tau \rho о v i ́ \omega v\left(o ́ \pi \omega \varsigma-\mathrm{NH}_{2}\right)$ ๆ́ $\delta \varepsilon ́ \kappa \tau \eta ~ \eta \lambda \varepsilon \kappa \tau \rho о v i ́ \omega v ~(o ́ \pi \omega \varsigma ~-~$ NO_{2}),

 $\sigma \tau \alpha \dot{\alpha} \kappa \rho \alpha \tau \eta \varsigma \mu \varepsilon \theta \imath v \iota \kappa \eta ́ \varsigma \alpha \lambda \cup \sigma i ́ \delta \alpha \varsigma[20]$.

 $\alpha \pi о \rho \rho о ́ \varphi \eta \sigma \eta \varsigma ~ \alpha к \tau \imath v о \beta о \lambda i ́ \alpha \varsigma ~ \alpha \pi o ́ ~ \tau \alpha ~ \chi \rho \omega \mu о \varphi о ́ \rho \alpha ~ \sigma \varepsilon ~ \alpha ́ \lambda \lambda \alpha ~ \mu \eta ́ к \eta ~(\mu к к о ́ \tau \varepsilon \rho \alpha ~ \eta ́ ~$

 $\kappa \alpha ı \eta$ кvаvона́ $\delta \alpha(-\mathrm{CN}), \eta \mu \varepsilon \theta v \lambda о \mu \alpha ́ \delta \alpha\left(-\mathrm{CH}_{3}\right), \eta \alpha \lambda \kappa \nu \lambda \alpha \mu \imath v o \mu \alpha ́ \delta \alpha(-\mathrm{NHR}), \eta$ $\delta 1 \alpha \lambda \kappa \nu \lambda \alpha \mu о \nu о \mu \alpha ́ \delta \alpha\left(-\mathrm{NR}_{2}\right)[\mathbf{2 0 , 5 5}]$.

 (colour), β) то ข $\lambda \iota \kappa$ о́- $\mu i ́ \gamma \mu \alpha$ лоv $\chi \rho \eta \sigma \mu о \pi о є є i ́ \tau \alpha ı ~ \gamma ı \alpha ~ \beta \alpha \varphi \eta ́ ~(d y e), ~ \alpha \lambda \lambda \alpha ́ ~ к \alpha ı ~ \gamma) ~ \tau \eta \nu$

B. ХРЯМАТА КАТАААНАА ГІА ПРОНГМЕNE ПOИYMEPIKE Σ ENQ $\Sigma E I \Sigma$

$\alpha . А \zeta \omega \chi \rho \omega ́ \mu \alpha \tau \alpha$

 $\chi \rho \omega \mu о \varphi о ́ \rho \varepsilon \varsigma ~ \alpha \zeta \omega о о \mu \alpha ́ \delta \varepsilon \varsigma ~(-\mathrm{N}=\mathrm{N}-)$, $\sigma v v \delta \varepsilon \delta \varepsilon \mu \varepsilon ́ v \varepsilon \varsigma ~ \mu \varepsilon ~ v ß \rho \imath \delta \imath \sigma \mu \varepsilon ́ v \alpha \mathrm{sp}^{2} \dot{\alpha} \tau о \mu \alpha$

 $\chi \lambda \omega \rho о \mu \alpha ́ \delta \varepsilon \varsigma(-\mathrm{Cl}), \mu \varepsilon \theta \nu \lambda о \mu \alpha ́ \delta \varepsilon \varsigma\left(-\mathrm{CH}_{3}\right)$, vı $\tau \rho \mu \alpha ́ \delta \varepsilon \varsigma\left(-\mathrm{NO}_{2}\right)$, о $\mu \alpha ́ \delta \varepsilon \varsigma ~ \alpha \lambda \alpha ́ \tau \omega v \nu \alpha \tau \rho i ́ o v$

 $\sigma \varepsilon \mu о v о \alpha \zeta \omega \chi \rho \omega ́ \mu \alpha \tau \alpha, \delta \iota \sigma \alpha \zeta \omega \chi \rho \omega ́ \mu \alpha \tau \alpha$ к.о.к. $\pi о \lambda v \alpha \zeta \omega \chi \rho \omega ́ \mu \alpha \tau \alpha$ [20].
 غ́va $\varepsilon i ́ v \alpha ı ~ \sigma v \mu \pi \lambda \eta \rho \omega \mu \varepsilon ́ v o ~(\delta \varepsilon ~ \sigma v \mu \mu \varepsilon \tau \varepsilon ́ \chi \varepsilon ı ~ \sigma \varepsilon ~ \delta \varepsilon \sigma \mu o ́), ~, ~ \varepsilon ́ v \alpha ~ \sigma v \mu \mu \varepsilon \tau \varepsilon ́ \chi \varepsilon ı ~ \sigma \varepsilon ~ \sigma \chi \eta \mu \alpha \tau ı \sigma \mu o ́ ~ \pi$

 $\sigma v \zeta$ vүías $\delta \pi \pi \lambda \omega ́ v \delta \varepsilon \sigma \mu \omega ́ v[20]$.

Ot $\alpha \zeta \omega \varepsilon v ต ́ \sigma \varepsilon ı \varsigma, ~ \lambda o ́ \gamma \omega ~ \tau \eta \varsigma ~ ט ́ \pi \alpha \rho \xi ̧ \eta \varsigma ~ \delta i \pi \lambda o v ́ ~ \delta \varepsilon \sigma \mu o v ́, ~ \pi \alpha \rho o v \sigma எ \alpha ́ \zeta o v v ~ \tau о ~$

 vлокатабто́兀єऽ. Елєıঠ́ $\eta \mu о \rho \varphi \eta$ trans- $\pi \alpha \rho о v \sigma 1 \alpha ́ \zeta \varepsilon \iota ~ \mu \varepsilon \gamma \alpha \lambda \dot{\tau} \tau \varepsilon \rho \eta ~ \sigma \tau \alpha \theta \varepsilon \rho o ́ \tau \eta \tau \alpha$,
vла́рхєı $\delta v v \alpha \tau о ́ \tau \eta \tau \alpha ~ \tau \eta \varsigma ~ \chi \rho \eta ́ \sigma \eta \varsigma ~ \alpha \kappa \tau \imath v o \beta o \lambda i ́ \alpha s ~ \gamma ı \alpha ~ v \alpha ~ \mu \varepsilon \tau \alpha \tau \rho \alpha \pi \varepsilon i ́ ~ \eta ~ \mu о \rho \varphi \eta ́ ~ c i s-~ \sigma \varepsilon ~$ trans- [20].

(β)

 то $\pi \rho о$ ö́v 兀оv $\pi \rho о \eta \gamma о \nu \mu \varepsilon ́ v o v ~ \sigma \tau \alpha \delta i ́ o v ~ \alpha v \tau ı \delta \rho \alpha ́ ~ \mu \varepsilon ~ \varepsilon v ต ́ \sigma \varepsilon ı \varsigma ~ o ́ \pi \omega \varsigma ~ \varphi \alpha ı v o ́ \lambda \varepsilon \varsigma, ~ v \alpha \varphi \theta o ́ \lambda \varepsilon \varsigma, ~$ $\varepsilon v o ́ \lambda \varepsilon \varsigma, ~ \alpha \rho \omega \mu \alpha \tau \iota к \varepsilon ́ \varsigma ~ \alpha \mu i ́ v \varepsilon \varsigma, ~ \sigma \varepsilon ~ \chi \alpha \mu \eta \lambda \eta ́ ~ Ө \varepsilon \rho \mu о к р \alpha \sigma i ́ \alpha ~ к \alpha ı ~ v \pi o ́ ~ \alpha v \alpha ́ \delta \varepsilon v \sigma \eta . ~ Т \alpha ~$

 (кvрí $\omega \varsigma ~ \sigma о \cup \lambda \varphi о о \mu \alpha ́ \delta \varepsilon \varsigma) ~ \pi о v ~ \sigma \cup \mu \beta \alpha ́ \lambda \lambda \lambda о v \nu ~ \sigma \tau \eta ~ \delta v v \alpha \tau o ́ \tau \eta \tau \alpha ~ \delta ı \alpha ́ \lambda \nu \sigma \eta \varsigma ~ \tau \omega v ~ \chi \rho \omega \mu \alpha ́ \tau \omega \nu$ $\alpha v \tau \dot{v}$ бто vєคó [20,55].

β. Хрஸ́ $\mu \tau \alpha \alpha \alpha \boldsymbol{\alpha} \boldsymbol{\rho} \alpha \kappa เ v o ́ v \eta ร$

 орүаvıкó ориктó hoelite $\left(\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{O}_{2}\right)$ [56] $\alpha \lambda \lambda \alpha ́ \eta \pi \alpha \rho \alpha \gamma \omega \gamma \eta ́ ~ \tau \eta \varsigma ~ \gamma i ́ v \varepsilon \tau \alpha ı ~ \tau \varepsilon \chi \nu \eta \tau \alpha ́ ~ \mu \varepsilon$ оद彑\&íठ $\omega \sigma \eta$ тоv $\alpha v \theta \rho \alpha \kappa \varepsilon v i ́ o v . ~ П \alpha \rho \alpha ́ \gamma \omega \gamma \alpha ~ \tau \eta \varsigma ~ \alpha v Ө \rho \alpha к ı v o ́ v \eta ร ~(o ́ \pi \omega \varsigma ~ \eta ~ \alpha v \theta \rho o ́ v \eta ~ \pi о v ~$ $\pi \rho о к и ́ \pi \tau \varepsilon 1 ~ \mu \varepsilon ~ \alpha v \alpha \gamma \omega \gamma \eta ́ ~ \tau о v ~ \mu о р i ́ o v ~ \alpha v \theta р \alpha к ı v o ́ v \eta \varsigma) ~ к \alpha ı ~ к и р i ́ \omega \varsigma ~ \tau \alpha ~ \pi \alpha \rho \alpha ́ \gamma \omega \gamma \alpha ~ \mu \varepsilon ~$

 $\alpha \pi о \chi \rho \omega ́ \sigma \varepsilon ı \varsigma[\mathbf{2 0 , 5 7 , 5 8] .}$

Н αv Өракıvóvๆ $\alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \tau \eta v ~ к ט ́ \rho ı \alpha ~ \varepsilon ́ v \omega \sigma \eta ~ \alpha \pi o ́ ~ \tau \eta v ~ о л о i ́ \alpha ~ \mu \pi о р о v ́ v ~ v \alpha ~$

 [20].

(a)

$\alpha v \theta \rho \alpha \kappa ı v o ́ v \eta$

C.I. Disperse Red 15
(β)

C.I. Disperse Violet 4

 $\chi \rho \omega \mu \alpha ́ \tau \omega v$.

 $\kappa \alpha \tau \varepsilon \rho \gamma \alpha \sigma i ́ \varepsilon \varsigma[20]$.

 к $\alpha \theta \rho \tau \iota к \mathfrak{q})[\mathbf{2 0 , 5 7 , 5 8] .}$

 $\alpha \pi o ́ ~ \tau о v ~ \alpha ́ v \theta \rho \omega \pi о ~ \pi \alpha ́ v \omega ~ \alpha \pi o ́ ~ \pi \varepsilon ́ v \tau \varepsilon ~ \chi д \lambda ı \varepsilon \tau i ́ \varepsilon \varsigma . ~ A v \eta ́ \kappa \varepsilon є ~ \sigma \tau \eta \nu ~ к \alpha \tau \eta \gamma о р i ́ \alpha ~ \tau \omega v ~$

 $\pi \alpha \rho \alpha ́ \delta \varepsilon \gamma \gamma \mu \alpha \tau \alpha$ blue jeans [20,57,58].

To $\beta \alpha \sigma ı \kappa o ́ ~ \mu o ́ p ı ~ \tau o v ~ \imath v \delta ı к о и ́ ~ \varepsilon i ́ v \alpha ı ~ \eta ~ i v \delta ı \gamma o \tau i ́ v \eta, ~ \tau o ~ o \pi о i ́ o ~ \pi \alpha \rho o v \sigma i \alpha ́ \zeta \varepsilon ı ~ t r a n s-~$

indigotin (indigo-blue)

isoindigo
(brown)

To фaıvó $\mu \varepsilon v o ~ \tau \eta \varsigma ~ \sigma и ́ \zeta \varepsilon v \xi ̧ \eta \varsigma: ~$

 ט́л $\alpha \rho \xi \eta \pi о \lambda ı \omega ́ v ~ о \mu \alpha ́ \delta \omega v ~(\pi . \chi . ~ \sigma о v \lambda \varphi о о \mu \alpha ́ \delta \omega v) ~ \sigma \tau о ~ \mu о ́ \rho ı о, ~ \tau \eta v ~ \pi \rho о \sigma \theta \eta ́ к \eta ~$ $\eta \lambda \varepsilon \kappa \tau \rho о \lambda v \tau \omega ́ v$ каı тך $ө \varepsilon \rho \mu о к \rho \alpha \sigma i ́ \alpha$.

 $\delta 1 \alpha \lambda \hat{\tau} \tau \eta[20]$.

 $\mu o ́ \rho ı-\delta o ́ t \eta ~ \eta ́ ~ \mu o ́ \rho ı о-\delta \varepsilon ́ \kappa \tau \eta ~ \eta \lambda \varepsilon \kappa \tau \rho o v i ́ \omega v . ~ М \varepsilon \gamma \alpha \lambda v ́ \tau \varepsilon \rho о ~ \mu \eta ́ \kappa о \varsigma ~ \alpha \pi о \rho \rho o ́ \varphi \eta \sigma \eta \varsigma ~$
 μ о́pı.

 $\alpha v o \not \chi \tau о ́ \tau \varepsilon \rho \varepsilon \varsigma ~ \alpha \pi о \chi \rho \omega ́ \sigma \varepsilon เ \varsigma ~[20] . ~$.

 $\kappa \alpha \rho \beta о v \nu \lambda \iota \kappa \dot{v} \chi \chi \rho \omega \mu \dot{\alpha} \tau \omega v$ [20].
 то олоі́о $\pi \alpha \rho \alpha \sigma \kappa \varepsilon v \alpha ́ \sigma \tau \eta \kappa \varepsilon ~ \tau о ~ 1984 ~ к \alpha ı ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ \tau \alpha l ~ \alpha \pi o ́ ~ \alpha \lambda v \sigma i ́ \delta \alpha ~ \pi \varepsilon ́ v \tau \varepsilon ~ \alpha \rho \omega \mu \alpha \tau к к ळ ́ v ~$

(a)

(γ)

(β)

($\delta)$
 trans- $\mu о \rho \varphi \eta ́, ~(~ \beta) ~ \varepsilon v \theta v ́ \gamma \rho \alpha \mu \mu \eta ~ c i s-~ \mu о р \varphi \eta ́, ~(\gamma) ~ \gamma \omega v ı к к ́ ~ c i s-~ \delta ı \alpha \mu о ́ \rho \varphi \omega \sigma \eta, ~(\delta) ~ \gamma \omega v ı к к ́ ~ t r a n s-~$ $\delta ı \alpha о ́ \rho \varphi \omega \sigma \eta$.

(α

(β)

(γ)
 $\chi \rho \omega ́ \mu \alpha \tau \circ \varsigma \delta \iota o \xi \alpha \zeta i ́ v \eta \varsigma$ C.I. Pigment Violet 23.

ع. Tрıраıvv $о \mu \varepsilon \theta \alpha v ı к \alpha ́ ~ \chi \rho ஸ ́ \mu \alpha \tau \alpha$

 $\chi \rho \omega \mu \alpha ́ \tau \omega v ~ \pi о v ~ \varepsilon ́ \lambda к о v v ~ \tau о ~ o ́ v o \mu \alpha ́ ~ \tau о v ̧ ~ \alpha \pi o ́ ~ \tau о ~ \mu \varepsilon \theta \alpha ́ v ı o, ~ \sigma \tau о ~ о л о i ́ o ~ \tau \rho i ́ \alpha ~ \alpha ́ \tau о \mu \alpha ~$ vঠроүóvov દ́ χ оvv $\alpha v \tau \iota \kappa \alpha \tau \alpha \sigma \tau \alpha \theta \varepsilon i ́ ~ \mu \varepsilon ~ \alpha \rho v \lambda о-о \mu \alpha ́ \delta \varepsilon \varsigma ~(\sigma v v \eta ́ \theta \omega \varsigma ~ \varepsilon i ́ v \alpha ı ~ \varphi \alpha ı v \nu \lambda о \mu \alpha ́ \delta \varepsilon \varsigma) . ~$

 $\varphi \theta \alpha \lambda ı к о v ́ \alpha v v \delta \rho i ́ t \eta ~ к \alpha l ~ \delta v ́ o ~ \mu o ́ \rho l \alpha ~ \varphi \alpha ı v o ́ \lambda \eta ร ~ \pi о v ~ v \varphi i ́ \sigma \tau \alpha \nu \tau \alpha ı ~ \pi о \lambda v \sigma v \mu \pi ט ́ к \nu \omega \sigma \eta ~ \mu \varepsilon ~$

 $\tau \eta \varsigma ~ \varepsilon ́ v \omega \sigma \eta \varsigma, ~ \varepsilon \nu ต ́ ~ \sigma \varepsilon ~ \pi \varepsilon \rho ı \beta \alpha ́ \lambda \lambda о \nu ~ \mu \varepsilon ~ p H=9 ~ \sigma \chi \eta \mu \alpha \tau i ́ \zeta \varepsilon \tau \alpha \iota ~ \varepsilon \rho v \theta \rho o ́ ~ \alpha \nu ı o ́ v ~[20,57,58] . ~$.
 $\mu \varepsilon$ кít $\rho \imath v o ~ \chi \rho ต ́ \mu \alpha ~ к \alpha ı ~ \alpha v \alpha ́ \lambda о \gamma \eta ~ \sigma ט ́ v \tau \alpha \xi ̆ \eta, ~ \pi о v ~ \chi \rho \eta \sigma щ о \pi о ı є i ́ \tau \alpha ı ~ \gamma ı \alpha ~ \tau о ~ \chi \rho \omega \mu \alpha \tau ı \sigma \mu о ́ ~$

 $\eta \lambda \varepsilon \kappa \tau \rho о v i ́ \omega v \alpha \dot{\alpha} \tau о \mu \alpha$ oร̧vүóvov.

(α

А $\chi \propto \omega \mu$ (ó $\mathfrak{\xi} \imath v o \pi \varepsilon \rho ı \beta \dot{\alpha} \lambda \lambda о v)$

(β)

Pink ($\beta \alpha \sigma$ ккó $\pi \varepsilon \rho ı \beta \alpha ́ \lambda \lambda \lambda \sigma$)

 ข $\tau о \sigma \tau \rho \omega \mu \dot{\tau} \tau \omega \nu[\mathbf{2 0 , 5 7 , 5 8]}$.

$\sigma \tau . \mathrm{X} \mathrm{\rho}(\mu \alpha \tau \alpha \pi \varepsilon \rho v \lambda \varepsilon v i ́ o v$

 $\tau \omega v \delta \alpha \kappa \tau \nu \lambda i ́ \omega v \pi \alpha \rho о \cup \sigma \iota \alpha ́ \zeta o v v \operatorname{sp}^{2} v \beta \rho \iota \delta \iota \sigma \mu o ́[57,58]$.

 бuvঠ\&Өои́v vлокатабта́ $\tau \varepsilon$.

 $\pi \rho о к и ́ \pi \tau о v \nu ~ \mu \varepsilon \gamma \alpha \lambda \delta ́ \tau \varepsilon \rho \alpha ~ \chi \rho \omega \mu о ф о ́ \rho \alpha ~(\pi . \chi . ~ T e r y l e n e), ~ \varepsilon v ต ́ ~ \varepsilon ́ \chi \varepsilon ı ~ v \pi о \lambda о \gamma ı \sigma \tau \varepsilon i ́ ~ o ́ \tau ı ~ \eta ~$
 актıvoßо入ías ка兀о́ $100 \mathrm{~nm}[63]$.

(α)

(β)

T $\alpha \pi \alpha \rho \alpha ́ \gamma \omega \gamma \alpha$ тоv $\pi \varepsilon \rho \cup \lambda \varepsilon v i ́ o v, ~ \alpha \lambda \lambda \alpha ́ \alpha$ кирí $\omega \varsigma ~ \tau \alpha \pi \alpha \rho \alpha ́ \gamma \omega \gamma \alpha$ тоv $\pi \varepsilon \rho \cup \lambda \varepsilon v o-$

 $\beta \varepsilon \lambda \tau \iota \omega \mu \varepsilon ́ v \eta$ $\delta 1 \alpha \lambda \nu \tau o ́ \tau \eta \tau \alpha[63,64]$.

 $\alpha \rho \omega \mu \alpha \tau \iota \kappa о ́ \varsigma ~ v \delta \rho о \gamma о v \alpha ́ v \theta \rho \alpha \kappa \varepsilon \varsigma ~[63]$.

Г. TPOПOI $\Sigma Y N \Delta E \Sigma H \Sigma$ MOPI Ω ПOАYMEPOY κ кø XPSMATOE

 $\mu \varepsilon \tau \eta \sigma ט ́ \sigma \tau \alpha \sigma \eta$ ๆоv.

 $\pi о \lambda \nu \mu \varepsilon \rho \dot{v}$, о́лоv алаıєєítаı $\alpha v \sigma \tau \eta \rho \alpha ́ ~ \varepsilon \lambda \varepsilon \gamma \chi о ́ \mu \varepsilon v o ~ \mu о \rho ı \alpha к о ́ ~ \beta \alpha ́ \rho о \varsigma, ~ \varepsilon \mu \varphi \alpha ́ v ı \sigma \eta ~$

 $\delta \iota \alpha \delta \rho \alpha \mu \alpha$ íל̧દı $\pi \lambda \varepsilon ́ o v ~ \sigma \eta \mu \alpha v \tau ı к o ́ ~ \rho o ́ \lambda o ~ o ́ \chi l ~ \mu o ́ v o ~ \sigma \tau \eta \nu ~ к \alpha \lambda v ́ \tau \varepsilon \rho \eta ~ \alpha \pi o ́ \delta o \sigma \eta ~ \tau \eta s$

α. Мף оцоıолодıкฑ́ σ v́v $\delta \varepsilon \sigma \eta$

 סvvá $\mu \varepsilon ı \varsigma, \delta v v \alpha ́ \mu \varepsilon ı \varsigma ~ \delta ı \pi o ́ \lambda o v ~-~ \delta ı \pi o ́ \lambda o v ~ \eta ́ ~ \delta \varepsilon \sigma \mu о i ́ ~ v \delta \rho o \gamma o ́ v o v, ~ \pi . \chi . ~ \alpha v \alpha ́ \mu \varepsilon \sigma \alpha ~ \sigma \varepsilon ~$ $\pi о \lambda \nu \mu \varepsilon \rho \eta ́ \eta ~ \beta \alpha \sigma \iota \sigma \mu \varepsilon ́ v \alpha ~ \sigma \varepsilon ~ \pi о \lambda \cup \sigma \alpha \kappa \chi \alpha \rho i ́ \tau \varepsilon \varsigma ~(o ́ \pi \omega \varsigma ~ \eta ~ к ข \tau \tau \alpha \rho i ́ v \eta) ~ к \alpha ı ~ \sigma \varepsilon ~ \mu o ́ \rho ı \alpha ~$

тоv $\mu \alpha \kappa \rho о \mu о \rho i ́ o v ~-~ \sigma о v \lambda \varphi о \mu \alpha ́ \delta \omega v ~ \tau \omega v ~ \alpha \zeta \omega \chi \rho \omega \mu \alpha ́ \tau \omega v . ~ A v \tau i ́ \theta \varepsilon \tau \alpha, ~ \tau \alpha ~ \sigma v v \theta \varepsilon \tau \iota к \alpha ́ ~$

 vঠpoүóvov [20].

β. Оนоьолодıкท́ $\sigma v ์ v \delta \varepsilon \sigma \eta$

 $\mu 1 \alpha \alpha \pi o ́ \tau 1 \varsigma ~ \pi \alpha \rho \alpha \kappa \alpha ́ \tau \omega ~ \delta 1 \alpha \delta ı к \alpha \sigma i ́ \varepsilon \varsigma:$

 $\mu \varepsilon \tau \alpha \xi \dot{~ \varepsilon \pi \alpha \rho \kappa о и ́ \varsigma ~ \alpha \rho ı \theta \mu о v ́ ~ \mu о \rho i ́ \omega v ~ \chi \rho \omega \mu \alpha ́ \tau \omega v ~ к \alpha ı ~ \pi о \lambda \nu \mu \varepsilon \rho ı к \omega ́ v ~ \alpha \lambda v \sigma i ́ \delta \omega v . ~}$
 $\alpha \lambda \lambda \alpha \gamma \varepsilon ́ \varsigma ~ \sigma \tau \imath \varsigma ~ \imath \delta ı o ́ \tau \eta \tau \varepsilon \varsigma ~ \alpha \pi о \rho \rho о ́ \varphi \eta \sigma \eta \varsigma ~ \tau \eta \varsigma ~ \alpha к \tau \imath v o ß о \lambda i ́ \alpha s ~(o ́ \pi \omega \varsigma ~ \mu \varepsilon \tau \alpha \tau о ́ \pi ı \sigma \eta ~ \tau о v ~$

 $\pi \alpha \rho \alpha ́ \gamma \varepsilon \tau \alpha \iota ~ \pi о \lambda \cup \varphi \omega \sigma \varphi о \rho ı к о ́ \varsigma ~ \varepsilon \sigma \tau \varepsilon ́ \rho \alpha \varsigma ~[57,58] . ~$.

 оца́ $\delta \alpha \varsigma ~ \tau о v ~ \pi о \lambda v \mu \varepsilon \rho о и ́ \varsigma, ~ \tau о ~ \chi \rho \omega \mu о ч о ́ \rho о ~ \sigma ט ́ \sigma \tau \eta \mu \alpha ~ \pi о v ~ \theta \alpha ~ \delta \eta \mu ю о э \rho \gamma \eta \theta \varepsilon i ́ ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~$ $\pi \alpha \rho о v \sigma 1 \alpha ́ \zeta \varepsilon \iota ~ \alpha \xi \xi ı \sigma \eta \mu \varepsilon i ́ \omega \tau \varepsilon \varsigma ~ \delta ı \alpha \varphi о \rho \varepsilon ́ \varsigma . ~ E к т o ́ \varsigma ~ \alpha \pi o ́ ~ \tau о ~ \delta ı \alpha \varphi о р \varepsilon \tau ı к о ́ ~ \varphi \alpha ́ \sigma \mu \alpha ~$ $\alpha \pi о \rho \rho о ́ \varphi \eta \sigma \eta \varsigma, ~ \tau о ~ v \lambda ı к о ́ ~ \pi о v ~ \theta \alpha ~ \pi \rho о к и ́ \psi \varepsilon є ~ \alpha \pi o ́ ~ \alpha v \tau \eta ́ ~ \tau \eta ~ \delta ı \alpha \delta ı \kappa \alpha \sigma i ́ \alpha ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~$

 (sulfonate vinyl), $\mu \varepsilon \tau \alpha \tau \rho \varepsilon ́ \pi о v \tau \alpha ı \alpha \pi o ́ ~ v \delta \rho o ́ \varphi o \beta \alpha ~ \sigma \varepsilon ~ v \delta \alpha \tau о \delta i \alpha \lambda v \tau \alpha ́ \alpha[57,58]$.

- $\mu \varepsilon \delta \eta \mu ı о \nu \rho \gamma i ́ \alpha \pi \alpha \rho \alpha \gamma \omega ́ \gamma \omega v \chi \rho \omega \mu \alpha ́ \tau \omega v \mu \varepsilon \gamma \alpha ́ \lambda о v \mu о \rho \iota \alpha \kappa о v ́ \beta \alpha ́ \rho о v \varsigma$

 $\pi \rho о і ̈ о ́ v \tau \omega v ~ к \alpha ı ~ \pi \rho о \sigma \varphi \varepsilon ́ \rho о э v ~ \pi о \lambda и ́ ~ к \alpha \lambda \alpha ́ ~ к \alpha ı ~ \mu o ́ v ц \mu \alpha ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha ~ \beta \alpha \varphi \eta ́ \varsigma ~[57,58] . ~$.

ПОАҮMEP $\Omega \mathbf{N}$

Та $\chi \rho \omega ́ \mu \alpha \tau \alpha$ лоv $\chi \rho \eta \sigma \mu о \pi о ь о и ́ v \tau \alpha ı ~ \gamma ı \alpha ~ \tau о ~ \chi \rho \omega \mu \alpha \tau \iota \sigma \mu о ́ ~ \tau \omega v ~ \pi \rho о \eta \gamma \mu \varepsilon ́ v \omega v$ $\pi о \lambda \nu \mu \varepsilon \rho \dot{v}$ єлі $\lambda \varepsilon ́ \gamma о \nu \tau \alpha ı \lambda \alpha \mu \beta \alpha ́ v о v \tau \alpha \varsigma ~ v \pi o ́ \psi \eta:$

 $\delta \iota \mu$ о́ $\varphi \varphi \sigma \eta$ тоט $\tau \varepsilon \lambda ı \kappa о v ์ ~ v \lambda ı к о v ́, ~$

- η б $\tau \alpha \varepsilon \rho о ́ \tau \eta \tau \alpha ~ \tau о v ~ \sigma ט \sigma \tau \eta ́ \mu \alpha \tau о \varsigma, ~ \pi . \chi . ~ \mu \varepsilon ~ \varepsilon \pi ı \lambda о \gamma \eta ́ ~ к \alpha \tau \alpha ́ \lambda \lambda \eta \eta \lambda о v ~ \gamma \varepsilon \omega \mu \varepsilon \tau \rho ю к о v ́ ~$

 тоv $\pi \circ \lambda \nu \mu \varepsilon \rho о и ́ \varsigma, ~ \sigma \varepsilon ~ \sigma v v \delta v \alpha \sigma \mu o ́ ~ \mu \varepsilon ~ \tau \eta \nu ~ \varepsilon \pi i \lambda о \gamma \eta ́ ~ \tau \omega \nu ~ к \alpha \tau \alpha ́ \lambda \lambda \lambda \eta \lambda \omega v ~ \mu о v о \mu \varepsilon \rho \omega ́ v ~ к \alpha ı ~$ $\chi \rho \eta ́ \sigma \eta ~ \varepsilon \pi \alpha \rho \kappa о и ́ \varsigma ~ \alpha \rho ı \theta \mu о v ́ ~ \mu о р i ́ \omega v ~ \chi \rho \oplus ́ \mu \alpha \tau о \varsigma . ~$

 $\mu о \rho i ́ \omega v \chi \rho \omega ́ \mu \alpha \tau о \varsigma ̧ \varepsilon v$ عíval π о $\lambda v ́ \mu \varepsilon \gamma \alpha ́ \lambda \eta$.
- η б $\tau \alpha \varepsilon \rho о ́ \tau \eta \tau \alpha ~ \tau о v ~ \chi \rho ต ́ \mu \alpha \tau о \varsigma, ~ \eta ~ о л о i ́ \alpha ~ \varepsilon i ́ v \alpha l ~ \mu \varepsilon \gamma \alpha \lambda v ́ \tau \varepsilon \rho \eta ~ o ́ \tau \alpha v ~ \tau \alpha ~ \mu o ́ \rho ı \alpha ~ \tau о v ~$

 $\lambda \varepsilon ı \tau о \cup \rho \gamma$ кои́ ко́бтоия $\tau \omega v \beta \alpha \varphi \varepsilon i ́ \omega v$.

Мєүадv́tєрך $\delta v \sigma к о \lambda i ́ \alpha ~ \sigma \tau \eta \nu ~ « \alpha \pi o ́ \sigma \pi \alpha \sigma \eta » ~ \tau о v ~ \chi \rho \omega \mu \alpha ́ \tau \omega \nu ~ \alpha \pi o ́ ~ \tau o ~ v \varepsilon \rho o ́ ~$
 $\varepsilon v \omega ́ \sigma \varepsilon ı \varsigma ~ \pi \alpha \rho о v \sigma \iota \alpha ́ \zeta о \nu \tau \alpha \varsigma ~ \mu \varepsilon \gamma \alpha ́ \lambda \eta ~ \sigma \tau \alpha \theta \varepsilon \rho o ́ \tau \eta \tau \alpha ~ к \alpha ı ~ \mu ı \kappa \rho \varepsilon ́ \varsigma ~ \delta v v \alpha \tau o ́ \tau \eta \tau \varepsilon \varsigma ~ \delta ı \alpha ́ \sigma \pi \alpha \sigma \eta ́ \varsigma ~$

- $\quad \tau \alpha \pi о \lambda v \mu \varepsilon \rho \eta ́ ~ c a l i x[4] a r e n e s, ~ \mu \varepsilon ~ \chi \alpha \rho \alpha \kappa \tau \eta \rho ı \sigma \tau ı к \eta ́ ~ \tau \rho \iota \delta ı \alpha ́ \sigma \tau \alpha \tau \eta ~ \mu о \rho ı \alpha к \eta ́ ~ \delta ı \alpha \mu о ́ \rho \varphi \omega \sigma \eta ~$

 ı $\downarrow \delta ı к о \varepsilon เ \delta ŋ ́ ~[57,58] . ~$.

(a)

(8)

Ектós $\alpha \pi o ́ ~ \tau \eta \nu ~ \alpha \pi о \mu \alpha ́ к \rho v v \sigma \eta ~ \mu о р i ́ \omega v ~ \chi \rho \omega \mu \alpha ́ \tau \omega v, ~ \alpha v \tau о \chi \rho \omega \mu \alpha \tau \imath \sigma \mu \varepsilon ́ v \alpha ~$

 $\mu о \lambda ט ́ \beta \delta$ оv [57,58].
’Eva $\pi \varepsilon \delta i ́ o ~ \chi \rho \eta ́ \sigma \eta \varsigma ~ \pi о \lambda \cup \mu \varepsilon \rho ı \kappa \omega ́ v ~ \alpha ı \sigma \theta \eta \tau \eta ́ \rho \omega v ~ \varepsilon i ́ v \alpha ı ~ o ~ \delta ı \alpha \chi \omega \rho ı \sigma \mu o ́ \varsigma ~ \alpha \varepsilon \rho i ́ \omega v, ~$
 $\pi о \lambda \cup \sigma \tau \cup \rho \varepsilon v i ́ o v ~ \pi о v ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \delta \varepsilon \sigma \mu \varepsilon v ́ \sigma \varepsilon є ~ \tau о ~ \chi \lambda \omega \rho о \mu \varepsilon \theta \cup \lambda \varepsilon ́ v i o ~ \alpha \pi \varepsilon \lambda \varepsilon v \theta \varepsilon \rho ต ́ v o v \tau \alpha \varsigma ~$ oğvóvo.

 $\tau \eta \varsigma ~ \varepsilon \varphi \alpha \rho \mu о \gamma \eta ́ \varsigma ~ \tau о v \varsigma ~ \alpha \pi о \tau \varepsilon \lambda о$ б́v:

 $\Sigma \tau \eta v \pi \varepsilon \rho i ́ \pi \tau \omega \sigma \eta$ аvтŋ́, $\sigma \cup \mu \pi о \lambda v \mu \varepsilon \rho i ́ \zeta о \nu \tau \alpha l ~ \delta v ́ o ~ \mu о v о \mu \varepsilon \rho \eta ́ ~ \mu \varepsilon ~ \varphi \alpha \rho \mu \alpha к \varepsilon v \tau ו к \eta ́ ~ \delta \rho \alpha ́ \sigma \eta ~$

 ípı $\delta \alpha \varsigma ~ \tau о \cup ~ \mu \alpha \tau \iota о v ́ ~[57,58] . ~$

 $\gamma i v \varepsilon \tau \alpha \downarrow \mu \varepsilon \varepsilon \vee \sigma \omega \mu \alpha ́ \tau \omega \sigma \eta ́ ~ \tau 0 v \varsigma ~ \sigma \tau \eta \nu ~ \kappa v ́ \rho l \alpha ~ \eta ́ ~ \pi \lambda \varepsilon v \rho ı к \eta ́ ~ \alpha \lambda v \sigma i ́ \delta \alpha ~ \tau о v ~ \mu \alpha к р о \mu о р i ́ o v, ~ \mu \varepsilon ~$

 $\alpha \mu i ́ \delta i \alpha$ ท́ $\varphi \omega \sigma \varphi \alpha$ ̧́áveऽ.

 $\sigma v \mu \pi о \lambda \nu \mu \varepsilon \rho \iota \sigma \mu$ о́ бтטрєvíov $\mu \varepsilon \mu \alpha \lambda \varepsilon \mu \varepsilon і ̈ \delta \iota к o ́ ~ \mu о ́ \rho ı ~ \alpha \zeta \omega \chi \rho \omega ́ \mu \alpha \tau о \varsigma . ~$
 pH > 8,2. Eívaı $\alpha \delta ı \alpha ́ \lambda v \tau \eta ~ \sigma \tau о ~ v \varepsilon \rho o ́ ~ \alpha \lambda \lambda \alpha ́ ~ o ́ \tau \alpha \nu ~ \sigma \nu \mu \pi о \lambda \nu \mu \varepsilon \rho i \zeta \varepsilon \tau \alpha 兀 ~ \mu \varepsilon ~ \alpha к \rho \nu \lambda ı к o ́ ~$

 $\varepsilon \rho \varepsilon \cup v \eta \tau \iota \kappa о и ́ s ~-~ \alpha v \alpha \lambda \cup \tau \iota к о и ́ \varsigma ~ \sigma к о л о и ́ \varsigma . ~$

 $\pi \alpha \rho \alpha ́ \gamma ต \gamma \alpha \alpha$ о́рı $\alpha \mathbf{5 7 , 5 8}]$.

 $\mu \varepsilon \rho о к и \alpha v i ́ v \eta \varsigma, ~ \varepsilon \vee ต ́ ~ \alpha v \tau i ́ \sigma \tau о \chi \alpha ~ \tau о ~ v \lambda ı к о ́ ~ \alpha \pi o ́ ~ \alpha ́ \chi \rho \omega \mu о ~ \gamma i ́ v \varepsilon \tau \alpha ı ~ \rho о \zeta, ~ \mu \varepsilon ~ \delta ı \alpha \delta ı к \alpha \sigma i ́ \alpha ~ \pi о v ~$
 ót $\alpha \nu \tau \alpha \mu o ́ \rho ı \alpha ~ \sigma \pi \nu \rho о \pi v \rho \alpha v i ́ o v ~ \tau о \pi о \theta \varepsilon \tau о v ́ v \tau \alpha ı ~ \alpha v \alpha ́ \mu \varepsilon \sigma \alpha ~ \sigma \varepsilon ~ \delta v ́ о ~ \pi о \lambda v \mu \varepsilon \rho ı \kappa \varepsilon ́ \varsigma ~ \alpha \lambda v \sigma i ́ \delta \varepsilon \varsigma ~$

 OLED каı PLEDs. $\Sigma \tau \imath \varsigma ~ \sigma v \sigma \kappa \varepsilon v \varepsilon ́ \varsigma ~ \alpha v \tau \varepsilon ́ \varsigma, ~ \eta ~ \chi \rho \eta ́ \sigma \eta ~ \pi о \lambda \nu \mu \varepsilon \rho ต ́ v ~ \sigma v v \delta \varepsilon \delta \varepsilon \mu \varepsilon ́ v ต v ~ \mu \varepsilon ~ \mu o ́ \rho ı \alpha$

5. Σ YZHTH $\mathbf{\Sigma H}-\Sigma Y$ МПЕРА $\boldsymbol{\Sigma M A T A ~}$

 $\pi о \lambda \nu \mu \varepsilon \rho ı \alpha \dot{\alpha} \nu \lambda \iota \alpha \alpha!$

 ठv́o $\mu о \rho \varphi \varepsilon ́ \varsigma: ~ i) ~ \tau \eta ~ \mu о р \varphi \eta ́ ~ " h o s t-g u e s t ", ~ o ́ \pi о v ~ \varepsilon ́ v \alpha ~ \mu к \rho о ́ т \varepsilon \rho о ~ \mu o ́ \rho ı o ~ \eta ́ ~ ı o ́ v ~$

 óтı $\tau \alpha \rho \alpha \sigma \kappa \varepsilon \cup \alpha ́ \zeta о v \tau \alpha ı ~ \varepsilon \cup к о \lambda о ́ \tau \varepsilon \rho \alpha ~[42] . ~$

 бтıऽ $\beta \alpha \varphi ı к \varepsilon ́ \varsigma ~ \delta ı \varepsilon \rho \gamma \alpha \sigma i ́ \varepsilon \varsigma ~ \tau \omega v ~ к \lambda \omega \sigma \tau о и ̈ \varphi \alpha \nu \tau о \cup \rho \gamma ı к \omega ́ v ~ \pi \rho о і ̈ o ́ v \tau \omega v . ~$

 μ орíov [20].

6. ВIB АIOГРАФIA

1. C. Goodyear, Specification of a Patent for an Improvement in the Manufacture of Gum Elastic Shoes. Granted to Charles Goodyear, Roxbury, Norfolk county, Massachusetts July 24th, 1838. Journal of the Franklin Institute, of the State of Pennsylvania, for the Promotion of the Mechanic Arts; Devoted to Mechanical and Physical Science, Civil Engineering, the Arts and Manufactures, and the Recording of American and Other Patent Inventions (1828-1851), 24 (1), 24 (1839).
2. M. Berthelot, Chimie Organique Fondée sur la Synthèse, 1, Mallet-Bachelier (1860).
3. H. Staudinger, Über Polymerization, Berichte der Deutschen Chemischen Gesellschaft (A, B), 53 (6), 1073-1085 (1920).
4. N. Hadjichristidis, M. Pitsikalis, S. Pispas, H. Iatrou, Polymers with complex architecture by living anionic polymerization, Chemical Reviews, 101 (12), 3747-3792 (2001).
5. N. Hadjichristidis, H. Iatrou, M. Pitsikalis, J. Mays, Macromolecular architectures by living and controlled/living polymerizations, Progress in Polymer Science, 31 (12), 1068-1132 (2006).
6. P. J. Flory, Kinetics of Polyesterification: A Study of the Effects of Molecular Weight and Viscosity on Reaction Rate, Journal of the American Chemical Society, 61 (12), 3334-3340 (1939).
7. Г. K $\alpha \rho \alpha \gamma ı \alpha v v i ́ \delta \eta \varsigma, ~ E . ~ \Sigma ı \delta \varepsilon \rho i ́ \delta o v, ~ « X \eta \mu \varepsilon i ́ \alpha ~ П о \lambda \nu \mu \varepsilon \rho ต ́ v » », ~ Е к \delta o ́ \sigma \varepsilon ı \varsigma ~ Z \eta ́ \tau \eta ~(2006) . ~$
8. G. E. Luckachan, C. K. S. Pillai, Biodegradable polymers-a review on recent trends and emerging perspectives, Journal of Polymers and the Environment, 19 (3), 637-676 (2011).
9. J. Jordan, K. I. Jacob, R. Tannenbaum, M. A. Sharaf, I. Jasiuk, Experimental trends in polymer nanocomposites-a review, Materials Science and Engineering: A, 393 (1-2), 1-11 (2005).
10. N. Х $\alpha \tau \zeta \eta \chi \rho \eta \sigma \tau i \delta \eta \varsigma, ~ E . ~ І \alpha \tau \rho о v ́, ~ М . ~ П \imath \tau \sigma \kappa \alpha ́ \lambda \eta \zeta, ~ « Е \tau ı \sigma \tau \eta ́ \mu \eta ~ П о \lambda v \mu \varepsilon \rho ต ́ v », ~ Т \mu \eta ́ \mu \alpha$ Хұиєías, ЕКПА, АӨŋ́vа (2009).

 Aө́́va (2016).
11. P. Krol, Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers, Progress in Materials Science, 52 (6), 915-1015 (2007).
12. П. Г. Фраүкои́ $\eta, ~ « Х \eta \mu \varepsilon i ́ \alpha ~ К \lambda \omega \sigma \tau о и ̈ \varphi \alpha v \tau о и \rho \gamma ю \kappa ต ́ v ~ П о \lambda ง \mu \varepsilon \rho ต ́ v », ~ Т \mu \eta ́ \mu \alpha ~$

13. A. Diacon, Polymers functionalized with chromophores for applications in photovoltaics, photonics and medicine, Organic Chemistry, Université d'Angers (2011).
14. L. Zhao, Effect of the second chromophore energy gap on photoinduced electron injection in di-chromophoric porphyrin-sensitized solar cells, Royal Society Open Science, 5, 181218 (2018).
15. K. S. Lee, Y. Lee, J. Y. Lee, J. H. Ahn, J. H. Park, Flexible and platinum-free dye-sensitized solar cells with conducting-polymer-coated graphene counter electrodes, ChemSusChem, 5 (2), 379-382 (2012).
16. O. Bertrand, J. F. Gohy, Photo-responsive polymers: synthesis and applications, Polymer Chemistry, 8 (1), 52-73 (2017).
17. D. R. Askeland, W. J. Wright, Y $\lambda ı \kappa \alpha ́ . ~ \Delta о \mu \eta ́, ~ I \delta ı o ́ \tau \eta \tau \varepsilon \varsigma ~ к \alpha ı ~ T \varepsilon \chi v o \lambda o \gamma ı \kappa \varepsilon ́ \varsigma ~$

 (2016).

18. F. P. Schäfer (Ed.), Dye Lasers, 1, Springer Science and Business Media (2013).

19. Liquid Crystals: Applications and Uses, 1, B. Bahadur, Ed., World Scientific (1990).
20. H. Kim, J. Ge, J. Kim, S. E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, S. Kwon, Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal, Nature Photonics, 3 (9), 534-540 (2009).
21. M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, E. Yablonovitch, Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals, Applied Physics Letters, 75 (8), 1036-1038 (1999).
22. J. Zhang, Q. Zou, H. Tian, Photochromic materials: more than meets the eye, Advanced Materials, 25 (3), 378-399 (2013).
23. R. Klajn, Spiropyran-based dynamic materials. Chemical Society Reviews, 43 (1), 148-184 (2014).
24. N. A. Murugan, S. Chakrabarti, H. Ågren, Solvent dependence of structure, charge distribution, and absorption spectrum in the photochromic merocyanine--spiropyran pair, The Journal of Physical Chemistry B, 115 (14), 4025-4032 (2011).
25. G. Berkovic, V. Krongauz, V. Weiss, Spiropyrans and spirooxazines for memories and switches, Chemical Reviews, 100 (5), 1741-1754 (2000).
26. B. Seefeldt, R. Kasper, M. Beining, J. Mattay, J. Arden-Jacob, N. Kemnitzer, K. H. Drexhagec, M. Heilemann, M. Sauer, Spiropyrans as molecular optical switches, Photochemical and Photobiological Sciences, 9 (2), 213-220 (2010).
27. K. H. Fries, J. D. Driskell, S. Samanta, J. Locklin, Spectroscopic Analysis of Metal Ion Binding in Spiropyran Containing Copolymer Thin Films, Analytical Chemistry, 82 (8), 3306-3314 (2010).
28. Optical Holography, R. Collier, Ed., Elsevier (2013).
29. A. Kamphan, C. Khanantong, N. Traiphol, R. Traiphol, Structural thermochromic relationship of polydiacetylene (PDA)/polyvinylpyrrolidone (PVP) nanocomposites: Effects of PDA side chain length and PVP molecular weight, Journal of Industrial and Engineering Chemistry, 46, 130-138 (2017).
30. M. G. Kanatzidis, Special Report, Chemical and Engineering News, 68 (49), 3650 (1990).
31. J. Z. Manapat, Q. Chen, P. Ye, R. C. Advincula, 3D printing of polymer nanocomposites via stereolithography, Macromolecular Materials and Engineering, 302 (9), 1600553 (2017).
32. F. Herold, A. Schneller, "High-Performance Materials", Advanced Materials, 3, 143-151 (1992).
33. P. Morgan, Carbon Fibers and their Composites, CRC press (2005).
34. J. Jordan, K. I. Jacob, R. Tannenbaum, M. A. Sharaf, I. Jasiuk, Experimental trends in polymer nanocomposites-a review, Materials Science and Engineering: A, 393 (1-2), 1-11 (2005).

35. P. Gomez-Romero, C. Sanchez, Functional Hybrid Materials, Wiley (2006).
 Крŋ́тๆऽ (2014).
36. S. T. Lee, C. B. Park, N. S. Ramesh, Polymeric Foams: Science and Technology, CRC press (2006).

37. A. L. Waham, H. Shahrir, I. N. Akos, Polymer Hydrogels: A Review, PolymerPlastics Technology and Engineering, 50, 14, 1475-1486 (2011).
38. F. Ullah, M. B. H. Othman, F. Javed, Z. Ahmad, H. M. Akil, Classification, processing and application of hydrogels: A review. Materials Science and Engineering: C, 57, 414-433 (2015).
39. E. S. Dragan, Design and applications of interpenetrating polymer network hydrogels. A review. Chemical Engineering Journal, 243, 572-590 (2014).
40. E. Ruel-Gariepy, J. C. Leroux, In situ-forming hydrogels-review of temperaturesensitive systems. European Journal of Pharmaceutics and Biopharmaceutics, 58 (2), 409-426 (2004).
41. E. Caló, V. V. Khutoryanskiy, Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal, 65, 252-267 (2015).
 Ві $\beta \lambda 10$ Ппко́v (2015).
42. S. S. Mark, Bioconjugation Protocols, Humana Press (2011).
43. T. Webster, H. Yazici, Biomedical Nanomaterials: from Design to Implementation, The Institution of Engineering and Technology (2016).
 (2016).
44. F. Ciardelli, G. Ruggeri, A. Pucci, Dye-containing polymers: methods for preparation of mechanochromic materials, Chemical Society Reviews, 42 (3), 857-870 (2013).
 غ́кঠобๆ, Aөŋ́v人 (1993).
45. J. Jehlička, V. Žáček, H. G. M. Edwards, E. Shcherbakova, T. Moroz, Raman spectra of organic compounds kladnoite $\left(\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CO})_{2} \mathrm{NH}\right)$ and hoelite $\left(\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{O}_{2}\right)$ Rare sublimation products crystallising on self-ignited coal heaps, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 68 (4), 1053-1057 (2007).
46. C. Fleischmann, M. Lievenbrück, H. Ritter, Polymers and Dyes: Developments and Applications. Polymers, 7 (4), 717-746 (2015).
47. E. Marechal, Polymeric dyes-Synthesis, Properties and Uses, Progress in Organic Coatings, 10 (3), 251-287 (1982).
48. K. Ye, J. Wang, H. Sun, Y. Liu, Z. Mu, F. Li, S. Jiang, J. Zhang, H. Zhang, Y. Wang, C. M. Che, Supramolecular structures and assembly and luminescent properties of quinacridone derivatives, The Journal of Physical Chemistry B, 109 (16), 8008-8016 (2005).
49. G. Hallas, A. D. Towns, Phenazine, oxazine, thiazine and sulphur dyes. Supplements to the 2nd Edition of Rodd's Chemistry of Carbon Compounds, 193-221 (1975).
50. M. Beija, M. T. Charreyre, J. M. Martinho, Dye-labelled polymer chains at specific sites: Synthesis by living/controlled polymerization, Progress in Polymer Science, 36 (4), 568-602 (2011).
51. F. Nsib, N. Ayed, Y. Chevalier, Selection of dispersants for the dispersion of CI Pigment Violet 23 in organic medium, Dyes and Pigments, 74 (1), 133-140 (2007).
52. Y. Zagranyarski, L. Chen, D. Jänsch, T. Gessner, C. Li, K. Müllen, Toward perylene dyes by the hundsdiecker reaction. Organic Letters, 16 (11), 28142817 (2014).
53. F. Würthner, Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures, Chemical Communications, 14, 1564-1579 (2004).
54. Ö. Güngör, Efficient removal of carcinogenic azo dyes by novel pyrazine-2carboxylate substituted calix $[4,8]$ arene derivatives, Supramolecular Chemistry, 31 (12), 776-783 (2019).

[^0]: $\varepsilon к \pi о \mu \pi \dot{\prime} \varphi \theta о \rho ı \sigma \mu о v ́ ~ \eta ́ ~ \varphi \omega \sigma \varphi о \rho ı \sigma \mu о v ́ ~ к \alpha \tau \alpha ́ ~ \tau \eta v ~ \varepsilon \pi \alpha v \alpha \varphi о р \alpha ́ ~ \tau о и \varsigma ~ \sigma \tau \eta ~ \theta \varepsilon \mu \varepsilon \lambda ı \omega ́ \delta \eta ~ к \alpha \tau \alpha ́ \sigma \tau \alpha \sigma \eta . ~$

