

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ

UNIVERSITY OF WEST ATTICA SCHOOL OF ENGINEERING DEPARTMENT OF NAVAL ARCHITECTURE

Διπλωματική εργασία:

ΕΠΙΔΡΑΣΗ ΕΥΣΤΑΘΕΙΑΣ ΑΠΟ ΤΗ ΜΕΤΑΤΟΠΙΣΗ ΦΟΡΤΙΟΥ ΣΙΤΗΡΩΝ ΣΕ ΠΛΟΙΟ ΜΕΤΑΦΟΡΑΣ ΧΥΔΗΝ ΦΟΡΤΙΟΥ

Επιβλέπων Καθηγητής:

Δρ. Μηχ. Ιωάννης Τίγκας

Ζαβαλάνι Μπεσιάν

A.M.: 51114026

ΑΙΓΑΛΕΩ, 2022

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ

UNIVERSITY OF WEST ATTICA SCHOOL OF ENGINEERING DEPARTMENT OF NAVAL ARCHITECTURE

Διπλωματική Εργασία:

Επίδραση της ευστάθειας από τη μετατόπιση φορτίου σιτηρών σε πλοίο μεταφοράς χύδην φορτίου

Συγγραφέας:

Ζαβαλάνι Μπεσιάν (51114026)

Επιβλέπων:

Δρ. Μηχ. Ιωάννης Τίγκας,

Επίκουρος Καθηγητής, ΠΑ.Δ.Α.

Ημερομηνία εξέτασης:

28/09/2022

Εξεταστική Επιτροπή:

Ιωάννης Τίγκας,
 Κωνσταντίνος Πολίτης,
 Θωμάς Μαζαράκος,
 Επίκουρος Καθηγητής
 Καθηγητής ΠΑ.Δ.Α.
 Επίκουρος Καθηγητής
 ΠΑ.Δ.Α.

Δήλωση Συγγραφέα Διπλωματικής Εργασίας

Ο κάτωθι υπογεγραμμένος Ζαβαλάνι Μπεσιάν του Αγέτ, με αριθμό μητρώου 51114026 φοιτητής του Πανεπιστημίου Δυτικής Αττικής της Σχολής Μηχανικών του Τμήματος Ναυπηγών Μηχανικών, δηλώνω υπεύθυνα ότι:

«Είμαι συγγραφέας αυτής της διπλωματικής εργασίας και ότι κάθε βοήθεια την οποία είχα για την προετοιμασία της είναι πλήρως αναγνωρισμένη και αναφέρεται στην εργασία. Επίσης, οι όποιες πηγές από τις οποίες έκανα χρήση δεδομένων, ιδεών ή λέξεων, είτε ακριβώς είτε παραφρασμένες, αναφέρονται στο σύνολό τους, με πλήρη αναφορά στους συγγραφείς, τον εκδοτικό οίκο ή το περιοδικό, συμπεριλαμβανομένων και των πηγών που ενδεχομένως χρησιμοποιήθηκαν από το διαδίκτυο. Επίσης, βεβαιώνω ότι αυτή η εργασία έχει συγγραφεί από μένα αποκλειστικά και αποτελεί προϊόν πνευματικής ιδιοκτησίας τόσο δικής μου, όσο και του Ιδρύματος.

Παράβαση της ανωτέρω ακαδημαϊκής μου ευθύνης αποτελεί ουσιώδη λόγο για την ανάκληση του πτυχίου μου»

<u>Ο Δηλών</u>

Ζαβαλάνι Μπεσιάν

Ευχαριστίες

Με την παρούσα Διπλωματική Εργασία, ολοκληρώνω ένα από τα σημαντικότερα μέρη των σπουδών μου στο τμήμα Ναυπηγών Μηχανικών του Πανεπιστημίου Δυτικής Αττικής.

Θέλω να ευχαριστήσω θερμά, τους ανθρώπους που στάθηκαν δίπλα μου κατά τη διάρκεια αυτού του ακαδημαϊκού ταξιδίου. Πρωτίστως όμως, θα ήθελα να ευχαριστήσω τους γονείς μου, οι οποίοι μου έδωσαν την ευκαιρία να μορφώσω το άτομο μου και να εμπλουτίσω περαιτέρω τις σπουδές μου με την άπειρη υποστήριξη τους. Σε αυτούς ανήκουν όλα όσα παρουσιάζω σήμερα και όλα όσα θα επιτύχω ποτέ.

Επίσης, στο σημείο αυτό, θέλω να εκφράσω την ευγνωμοσύνη μου σε όλο το ακαδημαϊκό προσωπικό του τμήματος, καθώς κατέβαλαν τα μέγιστα κατά τη διάρκεια αυτού του κύκλου σπουδών για να διδάξουν και να μεταφέρουν τις πολύτιμες τους γνώσεις σε όλους τους φοιτητές, συμπεριλαμβανομένου και εμού.

Όσον αφορά τη Διπλωματική Εργασία, θα ήθελα να ευχαριστήσω ειλικρινά τον Δρ. Ιωάννη Τίγκα, ο οποίος με εμπιστεύτηκε για την υλοποίηση της εργασίας αυτής και μου παρείχε χρήσιμες συμβουλές κατά τη διάρκεια της υλοποίησής της.

Περίληψη

Η εργασία αυτή έχει ως σκοπό τη μελέτη της μετατόπισης φορτίου σιτηρών και την επίδραση της μετατόπισης αυτής στην ευστάθεια των πλοίων που μεταφέρουν χύδην φορτία. Η δομή της αποτελείται από δύο μέρη, το θεωρητικό και το τεχνικό μέρος.

Στο θεωρητικό μέρος πλαισιώνονται οι βασικές αρχές της υδροστατικής και της ευστάθειας των πλοίων, στη συνέχεια παρουσιάζεται το πρόβλημα της μετάθεσης των σιτηρών στους χώρους φορτίου, η επίδραση της ευστάθειας των πλοίων ως συνέπεια της μετάθεσης σιτηρών και οι κανονισμοί που αφορούν την ευστάθεια των πλοίων που μεταφέρουν σιτηρά.

Στο τεχνικό μέρος, πραγματοποιείται μοντέλο πλοίου που μεταφέρει σιτηρά σε πρόγραμμα τρισδιάστατης σχεδίασης και στη συνέχεια, σε πρόγραμμα εκτέλεσης υπολογισμών ευστάθειας, πραγματοποιούνται οι υπολογισμοί της ευστάθειας σιτηρών στο αρχικό πλοίο.

Κατά το πέρας των παραπάνω υπολογισμών, παρουσιάζονται ορισμένες προτάσεις για τη βελτιστοποίηση της γεωμετρίας του χώρου φόρτωσης ("Cargo Holds") προκειμένου να περιοριστεί κατά το δυνατό η μετατόπιση του φορτίου.

Τέλος, πραγματοποιούνται εκ νέου οι υπολογισμοί της ευστάθειας σιτηρών, με τροποποιημένη πλέον τη γεωμετρία των χώρων φορτίου, σύμφωνα με τις μεθόδους σχεδίασης που προτείνονται στο κεφάλαιο που αφορά τη βελτιστοποίηση και γίνεται σύγκριση αποτελεσμάτων μεταξύ αρχικού και τροποποιημένου πλοίου, προκειμένου να γίνει η διαπίστωση της βελτίωσης στην ευστάθεια σιτηρών από τις τροποποιήσεις του χώρου φορτίου.

Λέξεις κλειδιά: Μετατόπιση Φορτίου, Ευστάθεια Σιτηρών, Ροπή συνέπεια μετάθεσης φορτίου χύδην

Abstract

The purpose of this thesis is to examine the shifting of grain cargo and the effect of this shifting on the stability of ships carrying bulk cargoes. The structure is composed of two parts, the theoretical and the technical part.

The theoretical part contains the basic principles of hydrostatics and stability of ships, followed by the problem of grain shifting in cargo holds, the effect of ship stability due to grain shifting and the regulations concerning the stability of ships carrying grain.

In the technical part, a model of a ship carrying grain is carried out in a 3D designing program, afterwards, in a program for performing stability calculations, the calculations of grain stability in the initial ship are carried out.

Once the above calculations are completed, some recommendations are presented for optimizing the geometry of Cargo Holds in order to limit as much as possible the cargo shifting.

Then, the grain stability calculations are carried out again, with the geometry of the cargo holds now modified, in compliance with the design methods proposed in the optimization section, and a comparison of the results between the original and modified ship is made in order to verify the improvement in grain stability resulting from the modification of the cargo holds.

Keywords: Cargo Shifting, Grain Stability, Heeling Moment due to Bulk Cargo Shifting

Περιεχόμενα

1	. ΕIΣ	ΑΓΩΓΗ	1
	1.1.	Πρόλογος	1
	1.2.	Ιστορική Αναδρομή	1
	1.3.	Τα προβλήματα που εξετάζει η Υδροστατική των Πλοίων	6
2	. BA	ΣΙΚΑ ΣΤΟΙΧΕΙΑ ΥΔΡΟΣΤΑΤΙΚΗΣ ΚΑΙ ΕΥΣΤΑΘΕΙΑΣ	.7
	2.1.	Η αρχή του Αρχιμήδη	7
	2.2.	Η Μαθηματική Θεώρηση της Άντωσης	7
	2.3.	Η ισορροπία των πλοίων και η αρχική ευστάθεια1	2
	2.4.	Καμπύλες Στατικής Ευστάθειας1	6
	2.5.	Παραμετρικές Καμπύλες Ευστάθειας1	7
3	. ПЕ	ΡΙΠΤΩΣΕΙΣ ΕΠΙΔΡΑΣΗΣ ΤΗΣ ΕΥΣΤΑΘΕΙΑΣ1	9
	3.1.	Μετατόπιση Φορτίου1	9
	3.2.	Εγκάρσια κλίση λόγω μετακίνησης φορτίου2	20
	3.3.	Επίδραση ελεύθερων Επιφανειών2	:1
4	. Κρι	τήρια Ευστάθειας2	23
	4.1.	Γενικά2	:3
	4.2.	Κριτήριο Καιρού2	:4
5	. ME	ΤΑΤΟΠΙΣΗ ΦΟΡΤΙΟΥ ΣΙΤΗΡΩΝ2	28
	5.1.	Εισαγωγή2	:8
	5.2.	Μετατόπιση χύδην φορτίου3	60
	Κανο	νισμοί Για Τη Μεταφορά Σιτηρών3	2
	5.2.	1. Η Εξέλιξη των Κανονισμών	\$2
	5.2.	 Η Θεωρούμενη Ελεύθερη Επιφάνεια Σιτηρών	\$4
	5.3. διαμε	Προσδιορισμός της Ροπής από τη μεταφορά φορτίου σε πλήρ ρίσματα	η 6
6	. TEZ	ΧΝΙΚΟ ΜΕΡΟΣ3	\$8
	6.1.	Σκοπός του Τεχνικού Μέρους3	8
	6.2.	Κύρια Στοιχεία Πλοίου3	9
	6.3.	Κατασκευή τρισδιάστατου Μοντέλου4	0
	6.3.	1. Ψηφιοποίηση Σχεδίου Ναυπηγικών Γραμμών Στο Autocad	0
	6.3.	 Τρισδιάστατη Σχεδίαση Μοντέλου Στο Rhinoceros 3D4 	6
	6.4. υπολ	Σχεδίαση Δεξαμενών και Διαμερισμάτων στο πρόγραμμ ογισμών Ευστάθειας MaxSurf Stability7	α 3

6.5. Υπολογισμοί Ευστάθειας	(Κριτήριο Καιρού)75
6.5.1. Γενικά	
6.5.2. Δημιουργία καταστάσε Ευστάθειας	ων φόρτωσης στο Maxsurf και υπολογισμοί
6.5.3. Εξέταση Καταστάσεων	φόρτωσης στο κριτήριο καιρού79
6.6. Υπολογισμοί Ευστάθειας	Σιτηρών91
6.6.1. Υπολογισμός στάθμης φ	οορτίου91
6.6.2. Υπολογισμός της ροπής	του όγκου από τη μετατόπιση φορτίου92
6.6.3. Υπολογισμός Ευστάθεια	ας Σιτηρών94
6.7. Σχολιασμός Αποτελεσμάτ	ων99
7. ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ	
7.1. Τρόποι ελαχιστοποίησης φορτίου	της ροπής του όγκου από τη μετατόπιση 100
7.2. Αποτελέσματα Ευστάθεια Εγκάρσιας Φρακτής	ις Μετά Την Τοποθέτηση Αποσπώμενης 104
7.2.1. Αλλαγή διαστάσεων Καταστάσεων Φόρτωσης	Χώρου Φορτίου και Διαμόρφωση Νέων 104
7.2.2. Υπολογισμοί Ευστάθεια	ις Υπό Το Κριτήριο Καιρού105
7.2.3. Υπολογισμοί Ευστάθεια	ις Σιτηρών111
8. ΣΥΜΠΕΡΑΣΜΑΤΑ	
9. ΠΡΟΤΑΣΕΙΣ	
10. ПАРАРТНМА	
10.1. Σύμβολα	
10.2. Στοιχεία Γεωμετρίας Πλοία	ມv117
11. ΒΙΒΛΙΟΓΡΑΦΙΑ	
11.1. Έντυπη	
11.2. Διαδικτυακή	

Κατάλογος εικόνων

Еікола 1-1: ΑрхімнднΣ	1
EIKONA 1-2: SIMON STEVIN.	2
EIKONA 1-3: ΈΡΓΟ ΤΟΥ PAUL HOSTE,: THÉORIE DE LA CONSTRUCTION DES VAISSEAUX	2
ЕІКОNА 1-4: Н ВУЮІΣН ТОУ MARY ROSE (1545)	3
ЕІКОNА 1-5: Н ВУЮІΣН ТОУ VASA (1628).	3
EIKONA 1-6: ANTHONY DEANE	4
EIKONA 1-7: PIERRE BOUGUER.	5
Eikona 1-8: Leonhard Euler	5
EIKONA 1-9: JAKKO RAHOLA.	6
Εικονά 2-1: Σχήμα 1	8
Εικονά 2-2: Κατάστασεις ισορροπιάς:	12
Είκονα 2-3: Η μετακινήση της θέσης του κεντρού αντώσης κατά την εγκαρσία καισή	13
Είκονα 2-4:Περιπτώση κεντρού βάρους σε υψηλή θέση – δημιουργία μοχλοβρά	XIONA
ΑΝΑΤΡΟΠΗΣ	13
Είκονα 2-5: Χαρακτηριστικές περιπτώσεις μετακεντρικού ύψους	14
Εικονά 2-6: Πλοίο σε μικρή εγκαρσία γωνιά.	
Εικονά 2-7: Καμπύλη στατικής ευσταθείας	16
Είκονα 2-8: Γραφική αναπαράσταση του μοχλοβραχιόνα των παραμετρικών καμι	ΤΥΛΩΝ
ΕΥΣΤΑΘΕΙΑΣ.	17
ΕΙΚΟΝΑ 2-9: Ο ΜΟΧΛΟΒΡΑΧΙΟΝΑΣ GZ ΣΥΝΑΡΤΗΣΕΙ ΤΟΥ ΜΟΧΛΟΒΡΑΧΙΟΝΑ KZ'	
Είκονα 3-1 Μετακινήση βάρους από την αρχική θέση 1 στην τελική θέση 3	
Είκονα 3-2: Εγκαρσία κλίση λογώ μετακινήσης φορτίου	20
Είκονα 3-3: Ελευθέρη επιφανεία ύγρου δεξαμένης	21
ΕΙΚΟΝΑ 4-1: ΟΡΙΣΜΟΣ ΕΜΒΑΔΩΝ ΓΙΑ ΤΗΝ ΕΦΑΡΜΟΓΗ ΤΩΝ ΚΡΙΤΗΡΙΩΝ ΤΗΣ ΟΔΗΓΙΑΣ Α749	25
ЕІКОΝА 4-2: ПАРАМЕТРОІ ГІА ТНК ЕФАРМОГН ТОУ КРІТНРІОУ КАІРОУ	
ΕΙΚΟΝΑ 5-1: ΚΑΘΙΖΗΣΗ ΚΑΙ ΜΕΤΑΤΟΠΙΣΗ ΧΥΔΗΝ ΦΟΡΤΙΟΥ	
Είκονα 5-2: Γωνία αναπαύσμε φορτίου	
ΕΙΚΟΝΑ 5-3: ΜΕΤΑΤΟΠΙΣΗ ΚΕΝΤΡΟΥ ΒΑΡΟΥΣ ΚΑΤΑ ΤΗ ΜΕΤΑΘΕΣΗ ΦΟΡΤΙΟΥ	
Είκονα 5-4: Μοχλοβραχιόνες ευσταθείας σύναρτησει της γωνίας εγκαρσίας κλισής	
ΕΙΚΟΝΑ 5-5: ΤΕΛΙΚΗ ΕΠΙΦ ΑΝΕΙΑ ΣΙΤΗΡΩΝ ΣΕ ΚΥΤΟΣ ΜΕ ΔΙΑΜΗΚΕΣ ΔΙΑΦΡΑΓΜΑ	
ΕΙΚΟΝΑ 5-6: ΤΕΛΙΚΗ ΕΠΙΦΑΝΕΙΑ ΣΙΤΗΡΩΝ ΕΝΤΟΣ ΚΑΙ ΕΚΑΤΕΡΩΘΕΝ ΤΟΥ ΣΤΟΜΙΟΥ	
Είκονα 5-7: Διατάξη επιφανείας σίτηρων σε κύτος με διαμήκες διαφράγμα και διαμ	ΛΗΚΕΙΣ
ΔΟΚΟΥΣ	
Είκονα 5-8: Διάταξη επιφανείας σίτηρων σε κύτος με δύο καταστρωματά και διαι	ΜΗΚΕΣ
ΔΙΑΦΡΑΓΜΑ.	
ΕΙΚΟΝΑ 6-1:ΕΙΣΑΓΩΓΗ ΣΧΕΔΙΟΥ ΝΑΥΠΗΓΙΚΩΝ ΓΡΑΜΜΩΝ ΣΤΟ AUTOCAD	40
Εικονα 6-2: Σχεδιο να υπηγικών γραμμών.	40
ΕΙΚΟΝΑ 6-3: ΧΑΡΑΞΗ ΚΑΘΕΤΩΝ ΤΜΗΜΑΤΩΝ.	41
Είκονα 6-4: Αποκλίση καθέτης βοηθητικής γραμμής με τη βάσικη γραμμή του σχεδιού	γ ΣΤΗΝ
ПРҮМЛН.	41
Είκονα 6-5: Αποκλίση καθέτης βοηθητικής γραμμής με τη βάσικη γραμμή του σχεδιού	γ ΣΤΗΝ
ПРҮМЛН.	41
ΕΙΚΟΝΑ 6-6: ΧΑΡΑΞΗ ΒΟΗΘΗΤΙΚΗΣ ΓΡΑΜΜΗΣ ΠΑΝΩ ΣΤΗ ΒΑΣΙΚΗ ΓΡΑΜΜΗ	42
ΕΙΚΟΝΑ 6-7: ΤΑΥΤΙΣΗ ΒΑΣΙΚΗΣ ΓΡΑΜΜΗΣ ΜΕ ΤΟ ΒΟΗΘΗΤΙΚΟ ΟΡΙΖΟΝΤΙΟ ΤΜΗΜΑ ΣΤΗΝ ΠΡΥΜΝΗ	42
ΕΙΚΟΝΑ 6-8: ΤΑΥΤΙΣΗ ΒΑΣΙΚΗΣ ΓΡΑΜΜΗΣ ΜΕ ΤΟ ΒΟΗΘΗΤΙΚΟ ΟΡΙΖΟΝΤΙΟ ΤΜΗΜΑ ΣΤΗΝ ΠΛΩΡΗ	42
ΕΙΚΟΝΑ 6-9: ΕΠΙΛΟΓΗ ΣΥΝΤΕΛΕΣΤΗ SCALING.	43
EIKONA 6-10: SCALING.	43
ΕΙΚΟΝΑ 6-11: ΣΗΜΕΙΑ ΤΟΜΗΣ ΤΗΣ ΙΣΑΛΟΥ 1 ΜΕ ΤΟΥΣ ΠΡΥΜΝΑΙΟΥΣ ΝΟΜΕΙΣ	44
ΕΙΚΟΝΑ 6-12: ΑΠΟΤΥΠΩΣΗ ΣΗΜΕΙΩΝ ΤΟΥ ΣΧΕΔΙΑΣΤΙΚΟΥ ΝΟΜΕΑ 1	
ΕΙΚΟΝΑ 6-13: ΠΡΥΜΝΑΙΟ ΤΜΗΜΑ ΙΣΑΛΟΥ WL1	45
Είκονα 6-14: Σχεδίο ισαλών και σχεδιό νομέων	45
ΕΙΚΟΝΑ 6-15: ΣΧΕΔΙΑΣΗ ΔΙΑΜΗΚΟΥΣ ΤΟΜΗΣ ΣΤΟ ΕΠΙΠΕΔΟ ΣΥΜΜΕΤΡΙΑΣ.	45
ΕΙΚΟΝΑ 6-17: ΕΞΑΓΩΓΗ ΣΧΕΔΙΟΥ ΝΑΥΠΗΓΙΚΩΝ ΓΡΑΜΜΩΝ	46

ΕΙΚΟΝΑ 6-18: ΕΙΣΑΓΩΓΗ ΣΧΕΔΙΟΥ ΣΤΟ RHINOCEROS 3D (1/2).	47
ΕΙΚΟΝΑ 6-19: ΕΙΣΑΓΩΓΗ ΜΟΝΤΕΛΟΥ ΣΤΟ RHINOCEROS 3D (2/2)	47
ΕΙΚΟΝΑ 6-20: ΜΕΤΑΦΟΡΑ ΤΟΥ ΣΧΕΔΙΟΥ ΣΤΗΝ ΑΡΧΗ ΤΩΝ ΑΞΟΝΩΝ	48
ΕΙΚΟΝΑ 6-21: ΠΕΡΙΣΤΡΟΦΗ ΔΙΑΜΗΚΟΥΣ ΤΟΜΗΣ ΚΑΙ ΣΧΕΔΙΟΥ ΝΟΜΕΩΝ	48
Είκονα 6-22: Τρισδιάστατη μορφή να υπηγικών γραμμών	49
ΕΙΚΟΝΑ 6-23: ΚΛΕΙΣΤΗ ΚΑΜΠΥΛΗ ΠΥΘΜΕΝΑ	49
ΕΙΚΟΝΑ 6-24: ΕΠΙΦΑΝΕΙΕΣ ΜΕ ΤΗ ΧΡΗΣΗ ΤΗΣ ΕΝΤΟΛΗΣ PLANARSRF	50
ΕΙΚΟΝΑ 6-25: ΣΗΜΕΙΑ ΒΟΗΘΗΤΙΚΩΝ ΙΣΑΛΩΝ.	50
Είκονα 6-26: Μορφή τρισδιάστατου μοντέλου γάστρας	51
Είκονα 6-27: Σχεδιάση υπολοίπου μίσου	51
Είκονα 6-28: Σχεδιάση καταστρωματός.	52
ΕΙΚΟΝΑ 6-29: ΜΟΝΤΕΛΟ ΜΕ ΤΗΝ ΠΡΟΣΘΗΚΗ ΤΩΝ ΚΑΤΑΣΤΡΩΜΑΤΩΝ	52
Είκονα 6-30: Χωρητικότητα και όρια χώρου φορτίου	53
Είκονα 6-31: Διάστασεις Χώρου Φορτίου	53
Είκονα 6-32: Σχεδιάση στομίου κύτων.	53
ΕΙΚΟΝΑ 6-33: ΜΟΝΤΕΛΟ ΑΠΟΤΕΛΟΥΜΕΝΟ ΑΠΟ ΜΙΑ ΣΥΝΘΕΤΗΣ ΓΕΩ ΒΜΕΤΡΙΑΣ ΚΛΕΙΣΤΗ ΕΠΙΦΑΝΕΙΑ.	54
Είκονα 6-34: Μοντελο αποτελούμενο από 138 επιφανείες απλής γεωμετρίας	54
ΕΙΚΟΝΑ 6-35: ΕΙΣΑΓΩΓΗ ΜΟΝΤΕΛΟΥ ΣΤΟ MAXSURF MODELER	55
ΕΙΚΟΝΑ 6-36: ΟΡΙΣΜΟΣ ΜΗΚΟΥΣ, ΥΨΟΥΣ ΙΣΑΛΟΥ ΣΧΕΔΙΑΣΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΟΣ ΑΝΑΦΟΡΑΣ	55
ΕΙΚΟΝΑ 6-37: ΜΟΝΤΕΛΟ ΠΛΟΙΟΥ ΣΤΟ MAXSURF STABILITY	56
ΕΙΚΟΝΑ 6-38: ΕΥΡΟΣ ΒΥΘΙΣΜΑΤΩΝ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΤΩΝ ΥΔΡΟΣΤΑΤΙΚΩΝ.	56
Είκονα 6-39: Πίνακας επιτρέπτων αποκλίσεων κατά URL-5	57
Είκονα 6-40: Κατασκεύη επιφανείων που οριοθετούν τις δεξαμένες	73
Είκονα 6-41: δηλώση επιφανείων ως κατάσκευ αστικά στοιχεία	74
Είκονα 6-42: Κατασκεύη δεξαμένων σύνθετης γεωμετρίας με τη χρήση επιφανείων	74
Είκονα 6-43: Τελική μορφή δεξαμένων.	74
Εικονα 6-44: Πραγματοποιήση κατάστασεως φορτώσης	77
Εικονα 6-45: Υδροστατικά στοιχεία κατάστασεως φορτώσης	78
Είκονα 6-46: Σχεδιάση ίσαλου πλεύσης στην εμφορτή καταστάση	78
ΕΙΚΟΝΑ 6-47: ΚΡΙΤΗΡΙΟ ΚΑΙΡΟΥ ΣΤΟ MAXSURF STABILITY	78
Είκονα 6-49: Καμπύλη μοχλοβραχίονα επαναφοράς για την κατάσταση 1	81
ΕΙΚΟΝΑ 6-51: ΚΑΜΠΥΛΗ ΜΟΧΛΟΒΡΑΧΙΟΝΑ ΕΠΑΝΑΦΟΡΑΣ ΓΙΑ ΤΗΝ ΚΑΤΑΣΤΑΣΗ 2	84
ΕΙΚΟΝΑ 6-53: ΚΑΜΠΥΛΗ ΜΟΧΛΟΒΡΑΧΙΟΝΑ ΕΠΑΝΑΦΟΡΑΣ ΓΙΑ ΤΗΝ ΚΑΤΑΣΤΑΣΗ 3	87
ΕΙΚΟΝΑ 6-54: ΠΛΕΥΡΙΚΗ ΕΠΙΦΑΝΕΙΑ ΓΙΑ ΤΗΝ ΕΦΑΡΜΟΓΗ ΤΟΥ ΚΡΙΤΗΡΙΟΥ ΚΑΙΡΟΥ	89
ΕΙΚΟΝΑ 6-57: ΕΛΕΥΘΕΡΗ ΕΠΙΦΑΝΕΙΑ ΣΙΤΗΡΩΝ ΣΤΙΣ ΚΑΤΑΣΤΑΣΕΙΣ ΦΟΡΤΩΣΗΣ 1 ΚΑΙ 2	92
ΕΙΚΟΝΑ 6-58: ΕΛΕΥΘΕΡΗ ΕΠΙΦΑΝΕΙΑ ΣΙΤΗΡΩΝ ΣΤΙΣ ΚΑΤΑΣΤΑΣΕΙΣ ΦΟΡΤΩΣΗΣ 3 ΚΑΙ 4	93
ΕΙΚΟΝΑ 6-59: ΠΑΡΑΜΕΤΡΟΙ ΓΙΑ ΤΗ ΡΟΠΗ ΑΠΟ ΤΗ ΜΕΤΑΤΟΠΙΣΗ ΦΟΡΤΙΟΥ ΣΙΤΗΡΩΝ	94
Είκονα 6-60: Παραμέτροι για το έυρος των γώνων ύπο τις οποίες εξετάζεται το τρι	EXON
KPITHPIO	94
ΕΙΚΟΝΑ 7-1: ΕΠΙΦΑΝΕΙΑ ΣΙΤΗΡΩΝ ΣΤΗΝ ΠΕΡΙΠΤΩΣΗ ΤΟΠΟΘΕΤΗΣΗΣ ΔΙΑΜΗΚΟΥΣ ΦΡΑΚΤΗΣ	100
ΕΙΚΟΝΑ 7-2: ΕΛΕΥΘΕΡΗ ΕΠΙΦΑΝΕΙΑ ΣΙΤΗΡΩΝ ΚΑΤΑ ΤΗΝ ΤΟΠΟΘΕΤΗΣΗ ΟΡΙΖΟΝΤΙΑΣ ΦΡΑΚΤΗΣ	103
Είκονα 7-3:Διαμορφώση του χώρου φορτίου επείτα από την τοποθετήση απόσπωμ	ΈΝΗΣ
εγκαρσίας φρακτής στο nomea 102	104
ΕΙΚΟΝΑ 7-5: ΚΑΜΠΥΛΗ ΜΟΧΛΟΒΡΑΧΙΟΝΑ ΕΠΑΝΑΦΟΡΑΣ ΓΙΑ ΤΗΝ ΚΑΤΑΣΤΑΣΗ 3'	
Είκονα 7-7: Καμπύλη μοχλοβραχίονα επαναφοράς για την κατάσταση 4'	
Εικονά 8-1: Τοποθετημένη απόσπωμενη φρακτή	
Είκονα 10-1: Βασικές περιοχές πλοιών.	
Είκονα 10-2: Κύριες διαστάσεις κατά το διαμήκες	
Είκονα 10-3: Κύριες διαστάσεις κατά το εγκαρσίο	
Είκονα 10-4: Σύντελεστής γαστράς C	
EIKONA 10-5: Σ YNTEAE Σ TH Σ ME Σ H Σ TOMH Σ C _M	
EIKONA 10-6: ΠΡΙΣΜΑΤΙΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ C_{p}	
Εικονά 10-7: Σύντελεστής ισαλού επιφανείας C _{nv}	120

Κατάλογος πινάκων

ΠΙΝΑΚΑΣ 4-1: ΠΙΝΑΚΑΣ ΚΑΤΗΓΟΡΙΩΝ ΟΙ ΟΠΟΙΕΣ ΕΜΠΙΠΤΟΥΝ ΣΤΗΝ ΟΔΗΓΙΑ Α749	24
ΠΙΝΑΚΑΣ 4-2: ΠΙΝΑΚΑΣ ΠΑΡΑΜΕΤΡΩΝ ΓΙΑ ΤΗΝ ΕΦΑΡΜΟΓΗ ΤΟΥ ΚΡΙΤΗΡΙΟΥ ΚΑΙΡΟΥ	27
Πινακάς 5-2: Τύπικο ύμος διακενού	35
ΠΙΝΑΚΑΣ 6-1: ΑΠΟΚΛΙΣΕΙΣ ΕΚΤΟΠΙΣΜΑΤΩΝ	58
ΠΙΝΑΚΑΣ 6-2: ΑΠΟΚΛΙΣΗ ΤΗΣ ΔΙΑΜΗΚΟΥΣ ΘΕΣΗΣ ΤΟΥ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ	59
ΠΙΝΑΚΑΣ 6-3: ΑΠΟΚΛΙΣΗ ΤΗΣ ΚΑΤΑΚΟΡΥΦΗΣ ΘΕΣΗΣ ΤΟΥ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ	60
ΠΙΝΑΚΑΣ 6-4: ΑΠΟΚΛΙΣΗ ΤΗΣ ΔΙΑΜΗΚΟΥΣ ΘΕΣΗΣ ΤΟΥ ΚΕΝΤΡΟΥ ΠΛΕΥΣΤΟΤΗΤΑΣ	61
ΠΙΝΑΚΑΣ 6-5: ΑΠΟΚΛΙΣΕΙΣ ΤΗΣ ΡΟΠΗΣ ΓΙΑ ΤΗ ΔΗΜΙΟΥΡΓΙΑ ΔΙΑΓΩΓΗΣ ΕΝΟΣ ΕΚΑΤΟΣΤΟΥ	62
ΠΙΝΑΚΑΣ 6-6: ΑΠΟΚΛΙΣΕΙΣ ΥΨΟΥΣ ΤΟΥ ΜΕΤΑΚΕΝΤΡΟΥ	63
ΠΙΝΑΚΑΣ 6-7: ΑΠΟΚΛΙΣΕΙΣ ΥΨΟΥΣ ΤΟΥ ΔΙΑΜΗΚΟΥΣ ΜΕΤΑΚΕΝΤΡΟΥ	64
ΠΙΝΑΚΑΣ 6-8: ΑΠΟΚΛΙΣΕΙΣ ΤΙΜΩΝ ΤΩΝ CROSS CURVES ΣΤΙΣ 0°	65
ΠΙΝΑΚΑΣ 6-9: ΑΠΟΚΛΙΣΕΙΣ ΤΙΜΩΝ ΤΩΝ CROSS CURVES ΣΤΙΣ 5°	66
ΠΙΝΑΚΑΣ 6-10: ΑΠΟΚΛΙΣΕΙΣ ΤΙΜΩΝ ΤΩΝ CROSS CURVES ΣΤΙΣ 12°	67
ΠΙΝΑΚΑΣ 6-11: ΑΠΟΚΛΙΣΕΙΣ ΤΙΜΩΝ ΤΩΝ CROSS CURVES ΣΤΙΣ 20°	68
Πινακάς 6-12: Αποκαίσεις τίμων των Cross Curves στις 30°	69
Πινακάς 6-13: Αποκαίσεις τίμων των Cross Curves στις 40°	70
Πινακάς 6-14: Αποκλίσεις τίμων των Cross Curves στις 50°	71
ΠΙΝΑΚΑΣ 6-15: ΠΙΝΑΚΑΣ ΠΡΟΕΠΙΣΚΟΠΗΣΗΣ ΒΑΣΙΚΩΝ ΚΡΙΤΗΡΙΩΝ ΕΥΣΤΑΘΕΙΑΣ	76
ΠΙΝΑΚΑΣ 6-16: ΠΙΝΑΚΑΣ ΠΡΟΕΠΙΣΚΟΠΗΣΗΣ ΚΡΙΤΗΡΙΩΝ ΕΥΣΤΑΘΕΙΑΣ Α.749 ΚΑΙ MSC.23(59)	76
ΠΙΝΑΚΑΣ 6-17: ΚΑΤΑΣΤΑΣΗ 1 (Full Load Homogenous Departure)	79
Πινακάς 6-18: Στοιχεία για την πλεύση στην κατάσταση 1	80
Πινακάς 6-20: Σημεία προοδευτικής κατακλισής	80
ΠΙΝΑΚΑΣ 6-22: ΚΑΤΑΣΤΑΣΗ 2 (FULL LOAD HOMOGENOUS ARRIVAL)	
ΠΙΝΑΚΑΣ 6-23: ΣΤΟΙΧΕΙΑ ΓΙΑ ΤΗΝ ΠΛΕΥΣΗ ΣΤΗΝ ΚΑΤΑΣΤΑΣΗ 2	83
ΠΙΝΑΚΑΣ 6-25: ΣΗΜΕΙΑ ΠΡΟΟΔΕΥΤΙΚΗΣ ΚΑΤΑΚΛΙΣΗΣ	83
ΠΙΝΑΚΑΣ 6-27: ΚΑΤΑΣΤΑΣΗ 3 (S.F. 45 DEPARTURE)	85
ΠΙΝΑΚΑΣ 6-28: ΣΤΟΙΧΕΙΑ ΓΙΑ ΤΗΝ ΠΛΕΥΣΗ ΣΤΗΝ ΚΑΤΑΣΤΑΣΗ 3	86
ΠΙΝΑΚΑΣ 6-30: ΣΗΜΕΙΑ ΠΡΟΟΔΕΥΤΙΚΗΣ ΚΑΤΑΚΛΙΣΗΣ	86
ΠΙΝΑΚΑΣ 6-32: ΚΑΤΑΣΤΑΣΗ 4 (S.F. 45 ARRIVAL)	
ΠΙΝΑΚΑΣ 6-36: ΠΙΝΑΚΑΣ ΕΛΕΓΧΟΥ ΚΡΙΤΗΡΙΩΝ ΕΥΣΤΑΘΕΙΑΣ ΓΙΑ ΤΗΝ ΚΑΤΑΣΤΑΣΗ 4	90
Πινακάς 6-37: Εύρεση σταθμής φορτίου για τις κατάστασεις φορτώσης	91
ΠΙΝΑΚΑΣ 6-38: ΣΤΟΙΧΕΙΑ ΓΙΑ ΤΗΝ ΚΑΤΑΣΤΑΣΗ 1	
ΠΙΝΑΚΑΣ 6-40 : ΣΤΟΙΧΕΙΑ ΓΙΑ ΤΗΝ ΚΑΤΑΣΤΑΣΗ 2	
ΠΙΝΑΚΑΣ 6-42: ΣΤΟΙΧΕΙΑ ΓΙΑ ΤΗΝ ΚΑΤΑΣΤΑΣΗ 3	
ΠΙΝΑΚΑΣ 6-44: ΣΤΟΙΧΕΙΑ ΓΙΑ ΤΗΝ ΚΑΤΑΣΤΑΣΗ 4	
ΠΙΝΑΚΑΣ 6-45: ΠΙΝΑΚΑΣ ΕΛΕΓΧΟΥ ΚΡΙΤΗΡΙΩΝ ΕΥΣΤΑΘΕΙΑΣ ΣΙΤΗΡΩΝ ΓΙΑ ΤΗΝ ΚΑΤΑΣΤΑΣΗ 4	
ΠΝΑΚΑΣ 7-1: ΚΑΤΑΣΤΑΣΗ 3' (S.F. 45 DEPARTURE)	
ΠΙΝΑΚΑΣ 7-2: ΣΤΟΙΧΕΙΑ ΓΙΑ ΤΗΝ ΠΛΕΥΣΗ ΣΤΗΝ ΚΑΤΑΣΤΑΣΗ 3΄	
ΠΙΝΑΚΑΣ 7-4: ΣΗΜΕΙΑ ΠΡΟΟΔΕΥΤΙΚΗΣ ΚΑΤΑΚΛΙΣΗΣ	
ΠΙΝΑΚΑΣ 7-6: ΚΑΤΑΣΤΑΣΗ 4΄ (S.F. 45 ARRIVAL)	
ΠΙΝΑΚΑΣ /-/: ΣΤΟΙΧΕΙΑ ΓΙΑ ΤΗΝ ΠΛΕΥΣΗ ΣΤΗΝ ΚΑΤΑΣΤΑΣΗ 4΄	
ΠΙΝΑΚΑΣ /-Υ: ΣΗΜΕΙΑ ΠΡΟΟΔΕΥΤΙΚΗΣ ΚΑΤΑΚΛΙΣΗΣ	
HINAKAΣ /-11: ΣΤΟΙΧΕΙΑ ΓΙΑ ΤΗΝ ΚΑΤΑΣΤΑΣΗ 3^{\prime}	112
ΠΙΝΑΚΑΣ /-15: ΣΤΟΙΧΕΙΑ ΓΙΑ ΤΗΝ ΚΑΤΑΣΤΑΣΗ 4΄	
ПІЛАКА2 10-1 : 2ҮМВОЛА	116

1. ΕΙΣΑΓΩΓΗ

1.1. Πρόλογος

Στα πλαίσια της εργασίας αυτής γίνεται ανάλυση για την ευστάθεια των πλοίων που μεταφέρουν σιτηρά. Τα φορτία αυτά παρουσιάζουν ιδιαίτερο ενδιαφέρον από άποψη ευστάθειας καθώς δεν αντιμετωπίζονται ως ένα σύνηθες φορτίο. Για το λόγο αυτό, είναι αναγκαίο σε πρώτο χρόνο να παρουσιαστούν οι βασικές έννοιες της ευστάθειας, η επίδραση της μετάθεσης φορτίου στην ευστάθεια, οι ιδιαιτερότητες που παρουσιάζουν τα σιτηρά ως φορτίο και οι κανονισμοί που ισχύουν στα πλοία που μεταφέρουν τα φορτία αυτά. Στο δεύτερο μέρος σχεδιάζεται τρισδιάστατο μοντέλο, πραγματοποιούνται υπολογισμοί ευστάθειας και τέλος, παρουσιάζονται τρόποι εναλλακτικής σχεδίασης των χώρων φορτίου ("Cargo Holds") προκειμένου να περιοριστεί κατά το δυνατό η μετατόπιση του φορτίου σιτηρών.

1.2. Ιστορική Αναδρομή

Από την αρχή της ενασχόλησης του ανθρώπου με τη ναυσιπλοΐα, η ασφάλεια των ταξιδιών στη θάλασσα και κατά συνέπεια η ευστάθεια των πλοίων ήταν ένα ζήτημα που έπρεπε να αντιμετωπιστεί. Κατά την πρώιμη περίοδο της ιστορίας της ναυτιλίας, η κατασκευή των πλοίων βασιζόταν στην ως τότε συγκεντρωμένη εμπειρία των ναυπηγών, με τον τρόπο αυτό, ήταν δυνατό να κατασκευάζονται πλοία ικανά να ταξιδεύουν με ασφάλεια.

Ο πρώτος που έθεσε τα θεμέλια για μία ποσοτική εκτίμηση της ευστάθειας ημιβυθισμένων σωμάτων ήταν ο Αρχιμήδης (287 - 212 π.Χ.), στο έργο του «Περὶ τῶν ἐπιπλεόντων σωμάτων», εισήγαγε ένα μέτρο ευστάθειας παρόμοιο με τον μοχλοβραχίονα επαναφοράς και παρουσίασε θεωρία για την εκτίμηση της ικανότητας ενός σώματος που επιπλέει υπό κάποια κλίση, να επανέλθει στην αρχική του θέση.

Εικόνα 1-1: Αρχιμήδης.

 $\varPi\eta\eta\dot{\eta}: https://www.sciencephoto.com/media/223085/view/portrait-of-ancient-greek-mathematician-archimedes/portrait-greek-mathematician-archimedes/portrait-greek-mathematician-archimedes/portrait-greek-mathematician-archimedes/portrait-greek-mathematician-archimedes/portrait-greek-mathematician-archimedes/portrait-greek-mathematician-archimedes/portrait-greek-mathematician-archimedes/portrait-greek-mathematician-archimedes/portrait-greek-mathematician-archimedes/portrait-greek-mathematician-archimedes/portrait-greek-mathematician-archimedes/portrait-greek-mathematician-archimedes/portrait-greek-mathematician-archimedes/portrait-greek-mathematician-archimedes/portrait-greek-mathematician-archimedes/portrait-greek-mathematician-archimedes/portrait-greek-mathema$

Δεκαοκτώ αιώνες μετά τον Αρχιμήδη, ο Φλαμανδός Μαθηματικός Simon Stevin (1548 - 1620), εισήγαγε την έννοια της κατανομής της υδροστατικής πίεσης σε ένα βυθισμένο σώμα.

Εικόνα 1-2: Simon Stevin.

Πηγή: https://www.researchgate.net/figure/Simon-Stevin-of-Bruges-7_fig5_258238315

Ο Γάλλος μαθηματικός Paul Hoste (1652 -1700) ήταν ο πρώτος που προσπάθησε να ποσοτικοποιήσει το πρόβλημα της ευστάθειας των πλοίων. Χωρίς όμως τη χρήση του απειροστικού λογισμού, ο οποίος δεν είχε ακόμη διατυπωθεί, στην προσπάθεια αυτή θα συναντούσε δυσκολίες και έτσι στους υπολογισμούς του θα έκανε πολλά λάθη. Ωστόσο, ο περιέγραψε το πείραμα ευστάθειας προκειμένου να κάνει εκτίμηση για την ικανότητα ιστιοφορίας ενός πλοίου.

Εικόνα 1-3: Έργο του Paul Hoste,: Théorie de la construction des vaisseaux.

Πηγή: https://gallica.bnf.fr/ark:/12148/btv1b86265881.image

Στις αρχές του 16^{ου} αιώνα τα πολεμικά πλοία ξεκίνησαν να φέρουν κανόνια και οπλοθυρίδες προκειμένου να αυξήσουν τη δύναμη πυρός τους, αυτό όμως οδήγησε σε βαρύτερα πλοία και επιπλέον, τα έκανε να φέρουν μεγάλα ανοίγματα στις πλευρές τους, προκαλώντας έτσι σημαντικά προβλήματα στην ευστάθεια.

Τα ναυάγια των πολεμικών πλοίων Mary Rose (1545) και Vasa (1628) αποτελούν χαρακτηριστικά παραδείγματα του κενού που υπήρχε στο γνωστικό πεδίο ορισμένων τομέων της ευστάθειας των πλοίων.

Εικόνα 1-4: Η βύθιση του Mary Rose (1545).

Πηγή: <u>https://maryrose.org/</u>

Το Mary Rose, βυθίστηκε κατά την έναρξη της ναυμαχίας του Solent στις 19 Ιουλίου του 1545 πριν καν καταφέρει να ρίξει βολή. Το πλοίο αυτό είχε δυνατότητα μεταφοράς 400 ατόμων, όμως την ημέρα της ναυμαχίας το πλήρωμα αριθμούσε τα 700 άτομα. Το Mary Rose ξεκίνησε να παίρνει μεγάλη κλίση και αυτό είχε ως συνέπεια να εισχωρήσει θαλασσινό νερό στο πλοίο από τις οπλοθυρίδες και τελικά να βυθιστεί.

(Royal Museums Greenwich: https://www.rmg.co.uk/stories/topics/mary-rose)

Εικόνα 1-5: Η βύθιση του Vasa (1628). Πηγή: <u>https://orgchanger.com/2012/03/13/vasas-historic-project-management-lesson/</u>

Το Vasa ήταν το νεότερο πλοίο του Σουηδικού Βασιλικού Ναυτικού, στο παρθενικό του ταξίδι στις 10 Αυγούστου του 1628, αφού διένυσε περίπου 1300 μέτρα, μια ελαφριά ριπή ανέμου έκανε το πλοίο να πάρει μεγάλη κλίση και τελικά να κατακλειστεί από ύδατα που εισχώρησαν μέσω των οπλοθυρίδων με συνέπεια τη βύθιση του πλοίου και την απώλεια 53^{ων} ανθρώπων.

(Vasa Museet: <u>https://www.vasamuseet.se/en/vasa-history/disaster</u>), (Wikipedia: <u>https://en.wikipedia.org/wiki/Vasa_(ship</u>))

Για την επίλυση αυτού του προβλήματος, ο Βρετανός Ναυπηγός Anthony Deane (1638–1721) ανέπτυξε μέθοδο για να υπολογίζει πόσο οπλισμό και πόσο έρμα πρέπει να έχει ένα πλοίο προκειμένου να πλέει στη σωστή ίσαλο. Ο Deane χρησιμοποιούσε τα σχέδια των πλοίων προκειμένου να υπολογίζει τον βυθισμένο όγκο. Ο υπολογισμός αυτός γινόταν προσεγγίζοντας τα εμβαδά των νομέων κάτω από την ίσαλο με εμβαδά γνωστών σχημάτων, όπως τεταρτοκύκλια, παραλληλόγραμμα και τρίγωνα, τα εμβαδά αυτά στη συνέχεια πολλαπλασίαζε με την ισαπόσταση των νομέων προκειμένου να βρει τον ζητούμενο όγκο.

Πηγή: https://en.wikipedia.org/wiki/Anthony_Deane_(mayor)

Στα τέλη του 17^{ου} Αιώνα, η επιστήμη των μαθηματικών θα βρεθεί σε ένα κομβικό σημείο της ιστορίας της, καθώς τότε θα διατυπωθεί ο απειροστικός λογισμός από τους Isaac Newton και Gottfried Leibniz, ο απειροστικός λογισμός θα έχει ευρεία εφαρμογή σε ένα μεγάλο φάσμα επιστημών, μεταξύ των οποίων και η ναυπηγική.

Ο μαθηματικός Thomas Simpson (1710 - 1761), ανέπτυξε κανόνες για την Αριθμητική προσέγγιση των ολοκληρωμάτων συναρτήσεων, οι οποίοι είχαν ευρεία εφαρμογή στη ναυπηγική, καθώς ήταν δυνατό να προσεγγιστεί ο όγκος και το κέντρο του όγκου στα πλοία. (<u>https://www.prs.pl/uploads/history_of_stability_criteria.pdf</u>), (<u>https://en.wikipedia.org/wiki/History_of_calculus</u>)

Στα μέσα του 18^{ου} αιώνα, στα έτη 1746 και 1749, δημοσιεύονται δύο σημαντικές εργασίες για τη ναυπηγική, οι οποίες έχουν ως θέμα τη λεπτομερή ανάλυση της ευστάθειας των πλοίων. Το 1746 ο Bouguer (1698–1758), Γάλλος Μαθηματικός και μέλος της Γαλλικής Βασιλικής Ακαδημίας Επιστημών, δημοσιεύει την εργασία «*Traité du Navire, de sa Constuction et de ses Mouvements*». Στην εργασία αυτή, ο Bouguer θα δώσει τον ορισμό του μετάκεντρου καθώς και τον τρόπο υπολογισμού της μετακεντρικής ακτίνας ενός πλοίου.

Εικόνα 1-7: Pierre Bouguer. Πηγή: https://en.wikipedia.org/wiki/Pierre_Bouguer

Το 1749, ο Μεγάλος μαθηματικός Leonhard Euler (1707-1783), θα δημοσιεύσει στην Αγία Πετρούπολη την εργασία του «Scientia Navalis» στην οποία διερευνάται η ικανότητα επαναφοράς ενός ημιβυθισμένου σώματος προς την όρθια θέση για απειροστές γωνίες εγκάρσιας κλίσης.

Εικόνα 1-8: Leonhard Euler. Πηγή: <u>https://en.wikipedia.org/wiki/Leonhard_Euler#/media/File:Leonhard_Euler___edit1.jpg</u>

Ο George Atwood (1745-1807), Άγγλος Μαθηματικός, μελέτησε την ευστάθεια για σώματα απλής γεωμετρίας σε μεγάλες γωνίες και κατέληξε στο συμπέρασμα ότι η ευστάθεια πρέπει να εξετάζεται για ένα εύρος γωνιών και εισήγαγε την έννοια του μοχλοβραχίονα επαναφοράς. Ο μοχλοβραχίονας επαναφοράς καθιερώθηκε ως κριτήριο ευστάθειας έπειτα από τις εργασίες των Reed (1868) και Denny (1887).

Το 1939 ο Φιλανδός Ναυπηγός Jaakko Rahola (1902-1973), στα πλαίσια της διδακτορικής του διατριβής, ανέλυσε τα χαρακτηριστικά 30 πλοίων που είχαν ανατραπεί στη Βαλτική θάλασσα και πρότεινε κριτήρια ευστάθειας βασιζόμενα αποκλειστικά στον μοχλοβραχίονα επαναφοράς. Οι τιμές που χρησιμοποίησε αναφέρονταν στο μέρος του μοχλοβραχίονα μέχρι τις 40 μοίρες. Τα κριτήρια αυτά ήταν η βάση των κριτηρίων του ΙΜΟ τα οποία υιοθετήθηκαν το 1969.

Πηγή: (Κωνσταντίνος Σπύρου «Δυναμική ευστάθεια πλοίου»,2015)

Εικόνα 1-9: Jakko Rahola. Πηγή: https://commons.wikimedia.org/wiki/File:Jaakko_Rahola.jpg

1.3. Τα προβλήματα που εξετάζει η Υδροστατική των Πλοίων

Πριν αναλυθεί το πρόβλημα της μετατόπισης φορτίου σιτηρών και η επίδραση που έχει η μετατόπιση αυτή στην ευστάθεια των πλοίων, κρίνεται αναγκαίο να παρουσιαστούν οι βασικές έννοιες της υδροστατικής και της ευστάθειας των πλοίων.

Τα βασικά προβλήματα που αφορούν την υδροστατική των πλοίων είναι η εύρεση της θέσης ισορροπίας ενός σώματος, όταν σε αυτό ασκούνται εσωτερικές ή εξωτερικές δυνάμεις και ροπές, καθώς επίσης και η διερεύνηση των προϋποθέσεων υπό τις οποίες η ισορροπία του σώματος είναι εφικτή και ευσταθής.

Πηγή: («Υδροστατική και Ευστάθεια Πλοίου», Τζαμπίρας 2015)

2. ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΥΔΡΟΣΤΑΤΙΚΗΣ ΚΑΙ ΕΥΣΤΑΘΕΙΑΣ

2.1. Η αρχή του Αρχιμήδη

Η διερεύνηση των υδροστατικών φαινομένων όπως είδαμε στο προηγούμενο κεφάλαιο, ήταν ένα αντικείμενο που ξεκίνησε από τον Αρχιμήδη στο έργο του «Περὶ τῶν ἐπιπλεόντων σωμάτων», όπου διατυπώνονται ορισμένες προτάσεις για τη δύναμη που ασκεί ένα ρευστό σε ένα βυθισμένο σώμα. Στη σύγχρονη βιβλιογραφία, οι προτάσεις αυτές περιορίζονται σε μια μόνο δήλωση γνωστή ως αρχή του Αρχιμήδη, η οποία δηλώνει ότι:

«Όταν ένα σώμα είναι βυθισμένο σε ένα υγρό, τότε θα ασκηθεί σε αυτό μια κατακόρυφη δύναμη προς τα πάνω ίση με το βάρος του υγρού που εκτοπίζεται από το σώμα, η δύναμη αυτή ονομάζεται άντωση».

2.2. Η Μαθηματική Θεώρηση της Άντωσης

Στα πλαίσια της εργασίας αυτής, αν και θα ήταν δυνατό να αρκεστούμε στην παραπάνω αρχή, κρίθηκε ότι έχει ιδιαίτερο ενδιαφέρον η μαθηματική θεώρηση της άντωσης.

Έστω σώμα όγκου V και εξωτερικής επιφάνειας S (κλειστής), το οποίο είναι πλήρως βυθισμένο σε υγρό. Σε κάθε στοιχειώδη επιφάνεια dσ ασκείται υδροστατική πίεση P σύμφωνα με τη σχέση:

$$P = P_0 + \gamma (h - z) \tag{1}$$

Όπου h, είναι το ύψος της ελεύθερης επιφάνειας του υγρού από το επίπεδο oxy.

Από τον ορισμό της η πίεση δίνεται από τη σχέση:

$$\overrightarrow{dQ} = p \cdot \overrightarrow{d\sigma} \tag{2}$$

όπου $\overrightarrow{d\sigma} = \overrightarrow{n} \cdot d\sigma$ είναι το διάνυσμα της στοιχειώδους επιφάνειας, με διεύθυνση κάθετη στην επιφάνεια στο θεωρούμενο σημείο Σ (x,y,z), φορά προς τα έσω, μέτρο το στοιχειώδες εμβαδό dσ και \overrightarrow{n} το κάθετο διάνυσμα.

Από τη σχέση (2) προκύπτει ότι η δύναμη \vec{dQ} που οφείλεται στην άσκηση την πίεσης P στη στοιχειώδη επιφάνεια dσ είναι πάντα κάθετη στην επιφάνεια και κατευθύνεται προς τα έσω.

Πηγή: Εικόνα σχεδιασμένη στο Autocad.

Η δύναμη αυτή αν αναλυθεί σε συνιστώσες της για τις διευθύνεις Ox, Oy, Oz τότε, $\overrightarrow{dQ} = (dQ_x, dQ_y, dQ_z)$ Όπου: $dQ_x = \overrightarrow{dQ} \cdot \vec{i} = p \cdot d_\sigma \cdot \vec{n} \cdot \vec{i} = p \cdot \cos(n, x) d_\sigma$ $dQ_y = \overrightarrow{dQ} \cdot \vec{j} = p \cdot d_\sigma \cdot \vec{n} \cdot \vec{j} = p \cdot \cos(n, y) d_\sigma$ $dQ_z = \overrightarrow{dQ} \cdot \vec{k} = p \cdot d_\sigma \cdot \vec{n} \cdot \vec{k} = p \cdot \cos(n, z) d_\sigma$

Για την εύρεση της συνολικής δύναμης που ασκείται στο βυθισμένο σώμα, πρέπει να γίνει ολοκλήρωση κατά την έκταση όλης της κλειστής επιφάνειας S.

Συνεπώς,

$Q_x = \frac{1}{2} \int \frac{1}{2} \cos(n_x x) dx dx $ (5.1)	$Q_x = \oint P\cos(n, x) d\sigma$	(3.1)
---	-----------------------------------	-------

- $Q_y = \oint P\cos(n, y)d\sigma \tag{3.2}$
- $Q_z = \oiint Pcos(n, z)d\sigma \tag{3.3}$

Η ροπή της δύναμης \overrightarrow{dQ} στο σημείο Σ (x,y,z) ως προς το σημείο Ο θα είναι:

 $\overrightarrow{dM} = \overrightarrow{\SigmaO} \ge \overrightarrow{dQ} = -\overrightarrow{r} \ge \overrightarrow{dQ} = -(ydQ_z - zdQ_y, ZdQ_x - zdQ_z, XdQ_y - ydQ_x)$ Επομένως η συνολική ροπή είναι:

$$M_x = -\oint_S P \cdot [y\cos(n,z) - z\cos(n,y)]d\sigma$$
(4.1)

$$M_{y} = - \oint_{s} P \cdot [zcos(n, x) - xcos(n, z)] d\sigma$$
(4.2)

$$M_z = - \oint_s P \cdot [x\cos(n, y) - y\cos(n, x)] d\sigma$$
(4.3)

Για τον υπολογισμό των σχέσεων (3) και (4) γίνεται χρήση του Θεωρήματος Gauss

$$\oint_{s} \overrightarrow{\alpha} \cdot d\sigma = -\iiint div \overrightarrow{\alpha} \cdot dv , \text{ onov } dv = dxdydz = d\sigma dz$$
(5)

Kai $div\vec{\alpha} = \frac{\partial \alpha x}{\partial x} + \frac{\partial \alpha y}{\partial y} + \frac{\partial \alpha z}{\partial z}$ με διάνυσμα $\vec{\alpha} = (\alpha_x, \alpha_y, \alpha_z)$, η σχέση (5) γράφεται στη μορφή:

$$\iint_{S} \left[a_{x} \cos(n, x) + a_{y} \cos(n, y) + a_{z} \cos(n, z) \right] d\sigma = - \iiint \left[\frac{\partial \alpha x}{\partial x} + \frac{\partial \alpha y}{\partial y} + \frac{\partial \alpha z}{\partial z} \right] dv$$

Έτσι για κάθε συντεταγμένη έχουμε:

$$\oint_{S} a_{x} \cos(n, x) d\sigma = - \iiint_{V} \frac{\partial \alpha x}{\partial x} dv \qquad \rightarrow \qquad \oint_{S} P \cos(n, x) d\sigma = - \iiint_{V} \frac{\partial P}{\partial x} dv = 0$$
(6.1)

$$\oint_{S} a_{y} \cos(n, y) d\sigma = - \iiint_{V} \frac{\partial \alpha y}{\partial y} dv \qquad \rightarrow \qquad \oint_{S} P \cos(n, y) d\sigma = - \iiint_{V} \frac{\partial P}{\partial y} dv = 0$$
(6.2)

$$\oint_{S} a_{z} \cos(n, z) d\sigma = - \iiint_{V} \frac{\partial \alpha z}{\partial z} dv \qquad \rightarrow \qquad \oint_{S} P \cos(n, z) d\sigma = - \iiint_{V} \frac{\partial P}{\partial z} dv = - \iiint_{V} -\gamma \cdot dv \quad (6.3)$$

Αντικαθιστώντας τις σχέσεις (6) στις σχέσεις (3) προκύπτει:

$$Q_{x} = 0, Q_{y} = 0, Q_{z} = -\iiint_{V} -\gamma \, dv = \gamma \iint_{s'} \left(\int_{z_{1}(x,y)}^{z_{2}(x,y)} dz \right) d\sigma$$
(7)

Όπου: το s' είναι η προβολή του στερεού στο επίπεδο Oxy, δηλαδή μία επίπεδη περιοχή. $Z_1 = Z_1(x, y)$ και $Z_2 = Z_2(x, y)$ είναι δύο επιφάνειες (κάτω και πάνω).

Έτσι έχουμε τελικά:

$$Q_x = 0, Q_y = 0, Q_z = \gamma \iint_{S'} [Z_2(x, y) - Z_1(x, y)] d\sigma$$

Αντίστοιχα οι εξισώσεις (4) γίνονται:

$$M_{x} = - \oiint_{S} Py \cdot \cos(n, z) \, d\sigma + \oiint_{S} Pz \cdot \cos(n, y) \, d\sigma$$
$$M_{y} = - \oiint_{S} Pz \cdot \cos(n, x) \, d\sigma + \oiint_{S} Px \cdot \cos(n, z) \, d\sigma$$
$$M_{z} = - \oiint_{S} Px \cdot \cos(n, y) \, d\sigma + \oiint_{S} Py \cdot \cos(n, x) \, d\sigma$$

Λαμβάνοντας υπόψη ότι:

$$\frac{\partial(Py)}{\partial z} = -\gamma y, \frac{\partial(Px)}{\partial z} = -\gamma x, \frac{\partial(Pz)}{\partial y} = \frac{\partial(Pz)}{\partial x} = \frac{\partial(Py)}{\partial y} = 0$$

Τότε προκύπτει:

Και τελικά:

$$M_z = 0 \tag{8.1}$$

$$M_x = - \oint_S \operatorname{Py} \cos(n, z) \, d\sigma \qquad \qquad = \gamma \iint_{S'} [Z_2 - Z_1] y \, d\sigma \tag{8.2}$$

$$M_{y} = - \oiint_{S} Px \cos(n, z) d\sigma \qquad \qquad = \gamma \iint_{S'} [Z_{2} - Z_{1}] x d\sigma \qquad (8.3)$$

Συμπεράσματα από τη Μαθηματική θεώρηση της άντωσης:

Η σχέση (7) εκφράζει τη σχέση $\Delta = \gamma \nabla$, όπου ∇ ο όγκος του θεωρούμενου στερεού. Άρα η άντωση \vec{Q} έχει διεύθυνση κατακόρυφη (καθώς $Q_x = 0$, $Q_y = 0$), φορά προς τα πάνω (καθώς το πρόσημο είναι θετικό) και μέτρο με το βάρος του εκτοπιζόμενου υγρού (Δ).

Το κέντρο άντωσης ορίζεται από τις σχέσεις:

$$\overline{x_k} = \frac{\iint_{S'} [Z_2 - Z_1] x d\sigma}{\nabla}$$
$$\overline{y_k} = \frac{\iint_{S'} [Z_2 - Z_1] y d\sigma}{\nabla}$$

Πηγή: («ΘΕΩΡΙΑ ΠΛΟΙΩΝ Ι», ΑΘΑΝΑΣΙΟΥ ΔΗΜ. ΛΟΥΚΑ, 1981)

2.3. Η ισορροπία των πλοίων και η αρχική ευστάθεια

Ένα σώμα θεωρείται ότι βρίσκεται σε κατάσταση ισορροπίας όταν η συνισταμένη όλων το δυνάμεων και όλων τον ροπών που ενεργούν σε αυτό είναι μηδενικές.

Αν ένα σώμα υποβληθεί σε μία μικρή διαταραχή από τη θέση ισορροπίας και τείνει να επιστρέψει σε αυτήν, τότε το σώμα βρίσκεται σε κατάσταση ευσταθούς ισορροπίας.

Αν μετά τη διαταραχή ισορροπήσει σε νέα θέση, τότε το σώμα βρίσκεται σε κατάσταση ουδέτερης ισορροπίας.

Αν μετά τη διαταραχή το σώμα τείνει να απομακρύνεται από τη θέση ισορροπίας, τότε το σώμα βρίσκεται σε κατάσταση ασταθούς ισορροπίας.

Πηγή: («ΒΑΣΙΚΗ ΘΕΩΡΙΑ ΠΛΟΙΟΥ-ΤΟΜΟΣ 1», K.J. Rawson & E.C. Tupper, 2002)

Εικόνα 2-2: Καταστάσεις ισορροπίας:

Πηγή: https://www.researchgate.net/figure/position-of-mass-point-a-Positive-static-stability-stable-equilibrium-b-Negative_fig4_320216159

Ένα πλοίο που ισορροπεί σε ήρεμη επιφάνεια νερού δέχεται την επίδραση δύο δυνάμεων, οι δυνάμεις αυτές είναι το βάρος του πλοίου, το οποίο ασκείται στο κέντρο βάρους και η άντωση, η οποία ασκείται στο κέντρο άντωσης.

Εάν στο πλοίο αυτό ασκηθεί εξωτερική ροπή, τότε αυτό θα πάρει μία κλίση με συνέπεια η θέση του κέντρου άντωσης να απομακρυνθεί από το διάμηκες επίπεδο συμμετρίας προς την πλευρά της κλίσης.

Έτσι οι άξονες πάνω στους οποίους ενεργούν οι δυνάμεις βάρους-άντωσης απομακρύνονται και αναπτύσσεται ροπή που οφείλεται στο ζεύγος των δυνάμεων αυτών.

Εικόνα 2-3: Η μετακίνηση της θέσης του κέντρου άντωσης κατά την εγκάρσια κλίση.

Πηγή: Εικόνα σχεδιασμένη στο Autocad.

Στο παραπάνω σχήμα, η ροπή από το ζεύγος δυνάμεων τείνει να επαναφέρει το πλοίο στην αρχική όρθια θέση και για το λόγο αυτό ονομάζεται **ροπή επαναφοράς.** Η κάθετη απόσταση μεταξύ των αξόνων που ενεργούν το βάρος και η άντωση είναι ο μοχλοβραχίονας (GZ) και ονομάζεται **μοχλοβραχίονας επαναφοράς**.

Στην περίπτωση όπου η θέση του κέντρου βάρους βρίσκεται σε μία υψηλή θέση, όταν το πλοίο πάρει κλίση, οι άξονες πάνω στους οποίους δρουν οι δυνάμεις βάρουςάντωσης, απομακρύνονται και δημιουργείται ροπή από το ζεύγος των δυνάμεων αυτών. Η ροπή αυτή τείνει να ανατρέψει να ανατρέψει το πλοίο και για το λόγο αυτό ονομάζεται **ροπή ανατροπής**. Ο μοχλοβραχίονας (GZ) του ζεύγους δυνάμεων βάρους-άντωσης λέγεται μοχλοβραχίονας ανατροπής.

Εικόνα 2-4:Περίπτωση κέντρου βάρους σε υψηλή θέση – δημιουργία μοχλοβραχίονα ανατροπής. Πηγή: Εικόνα σχεδιασμένη στο Autocad.

Για μικρές γωνίες, (5 έως 10 μοίρες) το σημείο τομής της κατακόρυφης ευθείας που διέρχεται από το κέντρο άντωσης με την αρχική κατακόρυφο που διέρχεται από το κέντρο άντωσης όταν το πλοίο έχει μηδενική κλίση λέγεται μετάκεντρο και συμβολίζεται με το γράμμα *M*. Η θέση του μετάκεντρου έχει σημαντικό ρόλο για την ευστάθεια των πλοίων. Έτσι διακρίνονται τέσσερεις χαρακτηριστικές περιπτώσεις, όπως αυτές απεικονίζονται παρακάτω.

Εικόνα 2-5: Χαρακτηριστικές περιπτώσεις μετακεντρικού ύψους. Πηγή: Εικόνα σχεδιασμένη στο Autocad.

Η απόσταση GM μεταξύ του μετάκεντρου και του κέντρου βάρους, ονομάζεται μετακεντρικό ύψος και αποτελεί μέτρο της αρχικής ευστάθειας.

Όταν το μετάκεντρο βρίσκεται πάνω από το κέντρο βάρους, τότε το μετακεντρικό ύψος GM έχει θετική τιμή. Όταν το μετάκεντρο βρίσκεται κάτω από το κέντρο βάρους, τότε το μετακεντρικό ύψος GM έχει αρνητική τιμή. Τέλος όταν το μετάκεντρο και το κέντρο βάρους βρίσκονται στην ίδια θέση, το μετακεντρικό ύψος έχει μηδενική τιμή.

Στην περίπτωση θετικής τιμής για το μετακεντρικό ύψος, το πλοίο είναι ευσταθές, στην περίπτωση αρνητικού μετακεντρικού ύψους το πλοίο είναι ασταθές και στην περίπτωση που το έχει μηδενική τιμή το πλοίο βρίσκεται σε ουδέτερη ισορροπία και έτσι μπορεί να πλέει με αρχική μόνιμη κλίση. Στην παρακάτω εικόνα παρουσιάζεται ένα πλοίο το οποίο έχει μικρή εγκάρσια γωνία κλίσης. Στο πλοίο αυτό ενεργούν το βάρος και η άντωση, με συνέπεια την ανάπτυξη ροπής ζεύγους δυνάμεων με μέτρο ίσο με το γινόμενο της μίας δύναμης επί την απόσταση των αξόνων που ενεργούν το βάρος και η άντωση.

Εικόνα 2-6: Πλοίο σε μικρή εγκάρσια γωνία. Πηγή: Εικόνα σχεδιασμένη στο Autocad.

Επομένως, θα ισχύει: $M_R = \Delta x GZ$

Από το ορθογώνιο τρίγωνο GZM, προκύπτει: GZ = GMsinθ

Άρα: $M_R = \Delta x GMsin\theta$

Στην ίδια εικόνα, η απόσταση μεταξύ κέντρου άντωσης και μετάκεντρου BM, λέγεται μετακεντρική ακτίνα και η απόσταση μεταξύ του κέντρου βάρους και του κέντρου άντωσης BG ονομάζεται ακτίνα βάρους. Επομένως $M_R = \Delta x \ (BM \pm BG) sin\theta$

Ο όρος (BM - BG) χρησιμοποιείται όταν το κέντρο βάρους G βρίσκεται πάνω από το κέντρο άντωσης B και ο όρος (BM + BG), χρησιμοποιείται όταν το κέντρο βάρους G βρίσκεται κάτω από το κέντρο άντωσης B.

Έτσι, σύμφωνα με τα παραπάνω προκύπτει ότι η αρχική ευστάθεια εξαρτάται αφενός από την κατανομή των βαρών και αφετέρου από το σχήμα της γάστρας, από την οποία εξαρτάται η θέση του κέντρου άντωσης.

Πηγή: («ΘΕΩΡΙΑ ΠΛΟΙΩΝ Ι», ΑΘΑΝΑΣΙΟΥ ΔΗΜ. ΛΟΥΚΑ, 1981)

2.4. Καμπύλες Στατικής Ευστάθειας

Στην προηγούμενη ενότητα παρουσιάστηκε η ισορροπία και η αρχική ευστάθεια των πλοίων. Όπως αναφέρθηκε παραπάνω, η αρχική ευστάθεια των πλοίων συσχετίζει τη θέση του μετάκεντρου με το μοχλοβραχίονα επαναφοράς, θεωρώντας πως το μετάκεντρο παραμένει σταθερό. Η παραδοχή αυτή όμως, ανταποκρίνεται στην πραγματικότητα μόνο για μικρές γωνίες κλίσης (έως 10 μοίρες). Σε γωνίες εγκάρσιας κλίσης μεγαλύτερης των 10 μοιρών, η παραδοχή ότι το μετάκεντρο παραμένει σταθερό είναι εσφαλμένη. Για το λόγο αυτό ως κύριο μέτρο ευστάθειας έχει καθιερωθεί ο μοχλοβραχίονας επαναφοράς.

Οι μοχλοβραχίονες στατικής ευστάθειας υπολογίζονται για συγκεκριμένο εκτόπισμα και θέση του κέντρου βάρους σε διάφορες γωνίες εγκάρσιας κλίσης. Το γράφημα που προκύπτει από το σύνολο των υπολογισμένων μοχλοβραχιόνων και τις γωνίες εγκάρσιας κλίσης καλείται καμπύλη στατικής ευστάθειας GZ-φ.

Εικόνα 2-7: Καμπύλη στατικής ευστάθειας.

Πηγή: Rawson, K J, and Eric Charles. Basic Ship Theory. Oxford, Butterworth-Heinemann, 2001.

Τα κύρια χαρακτηριστικά της καμπύλης αυτής είναι:

- Η αρχική κλίση της καμπύλης, καθώς η κλίση αυτή μπορεί να δώσει πληροφορία για την αρχική ευστάθεια του πλοίου.
- Η γωνία κατά την οποία ο μοχλοβραχίονας επαναφοράς παίρνει την μέγιστη τιμή.
- Η γωνία κατά την οποία μηδενίζεται η τιμή του μοχλοβραχίονα επαναφοράς.

Πηγή: («ΤΕΧΝΙΚΗ ΤΟΥ ΠΛΟΙΟΥ, ΤΟΜΟΣ ΠΡΩΤΟΣ, ΝΑΥΠΗΓΙΑ», ΒΑΣ. Ε. ΦΡΑΓΚΟΥΛΗ, 1966)

2.5. Παραμετρικές Καμπύλες Ευστάθειας

Ένα μέσο για τη χάραξη της καμπύλης του μοχλοβραχίονα επαναφοράς, είναι οι παραμετρικές καμπύλες ευστάθειας ("Cross Curves of Stability"), οι καμπύλες αυτές είναι ένα γεωμετρικό στοιχείο του πλοίου, συγκεκριμένα, οι παραμετρικές καμπύλες ευστάθειας, αποτελούν συναρτήσεις του εκτοπίσματος και της γωνίας εγκάρσιας κλίσης ενός πλοίου. Με τη χρήση αυτών των καμπυλών γίνεται δυνατό να υπολογιστεί η απόσταση του κέντρου άντωσης από ένα κατακόρυφο επίπεδο που περιστρέφεται γύρω από διαμήκη άξονα για δεδομένη τιμή εκτοπίσματος και γωνίας εγκάρσιας κλίσης.

Ο άξονας περιστροφής, προκύπτει από την τομή του βασικού επίπεδου σχεδίασης με το διάμηκες επίπεδο συμμετρίας. Το ίχνος του άξονα αυτού συμβολίζεται με Κ και συμπίπτει με την τρόπιδα.

Πηγή: Εικόνα σχεδιασμένη στο Autocad.

Στην παραπάνω εικόνα, το κέντρο άντωσης κάτω από μια κεκλιμένη ίσαλο συμβολίζεται με B_{ϕ} . Οι κατακόρυφες που διέρχονται από τα σημεία B_{ϕ} και K είναι κάθετες στην κεκλιμένη ίσαλο.

Αν Κ', η προβολή του B_{φ} πάνω στην κατακόρυφο που διέρχεται από το σημείο Κ και Ζ' είναι η προβολή του Κ στην κατακόρυφο που διέρχεται από το σημείο B_{φ} , τότε ισχύει $\overline{KZ'} = \overline{K'B_{\varphi}}$.

Ο μοχλοβραχίονας $\overline{K'B_{\varphi}}$ θεωρητικά, προκύπτει ως ο λόγος της ροπής όγκου προς τον ολικό όγκο κάτω από την ίσαλο WL φ .

Οι τιμές του $\overline{KZ'}$ για μια συγκεκριμένη γωνία κλίσης φ είναι συναρτήσεις του εκτοπίσματος (κάτω από τις αντίστοιχες ισάλους) και, για δεδομένο εκτόπισμα, συναρτήσεις των γωνιών.

Εικόνα 2-9: Ο μοχλοβραχίονας GZ συναρτήσει του μοχλοβραχίονα KZ'.

Όπως προκύπτει από την παρακάτω εικόνα, για δεδομένο εκτόπισμα και κέντρο βάρους ενός πλοίου, η τιμή του μοχλοβραχίονα επαναφοράς σε γωνία φ υπολογίζεται από τη σχέση: $GZ = KZ' - KZ'' = KZ' - KGsin\varphi$. Η σχέση αυτή υποδεικνύει τον τρόπο με τον οποίο κατασκευάζεται η καμπύλη της στατικής ευστάθειας GZ- φ .

Πηγή: («Υδροστατική και Ευστάθεια Πλοίου», Τζαμπίρας 2015)
3. ΠΕΡΙΠΤΩΣΕΙΣ ΕΠΙΔΡΑΣΗΣ ΤΗΣ ΕΥΣΤΑΘΕΙΑΣ

3.1. Μετατόπιση Φορτίου

Το κέντρο βάρους ενός πλοίου είναι ένας από τους σημαντικότερους παράγοντες της ευστάθειας των πλοίων. Για το λόγο αυτό είναι αναγκαίο να γνωρίζουμε τη μεταβολή της θέσης του κέντρου βάρους ενός πλοίου, όταν σε αυτό μετατοπίζεται φορτίο. Στη μετατόπιση φορτίου διακρίνονται τρεις περιπτώσεις, αντίστοιχες με τις διευθύνσεις της μετακίνησης, δηλαδή εξετάζονται οι περιπτώσεις μετακίνησης καθ' ύψος, κατά το διάμηκες και κατά το εγκάρσιο. Στην εργασία αυτή θα εξεταστούν οι περιπτώσεις μετακίνησης του κέντρου βάρους καθ' ύψος και κατά το εγκάρσιο, καθώς αυτές οι μετατοπίσεις συνδέονται άμεσα με το μοχλοβραχίονα επαναφοράς, σε αντίθεση με την μετατόπιση κατά το διάμηκες, η οποία σχετίζεται με τη διαγωγή του πλοίου.

Εικόνα 3-1 Μετακίνηση βάρους από την αρχική θέση 1 στην τελική θέση 3.

Πηγή: Εικόνα σχεδιασμένη στο Autocad.

Κατά τη μετατόπιση ενός φορτίου W από την αρχική θέση 1 στην τελική θέση 3, το κέντρο βάρους του πλοίου μετατοπίζεται παράλληλα προς την ευθεία που ενώνει την αρχική και την τελική θέση του κέντρου βάρους του φορτίου. Εφαρμόζοντας το θεώρημα ροπών, προκύπτει: $GG_2 = \frac{d \cdot w}{A}$

Όπου: GG_2 , η μετατόπιση του κέντρου βάρους του πλοίου, Δ, το εκτόπισμα και w, το βάρος του φορτίου.

Η περίπτωση της διαγώνιας μετατόπισης ισοδυναμεί με δύο ταυτόχρονες μετατοπίσεις. Αφ' ενός με τη μετατόπιση του φορτίου από το σημείο 1 στο σημείο 2 μετατοπίζεται το κέντρο βάρους από τη θέση G στη θέση G1, όπου, $GG_1 = \frac{y \cdot w}{\Delta}$ και αφ' ετέρου την μετατόπιση του ίδιου φορτίου από το σημείο 2 στο σημείο 3, όπου, $G_1G_2 = \frac{x \cdot w}{\Delta}$.

Πηγή: («ΘΕΩΡΙΑ ΠΛΟΙΩΝ Ι», ΑΘΑΝΑΣΙΟΥ ΔΗΜ. ΛΟΥΚΑ, 1981)

Αν προστεθεί βάρος w σε πλοίο εκτοπίσματος Δ, τότε είναι δυνατό να θεωρήσουμε ότι αρχικά το βάρος προστέθηκε στην αρχική θέση του κέντρου βάρους G και στη συνέχεια μετατοπίστηκε στην τελική του θέση. Οι παραπάνω σχέσεις για την εύρεση του κέντρου βάρους στην περίπτωση πρόσθεσης φορτίου συνεχίζουν να ισχύουν με τη διαφορά ότι πλέον ο παρονομαστής θα έχει τιμή ίση με Δ + w.

Στην περίπτωση αφαίρεσης βάρους w, οι σχέσεις για την εύρεση του κέντρου βάρους του πλοίου συνεχίζουν να ισχύουν, με τη διαφορά ότι ο αριθμητής θα έχει πλέον αρνητικό πρόσημο και ο παρονομαστής θα έχει τιμή ίση με Δ - w.

Πηγή: («ΣΤΟΙΧΕΙΑ ΝΑΥΠΗΓΙΑΣ» ΕΜΜΑΝΟΥΗΛ. Ν. ΖΩΓΡΑΦΑΚΗ,1993)

3.2. Εγκάρσια κλίση λόγω μετακίνησης φορτίου

Στην περίπτωση που βάρος w μετακινηθεί κατά το εγκάρσιο σε απόσταση d, τότε το πλοίο εκτοπίσματος Δ θα πάρει εγκάρσια κλίση τέτοια ώστε να ικανοποιούνται οι εξισώσεις στατικής ισορροπίας. Δηλαδή, το νέο κέντρο βάρους και το νέο κέντρο άντωσης θα ενεργούν στον ίδιο κατακόρυφο άξονα.

Εικόνα 3-2: Εγκάρσια κλίση λόγω μετακίνησης φορτίου. Πηγή: Εικόνα σχεδιασμένη στο Autocad.

Για η γωνία εγκάρσιας κλίσης θ στην οποία θα ισορροπήσει το πλοίο, η μετατόπιση του κέντρου βάρους από την αρχική θέση G στη θέση G₁ θα είναι: $GG_1 = \frac{w \cdot d}{\Delta}$ (1). Λόγω όμως της ισορροπίας του πλοίου σε γωνία θ, πάνω στην ίδια κατακόρυφο ενεργούν η άντωση στη θέση B₁ και το βάρος στη θέση G₁.

Πηγή: («ΣΤΟΙΧΕΙΑ ΝΑΥΠΗΓΙΑΣ» ΕΜΜΑΝΟΥΗΛ. Ν. ΖΩΓΡΑΦΑΚΗ,1993)

Δεδομένου ότι στην περίπτωση αυτή αναφερόμαστε σε μικρές γωνίες κλίσης, η κατακόρυφος αυτή διέρχεται και από το μετάκεντρο, το οποίο για μικρές γωνίες κλίσης παραμένει σταθερό. Έτσι από το τρίγωνο GMG₁, προκύπτει: $GG_1 = GM \cdot tan\theta$ (2) Από τις σχέσεις (1) και (2), προκύπτει: $w \cdot d = \Delta \cdot GM tan\theta$ (3), Επομένως: $tan\theta = \frac{wd}{\Delta \cdot GM}$

3.3. Επίδραση ελεύθερων Επιφανειών

Η λειτουργία των πλοίων προϋποθέτει την ύπαρξη δεξαμενών για την αποθήκευση υγρών φορτίων, τέτοια φορτία συνήθως είναι τα καύσιμα, το πόσιμο νερό, το έρμα κ.ο.κ.. Κατά τη φόρτωση του πλοίου, κάποιες δεξαμενές θα είναι πλήρως γεμισμένες, άλλες θα είναι εντελώς κενές και κάποιες θα έχουν μερική πλήρωση. Η έννοια της ελεύθερης επιφάνειας χρησιμοποιείται για την περιγραφή της επιφάνειας του υγρού μίας μερικώς πληρωμένης δεξαμενής και είναι ένας σημαντικός παράγοντα της ευστάθειας των πλοίων.

Το πλοίο της παρακάτω εικόνας αρχικά πλέει στην ίσαλο W_L και έχει δεξαμενή μερικώς γεμισμένη με ελεύθερη επιφάνεια wl. Λόγω εξωτερικού αίτιου το πλοίο παίρνει εγκάρσια κλίση και πλέει στην ίσαλο W_1L_1 , ως συνέπεια της κλίσης αυτής η επιφάνεια του υγρού της δεξαμενής έρχεται στη θέση w_1l_1 .

Εικόνα 3-3: Ελεύθερη επιφάνεια υγρού δεζαμενής. Πηγή: Εικόνα σχεδιασμένη στο Autocad.

ΕΠΙΔΡΑΣΗ ΕΥΣΤΑΘΕΙΑΣ ΑΠΟ ΤΗ ΜΕΤΑΤΟΠΙΣΗ ΦΟΡΤΙΟΥ ΣΙΤΗΡΩΝ ΣΕ ΠΛΟΙΟ ΜΕΤΑΦΟΡΑΣ ΧΥΔΗΝ ΦΟΡΤΙΟΥ

Η μετακίνηση του ρευστού προς την πλευρά της κλίσης του πλοίου, έχει ως συνέπεια τη μετατόπιση του κέντρου βάρους του υγρού από τη θέση g στη θέση g1. Από το τρίγωνο που σχηματίζεται, η απόσταση d είναι ίση με $gm_t \cdot sin(\delta \varphi)$. (1)

Το κέντρο βάρους της δεξαμενής αυτής, συμπίπτει με το κέντρο όγκου του υγρού, επομένως: $gm_t = \frac{i}{n}$ (2)

Όπου: i, η ροπή αδράνειας της επιφάνειας του υγρού ως προς διαμήκη άξονα που διέρχεται από το κέντρο της δεξαμενής και u, ο όγκος αυτής.

Η μετατόπιση του κέντρου βάρους του υγρού έχει ως συνέπεια τη μετατόπιση του κέντρου βάρους του πλοίου από τη θέση G στη θέση G₁.

Από το θεώρημα ροπών θα ισχύει ότι: $\Delta \cdot GG_1 = w \cdot d$ (3)

Όπου: w, το βάρος της δεξαμενής, το οποίο ισούται με:

$$w = u \cdot \gamma_t \tag{4}$$

Δεδομένου ότι $\Delta = \nabla \cdot \gamma_w$, προκύπτει ότι: $\nabla \cdot \gamma_w \cdot GG_1 = u \cdot \gamma_t \frac{i}{u} \cdot sin(\delta \varphi)$ (5)

Το αποτέλεσμα της ελεύθερης επιφάνειας δημιουργεί μία φαινομενική ανύψωση του κέντρου βάρους, η οποία ισούται με:

$$GG_1 = \frac{\gamma_t}{\gamma_w} \cdot \frac{i}{v} \cdot \sin(\delta\varphi) \tag{6}$$

Ο μοχλοβραχίονας επαναφοράς του πλοίου έπειτα από τη μετατόπιση του κέντρου βάρους του πλοίου θα είναι ίσος με:

$$G_1 Z = G Z - G G_1 = G Z - \frac{\gamma_t}{\gamma_w} \cdot \frac{i}{v} \cdot \sin(\delta\varphi)$$
(7)

Αν το κέντρο βάρους του πλοίου της παραπάνω εικόνας ήταν στη θέση G_v και όχι στη θέση G, τότε ο μοχλοβραχίονας, όπως προκύπτει από την παραπάνω εικόνα θα ήταν ίσος με το μοχλοβραχίονα που δίνεται από τη σχέση (7). Από το τρίγωνο G

G_VG₁, προκύπτει ότι: GG_V =
$$\frac{GG_1}{\sin\delta\varphi} = \frac{\frac{\gamma_t}{\gamma_w}}{\frac{\nu}{v}} \frac{i}{v} \cdot sin(\delta\varphi)}{sin(\delta\varphi)} = \frac{\gamma_t}{\gamma_w} \frac{i}{v}$$
 (8)

Το σημείο G_V ονομάζεται φαινομενικό κέντρο βάρους και η απόσταση $G_V M_T$ ονομάζεται φαινομενικό μετακεντρικό ύψος. Συνοπτικά, οι ελεύθερες επιφάνειες των δεξαμενών έχουν ως αποτέλεσμα μια φαινομενική ανύψωση του κέντρου βάρους των πλοίων, με συνέπεια τη μείωση της τιμής του μοχλοβραχίονα επαναφοράς και κατά συνέπεια τη μείωση της ροπής επαναφοράς κατά την εγκάρσια κλίση των πλοίων.

Η σχέση που δίνει τη φαινομενική ανύψωση του κέντρου βάρους στη γενική περίπτωση όπου υπάρχουν περισσότερες από μία δεξαμενές που έχουν ελεύθερη επιφάνεια είναι η εξής παρακάτω:

$$GG_{V} = \sum \frac{\gamma_{t}}{\gamma_{w}} \frac{i}{V}$$
Πηγή: («ΕΥΣΤΑΘΕΙΑ- ΚΟΠΩΣΕΙΣ» ΙΩΑΝΝΗ ΕΜ, ΚΟΛΛΙΝΙΑΤΗ, 2016)

4. Κριτήρια Ευστάθειας

4.1. Γενικά

Τα προβλήματα της ευστάθειας που εξετάστηκαν στην προηγούμενη ενότητα αφορούν την ευστάθεια των πλοίων σε ήρεμο νερό, όμως η υπόθεση της ισορροπίας των πλοίων σε ήρεμο νερό αποτελεί μία ιδεατή εκδοχή. Στην πραγματικότητα τα πλοία λειτουργούν σε περιβάλλον στο οποίο διαδίδονται τυχαίοι κυματισμοί και πνέουν άνεμοι. Οι παράγοντες αυτοί επιδρούν αρνητικά στην ευστάθεια, καθώς μπορούν παράγουν υψηλής έντασης φορτία και ροπές που μπορούν με τη σειρά τους να οδηγήσουν σε μεγάλες γωνίες εγκάρσιας κλίσης ή ακόμα και στην ανατροπή των πλοίων. Είναι σαφές ότι οι κινήσεις που οφείλονται στην αλληλεπίδραση των κυματισμών και του ανέμου αποτελούν ένα δυναμικό φαινόμενο, το οποίο δεν μπορεί να προβλεφθεί θεωρητικά. Έτσι η ικανότητα της ευστάθειας ενός πλοίου που πλέει σε δυσμενείς καιρικές συνθήκες, μέχρι σήμερα, είναι δυνατό να εκτιμηθεί μόνο εμπειρικά, σύμφωνα με κριτήρια που βασίζονται σε στατιστικά δεδομένα. Για το λόγο αυτό, οι διεθνείς οργανισμοί παρουσιάζουν τα κριτήρια αυτά υπό τη μορφή κανονισμών, τους οποίους στη συνέχεια εκδίδουν.

Σε ότι αφορά την άθικτη ευστάθεια των πλοίων, η διαμόρφωση των κριτηρίων βασίστηκε στην υδροστατική συμπεριφορά των πλοίων, η οποία και χαρακτηρίζεται από την καμπύλη του μοχλοβραχίονα στατικής ευστάθειας. Υπό την εξέταση της ανταπόκρισης διαφόρων πλοίων στις ίδιες περιβαλλοντικές συνθήκες διαπιστώθηκε ότι η πιθανότητα της ανατροπής ή της επαναφοράς του πλοίου σχετίζεται με ορισμένες ιδιότητες της καμπύλης του μοχλοβραχίονα στατικής ευστάθειας. Μέσω της ενδελεχούς στατιστικής ανάλυσης των σχετικών ατυχημάτων, έγινε η διαπίστωση των προαναφερθέντων κριτηρίων, που πρέπει να πληρούνται προκειμένου να θεωρείται ένα πλοίο ασφαλές από πλευράς ευστάθειας.

Η πρώτη διάσκεψη για την Ασφάλεια της Ανθρώπινης Ζωής στη Θάλασσα ("Safety of Life at Sea") πραγματοποιήθηκε το 1911, έπειτα από το ναυάγιο του Τιτανικού και ασχολήθηκε με τα κριτήρια που έπρεπε να πληρούν τα πλοία εκείνης προκειμένου να προλαμβάνονται ατυχήματα που οδηγούν σε σοβαρές απώλειες ανθρώπινων ζωών. Από τότε, έχουν πραγματοποιηθεί και συνεχίζουν να πραγματοποιούνται διασκέψεις για την Ασφάλεια της Ανθρώπινης Ζωής στη Θάλασσα σε τακτά χρονικά διαστήματα, αποσκοπώντας στην αντιμετώπιση των προβλημάτων που αφορούν την ευστάθεια των πλοίων και έχουν άμεση σχέση με τις τεχνολογικές εξελίξεις στον τομέα της ναυπηγικής.

Το 1948 ιδρύεται ο Διεθνής Ναυτιλιακός Οργανισμός ("International Maritime Organization"), ο οποίος ασχολείται σχεδόν με όλα τα θέματα που αφορούν τη ναυπηγική και τη διεθνή ναυσιπλοΐα, επιβλέπει την επικοινωνία και τη συνεργασία μεταξύ των μελών του και συγκαλεί τις διασκέψεις για την Ασφάλεια της Ανθρώπινης Ζωής στη Θάλασσα.

Πηγή: («Υδροστατική και Ευστάθεια Πλοίου», Τζαμπίρας 2015)

4.2. Κριτήριο Καιρού

Το 1991, ο ΙΜΟ προχώρησε στην αναθεώρηση της οδηγίας Α749 του 1987, προκειμένου να περιλαμβάνει τους περισσότερους τύπους των πλοίων. Το 2008 ο ΙΜΟ επικαιροποίησε την παραπάνω οδηγία με την Resolution MSC.267(85) – Adoption of the International Code on Intact Stability, 2008 (2008 IS Code), η οποία βρίσκεται σε ισχύ σήμερα. Ο κανονισμός που προέκυψε συμπεριέλαβε και εμπειρικά κριτήρια, για την πραγματική υδροδυναμική συμπεριφορά των πλοίων σε καταστάσεις διατοιχισμού. Ισχύει για πλοία που έχουν μήκος άνω των 25 m και συγκαταλέγονται στις κατηγορίες που παρουσιάζονται στον παρακάτω πίνακα:

Πίνακας 4-1: Πίνακας Κατηγοριών οι οποίες εμπίπτουν στην οδηγία Α749			
Πηγή: («Υδροστατική και Ευσ	τάθεια Πλοίου», Τζαμπίρας 2015)		
Επιβατηγά πλοία.	Πλοία ειδικού σκοπού.		
Φορτηγά πλοία.	Πλοία που εφοδιάζουν πλωτές κατασκευές.		
Φορτηγά πλοία που μεταφέρουν χύδην φορτία.	Κινητές πλωτές κατασκευές εξόρυξης.		
Φορτηγά πλοία που μεταφέρουν ξυλεία.	Ποντόνια.		
Πλοία μεταφοράς εμπορευματοκιβωτίων	Δυναμικώς υποστηριζόμενα σκάφη.		
Αλιευτικά.			

Τα γενικά κριτήρια που πρέπει να ισχύουν και αφορούν την ευστάθεια του άθικτου πλοίου σχετίζονται με την καμπύλη του μοχλοβραχίονα επαναφοράς και πρέπει να πληρούνται σε κάθε κατάσταση φόρτωσης είναι τα εξής:

- Η επιφάνεια Α1 κάτω από την καμπύλη στατικής ευστάθειας πρέπει να είναι μεγαλύτερη από 0,055 m·rad μέχρι τη γωνία των 30°.
- Η επιφάνεια A2 μέχρι τη γωνία 40° ή μέχρι τη γωνία κατάκλισης Θ_f, όποια από τις δύο είναι μικρότερη, πρέπει να είναι μεγαλύτερη από 0,09 m·rad.
- Η επιφάνεια κάτω από την καμπύλη του μοχλοβραχίονα στατικής ευστάθειας στο διάστημα μεταξύ των 30° και 40° ή Θ_f (όποια από τις δύο είναι μικρότερη), θα πρέπει να είναι μεγαλύτερη από 0,03 m·rad.
- Ο μοχλοβραχίονας στατικής ευστάθειας GZ θα πρέπει να έχει τιμή τουλάχιστον 0,20 m σε μια γωνία εγκάρσιας κλίσης μεγαλύτερη από ή ίση με 30°.
- Η μέγιστη τιμή του μοχλοβραχίονα επαναφοράς κατά προτίμηση θα πρέπει να εμφανίζεται σε γωνία κλίσης μεγαλύτερη των 30 μοιρών, όμως δεν μπορεί να εμφανίζεται σε γωνία μικρότερη από 25 μοίρες.
- Το αρχικό μετακεντρικό ύψος GM πρέπει να είναι μεγαλύτερο από 0,15 m.

Τα επιβατηγά πλοία πρέπει να πληρούν επίσης δύο παραπάνω κριτήρια, τα κριτήρια αυτά είναι τα εξής:

 Η γωνία εγκάρσιας κλίσης κατά τη στροφή επιβατηγού πλοίου πρέπει να είναι μικρότερη από 10°, όπου η ροπή κλίσης M_R υπολογίζεται με βάση τη σχέση:

$$M_R = 0.02 \ \frac{U^2}{L} \ \Delta \ (KG - \frac{T}{2})$$

Όπου:

- M_{R} , η ροπή κλίσης σε tn·m.
- U, η υπηρεσιακή ταχύτητα σε m/s.
- L, το μήκος της ισάλου σχεδίασης σε m.
- Δ, το εκτόπισμα σε tn.
- Τ, το μέσο βύθισμα σε m.
- KG, η κατακόρυφη θέση του κέντρου βάρους σε m.
- Η γωνία εγκάρσιας κλίσης που προκαλείται από τη συγκέντρωση όλων των επιβατών στη μια πλευρά του πλοίου δεν πρέπει να είναι μεγαλύτερη από 10.

Εικόνα 4-1: Ορισμός εμβαδών για την εφαρμογή των κριτηρίων της οδηγίας Α749. Πηγή: Εικόνα σχεδιασμένη στο Autocad.

Πέραν όμως από τα παραπάνω κριτήρια, πρέπει να πληρούνται επίσης οι απαιτήσεις που προβλέπονται από το κριτήριο καιρού. Τα βασικά στοιχεία για την εφαρμογή του σχετικού κανονισμού απεικονίζονται στην εικόνα 4.2.

- Το πλοίο υπόκειται σε πίεση ανέμου σταθερής έντασης που ενεργεί κάθετα στο πλοίο, η πίεση αυτή, έχει ως αποτέλεσμα τη δημιουργία ενός σταθερού μοχλοβραχίονα ανέμου lw1, με αποτέλεσμα την εγκάρσια κλίση του πλοίου κατά γωνία θ₀.
- Θεωρείται, επίσης, ότι το πλοίο υπόκειται σε διατοιχισμό, επομένως, η εγκάρσια κλίση του μεταβάλλεται μεταξύ αρνητικών και θετικών γωνιών. Η μέγιστη αρνητική γωνία (προσήνεμη πλευρά) συμβολίζεται με θ₁.
- 3. Επιπλέον, θεωρείται ότι επενεργεί στο πλοίο ριπή πλευρικού ανέμου, στην οποία αντιστοιχεί ο μοχλοβραχίονας εγκάρσιας κλίσης **l**_{w2}.
- 4. Υπό τις παραπάνω συνθήκες, θα πρέπει η επιφάνεια B να είναι ίση ή μεγαλύτερη από τη επιφάνεια A, όπου: όπου η θ_2 είναι ίση με τη μικρότερη από τις τρείς γωνίες (θ_f , 50°, θ_c), με θ_f να είναι η γωνία κατάκλισης και θ_c η γωνία που αντιστοιχεί στο σημείο τομής του μοχλοβραχίονα εγκάρσιας κλίσης l_{w2} με την καμπύλη του μοχλοβραχίονα στατικής ευστάθειας.

Εικόνα 4-2: Παράμετροι για την εφαρμογή του κριτηρίου καιρού

Πηγή: (IMO Instruments, 1993)

Οι μοχλοβραχίονες εγκάρσιας κλίσης λόγω πλευρικού ανέμου, υπολογίζονται με βάση τις παρακάτω σχέσεις: $l_{w1} = \frac{PAZ}{1000 gA}$ και $l_{w2} = 1.5 \cdot l_{w1}$

Όπου:

- P, Η πίεση του ανέμου (504 Pa).
- Α, Η προβολή της συνολικής επιφάνειας εξάλων και υπερκατασκευών στο διάμηκες επίπεδο συμμετρίας (m²).
- Δ, Το εκτόπισμα (tn).
- G, Η επιτάχυνση της βαρύτητας (9.81 m/s²)
- Ζ, Η κατακόρυφη απόσταση του κέντρου της επιφάνειας Αν από το κέντρο της προβολής της επιφάνειας των υφάλων στο διάμηκες επίπεδο συμμετρίας του πλοίου (m).

Η γωνία διατοιχισμού θ₁, λόγω πλευρικού κυματισμού προκύπτει από τη σχέση:

$$\theta_1 = 109 \cdot k \cdot X1 \cdot X2 \cdot \sqrt{rs} \quad (^{\circ})$$

Όπου:

- οι συντελεστές k, X1, X2 και s δίνονται στον παρακάτω πίνακα.
- $r = 0.73 \pm 0.6 \, OG/d$

Η περίοδος διατοιχισμού υπολογίζεται από τη σχέση: $T_R = \frac{2CB}{\sqrt{GM}}$ (sec) Όπου:

- $c = 0.373 + 0.023 \left(\frac{B}{d}\right) 0.043 \left(\frac{L}{100}\right)$
- L, το μήκος ίσαλου γραμμής πλεύσης (m).
- Β, το πλάτος του πλοίου (m).
- Τ, το βύθισμα του πλοίου (m).
- GM, το μετακεντρικό ύψος, διορθωμένο λόγω της επίδρασης των ελεύθερων επιφανειών (m).

Πίνακας 4-2: Πίνακας παραμετρων για την εφαρμογη του κριτηριου καιρου							
$\mathbf{K} = \mathbf{f}(\mathbf{L} \cdot \mathbf{B}, \mathbf{A})$	(K)	$\mathbf{X}_1 = \mathbf{B}/\mathbf{T}$	ουστατική και Ευστο	$\mathbf{X} = \mathbf{f}(\mathbf{CB})$	απιρας 2015)	$\mathbf{s} = \mathbf{f}(\mathbf{T}_{\mathbf{R}})$	
AK ·100/(LB)	K	B /T	X1	CB	X2	TR	s
0	1,00	≤2,4	1,00	≤ 0,45	0,75	≤ 6	0,100
1,	0,98	2,5	0,98	0,50	0,82	7	0,098
1,5	0,95	2,6	0,96	0,55	0,89	8	0,093
2,	0,88	2,7	0,95	0,60	0,95	12	0,065
3,	0,74	2,8	0,93	0,65	0,97	14	0,053
3,5	0,72	2,9	0,91	$\geq 0,70$	1,00	16	0,044
\geq 4,0	0,70	3,0	0,90			18	0,038
_ ,		3,1	0,88			≥ 20	0,035
		3,2	0,86				
		3,3	0,84				
		3,4	0,82				
		\geq 3,5	0,80				
Παρατηρήσει	~•						

(1) Για ενδιάμεσες τιμές, γίνεται χρήση της γραμμικής παρεμβολή.

(2) K = 1,0, για πλοία με κυρτό γάστρας, χωρίς παρατροπίδια.

(3) $A_K =$ συνολική επιφάνεια παρατροπιδίων $[m^2]$.

Πηγή: («Υδροστατική και Ευστάθεια Πλοίου», Τζαμπίρας 2015)

5. ΜΕΤΑΤΟΠΙΣΗ ΦΟΡΤΙΟΥ ΣΙΤΗΡΩΝ

5.1. Εισαγωγή

Κατά την τροποποίηση της Διεθνή Σύμβασης SOLAS-1974, Κεφάλαιο XII, κανονισμός 1.4. ως στερεό φορτίο χύδην νοείται κάθε υλικό, εκτός από υγρό ή αέριο, που αποτελείται από συνδυασμό σωματιδίων, κόκκων ή τεμαχίων υλικού, γενικά ομοιόμορφης σύνθεσης, που φορτώνεται απευθείας στους χώρους φορτίου ενός πλοίου χωρίς ενδιάμεση μορφή συσκευασίας.

Στα χύδην φορτία συγκαταλέγονται το σιτάρι, η ζάχαρη, η άμμος, το τσιμέντο κ.ο.κ., κατά τη φόρτωση, τα φορτία αυτά κατακαθίζουν και επομένως ο όγκος του φορτίου μειώνεται. Το ποσοστό της μείωσης αυτής έχει τιμή 2% έως 5%, ανάλογα με το είδος του φορτίου (σιτηρά, ζάχαρη, άνθρακας, κ.ο.κ.). («ΜΕΛΕΤΗ ΠΛΟΙΟΥ (2^π ΕΚΔΟΣΗ) » ΑΝΤΩΝΙΟΥ Α. 1984) λόγω της ιδιομορφίας των φορτίων αυτών αλλά και λόγω τον ενισχυτικών που υπάρχουν στους όγκους κυτών εσωτερικά των καταστρωμάτων, είναι αδύνατη η απόλυτη πλήρωση του άνω μέρους των κυτών, με συνέπεια να δημιουργείται διάκενο μεταξύ της επιφάνειας του φορτίου και του χώρου φόρτωσης. Μία άλλη ιδιότητα των χύδην φορτίων, είναι η μεγαλύτερη της γωνίας ανάπαυσης του φορτίου.

Εικόνα 5-1: Καθίζηση και μετατόπιση χύδην φορτίου.

Με τον όρο γωνία αναπαύσεως φορτίου εννοείται η μέγιστη γωνία που σχηματίζεται μεταξύ της κεκλιμένης επιφάνειας του ελευθέρως μετακινούμενου φορτίου και του οριζόντιου επιπέδου. Η γωνία ανάπαυσης φορτίου αποτελεί ένα μέτρο, το οποίο καθορίζει αν ένα φορτίο είναι συνεκτικό ή μη συνεκτικό. Η πληροφορία αυτή είναι πολύ σημαντική για τη φόρτωση των πλοίων, καθώς τα μη συνεκτικά φορτία, τα οποία έχουν μικρή γωνία ανάπαυσης ρέουν ελεύθερα.

(«ΜΕΤΑΦΟΡΑ ΦΟΡΤΙΩΝ (Γ' ΕΚΔΟΣΗ)» ΝΙΚΟΛΑΟΥ Α. ΖΥΓΟΜΑΛΑ, 2021)

Εικόνα 5-2: Γωνία ανάπαυσης φορτίου.

Πηγή: ΜΕΤΑΦΟΡΑ ΦΟΡΤΙΩΝ (Γ' ΕΚΔΟΣΗ) ΝΙΚΟΛΑΟΥ Α. ΖΥΓΟΜΑΛΑ, 2021

Πηγή: («ΜΕΛΕΤΗ ΠΛΟΙΟΥ (2 ^η ΕΚΔΟΣΗ) » ΑΝΤΩΝΙΟΥ Α. 1984)				
Φορτίο	Γωνία Αναπαύσεως Φορτίου (°)			
Άνθρακας	30-45			
Τσιμέντο	24-32			
Άμμος	32			
Βωξίτης	40-55			
Ζάχαρη	32-35			
Μεταλλεύματα Χαλκού	36-48			
Θείο	35-40			

Πίνακας 5-1: Γωνίες Αναπαύσεως φορτίων

Όταν ένα πλοίο, το οποίο μεταφέρει χύδην φορτίο ταξιδέψει υπό δυσμενείς καιρικές συνθήκες, μπορεί να πάρει μεγάλες κλίσεις με συνέπεια τη μετατόπιση του φορτίου και τη δημιουργία μιας κεκλιμένης επιφάνειας φορτίου στους χώρους κυτών, καταλαμβάνοντας έτσι τα υπάρχοντα κενά. Η κεκλιμένη επιφάνεια του φορτίου παραμένει σταθερή και η γωνία που σχηματίζει με το οριζόντιο επίπεδο ισούται με τη γωνία ανάπαυσης του φορτίου που μεταφέρει το πλοίο. Η μετακίνηση χύδην φορτίου κατά το εγκάρσιο παρουσιάζει αρκετές ομοιότητες με την επίδραση των ελεύθερων επιφανειών των υγρών φορτίων και έχει ως αποτέλεσμα τη δημιουργία ροπής, ικανής να προκαλέσει σημαντική εγκάρσια κλίση και να επηρεάσει την ευστάθεια ενός πλοίου λόγω της μετατόπισης ποσότητας φορτίου σε θέση με υψηλότερο κέντρο βάρους. Ο κίνδυνος της μετατόπισης των χύδην φορτίων, ελαχιστοποιείται όσο πλησιάζει ο βαθμός πλήρωσης των χώρων φορτίου την απόλυτη πληρότητα, η οποία επιτυγχάνεται όταν δεν υπάρχουν κενά στον χώρο φόρτωσης. Στην πράξη, οι χώροι φορτίου δεν μπορούν ποτέ να φτάσουν σε απόλυτη πληρότητα και έτσι η λύση στο πρόβλημα της μετάθεσης των φορτίων χύδην περιορίζεται στην κατά το δυνατό μείωση των κενών στους χώρους φορτίου. Η μείωση αυτή είναι δυνατό να επιτευχθεί με την κατάλληλη σχεδίαση των χώρων φορτίου, την ύπαρξη πρόσθετων στομίων πλήρωσης και τον εγματισμό του φορτίου.

Πηγή: («ΕΥΣΤΑΘΕΙΑ- ΚΟΠΩΣΕΙΣ» ΙΩΑΝΝΗ ΕΜ, ΚΟΛΛΙΝΙΑΤΗ, 2016)

5.2. Μετατόπιση χύδην φορτίου

Στη γενικότερη θεώρηση του προβλήματος, κατά τη μετατόπιση ενός φορτίου, η ροπή που δημιουργείται ισούται με το βάρος του φορτίου επί την απόσταση του τελικού κέντρου βάρους του φορτίου. Όπως αναλύθηκε στην παραπάνω παράγραφο, τα χύδην φορτία μετατίθενται όταν η κλίση που θα λάβει το πλοίο ξεπεράσει τη γωνία ανάπαυσης του φορτίου. Σύμφωνα με όσα αναλύθηκαν στην παραπάνω παράγραφο, προκύπτει ότι το πρόβλημα της εύρεσης της ροπής που δημιουργείται από τη μετατόπιση χύδην φορτίου σχετίζεται με τη γωνία ανάπαυσης του φορτίου, το βαθμό πλήρωσης και τη μορφή των χώρων φορτίου.

Για ορθογωνικό σχήμα κύτους, όταν η μετατόπιση του φορτίου περιορίζεται στην περιοχή *I*, δηλαδή για την περίπτωση, κατά την οποία η κεκλιμένη επιφάνεια του φορτίου περιορίζεται μόνο από τα κάθετα τοιχώματα του όγκου κυτών, είναι δυνατό να θεωρηθεί ότι μετατοπίζεται μία τριγωνική σφήνα, πλάτους *b*/2 και ύψους *b*/2 tanθ, όπου *b*, το πλάτος του χώρου φορτίου και θ, η γωνία ανάπαυσης του φορτίου.

Εικόνα 5-3: Μετατόπιση κέντρου βάρους κατά τη μετάθεση φορτίου.

Ο αρχικός όγκος του φορτίου πριν τη μετακίνηση του φορτίου είναι:

$$V_o = lbd$$
 και ο όγκος της σφήνας, $V_t = \frac{1}{2}l\left(\frac{b}{2}\right)^2 tan\theta$

Η εγκάρσια μετατόπιση του κέντρου βάρους της σφήνας, άρα και του φορτίου είναι:

 $y = \frac{2}{3} b$, Άρα η μετατόπιση του φορτίου θα είναι: $\bar{y} = \frac{V_t}{V_0} y \Leftrightarrow \bar{y} = \frac{b^2}{12d} tan\theta$ και η κατακόρυφη μετατόπιση του κέντρου βάρους της σφήνας: $z = \frac{1}{3} b tan\theta$ Άρα η μετατόπιση του φορτίου θα είναι: $\bar{z} = \frac{V_t}{V_0} z \Leftrightarrow \bar{z} = \frac{b^2}{24d} tan^2 \theta$ Για την περιοχή ΙΙ, δηλαδή όταν η μετατόπιση του φορτίου περιορίζεται από το κατάστρωμα, η μετατόπιση προκύπτει ως εξής:

Η επιφάνεια του διάκενου πριν τη μετατόπιση του φορτίου είναι ίση με:

$$A_A = f \cdot b$$
 και ο όγκος, $V_A = f \cdot b \cdot l$

Το διάκενο μετά τη μετατόπιση του φορτίου θα έχει επιφάνεια:

$$A_A = \frac{1}{2} \, \bar{z} \cdot \bar{y}$$

Όμως ισχύει ότι $\bar{z} = y \tan \theta$

άρα
$$A_A = \frac{1}{2} \ \bar{y}^2 tan \theta$$

Το κέντρο βάρους του διάκενου μετά τη μετατόπιση βρίσκεται στη θέση $y_A = \frac{\overline{y}}{3}$.

Ο όγκος του διάκενου μετά τη μετατόπιση, είναι ίσος με: $V_A = \frac{1}{2} \bar{y}^2 tan \theta \cdot l$

Οι όγκοι των διάκενων πριν και μετά τη μετατόπιση είναι ίσοι μεταξύ τους και έτσι προκύπτει ότι:

$$f \cdot b \cdot l = \frac{1}{2} \bar{y}^2 tan\theta \cdot l \Rightarrow \bar{y} = \sqrt{\frac{2f \cdot b}{tan\theta}}$$

Με μετάθεση του συστήματος συντεταγμένων ως προς το επίπεδο συμμετρίας,

Προκύπτει ότι
$$y = \overline{y} - \frac{b}{2}$$

Επομένως, $\overline{y_A} = \frac{1}{3} \sqrt{\frac{2f \cdot b}{tan\theta}} - \frac{b}{2}$

Αν θεωρηθεί ότι ο αρχικός όγκος είναι ίσος με $Vg = l \cdot b (f + d)$ και η θέση του κέντρου βάρους θα συμπίπτει με το διάμηκες επίπεδο συμμετρίας, επομένως $y_g = 0$

Η οριζόντια μετατόπιση του κέντρου βάρους του φορτίου προκύπτει ως:

$$y = \frac{V_g y_g - V_A y_A}{V_g - V_A} = \frac{\left(-\frac{1}{3}\sqrt{\frac{2fb}{tan\theta}} + \frac{b}{2}\right)fbl}{lb(d+f) - fbl} \Rightarrow y = \frac{f}{d}\left(\frac{b}{2} - \frac{1}{3}\sqrt{\frac{2fb}{tan\theta}}\right)$$

Ομοίως η κατακόρυφη μετατόπιση του κέντρου βάρους του φορτίου είναι:

$$z = \frac{f}{d} \left(\frac{1}{3} \sqrt{2fbtan\theta} - \frac{f}{2} \right)$$

Πηγή («ΜΕΛΕΤΗ ΠΛΟΙΟΥ (2^η ΕΚΔΟΣΗ) » ΑΝΤΩΝΙΟΥ Α. 1984)

Κανονισμοί Για Τη Μεταφορά Σιτηρών

5.2.1. Η Εξέλιξη των Κανονισμών

Ο κίνδυνος της πιθανής μετακίνησης των σιτηρών αναγνωρίστηκε στην Αγγλία ήδη από το 1880. Με τον όρο σιτηρά εννοούμε το σιτάρι, τη βρώμη, το καλαμπόκι, τη σίκαλη κ.ο.κ.. Σύμφωνα με τους κανονισμούς ("Merchant Shipping Act 1894 c. 60/Part V"), επιβαλλόταν πρόστιμο τριακοσίων λιρών στον πλοίαρχο ή τον πλοιοκτήτη που δεν είχε λάβει τα κατάλληλα προληπτικά μέτρα για την αποφυγή της μετακίνησης του φορτίου. Από τότε, τα διάφορα κράτη θέσπισαν εθνικούς κανονισμούς, οι οποίοι εφαρμοζόντουσαν στα πλοία που έπλεαν υπό τις αντίστοιχες σημαίες και στα πλοία που φόρτωναν σιτηρά στα λιμάνια των χωρών αυτών. Επιπλέον, θεσπίστηκαν διεθνείς κανονισμοί αποδεκτοί από τα περισσότερα κράτη, οι οποίοι αφορούσαν πλοία που εκτελούσαν διεθνείς μεταφορές σιτηρών. Η πρώτη διεθνής συμφωνία που καθιερώθηκε σχετικά με το ζήτημα αυτό ήταν ο κανονισμός VI της SOLAS (Διεθνή Σύμβαση Ασφάλειας της Ανθρώπινης Ζωής στη Θάλασσα) του 1948, σύμφωνα με τον κανονισμό αυτό, συνοπτικά καθορίστηκαν:

- Το μέγεθος και ο αριθμός των τροφοδοτικών στομίων.
- Η ύπαρξη διαμηκών φρακτών στα κύτη.
- Η υποχρέωση στη φόρτωση φορτίου σε σάκους στα μη πλήρη κύτη και πάνω από την επιφάνεια του φορτίου.

Οι κανονισμοί αυτοί στόχευαν στη μείωση της πιθανότητας να συμβεί η μετακίνηση του φορτίου, καθώς επίσης και στη μείωση των συνεπειών που θα είχε η μετακίνηση αυτή αν συνέβαινε. Αυτό όμως οδήγησε στα εξής μειονεκτήματα:

- Επιβλήθηκαν σε όλα τα πλοία οι ίδιες υποχρεώσεις, έτσι τα πλοία που είχανε υψηλές δυνατότητες ευστάθειας επιβαρύνθηκαν αδίκως.
- Προέκυψε η ανάγκη λήψης μέτρων όπως η τοποθέτηση σάκων, τροφοδοτικών στομίων, την ύπαρξη φρακτών κ.ο.κ., με συνέπεια την αύξηση του κόστους και την καθυστέρηση του χρόνου φόρτωσης ακόμη και στα πλοία που η λήψη αυτών των μέτρων δεν ήταν απαραίτητη.

Την περίοδο 1948-1960 αναγνωρίστηκε η ανάγκη συσχετισμού των προληπτικών μέτρων που έπρεπε να ληφθούν με το επίπεδο ευστάθειας των πλοίων και έτσι στον κανονισμό VI της SOLAS του 1960 καθιερώθηκε ότι, αν ένα πλοίο με ένα ή δύο καταστρώματα είχε μετακεντρικό ύψος μεγαλύτερο από 12 ίντσες (305 mm) και με τρία ή περισσότερα καταστρώματα 14 ίντσες (356 mm), τότε θα μπορούσε:

- Να μην έχει διαμήκεις φρακτές κάτω από τα τροφοδοτικά στόμια.
- Να φορτώνει φορτίο σε σάκους χωρίς την υποχρέωση διαμόρφωσης προσωρινών διαμηκών χωρισμάτων κάτω από τα ανοίγματα των κυτών.
- Να μην έχει τροφοδοτικά στόμια και διαχωριστικές φρακτές αν τα κύτη ήταν ειδικά διαμορφωμένα για τη μεταφορά σιτηρών, με την προϋπόθεση ότι η πιθανή μετακίνηση του φορτίου κατά το εγκάρσιο δε θα προκαλούσε στο πλοίο εγκάρσια κλίση πάνω από 5 μοίρες.

Σύμφωνα με τους κανονισμούς αυτούς έπρεπε να θεωρηθεί ότι στους χώρους κυτών:

- Η καθίζηση του φορτίου σιτηρών θα είναι ίση με το 2% του ύψους του κύτους.
- Η επιφάνεια των σιτηρών θα σχημάτιζε γωνία 12 μοιρών με το οριζόντιο επίπεδο.

Οι κανονισμοί της SOLAS του 1960 περιόριζαν τη λήψη ορισμένων πρακτικών μέτρων, αλλά επέβαλε την εκπόνηση ειδικών μελετών ευστάθειας, οι οποίες είναι από τότε γνωστές ως μελέτες ευστάθειας φόρτωσης σιτηρών («ΕΥΣΤΑΘΕΙΑ-ΚΟΠΩΣΕΙΣ» ΙΩΑΝΝΗ ΕΜ, ΚΟΛΛΙΝΙΑΤΗ, 2016). Κατά την περίοδο 1960-1965 η εφαρμογή των παραπάνω κανονισμών μελετήθηκε διεξοδικά και έρευνα κάλυψε κυρίως την επιβεβαίωση ορισμένων αρχών πάνω στις οποίες βασίστηκαν οι κανονισμοί της SOLAS του 1960 όπως η καθίζηση του φορτίου, η πλήρωση των κενών μεταξύ των διαμηκών ενισχυτικών κ.ο.κ.. Τα συμπεράσματα της έρευνας αυτής, στην οποία έλαβαν μέρος πολλοί πλοίαρχοι, απέδειξαν ότι ορισμένες από τις βασικές υποθέσεις δεν ανταποκρίνονται στην πραγματικότητα.

Έτσι οι κανονισμοί αναθεωρήθηκαν και το 1969 τέθηκαν σε ισχύ οι ισοδύναμοι προς το κεφάλαιο VI της SOLAS κανονισμοί για τη μεταφορά σιτηρών. Οι κανονισμοί αυτοί εφαρμόστηκαν δοκιμαστικά μέχρι το 1974, όταν αποφασίστηκε από τον IMO να λάβουν με ορισμένες παραλλαγές (Resolution A287 VII) επίσημη νομοθετική μορφή και να γίνουν προσωρινώς αποδεκτοί από τις κυβερνήσεις μέλη του IMO μέχρι να ενσωματωθούν στην αναθεωρημένη SOLAS του 1974.

Οι κανονισμοί που περιέχονται στο Grain Code - International Code for the Safe Carriage of Grain in Bulk – Resolution MSC.23(59), βασίζονται στην αρχή ότι η ευστάθεια του πλοίου πρέπει να πληροί ορισμένα κριτήρια σε όλη τη διάρκεια του ταξιδιού, συγκεκριμένα:

- 1. Η γωνία εγκάρσιας κλίσης που προκύπτει από τη μετατόπιση του φορτίου δεν πρέπει να υπερβαίνει τις 12 μοίρες.
- 2. Η σκιασμένη επιφάνεια του σχήματος της εικόνας 4.4 σε όλες τις καταστάσεις φόρτωσης δεν πρέπει να είναι μικρότερη από 0.075 m·rad.
- 3. Το αρχικό μετακεντρικό ύψος μετά τη διόρθωση για τις ελεύθερες επιφάνειες υγρών δεν πρέπει να είναι μικρότερο από 0.30 m.

Οι μοχλοβραχίονες της κλίσης που απεικονίζονται στο παρακάτω σχήμα, προκύπτουν ως εξής:

$$λ_0 = rac{\textit{VHM}}{\textit{sf} \cdot \textit{Δ}}$$
 και $λ_{40} = 0.8 \, λ_0$

Όπου: VHM (m⁴) ("Assumed Volumetric Heeling Moment") η ροπή του όγκου που προκύπτει από τη μετακίνηση φορτίου και sf (m³/tn) ("Stowage Factor"), ο συντελεστής στοιβασίας. Τέλος, η καμπύλη των μοχλοβραχιόνων επαναφοράς πρέπει να συναχθεί από τις παραμετρικές καμπύλες ευστάθειας ("cross curves of stability"), οι μοχλοβραχίονες να είναι διορθωμένοι ως προς τις ελεύθερες επιφάνειες των υγρών στις δεξαμενές και να περιλαμβάνονται τις αντίστοιχες τιμές για τις 12° και 40°. Πηγή: («ΜΕΛΕΤΗ ΠΛΟΙΟΥ (2^η ΕΚΔΟΣΗ) » ΑΝΤΩΝΙΟΥ Α. 1984)

Εικόνα 5-4: Μοχλοβραχίονες ευστάθειας συναρτήσει της γωνίας εγκάρσιας κλίσης.

Πηγή: Εικόνα σχεδιασμένη στο Autocad.

5.2.2. Η Θεωρούμενη Ελεύθερη Επιφάνεια Σιτηρών

Η επιφάνεια του φορτίου σιτηρών στους χώρους κυτών ενδέχεται να είναι εξομαλυμένη και οριζόντια ("trimmed") ή να έχει την αρχική κυματοειδή μορφή, δηλαδή τη μορφή που αποκτά η επιφάνεια του φορτίου μετά τη φόρτωση ("untrimed"). Στην περίπτωση όπου η επιφάνεια του φορτίου έχει εξομαλυνθεί, δύναται να γίνει ακριβής εκτίμηση της ροπής που προκύπτει από τη μεταφορά του φορτίου στους χώρους κυτών.

Όταν ένα διαμέρισμα είναι πλήρες, τότε η ελεύθερη επιφάνεια του φορτίου θεωρείται ότι σχηματίζει γωνία 15° με το οριζόντιο επίπεδο. Όταν ένα διαμέρισμα είναι μερικώς πληρωμένο, τότε η τότε η ελεύθερη επιφάνεια του φορτίου θεωρείται ότι σχηματίζει γωνία 25° με το οριζόντιο επίπεδο. («Υδροστατική και Ευστάθεια Πλοίου», Τζαμπίρας 2015).

Για τον υπολογισμό της ροπής εγκάρσιας κλίσης από τη μετατόπιση φορτίου, πέρα από τη μορφή της ελεύθερης επιφάνειας του φορτίου, είναι απαραίτητη η γνώση της συμπεριφοράς του φορτίου ως προς την καθίζηση, την πλήρωση των κενών κ.ο.κ..

Σε πλήρη κύτη, στα οποία η φόρτωση έγινε σύμφωνα με τους κανονισμούς, κάτω από όλες τις επιφάνειες που έχουν κλίση ως προς το οριζόντιο μικρότερη από 30 μοίρες, θεωρείται ότι υπάρχει παράλληλη προς την επιφάνεια διάκενο.

Το μέσο ύψος του διακένου δίνεται από τη σχέση: $V_d = V_{di} + 0.75 (d - 600)$

ΕΠΙΔΡΑΣΗ ΕΥΣΤΑΘΕΙΑΣ ΑΠΟ ΤΗ ΜΕΤΑΤΟΠΙΣΗ ΦΟΡΤΙΟΥ ΣΙΤΗΡΩΝ ΣΕ ΠΛΟΙΟ ΜΕΤΑΦΟΡΑΣ ΧΥΔΗΝ ΦΟΡΤΙΟΥ

Όπου: V_d , το μέσο ύψος διακένου (mm), V_{ds} , το τυπικό ύψος διακένου (mm), μετρούμενο από τον πίνακα 5-2 και d, το πραγματικό ύψος της διαμήκους δοκού (mm). Σε κάθε περίπτωση το μέσο ύψος διάκενου V_d δεν μπορεί να είναι μικρότερο από 100 mm.

Πηγή («ΜΕΛΕΤΗ ΠΛΟΙΟΥ (2 ^η ΕΚΔΟΣΗ) » ΑΝΤΩΝΙΟΥ Α. 1984)						
Απόσταση πλευράς στομίου κύτους- τοιχώματος κύτους	Τυπικό ύψος διακένου (mm)					
(m)						
0.5	570					
1.0	530					
1.5	500					
2.0	480					
2.5	450					
3.0	440					
3.5	430					
4.0	430					
4.5	430					
5.0	430					
5.5	450					
6.0	470					
6.5	490					
7.0	520					
7.5	550					
8.0	590					

Πίνακας 5-2: Τυπικό ύψος διακένου

Για αποστάσεις από το τοίχωμα κύτους μεγαλύτερες από 8.0 μέτρα, το τυπικό ύψος διακένου επεκτείνεται κατά 80 mm. Επιπλέον στα πλήρη στόμια των κυτών, θεωρείται ότι υπάρχει διάκενο 150 mm μετρούμενο από την επιφάνεια των σιτηρών μέχρι το κατώτατο άκρο του καλύμματος ή το άνω άκρο της πλευράς του στομίου, όποιο από τα δύο είναι μικρότερο.

Στην περίπτωση κατά την οποία η κρατική αρχή επιτρέπει να ληφθεί υπόψη η μείωση του ύψους του κέντρου βάρους λόγω της ύπαρξης διακένων, απαιτείται να ληφθούν υπόψη τα αποτελέσματα της ενδεχόμενης κατακόρυφης μετατόπισης του φορτίου, αυτό γίνεται μέσω της προσαύξησης της ροπής που προκύπτει από την εγκάρσια μετατόπιση φορτίου, σύμφωνα με τις ακόλουθες σχέσεις.

•	Πλήρη Διαμερίσματα:	$M_T = 1.06 \frac{VHM}{CT}$
•	Μερικώς Πληρωμένα Διαμερίσματα:	$M_T = 1.12 \frac{\frac{SF}{VHM}}{SF}$

Πηγή: («ΜΕΛΕΤΗ ΠΛΟΙΟΥ (2^η ΕΚΔΟΣΗ) » ΑΝΤΩΝΙΟΥ Α. 1984)

5.3. Προσδιορισμός της Ροπής από τη μεταφορά φορτίου σε πλήρη διαμερίσματα

Κατά τον προσδιορισμό των ροπών εγκάρσιας κλίσης, η τελική γωνία του φορτίου θεωρείται ότι είναι 15°. Η μορφή της ελεύθερης επιφάνειας εξαρτάται από τη διάταξη των διαχωριστικών φρακτών, δοκών κ.ο.κ.. Παρακάτω παρατίθενται τυπικές σχηματικές διατάξεις, βάσει των οποίων πραγματοποιούνται οι υπολογισμοί των ροπών που προκύπτουν από τη μετατόπιση φορτίου για πλήρη διαμερίσματα. Στην περίπτωση μερικώς πληρωμένων διαμερισμάτων η γωνία της επιφάνειας του φορτίου είναι 25°.

Εικόνα 5-6: Τελική επιφάνεια σιτηρών εντός και εκατέρωθεν του στομίου. Πηγή: Εικόνα σχεδιασμένη στο Autocad.

Εικόνα 5-7: Διάταξη επιφάνειας σιτηρών σε κύτος με διάμηκες διάφραγμα και διαμήκεις δοκούς.

Πηγή: Εικόνα σχεδιασμένη στο Autocad.

Εικόνα 5-8: Διάταξη επιφάνειας σιτηρών σε κύτος με δύο καταστρώματα και διάμηκες διάφραγμα. Πηγή: Εικόνα σχεδιασμένη στο Autocad.

Πηγή: («ΜΕΛΕΤΗ ΠΛΟΙΟΥ (2^η ΕΚΔΟΣΗ) » ΑΝΤΩΝΙΟΥ Α. 1984)

6. ΤΕΧΝΙΚΟ ΜΕΡΟΣ

6.1. Σκοπός του Τεχνικού Μέρους

Σκοπός:

Στο σημείο αυτό, δεδομένου ότι έχουν πλέον παρουσιαστεί οι ενότητες που αφορούν:

- Τις βασικές έννοιες της υδροστατικής και της ευστάθειας των πλοίων.
- Τις ιδιαιτερότητες που παρουσιάζουν τα χύδην φορτία.
- Τους κανονισμούς που διέπουν την ευστάθεια σιτηρών

Είναι πλέον εφικτό να παρουσιαστεί το τεχνικό μέρος της εργασίας αυτής. Ο σκοπός του τεχνικού μέρους είναι αφενός ο υπολογισμός της ευστάθειας σιτηρών σε υπάρχον πλοίο και αφετέρου η παρουσίαση μεθόδων σχεδιασμού των χώρων φορτίου που επιδρούν θετικά στην ευστάθεια σιτηρών.

Πορεία Εργασίας:

Προκειμένου να γίνει εφικτός ο υπολογισμός της ευστάθειας σιτηρών είναι απαραίτητο να κατασκευαστεί τρισδιάστατο μοντέλο της γάστρας σε πρόγραμμα τρισδιάστατης σχεδίασης και στη συνέχεια να σχεδιαστούν οι δεξαμενές και οι χώροι φορτίου.

Έπειτα, πραγματοποιούνται οι καταστάσεις φόρτωσης και στη συνέχεια γίνεται ο υπολογισμός της ευστάθειας σιτηρών για τις καταστάσεις αυτές.

Τέλος, προτείνονται ορισμένοι τρόποι σχεδίασης των χώρων φορτίου προκειμένου να μειωθεί κατά το δυνατό η επίδραση της ελεύθερης επιφάνειας σιτηρών στην ευστάθεια.

Η πορεία της εργασίας παρουσιάζεται συνοπτικά στο παρακάτω διάγραμμα.

6.2. Κύρια Στοιχεία Πλοίου

General Particulars				
Туре:	General Cargo			
Length Overall:	87.83 m			
Length Between Perpendiculars:	81.00 m			
Breadth:	12.80 m			
Depth:	7.10 m			
Summer Draught:	5.50 m			
Displacement:	4927.5 Tn			
Lightship:	1125.0 Tn			
Deadweight:	3802.5 Tn			
Gross Tonnage:	2370 GRT			
Net Tonnage:	1365 NRT			

Σχέδιο Γενικής Διάταξης

6.3. Κατασκευή τρισδιάστατου Μοντέλου

6.3.1. Ψηφιοποίηση Σχεδίου Ναυπηγικών Γραμμών Στο Autocad

Το πλοίο που επιλέχθηκε να μελετηθεί στην παρούσα εργασία δε διαθέτει σχέδιο ναυπηγικών γραμμών σε ψηφιακή μορφή, για το λόγο αυτό, σε πρώτο χρόνο είναι αναγκαίο να γίνει ψηφιοποίηση του σχεδίου. Λόγω της ευκολίας που παρέχει το σχεδιαστικό πρόγραμμα Autocad ως προς τη σχεδίαση πάνω από σαρωμένα σχέδια και δεδομένου ότι για το πρόγραμμα αυτό παρέχεται φοιτητική άδεια, η διαδικασία της ψηφιοποίησης επιλέχθηκε να γίνει με τη χρήση του εν λόγω προγράμματος.

Η διαδικασία της ψηφιοποίησης λαμβάνει χώρα ως εξής:

Βήμα Ι: Εισαγωγή Σχεδίου Ναυπηγικών Γραμμών

Με τη χρήση της εντολής ("attach") εισάγεται το επιθυμητό αρχείο στο πρόγραμμα, στην περίπτωσή μας επιλέγουμε το ("Lines Plan").

Εικόνα 6-1:Εισαγωγή σχεδίου ναυπηγικών γραμμών στο Autocad.

Εικόνα 6-2: Σχέδιο ναυπηγικών γραμμών.

Βήμα ΙΙ: Περιστροφή και Τροποποίηση Διαστάσεων

Δεδομένου ότι το εισαχθέν σχέδιο προέρχεται από τη σάρωση της προηγούμενης έντυπης μορφής, κατά τη διαδικασία αυτή, θα πρέπει να ληφθούν υπόψη οι παράγοντες που συντελούν σε μία εσφαλμένη ψηφιοποίηση του σχεδίου.

Τέτοιοι παράγοντες συνήθως είναι οι τυχών καμπυλώσεις του σχεδίου κατά τη σάρωση και η στραμμένη σάρωση του σχεδίου. Δεδομένων των σφαλμάτων αυτών, η απόλυτη ακρίβεια στη μετατροπή του σχεδίου σε ψηφιακή μορφή είναι στην πράξη αδύνατη, έτσι, προκειμένου να επιτευχθεί επιτυχώς η ψηφιοποίηση του σχεδίου θα πρέπει να εξεταστούν οι παράγοντες που επιδρούν αρνητικά στη διαδικασία αυτή, ούτος ώστε να εξασφαλιστεί ότι η πληροφορία που μας παρέχει το σχέδιο μετατρέπεται σε ψηφιακή στο βέλτιστο δυνατό βαθμό.

Για τον έλεγχο της πιθανής στραμμένης σάρωσης του σχεδίου, χαράσσουμε πάνω σε υπάρχον σημείο τομής κάθετων ευθύγραμμων τμημάτων, δύο νέα κάθετα ευθύγραμμα τμήματα ενεργοποιώντας την επιλογή("ortho").

Εικόνα 6-3: Χάραζη Κάθετων τμημάτων.

Εικόνα 6-4: Απόκλιση κάθετης βοηθητικής γραμμής με τη βασική γραμμή του σχεδίου στην πρύμνη.

Εικόνα 6-5: Απόκλιση κάθετης βοηθητικής γραμμής με τη βασική γραμμή του σχεδίου στην πρύμνη.

Από τις παραπάνω εικόνες προκύπτει το συμπέρασμα ότι το σχέδιο κατά τη σάρωσή του ήταν στραμμένο. Για να διορθωθεί το σφάλμα αυτό, αρκεί να στραφεί το σχέδιο σε γωνία τέτοια ώστε τα κάθετα βοηθητικά τμήματα να συμπίπτουν με τα κάθετα τμήματα του σχεδίου.

Εικόνα 6-6: Χάραζη βοηθητικής γραμμής πάνω στη βασική γραμμή.

Με τη χρήση της εντολής("rotate") στρέφουμε το σχέδιο και τη βοηθητική ευθεία περί του σημείου τομής των βοηθητικών ευθύγραμμων τμημάτων, έτσι ώστε το επιπλέον βοηθητικό τμήμα να συμπίπτει με την οριζόντια βοηθητική γραμμή.

Εικόνα 6-7: Ταύτιση βασικής γραμμής με το βοηθητικό οριζόντιο τμήμα στην πρύμνη.

Εικόνα 6-8: Ταύτιση βασικής γραμμής με το βοηθητικό οριζόντιο τμήμα στην πλώρη.

ΕΠΙΔΡΑΣΗ ΕΥΣΤΑΘΕΙΑΣ ΑΠΟ ΤΗ ΜΕΤΑΤΟΠΙΣΗ ΦΟΡΤΙΟΥ ΣΙΤΗΡΩΝ ΣΕ ΠΛΟΙΟ ΜΕΤΑΦΟΡΑΣ ΧΥΔΗΝ ΦΟΡΤΙΟΥ

Το επόμενο σκέλος της διαδικασίας περιλαμβάνει την τροποποίηση των διαστάσεων του σχεδίου, έτσι ώστε οι μετρούμενες διαστάσεις του σχεδίου στο πρόγραμμα να ανταποκρίνονται με αυτές του πλοίου. Προκειμένου να γίνει δυνατό αυτό, γίνεται χρήση της επιλογής ("properties") και επιλέγουμε συντελεστή ("scaling") στους άξονες αναφοράς. Ο συντελεστής που θα πολλαπλασιάσουμε τις διαστάσεις του σχεδίου προκύπτει από το λόγο της αναγραφόμενης απόστασης του σχεδίου προς την αντίστοιχη μετρούμενη απόσταση. Στην περίπτωσή μας, το πλάτος του πλοίου είναι 12.80 m, επομένως το ημιπλάτος θα είναι 6.40 m, άρα ο συντελεστής του ("scaling") θα είναι: $s_f = \frac{6400 \text{ mm}}{20212 \text{ mm}} = 0.3166$

Εικόνα 6-9: Επιλογή Συντελεστή Scaling.

Εικόνα 6-10: Scaling.

Βήμα ΙΙΙ: Σχεδίαση Νομέων

Στο παρόν σχέδιο δίνονται, η ισαπόσταση των ισάλων και οι αποστάσεις των σημείων τομής των νομέων με τις ισάλους. Δεδομένων των παραπάνω, επιλέγουμε να χρησιμοποιήσουμε τα σημεία αυτά για τη σχεδίαση των νομέων προκειμένου να επιτευχθεί στο βέλτιστο δυνατό η αποτύπωση του σχεδίου.

Εικόνα 6-11: Σημεία τομής της ισάλου 1 με τους πρυμναίους νομείς

Στη συνέχεια, σχεδιάζονται οι καμπύλες που διέρχονται από τα παραπάνω σημεία με τη χρήση ("*splines*").

Εικόνα 6-12: Αποτύπωση σημείων του σχεδιαστικού νομέα 1.

Βήμα ΙV: Σχεδίαση Ισάλων

Οι αποστάσεις που δίνονται για τα σημεία τομής των ισάλων με τους νομείς σχεδίασης μπορούν να αξιοποιηθούν και για τη σχεδίαση των ισάλων. Έτσι, με παρόμοιο τρόπο δύναται να σχεδιαστούν και οι ίσαλοι.

Εικόνα 6-13: Πρυμναίο τμήμα Ισάλου WL1.

Εικόνα 6-14: Σχέδιο ισάλων και σχέδιο νομέων.

Βήμα V: Σχεδίαση Διαμήκους Τομής

Τέλος, αποτυπώνεται η διαμήκης τομή στο επίπεδο συμμετρίας του πλοίου.

Εικόνα 6-15: Σχεδίαση διαμήκους τομής στο επίπεδο συμμετρίας.

6.3.2. Τρισδιάστατη Σχεδίαση Μοντέλου Στο Rhinoceros 3D

Βήμα Ι: Εισαγωγή Σχεδίου Ναυπηγικών Γραμμών

Το τελικό σχέδιο, έχει τη μορφή που παρουσιάζεται στην παρακάτω εικόνα.

Εικόνα 6-16: Τελικό σχέδιο ναυπηγικών γραμμών.

Στο στάδιο αυτό, το σχέδιο έχει ψηφιακή μορφή και αυτό που απομένει πλέον είναι η τρισδιάστατη σχεδίαση του μοντέλου. Το τρισδιάστατο μοντέλο θα σχεδιαστεί στο πρόγραμμα Rhinoceros 3D.

Προκειμένου να καταστεί δυνατή η σχεδίαση του τρισδιάστατου μοντέλου, χρειάζεται πρώτα να γίνει η εξαγωγή του αρχείου σε μορφή συμβατή με το εν λόγω πρόγραμμα. Μία τέτοια μορφή, είναι τα αρχεία IGES, τα οποία είναι συμβατά με το Rhinoceros 3D.

Η εξαγωγή από το AutoCAD γίνεται με τη χρήση της εντολής ("export").

Εικόνα 6-17: Εξαγωγή σχεδίου ναυπηγικών γραμμών.

Με την εντολή ("*import*") στο πρόγραμμα Rhinoceros 3D, γίνεται η εισαγωγή του σχεδίου.

🐓 Import		\times
$\leftarrow \rightarrow \lor \uparrow$	📙 « διπλωματική > dwgs v 🕐 Search dwgs	
Organise 🔻	New folder 🔤 🔻 🔳	?
 This PC 3D Object Desktop Document Download Music Pictures Videos Windows 	ts its ds (C:)	
	File <u>n</u> ame: Lines Plan.iges V IGES (*.igs; *.iges) Qpen Cancel	×

Εικόνα 6-18: Εισαγωγή σχεδίου στο Rhinoceros 3D (1/2).

Εικόνα 6-19: Εισαγωγή μοντέλου στο Rhinoceros 3D (2/2).

Βήμα ΙΙ: Μεταφορά και Περιστροφή

Το σχέδιο, όπως φαίνεται και στην παραπάνω εικόνα, δε βρίσκεται στην αρχή των αξόνων. Χρησιμοποιώντας την εντολή ("*Move*"), μεταφέρουμε το σχέδιο από το σημείο τομής του νομέα μηδέν με τη βασική γραμμή στο σημείο (0,0,0).

Εικόνα 6-20: Μεταφορά του σχεδίου στην αρχή των αζόνων.

Προκειμένου να καταστεί δυνατή η τρισδιάστατη σχεδίαση του μοντέλου, θα χρειαστεί να μεταφερθούν ορισμένα στοιχεία σχεδίασης στα αντίστοιχα επίπεδα αναφοράς. Οι νομείς είναι εγκάρσιες τομές του πλοίου, επομένως κάθε νομέας θα έχει συγκεκριμένη θέση κατά τον x άξονα και το επίπεδο σχεδίασης του θα είναι ένα επίπεδο παράλληλο ως προς το επίπεδο που ορίζουν οι άξονες y-z. Ομοίως, οι ίσαλοι θα έχουν συγκεκριμένη θέση κατά τον άξονα z και επίπεδο σχεδίασης παράλληλο στο επίπεδο x-y. Με την εντολή ("*Rotate3d*") γίνεται δυνατή η αλλαγή του επίπεδου σχεδίασης των κατασκευαστικών στοιχείων του μοντέλου.

Εικόνα 6-21: Περιστροφή διαμήκους τομής και σχεδίου νομέων.

Στη συνέχεια μεταφέρονται τα κατασκευαστικά στοιχεία του σχεδίου (ίσαλοι και νομείς) στις αντίστοιχες θέσεις (οι ίσαλοι καθ' ύψος, με ισαπόσταση 1.000 μέτρο και οι νομείς κατά μήκος με ισαπόσταση 4.050 μέτρα), έτσι ώστε να σχηματιστούν τα πλέγματα που θα ορίσουν τις επιφάνειες της γάστρας.

Βήμα ΙΙΙ: Δημιουργία Επιφανειών

Όταν οι ναυπηγικές γραμμές λάβουν την τρισδιάστατη μορφή τους, απομένει να σχηματιστούν οι επιφάνειες. Ορισμένα στοιχεία, όπως για παράδειγμα το παράλληλο τμήμα, ο πυθμένας και ο καθρέπτης, είναι δυνατό να ορίσουν επιφάνειες απλούστερης γεωμετρίας συγκριτικά με το βολβό ή τη χοάνη, έτσι ο τρόπος με τον οποίον θα σχεδιαστούν οι επιφάνειες θα διαφέρει ανάλογα με τα στοιχεία που τις ορίζουν.

Εικόνα 6-22: Τρισδιάστατη μορφή ναυπηγικών γραμμών.

Για τη δημιουργία επιφάνειας στον πυθμένα, επιλέγουμε τα τμήματα που τον σχηματίζουν και με τη χρήση της εντολής ("Join") σχηματίζεται μία κλειστή καμπύλη.

Εικόνα 6-23: Κλειστή καμπύλη πυθμένα.

Στη συνέχεια επιλέγουμε την κλειστή καμπύλη και με την εντολή ("*PlanarSrf*") δημιουργείται η επιφάνεια του πυθμένα. Η ίδια διαδικασία επαναλαμβάνεται για τη δημιουργία επιφάνειας στον καθρέπτη και το άνω μέρος του παράλληλου τμήματος.

Εικόνα 6-24: Επιφάνειες με τη χρήση της εντολής PlanarSrf.

Πριν σχηματιστούν οι επόμενες επιφάνειες, χρειάζεται να ληφθούν υπόψη οι δυσκολίες που θα προκύψουν κατά τη σχεδίαση των σημείων όπου υπάρχει έντονη αλλαγή της γεωμετρίας, τα σημεία αυτά αφορούν κυρίως τις ευρύτερες περιοχές της πρύμνης και της πλώρης, για το λόγο αυτό, σχεδιάζονται επιπλέον βοηθητικές ίσαλοι, που προκύπτουν από την τομή των νομέων με τα βοηθητικά επίπεδα που σχεδιάζονται. Με την εντολή ("*Plane*") σχεδιάζουμε επιφάνειες, οι οποίες τέμνουν τους νομείς στο επιθυμητό ύψος. Στη συνέχεια επιλέγουμε τις βοηθητικές επιφάνειες και τους νομείς και με την εντολή ("*Intersect*") σχεδιάζονται τα σημεία τομής. Τα σημεία αυτά αποτελούν τα σημεία από τα οποία θα διέρχονται οι βοηθητικές ίσαλοι.

Εικόνα 6-25: Σημεία Βοηθητικών ισάλων.

Έπειτα από τη σχεδίαση των βοηθητικών ισάλων, με τη χρήση της εντολής ("*NetworkSrf*") δημιουργούνται οι υπόλοιπες επιφάνειες, σχηματίζοντας έτσι τη μορφή της γάστρας.

Εικόνα 6-26: Μορφή τρισδιάστατου μοντέλου γάστρας.

Βήμα IV: Τελική μορφή Γάστρας

Καθώς η γάστρα του πλοίου είναι συμμετρική ως προς το διάμηκες, με την εντολή ("*Mirror*") σχεδιάζεται το υπόλοιπο μισό του πλοίου.

Εικόνα 6-27: Σχεδίαση υπόλοιπου μισού.

Έπειτα, απομένει η σχεδίαση του καταστρώματος και του στομίου των κυτών ("*Hatch Coamings*").

ΕΠΙΔΡΑΣΗ ΕΥΣΤΑΘΕΙΑΣ ΑΠΟ ΤΗ ΜΕΤΑΤΟΠΙΣΗ ΦΟΡΤΙΟΥ ΣΙΤΗΡΩΝ ΣΕ ΠΛΟΙΟ ΜΕΤΑΦΟΡΑΣ ΧΥΔΗΝ ΦΟΡΤΙΟΥ

Για τη σχεδίαση του καταστρώματος στο πρόστεγο, ενώνουμε με ευθύγραμμα τμήματα τα άκρα των επιφανειών και με τη χρήση της εντολής ("NetworkSrf") σχηματίζονται οι επιφάνειες. Στο σημείο αυτό, επιλέγουμε όλες τις επιφάνειες και με τη χρήση της εντολής ("join"), οι επιφάνειες ενώνονται. Στη συνέχεια, χρησιμοποιείται η εντολή ("JoinEdge"), προκειμένου να εξασφαλιστεί η μη ύπαρξη κενών μεταξύ των επιφανειών.

Εικόνα 6-28: Σχεδίαση καταστρώματος.

Κατά τη σχεδίαση του μοντέλου, θα πρέπει να ληφθούν υπόψη τα στοιχεία που συμμετέχουν στη διαμόρφωση των παραμετρικών καμπυλών ευστάθειας, έτσι η επιφάνεια του παραπέτου μεταξύ του κύριου καταστρώματος και του πρόστεγου αφαιρείται, καθώς αποτελεί ανοιχτή επιφάνεια. Τέλος, της εντολής ("Cap") σχηματίζεται η επιφάνεια του κυρίου καταστρώματος.

Εικόνα 6-29: Μοντέλο με την προσθήκη των καταστρωμάτων.

Για τη σχεδίαση του στομίου κυτών, είναι απαραίτητο να γνωρίζουμε τα όρια (μήκος, πλάτος, ύψος). Στο συγκεκριμένο πλοίο, τα όρια του στομίου είναι δυνατό να βρεθούν από το σχέδιο χωρητικότητας των δεξαμενών, καθώς στο συγκεκριμένο πλοίο, τα όρια του χώρου φορτίου συμπίπτουν με τα όρια του χώρου φορτίου. Στο σχέδιο χωρητικότητας των δεξαμενών, πέρα από τα όρια δίνεται επαρκής πληροφορία και για το ύψος του στομίου κυτών.

CARGO HOLD					
Compartment	Frames	Volume	LCG	TCG	VCG
		(m³)	(m)	(m)	(m)
CHOLD:CHOLD	24-111	4650.61	43.661	0	5.288
Total		4650.61	43.661	0	5.288

Εικόνα 6-30: Χωρητικότητα και όρια χώρου φορτίου.

Εικόνα 6-31: Διαστάσεις Χώρου Φορτίου.

Με βάση τα παραπάνω, με τη χρήση της εντολής ("Box") ορίζουμε ορθογώνιο παραλληλεπίπεδο, από αρχικό, τελικό σημείο και ύψος. Οι συντεταγμένες των σημείων αυτών είναι οι εξής: P₁ (15.25,-5.1,7.1) και P₁ (71.8,5.1,7.1). Όπου: 15.25 m, η απόσταση του νομέα 24 από την αρχή των αξόνων και 71.8 η αντίστοιχα η απόσταση μεταξύ της αρχής των αξόνων και του νομέα 111. Το δε ύψος του στομίου, όπως φαίνεται καις την εικόνα 5.31, είναι 2.255 m.

Εικόνα 6-32: Σχεδίαση στομίου κυτών.

Βήμα V: Έλεγχος Υδροστατικών Στοιχείων

Κατά το πέρας της σχεδίασης του τρισδιάστατου μοντέλου, είναι απαραίτητη η σύγκριση των υδροστατικών στοιχείων της γάστρας μοντέλου με τα υδροστατικά στοιχεία που υπάρχουν στο εγχειρίδιο διαγωγής και ευστάθειας του πλοίου

Για να καταστεί δυνατή η παραπάνω σύγκριση, θα χρειαστεί να εισάγουμε το μοντέλο σε πρόγραμμα υπολογισμών ευστάθειας. Το πρόγραμμα που θα χρησιμοποιηθεί για τους υπολογισμούς ευστάθειας και κατ' επέκταση και των υδροστατικών στοιχείων, είναι το πρόγραμμα MAXSURF Stability.

Προκειμένου να εξασφαλιστεί ότι η γεωμετρία του μοντέλου δύναται να αναγνωριστεί από το MAXSURF Modeler όπως αυτή σχεδιάστηκε στο Rhinoceros3D, είναι αναγκαίο να απλοποιηθεί η μορφή της γάστρας από μία σύνθετης γεωμετρίας κλειστή επιφάνεια, στο σύνολο απλούστερων επιφανειών, οι οποίες συνολικά αποτελούν τη μορφή της γάστρας.

Έτσι, με τη χρήση της εντολής ("*Explode*"), πλέον αντί για μία σύνθετη επιφάνεια το μοντέλο αποτελείται από το σύνολο μικρότερων επιφανειών, απλούστερης γεωμετρίας.

Εικόνα 6-33: Μοντέλο αποτελούμενο από μια σύνθετης γεω βμετρίας κλειστή επιφάνεια.

Εικόνα 6-34: Μοντέλο αποτελούμενο από 138 επιφάνειες απλής γεωμετρίας.
Προκειμένου να καταστεί δυνατή η εισαγωγή του μοντέλου της γάστρας, χρειάζεται πρώτα να γίνει η εξαγωγή του αρχείου σε μορφή συμβατή με το εν λόγω πρόγραμμα. Μία τέτοια μορφή, είναι τα αρχεία 3DM, τα οποία είναι συμβατά με το MAXSURF.

Με τη χρήση της επιλογής ("*import*") εισάγεται το αρχείο του τρισδιάστατου μοντέλου στο MAXSURF Modeler.

Profile					- 0 ×
	😳 Open Rhino .3dm file				
	\leftarrow \rightarrow \checkmark \uparrow \blacksquare \rightarrow This	PC > Desktop > διπλωματική > dwgs			
	Organise * New folder			li - 💷 🕜	
	+ Ouisk score		Date modified		
	Dearbar	📚 Model from Rhino			
	The property of the property o				
	3D Objects				
	Desktop				
	Documents				в
	Downloads Music				
	Pictures				
	🚆 Videos				
	Windows (C:)				
	RECOVERY (D.)				
	Network	<		,	
	Elenar	Madel from Dhine	Phine	2D Elec (t 2dm)	
Ear Stud	riie nam	Re. Model nom knino		Doen Cancel	un la
				all cancer	Fad

Εικόνα 6-35: Εισαγωγή μοντέλου στο MAXSURF Modeler.

Στη συνέχεια, με τη χρήση της επιλογής ("Data//Frame of Reference and Zero Point") ορίζουμε το μήκος μεταξύ καθέτων, το ύψος της ισάλου σχεδίασης και επιλέγουμε το σύστημα αναφοράς ως προς τη πρυμναία κάθετο ή το μέσο του πλοίου.

Frame of Reference and Zero po	oint	×
isterior of a	MS	dent
Longitudinal Datum	Vortical Datum	
Aft Perp. 0 m	Set to DWL 0 DWL 5.5 m	
Midships 40 m	Baseline O m	Find Base
O Fwd Perp. 80 m	Set to DWL Other 0 m	
Other 0 m	Aft extent Fwd extent	
Label AP	Default Label Baseline	Default
	ОК	Cancel

Εικόνα 6-36: Ορισμός μήκους, ύψους ισάλου σχεδίασης και συστήματος αναφοράς.

Με τον ορισμό των παραπάνω στοιχείων, γίνεται αποθήκευση του αρχείου και έπειτα, το αρχείο ανοίγει στο MAXSURF Stability, προκειμένου να γίνουν οι υπολογισμοί των υδροστατικών στοιχείων.

Εικόνα 6-37: Μοντέλο πλοίου στο MAXSURF Stability.

Για τον υπολογισμό των υδροστατικών στοιχείων, ενεργοποιείται η επιλογή ("Upright Hydrostatics") και στη συνέχεια στις επιλογές ("Analysis//Trim") και ("Analysis//Draft") ορίζουμε τη διαγωγή και το εύρος των βυθισμάτων στο μέσο, για τους υπολογισμούς των υδροστατικών στοιχείων. Έπειτα, με τη χρήση της επιλογής ("Analysis//Start Hydrostatics"), εκτελείται ο υπολογισμός των υδροστατικών στοιχείων.

Εικόνα 6-38: Εύρος βυθισμάτων για τον υπολογισμό των υδροστατικών.

Στο υπάρχον εγχειρίδιο διαγωγής και ευστάθειας του πλοίου, δίνεται ο πίνακας υδροστατικών για εύρος τιμών διαγωγής από -0.5 μέτρα, μέχρι 2.5 μέτρα και για βυθίσματα από 1.4 μέχρι 5.6 μέτρα.

Στην εργασία αυτή, ο έλεγχος των υδροστατικών γίνεται για μηδενική διαγωγή και η σύγκριση των αποτελεσμάτων του προγράμματος με τα υδροστατικά του εγχειριδίου διαγωγής και ευστάθειας γίνεται με βάση τα πρότυπα που ορίζουν οι απαιτήσεις των IACS ("IACS UR-L5 Req. 2004/Rev.4 2020").

Τα επιτρεπτά όρια των αποκλίσεων δίνονται στον πίνακα 1 των σχετικών απαιτήσεων.

Table 1

Hull Form Dependent	
Displacement	+/- 2%
Longitudinal center of buoyancy, from AP	+/- 1% / 50 cm
Vertical center of buoyancy	+/- 1% / 5 cm
Transverse center of buoyancy	+/- 0.5% of B / 5 cm
Longitudinal center of flotation, from AP	+/- 1% / 50 cm
Moment to trim 1 cm	+/- 2%
Transverse metacentric height	+/- 1% / 5 cm
Longitudinal metacentric height	+/- 1% / 50 cm
Cross curves of stability	+/- 5 cm
Compartment dependent	
Volume or deadweight	+/- 2%
Longitudinal center of gravity, from AP	+/- 1% / 50 cm
Vertical centre of gravity	+/- 1% / 5 cm
Transverse center of gravity	+/- 0.5% of B / 5 cm
Free surface moment	+/- 2%
Shifting moment	+/- 5%
Level of contents	+/- 2%
Trim and stability	
Draughts (forward, aft, mean)	+/- 1% / 5 cm
GMt (both solid and corrected for free surfaces)	+/- 1% / 5 cm
GZ values	+/- 5% / 5 cm
Downflooding angle	+/- 20
Equilibrium angles	+/- 10
Distance from WL to unprotected and weathertight openings, or other relevant point, if applicable	+/- 5% / 5 cm
Areas under righting arm curve	+/- 5% / 0.0012mrad

Εικόνα 6-39: Πίνακας επιτρεπτών αποκλίσεων κατά URL-5

Πηγή: https://iacs.org.uk/publications/unified-requirements/ur-l/

Στους πίνακες που ακολουθούν παρουσιάζονται,

- Τα υδροστατικά στοιχεία που προέκυψαν από το τρισδιάστατο μοντέλο, καθώς επίσης και από το υπάρχον εγχειρίδιο διαγωγής και ευστάθειας.
- Οι τιμές των παραμετρικών καμπυλών της ευστάθειας ("Cross Curves of Stability") που προέκυψαν από το μοντέλο, καθώς επίσης και από το εγχειρίδιο διαγωγής και ευστάθειας
- Οι επί τοις εκατό αποκλίσεις των παραπάνω.

Πίνακας 6-1: Αποκλίσεις εκτοπισμάτων			
HYDROSTATICS TRIM = 0.0 M			
Draft m		Displacement t	
Diartin	From MAXSURF	From Stability Booklet	%diff
1.4	1132.000	1142.334	0.905
1.5	1217.000	1227.528	0.858
1.6	1302.000	1312.968	0.835
1.7	1387.000	1398.636	0.832
1.8	1473.000	1484.529	0.777
1.9	1559.000	1570.659	0.742
2	1645.000	1657.022	0.726
2.1	1731.000	1743.630	0.724
2.2	1817.000	1830.488	0.737
2.3	1904.000	1917.604	0.709
2.4	1991.000	2005.006	0.699
2.5	2078.000	2092.649	0.700
2.6	2166.000	2180.675	0.673
2.7	2253.000	2268.973	0.704
2.8	2341.000	2357.587	0.704
2.9	2430.000	2446.553	0.677
3	2519.000	2535.877	0.666
3.1	2608.000	2625.573	0.669
3.2	2697.000	2715.674	0.688
3.3	2787.000	2806.176	0.683
3.4	2877.000	2897.155	0.696
3.5	2968.000	2988.627	0.690
3.6	3059.000	3080.611	0.702
3.7	3151.000	3173.139	0.698
3.8	3243.000	3266.227	0.711
3.9	3336.000	3359.905	0.711
4	3430.000	3454.185	0.700
4.1	3525.000	3549.076	0.678
4.2	3620.000	3644.574	0.674
4.3	3716.000	3740.655	0.659
4.4	3812.000	3837.284	0.659
4.5	3909.000	3934.383	0.645
4.6	4006.000	4031.917	0.643
4.7	4104.000	4129.867	0.626
4.8	4201.000	4228.205	0.643
4.9	4300.000	4326.923	0.622
5	4399.000	4426.010	0.610
5.1	4498.000	4525.456	0.607
5.2	4597.000	4625.251	0.611
5.3	4697.000	4725.377	0.601
5.4	4798.000	4825.827	0.577
5.5	4898.000	4926.585	0.580
5.6	4999.000	5027.639	0.570

Πίνακας 6-2: Απόκλιση της διαμήκους θέσης του κέντρου άντωσης				
	HYDROSTATICS TRIM = 0.0 M			
Duraft in	LCB from zero pt. (+ve fwd) m			
Draft m	From MAXSURF	From Stability Booklet	%diff	
1.4	42.523	42.554	0.073	
1.5	42.524	42.557	0.078	
1.6	42.525	42.557	0.075	
1.7	42.525	42.556	0.073	
1.8	42.524	42.553	0.068	
1.9	42.522	42.549	0.063	
2	42.518	42.542	0.056	
2.1	42.512	42.533	0.049	
2.2	42.502	42.521	0.045	
2.3	42.490	42.508	0.042	
2.4	42.475	42.492	0.040	
2.5	42.457	42.474	0.040	
2.6	42.437	42.454	0.040	
2.7	42.414	42.431	0.040	
2.8	42.390	42.405	0.035	
2.9	42.362	42.377	0.035	
3	42.333	42.347	0.033	
3.1	42.302	42.313	0.026	
3.2	42.270	42.277	0.017	
3.3	42.234	42.238	0.009	
3.4	42.196	42.195	-0.002	
3.5	42.154	42.150	-0.009	
3.6	42.109	42.101	-0.019	
3.7	42.059	42.049	-0.024	
3.8	42.006	41.993	-0.031	
3.9	41.948	41.934	-0.033	
4	41.885	41.871	-0.033	
4.1	41.818	41.806	-0.029	
4.2	41.748	41.737	-0.026	
4.3	41.676	41.666	-0.024	
4.4	41.602	41.593	-0.022	
4.5	41.527	41.519	-0.019	
4.6	41.452	41.445	-0.017	
4.7	41.377	41.371	-0.015	
4.8	41.307	41.299	-0.019	
4.9	41.235	41.228	-0.017	
5	41.164	41.160	-0.010	
5.1	41.096	41.094	-0.005	
5.2	41.031	41.030	-0.002	
5.3	40.968	40.968	0.000	
5.4	40.907	40.909	0.005	
5.5	40.849	40.852	0.007	
5.6	40.794	40.798	0.010	

Πίνακας 6-3: Απόκλιση της κατακόρυφης θέσης του κέντρου άντωσης				
	HYDROSTATICS TRIM = 0.0 M			
Duroft in		KB m		
Draft m	From MAXSURF	From Stability Booklet	%diff	
1.4	0.717	0.718	3 0.139	
1.5	0.768	0.769	0.130	
1.6	0.819	0.820	0.122	
1.7	0.871	0.872	L 0.000	
1.8	0.922	0.923	3 0.108	
1.9	0.973	0.974	1 0.103	
2	1.024	1.02	5 0.098	
2.1	1.075	1.076	5 0.093	
2.2	1.126	1.12	7 0.089	
2.3	1.177	1.178	3 0.085	
2.4	1.228	1.230	0.163	
2.5	1.280	1.283	L 0.078	
2.6	1.331	1.332	2 0.075	
2.7	1.382	1.384	1 0.145	
2.8	1.434	1.43	5 0.070	
2.9	1.485	1.48	7 0.134	
3	1.537	1.53	0.130	
3.1	1.589	1.59	0.063	
3.2	1.640	1.64	2 0.122	
3.2	1 692	1 69	1 0 1 1 8	
3.4	1 744	1.03	0.110 0.115	
3.1	1 796	1 79	0.113	
3.6	1 849	1.85	0 108	
3.7	1 901	1.904	1 0.158	
3.8	1 954	1.50	<u> </u>	
3.0	2 007	2.00	$\frac{0.102}{0.100}$	
<u>3.5</u>	2.007	2.00	0.100	
4 1	2.000	2.00	<u> </u>	
4.1	2.113	2.110	$\frac{0.142}{0.092}$	
4.3	2.107	2.10	3 0.090	
4.5	2.221	2.22	5 0.088	
4.5	2.274	2.27	0.086	
4.5	2.520	2.55	0.080	
4.0	2.382	2.38	0.084 0.082	
	2.430	2.430	0.002	
	2.450	2.43	<u> </u>	
4.5 5	2.544	2.34) 0.073	
	2.558	2.000	1 0.075	
	2.032	2.034	7 0.073	
	2.700	2.70		
D.3	2.700	2.70.		
5.4 E F	2.814	2.81		
5.5	2.809	2.80		
5.6	2.923	2.92:	s U.UUU	

i i	Πίνακας 6-4: Απόκλιση της διαμήκους θέσης του κέντρου πλευστότητας			
	HYDROSTATICS TRIM = 0.0 M			
	LCF from zero pt. (+ve fwd) m			
Draft m	From MAXSURF	From Stability Booklet	%diff	
1.4	42.543	, 42.595	0.122	
1.5	42.543	42.576	0.078	
1.6	42.543	42.554	0.026	
1.7	42.515	42.525	0.024	
1.8	42.492	42.489	-0.007	
1.9	42.469	42.442	-0.064	
2	42.426	42.393	-0.078	
2.1	42.348	42.330	-0.043	
2.2	42.269	42.289	0.047	
2.3	42.187	42.192	0.012	
2.4	42.100	42.110	0.024	
2.5	42.008	42.015	0.017	
2.6	41.911	41.921	0.024	
2.7	41.806	41.813	0.017	
2.8	41.696	41.695	-0.002	
2.9	41.586	41.575	-0.026	
3	41.484	41.435	-0.118	
3.1	41.375	41.299	-0.184	
3.2	41.250	41.147	-0.250	
3.3	41.097	40.977	-0.293	
3.4	40.922	40.808	-0.279	
3.5	40.730	40.625	-0.258	
3.6	40.520	40.421	-0.245	
3.7	40.298	40.209	-0.221	
3.8	40.057	39.987	-0.175	
3.9	39.789	39.759	-0.075	
4	39.512	39.530	0.046	
4.1	39.274	39.300	0.066	
4.2	39.052	39.078	0.067	
4.3	38.854	38.869	0.039	
4.4	38.680	38.679	-0.003	
4.5	38.530	38.527	-0.008	
4.6	38.397	38.404	0.018	
4.7	38.278	38.310	0.084	
4.8	38.181	38.241	0.157	
4.9	38.119	38.190	0.186	
5	38.082	38.159	0.202	
5.1	38.066	38.141	0.197	
5.2	38.061	38.133	0.189	
5.3	38.063	38.132	0.181	
5.4	38.072	38.136	0.168	
5.5	38.091	38.148	0.149	
5.6	38.113	38.160	0.123	

Πίνακας 6-5:Αποκλίσεις της ροπής για τη δημιουργία διαγωγής ενός εκατοστού				
	HYDROST	ATICS TRIM = 0.0 M		
Ducht m	MTc tonne.m			
Draft m	From MAXSURF	From Stability Booklet	%diff	
1.4	38.806	38.720	-0.222	
1.5	39.046	39.087	0.105	
1.6	39.247	39.364	0.297	
1.7	39.416	39.637	0.558	
1.8	39.637	39.922	0.714	
1.9	39.962	40.207	0.609	
2	40.273	40.501	0.563	
2.1	40.577	40.806	0.561	
2.2	40.884	41.117	0.567	
2.3	41.200	41.459	0.625	
2.4	41.530	41.821	0.696	
2.5	41.882	42.171	0.685	
2.6	42.254	42.569	0.740	
2.7	42.628	42.972	0.801	
2.8	42.986	43.392	0.936	
2.9	43.356	43.870	1.172	
3	43.829	44.334	1.139	
3.1	44.416	44.878	1.029	
3.2	45.101	45.429	0.722	
3.3	45.857	46.019	0.352	
3.4	46.680	46.733	0.113	
3.5	47.594	47.450	-0.303	
3.6	48.594	48.299	-0.611	
3.7	49.700	49.050	-1.325	
3.8	50.875	49.926	-1.901	
3.9	51.918	50.950	-1.900	
4	52.904	51.912	-1.911	
4.1	53.827	52.902	-1.749	
4.2	54.664	53.7/4	-1.655	
4.3	55.450	54.721	-1.343	
4.4	50.195	55.546	-1.105	
4.5	50.865	50.273	-1.080	
4.0	57.513	50.974	-0.940	
4.7	58.100	57.020	-0.843	
4.0 / 0	50.092	50.232	-0.790	
4.9 5	59.302	50.030 50 /21	-0.789	
 5 1	53.853 60 //60	60 022	-0 742	
5.1	61 D26	60.023 60.500	-0 726	
5.2	61 612	61 1/3	-0.730	
5.3	62 178	61 682	-0.804	
5.5	62.739	62.195	-0.875	

Πίνακας 6-6: Αποκλίσεις ύψους του μετάκεντρου			
	HYDROST	ATICS TRIM = 0.0 M	
Draft m		KMt m	
Diartin	From MAXSURF	From Stability Booklet	%diff
1.4	9.669	9.57	4 -0.992
1.5	9.129	9.04	0 -0.985
1.6	8.665	8.58	7 -0.908
1.7	8.264	8.19	0 -0.904
1.8	7.912	7.84	4 -0.867
1.9	7.603	7.54	3 -0.795
2	7.331	7.27	4 -0.784
2.1	7.095	7.04	1 -0.767
2.2	6.885	6.83	3 -0.761
2.3	6.699	6.64	8 -0.767
2.4	6.533	6.48	7 -0.709
2.5	6.385	6.34	1 -0.694
2.6	6.254	6.21	2 -0.676
2.7	6.138	6.09	8 -0.656
2.8	6.034	5.99	6 -0.634
2.9	5.941	5.90	7 -0.576
3	5.855	5.82	6 -0.498
3.1	5.778	5.75	6 -0.382
3.2	5.711	5.69	2 -0.334
3.3	5.655	5.63	8 -0.302
3.4	5.606	5.59	2 -0.250
3.5	5.565	5.55	0 -0.270
3.6	5.531	5.51	7 -0.254
3.7	5.502	5.48	8 -0.255
3.8	5.480	5.46	4 -0.293
3.9	5.463	5.44	4 -0.349
4	5.452	5.42	7 -0.461
4.1	5.437	5.41	5 -0.406
4.2	5.425	5.40	4 -0.389
4.3	5.415	5.39	6 -0.352
4.4	5.408	5.39	1 -0.315
4.5	5.404	5.38	6 -0.334
4.6	5.403	5.38	6 -0.316
4.7	5.403	5.38	7 -0.297
4.8	5.405	5.39	0 -0.278
4.9	5.409	5.39	5 -0.259
5	5.415	5.40	1 -0.259
5.1	5.421	5.40	8 -0.240
5.2	5.430	5.41	7 -0.240
5.3	5.440	5.42	7 -0.240
5.4	5.451	5.43	8 -0.239
5.5	5.464	5.45	0 -0.257
5.6	5.478	5.46	3 -0.275

Πίνακας 6-7: Αποκλίσεις ύψους του διαμήκους μετάκεντρου					
	HYDROSTATICS TRIM = 0.0 M				
Draft m	Draft m KMI m				
Diarcin	From MAXSURF	From Stability Booklet	%diff		
1.4	277.073	275.59	-0.536		
1.5	259.466	258.694	-0.298		
1.6	243.905	243.660	-0.098		
1.7	230.635	230.424	-0.092		
1.8	218.659	218.750	0.042		
1.9	207.806	208.32	0.249		
2	198.316	199.003	0.345		
2.1	190.221	190.638	3 0.219		
2.2	182.803	183.073	0.147		
2.3	176.010	176.302	L 0.165		
2.4	169.795	170.183	3 0.228		
2.5	164.112	164.509	0.241		
2.6	158.921	159.454	0.334		
2.7	154.191	154.789	0.386		
2.8	149.869	150.518	0.431		
2.9	145.845	146.733	L 0.604		
3	142.038	143.150	0.777		
3.1	138.512	139.453	0.675		
3.2	135.509	136.57	0.781		
3.3	133.008	134.094	0.810		
3.4	130.917	131.995	5 0.817		
3.5	129.123	130.402	0.981		
3.6	127.588	128.662	0.835		
3.7	126.352	127.113	0.599		
3.8	125.371	125.769	0.316		
3.9	124.678	124.598	-0.064		
4	124.159	123.563	-0.484		
4.1	123.341	122.624	-0.585		
4.2	122.422	121.683	L -0.609		
4.3	121.396	120.715	-0.564		
4.4	120.226	119.533	-0.581		
4.5	119.004	118.188	-0.690		
4.6	117.723	116.843	-0.753		
4.7	116.390	115.449	-0.815		
4.8	115.010	114.048	-0.844		
4.9	113.606	112.690	-0.813		
5	112.243	111.364	-0.789		
5.1	110.974	110.088	-0.805		
5.2	109.719	108.81	-0.829		
5.3	108.484	107.569	-0.851		
5.4	107.229	106.346	-0.830		
5.5	106.132	105.12	-0.956		
5.6	104.975	103.948	-0.988		

Πίνακας 6-8: Αποκλίσεις τιμών των Cross Curves στις 0°			
		KN 0 deg (m)	
	5	From Stability	
Draft (m)	From MAXSURF	Booklet	Dif (cm)
1.4	0	0	0
1.5	0	0	0
1.7	0	0	0
1.8	0	0	0
1.9	0	0	0
2	0	0	0
2.1	0	0	0
2.2	0	0	0
2.3	0	0	0
2.4	0	0	0
2.6	0	0	0
2.7	0	0	0
2.8	0	0	0
2.9	0	0	0
3	0	0	0
3.1	0	0	0
3.2	0	0	0
3.3	0	0	0
3.4	0	0	0
3.5	0	0	0
3.7	0	0	0
3.8	0	0	0
3.9	0	0	0
4	0	0	0
4.1	0	0	0
4.2	0	0	0
4.3	0	0	0
4.4	0	0	0
4.5	0	0	0
4.7	0	0	0
4.8	0	0	0
4.9	0	0	0
5	0	0	0
5.1	0	0	0
5.2	0	0	0
5.3	0	0	0
5.4	0	0	0
5.5	0	0	0
5.6	0	0	0

Πίνακας 6-9: Αποκλίσεις τιμών των Cross Curves στις 5°				
	KN 5 deg (m)			
Draft (m)	From MAXSURF	From Stability Booklet	Dif (cm)	
1.4	0.845	0.843	0.2	
1.5	0.798	0.796	0.2	
1.6	0.758	0.756	0.2	
1.7	0.722	0.721	0.1	
1.8	0.692	0.69	0.2	
1.9	0.665	0.664	0.1	
2	0.641	0.64	0.1	
2.1	0.62	0.619	0.1	
2.2	0.602	0.601	0.1	
2.3	0.586	0.585	0.1	
2.4	0.571	0.57	0.1	
2.5	0.558	0.557	0.1	
2.6	0.547	0.546	0.1	
2.7	0.536	0.536	0	
2.8	0.527	0.527	0	
2.9	0.519	0.519	0	
3	0.512	0.512	0	
3.1	0.505	0.505	0	
3.2	0.499	0.5	-0.1	
3.3	0.494	0.495	-0.1	
3.4	0.49	0.491	-0.1	
3.5	0.487	0.487	0	
3.6	0.483	0.484	-0.1	
3.7	0.481	0.481	0	
3.8	0.479	0.479	0	
3.9	0.477	0.477	0	
4	0.476	0.476	0	
4.1	0.474	0.475	-0.1	
4.2	0.473	0.473	0	
4.3	0.473	0.4/2	0.1	
4.4	0.472	0.472	0	
4.5	0.472	0.471	0.1	
4.6	0.472	0.471	0.1	
4./	0.472	0.471	0.1	
4.8	0.4/2	0.471	0.1	
4.9 E	0.472 0.772	0.472	01	
ت 5 (0.4/3	0.472	0.1	
J.I 5 7	0.475	0.475	01	
5.2	0.474 0.475	0.475	0.1	
J.3	0.475	0.474	0.1	
ן.4 ק	0.470 0.477	0.475	0.1	
5.6	0.478	0.477	0.1	

Πίνακας 6-10: Αποκλίσεις τιμών των Cross Curves στις 12°						
		KN 12 deg (m)				
Draft (m)	From MAXSURF	From Stability Booklet	Dif (cm)			
1.4	2.017	2.011	0.6			
1.5	1.915	1.909	0.6			
1.6	1.825	1.819	0.6			
1.7	1.745	1.74	0.5			
1.8	1.674	1.669	0.5			
1.9	1.611	1.606	0.5			
2	1.554	1.549	0.5			
2.1	1.504	1.5	0.4			
2.2	1.459	1.455	0.4			
2.3	1.419	1.416	0.3			
2.4	1.384	1.38	0.4			
2.5	1.352	1.349	0.3			
2.6	1.324	1.321	0.3			
2.7	1.299	1.296	0.3			
2.8	1.276	1.274	0.2			
2.9	1.256	1.254	0.2			
3	1.238	1.236	0.2			
3.1	1.223	1.221	0.2			
3.2	1.209	1.207	0.2			
3.3	1.197	1.195	0.2			
3.4	1.186	1.184	0.2			
3.5	1.176	1.175	0.1			
3.6	1.168	1.167	0.1			
3.7	1.161	1.16	0.1			
3.8	1.155	1.154	0.1			
3.9	1.15	1.149	0.1			
4	1.146	1.145	0.1			
4.1	1.142	1.141	0.1			
4.2	1.14	1.139	0.1			
4.3	1.138	1.137	0.1			
4.4	1.136	1.135	0.1			
4.5	1.136	1.134	0.2			
4.6	1.135	1.134	0.1			
4.7	1.135	1.134	0.1			
4.8	1.136	1.134	0.2			
4.9	1.136	1.135	0.1			
5	1.138	1.136	0.2			
5.1	1.139	1.137	0.2			
5.2	1.141	1.139	0.2			
5.3	1.143	1.14	0.3			
5.4	1.145	1.143	0.2			
5.5	1.148	1.145	0.3			
5.6	1.15	1.148	0.2			

Πίνακας 6-11: Αποκλίσεις τιμών των Cross Curves στις 20°							
		KN 20 deg (m)					
Draft (m)	From MAXSURF	From Stability Booklet	Dif (cm)				
1.4	3.047	3.039	0.8				
1.5	2.96	2.951	0.9				
1.6	2.877	2.868	0.9				
1.7	2.798	2.789	0.9				
1.8	2.723	2.714	0.9				
1.9	2.651	2.643	0.8				
2	2.582	2.574	0.8				
2.1	2.516	2.509	0.7				
2.2	2.454	2.447	0.7				
2.3	2.396	2.39	0.6				
2.4	2.342	2.336	0.6				
2.5	2.293	2.288	0.5				
2.6	2.248	2.243	0.5				
2.7	2.206	2.202	0.4				
2.0	2.109	2.104	0.3				
2.5	2.134	2.13	0.4				
31	2.105	2.1	0.5				
3.2	2.051	2.047	0.4				
3.3	2.028	2.025	0.3				
3.4	2.009	2.006	0.3				
3.5	1.991	1.988	0.3				
3.6	1.976	1.973	0.3				
3.7	1.962	1.96	0.2				
3.8	1.951	1.948	0.3				
3.9	1.941	1.938	0.3				
4	1.933	1.93	0.3				
4.1	1.926	1.923	0.3				
4.2	1.92	1.917	0.3				
4.3	1.915	1.912	0.3				
4.4	1.912	1.909	0.3				
4.5	1.909	1.906	0.3				
4.6	1.908	1.905	0.3				
4.7	1.907	1.903	0.4				
4.8	1.907	1.902	0.5				
4.9 5	1.900	1.902	0.4				
	1.904	1.055	0.3				
5.2	1.895	1 889	0.4				
5.2	1.882	1 881	0.1				
5.4	1.873	1.872	0.1				
5.5	1.863	1.862	0.1				
5.6	1.854	1.853	0.1				

	Πίνακας 6-12: Αποκλίσεις	τιμών των Cross Curves στις 30°	
		KN 30 deg (m)	
Draft (m)	From MAXSURF	From Stability Booklet	Dif (cm)
1.4	3.804	3,795	0.9
15	3 75	3.74	1
1.5	3 699	3 689	1
1.0	3 65	3.605	36
1.7	3.604	3.514	0.9
1.0	3 561	3.553	-0.3
1.5	3,501	3.504	-0.1
2	3.48	3.79	0.1
2.1	3.40	3.475	0.1
2.2	3.442	3.44	0.2
2.3	2 271	2 269	0.3
2.4	3.3/1	2.300	0.3
2.5	3.336	2.353	0.5
2.0	3.307	2.302	0.5
2.7	3.277	3.272	0.5
2.8	3.247	3.242	0.5
2.9	3.219	3.214	0.5
3	3.193	3.18/	0.6
3.1	3.167	3.161	0.6
3.2	3.142	3.136	0.6
3.3	3.118	3.112	0.6
3.4	3.095	3.088	0.7
3.5	3.073	3.065	0.8
3.6	3.051	3.043	0.8
3.7	3.029	3.021	0.8
3.8	3.006	2.998	0.8
3.9	2.982	2.975	0.7
4	2.958	2.951	0.7
4.1	2.933	2.927	0.6
4.2	2.907	2.903	0.4
4.3	2.882	2.879	0.3
4.4	2.857	2.855	0.2
4.5	2.835	2.832	0.3
4.6	2.813	2.811	0.2
4.7	2.793	2.792	0.1
4.8	2.775	2.773	0.2
4.9	2.757	2.756	0.1
5	2.741	2.741	0
5.1	2.726	2.726	0
5.2	2.712	2.712	0
5.3	2.698	2.7	-0.2
5.4	2.686	2.688	-0.2
5.5	2.675	2.677	-0.2
5.6	2.664	2.667	-0.3

	Πίνακας 6-13: Αποκλίσεις	τιμών των Cross Curves στις 40°	
	[
		KN 40 deg (m)	-
Draft (m)	From MAXSURF	From Stability Booklet	Dif (cm)
1.4	4.278	4.271	0.7
1.5	4.256	4.249	0.7
1.6	4.236	4.229	0.7
1.7	4.216	4.21	0.6
1.8	4.199	4.192	0.7
1.9	4.182	4.175	0.7
2	4.167	4.16	0.7
2.1	4.154	4.146	0.8
2.2	4.141	4.133	0.8
2.3	4.129	4.132	-0.3
2.4	4.117	4.116	0.1
2.5	4 105	4 101	0.1
2.5	4.103	4.101	0.4
2.0	4.030	4.065	0.5
2.7	4.073	4.000	0.5
2.0	4.034	4.031	0.3
2.9	4.033	4.031	0.2
3	4.009	4.009	0
3.1	3.985	3.986	-0.1
3.2	3.959	3.96	-0.1
3.3	3.934	3.934	0
3.4	3.908	3.909	-0.1
3.5	3.884	3.884	0
3.6	3.861	3.86	0.1
3.7	3.838	3.837	0.1
3.8	3.816	3.815	0.1
3.9	3.794	3.794	0
4	3.773	3.773	0
4.1	3.752	3.753	-0.1
4.2	3.732	3.734	-0.2
4.3	3.712	3.715	-0.3
4.4	3.693	3.696	-0.3
4.5	3.674	3.677	-0.3
4.6	3.655	3.659	-0.4
4.7	3.637	3.64	-0.3
4.8	3.619	3,623	-0.4
4.9	3.602	3 606	-0.4
5	3 586	3.000	
<u> </u>	3.560	3.567	0.1
	2 5 5 0 9	2 550	
	2 524	3.330	-0.0
5.5 E 4	5.534 2.51		-1.1
5.4	3.515	3.533	-1.8
5.5	3.496	3.521	-2.5
5.6	3.476	3.509	-3.3

	Πίνακας 6-14: Αποκλίσεις τιμώ	ν των Cross Curves στις 50°	
		50 deg KN0 (m)	
Draft (m)	Maxsurf	Booklet	Dif (cm)
1.4	4.577	4.574	0.3
1.5	4.593	4.589	0.4
1.6	4.609	4.604	0.5
1.7	4.62	4.614	0.6
1.8	4.625	4.619	0.6
1.9	4.624	4.619	0.5
2	4.619	4.613	0.6
2.1	4.610	4.604	0.6
2.2	4.597	4.592	0.5
2.3	4.581	4.577	0.4
2.4	4.564	4.56	0.4
2.5	4.547	4.544	0.3
2.6	4.53	4.528	0.2
2.7	4.515	4.514	0.1
2.8	4.502	4.501	0.1
2.9	4.490	4.489	0.1
3	4.479	4.478	0.1
3.1	4.470	4.468	0.2
3.2	4.461	4.459	0.2
	4.454	4.451	0.5
2.5	4.447	4.444	0.5
3.5	4.440	4.437	0.3
3.0	4.434	4.431	-0.7
3.7	4.423	4.430	-0.7
3.0	4.423	4.416	0:2
	4 409	4.410	0.1
4 1	4 401	4.402	-0.1
4.1	4 39	4.397	-0.7
4.3	4.379	4.392	-1.3
4.4	4.365	4.386	-2.1
4.5	4.351	4.378	-2.7
4.6	4.335	4.369	-3.4
4.7	4.318	4.359	-4.1
4.8	4.300	4.347	-4.7
4.9	*4.281	4.334	*-5.3
5	*4.261	4.32	*-5.9
5.1	*4.240	4.305	*-6.5
5.2	*4.218	4.289	*-7.1
5.3	*4.195	4.272	*-7.7
5.4	*4.171	4.253	*-8.2
5.5	*4.147	4.234	*-8.7
5.6	*4.122	4.22	*-9.8

Σχολιασμός αποτελεσμάτων:

- Αν και θα ήταν δυνατή η παρουσίαση των δεδομένων του προγράμματος στην αρχική τους μορφή, όπως δηλαδή εξάγονται στο ("Current Results Window"), επιλέχθηκε, η δομή των παραπάνω πινάκων είναι τέτοια ώστε να επιτρέπει την απευθείας σύγκριση των τιμών μεταξύ του προγράμματος και του εγχειριδίου διαγωγής και ευστάθειας.
- Στους πίνακες που παρουσιάζουν τα υδροστατικά στοιχεία, οι αποκλίσεις μεταξύ των στοιχείων που προέρχονται από το μοντέλο και των στοιχείων του εγχειριδίου διαγωγής και ευστάθειας, βρίσκονται εντός των επιτρεπόμενων ορίων.
- Στους πίνακες που παρουσιάζουν τις τιμές των παραμετρικών καμπυλών ευστάθειας, από τον πίνακα των 0° μέχρι και τον πίνακα των 40°, οι αποκλίσεις μεταξύ των στοιχείων που προέρχονται από το μοντέλο και των στοιχείων του εγχειριδίου διαγωγής και ευστάθειας, βρίσκονται εντός των επιτρεπόμενων ορίων.
- Στον πίνακα των 50°, για τα βυθίσματα 4.9 έως 4.6 μέτρα (οι τιμές αυτές έχουν σημειωθεί με το σύμβολο * στον πίνακα), οι αποκλίσεις μεταξύ των στοιχείων που προέρχονται από το μοντέλο και των στοιχείων του εγχειριδίου διαγωγής και ευστάθειας, βρίσκονται εκτός των επιτρεπόμενων ορίων. Παρόλα αυτά, οι τιμές των παραμετρικών καμπυλών ευστάθειας του προγράμματος είναι μικρότερες από τις τιμές του εγχειριδίου ευστάθειας, έτσι οι υπολογισμοί ευστάθειας βρίσκονται στην ασφαλή πλευρά.

6.4. Σχεδίαση Δεξαμενών και Διαμερισμάτων στο πρόγραμμα υπολογισμών Ευστάθειας MaxSurf Stability

Με το πέρας του ελέγχου των υδροστατικών στοιχείων, πραγματοποιείται η σχεδίαση των δεξαμενών του πλοίου. Η σχεδίαση των δεξαμενών και των διαμερισμάτων γίνεται σύμφωνα με το σχέδιο χωρητικοτήτων του πλοίου καθώς επίσης και με το εγχειρίδιο διαγωγής και ευστάθειας.

Η διαδικασία της σχεδίασης των διαμερισμάτων και των δεξαμενών παρουσιάζεται συνοπτικά παρακάτω.

Με τη χρήση της επιλογής ("Room Definiton Window"), το πρόγραμμα ενεργοποιεί έναν πίνακα. Στον πίνακα αυτό, ο χρήστης εισάγει τα στοιχεία που αφορούν τις δεξαμενή και τα διαμερίσματα που θα σχεδιαστούν.

Τα στοιχεία αυτά είναι: Το όνομα, το είδος (δεξαμενή ή διαμέρισμα), η διαχωρητότητα (δηλ. ο ελεύθερος όγκος που δύναται να καταληφθεί από υγρό, λόγω της ύπαρξης ενισχυτικών ή πρόσθεσης άθικτου όγκου κ.ο.κ.), το είδος του ρευστού εντός της δεξαμενής και τέλος τα όρια της δεξαμενής κατά το διάμηκες, το εγκάρσιο και το οριζόντιο επίπεδο.

Για την κατασκευή δεξαμενών που έχουν σχετικά πιο πολύπλοκη γεωμετρία, δημιουργούνται επιφάνειες, οι οποίες σε συνδυασμό με τη γάστρα οριοθετούν τον όγκο που σχηματίζει τις εκάστοτε δεξαμενές. Οι επιφάνειες αυτές δημιουργούνται στο πρόγραμμα Rhinoceros 3D και στη συνέχεια εισάγονται στο MAXSURF Modeler.

Εικόνα 6-40: Κατασκευή επιφανειών που οριοθετούν τις δεξαμενές.

Στο MAXSURF Modeler, οι επιφάνειες αυτές δηλώνονται ως κατασκευαστικά στοιχεία με τη χρήση της επιλογής "Use//Structure".

Εικόνα 6-41: δήλωση επιφανειών ως κατασκευαστικά στοιχεία.

Στη συνέχεια, στο MAXSURF Stability, με τη χρήση της επιλογής

Εικόνα 6-42: Κατασκευή δεξαμενών σύνθετης γεωμετρίας με τη χρήση επιφανειών.

Εικόνα 6-43: Τελική μορφή δεξαμενών.

6.5. Υπολογισμοί Ευστάθειας (Κριτήριο Καιρού)

6.5.1. Γενικά

Στο σημείο αυτό, με ολοκληρωμένο πλέον το μοντέλο του πλοίου, πραγματοποιούνται οι καταστάσεις φόρτωσης και στη συνέχεια εκτελούνται οι υπολογισμοί ευστάθειας. Τα αποτελέσματα της ευστάθειας για τις εκάστοτε καταστάσεις φόρτωσης εξετάζονται σύμφωνα με τα κριτήρια ευστάθειας που παρουσιάστηκαν στο θεωρητικό σκέλος της εργασίας και περιλαμβάνονται στις οδηγίες:

- RESOLUTION A.749(18) adopted on 4 November 1993 CODE ON INTACT STABILITY FOR ALL TYPES OF SHIPS COVERED BY IMO INSTRUMENTS (όταν χτίστηκε το πλοίο, ήταν αυτός ο συγκεκριμένος κώδικας εν ισχύει και όχι ο επικαιροποιημένος MSC 267(85)).
- RESOLUTION MSC.23(59) (adopted on 23 May 1991) ADOPTION OF THE INTERNATIONAL CODE FOR THE SAFE CARRIAGE OF GRAIN IN BULK.

Στην παράγραφο 3.5. της οδηγίας Α.749(18), προβλέπονται ορισμένες τυπικές καταστάσεις φόρτωσης για φορτηγά και επιβατηγά πλοία. Στα φορτηγά πλοία, οι τυπικές καταστάσεις που εξετάζονται είναι οι εξής:

- I. Πλοίο κατά την αναχώρηση, πλήρως φορτωμένο με ομοιογενώς κατανεμημένο φορτίο στους χώρους φορτίου και με πλήρεις δεξαμενές, καύσιμα και εφόδια.
- II. Πλοίο κατά την άφιξη, πλήρως φορτωμένο με ομοιογενώς κατανεμημένο φορτίο στους χώρους φορτίου και με δεξαμενές και εφόδια στο 10% της πληρότητας.
- III. Κατάσταση ερματισμού κατά την αναχώρηση, χωρίς φορτίο, με πλήρεις δεξαμενές και καύσιμα.
- IV. Κατάσταση ερματισμού κατά την άφιξη, χωρίς φορτίο, και με δεξαμενές και καύσιμα στο 10% της πληρότητας.

Από τις παραπάνω καταστάσεις φόρτωσης, μόνο οι πρώτες δύο καταστάσεις εξυπηρετούν τους σκοπούς της εργασίας αυτής, για το λόγο αυτό οι καταστάσεις ερματισμού δεν θα εξεταστούν. Στη θέση αυτών, θα εξετάσουμε την περιπτώσεις φόρτωσης κατά την αναχώρηση και κατά την άφιξη για φόρτωση του πλοίου με συνήθη φορτία, τα οποία έχουν συντελεστή στοιβασίας 45 $\frac{ft^3}{L.T.}$ (πυκνότητας 0.797 $\frac{M.T.}{m^3}$).

	Πίνακας 6-15: Πίνακας προεπισκόπησης βασικών κριτηρίων ευστάθειας.							
	Basic Data				Basic Cr	iteria		
Load Condition	Displacement (Tn)	GMt Corrected (m)	Area from 0 to 30 > 0.055 m⋅Rad	Area to from 0 to 40 or θf > 0.09 m⋅rad	Area from 30 to 40 or 30 to θf > 0.03 m⋅rad	GZ >= 0.2 m at 30	GZ max at Agle >=25 deg	Initial GMt > 0.15 m
1. Full Load Homogenous Departure	4898	0.643	Pass	Pass	Pass	Pass	Pass	Pass
2. Full Load Homogenous Arrival	4729	0.475	Pass	Pass	Pass	Pass	Pass	Pass
3.SF 45 Deparure	4898	0.84	Pass	Pass	Pass	Pass	Pass	Pass
4. SF 45 Arrival	4730	0.679	Pass	Pass	Pass	Pass	Pass	Pass
3'. SF 45 Departure with Movable Grain Bulkhead on fr. 102	4882	0.674	Pass	Pass	Pass	Pass	Pass	Pass
4'. SF 45 Arrival with Movable Grain Bulkhead on fr. 102	4714	0.502	Pass	Pass	Pass	Pass	Pass	Pass

Πίνακας 6-16: Πίνακας προεπισκόπησης κριτήριων ευστάθειας Α.749 και MSC.23(59)								
	Basic Data		Wea	ther Criteria A.74	9(18)	Grain Stability Criteria MSC. 23(59)		
Load Condition	Displacement (Tn)	GMt Corrected (m)	Area B > Area A	Angle of steady heel shall not be greater than 16 deg.	Angle of steady heel / Deck edge immersion angle shall not be greater than 80%	Initial GMt > 0.30 m	Angle of equilibrium < 12 deg	Area between Limits of Righting Arm, Grain Heeling Arm and 40 deg > 0.075 m·rad
1. Full Load Homogenous Departure	4898	0.643	Pass	Pass	Pass	Pass	Pass	Pass
2. Full Load Homogenous Arrival	4729	0.475	Pass	Pass	Pass	Pass	Pass	Pass
3.SF 45 Deparure	4898	0.84	Pass	Pass	Pass	Pass	Fail	Fail
4. SF 45 Arrival	4730	0.679	Pass	Pass	Pass	Pass	Fail	Fail
3'. SF 45 Departure with Movable Grain Bulkhead on fr. 102	4882	0.674	Pass	Pass	Pass	Pass	Pass	Pass
4'. SF 45 Arrival with Movable Grain Bulkhead on fr. 102	4714	0.502	Pass	Pass	Pass	Pass	Pass	Pass

6.5.2. Δημιουργία καταστάσεων φόρτωσης στο Maxsurf και υπολογισμοί Ευστάθειας

Ενεργοποιώντας το ("Load Case Window"), ο χρήστης έχει τη δυνατότητα να ορίσει το επίπεδο πληρότητας των δεξαμενών και να ορίσει πρόσθετα βάρη, όπως για παράδειγμα το βάρος του άφορου πλοίου, το συνολικό βάρος του πληρώματος, το βάρος των εφοδίων κ.ο.κ..

	Item Name	Quantity	Unit Mass tonne	Total Mass tonne	Unit Volum e m^3	Total Volum e m^3	Long. Arm m	Trans. Arm m	Vert. Arm m	Total FSM tonne. m	FSM T
1	Fore Peak (W.B.Tk)	0%	88.634	0.000	86.473	0.000	76.823	0.000	0.000	0.000	Max
2	DB2C (W.B.Tk)	0%	52.131	0.000	50.860	0.000	71.876	0.000	0.000	0.000	Max
3	DB3 Ps (W.B.Tk)	0%	131.22	0.000	128.02	0.000	54.302	-1.850	0.000	0.000	Max
4	DB3 Sb (W.B.Tk)	0%	131.22	0.000	128.02	0.000	54.302	1.850	0.000	0.000	Max
5	Side Ballast No3 Ps (W.	0%	103.37	0.000	100.85	0.000	54.302	-3.833	1.230	0.000	Max
6	Side Ballast No3 Sb (W.	0%	103.37	0.000	100.85	0.000	54.302	3.833	1.230	0.000	Max
7	DB9C (D.O. Storage Tk)	98%	65.043	63.742	77.432	75.883	20.943	0.000	0.603	0.000	Max
8	DB8C (D.O. Storage Tk)	98%	64.472	63.182	76.752	75.217	36.634	0.000	0.603	0.000	Max
9	DB4Ps (W.B. Tk)	0%	159.97	0.000	156.06	0.000	29.040	-2.520	0.000	0.000	Max
10	DB 4Sb (W.B. Tk)	0%	159.97	0.000	156.06	0.000	29.040	2.520	0.000	0.000	Max
11	Side Ballast No4 Ps (W.	0%	183.03	0.000	178.56	0.000	29.034	-3.833	1.230	0.000	Max
12	Side Ballast No4 Sb (W.	0%	183.03	0.000	178.56	0.000	29.034	3.833	1.230	0.000	Max
13	Side Ballast No 5 Ps (W	0%	103.80	0.000	101.27	0.000	0.000	0.000	1.230	0.000	Max
14	Side Ballast No 5 Sb (W	0%	103.80	0.000	101.27	0.000	0.000	0.000	1.230	0.000	Max
15	DB 5 Ps (W.B. Tk)	100%	73.911	73.911	72.108	72.108	21.751	-3.918	0.639	0.000	Max
16	DB 5 Sb (W.B. Tk)	100%	73.911	73.911	72.108	72.108	21.751	3.918	0.639	0.000	Max
17	Tk No 7 Ps (F.W. Tk)	100%	14.807	14.807	14.807	14.807	2.577	-1.518	3.999	0.000	Max
18	Tk No 7 Sb (F.W. Tk)	100%	14.807	14.807	14.807	14.807	2.577	1.518	3.999	0.000	Max
19	Tk No 16 Sb (Dirty Oil T	10%	8.741	0.874	9.501	0.950	11.681	1.877	0.083	5.493	Max
20	Tk No 17 c (Sump Tk)	98%	3.178	3.115	3.455	3.386	11.157	0.000	0.603	0.000	Max
21	Tk No 15c (Sludge Tk)	10%	4.886	0.489	5.311	0.531	11.838	-0.896	0.062	2.516	Max
22	Tk No 13 Ps (Dirty Wate	10%	6.135	0.613	6.135	0.613	11.765	-2.333	0.099	2.024	Max
23	tK No 6 A Ps (Boiler Tk)	98%	6.355	6.227	7.565	7.414	6.130	-3.580	4.015	0.000	Max
24	Tk No 6 Ps (Aux. Eng. T	98%	5.171	5.067	6.156	6.033	8.672	-4.578	3.947	0.000	Max
25	tK No 6 A Sb (Boiler Tk)	98%	6.355	6.227	7.565	7.414	6.130	3.580	4.015	0.000	Max
26	Tk No 6 Sb (Aux. Eng. T	98%	5.171	5.067	6.156	6.033	8.672	4.578	3.947	0.000	Max
27	Tk No 14 P (L.O. Tk)	98%	7.049	6.908	7.662	7.509	14.218	-5.363	3.279	0.000	Max
28	Tk No 10 Sb (D.O. Daily	98%	6.671	6.537	7.941	7.782	13.361	4.578	3.019	0.000	Max
29	Tk No 11 Sb (D.O. Settli	98%	6.270	6.145	7.465	7.315	13.803	5.592	3.523	0.000	Max
30	Tk No 12 (D.O. Daily)	98%	0.331	0.324	0.394	0.386	0.674	-0.375	4.845	0.000	Max
31	Cargo Hold (Cargo)	100%	3425.5	3425.5	4686.1	4686.1	43.524	0.000	5.293	0.000	Use
32	LightShip	1	1125.0	1125.0			37.140	0.000	4.680	0.000	Use
33	Crew & Effects	1	1.000	1.000	·····		6.400	0.000	7.200	0.000	Use
34	Provisions	1	3.000	3.000			6.400	0.000	7.200	0.000	Use
35	Total Loadcase			4906.5	6556.3	5066.4	40.423	0.005	4.865	10.033	•
36	FS correction		•		·····				0.002		•
37	VCG fluid				<u> </u>		1		4.867		•

Εικόνα 6-44: Πραγματοποίηση καταστάσεως φόρτωσης.

Στη συνέχεια ενεργοποιώντας τις επιλογές ("Analysis//set Analysis Type// Equilibrium") και ("Analysis//Start Equilibrium Analysis"), εκτελούνται οι υδροστατικοί υπολογισμοί για την τρέχουσα κατάσταση φόρτωσης. Ο υπολογισμός αυτός γίνεται αφενός να ελεγχθεί ότι το μέσο βύθισμα του πλοίου στην κατάσταση φόρτωσης δεν ξεπερνά το μέγιστο επιτρεπόμενο και αφετέρου για βρεθούν τα βυθίσματα στις καθέτους.

Με γνωστά τα βυθίσματα στις καθέτους, σχεδιάζεται η ίσαλος πλεύσης και υπολογίζονται:

- Η συνολική επιφάνεια των εξάλων και υπερκατασκευών, προβεβλημένη στο διάμηκες επίπεδο συμμετρίας.
- Το κέντρο της συνολικής επιφάνειας εξάλων και υπερκατασκευών.
- Το κέντρο της συνολικής επιφάνειας των υφάλων.

	Equilibrium 🔽 Homogenous D 🗠 Intact	 V O O
File	Edit View Case Analysis Results D	Display Data Window Help Bentley Cloud Services
Homo	ogenous Departure - Intact	
1	Draft Amidships m	5.500
2	Displacement t	4907
3	Heel deg	0.0
4	Draft at FP m	5.334
5	Draft at AP m	5.666
6	Draft at LCF m	5.509
7	Trim (+ve by stern) m	0.332
8	WL Length m	83.359
9	Beam max extents on WL m	12.869
10	Wetted Area m ²	1720.473
11	Waterpl. Area m ²	981.903
12	Prismatic coeff. (Cp)	0.809
13	Block coeff. (Cb)	0.790
14	Max Sect. area coeff. (Cm)	0.994
15	Waterpl. area coeff. (Cwp)	0.915
16	LCB from zero pt. (+ve fwd) m	40.417
17	LCF from zero pt. (+ve fwd) m	37.912
18	KBm	2.874
19	KG fluid m	4.867
20	BMtm	2 593

Εικόνα 6-45: Υδροστατικά στοιχεία καταστάσεως φόρτωσης.

Εικόνα 6-46: Σχεδίαση ισάλου πλεύσης στην έμφορτη κατάσταση.

Έπειτα, ενεργοποιώντας τις επιλογές ("Analysis//Set Analysis Type//Large Angle Stability") και ("Analysis//Start Stability Analysis"), πραγματοποιούνται οι υπολογισμοί ευστάθειας. Τέλος, με τη χρήση της επιλογής ("Analysis//Criteria"), επιλέγονται και συμπληρώνονται κατάλληλα οι παράμετροι για το τρέχον κριτήριο ευστάθειας. Οι παράμετροι αυτοί αφορούν τα εμβαδά που μνημονεύονται παραπάνω, καθώς επίσης, το εύρος των γωνιών υπό τις οποίες θα εξεταστεί το κριτήριο καιρού κ.ο.κ..

Criteria List	Cri	erio	n Details:		
E Criteria			No criterion selected	Value	Units
Parent calculations	1		Wind arm = a P A (h - H) / (g disp.) cos^n(phi)		
🕀 📴 Parent heeling arms	2		constant: a =	0.99966	
🕀 📄 Parent criteria	3		wind model	Pressure	
🖶 🔤 🖻 Australian NSCV - Part C, Section 6 - Stability	4		wind pressure: P =	504.0	Pa
🕀 🕞 🖶 BS 6349-6:1989	5		area centroid height (from zero point): h =	7.888	m
🕀 🗁 🗁 Canadian Coast Guard - Transport Canada	6		total area: A =	392.271	m^2
DNV Rules for High Speed, Light Craft and Naval Surl	7		additional area: A =	0.000	m^2
	8		height of lateral resistance: H =	2.682	m
EU-Classification of Inland Waterway Ships-2006/87/E	9		H = mean draft / 2		m
E Floodable Length	10		H = vert. centre of projected lat. u'water area		m
	11		H = waterline		m
	12		cosine power: n =	0	
	13		gust ratio	1.5	
A. 749(18) Ch3 - Design criteria applicable to all s	14		Area2 integrated to the lesser of		
	15		roll back angle from equilibrium (with steady heel arm)	25.0	deg
	16		Select calculation from list		
3 1 2 2: May G7 at 30 or greater	17		roll back to equilibrium (ignoring heel arm)		deg
3.1.2.2. Max G2 at 50 of greater	18		roll back to specified heel angle	0.0	deg
- X A 3 1 2 4: Initial GMt	19		Area 1 upper integration range, to the lesser of:		
and a 125 Passenger crowding: angle of equilibri	20		spec. heel angle	50.0	deg
⇒ 3 1 2 6: Turn: angle of equilibrium	21		angle of first GZ peak		deg

Εικόνα 6-47: Κριτήριο καιρού στο MAXSURF Stability.

6.5.3. Εξέταση Καταστάσεων φόρτωσης στο κριτήριο καιρού

Κατάσταση 1: Πλοίο κατά την αναχώρηση, πλήρως φορτωμένο με ομοιογενώς κατανεμημένο φορτίο (πυκνότητας 0.718 Tn/m³) στους χώρους φορτίου και με πλήρεις δεξαμενές, καύσιμα και εφόδια.

Пі	Πίνακας 6-17: Κατάσταση 1 (Full Load Homogenous Departure)							
Tank	Quantity (%)	total mass (Tn)	total volume (m ³)	LCG (m)	TCG (m)	VCG (m)	FSM (Tn·m)	
Fore Peak (W.B.Tk)	0%	0	0	77.684	0	0	0	
DB2C (W.B.Tk)	100%	52.131	50.86	73.959	0	1.078	0	
DB3 Ps (W.B.Tk)	0%	0	0	62.436	-2.593	0	0	
DB3 Sb (W.B.Tk)	0%	0	0	62.436	2.593	0	0	
Side Ballast No3 Ps (W.B. Tk)	0%	0	0	60.781	-5.721	1.23	0	
Side Ballast No3 Sb (W.B. Tk)	0%	0	0	60.781	5.721	1.23	0	
DB9C (D.O. Storage Tk)	98%	63.742	75.883	21.011	0	0.603	0	
DB8C (D.O. Storage Tk)	98%	63.182	75.217	36.7	0	0.603	0	
DB4Ps (W.B. Tk)	0%	0	0	42.977	-3.282	0	0	
DB 4Sb (W.B. Tk)	0%	0	0	42.977	3.282	0	0	
Side Ballast No4 Ps (W.B. Tk)	0%	0	0	40.6	-5.75	1.23	0	
Side Ballast No4 Sb (W.B. Tk)	0%	0	0	40.6	5.75	1.23	0	
Side Ballast No 5 Ps (W.B. Tk)	0%	0	0	0	0	1.23	0	
Side Ballast No 5 Sb (W.B. Tk)	0%	0	0	0	0	1.23	0	
DB 5 Ps (W.B. Tk)	100%	73.911	72.108	21.751	-3.918	0.639	0	
DB 5 Sb (W.B. Tk)	100%	73.911	72.108	21.751	3.918	0.639	0	
Tk No 7 Ps (F.W. Tk)	100%	14.807	14.807	2.577	-1.518	3.999	0	
Tk No 7 Sb (F.W. Tk)	100%	14.807	14.807	2.577	1.518	3.999	0	
Tk No 16 Sb (Dirty Oil Tk)	10%	0.874	0.95	11.706	1.885	0.083	5.493	
Tk No 17 c (Sump Tk)	98%	3.115	3.386	11.158	0	0.603	0	
Tk No 15c (Sludge Tk)	10%	0.489	0.531	11.862	-0.894	0.062	2.516	
Tk No 13 Ps (Dirty Water Tk)	10%	0.613	0.613	11.788	-2.34	0.099	2.024	
tK No 6 A Ps (Boiler Tk)	98%	6.227	7.414	6.132	-3.581	4.015	0	
Tk No 6 Ps (Aux. Eng. Tk)	98%	5.067	6.033	8.674	-4.578	3.947	0	
tK No 6 A Sb (Boiler Tk)	98%	6.227	7.414	6.132	3.581	4.015	0	
Tk No 6 Sb (Aux. Eng. Tk)	98%	5.067	6.033	8.674	4.578	3.947	0	
Tk No 14 P (L.O. Tk)	98%	6.908	7.509	14.219	-5.363	3.279	0	
Tk No 10 Sb (D.O. Daily)	98%	6.537	7.782	13.362	4.578	3.019	0	
Tk No 11 Sb (D.O. Settling)	98%	6.145	7.315	13.805	5.592	3.523	0	
Tk No 12 (D.O. Daily)	98%	0.324	0.386	0.675	-0.375	4.845	0	
Cargo Hold (Cargo)	100%	3364.67	4686.17	43.524	0	5.293	0	
LightShip	1	1125		37.14	0	4.68	0	
Crew & Effects	1	1		6.4	0	7.2	0	
Provisions	1	3		6.4	0	7.2	0	
Total Loadcase		4897.755	5117.324	40.743	0.005	4.82	10.033	
FS correction						0.002		
VCG fluid						4.822		

Πίνακας 6-18: Στοιχεία για την	πλεύση στην κατάσταση 1
Draft Amidships (m)	5.498
Displacement (Tn)	4898
Heel (deg)	0
Draft at FP (m)	5.456
Draft at AP (m)	5.54
Draft at LCF (m)	5.5
Trim (+ve by stern) (m)	0.084
WL Length (m)	83.458
Beam max extents on WL (m)	12.873
Wetted Area (m ²)	1720.31
Waterpl. Area (m ²)	982.29
Prismatic coeff. (Cp)	0.814
Block coeff. (Cb)	0.804
Max Sect. area coeff. (Cm)	0.996
Waterpl. area coeff. (Cwp)	0.914
LCB from zero pt. (+ve fwd) (m)	40.741
LCF from zero pt. (+ve fwd) (m)	38.044
KB (m)	2.868
KG fluid (m)	4.822
BMt m	2.596
GMt corrected (m)	0.643
KMt m	5.464
Immersion (TPc) (Tn/cm)	10.068
MTc (Tn·m)	61.98
Trim angle (+ve by stern) (deg)	0.0602

Εικόνα 6-48: Πλευρική επιφάνεια για την εφαρμογή του κριτηρίου καιρού.

Πίνακας 6-19: Στοιχεία για την πλευρική επιφάνεια για την κατάσταση 1				
Area Above WL (m ²)	368.617			
KG1 Under WL (m) 2.7				
KG2 Above WL (m)	7.870			

Πίνακας 6-20: Σημεία προοδευτικής κατάκλισης					
Downflooding Points	Longitudinal Position (m)	Offset (m)	Vertical Position (m)		
Downflooding Point1	4.05	-1.2	11.4		
Downflooding Point2	4.05	1.2	11.4		

Πινακάς 0-21: Πινακάς ελεγχου κριτηρίων ευσταθείας για την κατάσταση 1								
Code	Criteria	Value	Units	Actual	Status			
A.749(18) Ch3 - Design criteria	3.1.2.1: Area 0 to 30	0.0550	m.rad	0.0849	Pass			
applicable to all snips								
A.749(18) Ch3 - Design criteria	3.1.2.1: Area 0 to 40	0.0900	m.rad	0.1422	Pass			
applicable to all ships								
A.749(18) Ch3 - Design criteria	3.1.2.1: Area 30 to 40	0.0300	m.rad	0.0573	Pass			
applicable to all ships					-			
A.749(18) Ch3 - Design criteria	3.1.2.2: Max GZ at 30 or greater	0.200	m	0.457	Pass			
applicable to all ships		05.0		40.0	-			
A. 749(18) Ch3 - Design criteria	3.1.2.3: Angle of maximum GZ	25.0	deg	48.6	Pass			
A 740(40) Ch2 Design enitoria		0.450		0.040	Deee			
A.749(18) Ch3 - Design criteria	3.1.2.4: Initial Givit	0.150	m	0.643	Pass			
A 749(18) Ch3 - Design criteria	3.2.2: Severe wind and rolling				Pass			
applicable to all ships	5.2.2. Oevere wind and folling				1 433			
•••••••••••••••••••••••••••••••••••••••	Angle of steady heel shall not be	16.0	deg	1.3	Pass			
	greater than (<=)		-					
	Angle of steady heel / Deck edge	80.00	%	9.56	Pass			
	immersion angle shall not be							
	greater than (<=)				_			
	Area1 / Area2 shall not be less	100.00	%	289.33	Pass			
	than (>=)							

Κατάσταση 2: Πλοίο κατά την άφιξη, πλήρως φορτωμένο με ομοιογενώς κατανεμημένο φορτίο (πυκνότητας 0.718 Tn/m³) στους χώρους φορτίου και με 10 % βαθμό πληρότητας σε δεξαμενές, καύσιμα και εφόδια.

	Пі́vaкаς 6-22	2: Κατάσταση 2 (Full Load Homogen	ous Arrival)			
Tank	Quantity	total mass	total volume	LCG	TCG	VCG	FSM
Fore Peak (W/ B Tk)	(%)		(m ²)	(m)	(m)	(m)	(In·m) 0
	100%	52 131	50.86	73 959	0	1 078	0
DB3 Ps (W B Tk)	0%	0	0	62 436	-2 593	0	0
DB3 Sb (W.B.Tk)	0%	0	0	62.436	2.593	0	0
Side Ballast No3 Ps (W.B. Tk)	0%	0	0	60.781	-5.721	1.23	0
Side Ballast No3 Sb (W.B. Tk)	0%	0	0	60.781	5.721	1.23	0
DB9C (D.O. Storage Tk)	10%	6.504	7.743	21.011	0	0.062	67.557
DB8C (D.O. Storage Tk)	10%	6.447	7.675	36.7	0	0.061	69.888
DB4Ps (W.B. Tk)	0%	0	0	42.977	-3.282	0	0
DB 4Sb (W.B. Tk)	0%	0	0	42.977	3.282	0	0
Side Ballast No4 Ps (W.B. Tk)	0%	0	0	40.6	-5.75	1.23	0
Side Ballast No4 Sb (W.B. Tk)	0%	0	0	40.6	5.75	1.23	0
Side Ballast No 5 Ps (W.B. Tk)	0%	0	0	0	0	1.23	0
Side Ballast No 5 Sb (W.B. Tk)	0%	0	0	0	0	1.23	0
DB 5 Ps (W.B. Tk)	100%	73.911	72.108	21.751	-3.918	0.639	0
DB 5 Sb (W.B. Tk)	100%	73.911	72.108	21.751	3.918	0.639	0
Tk No 7 Ps (F.W. Tk)	10%	1.481	1.481	3.556	-0.41	2.77	28.312
Tk No 7 Sb (F.W. Tk)	10%	1.481	1.481	3.556	0.41	2.77	28.312
Tk No 16 Sb (Dirty Oil Tk)	90%	7.867	8.551	11.694	2.154	0.593	5.493
Tk No 17 c (Sump Tk)	10%	0.318	0.345	11.158	0	0.061	0.524
Tk No 15c (Sludge Tk)	90%	4.398	4.78	11.862	-0.894	0.553	2.516
Tk No 13 Ps (Dirty Water Tk)	90%	5.521	5.521	11.737	-2.582	0.615	2.024
tK No 6 A Ps (Boiler Tk)	10%	0.635	0.756	6.27	-2.872	3.266	5.785
Tk No 6 Ps (Aux. Eng. Tk)	10%	0.517	0.616	8.736	-4.045	3.126	2.347
tK No 6 A Sb (Boiler Tk)	10%	0.635	0.756	6.27	2.872	3.266	5.785
Tk No 6 Sb (Aux. Eng. Tk)	10%	0.517	0.616	8.736	4.045	3.126	2.347
Tk No 14 P (L.O. Tk)	10%	0.705	0.766	14.25	-4.954	1.733	0.86
Tk No 10 Sb (D.O. Daily)	10%	0.667	0.794	13.677	4.466	1.522	0.182
Tk No 11 Sb (D.O. Settling)	10%	0.627	0.746	14.456	5.301	2.153	0.51
Tk No 12 (D.O. Daily)	10%	0.033	0.039	0.675	-0.375	4.625	0.031
Cargo Hold (Cargo)	100%	3364.67	4686.17	43.524	0	5.293	0
Lightship	1	1125		37.14	0	4.68	0
Crew & Effects	1	1		6.4	0	7.2	0
Provisions	1	0.3		6.4	0	7.2	0
Total Loadcase		4729.277	4923.914	41.432	0	4.919	222.472
FS correction						0.047	
VCG fluid						4.966	

Πίνακας 6-23: Στοιχεία για την πλεύο	τη στην κατάσταση 2
Draft Amidships (m)	5.34
Displacement (Tn)	4729
Heel (deg)	0
Draft at FP (m)	5.528
Draft at AP (m)	5.152
Draft at LCF (m)	5.332
Trim (+ve by stern) (m)	-0.376
WL Length (m)	83.462
Beam max extents on WL (m)	12.889
Wetted Area (m ²)	1691.34
Waterpl. Area (m²)	977.455
Prismatic coeff. (Cp)	0.797
Block coeff. (Cb)	0.776
Max Sect. area coeff. (Cm)	0.996
Waterpl. area coeff. (Cwp)	0.909
LCB from zero pt. (+ve fwd) (m)	41.443
LCF from zero pt. (+ve fwd) (m)	38.294
KB (m)	2.779
KG fluid (m)	4.966
BMt m	2.662
GMt corrected (m)	0.475
KMt m	5.441
Immersion (TPc) (Tn/cm)	10.019
MTc (Tn·m)	61.068
Trim angle (+ve by stern) (deg)	-0.2693

Εικόνα 6-50: Πλευρική επιφάνεια για την εφαρμογή του κριτηρίου καιρού.

Πίνακας 6-24: Στοιχεία για την πλευρική επιφάνεια για την κατάσταση 2				
Area Above WL (m²)	392.271			
KG1 Under WL (m)	2.682			
KG2 Above WL (m)	7.888			

Πίνακας 6-25: Σημεία προοδευτικής κατάκλισης					
Downflooding Points	Longitudinal Position (m)	Offset (m)	Vertical Position (m)		
Downflooding Point1	4.05	-1.2	11.4		
Downflooding Point2	4.05	1.2	11.4		

Enconce	6 51	Variation	usul a Paguríana		
LIKOVA	()) I.	- Καμπυλη	μογλορραγιονα	επαναφοράς για τ	ην κατασταση 2.
			her		

Code	Criteria	Value	Units	Actual	Status
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 0 to 30	0.055	m.rad	0.064	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 0 to 40	0.09	m.rad	0.1103	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 30 to 40	0.03	m.rad	0.0464	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.2: Max GZ at 30 or greater	0.2	m	0.379	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.3: Angle of maximum GZ	25	deg	48.2	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.4: Initial GMt	0.15	m	0.478	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.2.2: Severe wind and rolling				Pass
	Angle of steady heel shall not be greater than (<=)	16	deg	2.5	Pass
	Angle of steady heel / Deck edge immersion angle shall not be greater than (<=)	80	%	18.37	Pass
	Area1 / Area2 shall not be less than (>=)	100	%	277.95	Pass

Κατάσταση 3: Πλοίο κατά την αναχώρηση, φορτωμένο με βαθμό πληρότητας 91.5%, ομοιογενώς κατανεμημένου φορτίου συντελεστή στοιβασίας 45 $\frac{ft^3}{L.T.}$ (πυκνότητας 0.797 Tn/m³) στους χώρους φορτίου και με πλήρεις δεξαμενές, καύσιμα και εφόδια.

Πίνακας 6-27: Κατάσταση 3 (S.F. 45 Departure)							
Tank	Quantity (%)	total mass tone (Tn)	total volume (m ³)	LCG (m)	TCG (m)	VCG (m)	FSM (Tn∙m)
Fore Peak (W.B.Tk)	0%	0	0	77.684	0	0	0
DB2C (W.B.Tk)	0%	0	0	73.75	0	0	0
DB3 Ps (W.B.Tk)	0%	0	0	62.436	-2.593	0	0
DB3 Sb (W.B.Tk)	0%	0	0	62.436	2.593	0	0
Side Ballast No3 Ps (W.B. Tk)	0%	0	0	60.781	-5.721	1.23	0
Side Ballast No3 Sb (W.B. Tk)	0%	0	0	60.781	5.721	1.23	0
DB9C (D.O. Storage Tk)	98%	63.742	75.883	21.011	0	0.603	0
DB8C (D.O. Storage Tk)	98%	63.182	75.217	36.7	0	0.603	0
DB4Ps (W.B. Tk)	0%	0	0	42.977	-3.282	0	0
DB 4Sb (W.B. Tk)	0%	0	0	42.977	3.282	0	0
Side Ballast No4 Ps (W.B. Tk)	0%	0	0	40.6	-5.75	1.23	0
Side Ballast No4 Sb (W.B. Tk)	0%	0	0	40.6	5.75	1.23	0
Side Ballast No 5 Ps (W.B. Tk)	0%	0	0	0	0	1.23	0
Side Ballast No 5 Sb (W.B. Tk)	0%	0	0	0	0	1.23	0
DB 5 Ps (W.B. Tk)	100%	73.911	72.108	21.751	-3.918	0.639	0
DB 5 Sb (W.B. Tk)	100%	73.911	72.108	21.751	3.918	0.639	0
Tk No 7 Ps (F.W. Tk)	100%	14.807	14.807	2.577	-1.518	3.999	0
Tk No 7 Sb (F.W. Tk)	100%	14.807	14.807	2.577	1.518	3.999	0
Tk No 16 Sb (Dirty Oil Tk)	10%	0.874	0.95	11.706	1.885	0.083	5.493
Tk No 17 c (Sump Tk)	98%	3.115	3.386	11.158	0	0.603	0
Tk No 15c (Sludge Tk)	10%	0.489	0.531	11.862	-0.894	0.061	2.516
Tk No 13 Ps (Dirty Water Tk)	10%	0.613	0.613	11.788	-2.34	0.099	2.024
tK No 6 A Ps (Boiler Tk)	98%	6.227	7.414	6.132	-3.581	4.015	0
Tk No 6 Ps (Aux. Eng. Tk)	98%	5.067	6.033	8.674	-4.578	3.947	0
tK No 6 A Sb (Boiler Tk)	98%	6.227	7.414	6.132	3.581	4.015	0
Tk No 6 Sb (Aux. Eng. Tk)	98%	5.067	6.033	8.674	4.578	3.947	0
Tk No 14 P (L.O. Tk)	98%	6.908	7.509	14.219	-5.363	3.279	0
Tk No 10 Sb (D.O. Daily)	98%	6.537	7.782	13.362	4.578	3.019	0
Tk No 11 Sb (D.O. Settling)	98%	6.145	7.315	13.805	5.592	3.523	0
Tk No 12 (D.O. Daily)	98%	0.324	0.386	0.675	-0.375	4.845	0
Cargo Hold (Cargo)	91.50%	3417.413	4287.846	43.523	0	4.947	0
LightShip	1	1125		37.14	0	4.68	0
Crew & Effects	1	1		6.4	0	7.2	0
Provisions	1	3		6.4	0	7.2	0
Total Loadcase		4898.366	4668.139	40.419	0.005	4.624	10.033
FS correction						0.002	
VCG fluid						4.626	

Πίνακας 6-28: Στοιχεία για την πλεύση στην κατάσταση 3				
Draft Amidships (m)	5.492			
Displacement (Tn)	4898			
Heel (deg)	0			
Draft at FP (m)	5.322			
Draft at AP (m)	5.661			
Draft at LCF (m)	5.501			
Trim (+ve by stern) (m)	0.339			
WL Length (m)	83.346			
Beam max extents on WL (m)	12.869			
Wetted Area (m ²)	1718.956			
Waterpl. Area (m ²)	981.651			
Prismatic coeff. (Cp)	0.809			
Block coeff. (Cb)	0.79			
Max Sect. area coeff. (Cm)	0.994			
Waterpl. area coeff. (Cwp)	0.915			
LCB from zero pt. (+ve fwd) (m)	40.412			
LCF from zero pt. (+ve fwd) (m)	37.907			
КВ (m)	2.87			
KG fluid (m)	4.626			
BMt m	2.596			
GMt corrected (m)	0.84			
KMt m	5.466			
Immersion (TPc) (Tn/cm)	10.062			
MTc (Tn·m)	61.961			
Trim angle (+ve by stern) (deg)	0.2426			

Εικόνα 6-52: Πλευρική επιφάνεια για την εφαρμογή του κριτηρίου καιρού.

Πίνακας 6-29: Στοιχεία για την πλευρική επιφάνεια για την κατάσταση 3			
Area Above WL (m²)	368.617		
KG1 Under WL (m) 2.78			
KG2 Above WL (m)	7.870		

Πίνακας 6-30: Σημεία προοδευτικής κατάκλισης					
Downflooding Points	Longitudinal Position (m)	Offset (m)	Vertical Position (m)		
Downflooding Point1	4.05	-1.2	11.4		
Downflooding Point2	4.05	1.2	11.4		

Πίνακας 6-31: Πίνακας ελέγχου κριτηρίων ευστάθειας για την κατάσταση 3						
Code	Criteria	Value	Units	Actual	Status	
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 0 to 30	0.055	m.rad	0.111	Pass	
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 0 to 40	0.09	m.rad	0.187	Pass	
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 30 to 40	0.03	m.rad	0.076	Pass	
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.2: Max GZ at 30 or greater	0.2	m	0.599	Pass	
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.3: Angle of maximum GZ	25	deg	50	Pass	
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.4: Initial GMt	0.15	m	0.84	Pass	
A.749(18) Ch3 - Design criteria applicable to all ships	3.2.2: Severe wind and rolling				Pass	
	Angle of steady heel shall not be greater than (<=)	16	deg	1	Pass	
	Angle of steady heel / Deck edge immersion angle shall not be greater than (<=)	80	%	7.29	Pass	
	Area1 / Area2 shall not be less than (>=)	100	%	310.3	Pass	

Κατάσταση 4: Πλοίο κατά την άφιξη, φορτωμένο με βαθμό πληρότητας 91.5%, ομοιογενώς κατανεμημένου φορτίου συντελεστή στοιβασίας 45 $\frac{ft^3}{L.T.}$ (πυκνότητας 0.797 Tn/m³) στους χώρους φορτίου και με 10 % βαθμό πληρότητας σε δεξαμενές, καύσιμα και εφόδια.

Πίνακας 6-32: Κατάσταση 4 (S.F. 45 Arrival)							
Tank	Quantity (%)	total mass tone (Tn)	total volume (m³)	LCG (m)	TCG (m)	VCG (m)	FSM (Tn∙m)
Fore Peak (W.B.Tk)	0%	0	0	77.684	0	0	0
DB2C (W.B.Tk)	0%	0	0	73.75	0	0	0
DB3 Ps (W.B.Tk)	0%	0	0	62.436	-2.593	0	0
DB3 Sb (W.B.Tk)	0%	0	0	62.436	2.593	0	0
Side Ballast No3 Ps (W.B. Tk)	0%	0	0	60.781	-5.721	1.23	0
Side Ballast No3 Sb (W.B. Tk)	0%	0	0	60.781	5.721	1.23	0
DB9C (D.O. Storage Tk)	10%	6.504	7.743	21.011	0	0.061	67.557
DB8C (D.O. Storage Tk)	10%	6.447	7.675	36.7	0	0.061	69.888
DB4Ps (W.B. Tk)	0%	0	0	42.977	-3.282	0	0
DB 4Sb (W.B. Tk)	0%	0	0	42.977	3.282	0	0
Side Ballast No4 Ps (W.B. Tk)	0%	0	0	40.6	-5.75	1.23	0
Side Ballast No4 Sb (W.B. Tk)	0%	0	0	40.6	5.75	1.23	0
Side Ballast No 5 Ps (W.B. Tk)	0%	0	0	0	0	1.23	0
Side Ballast No 5 Sb (W.B. Tk)	0%	0	0	0	0	1.23	0
DB 5 Ps (W.B. Tk)	100%	73.911	72.108	21.751	-3.918	0.639	0
DB 5 Sb (W.B. Tk)	100%	73.911	72.108	21.751	3.918	0.639	0
Tk No 7 Ps (F.W. Tk)	10%	1.481	1.481	3.556	-0.41	2.77	28.312
Tk No 7 Sb (F.W. Tk)	10%	1.481	1.481	3.556	0.41	2.77	28.312
Tk No 16 Sb (Dirty Oil Tk)	90%	7.867	8.551	11.694	2.154	0.593	5.493
Tk No 17 c (Sump Tk)	10%	0.318	0.345	11.158	0	0.062	0.524
Tk No 15c (Sludge Tk)	90%	4.398	4.78	11.862	-0.894	0.553	2.516
Tk No 13 Ps (Dirty Water Tk)	90%	5.521	5.521	11.737	-2.582	0.615	2.024
tK No 6 A Ps (Boiler Tk)	10%	0.635	0.756	6.27	-2.872	3.266	5.785
Tk No 6 Ps (Aux. Eng. Tk)	10%	0.517	0.616	8.736	-4.045	3.126	2.347
tK No 6 A Sb (Boiler Tk)	10%	0.635	0.756	6.27	2.872	3.266	5.785
Tk No 6 Sb (Aux. Eng. Tk)	10%	0.517	0.616	8.736	4.045	3.126	2.347
Tk No 14 P (L.O. Tk)	10%	0.705	0.766	14.25	-4.954	1.733	0.86
Tk No 10 Sb (D.O. Daily)	10%	0.667	0.794	13.677	4.466	1.522	0.182
Tk No 11 Sb (D.O. Settling)	10%	0.627	0.746	14.456	5.301	2.153	0.51
Tk No 12 (D.O. Daily)	10%	0.033	0.039	0.675	-0.375	4.625	0.031
Cargo Hold (Cargo)	91.50%	3417.413	4287.845	43.523	0	4.947	0
Lightship	1	1125		37.14	0	4.68	0
Crew & Effects	1	1		6.4	0	7.2	0
Provisions	1	0.3		6.4	0	7.2	0
Total Loadcase		4729.888	4474.729	41.097	0	4.716	222.472
FS correction						0.047	
VCG fluid						4.763	

Πίνακας 6-33: Στοιχεία για την πλεύση στην κατάσταση 4				
Draft Amidships (m)	5.335			
Displacement (Tn)	4730			
Heel (deg)	0			
Draft at FP (m)	5.393			
Draft at AP (m)	5.277			
Draft at LCF (m)	5.333			
Trim (+ve by stern) (m)	-0.116			
WL Length (m)	83.349			
Beam max extents on WL (m)	12.886			
Wetted Area (m ²)	1690.911			
Waterpl. Area (m ²)	977.221			
Prismatic coeff. (Cp)	0.809			
Block coeff. (Cb)	0.797			
Max Sect. area coeff. (Cm)	0.996			
Waterpl. area coeff. (Cwp)	0.91			
LCB from zero pt. (+ve fwd) (m)	41.1			
LCF from zero pt. (+ve fwd) (m)	38.132			
KB (m)	2.778			
KG fluid (m)	4.763			
BMt m	2.664			
GMt corrected (m)	0.679			
KMt m	5.442			
Immersion (TPc) (Tn/cm)	10.017			
MTc (Tn·m)	61.119			
Trim angle (+ve by stern) (deg)	-0.0831			

Εικόνα 6-54: Πλευρική επιφάνεια για την εφαρμογή του κριτηρίου καιρού.

Πίνακας 6-34: Στοιχεία για την πλευρική επιφάνεια για την κατάσταση 4				
Area Above WL (m ²)	391.688			
KG1 Under WL (m) 2.6				
KG2 Above WL (m)	7.885			

Πίνακας 6-35: Σημεία προοδευτικής κατάκλισης					
Downflooding Points	Longitudinal Position (m)	Offset (m)	Vertical Position (m)		
Downflooding Point1	4.05	-1.2	11.4		
Downflooding Point2	4.05	1.2	11.4		

Εικόνα 6-55	· $K\alpha\mu\pi\dot{n}\lambda n$	μονλοβοανίονα	επαναφοράς για	την κατάσταση 4	1
LIKOVA 0-55	. παμπολη	μοχλορραχιονα	επαναφοράς για	την κατασταση 4	۰.

Πίνακας 6-36: Πίνακας ελέγχου κριτηρίων ευστάθειας για την κατάσταση 4					
Code	Criteria	Value	Units	Actual	Status
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 0 to 30	0.055	m.rad	0.093	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 0 to 40	0.09	m.rad	0.16	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 30 to 40	0.03	m.rad	0.067	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.2: Max GZ at 30 or greater	0.2	m	0.542	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.3: Angle of maximum GZ	25	deg	49.1	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.4: Initial GMt	0.15	m	0.679	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.2.2: Severe wind and rolling				Pass
	Angle of steady heel shall not be greater than (<=)	16	deg	1.8	Pass
	Angle of steady heel / Deck edge immersion angle shall not be greater than (<=)	80	%	12.07	Pass
	Area1 / Area2 shall not be less than (>=)	100	%	305	Pass
6.6. Υπολογισμοί Ευστάθειας Σιτηρών

6.6.1. Υπολογισμός στάθμης φορτίου

Προκειμένου όμως να πραγματοποιηθεί ο έλεγχος της ευστάθειας σιτηρών, είναι αναγκαίο σε πρώτο χρόνο να υπολογιστεί η ροπή του όγκου ("Volumetric Heeling Moment") που προκύπτει από τη μετακίνηση φορτίου, για τους βαθμούς πληρότητας του χώρου φορτίου των παραπάνω καταστάσεων φόρτωσης. Η γεωμετρία του χώρου φορτίου στο συγκεκριμένο πλοίο έχει σχήμα ορθογωνίου παραλληλεπιπέδου, έτσι, ο υπολογισμός της ροπής του όγκου από τη μετακίνηση φορτίου, είναι δυνατό να πραγματοποιηθεί με τη χρήση των εξισώσεων που περιγράφονται στο κεφάλαιο 5. Οι εξισώσεις που δίνουν τη ροπή που προκαλείται από τη μετατόπιση όγκου, εξαρτώνται άμεσα από τη στάθμη του φορτίου, καθώς μέσω της στάθμης είναι δυνατό να προσδιοριστεί αν η μετατόπιση του φορτίου θα περιοριστεί από το κατάστρωμα ή αν θα λάβει τη μορφή τριγωνικής σφήνας. Η στάθμη του φορτίου πριν την καθίζηση δύναται να υπολογιστεί μέσω του όγκου του φορτίου. Ο όγκος του φορτίου ισούται με το γινόμενο: L_{CH} · B_{Ch} · h_{C} , όπου:

- L_{CH}: Το μήκος του χώρου φορτίου
- B_{CH}: Το πλάτος του χώρου φορτίου
- h_C : Η στάθμη του φορτίου πριν την καθίζηση

Έτσι για τις καταστάσεις φόρτωσης που μελετήθηκαν παραπάνω προκύπτουν οι εξής στάθμες:

Πίνακας 6-37: Εύρεση στ	άθμης φορτίου για τις κα	ταστάσεις φόρτω	σης						
Κατάσταση Φόρτωσης	Όγκος Φορτίου (m³)	(В _{СН} · L _{CH}) (m²)	Στάθμη Φορτίου (m)						
	[1]	[2]	[3] = [1]/[2]						
Κατάσταση 1 (Full Load Homogenous	4686.17	576.81	8.124						
Departure)									
Κατάσταση 2 (Full Load Homogenous Arrival)	4686.17	576.81	8.124						
Κατάσταση 3 (S.F. 45 Departure)	4287.85	576.81	7.434						
Κατάσταση 3 (S.F. 45 Arrival)	4287.85	576.81	7.434						

Εικόνα 6-56: Διαστάσεις χώρου φορτίου

6.6.2. Υπολογισμός της ροπής του όγκου από τη μετατόπιση φορτίου

Καταστάσεις φόρτωσης 1 και 2:

Το θεωρούμενο διάκενο V_D από την επιφάνεια των σιτηρών μέχρι το κατώτατο άκρο του καλύμματος θα έχει ύψος 150 mm καθώς οι στάθμες του φορτίου στις καταστάσεις 1 και 2 αντιστοιχούν στην περίπτωση του πλήρους στομίου κυτών. Η γωνία που σχηματίζεται από την ελεύθερη επιφάνεια σιτηρών και το οριζόντιο επίπεδο είναι ίση με 15°, καθώς ο χώρος φορτίου είναι πλήρως φορτωμένος.

Εικόνα 6-57: Ελεύθερη επιφάνεια σιτηρών στις καταστάσεις φόρτωσης 1 και 2.

Το εμβαδόν του διακένου πριν τη μετατόπιση θα είναι:

$$A_1 = B \cdot V_D \Leftrightarrow A_1 = 10.2 \cdot 0.15 = 1.53 \ m^2$$

Το εμβαδόν A_1 του παραλληλογράμμου, θα πρέπει να είναι ίσο με το εμβαδό A_2 του τριγώνου, όπου: $A_2 = \frac{x^2 tan 15}{2}$

$$A_1 = A_2 \iff 1.53 = \frac{x^2 \tan 15}{2} \Rightarrow x = \sqrt{\frac{2 \cdot 1.53}{\tan 15}} = 3.379 m$$

Το κέντρο βάρους του τριγώνου βρίσκεται στη θέση $\frac{x}{3}$, επομένως η ροπή της επιφάνειας του τριγώνου ως προς το επίπεδο συμμετρίας του πλοίου θα είναι:

$$M_1 = A \cdot \left(\frac{B}{2} - \frac{\chi}{3}\right) = 1.53 \cdot \left(\frac{10.2}{2} - \frac{3.379}{3}\right) = 1.53 \cdot 3.974 = 6.080 \ m^3$$

Η αντίστοιχη ροπή του όγκου θα είναι: $M_2 = M_1 \cdot L = 56.55 \cdot 6.080 = 338.352 \ m^4$

Τέλος, η ροπή του όγκου πολλαπλασιάζεται με τον συντελεστή προσαύξησης (στην περίπτωση πλήρους διαμερίσματος, η τιμή του συντελεστή είναι 1.06) και έτσι η τελική θεωρούμενη ροπή του όγκου ισούται με:

 $VHM = 1.06 \cdot M_2 = 1.06 \cdot 338.352 = 358.65 \ m^4$

Καταστάσεις φόρτωσης 3 και 4:

Στις καταστάσεις φόρτωσης 3 και 4 το διαμέρισμα ο χώρος φορτίου είναι μερικώς πληρωμένος, συνεπώς η γωνία που σχηματίζεται από την ελεύθερη επιφάνεια σιτηρών και το οριζόντιο επίπεδο είναι ίση με 25°.

Εικόνα 6-58: Ελεύθερη επιφάνεια σιτηρών στις καταστάσεις φόρτωσης 3 και 4.

Το εμβαδόν του διακένου πριν τη μετατόπιση θα είναι:

$$A_1 = B \cdot h \Leftrightarrow A_1 = 10.2 \cdot 0.691 = 7.048 \ m^2$$

Το εμβαδόν A_1 του παραλληλογράμμου, θα πρέπει να είναι ίσο με το εμβαδό A_2 του τριγώνου.

$$A_{2} = \frac{x^{2} \tan 25}{2}$$

$$A_{1} = A_{2} \iff 1.53 = \frac{x^{2} \tan 25}{2} \Rightarrow x = \sqrt{\frac{2 \cdot 7.048}{\tan 25}} = 5.498 m$$

Το κέντρο βάρους του τριγώνου βρίσκεται στη θέση $\frac{x}{3}$, επομένως η ροπή της επιφάνειας του τριγώνου ως προς το επίπεδο συμμετρίας του πλοίου θα είναι:

$$M_1 = A \cdot \left(\frac{B}{2} - \frac{\chi}{3}\right) = 7.048 \cdot \left(\frac{10.2}{2} - \frac{5.498}{3}\right) = 23.028 \ m^3$$

Η αντίστοιχη ροπή του όγκου θα είναι:

 $M_2 = M_1 \cdot L = 56.55 \cdot 23.028 = 1281.51 \, m^4$

Η τιμή του συντελεστή προσαύξηση στην περίπτωση του μερικώς πληρωμένου διαμερίσματος είναι ίση με 1.12 και έτσι η τελική θεωρούμενη ροπή του όγκου ισούται με:

 $VHM = 1.12 \cdot M_2 = 1.12 \cdot 1281.51 = 1435.29 \, m^4$

6.6.3. Υπολογισμός Ευστάθειας Σιτηρών

Γενικά:

Ενεργοποιώντας τις επιλογές ("Analysis//Set Analysis Type//Large Angle Stability") και ("Analysis//Start Stability Analysis"), πραγματοποιούνται οι υπολογισμοί ευστάθειας. Με τη χρήση της επιλογής ("Analysis//Criteria"), επιλέγονται και συμπληρώνονται κατάλληλα οι παράμετροι για το τρέχον κριτήριο ευστάθειας (MSC.23(59)). Οι παράμετροι που συμπληρώνονται είναι: η ροπή του όγκου από τη μετατόπιση φορτίου, ο συντελεστής στοιβασίας του φορτίου σε m³/Tn, το εύρος των γωνιών υπό τις οποίες εξετάζεται η ευστάθεια σιτηρών.

Criteria					×
Criteria List	Cri	iterion Details: Grain heeling arm {CTHeelArmGrain}			
Criteria Parent calculations	[Ch 7. Stability Requirments 7.1 Grain heeling arm	Value	Units	
Parent beeling arms	1	Heeling arm = [1 - abs(phi). (1 - f) / phi1]. volHM / (dis			
Parent criteria	2	volHM = volumetric heeling moment	358.650	0 m.m^3	
Australian NSCV - Part C. Section 6 - Stability	3	sFact = stowage factor	1.367	7 cu.m/tonne	
BS 6349-6:1989	4	f = factor of heel arm at heel angle phi1	0.6	3	
Canadian Coast Guard - Transport Canada	5	phi1 = heel angle at which heeling arm is reduced by fac.	40 (deg	
DNV Rules for High Speed, Light Craft and Naval Surf	ΙĔ				
ES-TRIN 2017 art 19.03					
EU-Classification of Inland Waterway Ships-2006/87/E					
Floodable Length					
B HSC Code 2000 - MSC 97(73)					
A 749(18) Code on Intact Stability					
B SOLAS, II-1/8					
HSC.36(63) HSC Code					
B MSC.267(85) Code on Intact Stability					
□ ✓					
E Ch 7. Stability Requirments					
- V 7.1 Grain heeling arm					
- 7.1.1.a Angle of equilibrium					
✓ A 7.1.1.b Angle of equilibrium ratio					
- 7.1.2 GZ area between limits type 1					
- 7.1.3.a Value of GMt at	_				
Ch 9. Optional Stability Requirements for Ships v					
A 534(13) Special Purpose Ships	Cn	itenon Heip			
		Grain heeling arm			^
₩_ @ MSC.19(58)		This bealing arm can be used medal	the effects of	hulk grain shift as defined in IMO Desolution	
		This neeling arm can be used model	the enects of	buik grain shift as defined in IMO Resolution	
		MSC.23(59):			\sim
III III III MARPUI					

Εικόνα 6-59: Παράμετροι για τη ροπή από τη μετατόπιση φορτίου σιτηρών.

Criteria	-				
Criteria List	Crite	erion Details: GZ area between limits type 1 {CTXRefHee	elAreaBetweenGZAndHAE	letweenLimits}	
Criteria Parent calculations		Ch 7. Stability Requirments 7.1.2 GZ area between limits type 1	Value	Units	
Parent heeling arms	1	7.1 Grain heeling arm			
Parent criteria	2	Area integrated from the greater of			
Australian NSCV - Part C, Section 6 - Stability	3	spec. heel angle	0.0	deg	
BS 6349-6:1989	4	angle of equilibrium (with heel arm)		deg	
🗄 🔂 🖻 Canadian Coast Guard - Transport Canada	5	to the lesser of			
DNV Rules for High Speed, Light Craft and Naval Surt	6	spec. heel angle	40.0	deg	
🗄 🗌 🖻 ES-TRIN 2017 art. 19.03	7	spec. angle above equilibrium (with heel arm)	30.0	deg	
EU-Classification of Inland Waterway Ships-2006/87/E	8	angle of first GZ peak		deg	
E Floodable Length	9	angle of max. GZ		deg	
	10	angle of max. GZ above heel arm		deg	
	11	first flooding angle of the	DownfloodingPoints	deg	
A.749(18) Code on Intact Stability	12	immersion angle of	DeckEdge	deg	
SOLAS, II-1/8	13	angle of vanishing stability (with heel arm)		deg	
MSC.36(63) HSC Code	14	shall not be less than (>=)	0.0750	m.rad	
Construction of the international Code for Code Code Code Code Code Code Code Code					

Εικόνα 6-60: Παράμετροι για το εύρος των γωνιών υπό τις οποίες εξετάζεται το τρέχον κριτήριο.

Κατάσταση φόρτωσης 1:

Πλοίο κατά την αναχώρηση, πλήρως φορτωμένο με ομοιογενώς κατανεμημένο φορτίο (πυκνότητας 0.718 Tn/m³) στους χώρους φορτίου και με πλήρεις δεξαμενές, καύσιμα και εφόδια.

Πίνακας 6-38: Στοιχεία για την κατάσταση 1							
Displacement (Tn)	4898						
GMt corrected (m)	0.643						
Density (Tn/m ³)	0.718						
Stowage Factor = 1/Density (m ³ /Tn)	1.393						
VHM (m ⁴)	358.650						
λ_0 (m) = VHM / (Displacement x Stowage Factor)	0.053						
λ_{40} (m) = 0.8 x λ_0	0.042						

Εικόνα 6-61: Μοχλοβραχίονας επαναφοράς και βραχίονας ροπής σιτηρών για την κατάσταση 1.

Πίνακας 6-39: Πίνακας ελέγχου κριτηρίων ευστάθειας σιτηρών για την κατάσταση 1								
Code	Criteria	Value	Units	Actual	Status			
Ch 7. Stability Requirments	7.1.1.a Angle of equilibrium	12	deg	3.9	Pass			
Ch 7. Stability Requirments	7.1.1.b Angle of equilibrium ratio	100	%	27.88	Pass			
Ch 7. Stability Requirments	7.1.2 GZ area between limits type 1	0.075	m.rad	0.1104	Pass			
Ch 7. Stability Requirments	7.1.3.a Value of GMt at	0.3	m	0.643	Pass			

Κατάσταση φόρτωσης 2:

Πλοίο κατά την άφιξη, πλήρως φορτωμένο με ομοιογενώς κατανεμημένο φορτίο (πυκνότητας 0.718 Tn/m³) στους χώρους φορτίου και με 10 % βαθμό πληρότητας σε δεξαμενές, καύσιμα και εφόδια.

Πίνακας 6-40 : Στοιχεία για την κατάσταση 2							
Displacement (Tn)	4729						
GMt corrected (m)	0.475						
Density (Tn/m ³)	0.718						
Stowage Factor = 1/Density (m ³ /Tn)	1.393						
VHM (m ⁴)	358.650						
λ_0 (m) = VHM / (Displacement x Stowage Factor)	0.054						
λ_{40} (m) = 0.8 x λ_0	0.044						

Εικόνα 6-62: Μοχλοβραχίονας επαναφοράς και βραχίονας ροπής σιτηρών για την κατάσταση 2.

Πινακας 0-41: 1.	ιινακας ελεγχου κριτηριων ευσταθείας σι	τηρων για τ	ην καταστ	αση 2	
Code	Criteria	Value	Units	Actual	Status
Ch 7. Stability Requirments	7.1.1.a Angle of equilibrium	12	deg	6.1	Pass
Ch 7. Stability Requirments	7.1.1.b Angle of equilibrium ratio	100	%	43.32	Pass
Ch 7. Stability Requirments	7.1.2 GZ area between limits type 1	0.075	m.rad	0.0821	Pass
Ch 7. Stability Requirments	7.1.3.a Value of GMt at	0.3	m	0.475	Pass

Κατάσταση 3:

Πλοίο κατά την αναχώρηση, φορτωμένο με βαθμό πληρότητας 91.5%, ομοιογενώς κατανεμημένου φορτίου συντελεστή στοιβασίας 45 $\frac{ft^3}{L.T.}$ (πυκνότητας 0.797 Tn/m³) στους χώρους φορτίου και με πλήρεις δεξαμενές, καύσιμα και εφόδια.

Πίνακας 6-42: Στοιχεία για την κατάσταση 3						
Displacement (Tn)	4898					
GMt corrected (m)	0.654					
Density (Tn/m ³)	0.797					
Stowage Factor = 1/Density (m ³ /Tn)	1.255					
VHM (m ⁴)	1435.29					
λ_0 (m) = VHM / (Displacement x Stowage Factor)	0.234					
λ_{40} (m) = 0.8 x λ_0	0.187					

Εικόνα 6-63: Μοχλοβραχίονας επαναφοράς και βραχίονας ροπής σιτηρών για την κατάσταση 3.

Πίνακας 6-43: Πίνακας ελέγχου κριτηρίων ευστάθειας σιτηρών για την κατάσταση 3							
Code	Criteria	Value	Units	Actual	Status		
Ch 7. Stability Requirments	7.1.1.a Angle of equilibrium	12.0	deg	13.5	Fail		
Ch 7. Stability Requirments	7.1.1.b Angle of equilibrium ratio	100.00	%	103.04	Fail		
Ch 7. Stability Requirments	7.1.2 GZ area between limits type 1	0.0750	m.rad	0.0664	Fail		
Ch 7. Stability Requirments	7.1.3.a Value of GMt at	0.300	m	0.840	Pass		

Κατάσταση 4:

Πλοίο κατά την άφιξη, φορτωμένο με βαθμό πληρότητας 91.5%, ομοιογενώς κατανεμημένου φορτίου συντελεστή στοιβασίας 45 $\frac{ft^3}{L.T.}$ (πυκνότητας 0.797 Tn/m³) στους χώρους φορτίου και με 10 % βαθμό πληρότητας σε δεξαμενές, καύσιμα και εφόδια.

Πίνακας 6-44: Στοιχεία για την κατάσταση 4							
Displacement (Tn)	4730						
GMt corrected (m)	0.558						
Density (Tn/m ³)	0.797						
Stowage Factor = 1/Density (m ³ /Tn)	1.255						
VHM (m ⁴)	1435.29						
λ_0 (m) = VHM / (Displacement x Stowage Factor)	0.242						
λ_{40} (m) = 0.8 x λ_0	0.193						

Εικόνα 6-64: Μοχλοβραχίονας επαναφοράς και βραχίονας ροπής σιτηρών για την κατάσταση 4.

Πίνακας 6-45: Πίνακας ελέγχου κριτηρίων ευστάθειας σιτηρών για την κατάσταση 4								
Code	Criteria	Value	Units	Actual	Status			
Ch 7. Stability Requirments	7.1.1.a Angle of equilibrium	12.0	deg	17.1	Fail			
Ch 7. Stability Requirments	7.1.1.b Angle of equilibrium ratio	100.00	%	113.26	Fail			
Ch 7. Stability Requirments	7.1.2 GZ area between limits type 1	0.0750	m.rad	0.0432	Fail			
Ch 7. Stability Requirments	7.1.3.a Value of GMt at	0.300	m	0.679	Pass			

6.7. Σχολιασμός Αποτελεσμάτων

Προκειμένου να θεωρηθεί ότι οι παραπάνω καταστάσεις φόρτωσης ανταποκρίνονται επιτυχώς στα κριτήρια ευστάθειας, θα πρέπει ταυτοχρόνως να πληρούνται τα κριτήρια των οδηγιών:

- RESOLUTION A.749(18) adopted on 4 November 1993 CODE ON INTACT STABILITY FOR ALL TYPES OF SHIPS COVERED BY IMO INSTRUMENTS (Η οδηγία αυτή είναι εκείνη που ίσχυε όταν κατασκευάστηκε το πλοίο και όχι η επικαιροποιημένη MSC267(85)).
- RESOLUTION MSC.23(59) (adopted on 23 May 1991) ADOPTION OF THE INTERNATIONAL CODE FOR THE SAFE CARRIAGE OF GRAIN IN BULK.

Οι καταστάσεις φόρτωσης που εξετάστηκαν πληρούσαν όλες το κριτήριο του καιρού, παρόλα αυτά, μόνο οι καταστάσεις 1 και 2 ανταποκρίθηκαν επιτυχώς στα κριτήρια της ευστάθειας σιτηρών.

Οι καταστάσεις αυτές, ανά ζεύγη αναχώρησης – άφιξης, έχουν σχεδόν το ίδιο εκτόπισμα, οι δε καταστάσεις 3 και 4 έχουν και μεγαλύτερο μετακεντρικό ύψος έναντι των καταστάσεων 1 και 2 αντίστοιχα.

Παρόλα αυτά οι καταστάσεις 3 και 4 δεν ανταποκρίνονται επιτυχώς στα κριτήρια της ευστάθειας σιτηρών. Αυτό οφείλεται στην σχεδόν τετραπλάσια ροπή που δημιουργείται από τη μετατόπιση φορτίου συγκριτικά με τη ροπή των καταστάσεων 1 και 2.

Η ροπή που δημιουργείται από τη μετακίνηση φορτίου, εξαρτάται αφενός από τον όγκο των κενών χώρων που υπάρχουν στον χώρου φορτίου και αφετέρου από το συντελεστή στοιβασίας του φορτίου.

Δεδομένου ότι ο συντελεστής στοιβασίας είναι σταθερός, η οποιαδήποτε επέμβαση που έχει ως σκοπό την επιτυχή ανταπόκριση των καταστάσεων φόρτωσης στα κριτήρια της ευστάθειας σιτηρών, περιορίζεται στην μείωση αυτής της ροπής μέσω της τροποποίησης του χώρου φορτίου.

7. ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

7.1. Τρόποι ελαχιστοποίησης της ροπής του όγκου από τη μετατόπιση φορτίου

Όπως αναλύθηκε παραπάνω, η τιμή της ροπής που προκύπτει από τη μετατόπιση όγκου φορτίου εξαρτάται από τον όγκο και τον κέντρο όγκου του διάκενου που σχηματίζεται από την επιφάνεια σιτηρών και τον χώρο φορτίου.

Με γνώμονα την παραπάνω αρχή, θα αναλυθούν δύο κύριες περιπτώσεις που έχουν θετική επίδραση στη μείωση της ροπής από τη μετατόπιση του φορτίου.

Οι καταστάσεις φόρτωσης που θα εξεταστούν στο κεφάλαιο αυτό θα είναι οι καταστάσεις 3 και 4, καθώς οι καταστάσεις 1 και 2 πληρούσαν τα απαραίτητα κριτήρια ευστάθειας.

Περίπτωση 1: Τοποθέτηση Διαμήκους Φρακτής

Στην περίπτωση αυτή, θεωρούμε ότι τοποθετήθηκε διαμήκης φρακτή στο διάμηκες επίπεδο συμμετρίας. Η προσθήκη αυτή, έχει ως αποτέλεσμα τη δημιουργία δύο ελευθέρων επιφανειών φορτίου, όπως απεικονίζονται στην εικόνα 7.1.

Εικόνα 7-1: Επιφάνεια σιτηρών στην περίπτωση τοποθέτησης διαμήκους φρακτής.

Το εμβαδό του διάκενου πριν τη μετατόπιση του φορτίου θα είναι ίσο με:

$$A_1 = B \cdot h \Leftrightarrow A_1 = 10.2 \cdot 0.691 = 7.048 \ m^2$$

Δεδομένου ότι τα εμβαδά A_2 και A_3 είναι ίσα με $\frac{A_1}{2}$, τα εμβαδά αυτά θα είναι ίσα και μεταξύ τους. Επομένως θα ισχύει:

$$A_1 = A_2 + A_3 = 2A_2 = A \ (1)$$

Το εμβαδό A₂ ισούται με: $A_2 = \frac{x^2 tan 25}{2}$ (2)

$$A_1 = 2 A_2 \underset{(1)}{\Leftrightarrow} 10.2 \cdot 0.691 = \frac{2 \cdot x^2 \tan 25}{2} \Rightarrow x = \sqrt{\frac{10.2 \cdot 0.691}{\tan 25}} = 3.888 m$$

Το κέντρο βάρους του τριγώνου A2 απέχει από το επίπεδο συμμετρίας απόσταση ίση με:

$$d_1 = \left(\frac{b}{2} - \frac{x}{3}\right) \Leftrightarrow \left(\frac{10.2}{2} - \frac{3.888}{3}\right) = 3.804 \ m$$

Το κέντρο βάρους του τριγώνου A3 απέχει από το επίπεδο συμμετρίας απόσταση ίση με:

$$d_2 = \frac{x}{3} = 1.296 m$$

Επομένως η συνολική ροπή της των εμβαδών του διάκενου θα είναι:

$$M_1 = A \cdot (d_1 - d_2) = 7.048 \cdot (3.804 - 1.296) = 17.767 \ m^3$$

Η αντίστοιχη ροπή του όγκου θα είναι:

$$M_2 = M_1 \cdot L = 56.55 \cdot 17.767 = 999.58 \ m^4$$

Η τιμή του συντελεστή προσαύξηση στην περίπτωση του μερικώς πληρωμένου διαμερίσματος είναι ίση με 1.12 και έτσι η τελική θεωρούμενη ροπή του όγκου ισούται με: $VHM = 1.12 \cdot M_2 = 1.12 \cdot 999.58 = 1119.53 m^4$

Η τοποθέτηση διαμήκους φρακτής, επιδρά θετικά στη μείωση της ροπής του όγκου που οφείλεται στη μετατόπιση φορτίου. Είναι προφανές ότι με την αύξηση του πλήθους των διαμηκών χωρισμάτων επιτυγχάνεται η μείωση της εν λόγω ροπής, παρόλα αυτά, η εφαρμογή αυτής της πρακτικής θα προκαλούσε δυσκολίες κατά την φόρτωση και την εκφόρτωση του πλοίου.

Εναλλακτικά, έναντι της τοποθέτησης διαμήκους φρακτής, θα ήταν δυνατό να τροποποιηθούν τα καλύμματα του στομίου κυτών και να φέρουν διαμήκη ενισχυτικά, τέτοια ώστε να επιτρέπουν το διαχωρισμό της ελεύθερης επιφάνειας του φορτίου σε υψηλές στάθμες, όμως αυτό θα οδηγούσε σε μία ευρείας έκτασης μετασκευή που θα είχε με τη σειρά της σημαντικό οικονομικό κόστος.

Για τους παραπάνω λόγους, εξετάζονται εναλλακτικές λύσεις, που κατά την εφαρμογή τους δεν προκύπτουν τα παραπάνω προβλήματα.

Περίπτωση 2: Τοποθέτηση Αποσπώμενης Εγκάρσιας Φρακτής

Η απόλυτη πλήρωση του χώρου φορτίου με φορτίο πυκνότητας μεγαλύτερης από την πυκνότητα του φορτίου στην ομογενή κατάσταση πλήρους φόρτωσης, θα οδηγούσε σε εκτόπισμα μεγαλύτερο από το μέγιστο επιτρεπόμενο.

Για το λόγο αυτό, οι καταστάσεις 3 και 4 είχαν βαθμό πληρότητας 91.5 % στο χώρο φορτίου, καθώς ο βαθμός αυτός ήταν ο μέγιστος δυνατός βαθμός φόρτωσης του χώρου φορτίου με φορτίο πυκνότητας (0.797 Tn/m³).

Ο όγκος του φορτίου που αντιστοιχούσε στο βαθμό αυτόν, ήταν ίσος με 4287.85 m³ και αντιστοιχεί στο μέγιστο όγκο που μπορεί να φορτωθεί στο πλοίο για τη συγκεκριμένη πυκνότητα φορτίου

Η ίδια ποσότητα όγκου είναι όμως δυνατό να προκύψει μειώνοντας το μήκος του χώρου φορτίου και αυξάνοντας ταυτόχρονα τη στάθμη του φορτίου. Αυτό οδηγεί σε σημαντική μείωση του διάκενου και κατ' επέκταση της ροπής από τη μετακίνηση φορτίου.

Η μείωση του μήκους του χώρου φορτίου είναι δυνατό να προκύψει από την τοποθέτηση αποσπώμενης εγκάρσιας φρακτής σε θέση τέτοια, ώστε να προκύπτει η παραπάνω ποσότητα όγκου όταν η στάθμη του φορτίου γίνει ίση με τη μέγιστη δυνατή.

Το μήκος l' του χώρου φορτίου μετά την τοποθέτηση της αποσπώμενης εγκάρσιας φρακτής μπορεί να υπολογιστεί από τη διαίρεση του όγκου που αντιστοιχεί στο βαθμό πληρότητας 91.5% προς το γινόμενο του μέγιστου ύψους στάθμης με το πλάτος, δηλαδή:

$$l' = \frac{4287.85}{10.2 \cdot 8.125} = 51.738 \ m$$

Βέβαια, θα χρειαστεί να ληφθεί υπόψη ότι η αύξηση της στάθμης του χώρου φορτίου, θα επιδράσει αρνητικά στην ευστάθεια, καθώς αυξάνεται το ύψος της θέσης του κέντρου βάρους, για το λόγο αυτό, θα χρειαστεί προληπτικά να ερματιστούν ορισμένες δεξαμενές έρματος, οι οποίες ήταν κενές στις προηγούμενες καταστάσεις φόρτωσης.

Επιπλέον, θα χρειαστεί να ληφθεί υπόψη ο περιορισμός του μέγιστου βυθίσματος. Για το λόγο αυτό πραγματοποιείται μείωση του παραπάνω μήκους, προκειμένου να υπάρχει περιθώριο για χρήση των δεξαμενών έρματος, έτσι ώστε η επιπλέον χρήση έρματος να μην οδηγεί σε βυθίσματα μεγαλύτερα από το μέγιστο επιτρεπόμενο.

Ο χώρος φορτίου ξεκινάει από το νομέα 24, θέσης 15.25 m από το νομέα 0, λόγω των αιτιών που αναλύθηκαν παραπάνω, η αποσπώμενη φρακτή θα τοποθετηθεί στη θέση του νομέα 102, θέσης 65.95 m από το νομέα 0, διαμορφώνοντας έτσι το μήκος του χώρου φορτίου σε 50.7 m.

Μία διάταξη του χώρου φορτίου καθ' αυτόν τον τρόπο οδηγεί στην περίπτωση πλήρους διαμερίσματος, με διάκενο ύψους 150 mm, περίπτωση δηλαδή ταυτόσημη με τις περιπτώσεις των καταστάσεων φόρτωσης 1 και 2.

Εικόνα 7-2: Ελεύθερη επιφάνεια σιτηρών κατά την τοποθέτηση οριζόντιας φρακτής

Δεδομένου ότι ο μόνος παράγοντας που είναι πλέον διαφορετικός, είναι το μήκος του χώρου φορτίου, η ροπή της επιφάνειας του διάκενου μετά τη μετατόπιση του φορτίου M₁, λαμβάνεται όπως αυτή υπολογίστηκε στις καταστάσεις 1 και 2, δηλαδή:

 $M_1 = 6.080 \ m^3$

Έτσι, η νέα ροπή του όγκου από τη μετατόπιση φορτίου θα είναι:

 $M_2 = l' \cdot M_1 = 50.7 \cdot 6.080 = 308.26 \, m^4$

Τέλος, η θεωρούμενη συνολική ροπή του όγκου θα είναι ίση με:

 $VHM = 1.06 \cdot M_2 = 1.06 \cdot 314.57 = 326.76 \, m^4$

Ο τρόπος αυτός παρουσιάζει σημαντικά καλύτερα αποτελέσματα ως προς τη μείωση της ροπής του όγκου που προκύπτει από τη μετατόπιση φορτίου, το μειονέκτημα όμως του τρόπου αυτού είναι ότι χρειάζεται να μεταφερθεί μικρότερη ποσότητα φορτίου προκειμένου να είναι δυνατή η εφαρμογή του, λόγω του επιπλέον έρματος που θα φορτωθεί.

Παρόλα αυτά, ο τρόπος αυτός είναι εύκολος ως προς την υλοποίηση, καθώς δεν απαιτεί μόνιμη εγκατάσταση και θεωρείται ότι αποτελεί τη βέλτιστη λύση όσον αφορά την τροποποίηση του χώρου φορτίου, καθώς χρειάζεται να εφαρμόζεται μόνο στην περίπτωση φορτίων που είναι βαρύτερα από αυτά της ομογενούς κατάστασης φόρτωσης που περιγράφονται στις καταστάσεις 1 και 2, για το λόγο αυτό θεωρείται η βέλτιστη λύση για την μείωση της συνολικής ροπής του όγκου από τη μετατόπιση φορτίου.

7.2. Αποτελέσματα Ευστάθειας Μετά Την Τοποθέτηση Αποσπώμενης Εγκάρσιας Φρακτής.

7.2.1. Αλλαγή διαστάσεων Χώρου Φορτίου και Διαμόρφωση Νέων Καταστάσεων Φόρτωσης

Προτού πραγματοποιηθούν εκ νέου οι υπολογισμοί ευστάθειας για τις παραπάνω καταστάσεις, θα πρέπει να πραγματοποιηθεί η αλλαγή του μήκους στο χώρο φορτίου στο πρόγραμμα MaxSurf Stability.

Με τη χρήση της επιλογής "Room Definiton Window", τροποποιείται το πρωραίο άκρο του χώρου φορτίου, έτσι ώστε να αντιστοιχεί στη θέση των 65.950 m από την αρχή των αξόνων.

	Large Angle St 🗸 SF 45 A	rrival 🗸	Intact		8 0	• @ • • •	=> ~= 14	ue 🗖 📾 🗆 🕿 🛛 🗖 i	5 60 🖶 🎰 e 🗗
File	Edit View Case Ana	lysis Resu	lts Disp	olay Dat	a Wind	ow Help B	entley Cloud Services		
	Name	Туре	Intact Perm. %	Damaged Perm. %	Specific gravity	Fluid type	Boundary Surfaces	Aft m	Fore m
22	DB 4Sb (W.B. Tk)	Linked Tan	100	100	1.025	Water Ballast	none	44.500	54.250
23	Side Ballast No4 Ps (W.B. Tk)	Tank	100	100	1.025	Water Ballast	none	28.900	52.300
24	Side Ballast No4 Sb (W.B. Tk)	Tank	100	100	1.025	Water Ballast	none	28.900	52.300
25	Side Ballast No 5 Ps (W.B. Tk)	Tank	100	100	1.025	Water Ballast	none	15.250	28.900
26	Side Ballast No 5 Sb (W.B. Tk)	Tank	100	100	1.025	Water Ballast	none	15.250	28.900
27	DB 5 Ps (W.B. Tk)	Tank	100	100	1.025	Water Ballast	none	15.248	28.900
28	DB 5 Ps (W.B. Tk)	Linked Tan	100	100	1.025	Water Ballast		13.301	15.248
29	DB 5 Sb (W.B. Tk)	Tank	100	100	1.025	Water Ballast	none	15.248	28.900
30	DB 5 Sb (W.B. Tk)	Linked Tan	100	100	1.025	Water Ballast		13.301	15.248
31	Tk No 7 Ps (F.W. Tk)	Tank	100	100	1	Fresh Water	none	0.000	4.200
32	Tk No 7 Sb (F.W. Tk)	Tank	100	100	1	Fresh Water	none	0.000	4.200
33	Tk No 16 Sb (Dirty Oil Tk)	Tank	100	100	0.92	Lube Oil		10.018	13.332
34	Tk No 17 c (Sump Tk)	Tank	100	100	0.92	Lube Oil		10.051	12.000
35	Tk No 15c (Sludge Tk)	Tank	100	100	0.92	Lube Oil		12.000	12.650
36	Tk No 15c (Sludge Tk)	Linked Tan	100	100	0.92	Lube Oil		10.051	13.300
37	Tk No 13 Ps (Dirty Water Tk)	Tank	100	100	1			10.018	13.332
38	tK No 6 A Ps (Boiler Tk)	Tank	100	100	0.84	Diesel		4.851	7.450
39	Tk No 6 Ps (Aux. Eng. Tk)	Tank	100	100	0.84	Diesel		7.450	10.050
40	tK No 6 A Sb (Boiler Tk)	Tank	100	100	0.84	Diesel		4.851	7.450
41	Tk No 6 Sb (Aux. Eng. Tk)	Tank	100	100	0.84	Diesel		7.450	10.050
42	Tk No 14 P (L.O. Tk)	Tank	100	100	0.92	Lube Oil		13.300	15.250
43	Tk No 10 Sb (D.O. Daily)	Tank	100	100	0.84	Diesel	none	12.000	14.600
44	Tk No 11 Sb (D.O. Settling)	Tank	100	100	0.84	Diesel	none	12.000	15.250
45	Tk No 12 (D.O. Daily)	Tank	100	100	0.84	Diesel	none	0.150	1.200
46	Cargo Hold (Cargo)	Tank	100	100	0.797		none	15.251	65.950
47	Aft End - Fr 7 (Tk No 7 Ps (F.W.	Linked Neg	100	100			none	0.000	4.200
48	Aft End - Fr 7 (Tk No 7 Sb (F.W.	Linked Neg	100	100			none		4.200
49	Engine Room Fr 7 - Fr 24 (DB9	Linked Nea	100	100			none	15 248	
	Room Definition Sound	ding Pipes	Cross-	Flood De	finition (I	Key Points <u>{</u> №	largin Line Points	<u>{</u> Μ <	

Εικόνα 7-3: Διαμόρφωση του χώρου φορτίου έπειτα από την τοποθέτηση αποσπώμενης εγκάρσιας φρακτής στο νομέα 102.

Οι νέες καταστάσεις φόρτωσης για τη μεταφορά φορτίου με συντελεστή στοιβασίας 45 $\frac{ft^3}{LT}$ διαμορφώνονται πλέον ως εξής:

Κατάσταση φόρτωσης 3': Πλοίο κατά την αναχώρηση, πλήρως φορτωμένο στον τροποποιημένο χώρο φορτίου, ομοιογενώς κατανεμημένου φορτίου συντελεστή στοιβασίας 45 $\frac{ft^3}{L.T.}$ (πυκνότητας 0.797 Tn/m³), με πλήρεις δεξαμενές, καύσιμα και εφόδια, και επιπλέον έρμα στη δεξαμενή DB2C (W.B.Tk).

Κατάσταση φόρτωσης 4': Πλοίο κατά την άφιξη, πλήρως φορτωμένο στον τροποποιημένο χώρο φορτίου, ομοιογενώς κατανεμημένου φορτίου συντελεστή στοιβασίας 45 $\frac{ft^3}{L.T.}$ (πυκνότητας 0.797 Tn/m³) και με 10 % βαθμό πληρότητας σε δεξαμενές, καύσιμα και εφόδια, και επιπλέον έρμα στη δεξαμενή DB2C (W.B.Tk).

1

7.2.2. Υπολογισμοί Ευστάθειας Υπό Το Κριτήριο Καιρού

Κατάσταση φόρτωσης 3'

Γ

	Πίνο	ακας 7-1: Κατάσταση	3' (S.F. 45 Departu	are)			
Tank	Quantity (%)	total mass tone (Tn)	total volume (m³)	LCG (m)	TCG (m)	VCG (m)	FSM (Tn·m)
Fore Peak (W.B.Tk)	0%	0	0	77.684	0	0	0
DB2C (W.B.Tk)	100%	52.131	50.86	73.959	0	1.078	0
DB3 Ps (W.B.Tk)	0%	0	0	62.436	-2.593	0	0
DB3 Sb (W.B.Tk)	0%	0	0	62.436	2.593	0	0
Side Ballast No3 Ps (W.B. Tk)	0%	0	0	60.781	-5.721	1.23	0
Side Ballast No3 Sb (W.B.	0%	0	0	60.781	5.721	1.23	0
DB9C (D.O. Storage Tk)	98%	63.742	75.883	21.011	0	0.603	0
DB8C (D.O. Storage Tk)	98%	63.182	75.217	36.7	0	0.603	0
DB4Ps (W.B. Tk)	0%	0	0	42.977	-3.282	0	0
DB 4Sb (W.B. Tk)	0%	0	0	42.977	3.282	0	0
Side Ballast No4 Ps (W.B. Tk)	0%	0	0	40.6	-5.75	1.23	0
Side Ballast No4 Sb (W.B. Tk)	0%	0	0	40.6	5.75	1.23	0
Side Ballast No 5 Ps (W.B. Tk)	0%	0	0	0	0	1.23	0
Side Ballast No 5 Sb (W.B. Tk)	0%	0	0	0	0	1.23	0
DB 5 Ps (W.B. Tk)	100%	73.911	72.108	21.751	-3.918	0.639	0
DB 5 Sb (W.B. Tk)	100%	73.911	72.108	21.751	3.918	0.639	0
Tk No 7 Ps (F.W. Tk)	100%	14.807	14.807	2.577	-1.518	3.999	0
Tk No 7 Sb (F.W. Tk)	100%	14.807	14.807	2.577	1.518	3.999	0
Tk No 16 Sb (Dirty Oil Tk)	10%	0.874	0.95	11.706	1.885	0.083	5.493
Tk No 17 c (Sump Tk)	98%	3.115	3.386	11.158	0	0.603	0
Tk No 15c (Sludge Tk)	10%	0.489	0.531	11.862	-0.894	0.061	2.516
Tk No 13 Ps (Dirty Water Tk)	10%	0.613	0.613	11.788	-2.34	0.099	2.024
tK No 6 A Ps (Boiler Tk)	98%	6.227	7.414	6.132	-3.581	4.015	0
Tk No 6 Ps (Aux. Eng. Tk)	98%	5.067	6.033	8.674	-4.578	3.947	0
tK No 6 A Sb (Boiler Tk)	98%	6.227	7.414	6.132	3.581	4.015	0
Tk No 6 Sb (Aux. Eng. Tk)	98%	5.067	6.033	8.674	4.578	3.947	0
Tk No 14 P (L.O. Tk)	98%	6.908	7.509	14.219	-5.363	3.279	0
Tk No 10 Sb (D.O. Daily)	98%	6.537	7.782	13.362	4.578	3.019	0
Tk No 11 Sb (D.O. Settling)	98%	6.145	7.315	13.805	5.592	3.523	0
Tk No 12 (D.O. Daily)	98%	0.324	0.386	0.675	-0.375	4.845	0
Cargo Hold (Cargo)	100%	3348.738	4201.679	40.601	0	5.292	0
LightShip	1	1125		37.14	0	4.68	0
Crew & Effects	1	1		6.4	0	7.2	0
Provisions	1	3		6.4	0	7.2	0
Total Loadcase		4881.823	4632.833	38.729	0.006	4.818	10.033
FS correction						0.002	
VCG fluid						4.82	

Πίνακας 7-2: Στοιχεία για την πλεύση στην κατάσταση 3'			
Draft Amidships (m)	5.435		
Displacement (Tn)	4882		
Heel (deg)	0		
Draft at FP (m)	4.591		
Draft at AP (m)	6.28		
Draft at LCF (m)	5.491		
Trim (+ve by stern) (m)	1.689		
WL Length (m)	83.285		
Beam max extents on WL (m)	12.85		
Wetted Area (m ²)	1710.909		
Waterpl. Area (m ²)	979.953		
Prismatic coeff. (Cp)	0.773		
Block coeff. (Cb)	0.719		
Max Sect. area coeff. (Cm)	0.992		
Waterpl. area coeff. (Cwp)	0.916		
LCB from zero pt. (+ve fwd) (m)	38.688		
LCF from zero pt. (+ve fwd) (m)	37.364		
KB (m)	2.883		
KG fluid (m)	4.82		
BMt m	2.612		
GMt corrected (m)	0.674		
KMt m	5.494		
Immersion (TPc) (Tn/cm)	10.045		
MTc (Tn·m)	61.455		
Trim angle (+ve by stern) (deg)	1.2094		

Εικόνα 7-4: Πλευρική επιφάνεια για την εφαρμογή του κριτηρίου καιρού.

Πίνακας 7-3: Στοιχεία για την πλευρική επιφάνεια για την κατάσταση 3'				
Area Above WL (m ²) 382.263				
KG1 Under WL (m) 2.74				
KG2 Above WL (m)	7.954			

Πίνακας 7-4: Σημεία προοδευτικής κατάκλισης				
		Offset		
Downflooding Points	Longitudinal Position (m)	(m)	Vertical Position (m)	
Downflooding Point1	4.05	-1.2	11.4	
Downflooding Point2	4.05	1.2	11.4	

Εικόνα 7-5: Καμπύλη μοχλοβραχίονα επαναφοράς για την κατάσταση 3'.

Πίνακας 7-5: Πίνακας ελέγχου κριτηρίων ευστάθειας για την κατάσταση 3'					
Code	Criteria	Value	Units	Actual	Status
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 0 to 30	0.055	m.rad	0.0812	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 0 to 40	0.09	m.rad	0.1346	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 30 to 40	0.03	m.rad	0.0534	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.2: Max GZ at 30 or greater	0.2	m	0.418	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.3: Angle of maximum GZ	25	deg	48.2	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.4: Initial GMt	0.15	m	0.674	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.2.2: Severe wind and rolling				Pass
	Angle of steady heel shall not be greater than (<=)	16	deg	1.3	Pass
	Angle of steady heel / Deck edge immersion angle shall not be greater than (<=)	80	%	15.81	Pass

Κατάσταση φόρτωσης 4'

	Πί	νακας 7-6: Κατάστασ	η 4' (S.F. 45 Arrival	<i>l</i>)			
Tank	Quantity (%)	total mass tone (Tn)	total volume (m³)	LCG (m)	TCG (m)	VCG (m)	FSM (Tn∙m)
Fore Peak (W.B.Tk)	0%	0	0	77.684	0	0	0
DB2C (W.B.Tk)	100%	52.131	50.86	73.959	0	1.078	0
DB3 Ps (W.B.Tk)	0%	0	0	62.436	-2.593	0	0
DB3 Sb (W.B.Tk)	0%	0	0	62.436	2.593	0	0
Side Ballast No3 Ps (W.B. Tk)	0%	0	0	60.781	-5.721	1.23	0
Side Ballast No3 Sb (W.B.	0%	0	0	60.781	5.721	1.23	0
DB9C (D.O. Storage Tk)	10%	6.504	7.743	21.011	0	0.061	67.557
DB8C (D.O. Storage Tk)	10%	6.447	7.675	36.7	0	0.061	69.888
DB4Ps (W.B. Tk)	0%	0	0	42.977	-3.282	0	0
DB 4Sb (W.B. Tk)	0%	0	0	42.977	3.282	0	0
Side Ballast No4 Ps (W.B. Tk)	0%	0	0	40.6	-5.75	1.23	0
Side Ballast No4 Sb (W.B. Tk)	0%	0	0	40.6	5.75	1.23	0
Side Ballast No 5 Ps (W.B. Tk)	0%	0	0	0	0	1.23	0
Side Ballast No 5 Sb (W.B. Tk)	0%	0	0	0	0	1.23	0
DB 5 Ps (W.B. Tk)	100%	73.911	72.108	21.751	-3.918	0.639	0
DB 5 Sb (W.B. Tk)	100%	73.911	72.108	21.751	3.918	0.639	0
Tk No 7 Ps (F.W. Tk)	10%	1.481	1.481	3.556	-0.41	2.77	28.312
Tk No 7 Sb (F.W. Tk)	10%	1.481	1.481	3.556	0.41	2.77	28.312
Tk No 16 Sb (Dirty Oil Tk)	90%	7.867	8.551	11.694	2.154	0.593	5.493
Tk No 17 c (Sump Tk)	10%	0.318	0.345	11.158	0	0.062	0.524
Tk No 15c (Sludge Tk)	90%	4.398	4.78	11.862	-0.894	0.553	2.516
Tk No 13 Ps (Dirty Water Tk)	90%	5.521	5.521	11.737	-2.582	0.615	2.024
tK No 6 A Ps (Boiler Tk)	10%	0.635	0.756	6.27	-2.872	3.266	5.785
Tk No 6 Ps (Aux. Eng. Tk)	10%	0.517	0.616	8.736	-4.045	3.126	2.347
tK No 6 A Sb (Boiler Tk)	10%	0.635	0.756	6.27	2.872	3.266	5.785
Tk No 6 Sb (Aux. Eng. Tk)	10%	0.517	0.616	8.736	4.045	3.126	2.347
Tk No 14 P (L.O. Tk)	10%	0.705	0.766	14.25	-4.954	1.733	0.86
Tk No 10 Sb (D.O. Daily)	10%	0.667	0.794	13.677	4.466	1.522	0.182
Tk No 11 Sb (D.O. Settling)	10%	0.627	0.746	14.456	5.301	2.153	0.51
Tk No 12 (D.O. Daily)	10%	0.033	0.039	0.675	-0.375	4.625	0.031
Cargo Hold (Cargo)	100%	3348.738	4201.679	40.601	0	5.292	0
Lightship	1	1125		37.14	0	4.68	0
Crew & Effects	1	1		6.4	0	7.2	0
Provisions	1	0.3		6.4	0	7.2	0
Total Loadcase		4713.345	4439.423	39.349	0	4.918	222.472
FS correction						0.047	
VCG fluid						4.965	

Πίνακας 7-7: Στοιχεία για την πλεύση στην κατάσταση 4'			
Draft Amidships (m)	5.281		
Displacement (Tn)	4714		
Heel (deg)	0		
Draft at FP (m)	4.657		
Draft at AP (m)	5.906		
Draft at LCF (m)	5.32		
Trim (+ve by stern) (m)	1.249		
WL Length (m)	83.203		
Beam max extents on WL (m)	12.865		
Wetted Area (m²)	1683.672		
Waterpl. Area (m ²)	976.378		
Prismatic coeff. (Cp)	0.781		
Block coeff. (Cb)	0.736		
Max Sect. area coeff. (Cm)	0.992		
Waterpl. area coeff. (Cwp)	0.912		
LCB from zero pt. (+ve fwd) (m)	39.314		
LCF from zero pt. (+ve fwd) (m)	37.506		
KB (m)	2.782		
KG fluid (m)	4.965		
BMt m	2.685		
GMt corrected (m)	0.502		
KMt m	5.467		
Immersion (TPc) (Tn/cm)	10.008		
MTc (Tn·m)	60.75		
Trim angle (+ve by stern) (deg)	0.8944		

Εικόνα 7-6: Πλευρική επιφάνεια για την εφαρμογή του κριτηρίου καιρού.

Πίνακας 7-8: Στοιχεία για την πλευρική επιφάνεια για την κατάσταση 4'				
Area Above WL (m ²) 397.269				
KG1 Under WL (m) 2.6				
KG2 Above WL (m)	7.856			

Πίνακας 7-9: Σημεία προοδευτικής κατάκλισης				
		Offset		
Downflooding Points	Longitudinal Position (m)	(m)	Vertical Position (m)	
Downflooding Point1	4.05	-1.2	11.4	
Downflooding Point2	4.05	1.2	11.4	

Εικόνα 7-7: Καμπύλη μοχλοβραχίονα επαναφοράς για την κατάστο	ιση 4'.
--	---------

Πίνο	ακας 7-10: Πίνακας ελέγχου τ	κριτηρίων ευστάθεια	ας για την κατάσταση 4'		
Code	Criteria	Value	Units	Actual	Status
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 0 to 30	0.055	m.rad	0.066	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 0 to 40	0.09	m.rad	0.111	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.1: Area 30 to 40	0.03	m.rad	0.044	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.2: Max GZ at 30 or greater	0.2	m	0.364	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.3: Angle of maximum GZ	25	deg	47.3	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.1.2.4: Initial GMt	0.15	m	0.502	Pass
A.749(18) Ch3 - Design criteria applicable to all ships	3.2.2: Severe wind and rolling				Pass
	Angle of steady heel shall not be greater than (<=)	16	deg	2.5	Pass
	Angle of steady heel / Deck edge immersion angle shall not be greater than (<=)	80	%	21.6	Pass
	Area1 / Area2 shall not be less than (>=)	100	%	258.8	Pass

7.2.3. Υπολογισμοί Ευστάθειας Σιτηρών

Κατάσταση φόρτωσης 3'

Πίνακας 7-11: Στοιχεία για την κατάσταση 3'				
Displacement (Tn)	4882			
GMt corrected (m)	0.674			
Density (Tn/m ³)	1.255			
Stowage Factor = 1/Density (m ³ /Tn)	326.76			
VHM (m ⁴)	0.053			
λ_0 (m) = VHM / (Displacement x Stowage Factor)	0.043			

Εικόνα 7-8: Μοχλοβραχίονας επαναφοράς και βραχίονας ροπής σιτηρών για την κατάσταση 3'.

Πίνακας 7-12: Πίνακας ελέγχου κριτηρίων ευστάθειας σιτηρών για την κατάσταση 3'						
Code	Criteria	Value	Units	Actual	Status	
Ch 7. Stability Requirments	7.1.1.a Angle of equilibrium	12.0	deg	4.0	Pass	
Ch 7. Stability Requirments	7.1.1.b Angle of equilibrium ratio	100.00	%	47.81	Pass	
Ch 7. Stability Requirments	7.1.2 GZ area between limits type 1	0.0750	m.rad	0.1021	Pass	
Ch 7. Stability Requirments	7.1.3.a Value of GMt at	0.300	m	0.674	Pass	

Κατάσταση φόρτωσης 4':

Πίνακας 7-13: Στοιχεία για την κατάσταση 4'		
Displacement (Tn)	4714	
GMt corrected (m)	0.502	
Density (Tn/m ³)	1.255	
Stowage Factor = 1/Density (m ³ /Tn)	326.76	
VHM (m ⁴)	0.055	
λ_0 (m) = VHM / (Displacement x Stowage Factor)	0.044	

Εικόνα 7-9: Μοχλοβραχίονας επαναφοράς και βραχίονας ροπής σιτηρών για την κατάσταση 4'.

Πίνακας 7-14: Πίνακας ελέγχου κριτηρίων ευστάθειας σιτηρών για την κατάσταση 4'					
Code	Criteria	Value	Units	Actual	Status
Ch 7. Stability Requirments	7.1.1.a Angle of equilibrium	12.0	deg	6.0	Pass
Ch 7. Stability Requirments	7.1.1.b Angle of equilibrium ratio	100.00	%	51.82	Pass
Ch 7. Stability Requirments	7.1.2 GZ area between limits type 1	0.0750	m.rad	0.0780	Pass
Ch 7. Stability Requirments	7.1.3.a Value of GMt at	0.300	m	0.502	Pass

8. ΣΥΜΠΕΡΑΣΜΑΤΑ

Οι διαφορές που παρουσιάζουν οι καταστάσεις φόρτωσης 3,4 και οι τροποποιημένες καταστάσεις φόρτωσης 3',4' αντίστοιχα έγκεινται στο μήκος του χώρου φορτίου, αλλά και στην ταυτόχρονη πλήρωση μίας δεξαμενής έρματος. Είναι προφανές πλέον ότι μία απλή μείωση του μήκους του χώρου φορτίου θα οδηγούσε σε μία σημαντική βελτίωση στην ευστάθεια σιτηρών, ειδικά αν κανείς αναλογιστεί και το ποσό της μείωσης της ροπής που προκαλείται από τη μετατόπιση όγκου του φορτίου.

Τα κριτήρια της ευστάθειας σιτηρών που οι καταστάσεις 3 και 4 δεν ανταποκρίνονταν επιτυχώς, αφορούσαν την εγκάρσια γωνία που θα ισορροπήσει το πλοίο υπό την επίδραση της ροπής από τη μετατόπιση φορτίου και το εμβαδό που ορίζουν η καμπύλη του μοχλοβραχίονα επαναφοράς με το βραχίονα της ροπής από τη μετατόπιση φορτίου, από την παραπάνω γωνία μέχρι τις 40°.

Με βάση τα παραπάνω φαίνεται ότι τα πρωταρχικά αίτια για τη μη εκπλήρωση των κριτηρίων ευστάθειας ήταν η ροπή από τη μετατόπιση του φορτίου, η γωνία που θα ισορροπήσει το πλοίο έπειτα από τη δράση αυτής της ροπής και η τιμές του μοχλοβραχίονα επαναφοράς στο εύρος τον εξεταζόμενων γωνιών. Προκειμένου λοιπόν να βελτιωθεί η ευστάθεια του πλοίου ως προς τα κριτήρια της ευστάθειας σιτηρών, οι προσπάθειες βελτιστοποίησης συγκεντρώνονται στις μεθόδους που:

- Ι. Μειώνουν τη ροπή από τη μετατόπιση του φορτίου.
- II. Μειώνουν τη γωνία εγκάρσιας κλίσης από τη μετατόπισης φορτίου.
- III. Αυξάνουν τη τιμή του μοχλοβραχίονα επαναφοράς για συγκεκριμένο εκτόπισμα.

Εικόνα 8-1: Τοποθετημένη αποσπώμενη φρακτή. Πηγή: Εικόνα Αρχείου

Η τοποθέτηση αποσπώμενης εγκάρσιας φρακτής ("movable bulkhead") αποτελεί μία λύση με την οποία βελτιώνεται σημαντικά η ευστάθεια σιτηρών, καθώς περιορίζει στο μέγιστο δυνατό βαθμό την ύπαρξη κενών, η πρακτική αυτή όμως έχει νόημα να εφαρμόζεται όταν η φόρτωση του χώρου φορτίου γίνεται με φορτία τέτοιας πυκνότητας, όπου η πλήρης φόρτωση τους , θα οδηγούσε σε βυθίσματα μεγαλύτερα από το μέγιστο επιτρεπόμενο. Συνεπώς, τότε θα υπήρχαν είτε προβλήματα με την ικανοποίηση των απαιτούμενων εξάλων όπως αυτά ορίζονται από την Loadlines 1966/1988, είτε κατασκευαστικά θέματα αντοχής του πλοίου καθώς θα ξεπερνούσαμε το βύθισμα «κατασκευαστικής αντοχής» (scantling draft).

Η μείωση της γωνίας εγκάρσιας κλίσης που οφείλεται στη μετατόπιση φορτίου, όπως αναλύθηκε στο θεωρητικό σκέλος, προκύπτει από τη σχέση:

$$tan\theta = \frac{M}{\Delta \cdot GM} \Rightarrow \theta = \operatorname{atan}\left(\frac{M}{\Delta \cdot GM}\right)$$

Όπου:

- Μ, η ροπή από τη μετατόπιση φορτίου.
- Δ, το εκτόπισμα.
- GM, το μετακεντρικό ύψος.

Επομένως ένας τρόπος για να μειωθεί η γωνία αυτή, είναι μέσω της τοποθέτησης έρματος στις δεξαμενές των διπύθμενων, καθώς έτσι ταυτόχρονα θα αυξανόταν το εκτόπισμα, και επίσης θα μειωνόταν το ύψος της θέσης του κέντρου βάρους KG και κατ' επέκταση θα αυξανόταν το μετακεντρικό ύψος GM, οδηγώντας σε μία σημαντική αύξηση του παρονομαστή του παραπάνω κλάσματος, μειώνοντας έτσι τη γωνία εγκάρσιας κλίσης.

Η προσθήκη έρματος στις δεξαμενές των διπύθμενων δρα επίσης με θετικό τρόπο στην τιμή του μοχλοβραχίονα επαναφοράς, καθώς, όπως αναλύθηκε και στο θεωρητικό μέρος, ο μοχλοβραχίονας για συγκεκριμένο εκτόπισμα, δίνεται από τη σχέση:

$$GZ = KN - KGsin\varphi$$

Όπου:

- ΚΝ, η τιμή των παραμετρικών καμπυλών ευστάθειας για συγκεκριμένο εκτόπισμα και γωνία εγκάρσιας κλίσης.
- φ, η γωνία εγκάρσιας κλίσης.

Επομένως, μία μικρότερη τιμή για το ύψος της θέσης του κέντρου βάρους θα οδηγούσε σε μεγαλύτερη τιμή του μοχλοβραχίονα επαναφοράς και κατ' επέκταση θα οδηγούσε σε μεγαλύτερο εμβαδό μεταξύ της καμπύλης του μοχλοβραχίονα επαναφοράς και του βραχίονα της ροπής από τη μετατόπιση φορτίου.

Με βάση τα παραπάνω, προκειμένου να αποφεύγεται όταν είναι δυνατό η τροποποίηση του χώρου φορτίου, χρειάζεται σε πρώτο χρόνο να γίνεται διερεύνηση για το εάν είναι επαρκής τρόπος ο ερματισμός του πλοίου, προκειμένου να ανταποκρίνεται το πλοίο στα απαιτούμενα κριτήρια ευστάθειας.

9. ΠΡΟΤΑΣΕΙΣ

Στο σημείο αυτό προτείνονται ορισμένες ιδέες για τη συνέχιση της παρούσας εργασίας και για μελλοντική έρευνα.

- Μελέτη αύξησης βυθίσματος για υπάρχον πλοίο, προκειμένου να δύναται να μεταφέρει φορτία σιτηρών μεγαλύτερης πυκνότητας σε πλήρη στάθμη φορτίου.
- Δημιουργία κώδικα για τον αυτόματο υπολογισμό της ροπής του όγκου από τη μετάθεση όγκου φορτίου, για χώρους φορτίου σύνθετης γεωμετρίας με χρήση τρισδιάστατων μοντέλων για τους χώρους φορτίου.
- Δημιουργία κώδικα για τον αυτόματο έλεγχο της ευστάθειας λαμβάνοντας υπόψη την επιτυχή ανταπόκριση στα κριτήρια ευστάθειας A.749(18) και MSC. 23(59).

Η πρώτη πρόταση αφορά τις μελέτες γραμμής φόρτωση, άθικτης ευστάθειας, διαμήκους αντοχής και τοπικής αντοχής, προκειμένου το πλοίο να έχει τη δυνατότητα να πλέει σε υψηλότερα βυθίσματα και κατ' επέκταση να δύναται να έχει πλήρεις τους χώρους φορτίου με φορτία υψηλότερης πυκνότητας.

Η δεύτερη πρόταση, έχει ως σκοπό διαμορφώσει έναν κώδικα, ο οποίος μειώνει σημαντικά τους χρόνους για τον υπολογισμό της εν λόγω ροπής στις περιπτώσεις όπου ο χώρος φορτίου έχει σύνθετη γεωμετρία. Ο κώδικας αυτός, θα μπορεί ενδεχομένως να περιλαμβάνει και την επίδραση στη διαμόρφωση της στάθμης του φορτίου στα πλήρη κύτη, όταν υπάρχουν διαμήκη χωρίσματα ή ενισχυτικά.

Τέλος, η Τρίτη πρόταση, έχει ως σκοπό τη δημιουργία ενός κώδικα που βοηθάει το πλήρωμα στη λήψη τεχνικών αποφάσεων, οι οποίες αφορούν την ευστάθεια σιτηρών, σε έναν τέτοιο κώδικα θα μπορούσε ενδεικτικά να εισάγονται στοιχεία σχετικά με την κατάσταση φόρτωσης και το πρόγραμμα να εμφανίζει μήνυμα σχετικό με τη συμμόρφωση του πλοίου ως προς τις απαιτήσεις ευστάθειας.

10. ПАРАРТНМА

10.1. Σύμβολα

	Πίνακας 10-1 : Σύμβολα	
Ар	Πρυμναία κάθετος	
Fp	Πρωραία κάθετος	
L	Μήκος πλοίου	
LOA	Μήκος (Ολικό)	
LBP	Μήκος (μεταξύ καθέτων)	
В	Πλάτος πλοίου	
D	Κοίλο	
Т	Βύθισμα (πρωραίο, πρυμναίο)	
Та	Βύθισμα στην πρυμναία Κάθετο	
Τf	Βύθισμα στην πρωραία Κάθετο	
тм	Βύθισμα στο μέσο	
t,trim	Διαγωγή	
∇	Όγκος γάστρας (εκτοπίσματος)	
ρ	Πυκνότητα	
γ	Ειδικό βάρος	
Δ	Εκτόπισμα	
сВ	Συντελεστής γάστρας	
Cm	Συντελεστής μέσης τομής	
Ср	Πρισματικός συντελεστής	
Cwl	Συντελεστής ισάλου επιφανείας	
LCF	Διαμήκης θέση κέντρου πλευστότητας	
LCB	Διαμήκης θέση του κέντρου άντωσης	
тсв	Εγκάρσια θέση του κέντρου άντωσης	
VCB	Κατακόρυφη θέση του κέντρου άντωσης	
LCG	Διαμήκης θέση του κέντρου βάρους	
TCG	Εγκάρσια θέση του κέντρου βάρους	
VCG	Κατακόρυφη θέση του κέντρου βάρους	
WSA	Βρεχόμενη επιφάνεια	
ТРС	Μεταβολή εκτοπίσματος ανά εκατοστό μεταβολής βυθίσματος	
MTC	Ροπή για δημιουργία διαγωγής ενός εκατοστού	
GMT	Εγκάρσιο μετακεντρικό ύψος	
GML	Διάμηκες μετακεντρικό ύψος	
GZ	Μοχλοβραχίονας Επαναφοράς	
BMT	Εγκάρσια μετακεντρική ακτίνα	
BML	Διαμήκης μετακεντρική ακτίνα	
θ	Γωνία εγκάρσιας κλίσης	
φ	Γωνία διαμήκους κλίσης	
КМТ	Ύψος μετάκεντρου από την τρόπιδα	
KML	Ύψος Διαμήκους μετακέντρου από την τρόπιδα	

10.2. Στοιχεία Γεωμετρίας Πλοίων

Εικόνα 10-1: Βασικές περιοχές πλοίων.

Πηγή: Byung Suk Lee. Hydrostatics and Stability of Marine Vehicles : Theory and Practice. 2019.

Πηγή: Byung Suk Lee. Hydrostatics and Stability of Marine Vehicles : Theory and Practice. 2019.

Μήκος μεταξύ κάθετων LBP ή LPP: Είναι η απόσταση μεταξύ της πρυμναίας και πρωραίας καθέτου.

Ολικό μήκος (LOA): Είναι η απόσταση μεταξύ του ακροπρωραίου και του ακροπρυμναίου σημείου. Στα περισσότερα πλοία υπερβαίνει το LBP. Η υπέρβαση περιλαμβάνει την προεξοχή της πρύμνης και της πλώρης. Εάν υπάρχει βολβοειδής πλώρη που εκτείνεται πέρα από το άκρο της πλώρης, το LOA μετράται μέχρι το ακραίο σημείο του βολβού.

Μήκος ισάλου: (LWL): Είναι η διαμήκης απόσταση της ισάλου σε κάθε δεδομένο βύθισμα. Για τα περισσότερα πλοία το μήκος ισάλου είναι διαφορετικό για διαφορετικά βυθίσματα.

Εικόνα 10-3: Κύριες διαστάσεις κατά το εγκάρσιο.

Πλάτος (B): Πρόκειται για το πλάτος του πλοίου, μετρούμενο στην εσωτερική επιφάνεια των ελασμάτων της γάστρας. Αυτό είναι το πλάτος που χρησιμοποιείται συνήθως για τους περισσότερους υπολογισμούς, αλλά δεν είναι το μεγαλύτερο πλάτος του πλοίου.

Κοίλο (D): Είναι η κατακόρυφη απόσταση που μετράται στο μέσο του πλοίου από την τρόπιδα έως το ύψος του καταστρώματος στην πλευρά.

Βύθισμα (Τ): Πρόκειται για την κατακόρυφη απόσταση από τη διαμορφωμένη βασική γραμμή έως την ίσαλο γραμμή στην οποία το πλοίο επιπλέει.

Διαγωγή (trim): Η διαφορά μεταξύ των βυθισμάτων στην πρυμναία και την πρωραία κάθετο.

Υψος εξάλων (Freeboard) : Πρόκειται για την κατακόρυφη απόσταση από την ίσαλο γραμμή έως το κατάστρωμα στην πλευρά. Το ύψος αυτό σχετίζεται με τη μέγιστη επιτρεπόμενη γραμμή φόρτωσης και το ελάχιστο επιτρεπόμενο ύψος εξάλων, το οποίο διέπεται από τους κανονισμούς που ισχύουν για τη γραμμή φόρτωσης.

Κυρτότητα καταστρώματος (Camber): Πρόκειται για την καμπυλότητα του καταστρώματος κατά το εγκάρσιο.

Σιμότητα (sheer): Πρόκειται για την προοδευτική ανύψωση του καταστρώματος από το μέσο του πλοίου προς το προς τα άκρα.

Όγκος εκτοπίσματος (V): Πρόκειται για τον ολικό όγκο του ρευστού που εκτοπίζεται από το πλοίο.

Συντελεστές Μορφής (C_b , C_M , C_p , C_{vp} , C_w)

Συντελεστής γάστρας C_b: Είναι ο λόγος του όγκου εκτοπίσματος προς τον όγκο του παραλληλεπιπέδου που έχει πλευρές, L_{BP}, B, T δηλαδή:

$$C_B = \frac{\nabla}{L_{BP}B T}$$

Εικόνα 10-4: Συντελεστής γάστρας C_{b.}

Πηγή: Byung Suk Lee. Hydrostatics and Stability of Marine Vehicles : Theory and Practice. 2019.

Συντελεστής μέσης τομής C_M: Είναι ο λόγος του εμβαδού της μέσης τομής (A_M) προς το εμβαδό του παραλληλογράμμου που έχει πλευρές B, T, δηλαδή:

Πηγή: Byung Suk Lee. Hydrostatics and Stability of Marine Vehicles : Theory and Practice. 2019.

Πρισματικός συντελεστής C_p **:** Είναι ο λόγος του όγκου εκτοπίσματος προς τον όγκο του πρίσματος που έχει μήκος L_{BP} και επιφάνεια ίση με αυτή της μέσης τομής (A_M) , δηλαδή:

Εικόνα 10-6: Πρισματικός Συντελεστής C_{p.}

Πηγή: Byung Suk Lee. Hydrostatics and Stability of Marine Vehicles : Theory and Practice. 2019.

Συντελεστής ισάλου επιφανείας C_W: Είναι ο λόγος του εμβαδού της ισάλου επιφάνειας προς το εμβαδό του περιγεγραμμένου παραλληλογράμμου με πλευρές L_{WL}, B, δηλαδή:

$$C_W = \frac{A_W}{L_{WL} B}$$

Εικόνα 10-7: Συντελεστής ισάλου επιφανείας C_{W}

Πηγή: Byung Suk Lee. Hydrostatics and Stability of Marine Vehicles : Theory and Practice. 2019.

Πηγή: ("*Hydrostatics and Stability of Marine Vehicles : Theory and Practice.*, Byung Suk Lee 2019")

11. ΒΙΒΛΙΟΓΡΑΦΙΑ

11.1. Έντυπη

- 1. Belenky, Vadim L, et al. Contemporary Ideas on Ship Stability : Risk of Capsizing. Cham, Switzerland, Springer Nature, 2019.
- 2. Σπύρου, Κωνσταντίνος. Δυναμική ευστάθεια πλοίου. Kallipos.gr, 2015.
- 3. Byung Suk Lee. *Hydrostatics and Stability of Marine Vehicles : Theory and Practice*. Singapore Springer, 2019.
- 4. ΛΟΥΚΑΣ, ΑΘΑΝΑΣΙΟΣ ΔΗΜ. ΘΕΩΡΙΑ ΠΛΟΙΩΝ Ι. Ο.Δ.Ε.Β., 1981.
- 5. ΦΡΑΓΚΟΥΛΗΣ, Β. *ΤΕΧΝΙΚΗ ΤΟΥ ΠΛΟΙΟΥ*. ΤΟΜΟΣ ΠΡΩΤΟΣ, ΝΑΥΠΗΓΙΑ, Εκδόσεις Β. Φραγκούλης, 1966.
- 6. RAWSON, K. J. & E. C TUPPER. *ΒΑΣΙΚΗ ΘΕΩΡΙΑ ΠΛΟΙΟΥ*. ΤΟΜΟΣ 1, ΠΑΝΕΠΙΣΤΗΜΙΑΚΕΣ ΕΚΔΟΣΕΙΣ ΕΜΠ, 2002.
- 7. ΖΩΓΡΑΦΑΚΗΣ, ΕΜΜΑΝΟΥΗΛ. Ν. *ΣΤΟΙΧΕΙΑ ΝΑΥΠΗΓΙΑΣ*. Ίδρυμα Ευγενίδου, 1993.
- 8. ΚΟΛΛΙΝΙΑΤΗΣ, ΙΩΑΝΝΗΣ ΕΜ. *ΕΥΣΤΑΘΕΙΑ- ΚΟΠΩΣΕΙΣ*. Ίδρυμα Ευγενίδου, 2016.

ΑΝΤΩΝΙΟΥ, Α. ΜΕΛΕΤΗ ΠΛΟΙΟΥ. 2η ΕΚΔΟΣΗ, Εκδόσεις Σελλούντος, 1984.

9. ΖΥΓΟΜΑΛΑΣ, ΝΙΚΟΛΑΟΣ Α. ΜΕΤΑΦΟΡΑ ΦΟΡΤΙΩΝ. Γ' ΕΚΔΟΣΗ, Ιδρυμα Ευγενίδου, 2021.

11.2. Διαδικτυακή

- 1. HISTORY OF STABILITY CRITERIA: <u>https://www.prs.pl/uploads/history_of_stability_criteria.pdf</u> [Accessed 26 Feb. 2022].
- 2. Royal Museums Greenwich: <u>https://www.rmg.co.uk/stories/topics/mary-rose</u>) [Accessed 13 Mar. 2022].
- 3. Vasa Museet <u>https://www.vasamuseet.se/en/vasa-history/disaster</u>) [Accessed 13 Mar. 2022].
- 4. Wikipedia <u>https://en.wikipedia.org/wiki/Vasa_(ship)</u> [Accessed 13 Mar. 2022].
- 5. HISTORY OF CALCULUS https://en.wikipedia.org/wiki/History_of_calculus [Accessed 19 Mar. 2022]
- 6. IACS UR-L5 Req. 2004/Rev.4 2020

https://iacs.org.uk/publications/unified-requirements/ur-l/

[Accessed 29 Jul. 2022]

 RESOLUTION A.749(18) adopted on 4 November 1993 CODE ON INTACT STABILITY FOR ALL TYPES OF SHIPS COVERED BY IMO INSTRUMENTS

https://www.cdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMORes olutions/AssemblyDocuments/A.749(18).pdf

[Accessed 09 Sep. 2022]

8. RESOLUTION MSC.267(85) (adopted on 4 December 2008) ADOPTION OF THE INTERNATIONAL CODE ON INTACT STABILITY, 2008 (2008 IS CODE)

https://www.cdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMORes olutions/MSCResolutions/MSC.267(85).pdf

[Accessed 09 Sep. 2022]

9. Interpretations of the International Convention on Load Lines, 1966

https://iacs.org.uk/media/3753/ui_ll_pdf900.pdf

[Accessed 09 Sep. 2022]

- 10. AutoCAD. Autodesk | 3D Design, Engineering & Construction Software. [online] Available at: <u>https://www.autodesk.com/</u>
- 11. Rhinoceros3D (2019). Rhino 5 for Windows and Mac. [online] Available at: https://www.rhino3d.com/
- 12. MAXSURF Modeler . www.bentley.com. (n.d.). Bentley | Infrastructure & Engineering Software & Solutions. [online] Available at: <u>https://www.bentley.com/en</u>.
- 13. MAXSURF Stability . www.bentley.com. (n.d.). Bentley | Infrastructure & Engineering Software & Solutions. [online] Available at: <u>https://www.bentley.com/en</u>.