UNIVERSITY OF WEST ATTICA
FACULTY OF ENGINEERING
DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Diploma Thesis

A study of virtualization technologies for the support of virtual labs

]
)

{ ] 5
be 4

{
£

Student: ARISTEIDIS BALTZOIS
Registration Number: 04363

Supervisor

CHARALAMPOS Z. PATRIKAKIS
Professor Dept. of Electrical and Electronics Engineering

ATHENS-EGALEO, SEPTEMBER 2022



A comprehensive study of virtualization technologies for the support of virtual labs

VNO AYT/,‘,&
& ) ¢, TANENIZTHMIO AYTIKHE ATTIKHE
& 2
2 0 Z EXOAH MHXANIKQN
4

TMHMA HAEKTPOAOTI' QN KAT HAEKTPONIKQN MHXANIKQN

Awmdopatikn Epyacio

Mo, peAETI TOV TEYVOAOYLMOV EIKOVIKOTOIN GG Y10 TV VTOGTHPLEN TOV

EIKOVIKAOV £PYUGTNPLOV

®ovtntig: APIETEIAHE MITAATZQHX
ApOpog Mntpmov: 04363

Emprénov Kadnynmig

XAPAAAMIIOX MTATPIKAKHX
Kadnyntmig oto Tpqpoe Hiektpordyowv kon Hiektpovik@v Mnyavik@v

AOHNA-AIT'AAEQ, XEIITEMBPIOX 2022
MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng



A comprehensive study of virtualization technologies for the support of virtual labs

H Amlopotikn Epyacio £ytve anodext kot fabuoroyndnke and v £\ TpIEA] ETITPOTY:

(Ovopatendvopo), (Ovopatenmvopo), (Ovopatendvopo),
(BoBpida) (BoBpida) (BaOuioa)
Digitally signed . . )
by Charalampos Perl kl IS E)l,gl;t:\rlill)(/“s;lgned . .. Digitally signed
Patrikakis Pa M|Cha|l by Michail
padopoulos s
W o Pa pad o [apa . . Feidakis
2022.10.13 o Feidakis Date: 20221013
17:48:37 +0300] POUIOS 181736 10300 16:09:07+0300
(Ymoypagr) (Ymoypagi) (Ymoypogi)
MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 3




A comprehensive study of virtualization technologies for the support of virtual labs

Copyright © Mg empviaén tovtog dwawmdpotoc. All rights reserved.
MMANEHNIXTHMIO AYTIKHXZ ATTIKHYX kot Apweteiong Mroritlong, Xentéppprog, 2022

ATayopeveTal 1 avVILypat], AToONKeEVOT Kot Stvoun TG Tapovcas epyacioc, & oAokANPoL
N TUNHOTOG VTG, Yo Epumopkd okomo. Emtpénetar  avatdnwon, arodrkevon kot dtovoun
Y. OKOTIO U1 KEPOOOKOTIKO, EKTOLOEVTIKNG N EPEVVNTIKNG POONG, VIO TV TpolmdOeon va
AVOPEPETOL M TNYN TPOEAEVONG Kot va dwtnpeitar 1o wapoév unvopo. Epotipoata mov
aQOPOVV TN YPNON TNG EPYACING Y10 KEPOOOKOTIKO GKOTO TPEMEL VO, OmeLHVLVOVTAL TTPOG TOVG
OGLYYPOPELS.

Ot amdYelg Kol To. CLUTEPAGUATO TOV TEPEXOVTOL GE OVTO TO £YYPUPO EKPPALOLV TOV/TNV
oLYYPOQPED TOL Kol Ogv TPEMEL va epunvevbel 0Tl aviurpocwmevovy TS BEcEl TOL
emPAEmOvVTOg, NG emupomng e&étaong M TG emionues 0éoelg tov TunuoTog Kol TOL
[dpvparoc.

AHAQYXH XYTTPA®EA AIITAQCMATIKHX EPT'AXIAX

O k1O vroyeypoppévog Aptoteiong Mmoitldng tov Anuntpiov, pe apBud untpwov 04363
eortnmg tov IMavemomuiov Avtikng Attikng ™ Zyoing MHXANIKON tov Tunpartog
HAEKTPOAOTI'QON KAI HAEKTPONIKOQN MHXANIKQN,

OMAOVO vrevOuva o6TL:

«Eipon ovyypaéag ovtig g SOmAOMOTIKNG epyaciog Kot 6Tt kabe fondeta tnv omoia elya Yo
TNV TPOETOACIN TNG EIVOL TANPOS OVOYVOPIGUEVN Kol avagEpeTal otnv epyacia. Emiong, ot
Omoleg mNYEG amd TIG omoieg €kava ypnomn Oedopévmv, 10edv N Aééewv, eite akpipog eite
TOPUPPOUCLUEVES, AVAPEPOVTAL GTO GUVOAD TOVG, LE TANPT avVOQOPE GTOVG GLYYPOUPELS, TOV
€KOOTIKO 01KO 1N TO TEPLOOIKO, CLUTEPIAAUPOVOUEVOY KOl TOV TNYOV TOV EVOEYOUEVMS
xpnoorombnkoy amd 1o dadiktvo. Emiong, PePardve 6TL avt) 1 epyacio £xel cuyypapel
O HEVO TOKAEICTIKG KOl OTOTEAEL TPOTOV TVELLOATIKNG 1010KTNGI0G TOGO KNG LoV, OGO Kot
tov [dpHuaroc.
[Mopdapaon e aveotépm aKadNUaikng Hov evBivng amotelel OVGLUOOT AOYO Yo TV OVAKANGON
TOV OIMADUATOS LLOV.

Hpepounvia 18/9/2022

O Anlov
Apioteiong MroAtlong

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 4



A comprehensive study of virtualization technologies for the support of virtual labs

DEDICATION

| dedicate this Diploma Thesis to all those who try so many things and don't give up until they find
what gives them real meaning in life. In addition, | dedicate it to my family and to all those who
supported me, and those who tried to prevent me from making any choices during these six years of
study.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 5



A comprehensive study of virtualization technologies for the support of virtual labs

ACKNOWLEDGEMENTS

| would like to thank my professor and supervisor Prof. Patrikakis Charalampos. Thanks to him and
his love for the subject he teaches, | became interested in further involvement in the field of
networks, at a time when | had lost all interest in continuing my studies. Furthermore, | thank him
for his support, his guidelines, his availability and his attention to every detail.

Moreover, | would like to also thank Ph.D. candidate Mr. Michael G. Xevgenis. His role as an
Assistant to the Supervisor was also important, as his knowledge in the field of cloud computing
and virtualization technologies was crucial in addressing problems that emerged. | thank him for the
time he devoted to me and for his prompt response to any issue.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 6



A comprehensive study of virtualization technologies for the support of virtual labs

Hepiinyn

H mapodoo dumhopotikny mopovotdler v mpododo kot tnv €EEMEN TV TEYVOAOYIOV NG
ewovikonoinong, tov Cloud Computing xkob®dg kot Tov containerization. H ypnon 1ng
EIKOVIKOTIOINONG 00N YNOE GTNV UEYIGTN YPNON KOl EKUETAAAEVCT] TOV PLGIKAOV EELANPETNTAOV, EVD
N ewloaymyn tov Cloud Computing wapéyet TV SuvVOTOTNTA GE OTOLOOINTOTE OPYOVICUO 1 XPNOTN VO
&xel mpodcPacn oe mOpovg Omote oTiypn embopel, yopic va dbéTel avayKaoTikd T0 KO TOV
KévTpo dedopévov. EmmAéov, n texvoloyia TG E1KOVIKOTOINGONG EIGNYOYE TO EIKOVIKA UNYOVILLOTO
eV TO containerization to containers. Ta televtaioc ypovia, 0 TPOTOG dwnyeipong Kot
EVOPYNOTPOONG T®V containers amotedel aviikeipevo evpeiag HeEAETNG, evd epyareio Ommwg TO
Kubernetes amoktovv oAoéva kol peyoAvtepn {fnon yuw v onmpiovpyio vrodopdv mov Ho
vroomnpiEovv epappoyéc ko vanpeciec. Ta televtaio ypdvia N €EEMEN AVTAOV TOV TEXVOAOYIDOV
YpPNoomoteiton Koty KoBopd EKTOOELTIKOVS OKOMOVS, HE TNV ONUIovPYio. EKOVIKMOV
gpyaotnpiov. X1dyog Tovg eivar n Bertiooon g nAekTpoviknig pabnong.

To mepapatikd pépog g mTapoHGg SIMAMUATIKNG, CTOYEVEL GTO GYXEOWOUO KOl T1 ONUovpyio
EIKOVIKOV epyaoTnpiov ypnoipomoidvtoc to Aoyiopukd Kubernetes kot mpocaplOGUEVES EIKOVEG
Docker, mpocopoidvovtag Tnv 01001KaGio EVOS EPYNSTNPION LE PUOIKN TAPOVGIaL.

AEEea1g — KAEWOWA: sicovikomoinon, swovikd unyavipatoa, kévipo dedopévamv, cloud computing,

Docker, containers, Kubernetes

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 7



A comprehensive study of virtualization technologies for the support of virtual labs

Abstract

This thesis presents the progress and evolution of virtualization, Cloud Computing and
containerization technologies. The use of virtualization has led to the maximum use and utilization
of physical servers, while the introduction of Cloud Computing provides the ability for any
organization or user to access resources whenever they wish, without necessarily having their own
data center. In addition, virtualization technology introduced virtual machines while
containerization introduced containers. In recent years, the way containers are managed and
orchestrated has been widely studied, while tools such as Kubernetes are becoming increasingly in
demand for creating infrastructure to support applications and services. In recent years, the
development of these technologies has also been used for purely educational purposes, with the
creation of virtual laboratories. Their aim is to improve e-learning.

The experimental part of this thesis aims to design and create virtual labs using Kubernetes software
and custom Docker images, simulating the process of a physical lab.

Keywords: virtualization, virtual machines, data centers, cloud computing, Docker, containers,

Kubernetes

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 8



A comprehensive study of virtualization technologies for the support of virtual labs

Meplexopeva
I TS A0 0 I T o] L= PRSPPI 11
LLEST OF FIQUIES ...ttt ekttt ettt ettt e e st 11
AIPNADETICAI INUEX ...ttt 14
INTRODUGTION L..oiiiiiiiiiiiiiiiiiiieeteeeeeeaeaeesaeraerearaaeees———————————————————————————————————————....a.—.....a—aanaa—————.. 15
Object of the DIiploma TRESIS ....cceeeeeeeeeeeeemeeeeeeeeeneeenenneesensnsnnnsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnns 15
PUrpose and 0BjJeCtiVeS .....cciiiiiiiiiiiiiiiiiinr e e e e e e e e e e e e e e e e e aeeaaaaans 15
IMEtROAOIOBY....cciiiiiiiiiiiiiii e e e e e e e e e e e e e e e e e e e et e e e e e et eeeeteaeeeeeeeeeeeeteaaaeane 15
0T T 1Y - 1 o Tt 15
I 1 oL =Pt 15
1 Virtualization VS Data CeNTETS ........ceeiiiieiiiee e ie et ee e e e e annes 16
1.1 DefiniNg VirtUaliZation... ..o s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s 16
1.2 Historical BackgroUnd....... .. s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s 17
1.3 Defining Virtual Machinegs........ .. s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s 17
1.4 HY P EIVISOT. cceereeeiiiiiiiiietnneeiiiiniiieenneesiiestiieesnsessssssstiressssssssssssreesssssssssssssssssssssssssssssssnnsssssssssssannns 18
1.5 Advantages and Disadvantages of Virtualization. ..........cccccccceemmeemeenemnemnneemmnnmmmne... 19
1.5.1 F Yo YY1 =Y<L T PP PPPPPPPRt 20
1.5.2 DT EY: 1o AV 2= ] - == 20
1.6 [0 L= = I o T 1 = N 21
1.7 Data center Virtualization........coovvvueeiiiiniiiniinnnnniiiinisseisseeesseeesssee 22
1.8 Benefits of virtual data CeNnters. ........cciviiiiininneniiiiiiierssee s asss e s 23
2 (@4 (o100 [ @] 4] 011 | X1 o S0P S ST 25
2.1 Defining Cloud COMPULING. ... s s rr s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s e n s 25
2.2 Historical BackgroUNd....... ... s s s s s e s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s e s e e e s 26
2.3 Needs for Cloud computing in bUSINESSES. ......cccciiiiiiiiiiiiiriririrrrrrrrrrrrrrrrrrr s ss s s s s s s s s s s s e s 27
2.4 Cloud Computing Characteristics. .......ccuuiiiiiiiiiiiiiiiiiiieiieeerereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeseeeeenn 28
2.5 Cloud SErvice MOAEIS. ..ccoovvueeriiiiiiiiiisnnneniiiiiiiissnssseniiieeissseeiiimeisssseesiseessssssseeesssessssssssnses 29
2.5.1 INFrastructure-as-a-ServiCe (18@S). ....cvuurruieiiiiiiiiiiiiie e ee e e e e e e e e e e e e e eeereesaae s 29
2.5.2 Platform-as-a-SEIVICE (PA@S). ...uiieiiiiieiiiiieeeeeeeeeeeie et e e e e e e e e e e e e e eabaeeeeeeeeeesaaaeas 30
2.5.3 Software-as-a-Service (SaaS). ...ccoviiiiiiiiie 30
254 Comparison of CloUd SEIVICES. ...ccciii i 30
2.5.5 Cloud SErvice ProViders. ... 31
2.6 Cloud deployment Models...........ccceeiiiiiiiiiiiicccccececcrccrererrrrrerreeee s es s ereeee e e e e e e e e e eseeseessseeseesasaesanen 31
2.6.1 o 1Y 1Yol o1« 1RSSR 31
2.6.2 0] o] 1ol Fo T Lo PSPPSR 32
2.6.3 CommUNILY CloUd. ... 33
2.6.4 HYDBIIA ClOUG. .. .uuiiiiiiiiiiii e nnnnnnn 33
2.6.5 Comparison of cloud deployment models. ... 34
2.6.6 Relationships between cloud deployment and cloud service models. .......cccccoeeeiiiiiiiiiiiiiiiiiieeennn, 35
2.7 Advantages and Disadvantages of cloud computing. ..........cceeeeeeeeeeeeneeeemnenennnnnennnnnnnnnsnssnnnnnnsnnnns 35
2.7.1 Advantages of CloUd COMPULING. .....eeiiiiiiiiiiiiiiiiiiiiiieeeieeeeeeeeereeeeereeeereeeeesaeeeesressssrssssrrsrresrsrrrarrrrees 36
2.7.2 Disadvantages of cloud COMPULING. ......uuuuuuuii e aan 36
3 Containerized technologies: Kubernetes and DOCKEF . ...........ccocveeviiiiieeiiiiieee e 37
3.1 Defining Containerization and CONtaINers. ......ccciiiiiiiiiiiiiiiiiieieeerereeeeeceeeeeeeeseseeeseesssssesssssssssssssnnns 37
3.2 Virtual Machines vs CONtaINers. .......uuueeeemmmmnmmnmmmmmmmmiimmmmmmsmsmsssmmsssssss..s. 38
3.3 [T o] (] 40

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 9



A comprehensive study of virtualization technologies for the support of virtual labs

3.3.1 T o) o [ o BV K <N e (o Yol =] SRS 40
3.3.2 (B ToTol =T o= ol o1 (=Tt { U YRS 41
3.33 Docker image and DOCKEr CONTAINET. ....uu i s 42
3.34 DOCKET NEEWOIKING. ©evvvvttiiiiiiiiiiiiittit s 42
3.35 DT 0 Y0 = Y o T == 43
3.3.6 Container orchestration and Docker Swarm ..., 44
3.4 LT = 4 4 =T = 45
34.1 REASONS 10 USE KUDEINELES. ...uuiiiiiiiii s 46
3.4.2 QU] =T Y =T [ o 1 =Tt { U T UUUT 46
3.4.3 Master Node overview and itS COMPONENTS. ....uuuuuuuuuuii s a7
3.4.4 Worker node overview and its COMPONENtS. .....cccoiiiiiiiiiiiiii 48
3.4.5 KUDEIrNetes NETWOIKING ....uueeeiiiiiii s 49
3.4.6 Replica Sets and DepPloymMENTS. ... ... i e s 49
3.4.7 KUDBINELES SEIVICES. ..vviiiiiiiiieiiiiieeee ettt ettt e e e e s sttt e e e e e e s ssaabbbeeeeeeessesanbbaaaeeaaesas 50
3.4.8 KUDEINEEES SEOIAZE .uuvvuuiiiiiiiiiiiiitt s 50
3.4.9 YAML configuration files in KUDEINEtES. ........uvviiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeee e reereearereee 51
4 ViIrtUal 12D USE CASE. .....vvvieeiiiee e 52
4.1 LY LT = I oS 52
4.2 Virtual 1ab solUtioN. ......ciiiiiiiiiiiiinceenrr e scsssse s sasss e s s s s s sanss s e s s s s sssnes 52
5 Implementation of virtual 1abs. ... 55
5.1 Host Machine and Oracle VMM VirtualBoX Manager. ......cccceiiiiiiiiiiiiiiiniiiiinssssssssssssssssssssssssssssssssns 55
5.2 Minikube installation and cluster configuration. ..., 56
5.3 DEPIOYMENLS. ...eecceeccccrrcccrrrrrrrree e e s e s e e e s s s e s s s s e s s s s s e s s s s s s s s s s s s s s e s s s s s s e s s e e s e e s e e e e e e e e e e e e e e e e e e e e s e e e e e e nn e e naanaan 58
5.4 R =] Yo S 60
5.5 N O EJS. «eiieieiereereeeeerreerereeser e e re s e s se e s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s aasaasaasasaasassssssasasasssssassssssansnnssnsns 62
5.6 (01T To] L3OO PUPPPPPPPPUPPRS 63
5.7 Code presentation in SECHIONS. ...ccciiiiiiiiiicccc e e e e e e e e e e e e e e s eseeeeeeneens 63
5.8 Deploying our iNfrastrUCEUNE. ... .o rrrrrrrrrr s ss s rr s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s 68
6 (@0 103 11157 o L PSPPSR 76
Bibliography — References — INternet RESOUICES.........cuveiiuireiiiie e ciee e s siee e 77

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 10



A comprehensive study of virtualization technologies for the support of virtual labs

List of Tables

Table 1.1 : Historical background of Virtualization [4]..........couerieriiniiieeeeee e 17
Table 1.2: Advantages and disadvantages Of VIrtualization. ..............ccoceevueerienieeneenienie e 19
Table 1.3: Data centers categorization DY Size [10]. .....cocueereeriiriiienieerie e e 22
Table 1.4: Data centers categorization in tiers [11]. .....oooueeiieriiriieeenieeeeee e 22
Table 2.1: Cloud COMPULING [15]. .eevveeerieeiieeeriee ettt e cee et e e ete e s ere e s eteesteeessteeenaeeensaeesnseeennsesennns 26
Table 2.2: Historical background of Cloud COMPULING. .....cveeeiieeiiieiiee e 27
Table 2.3: Cloud services COMPAriSON [22]. ....cccveeeieeeiieeeiieeeieeeeeeeeseteeesreesereeste e e steeeseaeeesaeesnseeensessnnes 30
Table 2.4: Cloud Service ProViders [23].....ccueiecieeeiieeeieeeciee et et e e e sre e s rere e stee e steeesaeeeraeesnseeenneeennns 31
Table 2.5: Major advantages of cloud deployment models [24]. ....c.ooevveeiiiereciee e 34
Table 2.6: Comparison of cloud deployment MOdels [24]. .....cooveeeiiieiei e 34
Table 2.7: Advantages and Disadvantages of cloud COMPULING. .....c.coevcveriiiieiciie e 36
Table 3.1: Virtual machings VS CONAINELS. ........c.eiuiriiriiiiiieie ettt s 39
LI o] A AN o V=T 6] (o] TR 51
Table 4.1: Docker images of the Virtual 1abs. ..........c..oooveiiiiie i 52
Table 4.2: Curriculum of the Virtual 1aDs. ............coiiiiiiiii e 53
Table 4.3: TIMEIINE OF BVENLS. ....cveiuiiiiiiieie ettt s 53
Table 4.4: URL for each request MELNOU. ........ccvieiiiii ettt e e e 54
Table 5.1: Cronjob formats 0f the thESIS. .......eiiiii e et 63
List of Figures

Figure 1.1:Traditional vs New IT infrastructure [3]. ....ccooveeeoiieeie et et 16
Figure 1.2, : VIrtual MACKINE. ....ccvieiiiei ettt et et e e st e e s ate e e ave e etbeesnbaeenareaans 18
Figure 1.3: Type 1 and type 2 HYPEIVISOIS [7]..ccccuvieiiie ettt ettt ettt e eete e e sreeeeaneeens 19
Figure 1.4 : Atypical data CeNter ro0m [B]. ....eeeoiiieiiieeiiee ettt st e e e st e e sneee e 21
1o 0 = o @ [ 10 T I 1 PSPPSRSO 25
Figure 2.2: Cloud service Mmodels PYrami.........oocueieiiiieiieeeiiee ettt ettt et e e e eeseee e 29

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 11



A comprehensive study of virtualization technologies for the support of virtual labs

Figure 2.3: Cloud deployment MOEIS. .........coovieriiiiiieiieeee e 31
Figure 2.4: Organization using a cloud service from its own private cloud. ............coceevieniiniiinnecnicnieeee, 32
Figure 2.5: Organizations using cloud services from different providers. ..........ccocoveveeveenieniieeneenie e, 32
Figure 2.6: A community of organizations which are using resources from a community cloud. ................. 33
Figure 2.7: An organization that uses a hybrid cloud consisting of a private and a public cloud. ................. 33
Figure 2.8: PUDIIC VS HYDIA VS PIIVALE ........eoiiiiiiiiecee e s 34
Figure 2.9: Relationships of cloud computing components according to NIST........cccoeeiviiviriceeeicie e, 35
Figure 3.1: Application with or WithOUE CONTAINETS. .......ccveeieiieriie ettt seaeeens 37
Figure 3.2: CoNtaiNer arCNItECIUIE. .......eiiiieeeciieecieee e ertee ettt e e e s e e st e e saa e e steeesnteeenseesnneeesnseeennseenns 37
Figure 3.3: Virtual machines vs Container arChiteCtUIE. ........c.eeevveeeiiee i 38
Figure 3.4: Docker’s official 1080 [28]. vieiveieiiieeiiiieiiie et e sttt e st e rre e s e e sre e e saa e e sta e e sreeenreeereeesnseeenneeans 40
Figure 3.5: The Docker arChiteCtUre [28]. ....cccuveeicuiieiiie ettt st estee et e e aveeete e e snreeenneeens 41
Figure 3.6: Layers of Container Orchestration [33]......ccocveeeoiieiiee ettt 44
Figure 3.7: Kubernetes official 10g0 [36]. ....cccovveiiiiiiiiiieiie ettt e e e st e e sreeerereeens 45
Figure 3.8: Kubernetes architeCture [38]......cccuieeiiiiiiiiieiie ettt ettt e re e s re e e sreeenneeens 46
Figure 3.9: External vs Stacked etcd topology [39]......eeecveeiiieiiee ettt 48
Figure 3.10: Simple YAML file 0F @ POU. ....cccuviiiiiieciee ettt e st 51
Figure 4.1: ArchiteCture OF OUF thESIS. .....cviiiieiee ettt st e e st e v e e s te e e sareeesareeens 54
Figure 5.1: The Oracle VM Virtual BoOX MaNAJEL. .......ccccveeeiriieiieeeiieesieeesreeesveesteeesveessaveessreesresennneeens 55
Figure 5.2: MINIKUDE VEISION. ....ccveiiiiiieciee ettt ettt ettt s te e e st e e e sat e e sabe e e sabeeesseessaeesabaeennreeans 56
FIQUIE 5.3: DOCKEN VEISION. .....vviiiiieeciec ettt ettt et s e e et e e s te e e sab e e e eaaeesabeeesabeesnseesnseeesaseeennreeans 56
Figure 5.4: Version OF KUDECEL ........ooouei ittt et st re e e av e e s ta e e sbeeesareeens 56
Figure 5.5: Implementation Of the CIUSTEL. ........cooueiiiee et e et sre e e eareeens 57
Figure 5.6 Status OF the NOTES. ......eeeiiiiecee ettt et e st e e s te e eave e sateeesabeeesareeans 57
FIgUre 5.7: LISt OF the NOUES. .....eeeeeeeeiee ettt et s e e et e e sabe e e s abeeeaaeeeabeeesabesennreaans 58
Figure 5.8: Deployment for the computer NetWOrk 1ab. ...........coooviiiiieiiiiiic e, 58
Figure 5.9: Deployment for the deVOps 18D ........cviiiiii e 59
Figure 5.10: Service for the computer NEtWOrK 1ab. ........c.eoo i 60

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 12



A comprehensive study of virtualization technologies for the support of virtual labs

Figure 5.11:
Figure 5.12:
Figure 5.13:
Figure 5.14:
Figure 5.15:
Figure 5.16:
Figure 5.17:
Figure 5.18:
Figure 5.19:
Figure 5.20:
Figure 5.21:
Figure 5.22:
Figure 5.23:
Figure 5.24:
Figure 5.25:
Figure 5.26:
Figure 5.27:
Figure 5.28:
Figure 5.29:
Figure 5.30:
Figure 5.31:
Figure 5.32:
Figure 5.33:
Figure 5.34:
Figure 5.35:
Figure 5.36:
Figure 5.37:

Figure 5.38:

Service for the deVOPS 1aD........co..eiiiiiii e 61
Visual StUdIO COUE VEISION. .....coueeeieriiieieerie ettt sttt sttt ettt sbe e s 62
Node Version Manager VEISION. ....c.c.eevuierieriieniienireeiteesieesiteeseesieesise e bt esisesseesseesaeesneenseesane 62
INOUEIS VEISTON. ...ttt sttt et sb e st e bt e sbe e st e e nbeeeabeebeensee e 62
Cronjob FOrMAL [4B]. ..e.eeereeiieee ettt st ettt saneen 63
Boilerplate code for eXpress SErver t0 STaIt........coveveeeeereenieeieesee e e 63
Cronjob that 1aunches the CIUSTEN. .........evieiireee e 64
Cronjob that launches the computer Network 1ab. ............cccvveveiiiicireie e 64
Cronjob that terminates the computer NEtWOrK 1ab. ..........cceeveiiiiciieii e 65
Cronjob that launches the devops 1aD. ..........coocveriieii i 65
Cronjob that deletes the devops 1aD..........ocvvieiee i 66
Cronjob that StOPS the CIUSTET.......ccviie e 66
Implementation of the GET MELhOG. .........cccvviiiiiiiiei e 67
POST method implementation for the computer network 1ab. ..........ccccoevvviiiieeiciieccee e 67
POST method implementation for the devops 1ab. .........occvvviiiiiciii e 67
Status of the cluster before starting the iNfrastructure. ............coeeveveeeiee i 68
First output after the execution of OUF Program. .........ccveeecieieiiee i e 68
Logs from the firSt CroNjob. .......ccveiiiiie e s 69
STALUS OF the CIUSTEN. ..eeieeece e e 69
Logs from the SECONA CrONJOD. .......eiiiiii e e st 70
L@ 01 {01 PSPPSR 70
LT I =] 00 T PP 70
GET response after POST FEOUESL. ...eciviieiieeeieee et et ette e st e st e etee e sete e e sateeeaaeeebeeesnreeeanns 71
LISE OF SEIVICES. ...ttt ettt ettt ettt ettt nb et esbeennens 71
INGINX. utteeittee ettt e e et e e et e e e e be e e etteeebeeesabeeesabeeeabeesabaeesabeeessaesabasesateeessseeesaeesabaeennreeensreas 71
Logs from the third Cronjob. ..........cooiiiiiec e e s e e 72
Output of the kubectl get pods COMMANT. .........ceeriiiiiiiiieiee e e 72
GET response of the devops 1ab. ... 72

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 13



A comprehensive study of virtualization technologies for the support of virtual labs

Figure 5.39: GET response after the POST request for the devops 1aD. .........cocceevieriiiiiiniiiiceee, 73
FIQUIE 5.40: LISE OF SEIVICES. ..c.uveiiieiiiietieeiteee ettt ettt ettt st sb e sttt e sbe e st e e b e saeesaneennees 73
Figure 5.41:Figure 5.41: HEllO FrOML c..eoiiieiieeeceeee ettt et st 73
Figure 5.42: Logs from the fifth Cronjob...........cooiiiiiiie e 74
Figure 5.43: Output of the kubectl get pods COMMANG. .......cccueeriiiriiiiiieie e 74
Figure 5.44: Logs from the SIXTN CroNjob. .........cooiiiiiiiieieee e e 74
Figure 5.45: Status of the cluster after the termination of our infrastruCture. ...........ccceveiiicee e, 75

Alphabetical Index

API : Application Programming Interface
AWS : Amazon Web Services

CAPEX : Capital Expenditure

CLI : Command Line Interface

CPU : Central Processing Unit

CRM : Customer Relationship Management

EC2 : Amazon Elastic Compute Cloud
ERP : Enterprise resource planning
HTTP : Hypertext Transfer Protocol
laaS : Infrastructure as a Service

IBM : International Business Machines Corporation
IT : Information Technology

MAC : Media Access Control address
OPEX : Operational Expenditure

OS : Operating System

PaaS : Platform as a Service

REST : Representational State Transfer
SaaS : Software as a Service

VLAN : Virtual Local Area Network
VMM : Virtual Machine Monitor

VMs : Virtual Machines

YAML.: Yet Another Markup Language

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng

14



A comprehensive study of virtualization technologies for the support of virtual labs

INTRODUCTION

Object of the Diploma Thesis

This thesis aims to analyze how virtualization and containerization technologies have been adopted
into various sectors either in organizations or to each person itself. In particular, the theoretical part
will analyze the progress from the traditional architecture of a simple IT infrastructure to the
virtualized architecture and lastly into the container architecture.

The experimental part will present a solution that utilizes this progress of two containerized
technologies: Docker and Kubernetes, to create virtual labs that can be used from students.

Purpose and objectives

The purpose of this thesis is to create an infrastructure to support virtual labs using the Kubernetes
software and Docker images. The goal of the experiment is to provide a virtual environment for
students and improve the e-learning process.

Methodology

The composition of the theoretical part of the thesis was based on an extensive research and study
in books, web publications, theses, journal articles conference papers, and dissertations.

The experimental part was based a lot on the documentation of the different tools and software
used, which can be found on the internet. In addition, to compose the code of the web solution we
relied a lot on information retrieved from GitHub.

Innovation

Using the Kubernetes tool to manage and orchestrate Docker images via Pods, the creation of a
cluster that will be connected with a web solution are innovative elements as Kubernetes is a
relatively new tool and its use for creating infrastructure to support virtual labs has not been
presented before.

Structure

The first chapter analyzes the technology of virtualization and the way in which IT technology has
shifted from traditional data centers to it. The second chapter analyses the technology of cloud
computing. The third chapter analyzes the technology of Containerization, the different metaphors
of a virtual machine with containers, Docker and Kubernetes.

Chapter four introduces the virtual labs and analyzes the use case scenario of the practical part of
the thesis. The fifth chapter details the steps taken to implement the supporting infrastructure of the
virtual labs. The sixth and last chapter contains the results as well as ways in which our
experimental part can be developed in the future.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 15



A comprehensive study of virtualization technologies for the support of virtual labs

1 Virtualization vs Data Centers

In this chapter, we will provide an extensive analysis of virtualization technology and the closely
related technologies of virtual machines and hypervisors. Then we will refer to data centers and
how virtualization has penetrated them, creating virtualized data centers. Finally, we will refer to
the benefits that data center virtualization provides.

1.1 Defining Virtualization.

Virtualization is a software-based technology that has been around for almost half a century. It is an
evolving technology that creates a virtual image or “version” of something such as a server,
operating system, storage devices, or network resources so that they can be utilized on multiple
machines at the same time. The main aim of this technology is to manage the workload by
transforming traditional computing to make it scalable, efficient and economical [1].

The main goal of virtualization is to separate the physical hardware from the activities operating on
top of it, introducing a layer of abstraction. The elements of an IT infrastructure, which are network,
compute, storage, once separated from the material, create together a pool of resources that can be
used automatically and meet any need that arises.

Virtualization was firstly implemented by IBM as the logical division of the computer’s mainframe
into separated virtual computers called virtual machines. These partitions allowed mainframes to
run many different operations and applications simultaneously. To keep the Quality of Service at
the right level, virtualization technology is also responsible for the proper distribution of computing
resources into these applications. IBM defined it as: “Virtualization is the creation of substitutes for
real resources, that is substitutes that have the same functions and external interfaces as their
counterparts, but that differ in attributes, such as size, performance, and cost.” [2].

Moreover, virtualization has been reintroduced to many IT devices such as servers and desktop
computers. For this reason, many IT companies shifted their attention towards this new technology
and this evolution has a major and beneficial impact on modern organizations.

The following figure 1.1 is a proper example of virtualization. It depicts a traditional 1T
infrastructure versus a new IT infrastructure based on virtualization. They both consist of an
application, operating system, server, network and storage layer.

Traditional New

Applications e ° G e Applications e o e o
Operating system Operating system

-g998 PP

Network Network S

~FEEE N

Resource pool
Figure 1.1:Traditional vs New IT infrastructure [3].

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 16



A comprehensive study of virtualization technologies for the support of virtual labs

In the traditional infrastructure, one out of every layer component is connected. A single database is
connected with a single server in which a single operating system is installed. Only the network
layer has the ability to connect different storage and server systems together. The vertical blue
pillars point out a specific type of configuration of storage, network, server, OS and applications. In
this type, when a component in one of the layers has a failure, the whole pillar becomes
dysfunctional. For instance, if the server has a hardware failure the operating system and the
applications are down until it is repaired.

In the new infrastructure, the horizontal blue pillar that includes storage, network and server layers
display a new configuration. These layers cooperate with each other and function as a pool of
resources. Moreover, the orange vertical pillars indicate the software, which includes the operating
system and the application, that is not tied to a specific server. Compared to the traditional
infrastructure above, if a server has become non-operational the applications can continue to
function on a different server from the resource pool.

1.2 Historical background.

The following table illustrates some of the most important accomplishments in the evolution of
virtualization technology:

Year Accomplishment
Early 1960’s IBM Virtual Machine — System /360 model67
Mid 1960°s IBM time sharing — IBM 7044(44X)
Mid 1960’s Led to widely used VM/timesharing systems — IBM VM/370
Mid 1960’s Introduce concept of hardware virtualization.
Mid 1970’s Virtualization well accepted by users of various operating systems.
1980& 1990’s Declined when low-cost minicomputers and personal PCs were introduced.
1990’s Explosion in numbers of servers per enterprise.
Late 1990’s Underutilized servers, deployment, update and support challenges. Security and

Disaster recover issues.

1997 & 1998 Disco project — Multiple O.S. on single multiprocessor, led to development of

VMware
2003 Development Xen (open source VMM)
2007 Microsoft Oracle, Red Hat & Sun introduce new virtualization capabilities.

2007 & beyond | Continuous growth and increased popularity

Table 1.1 : Historical background of virtualization [4].

1.3 Defining virtual machines.

Virtual machine (VM) is a necessary component in virtualization technology. It is a virtual
environment that uses computing resources such as memory, CPU and its operating system.VM is
an isolated virtual computer that operates on a “physical machine” or a host computer and behaves
like a separate computer. A host computer can execute many VMs with different operating systems
and applications. However, a VM is not aware of other VM’ existence, instead, it has the illusion
that it operates alone.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 17




A comprehensive study of virtualization technologies for the support of virtual labs

A VM is typically comprised of either a single file or a group of files that can be read and executed
by the hypervisor.[5] Managing a virtual machine is similar to that of a standard folder as it can be
easily moved, copied and deleted at will. For this reason, VMs are extremely portable.

Each VM utilizes virtual memory, virtual CPU, virtual Network Interface Card (NIC) and other
types of hardware. To create this virtual version of physical hardware, a set of drivers is needed. A
driver is a software that provides the proper information to the operating system in order to
communicate with the computer hardware. When a VM s activated and online, the hypervisor
automatically assigns memory, CPU and disk space processor capacity.

Usually, a virtual machine is depicted as a box with the initials VM, mounted on a hypervisor. That
box consists of computational resources, a network, an operating system and applications running

inside of it, as the following figure:

VM — 0.S.

CPU
MEMORY
DISK
NIC

Figure 1.2. : Virtual Machine.

1.4 Hypervisor.

The hypervisor is a key-factor component in virtualization technology because it is software that is
responsible for the creation and management of virtual machines. Without this virtualization layer,
the implementation of a VM is not feasible. A hypervisor is a layer of software between VMs and
the physical hardware. It is able to create and manage multiple VMs that are operating on the same
physical server. A hypervisor distributes resources like memory and peripherals to the VMs. It is in
charge of providing each VM with the illusion of being run on its hardware, which is done by
exposing a set of virtual hardware resources (e.g. CPU, Memory, NIC, Storage) whose tasks are
then scheduled on the actual physical hardware [6].In the IT world, the term Virtual Machine
Monitor (VMM) is also used to identify a hypervisor. Hypervisors are categorized into two types:
Type 1 and Type 2.

e Type 1 hypervisor is also called “native hypervisor” or “bare-metal” because it is installed
directly on the hardware. His position is between the virtual machines and the underlying
hardware. It is software that distributes system resources to virtual machines. This type of
hypervisor is the most preferable from the companies because they are more efficient than
the hosted hypervisors. Examples of bare-metal hypervisors are Citrix Xen-Server, Oracle
VM, VMware ESX, Microsoft Hyper-V and ESXi.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 18



A comprehensive study of virtualization technologies for the support of virtual labs

e Type 2 hypervisor is also called “hosted” hypervisor. Its main difference between bare-metal
hypervisors is that it is placed on top of an existing operating system, known as a host
operating system. It provides the ability to use a different type of operating system on top of
another operating system. For instance, if an employee, who uses a personal computer with
Windows operating system wants to run an application in Linux, the hosted hypervisor can
create a virtual environment with a Linux operating system on top of the Windows operating
system and vice versa. Examples of hosted hypervisors are Oracle VM VirtualBox,
Microsoft Virtual PC, VMware Server, VMware Workstation Player.

[ EE

J

{ 23 s B
™ l] [\’.\( 2] [\’.\( n Hypervisor
\ J \ J

( 2y 4 ™

Hypervisor Host OS
\ J .
{ A 4 B

Hardware Hardware

\ J \ J

K Type | Hypervisor Type 2 Hypervisor /

Figure 1.3: Type 1 and type 2 Hypervisors [7].

In contrast to type 2, type 1 hypervisors are more secure due to the separation from the operating
system. Moreover, type 2 hypervisors have higher latency. Requests between hardware and
hypervisor must traverse an extra layer of the operating system. To choose the right hypervisor that
satisfies the needs of infrastructure, a comparison between their performance metrics is necessary.
These include support for virtual processors, CPU overhead and amount of maximum host and
guest memory. Moreover, a verification that the guest operating system is supportable by the
hypervisor is also necessary.

1.5 Advantages and Disadvantages of Virtualization.

Following are some of the most recognized advantages and disadvantages of virtualization, which
are explained in detail in the next chapters.

Advantages Disadvantages
Efficient hardware utilization Limitations
Portability Staff specialization

High-availability

Disaster Recovery

Isolation of services

Ease of testing in a development environment

Table 1.2: Advantages and disadvantages of virtualization.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 19




A comprehensive study of virtualization technologies for the support of virtual labs

1.5.1 Advantages.

Efficient hardware utilization: With virtualization, the need for a physical hardware system
is reduced. Since a single physical server is able to host numerous applications, physical
space, cooling, cabling and maintenance costs are reduced. With the use of a powerful
machine we can create many virtual machines, thus saving physical space in a data center
and energy to run the corresponding physical machines. Consequently, CAPEX and OPEX
are reduced.

Portability: One of the major advantages of virtualization is portability. Virtual machines can
easily be copied and relocated from one VM to another.

High-Availability: The Virtual machines’ properties provide the ability to create services
with high-availability specifications. Services in which the user does not perceive an
interruption even in case of partial disasters.

Disaster Recovery: Virtual machines also provide the ability to take snapshots of each
machine. Snapshots are copies that reflect the state of a virtual machine at a particular point
in time, maintaining and preserving the data and memory of the machine. By regularly
taking snapshots and backups, services can be restored to an operational state within a short
amount of time. In case of a disaster, we can use the backups to deploy new VMs and make
our applications available again.

Isolation of services: Server virtualization provides the ability to create separated virtual
environments which run different applications. In the case where a single physical server is
used, different applications increase the possibility of the services crashing with each other.
Moreover, security vulnerabilities or possible failures in an application cannot affect
services located on different virtual machines.

Ease of testing in the development environment: Through virtual machines, we can copy an
application, which is already running on another virtual machine, deploy it on a new virtual
machine and either make changes or perform penetration tests. Additionally, we have the
ability to create new applications or extensions of existing ones without creating a problem
in the smooth operation of our infrastructure.

1.5.2 Disadvantages.

Limitations: Virtualization is not compatible with every server and application. Therefore,
the solutions provided by this technology cannot be introduced in all IT infrastructures.

Staff specialization: Although virtualization services are widespread now, the creation and
maintenance of such a complex infrastructure requires IT, staff, with expertise in
virtualization technologies

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 20



A comprehensive study of virtualization technologies for the support of virtual labs

1.6 Data centers.

A data center is a specially designed structure that is deployed to house an organization’s IT
operations equipment. A data centers mainly consist of computing, network and storage resources
such as servers, firewalls, routers, switches and systems able to assist one or more organizations in
smooth operation. Some of these systems are cooling systems, fire and smoke systems, power
backup structures, ventilation and physical security systems. All these components interact with
each other and they are inextricably linked to achieving the main objective of data centers, which is
to process information. A data center stores manage and disseminate critical information, data and
applications for one or more businesses. For this reason, the security of this infrastructure must be
ensured and its management must be carried out by qualified and specialized personnel. The
following figure depicts a typical data center room:

Entrance Room
Power Backup Systems Telecommunications Room

Cooling System

— Cabinets

Raised Floor

Figure 1.4 : Atypical data center room [8].

However, modern data centers are made up of multiple of these data centers rooms. Due to the rapid
growth of the Internet economy and the explosion of information technology data centers are key
factors in this evolution and they have become the pillar in the IT world. Businesses have turned
their attention on how to utilize data centers to increase their profits. It is not compulsory for a data
center to be used only by a particular organization, nor is it compulsory for a business to use only
one data center. The services provided by a data center that is useful for the operation and
development of an enterprise can be summarised as follows [9]:

» Email and file sharing

» Customer relationship management (CRM)

» Databases and e-commerce

» Enterprise resource planning (ERP)

» Big data, machine learning, artificial intelligence

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 21



A comprehensive study of virtualization technologies for the support of virtual labs

For this reason, the size of a data center and the facilities that provide have changed over the years.

A typical categorization by size is shown in the following table:

Data Centers

Size Racks Crowd Space(m?)

Mini 1-10 1-25

Small 11-200 26-500
Medium 201-800 501-2000

Large 800-3000 2001-7500
Massive 3001-9000 7501-22500

Mega >=9001 >= 22501

A different way of categorizing data centers is the ANSI/TIA-942 standard. Through this standard,
data centers are divided into 4 tiers. Each of them has its specifics and characteristics as is shown in

the following table:

Table 1.3: Data centers categorization by size [10].

TIER 1 TIER 2 TIER 3 TIER 4
Customer startups Small business Large business organizations
Availability 99.671% 99.749% 99.982% 99.995%
Downtime (hrs) 28.8 22 1.6 0.04
Component level N N+1 N+1 2N+1
redundancy
Months to deploy 3 3-7 14-20 15-20
1% year of use 1965 1970 1985 1995

Table 1.4: Data centers categorization in tiers [11].

This tiering standard provides a better method to assess the quality and reliability of a data center's
server hosting capability. In addition, businesses have a comprehensive view on what type of data
center they need to choose, in order to be able to implement or transfer to a larger data center their
applications and services, in case they tend to scale up. A data center classified as a tier 4, is a data
center with the highest availability and the least downtime per year.

1.7 Data center virtualization.

As mentioned above, a data center is a physical infrastructure that contains mainly servers and,
understandably, can become saturated. Due to the increasing amount of data used daily and the use
of the internet by more and more businesses, the need for larger data centers with faster speeds is
increasing. However, it is not feasible for a data center to expand indefinitely and the solution to
this problem is brought by virtualization technology. Through server virtualization, a machine is

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 22



A comprehensive study of virtualization technologies for the support of virtual labs

able to operate as if it were 2 or more individual machines. In this way, the number of machines
required to implement different processes is reduced. In this way, the existing hardware can
accommodate more applications and be used to the fullest extent. Using high-speed data transfer
technology, it is possible to retrieve information stored in remote locations as quickly as if it were
stored on a local server. In this way, the information is extracted from the location, whereas in
traditional data centers, in order for information to be accessible by staff, it was stored on-site.
Network virtualization provides the ability to create multiple logical networks, as the downstream
network is treated as a pool of carrying capacity that can be continuously reused on demand.
Storage virtualization provides the ability to create pools of storage resources, separating the storage
management software from the hardware, in order to achieve scalability and flexibility.

A physical data center has the ability to operate in parallel with a virtual data center. This
interaction of physical and virtualized resources has led to the creation of Hyperconverged
infrastructure (HCI). Hyperconverged infrastructure (HCI) is the integration of different
technologies such as compute, storage and storage networking, virtualization, data networking and
automation, all under the umbrella of software-defined storage (SDS) and software-defined
networking (SDN)[12]. For the creation of legacy data centers, personnel with different
specializations are used, for example, system and storage administrators, network engineers,
software virtualization engineers. As a result, the infrastructure itself is divided into separate silo
groups, which aim to solve their problems and optimize their own processes, without worrying
about what is happening in the rest of the infrastructure. Through HCI, all silo groups and different
technologies are integrated, enabling centralized management, easier scaling, and flexibility.

The widespread use of virtualization in data centers has paved the way for the implementation of
modern cloud IT infrastructures. In cloud computing infrastructures, providers make use of
virtualization technologies to offer flexible, on-demand provisioning of resources to customers.
Usage of these resources is charged on a pay-for-use model[13]. Data centers that are implemented,
managed and used by the company itself are called on-premises data centers. In contrast, cloud data
centers are managed by the cloud company and enable their customers to operate their services and
manage their data within a virtual infrastructure. Therefore, companies that do not want to invest in
creating an on-prem data center, have the option of using infrastructure as a service from a cloud
provider. Cloud-based services create an innovative growth model from which all businesses of any
size can benefit. Moreover, the types of cloud provided by cloud providers are public, private,
hybrid and community cloud.

1.8 Benefits of virtual data centers.

The introduction of virtualization technology in data centers can bring several benefits, both for the
infrastructure itself and for the businesses that use them.

e Reducing the costs: With virtualization, fewer servers can support several applications and
services, while with the same hardware more data can be stored. Therefore, there is no need
to buy more hardware and therefore the costs of purchasing and maintaining it are reduced.
With virtualization, less equipment is required and therefore less space is needed. Within a
data center, due to the wide range of equipment that is being used, the heat in data centers
rooms is increasing rapidly. As the equipment grows, so does the number of cooling systems
in order to maintain the temperature at an ideal level. In addition to saving space,

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 23



A comprehensive study of virtualization technologies for the support of virtual labs

virtualization also reduces the number of cooling systems and thus the amount of electricity
required. In general, the carbon footprint of data centers is also decreasing.

Disaster Recovery: Through the virtual data center, a disaster recovery plan becomes an
easier process. The virtual machines can take snapshots of their operations. Therefore, in the
event of any malfunction, the virtual machines can easily retrieve their last snapshot and
continue to operate normally. In addition, moving the virtual machines to a different
location can be a simple task.

Better scalability: Virtual data centers provide the ability to companies to become more
flexible as their demands and needs grow. Companies do not have to expand their physical
infrastructure by buying more equipment as both new applications and new optimizations
can either be tested at the primary level or be implemented and integrated into the
infrastructure through virtualization and the efficient management of VMs.

Customer growth: A virtualized data center is able to support more than one business and be
able to meet the needs and requirements agreed through SLAs, in order to deliver the best
possible performance. Service Level Agreement (SLA) is a fundamental contract between
service consumer and service provider that defined the qualities of the agreed service[14].

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 24



A comprehensive study of virtualization technologies for the support of virtual labs

2  Cloud Computing.

In this chapter, an extensive analysis will be presented on the definition of the Cloud Computing
technology, and its basic characteristics. In addition, a historical background and the needs for
which this technology is used by organizations will also be presented. Both Cloud service and
Cloud deployment models will be analyzed and finally, the advantages and disadvantages of Cloud
Computing will be highlighted.

2.1 Defining Cloud computing.

As with virtualization, the definition of cloud computing is not specific. According to the National
Institute of Standards and Technology (NIST): Cloud computing is a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction [15]. This definition has dominated
the world literature, yet NIST has been forced to change it several times. Similar to nature, the
cloud has no specific location, its shape is constantly changing and its function is several, so in the
field of IT, the cloud is a construct that actually harbors many services and is not located anywhere
in particular. The cloud metaphor was used to represent the internet in architecture books and their
blueprints. With the rise of the cloud computing model and its separation as a separate part of IT,
the cloud refers to a discrete IT environment designed to provide scalable and measurable IT

resources remotely [16].
\;!
e . A

\ -~
PR _\§

Figure 2.1: Cloud [17].

Through this technology, the user does not have to provide his/her own computing power and
resources but only a broadband connection in order to connect to the provider and connect to the
cloud services offered. Moreover, the user doesn’t need to have specialized knowledge as the
management of the environment and the system he/she uses are also managed by the provider. In
addition, the NIST definition states that: This cloud model is composed of five essential
characteristics, three service models, and four deployment models[15], which are depicted in the
following table.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 25



A comprehensive study of virtualization technologies for the support of virtual labs

CLOUD COMPUTING

CHARACTERISTICS

DEPLOYMENT MODELS

SERVICE MODELS

Broad network access

Private Clouds

Infrastructure as a Service
(laaS)

Measured service

Hybrid Clouds

Software as a Service (SaaS)

Resource pooling

Community Clouds

Platform as a Service (PaaS)

On-demand self-service

Public Clouds

Rapid elasticity

Table 2.1: Cloud Computing [15].

Professor Ramnath Chellappa gave the first reference to the term cloud computing as:" a computing
paradigm where the boundaries of computing will be determined by economic rationale rather than
technical limits alone”. IBM has defined this technology like Cloud computing as on-demand
access, via the internet, to computing resources—applications, servers (physical servers and virtual
servers), data storage, development tools, networking capabilities, and more—hosted at a
remote data_center managed by a cloud services provider (or CSP)[18]. Through cloud computing, a
user, once connected to the internet, has the ability through a simple browser to access data, files,
programs and third-party services. The term cloud computing is inextricably linked to the hardware
and software of data centers that host applications delivered over the internet as services. The
volume and type of services and data to which each user has access are determined by the service
level agreement (SLA) between him/her and the provider. Generally, in cloud computing, the pay-
for-use policy prevails.

2.2 Historical background.

Cloud computing as technology was not created recently. Its start dates back to the creation of the
first internet, but the first reference to it was only in 1997. Since then, companies such as Google
and Amazon have introduced this model into the global economy, to the point that the market
associated with cloud computing is estimated at $370 billion. In the following table, highlights of
cloud computing’s evolution over time are depicted and these are retrieved from [19][20].

CLOUD COMPUTING HISTORY

YEAR ACCOMPLISHMENT

1960s | John McCarthy introduces mainframe timesharing and public utility computing.

1969 | ARPANET is developed by J.C.R. Licklider.

1970 | Launch of Virtualization Software.

1991 | Launch of WWW (World Wide Web).

1997 | First definition of Cloud Computing by Prof. Ramnath Chellapa.

1999 | SalesForce offers business apps over the Internet (arrival of SaaS).

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 26


https://www.ibm.com/cloud/learn/data-centers

A comprehensive study of virtualization technologies for the support of virtual labs

2006 | Amazon creates AWS and introduces Elastic Compute Cloud (EC2).

2008 | Google releases GCP and Google App Engine.

2014 | $170 billion estimated global cloud spending.

2014 | Docker Container Services by Windows server and EC2.

2015 | Google introduced VVMs with half the cost, since the year of the first deployment.
2016 | Google Cloud provides computing, data, storage, data analytics and machine learning
2017 | GCP offers to pay pre second billing for VM.

2017 | AWS offers to pay pre-second billing for Linux VMs.

2019 | CDN market is estimated to be more than $12billion.

2020 | Growth Global Market for Cloud Computing is estimated to exceed over $370 billion.

Table 2.2: Historical background of Cloud Computing.

2.3 Needs for Cloud computing in businesses.

Before

we start to analyze the characteristics, service and deployment models of cloud computing, it

is essential to mention some of the main reasons[20] why the largest companies have turned their

interest

in cloud technology. The overriding objective of these companies is to integrate this

technology in order to meet the requirements created for the automation of their businesses. In
addition, other companies were motivated to delve further into this technology. As a result, they
have become cloud infrastructure providers with the main objective of implementing products that

meet th
busines

agility.

e needs of consumers in the market. In this chapter, three main needs for cloud computing in
ses will be analyzed, which are: capacity programming, reduction in costs and business

Capacity programming: The main objective of an organization for its proper and smooth
operation is to respond to the demand and needs of its customers throughout their
cooperation. The main objective of an organization for its proper and smooth operation is to
meet the demand and needs of its customers throughout their cooperation. To achieve this,
every available resource of the organization should offer its maximum capacity to the
infrastructure. By capacity we mean the percentage of the maximum work of an IT resource
that it can deliver at a given time. The balance between demand and capacity must be
constantly maintained as any mismatch between them leads to problems and malfunctions.
For any organization, it is imperative to plan its capacity to cope with future needs for
resources, products and services. This is called capacity programming. It is a difficult task
for any organization as it has to predict and estimate the variation of the utilization load.
Apart from that, it is also necessary as it can save a company, for example, from naive
investment in equipment or force it to invest in order to balance future demand and avoid
losing customers.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 27



A comprehensive study of virtualization technologies for the support of virtual labs

Business agility: An organization is often faced with challenges and changes that come
either from external or internal factors. It is an imperative task for every organization to be
able to assess these changes and be able to adapt and evolve to cope with them successfully.
Business agility is the measure of an organism's receptiveness to changes. This section is
largely linked to the available IT resources of an infrastructure. It is well known that these
resources will eventually become saturated and every business has to take appropriate
measures. However, many times, a business does not have the required budget for scaling its
hardware, leading to unresponsive utilization fluctuations.

Reduction in costs: Principal consultant of every company is to increase profit in
combination with cost reduction. In order to achieve this, each undertaking shall turn to
reduce its CAPEX and OPEX. In companies that deal with IT infrastructure, the expansion
of this infrastructure is a scenario that they try to avoid and find other solutions. This is
because this expansion burdens the company both with the costs of acquisition and
ownership of the new infrastructure, as well as with additional operating costs. Indicatively,
some of these operating costs have to do with technical staff, electricity and refrigeration
costs, upgrades and security.

2.4 Cloud Computing Characteristics.

According to NIST, Cloud Computing’s characteristics are listed and described below:

Broad network access: A cloud service must be accessible from the whole network.
Depending on the different needs of consumers, the architecture of the cloud service should
be adapted to them. Furthermore, to achieve broad network access, different
communication, security, and interface protocols should be supported.

Rapid elasticity: The ability of a cloud to be able to automatically scale IT resources and
respond to emerging needs promptly is called elasticity. It is obvious for a provider that the
more IT resources it has, the more elasticity it can offer to its consumers. To the consumer,
the capabilities available for provisioning often appear to be unlimited and can be
appropriated in any quantity at any time [15].

On-demand self-service: Every consumer has the freedom to be able to select and access
cloud-based IT resources on their own. In this way, there is no need for human intervention
with each service provider as the IT resources provided are assembled and can be used
automatically.

Multitenancy and Resource pooling: The ability of a software program to allow a snapshot to
simultaneously serve different and isolated consumers is called multiple leasing. Thus,
providers using a multiple leasing model create pools of computing resources and can
dynamically meet the needs of multiple consumers. The consumer does not know the exact
location from which the requested resources are provided. Multi-tenancy models are based
on virtualization technology.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 28



A comprehensive study of virtualization technologies for the support of virtual labs

e Measured service: With this feature, a cloud platform has the ability to control and monitor
the use of its resources mainly by consumers. Through this measurement, it can charge the
consumer accordingly. In addition to monitoring with a view to billing, general monitoring
of the resources used by both consumers and providers is carried out in order to draw
statistical conclusions.

2.5 Cloud service models.

The combination of IT resources offered by a cloud provider constitutes a cloud service model.
Cloud service models are divided into three well-known categories which can all be accessed via
the internet. The pricing of cloud services depends on the requirements agreed between customers
and providers. These are: Software-as-a-Service (SaaS), Infrastructure-as-a-Service (1aaS),Platform-
as-a-Service (PaaS).

COMPLEXITY EASE OF USE

Figure 2.2: Cloud service models pyramid.

In Figure 2.7, we observe that the complexity of those services increases as we move towards to the
bottom of the pyramid, while the ease of use of the services increases as we move towards to the top
of the pyramid. SaaS runs on top of PaaS which in turn runs on top of laaS[21]. However, with the
evolution and the increasing use and adoption of cloud computing by organizations, some variations
of the three basic services have been created. Indicatively, some of them are:

» Storage-as-a-Service.
» Data-center-as-a-Service.
» Security-as-a-Service.

» Function-as-a-Service.

2.5.1 Infrastructure-as-a-Service (laaS).

In type of service model, the provider offers its cloud consumers virtual computing resources by
creating an autonomous and non-default environment ready for use. Using these provided resources,
cloud consumers can implement and develop their applications, without being obliged to buy
servers or create data centers in order to set up their infrastructure. Instead, they pay the cloud
provider for as long as they use the existing infrastructure offered to them as a service, reducing the
capital expenses. The resources offered through this service are not structured and organized in
advance, as they deliberately allow customers to have a high degree of responsibility for their
management.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 29



A comprehensive study of virtualization technologies for the support of virtual labs

2.5.2 Platform-as-a-Service (PaaS).
PaaS benefits from the virtualized resources of laaS. PaaS providers offer programming language,
software tools, access to APIs and development middleware. The cloud consumer of a PaaS, does
not deal with the management of the resources and the configuration of the development
environment. Instead, he/she utilizes this software environment to develop and implement cloud
applications and custom solutions. The cloud provider of PaaS is responsible for the maintenance of
the operating system and intermediate services such as servers and databases.

2.5.3 Software-as-a-Service (SaaS).
A cloud provider offers an application software that is accessible either via a dedicated desktop
client or an API or a simple web browser. The cloud consumer has minimal management control
over the resources and infrastructure in general. The environment offered to them is completely
predefined and cannot be configurated from the cloud consumer. Only the cloud provider is entirely
responsible for the proper functioning of the infrastructure.

2.5.4 Comparison of cloud services.
In the following table, we observe for each service which segments of the infrastructure can be
managed by the provider or by the consumer of the cloud service. The boxes in the table with the
blue color refer to the consumers while the orange color refers to the provider.

ON-PREMISES laaS Paa$s Saa$s
Applications Applications Applications Applications
Data Data Data Data
Runtime Runtime Runtime Runtime
Middleware Middleware Middleware Middleware

Operation System

Operation System

Operation System

Operation System

Virtualization

Virtualization

Virtualization

Virtualization

Servers Servers Servers Servers
Storage Storage Storage Storage
Networking Networking Networking Networking

Table 2.3: Cloud services comparison [22].

The less administration required by the user, the more ease of use of the service. Another
comparison concerns the users of each service. Specifically, an laaS is used by IT administrators, a
PaaS by software developers and an 1aaS can be used by any end-user.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 30




A comprehensive study of virtualization technologies for the support of virtual labs

2.5.5 Cloud service providers.
In the table below, some of the most popular cloud service providers are listed, according to the
service model they offer.

Cloud Service Provider (CSP)
laaS PaaS SaaS
Amazon AWS Amazon AWS loT Core | SalesForce

Microsoft Azure Microsoft Azure loT Oracle
GoGrid Google Cloud loT NetSuite
Vmware Google App Engine IBM

Rackspace GAE Google App

Table 2.4: Cloud service providers [23].

2.6 Cloud deployment models.

Choosing the type of cloud that can be used to deploy a cloud computing solution is an important
process. Cloud deployment models are divided into 4 types. These models are public, private,
community and hybrid. Cloud infrastructure can host and operate any of these 4 models.

Figure 2.3: Cloud deployment models.

2.6.1 Private cloud.
This cloud is created and used exclusively for a single cloud consumer or a single organization.
Apart from the cloud owner, third-party organizations can also have access to it solely to maintain
its proper operation and manage it on behalf of the owner. Its infrastructure is used and managed for
only one organization, which makes it feasible to maintain a sufficient level of control, privacy, and
security, as only the members of the organization that uses it can access it.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 31



A comprehensive study of virtualization technologies for the support of virtual labs

Private cloud

k\

organization

Figure 2.4: Organization using a cloud service from its own private cloud.

2.6.2 Public cloud.

It is a model that consists of cloud services managed and hosted by cloud service providers and
produced by third-party organizations. Providers are responsible for implementing, installing,
maintaining and ensuring the smooth operation of the model. Users of a public cloud, unlike a
private cloud, can be more than one. The choice of services, resources and the time for which they
are used, determines the final charge. Compared to a private cloud, the public cloud has less
security and reliability while the applications it offers are more vulnerable to malicious attacks.
Moreover, a public cloud is more scalable and location independent while the private cloud is
location restricted.

organizations

Salesforce

Figure 2.5: Organizations using cloud services from different providers.

MAAA, Tunua H&HM, AtmAwuatikn Epyaoia, Aptoteibng MnaAt{wng 32



A comprehensive study of virtualization technologies for the support of virtual labs

2.6.3 Community cloud.
This type of cloud is often referred to as a semi-private cloud as it is created and used by several but
predefined organizations with similar requirements and policies. This creates a private cloud where
its infrastructure can be hosted or managed by either member of the community using it or from a
third-party provider.

community of organizations

Figure 2.6: A community of organizations which are using resources from a community cloud.

2.6.4 Hybrid cloud.
This type of cloud is the most complex as it consists of a combination of two or more development
models (public, private, community). Each member remains a unique entity but is bound to others
through standardized or proprietary technology that enables application and data portability among
them[]. The choice of models to be combined depends on the needs and requirements of the
organization. Each hybrid cloud consists of at least one private and one public cloud. The private
hosts core activities while the public for less important services.

Private cloud Public cloud

—__Hf_
Private Public
data data

organization

Figure 2.7: An organization that uses a hybrid cloud consisting of a private and a public cloud.

MAAA, Tunua H&HM, AumAwpatikn Epyacia, Apioteibng MnaAt{wng 33



A comprehensive study of virtualization technologies for the support of virtual labs

2.6.5 Comparison of cloud deployment models.
Each of the cloud deployment models has its characteristics and some advantages that distinguish
between them. For any organization, choosing the right cloud model to deploy a cloud computing
solution is critical as it needs to serve the best of its ability. In the first of the next two tables, some
of the main advantages for each cloud are illustrated, while in the second table comparison is made
between them, to understand where each model can be used better.

Public Private Community Hybrid
Available for all Only for private use Ideal for collaboration Highly-flexible
Scalable Scalable Cost saving Scalable
Reliable Reliable Cross-organization .
: Requires strong cloud
. . data security and i
Cost-effective Customizable i . . expertise
information privacy
Table 2.5: Major advantages of cloud deployment models [24].
Public Private Community Hybrid
Set up and use Handle in-house Requw_es I Requw_es I Requw_es i
professionals professionals professionals
Data control Low High Medium Medium
Secu'rlty and Low High Medium Varies fr_om low
privacy to high
Overall reliability Medium High Medium Medium to high
Cost Low High Variable Variable
Flexibility and . . . .
Scalability High Medium Medium Very High
Hardware Third-party Variable Variable Variable

Table 2.6: Comparison of cloud deployment models [24].

From these tables, we conclude that as the deployment model becomes private, security,
customization, data control and reliability and the cost of using them increase, as shown in the next
figure.

N
— 7 Y / \
o X

Cost [ ™
- — .\{. Ny “\\\ . \
e { , A h\l\?rwate A
f | : 'l
A Hybrid A )

'! <~ ) F

7 Pu blic™— ./,

< N
A/

Security , data control , reliability , customization

Figure 2.8: Public vs Hybrid vs Private

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 34




A comprehensive study of virtualization technologies for the support of virtual labs

2.6.6 Relationships between cloud deployments and cloud service models.

Each of the four major deployment models cannot be implemented by any of the three service
models. In particular, an laaS can support either a private, community or public cloud. A PaaS can
support either a public, community or hybrid cloud. A PaaS can support either a public, community
or hybrid cloud. A SaaS can support either a private, community or hybrid cloud. For each service
model, there is a limitation, however, the options for deployment model are still many. As
mentioned in chapter 2.1 the NIST definition contains five characteristics, three service models and
four deployment models. All of these components that describe cloud computing according to
NIST, do not operate independently but are necessarily interrelated and connected to each other.
The figure below illustrates all these components and how they are connected to each other.

’
. /
. e
. / -
/
/
- /
/
|
/
//
/
. | .

Figure 2.9: Relationships of cloud computing components according to NIST.

From this figure, we can easily understand that a cloud-based strategy can have different
configurations in order to meet the needs of an organization. It is not unlikely that an organization
will use as a pilot a combination of service and deployment models, e.g. SaaS and public cloud, and
if that pilot proves to be satisfying, can either scale it up or use another pilot. Furthermore, there is
the ability to use multiple deployment models to support one or more service models.

2.7 Advantages and Disadvantages of cloud computing.

Since the arrival of this technology, several studies have followed that list its advantages and
disadvantages. The advantages of cloud computing are the right motivation for the migration of a
company or an organization to the cloud while highlighting the disadvantages enables them to
devise policies and solutions to prevent any malfunctions and forfeitures. The following table
contains some of the main advantages and disadvantages which will be further analyzed in the
following subsections.

MAAA, Tunua H&HM, AtmAwuatikn Epyaoia, Aptoteibng MnaAt{wng 35



A comprehensive study of virtualization technologies for the support of virtual labs

Advantages Disadvantages
Cost Reduction Legal Issues
Increased Collaboration Security
Time and Location Independent Data Transfer
Disaster Recovery

Table 2.7: Advantages and Disadvantages of cloud computing.

2.7.1 Advantages of cloud computing.

o Cost Reduction: One of the main incentives for moving to the cloud is to limit and reduce the
costs of an IT infrastructure. This is because there is no compelling need to purchase
hardware equipment and the necessary software to operate, while at the same time the daily
costs for maintenance and electricity procedures are considerably reduced.

e Increased Collaboration: As mentioned in chapter 2.8, there are two development models
which allow to be used and be accessible by more than one organization. In this way, those
organizations that decide to adopt a cloud-based strategy and migrate to the cloud, gain the
tool of collaboration with other organizations. This is because they can easily and quickly
share and use data and services of different and multiple organizations.

e Time and Location Independent: With cloud computing, all data, services and necessary
information are available all the time and can be utilized from anywhere as long as there is
an internet connection. In this way, employees are enabled to work from anywhere, which
leads to increased productivity.

e Disaster Recovery: Cloud computing can provide mechanisms for automated scheduled
network-wide backup systems in order to store the data in off-site data centers [25].

2.7.2 Disadvantages of cloud computing.

e Legal Issues: Storing data and information in virtual data centers located in different locations
around the world is the underlying idea of cloud computing. However, there are different
approaches to access control and the fact that no similar and global set of regulations have
yet been agreed upon is a key factor why many organizations are not migrating to the cloud.

e Security: Another main discouraging factor of migrating to the cloud is security concerns. The
interception of sensitive data stored on a virtual server is one of the biggest problems.

e Data Transfer: In cloud computing, a remote server is used to store all the data. Therefore, the
file transfer time for large chunks of data can become inconvenience for users.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 36



A comprehensive study of virtualization technologies for the support of virtual labs

3 Containerized technologies: Kubernetes and Docker.

In this chapter, an extensive analysis will be presented on the definition of the containerization
technology. In addition, the differences between virtual labs and containers will be presented and
the Docker and Kubernetes platforms will be extensively reviewed.

3.1 Defining Containerization and Containers.

Containerization is a type of operating system-level virtualization [26] and its fundamental concept
is to make virtual instances, share a single host OS and relevant libraries, drivers or binaries[27].
The name containerization comes from the way in which container shipping is standardized, where
containers are packages that can contain different contents but can be transported by different
means. Thus, containers are light weighted packages containing software code along with all its
dependencies so that it can operate in any computing environment. The following picture illustrates
the difference between an application running with and without a container.

CONFIGURATION MACHINE BINARIES MACHINE
FILES ‘ APPLICATION
| > « BINARIES
APPLICATION LIBRARIES CONTAINER
DEPENDECIES IMAGE
DEPENDECIES LIBRARIES CONF'gt’EF;AT'ON

APPLICATION WITHOUT CONTAINER APPLICATION WITH CONTAINERS

Figure 3.1: Application with or without containers.

In order to install and run an application, it is necessary that the machine on which it will run, has
the required libraries, dependencies, configuration files and binaries. The same application, in order
to run on a different machine must also have all the libraries, dependencies, configuration files and
binaries available on that machine or the application will not run. This problem is solved through
containerization, by creating a container image that contains everything needed to run the
application to any machine. For example, in order to run Jenkins, it is required java to be running on
the machine, whereas, with the use of containers, it is not compulsory to install java on the machine,
as the container image will contain everything needed to execute Jenkins. The following picture is
an overview on the architecture using containers for application development:

CONTAINER 1

CONTAINER 2

‘ APPLICATION ‘

‘ APPLICATION ‘

‘BIN/LIBRARIES‘

‘BIN/LIBRARIES‘

CONTAINER ENGINE ‘

OPERATING SYSTEM ‘

HARDWARE |

Figure 3.2: Container architecture.
MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng

37



A comprehensive study of virtualization technologies for the support of virtual labs

Each container, containing its application and its dependencies, operates on top of a container
engine, which is responsible for managing them. Both containers and container engine operate on
top of a single operating system kernel which runs on top of the hardware. Two features that allow a
physical machine to host different containers are namespaces and cgroups:

e Namespaces: Since containers share the same kernel, namespaces are responsible for
separating resources in a way that each container appears to have its own separated and
isolated resources. These could be process IDs, host names or network interfaces. It is quite
common for different containers to run the same process. Through namespaces, while the
process IDs are similar, the containers do not collide.

e Cgroups: It is a Linux Kernel mechanism responsible for dynamically allocating resources to
the up and running containers. Containers cannot exceed the resource limits that cgroups
place, only system administrators have the ability to configurate these limits on network or
CPU memory. In contrast to namespaces, that deal with a single process, cgroups allocate
resources for multiple processes.

3.2 Virtual Machines vs Containers.

Both virtual machines and containers are technologies able to deploy applications but they appear to
have several differences. The following picture is an overview on both virtual machines and
containers architecture.

V.M. 1 V.M. 2
‘ APPLICATION ‘ ‘APPLICATION ‘ CONTAINER 1 || CONTAINER 2
‘BIN;’LIBRARIES‘ ‘BIN;‘LIBRARIES‘ ‘APPL,CMON ‘ ‘ APPL,CAT,ON‘
‘ GUEST O.S. ‘ ‘ GUEST O.5. ‘ ‘BINILIBRARIES‘ ‘BINI’LIBRARIES‘
‘ HYPERVISOR ‘ ‘ CONTAINER ENGINE ‘

| OPERATING SYSTEM | | OPERATING SYSTEM |

| HARDWARE | | HARDWARE |

Figure 3.3: Virtual machines vs Container architecture.

From this figure we can retrieve three major differences. Firstly, a V.M. contains a guest O.S. which
gives it the ability to run a different O.S. from the host machine but increases the size in space. In
contrast, each container does not have a guest O.S. but shares a common O.S. so it is more
lightweight. Secondly, containers do not require hypervisor. For a V.M. environment, the
translation of a V.M. instruction to a host excecutable instruction is made through hypervisor.
Containers do not need any priviledged instruction and communicate with the O.S. through system
calls. As a result, containers architecture is reduced by one layer.Thirdly, each V.M. has a separate
image file, which is isolated from the image file of another V.M. Container images are not only not
isolated but also shared with each other.For example, one container image can be the basis for the

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 38



A comprehensive study of virtualization technologies for the support of virtual labs

creation of another as they are created in a layered manner. Taking these main differences as a
starting point, we arrive at the following table which shows more differences between them:

Virtual Machines Containers
Hardware level process isolation O.S. level process isolation
Complete isolation from the host Containers share resources with the host O.S.
Each V.M. has a separated O.S. Each container share O.S. resources
Boot up in minutes Boot up in milliseconds
More resource usage Less resource usage
Pre-configured V.M.s are hard to find Pre-built containers already available
Customizing pre-configured V.M.s require work Building a custom setup is easy
Bigger size Smaller size
They can easily be moved to a new host Containers can be destroyed and recreated
V.M. creation requires time Container creation requires minutes
Virtualized apps are harder to find and take Containerized apps can be found and installed
more time to install and run them within minutes

Table 3.1: Virtual machines vs Containers.
Compared to virtual machines some key advantages that containers provide are:

¢ Portability: Containers can be executed virtually over a wide range of computing and
operating systems through virtual or physical machines, either by cloud computing
technologies, or locally on each engineer's computer.

e Separation of responsibilities: Containers provides a clear segmentation of layers of an
application’s processes. Developers are concentrated on the process of software development
and its dependencies while systems management engineers on the process of building and
deploying the application.

e Application isolation: Containers provide operating system isolation for each application in
each container, since there is virtual memory space for the memory,computing power,
network and storage space that the application at the operating system level.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 39




A comprehensive study of virtualization technologies for the support of virtual labs

3.3 Docker

One of the technologies used to develop, run and deploy services and applications in containers is
Docker. Docker is an open-source platform through which infrastructure and application
management are managed in a similar way. Moreover, docker allows the separation of
infrastructure with applications which leads to faster software delivery. In addition to the Docker
platform, docker also provides a wide range of tools used to manage the lifecycle of Docker
containers. The programming language in which docker is written in Go.

docker

Figure 3.4: Docker’s official logo [28].

3.3.1 Reasons to use docker.

1) Consistent and quick delivery of your application: Docker allows developers to utilize local
containers and work with them in standardized environments. Developers can write code and
collaborate with other developers by sharing their work and progress through docker containers.
In addition, developers can push an application to a test environment and run either manual or
automated tests. They can fix bugs in the development environment and when the result is
acceptable, they can deliver the application to the client as easily as a simple push of an updated
image to the production environment.

2) Dynamic scaling and deployment: Docker containers can run on cloud providers, on a virtual or
physical machine, on a developer's local laptop, or even on a mix of environments. The docker
platform in combination with the highly portable and lightweight docker containers have the
ability to scale up or down applications or services in real time, depending on the demands. As a
result, the workload can be dynamically managed via Docker.

3) The same hardware supports multiple workloads: Compared to hypervisor-based virtual
machines, Docker uses less compute capacity, so it can support more containers. It is a more
efficient and sustainable solution for less resource-intensive infrastructure and high-density
environments as it is fast and lightweight.

MAAA, Tunua H&HM, AtmAwuatikn Epyaoia, Aptoteibng MnaAt{wng 40



A comprehensive study of virtualization technologies for the support of virtual labs

3.3.2 Docker architecture.
The architecture that docker uses is client-server. The following figure displays the Docker
architecture, the main components that make up the Docker architecture and how they communicate
with each other.

o) (BockeRosT g

docker build --{--

Docker daemon I
[
; = —— @ &7,
. \ ~
docker pull ~-| ! ; : I
AY
L -

T

j| [Containers - \.\

N, NGiNX
N
B \—\ ""n-/’_ f
d. I

docker run —f

000y
¢

Figure 3.5: The Docker architecture [28].

The three main components are docker client, docker host and docker registry. Docker client
contains a set of docker commands and communicates with docker host via docker daemon. Docker
daemon is responsible for deploying, running and distributing Docker containers. In addition,
another important work is to publish docker images to the registries. Docker daemon and Docker
client can operate on the same system or a Docker client can be connected to a remote Docker
daemon. The communication between these two is achieved via REST API, over a network
interface or UNIX sockets.

e Docker daemon: Also known as dockerd, Docker daemon is responsible for managing Docker
objects and responding to Docker API or CLI requests. These objects could be containers,
networks, volumes and images. A Docker daemon can interact and communicate with other
daemons in order to manage Docker services. Once the Docker client is prompted to create or
pull an image from a registry, the Docker daemon creates a working model for the container
using the built file. Also, the built file contains instructions to preload files before the container
is executed and instructions to send to the local command line after the container is built.

e Docker Host: Docker Host includes Docker daemon, images, network, storage, containers and is
the environment that takes on the responsibility to execute and run the applications.

e Docker client: It is the primary way that users interact with Docker. A Docker client can
communicate with multiple daemons. When a user uses a command, for example, docker built,
the docker client sends that command to the daemon and executes it.

e Docker registry: A Docker registry contains repositories of Docker images. Docker’s public
registries, which are accessible by any user, are Docker Hub and Docker Cloud. A Docker user

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 41



A comprehensive study of virtualization technologies for the support of virtual labs

can also use his/her own private registry. The commands used to download an image from a
configured registry are docker run or docker pull. Docker push command is used to upload and
store an image to the registry. By default, Docker Hub is the registry where Docker searches for
images.

3.3.3 Docker image and Docker container.

A Docker image is a read-only template that contains all the proper instructions in order to
launch a Docker container. Also, an image contains all the metadata related to the needs and
capabilities of the container. Each image uses another existing image as a base image and adds
some extra customization on top of it. An image consists of several layers. Docker utilizes
Union File System (UFS) in order to combine all these layers into a one unique image. A user
can either download the images from a Docker registry and use them or create their own.
Creating a docker image is carried out through a set of steps called instructions. These
instructions are stored in a specific Docker folder known as Dockerfile. Each of these
instructions creates a layer in the image. When a user wants to build an image, Docker reads its
Dockerfile and returns the final image.

A Docker container is an encapsulated environment that contains everything that is required for
an application to run. Docker container is an executable instance of a Docker image. A Docker
client can start, delete, stop or remove them. If a container is stopped without static storage
space being created for it, then all information about it will be deleted. When Docker runs a
container from an image, it adds a read-write layer on top of the image using UFS which the
application can then run[29]. Each container can be connected to more than one network.

3.3.4 Docker Networking.

Docker offers to Docker containers the ability to either communicate with each other or
communicate with the external world. Therefore, depending on the usage of each container,
Docker supports different types of networks. For instance, a container running a single
application will have a different network configuration compared to an application that is
connected to load balancers and applications that also interact with other containers and
databases. Docker has as default five network drivers: none, host, bridge, macvlan and overlay
[30].

1.None: Used for containers that want to create their own custom network or for those that don't
want a network. None drives do not configure the container's network namespace but simply
put the container inside it. A container with none driver is not able to communicate with
other containers.

2.Host: With the host driver, a Docker container loses its network isolation. The Host shares its
network namespace and this leads to the exposure of its public network if it is not
firewalled. A container with host driver has multiple server ports delivered to itself which is
why port allocation is necessary. It is a configuration based on communication through
sockets.

3.Bridge: Containers with bridge drivers are connected through a virtual Ethernet bridge. This
virtual bridge is created by the Docker daemon and is called dockerQ. Through docker0, all
networks attached to it, automatically share packets between them. Each container has a

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 42



A comprehensive study of virtualization technologies for the support of virtual labs

valid IP address and a private subnet. Port mapping must be configured for those containers
that are attached to the bridge network. In this way, they can communicate with each other
or be accessible from the external world.

4.Macvlan: The Macvlan driver removes the bridge between host and container when the
overlay and bridge networks are used. In this way, container resources are exposed to
external networks without the corresponding port forwarding. To achieve this, MAC
addresses are used instead of IP addresses.

5.0verlay: As the name implies, an overlay network overlays an existing network and creates
custom virtual connections between nodes. Containers store the mapping between their host
IP and their private IP addresses in a key-value store. All hosts can access this storage. An
additional layer of overlap is added to the host's network stack. When a container sents a
packet the overlay layer looks up the destination host IP address in the KV store using the
private IP address of the destination container in the original packet. It then creates a new
packet with the destination host IP address and uses the original packet sent by the container
as the new packet’s payload [31].

Docker containers can by default reach the outside world, but the outside world cannot talk to the
container [32]. To accomplish this, each container must expose its endpoints. Through Docker, each
container can expose some or all of its ports.

3.3.5 Docker Storage.

By default, a writable container layer stores all files created inside a container. Thus, data cannot
easily be removed because both the host machine and the writable layer are tightly coupled.
Moreover, if the container is deleted or stopped, its data do not persist. In order to keep the files
even after deleting the container and storing them on the host machine, docker provides two
solutions/options: the volumes and the bind mounts. Depending on the operating system, docker
supports containers that store files in memory on the host machine. If docker is operating on
windows, then named pipes are used and if it is operating on Linux, tmpfs mounts are used.

e VVolume: Volumes are the most preferred mechanism to store and share data among
containers. They are stored in the host filesystem and only Docker processes can modify
them. It is Docker Host's responsibility to manage the Docker volumes and not the
containers that use them. Furthermore, a container's use of a volume does not increase its
size, since Docker volumes do not exist within the container's lifecycle.

e Bind mounts: In contrast to volumes, they can be modified by both Docker and non-Docker
processes. They can be either directories or filesystems and they can be stored anywhere
inside the host.

e Tmpfs mounts: They cannot be written to host filesystem but they can only be stored in the
host system’s memory.

e Named pipes: They can be utilized for communication between a container and the Docker
Host. Through named pipes a third-party tool can be installed and run inside a container and
be connected to the Docker Engine API.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 43



A comprehensive study of virtualization technologies for the support of virtual labs

If a user wants to store ephemeral data in the writeable layer of a container, then it is necessary to
use storage drivers. These drivers provide space efficiency and they use a pluggable architecture.
Their main responsibility is to monitor the way in which containers and images are managed and
stored on the Docker Host. On Linux, the storage drivers which are provided by the Docker Engine
are: overlay, overlay2, vfs, fuse-overlays, aufs, btrfs and zfs, and devicemapper. Overlay, overlay2
and aufs are file-level storage drivers, while btrfs,zfs and devicemapper are block-level storage
driver.

3.3.6 Container orchestration and Docker Swarm

Containers guarantee that the applications they encapsulate can be executed in any environment.
This makes it possible to move and scale these applications easily and quickly. Therefore, tools are
needed that are capable of automatically replacing failed containers, automatically maintaining
applications, and automatically performing reconfigurations and updates to containers during their
lifecycle. In addition, they are responsible for load balancing, reallocation of resources,
provisioning, availability and redundancy of the containers. These tools are called orchestrators.
The most common and diffused in the market orchestrators are Docker Swarm and Kubernetes.
Kubernetes will be furtherly analyzed in the following subchapter.

Container orchestration allows to define automated provisioning and change management
workflows to operate so as to always grant agreed policies and service levels [33]. The following
figure illustrates the Container Orchestration Layers.

CONTAINER CONTAINER
RUNTIME RUNTIME

MACHINE AND OS || MACHINE AND OS

INFRASTRUCTURE

Figure 3.6: Layers of Container Orchestration [33].

The orchestration engine layer consists of three layers: service management, scheduling and
resource management [33]. It is placed below the Web applications and services and on the top of
each container runtime, machine and O.S. substrate.

¢ Resource management layer: Its main responsibility is to manage low level resources such as:
Disk space, persistent volumes, memory, CPU/GPU, containers’ IPs and ports inside a
virtual network. Its main goals are to minimize the interference between containers
competing for resources and to maximize utilization.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 44



A comprehensive study of virtualization technologies for the support of virtual labs

e Service management layer: Its main responsibility is to manage high-level aspects in to
deploy complex applications. These aspects are: load balance to separate the incoming load,
namespaces and groups in order to isolate containers, dependencies between microservices,
labels in order to attach metadata to containers objects and readiness checking in order to
allow an application to be accessible to the internet if it is capable and ready to accept the
incoming traffic.

e Scheduling layer: Its main goal is to efficiently utilize cluster resources. Depending on the
indications it receives from the users, it determines how to place the containers. Its main
responsibilities include: placement to monitor the scheduling decisions, resurrection for the
processes that need to always be up and running, co-location to assert deployment
constraints, rescheduling in order to restart and reschedule failed containers and rolling
deployment to automatically up/down-grade an application’s version.

Docker Swarm is a cluster management and orchestration tool that connects and controls several
Docker nodes to form a single virtual system [34]. Docker Swarm is deployed inside the Docker
Engine. It utilizes two kinds of nodes: Manager and Worker node. The manager node is responsible
for cluster management tasks and instructs the worker. The worker node is receiving instructions
from the manager and executes them. The communication between them is achieved through API
over HTTP. Each worker node has an agent who is responsible to report the worker’s node status to
the manager. In this way, the manager is always aware of the worker node status in any cluster.
According to [35], some of the most fundamental features of the docker cluster are: scaling, load
balancing, multi-host networking, declarative service model, rolling updates, service discovery,
decentralized design, secure by default.

3.4 Kubernetes

Kubernetes is an open-source system for automating deployment, scaling and management of
containerized applications [36]. The name is based on the Greek word xvfepvizng, which is a high
lord with the capacity to rule. Instead of the full word, the abbreviation K8s is often used, where the
number 8 represents the 8 letters between the K and the s. Google's Borg system was the
springboard for the creation of Kubernetes, which was donated by Google in July 2015 to the Cloud
Native Computing Foundation (CNCF). e. As of early 2018 Kubernetes is considered the de facto
industry standard for container orchestration, akin to the Linux kernel for the case of a single
machine[37]. It is an orchestration tool whose versions are updated every four months. The current
version is 1.23 and it was released in April 2022. Kubernetes is written in Go programming
language.

£3 kubernetes

Figure 3.7: Kubernetes official logo [36].

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 45



A comprehensive study of virtualization technologies for the support of virtual labs

3.4.1 Reasons to use Kubernetes.
1) Portability: It is an orchestration tool that can be deployed in multiple environments such as
bare metal, cloud setups, and local or remote virtual machines.

2) Extensibility: Multiple third-party open-source tools can support or be supported by Kubernetes.
This is because of the pluggable and modular architecture of Kubernetes. This results in an
increase in the capabilities of K8s.

3) Automated updates and self-healing: K8s continuously monitor the health of an application and
automatically makes decisions about upgrades or configuration changes to avoid downtime. In
case there is a failed container inside a node, it automatically overwrites and reconfigures them.
In addition, it manages traffic and avoids routing it to irrelevant containers.

4) Storage orchestration: Kubernetes utilizes software-defined storage solutions and automatically
place them to containers from external cloud providers, network storage systems, local storage
or distributed storage.

5) Load balancing and Service discovery: Kubernetes assigns each container an IP, and in order to
load-balance the container requests, it creates sets of containers and assigns them a Domain
Name System (DNS).

3.4.2 Kubernetes architecture

T
\ API server @
’ l Cloud
I provider Cloud controller
& API manager @
I &m i c-C-m (optional) oom
‘ |
i
! Controller @
I " I manager om
" -———I stea
; = Node Node Node {persistence store) =1
api
/ ‘ kubelot
. e
I | kube-proxy @
' I kubelet kubelet kubelet Prox)
k. cched I 2
I | @ @ Scheduler b4
l\ Control Plane | k-pro: le-proxy, - proogy,
————— Control plane ——————-

Node

Figure 3.8: Kubernetes architecture [38].

Based on the previous Figure, we observe that the Kubernetes architecture is based on two distinct
roles, the control plane or master and the worker node. The number of master and worker nodes that
can be used depend on the final architecture that each user wishes to create. The components that
compose the master node are: API-server, Controller Manager, Scheduler, key-value data store
(etcd), while the components that compose the worker node are: Kubelet, Kube-proxy and
Container Runtime. All these components coexist together and create the Kubernetes cluster.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 46



A comprehensive study of virtualization technologies for the support of virtual labs

3.4.3 Master Node overview and its components.

This node is responsible for all operations inside the cluster and it is managing the Kubernetes
cluster’s state. It is crucial to always keep the master node up and running. Master’s failure implies
downtime, which in turn creates service disruptions with the clients. The best way to prevent this
scenario is to add master node replicas, which are configured in High-Availability (HA) mode.
These additional master nodes stay in sync and only one of all the master nodes manages the
cluster. Via this configuration, the cluster’s control plane acquires resiliency. Furthermore, through
an Application Programming Interface (API) or a Web-User Interface (Web Ul) Dashboard or a
Command Line Interface (CLI) tool, user can send requests to the control plane. Through these
options the communication between the users and the K8s cluster is achieved. The most common
CLI tool used, is kubectl. Moreover, all the cluster configurated data, which are important to persist
the Kubernetes cluster’s state, are saved in a key-value store. This store does not hold clients’ data
and it can be either configured on its dedicated host or on the master node.

As mentioned above, each master node contains four components which are explained separately
below:

1) API-server: APIl-server coordinates all the administrative tasks. It receives requests from users,
it evaluates the cluster’s state and then process them. After a successful execution of a user’s
RESTful call the resulting cluster’s state is stored to the key-value store. Only the API-server is
allowed to communicate with it, either to read or store the cluster’s state data. API-server can be
characterized as the front end of a Kubernetes master node. It can provide horizontal scale and it
is also highly customizable and configurable.

2) Scheduler: The way in which new workload is assigned to the worker nodes is defined by the
scheduler. These assignments are heavily depended on the cluster state. For this reason,
scheduler must always communicate with the API-server, in order to receive the appropriate
information about worker’s resource usage data. API-server sends to the scheduler the new
workload requirements, then the scheduler activates its filters to choose the work node which
fulfills these requirements. After the decision is made, scheduler informs the API-server.
Similar to API-server, scheduler is also highly customizable and configurable.

3) Controller Managers: Their main responsibilities are to evaluate and adjust the cluster’s state.
They compare the current state of the cluster, using data via the API-server, with the desired
state. If a mismatch occurs, operations are activated to reset the cluster’s state to the desired
level. They are always active and are classified into 2 types: Kube-controller-manager and
cloud- controller-manager.

4) Etcd: Etcd is a distributed key-value data store. It is an essential component that stores the
cluster’s state data. It is an open-source project written in Go programming language and in
Kubernetes also is used to store Config Maps, subnets, etc. Etcd does not allow to replace data,
but it periodically compacts obsolete data to increase data store’s size. Etcd has two different
topologies: stacked and external. In external topology, data store is separated from the control
plane nodes, while in stacked topology data store operated alongside them.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 47



A comprehensive study of virtualization technologies for the support of virtual labs

‘ worker node |

control plane node

---1 load balancer

control plane node |
H

worker node ‘ l worker node | worker node | ‘ worker node |

control plane node |
1

il apiserver

1 apiserver

apiserver =

worker node

worker node

worker node

worker node

worker node

“gontrol plane node 3

i
control plane node |
i

load balancer

 control plane node

controller-manager

controller-manager

controller-manager

scheduler

scheduler

scheduler

external eted cluster

| [ eted host |

apiserver

apiserver

apiserver

controller-manager

controller-manager

controller-manager

scheduler

scheduler

scheduler

[ eted

0 eted

[ et

stacked eted cluster

\ ] eted host

Figure 3.9: External vs Stacked etcd topology [39].

3.4.4 Worker node overview and its components.

Worker node is the node where client applications are operating. One of the primary components in
this node is called Pod. Pod encapsulates client applications and it utilizes worker’s memory,
storage and compute resources to operate and it also utilizes network to communicate with other
pods or with the external world. In Kubernetes, it is the smallest scheduling work unit. Pods can be
replicated, and it is mainly for redundancy and scalability [40]. Via Pods, the logical connection
between one or more containers is achievable. All the containers inside a pod share the same IP
address. Moreover, it is the worker’s node responsibility to manage the network traffic between
applications and client users. In contrast to master processes, worker processes require more
resources.

As mentioned above, each worker node contains three components which are explained separately
below:

1) Container Runtime: The management and execution of containers using Kubernetes are
accomplished through software called Container Runtime. Each Pod ready to run its container
also needs a Container Runtime. The Container Runtimes which are supported by Kubernetes
are: containerd, CRI-O, Mirantis Container Runtime and Docker.

2) Kubelet: Kubelet is the component which receives Pod definitions and communicates with the
Container Runtime. This component operates on every node. It also monitors the resources and
the health of the Pod, where it is placed. The connection between Kubelet and Container
Runtime is achieved through the Container Runtime Interface (CRI). CRI is a plugin-based
interface that executes two types of services. The first one is called RuntimeService and it
concerns container-related operations. The second one is called RuntimeService and it concerns
image-related operations. Containers not created by Kubernetes are not managed by Kubelet.

3) Kube-proxy: Similar to Kubelet, this component operates on every node. Its main responsibility
is to manage network communication between nodes. All of the networking rules are
dynamically maintained and updated by Kube-proxy. It forwards the connection requests to the
Pods' containers and it abstracts the networking details of the Pods.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 48



A comprehensive study of virtualization technologies for the support of virtual labs

3.4.5 Kubernetes Networking
Networking is a complex and challenging part of Kubernetes. Kubernetes offers its users the ability
to share machines between applications. In order to achieve this, it is essential for two applications
not to utilize the same ports. Since Kubernetes is used for scaling and many developers or
administrators take part, coordinating ports has become a difficult task. According to [41], before
implementing a K8s cluster, the administrator needs to address the following four network
challenges:

1) Container-to-Container communication in Pods: When a container starts, an isolated network
space is created by the container runtime. Each container acquires a network space which in
Linux is called a network namespace. For each Pod, which encapsulates a group of containers,
the Container Runtime creates a special container, which is called the Paused container. Its goal
is to create a network namespace for the Pod. That namespace will be shared by the containers
of the Pod. In this way, containers can communicate and interact through localhost.

2) Pod-to-Pod communication either across cluster nodes or on the same node: In Kubernetes, the
pods that compose a cluster communicate without the implementation of Network Address
Translation. In order to ensure the pod-to-pod communication, the IP-per-pod model is utilized.
Through this model, each pod obtains a unique IP address. The containers inside the pods use
the Container Network Interface (CNI) as well as the CNI plugins. Container Network Interface
(CNI) is a set of libraries and specifications that allow plugins to configure the containers'
network.

3) Pod-to-Service communication: The communication between pods and the three types of
services offered by Kubernetes will be further discussed in the next subchapter.

4) External-to-Service communication: In order for applications to become accessible to clients
from the outside world, Kubernetes utilizes Services. Services contain network routing rules.
They are created by Kube-proxy agents and stored in iptables. By exposing the services, these
applications become accessible either through a dedicated port or through a virtual IP address.

3.4.6 Replica Sets and Deployments.

Replica set is an object responsible for maintaining the required number of active pods within a
cluster at any time. It allows us to have multiple instances of the same Pod, so if a Pod fails, the
application which is encapsulated within, can be accessible from another Pod. Replica set can also
be utilized for a single Pod. In this case, if that single existing Pod fails, the Replica Set is
responsible to automatically bring up a new Pod. In addition to creating or restoring incorrect Pods,
Replica Sets can also delete healthy existing Pods if their number exceeds. The pods to be acquired
by each replica set are defined by the selector field inside its YAML file.

Deployment is an object which is mainly used to declarative update pods and replica sets. In
contrast to Replica sets, rolling updates can be accomplished to without any service downtime,
because a Deployment can handle the traffic even if the update is not yet finished. In conclusion,
multiple Pods can be deployed and managed by Replica sets and these Replica Sets are created and
monitored by Deployments. For this reason, Deployment comes higher in the hierarchy of
Kubernetes objects.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 49



A comprehensive study of virtualization technologies for the support of virtual labs

3.4.7 Kubernetes services.

In Kubernetes, each Pod has a single IP address. Since Pods are ephemeral, static IP addresses
cannot be utilized. If a Pod is terminated, a new Pod with a new IP address will be created. In order
for Pods or users who connect directly to them via their IP addresses, to know and be constantly
informed about which IP addresses to use, Kubernetes provides Services. In Kubernetes, a Service
is an abstraction that defines a logical set of Pods and a policy by which to access them[42]. For
runtime service discovery, Kubernetes utilizes two methods: DNS and environmental variables,
while Kubernetes provides four types of services depending on the way we want the service to be
accessible. These are:

e ClusterlP: It is the default Service Type. Cluster IP is a virtual IP address received by a
Service and it is reachable only from the inside of a cluster.

e NodePort: Via this type the service is reachable from the outside world, exposing a static port
to each Node's IP. The port range is 30000-32767.

e LoadBalancer: Via this type the service is reachable from the outside world, using a cloud
provider’s load balancer, while the Clusterlp and the NodePort will be automatically created
by Kubernetes.

e ExternalName: Maps the Service to the contents of the externalName field
(e.g. foo.bar.example.com), by returning a CNAME record with its value. No proxying of
any kind is set up[42].

In order for a service to be exposed, Kubernetes also supports Ingress. This acts as an entry point to
the cluster and can expose several services under one IP. However, Ingress is not a type of service.

3.4.8 Kubernetes storage

The data and information stored inside a container are deleted if the container is deleted or crashes.
In Kubernetes, the kubelet restarts the container but with a clean state[43]. To avoid this problem,
and to allow containers inside a Pod to share files with each other, Kubernetes uses storage
abstractions called Volumes. These are intertwined with the lifecycle of the pod they belong to. By
extension, a volume is deleted if its pod is deleted, not if the containers that compose it expire.
Kubernetes provides several volume types. These are: hostPath, awsElasticBlockStore, emptyDir,
gcePersistentDisk, azureFile, azureDisk, secret, nfs, configMap, iscsi, cephfs and
persistentVVolumeClaim.

In contrast to typical IT environment whereas storage administrators are responsible for storage
management, Kubernetes provides a subsystem called Persistent\VVolume. This subsystem allows
either users or administrators to consume or manage persistent storage through two APIs, which are
listed below:

e PersistentVolume(PV): It is a storage abstraction inside a cluster that can be either
dynamically provisioned via storage classes or statically by an administrator. The lifecycle
of a PV does not depend on the lifecycle of the pods using it.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 50



A comprehensive study of virtualization technologies for the support of virtual labs

e PersistentVolumeClaim(PVC): A PersistentVolumeClaim is a request for storage by a user
[43] and is divided into three types: ReadWriteMany(read-write by many nodes),
ReadOnlyMany(read-only by many nodes), ReadWriteOnce(read-write by a single node).

3.4.9 YAML configuration files in Kubernetes.
To create objects such as services, deployments, pods, etc, Kubernetes utilizes YAML files. Each
YAML file is required to have four fields. These, in order, are API version, kind, metadata and
spec. Depending on the type of object, the correct API version is required. The following table
depicts the API version of the most known and used objects in Kubernetes:

Object API version
Pod vl
Service vl
Replica set Apps/vl
Deployment Apps/vl

Table 3.2: Api versions.

The kind of object, that want to create, is inserted in the kind field. Metadata consists of data about
the object. In this field, we add information about the object, in order to be uniquely identified. The
last field is called spec and contains data about the state of the object. To better understand the
structure and hierarchy of a YAML file, the following figure depicts a simple YAML file for
creating a pod.

1 apiVersion:

2 kind:

3 metadata:

4 name:

5 labels:

6 app:

7 spec:

8 containers:
9 - name:

10 image:

Figure 3.10: Simple YAML file of a Pod.

Api version and kind are being specified with a string value. However, metadata is in a form of a
dictionary. Everything under metadata is moved to the right. In this case, name and labels are
children of metadata. The space before name and labels should be the same, as they are siblings,
and bigger than the space before metadata, since it is their parent. Name is a string value but labels
are also a dictionary, inside the metadata dictionary. Labels are used to identify objects and can
have any key value pair. In this case, the key is app and the value is nginx.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 51



A comprehensive study of virtualization technologies for the support of virtual labs

So far, we defined the type and the name of object. To define which container will be encapsulated
by the pod, we add a property called containers under the spec field. Spec is also a dictionary.
However, containers are a list inside a YAML file, since pods are able to contain multiple
containers. The dash in the property name under the container indicates that it is the first item of the
list. In this case, the name of the container is nginx and the value of the image is also nginx. The
value of the image key inside a container list indicates the name of the Docker image inside the
Docker repository.

4 Virtual lab use case.

This chapter includes a brief mention of virtual labs and the presentation of the architecture we
followed, which includes the development of a Kubernetes infrastructure, the development and
connection of a web solution to control this infrastructure and the creation of API calls.

4.1 Virtual labs

Virtual labs use the power of computerized models and simulations and a variety of other
instructional technologies to replace face-to-face lab activities[44]. Virtual labs are a cloud solution
based on the three main features of cloud computing to meet the needs required to implement a lab
course. These are multitenancy, shared resource pooling and self-organizing capabilities.[45] The
combination of these features makes it possible to overcome a large percentage of the problems
faced by a lab. These problems are mainly related to hardware equipment. Educational institutions
that are either unable to meet their computing resource needs or cannot upgrade their existing
equipment with new software tools are unable to deliver a comprehensive educational experience to
their students. For this reason, Cloud Computing technology has also penetrated the educational
sector with the implementation of educational software tools or infrastructures.

4.2 Virtual lab solution.

The aim of the experimental part is to implement an infrastructure that can support two different
virtual labs. The first will be for the computer networking lab course and the second for the dev-ops
lab course. This infrastructure will be based on the docker orchestration tool, Kubernetes.
Kubernetes supports a variety of tools that are able to set up and run a Kubernetes cluster. In this
thesis, Minikube will be installed to run Kubernetes in our local machine, because it requires few
computing resources, its installation is simple and it is ideal for learning purposes. Through
Minikube, a cluster with one master node and two workers nodes will be created (one each for the
two labs). The pods of each worker will encapsulate a different docker image depending on the lab,
according to the following table.

Lab-name Image
Computer Network nginx
Dev-ops pbitty/hello-from:latest

Table 4.1: Docker images of the virtual labs.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 52



A comprehensive study of virtualization technologies for the support of virtual labs

In this thesis, we are not concerned with what the pods will contain. The aims is to implement the
infrastructure for the virtual labs and therefore the choice of docker images is random.

The number of pods managed by each worker will be finite and equal to both labs. In addition,
each pod will be assigned to each user. Kubernetes does not allow containers with the same image
to be encapsulated inside a single pod. In this case, the pod will fail. However, pods are able to
encapsulate multiple containers with different images and wrap all these as a single unit. For
instance, a single pod can contain a container with a nginx image, a container serving data storage
etc. In our thesis, the “one-container-per-pod” model will be utilized, since each of the pod will
have a single container.

For each virtual lab, a set of two YAML files will be created. The deployment’s YAML file will
create the pods and the service’s YAML file will expose these pods, in order to be accessible to the
participants of the virtual lab.

Following the logic of a semester’s curriculum, the laboratory courses will be activated and
terminated at a specific time and the duration will be 25 minutes. The following table depicts the
curriculum of the virtual labs.

Lab-name Computer Network Dev-ops
Day Thursday Thursday
Time 12:05-12:30 12:35-13:00
Number of participants 5 5

Table 4.2: Curriculum of the virtual labs.

After the creation of the Kubernetes cluster, the second step is to create a web solution. Its goal is to
automatically activate and terminate the cluster and the virtual labs at specific time intervals every
Thursday, according to the schedule below.

Time Event

12:00 Launch of the cluster.

12:05 Launch of the computer networking lab.
12:30 Termination of the computing network lab.
12:35 Launch of the devops lab.

13:00 Termination of the devops lab.
13:05 Termination of the cluster.

Table 4.3: Timeline of events.

The implementation of this web solution will be accomplished through Nodels and all these
automatic actions will be executed through cronjobs. In addition, the final result of the experimental
part should enable the infrastructure’s administrator to monitor the status of the up and running
pods at any time. Moreover, if the number of participants needs to be increased for a particular
course, the administrator will instruct the up and running worker node to increase the number of

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 53



A comprehensive study of virtualization technologies for the support of virtual labs

available pods by a certain number. For this reason, the third step involves the creation of REST
Application Programming Interface calls in order to achieve the communication between the
client(administrator) and the web-server that will be deployed with Nodels. In this client-server
architecture, client sends a request to the server and the server sends data back to the client as
response, typically in the form of JSON data, over the HTTP. The data sent by the server in
response is received by the operating system via commands. In this thesis, three actions must be
accomplished. To retrieve the state of the up and running pods of the cluster, the HTTP request
method GET will be executed. To increase the pods of a worker node, the HTTP request method
POST will be executed. GET request method is a request for information and it only retrieves data.
This type of request is not able to modify the underlying data that interacts. This ability is possessed
by the POST request method. Via POST we can update or create a new resource.

For these request methods, we implemented three endpoints. The following table depicts these
endpoints for each method.

Method Purpose URL

GET State of the cluster pods. http://localhost:8000/count
POST | Add pods to the computer network lab. http://localhost:8000/add-network
POST Add pods to the dev-ops lab. http://localhost:8000/add-devops

Table 4.4: URL for each request method.

After the end of the lab courses and the termination of the Pods, the progress of each user will not
be saved. Therefore, each user will have to take care of how to save their actions and results as
he/she will not be able to return to where he/she left off the previous time. In addition, this
infrastructure. once implemented, it will not be able to dynamically change the activation or
termination time of the virtual labs. To accomplish this, the application code will have to be
modified. Therefore, after the implementation, the schedule of Table 4.2 should be strictly followed.
The following Figure depicts the overall architecture of our infrastructure as described above:

endpoints < ......[ wsssd-+ APlserver <€—» 0sS.

'

. {°)

Workers ,_\:(, _gF
2

Container
Minikube localkube Runtime

VM

HOST

Figure 4.1: Architecture of our thesis.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 54



A comprehensive study of virtualization technologies for the support of virtual labs

5 Implementation of virtual labs.

In this chapter we will review in more detail the steps we followed to create the infrastructure to
support the virtual labs. The YAML files and code will be presented whereas the tools and
platforms to be used are the following:

e Windows O.S.

Linux O.S.

Oracle Virtual Box virtualization software.

Minikube.

NodeJs.

5.1 Host Machine and Oracle VM VirtualBox Manager.

The host machine is a Windows 10 x64, 8 GB RAM with i5-5500U CPU. In order to host a Linux
environment in a host machine that runs Windows, we have to install a virtualization software. In
our case, that software is the Oracle VM VirtualBox Manager and it will be used to create a VM
with Linux O.S. The version which is installed, is the 6.1.26. The following step is to download an
Ubuntu image in our local machine. The version which is downloaded is the 22.04.1.

We open the VirtualBox Manager, we create a new VM with the name ubuntuvlo. Then, we
configure it to run the Ubuntu image. The following picture depicts the initial menu of our
VirtualBox, which has two VMs. Our VM is selected and ready to start.

V¥ Oracle VM VirtualBox Manager — O >
File Machine Help
Ts e
Qoo Tools L(,:JJJ -
New Settings Discard Start

= General = preview

=, Ubuntu
, () powered Off Name: ubuntuvlo
Operating System:  Ubuntu (64-bit)

ubuntuvlo IE System

Base Memory: 4804 MB

Processors: 6

Boot Order: Floppy, Optical, Hard Disk

Acceleration VT-x/AMD-V, Nested Paging, KVM
Paravirtualization

M Display

Video Memory: 16 MB
Graphics Contraller: VMSVGA
Remote Desktop Server:  Disabled
Recording: Disabled
\;) Storage

Controller: IDE

IDE Secondary Device 0:  [Optical Drive] Empty
Controller: SATA

SATA Port 0: ubuntuvlo.vdi (Normal, 455,93 GB)
Ll Audio

Host Driver:  Windows DirectSound
Controller: ICH AC97

& Network
Adapter 1:  Intel PRO/1000 MT Desktop (NAT)
&7 usB

USB Controller:  OHCI
Device Filters: 0 (0 active)

7] shared folders

None

Figure 5.1: The Oracle VM Virtual Box Manager.
MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 55



A comprehensive study of virtualization technologies for the support of virtual labs

5.2 Minikube installation and cluster configuration.

After installing and configuring the VM in the virtual box, the next step is to install Minikube. The
instructions we followed for the correct installation are in the Minikube documentation at the
following link: https://minikube.sigs.k8s.io/docs/start/. The following figure depicts the version
which is installed.

S minikube version

minikube version: v1.25.2

Figure 5.2: Minikube version.

Before starting our cluster, we have to set a driver for Minikube. In our case, we chose the Docker
driver. To install docker on our virtual machine and set docker as the default driver, we followed
the instructions from the following link: https://minikube.sigs.k8s.io/docs/drivers/docker/. The
following figure depicts the Docker version which is installed.

- S docker --version

Docker version 20.10.12, build 20.10.12-6ubuntu4

Figure 5.3: Docker version.

In order to interact with our cluster, we will use the CLI tool called kubectl. To download kubectl,
we followed the instructions provided by the following link of Kubernetes documentation:
https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/. The following figure depicts the version
of kubectl which is installed.

3 S kubectl version --client --output=yaml
clientVersion:
buildDate: "2022-08-18T02:29:34Z"
compiler: gc
gltCommit: 95ee5ab382d64cfe6c28967F36b53970b8374491
giltTreeState: clean

gitVersion: v1.24.4

goVersion: gol.18.5

major: "1"

minor: "24"

platform: linux/amd64
kustomizeversion: v4.5.4

Figure 5.4: Version of kubectl.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 56


https://minikube.sigs.k8s.io/docs/start/
https://minikube.sigs.k8s.io/docs/drivers/docker/
https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/

A comprehensive study of virtualization technologies for the support of virtual labs

Now, we are ready to set up our cluster. Our cluster will be named thesis and will contain 3 nodes.
To accomplish that, the command is: minikube start --nodes 3 -p thesis. In a few second the output
IS:

$ minikube start --nodes 3 -p thesis
[thests] minikube v1.25.2 on Ubuntu 22.84 (vbox/amd64)
Using the docker driver based on user configuration
Starting control plane node thesis in cluster thesis
Pulling base image ...
Creating docker container (CPUs=2, Memory=2200MB) ...
minikube 1.26.1 is available! Download it: https://github.com/kubernetes/minikube/releases/tag/v1.26.1
To disable this notice, run: 'minikube config set WantUpdateNotification false

Preparing Kubernetes v1.23.3 on Docker 20.10.12 ...

m kubelet.housekeeping-interval=5m

m kubelet.cni-conf-dir=/etc/cni/net.mk

m Generating certificates and keys ...

W Booting up control plane ...

m Configuring RBAC rules ...
Y Configuring CNI (Container Networking Interface) ...
 Verifying Kubernetes components...

®m Using image gcr.io/k8s-minikube/storage-provisioner:vs

Enabled addons: default-storageclass, storage-provisioner

Starting worker node thesis-m®2 in cluster thesis
Pulling base image ...
Creating docker container (CPUs=2, Memory=2200MB) ...
Found network options:
W NO_PROXY=192.168.49.2
Preparing Kubernetes v1.23.3 on Docker 20.10.12 ...
W env NO_PROXY=192.168.49.2
’ verifying Kubernetes components...

Starting worker node thesis-m@3 in cluster thesis
Pulling base image ...
Creating docker container (CPUs=2, Memory=2200MB) ...
Found network options:
W NO_PROXY=192.168.49.2,192.168.49.3
Preparing Kubernetes v1.23.3 on Docker 20.10.12 ...
m env NO_PROXY=192.168.49.2
_ ® env NO_PROXY=192.168.49.2,192.168.49.3
’ verifying Kubernetes components...
Done! kubectl is now configured to use "thesis" cluster and "default" namespace by default

Figure 5.5: Implementation of the cluster.

Our cluster is now started. The command to check the status of the created nodes is minikube status
-p thesis. In our case, the output is depicted in the following figure.

S minikube status -p thesis
thesis
type: Control Plane
host: Running
kubelet: Running
apiserver: Running
kubeconfig: Configured

thesis-m@2

type: Worker
host: Running
kubelet: Running

thesis-m83

type: Worker
host: Running
kubelet: Running

Figure 5.6: Status of the nodes.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 57



A comprehensive study of virtualization technologies for the support of virtual labs

Alternatively, we can also use the kubectl get nodes command to see the name, status, type, age and
version of each node that has been deployed. The following figure depicts the output of this

command.

NAME

thesis
thesis-m02
thesis-m03

5.3 Deployments.

STATUS
Ready
Ready
CEET

$ kubectl get nodes
ROLES AGE
control-plane,master 3m48s
<none=> 3m19s
<none:=> 2m45s

VERSION
vi.23.3
vi.23.3
vli.23.3

Figure 5.7: List of the nodes.

For each virtual lab we will need one deployment which will create a Replica set to bring up 5 Pods
with the same encapsulated image. The following figure depicts the content of the YAML file
responsible for creating the deployment for the computer networking lab.

'1___
2 apiVersion:
3 kind:
4 metadata:
5 name:
6 spec:
7 selector:
8 matchLabels:
9 app:
10 replicas:
11 template:
12 metadata:
13 labels:
14 app:
15 spec:
16 nodeName:
17 containers:
18 - name:
19 image:
20 ports:
21 - name:
22 containerPort:

Figure 5.8: Deployment for the computer network lab.

Via this YAML file:

e A deployment is created and its name is networklab-deployment. This is indicated by the

.metadata.name field.

e The .spec.replicas field indicates that 5 Pods are created.

e How the deployment will find which Pods to monitor is specified by the .spec.selector field.
Here we choose to have a type label (app: nginx) that is defined by the .metadata.labels

field.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 58



A comprehensive study of virtualization technologies for the support of virtual labs

e The .template.spec.nodeName field defines the specific node in which the Pods will be
deployed. In this case, the node named thesis-m02 has been selected.

e Each pod contains a container named nginx0. Each container contains a nginx image and
runs on port 80 named Http. These are defined by the .spec.template.spec.containers field.

For the virtual lab related to the dev-ops lab, an additional deployment will be created. The
following figure depicts the content of the additional deployment YAML file.

1 apiVersion:

2 kind:

3 metadata:

4 name:

5 spec:

6 selector:

7 matchLabels:
8 app:

9 replicas:
10 template:

11 metadata:

12 labels:

13 app:

14 spec:

15 nodeName:
16 containers:
17 - name:

18 image:

19 ports:

20 - name:
21 | containerPort:

Figure 5.9: Deployment for the devops lab.

The structure of this YAML file is exactly the same as the one we used in the case of the first
virtual lab. The differences are mainly in the string values involved:

e The name of the deployment, which is devopslab-deployment.

e The node on which it will be implemented, which is the thesis-m03 node

e The name of the container, which is rehO.

e The type of image, which is pbitty/hello-from and its version which is the latest.
e The value of the app label, which is reh.

After completing and storing the YAML files in the Linux environment, the commands to be used
for the deployments in this particular thesis are listed below:

o To create a deployment, the command is: kubectl apply -f «the name of the YAML filex».

o To check which deployments run in our cluster, the command is: kubectl get deployments.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 59



A comprehensive study of virtualization technologies for the support of virtual labs

o To check the Replica Sets in our cluster, the command is: kubectl get replicaset.
o To check the Pods in our cluster the command is: kubectl get pods.
o To delete a deployment, the command is: kubectl delete deployment «deployment’s name».

o To scale a deployment, the command is: kubectl scale --current-replicas= «number of the
current replicas» --replicas= «new number of the replicas» deployment/ «deployment’s name.

5.4 Services.

In order for users, in this case, students, to have access to the Pods, a Service must be created for
each Deployment. Similar to the deployments, two YAML files must be created. The following
figure depicts the content of the YAML file responsible for creating the service of the computer
networking lab.

'1 -
2 apiVersion:
3 kind:
4 metadata:
5 name: t
6 spec:
7 type: t
B selector:
9 app:
10 ports:
11 - protocol: T
12 nodePort:
13 port:
14 targetPort:

Figure 5.10: Service for the computer network lab.

Via this YAML file:

e A service is created and its name is networklab-svc. This is indicated by the
.metadata.name field.

e The type of the service is NodePort. This is indicated by the .spec.type field.

e The .spec.ports field contains information about the ports that will be utilized. Ports is an
array and since protocol is the first element in the array, it has a dash. The protocol that
will be used is the TCP protocol. The node’s port is set to 31005. The targetPort:80 is the
pod’s port and service’s port is the port:80.

e The .spec.selector field is used to link the pods of the networklab deployment with this
specific service. These pods have the label app:nginx, which also must be inserted in the
networklab YAML file, in the .spec.selector field.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 60



A comprehensive study of virtualization technologies for the support of virtual labs

For the virtual lab related to the dev-ops lab, an additional service will be created. The following
figure depicts the content of the additional service YAML file:

'1 -
2 apiVersion:
3 kind:
4 metadata:
5 name:
6 spec:
7 type: t
8 selector:
9 app:
16 ports:
11 - protocol: T
12 nodePort:
13 port:
14 targetPort:

Figure 5.11: Service for the devops lab.

The structure of this YAML file is exactly the same as the one we used in the case of the first
virtual lab. The differences are mainly in the string values involved:

e The name of the deployment, which is devopslab-svc.

e The string value of the label, which is reh. This links the pods of the devopslab deployment
with this service.

e The nodePort, which is 31010.

After completing and storing the YAML FILES in the Linux environment, the commands to be
used for the services in this particular thesis are listed below:

e To create a service, the command is: kubectl apply -f «the name of the YAML file».
e To check which services run in our cluster, the command is: kubectl get services.
e To delete a service, the command is: kubectl delete service «service’s name».

e To list the URL of each service, the command is: minikube service list -p «cluster’s name».

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 61



A comprehensive study of virtualization technologies for the support of virtual labs

5.5 Nodejs.

In order to deploy our web solution with NodeJs, the first step is to install an editor. In this thesis
we have chosen the Visual Studio Code, which is a source-code editor. For this installation, we run
the command sudo apt install code. The following figure depicts the version of VS code that is
installed.

S code --version

Figure 5.12: Visual Studio Code version.

The second step, before installing the NodeJs, is to install the Node Version Manager. It is a source
version manager that enables a developer to use different versions of the NodeJs without having to
install each one of them. For this installation, we run the command sudo apt install nvm. The
following figure depicts the version of the NVM that is installed.

S nvm --version

Figure 5.13: Node Version Manager version.

To install the latest version of the NodeJs, we execute the command nvm install --Its. The following
figure depicts the version that is installed.

5 node --version

Figure 5.14: NodelJs version.

The fourth step is to create a directory, that will contain all the files for our web solution. The name
of this directory is api. To create it, we simply run the command mkdir api and in order to change
the directory to api, we run the command cd api. Now, since we are in our project’s directory, we
initialize the Node Packet Manager, via the command npm init. Since it is initialized, we install the
packages that will be needed to accomplish our web solution via the command npm install express
node-cron.

e Express — API framework.
e Node-cron — Cronjob’s driver for Node.js.

After installing and initializing all these packages and tools, we open the VS code, we browse into
our api directory and we create a file named index.js. When the program is completed, we run the
node index.js command to execute it.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 62



A comprehensive study of virtualization technologies for the support of virtual labs

5.6 Cronjobs.

Cronjobs are used to automatically execute tasks or commands. Cronjobs format contains five
asterisks and the command which are going to execute. Each asterisk has its own purpose in relation
to the day of the week, month, day of the month, hour and minute as the following figure depicts.

% % % % % command to be executed

L day of week (0-6) (Sunday = 0)
month (1-12)
day of month {1-31) A

hour (0-23)

minute (0-59)

Figure 5.15: Cronjob format [46].

Table 4.3 depicts the timeline of the events that we want to be executed automatically. The
following table is a new version of the table 4.3 which also contains the cronjob formats depending
on the time we want them to be executed.

Time Event Cronjob format
12:00 Launch of the cluster. 0012**4
12:05 Launch of the computer networking lab. 0512**4
12:30 | Termination of the computing network lab. 3012**4
12:35 Launch of the devops lab. 3BH12**4
13:00 Termination of the devops lab. 0013**4
13:05 Termination of the cluster. 0513**4

Table 5.1: Cronjob formats of the thesis.

5.7 Code presentation in sections.

The overall code is illustrated in Appendix A. In this subsection, we will present the code of the
program in sections depending on what is being accomplished.

> First section:

express = requiref(’

{

r el

= express();

app.listen(g8oee, '
console. log( "1
)

Figure 5.16: Boilerplate code for express server to start.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 63



A comprehensive study of virtualization technologies for the support of virtual labs

» Second section:

t, stderr)

console.error( error:

if (stderr
console.error( stderr

console.log('cluster is succ

Figure 5.17: Cronjob that launches the cluster.

> Third section:

(error, stdout, stderr)
n console.error( error: ${error.message} |;

if (stderr
n console.error( st r: ${stderr} );

console.log( 'depl

it, stderr)

return console.error( error: ${error. rrmssac_:qe]— H

- (stderr
i n console.error( st r: ${stderr} };

Figure 5.18: Cronjob that launches the computer network lab.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 64



A comprehensive study of virtualization technologies for the support of virtual labs

> Fourth section:

(error, stdout, stderr)

error( error: ${error.message}’);

error( stderr: ${stderr} );

tworklab-svc", (error, stdout, stderr)

n console.error( error ${error.mes

n console.error( stderr: ${stderr}

e.log

Figure 5.19: Cronjob that terminates the computer network lab.

> Fifth section:

ent.yaml”, (error, stdout, stderr)

error( error: ${error.message} );

n console.error(’s r: ${stderr} );

console.log('d

yaml", (error, stdout, stderr)
n console.error( error: ${error.message} );

if (stderr
n console.error( stderr: ${stderr} );

console. log

Figure 5.20: Cronjob that launches the devops lab.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 65



A comprehensive study of virtualization technologies for the support of virtual labs

> Sixth section:

cran.sc

ent", (error, stdout, stderr)

eturn console.error( error: ${error.message} );

n console.error( s r: ${stderr} );

de ent is s fully deleted

vc", (error, stdout, stderr)

e ${error.message} ) ;

r: ${stderr}’);

y deleted’

Figure 5.21: Cronjob that deletes the devops lab.

» Seventh section:

(error, stdout, stderr)

return console.error( error: ${error.message} );

t{stderr} );

Figure 5.22: Cronjob that stops the cluster.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 66



A comprehensive study of virtualization technologies for the support of virtual labs

» Eighth section:

(error, stdout, stderr)

n res.send

res.json(stdout.split

Figure 5.23: Implementation of the GET method.

» Ninth section:
t*, (error, stdout, stderr)

s{error.message}

r: ${stderr}

Figure 5.24: POST method implementation for the computer network lab.

» Tenth section:
, lerror, stdout, stderr)

[error.message}

: ${stderr}

res.json(stdout.split

Figure 5.25: POST method implementation for the devops lab.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 67



A comprehensive study of virtualization technologies for the support of virtual labs

5.8 Deploying our infrastructure.

First of all, we have to ensure that our cluster is configured and stopped. From the command line,
we run the command minikube status -p thesis. The output is depicted in the following figure:

Zen1 11:47
1 aris@snare: ~/Desktop

S minikube status -p thesis
thesis

e: Control Plane
: Stopped
kubelet: Stopped
apiserver: Stopped
kubeconfig: Stopped

thesis-mB2

type: Worker
host: Stopped
kubelet: Stopped

thesis-m@3

type: Worker
host: Stopped
kubelet: Stopped

Figure 5.26: Status of the cluster before starting the infrastructure.

A few minutes before 12:00 p.m., we run the command node index.js to execute our program. The
output is depicted in the following figure:

Ien1 11:57

index.js - api - Visual Studio Code

TERMINAL

% node index. j

Figure 5.27: First output after the execution of our program.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 68



A comprehensive study of virtualization technologies for the support of virtual labs

When the time is 12:00 o’clock, the log that signifies the start of the first cronjob, appears in the
terminal. A few seconds later, a second log that signifies the successful launch of our cluster, also
appears.

Zen1 12:02

index.js - api - Visual Studio Code

>OLE TERMIMAL

% node index.js

8008

are: $ node index.js
on port 8600
cron launches the cluster
cluster is successfully de

Figure 5.28: Logs from the first cronjob.

If we repeat the command minikube status -p thesis, that we used to check the status of cluster, the
output will be different because now the master and the two worker nodes are running.

Zen1 12:02
aris@snare: ~/Desktop

$ minikube status -p thesis
thesis
type: Control Plane
host: Running
kubelet: Running
Lapiserver: Running

kubeconfig: Configured

thesis-m@2

type: Worker
host: Running
kubelet: Running

thesis-m@3

type: Worker
host: Running
kubelet: Running

Figure 5.29: Status of the cluster.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 69



A comprehensive study of virtualization technologies for the support of virtual labs

When the time is 12:05 p.m., three more logs will appear to the terminal. The first signifies the start
of the second cronjob which activates the computer network virtual lab. The following two logs
signify the successful activation of the deployment and the service of the computer network lab.

en1 12:05

index.js - api - Visual Studio Code

TERMINAL

Figure 5.30: Logs from the second cronjob.

To check if the deployment and the service are activated, we run the kubectl get deployments and
kubectl get services commands from our command line. The outputs are depicted in the following
two figures.

Zen1 12:06
aris@snare: ~/Desktop

$ kubectl get deployment

NAME READY UP-TO-DATE AVAILABLE AGE
networklab-deployment 5/5 5 5 765

H $ kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none= 443/TCP 15m
networklab-svc NodePort 10.102.116.235 <none= 80:31005/TCP 83s

Figure 5.31: Outputs.

Now, if we want to check the status of the pods that are up and running, we open a browser and hit
the http://localohost/pods URL. The GET method is activated and the following figure depicts the
response that we receive.

localhost:8000/pods X ar

L C O localhost:8000/pods|

JSON  RawData  Headers

Save Copy CollapseAll Expand All

a: "NAME READY  STATUS RESTARTS  AGE IP NODE
"networklab-deployment-69dbd5d9f5-klmhh 1/1 Running a 4ml3s 18.244.1.2 thesis-mb2
2: "networklab-deployment-69dbd5d9f5-kzhjk 1/1 Running a 4ml3s 18.244.1.4 thesis-mi2
3: "networklab-deployment-69dbd5d9f5-ghksn 1/1 Running a 4ml3s 18.244.1.5 thesis-m@2
4: "networklab-deployment-69dbd5d9f5-qgnnv 1/1 Running a 4ml3s 16.244.1.3 thesis-m@2
"networklab-deployment-69dbd5d9f5-wgz48 1/1 Running a 4ml3s 18.244.1.6 thesis-m@2

Figure 5.32: GET response.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 70


http://localohost/pods

A comprehensive study of virtualization technologies for the support of virtual labs

If we want to scale the number of pods, we run the command curl -X POST
http://localhost:8000/add-network and if we hit again the http://localohost/pods URL, the output
illustrates that five more pods are added, as it is depicted in the following figure.

Zen1 1212

localhost:8000/pods X ar
&« C O localhost:8000/pods
JSOM  RawData  Headers
Save Copy CollapseAll Expand All
MAME READY STATUS RESTARTS AGE IP
1: networklab-deployment -69dbd5d9f5-dvpld 1/1 Running 8 225 10.244.1.8
2: networklab-deplo 69dbd5d9f5-klmhh 1/1 Running 8 Tml2s 16.244.1.2
3: networklab-deplo 69dbd5d9f5-kzhjk 1/1 Running 8 Tml2s 16.244.1.4
4: networklab-deployment -69dbd5d9f5-ghksn 1/1 Running 8 Tml2s 18.244.1.5
5: networklab-deployment -69dbd5d9f5 -ggnnv 1/1 Running 8 Tml2s 18.244.1.3
6: networklab-deployment-69dbd5d9f5-rblpg /1 Running ] 22s 16.244.1.16
T: networklab-deployment -69dbd5d9f5-s6gcc 1/1 Running 8 22s 18.244.1.7
g: networklab-deployment -69dbd5d9f5-tkdq2 1/1 Running 8 225 18.244.1.9
a: networklab-deployment -69dbd5d9f5-we376 1/1 Running 8 22s 10.244.1.11 thesis-m@2
18: networklab-deployment -69dbd5d9f5 -wgz48 1/1 Running 8 Tml2s 10.244.1.6 thesis-m@2

Figure 5.33: GET response after POST request.

In order to have access to the image that these pods are containing, we run the command minikube
service list -p thesis from our terminal and the output is depicted in the following figure.
Zen1 12113
aris@snare: ~/Desktop

$ minikube service list -p thesis

| default | kubernetes | No node port |
| default | networklab-svc | 80 | http:/f192.168.49.2:31005 |
| kube-system | kube-dns | No node port |

Figure 5.34: List of services.

If the hit the link the output will be:
welcome to nginx! X |+

B 192.168.49.2:31005

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

Figure 5.35: Nginx.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 71


http://localhost:8000/add-network
http://localohost/pods

A comprehensive study of virtualization technologies for the support of virtual labs

When the time is 12:30 p.m., three more logs will appear to the terminal. The first signifies the start
of the third cronjob which deletes the computer network virtual lab. The following two logs signify
the successful delete of the deployment and the service of the computer network lab.

Yen1 12:30

index.js - api - Visual Studio Code

TERMIMAL

Figure 5.36: Logs from the third cronjob.

If we run the command kubect! get pods to monitor which pods are running, the output will be that
there are no resources found.

Zen1 12:31

[+1 aris@snare: ~/Desktop

R $ kubectl get pods
No resources found in iefault namespace.
: $

=

Figure 5.37: Output of the kubectl get pods command.

The same procedure will be followed to activate the devops virtual lab. When time is 12.35 p.m.,
the fourth cronjob will start and three more logs will appear to the terminal. A deployment and a
service will be implemented in order to deploy five new pods for the devops virtual lab. Again, if
we hit the http://localohost/pods URL the output will be:

Zen1 12:35

localhost:8000/pods X +

&« () O localhost:8000/pods

JSON Raw Data  Headers

Save Copy Collapse All Expand All

a: "NAME READY  STATUS RESTARTS  AGE IP NODE

1: "devopslab-deployment -5844cT4549 -5nzrz 1/1 Running i} 26s 16.244.2.6 thesis-mB3
2 y-deployment -5844cT4549-6kjng 1/1 Running 0 265 16.244.2.4 thesisz-mB3
3: deployment -5844cT4549-88tfq 1/1 Running i) 26s 16.244.2.2 thesis-mB3
4: y-deployment - 5844cT4549-947dc 1/1 Running 3] 26s 16.244.2.3 thesis-mB3
5: deployment -5844cT4549-r6n52 1/1 Running i) 26s 16.244.2.5 thesis-m@3

Figure 5.38: GET response of the devops lab.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 72


http://localohost/pods

A comprehensive study of virtualization technologies for the support of virtual labs

If we want to scale the number of pods, we run the command curl -X POST
http://localhost:8000/add-network and if we hit again the http://localhost/pods URL the output
illustrates that five more pods are added, as it is depicted in the following figure:

Zen1 12:36

localhost:8000/pods b ar

&« @] D localhost:8000/pods

JSON Raw Data  Headers

Save Copy Collapseall Expand All

o: NAME READY STATUS RESTARTS  AGE Ip NODE

1: devopslab-deployment-5844cf4549-5546h 1/1 Running i} 19s 10.244.2.7 thesis-md3
2: devopslab-deployment-5844cf4549-5nzrz 1/1 Running i] 99s 10.244.2.6 thesis-m@3
3: devopslab-deployment-5844cf4549-6kjng 1/1 Running i} 99s 10.244.2.4 thesis-m@3
4: devopslab-deployment-5844cf4549-Txjvt 1/1 Running 4] 19s 10.244.2.18

5: devopslab-deployment-5844cf4549-881Tq 1/1 Running 2] 99s 10.244.2.2

b: devopslab-deployment-5844cf4549-8rgcp 1/1 Running 2] 19s 18.244.2.11

T: devopslab-deployment-5844cf4549-947dc 1/1 Running 2] 995 10.244.2.3

a: devopslab-deployment-5844cT4549-mdtt7 1/1 Running i) 19s 10.244.2.8

9: devopslab-deployment-5844cf4549-rén52 1/1 Running i} 99s 10.244.2.5

18: devopslab-deployment-5844cf4549- tnwbr 1/1 Running i] 19s 10.244.2.9

Figure 5.39: GET response after the POST request for the devops lab.

In order to have access to the image that these pods are containing, we run the command minikube
service list -p thesis from our terminal and the output is depicted in the following figure.

aris@snare: ~/Desktop

S minikube service 1list -p thesis

I
| NAME | TARGET PORT
|- omemne e - emeeeeee
| devopslab-svc | 80 168.49.2:31010 |
| kubernetes | No node port
| kube-system | kube-dns | No node port

Figure 5.40: List of services.

If the hit the link the output will be:
Ten1 12:39
192.168.49.2:31010/ X | +
C O & 192.168.49.2:31010

Hello from devopslab-deployment-5844cf4549-z54wc (10.244.2.6)

Figure 5.41:Figure 5.41: Hello from.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 73


http://localhost:8000/add-network
http://localhost/pods

A comprehensive study of virtualization technologies for the support of virtual labs

When the time is 13:00 o’clock, three more logs will appear to the terminal. The first signifies the
start of the fifth cronjob which deletes the devops virtual lab. The following two logs signify the
successful delete of the deployment and the service of the devops lab.

Zen1 13:00

index.js - api - Visual Studio Code

TERMINAL

Figure 5.42: Logs from the fifth cronjob.

If we run the command kubectl get pods to monitor which pods are running, the output will be that
there are no resources found.

Zen1 13:00
[+ aris@snare: ~/Desktop

$ kubectl get pods

Mo resources found in default namespace.
: s

o=

Figure 5.43: Output of the kubectl get pods command.

When the time is 13:05 p.m., the log that signifies the start of the sixth and last cronjob, appears in
the terminal. A few seconds later, a second log that signifies the successful termination of our
cluster, also appears.

Zen1 13:05

index.js - api - Visual Studio Code

TERMINAL

Figure 5.44: Logs from the sixth cronjob.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 74



A comprehensive study of virtualization technologies for the support of virtual labs

If we run the command minikube status -p thesis, the output is depicted in the following figure:
Zen1 13:06
aris@snare: ~/Desktd

S minikube status -p thesis

thesis

type: Control Plane
host: Stopped
kubelet: Stopped
apiserver: Stopped
kubeconfig: Stopped

thesis-mo2

type: Worker
host: Stopped
kubelet: Stopped

thesis-mo3

type: Worker
host: Stopped
kubelet: Stopped

Figure 5.45: Status of the cluster after the termination of our infrastructure.

We observe that out thesis cluster in now stopped, but it is not deleted and it can be furtherly used
in the following week in order to deploy these two virtual labs.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 75



A comprehensive study of virtualization technologies for the support of virtual labs

6 Conclusions

The evolution of Information Technology is also heavily based on the evolution of containerized
technologies. Virtualization technology combined with cloud computing technology have paved the
way for these containerized technologies to make even greater use of physical resources. Its main
objective is to create infrastructures and applications with the minimum amount of physical
equipment and personnel needed for their control, monitoring, and upgrading. In this thesis, we
have demonstrated how to implement and manage an environment using the Kubernetes tool. This
tool, while relatively new, will be in the IT spotlight for quite some time, since containers are the
basis for deploying infrastructures.

Conclusions using Kubernetes in our thesis:

Kubernetes ensures that if a container fails, it will automatically kill and will replace it with
another one. Furthermore, it does not make it accessible to users until it is healthy and ready
to serve. This whole process is done automatically, without any involvement of the
administrator. In this way, self-healing is achieved.

In addition, we saw how easily with a single command we can increase or decrease the
number of associated Pods within the cluster. Thus, if the demand for a particular
application increase, Kubernetes ensures that it is met quickly and easily.

In addition, Kubernetes ensures that no matter what happens on our infrastructure, the
cluster will contain as many Pods as the administrator defines. By creating a deployment
and setting the number of replicas for a particular Pod, we ensure that this number will
always exist in the cluster. Even if the administrator himself/herself, deletes one of the Pods
created by the deployment, Kubernetes will automatically replace it.

In addition, we have seen how easily we can assign to each pod either which service it
belongs to or which worker node it will activate. That was accomplished using labels. In a
large cluster, with a large number of pods, the administrator can easily group cluster
elements according to the outcome he/she wants to achieve.

In the future, the practical part of this thesis may be differentiated as follows:

Instead of using Minikube to implement our cluster, we can use Kubeadm, which according
to the Kubernetes documentation, is the appropriate tool for a production environment.

Instead of using cronjobs to implement different events depending on the day and time, we
can implement and connect a database to our infrastructure.

By creating a Pod, Kubernetes automatically allocates memory and CPU for each container.
In order to take full advantage of our resources, we can instruct Kubernetes how much
memory or CPU each container needs.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 76



A comprehensive study of virtualization technologies for the support of virtual labs

Bibliography — References — Internet Resources

[1] Semnanian, A. A., Pham, J., Englert, B., & Wu, X. (2011, April). Virtualization technology and its
impact on computer hardware architecture. In 2011 Eighth International Conference on Information
Technology: New Generations (pp. 719-724). IEEE.

[2] Ameen, R.Y., & Hamo, A. Y. (2013). Survey of server virtualization. arXiv preprint
arXiv:1304.3557..

[3] Kampert, P. E. (2010). A taxonomy of virtualization technologies.
[4] Virtualization evolution and history. Available at:

https://scholarworks.rit.edu/cgi/viewcontent.cgi?article=9236&context=theses retrieved
[Jan.20,2022]

[5] Kamla, R. Z., Yahiya, T., & Mustafa, N. B. (2018). An Implementation of Software Routing for
Building a Private Cloud. International Journal of Computer Network & Information Security, 10(3).

[6] Perez-Botero, D., Szefer, J., & Lee, R. B. (2013, May). Characterizing hypervisor vulnerabilities in
cloud computing servers. In Proceedings of the 2013 international workshop on Security in cloud
computing (pp. 3-10).

[71 Alnaim, A. K., Alwakeel, A. M., & Fernandez, E. B. (2019, April). A pattern for an NFV Virtual
Machine Environment. In 2019 IEEE International Systems Conference (SysCon) (pp. 1-6). IEEE.

[8] Santana, G. A. (2013). Data center virtualization fundamentals: understanding techniques and
designs for highly efficient data centers with Cisco Nexus, UCS, MDS, and beyond. Cisco Press..

[9] Business applications and activities provided by data centers. Available at:
https://www.cisco.com/c/en/us/solutions/data-center-virtualization/what-is-a-data-center.html
retreived [Feb.2,2022]

[10] Eriksson, Martin.(2018) .Monitoring, modeling and identification of data center servers.

[11] Data Center Tier Classification. Available at: http://ipwithease.com retreived [Feb.7,2022]

[12] Halabi, S. (2019). Hyperconverged Infrastructure Data Centers: Demystifying HCI. Cisco Press..
[13] Riteau, P. (2011, May). Building dynamic computing infrastructures over distributed clouds. In 2011
IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd
Forum (pp. 2097-2100). IEEE.

[14] Alhamad, M., Dillon, T., & Chang, E. (2010, April). Conceptual SLA framework for cloud computing.
In 4th IEEE international conference on digital ecosystems and technologies (pp. 606-610). IEEE.

[15] Mell, P., & Grance, T. (2011). The NIST definition of cloud computing.

[16] Erl, T., Puttini, R., & Mahmood, Z. (2013). Cloud computing: concepts, technology, & architecture.
Pearson Education.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 77


https://scholarworks.rit.edu/cgi/viewcontent.cgi?article=9236&context=theses
https://www.cisco.com/c/en/us/solutions/data-center-virtualization/what-is-a-data-center.html
http://ipwithease.com/

A comprehensive study of virtualization technologies for the support of virtual labs

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

Cloud Figure. Available at: https://clipground.com/cloud-computing-clipart.html retreived [Feb
12,2022]

IBM cloud computing definition. Available at: https://www.ibm.com/cloud/learn/cloud-computing
retreived [Feb 12,2022]

Velte, A. T., Velte, T. J., Elsenpeter, R. C., & Elsenpeter, R. C. (2010). Cloud computing: a practical
approach.

Thomas, E., Zaigham, M., & Ricardo, P. (2013). Cloud Computing Concepts, Technology &
Architecture.

Tsai, W., Bai, X., & Huang, Y. (2014). Software-as-a-service (SaaS): perspectives and
challenges. Science China Information Sciences, 57(5), 1-15.

Goran, V., Monika, S., Sasko, R., & Marjan, G. (2014). BUSINESS CASE: FROM IAAS TO
SAAS. SMEs DEVELOPMENT AND INNOVATION: BUILDING COMPETITIVE FUTURE OF
SOUTH-EASTERN EUROPE, 801.

Rimal, B. P., Choi, E., & Lumb, I. (2009, August). A taxonomy and survey of cloud computing
systems. In 2009 Fifth International Joint Conference on INC, IMS and IDC (pp. 44-51). IEEE.

Advantages and comparison of Cloud Computing models. Available at: https://sam-
solutions.us/advantages-and-disadvantages-of-cloud-deployment-models/ retreived [Mar ,2022]

Mousavi Shoshtari, S. F. (2013). Cloud Computing Adoption in Iran as a Developing Country: A
Tentative Framework Based on Experiences from Iran.

Aspernas, A., & Nensén, M. (2016). Container Hosts as Virtual Machines: A performance study.
Barik, R. K., Lenka, R. K., Rao, K. R., & Ghose, D. (2016, April). Performance analysis of virtual
machines and containers in cloud computing. In 2016 international conference on computing,

communication and automation (iccca) (pp. 1204-1210). IEEE.

Docker Docs, Docker official logo. Available at:
https://www.docker.com/company/newsroom/media-resources/ retreived [Mar.14,2022]

Jaramillo, D., Nguyen, D. V., & Smart, R. (2016, March). Leveraging microservices architecture by
using Docker technology. In SoutheastCon 2016 (pp. 1-5). IEEE.

Docker Docs, Docker Network Drives. Available at: https://docs.docker.com/network/ retreived
[Mar.17,2022]

Suo, K., Zhao, Y., Chen, W., & Rao, J. (2018, April). An analysis and empirical study of container
networks. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 189-197).
IEEE.

Marmol, V., Jnagal, R., & Hockin, T. (2015). Networking in containers and container
clusters. Proceedings of netdev 0.1, 14-17.

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 78


https://clipground.com/cloud-computing-clipart.html
https://www.ibm.com/cloud/learn/cloud-computing
https://sam-solutions.us/advantages-and-disadvantages-of-cloud-deployment-models/
https://sam-solutions.us/advantages-and-disadvantages-of-cloud-deployment-models/
https://www.docker.com/company/newsroom/media-resources/
https://docs.docker.com/network/

A comprehensive study of virtualization technologies for the support of virtual labs

(33]

(34]

(35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Al Jawarneh, 1. M., Bellavista, P., Bosi, F., Foschini, L., Martuscelli, G., Montanari, R., & Palopoli,
A. (2019, May). Container orchestration engines: A thorough functional and performance
comparison. In ICC 2019-2019 IEEE International Conference on Communications (ICC) (pp. 1-6).
IEEE.

Naik, N. (2021, April). Performance evaluation of distributed systems in multiple clouds using
docker swarm. In 2021 IEEE International Systems Conference (SysCon) (pp. 1-6). IEEE.

Docker Docs, Swarm mode overview. Available at: https://docs.docker.com/engine/swarm/
retreived [Mar.28,2022]

Kubernetes Docs, Kubernetes official logo. Available at: https://kubernetes.io/ retrieved
[April.4,2022]

Hausenblas, M. (2018). Container Networking. O'Reilly Media, Incorporated.

Kubernetes Docs. Kubernetes architecture. Available at:
https://kubernetes.io/docs/concepts/overview/components/ retrieved [April.20,2022]

https://www.techtarget.com/searchitoperations/tip/Ensure-Kubernetes-high-availability-with-master-
node-planning

Uphill, T., Arundel, J., Khare, N., Saito, H., Lee, H. C. C., & Hsu, K. J. C. (2017). DevOps: Puppet,
Docker, and Kubernetes. Packt Publishing Ltd.

Kubernetes Docs. Kubernetes Networking. Available at:
https://kubernetes.io/docs/concepts/cluster-administration/networking/ retrieved [April.24,2022]

Kubernetes Docs. Kubernetes services. Available at: https://kubernetes.io/docs/concepts/services-
networking/service/ retrieved [April.24,2022]

Kubernetes Docs. Kubernetes volumes. Available at:
https://kubernetes.io/docs/concepts/storage/volumes/ retrieved [April.25,2022]

Scheckler, R. K. (2003). Virtual labs: a substitute for traditional labs?. International journal of
developmental biology, 47(2-3), 231-236.

Xevgenis, M. G., Toumanidis, L., Kogias, D. G., & Patrikakis, C. Z. (2016, December). The Virtual
Lab (VLAB) Cloud Solution. In 2016 IEEE Globecom Workshops (GC Wkshps) (pp. 1-5). IEEE..

Format of cronjobs. Available at: https://www.looklinux.com/top-20-crontab-examples-to-schedule-
tasks/ retrieved [Sept.9,2022]

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng 79


https://docs.docker.com/engine/swarm/
https://kubernetes.io/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/storage/volumes/
https://www.looklinux.com/top-20-crontab-examples-to-schedule-tasks/
https://www.looklinux.com/top-20-crontab-examples-to-schedule-tasks/

A comprehensive study of virtualization technologies for the support of virtual labs

MNAAA, Tunua H&HM, AutAwuatikn Epyaoia, Aptoteidng MraAt{wng

80



	List of Tables
	List of Figures
	Alphabetical Index
	INTRODUCTION
	Object of the Diploma Thesis
	Purpose and objectives
	Methodology
	Innovation
	Structure

	1   Virtualization vs Data Centers
	1.1 Defining Virtualization.
	1.2 Historical background.
	1.3 Defining virtual machines.
	1.4 Hypervisor.
	1.5 Advantages and Disadvantages of Virtualization.
	1.5.1 Advantages.
	1.5.2 Disadvantages.

	1.6 Data centers.
	1.7 Data center virtualization.
	1.8 Benefits of virtual data centers.

	2   Cloud Computing.
	2.1 Defining Cloud computing.
	2.2 Historical background.
	2.3 Needs for Cloud computing in businesses.
	2.4 Cloud Computing Characteristics.
	2.5 Cloud service models.
	2.5.1 Infrastructure-as-a-Service (IaaS).
	2.5.2 Platform-as-a-Service (PaaS).
	2.5.3 Software-as-a-Service (SaaS).
	2.5.4 Comparison of cloud services.
	2.5.5 Cloud service providers.

	2.6 Cloud deployment models.
	2.6.1 Private cloud.
	2.6.2 Public cloud.
	2.6.3 Community cloud.
	2.6.4 Hybrid cloud.
	2.6.5 Comparison of cloud deployment models.
	2.6.6 Relationships between cloud deployments and cloud service models.

	2.7 Advantages and Disadvantages of cloud computing.
	2.7.1 Advantages of cloud computing.
	2.7.2 Disadvantages of cloud computing.


	3 Containerized technologies: Kubernetes and Docker.
	3.1 Defining Containerization and Containers.
	3.2 Virtual Machines vs Containers.
	3.3 Docker
	3.3.1 Reasons to use docker.
	3.3.2 Docker architecture.
	3.3.3 Docker image and Docker container.
	3.3.4 Docker Networking.
	3.3.5 Docker Storage.
	3.3.6 Container orchestration and Docker Swarm

	3.4 Kubernetes
	3.4.1 Reasons to use Kubernetes.
	3.4.2 Kubernetes architecture
	3.4.3 Master Node overview and its components.
	3.4.4 Worker node overview and its components.
	3.4.5 Kubernetes Networking
	3.4.6 Replica Sets and Deployments.
	3.4.7 Kubernetes services.
	3.4.8 Kubernetes storage
	3.4.9 YAML configuration files in Kubernetes.


	4 Virtual lab use case.
	4.1 Virtual labs
	4.2 Virtual lab solution.

	5 Implementation of virtual labs.
	5.1 Host Machine and Oracle VM VirtualBox Manager.
	5.2 Minikube installation and cluster configuration.
	5.3 Deployments.
	5.4 Services.
	5.5 Nodejs.
	5.6 Cronjobs.
	5.7 Code presentation in sections.
	5.8 Deploying our infrastructure.

	6 Conclusions
	Bibliography – References – Internet Resources

		2022-10-13T16:09:07+0300
	Michail Feidakis


		2022-10-13T17:48:37+0300
	Charalampos Patrikakis


		2022-10-13T18:17:36+0300
	Periklis Papadopoulos




