N\

L .‘i.gg “ Université
.1 - - --

| : ‘ de Limoges

Master of Science
<<Artificial Intelligence and Visual Computing>>

UNIVERSITY OF WEST ATTICA &
UNIVERSITY OF LIMOGES

FACULTY OF ENGINEERING

DEPARTMENT OF INFORMATICS AND COMPUTER
ENGINEERING

Master Thesis

Deep Learning models for timeseries forecasting
using Keras library

Student: Zelios Vasileios
(aive21003)

Supervisors: Prof. Paris Mastorocostas - George Kandilogiannakis M.Sc.

Athens, February 2023

MEé£An E€etaotikrg Emitponr¢ cupunepAapBaVOREVOU TOU ELCNYNTH

H SutAwpatiki epyacio EEETACTNKE EMTUXWE arno Thv KAtwOL E§etaotikr) Entponn

WHOIAKH
A/A NOMATEMQNYM BAOMIAA/IAIOTHTA
/ ONO 0 © /1810 YNOTPAOH
. , . , | Anastasios uGlcica
1 Avaotdolog Keoidng AvarAnpwtng Kabnyntng | kesidis Dte 20230017
Par]s Eig;tallly signed
, , , y Paris
2 Mapig Maotopokwotag KaBnyntnig Mastoro Nastorokostas |
kostas 07:37:29 0200
, . Panagiota pudioc Tecen
3 MNavaywwta ToeAevtn EAIN Tselenti Dot 20230217

ABSTRACT

The current thesis aims to conduct a thorough examination of recurrent
neural networks for the purpose of forecasting short-term electric load in Greece.
The study is motivated by the significant energy crisis that Greece has been
experiencing, which is characterized by high electricity costs. As of January
2022, Greece had the highest electricity costs in Europe, reaching 227.3 Euros
per megawatt-hour. This dire situation necessitates the development of accurate
forecasting methods for electric load demand by experts.

Recurrent neural networks are a type of artificial neural network that have
the ability to process sequential data, making them suitable for time series
forecasting. The study explores the impact of different network architectures and
parameters on the forecasting performance.

We developed deep learning algorithms using Python and trained neural
networks with historical data to generate predicted electricity load values and
calculate statistical errors. The focus of the study was on using LSTM models,
which have been shown to provide highly accurate forecasts for time series data
due to their complexity.

In conclusion, the predictions generated by the models developed in the
present study were integrated into the Power Bl platform, to facilitate the ease
and convenience of data visualization for the end-user. Power Bl is a business
intelligence tool that allows for the creation of interactive visualizations and
dashboards, providing a user-friendly interface for data exploration. By
integrating the model predictions into Power BlI, it becomes possible to present
the data in an intuitive and accessible manner, enabling the end-user to gain

insights and make informed decisions.

Key words: electric load demand, recurrent neural networks, deep learning, time

series forecasting, short-term forecast, algorithms, Python, visualization

Table of Contents

Y5 0 13 Y o 2
Section 1: Theoretical Partccoovueeeiiiiiiiiiiieiiiennere s 10
1.1 Historical Overview of POWET SYSTEMSceiiiiiiiiieeiieee ettt et e et 10
1.2 Electric POWEr SYSTEM (EPS)ueeiii ettt ettt e et e e eree e e aree e e anes 11
1.3 Load FOrecasting NEEMuuveeeiiiiiiiiiiriieeee e eeeccerte e e e e e e setare e e e e e eeestarraeeeeeesennsssaeeeeaeeens 12
R o= To Il o] =T or= 1y 4 [T~ OSSP 13
1.5 Factors significantly affecting the [0adcoccveiiiiiiiii e 14
1.6 NeUral NEEWOIKSveeiieeee et 15
1.6.1 Simulation of natural neurons with artificial neural networks...........c.ccceeveveiieennenn. 17
1.6.2 HiStOrICal REVIEW.....vieiiiiieiiiietee ettt ettt 19
1.6.3 Architecture Of ANNScccuiiiiiiieee ettt sttt s b e beenees 20
1.6.4 MUILI-IaYEr ANNS..ccciiiiieeee e e e e e e e e e e e s te e e e e e s e esabateeeeeeeesnnbereeeeeeeannnen 22
1.6.5 Transfer fUNCHIONSocuiiiii et s 22
166 RININ e e et e b e nenesenenenee e nann 24
1.6.7 LSTIMl ¢ttt sttt st sttt st et r e n e nr e e e nnees 26
1.B.8 GRU ettt bbb e e sttt ettt et ettt e r e e neenaees 27
1.6.9 OPeration Of ANNS.....cciiiiiiieeciee ettt eetee e e et e e et re e e eabe e e s ebteeeesnsaeeeennraeesennres 28
1.6.10 Training Of ANNSciiiiciiei ittt e e st e e s sbee e e s sabe e e e sbbeeessbeeessareeens 29
1.6.11 Accuracy check of ANNS fOreCastingcoovvvvrrieeiieeieiiiiieeee e 29
1.7 TIM@ SIS wueiiiiiiiiiiiiiii e s 30
Section 2: IMplemeNntation.......ccceeeccciiiiiiiiirrceeer e eerrensesseesseeeennnssssssesseeeernnnsssssssssasennnns 35
2.1 Clarification of IMpPortant tEIMSuiiiiiiiee e e e e e e e 35
2.0, L TENSOIFIOW. .ceuetiiiiiieiie ettt ettt ettt et ettt sa e st e e it e e s abe e sabeeesmeeesabeesareesareeen sanes 35
2.1 2 KEIAS woiiiiiiiiiiiiiiiie e e s 35
P B N o Yo - [N @lo] -] o To =1 e V2SS 35
2.1 4 POWEL Bitueiiiiiiiiiiiiiiiiciiiitc ettt 36
2.2 Data Preparation. ... ————— 36
2.3 AlgOrithms / ArChItECTUIES....coovviictee ettt e enaee s 44
2.3.1 Feed FOrward MOdEIScociiiieiienieienieee ettt 45
2.3.2 ReCUIrENt IMOTEISeeiiiiiiiieee ettt 53
2.4 PrediCtion EITOrS ..o ittt st s e s sme e s e smr e e sneeennnes 54
2.4 1 0ULPUL = 1 & 2N oo e e a e 55
P N O TN 4 TU) | o PSR 57
Section 3: Dynamic Power Bi REPOrtccuiieeiieniiiiiiiiiiiiiieeceriecreeerensesensessnsssnssssansenes 64

N R o 1Y V=T O = T =Y oo o PP PP PPPPPPPPPPPPPPRt 64

Y=Yt Lo o 00T s of ¥ 3 1o Y 1N

4.1 Observations and future STUAYoeeeeiiiiii e

Bibliography...

Webliography

Table of Figures

Figure 1:
Figure 2 :
Figure 3 :
Figure 4 :
Figure 5 :
Figure 6 :
Figure 7 :
Figure 8 :
Figure 9 :

Figure 10 :
Figure 11 :

Figure 12

Figure 13 :
Figure 14 :
Figure 15:

Figure 16

Figure 17 :
Figure 18 :

Figure 19

Figure 20 :
Figure 21 :
Figure 22 :
Figure 23 :
Figure 24 :

Figure 25

Figure 26 :

Figure 27

Figure 28 :
Figure 29 :
Figure 30 :
Figure 31 :
Figure 32 :
Figure 33 :
Figure 34 :

Figure 35

Figure 36 :

Figure 37

Figure 38 :
Figure 39 :
Figure 40 :

Figure 41

Figure 42 :
Figure 43 :
Figure 44 :
Figure 45 :
Figure 46 :

Pear] STreet StAtioN .oouiii et 10
EleCtrical POWET SYSTEMuiiiiiii ettt e e e et e e e e e e e rnrbre e e e e e e eas 11
Y 10 F- Lo f €1 o o IO PPUPPRPRUROt 13
(o T-To I o) g =Yor- 1 1 Y= 4] oY USSP 14
HUMAN NEUIONS ...ttt e aeaeeeaeeeeeenes 15
Schematic diagram of a typical NEUIrONcccvviii i 16
Natural neuron in relation to the elementary artificial neuronccccoeeeeeineens 18
Feed forward ANN arChit@CIUIE.......uveeiiiieieciieeee et e e esrre e e e e e e 21
Recurrent NN archit@CtUre......covuii it 21

Convolutional NN archit@Ctureccuviiiiiiii e e 22
MUIEIFIAYEI ANN L.ttt e e s e e e st b e e e esabteeeessbeeeesnbeeeeennsnreeas 22
B - [0 [1T 0] Vot o o [PSR 24
Recurrent NN arChit@CtUIE......o..eieiieeeee et 25
Recurrent NN arChit@CtUIE......ccuveii ittt e eate e e e e aaeeeees 25
N N 00T 1 =2 T o) IR 26
2 N NI (T =<0 ==Y) SRS 26
[1Y T el Y1 Yot { U <RSP 27
(€] 2 LU - T o 11 =Tt { U1 U EEPRS 28
: Trend, Seasonality, Cyclic behavior, and Irregular fluctuationsccccceevuveeennne. 32
R = T 0 - 1 Y75 33
ACTUAL LOAD - TRAINING DATA. ...ttt ettt ettt e e eetee e e eara e e e etaeeaenes 40
2703 o] Lo {3 USRI 40
ACTUAL LOAD - 2013 ...ttt ettt e ettt e e e e tte e e eeatte e e e aaaeeeensaeeesasseeesansaneasanen 41
ACTUAL LOAD = 241 oottt ettt eeae e eetae e e e aae e e seasaeeesnneeeennnreeennan 41
1 Trend / Seasonal / RESIAUANeeeveviiiiii ettt ettt e e e e s s eear e e e e e e s esans 42
ACTUAL LOAD = 2016 .eviiieeeiiieeeecitee e ettt e e tteeeeetteeeeetveeeeeaaaeaaeeasaeseesseeesansseeasnen 43
:Trend / SEASONAI (2016) ...cccicueeiiieriieeeeeeeee ettt e et e et e e sertee e e enareeeeeaeeas 44
SlAING WINAOW PrOCESS...cciiieeeeiieeeeee e e ettt e e e e e e esrtrre e e e e s sseaaeereeeseeesnsrereeeeeeennnnnenn 45
[0 T o] V= TP PPUPPTPPPPNt 49
[N o Yo T o o P 50
o VA =T ¥ oru o o TSRS 51
48h horizon FFNN PrediCtioneeecc ittt e e e e esrrree e e e e e e eanrees 52
48h horizon FFNN Prediction ...ttt e e e e evere e e s e 53
REPOIt'S HOMEPAZE ...ttt et e e e e ra e e e e e e s 66
1 Train dataSet OVEIVIEWccicciiiiiiiiiee ettt et e e s e e e eaae e e s enaaeeeeaan 67
YT oo T 0] o Y- | 1Yo o ISP 68
B Y oY o1 AV 1 =T PSR 69
SUNAY CONSUMPLION oiiiiiiicciiieeccieeee ettt ee et eeeae e e e tba e e e s araeeesasbeeessnnseeeeanen 69
TeSt dataSEt OVEIVIEWuviiiiii ittt e e e e e et re e e e e e st rae e e e e eeeeas 70
GRU (200 X 200) ...uvveeeeiireeeeeereeeeeereeeeeeereeeeeetreeeeeeteeeeeereeeesesseeeeeseesesssseseesasseeesnesnnns 71
I I\ 10T 1) IR 71
LSTM (40 X 40) - SUNAAYuuriieiiiiieeeecieeeeeeitee et e et e e e eatee e e eabeeeesaareeeeeabaeeeennreeaas 72
RNN (B0 X 40) c.eiieeeeeiieee ettt e et e e st e e et e e e et a e e e e ataeaesasaeeeesbeeesannteeesansnnsenas 72
RNN (40 X 40) — SUNAY.....utiiieiiiiieeeciiee e e cciteeeeeite e e e steeeeesaree e sesreeeesnseeseennsaeeeennseeaens 73
RNN (40 X 40) — SUNTAY....eeitiieiiiieciieeciee e eeiteeste e steeestaeesareesateesbeeebaeessseesaseesaraeas 73
RNN (40 X 40) - 15th AUBUST ...cvviiee ettt et e e e tre e e eaae e e e s saaneeeans 74

Figure 47 :
Figure 48 :
Figure 49 :
Figure 50 :
Figure 51 :
Figure 52 :
Figure 53 :

Figure 54

Figure 55 :
Figure 56 :
Figure 57 :
Figure 58 :

LSTM (40 X 40) - 15th AUSUSTE ...evvieeieiiiee ettt ettt e et e e e etre e e senaa e e e s sraneeeans 74

GRU (40 X 40) = 15th AUGUSE.... et eeeeeeeeseseessseseesseeeseesseseesesseeeseeseeeesseeeaes 75
GRU (200 X 200) = 15t AUGUSE ... eeeeeeeeeeeseeeeeeeseeeeeeeeeseeeeseseees e 75
LSTM (200 X 200) - 15th AUGUSTcceeiieee ettt et e e e e araeeean 76
FENN (100 X 50) = 1St IVI3Y cv.eveeeeeeeeeeeseeeeseeeeeeseeeeeeeseeeeeeeeesseesesesseessesseseseeseesenneeene 76
LSTM (200 X 200) = 1St MY ..ecccuiieeeiiiieeecciieee e ecttee e setae e e eeiteeeesttee e eentaeeesentaeaesseneeeans 77
LSTM (40 X 40) = 1SE IMAY . .uviiieiiiiiee et e e eettee e ecte e e e etee e e e saree e e ate e e e santeeeensaeeeenraeae s 77
 GRU (200 X 200) = ISt MY e eeeeeeeeeseeeees s essesees s eeeseseseeeesese s, 78
GRU (40 X 40) = 1SEIMIAY .eveeeeiiiee ettt e ceietee e eittee e eette e e setr e e e sbteeeesbaeeessnsaeeesastaeessnsenes 78
RNIN (200 X 200) = 1SE MY cvrvvvreeeereeeeeseeeeseeeeeesee s eeseeseesesesseseseeseeeseeeseeeseesseseeneeene 79
RNIN (40 X 40) = LSt IMIBY e eeeeeeeee e eee e s s esee s sseeseesesseeseeseessesseseerean 79
Best LSTM & GRU (500 X 500) - 1St MAYuvveeeeiiiieeeeieeeeecreeeeecireeeeeeeeeeesnaeeeeanaeeean 80

Table of Tables

Table 1:
Table 2 :
Table 3 :
Table 4 :
Table 5 :
Table 6 :
Table 7 :
Table 8 :
Table 9:
Table 10
Table 11
Table 12
Table 13

RN (L8 QUL uttiiieeiiee ettt ettt st st e st esbe e s sate e sabeesabaesane e esanes 55
LSTIVI (L1 OUL) vttt ee e e st e et e s sess e s e eeeeeeeeeeesesennseees 55
LSTIVE (21 OUL) oot s e s e e e s sseeseseeseeseseeseseseseesaees 55
GRU (11 OUL) ettt e ettt s e see e s eseeaeseeeeeasseeseseneaeeeseeens 56
GRU (21 OUL) oottt ettt et es e ee e eseeaes e eseaeseseseneeee e 56
RNN (241 OUL)ceeiiiiiiieeiee ettt ettt e st e s sabe e sabe e sbaeenaaeesa sanes 57
LSTIM (2451 OUL) eveveeeee ettt et e e e ese e eese st s s seeseseseeeesaseeneeeeee 58
GRU (2410 OUL) ettt eee e e eeeee et s s e s s s ssaeseesessesseeseseseeserans 59
BEST 5 GRU MOUEIS ...ooeiiieiiiiiiii ettt ettt et eba e e saae e sabae s 63
= 1o A Y 1Y/ 0 4 To Lo [T TSP 63
s Preview of Metadataccuiveeeii e e 64
: Performance comparison of RNN-LSTM-GRUc.ccccoveeiiiiiieecciiee et 82
1 SeasoNal PEIfOrMANCEuuiiiiee ettt e e e e e e e e e e e e sabraaeeeee s 83

April 20, 2019..

This thesis
1S
dedicated
to the memory of
my late grandmother

Georgia

Acknowledgements

The present thesis was prepared in the context of my studies in
Postgraduate Programme "Artificial Intelligence and Visual Computing" of the
Department of Informatics and Computer Engineering of the University West
Attica. The research started in July 2022 and was completed in February 2023.

| would like to express my deep appreciation and gratitude to Professor
Paris Mastorocostas for his invaluable guidance and support throughout the
course of my thesis. His expertise and extensive knowledge in the field proved
to be an invaluable asset to my research. Not only did he provide me with a
wealth of bibliographic material, but he also offered valuable advice and insights
that helped shape the direction and focus of my work. | am truly grateful for his
unwavering support and guidance, without which, the completion of my thesis
would not have been possible.

| would also like to extend my thanks to MSc, PhD Candidate Georgios
Kandilogiannakis for his invaluable contribution to my thesis. His generosity in
providing me with the necessary raw data and metadata for analysis was
instrumental in the success of my project. The data and information provided
by him helped to enrich the graphs and figures in my thesis, making it more
comprehensive and informative. | am deeply grateful for his support and

assistance throughout the course of my research.

Section 1: Theoretical Part

1.1 Historical Overview of Power Systems

The history of power systems can be traced back to the early 19th
century, when the first electrical power systems were developed to provide
energy for industrial processes. In 1831, Michael Faraday discovered
electromagnetic induction, which led to the development of the first electrical
generators. These generators used mechanical energy to produce electricity,
and they were used primarily in large industrial plants. In 1879, Thomas Edison
developed the first practical incandescent light bulb, which led to the creation
of the first electrical power distribution systems. Edison built a direct current
(DC) power station, the Pearl Street station in New York City, which supplied
electricity to customers within a 1-square-mile radius [16]. However, DC
systems had limited transmission capabilities and were not suitable for long-
distance power transmission. In 1885, George Westinghouse developed the
first alternating current (AC) power systems, which allowed for long-distance
power transmission. AC systems quickly replaced DC systems as the dominant

power transmission technology.

Figure 1 : Pearl Street station

In the early 20th century, large power stations began to be built to
generate electricity for entire cities. Hydroelectric power plants were also
developed, which harnessed the energy of falling water to generate electricity.

As electricity became more widely available, it transformed many
aspects of daily life, from lighting to transportation. The development of power
electronics and solid-state devices in the 20th century led to the creation of

more efficient and reliable power systems [26].

10

Over the years the power generation industry has expanded rapidly.
Technological advances made in the design of the various components of
energy systems were incorporated into each new component installed, resulting
in rapid upgrading of equipment [16]. This brings us to modern EPS (Electric
Power Systems), which are a complex electricity network that must operate in
a way that is safe, reliable, environmentally friendly and provide good quality

electricity at the lowest possible price.

1.2 Electric Power System (EPS)

A modern electricity power system (EPS) is the set of all those facilities
used to supply electricity to a set of consumers in a safe, reliable and
environmentally friendly way. The main functions of such a system are the
generation of electricity, transmission via high and medium voltage cables and
distribution to consumers. Once the electricity has reached the consumers, it is
converted into other forms to be used appropriately to meet the needs of the
electrical installation [16].

It is obvious that nowadays the requirements in the electricity industry
are constantly changing and the need to create and develop those systems that
will meet them is imperative. These requirements stem from the vision of an
environmentally friendly economic system that makes maximum use of
renewable energy sources. The combination of existing means and the
developments observed in the field of computers and communications are
leading to the evolution of the existing network into a decentralized local

network along the lines of a microgrid or an energy community.

Power plant Step-up High-voltage Step-down Step-down
transformer transmission line transformer transformer
(substation)

Figure 2 : Electrical Power System

11

1.3 Load Forecasting Need

Forecasting is a problem that applies to almost every industry in the
world. Airlines try to forecast the number of passengers to plan flights,
breweries forecast beer consumption to plan production. Retailers forecast the
demand for fashion items to decide which discount to offer customers. Brokers
predict stock prices to invest their and their clients' money more safely. Clearly,
prediction is an essential ingredient for most human activities and the electrical
industry is no exception to this.

Electrical load forecasting is a major activity for each country as it
contributes to the proper operation and development of the electric power
system (EPS). Load forecasting of both demand and generation leads to the
determination of a country's energy sufficiency and contributes to planning for
the next day, grid planning. Recently, geopolitical turbulence on the European
continent that has led to an energy crisis has made load forecasting imperative.
According to the European Union Institute for Security Studies, the balance
between security and sustainability of the energy sector has led all Member
States to take measures to combat climate change and ensure sufficiency. The
integration of smart grids and the penetration of ever-increasing renewable
energy sources (RES) is a roadmap for tackling the energy crisis [16].

More specifically, load forecasting brings benefits to consumers.
Consumers, through an accurate load forecast of their building, have the ability
to regulate and reduce the energy consumption they spend. Furthermore,
having identified those periods of the day when high consumption occurs, the
owner has the ability to adjust the energy behavior of the building by
programming the installation's smart appliances to operate at times when
energy demand is low, with numerous economic benefits. At the same time,
there are also significant advantages for the network. Two of the most important
are that the grid can have a real-time reliable estimate of the load that it will
have to manage while also being able to identify those times of the day when
the highest consumption occurs. This feature allows the grid to produce a
sufficient amount of energy without losses. In addition, another important
element worth mentioning is that the grid can, where feasible, be used to

generate energy from renewable sources [16].

12

Finally, as can be easily understood from what has already been
mentioned above, the need for algorithms that achieve satisfactory electric

charge prediction is an open and constantly evolving scientific subject.

STAYING BIC OR GETTING SMALLER

2l tocls

B e aa

many small power pradc:

S

decentralized, g

Ommm)
Om—) —%% f=

s power [ines and piped

Is e et

HHHJ WHIHHH
ﬁh!ﬁh!éﬂ

Figure 3 : Smart Grid

1.4 Load Forecasting

Electricity demand forecasting is the process of predicting future
electricity consumption. The forecast horizon refers to the length of time into
the future that the forecast is being made for.

i. Very-short-term forecasting typically covers a time frame of less than an
hour and is used for balancing supply and demand in real-time.

ii. Short-term forecasting covers a time frame of a few hours to a day and
is used for scheduling power generation and transmission.

iii. Medium-term forecasting covers a time frame of a few days to a few
months and is used for system planning and procurement of resources.

iv. Long-term forecasting covers a time frame of a year or more and is used
for long-term planning and infrastructure development.

Each of the forecast horizon has its own unique set of challenges and
methodologies are used accordingly [19]. With the increased penetration of
renewable energy sources, the forecasting of electricity demand is becoming
more complex and accurate forecasting is crucial to ensure a stable and reliable

power supply.

13

Electric Load Forecasting

VAN

Very Short-Term Short-Term Medium-Term Long-Term

T hour T weeks 3 yoars

Energy PL

®———— Transmission and Distribution Planning —————e

- Demand Side M t ™
@&—— Operations and Maintenance ———=#

®—— Financial Planning —e

Figure 4 : Load forecasting types

Short-term load forecasting using deep learning (DL) techniques is the

purpose of this paper.

1.5 Factors significantly affecting the load

The exploitation of the electrical load has many components. A
significant part of the electricity is consumed by industry. It is also used by
individuals to meet basic needs such as heating, lighting, etc. Another important
part is used by public utilities for street lighting, public transport, etc. We can
distinguish the factors that influence the load in the following categories:

A) Financial factors
B) Temporal factors
C) Weather factors
D) Random factors

The influence of all the above factors should be considered when
creating a load forecasting model [2]. The economy as an influencing factor has
an important role in shaping electricity demand. The prosperity or decline of the
industrial sector in a country, the growth or saturation of the appliance market,
the primary sector and changes in it and the Economy in general, have a
serious impact on the rate of increase or decrease of the load on the System.
Time is another factor that plays an important role as seasonal changes affect
the load, as do changes in time during the day or the change from winter to
summer. The weekly and daily periodicity of load is due to people's work and

their holidays from it. For example, on the days corresponding to Saturday and

14

Sunday the demand for the load is reduced. In addition, the weather causes
significant changes as the temperature has a significant impact on the load
shape. Humidity, rainfall and wind are also factors that have an influence.
Finally, factors such as random disturbances in the operation of the system,
generated by the whole range of consumers, whether they belong to the small
(households, popular TV programs, etc.) or large (industry) category, affect the

operation of the system and add uncertainty to the forecasts [20].

1.6 Neural Networks

The term Neural Networks describes a number of different mathematical
models inspired by biological models, i.e., models that try to mimic the behavior
of neurons in the human brain.

Since the 19th century, scientists have admitted that the brain is made
up of discrete elements, called neurons, that communicate with each other.
Neurons are the basic building block of the human brain. It is estimated that the
brain contains approximately 10 billion neurons arranged in groups, each of
which constitutes a physical neural network. The human brain contains
hundreds of physical neural networks, each containing thousands of
interconnected neurons with an average number of connections per neuron of
1000 to 10,000 [10].

Figure 5 : Human neurons

15

A neuron is separated from other cells by a membrane and has the ability
to carry electrical signals from that neuron to other neurons which it
communicates

Each neuron consists of 3 main parts:

e the dendrites, which act as input channels for the neuron,
e the main cell body ,
e the cell-neuroaxis which connects a neuron to other neurons.

The axon of one neuron carries signals to the dendrites of neighboring
neurons through the junction called the neuroaxon terminal or synapse. A
neuron can receive signals from one set of neighboring neurons through the
dendrites, process them and feed its output through the axon to another set of
neighboring neurons. The signals coming through the dendrites are "weighed"
and the results are added up. When the sum exceeds the threshold level
(threshold value), the neuron generates an output (in the form of a nerve
impulse or electrical signal) on its axon, which is then transferred through the

synapses to the neighboring neurons [10].

Cell body

Al
reticulum -
Milochnndrion‘\%VDendrite

\
/
/ \;Dendritic branches

Figure 6 : Schematic diagram of a typical neuron

To generate a signal, the neuron receives input signals that affect its
potential by varying it. When the cumulative potential exceeds a certain
threshold (varying from cell class to cell class between - 40 mV and - 75 mV),

the neuron is excited and produces the electrical signal. The neuron always

16

carries the electrical signal in a predictable and stable direction. There are two
distinct states of signals:

i. Resting potential

i. Energy potential

Signals received by a neuron are altered by the electrical characteristics
of the contacts of the synapses, so that some are blocked and others are
allowed to propagate. The electrical characteristics of the synapses constitute
some kind of information unique to each neuron. In this way the information
held by a network is distributed to its neurons [10]. The transmission of
information is based on an energy potential determined not by the type of signal,
but by the pathway of the brain through discrete communicating neurons
through the signal passes.

With all the knowledge and tools that we have available to us today, we
can't replace a brain with a computer. Or can we?! Elon Musk, the world's
greatest visionary and richest man, has made it known that his company
Neuralink, which specializes in interfacing the human brain with a computer, is

only six months away from its first human trials!

1.6.1 Simulation of natural neurons with artificial neural networks

The mathematical models of artificial neural networks, in full
correspondence with biological ones, consist of several simple and highly
interconnected processing units, organized in layers [5]. Artificial Neural
Networks (ANNs) process information dynamically in response to external
stimuli (inputs). Each artificial neuron consists of several inputs xi and a single
output y. Each input xi is 'weighted' with a weight wi and the results are summed

up by means of a summation function F:
n

F =) xiwi

1

The artificial neuron gives output via the transfer function only when the

weighted sum of the inputs is greater than a certain threshold value 6 when:

17

n

Yxiwi— 6 >0

i

An artificial neuron is a simplified model of the physical neuron in that
the interconnection weights form the electrical characteristics of the synapse

contact and the threshold value simulates the saturation behavior of the

ko \\//

5 A\ NeupaBovinis ‘EEobos
e anoAifes

physical neuron [10].

W

i ouvoyEs

Figure 7 : Natural neuron in relation to the elementary artificial neuron

One of the simplest ANNSs that simulate the physical neuron is the basic
Perceptron, i.e. an ANNs consisting of a single neuron [9]. The output a of the
Perceptron for an input vector x= (x1, X2,.., Xn) is given by the transition function

g as follows:

n

a=g (X xiwi)

i=1
Brief description of an ANN:

¢ ANN are usually organized in layers. The intermediate layers are called
hidden.

e Layers consist of a number of units or nodes that are interconnected in
such a way that one unit has links to many other units at the same or

another level.

18

e Units affect other units by stimulating or inhibiting their activation. To
achieve this, the unit receives the weighted sum of all inputs through the
links leading to it and produces a single output via the transition function
if the sum exceeds a threshold value.

e Inputs are presented to the network through the input layer which
communicates with one or more hidden layers the hidden layers are

connected to the output layer from which the response is extracted.

Key elements of the architecture of the ANNs that need to be defined
during their creation [10]:

e the number of intermediate hidden layers,

the number of units (or nodes) per layer,

o the way the modules are connected to each other,

e the activation value (threshold value),

e the form of the transition function,

e the values of the initial weights between units,

e the algorithms (training rules) used to strengthen the links between units

during the training process.

1.6.2 Historical Review

The milestones in the evolution of the field of ANNs are the following:
1943 - The First Concept of a Neural Network: In 1943, neurophysiologist
Warren McCulloch and mathematician Walter Pitts published a paper titled “A
Logical Calculus of the Ideas Immanent in Nervous Activity” which introduced
the first concept of a neural network.
1949 - The First Artificial Neuron: Donald Hebb proposed the concept of the
artificial neuron in 1949.
1957 - The First Neural Network Computer: In 1957, Frank Rosenblatt
developed the first neural network computer called the Perceptron.
1965 - Backpropagation: In 1965, Paul Werbos proposed the idea of

backpropagation, which is a method of training a neural network [21].

19

1980 - The First Convolutional Neural Network: In 1980, Kunihiko Fukushima
developed the first convolutional neural network (CNN) for recognizing
handwritten characters.

1998 - Long Short-Term Memory: In 1998, Sepp Hochreiter and Jurgen
Schmidhuber introduced the long short-term memory (LSTM) recurrent neural
network.

2006 - Deep Learning: In 2006, Geoffrey Hinton and Ruslan Salakhutdinov
introduced the concept of deep learning.

2012 - Geoffrey Hinton and his team demonstrate the power of deep learning
with AlexNet.

2015 - Google’s AlphaGo Al defeats world champion Lee Sedol at the game of
Go.

2017 - Google’s Al system AlphaZero defeats the world’s best chess engine.
2022 - ChatGPT is the most advanced language models available and has

been able to achieve state-of-the-art results on a wide range of NLP tasks.

1.6.3 Architecture of ANNs

The most common type of ANN is the feedforward neural network, in
which information flows in one direction from input layers, through hidden
layers, to output layers. The nodes in the input layer represent the input
features, while the nodes in the output layer represent the predictions or
decisions made by the network. The hidden layers are responsible for
extracting complex features or patterns from the input data [9].

The strength of the connections between neurons, known as weights,
are adjusted during training to optimize the performance of the network. This
process is known as backpropagation, which uses gradient descent to update
the weights in such a way that the network's predictions are as close as possible

to the true values.

20

Hidden laver

Output layer

Input layer

Figure 8 : Feed forward ANN architecture

Another popular type of ANN is the recurrent neural network (RNN),
which is designed to process sequential data such as time series or natural
language. RNNs have feedback connections, which allow information to flow in
a loop and the network to maintain a "memory" of past inputs. The architecture
of RNN typically consists of a hidden state that is passed from one time step to
the next, along with the input at that time step, and the output is generated
based on the current input and hidden state. One of the most popular variations
of RNN is LSTM (Long Short-Term Memory) which uses gates to control the
flow of information through the network and addresses the problem of vanishing
gradients. This makes RNNs well suited for tasks such as language translation

and speech recognition.

hidden Layers

Figure 9 : Recurrent NN architecture

There are many other types of ANNs, such as convolutional neural
networks (CNNs) which are designed to process images and are commonly
used in computer vision [17]. They are designed to process data with a grid-like
topology, such as an image, where the spatial relationship between the pixels
is important. The architecture of a CNN typically consists of multiple layers of
convolutional and pooling layers, followed by one or more fully connected

layers. In the convolutional layers, filters are applied to the input data to extract

21

features, and the pooling layers are used to reduce the dimensionality of the
data. These layers are designed to automatically and adaptively learn spatial

hierarchies of features from input data [14].

Fully
Connected

O

Convolution

Poaling .-

O
o
o
o
o

\ o

Feature Extraction Classification

Figure 10 : Convolutional NN architecture

1.6.4 Multi-layer ANNs

A common feature of the structure of multi-level ANNSs is that they have
at least one hidden layer. The nodes of the different layers can be fully
connected, i.e. each node of one layer is connected to all nodes of the next
layer or partially connected [8]. ANNs are further characterized by the way in
which their nodes are connected, as mentioned in the previous section on ANNs
Architecture. In the majority of applications, single-hidden-layer feed-forward

networks with fully connected nodes are used.

Figure 11 : Multi-layer ANN

1.6.5 Transfer functions

In artificial neural networks (ANNSs), transfer functions, also known as
activation functions, are used to introduce non-linearity into the network,

allowing it to learn and represent more complex patterns and relationships in

22

the input data. There are two main types of transfer functions: linear and non-
linear [10].

Linear transfer functions are functions that have a linear relationship
between the input and the output, meaning that the output is proportional to the
input. Linear transfer functions include the identity function, hard limiter, step
function, signum function and piecewise linear functions. These functions are
simple and computationally efficient, but they can't introduce non-linearity and
can't model complex data distributions.

i. ldentity function: It is a linear transfer function that simply returns the
input without modification.

ii. Hard Limiter: It is a linear transfer function that returns a fixed value if
the input is above a certain threshold, and a different fixed value if the
input is below the threshold.

iii. Step function: It is a linear transfer function that returns a fixed value if
the input is above a certain threshold, and a different fixed value if the
input is below the threshold.

iv. Signum function: It is a linear transfer function that returns -1 if the input
is negative, 0 if the input is zero, and 1 if the input is positive.
Non-linear transfer functions are functions that have a non-linear

relationship between the input and the output, meaning that the output is not
proportional to the input. Non-linear transfer functions include the sigmoid,
hyperbolic tangent (tanh), and rectified linear unit (ReLU) functions. These
functions are computationally more expensive but can introduce non-linearity
and can model complex data distributions.

i. Sigmoid: A sigmoid function maps any input value to a value between 0
and 1, making it useful for output layers that represent probability or
likelihood.

i. Tanh (hyperbolic tangent): A tanh function maps any input value to a
value between -1 and 1, it is similar to sigmoid function but the output
range is symmetric around the origin.

iii. ReLU (Rectified Linear Unit): ReLU is a simple but effective transfer
function that maps negative values to 0 and positive values to
themselves. It is widely used in hidden layers of neural networks to

introduce non-linearity.

23

F(S) F(s)

Bapaumn (£fobos 1 0) Npéanpoy
{tEobos Brruen f opvnown

Hard Limiter Ramping Function

Eryponibets Iuvopuhons

Figure 12 : Transfer functions

1.6.6 RNN

A recurrent neural network (RNN) is a type of artificial neural network
where the connections between nodes form a directed graph along a time
sequence. This allows it to exhibit temporal dynamic behavior. Unlike other
networks, RNNs can use their internal state (memory) to process sequences of
inputs. The logic of this kind of network is that people do not start thinking from
scratch every second as persistent thoughts have a continuum. Traditional
neural networks cannot do this and essentially look like a big vacuum.
Recurrent neural networks have loops that allow them to retain information.
They are essentially networks where the iterative loops that occur allow them

to have this memory-preserving property.

24

Figure 13 : Recurrent NN architecture
Figure 13 shows an example of such a network architecture. An iterative
process (loop) allows information to flow from one layer to another. An iterative
neural network can be considered a multiple copy of the above network where
each layer will pass information to the next step following this iterative process

before it is transferred.

® ® ®
SR T
A = [(A{AR[Al——[A]

(%) (1) (*)

Figure 14 : Recurrent NN architecture

This chain form (Figure 14) reveals the association of these networks
with lists and plausibilities. It is essentially the natural architecture of the RNN.
In recent years there has been a great deal of success in applying recurrent
neural networks to various kinds of problems such as speech recognition,
language modelling, translation, image projection, etc [2].

RNNs have the potential to connect previous information to the current
task, such as using previous video frames to understand the current frame,
making them useful for various applications. However, the effectiveness of this
capability can vary depending on the specific task and implementation.

Sometimes, we only need to look at recent information to perform the
present task. For example, consider a language model trying to predict the next
word based on the previous ones. If we are trying to predict the last word in “the
clouds are in the sky,” we don’t need any further context — it's obvious the next
word is going to be sky. In such cases, where the gap between the relevant
information and the place that it's needed is small, RNNs can learn to use the

past information.

25

7
A

AR A
ol S Gl gl

Figure 15 : RNN (small gap)

®)
!
A

> —3)

= .
L L

v

But there are also cases where we need more context. Consider trying
to predict the last word in the text “I grew up in France... | speak fluent French.”
Recent information suggests that the next word is probably the name of a
language, but if we want to narrow down which language, we need the context
of France, from further back. It's entirely possible for the gap between the
relevant information and the point where it is needed to become very large.

Unfortunately, as that gap grows, RNNs become unable to learn to
connect the information.

A A g
A é A (A A

Figure 16 :RNN (large gap)

LA [

!
56

H

1.6.7 LSTM

Long Short-Term Memory (LSTM) networks are a type of recurrent
neural network (RNN) that are designed to process sequential data, such as
time series or natural language. LSTMs are able to handle the problem of
vanishing gradients, which is a common issue in traditional RNNs, by
introducing a memory cell and three gates: the input gate, forget gate, and
output gate.

The memory cell is a unit that stores information and allows it to persist
over long periods of time. It is represented by a horizontal line in LSTM

diagrams and its value is updated at each time step.

26

The input gate controls the amount of information that is allowed to enter
the memory cell. It is represented by the sigmoid function and it takes into
account the current input and the previous hidden state to decide which
information should be stored in the memory cell.

The forget gate controls the amount of information that is discarded from
the memory cell. It is represented by the sigmoid function and it considers the
current input and the previous hidden state to decide which information should
be forgotten.

The output gate controls the amount of information that is read from the
memory cell. It is represented by the sigmoid function and it takes into account
the current input and the previous hidden state to decide which information
should be used to update the hidden state.

At each time step, the values of the input, forget, and output gates are
calculated and used to update the memory cell and the hidden state. The
hidden state is then passed on to the next time step and used as input for the
next LSTM unit in the network [2].

Qi;) ® ()

—

A | hed

—'I

Figure 17 : LSTM architecture

1.6.8 GRU

The gated recurrent units were created in 2014 by Kyunghyun Cho.
GRUs are based on the same logic as LSTMs except that they use fewer
parameters and do not provide an output gate. The accuracy of GRU networks
appears to be very close to that of LSTM networks in many problems. Also in
specific cases it has been observed that GRU networks achieve better times
than their LSTM counterparts.

27

Figure 18 : GRU architecture

1.6.9 Operation of ANNs

The neural network consists of two stages of operation. The first is the
training of the neural network, i.e. the process in which the network learns the
data (training set), where a set of observation values are entered at the input of
the network and at the end of the training process results are extracted. Using
the learning set and the appropriate algorithm, the neural network is trained by
calculating the weights and polarizations if they exist. The purpose of the
procedure is to minimize the error in the prediction. The second stage is the
prediction process. At this point a test set is created. To calculate the values in
the output, the neural network considers the values from the weights and
possible biases calculated during the learning process. Finally, to calculate the
statistical prediction error, the predicted values at the output shall be considered
by comparing the predicted values with the desired values from the control set
[1].

For the neural network to perform optimally, the following factors should
be considered, which are of great importance for its proper operation.

i. The definition of its architecture considering the number of hidden layers,
the number of neurons in each layer, the activation function, the
algorithm for training and the number of iterations.

ii. The determination of the percentage, from the data sets available, to be
used as a training set and as a test set. It is usual to use either 75% of
the data for training and 15% for testing, or 80% for training and 20% for
testing.

iii. The ability of the neural network to predict with low statistical prediction

error both during training and testing. The neural network training

28

process is iterative and as a result it is a process which requires a large
amount of time, in particular when there is a large amount of data or
when the number of neurons in the network layers is large. The number
of neurons in the hidden layer is determined by trial and error as there is
no specific procedure by which the number of neurons can be decided.
In the case where the number of neurons in the hidden layer is small the
neural network cannot learn efficiently due to the complexity of the
relationships. If the number of neurons is too large, then we face other
kinds of problems such as overfitting. The number of neurons as we can
see is not constant but changes in every different problem case but also

depends on the volume of data.

1.6.10 Training of ANNs

Neural networks have the ability to learn from input data, and through
the internal processes, produce accurate results. There are two main types of
learning methods used in neural networks: supervised and unsupervised
learning.

A. Supervised Learning

This type is used either in regression to produce output data for some
input data. The most common algorithms are logistic regression, naive bayes,
support vector machines, artificial neural networks, and random forests.

B. Unsupervised Learning

The basic function of this type of learning is clustering and is primarily

used in photo recognition.

1.6.11 Accuracy check of ANNs forecasting

The accuracy check of the predictions extracted for a neural network is
done by means of statistical errors. Error is defined as the uncertainty that exists
in the measurement of a physical quantity: value + uncertainty. There are many

types of error, the most important of which are listed below.

29

A. Mean Squared Error (MSE): In statistics, the mean squared error
is defined as the average squared difference between a measured value and
the true value. The mean squared error is a function of risk and is

mathematically defined as:

MSE == 7L, (A; — A)’

B. Root Mean Squared Error (RMSE): it is the root of mean square

error and its mathematical expression is:
RMSE =VMSE

C. Mean Absolute Error (MAE): in statistics, MAE is a measure of

the difference between two values.

MAE = |A; — A,

D. Mean Absolute Percentage Error (MAPE): The mean absolute
percentage error is the average absolute error expressed as a percentage of

the mean absolute error [15].

1.7 Time series

A time series is a sequence of data points dependent on time. That
means that each data point has a timestamp assigned to it. Ideally, these data
points are measured at constant intervals (e.g., every day) and in chronological
order (e.g., Monday, Tuesday, Wednesday, etc.). Time series are usually
numerical values, but they can also be categorical. Time series data usually
comes in tabular format (e.g., CSV files) with a column for the timestamps and
at least one for the time series values.

Time series is basically sequentially ordered data indexed over time.
Here time is the independent variable while the dependent variable might be

o Stock market data
e Sales data of companies
¢ Data from the sensors of smart devices

30

¢ The measure of electrical energy load

To gain some useful insights from time-series data, we have to
decompose the time series and look for some basic components such as trend,
seasonality, cyclic behavior, and irregular fluctuations. Based on some of
these behaviors, we are deciding on which model to choose for time series
modelling [4]. Assume that we are having the time-series data of an airline
passenger company, if we do an initial analysis on the data, we can find that in
each year during particular periods of time, a particular pattern may be found
(a seasonal pattern). Further investigating we may find that it was because
vacations were happening in those months because of which families were
traveling. Also, we may be able to find other insights like an increase/decrease
in the passenger count (upward/downward trend), which may be related to
some other factors that were affecting the airlines at that time.

Seasonality in time series refers to repeating patterns that occur at
regular intervals, such as daily, weekly, monthly, or yearly. It is a common
characteristic in many types of time series data, including sales, weather, and
transportation data. ldentifying seasonality in time series is important for
accurate forecasting and understanding underlying patterns in the data. To
remove seasonality from time series data, techniques such as seasonal
decomposition, differencing and exponential smoothing with the Holt-Winters
method can be used. It is important to note that not all time series have
seasonality and it depends on the characteristics and context of the data [3].

Trend in time series refers to the general direction or movement of the
data over time. It can be upward, downward, or flat. It is a long-term pattern in
the data and it can be influenced by factors such as economic and demographic
changes. Identifying trend in time series data is important for understanding the
underlying patterns and making accurate predictions and forecasts. There are
different methods to identify trend such as linear regression, moving averages,
and exponential smoothing. In addition, it is important to note that in some
cases, a trend can change over time, this is called a change point, and it's
important to be aware of it when analyzing the data [3].

Cyclic behavior in time series refers to patterns that repeat over a

period longer than a season, such as several years. It can be caused by

31

external factors such as economic cycles, or other factors that affect the data.
For example, in an economic context, the cyclic behavior can be observed in
gross domestic product (GDP), employment, and production, among others.
Identifying cyclic behavior in time series data is important for understanding the
underlying patterns and making accurate predictions and forecasts. There are
different methods to identify cyclic behavior such as decomposition, spectral
analysis, and wavelet analysis.

Irregular fluctuations in time series refer to random variations in the
data that cannot be explained by the trend, seasonality or cyclic behavior.
These fluctuations can be caused by unpredictable events such as natural
disasters, unexpected changes in demand, or other unforeseen factors.
Identifying irregular fluctuations in time series data is important for
understanding the underlying patterns and making accurate predictions and

forecasts.

[rregular
fluctuations

Cyclical

Trend Seasonal

} } } |
1 2 3 4 5 6 iy 8 9 10 " 12 13

Year

Figure 19 : Trend, Seasonality, Cyclic behavior, and Irregular fluctuations

The two main aspects of time series forecasting are:

a) Number of observed time series to predict: Time series forecasting
can be performed on univariate data, which is a single time series, or
multivariate data, which is multiple time series. In univariate forecasting, the

focus is on a single variable, such as the sales of a specific product, while in

32

multivariate forecasting [12], multiple variables are considered, such as sales
and weather.

b) Prediction time frame: Time series forecasting can be done for short-
term or long-term predictions. Short-term forecasting is used to predict values
in the near future, such as next month or next quarter. Long-term forecasting is
used to predict values in the distant future, such as several years. The
prediction time frame can influence the choice of forecasting model and the
amount of data needed.

A time series is considered to be stationary if its statistical properties
such as mean, variance and autocorrelation do not change over time. In other
words, a stationary time series has a constant mean and variance, and the
relationship between the observations and the time at which they occur is
consistent. Stationarity is an important assumption for many time series
models, as it simplifies the analysis and makes it easier to forecast future
values. Non-stationary time series, on the other hand, can be more difficult to

model and forecast [6].

N\/\ (\/\/\ n NN
i Vil & ¢

> >
> > >

Mean dependent on time Variance dependent on time Covariance dependent on time

& 'y *»

M W AAA

» »> >
> L >

Mean independent on time Variance independent on time Covariance independent on time

Figure 20 : Stationarity

Time series analysis and time series forecasting are related but distinct
fields. Time series analysis is the process of understanding and modeling the
underlying patterns and structures in a time series data. It involves techniques
such as decomposition, trend analysis, and spectral analysis to identify and

describe the characteristics of the time series. Time series forecasting, on the

33

other hand, is the process of using the knowledge gained from the analysis to
make predictions about future values of the time series.

Both time series analysis and forecasting use similar techniques such as
moving averages, exponential smoothing, and ARIMA models [7]. Both fields
also rely on the assumption that the underlying patterns in the data are
consistent over time. However, the main difference between the two is the goal
of the analysis. Time series analysis aims to understand the underlying patterns
in the data, while time series forecasting aims to make predictions about future

values [5].

34

Section 2: Implementation

2.1 Clarification of important terms

For the implementation and training of the prediction algorithms, the

TensorFlow library and specifically the Keras High-Level APl was used.

2.1.1 TensorFlow

TensorFlow is an incredibly powerful tool from the most powerful Internet
company in the world, Google, and is based on machine learning and neural
networks. Essentially TensorFlow is an open-source Google neural network
library, developed by the Google Brain team for many uses [11]. TensorFlow
removes the need to create a neural network from scratch. So, since the
foundation is already there, we can train TensorFlow with our own data and use

the results we want.

2.1.2 Keras

Keras is an Open-Source Neural Network library written in Python that
runs on top of TensorFlow [30]. It is designed to be modular, fast and easy to
use. It was developed by a Google engineer. It is a useful library to construct
any deep learning algorithm.

2.1.3 Google Colaboratory

Colaboratory, or “Colab” for short, is a product from Google Research.
Colab allows anybody to write and execute arbitrary python code through the
browser, and is especially well suited to machine learning, data analysis and
education. More technically, Colab is a hosted Jupyter notebook service that
requires no setup to use, while providing access free of charge to computing
resources including GPUs. During the preparation of this thesis, only the free
version of Google Colab was used. Colab sessions initialize with a K80
GPU and 12GB of RAM.

35

2.1.4 Power Bi

Power Bl is an interactive data visualization software product developed
by Microsoft with a primary focus on business intelligence. It is part of
the Microsoft Power Platform [23]. Power Bl is a collection of software services,
apps, and connectors that work together to turn unrelated sources of data into
coherent, visually immersive, and interactive insights. Data may be input by
reading directly from a database, webpage, or structured files such as
spreadsheets, CSV, XML, and JSON [27].

Many of the visualizations of this thesis have been produced by Power
Bi. Chapter 3 gives an extensive description of this tool. As for the interactivity

provided by this tool you can take a look at this report.

2.2 Data preparation

First, we import the python libraries pandas, numpy and matplotlib into
Colab. Then we import the dataset. For the purpose of this project, load
consumption data were first used from the ENTSO-E. ENTSO-E is the
European Network of Transmission System Operators for Electricity and
collects load consumption data from most European countries. The Greek
transmission system operator (AAMHE) publishes every day the load
consumption in hourly intervals in MW for the entire Greek power system which
are reported to ENTSO-E. However, because there were missing values and at
the suggestion of the MSc supervisor, Ph.D. candidate Kandilogiannakis G.,
another dataset was used for the years 2013 to 2016 which did not contain any

missing values. The dataset used for the training is shown below in code.

36

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

dat=""1lin_lout_2013data=2015trn_2016tst_3"
data=pd.read_csv(dat, header=None)

data

o
0 55255925
1 5040 5427
2 50115387
3 48175207

4 4685 5146

26083 7889 8937
26084 77118527

26088 rows x 1 columns

This is a dataset with hourly (index) load values for the years 2013 to

2015. We renamed the load column to LOAD.

#Rename the single column

data.columns =["LOAD"]
gata

LOAD

0 5525 5925

1 5040 5427
2 50115387
3 4817 5207
4 4685 5146
26083 7889 8937
26084 77118527
26085 7291 7695
26086 6690 6712
26087 6179 6211

26088 rows x 1 columns

37

As shown by the dataset name (1in_1lout...) we can see above that the

LOAD column is duplicated so we deleted one of the 2 vectors.

#Split the single column into two new columns

DATA=data[1. sphit(, expand=True)

DATA.shape

(26088, 2)

#Names of the new columns

DATA.columns =[1

DATA

To Delete Actual Load - TRAINING

0 5525 5925
1 5040 5427
2 5011 5387
3 4817 5207

4 4685 5146

26083 7889 8937
26084 7711 8527
26085 7291 7695
26086 6690 6712

26087 6179 6211

26088 rows x 2 columns

Now we have a table with 26088 lines and a single column, that of Actual
LOAD for training. Recurrent neural networks as already mentioned above do
NOT need to model the input vector x to predict an output y as time series
analysis works. They model the vector y to predict an output y. This is the most
powerful weapon of RNNs and that is why they are the most popular of their
kind.

38

DATA

#Delete the one column

del DATA["To Delete™]

Actual Load - TRAINING

26083
26084
26085
26086

26087

DATA.isnull () .sumQ)

DATA.dtypes

#String to integer

5925

5427

5387

5207

5146

8937

8527

7695

6712

6211

26088 rows x 1 columns

Actual Load — TRAINING:O

Actual Load - TRAINING

object dtype:object

df=DATAL["Actual Load - TRAINING"].astype(str).astype(int)

As we can see above there is no null value. Furthermore, it is useful to

convert the column of interest from string to integer. A snapshot of all the load

values for the 3 years of training is shown below.

39

Actual Load (2013 - 2014 - 2015)

LOAD

INDEX

Figure 21 : ACTUAL LOAD - TRAINING DATA

We detect a cyclical behavior in the data which is due to seasonality. We
observe that approximately every 9000 index values the pattern repeats.
Specifically for 365 days x 24 hours = ~9000 hours. Therefore, every year the

pattern repeats itself. We then plotted the data for all 3 years using bar charts.
ey

TS

Figure 22 : Boxplots

In agreement with what we mentioned above, with the use of the
boxplots we see a repeating pattern for the 3 years (2013 - 2014 - 2015).
Remarkable here is that in the winter months the range of the load is greater in
relation to the remaining 9 months of the year. The size of the boxplot on the
winter months (number of months: 12-1-2) is larger in relation to all the rest. We

also notice that within a calendar year we distinguish 2 seasons with peaks

40

(winter & summer) and 2 seasons with troughs (spring & autumn). This is called

seasonality. Then we set aside one year separately for study.
|

Actual Load (2013)

LOAD

INDEX

Figure 23 : ACTUAL LOAD - 2013
Seasonality here is obvious. For the year 2013, the summer (index

~4000-6000) and winter (index ~0-1500 & ~8000-9000) load demand was high

in contrast to spring and autumn. Let's focus on a random day in the spring.

| Actual Load (24h)

LoaD

INDEX

Figure 24 : ACTUAL LOAD - 24h

We notice that in the evening (9pm-10pm) demand is at its peak. To

generalize these thoughts, we use the statsmodels library in python [13]. We
used the following code.

#Extract and plot trend, seasonal and residuals
from statsmodels.tsa.seasonal import seasonal_decompose

decomposed = seasonal_decompose(df|“Actual Load - TRAINING'],
fregq=8760)

trend = decomposed.trend
seasonal= decomposed.seasonal

residual = decomposed.resid

plt.figure(figsize=(12,8))

plt.subplot(41l)
plt.plot(df,label="0Original”,color="red")
plt.legend(loc="upper left")

plt_.subplot(412)

plt.plot(trend, label="Trend",color="red")
plt.legend(loc="upper left")

plt.subplot(413)

plt.plot(seasonal, label="Seasonal”,color="red")
plt.legend(loc="upper left")

plt.subplot(414)
plt.plot(residual,label="Residual”,color="red")
plt.legend(loc="upper left")

plt.show()
so0g { — Original
6000
4000
mao T T T T T T
0 5000 10000 15000 20000 25000
s3so{ — rend
5300
5250 |
5000 7500 10000 12500 15000 17500 20000 22500
2000 4
0 E
=2000 4
0 5000 10000 15000 20000 25000
1000 { — Residual
D 4
~1000
5000 7500 10000 12500 15000 17500 20000 22500

Figure 25 : Trend / Seasonal / Residual

42

As we can see, in the last two years of time-series (index >10.000) there

is an upward trend over time. As for the seasonality, we can see that peaks &

troughs which indicate summers/winters [peaks] and autumn/spring [troughs].

Regarding the residual part of the graph is what we have already mentioned in

the previous chapter about irregular fluctuations on timeseries.

We did the same procedure for the testing dataset. The test dataset is

for the year 2016 and is shown in the graph below. Then we use again the

statsmodels library.

LOAD

Actual Load (2016) |

INDEX

Figure 26 : ACTUAL LOAD - 2016

5400 1

5300 4

5200 4

5100 1

5000 4

— Fend

2000 3000 4000 5000 £000

2000 1

=2000

—— Seasonal

0 2000 4000 6000 8000

43

Figure 27 : Trend / Seasonal (2016)

The year 2016 recorded a steady increase trend in energy demand.
Seasonality continues to be evident as in the training data. Peaks & troughs are

detected in summer/winter and spring/autumn respectively.

2.3 Algorithms / Architectures

Initially we had to model the forecasting problem as a supervised
learning problem in which given some input features x, our task would be to
predict some output (target) variable y. In our case the target features or
variable y are the future values of electrical load, while the input features are
the n past values of electrical load. To this end, we need to define at this stage
three key concepts that we used when building our models. The first is the
output or forecasting length, which is the number of time steps we need our
model to be able to predict. Since we are interested in short-term forecasting
this output length is set to 24 values each corresponding to an hour of the day,
hence our models will only be able to predict load values in MW for the day
ahead. The second concept is the input or past values length, which is defined
as the number of past timesteps our model will use as input to provide the
forecasts. During the model's development stage, we applied different input
length sizes ranging from 6 to 168 past values. Lastly, we use the sliding /
rolling window method to produce forecasts. This method describes the way
our data are used when training the model. Specifically in a sliding window
forecast, we progressively use fixed length input arrays of n-past values of our
input features to predict the next 24 future values. Since we are using neural
network algorithms, we had to transform our data to [observations, input
features], [observations, output features] format. In a sliding window forecast,
each observation in the 2nd array holds the future 24 values of the
corresponding observation in the 1st array. Each observation differs from the
previous one by a fixed window size called the sliding window size. We
applied two categories of models using 24h sliding window size and 1h sliding

window size. The figure below depicts this process.

44

Sliding Window

Time Present
B

Pass 1 [N
Pass2 [N

Pass 3

Pass 4 I—

Pass 5

Dropped - Training Forecasting

Figure 28 : Sliding window process

Before we feed our data to the neural network, we need to scale them
to [0,1] range because, generally, it speeds up learning and leads to faster
convergence. We did that via the MinMax Scaler function, which uses the

following mathematical formula:

L — Tmin

Lscaled —
Lmax — Lmin

2.3.1 Feed Forward Models

The first category of models we built were based on feed forward models
using a sliding window of size 1. This means that every observation we have in
our x and y arrays is shifted 1 hour ahead of the previous observation. The first
model we created under this category uses 24h & 12h as the past values size,
while the output length is 1h ahead.

Building the model step-by-step

As always at the beginning we introduce the main libraries we will use

45

import pandas as pd
import numpy as np
import math

import keras
from keras.models import Sequential

from keras.layers import Dense

from sklearn.metrics import mean_squared_error,
mean_absolute_percentage_error

from keras.callbacks import ModelCheckpoint
from sklearn.preprocessing import MinMaxScaler

train = pd.read_excel(

train

Actual Load - TRAINING

0 5925

1 5427

2 5387
3 5207
4 5146
26083 8937
26084 8527
26085 7695
26086 6712

26087 6211

26088 rows x 1 columns

Since we're going to use neural networks for forecasting, we should

convert our data in [samples, input_features] , [samples, output] format. In our

case the output is the future values of electrical load, while the input will be all

the past electrical load values.

46

features_request = {"window": [23]} #input size
#23+timeZero=24

build_df = build_features(train["Actual Load - TRAINING™]
,features_request, target lag=1,

include_tzero=True) # tzero (time_zero) refers to the current
time

build _df.index.names = [~ Index™]

build_df

target lag shows how many hours ahead we want to predict.
In our case choose to predict 1 value 1 hour

into the future

We normalized the data and then followed the same pipeline with the

test data. We split the data into train & test and build the first model.

scaler_features2 =

MinMaxScaler() -fit(build_df2[build_df2.colum
ns.values[:-1]]) # input features scaler
scaled_features2 =
scaler_features.transform(build_df2[build_df
.columns.values[:-1]1])

scaler_label2 =

MinMaxScaler() -fit(np.array(build_df2[build_df2.columns.v
alues[-1]1]) -reshape(-1, 1)) #output feature scaler
scaled_label2 =
scaler_label.transform(np.array(build_df2[build_df2.colum
ns.values[-1]]) -reshape(-1, 1))

Split data
X_train, y train =scaled_features, scaled_ label
X_test, y test = scaled features2, scaled label2

#At this stage we can build a simple feed forward network
model that only uses the previous electrical load values to
predict 1h into the future.

model = Sequential()

model .add(Dense (100, activation="relu”,

input_dim=x_train.shape[1]))

model .add(Dense(50, activation="relu”))

model .add(Dense(y_train.shape[1],activation="sigmoid®"))
model .compile(loss="mean squared error”, optimizer="adam”)

model .summary ()

47

Model: "sequential_ 8"

Layer (type) Output Shape Param #
?Sgﬁg€§4 (None, 1UU) 2500
dense_25 (None, 50) 5050
(Dense)

ense 26 None, 1 51
Dense§ ()

Total params: 7,601
Trainable params: 7,601

Non-trainable params: 0O

We then fitted the model based on some key parameters:

e epochs = we use earling stopping method
e batch size=360 (15 days)
e optimizer=Adam

e |oss= mse

early stopping

batch=360

model .compile(optimizer= , loss=)

checkpointer=

ModelCheckpoint(filepath= ,

verbose=1,save_best_only=True)

es_callback=keras.cal lbacks.EarlyStopping(monitor=
,patience=3) # early stopping

history = model.fit(x_train, y train,

epochs=n_epochs, batch_size=batch, shuffle=True,

validation_split=0.20, verbose=0,

cal lbacks=[checkpointer,es_callback])

df_loss = pd.DataFrame(history.history)

n_epochs = 1000 # don"t care much about epochs since we use

48

df_Toss[[, 11-plotQ

0.014 1 — 0SS

val loss
0.012 4 =

0.010 A1
0.008 -1

0.006

0.004 1

0.002 1

0.000 -

-

T T T T

0 5 10 15 20 s 30 35 40

Figure 29 : Loss curve

We can see that the validation and the training loss follow the same
curve. This is an indicator that the model is probably not overfitted.

We then make predictions on the testing data set. The results are shown below.

predictions_train=model .predict(x_train)

predictions_test = model.predict(x_test)

predictions_train=scaler_label.inverse_transform(predictions_

train) y train=scaler_label.inverse_transform(y_train)

predictions_test=scaler_label .inverse_transform(predictions_t
est)
y_test=scaler_label.inverse_transform(y_test)

trainScore=math.sqgrt(mean_squared_error(y_train,predictions_t
rain))
print(% (trainScore))

49

testScore=math.sqgrt(mean_squared_error(y_test,predictions_tes
)
print(% (testScore))
APE=mean_absolute_percentage error(y_test,
predictions_test,sample_weight=None,multioutput=

)
print(% (APE*100),)

Train Score: 133.56 RMSE
Test Score: 130.91 RMSE
APE Score: 1.91 %

As shown in the code above, our FFN Network with an input vector of
24h values got a satisfactory score (MAPE=1.9%, 131MWh RMSE). Two
Actual-Prediction comparison graphs are shown below.

variable
= Actual

Prediction

Solar Output

100 150 200
date

Figure 30 : FFNN Prediction

50

- variable
Shac i — Actual

Pradiction

Solar Output

4000

date

Figure 31 : FFNN Prediction
We note that the model has captured the "peaks" and "troughs" of the

time series satisfactorily. Then we implemented with the same architecture the

same network, but this time with a different input vector (12h values).

features_request = { [11]} #input size
#11+timeZero=12
build _df = build_features(train[1

,Features_request, target lag=1,

include_tzero=True) # tzero (time_zero) refers to the current
time

build_df.index.names = [1

build_df

target lag shows how many hours ahead we want to predict. In
our case choose to predict 1 value 1 hour

into the future

The prediction errors for the test data are shown in below.
Train Score: 171.29 RMSE

Test Score: 162.62 RMSE

APE Score: 2.28 %

We notice that the accuracy in our predictions is acceptable again but

using a shorter input vector length the error prediction increases. In this model

51

though it is necessary to have data of the last 24 hours (or the last 12 hours) so
that we can predict a single value into the future. After that, we built the same

model, but try a longer horizon of 48h. We follow the same pipeline:

features_request = { [23]} #input size
#23+timeZero=24
build _df_tst 48 = build_features(train[

] ,features_request, target lag=48,
include_tzero=True) # tzero (time_zero) refers to the current
time
build_df _tst 48.index.names = [1
build_df_tst_48

The results of this forecast are shown in below.

Train Score: 499.73 RMSE
Test Score: 524.90 RMSE
APE Score: 7.84 %

variable
—— Actual
Prediction

Solar Output

50 100 150
date

Figure 32 : 48h horizon FFNN Prediction

52

variable
—— Actual

Prediction

Solar Output

date

Figure 33 : 48h horizon FFNN Prediction

As expected, this model's accuracy is much less than the previous
model. We can still see that the model has captured the electrical load

seasonality, but it is not able to estimate all the peaks and troughs.

2.3.2 Recurrent Models

In this category of models, we used the sliding window method as
described previously but instead of Dense layers, we used RNN, LSTM and
GRU layers. Using these layers requires our data to be in a three-dimensional
shape [samples, timesteps, features]. The samples are the total observations
we are going to use, the number of timesteps is the past values length and the
features is the number of variables we are using as input features. In this
category we tried different input size lengths and sliding window lengths. The
output length was set to 1h, 2h and 24h hence this category of models uses n
past values of all the available input features we described in chapter 2.3 to

predict load values into the future. Below is script of these model’s structure.
#RNN

model = Sequential()

model _.add(SimpleRNN(40, return_sequences=True,
input_shape=(96, 1)))

model .add(Dropout(0.35))

model .add(SimpleRNN(40, return _sequences=False))

53

model _add(Dense(1l,activation= b))

model _summary ()

#LSTM

model = Sequential()

model .add(LSTM(40, return_sequences=True, input_shape=(96,
1))

model .add(Dropout(0.35))
model .add(LSTM(40, return _sequences=False))

model .add(Dense(1,activation=)

model .summary ()

#GRU

model = Sequential()

model .add(GRU(40, return_sequences=True,
input_shape=(96, 1)))

model .add(Dropout(0.35))

model .add(GRU(40, return _sequences=False))
model .add(Dense(1l,activation=)

model .summary ()

We further investigated this category of models by creating a function
which grid searches all combinations of parameters such as input size, batch

size type of layer and rolling window size.

2.4 Prediction Errors

Like other neural networks, RNNs are deterministic, meaning that they
will produce the same output given the same input and the same set of
parameters. However, the predictions made by RNNs may not be completely
deterministic due to the same reasons as in the case of ANNs, as the training
process of RNNs is typically based on stochastic gradient descent which
involves random sampling of training data and the initialization of the network's
weights is random. This means that the predictions made by an RNN may vary

slightly each time it is trained and evaluated, even if the input and parameters

54

are the same. Therefore, we have performed 5 runs for each set of parameters.

The results from all the runs are shown below.

2.4.1 Output = 1h & 2h
Table 1 : RNN (1h Out)

1st RUN 2nd RUN 3rd RUN 4th RUN Sth RUN AVG
sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE

layers Neurons bidirectional Params batch Inputs Outputs Wi

2 200x200 no 120801 24 6 1 1 688 18887 283 | 1436 19843 3 | 838 20231 296 | 823 19889 3,07 | 839 19954 3,06 | 92,48 197,612,984
2 200x200 no 120801 24 12 1 1 | 1439 171,11 252 | 3944 14074 2,01 | 1435 17532 259 | 2033 161,99 237 | 203 16762 24 217,62 16336 [2,378
2 200x200 no 120801 24 24 1 1 |20367 15473 244 | 2037 157,26 24 | 2632 151,76 225 | 5635 11533 171 | 3229 14432 2,14 (31139 144,68 [2,188
2 200x200 no 120801 80 48 1 1 |2793 11737 18 | 4133 10642 16 | 4426 10274 151 | 3483 1064 156 | 1677 14242 2,11 [330,24 (12507 [1,716
2 200x200 no 120801 120 9% | 1 1 | 7427 121,11 181 | 5035 113,74 166 | 3875 1324 2,04 | 3225 14376 208 | 5632 10434 152 |503,88 123,07 [1,822
2 200x200 no 120801 | 240 (468N 1 1 | 3228 17972 2,6 | 1756 209,69 3,04 | 4172 12051 1,72 | 2633 15385 22 | 3884 127,75 185 |31346 1583 [2,282

layers Neurons bidirectional Params batch Inputs Outputs Win_S 1st RUN 2nd RUN 3rd RUN 4th RUN Sth RUN AVG

sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE

2 40x40 no 4,961 24 6 1 1 2035 177,25 2,65 | 1455 182,89 2,71 | 2035 17432 255 | 1441 1847 284 | 1436 18393 2,71 |168,04 18062 [2,692
2 40x40 no 4,961 24 12 1 1 1555 167,09 245 | 240,1 159,32 2,37 | 4437 14581 2,15 | 2035 1685 24 |3232 14988 216 | 2732 15812 12,306
2 40x40 no 4,961 24 24 1 1 2636 156,15 2,33 [4533 1277 1,88 | 6234 12436 1,78 | 5282 12603 188 |4684 13575 2,08 |467,38 134 [1.99
2 40x40 no 4,961 24 48 1 1 6668 11699 1,75 | 7498 11857 1,78 | 8631 11651 1,74 10425 111,64 172 (7183 1133 1,65 | 8081 | 1154 (1,728
2 40x40 no 4,961 24 96 1 1 10429 123,03 18 1163 122,97 1,77 [1702,1 119,65 1,82 (15134 111,88 164 |15221 11342 168 |13887 [118,19 [11,742
2 40x40 no 4,961 240 - 1 1 431 103,74 1,52 | 3768 1196 1,74 | 503,6 15805 2,29 [563,7 13995 2,05 | 646,8 131,07 2,01 |504,38 130,48 I_ITSZV

Table 2 : LSTM (1h Out)

layers Neurons bidirectional Params batch Inputs Outputs Win_Size 15t RUN 2nd RUN 3rd RUN 4th RUN 5th RUN AVG
sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 200x200 no 482601 24 6 1 1 853 1777 259 | 1452 167,12 247 | 85 17339 252 | 1446 16647 2,43 | 828 17403 254 [10858 171,74 2,51
2 200x200 no 482601 24 12 1 1 848 15817 227 | 442 16827 244 | 1452 15508 224 | 659 1627 2,33 | 1009 17064 252 | 882 162,97 12,36 |
2 200x200 no 482601 24 2 1 1 1453 14413 216 | 85 13278 198 | 2046 13037 194 | 852 13265 193 | 1454 12864 1,87 | 1331 13371 1,976
2 200x200 no 482601 24 28 1 1 1443 1254 186 | 130 13861 207 | 85 13888 2,06 | 2046 1294 192 | 2044 104,64 152 |153,66 127,39 [1,886
2 200x200 no 482601 24 96 1 1 1068 11615 168 | 1451 131,68 193 | 145 12899 1,85 | 1285 11576 169 |2399 101,24 148 |153,06 118,76 11,726
2 200x200 no 482601 24 NGB 1 1 3849 107,11 157 | 145 11528 1,65 | 178 12616 186 | 1287 110,12 157 [4446 9664 1,39 |256,24 111,06 11,608
layers Neurons bidirectional Params batch Inputs Outputs Win_Size 15t RUN 2nd RUN 3rd RUN (Dropout No) 4th RUN 5th RUN (Dropout No) AVG
sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE[sec RMSE MAPE
2 200x200 yes 1285201 24 6 1 1 2077 16753 2,42 | 1004 17402 258 | 1472 17026 2,48 | 983 1725 257 | 984 169,52 251 | 1304 170,77 [2,512
2 200x200 yes 1285201 24 12 1 1 885 16852 246 | 894 16063 234 | 2153 12026 171 | 2748 11685 164 | 868 17315 253 [150,96 147,88 [2,136
2 200x200 yes 1285201 24 24 1 1 2662 10837 158 | 148 12578 185 | 2072 1207 176 | 147,4 13161 196 | 115 12551 1284 |17676 122,39 [1,798
2 200x200 yes 1285201 24 48 1 1 3271 10678 154 | 5066 9461 1,36 | 3056 10161 146 |327,3 10678 154 [209 11487 17 |33512/10493 152
2 200x200 yes 1285201 24 96 1 1 5082 10304 15 | 1827 13076 195 | 1667 13669 2,05 | 2827 11493 167 | 303 1155 174 |28866 12018 [1,782
2 200x200 ves 1285201 24 [d68NN 1 1 687 11277 167 | 5068 11698 1,7 |8074 9738 14 |3275 13569 197 | 385 11453 166 [542,74 11547 11,68
layers Neurons bidirectional Params batch Inputs Outputs Win_Size 15t RUN 2nd RUN 3rd RUN 4th RUN 5th RUN AVG
sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE[sec RMSE MAPE
2 40xd0 no 19,721 2 6 1 1 84,8 171,1 247 [1039 16792 245 | 8 17543 253 | 857 17461 252 | 933 1701 248 | 90,54 171,83 2,49
2 40xd0 no 19,721 2 12 1 1 145 15469 2,19 | 876 15687 225 | 849 17632 266 | 1154 14948 2,16 | 736 15825 226 | 1013 159,12 [12,304
2 40xd0 no 19,721 2 24 1 1 1452 13636 198 | 1452 13447 195 | 1056 13853 2,03 | 1447 13953 204 | 1447 137,33 2,04 |137,08 137,24 [2,008
2 40x40 no 19,721 2 48 1 1 1446 12956 191 | 2044 116 167 | 1448 13143 196 | 956 1339 203 | 1366 12479 1,84 | 1452 |127,14|01,882
2 40xd0 no 19,721 2 96 1 1 93 1441 217 | 1543 12457 185 | 2048 127,42 187 | 184 12716 189 | 1468 12803 188 |156,58 130,26 [1,932
2 40xd0 no 19,721 2 [aeal 1 1 2634 12083 18 | 1452 152,79 23 | 2653 13023 191 | 205 13125 197 | 3247 11599 1,66 |240,72 13022 11,928
layers Neurons bidirectional Params batch Inputs Outputs Win_Size 15t RUN 2nd RUN 3rd RUN 4th RUN 5th RUN AVG
sec RMSE _ MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE[sec RMSE MAPE
2 40xd0 ves 52,241 2 6 1 1 2676 16302 229 | 866 22023 336 | 87,4 20934 321 | 1475 17306 2,55 | 2377 164,04 234 | 16536 18594 2,75
2 40xd0 yes 52,241 2 12 1 1 1475 15049 2,32 | 267,3 13691 194 | 2073 14576 2,07 | 1487 15123 2,14 | 2935 1421 204 (212,86 147,1 [2,102
2 40xd0 yes 52,241 2 2 1 1 1476 15336 2,31 | 2053 12373 178 | 2703 11304 166 | 2355 11755 175 | 1082 14855 2,22 |193,38 131,25 11,944
2 40xd0 yes 52,241 2 48 1 1 2068 13485 199 | 1471 14981 22 2709 11035 158 [327,1 10994 16 | 2664 11696 169 [243,66 124,38 [1,812
2 40xd0 ves 52,241 2 96 1 1 3876 11407 168 | 3878 1256 186 | 2648 130,73 192 | 357 11389 164 |32687 122,81 178 |344,:81 12142 11,776
2 40x40 yes 52,241 24 [Naee| 1 1 202 15847 237 [3452 13496 201 | 3274 201 2 | 3876 13860 2,01 | 3867 12468 181 |329,78 111,76 12,04
Table 3 : LSTM (2h Out)
layers Neurons bidirectional Params batch Inputs Outputs Win_Size 15t RUN 2nd RUN 3rd RUN 4th RUN 5th RUN AVG
sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 200x200 no 482802 12 6 2 1 2133 22836 3,18 | 1449 25238 355 | 739 2628 378 | 853 267,33 3,75 | 2689 22599 3,07 |157,26 247,37 3,466
2 200x200 no 482802 12 12 2 1 3249 16691 227 | 3247 15693 214 | 2644 1588 217 | 2149 16813 2,33 | 3245 16332 2,23 [200,68 162,82 [2,228
2 200x200 no 482802 12 2 2 1 2067 1457 2,09 | 2308 14017 202 | 2557 139,18 195 | 2035 15355 2,22 | 205 149,59 2,11 [22034| 14564 [2,078
2 200x200 no 482802 12 48 2 1 1444 16945 242 | 1655 14889 209 | 4991 12057 167 |4434 12486 173 | 5045 127,66 1,78 |351,38[138,29/[1,938
2 200x200 no 482802 12 9 2 1 3851 13216 1,83 | 6245 12274 168 | 744 11819 161 | 3847 132,44 185 | 2046 151,49 2,18 | 46858 1314 [11,83
2 200x200 no 4g2802 12 |68 2 1 5412 131,39 184 | 3505 152,15 223 | 6543 12656 1,79 | 3847 159,86 2,32 | 4043 187,91 2,64 | 467 151,57 [2,164
layers Neurons bidirectional Params batch Inputs Outputs Win Size [1st RUN (Dropout No) | 2nd RUN (Dropout No) 3rd RUN 4th RUN (Dropout No) 5th RUN AVG
sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 200x200 yes 1285602 12 6 2 1 1224 25636 362 | 3273 217,02 286 | 3272 22748 308 | 3874 20847 285 | 147,5 26806 3,82 |262,36 23548 13,246
2 200x200 yes 1285603 12 12 2 1 4475 1715 237 | 3273 15907 215 | 6874 150,15 2 | 4461 15899 2,24 [5074 15825 2,14 |483,14) 15959 12,18
2 200x200 yes 1285604 12 2 2 1 207,7 15959 228 | 507 12551 175 | 1694 15566 223 | 267,8 1467 2,08 | 6874 12688 173 [367,86 142,87 [2,014
2 200x200 yes 1285605 12 28 2 1 4474 131,14 187 [3872 1347 189 | 4793 13481 186 | 5061 13496 1,92 | 2669 16046 2,33 [417,38/139,21 [1,974
2 200x200 yes 1285606 12 9% 2 1 4219 1411 198 [5698 13196 183 | 5024 142,96 202 | 9358 12344 171 | 6871 13341 188 | 6234 13457 [1,884
2 200x200 yes 1285607 12 [de8N 2 1 10764 12644 175 14669 123 167 [11665 13004 181 | 1168 127,12 1,76 [5084 161,46 238 [1077,2 133,61 [1,874
layers Neurons bidirectional Params batch Inputs Outputs Win_Size 15t RUN 2nd RUN 3rd RUN 4th RUN Sth RUN AVG
sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE[sec RMSE MAPE
2 40x40 no 19,762 12 6 2 1 851 26477 3,73 | 1449 25434 358 | 851 2766 396 | 1692 25046 348 | 1452 259,08 3,63 261,05 13,676
2 40x40 no 19,762 12 12 2 1 2649 192,84 263 | 1401 211,88 29 | 2195 20021 28 | 1451 21222 2,91 | 1632 20569 2,81 |186,56 20457 2,81
2 40x40 no 19,762 12 2% 2 1 2212 15867 223 | 2618 151,39 215 | 1628 167,87 24 | 851 19452 2,85 | 3245 15489 2,17 211,08 16547 2,36
2 40x40 no 19,762 12 8 2 1 265 15424 22 | 4774 13334 188 | 3032 143,18 203 [1407 18771 271 | 3927 13421 189 | 3158 [150,54 (2,142
2 40x40 no 19,762 12 9% 2 1 2705 15574 223 | 4448 14521 205 | 3614 14833 207 | 2639 157,09 2,23 | 445 14881 2,09 [357,12151,04 (2,134
2 40x40 no 19,762 1 e 2 1 3849 15062 21 | 7451 13749 192 | 4442 149,55 21 | 3586 15679 22 [6252 14355 1,99 | 511,6 | 1476 [2.062
layers Neurons bidirectional Params batch Inputs Outputs Win 15t RUN (Dropout No) | 2nd RUN (Dropout No) 3rd RUN 4th RUN (Dropout No) 5th RUN AVG
sec RMSE_MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE[sec RMSE_MAPE
2 40x40 yes 52,322 12 6 2 1 3273 2439 34 | 3879 24408 342 | 267 254,38 35 | 744 332,88 4,95 | 2077 2766 3,98 |252,86 270,38 3,85
2 40x40 yes 52,322 12 12 2 1 3873 19872 272 | 2744 22097 309 | 4478 19554 267 | 2627 2137 2,93 | 5673 184,68 251 | 3879 202,72 [2,784
2 40x40 yes 52,322 12 2 2 1 3276 14893 212 | 2782 14945 215 | 5686 13947 201 | 3877 1422 2 |4476 15081 2,15 |401,9414617 [2,086
2 40x40 yes 52,322 12 8 2 1 4475 14819 21 | 4478 151,07 213 | 2066 184,08 265 | 3866 14392 2,05 | 2069 19392 2,83 |339,08 164,24 [2352
2 40x40 yes 52,322 12 9% 2 1 4472 15851 23 | 4331 15809 226 | 387,01 16881 242 | 6268 14459 2,03 | 1829 220,09 3,26 [41542 170,02 [2,454
24040 yes 52,322 12 - 2 1 8672 1411 19 [13191 13044 181 | 8679 14589 203 10466 13293 186 [10477 15096 22 [10297/14026 1,572

55

Table 4 : GRU (1h Out)

layers Neurons bidirectional Params batch Inputs Outputs Win_Size] 15t RUN 2nd RUN 3rd RUN 4th RUN 5th RUN AVG

sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 200x200 no 363201 24 6 1 1 [1238 1496 211 | 80,3 16031 87 18073 273 | 1456 15626 224 | 44 18027 262 | 9614 16543 [24 |
2 200x200 no 363201 24 12 1 1 784 13872 197 | 692 13883 197 | 1263 12311 174 | 1515 11227 156 | 1454 11731 1,63 |114,16 126,05 [1,774
2 200x200 no 363201 24 24 1 1 | 777 12578 182 | 449 14412 215 | 433 16034 236 | 805 12591 1,85 | 912 12049 175 | 67,52 13533 [1,986
2 200x200 no 363201 24 48 1 1 |3243 861 123 | 563 14723 2,18 | 3241 8724 127 | 1682 10036 15 | 220 9366 135 |21858/102,92 [1,506
2 200x200 no 363201 24 9% 1 1| 1249 11747 173 | 2647 9659 14 | 3274 9176 131 | 3242 9037 13 | 1446 12715 1586 |237,16[104,67 [152
2 200x200 no 363201 24 1 1 | 5049 8645 125 | 4453 9481 138 | 1883 117,06 172 | 1728 12662 1,86 | 2646 112,74 1,65 | 31518 107,54 [1572
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 1st RUN (Dropout No) 2nd RUN 3rd RUN (Dropout No) 4th RUN 5rd RUN AVG

sec RMSE_ MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE [sec RMSE MAPE
2 200x200 yes 966,401 24 6 1 1 [88 16667 24 | 87,7 17349 249 | 551 17505 26 | 1504 15859 2,35 | 119 16127 232 | 998
2 200x200 yes 966,401 24 12 1 1 184 117,76 162 | 1472 1321 1,85 | 2082 11513 159 | 1439 12502 18 | 2075 12167 168 |17816
2 200x200 yes 966,401 24 24 1 1 266 9805 14 | 1712 11325 166 | 2389 9994 1,41 | 2075 10583 153 | 1403 11347 164 |204,78[106,11 [1528
2 200x200 yes 966,401 24 48 1 1 207 11392 165 | 1515 12414 178 | 368 9278 134 | 1902 11431 1,68 | 1951 11443 1,67 |222,36|111,92 [1,624
2 200x200 yes 966,401 24 9% 1 1 387 101,31 145 | 2069 14297 2,16 | 3263 11064 165 | 3816 10477 1,49 | 4179 10519 154 |343,94 112,98
2 200x200 yes 966,401 24 1 1 |e657 9952 148 | 5671 111,87 158 | 627,8 9955 142 | 5068 106 1,53 [9842 88,66 127 |670,32 100,12
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 1st RUN 2nd RUN 3rd RUN 4th RUN 5th RUN AVG

sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 40x40 no 15041 24 6 1 1 [848 17209 248 | 852 17678 257 | 695 17378 252 | 858 1692 246 | 554 173,17 252 | 7614 173 [1251
2 40x40 no 15041 24 12 1 1 | 693 1576 225 | 362 20046 293 | 715 1567 225 | 763 15624 2,22 | 1455 151,43 213 | 79,76 164,49 [2,356]
2 40x40 no 15041 24 24 1 1 | 548 15046 224 | 842 14595 217 | 144 13348 196 | 1443 137,97 2,04 | 1445 129,80 192 |114,36 139,55 [2,066
2 40x40 no 15041 24 48 1 1 144 12528 182 | 145 13414 195 | 1392 12443 1,83 [1796 11849 173 | 749 1444 2,09 |13654 129,35(11,884
2 40x40 no 15041 24 % 1 1 145 13225 196 | 1546 12729 186 | 1808 11681 1,69 [145 13874 202 | 1735 12423 1,79 |159,78 127,86|11,864
2 40x40 no 15041 24 [Ni68N 1 1 [2656 12416 182 | 3254 12206 178 | 1724 131,18 1,95 | 2647 121,3 1,77 | 227,01 12591 184 |251,04 124,92 11,837
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 1st RUN 2nd RUN (Dropout No) 3rd RUN 4th RUN (Dropout No) 5th RUN AVG

sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 40x40 ves 39681 24 6 1 1 |1442 17055 247 | 91,2 17959 2,61 | 1463 17054 2,49 | 1001 17451 2,52 | 99,5 171,07 253 17 524
2 40x40 yes 39681 24 12 1 1 | 1279 14938 213 | 1478 14874 214 | 3264 11851 172 | 457 1763 2,64 | 207 14543 206 |170,96 147,67 [2,138
2 40x40 yes 39681 24 24 1 1 | 621 14953 22 [2078 12352 178 | 1592 12129 1,76 | 1472 13479 1,99 | 2681 114,64 165 |16888 12875 [1,.876
2 40x40 yes 39681 24 a8 1 1 | 942 14556 2,18 | 2364 1111 159 | 2048 12133 176 | 2076 11325 163 | 3888 10667 154 |226,36|119,58 1,74
2 40x40 yes 39681 24 % 1 1 |3274 1207 174 | 4473 10596 155 | 3876 112,74 164 | 1433 13899 207 | 3279 1224 179 | 3267 [12016 [1,758
2 40x40 yes 39681 24 1 1 | s674 108 161 | 4477 11086 1,59 | 6875 10602 154 | 5671 1058 151 | 5072 117,07 17 |55538/10955 150

Table 5 : GRU (2h Out)

layers Neurons bidirectional Params batch Inputs Outputs Win_Size] 15t RUN 2nd RUN 3rd RUN 4th RUN 5th RUN AVG

sec RMSE_MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 200x200 no 363402 12 6 2 1 145 25093 351 [2043 22832 3,14 | 205 22692 3,07 | 1392 23234 3,19 | 1452 23551 327 |167,74
2 200x200 no 363402 12 12 2 1 | 2048 17899 249 | 1808 18257 2,51 | 2088 16568 229 | 2499 16346 222 | 1806 17167 236 |204,98
2 200x200 no 363402 12 2 2 1 | 2647 127,43 178 | 3245 12688 174 | 1962 1329 184 | 3128 12516 172 | 1456 151,87 2,16 24876
2 200x200 no 363402 12 a8 2 1 | 2377 12611 178 | 2466 132,14 184 | 2048 15147 2,17 | 2643 13508 1,85 | 2896 12766 177 | 2486
2 200x200 no 363402 12 % 2 1 | 4779 11915 162 | 3247 12694 177 | 4449 13134 1,81 | 2812 13097 1,83 | 3249 13021 181 |370,72 (127,72 [1,768
2 200x200 no 363402 12 2 1 [3513 151,64 221 | 2652 15359 222 | 3845 1396 1,98 | 7452 11867 1,63 | 5874 123,78 1,71 |466,72 137,46 11,95
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 15t RUN (Dropout No) [2nd RUN (Dropout No) 3rd RUN 4th RUN (Dropout No) 5th RUN AVG

sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 200x200 yes 966,802 12 6 2 1 [2006 214,65 296 | 2684 21471 289 [387,1 20681 2,78 | 3874 211,16 2,86 | 2418 22529 3,1 31506 214,522,918
2 200x200 yes 966,802 12 12 2 1 |4498 157,12 211 [3272 16001 221 | 4073 242 223 | 2073 1753 2,42 [3271 16471 221 |34374[13191 2,236
2 200x200 yes 966,802 12 24 2 1 370 12508 174 | 2652 14353 204 | 1831 14969 2,14 | 4483 12436 172 | 1472 174,38 251 |282,76 143,41 (2,03
2 200x200 yes 966,802 12 48 2 1 | 1278 13682 193 [3867 13874 197 | 3595 141,04 203 | 2524 14929 2,15 | 482 127,53 178 |321,68 138,68 [1972
2 200x200 yes 966,802 12 % 2 1 |4219 121,99 168 | 2688 16377 232 | 3677 1425 198 | 5367 12813 1,81 | 5076 13662 193 |420,54 1386 [1944
2 200x200 yes %6802 12 [Ld68N 2 1 [8638 12688 177 | 2669 16377 232 | 4622 12852 18 | 9386 12003 1,69 [5069 139,31 194 |607,68 1357 [1,904
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 1st RUN 2nd RUN 3rd RUN 4th RUN 5th RUN AVG

sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 40x40 no 15082 12 6 2 1 [2903 217,05 296 | 2064 23946 33 2053 23099 3,17 | 158 23897 33 | 856 27516 3,97 2 334
2 40x40 no 15082 12 12 2 1 165 197,78 275 | 133 20628 2,82 | 181,1 19418 2,66 | 2153 19256 262 | 2646 17614 244 | 1918 19339 [2,658
2 40x40 no 15082 12 2 2 1 | 1567 15254 2,19 | 2048 151,01 214 | 1015 17649 2,54 | 2257 14491 2,06 | 2643 1361 191 | 1906 |152.21 [2,168
2 40x40 no 15082 12 a8 2 1 |5643 12923 181 | 2655 14839 2,14 | 3172 1383 1,95 | 2648 14692 2,09 | 2043 1567 2,22 |323,22/14391 [2,042
2 40x40 no 15082 12 9% 2 1 |44s4 13471 188 [5048 13554 189 | 5046 13632 191 | 2588 151,16 2,15 | 4737 1358 193 |437,26 13871 [1,952
2 40x40 no 15082 12 2 1 [3244 15988 229 | 4448 141,17 2 | 4456 14451 2,07 | 3246 151,13 2,11 [5651 140,55 199 | 4209 |147,45 [2,092
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 1st RUN 2nd RUN (Dropout No) 3rd RUN 4th RUN 5th RUN (Dropout No) AVG

sec RMSE MAPE| sec RMSE sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 40x40 yes 39762 12 6 2 1 [3273 22047 312 | 881 27574 39 | 1388 2651 381 | 3896 21761 293 | 3866 21836 297 |266,08 240,26 [3,346
2 40x40 yes 39762 12 12 2 1 | 3872 18635 2,54 | 5079 16407 223 | 3275 18597 26 | 5063 16856 2,34 | 4468 16688 235 | 4351417437 [2,412
2 40x40 yes 39762 12 24 2 1 | 2673 15294 22 |5559 13059 1,82 | 3871 14498 21 | 200 15486 226 | 4471 13282 1287 |371,48[14324 [2,05
2 40x40 yes 39762 12 48 2 1 | 2072 16829 244 | 3876 14329 2,02 | 3579 14543 2,09 | 3078 15558 221 | 5074 13827 195 |35358 150,17 [2,142
2 40x40 yes 39762 12 % 2 1 296 161,42 2,32 | 567,8 14691 2,07 | 3856 15442 221 | 6265 14249 204 | 5065 1465 2,08 |476,48 15035 [2,144
2 40x40 yes 39762 12 68N 2 1| 3223 16472 242 | 5673 14205 197 | 6902 14882 2,12 | 7708 13877 195 | 8069 14961 2,15 | 6315 [14879 [2,122

56

2.4.2 Output = 24h

Table 6 : RNN (24h Out)

layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 1st RUN 2nd RUN 3rd RUN 4th RUN 5th RUN AVG
sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 200x200 no 125,424 24 24 24 24 2868 408 594 | 2094 426,49 6,15 | 43,08 403,51 594 | 43,16 402,84 58 (1593 4289 62 |30,358 41395 |_§,006
2 200x200 no 125,424 24 48 24 24 20,82 451,66 6,88 | 1871 44571 67 | 3897 39878 585 | 361 42654 6,15 | 43,25 4214 6,12 | 31,57 (428,82 [§,34
2 200x200 no 125,424 24 96 24 24 2935 52262 829 [7241 40699 592 | 90,8 44054 589 | 928 3995 572 | 84,47 421,57 6,31 |73,966 438,24 [6,426
2 200x200 no 125,424 24 | 168 24 24 204,93 446,98 6,71 |144,98 424,17 6,13 (144,85 421,16 6,17 | 144,9 42723 638 | 1449 4148 594 |15691 426,87 E266
2 200x200 no 125,424 24 384 24 24 9599 678,92 10,17 | 146,61 63131 9,93 [326,15 4209 6,27 | 20621 5029 7,93 | 146,19 817,13 13,24 184,23 610,23 E,SOS
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 1st RUN 2nd RUN 3rd RUN 4th RUN 5th RUN AVG
sec RMSE _MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 200x200 no 125424 48 24 24 24 [1426 41089 591 11,05 44211 66 | 913 42735 624 | 128 42036 6,16 | 12,34 42323 6,21 |11,916|424,79 6,224
2 200x200 no 125424 48 48 24 24 | 2311 42563 639 | 207 41412 605 | 22,74 42634 629 | 2198 42608 64 |2276 40889 6,02 22,258 420,21 [[6,23
2 200x200 no 125424 48 96 24 24 | 1633 542,89 875 | 3246 407,57 6 | 1598 522,12 7,78 | 84,44 422,57 623 | 2937 480,23 7,52 |35716 47508 [7,256
2 200x200 no 125424 48 | 168 24 24 |101,69 413,49 6,03 | 71,17 40574 584 |14525 39653 574 | 91,96 41033 599 | 5598 417,45 6,26 | 93,21 |408,71 [5.972
2 200x200 no 125424 48 | 384 24 24 | 1466 46359 7,38 | 81,51 47807 7,21 | 62,94 599,88 9,45 [14625 457,26 6,78 | 1462 60635 9,28 | 1167 521,03 (802
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 1st RUN 2nd RUN 3rd RUN 4th RUN 5th RUN AVG
sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 200x200 no 125,424 96 24 24 24 12,34 42975 631 | 12,36 42514 6,23 | 609 464,12 6,93 7 43752 646 | 1245 431,15 631 |10,048 437,54 (6,448
2 200x200 no 125,424 96 48 24 24 10,06 44165 6,57 | 13,33 414,95 6,11 | 10,71 437,44 6,56 | 13,16 432,47 6,51 [22,73 436,87 6,38 |13,998 432,68 6,426
2 200x200 no 125,424 96 96 24 24 435 42484 6,2 |3333 41587 6,16 18 44558 6,72 | 2306 4633 681 | 3302 41574 6,15 |30,182 433,07 6,408
2 200x200 no 125,424 9 168 24 24 84,81 391,19 569 [46,09 44514 667 | 352 47601 728 | 16,83 583,45 9,12 | 84,94 404,52 6,02 | 53,574 460,066,956
2 200x200 no 125,424 9 | 384 24 24 4497 769,75 12,58 | 8631 5034 751 | 30,19 829,88 13,14 | 37,42 666,79 10,89 | 86,53 79,71 1291 | 57,084 569,91 [11,406
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 15t RUN 2nd RUN 3rd RUN 4th RUN (Dropout No) | 5th RUN (Dropout No) AVG
sec RMSE _MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 200x200 yes 330824 24 24 24 24 [4a59 39039 556 | 23,8 43802 6,25 | 4496 44432 683 | 2003 43827 641 |350,54 40812 582 |96,784|423,82 6,174
2 200x200 yes 330824 24 48 24 24 | 7694 399,93 574 | 6796 39566 563 | 42,94 41225 606 | 67,54 387,23 553 | 8587 40025 587 | 68,25 |399,06 5,766
2 200x200 ves 330824 24 9 24 24 | 1209 52382 7,71 [14641 40418 593 | 206,78 43892 579 [10252 399,45 584 |146,69 439,58 6,36 | 144,66 441,19 [6,32
2 200x200 yes 330,824 24 168 24 24 | 1443 51953 818 |30006 41065 603 | 8736 747,46 12,03 | 207,88 408,72 6,17 | 228,21 352,34 507 | 193,56 487,74 7,496
2 200x200 yes 330,824 24 | 384 | 24 24 45075 627,76 9,32 [510,18 539,16 8,57 | 296,34 840,17 13,49 [51027 417,55 6,14 |329,98 47647 713 | 4195 580,22
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 15t RUN 2nd RUN 3rd RUN 4th RUN (Dropout No) | 5th RUN (Dropout No) AVG
sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 200x200 yes 330,824 48 24 24 24 19,05 41585 599 | 241 432,84 6,28 | 2406 407,22 596 | 3376 37907 538 | 2055 39565 567 |24,304 40613 [52856
2 200x200 yes 330,824 48 48 24 24 51,24 39768 57 408 392,85 567 | 2467 44017 65 | 4519 41187 602 | 5248 39384 583 |42,876 407,28 5,944
2 200x200 yes 330,824 48 96 24 24 4237 43313 6,48 | 57,68 405 6,01 | 5041 42234 634 | 9042 40561 586 | 9055 39995 584 |66,286 413,21 6,106
2 200x200 yes 330,824 48 168 24 24 207,9 37911 547 | 71,31 581,61 894 |11696 377,37 538 207,51 35436 5,16 [147,19 46544 7,02 [150,17 431,58 16,394
2 200x200 yes 330,824 48 | 384 24 24 150,19 810,86 12,62 | 210,74 570,74 8,61 | 449,99 459,29 6,91 |390,62 398,45 596 |310,01 406,25 5,85 |302,31 529,12 .ﬁS
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 15t RUN 2nd RUN 3rd RUN 4th RUN (Dropout No) | 5th RUN (Dropout No) AVG
sec_ RMSE _MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 200x200 yes 330824 96 24 24 24 [2479 411,05 597 1459 42464 625 [11,61 42618 631 | 1653 40516 589 | 1429 42973 62 |16362|419,35 6,124
2 200x200 ves 330824 96 48 24 24 | 2482 427,49 628 | 1469 641,61 1057 | 2516 41051 589 | 2449 4115 595 | 2852 40939 6,02 | 23536 4601 [6942
2 200x200 ves 330824 96 96 24 24 | 4971 40687 598 | 47,06 407,14 598 | 4582 4439 663 | 388 42074 6,18 | 86,42 40837 594 |53574| 4174 [6,142
2 200x200 yes 330,824 96 168 24 24 | 8736 402,73 586 | 896 37682 542 | 1125 36041 5 (207,77 3335 462 13592 337,65 4,7 |126,63 36222 [512
2 200%200 yes 330,824 96 | 384 | 24 24 | 6689 772,06 12,18 | 1376 752,54 11,94 | 91,89 752,17 11,67 [270,32 405,14 579 |209,82 42641 637 | 1553 621,66
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 1st RUN 2nd RUN 3rd RUN 4th RUN 5th RUN AVG
sec RMSE _MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 40x40 no 5,904 24 24 24 24 3164 4263 628 4307 40694 589 | 84,13 4062 59 | 54,39 406,17 592 | 43,17 421,24 6,19 | 51,28 (413,37 I_—Q.QBS
2 40x40 no 5,904 24 48 24 24 7514 411,63 6,06 | 8425 41891 621 41,84 44807 6,69 | 31,68 45922 6,83 | 43,74 449,87 6,78 | 5533 437,54 EélA
2 40x40 no 5,904 24 96 24 24 8495 490,04 7,29 (144,49 419,46 6,06 | 99,07 43514 66 |14501 45837 681 | 57,21 451,86 6,73 | 106,15 450,97 E§98
2 40x40 no 5,904 24 168 24 24 205,23 42691 6,36 [17521 424,71 6,35 [360,21 393,73 564 [248,06 403,07 588 |264,96 41842 6,18 |250,73 [413,37 16,082
2 40x40 no 5,904 24 | 384 24 24 547,5 41491 6,02 [326,24 47425 7,19 [566,17 421,06 6,17 | 6866 423,83 6,33 |62631 413,74 6,02 | 550,56 429,56 | 6,346
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 1st RUN 2nd RUN 3rd RUN 4th RUN 5th RUN AVG
sec RMSE_MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 40x40 no 5,904 48 24 24 24 2594 42169 621 2996 409,05 599 | 43,16 42028 6,19 | 22,76 424,41 634 | 22,65 44536 6,69 |28,894 424,16 IS 284
2 40x40 no 5,904 48 48 24 24 | 4329 45649 687 | 4323 452,07 685 | 4329 43404 644 | 4481 432,89 647 | 1468 484,67 737 | 37,86 452,03
2 40x40 no 5,904 48 96 24 24 | 8454 4523 686 | 4351 47623 7,29 | 59,12 44554 663 | 846 43631 648 | 84,89 44714 655 | 71,332 4515 [[6,762
2 40x40 no 5,904 48 | 168 24 24 11385 43877 66 |123,85 4231 6,33 | 14529 459,78 697 [10159 448,71 6,82 | 8532 46534 7,03 |11398 447,14 [[6,75
2 40x40 no 5,904 48 | 388 24 24 [2067 47658 7,16 |44664 40068 59 |26628 45453 6,73 38663 43224 641 |206,18 48549 7,34 30249 449,9 [[6,708
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 1st RUN 2nd RUN 3rd RUN 4th RUN 5th RUN AVG
sec RMSE _MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 40x40 no 5,904 9% 24 24 24 [2305 44033 657 1237 46312 697 | 12,41 45573 689 | 101 47841 7023 | 1248 450,18 6,72 | 14,082 457,55 6,876
2 40x40 no 5,904 96 48 24 24 1541 4592 697 | 22,75 4983 7,63 | 4326 426,67 6,32 | 1623 47475 7,15 | 14,7 47404 709 | 22,47 466,59 E.Q3Z
2 40x40 no 5,904 96 96 24 24 4356 471,95 7,07 | 8447 460,01 683 [5681 42996 64 84,6 45837 6,91 | 44,44 43471 6,51 |62,776 451 I_E_.ZM
2 40x40 no 5,904 9 168 24 24 8503 503,85 7,75 | 6092 44513 6,64 54 46291 6,96 |12223 4253 632 | 14494 4255 6,44 | 93,424 452,54 E§22
2 40x40 no 5,904 9% | 384 24 24 326,3 42599 6,28 [266,25 416,79 6,13 [122,94 467,68 6,93 | 13858 45732 6,87 | 14661 49553 7,47 |200,14 452,66 6,736
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 15t RUN 2nd RUN 3rd RUN 4th RUN (Dropout No) | 5th RUN (Dropout No) AVG
sec_ RMSE _MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 40x40 yes 14,984 24 24 24 24 42,88 409,79 592 | 30,87 44163 658 | 4472 43725 642 | 44,84 41509 6,02 | 34,27 413,69 6,17 |39,516 423,49 [6,222
2 40x40 ves 14984 24 48 24 24 | 6438 44025 65 | 8604 43561 647 | 9833 409,75 596 | 86,14 42064 6,18 | 8571 407,88 599 | 84,12 422,83 1622
2 40x40 ves 14984 24 96 24 24 |22311 40094 575 |14675 4368 6,54 | 229,89 40508 585 [32622 35391 501 |206,68 39587 577 |226,53 398,52 [[5,784
2 40x40 yes 14980 24 | 168 24 24 | 3877 3651 526 |147,11 47058 7,04 |507,45 353,01 4,92 |17696 40494 6,13 | 3271 3448 4,87 |309,26 387,69 5,644
2 40x40 yes 14984 24 | 384 24 24 [1050,1 40555 589 |632,82 427,67 627 |870,07 41631 6,11 |669,61 37609 548 |629,71 381,30 554 |77045 4014 [[5858
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 15t RUN 2nd RUN 3rd RUN 4th RUN (Dropout No) | 5th RUN (Dropout No) AVG
sec RMSE _MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 40x40 yes 14,984 48 24 24 24 [3376 421,92 6,16 | 4505 430,83 6,33 | 44,77 42267 622 | 35 39261 56 | 4441 4037 587 | 40598 414,35 6,036
2 40x40 yes 14,984 48 48 24 24 | 5543 411,46 599 | 8563 41458 6,04 | 8604 43921 644 | 71,93 3877 558 | 31,42 43592 642 | 6609 417,77 [6,094
2 40x40 yes 14,984 48 96 24 24 146,73 428,73 633 |151,78 407,03 595 |20696 412,16 606 |12098 391,19 563 |10399 399,72 577 |14609 407,77 15,948
2 40x40 yes 14,984 48 168 24 24 140,58 393,09 574 |21515 37494 55 |327,35 391,43 57 |26756 339,99 4,76 |147,08 37507 549 |219,54 3749 [5,438
2 40x40 yes 14,984 48 | 384 24 24 689,84 397,53 575 | 449,64 408,83 6,05 [771,55 389,57 571 [570,07 37749 54 |369,18 406,81 6,03 |570,06 396,05 IS 788
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 15t RUN 2nd RUN 3rd RUN 4th RUN (Dropout No) | 5th RUN (Dropout No) AVG
sec_ RMSE _MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 40x40 yes 14,984 96 24 24 24 24,72 41963 6,12 44,5 41612 6,1 44,71 417,85 6,12 | 31,61 40599 584 | 24,64 409,65 6 34,036 413,85 @36
2 40x40 yes 14,984 96 48 24 24 51,31 432,37 6,25 [3233 44252 655 | 4542 430,83 6,32 | 42,45 41131 599 | 30,81 42822 6,37 | 40,464 429,05 6,296
2 40x40 yes 14984 9% 96 24 24 | 8605 4287 636 | 6024 44542 6,69 | 8687 42533 63 | 7528 4196 6,13 | 97,12 41474 6,12 |81,112 426,76 16,32
2 40x40 yes 14981 9 | 168 24 24 |11258 396,09 584 [146,13 39343 582 | 1479 41666 623 |11451 36842 537 |207,54 350,06 502 |145,73|384,93/15,656
2 40x40 yes 14984 96 | 384 24 24 | 44893 393,33 574 [32998 417,81 6,17 | 629,87 409,04 606 [329,67 40401 598 |329,71 40558 59 |413,63 40595 [[597

57

Table 7 : LSTM (24h Out)

layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 1st RUN 2nd RUN 3rd RUN 4th RUN 5th RUN AVG
sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 200x200 no 487,224 24 24 24 24 86 477,83 7,15 [2059 457,46 6,71 | 21,2 469,88 692 | 886 46758 693 | 2839 421,79 613 |17,528 45891 [6,768
2 200x200 no 487,224 24 48 24 24 11,06 4343 64 | 11,26 45648 7,12 | 11,8 43047 6,28 | 1061 45414 69 9,63 44727 654 | 10,872 444,53 6,648
2 200x200 no 487,224 24 96 24 24 99 487,08 7,25 [1588 44027 665 | 1456 43845 66 |2523 4273 63 | 2551 43874 649 |18216 44637 16,658
2 200x200 no 487,224 24 | 168 24 24 2597 442,97 67 | 1861 43934 64 | 1509 469,45 7,31 | 1859 4377 649 | 1024 49461 752 | 17,7 456,81 6,884
2 200x200 no 487,224 24 384 24 24 46,67 442,94 6,63 | 26,19 5057 78 26,05 460,36 6,75 | 2398 46358 7,01 32 44519 6,64 30,978 463,55 | 6,966
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 1st RUN 2nd RUN 3rd RUN 4th RUN 5th RUN AVG
sec RMSE _MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE_ MAPE| sec RMSE MAPE
2 200x200 no 487,224 48 24 24 24 [1511 44154 67 [1099 42973 637 | 748 501,92 791 | 85 47013 694 9 47697 7,14 [10,216]464,06 [7,012
2 200x200 no 487,224 48 48 24 24 6,79 507,16 7,51 | 868 50224 7,88 | 1524 42514 618 | 721 53736 856 | 1033 491,06 7,42 | 9,65 492,59 7,51
2 200x200 no 487,224 48 9 24 24 | 1295 43221 638 | 982 49263 7,5 | 897 491,07 739 | 1544 46341 634 | 987 48862 743 | 11,41 |473,59 7,108
2 200x200 no 487,224 48 168 24 24 | 1497 47481 7,36 | 1571 489,15 7,4 | 2535 44554 6,68 | 13,86 460,85 634 | 1516 49135 746 | 17,01 | 472,34 [7,108]
2 200x200 no 487,224 43 | 384 24 24 | 2562 49388 7,6 | 2614 491,23 758 | 21 45164 671 | 17 493,02 738 | 1582 48836 7,32 | 21,116 483,63 [7,318
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 1st RUN 2nd RUN 3rd RUN 4th RUN 5th RUN AVG
sec RMSE _MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 200x200 no 487,224 96 24 24 24 89 45829 6,73 | 858 46486 6,79 [725 491,84 737 | 1042 49197 743 | 9,76 4873 736 | 8982 [47885 [1,136
2 200x200 no 487,224 96 48 24 24 9,31 486,78 7,34 | 1005 49569 7,53 | 9,75 484,45 7,28 84 48141 727 | 886 48512 723 | 9,274 |486,69 [133
2 200x200 no 487,224 96 96 24 24 9,72 4914 748 | 1036 507,36 7,71 | 1555 44469 654 | 158 44349 672 | 1054 49125 7,58 |12,394 [475,64 I—Z,ZOG
2 200x200 no 487,224 9 168 24 24 1591 50166 7,65 | 853 6404 9,54 | 853 690,06 10,11 | 1531 48642 7,33 | 966 512,84 8 11,588 566,28 E,SZE
2 200x200 no 487,224 9 | 384 24 24 32,1 456,76 6,91 | 27,88 468,85 7,03 | 1804 48846 7,39 | 1662 49569 747 | 19,42 488,17 747 |22,812 479,59 I7,254
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 15t RUN 2nd RUN 3rd RUN 4th RUN (Dropout No) | 5th RUN (Dropout No) AVG
sec RMSE _MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 200x200 yes 1294424 24 24 24 24 [1911 45651 6,73 | 1897 46572 7,07 | 302 42291 6,14 | 3552 42547 6,11 | 32,15 483,02 7,02 | 27,19 450,73 [6,614
2 200x200 yes 1,294,424 24 48 24 24 | 2456 42487 611 | 164 43604 654 | 19,02 44887 67 | 292 42529 635 | 17,73 4327 64 |21,382 43355 1642
2 200x200 yes 1294424 24 96 24 24 | 3016 43557 649 | 2122 4435 657 | 27,09 41867 609 | 27,77 41683 6,08 | 31,98 41869 6,07 27,644 346,82 16,26
2 200x200 ves 1,294,424 24 168 24 24 | 5075 36514 512 | 2593 42027 607 | 496 3736 53 |5052 37451 534 | 509 397,06 566 | 4554 386,12 [5498
2 200x200 yes 1,294,424 24 | 384 | 24 24 | 7068 41568 603 | 9527 41886 613 | 6252 43342 653 | 8136 42402 584 | 4862 434,18 638 | 7169 42523 [6182
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 15t RUN 2nd RUN 3rd RUN 4th RUN (Dropout No) | 5th RUN (Dropout No) AVG
sec RMSE _MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 200x200 yes 1,294,424 48 24 24 24 14,5 44923 651 | 1922 41954 61 | 19,18 4194 6,12 | 1417 456,49 6,92 | 1816 427,27 6,37 |17,046 434,39 I_—§A04
2 200x200 yes 1,294,424 48 48 24 24 14,9 47661 722 | 1921 42559 637 | 17,76 4356 6,48 | 13,73 486,74 7,52 | 13,29 483,77 7,15 |15,778 461,66 E248
2 200x200 yes 1,294,424 48 96 24 24 3045 454,08 692 | 2559 43047 635 | 19,62 437,47 7,06 | 23,58 436,62 648 | 1548 48299 732 |22,944 44833 E§26
2 200x200 yes 1,294,424 48 168 24 24 3096 407,41 587 [3056 437,03 661 | 29,69 414,75 599 30 463,11 695 | 50,97 39193 549 |34,436 422,85 I:G,lSZ
2 200x200 yes 1,294,424 48 | 384 24 24 5144 462,81 699 | 7492 41679 6,16 | 92,11 41897 6,01 | 6519 42878 632 | 31,81 426,76 6,35 | 63,094 430,82 6,366
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 15t RUN 2nd RUN 3rd RUN 4th RUN (Dropout No) | 5th RUN (Dropout No) AVG
sec_ RMSE _MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 200x200 yes 1,294,424 96 24 24 24 19,06 42362 6,12 | 13,93 469,77 7,13 | 12,73 48576 7,35 | 19,54 43817 6,46 | 12,67 479,85 7,25 [15586 459,43 [[6,862
2 200x200 yes 1,294,424 96 48 24 24 | 2021 427,06 637 | 1535 47408 7,21 | 2973 42148 615 | 1934 473,19 7,17 | 161 46805 7,06 | 20,146 452,79 6,792
2 200x200 yes 1294424 96 96 24 24 | 2342 44592 67 | 2969 46849 725 | 3336 4213 617 | 17,84 47434 725 | 2565 44029 6,63 |25992 450,07
2 200x200 yes 1294424 96 168 24 24 | 2004 48803 7,6 |3632 40348 575 | 3302 43225 653 | 5066 40478 584 | 37,59 40812 591 |35526/427,33 16,326
2 200x200 yes 1,294,424 96 | 384 | 24 24 | 4628 48251 7027 | 4822 45783 686 | 92,07 4288 645 | 4169 47507 7,32 | 50,96 47629 7,29 |55844 464,1
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 1st RUN 2nd RUN 3rd RUN 4th RUN 5th RUN AVG
sec RMSE _MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 40x40 no 20,664 24 24 24 24 3068 464,09 3,89 | 1486 44807 669 | 1937 51947 819 | 20,88 50452 75 | 1812 49558 7,43 |20,782 486,35 [§L74
2 40x40 no 20,664 24 48 24 24 991 497,42 7,39 | 11,56 491,89 7,49 | 2516 433,73 642 | 1644 4346 639 | 253 43388 63 (17,674 4583 I_—Q.ZSS
2 40x40 no 20,664 24 96 24 24 14,38 4815 7,23 | 11,11 500,59 7,75 | 12,62 483,02 7,34 | 12,62 49797 7,68 | 1151 491,54 735 (12,448 491,92 I—_7A7
2 40x40 no 20,664 24 | 168 24 24 151 481,09 724 | 1139 49968 762 | 103 50648 7,66 | 1094 509,64 7,7 | 10,26 529,57 7,96 |11,598 505,29 ﬁ,636
2 40x40 no 20,664 24 | 384 24 24 46554 47539 7,16 | 1904 48813 7,38 | 2245 48343 72 | 46,66 46947 721 | 14,87 511,16 7,62 |29,912 48552 IEIA
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 1st RUN 2nd RUN 3rd RUN 4th RUN 5th RUN AVG
sec_ RMSE _MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 40x40 no 20664 48 24 24 24 8,84 48298 7,22 | 823 49493 7,39 | 1006 5013 7,64 | 7,89 50037 761 | 1218 46877 714 | 944 48967 | 7,4
2 40x40 no 20664 48 48 24 24 11 50501 7,68 | 762 50423 7,66 | 85 49552 744 | 10,79 48838 735 | 1039 49578 751 | 9,66 497,78 [7,528 |
2 40x40 no 20664 48 96 24 24 254 45875 6,78 | 1355 482,84 7,28 | 1508 48051 7,26 | 158 479,88 7,26 | 11,36 490,82 7,37 |16,238 478,56 17,19 |
2 40x40 no 20664 48 | 168 24 24 | 1509 50582 756 | 975 51052 7,79 | 9,88 500,88 7,63 | 1535 490,36 7,62 | 1508 499,61 7555 | 13,03 501,44 7,63
2 40x40 no 20664 48 | 384 24 24 | 21,64 49038 746 | 1576 49584 7,45 | 13,98 50545 7,76 | 2582 49096 75 | 4641 437,7 649 | 24,722 484,07 [7,332
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 1st RUN 2nd RUN 3rd RUN 4th RUN 5th RUN AVG
sec RMSE _MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 40x40 no 20664 96 24 24 24 [1091 45295 6,73 | 999 48546 73 | 726 50852 749 | 802 50009 757 | 1452 4945 7,34 | 10,14 | 4883 7,286
2 40x40 no 20664 96 48 24 24 | 1015 4997 752 | 806 50384 7,7 | 851 499,49 754 | 811 49849 752 | 929 4959 7,45 | 8,824 499,48 [7,546
2 40x40 no 20664 96 96 24 24 | 976 49546 7,44 | 898 49597 7,51 | 1043 51353 7,69 | 10,87 49635 757 | 7,77 51067 7,69 | 9562 5024 [[7,58
2 40x40 no 20664 96 | 168 24 24 |1564 4968 75 | 872 s1415 7,79 | 131 48642 734 | 1611 50739 7,72 | 973 49905 754 | 12,66 500,76 [7,578
2 40x40 no 20664 96 | 384 24 24 | 1572 49884 755 | 1527 499,29 7558 | 12,22 502,23 7,59 | 1503 50527 7,72 | 2094 479,53 7,21 |15836 497,03 [7,53
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 15t RUN 2nd RUN 3rd RUN 4th RUN (Dropout No) | 5th RUN (Dropout No) AVG
sec_ RMSE _MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 40x40 yes 54,104 24 24 24 24 35,57 469,74 7,19 189 476,11 7,24 | 31,47 457,19 69 22,31 420,48 6,08 | 21,88 499,66 7,41 | 26,026 464,64 (6964
2 40x40 ves 54104 24 48 24 24 | 2903 42993 643 | 2922 43664 647 | 2943 42331 617 | 1618 4807 721 | 1889 498 7,62 | 2455 453,72 [l678
2 40x40 ves 54104 24 96 24 24 | 2757 44724 661 | 3341 41742 604 | 30,07 46336 7,03 | 2229 44503 67 | 2942 44356 6,67 |28552 44332 16,61
2 40x40 ves 54104 24 | 168 24 24 | 3682 411,81 592 | 4945 3793 536 | 3527 41392 607 | 1915 471,64 7,12 | 3035 43182 6,34 |34,208 4217 [6,162
2 40x40 yes 54,104 24 | 384 24 24 | 5087 48939 733 | 30 5019 7,93 | 51,29 4045 6,77 | 9136 4306 632 | 482 45729 687 |54,344 383,93
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 15t RUN 2nd RUN 3rd RUN 4th RUN (Dropout No) | 5th RUN (Dropout No) AVG
sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 40x40 yes 54,04 48 24 24 24 [1765 4451 658 | 17,82 4361 6,34 | 14,47 487,43 734 | 1924 447,32 654 | 142 48508 7,42 | 16,676 460,21 | 6,844
2 40x40 yes 54,104 48 48 24 24 16,13 48523 7,28 | 16,65 476,04 7,22 | 17,11 477,67 7.2 1897 42987 6,34 | 14,71 483,82 7,35 |16,714 470,53 Iﬁ78
2 40x40 yes 54,104 48 96 24 24 19,78 492,89 7,53 | 19,11 494,19 7,39 | 1996 487,97 7,39 | 1873 47823 737 | 19,9 467,82 7,01 (19,496 484,22 E.i38
2 40x40 yes 54,104 48 168 24 24 2997 45323 6,88 | 2195 4387 644 (2232 45221 6,74 | 16,77 47443 7,13 | 49,82 411,07 6,03 |28,166 (44593 [§.§44
2 40x40 yes 54,104 48 | 384 24 24 51,1 447,06 6,68 | 5052 4773 7,46 | 60,76 416,13 6,1 | 3037 47549 747 | 3036 47628 721 |44,622 45845 | 6,984
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 15t RUN 2nd RUN 3rd RUN 4th RUN (Dropout No) | 5th RUN (Dropout No) AVG
sec_ RMSE _MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 40x40 yes 54,104 96 24 24 24 14,57 487,48 745 | 13,78 483,61 7,21 | 1461 48515 7,27 | 13,01 48414 7,25 (1242 48837 73 (13,678 48575 lﬁgs
2 40x40 yes 54,104 96 48 24 24 16,56 471,77 7,16 | 14,08 521,64 7,71 | 14,66 491,21 7,42 | 11,92 53694 82 13,86 507,1 7,68 | 14,216 505,73 [[7,634
2 40x40 ves 54104 9 96 24 24 | 1898 48651 7,74 | 145 49313 742 | 1717 481,84 73 | 157 477,98 723 | 1646 480,62 7,21 | 16,562 484,02 17,38
2 40x40 yes 54104 96 168 24 24 | 1907 46587 691 | 1945 48961 7,43 | 1941 46926 7,13 | 1933 46594 691 | 196 46723 696 | 19,372 471,58 [7,068
2 40x40 yes 54,104 96 | 384 24 24 | 2959 48221 7,28 | 2062 511,13 7,82 | 3081 497,97 762 | 2938 481,47 732 | 3052 48392 7,33 |28,184 491,34 [7,474

58

Table 8 : GRU (24h Out)

layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 1st RUN 2nd RUN 3rd RUN 4th RUN 5th RUN AVG
sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 200x200 no 367,824 24 24 24 24 7,28 4979 7,73 | 1084 40957 591 | 1068 41012 59 | 1451 392,67 556 | 14,2 384,09 539 |11,502 418,88 6,098
2 200x200 no 367,824 24 48 24 24 12,6 40276 571 [2575 402,29 569 | 1526 402,12 565 | 2525 389,13 55 |2546 38436 547 |20,864 39613 [5,604
2 200x200 no 367,824 24 96 24 24 16,73 39362 553 [1515 4116 597 [1681 403,78 575 | 1361 41638 6,08 | 2503 38887 547 17,466 402,85 15,76
2 200x200 no 367,824 24 | 168 24 24 2508 40672 578 | 2232 401,68 578 | 1558 442,46 6,67 | 2538 39893 566 | 878 502,86 7,68 [19,428 430,53 6314
2 200x200 no 367,824 24 384 24 24 45,97 410,87 5,92 464 394,16 5,56 | 3342 402,85 576 | 4636 409,33 586 | 31,97 412,36 595 |40,824 40591 Eﬁl
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 1st RUN 2nd RUN 3rd RUN 4th RUN 5th RUN AVG
sec RMSE _MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 200x200 no 367,824 48 24 24 24 693 49591 7,44 | 7,86 49454 7,59 | 9,85 43458 644 | 1468 39906 572 | 1498 40954 584 | 10,86 446,73 [6,606
2 200x200 no 367,824 48 48 24 24 | 1465 4058 577 | 1092 412,47 593 | 1518 423,83 635 | 694 49659 743 | 1512 40543 576 | 12,562 428,84 6,248
2 200x200 no 367,824 48 96 24 24 | 1273 417,72 611 | 1399 40953 592 | 1534 41642 599 | 153 40856 586 | 12,4 417,75 6,07 |13952| 414 [I5.99
2 200x200 no 367,824 48 168 24 24 | 1953 403,18 573 | 7,94 49893 766 | 17,79 41232 591 | 2538 41439 599 | 1803 41412 6,1 |17,734 42859 6,278
2 200x200 no 367,824 48 | 384 24 24 | 2605 43558 646 | 1566 49348 7,71 | 2871 40839 583 | 2682 4178 605 | 4649 399,16 5,67 | 28,746 430,88 [6,344
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 1st RUN 2nd RUN 3rd RUN 4th RUN 5th RUN AVG
sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 200x200 no 367,824 96 24 24 24 7,02 49527 76 933 421,09 6,14 | 662 490,35 7,47 | 763 48449 733 | 689 49877 767 | 7498 47799 E.;ﬂ
2 200x200 no 367,824 96 48 24 24 7,09 49895 7,54 68 50363 771 | 10,16 4199 6,08 | 9,53 481,28 73 10,5 41884 6,09 | 8816 464,53 [6.244
2 200x200 no 367,824 96 96 24 24 1522 41823 6,09 | 9,78 47936 7,38 | 815 487,92 7,54 | 1507 412,41 595 | 965 49065 7,57 (11,574 457,71 E,QOS
2 200x200 no 367,824 96 168 24 24 1045 49493 746 | 1067 50548 7,82 | 1166 47842 7,16 | 2624 40498 578 | 2544 42732 635 [16,892462,23 E,914
2 200x200 no 367,824 9 | 384 24 24 12,37 49581 7,62 | 16,57 486,72 7,37 | 1509 487,53 7,43 | 1798 48645 7,47 | 17,79 48757 739 | 1596 488,382 | 7,456
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 15t RUN 2nd RUN 3rd RUN 4th RUN (Dropout No) | 5th RUN (Dropout No) AVG
sec RMSE _MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 200x200 ves 975,624 24 24 24 24 [1633 41647 601 | 2004 391,29 557 | 187 42245 608 | 2894 39424 56 | 21,03 38297 537 |21,008 401,48 5,726
2 200x200 ves 975624 24 48 24 24 | 1923 43063 635 | 1912 41432 6,04 | 2941 40228 573 | 209 39834 562 | 2892 401,93 579 |23516 4095 [15906
2 200x200 yes 975624 24 96 24 24 | 2891 39984 568 | 2448 3968 563 | 4968 399,66 572 | 49,72 391,29 552 | 2644 408,07 591 |35846 399,13 [5,692
2 200x200 yes 975624 24 168 24 24 354 34542 46 |4995 33039 447 | 4986 34781 479 | 3624 3405 456 | 3089 35571 491 |40468 34397
2 200x200 yes 975624 24 | 384 | 24 24 | 9187 397,66 562 | 91,66 39533 552 | 4817 40951 59 | 5067 40664 573 | 50,89 39658 563 | 66,652 401,14 [[5,68
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 15t RUN 2nd RUN 3rd RUN 4th RUN (Dropout No) | 5th RUN (Dropout No) AVG
sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 200x200 yes 975,624 48 24 24 24 13,98 429,99 6,27 | 1596 414,83 596 | 1409 420,05 6,13 | 1885 39464 559 [1345 42043 61 15266 41599 I_—§,Ql
2 200x200 yes 975,624 48 48 24 24 18,95 407,33 585 | 1891 41931 6,2 | 1895 407,34 589 | 1902 41783 6,15 | 17,89 39794 57 |18744 40995 E,QSS
2 200x200 yes 975,624 48 96 24 24 2963 412,32 592 (1548 45509 6,75 | 29,42 40845 591 | 29,42 412,85 6 25,57 401,65 5,76 |25904 418,07 EQGS
2 200x200 yes 975,624 48 168 24 24 30,77 371,62 519 [29,5 410,19 592 | 50,08 342,86 4,75 | 16,53 46551 6,96 | 49,86 338,93 4,64 |35,348 385,82 EASZ
2 200x200 yes 975,624 48 | 384 24 24 92,02 401,93 568 | 5066 4071 584 | 9164 40512 573 | 509 406,32 587 | 4645 411,17 6,04 | 66,334 406,33 | 5832
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 15t RUN 2nd RUN 3rd RUN 4th RUN (Dropout No) | 5th RUN (Dropout No) AVG
sec_ RMSE _MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 200x200 yes 975624 96 24 24 24 [1481 42099 612 | 13,73 43033 631 | 1446 4192 6,12 | 1887 43304 637 | 153 4154 608 |15434 42379
2 200x200 ves 975624 96 48 24 24 | 2921 40594 5386 | 1837 409,12 594 | 29,14 407,79 586 | 1898 422,88 625 | 19,72 401,74 581 | 23,084 409,49 [[5,944
2 200x200 yes 975624 96 96 24 24 | 2959 41259 603 | 2965 407,65 588 | 2629 413,74 598 | 2957 41099 6 | 1645 45502 682 | 2631 420 [6142
2 200x200 yes 975624 96 168 24 24 | 2683 421,19 629 | 50 36034 49 | 2972 413,49 611 | 3686 36489 507 | 4499 34162 4,61 | 37,68 | 380,31 15396
2 200x200 yes 975624 96 | 384 | 24 24 | 5082 45627 687 | 91,71 400,74 577 | 507 46544 7,08 | 91,73 40888 587 | 50,67 45687 68 |67,126 437,64
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 1st RUN 2nd RUN 3rd RUN 4th RUN 5th RUN AVG
sec RMSE _MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 40x40 no 15,984 24 24 24 24 2491 419,83 6,08 | 1542 411,23 594 | 1473 42729 625 | 101 48963 744 | 7,28 50885 7,78 |14,488 451,37 E§98
2 40x40 no 15,984 24 48 24 24 14,46 421,18 6,09 | 9,18 478,69 7,28 | 2492 409,07 591 | 854 49322 759 | 886 49031 742 (13,192 45849 E&SS
2 40x40 no 15,984 24 96 24 24 10,9 48243 742 | 201 40696 588 9,7 49206 755 | 1694 426,03 6,27 | 838 496,76 7,58 | 13,204 460,85 l__§,§4
2 40x40 no 15,984 24 | 168 24 24 4564 401,78 576 | 12,54 484,17 7,44 | 1159 4847 727 | 33,06 40161 574 | 21,87 423,62 6,26 | 24,94 439,18 EASA
2 40x40 no 15,984 24 | 384 24 24 46,04 401,85 577 | 2531 48267 7,38 | 4476 406,34 587 | 18,16 482,15 722 | 4631 4111 587 |36,116 436,82 IGAZZ
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 1st RUN 2nd RUN 3rd RUN 4th RUN 5th RUN AVG
sec_ RMSE _MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 40x40 no 15,984 48 24 24 24 723 49,71 762 7,84 48821 74 881 47844 7,14 | 10,04 48421 735 9,57 49362 753 8698 48824 Ii 408
2 40x40 no 15984 48 48 24 24 | 1012 48056 7,2 | 7,33 48938 7,43 | 1008 47639 723 | 1034 49226 754 | 953 48889 7,46 | 948 4855 [7372
2 40x40 no 15984 48 96 24 24 9,85 48438 721 | 9,75 4889 742 | 966 48328 73 | 1023 48723 732 | 998 489,03 738 | 9,894 48656 7,326
2 40x40 no 15984 48 | 168 24 24 | 1019 4907 749 | 2553 409,13 6 971 47521 737 | 1048 489,23 737 | 1059 48423 7,38 | 133 | 4697 [7122
2 40x40 no 15984 48 | 384 24 24 | 1533 4877 735 | 1518 47973 7,29 | 151 48326 734 | 3038 41646 605 | 3335 41381 6,05 | 21,868 456,19 [6,816
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 1st RUN 2nd RUN 3rd RUN 4th RUN 5th RUN AVG
sec RMSE _MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 40x40 no 15,984 9% 24 24 24 9,64 48471 734 | 1491 41333 6 7,61 48812 7,41 7,52 4883 732 6,58 49597 7,63 | 9,252 [474,09 I_TJ.A
2 40x40 no 15,984 96 48 24 24 9,64 481,44 7,9 | 724 49812 7,776 | 747 49312 748 | 905 48097 733 | 899 47935 7,17 | 8478 4866 E.QSE
2 40x40 no 15,984 96 96 24 24 879 487,82 7,39 | 1068 477,71 7,36 | 10,08 486,55 7,41 | 1006 48921 739 | 978 491,97 749 | 9878 486,65 EAOS
2 40x40 no 15,984 96 168 24 24 854 49555 7,558 | 10,2 488,64 7,45 | 1695 43629 6,53 | 995 489,01 742 86 48735 7,38 |10,848 479,37 Egz
2 40x40 no 15,984 9% | 384 24 24 13,62 487,84 7,35 | 1553 496,61 7,57 | 156 493,84 7,57 | 1565 489,79 7,55 | 1509 492,33 7,553 [15,098 492,08 | 7,514
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 15t RUN 2nd RUN 3rd RUN 4th RUN (Dropout No) | 5th RUN (Dropout No) AVG
sec_ RMSE _MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 40x40 yes 41,544 24 24 24 24 189 4186 6,12 | 2877 41516 6,04 | 19,25 4218 6,14 | 1902 41501 596 | 1646 432,02 6,39 | 20,48 420,52 [[6,13
2 40x40 ves 41544 24 48 24 24 293 42397 625 | 4938 40069 571 | 1949 427,81 627 | 2516 40842 59 | 2097 4232 619 | 2886 416,82 [[6,064
2 40x40 ves 41544 24 96 24 24 32 40895 592 [3308 401,12 575 | 2881 41149 597 | 29 41274 594 | 37,48 39992 566 |32,074 406,84 5,848
2 40x40 yes 41544 24 168 24 24 | 4153 361,34 4388 | 384 36485 507 | 50,17 38819 551 | 31,04 391,38 553 | 2805 39472 563 |37,838] 3801 15324
2 40x40 yes 41,544 24 | 384 | 24 24 [9128 40559 577 | 91 40074 569 | 5672 40399 578 | 91,15 39438 56 | 71,16 39573 567 |80,262 400,09 [[5,702
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 15t RUN 2nd RUN 3rd RUN 4th RUN (Dropout No) | 5th RUN (Dropout No) AVG
sec RMSE _MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 40x40 yes 41,544 48 24 24 24 17,33 42046 6,09 | 18,78 429,77 6,25 | 19,05 4169 6,02 | 1847 42044 6,16 | 18,81 42549 6,26 | 18,488 422,61 IﬂSS
2 40x40 yes 41544 48 48 24 24 | 1923 42229 623 | 1863 42362 63 | 1741 42616 629 | 1739 41917 6,15 | 1452 45337 6,86 | 17,436 42892 6,366
2 40x40 yes 41,544 48 96 24 24 19,12 477,01 7,23 | 19,27 436,89 6,48 | 29,53 40589 583 | 2889 42574 6,21 | 29,5 411,05 593 (25262 431,32 EQSE
2 40x40 yes 41,544 48 168 24 24 3694 3588 4,88 | 1897 461,44 691 | 3815 35885 4,94 | 28,72 41446 6,07 | 24,38 40516 585 |29,432[399,74 I_—§L73
2 40x40 yes 41,544 48 | 384 24 24 4643 4127 597 [9102 40301 581 | 3021 48515 734 | 91,16 393,56 558 | 39,02 427 6,26 | 59,568 424,28 | 6,192
layers Neurons bidirectional Params batch Inputs Outputs Win_Size| 15t RUN 2nd RUN 3rd RUN 4th RUN (Dropout No) | 5th RUN (Dropout No) AVG
sec_ RMSE _MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE
2 40x40 yes 41,544 96 24 24 24 19,51 412,29 599 | 13,06 47647 7,11 | 19,15 422,25 6,2 185 424558 6,21 13,7 45027 6,65 |16,784 437,17 Ig32
2 40x40 yes 41,544 96 48 24 24 18,79 41848 6,16 | 1611 430,32 6,34 | 19,16 463,14 6,95 | 1854 440,67 6,47 | 1552 439,32 6,52 (17,624 43839 IS 488
2 40x40 yes 41544 96 96 24 24 | 2133 4242 626 2903 43491 643 | 1935 45632 68 | 2893 4183 614 | 223 41794 6,05 | 24,188 430,33 [6336
2 40x40 yes 41544 96 168 24 24 | 2955 4119 599 | 19,04 46251 695 | 29,77 402,03 587 | 1895 4625 7,01 | 1547 464,04 697 | 22,556 4406 [16,558
2 40x40 yes 41,544 96 | 384 | 24 24 | 2749 45721 687 2951 45142 676 | 303 47681 724 | 40 41809 599 | 1894 49534 7,64 | 29,248 459,77 169

59

Regarding to the results of the above tables we can comment that:

In addition to the RMSE & MAPE scores we have also kept the time it
took to run each model with each set of parameters. The RNN
architecture makes them excruciatingly slow. In contrast, the new and
more modern GRU models are at least 5 times faster than RNNs. From
theory we knew about RNNs being slow to train. We confirmed this
experimentally.

The initial impression that we had previously gotten with the FFN
Network construction was that by increasing the input vector, we would
also get more accuracy. We saw previously that with 24h input we had
a MAPE score of 1.91% while with 12h we had 2.28%. But as we can
see in the tables above, this is not the norm. In many cases we see that
the prediction is better with an input vector of 48h compared to an input
vector of 168h and the same set of parameters.

Adding more layers to a model can increase its capacity, allowing it to
learn more complex representations of the data, but it also increases the
risk of overfitting. This happens when the model becomes too complex
and starts to fit the noise in the training data rather than the underlying
patterns. Additionally, with more layers, the model may require more
data to generalize well, and it may also become computationally
expensive to train. In general, increasing the number of layers in a model
can be a good way to improve its performance, but it is important to be
aware of the trade-offs involved. It's worth noting that adding more layers
does not always improve the performance, and sometimes it may even
decrease the performance.

Bidirectional networks can improve prediction performance in certain
tasks. This is because they take into account both past and future
context when making a prediction, whereas a traditional unidirectional
network only considers past context. However, the improvement in
prediction performance will depend on the specific task and dataset
being used. It is worth testing a bidirectional network and comparing its
performance to a unidirectional network to see if it provides any benefit

for a specific use case.

60

e GRUs are simpler and faster to train than LSTMs because they have one
less gate, which makes them more efficient in terms of computation time.
However, in terms of accuracy, there is no clear advantage between
GRUs and LSTMs as it depends on the specific task and dataset. Both
architectures have been used to achieve state-of-the-art results on
various tasks, and the choice between them often comes down to
personal preference and experimentation.

e In comparison with other 2 architectures like LSTMs or GRUs, RNNs
have less number of gates/memory cells which make them less powerful
in terms of performance, especially when it comes to long-term
dependencies in the data. That is the reason that RNNs seem to have
the worst prediction results among these 3 models. But it is worth noting
that RNNs are still widely used in various applications, such as language
modeling and speech recognition, and they can be very effective when

used in the right context.

e Increasing the number of neurons in a layer can lead to a more powerful
model, as it allows for more complex representations to be learned.
However, it is not always the case that increasing the number of neurons
leads to better performance. This is because increasing the number of
neurons also increases the risk of overfitting, which occurs when a model
is too complex and starts to fit the noise in the training data rather than
the underlying patterns. Another reason is the concept of over-
parametrization, where a model with too many parameters will not be
able to generalize well to new data, because it would have learned the
noise rather than the underlying pattern of the training data. As we can
see in the tables above, a model with fewer neurons can often be simpler
and more generalizable, which can lead to better performance on

unseen data.

e Because of their ability to maintain a "memory" of the previous inputs,
LSTMs and GRUs can predict two subsequent load values with as much
accuracy as feed-forward neural networks (FFNNs) need to predict only

one subsequent value. This is because LSTMs and GRUs can use the

61

information from previous inputs to better understand the context of the

current input and make more accurate predictions.

The batch size is a hyperparameter that controls the number of samples
used in one forward/backward pass. A batch size of 2*n (n is an integer)
is often used in practice because it is more efficient to process data in
batches that are a power of 2, as it can take advantage of the memory

hierarchy in modern CPUs and GPUs.

It is generally expected that increasing the length of the prediction vector
(i.e. the number of steps ahead that the model is trying to predict) in
RNNs, LSTMs, and GRUs will increase the error in the predictions. As
the length of the prediction vector increases, the model is required to
make more predictions and maintain a longer-term memory of the input
sequence, which can be more challenging. Longer prediction vectors
also require the model to make predictions that are based on more
complex dependencies between the input and output. As a result, the
model may be less able to accurately predict the future values, and the
error may increase. However, it's worth noting that this relationship is not

always linear and it depends on the specific task, dataset and model.

It is important to note that the error rate may not be the only metric that
matters, in some cases the model may be able to predict the future
values with high accuracy but the actual values may be different from
the predicted ones, in such cases the model may still be useful
depending on the use case. In general, it's important to experiment with
different prediction vector lengths, and use techniques such as
regularization and early stopping to mitigate the impact of increasing the

prediction vector length on the error.

From all the models with an output vector length of 24h, the majority of
MAPE scores are above 5%. As we can see in the tables only GRU
models achieved MAPE scores of less than 5% in this category.
Specifically, they achieved up to 4.66% (344MWh RMSE)

62

After many runs with different combinations of parameters we came up with 2

best load prediction models for the next 1h. From the GRUs the best model

includes:

e 2layers

e 500 neurons per layer

e inputlenght = 32h

e batch size= 16

Table 9 : Best 5 GRU models

BEST 5 MODELS for Out=1 & Win Size=1
layers Neuronssidiecsion: Params batch Inputs | sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE AVG

1st RUN 2nd RUN 3rd RUN sec RMSE MAPE
2 1506150 no 271,951 12 48 | 4452 92,79 136 | 4449 BBB3 126 | 6849 B459 12 525 88,74 H273
2 400x400 no 1,925,201 12 48 | 4523 8711 1,25 | 6154 8484 1,23 | 5053 8631 1,22 | 5243 8609 IEE
2 500500 no 3,006,501 16 32 4447 8283 1,17 | 3244 8454 1,19 | 2743 8274 1,17 | 3478 | 8337 Eaz7
2 200X200 yes 1,285,201 16 32 4469 8322 1,15 | 5059 84,18 1,19 |5069 82,23 1,16 | 4866 | 83,21 [E
2 2000200 no 363,201 16 32 | 2101 8686 125 [3243 8163 1,14 |2825 824 117 |2723 (8363 His7

The best GRU model has RMSE 83,2 MWh. From the LSTMs the best model

includes:

e 2layers

e 500 neurons per layer

e inputlenght = 32h

e batch size= 16

Table 10 : Best 5 LSTM models

BEST 5 MODELS for Out=1 & Win Size=1
layers Neurons sideections Params batch Inputs sec RMSE MAPE| sec RMSE MAPE| sec RMSE MAPE AVG

1st RUN 2nd RUN 3rd RUN sec_ RMSE MAPE
2 150x150 no 271,95 12 48 645 89,37 1,27 | 5647 5012 129 | 7747 8506 121 |6615 8818 ES]J
2 400x400 no 1525201 12 48 6853 9084 128 | 745 883 1,28 | 8522 8453 1,22 | 7608 87,89 HH2E |
2 500x500 no 3,006,501 16 32 5057 8341 1,17 |5034 8517 119 |7441 5284 1,18 | 5844 @l-ﬂ]
2 200X200 yes 1,285,201 16 32 5651 9005 1,29 | 5037 8811 125 5665 8502 1,19 |s4s51 87,73 I24z)
2 200x200 no 482,601 16 32 6249 8555 1.2 |4447 8935 1.28 | 4445 8512 1.2 | 5047 86,67 1227]

The best LSTM model has RMSE 83,8 MWh.

63

Section 3: Dynamic Power Bi Report

3.1 Power Bi report

We enriched our original testing data with the following metadata:

e Year
e Month
e Day

e Hour

e Season

e Week Day
e Date

for further statistical analysis. A snapshot of all these additional features is

shown in the picture below.

Table 11 : Preview of metadata

A B C D E F G H | 1 K L M N o

INDEX Year Month Day Season Week Day Date Y-REAL Hour LSTM GIN LSTM 12IN LSTM 24IN LSTM 48IN LSTM 96IN LSTM 168IN
1 2016 1 9 4 5 9/1/2016 5172 0:00:00 5569,52 S619,8 5495791 5640,929 5510,854 56754517
2 2016 1 9 4 5 9/1/2016 4756 1:00:00 440022 4935753 4972,785 4021,194 4852,802 49674316
3 2016 1 9 4 5 9/1/2016 4680 2:00:00 431967 4886,706 474769 4626477 4767303 47447358
4 2016 1 9 4 5 9/1/2016 4482 3:00:00 450208 4697491 4617,211 4487,786 4511,794 4710,1489
5 2016 1 9 4 5 9/1/2016 4334 4:00:00 4417,81 4584,224 4435813 4372,135 4536977 46057368
6 2016 1 9 4 5 9/1/2016 4366 5:00:00 434365 4617,004 4427,77 4610,301 4571,725 4604,5586
7 2016 1 9 4 5 9/1/2016 4523 6:00:00 4473 4931813 4763439 5090,193 4863326 50332969
8 2016 1 9 4 5 9/1/2016 4770 7:00:00 4717,08 5277,738 5260,87 5167,688 5116,593 5106,5059
9 2016 1 9 4 5 9/1/2016 4978 8:00:00 502649 5142,637 5304979 5131,729 5111,891 5031,7617
10 2016 1 9 4 5 9/1/2016 5051 9:00:00 515599 5156543 5270,398 5174,333 521531 5135,9634
11 2016 1 9 4 5 9/1/2016 4940 10:00:00 5091,87 5152,19 5242,664 5166,231 5161,843 5139,1719
12 2016 1 9 4 5 9/1/2016 4845 11:00:00 4859,36 4821,107 4963,708 4980,583 4905,244 4908,6006
13 2016 1 9 4 5 9/1/2016 4850 12:00:00 480565 4800,744 4735767 4838184 4756551 470821
14 2016 1 9 4 5 9/1/2016 4978 13:00:00 490405 4853861 4775202 482906 4716823 4648564
15 2016 1 9 4 5 9/1/2016 4967 14:00:00 51481 5087,192 5083,763 5030,694 4989,132 4938,6743
16 2016 1 9 4 5 9/1/2016 5493 15:00:00 5040,98 5082,287 5245659 5182,654 5174,57 5183,9526
17 2016 1 9 4 5 9/1/2016 5836 16:00:00 5944,18 5946074 6061,233 5955995 5933362 5890
18 2016 1 9 4 5 9/1/2016 6242 17:00:00 6051,66 6137,758 6603,147 6463,932 6367,33 6410,3472
19 2016 1 9 4 5 9/1/2016 6806 18:00:00 6442,17 6481,808 7045934 6878,542 6761,7 6886,7002
20 2016 1 9 4 5 9/1/2016 6810 19:00:00 6940,31 6662,705 7317,048 7144706 6954,381 7038,0464
21 2016 1 9 4 5 9/1/2016 6603 20:00:00 661805 6431,716 7029,604 6919,198 6759,666 6818,0039
22 2016 1 9 4 5 9/1/2016 6239 21:00:00 6367,28 6265381 6567,871 6502,842 6382,98 6428231
23 2016 1 9 4 5 9/1/2016 5751 22:00:00 S5889,68 5822,299 6013,896 5985473 5900,681 5926,5972
24 2016 1 9 4 5 9/1/2016 5402 23:00:00 53889 5354,244 5379413 5444818 5326084 5400,7168
25 2016 1 10 4 6 10/1/2016 4920 0:00:00 515862 5112202 4980,743 5079,632 4886956 50454341
26 2016 1 10 4 6 10/1/2016 4505 1:00:00 4628,14 4755328 4647,387 4701,165 4503,094 4692,1143
27 2016 1 10 4 6 10/1/2016 4425 2:00:00 4267,43 4434,378 4373,728 4371588 4246316 4407,5942
28 2016 1 10 4 6 10/1/2016 4216 3:00:00 4390,01 4311,783 4282,057 4293,206 4218,701 4347,791
29 2016 1 10 4 6 10/1/2016 4093 4:00:00 41549 4135909 414125 4162306 4123371 41956313
30 2016 1 10 4 6 10/1/2016 4037 5:00:00 410998 4212,166 4156,593 4261,262 4095334 4199,3853
a1 IR 1 in A A infifainis A121 Ro0n-0n ANRA K3 ATRY R2T A203 9978 AIRT RAT AR 113 AAR 204
FFNN | RNN40 | RNN200 | LSTM40 | LSTM200 | GRUMD | GRU200 | BEST | 4 co—

We uploaded into Power Bi all the metadata with load predictions for the next

ONE hour. The models involved are:

- 3 FFNN (100 x 50 neurons) models which are:

64

L 4
L 4
L 4

- 5 RNN (40 x 40 neurons) models which are:

L 4
L 4
L 4
L 4
L 4

- 5 RNN (200 x 200 neurons) models which are:

L 4
L 4
L 4
L 4
L 4

- 6 LSTM (40 x 40 neurons) models which are:

- 6 LSTM (200 x 200 neurons) models which are:

L 4

* & o o

L 4

- 1LSTM (500 x 500 neurons) model which is:

4

- 6 GRU (40 x 40 neurons) models which are:

L 4
L 4

FFENN with 24h Input lenght
FFENN with 12h Input lenght
FFNN with 48h horizon

RNN with 6h Input lenght
RNN with 12h Input lenght
RNN with 48h Input lenght
RNN with 96h Input lenght
RNN with 168h Input lenght

RNN with 12h Input lenght
RNN with 24h Input lenght
RNN with 48h Input lenght
RNN with 96h Input lenght
RNN with 168h Input lenght

LSTM with 6h Input lenght
LSTM with 12h Input lenght
LSTM with 12h Input lenght
LSTM with 48h Input lenght
LSTM with 96h Input lenght
LSTM with 168h Input lenght

LSTM with 6h Input lenght
LSTM with 12h Input lenght
LSTM with 12h Input lenght
LSTM with 48h Input lenght
LSTM with 96h Input lenght
LSTM with 168h Input lenght

LSTM with 32h Input lenght

GRU with 6h Input lenght
GRU with 12h Input lenght

65

¢ GRU with 12h Input lenght
¢ GRU with 48h Input lenght
¢ GRU with 96h Input lenght
¢ GRU with 168h Input lenght
- 6 GRU (200 x 200 neurons) models which are:
¢ GRU with 6h Input lenght
GRU with 12h Input lenght
GRU with 12h Input lenght
GRU with 48h Input lenght
GRU with 96h Input lenght
¢ GRU with 168h Input lenght
- 1 GRU (500 x 500 neurons) model which is:
¢ GRU with 32h Input lenght

* & o o

Therefore, we uploaded all 39 model variations to the tool. The Home page we

designed has the following format.

-Best
Models

Figure 34 : Report's HomePage

We can see 3 buttons. The first one is about the dataset used to train
the models, the second one is about the predictions of the models in the test
set and the third one focuses on the 2 best models mentioned in chapter 2. It is

reminded that we have uploaded to Power Bi predictions of 1h due to the high

66

accuracy of the models. Selecting the Train set button leads to the following

screenshot.
SEASONS LOAD DATE DAY
:_—;‘?—_ A | \'-'I (c X 2021 9237 gozond @ synzens 8 all
T sl mekiganca & COMPARISON
s O O O O
SUM LOAD AVG LOAD MEDIAN LOAD MIN LOAD MAX LOAD
MIN LOAD : SUNDAY - 14:00:00
138M 5292 5144 2021 9237 MAX LOAD : THURSDAY - 19:00:00
MWh MWh MWh MWh MWh
ACTUAL LOAD FROM 9/1/2013 TO 31/12/2015
5 &0
S
= ¥ B g 2 g 5 - : 3 £) 1 2 i % E E & s -] - ‘; g “.'---:---:---;---I---'.-
DATE
Zelios Vesileios, MSc

Figure 35 : Train dataset overview

At the top of the screen, we can find the filters of:

e the Seasons (a dropdown list containing winter, spring, summer and
autumn),

e the Load (a between Min-Max slicer of Actual Load)

e the Date and (a calendar of training data)

e the Day (a dropdown list containing the names of the 7 days)

In the filter area there is also a “2013-2014-2015 COMPARISON” button which,

by pressing it, leads us to the next snapshot.

67

ACTUAL LOAD (comparison for the three years of training)

22013 2014 #2015

N

DATE

LOAD

ACTUAL LOAD (comparison for the three years of training)

*2013 2014 #2015

LOAD

a2 1y ure uy Auggost Septembe: Octae: Havembe Decembe:

DATE

Zelios Vasileios, MSc

Figure 36 : 3-year comparison

Here the user can see the load during the 3 years of training in a line
chart and bar chart. We note that in all 3 years the pattern of the time series is
similar. In spring and autumn, the demand for power is low while in summer
and winter the demand is high. This is normal because in our country we use
electricity in the summer to cool our homes with air conditioners and in the
winter to heat them with electric stoves and other electrical appliances. The
return button on the top-left of the screen takes us back to the previous page.

Below the filter area we will find a box that contains some statistical
measures relating to the time series for the years 2013 to 2015. These
measures are:

» Average
Median
Max
Min

Sum

vV V VYV V

These values change dynamically depending on the choice of filters.
This is the power provided by the Bi tool. For example, by selecting from the
seasons the “winter” and from the days “Thursday” we see that the values of

the statistical measures have been adjusted accordingly.

68

SEASONS LOAD

DATE DAY
2013-2014-2015 WINTER 2021 9237 B a0 B THURSDAY
COMPARISOM

O O O— o

SUM LOAD AVG LOAD MEDIAN LOAD MIN LOAD MAX LOAD
MIN LOAD : THURSDAY - 14:00:00
el 5992 S4F 3892 9237 MAX LOAD : THURSDAY - 19:00:00
MWh MWh MWh MWh MWh

ACTUAL LOAD FROM 10/1/2013 TO 31/12/2015

LOAD

ey Iy

Zelios Vasileios, MSc

Figure 37 : Apply filters

We also noticed that the average load on Sundays (and only on
Sundays) is less than 5 thousand MWh. High load demand occurs on weekdays
and mainly on Thursdays. This is explained because in our country Sunday is

a day of rest and most companies are closed, so they do not consume energy.

SEASONS LOAD

2013-2014-2015 Al 2021
COMPARISON

DATE DAY
= AlIVC

=

9237 182013 2 wnmons B SUNDAY
SUM LOAD AVG LOAD MEDIAN LOAD MIN LOAD MAX LOAD
MIN LOAD : SUNDAY - 14:00:00
18M 4814 4665 2021 7844
MAX LOAD : SUNDAY - 19:00:00
MWh MWh MWh MWh MWh

ACTUAL LOAD FROM 13/1/2013 TO 27/12/2015

LOAD

DATE

Zelios Vasileios, MSc

Figure 38 : Sunday consumption

69

Clicking on the master's logo on the top-left, will take you back to the

home page. By clicking this time on the test set button lead us to the screenshot

below.
MAPE SEASONS LOAD DATE DAY
=== 0,00% 13.97% 2331 8525 wvigzos 8 127202016 B
SUM ACTUAL LOAD MAPE RMSE MAPE RMSE MAPE RMSE MIN LOAD : SUNDAY - 14:00:00
44M 4.26% 275.2 4.85% 336.1
MAX LOAD : MONDAY - 19:00:00
MWh FFNN 24IN FFNN 24IN FFNN 121N FFNN 12IN FFNN 48hor FFNN 48hor
ACTUAL LOAD FROM 10/1/2016 TO 29/12/2016 MODEL-UNITY
@ACTUAL LOAD @ FFNN 24N @FFNN 121N © FFNN 48h honzon

.’ RNN - 40 x 40 |

,/—‘% RNN - 200 x 200 |

| LsTM - 40 40 |

LOAD

| 1578 - 200 x 200 |
L. -l

[cau-s0x4a |

| G -200x 200 |
\. ~

DATE

Zelios Vasileios, MSc

Figure 39 : Test dataset overview

The environment is similar to that of the train. On the right there is a list
of the 7 available models that were trained with different input vector lengths
each time. As we have already mentioned in chapter 2, we also see here that
increasing the input length of the models does not necessarily mean that we
will achieve better prediction. As we can see below, choosing a GRU model
with 200 x 200 neurons we confirm that the GRU model with an input vector of
168h is not efficiently the best.

MAPE SEASONS LOAD DATE DAY
0.00% 13.05% & 23 2415 w0 B 12ne200 8 A
MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE
1.66% 1173 1.36% 93.7 1.87% 126.1
GRUGIN GRU 6IN GRU12IN GRU12IN' . GRU24IN GRU24IN/ ' GRU48IN GRU 48IN GRU96IN GRU 961N ' GRU 168IN GRU 168IN

JODEL-UNITS

ACTUAL LOAD FROM 9/1/2016 TO 14/12/2016
@ACTUAL LOAD @ GRU 6IN @1GAU 121N © GRU 241N ® GRU 43N @GR 96N @GRU 168N

B
FFNN - %00 x 50
\ J

RNN - 40 x 40
RNN - 200 x 200

e

LSTM - 40 x 40

B
LSTM - 200 x 200

GRU - 40 x 40

e GRU - 200 x 200
DATE

Zelies Vasiletes, MSe

70

Figure 40 : GRU (200 x 200)

By making a horizontal scroll on the graph’s bar we can generally
observe that all the GRU (200 x 200) models adapt smoothly to the changes of
the ACTUAL LOAD curve. We also notice that for short input length we get high
error. Increasing input length from 6h to 12h the error decreases. Increasing
the length again to 24h the error grows and reaches about the same percentage
as when the input has a length of 6h. With vector 48h as input we get the best
results in prediction.

Below is a screenshot of the LSTM model (40 * 40 units) without the
application of any filter. We see that 4 of the 6 variants of the model have up to
~2% MAPE score (<135MWh MAPE).

MAPE SEASONS LOAD DATE DAY
e A I V C 1 0.00% 14.18% Al 233 8415 1792016 1271472018 ¢ Al
ol O——O O O O O

MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE

LSTMBIN LSTMEIN. ' LsTM12IN LSTM 12N/ “LSTM 24IN LSTM 24IN./ ' LSTM 48IN LSTM 48IN/ 'LSTM 96IN LSTM 96IN/ 'LSTM 168IN LSTM 168IN

ACTUAL LOAD FROM 9/1/2016 TO 14/12/2016 ODEL-UNITS
@ACTUAL LOAD # LSTM 83N @LSTM 121N S LSTM 24IN @ LSTM 4N ©LSTM S&N SLSTM 168N - S
| FFNN - 100 x 50 |

N

(e \|

LoAD

- ~
RNN - 200 x 200 |
",

S emEo e
T~

Figure 41 :LSTM (40 x 40)

Now, for the same model (LSTM 40 x 40) we choose from the DAY filter the
“Sunday”

71

MAPE SEASONS LOAD DATE DAY

0.00% 1418% All a3 8415 182006 B 121472006 B SUNDAY

~ MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE ~ / MAPE RMSE MAPE RMSE
i .8 1.93% 116.7 }
LISTMGIN LSTMBIN, \ (sTM 12N LsTM12iN/ \LSTM24IN LSTM 24N \(sTM48IN LsTM 48N/ 'LSTM96IN LSTM S6IN/ 'LSTM 168IN LSTM 168IN

ACTUAL LOAD FROM 10/1/2016 TO 11/12/2016

| FFNN - 100 x 50

HNN-JU-\ADJ

=

LoAD

1
1
]
A
-
1
Al

L RMNN - 200 x 2()(}]

|

LSTM - 200 x 200

R g 88 2R ew e RNV —
= | GRU-40x40
.

A0 P

V10000 7
]

120000 P8

L —

-
GRU - 200 x 200
h,

Zelios Vasilelos, MSe

Figure 42 : LSTM (40 x 40) - Sunday

We can see here that on Sundays the model doesn't work so well. Only
the run with 96h as input vector has RMSE <135MWh. We also test the RNN

(40 x 40) without filters to compare the results with those of Sunday.

MAPE SEASONS LOAD DATE DAY
:;___ A I ‘\IQ !’ 0.00% 18.42% All - 2an 8415 192016 a 121472016 B Multiple selections. ™
b T anfa s maligesce b
Rl Oo———0 O O O O
MAPE RMSE " MAPE RMSE MAPE RMSE | MAPE RMSE MAPE RMSE
6! _ 1.93% 135.3 44 1.76% 120.6
RNN SIH RNN BIN RNN 12IN RNN 12IN RNMN 48IN RNN 48IN RNN 961N RNN 96IN “.RNN 168IN RMNN 168IN
ACTUAL LOAD FROM 9/1/2016 TO 14/12/2016 MODEL-UNITS
@ACTUAL LOAD BRANN SIN @ RNN 12N @RNN 451N BRNN 96N B ANN 168N

o~

~
FFNN - 100 x 50 |
v,

-

5 b’
RNN - 200 x 200 |
",

LOAD

.
-
LSTM - 40 x 40
o Ui o
—

L

=
STM - 200 x 200 |

S
GRU - 40 x 40

s ~
GRU - 200 x 200 |
S A

Zelios Vasilelos, MSc

Figure 43 : RNN (40 x 40)

72

MAPE SEASONS LOAD DATE DAY
e AIVC & 0.00% 18.42% Al 23 8415 1ee0E B 1znaems 8 | sunpay
S Anfca aligence &
T 0—o0 O—0 O 0
MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE ~ MAPE RMSE
3.12% 185.4 3.11% 184.7 3.02% 177.3
RNN 6IN RNN 8IN RNN 12IN RNN 12IN . RNN 481N RNN 48IN RNHN 361N RNN 361N RNM 168IN RNM 168IN
ACTUAL LOAD FROM 10/1/2016 TO 11/12/2016 MODEL-UNITS
@ACTUAL LOAD @ RNN &N RNN 12IN @ RNN 48N BRNN J6N ANN 188N -~ -
| FFNN - 100 x 50
S, e R R P T e (3
= r
o o
3 R e | rn. zm:zou]
i "‘tx-Hum-—.-—f‘)f -
._ -
LSTM - 40 x 40
333 33 FZ 33 3 3 3 3 | LsTM - 200 x 200
- - - 5 8 % 8 § B CH M o———
GRU - 40 x 40 |
=
I‘.":-'Js '8
GRU.?WKZGOJ
DATE I
Zelios Vasileios, MSc

Figure 44 : RNN (40 x 40) — Sunday

MAPE SEASONS LOAD DATE DAY
0.00% 1842% Al 233 8415 108 B a0 B SUNDaY
MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE
3.12% 185.4 3.11% 184.7 3.02% 177.3
“._RNN BIN RNNGIN .~ " RNN 12IN RNN 12IN RNN 481N RNM 48IN RNN 96IN RNN 96IN . P 61 . RNN 188IN

ACTUAL LOAD FROM 10/1/2016 TO 11/12/2016 MODEL-UNITS

ACTUAL LOAD @ RMNN 8IN -
FFNN - 100 x 50

RNN 12N @ANN 480N @RNN S6IN & RN 168IN

RNN - 200 x EDDJ

LOAD

LSTM - 40 x-tDJ

STM - 200 x ?N]

GRU - 40 x 40]

NXEr B B

i GRU - 200 x zoo]
DATE -

Zelios Vasileios, MSc

Figure 45 : RNN (40 x 40) — Sunday

This model doesn't work well enough. It has difficulties capturing patterns
in the data that occur infrequently, such as on weekends or holidays [26]. So,

to generalize this we try the 15th of August for the same model.

73

MAPE SEASONS LOAD DATE DAY

0.00% 18.42% All W 233 8415 gnsy2ns 8B gnsz016 8
MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE
4.70% 232.2 4.36% 208.5 3.45% 155.1 4.43% 227.5 3.39% 1535
RNHN 6IN RNHN 6IN RNN 12IN RNN 12IN RNHN 48IN RNN 48IN RNHN 96IN RHNMN 96IN RNN 168IN RNN 168IN
ACTUAL LOAD FROM 15/8/2016 TO 15/8/2016
@ACTUAL LOAD @ANN SIN S RNN 12N @RNN 45N SRNN 96N ©RNN 168N

r —
FFNN - 100 x 50

’

RNN - 200 x 200

o

LOAD

LSTM - 40 x 40

[

—-:

- —~
LSTM - 200 x 200

L GRU - 40 x 40
m———

- ~
| GRU - 200 x 200 |
J

DATE
Zelios Vasileios, MSc

Figure 46 : RNN (40 x 40) - 15th August

The problem here is greater than on Sundays. This is because the model
might not have seen enough examples of this type of pattern during the training
process, making it difficult for the model to learn to recognize them. We try the
same day (August 15") for both LSTM (40 x 40) and GRU (40 x 40) models and

we see that the “problem” of August 15" remains for these models as well.

MAPE SEASONS LOAD DATE DAY
.":.:_;__:.ﬁl \\f"rL i 0.00% 14.18% All 331 8415 ghseoe 8 gnsome B
Fis' Oo——0 O O O—
MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE
3.53% 166.6 3.07% 160.2 3.04% 1475 3.08% 148.2
LLSTMEIN LSTMGIN LSTM 12IN LSTM 12IN/ “LSTM 24IN LSTM 24IN./ \1STM 48IN LSTM 4BIN./ 'LSTM S6IN LSTM 96IN/ 'LSTM 168IN LSTM 168IN

ACTUAL LOAD FROM 15/8/2016 TO 15/8/2016
@ ACTUAL LOAD LSTM &N @LSTM 121N LSTM™ 2aiN LSTM 4BIN LSTM 6N @ LSTM 1681N ~— —
FFNN - 100 x 50

RNN - 40 x 40 |
el

RNN - 200 x 200 |
) 8 >,

LoAD

N s
LSTM - 200 x zc-}]

GRU - 200 x 200 J
DATE e -

Zelios Vasilelos, MSc

Figure 47 : LSTM (40 x 40) - 15th August

74

MAPE SEASONS LOAD DATE DAY

0.00% 14.18% Al 33 8415 gnspoe B 06 B Al
MAPE RMSE | MAPE RMSE “ MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE
3.45% 169.5 ! 3.43% 164.1 5 2.0 1.6
GRUGIN GRUGIN ./ ' GRU1ZIN _GRU12IN " GRU24IN GRU24IN./ ' GRU4BIN GRU4BIN' ' GRU9SIN GRUSEIN' 'GRU 168IN GRU 168IN

2016 MODEL-UNITS

@GRU 168N

AL LOAD FROM 15/8/2016 TO 15/,

GAU 13N ®GRU 24

@ 3
FFNN - 100x 50 |

'
RNN - 40 x 40
A

AN

RNN - 200 x 200 |
&)

LoAD
A

_/

LSTM - 40 x 40
e

L.

r 3
LSTM - 200 x 200
-~/

' ~
| GRU - 200x 200 |
DATE — =

Zelios Vasileios, MSc

Figure 48 : GRU (40 x 40) - 15th August

After this we tested LSTM and GRU with 200 x 200 units to see what they did
on August 15,

MAPE SEASONS LOAD DATE DAY
0.00% 13.09% Al 233 Ba15 8ns206 ® gnseoe B &l
MAPE RMSE \ MAPE RMSE " MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE
3.11% 161.6 2.67 2.93% 150.0 1.98% 98.6 3.90% 184.9 12
GRU 6IN GRU BIN GRU 12IN GRU 12IN/ ' GRU 24IN GRU 241N/ GRU 48IN GRU 4BIN . GRU 96IN GRU 961N ; GRU 168IN_ GRU 168IN
ACTUAL LOAD FROM 15/8/2016 TO 15/8/2016 MODEL-UNITS
W ACTL =) LR 4 BGRU S8IN BGRU 95 N ~
FFNN - 100 x 50]
\

-

RNN - 40 x 40

-

-

RNN - 200 x 200 |

LOAD
o

i]
LSTM - 40 x 40

LSTM - 200 x 200

s 2 i g
GRU -40x 40 |
, S

g
DATE

Zelios Vasilelos, MSc

Figure 49 : GRU (200 x 200) - 15th August

75

MAPE SEASONS LOAD DATE DAY

0.00% 1371% Al 23 B415 NS0 B gns2os 8 A
MAPE RMSE /~ MAPE RMSE MAPE RMSE [MAPE RMSE MAPE RMSE MAPE RMSE
4.64% 222.6 1.81% 97.8 1.78% 99.8

LSTM6IN LSTM 6IN. “LSTM 12IN LSTM 12IN/ “LSTM 24IN LSTM 24IN LSTM 48IN LSTM 48IN LSTM 96IN LSTM 961N/ " LSTM 168IN LSTM 168IN

ACTUAL LOAD FROM 15/8/2016 TO 15/8/2016 MODEL-UNITS

@ACTUAL LOAD & LSTM 6IN @LSTM 12N @ LSTM 24N @ LSTM 48iN @ LSTM S&IN @LSTM 168N -

FFNN - 100% 50 |
L9 /

Y
RNN - 40 x 40

Wi

nNN-m:zunf’

LOAD

LSTM - 40 x 40

T TP P B P PM GRU - 40 x 40
A

T

I's 5
GRU - 200 x 200 |
DATE L y,

Zelios Vasilelos, M5c

Figure 50 : LSTM (200 x 200) - 15th August

The GRU model had more difficulty than the LSTM in predicting load on
15 August but in general, the “problem” of August 15th remains for these
models as well. For May 1st the problem is worse. See the following series of

images

MAPE SEASONS LOAD DATE DAY
0.00% 1397% A 23n BA2S sneoe B sneoe @ A
SUM ACTUAL LOAD MAPE RMSE MAPE RMSE MAPE RMSE MIN LOAD : SUNDAY - 14:00:00
oM 5.78% 227.3 9.72% 383.0 19.74% 966.4
MAX LOAD : SUNDAY - 21:00:00
MWh FFNN 24IN FFNN 24IN FFNN 12IN FFNN 12IN . FFNN 48hor FFNN 48hor.

ACTUAL LOAD FROM 1/5/2016 TO 1/5/2016
@ACTUAL LOAD @ FFNN 24N @FFNN 121N & FENN 48h horizon m

.f '
RNN - 40 x 40
= 4

RNN - 200 x 200 |
- .

LOAD

LSTM - 40 x 40
L

(s Y
LSTM - 200 x 200 |
| S

o Ul y
Pl GRU - 40 x 40
\)

S
GRU - 200 x 200 |
. v

Figure 51 : FFNN (100 x 50) — 1st May

76

MAPE SEASONS LOAD DATE DAY
...&I V C. & 0.00% 13.71% All b 33 B415 $Nz0s a sNerME a 4
ofredll. | o———-o0 O —O—
" MAPE RMSE " MAPE RMSE " MAPE RMSE MAPE RMSE " MAPE RMSE MAPE RMSE

7.68% 293.8 | 5.07% 185.9 3.26% 125.6 6.18% 229.0 5.27% 208.5 3.52% 129.8
LSTMGIN LSTM6IN/ 'LSTM 12IN LSTM 12IN/ 'LSTM 24IN LSTM 24IN/ 'LSTM48IN LSTM48IN.' 'LSTM 96IN LSTM 961N/ ' LSTM 168IN LSTM 168IN

ACTUAL LOAD FROM 1/5/2016 TO 1/5/2016 MODEL-UNITS
SACTUAL LOAD & LSTM SIN SILSTM 12IN @ LSTM 24N @LSTM 481N ©LSTM 96N @LSTM 168IN

FFNMN - 100 x 50

RNN - 40 x 40

b

-

RNN - 200 x ZDDJ

LOAD

LSTM - 40 x 40

:

LSTM - 200 x 200

L -,

GRU - 40 x 40

GRU - 200 x 200

NS

£ r

Zelios Vasileios, MSc

Figure 52 : LSTM (200 x 200) - 1st May

MAPE SEASONS LOAD DATE DAY
0.00% 14.18% A 233 8415 snote B sneoe B A
MAPE RMSE MAPE RMSE MAPE RMSE ™ / MAPE RMSE MAPE RMSE MAPE RMSE

5.62% 214.7 5.58% 210.2 6.71% 252.4 7.80% 297.0 5.32% 208.9 5.77% 230.8
LSTMEIN LSTMBIN.' \ LsTmM12IN LSTM12iN/ \LSTM24IN LSTM24IN. \LSTM 48iIN LSTM 48IN/ \LSTM 96IN LSTM 96IN/ \LSTM 168IN LSTM 168IN/

ACTUAL LOAD FROM 1/5/2016 TO 1/5/2016
@ACTUAL LOAD O LSTM 6 @LSTM 12N 8 LSTM 24N @ LSTM 48IN BLSTM 94N BLSTM 168IN I -
500 | FFNM - 100 x 50

RMNMN - 40 x 40

e -

~
S

r =
| RNN - 200 % 200]
L ,

[oo
(15 20002)

LoAD

3 f N\
- | LSTM - 200 x 200

fne mao- Ml sru-40xa0
o TR,

s
GRU - 200 x 200
L8

g
L

Zelios Vasileics, MSc

Figure 53 : LSTM (40 x 40) - 1st May

MAPE SEASONS LOAD DATE DAY

Q0% 13.00% ll v 2331 8415 neos | snpoe B A1
Oo——=0 e——el -— 8
MAPE RMSE MAPE RMSE " MAPE RMSE " MAPE RMSE MAPE RMSE MAPE RMSE
6.25% 232.9 5.12% 184.0| 6.60% 240.5 3.32% 1247 8.29% 310.9 5.18% 196.6
\GRUGIN _ GRU 6IN, GRUIZIN _ GRU 12N \GRU24IN __ GRU24IN/ \GRU 461N GRU 4BIN/ \GRU96IN _ GRU 96N/ \GRU 168IN GRU 168IN .

ACTUAL LOAD FROM 1/5/2016 TO 1/5/2016

@ACTUALLOAD © GRU SN @GRU 121N B GRU 24iN ® GRU 281N @GR SRU 168
5000 FFNN - 100 x 50
- :
A
~
RNN - 40 x 40

T T T T LT T LT T TRy, yhg,
A
r

RNN - 200 x zuu]
A
‘3

LOAD

| LsTM-40x .m]

L

—
__ LSTM - 200 x 200

Figure 54 : GRU (200 x 200) - 1st May

MAPE SEASONS LOAD DATE DAY
A] VL !s 0.00% 14.18% Al 31 Ba15 snrowe B snpoe B Al
Mo O oO——O oO———0 —O—
MAPE RMSE MAPE RMSE '/ MAPE RMSE MAPE RMSE " /" MAPE RMSE * MAPE RMSE

6.38% 243.1 6.30% 2313 6.70% 252.6 5.83% 217.7 | 5.07% 186.6| 6.99% 258.2
GRUGIN _ GRUGIN.' . GRU12IN _ GRU12IN. '\ GRU24IN _ GRU24IN. ' GRUASIN _ GRU4SIN/ 'GRUSEIN GRUSEIN' 'GRU168IN GRU 168IN.

ACTUAL LOAD FROM 1/5/2016 TO 1/5/2016 MODEL-UNITSH
@ACTUAL LOAD GRU 12N 9 GRU 241 45N B GRU 168IN r
s | Fenna- 10050
v T | rmn-soxao

[RNN - 200 200]

-
| sm. JDxlﬂ]
L

Ty,
.
.,

LOAD

Srasupent

(I‘STM - 200 x 200

i EGRIJ-EDO:(ZDDJ
DATE -

Zelios Vasileios, MSc

Figure 55 : GRU (40 x 40) - 1st May

78

SEASONS LOAD DATE DAY

MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE
9.46% 369.3 9.90% 384.8 7.67% 286.4 9.41% 364.5 9.79% 389.4
RNN 12IN RNM 121N - RNN 24IN RNN 241N RNN 48IN RNN 48IN . RNN 96IN RNN 96IN RNN 168IN RNN 168IN

ACTUAL LOAD FROM 1/5/2016 TO 1/5/2016

@ACTUAL LOAD © ANN 121N @RI N RIN 46N @ RNN S6IN @ RNN 168IN

-
FFNN - 100 x 50]

~
ﬁNN-Wa#U_]
b -

RMNM - 200 x 200

-
lSTM--lﬂxw]
| ———

LSTM - 200 x 200
GRU - 40 x 40
| S

-
. GRU - 200 x 200
DATE = ~

LOAD

Zelios Vasileios, MSc

Figure 56 : RNN (200 x 200) - 1st May

MAPE SEASONS LOAD DATE DAY

AIVC & =

42% All v 2331 8415 snos B snpoe B SUNDaY

MAPE RMSE MAPE RMSE MAPE RMSE " MAPE RMSE MAPE RMSE
10.97% 4339 8.45% 319.5 7.21% 2934 10.63% 433.3 8.40% 326.8
RNN 8IN RNN &IN “.RNN 12IN RNN 12IN RNN 4BIN RMNM 481N RNN 96IN RNN 96IN . 1] . RNN 168IN
ACTUAL LOAD FROM 1/5/2016 TO 1/5/2016
@ACTUAL LOAD @ RNN SN B RNN 121N @RNN 281N @ RNN G8IN @ RNN 163IN

g X

FFNN - 100 x 50

r N
RMMN - 200 x 200 ||
J

LOAD

o ™
LSTM - 40 x 40

. |
LSTM - 200 x 200 |
.~

i GRU - 40 x 40

a GRU - 200 x 200
DATE . <

Figure 57 : RNN (40 x 40) - 1st May

79

MAPE SEASONS LOAD DATE DAY

2 AIVC a4 Pl |] A i s o
__'. = .1':_.:“‘ ece b m‘ : : : : :
LSTM MAPE RMSE MAPE RMSE GRU
2X 500 Units 2 X500 Units
32 Input / 1 Output 4.13% 153.9 32 Input /1 Output
1 Win Size 1 Win Size

ACTUAL LOAD FROM 1/5/2016 TO 1/5/2016
@ACTUAL LOAD © GRU @LSTM

"h\\
y
3
3
i
o

LoAD

DATE

Zelies Vasileios, MSc

Figure 58 : Best LSTM & GRU (500 x 500) - 1st May

None of the 7 models and consequently of the 39 model variants
correctly predicted the load for May 15t. The reader will reasonably wonder what
can happen on Sundays or even what happens on May 1 and August 15. As
we have seen above, Sundays are generally days of rest and low energy
consumption. But the models are not aware of this. In fact, the model does not
know what 'Sunday' or 'Thursday' really means. The models learn from the time
series pattern. As far as May 1 or August 15" are national holidays for the
whole country, therefore the energy consumption is very low. This is not known
to the model. The model predicts load prices according to past values without
considering calendar holidays, national holidays, etc. There are several
strategies that can be used to address this issue of RNNs:

1. Incorporate information about national holidays into the preprocessing of
the data. This could involve adding a binary indicator variable for each
holiday or encoding the holiday information in a more sophisticated way.

2. Use a more complex model architecture that can better handle the added
complexity of modeling national holidays [14]. For example, a hybrid
model that combines RNNs with other types of neural networks, such as
convolutional neural networks (CNNs) or attention mechanisms, might

be more effective.

80

3. Use a larger dataset that includes more examples of load consumption
patterns on national holidays.

4. Use transfer learning techniques where pre-trained models on similar
data can be fine-tuned on the current task.

5. Use an ensemble of models with different architectures to capture
different patterns and generalize better.

6. Add external data sources such as weather information, socio-economic
indicators and population density to the model to get a more

comprehensive understanding of the data.

It's important to note that, depending on the specific data and the complexity
of the problem, a combination of these strategies may be necessary to achieve

accurate load consumption predictions on national holidays.

81

Section 4: Conclusion

4.1 Observations and future study

In this thesis, a comprehensive and in-depth study on the application of
Recurrent Neural Networks was undertaken for the purpose of forecasting
short-term electric load in Greece. The study was carried out using an extensive
dataset and various techniques, with a focus on evaluating the performance of
recurrent neural networks. Through the utilization of grid search algorithms, the
model that resulted in the minimal statistical error was determined as the
optimal model. That model is a 2-layer GRU with 500 neurons each taking as
input 32h values. The model yields RMSE of 83MWh (1.17%).

Upon conducting experimental evaluations, it was determined that the
runtime of Recurrent Neural Networks (RNNSs) is inferior to that of Long Short-
Term Memory networks (LSTMs), and LSTMs exhibit longer execution times
when compared to Gated Recurrent Units (GRUSs).

Similarly, the performance of Recurrent Neural Networks (RNNSs) is
inferior to that of Long Short-Term Memory Networks (LSTMs), while LSTMs
show minimal deviation compared to Gated Recurrent Units (GRUs). RNNs
models outperformed LSTMs only in the 24-hour forecast horizon. This does
not impress us because RNNs are effective in predicting short-term load. The
24-hour horizon belongs to the category of short-term forecasting.

Table 12 : Performance comparison of RNN-LSTM-GRU

units 200 x 200

outputs 1h 2h 24h

inputs 6IN | 12IN | 24IN | 48IN | 96IN [168IN| 6IN | 12IN | 24IN | 48IN | 96IN | 168IN| 24IN | 48IN | 96IN | 168IN | 384IN
RNN 298 | 238 | 219 | 1,72 | 1,82 | 2,28 - - - - - - 586 | 577 | 611 | 512 | 799
LSTM 251 213 | 1,79 | 152 | 1,73 | 1,61 3,2 2,18 | 2,01 | 1,94 | 1,83 | 1,87 6,4 6,42 | 6,26 | 5,49 | 6,18

GRU 24 (171 | 153|151 | 152 | 146 292 | 223 | 184 | 189 | 1,77 | 19 | 572 | 56 | 569 | 466 | 568
units 40 x 40
outputs 1h 2h 24h

inputs 6IN | 12IN | 24IN | 48IN | 96IN |168IN| 6IN | 12IN | 24IN | 48IN | 96IN | 168IN| 24IN | 48IN | 96IN | 168IN [384IN
RNN 269 | 231) 199 | 1,73 | 1,74 | 1,92 . - - - . - 6,04 | 609 | 578 | 544 | 579
LSTM 2,49 2,1 194 | 1,81 | 1,78 | 193 | 367 | 2,78 | 209 | 2,14 | 2,13 | 1,97 | 6,74 | 6,78 | 6,61 | 6,16 | 6.98
GRU 251|213 1188)| 174 | 1,76 | 1,59 | 334 | 241 | 2,05 | 2,04 | 195 | 2,09 | 6,13 | 606 | 584 | 532 | 57

From the Power Bl results we saw that it is possible that all the models
might predict some seasons more accurately than others. One possible reason

for this is that the changes in weather patterns during the summer and winter

82

seasons are more drastic and consistent, making them easier for the model to
learn and predict. On the other hand, the autumn and spring seasons are known
to be more transitional, with more variability in weather patterns and

temperature fluctuations, which can be more difficult for the model to learn and

predict.

Table 13 : Seasonal performance
season Winter l Spring I § l Autumn
units 200 x 200

outputs 1h l 1h 1h I 1h

inputs 6IN | 12IN | 241N | 48IN | 96IN [168IN| 6IN | 12IN [24IN | 48IN | 96IN (168IN| 6IN | 12IN | 24IN | 48IN | 96IN [168IN| 6IN | 12IN | 24IN | 48IN | 96IN |168IN

RNN 2471216169202 219 2,75[253|189)|216]2.28 208|173/126] 1.4 |153 239]213]173|1,94[205

LSTM 309/193| 14 |198)141)|143)318[205]1,67)1,81/169|153]215/1,58]1,22]165)/1,12/132/281]212]|153|177| 15 |149

GRU 2,16[1581233/136/269/211]1235/188|242|154|261| 2 |189)133|173|1,11) 18 |156[226|181|2,16[1,44[2.27| 186

We also noticed something called "Sunday effect". It refers to the
phenomenon where energy consumption patterns on Sundays tend to differ
from those on other days of the week. This can be caused by a variety of factors,
such as changes in human activity levels, building occupancy, and industrial
production. As a result, it can be more difficult for Recurrent Neural Network
models to predict energy consumption patterns on Sundays due to the unique
characteristics of this day. This phenomenon is observed especially on the days
characterized as national holidays (May 1st, August 15th, etc.). In order to
possibly be able to make better predictions on these days, we will have to train
the models with many more such days as "Sunday effect".

In order to optimize prediction algorithms there are several additional
types of data that we could use, for further study, to improve the accuracy of
short-term electric load prediction with RNNs. Some examples include:

1. Weather data: Information such as temperature, humidity, wind speed,
and precipitation can have a significant impact on electric load.

2. Demographic data: Population density, age distribution, and socio-
economic factors can also affect electric load.

3. Economic data: Data such as GDP, unemployment rate, and energy
prices can provide important context for understanding electric load
patterns.

4. Holiday and events data: Holidays and events can affect electric load.

83

5. Building's occupancy and temperature data: knowing the occupancy and
temperature of the building can give us a better understanding of the
energy consumption.

6. Smart meter data: Smart meter data can provide fine-grained
consumption data, allowing us to make more accurate predictions.

In conclusion, combining different types of neural networks, such as
feedforward neural networks and recurrent neural networks, a model can take
advantage of the benefits of each type of network and potentially improve the
accuracy of load forecasting. This can also be combined with other techniques,
such as fuzzy logic or support vector machine, to make it more efficient. This

combination is known as hybrid models [18].

84

Bibliography

1.

2B U -

Bakirtzis A.G, Kiartzis S.J, Petridis V., Short term load forecasting using
neural networks, Aristotle University of Thessaloniki, 1994.
doi:10.1016/0378-7796(95)00920-D.

. Bouktif, S., Fiaz, A., Ouni, A., & Serhani, M. A. “Optimal deep learning

LSTM model for electric load forecasting using feature selection and
genetic algorithm: Comparison with machine learning approaches,”
Energies, vol. 11, no. 7, 2018. doi :10.3390/en11071636.

Brownlee, J. Deep Learning for Time Series Forecasting. 2018.
Brownlee, J. Machine Learning Mastery With Python. 2021.

Chollet F. Deep Learning with Python. 2017.

C.N. Lu, H.T. Wu and S. Vemuri, "Neural network based short term load
forecasting," in IEEE Transactions on Power Systems, vol. 8, no. 1, pp.
336-342, Feb. 1993, doi: 10.1109/59.221223.

D. C. Park, M. A. El-Sharkawi, R. J. Marks, L. E. Atlas and M. J.
Damborg, "Electric load forecasting using an artificial neural network," in
IEEE Transactions on Power Systems, vol. 6, no. 2, pp. 442-449, May
1991. .doi: 10.1109/59.76685.

D. Srinivasan, A. C. Liew, and C. S. Chang, “A neural network short-term
load forecaster,” Electr. Power Syst. Res., vol. 28, no. 3, pp. 227-234,
1994. doi:10.1016/0378-7796(94)90037-X.

D. D. Highley and T. J. Hilmes, "Load forecasting by ANN," in IEEE
Computer Applications in Power, vol. 6, no. 3, pp. 10-15, July 1993, doi:
10.1109/67.222735.

10.Georgouli, A. (2015). Texvnt vonuoouvn. Kallipos, Open Academic

Editions. https://hdl.handle.net/11419/3381.

11.Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and

TensorFlow. 2019.

12.G. Gross and F. D. Galiana, "Short-term load forecasting," in

Proceedings of the IEEE, vol. 75, no. 12, pp. 1558-1573, Dec. 1987. doi:
10.1109/PROC.1987.13927.

13.Grus, J. Data Science from Scratch: First Principles with Python. 2019.

85

14.W. He, “Load Forecasting via Deep Neural Networks,” in Procedia
Computer Science, 2017, vol. 122, pp. 308-314. doi:
10.1016/j.procs.2017.11.374.

15.Hagan, M.T. and Behr, S.M. The Time Series Approach to Short Term
Load Forecasting. IEEE Transactions on Power Systems, 2, 785-791.
1987 doi: 10.1109/TPWRS.1987.4335210.

16.Hong, T. and Shahidehpour, M. Load Forecasting Case Study. EISPC,
U.S. Department of Energy. 2015.

17.Hippert, H.S., Pedreira, C.E. and Souza, R.C. Neural Networks for Short-
Term Load Forecasting: A Review and Evaluation. IEEE Transactions
on Power Systems, 2001 16, 44-55. doi: 10.1109/59.91078

18.Kandilogiannakis G., Mastorocostas P., Voulodimos A., ReNFuzz-LF: A
Recurrent Neurofuzzy System for Short-Term Load Forecasting.
Energies 2022, 15(10), 3637. doi: 10.3390/en15103637.

19.Ke Li, Wei Huang, Gaoyuan Hu, Jiao Li. Ultra-short term power load
forecasting based on CEEMDAN-SE and LSTM neural network, Energy
and Buildings 2023, doi : 10.1016/j.enbuild.2022.112666.

20.K. Y. Lee, Y. T. Cha and J. H. Park, "Short-term load forecasting using
an artificial neural network," in IEEE Transactions on Power Systems,
vol. 7, no. 1, pp. 124-132, Feb. 1992, doi: 10.1109/59.141695.

21.Livieris loannis, Evaluation of artificial neural network training methods
and applications, University of Patras, 2009.

22.Park, D.C.; EI-Sharkawi, M.; Marks, R.; Atlas, L.; Damborg, M. Electric
load forecasting using an artificial neural network. IEEE Trans. Power
Syst. 1991, 6, 442—449 doi: 10.1109/59.76685.

23.Powell B. Mastering Microsoft Power Bl: Expert techniques for effective
data analytics and business intelligence. 2018.

24.P. Xiuyan, Z. Biao and C. Yanqing, "The short-term load forecasting of
electric power system based on combination forecast model," The 27th
Chinese Control and Decision Conference (2015 CCDC), Qingdao,
China, 2015, pp. 6509-6512, doi: 10.1109/CCDC.2015.7161993.

25.S. Rahman and R. Bhatnagar, "An expert system based algorithm for
short term load forecast," in IEEE Transactions on Power Systems, vol.
3, no. 2, pp. 392-399, May 1988, doi: 10.1109/59.192889.

86

26.S. Singh, S. Hussain and M. A. Bazaz, "Short term load forecasting using
artificial neural network," 2017 Fourth International Conference on
Image Information Processing (ICIIP), Shimla, India, 2017, pp. 1-5, doi:
10.1109/1CIIP.2017.8313703.

27.Roger, F. Silva. Power Bl - Business Intelligence Clinic: Create and
Learn. 2018.

28.D. J. Sobajic and Y. . -H. Pao, "Artificial neural-net based dynamic
security assessment for electric power systems," in IEEE Transactions
on Power Systems, vol. 4, no. 1, pp. 220-228, Feb. 1989, doi:
10.1109/59.32481.

29.Shukla, N. Machine Learning with TensorFlow. 2018.

30.Vasilev. |, Slater. D, Spacagna. G, Roelants. P, Zocca. V. Python Deep
Learning: Exploring deep learning techniques and neural network
architectures with PyTorch, Keras, and TensorFlow, 2nd Edition. 2019.

31.Verykios, V., Kagklis, V., & Stavropoulos, E. (2015). H emoTtiun Twv
oedopévwy péoa atod m yAwooa R. Kallipos, Open Academic Editions.
https://hdl.handle.net/11419/2965.

87

Webliography

1. https://www.deeplearning.ai/

https://towardsdatascience.com/time-series-analysis-visualization-
forecasting-with-Istm-77a905180eba

3. https://r2rt.com/recurrent-neural-networks-in-tensorflow-ii.html
4. https://colah.github.io/posts/2015-08-Understanding-LSTMs/

5. https://machinelearningmastery.com/time-series-forecasting-methods-

© © N o

in-python-cheat-sheet/

https://powerbi.microsoft.com/en-us/
https://energy.stonybrook.edu/facts/demand.php
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-

neural-networks

10. https://ethw.org/Milestones:Pearl_Street Station, 1882

11. https://machinelearningmastery.com/an-introduction-to-recurrent-

neural-networks-and-the-math-that-powers-them/

12. https://machinelearningmastery.com/how-to-grid-search-deep-learning-

models-for-time-series-forecasting/

13. https://machinelearningmastery.com/how-to-develop-Istm-models-for-

time-series-forecasting/

14. https://keras.io/examples/timeseries/

15. https://en.wikipedia.org/wiki/Long_short-term_memory

16. https://intellipaat.com/blog/what-is-Istm/

17. https://wiki.pathmind.com/Istm

18. https://neptune.ai/blog/hyperparameter-tuning-in-python-complete-

guide

19. https://towardsdatascience.com/exploring-the-Istm-neural-network-

model-for-time-series-8b7685aa8cf

20. https://neptune.ai/blog/arima-vs-prophet-vs-lstm

21.https://gallery.azure.ai/Tutorial/Forecasting-Short-Time-Series-with-

LSTM-Neural-Networks-2

22.https://medium.com/@pratik.asija1234/time-series-forecasting-using-

keras-9ffae6¢c53bfc

88

23. https://codeit.us/blog/machine-learning-time-series-forecasting

24 https://analyticsindiamag.com/Istm-vs-gru-in-recurrent-neural-network-
a-comparative-study/

25.https://www.analyticsvidhya.com/blog/2022/01/tutorial-on-rnn-Istm-gru-
with-implementation/

26. https://www.alpha-quantum.com/blog/long-short-term-memory-Istm-
with-python/long-short-term-memory-Istm-with-python/

27. https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM

28. https://www.datacamp.com/tutorial/lstm-python-stock-market

29. https://towardsdatascience.com/a-quick-deep-learning-recipe-time-
series-forecasting-with-keras-in-python-f759923ba64

30. https://colab.research.google.com/

31. https://en.wikipedia.org/wiki/Feedforward_neural_network

32. https://en.wikipedia.org/wiki/Smart_grid

33. https://neptune.ai/blog/select-model-for-time-series-prediction-task

34 . https://towardsdatascience.com/parameters-and-hyperparameters-
aa609601a9ac

35. https://lwww.geeksforgeeks.org/difference-between-model-parameters-
vs-hyperparameters/

36. https://www.turing.com/kb/mathematical-formulation-of-feed-forward-
neural-network

37. https://www.baeldung.com/cs/hidden-layers-neural-network

38. https://machinelearningknowledge.ai/brief-history-of-deep-learning/

39. https://electricalacademia.com/electric-power/electrical-power-system-

components/

89

		2023-02-17T07:37:29+0200
	Paris Mastorokostas

		2023-02-17T08:57:27+0200
	Anastasios Kesidis

		2023-02-17T09:29:05+0200
	Panagiota Tselenti

