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ABSTRACT 

Railway has played a vital role in transportation of both goods and people 

historically, continuing to hold an important share of the market with great potentials. 

Locomotives are the main part of a train and as with any mechanism; maintenance and 

troubleshooting are of critical importance. Except for corrective and preventing 

maintenance, the new trend in all industries is the fault prognostics, also known as 

predictive maintenance, whose goal is to detect an upcoming breakdown. Almost 

every mechanical compartment uses some type of bearings. So, this research focus on 

two main pillars, the first part is about to review the available technical manual and to 

count the bearings used in locomotives, while the second part is about to construct a 

deep machine learning model for bearings fault diagnosis and prognosis based on 

secondary data. 

 

 

Keywords: Bearings, BiLSTM, Condition-Based Maintenance, Deep Learning, Fault 

Prognosis, Genetic Algorithms, K-means, Linear Regression, Locomotives, 

Modelling, Multi-class Classification, Predictive Maintenance, Prognostics, 

Regression, Rolling Stock, Signal Processing, Supervised Machine Learning, 

Vibrations. 
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LOCOMOTIVES FAULT PROGNOSIS 

 

1. INTRODUCTION 

The railway has been a major player in transportation of people and products 

historically (Schwaller, 1997). Even though railway has faced a decline in the market 

share for the last years, a reverse trend forwards this kind of inland transport happens 

because of the promoting policy in European Union, mostly driven by its better 

environmental footprint (European Commission, 2019; European Parliament, 2019). 

 

Locomotive (LM) is the main traction system of a train and the most important 

part indeed. From an engineering perspective, the possible breakdowns are of highly 

importance because they play a crucial role in maintenance scheduling and cost 

overall.  

 

 Except for corrective and preventative maintenance (Dhillon, 2006), the state-of-

art technique called preventive maintenance that is based on the fault prognosis of 

spare parts before their breakdown (Mobley, 2002). Machine Learning (ML) and 

Artificial Intelligence are used for simulation, modeling and predictions of processes 

in complex systems. 

 

 Rotating machinery is commonly used (Li et al., 2019) which usually bearings are 

installed on. Furthermore, bearings thought to be one of the major reasons for rotating 

machines breakdowns (Boškoski et al., 2015a). 

 

This research focus on two main pillars, the first part is about to review the 

available technical manual and to count the bearings used in locomotives, while the 

second part is about to construct a deep ML model for bearings fault prognosis based 

on secondary data. 
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2. BACKGROUND 

 

2.1 Locomotives 

A LM is a complex construction, combining plethora of mechanisms which 

integrate each other. Every mechanism is prone to breakdowns, requiring corrective 

actions to fix the occurred fault. On the other hand, major mechanisms, as listed below, 

are scheduled to take maintenance in order to prevent a future failure (Janicki, 

Reinhard, & Rüffer, 2013). 

 

i. Chassis 

ii. Bogies 

iii. Diesel engine 

iv. Electric motor 

v. Transmission gear 

 

 Chassis and diesel engine are the most critical parts of LMs which are scheduled 

for routine maintenance depending mostly on distance (km) and working time (h) 

respectively. In contrast, in predictive techniques the real condition of the equipment 

is calculated.  

 

Sensors can be mounted so as that measurements are taken and used as inputs, like 

(Dhillon, 2006) : 

 

› Vibration 

› Temperature 

› Tribology 

› Ultrasonic 

› Acoustics 

 

 

Moreover, Kostic et al. (2011) outlined extra measurements for electric LMs, 

such as: 
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› Voltage 

› Current 

› Tongue 

› Velocity 

› Acceleration 

› Power 

› Traction Force 
 

Any subsystem is prone to breakdown, so every possible fault could be taken as 

output. Research has been conducted and shown that some of possibly fault can occur 

in:  

 

› Power traction inverter (Fei et al., 2018) 

› Electro-pneumatic brake (Niu et al., 2015) 

› Gearbox (Gao et al., 2019) 

› Diesel engine (F. Feng et al., 2011) 

◊ Lubrication system (Gao et al., 2019) 

◊ Cooling system (Moussa Nahim et al., 2016) 

◊ Valves (Flett & Bone, 2016) 

◊ Pump (X. Wang et al., 2014) 

◊ Bearings (Abdelkrim et al., 2019) 

› Electric motor 

◊ Phase to phase short-circuit (Z. Wang et al., 2016) 

◊ Bearings (Glowacz et al., 2018) 

◊ Winding  

◊ Stator (Glowacz et al., 2018) 

◊ Rotor (Cheng & Xiong, 2018) 

 

 

2.2 Machine Learning 

 

Human learns from experience as equal machines learn from data. Vapnik (1998) 

stated that “The learning process is a process of choosing an appropriate function from 

a given set of functions”. The basic concept of ML modeling is built on three pillars 

as illustrated in Fig. 1. 
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Figure 1 Concept 

 

Data collection, commonly called as data mining, is used by many tools to 

discover knowledge. Databases and data warehouses are used to save and manage all 

required information (Han, Kamber & Pei, 2012). 

 

Some of the main ML categories are (Marsland, 2009) : 

 

› Supervised 

Learning from examplars is the method that the algorithm trained with a set of 

examples and the desired responses. After the training period, the algorithm 

can generalise and find the right responses based on the inputs (Marsland, 

2009). 

 

› Unsupervised 

In this case, there is not any supervisor. Input regularities and certain patterns 

are recognised as general forms. Here, clustering is used for density estimation 

(Alpaydin, 2010). 

 

› Evolutionary 

Evolutionary and genetic programming represent this category with Genetic 

Algorithms (GAs) and Memetic algorithms to be characteristic examples 

(Eiben & Smith, 2003; Marsland, 2009). In this category, there are methods 

like ant colony optimasation, with heuristic and meta-heuristic techniques 

(Eiben & Smith, 2003; Dorigo & Stutzle, 2004) and other bio-inspired systems 

Raw Data Model

Processing
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such as cellular, neural, developmental, immune, behavioral, collective 

(Floreano & Mattiussi, 2008) and finally swarm intelligence (Kennedy & 

Eberhart, 2001). 

 

› Reinforcement 

A decision-maker, called agent, try to find a solution to a problem by acting 

and receiving reward or penalties. As a result, total reward maximisation is 

achieved via the choice of the best policy (Alpaydin, 2010). Here, the most 

famous technique is the Markov decision process (Marsland, 2009). 

 

Luger (2009) categorised the ML as : 

 

› Symbol-Based 

› Connectionist 

› Genetic and emergent 

› Probabilistic 

 

Clustering methods also learn from data and they could be applied in parametric 

approaches, by relaxing the untenable assumptions (Alpaydin, 2010). Clustering is 

categorised as flat and hierarchical, incremental and probability-based one (Manning, 

Raghavan & Schütze, 2009, Witten, Frank, & Hall, 2017). 

 

Moreover, two main problems in supervised ML are the use of data for Regression 

or Classification (Rasmussen & Williams, 2006; Marsland, 2009). In classification, 

the inputs are assigned, by a classifier, to one of two or more classes. The functions, 

responsible for separations, are called discriminants and they are able to make 

prediction based on past data (Alpaydin, 2010). In binary classification, some simple 

ML algorithms are the mean classifier, naïve bayes, the perceptron nearest neighbours 

and K-Means (Smola & Vishwanathan, 2008). Nearest neighbours and Kernel can be 

also used in nonparametric problems (Bishop, 2006). 

 

Additionally, classifiers can be either linear or nonlinear. As linear, they are 

thought to be the decision hyperplanes, the perceptron algorithms, the least square 

methods, the mean square estimations, the logistic discriminants and the support vector 
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machines, based on Kernels. On the other hand, as nonlinear classifiers are thought to 

be the decision trees, the probabilistic neural networks, the multi-layer perceptrons, 

the polynomial methods, the backpropagation algorithms e.t.c. (Marsland, 2009; 

Theodoridis, & Koutroumbas, 2009). 

 

In unsupervised learning, k-means also works well and especially the k-means 

neural networks. In addition. vector quantisation and self-organising feature maps are 

very common techniques as well (Kasabov, 2007; Marsland, 2009). 

 

A lot of programs is used in ML, with most popular software to be MatLab and 

BUGS as well as programming languages such as C, R, Python, PROLOG and LISP 

(Shawe-Taylor & Cristianini, 2004; Segaran, 2007; Luger, 2009; Marsland, 2009; 

Thodoridis & Koutroumbas, 2010; Kruschke, 2011; Joshi, 2017). 

 

Neural network algorithms are the utmost edge in the field of ML. MacKay (2005) 

distinguished three main specifications: the architecture, the activity rules and the 

learning rules. Furthermore, deep learning architectures are used to train neural 

networks via multiple layers (Bengio, 2009) and by using backpropagation algorithms 

(Mitchell, 1997). Applications can be found in linear data analysis and nonlinear 

pattern recognition (Samarasinghe, 2007). 

  

 The main purpose of the majority of the aforementioned methods is to find the 

best solution to a problem, the so-called optimisation (Segaran, 2007).  

 

2.3 Bearings 

 

According to American Bearing Manufacturers Association (ΑΒΜΑ, n.d.), a 

bearing is a mechanical component that gives machinery the ability to rotate in a 

variety of speeds and loads with an easy and effective way. As a vital mechanism, 

there are lots of types and many categories based on specific characteristics depending 

on the use, but some major categories are illustrated in Fig.2 (Al-Waily, 2017). 
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Figure 2 Bearing types 

 

Ball bearings are usually used for shafts with small diameters in contrast with 

large-diameter shafts which can use taper, spherical cylindrical or toroidal roller 

bearings. Indeed, load plays a key role for selecting the appropriate bearing, so it 

should be taken into account the existence of radial, axial, combined or moment loads, 

as shown in Fig.3 respectively (SKF, 2018). 

 

 

(a)                              (b)                              (c)                                 (d) 

Figure 3 Bearing Types I 

a) Radial load, b) Axial load, c) Combined load and d) Moment load 

 

Additionally, speed is also an important factor for bearings choice. Moreover, 

speed limit depends on many parameters such as cooling conditions, cage design, 

internal clearance, temperature and accuracy (SKF, 2018). 
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In PM and based on DIN ISO 281, life parameters estimations like Basic Rating 

Life (BRL) for 106 revolutions, Fatigue Life Factor and Speed Factor (fn) are calculated 

by Eqs. 1-3 (NSK, 2016; FAG, 1999). 

 

𝐵𝑅𝐿 =
106

60𝑛
(

𝐶

𝑃
)

𝑝

= 500𝑓ℎ
𝑝[ℎ]                                                                                           (1) 

 

𝑓ℎ = 𝑓𝑛

𝐶

𝑃
                                                                                                                                  (2) 

 

𝑓𝑛 = (
106

500 ∙ 60𝑛
)

1

𝑝

= 0.03𝑛
1

𝑝                                                                                              (3) 

 

Where p called life exponent, equal to 3 and 10/3 for Ball and Roller Bearings 

respectively, illustrated in Fig. 4 (TIMKEN, n.d.). C stands for load rating, n is the 

mean rotational speed (rpm) and P is the equivalent load. Furthermore, fn and fh are 

derived from Fig. 5 (NSK, 2016). 

 

                 

(a)                                                    (b) 

Figure 4 Bearing Types II 

a) open type ball bearing b) spherical roller bearing 
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   (a)                                       (b) 

Figure 5 Factors Choice 

a) Bearing Speed and Speed Factor 

and b) FLF and Fatigue Life 

 

 

Some usual faults of rolling bearings are corrosion in rolling elements, outer and 

inner race as well as cage damage and fatigue pitting. A common cause of these is the 

frictions and the lack of lubricants. The performance degradation produces unique 

vibration spectra and defect frequency (Saxena et al., 2016), but these signals are more 

random and cyclostationary than periodic (D. Wang et al., 2018). 
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2.4 Prognostics and Diagnostics 

 

In prognostics, the real condition of a machinery is quantified by an index called 

remaining useful life (RUL) that represents the predicted time left before a failure. 

Indeed, it is crucial to be defined what a failure means and how it is estimated. So, a 

failure could be either a breakdown or an unsatisfactory performance degradation (D. 

Wang et al., 2018; Jardine et al., 2006; Tidriri et al., 2019; Xu et al., 2020). However, 

other distinctive metrics, i.e. extendable useful life, are proposed for use as well 

(Saxena et al., 2016). 

 

In condition-based maintenance (CBM), there are the physical models and the 

data-driven models, with the latter to lack the need for complex mathematical 

modelling and unreasonable assumptions (D. Wang et al., 2018; Kim et al., 2012; Xu 

et al., 2021). 

 

Data-driven methods consist of three main pillars, data collection, data processing 

and decision making. Furthermore, data are divided into three categories: value, 

waveform and multi-dimensional type with last two categories to be processed as 

signals (Jardine et al., 2006). 

 

Vibration and acoustic signals are the most common waveform data, whose 

analysis falls into three distinctive categories : frequency-domain, time-domain and 

time-frequency (D. Wang et al., 2018; Jardine et al., 2006). 

 

Signal can also be transformed into frequency domain, which gives the ability for 

isolation and identification of the important features. The most popular techniques are 

the Fast Fourier Transformation (FFT), Hilbert Transform (HT), spectrum and its 

differentiations such are bispectrum that is found applications in studying bearings (D. 

Wang et al., 2018; Jardine et al., 2006; Leite et al., 2019). 

 

Time-domain analysis depends on time waveform and features extraction from 

signals, where descriptive statistics are used (D. Wang et al., 2018). Time synchronous 

average is a common technique for noise reduction or even remove. Some more 
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sophisticated techniques are the models of the autoregressive and the autoregressive 

integrated moving average while there are plethora of other approaches in this category 

(Jardine et al., 2006; Leite et al., 2019). 

 

Time-frequency analysis overcomes the problem of difficulty in non-stationary 

waveform signals handling. Short-time Fourier transformation, also known as 

spectrogram, and Wigner-Vile distribution are widely used techniques, however the 

latter has got a difficulty in estimation of distribution. Wavelet transform is another 

approach that offers high time resolution at high frequencies and high frequency 

resolution at low frequencies and noise reduction. In addition, it can be improved by 

de-noising the signals via imposing zero frequency filter (Sachan et al., 2020). There 

also are other more advanced techniques such as wavelet packet transform (WPT), 

basis pursuit e.t.c. (Boškoski et al., 2014; Jardine et al., 2006). 

 

Value type data analysis combines raw data with features that are processed from 

raw signals. There are multivariate approaches, e.g. independent and principal 

component analysis, and regression approaches such as polynomials and ARMA 

(Jardine et al., 2006). 

 

Data or reliability analysis is another approach that can combines condition 

monitoring data with extra information such as events. Baseline hazard function, 

Weibull hazard function, proportional hazards model, potential-functional  and 

installation-potential  intervals, Hidden Markov models  and EM algorithms are some 

examples of this analysis (Jardine et al., 2006). 

 

Leite et al. (2018) investigated entropy and divergence in a dataset of bearings 

run-to-failure test. Moreover, a classification into two states, fault and non-fault, was 

achieved over all defection types, detecting the bearing life acceptably. Another 

research is also based on Jensen-Rényi entropy of vibrations and WPT examined 

bearing faults under a variety of speed and load and shows advantages on no requiring 

prior knowledge and no limits on statistical limits in required signals (Boškoski et al., 

2015a). 
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In high speeds, e.g. 350 km/h and above, acoustic emissions are more suitable 

than vibration signals because of larger outliers, more stable Kurtosis and having a 

more Gaussian distribution of waveform patterns (Xu et al., 2021). 

 

Classification and multi-class classification have been applied in bearings fault 

diagnosis through many proposed techniques with the results of some methods to reach 

outstanding and some perfect scores in accuracy, but not tested by other metrics 

(Spoerre, 1997; Yuan, & Tang, 2011; Gryllias, & Antoniadis, 2012; Ben Ali et al., 

2015; Jia, Tahir, Khan, Iqbal, & Hussain, 2017; Carlo, Perkins, & Caputo, 2021). 

 

Ball bearings have been studied as a case study of fault prognosis depending on 

estimations of health state probabilities. For dimensionality reduction and over-fitting 

avoidance, the features are extracted by using distance evaluation. After real health 

state being estimated from vibrations via SVM and the RUL estimations are very close 

to the real values (Kim et al., 2012). 

 

Shao et al. (2018) proposed a novel method for bearing fault detection. After 

extracting some time-domain statistical features jointed in an index through local 

linear embedding (LLE), a continuous deep belief network, tuned by genetic algorithm 

shown a superiority over other sophisticated regressions, i.e. MAE = .24 and 

RMSE=.1. 

 

Haidong et al. (2020) constructed a superior and very accurate method for early 

bearing fault prognosis. A sophisticated gate recurrent unit is combined with a 

modified training algorithm are fed with a complex variant entropy of vibration signals 

resulting an extraordinary performance (Haidong et al., 2020). 

 

For small amount of data, missing values and poor information as a result, there 

are techniques that resolve this problem. The metabolism grey forecasting model 

combined with particle filter is thought to be a useful tool for knowledge extraction. 

Applying this technique in bearings temperature, good predictions happen with 

robustness and effectiveness outperforming other methods (Li et al., 2019). 

Additionally, incomplete dynamic Bayesian networks with gaussian mixture gives an 
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early fault alert and estimates the RUL with a stable way even when missing date 

increases (Zhang et al., 2018). 

 

To sum up, a gap is found in collecting and listing the bearings used in LMs and 

specifically for the greek fleet. In addition, the majority of research in bearings fault 

prognostics focus on the time-series regression based on time steps.  
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3. METHODOLOGY 

 

The research philosophy is followed is positivism such as the researcher is thought 

to be independent, the reality is observed as objective and the phenomena can be 

simplified into smaller parts by following quantitative research methods. Moreover, 

secondary data is observed and processed through quantitative techniques (Zukauskas 

et al., 2018) 

 

A case study based on the greek locomotive fleet is conducted based on literature 

overview of the available technical manuals for counting the used bearings. Secondly, 

an applied research is made on the construction of a deep ML algorithm for bearings 

fault predictions. 

 

 

3.1 Research Questions 

 

This study aims to summarise all bearing attached on locomotives and to construct 

an algorithm for optimal fault predictions through ML. Moreover, the purpose is 

divided into research objectives which form the following Research Questions (RQs).  

 

RQ1:Can it be counted the amount of bearings mounted on the mechanisms of each 

locomotive type? 

 

RQ2:Could algorithms be designed that outperform the existing techniques on 

bearings fault diagnosis and prognosis? 

 

3.2 Hypotheses 

 

The hypothetico-deductive method is used for hypotheses construction and their 

testing. The RQ1 is analysed in below hypotheses (Hs) as follows, with Hx.0 denotes 

the null hypothesis and Hx.1 denotes the alternative (Sekaran et al., 2009). 
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H1.0: ADtranz LM does not contain more bearings than MLW LM (BS3<BS1). 

H1.1: ADtranz LM contains more bearings than MLW LM (BS3>BS1). 

 

 

H2.0: ADtranz LM does not contain more bearings than Siemens (BS3<BS2). 

H2.1: ADtranz LM contains more bearings than Siemens LM (BS3>BS2). 

 

 

In the same way, the RQ2 is divided in below Hs. 

 

 

H3.0: The proposed multi-class classification model does not perform in bearing fault 

diagnosis perfectly (AUC ≠ 1 and ACC ≠ 1). 

H3.1:The proposed multi-class classification model performs in bearing fault 

diagnosis perfectly (AUC = 1 and ACC = 1). 

 

H4.0:The proposed linear regression does not predict adequately the RUL (ACC < .7). 

H4.1:The proposed linear regression predicts adequately the RUL (ACC > .7). 

 

 

H5.0:The proposed regression model of RUL does not outperform its rivals             

(MAE > .24 and RMSE > .1). 

H5.1:The proposed regression model of RUL outperforms its rivals (MAE < .24 and 

RMSE < .1). 

 

The answers to RQs and Hs fulfill the posed objectives.  
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4. ANALYSIS 

 

4.1 Case Study 

The greek rolling stock, e.g. LMs, will be the examined in present case study. 

Historically, Greek State Railways was found in 1920, whose successor Hellenic 

Railways Organisation, known as OSE was found in 1970. A subsidiary of the Group 

was found in 2008, called TRAINOSE SA with main operations in utilization. In 2013, 

the rolling stock maintenance industry was separated from OSE SA and was 

transferred to the new corporation EESSTY SA. In 2017, the Italian State Railways, 

called FS Group, under its subsidiary Ferrovie Dello Stato Italiane S,p.A. acquired the 

TRAINOSE SA, following a second acquisition of EESSTY S.A. in 2019. 

 

Depending on technical drawings, manuals and instructions, a collection of given 

information is tried to list all possible bearings which are mounted on the Greek fleet 

of LMs alone. 

 

 

4.1.1 Locomotives 

The operational fleet of LMs counts 96 units in total, whose all specifications are 

illustrated in Table 1. 

 

 

Table 1  

Locomotives Information 

LM Type 

ADtranz   

 (DE 2000) 

Siemens (Hellas 

Sprinter) MLW 500 MLW 450 

Description Diesel - Electric Electric Diesel - Electric 

  

Gauge length 1,435 mm 
     

Year 1998 – 2004 1999 – 2006 1973 (2009b) 1974 (2004b) 

     

Number 
220.001 – 
220.036 

120.001 – 120.030 A 451 – A 470 A 501 – A 510 

    

Country  

- Origin 

Germany – 

Bombardier 
Transportation 

Germany – Siemens 

– KRAUS MAFFEI 
Canada – MLW 

     

Total Units 36 30 20 10 

     

Tare (ton) – – 114 117.6 
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Weight (ton) 80 ±2% 80  120 124 
    

Diesel Tank 

capacity (lt) 
3,500 – 4,000 

   
Axes type Bo Bo Co Co 

     

Tires diameter 

(max) 
1,100 mm 1,250 mm 1,016 1,017 

    

Max. Speed 160 km/h 200 km/h 149 

     

Min. Speed 25 km/h 20 km/h 22 26 

Power Source 
2 x MTU 12V 

396TC13 

25 kV – 50Hz 

(GTO –thyristor 

technik) 

ALCO 251F/V12 
ALCO 

251F/V16 

     
Net Power (kW) 2,100 5,000 1,985 2,908 

     

Max. Traction 

Power (kN) 
260 300 273 290 

     

Max. Braking 

Power (kN) 
160 160 – – 

     

Max. Power 

Supply  

400 kVA 

(1,500V – 

50Hz) 

– – – 

Transmission Electric 

  

Braking System 

– Manufacturer 

Electropnematic KNORR BREMSE + 

Electrodynamic 

Electropneumatic  - Westinghouse 

26L - Electrodynamic 
   

Nu. Bogies 2 2 2 

    

Nu. axes/bogie 2 2 3 
    

Total length 

(mm) 
19,400 19,580 17,755 19,392 

     
Total width 

(mm) 
2,950 3,000 – – 

     

Total height 

(mm) 
4,260 4,300 – – 

     

Biaxes distance 

(mm) 
2,650 mm 3,000 1,702 / 1,702 

    

Bogies centre 

distance (mm) 
11,400 9,900 16,578 18,212 

     

UICa coding 505-1 505-2 – – 
a UIC is the International Union of Railway 
2 Refurbishment was made 
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4.1.1.1 MLW (MX-627) 

Montreal Locomotive Works (MLW) was a Canadian LMs manufacturer that was 

merged via acquisition by American Locomotive Company (ALCO). By code name 

MX-627, 450 and 500 series are diesel-electric LMs operates on freight transport for 

many years in Greece. 

 

 

 

 

 

 

 

 

Figure 6 MLW LM 

 

In Table 2, the main compartments are described as illustrated in Fig. 6 (ALCO, 

2003). Furthermore, some and all needed bearings are listed in Table 3 – 4. 

Table 2  

MLW Compartments 

Codeα DESCRIPTION 
ABC Air Brake Compartment 

ALT Alternator Compartment 

BAT Battery Compartment 

CA1 Control Area #1 

CA2 Control Area #2 

CA3 Control Area #3 

CA4 Control Area #4 

CA8 Control Area #8 

CON Control Console 

DBG Dynamic Brake Compartment 

ECP Engine Control Panel 

ENG Engine and Engine Compartment 

FLT Filter Compartment 

LHT Long Hood Truck 

PLH Platform at Long Hood end 

PSH Platform at Short Hood end 

RAD Radiator Compartment 

SHC Short Hood Compartment 

SHT Short Hood Truck 

UPL Underneath Platform on Left side 

UPR Underneath Platform on Right side 

Note. Source: ALCO, 2003. 
α ALCO abbreviations  
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Table 3  

MLW Bearings I 

Quantity DESCRIPTION 
1 Bearing, ball, drive shaft 

1 Bearing, thrust 

1 Bearing, centering 

2 Bearing, needle 

1 Bearing, thrust, rotating bushing 

 

 

Table 4  

MLW Bearings II 
Quant.a Type Manufactures Description Dimensions Comp.b 

1 
6317 ZZ C3 

E AS2S 
NSK 

Deep groove 

ball bearings 

with two 

shields 

85x180x41mm  

      

1 6203 2Z 

FAG / Standard 

program 41500/2 

DA051978 

Deep groove 

ball bearings 

with two 

shields 

17x40x12 

mm 
 

      

1 
6222 ZZ C3 

E AS2S 
NSK 

Deep groove 

ball bearings 

with two 

shields 

110x200x38m

m 
 

      

1 6309 Ζ 

FAG / Standard 

program 41500/2 

DA051978 

Deep groove 

ball bearings 

with single 

shield 

45x100x25mm  

      

1 6204-2RS  

Deep groove 

ball bearings 

with two 

shields and 

two O-rings 

20x47x14 

mm 
Heater 

      

1 6209 2RS1 C3 DIN 625 

Deep groove 

ball bearings 

with single 

shield and O-

ring 

45x85x19 

mm 

Air 

compressor 

motor 

      

1 
6309 2Ζ 

 

SKF General 

catalogue 3200 / 

ΙΕ 121985 

Deep groove 

ball bearings 

with two 

shields 

45x100x25mm 
Generator fan 

motor 

      

1 
6309 2RSR 

 

FAG catalogue 

FAGWL 41510 

GR 

Ball bearing 

with single 

shield 

45x100x25mm 
Air compressor 

motor 

      

6 
NJ320EMC4 +  

HJ320E 
 

Cylindrical 

bearings with 

ring 

 

Traction 

electric 

motor 

      

6 

NU 330 E M C4 

NU330E/B/M2 

/C4/ZS/SV 1.52 

STEYR   

Traction 

electric 

motor 

36 BS1 
aQuantity. ;  bCompartment 
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4.1.1.2 Siemens (Hellas Sprinter) 

 

They are the only electric LM in Greece, Fig. 7 (Siemens, 2004).  In 1999, the 

first batch of six units was delivered, following a second batch. Initially, the first six 

were numbered with different coding as show in Table 5. In Table 6, they are listed 

the bearings of Fig. 8-10 (Siemens, 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Siemens Hellas Sprinter  

 

 

Table 5  

Siemens 1st Series 

Initial No.a Present Numbering 

H561 120.001 

H562 120.002 

H563 120.003 

H564 120.004 

H565 120.005 

H566 120.006 

a Number 
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 Table 6  

Siemens Bearings 
Noa Dr.b DESCRIPTION Type Qnt.c Comp.d 

3.20 Fig. 8 

Cylindrical rolling 

bearing for electric 

motor D-END 

FAG 

N326E.M1.R265.290.F

1. DIN 43283-N-326 

ECM 

4 
Electric traction 

motor 

4.21 Fig. 9 
Rear tapered 

rolling bearing set 
 2 Traction subsystem 

4.24 Fig. 9 
Front tapered 

rolling bearing set 
 2 Traction subsystem 

5.30 Fig. 7 

Cylindrical rolling 

bearing for electric 

motor N-END 

with ceramic 

coating 

SKF BC1B 322652 

A. DIN 43283 
4 

Electric traction 

motor 

  

Deep groove ball 

bearings with two 

shields and two O-

rings 

6209 2RS1 C3 

DIN 625 

45x85x19mm 

2 Air compressor 

BS2    14  
a Number.  b Drawing. c Quantity. dCompartment 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 The electric motor stator 
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Figure 9 The electric motor rotor 

 

 

 

Figure 10 Traction subsystem 
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4.1.1.3 ADtranz DE 2000 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 ADtranz DE 2000  

 

 

ADtranz DE 2000, as shown in Fig. 11-12, is a diesel-electric LM made in Kassel 

and assembled in Oerlikon in Switzerland. Initially, they were numbered A.471 – 

A.496 as listed in Table 7. The bearings are listed in Table 8 (Bombardier, 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 ADtranz DE 2000 front without bogies 
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Table 7  

Code Numbers 

Initial No.a Present Numbering 
A.471 220.001 

A.472 220.002 

A.473 220.003 

A.474 220.004 

A.475 220.005 

A.476 220.006 

A.477 220.007 

A.478 220.008 

A.479 220.009 

A.480 220.010 

A.481 220.011 

A.482 220.012 

A.483 220.013 

A.484 220.014 

A.485 220.015 

A.486 220.016 

A.487 220.017 

A.488 220.018 

A.489 220.019 

A.490 220.020 

A.491 220.021 

A.492 220.022 

A.493 220.023 

A.494 220.024 

A.495 220.025 

A.496 220.026 

a Number 
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Table 8  

ADtranz Bearings 

Quant a Type Manufactures Description Dimensions Compartment 

2 6206 2Z C3  

Deep 

groove ball 

bearings 

with two 

shields 

 

Fan  

electric 

motor 

      

1 6208 2Z  

Deep 

groove ball 

bearings 

with two 

shields 

8x22x7mm 
Air  

compressor 

      

1 

NUP226 ECM  

P63 VA379  

NUP226EBM 

2P63 SV1.52.77A 

STEYR 

Cylindrical 

Single-row 

bearing 

130x230x4mm 
Electric 

Generator 

      

9 Undefined    
Oil pump 

motors 
      

2 
NU222 ECMR/ 

P64VA309 

SKF 

DIN 43283 

Cylindrical 

Single-row 

bearing 

 

Traction 

electric 

motor 

15 BS3 

a Quant.: Quantity 

 

4.2 Applied Research 

 

Applied Research is undertaken so as that new knowledge is acquired focused on 

practical goals (OECD, 2012). In the present research, secondary data are used 

combined with multiple techniques in order a better outcome is achieved.  

 

4.2.1 Dataset 

 

The IMS Bearing Data has been collected by the Center for Intelligent 

Maintenance Systems (IMS), which includes data from three run-to-failure 

experiments. On a shaft, four bearings are mounted rotated by an alternative current 

motor at 2,000 rpm and applied a radial force of 6,000 lbs. Furthermore, two high 

sensitivity accelerometers were placed on each bearing in order to measure X and Y 

axes vibrations. In addition, the sampling rates was set at 20kHz by resulting the 

collection 20,480 points every second (Qiu, Lee & Lin, 2006). 
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 In No. 1 set, 2,156 samples were taken every ten minutes, except from the initial 

43 recordings that were logged every five minutes. The experiment took place from 

October 22, 2003 12:06:24 to November 25, 2003 23:39:56 and ended with the failure 

of the inner race in bearing 3 and the roller element in bearing 4 (Qiu et al., 2006). 

 

In No. 2 set, 984 samples were logged every ten minutes. The experiment took 

place from February 12, 2004 10:32:39 to February 19, 2004 06:22:39 and ended with 

the failure of the outer race in bearing 1. However, only single-axis accelerometers 

were installed in that experiment (Qiu et al., 2006). 

 

Finally, in No. 3 set, 4448 samples were collected every ten minutes. The 

experiment took place from March 4, 2004 09:27:46 to April 4, 2004 19:01:57 and 

ended with the defect of the outer race in bearing 3 (Qiu et al., 2006). 

 

The programming language, which is being used, is Python on Macintosh 

environment. Both built-in and off-the-shelf libraries are used inside in the code in 

order the purposes to be reached. 

 

4.2.2 Theory 

 

Plethora of techniques are used and tested in the present study, so a short and 

comprehensive overview of their theory is presented as follows. 

4.2.2.1 Complex Numbers 

 

Fortunately, there are not missing values to handle cause of the data derived from 

an experiment. So, there is no need for using some traditional techniques. For a 

complex number with the form of Eq. 4, its magnitude is calculated by Eq. 5. 

(Κατωπόδης, Μακρυγιάννης & Σάσσαλος, 1995) and in this way all measurements are 

transformed into positive values. 

 

𝑧 = 𝑥 + 𝑗𝑦                                                                                                                        (4) 

 

|𝑧| = √𝑥2 + 𝑦2                                                                                                              (5) 
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4.2.2.2 Preprocessing and Feature Engineering 

 

Data preprocessing is an essential step and prepares the data for a ML model. 

Cleaning and tranformations are used to remove outliers and rescale the data in order 

to be more compatible for ML models (Chakrabarty, Mannan & Cagin, 2016). 

 

The numeric representation of raw data is called features. Moreover, the process 

of formulating the most valuable features is named Feature Engineering (Zheng & 

Casari, 2018). 

 

 Signal Processing 

 

The analysis, modification and synthesis of discrete-time signals so as to derive 

useful information is called signal processing (Oppenheim, & Schafer, 1999). 

 

4.2.2.2.1.1 Transforms 

 

4.2.2.2.1.1.1 Hilbert Transform 

 

For a real signal s(t), its Hilbert Transform is defined as shown in Eq. 6, while the 

analytic signal is defined in Eq. 7 (Yaguo, 2017). 

 

𝑥̂(𝑡) = ℋ{𝑠(𝑡)} =
∫

𝑠(𝑡)

𝑡−𝜏
𝑑𝜏

∞

−∞

𝜋
= 𝑥(𝑡) ∙

1

𝜋 ∙ 𝑡
                                                                    (6) 

𝑧(𝑡) = 𝑠(𝑡) + 𝑗𝑠̂(𝑡)                                                                                                    (7) 

 

The instantaneous amplitude and phase are shown in Eqs. 8-9 respectively 

(Yaguo, 2017). 

 

𝑎(𝑡) = √𝑠(𝑡)2 + 𝑠̂(𝑡)2                                                                                                          (8) 

𝜃(𝑡) = 𝑡𝑎𝑛−1 (
𝑥̂(𝑡)

𝑥(𝑡)
)                                                                                                            (9) 
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4.2.2.2.1.1.2 Fast Fourier Transform 

 

In 1965, Fast Fourier Transform was developed in order to calculate the discrete 

Fourier transform (Smith, 2002). Generally, the Fourier Transform is given by the 

integral as formed in Eq. 10, with ω to be the continuous variable (Fischer-Cripps, 

2002). 

 

𝐹(𝜔) = ∫ 𝑓(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡

∞

−∞

                                                                                                   (10) 

 

An approximation of Eq. 11 is the finite sum as defined in Eq. 11, where N 

denotes the equally distanced data points, iΔt is the time interval of data value yi(iΔt) 

during the i-th time space. So, the discrete samples are defined as shown in Eq. 12 

(Fischer-Cripps, 2002). 

 

𝐹(𝜔) = ∑ 𝑦𝑖(𝑖𝛥𝑡)𝑒−𝑗𝜔(𝑖𝛥𝑡)𝛥𝑡

𝑁−1

𝑖=0

                                                                                       (11) 

𝜔𝑘 =
2𝑘𝜋

𝛮𝛥𝑡
                                                                                                                              (12) 

 

∀ 𝑘𝜖(0, 𝑁 − 1), the actual amplitude spectrum is defined as follows in Eq. 13 

(Fischer-Cripps, 2002). 

 

𝐹(𝜔𝑘)

𝛥𝑡
= ∑ 𝑖𝛥𝑡 ∙ 𝑦𝑖 ∙ 𝑒−

𝑗2𝑘∙𝜋∙𝑖

𝑁

𝑁−1

𝑖=0

                                                                                          (13) 

 

In terms of cosine-sine form, Eq. 13 is transformed into Eq. 14, where C(k) is a 

complex number and is also known as discrete Fourier transform (Fischer-Cripps, 

2002). 

 

𝐶(𝑘) = ∑ 𝑖𝛥𝑡 ∙ 𝑦𝑖 [𝑐𝑜𝑠 (
2𝑘 ∙ 𝜋 ∙ 𝑖

𝑁
) − 𝑗𝑠𝑖𝑛 (

2𝑘 ∙ 𝜋 ∙ 𝑖

𝑁
)]

𝑁−1

𝑖=0

                                           (14) 
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4.2.2.2.1.1.3 Discrete Wavelet Transform 

 

In late 1980, the discrete wavelet transform (DWT) was constructed as formula 

(Percival & Mondal, 2012). In Hilbert space denoted L2I, the ψ(t)ε L2I is called wavelet 

only if Eq. 15 is satisfied (Ouadfeul et al., 2012). 

 

∫ 𝜓(𝑡)𝑑𝑡 = 0

∞

−∞

                                                                                                                     (15) 

 

Then, Eq. 16 is called wavelet transform (Ouadfeul et al., 2012). 

 

𝜓𝛼(𝑡) = 𝑓(𝑡) ∙ 𝜓𝛼(𝑡)                                                                                               (16) 

 

Where ψα(t) is the dilation of ψ(t) and is defined in Eq. 17 (Ouadfeul et al., 2012). 

 

𝜓𝛼(𝑡) =
1

𝑎
∙ 𝜓𝛼 (

𝑡

𝑎
)                                                                                                             (17) 

 

  

In practice, a is separated in a binary form. So, when a=2j(j𝜖Z), the wavelet 

becomes as defined in Eq. 18 (Ouadfeul et al., 2012). 

 

𝜓2𝑗(𝑡) =
𝜓2𝑗 (

𝑡

2𝑗)

2𝑗
                                                                                                                (18) 

 

 

 Its wavelet transform defined as shown in Eq. 19 (Ouadfeul et al., 2012). 

 

𝑊2𝑗𝑓(𝑡) = 𝑓(𝑡)𝜓2𝑗 =
1

2𝑗
𝑓(𝑡)𝜓 (

𝑡

2𝑗
)                                                                            (19) 

 

On the contrary, the reverse transform is defined as illustrated in Eq. 20 when x(t) 

satisfied the criterion of Eq. 21 (Ouadfeul et al., 2012). 
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𝑓(𝑡) = ∑ 𝑊2𝑗 ∙ 𝑓(𝑡) ∙
∞

−∞
𝑥(𝑡)                                                                                          (20) 

∑ 𝜓̂
∞

−∞
(2𝑗𝜔) ∙ 𝑥(2𝑗𝜔)                                                                                                     (21) 

 

Dispersed in time domain, DWT is obtained. Moreover, an effective and fast 

representation is approximately calculated by Eqs. 22-23, where Eq. 23 finds the 

DWT coefficients of 𝑓(𝑡) based on 2j scale (Ouadfeul et al., 2012). 

 

𝑆2𝑗𝑓 = 𝑆2𝑗−1𝑓 ∙ 𝐻𝑗−1                                                                                                            (22) 

 

𝑊2𝑗𝑓 = 𝑆2𝑗−1𝑓 ∙ 𝐺𝑗−1                                                                                                          (23) 

 

The Hj and Gj denote the gains of discrete filters when (2j-1) zeros are inserted 

every second sample of H and G, whose relationship is defined in Eq. 24           

(Ouadfeul et al., 2012). 

 

𝑔𝑘 = ℎ̅1−𝑘(−1)𝑘−1                                                                                                               (24) 

 

4.2.2.2.1.1.4 Dual-tree Complex Wavelet Transform 

 

The evolution of DWT is the Dual-Tree Complex Wavelet Transform (DTCWT), 

having the advantages of being directionally selective (helpful in higher than 1D 

dimensions). In this technique, reconstruction and decomposition run parallelly 

through high-pass and low-pass filters for each scale as illustrated in Fig. 13 (Wang et 

al., 2010). 

 

Figure 13 The decomposition and composition transform based on lifting scheme  
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For 𝜓ℎ(𝑡) and 𝜓𝑔(𝑡) being the real-value wavelet and its transform, 𝜓𝐶(𝑡) can be 

described as seen in Eq. 25 (Wang et al., 2010). 

 

𝜓𝐶(𝑡) = 𝜓ℎ(𝑡) + 𝑗𝜓𝑔(𝑡)                                                                                                    (25) 

 

The wavelet and scaling coefficients of the upper tree are 𝑑𝑖
𝑅𝑒(𝑘) and 𝑐𝑗

𝑅𝑒(𝑘) and 

they are defined in Eqs. 26-27 respectively (Wang et al., 2010). 

 

𝑑𝑖
𝑅𝑒(𝑘) = √2 ∫ 𝜓ℎ(2𝑖𝑡 − 𝑘)𝑥(𝑡)𝑑𝑡, 𝑓𝑜𝑟  𝑖𝜖(1, 𝑗)

∞

−∞

                                            (26) 

 

𝑐𝑗
𝑅𝑒(𝑘) = √2 ∫ 𝜑ℎ(2𝑗𝑡 − 𝑘)𝑥(𝑡)𝑑𝑡

∞

−∞

                                                                             (27) 

 

Where i and j denote the scale factor and the maximum scale respectively. In 

contrast, the 𝑑𝑖
𝐼𝑚(𝑘) and 𝑐𝑗

𝐼𝑚(𝑘) are the lower tree coefficients and if replaced by 

𝜓ℎ(𝑡) and 𝜓𝑔(𝑡) respectively, the final DTCWT coefficients are calculated by         

Eqs. 28-29 (Y. Wang et al., 2010). 

 

𝑑𝑖
𝐶(𝑘) = 𝑑𝑖

𝑅𝑒(𝑘) + 𝑗𝑑𝑖
𝐼𝑚(𝑘),   𝑓𝑜𝑟  𝑖𝜖(1, 𝑗)                                                                    (28) 

 

𝑐𝑗
𝐶(𝑘) = 𝑐𝑗

𝑅𝑒(𝑘) + 𝑗𝑐𝑗
𝐼𝑚(𝑘)                                                                                                (29) 

 

4.2.2.2.1.2 Filters 

 

4.2.2.2.1.2.1 Butterworth Filter 

 

Butterworth Filter (BF) with N order works as a low-pass filter and achieves a 

maximum flat response in the passband. The poles have got equal distances and places 

around a circle with radius that is equal to the cutoff frequency of the filter (Lobontiu, 

2010), Fig. 14. Dey et al. (2019) claims that a cutoff frequency between 0.1 and 15Hz 

is sufficient enough for noise reduction. The N poles and the frequency response are 

given by Eqs. 30-31 (Thompson, 2014). 



Locomotives Fault Prognosis                                                                                     
 

 

 

46 

−𝑠𝑖𝑛
𝜋(2𝑚 − 1)

2𝑁
+ 𝑗𝑐𝑜𝑠

𝜋(2𝑚 − 1)

2𝑁
𝑚 = 1, 2, 3, … 𝑁                                                 (30) 

 

 

|𝛨(𝑗𝜔) =
1

√1 +  𝜔2𝛮
|                                                                                                        (31) 

 

 

Figure 14 Poles 

 

4.2.2.2.1.2.2 Kalman Filter 

 

In the early 60s, Kalman Filter (KF) started to be implemented. Formulated for 

prediction is shown in Eqs. 32-35, where K denotes the gain, P the state error 

covariance matrix, R is the noise covariance matrix of noise, x and y are the 

independent  and dependent variables respectively (Suthar et al., 2018). 

 

𝐾 =
𝐶𝑇 ∙ 𝑃𝑜𝑙𝑑

𝑅 + 𝐶𝑇 ∙ 𝐶𝑃𝑜𝑙𝑑
                                                                                                             (32) 

𝑥𝑛𝑒𝑤 = (𝑦 − 𝑥𝑜𝑙𝑑𝐶)𝐾 + 𝑥𝑜𝑙𝑑                                                                                            (33) 

𝑃𝑛𝑒𝑤 = 𝑃𝑜𝑙𝑑 − 𝐶𝑃𝑜𝑙𝑑𝐾                                                                                                         (34) 

𝑦𝑒𝑠𝑡 = 𝑥𝑛𝑒𝑤𝐶                                                                                                                         (35) 
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4.2.2.2.1.3 Entropies 

 

4.2.2.2.1.3.1 Shannon Entropy 

 

Shannon entropy is a non-parametric technique, but thought to be inefficient when 

noise exists. Based on the probability mass function p(k), with k=1,…,N and a time 

series s(t), Eq. 36 forms the SE (Boškoski et al., 2015b; Leite et al., 2019). 

 

𝑆(𝑝) = − ∑ 𝑙𝑜𝑔(𝑝(𝑘)) ∙ 𝑝(𝑘)

𝑁

𝑘=1

=  − ∑ 𝑙𝑛(𝑝(𝑘))

𝑁

𝑘=1

                                                    (36) 

  

 

4.2.2.2.1.3.2 Permutation Entropy 

 

When order d ≥2 via Shannon entropy, the Permutation Entropy (PE) is defined 

as follows in Eq. 37, with π denotes d! (Leite et al., 2019). 

 

𝐻(𝑝) = − ∑ 𝑙𝑜𝑔(𝑝(𝜋)) ∙ 𝑝(𝜋)

𝑛

𝑘=1

                                                                                      (37) 

 

 Tests 

 

4.2.2.2.2.1  Normal Distribution 

 

The distribution of the data, if normal distribution (ND) or non-normal distribution 

(NND), is tested by the Eq. 38 (D’Agostino, 1971; D’Agostiono & Pearson, 1973). 

 

𝑧𝑘
2 + 𝑧𝑠

2~𝑥2(2)                                                                                                                      (38) 

 

Where 𝑥2(2) denotes the chi-square distribution, taking 2 degrees of freedom and 

for sample size 𝑛 larger than twenty (n>20). The Kurtosis and Skewness tests are 

computed in Eqs. 39-45. (D’Agostino, 1971; D’Agostiono et al., 1973). 
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𝑧𝑘 =
𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠

𝑠. 𝑒.
                                                                                                                     (39) 

 

𝑧𝑠 =
𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠

𝑠. 𝑒.
                                                                                                                    (40) 

 

𝑠. 𝑒. = √
6𝑛(𝑛 − 1)

(𝑛 − 2)(𝑛 + 1)(𝑛 + 3)
                                                                                      (41) 

 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
1

𝑛
∑ (

𝑥𝑖 − 𝑥̅

𝜎
)

4𝑛

𝑖=1

                                                                                             (42) 

 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = ∑ (
𝑥𝑖 − 𝑥̅

𝜎
)

3𝑛

𝑖=1

                                                                                               (43) 

 

𝜎 = √
∑ (𝑥𝑖 − 𝑥̅)2𝑛

𝑖=1

𝑛
                                                                                                           (44) 

 

𝑥̅ =
1

𝑛
∑(𝑥𝑖)

𝑛

𝑖=1

                                                                                                                     (45) 

 

 

4.2.2.2.2.2 Stationarity 

 

Stationarity means constant variance and mean. Augmented Dickey_Fuller test 

(ADF) is a statistic test for examine if a unit root exists in time series. If the DFt of Eq. 

49 is negative together with a set low value of marginal significance p-value, the null 

hypothesis of a unit root presence is rejected and the series is stationary (Hamilton, 

2000). However, there are plethora of criteria for testing the stationarity such as 

Anderson, Von Neuman e.t.c. (Αλεξανδρόπουλος, Κατωπόδης, Παλιάτσος, & 

Πρεζεράκος, 1994). 
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Random walk is the simplest version of ADF and it is difined by Eqs. 46-48 

(Greene, 2002). 

 

 

𝑦𝑡 = 𝛾𝑦𝑡−1 + 𝜀𝑡                                                                                                                    (46) 

 

 

𝜀𝑡~𝛮[0, 𝜎2]                                                                                                                            (47) 

 

 

𝐶𝑜𝑣[𝜀𝑡 , 𝜀𝑠] = 0.   ∀ 𝑡 ≠ 𝑠                                                                                                    (48) 

 

 

For the null hypothesis, it is γ=1. On the other hand, for conventional ratio t, it is 

taken the function of Eq. 49 (Greene, 2002). Where 𝜎𝑒𝑠𝑡 denotes the standard error of 

estimate in Eq. 50 (McHugh, 2008), γ is the actual value and 𝛾̂ is the predicted value. 

 

𝐷𝐹𝑡 =
𝛾̂ − 1

𝜎𝑒𝑠𝑡(𝛾̂)
                                                                                                                       (49) 

 

(49) ⇒ 𝜎𝑒𝑠𝑡(𝛾̂) = √
∑ (𝛾 − 𝛾̂)2𝛮

𝜄=1

𝛮
                                                                                   (50) 

 

Finally, p-value is calculated by z statistics by computed z from Eq. 51 

(Αλεξανδρόπουλος et al., 1994) and then by using the Tables 9-10 (Rumsey, 2016). 

 

 

𝑧 =
|𝑥̅ − 𝜇0|

𝜎
√𝑛⁄

                                                                                                                          (51) 
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Table 9  

Probabilities I 
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Table 10  

Probabilities II 
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4.2.2.2.2.3 Correlation 

 

4.2.2.2.2.3.1 Pearson 

 

The Pearson Product Moment Correlation is a measurement of how much two 

parametric variables x-y are related to each other. Given a set significance, the metrics 

of the correlation is calculated by coefficient rho, as illustrated in Eq. 52. The more 

rho is reaching the 1, the more the correlation is, otherwise the 0 means no correlation 

at all (Chen, & Popovich, 2002). 

 

𝑟(𝑥, 𝑦) =
∑

(𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)

𝑛

𝑁
𝑖=1

√
∑ (𝑥𝑖−𝑥̅)2𝑁

𝑖=1 ∙∑ (𝑦𝑖−𝑦̅)2𝑁
𝑖=1

𝑛

 , ∀ 𝑟𝜖[0,1]                                                                 (52) 

 

 

4.2.2.2.2.3.2 Kendall 

 

In nonparametric variables, Kendall’s tau can be used instead of Spearman’s rho. 

If P denotes the number of concordant pairs and Q denotes the number of discordant 

pairs, given a set significance the coefficient tau is computed by Eq. 53. Similarly, to 

Pearsons’r, the more the Kendall’s tau is reaching 1, the more the correlation exists 

and the more it is reaching 0, the less the correlation exists (Chen et al., 2002). 

 

𝑡(𝑥, 𝑦) =
2(𝑃 − 𝑄)

𝑛(𝑛 − 1)
 , ∀ 𝑡𝜖[0,1]                                                                                         (53) 

 

 

4.2.2.2.2.3.3 Autocorrelation 

 

The Autocorrelation Function is statistic test as formulated by Eq. 54                 

(Tsay, 2012). 

 

𝜌̂𝑘 =
∑ (𝑥𝑡 − 𝑥̅)(𝑥𝑡−𝑘 − 𝑥̅)𝑇

𝑡=𝑘+1

∑ (𝑥𝑡 − 𝑥̅)2𝑇
𝑡=1

                                                                                      (54) 
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 Feature Scaling 

 

Feature scaling or rescaling is the preprocessing step through data are transformed 

in order that a better model is constructed. Normalisation and standardisation are 

among the most popular techniques. 

 

 

4.2.2.2.3.1 Normalisation 

 

4.2.2.2.3.1.1 Logarithmic 

 

Feng et al. (2014) claim that the log-normal transformation is the most popular 

techniques for skewed data, but they outline that the method performs poorly on 

skewed data handling, linear modeling and hypothesis testing. Furthermore, the log-

normalisation is thought to happen either the data has got a log shape or the distribution 

is close to parametric. Eq. 55 defines the log transform (Feng, Wang, Lu, & Tu, 2013). 

 

𝑥𝑖,𝑛𝑒𝑤 = 𝑙𝑜𝑔(𝑥𝑖,𝑜𝑙𝑑)                                                                                                             (55) 

 

 

 

4.2.2.2.3.1.2 Min-max  

 

Although this method is not used in the study, it is presented. As similar to z-

score, its formula is defined by Eq. 56 (Ozdemir, & Susarla, 2018). 

 

𝑥𝑖,𝑛𝑒𝑤 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
                                                                                                         (56) 

 

 

4.2.2.2.3.2 Standardisation 

 

Data standardisation is the process of transforming the raw data into a target 

structural form (Loshin, 2009). Z-score is a simple method for outlier detection and 

defined by Eq. 57 (Loshin, 2009). However, in bibliography there is a contradiction 
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in which standardization method is more effective (Mohamad & Usman, 2013; 

Steinley, 2004). 

 

𝑧𝑖 =
𝑥𝑖 − 𝑥̅

𝜎
                                                                                                                            (57) 

 

 

4.2.2.3 Machine Learning 

 

 Classification 

 

There are two major types of supervised learning categories, regression and 

classification. In classification, it is desired the prediction of at least two labeled 

classes. When there are only two classes, then the classification is called binary in 

contrast to the case of three or more classes exist and then it is named multi-class 

classification (Müller et al., 2017). 

 

The cross-entropy loss function for discrete distributions p and q is calculated for 

binary and multiclass classification by Eq. 58-59 respectively (Zhu, He, Zhang, & Cui, 

2020). 

 

𝐻(𝑝, 𝑞) = −(𝑦𝑙𝑜𝑔(𝑦̂) − (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑦̂))                                                              (58) 

 

𝐻(𝑝, 𝑞) = − ∑ 𝑝𝑖𝑙𝑜𝑔𝑞𝑖                    

1

                                                                                (59) 

 

 

 Regression 

 

In regressions, a mathematical formula, as formed in Eq. 60, is constructed in 

order to simulate the data as accurate as possible. Linear Regression (LR) is the most 

widely used method and in use for many decades (Müller & Guido, 2017). 
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𝑦̂ = 𝑏 + ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=0

                                                                                                                  (60) 

 

 

 

 K-means 

 

K-means is a technique that finds the cluster centers of specific regions of a 

dataset. Initially, it assigns each data point and then computes the mean of the data as 

long as no change in clusters occurs (Müller & Guido, 2017). 

 

If protype vectors denote μ1,…,μn and an indicator vector rij is equal to 1 if, and 

only if cluster j and xi are assigned. By minimising the distortion measure of Eq. 61, 

the distances between each data point is also minimised (Smola & Vishwanathan, 

2008). 

 

𝐽(𝑟, 𝜇) ≔
1

2
∑ ∑ 𝑟𝑖𝑗‖𝑥𝑖 − 𝜇𝑗‖

2
𝑛

𝑗=1

𝑚

𝑖=1

                                                                                     (61) 

 

Where the Euclidean square norm is denoted by ‖ ∙ ‖2, 𝜇 = {𝜇𝑗} and        𝑟 = {𝑟𝑖𝑗}. 

For J minimizing, a two-stage strategy is adopted. 

 

Stage 1 

By keeping the μ fixed and determining r, for i-th data solution of xi data point is 

calculated by Eqs. 62-65 (Smola et al., 2008). 

 

If : 

𝑟𝑖𝑗 = 1                                                                                                                                     (62) 

 

Then: 

𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛‖𝑥𝑖 − 𝜇𝑗′‖
2

                                                                                                      (63) 
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Else if : 

𝑟𝑖𝑗 = 0                                                                                                                                     (64) 

 

Then: 

𝑗 = 0                                                                                                                                        (65) 

Stage 2 

By keeping the r fixed and determining μ, J is formed as a quadratic function of 

μ. So, deriving by keeping μj=0 for all j, as shown in Eq. 66 (Smola et al., 2008). 

 

∑ 𝑟𝑖𝑗(𝑥𝑖 − 𝜇𝑗) = 0                                                                                                             (66)

𝑚

𝑖=1

 

 

(66) ⇔ 𝜇𝑗 =
∑ 𝑟𝑖𝑗𝑥𝑖𝑖

∑ 𝑥𝑖𝑖
                                                                                                          (67) 

 

The all process cancels when the assignments of the cluster stayed almost 

unchanged at some point in calculations (Smola et al., 2008). 

 

 Long Short-Term Memory 

 

Sherstinsky (2020) suggests the standardisation of the data before the Long Short-

Term Memory (LSTM) network is fed and trained. LSTM is a variant of recurrent 

neural networks and passes information from the past outputs to current ones via 

storage elements (Elsheikh et al., 2019). 

 

Fig. 15 illustrates the structure of LSTM. At a specific time step t, LSTM holds a 

hidden memory 𝐶̃𝑡 and 3 gate units: the input gate 𝑖𝑡 the output gate 𝑜𝑡 and the forget 

gate 𝑓𝑡, which are calculated by Eqs. 68-71 (Cui et al., 2020). 

 

𝑓𝑡 = 𝜎𝑔(𝑊𝑓 ∙ 𝑥𝑡 + 𝑈𝑓 ∙ ℎ𝑡−1 + 𝑏𝑓)                                                                                    (68) 
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𝑖𝑡 = 𝜎𝑔(𝑊𝑖 ∙ 𝑥𝑡 + 𝑈𝑖 ∙ ℎ𝑡−1 + 𝑏𝑖)                                                                                      (69) 

 

𝑜𝑡 = 𝜎𝑔(𝑊𝑜 ∙ 𝑥𝑡 + 𝑈𝑜 ∙ ℎ𝑡−1 + 𝑏𝑜)                                                                                    (70) 

 

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ∙ 𝑥𝑡 + 𝑈𝐶 ∙ ℎ𝑡−1 + 𝑏𝐶)                                                                              (71) 

 

Where the Ws detone the weight matrices mapping, the Us denote the weight 

metrices and bs denote bias vectors. Furthermore, 𝜎𝑔(∙) is the sigmoid function of the 

gate and 𝑡𝑎𝑛ℎ(∙) denotes the hyperbolic tangent function. Moreover, the layer output 

ℎ𝑡 and the cell output 𝐶𝑡 are given by Eqs. 72-73 (Cui et al., 2020). 

 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝐶𝑡)                                                                                                            (72) 

𝐶𝑡 = 𝑜𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶̃𝑡                                                                                                   (73) 

Where ⊙ is the operator of matrix/vector multiplication (Cui et al., 2020). 

 

Figure 15 LSTM 

 

Total loss ℒ during training at each iteration is given by Eq. 74. 

 

ℒ = 𝑙𝑜𝑠𝑠(𝑥̂𝑇+1 − 𝑥𝑇+1) = 𝑙𝑜𝑠𝑠(ℎ𝑇 − 𝑥𝑇+1)                                                                 (74) 
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Where the loss function is symbolized as 𝑙𝑜𝑠𝑠( ∙ ) (Cui et al., 2020).  

The Bidirectional LSTM (BiLSTM) means the calculation of output for both 

forward and backward directions. So, ℎ⃗⃗𝑡 denotes the forward output depending on the 

forward order of inputs and masks such as [x1, x2, … , xT] and [m1, m2, … , mT] and 

following the reverse order for backward direction and its output ℎ⃖⃗𝑡 (Cui et al., 2020). 

Lample et al. (2016) illustrates the BiLSTM as shown in Fig. 16. 

 

Figure 16 BiLSTM 
 

Before the computation of the loss, activation outputs should be chosen. There is 

the choice of either the Sigmoid activation function or the Softmax. Loss. 

 

The Sigmoid function, also called logistic function, of an element xi is given by 

Eq. 75 (Witten et. al., 2017). 

 

𝑓(𝑥𝑖) =
1

1 + 𝑒−𝑥𝑖
                                                                                                                 (75) 

 

The Softmax Loss is computed by Eq. 76, where xj the scores for each class C 

(Witten et. al., 2017). 

𝑓(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑖𝐶
𝑗

                                                                                                                      (76) 

Rectified Linear Units (ReLU) can also be used as a loss function, as shown in 

Eq. 77 (Zhang et al. 2017). 

𝜎(𝑧) = max(0, 𝑧)                                                                                                                (77) 
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Eq. 78 illustrates first layer inputs of DNN. The Eq. 79 shows the number of the 

last layer outputs. The x denotes the input data, y the outputs and αM, while W and b 

are random parametres (Zhang et al. 2017). 

 

𝛼1 = 𝑥                                                                                                                                     (78) 

 

𝑎𝑗
𝑚 = 𝜎 (∑ 𝑤𝑖𝑗𝛼𝑖

𝑚−1 + 𝑏𝑗
𝑚−1

𝑗

) , 𝑗 > 1                                                                         (79) 

 

𝑦 = 𝛼𝛭                                                                                                                                    (80) 

 

 Validation 

 

Cross-validation, Fig. 17, is thought to be more accurate than simple train-test 

split technique for the evaluation of a model. K-fold cross-validation splits the dataset 

into k equal parts, called folds. Each fold is treated as testing set and the remaining 

folds are used for training each model. In this way, k models are constructed and the 

means of their performance is thought to be a very representative metrics of the model 

(Müller et al., 2017).  

 

 

Figure 17 Cross-Validation 

 

Although cross-validation is a very strong tool, it is too heavy and demanding for 

processing sources, which is not practical for evaluating the also heavy DNNs. So, the 

data is split into train and test parts and afterwards a small part of these sets is used for 

validation.  
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 Tuning 

Reimers and Gurevych (2017) summarised some hyperparameters optimasation 

techniques for fine tuning, which are adagrad, adadelta, RMSProp, Adam and Adam 

with Nesterov momentum, called Nadam. They also test their performance and find 

that Adam and its variant outperform in sequence labeling tasks. 

The other parameters are chosen by GA. The selected technique is the Population-

Based Incremental Learning in which there is a representation of the population of 

individuals by a single genetic (Baluja, & Caruna, 1995). 

 

Like natural genes dispose a length, the same happens in artificial genes. So, the 

length of genes is a custom paramtre should be set. Population and generations sizes 

are also important paramtres for setting (Floreano et al., 2008). 

 

Cicirello and Smith (2000) proposes a uniform variation of partially matched 

crossover (Goldberg, 1989) taking into account the population, the crossover rate, the 

probability of any allele, the mutation rate and the halting tolerance T as given by      

Eq. 81. 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑀𝑜𝑠𝑡𝐹𝑖𝑡) − 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝐿𝑒𝑎𝑠𝑡𝐹𝑖𝑡)

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑀𝑜𝑠𝑡(𝐹𝑖𝑡)
< 𝑇                                                             (81) 

 

Beyer and Schwefel (2002) suggests a modern approach for mutation calculation 

according to an extended log normal rule as defined by Eq. 82. For the (10, 100) 

evolution strategy is used c=1. 

 

𝜎𝑡 = 𝑒
𝑐

√2𝑛
𝑁0(0,1)

[𝜎𝑡−1𝑒
𝑐

√2√𝑛
𝑁1,1(0,1)

, …  , 𝜎𝑡−1𝑒
𝑐

√2√𝑛
𝑁1,𝑛(0,1)

]                                        (82) 

 

As a selection method it is chosen the elitism and more specifically the non-

dominated sorting GA (NSGA-II) as proposed by Deb et al. (2002). Since of limited 

processing sources population size is set at 20, the number of generations is also set at 

20. Additionally, the crossover probability is chosen 0.8 and the mutation probability 

1/n, where n is the number of variables. 
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 Model Evaluation 

 

4.2.2.3.7.1 Classification Metrics 

 

There are plenty of metrics for ML model evaluation and especially for 

classification. Eqs. 78-80 express the accuracy (ACC), the recall (REC), the precision 

(PRE) (Leonard, 2017)  the Area Under the Curve (AUC) (Wang, Zeng, & Zhu, 2010). 

 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
                                                                                           (78) 

𝑅𝐸𝐶 =
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
                                                                                                                  (79) 

𝑃𝑅𝐸 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑃
                                                                                                                  (80) 

 

Where TP denotes the true positives, TN are the true negatives, FP are the false 

positives and FN are the false negatives. An AUC of 0.5 is thought unacceptable, until 

0.69 is moderate, 0.7 to 0.79 is good, 0.8 to 0.89 is excellent and above 0.9 is 

outstanding (Hosmer, & Lemeshow, 2013). 

 

4.2.2.3.7.2 Linear Regression Metrics 

 

R-Squares calculates the fitness of a LR and it is described by the formula of.       

the Eq. 81 where y is the real value, 𝑦̂𝑖 is the estimated value and 𝑦̅𝑖is the means of the 

values for n samples (Seber, 1977). Indeed, there are some important metrics such as 

the Mean Absolute Error (MAE) (Willmott, & Matsura, 2005), the Root Mean Squared 

Error (RMSE) Eqs 82-83 (Neill, &Hashemi, 2018; Haidong et al., 2019). 

 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑖)2𝑛
𝑖=1

                                                                                                   (81) 

𝑀𝛢𝐸 =
∑ |𝑦𝑖 − 𝑦̂𝑖|𝑛

𝑖=1

𝑛
                                                                                                         (82) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

                                                                                                (83) 
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4.2.3 Method 

 

A bibliographic research is conducted on available technical manuals and other 

sources in order to summarise all possible bearings. On the other hand, by the 

combination of well-known techniques with other state-of-art methods, a very modern 

method is designed to improve the bearing fault prognosis. 

4.2.3.1 The Proposed Approaches 

 

As illustrated in Fig. 18, a multi-level method is designed so as that better results 

are achieved. Firstly, the raw signals are inserted in the programming language and 

their time intervals are calculated as well. Afterwards, the data are processed through 

filters and transforms in order noise is removed. Entropies compose the information 

into a single value for each sample of the datasets. By statistics, custom indices are 

constructed to improve the overall performance. Then clustering is deployed for 

concentrating the information further and then categorical encoding forms an array 

easily explainable and interpretable. Before modelling, data is firstly fluffed and split 

into train and validation sets. Finally, modelling is made via ML and validation is used 

for performance testing.  

 

Since limited processing power and memory, some techniques should be rejected 

based on the processing demand. Assigning of the elapsed time needed for execution 

of code lines, as illustrated in Table 15, the lighter demanding techniques are chosen. 

In addition, the number of parameters need each technique is taken into consideration 

under the scope of keeping the model as simple as possible. Last but not least, the 

effectiveness in transforming the data into a stationary and normally distributed form 

is thought as a vital criterion for the selection among the tested methods. 

 

The dataset is split into four time-intervals. In this way, this classification is 

thought to support the algorithm to identify the RUL via segmentation. Except of One-

hot encoding, categorical encoding is chosen and made by a custom code for better 

epxlainablity and interpretability. Tuning is chosen to be made by GAs. Cause of 

limited computational power, the most demanding and the least efficient techniques 

are rejected. 
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Figure 18 Proposed ML Method 
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Figure 19 Proposed ML approaches 

 

As illustrated in Fig. 19, the processed signal is used as input to feed the BiLSTM 

and the three operation states are inserted as outputs. Then, multi-class classification 

is employed to construct the ML model. On the other hand, RUL is estimated by a 

regression ML model with looking back time steps. 

4.2.3.2 Code 

 

During the whole process of programming, many parts should be divided into 

small tasks for whom custom code is written. In other cases, already existed libraries 

are used as off-the-shelf solutions. 

 

 

Algorithm 1 Time Reading Pseudo-Code 

for j={1, 2,…,2156} do 

   if j<2 then 

   vectorj(1, 1) ← 𝑟𝑒𝑎𝑑_𝑛𝑎𝑚𝑒(𝑓𝑖𝑙𝑒_𝑛𝑎𝑚𝑒𝑗) 

      𝑥𝑗 ← vectorj(1, 1) 

   end if 

    if  j> 2 then 

         vectorj(1, 1) ← 𝑟𝑒𝑎𝑑_𝑐𝑠𝑣(𝑓𝑖𝑙𝑒_𝑛𝑎𝑚𝑒𝑗) 

         𝑥𝑗 ← vectorj(1, 20480) 

         matrix(j, 1) ← 𝑥𝑗 ∪ 𝑥𝑗−1 

         tr← matrix(j, 1) 

   end if 

end for 

 

 

 

 

 

 

Raw Data Feature 
Engineering 

Classification 

Regression 

Failure 
Diagnosis 

RUL 
Prognosis 
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Figure 20 Algorithms Flowchart 
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Algorithm 2 Time Difference Calculation Pseudo-Code 

for j={1, 2,…,2156} do 

   if j<2 then 

      split() where separator(.) 

         vectorj(1, 2) ← 𝑠𝑝𝑙𝑖𝑡(𝑓𝑖𝑙𝑒_𝑛𝑎𝑚𝑒𝑗) 

         yi ←vectorj(1, 2) 

        vector1(1, 2) ←{0, 0} 

          𝑚𝑎𝑡𝑟𝑖𝑥(𝑗 , 2) ← vector1(1, 2) 

   end if 

   if j>2 then 

      split() where separator(.) 

         vectorj (1, 2) ← 𝑠𝑝𝑙𝑖𝑡(𝑓𝑖𝑙𝑒_𝑛𝑎𝑚𝑒𝑗) 

         yi ←vectorj(1, 2) 

         𝑚𝑎𝑡𝑟𝑖𝑥(𝑗 , 2) ← yj ∪ (yj - yj-1) 

         td ← 𝑚𝑎𝑡𝑟𝑖𝑥(𝑗 , 2) 

   end if 

end for 

 

 

Algorithm 3 RUL Pseudo-Code 

for j={1, 2,…,2156} do 

   if j<2 then 

         sj ← (tdj,1·60)+ tdj,2 

   end if 

   if j>2 then 

         sj ← (tdj,1·60)+ tdj,2 

         vector(j, 1) ← sj + sj-1 

         tp  ← vector(j, 1) 

   end if 

end for 

for j={1, 2,…,2156} do 

      vector(j, 1) ← sj / s2156 

      RUL  ← vector(j, 1) 

      vector(j, 1) ← (sj / s2156) · 100 

      RUL%  ← vector(j, 1) 

end for 
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Algorithm 4 Transformations Pseudo-Code 

for j={1, 2,…,2156} do 

   if j<2 then 

   vectorj(1, 20480) ← 𝑟𝑒𝑎𝑑_𝑛𝑎𝑚𝑒(𝑓𝑖𝑙𝑒_𝑛𝑎𝑚𝑒𝑗) 

      𝑥𝑗 ← vectorj(1, 20480) 

   end if 

    if  j> 2 then 

         vectorj(1, 20480) ← 𝑟𝑒𝑎𝑑_𝑐𝑠𝑣(𝑓𝑖𝑙𝑒_𝑛𝑎𝑚𝑒𝑗) 

         𝑥𝑗 ← vectorj(1, 20480) 

         matrix(j, 204800) ← 𝑥𝑗 ∪ 𝑥𝑗−1 

         values← matrix(j, 204800) 

   end if 

end for 

matrix(2156, 204800) ← transform(matrix(2156, 204800)) 

matrix(2156, 1) ← entropy(matrix(2156, 204800)) 

trfd_values ←  matrix(2156, 1) 

matrix(8, 1) ← statistics(trfd_values) 

stat ←  matrix(8, 1) 

Note. Calculations for each bearing 
 

 

 

In Fig. 20, all steps of the programming are shown by an algorithm flowchart. At 

the beginning, the raw data, which are encoded in CSV format, are read and inserted 

into a variable as matrix by Algorithm 1. Then, labels of the samples are treated by 

Algorithms 2 and 3 so as that RUL is calculated. 

 

Time is chosen to be divided into four-time intervals with 254 samples each. These 

four-time segments are used instead of RUL in order to support the modeling by saving 

processing sources. 

 

Overall the process, the heavier and ineffective techniques are rejected so as to 

reach an optimal solution for the problem. So, after denoising the vibration signals via 

filters or transforms, as shown in Algorithm 4, PE is employed to compress the 

information. Afterwards, statistics help to form supportive indicines. 
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Clustering by K-means is used to compose the information more while the custom 

categorical encoding forms a matrix of 413,952 rows and 38 columns in order to be 

the final dataset for testing. The custom encoding is used for a better understanding of 

the whole process. Finally, after testing the enough effective methods, the best 

approach is chosen to construct DNNs by BiLSTM via GAs. 

 

For RUL estimation, the Pearson correlation is used to identify the most closely 

correlated value and then a LR is constructed. Finally, a regression model based on 

looking back time steps is constructed to be tested the prediction of the time series. 
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5. RESULTS 

 

In this section, only some important results are presented so as to avoid 

information overload. For more insights, it is suggested to take a look at the Appendix.  

 

5.1 Bearings Lists 

In this section, some comprehensive lists of bearing are presented with some extra 

information about technical specifications, manufactures, models, use or compartment 

if information was accessible. 

 

Tables 11-14 enlist all accessible information about the bearings mounted on each 

type of LM (MLW, n.d.; Bombardier, 2003, Siemens, 2004). 
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5.1.1 MLW LM 

 

Table 11  

MLW LM Bearings I 

Quant.a Type Manufactures Description Dimensions Compartment 

1 6317 ZZ C3 

E AS2S NSK 

Deep groove 

ball bearings 

with two 
shields 

85x180x41mm  

      

1 6203 2Z 

FAG / Standard 

program 
41500/2 

DA051978 

Deep groove 

ball bearings 
with two 

shields 

17x40x12mm  

      

1 
6222 ZZ C3 

E AS2S 
NSK 

Deep groove 
ball bearings 

with two 

shields 

110x200x38mm  

      

1 6309 Ζ 

FAG / Standard 

program 

41500/2 

DA051978 

Deep groove 

ball bearings 

with single 

shield 

45x100x25mm  

      

1 6204-2RS SKF/Koyo 

Deep groove 

ball bearings 

with two 
shields and 

two O-rings 

20x47x14mm Heater 

      

1 6209 2RS1 C3 DIN 625 

Deep groove 
ball bearings 

with single 

shield and O-
ring 

45x85x19mm 
Air 

Compressor 

      

1 6309 2Ζ 

SKF General 

catalogue 3200 
/ ΙΕ 121985 

Deep groove 

ball bearings 
with two 

shields 

45x100x25mm  

      

1 
6309 2RSR 
 

FAG catalogue 
FAGWL 41510 

GR 

Ball bearing 
with single 

shield 

45x100x25mm  

      

6 
NJ320EMC4 + 
HJ320E 

NSK 
Cylindrical 

bearings with 

ring 

100x215x47mm 
Traction 
electric 

motor 

      

6 
NU 330 E M C4 
NU330E/B/M2 

/C4/ZS/SV 1.52 

STEYR/FAG 
Cylindrical 
Roller singe 

row 

150x320x65mm 
Traction 
electric 

motor 
a Quantity 

 

 

The BS1 totals 26 bearings based on Tables 11-12.  

 

 

 



Locomotives Fault Prognosis                                                                                     
 

 

 

71 

 

Table 12  

MLW LM Bearings II 

Quantity DESCRIPTION 

1 Bearing, ball, drive shaft 

1 Bearing, thrust 

1 Bearing, centering 

2 Bearing, needle 

1 Bearing, thrust, rotating bushing 

Note: without identification 

 

5.1.2 Siemens LM 

 

Table 13  

Siemens LM Bearings 
Noa Dr.b DESCRIPTION Type Qnt.c Compartment 

3.20 Fig. 8 

Cylindrical 

rolling bearing 

for electric motor 

D-END 

FAG 

N326E.M1.R265.290.F1 

DIN 43283-N-326 ECM 

4 
Electric traction 

motor 

      

4.21 Fig. 9 

Rear tapered 

rolling bearing 

set 

Z-534052.TR1 FAG 4 
Traction 

subsystem 

      

4.24 Fig. 9 

Front tapered 

rolling bearing 

set 

Z-534052.TR1 FAG 4 
Traction 

subsystem 

      

5.30 Fig. 7 

Cylindrical 

rolling bearing 

for electric motor 

N-END with 

ceramic coating 

SKF BC1B 322652 A 

DIN 43283 
4 

Electric traction 

motor 

      

- - 

Deep groove ball 

bearings with two 

shields and two 

O-rings 

6209 2RS1 C3 

DIN 625 

45x85x19mm 

2 Air compressor 

a drawing. b quantity 

 

 

 

The BS2 totals 18 bearings based on Tables 13.  
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5.1.3 ADtranz LM 

 

Table 14  

ADtranz LM Bearings 

Quant. Type Manufactures Description Dimensions Compartment 

2 6206 2Z C3 SKF 

Deep 

groove ball 

bearings 

with two 

shields 

40x80x18mm 

Electric 

Motor 

Fan 

      

1 6208 2Z SKF 

Deep 

groove ball 

bearings 

with two 

shields 

8x22x7mm 
Air  

compressor 

      

1 

NUP226 ECM  

P63 VA379  

NUP226EBM 

2P63 SV1.52.77A 

 

Cylindrical 

Single-row 

bearing 

130x230x4mm 
Electric 

Generator 

      

8 
NJ 1880 MP  

+ HJ 1880 
FAG/SKF 

Cylindrical 

Single-row 

bearing 

400x500x46mm Gearbox 

      

4 NP 273081 Timken 

Double 

Cup 

Conical 

bearing 

101.6x63.5x8mm Gearbox 

      

8 BC2-0098 SKF 

Cylindrical 

Roller 

Double 

Row 

bearing 

160x270x170mm Bogies 

      

1 RNU 1940 E.M1 FAG 

Cylindrical 

Roller 

bearing 

130x280x58mm Water Pump 

      

2 
NU222 ECMR/ 

P64VA309 

SKF 

DIN 43283 

Cylindrical 

Single-row 

bearing 

110x200x38mm 

Traction 

electric 

motor 

Note. Bombardier (2003) 

 

The BS3 totals 27 bearings based on Table 14.  

 

5.2 Bearings Fault Prognosis 

In this section, different metrics are used to examine each method about 

effectiveness and efficiency. 
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5.2.1 Processing Demand 

The elapsed time for the execution of the same task is taken into account in order 

to be chosen which techniques are heavy enough and rejected, Table 15. 

 

Table 15  

Techniques Comparison 

Method  Elapsed Time (s) Parameters 

KF 51.715487003326416 n_iter=5 

   

BF_lp 0.08866715431213379 

T=5.0 

Fs = 1000 

Cutoff_freq=30 

Order=4 

   

1D SGF 0.007277011871337891 
Win_lenght=5 

Polyorder=2 

   

HT_m 0.0949089527130127  

   

FFT_m 0.037882089614868164  

   

DWT 0.0004799365997314453 

Wavelet=biort1.1 

Samples 

jump=14 

   

DTWT_b_lp 0.00024890899658203125 Level=3 

   

DTWT_b_hp_m 0.0002980232238769531 Level=3 

   

DTWT_q_lp 0.0002467632293701172 Level=3 

   

DTWT_q_hp_m 
0.000308990478515625 

 

Level=3 

PE 0.007987022399902344 

Log 

Normalisation 

Order=2 

   

MPE 0.05527925491333008 

Order=2 

Delay Time=1 

Scale=1 

   

SE 0.8500769138336182  
Notes. Elapsed time varies on each program execution; Task includes from 

Dataset 1, 1st bearing, X axis, 1st sample, 20,480 points; _b denotes biort; _q 

denotes qshift; _lp denotes low pass; _m denotes magnitude; _hp denotes 

high pass. 
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5.2.2 Exploratory Analysis  

In this section, after having applied signal processing some calculation and 

statistics are used in order to find out some initial results that will support the ML 

process. 

 

 

5.2.2.1 Permutation Entropy 

Even tough scatter plots do not show some specific patterns, Fig. 36-53, statistics 

help to identify some hidden characteristics inside data. In Tables 19-40, it has been 

found that standard deviation among bearings follows a stable pattern that distinguish 

the investigating bearings and their axes. Moreover, for the case of DTCWT low-pass 

variants the standard deviation σ1 of the bearing 1 at the Y axis has got a lower value 

compared with σ3 and σ4 of bearings 3 and 4 at the X axis. In contrast, the reverse 

happens for the case of the other DTCWT high-pass variant but for X axis. 

 

 

 

5.2.2.2 Test of Normality 

Having transformed the data by aforementioned techniques before and after the 

implementation of normalisation, the effectiveness of each technique is calculated by 

Pearson rho metrics (D'Agostino et al., 1973). 

 

 

In table 16, it is shown that before normalisation the data is already almost normal 

distributed (ND). Furthermore, the HT and FFT achieve perfectly transform the data 

form non-normal distribution (NND) into ND. After PE transform, the FFT and the 

DTCWT outperform and reach a perfect percentage, as illustrated in Table 17. Both 

results are presented in the graph of Fig. 21. 

 

 

 

 



Locomotives Fault Prognosis                                                                                     
 

 

 

75 

 

Table 16  

Techniques Comparison I 

Method  ND NND ND ratio (%) 

Raw_Data 17195 53 99.69271799628943 

BF_lp 16365 883 94.88056586270872 

1D SGF 15005 2243 86.99559369202227 

HT_m 17248 0 100 

FFT_m 17248 0 100 

DTWT_b_lpa 12424 22072 36.01576994434137 

DTWT_q_lpa 12424 22072 36.01576994434137 

Notes. Task includes 4 bearings, X and Y axes, 2156 samples, 20,480 points; 

Before Permutation Entropy Tranform and log normalization; _b denotes 

biort; _q denotes qshift; _lp denotes low pass; _m denotes magnitude 

aIncluding 3 and 4 levels 

 

Table 17  

Techniques Comparison II 

Method  ND NND ND ratio (%) 

Raw_Data 22 2 91.66666666666666 

BF_lp 15 9 62.5 

1D SGF 22 2 62.5 

HT_m_pe_d 23 1 95.83333333333334 

FFT_m_pe_d 24 0 100 

DTCWT_b_lp_pe_da 32 0 100 

DTCWT_b_hp_pe_da 32 0 100 

DTCWT_q_lp_pe_da 32 0 100 

Notes. Task includes 4 bearings, X and Y axes, 2156 samples, 20,480 points; 

b denotes biort; q denotes qshift; pe denotes the Permutation Entropy 

Transform; d denotes log normalization; hp denotes high pass; lp denotes low 

pass; m denotes magnitude. 

aIncluding 3 and 4 levels 
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Figure 21 Test of Normality (%) 

 

5.2.2.3 Test of Stationarity 

The Table 18 and Fig. 22 show that DTCWT low-pass variants are able to 

transform all data into a stationary form. 

 

Table 18  

ADF test 

Method  Stationary 

Non-

stationary Stationarity ratio (%) 

Raw_data_pe_d 6*** 18*** 25 

BF_lp_pe_d 12*** 12*** 50 

1D SGF_pe_d 8*** 16*** 33.33333333333333 

HT_m_pe_d 8*** 16*** 33.33333333333333 

FFT_m_pe_d 15*** 9*** 62.5 

DTCWT_b_lp_pe_da 32*** 0*** 100 

DTCWT_b_hp_pe_da 28*** 4*** 87.5 

DTWT_q_lp_pe_d* 32*** 0*** 100 

Notes. Task includes 4 bearings, X and Y axes, 2156 samples, 20,480 points; _b 

denotes biort; _q denotes qshift; _pe denotes the Permutation Entropy Transform; _d 

denotes log normalization; _hp denotes high pass; _lp denotes low pass; m denotes 

magnitude 
***p<.001 
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Figure 22 Test of Stationarity 

 

5.2.2.4 Correlation 

The correlation inside every technique is examined by the heatmaps of the           

Fig. 56-60, where it is found out that DTCWT variants are not able to distinguish the 

correlation among the bearings. However, the other techniques outline that there is 

moderate to strong correlation between X and Y axis for each bearing, which is thought 

to be normal. It is worth-mention that there is a strong enough correlation between the 

bearing 3 Y-axis and the bearing 2 for both X and Y axis. 

 

As for autocorrelation, DTCWT,  the FFT shows form of white noise, in contrast 

with the HT, the SGF and the raw signal after PE with level=3 that have strong positive 

values, as show in Fig. 66-73. Moreover, the BF shows a positive autocorrelation, but 

weak. The RUL is highly autocorrelated as illustrated in Fig. 23. 

 

 

Figure 23 Autocorrelation I: RUL 
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5.2.3 Machine Learning Models 

In this section, costumed indices are developed in order to support the ML 

modeling. Furthermore, K-means are deployed to simplify the information before the 

construction of the model. Then, BiLSTM builds plethora of Deep Neural Networks 

(DNNs), optimising the hyperparameters with NADAM, and finally fine tuning is 

approached by GAs. 

 

5.2.3.1 Indices 

The test of indices is made by sequential intervals as illustrated in Fig. 24. So, the 

standard deviation is calculated each time as same as the four indices.  

 

 

Figure 24 Index Sampling 

 

After examining the statistics of all possible cases, Tables 19-40, four indices are 

constructed based on the comparison between the bearing 1, used as a benchmark, and 

the goal bearings 3 and 4. The indices are formed as defined by Eq. 84-85. Notice 

should be given in the fact that only after the second sample standard is deviation 

possible to be calculated. For this reason, first two values are replaced by 1 in order to 

be capable to examine all 2,156 samples. 

 

For 𝐴 = {1,2} and 𝑥 ∈ 𝐴, 

 

ℎ𝑥 = {
𝜎𝑥 < 𝜎1,  ℎ𝑥 = 1
𝜎𝑥 > 𝜎1,  ℎ𝑥 = 0

                                                                                                      (84) 

 

For 𝐵 = {3,4} and 𝑦 ∈ 𝐵, 
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ℎ𝑦 = {
𝜎𝑦 > 𝜎1,  ℎ𝑦 = 1

𝜎𝑦 < 𝜎1,  ℎ𝑦 = 0
                                                                                                      (85) 

 

The Tables 41-52 show the results of the indices hx calculations. Fig. 25-26 show 

that the case of DTCWT biort low-pass variant gives the most reliable results for the 

indices hx and the biort high-pass variant performs the worst in hx indices, i.e. it 

performs the best in hy indices.  

 

 

Figure 25 Index hx 

 

 

Figure 26 Index hy 
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5.2.3.2 Time Segmentation 

Since the choice of approaching the problem with the classification, time is ought 

to be taken as discrete intervals. These intervals would be in a range between two and 

the maximum number of instances. However, it is desirable to be chosen a relatively 

small number of time intervals in order to support the ML modeling and save 

processing sources, resulting a lighter program and shorter execution time. For the 

choice of the right number of the time intervals, it is used the maximum intercept of 

the even division of the three datasets instances as given by the algorithm 4. 

 

Algorithm 4 Time Segmentation 

l = 2156 

k = 984 

j = 4448 

for i in range(1, (j)): 

    if (((j/i)-(j//i))==0) & (((k/i)-(k//i))==(((j/i)-(j//i)))) & (((l/i)-( 

         l//i))==(((j/i)-(j//i)))): 

        print(i) 

 

5.2.3.3 K-means Clustering 

The K-means clustering is used in order to compose more the information. The 

cases of two and three clusters are examined. Fig. 74-89 illustrate all tested techniques 

for two clusters, but no sound conclusions can be made because of no clear patterns in 

data, i.e. all data shows non-uniform shapes in their values. 

 

5.2.3.4 Modeling 

In this section, the raw data and all aforementioned techniques are used for feeding 

the BiLSTM network to construct ML models. Although the models perform poorly 

initially, gradually by the use of more complex techniques the performance evolves. 

 

Initially, all unclustered signals feed the DNN to construct a binary classification 

model that is able to distinguish the working state from failure. The parametres are 

deliberately constant for all cases so as that the results are comparable. Moreover, they 

are chosen 100 neurons, no hidden layers, the sigmoid activation, binary cross-entropy 

for loss function, 20% for validation, Nadam for hyperparametres optimization, batch 
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size equals to 100, 20% dropout and stable pseudo-randomly shuffling. The results 

show an unacceptable poor performance for all techniques, as illustrated in Table 53 

and Fig. 27. 

 

Figure 27  Binary Classification 

 

By clustering via K-means, the multi-class classification of three distinctive 

operational states, i.e. working, failure 1 and failure 2, is improved. However, the 

performance of all method is not acceptable yet, Table 54 and Fig. 28. The parametres 

are set as: 100 neurons, no hidden layers, the softmax activation, categorical cross-

entropy for loss function, 20% for validation, Nadam for hyperparametres 

optimisation, batch size equals to 100, 20% dropout and stable pseudo-randomly 

shuffling. Furthermore, the instances are 413,952 in a categorical form. 

 

 

Figure 28  Multi-class classification without custom indexing 
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Inserting the custom indices, the multi-class classification performs perfectly in 

terms of accuracy, auc, precision, entropy e.t.c. as illustrated in Fig. 29. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 29 ROC for  

a) working state, b) failure 1 and c) failure 2 

 

By inserting the four time-segments for reaching fault prognosis and with the same 

parametres, the models perform highly enough as illustrated in Table 55 and Fig. 30, 

which it also shown DTCWT biort low-pass variant outperforms the other techniques 

in. 
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Figure 30 Multi-label classification 

 

Afterwards, DTCWT biort low-pass variant is trained multiple times through GA 

to find out the optimal hyperparametres: BiLSTM units and epochs. Moreover, taking 

into account the processing demand, it is chosen the population size equals to 20, the 

number of generations also equals to 20, the batch size equals to 100 and the genes 

length equals to 13. Optimasing based on the fitness loss, i.e. the categorical 

crossentropy, it is found that units should be equal to 100 and the epochs equals to 63 

throughout evolution process as illustrated in Fig. 23. The performance of the            

fine-tuned BiLSTM of the DTCWT biort low-pass variant is shown in the Fig. 32 and 

Tables 56. 

 

 

Figure 31 Evolution Process of Optimasing 

the BiLSTM 
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Figure 32  Spider Chart: The performance of  

the fine-tuned BiLSTM 

 

However, having a close look in the performance of the proposed method, it is 

found that the time segments prediction again performs poorly as shown in Fig. 33, 

i.e. the classes 3 to 6 have got approximately AUC = .5. 

 

 

Figure 33 ROC curve 

 

Taking the values of HT for Y axis, time is estimated by LR with pseudo-randomly 

shuffling and it is achieved an acceptable performance, i.e. R2≈.73, RMSE≈223.43 

and MAE≈.73 as plotted in Fig. 34, where it is also deserved the simple and mean 

confidence bands for p=.5.  
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Figure 34 Linear Regression of RUL 

 

A BiLSTM model is constructed for RUL estimation by dividing the time into 359 

instances of around 20 minutes each and setting a looking back time steps equal to 4. 

Furthermore, for biort variant of the DTCWT for level=4 after PE, log normalisation 

100 training epochs, ReLU activation and MAE for loss function. As shown in          

Fig. 35, the model for a 20% of validation shows as minimum values RMSE≈.087, 

MAE≈.007, MAE before validation loss≈.007. The regression is illustrated in Fig. 36. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 35 BiLSTM regression validated performance  

a) MAE, b) RMSE and c) Loss 
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Figure 36 Regression of RUL 

 

 

Finally, an array is constructed with 17,248 instances. Afterwards, four features 

are selected, i.e. the processed signal of DTCWT biort variant with level=4 and form=2 

is taken as input and the operating states, failure 1, failure 2 and working, are taken as 

outputs. Then, time step is set to be equal to 3, the same as the units. A BiLSTM with 

4 hidden layers is fed with softmax activation function, loss is chosen the categorical 

cross-entropy and the optimiser is selected the Nadam. For 20 epochs, the batch size 

to be equal to 1,533, 20% dropout, 20% validation and without shuffling the 

constructed model shows a perfect performance in terms of validated metrics such as 

AUC, PRE and ACC. 
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6. CONCLUSION 

At the beginning, a literature review through technical manual was conducted in 

order all bearings used in the Greek fleet of LMs are listed. Enough types of bearings 

are encountered and the results show that the MLW LM has got more bearings than 

the other two types. Furthermore, the ADtranz LM has got more bearings that the 

Siemens LM.  

 

The most common type is the deep grove ball bearings with two shields in all three 

LMs besides other types e.g. cylindrical, front/rear taped bearings and ball bearings 

with single shield. The electric motors require bearings in contrast with the other 

mechanisms. 

 

For the bearing fault prognosis, it is used the first dataset of the IMS database. 

During all the process, many techniques are used and tested. A multi-level method is 

proposed with the addition of custom indices for constructing a multi-label 

classification ML mode. 

 

Initially, signal is processed by plenty of transforms and filters for denoising. 

Afterwards, PE transforms all information into a single value for each instance. Then, 

all values are clustered by K-means resulting to constructing clusters that help the 

BiLSTM algorithm in estimations. However, the application of K-mean shew no 

strong effect in the performance evaluation. 

 

The crucial point is the construction of four indices based on the descriptive 

statistics which boosts the overall performance. By inserting these custom indices, the 

method can classify each three distinct working states, i.e. working, failure 1 and 

failure 2. The proposed model performs perfectly in terms of categorical accuracy, auc, 

precision and recall, showing superiority over the previous methods. 

 

Time segmentation is proved that is not a rigorous technique for RUL estimation. 

By using the BiLSTM algorithm tuned by GA, the overall performance remains highly 

enough in all metrics. However, the final ML model predicts only the working state, 

but not the RUL segments. 
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Afterwards, a LR is constructed based on the most correlated value for RUL 

estimation with an acceptable performance. Then, a regression model for RUL based 

on time steps is constructed showing superiority over last techniques. 

 

The prediction of the operation states is also made by a multi-class classification 

ML model using the processed signal. The model outperforms its rivals by reaching 

perfect scores in all three metrics as happened also in the other approach. 

  

All null hypotheses are rejected and the hypotheses H.1.1, H2.0, H3.1, H4.1 and 

H5.1 are accepted. So, the research questions are answered with yes. Finally, the future 

research could include the three datasets for modelling and online real-time successors 

of the present algorithms for products to scale. 
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  APPENDIX 
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Figure 36 Raw Signal PE level=3 
a) Bearing 1 X-axis, b) Bearing 1 Y-axis, c) Bearing 2 X-axis, d) Bearing 2 Y-axis, e) 

Bearing 3 X-axis,f) Bearing 3 Y-axis, g) Bearing 4 X-axis and h) Bearing 4 Y-axis 
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Figure 37 Raw Signal PE level=4 

a) Bearing 1 X-axis, b) Bearing 1 Y-axis, c) Bearing 2 X-axis, d) Bearing 2 Y-axis, e) 

Bearing 3 X-axis,f) Bearing 3 Y-axis, g) Bearing 4 X-axis and h) Bearing 4 Y-axis 
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Figure 38 HT lowpass PE level=3 

 a) Bearing 1 X-axis, b) Bearing 1 Y-axis,c) Bearing 2 X-axis, d) Bearing 2 Y-axis, 

e) Bearing 3 X-axis,f) Bearing 3 Y-axis, g) Bearing 4 X-axis and h) Bearing 4 Y-axis 
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Figure 39 HT lowpass PE level=4 

a) Bearing 1 X-axis, b) Bearing 1 Y-axis, c) Bearing 2 X-axis, d) Bearing 2 Y-axis, 

e) Bearing 3 X-axis,f) Bearing 3 Y-axis, g) Bearing 4 X-axis and h) Bearing 4 Y-axis 
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Figure 40 FFT magnitude PE level=3 

a) Bearing 1 X-axis, b) Bearing 1 Y-axis, c) Bearing 2 X-axis, d) Bearing 2 Y-axis, 

e) Bearing 3 X-axis,f) Bearing 3 Y-axis, g) Bearing 4 X-axis and h) Bearing 4 Y-axis 



Locomotives Fault Prognosis                                                                                     
 

 

 

105 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 41 FFT magnitude PE level=4 

a) Bearing 1 X-axis, b) Bearing 1 Y-axis, c) Bearing 2 X-axis, d) Bearing 2 Y-axis, 

e) Bearing 3 X-axis,f) Bearing 3 Y-axis, g) Bearing 4 X-axis and h) Bearing 4 Y-axis 

 



Locomotives Fault Prognosis                                                                                     
 

 

 

106 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 42 BF low-pass PE level=3 

a) Bearing 1 X-axis, b) Bearing 1 Y-axis, c) Bearing 2 X-axis, d) Bearing 2 Y-axis, 

e) Bearing 3 X-axis,f) Bearing 3 Y-axis, g) Bearing 4 X-axis and h) Bearing 4 Y-axis 
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Figure 43 BF low-pass PE level=4 

a) Bearing 1 X-axis, b) Bearing 1 Y-axis, c) Bearing 2 X-axis, d) Bearing 2 Y-axis, 

e) Bearing 3 X-axis,f) Bearing 3 Y-axis, g) Bearing 4 X-axis and h) Bearing 4 Y-axis 
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Figure 44 1D SGF PE level=3 

a) Bearing 1 X-axis, b) Bearing 1 Y-axis, c) Bearing 2 X-axis, d) Bearing 2 Y-axis, 

e) Bearing 3 X-axis,f) Bearing 3 Y-axis, g) Bearing 4 X-axis and h) Bearing 4 Y-axis 
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Figure 45 1D SGF PE level=4 

a) Bearing 1 X-axis, b) Bearing 1 Y-axis, c) Bearing 2 X-axis, d) Bearing 2 Y-axis, 

e) Bearing 3 X-axis,f) Bearing 3 Y-axis, g) Bearing 4 X-axis and h) Bearing 4 Y-axis 
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Figure 46 DTCWT qshift level=3 form=1 

a) Bearing 1 X-axis, b) Bearing 1 Y-axis, c) Bearing 2 X-axis, d) Bearing 2 Y-axis, 

e) Bearing 3 X-axis,f) Bearing 3 Y-axis, g) Bearing 4 X-axis and h) Bearing 4 Y-axis 
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Figure 47 DTCWT qshift lp level=3 form=2 

a) Bearing 1 X-axis, b) Bearing 1 Y-axis,c) Bearing 2 X-axis, d) Bearing 2 Y-axis, e) 

Bearing 3 X-axis,f) Bearing 3 Y-axis, g) Bearing 4 X-axis and h) Bearing 4 Y-axis 
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Figure 48 DTCWT qshift lp level=4 form=1 

a) Bearing 1 X-axis, b) Bearing 1 Y-axis, c) Bearing 2 X-axis, d) Bearing 2 Y-axis, 

e) Bearing 3 X-axis,f) Bearing 3 Y-axis, g) Bearing 4 X-axis and h) Bearing 4 Y-axis 
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Figure 49 DTCWT qshift lp level=4 form=2 

a) Bearing 1 X-axis, b) Bearing 1 Y-axis, c) Bearing 2 X-axis, d) Bearing 2 Y-axis, 

e) Bearing 3 X-axis,f) Bearing 3 Y-axis, g) Bearing 4 X-axis and h) Bearing 4 Y-axis 
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Figure 50 DTCWT biort lp level=3 form=1 

a) Bearing 1 X-axis, b) Bearing 1 Y-axis, c) Bearing 2 X-axis, d) Bearing 2 Y-axis, 

e) Bearing 3 X-axis,f) Bearing 3 Y-axis, g) Bearing 4 X-axis and h) Bearing 4 Y-axis 
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Figure 51 DTCWT biort lp level=3 form=2 

a) Bearing 1 X-axis, b) Bearing 1 Y-axis, c) Bearing 2 X-axis, d) Bearing 2 Y-axis, 

e) Bearing 3 X-axis,f) Bearing 3 Y-axis, g) Bearing 4 X-axis and h) Bearing 4 Y-axis 
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Figure 52 DTCWT biort lp level=4 form=1 

 a) Bearing 1 X-axis, b) Bearing 1 Y-axis,c) Bearing 2 X-axis, d) Bearing 2 Y-axis, 

e) Bearing 3 X-axis,f) Bearing 3 Y-axis, g) Bearing 4 X-axis and h) Bearing 4 Y-axis 
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Figure 53 DTCWT biort lp level=4 form=2 

a) Bearing 1 X-axis, b) Bearing 1 Y-axis,c) Bearing 2 X-axis, d) Bearing 2 Y-axis, e) 

Bearing 3 X-axis,f) Bearing 3 Y-axis, g) Bearing 4 X-axis and h) Bearing 4 Y-axis 
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Table 19  

Raw Data - Descriptive Statistics I 
 Bearings 

 1,X-axis 1,Y-axis 2,X-axis 2,Y-axis 3,X-axis 3,Y-axis 4,X-axis 4,Y-axis 

count 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 

mean 0.967434 0.995503 0.984829 0.998322 0.994962 0.999649 0.969970 0.990361 

std 0.002751 0.001555 0.004066 0.003009 0.001426 0.000750 0.004831 0.002995 

min 0.957453 0.987393 0.942908 0.951730 0.987342 0.991839 0.944560 0.974247 

25% 0.965740 0.994569 0.984115 0.998287 0.994493 0.999728 0.966558 0.988247 

50% 0.966989 0.995460 0.985693 0.998921 0.995268 0.999877 0.970294 0.990592 

75% 0.968521 0.996409 0.986974 0.999269 0.995858 0.999934 0.972871 0.992332 

max 0.977849 0.999378 0.990480 0.999955 0.998314 0.999996 0.983688 0.997618 

Note. Level=3; Raw_data_pe_d; Data is unstandardised. 

 

 

 

 

Table 20  

Raw Data  - Descriptive Statistics II 
 Bearings 

 1,X-axis 1,Y-axis 2,X-axis 2,Y-axis 3,X-axis 3,Y-axis 4,X-axis 4,Y-axis 

count 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 

mean 0.936643 0.990464 0.970520 0.995530 0.987542 0.997790 0.947513 0.982435 

std 0.005945 0.002492 0.007771 0.004925 0.003534 0.001358 0.008725 0.005154 

min 0.910441 0.976529 0.894392 0.921820 0.966779 0.984645 0.901237 0.955909 

25% 0.933087 0.989039 0.969154 0.995459 0.986516 0.997746 0.941448 0.978697 

50% 0.936360 0.990353 0.972304 0.996628 0.988258 0.998179 0.948319 0.982730 

75% 0.939344 0.991717 0.974795 0.997218 0.989627 0.998415 0.952828 0.985803 

max 0.957419 0.996552 0.981227 0.998210 0.996109 0.999235 0.970458 0.994626 

Note. Level=4; Raw_data_pe_d; Data is unstandardised. 
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Table 21  

BF - Descriptive Statistics I 
 Bearings 

 1,X-axis 1,Y-axis 2,X-axis 2,Y-axis 3,X-axis 3,Y-axis 4,X-axis 4,Y-axis 

count 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 

mean 0.436758 0.438652 0.438111 0.443913 0.438793 0.441148 0.436772 0.437953 

std 0.001283 0.001145 0.001401 0.001533 0.001289 0.001263 0.001211 0.001033 

min 0.430824 0.434355 0.432272 0.439994 0.434995 0.437512 0.431784 0.434616 

25% 0.435935 0.437887 0.437276 0.442853 0.437930 0.440272 0.435948 0.437274 

50% 0.436792 0.438675 0.438237 0.443779 0.438743 0.441179 0.436762 0.437939 

75% 0.437627 0.439465 0.439080 0.444897 0.439628 0.441985 0.437606 0.438639 

max 0.440537 0.442356 0.442230 0.449971 0.443343 0.445319 0.440613 0.441854 

Note. Level=3. BF_lp_pe_d; Data is unstandardised. 

 

 

 

 

Table 22  

BF - Descriptive Statistics II 
 Bearings 

 1,X-axis 1,Y-axis 2,X-axis 2,Y-axis 3,X-axis 3,Y-axis 4,X-axis 4,Y-axis 

count 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 

mean 0.274580 0.276693 0.276101 0.282631 0.276870 0.279504 0.274605 0.275904 

std 0.001452 0.001298 0.001580 0.001745 0.001464 0.001434 0.001367 0.001170 

min 0.267752 0.271688 0.269579 0.278118 0.272486 0.275330 0.269025 0.272144 

25% 0.273641 0.275803 0.275131 0.281433 0.275884 0.278510 0.273692 0.275145 

50% 0.274623 0.276697 0.276237 0.282509 0.276846 0.279484 0.274597 0.275917 

75% 0.275534 0.277614 0.277191 0.283723 0.277831 0.280473 0.275535 0.276689 

max 0.278981 0.280856 0.280620 0.289388 0.281983 0.284394 0.278895 0.280313 

Note. Level=4. BF_lp_pe_d; Data is unstandardised. 
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Table 23  

HT - Descriptive Statistics I 
 Bearings 

 1,X-axis 1,Y-axis 2,X-axis 2,Y-axis 3,X-axis 3,Y-axis 4,X-axis 4,Y-axis 

count 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 

mean 0.967432 0.995333 0.983631 0.998137 0.992623 0.998775 0.971788 0.989950 

std 0.002855 0.001516 0.004292 0.002815 0.002533 0.001775 0.004609 0.003259 

min 0.953544 0.987706 0.940578 0.954628 0.963766 0.978780 0.945695 0.973372 

25% 0.965811 0.994461 0.982697 0.998064 0.992377 0.998787 0.968646 0.987633 

50% 0.967133 0.995327 0.984612 0.998683 0.993204 0.999284 0.972113 0.990398 

75% 0.968658 0.996215 0.985866 0.999112 0.993855 0.999519 0.974527 0.992200 

max 0.977654 0.999108 0.989299 0.999926 0.996718 0.999967 0.984741 0.997277 

Note. Level=3, HT_m_pe_d; Data is unstandardised. 

 

 

 

 

Table 24  

HT - Descriptive Statistics II 
 Bearings 

 1,X-axis 1,Y-axis 2,X-axis 2,Y-axis 3,X-axis 3,Y-axis 4,X-axis 4,Y-axis 

count 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 

mean 0.937634 0.989319 0.967040 0.993982 0.981218 0.994649 0.949680 0.980093 

std 0.005478 0.002532 0.007405 0.004569 0.004663 0.003127 0.008167 0.005594 

min 0.911061 0.975953 0.896515 0.926496 0.935159 0.959738 0.908982 0.953202 

25% 0.934340 0.987925 0.965339 0.993738 0.980475 0.994652 0.943974 0.976019 

50% 0.937564 0.989257 0.968854 0.995020 0.982156 0.995528 0.950382 0.980835 

75% 0.940293 0.990703 0.971106 0.995677 0.983637 0.995986 0.954606 0.983945 

max 0.955184 0.995394 0.978032 0.996930 0.990972 0.997015 0.971868 0.992763 

Note. Level=4, HT_m_pe_d; Data is unstandardised. 
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Table 25  

FFT - Descriptive Statistics I 
 Bearings 

 1,X-axis 1,Y-axis 2,X-axis 2,Y-axis 3,X-axis 3,Y-axis 4,X-axis 4,Y-axis 

count 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 

mean 0.999977 0.999978 0.999973 0.999975 0.999976 0.999979 0.999974 0.999977 

std 0.000033 0.000031 0.000039 0.000037 0.000036 0.000030 0.000036 0.000032 

min 0.999718 0.999687 0.999669 0.999634 0.999544 0.999767 0.999640 0.999676 

25% 0.999970 0.999970 0.999965 0.999966 0.999969 0.999971 0.999965 0.999968 

50% 0.999990 0.999989 0.999987 0.999989 0.999989 0.999990 0.999987 0.999989 

75% 0.999998 0.999998 0.999997 0.999998 0.999998 0.999998 0.999997 0.999998 

max 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

Note. Level=3; FFT_m_pe_d; Data is unstandardised. 

 

 

 

 

Table 26  

FFT - Descriptive Statistics II 
 Bearings 

 1,X-axis 1,Y-axis 2,X-axis 2,Y-axis 3,X-axis 3,Y-axis 4,X-axis 4,Y-axis 

count 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 

mean 0.999862 0.999867 0.999856 0.999861 0.999864 0.999871 0.999858 0.999867 

std 0.000076 0.000071 0.000082 0.000078 0.000077 0.000069 0.000075 0.000073 

min 0.999405 0.999476 0.999184 0.999266 0.999285 0.999458 0.999432 0.999368 

25% 0.999825 0.999831 0.999815 0.999825 0.999827 0.999835 0.999819 0.999832 

50% 0.999876 0.999880 0.999873 0.999877 0.999879 0.999883 0.999871 0.999879 

75% 0.999915 0.999918 0.999913 0.999915 0.999919 0.999922 0.999911 0.999918 

max 0.999996 0.999988 0.999990 0.999986 0.999983 0.999993 0.999998 0.999988 

Note. Level=4; FFT_m_pe_d; Data is unstandardised. 
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Table 27  

1D SGF - Descriptive Statistics I 
 Bearings 

 1,X-axis 1,Y-axis 2,X-axis 2,Y-axis 3,X-axis 3,Y-axis 4,X-axis 4,Y-axis 

count 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 

mean 0.920934 0.942923 0.933920 0.940100 0.951502 0.955373 0.918461 0.926072 

std 0.002508 0.002729 0.002440 0.006118 0.002350 0.005332 0.002354 0.005465 

min 0.912522 0.931186 0.909248 0.887480 0.945226 0.933913 0.907914 0.911574 

25% 0.919272 0.941164 0.933069 0.938187 0.949917 0.952599 0.916747 0.922617 

50% 0.920797 0.942975 0.934177 0.941337 0.951267 0.956782 0.918413 0.925725 

75% 0.922609 0.944765 0.935226 0.943512 0.952746 0.959130 0.919961 0.929444 

max 0.928379 0.952644 0.939155 0.949864 0.959731 0.966733 0.926467 0.943471 

Note. Level=3; 1D SGF_pe_d; Data is unstandardised. 

 

 

 

 

Table 28  

1D SGF - Descriptive Statistics II 
 Bearings 

 1,X-axis 1,Y-axis 2,X-axis 2,Y-axis 3,X-axis 3,Y-axis 4,X-axis 4,Y-axis 

count 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 

mean 0.852322 0.905518 0.876027 0.902890 0.909566 0.927016 0.848054 0.877671 

std 0.003203 0.004711 0.006716 0.009923 0.004807 0.008247 0.007650 0.008777 

min 0.842393 0.884113 0.815762 0.812126 0.891397 0.888558 0.818797 0.848148 

25% 0.850229 0.902461 0.875065 0.900262 0.906756 0.923097 0.842841 0.871489 

50% 0.852188 0.905385 0.877755 0.905038 0.909686 0.929305 0.847903 0.876936 

75% 0.854092 0.908589 0.879632 0.908219 0.912602 0.932627 0.852311 0.882897 

max 0.862953 0.922248 0.887399 0.918511 0.925382 0.943504 0.872613 0.907172 

Note. Level=4; 1D SGF_pe_d; Data is unstandardised. 
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Table 29  

DTCWT  - Descriptive Statistics I 
 Bearings 

 1,X-axis 1,Y-axis 2,X-axis 2,Y-axis 3,X-axis 3,Y-axis 4,X-axis 4,Y-axis 

count 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 

mean 0.999968 0.999967 0.999970 0.999896 0.999946 0.999955 0.999961 0.999903 

std 0.000044 0.000046 0.000043 0.000109 0.000072 0.000066 0.000055 0.000129 

min 0.999513 0.999636 0.999556 0.999195 0.999498 0.999098 0.999498 0.998727 

25% 0.999958 0.999958 0.999962 0.999845 0.999928 0.999939 0.999949 0.999869 

50% 0.999985 0.999983 0.999985 0.999928 0.999974 0.999980 0.999983 0.999954 

75% 0.999997 0.999997 0.999997 0.999977 0.999994 0.999995 0.999997 0.999990 

max 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

Note. Level=3, form=1; DTCWT_b_lp_pe_d; Data is unstandardised. 

 

 

 

 

Table 30  

DTCWT - Descriptive Statistics II 
 Bearings 

 1,X-axis 1,Y-axis 2,X-axis 2,Y-axis 3,X-axis 3,Y-axis 4,X-axis 4,Y-axis 

count 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 

mean 0.999968 0.999967 0.999970 0.999896 0.999946 0.999955 0.999961 0.999903 

std 0.000044 0.000046 0.000043 0.000109 0.000072 0.000066 0.000055 0.000129 

min 0.999513 0.999636 0.999556 0.999195 0.999498 0.999098 0.999498 0.998727 

25% 0.999958 0.999958 0.999962 0.999845 0.999928 0.999939 0.999949 0.999869 

50% 0.999985 0.999983 0.999985 0.999928 0.999974 0.999980 0.999983 0.999954 

75% 0.999997 0.999997 0.999997 0.999977 0.999994 0.999995 0.999997 0.999990 

max 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

Note. Level=3, Form=2; DTCWT_b_lp_pe_d; Data is unstandardised. 
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Table 31  

DTCWT  - Descriptive Statistics III 
 Bearings 

 1,X-axis 1,Y-axis 2,X-axis 2,Y-axis 3,X-axis 3,Y-axis 4,X-axis 4,Y-axis 

count 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 

mean 0.999968 0.999967 0.999970 0.999896 0.999946 0.999955 0.999961 0.999903 

std 0.000044 0.000046 0.000043 0.000109 0.000072 0.000066 0.000055 0.000129 

min 0.999513 0.999636 0.999556 0.999195 0.999498 0.999098 0.999498 0.998727 

25% 0.999958 0.999958 0.999962 0.999845 0.999928 0.999939 0.999949 0.999869 

50% 0.999985 0.999983 0.999985 0.999928 0.999974 0.999980 0.999983 0.999954 

75% 0.999997 0.999997 0.999997 0.999977 0.999994 0.999995 0.999997 0.999990 

max 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

Note. Level=4; Form=1; DTCWT_b_lp_pe_d; Data is unstandardised. 

 

 

 

 

Table 32  

DTCWT  - Descriptive Statistics IV 
 Bearings 

 1,X-axis 1,Y-axis 2,X-axis 2,Y-axis 3,X-axis 3,Y-axis 4,X-axis 4,Y-axis 

count 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 

mean 0.999968 0.999967 0.999970 0.999896 0.999946 0.999955 0.999961 0.999903 

std 0.000044 0.000046 0.000043 0.000109 0.000072 0.000066 0.000055 0.000129 

min 0.999513 0.999636 0.999556 0.999195 0.999498 0.999098 0.999498 0.998727 

25% 0.999958 0.999958 0.999962 0.999845 0.999928 0.999939 0.999949 0.999869 

50% 0.999985 0.999983 0.999985 0.999928 0.999974 0.999980 0.999983 0.999954 

75% 0.999997 0.999997 0.999997 0.999977 0.999994 0.999995 0.999997 0.999990 

max 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

Note. Level=4; Form=2; DTCWT_b_lp_pe_d; Data is unstandardised. 
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Table 33  

DTCWT - Descriptive Statistics V 
 Bearings 

 1,X-axis 1,Y-axis 2,X-axis 2,Y-axis 3,X-axis 3,Y-axis 4,X-axis 4,Y-axis 

count 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 

mean 0.999968 0.999967 0.999970 0.999896 0.999946 0.999955 0.999961 0.999903 

std 0.000044 0.000046 0.000043 0.000109 0.000072 0.000066 0.000055 0.000129 

min 0.999513 0.999636 0.999556 0.999195 0.999498 0.999098 0.999498 0.998727 

25% 0.999958 0.999958 0.999962 0.999845 0.999928 0.999939 0.999949 0.999869 

50% 0.999985 0.999983 0.999985 0.999928 0.999974 0.999980 0.999983 0.999954 

75% 0.999997 0.999997 0.999997 0.999977 0.999994 0.999995 0.999997 0.999990 

max 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

Note. Level=3; Form=1; DTCWT_q_lp_pe_d; Data is unstandardised. 

 

 

 

 

Table 34  

DTCWT - Descriptive Statistics VI 
 Bearings 

 1,X-axis 1,Y-axis 2,X-axis 2,Y-axis 3,X-axis 3,Y-axis 4,X-axis 4,Y-axis 

count 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 

mean 0.999968 0.999967 0.999970 0.999896 0.999946 0.999955 0.999961 0.999903 

std 0.000044 0.000046 0.000043 0.000109 0.000072 0.000066 0.000055 0.000129 

min 0.999513 0.999636 0.999556 0.999195 0.999498 0.999098 0.999498 0.998727 

25% 0.999958 0.999958 0.999962 0.999845 0.999928 0.999939 0.999949 0.999869 

50% 0.999985 0.999983 0.999985 0.999928 0.999974 0.999980 0.999983 0.999954 

75% 0.999997 0.999997 0.999997 0.999977 0.999994 0.999995 0.999997 0.999990 

max 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

Note. Level=3; Form=2; DTCWT_q_lp_pe_d; Data is unstandardised. 
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Table 35  

DTCWT  - Descriptive Statistics VII 
 Bearings 

 1,X-axis 1,Y-axis 2,X-axis 2,Y-axis 3,X-axis 3,Y-axis 4,X-axis 4,Y-axis 

count 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 

mean 0.999968 0.999967 0.999970 0.999896 0.999946 0.999955 0.999961 0.999903 

std 0.000044 0.000046 0.000043 0.000109 0.000072 0.000066 0.000055 0.000129 

min 0.999513 0.999636 0.999556 0.999195 0.999498 0.999098 0.999498 0.998727 

25% 0.999958 0.999958 0.999962 0.999845 0.999928 0.999939 0.999949 0.999869 

50% 0.999985 0.999983 0.999985 0.999928 0.999974 0.999980 0.999983 0.999954 

75% 0.999997 0.999997 0.999997 0.999977 0.999994 0.999995 0.999997 0.999990 

max 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

Note. Level=4; Form=1; DTCWT_q_lp_pe_d; Data is unstandardised. 

 

 

 

 

Table 36  

DTCWT - Descriptive Statistics VIII 
 Bearings 

 1,X-axis 1,Y-axis 2,X-axis 2,Y-axis 3,X-axis 3,Y-axis 4,X-axis 4,Y-axis 

count 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 

mean 0.999968 0.999967 0.999970 0.999896 0.999946 0.999955 0.999961 0.999903 

std 0.000044 0.000046 0.000043 0.000109 0.000072 0.000066 0.000055 0.000129 

min 0.999513 0.999636 0.999556 0.999195 0.999498 0.999098 0.999498 0.998727 

25% 0.999958 0.999958 0.999962 0.999845 0.999928 0.999939 0.999949 0.999869 

50% 0.999985 0.999983 0.999985 0.999928 0.999974 0.999980 0.999983 0.999954 

75% 0.999997 0.999997 0.999997 0.999977 0.999994 0.999995 0.999997 0.999990 

max 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

Note. Level=4; Form=2; DTCWT_q_lp_pe_d; Data is unstandardised. 
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Table 37  

DTCWT  - Descriptive Statistics IX 
 Bearings 

 1,X-axis 1,Y-axis 2,X-axis 2,Y-axis 3,X-axis 3,Y-axis 4,X-axis 4,Y-axis 

count 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 

mean 0.999967 0.999973 0.999974 0.999974 0.999972 0.999976 0.999969 0.999973 

std 0.000046 0.000038 0.000036 0.000036 0.000043 0.000034 0.000045 0.000037 

min 0.999553 0.999626 0.999705 0.999587 0.999360 0.999664 0.999517 0.999645 

25% 0.999955 0.999963 0.999965 0.999965 0.999965 0.999967 0.999961 0.999965 

50% 0.999983 0.999987 0.999988 0.999987 0.999988 0.999989 0.999986 0.999987 

75% 0.999996 0.999997 0.999997 0.999998 0.999997 0.999998 0.999996 0.999998 

max 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

Note. Level=3; Form=1; DTCWT_b_hp_pe_d; Data is unstandardised. 

 

 

 

 

Table 38  

DTCWT  - Descriptive Statistics X 
 Bearings 

 1,X-axis 1,Y-axis 2,X-axis 2,Y-axis 3,X-axis 3,Y-axis 4,X-axis 4,Y-axis 

count 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 

mean 0.999967 0.999973 0.999974 0.999974 0.999972 0.999976 0.999969 0.999973 

std 0.000046 0.000038 0.000036 0.000036 0.000043 0.000034 0.000045 0.000037 

min 0.999553 0.999626 0.999705 0.999587 0.999360 0.999664 0.999517 0.999645 

25% 0.999955 0.999963 0.999965 0.999965 0.999965 0.999967 0.999961 0.999965 

50% 0.999983 0.999987 0.999988 0.999987 0.999988 0.999989 0.999986 0.999987 

75% 0.999996 0.999997 0.999997 0.999998 0.999997 0.999998 0.999996 0.999998 

max 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

Note. Level=3; Form=2; DTCWT_b_hp_pe_d; Data is unstandardised. 
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Table 39  

DTCWT - Descriptive Statistics XI 
 Bearings 

 1,X-axis 1,Y-axis 2,X-axis 2,Y-axis 3,X-axis 3,Y-axis 4,X-axis 4,Y-axis 

count 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 

mean 0.999967 0.999973 0.999974 0.999974 0.999972 0.999976 0.999969 0.999973 

std 0.000046 0.000038 0.000036 0.000036 0.000043 0.000034 0.000045 0.000037 

min 0.999553 0.999626 0.999705 0.999587 0.999360 0.999664 0.999517 0.999645 

25% 0.999955 0.999963 0.999965 0.999965 0.999965 0.999967 0.999961 0.999965 

50% 0.999983 0.999987 0.999988 0.999987 0.999988 0.999989 0.999986 0.999987 

75% 0.999996 0.999997 0.999997 0.999998 0.999997 0.999998 0.999996 0.999998 

max 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

Note. Level=4; Form=1; DTCWT_b_hp_pe_d; Data is unstandardised. 

 

 

 

 

Table 40  

DTCWT  - Descriptive Statistics XII 
 Bearings 

 1,X-axis 1,Y-axis 2,X-axis 2,Y-axis 3,X-axis 3,Y-axis 4,X-axis 4,Y-axis 

count 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 2156.0000 

mean 0.999967 0.999973 0.999974 0.999974 0.999972 0.999976 0.999969 0.999973 

std 0.000046 0.000038 0.000036 0.000036 0.000043 0.000034 0.000045 0.000037 

min 0.999553 0.999626 0.999705 0.999587 0.999360 0.999664 0.999517 0.999645 

25% 0.999955 0.999963 0.999965 0.999965 0.999965 0.999967 0.999961 0.999965 

50% 0.999983 0.999987 0.999988 0.999987 0.999988 0.999989 0.999986 0.999987 

75% 0.999996 0.999997 0.999997 0.999998 0.999997 0.999998 0.999996 0.999998 

max 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

Note. Level=4; Form=2; DTCWT_b_hp_pe_d; Data is unstandardised. 
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(a) 

 
(b) 

Figure 54 Pearson Correlation Heatmap I:  

Raw Data after PE and log distribution a) level= 3 and b) level=4 

 

 
(a) 

 
(b) 

Figure 55 Pearson Correlation Heatmap II:  

Data after HT, PE and log distribution a) level=3 and b) level=4 

 

 
(a) 

 
(b) 

Figure 56 Correlation Heatmap III:  

Data after FFT, PE and log distribution a) level=3 and b) level=4 
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(a) 

 
(b) 

Figure 57 Pearson Correlation Heatmap IV:  

Data after 1D SGF, PE and log distribution a) level=3 and b) level=4 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 58 Kendall Correlation Heatmap V:  

Data after DTCWT_b_hp_pe_d 

a) level=3, form=1, b) level=3, form=2,  

c) level=4, form=1 and d) level=4, form=2 
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(d) 

Figure 59 Kendall Correlation Heatmap VI:  

Data after DTCWT_q_hp_pe_d  

a) level=3, form=1, b) level=3, form=2,  

c) level=4, form=1 and d) level=4, form=2 
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(d) 

Figure 60 Kendall Correlation Heatmap VII:  

Data after DTCWT_b_lp_d 

a) level=3, form=1, b) level=3, form=2,  

c) level=4, form=1 and d) level=4, form=2 
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Figure 61 Autocorrelation II: Raw signal after PE 

 level=3, (a,c,e,f) X-axis and (b,d,f,h) Y-axis 
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(h) 

Figure 62 Autocorrelation III. BF low pass band after PE 

level=3, (a,c,e,f) X-axis and (b,d,f,h) Y-axis 
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Figure 63 Autocorrelation IV: BF low pass band after PE 

Level=4, (a,c,e,f) X-axis and (b,d,f,h) Y-axis 
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Figure 64 Autocorrelation V: HT magnitude after PE 

Level=3, (a,c,e,f) X-axis and (b,d,f,h) Y-axis 
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Figure 65 Autocorrelation VI: HT magnitude after PE 

Level=4, (a,c,e,f) X-axis and (b,d,f,h) Y-axis 
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Figure 66 Autocorrelation VII: FFT magnitude after PE 

Level=3, (a,c,e,f) X-axis and (b,d,f,h) Y-axis 
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Figure 67 Autocorrelation VIII: FFT magnitude after PE 

Level=4, (a,c,e,f) X-axis and (b,d,f,h) Y-axis 
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Figure 68 Autocorrelation IX: SGF after PE 

Level=3, (a,c,e,f) X-axis and (b,d,f,h) Y-axis 
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Figure 69 Autocorrelation X: SGF after PE 

Level=4, (a,c,e,f) X-axis and (b,d,f,h) Y-axis 
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Figure 70 Autocorrelation XI: DTCWT biort low pass  after PE 

Level=4, Form=2, (a,c,e,f) X-axis and (b,d,f,h) Y-axis 
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Figure 71 Autocorrelation XII: DTCWT qshift low pass  after PE 

Level=4, Form=2, (a,c,e,f) X-axis and (b,d,f,h) Y-axis 
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Figure 72 Autocorrelation XIII: DTCWT qshift low pass  after PE 

Level=4, Form=2, (a,c,e,f) X-axis and (b,d,f,h) Y-axis 
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Figure 73 Clustering I Level=3, (a,c,e,f) X-axis and (b,d,f,h) Y-axis 
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Figure 74 Clustering II Level=4, (a,c,e,f) X-axis and (b,d,f,h) Y-axis 
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Figure 75 Clustering III Level=3, (a,c,e,f) X-axis and (b,d,f,h) Y-axis 
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Figure 76 Clustering IV Level=4, (a,c,e,f) X-axis and (b,d,f,h) Y-axis 
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Figure 77 Clustering V Level=3, (a,c,e,f) X-axis and (b,d,f,h) Y-axis 



Locomotives Fault Prognosis                                                                                     
 

 

 

150 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 78 Clustering VI Level=4, (a,c,e,f) X-axis and (b,d,f,h) Y-axis 
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Figure 79 Clustering VII Level=3,  (a,c,e,f) X-axis and (b,d,f,h) Y-axis 
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Figure 80 Clustering VIII Level=4, (a,c,e,f) X-axis and (b,d,f,h) Y-axis 
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Figure 81 Clustering IX Level=3, (a,c,e,f) X-axis and (b,d,f,h) Y-axis 
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Figure 82 Clustering X Level=4, (a,c,e,f) X-axis and (b,d,f,h) Y-axis 
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Figure 83 Clustering XI Level=4, form=1, (a,c,e,f) X-axis and (b,d,f,h) Y-axis 
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Figure 84 Clustering XII Level=3, form=2, (a,c,e,f) X-axis and (b,d,f,h) Y-axis 
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Figure 85 Clustering XIII Level=4, form=1, (a,c,e,f) X-axis and (b,d,f,h) Y-axis 
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Figure 86 Clustering XIV Level=4, form=2, (a,c,e,f) X-axis and (b,d,f,h) Y-axis 
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Figure 87 Clustering XV Level=3, form=1, (a,c,e,f) X-axis and (b,d,f,h) Y-axis 
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Figure 88 Clustering XVI Level=4, form=1, (a,c,e,f) X-axis and (b,d,f,h) Y-axis 
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Table 41  

Raw_data_pe_d I 

Bearings / Axis 

 Bear_1_X_axis Bear_2_X_axis 

Bear_3_X_axis 1 0 

Bear_4_X_axis 1,926 2,151 

   

 Bear_1_Y_axis Bear_2_Y_axis 

Bear_3_Y_axis 0 1 

Bear_4_Y_axis 2,039 2,156 

Note. Level=3 

 

 

 

 

Table 42  

Raw_data_pe_d II 

Bearings / Axis 

 Bear_1_X_axis Bear_2_X_axis 

Bear_3_X_axis 3 3 

Bear_4_X_axis 1,595 2,151 

   

 Bear_1_Y_axis Bear_2_Y_axis 

Bear_3_Y_axis 0 6 

Bear_4_Y_axis 1,817 2,154 

Note. Level=4 
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Table 43  

HT_m_pe_d I 

Bearings / Axis 

 Bear_1_X_axis Bear_2_X_axis 

Bear_3_X_axis 0 0 

Bear_4_X_axis 1,793 2,149 

   

 Bear_1_Y_axis Bear_2_Y_axis 

Bear_3_Y_axis 9 5 

Bear_4_Y_axis 2,053 2,154 

Note. Level=3 

 

 

 

 

Table 44  

HT_m_pe_d II 

Bearings / Axis 

 Bear_1_X_axis Bear_2_X_axis 

Bear_3_X_axis 0 4 

Bear_4_X_axis 1,765 2,151 

   

 Bear_1_Y_axis Bear_2_Y_axis 

Bear_3_Y_axis 16 0 

Bear_4_Y_axis 2,062 2154 

Note. Level=4 
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Table 45  

FFT_m_pe_d I 

Bearings / Axis 

 Bear_1_X_axis Bear_2_X_axis 

Bear_3_X_axis 2,148 423 

Bear_4_X_axis 2,154 32 

   

 Bear_1_Y_axis Bear_2_Y_axis 

Bear_3_Y_axis 117 319 

Bear_4_Y_axis 829 597 

Note. Level=3 

 

 

 

 

Table 46  

FFT_m_pe_d II 

Bearings / Axis 

 Bear_1_X_axis Bear_2_X_axis 

Bear_3_X_axis 1,957 1,283 

Bear_4_X_axis 399 3 

   

 Bear_1_Y_axis Bear_2_Y_axis 

Bear_3_Y_axis 0 860 

Bear_4_Y_axis 1,809 2,090 

Note. Level=4 
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Table 47  

1D SGF_pe_d II 

Bearings / Axis 

 Bear_1_X_axis Bear_2_X_axis 

Bear_3_X_axis 1,982 2,111 

Bear_4_X_axis 1,895 2,131 

   

 Bear_1_Y_axis Bear_2_Y_axis 

Bear_3_Y_axis 1,719 1,898 

Bear_4_Y_axis 1,807 1,991 

Note. Level=3 

 

 

 

 

Table 48  

1D SGF_pe_d II 

Bearings / Axis 

 Bear_1_X_axis Bear_2_X_axis 

Bear_3_X_axis 1,607 2,100 

Bear_4_X_axis 2,154 2,154 

   

 Bear_1_Y_axis Bear_2_Y_axis 

Bear_3_Y_axis 768 2,002 

Bear_4_Y_axis 2,063 2,094 

Note. Level=4 
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Table 49  

DTCWT_b_lp_pe_d I 

Bearings / Axis 

 Bear_1_X_axis Bear_2_X_axis 

Bear_3_X_axis 2,154 2,144 

Bear_4_X_axis 1,798 1,610 

   

 Bear_1_Y_axis Bear_2_Y_axis 

Bear_3_Y_axis 2,154 0 

Bear_4_Y_axis 2,154 2,150 

Note. Level=3,4; Form=1,2 

 

 

 

 

Table 50  

DTCWT_q_lp_pe_d 

Bearings / Axis 

 Bear_1_X_axis Bear_2_X_axis 

Bear_3_X_axis 2,156 2,146 

Bear_4_X_axis 1,791 1,612 

   

 Bear_1_Y_axis Bear_2_Y_axis 

Bear_3_Y_axis 2,154 2 

Bear_4_Y_axis 2,154 2,150 

Note. Level=3,4; Form=1,2 

 

 

 

 



Locomotives Fault Prognosis                                                                                     
 

 

 

166 

 

 

 

Table 51  

DTCWT_b_hp_pe_d II 

Bearings / Axis 

 Bear_1_X_axis Bear_2_X_axis 

Bear_3_X_axis 0 2,044 

Bear_4_X_axis 0 1,944 

   

 Bear_1_Y_axis Bear_2_Y_axis 

Bear_3_Y_axis 38 748 

Bear_4_Y_axis 387 2,150 

Note. Level=3,4; Form=1,2 

 

 

 

 

Table 52  

DTCWT_b_hp_pe_d 

Bearings / Axis 

 Bear_1_X_axis Bear_2_X_axis 

Bear_3_X_axis 0 2,044 

Bear_4_X_axis 0 1,944 

   

 Bear_1_Y_axis Bear_2_Y_axis 

Bear_3_Y_axis 38 748 

Bear_4_Y_axis 387 2,150 

Note. Level=3,4; Form=1,2 
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 Table 53  

 Binary Classification 

 Metrics 

Method Loss AUC PRE REC Binary ACC 

Raw_data_pe_d 0.6935 0.4913 0.4559 0.4559 0 

1D SGF_pe_d 0.6934 0.4994 0.4931 0.4508 0 

HT_m_pe_d 0.6934 0.6934 0.4945 0.4945 0 

BF_lp_pe_d 0.6934 0.4957 0.4931 0.4351 0 

FFT_m_pe_d 0.6934 0.4945 0.4959 0.5069 0 

DTCWT_b_lp_pe_da 0.6934 0.4945 0.4934 0.5087 0 

DTCWT_b_hp_pe_da 0.6933 0.4991 0.5005 0.4704 0 

DTWT_q_lp_pe_d* 0.6934 0.4944 0.4951 0.5064 0 

 Validation 

Raw_data_pe_d 0.6929 0.4890 0.5123 1 0 

1D SGF_pe_d 0.6929 0.5000 0.5123 1 0 

HT_m_pe_d 0.6930 0.5000 

 

0.5123 1 0 

BF_lp_pe_d 0.6929 0.4890 0.5123 1 0 

FFT_m_pe_d 0.6930 0.4890 0.5123 1 0 

DTCWT_b_lp_pe_da 0.6929 0.5000 0.5123 1 0 

DTCWT_b_hp_pe_da 0.6929 0.5000 0.5123 1 0 

DTWT_q_lp_pe_d* 0.6929 0.4890 0.5123 1 0 

Notes. Binary Classification which distinguish the state in working and failure. 

Task includes 4 bearings, X and Y axes, 2156 instances, 100 neurons, 20 epochs, 

sigmoid activation, binary cross-entropy and stable pseudo-randomly shuffling; 

b denotes biort; q denotes qshift; pe denotes the Permutation Entropy Transform; 

d denotes log normalization; hp denotes high pass; lp denotes low pass; m 

denotes magnitude. 

aIncluding 3 and 4 levels. 
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 Table 54  

 Multi-class classification without custom indexing 

 Metrics 

Method Loss 
Categorical 

ACC 
AUC PRE REC 

Raw_data_pe_d 0.9340 0.5416 0.7375 0.6031 0.3708 

1D SGF_pe_d 0.9547 0.5361 0.7242 0.6004 0.3711 

HT_m_pe_d 0.9223 0.5452 0.7438 0.6069 0.3777 

BF_lp_pe_d 0.9685 0.5266 0.5921 0.3276 0.9635 

FFT_m_pe_d 0.9376 0.5379 0.7343 0.6212 0.3490 

DTCWT_b_lp_pe_da 0.9104 0.5547 0.7538 0.6350 0.3929 

DTCWT_b_hp_pe_da 0.9160 0.5449 0.7467 0.6225 0.3747 

DTWT_q_lp_pe_d* 0.9288 0.5390 0.7407 0.6185 0.3476 

 Validation 

Raw_data_pe_d 0.9269 0.5466 0.7418 0.6036 0.3909 

1D SGF_pe_d 0.9479 0.5412 0.7292 0.6030 0.3843 

HT_m_pe_d 0.9132 0.5503 0.7487 0.6063 0.3862 

BF_lp_pe_d 0.9635 0.5290 0.7156 0.6023 0.3148 

FFT_m_pe_d 0.9274 0.5430 0.7408 0.6382 0.3286 

DTCWT_b_lp_pe_da 0.9012 0.5597 0.7591 0.6449 0.3964 

DTCWT_b_hp_pe_da 0.9042 0.5548 0.7547 0.6282 0.3940 

DTWT_q_lp_pe_d* 0.9220 0.5438 0.7448 0.6313 0.3300 

Notes. Muli-label classification which distinguish the state in working, failure 1 

and failure 2. Task includes 4 bearings, X and Y axes, 413,952 instances, 100 

neurons, 20 epochs, softmax activation, categorical cross-entropy and stable 

pseudo-randomly shuffling; b denotes biort; q denotes qshift; pe denotes the 

Permutation Entropy Transform; d denotes log normalization; hp denotes high 

pass; lp denotes low pass; m denotes magnitude. 

aIncluding 3 and 4 levels. 

 

 

 



Locomotives Fault Prognosis                                                                                     
 

 

 

169 

 

 

 

 Table 55  

 Multi-label classification with custom indexing 

 Metrics 

Method Loss 
Categorical 

ACC 
AUC PRE REC 

Raw_data_pe_d 0.9340 0.5416 0.7375 0.6031 0.3708 

1D SGF_pe_d 0.9547 0.5361 0.7242 0.6004 0.3711 

HT_m_pe_d 0.9223 0.5452 0.7438 0.6069 0.3777 

BF_lp_pe_d 0.9685 0.5266 0.5921 0.3276 0.9635 

FFT_m_pe_d 0.9376 0.5379 0.7343 0.6212 0.3490 

DTCWT_b_lp_pe_da 0.9104 0.5547 0.7538 0.6350 0.3929 

DTCWT_b_hp_pe_da 0.9160 0.5449 0.7467 0.6225 0.3747 

DTWT_q_lp_pe_d* 0.9288 0.5390 0.7407 0.6185 0.3476 

 Validation 

Raw_data_pe_d 0.9269 0.5466 0.7418 0.6036 0.3909 

1D SGF_pe_d 0.9479 0.5412 0.7292 0.6030 0.3843 

HT_m_pe_d 0.9132 0.5503 0.7487 0.6063 0.3862 

BF_lp_pe_d 0.9635 0.5290 0.7156 0.6023 0.3148 

FFT_m_pe_d 0.9274 0.5430 0.7408 0.6382 0.3286 

DTCWT_b_lp_pe_da 0.9012 0.5597 0.7591 0.6449 0.3964 

DTCWT_b_hp_pe_da 0.9042 0.5548 0.7547 0.6282 0.3940 

DTWT_q_lp_pe_d* 0.9220 0.5438 0.7448 0.6313 0.3300 

Notes. Multi-label classification which distinguish the state in working, failure 

1-2, time segments 1-4. Task includes 4 bearings, X and Y axes, 413,952 

instances, 100 neurons, 20 epochs, softmax activation, categorical cross-entropy 

and stable pseudo-randomly shuffling; b denotes biort; q denotes qshift; pe 

denotes the Permutation Entropy Transform; d denotes log normalization; hp 

denotes high pass; lp denotes low pass; m denotes magnitude. 

aIncluding 3 and 4 levels. 
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 Table 56  

 Fine-tuned DTCWT_b_lp_pd_d 

Metrics 

Loss 2.7846 

ACC 0.9923 

AUC 0.8535 

PRE 1 

REC 0.3026 

Validation 

Loss 2.7733 

ACC 1 

AUC 0.8535 

PRE 1 

REC 0.4683 

 

 

Table 57  

Used Libraries 

Bitstring 3.1.7 

 

Deap 1.3.1 

 

Keras 2.4.3 

 

Mglearn : scikit-learn 0.21.3, pandas 0.25.1, 

matplotlib 3.1.1, scipy 2.0.0, pyparsing 2.4.2 e.t.c. 

 

Networkx 2.3 

 

Plotly 4.14.3 

 

Pyentrp 0.3.1 

 

Pywt 1.0.3 

 

Scoop 0.7.1.1 

 

Seaborn 0.9.0 

 

Stasmodels 0.12.1 
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Table 58  

System 

MacOS Mojave 

Version 10.14.6 

MacBook Air (Retina, 13-inch, 2019) 

Processor 1.6 GHz Intel Core i5 

Memory 8 GB 2133 MHz LPDDR3 

Graphics Intel UHD Graphics 617 1536 MB 
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