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Abstract

In the field of climate change analysis, a huge amount of information, derived
from various sources and in various formats needs to be analyzed daily, for the
production of accurate insights and predictions. Such a task, is heavily reliant
on precise measurements and visual information. Thus, the instruments that
are tasked with capturing this information are of high importance. Since
climate change analysis is a wide field, the focus will be narrowed towards the
detection of possible factors contributing to the phenomenon of deforestation.
Furthermore, the type of information that will be processed is visual, making
satellite imagery an ideal choice.

In this thesis, we first tackle the task of creating a pipeline for prepro-
cessing said satellite imagery. The preprocessing step includes the possible
transformations that will be performed on the images as well as the optimal
set of bands with regards to the performance of the given model. Next, we
will perform multi-label classification in an attempt to describe the content of
the images in terms of the factors that contribute to the deforestation, using
a set of tags. Taking into consideration the limited available resources, we
employ EfficientNet, a lightweight Convolutional Neural Network which was
found to achieve state-of-the-art results in image multi-label classification.
Subsequently, as a baseline model we use VGG16 and as an experimental
model we deploy the Vision Transformer, which seeks to integrate the Trans-
former layer that is widely used in natural language processing, into the field
of computer vision. Furthermore, for variety purposes we finish our experi-
ments by implementing the ResNet, DenseNet and MobileNet architectures.
The results that are achieved are very promising, showcasing that there is
high value in the visual information available with regards to the task of
deforestation detection.



IMepiindn

2TOV TOUEN TNG AVAAUONG TNG XAUOTIXAS aAAXY NG, €VOC MEYSAOC OYXOC TTANRO-
poplag, 0 omolog TEOEPYETUL AO BLAPORES TNYES XL OF OLUPOPETIXES EXDOYEC,
yeedleton var avoALel Je oxomd TNV €aymYTH TOV YPNOWWY CUUTEQUOUATMY
xou Tpofhédewy. Auth 1 dadixacta e€apTdton oe Yeydho Bordud and Tic axplPnc
UETENOELC X0 TO OTTXO LAXO. )¢ amoTEAEOUA, TO OPYUVA TOU ATOGXOTOVY
oV GUAOYY| TNG TANEogopluc auThc etvor LioTng onuacioc. Acdouévou mwg
N avdhuon TS xApaTxc ahhay g etvon éva tedio ue peydho edpog, 1 épeuva Yo
E0TIYOEL OTNV AVEYVEUST] TV TORAYOVIWY TOU GUUPBAAAOLY OTO PAUVOUEVO TNG
anodihwong tov dackv. Kielvovtag, o tOnog tng mAnpogopiog mou Yo yenot-
womotniel Yo elvor amoxAeloTind onTinde, (Ao TOVTUC TO UALXO TOU TROERYETOL
amO TOUS BOPLUPOEOUE LBAVIXO.

Y& auth TN Simhwpotiny| epyacio, e€etdlouue apyixd pedddoug enedepyaciog
TOU UAXOU amtd Toug 00pupoeous 6To onoto avagepUrxoue mo mtev. To Brjuc
aUTO TEPIEYEL TOUC TWAVOUS PETUCY NUATIONOUS TOU Vol EQUOUOCGOUUE GTO OT-
TIX6 UG, %xadidS o TNV eapywyY| TwV BEATIOTWY GUYVOTATWY OGOV aPopd
TNV anédoct Tou dovéviwe uoviéhou. ‘Emeita, Yo e@upudcouue xatrnyopt-
ormoinom Ue moAéC eTwéteg ot plo mpoomdleio va mepLypdoude Toug mopd-
yovieg g amodihwong mou Aaufdvouy ywpea o xdlde ewdva. AouBdvovtog
L6 Toug TEPLOPLOPEVOLS BlardEatoug TOPOUS Yo TN BIEEay YT TN OLThw-
wotixg, yenowornoolue to EfficientNet, éva ehagpd unoloyiotind Luvelhnx-
Tx6é Nevpwvixd Alxtuo To 0Tolo EMTUYYAVEL UTEPCUYYEOVY ATOTEAECUATO
oTNV ToEVOUNOT TV EXOVKY PE TOMEC eTixéTec. Emompociétwe, g onueto
OVaPOEAC Yol TNV ATOB00T] TLV UTOAOITKY LOVTEAGY Yenoiuoroolue to VGG16
A0 OOV TEWAUUATIXG POVTEAO YenouloTololue Tov Vision Transformer, o onolog
mpoomadel Vo EVOWUATOOEL To 7 G TEOUATA UETUOY NHATIopo)” To omola yenot-
HOTOLOVVTAL EUPEMS GTOV XAUDO TNG AVIAUGTIC XEWEVOL, GTOV XAABO TG 6pAUOTS
UTOAOYIGTOY.  LUVEYILOVTOS, TEAELOVOUUE To TELRHUUTO UAOTIOLOVTOS TLC Op-
yrtextovxéc ResNet, DenseNet xou MobileNet. To emiteuydévto anoteréo-
wortor efvon e€onpeTind, LTOBEWVOOVTAG TS LUTHPYEL UEYAAN oliot 6TV OTTIXT)
TAnpogopia Tou pog bvon drardéoiur, 6oov apopd TNV Yeron NG oTNY aviyveuo
e anohilwong Twy dachY.
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Chapter 1

Introduction

1.1 Deforestation Detection and Satellite Im-
ages

In recent times, the phenomenon of rapid climate change has
been studied by a lot of scientific organizations that either sim-
ply monitor or seek solutions to the problem. Consequently, a
lot of devices that monitor the earth’s atmosphere have been
set in motion in order to gather quality data, with the purpose
of building high performance models that will detect and pre-
dict climate change. The aforementioned phenomenon is caused
due to a plethora of contributing factors, with one of the ma-
jor ones being deforestation, which will be the main topic of
this thesis. This problem is approached from many different
angles, which are primarily parametrical. Those approaches, al-
though valuable, would gain a boost performance-wise if they
took advantage of more of the sources of information that are
available to us. One such source is the satellite imagery, which
is broadcasted to earth from public and private satellites alike,
in regular intervals. By capitalizing on this information, not
only can we tackle the problem of detecting deforestation from
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a unique angle, but we can also enrich existing models that use
other sources of information for achieving the same goal. How-
ever, achieving such a feat is no easy task as it is reliant upon
understanding the factors that contribute to deforestation, as
well as ways to extract and utilize the information hidden in the
satellite imagery.

Deforestation, albeit indisputably concerning in our age, is
not anything new. It has been happening for thousands of
years, notably from the era of the first agricultural societies,
when the need for more land-space was born. However, in our
times, earth’s population and consequently the need for more
space, have increased exponentially at the expense of the exist-
ing forests and greenery. Therefore, a variety of problems direct
and indirect have arisen. Firstly, a tragic consequence is the
loss of plants and animals, even whole ecosystems. Then the
reduction of the number of plants leads to less carbon dioxide
filtration, thus contributing to another major climate problem,
the Greenhouse Gases. Lastly, we have disruptions in the water
cycle, soil erosion, flooding, etc, that threaten vulnerable indige-
nous people and in extent our society as a whole. Thereupon,
it is only natural that detecting deforestation is a critical task
of utmost importance for the field of climate change analysis.
While the term deforestation is commonly used to describe the
removal of trees or other greenery through artificial means, it is
not limited to that. The loss of trees and other vegetation can
also be attributed to accidental or natural means. Furthermore,
directly removing the trees is only one way to cause artificial de-
forestation. Deeper inside the thesis we will thoroughly discuss
about direct and other, more indirect factors that can cause it.
Being able to categorize those factors is very beneficial in the
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process of understanding the gravity and reversibility of each
one. With the rise of machine and deep learning a lot of ef-
fort has been directed into the quality of the categorization as
well as the automation of the process for monitoring purposes.
In our task, we will start by receiving satellite imagery, extract
the parts of it that give the optimal value with regards to the
performance and proceed to use deep learning models that take
advantage of this information. Figure 1.1 illustrates some com-
mon causes of deforestation.

W Primary cause W Dmportant Less impartant Not a cause

DEFORESTATION PRESSURE  sres  Smme o™ S
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New Guinea - = =
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Figure 1.1: Common factors that contribute to deforestation in different
regions.
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Typically, this approach utilizes satellite imagery, the reason
being that satellites cover all of earth’s surface in regular inter-
vals and provide us with more depictions of the surface than
the eye can see. Said depictions are called image bands and are
created through the use of various amounts of electromagnetic
radiation that are emitted from the satellite. This radiation is
then reflected into the satellite and is measured by specialized
sensors. The range of wavelengths measured is known as a band
and is commonly described by the name and the wavelength
of the energy being recorded. Thus, our task is to discern the
bands that are beneficial for deforestation detection and use only
them in an attempt to reduce training complexity and improve
performance. The bands that are commonly captured by the
satellite sensors are portrayed in figure 1.2.

coastal applications, water penetration, deep water masks
m materials differentiation, shadow-tree-water differentiation
coastal applications, water body penetration, discrimination of
soilfivegetation, forest types, reef cover features
crop types, sea grass and reefs, bathymetry ]
leaf coloration, plant stress, CO2 concentration, algal blooms, sea
& grass and reefs, separability of iron formations, “true color”
chlorophyll absorption, vegetation analysis, plant species and
stress
Red Ed vegetation health, siress, type and age, sea grass and reefs
land/no land, impervious from vegetated, turbidity, camouflage
biomass surveys, plant stress
delineation of water bodies, soil moisture discrimination
NIR2 bloma_ss surveys, _plf_int stress
materials differentiation

Figure 1.2: Common bands that can be detected by most satellite sensory
systems.
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1.2 Goal of the thesis

As of yet, there has been no definitive solution to the problem
of deforestation detection. The fact that the problem is still
open, has allowed for the development of a variety of approaches
towards its solution. A popular approach among them is the
use of parametrical measurements which encapsulate distinct
characteristics of the atmosphere and the ground of the area
of interest. This approach, albeit successful, does not utilize
the complete information available for each area. Utilizing the
images could create a more complete representation of the area,
enhancing the detection performance.

We utilize a dataset published in a Kaggle competition by
a company named Planet, containing coarse-resolution imagery
from Landsat (30 meter pixels) or MODIS (250 meter pixels).
The area of interest is the Amazon forest as it is subject to a
plethora of factors that contribute to deforestation, rendering
the phenomenon there quite intense. Each entry contains im-
agery that comes in two formats, the first being the RBG bands
in jpg, and the second being RGB plus the infrared band as tiff.
All entries are described by a subset of 17 available labels that
are named after popular factors of deforestation.

To cope with the problem of deforestation detection, many or-
ganizations have developed systems exclusively relying on para-
metrical information. As such they are unable to handle cases
with poor or no parametrical information. Our task is to explore
the application of deep convolutional neural network architec-
tures in the context of deforestation detection, in an endeavor
to support the systems that are already implemented, as well as
to provide a standalone solution that utilizes satellite data. We
start by choosing the right bands that should be extracted from
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the images. Then, we refine the dataset into a proper format
in order to train three neural networks, each one tackling the
same problem of multilabel classification from a different angle.
We then use the trained models to extract a set of tags that de-
scribe the factors of deforestation that have taken place in each
image. As we show later, with the recent advancements in com-
puter vision, the information obtained from the images is not
only useful, but can also rival the performance obtained from
the parametrical approaches. Concluding, the integration of the
work provided by this thesis can greatly enhance the existing
systems.

1.3 Outline

Due to the multidisciplinary nature of this thesis, it is divided
into subsections which are organized as follows:

e Chapter 2 discusses related work. It begins with a closer
look into the work with regards to the Amazon rainfor-
est deforestation and explains how the use of artificial in-
telligence has been utilized in this context. Those works
mostly monitor said rainforest by classifying the deforesta-
tion drivers for plots of land that stem from satellite im-
agery. Of course, the research is not limited into the Ama-
zon rainforest as the rest of the papers perform similar work
for Indonesia and various mangrove forests. The following
subsection maintains the theme of forest monitoring but
this time from the angle of other factors that affect climate
change. The works in question, monitor the forest in order
to predict the places in which fires will take place and the
path which those fires will choose, by taking into account
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flammable natural resources that exist inside those forests.
Throughout this section, a plethora of techniques and neu-
ral network architectures are utilized and compared, in-
spiring the work in our thesis. Besides the climate change
related work, we mention two works that introduce convo-
lutional neural network architectures, the EfficientNet and
the Vision Transformer, as our work utilizes those. Lastly,
in its own subsection, explainable Al, a framework used to
explain the results of our neural networks, also notoriously
known as ”"black boxes”, is described.

Chapter 3 describes the dataflow of the system from band
extraction to model architectures. Transforming raw satel-
lite data to probability vectors is a lengthy process, worthy
of being thoroughly explained in its own section. Briefly,
raw satellite data contain many bands with different mean-
ings, from which the useful ones for our research should be
extracted. Then, those bands which are represented as ar-
rays, are modified with the use of a generator in a format
that is easily understood by a neural network. Among, the
6 neural architectures used, (VGG16, DenseNet, Resnet,
MobileNet, EfficientNet, Vision transformer) the state of
the art models (EfficientNet and Vision Transformers) are
thoroughly explained in their own subsections. Those ar-
chitectures will finally produce probability vectors which
will determine which drivers of deforestation are likely to
have taken place for each image. In their own subsections,
AdamW, a variant of the Adam optimizer and the binary
cross-entropy loss function, a loss function integral to mul-
tilabel classification, are analysed in detail.
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e Chapter 4 presents the methodology and experiments. We
start by discussing the origins of the dataset, how it was
handled and a quick analysis of what we expect to find in-
side the dataset. Then, we introduce each one of the drivers
of deforestation for the Amazon rainforest, that act as our
dataset’s labels. Afterwards, the experiments subsection
takes place. For each model, the hyperparameters used and
the reasons behind said choices are discussed. Also, their
loss functions and confusion matrices are presented. Fi-
nally, after an attempt to explain the reasons behind those
results, a direct comparison between all models takes place.

e Chapter 5 draws conclusions and proposes new ideas for fu-
ture work. We start with a brief overview of the thesis and
then, compare the final results with a previous work that
used the same dataset for tackling same problem. In the
following subsection we describe Noisy student, a student-
teacher model that can be built directly on top of our Ef-
ficientNet and potentially increase its performance. Fur-
thermore, we list some techniques that could not be used
due to our limited resources but could benefit our models’
performance, more tuning and scaling our EfficientNet up
to B7. Lastly, TResNet, a very promising model for mul-
tilabel classification tasks, is briefly introduced as a viable
alternative to our models.
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Chapter 2

Related Work

2.1 Neural network architectures to tackle de-
forestation

The work of this thesis is a followup of the work performed by
Aaron Loh and Kenneth Soo [12] who experimented upon the
exact same dataset that we will experiment upon. They at-
tempted to describe 256x256x4 satellite image chips that stem
from Planet, using a set of 17 labels that correspond to the
prevalent factors of deforestation with regards to the Amazon
forest. To achieve this purpose, they made use of the transfer
learning technique, implementing models that were pretrained
in the imagenet dataset. The aforementioned models are convo-
lutional neural networks and more specifically the VGG16, the
ResNet50 and the InceptionNet, thus, providing a comparison
of how the models fare in that dataset. The best model of the
ones used, produced an {2 score of 0.89.

In the context of the Amazon rainforest deforestation, M. X.
Ortega et al. [15] combined all the previous research done into a
paper, putting emphasis in the variety of neural network archi-
tectures that were implemented in order to tackle the problem.
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The authors begin with brief reference to the problem and the
most notable techniques that were used to monitor the rainfor-
est. Out of those methods, the authors picked some change de-
tection methods that they would implement and evaluate. The
initial method was the Early Fusion [4] where the images are
stacked along their spectral dimension to generate a unique in-
put image for patch extraction. The second method was the
Siamese Network [28] where two identical networks with shared
weights receive as input pairs of images in order to create a con-
catenated feature vector that acts as the classifier. The choice of
techniques was conscious as the techniques share some proper-
ties including the feature vector stacking. Those networks were
trained using a dataset that comprises of a pair of Landsat 8-
OLI images, with 30m spatial resolution that were subjected to
atmospheric correction. The final images had 1100 x2600 pixels
and seven spectral bands (Coastal/Aerosol, Blue, Green, Red,
NIR, SWIR-1,and SWIR-2). The experiments showed that both
networks have the capacity to perform better than traditional
machine learning techniques used in the field, such as the SVM
(used as the baseline in their paper).

Adding to the research on Amazon rainforest deforestation,
Rafael A. S. Rosa et al. [18] attempt to detect the phenomenon
making use of use of SAR (synthetic aperture radar). They pro-
pose a new method of change detection in multitemporal SAR
images using X- and P-band SAR images simultaneously to cal-
culate a change detection indicator image (binary mask) based
in the coherences between all the images used as attributes cal-
culated from superpixel segments to define a change detection
neural network. The data set was provided by Santo Antonio
Energia S.A. acquired by the airborne sensor OrbiSAR-2 from
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Bradar. They were collected in the period between 2012 and
2014 at X and P bands. Their resolution was 1000x1000 rep-
resenting an area of one square kilometer. In order to detect
change, each set of 17 images (one image for each month) dedi-
cated to the same area, was condensed into 1 image consisting of
superpixels through PCA. Furthermore, those superpixel images
were given to a Multi-Layer Perceptron (MLP) with 10 folds of
cross validation which produced as output change or not change
in the image sets. The results varied greatly between image sets
and were worse than previous work. Nevertheless, the authors
conclude that this is normal, as their neural network was fed
only one attribute (superpixels) while the previous work used 7
features. Thus, the produced superpixels were of greater qual-
ity and paired with other features would produce substantially
better results.

Moving away from the Amazon rainforest, Jeremy Irniv et al.
8], perform a similar experiment for Indonesia. Indonesia is an-
other country where the rate of deforestation is extremely high.
In an attempt to detect the drivers of deforestation in this coun-
try, the research team implemented the ForestNet. This model is
able to accept patches of satellite imagery of any size and classify
them under the categories of plantation, agriculture, grassland
and a default one for all the rest. The authors went through
the effort of manually labeling Landsat 8 satellite imagery that
is derived from google earth, from 2013 onward. All images
were then converted to surface reflectance, 332x332 chips to ac-
count for atmospheric scattering or absorption. More than 50%
cloudy images were discarded. All images were subject to per
pixel classification. In order to achieve the desired performance,
the authors employed data augmentation while experimenting
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with a variety of architectures like UNet[10], Feature Pyramid
Networks[11], DeepLabV3[27] and EfficientNet. The best per-
forming model, which took the name ForestNet, was a Feature
Pyramid Network with an EfficientNetB2 as the backbone. The
results were promising as the performance was generally high
for all the drivers, albeit further improvements could be made,
such as taking more drivers and the evolution of the landscapes
into account.

Dillon Hicks et al. [7] focus on mangrove ecosystems that act
as carbon sequestrators, limiting the effect that carbon emis-
sions have on climate change in the process. While the reasons
to preserve those forests are clear, those ecosystems seem to de-
cline by 2% per year. Under those circumstances, the authors
developed a system that can monitor areas of mangrove forests.
The dataset consists of UAV satellite imagery from mangrove
sites in Baja California Sur between 2018 and 2020 using a DJI
Phantom 4 Pro UAV. The images are high quality (3840 x 2160)
taken from an altitude of 120m using DJI GroundStation Pro.
Then they produced additional features from the images such
as the normalized difference vegetation index (NDVI) and the
normalized difference water index (NDWTI). Annotators created
masks for each image with only 2 labels (magrove or other) as
the purpose was only to detect the existence or not of man-
grove forests. The architecture used was a hybrid CNN made
of a perceptron and a pretrained EfficientNetB0 whose output
embeddings are concatenated in order to produce the final out-
put (mangrove, non mangrove). The performance of the hybrid
model was high. However, the fact that this hybrid model needs
both drone and satellite imagery of high resolution as an input,
makes its usage very limiting.
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An earlier work conducted by Thiago Nunes Kehl et al. [14]
proposes a tool that can be used in the field of deforestation
monitoring, as its purpose is to be able to perform deforestation
detection in regular intervals. This dataset too, stems from the
Amazon forest as it is captured by the MODIS/TERRA sensor
of a satellite. The tool uses an artificial neural network for the
processing of the dataset for which it provides parametrization
and configuration capabilities, so that it can be adapted to more
problems. This time, the performance evaluation of this model
is done using a confusion matrix, so it is not directly comparable
to the results of our thesis or the aforementioned related work.
With this setup, a spectrum-temporal analysis of a region of
the Amazon was made on 57 images. Finally, they conclude
that such techniques that involve neural networks, have a strong
potential with regards to deforestation detection, but as of the
time the paper was released, the false alarms that would be
fired would impact the consistency of this technique, making it
difficult to be used for real world implementations.

2.2 Neural network architectures to tackle cli-
mate change

The phenomenon of climate change has been in the forefront
of research for quite some time. Understanding the forestry
can lead to solutions to issues that exceed the scope of defor-
estation itself. Pranoy Panda et al. [16] map vegetation in
order to model the way wildfires will behave in the US west
coast. For the purposes of this research, they use wildfire fuel
data from nadir (downward-looking) images taken by drones or
humans. Wildlife fuels can consist of grass, moss, and dead
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needles from conifer trees (this paper focuses on wildlife fuels
that can be found in the ground). The dataset consists of 28
areas, each one being represented as a 4x4 grid of images for
a total of 448 images across all areas. The images contained
the labels of firewood, forb, grass, Lichen, Moss-Feath, Moss-
Other, Moss-Sphag, shrub, non-fuel, and void. The model used
was a Deeplabv3-Resnet101 which was pretrained on the COCO
train2017 dataset. The need to use transfer learning came up
due to the huge variety and the small amount of the available
images. The model actually needed a huge amount of images in
order to be properly trained and they just were not available.
Additionally, data augmentation was used in order to quadruple
the size of the dataset. Since the problem is one that requires
segmentation, the images were masked according to the afore-
mentioned labels and the model tried to approximate this masks.
In overall, the number of correctly classified pixels is high, which
is the metric that the authors prompt the reader to pay more
attention to.

On a more global scale, Yongjia Song et al. [23] research tech-
niques to predict wildfires using neural networks and non-linear
models. The dataset consisted of statistical small fire data from
Global Fire Emissions Database, meteorological data from Na-
tional Centers for Environmental Prediction Climate Forecast
System Reanalysis (CFSR) and three long-term climate ocean
indices (ONI, AMO, PDO) from Earth System Research Lab-
oratory of NOAA. Three non-linear statistical models, GLM,
regression tree, and neural networks were applied to the afore-
mentioned feature sets. Among those models, a combination
were the GLM was used to select the best predictor parameters
combination and the neural network produced a 1-year moving
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forecast seemed to yield the best results. The authors conclude
that the model accounted for seasonal and regional patterns,
showcasing a capacity for high performance.

2.3 Convolutional neural network architectures

A primary purpose of this paper is to showcase how interesting,
state of the art neural network architectures fare with regards to
this problem. For this reason, we will add the EfficientNet into
our arsenal, introduced by Mingxing Tan et al. [25]. The au-
thors delve deeper into the computational cost and performance
trade-offs with regards to the convolutional networks. For this
purpose, they devise a formula, that dictates a way to uniformly
scale the convnets. This formula, introduces the compound coef-
ficient which can scale baseline networks in discrete levels. They
call the baseline network EfficientNetB0, while its largest coun-
terpart is the EfficientNetB7. This formula acts as a rule of
the thumb in convenet scaling procedures and as showcased can
be used in other traditional networks such as the ResNet and
the MobileNet. Additionally, using a mathematical formula to
tackle the scaling problem, alleviates the need for lengthy tun-
ing sessions, making EfficientNets attractive choices when low
computational resources are available. EfficientNet surpassed in
accuracy all other convolutional networks [2, 6] of its time on
the popular ImageNet and Cifar-100 dataset benchmarks.
More recently, Alexey Dosovitskiy et al. [5] proposed a gen-
eral purpose convolution neural network upon which we will ex-
periment for the purposes of this thesis. The paper imports the
notion of Transformers, which is an architecture that is widely
used for natural language processing tasks, into the field of com-
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puter vision. Essentially, they seek to substitute specific com-
ponents of existing neural networks in an effort to integrate the
Transformer blocks in a non-invasive manner in an attempt top
increase their performance. The reasoning behind those exper-
iments is to show that image classification should not necessar-
ily be reliant upon convolutional neural networks. If an image
is tessellated into patches, a Transformer can train on those
patches as well as it does for words. By managing to showcase
the proposed model’s superiority over other traditional CNNs
with regards to its performance on benchmark datasets that are
commonly used for classification, the authors conclude that this
technique is viable for such tasks.

2.4 Explainable Al

Lastly, a vital part of every research is the explainability of the
end results. Alejandro Barredo Arrieta et al. [1] analyze the
various efforts that have gone into analyzing the results that are
extracted from neural networks. Those techniques were coined
under the umbrella term of explainable Al. Explainable Al is
a broad field, so the authors study those techniques from the
scopes of understandability, comprehensibility, interpretability,
explainability, transparency. Generally, a black-box model can
be explained textually, by simplification, by a visualization, by
local explanation, by feature analysis and with an explanation
by example. Having set the pillars of Explainable AI, the au-
thors proceed to analyze each prevalent machine learning tech-
nique by using their framework. Notably, they state that con-
volutional neural networks can be explained in an easier fashion
than other types of models. The techniques that try to explain
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them can be divided into those that map the output in the in-
put space to see which parts of the input were discriminative
for the output and delve into the intermediate layers of the net-
work and extracts the information that it 'sees’ at that point.
To tackle the first issue, DeconvNet [21] was used, which when
fed with a feature map from a selected layer, reconstructs the
maximum activations. Those activations can show what parts
of the image played a bigger role in the output. With regards
to the second issue, the solution is to extract the photographic
output of the intermediate convolutional layers, for the images
that maximized the probability output in a particular class. A
followup technique in the same direction was the Deep Gener-
ator Network (DGN) which generated the most representative
image for a given output neuron in a CNN. The aforementioned
and a plethora of other equally important works, proved to be
the milestones of convolutional network explainability, which is
integral for the research of this thesis.

Out of all the methods that are used to explain the convolu-
tional neural networks that were listed previously, in our thesis
we will choose the Grad-Cam, a work of Selvaraju et al. [20].
The technique’s name stands for Gradient-weighted Class Ac-
tivation Mapping. It uses the gradients of any target concept
that flow inside a neural network until the last convolution in or-
der to highlight the most important regions of the input image
with regards to the classification decision. A major strength
of this technique as the authors state, is its ability to be ap-
plied to a wide range of neural networks without the need for
retraining or extra layers. Those visualizations are very use-
ful for understanding the reasons behind classification failures
and the classifications prowess of the model. Additionally, the
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authors propose an extension of Grad-Cam (which makes class
based decisions when highlighting pixels), namely the Guided
Grad-Cam, which aims to highlight some more fine-grained de-
tails in the image. This technique was initially used to interpret
the results of a VGG16, demonstrating an increase in both the
faithfulness and interpretability of the model. In this context,
faithfulness is how accurately the function of the model is por-
trayed and interpretability has to do with the degree in which
the results can be understood by humans. While there is a
tradeoff between those two, this technique scored high in both
metrics in a mixture of technical and human experiments.
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Chapter 3

Methods

3.1 Deforestation Detection Pipeline

The deforestation detection pipeline is fairly complex as we are
tasked with producing probability vectors out of raw satellite
imagery. The images that stem from the satellites are not in a
form that can be directly understood by a neural network. A
satellite image comes with a plethora of brands that represent
different information in the form frequencies. It is our duty
extract the useful bands for our problem, that means the ones
with the most amount of information. However, the process
does not end with the band extraction. Those bands should be
refined to a format that is understood by the neural network,
which is usually multidimensional arrays in [0-1]. Only under
those conditions will the neural network model accept them in
order to turn them into probability vectors. The probability
vector indicates how likely it is for a deforestation driver to have
taken place in an image.

Figure 3.1 shows our system’s pipeline for detecting deforesta-
tion. The initial step is to read the appropriate bands from the
satellite images given in tiff format. For this reason, a basic im-
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age generator has been implemented with the purpose of reading
the first 4 channels of the images (RGB + Infrared). The images
are stored locally and the corresponding dataset that matches
the image names with their labels is transformed into a format
that can be parsed from the aforementioned generator. After-
wards, the generator applies some transformations and forwards
the images into a neural network. Finally, the neural network
produces an array with the probability that each label has to
describe each image.

Satellite Band Image Neural Probability
Images Extraction Generator Network Vector
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Figure 3.1: Flow of satellite information processing towards multilabel clas-
sification
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3.2 Data Preprocessing

The first step is to find a dataset that is appropriate for our
problem. With this in mind, we will use the one that was pub-
lished by Planet, in whose specifics we will dive deeper in the
next chapter. This dataset, is available in jpg format (RGB)
and tiff format with 4 channels (RGB + near infrared). Most
of the work with regards to image extraction is already done,
what remains is to decide whether we need the extra near in-
frared band or not. For this thesis, it was decided that near
infrared is a vital dimension of the image as it represents the
existence and intensity of greenery, prevalent in more than half
of the dataset’s labels. With this decision, we will need more
computational resources in order to process this information but
will also get better performance. The images are paired a csv
file that matches the image names with a subset of a total of 17
different labels that are the drivers of deforestation.

Having the images and the csv downloaded locally, we first
replace the image names in the csv with the full paths that lead
to the images. Then, we expand the label column (that holds the
image labels as an array) into 17 columns with values the exis-
tence or the absence of each label from the image. This format
is acceptable from the image generator for performing multil-
abel classification. Afterwards the csv is split into 3 datasets
(train/valid/test) (60/20/20) and is stored as different csv files.
Those files are ready to be read by the generators.
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3.3 The Generator

Sometimes, even the most state-of-the-art configurations have
not enough memory to process a large enough dataset. Datasets
that consist of images are a prime example of this description.
To deal with this problem we use a generator which will con-
stantly load images from the local storage, transform them and
push them into the neural network.

The generator will start by reading the images’ locations in
the local storage from the dataset and load the corresponding
images. Afterwards, it will parse the tiff images that it just
read, looking for the first 4 dimensions (RGB + Infrared in an
RGBA setting) and resize them to a specified square resolution
(i.e. 112x112 or 224x224). Also, the values contained in each
channel will be normalized to [0, 1] to improve neural network
performance as its activation function usually expect and output
values inside this range. Optionally, more transformations can
occur. In our case we used horizontal and vertical flip as they
do not change the meaning and the context of each image (as
they depict a patch of land). A total of three generators will
be deployed for the train, valid, and test set respectively. In
contrast with the other two, the test generator will not shuffle
the images, so that we will be able to match the resulting labels
with the true labels. Lastly, each generator will accept each
the image batches in 'raw’ mode with the specified tags given
explicitly, so that we can get the multilabel behaviour that we
want.
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3.4 Models

3.4.1 Architectures

Throughout our experiments we will be making exclusive use of
convolutional neural networks (CNN). This is a popular choice
for image processing as all its benefits are geared towards such
tasks. CNNs are fully connected feed forward networks that
can accept as inputs of high dimensionality, reduce the number
of parameters inside the system, but not the original input’s
information. This reduction happens due to the use of filters
(windows smaller than the actual input), that slide through the
input while retaining the information of the patches of the input
in which it has already slid. The output of those filters is a more
compact representation of the input. Images are such a high
dimensional input, which would normally take many times more
resources to compute if not for this technique. Furthermore,
due to this benefit, a lot of research has been done in the field of
image processing and neural networks to the point of the models
becoming specialised and many times more efficient in this task.
As a direct consequence, all the image classification benchmarks,
be it multilabel or unsupervised, are dominated by the state of
the art convolutional neural networks. Due to the sheer number
of options available, a multitude of architectures was examined
before choosing the best one for the problem.

VGG16 [22] was used as the baseline model as it produced
decent results while costing relatively cheap in resources. In
the same direction, DenseNet, ResNet and MobileNet were also
tried as out of the box solutions that have stood the test of time.
Afterwards, we used the more complex Convolutional Neural
Network architectures EfficientNet [25] and Vision Transform-
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ers [5] increasing the system’s performance in the process. All
the aforementioned models were trained, validated and tested
using exclusively the labeled images from Planet. In all the
experiments the models with the randomly initialized weights
produced superior results. Nevertheless, the EfficientNet out-
performed the other models apart from the Vision Transformer
by a respectable margin. The comparison will be discussed thor-
oughly in the experiments section. Figure 3.5 showcases a com-
parison between EfficientNet family and other popular architec-
tures. All models in the figure were trained and tested in the
popular Imagenet dataset.
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3.4.2 EfficientNet

As previously mentioned, efficiency is a major factor when choos-
ing for a model. Paired with our low computational resources
and the use of the 4th channel the first choice was not very
difficult. The first choice is the efficientNet. Tan et al. [25]
approaches the process of finding better architectures by devel-
oping a basic low cost model which then can be scaled up in
order to achieve better performance. Scaling up in this case
means increasing the width and depth of the network and the
resolution of the given images. Tuning those 3 parameters for
the best performance usually requires a lot of manual tuning
and resources. In this thesis we experiment with EfficientNet
which allows the scaling process to be done in a more princi-
pled manner by using a compound coefficient to scale up the
network. As a consequence, by tuning only one hyperparam-
eter, the model can scale-up its width, depth and resolution
uniformly by choosing from a set of fixed values for the pre-
viously mentioned compound coefficient. This allows for more
efficient tuning while also producing models that can achieve
state-of-the-art performance with 10 times more efficiency. The
basic EfficientNet architecture is called EfficientNet B0 and its
architecture is depicted in figure 3.2. EfficientNet will not only
allow us to scale the model in the most cost efficient way, it is
also a top performing model in both multiclass and multilabel
classification problems, making it ideal for our task.
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Figure 3.2: Architecture of Efficientnet-B0

3.4.3 Compound Scaling

Compound scaling is based on the idea that properly balancing
width, depth and resolution according to the available resources
will provide superior performance overall. To find the compound
scaling coefficient one must perform a grid search to determine
the relationship between those 3 hyperparameters always under
the restriction imposed by the resources. Once the relationship
is found, the coefficients must scale up until they take up all the
available resources. The authors propose the following formula
that describes the relationship between the three hyperparame-
ters:

depth: d = o (3.1)
width: w = 3° (3.2)
resolution: r = ~* (3.3)
s.t. ax f2xyt a2 (3.4)
a>1,>1,v>1 (3.5)

¢ is a user-specified coefficient that controls resources in terms
of FLOPs (Floating Point Operations) and «, 3, v distribute the
resources to depth, width, and resolution respectively. FLOPS

of a regular convolution op is almost proportional to d, w?,r?,
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hence doubling the depth will double the FLOPS while dou-
bling width or resolution increases FLOPS almost by four times.
Hence, in order to make sure that the total FLOPS don’t exceed
2% the constraint applied is that (a * 3% x 4?) ~ 2. Figure 3.3
visually expresses how compound scaling affects the network.
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Figure 3.3: Scaling width, depth, resolution and Compound Scaling
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This process continuously improves performance with more
resources available. EfficientNet takes this idea a step further by
providing a list of fixed coeffcients which have been trained in
the imagenet dataset. Each set of coefficients has got a distinct
name starting from efficient-B0O (base network). The largest net-
work is the efficientnet-B7. As shown in the image 3.4, scaling
the model further produces diminishing returns in performance.
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Figure 3.4: Comparison between the EfficientNet and other state-of-the-art
models in terms of performance
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3.4.4 EfhiecientNet Advanced Features

EfficientNet uses a variety of advanced techniques in order to
achieve state-of-the-art efficiency. The most notable of them is
model compression, which ensures the model remains lightweight
even when scaled. Model compression is first and foremost
achieved through pruning, where the parameters which do not
help improve the performance are removed. Another part of
model compression is quantization, where the parameters which
are usually stored in 32-bit numbers, are converted to lesser
precision if deemed necessary.

3.4.5 Vision Transformer

While the EfficientNet is an established state-of-the-art per-
former for image classification, Alexey Dosovitskiy et al. pro-
poses the Vision Transformer as a way to tackle this task, chal-
lenging the traditional convolutional neural networks that are
usually utilized. The primary reason for wanting to use this
model, is that it is highly experimental, but has also shown very
good performance in the initial tests. Additionally, as we will
see later, it combines the transformers’ ability of analyzing an
input from many points of view (contexts), which is a very ben-
eficial property for multilabel classification, while also retaining
all the major benefits of convolutional neural networks that we
described earlier.

Vision Transformer, as the name implies, attempts to inte-
grate the well known notion in the field of natural language
processing of Transformers, into the field of computer vision.
Although there have already been some attempts in previous
papers to do just that, with the most notable being the "End-
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to-End Object Detection with Transformers’ [3] by Carion el al.
of Facebook, Vision Transformer is the first one to achieve sig-
nificant success at that. In popular benchmarks, not only did
it improve the performance, but it also claimed to have cut the
training time set by another popular model published by Google,
the Noisy Student [26] (which is actually a technique that uses
a variant of the EfficientNet model at its core) by 80%.

Diving deeper into the Vision Transformer architecture, we
can discern three major components. The first component is the
layer that is responsible for the image preprocessing. This layer
accepts the image as a three dimensional square matrix with
values in [0, 1], divides it in square patches, which are then flat-
tened into image embeddings. Next, we have 1 or more Trans-
former layers which treat those image embeddings the same as
they would treat the text embeddings. This is a complicated
layer and we will discuss it in detail in the next sections. Lastly,
a series of feed forward layers constitute the head of the model.
In the image 3.5, the high level architecture of the Vision Trans-
former is showcased.
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Figure 3.5: High level architecture of the Vision Transformer

3.4.6 The Transformer Layer

In order to understand the reason behind the claim that the Vi-
sion Transformer is different from the other convolutional neural
networks, we first need to understand the Transformer, which is
its core building block. In the field of natural language process-
ing, the Transformer behaves in a way such that for each word
inputted, its relationship with each other word is examined and
a matrix containing said relationships as values is outputted.
Naturally, this means that the order between those words is not
important. The Transformer layer of the Vision Transformer
does the exact same thing, but this time, it processes image
patches instead of words. The image patches are simple tessel-
lations of the original image. This bidirectional architecture of
the Transformer allows for a great level of parallelization, thus
avoiding the usual bottlenecks commonly found in CNNs. This
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parallelization allows for the full exploitation of the GPU/TPU
resources, which is incidentally responsible for the major de-
crease in the training time when compared to other CNNs. Im-
age 3.6 showcases the architecture of a typical Transformer layer.
It is a self-attention layer followed by a series of addition, nor-
malization and feed-forward layers. The self-attention layer is
the secret behind the calculations of the correlations between
all possible image patch pairs which constitute the ”context”
of the image. We will focus on the self-attention layer in the
next section. Furthermore, add the possible meanings of each
patch together in order to normalize them and perform further
calculations. The feed-forward layer in-between exists for the
fine tuning of the weights received from the self-attention layer.
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Figure 3.6: Transformer’s internal architecture
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3.4.7 The Self-attention Mechanism

Again, using natural language processing as an example, sim-
ply parsing a sentence word by word has been proven to not
provide optimal results. Apart from the meaning of the words
themselves, it is important to note that there is an underlying
context upon which they are ”glued” together. Self-attention
attempts to do just that. It interprets the context in which the
words are used, by trying to identify the correlation between
those words. It is actually a layer that exists inside the broader
Transformer layer. In the context of the Vision Transformer,
where instead of words we have patches of images, the corre-
lation between those images is what is measured, thus trying
to identify the context in which its patch exists relative to the
other patches. On left of the image 3.6 we see the input to a self-
attention layer which is a set of flattened image patches. Those
patches together form the query-key matrix which we can ob-
serve on the right. Each patch is one query, each pixel position
is a key. The summation of the resulting queries by key, after
the self attention layer, results in the importance vector which
holds the importance of each key in the context of the image.
The self-attention mechanism is theorised to be beneficial for
multilabel classification and the reason this model was chosen
over other experimental models. Instead of having one input
that carries all the information throughout the model, the self-
attention mechanism breaks this output into several different
outputs that should ideally carry different pieces of information
before being glued together again. This means, that the pro-
cess could break the processed image into patches that contain
information almost exclusive to each one of our labels, that re-
main discrete upon the combination phase, making the decision
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for the probability for each label on the final output level much
clearer and the model more confident. As a direct consequence,
it might also be able to retain information about rarer labels,
that could be easily obscured by the more prevalent labels in
traditional models.

g

Flattensd Palch |

MxMxC

l—l—|
Imporianca
Vechor Summation
along the
columng
Quernies N
Kays

Figure 3.7: One the left we can observe the input given to a self-attention
layer. On the right we can see the input’s matrix representation
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3.4.8 The AdamW Optimizer

A very important factor that defines the success of a neural net-
work model is the optimizer being used. Algorithms like Adam
[9] achieve fast convergence with an element-wise scaling term
on learning rates. Despite their success, they have been ob-
served to generalize poorly compared to SGD as suggested by
Pedro Savarese et al. [19]. A possible cause of this issue is
that L2 regularization and weight decay delay are equivalent
for standard stochastic gradient descent (when rescaled by the
learning rate), whereas this is not the case for adaptive gradi-
ent algorithms. AdamW [13] is a variant of Adam which has
the goal of decoupling weight decay from L2 regularization for
adaptive gradient algorithms with regards to the loss function.
This approach retains the speed of its predecessor while also re-
sulting in better generalization capacity. Another benefit of this
optimizer is that the neural network becomes less sensitive to
hyperparameter changes. This is very useful in our case study
as the resources that are available for training are limited, re-
stricting us from tuning.

@ Adam
B Adami
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o

Test error (%)

Tramning loss (crass-entropy|

Figure 3.8: Comparison between Adam and AdamW with regards to the
loss function
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3.4.9 The Binary Cross-entropy Loss Function

Moving forward, an integral part to every deep learning problem
is the loss function that will be chosen in order to evaluate the
training phase of the model. The loss function that is commonly
used for the problem of multilabel classification is binary cross-
entropy and it is important to understand why. For starters,
binary cross-entropy is a function that as its name implies, is
used to evaluate how well the model is trained in a binary prob-
lem. So given the classes y=[0, 1], if the true class is 1, log(p(y))
is added to the loss and conversely if the true class is 0, log(1 -
p(y)) is added to the loss. That said, it is becoming clear that
we should strive for the least amount of loss possible during the
training of the model. Shifting from the binary problem to the
multilabel one, instead of [1, 0] being our only possible classes,
we have multiple classes that consist of multiple [0, 1] labels. To
make this more clear, an example of the true labels for an image
could be [0, 1, 0, 1, 0, 0, ...] where each element represents the
existence or not of a label. This is the reason we previously con-
verted our labels in this format during the preprocessing phase.
Since the premise of each label getting the values 0 or 1 is the
same, we can treat this problem as multiple binary classifica-
tions where for each image, the existence or not, of every one of
the possible labels adds up to the total loss. Of course it is more
punishing for the model than in a regular binary classification,
but this is beneficial to us, as the model will strive for precision
without neglecting any label. The binary cross-entropy is best
paired with the sigmoid, as the resulting probabilities of each
label will not affect the others, unlike other activation functions
like softmax where the dominant output probability will skew
the rest.
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3.4.10 Explainable AI and Grad-Cam

Finally, before moving to the experimental section, it is worth
discussing the techniques that will be used in the context of ex-
plaining the results of our neural network architectures. It is
well known that neural networks in general, while being highly
permormant, are often viewed as a black-box. Nevertheless, be-
ing able to peek into their inner workings, would give us a huge
advantage towards thoughtfully improving them in contrast to
blind tuning. Since this thesis makes exclusive use of convolu-
tional neural network variants, we will uniformly use 2 different
methods to achieve our purposes.

Firstly, we need to be able to discern, which parts of the
image, play the biggest part in the classification process for each
class. To achieve that, we implement the Grad-Cam, which
uses the gradient produced from the input image’s flow inside
the network for highlighting the parts of the image that are
likely to have excited the activation functions the most. All
of our models share the requirement for this technique to be
used, they feature a global max pooling layer after their last
convolution. By examining the results, we will seek for patterns
followed across all our neural network architectures, as well as
for reasons that some classes have potentially failed.

Secondly, instead of mapping the activation functions to the
input, it might also be useful to peek into individual slices of
the model. Unfortunately, our models and especially the Vision
Transformer vary dramatically in their inner architecture. Thus,
we will use the only common ground between them, their last
convolutional layer before being maxpooled. This is not to be
confused with the previous technique that maps all the network’s
activation functions from beginning to end. This is a mere slice
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in order to find out which neurons were excited at a stage very
close to the network’s output. Hopefully, some patterns shared
by the models might emerge.
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Chapter 4

Experiments

4.1 Datasets

When it comes to satellite imagery, there is no shortage of it as
it can be found in various repositories around the globe. The
real issue is that only a minor subset of those images are la-
beled in order to support classification tasks. Since we would
like to perform multilabel classification, the dataset offered from
Planet seems to be an ideal choice as it is large, it is cleaned up
to a degree and it is also labeled. The size of the dataset is
approximately 40k labeled and 40k non-labeled images. For our
purposes we will use the labeled images only. The format in
which the images are given is either in a 3-channel jpg or 4-
channel tiff.

Since the fourth channel, which is the infrared is very useful
for discerning greenery, we will use the images in the tiff for-
mat. All the redundant GeoTiff information has been stripped
so that only the image channel values and the metadata that cor-
respond to the image format remain. he imagery has a ground-
sample distance (GSD) of 3.7m and an orthorectified pixel size
of 3m.The data comes from Planet’s Flock 2 satellites in both
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sun-synchronous and ISS orbits and was collected between Jan-
uary 1, 2016 and February 1, 2017.

Now, let’s analyze the class labels with which we are tasked to
train the model. The images have been labeled by the company’s
teams and crowd-sourcing. There is a total of 17 labels. Plot
4.1 shows the names of the 17 labels and how many times they
are found in the dataset. Judging by this plot, we will have to
deal with an unbalanced label distribution.
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Figure 4.1: Label distribution
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Now that we have seen the labels by name, a quick introduc-
tion of each one will follow.

4.1.1 Cloudy

Cloudy images pose a major difficulty for satellite imagery. Al-
though a lot of techniques have been created specifically for the
reason of clearing the clouds off the images, a lot of information
is still lost in the process. Thus, it is very difficult for a computer
vision model to discern any of the characteristics that make up
the rest of the labels. So, to avoid making an uneducated guess,
we will simply categorize those images as cloudy.

Figure 4.2: Example of a cloudy image

4.1.2 Partly Cloudy

In the same manner, partly cloudy images, completely obscure
some of the areas in the image. The information in those places
is lost, but it still leaves room for the model to make a detection
based on some finer details.
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Figure 4.3: Example of a partly cloudy image

4.1.3 Hazy

Hazy images, still pose a great issue for satellite imaging, but
depending on the level of the haziness, some details may still be
observable. Usually, the model cannot detect some finer details
in those images, but some major causes of deforestation such as
agriculture can very well be detected.

Figure 4.4: Example of a hazy image
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4.1.4 Clear

Clear is every image which does not have any form of clouds or
haze, which fortunately is the vast majority of the images as we
saw in the label distribution. Those, are the ideal images for
deforestation detection.

4.1.5 Water

Water is a component that predicts the areas where we will ex-
pect the areas to be full of greenery. Manipulating the flow of
the rivers, often leads to an increase of the tree growth speed in
damaged areas. Water also reflects a lot of the infrared frequen-
cies, especially during summer, so it is important to be able to
discern it from actual plants.

Figure 4.5: Example of an area with water
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4.1.6 Habitation

Habitation is wherever there are human shelters, be it small
villages or large urban areas. They usually appear as white
pixels in the images, with small villages being harder to detect.
Although they are not a major cause of deforestation, it is useful
to monitor the expanse of the large urban areas at the expense
of the greenery.

Figure 4.6: Example of an area with habitation

4.1.7 Agriculture

Agriculture is a major driver of deforestation. It consumes large
chunks of forests in attempt to make more space for coffee plants
and more. The problem is that all those plants that are used for
human consumption filter orders of magnitude less CO2 than the
large trees they replace, adding to the greenhouse gas problem,
loss of oxugen, etc.
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Figure 4.7: Example of an area with agriculture

4.1.8 Road

The roads by themselves are a driver of deforestation but not
so much because of the land that they clear of trees during
their construction. They are usually good indication of where
deforestation will happen in the future, as they make the access
easier for devices that are used for tree cutting. It could be for
logging or creating new towns or agricultural areas.

Figure 4.8: Example of an area with road
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4.1.9 Cultivation

Cultivation is a subset of agriculture. It can usually be discerned
from agriculture in most cases by the satellite images. It is not a
major driver of deforestation as it is usually an area that families
in small villages use for sustenance.

Figure 4.9: Example of an area where cultivation occurs

4.1.10 Bare Ground

This label is used to describe all forms of land that do not have
any trees in them. Note that the absence of trees must be natural
and not caused by humans.

Figure 4.10: Example of an area without greenery
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4.1.11 Slash and Burn

Another cause of deforestation are forest fires. Usually they
leave the area black, so they are easy to detect. Sometimes
the burnt trees are cut in order to allow for the faster growth
of new trees. It is important to monitor those areas as it is
not uncommon to have been burnt by artificially started fires
in order to create an opening that can be later exploited by
companies.

Figure 4.11: Example of an area that lost greenery due to fires

4.1.12 Selective Logging

Selective logging is the legal form of logging, where only selected
trees can be cut. They usually are the high value trees, and the
amount is regulated.

o7



Figure 4.12: Example of an area that is used for logging

4.1.13 Blooming

Although, most of the blooming cannot be seen from space, the
most extreme of the instances can. Large trees bloom, fruit,
and flower at the same time to maximize the chances of cross
pollination.

Figure 4.13: Example of an area where large trees will bloom

4.1.14 Conventional Mining

There is a great amount of resources available in the ground un-
der the Amazon. This label follows the legal mining operation
that although expanding, are a controllable cause of deforesta-
tion.
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Figure 4.14: Example of an area that is used for traditional mineral mining

4.1.15 Artisinal Mining

This label is mostly used for small scale mining operations for
gold, most prevalent at the foothills of Andes. In this activity
sometimes illegal workers partake. The ways the valuable min-
erals are mined there, require the used of other heavy minerals
such as mercury, which is extremely harmful to the forest. The
whole process leaves all nearby areas barren for many centuries.

Figure 4.15: Example of an area where illegal mining of heavy elements is
taking place
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4.1.16 Blow Down

A natural phenomenon where high speed cold air that stems
from the Andes, blasts the large trees, leaving the area open.
The open area recovers fast, as other plants rush in the open
space to take advantage of the sunlight.

Figure 4.16: Example of an area where extreme natural phenomena destroy
the trees
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4.1.17 Dataset Samples

Image gallery 4.17 depicts how some of the images that are avail-
able to us look like, matched with one or more labels that de-

scribe them.
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Figure 4.17: RGB images of the Amazon forest



4.2 Experimental Setup

4.2.1 Section structure

Before starting this section, it is worth discussing the structure
that each experiment will follow.

We first state the specifics, meaning how the dataset was
split, the resolution of the images in which it was trained and
the model specific hyperparameters. Afterwards, we examine
the training phase of the model by showcasing a plot of the loss
versus epoch. Then we delve into the specifics of the output, by
analyzing the results into a heatmap for each one of our classes.

In an attempt to further explain the output beyond its nu-
merical substance, we attempt to depict the functionality inside
the network that lead to those results. To achieve this, we first
pick the image that was correctly classified with the most con-
fidence for each class (placed on the left). Then, we highlight
the areas of the image that had the bigger role in this decision
(placed in the middle). Lastly, we extract a map showing the
parts of the last convolutional layer that were excited prior to
this decision (placed on the right). Thereafter, we discuss any
notable observations.

It is important to note that while the chosen images achieved
high confidence for their respective class, most of those images
contain multiple labels and thus, we expect to see more highlight
or excitations that correspond to those other labels. Also, the
Vision Transformer does not contain any convolution in the tra-
ditional sense, so an experimental version of this technique was
used (we will explain it in the Vision Transformer experiment)
that might provide us with results that are not directly compa-
rable to those of the other networks or even accurate. Finally,
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a section will follow that cross-examines the results between all
of our experiments.

4.2.2 VGG16

Experiment preparations

Table 4.1 lists the hyperparameters used for the multi-label ex-
periment using the VGG16. As the name of the architecture im-
plies, it consists of 16 layers. The resolution chosen is 256x256,
which is the maximum resolution available for the given images.
The batch size of choice was the largest possible that fit the
GPU, which was 64. The dataset of 40k images was split into
50/20/30 training/validation/test sets. Its simplicity as well as
its good performance in general, makes it a prime candidate to
be the baseline model

Resolution 256x256
Layers 16
Batch size 32

Table 4.1: Hyperparameter setup for the multi-label experiment using the
VGG16.
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Training process

In figure 4.18, we can observe the training process for the classi-
fication. Due to our limited resources early stopping was imple-
mented with patience 4. It seems that convergence between the
training and validation score is happening from the 17th epoch
onwards. Also, we reduce the learning rate in each plateau with
patience 3 in order to make sure that the model will rapidly
train during its first stages and then it will slow down during its
last stages, in order to learn as many details as possible. This
explains the incremental drop in the loss volatility during the
training phase.

Loss plot for model: VGG16
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Figure 4.18: Training and validation loss during the model’s training phase
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Experiment results

Figures 4.19 and 4.20 show that haze, agriculture, water, habi-
tation, road and cultivation were some widely used labels that
the model tended to miss-classify. The model also did not have
a lot of success in trying to classify the rare labels. Nevertheless,
it had success in determining the image clarity labels.

vGGl6
haze primary agriculture clear
— 5.16% 1.48% 92.26% 0.14% 28.63% 1.84% 0.93%
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) 835% 7-93% 1026% 10-82%
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Figure 4.19: Relative performance for each individual label
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VGG16
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Figure 4.20: Absolute performance for each individual label



Possible explanations for the results

Starting with the weather labels, we can observe that the model
created a good understanding for most of them. The gradcam
for partly cloudy in particular shows that the activation func-
tions were spot on throughout the model and in the final layer
a very good representation arrived. Also, model decided to out-
put uniform values for usually uniform images such as haze. In
the case of other uniform images such as cloudy and clear, the
model activated in a lot of arbitrary places which also works
towards differentiating them from more detailed labels.

Moving on to the landscapes, this was another group in which
the model performed adequately. Primary was represented with
a lot of arbitrary activations as most uniform image labels. Wa-
ter was detected by the network, which focused in the middle
of large water bodies. What is more interesting is that the last
activation layer took a form that matches exactcly the lakes
and rivers in the area. However, selective logging and cultiva-
tion seem to have the network firing in random spots without
interest both in the gradcam and the final layer explaining the
model’s poor performance in those labels.

With regards to the infrastructure, the precision of the model
for the road stands out. Also note that the last layer represents
the road with close to 0 values which is quite common for net-
works to do as they just want to map numerical spaces with
labels without caring if the values they associate them with are
high or low (the blue in the image might be for another label
such as primary). The same mapping is happening with agri-
culture which is successfully pinpointed by the model. Another
interesting pattern is that of habitation where the activations
point in its center but the last layer has found that almost all
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of the image is habitation in which values in the middle are
assigned. Habitation, agriculture and road achieve great perfor-
mance fairly.

Lastly, we can observe that the model achieves poor perfor-
mance across most rare labels. Blooming, blow down and slash
burn invoke small and precise activations in the model that do
not pinpoint towards where the actual labels are. Furthermore,
they all translate to seemingly arbitrary values in the last layer.
Artisinal mine is the only exception where the mine is located

intensely and precisely leading to a somewhat better score for
the label.
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4.2.3 EfficientNet

Experiment preparations

Table 4.2 lists the hyperparameters used for the multi-label ex-
periment using the EfficientNet. Width and Depth coefficients
are set to indicate an EfficientNet of BO complexity. The default
resolution for the specified coefficients is 256x256 which is the
maximum resolution available for the given images. The reason
for choosing the BO model architecture is that through the tun-
ing process, it was discovered that models of higher complexity
do not necessarily produce better results for the dataset and
in most cases their generalization ability is actually lower than
their less complex counterparts. That said, the higher the reso-
lution of the images that were fed to the model, the better the
performance. So, it made a lot of sense to choose this specific
setup given the limited computational resources available (GTX
1060 6GB). The batch size of choice was the largest possible that
fit the GPU which was 16. The dataset of 40k images was split
into 50/20/30 training/validation/test sets.

Resolution 256x256
Width coeff 1.0
Depth coeft 1.0
Batch size 16

Table 4.2: Hyperparameter setup for the multi-label experiment using the
EfficientNet.
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Training process

In figure 4.21, we can observe the training process for the classi-
fication. Due to our limited resources early stopping was imple-
mented with patience 5. It seems that convergence between the
training and validation score is happening from the 15th epoch
onwards. Also, we reduce the learning rate in each plateau with
patience 2, in order to make sure that the model will rapidly
train during its first stages and then it will slow down during its
last stages, in order to learn as many details as possible. This
explains the incremental drop in the loss volatility during the

training phase.

Loss plot for model: EFFICIENTNET
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Figure 4.21: Training and validation loss during the model’s training phase
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Experiment results

Figures 4.22 and 4.23 show that agriculture, water, habitation
and cultivation were some widely used labels that the model
tended to miss-classify. On the positive side, it seems that the
model tried and had some success in classifying some rare labels
instead of overlooking them completely.
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Figure 4.22: Relative performance for each individual label
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Figure 4.23: Absolute performance for each individual label
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Possible explanations for the results

To start with, we can generally observe that the last layer of
the efficientnet, adopted in large, close to zero values for the
areas of interest. So for the last layer, when we refer to the
term activation, we talk about the red spots. Also, the gradcam
output and the contents of the last layer seem to agree together
for the majority of the inputs.

When it comes to the weather labels, which are mostly uni-
form elements, the model mapped them with uniform values.
An interesting fact is that most of the uniform labels, where
depicted as a square in the center of the last layer, with the
main activation being a different red spot inside the square for
each corresponding label. As such, the model was able to accu-
rately map uniform activation to labels in an orderly manner.
Partly cloudy was located accurately and the particular image
for haze might have confused the model a bit due to the various
shapes inside it. Nevertheless, the image for haze was depicted
in the same manner as other labels with uniform values, so we
can assume that the model understood it. In general, the model
understood how to handle the weather labels, achieving great
performance in the process.

Moving on to the landscapes, a group that generally caused
problems for all the models, primary seems to be treated cor-
rectly as a uniform label. Selective logging seems to have caused
an all encompassing activation that surrounds the area of inter-
est, which is also reflected in the last layer of the model. Fur-
thermore, the cultivation seems to not be understood correctly
due to the arbitrary activations it is subject to. The same can
be said for the water label, albeit the image in question has
got a shape and color not typical among water images. Lastly,
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while cultivation and selective logging did not perform well, the
landscapes where in overall classified more accurately than they
were from other models.

With regards to the infrastructure, the same image emerged
as the most representative for both habitation and road. This
seems logical as it is heavy in infrastructure and roads, probably
activating the model from multiple perspectives. The same goes
for the image in agriculture, where most of the image hosts
components of that label causing it to activate heavily.

Lastly, a great differentiator of this model with regards to the
other models is that it succeeded in classifying correctly some
of the rare labels. Rare labels don’t boost the performance by
much and thus, they are mostly neglected by the models. This
is not the case in this experiment. Artisinal and conventional
mines were accurately spotted, which is also reflected in the con-
tents of the last layer. Blow down seems to have caused precise
activations instead of the required wide ones and blooming has
the opposite problem. Nevertheless, the model still scored some
without probably understanding their meaning in full. Slash
burn was not detected at with the activations we see being
around habitation.
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4.2.4 Vision Transformer

Experiment preparations

Table 4.3 lists the hyperparameters used for the multi-label
experiment using the Vision Transformer. The resolution is
256x256 which is the maximum resolution available for the given
images. The patch size is 16 which means that the original im-
age will be split into 256 16x16 images. Those patches will pass
through 4 Transformer layers. Each Transformer layer’s atten-
tion layer will have 8 heads, which means that the context of
each patch will be measured from 8 different angles which ideally
should be different. The final embedding will have a dimension
of 1024. Those specifications, albeit derived from manual tun-
ing, seem relatively close to the original paper’s recommended
model parameters. The batch size of choice was the largest pos-
sible that fit the GPU which was 16. The dataset of 40k images
was split into 50/20/30 training/validation/test sets.

Resolution 256x256

Patch size 16
Transformer layers 4
Number of heads 8

Batch size 16

Table 4.3: Hyperparameter setup for the multi-label experiment using the
Vision Transofrmer.
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Training process

In figure 4.24, we can observe the training process for the classi-
fication. Due to our limited resources early stopping was imple-
mented with patience 4. It seems that convergence between the
training and validation score is happening from the 28th epoch
onwards. Also, we reduce the learning rate in each plateau with
patience 2 in order to make sure that the model will rapidly
train during its first stages and then it will slow down during
its last stages in order to learn as many details as possible. The
training phase of the model seems relatively stable till the end,
with its validation performance somewhat better than the train-
ing set’s, mainly due to the lack of transformations taking place
in the validation set.

Loss plot for model: VIT
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Figure 4.24: Training and validation loss during the model’s training phase
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Experiment results

Figures 4.25 and 4.26 show that the results are pretty identical
to those of the EfficientNet. In some rare labels such as bare
ground it performs even better.

VIT
haze primary agriculture clear

~  5.80% 0.84% 92.13% [EPE 1.14% [FEEYSCM  0.44%

o  4.02% 3.01% 4.59% 10.71% [ESLR:PEL 4.58% | 25.55%

water habitation road cultivation

— 14.86% 3.76% 7.07% 2.08% 18.46% 1.89% 9.03% 2.08%
o 12.09% 5.83% 11.36% 10.84%
slash_burn cloudy partly_cloudy conventional_mine

— 0.02% 0.40% 5.12% 0.21% 17.73% 0.42% 0.15% 0.04%
bare_ground artisinal_mine blooming  selective_logging

o 125%  0.87% 091%  0.08% 0.09%  0.73% 031%  0.57%

o 1.46% 96.42% 0.21% iR

blow_down

— 0.11% 0.16%

Figure 4.25: Relative performance for each individual label
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704 102 11187 33 138 54
488 366 557 1300 7143 556 3103
water habitation road cultivation
1805 457 859 252 2242 230 1097 253
1468 708 1379 1316 9477
slash_burn cloudy partly_cloudy conventional_mine
3 49 622 26 2153 51 18 5
2 12089 222 329 9610 10 12110
bare_ground artisinal_mine blooming  selective_logging
152 106 110 10 11 89 38 69
177 26 11997 8 12035 53 11983
blow_down
13 19
12
1 0 1 0 1 0 1 0

Figure 4.26: Absolute performance for each individual label
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Possible explanations for the results results

Before start explaining the results, as we foretold the technique
that was used to create the Grad-Cam visualizations and exci-
tations slightly differed from the previous ones. Vision trans-
former makes heavy use of the Transformer layers instead of the
convolutional ones. As mentioned in the methods section, Those
layers accept the image in patches in a stacked form as the query
and output the answer to the query in a new row of neurons.
Those stacked patches could be seen as refined pieces of the orig-
inal image. Due to this property, we reshape the stacked patches
into 16x16 images under the assumption that each patch carries
all the information of the original space of the image that it was
clipped from.

Using the above technique, the resulting Grad-Cam images
produced take extreme values in the upper right corner and/or
uniform values that do not give us a lot of information. The rea-
son is that Grad-Cam is not a technique compatible with this
type of network. Nevertheless, sometimes the output makes
sense and we can derive some insights from it. An interesting
fact is that as we will showcase later, the last layer’s output that
we assembled from the patches, is a quite accurate representa-
tion of what is happening in each image.

Starting with the weather labels, with the exception of partly
cloudy, Grad-Cam produced uniform value maps. However, the
information on the last layer was uniform red or blue for clear
and haze which is what we would expect. Additionally, cloudy
was detected in great detail, with the lower part of the image
which is somewhat hazy marked with high values and the visible
clouds marked in deep blue (highest values). The image for
partly cloudy was also interesting, with Grad-Cam obtaining a
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more representative output than the last layer’s slice. In overall,
this led to high performance for the weather labels which is the
norm across most of our experiments.

Moving on to the landscapes, Grad-Cam’s output for water
and cultivation was not useful. However, the last layer managed
to have a very good representation of the image, with the areas of
interest being marked in blue with astounding precision. This
trend continues for bare ground and selective logging, where
apart from the slices, Grad-Cam also produced detailed maps
that segment the areas of interest from other labels.

With regards to infrastructure, road and habitation which are
dominant in their respective images seem to be well understood
by the network by the time they reach the last layer, judging
by their patterns. The same goes for agriculture, although the
pattern looks less representative than the other two.

When it comes to the rare labels, the last layers’ output
seems to be representative of the underlying images with the
same amount of precision as the common labels. Artisinal mine
was correctly discerned from the road. Furthermore, the only
instance of blooming was correctly detected and slash burn’s
pattern appears logical. Lastly, the conventional mine’s image
is not clear enough for us to properly analyze the pattern.

Despite the great precision of representation for each label’s
most representative image, Vision Transformer’s score does not
exceed that of EfficientNet’s. A possible explanation is that it
was easier for VIT to classify patterns found in the test set,
which are highly similar to patterns found in the training set
with strong confidence. However, more exotic patterns may
cause more confusion for the network (form of overfitting), whereas
EfficientNet tried a more general approach to the problem.
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4.2.5 ResNet50, DensetNet and MobileNet

Experiment preparations

For the final part of the experiment, we tried some out of the box
models to measure how they fare in comparison to the more fine-

tuned and manually adjusted models showcased above. This sec-

tion briefly describes the experiments and the results in a more
general manner that encompasses all those models simultane-
ously. The is justified as throughout the section the methodol-
ogy and results are quite similar across the models. The order
of the resulting tables and images will always be ResNetb0, then
DenseNet and lastly MobileNet. Table 4.4 showcases the hyper-
parameters for the models (they are the same for each one).

Resolution

256x256

Batch size

128

Table 4.4: Hyperparameter setup for the multi-label experiment using the
ResNetb0, DensetNet and MobileNet.
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Training process

In figures 4.27, 4.28 and 4.29 we can observe the training process
for the classification. Due to our limited resources early stopping
was implemented with patience 4. All models seem to generalize
well, with the validation loss being better than the training loss.
This trend seems to be present throughout all the models as
the validation set is smaller than the training set and hence
there might be disproportionately less edge cases. Additionally,
most models started with an unstable validation loss curve, but
as plateaus are reached and the learning rate drops the curve
becomes smoother and stabilizes. Of all the models, ResNet
was the best performer with the largest gap between training
and validation loss.

Loss plot for model: RESNET
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Figure 4.27: Training and validation loss during the ResNet’s training
phase
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Loss plot for model: DENSENET
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Figure 4.28: Training and validation loss during the DenseNet’s training
phase

Loss plot for model: MOBILENET
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Figure 4.29: Training and validation loss during the MobileNet’s training
phase
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Experiment results and explanation

The confusion matrices for the three models Can be found in Ap-
pendix A and the output from the Explainable Al techniques in
Appendix B in order to make this section more concise. In over-
all, all those models follow the same patterns. Their confusion
matrices show that they have more success in common labels,
sacrificing scarce label performance in the process.

Grad-Cam’s output often results to mappings, where the gra-
dients do not exist, or they highlight a general area around the
label. This can also be reflected in the very general patterns
that are the last layer’s output. This behaviour possibly ex-
plains the reason that the models were very easy to generalize
as showcased by their loss plots, but also found it difficult to
detect scarce or local labels.

As we show throughout the experiments, the heaviest models
choose to create maps in the last layer that segment the original
inputs with the greatest detail possible, leading to some success
in the rare labels. The fact that those models chose to adopt
generalized patterns for those labels, can possibly mean that in
those types of experiments, if the model is not large enough to
approximate the correct pattern in detail, it will likely choose
to fit in the most common labels that affect the loss the most.
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4.3 Results

Cross-examination and comparison

Due to the variety and depth of the experiments, it might be
beneficial to perform a cross examination into how those dif-
ferent kinds of models approached the problem and comparison
between them in order to find the best approach.

ResNet, DenseNet and mobileNet were the least fine-tuned
models and gave us results that can be directly compared to
VGG16 (the baseline). All those models had in common that
they were architectures with complexities of the same scale.
Throughout their training phase, they began with validation
loses that were highly unstable that became smoother as the
learning rate dropped in each plateau. All of them seem to have
found a way to perform better in the validation set than they
did in the training set. This might suggest that the training set
contained in average more difficult cases than the validation set
did. Another common feature among those models is that the
decided to overlook the rare and local labels performing poorly
on them in the process. This behaviour can also be evidenced
by the general patterns found in their last layers which are more
suited for detecting wide and common labels. VGG16 was sub-
ject to more tuning, and this might have lead to its Explainable
Al gradients and patterns being a little bit more specific.

Larger and very fine-tuned models like EfficientNet and Vi-
sion Transformer, performed better in comparison to the afore-
mentioned models. Starting with their loss plots, we can ob-
serve a closer relationship between the training and validation
curves, leading to a better loss overall. What sets them apart
besides their slightly better performance in the common labels,
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is their relative success to the rare labels. The Explainable Al
techniques allow us to understand that this phenomenon can be
attributed to the networks’ attention to detail which all other
networks lacked. It is possible that the number of parameters
and the state of the art techniques that those models possess, al-
lowed them to allocate some activation patterns to even the most
local of labels, increasing their performance. The fact that the
EfficientNet with slightly more generalized gradients, performed
slightly better than the Vision Transformer whose gradients were
more detailed, could indicate that there is a trade-off between
a model’s ability to produce detailed or generalized activation
patterns with regards to the performance.

The comparison standard

Before showing the results between the trained models’ predic-
tions on the test set. It is worthwhile to briefly talk about which
metric is the most reasonable when comparing models in the task
of multilabel classification. As it is well known, accuracy, albeit
a popular metric, does not take into account class imbalances.
That said, our dataset is imbalanced. It is also very punishing
towards the model’s predictions, as the true label array and the
predicted label array should exactly match in order for accu-
racy to increase. In our case, we would prefer a metric which
can grade how good an approximate predicted description of the
image is, relative to the true one. So, for instance, if out of the
17 labels, the 15 are predicted correctly, we should expect that
the model produced a good enough description for this specific
image and give it a positive score.

For this reason we will use the f-beta score in order to evaluate
the model’s performance on the test set. F-beta score computes
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the weighted harmonic mean between the precision and the re-
call. Beta is set to 0.5 by default which means that precision
and recall and weighted equally. For each image, f-beta score
will provide a value between 0 and 1 that determines how many
predicted labels match the true labels. This is less punishing,
rewarding better predicted descriptions for the images while also
taking into account the imbalances between the appearances of
the labels in the dataset.
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Results table

Table 4.5 showcases the final results for each model. Both Effi-
cientNet and VIT outperformed VG(G16 which was the baseline.
EfficientNet performed slightly better than VIT as it required
less tuning and thus, we could focus on other aspects of the
training phase. VIT on the other hand was very computationally
expensive and on top of that it required a lot of fine tuning, as
seemingly small tweaks in the hyperparameters could derail its
performance. ResNet, DenseNet and MobileNet were the least
tuned models but performed similarly to the baseline. More pre-
cisely, ResNet surpassed it, DenseNet and the most lightweight
of them, MobileNet underperformed the baseline.

Model F-beta
VGG16 90.39
ResNet 91.20
DenseNet 89.78
MobileNet 88.95
EfficientNet 92.75
Tra\rfllssfloorliner v2.22

Table 4.5: F-beta score comparison for the models’ performance on the
test set
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Chapter 5

Conclusions and future work

5.1 Conclusions

In this thesis we proposed a system that employs state of the
art techniques in order to achieve the best performance possible
in a multi-label classification task. The labels were probable
causes of deforestation for the Amazon rain-forest. In order to
reach our end goal which is the best possible performance for the
given dataset, we compare 2 vastly different architectures with a
baseline model which is the VGG16. VGG16 proved to be a good
fit for the baseline model as it provided high performance, while
also being relatively inexpensive with regards to the resources.

The first model, EfficientNet, proved to be high performing
even in its less complex architectures. It is also important to
note that its tuning phase was very simple due to its philosophy
of "quantizing” its architecture into discrete levels. This feature
allowed us to produce the best results out of all our other models,
in a time frame that was non-prohibitive for the limited resources
available.

The second model, Vision Transformer, provided a very in-
teresting alternative to the already established convolutional
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network approaches. This experimental architecture imported
many ideas from the field of natural language processing suc-
cessfully. Its final performance was a bit worse than that of the
EfficientNet. However, it has got a lot of room for improvement,
as it offers a vast array of hyperparameters that can be tweaked
but were not, due to its sheer computational cost.

For the purposes of tackling the problem with a variety of
networks, we trained ResNet, DenseNet and MobileNet on the
dataset for the last experiments. Comparing those established
architectures to the state of the art, gave us a better understand-
ing of the differences in perception between them. However,
their scores were more comparable to that of the baseline.

In the context of explainable AI, we proceeded to use the
Grad-Cam and the last convolutional layer’s tensor, in order to
explain why the architectures performed well or struggled in cer-
tain labels. By peeking inside the network we found trends in
the models’ depiction of the data which acted as the differenti-
ating factor between the good models and the best models.

Ultimately, our best performing model achieved an f-beta
score of 92.75, surpassing the score of 0.89 published by Aaron
Loh and Kenneth Soo [12], which performed similar experiments
on the same dataset and published them in their paper. How-
ever, it is important to note that their paper’s results are de-
rived from the respective kaggle submission, while in our thesis
we split the training set that we downloaded from kaggle in
60/20/20 and test the final 20% slice for our final results.
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5.2 Future work

5.2.1 Noisy Student

Noisy student [26] is a semi-supervised learning approach. It
extends the concept of the student-teacher model. It starts by
training a teacher model on the dataset. The teacher then has
the responsibility on creating new images based on the dataset
that it has been exposed and/or mislabeling some of the im-
ages. Then, a student model is trained on the dataset produced
by the teacher. The student gets evaluated on the prediction
performance in the original dataset while having been trained
exclusively on the fabricated dataset. The idea behind this tech-
nique is that the student will eventually learn how to distill valid
information from noisy data. It will only rely on a very small
dataset that is given to the teacher, from which a very large
dataset will be produced. A very popular core (architecture) for
the noisy student is the already trained EfficientNet, which can
perform both the roles of a student and a teacher. In practise,
it can increase our performance scores in multilabel classifica-
tion but it is prohibitively computationally expensive for the
purposes of this thesis.
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5.2.2 EfficientNet B7 and transfer learning

During the tuning phase of the EfficientNet model, we could
not effectively test architectures that were more complex than
the b4 level. By increasing the complexity, the batch size would
decrease to something lower than 16, which significantly dropped
the performance of the model. It would be interesting to observe
whether the most complex architectures would outperform the
simpler ones given enough GPU memory to maintain a batch
size of 16.

Additionally, for each of those architectures, there exists a
respective model pretrained in the imagenet dataset. By exper-
imenting on this, it was found that simply performing predic-
tions using those models did not result in good f-beta scores.
Nevertheless, by using transfer learning in the most heavy ar-
chitectures while also unfreezing a portion of those layers, we
could actually boost the performance.
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5.2.3 TResNet

As of the time this thesis is written, TResNet [17] is a brand
new variation of the well known ResNet and its variations [24].
While the core architecture does not change, a lot of successful
design tricks that were developed over the years are employed
in order to greatly improve its performance. Namely those are,
SpaceToDepth stem, Anti-Alias downsampling, In-Place Acti-
vated BatchNorm, Blocks selection and squeeze-and-excitation
layers. Its performance looks especially promising for multil-
abel classification problems as it became state of the art for the
MS-COCO dataset which is used for multilabel classification
benchmarks.
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5.2.4 Tuning

As stated before, the project was ran in limited resources and
as a result certain compromises were made mostly in terms of
performance. First of all, there was not a possibility for proper
the tuning of the Vision Transformer model. While in general
the experiments showed an increase in performance for small
size architectures when compared to the medium sized ones, the
heavier settings for the architectures were very difficult to test
and could potentially lead to an increase in the overall perfor-
mance.

Additionally, there is still an increase in performance to be
found by tuning the image generator using techniques such as
AutoAugment. Generally, due to the nature of the dataset, non-
invasive augmentation were proffered such as flips. Even a small
alteration to a group of pixels could lead to the complete loss
of information that hints to specific label in an image. Conse-
quently, one can doubt the effect that AutoAugment can have
on the dataset but it might still be worth trying.
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Appendix A

Confusion matrices for ResNet,
DenseNet and MobileNet

Confusion matrices (absolute and percentage) for ResNet, DenseNet,
and MobileNet
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Figure A.1: Relative performance for each individual label
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Figure A.2: Absolute performance for each individual label
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A.0.2 DenselNet

haze

= 534% 1.30%

o 4.23%

water

—  14.29% 4.34%
o 15.68%

65.69%

slash_burn

— 0.00% 0.43%

o 0.00%

DENSENET
primary agriculture
0.23% 1.94%

4.52% 3.08%

habitation

6.73%

2.42%

8.42%

cloudy

4.91% 0.43%

2.54%

14.06%

road

17.90%  2.46%

14.24% ESEEE

clear

YL 0.44%

5.82% 24.31%

cultivation

7.98% 3.14%

13.05%

75.83%

partly_cloudy conventional_mine

17.09% 1.06%

0.02% 0.16%

0.02%

bare_ground artisinal_mine blooming  selective_logging

~ 0.66% 147% 0.66% 0.33% 0.03% 0.79% 0.02% 0.86%

o 113% [ENE .73% 0.07% 0.02%
blow_down
— 0.00% 0.26%
o 0.00% 99.74%
1 0 1 0 1 0 1 0

Figure A.3: Relative performance for each individual label
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Figure A.4: Absolute performance for each individual label
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A.0.3 MobileNet
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Figure A.5: Relative performance for each individual label
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Figure A.6: Absolute performance for each individual label
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Appendix B

Explainable AI for ResNet,
DenseNet and MobileNet

In the context of explainable Al, the most representative images
(left) for each label for ResNet, DenseNet and MobileNet where
processed using the Grad-Cam technique (middle). The last
convolutional layer’s output was also extracted in order for us
to form a more comprehensive explanation.
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B.0.2 DenselNet
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B.0.3 MobileNet
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Appendix C

Index of Acronyms and
Abbreviations

AL Artificial Intelligence (Teyvntr Nonuooivn)

CFSR: Climate Forecast System Reanalysis (XuotAuatog Avéhvone Khi-
worteic Ahharyfic)

CNN: Convolutional Neural Network (Xuvehxtixé Nevpwvixd Aixtuo)

FLOPs: Floating Point Operations (ITpd&eic Kivntdv Trodlaotohdv)

GLM: General Linear Model (I'evixé I'poppixé Movtéro)

GPU: Graphics Processing Unit (Movdda EncZepyactoc I'oapixv)

LR: Learning Rate (Puduéc Mdinong)

MLP: Multi-Layer Perceptron (IToAveninedoc Perceptron)

MODIS: Moderate Resolution Imaging Spectroradiometer (®oouatooxontdpetpo
Anewxévione Meoatag Avéivone)

NDVTI: Normalized Difference Vegetation Index (Acixtne Kovovixomnoun-
uévne Awopopdc Bidotnone)

NDWI: Normalized Difference Water Index (Acixtne Kovovixonotnuévne
Awpopdc Nepol)

NIR: Near Infrared (Kovtd otic Yrnépudpec)

PCA: Principal Component Analysis (Avéiuon Kupinv Yuvnotoowmv)

RGB: Red Green Blue (Kéxxwvo Ipdotvo Mnie)
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SAR: Synthetic Aperture Radar (Kepaia Xuvietinol Awoppdyuatoc)

SVM: Support Vector Machine (Mnyaviouéc Troomeixtixod Awviopor-
T0Q)

TPU: Tensor Processing Unit (Movdda eneepyasioc Tavuotdv)

UAV: Unmanned Aerial Vehicles (Mn-enavopnuévec Evaépta Oyruata)

ViT: Vision Transformer (Metaoynuotiotic ‘Opaone)
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AHAQZH ZYITPADEA NTYXIAKHZ/AINAQMATIKHZ EPTAZIAZ

O kdtwBL umnoyeypappévos AaokaAdmouAog lwavvng tou MIAtadn, pe aplBuod
untpwou 18390278 doutntig tou Mavemotnuiou AUTIKAG ATTIKAG TNG XXOANG
Mnxavikwv tou TuApatog Mnxavikwv MAnpodopiki¢ kat YmoAoyiotwv, SnAwWvVw
unevBuva otL:

«Elpal ouyypad€ag autng TnG MTUXLOKNAG/SUMAWUATIKAG €pyaciog Kol OTL KABe
BonBela TNV omola sixa yla TNV TposToLlpacia tng elval MANPWE OVAYVWPLOUEVN KO
avadépetal otnv epyacia. Emiong, oL Omoleg MNYEG amod TIG OMOiEg €kava Xpron
Sebopévwy, Woewv N Aé€ewv, eite akplPwg eite mapadppaocuéveg, avadEpovtol oTo
oUVOAG Toug, He TARPN avadopd otoug cuyypadeilg, Tov ekSOTIKO olko 1 TO
neplodlkd, oupmep\auBavopévwy  Kal  TwV  TINYWV  TIOU  EVOEXOUEVWC
xpnowornowtnkav anod to diadiktuo. Emiong, BeBawwvw OTL Ut N gpyaocia €XeL
ouyypadel and péva AMOKAELOTIKA KOl ATOTEAEL TTPOIOV MVEUUATIKAG LOLOKTNOLOC
TO00 SIKNAG Hou, 600 Kol Tou 16pupatoc.

MapdBaon TnNG avwTépw akadnuaikng pouv eubuvng amoteAel ouowwdn Adyo yla tnv
OVAKANGN TOU TITUXIOU HOU».

O AnAwv

IQANNHZ AAZKAAOTTOYAOZ
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