

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ

ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ & ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

Διπλωματική Εργασία

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ: ΔΥΝΑΜΙΚΗ ΟΠΤΙΚΟΠΟΙΗΣΗ

ΛΕΙΤΟΥΡΓΙΑΣ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΓΙΑ

ΕΚΠΑΙΔΕΥΤΙΚΟΥΣ ΣΚΟΠΟΥΣ

Φοιτητής: ΜΠΑΝΑΣΙΟΣ ΓΕΩΡΓΙΟΣ, ΑΜ: 07088

Επιβλέπουσα Καθηγήτρια: ΡΑΓΚΟΥΣΗ ΜΑΡΙΑ

ΑΘΗΝΑ-ΑΙΓΑΛΕΩ, Φεβρουάριος 2023

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 2

UNIVERSITY OF WEST ATTICA

FACULTY OF ENGINEERING

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Diploma Thesis

ALGORITHMS AND DATA STRUCTURES: DYNAMIC VISUALIZATION OF

OPERATION IN A PROGRAMMING ENVIRONMENT FOR EDUCATIONAL

PURPOSES

Student: GEORGE BANASIOS, Registration Number: 07088

Supervisor: Prof. Maria Rangoussi

ATHENS-EGALEO, February 2023

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 3

Η Διπλωματική Εργασία έγινε αποδεκτή και βαθμολογήθηκε από την εξής τριμελή επιτροπή:

Μαρία Ραγκούση,

Καθηγήτρια

(επιβλέπουσα)

Αικατερίνη Ζαχαριάδου

Καθηγήτρια

Δημήτριος Μετάφας

Επ. Καθηγητής

(Υπογραφή)

(Υπογραφή)

(Υπογραφή)

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 4

Copyright © Με επιφύλαξη παντός δικαιώματος. All rights reserved.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ και ΓΕΩΡΓΙΟΣ ΜΠΑΝΑΣΙΟΣ,

Φεβρουάριος 2023

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου

ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή

για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να

αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που

αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τους

συγγραφείς.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον/την

συγγραφέα του και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις θέσεις του

επιβλέποντος, της επιτροπής εξέτασης ή τις επίσημες θέσεις του Τμήματος και του

Ιδρύματος.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 5

ΔΗΛΩΣΗ ΣΥΓΓΡΑΦΕΑ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ

Ο κάτωθι υπογεγραμμένος Γεώργιος Μπανάσιος του Κωνσταντίνου, με αριθμό μητρώου

07088 φοιτητής του Πανεπιστημίου Δυτικής Αττικής της Σχολής ΜΗΧΑΝΙΚΩΝ του

Τμήματος ΗΛΕΚΤΡΟΛΟΓΩΝ ΚΑΙ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ,

δηλώνω υπεύθυνα ότι:

«Είμαι συγγραφέας αυτής της διπλωματικής εργασίας και ότι κάθε βοήθεια την οποία είχα

για την προετοιμασία της είναι πλήρως αναγνωρισμένη και αναφέρεται στην εργασία.

Επίσης, οι όποιες πηγές από τις οποίες έκανα χρήση δεδομένων, ιδεών ή λέξεων, είτε

ακριβώς είτε παραφρασμένες, αναφέρονται στο σύνολό τους, με πλήρη αναφορά στους

συγγραφείς, τον εκδοτικό οίκο ή το περιοδικό, συμπεριλαμβανομένων και των πηγών που

ενδεχομένως χρησιμοποιήθηκαν από το διαδίκτυο. Επίσης, βεβαιώνω ότι αυτή η εργασία έχει

συγγραφεί από μένα αποκλειστικά και αποτελεί προϊόν πνευματικής ιδιοκτησίας τόσο δικής

μου, όσο και του Ιδρύματος.

Παράβαση της ανωτέρω ακαδημαϊκής μου ευθύνης αποτελεί ουσιώδη λόγο για την

ανάκληση του διπλώματός μου.»

Ο Δηλών

Γεώργιος Μπανάσιος

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 6

Περίληψη

Οι δομές δεδομένων καθώς και οι αλγόριθμοι που χειρίζονται και μετασχηματίζουν αυτά τα

δεδομένα για την επίλυση προβλημάτων αποτελούν θεμελιώδες γνωστικό αντικείμενο στην

επιστήμη των υπολογιστών, με ευρύτατες εφαρμογές σε πολλά και διαφορετικά πεδία και

κατηγορίες προβλημάτων. Παρά το θεμελιώδη ρόλο που διαδραματίζουν οι αλγόριθμοι στην

επιστήμη των υπολογιστών, οι φοιτητές συχνά δυσκολεύονται να κατανοήσουν αυτό το

αντικείμενο. Υπάρχουν διάφοροι λόγοι για τους οποίους οι φοιτητές δυσκολεύονται, όπως ο

φόβος για τον προγραμματισμό (ειδικά για εκείνους που δεν έχουν προηγούμενη εμπειρία

προγραμματισμού), η έλλειψη ενδιαφέροντος και η αφηρημένη φύση των εννοιών που

εμπλέκονται, όπως η έννοια της πολυπλοκότητας ενός αλγορίθμου. Αυτές είναι οι κύριες

αιτίες υψηλών ποσοστών εγκατάλειψης και αποτυχίας σε βασικά υποχρεωτικά μαθήματα του

προγράμματος σπουδών, όπως μαθήματα προγραμματισμού, δομών δεδομένων και

πολυπλοκότητας των αλγορίθμων. Ένα συναφές αντικείμενο που θεωρείται ταυτόχρονα

δύσκολο αλλά και σημαντικό είναι η ανάλυση και ο σχεδιασμός αλγορίθμων. Για να

αντιμετωπιστεί αυτό το πρόβλημα, έχουν γίνει πολλές ερευνητικές μελέτες για τον τρόπο

βελτίωσης της διαδικασίας διδασκαλίας και μάθησης των αλγορίθμων.

Καθώς ο όγκος της πληροφορίας αυξάνεται με ταχείς ρυθμούς, αυξάνεται και η ανάγκη

ταξινόμησης δεδομένων για καλύτερη ανάλυση και μελέτη, γεγονός που δίνει αυξανόμενη

σπουδαιότητα στους αλγόριθμους ταξινόμησης. Αυτοί αποτελούν και το κύριο επίκεντρο της

παρούσας διπλωματικής εργασίας. Η ταξινόμηση είναι μία ανάγκη που προκύπτει στο

φυσικό κόσμο, για τη διευκόλυνση της αναζήτησης συγκεκριμένης οντότητας μέσα σε

μεγάλο όγκο δεδομένων. Από τα αρχαία χρόνια οι άνθρωποι ανέπτυξαν ευρετήρια, λεξικά,

καταλόγους και άλλες μορφές για να διατηρούν τη χρήσιμη πληροφορία ταξινομημένη,

ειδικά αν το σύνολο δεδομένων είναι δυναμικό, δηλαδή νέα δεδομένα προκύπτουν διαρκώς

ενώ παλιά πρέπει να αφαιρεθούν ή να διαγραφούν.

Πολλοί και αρκετά διαφορετικοί μεταξύ τους αλγόριθμοι ταξινόμησης έχουν αναπτυχθεί για

τη βελτίωση της απόδοσης όσον αφορά την υπολογιστική πολυπλοκότητα και εν τέλει τους

πόρους (χρόνο και χώρο) που θα απαιτηθούν, σε συνάρτηση με το μέγεθος των δεδομένων.

Στη συγκριτική αξιολόγηση μεταξύ εναλλακτικών αλγορίθμων, υπάρχουν διάφοροι

παράγοντες που πρέπει να ληφθούν υπόψη, όπως η πολυπλοκότητα ως προς το χρόνο, ο

(επιπλέον) χώρος μνήμης που θα απαιτηθεί καθώς και η σταθερότητα του κάθε αλγορίθμου.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 7

Επιστρέφοντας στο εκπαιδευτικό πρόβλημα της βέλτιστης διδασκαλίας και μάθησης του

αντικειμένου για τους σημερινούς φοιτητές, με βάση έρευνες, η Οπτικοποίηση Αλγορίθμων

έχει αποδειχθεί ότι έχει θετικό αντίκτυπο στην μάθηση των φοιτητών. Η παρούσα

διπλωματική εργασία στοχεύει στη σχεδίαση και ανάπτυξη ενός γραφικού εργαλείου

οπτικοποίησης αλγορίθμων ταξινόμησης που μπορούν να χρησιμοποιήσουν έυκολα οι

φοιτητές. Η οπτικοποίηση δίνει έμφαση στην οπτική αναπαράσταση βημάτων και

λειτουργιών ενός αλγορίθμου και γενικά θεωρείται πιο αποτελεσματική από τις προφορικές ή

αριθμητικές παρουσιάσεις του αντικειμένου, όσον αφορά στην κατανόηση και στο γεγονός

ότι είναι μία διαδικασία φιλική προς το χρήστη. Τα διαδραστικά εργαλεία οπτικοποίησης που

διατίθενται σήμερα μπορούν να χρησιμοποιηθούν αποτελεσματικά για τη διδασκαλία και

μάθηση σύνθετων εννοιών. Ειδικότερα, στο αντικείμενο της διπλωματικής, η γραφική

απεικόνιση των βημάτων και των λειτουργιών των αλγορίθμων, δυναμικά ενώ εκτελούνται,

μπορεί να βοηθήσει τους φοιτητές να κατανοήσουν και να συγκρίνουν διαφορετικούς

αλγορίθμους ταξινόμησης πιο αποτελεσματικά.

Σκοπός της παρούσας διπλωματικής εργασίας είναι κατ’ αρχήν να γίνει μία σύντομη

αναφορά στο αντικείμενο των αλγορίθμων και των διαφορετικών τύπων τους, προκειμένουν

να κατανοηθεί η σημασία τους. Επίσης, πριν από το σχεδιασμό της εφαρμογής, θα γίνει μία

σύντομη αναφορά στα βασικά θέματα της πολυπλοκότητας των αλγορίθμων. Η

πολυπλοκότητα, χρησιμοποιείται ως εργαλείο για την μέτρηση της αποτελεσματικότητας

ενός αλγορίθμου, καθώς είναι θεμελιώδες για την κατανόηση των διαφορετικών απαιτήσεων

και επιδόσεων μεταξύ των αλγορίθμων ταξινόμησης. Με βάση αυτή τη γνώση, στη συνέχεια

θα γίνει παρουσίαση των εξής αλγορίθμων ταξινόμησης:

• Bubble Sort,

• Selection Sort,

• Insertion Sort,

• Merge Sort, και

• Quick Sort.

Αυτό θα βοηθήσει τον αναγνώστη και τελικά το φοιτητή στην κατάκτηση ενός βασικού

επιπέδου κατανόησης αυτών των μεθόδων, ως απαραίτηση βάση για την πλήρη κατανόησή

τους με τη βοήθεια του εργαλείου οπτικοποίησης. Τέλος, θα σχεδιαστεί και θα υλοποιηθεί

μία online, web-based εφαρμογή στην οποία ο χρήστης θα μπορεί, μεταξύ άλλων

λειτουργιών, να εισάγει ή να επιλέξει μία ακολουθία θετικών ακεραίων αριθμών εισόδου και

να επιλέξει έναν συγκεκριμένο από τους 5 διαθέσιμους αλγόριθμους ταξινόμησης.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 8

Χρησιμοποιώντας ένα εργαλείο απεικόνισης που βασίζεται σε ραβδόγραμμα, ο φοιτητής θα

αποκτήσει καλύτερη κατανόηση της λειτουργίας του συγκεκριμένου αλγορίθμου. Επιπλέον

θα μπορέσει να τον εκτελέσει σε δικά του δεδομένα, ή να χρησιμοποιήσει τα ίδια «τυχαία»

δεδομένα για να συγκρίνει μεταξύ τους δύο ή περισσότερους αλγορίθμους. Η σχεδίαση έχει

δώσει έμφαση στην λειτουργικότητα από πλευράς εκπαιδευτικής/διδακτικής, καθώς ο

πρωτεύων ρόλος της εφαρμογής είναι να αποτελέσει εργαλείο υποστήριξης του διδάσκοντα

σε ένα πανεπιστημιακό τμήμα.

Λέξεις – κλειδιά

αλγόριθμος, δομές δεδομένων, υπολογιστική πολυπλοκότητα, ταξινόμηση, οπτικοποίηση

αλγορίθμων, διαδραστική μάθηση, οπτικοποιητής, JavaScript, CSS, εφαρμογή παγκόσμιου

ιστού

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 9

Abstract

Data structures and the algorithms that manipulate and transform these data to solve problems

are a fundamental subject in computer science, with wide-ranging applications in many

different fields and classes of problems. Despite the fundamental role that algorithms play in

computer science, students often struggle to understand this subject. There are several reasons

why students struggle, including fear of programming (especially for those with no prior

programming experience), lack of interest, and the abstract nature of the concepts involved,

such as the concept of the complexity of an algorithm. These are the main causes of high

drop-out and failure rates in core compulsory courses of the curriculum, such as courses in

programming, data structures and complex algorithms. A related subject that is considered

both difficult and important is the analysis and design of algorithms. To address this problem,

many research studies have been conducted on how to improve the teaching and learning

process of algorithms.

As the volume of information increases rapidly, so does the need to sort data for better

analysis and study, which gives increasing importance to sorting algorithms. These

algorithms are also the main focus of this thesis. Sorting is a need that arises in the physical

world, to facilitate the search for a specific entity within a large volume of data. Since ancient

times, people have developed indexes, dictionaries, directories, and other forms to keep

useful information organized, especially if the data set is dynamic, meaning if new data is

constantly being generated while old data must be removed or deleted. Many and quite

different sorting algorithms have been developed to improve performance in terms of

computational complexity and ultimately the resources (time and space) required, depending

on the size of the data. In comparative assessment between alternative algorithms, there are

several factors to consider, such as the time complexity, the (extra) memory space that will be

required, and the stability of each algorithm.

Returning to the educational problem of optimal teaching and learning of the subject for

today's students, based on research, Algorithm Visualization has been shown to have a

positive impact on student learning. This thesis aims to design and develop a graphical tool

for visualizing sorting algorithms that can be easily used by students. Visualization

emphasizes the visual representation of steps and operations of an algorithm and is generally

considered more effective than verbal or numerical presentations of the subject in terms of

understanding and being a user-friendly process. Interactive visualization tools available

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 10

today can be used effectively to teach and learn complex concepts. In particular, in the

subject matter, graphically illustrating the steps and operations of algorithms, dynamically

while they are running, can help students understand and compare different classification

algorithms more effectively.

The purpose of this thesis is, in the first place, to make a brief reference to the subject of

algorithms and their different types, in order to understand their importance. Also, before

designing the application, a brief reference will be made to the basic issues of the complexity

of the algorithms. Complexity is used as a tool to measure the effectiveness of an algorithm,

as it is fundamental to understanding the different requirements and performances between

sorting algorithms. Based on this knowledge, the following sorting algorithms will then be

presented:

• Bubble Sort,

• Selection Sort,

• Insertion Sort,

• Merge Sort, and

• Quick Sort.

This will help the reader and ultimately the student to gain a basic level of understanding of

these methods, as a necessary basis for fully understanding them with the help of the

visualization tool. Finally, an online, web-based application will be designed and

implemented in which the user will be able, among other functions, to enter or select a

sequence of positive integer input numbers and select a specific one of the 5 available sorting

algorithms. By using a bar graph based visualization tool, the student will gain a better

understanding of how the particular algorithm works. In addition, the student will be able to

run it on its own data, or use the same "random" data to compare two or more algorithms.

The design has emphasized functionality from an educational/teaching point of view, as the

primary role of the application is to be a support tool for the teacher in a university

department.

Keywords

algorithms, data structures, computational complexity, sorting, algorithm visualization,

interactive learning, visualizer, JavaScript, CSS, web application

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 11

Table of Contents

Περίληψη ... 6

Abstract .. 9

INTRODUCTION ... 16

The subject of this thesis ... 16

Aim and objectives .. 16

Methodology ... 17

Innovation .. 17

Structure ... 17

CHAPTER 1: Introduction to the concept of algorithms and complexity 18

1.1 Introduction ... 18

1.2 Algorithm: a definition ... 18

1.3 Types of algorithms ... 19

1.4 What is computational complexity? .. 20

1.5 Asymptotic notation .. 20

1.5.1 Asymptotic upper bound .. 21

1.5.2 Asymptotic lower bound .. 21

1.5.3 Asymptotic tight bound .. 21

CHAPTER 2: Presentation and analysis of sorting algorithms .. 23

2.1 Introduction ... 23

2.2 The concept of sorting ... 23

2.3 Bubble Sort .. 24

2.4 Selection Sort ... 25

2.5 Insertion Sort ... 27

2.6 Merge Sort .. 29

2.7 Quick Sort .. 31

CHAPTER 3: Visualization as an educational process ... 34

3.1 Introduction ... 34

3.2 The concept of visualization ... 34

3.3 Visualization techniques ... 34

3.4 Benefits of visualization .. 36

CHAPTER 4: Design and Development of the Web Application ... 39

4.1 Introduction ... 39

4.2 Software tools employed for the development of the web application 39

4.2.1 HTML ... 40

4.2.2 CSS 40

4.2.3 JavaScript ... 40

4.3 Major decisions on the functionalities of the application .. 40

4.3.1 Interactivity .. 40

4.3.2 Input provided by the user .. 41

4.3.3 Output produced by the application ... 44

4.3.4 Control Panel .. 44

4.3.5 Help modal ... 52

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 12

4.4 Major Decisions on the Layout and Look-and-Feel of the application 53

4.4.1 Basic data form ... 53

4.4.2 Choice of colors .. 54

4.4.3 Screen Layout Design .. 55

CHAPTER 5: The sorting algorithms within the visualization application 57

5.1 Introduction ... 57

5.2 Bubble Sort .. 57

5.3 Selection Sort ... 65

5.4 Insertion Sort ... 75

5.5 Merge Sort .. 85

5.6 Quick Sort .. 95

CHAPTER 6: Conclusions and future work .. 110

References ... 112

List οf Figures

Figure 1.1: Big O complexity graph. ... 25

Figure 2.1: Pseudocode for bubble sort. .. 27

Figure 2.2: Pseudocode for selection sort. .. 29

Figure 2.3: Pseudocode for insertion sort. ... 31

Figure 2.4: Pseudocode for merge sort. ... 33

Figure 2.5: Merge sort example... 34

Figure 2.6: Quick sort pseudocode. ... 35

Figure 2.7: Quick sort example. .. 36

Figure 4.1: The user input field. .. 48

Figure 4.2: The array size slider. ... 48

Figure 4.3: The animation speed slider. .. 49

Figure 4.4: The algorithm buttons. .. 50

Figure 4.5: The new data button. ... 50

Figure 4.7: The Stop button. .. 51

Figure 4.8: The algorithm description area. .. 52

Figure 4.9: Bubble sort description summary. .. 53

Figure 4.10: Selection sort description summary. ... 53

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 13

Figure 4.11: Insertion sort description summary. .. 54

Figure 4.12: Merge sort description summary. ... 54

Figure 4.13: Quick sort description summary. .. 55

Figure 4.14: Help modal feature. ... 56

Figure 4.15: The data displayed in a bar chart with horizontal bars, vertically stack. 57

Figure 4.16: The overall screen layout. ... 59

Figure 5.1: BUBBLE SORT: The data array consists of elements: 870, 824, 655, 125, 30. .. 61

Figure 5.2: BUBBLE SORT: First pass, comparing 870 and 824. ... 61

Figure 5.3: BUBBLE SORT: First pass, comparing 870 and 655. ... 62

Figure 5.4: BUBBLE SORT: First pass, comparing 870 and 125. ... 62

Figure 5.5: BUBBLE SORT: First pass, comparing 870 and 30. ... 63

Figure 5.6: BUBBLE SORT: First iteration is over and the green color indicates the sorted

portion of the array. ... 63

Figure 5.7: BUBBLE SORT: Second pass, comparing 824 and 655. 64

Figure 5.8: BUBBLE SORT: Second pass, comparing 824 and 125. 64

Figure 5.9: BUBBLE SORT: Second pass, comparing 824 and 30. 65

Figure 5.10: BUBBLE SORT: Second iteration is over and the green color indicates the

sorted portion of the array. .. 65

Figure 5.11: BUBBLE SORT: Third pass, comparing 655 and 125. 66

Figure 5.12: BUBBLE SORT: Third pass, comparing 655 and 30. .. 66

Figure 5.13: BUBBLE SORT: Third iteration is over and the green color indicates the sorted

portion of the array. ... 67

Figure 5.14: BUBBLE SORT: Fourth pass, comparing 125 and 30. 67

Figure 5.15: BUBBLE SORT: The final sorted array. .. 68

Figure 5.16: SELECTION SORT: Array consists of elements: 276, 153, 781, 307, 158, 145,

856, 200, 795, 49. .. 69

Figure 5.17: SELECTION SORT: First iteration indicates the correct position for the smallest

element. ... 69

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 14

Figure 5.18: SELECTION SORT: First iteration is over and the green color indicates the

sorted portion of the array. .. 70

Figure 5.19: SELECTION SORT: Second iteration indicates the correct position for the

second smallest element. ... 70

Figure 5.20: SELECTION SORT: Second iteration is over and the green color indicates the

sorted portion of the array. .. 71

Figure 5.21: SELECTION SORT: Third iteration indicates the correct position for the third

smallest element. ... 71

Figure 5.22: SELECTION SORT: Third iteration is over and the green color indicates the

sorted portion of the array. .. 72

Figure 5.23: SELECTION SORT: Fourth iteration indicates the correct position for the fourth

smallest element. ... 72

Figure 5.24: SELECTION SORT: Fourth iteration is over and the green color indicates the

sorted portion of the array. .. 73

Figure 5.25: SELECTION SORT: Fifth iteration indicates the correct position for the fifth

smallest element. ... 73

Figure 5.26: SELECTION SORT: Fifth iteration is over and the green color indicates the

sorted portion of the array. .. 74

Figure 5.27: SELECTION SORT: Sixth iteration indicates the correct position for the sixth

smallest element. ... 74

Figure 5.28: SELECTION SORT: Sixth iteration is over and the green color indicates the

sorted portion of the array. .. 75

Figure 5.29: SELECTION SORT: Seventh iteration indicates the correct position for the

seventh smallest element. .. 75

Figure 5.30: SELECTION SORT: Seventh iteration is over and the green color indicates the

sorted portion of the array. .. 76

Figure 5.31: SELECTION SORT: Eighth iteration indicates the correct position for the eighth

smallest element. ... 76

Figure 5.33: SELECTION SORT: Eighth iteration is over and the green color indicates the

sorted portion of the array. .. 77

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 15

Figure 5.33: SELECTION SORT: Ninth iteration indicates the correct position for the ninth

smallest element. ... 77

Figure 5.34: SELECTION SORT: Seventh iteration is over and the green color indicates the

sorted portion of the array. .. 78

Figure 5.35: INSERTION SORT: Array consists of elements: 631, 390, 157, 79, 695, 717,

26, 40, 600, 417. .. 79

Figure 5.36: INSERTION SORT: Color yellow demonstrates the element that will be

compared with the sorted portion of the array. ... 79

Figure 5.37: INSERTION SORT: The second element is now considered part of the sorted

portion of the array. ... 80

Figure 5.38: INSERTION SORT: Color yellow demonstrates the element that will be

compared with the sorted portion of the array. ... 80

Figure 5.39: INSERTION SORT: The third element is now considered part of the sorted

portion of the array. ... 81

Figure 5.40: INSERTION SORT: Color yellow demonstrates the element that will be

compared with the sorted portion of the array. ... 81

Figure 5.41: INSERTION SORT: The fourth element is now considered part of the sorted

portion of the array. ... 82

Figure 5.42: INSERTION SORT: Color yellow demonstrates the element that will be

compared with the sorted portion of the array. ... 82

Figure 5.43: INSERTION SORT: The fifth element is now considered part of the sorted

portion of the array. ... 83

Figure 5.44: INSERTION SORT: Color yellow demonstrates the element that will be

compared with the sorted portion of the array. ... 83

Figure 5.45: INSERTION SORT: The sixth element is now considered part of the sorted

portion of the array. ... 84

Figure 5.46: INSERTION SORT: Color yellow demonstrates the element that will be

compared with the sorted portion of the array. ... 84

Figure 5.47: INSERTION SORT: The seventh element is now considered part of the sorted

portion of the array. ... 85

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 16

Figure 5.48: INSERTION SORT: Color yellow demonstrates the element that will be

compared with the sorted portion of the array. ... 85

Figure 5.49: INSERTION SORT: The eighth element is now considered part of the sorted

portion of the array. ... 86

Figure 5.50: INSERTION SORT: Color yellow demonstrates the element that will be

compared with the sorted portion of the array. ... 86

Figure 5.51: INSERTION SORT: The ninth element is now considered part of the sorted

portion of the array. ... 87

Figure 5.52: INSERTION SORT: Color yellow demonstrates the element that will be

compared with the sorted portion of the array. ... 87

Figure 5.53: INSERTION SORT: The final sorted array.. 88

Figure 5.54: MERGE SORT: Array consists of elements: 444, 983, 733, 107, 119, 436, 307,

743, 94, 419. .. 89

Figure 5.55: MERGE SORT: Element 444 is the left subarray and element 983 is the right

subarray. .. 90

Figure 5.56: MERGE SORT: Sorted subarray consisting of elements 444 and 983. 90

Figure 5.57: MERGE SORT: The left sorted subarray and the right subarray. 91

Figure 5.58: MERGE SORT: Sorted subarray consisting of elements 444 and 733 and 983. 91

Figure 5.59: MERGE SORT: Elements 107 and 117 are being merged into a subarray. 92

Figure 5.60: MERGE SORT: Elements 107 and 119 are in a sorted subarray. 92

Figure 5.61: MERGE SORT: The left and right subarray of the first half of the main array. 93

Figure 5.62: MERGE SORT: The first subarray. .. 93

Figure 5.63: MERGE SORT: Merge of the elements 436 and 307. 94

Figure 5.64: MERGE SORT: Elements 436 and 307 are in a sorted subarray. 94

Figure 5.65: MERGE SORT: Left subarray consisting of elements 307 and 436 is merged

with element 743. .. 95

Figure 5.66: MERGE SORT: Element 743 is merged with the subarray of 307 and 436. 95

Figure 5.67: MERGE SORT: Element 94 is considered the left subarray and element 419 the

right subarray. .. 96

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 17

Figure 5.68: MERGE SORT: Elements 94 and 419 are merged into a subarray as denoted by

the color light green. .. 96

Figure 5.69: MERGE SORT: Merging the two subarrays to form the right subarray of the

original array. .. 97

Figure 5.70: MERGE SORT: The left and right sorted subarrays. ... 97

Figure 5.71: MERGE SORT: The final sorted array. .. 98

Figure 5.72: QUICK SORT: Array consists of elements: 435, 761, 615, 578, 142, 650, 950,

961, 977, 320. .. 99

Figure 5.73: QUICK SORT: Pivot element is 320. ... 100

Figure 5.74: QUICK SORT: 142 is swapped with 435. .. 100

Figure 5.75: QUICK SORT: The for loop has reached the pivot element. 101

Figure 5.76: QUICK SORT: Pivot element is in the correct position. 102

Figure 5.77: QUICK SORT: Element 142 is in the correct position..................................... 102

Figure 5.78: QUICK SORT: Elements that are less and greater than pivot element, 761. ... 104

Figure 5.78: QUICK SORT: Pivot element, 761 is in the correct position. 104

Figure 5.79: QUICK SORT: All the elements left than pivot, are less than 650. 106

Figure 5.80: QUICK SORT: Pivot element 650 is in the correct position. 106

Figure 5.81: QUICK SORT: Pivot element 435 is in the correct position. 107

Figure 5.82: QUICK SORT: Pivot element is 615. ... 108

Figure 5.83: QUICK SORT: Pivot element 615 is in the correct position. 109

Figure 5.84: QUICK SORT: Element 578 is in the correct position..................................... 109

Figure 5.85: QUICK SORT: Pivot element is 950. ... 110

Figure 5.86: QUICK SORT: Element 950 is in the correct position..................................... 111

Figure 5.87: QUICK SORT: Pivot element is 961. ... 111

Figure 5.88: Pivot element, 961 is in the correct position. .. 112

Figure 5.89: QUICK SORT: The final sorted array. ... 112

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 18

INTRODUCTION

Understanding algorithms and data structures is essential for students seeking to pursue a

career in computer science as they are key ideas in the subject. Particularly important to this

topic are sorting algorithms, which are used to arrange data in a certain order for easier

analysis and manipulation.

The subject of this thesis

The subject of this thesis is to enhance the learning experiences for students studying this

topic by developing a web application for the visualization of sorting algorithms. The abstract

nature of sorting algorithms makes it difficult for students to fully understand the concepts

involved, which is one of the barriers of learning about them. This is especially true for

people who do not have a lot of experience with programming or computer science. The web

application tries to overcome this issue and make the topic more approachable and interesting

for students by offering a more intuitive and interactive way to learn about these algorithms.

Because it has been shown to improve learning outcomes, the use of visualization as an

educational process is a hot topic in the field of computer science education. This makes the

subject of this thesis seasonable and relevant, as it aims to utilize the advantages of

visualization to improve the process of teaching and learning about algorithms.

Aim and objectives

The purpose of this thesis is to develop a web application for sorting algorithm visualization

in order to enhance the learning process for students who are studying this topic. The specific

goals of this thesis are to: examine the underlying ideas of algorithms and computational

complexity, to comprehend the characteristics and performance of several sorting algorithms,

analyze the potential educational benefits of visualization in the context of sorting algorithms

and explore its application as an educational process, implement a web application for sorting

algorithm visualization that takes into account the demands and educational objectives of

students, and lastly to illustrate the operation of each of the sorting algorithms that is included

in the application.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 19

Methodology

In order to successfully create such an interactive educational tool, the students’ needs and

learning objectives were taken into account. The application was created to be interactive as

is it designed to give students a practical and interesting learning experience. One of the

functionalities that achieve this purpose is the ability the student has, to provide their own

input in order to test a specific algorithm. For displaying the outcome of each algorithm, a bar

graph was used, giving the data a simple and understandable representation while also

assisting students in better comprehending how the algorithm operates.

Innovation

This thesis presents an innovative and original approach to the teaching and learning of

sorting algorithms through the development of a web application for their visualization.

Although using visualization as an educational process is not new, the application created for

this thesis elevates the idea by giving students a dynamic, interactive and interesting approach

to learn about these methods. Students can test the algorithms using their own dataset among

the built-in arrays in the application, they can also observe each iteration of an algorithm in a

step-by-step procedure, which offers a clear and user-friendly graphical representation of the

data to help students better grasp the algorithms’ key concepts and complexities.

Structure

This thesis is divided into five main chapters. The 1st chapter will give an overview of

algorithms and computational complexity, while defining the key terms and concepts that are

important for comprehending the subject. The details of sorting algorithms will be covered in

more detail in the 2nd chapter, along with a discussion of how well they perform in terms of

time and space complexity. The 3rd chapter will examine the use of visualization as a teaching

tool, highlighting its advantages and how educators can utilize it to their advantage in the

classroom. The 4th chapter will go into detail about the features and functionality that were

included in the application as well as the decisions that were made at each stage of the

development process. Finally, each sorting algorithm included in the application, will be

explained in the 5th chapter, utilizing the visualization tool to demonstrate how they operate.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 20

CHAPTER 1: Introduction to the concept of algorithms and

complexity

1.1 Introduction

The first chapter gives a general introduction on the subject of algorithms and on the concept

of computational complexity. Starting off, there will be a discussion about the definition of an

algorithm, the various types of algorithms and their applications. An introduction will be

provided on the concept of computational complexity, along with its uses in order to measure

the effectiveness of an algorithm. The “big O” notation, which is typically used to describe

the asymptotic complexity of an algorithm is covered in the last part. The comprehension of

these basic concepts for computer science, as outlined in this chapter, is a necessary stepping

stone for the development of the web application to visualize the selected sorting algorithms

and their steps.

1.2 Algorithm: a definition

An algorithm is a set of instructions or procedures for solving computational problems or

resolving a particular task. Algorithms are used to handle data, conduct complex calculations

and automate different procedures. They offer a methodical approach to problem solving and

are an imperative tool for creating and putting into practice quality software. Several

problems can be addressed using algorithms, such as data searching and sorting, process

optimization, and analysis and interpretation of big datasets. They can be utilized in a range

of settings, including as scientific research, business and daily life, while they can be

implemented in a plethora of programming languages.

Computer science relies heavily on algorithms which have a wide range of real-world

applications. The effective manipulation and interpretation of large amounts of data is one of

the major purposes of algorithms in computer science. For instance, algorithms are applied

for data analysis and visualization, data compression and encryption, and searching and

sorting of massive databases.

Countless real-world uses of algorithms can be found in areas like artificial intelligence, data

mining, and machine learning. In these domains, algorithms are used to automate decision-

making procedures, learn from data, and generate predictions.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 21

1.3 Types of algorithms

Algorithms are divided into several different categories or classes, each category serving a

specific purpose. Some of the most known types of algorithms are:

• Sorting algorithms: They are utilized to arrange data in a certain order, given a rule

and a direction (ascending or descending arrangement). Arithmetic values (for

numerical variables) or alphabetic (string) values (for categorical variables) can be

sorted according to the arithmetic or lexicographic order. Bubble sort, insertion sort

and quick sort are a few examples.

• Search algorithms: These algorithms are used in order to find particular items within a

large collection of data. Some prominent examples are linear search and binary

search. Search algorithms relay on a ‘key’ for searching.

According to their internal structure, algorithms may be characterized as

• Divide and conquer algorithms: These algorithms break a problem down into smaller

subproblems, solve the subproblems and then combine these answers to solve the

original problem. Merge sort and quick sort algorithms make use of this technique.

• Brute force algorithms: Brute force algorithms choose the optimal solution after trying

out every possible one. The drawback of such algorithms is that they can be

inefficient for problems of large dimensions even though they are typically simple to

apply. Problems such as n-queens and the traveling salesman are a few examples that

make use of brute force algorithms.

• Dynamic Programming (DP) algorithms: DP algorithms divide optimization issues

into smaller subproblems and store the solution to these subproblems in order to

reduce repeated work. The Fibonacci sequence and the Knapsack problem are two

examples of DP algorithms.

• Greedy algorithms: these algorithms at each step choose the locally best option in the

expectation that it will result in a globally optimal solution. Examples include the

shortest path algorithm developed by Dijkstra and the Huffman coding algorithm.

• Graph algorithms: Networks like social networks and transportation networks can be

evaluated and modified using graph algorithms. Shortest path algorithms and depth-

first search algorithms and such examples.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 22

1.4 What is computational complexity?

Computational complexity is a measure of the efficiency of an algorithm and is used to

understand the resources required to solve a given problem. Complexity is important given

the fact that, depending on the precise implementation and the input data, different algorithms

may have different levels of efficiency. There are several factors that contribute to the

computational complexity of an algorithm. A major factor is the time required for an

algorithm to arrive to a solution, which is evaluated through the number of basic operations

required by the algorithm in order to compute the solution. Algorithms can be also judged for

their space complexity, i.e. the amount of memory or storage needed to execute a task. When

memory limitations apply, space complexity becomes the crucial factor since it determines

the feasibility of a specific algorithm for the problem. Time and space are the major factors

used to assess algorithm efficiency and to compare alternative algorithms on the same

problem.

1.5 Asymptotic notation

Asymptotic notation is a mathematical notation used to represent the behavior of a function

as the size of the input data increases towards infinity. The terms “time complexity” and

“space complexity” are extensively used in computer science to refer to the resources needed

to solve a specific task.

There are several types of asymptotic notations, such as big O, big Ω and big Θ.

• Big O notation is used to express the upper bound on the time complexity of an

algorithm, i.e., the maximum number of steps that may be needed to solve a problem.

• Big Ω notation is used to express the lower bound on the time complexity of an

algorithm, meaning that it provides a lower limit of the steps necessary to solve a

problem.

• When both the upper and lower bounds are known, the time complexity of an

algorithm is expressed using the big Θ notation.

Asymptotic notation is helpful for comprehending the overall behavior an algorithm across

any possible input data set, as opposed to how well it performs when given a particular input

data set. It is typically used to comparatively evaluate how efficient different algorithms are

at solving a given problem. By understanding the asymptotic complexity of an algorithm, it is

possible to determine the feasibility and practicality of implementing and using a specific

algorithm for a specific problem.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 23

1.5.1 Asymptotic upper bound

Big O notation is a form of mathematical notation used to express the upper bound on the

time complexity of an algorithm. It is commonly used to define an algorithm’s worst-case

time complexity, meaning the maximum number of steps that can be applied to solve a task

when the input data set is ‘adversarial’. The capital letter “O” is used to symbolize big O

notation, which is then followed by a function that specifies the algorithm’s time or space

complexity. In Chapter 2, for instance, a sorting algorithm is presented with a worst-case time

complexity of O(n2), meaning that it will take at most n2 steps to sort a collection of input

data of size n. Big O notation is used to describe an algorithm’s behavior over time rather

than how well it performs when given a particular input. It helps assess the feasibility of

utilizing an algorithm for a particular problem by knowing how time-consuming it is.

1.5.2 Asymptotic lower bound

Big Ω notation is a form of mathematical notation used to express the lower bound on the

time complexity of an algorithm. It is frequently used to define an algorithm’s best-case time

complexity, which lowers the maximum number of steps that can be performed to solve a

problem. The capital letter “Ω” is used to symbolize big Ω notation, which is then followed

by a function that specifies the algorithm’s time or space complexity. For example, if an

algorithm has a best-case time complexity of Ω(n) this indicates that it will need at least n

steps to solve a problem of size n.

1.5.3 Asymptotic tight bound

When both the upper and lower bounds of an algorithm are known, the time complexity of an

algorithm is expressed mathematically using the big Θ notation, symbolized by the greek

capital letter “Θ”. It is used to describe the average-case time complexity of an algorithm,

meaning that is serves as both an upper and lower bound on the number of steps necessary to

solve a problem. To give a more complete understanding of the time complexity of an

algorithm, big Θ notation is commonly used in conjunction with big O and big Ω notations.

For instance, an algorithm with a worst-case time complexity of O(2n) and a best-case time

complexity of Ω(n) may have average time complexity of Θ(nlogn). In this example, the

average-case time complexity of the algorithm is described by the function nlogn. Figure 1.1

shows a graph of various Big O time complexities versus the input size of n data elements:

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 24

Figure 1.1: Big O complexity graph.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 25

CHAPTER 2: Presentation and analysis of sorting algorithms

2.1 Introduction

After the brief explanation of what is an algorithm and what are the ways of measuring its

efficiency, in this chapter we will proceed to the class of sorting algorithms. Different forms

of data can be rearranged using sorting algorithms in an ascending or descending order. The

following sorting algorithms will be covered:

1. bubble sort,

2. selection sort,

3. insertion sort,

4. merge sort and

5. quick sort.

For each one of them we will give a definition, a synopsis of how it works, an example and a

breakdown of the algorithm time and space complexity using the big O notation.

Understanding the various sorting algorithms and their features, is a crucial step before the

design of the algorithm visualizer application.

2.2 The concept of sorting

Sorting is the process of rearranging a sequence of items into a specific order. Sorting can be

done with numerous data types, such as numbers, words or strings of alphanumeric characters

or more complex structures that combine domains of alphabetic, numeric or logical types. To

accomplish a task like that, a plethora of sorting algorithms has been developed, each bearing

certain advantages and disadvantages. The order of a given sorting task refers to the rule of

ordering: numerical order for arithmetic values, alphabetic or lexicographical order for words

or strings, or chronological order for dates, are some common examples of the ways in which

data can be sorted. Another aspect is direction: ordering may be done in an ascending or a

descending direction. Sorting algorithms are a first chapter in any course on Algorithms in a

Computer Science or Engineering curriculum. In such academic contexts, sorting algorithms

are used to introduce students to the fundamental concepts of algorithms, data structures and

complexity analysis. Real-world applications of sorting algorithms expand to many fields

such as Data Analysis which analyzes data to extract and understand patters within the data,

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 26

or Database Management which assists in organizing and retrieving data efficiently based on

queries.

2.3 Bubble Sort

Bubble sort is a simple algorithm that sorts a sequence of input data (elements) by repeatedly

iterating through the list, comparing adjacent elements and swapping them if they are in the

wrong order. The sequence of input data is considered to be sorted when no further swaps are

needed. It is called ‘bubble sort’ because the elements of lower values (the ‘lighter ones’) or

will ‘bubble’ up to the top of the list as they are being sorted – assuming an ascending

direction is required, from the lower (top) to the higher (bottom) value.

The worst-case time complexity of bubble sort is O(n2), the best-case time complexity is

O(n), and the average-case time complexity is O(n2). This indicates that as the size of the

input collection of data increases, the time it takes for the algorithm to run grows

exponentially. Bubble sort has a space complexity of O(1), meaning that it only needs a

constant amount of extra memory, since it is an in-place sorting algorithm.

Although bubble sort is straightforward to comprehend and implement, it is not particularly

efficient, especially for large collections of data. Suppose we have the following sequence of

integer numbers that we want to sort in ascending order:

Input Data: The list of integer numbers: [15, 16, 6, 8, 5]

Figure 2.1: Pseudocode for bubble sort.

First Iteration

[15, 16, 6, 8, 5] → [15, 16, 6, 8, 5], Since 15 < 16 there is no need to swap.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 27

[15, 16, 6, 8, 5] → [15, 6, 16, 8, 5], Since 16 > 6 a swap is performed.

[15, 6, 16, 8, 5] → [15, 6, 8, 16, 5], Since 16 > 8 a swap is performed.

[15, 6, 8, 16, 5] → [15, 6, 8, 5, 16], Since 16 > 5 a swap is performed.

Second Iteration

[15, 6, 8, 5, 16] → [6, 15, 8, 5, 16], Since 15 > 6 a swap is performed.

[6, 15, 8, 5, 16] → [6, 8, 15, 5, 16], Since 15 > 8 a swap is performed.

[6, 8, 15, 5, 16] → [6, 8, 5, 15, 16], Since 15 > 5 a swap is performed.

[6, 8, 5, 15, 16] → [6, 8, 5, 15, 16], Since 15 < 16 there is no need to swap.

Third Iteration

[6, 8, 5, 15, 16] → [6, 8, 5, 15, 16], Since 6 < 8 there is no need to swap.

[6, 8, 5, 15, 16] → [6, 5, 8, 15, 16], Since 8 > 5 a swap is performed.

[6, 5, 8, 15, 16] → [6, 5, 8, 15, 16], Since 8 < 15 there is no need to swap.

[6, 5, 8, 15, 16] → [6, 5, 8, 15, 16], Since 15 < 16 there is no need to swap.

Fourth Iteration

[6, 5, 8, 15, 16] → [5, 6, 8, 15, 16], Since 6 > 5 a swap is performed.

[5, 6, 8, 15, 16] → [5, 6, 8, 15, 16], Since 6 < 8 there is no need to swap.

[5, 6, 8, 15, 16] → [5, 6, 8, 15, 16], Since 8 < 15 there is no need to swap.

[5, 6, 8, 15, 16] → [5, 6, 8, 15, 16], Since 15 < 16 there is no need to swap.

Output Data: The final sorted array is [5, 6, 8, 15, 16]

An important observation here is that for an array of size n, the algorithm requires n-1

iterations to sort the elements in ascending order.

2.4 Selection Sort

Selection sort is a straightforward sorting algorithm that works by repeatedly finding the

minimum element (when considering ascending order) from the unsorted portion of the array

and placing it at the beginning. For any given array of input data, this algorithm maintains

two subarrays: the subarray that is already sorted and the subarray that is unsorted and

remains to be sorted. In every iteration of selection sort, the minimum element from the

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 28

unsorted subarray is chosen and moved to the sorted subarray (taking into account ascending

order).

The best-case time complexity of selection sort is O(n2). Worst-case and average-case time

complexities of selection sort are both equal to O(n2) as well. This is because for each

element inserted at the beginning, the algorithm must scan all n items. Just like bubble sort,

selection sort is an in-place sorting algorithm, so there is no the need for additional space: the

space complexity is O(1).

Suppose we have the following sequence of numbers that we want to sort in ascending order:

Input Data: list of integer numbers [7, 4, 10, 8, 3, 1]

Figure 2.2: Pseudocode for selection sort.

Sorted subarray: []

Unsorted subarray: [7, 4, 10, 8, 3, 1]

First Iteration

The minimum element in the unsorted portion of the subarray is 1. Swap 1 with the element

at index 0 in the sorted portion of the array.

Sorted array: [1, 4, 10, 8, 3, 7]

Unsorted subarray: [4, 10, 8, 3, 7]

Second Iteration

The minimum element in the unsorted portion of the subarray is 3. Swap 3 with the element

at index 1 in the sorted portion of the array.

Sorted array: [1, 3, 10, 8, 4, 7]

Unsorted array: [10, 8, 4, 7]

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 29

Third Iteration

The minimum element in the unsorted portion of the subarray is 4. Swap 4 with the element

at index 2 in the sorted portion of the array.

Sorted array: [1, 3, 4, 8, 10, 7]

Unsorted array: [8, 10, 7]

Fourth Iteration

The minimum element in the unsorted portion of the subarray is 7. Swap 7 with the element

at index 3 in the sorted portion of the array.

Sorted array: [1, 3, 4, 7, 10, 8]

Unsorted array: [10, 8]

Fifth Iteration

The minimum element in the unsorted portion of the subarray is 8. Swap 8 with the element

at index 4 in the sorted portion of the array.

Sorted array: [1, 3, 4, 7, 8, 10]

Unsorted array: [10]

Output Data: The final sorted array is [1, 3, 4, 7, 8, 10].

Again here, just like bubble sort algorithm, for an array of n elements, selection sort needs n-

1 iterations to sort the elements.

2.5 Insertion Sort

Insertion sort is a straightforward, intuitive sorting algorithm that works efficiently on short

collections of data. This algorithm sorts a sequence of input data by continuously inserting

each item into the suitable position. Just like selection sort, this algorithm maintains two sub-

lists of the original list: an unsorted one and a sorted one. It starts by considering the first

element in the input data as the only sorted element while all the rest are placed in the

unsorted list. Then progressively the algorithm selects the next unsorted element and inserts it

into the sorted sub-list, at the appropriate position (whence its name). To insert a single

element into the sorted sub-list, the algorithm compares it with every element in the sorted

sub-list until it finds the correct position for this element, based on the sorting order rule and

direction (ascending or descending). The element is then inserted into the correct position,

after a necessary number of elements have been shifted to make room for the new insertion.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 30

When the list is sorted, the best-case time complexity for insertion sort is O(n). Both the

worst-case and average-case time complexities are O(n2). Because it sorts the list in-place,

without using additional space, insertion sort has space complexity of O(1).

Suppose we have the following sequence of numbers that we want to sort in ascending order:

Input Data: list of integer numbers [5, 4, 10, 1, 6, 2]

Figure 2.3: Pseudocode for insertion sort.

The first element, 5, is regarded as the only sorted element.

Sorted portion of the list: [5]

Unsorted portion of the list: [4, 10, 1, 6, 2]

First Iteration

The next unsorted element, 4, is compared to all the elements in the sorted portion of the list

(here, [5]).

Since 4 < 5, it is inserted at the start of the sorted portion.

Original list: [4, 5, 10, 1, 6, 2]

Sorted portion of the list: [4, 5]

Unsorted portion of the list: [10, 1, 6, 2]

Second Iteration

The next unsorted element, 10, is compared to all the elements in the sorted portion of the list

(here, [4, 5])

Since 10 > 5, it is inserted at the end of the sorted portion.

Original list: [4, 5, 10, 1, 6, 2]

Sorted portion of the list: [4, 5, 10]

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 31

Unsorted portion of the list: [1, 6, 2]

Third Iteration

The next unsorted element, 1, is compared to all the elements in the sorted portion of the list

(here [4, 5, 10]).

Since 1 < 4, it is inserted at the start of the sorted portion.

Original list: [1, 4, 5, 10, 6, 2]

Sorted portion of the list: [1, 4, 5, 10]

Unsorted portion of the list: [6, 2]

Fourth Iteration

The next unsorted element, 6, is compared to all the elements in the sorted portion of the list

(here, [1, 4, 5, 10]).

Since 6 > 5 but 6 < 10, it is inserted after the element 5.

Original list: [1, 4, 5, 6, 10, 2]

Sorted portion of the list: [1, 4, 5, 6, 10]

Unsorted portion of the list: [2]

Fifth Iteration

The next unsorted element, 2, is compared to all the elements in the sorted portion of the list

(here [1, 4, 5, 6, 10]).

Since 2 > 1 but 2 < 4, it is inserted after the element 1.

Original list: [1, 2, 4, 5, 6, 10]

Sorted portion of the list: [1, 2, 4, 5, 6, 10]

Unsorted portion of the list: []

Output Data: the final sorted array is [1, 2, 4, 5, 6, 10].

2.6 Merge Sort

Merge sort is one of the most efficient sorting algorithms. It is a recursive algorithm, i.e., it

uses the ‘divide and conquer’ strategy to repeatedly divide the array into shorter arrays, until

each array is short enough to be easily sorted at the cost of one swap at most. These sorted

subarrays are then merged back together to form a completely sorted array. In more detail, the

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 32

first step is to divide the array into two halves, which this normally done by calculating the

array midpoint and splitting it in half along this middle. The merge sort algorithm will then

recursively call itself on each of these two subarrays. This implies that the algorithm will

continue to split each half into smaller subarrays until its sub-list consists of only one

element. The algorithm will now consider each element as having been “sorted”. In the final

phase, the algorithm will start the process of merging the sorted subarrays of the original list

back together after the two halves of the array have been sorted. This is accomplished by

comparing the first element of each half and putting back into the original array the smaller

one. Once all of the elements from both halves have been merged back into the original list,

the process is repeated.

Merge sort has a best-case time complexity of O(nlog(n)), and both worst-case and average-

case complexities O(nlog(n)) as well. The space complexity of merge sort is O(n), however,

because of the additional space needed to store the two half subarrays of the original list.

Suppose we have to sort the list of integer numbers: [70, 50, 30, 10, 20, 40, 60].

Figure 2.4: Pseudocode for merge sort.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 33

Figure 2.5: Merge sort example.

Splitting phase down to sub-arrays of 1 element each:

We first divide the array in half to obtain: [70, 50, 30, 10] and [20, 40, 60]. After that, we

recursively divide each of these arrays in half again, until we get subarrays consisting of only

one element: [70], [50], [30], [10], [20], [40], [60].

Merging phase:

We merge together these single elements as follows:

1. We compare 70 and 50 and we sort them as follows: [50, 70]

2. We compare 30 and 10, and we sort them as follows: [10, 30]

3. We compare 20 and 40, and we sort them as follow: [20, 40]

4. We merge [50, 70] with [10, 30] and the result is the following: [10, 30, 50, 70]

5. We merge [20, 40] with 60 and the result is the following: [20, 40, 60]

6. We finally merge the subarrays that were created from the two halves of the original

array to get the final sorted array: [10, 20, 30, 40, 50, 60, 70]

2.7 Quick Sort

Quick sort is another recursive sorting algorithm which, like merge sort, uses the ‘divide and

conquer’ technique. The algorithm selects a pivot element from the sequence and by using

partitioning, it recursively rearranges the list such that all elements that are less than the pivot

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 34

element are positioned to the left of the pivot element, and all the elements that are greater

than the pivot element are placed to the right of it.

Quick sort has best-case time complexity of O(nlogn), meaning the pivot element would be

selected so that the two sublists would roughly have the same number of elements. In the

worst-case, the pivot element is selected in such a way that one of the sublists has just one

element and the other n-1 elements, resulting to a time complexity of O(n2). Quick sort has an

average-case time complexity of O(nlogn). Quick sort has a space complexity of O(logn).

There are some optimization techniques that ensure that quick sort is done in-place, meaning

that it does not require extra space makes it efficient for sorting large lists.

Suppose we have to sort the list of integer numbers [9, 7, 5, 11, 12, 2, 14, 3, 10, 6]

Figure 2.6: Quick sort pseudocode.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 35

Figure 2.7: Quick sort example.

We assume that the pivot element is the last element in the array, which is 6. The initial

partition would be the following: [5, 2, 3 | 6 | 12, 7, 14, 9, 10, 11]. The sublist on the left

consists of all the elements that are less than the pivot element, 6, and the sublist to the left of

6, consists of all the elements that are greater than the pivot element.

The left subsequence is recursively partitioned again using the last element, 3, as the pivot

element, and so is the right subsequence using the element 11 as the pivot:

[2 | 3 | 5, 6, 7, 9, 10 | 11 | 14, 12]

The sublists [2] and [5] are already sorted. The sublist [7, 9, 10] is partitioned with the pivot

element being 10, and the sublist [14, 12] is also being partitioned with the pivot element

being 12:

[2, 3, 5, 6, 7, 9 | 10 | 11 | 12 | 14]

The sublist [7, 9] is partitioned with the pivot element being 9:

[2, 3, 5, 6, 7 | 9 | 10 | 11 | 12, 14].

Since the single elements are already sorted, the final sorted array is:

[2, 3, 5, 6, 7, 9, 10, 11, 12, 14].

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 36

CHAPTER 3: Visualization as an educational process

3.1 Introduction

Visualization has been proven to be a powerful tool for enhancing learning and understanding

of complicated concepts in a variety of educational contexts. Students can better understand

and retain information by utilizing visual representations like diagrams, charts, images and

graphs. This is especially true for subjects such as sciences, including math and algorithms,

where visualization can help students make sense of abstract and complex concepts. This

chapter includes a review on the advantages of visualization in education and a discussion on

the various methods visualization may be employed to improve instruction and learning.

3.2 The concept of visualization

Visualization is the process of conveying information and ideas through the use of visual

aids, tools and techniques. Charts, diagrams, maps and other graphic representations of data

and concepts are only a few examples of the many tools and methods that can be used to this

end. Visualization makes it possible for the learner to observe the connections and

relationships among different parts or pieces of information, e.g., among different facts,

variables, concepts, procedures, etc. For this reason, it is frequently used to facilitate and

enhance the comprehension and interpretation of complex fields of knowledge.

Visualization as an educational process refers specifically to the use of visualization as a tool

for teaching and learning. Visualization is utilized in this scenario to make learning more

interactive and engaging while assisting students to grasp the meaning and to better

remember hard concepts, ideas, procedures, etc.

3.3 Visualization techniques

Some of the most commonly used visualization tools and techniques in an academic

environment include:

• Charts and graphs: Charts and graphs are helpful for displaying numerical data and

highlighting the connections among various variables. They are extensively used in

fields such as

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 37

▪ economics, to represent data on topics such as GDP, unemployment, inflation

and other economic indicators,

▪ social sciences, to demonstrate results on topics such as demographics,

attitudes, psychology, behaviors, and other social phenomena, and

▪ data science, to depict data from a wide range of sources, including databases,

sensor networks, social media etc. Data scientists utilize these charts to

describe their findings and to detect trends, patterns and outliers/anomalies in

massive datasets.

• Diagrams: Diagram is a form of visual representation that displays the connections

and relationships between several concepts or ideas. They are often used in fields like

▪ physics or engineering, where they demonstrate how systems or processes

work,

▪ computer science, where they illustrate how computer systems, networks and

algorithms are built and function,

▪ medicine, where they describe the structure and function of living organisms

and their systems.

• 3D models: 3D models are visual representations of three-dimensional systems or

entities. They are most used in disciplines such as

▪ architecture and civil engineering, where they allow architects to visually

explain in three dimensions to clients and other interested parties how a

building will be like when constructed,

▪ engineering and manufacturing, where they aid in the system and/or product

design and testing phases,

▪ computer science, where they aid in the development of graphics characters

for digital media, e.g., animated agents (characters) and/or other digital

constructs within a virtual environment that can be animated in real-time,

▪ sciences like chemistry or biology, where they aid represent in 3D constructs

that cannot be directly observed because of volatility or scale,

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 38

▪ infographics: Infographics are graphic representations of data that are intended

to be quickly absorbed by the spectator. They are frequently used in business

and marketing to visualize data on sales, market trends or customer

demographics,

▪ journalism, where they display data on noteworthy subjects like politics,

economy, and health, and

▪ other fields, thanks to their ability to clearly and concisely convey complicated

ideas.

3.4 Benefits of visualization

Over the past ten years, the development and quick adoption of new e-learning or distance

learning methods has gained momentum. The traditional, face-to-face model of instruction is

often supplemented and, in some cases, completely substituted by the e-learning / distance

learning paradigm. Moreover, the traditional ‘one-to-many’ lecturing type of instruction has

been gradually replaced by pedagogically advantageous methods such as collaborative

learning, discovery learning, problem-based learning, etc. Visualization is a valuable tool

along the paths of modern ways of instruction and learning.

One of the main benefits of the use of visualization and, in particular, of algorithm

visualization tools in education, is that the introduction and use of such tools in the classroom

is now easier than before, thanks due to the recent technological advancements. There are

now more algorithm visualization tools available than before due to the easier accessibility

through the Internet. The accessibility to teachers and learners of learning tools and content

over the Internet, both from inside and outside of the classroom, makes the usage of

algorithm visualization tools feasible. For instance, while it has long been “possible” to

project Internet content from a computer on a screen in a classroom, such access has just

recently become commonplace and Internet connections have become stable enough in all

classrooms. This progress has a significant impact on how experienced and how confident

instructors are in their ability to use such technologies.

Another benefit of visualization as an educational process is the ability to engage students

and maintain their interest in the material especially when it involves explaining dynamic

behavior or state changes of systems. The use of dynamic visualization has the advantage of

the immediate feedback, that enhances the comprehension of both theoretical and practical

issues. Indeed, it can be more interesting and entertaining for students to interact with visual

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 39

aids when they can see them, as opposed to just reading about them or listening about them in

a lecture. This is particularly true for students who have different learning preferences and

may not respond well to conventional teaching strategies such as lectures or reading

assignments. Regarding the subject of data structures and algorithms, dynamic and interactive

visualization tools are a considerable help thanks to the fact that implementation details no

longer obscure the students’ view, while visual depiction of the data structure enhances

conceptual understanding.

Visualization also enables group collaboration and a more participatory discussion of ideas

and concepts. As it enables students to see the connections and interactions between different

parts, visualization can also assist students to think critically and creatively on the particular

subject. Students can take part in more engaged and dynamic discussions that can help

develop a deeper understanding and cultivate their problem-solving abilities by working

together to analyze visual aids. In addition to the fact that it helps students to understand how

their peers are conceptualizing and representing the material, visualization can also be

leveraged to facilitate peer criticism and review because, apart from working together, such

tools can inspire students to learn from and with each other as this promotes a climate of

collaboration and support between them.

In addition to its advantages for students, visualization can be a useful tool for educators in

terms of evaluation and assessment. It empowers teachers to design more interactive and

interesting assessment activities that let students show their understanding in a more creative

and exciting way. Professional educators can develop exam tests that are more interactive and

interesting for students by integrating visual aids and approaches like diagrams, charts, and

other graphic representations of information. This is very helpful in areas like art or design

where students may feel more comfortable expressing themselves visually as opposed to in

written or oral form.

Visualization can also support educators to assess and analyze student learning more

accurately. Teachers can design evaluation activities that are better suited to the course

specific learning objectives and more closely related to the piece of knowledge that has been

taught by utilizing visual aids and strategies. As a result, it might be more straightforward for

students to demonstrate their comprehension of the material in a way that is more meaningful

and relevant, and it could be simpler to judge students’ learning more accurately.

It is possible that not all students will profit from visualization as a teaching strategy. Some

students could have difficulty understanding or interpret visual information, or they might

suffer from visual impairments that prevent them from utilizing visual tools effectively. In

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 40

these circumstances, it would be required to use different teaching strategies or to offer more

guidance.

Despite this possible drawback, visualization has the potential to be a prominent and useful

tool for promoting greater comprehension and improving learning in a range of contexts.

Visualization can assist educators in involving students and supporting their learning in

significant and efficient ways, whether it is used in traditional classroom environments or

online learning scenarios. By utilizing the advantages of visualization as an educational

process, educators can support the development of a more dynamic and interactive learning

process for their students, increase their active participation and promote critical thinking and

problem-solving abilities.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 41

CHAPTER 4: Design and Development of the Web Application

4.1 Introduction

This chapter presents the design and development of an educational visualizer in the form of

a web application. More specifically, the application is a sorting algorithm visualizer which

allows students to view the inner workings of the selected set of sorting algorithms in real

time. A combination of HTML, CSS and JavaScript was used for the creation of the

application. One of the key development considerations that was made during the design of

the application was to include interaction between the application and the student. This

enables the student to not only observe how the algorithms behave but also to experiment

with different sets of input values and compare algorithm responses and efficiency.

Regarding the input, a justification is necessary for the choice that the student is allowed to

enter input data only of the numerical type - positive integers, in particular. This choice was

made to increase application simplicity and usability. Additionally, input data is given

through the standard input device, i.e., the keyboard, rather than an external device like a hard

disk. This allows students to easily and quickly enter values to test an algorithm. The

application output is displayed in the form of a bar graph, with horizontal bars representing

each element of the array. In order to offer the user control over the various functionalities of

the application, a control panel with a variety of buttons was integrated in the GUI. Finally,

considerable thought was given to the design of the screen layout, ensuring that all important

buttons and controls are self-explanatory and easy to access and use.

4.2 Software tools employed for the development of the web application

The visualization application is essentially a web application which is accessible through a

web browser. The application has a graphics user interface (front-end material) while it relies

on standard web infrastructure regarding software and tools. Specifically, a combination of

languages is employed for the implementation of this project, namely, HTML, CSS and

JavaScript. These are supported by all major and popular web browsers as they are essential

for web access over the Internet. The main programming language employed is JavaScript.

The main reason behind the choice of JavaScript is because it is a programming language that

runs directly on a web browser – this is the reason why most developers use this language,

[2].

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 42

4.2.1 HTML

HyperText Markup Language (HTML) is a descriptive language for building web pages. This

markup language tells the browser how to display a web page different forms of multimedia

on such as text and images. It also handles the formatting of the digital content served within

a web page. Although direct use of HTML for the development of a web page is not the way

to go today, many of the modern sophisticated and user-friendly web page development

environments automatically produce HTML code as the common intermediate step.

4.2.2 CSS

Cascading Style Sheets (CSS) is a W3C (World Wide Web Consortium) standard to describe

the appearance of HTML elements. Through CSS, web designers and developers are able to

define formatting properties for the web page digital content appearance such as fonts, colors,

sizes, borders, images, background colors, etc.

4.2.3 JavaScript

JavaScript is a programming language that is used to create and control dynamic content on

the Web. JavaScript along with HTML and CSS form the core technologies (software tools)

used in modern web content development. The main purpose of JavaScript is to make web

pages interactive. Dynamic content and interactivity constitute significant progress steps in

the field of web site / web page development and usage, as compared to the previous

technology that allowed the display of only static content and limited interactivity to just

navigation. In contrast, JavaScript allows the web designer to add many interactive

functionalities, to add dynamic content display, to embed animations and in general to offer

the digital content in various multimedia forms that improve the overall user experience.

4.3 Major decisions on the functionalities of the application

4.3.1 Interactivity

As mentioned earlier, this application is meant for educational purposes. Application design

is therefore strongly directed by the prominent factor of student or learner interactivity. It is

widely known that technology has rendered modern education more engaging. Interactive

learning is the process of making learning more active and engaging. Moreover, interactivity

supports modern education scenarios that do not just lecture or instruct students on theoretical

subjects but also provide hands-on experience (laboratories, workshops, collaborative

projects, etc.) on real-world cases or setups, to effectively embed acquired knowledge. The

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 43

aim of such scenarios and tools is to make sure that students really understand new

knowledge and not just memorize and reproduce it.

In the case of the present application, interactive content allows students to not just read or

listen as they would do in a traditional setup, but rather to participate and furthermore to

explore and experiment with each algorithm step-by-step. Interactivity and multimedia forms

allow learners to use multiple parts of their brains and fully grasp the new material they

study. They are thus expected to develop the mental structure necessary in order to

understand the concepts involved in the relevant data structures and algorithms. As

demanding such a goal may be, yet, it is critical for the success of academic study programs.

Another advantage of practical interest is that interactive learning may be utilized by the class

teacher or instructor in multiple ways. A first aim of such tools is to render class sessions

attractive in the sense that they become more engaging and entertaining. Students are more

likely to continue learning in their own time when they are immersed in an interactive stream

of teaching.

4.3.2 Input provided by the user

Regarding the user input, we decided to allow the student to sort numbers and more

specifically positive integers, instead of other forms of data such as strings, dates, names or

even more complex data structures like objects and that is for a few reasons.

One of the main advantages of using positive numbers when sorting an array, is that they are

typically easier to work with mathematically. Using simple mathematical processes, it is

really simple to compare numbers to each other and it makes the order of the numbers

obvious to perceive. As a result, students will find it simpler to comprehend the sorting

algorithms and how they operate when they do not have to worry about an array consisting of

more complex data structures.

On the same note, when sorting positive integers, there are no exceptional circumstances to

take into consideration because they have a distinct, well-defined order. This makes it easier

for students, instead of being caught down in marginal or exceptional cases, to be able to

concentrate on the fundamental ideas of a sorting algorithms.

Finally, the choice of sorting positive integers rather than other types of numbers was made

because positive integers are more intuitive for most people when the task is ‘sorting’. For

instance, it is more intuitive to consider prices as positive numbers rather than negative

numbers when sorting a list of prices.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 44

In general, sorting positive integers rather than other types of data was used to render the

application simpler and more efficient for the students to study and grasp the mechanism of

each sorting algorithm.

Another important point on the input is that among all the popular user input methods, such

as input through keyboard, input via a file stored in memory or input via data input line from

an external peripheral device, the student is given the option to insert values only through the

keyboard.

One reason behind this decision, is that typing in data through a keyboard is usually quicker

and more convenient than opening a file and reading the data from it, especially when the

number of data points is limited and accuracy is not crucial. The educational nature of this

application limits the length of data input arrays. Real-time data entry is possible using

keyboard input, which is useful in this situation as the aim of the application is interactivity

between the student and the sorting visualizer.

Another reason is that input via keyboard is frequently considered as superior because it

offers more freedom in terms of the format of the data, meaning that the data must be in a

certain format that the application can understand when reading it from a file. In contrast,

data can be entered using the keyboard in any format as long as the program knows how to

interpret it.

Third, typing data in through a keyboard can be more secure than input from a file. There is a

possibility that a file may have been altered or corrupted in some way when data is inserted

from a file, which could result in errors or security flaws. Taking input from a keyboard, on

the other hand, leads directly into the program and is not exposed to these risks.

Apart from the input via the keyboard, an alternative functionality is provided, namely, the

automatic generation of a random array of a user-defined length, with values within a certain

value range. Furthermore, the user may ask the application to replicate the last input data, for

algorithm comparison purposes.

• First, utilizing a random array allows the student to observe how the sorting algorithm

behaves on a wide range of various inputs, which can help in better understanding the

specific algorithm with more clarity. The explanation for that is because a random

array will always have a distinct set of elements, allowing the student to examine how

the algorithm responds to different inputs and how its performance varies.

• Second, the use of a random array renders the sorting visualizer more interactive and

engaging because the student can generate several different arrays and observe how

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 45

the algorithms sort them in real time. This can improve the application educational

and entertaining value while also help the student understand the underlying

principles of sorting algorithms.

• Finally, since the data that needs to be sorted is usually unknown in advance,

implementing a random array can make the sorting visualizer more realistic and

representative of real-world events. Instead of using a predetermined array, the

student can experiment on how the algorithms would operate on real data by using a

random array in the application.

As mentioned earlier, replication of the same data of a random array as many times as the

user wants has a simple reason behind it. A student can first experiment with a random set of

data observing a specific set of elements, and then for better comprehension just by pressing

the “Same Data” button, the previous displayed array is being displayed again which gives

the student the functionality for a deeper observation using now the step-by-step capabilities

of the application.

At this point, it is worth mentioning the alternative user input methods that were rejected and

the justification of these decisions. A prevalent method of input is via reading a file stored on

the user’s computer. It may take longer and be a lot slower to read from a file which has been

stored on a computer than it getting input from the keyboard. This is because the program

must first locate the file on the computer, open it, then read its contents. Reading from a file

can also increase the chance of an error since the file might not be correctly formatted or it

might be missing which could have incorrect results or even a software crash. Moreover,

validating the data inserted from a file might be more difficult. For instance, the program

might not be able to make sure that the data in the file are numerical or within the specified

range that is expected. Furthermore, taking input from keyboard gives the program the ability

to process it right away, while when reading data from a file it could require the user to have

particular permission rights which can be a barrier utilizing the application.

The choice of data input from an external peripheral device was also rejected. As already

stated, the user can simply type the input values for the array directly into the input field and

the software can instantly process it makes it a more fast and convenient method. In the case

of an external peripheral device, the student must first connect the device to the computer

before entering the data, which might be less intuitive and more time consuming. This makes

the process of getting data from an external device much slower and more complicated.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 46

In general, keyboard input is perceived as more effective, practical and secure than taking

input from other sources.

4.3.3 Output produced by the application

The sorting algorithms application uses a graphical representation, more specifically a bar

graph, along with animations showing the steps of the sorting algorithm as it processes (sorts)

input data. The width of each bar represents the value of each element (integer) of the input

array which allows the student to visualize relative sizes of all array elements. Animation

gives the student the ability to observe the changes that are happening with every swap in the

array during sorting, as the bar graph is updated in real-time. Overall, the combination of the

bar chart and the animations on every iteration enables the student to easily comprehend the

algorithm and see how the elements are sorted. This is the goal of the application, as it allows

the student to easily interpret the results.

4.3.4 Control Panel

As already stated, the main utilization of this application is for educational purposes, hence,

emphasis is given on the interactivity between the student and the application. Action takes

place in the central screen of the application and the user interacts with it through the

selection and pressing of graphics buttons.

The major decision on the design of the central application screen is the placement of the bars

(i.e., elements of the input array); everything else is then placed according to that first

decision. Horizontal bars placed vertically the one on top of the other are a design decision

made to emphasize the idea of sorting as drawn for bubble sort: in bubble sort, the smaller

bubble floats upwards to the top or ‘liquid’ surface, followed by the second-smaller, etc.

The next step was to decide on the overall functionalities of the application, meaning what

the user should / should not be able to do. A major decision here is to allow the user control

not only the speed of execution but also the mode: one-off or step-by-step. The step-by-step

option is considered crucial as it allows the user run an algorithm at his/her own pace and

have time to manually verify results on his/her list of input data. Moreover, the idea of

watching each input number move to its correct position under the constraints of an algorithm

was much easier to follow than tracing the code by hand. For that reason, students have the

ability to control the application through the following buttons and utilities:

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 47

• User input field: A user input field is provided where the student can test and

analyze a specific algorithm with their desired input. The values are separated

by comma and the allowed input range is 0 to 999.

Figure 4.1: The user input field.

• Array size slider: An HTML range element controls the size of the array that is

currently displayed from the application. The student has the ability to create

an array from just one element up to 20 elements.

Figure 4.2: The array size slider.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 48

• Animation speed slider: An HTML range element controls the animation speed

of the algorithm. Higher values mean that the animation speed is slower which

gives the student a better understanding of how the algorithm operates, where

lower values mean faster animation speed that give a quick glance at the

algorithm. The values are displayed in milliseconds (ms).

Figure 4.3: The animation speed slider.

• Algorithm choice buttons: Each algorithm has its corresponding button that

enables it to rum. By clicking on the button with the specified algorithm name

on it, the student commands the application to run the specific algorithm on

the input data already defined by the value of array size slider and with the

specified animation speed defined by the animation speed slider. If the users

choose to enter their own input array via the user input field, they can still

specify the animation speed but the array size slider remains disabled. By

clicking the corresponding algorithm button in this case, the algorithm is

tested using the input array that was given.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 49

Figure 4.4: The algorithm buttons.

• Step-by-step buttons: For better understanding the student has the ability to test

each algorithm step-by-step. By clicking the step-by-step button, the algorithm

proceeds one iteration at a time. This option gives the student the capability to

run the algorithm at his/her own pace and stop the application at each step to

manually verify the changes made or not made at this step and compare his/her

own results with those of the application, for better understanding of the inner

mechanism of the algorithm.

• New data button: This button generates new data of the specified input value

from the array size slider. New data are automatically generated when

reloading the application. The generated values are in the range of 1 to 999.

Figure 4.5: The new data button.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 50

• Same data button: This button generates and displays again a copy of the

original array that was already tested. It gives the student the opportunity to

work the algorithm alongside the application. The idea is to first have a quick

glance at the algorithm that they want to test, see the output, and then generate

the same array again and with the help of the corresponding step-by-step

button trace the algorithm accordingly and get the expected result.

Figure 4.6: The same data button.

• Stop button: It allows the student to terminate the current run of an algorithm.

Figure 4.7: The Stop button.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 51

• Algorithm Description: While the algorithm is running, the student can click on

the link ‘Description’ that is provided on the lower left side of the screen and a

helping modal will appear. A short description is provided as well as the time

and space complexity of the specified algorithm. By clicking the “Back to

Visualizer” button the student returns to the algorithm visualizer application.

In conjunction to the algorithm description, a brief description is given as far

as the corresponding colors and their meaning that each algorithm uses.

Figure 4.8: The algorithm description area.

The decision to include simplified summaries of each algorithm’s time and space complexity

along with brief descriptions of how they operate, was made with the understanding that the

visualizing tool is intended to server as a practice and review application for students who

have already been taught the subject of algorithms and data structures elsewhere or otherwise.

Given this context, the application’s main objective is neither to introduce students to sorting

algorithms or to provide a thorough examination of their features. Instead, it aims to increase

students’ comprehension of these algorithms by giving them an interactive, hands-on

experience that lets them examine each algorithm in action.

Before using the tool for practice, students can quickly review the key concepts and

characteristics of each algorithm with the help of the short summaries of each algorithm’s

time and space complexity and concise descriptions of how the algorithm works. This

approach assumes that students are already familiar with the material on a basic level and are

merely using the tool to supplement their knowledge.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 52

The visualizing application can assist students in concentrating on the practical aspects of

working with algorithms and obtaining a better understanding of how they operate in specific

circumstances by giving them a clear and easily understood overview of each algorithm’s

characteristics. As a result, students will then have a strong basis for further study and

research of the topic as well as the ability to work with sorting algorithms with confidence.

Figure 4.9: Bubble sort description summary.

Figure 4.10: Selection sort description summary.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 53

Figure 4.11: Insertion sort description summary.

Figure 4.12: Merge sort description summary.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 54

Figure 4.13: Quick sort description summary.

4.3.5 Help modal

Providing a help modal into the sorting algorithms visualizer application is great approach to

direct students and make sure they understand exactly how to use the tool. The help modal,

which gives users a brief overview of the features contained in the application, is intended to

automatically show when the application loads for the first time and every time the page is

updated. The help modal provides instructions for using various application buttons as well as

recommendations for best practices and appropriate usage. Also, the modal makes sure users

receive the information they need before utilizing the tool, which can mitigate

misunderstanding and confusion.

The modal is accessible from any screen inside the application with the proper adjustments

for better screen coverage and is created to be user-friendly and simple to read. By pressing

the start button or elsewhere outside the modal, users can launch the application

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 55

Figure 4.14: Help modal feature.

4.4 Major Decisions on the Layout and Look-and-Feel of the application

4.4.1 Basic data form

As mentioned earlier, the data used for sorting in this application can be considered as an

array of positive integers. The bar chart (or bar graph) is the way of choice here in order to

represent such an array. The idea behind this decision is simple: students are familiar with bar

graphs. More specifically, bar charts are frequently used in similar courses taken earlier in

their studies, such as probability and statistics, calculus etc. and in general bar charts are

easily understood by most people. A bar chart is a diagram that represents numerical data in

visual form. Each numerical value is represented by a rectangular bar whose length or height

is proportional to this value, depending on whether the orientation of the bars on the screen is

vertical or horizontal. A glance at a bar chart allows the user to quickly grasp key concepts,

such as the variation among the values of the elements of the array. For example, relative

value of an array element as compared to any other array element becomes immediately

visible through the length of the corresponding bars. Apart from the visual advantages, a bar

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 56

graph is ideal for an application like that, because of its simplicity and versatility. Indeed, it is

very easy to draw and the user may easily compare more than one data sets and make quick

and accurate estimations.

Figure 4.15: The data displayed in a bar chart with horizontal bars, vertically stack.

A drawback of a bar chart is that it requires additional written or oral explanation. The data in

a bar chart can be difficult to interpret on its own, so in order for the user to draw the correct

conclusions from the diagram, an additional explanation should be provided by the class

instructor. As the present interactive application is meant for educational purposes, it is also

expected for students to work on the application asynchronously, for better understanding. A

narrative modal is provided during the loading phase of the application is employed for this

purpose: it plays the role of the oral instructions the students would otherwise receive from

the class instructor.

4.4.2 Choice of colors

As far as the styling of the application goes, the choice of colors soon came to question.

Something enticing was definitely needed in order to catch students’ attention and also for

them to find the time spent on the application enjoyable but so was the engagement part of it.

That’s where website color palettes come into play. The main reasons of choosing the

following colors were: avoidance of eye fatigue, project the appropriate effect for learning,

maximize information retention and stimulate participation. In general, bright colors were

chosen:

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 57

• Blue: It has a calming effect on the heart rate and respiratory system of students.

It encourages a sense of well-being, making it ideal for learning situations that

are intensely challenging and cognitively taxing. It is highly suggested that

people with intellectual work that requires a high cognitive load are most

productive in blue environments.

• Yellow: The main characteristic of yellow color is that it grabs the attention. It

generates positive energy and encourages creativity.

• Orange: Orange encourages critical thinking and memory. It is shown that it also

has an especially high effect on circulation and the nervous system and

increases the oxygen supply to the brain, stimulating mental activity while

simultaneously loosening inhibitions.

• Green: It promotes calmness and a sense of relaxation and is great for

encouraging long-term concentration. It is the most restful color for the eye

and creates a feeling of ease when used in a classroom.

4.4.3 Screen Layout Design

The entry screen design of the application is divided up into three on-screen frames. The

UNIWA logo is located on the upper left corner of the screen, which also acts as a visual cue.

The course title and code, “EEE.5.1 Algorithms & Data Structures” is located in the upper

center.

The student has the ability to interact with the application using the control panel that is

located below the header and on the left frame of the main part of the screen. An input field

for entering data, a slider element to change the array size being sorted, a slider element for

adjusting the animation speed of the sorting process, buttons to generate new data of the

specified array size or reuse previously displayed data, a button to stop the sorting process

and a description of the particular sorting algorithm that takes place at any moment are all

found in this control panel. The control panel was positioned on the left region of the screen

to keep it apart from the center frame’s depiction of the data being sorted. Because of this

separation, the student is able to quickly interact with the control panel without being

sidetracked by the data dynamic visual display. To be immediately accessible to the student,

the buttons for generating new data, displaying the same data again and stopping process

were put below the sliders.

On the center frame, a list of the implemented sorting algorithms is displayed right below the

header, above the data display portion of the screen. Each algorithm has two corresponding

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 58

buttons that provide with student with two choices. Either execute the algorithm continuously

until it is finished (sorted), or to be executed for each iteration step-by-step with the student’s

control. The reason behind the specific location of the buttons is to maintain a barrier

between the control panel and the data visualization. This layout makes it simple for the

student to select the desired algorithm without being sidetracked by other screen components.

In order to make the visual sorting representation of the data the main emphasis of the screen,

it was positioned in the center part of the main frame, in the form of numbers in labels (on the

left) and horizontal bars, where the width of each bar has the numerical value of the

corresponding element of the array, on the right. This allows the student to immediately

observe the changes of each algorithm while it runs thanks to this positioning.

In general, the design of the different regions of the screen was intended to make it simple for

the student to interact with the control panel, choose the desired algorithm and view the

visual display of the data without being overwhelmed by the screen’s layout

Overall, the screen layout is shown in Figure 4.10.

Figure 4.16: The overall screen layout.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 59

CHAPTER 5: The sorting algorithms within the visualization

application

5.1 Introduction

This particular chapter will present every sorting algorithm of the application. Each element

of the array is depicted as a horizontal bar, and the width of each bar defines the value of that

element. As it will be discussed for each algorithm specifically, the visualization process it

uses different colors to denote the status of the elements. A description is provided on each

algorithm to clarify the meaning of each color. The animated swaps between these bars,

represent the individual steps of the sorting procedure of each algorithm.

5.2 Bubble Sort

By utilizing different colors, the visualizer helps the student in comprehending the sorting

algorithm’s steps as well as how the array’s elements are compared and rearranged. The fact

that the bars are gradually turning from blue to green as the array is being sorted simplifies

the process for the student to follow the algorithm’s progress as it sorts the array.

The following colors are used in bubble sort:

• Light blue: The initial color of the bars used to represent the elements in the array.

This makes it easier for the student in distinguishing between elements that have

already been sorted and those that are still through processing.

• Red: This color is utilized to draw attention to the element that the algorithm is

currently processing. This makes it easier for the student to monitor the algorithm’s

progress and comprehend how it operates.

• Yellow: This color is used to draw attention to the element that is being compared to

the current element of the algorithm. This makes it easier for the student to

comprehend how the algorithm compares elements and selects which ones to swap.

• Green: This is the last color used to indicate the array has finished sorting.

We will examine the algorithm within the application with an array of five elements. The

elements are placed in descending order for a specific reason. Due to the small length of the

array and that is for demonstration purposes, unless the array is in descending order, after two

or three iterations the array will be sorted already. The algorithm works as follows:

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 60

Figure 5.1: BUBBLE SORT: The data array consists of elements: 870, 824, 655, 125, 30.

Starting at the beginning and comparing the first two elements, 870 and 824, would represent

the first iteration through the array. Since 870 is greater than 824, they would be swapped.

Resulting in the sequence seen below:

Figure 5.2: BUBBLE SORT: First pass, comparing 870 and 824.

The next step would be to compare 870 and 655. Since 870 is greater than 655, they would be

swapped, giving us the following sequence:

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 61

Figure 5.3: BUBBLE SORT: First pass, comparing 870 and 655.

The next step would be to compare 870 and 125. Since 870 is greater than 125, they would be

swapped, resulting in the sequence seen below:

Figure 5.4: BUBBLE SORT: First pass, comparing 870 and 125.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 62

Finally, the last two elements, 870 and 30, would be compared. Since 870 is greater than 30,

they would be swapped, giving us the sequence seen below:

Figure 5.5: BUBBLE SORT: First pass, comparing 870 and 30.

After the first pass, the largest element, 870, is at the end of the array.

Figure 5.6: BUBBLE SORT: First iteration is over and the green color indicates the sorted portion of

the array.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 63

Starting again at the beginning and comparing the first two elements, 824 and 655, would

represent the second iteration through the array. Since 824 is greater than 655, they would be

swapped. Resulting in the sequence seen below:

Figure 5.7: BUBBLE SORT: Second pass, comparing 824 and 655.

The next step would be to compare 824 and 125. Since 824 is greater than 125, they would be

swapped, giving us the following sequence:

Figure 5.8: BUBBLE SORT: Second pass, comparing 824 and 125.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 64

The next step would be to compare 824 and 30. Since 824 is greater than 30, they would be

swapped, resulting in the sequence seen below:

Figure 5.9: BUBBLE SORT: Second pass, comparing 824 and 30.

After the second pass, the second largest element, 824, is at the end of the array.

Figure 5.10: BUBBLE SORT: Second iteration is over and the green color indicates the sorted

portion of the array.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 65

Starting again at the beginning and comparing the first two elements, 655 and 125, would

represent the third iteration through the array. Since 655 is greater than 125, they would be

swapped, giving us the following sequence:

Figure 5.11: BUBBLE SORT: Third pass, comparing 655 and 125.

The next step would be to compare 655 and 30. Since 824 is greater than 30, they would be

swapped, resulting in the sequence seen below:

Figure 5.12: BUBBLE SORT: Third pass, comparing 655 and 30.

After the third pass, the third largest element, 655, is at the end of the array.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 66

Figure 5.13: BUBBLE SORT: Third iteration is over and the green color indicates the sorted portion

of the array.

Starting again at the beginning and comparing the first two elements, 125 and 30, would

represent the fourth and final iteration through the array. Since 125 is greater than 30, they

would be swapped, giving us the following sequence:

Figure 5.14: BUBBLE SORT: Fourth pass, comparing 125 and 30.

At this point, no more swaps are needed, so the algorithm would terminate and the array

would be regarded as having been sorted in ascending order as shown in Figure 5.15.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 67

Figure 5.15: BUBBLE SORT: The final sorted array.

5.3 Selection Sort

The following colors are used in selection sort:

• Light blue: The initial color of the bars used to represent the elements in the array.

This makes it easier for the student in distinguishing between elements that have

already been sorted and those that are still through processing.

• Red: The element with the lowest value in the current iteration of the inner loop is

denoted by the color red. This makes it easier for the student to monitor which

element is being compared to the array’s sorted portion and thus will be positioned

correctly.

• Yellow: The smallest element’s placement is indicated by the color yellow.

• Green: The green color is used to indicate that an element is sorted. When an element

is position correctly, it is said to be sorted and is no longer a part of the array’s

unsorted portion.

We will analyze the application’s algorithm using a ten-element array. This is how the

algorithm operates:

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 68

Figure 5.16: SELECTION SORT: Array consists of elements: 276, 153, 781, 307, 158, 145, 856, 200,

795, 49.

Starting with the first iteration, a comparison is being made between the first element, 276,

and the rest of the elements in the array in order to find that 49 is the smallest element. Since

49 is less than 276, we swap the first element with the smallest element, 49. Figure 5.17

shows with color red the minimum element in the unsorted array and with color yellow the

placement index of that value.

Figure 5.17: SELECTION SORT: First iteration indicates the correct position for the smallest

element.

First iteration results in the sequence seen below:

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 69

Figure 5.18: SELECTION SORT: First iteration is over and the green color indicates the sorted

portion of the array.

Continuing with the second iteration, a comparison is being made between the second

element, 153, and the rest of the elements in the unsorted portion of the array in order to find

that 145 is the second smallest element. Since 145 is less than 153, we swap the second

element with the second smallest element, 145. Figure 5.19 shows with color red the

minimum element in the unsorted array and with color yellow the placement index of that

value.

Figure 5.19: SELECTION SORT: Second iteration indicates the correct position for the second

smallest element.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 70

The aforementioned swap is giving us the following sequence:

Figure 5.20: SELECTION SORT: Second iteration is over and the green color indicates the sorted

portion of the array.

On the third iteration, a comparison is being made between the third element, 781, and the

rest of the elements in the unsorted portion of the array in order to find that 153 is the third

smallest element. Since 153 is less than 781, we swap the third element with the third

smallest element, 153. Figure 5.21 shows with color red the minimum element in the unsorted

array and with color yellow the placement index of that value.

Figure 5.21: SELECTION SORT: Third iteration indicates the correct position for the third smallest

element.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 71

Third iteration results in the sequence seen below:

Figure 5.22: SELECTION SORT: Third iteration is over and the green color indicates the sorted

portion of the array.

Starting with the fourth iteration, a comparison is being made between the fourth element,

307, and the rest of the elements in the unsorted portion of the array in order to find that 158

is the fourth smallest element. Since 158 is less than 307, we swap the fourth element with

the fourth smallest element, 158. Figure 5.23 shows with color red the minimum element in

the unsorted array and with color yellow the placement index of that value.

Figure 5.23: SELECTION SORT: Fourth iteration indicates the correct position for the fourth

smallest element.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 72

The aforementioned swap is giving us the following sequence:

Figure 5.24: SELECTION SORT: Fourth iteration is over and the green color indicates the sorted

portion of the array.

Continuing with the fifth iteration, a comparison is being made between the fifth element,

307, and the rest of the elements in the unsorted portion of the array in order to find that 200

is the fifth smallest element. Since 200 is less than 307, we swap the fifth element with the

fifth smallest element, 200. Figure 5.25 shows with color red the minimum element in the

unsorted array and with color yellow the placement index of that value.

Figure 5.25: SELECTION SORT: Fifth iteration indicates the correct position for the fifth smallest

element.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 73

Fifth iteration results in the sequence seen below:

Figure 5.26: SELECTION SORT: Fifth iteration is over and the green color indicates the sorted

portion of the array.

On the sixth iteration, a comparison is being made between the sixth element, 781, and the

rest of the elements in the unsorted portion of the array in order to find that 276 is the sixth

smallest element. Since 276 is less than 781, we swap the sixth element with the sixth

smallest element, 276. Figure 5.27 shows with color red the minimum element in the unsorted

array and with color yellow the placement index of that value.

Figure 5.27: SELECTION SORT: Sixth iteration indicates the correct position for the sixth smallest

element.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 74

The aforementioned swap is giving us the following sequence:

Figure 5.28: SELECTION SORT: Sixth iteration is over and the green color indicates the sorted

portion of the array.

Continuing with the seventh iteration, a comparison is being made between the seventh

element, 856, and the rest of the elements in the unsorted portion of the array in order to find

that 307 is the seventh smallest element. Since 307 is less than 856, we swap the seventh

element with the seventh smallest element, 307. Figure 5.29 shows with color red the

minimum element in the unsorted array and with color yellow the placement index of that

value.

Figure 5.29: SELECTION SORT: Seventh iteration indicates the correct position for the seventh

smallest element.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 75

Seventh iteration results in the sequence seen below:

Figure 5.30: SELECTION SORT: Seventh iteration is over and the green color indicates the sorted

portion of the array.

On the eighth iteration, a comparison is being made between the eighth element, 856, and the

rest of the elements in the unsorted portion of the array in order to find that 781 is the eighth

smallest element. Since 781 is less than 856, we swap the eighth element with the eighth

smallest element, 781. Figure 5.31 shows with color red the minimum element in the unsorted

array and with color yellow the placement index of that value.

Figure 5.31: SELECTION SORT: Eighth iteration indicates the correct position for the eighth

smallest element.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 76

The aforementioned swap is giving us the following sequence:

Figure 5.33: SELECTION SORT: Eighth iteration is over and the green color indicates the sorted

portion of the array.

Continuing with the ninth and last iteration, a comparison is being made between the ninth

element, 795, and the rest of the elements in the unsorted portion of the array in order to find

that 856 is the seventh smallest element. At this point, since there is only one element, there

is not need to perform a swap because 856 is already in the correct position. Figure 5.33

shows with color red the minimum element in the unsorted array and with color yellow the

placement index of that value.

Figure 5.33: SELECTION SORT: Ninth iteration indicates the correct position for the ninth smallest

element.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 77

Ninth iteration results in the sequence seen below as the final sorted array:

Figure 5.34: SELECTION SORT: Seventh iteration is over and the green color indicates the sorted

portion of the array.

5.4 Insertion Sort

The following colors are used in insertion sort:

• Light blue: The initial color of the bars used to represent the elements in the array.

This makes it easier for the student in distinguishing between elements that have

already been sorted and those that are still through processing.

• Yellow: The element that is being compared to the elements in the sorted portion of

the array is shown on each iteration of the insertion sort algorithm by the color

yellow. Each element is compared to the elements on its left and inserted into the

correct position in the sorted portion of the array, as the algorithm progresses. The

yellow color helps the student comprehend how the algorithm is working and how the

elements are being sorted

• Green: The green color is used to indicate that an element is sorted. When an element

is position correctly, it is said to be sorted and is no longer a part of the array’s

unsorted portion.

We will analyze the application’s algorithm using a ten-element array. This is how the

algorithm operates:

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 78

Figure 5.35: INSERTION SORT: Array consists of elements: 631, 390, 157, 79, 695, 717, 26, 40, 600,

417.

Starting with the first iteration, we begin with the first element of the array, which is 631.

This element is considered “sorted”. Figure 5.36 shows with color yellow the element that

will be compared with the sorted portion of the array, which is denoted by the color green.

Figure 5.36: INSERTION SORT: Color yellow demonstrates the element that will be compared with

the sorted portion of the array.

Next, a comparison is being made between the second element, 390, and the elements to its

left, meaning the sorted portion of the array. Since 390 is smaller than 631, 631 is shifted to

the right and 390 is inserted to the left:

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 79

Figure 5.37: INSERTION SORT: The second element is now considered part of the sorted portion of

the array.

On the second iteration, we continue the process with the third element of the array, which is

157. This element is considered “sorted”. Figure 5.38 shows with color yellow the element

that will be compared with the sorted portion of the array, which is denoted by the color

green.

Figure 5.38: INSERTION SORT: Color yellow demonstrates the element that will be compared with

the sorted portion of the array.

Next, a comparison is being made between the third element, 157, and the elements to its left,

meaning the sorted portion of the array. Since 157 is smaller than 390, 390 is shifted to the

right and 157 is inserted to the left:

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 80

Figure 5.39: INSERTION SORT: The third element is now considered part of the sorted portion of the

array.

On the third iteration, we continue the process with the fourth element of the array, which is

79. This element is considered “sorted”. Figure 5.40 shows with color yellow the element that

will be compared with the sorted portion of the array, which is denoted by the color green.

Figure 5.40: INSERTION SORT: Color yellow demonstrates the element that will be compared with

the sorted portion of the array.

Next, a comparison is being made between the fourth element, 79, and the elements to its left,

meaning the sorted portion of the array. Since 79 is smaller than 157, 157 is shifted to the

right and 79 is inserted to the left:

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 81

Figure 5.41: INSERTION SORT: The fourth element is now considered part of the sorted portion of

the array.

On the fourth iteration, we continue the process with the fifth element of the array, which is

695. This element is considered “sorted”. Figure 5.42 shows with color yellow the element

that will be compared with the sorted portion of the array, which is denoted by the color

green.

Figure 5.42: INSERTION SORT: Color yellow demonstrates the element that will be compared with

the sorted portion of the array.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 82

Next, a comparison is being made between the fifth element, 695, and the elements to its left,

meaning the sorted portion of the array. Since 695 is larger than all of the elements in the

sorted portion, it is inserted to the right:

Figure 5.43: INSERTION SORT: The fifth element is now considered part of the sorted portion of the

array.

On the fifth iteration, we continue the process with the sixth element of the array, which is

717. This element is considered “sorted”. Figure 5.44 shows with color yellow the element

that will be compared with the sorted portion of the array, which is denoted by the color

green.

Figure 5.44: INSERTION SORT: Color yellow demonstrates the element that will be compared with

the sorted portion of the array.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 83

Next, a comparison is being made between the sixth element, 717, and the elements to its left,

meaning the sorted portion of the array. Since 695 is larger than all of the elements to its left,

it is inserted to the right:

Figure 5.45: INSERTION SORT: The sixth element is now considered part of the sorted portion of the

array.

On the sixth iteration, we continue the process with the seventh element of the array, which is

26. This element is considered “sorted”. Figure 5.46 shows with color yellow the element that

will be compared with the sorted portion of the array, which is denoted by the color green.

Figure 5.46: INSERTION SORT: Color yellow demonstrates the element that will be compared with

the sorted portion of the array.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 84

Next, a comparison is being made between the seventh element, 26, and the elements to its

left, meaning the sorted portion of the array. Since 26 is smaller than 79, 79 is shifted to the

right and 26 is inserted to the left:

Figure 5.47: INSERTION SORT: The seventh element is now considered part of the sorted portion of

the array.

On the seventh iteration, we continue the process with the eighth element of the array, which

is 40. This element is considered “sorted”. Figure 5.48 shows with color yellow the element

that will be compared with the sorted portion of the array, which is denoted by the color

green.

Figure 5.48: INSERTION SORT: Color yellow demonstrates the element that will be compared with

the sorted portion of the array.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 85

Next, a comparison is being made between the eighth element, 40, and the elements to its left,

meaning the sorted portion of the array. Since 40 is larger than 26, but smaller than 79, 79 is

shifted to the right and 50 is being inserted to the left:

Figure 5.49: INSERTION SORT: The eighth element is now considered part of the sorted portion of

the array.

On the eighth iteration, we continue the process with the ninth element of the array, which is

600. This element is considered “sorted”. Figure 5.50 shows with color yellow the element

that will be compared with the sorted portion of the array, which is denoted by the color

green.

Figure 5.50: INSERTION SORT: Color yellow demonstrates the element that will be compared with

the sorted portion of the array.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 86

Next, a comparison is being made between the ninth element, 600, and the elements to its

left, meaning the sorted portion of the array. Since 600 is larger than 40, 79, 157, and 390, it

is inserted to the right of the sorted portion of the array:

Figure 5.51: INSERTION SORT: The ninth element is now considered part of the sorted portion of the

array.

Finally on the ninth and last iteration, we end the process with the tenth element of the array,

which is 417. This element is considered “sorted”. Figure 5.52 shows with color yellow the

element that will be compared with the sorted portion of the array, which is denoted by the

color green.

Figure 5.52: INSERTION SORT: Color yellow demonstrates the element that will be compared with

the sorted portion of the array.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 87

Next, a comparison is being made between the tenth element, 417, and the elements to its left,

meaning the sorted portion of the array. Since 40 is larger than 390, but smaller than 600, 79

is shifted to the right of the sorted array:

Figure 5.53: INSERTION SORT: The final sorted array.

5.5 Merge Sort

The following colors are used in merge sort:

• Light blue: The initial color of the bars used to represent the elements in the array.

This makes it easier for the student in distinguishing between elements that have

already been sorted and those that are still through processing.

• Red: The right subarray of the merge sort is indicated by the color red. This is one of

the two smaller arrays that are produced as a result of the merge sort algorithm’s

division of the initial array in half.

• Yellow: The yellow color is used to denote the left subarray that is created when the

original array is divided in half during the first step of the merge sort algorithm.

• Light green: The sorted final subarray is indicated by the light green color. This is the

result of the two smaller arrays being merged back together and sorted in ascending

order.

• Green: The green color is used to indicate that an element is sorted. When an element

is position correctly, it is said to be sorted and is no longer a part of the array’s

unsorted portion.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 88

We will analyze the application’s algorithm using a ten-element array. This is how the

algorithm operates:

Figure 5.54: MERGE SORT: Array consists of elements: 444, 983, 733, 107, 119, 436, 307, 743, 94,

419.

As was already described, the recursive algorithm first divides the array in half to create two

smaller arrays: [444, 983, 733, 107, 119] and [436, 307, 743, 94, 419]. The two smaller arrays

are then further divided until there is only one element in each array: [444], [983], [733],

[107], [119], [436], [307], [743], [94], [419].

Next, the algorithm merges the arrays back together, comparing the elements at the beginning

of each array and taking the smaller of the two to put back into the main array.

The first step on merging the arrays back together is to merge the first two elements, 444 and

983.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 89

Figure 5.55: MERGE SORT: Element 444 is the left subarray and element 983 is the right subarray.

The next step would be to sort those single elements into one subarray.

Figure 5.56: MERGE SORT: Sorted subarray consisting of elements 444 and 983.

The next single element is the 733 will be considered as the right subarray, which will be

merge with the aforementioned subarray, which now will be the left sublist.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 90

Figure 5.57: MERGE SORT: The left sorted subarray and the right subarray.

The next step would be to sort those elements into one sublist.

Figure 5.58: MERGE SORT: Sorted subarray consisting of elements 444 and 733 and 983.

Continuing with the process, the next two single elements that are the next to be merged are

107 and 119.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 91

Figure 5.59: MERGE SORT: Elements 107 and 117 are being merged into a subarray.

At this point, as we can see, the algorithm has covered the elements of the first half of the

main array.

Figure 5.60: MERGE SORT: Elements 107 and 119 are in a sorted subarray.

To fully cover the first half of the original array, the algorithm’s next step is to merge those

two subarrays, [444, 7333, 983] with [107, 119] as seen in Figure 5.61.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 92

Figure 5.61: MERGE SORT: The left and right subarray of the first half of the main array.

The first sublist consisting of the first half of the main array is depicted in Figure 5.62:

Figure 5.62: MERGE SORT: The first subarray.

The next step, as was already stated, is now for the second out of the two subarrays to be

sorted. First the elements 436 and 307 will be formed into one sublist.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 93

Figure 5.63: MERGE SORT: Merge of the elements 436 and 307.

Elements 436 and 307 form a subarray as seen in Figure 5.64:

Figure 5.64: MERGE SORT: Elements 436 and 307 are in a sorted subarray.

Next step of the algorithm is to merge the element 743 which is considered the right subarray,

with the aforementioned array.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 94

Figure 5.65: MERGE SORT: Left subarray consisting of elements 307 and 436 is merged with

element 743.

The value 743 merged with the left subarray of 307 and 436 is giving us the following result:

Figure 5.66: MERGE SORT: Element 743 is merged with the subarray of 307 and 436.

The last two elements of the array, 94 and 419 are next to be merged in a subarray.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 95

Figure 5.67: MERGE SORT: Element 94 is considered the left subarray and element 419 the right

subarray.

The merge of the single elements 94 and 419 result in the following subarray:

Figure 5.68: MERGE SORT: Elements 94 and 419 are merged into a subarray as denoted by the

color light green.

The next step would be to merge the left subarray of 307, 436 and 743 with the right subarray

of 94 and 419 into one, which would be the right sublist of the main array.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 96

Figure 5.69: MERGE SORT: Merging the two subarrays to form the right subarray of the original

array.

The two subarrays of the main array, before being merged into one final sorted array, are

shown in Figure 5.70:

Figure 5.70: MERGE SORT: The left and right sorted subarrays.

The final step of the algorithm is to merge the two sorted subarrays into one final array,

which is the sorted version of the original array. The merging at this point is done by

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 97

comparing element by element the two sorted subarrays. The final sorted array is shown in

Figure 5.71:

Figure 5.71: MERGE SORT: The final sorted array.

5.6 Quick Sort

The following colors are used in quick sort:

• Light blue: The initial color of the bars used to represent the elements in the array.

This makes it easier for the student in distinguishing between elements that have

already been sorted and those that are still through processing.

• Red: The pivot element is identified by the color red. This is the element around

which the array is partitioned and sorted.

• Yellow: Elements that are being compared to the pivot element and are found to be

less than the pivot element are indicated by the color yellow. During the partitioning

step of the quick sort algorithm, these elements are placed into the left subarray.

• Salmon: The salmon color is used to denote elements that are being compared to the

pivot element and are found to be greater than the pivot element. These elements are

placed in the right subarray during the partitioning step of the quick sort algorithm.

• Green: The green color is used to indicate that an element is sorted. When an element

is position correctly, it is said to be sorted and is no longer a part of the array’s

unsorted portion.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 98

We will examine the algorithm within the application with an array of ten elements. This is

how the algorithm operates:

Figure 5.72: QUICK SORT: Array consists of elements: 435, 761, 615, 578, 142, 650, 950, 961, 977,

320.

I = 0:

Starting off the algorithm, the pivot element is selected as the last element on the array, 320.

PivotIndex = 0

Element at index 0 = 435 is greater than pivot (320), so pivotIndex is not incremented.

I = 1:

Element at index 1 = 761 is greater than pivot (320), so pivotIndex is not incremented.

I = 2:

Element at index 2 = 615 is greater than pivot (320), so pivotIndex is not incremented.

I = 3:

Element at index 3 = 578 is greater than pivot (320), so pivotIndex is not incremented.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 99

Figure 5.73: QUICK SORT: Pivot element is 320.

I = 4:

Element at index 4 = 142 is less than pivot (320), so it is swapped with the element at

PivotIndex = 435.

PivotIndex is incremented. PivotIndex = 1

Figure 5.74: QUICK SORT: 142 is swapped with 435.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 100

I = 5:

Element at index 5 = 650 is greater than pivot (320), so pivotIndex is not incremented.

I = 6:

Element at index 6 = 950 is greater than pivot (320), so pivotIndex is not incremented.

I = 7:

Element at index 3 = 961 is greater than pivot (320), so pivotIndex is not incremented.

I = 8:

Element at index 3 = 977 is greater than pivot (320), so pivotIndex is not incremented.

Figure 5.75: QUICK SORT: The for loop has reached the pivot element.

I = 9:

The for loops terminates. At this point the pivot element (320) is swapped with the element at

PivotIndex = 761.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 101

Figure 5.76: QUICK SORT: Pivot element is in the correct position.

At this point, the array is partitioned into two sublists: [142] which is less than the pivot

element and [615, 578, 435, 650, 950, 961, 977, 761] which are all the elements that are

greater than the pivot element. The sublists on either side of pivot are then recursively sorted

using quick sort.

For the sublist [142]: Since the sublist consists of only a single element, is already sorted.

Figure 5.77: QUICK SORT: Element 142 is in the correct position.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 102

For the sublist [615, 578, 435, 650, 950, 961, 977, 761]:

Pivot element is again the last element on the array, 761. PivotIndex = 2

• I = 2:

 Element at index 2 = 615 is less than pivot (761), so it is swapped with the element at

 PivotIndex = 615.

 PivotIndex is incremented.

 PivotIndex = 3

• I = 3:

 Element at index 3 = 578 is less than pivot (761), so it is swapped with the element at

 PivotIndex = 578.

 PivotIndex is incremented.

 PivotIndex = 4

• I = 4:

 Element at index 4 = 435 is less than pivot (761), so it is swapped with the element at

 PivotIndex = 435.

 PivotIndex is incremented.

 PivotIndex = 5

• I = 5:

 Element at index 5 = 650 is less than pivot (761), so it is swapped with the element at

 PivotIndex = 650.

 PivotIndex is incremented.

 PivotIndex = 6

• I = 6:

 Element at index 6 = 950 is greater than pivot (761), so pivotIndex is not incremented.

• I = 7:

 Element at index 7 = 961 is greater than pivot (761), so pivotIndex is not incremented.

• I = 8:

 Element at index 8 = 977 is greater than pivot (761), so pivotIndex is not incremented.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 103

Figure 5.78: QUICK SORT: Elements that are less and greater than pivot element, 761.

• I = 9:

 The for loop terminates. At this point the pivot element (761) is swapped with the

element at PivotIndex = 650.

Figure 5.78: QUICK SORT: Pivot element, 761 is in the correct position.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 104

Continuing, again we have two unsorted sublists: [615, 578, 435, 650] which is less than the

pivot element and [961, 977, 950] which are all the elements that are greater than the pivot

element. The sublists on either side of pivot are then recursively sorted using quick sort.

For the sublist [615, 578, 435, 650]:

Pivot element is again the last element on the array, 650. PivotIndex = 2.

• I = 2:

 Element at index 2 = 615 is less than pivot (650), so it is swapped with the element at

 PivotIndex = 615.

 PivotIndex is incremented.

 PivotIndex = 3

• I = 3:

 Element at index 3 = 578 is less than pivot (650), so it is swapped with the element at

 PivotIndex = 578.

 PivotIndex is incremented.

 PivotIndex = 4

• I = 4:

 Element at index 4 = 435 is less than pivot (650), so it is swapped with the element at

 PivotIndex = 435.

 PivotIndex is incremented.

 PivotIndex = 5

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 105

Figure 5.79: QUICK SORT: All the elements left than pivot, are less than 650.

• I = 5:

 The for loop terminates. At this point the pivot element (650) is swapped with the

element at PivotIndex = 650.

Figure 5.80: QUICK SORT: Pivot element 650 is in the correct position.

For the sublist [615, 578, 435]:

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 106

Pivot element is again the last element on the array, 435. PivotIndex = 2.

• I = 2:

 Element at index 2 = 615 is greater than pivot (435), so pivotIndex is not incremented.

• I = 3:

 Element at index 3 = 578 is greater than pivot (435), so pivotIndex is not incremented.

• I = 4:

 The for loops terminates. At this point the pivot element (435) is swapped with the

element at PivotIndex = 615.

Figure 5.81: QUICK SORT: Pivot element 435 is in the correct position.

For the sublist [578, 615]:

Pivot element is again the last element on the array, 615. PivotIndex = 3.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 107

Figure 5.82: QUICK SORT: Pivot element is 615.

• I = 3:

 Element at index 3 = 578 is less than pivot (615), so it is swapped with the element at

 PivotIndex = 578.

 PivotIndex is incremented.

 PivotIndex = 4

• I = 4:

 The for loops terminates. At this point the pivot element (615) is swapped with the

element at PivotIndex = 615.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 108

Figure 5.83: QUICK SORT: Pivot element 615 is in the correct position.

For the sublist [578]:

Since the sublist consists of only a single element, is already sorted.

Figure 5.84: QUICK SORT: Element 578 is in the correct position.

For the sublist [961, 977, 950]:

Pivot element is again the last element on the array, 950. PivotIndex = 7.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 109

Figure 5.85: QUICK SORT: Pivot element is 950.

• I = 7:

 Element at index 7 = 961 is greater than pivot (950), so PivotIndex is not incremented.

• I = 8:

 Element at index 8 = 977 is greater than pivot (950), so PivotIndex is not incremented.

• I = 9:

 The for loops terminates. At this point the pivot element (950) is swapped with the

element at PivotIndex = 961.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 110

Figure 5.86: QUICK SORT: Element 950 is in the correct position.

For the sublist [977, 961]: Pivot element is again the last element on the array, 961.

PivotIndex = 8.

Figure 5.87: QUICK SORT: Pivot element is 961.

• I = 8: Element at index 8 = 977 is greater than pivot (961), so PivotIndex is not

incremented.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 111

• I = 9: The for loops terminates. At this point the pivot element (961) is swapped with

the element at PivotIndex = 977.

Figure 5.88: Pivot element, 961 is in the correct position.

Since the final sublist [977] is a single element, is already sorted, giving us the final sorted

array:

Figure 5.89: QUICK SORT: The final sorted array.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 112

CHAPTER 6: Conclusions and future work

In order to enhance the learning process for students studying algorithms and data structures,

this thesis has presented a web application for sorting algorithm visualization. The application

offers a dynamic and useful aid for students to test these algorithms and their complexities

through the use of visualization and interactivity. The application is a complete resource for

students who want to understand in depth sorting algorithms and practice on the subject; for

the same reason, the thesis also contains an in-depth analysis and description of each sorting

algorithm that may be exploited for a future digital complete course. In general, the results of

this thesis demonstrate the value of visualization as a teaching tool and indicate that using

interactive and graphical assets might be useful in improving student understanding of

difficult ideas. The current application could be improved and expanded upon in a number of

ways in the future.

Expanding the scope of this application to include visualization of more data structures in

addition to sorting algorithms is an obvious direction for future work. In addition to the

several different data structures that could be used in the application, sorting algorithms are

merely one subset of the larger area of algorithms and data structures, as we have already

mentioned. For example, linear data structures such as stacks, queues, and linked lists can be

incorporated in the application to visualize their functionalities using the same interactive

method that the application already implements for the sorting algorithms. To provide

students a more detailed understanding of the comparative merits of the various families of

existing data structures, non-linear data structures such as trees and graphs could also be

included – the later, at the cost of major modifications of the overall design.

Another potential improvement for the application is the incorporation of more detailed

information on the operations executed by each algorithm at each step. The application in its

current state offers merely a visual representation of the data. The number of comparisons

and swaps performed at each step of the algorithm, is not counted or shown on screen. This

could be included in a future version of the application to enhance understanding. A feature

like that would provide students a more detailed understanding of how the algorithm operates

and help them comprehend the notions of time and space complexity.

The incorporation of deep learning or machine learning methods is another option. The

application could be improved, for instance, by utilizing machine learning algorithms to

assess how well sorting algorithms perform on various input datasets and to make

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 113

recommendations for the most effective algorithm to apply in a particular scenario. Students

that are working on real-world projects and need to select the best algorithm for their

requirements may find this to be a valuable addition.

In conclusion, this thesis represents progress in the area of computer science, and it is

believed that the use of the web application would be valuable to both teachers and students.

The program serves as a starting point for additional development and adjustments that can

be made to improve students’ academic performance. It is anticipated that the application will

improve and become a more potent educational tool for algorithms and data structures with

further testing and development.

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 114

References

[1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022). Introduction to

algorithms. MIT press.

[2] https://survey.stackoverflow.co/2022/#section-most-popular-technologies-programming-

scripting-and-markup-languages

[3] Fouh, E., Akbar, M., & Shaffer, C. A. (2012). The role of visualization in computer

science education. Computers in the Schools, 29(1-2), 95-117.

[4] Lis, R. (2014). Role of visualization in engineering education. Advances in Science and

Technology. Research Journal, 8(24).

[5] Naps, T. L., Rößling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C., ... &

Velázquez-Iturbide, J. A. (2002). Exploring the role of visualization and engagement

in computer science education. In Working group reports from ITiCSE on Innovation

and technology in computer science education (pp. 131-152).

[6] Abu-Naser, S. S. (2008). Developing visualization tool for teaching AI searching

algorithms.

[7] Lin, S., Fortuna, J., Kulkarni, C., Stone, M., & Heer, J. (2013, June). Selecting

semantically‐resonant colors for data visualization. In Computer Graphics Forum

(Vol. 32, No. 3pt4, pp. 401-410). Oxford, UK: Blackwell Publishing Ltd.

[8] Cetin, I., & Andrews-Larson, C. (2016). Learning sorting algorithms through visualization

construction. Computer Science Education, 26(1), 27-43.

[9] Unwin, A. (2020). Why is data visualization important? What is important in data

visualization? Harvard Data Science Review, 2(1), 1.

[10] Haque, M. (2001). Web based visualization techniques for structural design education.

In 2001 Annual Conference (pp. 6-1148).

[11] Zhang, G., Zhu, Z., Zhu, S., Liang, R., & Sun, G. (2022). Towards a better

understanding of the role of visualization in online learning: A review. Visual

Informatics.

[12] Danziger, P. (2010). Big o notation. Source internet: http://www. scs. ryerson. ca/~

mth110/Handouts/PD/bigO. pdf, Retrieve: April.

https://survey.stackoverflow.co/2022/#section-most-popular-technologies-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2022/#section-most-popular-technologies-programming-scripting-and-markup-languages

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 115

[13] Rutanen, K., Gómez-Herrero, G., Eriksson, S. L., & Egiazarian, K. O. (2014). A general

definition of the big oh notation for algorithm analysis.

[14] Krone, J., Ogden, W. F., & Sitaraman, M. (2003). Oo big o: A sensitive notation for

software engineering. Technical Report RSRG-03-06, Department of Computer

Science, Clemson University, Clemson, SC 29634-0974.

[15] https://www.hackerearth.com/practice/notes/sorting-and-searching-algorithms-time-

complexities-cheat-sheet/

[16] Astrachan, O. (2003). Bubble sort: an archaeological algorithmic analysis. ACM Sigcse

Bulletin, 35(1), 1-5.

[17] https://mg729.github.io/algorithm/2020/03/01/Algorithm_%281%29_BubbleSort/

[18] https://mg729.github.io/algorithm/2020/03/08/Algorithm_(2)_SelectionSort/

[19] https://www.cyberithub.com/what-is-merge-sort-algorithm-explained-with-examples/

[20] https://www.digitalocean.com/community/tutorials/merge-sort-algorithm-java-c-python

[21] https://www.khanacademy.org/computing/computer-science/algorithms/quick-

sort/a/overview-of-quicksort

https://www.hackerearth.com/practice/notes/sorting-and-searching-algorithms-time-complexities-cheat-sheet/
https://www.hackerearth.com/practice/notes/sorting-and-searching-algorithms-time-complexities-cheat-sheet/
https://mg729.github.io/algorithm/2020/03/01/Algorithm_(1)_BubbleSort/
https://mg729.github.io/algorithm/2020/03/08/Algorithm_(2)_SelectionSort/
https://www.cyberithub.com/what-is-merge-sort-algorithm-explained-with-examples/
https://www.digitalocean.com/community/tutorials/merge-sort-algorithm-java-c-python
https://www.khanacademy.org/computing/computer-science/algorithms/quick-sort/a/overview-of-quicksort
https://www.khanacademy.org/computing/computer-science/algorithms/quick-sort/a/overview-of-quicksort

		2023-03-16T21:21:20+0200
	Maria Ragkousi

		2023-03-20T08:53:57+0200
	Aikaterini-Styliani Zachariadou

		2023-03-22T18:27:16+0200
	Dimitrios Metafas

