ITANEIIXTHMIO AYTIKHX ATTIKHX

XXOAH MHXANIKQN

TMHMA HAEKTPOAOTI'QN & HAEKTPONIKQN MHXANIKQN

Avthopatikn Epyocia

AAT'OPIOMOI KATI AOMEX AEAOMENQN: AYNAMIKH OIITIKOIIOIHXH
AEITOYPI'TAX XE ITIPOI'PAMMATIXTIKO ITIEPIBAAAON I'TA
EKITAIAEYTIKOYX XKOIIOYX

®ovtntiig: MITANAZIOE FTEQPTIOX, AM: 07088

Empirérovca Kadnyntpro: PATKOYXH MAPIA

AOHNA-AITAAEQ, ®eBpovdprog 2023

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

WO AYTIk/Y
& < UNIVERSITY OF WEST ATTICA

N
§
< o
< i
C
c
Z,
Z

.

)

=

= FACULTY OF ENGINEERING
S

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

iy OF WES®
Diploma Thesis

ALGORITHMS AND DATA STRUCTURES: DYNAMIC VISUALIZATION OF
OPERATION IN A PROGRAMMING ENVIRONMENT FOR EDUCATIONAL
PURPOSES

Student: GEORGE BANASIOS, Registration Number: 07088

Supervisor: Prof. Maria Rangoussi

ATHENS-EGALEO, February 2023

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 2

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

H Aumlopotiky Epyacia €ywve amodekt kot Babporoyndnke and v €EN1G TPIEAn EmTpOTN:

Maopia Paykovon,
Kodnyntpa

(emPAémovoa)

Awatepivn Zayoptdoov

Kafnyntpla

Anuntprog Metdopog

En. KaOnynmg

Digitally signed

Ma ri a by Maria
Ragkousi

Rag kousi Date: 2023.03.16
21:21:20 +0200"

(Ynoypagn)

Aikateri Diaitaly
. signed by

ni- Aikaterini-
. . Styliani
Styl laN| Zachariadou
Date:
Zachari 20230320
08:53:57
adou +02'00'

(Ynoypagn)

. .. Digitally signed
Dlmltn by Dimitrios
Metafas

OS Date:
2023.03.22

Metafas 1827116

+02'00'

(Ynoypagn)

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 3

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Copyright © Mg emoOroén mavtog dwcardpartog. All rights reserved.
MANEIIETHMIO AYTIKHE ATTIKHY kot TEQPI'TOX MITANAXIOX,
deBpovdprog 2023

AmayopeveTal 1 avTypo@r], amobKevon Kot Stavoun Tng Tapovcas EpYaciog, £§ OAOKAPOV
N TUMHOTOS OVTNG, Yo EUmopikd okomd. Emtpénetal n avatdnmon, amobnkevon Kot dtovoun
Yl GKOTTO U1 KEPSOOKOMIKO, EKTOLOEVTIKNG 1| EPEVVNTIKNG QVONG, VO TNV TpoiTdOeo Var
ava@épeTol 1 YN TPoérevons kot vo datnpeitor o mopdv pnvopa. Epotmipota wov

a@OpPOvV TN XPNON TNG EPYACIAG Y10 KEPOOGKOTIKO GKOTO TPEMEL VO, OmeELOVVOVTOL TTPOG TOVG
CLYYPOPELS.

Ot amoéyelg Kot To GUUTEPAGLLATO. TTOV TEPLEXOVTAL GE OVTO TO EYYPaPo ek@pdlovv Tov/TnV
ovyypagéo TOv Kol Ogv mpEmel vo. gpunvevdel Ot avtmpocmmebovy TG BEcelg Tov
emPArémovtog, g emrpomng e€&étaong M TG emionueg B€oeig tov Tunuatog Ko TOL

[3pOparoc.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 4

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

AHAQXH XYTTPA®EA AIITAQMATIKHYE EPT'AXIAX

O kdtwb vroyeypaupévoc I'edpylog Mravaciog tov Kovotavtivov, pe aptOpd untpodov
07088 portng tov ITavemaotnuiov Avtikng Attikng e Xxoing MHXANIKON tov
Tuiuatog HAEKTPOAOT'QN KAT HAEKTPONIKQN MHXANIKQN,

MAOVO vevdvvae oTL:

«Eipot cvyypagéag autg g SmA®UOTIKNG epyociog Kot 0Tt Kabe Ponbeia tnv omoia glya
Y10 TNV TTPOETOOGI TG EIVOL TANPMOG AVAYVOPIGUEVT KOl AVOPEPETOL GTNV EPYACIAL.
Eniong, o1 0noteg myéc amd T1g omoieg £kava xpnon dedoUEVDV, 10DV 1| AéEemv, glte

aKpPog ite TOAPAPPACUEVES, AVAPEPOVTOL GTO GUVOAO TOVG, LE TANPT AVAPOPE GTOVS

GLYYPOPELG, TOV EKOOTIKO 01KO 1) TO TEPLOOTKO, GCUUTEPTAAUPOVOLEVAOV KOl TOV TTNY®OV TOV

EVOEYOUEVMGS YpNooTomOnKay ard 1o dadiktvo. Emiong, Pefoardve o6t avth n epyacio €xet
ovyypapel and PEVA ATOKAEIGTIKA KOl ATOTEAEL TPOIOV TVELUATIKNG 1O10KTNGIOG TOGO OIKNG

pov, 660 kat tov [dpvuaroc.

[MapdPaon g avotépm akadnpaikng pov evfbvng amotedel ovcidon Adyo yio v

OVAKANON TOL SIMADOUATOG LOV.»

O AnAov

['edpylog Mmavasciog

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 5

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Iepiinyn

Ot dopég dedopévav Kabmg kot ot akyopiBuot Tov xepiloviat kot petacynpuatilovv avtd to
dedopéva yio v emilvon mpoPAnpdTev anoteAodv BepeM®dOs YVOOTIKO OVTIKEILEVO TNV
EMIOTNUN TOV VTOAOYIOTMOV, UE EVPVTUTEG EPAPLOYEG OE TOAAA Kol OLOPOPETIKA TTedia Kot
Kkatnyopieg mpoPAnuatwv. [apd to Bepelddn poro mov dadpapatilovy ot ahydpOpol otnv
EMOTAUN TOV VTOAOYIOTAV, Ol POLTNTEG GLYVE OGLVGKOAEVOVTOL VO, KATOVONGOLV aUTd TO
AVTIKEIPEVO. YTTAPYOLV S1ApOopoL AOYOL Yo TOVG OTTOI0VG Ol POITNTEG SLGKOAEVOVTAL, OTIMG O
@OPOG Yot TOV TPOYPOUUUATIGHO (€101KA Yoo KEIVOLG OV dgV €YOVV TPONYOLEV eumELpiaL
TPOYPOUUATIGHOV), 1 EAAELYN EVOOPEPOVTOS KOl 1) a@NPNUévn OO TOV EVVOLDV OV
gUTAEKOVTAL, OTTOG M €VvOold TNG TOALTAOKOTNTAG VOGS aAyopiBuov. Avtég eivar ot KOpleg
OLTiEG LYNADV TOGOGTMOV EYKOTAAEIYNG KOl ATOTLYIOG O PAGIKA VITOYPEMTIKA LOOLLOTO TOV
TPOYPAULOTOS GTOLOMV, OT®MG HOONUOTO TPOYPOUUATICUOD, OOUMV OEOOUEVOV KOl
ToALTAOKOTNTOS TV aAyopiBuwv. ‘Eva cvvaeéc avtikeipevo mov Bewpeitor tavtdypova
O00KOAO OAAG Kou onuavtikd eivor M avdivon kot o oxedcpoc aiyopifumv. o va
OVTILETOMIGTEL OVTO TO TTPOPANUA, £xovV Yivel TOAAEG EPELVNTIKEG UEAETEG Yo TOV TPOTO

Beitiwong g dadikaciog dwackariog kot pabnong twv alyopibumy.

Kobbg o dykog ™g minpopopiog avédavetar pe toyelg puBpovg, avédvetor Kot 1 ovaykn
TavoUNoNg 0E0OUEVOV Y1oL KOADTEPT OVOALGT KOl HEAETT, YEYOVOG Tov Olvel av&avopevn
omovdUOTNTA GTOVG aAYOPOOVS TaEvounong. AVTol amoTeAOVY Kot TO KOPLo EMIKEVTPO TNG
napovcog NmAopatikig epyoasioc. H ta&ivounon eivor pio avdykn mov mpokOmTEl 61O
QLOIKO KOGHO, Yl TN OlevKOAVVOT TNG OvalNTNONG GLYKEKPUEVIG OVIOTNTOS WEGO GE
peydao dyko dedopévav. Ao T apyaia xpovia ot avOpmmol avénTuEay evpeTnpla, AEEIKA,
KATOAOGYOLG Kot GAAEG HOPPEG Yo VO SlaTnpovV TN XPNOIUN TANpoPopio Tatvounuévn,
€101KA oV TO GUVOAO OEQOUEVDV Elvar duvapkd, OnAadT| véa dedopéva TPOKOTTTOVV SLOPKDS

EVO TOAMA TPETEL VA, aapeBohv 1) va dlorypapovv.

[ToAAol kan apxetd drapopeTikol petalh Toug adyodpBpot Ta&vounong Exovv avamtuydel yi
™ Bertioon g amddoons 66OV aPOoPA TNV VTOAOYIGTIKY] TOAVTAOKOTNTO KOl €V TEAEL TOVG
nopovg (xpovo Kot xdpo) mov Ba amartnBolv, ce cuvaptnon pe to péyebog tv dedopévav.
Y ovykputik] afloddynon petald eVOAAOKTIKGOV oAyopiBuwmv, vrdpyovv dideopot
TOPAYOVTEG TTOV TPEMEL Vo, ANPOOHV vITOYN, OTTMG 1| TOALVTAOKOTNTO MG PO TO YPOVO, O

(emmAéov) xdpog pvnung mov Ba amortnBel kabmg Ko n otabepdtnTa ToV KAOE ahyopibuov.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 6

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Emotpépoviag 610 ekmoidevtikd mpdfAnua e PéAtiomg ddackaAiog kot padnong tov
OVTIKELEVOD Y10 TOVG ONUEPIVOVG POITNTES, Ue Pdon épevvec, 1 Ontikomoinon Alyopibumv
éxel amodeyBel OtL éxer BeTikd aviiktvmo otnv uddnon tov eountov. H mapovoa
OUTAMUOTIKY €PYACIO. GTOYEVEL OTN OYEOIOON KOl OVATTLEN €VOG YPOPIKOV EPYOUAEIOV
ontkomoinong aAyopifumv Tta&vounong mov UTOPOLV VO YPTGLLOTOGOVY EVKOAN Ol
eoumtéc. H omtwkomoinon diver éupacm omv ontikn avomapdotacn Pnudtov kot
AEITOLPYIDV £VOG 0hyopiBLov Kot YEVIKA Bempeiton o amoTEAECUOTIKN O TIG TPOPOPIKEG 1
aPLOUNTIKEC TOPOVGIAGELS TOV OVTIKEYEVOL, OGOV apOpPd GTNV KOTOVONGT Kol GTO YEYOVOG
Ot etvan pior Stadtkacion EIAKN Tpog To ¥pNot. Ta d1adpacTiKd epyarein. OTTIKOTOINGNG TOV
dwatifevtan onuepa pumopohv vo ¥pNooTotnfodyv amoTEAECUATIKG Yio T Od0oKoAlo Kot
péonon ovvbetwv evvordv. Edwotepa, oT0 OvVTIKEIHEVO NG OWMMAMUATIKNAG, 1 YPOQIKN
OTEKOVIOT TOV PNUATOV KOl TOV AELTOVPYUOV TOV aAYopiOumV, duvapkd eved eKTEAOVVTAL,
umopel va fondnocet Toug QOITNTEG VO KATOVOIGOLV KOl VO GLYKPIVOLV dlopopeTIKONS

alyopifpovg Ta&vounong mo anroTEAEGUATIKA.

YKOmOG NG TOPoVoaS JMAMUOTIKNG epyaciag sivor kat’ apynv vo yiver pla cvvrtoun
avaPOPE GTO OVTIKEILEVO T®V aAYOPIBL®V Kot TMV SIPOPETIKMV TOTMV TOVG, TPOKEUEVOLV
va katovonOel n onuacio tovg. Eniong, mpv and to oyedacpud mg epapuroyns, fa yiver pia
ocvvtoun oavoeopd ota Poacwd Oépota g moAvmAokdtntoag TV odyopifuwmv. H
TOAVTAOKOTNTO, YPNOLULOTOlEiTOL G €PYOAED Yoo TNV HETPNON NG OMOTEAEGUATIKOTNTOGC
evog adyopiBuov, kabhg etvar OepeMMIES Yo TV KOTAVONON TOV SPOPETIKAOV OTOLTHCEMDV
Kol emOOce®V PETAED TV adyopiBuwv ta&vounonc. Me Baon avt) yvdon, 6T GLVEXELD

Oa yivel mapovcioon twv €ENg adyopiBuwv tavounong:
e Bubble Sort,
e Selection Sort,
e Insertion Sort,
e Merge Sort, kot
e Quick Sort.

Avto Ba BonBnoet Tov avayvodoTn Kol TEMKAE TO QOITNTY OTNV KoTdktnon &vog Pactkod
EMMEOOV KATOVONONG CWTOV TV HeBOdWV, ¢ amapaitnorn Pdon yo v TANPN Katavonon
toug pe) PonPela Tov gpyoareiov omtikomoinong. Télog, Ba oyedaotel kot Bo vAomonOel
uio online, web-based epapuoyn otnv omoia o ypnotng Oo pmopei, peta&d AAA@V
Aertovpyudv, va glodyet N va emAééet pio okolovBia Betikdv akepainv aplBudv 16000V Kot
vo emAéEel évav ovykekpiévo omd tovg S dwbéoipovg aAydpiBpovg Ta&vounong.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 7

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Xpnotiponowwvrog Eva epyoieio amekdviong mov Pociletar og pafddypappa, o eottng o
OTOKTNGEL KAAVTEPT KATAVONGT TNG AELITOLPYIOG TOL GVYKEKPEVOLD alyopiBupov. Emimiéov
O umopéoel va ToV EKTELEGEL GE OKA TOV OEJOUEVA, T} VO, XPNCUYLOTOMGEL TaL 10100 «TVUYOTON
dedopéva Yo va, cuykpivel LeTa&d tovg 000 1 TeptocoTePoLS ahyopiBuovs. H oyediaon £xet
OMCEL EUEOCT) OTNV AELTOVPYIKOTNTO ONO TAELPAG EKTOIOEVLTIKNG/OOOKTIKNG, KOOMDG O
TPOTEL®V POAOG TNG EPAPLOYNG Eival Vo amoTEAESEL EpYaAEio VTOGTHPIENS TOV d1ddcKOVTOL

6¢€ £V0l TAVETIOTNUOKO TUTLLOL.
A&Ee1S — KA1

aAyopOpog, Souég SedopévmV, LVTOAOYIGTIKY TOALTAOKOTNTA, TASIVOUNOTY|, ONTIKOTOINGM
aAyopiBuov, dtadpactiky uabnon, omtikomomtng, JavaScript, CSS, epappoyn moykocuov

1070V

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 8

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Abstract

Data structures and the algorithms that manipulate and transform these data to solve problems
are a fundamental subject in computer science, with wide-ranging applications in many
different fields and classes of problems. Despite the fundamental role that algorithms play in
computer science, students often struggle to understand this subject. There are several reasons
why students struggle, including fear of programming (especially for those with no prior
programming experience), lack of interest, and the abstract nature of the concepts involved,
such as the concept of the complexity of an algorithm. These are the main causes of high
drop-out and failure rates in core compulsory courses of the curriculum, such as courses in
programming, data structures and complex algorithms. A related subject that is considered
both difficult and important is the analysis and design of algorithms. To address this problem,
many research studies have been conducted on how to improve the teaching and learning

process of algorithms.

As the volume of information increases rapidly, so does the need to sort data for better
analysis and study, which gives increasing importance to sorting algorithms. These
algorithms are also the main focus of this thesis. Sorting is a need that arises in the physical
world, to facilitate the search for a specific entity within a large volume of data. Since ancient
times, people have developed indexes, dictionaries, directories, and other forms to keep
useful information organized, especially if the data set is dynamic, meaning if new data is
constantly being generated while old data must be removed or deleted. Many and quite
different sorting algorithms have been developed to improve performance in terms of
computational complexity and ultimately the resources (time and space) required, depending
on the size of the data. In comparative assessment between alternative algorithms, there are
several factors to consider, such as the time complexity, the (extra) memory space that will be

required, and the stability of each algorithm.

Returning to the educational problem of optimal teaching and learning of the subject for
today's students, based on research, Algorithm Visualization has been shown to have a
positive impact on student learning. This thesis aims to design and develop a graphical tool
for visualizing sorting algorithms that can be easily used by students. Visualization
emphasizes the visual representation of steps and operations of an algorithm and is generally
considered more effective than verbal or numerical presentations of the subject in terms of

understanding and being a user-friendly process. Interactive visualization tools available

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 9

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

today can be used effectively to teach and learn complex concepts. In particular, in the
subject matter, graphically illustrating the steps and operations of algorithms, dynamically
while they are running, can help students understand and compare different classification

algorithms more effectively.

The purpose of this thesis is, in the first place, to make a brief reference to the subject of
algorithms and their different types, in order to understand their importance. Also, before
designing the application, a brief reference will be made to the basic issues of the complexity
of the algorithms. Complexity is used as a tool to measure the effectiveness of an algorithm,
as it is fundamental to understanding the different requirements and performances between
sorting algorithms. Based on this knowledge, the following sorting algorithms will then be

presented:
e Bubble Sort,
e Selection Sort,
e Insertion Sort,
e Merge Sort, and
e Quick Sort.

This will help the reader and ultimately the student to gain a basic level of understanding of
these methods, as a necessary basis for fully understanding them with the help of the
visualization tool. Finally, an online, web-based application will be designed and
implemented in which the user will be able, among other functions, to enter or select a
sequence of positive integer input numbers and select a specific one of the 5 available sorting
algorithms. By using a bar graph based visualization tool, the student will gain a better
understanding of how the particular algorithm works. In addition, the student will be able to
run it on its own data, or use the same "random™" data to compare two or more algorithms.
The design has emphasized functionality from an educational/teaching point of view, as the
primary role of the application is to be a support tool for the teacher in a university
department.

Keywords

algorithms, data structures, computational complexity, sorting, algorithm visualization,

interactive learning, visualizer, JavaScript, CSS, web application

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 10

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’
Table of Contents

L ECT0R VN 1 11 PR RTPRPPR 6
AADSTFACT ...t bbb bR bRttt bbb bR ne e 9
INTRODUGCTION ..ottt sttt et ae st beeseeseeseeseessesbestesteaseereaneeneenees 16
The SUDJECt OF thiS ThESIScviiee e 16
F N T (1= U [0 0] o] =Tot (NSRS 16
V= aToTe (o] (o]0 Y20 TSP PR PP PPPPTP 17
INNOVATION <.ttt bbbttt e s et enbe b e sbesbenbeereeneenee e 17
B0 L U0t (L= PSR P OV R ORI 17
CHAPTER 1: Introduction to the concept of algorithms and complexity........c.cccccccvvviiienenne. 18
00 14 oo [Tod o OSSR 18
1.2 Algorithm: @ defiNITIONccooiiiiiiee bbb 18
IR T Y/ o LTS o) = [T 11] 0SSR 19
1.4 What is computational COMPIEXITY?ccveiiroiiiieceee e 20
1.5 ASYMPLOTIC NOTATIONc.veiiiiiiiiiieie ettt bbbt e s 20
1.5.1 ASymptotiC UPPEI DOUNGcvveieiiiiiece ettt ettt sreereens 21
1.5.2 ASymptotiC IOWET DOUNc.oiuiiiiieiiiie e 21
1.5.3 ASymptotiC tIgNt DOUNGcovviiiiicee et 21
CHAPTER 2: Presentation and analysis of sorting algorithms.............cccoconiiiiicicieen, 23
220 A 1 011 oo [T o o USSR 23
2.2 The CONCEPL OF SOMTING ...c.viiviiiiiiieiie ettt ees 23
P2 B = 10 o] o] [0S 1o o SRS 24
T 1= ot o] IS 1o AR RR ST 25
pZE ST 1 0 TSTT g o] o TS o SRS 27
W S \Y, (=] o IS0 o TSP UPRPRP 29
A O U1 TG0 T o SO RSS 31
CHAPTER 3: Visualization as an educational ProCesscccceeveieeieiieieese e 34
1 T80 A 1 011 0o [T 1 o o OSSR 34
3.2 The concept Of VISUAHIZATIONcooviiiiieiie et 34
3.3 Visualization tECRNIQUEScoiiiiiiieie bbb 34
3.4 Benefits OF VISUAHIZATIONooiuiiiiiieiiee e e 36
CHAPTER 4: Design and Development of the Web Applicationcccccooveiiiiiiiinicienn, 39
g I Yoo [T 1 o o OSSR 39
4.2 Software tools employed for the development of the web applicationc.ccccevveenneee, 39
0 I OSSR 40
4.2.2CSS 40

4.2.3 JAVASCIIPL ..ttt bbb bbbt bbbt et b bbbt 40
4.3 Major decisions on the functionalities of the applicationccoceveiieiiiiiiin i, 40
0 I 101 0= (o1 U Y/ YOS 40
4.3.2 INpUt Provided DY the USEIoiieeiie et 41
4.3.3 Output produced by the appliCALIONccvviiiiee e 44
A.3.4 CONIOL PANEL ...ttt sttt b e b et b e beeneeereenbe e 44
G o o (=1 [0o - 1 OSSR 52

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 11

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

4.4 Major Decisions on the Layout and Look-and-Feel of the application..............cc.ccooveienene. 53
4.4.1 BASIC UALA TOIM...uiiiiiiiiieie bbbttt b e bbb 53
O O aToT (o1 o) Ao] (o] £ TR SU RSP 54
4.4.3 SCreen LayOUL DESIGNccvviiicie ettt re et este e e e s reenneenaeenaenne e 55
CHAPTER 5: The sorting algorithms within the visualization applicationcc.cccceeveneen. 57
T8 A 1 011 oo [0 Tox £ o] o USRS 57
5.2 BUDDIE SOIT ...ttt bbbttt ettt b bbbt bt neas 57
TR IS T=] (=Tt i o T] o AR URTR TSR 65
oI 1 K=] o] g I STo] S PORRO TR PRURPRRRTIN 75
D5 IMIBIGE SONT..... et b et b ettt b e n et be e n e 85
5.6 QUICK SOFT ...ttt et b e s b e et e e st e e b e e sabeeabeeabeeebeesaeeesbeesbeeesbeeareeenres 95
CHAPTER 6: Conclusions and fUTUIE WOFKccooiiiieieiie e ssee e sae e e 110
RETEIBNCES ...ttt bbbt R e Rt e ettt b b e e et nes 112

List of Figures

Figure 1.1: Big O cOMPIEXitY graph........ccooiiiiieiiieeie e 25
Figure 2.1: Pseudocode for bUbbBIE SOIt.coviiiiieiicc e 27
Figure 2.2: Pseudocode for SEIECION SOM.cccveiieiiiieiiece e 29
Figure 2.3: Pseudocode fOr INSEIrtioN SOM..........cccueieieieninesiisie e 31
Figure 2.4: Pseudocode fOr MEIgE SOIM.c.uiiiiiieieieiee e 33
Figure 2.5: Merge SOrt @XampPle.........cooiiiiiiiiie e 34
Figure 2.6: QUICK SOIt PSEUAOCOUE.cveiuieirieiieeie ettt ee et re e sreesreeneesrees 35
Figure 2.7: QUICK SOt XAMPIE.oiiiiiiii e 36
Figure 4.1: The user iNPUt fIEld.ccooiiiiiiee 48
Figure 4.2: The array SIZe SHUEK.ccvv i s 48
Figure 4.3: The animation speed SHAET. ..o 49
Figure 4.4: The algorithm DULTONS. ..o 50
Figure 4.5: The new data DULEON. ... 50
Figure 4.7: The STOP DULTON.ooiiie e et 51
Figure 4.8: The algorithm desCription @rea.ccooveieiieiiiiieie et 52
Figure 4.9: Bubble sort description SUMMAY.c.ceiviieriieiieiesieeseesie e e esee e e ense e snees 53
Figure 4.10: Selection sort deSCription SUMMAIY.c.coeiiverierieiieeneerieseeseesee e seesee e seees 53

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 12

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Figure 4.11: Insertion sort desCription SUMMAIY..........cccooiririrenieieienesie e 54
Figure 4.12: Merge sort desCription SUMMAIY.ccooeieriririreeieiere et 54
Figure 4.13: Quick sort desCription SUMIMAIY.c.cueivirieiiiereeieseeseesie e e esre e e e saeseesneas 55
Figure 4.14: Help modal FRALUIE.eoiiiie e 56
Figure 4.15: The data displayed in a bar chart with horizontal bars, vertically stack............. 57
Figure 4.16: The overall SCreen layOuL.c.coooiiiiiiieieee e, 59

Figure 5.1: BUBBLE SORT: The data array consists of elements: 870, 824, 655, 125, 30... 61

Figure 5.2: BUBBLE SORT: First pass, comparing 870 and 824.cccccvevvevveveeieciiennn, 61
Figure 5.3: BUBBLE SORT: First pass, comparing 870 and 655.ccccocvininiiinieniennen, 62
Figure 5.4: BUBBLE SORT: First pass, comparing 870 and 125.ccccocvinininiineeniennnn, 62
Figure 5.5: BUBBLE SORT: First pass, comparing 870 and 30.ccccccevvveveriiesieiesieinn, 63

Figure 5.6: BUBBLE SORT: First iteration is over and the green color indicates the sorted

POILION OF thE AITAY. ..o.eieiiiii et 63
Figure 5.7: BUBBLE SORT: Second pass, comparing 824 and 655.cccccoevvvrineneennnn, 64
Figure 5.8: BUBBLE SORT: Second pass, comparing 824 and 125............cccccevvvevveieiiennnn, 64
Figure 5.9: BUBBLE SORT: Second pass, comparing 824 and 30.cccccceevvveieeieiiennnn, 65

Figure 5.10: BUBBLE SORT: Second iteration is over and the green color indicates the

Sorted POrtion OF the AITAY.c.coiiiiiiiiie bbb 65
Figure 5.11: BUBBLE SORT: Third pass, comparing 655 and 125.............ccccccovvevveiieiiennnns 66
Figure 5.12: BUBBLE SORT: Third pass, comparing 655 and 30............ccccceevveviieiieeineenne. 66

Figure 5.13: BUBBLE SORT: Third iteration is over and the green color indicates the sorted

POILION OF thE AITAY.eieiiiii et 67
Figure 5.14: BUBBLE SORT: Fourth pass, comparing 125 and 30.cccccevveviieiieevineenne. 67
Figure 5.15: BUBBLE SORT: The final sorted array.cccccooveeivieiiieiiievie e 68

Figure 5.16: SELECTION SORT: Array consists of elements: 276, 153, 781, 307, 158, 145,
856, 200, 795, 49. ...ttt 69

Figure 5.17: SELECTION SORT: First iteration indicates the correct position for the smallest
][] T o O RPPP TR 69

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 13

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Figure 5.18: SELECTION SORT: First iteration is over and the green color indicates the
sorted Portion Of the ArTAY.cceieiiiii e 70

Figure 5.19: SELECTION SORT: Second iteration indicates the correct position for the

SECONA SMAIIESE CIEMENT. ..o et e e e e e e e et ee e e e e e e e 70

Figure 5.20: SELECTION SORT: Second iteration is over and the green color indicates the
sorted Portion Of the ArTAY.ccoiiiiiii e 71

Figure 5.21: SELECTION SORT: Third iteration indicates the correct position for the third

SIMAIIEST BIEIMIBNL. . e ettt e e e e e e ettt e e e e e e e e et e e e e e e nenaaees 71

Figure 5.22: SELECTION SORT: Third iteration is over and the green color indicates the
sorted Portion OF the AITAY.coeiiiiiii e 72

Figure 5.23: SELECTION SORT: Fourth iteration indicates the correct position for the fourth

SIMAIIEST BIEIMIBNL. .. ettt e e e e e e e ettt e e e e e e e e et e eeeeeeenanens 72

Figure 5.24: SELECTION SORT: Fourth iteration is over and the green color indicates the
sorted Portion Of the AITAY.coeiiiiiiie e 73

Figure 5.25: SELECTION SORT: Fifth iteration indicates the correct position for the fifth

SIMAIIEST BIEIMIBNL. ..ottt ettt e e e e e e e et e e e e e e e e e, 73

Figure 5.26: SELECTION SORT: Fifth iteration is over and the green color indicates the
Sorted Portion OF the AITAY.ooeiiiiiiie e bbb 74

Figure 5.27: SELECTION SORT: Sixth iteration indicates the correct position for the sixth

SIMAIIEST BIEIMIBNL. . ettt e e e e e e e e et e e e e e e e e e 74

Figure 5.28: SELECTION SORT: Sixth iteration is over and the green color indicates the
sorted POrtion OF thE AITAY.coviiiiiiiiie e 75

Figure 5.29: SELECTION SORT: Seventh iteration indicates the correct position for the

SeVENth SMAllESt BIBMENL. ... 75

Figure 5.30: SELECTION SORT: Seventh iteration is over and the green color indicates the
sorted POrtion OF the @ITAY.couiiiiiii bbb 76

Figure 5.31: SELECTION SORT: Eighth iteration indicates the correct position for the eighth
SMANIESE RIBIMENT. ... et st e e b e 76

Figure 5.33: SELECTION SORT: Eighth iteration is over and the green color indicates the

sorted Portion OF thE @ITAY. ..cc.ecieiiee et reenne e 77

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 14

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’
Figure 5.33: SELECTION SORT: Ninth iteration indicates the correct position for the ninth
SMAIIESE BIEMENT. ...t 77

Figure 5.34: SELECTION SORT: Seventh iteration is over and the green color indicates the

sorted Portion OF thE @rTAY.ccveiieie et nre e 78

Figure 5.35: INSERTION SORT: Array consists of elements: 631, 390, 157, 79, 695, 717,
26, 40, 600, AL7. ..ottt e ettt b renre e e s 79

Figure 5.36: INSERTION SORT: Color yellow demonstrates the element that will be

compared with the sorted portion of the array.cccccevveiiiciie e 79

Figure 5.37: INSERTION SORT: The second element is now considered part of the sorted
POILION OF thE AITAY.eeeiieiii et 80

Figure 5.38: INSERTION SORT: Color yellow demonstrates the element that will be

compared with the sorted portion of the array.cccccevveiiiicie e 80

Figure 5.39: INSERTION SORT: The third element is now considered part of the sorted
POILION OF thE AITAY.eeiiieiiiee et 81

Figure 5.40: INSERTION SORT: Color yellow demonstrates the element that will be

compared with the sorted portion of the array.cccccevveieiciic e 81

Figure 5.41: INSERTION SORT: The fourth element is now considered part of the sorted
POILION OF thE AITAY. ..o.eieiiiii et 82

Figure 5.42: INSERTION SORT: Color yellow demonstrates the element that will be

compared with the sorted portion of the array.cccocevveiiiicii e 82

Figure 5.43: INSERTION SORT: The fifth element is now considered part of the sorted
POILION OF thE AITAY.eieiiiii et 83

Figure 5.44: INSERTION SORT: Color yellow demonstrates the element that will be

compared with the sorted portion of the array.cccccovv i 83

Figure 5.45: INSERTION SORT: The sixth element is now considered part of the sorted
POILION OF thE AITAY. ...eieiiiii et 84

Figure 5.46: INSERTION SORT: Color yellow demonstrates the element that will be
compared with the sorted portion of the array.cccocevieiiiinie s 84

Figure 5.47: INSERTION SORT: The seventh element is now considered part of the sorted
POFtION OF ThE @ITAY.vcvee et e e e aeeneenreas 85

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 15

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’
Figure 5.48: INSERTION SORT: Color yellow demonstrates the element that will be
compared with the sorted portion Of the array. ... 85

Figure 5.49: INSERTION SORT: The eighth element is now considered part of the sorted
POFtION OF ThE @ITAY.ecviiieice et e e re e aeaneenreas 86

Figure 5.50: INSERTION SORT: Color yellow demonstrates the element that will be
compared with the sorted portion Of the array. ... 86

Figure 5.51: INSERTION SORT: The ninth element is now considered part of the sorted
POFtION OF thE @ITAY.ecviiiice et re e re e nne s 87

Figure 5.52: INSERTION SORT: Color yellow demonstrates the element that will be
compared with the sorted portion Of the array. ... 87

Figure 5.53: INSERTION SORT: The final sorted array...........ccccoeeevevieiieeieeriesiieseese e 88

Figure 5.54: MERGE SORT: Array consists of elements: 444, 983, 733, 107, 119, 436, 307,
TA3, 94, 419, .ottt et re e e e e s 89

Figure 5.55: MERGE SORT: Element 444 is the left subarray and element 983 is the right

UL 0L U4 |/ TSSOSO 90
Figure 5.56: MERGE SORT: Sorted subarray consisting of elements 444 and 983. 90
Figure 5.57: MERGE SORT: The left sorted subarray and the right subarray. 91

Figure 5.58: MERGE SORT: Sorted subarray consisting of elements 444 and 733 and 983. 91
Figure 5.59: MERGE SORT: Elements 107 and 117 are being merged into a subarray. 92
Figure 5.60: MERGE SORT: Elements 107 and 119 are in a sorted subarray. 92

Figure 5.61: MERGE SORT: The left and right subarray of the first half of the main array. 93

Figure 5.62: MERGE SORT: The firSt SUDAITAY.ccoiriririiiiieieiee e 93
Figure 5.63: MERGE SORT: Merge of the elements 436 and 307.c..cccceevvevieeieevineenne, 9
Figure 5.64: MERGE SORT: Elements 436 and 307 are in a sorted subarray. 9

Figure 5.65: MERGE SORT: Left subarray consisting of elements 307 and 436 is merged
WIEN BIEBMENT 743, ..ot et s e et e e ebe e e ete e saa e e beesbeeesbeesaeeebeesneens 95

Figure 5.66: MERGE SORT: Element 743 is merged with the subarray of 307 and 436. 95

Figure 5.67: MERGE SORT: Element 94 is considered the left subarray and element 419 the
FIGNT SUDAITAY. ...t e st esteese e reeteenaesseesteeneesneenneaneenreas 96

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 16

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’
Figure 5.68: MERGE SORT: Elements 94 and 419 are merged into a subarray as denoted by
the COIOT TIGNT GIEEN. ... 96

Figure 5.69: MERGE SORT: Merging the two subarrays to form the right subarray of the

(o A Lo T LU -SSR 97
Figure 5.70: MERGE SORT: The left and right sorted subarrays.c.ccocvriniiiinnieeniennnn, 97
Figure 5.71: MERGE SORT: The final SOrted array............ccccuverieiieieneneneseseseeeeeeeeen, 98

Figure 5.72: QUICK SORT: Array consists of elements: 435, 761, 615, 578, 142, 650, 950,

061, 977, 320, .. ettt e R e R e n e e e r e e nr e re e 99
Figure 5.73: QUICK SORT: Pivot element iS 320.........ccccoriririiieieieiese s 100
Figure 5.74: QUICK SORT: 142 is swapped With 435.cccciiiiiiinene e 100
Figure 5.75: QUICK SORT: The for loop has reached the pivot element.c..c..c....... 101
Figure 5.76: QUICK SORT: Pivot element is in the correct position............c.cccccevvvevvenenne. 102
Figure 5.77: QUICK SORT: Element 142 is in the correct position.............ccoceeveevrinrennnen, 102

Figure 5.78: QUICK SORT:
Figure 5.78: QUICK SORT:
Figure 5.79: QUICK SORT:
Figure 5.80: QUICK SORT:
Figure 5.81: QUICK SORT:
Figure 5.82: QUICK SORT:
Figure 5.83: QUICK SORT:
Figure 5.84: QUICK SORT:
Figure 5.85: QUICK SORT:
Figure 5.86: QUICK SORT:

Figure 5.87: QUICK SORT:

Figure 5.89: QUICK SORT:

Elements that are less and greater than pivot element, 761. ... 104

Pivot element, 761 is in the correct position................cc..c...... 104
All the elements left than pivot, are less than 650. 106
Pivot element 650 is in the correct position.............c.cccceeevenne, 106
Pivot element 435 is in the correct position.............c.cceceevennn, 107
Pivot element iS 615.cocvieiiiiiirieeeee e 108
Pivot element 615 is in the correct position.............cccccveeneee. 109
Element 578 is in the correct position...........cccccoevvvrirvniennn, 109
Pivot element iS 950.........ccoeiieiiiieie e 110
Element 950 is in the correct poSItion...........c.cccceevvveeivevieenne. 111
Pivot element iS 961.........cccoviiiiiiieee e 111
Figure 5.88: Pivot element, 961 is in the COrrect POSITION.cccovvieierieic e 112
The final Sorted array.cccocevevveiesiese e 112
17

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

INTRODUCTION

Understanding algorithms and data structures is essential for students seeking to pursue a
career in computer science as they are key ideas in the subject. Particularly important to this
topic are sorting algorithms, which are used to arrange data in a certain order for easier

analysis and manipulation.

The subject of this thesis

The subject of this thesis is to enhance the learning experiences for students studying this
topic by developing a web application for the visualization of sorting algorithms. The abstract
nature of sorting algorithms makes it difficult for students to fully understand the concepts
involved, which is one of the barriers of learning about them. This is especially true for
people who do not have a lot of experience with programming or computer science. The web
application tries to overcome this issue and make the topic more approachable and interesting
for students by offering a more intuitive and interactive way to learn about these algorithms.
Because it has been shown to improve learning outcomes, the use of visualization as an
educational process is a hot topic in the field of computer science education. This makes the
subject of this thesis seasonable and relevant, as it aims to utilize the advantages of

visualization to improve the process of teaching and learning about algorithms.

Aim and objectives

The purpose of this thesis is to develop a web application for sorting algorithm visualization
in order to enhance the learning process for students who are studying this topic. The specific
goals of this thesis are to: examine the underlying ideas of algorithms and computational
complexity, to comprehend the characteristics and performance of several sorting algorithms,
analyze the potential educational benefits of visualization in the context of sorting algorithms
and explore its application as an educational process, implement a web application for sorting
algorithm visualization that takes into account the demands and educational objectives of
students, and lastly to illustrate the operation of each of the sorting algorithms that is included

in the application.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 18

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Methodology

In order to successfully create such an interactive educational tool, the students’ needs and
learning objectives were taken into account. The application was created to be interactive as
is it designed to give students a practical and interesting learning experience. One of the
functionalities that achieve this purpose is the ability the student has, to provide their own
input in order to test a specific algorithm. For displaying the outcome of each algorithm, a bar
graph was used, giving the data a simple and understandable representation while also

assisting students in better comprehending how the algorithm operates.

Innovation

This thesis presents an innovative and original approach to the teaching and learning of
sorting algorithms through the development of a web application for their visualization.
Although using visualization as an educational process is not new, the application created for
this thesis elevates the idea by giving students a dynamic, interactive and interesting approach
to learn about these methods. Students can test the algorithms using their own dataset among
the built-in arrays in the application, they can also observe each iteration of an algorithm in a
step-by-step procedure, which offers a clear and user-friendly graphical representation of the

data to help students better grasp the algorithms’ key concepts and complexities.

Structure

This thesis is divided into five main chapters. The 1% chapter will give an overview of
algorithms and computational complexity, while defining the key terms and concepts that are
important for comprehending the subject. The details of sorting algorithms will be covered in
more detail in the 2" chapter, along with a discussion of how well they perform in terms of
time and space complexity. The 3" chapter will examine the use of visualization as a teaching
tool, highlighting its advantages and how educators can utilize it to their advantage in the
classroom. The 4™ chapter will go into detail about the features and functionality that were
included in the application as well as the decisions that were made at each stage of the
development process. Finally, each sorting algorithm included in the application, will be
explained in the 5™ chapter, utilizing the visualization tool to demonstrate how they operate.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 19

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

CHAPTER 1: Introduction to the concept of algorithms and

complexity

1.1 Introduction

The first chapter gives a general introduction on the subject of algorithms and on the concept
of computational complexity. Starting off, there will be a discussion about the definition of an
algorithm, the various types of algorithms and their applications. An introduction will be
provided on the concept of computational complexity, along with its uses in order to measure
the effectiveness of an algorithm. The “big O” notation, which is typically used to describe
the asymptotic complexity of an algorithm is covered in the last part. The comprehension of
these basic concepts for computer science, as outlined in this chapter, is a necessary stepping
stone for the development of the web application to visualize the selected sorting algorithms

and their steps.

1.2 Algorithm: a definition

An algorithm is a set of instructions or procedures for solving computational problems or
resolving a particular task. Algorithms are used to handle data, conduct complex calculations
and automate different procedures. They offer a methodical approach to problem solving and
are an imperative tool for creating and putting into practice quality software. Several
problems can be addressed using algorithms, such as data searching and sorting, process
optimization, and analysis and interpretation of big datasets. They can be utilized in a range
of settings, including as scientific research, business and daily life, while they can be

implemented in a plethora of programming languages.

Computer science relies heavily on algorithms which have a wide range of real-world
applications. The effective manipulation and interpretation of large amounts of data is one of
the major purposes of algorithms in computer science. For instance, algorithms are applied
for data analysis and visualization, data compression and encryption, and searching and

sorting of massive databases.

Countless real-world uses of algorithms can be found in areas like artificial intelligence, data
mining, and machine learning. In these domains, algorithms are used to automate decision-

making procedures, learn from data, and generate predictions.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 20

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

1.3 Types of algorithms

Algorithms are divided into several different categories or classes, each category serving a

specific purpose. Some of the most known types of algorithms are:

Sorting algorithms: They are utilized to arrange data in a certain order, given a rule
and a direction (ascending or descending arrangement). Arithmetic values (for
numerical variables) or alphabetic (string) values (for categorical variables) can be
sorted according to the arithmetic or lexicographic order. Bubble sort, insertion sort

and quick sort are a few examples.

Search algorithms: These algorithms are used in order to find particular items within a
large collection of data. Some prominent examples are linear search and binary

search. Search algorithms relay on a ‘key’ for searching.

According to their internal structure, algorithms may be characterized as

Divide and conquer algorithms: These algorithms break a problem down into smaller
subproblems, solve the subproblems and then combine these answers to solve the

original problem. Merge sort and quick sort algorithms make use of this technique.

Brute force algorithms: Brute force algorithms choose the optimal solution after trying
out every possible one. The drawback of such algorithms is that they can be
inefficient for problems of large dimensions even though they are typically simple to
apply. Problems such as n-queens and the traveling salesman are a few examples that

make use of brute force algorithms.

Dynamic Programming (DP) algorithms: DP algorithms divide optimization issues
into smaller subproblems and store the solution to these subproblems in order to
reduce repeated work. The Fibonacci sequence and the Knapsack problem are two

examples of DP algorithms.

Greedy algorithms: these algorithms at each step choose the locally best option in the
expectation that it will result in a globally optimal solution. Examples include the
shortest path algorithm developed by Dijkstra and the Huffman coding algorithm.

Graph algorithms: Networks like social networks and transportation networks can be
evaluated and modified using graph algorithms. Shortest path algorithms and depth-

first search algorithms and such examples.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 21

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

1.4 What is computational complexity?

Computational complexity is a measure of the efficiency of an algorithm and is used to
understand the resources required to solve a given problem. Complexity is important given
the fact that, depending on the precise implementation and the input data, different algorithms
may have different levels of efficiency. There are several factors that contribute to the
computational complexity of an algorithm. A major factor is the time required for an
algorithm to arrive to a solution, which is evaluated through the number of basic operations
required by the algorithm in order to compute the solution. Algorithms can be also judged for
their space complexity, i.e. the amount of memory or storage needed to execute a task. When
memory limitations apply, space complexity becomes the crucial factor since it determines
the feasibility of a specific algorithm for the problem. Time and space are the major factors
used to assess algorithm efficiency and to compare alternative algorithms on the same
problem.

1.5 Asymptotic notation

Asymptotic notation is a mathematical notation used to represent the behavior of a function
as the size of the input data increases towards infinity. The terms “time complexity” and
“space complexity” are extensively used in computer science to refer to the resources needed

to solve a specific task.
There are several types of asymptotic notations, such as big O, big Q and big .

e Big O notation is used to express the upper bound on the time complexity of an
algorithm, i.e., the maximum number of steps that may be needed to solve a problem.

e Big Q notation is used to express the lower bound on the time complexity of an
algorithm, meaning that it provides a lower limit of the steps necessary to solve a

problem.

e When both the upper and lower bounds are known, the time complexity of an

algorithm is expressed using the big @ notation.

Asymptotic notation is helpful for comprehending the overall behavior an algorithm across
any possible input data set, as opposed to how well it performs when given a particular input
data set. It is typically used to comparatively evaluate how efficient different algorithms are
at solving a given problem. By understanding the asymptotic complexity of an algorithm, it is
possible to determine the feasibility and practicality of implementing and using a specific
algorithm for a specific problem.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 22

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

1.5.1 Asymptotic upper bound

Big O notation is a form of mathematical notation used to express the upper bound on the
time complexity of an algorithm. It is commonly used to define an algorithm’s worst-case
time complexity, meaning the maximum number of steps that can be applied to solve a task
when the input data set is ‘adversarial’. The capital letter “O” is used to symbolize big O
notation, which is then followed by a function that specifies the algorithm’s time or space
complexity. In Chapter 2, for instance, a sorting algorithm is presented with a worst-case time
complexity of O(n?), meaning that it will take at most n? steps to sort a collection of input
data of size n. Big O notation is used to describe an algorithm’s behavior over time rather
than how well it performs when given a particular input. It helps assess the feasibility of

utilizing an algorithm for a particular problem by knowing how time-consuming it is.

1.5.2 Asymptotic lower bound

Big Q notation is a form of mathematical notation used to express the lower bound on the
time complexity of an algorithm. It is frequently used to define an algorithm’s best-case time
complexity, which lowers the maximum number of steps that can be performed to solve a
problem. The capital letter “Q” is used to symbolize big € notation, which is then followed
by a function that specifies the algorithm’s time or space complexity. For example, if an
algorithm has a best-case time complexity of ©(n) this indicates that it will need at least n

steps to solve a problem of size n.

1.5.3 Asymptotic tight bound

When both the upper and lower bounds of an algorithm are known, the time complexity of an
algorithm is expressed mathematically using the big @ notation, symbolized by the greek
capital letter “®”. It is used to describe the average-case time complexity of an algorithm,
meaning that is serves as both an upper and lower bound on the number of steps necessary to
solve a problem. To give a more complete understanding of the time complexity of an
algorithm, big @ notation is commonly used in conjunction with big O and big ©Q notations.
For instance, an algorithm with a worst-case time complexity of O(2") and a best-case time
complexity of Q(n) may have average time complexity of @(nlogn). In this example, the
average-case time complexity of the algorithm is described by the function nlogn. Figure 1.1

shows a graph of various Big O time complexities versus the input size of n data elements:

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 23

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Big-O Complexity

1000 +

800 /
700

2
2
£ s00
400
300 -+
200 +
100 +
0 - T 1 1 T 1 1 ' 1
0 10 20 30 40 50 60 70 80 S0
Elements

Figure 1.1: Big O complexity graph.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios

e O 1)
e O logn)
0O(n)

w——O(nlogn)

0O(n*2)
e O(240
o(nl)

24

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

CHAPTER 2: Presentation and analysis of sorting algorithms

2.1 Introduction

After the brief explanation of what is an algorithm and what are the ways of measuring its
efficiency, in this chapter we will proceed to the class of sorting algorithms. Different forms
of data can be rearranged using sorting algorithms in an ascending or descending order. The

following sorting algorithms will be covered:
1.bubble sort,
2.selection sort,
3.insertion sort,
4.merge sort and
5.quick sort.

For each one of them we will give a definition, a synopsis of how it works, an example and a
breakdown of the algorithm time and space complexity using the big O notation.
Understanding the various sorting algorithms and their features, is a crucial step before the

design of the algorithm visualizer application.

2.2 The concept of sorting

Sorting is the process of rearranging a sequence of items into a specific order. Sorting can be
done with numerous data types, such as numbers, words or strings of alphanumeric characters
or more complex structures that combine domains of alphabetic, numeric or logical types. To
accomplish a task like that, a plethora of sorting algorithms has been developed, each bearing
certain advantages and disadvantages. The order of a given sorting task refers to the rule of
ordering: numerical order for arithmetic values, alphabetic or lexicographical order for words
or strings, or chronological order for dates, are some common examples of the ways in which
data can be sorted. Another aspect is direction: ordering may be done in an ascending or a
descending direction. Sorting algorithms are a first chapter in any course on Algorithms in a
Computer Science or Engineering curriculum. In such academic contexts, sorting algorithms
are used to introduce students to the fundamental concepts of algorithms, data structures and
complexity analysis. Real-world applications of sorting algorithms expand to many fields

such as Data Analysis which analyzes data to extract and understand patters within the data,

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 25

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’
or Database Management which assists in organizing and retrieving data efficiently based on

queries.

2.3 Bubble Sort

Bubble sort is a simple algorithm that sorts a sequence of input data (elements) by repeatedly
iterating through the list, comparing adjacent elements and swapping them if they are in the
wrong order. The sequence of input data is considered to be sorted when no further swaps are
needed. It is called ‘bubble sort” because the elements of lower values (the ‘lighter ones’) or
will ‘bubble’ up to the top of the list as they are being sorted — assuming an ascending
direction is required, from the lower (top) to the higher (bottom) value.

The worst-case time complexity of bubble sort is O(n?), the best-case time complexity is
O(n), and the average-case time complexity is O(n?). This indicates that as the size of the
input collection of data increases, the time it takes for the algorithm to run grows
exponentially. Bubble sort has a space complexity of O(1), meaning that it only needs a

constant amount of extra memory, since it is an in-place sorting algorithm.

Although bubble sort is straightforward to comprehend and implement, it is not particularly
efficient, especially for large collections of data. Suppose we have the following sequence of

integer numbers that we want to sort in ascending order:

Input Data: The list of integer numbers: [15, 16, 6, 8, 5]

for{int = < —1; 1++)
bool =
for(int =@ = - -1 ++)
{
LT ([] = [+1])
}
(!)
break
¥

Figure 2.1: Pseudocode for bubble sort.

First Iteration

[15, 16, 6, 8, 5] — [15, 16, 6, 8, 5], Since 15 < 16 there is no need to swap.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 26

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

[15, 16, 6, 8, 5] — [15, 6, 16, 8, 5], Since 16 > 6 a swap is performed.

[15, 6, 16, 8, 5] — [15, 6, 8, 16, 5], Since 16 > 8 a swap is performed.

[15, 6, 8, 16, 5] — [15, 6, 8, 5, 16], Since 16 > 5 a swap is performed.
Second Iteration

[15, 6,8, 5, 16] — [6, 15, 8, 5, 16], Since 15 > 6 a swap is performed.

[6, 15,8, 5, 16] — [6, 8, 15, 5, 16], Since 15 > 8 a swap is performed.

[6, 8, 15,5, 16] — [6, 8, 5, 15, 16], Since 15 > 5 a swap is performed.

[6, 8,5, 15,16] — [6, 8, 5, 15, 16], Since 15 < 16 there is no need to swap.
Third Iteration

[6,8, 5,15, 16] — [6, 8, 5, 15, 16], Since 6 < 8 there is no need to swap.
[6, 8,5, 15, 16] — [6, 5, 8, 15, 16], Since 8 > 5 a swap is performed.

[6, 5, 8, 15, 16] — [6, 5, 8, 15, 16], Since 8 < 15 there is no need to swap.
[6, 5, 8, 15, 16] — [6, 5, 8, 15, 16], Since 15 < 16 there is no need to swap.
Fourth Iteration

[6,5, 8, 15, 16] — [5, 6, 8, 15, 16], Since 6 > 5 a swap is performed.

[5, 6,8, 15, 16] — [5, 6, 8, 15, 16], Since 6 < 8 there is no need to swap.
[5, 6, 8, 15, 16] — [5, 6, 8, 15, 16], Since 8 < 15 there is no need to swap.
[5, 6, 8, 15, 16] — [5, 6, 8, 15, 16], Since 15 < 16 there is no need to swap.
Output Data: The final sorted array is [5, 6, 8, 15, 16]

An important observation here is that for an array of size n, the algorithm requires n-1
iterations to sort the elements in ascending order.

2.4 Selection Sort

Selection sort is a straightforward sorting algorithm that works by repeatedly finding the
minimum element (when considering ascending order) from the unsorted portion of the array
and placing it at the beginning. For any given array of input data, this algorithm maintains
two subarrays: the subarray that is already sorted and the subarray that is unsorted and

remains to be sorted. In every iteration of selection sort, the minimum element from the

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 27

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’
unsorted subarray is chosen and moved to the sorted subarray (taking into account ascending
order).

The best-case time complexity of selection sort is O(n?). Worst-case and average-case time
complexities of selection sort are both equal to O(n?) as well. This is because for each
element inserted at the beginning, the algorithm must scan all n items. Just like bubble sort,
selection sort is an in-place sorting algorithm, so there is no the need for additional space: the
space complexity is O(1).

Suppose we have the following sequence of numbers that we want to sort in ascending order:

Input Data: list of integer numbers [7, 4, 10, 8, 3, 1]

=
L=}
=
[
t
Il
A
|
[
-+
}
—

for{int . +1; < s o+)

[] and []

Figure 2.2: Pseudocode for selection sort.

Sorted subarray: []
Unsorted subarray: [7, 4, 10, 8, 3, 1]
First Iteration

The minimum element in the unsorted portion of the subarray is 1. Swap 1 with the element

at index 0 in the sorted portion of the array.
Sorted array: [1, 4, 10, 8, 3, 7]

Unsorted subarray: [4, 10, 8, 3, 7]

Second Iteration

The minimum element in the unsorted portion of the subarray is 3. Swap 3 with the element

at index 1 in the sorted portion of the array.
Sorted array: [1, 3, 10, 8, 4, 7]

Unsorted array: [10, 8, 4, 7]

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 28

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Third Iteration

The minimum element in the unsorted portion of the subarray is 4. Swap 4 with the element

at index 2 in the sorted portion of the array.
Sorted array: [1, 3, 4, 8, 10, 7]

Unsorted array: [8, 10, 7]

Fourth Iteration

The minimum element in the unsorted portion of the subarray is 7. Swap 7 with the element

at index 3 in the sorted portion of the array.
Sorted array: [1, 3, 4, 7, 10, 8]

Unsorted array: [10, 8]

Fifth Iteration

The minimum element in the unsorted portion of the subarray is 8. Swap 8 with the element

at index 4 in the sorted portion of the array.

Sorted array: [1, 3, 4, 7, 8, 10]

Unsorted array: [10]

Output Data: The final sorted array is [1, 3, 4, 7, 8, 10].

Again here, just like bubble sort algorithm, for an array of n elements, selection sort needs n-
1 iterations to sort the elements.

2.5 Insertion Sort

Insertion sort is a straightforward, intuitive sorting algorithm that works efficiently on short
collections of data. This algorithm sorts a sequence of input data by continuously inserting
each item into the suitable position. Just like selection sort, this algorithm maintains two sub-
lists of the original list: an unsorted one and a sorted one. It starts by considering the first
element in the input data as the only sorted element while all the rest are placed in the
unsorted list. Then progressively the algorithm selects the next unsorted element and inserts it
into the sorted sub-list, at the appropriate position (whence its name). To insert a single
element into the sorted sub-list, the algorithm compares it with every element in the sorted
sub-list until it finds the correct position for this element, based on the sorting order rule and
direction (ascending or descending). The element is then inserted into the correct position,

after a necessary number of elements have been shifted to make room for the new insertion.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 29

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’
When the list is sorted, the best-case time complexity for insertion sort is O(n). Both the
worst-case and average-case time complexities are O(n?). Because it sorts the list in-place,

without using additional space, insertion sort has space complexity of O(1).
Suppose we have the following sequence of numbers that we want to sort in ascending order:

Input Data: list of integer numbers [5, 4, 10, 1, 6, 2]

INSERTION-SORT(A)
for j = 2to A.length

l

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[l..j — 1].
4 i=j—1

5 while i > 0 and A[i] > key

6 Ali + 1] = A[i]

7 i =1i—1

8 Ali + 1] = key

Figure 2.3: Pseudocode for insertion sort.

The first element, 5, is regarded as the only sorted element.
Sorted portion of the list: [5]

Unsorted portion of the list: [4, 10, 1, 6, 2]

First Iteration

The next unsorted element, 4, is compared to all the elements in the sorted portion of the list
(here, [5]).

Since 4 <5, it is inserted at the start of the sorted portion.
Original list: [4, 5, 10, 1, 6, 2]

Sorted portion of the list: [4, 5]

Unsorted portion of the list: [10, 1, 6, 2]

Second Iteration

The next unsorted element, 10, is compared to all the elements in the sorted portion of the list
(here, [4, 5])

Since 10 > 5, it is inserted at the end of the sorted portion.
Original list: [4, 5, 10, 1, 6, 2]

Sorted portion of the list: [4, 5, 10]

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 30

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Unsorted portion of the list: [1, 6, 2]
Third Iteration

The next unsorted element, 1, is compared to all the elements in the sorted portion of the list
(here [4, 5, 10]).

Since 1 <4, itis inserted at the start of the sorted portion.
Original list: [1, 4, 5, 10, 6, 2]

Sorted portion of the list: [1, 4, 5, 10]

Unsorted portion of the list: [6, 2]

Fourth Iteration

The next unsorted element, 6, is compared to all the elements in the sorted portion of the list
(here, [1, 4, 5, 10]).

Since 6 > 5 but 6 < 10, it is inserted after the element 5.
Original list: [1, 4, 5, 6, 10, 2]

Sorted portion of the list: [1, 4, 5, 6, 10]

Unsorted portion of the list: [2]

Fifth Iteration

The next unsorted element, 2, is compared to all the elements in the sorted portion of the list
(here [1, 4, 5, 6, 10]).

Since 2> 1 but 2 < 4, it is inserted after the element 1.
Original list: [1, 2, 4, 5, 6, 10]

Sorted portion of the list: [1, 2, 4, 5, 6, 10]

Unsorted portion of the list: []

Output Data: the final sorted array is [1, 2, 4, 5, 6, 10].

2.6 Merge Sort

Merge sort is one of the most efficient sorting algorithms. It is a recursive algorithm, i.e., it
uses the ‘divide and conquer’ strategy to repeatedly divide the array into shorter arrays, until
each array is short enough to be easily sorted at the cost of one swap at most. These sorted
subarrays are then merged back together to form a completely sorted array. In more detail, the

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 31

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational
purposes’

first step is to divide the array into two halves, which this normally done by calculating the
array midpoint and splitting it in half along this middle. The merge sort algorithm will then
recursively call itself on each of these two subarrays. This implies that the algorithm will
continue to split each half into smaller subarrays until its sub-list consists of only one
element. The algorithm will now consider each element as having been “sorted”. In the final
phase, the algorithm will start the process of merging the sorted subarrays of the original list
back together after the two halves of the array have been sorted. This is accomplished by
comparing the first element of each half and putting back into the original array the smaller
one. Once all of the elements from both halves have been merged back into the original list,
the process is repeated.

Merge sort has a best-case time complexity of O(nlog(n)), and both worst-case and average-
case complexities O(nlog(n)) as well. The space complexity of merge sort is O(n), however,

because of the additional space needed to store the two half subarrays of the original list.

Suppose we have to sort the list of integer numbers: [70, 50, 30, 10, 20, 40, 60].

mergeSort(Arr,start,end)

if (start < end)
mid = (start+end) / 2
mergeSort(Arr,start,mid)
mergeSort (Arr,mid+1,end)
Merge(Arr,start,mid, end)

Merge(Arr,start,mid, end)
nl = mid - start + 1
n2 = end - mid
Let P[1,2,.,n1+1] and Q[1,2,..,n2+1] are two new arrays
For i =1 to nl
P[i] = A[start + 1 - 1]
for j=1 to n2
QL J1=A[mid + J]
P[n1 +
Q[n2 +
i=1
j=1
for k = start to end
if P[i] <= Q[i]
Alk]=P[i]
i=1i+1
else A[k] = R[]]
j=3+1

8 B

11] =
1] =

Figure 2.4: Pseudocode for merge sort.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 32

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’
70 50 30 10 20 40 60
J—J %
70,50,30,10 20,40,60
70,50 30,10 20,40
|
60
\ / \. / \ / l
50,70 10,30 20,40
NS \ /
10,30,50,70 20,40,60

\/

10,20, 30, 40,50, 60,70

Figure 2.5: Merge sort example.

Splitting phase down to sub-arrays of 1 element each:

We first divide the array in half to obtain: [70, 50, 30, 10] and [20, 40, 60]. After that, we
recursively divide each of these arrays in half again, until we get subarrays consisting of only
one element: [70], [50], [30], [10], [20], [40], [60].

Merging phase:
We merge together these single elements as follows:
1. We compare 70 and 50 and we sort them as follows: [50, 70]
2. We compare 30 and 10, and we sort them as follows: [10, 30]
3. We compare 20 and 40, and we sort them as follow: [20, 40]
4. We merge [50, 70] with [10, 30] and the result is the following: [10, 30, 50, 70]
5. We merge [20, 40] with 60 and the result is the following: [20, 40, 60]
6. We finally merge the subarrays that were created from the two halves of the original
array to get the final sorted array: [10, 20, 30, 40, 50, 60, 70]
2.7 Quick Sort

Quick sort is another recursive sorting algorithm which, like merge sort, uses the ‘divide and
conquer’ technique. The algorithm selects a pivot element from the sequence and by using

partitioning, it recursively rearranges the list such that all elements that are less than the pivot

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 33

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational
purposes’

element are positioned to the left of the pivot element, and all the elements that are greater

than the pivot element are placed to the right of it.

Quick sort has best-case time complexity of O(nlogn), meaning the pivot element would be
selected so that the two sublists would roughly have the same number of elements. In the
worst-case, the pivot element is selected in such a way that one of the sublists has just one
element and the other n-1 elements, resulting to a time complexity of O(n?). Quick sort has an
average-case time complexity of O(nlogn). Quick sort has a space complexity of O(logn).
There are some optimization techniques that ensure that quick sort is done in-place, meaning

that it does not require extra space makes it efficient for sorting large lists.

Suppose we have to sort the list of integer numbers [9, 7, 5, 11, 12, 2, 14, 3, 10, 6]

QUICKSORT(A, p.r)

1 ifp<r

2 g = PARTITION(A, p.r)
3 QUICKSORT(A, p.g — 1)
4 QUICKSORT(A,g + 1.,7)

PARTITION(A, p.r)
x = Alr]
i=p—1
for j = ptor —1

if A[j]<x

i=1i+4+1

6 exchange A[i] with A[j]
exchange A[i + 1] with A[r]
return; + 1

Lh = L =

o0 =l

Figure 2.6: Quick sort pseudocode.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 34

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational
purposes’
r r

34 5 6 7

0 1 2 3 3 8 9
(o]7]5[u]i2] 2]14] 3]10] 6]
¥
il q r
1] 1 2.3 4 5 6 7 8 9
|5[2]3|6]12| ?|14]9[10]|1.

Y ¥

pPog r P q r
1 2 7.8 9

1] 2 4 5 [+
(235|679]10f11fia]12

L2 R A |

pro pr p qr pgr
(1] 2 4 5_6 8 9
2[3]s]e6[7]9ofo]11]12]i4
Y Y
P og.r p.r
4.5 9
[2]3]5[0]?|9|1U]|1[12]|4

\

'U -

[2]3]5[6];[9|10]||[12]|4'

Figure 2.7: Quick sort example.

We assume that the pivot element is the last element in the array, which is 6. The initial
partition would be the following: [5, 2, 3|6 | 12, 7, 14, 9, 10, 11]. The sublist on the left
consists of all the elements that are less than the pivot element, 6, and the sublist to the left of

6, consists of all the elements that are greater than the pivot element.

The left subsequence is recursively partitioned again using the last element, 3, as the pivot
element, and so is the right subsequence using the element 11 as the pivot:

[23]5,6,7,9,10 1114, 12]

The sublists [2] and [5] are already sorted. The sublist [7, 9, 10] is partitioned with the pivot
element being 10, and the sublist [14, 12] is also being partitioned with the pivot element
being 12:

[2,3,5,6,7,9]10]11]12]14]

The sublist [7, 9] is partitioned with the pivot element being 9:
[2,3,5,6,7]9]10]11 |12, 14].

Since the single elements are already sorted, the final sorted array is:

[2,3,5,6,7,9, 10, 11, 12, 14].

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 35

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

CHAPTER 3: Visualization as an educational process

3.1 Introduction

Visualization has been proven to be a powerful tool for enhancing learning and understanding
of complicated concepts in a variety of educational contexts. Students can better understand
and retain information by utilizing visual representations like diagrams, charts, images and
graphs. This is especially true for subjects such as sciences, including math and algorithms,
where visualization can help students make sense of abstract and complex concepts. This
chapter includes a review on the advantages of visualization in education and a discussion on

the various methods visualization may be employed to improve instruction and learning.

3.2 The concept of visualization

Visualization is the process of conveying information and ideas through the use of visual
aids, tools and techniques. Charts, diagrams, maps and other graphic representations of data
and concepts are only a few examples of the many tools and methods that can be used to this
end. Visualization makes it possible for the learner to observe the connections and
relationships among different parts or pieces of information, e.g., among different facts,
variables, concepts, procedures, etc. For this reason, it is frequently used to facilitate and
enhance the comprehension and interpretation of complex fields of knowledge.

Visualization as an educational process refers specifically to the use of visualization as a tool
for teaching and learning. Visualization is utilized in this scenario to make learning more
interactive and engaging while assisting students to grasp the meaning and to better

remember hard concepts, ideas, procedures, etc.

3.3 Visualization techniques

Some of the most commonly used visualization tools and techniques in an academic

environment include:

e Charts and graphs: Charts and graphs are helpful for displaying numerical data and
highlighting the connections among various variables. They are extensively used in

fields such as

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 36

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

economics, to represent data on topics such as GDP, unemployment, inflation

and other economic indicators,

social sciences, to demonstrate results on topics such as demographics,

attitudes, psychology, behaviors, and other social phenomena, and

data science, to depict data from a wide range of sources, including databases,
sensor networks, social media etc. Data scientists utilize these charts to
describe their findings and to detect trends, patterns and outliers/anomalies in

massive datasets.

e Diagrams: Diagram is a form of visual representation that displays the connections

and relationships between several concepts or ideas. They are often used in fields like

physics or engineering, where they demonstrate how systems or processes

work,

computer science, where they illustrate how computer systems, networks and

algorithms are built and function,

medicine, where they describe the structure and function of living organisms

and their systems.

e 3D models: 3D models are visual representations of three-dimensional systems or

entities. They are most used in disciplines such as

architecture and civil engineering, where they allow architects to visually
explain in three dimensions to clients and other interested parties how a

building will be like when constructed,

engineering and manufacturing, where they aid in the system and/or product

design and testing phases,

computer science, where they aid in the development of graphics characters
for digital media, e.g., animated agents (characters) and/or other digital

constructs within a virtual environment that can be animated in real-time,

sciences like chemistry or biology, where they aid represent in 3D constructs

that cannot be directly observed because of volatility or scale,

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 37

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’
= infographics: Infographics are graphic representations of data that are intended
to be quickly absorbed by the spectator. They are frequently used in business
and marketing to visualize data on sales, market trends or customer

demographics,

= journalism, where they display data on noteworthy subjects like politics,
economy, and health, and

= other fields, thanks to their ability to clearly and concisely convey complicated
ideas.

3.4 Benefits of visualization

Over the past ten years, the development and quick adoption of new e-learning or distance
learning methods has gained momentum. The traditional, face-to-face model of instruction is
often supplemented and, in some cases, completely substituted by the e-learning / distance
learning paradigm. Moreover, the traditional ‘one-to-many’ lecturing type of instruction has
been gradually replaced by pedagogically advantageous methods such as collaborative
learning, discovery learning, problem-based learning, etc. Visualization is a valuable tool

along the paths of modern ways of instruction and learning.

One of the main benefits of the use of visualization and, in particular, of algorithm
visualization tools in education, is that the introduction and use of such tools in the classroom
is now easier than before, thanks due to the recent technological advancements. There are
now more algorithm visualization tools available than before due to the easier accessibility
through the Internet. The accessibility to teachers and learners of learning tools and content
over the Internet, both from inside and outside of the classroom, makes the usage of
algorithm visualization tools feasible. For instance, while it has long been “possible” to
project Internet content from a computer on a screen in a classroom, such access has just
recently become commonplace and Internet connections have become stable enough in all
classrooms. This progress has a significant impact on how experienced and how confident

instructors are in their ability to use such technologies.

Another benefit of visualization as an educational process is the ability to engage students
and maintain their interest in the material especially when it involves explaining dynamic
behavior or state changes of systems. The use of dynamic visualization has the advantage of
the immediate feedback, that enhances the comprehension of both theoretical and practical

issues. Indeed, it can be more interesting and entertaining for students to interact with visual

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 38

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

aids when they can see them, as opposed to just reading about them or listening about them in
a lecture. This is particularly true for students who have different learning preferences and
may not respond well to conventional teaching strategies such as lectures or reading
assignments. Regarding the subject of data structures and algorithms, dynamic and interactive
visualization tools are a considerable help thanks to the fact that implementation details no
longer obscure the students’ view, while visual depiction of the data structure enhances

conceptual understanding.

Visualization also enables group collaboration and a more participatory discussion of ideas
and concepts. As it enables students to see the connections and interactions between different
parts, visualization can also assist students to think critically and creatively on the particular
subject. Students can take part in more engaged and dynamic discussions that can help
develop a deeper understanding and cultivate their problem-solving abilities by working
together to analyze visual aids. In addition to the fact that it helps students to understand how
their peers are conceptualizing and representing the material, visualization can also be
leveraged to facilitate peer criticism and review because, apart from working together, such
tools can inspire students to learn from and with each other as this promotes a climate of

collaboration and support between them.

In addition to its advantages for students, visualization can be a useful tool for educators in
terms of evaluation and assessment. It empowers teachers to design more interactive and
interesting assessment activities that let students show their understanding in a more creative
and exciting way. Professional educators can develop exam tests that are more interactive and
interesting for students by integrating visual aids and approaches like diagrams, charts, and
other graphic representations of information. This is very helpful in areas like art or design
where students may feel more comfortable expressing themselves visually as opposed to in

written or oral form.

Visualization can also support educators to assess and analyze student learning more
accurately. Teachers can design evaluation activities that are better suited to the course
specific learning objectives and more closely related to the piece of knowledge that has been
taught by utilizing visual aids and strategies. As a result, it might be more straightforward for
students to demonstrate their comprehension of the material in a way that is more meaningful

and relevant, and it could be simpler to judge students’ learning more accurately.

It is possible that not all students will profit from visualization as a teaching strategy. Some
students could have difficulty understanding or interpret visual information, or they might

suffer from visual impairments that prevent them from utilizing visual tools effectively. In

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 39

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

these circumstances, it would be required to use different teaching strategies or to offer more

guidance.

Despite this possible drawback, visualization has the potential to be a prominent and useful
tool for promoting greater comprehension and improving learning in a range of contexts.
Visualization can assist educators in involving students and supporting their learning in
significant and efficient ways, whether it is used in traditional classroom environments or
online learning scenarios. By utilizing the advantages of visualization as an educational
process, educators can support the development of a more dynamic and interactive learning
process for their students, increase their active participation and promote critical thinking and
problem-solving abilities.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 40

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

CHAPTER 4: Design and Development of the Web Application

4.1 Introduction

This chapter presents the design and development of an educational visualizer in the form of
a web application. More specifically, the application is a sorting algorithm visualizer which
allows students to view the inner workings of the selected set of sorting algorithms in real
time. A combination of HTML, CSS and JavaScript was used for the creation of the
application. One of the key development considerations that was made during the design of
the application was to include interaction between the application and the student. This
enables the student to not only observe how the algorithms behave but also to experiment

with different sets of input values and compare algorithm responses and efficiency.

Regarding the input, a justification is necessary for the choice that the student is allowed to
enter input data only of the numerical type - positive integers, in particular. This choice was
made to increase application simplicity and usability. Additionally, input data is given
through the standard input device, i.e., the keyboard, rather than an external device like a hard
disk. This allows students to easily and quickly enter values to test an algorithm. The
application output is displayed in the form of a bar graph, with horizontal bars representing
each element of the array. In order to offer the user control over the various functionalities of
the application, a control panel with a variety of buttons was integrated in the GUI. Finally,
considerable thought was given to the design of the screen layout, ensuring that all important

buttons and controls are self-explanatory and easy to access and use.

4.2 Software tools employed for the development of the web application

The visualization application is essentially a web application which is accessible through a
web browser. The application has a graphics user interface (front-end material) while it relies
on standard web infrastructure regarding software and tools. Specifically, a combination of
languages is employed for the implementation of this project, namely, HTML, CSS and
JavaScript. These are supported by all major and popular web browsers as they are essential
for web access over the Internet. The main programming language employed is JavaScript.
The main reason behind the choice of JavaScript is because it is a programming language that
runs directly on a web browser — this is the reason why most developers use this language,
[2].

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 41

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

421 HTML

HyperText Markup Language (HTML) is a descriptive language for building web pages. This
markup language tells the browser how to display a web page different forms of multimedia
on such as text and images. It also handles the formatting of the digital content served within
a web page. Although direct use of HTML for the development of a web page is not the way
to go today, many of the modern sophisticated and user-friendly web page development

environments automatically produce HTML code as the common intermediate step.

4.2.2 CSS

Cascading Style Sheets (CSS) is a W3C (World Wide Web Consortium) standard to describe
the appearance of HTML elements. Through CSS, web designers and developers are able to
define formatting properties for the web page digital content appearance such as fonts, colors,

sizes, borders, images, background colors, etc.

4.2.3 JavasScript

JavaScript is a programming language that is used to create and control dynamic content on
the Web. JavaScript along with HTML and CSS form the core technologies (software tools)
used in modern web content development. The main purpose of JavaScript is to make web
pages interactive. Dynamic content and interactivity constitute significant progress steps in
the field of web site / web page development and usage, as compared to the previous
technology that allowed the display of only static content and limited interactivity to just
navigation. In contrast, JavaScript allows the web designer to add many interactive
functionalities, to add dynamic content display, to embed animations and in general to offer

the digital content in various multimedia forms that improve the overall user experience.
4.3 Major decisions on the functionalities of the application

4.3.1 Interactivity

As mentioned earlier, this application is meant for educational purposes. Application design
is therefore strongly directed by the prominent factor of student or learner interactivity. It is
widely known that technology has rendered modern education more engaging. Interactive
learning is the process of making learning more active and engaging. Moreover, interactivity
supports modern education scenarios that do not just lecture or instruct students on theoretical
subjects but also provide hands-on experience (laboratories, workshops, collaborative

projects, etc.) on real-world cases or setups, to effectively embed acquired knowledge. The

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 42

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

aim of such scenarios and tools is to make sure that students really understand new

knowledge and not just memorize and reproduce it.

In the case of the present application, interactive content allows students to not just read or
listen as they would do in a traditional setup, but rather to participate and furthermore to
explore and experiment with each algorithm step-by-step. Interactivity and multimedia forms
allow learners to use multiple parts of their brains and fully grasp the new material they
study. They are thus expected to develop the mental structure necessary in order to
understand the concepts involved in the relevant data structures and algorithms. As

demanding such a goal may be, yet, it is critical for the success of academic study programs.

Another advantage of practical interest is that interactive learning may be utilized by the class
teacher or instructor in multiple ways. A first aim of such tools is to render class sessions
attractive in the sense that they become more engaging and entertaining. Students are more
likely to continue learning in their own time when they are immersed in an interactive stream

of teaching.

4.3.2 Input provided by the user

Regarding the user input, we decided to allow the student to sort numbers and more
specifically positive integers, instead of other forms of data such as strings, dates, names or
even more complex data structures like objects and that is for a few reasons.

One of the main advantages of using positive numbers when sorting an array, is that they are
typically easier to work with mathematically. Using simple mathematical processes, it is
really simple to compare numbers to each other and it makes the order of the numbers
obvious to perceive. As a result, students will find it simpler to comprehend the sorting
algorithms and how they operate when they do not have to worry about an array consisting of

more complex data structures.

On the same note, when sorting positive integers, there are no exceptional circumstances to
take into consideration because they have a distinct, well-defined order. This makes it easier
for students, instead of being caught down in marginal or exceptional cases, to be able to

concentrate on the fundamental ideas of a sorting algorithms.

Finally, the choice of sorting positive integers rather than other types of numbers was made
because positive integers are more intuitive for most people when the task is ‘sorting’. For
instance, it is more intuitive to consider prices as positive numbers rather than negative

numbers when sorting a list of prices.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 43

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

In general, sorting positive integers rather than other types of data was used to render the
application simpler and more efficient for the students to study and grasp the mechanism of

each sorting algorithm.

Another important point on the input is that among all the popular user input methods, such
as input through keyboard, input via a file stored in memory or input via data input line from
an external peripheral device, the student is given the option to insert values only through the
keyboard.

One reason behind this decision, is that typing in data through a keyboard is usually quicker
and more convenient than opening a file and reading the data from it, especially when the
number of data points is limited and accuracy is not crucial. The educational nature of this
application limits the length of data input arrays. Real-time data entry is possible using
keyboard input, which is useful in this situation as the aim of the application is interactivity

between the student and the sorting visualizer.

Another reason is that input via keyboard is frequently considered as superior because it
offers more freedom in terms of the format of the data, meaning that the data must be in a
certain format that the application can understand when reading it from a file. In contrast,
data can be entered using the keyboard in any format as long as the program knows how to
interpret it.

Third, typing data in through a keyboard can be more secure than input from a file. There is a
possibility that a file may have been altered or corrupted in some way when data is inserted
from a file, which could result in errors or security flaws. Taking input from a keyboard, on

the other hand, leads directly into the program and is not exposed to these risks.

Apart from the input via the keyboard, an alternative functionality is provided, namely, the
automatic generation of a random array of a user-defined length, with values within a certain
value range. Furthermore, the user may ask the application to replicate the last input data, for

algorithm comparison purposes.

o First, utilizing a random array allows the student to observe how the sorting algorithm
behaves on a wide range of various inputs, which can help in better understanding the
specific algorithm with more clarity. The explanation for that is because a random
array will always have a distinct set of elements, allowing the student to examine how

the algorithm responds to different inputs and how its performance varies.

o Second, the use of a random array renders the sorting visualizer more interactive and

engaging because the student can generate several different arrays and observe how

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 44

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

the algorithms sort them in real time. This can improve the application educational
and entertaining value while also help the student understand the underlying

principles of sorting algorithms.

o Finally, since the data that needs to be sorted is usually unknown in advance,
implementing a random array can make the sorting visualizer more realistic and
representative of real-world events. Instead of using a predetermined array, the
student can experiment on how the algorithms would operate on real data by using a

random array in the application.

As mentioned earlier, replication of the same data of a random array as many times as the
user wants has a simple reason behind it. A student can first experiment with a random set of
data observing a specific set of elements, and then for better comprehension just by pressing
the “Same Data” button, the previous displayed array is being displayed again which gives
the student the functionality for a deeper observation using now the step-by-step capabilities

of the application.

At this point, it is worth mentioning the alternative user input methods that were rejected and
the justification of these decisions. A prevalent method of input is via reading a file stored on
the user’s computer. It may take longer and be a lot slower to read from a file which has been
stored on a computer than it getting input from the keyboard. This is because the program
must first locate the file on the computer, open it, then read its contents. Reading from a file
can also increase the chance of an error since the file might not be correctly formatted or it
might be missing which could have incorrect results or even a software crash. Moreover,
validating the data inserted from a file might be more difficult. For instance, the program
might not be able to make sure that the data in the file are numerical or within the specified
range that is expected. Furthermore, taking input from keyboard gives the program the ability
to process it right away, while when reading data from a file it could require the user to have

particular permission rights which can be a barrier utilizing the application.

The choice of data input from an external peripheral device was also rejected. As already
stated, the user can simply type the input values for the array directly into the input field and
the software can instantly process it makes it a more fast and convenient method. In the case
of an external peripheral device, the student must first connect the device to the computer
before entering the data, which might be less intuitive and more time consuming. This makes

the process of getting data from an external device much slower and more complicated.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 45

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

In general, keyboard input is perceived as more effective, practical and secure than taking

input from other sources.

4.3.3 Output produced by the application

The sorting algorithms application uses a graphical representation, more specifically a bar
graph, along with animations showing the steps of the sorting algorithm as it processes (sorts)
input data. The width of each bar represents the value of each element (integer) of the input
array which allows the student to visualize relative sizes of all array elements. Animation
gives the student the ability to observe the changes that are happening with every swap in the
array during sorting, as the bar graph is updated in real-time. Overall, the combination of the
bar chart and the animations on every iteration enables the student to easily comprehend the
algorithm and see how the elements are sorted. This is the goal of the application, as it allows

the student to easily interpret the results.

4.3.4 Control Panel

As already stated, the main utilization of this application is for educational purposes, hence,
emphasis is given on the interactivity between the student and the application. Action takes
place in the central screen of the application and the user interacts with it through the

selection and pressing of graphics buttons.

The major decision on the design of the central application screen is the placement of the bars
(i.e., elements of the input array); everything else is then placed according to that first
decision. Horizontal bars placed vertically the one on top of the other are a design decision
made to emphasize the idea of sorting as drawn for bubble sort: in bubble sort, the smaller

bubble floats upwards to the top or ‘liquid’ surface, followed by the second-smaller, etc.

The next step was to decide on the overall functionalities of the application, meaning what
the user should / should not be able to do. A major decision here is to allow the user control
not only the speed of execution but also the mode: one-off or step-by-step. The step-by-step
option is considered crucial as it allows the user run an algorithm at his/her own pace and
have time to manually verify results on his/her list of input data. Moreover, the idea of
watching each input number move to its correct position under the constraints of an algorithm
was much easier to follow than tracing the code by hand. For that reason, students have the

ability to control the application through the following buttons and utilities:

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 46

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’
e User input field: A user input field is provided where the student can test and
analyze a specific algorithm with their desired input. The values are separated
by comma and the allowed input range is 0 to 999.

EEE.5.1 Algorithms & Data Structures

Choose A sorting Algorithm (TSI ITRYSTI QTR G GEETTTI
I:] Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge | Step by step Quick

Array Size: 10 |7‘

Animation speed: 50 ms]

Click here to learn more about Bubble Sort
Comparing

. Comparing (Greatest Value)

Sorted

Figure 4.1: The user input field.

e Array size slider: An HTML range element controls the size of the array that is
currently displayed from the application. The student has the ability to create

an array from just one element up to 20 elements.

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort m
I:] Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Array Size: 10

Animation Speed: 50 ms

Click here to learn more about Bubble Sort
Comparing
. Comparing (Greatest Value)

Sorted

Figure 4.2: The array size slider.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 47

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

e Animation speed slider: An HTML range element controls the animation speed
of the algorithm. Higher values mean that the animation speed is slower which
gives the student a better understanding of how the algorithm operates, where
lower values mean faster animation speed that give a quick glance at the

algorithm. The values are displayed in milliseconds (ms).

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort

Array Size: 10 ‘7|

Animation Speed: 50 ms]

Click here to learn more about Bubble Sort
Comparing
. Comparing (Greatest Value)
Sorted

Figure 4.3: The animation speed slider.

e Algorithm choice buttons: Each algorithm has its corresponding button that
enables it to rum. By clicking on the button with the specified algorithm name
on it, the student commands the application to run the specific algorithm on
the input data already defined by the value of array size slider and with the
specified animation speed defined by the animation speed slider. If the users
choose to enter their own input array via the user input field, they can still
specify the animation speed but the array size slider remains disabled. By
clicking the corresponding algorithm button in this case, the algorithm is

tested using the input array that was given.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 48

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort m
:} Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Array Size: 10 ‘

Animation Speed: 50 ms

Click here to learn more about Bubble Sort
Comparing

[| Comparing (Greatest Value)
Sorted

Figure 4.4: The algorithm buttons.

e Step-by-step buttons: For better understanding the student has the ability to test
each algorithm step-by-step. By clicking the step-by-step button, the algorithm
proceeds one iteration at a time. This option gives the student the capability to
run the algorithm at his/her own pace and stop the application at each step to
manually verify the changes made or not made at this step and compare his/her
own results with those of the application, for better understanding of the inner
mechanism of the algorithm.

e New data button: This button generates new data of the specified input value
from the array size slider. New data are automatically generated when

reloading the application. The generated values are in the range of 1 to 999.

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort

" Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Array Size: 10

Animation Speed: 50 ms

I bout B

mparing

ng (Greatest Value)

Figure 4.5: The new data button.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 49

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

e Same data button: This button generates and displays again a copy of the

original array that was already tested. It gives the student the opportunity to

work the algorithm alongside the application. The idea is to first have a quick

glance at the algorithm that they want to test, see the output, and then generate

the same array again and with the help of the corresponding step-by-step

button trace the algorithm accordingly and get the expected result.

Choose A Sorting Algorithm

e |

Array Size: 10

Animation Speed: 50 ms

Click here to learn more about Bubble Sort
Comparing
[| Comparing (Greatest Value)
Sorted

EEE.5.1 Algorithms & Data Structures

Bubble Sort Selection Sort Insertion Sort Merge Sort m
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Figure 4.6: The same data button.

e Stop button: It allows the student to terminate the current run of an algorithm.

Choose A Sorting Algorithm

[]

Array Size: 10

Animation Speed: 50 ms

Click here to learn more about Bubble Sort
Comparing
. Comparing (Greatest Value)

Sorted

EEE.5.1 Algorithms & Data Structures

Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Figure 4.7: The Stop button.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 50

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

e Algorithm Description: While the algorithm is running, the student can click on
the link ‘Description’ that is provided on the lower left side of the screen and a
helping modal will appear. A short description is provided as well as the time
and space complexity of the specified algorithm. By clicking the “Back to
Visualizer” button the student returns to the algorithm visualizer application.
In conjunction to the algorithm description, a brief description is given as far
as the corresponding colors and their meaning that each algorithm uses.

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
I:] Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Array Size: 10 —‘

Animation Speed: 50 ms

Click here to learn more about Bubble Sort
Comparing

[| Comparing (Greatest Value)

Sorted

Figure 4.8: The algorithm description area.

The decision to include simplified summaries of each algorithm’s time and space complexity
along with brief descriptions of how they operate, was made with the understanding that the
visualizing tool is intended to server as a practice and review application for students who

have already been taught the subject of algorithms and data structures elsewhere or otherwise.

Given this context, the application’s main objective is neither to introduce students to sorting
algorithms or to provide a thorough examination of their features. Instead, it aims to increase
students’ comprehension of these algorithms by giving them an interactive, hands-on

experience that lets them examine each algorithm in action.

Before using the tool for practice, students can quickly review the key concepts and
characteristics of each algorithm with the help of the short summaries of each algorithm’s
time and space complexity and concise descriptions of how the algorithm works. This
approach assumes that students are already familiar with the material on a basic level and are

merely using the tool to supplement their knowledge.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 51

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational
purposes’

The visualizing application can assist students in concentrating on the practical aspects of
working with algorithms and obtaining a better understanding of how they operate in specific
circumstances by giving them a clear and easily understood overview of each algorithm’s
characteristics. As a result, students will then have a strong basis for further study and

research of the topic as well as the ability to work with sorting algorithms with confidence.

Bubble Sort

How Bubble Sort works:

Bubble Sort is the simplest sorting algorithm. It works by
repeatedly comparing every two adjacent elements and by
swapping them if they are in the wrong order. This algorithm
is not suitable for large data sets because both its average
complexity and its worst-case complexity are high.

Performance:

Worst-case Complexity: O(n~2)
Average Complexity: O(n~2)
Best-case Complexity: O(n)

Auxiliary space required: O(1)

Figure 4.9: Bubble sort description summary.

Selection Sort

How Selection Sort works:

Selection sort works by dividing the input array into two
subarrays: a sorted subarray and an unsorted subarray. At
every iteration of the selection sort, the minimum element
from the unsorted subarray is picked and moved to the
sorted subarray. Complexity is high for any data set.

Performance:

Worst-case Complexity: O(n~2)

Average Complexity: O(n~2)

Best-case Complexity: O(n~2)

Auxiliary space required: O(1)

Figure 4.10: Selection sort description summary.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 52

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Insertion Sort

How Insertion Sort works:

Insertion sort is a simple sorting algorithm that works similar
to the way you sort playing cards held in your hand. The array
is virtually split into a sorted part and an unsorted part.
Elements from the unsorted part are one-by-one picked and
placed at the correct position in the sorted part, until the
unsorted part is empty. Complexity is high for the average
and for the worst-case data set.

Performance:

Worst-case Complexity: O(n~2)
Average Complexity: O(n~2)
Best-case Complexity: O(n)

Auxiliary space required: O(1)

Figure 4.11: Insertion sort description summary.

Merge Sort

How Merge Sort works:

Merge sort is a recursive algorithm based on the ‘Divide and
Conguer’ principle. The data array is initially divided into two
equal halves (subarrays). These are in turn recursively sorted
using the same method (split in two equal halves, etc.).
Recursion stops when each subarray contains only 2
elements which are compared and swapped if needed.
Finally, when both halves are sorted, they are merged back
together into a single final sorted array. This is a fast
algorithm for all data sets!

Perfoermance:

Worst-case Complexity: O(nlogn)

Average Complexity: O(nlogn)

Best-case Complexity: O(nlogn)

Auxiliary space required: O(n)

Figure 4.12: Merge sort description summary.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 53

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Quick Sort

How Quick Sort works:

Like Merge Sort, QuickSort is a recursive algorithm based on
the '‘Divide and Conquer’ principle. It picks an element as a
pivot and partitions the data array in two subarrays, one with
members less than this pivot and one with members greater
than this pivot. The subarrays are in turn recursively sorted
using the same method. There are many different versions of
QuickSort that pick pivots in different ways. For the average
case data set, this is a fast algorithm; it becomes slow with
worst-case data sets, however.

Performance:

Worst-case Complexity: O(n~2)
Average Complexity: O(nlogn)
Best-case Complexity: O(nlogn)

Auxiliary space required: O(logn)

Figure 4.13: Quick sort description summary.

4.3.5 Help modal

Providing a help modal into the sorting algorithms visualizer application is great approach to
direct students and make sure they understand exactly how to use the tool. The help modal,
which gives users a brief overview of the features contained in the application, is intended to
automatically show when the application loads for the first time and every time the page is
updated. The help modal provides instructions for using various application buttons as well as
recommendations for best practices and appropriate usage. Also, the modal makes sure users
receive the information they need before utilizing the tool, which can mitigate

misunderstanding and confusion.

The modal is accessible from any screen inside the application with the proper adjustments
for better screen coverage and is created to be user-friendly and simple to read. By pressing
the start button or elsewhere outside the modal, users can launch the application

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 54

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Help

1. Google Chrome is the recommended browser for this application. You
should adjust your browser's window size and zoom percentage accordingly to
optimally view the application screen.

2. Use the "Array Size"” slider in the left frame to select the desired size of the
input array of integer numbers to be sorted: 1 - 20.

3. Use the "Animation Time Unit” slider in the left frame to adjust the
animation speed of the algorithm for better viewing and understanding of the
algorithm steps (the higher the animation time, the slower the visualization
runs).

4. Use the "New Data” button in the left frame to generate a random array of
fresh input data of the specified size.

5. Use the “"Same Data"” button in the left frame to repeat the previous data
array.

6. Use the “Stop” button in the left frame to stop and terminate the animation.

7. To test a specific algorithm, you may use as input data up to 20 integer
numbers in the range of 0 to 999.

8. Use the horizontal menu bar to select any of the 5 available algorithms
either for a one-shot run (upper row) or for a step-by-step run (lower row).
Observe the sorting animation on the pre-selected array of integer numbers.

9. To run any of the algorithms step-by-step, repeatedly press either the same
menu button or ENTER or the SPACE bar.

Figure 4.14: Help modal feature.

4.4 Major Decisions on the Layout and Look-and-Feel of the application

4.4.1 Basic data form

As mentioned earlier, the data used for sorting in this application can be considered as an
array of positive integers. The bar chart (or bar graph) is the way of choice here in order to
represent such an array. The idea behind this decision is simple: students are familiar with bar
graphs. More specifically, bar charts are frequently used in similar courses taken earlier in
their studies, such as probability and statistics, calculus etc. and in general bar charts are
easily understood by most people. A bar chart is a diagram that represents numerical data in
visual form. Each numerical value is represented by a rectangular bar whose length or height
is proportional to this value, depending on whether the orientation of the bars on the screen is
vertical or horizontal. A glance at a bar chart allows the user to quickly grasp key concepts,
such as the variation among the values of the elements of the array. For example, relative
value of an array element as compared to any other array element becomes immediately

visible through the length of the corresponding bars. Apart from the visual advantages, a bar

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 55

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

graph is ideal for an application like that, because of its simplicity and versatility. Indeed, it is
very easy to draw and the user may easily compare more than one data sets and make quick

and accurate estimations.

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm IEYSTP R PR I EYI G ETTRTI
I:] Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Array Size: 10 —‘

Animation Speed: 50 ms

Same Data

New Data

Click here to learn more about Bubble Sort
Comparing
. Comparing (Greatest Value)
Sorted

Figure 4.15: The data displayed in a bar chart with horizontal bars, vertically stack.

A drawback of a bar chart is that it requires additional written or oral explanation. The data in
a bar chart can be difficult to interpret on its own, so in order for the user to draw the correct
conclusions from the diagram, an additional explanation should be provided by the class
instructor. As the present interactive application is meant for educational purposes, it is also
expected for students to work on the application asynchronously, for better understanding. A
narrative modal is provided during the loading phase of the application is employed for this
purpose: it plays the role of the oral instructions the students would otherwise receive from

the class instructor.

4.4.2 Choice of colors

As far as the styling of the application goes, the choice of colors soon came to question.
Something enticing was definitely needed in order to catch students’ attention and also for
them to find the time spent on the application enjoyable but so was the engagement part of it.
That’s where website color palettes come into play. The main reasons of choosing the
following colors were: avoidance of eye fatigue, project the appropriate effect for learning,
maximize information retention and stimulate participation. In general, bright colors were

chosen:

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 56

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

e Blue: It has a calming effect on the heart rate and respiratory system of students.
It encourages a sense of well-being, making it ideal for learning situations that
are intensely challenging and cognitively taxing. It is highly suggested that
people with intellectual work that requires a high cognitive load are most
productive in blue environments.

e Yellow: The main characteristic of yellow color is that it grabs the attention. It
generates positive energy and encourages creativity.

e Orange: Orange encourages critical thinking and memory. It is shown that it also
has an especially high effect on circulation and the nervous system and
increases the oxygen supply to the brain, stimulating mental activity while
simultaneously loosening inhibitions.

e Green: It promotes calmness and a sense of relaxation and is great for
encouraging long-term concentration. It is the most restful color for the eye

and creates a feeling of ease when used in a classroom.

4.4.3 Screen Layout Design

The entry screen design of the application is divided up into three on-screen frames. The
UNIWA logo is located on the upper left corner of the screen, which also acts as a visual cue.
The course title and code, “EEE.5.1 Algorithms & Data Structures” is located in the upper

center.

The student has the ability to interact with the application using the control panel that is
located below the header and on the left frame of the main part of the screen. An input field
for entering data, a slider element to change the array size being sorted, a slider element for
adjusting the animation speed of the sorting process, buttons to generate new data of the
specified array size or reuse previously displayed data, a button to stop the sorting process
and a description of the particular sorting algorithm that takes place at any moment are all
found in this control panel. The control panel was positioned on the left region of the screen
to keep it apart from the center frame’s depiction of the data being sorted. Because of this
separation, the student is able to quickly interact with the control panel without being
sidetracked by the data dynamic visual display. To be immediately accessible to the student,
the buttons for generating new data, displaying the same data again and stopping process
were put below the sliders.

On the center frame, a list of the implemented sorting algorithms is displayed right below the

header, above the data display portion of the screen. Each algorithm has two corresponding

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 57

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

buttons that provide with student with two choices. Either execute the algorithm continuously
until it is finished (sorted), or to be executed for each iteration step-by-step with the student’s
control. The reason behind the specific location of the buttons is to maintain a barrier
between the control panel and the data visualization. This layout makes it simple for the
student to select the desired algorithm without being sidetracked by other screen components.
In order to make the visual sorting representation of the data the main emphasis of the screen,
it was positioned in the center part of the main frame, in the form of numbers in labels (on the
left) and horizontal bars, where the width of each bar has the numerical value of the
corresponding element of the array, on the right. This allows the student to immediately
observe the changes of each algorithm while it runs thanks to this positioning.

In general, the design of the different regions of the screen was intended to make it simple for
the student to interact with the control panel, choose the desired algorithm and view the

visual display of the data without being overwhelmed by the screen’s layout

Overall, the screen layout is shown in Figure 4.10.

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorichm || (T [Py Qe QI QRIS
|:| Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Array Size: 10
—

Animation Speed: 50 ms

Click here to learn more about Bubble Sort
Comparing
[] Comparing (Greatest Value)
Sorted

Figure 4.16: The overall screen layout.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 58

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

CHAPTER 5: The sorting algorithms within the visualization

application

5.1 Introduction

This particular chapter will present every sorting algorithm of the application. Each element
of the array is depicted as a horizontal bar, and the width of each bar defines the value of that
element. As it will be discussed for each algorithm specifically, the visualization process it
uses different colors to denote the status of the elements. A description is provided on each
algorithm to clarify the meaning of each color. The animated swaps between these bars,

represent the individual steps of the sorting procedure of each algorithm.

5.2 Bubble Sort

By utilizing different colors, the visualizer helps the student in comprehending the sorting
algorithm’s steps as well as how the array’s elements are compared and rearranged. The fact
that the bars are gradually turning from blue to green as the array is being sorted simplifies

the process for the student to follow the algorithm’s progress as it sorts the array.
The following colors are used in bubble sort:

e Light blue: The initial color of the bars used to represent the elements in the array.
This makes it easier for the student in distinguishing between elements that have

already been sorted and those that are still through processing.

e Red: This color is utilized to draw attention to the element that the algorithm is
currently processing. This makes it easier for the student to monitor the algorithm’s

progress and comprehend how it operates.

e Yellow: This color is used to draw attention to the element that is being compared to
the current element of the algorithm. This makes it easier for the student to

comprehend how the algorithm compares elements and selects which ones to swap.
e Green: This is the last color used to indicate the array has finished sorting.

We will examine the algorithm within the application with an array of five elements. The
elements are placed in descending order for a specific reason. Due to the small length of the
array and that is for demonstration purposes, unless the array is in descending order, after two

or three iterations the array will be sorted already. The algorithm works as follows:

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 59

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

EEE.5.1 Algorithms & Data Structures

Choose A sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort m
Step by step Bubble | Step by step Selection | Step by step Insertion Step by step Merge Step by step Quick

Array Size: 5

Animation Speed: 50 ms

Figure 5.1: BUBBLE SORT: The data array consists of elements: 870, 824, 655, 125, 30.

Starting at the beginning and comparing the first two elements, 870 and 824, would represent
the first iteration through the array. Since 870 is greater than 824, they would be swapped.

Resulting in the sequence seen below:

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort m
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge | Step by step Quick

Array Size: 5

Animation Speed: 50 ms

Click here to learn more about Bubble Sert
Comparing
. Comparing (Greatest Value)
Sorted

Figure 5.2: BUBBLE SORT: First pass, comparing 870 and 824.

The next step would be to compare 870 and 655. Since 870 is greater than 655, they would be
swapped, giving us the following sequence:

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 60

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort m
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Array Size: 5 ‘—|

Animation Speed: 50 ms |

Click here to learn more about Bubble Sort
Comparing
. Comparing (Greatest Value)
Sorted

Figure 5.3: BUBBLE SORT: First pass, comparing 870 and 655.

The next step would be to compare 870 and 125. Since 870 is greater than 125, they would be

swapped, resulting in the sequence seen below:

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

frray Sizeis —

Animation Speed: 50 ms 7‘

Click here to learn more about Bubble Sort
Comparing
. Comparing (Greatest Value)
Sorted

Figure 5.4: BUBBLE SORT: First pass, comparing 870 and 125.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 61

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Finally, the last two elements, 870 and 30, would be compared. Since 870 is greater than 30,

they would be swapped, giving us the sequence seen below:

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

ey Size:s —

Animation Speed: 50 ms

Click here to learn more about Bubble Sort
Comparing
. Comparing (Greatest Value)
Sorted

Figure 5.5: BUBBLE SORT: First pass, comparing 870 and 30.

After the first pass, the largest element, 870, is at the end of the array.

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm (XTI R I QT T EvTr—
Step by step Bubble | Step by step Selection | Step by step Insertion $Step by step Merge Step by step Quick

Array Size: 5
Animation Speed: 50 ms

Click here to learn more about Bubble Sort
Comparing
. Comparing (Greatest Value)
Sorted

Figure 5.6: BUBBLE SORT: First iteration is over and the green color indicates the sorted portion of

the array.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 62

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Starting again at the beginning and comparing the first two elements, 824 and 655, would
represent the second iteration through the array. Since 824 is greater than 655, they would be

swapped. Resulting in the sequence seen below:

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm [IICYSPPRN PRSP QTR GRS eI
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

e |

Animation Speed: 50 ms _

Click here to learn more about Bubble Sort
Comparing
. Comparing (Greatest Value)
Sorted

Figure 5.7: BUBBLE SORT: Second pass, comparing 824 and 655.

The next step would be to compare 824 and 125. Since 824 is greater than 125, they would be

swapped, giving us the following sequence:

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge | Step by step Quick

Array Size: 5 ‘7‘
Animation Speed: 50 ms

Click here to learn more about Bubble Sort
Comparing

|] Comparing (Greatest Value)

Sorted

Figure 5.8: BUBBLE SORT: Second pass, comparing 824 and 125.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 63

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

The next step would be to compare 824 and 30. Since 824 is greater than 30, they would be

swapped, resulting in the sequence seen below:

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort m

Array Size: 5

Animation Speed: 50 ms D

Click here to learn more about Bubble Sort
Comparing
. Comparing (Greatest Value)
Sorted

Figure 5.9: BUBBLE SORT: Second pass, comparing 824 and 30.

After the second pass, the second largest element, 824, is at the end of the array.

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm (TSRS EFYTRITS QYI QY GRS
Step by step Bubble | Step by step Selection | Step by step Insertion Step by step Merge Step by step Quick

Array Size: 5 7‘

\
Animation Speed: 50 ms -

Click here to learn more about Bubble Sort
Comparing
. Comparing (Greatest Value)
Sorted

Figure 5.10: BUBBLE SORT: Second iteration is over and the green color indicates the sorted

portion of the array.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 64

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Starting again at the beginning and comparing the first two elements, 655 and 125, would

represent the third iteration through the array. Since 655 is greater than 125, they would be

swapped, giving us the following sequence:

Choose A Sorting Algorithm

870, 824, 655, 125, 30

Array Size: 5

Animation Speed: 50 ms

Click here to learn more about Bubble Sort
Comparing
. Comparing (Greatest Value)
Sorted

EEE.5.1 Algorithms & Data Structures

Bubble Sort Selection Sort Insertion Sort Merge Sort m
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Figure 5.11: BUBBLE SORT: Third pass, comparing 655 and 125.

The next step would be to compare 655 and 30. Since 824 is greater than 30, they would be

swapped, resulting in the sequence seen below:

Choose A Sorting Algorithm

870, 824, 655, 125, 30

Array Size: 5

Animation Speed: 50 ms

Click here to learn more about Bubble Sort
Comparing
. Comparing (Greatest Value)
Sorted

EEE.5.1 Algorithms & Data Structures

Bubble Sort Selection Sort Insertion Sort Merge Sort m
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Figure 5.12: BUBBLE SORT: Third pass, comparing 655 and 30.

After the third pass, the third largest element, 655, is at the end of the array.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 65

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort m
Step by step Bubble | Step by step Selection | Step by step Insertion Step by step Merge Step by step Quick

Array Size: 5 |7‘
— p—

Animation Speed: 50 ms

Click here to learn more about Bubble Sort
Comparing
. Comparing (Greatest Value)
Sorted

Figure 5.13: BUBBLE SORT: Third iteration is over and the green color indicates the sorted portion
of the array.

Starting again at the beginning and comparing the first two elements, 125 and 30, would
represent the fourth and final iteration through the array. Since 125 is greater than 30, they

would be swapped, giving us the following sequence:

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort m

O
Array Size: 5 —

Animation Speed: 50 ms

Click here to learn more about Bubble Sort
Comparing
|] Comparing (Greatest Value)
Sorted

Figure 5.14: BUBBLE SORT: Fourth pass, comparing 125 and 30.

At this point, no more swaps are needed, so the algorithm would terminate and the array
would be regarded as having been sorted in ascending order as shown in Figure 5.15.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 66

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion Step by step Merge Step by step Quick

Array Size: 5 ‘7‘

Animation Speed: 50 ms

Click here to learn more about Bubble Sort
Comparing
|| Comparing (Greatest Value)
Sorted

Figure 5.15: BUBBLE SORT: The final sorted array.

5.3 Selection Sort
The following colors are used in selection sort:

e Light blue: The initial color of the bars used to represent the elements in the array.
This makes it easier for the student in distinguishing between elements that have

already been sorted and those that are still through processing.

e Red: The element with the lowest value in the current iteration of the inner loop is
denoted by the color red. This makes it easier for the student to monitor which
element is being compared to the array’s sorted portion and thus will be positioned

correctly.
e Yellow: The smallest element’s placement is indicated by the color yellow.

e Green: The green color is used to indicate that an element is sorted. When an element
is position correctly, it is said to be sorted and is no longer a part of the array’s

unsorted portion.

We will analyze the application’s algorithm using a ten-element array. This is how the

algorithm operates:

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 67

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort m
I:] Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Array Size: 10

Animation Speed: 50 ms

Click here to learn more about Selection Sort
Min Value/Comparison

I Placement index of min value

Sorted

Figure 5.16: SELECTION SORT: Array consists of elements: 276, 153, 781, 307, 158, 145, 856, 200,
795, 49.

Starting with the first iteration, a comparison is being made between the first element, 276,
and the rest of the elements in the array in order to find that 49 is the smallest element. Since
49 is less than 276, we swap the first element with the smallest element, 49. Figure 5.17
shows with color red the minimum element in the unsorted array and with color yellow the

placement index of that value.

EEE.5.1 Algorithms & Data Structures

Choose A sortng Algorithr (T STTSIINS ENSIRIY T QT Eram parereemm
:} Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge | Step by step Quick

Array Size: 10

Animation Speed: 50 ms

Click here to learn more about Selection Sort
Min Value/Comparison

. Placement index of min value

Sorted

Figure 5.17: SELECTION SORT: First iteration indicates the correct position for the smallest

element.

First iteration results in the sequence seen below:

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 68

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm (RTINS ISR QY T YR YT
|:] Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge | Step by step Quick

Array Size: 10

Animation Speed: 50 ms

Click here to learn more about Selection Sort
Min Value/Comparison

B Placement index of min value

Sorted

Figure 5.18: SELECTION SORT: First iteration is over and the green color indicates the sorted

portion of the array.

Continuing with the second iteration, a comparison is being made between the second
element, 153, and the rest of the elements in the unsorted portion of the array in order to find
that 145 is the second smallest element. Since 145 is less than 153, we swap the second
element with the second smallest element, 145. Figure 5.19 shows with color red the
minimum element in the unsorted array and with color yellow the placement index of that

value.

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Atgorithm (CES S IFTTRY I QRS QYIS I
:} Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Array Size: 10

Animation Speed: 50 ms

Click here to learn more about Selection Sort
Min Value/Comparison
. Placement index of min value

Sorted

Figure 5.19: SELECTION SORT: Second iteration indicates the correct position for the second

smallest element.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 69

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

The aforementioned swap is giving us the following sequence:

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
|:I Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Array Size: 10

Animation Speed: 50 ms

Click here to learn more about Selection Sort
Min Value/Comparison

B Placement index of min value

Sorted

Figure 5.20: SELECTION SORT: Second iteration is over and the green color indicates the sorted

portion of the array.

On the third iteration, a comparison is being made between the third element, 781, and the
rest of the elements in the unsorted portion of the array in order to find that 153 is the third
smallest element. Since 153 is less than 781, we swap the third element with the third
smallest element, 153. Figure 5.21 shows with color red the minimum element in the unsorted

array and with color yellow the placement index of that value.

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort m
I:] Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge | Step by step Quick

Array Size: 10 7‘

Animation Speed: 50 ms

Click here to learn more about Selection Sort
Min Value/Comparison

B Placement index of min value

Sorted

Figure 5.21: SELECTION SORT: Third iteration indicates the correct position for the third smallest

element.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 70

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Third iteration results in the sequence seen below:

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort

Array Size: 10

Animation Speed: 50 ms

Click here to learn more about Selection Sort
Min Value/Comparison

. Placement index of min value

Sorted

Figure 5.22: SELECTION SORT: Third iteration is over and the green color indicates the sorted
portion of the array.

Starting with the fourth iteration, a comparison is being made between the fourth element,
307, and the rest of the elements in the unsorted portion of the array in order to find that 158
is the fourth smallest element. Since 158 is less than 307, we swap the fourth element with
the fourth smallest element, 158. Figure 5.23 shows with color red the minimum element in

the unsorted array and with color yellow the placement index of that value.

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort m
:] Step by step Bubble | Step by step Selection | Step by step Insertion Step by step Merge Step by step Quick

Array Size: 10

Animation Speed: 50 ms

Click here to learn more about Selection Sort
Min Value/Comparison
. Placement index of min value

Sorted

Figure 5.23: SELECTION SORT: Fourth iteration indicates the correct position for the fourth

smallest element.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 71

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

The aforementioned swap is giving us the following sequence:

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort

Array Size: 10

|
Animation Speed: 50 ms |7‘
|

\
-

|
—

F

Click here to learn more about Selection Sort
Min Value/Comparison

B Placement index of min value

Sorted

Figure 5.24: SELECTION SORT: Fourth iteration is over and the green color indicates the sorted

portion of the array.

Continuing with the fifth iteration, a comparison is being made between the fifth element,
307, and the rest of the elements in the unsorted portion of the array in order to find that 200
is the fifth smallest element. Since 200 is less than 307, we swap the fifth element with the
fifth smallest element, 200. Figure 5.25 shows with color red the minimum element in the

unsorted array and with color yellow the placement index of that value.

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort m
:} Step by step Bubble | Step by step Selection | Step by step Insertion Step by step Merge Step by step Quick

Array Size: 10 7|
Animation Speed: 50 ms 7|

_
e 2 [e—

?

Click here to learn more about Selection Sort
Min Value/Comparison
. Placement index of min value

Sorted

Figure 5.25: SELECTION SORT: Fifth iteration indicates the correct position for the fifth smallest

element.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 72

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational
purposes’

Fifth iteration results in the sequence seen below:

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
" Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick
\

Array Size: 10 |

Animation Speed: 50 ms

Click here to learn more about Selection Sort
Min Vall ‘omparison

I Placement index of min value

Sorted

Figure 5.26: SELECTION SORT: Fifth iteration is over and the green color indicates the sorted

portion of the array.

On the sixth iteration, a comparison is being made between the sixth element, 781, and the
rest of the elements in the unsorted portion of the array in order to find that 276 is the sixth
smallest element. Since 276 is less than 781, we swap the sixth element with the sixth
smallest element, 276. Figure 5.27 shows with color red the minimum element in the unsorted

array and with color yellow the placement index of that value.

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
:} Step by step Bubble | Step by step Selection | Step by step Insertion Step by step Merge Step by step Quick

Array Size: 10

\

Animation Speed: 50 ms ‘7|
\
\

Click here to learn more about Selection Sort
Min Value/Comparison
. Placement index of min value

Sorted

Figure 5.27: SELECTION SORT: Sixth iteration indicates the correct position for the sixth smallest

element.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 73

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational
purposes’

The aforementioned swap is giving us the following sequence:

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm (TS Y (YRR QTR QeI

| Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Array Size: 10 |

Animation Speed: 50 ms

lection Sort

B Flacen min value

Sarted

Figure 5.28: SELECTION SORT: Sixth iteration is over and the green color indicates the sorted
portion of the array.

Continuing with the seventh iteration, a comparison is being made between the seventh
element, 856, and the rest of the elements in the unsorted portion of the array in order to find
that 307 is the seventh smallest element. Since 307 is less than 856, we swap the seventh
element with the seventh smallest element, 307. Figure 5.29 shows with color red the
minimum element in the unsorted array and with color yellow the placement index of that

value.

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort m
|:] Step by step Bubble | Step by step Selection | Step by step Insertion Step by step Merge Step by step Quick

Array Size: 10 7|

Animation Speed: 50 ms 7|

Click here to learn more about Selection Sort
Min Value/Comparison
. Placement index of min value

Sorted

Figure 5.29: SELECTION SORT: Seventh iteration indicates the correct position for the seventh

smallest element.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 74

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Seventh iteration results in the sequence seen below:

EEE.5.1 Algorithms & Data Structures

e
e e g

Array Size: 10

Animation Speed: 50 ms

Click here to learn more about Selection Sort
Min Value/Comparison

. Placement index of min value

Sorted

Figure 5.30: SELECTION SORT: Seventh iteration is over and the green color indicates the sorted

portion of the array.

On the eighth iteration, a comparison is being made between the eighth element, 856, and the
rest of the elements in the unsorted portion of the array in order to find that 781 is the eighth
smallest element. Since 781 is less than 856, we swap the eighth element with the eighth
smallest element, 781. Figure 5.31 shows with color red the minimum element in the unsorted
array and with color yellow the placement index of that value.

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort m
I:] Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge | Step by step Quick

Array Size: 10

Animation Speed: 50 ms

Click here to learn more about Selection Sort
Min Value/Comparison
. Placement index of min value

Sorted

Figure 5.31: SELECTION SORT: Eighth iteration indicates the correct position for the eighth

smallest element.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 75

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

The aforementioned swap is giving us the following sequence:

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort m
f Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Array Size: 10

Animation Speed: 50 ms

\

[

I

\

[
}
]
[

Click here to learn more about Selection Sort
Min Val omparison
B rPlacement index of min value

Sorted

Figure 5.33: SELECTION SORT: Eighth iteration is over and the green color indicates the sorted
portion of the array.

Continuing with the ninth and last iteration, a comparison is being made between the ninth
element, 795, and the rest of the elements in the unsorted portion of the array in order to find
that 856 is the seventh smallest element. At this point, since there is only one element, there
is not need to perform a swap because 856 is already in the correct position. Figure 5.33
shows with color red the minimum element in the unsorted array and with color yellow the

placement index of that value.

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort m
:} Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Array Size: 10 7|
Animation Speed: 50 ms

Click here to learn more about Selection Sort
Min Value/Comparison

. Placement index of min value

Sorted

Figure 5.33: SELECTION SORT: Ninth iteration indicates the correct position for the ninth smallest

element.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 76

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Ninth iteration results in the sequence seen below as the final sorted array:

EEE.5.1 Algorithms & Data Structures

S —

Array Size: 10 7‘
Animation Speed: 50 ms

Click here to learn more about Selection Sort
Min Value/Comparison

B Flacement index of min value

Sorted

Figure 5.34: SELECTION SORT: Seventh iteration is over and the green color indicates the sorted

portion of the array.

5.4 Insertion Sort
The following colors are used in insertion sort:

e Light blue: The initial color of the bars used to represent the elements in the array.
This makes it easier for the student in distinguishing between elements that have

already been sorted and those that are still through processing.

e Yellow: The element that is being compared to the elements in the sorted portion of
the array is shown on each iteration of the insertion sort algorithm by the color
yellow. Each element is compared to the elements on its left and inserted into the
correct position in the sorted portion of the array, as the algorithm progresses. The
yellow color helps the student comprehend how the algorithm is working and how the

elements are being sorted

e Green: The green color is used to indicate that an element is sorted. When an element
is position correctly, it is said to be sorted and is no longer a part of the array’s

unsorted portion.

We will analyze the application’s algorithm using a ten-element array. This is how the

algorithm operates:

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 77

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm [ICY TR (ST T T
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Array Size: 10

Animation Speed: 50 ms

—

—)

—
—_—

O

D

Click here to learn more about Insertion Sort

Sorted

. Comparing

Figure 5.35: INSERTION SORT: Array consists of elements: 631, 390, 157, 79, 695, 717, 26, 40, 600,
417.

Starting with the first iteration, we begin with the first element of the array, which is 631.
This element is considered “sorted”. Figure 5.36 shows with color yellow the element that

will be compared with the sorted portion of the array, which is denoted by the color green.

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort m
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge | Step by step Quick

Array Size: 10

Animation Speed: 50 ms

|

L

)
S

u

[

Click here to learn more about Insertion Sort

Sorted

[| Comparing

Figure 5.36: INSERTION SORT: Color yellow demonstrates the element that will be compared with

the sorted portion of the array.

Next, a comparison is being made between the second element, 390, and the elements to its
left, meaning the sorted portion of the array. Since 390 is smaller than 631, 631 is shifted to
the right and 390 is inserted to the left:

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 78

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Array Size: 10 ‘7‘

Animation Speed: 50 ms

Click here to learn more about Insertion Sort

Sorted

| | Comparing

Figure 5.37: INSERTION SORT: The second element is now considered part of the sorted portion of
the array.

On the second iteration, we continue the process with the third element of the array, which is
157. This element is considered “sorted”. Figure 5.38 shows with color yellow the element
that will be compared with the sorted portion of the array, which is denoted by the color

green.

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort W Merge Sort m
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge | Step by step Quick

Array Size: 10 |7|

Animation Speed: 50 ms

Click here to learn more about Insertion Sort

Sorted

B comparing

Figure 5.38: INSERTION SORT: Color yellow demonstrates the element that will be compared with

the sorted portion of the array.

Next, a comparison is being made between the third element, 157, and the elements to its left,
meaning the sorted portion of the array. Since 157 is smaller than 390, 390 is shifted to the
right and 157 is inserted to the left:

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 79

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Choose A Sorting Algorithm

11,390, 157, 79, 695, 717, 26, 40, 600, 417

Array Size: 10

Animation Speed: 50 ms

Click here to learn more about Insertion Sort
Sorted

|| Comparing

EEE.5.1 Algorithms & Data Structures

Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Figure 5.39: INSERTION SORT: The third element is now considered part of the sorted portion of the

array.

On the third iteration, we continue the process with the fourth element of the array, which is

79. This element is considered “sorted”. Figure 5.40 shows with color yellow the element that

will be compared with the sorted portion of the array, which is denoted by the color green.

Choose A Sorting Algorithm

1,390, 157, 79, 695, 717, 26, 40, 600, 417

Array Size: 10

Animation Speed: 50 ms

Click here to learn more about Insertion Sort

Sorted

Bl Comparing

EEE.5.1 Algorithms & Data Structures

Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort

Figure 5.40: INSERTION SORT: Color yellow demonstrates the element that will be compared with

the sorted portion of the array.

Next, a comparison is being made between the fourth element, 79, and the elements to its left,

meaning the sorted portion of the array. Since 79 is smaller than 157, 157 is shifted to the

right and 79 is inserted to the left:

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 80

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort m
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge | Step by step Quick

Array Size: 10

Animation Speed: 50 ms

Click here to learn more about Insertion Sort
Sorted

B Comparing

Figure 5.41: INSERTION SORT: The fourth element is now considered part of the sorted portion of

the array.

On the fourth iteration, we continue the process with the fifth element of the array, which is
695. This element is considered “sorted”. Figure 5.42 shows with color yellow the element
that will be compared with the sorted portion of the array, which is denoted by the color

green.

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort m
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge | Step by step Quick

Array Size: 10 7‘

Animation Speed: 50 ms 7‘

Click here to learn more about Insertion Sort

Sorted

[| Comparing

Figure 5.42: INSERTION SORT: Color yellow demonstrates the element that will be compared with

the sorted portion of the array.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 81

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational
purposes’

Next, a comparison is being made between the fifth element, 695, and the elements to its left,
meaning the sorted portion of the array. Since 695 is larger than all of the elements in the

sorted portion, it is inserted to the right:

EEE.5.1 Algorithms & Data Structures

Choose A sorting Algorithm [PTETTPRNNN Y R T G GERETI

Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Array Size: 10 7‘

Animation Speed: 50 ms

Click here to learn more about Insertion Sort

Sorted

B Comparing

Figure 5.43: INSERTION SORT: The fifth element is now considered part of the sorted portion of the
array.

On the fifth iteration, we continue the process with the sixth element of the array, which is
717. This element is considered “sorted”. Figure 5.44 shows with color yellow the element
that will be compared with the sorted portion of the array, which is denoted by the color
green.

EEE.5.1 Algorithms & Data Structures

PP —

Step by step Bubble | Step by step Selection | Step by step Insertion | Step by stepMerge | Step by step Quick

Array Size: 10 7‘

Animation Speed: 50 ms

Click here to learn more about Insertion Sort

Sorted

Bl comparing

Figure 5.44: INSERTION SORT: Color yellow demonstrates the element that will be compared with

the sorted portion of the array.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 82

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Next, a comparison is being made between the sixth element, 717, and the elements to its left,
meaning the sorted portion of the array. Since 695 is larger than all of the elements to its left,

it is inserted to the right:

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge | Step by step Quick

Array Size: 10

Animation Speed: 50 ms

\
\
\
\
|
-
|

Click here to learn more about Insertion Sort

Sorted

B Comparing

Figure 5.45: INSERTION SORT: The sixth element is now considered part of the sorted portion of the

array.

On the sixth iteration, we continue the process with the seventh element of the array, which is
26. This element is considered “sorted”. Figure 5.46 shows with color yellow the element that

will be compared with the sorted portion of the array, which is denoted by the color green.

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort W Merge Sort m
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge | Step by step Quick

Array Size: 10 7‘

Animation Speed: 50 ms

New Data

Click here to learn more about Insertion Sort

Sorted

B Comparing

Figure 5.46: INSERTION SORT: Color yellow demonstrates the element that will be compared with

the sorted portion of the array.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 83

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Next, a comparison is being made between the seventh element, 26, and the elements to its

left, meaning the sorted portion of the array. Since 26 is smaller than 79, 79 is shifted to the
right and 26 is inserted to the left:

Choose A Sorting Algorithm

631,390, 157, 79, 695, 717, 26, 40, 600, 4

Array Size: 10

Animation Speed: 50 ms

Click here to learn more about Insertion Sort
Sorted

B comparing

EEE.5.1 Algorithms & Data Structures

S hopesor | ouerson |
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Figure 5.47: INSERTION SORT: The seventh element is now considered part of the sorted portion of

the array.

On the seventh iteration, we continue the process with the eighth element of the array, which

is 40. This element is considered “sorted”. Figure 5.48 shows with color yellow the element

that will be compared with the sorted portion of the array, which is denoted by the color

green.

Choose A Sorting Algorithm

631, 390, 157, 79, 695, 717, 26, 40, 600, 4

Array Size: 10

Animation Speed: 50 ms

Click here to learn more about Insertion Sort
Sorted

|| Comparing

EEE.5.1 Algorithms & Data Structures

Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Figure 5.48: INSERTION SORT: Color yellow demonstrates the element that will be compared with

the sorted portion of the array.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 84

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Next, a comparison is being made between the eighth element, 40, and the elements to its left,
meaning the sorted portion of the array. Since 40 is larger than 26, but smaller than 79, 79 is
shifted to the right and 50 is being inserted to the left:

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort SelectionSort | InsertionSot | MergeSot | QuickSort |
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge | Step by step Quick
Array Size: 10 pum——

Animation Speed: 50 ms

Click here to learn more about Insertion Sort

Sorted

[| Comparing

Figure 5.49: INSERTION SORT: The eighth element is now considered part of the sorted portion of
the array.

On the eighth iteration, we continue the process with the ninth element of the array, which is
600. This element is considered “sorted”. Figure 5.50 shows with color yellow the element
that will be compared with the sorted portion of the array, which is denoted by the color

green.

EEE.5.1 Algorithms & Data Structures

Choose A Sorti ng Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort m
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge | Step by step Quick

Array Size: 10

Animation Speed: 50 ms

Click here to learn more about Insertion Sort

Sorted

B comparing

Figure 5.50: INSERTION SORT: Color yellow demonstrates the element that will be compared with

the sorted portion of the array.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 85

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Next, a comparison is being made between the ninth element, 600, and the elements to its
left, meaning the sorted portion of the array. Since 600 is larger than 40, 79, 157, and 390, it

is inserted to the right of the sorted portion of the array:

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort m
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge | Step by step Quick

Array Size: 10]

Animation Speed: 50 ms

Click here to learn more about Insertion Sort
Sorted

[| Comparing

Figure 5.51: INSERTION SORT: The ninth element is now considered part of the sorted portion of the

array.

Finally on the ninth and last iteration, we end the process with the tenth element of the array,
which is 417. This element is considered “sorted”. Figure 5.52 shows with color yellow the
element that will be compared with the sorted portion of the array, which is denoted by the

color green.

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort m
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Array Size: 10 —

Animation Speed: 50 ms

Click here to learn more about Insertion Sort

Sorted

B Comparing

Figure 5.52: INSERTION SORT: Color yellow demonstrates the element that will be compared with
the sorted portion of the array.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 86

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational
purposes’

Next, a comparison is being made between the tenth element, 417, and the elements to its left,
meaning the sorted portion of the array. Since 40 is larger than 390, but smaller than 600, 79

is shifted to the right of the sorted array:

EEE.5.1 Algorithms & Data Structures

SEUCPRLE PV LI suoveesot | sekectonsort | _insertonson | __wegesot | __quicksort]
631,390, 157, 79, 695, 717, 26, 40, 600, 4 Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Array Size: 10

Animation Speed: 50 ms

Click here to learn more about Insertion Sort

Sorted

. Comparing

Figure 5.53: INSERTION SORT: The final sorted array.

5.5 Merge Sort
The following colors are used in merge sort:

e Light blue: The initial color of the bars used to represent the elements in the array.
This makes it easier for the student in distinguishing between elements that have

already been sorted and those that are still through processing.

e Red: The right subarray of the merge sort is indicated by the color red. This is one of
the two smaller arrays that are produced as a result of the merge sort algorithm’s

division of the initial array in half.

e Yellow: The yellow color is used to denote the left subarray that is created when the
original array is divided in half during the first step of the merge sort algorithm.

e Light green: The sorted final subarray is indicated by the light green color. This is the
result of the two smaller arrays being merged back together and sorted in ascending

order.

e Green: The green color is used to indicate that an element is sorted. When an element
is position correctly, it is said to be sorted and is no longer a part of the array’s

unsorted portion.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 87

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

We will analyze the application’s algorithm using a ten-element array. This is how the

algorithm operates:

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge | Step by step Quick

Array Size: 10

Animation Speed: 50 ms

Click here to learn more about Merge Sort
B LeftSubarray
Right Subarray
B Sorted Subarray
Sorted

Figure 5.54: MERGE SORT: Array consists of elements: 444, 983, 733, 107, 119, 436, 307, 743, 94,
4109.

As was already described, the recursive algorithm first divides the array in half to create two
smaller arrays: [444, 983, 733, 107, 119] and [436, 307, 743, 94, 419]. The two smaller arrays
are then further divided until there is only one element in each array: [444], [983], [733],
[107], [119], [436], [307], [743], [94], [419].

Next, the algorithm merges the arrays back together, comparing the elements at the beginning

of each array and taking the smaller of the two to put back into the main array.

The first step on merging the arrays back together is to merge the first two elements, 444 and
983.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 88

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge | Step by step Quick

Array Size: 10

Animation Speed: 1000 ms

Click here to learn more about Merge Sort
B LeftSubarray
Right Subarray
B Sorted Subarray
Sorted

Figure 5.55: MERGE SORT: Element 444 is the left subarray and element 983 is the right subarray.

The next step would be to sort those single elements into one subarray.

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge | Step by step Quick

Array Size: 10

Animation Speed: 1000 ms

Click here to learn more about Merge Sort
B Left Subarray
Right Subarray
. Sorted Subarray
Sorted

Figure 5.56: MERGE SORT: Sorted subarray consisting of elements 444 and 983.

The next single element is the 733 will be considered as the right subarray, which will be

merge with the aforementioned subarray, which now will be the left sublist.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 89

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Choose A Sorting Algorithm
Array Size: 10

Animation Speed: 1000 ms

Click here to learn more about Merge Sort
Bl leftsu barray
Right Subarray
. Sorted Subarray

Sorted

EEE.5.1 Algorithms & Data Structures

Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Figure 5.57: MERGE SORT: The left sorted subarray and the right subarray.

The next step would be to sort those elements into one sublist.

Choose A Sorting Algorithm

444, 983, 733, 107, 119, 436, 307, 743, 94,

Array Size: 10

Animation Speed: 1000 ms

Click here to learn more about Merge Sort
B Leftsu barray
Right Subarray
. Sorted Subarray
Sorted

EEE.5.1 Algorithms & Data Structures

Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Figure 5.58: MERGE SORT: Sorted subarray consisting of elements 444 and 733 and 983.

Continuing with the process, the next two single elements that are the next to be merged are

107 and 119.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 90

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Array Size: 10

Animation Speed: 1000 ms

Click here to learn more about Merge Sort
. Left Subarray
Right Subarray
Il Sorted Subarray

Sorted

Figure 5.59: MERGE SORT: Elements 107 and 117 are being merged into a subarray.

At this point, as we can see, the algorithm has covered the elements of the first half of the

main array.

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge | Step by step Quick

Array Size: 10

Animation Speed: 1000 ms.

Click here to learn more about Merge Sort
. Left Subarray
Right Subarray
B Ssorted Subarray
Sorted

Figure 5.60: MERGE SORT: Elements 107 and 119 are in a sorted subarray.

To fully cover the first half of the original array, the algorithm’s next step is to merge those

two subarrays, [444, 7333, 983] with [107, 119] as seen in Figure 5.61.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 91

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge | Step by step Quick

Array Size: 10

Animation Speed: 1000 ms

Click here to learn more about Merge Sort
B Loft Subarray
Right Subarray
B Sorted Subarray
Sorted

Figure 5.61: MERGE SORT: The left and right subarray of the first half of the main array.

The first sublist consisting of the first half of the main array is depicted in Figure 5.62:

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion Step by step Merge Step by step Quick

Array Size: 10 _

Animation Speed: 1000 ms

Click here to learn more about Merge Sort
B Left Subarray
Right Subarray
B sorted Subarray
Sorted

Figure 5.62: MERGE SORT: The first subarray.

The next step, as was already stated, is now for the second out of the two subarrays to be
sorted. First the elements 436 and 307 will be formed into one sublist.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 92

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Array Size: 10 _
Animation Speed: 1000 ms

Click here to learn more about Merge Sort
. Left Subarray
Right Subarray
B Sorted Subarray
Sorted

Figure 5.63: MERGE SORT: Merge of the elements 436 and 307.

Elements 436 and 307 form a subarray as seen in Figure 5.64:

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge | Step by step Quick

Array Size: 10 _

Animation Speed: 1000 ms

Click here to learn more about Merge Sort
. Left Subarray
Right Subarray
. Sorted Subarray

Sorted

Figure 5.64: MERGE SORT: Elements 436 and 307 are in a sorted subarray.

Next step of the algorithm is to merge the element 743 which is considered the right subarray,

with the aforementioned array.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 93

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Choose A Sorting Algorithm
Array Size: 10

Animation Speed: 1000 ms.

Click here to learn more about Merge Sort
. Left Subarray
Right Subarray
M Sorted Subarray
Sorted

EEE.5.1 Algorithms & Data Structures

Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Figure 5.65: MERGE SORT: Left subarray consisting of elements 307 and 436 is merged with

element 743.

The value 743 merged with the left subarray of 307 and 436 is giving us the following result:

Choose A Sorting Algorithm

444, 983, 733, 107, 119, 436, 307, 743, 94,

Array Size: 10

Animation Speed: 1000 ms

Click here to learn more about Merge Sort
B LeftSubarray
Right Subarray
B Sorted Subarray
Sorted

EEE.5.1 Algorithms & Data Structures

Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion Step by step Merge Step by step Quick

Figure 5.66: MERGE SORT: Element 743 is merged with the subarray of 307 and 436.

The last two elements of the array, 94 and 419 are next to be merged in a subarray.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 94

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Array Size: 10 _
Animation Speed: 1000 ms

Click here to learn more about Merge Sort
. Left Subarray
Right Subarray
M Sorted Subarray
Sorted

Figure 5.67: MERGE SORT: Element 94 is considered the left subarray and element 419 the right

subarray.

The merge of the single elements 94 and 419 result in the following subarray:

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort W Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge | Step by step Quick

Array Size: 10 _

Animation Speed: 1000 ms

Click here to learn more about Merge Sort
B LeftSubarray
Right Subarray
B sorted S E e
Sorted

Figure 5.68: MERGE SORT: Elements 94 and 419 are merged into a subarray as denoted by the

color light green.

The next step would be to merge the left subarray of 307, 436 and 743 with the right subarray

of 94 and 419 into one, which would be the right sublist of the main array.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 95

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Choose A Sorting Algorithm
Array Size: 10

Animation Speed: 1000 ms

Click here to learn more about Merge Sort
. Left Subarray
Right Subarray
. Sorted Subarray

Sorted

EEE.5.1 Algorithms & Data Structures

Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Figure 5.69: MERGE SORT: Merging the two subarrays to form the right subarray of the original

array.

The two subarrays of the main array, before being merged into one final sorted array, are

shown in Figure 5.70:

Choose A Sorting Algorithm

444, 983, 733, 107, 119, 436, 307, 743, 94,

Array Size: 10

Animation Speed: 1000 ms

Click here to learn more about Merge Sort
B LeftSubarray
Right Subarray
. Sorted Subarray
Sorted

EEE.5.1 Algorithms & Data Structures

Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Figure 5.70: MERGE SORT: The left and right sorted subarrays.

The final step of the algorithm is to merge the two sorted subarrays into one final array,

which is the sorted version of the original array. The merging at this point is done by

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 96

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational
purposes’

comparing element by element the two sorted subarrays. The final sorted array is shown in
Figure 5.71:

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort m
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge | Step by step Quick

Array Size: 10

Animation Speed: 0 ms

Click here to learn more about Merge Sort
. Left Subarray
Right Subarray
. Sorted Subarray

Sorted

Figure 5.71: MERGE SORT: The final sorted array.

5.6 Quick Sort
The following colors are used in quick sort:

e Light blue: The initial color of the bars used to represent the elements in the array.
This makes it easier for the student in distinguishing between elements that have

already been sorted and those that are still through processing.

e Red: The pivot element is identified by the color red. This is the element around

which the array is partitioned and sorted.

e Yellow: Elements that are being compared to the pivot element and are found to be
less than the pivot element are indicated by the color yellow. During the partitioning
step of the quick sort algorithm, these elements are placed into the left subarray.

e Salmon: The salmon color is used to denote elements that are being compared to the
pivot element and are found to be greater than the pivot element. These elements are

placed in the right subarray during the partitioning step of the quick sort algorithm.

e Green: The green color is used to indicate that an element is sorted. When an element
is position correctly, it is said to be sorted and is no longer a part of the array’s

unsorted portion.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 97

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’
We will examine the algorithm within the application with an array of ten elements. This is
how the algorithm operates:

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm (TSR TSI IS QTR G IS EETTETI

Array Size: 10

Animation Speed: 1000 ms

Click here to learn more about Quick Sort
Pivot Element
Element less than the pivot element
Element greater than the pivot element

Sorted

Figure 5.72: QUICK SORT: Array consists of elements: 435, 761, 615, 578, 142, 650, 950, 961, 977,
320.

1=0:

Starting off the algorithm, the pivot element is selected as the last element on the array, 320.

Pivotindex =0

Element at index 0 = 435 is greater than pivot (320), so pivotindex is not incremented.
=1

Element at index 1 = 761 is greater than pivot (320), so pivotindex is not incremented.
I =2:

Element at index 2 = 615 is greater than pivot (320), so pivotindex is not incremented.
=3

Element at index 3 = 578 is greater than pivot (320), so pivotindex is not incremented.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 98

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort W Merge Sort Quick Sort
435,761, 615, 578, 142, 650,1950, 961, 97 Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Array Size: 10

Animation Speed: 1000 ms

Click here to learn more about Quick Sort
Pivot Element
B Element less than the pivot element
B Element greater than the pivot element

Sorted

Figure 5.73: QUICK SORT: Pivot element is 320.
| =4

Element at index 4 = 142 is less than pivot (320), so it is swapped with the element at
Pivotindex = 435.

PivotIndex is incremented. Pivotindex = 1

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion Step by step Merge Step by step Quick

Array Size: 10

Animation Speed: 1000 ms

Click here to learn more about Quick Sort
Pivot Element
Element less than the pivot element
Element greater than the pivot element

Sorted

Figure 5.74: QUICK SORT: 142 is swapped with 435.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 99

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

I =5:
Element at index 5 = 650 is greater than pivot (320), so pivotindex is not incremented.
| =6:
Element at index 6 = 950 is greater than pivot (320), so pivotindex is not incremented.
=7
Element at index 3 = 961 is greater than pivot (320), so pivotindex is not incremented.
| =8:

Element at index 3 = 977 is greater than pivot (320), so pivotindex is not incremented.

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion Step by step Merge Step by step Quick

Array Size: 10

Animation Speed: 1000 ms

Click here to learn more about Quick Sort
Pivot Element
B Element less than the pivot element
B Element greater than the pivot element

Sorted

Figure 5.75: QUICK SORT: The for loop has reached the pivot element.

1=9:

The for loops terminates. At this point the pivot element (320) is swapped with the element at
Pivotindex = 761.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 100

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Choose A Sorting Algorithm
Array Size: 10

Animation Speed: 1000 ms

Click here to learn more about Quick Sort
Pivot Element
Element less than the pivot element
Element greater than the pivot element

Sorted

EEE.5.1 Algorithms & Data Structures

Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion Step by step Merge Step by step Quick

Figure 5.76: QUICK SORT: Pivot element is in the correct position.

At this point, the array is partitioned into two sublists: [142] which is less than the pivot
element and [615, 578, 435, 650, 950, 961, 977, 761] which are all the elements that are

greater than the pivot element. The sublists on either side of pivot are then recursively sorted

using quick sort.

For the sublist [142]: Since the sublist consists of only a single element, is already sorted.

Choose A Sorting Algorithm

'61, 615, 578, 142, 650, 950, 961, 977, 320

Array Size: 10

Animation Speed: 1000 ms

Click here to learn more about Quick Sort
Pivot Element

Element less than the pivot element

Element greater than the pivot element

Sorted

EEE.5.1 Algorithms & Data Structures

Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion Step by step Merge Step by step Quick

Figure 5.77: QUICK SORT: Element 142 is in the correct position.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 101

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

For the sublist [615, 578, 435, 650, 950, 961, 977, 761]:

Pivot element is again the last element on the array, 761. Pivotindex = 2

o |=2:
Element at index 2 = 615 is less than pivot (761), so it is swapped with the element at
Pivotindex = 615.
Pivotindex is incremented.
Pivotindex = 3

o |=3:
Element at index 3 = 578 is less than pivot (761), so it is swapped with the element at
Pivotindex = 578.

PivotIndex is incremented.

Pivotindex =4

Element at index 4 = 435 is less than pivot (761), so it is swapped with the element at
Pivotindex = 435.

Pivotindex is incremented.
Pivotindex =5
o |=5:
Element at index 5 = 650 is less than pivot (761), so it is swapped with the element at
Pivotindex = 650.

Pivotindex is incremented.

Pivotindex = 6

Element at index 7 = 961 is greater than pivot (761), so pivotindex is not incremented.
o |=8:

Element at index 8 = 977 is greater than pivot (761), so pivotindex is not incremented.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 102

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Choose A Sorting Algorithm

'61, 615, 578, 142, 650, 950, 961, 977, 32d

Array Size: 10

Animation Speed: 1000 ms

Click here to learn more about Quick Sort
Pivot Element
Element less than the pivot element
Element greater than the pivot element

Sorted

EEE.5.1 Algorithms & Data Structures

Bubble Sort Selection Sort W Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion Step by step Merge Step by step Quick

The for loop terminates. At this point the pivot element (761) is swapped with the

element at Pivotindex = 650.

Choose A Sorting Algorithm
Array Size: 10

Animation Speed: 1000 ms

Click here to learn more about Quick Sort
Pivot Element
Element less than the pivot element
Element greater than the pivot element

Sorted

EEE.5.1 Algorithms & Data Structures

Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion Step by step Merge Step by step Quick

Figure 5.78: QUICK SORT: Pivot element, 761 is in the correct position.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 103

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Continuing, again we have two unsorted sublists: [615, 578, 435, 650] which is less than the
pivot element and [961, 977, 950] which are all the elements that are greater than the pivot

element. The sublists on either side of pivot are then recursively sorted using quick sort.
For the sublist [615, 578, 435, 650]:

Pivot element is again the last element on the array, 650. Pivotindex = 2.

o 1=2:
Element at index 2 = 615 is less than pivot (650), so it is swapped with the element at
Pivotindex = 615.
Pivotindex is incremented.
Pivotindex = 3

o |=3:
Element at index 3 = 578 is less than pivot (650), so it is swapped with the element at
Pivotindex = 578.
Pivotindex is incremented.
Pivotindex = 4

o |=4:
Element at index 4 = 435 is less than pivot (650), so it is swapped with the element at
Pivotindex = 435.
Pivotindex is incremented.

Pivotindex =5

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 104

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion Step by step Merge Step by step Quick

Array Size: 10 ‘—l

Animation Speed: 1000 ms

Click here to learn more about Quick Sort
Pivot Element
Element less than the pivot element
Element greater than the pivot element

Sorted

Figure 5.79: QUICK SORT: All the elements left than pivot, are less than 650.

The for loop terminates. At this point the pivot element (650) is swapped with the

element at Pivotindex = 650.

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort W Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge | Step by step Quick

Array Size: 10 ‘—‘

Animation Speed: 1000 ms

Click here to learn more about Quick Sort
Pivot Element

Element less than the pivot element

B Element greater than the pivot element

Sorted

Figure 5.80: QUICK SORT: Pivot element 650 is in the correct position.

For the sublist [615, 578, 435]:
UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 105

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Pivot element is again the last element on the array, 435. Pivotindex = 2.

The for loops terminates. At this point the pivot element (435) is swapped with the

element at Pivotindex = 615.

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion Step by step Merge Step by step Quick

Array Size: 10 —‘

Animation Speed: 1000 ms 7‘

Click here to learn more about Quick Sort
Pivot Element
Element less than the pivot element
Element greater than the pivot element

Sorted

Figure 5.81: QUICK SORT: Pivot element 435 is in the correct position.

For the sublist [578, 615]:

Pivot element is again the last element on the array, 615. Pivotindex = 3.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 106

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion Step by step Merge Step by step Quick

Array Size: 10 ‘—‘

Animation Speed: 1000 ms ‘7‘

——

_

Click here to learn more about Quick Sort

Pivot Element
B Elementless than the pivot element
B Elementgreater than the pivot element

Sorted

Figure 5.82: QUICK SORT: Pivot element is 615.

Element at index 3 = 578 is less than pivot (615), so it is swapped with the element at
Pivotindex = 578.

Pivotindex is incremented.

Pivotindex =4

The for loops terminates. At this point the pivot element (615) is swapped with the

element at Pivotindex = 615.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 107

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

Choose A Sorting Algorithm
Array Size: 10

Animation Speed: 1000 ms.

Click here to learn more about Quick Sort
Pivot Element
Element less than the pivot element
Element greater than the pivot element

Sorted

EEE.5.1 Algorithms & Data Structures

Bubble Sort Selection Sort W Merge Sort Quick Sort
Step by step Bubble | $tep by step Selection | Step by step Insertion $Step by step Merge Step by step Quick

Figure 5.83: QUICK SORT: Pivot element 615 is in the correct position.

For the sublist [578]:

Since the sublist consists of only a single element, is already sorted.

Choose A Sorting Algorithm

435,761, 615, 578, 142, 650, 950, 961, 97

Array Size: 10

Animation Speed: 1000 ms

Click here to learn more about Quick Sort
Pivot Element
Element less than the pivot element
Element greater than the pivot element

Sorted

EEE.5.1 Algorithms & Data Structures

Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion Step by step Merge Step by step Quick

Figure 5.84: QUICK SORT: Element 578 is in the correct position.

For the sublist [961, 977, 950]:

Pivot element is again the last element on the array, 950. Pivotindex = 7.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 108

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort W Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion Step by step Merge Step by step Quick

Array Size: 10

Animation Speed: 1000 ms

Click here to learn more about Quick Sort
Pivot Element
Element less than the pivot element
Element greater than the pivot element

Sorted

Figure 5.85: QUICK SORT: Pivot element is 950.

The for loops terminates. At this point the pivot element (950) is swapped with the

element at Pivotindex = 961.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 109

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Array Size: 10

Animation Speed: 1000 ms

Click here to learn more about Quick Sort
Pivot Element
Element less than the pivot element
Element greater than the pivot element

Sorted

Figure 5.86: QUICK SORT: Element 950 is in the correct position.

For the sublist [977, 961]: Pivot element is again the last element on the array, 961.

Pivotindex = 8.

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion Step by step Merge Step by step Quick

Array Size: 10

Animation Speed: 1000 ms

Click here to learn more about Quick Sort
Pivot Element
Element less than the pivot element
Element greater than the pivot element

Sorted

Figure 5.87: QUICK SORT: Pivot element is 961.

e | = 8: Element at index 8 = 977 is greater than pivot (961), so Pivotindex is not

incremented.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 110

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’
e | =09: The for loops terminates. At this point the pivot element (961) is swapped with

the element at Pivotindex = 977.

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort W Merge Sort Quick Sort
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge | Step by step Quick

Array Size: 10

\
Animation Speed: 1000 ms ‘
\
\
\
}
\

Click here to learn more about Quick Sort
Pivot Element
Element less than the pivot element
Element greater than the pivot element

Sorted

Figure 5.88: Pivot element, 961 is in the correct position.

Since the final sublist [977] is a single element, is already sorted, giving us the final sorted

array:

EEE.5.1 Algorithms & Data Structures

Choose A Sorting Algorithm Bubble Sort Selection Sort Insertion Sort Merge Sort m
Step by step Bubble | Step by step Selection | Step by step Insertion | Step by step Merge Step by step Quick

Array Size: 10

Animation Speed: 1000 ms

Click here to learn more about Quick Sort
Pivot Element
Element less than the pivot element
Element greater than the pivot element

ey

Figure 5.89: QUICK SORT: The final sorted array.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 111

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

CHAPTER 6: Conclusions and future work

In order to enhance the learning process for students studying algorithms and data structures,
this thesis has presented a web application for sorting algorithm visualization. The application
offers a dynamic and useful aid for students to test these algorithms and their complexities
through the use of visualization and interactivity. The application is a complete resource for
students who want to understand in depth sorting algorithms and practice on the subject; for
the same reason, the thesis also contains an in-depth analysis and description of each sorting
algorithm that may be exploited for a future digital complete course. In general, the results of
this thesis demonstrate the value of visualization as a teaching tool and indicate that using
interactive and graphical assets might be useful in improving student understanding of
difficult ideas. The current application could be improved and expanded upon in a number of

ways in the future.

Expanding the scope of this application to include visualization of more data structures in
addition to sorting algorithms is an obvious direction for future work. In addition to the
several different data structures that could be used in the application, sorting algorithms are
merely one subset of the larger area of algorithms and data structures, as we have already
mentioned. For example, linear data structures such as stacks, queues, and linked lists can be
incorporated in the application to visualize their functionalities using the same interactive
method that the application already implements for the sorting algorithms. To provide
students a more detailed understanding of the comparative merits of the various families of
existing data structures, non-linear data structures such as trees and graphs could also be

included — the later, at the cost of major modifications of the overall design.

Another potential improvement for the application is the incorporation of more detailed
information on the operations executed by each algorithm at each step. The application in its
current state offers merely a visual representation of the data. The number of comparisons
and swaps performed at each step of the algorithm, is not counted or shown on screen. This
could be included in a future version of the application to enhance understanding. A feature
like that would provide students a more detailed understanding of how the algorithm operates

and help them comprehend the notions of time and space complexity.

The incorporation of deep learning or machine learning methods is another option. The
application could be improved, for instance, by utilizing machine learning algorithms to

assess how well sorting algorithms perform on various input datasets and to make

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 112

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

recommendations for the most effective algorithm to apply in a particular scenario. Students
that are working on real-world projects and need to select the best algorithm for their

requirements may find this to be a valuable addition.

In conclusion, this thesis represents progress in the area of computer science, and it is
believed that the use of the web application would be valuable to both teachers and students.
The program serves as a starting point for additional development and adjustments that can
be made to improve students’ academic performance. It is anticipated that the application will
improve and become a more potent educational tool for algorithms and data structures with

further testing and development.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 113

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’

References

[1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022). Introduction to
algorithms. MIT press.

[2] https://survey.stackoverflow.co/2022/#section-most-popular-technologies-programming-

scripting-and-markup-lanquages

[3] Fouh, E., Akbar, M., & Shaffer, C. A. (2012). The role of visualization in computer
science education. Computers in the Schools, 29(1-2), 95-117.

[4] Lis, R. (2014). Role of visualization in engineering education. Advances in Science and

Technology. Research Journal, 8(24).

[5] Naps, T. L., RoBling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C., ... &
Velazquez-Iturbide, J. A. (2002). Exploring the role of visualization and engagement
in computer science education. In Working group reports from ITiCSE on Innovation

and technology in computer science education (pp. 131-152).

[6] Abu-Naser, S. S. (2008). Developing visualization tool for teaching Al searching
algorithms.

[7] Lin, S., Fortuna, J., Kulkarni, C., Stone, M., & Heer, J. (2013, June). Selecting
semantically-resonant colors for data visualization. In Computer Graphics Forum
(Vol. 32, No. 3pt4, pp. 401-410). Oxford, UK: Blackwell Publishing Ltd.

[8] Cetin, I., & Andrews-Larson, C. (2016). Learning sorting algorithms through visualization

construction. Computer Science Education, 26(1), 27-43.

[9] Unwin, A. (2020). Why is data visualization important? What is important in data
visualization? Harvard Data Science Review, 2(1), 1.

[10] Haque, M. (2001). Web based visualization techniques for structural design education.
In 2001 Annual Conference (pp. 6-1148).

[11] Zhang, G., Zhu, Z., Zhu, S., Liang, R., & Sun, G. (2022). Towards a better
understanding of the role of visualization in online learning: A review. Visual

Informatics.

[12] Danziger, P. (2010). Big o notation. Source internet: http://www. scs. ryerson. ca/~
mth110/Handouts/PD/bigO. pdf, Retrieve: April.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 114

https://survey.stackoverflow.co/2022/#section-most-popular-technologies-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2022/#section-most-popular-technologies-programming-scripting-and-markup-languages

‘Algorithms and Data Structures: Dynamic visualization of operation in a programming environment for educational

purposes’
[13] Rutanen, K., Goémez-Herrero, G., Eriksson, S. L., & Egiazarian, K. O. (2014). A general
definition of the big oh notation for algorithm analysis.

[14] Krone, J., Ogden, W. F., & Sitaraman, M. (2003). Oo big o: A sensitive notation for
software engineering. Technical Report RSRG-03-06, Department of Computer
Science, Clemson University, Clemson, SC 29634-0974.

[15] https://www.hackerearth.com/practice/notes/sorting-and-searching-algorithms-time-

complexities-cheat-sheet/

[16] Astrachan, O. (2003). Bubble sort: an archaeological algorithmic analysis. ACM Sigcse
Bulletin, 35(1), 1-5.

[17] https://mQg729.qithub.io/algorithm/2020/03/01/Algorithm_%281%29 BubbleSort/

[18] https://mg729.github.io/algorithm/2020/03/08/Algorithm_(2)_SelectionSort/

[19] https://www.cyberithub.com/what-is-merge-sort-algorithm-explained-with-examples/

[20] https://www.digitalocean.com/community/tutorials/merge-sort-algorithm-java-c-python

[21] https://www.khanacademy.org/computing/computer-science/algorithms/quick-

sort/a/overview-of-quicksort

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, George Banasios 115

https://www.hackerearth.com/practice/notes/sorting-and-searching-algorithms-time-complexities-cheat-sheet/
https://www.hackerearth.com/practice/notes/sorting-and-searching-algorithms-time-complexities-cheat-sheet/
https://mg729.github.io/algorithm/2020/03/01/Algorithm_(1)_BubbleSort/
https://mg729.github.io/algorithm/2020/03/08/Algorithm_(2)_SelectionSort/
https://www.cyberithub.com/what-is-merge-sort-algorithm-explained-with-examples/
https://www.digitalocean.com/community/tutorials/merge-sort-algorithm-java-c-python
https://www.khanacademy.org/computing/computer-science/algorithms/quick-sort/a/overview-of-quicksort
https://www.khanacademy.org/computing/computer-science/algorithms/quick-sort/a/overview-of-quicksort

		2023-03-16T21:21:20+0200
	Maria Ragkousi

		2023-03-20T08:53:57+0200
	Aikaterini-Styliani Zachariadou

		2023-03-22T18:27:16+0200
	Dimitrios Metafas

