

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ

Διπλωματική εργασία

ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΠΡΟΟΔΕΥΤΙΚΗΣ ΚΑΤΑΚΛΥΣΗΣ ΣΚΑΦΟΥΣ ΑΝΑΨΥΧΗΣ ΜΕΤΑ ΑΠΟ ΒΛΑΒΗ

SIMULATION OF PROGRESSIVE FLOODING OF A YACHT AFTER DAMAGE

Συγγραφέας:

ΣΙΔΕΡΗΣ ΜΑΡΙΝΟΣ - ΘΕΟΧΑΡΗΣ

A.M.: 51117053

Επιβλέπων καθηγητής:

Τίγκας Ιωάννης

Αιγάλεω, 2023

_____ (2)_____

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ

Διπλωματική εργασία

Προσομοίωση της προοδευτικής κατάκλυσης σκάφους αναψυχής μετά από βλάβη.

Συγγραφέας:

Σιδέρης Μαρίνος-Θεοχάρης (Α.Μ.: 51117053)

Επιβλέπων:

Ονοματεπώνυμο,

Τίγκας Ιωάννης Καθηγητής ΠΑ.Δ.Α.

Ημερομηνία εξέτασης:

26/04/2023

Εξεταστική Επιτροπή:

Τίγκας Ιωάννης,	Πέππα Σοφία,	Γεροστάθης Θεόδωρος,
Επ. Καθηγητής ΠΑ.Δ.Α	Αν. Καθηγήτρια ΠΑ.Δ.Α.	Αν. Καθηγητής ΠΑ.Δ.Α

_____{ 4 }____

ΔΗΛΩΣΗ ΣΥΓΓΡΑΦΕΑ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ

Ο κάτωθι υπογεγραμμένος Μαρίνος - Θεοχάρης Σιδέρης του Κωνσταντίνου, με αριθμό μητρώου 51117053 φοιτητής του Πανεπιστημίου Δυτικής Αττικής της Σχολής Μηχανικών του Τμήματος Ναυπηγών Μηχανικών, δηλώνω υπεύθυνα ότι:

«Είμαι συγγραφέας αυτής της διπλωματικής εργασίας και ότι κάθε βοήθεια την οποία είχα για την προετοιμασία της είναι πλήρως αναγνωρισμένη και αναφέρεται στην εργασία. Επίσης, οι όποιες πηγές από τις οποίες έκανα χρήση δεδομένων, ιδεών ή λέξεων, είτε ακριβώς είτε παραφρασμένες, αναφέρονται στο σύνολό τους, με πλήρη αναφορά στους συγγραφείς, τον εκδοτικό οίκο ή το περιοδικό, συμπεριλαμβανομένων και των πηγών που ενδεχομένως χρησιμοποιήθηκαν από το διαδίκτυο. Επίσης, βεβαιώνω ότι αυτή η εργασία έχει συγγραφεί από μένα αποκλειστικά και αποτελεί προϊόν πνευματικής ιδιοκτησίας τόσο δικής μου, όσο και του Ιδρύματος.

Παράβαση της ανωτέρω ακαδημαϊκής μου ευθύνης αποτελεί ουσιώδη λόγο για την ανάκληση του διπλώματός μου».

Ο Δηλών

Σιδέρης Μαρίνος-Θεοχάρης

_____ **6)**_____

<u>Ευχαριστίες</u>

Η συγκεκριμένη διπλωματική εργασία βασίζεται στις γνώσεις που αποκτήθηκαν κατά την διάρκεια των σπουδών μου, στη σχολή Ναυπηγών Μηχανικών του Πανεπιστημίου Δυτικής Αττικής, από το έτος 2017 έως το 2022. Θα ήθελα να ευχαριστήσω θερμά τους καθηγητές μου, που κατάφεραν κατά την διάρκεια των ετών, είτε δια ζώσης είτε εξ' αποστάσεως, να μεταλαμπαδεύσουν τις γνώσεις τους σε μένα και στους συμφοιτητές μου, ολοκληρώνοντάς μας σαν φοιτητές και βοηθώντας μας να ξεκινήσει το όμορφο ταξίδι ως μελλοντικοί ναυπηγοί.

Επίσης, είμαι ευγνώμων που είχα στο πλευρό μου τον επιβλέποντα καθηγητή κ. Τίγκα Ιωάννη, καθώς η καθοδήγηση που μου προσέφερε ήταν ιδιαίτερα σημαντική για την εκπόνηση της παρούσας διπλωματικής εργασίας. Επιπρόσθετα, ευχαριστώ πολύ και τους καθηγητές που συμμετείχαν στην επιτροπή εξέτασης.

Τέλος, οφείλω ένα τεράστιο ευχαριστώ στην οικογένεια μου για την πολύτιμη υποστήριξή τους καθ' όλη τη διάρκεια των σπουδών μου. Αξίζει να σημειωθεί, ότι χωρίς αυτούς δεν θα ήμουν πλήρως αφοσιωμένος στην ακαδημαϊκή μου πορεία, καθώς οι δυσκολίες όλα αυτά τα χρόνια ήταν αρκετές σε προσωπικό και οικογενειακό επίπεδο.

Αφιερώνω την εργασία μου,

Στην Κυριακή,

Στον Κώστα,

Στην Τερέζα,

Στον Διονύση.

<u>Περίληψη</u>

Στη σημερινή εποχή, ένα επίκαιρο θέμα με το οποίο ασχολείται η παγκόσμια ναυτιλιακή κοινότητα είναι η ασφάλεια των επιβατηγών πλοίων. Ειδικότερα, τα σκάφη αναψυχής εξελίσσονται και κατασκευάζονται ολοένα και περισσότερα, συνδυάζοντας την ασφάλεια, την αύξηση των διαστάσεων και της χωρητικότητας τους. Για να θεωρηθεί ένα πλοίο ασφαλές και έτοιμο για πλεύση, πρέπει να συμβαδίζει με ορισμένους κανονισμούς, οι οποίοι διαφοροποιούνται για κάθε τύπο πλοίου. Ο Παγκόσμιος Οργανισμός Ναυτιλίας Ι.Μ.Ο (International Maritime Organization), είναι ένας Διεθνής Οργανισμός που ιδρύθηκε το 1948 από πολλές χώρες, υπογράφοντας μια σύμβαση με στόχο τη θέσπιση κανονισμών για την εφαρμογή υψηλών θαλάσσιων προτύπων ασφαλείας στη ναυσιπλοΐα, στον έλεγχο και στον περιορισμό της ρύπανσης του θαλάσσιου περιβάλλοντος από τα πλοία.

Αναπόσπαστο κομμάτι της ασφάλειας των πλοίων και ειδικότερα των σκαφών αναψυχής, αποτελεί η επιβίωση τους σε περίπτωση κατάκλισης ενός ή περισσοτέρων στεγανών διαμερισμάτων. Μια επιτυχημένη σχεδίαση ενός πλοίου πρέπει να εξασφαλίζει πλήρως την υδατοστεγή ακεραιότητά του και να παρέχει αποτελεσματική προστασία σε περίπτωση βλάβης, έτσι ώστε να μειώνεται στο ελάχιστο ο κίνδυνος ανατροπής ή βύθισής του. Πιο συγκεκριμένα, βλάβη θεωρούμε οποιοδήποτε ρήγμα στο εξωτερικό περίβλημα ενός πλοίου -συνήθως στην γάστρα του- όπου συνεπάγεται η προοδευτική κατάκλυση των κυτών του επιφέροντας άμεσα αρνητική επίδραση στην ευστάθεια του. Παρατηρώντας τις περιπτώσεις των θαλάσσιων ατυχημάτων στο παρελθόν, (πχ.Τιτανικός και Ηράκλειον) είναι ευδιάκριτη η αναγκαιότητα της μελέτης της ευστάθειας του πλοίου, όχι μόνο στην αρχική και στην τελική θέση ισορροπίας (δηλαδή πριν και μετά την βλάβη), αλλά και στις ενδιάμεσες θέσεις ισορροπίας, οι οποίες μπορούν να θεωρηθούν καταλυτικές για την ανατροπή ή τη βύθιση του πλοίου.

Στην παρούσα διπλωματική εργασία, το κύριο αντικείμενο μελέτης είναι η ανάλυση της προοδευτικής κατάκλισης ενός σκάφους αναψυχής και πιο συγκεκριμένα μιας εμπορικής θαλαμηγού. Για την επίτευξη του ερευνητικού μέρους της εργασίας, αναπτύχθηκε ένα πρακτικό μοντέλο προσομοίωσης συναρτήσει του χρόνου. Η γεωμετρική αναπαράσταση και οι υδροστατικοί υπολογισμοί του υπό μελέτη πλοίου, πραγματοποιήθηκαν στο λογισμικό MAXSURF. Επιπλέον, για την εισροή του νερού μέσα στο πλοίο χρησιμοποιήθηκαν δύο εξισώσεις Bernoulli, όπου η μία είναι κατάλληλη για το εξωτερικό άνοιγμα, το οποίο είναι πλήρως βυθισμένο και από την εσωτερική, ενώ η δεύτερη εξίσωση είναι κατάλληλη για το εσωτερικό άνοιγμα (π.χ. στεγανή θύρα προτού κλείσει) με τις στάθμες εσωτερικά και εξωτερικά να ευρίσκονται σε ενδιάμεσα ύψη.

Αξίζει να σημειωθεί, ότι η προοδευτική κατάκλυση του μοντέλου προσομοίωσης βασίζεται στην εφαρμογή και στην διεκπεραίωση του ημιστατικού προβλήματος, με τις εξής παραμέτρους: Η επιφάνεια της θάλασσας θεωρείται αδιατάραχτη και οι εξωτερικές δυνάμεις της αμελητέες.

Λέξεις Κλειδιά:

- Ασφάλεια επιβατηγών πλοίων, συγκεκριμένα των yachts
- I.M.O
- Επιβίωση έναντι κατάκλισης, ενός ή περισσότερων διαμερισμάτων
- Επιτυχημένη σχεδίαση
- Μελέτη ευστάθειας σε όλες τις θέσεις ισορροπίας (αρχική, τελική και ενδιάμεσες)
- Προσομοίωση κατάκλισης, συναρτήσει χρόνου

<u>Abstract</u>

In today's world, a topical issue that the global shipping community is dealing with and aiming for immediate development is the issue of passenger ship safety. In fact, yacht-type yachts have evolved over the years, more and more are being built. The point of success is to achieve a combination of various parameters, such as safety, increasing their dimensions and capacity. For a ship to be considered safe and ready to sail, it must comply with certain regulations, which vary for each type of ship. The International Maritime Organization (IMO) is an organization that focuses on establishing regulations to implement high maritime safety standards, the efficiency of navigation and the control of pollution of the marine environment by ships.

An integral part of the ships safety and particular in yachts, is their survival in the event of flooding of one or more watertight compartments. A successful design of a ship must fully ensure its watertight integrity and provide effective protection in the event of damage, so that the risk of capsizing or sinking is minimized. More specifically, damage is considered to be any breach in the outer shell of a ship usually in the hull- which results in the progressive flooding of the hull, with a direct adverse effect on the stability of the ship. Looking at the past, it is clear that in the case of maritime accidents, it is necessary to study the stability of the ship not only in the initial and final equilibrium positions (i.e. before and after the damage), but also in the intermediate equilibrium positions, which can be considered as the catalyst for the capsizing or sinking of the ship.

In this thesis, the main object of study is the analysis of the progressive flooding of a pleasure vessel, yacht type. To achieve the research part of the thesis, a practical simulation model was developed as a function of time. The geometric representation and hydrostatic calculations of the ship under study were performed in MAXSURF software. In addition, two Bernoulli equations were used for the inflow of water into the ship, where one is suitable for the external opening that is fully submerged and from the inner side, while the second equation, is suitable for the internal opening (e.g. watertight door before it is closed) with the internal and external levels being at intermediate heights.

It is worth noting that the progressive flooding of the simulation model is based on the application and execution of the semistatic problem. More specifically, some parameters set are as follows: The sea surface is assumed to be undisturbed, flat, as well as negligible external forces.

Key Wards:

- Safety of passenger ships, in particular yachts
- I.M.O.
- Survival against flooding of one or more compartments
- Successful design
- Stability study at all equilibrium positions (initial, final and intermediate)
- Simulation of flooding, as a function of time

Περιεχόμενα

Πρόλογος:
Κεφάλαιο 1:16
1) Ο ΣΤΟΧΟΣ ΤΗΣ ΕΡΓΑΣΙΑΣ16
Κεφάλαιο 2:
2) $\Delta IE\Theta NEI\Sigma \Phi OPEI\Sigma - IMO$ (International Maritime Organization)
Κεφάλαιο 3:
3.1) ΘΕΩΡΗΤΙΚΟ ΥΠΟΒΑΘΡΟ18
3.1.1) ΕΥΣΤΑΘΕΙΑ ΚΑΙ ΠΛΕΥΣΤΟΤΗΤΑ ΠΛΟΙΟΥ ΕΝΑΝΤΙ ΒΛΑΒΗΣ
3.1.2) ΥΠΟΛΟΓΙΣΜΟΣ ΤΗΣ ΘΕΣΗΣ ΙΣΟΡΡΟΠΙΑΣ ΕΝΑΝΤΙ ΒΛΑΒΗΣ
3.1.2.1) ΓΕΝΙΚΟ ΘΕΩΡΗΤΙΚΟ ΥΠΟΒΑΘΡΟ19
3.1.2.2) ΜΕΘΟΔΟΣ ΧΑΜΕΝΗΣ ΑΝΤΩΣΗΣ
3.1.2.3) ΜΕΘΟΔΟΣ ΠΡΟΣΘΕΤΟΥ ΒΑΡΟΥΣ
3.1.2.4) ΣΥΓΚΡΙΣΗ ΤΩΝ ΔΥΟ ΜΕΘΟΔΩΝ23
3.1.3) ΕΠΙΔΡΑΣΗ ΕΛΕΥΘΕΡΩΝ ΕΠΙΦΑΝΕΙΩΝ
3.1.4) APNHTIKO KAI ΘЕТІКО МЕТАКЕNТРІКО $ Y\Psi O\Sigma \ldots 25$
3.1.5) ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΕΙΣΡΟΗΣ ΝΕΡΟΥ-ΕΞΙΣΩΣΗ BERNOULLI
3.1.6) ΣΥΝΤΕΛΕΣΤΗΣ ΡΟΗΣ
3.1.7) ΣΥΜΠΙΕΣΗ ΤΟΥ ΑΕΡΑ
3.1.8) ΔΙΑΧΩΡΗΤΟΤΗΤΑ
3.1.9) ΣΤΑΔΙΑ ΚΑΤΑΚΛΥΣΗΣ
3.1.9.1) ГЕNIKO YПОВАЮРО
3.1.9.2) ΕΠΙΔΡΑΣΗ ΤΟΥ ΜΕΤΑΒΑΤΙΚΟΥ ΣΤΑΔΙΟΥ ΚΑΤΑΚΛΥΣΗΣ (INFLUENCE OF TRANSIENT FLOODING)
3.1.9.3) ΠΡΟΟΔΕΥΤΙΚΗ ΚΑΤΑΚΛΥΣΗ-ΕΝΔΙΑΜΕΣΟ ΣΤΑΔΙΟ
3.1.9.4) ΤΕΛΙΚΟ ΣΤΑΔΙΟ-ΣΤΑΔΙΟ ΜΟΝΙΜΗΣ ΚΑΤΑΚΛΥΣΗΣ
3.1.10) ΥΔΑΤΟΣΤΕΓΕΙΣ ΠΟΡΤΕΣ
Κεφάλαιο 4:
4.1) ΜΟΝΤΕΛΟ ΠΡΟΣΟΜΟΙΩΣΗΣ
4.1.1) ГЕNIKO УПОВАЮРО
4.1.2) ΔΙΑΔΙΚΑΣΙΑ ΕΠΙΛΥΣΗΣ
4.1.3) XAPAKTHPIΣTHKA ΠΛΟΙΟΥ
4.1.4) ΤΟ ΜΟΝΤΕΛΟ
4.1.4.1) ΓΕΝΙΚΑ
4.1.4.2) ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΜΕΡΙΣΜΑΤΩΝ - ΔΕΞΑΜΕΝΩΝ

Κεφάλαιο 5:
5.1) ΠΕΡΙΠΤΩΣΙΟΛΟΓΙΚΕΣ ΜΕΛΕΤΕΣ – CASE STUDIES
5.1.1) ΧΑΡΑΚΤΗΡΗΣΤΙΚΑ ΤΗΣ ΒΛΑΒΗΣ
5.1.2) ΠΕΡΙΠΤΩΣΙΟΛΟΓΙΚΗ ΜΕΛΕΤΗ 1
5.1.2.1) ΑΠΟΤΕΛΕΣΜΑΤΑ DAMAGE CASE 1
5.1.3) ΠΕΡΙΠΤΩΣΙΟΛΟΓΙΚΗ ΜΕΛΕΤΗ 2
5.1.3.1) ΑΠΟΤΕΛΕΣΜΑΤΑ DAMAGE CASE 2
Κεφαλαίο 6:
6.1) ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΥΣΤΑΘΕΙΑΣ
6.1.1) AΘIKTH EYΣTAΘΕΙΑ
6.1.1.1) EQUILIBRIUM CALCULATION
6.1.1.2.) LARGE ANGLE STABILITY74
6.1.2) DAMAGE CASE
6.1.2.1) EQUILIBRIUM CALCULATION
6.1.2.2) LARGE ANGLE STABILITY
Κεφάλαιο 7:91
7.1) ΣΥΝΟΨΗ91
7.2) ΣΥΜΠΕΡΑΣΜΑΤΑ 93
7.3) ПЕРАІТЕР Ω Δ ІЕРЕУNH Σ H
Κεφάλαιο 8:
8) BIBЛІОГРАФІА

<u>Πρόλογος:</u>

Η συγκεκριμένη διπλωματική εργασία είναι εμπνευσμένη από τις διεθνείς προοδευτικές αλλαγές που οι εκάστοτε αρμόδιοι φορείς (i.e. IMO) επιδιώκουν να εφαρμόσουν στο μείζον θέμα της ασφάλειας των θαλάσσιων μεταφορών. Ένα διαχρονικό ζήτημα είναι τα θαλάσσια δυστυχήματα και η «επιβίωση» του πλοίου μετά από την κατάκλυση. Αποτέλεσμα είναι να δίνεται πλέον ιδιαίτερη έμφαση σε καινοτόμους μεθόδους σχετικά με την ασφάλεια και την ευστάθεια του πλοίου μετά από βλάβη. Επίσης, η θεσμοθέτηση νόμων και ανάλογων νομοθεσιών από τους αρμόδιους φορείς είναι επιτακτική, καθώς η πρόκληση βλάβης σε ένα πλοίο μπορεί να αποβεί από δυσμενής έως μοιραία. Ως αποτέλεσμα των ποικίλων δυστυχημάτων, στο παρελθόν, ήταν η ίδρυση του Διεθνούς Οργανισμού Ναυτιλίας Ι.Μ.Ο (International Maritime Organization), ο οποίος σε συνδυασμό με νηογνώμονες και διάφορα ερευνητικά κέντρα, προέβησαν στη θέσπιση διαφόρων κανονισμών, σύμφωνα με τους οποίους όλα τα πλοία, είναι υποχρεωμένα να τους ακολουθούν ακόμα και αν απαιτούνται σχεδιαστικές αλλαγές.

Όπως ήδη γνωρίζουμε, βλάβη θεωρείται οποιοδήποτε ρήγμα στη γάστρα του πλοίου, που μπορεί να προκληθεί είτε από προσάραξη είτε από σύγκρουση, με αποτέλεσμα την προοδευτική κατάκλυση των κυτών του. Το αμέσως επόμενο διάστημα που θα επακολουθήσει μετά την σύγκρουση ή την προσάραξη, είναι το σημαντικότερο για την ασφάλεια των επιβατών καθώς και για την επιβίωση ή την ανατροπή, ή ακόμα και την βύθιση του πλοίου. Ειδικότερα, η «επιβίωση» του πλοίου εξαρτάται πλήρως από την εναπομένουσα πλευστότητα και ευστάθειά του μετά από την βλάβη. Συνεπώς, η επίτευξη της ικανοποιητικής ευστάθειας αποτελεί ένα σύνθετο αλλά παράλληλα ενδιαφέρον ζήτημα μελέτης. Σημαντική είναι και η γνώση των χαρακτηριστικών των ρηγμάτων, καθώς αυτά αποτελούν δίαυλο επικοινωνίας μεταξύ της θάλασσας και των εσωτερικών χώρων του πλοίου. Η εσωτερική διαμόρφωση του πλοίου είναι επίσης σημαντική καθώς το νερό που έχει εισχωρήσει εσωτερικά του πλοίου, θα πρέπει να διαπεράσει ανθρωποθυρίδες, σκάλες και διαδρόμους και πόρτες των διαμερισμάτων. Επίσης, μέσω των ανοιγμάτων των υδατοστεγών φρακτών (π.χ. υδατοστεγείς πόρτες όταν αυτές είναι ανοιχτές) καθίσταται ευκολότερη η κατάκλυση και των υπόλοιπων διαμερισμάτων του πλοίου σε περίπτωση βλάβης. Η κατάκλυση συνεπώς επιδρά στην θέση ισορροπίας του πλοίου, στην ευστάθεια και στις κινήσεις του πλοίου λόγω εξωτερικών διεγέρσεων.

Σύμφωνα με την Αρχή του Αρχιμήδη, κάθε σώμα που είναι βυθισμένο σε ρευστό δέχεται άντωση ίση με το βάρος του ρευστού που εκτοπίζει (γνωστό ως εκτόπισμα).

Tύπος: $A = \rho g V$ όπου:

- ρ: πυκνότητα ρευστού (kg/m³)
- g: επιτάχυνση βαρύτητας (g = 9,81m/s²)

V: όγκος βυθισμένου σώματος (m³)

Συνεπώς και ένα πλοίο μετά από βλάβη, πρέπει να έχει επαρκή πλευστότητα με βάση την Αρχή του Αρχιμήδη.

Επίσης, επαρκής ευστάθεια θεωρείται η δυνατότητα του πλοίου να αντιτίθεται στις ροπές ανατροπής που μπορούν να προκληθούν από τον άνεμο, τις ελεύθερες επιφάνειες των υδάτων, τη μετακίνηση των επιβατών στο πλοίο και τελικά να επανέρχεται στην αρχική του θέση.

Μέχρι την τελική κατάσταση ισορροπίας μετά από βλάβη, υπάρχουν πολλά ενδιάμεσα στάδια κατά τα οποία η ευστάθεια του πλοίου μπορεί να είναι χειρότερη της τελικής. Επομένως, καταλήγουμε στο συμπέρασμα ότι η μελέτη του φαινομένου και στα ενδιάμεσα στάδια είναι εξίσου σημαντική με την μελέτη ευστάθειας κατά την αρχική και τελική θέση ισορροπίας. Ουσιαστικά, η προσομοίωση μπορεί να δώσει μία αξιόπιστη προσέγγιση στον χρόνο που απαιτείται για την κατάκλυση του πλοίου (time to flood, T.T.F). Καθοριστικός παράγοντας για την επιτυχή εκκένωση του πλοίου, καθώς και για τις πιθανές απώλειες ζωών των επιβατών είναι αυτός ο χρόνος κατάκλισης ενός ή περισσότερων διαμερισμάτων. Για αυτό ο υπολογισμός του χρόνου κατάκλισης Τ.Τ.F. αποτελεί αντικείμενο εκτενούς μελέτης και διερεύνησης με αποτέλεσμα τη βελτίωση των κανονισμών σε θέματα επιβίωσης και εκκένωσης επιβατικών πλοίων μετά από βλάβη.

Κεφάλαιο 1:

1) **STOXOS THE EPFASIAS**

Έχοντας υπόψη τα ανωτέρω που διατυπώθηκαν, ο στόχος της εργασίας είναι η προσομοίωση κατάκλισης μιας εμπορικής θαλαμηγού (commercial yacht) στο πεδίο του χρόνου, εξετάζοντας την επιβιωσιμότητά της και την συμπεριφορά της κατά την διάρκεια εισροής υδάτων στα στεγανά διαμερίσματά της. Αξιοσημείωτο είναι το θέμα της ασφάλειας και της ευστάθειας έναντι βλάβης ενός πλοίου, εστιάζοντας στην κατάκλυση ενός ή δύο τυχαίων γειτονικών διαμερισμάτων, με απώτερο σκοπό την εύρεση και προσομοίωση της τελικής κατάστασης της θαλαμηγού. Δηλαδή αν επαναφερθεί στην αρχική της θέση ισορροπίας ή αν πάρει μόνιμη κλίση ή αν βυθιστεί πλήρως, γεγονός που αποτελεί «θεμελιώδη λίθο» μιας επιτυχημένης σχεδίασης και μελέτης της. Αναλυτικότερα, εφαρμόστηκε ένα υδραυλικό μοντέλο που προσομοίωσε την ταχύτητα εισροής του θαλασσινού νερού με τη βοήθεια των εξισώσεων Bernoulli, καθώς και τις διάφορες κινήσεις και θέσεις ισορροπίας πριν και μετά την εισροή των υδάτων.

Επιπρόσθετα, το πρόγραμμα στο οποίο απεικονίστηκε τρισδιάστατα η γάστρα του πλοίου καθώς και η εσωτερική διαμέρισή του (δεξαμενές, διαμερίσματα κλπ), διενεργήθηκε και ολοκληρώθηκε μέσω του προγράμματος 'MaxSurf', που διδάχθηκε στη σχολή Ναυπηγών Μηχανικών του Πανεπιστημίου Δυτικής Αττικής.

Αξίζει να σημειωθεί, ότι όπως σε κάθε λογής πρόβλημα που αντιμετωπίζουμε, υφίστανται αρκετά συχνά κάποιες απλοποιήσεις, έτσι και εδώ γίνονται ορισμένες. Ειδικότερα ως η πρώτη απλούστευση θεωρείται αυτή που αφορά την επιφάνεια του νερού της θάλασσας. Σε αντίθεση με τα πραγματικά δεδομένα όπου η επιφάνεια της θάλασσας διαταράσσεται συνεχώς, είτε λόγω των κυματισμών, είτε λόγω του ανέμου, στην παρούσα περίπτωση η επιφάνεια θεωρείται αδιατάραχτη και μάλιστα επίπεδη "calm waters" προς διευκόλυνσή μας σε τυχόν υπολογισμούς.

Η δεύτερη απλούστευση που πραγματοποιείται είναι η αντιμετώπιση του προβλήματος ως ημιστατικό "quasi-static". Δηλαδή ο χρόνος προσομοίωσης της κατάκλισης του πλοίου διαιρείται σε μικρά τακτά χρονικά διαστήματα, κατά την διάρκεια των οποίων, κύρια μέθοδος για τον υπολογισμό της συνολικής ποσότητας εισροής υδάτων και της κατάστασης του πλοίου, θεωρείται ο προσδιορισμός τους με στατικό τρόπο.

16

Κεφάλαιο 2:

2) ΔΙΕΘΝΕΙΣ ΦΟΡΕΙΣ - IMO (International Maritime Organization)

Αξίζει να σημειωθεί ότι πολλά ατυχήματα που συνέβησαν στον παρελθόν, όπως η βύθιση του Τιτανικού ή του επιβατηγού-οχηματαγωγού 'Ηράκλειον' [«Ηράκλειον, στις 8 Δεκεμβρίου του 1966» (sansimera.gr, n.d.).]κ.α., συνέβαλαν στο να δοθεί ιδιαίτερη έμφαση στην ασφάλεια και στην επιβίωση ενός πλοίου έναντι κατάκλισης. Επίσης, οδήγησαν στην πραγματοποίηση της πρώτης διεθνούς συνδιάσκεψης (I.M.O., n.d.) με επίκεντρο το θέμα της ασφάλειας της ανθρώπινης ζωής στα εμπορικά πλοία, γνωστή ως S.O.L.A.S. (Safety Of Life At Sea), η οποία προέβλεπε ότι για να τεθεί σε ισχύ οποιαδήποτε τροποποίηση των κανονισμών θα έπρεπε να συμφωνούν τα μέλη της Σύμβασης.

Επίσης, αξιοσημείωτο είναι το κίνητρο του Ι.Μ.Ο για την υιοθέτηση μιας αναθεωρημένης σύμβασης της S.O.L.A.S., που αφορούσε την ασφάλεια της ανθρώπινης ζωής στη θάλασσα, απαιτώντας και καθιερώνοντας το ελάχιστο GM ίσο με 0,05m (Αλεξόπουλος Β., 2018). Αργότερα προτάθηκαν επιπλέον κανονισμοί χρησιμοποιώντας το προσδιοριστικό μοντέλο. Η αναζήτηση και η διερεύνηση εύρεσης ασφαλέστερων λύσεων για την μεταφορά μεγαλύτερου όγκου φορτίων, καθώς και την βελτίωση της ευστάθειας και της πλευστότητας των πλοίων, έδωσαν το έναυσμα στην παγκόσμια ναυτιλία, να αναπτύξει ένα πιθανοθεωρητικό μοντέλο εκτίμησης ευστάθειας πλοίου σε κατάσταση βλάβης.

Εν κατακλείδι, η σύγχρονη παγκόσμια ναυτιλιακή κοινότητα επικεντρώνεται στην βελτίωση των επιπέδων ασφάλειας των επιβατηγών και άλλων πλοίων. Οι θαλαμηγοί επίσης παρουσιάζουν σημαντική εξέλιξη λόγω της αύξηση του μεγέθους τους και της αύξησης του αριθμό των επιβατών τους, καθώς πολλά από αυτά θεωρούνται επιβατηγά πλοία, με αποτέλεσμα να αποτελούν νέα πρόκληση για τον Ι.Μ.Ο. Επομένως, αντιλαμβανόμαστε ότι και στο μέλλον θα υπάρξουν επιπρόσθετες απαιτήσεις ως προς την ευστάθεια των πλοίων έναντι βλάβης, θέμα το οποίο πάντα προκαλεί ιδιαίτερο ενδιαφέρον στην παγκόσμια ναυτιλία.

Κεφάλαιο 3:

3.1) ΘΕΩΡΗΤΙΚΟ ΥΠΟΒΑΘΡΟ

3.1.1) ΕΥΣΤΑΘΕΙΑ ΚΑΙ ΠΛΕΥΣΤΟΤΗΤΑ ΠΛΟΙΟΥ ΕΝΑΝΤΙ ΒΛΑΒΗΣ

Όπως γνωρίζουμε από την Αρχή του Αρχιμήδη κάθε σώμα που είναι βυθισμένο σε οποιοδήποτε ρευστό, θεωρείται ότι δέχεται άνωση ίση με το βάρος του ρευστού που εκτοπίζει. Αυτή η αρχή αποτέλεσε την αφετηρία για την διατύπωση και τον ορισμό των θεμελίων της υδροστατικής ενός πλοίου, δηλαδή ότι η ασφάλεια του πλοίου εξαρτάται άμεσα από δύο πρωταρχικούς σκοπούς, την ικανοποιητική πλευστότητα και την ικανοποιητική ευστάθεια. Επιπλέον κρίνεται ζωτικής σημασίας για το πλοίο, ότι αυτές οι δύο απαιτήσεις θα πρέπει να εφαρμόζονται τόσο στην άθικτη κατάσταση τόσο και στην κατάσταση μετά από βλάβη.

Αναλυτικότερα, όταν το πλοίο υποστεί μία βλάβη κατά την διάρκεια του ταξιδιού του και το νερό αρχίσει να εισέρχεται στο εσωτερικό του, τότε εξαλείφεται ένα μέρος του όγκου άνωσής του. Αξιοσημείωτη είναι η επίδραση της εφεδρικής πλευστότητας (reserve buoyancy), καθώς θεωρείται το κύριο μέγεθος που θα καθορίσει την επιβίωση ή μη του εκάστοτε πλοίου έπειτα από βλάβη. Αρχικά, ως εφεδρική πλευστότητα ορίζεται ο όγκος των στεγανών χώρων που ευρίσκονται πάνω από την ίσαλο γραμμή πλεύσης του πλοίου, δηλαδή άνω της Water Line (W.L.). Παρακάτω, απεικονίζεται αναλυτικότερα στην φωτογραφία:

- Ο κίτρινος όγκος συμβολίζει την εφεδρική πλευστότητα
- Βρίσκεται στο ύψος των εξάλλων του πλοίου (πάνω από την WL)

Εικόνα 1: Εφεδρική Πλευστότητα (e-nautilia.gr, n.d.)

Ας επιχειρήσουμε να το δούμε λίγο πιο αναλυτικά. Σε οποιοδήποτε πλοίο και αν εστιάσουμε παρατηρούμε ότι υπάρχουν τρεις διαφορετικές πλευστότητες που μπορεί να αποκτήσει. Πρώτη είναι η λεγόμενη θετική πλευστότητα, δηλαδή όταν το πλοίο επιπλέει στο νερό, η δεύτερη είναι η λεγόμενη αρνητική πλευστότητα, δηλαδή όταν το πλοίο βυθίζεται και τέλος η τρίτη πλευστότητα, δηλαδή όταν το πλοίο αιωρείται κάτω από την επιφάνεια του νερού, αναφερόμενη και ως ουδέτερη. Για παράδειγμα, τα υποβρύχια αποκτούν ουδέτερη πλευστότητα κατά την διάρκεια της κατάδυσής τους.

Επιπρόσθετα, ένα πλοίο διαμερίζεται σε χώρους που περιλαμβάνουν αέρα και δεν είναι μία σύσσωμη μάζα μετάλλου, με αποτέλεσμα η πυκνότητα του πλοίου να μειώνεται. Συμπεραίνοντας, για να επιτευχθεί η πλεύση ενός πλοίου θα πρέπει ο εκτοπισμός του βάρους του υγρού να ισούται με το βάρος του πλοίου, δηλαδή η πυκνότητα του πλοίου να είναι μικρότερη από αυτή του νερού. Αντίστοιχα, ισχύει και στην περίπτωση που προστεθεί κάποιο βάρος στο πλοίο, όπου υφίσταται ταυτόχρονη αύξηση της πυκνότητας του πλοίου, που σημαίνει μείωση του ύψους εξάλλων καθώς το βύθισμα αυξάνεται.

Ακόμα και σε αυτήν την περίπτωση της αύξησης του βυθίσματος του πλοίου, για να επιπλεύσει δεν θα πρέπει να υπάρξει εισροή υδάτων από διάφορα ανοίγματα που το απαρτίζουν, όπως είναι τα εξαεριστικά, τα διαμερίσματα ενδιαίτησης, δηλαδή ο στεγασμένος χώρος που προορίζεται για την διαμονή του πληρώματος και επιβατών, όπως καμπίνες, τραπεζαρίες και διάφορα άλλα. Εν κατακλείδι, αντιλαμβανόμαστε ότι ο όρος της εφεδρικής πλευστότητας αποτυπώνεται πλήρως ως ο όγκος του στεγανού χώρου του πλοίου ανάμεσα στην ίσαλο πλεύσης και σε αυτήν της εισροής υδάτων, δηλαδή τα ανοίγματα που βρίσκονται πιο ψηλά από το ανώτερο υδατοστεγανό κατάστρωμα, καθώς το πλοίο παραμένει στην επιφάνεια.

3.1.2) ΥΠΟΛΟΓΙΣΜΟΣ ΤΗΣ ΘΕΣΗΣ ΙΣΟΡΡΟΠΙΑΣ ΕΝΑΝΤΙ ΒΛΑΒΗΣ

3.1.2.1) ΓΕΝΙΚΟ ΘΕΩΡΗΤΙΚΟ ΥΠΟΒΑΘΡΟ

Η ελαχιστοποίηση του κινδύνου ανατροπής ή βύθισης ενός πλοίου, βασίζεται στην επιτυχημένη σχεδίασή του, καθώς εξασφαλίζεται η υδατοστεγής ακεραιότητά του και η παροχή αποτελεσματικής προστασίας σε περίπτωση βλάβης. Βλάβη, θεωρείτο οποιοδήποτε ρήγμα στην εξωτερική επιφάνεια ενός πλοίου, το οποίο συνεπάγει την προοδευτική κατάκλυση των κυτών του. Ορισμένες από τις αιτίες, που μπορεί να δημιουργηθεί μία σοβαρή έκταση κατάκλισης, είναι οι κατωτέρω:

- η λεγόμενη είσοδος νερού από την πλώρη, καθώς το πλοίο διατηρεί μία σταθερή ταχύτητα,
- η ρηγμάτωση του πρωραίου και πιο σπάνια του πρυμναίου άκρου, λόγω πρόσπτωσης σε άλλο πλοίο.

19

Επομένως, η προοδευτική κατάκλυση των κυτών, έχει άμεσο αντίκτυπο στην μεταβολή της θέσης ισορροπίας ενός πλοίου καθώς μπορεί να μεταβληθεί με την πάροδο του χρόνου.

Πιο συγκεκριμένα, η μελέτη της κατάστασης του πλοίου μετά από βλάβη, δηλαδή ο υπολογισμός της τελικής θέσης ισορροπίας μπορεί να πραγματοποιηθεί με δύο τρόπους, με τη << μέθοδο της χαμένης άντωσης >>, γνωστή και ως << method of lost buoyancy >>, καθώς και με τη << μέθοδο του πρόσθετου βάρους>>, γνωστή ως << method of added weight>>. Αξίζει να σημειωθεί, ότι δύο ανωτέρω υπολογιστικές μέθοδοι μπορεί να διαφέρουν και να ακολουθούν διαφορετικό τρόπο επίλυσης, όμως η κατάληξη του συμπεράσματος παραμένει η ίδια. (Τζαμπίρας, 2015)

Θεωρούμε ότι η αρχική ίσαλος σχεδίασης είναι ισοβύθιστη και έχει όγκο εκτοπίσματος *Γ*, και η διαμήκης θέση του κέντρου άντωσης είναι *x*_B

Εικόνα 2: Θέσεις του πλοίου πριν και μετά την κατάκλυση (Τζαμπίρας, 2015)

Στην ανωτέρω φωτογραφία, αξίζει να επισημανθεί ότι:

- Water Line (WL): ίσαλος πλεύσης σε άθικτη κατάσταση
- Water Line 2 (WL2): ίσαλος πλεύσης μετά από κατάκλυση

Για τη βύθιση του πλοίου καθίσταται υποχρεωτικό η ίσαλος γραμμή να μην ξεπεράσει την γραμμή ορίου βυθίσεως. Επιπλέον, η σφήνα 'θ' αντιπροσωπεύει την ροπή που απαιτείται για την μεταβολή του πλοίου από την WL στην WL2.

Παρακάτω διατυπώνεται μία αναλυτικότερη αριθμητική προσέγγιση των δύο μεθόδων με τα εξής χαρακτηριστικά:

3.1.2.2) ΜΕΘΟΔΟΣ ΧΑΜΕΝΗΣ ΑΝΤΩΣΗΣ

Η μέθοδος της χαμένης άντωσης είναι η πρώτη μέθοδος μελέτης της επιβιωσιμότητας ενός πλοίου έπειτα από κατάκλυση, καθώς ο τρόπος μελέτης που την χαρακτηρίζει είναι ότι το διαμέρισμα που έχει υποστεί κατάκλυση και κατ' επέκταση ο όγκος του, δεν παρέχει άντωση (Biron 2003). Η δύναμη του βάρους του νερού θεωρείται ότι υπερισχύει της δύναμης της άντωσης, καθώς και το νερό του διαμερίσματος ασκεί πιέσεις ίσες και αντίθετες με το νερό που βρίσκεται εκτός του αυτό. βα, αντιλαμβανόμαστε ότι στο πλοίο που έχει υποστεί την βλάβη, θα διαφοροποιηθεί το βύθισμά του και θα οριστεί η νέα θέση ισορροπίας του, με απώτερο σκοπό την αντιστάθμιση της απώλειας του όγκου του. Αντίθετα, το εκτόπισμα και το κέντρο βάρους του πλοίου παραμένουν σταθερά, καθώς δεν υπάρχει επίδραση των ελεύθερων επιφανειών.

21

3.1.2.3) ΜΕΘΟΔΟΣ ΠΡΟΣΘΕΤΟΥ ΒΑΡΟΥΣ

Η μέθοδος του πρόσθετου βάρους είναι η δεύτερη μέθοδος μελέτης της επιβιωσιμότητας ενός πλοίου έπειτα από κατάκλυση, καθώς ο τρόπος μελέτης που την χαρακτηρίζει είναι ότι το νερό που έχει εισέλθει στο διαμέρισμα 'ανήκει' στο πλοίο, οπότε η μάζα του (το βάρος του), θα πρέπει να προστεθεί στο εκτόπισμα του πλοίου. Επίσης, η θέση του κέντρου βάρους και του εκτοπίσματος μεταβάλλονται από τις αρχικές τους, στην άθικτη κατάσταση. Το νέο κέντρο βάρος προκύπτει από τις ροπές του άθικτου πλοίου και του νερού κατάκλισης, καθώς επιδρούν και οι ελεύθερες επιφάνειες. Αξίζει να σημειωθεί ότι το μεγάλο πλεονέκτημα εφαρμογής της συγκεκριμένης μεθόδου είναι η εύρυθμη μοντελοποίηση στον υπολογιστή, καθώς μπορούν να πραγματοποιηθούν διάφορες εφαρμογές προσομοίωσης του φαινομένου κατάκλισης ενός πλοίου.

3.1.2.4) ΣΥΓΚΡΙΣΗ ΤΩΝ ΔΥΟ ΜΕΘΟΔΩΝ

Ο κατωτέρω πίνακας απεικονίζει αναλυτικά τα αποτελέσματα της εφαρμογής των δύο μεθόδων σύμφωνα με την πρισματική γεωμετρία που αναλύθηκε προηγουμένως, εμφανίζοντας τα υδροστατικά χαρακτηριστικά του διαμερίσματος του πλοίου που κατακλύσθηκε από νερό. Όπως προβλεπόταν, ορισμένα αποτελέσματα των δύο μεθόδων, για παράδειγμα το τελικό βύθισμα, το γινόμενο GM x Δ (μετακεντρικό ύψος x εκτόπισμα), η μετακεντρική ακτίνα, η ροπή επαναφοράς σε μικρές γωνίες κλίσης και η κατακόρυφη θέση του κέντρου βάρους (VCG), συμπίπτουν. Απεναντίας, ο όγκος εκτοπίσματος, το τελικό εκτόπισμα και το μετακεντρικό ύψος, είναι μεγέθη που διαφοροποιούνται έπειτα από την εφαρμογή των δύο υπολογιστικών μεθόδων. Αξίζει να επισημανθεί, ότι μπορεί οι δύο ανωτέρω μέθοδοι να έχουν διαφορετικές κατευθύνσεις αλλά έχουν κοινό σημείο κατάληξης.

	-	-	
	Intact condition	Damaged, lost buoyancy	Damaged, by added weight
Draught, m	1.500	1.875	1.875
V, m^3	150.000	150.000	187.500
A, t	153.750	153.750	192.188
<u>KB</u> , m	0.750	0.938	0.938
\overline{BM} , m	1.389	1.111	1.111
<i>KG</i> , m	1.500	1.500	1.388
$\overline{GM}, \mathbf{m}$	0.639	0.549	0.439
$\Delta \overline{GM}$, tm	98.229	84.349	84.349

Εικόνα 3: Σύγκριση μεθόδων (Τζαμπίρας, 2015)

3.1.3) ΕΠΙΔΡΑΣΗ ΕΛΕΥΘΕΡΩΝ ΕΠΙΦΑΝΕΙΩΝ

Μελετώντας το θέμα της ευστάθειας ενός πλοίου έναντι βλάβης από την σκοπιά του πρόσθετου βάρους, γίνεται αντιληπτό ότι το φαινόμενο της επίδρασης των ελεύθερων επιφανειών είναι ένας πολύ σημαντικός παράγοντας που πρέπει να λαμβάνεται υπόψη. Ο όρος «ελεύθερη επιφάνεια» (free surface) παρατηρείται σε διάφορες επιφάνειες όπως στην επιφάνεια του υγρού μιας οποιαδήποτε δεξαμενής ενός πλοίου, είτε πετρελαίου, είτε πόσιμου νερού, είτε ballast, είτε μεταφοράς σιτηρών.

Χαρακτηριστικό της ποσότητας του υγρού που απαρτίζει τη δεξαμενή είναι η στάθμη του, καθώς δεν είναι ούτε τελείως άδεια (empty load condition) ούτε τελείως γεμάτη (full load condition), αλλά βρίσκεται σε κάποιο ενδιάμεσο στάδιο. Αποτέλεσμα αυτού, είναι η δημιουργία ελεύθερης επιφάνειας, η οποία λαμβάνει την ίδια κλίση με το πλοίο σε κάθε πλάγια πρόσπτωση κύματος. Συνεπάγεται, η ακούσια μεταφορά βάρους στο πλοίο ωθώντας την αύξηση κινδύνου ανατροπής του, καθώς επηρεάζεται η εγκάρσια ευστάθειά του. Επιπλέον, ελλοχεύει ο κίνδυνος δημιουργίας τοπικών προβλημάτων αντοχής στην μεταλλική κατασκευή.

Εκτός από την περίπτωση της ελεύθερης επιφάνειας υπάρχει και το ενδεχόμενο το πλοίο να έρθει αντιμέτωπο και με μία πιο επικίνδυνη κατάσταση, την λεγόμενη επίδραση της ελεύθερης επικοινωνίας (free communication effect). Στη συγκεκριμένη περίπτωση το πλοίο έχει υποστεί κατάκλυση ενός ή περισσοτέρων διαμερισμάτων, δηλαδή το θαλασσινό νερό έχει εισέλθει στο εσωτερικό του πλοίου. Το αξιοσημείωτο στην συγκεκριμένη κατάσταση είναι ότι το εισερχόμενο θαλασσινό νερό έγκειται σε πλήρη εξάρτηση από τις διαστάσεις του ρήγματος, την εγκάρσια και τη διαμήκη κλίση που θα πάρει το πλοίο, καθώς και από το χρονικό διάστημα που θα βρίσκεται σε εξέλιξη η εισροή ύδατος.

Γενικότερα το πρόβλημα της επίδρασης των ελευθέρων επιφανειών είναι ένα πρόβλημα που απασχολεί τη σύγχρονη παγκόσμια ναυτιλιακή κοινότητα τις τελευταίες δεκαετίες. Ένας από τους πρώτους που μελέτησαν αναλυτικά το φαινόμενο των ελευθέρων επιφανειών ήταν ο Barnes,1900μ.Χ, ο οποίος με πειραματικές μετρήσεις απέδειξε έμπρακτα, ότι η ύπαρξη ελεύθερων επιφανειών οδηγεί στην δημιουργία και αύξηση της γωνίας κλίσης του πλοίου και παράλληλα στην απώλεια της αρχικής ευστάθειάς του. Επιπρόσθετα, το 1889μ.Χ. μελέτες από τον καθηγητή της Γλασκόβης Jenkins, οδήγησαν στον ορισμό και στην απόδειξη του γνωστού τύπου:

$$GM\nu = GM - (\gamma_F * \frac{l_F}{\Delta})$$

Όπου:

- γ_F: είναι το ειδικό βάρος
- L_F: είναι η δεύτερη ροπή επιφάνειας του υγρού
- Δ: είναι το εκτόπισμα του πλοίου
- GM_V και GM είναι το νέο μειωμένο και αρχικό αντίστοιχα μετακεντρικό ύψος, λόγω της ελεύθερης επιφάνειας του ρευστού

Ο Jenkins απέδειξε ότι η επίδραση της ελεύθερης επιφάνειας είναι ανεξάρτητη της ποσότητας του υγρού και έχει την δυνατότητα να παρουσιαστεί σαν μείωση του αρχικού μετακεντρικού ύψους (GM).

Αξίζει να σημειωθεί ότι υπάρχουν διάφοροι παράγοντες που επηρεάζουν δραστικά το φαινόμενο των ελεύθερων επιφανειών. Αρχικά, ένας παράγοντας που επιδρά στην ροπή που θα ασκηθεί από τις ελεύθερες επιφάνειες είναι η

διαπερατότητα του ρευστού (surface permability). Πιο συγκεκριμένα, εκφράζεται ως ο κατακλυσμένος χώρος που εμπεριέχει διάφορα αντικείμενα, τα οποία θα διαμορφώσουν τον χώρο των ελεύθερων επιφανειών. Αυτό έχει αντίκτυπο στον μερικό περιορισμό της κίνησης της ελεύθερης επιφάνειας, καθώς και στην επαγόμενη μείωση της ευστάθειας του πλοίου. Επιπλέον, άλλος ένας παράγοντας είναι η πιθανότητα να τέμνει η επιφάνεια του ρευστού τον πυθμένα ή την κορυφή της δεξαμενής που το περικλείει. Αποτέλεσμα είναι η μείωση του πλάτους της ελεύθερης επιφάνειας και της επίδρασής της στην ευστάθεια του πλοίου. Το φαινόμενο αυτό είναι γνωστό με τον όρο «pocketing» και παρουσιάζεται στην εικόνα 11.

Εικόνα 2. 6: Το φαινόμενο "pocketing" της ελεύθερης επιφάνειας. πηγή: http://www.hnsa.org

Εικόνα 4: Φαινόμενο "Pocketing" της ελεύθερης επιφάνειας (Δελημήτης, 2015)

3.1.4) ΑΡΝΗΤΙΚΟ ΚΑΙ ΘΕΤΙΚΟ ΜΕΤΑΚΕΝΤΡΙΚΟ ΥΨΟΣ

Σύμφωνα με τις γνώσεις μας, η ύπαρξη κλίσης σε ένα πλοίο μπορεί να συμβεί για δύο ξεχωριστούς λόγους, είτε λόγω της επίδρασης εξωτερικών δυνάμεων όπως είναι οι κυματισμοί, είτε λόγω της μετατόπισης βάρους. Επομένως, όπως αντιλαμβανόμαστε το μετακεντρικό ύψος αποτελεί ύψιστης σημασίας για την κατάληξη του πλοίου, ιδιαίτερα στην περίπτωση που δημιουργηθεί ένα ρήγμα και δοθεί η δυνατότητα να εισέλθει νερό στο εσωτερικό του. Επιπρόσθετα, αν η μέθοδος εξέτασης της κατάκλισης είναι του πρόσθετου βάρους, αντιλαμβανόμαστε ότι η εισροή του νερού συμβάλει στην μεταβολή του εκτοπίσματος, από την μία πλευρά του κέντρου βάρους του πλοίου και από την άλλη της ισάλου επιφανείας.

Αρχικά μετακεντρικό ύψος 'GM', θεωρείται η απόσταση του μετάκεντρου «Μ» μέχρι το κέντρο βάρους του πλοίου «G», αποτυπώνοντας πιστά την αρχική ευστάθεια του εκάστοτε πλοίου. Αξιοσημείωτο είναι ότι η θέση του κέντρου βάρους καθορίζεται από την κατανομή βαρών του πλοίου, ενώ η θέση του μετάκεντρου καθορίζεται από το γεωμετρικό σχήμα των υφάλων. Επιπλέον, η ύπαρξη μικρών κλίσεων 'θ' λόγω εξωτερικών διεγέρσεων έχει σαν αποτέλεσμα τον υπολογισμό της ροπής επαναφοράς μέσω του γινομένου M = W×GZ. Αντίστοιχα, για μικρές εγκάρσιες κλίσεις 'θ', το μετάκεντρο θεωρείται ως σταθερό σημείο, δηλαδή: GZ = GM × sinθ.

Εικόνα 5: (Τζαμπίρας, 2015)

Όπως προαναφέραμε, κατά την διάρκεια του φαινομένου της κατάκλισης, η θέση του μετάκεντρου μεταβάλλεται λόγω της γεωμετρίας των υφάλων. Αντίστοιχα, το μετακεντρικό ύψος αποκτά διάφορες χρονικά εξελισσόμενες τιμές, κατά την διάρκεια εξέλιξης του φαινομένου. Επομένως, υπάρχει πιθανότητα εξαιτίας της περίπλοκης γεωμετρίας του πλοίου, το μετακεντρικό ύψος GM να αποκτήσει και αρνητική τιμή, γεγονός που καθιστά σε κίνδυνο την ευστάθεια του πλοίου.

Η αιτία που μπορεί να προσδιοριστεί είναι η εξής: Μία μικρή εκτροπή του πλοίου από την θεωρητική θέση ισορροπίας του επιφέρει ροπή επαναφοράς, δηλαδή το πλοίο οδηγείται σε μεγαλύτερες γωνίες εγκάρσιας κλίσης, ώστε να επιτευχθεί η ευσταθής ισορροπία του. Ορίζοντας την καινή γωνία που αποκτά το πλοίο, ως «loll angle», επιτυγχάνεται η πλήρης διατύπωση της πραγματικής γωνίας ισορροπίας του πλοίου, έχοντας το αρχικό μετακεντρικό του ύψος αρνητικό.

Εικόνα 6: Καμπύλη ευστάθειας GZ-φ (ortsa, n.d.)

Παρατηρώντας την ανωτέρω φωτογραφία της καμπύλης ευστάθειας, αντιλαμβανόμαστε ότι ο μοχλοβραχίονας επαναφοράς GZ είναι θετικός στο διάστημα των γωνιών 0-105 περίπου, δηλαδή το μετάκεντρο βρίσκεται πιο ψηλά από το κέντρο βάρους. Επίσης, η μέγιστη τιμή του GZ, είναι περίπου στις 50, κάτι που σημαίνει ότι σε εκείνο το σημείο έχουμε την ευσταθή θέση ισορροπίας του πλοίου. Αντίθετα, από εκείνο το διάστημα και μετά, επικρατεί το αρνητικό μετακεντρικό ύψος. Το δυσμενές αυτό σενάριο του αρνητικού μετακεντρικού ύψους, λαμβάνει χώρα όταν το μετάκεντρο 'M', βρεθεί πιο χαμηλά από το κέντρο βάρους 'B'. Αποτέλεσμα του αρνητικού μετακεντρικού ύψους, είναι οι διάφορες κινήσεις αστάθειας που αποκτά το πλοίο, σε συνδυασμό με τις υψηλές επιταχύνσεις, επιφέροντας έλλειψη ασφάλειας και προβλήματα στη λειτουργία του πλοίου. Τέλος, η ελάχιστη τιμή που λαμβάνει το GZ, είναι η στιγμή που λαμβάνει το πλοίο την ασταθή θέση ισορροπίας του. Επομένως, ο τρόπος αντιμετώπισης τέτοιων καταστάσεων, είναι η μείωση του KG του εκάστοτε πλοίου.

3.1.5) ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΕΙΣΡΟΗΣ ΝΕΡΟΥ-ΕΞΙΣΩΣΗ BERNOULLI

Σύμφωνα με μελέτες πάνω στο φαινόμενο της κατάκλισης ενός πλοίου, η επιδίωξη αριθμητικής προσομοίωσης της ροής ύδατος στο εσωτερικό του, χρήζει περαιτέρω βελτίωσης. Η αιτία που δεν μπορεί να προσομοιαστεί απόλυτα το φαινόμενο, είναι τα διάφορα υδροδυναμικά φαινόμενα που εμπλέκονται κατά την διάρκεια ενός ταξιδιού. Η αναγκαιότητα εύρεσης λύσης αποδόθηκε στον νόμο που απέδειξε το 1738 ο Ελβετός Daniel Bernoulli, καθώς βρήκε μία σχέση που συνδέει την πίεση με την ταχύτητα και το ύψος. Δηλαδή, υιοθετήθηκε μία προσεγγιστική μέθοδος η οποία βασίζεται στον υπολογισμό της διαφοράς πίεσης μέσω της εξίσωσης Bernoulli, έχοντας αργή ροή του ρευστού είτε προς τα μέσα είτε μέσα στο εσωτερικό του πλοίου.

Το θεώρημα του Bernoulli καλούμενο και Θεμελιώδες θεώρημα της Υδροδυναμικής, ταυτίζεται με την αρχή διατήρησης της ενέργειας και αφορά την περίπτωση των υγρών. Στη πραγματικότητα πρόκειται για ένα άθροισμα τριών ενεργειών: της "ενέργειας θέσεως", της "δυναμικής πίεσης", που αποτελεί το μέτρο της "κινητικής ενέργειας" του υγρού και της "υδροστατικής πίεσης", που είναι και το μέτρο της "δυναμικής ενέργειας" λόγω ύψους ή λόγω του πεδίου βαρύτητας.

Επισημαίνοντας σε σχέση με τα ανωτέρω, η πιο εξελιγμένη μέθοδος που έχει αναπτυχθεί είναι οι εξισώσεις Navier-Stokes, οι οποίες περιγράφουν την κίνηση των ρευστών (υγρά και αέρια). Οι εξισώσεις αυτές εκφράζουν τις μεταβολές της ορμής ενός απειροστού όγκου του ρευστού, όπου αποτελούν το αριθμητικό συμπέρασμα των δυνάμεων ιξώδους του ρευστού, των μεταβολών της πίεσης, της βαρύτητας και των άλλων δυνάμεων που δρουν εντός του ρευστού. Σε αντίθεση όμως, διακατέχονται από μερικά μειονεκτήματα, όπως είναι το υψηλό κόστος, καθώς και οι σύνθετες εξισώσεις τους.

Εικόνα 7: Εξίσωση Bernoulli (safe swiss cloud, n.d.)

Πιο συγκεκριμένα, η μελέτη του φαινομένου εισροής ύδατος ενός πλοίου μετά από βλάβη, ξεκινά με την θεώρηση ύπαρξης μιας ροής μεταξύ δύο κατακλυσμένων διαμερισμάτων μέσω μιας μικρής οπής (εικόνα 13). Αρχικά, η απλουστευμένη μορφή μελέτης ως προς την κατάκλυση, αντιμετωπίζει ως δεξαμενές τα διαμερίσματα στα οποία εισέρχεται το νερό, υπολογίζοντας την ροή του ρευστού με την βοήθεια ενός ημιστατικού προσεγγιστικού πλαισίου. Ο τρόπος υπολογισμού της παροχής ύδατος γίνεται ανά μονάδα χρόνου, σύμφωνα με την υδροστατική κατανομή των πιέσεων στην επιφάνεια του ανοίγματος.

Για την αναλυτικότερη προσέγγιση του φαινομένου εφαρμόζονται μερικές παραδοχές. Πρωτίστως, η επιφάνεια του νερού παραμένει οριζόντια χωρίς

αναταράξεις και παράλληλα η ταχύτητα του ρευστού θεωρείται μηδενική, κάτι που δεν ισχύει στη θάλασσα. Παρόλα αυτά, εφαρμόζοντας την εξίσωση Bernoulli:

$$P1 + \frac{1}{2} * \rho * V1^{2} + \rho * g * h1 = P2 + \frac{1}{2} * \rho * V2^{2} + \rho * g * h2$$

Μελετάμε την ενέργεια από το σημείο 1 στο σημείο 2. Εφαρμόζοντας τις ανωτέρω παραδοχές, έχουμε:

$$\frac{Patm}{\rho * g} + h1 = \frac{Patm}{\rho * g} + h2 + \frac{V^2}{2 * g}$$

- V1=0
- P1=P2=Patm

Επομένως καταλήγουμε ότι η τελική ταχύτητα υπολογίζεται από τον τύπο:

$$V = \sqrt{(2 * g * (h1 - h2))}$$

Ορίζοντας ως 'A' το εμβαδόν του ανοίγματος και h1, h2 τα μανομετρικά ύψη των δύο δεξαμενών υπολογίζεται:

$$Q = k * A * V = k * A * \sqrt{(2 * g * (h1 - h2))}$$

Ο συντελεστής k είναι ο συντελεστής ροής «flow coefficient». Εκφράζει την προβλεπόμενη πτώση πίεσης κατά την διάρκεια της θεωρητικής παροχής, εξαιτίας διάφορων μη προβλεπόμενων, πολύπλοκων ισχυρών υδροδυναμικών γεγονότων που λαμβάνουν χώρα στην πραγματικότητα.

Τα ύψη h1, h2 των δύο δεξαμενών περιορίζονται ως εξής:

- h1 = 0 an h1 < 0
- h2 = 0 an h2 < 0

Αν h1 < h2 τότε είναι προφανές ότι η ροή γίνεται αρνητική και είναι ίση με:

$$Q = -k * A * V$$

Συμπεραίνοντας, για να συγκαταλεχθούν όλα όσα προαναφέρθηκαν η εξίσωση της παροχής είναι ίση με:

$$Q = k * b * (h1 - h2) * \sqrt{(2 * g * |h1 - h2|)}$$

Η ολική παροχή μπορεί να βρεθεί με ολοκλήρωση του Q σε όλο το εμβαδό της βλάβης (damage condition):

$$Q(t) = k * \int b * (h1 - h2) * \sqrt{2 * g * |h1 - h2|} * dA$$

Εικόνα 8: Πλευρικό ρήγμα πλοίου (Βασσάλος, 2000)

<u>ΠΑΡΑΔΟΧΕΣ</u>

- Το ανωτέρω μοντέλο μπορεί να επικεντρώνεται σε δύο διαμερίσματα, αλλά έχει τη δυνατότητα να προσομοιάσει ολόκληρο το πλοίο σε περίπτωση που χρειαστεί.
- Αιτία εισροής υδάτων:
 1)Βλάβη
 - 2) Εσωτερικό Άνοιγμα
 - Το κάθε διαμέρισμα θεωρείται ως δεξαμενή

3.1.6) ΣΥΝΤΕΛΕΣΤΗΣ ΡΟΗΣ

Σε αντίθεση με την ανωτέρω απόδειξη της ολικής παροχής για το μοντέλο που έγινε το πείραμα, η θεωρητική παροχή διαφέρει λόγω του συντελεστή ροής Κ. Ο συντελεστής ροής εξαρτάται:

- Από τις διαστάσεις του ρήγματος
- Από την εσωτερική διαρρύθμιση του κατακλυσθέντος διαμερίσματος
- Από το σχήμα και τη θέση του ρήγματος
- Από την ταχύτητα της ροής του ρευστού

Κατ' ακολουθίαν, αντιλαμβανόμαστε ότι ο αξιόπιστος προσδιορισμός του συντελεστή ροής Κ, απαιτεί ευρεία επιστημονική διερεύνηση, παγκοσμίως.

Εικόνα 9: Ροή μέσω του ανοίγματος (Μάργαρης, 2019)

Εικόνα 10: Αποτύπωση Ροής μέσω πλευρικού ανοίγματος (Elsevier Ltd, 2017)

Για να επιτευχθεί η σωστή μελέτη και διερεύνηση του συντελεστή ροής Κ, απαιτείται να προσδιοριστούν πρώτα οι παραδοχές του προβλήματος. Αρχικά, μία παραδοχή είναι η θεώρηση κάθε διαμερίσματος που έχει υποστεί κατάκλυση λόγω βλάβης, ως μία δεξαμενή. Το συγκεκριμένο διαμέρισμα έρχεται σε επαφή είτε με τη θάλασσα λόγω βλάβης, είτε με άλλη δεξαμενή καθώς το πλοίο αποτελείται από διάφορες εσωτερικές διασυνδέσεις των χώρων του, όπως είναι πόρτες, σκάλες, ανθρωποθυρίδες και διάφορα άλλα. Επίσης, μία ακόμη παραδοχή που τίθεται σε ισχύ, με στόχο την απλούστευση του προβλήματος, είναι τα εσωτερικά ανοίγματα τα οποία θεωρούνται ανεξαρτήτως σχήματος, όλα τετραγωνικής διατομής με σχετικά μικρές διαστάσεις.

Με την πάροδο του χρόνου η επιστήμη επιχείρησε να εφαρμόσει διάφορους νόμους για να αποδείξει τον προσδιορισμό του συντελεστή ροής Κ. Μία από αυτές, ήταν διάφορα πειράματα που έγιναν, έχοντας ως βάση την απόδειξη του συντελεστή Κ συναρτήσει του αριθμού Reynolds. Ο αριθμός Reynolds ορίζεται ως ο λόγος των δυνάμεων αδράνειας προς τις δυνάμεις ιξώδους, ποσοτικοποιώντας την μεταξύ τους σημαντικότητα για μία συγκεκριμένη κατάσταση ροής. Μία ροή του ρευστού μπορεί να χαρακτηριστεί είτε τυρβώδης, είτε στρωτή. Αναλυτικότερα, τυρβώδες ροή, (μεγαλύτερο του 10000) θεωρείται για υψηλούς αριθμούς Reynolds, όπου κυριαρχούν οι δυνάμεις αδράνειας, παράγοντας χαοτικές δίνες και άλλες αστάθειες στην ροή. Σε αντίθεση, η στρωτή ροή, (μικρότερη του 12) θεωρείται για χαμηλούς αριθμούς Reynolds, όπου κυριαρχούν οι δυνάμεις του ιξώδους, προκαλώντας ομαλή και σταθερή κίνηση του ρευστού.

Θα ήθελα να επισημανθεί ότι η μελέτη και η διερεύνηση των παραδοχών του συντελεστή ροής δεν είναι σκοπός της παρούσας εργασίας. Επομένως, χωρίς βλάβη της γενικότητας, και με βάση τα παραπάνω, γίνεται η θεώρηση ότι ο συντελεστής Κ είναι ίσος με τιμή 0,63 (MARIN 2003).

Εικόνα 11: Συντελεστής ροής για τετραγωνικές οπές πλευράς d, ως συνάρτηση του αριθμού Reynolds (Νιώτης, 2013)

3.1.7) ΣΥΜΠΙΕΣΗ ΤΟΥ ΑΕΡΑ

Όπως είναι κατανοητό, η εξέλιξη του φαινομένου της κατάκλισης μπορεί να καθοριστεί από διαφόρους παράγοντες. Ένας από αυτούς, ήθιστε το φαινόμενο της συμπίεσης του αέρα κατά την εισροή ύδατος στο διαμέρισμα που έχει υποστεί βλάβη, καθώς η μέθοδος προσομοίωσής της δεν είναι εφικτή. Επίσης, εξαιτίας της δυσκολίας που υφίσταται στην προσομοίωση της συμπίεσης του αέρα σε ένα κατακλυσμένο διαμέρισμα, επικρατεί ιδιαίτερη ανησυχία για τα αποτελέσματα που μπορούν να προκληθούν.

Ειδικότερα, κατά την διάρκεια της κατάκλισης ενός διαμερίσματος η ποσότητα του νερού που εισέρχεται ολοένα και αυξάνεται, μειώνοντας έτσι τον χώρο που κατακλύζεται από αέρα. (P. Ruponen, et al. 2012). Με αυτόν τον τρόπο, ξεκινά ή εκροή του αέρα προς το εξωτερικό περιβάλλον διαμέσου διάφορων εξαεριστικών που εμπεριέχονται στο συγκεκριμένο διαμέρισμα. Στην περίπτωση ύπαρξης μεγάλου ρήγματος στο διαμέρισμα ο εξαερισμός μεταβάλει αρκετά την κατάσταση, καθώς προκαλείται αισθητή συμπίεση αέρα εμποδίζοντας με αυτόν τον τρόπο την εισροή ύδατος. Για να επιτευχθεί ο υπολογισμός του φαινομένου, απαιτείται η θεώρηση του αέρα ως συμπιεστό ρευστό, κάτι που στην πραγματικότητα δεν ισχύει και έπειτα να προσδιοριστεί η θεωρητική διαδρομή που θα ακολουθήσει εξαιτίας των ανοιγμάτων και των εξαεριστικών.

Με αφορμή την ύπαρξη μεγάλου ρήγματος, η συμπίεση του αέρα πρέπει να λαμβάνεται υπόψη, καθώς η αύξηση του μεγέθους ρήγματος, αυξάνει και την πολυπλοκότητα του φαινομένου. Αντίθετα στην περίπτωση ύπαρξης μικρού ρήγματος, σύμφωνα με μελέτες, πραγματοποιείται έγκαιρος εξαερισμός των διαμερισμάτων που έχουν κατακλυστεί και δίνονται ρεαλιστικά αποτελέσματα.

3.1.8) ΔΙΑΧΩΡΗΤΟΤΗΤΑ

Για την αποκωδικοποίηση της εισροής ύδατος σε έναν διαμέρισμα του πλοίου, απαιτείται ο προσδιορισμός του διατιθέμενου όγκου που στην πραγματικότητα κατακλύζεται από νερό. Διαχωρητότητα ενός χώρου, η λεγόμενη permeability, ονομάζεται το ποσοστό κατά το οποίο μπορεί να γεμίσει με νερό το διαμέρισμα.

Αντίστοιχα, ο συντελεστής διαχωρητότητας όγκου μ_v εκφράζει το ποσοστό πληρότητας με νερό του καθαρού όγκου του εσωτερικού χώρου που κατακλύζεται. Δηλαδή, κενός χώρος (χωρίς εσωτερικές ενισχύσεις) έχει διαχωρητότητα 100%, ενώ ο γεμάτος χώρος με υγρό, έχει διαχωρητότητα 0%. Οι κανονισμοί της S.O.L.A.S (Chapter II -1/Regulation 7 – 3), καθορίζουν τις τιμές της διαχωρητότητας που πρέπει να ληφθούν υπόψη για διάφορους χώρους στις σχετικές μελέτες κατακλύσιμου μήκους. Πιο συγκεκριμένα, για τους χώρους του πλοίου το ποσοστό διαχωρητότητας αναγράφεται κατωτέρω:

(Γιώργος,

Spaces	Permeability
Appropriated to stores	0,60
Occupied by accommodation	0,95
Occupied by machinery	0,85
Void spaces	0,95
Intended for liquids	0 or 0,95

Πίνακας 2. 2: Διαχωρητότητα των διάφορων χώρων ενός πλοίου κατά τους κανονισμούς της S.O.L.A.S.

2015)

33

Regulation 7-3 - Permeability

1 For the purpose of the subdivision and damage stability calculations of the regulations, the permeability of each general compartment or part of a compartment shall be as follows:

Spaces	Permeability	
Appropriated to stores	0.60	
Occupied by accommodation	0.95	
Occupied by machinery	0.85	
Void spaces	0.95	
Intended for liquids	0 or 0.95 ^{footnote}	

2 For the purpose of the subdivision and damage stability calculations of the regulations, the permeability of each cargo compartment or part of a compartment shall be as follows:

Spaces	Permeability at draught $d_{_S}$	Permeability at draught d_p	Permeability at draught d
Dry cargo spaces	0.70	0.80	0.95
Container spaces	0.70	0.80	0.95
Ro-ro spaces	0.90	0.90	0.95
Cargo liquids	0.70	0.80	0.95

3 Other figures for permeability may be used if substantiated by calculations.

Εικόνα 12: Διαχωρητότητα (Τζαμπίρας, 2015)

3.1.9) ΣΤΑΔΙΑ ΚΑΤΑΚΛΥΣΗΣ

3.1.9.1) ΓΕΝΙΚΟ ΥΠΟΒΑΘΡΟ

Όπως αναφέραμε και ανωτέρω, το φαινόμενο της κατάκλισης μετά από βλάβη ενός πλοίου, είναι ένα σύνθετο γεγονός που εξελίσσεται, καθώς συμβάλουν αρκετοί παράμετροι για την πραγματοποίησή του, όπως είναι το μετακεντρικό ύψος και τα υπόλοιπα χαρακτηριστικά του μοχλοβραχίονα επαναφοράς, η διαχωρητότητα, το βύθισμα και η διάταξη που απαρτίζει τους κατακλυσμένους χώρους, η επίδραση των ελεύθερων επιφανειών κ.τ.λ.

Επιπρόσθετα, καθοριστική σημασία στην εξέλιξη του φαινομένου, έχει η θάλασσα, ανάλογα με την κατάσταση που θα βρίσκεται, η οποία θα καθορίσει και την τύχη του πλοίου. Διότι σε περίπτωση θαλασσοταραχής, είναι πολύ πιθανό το πλοίο που έχει υποστεί βλάβη, να αποκτήσει μεγαλύτερες κλίσεις και να μειωθούν δραματικά οι πιθανότητες επιβίωσής του. Δηλαδή, αυξάνεται η πιθανότητα κατάκλισης διαμερισμάτων που δεν έχουν υποστεί βλάβη, λόγω των έντονων κινήσεων του πλοίου λόγω των κυματισμών και των ανέμων. Συμπεραίνοντας, οι ανωτέρω παράμετροι παίζουν καθοριστικό ρόλο στην εξέλιξη του φαινομένου, καθώς και στο χρονικό διάστημα που θα απαιτηθεί για την να ανατροπή ή τη βύθιση του πλοίου.

Η ύπαρξη και η επέκταση της κατάκλισης σε ένα ή περισσότερα διαμερίσματα ενός πλοίου που υπέστη βλάβη, οφείλεται σε αρκετούς παραμέτρους. Αρχικά, μπορεί να αποδοθεί στην διάτρηση, το λεγόμενο και σχίσιμο της πλευράς ή του πυθμένα, λόγω προσχώρησης ενός σκάφους με ταχύτητα πάνω σε σταθερή επιφάνεια. (Ελλοχεύει ο κίνδυνος, το μήκος του ανοίγματος να είναι πολύ μεγάλο). Επίσης, μπορεί να αποδοθεί σε πλευρικό ρήγμα λόγω σύγκρουσης, όπου μπορεί να έχουν ή να μην έχουν καταστραφεί οι φρακτές, επομένως η είσοδος και η έξοδος του νερού είναι ελεύθερη.

Επιπρόσθετα, θα μπορούσε να αποδοθεί στην είσοδο νερού από την πλώρη ενώ το πλοίο βρίσκεται κατά την διάρκεια του προγραμματισμένου ταξιδιού του. Σύνηθες αποτέλεσμα, είναι η γρήγορη είσοδος υδάτων στο εσωτερικό κατάστρωμα των οχημάτων και κατ' επέκταση δυνητικά η γρήγορη ανατροπή του (εάν είναι οχηματαγωγό). Επιπλέον, μία άλλη αιτία που θα οφειλόταν, είναι η ρηγμάτωση του πρωραίου ακραίου τμήματος, λόγω πρόσπτωσης με άλλο πλοίο (πιο σπάνια πρυμναίου τμήματος). Τέλος, θα μπορούσε να οφείλεται σε τοπικό ρήγμα του πυθμένα λόγω προσάραξης, το λεγόμενο 'grounding'. Πιο αναλυτικά, το φαινόμενο 'grounding' οφείλεται είτε στον δεξαμενισμό ενός πλοίου είτε στην καθέλκυσή του «Scheltema de Heere and Bakker, 1969» καθώς και στο βάθος του συγκεκριμένου σημείου του νερού θαλάσσης.

Εικόνα 13: Φαινόμενο Grounding (Elsevier Ltd, 2017)

Εικόνα 14: Τα στάδια εξέλιξης κατάκλισης ενός πλοίου, σύμφωνα με την εγκάρσια κλίση που επάγεται (Pekka Ruponen, n.d.)

3.1.9.2) ΕΠΙΔΡΑΣΗ ΤΟΥ ΜΕΤΑΒΑΤΙΚΟΥ ΣΤΑΔΙΟΥ ΚΑΤΑΚΛΥΣΗΣ (INFLUENCE OF TRANSIENT FLOODING)

Μελετώντας την χρονική ακολουθία που υφίσταται η εισροή ύδατος στους εσωτερικούς χώρους του πλοίου έπειτα από βλάβη, καταλήγουμε ότι γίνεται σε τρία διαφορετικά στάδια. Ξεκινώντας την ανάλυση του φαινομένου, το πρώτο στάδιο με το οποίο έρχεται αντιμέτωπο το πλοίο, είναι το μεταβατικό στάδιο κατάκλισης. Στο συγκεκριμένο στάδιο ξεκινάει η εισροή ύδατος στο πλοίο με αποτέλεσμα την απόκτηση κλίσεων, είτε μόνιμων είτε εξελισσόμενων. Οι συγκεκριμένες κλίσεις που είναι πιθανό να αποκτήσει το πλοίο, οφείλονται είτε στη μεγάλη ροπή των ελεύθερων επιφανειών, λόγω της ροής ύδατος στο εσωτερικό του, είτε στην αύξηση του κέντρου βάρους του (εναλλακτικά μείωση του όγκου που συνεισφέρει στην άντωση). Αν η εγκάρσια κλίση ξεπεράσει τις 12, τότε ελλοχεύει μεγάλος κίνδυνος για την απόκτηση επιπλέων μεγάλων κλίσεων που μπορούν να αποβούν μοιραίες για το εκάστοτε πλοίο, προκαλώντας απώλεια ευστάθειας-ανατροπής σε πολύ μικρό χρονικό διάστημα.

Αξιοσημείωτο δε είναι ότι η εσωτερική διαμέριση του πλοίου, η ύπαρξη ελεύθερων επιφανειών, η θέση και οι διαστάσεις του ρήγματος, μπορούν να θεωρηθούν καταλυτικές στο αποτέλεσμα της κατάκλισης σε αυτό το στάδιο για το πλοίο. Επιπρόσθετα, δύο ακόμη παράμετροι που συμβάλλουν στην κατάληξη του πλοίου, ανατροπής ή μη, είναι το εύρος της εισχώρησης του ρήγματος καθώς και το χρονικό διάστημα της βλάβης. Όμως, επειδή ο προσδιορισμός τους είναι αδύνατος, αφού μπορούν πολύ εύκολα να διαφοροποιηθούν από πλοίο σε πλοίο, παραλείπονται όταν γίνονται μελέτες για την ανάλυση του φαινομένου.
3.1.9.3) ΠΡΟΟΔΕΥΤΙΚΗ ΚΑΤΑΚΛΥΣΗ-ΕΝΔΙΑΜΕΣΟ ΣΤΑΔΙΟ

Όπως αντιλαμβανόμαστε στην περίπτωση που υποστεί βλάβη ένα πλοίο, το αρχικό διάστημα της κατάκλισης είναι και το πιο επικίνδυνο. Από εκείνο το σημείο και έπειτα, αφού εισέλθει στο κατακλυσμένο διαμέρισμα σημαντική ποσότητα ύδατος, εισερχόμαστε στο δεύτερο στάδιο κατάκλισης, το λεγόμενο στάδιο 'προοδευτικής κατάκλισης'. Δηλαδή, η εισροή υδάτων στο εσωτερικό του πλοίου ξεκινάει και επεκτείνεται σε διάφορα άλλα εσωτερικά διαμερίσματα που δεν έχουν υποστεί βλάβη, μέσω των εσωτερικών ανοιγμάτων, όπως είναι οι σκάλες, οι υδατοστεγείς και μη πόρτες, οι ανθρωποθυρίδες, οι διάδρομοι που απαρτίζουν το πλοίο κ.τ.λ. Είναι ένα στάδιο, το οποίο μπορεί να αποτελέσει την σωτηρία ενός πλοίου, καθώς η κατάκλυση και των γειτονικών διαμερισμάτων από το διαμέρισμα που έχει υποστεί τη βλάβη, μπορεί να αποφέρει την μείωση του κέντρου βάρους, δηλαδή την αύξηση της ευστάθειας του πλοίου, παρόλο που αυξάνονται οι ελεύθερες επιφάνειες του νερού και αυξάνεται το βύθισμα.

Για την μείωση της προοδευτικής κατάκλισης συμβάλλει και η εξέλιξη της τεχνολογίας, αφού η ύπαρξη αυτόματων υδατοστεγών θυρών «automatic selfclosing» παρέχει τη δυνατότητα περιορισμού της κατάκλισης του πλοίου, καθώς και παροχής απαραίτητου χρονικού διαστήματος για την εκκένωση των επιβατών. Παράλληλα με την ύπαρξή τους, θα αποτελέσει καθοριστικό σημείο, ο τρόπος διάταξής τους, οι διαστάσεις τους καθώς και το χρονικό διάστημα που χρειάζονται για να σφραγίσουν, έτσι ώστε να φανεί αν θα επιτευχθεί η επιβίωση ή μη του πλοίου. Παρόλο που οι κανονισμοί είναι αρκετά αυστηροί σχετικά με το ζήτημα της λειτουργίας και της χρήσης των υδατοστεγών θυρών, είναι κοινή τακτική της γέφυρας πολλών πλοίων να αφήνουν ανοιχτές πολλές από αυτές κατά τη διάρκεια της πλεύσης τους χάρη λειτουργικών λόγων.

Εικόνα 15: Progressive Flooding (Elsevier Ltd, 2017)

3.1.9.4) ΤΕΛΙΚΟ ΣΤΑΔΙΟ-ΣΤΑΔΙΟ ΜΟΝΙΜΗΣ ΚΑΤΑΚΛΥΣΗΣ

Το στάδιο μόνιμης κατάκλισης αποτελεί το τελικό στάδιο που μπορεί να επέλθει ένα πλοίο που έχει υποστεί βλάβη, εφόσον έχει επιτύχει την μη βύθισή του ή την μη ανατροπή του στα δύο προηγούμενα στάδια. Το χρονικό διάστημα που μεσολαβεί από την στιγμιαία έναρξη εισροής ύδατος έως το πέρας του σταδίου προοδευτικής κατάκλισης, αποτυπώνεται ως 'T.T.F.' δηλαδή 'time-to-flood' (χρόνος κατάκλισης/πλημμύρας). Ο όρος 'T.T.F.' αποτελεί καίρια παράμετρο προσδιορισμού του περιθωρίου ενός πλοίου για την επιτυχούς εκκένωση καθώς και του αριθμού των πιθανών απωλειών των ζωών επιβαινόντων.

Η ανάγκη εύρεσης και καθιέρωσης κανονισμών για μεγαλύτερη ασφάλεια στα πλοία που έχουν υποστεί βλάβη, οδήγησε στην δημιουργία κριτηρίων που αναφέρονται σε μεγάλες γωνίες κλίσεις και μπορούν να παρατηρηθούν στα ενδιάμεσα στάδια της κατάκλισης.

Για παράδειγμα, η αρχή έγινε με το πρότυπο SOLAS90 που αφορούσε πλοία τα οποία είχαν συμβόλαιο ναυπηγήσεως μετά τις 29 Απριλίου του 1990, ορίζοντας ότι η μέγιστη γωνία που επιτρεπόταν να αποκτήσει το πλοίο, έχοντας υποστεί κατάκλυση και πριν εισέλθει στο στάδιο εξισορρόπησης, ήταν μέχρι 15μοίρες. Το συγκεκριμένο κριτήριο, επαληθεύτηκε και από τον Van't Veer et al. (2002), ο οποίος το εφάρμοσε ως μέγιστη γωνία κλίσης, καθώς συμβαδίζει με τη δυσκολία προσθαλάσσωσης των σωστικών λέμβων για μεγαλύτερες γωνίες.

Σύμφωνα με τη SOLAS, τα σύγχρονα πλοία και όσα ακόμα ναυπηγούνται, το κριτήριο μέγιστης κλίσης που θα πρέπει να αξιοποιούν, είναι οι 20μοίρες. Αποτέλεσμα της ανωτέρω εξέλιξης, είναι ότι το μέγεθος Τ.Τ.F αποτελεί και αναφέρεται ως ο διαθέσιμος χρόνος για την ομαλή εκκένωση και εγκατάλειψη του πλοίου.

3.1.10) ΥΔΑΤΟΣΤΕΓΕΙΣ ΠΟΡΤΕΣ

Οι υδατοστεγείς θύρες έχουν έναν ξεχωριστό ρόλο στην εσωτερική διαρρύθμιση των πλοίων αναψυχής και γενικότερα των επιβατηγών πλοίων. Η χρησιμότητά τους είναι πλήρως απαραίτητη, καθώς είναι σχεδιασμένες για την ικανοποίηση ορισμένων απαιτήσεων. Η εξασφάλιση της στεγανότητας μεταξύ των εσωτερικών χώρων, συμβάλλει στην ασφαλή μετάβαση των επιβατών και του πληρώματος σε όλους τους χώρους του πλοίου. Για αυτόν τον λόγο τοποθετούνται συνήθως σε περιοχές όπου η πιθανότητα βλάβης και πλημμύρας είναι μεγάλη, όπως για παράδειγμα: Στα πρωραία και πρυμναία περάσματα κάτω από το κατάστρωμα, στις φρακτές του μηχανοστασίου, σε αποθηκευτικούς χώρους και στους χώρους που βρίσκονται οι καμπίνες. Όπως αντιλαμβανόμαστε η σημασία της συγκεκριμένης απαίτησης είναι τεράστια, καθώς έχει άμεσο αντίκτυπο στην ασφάλεια του πλοίου σε περίπτωση βλάβης, με αποτέλεσμα η σχεδίασή και η λειτουργία τους να καθορίζεται από αυστηρό νομοθετικό πλαίσιο.

Επιπρόσθετα, οι κανονισμοί σύμφωνα με τους οποίους συμμορφώνεται το αυστηρό νομοθετικό πλαίσιο των υδατοστεγών θυρών, προσδιορίζονται από την S.O.L.A.S Chapter 2. Άξιο αναφοράς, είναι ο τακτικός έλεγχος που απαιτείται σύμφωνα με τους κανονισμούς Αγγλικού Λιμενικού (Marine Coast-Guard MCA), τον LY3(Large Yacht Code), πριν την πλεύση ενός πλοίου, καθώς και μία φορά την εβδομάδα έπειτα από την πλεύση.

Επιπλέον, μία ακόμη ιδιαιτερότητα που έχουν οι υδατοστεγείς θύρες, είναι ο τρόπος που ανοιγοκλείνουν, καθώς είναι ολισθαίνουσες για ταχύτερη και αποτελεσματικότερη εφαρμογή τους. Το κλείσιμο των υδατοστεγών θυρών μπορεί να επιτευχθεί είτε δια χειρός, αξιοποιώντας τους διακόπτες τοπικά δίπλα στην πόρτα, είτε με μη αυτοματοποιημένο τρόπο από την γέφυρα του εκάστοτε πλοίου.

Υπό συγκεκριμένες καταστάσεις έκτατου ανάγκης, υπάρχει η πιθανότητα η γέφυρα να κλείσει ταυτόχρονα όλες τις υδατοστεγείς πόρτες, έχοντας εξασφαλίσει την μη ύπαρξη παγιδευμένων ανθρώπων στα διαμερίσματα. Ο χρόνος που απαιτείται για να κλείσουν οι θύρες είναι το ελάχιστο 20sec. και το μέγιστο 40sec. από τα τοπικά σημεία ελέγχου, σε αντίθεση με το κεντρικό σύστημα της γέφυρας που ανέρχεται στα 60sec. με την απαίτηση ότι το πλοίο βρίσκεται σε όρθια θέση. Όμως, αξιοσημείωτο είναι η δυνατότητα των θυρών να λειτουργούν ακόμα και σε κλίσεις μέχρι 15μοίρες του πλοίου.

Εικόνα 16: Υδατοστεγής πόρτα (alandia, 2023)

Κεφάλαιο 4:

4.1) ΜΟΝΤΕΛΟ ΠΡΟΣΟΜΟΙΩΣΗΣ

4.1.1) ΓΕΝΙΚΟ ΥΠΟΒΑΘΡΟ

Συνοψίζοντας τι αναφέρθηκε προηγουμένως, συμπεραίνουμε ότι παρουσιάστηκε ολόκληρο το θεωρητικό υπόβαθρο του προβλήματος της προοδευτικής κατάκλισης ενός πλοίου. Δηλαδή ο τρόπος επίδρασης της ευστάθειας και της πλευστότητας ενός πλοίου που έχει υποστεί βλάβη, η μέθοδος εύρεσης θέσης ισορροπίας του έναντι βλάβης, η καθοριστική επίδραση των ελεύθερων επιφανειών καθώς και του μετακεντρικού ύψους, όντας αρνητικό ή θετικό. Επίσης, στο φαινόμενο της προοδευτικής κατάκλισης, καίριο ρόλο παίζει η εφαρμογή της εξίσωσης Bernoulli, ο συντελεστής ροής k, η επίδραση της συμπίεσης του αέρα, η διαχωρητότητα και φυσικά τα τρία στάδια της κατάκλισης.

Παρόλα αυτά, για να αποτυπωθεί πλήρως η προσέγγιση του φαινομένου, πρέπει να αναπτυχθεί ένα αριθμητικό μοντέλο στο οποίο θα προσομοιάζεται η εισροή υδάτων στο πεδίο του χρόνου στο εσωτερικό του πλοίου καθώς και η σταδιακή κατάκλυση διάφορων διαμερισμάτων, μέσω των ποικίλων εσωτερικών ανοιγμάτων που απαρτίζονται τα πλοία. Αξιοσημείωτο της ανάπτυξης του αριθμητικού μοντέλου, είναι η αναπαράσταση της γεωμετρίας της κατασκευής που μελετάται.

Αρχικά, χρησιμοποιήθηκε το λογισμικό Rhino για την 3D σχεδίαση της γάστρας της θαλαμηγού που μου ανατέθηκε και έπειτα το πρόγραμμα που χρησιμοποιήθηκε για την επίτευξη της αναπαράστασης και υπολογισμού διαφόρων ζητουμένων, είναι το λογισμικό Maxsurf. Στόχος της αναπαράστασης, είναι η επίτευξη λήψης ορθών αποτελεσμάτων για τον τρόπο συμπεριφοράς του πλοίου έπειτα την δημιουργία ρήγματος.

Το λογισμικό Maxsurf, αποτελεί σήμα κατατεθέν για την ναυπηγική βιομηχανία, καθώς χαρακτηρίζεται από την ικανότητα ακριβής δημιουργίας τρισδιάστατων επιφανειών και αποτύπωσης των προσδοκώμενων γεωμετρικών θελήσεων.

Εικόνα 17: Γεωμετρική 3D αναπαράσταση γάστρας YACHT (Maxsurf)

βα, ο σκοπός της παρούσας διπλωματικής εργασίας είναι η μελέτη της ευστάθειας πλοίου έναντι βλάβης των πλοίων αναψυχής, γνωστά ως «yachts». Καίρια παρατήρηση, στην προσπάθεια προσομοίωσης του μοντέλου, είναι το εσωτερικό του πλοίου να αποτυπώνεται ως ένα σύνολο που επικοινωνεί με υδατοστεγείς θύρες. Επίσης, η εφικτή γίνεται η αντίληψη ότι η κατάκλυση του διαμερίσματος που έχει υποστεί βλάβη, με το πέρας του χρόνου, ελλοχεύει μεγάλο κίνδυνο, να υπάρξει επέκταση της κατάκλισης σε γειτονικά διαμερίσματα.

Ένα από τα αρκετά αποτελέσματα που μπορούν να γίνουν, είναι να επηρεαστεί αρνητικά η ευστάθεια του πλοίου, οδηγώντας το σε επικίνδυνες καταστάσεις που μπορούν να επιφέρουν την ανατροπή του καθώς και την βύθισή του. Επιπρόσθετα, ο τρόπος διαχείρισης των υδατοστεγών θυρών, μπορεί να αποτελέσει καθοριστικό ρόλο στην εξέλιξη της κατάκλισης και κατ' επέκταση στην κατάληξη του πλοίου. Ωστόσο, θα πρέπει να ληφθεί υπόψη, η παρουσία πληρώματος και επιβατών στο yacht, καθώς η μαζική μετακίνησή τους μπορεί να επιδράσει σημαντικά στην εξέλιξη του φαινομένου.

4.1.2) ΔΙΑΔΙΚΑΣΙΑ ΕΠΙΛΥΣΗΣ

Έχοντας μοντελοποιήσει την γάστρα του δοθέντος πλοίου στο λογισμικό Maxsurf, το επόμενο βήμα ήταν η δημιουργία ενός περιβάλλοντος που θα αποτυπώσει πλήρως το σύνολο των διαμερισμάτων που απαρτίζουν την κατάσταση φόρτωσής του. Πιο συγκεκριμένα, πραγματοποιείται αναλυτικός υπολογισμός της κατάστασης φόρτωσης καθώς και των υδροστατικών μεγεθών του, επιτυγχάνοντας ταυτόχρονα την προσομοίωση της προοδευτικής κατάκλισης συναρτήσει του χρόνου. Αποτέλεσμα της μελέτης αυτής, είναι ο προσδιορισμός διαφόρων μεγεθών όπως είναι το βύθισμα, η καμπύλη GZ-φ, το μετακεντρικό ύψος GM, η εγκάρσια κλίση και η διαγωγή που αποκτά το yacht, ο προσδιορισμός της στάθμης του νερού μέσα στις δεξαμενές και πολλά ακόμη.

Προσδιορίζοντας τα ανωτέρω, οδηγούμαστε στο επόμενο ζητούμενο της παρούσας διπλωματικής, που είναι η μελέτη του yacht συναρτήσει του χρόνου για δύο διαφορετικές καταστάσεις. Δηλαδή, ο υπολογισμός της ποσότητας του ύδατος που εισέρχεται στο εσωτερικό του πλοίου, συναρτήσει ενός μεταβαλλόμενου χρονικού βήματος π.χ. είτε t=0,5sec,είτε t=1sec, είτε t=2sec. Αξίζει να σημειωθεί, ότι το χρονικό διάστημα μπορεί να μεταβληθεί και να προσαρμοστεί κατά την διάρκεια της μελέτης του φαινομένου, καθώς εξαρτάται πλήρως από την ποσότητα εισροής ύδατος. Πιο συγκεκριμένα, αν η ποσότητα εισροής ύδατος από την μία κατάσταση στην επόμενη, το λεγόμενο flow rate, δεν αυξάνεται ή δεν μειώνεται αισθητά, υφίσταται η δυνατότητα να αυξηθεί ή να ελαττωθεί αντίστοιχα, το χρονικό διάστημα μελέτης του φαινομένου.

Για την ορθή μελέτη και επίλυση των δύο περιπτώσεων του φαινομένου συναρτήσει του χρόνου, απαραίτητη θεωρείται η εφαρμογή των δύο εξισώσεων Bernoulli αντίστοιχα, πραγματοποιώντας ένα σύνολο υπολογισμών της ροής του ύδατος από το θαλάσσιο περιβάλλον στο εσωτερικό του πλοίου, είτε μέσω των ανοιγμάτων που το απαρτίζουν είτε μέσω του ρήγματος. Αναλυτικότερα, για την πρώτη περίπτωση του φαινομένου ο ένας τύπος του Bernoulli αφορά την παροχή ύδατος διαμέσου του ρήγματος, από το θαλάσσιο περιβάλλον στο κατακλιθέν διαμέρισμα (damaged compartment). Σε αντίθεση με την πρώτη περίπτωση, στην δεύτερη περίπτωση αντιστοιχεί ο επόμενος τύπος του Bernoulli, που επικεντρώνεται στην διαβίβαση ύδατος από το κατακλιθέν διαμέρισμα σε ένα διπλανό, μέσω ενός εσωτερικού ανοίγματος, όπως είναι η υδατοστεγής πόρτα, η οποία δεν έκλεισε εγκαίρως. Επομένως έχοντας ως βάση τις δύο ανωτέρω περιπτώσεις και ορίζοντας τα διαμερίσματα (compartments) ως δεξαμενές (tanks) στο πρόγραμμα, ακολουθείται μία επαναληπτική διαδικασία με απώτερο σκοπό την μελέτη του φαινομένου σε βάθος χρόνου.

4.1.3) ΧΑΡΑΚΤΗΡΙΣΤΗΚΑ ΠΛΟΙΟΥ

Το πλοίο αναψυχής που αναπτύχθηκε ως μοντέλο στην παρούσα διπλωματική εργασία, έχει την ονομασία << Golden Odyssey Shipping S.A.>>. Όλα τα απαιτούμενα δεδομένα για την αναπαράσταση του μοντέλου και την επίτευξη της μελέτης του, δόθηκαν από τον υπεύθυνο καθηγητή μου, έχοντας ως βάση το μάθημα 'Ευστάθεια πλοίου μετά από βλάβη', του Πανεπιστημίου Δυτικής Αττικής.

Εικόνα 18: Golden Odyssey by Capacity plan

Εικόνα 19: Golden Odyssey mega yacht

Τα στοιχεία του υπό μελέτη πλοίου είναι τα εξής:

ΜΕΓΕΘΗ	ΣΥΜΒΟΛΟ	ΔΙΑΣΤΑΣΕΙΣ		
Ολικό Μήκος	Loa	80.45m		
Μήκος μεταξύ καθέτων	LBP	65.00m		
Πλάτος	В	12.80m		
Βύθισμα σχεδίασης	Tdraught	5.80m		
Displacement	Δ	1963 tonnes		
Επιβάτες	Passenger	29		
Πλήρωμα	Crew	12		

- Fixed Trim = 0 m (+ve by stern)
- Specific gravity = 1,025 (Density = 1,025 tonne/m^3)

Draft Amidships m	4,144
Displacement t	1963
Heel deg	1,2
Draft at FP m	4,168
Draft at AP m	4,119

Draft at LCF m	4,141
Trim (+ve by stern) m	-0,048
WL Length m	67,531
Beam max extents on WL m	12,821
Wetted Area m ²	984,519
Waterpl. Area m ²	649,362
Prismatic coeff. (Cp)	0,601
Block coeff. (Cb)	0,531
Max Sect. area coeff. (Cm)	0,889
Waterpl. area coeff. (Cwp)	0,750
LCB from zero pt. (+ve fwd) m	30,207
LCF from zero pt. (+ve fwd) m	28,455
KB m	2,423
KG solid m	5,194
BMt m	3,549
BML m	88,413
GMt corrected m	0,475
GML m	85,339
KMt m	5,971
KML m	90,818
Immersion (TPc) tonne/cm	6,656
MTc tonne.m	25,772
RM at 1deg = GMt.Disp.sin(1) tonne.m	16,262
Max deck inclination deg	1,1722
Trim angle (+ve by stern) deg	-0,0427

4.1.4) ΤΟ ΜΟΝΤΕΛΟ

4.1.4.1) ΓΕΝΙΚΑ

Η αναπαράσταση του μοντέλου για το πειραματικό σκέλος της διπλωματικής εργασίας, αποτελεί το πιο δύσκολο κομμάτι της επιτυχούς επίλυση του θέματος. Αρχικά, για να υλοποιηθεί η μελέτη του σκάφους αναψυχής, σε κατάσταση μετά από βλάβη, χρησιμοποιείται το πρόγραμμα Rhino καθώς και το πρόγραμμα Maxsurf, στα οποίο επιτυγχάνεται η μοντελοποίηση της γεωμετρίας του εξεταζόμενου πλοίου. Πιο συγκεκριμένα, το Maxsurf ως πρόγραμμα αποτελείται από δύο υποπρογράμματα, το Maxsurf Modeler Design, καθώς και το Maxsurf Stability Design.

Το πρώτο βήμα για την επίτευξη της έρευνας, ήταν η εντολή Mirror στο πρόγραμμα Rhino, έτσι ώστε να απεικονιστεί και το 2° μισό κομμάτι της γάστρας του δοθέντος σκάφους αναψυχής. Έπειτα, αξιοποιήθηκε το πρόγραμμα Maxsurf. Δηλαδή, μέλημα ήταν η εφαρμογή του Maxsurf Modeler Design και η εισαγωγή του απαιτούμενου αρχείου 'rhino yacht. 3dm', έτσι ώστε να απεικονιστεί η γάστρα του πλοίου. Στη συνέχεια, ακολουθήθηκαν τα εξής βήματα: Data --> Frame of Reference:

Εικόνα 20: Frame of Reference

Παρατηρώντας την ανωτέρω φωτογραφία, αξίζει να σημειωθεί ότι το σημείο μηδέν (zero point), έχει οριστεί ακριβώς στην ίδια θέση με το A.P. (After Perpendicular=Πρυμναία κάθετος). Με αυτόν τον τρόπο, αντιλαμβανόμαστε ότι η απόσταση μεταξύ της πρυμναίας και πρωραίας καθέτου είναι 65m (AP to FP=Lbp). Επίσης, ως κάθετος άξονας έχει οριστεί η baseline (σημείο μηδέν) με αποτέλεσμα η waterline να ορίζεται στο ύψος 4.05m.

Προτού μεταβώ στο αμέσως επόμενο βήμα για την μοντελοποίηση του φαινομένου στο πρόγραμμα, έπρεπε να μελετηθεί και να αναλυθεί το δοσμένο tank plan του yacht.

Εικόνα 21: Tank plan

Όπως μπορεί να διακριθεί μελετώντας τη φωτογραφία, είναι ότι απεικονίζεται το πλοίο σε δύο όψεις, στο profile δηλαδή στην πλάγια όψη και στο plan δηλαδή στην κάτοψη. Στο συγκεκριμένο σημείο, για την ορθή εξακρίβωση των διαστάσεων των δεξαμενών (μήκος-πλάτος-ύψος), εκτός από τις δύο όψεις που την καταστούν αρκετά διακριτή, ήταν και η χρήση του προγράμματος Rhino, μοντελοποιώντας σε ανάλογες διαστάσεις το σχέδιο.

Επιπρόσθετα στο tank plan γίνεται αντιληπτό, ότι το σύστημα μονάδων για το μήκος των δεξαμενών είναι μετρημένο σε νομείς, κάτι το οποίο καθιστά αναγκαίο τον υπολογισμό της απόστασης μεταξύ δύο νομέων, 1=0.65m και αντίστοιχα βρίσκοντας τα μήκη των δεξαμενών ως πολλαπλάσιά της. Προς διευκόλυνσή, για τον υπολογισμό του μήκους των δεξαμενών δίνεται ο αρχικός και τελικός τους νομέας.

Έπειτα καταλήγοντας στις τελικές διαστάσεις των δεξαμενών, καθίσταται απαραίτητο το δεύτερο βήμα που είναι η εφαρμογή του προγράμματος Maxsurf Stability Design, για την ακριβή διαστασιολογημένη μοντελοποίηση των δεξαμενών, φρακτών, διαμερισμάτων, καθώς και τον αντίστοιχο έλεγχο των χωρητικοτήτων τους (capacity).

Το δεύτερο βήμα όπως προαναφέρθηκε, ήταν η αποθήκευση του αρχείου σε μορφή msd και αντίστοιχα η χρήση του ανωτέρου αρχείου στο πρόγραμμα Maxsurf Stability Design. Στο συγκεκριμένο πρόγραμμα, η ανάλυση του μοντέλου επιτυγχάνεται αναλυτικότερα καθώς προϋποθέτει μερικές ακολουθίες. Αρχικά, η δημιουργία και ο ακριβής διορισμός των bulkheads(φρακτές) στα κατάλληλα σημεία όπως γίνεται φανερό κατωτέρω:

Εικόνα 22: Bulkheads

4.1.4.2) ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΜΕΡΙΣΜΑΤΩΝ - ΔΕΞΑΜΕΝΩΝ

Ένα πολύ σημαντικό και απαραίτητο στάδιο για την επιτυχημένη μελέτη και προσομοίωση της προοδευτικής κατάκλισης του υπό μελέτη πλοίου, είναι η μοντελοποίηση των χώρων στους οποίους διαμερίζεται το πλοίο. Επομένως, η ορθή διαστασιολόγηση και ο καταμερισμός των δεξαμενών και των διαμερισμάτων στο πρόγραμμα, σύμφωνα με τα αποτελέσματα που είχαν προκύψει, αποτελούν μεγάλη βαρύτητα για την έκβαση του τελικού αποτελέσματος. Μερικές από τις δεξαμενές και τα διαμερίσματα, απεικονίζονται κατωτέρω:

							1.							
各一百多四花.					DDFF- 間。	5. 86 iš 66 iš		a da da mi (D) 🗄 🖬	ta 🗠 it Р G	R 4.				
alibrium 🖂 50	S integr	<u> </u>	(3) P	1000	26 10 00		5 60 HD (10 HD (1		eeta trin	No wave prof	ła 🖂 -			
bly a	× Same	Type	Perce Te	Durnaged Perch 3	Specific scartin	Fluid	boundary burlaces	At	Fore	f.Fort	f.384.	F.Top	f.box.	APort
Charge Contents	1 CCMP 1 T	Conpartment	95	96			0016	-1.725	1,506	-0,400	6,400	5,000	5,860	
Compartmentation	2 COMP 21	Conpartnere	10	20			1016	1,000	8,756	-0.400	0.400	5,000	1.130	
Ab Suface 1	4 COMP 4T	Compatinent	85				1000	18,200	28,900	4,400	6,400	6,800	0,800	
Jii Salace 2	8 COMP ST	Compatitiend	85	95			****	29,900	40,960	4,400	6,400	8,800	0,800	
Vir Suface 4	e coste e t	Conpatinent	95	95			1014	40,950	48,100	-6,400	6,400	5,000	0,800	
Vio Surface 5	7 COMP. 71	conpartnere	90	10			1014	40,100	54,500	-0.400	0,400	5,000	0.000	
Viol Surface 6	A COMP ST	Constituent					0004	41.100	43.636	6.400	5.433	CASE .	0.000	
All Balace 7	10 UB PS 25	Tank	95	95	1,625	Water Balant	none	-2.726	-0.00	-6,400	-3,000	5,500	4,800	
All Subsets	11 PO 88 24	Taria	85	95	0.9443	Puel Oil	nine	-3.728	-1,300	3,000	4,400	8,800	4,800	
Vin Surface 10	12 COMPARTMENT 1	Talk	95	95	2,95	VOD SPACE	1014	-3.725	-1,300	0.00	3,000	4,000	3,877	
Vio Surface 11	13 CORRECTION 1	Liked Talk	90	90	8,90		2004	-2.725	-1,000	-3,800	8,008	4,000	3,377	
Viol Surface 12	A CONSTITUTION I	Linked Tank			1.00		0006	-1.900	1.50	6.400	3.608	C ANE	A 100	
All Burlace 13	G COMPARTMENT 1	Unled Tank	95	95	1,95		none	-1,500	CM	0.000	6,400	5,500	3,400	
All Sudace 15	17 WB PG 22	Tanà	85	95	1,625	Water Balast	none	6,200	8,750	.4,400	8,000	3,300	1,120	
Vito Surface 16	118 110 88 22	Tata	55	95	1,625	TVMer Balles1	1004	8,200	4,500	0,000	6,400	3,300	1,005	
Vio Suface 17	No. Don CA 22	Lined Talk	50	20	1,03	reword Datast	0004	6,500	7,000	0,000	2,500	1,000	1,560	
Vo Suface 18	C 62 62 00 13	Linked Tank	55	8		Water Dalast	1016	7,500	8.756	0,000	5,400	3,598	1.033	
Ab Surface 19	22 5449.51	Tank	95	95	1,625	Water Balant	none	6,500	7,600	2,500	4,400	3,500	2,799	
All Subset of	23 COMPARTMENT 2	Tanà	95	95	1,05	VOD SPACE	none	1,300	6,200	-8,400	6,400	8,800	2,200	
#th Surface 22	24 COMPARTMENT 2	Lided Talk	85	95	1,95	VOD SPACE	none	8,200	8,750	4,400	6,400	8,800	3,300	
2 COMPARTMENT 1	20 10 19	Talk	50	90	63443	Puel OI	1014	8750	14,000	-2,500	2,508	2,790	1,000	
AB COMPARTMENT 2	27 00 164	Tark			6,0445	Frank Water	0004	14,900	15.600	-0.600	2.500	2 116	1.000	
A COMPARTMENT 2	28 20 29 25	Tank	95	16	1	Fresh Vistor	rone	9,750	15,600	-5,400	-3,2+9	2,716	0.800	
AT COMPARTMENT 1	20 PA 23 PS	Linked Tank	95	95			none	15,500	18,290	-6,400	-3,218	1,000	0,800	
COMPARTMENT 2	30 PW 21 58	Tatil	85	95	1 1	Fresh Vialer	nane	8,750	18,400	3,210	6,400	2,790	0,800	
COMPARTMENT 3	31 Private Charles I	Liked Talk	55	90		71045 VL804	1014	15,400	18,200	5,215	4,408	1,000	0.000	
COMPARTMENT 3	AL PROPERTY 1	Linker Tank			8.65	UNE 50477	0004	6.750	18.000	-0.743	-2.508	1.000	0.800	
AD COMPARIMENT 4	M CONFACTORNES 3	Unked Tank	95	10	1.95		rone	9,790	14,294	2,509	3,2+9	1.000	0.800	
S COMPANY INCOME	M COMPARTMENT 3	Linked Tank	95	95	4,05		rone	14,500	15,600	-2,500	-3,600	2,790	4,800	
	36 COMPARTMENT 3	Linked Tark	85	95	1,05		none	16,600	18,200	4,400	6,400	2,796	1,800	
tei P	K 37 LO STORAGE 15 PS	Talk	55	90	63		1004	18,850	20,150	-6,400	-4,655	2,790	1,000	
	The Interface of the Table of	Tara			6.9		0004	20.150	24.000	4,000	-4 338	2.100	1,000	
	40 2/0 2/0 14	Tank	95	10	6,9443	Fuel Oil	rone	27,560	28.990	-4,201	-3,295	1.000	0.800	
	41 SLLOGE TANK 13	Tank	95	95	63		rone	26.660	29,990	5,204	4,613	1,000	0,800	
	42 REA CHEET PE 1	Tarià	85	95	6.9		none	28,600	28,900	-3,201	-1,428	1,000	0,800	
	d BA OHP BD 3	Tali	55	90	0.5		1014	28,400	28,900	1,08	3,301	1,000	0.000	
	Photo Tarrier 16 21	Linker Tark			1,015	Today Dalast	0004	14,200	14.600	-3.84	1.425	1,000	0.000	
	46 WE TANK 15 50	Tank	55	10	1.625	Water Dalast	rone	96,200	23.991	0.000	5.428	1.000	0.800	
	47 WB TANK 15 58	Linked Tank	95	95		Water Balant	rone	98.290	28,600	1,425	3,291	4,000	0.800	
	48 COMPARTMENT 4	Tarà	95	64	1,05	ADD RATES	none	48,200	18,850	-8,400	9,005	5,500	1,800	
	do COSPARTIENT 4	Lided Talk	55	90	1,05	100 19428	1000	18,200	12,000	0,000	4,400	6,800	1,000	
	11 CONTRACTORY A	Loned Talk	55	20	8,95		0004	18,850	28,000	-4,653	-3,301	2,750	0.000	
	52 CONTACTORY 4	Linked Tank	55	8	1.95		1016	20.990	27.58	-0.400	-2,221	2.78	0.800	
	45 CONTRETTS	Linked Tank	95	95	1.95		1006	20.500	20,660	5,204	6,400	2,798	0.800	
	44 COMPARTMENT 4	Linked Tank	95	95	8,05		rone	27,500	28,900	-6,400	-4,201	2,796	0,800	
	COOPARTIENT 4	Linked Tark	65	66	1,05	VOD SPUCE	rone	27,500	29,900	4,015	4,400	2,190	0,000	
	ST CONSISTENT A	Linkey Tank	55		8.65		0004	10,000	18.000	4400	-3 955	1,000	0.800	
	56 CONTROLLAT 4	Linked Tank	15	10	1.95		1016	16,200	18,056	2,001	6,400	1.000	0.800	
	59 DRTY LO TANK	Tank	95	16	0		none	25.900	51,296	-2,400	2,400	6.900	0.800	
	40 SEA CHEST 58 3	Tank	95	95	63		rone	35,140	56,400	0.00	1,400	8,900	0,000	
	41 PO TANK PE 10	Tara	65	95	1		****	31,200	54,450	-2,400	9,000	8,600	0,000	
	45 000 TANK 58 11	Tate	55		6.9443	Evel Of	0004	21 200	10.100	0.000	2,600	8,000	0.000	
	44 PO TANK 50 11	Linked Tank	55	10	0.2442	Fuel OIL	0016	25,100	31.485	1,400	2,400	5,920	0.000	
	46 YO TANK 50 11	Linked Tank	95	16			rone	25.900	36.480	2,400	4,000	6.900	0.800	
	RE PO TANK PS 8	Tank	95	95	6.9443	Puel Oil	none	36,400	48,956	-5,800	0.000	2,794	0.800	
	47 PO TANK 58 0	Tanà	65	95	0.9443	Puel Oil	none	36,400	48,998	0,800	8,800	2,796	0,800	
	48 COMPARTMENT 6	Tata.	85	55	2,95	VOD SPACE	1010	29,900	38,400	4,400	6,400	2,790	0,800	
	No. NO TANK PL 8	Tark Tark	55	10	6.9443	First Cit	0004	28,800	45,900	-6,400	6,400	5,000	1,700	
	PH PO TANK PD 8	Linked Tank	10	8	0,0443	Fuel OI	1016	4,200	42,998	-1,200	0.000	2.78	0.800	
	72 PO TANK 58 T	Tank	95	95	6.9443	Puel Oil	1000	40.950	43,556	0,600	4,000	2,796	0.800	

Εικόνα 23: Room Definition

Αξίζει να σημειωθεί ότι το εσωτερικό του πλοίου πολλές φορές μπορεί να θεωρηθεί σαν μία τεράστια δεξαμενή, που αποτελείται από διάφορες άλλες μικρότερες, οι οποίες επικοινωνούν μέσω υδατοστεγών θυρών. Επομένως είναι αρκετά πιθανό η εισροή ύδατος σε περισσότερα από ένα διαμερίσματα, κατά την διάρκεια ύπαρξης ενός ρήγματος, σε ένα από αυτά.

Επιπλέον στην συγκεκριμένη μελέτη, λαμβάνονται υπόψη όλα τα εσωτερικά διαμερίσματα, εκτός του διπύθμενου, άρα και ο όγκος των δεξαμενών του. Η αιτία που δεν θεωρείται αντικείμενο έρευνας της παρούσας εργασίας, είναι επειδή τα διπύθμενα αποτελούν κλειστούς απομονωμένους χώρους που δεν έχουν καμία επικοινωνία με τα υπόλοιπα εσωτερικά ανοίγματα του πλοίου και σε περίπτωση κατάκλισής τους, το νερό θα παραμείνει μόνο στους συγκεκριμένους χώρους.

Έχοντας εισάγει όλες τις δεξαμενές και τα διαμερίσματα στο πρόγραμμα, παρατηρείται, όπως έχει προαναφερθεί, ότι η διαχωρητότητα τους διαφοροποιείται αναλόγως με την ιδιότητα του καθενός.

Spaces	Permeability
Appropriated to stores	0,60
Occupied by accommodation	0,95
Occupied by machinery	0,85
Void spaces	0,95
Intended for liquids	0 or 0,95

Πίνακας 2. 2: Διαχωρητότητα των διάφορων χώρων ενός πλοίου κατά τους κανονισμούς της S.O.L.A.S.

Σε αντίθεση με την πραγματικότητα, η διαμερισματοποίηση των υδατοστεγών χώρων του υπό μελέτη πλοίου θεωρείται ενιαία. Ειδικότερα, αποτυπώνεται ως ένα υδατοστεγές διαμέρισμα στο οποίο έχουν συμπεριληφθεί όλα τα δωμάτια, οι χώροι αναψυχής, τα εσωτερικά ανοίγματα όπως σκάλες κ.τ.λ.

Συμπληρωματικά, τα διαμερίσματα του πλοίου που εξετάζονται, θεωρούνται ως δεξαμενές (tanks) και όχι ως compartments, στις οποίες εισέρχονται συγκεκριμένες ποσότητες ύδατος με την πάροδο του χρόνου. Τέλος, η επικοινωνία μεταξύ των διαμερισμάτων πραγματοποιείται αποκλειστικά από εσωτερικά ανοίγματα, όπως είναι οι υδατοστεγείς πόρτες.

Κεφάλαιο 5:

5.1) ΠΕΡΙΠΤΩΣΙΟΛΟΓΙΚΕΣ ΜΕΛΕΤΕΣ – CASE STUDIES

5.1.1) ΧΑΡΑΚΤΗΡΗΣΤΙΚΑ ΤΗΣ ΒΛΑΒΗΣ

Στην συγκεκριμένη διπλωματική εργασία μελετήθηκε και εξετάστηκε ο τρόπος αντιμετώπισης δύο διαφορετικών δυσμενών καταστάσεων βλάβης, δηλαδή την εισροή ύδατος από ένα ρήγμα σε ένα διαμέρισμα ή την εξάπλωση και σε δεύτερο διαμέρισμα μέσω μιας υδατοστεγής πόρτας στο υπό εξέταση yacht. Αξίζει να επισημανθεί ότι οι διαστάσεις του ρήγματος και της υδατοστεγής πόρτας, είναι τυχαίες, εφόσον υποθετικά δημιουργήθηκαν και μελετήθηκαν τα συγκεκριμένα σενάρια, καθώς και ότι το ρήγμα βρίσκεται κάτωθι από την ίσαλο.

Η πρώτη περίπτωση κατάκλισης (DAMAGE CASE 1), αφορά αποκλειστικά την κατάκλυση ενός διαμερίσματος και στην αναπαράσταση των διάφορων θέσεων ευστάθειας και ισορροπίας που αποκτά το πλοίο, χωρίς η κατάκλυση όμως να επιφέρει την ανατροπή του.

Αντίστοιχα, η δεύτερη περίπτωση κατάκλισης (DAMAGE CASE 2) επικεντρώνεται στην εξάπλωση του ύδατος από ένα διαμέρισμα στο αμέσως προηγούμενο, έως την εντολή του καπετάνιου να κλείσει την υδατοστεγή αυτή πόρτα, που ενώνει τα δύο διαμερίσματα.

Εικόνα 24: Απεικόνιση σημείων dmg1 & dmg2

Εικόνα 25: Απεικόνιση διαμερισμάτων 3&4 που υπέστησαν βλάβη

5.1.2) ΠΕΡΙΠΤΩΣΙΟΛΟΓΙΚΗ ΜΕΛΕΤΗ 1

Η πρώτη περίπτωση κατάκλισης αντικατοπτρίζεται στο σημείο Damage 1, όπου υφίσταται ένα ρήγμα στο διαμέρισμα 4. Σύμφωνα με την γενική θεώρηση που ακολουθείται, το ρήγμα έχει την γεωμετρία ενός ορθογώνιου παραλληλογράμμου με εμβαδόν: $A = l * H (m^2) = 2.397 (m^2)$. Το ρήγμα αυτό θα μπορούσε να έχει οποιαδήποτε άλλη γεωμετρία.

Αναλυτικότερα, απεικονίζονται κατωτέρω οι διαστάσεις του ρήγματος:

- Μήκος ρήγματος: Ldamage = 1.41 m
- Βάθος ρήγματος: Bdamage = 1.40 m
- Υψος ρήγματος: Hdamage = 1.70 m

Στην συγκεκριμένη εκδοχή της κατάκλισης «DAMAGE 1» λόγω του ρήγματος στο σημείο αυτό, θεωρείται ότι η εισροή ύδατος γίνεται αποκλειστικά στο διαμέρισμα 4, καθώς δεν υπάρχουν υδατοστεγείς πόρτες ή άλλα ανοίγματα στην υδατοστεγή φρακτή μεταξύ των διαμερισμάτων. Παρατηρώντας όμως τη γενική διάταξη «general arrangement» του πλοίου αντιλαμβανόμαστε ότι υπάρχει μία εσωτερική σκάλα που ενώνει το tween deck με το main deck του πλοίου. Το tween deck είναι το κατώτερο και το πιο κοντινό διαμέρισμα στο διαμέρισμα «compartment» 4, καθώς βρίσκεται στο ύψος h=3.3m.

Εικόνα 26: Main Deck

Εικόνα 27: Tween Deck

Η εκδοχή κατάκλισης του διαμερίσματος «compartment» 4, ελλοχεύει έναν ακόμη μεγάλο κίνδυνο, την κατάκλυση ενός μέρους ή ολόκληρου του «main deck», κάτι το οποίο δεν είναι εύκολα διακριτό από τα σχέδια. Το συγκεκριμένο ενδεχόμενο κατάκλισης θα εξαρτηθεί πλήρως από τις κλίσεις που θα πάρει το πλοίο και αντίστοιχα το ποσοστό του διαμερίσματος που θα κατακλυστεί.

Όπως προαναφέρθηκε υφίσταται πιθανότητα κατάκλισης είτε ενός ποσοστού, είτε ολόκληρου του διαμερίσματος. Το γεγονός αυτό, βασίζεται αποκλειστικά στην ύπαρξη της υδροστατικής πίεσης για κάθε χρονική κατάσταση. Επεξηγηματικά, ο ορισμός της υδροστατικής πίεσης είναι η πίεση που ασκεί το ρευστό (θάλασσα) σε μία επιφάνεια (στην παρούσα κατάσταση).

Η πίεση αυτή οφείλεται στην εξωτερική δύναμη της βαρύτητας, δηλαδή στο βάρος του νερού που βρίσκεται ανάμεσα στην επιφάνεια της θάλασσας με το ανώτερο σημείο της επιφάνειας του κατακλυσμένου διαμερίσματος. Επομένως μένει να διαπιστωθεί αν το πλοίο θα έρθει αντιμέτωπο με μία δυσμενέστερη κατάσταση, δηλαδή την κατάκλυση και του main deck, είτε η κατάκλυση θα σταματήσει στο διαμέρισμα 4.

5.1.2.1) ΑΠΟΤΕΛΕΣΜΑΤΑ DAMAGE CASE 1

Γενικότερα το φαινόμενο μελετήθηκε συναρτήσει του χρονικού βήματος που κρίθηκε αναγκαίο για την έκβαση των αποτελεσμάτων, έχοντας ως αφετηρία την χρονική στιγμή t=0sec. που προκαλείται το ρήγμα και ξεκινάει η εισροή ύδατος, έως την τελευταία χρονική στιγμή για t=46.77sec, όπου μηδενίζεται ο ρυθμός εισροής υδάτων, άρα η παροχή, άρα και η εισροή ύδατος στο διαμέρισμα.

Εικόνα 28: Χρονική εξέλιξη του βυθίσματος

Στο ανωτέρω διάγραμμα απεικονίζεται η μεταβολή του βυθίσματος του σκάφους. Καθίσταται φανερό η αύξηση του βυθίσματος με την πάροδο του χρόνου, κάτι απολύτως λογικό, καθώς όσο αυξάνεται το χρονικό διάστημα, τόσο υφίσταται αύξηση και ο συνολικός όγκος του ύδατος που έχει εισέλθει στο διαμέρισμα (compartment 4). Παρατηρούμε βέβαια ότι όταν μειώνεται η παροχή, μειώνεται και ο ρυθμός αύξησης του βυθίσματος έως ότου σταθεροποιηθεί.

Εικόνα 29: Χρονική εξέλιξη displacement

Αντίστοιχα, ακριβώς με την ίδια λογική, το εκτόπισμα του πλοίου (displacement) αυξάνεται με την πάροδο του χρόνου, καθώς αντιστοιχεί στο συνολικό βάρος του σκάφους για κάθε χρονική στιγμή. Εδώ αξίζει να σημειωθεί, ότι η μέθοδος που λήφθηκε υπόψη, ήταν η μέθοδος του πρόσθετου βάρους και όχι της χαμένης άντωσης. Επομένως, γίνεται αντιληπτή η άμεση εξάρτηση του εκτοπίσματος από την ποσότητα του ύδατος που εισέρχεται στο διαμέρισμα όταν έχει υποστεί βλάβη, καθώς με την παρέλευση του χρόνου η συγκεκριμένη τιμή ολοένα και αυξάνεται.

Εικόνα 30: Χρονική εξέλιξη της παροχής

Εικόνα 31: Χρονική εξέλιξη του ρυθμού εισροής υδάτων

Εικόνα 32: Χρονική εξέλιξη της διαμήκης κλίσης (deg)

Εικόνα 33: Χρονική εξέλιξη διαγωγής (m)

Στα παραπάνω τέσσερα διαγράμματα παρουσιάζεται η χρονική εξέλιξη της ποσότητας ύδατος που κατακλύζει το διαμέρισμα μετρημένη σε κυβικά μέτρα (m³), ο ρυθμός εισροής ύδατος (m³/sec), καθώς και η διαμήκης κλίση που αποκτά το πλοίο (deg) και (m). Εύκολα αντιληπτό μπορεί να θεωρηθεί και να αιτιολογηθεί η αύξουσα τάση που παρουσιάζουν τα ανωτέρω διαγράμματα.

Αρχικά, η παροχή ύδατος είναι απολύτως λογικό με την πάροδο του χρόνου να παρουσιάζει μία αύξηση, καθώς δεν υπάρχει κάποιος θεωρητικά ανθρώπινος τρόπος να επισκευαστεί το πλευρικό ρήγμα και να σταματήσει η εισροή. Ο μοναδικός τρόπος για να ελαττωθεί και στο τέλος να μηδενιστεί, η εισροή, είναι ο μηδενισμός της υδροστατικής πίεσης, δηλαδή το υδροστατικό ύψος μέσα στο κατακληθέν διαμέρισμα να βρίσκεται στην ίδια ευθεία με την επιφάνεια της θάλασσας εκτός του διαμερίσματος (ίσαλο).

Δεύτερον, ο ρυθμός εισροής υδάτων γνωστός ως «flow rate», παρουσιάζει μία αύξηση από την πρώτη χρονική στιγμή που προκαλείται το ρήγμα t=0sec έως την χρονική στιγμή t=16.469sec, όπου το υδροστατικό ύψος μέσα στο διαμέρισμα ισούται με 3.2m, δηλαδή βρίσκεται στο κατώτερο σημείο του ρήγματος. Από εκείνο το σημείο και έπειτα, ο ρυθμός εισροής υδάτων ελαττώνεται αισθητά, καθώς η υδροστατική πίεση μικραίνει, έως ότου να μηδενιστεί εντελώς, όταν το επιπρόσθετο βάρους του νερού που έχει εισχωρήσει στο πλοίο, ισούται με το επιπλέον εκτόπισμα του πλοίου που έχει δημιουργηθεί λόγω της αύξησης των βυθισμάτων του.

Τρίτον, η διαμήκης κλίση γνωστή ως «trim» αποτυπώνει την κλίση που παίρνει το πλοίο κατά το διάμηκες επίπεδο. Παρατηρώντας τα διαγράμματα γίνεται αντιληπτό ότι η διαμήκης κλίση μετρούμενη είτε σε 'm' είτε σε 'deg' αυξάνεται συνεχώς καθώς εξαρτάται άμεσα από τη διαμήκη θέση του ρήγματος, την ποσότητα ύδατος και τον ρυθμό εισροής κάθε δευτερόλεπτο. Πιο λεπτομερώς, μπορεί να διατυπωθεί ότι εφόσον υφίσταται αύξηση η συνολική ποσότητα του νερού που έχει κατακλύσει το διαμέρισμα, η διαμήκης κλίση θα αυξάνεται διότι αυξάνεται το βάρος του πλοίου, πρύμνηθεν του LCF.

Εικόνα 34: Διαμήκης κλίση για t=17sec

Επιπρόσθετα, η διαγωγή στην συγκεκριμένη περίπτωση θα μπορούσε να χαρακτηριστεί πρυμναία διαγωγή, καθώς το βύθισμα που αποκτά το yacht στην πρύμνη του είναι μεγαλύτερο από το βύθισμα που αποκτά την πλώρη του. Αξίζει να επισημανθεί ότι σε αντίθεση με τις εγκάρσιες κλίσεις που μέτρο συγκρίσεις τους είναι οι μοίρες, στις διαμήκεις δεν συνηθίζεται κάτι τέτοιο καθώς οι σχετικές γωνίες που παίρνουν είναι μικρές. Για αυτόν τον λόγο, εκφράζονται πολλές φορές με την διαφορά των βυθισμάτων στην πρυμναία και πρωραία κάθετο.

Εικόνα 35: Χρονική εξέλιξη της εγκάρσιας κλίσης

Επιπλέον, διακριτά μπορούν να θεωρηθούν τα δύο από τα τρία στάδια της κατάκλισης, το μεταβατικό στάδιο και το στάδιο μόνιμης φάσης. Αρχικά όπως γνωρίζουμε το πρώτο στάδιο κατάκλισης είναι το μεταβατικό, σύμφωνα με το οποίο ξεκινάει η εισροή ύδατος στο πλοίο με αποτέλεσμα την απόκτηση κλίσεων, είτε μόνιμων είτε εξελισσόμενων. Επομένως, θα μπορούσε να θεωρηθεί ότι η ύπαρξη του συγκεκριμένου σταδίου βρίσκεται από τα πρώτα χρονικά διαστήματα της κατάκλισης, μέχρι και την τελευταία χρονική στιγμή, δηλαδή μεταξύ 0sec έως 46sec.

Επιπρόσθετα, το επόμενο στάδιο που συναντείται στην συγκεκριμένη περίπτωση μελέτης, είναι το στάδιο μόνιμης φάσης, κατά το εγκάρσιο επίπεδο, έχοντας σαν κύρια παράμετρο την αποφυγή της βύθισης ή της ανατροπής του πλοίου. Το χρονικό διάστημα που απαιτείται για να εισέλθει το πλοίο στην μόνιμη κατάσταση αποτυπώνεται ως 'T.T.F.' δηλαδή 'time-to-flood' (χρόνος κατάκλισης), όπου στην συγκεκριμένη περίπτωση ισούται με 46sec. Αξιοσημείωτο δε, είναι ότι το ενδιάμεσο στάδιο κατάκλισης δεν υφίσταται καθώς δεν πραγματοποιείται διάδοση των υδάτων σε διαμερίσματα που δεν έχουν υποστεί βλάβη δια μέσω εσωτερικών ανοιγμάτων.

Εικόνα 36: Χρονική εξέλιξη του υδροστατικού ύψους

Ένα ακόμα μέγεθος που μελετήθηκε, ήταν το υδροστατικό ύψος της επιφάνειας του νερού μέσα στο διαμέρισμα, του οποίου η τιμή προσδιορίστηκε έχοντας ως αρχή μηδέν τον πυθμένα του διαμερίσματος. Παρατηρείται ότι καθ' όλη την διάρκεια του φαινομένου, το υδροστατικό ύψος αυξάνεται, κάτι το οποίο καθίσταται απολύτως λογικό, διότι με την πάροδο του χρόνου ολοένα και αυξάνεται η ποσότητα ύδατος που βρίσκεται μέσα στο διαμέρισμα. Από την χρονική στιγμή 46,769sec στην οποία μηδενίζεται η παροχή εισροής ύδατος, το υδροστατικό ύψος του νερού που έχει εισέλθει μέσα στο διαμέρισμα, θα παραμείνει σταθερό και αμετάβλητο και θα ισούται με το βύθισμα του πλοίου στη διαμήκη θέση του ρήγματος.

5.1.3) ΠΕΡΙΠΤΩΣΙΟΛΟΓΙΚΗ ΜΕΛΕΤΗ 2

Η δεύτερη περίπτωση αφορά μία διαφορετική και πιο πολυσύνθετη διαδικασία κατάκλισης του πλοίου αναψυχής, καθώς η κατάκλυση επεκτείνεται και σε δεύτερο γειτονικό διαμέρισμα, μέσω μιας ανοιχτής υδατοστεγής πόρτας. Αναλυτικότερα απεικονίζεται στο σχήμα 28, στα σημεία Damage 1 και Damage 2. Σύμφωνα με την γενική θεώρηση που ακολουθείται, όπως και στην προηγούμενη περίπτωση, παρόλο που το ρήγμα θα μπορούσε να είχε οποιαδήποτε άλλη γεωμετρία, το ρήγμα για το σημείο DMG 1 παραμένει ενός ορθογώνιου παραλληλογράμμου με εμβαδόν:

$$A = l * h = 1.41(m) * 1.7(m) = 2.397m^2.$$

Επιπρόσθετα, η υδατοστεγής πόρτα που ενώνει τα δύο γειτονικά διαμερίσματα 3&4 και θα αποτελέσει τον τρόπο διάδοσης των υδάτων, έχει τις εξής διαστάσεις:

- Πλάτος θύρας: b = 1m
- Υψος θύρας: h = 2m

Την χρονική στιγμή της βλάβης, t=0sec, η υδατοστεγής πόρτα θεωρείται ανοιχτή, βρισκόμενη όμως σε ύψος 2m από την βασική γραμμή (base line: BL). Επομένως απαιτείται ένα χρονικό διάστημα μέχρι η στάθμη που κατακλύζει το διαμέρισμα 4, να φθάσει στο ύψος των 2m, όντας το κατώτερο σημείο της υδατοστεγής πόρτας, έτσι ώστε να ξεκινήσει να εισέρχεται νερό στο γειτονικό διαμέρισμα 3.

Η συγκεκριμένη διάδοση της κατάκλισης και σε διπλανό διαμέρισμα, εντάσσει το πλοίο σε μία αρκετά επικίνδυνη κατάσταση, κάτι που μπορεί να οδηγήσει στην βύθιση ή ακόμα και στην ανατροπή του. Η έκβαση της συγκεκριμένης θεώρησης βασίζεται στους κανονισμούς του Ι.Μ.Ο, όπου το μέγιστο επιτρεπτό όριο κατάκλισης διαμερισμάτων ανέρχεται στα δύο για επιβατηγά πλοία λαμβάνοντας υπόψη μία ντετερμινιστική προσέγγιση ευστάθειας μετά από βλάβη.

5.1.3.1) ΑΠΟΤΕΛΕΣΜΑΤΑ DAMAGE CASE 2

Όπως και στην 1^η περίπτωση που μελετήθηκε το δοθέν πλοίο, έτσι και στην 2^η όλες οι μετρήσεις και όλα τα διαγράμματα, έχουν έναν 'κοινό παρονομαστή', τον χρόνο, δηλαδή για την έκβαση των αποτελεσμάτων μελετάται πάλι το φαινόμενο συναρτήσει του χρόνου. Χρονική αφετηρία για τις μετρήσεις αποτελεί το στιγμιότυπο t=0sec, όπου προκαλείται το ρήγμα στο διαμέρισμα 4 και ξεκινάει η εισροή υδάτων.

Έπειτα η εισροή των υδάτων στο διαμέρισμα 4 εξελίσσεται για μερικά δευτερόλεπτα, έως t=6.1514sec. Εκείνο το χρονικό σημείο, αποτελεί την αφετηρία

της εισροής των υδάτων και στο γειτονικό διαμέρισμα 3, έως την τελευταία χρονική στιγμή που μελετήθηκε το φαινόμενο, θεωρώντας ότι η υδατοστεγής πόρτα κλείνει στο χρονικό στιγμιότυπο για t=100sec. Σε εκείνο το χρονικό σημείο η πληρότητα των διαμερισμάτων έχει φτάσει για το διαμέρισμα 3 στο 52,25% και αντίστοιχα για το διαμέρισμα 4 στο 87,68%.

Παρακάτω εμφανίζονται δύο τυχαίες καταστάσεις μελέτης του σκάφους:

- Για χρονική στιγμή t=35sec
- Για χρονική στιγμή t=100sec

Σκοπός εμφάνισης των κατωτέρω τυχαίων περιπτώσεων είναι, η απεικόνιση της εξέλιξης της εισροής υδάτων μέσα στα δύο γειτονικά διαμερίσματα και η αύξηση της έμπρυμνης διαγωγής στην πάροδο του χρόνου.

Εικόνα 37: Πλάγια όψη για t=0sec

Εικόνα 38: Ενδιάμεση κατάσταση για t=35sec

Εικόνα 39: Ενδιάμεση κατάσταση για t=35 sec

Εικόνα 40: Τελική κατάσταση για t=100sec

Εικόνα 41: Τελική κατάσταση για t=100sec

Εικόνα 42: Χρονική εξέλιξη του βυθίσματος

Στο παραπάνω διάγραμμα γίνεται αντιληπτή η μεταβολή του βυθίσματος του πλοίου. Με την πάροδο του χρόνου το βύθισμα υφίσταται αύξηση, κάτι απολύτως λογικό. Η αιτία της αύξησής του, είναι ότι κατά την διάρκεια πραγματοποίησης του φαινομένου, ο συνολικός όγκος του νερού που εισέρχεται στο διαμέρισμα 4 και από την χρονική στιγμή t=6.1514sec. που διαδίδεται και στο διαμέρισμα 3, συγκεντρώνεται και εγκλωβίζεται στα δύο διαμερίσματα, χωρίς να υπάρχει τρόπος διαφυγής του. Επομένως, τα έξαλα του πλοίου, ολοένα και μειώνονται, ενώ τα βυθίσματα αυξάνονται, κάτι που αποτυπώνεται στις τιμές 1st Draft: 4,144m και 38th Draft: 4,856m.

Εικόνα 43: Χρονική εξέλιξη του εκτοπιζόμενου νερού

Ακολουθώντας ακριβώς την ίδια νοοτροπία της προηγούμενης περίπτωσης, όσο το χρονικό διάστημα περνά, τόσο το εκτόπισμα του πλοίου θα έχει αυξανόμενο ρυθμό, καθώς όπως προαναφέραμε, το εκτόπισμα ορίζεται ως το βάρος του πλοίου μαζί με το νερό που εισχώρησε για κάθε κατάσταση φόρτωσης, ακολουθώντας την μεθοδολογία που αναπτύχθηκε, δηλαδή την μέθοδο του πρόσθετου βάρους. Η κατάσταση φόρτωσης για κάθε δευτερόλεπτο που περνά αυξάνεται, καθώς η ποσότητα του νερού που εισέρχεται στα διαμερίσματα συνεχίζει ακάθεκτα.

Εικόνα 44: Χρονική εξέλιξης της παροχής

Στο ανωτέρω διάγραμμα, παρατηρείται εξίσου μία αύξηση στην παροχή της ποσότητας υδάτων (m³) που έχει εισέλθει στα δύο διαμερίσματα, συναρτήσει του χρόνου:

- Για το διαμέρισμα 4, η εισροή υδάτων, η πρώτη σταγόνα ύδατος, αρχίζει με το πέρας του χρόνου, καθώς εκεί δημιουργείται το ρήγμα. Στη συνέχεια, με την πάροδο του χρόνου η ποσότητα των υδάτων ολοένα και αυξάνεται, αφού δεν υπάρχει τρόπος να διακοπεί η εισροή. Ο μοναδικός τρόπος που θα οδηγήσει σε σταθεροποίηση της συνολικής ποσότητας υδάτων, είναι να μηδενιστεί το υδροστατικό ύψος και κατ' επέκταση η υδροστατική πίεση.
- Για το διαμέρισμα 3, η εισροή υδάτων δεν ξεκινάει από την αρχή, όπως στο διαμέρισμα 4, αλλά ξεκινάει από την χρονική στιγμή t=6.15sec. Η

υδατοστεγής πόρτα είναι ανοιχτή καθ' όλη την διάρκεια του φαινομένου έως το πέρας των 100sec, βρίσκεται σε ύψος 2m, με αποτέλεσμα να απαιτείται το υδροστατικό ύψος του διαμερίσματος 4 να υπερβεί τα 2m, έτσι ώστε να ξεκινήσει να εισέρχεται νερό και στο διαμέρισμα 3. Από εκείνο το σημείο μέχρι το τέλος της μελέτης του φαινομένου, η συνολική ποσότητα ύδατος αυξάνεται συνεχώς.

Εικόνα 45: Χρονική εξέλιξη του ρυθμού εισροής υδάτων στο comp.4

Στο παραπάνω διάγραμμα απεικονίζεται η χρονική εξέλιξη του ρυθμού εισροής υδάτων για τα διαμερίσματα 3 & 4 αντίστοιχα:

- Ο Παρατηρώντας το διάγραμμα για το διαμέρισμα 4, από την στιγμή που δημιουργείται το ρήγμα t=0sec, έως την χρονική στιγμή t=6,15sec. αυξάνεται σταδιακά. Με το πέρας των 6sec, ο ρυθμός εισροής αποκτά φθίνουσα μορφή, για π.χ. για t=7sec » flow rate=12.007m³/sec. Η συγκεκριμένη μεταβολή από αύξουσα σε φθίνουσα, οφείλεται σε δύο αιτίες. Πρώτη θεωρείται στο πέρασμα των υδάτων και σε 2° διαμέρισμα και μάλιστα το γειτονικό του. Δηλαδή η συνολική ποσότητα εισροής υδάτων χωρίζεται σε δύο μέρη, ένα για το κάθε διαμέρισμα. Η δεύτερη αιτία είναι η αύξηση του υδροστατικού ύψους εντός του διαμερίσματος, έχοντας φτάσει το ύψος του ρήγματος, με αντίκτυπο ο ρυθμός εισροής υδάτων να διατηρήσει την φθίνουσα πορεία.
- Αντίστοιχα το διάγραμμα για το διαμέρισμα 3, από την χρονική στιγμή της δημιουργίας του ρήγματος, μέχρι την χρονική στιγμή που θα εισέλθει η πρώτη ποσότητα ύδατος, ο ρυθμός εισροής υδάτων έχει μηδενική τιμή. Έπειτα, από εκείνο το χρονικό στιγμιότυπο, t=6.15sec., ο ρυθμός εισροής ύδατος αρχίζει

και αυξάνεται μέχρι το υδροστατικό ύψος να φτάσει τα 2m, t=21.09sec. Στη συνέχεια αφού το υδροστατικό ύψος του διαμερίσματος ξεπεράσει τα 2m, ο ρυθμός εισροής ύδατος θα αρχίσει να μειώνεται σταδιακά.

Εικόνα 46: Χρονική εξέλιξη της διαγωγής (deg)

Εικόνα 47: Χρονική εξέλιξη της διαγωγής (m)

Όσον αφορά τα δύο διαγράμματα της διαμήκης κλίσης, έχοντας μονάδα μέτρησης το πρώτο σε μοίρες (deg) και το δεύτερο σε μέτρα (m) μπορούμε να αντιληφθούμε και να συμπεράνουμε τα εξής:

- Με την πάροδο του χρόνου παρατηρείται αύξηση της διαμήκης κλίσης, καθώς η συνολική ποσότητα εισροής υδάτων στα διαμερίσματα αυξάνεται σταδιακά.
- Εμφανέστερο μπορεί να γίνει από τα διαγράμματα του Maxsurf, όπως απεικονίζεται κατωτέρω, καθώς η διαγωγή που παίρνει το πλοίο είναι πρυμναία δηλαδή το πρυμναίο βύθισμα είναι μεγαλύτερο του πρωραίου.

Εικόνα 48: Πρυμναία διαγωγή

Εικόνα 49: Χρονική εξέλιξη εγκάρσιας κλίσης

Επιπλέον, διακριτά μπορούν να θεωρηθούν τα τρία στάδια της κατάκλισης, το μεταβατικό στάδιο, το στάδιο της προοδευτικής κατάκλισης και το στάδιο μόνιμης φάσης.

Αρχικά όπως γνωρίζουμε το πρώτο στάδιο κατάκλισης είναι το μεταβατικό, σύμφωνα με το οποίο ξεκινάει η εισροή ύδατος στο πλοίο με αποτέλεσμα την απόκτηση κλίσεων, είτε μόνιμων είτε εξελισσόμενων. Επομένως, θα μπορούσε να θεωρηθεί ότι η ύπαρξη του συγκεκριμένου σταδίου βρίσκεται από τα πρώτα χρονικά διαστήματα της κατάκλισης έως την χρονική στιγμή t=6,15sec δηλαδή μεταξύ 0sec έως 6,15sec.

Επιπρόσθετα, το επόμενο στάδιο που συναντείται στην συγκεκριμένη περίπτωση μελέτης, είναι το στάδιο μόνιμης φάσης, έχοντας σαν κύρια παράμετρο την αποφυγή της βύθισης ή της ανατροπής του πλοίου. Το χρονικό διάστημα που απαιτείται για να εισέλθει το πλοίο στην μόνιμη κατάσταση εγκάρσιας κλίσης αποτυπώνεται ως 'T.T.F.' δηλαδή 'time-to-flood' (χρόνος κατάκλισης), όπου στην συγκεκριμένη περίπτωση ισούται με 100sec.

Αξιοσημείωτο δε, είναι ότι στο ενδιάμεσο στάδιο προοδευτικής κατάκλισης πραγματοποιείται διάδοση των υδάτων σε διαμερίσματα που δεν έχουν υποστεί εξωτερική βλάβη. Αποτέλεσμα της διάδοσης υδάτων σε γειτονικό διαμέρισμα, είναι η αύξηση της εγκάρσιας κλίσης και αφετέρου η μείωση του μετακεντρικού ύψους λόγω της δημιουργίας ελευθέρων επιφανειών. Δηλαδή για το χρονικό διάστημα t=6,15sec έως t=100sec, όπου κλείνει η υδατοστεγής θύρα.

Εικόνα 50: Χρονική εξέλιξη υδροστατικού ύψους comp.4

Εικόνα 51: Χρονική εξέλιξη υδροστατικού ύψους comp.3

Ένα ακόμα υδροστατικό μέγεθος που καταγράφηκε, ήταν το υδροστατικό ύψος της επιφάνειας του νερού μέσα στα δύο διαμερίσματα που κατακλίσθηκαν από ύδατα. Η τιμή και των δύο υδροστατικών υψών προσδιορίστηκε έχοντας ως βάση μηδέν, τον πυθμένα του εκάστου διαμερίσματος.

Κατά την διάρκεια εκτέλεσης του φαινομένου, το υδροστατικό ύψος για το διαμέρισμα 4 από την χρονική στιγμή μηδέν (t=0sec) έως την τελευταία χρονική στιγμή (t=100sec), υφίσταται συνεχόμενη αύξηση είτε με μεγαλύτερο είτε με μικρότερο ρυθμό. Στην χρονική στιγμή t=6,1514sec, η συνολική ποσότητα εισροής υδάτων στο διαμέρισμα 4, χωρίζεται σε αντίστοιχη ποσότητα στα δύο διαμερίσματα, καθώς μεταβαίνουν και στο διαμέρισμα 3 ύδατα. Από την τελευταία χρονική στιγμή του φαινομένου (t=100sec) και έπειτα, το υδροστατικό ύψος στο διαμέρισμα 4, θα αυξηθεί ελάχιστα, έως την χρονική στιγμή όπου εισροή υδάτων θα σταματήσει, έτσι ώστε να παραμείνει σταθερό.

Αντίθετα για το διαμέρισμα 3 το υδροστατικό ύψος παραμένει στην τιμή μηδέν, μέχρι το υδροστατικό ύψος στο διαμέρισμα 4 να φτάσει στα 2m, αφού δεν εισέρχονται ύδατα. Από εκείνη την χρονική στιγμή t=6,1514sec και έπειτα, ξεκινά η εισροή υδάτων και στο διαμέρισμα 3, με αποτέλεσμα να ακολουθά αυξανόμενο ρυθμό, έως την χρονική στιγμή t=100sec. όπου μελετήθηκε η εισροή υδάτων.

Κεφαλαίο 6:

6.1) ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΥΣΤΑΘΕΙΑΣ

Στο συγκεκριμένο κεφάλαιο θα διατυπωθούν και θα αναλυθούν τα αποτελέσματα της ευστάθειας του υπό εξέταση πλοίου, για τις δύο περιπτώσεις που μελετήσαμε. Αρχικά στην περίπτωση της άθικτης ευστάθειας και ύστερα στην περίπτωση της ευστάθειας μετά από βλάβη.

Η έννοια της ευστάθειας του πλοίου, ορίζεται ως η δυνατότητα που εμφανίζει το πλοίο να αντιστέκεται σε οποιαδήποτε εγκάρσια ή διαμήκη κλίση, καθώς και στην τάση να επανέρχεται στην 'αρχική του θέση ισορροπίας'. Επιπρόσθετα για ένα πλοίο, ο μεγαλύτερος κίνδυνος ανατροπής του κατά την άθικτη κατάσταση βρίσκεται κατά την συμπεριφορά του στα πλευρικά κύματα που δέχεται, δηλαδή στις εγκάρσιες κλίσεις που μπορεί να αποκτήσει. Επομένως, το συγκεκριμένο φαινόμενο είναι γνωστό ως διατοιχισμός «roll» και ο κατάλληλος τρόπος αντιμετώπισής του, που θεωρείται ζωτικής σημασίας, είναι η γνώση της ευστάθειας ενός πλοίου.

6.1.1) ΑΘΙΚΤΗ ΕΥΣΤΑΘΕΙΑ

Για την περίπτωση της άθικτης ευστάθειας εφάρμοσα τις δύο εξής εντολές του προγράμματος Maxsurf, «equilibrium» & «large angle stability» με σκοπό την εύρεση και την λεπτομερή απεικόνιση των κατωτέρω αποτελεσμάτων. Επιγραμματικά οι πίνακες αναφέρονται ως:

- ↓ Tanks of intact load case 50%
- Hydrostatic data
- 4 Key points
- \rm GZ curve
- Stability data & hydrostatic coefficients functions of heel (deg)
- Stability criteria

6.1.1.1) EQUILIBRIUM CALCULATION

Loadcase - 50%

- Damage Case Intact
- Free to Trim
- Specific gravity = 1,025; (Density = 1,025 tonne/m^3)
- Fluid analysis method: Use corrected VCG

Item Name	Quantity	Unit Mass tonne	Total Mass tonne	Unit Volume m^3	Total Volume m^3	Long. Arm m	Trans. Arm m	Vert. Arm m	FSM Type
Lightship	1	1565,067	1565,067			28,243	0,000	5,941	User Specified
Crew	29	2,175	63,075			38,000	0,000	5,800	User Specified
Guest	12	0,900	10,800			38,000	0,000	8,600	User Specified
Total LS			1638,942			28,683	0,000	5,953	
WB									
TANKS									
WB TANK 1	100%	29,916	29,916	29,186	29,186	64,582	-0,021	2,529	Maximum
WB TANK 2 GREY WATER	100%	39,796	39,796	38,825	38,825	54,901	-0,019	1,700	User Specified
WB TANK 15 SB	50%	31,463	15,732	30,696	15,348	23,914	1,427	0,305	User Specified
WB TANK 16 PS	50%	31,497	15,748	30,728	15,364	23,912	-1,428	0,304	User Specified
WB SB 23	50%	21,341	10,671	20,821	10,410	8,020	1,626	2,174	User Specified
WB PS 22	50%	23,221	11,611	22,655	11,327	8,034	-1,627	2,195	User Specified
WB PS 25	50%	1,556	0,778	1,518	0,759	-1,926	-3,444	5,092	Maximum
TOTAL WB TANKS	69,5%	178,790	124,251	174,429	121,221	40,619	-0,045	1,654	
FW									
TANKS									
FW TANK 3	50%	34,451	17,226	34,451	17,226	49,627	-0,017	1,134	Maximum
FW TANK PS 4	50%	28,578	14,289	28,578	14,289	46,031	-1,332	1,083	Maximum
FW TANK SB 5	50%	28,275	14,137	28,275	14,137	46,029	1,322	1,088	Maximum
FW 20 PS	50%	12,421	6,210	12,421	6,210	14,075	-3,868	1,596	Maximum
FW 21 SB	50%	12,338	6,169	12,338	6,169	14,071	3,865	1,599	Maximum
TOTAL FW TANKS	50%	116,064	58,032	116,064	58,032	40,281	-0,014	1,209	
FO									
TANKS									
FO TANK PS 6	50%	21,329	10,665	22,587	11,294	42,101	-1,857	1,022	Maximum
FO TANK SB 7	50%	23,025	11,513	24,383	12,192	42,206	1,719	1,001	Maximum
FO TANK PS 8	50%	49,038	24,519	51,931	25,965	38,581	-2,074	0,932	Maximum

Πίνακας 1: Tanks-Intact-Load Case 50%

FO TANK SB 9	50%	48,770	24,385	51,646	25,823	38,580	2,063	0,933	Maximum
FO TANK PS 10	50%	17,204	8,602	17,204	8,602	33,463	-1,848	0,293	Maximum
FO TANK SB 11	50%	14,771	7,385	15,642	7,821	33,217	1,969	0,300	Maximum
FO PS 14	50%	1,836	0,918	1,945	0,972	28,602	-3,660	0,405	Maximum
FO 19	50%	53,709	26,855	56,878	28,439	14,336	-0,002	0,787	Maximum
FO 19A	50%	6,508	3,254	6,508	3,254	14,950	0,950	1,425	Maximum
FO SB 24	50%	1,434	0,717	1,519	0,759	-1,926	3,445	5,091	Maximum
TOTAL FO TANKS	50%	237,626	118,813	250,244	125,122	32,095	0,002	0,863	
.LO TANKS									
DIRTY LO TANK	50%	4,638	2,319	5,153	2,576	30,550	-0,001	0,248	Maximum
SLUDGE TANK 13	50%	1,800	0,900	2,000	1,000	28,287	3,581	0,395	Maximum
LO STORAG E 18 PS	50%	1,799	0,899	1,999	0,999	19,520	-5,074	1,622	Maximum
LO STORAG E 17 SB	50%	2,737	1,368	3,041	1,520	19,863	5,080	1,615	Maximum
TOTAL LO TANKS	50%	10,973	5,486	12,192	6,096	25,706	1,022	0,838	
.MISCEL LANEOU S TANKS									
HYDRA ULIC OIL TANK PS	50%	0,922	0,461	1,025	0,512	20,478	-5,133	1,600	Maximum
SUMP. S1	50%	1,313	0,657	1,281	0,641	7,181	3,313	2,870	Maximum
SUMP. S	50%	1,000	0,500	1,111	0,556	52,650	0,750	2,850	Maximum
SUMP. S	50%	1,554	0,777	1,727	0,863	61,742	-0,021	2,614	Maximum
SEA	500/	1.000	0.012	2.020	1.014	20.251	2 2 2 2 7	0.205	
PS 1	50%	1,826	0,913	2,029	1,014	29,251	-2,287	0,305	Maximum
SEA CHEST SB 2	50%	1,824	0,912	2,027	1,013	29,251	2,287	0,306	Maximum
SEA CHEST SB 3	50%	1,364	0,682	1,515	0,758	35,749	0,683	0,242	Maximum
CHAIN LOCKER	100%	9,552	9,552	10,613	10,613	61,953	-0,020	4,849	Maximum
Tank109	100%	2,976	2,976	2,976	2,976	62,079	-0,021	0,888	Maximum
TOTAL MISC. TANKS	78,05%	22,332	17,430	24,304	18,947	54,088	0,022	3,199	
IANKS									
COMPA	0%	52,988	0,000	55,776	0,000	0,000	0,000	3,100	Maximum

RTMENT 1									
COMPA RTMENT 2	0%	190,716	0,000	200,754	0,000	5,197	-0,020	2,200	Maximum
COMPA RTMENT 3	0%	325,647	0,000	342,786	0,000	18,096	-0,371	0,286	Maximum
COMPA RTMENT 4	0%	511,884	0,000	538,825	0,000	27,217	-2,134	0,138	Maximum
COMPA RTMENT 5	0%	507,681	0,000	534,401	0,000	33,089	-0,011	0,900	Maximum
COMPA RTMENT 6	0%	231,655	0,000	243,847	0,000	43,647	-0,045	0,000	Maximum
COMPA RTMENT 7	0%	214,434	0,000	225,720	0,000	51,675	-0,017	0,000	Maximum
COMPA RTMENT 8	0%	35,487	0,000	37,355	0,000	59,799	-0,020	0,000	Maximum
Total Loadcase			1962,954	2756,698	329,417	30,205	0,000	5,194	
FS correction								0,302	
fluid								5,496	

Στον πίνακα 1 αναγράφονται λεπτομερώς τα αποτελέσματα της άθικτης ευστάθειας για όλες τις δεξαμενές και όλα τα διαμερίσματα που απαρτίζουν το πλοίο. Επίσης αναφέρονται και πληροφορίες για το βάρος του άφορτου σκάφους (Lightship), καθώς και για το πλήρωμα και τους επιβάτες. Αξιοσημείωτες είναι οι δύο τελευταίες γραμμές του πίνακα, όπου:

- η πρώτη αναφέρεται στο FS correction = 0,302m, δηλαδή η διόρθωση λόγω των ελεύθερων επιφανειών «free surfaces»,
- η δεύτερη αναφέρεται στο VCG Fluid = 5,496m, δηλαδή ότι η κατακόρυφη θέση του κέντρου βάρους με την επίδραση των ελεύθερων επιφανειών, βρίσκεται στα 5,496m.

Draft Amidships m	4,144
Displacement t	1963
Heel deg	1,2
Draft at FP m	4,168
Draft at AP m	4,119
Draft at LCF m	4,141
Trim (+ve by stern) m	-0,048
WL Length m	67,531
Beam max extents on WL m	12,821
Wetted Area m ²	984,370

Πίνακας 2: Hydrostatic data
Waterpl. Area m ²	649,362
Prismatic coeff. (Cp)	0,601
Block coeff. (Cb)	0,531
Max Sect. area coeff. (Cm)	0,889
Waterpl. area coeff. (Cwp)	0,750
LCB from zero pt. (+ve fwd) m	30,207
LCF from zero pt. (+ve fwd) m	28,455
KB m	2,423
KG fluid m	5,496
BMt m	3,549
BML m	88,413
GMt corrected m	0,475
GML m	85,339
KMt m	5,971
KML m	90,818
Immersion (TPc) tonne/cm	6,656
MTc tonne.m	25,772
RM at 1deg = GMt.Disp.sin(1) tonne.m	16,260
Max deck inclination deg	1,1722
Trim angle (+ve by stern) deg	-0,0427

Στον πίνακα 2 αναγράφονται όλα τα υδροστατικά στοιχεία του πλοίου στην άθικτη κατάσταση, για παράδειγμα το εκτόπισμα (Displacement), η διαγωγή (trim), το πλάτος (Beam), το μετακεντρικό ύψος (GM), η ροπή επαναφοράς (MTc = Moment of change trim), καθώς και διάφοροι υδροστατικοί συντελεστές, όπως είναι πρισματικός συντελεστής Cp, ο συντελεστής μέσης τομής Cm.

Πίνακας 3: Key points

Key point	Туре	Freeboard m
Margin Line (freeboard pos = -2,725 m)		3,355
Deck Edge (freeboard pos = -2,725 m)		3,431
EXTENDED SHELL OPENING	Potential downflooding point	-1,019
WATERTIGHT DOOR*	Downflooding point	-2,133

Στον πίνακα 3 αποτυπώνονται μερικά δεδομένα για τα έξαλα του πλοίου σε σχέση με τα γνωστά σημεία κλειδιά 'key points', τα οποία αποτελούν την βάση για την ορθή επίλυση του υπολογισμού της υδροστατικής στήλης σε ένα διαμέρισμα. Αναφέρονται:

- <u>'margin line'</u>: μία νοητή γραμμή η οποία αποτυπώνεται 76mm κάτω από το κύριο κατάστρωμα του πλοίου.
- <u>'deck edge':</u> θεωρούνται τα άκρα του καταστρώματος, δηλαδή το δεξί και το αριστερό, μιας πρόσοψης ενός πλοίου. Παρακάτω εμφανίζονται αναλυτικότερα με τις πορτοκαλί κουκίδες:

Εικόνα 52: Σημεία deck edge (marinegyaan, 2020)

- <u>'extended shell opening:</u> το πλευρικό ρήγμα που δημιουργήθηκε στο πλοίο.
- <u>'watertight door'</u>: η υδατοστεγής πόρτα που ενώνει το διαμέρισμα 4 με το διαμέρισμα 3.
- <u>'freeboard' (m):</u> τα έξαλα του πλοίου.

6.1.1.2.) LARGE ANGLE STABILITY

Stability calculation

Loadcase - 50%

- Damage Case Intact
- Free to Trim
- Specific gravity = 1,025; (Density = 1,025 tonne/m^3)
- Fluid analysis method: Use corrected VCG

Πίνακας 4: Tanks-Intact-Load Case 50%

Item Name	Quantity	Unit Mass tonne	Total Mass tonne	Unit Volume m^3	Total Volume m^3	Long. Arm m	Trans. Arm m	Vert. Arm m	FSM Type
Lightship	1	1565,067	1565,067			28,243	0,000	5,941	User Specified
Crew	29	2,175	63,075			38,000	0,000	5,800	User Specified
Guest	12	0,900	10,800			38,000	0,000	8,600	User Specified
Total LS			1638,942			28,683	0,000	5,953	
.WB TANKS									
WB TANK 1	100%	29,916	29,916	29,186	29,186	64,582	-0,021	2,529	Maximum
WB TANK 2 GREY WATER	100%	39,796	39,796	38,825	38,825	54,901	-0,019	1,700	User Specified
WB TANK 15 SB	50%	31,463	15,732	30,696	15,348	23,914	1,427	0,305	User Specified
WB TANK	50%	31,497	15,748	30,728	15,364	23,912	-1,428	0,304	User

16 PS									Specified
WB SB 23	50%	21,341	10,671	20,821	10,410	8,020	1,626	2,174	User Specified
WB PS 22	50%	23,221	11,611	22,655	11,327	8,034	-1,627	2,195	User Specified
WB PS 25	50%	1,556	0,778	1,518	0,759	-1,926	-3,444	5,092	Maximum
TOTAL WB TANKS	69,5%	178,790	124,251	174,429	121,221	40,619	-0,045	1,654	
.FW TANKS	500/	24.451	17.00(24.451	17.00(40 (27	0.017	1 1 2 4	
FW TANK 3	50%	34,451	17,226	34,451	17,226	49,627	-0,017	1,134	Maximum
PS 4	50%	28,578	14,289	28,578	14,289	46,031	-1,332	1,083	Maximum
FW TANK SB 5	50%	28,275	14,137	28,275	14,137	46,029	1,322	1,088	Maximum
FW 20 PS	50%	12,421	6,210	12,421	6,210	14,075	-3,868	1,596	Maximum
FW 21 SB	50%	12,338	6,169	12,338	6,169	14,071	3,865	1,599	Maximum
TANKS	50%	116,064	58,032	116,064	58,032	40,281	-0,014	1,209	
FOTANKS									
FO TANK	50%	21,329	10,665	22,587	11,294	42,101	-1,857	1,022	Maximum
FO TANK	50%	23,025	11,513	24,383	12,192	42,206	1,719	1,001	Maximum
FO TANK	50%	49,038	24,519	51,931	25,965	38,581	-2,074	0,932	Maximum
FO TANK	50%	48,770	24,385	51,646	25,823	38,580	2,063	0,933	Maximum
FO TANK PS 10	50%	17,204	8,602	17,204	8,602	33,463	-1,848	0,293	Maximum
FO TANK SB 11	50%	14,771	7,385	15,642	7,821	33,217	1,969	0,300	Maximum
FO PS 14	50%	1,836	0,918	1,945	0,972	28,602	-3,660	0,405	Maximum
FO 19	50%	53,709	26,855	56,878	28,439	14,336	-0,002	0,787	Maximum
FO 19A	50%	6,508	3,254	6,508	3,254	14,950	0,950	1,425	Maximum
FO SB 24	50%	1,434	0,717	1,519	0,759	-1,926	3,445	5,091	Maximum
TOTAL FO TANKS	50%	237,626	118,813	250,244	125,122	32,095	0,002	0,863	
LOTANU									
LOTANKS									
TANK	50%	4,638	2,319	5,153	2,576	30,550	-0,001	0,248	Maximum
SLUDGE TANK 13	50%	1,800	0,900	2,000	1,000	28,287	3,581	0,395	Maximum
LO STORAGE 18 PS	50%	1,799	0,899	1,999	0,999	19,520	-5,074	1,622	Maximum
LO STORAGE 17 SB	50%	2,737	1,368	3,041	1,520	19,863	5,080	1,615	Maximum
TOTAL LO TANKS	50%	10,973	5,486	12,192	6,096	25,706	1,022	0,838	
.MISCELLA NEOUS TANKS									
HYDRAULI C OIL TANK PS	50%	0,922	0,461	1,025	0,512	20,478	-5,133	1,600	Maximum
SUMP. S1	50%	1,313	0,657	1,281	0,641	7,181	3,313	2,870	Maximum
SUMP. S 2	50%	1,000	0,500	1,111	0,556	52,650	0,750	2,850	Maximum
SUMP. S 3	50%	1,554	0,777	1,727	0,863	61,742	-0,021	2,614	Maximum
SEA CHEST	50%	1,826	0,913	2,029	1,014	29,251	-2,287	0,305	Maximum

PS 1									
SEA CHEST SB 2	50%	1,824	0,912	2,027	1,013	29,251	2,287	0,306	Maximum
SEA CHEST SB 3	50%	1,364	0,682	1,515	0,758	35,749	0,683	0,242	Maximum
CHAIN LOCKER	100%	9,552	9,552	10,613	10,613	61,953	-0,020	4,849	Maximum
Tank109	100%	2,976	2,976	2,976	2,976	62,079	-0,021	0,888	Maximum
TOTAL MISC. TANKS	78,05%	22,332	17,430	24,304	18,947	54,088	0,022	3,199	
COMPART MENT 1	0%	52,988	0,000	55,776	0,000	0,000	0,000	3,100	Maximum
COMPART MENT 2	0%	190,716	0,000	200,754	0,000	5,197	-0,020	2,200	Maximum
COMPART MENT 3	0%	325,647	0,000	342,786	0,000	18,096	-0,371	0,286	Maximum
COMPART MENT 4	0%	511,884	0,000	538,825	0,000	27,217	-2,134	0,138	Maximum
COMPART MENT 5	0%	507,681	0,000	534,401	0,000	33,089	-0,011	0,900	Maximum
COMPART MENT 6	0%	231,655	0,000	243,847	0,000	43,647	-0,045	0,000	Maximum
COMPART MENT 7	0%	214,434	0,000	225,720	0,000	51,675	-0,017	0,000	Maximum
COMPART MENT 8	0%	35,487	0,000	37,355	0,000	59,799	-0,020	0,000	Maximum
Total Loadcase			1962,954	2756,698	329,417	30,205	0,000	5,194	
FS correction								0,302	
VCG fluid								5,496	

Στον πίνακα 4, για το run 'large angle stability' αναγράφονται με τον ίδιο τρόπο λεπτομερώς, όπως εμφανίζονται και στον πίνακα 1, τα αποτελέσματα της άθικτης ευστάθειας για όλες τις δεξαμενές και όλα τα διαμερίσματα που απαρτίζουν το πλοίο. Αξιοσημείωτες είναι οι δύο τελευταίες γραμμές του πίνακα, όπου:

- η πρώτη αναφέρεται στο FS correction = 0,302m, δηλαδή η διόρθωση λόγω των ελεύθερων επιφανειών «free surfaces»,
- η δεύτερη αναφέρεται στο VCG Fluid = 5,496m, δηλαδή ότι η κατακόρυφη θέση του κέντρου βάρους με την επίδραση των ελεύθερων επιφανειών, βρίσκεται στα 5,496m.

Εικόνα 53: Gz-φ, 50% Loadcase, Intact

Στο ανωτέρω πλαίσιο που εμφανίζεται η 'εικόνα 60', αποτυπώνεται η καμπύλη στατικής ευστάθειας GZ-Φ. Πιο συγκεκριμένα, ο μοχλοβραχίονας επαναφοράς GZ (m) είναι μία συνάρτηση της γωνίας εγκάρσιας κλίσεως (heel).

- Από το σημείο μηδέν έως το σημείο που εμφανίζεται το μέγιστο GZ (GZmax = 0,639m at 49.5deg), το πλοίο θα βρίσκεται σε κατάσταση ευσταθής ισορροπίας (GM>0), δηλαδή σε περίπτωση που αποκτήσει κάποια στιγμιαία κλίση, έχει την δυνατότητα το πλοίο να επανέλθει στην αρχική του θέση ισορροπίας.
- Από το μέγιστο σημείο (GZmax) μέχρι το σημείο στο οποίο η καμπύλη θα τέμνει τον οριζόντιο άξονα, το πλοίο μεταβαίνει στην κατάσταση ουδέτερης ισορροπίας (GM=0), έχοντας την δυνατότητα πάλι να επανέλθει στην αρχική του θέση ισορροπίας.
- Από το σημείο τομής του οριζοντίου άξονα με την καμπύλη και έπειτα, καθώς βρισκόμαστε κάτω από τον οριζόντιο άξονα, το πλοίο εισέρχεται στην κατάσταση αρνητικής ισορροπίας (GM<0), την λεγόμενη αστάθεια. Αποτέλεσμα είναι η ανατροπή του πλοίου

Heel to Starboard deg	-10,0	-5,0	0,0	5,0	10,0	15,0	20,0	25,0	30,0	35,0	40,0	45,0	50,0	55,0	60,0
GZ m	-0,098	-0,052	-0,010	0,033	0,079	0,132	0,194	0,265	0,346	0,437	0,538	0,616	0,638	0,612	0,553
Area under GZ curve from zero heel m.deg	0,5273	0,1531	-0,0088	0,0563	0,3330	0,8587	1,670 7	2,813 8	4,338 1	6,289 9	8,728 9	11,63 31	14,78 91	17,93 16	20,85 36
Displaceme nt t	1963	1963	1963	1963	1963	1963	1963	1963	1963	1963	1963	1963	1963	1963	1963

Πίνακας 5: Stability data & hydrostatic coefficients functions of heel (deg)

Draft at FP m	4,152	4,163	4,169	4,165	4,160	4,144	4,116	4,069	3,996	3,885	3,719	3,515	3,289	3,024	2,692
Draft at AP m	4,088	4,112	4,118	4,113	4,087	4,045	3,981	3,891	3,767	3,597	3,364	3,060	2,691	2,240	1,675
WL Length m	67,532	67,533	67,532	67,532	67,532	67,527	67,51 5	67,49 4	67,46 0	67,41 5	67,39 5	69,79 1	70,36 6	70,59 2	70,70 1
Beam max extents on WL m	12,952	12,856	12,819	12,856	12,952	13,076	13,21 5	13,36 0	13,46 1	13,49 1	13,31 6	12,28 1	11,40 0	10,69 0	10,13 2
Wetted Area m^2	987,012	985,197	983,588	985,209	987,025	989,746	997,9 76	1000, 457	1004, 304	1012, 361	1023, 286	1034, 555	1043, 706	1049, 459	1052, 970
Waterpl. Area m^2	655,537	650,963	649,248	650,987	655,537	661,557	668,7 38	677,6 34	688,2 47	700,8 44	713,5 40	691,8 63	665,1 50	641,7 28	624,9 23
Prismatic coeff. (Cp)	0,604	0,602	0,601	0,602	0,604	0,609	0,614	0,621	0,629	0,638	0,646	0,633	0,636	0,641	0,645
Block coeff. (Cb)	0,487	0,516	0,531	0,516	0,487	0,460	0,435	0,416	0,401	0,393	0,395	0,412	0,442	0,472	0,501
LCB from zero pt. (+ve fwd) m	30,207	30,207	30,211	30,202	30,208	30,210	30,21 2	30,21 3	30,21 5	30,21 7	30,21 9	30,22 1	30,22 5	30,22 9	30,23 2
LCF from zero pt. (+ve fwd) m	28,503	28,464	28,458	28,460	28,504	28,615	28,79 9	29,03 7	29,32 3	29,67 1	30,08 2	30,55 5	31,07 8	31,61 1	32,04 9
Max deck inclination deg	10,0002	5,0002	0,0451	5,0002	10,0002	15,0002	20,00 03	25,00 04	30,00 05	35,00 05	40,00 06	45,00 07	50,00 08	55,00 10	60,00 10
Trim angle (+ve by stern) deg	-0,0563	-0,0453	-0,0451	-0,0453	-0,0641	-0,0878	- 0,119 1	- 0,157 4	0,201 8	- 0,254 4	0,313 5	- 0,400 7	- 0,527 8	- 0,690 2	- 0,896 3

Στον ανωτέρω πίνακα, αναγράφονται πληροφορίες σχετικά με υδροστατικά δεδομένα συναρτήσει της εγκάρσιας γωνίας κλίσης «heel», όπως είναι ο μοχλοβραχίονας επαναφοράς GZ, το εκτόπισμα Displacement, η βρεχόμενη επιφάνεια wetted area, η γωνία διαγωγής trim angle, το διάμηκες κέντρο άνωσης (LCB= Longitudinal Center of Buoyancy), το διάμηκες κέντρο πλευστότητας (LCF= Longitudinal Center of Flotation), καθώς και διάφοροι υδροστατικοί συντελεστές, όπως είναι πρισματικός συντελεστής Cp.

Πίνακας 6: Key points

Key point	Туре	Imm ersio n angle deg	Emer gence angle deg	Freebo ard at 0,0 deg m	Freebo ard at 5,0 deg m	Freebo ard at 10,0 deg m	Freebo ard at 15,0 deg m	Free boar d at 20,0 deg m	Free boar d at 25,0 deg m	Free boar d at 30,0 deg m	Free boar d at 35,0 deg m	Free boar d at 40,0 deg m	Free boar d at 45,0 deg m	Free boar d at 50,0 deg m	Free boar d at 55,0 deg m	Free boar d at 60,0 deg m
Margin Line (immersion pos = 36,851 m)		38,5	n/a	3,457	3,022	2,586	2,146	1,707	1,275	0,857	0,391		_ 0,709	1,250	- 1,788	2,317
Deck Edge (immersion pos = 36,851 m)		39	n/a	3,533	3,097	2,660	2,217	1,775	1,341	0,919	0,454	_ 0,109	0,655	- 1,201	- 1,744	2,279
EXTENTE D SHELL OPENING	Poten tial down floodi ng point	0	Not emer ged in positi ve range	-0,937	-1,277	-1,595	-1,887	2,149	2,376	2,564	2,707	2,797	2,848	2,879	2,892	2,889
WATERTI GHT DOOR*	Down floodi ng point	0	59,6	-2,133	-2,120	-2,076	-2,002	1,897	- 1,759	1,586	-1,374	_ 1,121	0,840	0,552	0,264	0,020

Στον πίνακα 6 αποτυπώνονται μερικά δεδομένα, γνωστά ως σημεία κλειδιά 'key points' συναρτήσει των εξάλλων για διάφορες γωνίες, συναρτήσει της γωνίας εκτάτου ανάγκης καθώς και της γωνίας βυθίσεως, τα οποία αποτελούν την βάση για την ορθή επίλυση του προβλήματος.

Code	Criteria	Value	Units	Actual	Status	Margin %
11.2.1.1 Monohulls	11.2.1.1.1a Area 0 to 30	3,1513	m.deg	4,3381	Pass	+37,66
11.2.1.1 Monohulls	11.2.1.1.1b Area 0 to 40	5,1566	m.deg	8,7289	Pass	+69,28
11.2.1.1 Monohulls	11.2.1.1.2 Area 30 to 40	1,7189	m.deg	4,3909	Pass	+155,45
11.2.1.1 Monohulls	11.2.1.1.3 Max GZ at 30 or greater	0,200	m	0,638	Pass	+219,00
11.2.1.1 Monohulls	11.2.1.1.4 Angle of maximum GZ	25,0	deg	49,5	Pass	+98,18
11.2.1.1 Monohulls	11.2.1.1.5 Initial GMt	0,150	m	0,473	Pass	+215,33

Πίνακας 7: Stability criteria

Στον συγκεκριμένο πίνακα 7, αναγράφονται τα κριτήρια, σύμφωνα με τον κώδικα LY3 (Large Commercial Yacht Code), [Chapter:11.2.1.1 για την άθικτη ευστάθεια και Chapter: 11.3.1 & 11.3.4 για την κατάσταση μετά από βλάβη) για διάφορες γωνίες σύμφωνα με τα οποία πραγματοποιούνται οι υπολογισμοί, οι τιμές που παίρνει το πλοίο, οι μονάδες μέτρησης, αν το πλοίο πληρεί το κάθε κριτήριο ξεχωριστά και τέλος το ποσοστό της οριακής γραμμής «margin line».

6.1.2) DAMAGE CASE

Αντίστοιχα και για την περίπτωση της κατάστασης μετά από βλάβη αξιοποίησα τις δύο εξής εντολές του προγράμματος Maxsurf, «equilibrium» & «large angle stability» με σκοπό την εύρεση και την λεπτομερή απεικόνιση των κατωτέρω αποτελεσμάτων. Επιγραμματικά οι πίνακες αναφέρονται ως:

- ♣ Tanks of intact load case 50%
- Hydrostatic data
- 📥 Key points
- \rm 📕 GZ curve
- Stability data & hydrostatic coefficients functions of heel (deg)
- \rm Stability criteria

6.1.2.1) EQUILIBRIUM CALCULATION

Loadcase - 50%

- Damage Case DCase 1
- Free to Trim
- Specific gravity = 1,025; (Density = 1,025 tonne/m^3)
- Compartments Damaged -
- Compartment or Tank Status Perm.% PartFlood.% PartFlood.WL
- COMPARTMENT $3 \rightarrow$ Fully flooded 95
- COMPARTMENT 4 \rightarrow Fully flooded 95
- Fluid analysis method: Use corrected VCG

Πίνακας 8: Tanks-Damage Case-Loadcase 50%

Item Name	Quantity	Unit Mass tonne	Total Mass tonne	Unit Volume m^3	Total Volume m^3	Long. Arm m	Trans. Arm m	Vert. Arm m	FSM Type
Lightship	1	1565,067	1565,067			28,243	0,000	5,941	User Specified
Crew	29	2,175	63,075			38,000	0,000	5,800	User Specified
Guest	12	0,900	10,800			38,000	0,000	8,600	User Specified
Total LS			1638,942			28,683	0,000	5,953	
.WB TANKS									
WB TANK 1	100%	29,916	29,916	29,186	29,186	64,582	-0,021	2,529	Maximum
WB TANK 2 GREY WATER	100%	39,796	39,796	38,825	38,825	54,901	-0,019	1,700	User Specified
WB TANK 15 SB	50%	31,463	15,732	30,696	15,348	23,914	1,427	0,305	User Specified

						1		1	TT
WB TANK 16 PS	50%	31,497	15,748	30,728	15,364	23,912	-1,428	0,304	User Specified
WB SB 23	50%	21,341	10,671	20,821	10,410	8,020	1,626	2,174	User Specified
WB PS 22	50%	23,221	11,611	22,655	11,327	8,034	-1,627	2,195	User Specified
WB PS 25	50%	1,556	0,778	1,518	0,759	-1,926	-3,444	5,092	Maximum
TOTAL WB	60.50/	179 700	124.251	174 420	121 221	40.610	0.045	1 65 4	
TANKS	69,3%	178,790	124,231	1/4,429	121,221	40,019	-0,043	1,034	
.FW TANKS									
FW TANK 3	50%	34,451	17,226	34,451	17,226	49,627	-0,017	1,134	Maximum
FW TANK PS 4	50%	28,578	14,289	28,578	14,289	46,031	-1,332	1,083	Maximum
FW TANK SB 5	50%	28,275	14,137	28,275	14,137	46,029	1,322	1,088	Maximum
FW 20 PS	50%	12,421	6,210	12,421	6,210	14,075	-3,868	1,596	Maximum
FW 21 SB	50%	12,338	6,169	12,338	6,169	14,071	3,865	1,599	Maximum
TOTAL FW	5.00/	110.004	59.022	110004	59.022	40.291	0.014	1 200	
TANKS	50%	116,064	58,032	116,064	58,032	40,281	-0,014	1,209	
.FO TANKS									
FO TANK	5.00/	21.220	10.665	22 5 97	11 204	42 101	1 957	1.022	Manimum
PS 6	50%	21,329	10,005	22,387	11,294	42,101	-1,857	1,022	Maximum
FO TANK SB 7	50%	23,025	11,513	24,383	12,192	42,206	1,719	1,001	Maximum
FO TANK	5.00/	40.028	24.510	51.021	25.065	29 591	2.074	0.022	Manimum
PS 8	50%	49,038	24,519	51,931	25,965	38,381	-2,074	0,932	Maximum
FO TANK SB 9	50%	48,770	24,385	51,646	25,823	38,580	2,063	0,933	Maximum
FO TANK PS 10	50%	17,204	8,602	17,204	8,602	33,463	-1,848	0,293	Maximum
FO TANK SB 11	50%	14,771	7,385	15,642	7,821	33,217	1,969	0,300	Maximum
FO PS 14	50%	1,836	0,918	1,945	0,972	28,602	-3,660	0,405	Maximum
FO 19	50%	53,709	26,855	56,878	28,439	14,336	-0,002	0,787	Maximum
FO 19A	50%	6,508	3,254	6,508	3,254	14,950	0,950	1,425	Maximum
FO SB 24	50%	1,434	0,717	1,519	0,759	-1,926	3,445	5,091	Maximum
TOTAL FO				-,,					
TANKS	50%	237,626	118,813	250,244	125,122	32,095	0,002	0,863	
LOTANKS									
DIRTYLO									
TANK	50%	4,638	2,319	5,153	2,576	30,550	-0,001	0,248	Maximum
SLUDGE		4.00.						0.00-	
TANK 13	50%	1,800	0,900	2,000	1,000	28,287	3,581	0,395	Maximum
LO									1
STORAGE 18 PS	50%	1,799	0,899	1,999	0,999	19,520	-5,074	1,622	Maximum
LO						1			1
STORAGE 17 SB	50%	2,737	1,368	3,041	1,520	19,863	5,080	1,615	Maximum
TOTAL LO TANKS	50%	10,973	5,486	12,192	6,096	25,706	1,022	0,838	
				1					
MISCELLA									
NEOUS									
TANKS									
HYDRAULI									1
C OIL TANK	50%	0,922	0,461	1,025	0,512	20,478	-5,133	1,600	Maximum
PS					Í		,		
SUMP. S1	50%	1,313	0,657	1,281	0,641	7,181	3,313	2,870	Maximum
SUMP. S 2	50%	1.000	0,500	1,111	0,556	52,650	0.750	2,850	Maximum
SUMP. S 3	50%	1,554	0,777	1,727	0,863	61,742	-0,021	2,614	Maximum
		, -	,	/ .	,			/-	

SEA CHEST	50%	1.826	0.913	2,029	1.014	29.251	-2.287	0,305	Maximum
PS I SEA CHEST		,		,	,-	.,	,	- ,	
SB 2	50%	1,824	0,912	2,027	1,013	29,251	2,287	0,306	Maximum
SEA CHEST SB 3	50%	1,364	0,682	1,515	0,758	35,749	0,683	0,242	Maximum
CHAIN LOCKER	100%	9,552	9,552	10,613	10,613	61,953	-0,020	4,849	Maximum
Tank109	100%	2,976	2,976	2,976	2,976	62,079	-0,021	0,888	Maximum
TOTAL MISC. TANKS	78,05%	22,332	17,430	24,304	18,947	54,088	0,022	3,199	
COMPANY									
MENT 1	0%	52,988	0,000	55,776	0,000	0,000	0,000	3,100	Maximum
COMPART MENT 2	0%	190,716	0,000	200,754	0,000	5,197	-0,020	2,200	Maximum
COMPART MENT 3 (Damaged)	Damaged								
COMPART MENT 4 (Damaged)	Damaged								
COMPART MENT 5	0%	507,681	0,000	534,401	0,000	33,089	-0,011	0,900	Maximum
COMPART MENT 6	0%	231,655	0,000	243,847	0,000	43,647	-0,045	0,000	Maximum
COMPART MENT 7	0%	214,434	0,000	225,720	0,000	51,675	-0,017	0,000	Maximum
COMPART MENT 8	0%	35,487	0,000	37,355	0,000	59,799	-0,020	0,000	Maximum
Total Loadcase			1962,954	1875,087	329,417	30,205	0,000	5,194	
FS correction								0,302	
VCG fluid								5,496	

Ο συγκεκριμένος πίνακας «8» απαρτίζεται από τα αποτελέσματα της ευστάθειας μετά από βλάβη, αναφέροντας λεπτομερώς πληροφορίες για τις δεξαμενές, τα διαμερίσματα, για το βάρος του άφορτου σκάφους (Lightship), καθώς και για το πλήρωμα και τους επιβάτες που απαρτίζουν το πλοίο.

Τέλος αξίζει να σημειωθεί το FS correction = 0,302m, δηλαδή η διόρθωση λόγω των ελεύθερων επιφανειών «free surfaces», καθώς και το VCG Fluid = 5,496m, δηλαδή ότι η κατακόρυφη θέση του κέντρου βάρους με την επίδραση των ελεύθερων επιφανειών, βρίσκεται στα 5,496m.

Draft Amidships m	5,217
Displacement t	1963
Heel deg	0,0
Draft at FP m	4,089
Draft at AP m	6,344
Draft at LCF m	5,338
Trim (+ve by stern) m	2,255
WL Length m	67,553

Πίνακας 9: Hydrostatic data

Beam max extents on WL m	12,861
Wetted Area m^2	1152,433
Waterpl. Area m^2	522,042
Prismatic coeff. (Cp)	0,448
Block coeff. (Cb)	0,353
Max Sect. area coeff. (Cm)	0,913
Waterpl. area coeff. (Cwp)	0,601
LCB from zero pt. (+ve fwd) m	30,117
LCF from zero pt. (+ve fwd) m	29,009
KB m	2,944
KG fluid m	5,496
BMt m	2,851
BML m	103,199
GMt corrected m	0,297
GML m	100,646
KMt m	5,793
KML m	106,081
Immersion (TPc) tonne/cm	5,351
MTc tonne.m	30,394
RM at 1deg = GMt.Disp.sin(1) tonne.m	10,169
Max deck inclination deg	1,9870
Trim angle (+ve by stern) deg	1,9870

Στον πίνακα 9 αναγράφονται όλα τα υδροστατικά στοιχεία του πλοίου στην άθικτη κατάσταση, για παράδειγμα το εκτόπισμα (Displacement), η διαγωγή (trim), το πλάτος (Beam), το μετακεντρικό ύψος (Gm), η ροπή επαναφοράς (MTc = Moment of change trim), καθώς και διάφοροι υδροστατικοί συντελεστές, όπως είναι πρισματικός συντελεστής Cp, ο συντελεστής μέσης τομής Cm.

Key point	Туре	Freeboard m
Margin Line (freeboard pos = $-2,725$ m)		1,134
Deck Edge (freeboard pos = -2,725 m)		1,21
EXTENTED SHELL OPENING	Potential downflooding point	-2,310
WATERTIGHT DOOR*	Downflooding point	-3,711
WATERTIGHT DOOR A	COMP. 4 T	-3,711
WATERTIGHT DOOR B	COMP. 3 T	-3,711

Πίνακας 10: Key points

Όπως και στον πίνακα 3, έτσι και στον πίνακα 10 αποτυπώνονται μερικά δεδομένα για τα έξαλα του πλοίου σε σχέση με τα σημεία κλειδιά 'key points', τα οποία απαρτίζονται από την «margin line», το «deck edge», και τα εσωτερικά ανοίγματα, όπως είναι «extended shell opening» και «watertight door», τα οποία αποτελούν την βάση για την ορθή επίλυση του υπολογισμού της υδροστατικής στήλης σε ένα διαμέρισμα.

Πίνακας 11: Damage Criteria

Code	Criteria	Value	Units	Actual	Status	Margin %
11.3 Damage Stability	11.3.1 Equilibrium waterline	0,075	m	1,210	Pass	+1513,33

Στον συγκεκριμένο πίνακα 11, αναγράφεται το κριτήριο για την ίσαλο γραμμή ισορροπίας (equilibrium waterline), σύμφωνα με το οποίο πραγματοποιείται το πείραμα, η αντίστοιχη τιμή που παίρνει το πλοίο, η μονάδα μέτρησης, αν το πλοίο πληρεί το κριτήριο και τέλος το ποσοστό της οριακής γραμμής «margin line».

6.1.2.2) LARGE ANGLE STABILITY

Stability calculation

Loadcase - 50%

- Damage Case DCase 1
- Free to Trim
- Specific gravity = 1,025; (Density = 1,025 tonne/m^3)
- Compartments Damaged -
- Compartment or Tank Status Perm.% PartFloo
- PartFlood.% PartFlood.WL
- COMPARTMENT 3[] Fully flooded 95
- COMPARTMENT 4[] Fully flooded 95
- Fluid analysis method: Use corrected VCG

Πίνακας 12: Tanks-Damage Case-Loadcase 50%

Item Name	Quantity	Unit Mass tonne	Total Mass tonne	Unit Volume m^3	Total Volume m^3	Long. Arm m	Trans. Arm m	Vert. Arm m	FSM Type
Lightship	1	1565,067	1565,067			28,243	0,000	5,941	User Specified
Crue	29	2,175	63,075			38,000	0,000	5,800	User Specified
Guest	12	0,900	10,800			38,000	0,000	8,600	User Specified
Total LS			1638,942			28,683	0,000	5,953	
.WB TANKS									
WB TANK 1	100%	29,916	29,916	29,186	29,186	64,582	-0,021	2,529	Maximum
WB TANK 2 GREY WATER	100%	39,796	39,796	38,825	38,825	54,901	-0,019	1,700	User Specified
WB TANK 15 SB	50%	31,463	15,732	30,696	15,348	23,914	1,427	0,305	User Specified
WB	50%	31,497	15,748	30,728	15,364	23,912	-1,428	0,304	User

TANK 16 PS									Specified
WB SB 23	50%	21,341	10,671	20,821	10,410	8,020	1,626	2,174	User Specified
WB PS 22	50%	23,221	11,611	22,655	11,327	8,034	-1,627	2,195	User Specified
WB PS 25	50%	1,556	0,778	1,518	0,759	-1,926	-3,444	5,092	Maximum
TOTAL WB TANKS	69,5%	178,790	124,251	174,429	121,221	40,619	-0,045	1,654	
.FW TANKS									
FW TANK 3	50%	34,451	17,226	34,451	17,226	49,627	-0,017	1,134	Maximum
FW TANK PS 4	50%	28,578	14,289	28,578	14,289	46,031	-1,332	1,083	Maximum
FW TANK SB 5	50%	28,275	14,137	28,275	14,137	46,029	1,322	1,088	Maximum
FW 20 PS	50%	12,421	6,210	12,421	6,210	14,075	-3,868	1,596	Maximum
FW 21 SB	50%	12,338	6,169	12,338	6,169	14,071	3,865	1,599	Maximum
TOTAL FW TANKS	50%	116,064	58,032	116,064	58,032	40,281	-0,014	1,209	
.FO TANKS									
FO TANK PS 6	50%	21,329	10,665	22,587	11,294	42,101	-1,857	1,022	Maximum
FO TANK SB 7	50%	23,025	11,513	24,383	12,192	42,206	1,719	1,001	Maximum
FO TANK PS 8	50%	49,038	24,519	51,931	25,965	38,581	-2,074	0,932	Maximum
FO TANK SB 9	50%	48,770	24,385	51,646	25,823	38,580	2,063	0,933	Maximum
FO TANK PS 10	50%	17,204	8,602	17,204	8,602	33,463	-1,848	0,293	Maximum
FO TANK SB 11	50%	14,771	7,385	15,642	7,821	33,217	1,969	0,300	Maximum
FO PS 14	50%	1,836	0,918	1,945	0,972	28,602	-3,660	0,405	Maximum
FO 194	50%	6 508	3 254	6 508	20,439	14,550	-0,002	1 425	Maximum
FO SB 24	50%	1 434	0 717	1 519	0 759	-1 926	3 445	5 091	Maximum
TOTAL FO TANKS	50%	237,626	118,813	250,244	125,122	32,095	0,002	0,863	
.LO TANKS									
DIRTY LO TANK	50%	4,638	2,319	5,153	2,576	30,550	-0,001	0,248	Maximum
SLUDGE TANK 13	50%	1,800	0,900	2,000	1,000	28,287	3,581	0,395	Maximum
LO STORAG E 18 PS	50%	1,799	0,899	1,999	0,999	19,520	-5,074	1,622	Maximum
LO STORAG E 17 SB	50%	2,737	1,368	3,041	1,520	19,863	5,080	1,615	Maximum
TOTAL LO TANKS	50%	10,973	5,486	12,192	6,096	25,706	1,022	0,838	

MICCEI									
.MISCEL									
LANEOU									
S TANKS									
HYDRAU									
LIC OIL	50%	0,922	0,461	1,025	0,512	20,478	-5,133	1,600	Maximum
TANK PS									
SUMP. S1	50%	1,313	0,657	1,281	0,641	7,181	3,313	2,870	Maximum
SUMP S)	.,	, -	-) -	.,	-))	
2	50%	1,000	0,500	1,111	0,556	52,650	0,750	2,850	Maximum
SUMD S									
SUMP. S	50%	1,554	0,777	1,727	0,863	61,742	-0,021	2,614	Maximum
3									
SEA									
CHEST	50%	1,826	0,913	2,029	1,014	29,251	-2,287	0,305	Maximum
PS 1									
SEA									
CHEST	50%	1,824	0,912	2,027	1,013	29,251	2,287	0,306	Maximum
SB 2		-						-	
SEA			ĺ						
CHEST	50%	1 364	0.682	1 515	0.758	35 749	0.683	0.242	Maximum
SB 3	5070	1,501	0,002	1,515	0,750	55,715	0,005	0,212	Waximum
CHAIN									
	100%	9,552	9,552	10,613	10,613	61,953	-0,020	4,849	Maximum
LUCKER	1000/	2.07(2.076	2.076	2.07((2.070	0.021	0.000	
Tank109	100%	2,976	2,976	2,976	2,976	62,079	-0,021	0,888	Maximum
TOTAL									
MISC.	78,05%	22,332	17,430	24,304	18,947	54,088	0,022	3,199	
TANKS									
COMPAR									
TMENT 1	0%	52,988	0,000	55,776	0,000	0,000	0,000	3,100	Maximum
COMPAR									
TMENT 2	0%	190,716	0,000	200,754	0,000	5,197	-0,020	2,200	Maximum
TWIENT 2									
COMPAR									
TMENT 3	Damaged								
(Damaged	8								
)									
COMPAR									
TMENT 4									
(Damaged	Damaged								
)									
COMPAR									
TMENT 5	0%	507,681	0,000	534,401	0,000	33,089	-0,011	0,900	Maximum
COMPAR									
TMENT 4	0%	231,655	0,000	243,847	0,000	43,647	-0,045	0,000	Maximum
TMENT 0									
COMPAR	0%	214.434	0.000	225.720	0,000	51,675	-0,017	0,000	Maximum
IMENT 7		,	- ,	-). *	- ,			.,	
COMPAR	0%	35 487	0.000	37 355	0.000	59 799	-0.020	0.000	Maximum
TMENT 8	0,0	55,107	0,000	5,,555	0,000	57,177	0,020	0,000	
Total			10(2.054	1075 007	220 417	20.205	0.000	5 104	
Loadcase			1962,954	18/5,08/	329,417	30,205	0,000	5,194	
FS									
correction								0,302	
- concetton			1			1		1	1
VCG fluid								5 /06	

Ο συγκεκριμένος πίνακας «8» απαρτίζεται από τα αποτελέσματα της ευστάθειας μετά από βλάβη, αναφέροντας λεπτομερώς πληροφορίες για τις δεξαμενές, τα διαμερίσματα, για το βάρος του άφορτου σκάφους (Lightship), καθώς και για το πλήρωμα και τους επιβάτες που απαρτίζουν το πλοίο.

Τέλος αξίζει να σημειωθεί το FS correction = 0,302m, δηλαδή η διόρθωση λόγω των ελεύθερων επιφανειών «free surfaces», καθώς και το VCG Fluid = 5,496m,

δηλαδή ότι η κατακόρυφη θέση του κέντρου βάρους με την επίδραση των ελεύθερων επιφανειών, βρίσκεται στα 5,496m.

Στο ανωτέρω πλαίσιο που εμφανίζεται η 'εικόνα 61', αποτυπώνεται η καμπύλη στατικής ευστάθειας GZ-Φ. Πιο συγκεκριμένα, ο μοχλοβραχίονας επαναφοράς GZ (m) είναι μία συνάρτηση της γωνίας εγκάρσιας κλίσεως (heel).

- Από το σημείο μηδέν έως το σημείο που εμφανίζεται το μέγιστο GZ (GZmax = 0,588m at 50.9deg), το πλοίο θα βρίσκεται σε κατάσταση ευσταθής ισορροπίας (GM>0), δηλαδή σε περίπτωση που αποκτήσει κάποια στιγμιαία κλίση, έχει την δυνατότητα το πλοίο να επανέλθει στην αρχική του θέση ισορροπίας.
- Από το μέγιστο σημείο (GZmax) μέχρι το σημείο στο οποίο η καμπύλη θα τέμνει τον οριζόντιο άξονα, το πλοίο μεταβαίνει στην κατάσταση ουδέτερης ισορροπίας (GM=0), έχοντας την δυνατότητα πάλι να επανέλθει στην αρχική του θέση ισορροπίας.
- Από το σημείο τομής του οριζοντίου άξονα με την καμπύλη και έπειτα, καθώς βρισκόμαστε κάτω από τον οριζόντιο άξονα, το πλοίο εισέρχεται στην κατάσταση αρνητικής ισορροπίας (GM<0), την λεγόμενη αστάθεια. Αποτέλεσμα είναι η ανατροπή του πλοίου.

Πίνακας 13: Stability data & hydrostatic coefficients functions of heel (deg)

Heel to															
Starboa	-10,0	-5,0	0,0	5,0	10,0	15,0	20,0	25,0	30,0	35,0	40,0	45,0	50,0	55,0	60,0
rd deg															
GZ m	-0,073	-0,028	0,000	0,028	0,073	0,124	0,182	0,250	0,338	0,439	0,519	0,569	0,588	0,577	0,540
Area under GZ curve from zero heel m deg	0,3148	0,0666	- 0,0001	0,0653	0,3121	0,8023	1,5648	2,6383	4,0985	6,0416	8,4497	11,184 5	14,091 0	17,017 4	19,816 2
Displace ment t	1963	1963	1963	1963	1963	1963	1963	1963	1963	1963	1963	1963	1963	1963	1963
Draft at FP m	4,069	4,088	4,091	4,090	4,075	4,045	4,003	3,938	3,848	3,712	3,528	3,314	3,069	2,780	2,421
Draft at AP m	6,186	6,289	6,343	6,290	6,187	6,069	5,932	5,767	5,578	5,387	5,229	5,100	4,990	4,880	4,761
WL Length m	67,543	67,553	67,553	67,549	67,539	67,520	67,496	67,462	67,421	67,386	69,621	70,331	70,595	70,716	70,758
Beam max extents on WL m	13,044	12,905	12,861	12,905	13,044	13,268	13,541	13,820	14,089	13,774	12,895	12,062	11,308	10,645	10,102
Wetted Area m^2	1154,2 33	1152,0 59	1152,4 66	1152,0 39	1153,1 57	1151,9 83	1174,9 13	1149,8 77	1128,1 85	1135,6 11	1144,7 18	1150,3 58	1157,3 16	1161,8 79	1165,6 89
Waterpl. Area m^2	550,91 8	534,80 5	521,86 2	534,87 2	550,98 0	560,61 2	570,31 4	582,28 1	602,13 7	599,78 5	588,20 3	575,20 3	560,55 3	544,96 6	532,64 3
Prismati c coeff. (Cp)	0,458	0,452	0,448	0,452	0,458	0,466	0,476	0,488	0,502	0,516	0,513	0,520	0,528	0,535	0,541
Block coeff. (Cb)	0,361	0,356	0,353	0,356	0,361	0,366	0,351	0,339	0,330	0,336	0,347	0,366	0,388	0,412	0,436
LCB from zero pt. (+ve fwd) m	30,123	30,119	30,121	30,115	30,118	30,123	30,131	30,139	30,144	30,144	30,149	30,151	30,152	30,152	30,152
LCF from zero pt. (+ve fwd) m	29,367	29,287	29,016	29,283	29,362	29,500	29,707	29,952	30,136	31,028	31,930	32,639	33,232	33,739	34,193
Max deck inclinati on deg	10,165 6	5,3593	1,9845	5,3589	10,165 0	15,096 4	20,061 1	25,039 9	30,026 3	35,018 2	40,013 7	45,010 8	50,008 7	55,006 9	60,005 4
Trim angle (+ve by stern) deg	1,8652	1,9390	1,9845	1,9379	1,8617	1,7840	1,6999	1,6120	1,5246	1,4758	1,4985	1,5740	1,6931	1,8507	2,0611

Στον ανωτέρω πίνακα, αναγράφονται πληροφορίες σχετικά με υδροστατικά δεδομένα συναρτήσει της εγκάρσιας γωνίας heel, όπως είναι ο μοχλοβραχίονας επαναφοράς GZ, το εκτόπισμα Displacement, η βρεχόμενη επιφάνεια wetted area, η γωνία διαγωγής trim angle, το διάμηκες κέντρο άνωσης (LCB= Longitudinal Center

of Buoyancy), το διάμηκες κέντρο πλευστότητας (LCF= Longitudinal Center of Flotation), καθώς και διάφοροι υδροστατικοί συντελεστές, όπως είναι πρισματικός συντελεστής Cp.

Key point	Туре	Imme rsion angle deg	Emer gence angle deg	Freeb oard at 0,0 deg m	Freeb oard at 5,0 deg m	Freeb oard at 10,0 deg m	Freeb oard at 15,0 deg m	Freeb oard at 20,0 deg m	Freeb oard at 25,0 deg m	Freeb oard at 30,0 deg m	Freeb oard at 35,0 deg m	Freeb oard at 40,0 deg m	Freeb oard at 45,0 deg m	Freeb oard at 50,0 deg m	Freeb oard at 55,0 deg m	Freeb oard at 60,0 deg m
Margi n Line (imm ersion pos = - 2,725 m)		16,7	n/a	1,135	0,760	0,427	0,104	0,208	 0,501	0,782	1,074	1,405	- 1,766	2,141	2,605	3,125
Deck Edge (imm ersion pos = - 2,725 m)		17,8	n/a	1,211	0,835	0,501	0,175	0,139	 0,436	0,720	- 1,016	1,352	- 1,718	2,099	- 2,566	3,091
EXTE NTE D SHEL L OPE NING	Potent ial downf loodin g point	0	Not emerg ed in positi ve range	2,310	2,616	2,867	3,084	3,265	3,404	3,505	3,578	3,643	3,705	3,758	3,795	3,812
WAT ERTI GHT DOO R*	Down floodi ng point	0	Not emerg ed in positi ve range	3,711	3,658	3,539	3,382	3,186	_ 2,949	2,678	2,390	2,108	1,838	- 1,576	1,315	1,053
WAT ERTI GHT DOO R A	COM P. 4 T	n/a	n/a													
WAT ERTI GHT DOO R B	COM P. 3 T	n/a	n/a													

Πίνακας 14: Key points

Όπως και προηγουμένως έτσι και στον πίνακα 14 αποτυπώνονται μερικά δεδομένα για τα έξαλα του πλοίου σε σχέση με τα σημεία κλειδιά 'key points', τα οποία απαρτίζονται από την «margin line», το «deck edge», και τα εσωτερικά ανοίγματα, όπως είναι «extended shell opening» και «watertight door», τα οποία αποτελούν την βάση για την ορθή επίλυση του υπολογισμού της υδροστατικής στήλης σε ένα διαμέρισμα.

Πίνακας 12: Damage Criteria

Code	Criteria	Value	Units	Actual	Status	Margin %
11.3 Damage Stability	11.3.4a Equilibrium angle	7,0	deg	0,0	Pass	+99,64
11.3 Damage Stability	11.3.4b Range of positive stability	15,0	deg	60,0	Pass	+299,83
11.3 Damage Stability	11.3.4c Value of max. GZ	0,100	m	0,588	Pass	+488,00
11.3 Damage Stability	11.3.4d GZ area under curve	0,8594	m.deg	19,8163	Pass	+2205,82

Στον συγκεκριμένο πίνακα 15, αναγράφονται:

- Τα κριτήρια σύμφωνα με τον κώδικα LY3 (Large Commercial Yacht Code), [Chapter:11.2.1.1 για την άθικτη ευστάθεια και Chapter: 11.3.1 & 11.3.4 για την κατάσταση μετά από βλάβη) με τα οποία πραγματοποιείται το πείραμα:
 - ο Γωνία ισορροπίας (equilibrium angle)
 - ο Εύρος θετικής ευστάθειας (range of positive stability)
 - ο Τιμή του μέγιστου μοχλοβραχίονα επαναφοράς (Value of max. GZ)
 - ο Περιοχή κάτω από την καμπύλη GZ (GZ area under curve)
- 2. Οι τιμές για τα αντίστοιχα κριτήρια που παίρνει το πλοίο,
- 3. Οι μονάδες μέτρησης κάθε κριτηρίου,
- 4. Αν το πλοίο πληρεί το κάθε κριτήριο ξεχωριστά και τέλος
- 5. Το ποσοστό της οριακής γραμμής «margin line».

Κεφάλαιο 7:

7.1) ΣΥΝΟΨΗ

Απώτερος σκοπός της παρούσας διπλωματικής εργασίας είναι η μελέτη και η διερεύνηση της επιβιωσιμότητας ενός σκάφους αναψυχής, σε κατάσταση μετά από βλάβη. Ο Παγκόσμιος Οργανισμός Ναυτιλίας (Ι.Μ.Ο.) έχοντας συνειδητοποιήσει τον κίνδυνο που ελλοχεύει η κατάκλυση ενός ή περισσότερων διαμερισμάτων σε ένα πλοίο, επιδιώκει την θέσπιση νέων καινοτόμων κανονισμών για την επίλυση του καίριου αυτού ζητήματος. Σήμα κατατεθέν για περαιτέρω μελέτη και διερεύνηση των κανονισμών αυτών, αποτελούν τα δυστυχήματα του πρόσφατου παρελθόντος [««Ηράκλειον, στις 8 Δεκεμβρίου του 1966» (sansimera.gr, n.d.),].

Συγχρόνως, η εξέλιξη της τεχνολογίας και γενικότερα η εξέλιξη της ναυτιλιακής βιομηχανίας, σε συνδυασμό με τις πρόσθετες απαιτήσεις και την αύξηση των μεγεθών των πλοίων, οδήγησαν στην υιοθέτηση υψηλών προτύπων για την ασφάλεια των πλοίων στη θάλασσα. Οι ανωτέρω βελτιώσεις στην ευστάθεια μετά από βλάβη χρησιμοποιήθηκαν ως βάση για την δημιουργία και εφαρμογή των καινοτόμων επιπέδων ασφαλείας, ενώ ταυτόχρονα αποτελούν πρόκληση στον τομέα του σχεδιασμού για τον σύγχρονο ναυπηγό του 21ου αιώνα.

Εμβαθύνοντας στο θέμα της ευστάθειας μετά από βλάβη για τα επιβατηγά πλοία γίνεται αντιληπτό ότι απαιτείται η μόνιμη εξασφάλιση της υδατοστεγούς ακεραιότητάς τους, έτσι ώστε να θεωρηθεί επιτυχημένη η σχεδίασή τους. Επιπρόσθετα η σχεδίαση πρέπει να πληρεί μία ακόμη προϋπόθεση, την παροχή αποτελεσματικής προστασίας σε περίπτωση βλάβης, καθώς η συμμόρφωση και η ανάγκη να συμβαδίζει με τους κανονισμούς της S.O.L.A.S (Safety of life at sea) είναι ζωτικής σημασίας.

Ο στόχος της παρούσας διπλωματικής εργασίας ήταν η μελέτη του τρόπου συμπεριφοράς της θαλαμηγού σε κατάσταση μετά από βλάβη συναρτήσει του χρόνου. Για την ορθή επίλυση του συγκεκριμένου ζητήματος, δημιουργήθηκε ένα πρακτικό μοντέλο προσομοίωσης της εισροής υδάτων στα εσωτερικά διαμερίσματα του πλοίου. Η μοντελοποίηση της γάστρας καθώς και οι διάφοροι υδροστατικοί υπολογισμοί πραγματοποιήθηκαν με τη βοήθεια του λογισμικού Maxsurf για δύο διαφορετικές περιπτώσεις. Αντίστοιχα, το αριθμητικό μοντέλο αναπτύχθηκε με τη βοήθεια του Excel και βασίστηκε στα αποτελέσματα του λογισμικού MaxSurf. Επειδή όμως η πολυπλοκότητα του φαινομένου ήταν σημαντική, αναπτύχθηκαν και τέθηκαν σε εφαρμογή μερικές παραδοχές, οι οποίες απλούστευσαν το πρόβλημα. Οι συγκεκριμένες βασικές παραδοχές αναφέρονται κατωτέρω:

- Η επιφάνεια του ύδατος στο εσωτερικό και στο εξωτερικό του πλοίου θεωρείται επίπεδη και αδιατάραχτη.
- Η εισροή των υδάτων από το εξωτερικό προς το εσωτερικό και μεταξύ των δύο διαμερισμάτων, προκύπτει από την διαφορά του υδροστατικού ύψους για κάθε χρονική στιγμή.
- Ο συντελεστής ροής ύδατος «flow coefficient» είναι σταθερός για όλα τα ανοίγματα, με τιμή k = 0.8.
- Η αντιμετώπιση του προβλήματος θεωρείται ημιστατική, καθώς οι στατικές θέσεις ισορροπίας είναι συνάρτηση της χρονικής εξέλιξης. Η θέση του πλοίου μετριέται για κάθε χρονική στιγμή, συμπεριλαμβάνοντας τη δεδομένη ποσότητα ύδατος που εμπεριέχει το κάθε διαμέρισμα, σύμφωνα με τη στατική εκτίμηση της ισορροπίας του.
- Η συμπίεση του αέρα και η επίδραση που ασκείται κατά την διάρκεια της κατάκλισης στο εσωτερικό του πλοίου, θεωρήθηκε αμελητέα. Ο λόγος που μπορεί να αιτιολογηθεί η συγκεκριμένη παραδοχή, είναι επειδή η πίεση που υφίσταται στην επιφάνεια του ύδατος, είναι ίση με την ατμοσφαιρική. Διότι είτε τα διαμερίσματα έχουν εξοπλιστεί με το κατάλληλο σύστημα εξαερισμού, είτε θεωρούμε ότι ο αέρας βρίσκει δυνατότητα διαφυγής και δεν εγκλωβίζεται. Μέρος της συμπίεσης του αέρα θα μπορούσε να θωρηθεί και η ύπαρξη του λόγου του συντελεστής ροής ύδατος (flow coefficient).
- Δεν συμπεριλήφθηκαν δυναμικά φαινόμενα, όπως είναι ο κυματισμός της θάλασσας, ο άνεμος, η μετακίνηση των επιβατών κατά την διάρκεια του φαινομένου, η ταχύτητα του πλοίου, τα δυναμικά φαινόμενα της ροής του νερού στο εσωτερικό του πλοίου μετά την βλάβη και κατά την διάρκεια της κατάκλισης.
- Η εισροή του ύδατος από το ένα διαμέρισμα στο γειτονικό του, είναι εφικτή μόνο διαμέσω της υδατοστεγής θύρας που υπάρχει ανάμεσά τους. Θεωρούμε δηλαδή ότι η φραχτή είναι πλήρως υδατοστεγής.
- Τα διαμερίσματα θεωρήθηκαν ως ενιαίοι χώροι με συγκεκριμένη διαχωρητότητα, όπως ορίζεται από την S.O.L.A.S και δεν πραγματοποιήθηκε ο προσδιορισμός τους σε μικρότερους μη υδατοστεγείς χώρους.

Συγκαταλέγοντας με όλα τα ανωτέρω, αξίζει να σημειωθεί ότι το μοντέλο που αναπτύχθηκε είναι ένα σκάφος αναψυχής τύπου 'yacht', μήκους 80,45m, με 44 άτομα επιβαίνοντες (πλήρωμα + επιβάτες) και εκτόπισμα Δ=1963t. Η μελέτη που πραγματοποιήθηκε αφορά την κατάκλυσή του από ένα πιθανό ρήγμα, στη γάστρα του, εμβαδού A=2,397m². Σύμφωνα με το ενδεχόμενο του συγκεκριμένου ρήγματος, μελετώνται δύο διαφορετικές περιπτώσεις. Η πρώτη περίπτωση αφορά την εισροή υδάτων σε ένα διαμέρισμα, καθώς οι υδατοστεγείς πόρτες είναι κλειστές πριν την βλάβη. Η διάρκεια του φαινομένου είναι μέχρι την χρονική στιγμή 45,769sec, όπου το υδροστατικό ύψος του διαμερίσματος, έχει γίνει ίδιο με το υδροστατικό ύψος της θάλασσας και αυτομάτως μηδενίζεται ο ρυθμός εισροής. Η δεύτερη περίπτωση αφορά την εξάπλωση της κατάκλισης και σε γειτονικό διαμέρισμα, μέσω μιας υδατοστεγούς θύρας η οποία παρέμεινε ανοιχτή. Όμως τη χρονική στιγμή 100sec γίνεται η θεώρηση ότι η θύρα έχει κλείσει και σταματά αυτομάτως η εισροή υδάτων στο γειτονικό διαμέρισμα.

7.2) ΣΥΜΠΕΡΑΣΜΑΤΑ

Στην ανωτέρω μελέτη παρουσιάστηκαν και αναλύθηκαν τα αποτελέσματα της προσομοίωσης του τρόπου συμπεριφοράς της θαλαμηγού έναντι κατάκλισης για δύο διαφορετικές περιπτώσεις.

Αρχικά για την πρώτη περίπτωση, όπου η κατάκλυση περιορίστηκε σε ένα και μοναδικό διαμέρισμα, η δυσμενέστερη κατάσταση που έρχεται αντιμέτωπο το πλοίο είναι το μεταβατικό στάδιο. Στην συγκεκριμένη πτυχή και για την ακρίβεια λίγο μετά την έναρξη της προσομοίωσης, παρατηρείται η μέγιστη τιμή της εγκάρσιας κλίσης προτού μειωθεί και σταθεροποιηθεί στην τιμή μηδέν. Επιπλέον, αξίζει να επισημανθεί ότι η εγκάρσια κλίση δεν ξεπερνά τις 12°, με αποτέλεσμα να μην ελλοχεύει κίνδυνος για την απόκτηση μεγάλων κλίσεων που μπορούν να αποβούν μοιραίες για το πλοίο, προκαλώντας απώλεια ευστάθειας σε πολύ μικρό χρονικό διάστημα. Η αιτία που πραγματοποιείται το γεγονός αυτό, μπορεί να οφείλεται είτε στη γεωμετρία της γάστρας, είτε στην εσωτερική διαμερισματοποίηση που έχει εφαρμοστεί στο πλοίο. Η συγκεκριμένη αντίληψη θα μπορούσε να αποτελέσει το έναυσμα για την εφαρμογή καινοτόμων αποφάσεων στην σχεδίαση των πλοίων, με απώτερο σκοπό την ενίσχυση της αντοχής τους σε επιβλαβείς καταστάσεις.

Δεύτερον η συμπεριφορά του πλοίου με το πέρασμα του χρόνου εξαρτάται από το σημείο που δημιουργήθηκε το ρήγμα, καθώς και από την εξέλιξη των υδροστατικών χαρακτηριστικών του. Η μεταβολή της διαγωγής «trim» ακολουθεί διαρκώς μία ανοδική πορεία, διότι ο συνολικός όγκος νερού που εισέρχεται ολοένα και αυξάνεται. Η διαγωγή που αποκτά το πλοίο είναι σχετικά μικρή και έμπρυμνη, καθώς το πρωραίο βύθισμα είναι μικρότερο του πρυμναίου. Με αυτόν τον τρόπο, γίνεται αντιληπτό ότι το LCG μεταβάλλεται και συνεπώς μετακινείται αντίστοιχα και το LCB έτσι ώστε το πλοίο να ισορροπήσει στη νέα θέση.

Εν συνεχεία, για την μελέτη της δεύτερης περίπτωσης, όπου η κατάκλυση μετέβη και σε γειτονικό διαμέρισμα μέσω μιας ανοιχτής υδατοστεγούς θύρας, τα αποτελέσματα διέπουν σε ουσιώδεις επισημάνσεις. Αξίζει να τονιστεί ότι το δυσμενέστερο σενάριο για την ευστάθεια του πλοίου, πάλι βρίσκεται στο μεταβατικό στάδιο, καθώς και η εγκάρσια κλίση αποκτά την μέγιστη τιμή της, προτού ελαττωθεί και παγιωθεί στην τιμή μηδέν. Επίσης δεν ξεπερνά τις 12, προσφέροντας έναν καθησυχασμό, διότι δεν υπάρχει ο κίνδυνος απόκτησης μεγάλων και επικίνδυνων κλίσεων που θα μπορούσαν να αποφέρουν ακόμα και την ανατροπή του πλοίου. Η διαγωγή «trim» παραμένει έμπρυμνη και αυξάνεται συνεχώς, σύμφωνα με τα διαγράμματα, καθώς η συνολική ποσότητα υδάτων που βαίνουν στα δύο διαμερίσματα είναι ακόμη μεγαλύτερη από την πρώτη περίπτωση μελέτης.

Η υδατοστεγής θύρα παρέμεινε ανοιχτή για ένα μεγάλο χρονικό διάστημα (t=100sec), με αποτέλεσμα να εισέλθουν μεγάλες ποσότητες υδάτων και στο διπλανό διαμέρισμα. Η εκδοχή αυτή της προοδευτικής κατάκλισης έχει σαν αποτέλεσμα την απόκτηση και την ανέλιξη ροπών των ελεύθερων επιφανειών στα δύο διαμερίσματα, προκαλώντας το πλοίο να έρθει αντιμέτωπο με δυσμενέστερα σενάρια ευστάθειας. Η μη έγκαιρη εντολή κλεισίματος των υδατοστεγών θυρών μπορεί να επιφέρει σημαντικές κλίσεις στο πλοίο τόσο στα ενδιάμεσα στάδια κατάκλισης όσο και στο μόνιμο σκέλος απόκρισής του. Κατά συνέπεια, το σημείο του ρήγματος σε συνδυασμό με την ταχύτητα επίτευξης και εντολής κλεισίματος των υδατοστεγών θυρών, μπορούν να επιφέρουν αντίστοιχα μικρότερες ή μεγαλύτερες κλίσεις. Επομένως, απαιτείται ιδιαίτερη έμφαση και προσοχή στον τρόπο κατασκευής και διαμερισματοποίησης των πλοίων.

Το μεταβατικό στάδιο όπως συμπεράναμε είναι το δυσμενέστερο σενάριο και στις δύο περιπτώσεις, το ενδιάμεσο στάδιο εμφανίζεται στη 2^η περίπτωση και παρουσιάζει ενδιαφέρον ως προς την σκοπιά της ευστάθειάς του. Με αυτόν τον τρόπο, στο στάδιο της μόνιμης κατάκλισης παρατηρείται ότι το σκάφος αποκτά αυξημένο βύθισμα, άρα και αυξημένο εκτόπισμα, έχοντας παράλληλα χαμηλότερο κέντρο βάρους. Συνεπώς το ζήτημα της επιβίωσης της κατασκευής ανάγεται από ζήτημα ευστάθειας σε ζήτημα πλευστότητας.

Τέλος, η δυνατότητα πρόβλεψης της προοδευτικής κατάκλισης και σε συνδυασμό με το έγκαιρο κλείσιμο των υδατοστεγών θυρών, μπορούν να προσφέρουν χρόνο και ευελιξία στον πλοίαρχο, ο οποίος θα έχει καλύτερη εικόνα για την εκτίμηση του συγκεκριμένου φαινομένου. Αποτέλεσμα είναι η έγκαιρη εκκένωση του πλοίου, η αποφυγή ατυχημάτων και η απώλεια ζωών.

7.3) ΠΕΡΑΙΤΕΡΩ ΔΙΕΡΕΥΝΗΣΗ

Στην συγκεκριμένη παράγραφο θα ήθελα να παρουσιάσω την προοπτική και τα αποτελέσματα που θα προέκυπταν αξιοποιώντας τις ίδιες παραδοχές που εφαρμόστηκαν, στην περίπτωση που αναλάμβανε κάποιος να εντρυφήσει περισσότερο στα δύο ανωτέρω ερωτήματα που αναπτύχθηκαν στην παρούσα διπλωματική εργασία.

Ξεκινώντας με την πρώτη περίπτωση της κατάκλισης ενός διαμερίσματος, το φαινόμενο κατάκλισης σταματά, καθώς το υδροστατικό ύψος εντός του διαμερίσματος έχει φτάσει στο ίδιο σημείο με αυτό της θάλασσας. Δηλαδή, η διαφορά του υδροστατικού ύψους εντός και εκτός του διαμερίσματος είναι μηδενική. Αποτέλεσμα είναι ότι η υδροστατική πίεση εξαρτώμενη άμεσα από το υδροστατικό ύψος να έχει αντίστοιχα μηδενιστεί. Εν συνεχεία, με τον ίδιο τρόπο σκέψης, ο ρυθμός εισροής υδάτων «flow rate» παίρνει την τιμή μηδέν από εκείνο το σημείο και έπειτα.

Στον αντίποδα, η δεύτερη περίπτωση με την κατάκλυση και του γειτονικού διαμερίσματος, θα μπορούσαν να υπάρξουν διάφορες εκδοχές εξέλιξης του φαινομένου. Πρώτη εκδοχή, είναι το κλείσιμο της υδατοστεγούς θύρας σε πολύ μικρότερο χρονικό διάστημα, κάτι που θα μπορούσε να επιφέρει μικρότερες κλίσεις στο πλοίο, μικρότερη καταπόνηση του από τις διάφορες δυνάμεις που δέχεται και περισσότερες πιθανότητες επιβίωσής του.

Δεύτερη εκδοχή, είναι η υδατοστεγής θύρα να μην έκλεινε σε εκείνο το χρονικό στιγμιότυπο των t=100sec, αλλά να παρέμενε ανοιχτή. Αποτέλεσμα θα ήταν ο ρυθμός εισροής υδάτων να επιφέρει διάφορες αυξομειώσεις. Πιο συγκεκριμένα, για το διαμέρισμα με τη βλάβη, ο ρυθμός εισροής θα παρουσίαζε είτε αύξηση καθώς το μεγαλύτερο μέρος από την συνολική ποσότητα εισροής υδάτων θα παρέμενε στο συγκεκριμένο διαμέρισμα, είτε μείωση καθώς το μεγαλύτερο μέρος των υδάτων που εισέρχονται θα πήγαινε στο γειτονικό διαμέρισμα.

Ανάλογα με την αύξηση ή την μείωση που θα υφίστατο ο ρυθμός εισροής για το διαμέρισμα που είχε δημιουργηθεί το ρήγμα, αντίστοιχα θα επηρεάζεται και ο ρυθμός εισροής υδάτων για το γειτονικό διαμέρισμα. Η αύξηση της βύθισης του πλοίου, θα μπορούσε να οδηγήσει τα ύδατα σε ανώτερα καταστρώματα, με αποτέλεσμα την βύθιση της οριακής γραμμής (margin line) και την κατάκλυση ακόμα και του κύριου καταστρώματος και τον εγκλωβισμό των υδάτων εκεί. Μεγάλες ποσότητες νερού μέχρι και το κύριο κατάστρωμα θα μπορούσαν να καταλήξουν και στην βύθιση του πλοίου ή και την ανατροπή του.

6

Κεφάλαιο 8:

8) ΒΙΒΛΙΟΓΡΑΦΙΑ

- > alandia, 2023. alandia.com. [Ηλεκτρονικό]
 Available at: https://alandia.com/article/water-weathertight-doors/
- Anon., n.d. [Ηλεκτρονικό]
 Available at: https://eclass.uniwa.gr/modules/document/file.php/NA255/Damaged_Stability_Pa rt%202%20%28Rev1%29.pdf
- bbc.co.uk, n.d. www.bbc.co.uk. [Ηλεκτρονικό]
 Available at: <u>https://ichef.bbci.co.uk/images/ic/320xn/p02mdjsz.jpg</u>
- Blogs.sch.gr-lavriou, n.d. [Ηλεκτρονικό]
 Available at: <u>https://blogs.sch.gr/1epal-</u> lavriou/files/2019/09/nautiliaki_politiki_pdf_2018.pdf
- ebooks.edu, n.d. ebooks.edu.gr. [Ηλεκτρονικό]
 Available at: <u>http://ebooks.edu.gr/ebooks/v/html/8547/2728/Fysiki-G-Lykeiou-ThSp_html-apli/index3_5.html</u>
- eclass.hna, n.d. eclass.hna.gr. [Ηλεκτρονικό]
 Available at: https://eclass.hna.gr/modules/document/file.php/TOM2110/%CE%94%CE%B9%CE%B1 %CE%BB%CE%AD%CE%BE%CE%B5%CE%B9%CF%82/2016.01 L.13.pdf
- eclass.snd, n.d. eclass.snd.gr. [Ηλεκτρονικό]
 Available at: https://eclass.snd.edu.gr/modules/document/file.php/TOM2110/%CE%97%CE%BB%C
 E%B5%CE%BA%CF%84%CF%81%CE%BF%CE%BD%CE%B9%CE%BA%CE%AC%20%CE%92%CE%
 B9%CE%B2%CE%BB%CE%AF%CE%B1/%CE%95%CE%A5%CE%A3%CE%A4%CE%91%CE%98%CE
 %95%CE%99%CE%91 %CE%9A%CE%9F%CE%A0%CE%A9%CE%A3%CE%
- Eef.edu, n.d. *eef.edu.gr.* [Ηλεκτρονικό]
 Available at: <u>https://www.eef.edu.gr/media/2542/e_jooog1.pdf</u>
- eef.edu, n.d. www.eef.edu.gr. [Ηλεκτρονικό]
 Available at: <u>https://www.eef.edu.gr/media/2542/e_j00091.pdf</u>
- El.Wikipedia.org, n.d. [Ηλεκτρονικό]
 Available at: https://el.wikipedia.org/wiki/%CE%A4%CE%B9%CF%84%CE%B1%CE%BD%CE%B9%CE%BA %CF%8C%CF%82

- El.Wikipedia.org, n.d. [Ηλεκτρονικό]
 Available at: https://el.wikipedia.org/wiki/%CE%97%CF%81%CE%AC%CE%BA%CE%BB%CE%B5%CE%B9
 %CE%BF%CE%BD_(%CF%80%CE%BB%CE%BF%CE%AF%CE%BF)
- El.Wikipedia.org, n.d. El.Wikipedia.org. [Ηλεκτρονικό]
 Available at: https://el.wikipedia.org/wiki/%CE%9D%CF%8C%CE%BC%CE%BF%CF%82_%CF%84%CE%B
 F%CF%85_%CE%9C%CF%80%CE%B5%CF%81%CE%BD%CE%BF%CF%8D%CE%BB%CE%B9
- el.wikipedia, n.d. el.wikipedia.org. [Ηλεκτρονικό]
 Available at: https://el.wikipedia.org/wiki/%CE%9C%CE%B5%CF%84%CE%AC%CE%BA%CE%B5%CE%BD
 %CF%84%CF%81%CE%BF
- Elsevier Ltd, 2017. www.sciencedirect.com. [Ηλεκτρονικό]
 Available at: <u>https://ars.els-cdn.com/content/image/1-s2.0-S0141118716303856-gr4.jpg</u>
- Elsevier Ltd, n.d. www.sciencedirect.com. [Ηλεκτρονικό]
 Available at: https://ars.els-cdn.com/content/image/1-s2.0-S0141118716303856gr7.jpg
- e-nautilia.gr, n.d. [Ηλεκτρονικό]
 Available at: <u>https://enaftilia.gr/wp-</u> content/uploads/2015/02/efedrikh_eustatheia.jpg
- e-nautilia, 2023. *e-nautilia.gr.* [Ηλεκτρονικό]
 Available at: <u>https://e-nautilia.gr/costa-concordia-deka-xronia-meta-to-nauagio/</u>
- e-nautilia, n.d. *e-nautilia.gr*. [Ηλεκτρονικό]
 Available at: <u>https://e-nautilia.gr/giati-epipleei-ena-ploio-kai-poia-h-sxsh-tou-ypsous-exalwn-me-thn-efedrikh-pleustothta/</u>
- E-nautilia, n.d. *e-nautilia.gr.* [Ηλεκτρονικό]
 Available at: <u>https://e-nautilia.gr/giati-epipleei-ena-ploio-kai-poia-h-sxsh-tou-ypsous-exalwn-me-thn-efedrikh-pleustothta/</u>
- esquireme.com, n.d. www.esquireme.com. [Ηλεκτρονικό]
 Available at: <u>https://www.esquireme.com/cloud/2021/09/08/mega-yacht.jpg</u>
- Google, n.d. Archimedes o Syrakousios. [Ηλεκτρονικό]
 Available at: <u>https://sites.google.com/site/knowlimitsgr/archaioi-ellenes/archimedes-o-syrakousios</u>
- I.M.O., n.d. [Ηλεκτρονικό]
 Available at: https://www.stavridakis.eu/image/cache/catalog/solas%20edition%202020-900x900.png

- I.M.O., n.d. [Ηλεκτρονικό]
 Available at: <u>https://s41721.pcdn.co/wp-content/uploads/2020/12/IMO-logo-blue_transparent-English-png-file.jpg</u>
- IMO.org, n.d. [Ηλεκτρονικό]
 Available at: <u>https://www.imo.org/en/About/HistoryOfIMO/Pages/Default.aspx</u>
- Isalos.net, n.d. www.isalos.net. [Ηλεκτρονικό]
 Available at: <u>https://www.isalos.net/2021/12/osa-prepei-na-gnorizete-gia-tis-eleftheres-epifaneies-sta-ploia/</u>
- Maredu.hcg, n.d. Maredu.hcg.gr. [Ηλεκτρονικό]
 Available at:
 https://maredu.hcg.gr/modules/document/file.php/MAK264/%CE%95%CF%85%CF%8
 3%CF%84%CE%AC%CE%B8%CE%B5%CE%B9%CE%B1%20 %20%CE%A6%CE%BF%CF%81%CF%84%CF%8E%CF%83%CE%B5%CE%B9%CF%82/%CE%95%C
 F%85%CF%83%CF%84%CE%AC%CE%B8%CE%B5%CE%B9%CE%B1%20%CE%B2%CE%BB%CE%
 AC%CE%B2%CE
- Maredu.hcg, n.d. maredy.hcg.gr. [Ηλεκτρονικό]
 Available at:
 https://maredu.hcg.gr/modules/document/file.php/MAK264/%CE%95%CF%85%CF%8
 3%CF%84%CE%AC%CE%B8%CE%B5%CE%B9%CE%B1%20 %20%CE%A6%CE%BF%CF%81%CF%84%CF%8E%CF%83%CE%B5%CE%B9%CF%82/%CE%95%C
 F%85%CF%83%CF%84%CE%AC%CE%B8%CE%B5%CE%B9%CE%B1%20%CE%B2%CE%BB%CE%
 AC%CE%B2%CE
- marinegyaan, 2020. marinegyaan.com. [Ηλεκτρονικό]
 Available at: <u>https://encrypted-tbno.gstatic.com/images?q=tbn:ANd9GcT-</u> __sEDAlYFIXgGnBwVEQGfQVBHH9P9GbrQeuYCNC4fkjB7R6cVMoY3Y5jhQj5duPAL e8A&usqp=CAU
- marineinsight, n.d. [Ηλεκτρονικό] Available at: <u>https://www.marineinsight.com/marine-safety/watertight-doors-on-ships-a-general-overview/</u>
- marinesight, n.d. marinesight.com. [Ηλεκτρονικό]
 Available at: https://www.marineinsight.com/naval-architecture/ship-stabilityintact-stability-criteria-and-inclining-experiment/
- Marinesight, n.d. marinesight.com. [Ηλεκτρονικό] Available at: <u>https://www.marineinsight.com/naval-architecture/ship-stability-introduction-hydrostatics-stability-surface-ships/</u>
- mixanitouxronou, n.d. mixanitouxronou.gr. [Ηλεκτρονικό]
 Available at: <u>https://i1thumbs.glomex.com/dC1ibGhjd3dyZnZwcGQvMjAxOC8xMi8wNy8yMi8y</u> <u>NI81MV81YzBhZjNhYmU2MmQxLmpwZWc=/profile:player-960x540</u>

- ortsa, n.d. ortsa.gr. Καμπύλη Ευστάθειας Πως τη «διαβάζουμε» και τι μας φανερώνει.
- Pekka Ruponen, n.d. www.researchgate.net. [Ηλεκτρονικό]
 Available at: https://www.researchgate.net/publication/27516713/Εικόνα/fig1/AS:341338936627
 201@1458392952230/Main-phases-of-the-flooding-process.png
- Polynooe.lib.Uniwa, n.d. [Ηλεκτρονικό]
 Available at: <u>https://polynoe.lib.uniwa.gr/xmlui/bitstream/handle/11400/657/Kalampaliki_122019</u>.pdf?sequence=1&isAllowed=y
- Repository.Kallipos, n.d. [Ηλεκτρονικό]
 Available at: <u>https://repository.kallipos.gr/bitstream/11419/550/4/000master.pdf</u>
- Repository.kallipos, n.d. Repository.kallipos.gr. [Ηλεκτρονικό]
 Available at: https://repository.kallipos.gr/bitstream/11419/550/4/000master.pdf
- > safe swiss cloud, n.d. safeswisscloud.com. [Ηλεκτρονικό] Available at: <u>https://safeswisscloud.com/wpcontent/uploads/2019/01/bernoulli.png</u>
- sansimera.gr, n.d. sansimera. [Ηλεκτρονικό]
 Available at: <u>https://www.sansimera.gr/articles/361</u>
- sansimera.gr, n.d. sansimera. [Ηλεκτρονικό]
 Available at: <u>https://www.sansimera.gr/articles/204</u>
- Science.fandom.com, n.d. Wikipedia. [Ηλεκτρονικό]
 Available at: <u>https://science.fandom.com/el/wiki/%CE%95%CE%BE%CE%B9%CF%83%CF%8E%CF%83%</u>
 <u>CE%B5%CE%B9%CF%82_Navier-Stokes</u>
- Sciencedirect, n.d. www.sciencedirect.com. [Ηλεκτρονικό]
 Available at: https://www.sciencedirect.com/science/article/pii/S0038080615000906
- Topontiki.gr, 2021. [Ηλεκτρονικό]
 Available at: <u>https://www.topontiki.gr/2021/08/09/riva-yachts-i-istoria-piso-apo-ta-kompsotechnimata-pou-skizoun-tis-thalasses-photos/</u>
- Uniwa, n.d. e-class.uniwa.gr. [Ηλεκτρονικό]
 Available at: https://eclass.uniwa.gr/modules/document/file.php/NA255/Damaged_Stability_Pa rt%202%20%28Rev1%29.pdf
- Uniwa, n.d. Uniwa. [Ηλεκτρονικό]
 Available at: https://uniwagr-

my.sharepoint.com/personal/itigkas_uniwa_gr/Documents/LECTURES%20UNIWA/ Dissertations/%CE%94%CE%B9%CF%80%CE%BB%CF%89%CE%B1%CF%84%CE%B9 %CE%BA%CE%B5%CF%82%20Ongoing/Papers%20Flooding/A%20numerical%20investig ation%20on%20the%20flooding%2

- Uniwa, n.d. uniwa.gr. [Ηλεκτρονικό] Available at: <u>https://uniwagr-</u> my.sharepoint.com/personal/itigkas_uniwa_gr/Documents/LECTURES%20UNIWA/ Dissertations/%CE%94%CE%B9%CF%80%CE%BB%CF%89%CE%BC%CE%B1%CF%84%CE%B9 %CE%BA%CE%B5%CF%82%20Ongoing/Papers%20Flooding/Experimental%20and%20n umerical%20investigation%20of%2
- Wikipedia.org, 2023. el.wikipedia.org. [Ηλεκτρονικό] Available at: <u>https://el.wikipedia.org/wiki/%CE%94%CE%B9%CE%B5%CE%B8%CE%BD%CE%AE%CF%82</u> <u>_%CE%9F%CF%81%CE%B3%CE%B1%CE%BD%CE%B9%CF%83%CE%BC%CF%82_%CE%</u>9D%CE%B1%CF%85%CF%83%CE%B9%CF%80%CE%BB%CE%BF%CE%90%CE%B1%CF%82
- Wikipedia.org, n.d. [Ηλεκτρονικό] Available at: https://el.wikipedia.org/wiki/%CE%91%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82_ %CE%A1%CE%AD%CE%B9%CE%BD%CE%BF%CE%BB%CE%BD%CF%84%CF%82
- Wikipedia, 2023. en.wikipedia.org. [Ηλεκτρονικό]
 Available at: <u>https://en.wikipedia.org/wiki/Yacht</u>
- Wikipedia, 2023. en.wikipedia.org. [Ηλεκτρονικό]
 Available at: https://upload.wikimedia.org/wikipedia/commons/thumb/o/09/Jacob_van_Strij_-_Het_Jacht_van_de_kamer_Rotterdam.jpg/220px-Jacob_van_Strij_-_Het_Jacht_van_de_kamer_Rotterdam.jpg
- Wikipedia, 2023. en.Wikipedia.org. [Ηλεκτρονικό] Available at: https://upload.wikimedia.org/wikipedia/commons/thumb/0/00/America%27s_Cup_ Racing%2C_1893-Fred_S._Cozzens-IMG_5974.JPG/220px-America%27s_Cup_Racing%2C_1893-Fred_S._Cozzens-IMG_5974.JPG
- Wikipedia, n.d. Wikipedia. [Ηλεκτρονικό]
 Available at: <u>https://el.wikipedia.org/wiki/Christina_O</u>
- Wikipedia, n.d. Wikipedia Yacht. [Ηλεκτρονικό]
 Available at: <u>https://en.wikipedia.org/wiki/Yacht</u>
- Wikipedia, n.d. wikipedia.org. [Ηλεκτρονικό] Available at: <u>https://el.wikipedia.org/wiki/%CE%95%CF%85%CF%83%CF%84%CE%AC%CE%B8%CE%B5</u> <u>%CE%B9%CE%B1 %CF%80%CE%BB%CE%BF%CE%AF%CE%BF%CF%85</u>

- Wikipedia, n.d. wikipedia.org. [Ηλεκτρονικό]
 Available at: https://el.wikipedia.org/wiki/%CE%9A%CE%B1%CE%BC%CF%80%CF%8D%CE%BB%CE%B7 _%CE%B5%CF%85%CF%83%CF%84%CE%AC%CE%B8%CE%B5%CE%B9%CE%B1%CF%82
- Αθανάσιος, Ν., 2013. dspace.lib.ntua.gr. [Ηλεκτρονικό]
 Available at: https://dspace.lib.ntua.gr/xmlui/bitstream/handle/123456789/38428/niotisa_progr essive.pdf?sequence=1
- Γιώργος, Τ., 2015. e-class. [Ηλεκτρονικό]
 Available at: https://eclass.uniwa.gr/modules/document/file.php/NA255/Damaged_Stability_Pa rt%204%20%28Rev3%29.pdf
- Γιώργος, Τ., 2015. eclass.uniwa.gr. [Ηλεκτρονικό]
 Available at: https://eclass.uniwa.gr/modules/document/file.php/NA255/Damaged_Stability_Pa rt%202%20%28Rev1%29.pdf
- Γιώργος, Τ., 2015. Υδροστατική και Ευστάθεια πλοίου. s.l.:s.n.
- Γιώργος, Τ., 2015. Υδροστατική και Ευστάθεια πλοίου. s.l.:s.n.
- Δ., B., 2000. dspace.lib.ntua.gr. [Ηλεκτρονικό]
 Available at: https://dspace.lib.ntua.gr/xmlui/bitstream/handle/123456789/38428/niotisa_progr essive.pdf?sequence=1
- Ιωάννης, Δ., 2015. maredu.hcg.gr. [Ηλεκτρονικό]
 Available at: https://maredu.hcg.gr/modules/document/file.php/MAK264/%CE%95%CF%85%CF%8
 3%CF%84%CE%AC%CE%B8%CE%B5%CE%B9%CE%B1%20 %20%CE%A6%CE%BF%CF%81%CF%84%CF%8E%CF%83%CE%B5%CE%B9%CF%82/%CE%95%C
 F%85%CF%83%CF%84%CE%AC%CE%B8%CE%B5%CE%B9%CE%B1%20%CE%B2%CE%BB%CE%
 AC%CE%B2%CE
- Μάργαρης, Δ., 2019. ylikonet.gr. [Ηλεκτρονικό]
 Available at: <u>https://1.bp.blogspot.com/-</u> q3i2SoOobyY/XPzdv3juXKI/AAAAAAAgd4/1NVEQkpsSsYqvu15gOfIgPh_fZRX4agj gCLcBGAs/s1600/file--690710elr3622%25CF%2580.JPG
- Τζαμπίρας, Γ., 2015. Υδροστατική και Ευστάθεια πλοίου. s.l.:s.n.