

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Π.Μ.Σ. Δομοστατικά Έργα

# Προσδιορισμός Γραμμών Επιρροής σε Γέφυρες με τη Μέθοδο των Πεπερασμένων Στοιχείων



Διπλωματική Εργασία Π.Μ.Σ. Δομοστατικά Έργα

Νίτσας Φώτιος

Αθήνα, Ιούνιος 2023

Επιβλεπων Καθηγητής : Τριανταφύλλος-Φιλής Κοκκινός



Ονοματεπώνυμο φοιτητή: Νίτσας Κ. Φώτιος

Τίτλος Μεταπτυχιακής Διπλωματικής Εργασίας:

# ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΓΡΑΜΜΩΝ ΕΠΙΡΡΟΗΣ ΣΕ ΓΕΦΥΡΕΣ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

Η παρούσα εργασία εξετάστηκε επιτυχώς από την κάτωθι Τριμελή Εξεταστική Επιτροπή:

**Τριαντάφυλλος - Φίλης Κόκκινος** Αναπληρωτής Καθηγητής Επιβλέπων **Κωνσταντίνος Δημάκος** Καθηγητής Διευθυντής Π.Μ.Σ.

Νικόλαος Πνευματικός Καθηγητής Μέλος

Ιούνιος 2023, ΑΙΓΑΛΕΩ



#### ΛΗΛΩΣΗ ΣΥΓΓΡΑΦΕΑ ΜΕΤΑΠΤΥΧΙΑΚΗΣ ΕΡΓΑΣΙΑΣ

Ο κάτωθι υπογεγραμμένος Νίτσας Φώτιος του Κωνσταντίνου, με αριθμό μητρώου 17 φοιτητής του Προγράμματος Μεταπτυχιακών Σπουδών «Δομοστατικά Έργα» του Τμήματος Πολιτικών Μηχανικών της Σχολής Μηχανικών του Πανεπιστημίου Δυτικής Αττικής, δηλώνω ότι:

«Είμαι συγγραφέας αυτής της μεταπτυχιακής εργασίας και ότι κάθε βοήθεια την οποία είχα για την προετοιμασία της, είναι πλήρως αναγνωρισμένη και αναφέρεται στην εργασία. Επίσης, οι όποιες πηγές από τις οποίες έκανα χρήση δεδομένων, ιδεών ή λέξεων, είτε ακριβώς είτε παραφρασμένες, αναφέρονται στο σύνολό τους, με πλήρη αναφορά στους συγγραφείς, τον εκδοτικό οίκο ή το περιοδικό, συμπεριλαμβανομένων και των πηγών που ενδεχομένως χρησιμοποιήθηκαν από το διαδίκτυο. Επίσης, βεβαιώνω ότι αυτή η εργασία έχει συγγραφεί από μένα αποκλειστικά και αποτελεί προϊόν πνευματικής ιδιοκτησίας τόσο δικής μου, όσο και του Ιδρύματος.

Παράβαση της ανωτέρω ακαδημαϊκής μου ευθύνης αποτελεί ουσιώδη λόγο για την ανάκληση του πτυχίου μου».

Ο Δηλών

Νίτσας Φώτιος



**ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ** ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ Τμήμα Πολιτικών Μηχανικών

# Περίληψη

Λόγω της πολυπλοκότηατας της μελέτης των σύγχρονων γεφυρών δημιουργείται η ανάγκη εύρεσης γρήγορων και αξιόπιστων αποτελεσμάτων σχετικά με τη διαστασιολόγηση των στοιχείων τους.

Ο σκοπός της παρούσας εργασίας ήταν η εύρεση των γραμμών επιρροής εντατικών και παραμορφωσιακών μεγεθών του δικτυώματος ενός φορέα μεταλλικής γέφυρας με τη μέθοδο των πεπερασμένων στοιχείων.

Αρχικά έγινε μία αναφορά στα είδη των γεφυρών αλλά και στη μέθοδο των πεπερασμέων στοιχείων.

Για την επίλυση του δικτυώματος δημιουργήθηκαν οι απαραίτητες συναρτήσεις στο πρόγραμμα Mirosoft Excel όπου πραγματοποιήθηκε και η ανάλυση.

Τέλος, αποτυπώθηκε το αριθμητικό παράδειγμα της μεταλλικής κατασκευής δίνοντας αναλυτικά τα βήματα που ακολουθήθηκαν.



**UNIVERSITY OF WEST ATTICA** SCHOOL OF ENGINEERING Department of Civil Engineering

# Abstract

Due to the complexity of study of the modern bridges it is necessary to find quick and reliable results regarding the sizing of their elements.

The purpose of this diploma thesis was to create the lines of influence of intensive, and deformation quantities of the lattice of a metal bridge carrier by the finite element method.

Firstly, general information with reference to the types of bridges, and also to the finite element method were made.

Regarding the structural solution, the necessary functions were created using the Microsoft Excel program, where the analysis was also carried out.

Finally, the example of the metal construction, and the detailed method statement were presented.

# Πρόλογος - Ευχαριστίες

Η παρούσα μεταπτυχιακή διπλωματική εργασία εκπονήθηκη στα πλάισια του μεταπτυχιακού προγράμματος σπουδών «Δομοστατικά Έργα» της Σχολής Πολιτικών Μηχανικών του τμήματος Πολιτικών Μηχανικών του Πανεπιστημίου Δυτικής Αττικής.

Με την ολοκλήρωση της παρούσας εργασίας θα ήθελα να ευχαριστήσω τον επιβλέποντα Αναπληρωτή Καθηγητή κ. Τριαντάφυλλο – Φίλη Κόκκινο για την δυνατότητα να πραγματοποιήσω αυτή την εργασία καθώς επίσης και για την πολύτιμη καθοδήγησή του όλο αυτό το χρονικό διάστημα.

Τέλος, θα ήθελα να ευχαριστήσω την οικογένειά μου , που όλα αυτά τα χρόνια είναι δίπλα μου σε κάθε βήμα.

# Πίνακας Περιεχομένων

| Περίληψη                                                                             |
|--------------------------------------------------------------------------------------|
| Abstract                                                                             |
| Πρόλογος - Ευχαριστίες                                                               |
| 1. Εισαγωγή                                                                          |
| 1.1 Είδη & Στοιχείων Γεφυρών7                                                        |
| 2. Τρόποι Στατικής Επίλυσης και Υπολογισμός Γεφυρών15                                |
| 2.2 Γραμμές Επιρροής και Γέφυρες19                                                   |
| 2.3 Πεπερασμένα στοιχεία και γέφυρες                                                 |
| 2.3.1 Πλεονεκτήματα και χρήσεις μοντέλου περασμάτων στοιχειών                        |
| <ol> <li>Μέθοδος Επίλυση</li></ol>                                                   |
| 3.1 Υπολογισμός Μετακινήσεων των Κόμβων                                              |
| 3.2 Ακραίες μετακινήσεις των μελών στο καθολικό και στο τοπικό σύστημα των<br>αξόνων |
| <ol> <li>Σκοπός Μελέτης</li></ol>                                                    |
| 5. Παράδειγμα Εφαρμογής                                                              |
| 5.1 Περιγραφή Φορέα                                                                  |
| 5.2 Μέθοδος Επίλυσης Δικτυώματος                                                     |
| Βήμα 1°                                                                              |
| Βήμα 2°                                                                              |
| Βήμα 3°                                                                              |
| Βήμα 4º                                                                              |
| Βήμα 5°                                                                              |
| Βήμα 6°                                                                              |
| Βήμα 7°                                                                              |
| Βήμα 8°                                                                              |
| Βήμα 9°                                                                              |
| Βήμα 10°                                                                             |
| 5.3 Αποτελέσματα Επίλυσης Φορέα                                                      |
| Βιβλιογραφία                                                                         |

# Περιεχόμενα Εικόνων

| Εικόνα 1. Μυκηναϊκό τοξωτό γεφύρι Αρκαδικού (ΧΙΙΙ αι. π.Χ.) -ΒΙΚΙΠΑΙΔΕΙΑ 6            |
|---------------------------------------------------------------------------------------|
| Εικόνα 2. Σύμμικτη – Καλωδιωτή, Γέφυρα Ρίου-Αντιρρίου ΒΙΚΙΠΑΙΔΕΙΑ                     |
| Εικόνα 3. Γέφυρα από οπλισμένο σκυρόδεμα (Άνω διάβαση) - ΒΙΚΙΠΕΔΕΙΑ                   |
| Εικόνα 4. Albion River Bridge -έτος κατ.: 1944, μήκος 300 μ., ύψος 40 μ., εμποτισμένη |
| ξυλεία copper azole, και κεντρικά χάλυβας ως center truss - ΒΙΚΙΠΑΙΔΕΙΑ               |
| Εικόνα 5. Γέφυρα Theodor Heuss (1882-1885) μεταλλική ΒΙΚΙΠΑΙΔΕΙΑ                      |
| Εικόνα 6. Το γεφύρι της Πλάκας - Υπουργείο Πολιτισμού)                                |
| Εικόνα 7. Η μεγαλύτερη προβολική γέφυρα ( Κεμπέκ , Καναδάς) - ΒΙΚΙΠΑΙΔΕΙΑ 10          |
| Εικόνα 8. Γέφυρα Καλωδιωτή στην Νορμανδία - ΒΙΚΙΠΑΙΔΕΙΑ11                             |
| Εικόνα 9. Πλαισιωτές Γέφυρες11                                                        |
| Εικόνα 10. Γέφυρα παλατιών στην Αγία Πετρούπολη σε διαζευγμένη                        |
| κατάσταση(Κινητή Γέφυρα)12                                                            |
| Εικόνα 11. Μονολιθική Σύνδεση ( ΓΕΦΥΡΟΠΟΙΪΑ: ΕΙΔΗ ΓΕΦΥΡΩΝ ΚΑΙ                         |
| ΜΕΘΟΔΟΙ ΚΑΤΑΣΚΕΥΗΣ, Μπισκίνης Ε. Διονύσιος)                                           |
| Εικόνα 12. Σύνδεση με Εφέδρανα ( ΓΕΦΥΡΟΠΟΙΪΑ: ΕΙΔΗ ΓΕΦΥΡΩΝ ΚΑΙ                        |
| ΜΕΘΟΔΟΙ ΚΑΤΑΣΚΕΥΗΣ, Μπισκίνης Ε. Διονύσιος)                                           |
| Εικόνα 13. Οπτική κίνηση (dLOS) και αναμενόμενη (υπολογισμένη) κατακόρυφη             |
| κίνηση (d), απόσταση ραντάρ R από τη μετρούμενη στροφή και απόσταση ραντάρ H          |
| από το μετρούμενο σημείο σε κατακόρυφη διεύθυνση17                                    |
| Εικόνα 14 Προέλευση του ερμηνευτικού σφάλματος ΕΙ κατά τη μέτρηση με ένα μόνο         |
| συμβολομετρικό ραντάρ                                                                 |
| Εικόνα 15. (α) Αυτή η απλή δοκός στήριξης εμφανίζεται με ένα φορτίο μονάδας           |
| τοποθετημένο σε απόσταση ξ από το αριστερό άκρο. Το μέγεθος του φορτίου που           |
| κινείται πάνω στη δοκό το παίρνουμε πάντοτε ίσο με τη μονάδα των δυνάμεων και         |
| κατά προτίμηση ίσο με 1 kN                                                            |
| Εικόνα 16. Ένα ζεύγος δοκών από ατσάλι                                                |
| Εικόνα 17. Διασταυρούμενη μοντελοποίηση στα Midlands Links Viaducts                   |

# 1. Εισαγωγή

Μια κατασκευή η οποία έχει σκοπό την συνεχή επικοινωνία πάνω απο ένα εμπόδιο, ονομάζεται γέφυρα. Συνήθως κατασκευάζεται πάνω απο εμπόδια όπως, ποτάμια, χαράδρες κ.τ.λ. [1] [2] [3] [4]. Λόγω των φυσικών εμποδίων και της ανάγκης των ανθρώπων για επικοινωνία και μεταφορά εμπορευμάτων, απο τα αρχαία ακόμη χρόνια άρχιζαν την κατασκευή των γεφυρών.

Την σημασία των γεφυρών μπορούμε να αντιληφθούμε απο την αντιμετόπηση προς αυτές, συνδεοντας τες με θρύλους, τραγούδια και ανθρωποθυσίες. Οι ονομασίες πολλών εξ αυτών των κατασκευών σε πάρα πολλές περιπτώσεις λαμβάνεται βάσει την τοποθεσίας τους.

Οι πρώτες κατασκευές γεφυρών στην αρχαιότητα ήταν προβολικές απο μεγάλους λίθους ή με κορμούς μεγάλων δέντρων πάνω από ποτάμια ή μικρά ρεύματα. Στις αρχές του 19ου αιώνα άρχισε να τοποθετείτε ο σίδηρος (χυτοσίδηρος) αλλα σε πολύ λίγο χρονικό διάστημα αντικαταστάθηκε απο τον χάλυβα όπως τον γνωρίζουμε ως σήμερα. Τον 20ο αιώνα προστέθηκε το υλικό του οπλισμένου σκυροδέματος που έχει χρησιμοποιηθεί σε πάρα πολλές κατασκευές λόγω και της εισαγωγής και των αυτοκινήτων.

Κατά κανόνα, οι γέφυρες αποτελούνται απλουστευμένα απο άνοιγμα και στηρίγματα. Οι δομές των ανοιγμάτων χρησιμεύουν για την απορρόφηση φορτίων και τη μεταφορά τους στα στηρίγματα. Μπορεί να έχουν δρόμο, διάβαση πεζών, αγωγό κ.τ.λ. Τα στηρίγματα μεταφέρουν τα φορτία τους στη βάση της γέφυρας.



Εικόνα 1. Μυκηναϊκό τοζωτό γεφύρι Αρκαδικού (ΧΠΙ αι. π.Χ.) -BIKIΠΑΙΔΕΙΑ.

Με την ραγδαία ανάπτυξη της τεχνολογία καθώς και των υλικών κατασκευής, πλέον έχει προσπελαστεί οποιοδήποτε εμπόδιο. Οι νέες αυτές κατασκευές

κατατάσσονται ανάλογα με το υλικό κατασκευής (μεταλλικές, σύμμικτες, οπλισμένου σκυροδέματος) ή και τον τρόπο τον οποίο χρησιμοποιούνται ή και το σχήμα τους.

Μπορούμε να διακρίνουμε τις γέφυρες ως εξής:

#### 1.1Είδη & Στοιχείων Γεφυρών

Α) Ταξινόμηση ανάλογα με το θλικό κατασκευής

- Σύμμικτες
- Οπλισμένου σκυροδέματος
- Ξύλινες
- Μεταλλικές
- Λίθινες



Εικόνα 2. Σύμμικτη – Καλωδιωτή, Γέφυρα Ρίου-Αντιρρίου ΒΙΚΙΠΑΙΔΕΙΑ.



Εικόνα 3. Γέφυρα από οπλισμένο σκυρόδεμα (Άνω διάβαση) - ΒΙΚΙΠΕΔΕΙΑ.



Εικόνα 4. Albion River Bridge - έτος κατ.: 1944, μήκος 300 μ., ύψος 40 μ., εμποτισμένη ζυλεία copper azole, και κεντρικά χάλυβας ως center truss - ΒΙΚΙΠΑΙΔΕΙΑ.



Εικόνα 5. Γέφυρα Theodor Heuss (1882-1885) μεταλλική - . ΒΙΚΙΠΑΙΔΕΙΑ



Εικόνα 6. Το γεφύρι της Πλάκας - Υπουργείο Πολιτισμού).

B) Ανάλογα με τις χρήσεις τους

- Πεζογέφυρες
- Οδικές
- Σιδηροδρομικές
- Ειδικές Γέφυρες

Γ) Ανάλογα με την λειτουργία του φέροντος συστήματος

- Γέφυρες φορέων με μορφή δοκών
- Πλαισιοτές Γέφυρες
- Γέφυρες τοξωτές
- Γέγυρες Καλωδιωτές
- Κρεμαστές Γέγυρες



Εικόνα 7. Η μεγαλύτερη προβολική γέφυρα (Κεμπέκ , Καναδάς) - ΒΙΚΙΠΑΙΔΕΙΑ



Εικόνα 8. Γέφυρα Καλωδιωτή στην Νορμανδία - ΒΙΚΙΠΑΙΔΕΙΑ.



Εικόνα 9. Πλαισιωτές Γέφυρες



Εικόνα 10. Γέφυρα παλατιών στην Αγία Πετρούπολη σε διαζευγμένη κατάσταση (Κινητή Γέφυρα).

Πέραν των ειδών κατάταξης των γεφυρών, στην γεφυροποιία διακρίνουμε και την «υποδομή» της γέφυρας από την «ανωδομή». Η υποδομή (Ανωδομή) απαρτίζεται απο τα βάθρα (ακροβάθρα και μεσόβαθρα), τυχόν τοίχους αντιστήριξης σε περίπτωση που η πρόσβαση στην γέφυρα γίνεται απο επιγώματα στα ακρόβαθρα (συνήθως), έργα μετάβασης στην οδό (πλάκες πρόσβασης κ.τ.λ) και τέλος τη θεμελίωση. Επίσης η ανωδομή περιλαμβάνει το φορέα καταστρώματος όπως κατάστρωμα κυκλοφορίας, εφέδρανα στήριξης του φορέα στα βάθρα και άλλα στοιχεία (πεζοδρόμια, κιγκλιδώματά, στηθαία ασφαλείας στα πεζοδρόμια, διαχωριστικά στηθαία κλάδων κυκλοφορίας, οδόστρωμα και μόνωση φορέα καταστρώματος, αρμούς διαστολής, αποχετεύσεις ομβρίων, στύλους φωτισμού, διελεύσεις αγωγών, κ.α).

Αν ο φορέας του καταστρώματος στηρίζεται σε ακρόβαθρα με εφέδρανα, τότε το ακρόβαθρο συνεχίζεται μέχρι την επιφάνεια της οδού πρόσβασης (πίσω από το φορέα καταστρώματος), με τον τρόπο αυτο κατασκευάζεται ένα μικρός και σε διατομή πολύ λεπτός τοίχος αντιστήριξης που ονομάζεται θωράκιο. Με την κατασκευή του προαναφερθέντος θωρακίου επιτυγχάνεται η προστασία των εφεδράνων απο το επίχωμα πρόσβασης, παρατηρείται επίσης το θωράκιο να χρησιμοποιείται και στις δυο πλευρές του καταστρώματος( Δεξια- αριστερά παράλληλα στον άξονα της γέφυρας) σαν αποτέλεσμα να σχηματίζεται σε κάτοψη ενα ΠΙ στο οποίο εισχωρεί ο φορέας καταστρώματος.

Σε άλλη περίπτωση ο φορέας του καταστρώματος μπορεί να συνδέεται μονολιθικά με το ακρόβαθρο (ή/και πλάκα πρόσβασης ή/και με τα μεσόβαθρα ), τότε τοποθετείται ο αρμός διαστολής (επειδή οι αρμοί προκαλούν όχληση στην κυκλοφορία,

τοποθετούνται πλέον μόνο στα ακρόβαθρα). Ενδεικνυόμενος τρόπος για την πρόσβαση για την αποφυγή τυχόν καθιζήσεις με την μορθή αναβαθμών στους αρμούς μεταξύ των ακροβάθρων, είναι η κατασκευή πλάκας πρόσβασης απο οπλισμένο σκυρόδεμα πάνω απο το επίχωμα, στηριζόμενο στο θωράκιο ή στο ακρόβαθρο. Η πλάκα πρόσβασης κατασκευάζεται όσο το πλάτος του κατάστρωμα (κατά τον άξονα της γέφυρας) και το μήκος της είναι λίγα μέτρα.



Εικόνα 11. Μονολιθική Σύνδεση ( ΓΕΦΥΡΟΠΟΙΪΑ: ΕΙΔΗ ΓΕΦΥΡΩΝ ΚΑΙ ΜΕΘΟΔΟΙ ΚΑΤΑΣΚΕΥΗΣ, Μπισκίνης Ε. Διονύσιος).



Εικόνα 12. Σύνδεση με Εφέδρανα (ΓΕΦΥΡΟΠΟΙΪΑ: ΕΙΔΗ ΓΕΦΥΡΩΝ ΚΑΙ ΜΕΘΟΔΟΙ ΚΑΤΑΣΚΕΥΗΣ, Μπισκίνης Ε. Διονύσιος).

Πέραν των προαναφερομένων, το οδόστρωμα αποτελείται από σχετικά λεπτό ασφαλτοτάπητα και φύλλο μόνωσης (ανάλογα με το υλικό της μόνωσης μπορεί να χρειάζεται και τσιμεντοκονία προστασίας).

Αγωγοί για τη διέλευση καλωδίων ή και νερού εγκιβωτίζονται συνήθως στα πεζοδρόμια, ή, αν είναι μεγαλύτερης διαμέτρου, τοποθετούνται κάτω από το φορέα καταστρώματος. Στόμια αποχέτευσης ομβρίων τοποθετούνται ανά 100m2 περίπου κάτοψης. Κατακόρυφοι αγωγοί αποχέτευσης των ομβρίων τοποθετούνται στα βάθρα

## 2. Τρόποι Στατικής Επίλυσης και Υπολογισμός Γεφυρών

Πρόσφατα, η παρακολούθηση της δομικής υγείας, έχει γίνει σταδιακά ένα σημαντικό θέμα στη μηχανική γεφυρών και στη διαχείριση γεφυρών. Για παράδειγμα, μια ενδιαφέρουσα μελέτη σχετικά με το σχεδιασμό ενός συστήματος παρακολούθησης για μια προεντεταμένη σύνθετη γέφυρα κυβικής δοκού με κυματοειδείς χαλύβδινους ιστούς, συμπεριλαμβανομένης της ανάπτυξης του συστήματος παρακολούθησης σε πραγματικό χρόνο, της υλοποίησης πειραμάτων επί τόπου και της ανάλυσης ενός τρισδιάστατου Το μοντέλο FEM εισάγεται στο [1].

Τα ληφθέντα αποτελέσματα χρησιμοποιήθηκαν για την εξαγωγή του φακέλου προειδοποίησης και κρίσιμων ορίων, επιτρέποντας έτσι την αποτελεσματική κρίση σχετικά με την αξιολόγηση ασφάλειας της γέφυρας στη φάση λειτουργίας.

Ως ένα άλλο παράδειγμα, τα αποτελέσματα της παρακολούθησης της δομικής υγείας μιας μεταλλικής τοξωτής σιδηροδρομικής γέφυρας που αφορά διαφορετικούς σκοπούς, συγκεκριμένα τη μακροπρόθεσμη παρακολούθηση των αλληλεπιδράσεων τροχιάς (γέφυρας), περιγράφονται στο [2].

Τα τελευταία 10 χρόνια, η συμβολομετρία ραντάρ εδάφους με ραντάρ πραγματικού διαφράγματος (GB-RAR ή GB-InRAR) έχει γίνει μια συχνά χρησιμοποιούμενη τεχνολογία για τον προσδιορισμό των δυναμικών παραμορφώσεων των δομών γεφυρών που προκαλούνται από διόδους οχημάτων [3-8]. Ο στόχος αυτών των πειραμάτων ήταν να ληφθούν πειραματικά δεδομένα που θα μπορούσαν να χρησιμοποιηθούν ουσιαστικά για την παρακολούθηση της υγείας της γέφυρας.

Η μέθοδος της συμβολομετρίας ραντάρ επιτρέπει τη μέτρηση παραμορφώσεων σε πραγματικό χρόνο για βραχυπρόθεσμα και μακροπρόθεσμα φορτία σε κανονική κυκλοφορία (π.χ. διέλευση οχημάτων).

Επιπλέον, μπορεί να συλλάβει και να ανιχνεύσει δυναμικά τη συχνότητα και το πλάτος της δόνησης του παρακολουθούμενου αντικειμένου στην περιοχή συχνοτήτων από περίπου 0,0 έως 80 Hz. Αυτή η μέθοδος προβλέπει τον προσδιορισμό του μεγέθους εκτροπής με ακρίβεια μεγαλύτερη από 0,1 mm. Οι εκτροπές μιας γέφυρας μπορούν να προσδιοριστούν ταυτόχρονα σε πολλαπλές θέσεις. Είναι δυνατό να ληφθούν τόσο γενικές όσο και λεπτομερείς πληροφορίες για τη συμπεριφορά της κατασκευής υπό το δυναμικό της φορτίο. Για παράδειγμα, στη γέφυρα μήκους 100 m υπάρχει δυνατότητα ταυτόχρονης παρακολούθησης έως και 100 περίπου σημείων. Οι βασικές αρχές και τα παραδείγματα της χρήσης της τεχνολογίας GB-RAR για τον προσδιορισμό της παραμόρφωσης των γεφυρών δίνονται, για παράδειγμα, στο [3-7].

Ένα παράδειγμα χρήσης της τεχνολογίας GB-RAR για τον προσδιορισμό των παραμορφώσεων των μεταλλικών κατασκευών σιδηροδρομικών γεφυρών που προκαλούνται τόσο από αλλαγές θερμοκρασίας όσο και από διελεύσεις οχημάτων (δυναμικά φορτία) παρουσιάζεται στο [8]. Ωστόσο, αυτή η τεχνολογία χρησιμοποιείται πολύ συχνά και για την παρακολούθηση περαιτέρω αντικειμένων. Για παράδειγμα, η παρακολούθηση των πύργων επικοινωνιών και των αστικών κτιρίων περιγράφεται στο [9,10] και η παρακολούθηση των δεξαμενών πύργων νερού, των καμινάδων εργοστασίων και των πυλώνων σταθμών αιολικής ενέργειας δίνεται στο [11]. Η κοινή χρήση ενός επίγειου σαρωτή λέιζερ (TLS), διαμορφωμένου σε λειτουργία σαρωτή γραμμής, και μιας τεχνολογίας GB-RAR για την παρακολούθηση των συχνοτήτων δόνησης και των πλατών ταλαντώσεων ψηλών κατασκευών παρουσιάζεται στο [12]. Οι συγκρίσεις της τεχνολογίας και της τεχνολογίας GB-RAR που χρησιμοποιούν επιταχυνσιόμετρα για δυναμική παρακολούθηση μεγάλων κατασκευών και για παρακολούθηση γεφυρών δίνονται στο [13,14]. Μια ανασκόπηση στον τομέα της χρήσης της τεχνολογίας GNSS για τη δυναμική παρακολούθηση της δομικής υγείας μαζί με άλλες τεχνολογίες όπως τα επιταχυνσιόμετρα και το RTS (ρομποτικοί συνολικοί σταθμοί) παρουσιάζεται στο [15]. Οι πρόσφατες τάσεις της έρευνας περιλαμβάνουν επίσης [16] την παρουσίαση ενός πρακτικού πλαισίου για την ανίχνευση και την ανάλυση ζημιών σε αστικές γέφυρες με τη χρήση τριών βασικών τεχνικών: επίγεια σάρωση λέιζερ (TLS), επίγεια μικροκυματική συμβολομετρία και δορυφορικό ραντάρ συνθετικού διαφράγματος συμβολομετρίας μόνιμης διασποράς (PS-InSAR). Μια ανασκόπηση και μελλοντικές κατευθύνσεις της σύγχρονης παρακολούθησης γεφυρών με χρήση TLS βρίσκονται στο [17].

Περαιτέρω, αναφ. [18] προτείνει μια μεθοδολογία για την ανίχνευση σε κλίμακα χαρτοφυλακίου δομικών παραμορφώσεων γεφυρών μέσω πολυχρονικής διαφορικής συμβολομετρίας δορυφόρου (MTInSAR). Στο [19], παρουσιάζεται ένα σύστημα στάθμης υγρού πλέγματος ινών Bragg (FBG) που βασίζεται σε αισθητήρες οπτικών ινών που σχηματίζονται από δομές με δύο σταθερά άκρα. Ένα τέτοιο σύστημα είναι κατάλληλο για μακροχρόνια παρακολούθηση γεφυρών σε μεγάλες αποστάσεις και δεν απαιτεί κατάλληλες περιβαλλοντικές συνθήκες, επιτόπια ορατότητα και εντατική εργασία. Ωστόσο, δεν μπορεί να χρησιμοποιηθεί για την παρακολούθηση δυναμικών ή οριζόντιων μετατοπίσεων. Αντίθετα, η μέθοδος συμβολομετρίας ραντάρ είναι κατάλληλη για λειτουργική παρακολούθηση τόσο των δυναμικών όσο και των οριζόντιων μετατοπίσεων.

Αυτή η συνεισφορά επικεντρώνεται στη μέτρηση των παραμορφώσεων των γεφυρών από δύο παρεμβολομετρικά ραντάρ IBIS-FS του ιταλικού κατασκευαστή IDS—Ingegneria Dei Sistemi. Περισσότερες λεπτομέρειες σχετικά με αυτό το όργανο βρίσκονται, π.χ., στο [20]. Ένα από τα βασικά μειονεκτήματα της μεθόδου GB-RAR είναι ότι το ραντάρ μετρά μόνο τις μετατοπίσεις της γραμμής τοποθεσίας (LOS) προς την κατεύθυνση της πρόθεσης και αυτές υπολογίζονται εκ νέου στην αναμενόμενη κατεύθυνση των μετατοπίσεων. Στην περίπτωση των γεφυρών, η αναμενόμενη κατεύθυνση είναι συνήθως κάθετη. Η κατάσταση της γεωμετρίας φαίνεται στο Σχήμα παρακάτω. Η υποτιθέμενη (αναμενόμενη) κατακόρυφη μετατόπιση υπολογίζεται σύμφωνα με το [4]:

#### d = dLOS R/H (1)

Ωστόσο, η υπόθεση μόνο μιας κατακόρυφης μετατόπισης μπορεί να μην εκπληρώνεται και γενικά δεν εκπληρώνεται. Ο λόγος είναι, για παράδειγμα, ότι οι γέφυρες συχνά δεν είναι οριζόντιες ούτε ευθείες και στη συνέχεια συμβαίνει σημαντική διαμήκης ή εγκάρσια παραμόρφωση ταυτόχρονα ως αποτέλεσμα στρέψης κατά την κατακόρυφη παραμόρφωση και επίσης τα οχήματα δημιουργούν συνήθως διαμήκεις και εγκάρσιες οριζόντιες δυνάμεις (π.χ. φρενάρισμα δυνάμεις ή φυγόκεντρες δυνάμεις) κατά τις διελεύσεις τους. Στις περισσότερες περιπτώσεις, οι διαμήκεις ή εγκάρσιες οριζόντιες μετατοπίσεις είναι πολύ μικρότερες από τις κάθετες. Σε ορισμένες περιπτώσεις, ωστόσο, οι οριζόντιες μετατοπίσεις μπορεί να γίνουν σημαντικές σε σύγκριση με τις κάθετες μετατοπίσεις. Παραδείγματα σιδηροδρομικών γεφυρών με σημαντικές τιμές εγκάρσιων οριζόντιων μετατοπίσεων παρουσιάζονται στο [21,22]. Στο [23] επισημαίνονται σφάλματα από τη λανθασμένη υπόθεση μόνο κατακόρυφων μετατοπίσεων. Με άλλα λόγια, πρόκειται για σφάλματα από τη μη λήψη υπόψη οριζόντιων μετατοπίσεων κατά τον προσδιορισμό κάθετων μετατοπίσεων χρησιμοποιώντας τη μέθοδο GB-RAR με ένα μόνο ραντάρ. Αυτό το σφάλμα από τη μη λήψη υπόψη οριζόντιων μετατοπίσεων συζητείται λεπτομερέστερα στο [24], όπου ονομάζεται Σφάλμα Ερμηνείας ΕΙ.



Εικόνα 13. Οπτική κίνηση (dLOS) και αναμενόμενη (υπολογισμένη) κατακόρυφη κίνηση (d), απόσταση ραντάρ R από τη μετρούμενη στροφή και απόσταση ραντάρ Η από το μετρούμενο σημείο σε κατακόρυφη διεύθυνση.

Η γεωμετρική κατάσταση που διευκρινίζει την προέλευση του ΣΦΑ Ερμηνείας φαίνεται στο Σχήμα παρακάτω. Σύμφωνα με το [24], το Σφάλμα Ερμηνείας μπορεί να εκφραστεί ως εξής: [24]

$$\mathsf{EI} = (\mathsf{d} - \mathsf{sy})/\mathsf{d}.(2)$$

$$E_I = \frac{s_x}{s_y} \sqrt{\left(\frac{R}{H}\right)^2 - 1} \tag{3}$$



Εικόνα 14. . Προέλευση του ερμηνευτικού σφάλματος ΕΙ κατά τη μέτρηση με ένα μόνο συμβολομετρικό ραντάρ .

Επομένως, ο τύπος (3) δίνει τη σχέση μεταξύ του Σφάλματος Ερμηνείας ΕΙ και των αναλογιών R/H (απόσταση ραντάρ από το μετρούμενο σημείο/απόσταση, ραντάρ από το μετρούμενο σημείο σε κατακόρυφη κατεύθυνση) και sx/sy (διαμήκης ή εγκάρσια οριζόντια μετατόπιση/κατακόρυφη μετατόπιση). Για λόγους σαφήνειας, ο Πίνακας 1 δείχνει τις τιμές του Σφάλματος Ερμηνείας ανάλογα με τις αναλογίες R/H και sx/sy. Με το συνηθισμένο μέγεθος του λόγου των οριζόντιων μετατοπίσεων προς την κατακόρυφη sx/sy = 0,10 στην πράξη, η τιμή του Σφάλματος Ερμηνείας EI = 23% ήδη στον λόγο R/H = 2,50. Στην αναλογία R/H = 5,00, EI = 49%. Με μεγαλύτερη αναλογία οριζόντιων προς κάθετων μετατοπίσεων, που μπορεί να συμβεί σε ορισμένες περιπτώσεις, οι τιμές ΕΙ είναι ακόμη σημαντικά μεγαλύτερες. Το μέγεθος του Σφάλματος Ερμηνείας μπορεί επομένως να λάβει πολύ σημαντικές τιμές και στην κοινή πρακτική μπορεί να ακυρώσει εντελώς τα αποτελέσματα της μέτρησης και να οδηγήσει σε λανθασμένα συμπεράσματα σχετικά με την υγεία της υπό δοκιμή δομής. Το πιο σημαντικό εύρημα σχετικά με την επιρροή του Ερμηνευτικού Σφάλματος ΕΙ είναι ότι, με ορισμένες εξαιρέσεις, δεν είναι δυνατό να βασιστούμε στα αποτελέσματα της μέτρησης κάθετων μετατοπίσεων με ένα μόνο ραντάρ [25].

Είναι λοιπόν απαραίτητο να σχεδιαστούν νέες διαδικασίες για τη μέτρηση και την επεξεργασία των μετρούμενων μετατοπίσεων LOS προκειμένου να ανιχνευθούν και να προσδιοριστούν οι πραγματικές κατευθύνσεις και μεγέθη των πραγματικών (συνολικών) μετατοπίσεων. Η δυνατότητα μέτρησης με δύο ή περισσότερα συστήματα ραντάρ ταυτόχρονα θα μπορούσε να ξεπεράσει αυτό το μειονέκτημα με πιθανώς τον πιο αποτελεσματικό τρόπο. Είναι επίσης δυνατό να εξαλειφθεί αυτό το μειονέκτημα με τη βοήθεια ενός υπολογιστικού μοντέλου της γέφυρας. Ωστόσο, στις περισσότερες περιπτώσεις, δεν είναι διαθέσιμο, και ακόμη κι έτσι, οι επιλογές του περιορίζονται από αβέβαιες οριακές συνθήκες και παραμέτρους εισόδου [26].

Οι ταυτόχρονες μετρήσεις με δύο ραντάρ αναφέρονται στην κοινώς διαθέσιμη επιστημονική βιβλιογραφία μόνο σπάνια. Ένα από τα πρώτα άρθρα που ασχολούνται με τη χρήση δύο ραντάρ για τον προσδιορισμό των μετατοπίσεων γεφυρών είναι το [25]. Την πρώτη φορά η αρχή του υπολογισμού των πραγματικών (συνολικών) μετατοπίσεων κατά τη μέτρηση με δύο ραντάρ δίνεται στο [26]. Το θέμα του χρονικού συγχρονισμού των μετρήσεων, που είναι κρίσιμο για τον σωστό υπολογισμό των πραγματικών μετατοπίσεων, δεν αναφέρεται εκεί. Από τη μεταγενέστερη βιβλιογραφία που ασχολείται με τον προσδιορισμό των 2D/3D μετατοπίσεων με μέτρηση με δύο ή περισσότερα ραντάρ, αναφ. [27,28] μπορεί να αναφερθεί. Μια παρόμοια αρχή για την ανίγνευση συνολικών μετατοπίσεων, αλλά μια διαφορετική τεγνική λύση, παρουσιάζεται στο [23,29]. Η λύση συνίσταται στον σχεδιασμό ενός μονοστατικού/διστατικού συμβολομετρικού ραντάρ για την ανάκτηση του τρισδιάστατου (3D) διανύσματος μετατόπισης για στατική και δυναμική παρακολούθηση γεφυρών. Η μονοστατική/διστατική τεχνική χρησιμοποιεί ένα συμβολομετρικό ραντάρ πολλαπλής εισόδου πολλαπλής εξόδου (MIMO) εξοπλισμένο με δύο αναμεταδότες. Κάθε μεμονωμένος αναμεταδότης αποτελείται από μια κεραία και έναν ενισχυτή και συνδέεται με το ραντάρ με ένα καλώδιο ραδιοσυχνοτήτων [27].

#### 2.2 Γραμμές Επιρροής και Γέφυρες

#### <u>Γραμμές Επιρροής</u>

Για την επίλυση του προβλήματος της εν λόγω μεταπτυχιακής εργασίας θα χρισημοποιηθούν οι γραμμές επιρροής όπου με τα παρακάτω θα προσπαθήσουμε να γίνει όσο το κατά δυνατόν καλύτερη ανάλυση.

Τα στατικά μεγέθοι(όπως αντιδράσεις στις στηρίξεις ή ροπή κάμψης ή δύναμη τέμνουσας) που εφαρμόζονται πάνω στον εξεταζόμενο φερέα σε συνάρτηση με τη θέση του σώματος φόρτισης.

Στη μηχανική, μια γραμμή επιρροής απεικονίζει τη διακύμανση μιας συνάρτησης σε ένα συγκεκριμένο σημείο κατα μήκος της κατασκευής (δοκού) που προκαλείται από ένα μοναδιαίο φορτίο.

Με την μέθοδο των γραμμών επιρροής, υπολογίζονται οι αντιδράσεις στήριξεις, διάτμηση ,ροπή και παραμόρφωση. [6] προαναφερόμενη μέθοδος είναι σημαντική και για το σχεδιασμό δοκών που χρησιμοποιούνται σε γέφυρες και άλλες κατασκευές όπου τα φορτία θα κινούνται κατά μήκος του ανοίγματος τους, επίσης διευκολυνόμαστε στην εύρεση [5] των αποτέλεσμάτων για οποιαδήποτε από τις συναρτήσεις που μελετήθηκαν.

Οι γραμμές επιρροής είναι τόσο βαθμωτές όσο και προσθετικές . [5] Αυτό σημαίνει ότι μπορούν να χρησιμοποιηθούν ακόμη και όταν το φορτίο που θα εφαρμοστεί δεν είναι μοναδιαίο φορτίο αλλα και πολλαπλά φορτία. Για να βρεθεί η επίδραση οποιουδήποτε μη μοναδιαίου φορτίου σε μια κατασκευή, τα αποτελέσματα των τεταγμένων που λαμβάνονται από τη γραμμή επιρροής πολλαπλασιάζονται με το μέγεθος του πραγματικού φορτίου που θα εφαρμοστεί. Το μέγιστο και το ελάχιστο με κλίμακα είναι τα κρίσιμα μεγέθη για τα οποία πρέπει να σχεδιαστούν στη δοκό.

Σε περιπτώσεις όπου μπορεί να ισχύουν πολλαπλά φορτία, μπορούν να προστεθούν γραμμές επιρροής για τα μεμονωμένα φορτία για να ληφθεί το συνολικό

αποτέλεσμα που ασκείται στη κατασκευή στο συγκεκριμένο σημείο. Κατά την πρόσθεση των γραμμών επιρροής, είναι απαραίτητο να συμπεριληφθούν οι κατάλληλες μετατοπίσεις λόγω της απόστασης των φορτίων κατά μήκος της κατασκευής.

Πολλά φορτία κατανέμονται παρά συγκεντρώνονται. Οι γραμμές επιρροής μπορούν να χρησιμοποιηθούν είτε με συγκεντρωμένες είτε με κατανεμημένες φορτίσεις. Η επίδραση του κατανεμημένου φορτίου μπορεί επίσης να επιτευχθεί με την ενσωμάτωση της γραμμής επιρροής του σημειακού φορτίου στο αντίστοιχο μήκος των κατασκευών [16].

Οι γραμμές επιρροής των καθορισμένων δομών γίνονται ένας μηχανισμός ενώ οι γραμμές επιρροής των απροσδιόριστων δομών γίνονται απλώς προσδιορισμένες. [7]



Εικόνα 15. (α) Αυτή η απλή δοκός στήριζης εμφανίζεται με ένα φορτίο μονάδας τοποθετημένο σε απόσταση ξ από το αριστερό άκρο. Το μέγεθος του φορτίου που κινείται πάνω στη δοκό το παίρνουμε πάντοτε ίσο με τη μονάδα των δυνάμεων και κατά προτίμηση ίσο με 1 kN.

#### 2.3 Πεπερασμένα στοιχεία και γέφυρες

#### 2.3.1 Πλεονεκτήματα και χρήσεις μοντέλου περασμάτων στοιχειών

Για την αξιολόγηση των υφιστάμενων γεφυρών, καθώς και για τον νέο σχεδιασμό, η μοντελοποίηση FE επιτρέπει την υιοθέτηση μιας πιο αυστηρής

προσέγγισης ανάλυσης που μπορεί συχνά να οδηγήσει σε σημαντικά πιο ακριβή και οικονομικά αποτελέσματα που λαμβάνονται σε ορισμένες κωδικοποιημένες μεθόδους.

Στο παρελθόν, οι κώδικες δομικού σχεδιασμού όπως εκείνοι του Βρετανικού Ινστιτούτου Προτύπων επέτρεπαν την απόκλιση από μια «κωδικοποιημένη» προσέγγιση. Άλλοι, όπως οι νεοεισαχθέντες ευρωκώδικες, ήταν πιο ρυθμιστικοί αναφέροντας συχνά ότι πρέπει να διενεργείται ανάλυση FE. Όταν τα δομικά στοιχεία μιας γέφυρας δεν συμμορφώνονται με τα κριτήρια του κώδικα αξιολόγησης, η ανάλυση FE μπορεί να χρησιμοποιηθεί για να βοηθήσει στην απόδειξη της ακεραιότητας του σχεδιασμού [18].

Όταν συνδυάζεται με την παρακολούθηση γεφυρών, η χρήση βασικών μετρούμενων δομικών δεδομένων για την αποτελεσματική μικρορύθμιση και βαθμονόμηση ενός μοντέλου FE μπορεί να οδηγήσει σε ακόμη μεγαλύτερη ακρίβεια στα αποτελέσματα που λαμβάνονται για ένα μοντέλο αξιολόγησης που θα φορτωθεί στη συνέχεια. Η βοήθεια στη διάγνωση προβλημάτων και η ανάπτυξη λύσεων εκ των υστέρων είναι άλλοι τρόποι με τους οποίους η ανάλυση FE μπορεί να βοηθήσει σημαντικά, επιτρέποντας τη μοντελοποίηση των σεναρίων what-if. Με τη χρήση μοντελοποίησης FE, τα δομικά μέλη μπορούν να βελτιστοποιηθούν και να αποκτηθούν καινοτόμα σχέδια εξοικονόμησης κόστους. Για συγκεκριμένες εφαρμογές και χρησιμοποιώντας μεθόδους FE, η αυτοματοποιημένη κατασκευή μοντέλων μπορεί να εγγυηθεί σωστά κατασκευασμένα μοντέλα σύμφωνα με κριτήρια σχεδιασμού κώδικα. η δημιουργία κρίσιμων διατάξεων φόρτωσης οχημάτων και η ανάλυση των επιπτώσεων της φόρτισης σε μια κατασκευή μπορεί να επιτευχθεί γρήγορα. και έλεγχοι σχεδιασμού όπως αυτοί που απαιτούνται για τον χάλυβα [20].

#### Α. Μελέτες περίπτωσης

Οι ακόλουθες επεξηγηματικές περιπτωσιολογικές μελέτες παρέχουν μια γενική επισκόπηση ορισμένων από τους πολλούς ρόλους που μπορεί να παίξει η μοντελοποίηση και η ανάλυση FE στην αξιολόγηση και το σχεδιασμό γεφυρών.

#### Α1. Σύγκριση με σχεδιαστικούς κώδικες :

Ο σύμβουλος του Ηνωμένου Βασιλείου, Atkins, χρησιμοποίησε ανάλυση FE για να μοντελοποιήσει ένα ζεύγος χαλύβδινων δοκών κατά την τοποθέτηση σκυροδέματος, πριν η πλάκα σκυροδέματος παρέχει πλευρική συγκράτηση στις δοκούς. (Hendy 2008) Για αυτήν την κατάσταση, οι Ευρωκώδικες που εισήχθησαν πρόσφατα δεν δίνουν τύπο για την εξαγωγή της κρίσιμης ροπής κάμψης. Το ένα άνοιγμα φορτώθηκε με υγρό σκυρόδεμα έτσι ώστε ο πλευρικός στρεπτικός λυγισμός να διέπει την αντίσταση της ομάδας δοκών. Από μια ανάλυση λυγισμού ιδιοτιμής, η κρίσιμη ροπή λυγισμού φάνηκε ότι προκαλείται από τον 20ο τρόπο λειτουργίας, αλλά σε συντελεστή φορτίου 50% μεγαλύτερο από αυτόν που προβλεπόταν από το BS 5400. Μια πλήρης μη γραμμική ανάλυση χρησιμοποιώντας LUSAS πραγματοποιήθηκε για τις ίδιες ζευγαρωμένες δοκούς με Η συμπεριφορά του υλικού με βάση τις συστάσεις του Ευρωκώδικα και με αρχικές ατέλειες που βασίζονται στα αποτελέσματα του ελαστικού κρίσιμου λυγισμού, έδωσε ακόμη καλύτερα αποτελέσματα, διπλασιάζοντας σχεδόν τον συντελεστή φορτίου που προβλέπεται από το BS 5400 [27].



Εικόνα 16. Ένα ζεύγος δοκών από ατσάλι.

Όταν τα διαφράγματα ή η γεωμετρία μιας γέφυρας χαλύβδινου κιβωτίου δεν συμμορφώνονται με τα κριτήρια του κώδικα αξιολόγησης, η ανάλυση FE θα επιτρέψει τη διεξαγωγή λεπτομερούς ανάλυσης προκειμένου να αποδειγθεί η ακεραιότητα του σχεδίου. Χαρακτηριστικά για πολλές παρόμοιες υπερυψωμένες και γερασμένες κατασκευές που κατασκευάστηκαν τη δεκαετία του 1960, οι αγωγοί Midland Links Via φέρουν τους αυτοκινητόδρομους M5 και M6 γύρω από το Bir-mingham στο Ηνωμένο Βασίλειο. Ορισμένα ανοίγματα στηρίζονται σε σταυρούς δοκών από γαλύβδινο κιβώτιο (βλ. Εικόνα παρακάτω) και περιέχουν λεπτομέρειες ενίσχυσης, που προστέθηκαν την περίοδο μετά τη δημοσίευση της έκθεσης Merrison, οι οποίες δεν αξιολογήθηκαν εύκολα με τη γρήση κωδικοποιημένων μεθόδων. Η Maunsell (τώρα AECOM) ανέλαβε λεπτομερή ανάλυση FE μη γραμμικού αυτιού και απέδειξε την ακεραιότητα των διαφραγμάτων στην τελική οριακή κατάσταση [5]. Οι αρχικοί υπολογισμοί με το χέρι στις μεθόδους στο BS 5400 Μέρος 3 έδειξαν ότι τα πάνελ εντός των διαφραγμάτων στήριξης αυτών των δοκών κιβωτίου θα αποδίδουν κάτω από την τελική οριακή κατάσταση φόρτισης. Η πρόσθετη ανάλυση έδειξε ότι οι διακοπτόμενες συγκολλήσεις μεταξύ του διαφράγματος και των κατακόρυφων ενισχυτικών ήταν επίσης πιθανό να υποχωρήσουν. Μια ανάλυση γραμμικής ελαστικής FE το επιβεβαίωσε και πραγματοποιήθηκε μια λεπτομερής υλικά και γεωμετρικά μη γραμμική ανάλυση για να αποδειχθεί η ακεραιότητα των διαφραγμάτων στην τελική οριακή κατάσταση. [17]

Στοιχεία παχύ κελύφους μοντελοποίησαν τις χαλύβδινες πλάκες και ελαστικά / τέλεια πλαστικά στοιχεία άρθρωσης μοντελοποίησαν συγκολλήσεις ενισχυτικού διαφράγματος. Οι δυνάμεις διαρροής για τους αρμούς ρυθμίστηκαν έτσι ώστε οι δυνάμεις που προκύπτουν στους αρμούς να περιορίζονται σε τιμές που αντιστοιχούν στην τάση διαρροής συγκόλλησης που προβλέπεται από τον κωδικό αξιολόγησης BD21/97. Οι ακαμψίες αρμών επιλέχθηκαν έτσι ώστε η έναρξη της διαρροής στα στοιχεία της άρθρωσης να αντιστοιχεί σε μια προκύπτουσα παραμόρφωση συγκόλλησης όχι μεγαλύτερη από 0,10 mm, τιμή που υποστηρίζεται από ερευνητικά στοιχεία. Η έκταση της απόδοσης εντός της κατασκευής προσδιορίστηκε σε κάθε αύξηση του φορτίου και οι κινήσεις του παραμορφωμένου σχήματος και των

περιγραμμάτων τάσης που σχεδιάστηκαν σε κάθε αύξηση φορτίου έδειχναν πώς το διάφραγμα ανακατανείμει το φορτίο καθώς πλησίαζε την οριακή του αντοχή. Ιστορίες κομβικής μετατόπισης εκτός επιπέδου για κόμβους εντός του διαφράγματος σχεδιάστηκαν σε συνάρτηση με τον συνολικό συντελεστή φορτίου για να επιβεβαιωθεί ότι ο λυγισμός δεν ήταν αισθητός [29].



Εικόνα 17. Διασταυρούμενη μοντελοποίηση στα Midlands Links Viaducts.

### 3. Μέθοδος Επίλυση

#### 3.1 Υπολογισμός Μετακινήσεων των Κόμβων

Στην παρακάτω περιγραφόμενη σε βήματα επίλυση της εφαρμογής, τοποθετούμε τα δεδομένα στον πίνακα όπως είναι οι αντιδράσεις και οι μετακινήσεις που προκύπτουν βάσει το αν οι κόμβοι της μελέτης είναι δεσμευμένοι οι ελεύθεροι. Βάσει αυτών επίσης μπορεί να βρεθούν άγνωστες μετακινήσεις (Δ<sub>f</sub>) και δυνάμεις (P<sub>s</sub>) που δρούνε στους κόμβους.

Πρέπει να αναφερθεί ότι η συγκεκριμένη διαδικασία θα πραγματοποιηθεί για οποιοδήποτε κατάσταση των κόμβων όπως αν είναι στέρεοι είτε όχι. Για τις προαναφερόμενές παραπάνω άγνωστες μετακινήσεις (Δf) ή και δράσεις (Ps) θα πραγματοποιηθούν τα εξής:

Ο πίνακας των άγνωστων επικόμβιων μετακινήσεων ( $\Delta_f$ ) είναι το γινόμενο  $K_{\rm ff}^{-1}$  (Τροποποιημένου Μητρώου Στιβαρότητας) με τη διαφορά του πίνακα  $P_f$  με τον υποπίνακα του τροποποιημένου μητρώου στιβαρότητας  $K_{\rm fs}$  και πολλαπλασιασμένο με  $\Delta_{\rm s.}$ 

• 
$$[\Delta f] = [Kff] - 1 * ([Pf] - [Kfs] * [\Delta s])$$

Ενώ ο πίνακας επικόμβιων δράσεων ( $P_s$ ) προκύπτει από το γινόμενο του τροποποιημένου μητρώου στιβαρότητας Ksf με τον πίνακα επικόμβιων μετακινήσεων Δs προσθέτοντας γινόμενο του υποπίνακα του Τροποποιημένου Μητρώου Στιβαρότητας Kss και του πίνακα Δs.

•  $[P_s] = [K_{sf}] * [\Delta_f] + [K_{ss}] * [\Delta_s]$ 

# 3.2 Ακραίες μετακινήσεις των μελών στο καθολικό και στο τοπικό σύστημα των αξόνων

Ο πίνακας τροποποιημένου μητρώου επικόμβιων μετατοπίσεων [ $\Delta_f$ ] αποτελείται από τα μητρώα την επικόμβιων μετατοπίσεων  $\Delta_m$  (Ελεύθερων Βαθμών) καθώς και  $\Delta_s$  (Δεσμευμένων Βαθμών).

Έτσι με την απλή αναδιάταξη του μητρώου των επικόμβιων μετατοπίσεων μπορεί εύκολα να προσδιοριστεί το μητρώο των επικόμβιων μετακινήσεων Δ<sub>bar</sub>.

# 4. Σκοπός Μελέτης

Ο σκοπός της παρούσας εργασίας είναι η επίλυση του δικτυώματος ενός φορέα με τη μέθοδο της άμεσης στιβαρότητας με σκοπό να προσδιορισθούν οι γραμμές επιρροής εντατικών και παραμορφωσιακών μεγεθών του.

# 5. Παράδειγμα Εφαρμογής

### 5.1 Περιγραφή Φορέα

Στην παρούσα μελέτη όλα τα μέλη του φορέα είναι από χάλυβα έχοντας το ίδιο μέτρο ελαστικότητας  $E = 2 \times 10^8 \text{ kN/m}^2$ , αλλά δύο διαφορετικές διατομές. Συγκεκριμένα, όλα τα χιαστί μέλη (8 ζεύγη) έχουν εμβαδόν διατομής  $A_2 = 25 \text{ cm}^2$ , ενώ όλα τα υπόλοιπα μέλη έχουν εμβαδόν διατομής  $A_1 = 40 \text{ cm}^2$  (Σχ. 1).



Σχήμα 1. Δικτυωτή γέφυρα με μοναδιαίο εγκάρσιο φορτίο κινούμενο κατά μήκος του καταστρώματος για τον προσδιορισμό γραμμών επιρροής.

### 5.2 Μέθοδος Επίλυσης Δικτυώματος

Παρακάτω παρουσιάζονται τα βήματα της επίλυσης του φορέα όπως δημιουργήθηκαν στο Microsoft excel αλλά και κάποιες ενδεικτικές εικόνες από τα φύλα υπολογισμού. Το πλήρες ηλεκτρονικό αρχείο συνοδεύει την ηλεκτρονική μορφή της διπλωματικής εργασίας.

#### Βήμα 1°

Αρίθμηση των κόμβων και των μελών του δικτυώματος σύμφωνα με τις οδηγίες που δίνονται παρακάτω. Καταγραφή των γεωμετρικών δεδομένων και όλων των φυσικών χαρακτηριστικών μεγεθών για τα μέλη του φορέα.

#### Βήμα 2°

Υπολογισμός των μητρώων μετασχηματισμού των στοιχείων.

#### Βήμα 3°

Υπολογισμός των μητρώων στιβαρότητας των μελών στο τοπικό σύστημα αξόνων.

#### Βήμα 4°

Υπολογισμός των μητρώων στιβαρότητας των μελών στο καθολικό σύστημα αξόνων. Βήμα 5°

Μόρφωση του ολικού μητρώου στιβαρότητας του φορέα.

#### Βήμα 6°

Καθορισμός των επικόμβιων δυνάμεων, λόγω της θέσης του μοναδιαίου φορτίου πάνω στο κατάστρωμα και των δεσμευμένων βαθμών ελευθερίας, λόγω των στηρίξεων.

#### Βήμα 7°

Αναδιάταξη του ολικού μητρώου στιβαρότητας της κατασκευής.

#### Βήμα 8°

Υπολογισμός των μετατοπίσεων των κόμβων του φορέα.

#### Βήμα 9°

Υπολογισμός των αντιδράσεων στις στηρίξεις του φορέα για τη φόρτιση.

#### Βήμα 10°

Προσδιορισμός των αξονικών δυνάμεων των ράβδων του φορέα.



Διαθέτοντας την επίλυση της δικτυωτής γέφυρας του Σχήματος 1 με τη μέθοδο της άμεσης στιβαρότητας μπορούν να προσδιορισθούν οι γραμμές επιρροής τόσο των αξονικών δυνάμεων των μελών και των αντιδράσεων των στηρίξεων, όσο και οι μετατοπίσεις των κόμβων του φορέα για εγκάρσιο μοναδιαίο φορτίο, το οποίο παίρνει όλες τις θέσεις πάνω στο κατάστρωμα της γέφυρας (Σχ. 4.), δηλαδή για  $\bar{x}_1 = 0$  έως και  $\bar{x}_1 = 44$  m.



Σχήμα 3. Δικτυωτή γέφυρα υποβαλλόμενη σε κινητό φορτίο στο κατάστρωμά της.

Στην περίπτωση αυτή, μοναδική φόρτιση είναι το εγκάρσιο μοναδιαίο φορτίο, το οποίο προκειμένου να απλοποιηθεί η διαδικασία, θα θεωρηθεί ότι εμφανίζεται μόνο στους

κόμβους 1 έως και 12, καθώς και στο ενδιάμεσο αυτών (Σχ. 4), δηλαδή στους 12 κόμβους του καταστρώματος με  $\bar{x}_2 = 0$ .

Συγκεκριμένα θα προσδιορισθούν:

- η γραμμή επιρροής της αξονικής δύναμης N<sub>6</sub> της ράβδου 6,
- η γραμμή επιρροής της αξονικής δύναμης N<sub>16</sub> της ράβδου 16,
- η γραμμή επιρροής της αξονικής δύναμης N<sub>28</sub> της ράβδου 28,
- η γραμμή επιρροής της αξονικής δύναμης Ν<sub>34</sub> της ράβδου 34,
- η γραμμή επιρροής της οριζόντιας αντίδρασης H<sub>1</sub> = F<sub>1</sub><sup>1</sup> στην άρθρωση του κόμβου 1,
- η γραμμή επιρροής της κατακόρυφης αντίδρασης V<sub>1</sub> = F<sub>2</sub><sup>1</sup> στην άρθρωση του κόμβου 1,
- η γραμμή επιρροής της βύθισης u<sup>6</sup><sub>2</sub> του κόμβου 6 και
- η γραμμή επιρροής της βύθισης u<sup>17</sup><sub>2</sub> του κόμβου 17.



Σχήμα 4. Δικτυωτή γέφυρα με μοναδιαίο εγκάρσιο φορτίο κινούμενο κατά μήκος του καταστρώματός της για τον προσδιορισμό των γραμμών επιρροής εντατικών και παραμορφωσιακών μεγεθών της γέφυρας.



Σχήμα 5. Δικτύωμα με αρίθμηση των 21 κόμβων του και των 47 μελών του.

### 5.3 Αποτελέσματα Επίλυσης Φορέα

Παρακάτω παρουσιάζονται η πλήρης ανάλυση και τα αποτελέσματα επίλυσης του φορέα του παραδείγματος.

|        | 2υντεταγμενες στο<br>καθολικό σύστημα αξόνων |          |
|--------|----------------------------------------------|----------|
| Κόμβος | X1 - bar                                     | X2 - bar |
| 1      | 0,0                                          | 0,0      |
| 2      | 4,0                                          | 0,0      |
| 3      | 8,0                                          | 0,0      |
| 4      | 12,0                                         | 0,0      |
| 5      | 16,0                                         | 0,0      |
| 6      | 20,0                                         | 0,0      |
| 7      | 24,0                                         | 0,0      |
| 8      | 28,0                                         | 0,0      |
| 9      | 32,0                                         | 0,0      |
| 10     | 36,0                                         | 0,0      |
| 11     | 40,0                                         | 0,0      |
| 12     | 44,0                                         | 0,0      |
| 13     | 4,0                                          | 3,2      |
| 14     | 8,0                                          | 5,3      |
| 15     | 12,0                                         | 6,7      |
| 16     | 16,0                                         | 7,6      |
| 17     | 22,0                                         | 8,0      |
| 18     | 28,0                                         | 7,6      |
| 19     | 32,0                                         | 6,7      |
| 20     | 36,0                                         | 5,3      |
| 21     | 40,0                                         | 3,2      |

#### <u>Εικόνα 1η</u>
|       | <b>Συνδεσιμότ</b>   | ητα Κόμβων            | Συντεταγμ<br>στο καθολι | ένες <b>αρχής</b> |       | <b>Συνδεσιμότ</b>   | ητα Κόμβων            | Συντεταγμ | ένες <b>αρχής</b> |       | <b>Συνδεσιμότ</b>   | ητα Κόμβων            | Συντεταγμ | ένες <b>αρχής</b> |
|-------|---------------------|-----------------------|-------------------------|-------------------|-------|---------------------|-----------------------|-----------|-------------------|-------|---------------------|-----------------------|-----------|-------------------|
| Μέλος | κομρος αρχης<br>(j) | κομρος<br>πέρατος (k) | X1-bar(i)               | X2-bar(i)         | Μέλος | κομρος αρχης<br>(j) | κομρος<br>πέρατος (k) | X1-bar(i) | X2-bar(i)         | Μέλος | κομρος αρχης<br>(j) | κομρος<br>πέρατος (k) | X1-bar(i) | X2-bar(i)         |
| 1     | 1                   | 2                     | 0,0                     | 0,0               | 1     | 1                   | 2                     | 0.0       | 0,0               | 1     | 1                   | 2                     | 0.0       | 0.0               |
| 2     | 2                   | 3                     | 4,0                     | 0,0               | 2     | 2                   | 3                     | 4,0       | 0,0               | 2     | 2                   | 3                     | 4,0       | 0,0               |
| 3     | 3                   | 4                     | 8,0                     | 0,0               | 3     | 3                   | 4                     | 8,0       | 0,0               | 3     | 3                   | 4                     | 8,0       | 0,0               |
| 4     | 4                   | 5                     | 12,0                    | 0,0               | 4     | 4                   | 5                     | 12,0      | 0,0               | 4     | 4                   | 5                     | 12,0      | 0,0               |
| 5     | 5                   | 6                     | 16,0                    | 0,0               | 5     | 5                   | 6                     | 16,0      | 0,0               | 5     | 5                   | 6                     | 16,0      | 0,0               |
| 6     | 6                   | 7                     | 20,0                    | 0,0               | 6     | 6                   | 7                     | 20,0      | 0,0               | 6     | 6                   | 7                     | 20,0      | 0,0               |
| 7     | 7                   | 8                     | 24,0                    | 0,0               | 7     | 7                   | 8                     | 24,0      | 0,0               | 7     | 7                   | 8                     | 24,0      | 0,0               |
| 8     | 8                   | 9                     | 28,0                    | 0,0               | 8     | 8                   | 9                     | 28,0      | 0,0               | 8     | 8                   | 9                     | 28,0      | 0,0               |
| 9     | 9                   | 10                    | 32,0                    | 0,0               | 9     | 9                   | 10                    | 32,0      | 0,0               | 9     | 9                   | 10                    | 32,0      | 0,0               |
| 10    | 10                  | 11                    | 36,0                    | 0,0               | 10    | 10                  | 11                    | 36,0      | 0,0               | 10    | 10                  | 11                    | 36,0      | 0,0               |
| 11    | 11                  | 12                    | 40,0                    | 0,0               | 11    | 11                  | 12                    | 40,0      | 0,0               | 11    | 11                  | 12                    | 40,0      | 0,0               |
| 12    | 1                   | 13                    | 0,0                     | 0,0               | 12    | 1                   | 13                    | 0,0       | 0,0               | 12    | 1                   | 13                    | 0,0       | 0,0               |
| 13    | 13                  | 14                    | 4,0                     | 3,2               | 13    | 13                  | 14                    | 4,0       | 3,2               | 13    | 13                  | 14                    | 4,0       | 3,2               |
| 14    | 14                  | 15                    | 8,0                     | 5,3               | 14    | 14                  | 15                    | 8,0       | 5,3               | 14    | 14                  | 15                    | 8,0       | 5,3               |
| 15    | 15                  | 16                    | 12,0                    | 6,7               | 15    | 15                  | 16                    | 12,0      | 6,7               | 15    | 15                  | 16                    | 12,0      | 6,7               |
| 16    | 16                  | 17                    | 16,0                    | 7,6               | 16    | 16                  | 17                    | 16,0      | 7,6               | 16    | 16                  | 17                    | 16,0      | 7,6               |
| 17    | 17                  | 18                    | 22,0                    | 8,0               | 17    | 17                  | 18                    | 22,0      | 8,0               | 17    | 17                  | 18                    | 22,0      | 8,0               |
| 18    | 18                  | 19                    | 28,0                    | 7,6               | 18    | 18                  | 19                    | 28,0      | 7,6               | 18    | 18                  | 19                    | 28,0      | 7,6               |
| 19    | 19                  | 20                    | 32,0                    | 6,7               | 19    | 19                  | 20                    | 32,0      | 6,7               | 19    | 19                  | 20                    | 32,0      | 6,7               |
| 20    | 20                  | 21                    | 36,0                    | 5,3               | 20    | 20                  | 21                    | 36,0      | 5,3               | 20    | 20                  | 21                    | 36,0      | 5,3               |
| 21    | 21                  | 12                    | 40,0                    | 3,2               | 21    | 21                  | 12                    | 40,0      | 3,2               | 21    | 21                  | 12                    | 40,0      | 3,2               |
| 22    | 2                   | 13                    | 4,0                     | 0,0               | 22    | 2                   | 13                    | 4,0       | 0,0               | 22    | 2                   | 13                    | 4,0       | 0,0               |
| 23    | 3                   | 13                    | 8,0                     | 0,0               | 23    | 3                   | 13                    | 8,0       | 0,0               | 23    | 3                   | 13                    | 8,0       | 0,0               |
| 24    | 2                   | 14                    | 4,0                     | 0,0               | 24    | 2                   | 14                    | 4,0       | 0,0               | 24    | 2                   | 14                    | 4,0       | 0,0               |

## <u>Εικόνα 2η</u>

| 25 | 3  | 14 | 8,0  | 0,0 | 8,0  | 5,3 | 0,0  | 5,3 | 5,3               | 0,00000  | 1,00000 | 2,00E+08 | 4,00E-03 | 1 |
|----|----|----|------|-----|------|-----|------|-----|-------------------|----------|---------|----------|----------|---|
| 26 | 4  | 14 | 12,0 | 0,0 | 8,0  | 5,3 | -4,0 | 5,3 | 6,6               | -0,60241 | 0,79819 | 2,00E+08 | 2,50E-03 | 2 |
| 27 | 3  | 15 | 8,0  | 0,0 | 12,0 | 6,7 | 4,0  | 6,7 | 7,8               | 0,51261  | 0,85862 | 2,00E+08 | 2,50E-03 | 1 |
| 28 | 4  | 15 | 12,0 | 0,0 | 12,0 | 6,7 | 0,0  | 6,7 | 6,7               | 0,00000  | 1,00000 | 2,00E+08 | 4,00E-03 | 1 |
| 29 | 5  | 15 | 16,0 | 0,0 | 12,0 | 6,7 | -4,0 | 6,7 | 7,8               | -0,51261 | 0,85862 | 2,00E+08 | 2,50E-03 | 1 |
| 30 | 4  | 16 | 12,0 | 0,0 | 16,0 | 7,6 | 4,0  | 7,6 | 8,6               | 0,46575  | 0,88492 | 2,00E+08 | 2,50E-03 | 8 |
| 31 | 5  | 16 | 16,0 | 0,0 | 16,0 | 7,6 | 0,0  | 7,6 | 7,6               | 0,00000  | 1,00000 | 2,00E+08 | 4,00E-03 | 3 |
| 32 | 6  | 16 | 20,0 | 0,0 | 16,0 | 7,6 | -4,0 | 7,6 | 8,6               | -0,46575 | 0,88492 | 2,00E+08 | 2,50E-03 | : |
| 33 | 5  | 17 | 16,0 | 0,0 | 22,0 | 8,0 | 6,0  | 8,0 | 10,0              | 0,60000  | 0,80000 | 2,00E+08 | 2,50E-03 | : |
| 34 | 6  | 17 | 20,0 | 0,0 | 22,0 | 8,0 | 2,0  | 8,0 | 8,2               | 0,24254  | 0,97014 | 2,00E+08 | 4,00E-03 | : |
| 35 | 7  | 17 | 24,0 | 0,0 | 22,0 | 8,0 | -2,0 | 8,0 | 8,2               | -0,24254 | 0,97014 | 2,00E+08 | 4,00E-03 | : |
| 36 | 8  | 17 | 28,0 | 0,0 | 22,0 | 8,0 | -6,0 | 8,0 | 10,0              | -0,60000 | 0,80000 | 2,00E+08 | 2,50E-03 | : |
| 37 | 7  | 18 | 24,0 | 0,0 | 28,0 | 7,6 | 4,0  | 7,6 | 8,6               | 0,46575  | 0,88492 | 2,00E+08 | 2,50E-03 | : |
| 38 | 8  | 18 | 28,0 | 0,0 | 28,0 | 7,6 | 0,0  | 7,6 | 7,6               | 0,00000  | 1,00000 | 2,00E+08 | 4,00E-03 | : |
| 39 | 9  | 18 | 32,0 | 0,0 | 28,0 | 7,6 | -4,0 | 7,6 | 8,6               | -0,46575 | 0,88492 | 2,00E+08 | 2,50E-03 | : |
| 40 | 8  | 19 | 28,0 | 0,0 | 32,0 | 6,7 | 4,0  | 6,7 | 7,8               | 0,51261  | 0,85862 | 2,00E+08 | 2,50E-03 | 2 |
| 41 | 9  | 19 | 32,0 | 0,0 | 32,0 | 6,7 | 0,0  | 6,7 | 6,7               | 0,00000  | 1,00000 | 2,00E+08 | 4,00E-03 | 2 |
| 42 | 10 | 19 | 36,0 | 0,0 | 32,0 | 6,7 | -4,0 | 6,7 | 7,8               | -0,51261 | 0,85862 | 2,00E+08 | 2,50E-03 | 1 |
| 43 | 9  | 20 | 32,0 | 0,0 | 36,0 | 5,3 | 4,0  | 5,3 | <mark>6,</mark> 6 | 0,60241  | 0,79819 | 2,00E+08 | 2,50E-03 | 2 |
| 44 | 10 | 20 | 36,0 | 0,0 | 36,0 | 5,3 | 0,0  | 5,3 | 5,3               | 0,00000  | 1,00000 | 2,00E+08 | 4,00E-03 | 1 |
| 45 | 11 | 20 | 40,0 | 0,0 | 36,0 | 5,3 | -4,0 | 5,3 | 6,6               | -0,60241 | 0,79819 | 2,00E+08 | 2,50E-03 | 4 |
| 46 | 10 | 21 | 36,0 | 0,0 | 40,0 | 3,2 | 4,0  | 3,2 | 5,1               | 0,78087  | 0,62470 | 2,00E+08 | 2,50E-03 | 4 |
| 47 | 11 | 21 | 40,0 | 0,0 | 40,0 | 3,2 | 0,0  | 3,2 | 3,2               | 0,00000  | 1,00000 | 2,00E+08 | 4,00E-03 | 4 |
|    |    |    |      |     |      |     |      |     |                   |          |         |          |          |   |

<u>Εικόνα 3η</u>

|         |                |    |        | [Λ <sub>i</sub> ] Μητρώα Μετασχηματισμού των μελών<br>από το τοπικό στο καθολικό σύστημα |        |        | <br>[K <sub>i</sub> ] | Μητρ<br>τοπ | ώα Στιβαρι<br>ικό σύστημ | ότητας μελών<br>ια αξόνων τοι | ν στο<br>υς |            | [K <sub>i</sub> | bar ] | Μι<br>στο   | ητρώα Στιβαρ<br>καθολιοκό σί | ότητας μελι<br>νστημα αξόν | ύν<br>ιων  |      |   |
|---------|----------------|----|--------|------------------------------------------------------------------------------------------|--------|--------|-----------------------|-------------|--------------------------|-------------------------------|-------------|------------|-----------------|-------|-------------|------------------------------|----------------------------|------------|------|---|
| Mélas   | 1              |    |        |                                                                                          |        |        |                       |             |                          |                               |             |            |                 |       | uélos       |                              |                            |            |      |   |
| ινιελος | μβος αρχής ί : | 1  |        |                                                                                          |        |        |                       |             |                          |                               |             |            |                 |       | μελος       | 1                            |                            | 2          |      |   |
| κόμβ    | ος πέρατος k : | 2  |        |                                                                                          | 1.0000 | 0.0000 | 0                     | 0           |                          | 200000.00                     | 0           | -200000.00 | 0               |       | -           | 200000.00                    | 0.00                       | -200000.00 | 0.00 |   |
| sinð    | 0,0000         |    |        |                                                                                          | 0,0000 | 1,0000 | 0                     | 0           | 1 1/143 1                | 0                             | 0           | 0          | 0               |       | E 1/6 (4) 1 | 0,00                         | 0,00                       | 0,00       | 0,00 | 1 |
| cosð    | 1,0000         |    |        | [ /(1) ] =                                                                               | 0      | 0      | 1,0000                | 0,0000      | [K(1)]=                  | -200000,00                    | 0           | 200000,00  | 0               |       | [ KD(1) ] = | -200000,00                   | 0,00                       | 200000,00  | 0,00 |   |
| μήκος L | 4,00           | EA | 800000 |                                                                                          | 0      | 0      | 0,0000                | 1,0000      |                          | 0                             | 0           | 0          | 0               |       |             | 0,00                         | 0,00                       | 0,00       | 0,00 | 2 |
|         |                |    |        |                                                                                          |        |        |                       |             |                          |                               |             |            |                 |       |             |                              |                            |            |      |   |
|         |                |    |        |                                                                                          |        |        |                       |             |                          |                               |             |            |                 |       |             |                              |                            |            |      |   |
| Μέλος   | 2              |    |        |                                                                                          |        |        |                       |             |                          |                               |             |            |                 |       | μέλος       |                              |                            |            |      |   |
| κό      | μβος αρχής j : | 2  |        |                                                                                          |        |        |                       |             |                          |                               |             |            |                 | -     | 2           | 2                            |                            | 3          |      |   |
| κόμβ    | ος πέρατος k : | 3  |        |                                                                                          | 1,0000 | 0,0000 | 0                     | 0           |                          | 200000,00                     | 0           | -200000,00 | 0               |       |             | 200000,00                    | 0,00                       | -200000,00 | 0,00 | 2 |
| sinϑ    | 0,0000         |    |        | [ <b>\(2)</b> ] =                                                                        | 0,0000 | 1,0000 | 0                     | 0           | [ K(2) ] =               | 0                             | 0           | 0          | 0               |       | [ Kb(2) ] = | 0,00                         | 0,00                       | 0,00       | 0,00 |   |
| cosð    | 1,0000         |    |        |                                                                                          | 0      | 0      | 1,0000                | 0,0000      |                          | -200000,00                    | 0           | 200000,00  | 0               |       |             | -200000,00                   | 0,00                       | 200000,00  | 0,00 | 3 |
| μήκος L | 4,00           | EA | 800000 |                                                                                          | 0      | 0      | 0,0000                | 1,0000      |                          | 0                             | 0           | 0          | 0               |       |             | 0,00                         | 0,00                       | 0,00       | 0,00 |   |
|         |                |    |        |                                                                                          |        |        |                       |             |                          |                               |             |            |                 |       |             |                              |                            |            |      |   |
| / .     |                |    |        |                                                                                          |        |        |                       |             |                          |                               |             |            |                 |       | 1-          |                              |                            |            |      |   |
| Μελος   | 3              | -  |        |                                                                                          |        |        |                       |             |                          |                               |             |            |                 |       | μελος       |                              |                            |            |      |   |
| ко      | μθος αρχης J : | 3  |        |                                                                                          | 4 0000 | 0.0000 |                       | -           |                          | 000000.00                     |             | 200000.00  |                 |       | 3           | 5                            | 0.00                       | 4          | 0.00 |   |
| коµо    | ος περατος κ : | 4  |        |                                                                                          | 1,0000 | 0,0000 | 0                     | 0           |                          | 200000,00                     | 0           | -200000,00 | 0               |       |             | 200000,00                    | 0,00                       | -200000,00 | 0,00 | 3 |
| sino    | 1,0000         |    |        | [ A(3) ] =                                                                               | 0,0000 | 1,0000 | 1 0000                | 0 0000      | [ K(3) ] =               | 200000.00                     | 0           | 200000.00  | 0               |       | [ Kb(3) ] = | 200000.00                    | 0,00                       | 200000.00  | 0,00 |   |
| uáros I | 4.00           | EA | 200000 |                                                                                          | 0      | 0      | 0,0000                | 1,0000      |                          | -20000,00                     | 0           | 20000,00   | 0               |       |             | -20000,00                    | 0,00                       | 200000,00  | 0,00 | 4 |
| μηκός ε | 7,00           | 24 | 00000  |                                                                                          | v      | v      | 0,0000                | 1,0000      |                          | v                             | 0           | v          | v               |       |             | 0,00                         | 0,00                       | 0,00       | 0,00 |   |
|         |                |    |        |                                                                                          |        |        |                       |             |                          |                               |             |            |                 |       |             |                              |                            |            |      |   |
| Μέλος   | 4              |    |        |                                                                                          |        |        |                       |             |                          |                               |             |            |                 |       | μέλος       |                              |                            |            |      |   |
| κό      | μβος αρχής ί : | 4  |        |                                                                                          |        |        |                       |             |                          |                               |             |            |                 |       | 4           | 4                            |                            | 5          |      |   |
| κόμβ    | ος πέρατος k : | 5  |        |                                                                                          | 1,0000 | 0,0000 | 0                     | 0           |                          | 200000,00                     | 0           | -200000,00 | 0               | 1     |             | 200000,00                    | 0,00                       | -200000,00 | 0,00 |   |
| sinð    | 0,0000         |    |        |                                                                                          | 0,0000 | 1,0000 | 0                     | 0           | L MAN 3                  | 0                             | 0           | 0          | 0               |       | T ME (A) 3  | 0,00                         | 0,00                       | 0,00       | 0,00 | 4 |
| cost    | 1,0000         |    |        | [/\(4)]=                                                                                 | 0      | 0      | 1,0000                | 0,0000      | [K(4)]=                  | -200000,00                    | 0           | 200000,00  | 0               |       | [ KD(4) ] = | -200000,00                   | 0,00                       | 200000,00  | 0,00 |   |
| μήκος L | 4,00           | EA | 800000 |                                                                                          | 0      | 0      | 0,0000                | 1,0000      |                          | 0                             | 0           | 0          | 0               |       |             | 0,00                         | 0,00                       | 0,00       | 0,00 | 5 |
|         |                |    |        |                                                                                          |        |        |                       |             |                          |                               |             |            |                 |       |             |                              |                            |            |      |   |

<u>Εικόνα 4η</u>

| Μέλος   | 5               |    |    |        |            |        |        |        |        |            |            |   |            |   |   | μέλος       |            |      |            |      |          |
|---------|-----------------|----|----|--------|------------|--------|--------|--------|--------|------------|------------|---|------------|---|---|-------------|------------|------|------------|------|----------|
| K       | όμθος αρχής j : | 5  |    |        |            |        |        |        |        |            |            |   |            |   |   | 5           | 5          |      | 6          | i i  |          |
| κόμι    | 6ος πέρατος k : | 6  |    |        |            | 1,0000 | 0,0000 | 0      | 0      |            | 200000,00  | 0 | -200000,00 | 0 |   |             | 200000,00  | 0,00 | -200000,00 | 0,00 | -        |
| sinð    | 0,0000          |    |    |        | E 4/513    | 0,0000 | 1,0000 | 0      | 0      | E 14/E \ 1 | 0          | 0 | 0          | 0 |   |             | 0,00       | 0,00 | 0,00       | 0,00 | , °      |
| cost    | 1,0000          |    |    |        | [/(5)]=    | 0      | 0      | 1,0000 | 0,0000 | [K(5)]=    | -200000,00 | 0 | 200000,00  | 0 |   | [KD(5)]=    | -200000,00 | 0,00 | 200000,00  | 0,00 | -        |
| μήκος L | 4,00            |    | EA | 800000 |            | 0      | 0      | 0,0000 | 1,0000 |            | 0          | 0 | 0          | 0 |   |             | 0,00       | 0,00 | 0,00       | 0,00 | ь        |
|         |                 |    |    |        |            |        |        |        |        |            |            |   |            |   |   |             |            |      |            |      |          |
|         |                 |    |    |        |            |        |        |        |        |            |            |   |            |   |   |             |            |      |            |      |          |
| Μέλος   | 6               |    |    |        |            |        |        |        |        |            |            |   |            |   |   | μέλος       |            |      |            |      |          |
| ĸ       | όμβος αρχής j : | 6  |    |        |            |        |        |        |        |            |            |   |            |   | _ | 6           | 6          |      | 7          | ·    |          |
| κόμι    | 6ος πέρατος k : | 7  |    |        |            | 1,0000 | 0,0000 | 0      | 0      |            | 200000,00  | 0 | -200000,00 | 0 |   |             | 200000,00  | 0,00 | -200000,00 | 0,00 | 5        |
| sinថ    | 0,0000          |    |    |        | [ (6) ] =  | 0,0000 | 1,0000 | 0      | 0      | [ K(6) ] = | 0          | 0 | 0          | 0 |   | [ Kb(6) ] = | 0,00       | 0,00 | 0,00       | 0,00 |          |
| cost    | 1,0000          |    |    |        | [/(0/]-    | 0      | 0      | 1,0000 | 0,0000 | [ ((0/ ] - | -200000,00 | 0 | 200000,00  | 0 |   | [ (0(0)] =  | -200000,00 | 0,00 | 200000,00  | 0,00 | 7        |
| μήκος L | 4,00            |    | EA | 800000 |            | 0      | 0      | 0,0000 | 1,0000 |            | 0          | 0 | 0          | 0 |   |             | 0,00       | 0,00 | 0,00       | 0,00 | 1        |
|         |                 |    |    |        |            |        |        |        |        |            |            |   |            |   |   |             |            |      |            |      |          |
|         |                 |    |    |        |            |        |        |        |        |            |            |   |            |   |   |             |            |      |            |      |          |
| Μέλος   | 7               |    |    |        |            |        |        |        |        |            |            |   |            |   |   | μέλος       |            |      |            |      |          |
| K       | όμβος αρχής j : | 7  |    |        |            |        |        |        |        |            |            |   |            |   |   | 7           | 7          |      | 8          | )    |          |
| κόμι    | βος πέρατος k : | 8  |    |        |            | 1,0000 | 0,0000 | 0      | 0      |            | 200000,00  | 0 | -200000,00 | 0 |   |             | 200000,00  | 0,00 | -200000,00 | 0,00 | 7        |
| sinϑ    | 0,0000          |    |    |        | [ A(7) ] = | 0,0000 | 1,0000 | 0      | 0      | [K(7)]=    | 0          | 0 | 0          | 0 |   | [ Kb(7) ] = | 0,00       | 0,00 | 0,00       | 0,00 |          |
| cosð    | 1,0000          |    |    |        | 1.0071     | 0      | 0      | 1,0000 | 0,0000 | <br>1.4.71 | -200000,00 | 0 | 200000,00  | 0 |   | 1           | -200000,00 | 0,00 | 200000,00  | 0,00 | 8        |
| μήκος L | 4,00            |    | EA | 800000 |            | 0      | 0      | 0,0000 | 1,0000 |            | 0          | 0 | 0          | 0 |   |             | 0,00       | 0,00 | 0,00       | 0,00 |          |
|         |                 |    |    |        |            |        |        |        |        |            |            |   |            |   |   |             |            |      |            |      |          |
|         |                 |    |    |        |            |        |        |        |        |            |            |   |            |   |   |             |            |      |            |      |          |
| Μέλος   | 8               |    |    |        |            |        |        |        |        |            |            |   |            |   |   | μέλος       |            |      |            |      |          |
| K       | όμβος αρχής j : | 8  |    |        |            |        |        |        |        |            |            |   |            |   |   | 8           | 8          |      | 9          | 1    |          |
| κόμι    | βος πέρατος k : | 9  |    |        |            | 1,0000 | 0,0000 | 0      | 0      |            | 200000,00  | 0 | -200000,00 | 0 |   |             | 200000,00  | 0,00 | -200000,00 | 0,00 | 8        |
| sinថ    | 0,0000          |    |    |        | [Λ(8)] =   | 0,0000 | 1,0000 | 0      | 0      | [ K(8) ] = | 0          | 0 | 0          | 0 |   | [ Kb(8) ] = | 0,00       | 0,00 | 0,00       | 0,00 |          |
| cost    | 1,0000          |    |    |        | 1.1.1.1    | 0      | 0      | 1,0000 | 0,0000 | <br>       | -200000,00 | 0 | 200000,00  | 0 |   |             | -200000,00 | 0,00 | 200000,00  | 0,00 | 9        |
| μήκος L | 4,00            |    | EA | 800000 |            | 0      | 0      | 0,0000 | 1,0000 |            | 0          | 0 | 0          | 0 |   |             | 0,00       | 0,00 | 0,00       | 0,00 | -        |
|         |                 |    |    |        |            |        |        |        |        |            |            |   |            |   |   |             |            |      |            |      |          |
|         |                 |    |    |        |            |        |        |        |        |            |            |   |            |   |   |             |            |      |            |      |          |
| Μέλος   | 9               |    |    |        |            |        |        |        |        |            |            |   |            |   |   | μέλος       |            |      |            |      |          |
| K       | όμβος αρχής j : | 9  |    |        |            |        |        |        |        |            |            |   |            |   |   | 9           | 9          |      | 1          | )    |          |
| κόμι    | 6ος πέρατος k : | 10 |    |        |            | 1,0000 | 0,0000 | 0      | 0      |            | 200000,00  | 0 | -200000,00 | 0 |   |             | 200000,00  | 0,00 | -200000,00 | 0,00 | 9        |
| sinថ    | 0,0000          |    |    |        | [ A(9) ] = | 0,0000 | 1,0000 | 0      | 0      | [ K(9) ] = | 0          | 0 | 0          | 0 |   | [ Kb(9) ] = | 0,00       | 0,00 | 0,00       | 0,00 | <u> </u> |
| cosð    | 1,0000          |    |    |        | 1          | 0      | 0      | 1,0000 | 0,0000 |            | -200000,00 | 0 | 200000,00  | 0 |   |             | -200000,00 | 0,00 | 200000,00  | 0,00 | 10       |
| μήκος L | 4,00            |    | EA | 800000 |            | 0      | 0      | 0,0000 | 1,0000 |            | 0          | 0 | 0          | 0 |   |             | 0,00       | 0,00 | 0,00       | 0,00 | 1        |

<u>Εικόνα 5η</u>

| Μέλος       | 10                  |    |        |             |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |             |            |   |            |   | μέλος        |            |           |            |           |    |
|-------------|---------------------|----|--------|-------------|---------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|------------|---|------------|---|--------------|------------|-----------|------------|-----------|----|
| κό          | μβος αρχής j :      | 10 |        |             |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |             |            |   |            |   | 10           | 1          | .0        | 1          | 1         |    |
| κόμβ        | ος πέρατος k :      | 11 |        |             | 1,0000  | 0,0000 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0      |             | 200000,00  | 0 | -200000,00 | 0 |              | 200000,00  | 0,00      | -200000,00 | 0,00      | 10 |
| sinϑ        | 0,0000              |    |        | [ A(10) ] = | 0,0000  | 1,0000 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0      | [ K(10) ] - | 0          | 0 | 0          | 0 | [ Kb(10) ] = | 0,00       | 0,00      | 0,00       | 0,00      | 10 |
| cosð        | 1,0000              |    |        | [ /(10) ] = | 0       | 0      | 1,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,0000 | [K(10)]=    | -200000,00 | 0 | 200000,00  | 0 | [KD(10)]=    | -200000,00 | 0,00      | 200000,00  | 0,00      |    |
| μήκος L     | 4,00                | EA | 800000 |             | 0       | 0      | 0,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,0000 |             | 0          | 0 | 0          | 0 |              | 0,00       | 0,00      | 0,00       | 0,00      |    |
|             |                     |    |        |             |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |             |            |   |            |   |              |            |           |            |           |    |
|             |                     |    |        |             |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |             |            |   |            |   |              |            |           |            |           |    |
| Μέλος       | 11                  |    |        |             |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |             |            |   |            |   | μέλος        |            |           |            |           |    |
| κό          | μβος αρχής j :      | 11 |        |             |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |             |            |   |            |   | 11           | 1          | 1         | 1          | .2        | -  |
| κόμβ        | ος πέρατος k :      | 12 |        |             | 1,0000  | 0,0000 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0      |             | 200000,00  | 0 | -200000,00 | 0 |              | 200000,00  | 0,00      | -200000,00 | 0,00      | 11 |
| sinϑ        | 0,0000              |    |        | [ A(11) ] = | 0,0000  | 1,0000 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0      | [ K(11) ] = | 0          | 0 | 0          | 0 | [ Kb(11) ] = | 0,00       | 0,00      | 0,00       | 0,00      |    |
| cost        | 1,0000              |    |        | 1           | 0       | 0      | 1,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,0000 | 1           | -200000,00 | 0 | 200000,00  | 0 | [(/]         | -200000,00 | 0,00      | 200000,00  | 0,00      | 12 |
| μήκος L     | 4,00                | EA | 800000 |             | 0       | 0      | 0,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,0000 |             | 0          | 0 | 0          | 0 |              | 0,00       | 0,00      | 0,00       | 0,00      |    |
|             |                     |    |        |             |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |             |            |   |            |   |              |            |           |            |           |    |
| Méloc       | 12                  |    |        |             |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |             |            |   |            |   | uílor        |            |           |            |           |    |
| WENUS       | 12<br>Bas navás i i | 1  |        |             |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |             |            |   |            |   | 12           |            | 1         |            | 2         |    |
| KO<br>KÓU B | μους αρχης Γ.       | 12 |        |             | 0.7209  | 0.6247 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0      |             | 156172 76  | 0 | 156172.76  | 0 | 12           | 95227.90   | 76192 22  | 95227.90   | 76192.22  | 1  |
| rin.9       | 0 6247              | 15 |        |             | 0,7805  | 0,0247 | , in the second se | ő      |             | 1301/3,/0  |   | -1301/3,/0 | ő |              | 76102.22   | COD45 0C  | 76192 22   | -70102,52 | 1  |
| cond        | 0,0247              |    |        | [ ^(12) ] = | -0,0247 | 0,7805 | 0.7909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.6247 | [ K(12) ] = | 156172.76  | 0 | 156172 76  | 0 | [ Kb(12) ] = | .95227.90  | -76192 22 | 95227.90   | 76192 22  |    |
| univers l   | 6,7805<br>E 12      | EA | 800000 |             | ő       | 0      | 0,7805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,0247 |             | -1301/3,/0 | 0 | 1301/3,/0  | ő |              | 76102.22   | 5094E 95  | 76192 22   | 5004E 95  | 13 |
| μηκός ε     | 5,12                | 20 | 800000 |             | 0       |        | -0,0247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,7805 |             | 0          | U | 0          | U |              | -/0102,52  | -00545,80 | 70102,52   | 00345,00  | -  |
|             |                     |    |        |             |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |             |            |   |            |   |              |            |           |            |           |    |
| Μέλος       | 13                  |    |        |             |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |             |            |   |            |   | μέλος        |            |           |            |           |    |
| κό          | μβος αρχής j :      | 13 |        |             |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |             |            |   |            |   | 13           | 1          | 3         | 1          | 4         |    |
| κόμβ        | ος πέρατος k :      | 14 |        |             | 0,8854  | 0,4648 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0      |             | 177079,58  | 0 | -177079,58 | 0 |              | 138817,90  | 72879,40  | -138817,90 | -72879,40 | 12 |
| sinϑ        | 0,4648              |    |        | [ A(12) ] - | -0,4648 | 0,8854 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0      | [ K(12) ] - | 0          | 0 | 0          | 0 | [ Kb(12) ] - | 72879,40   | 38261,68  | -72879,40  | -38261,68 | 13 |
| cosð        | 0,8854              |    |        | [/(15)]=    | 0       | 0      | 0,8854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,4648 | [K(12)]=    | -177079,58 | 0 | 177079,58  | 0 | [KD(15)]=    | -138817,90 | -72879,40 | 138817,90  | 72879,40  |    |
| μήκος L     | 4,52                | EA | 800000 |             | 0       | 0      | -0,4648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,8854 |             | 0          | 0 | 0          | 0 |              | -72879,40  | -38261,68 | 72879,40   | 38261,68  | 14 |
|             |                     |    |        |             |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |             |            |   |            |   |              |            |           |            |           |    |
|             |                     |    |        |             |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |             |            |   |            |   |              |            |           |            |           |    |
| Μέλος       | 14                  |    |        |             |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |             |            |   |            |   | μέλος        |            |           |            |           |    |
| κό          | μβος αρχής j :      | 14 |        |             |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |             |            |   |            |   | 14           | 1          | .4        | 1          | .5        |    |
| κόμβ        | ος πέρατος k :      | 15 |        |             | 0,9439  | 0,3304 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0      |             | 188771,67  | 0 | -188771,67 | 0 |              | 168170,75  | 58859,76  | -168170,75 | -58859,76 | 14 |
| sinϑ        | 0,3304              |    |        | [ Λ(14) ] = | -0,3304 | 0,9439 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0      | [ K(14) ] = | 0          | 0 | 0          | 0 | [ Kb(14) ] = | 58859,76   | 20600,92  | -58859,76  | -20600,92 | -  |
| cosð        | 0,9439              |    |        |             | 0       | 0      | 0,9439                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,3304 |             | -188771,67 | 0 | 188771,67  | 0 |              | -168170,75 | -58859,76 | 168170,75  | 58859,76  | 15 |
| μήκος L     | 4,24                | EA | 800000 |             | 0       | 0      | -0,3304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,9439 |             | 0          | 0 | 0          | 0 |              | -58859,76  | -20600,92 | 58859,76   | 20600,92  | 1  |

<u>Εικόνα 6η</u>

| 1        |                 |    |     |        |             |         |         |         |         |         |       |            |   |            |   |                 |            |           |            |           |    |
|----------|-----------------|----|-----|--------|-------------|---------|---------|---------|---------|---------|-------|------------|---|------------|---|-----------------|------------|-----------|------------|-----------|----|
| Μέλος    | 15              |    |     |        |             |         |         |         |         |         |       |            |   |            |   | μέλος           |            |           |            |           |    |
| κά       | όμβος αρχής j : | 15 |     |        |             |         |         |         |         |         |       |            |   |            |   | 15              | 1          | 15        | 1          | 16        |    |
| κόμέ     | 6ος πέρατος k : | 16 |     |        |             | 0,9756  | 0,2195  | 0       | 0       |         |       | 195121,95  | 0 | -195121,95 | 0 |                 | 185719,88  | 41786,97  | -185719,88 | -41786,97 |    |
| sinð     | 0,2195          |    |     |        | 1.4/1511    | -0,2195 | 0,9756  | 0       | 0       | E 14/11 | -     | 0          | 0 | 0          | 0 | C 1/6/153 1     | 41786,97   | 9402,07   | -41786,97  | -9402,07  | 15 |
| cosð     | 0,9756          |    |     |        | [/(15)]=    | 0       | 0       | 0,9756  | 0,2195  | [ K(1   | ->)]= | -195121,95 | 0 | 195121,95  | 0 | [KD(15)]=       | -185719,88 | -41786,97 | 185719,88  | 41786,97  |    |
| μήκος L  | 4,10            |    | EA  | 800000 |             | 0       | 0       | -0,2195 | 0,9756  |         |       | 0          | 0 | 0          | 0 |                 | -41786,97  | -9402,07  | 41786,97   | 9402,07   | 16 |
|          |                 |    |     |        |             |         |         |         |         |         |       |            |   |            |   |                 |            |           |            |           |    |
|          |                 |    |     |        |             |         |         |         |         |         |       |            |   |            |   |                 |            |           |            |           |    |
| Μέλος    | 16              |    |     |        |             |         |         |         |         |         |       |            |   |            |   | μέλος           |            |           |            |           |    |
| ĸċ       | όμθος αρχής j : | 16 |     |        |             |         |         |         |         |         |       |            |   |            |   | 16              | 1          | 16        | 1          | 17        |    |
| κόμθ     | βος πέρατος k : | 17 |     |        |             | 0,9978  | 0,0665  | 0       | 0       |         |       | 133038,02  | 0 | -133038,02 | 0 |                 | 132449,36  | 8829,96   | -132449,36 | -8829,96  |    |
| sinð     | 0,0665          |    |     |        | 1 4/1011    | -0,0665 | 0,9978  | 0       | 0       | 5 10 10 | 0.1   | 0          | 0 | 0          | 0 | L 1/1-/1-(1-1-1 | 8829,96    | 588,66    | -8829,96   | -588,66   | 16 |
| cosð     | 0,9978          |    |     |        | [ /(16) ] = | 0       | 0       | 0,9978  | 0,0665  | [K(10   | .6)]= | -133038,02 | 0 | 133038,02  | 0 | [ KD(16) ] =    | -132449,36 | -8829,96  | 132449,36  | 8829,96   |    |
| μήκος L  | 6,01            |    | EA  | 800000 |             | 0       | 0       | -0,0665 | 0,9978  |         |       | 0          | 0 | 0          | 0 |                 | -8829,96   | -588,66   | 8829,96    | 588,66    | 17 |
|          |                 |    |     |        |             |         |         |         |         |         |       |            |   |            |   |                 |            |           |            |           |    |
|          |                 |    |     |        |             |         |         |         |         |         |       |            |   |            |   |                 |            |           |            |           |    |
| Μέλος    | 17              |    |     |        |             |         |         |         |         |         |       |            |   |            |   | μέλος           |            |           |            |           |    |
| ĸċ       | όμθος αρχής į : | 17 |     |        |             |         |         |         |         |         |       |            |   |            |   | 17              | 1          | 17        | 1          | 18        |    |
| κόμε     | βος πέρατος k : | 18 |     |        |             | 0,9978  | -0,0665 | 0       | 0       |         |       | 133038,02  | 0 | -133038,02 | 0 |                 | 132449,36  | -8829,96  | -132449,36 | 8829,96   |    |
| sinð     | -0,0665         |    |     |        |             | 0,0665  | 0,9978  | 0       | 0       |         |       | 0          | 0 | 0          | 0 | 1 10 10 70 1    | -8829,96   | 588,66    | 8829,96    | -588,66   | 17 |
| cosð     | 0,9978          |    |     |        | [/(1/)]=    | 0       | 0       | 0,9978  | -0,0665 | [K(1)   | /)]=  | -133038,02 | 0 | 133038,02  | 0 | [KD(17)]=       | -132449,36 | 8829,96   | 132449,36  | -8829,96  |    |
| μήκος L  | 6,01            |    | EA  | 800000 |             | 0       | 0       | 0,0665  | 0,9978  |         |       | 0          | 0 | 0          | 0 |                 | 8829,96    | -588,66   | -8829,96   | 588,66    | 18 |
|          |                 |    |     |        |             |         |         |         |         |         |       |            |   |            |   |                 |            |           |            |           |    |
|          |                 |    |     |        |             |         |         |         |         |         |       |            |   |            |   |                 |            |           |            |           |    |
| Μέλος    | 18              |    |     |        |             |         |         |         |         |         |       |            |   |            |   | μέλος           |            |           |            |           |    |
| ĸċ       | όμβος αρχής j : | 18 |     |        |             |         |         |         |         |         |       |            |   |            |   | 18              | 1          | 18        | 1          | 19        |    |
| κόμε     | βος πέρατος k : | 19 |     |        |             | 0,9756  | -0,2195 | 0       | 0       |         | Г     | 195121,95  | 0 | -195121,95 | 0 |                 | 185719,88  | -41786,97 | -185719,88 | 41786,97  | 1  |
| sinð     | -0,2195         |    |     |        |             | 0,2195  | 0,9756  | 0       | 0       |         |       | 0          | 0 | 0          | 0 |                 | -41786,97  | 9402,07   | 41786,97   | -9402,07  | 18 |
| cosð     | 0,9756          |    |     |        | [ /(18) ] = | 0       | 0       | 0,9756  | -0,2195 | [ K(1)  | 8)]=  | -195121,95 | 0 | 195121,95  | 0 | [KD(18)]=       | -185719,88 | 41786,97  | 185719,88  | -41786,97 | 1  |
| univer I | 4.10            |    | EA. | 00000  |             | 0       | 0       | 0.2195  | 0 9755  |         |       | 0          | 0 | 0          | 0 |                 | 41705 07   | 9402 07   | A1705 07   | 9402 07   | 19 |

<u>Εικόνα 7η</u>

| Μέλος   | 20              |    |        |                                          |         |         |         |         |             |            |   |            |   | μέλος                                   |            |            |            |            |    |
|---------|-----------------|----|--------|------------------------------------------|---------|---------|---------|---------|-------------|------------|---|------------|---|-----------------------------------------|------------|------------|------------|------------|----|
| κά      | όμβος αρχής j : | 20 |        |                                          |         |         |         |         |             |            |   |            |   | 20                                      | 2          | 0          | 2          | 1          |    |
| κόμθ    | δος πέρατος k : | 21 |        |                                          | 0,8854  | -0,4648 | 0       | 0       |             | 177079,58  | 0 | -177079,58 | 0 |                                         | 138817,90  | -72879,40  | -138817,90 | 72879,40   | 20 |
| sinϑ    | -0,4648         |    |        | [ (/20) ] -                              | 0,4648  | 0,8854  | 0       | 0       | [ K(20) ] - | 0          | 0 | 0          | 0 | [ Kb/20) 1 -                            | -72879,40  | 38261,68   | 72879,40   | -38261,68  | 20 |
| cost    | 0,8854          |    |        | [/(20/]-                                 | 0       | 0       | 0,8854  | -0,4648 | [ ((20) ] - | -177079,58 | 0 | 177079,58  | 0 | [ (0(20) ] -                            | -138817,90 | 72879,40   | 138817,90  | -72879,40  | 21 |
| μήκος L | 4,52            | EA | 800000 |                                          | 0       | 0       | 0,4648  | 0,8854  |             | 0          | 0 | 0          | 0 |                                         | 72879,40   | -38261,68  | -72879,40  | 38261,68   | 21 |
|         |                 |    |        |                                          |         |         |         |         |             |            |   |            |   |                                         |            |            |            |            |    |
|         |                 |    |        |                                          |         |         |         |         |             |            |   |            |   |                                         |            |            |            |            |    |
| Μέλος   | 21              |    |        |                                          |         |         |         |         |             |            |   |            |   | μέλος                                   |            |            |            |            |    |
| κά      | όμβος αρχής j : | 21 |        |                                          |         |         |         |         |             |            |   |            |   | 21                                      | 2          | 1          | 1          | 2          |    |
| κόμθ    | δος πέρατος k : | 12 |        |                                          | 0,7809  | -0,6247 | 0       | 0       |             | 156173,76  | 0 | -156173,76 | 0 |                                         | 95227,90   | -76182,32  | -95227,90  | 76182,32   | 21 |
| sinϑ    | -0,6247         |    |        | [ (21) ] -                               | 0,6247  | 0,7809  | 0       | 0       | [ (21) ] -  | 0          | 0 | 0          | 0 | r KM(21) 1 -                            | -76182,32  | 60945,86   | 76182,32   | -60945,86  | 21 |
| cosව    | 0,7809          |    |        | [/(21)]-                                 | 0       | 0       | 0,7809  | -0,6247 | [ K(21) ] - | -156173,76 | 0 | 156173,76  | 0 | [ KD(21) ] -                            | -95227,90  | 76182,32   | 95227,90   | -76182,32  | 12 |
| μήκος L | 5,12            | EA | 800000 |                                          | 0       | 0       | 0,6247  | 0,7809  |             | 0          | 0 | 0          | 0 |                                         | 76182,32   | -60945,86  | -76182,32  | 60945,86   | 12 |
|         |                 |    |        |                                          |         |         |         |         |             |            |   |            |   |                                         |            |            |            |            |    |
|         |                 |    |        |                                          |         |         |         |         |             |            |   |            |   |                                         |            |            |            |            |    |
| Μέλος   | 22              |    |        |                                          |         |         |         |         |             |            |   |            |   | μέλος                                   |            |            |            |            |    |
| к       | όμβος αρχής j : | 2  |        |                                          |         |         |         |         |             |            |   |            |   | 22                                      |            | 2          | 1          | 3          |    |
| κόμθ    | δος πέρατος k : | 13 |        |                                          | 0,0000  | 1,0000  | 0       | 0       |             | 250000,00  | 0 | -250000,00 | 0 |                                         | 0,00       | 0,00       | 0,00       | 0,00       | 2  |
| sinϑ    | 1,0000          |    |        | [ (22) ] -                               | -1,0000 | 0,0000  | 0       | 0       | [K(22)] -   | 0          | 0 | 0          | 0 | [ Kb(22) ] -                            | 0,00       | 250000,00  | 0,00       | -250000,00 | 2  |
| cosð    | 0,0000          |    |        | [/(22/]-                                 | 0       | 0       | 0,0000  | 1,0000  | [ ((22) ] - | -250000,00 | 0 | 250000,00  | 0 | [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ | 0,00       | 0,00       | 0,00       | 0,00       | 12 |
| μήκος L | 3,20            | EA | 800000 |                                          | 0       | 0       | -1,0000 | 0,0000  |             | 0          | 0 | 0          | 0 |                                         | 0,00       | -250000,00 | 0,00       | 250000,00  | 15 |
|         |                 |    |        |                                          |         |         |         |         |             |            |   |            |   |                                         |            |            |            |            |    |
|         |                 |    |        |                                          |         |         |         |         |             |            |   |            |   |                                         |            |            |            |            |    |
| Μέλος   | 23              |    |        |                                          |         |         |         |         |             |            |   |            |   | μέλος                                   |            |            |            |            |    |
| к       | όμβος αρχής j : | 3  |        |                                          |         |         |         |         |             |            |   |            |   | 23                                      |            | 3          | 1          | 3          |    |
| κόμθ    | βος πέρατος k : | 13 |        |                                          | -0,7809 | 0,6247  | 0       | 0       |             | 97608,60   | 0 | -97608,60  | 0 |                                         | 59517,44   | -47613,95  | -59517,44  | 47613,95   |    |
| sinϑ    | 0,6247          |    |        | [ () () () () () () () () () () () () () | -0,6247 | -0,7809 | 0       | 0       | [ K(23) ] - | 0          | 0 | 0          | 0 | [ Kb(23) 1 -                            | -47613,95  | 38091,16   | 47613,95   | -38091,16  | 2  |
| cost    | -0,7809         |    |        | [/(25)]-                                 | 0       | 0       | -0,7809 | 0,6247  | [ K(25) ] = | -97608,60  | 0 | 97608,60   | 0 | [KD(25)]=                               | -59517,44  | 47613,95   | 59517,44   | -47613,95  | 12 |
| μήκος L | 5,12            | EA | 500000 |                                          | 0       | 0       | -0,6247 | -0,7809 |             | 0          | 0 | 0          | 0 |                                         | 47613,95   | -38091,16  | -47613,95  | 38091,16   | 15 |
|         |                 |    |        |                                          |         |         |         |         |             |            |   |            |   |                                         |            |            |            |            |    |
|         |                 |    |        |                                          |         |         |         |         |             |            |   |            |   |                                         |            |            |            |            |    |
| Μέλος   | 24              |    |        |                                          |         |         |         |         |             |            |   |            |   | μέλος                                   |            |            |            |            |    |
| κά      | όμβος αρχής j : | 2  |        |                                          |         |         |         |         |             |            |   |            |   | 24                                      |            | 2          | 1          | 4          |    |
| κόμθ    | δος πέρατος k : | 14 |        |                                          | 0,6024  | 0,7982  | 0       | 0       |             | 75300,86   | 0 | -75300,86  | 0 |                                         | 27326,24   | 36207,26   | -27326,24  | -36207,26  |    |
| sinð    | 0,7982          |    |        | LA(34) 3                                 | -0,7982 | 0,6024  | 0       | 0       | 1 1/ 1/ 1   | 0          | 0 | 0          | 0 | E KE(34) 1                              | 36207,26   | 47974,63   | -36207,26  | -47974,63  | 2  |
| cost    | 0,6024          |    |        | [/\(24)]=                                | 0       | 0       | 0,6024  | 0,7982  | [ K(24) ] = | -75300,86  | 0 | 75300,86   | 0 | [ KD(24) ] =                            | -27326,24  | -36207,26  | 27326,24   | 36207,26   |    |
| μήκος L | 6,64            | EA | 500000 |                                          | 0       | 0       | -0,7982 | 0,6024  |             | 0          | 0 | 0          | 0 |                                         | -36207,26  | -47974,63  | 36207,26   | 47974,63   | 14 |
|         |                 |    |        |                                          |         |         |         |         |             |            |   |            |   |                                         |            |            |            |            |    |
|         |                 |    |        |                                          |         |         |         |         |             |            |   |            |   |                                         |            |            |            |            |    |

<u>Εικόνα 8η</u>

| Mélor   | 25                   |    |       |             |         |         |         |         |              |            |   |            |   | ution         |           |            |           |            |    |
|---------|----------------------|----|-------|-------------|---------|---------|---------|---------|--------------|------------|---|------------|---|---------------|-----------|------------|-----------|------------|----|
| MEAUC   | 45<br>uBoc govéc i : | 2  |       |             |         |         |         |         |              |            |   |            |   | 25            |           | 3          |           | 4          |    |
| róut    | ροσς αρχης ; :       | 14 |       |             | 0.0000  | 1 0000  | 0       | 0       |              | 150943.40  | 0 | -150943.40 | 0 |               | 0.00      | 0.00       | 0.00      | 0.00       | 1  |
| cint    | 1 0000               |    |       |             | -1.0000 | 0,0000  | 0       | 0       |              | 150545,40  | 0 | 0          | 0 |               | 0,00      | 150943 40  | 0,00      | -150943.40 | з  |
| 6000    | 0,0000               |    |       | [ A(25) ] · | 1,0000  | 0,0000  | 0.0000  | 1 0000  | [ K(25) ] =  | -150943.40 | 0 | 150943.40  | 0 | [ Kb(25) ] =  | 0.00      | 0.00       | 0,00      | 0.00       |    |
| uńxoc I | 5 30                 | ,  | A 800 | 000         | 0       | 0       | -1 0000 | 0,0000  |              | 0          | ő | 0          | ő |               | 0.00      | -150943.40 | 0.00      | 150943.40  | 14 |
|         | 2,22                 |    |       |             |         |         | 2,0000  | 0,0000  |              |            |   |            |   |               | 0,00      | 2000.0,10  | 0,00      |            |    |
|         |                      |    |       |             |         |         |         |         |              |            |   |            |   |               |           |            |           |            |    |
| Μέλος   | 26                   |    |       |             |         |         |         |         |              |            |   |            |   | μέλος         |           |            |           |            |    |
| ĸċ      | μβος αρχής j :       | 4  |       |             |         |         |         |         |              |            |   |            |   | 26            |           | 4          | 1         | .4         |    |
| κόμε    | ος πέρατος k :       | 14 |       |             | -0,6024 | 0,7982  | 0       | 0       |              | 75300,86   | 0 | -75300,86  | 0 |               | 27326,24  | -36207,26  | -27326,24 | 36207,26   |    |
| sinϑ    | 0,7982               |    |       | EA(26) 1    | -0,7982 | -0,6024 | 0       | 0       | [ K(26) ] =  | 0          | 0 | 0          | 0 | ( Kb(26) 1 =  | -36207,26 | 47974,63   | 36207,26  | -47974,63  | ~  |
| cost    | -0,6024              |    |       | [/(20)]     | 0       | 0       | -0,6024 | 0,7982  | [ ((20) ] =  | -75300,86  | 0 | 75300,86   | 0 | [ K0(20) ] =  | -27326,24 | 36207,26   | 27326,24  | -36207,26  |    |
| μήκος L | 6,64                 | E  | A 500 | 000         | 0       | 0       | -0,7982 | -0,6024 |              | 0          | 0 | 0          | 0 |               | 36207,26  | -47974,63  | -36207,26 | 47974,63   | 14 |
|         |                      |    |       |             |         |         |         |         |              |            |   |            |   |               |           |            |           |            |    |
|         |                      |    |       |             |         |         |         |         |              |            |   |            |   |               |           |            |           |            |    |
| Μέλος   | 27                   |    |       |             |         |         |         |         |              |            |   |            |   | μέλος         |           |            |           |            |    |
| ĸċ      | μβος αρχής j :       | з  |       |             |         |         |         |         |              |            |   |            |   | 27            |           | 3          | 1         | .5         |    |
| κόμθ    | ος πέρατος k :       | 15 |       |             | 0,5126  | 0,8586  | 0       | 0       |              | 64076,24   | 0 | -64076,24  | 0 |               | 16837,24  | 28202,39   | -16837,24 | -28202,39  | 3  |
| sinϑ    | 0,8586               |    |       | F A(27) 1   | -0,8586 | 0,5126  | 0       | 0       | [ K(27) ] =  | 0          | 0 | 0          | 0 | [ Kb(27) ] =  | 28202,39  | 47238,99   | -28202,39 | -47238,99  |    |
| cosit   | 0,5126               |    |       |             | 0       | 0       | 0,5126  | 0,8586  | 1            | -64076,24  | 0 | 64076,24   | 0 | 1             | -16837,24 | -28202,39  | 16837,24  | 28202,39   | 15 |
| μήκος L | 7,80                 | E  | A 500 | 000         | 0       | 0       | -0,8586 | 0,5126  |              | 0          | 0 | 0          | 0 |               | -28202,39 | -47238,99  | 28202,39  | 47238,99   |    |
|         |                      |    |       |             |         |         |         |         |              |            |   |            |   |               |           |            |           |            |    |
| Μέλος   | 28                   |    |       |             |         |         |         |         |              |            |   |            |   | μέλος         |           |            |           |            |    |
| ĸċ      | μβος αρχής ( :       | 4  |       |             |         |         |         |         |              |            |   |            |   | 28            |           | 4          | 1         | .5         |    |
| κόμά    | ος πέρατος k :       | 15 |       |             | 0,0000  | 1,0000  | 0       | 0       |              | 119402,99  | 0 | -119402,99 | 0 |               | 0,00      | 0,00       | 0,00      | 0,00       |    |
| sinð    | 1,0000               |    |       | E &/2011    | -1,0000 | 0,0000  | 0       | 0       | E (K) (200 ) | 0          | 0 | 0          | 0 | [ Kh/201 ]    | 0,00      | 119402,99  | 0,00      | -119402,99 | 4  |
| cosð    | 0,0000               |    |       | [ /(28) ] - | 0       | 0       | 0,0000  | 1,0000  | [ K(28) ] =  | -119402,99 | 0 | 119402,99  | 0 | [ Kb(28) ] =  | 0,00      | 0,00       | 0,00      | 0,00       |    |
| μήκος L | 6,70                 | £  | A 800 | 000         | 0       | 0       | -1,0000 | 0,0000  |              | 0          | 0 | 0          | 0 |               | 0,00      | -119402,99 | 0,00      | 119402,99  | 15 |
|         |                      |    |       |             |         |         |         |         |              |            |   |            |   |               |           |            |           |            |    |
|         |                      |    |       |             |         |         |         |         |              |            |   |            |   |               |           |            |           |            |    |
| Μέλος   | 29                   |    |       |             |         |         |         |         |              |            |   |            |   | μέλος         |           |            |           |            |    |
| ĸċ      | μβος αρχής j :       | 5  |       |             |         |         |         |         |              |            |   |            |   | 29            |           | 5          | 1         | .5         | _  |
| κόμθ    | ος πέρατος k :       | 15 |       |             | -0,5126 | 0,8586  | 0       | 0       |              | 64076,24   | 0 | -64076,24  | 0 |               | 16837,24  | -28202,39  | -16837,24 | 28202,39   | 5  |
| sinϑ    | 0,8586               |    |       | [ A(29) 1 - | -0,8586 | -0,5126 | 0       | 0       | [ K(29) 1 =  | 0          | 0 | 0          | 0 | [ Kb(29) 1 =  | -28202,39 | 47238,99   | 28202,39  | -47238,99  | -  |
|         | 0.5405               |    |       | [11(25)]]   | 0       | 0       | -0 5126 | 0.8586  | [ ((23) ] -  | -64076.24  | 0 | 64076.24   | 0 | [ ((0(23))] = | -16837.24 | 28202.39   | 16837.24  | -28202.39  |    |
| cosð    | -0,5126              |    |       |             |         | •       | 0,0120  | 0,0000  |              | 0.010,21   |   | 0.0.0,2.   |   |               |           | /          |           |            | 15 |

<u>Εικόνα 9η</u>

| Μέλος   | 30              |    |        |             |         |         |         |         |             |            |   |            |   | μέλος           |                                         |            |                                         |            |
|---------|-----------------|----|--------|-------------|---------|---------|---------|---------|-------------|------------|---|------------|---|-----------------|-----------------------------------------|------------|-----------------------------------------|------------|
| ĸ       | όμβος αρχής j : | 4  |        |             |         |         |         |         |             |            |   |            |   | 30              |                                         | 4          | 1                                       | 16         |
| κόμι    | βος πέρατος k : | 16 |        |             | 0,4657  | 0,8849  | 0       | 0       |             | 58218,30   | 0 | -58218,30  | 0 |                 | 12628,70                                | 23994,53   | -12628,70                               | -23994,53  |
| sinថ    | 0,8849          |    |        | [ A(30) 1 = | -0,8849 | 0,4657  | 0       | 0       | [ K(30) ] = | 0          | 0 | 0          | 0 | [ Kb/30) 1 =    | 23994,53                                | 45589,60   | -23994,53                               | -45589,60  |
| cost    | 0,4657          |    |        | [/(30)]-    | 0       | 0       | 0,4657  | 0,8849  | [ K(30) ] - | -58218,30  | 0 | 58218,30   | 0 | [ Kb(30)] -     | -12628,70                               | -23994,53  | 12628,70                                | 23994,53   |
| μήκος L | 8,59            | EA | 500000 |             | 0       | 0       | -0,8849 | 0,4657  |             | 0          | 0 | 0          | 0 |                 | -23994,53                               | -45589,60  | 23994,53                                | 45589,60   |
|         |                 |    |        |             |         |         |         |         |             |            |   |            |   |                 |                                         |            |                                         |            |
|         |                 |    |        |             |         |         |         |         |             |            |   |            |   |                 |                                         |            |                                         |            |
| Μέλος   | 31              |    |        |             |         |         |         |         |             |            |   |            |   | μέλος           |                                         |            |                                         |            |
| ĸ       | όμθος αρχής j : | 5  |        |             |         |         |         |         |             |            |   |            |   | 31              |                                         | 5          | 1                                       | 16         |
| κόμι    | βος πέρατος k : | 16 |        |             | 0,0000  | 1,0000  | 0       | 0       |             | 105263,16  | 0 | -105263,16 | 0 |                 | 0,00                                    | 0,00       | 0,00                                    | 0,00       |
| sinថ    | 1,0000          |    |        | CA(21)1-    | -1,0000 | 0,0000  | 0       | 0       | F ((21) 1 - | 0          | 0 | 0          | 0 | ( Kb/21) 1 -    | 0,00                                    | 105263,16  | 0,00                                    | -105263,16 |
| cost    | 0,0000          |    |        | [ /(21) ] = | 0       | 0       | 0,0000  | 1,0000  | [ () () ] = | -105263,16 | 0 | 105263,16  | 0 | [KD(31)]=       | 0,00                                    | 0,00       | 0,00                                    | 0,00       |
| μήκος L | 7,60            | EA | 800000 |             | 0       | 0       | -1,0000 | 0,0000  |             | 0          | 0 | 0          | 0 |                 | 0,00                                    | -105263,16 | 0,00                                    | 105263,16  |
|         |                 |    |        |             |         |         |         |         |             |            |   |            |   |                 |                                         |            |                                         |            |
|         |                 |    |        |             |         |         |         |         |             |            |   |            |   |                 |                                         |            |                                         |            |
| Μέλος   | 32              |    |        |             |         |         |         |         |             |            |   |            |   | μέλος           |                                         |            |                                         |            |
| K       | όμθος αρχής j : | 6  |        |             |         |         |         |         |             |            |   |            |   | 32              |                                         | 6          | 1                                       | 16         |
| κόμι    | θος πέρατος k : | 16 |        |             | -0,4657 | 0,8849  | 0       | 0       |             | 58218,30   | 0 | -58218,30  | 0 |                 | 12628,70                                | -23994,53  | -12628,70                               | 23994,53   |
| sinð    | 0,8849          |    |        |             | -0,8849 | -0,4657 | 0       | 0       | C 14/200 1  | 0          | 0 | 0          | 0 |                 | -23994,53                               | 45589,60   | 23994,53                                | -45589,60  |
| cost    | -0.4657         |    |        | [/\(32)]=   | 0       | 0       | -0.4657 | 0.8849  | [K(32)]=    | -58218.30  | 0 | 58218.30   | 0 | [KD(32)]=       | -12628.70                               | 23994.53   | 12628.70                                | -23994.53  |
| μήκος L | 8.59            | EA | 500000 |             | 0       | 0       | -0.8849 | -0,4657 |             | ່          | 0 | 0          | 0 |                 | 23994,53                                | -45589,60  | -23994,53                               | 45589,60   |
|         |                 |    |        |             |         |         |         |         |             |            |   |            |   |                 | , i i i i i i i i i i i i i i i i i i i |            | , i i i i i i i i i i i i i i i i i i i |            |
|         |                 |    |        |             |         |         |         |         |             |            |   |            |   |                 |                                         |            |                                         |            |
| Μέλος   | 33              |    |        |             |         |         |         |         |             |            |   |            |   | μέλος           |                                         |            |                                         |            |
| K       | όμβος αρχής j : | 5  |        |             |         |         |         |         |             |            |   |            |   | 33              |                                         | 5          | 1                                       | 17         |
| κόμι    | δος πέρατος k : | 17 |        |             | 0,6000  | 0,8000  | 0       | 0       |             | 50000,00   | 0 | -50000,00  | 0 |                 | 18000,00                                | 24000,00   | -18000,00                               | -24000,00  |
| sinð    | 0,8000          |    |        | 6 4 (22) 1  | -0,8000 | 0,6000  | 0       | 0       | L ((22) )   | 0          | 0 | 0          | 0 | C 1/(h / 2 2) 1 | 24000,00                                | 32000,00   | -24000,00                               | -32000,00  |
| cosð    | 0,6000          |    |        | [ /(33) ] = | 0       | 0       | 0,6000  | 0,8000  | [ K(33) ] = | -50000,00  | 0 | 50000,00   | 0 | [KD(33)]=       | -18000,00                               | -24000,00  | 18000,00                                | 24000,00   |
| μήκος L | 10,00           | EA | 500000 |             | 0       | 0       | -0,8000 | 0,6000  |             | 0          | 0 | 0          | 0 |                 | -24000,00                               | -32000,00  | 24000,00                                | 32000,00   |
|         |                 |    |        |             |         |         |         |         |             |            |   |            |   |                 |                                         |            |                                         |            |
|         |                 |    |        |             |         |         |         |         |             |            |   |            |   |                 |                                         |            |                                         |            |
| Μέλος   | 34              |    |        |             |         |         |         |         |             |            |   |            |   | μέλος           |                                         |            |                                         |            |
| K       | όμθος αρχής i : | 6  |        |             |         |         |         |         |             |            |   |            |   | 34              |                                         | 6          | 1                                       | 17         |
| κόμ     | δος πέρατος k : | 17 |        |             | 0.2425  | 0.9701  | 0       | 0       |             | 97014.25   | 0 | -97014.25  | 0 |                 | 5706,72                                 | 22826.88   | -5706.72                                | -22826.88  |
| sint    | 0.9701          |    |        |             | -0.9701 | 0.2425  | 0       | 0       |             | 0          | 0 | 0          | 0 |                 | 22826.88                                | 91307.53   | -22826.88                               | -91307.53  |
| cost    | 0.2425          |    |        | [ /(34) ] = | 0       | 0       | 0.2425  | 0.9701  | [ K(34) ] = | -97014.25  | 0 | 97014.25   | 0 | [ Kb(34) ] =    | -5706.72                                | -22826.88  | 5706.72                                 | 22826.88   |
| μήκος L | 8.25            | EA | 800000 |             | 0       | 0       | -0.9701 | 0.2425  |             | 0          | 0 | 0          | 0 |                 | -22826.88                               | -91307.53  | 22826.88                                | 91307 53   |

<u>Εικόνα 10<sup>η</sup></u>

|   | Μέλος    | 35              |            |        |             |         |         |                                         |         |             |            |          |            |     | μέλος            |           |            |           |            |    |
|---|----------|-----------------|------------|--------|-------------|---------|---------|-----------------------------------------|---------|-------------|------------|----------|------------|-----|------------------|-----------|------------|-----------|------------|----|
|   | κά       | μβος αρχής j :  | 7          |        |             |         |         |                                         |         |             |            |          |            |     | 35               |           | 7          | 1         | 7          |    |
|   | κόμθ     | ίος πέρατος k : | 17         |        |             | -0,2425 | 0,9701  | 0                                       | 0       |             | 97014,25   | 0        | -97014,25  | 0   |                  | 5706,72   | -22826,88  | -5706,72  | 22826,88   | -  |
|   | sinð     | 0,9701          |            |        |             | -0,9701 | -0,2425 | 0                                       | 0       | C (4/25) 1  | 0          | 0        | 0          | 0   | L MALOTA A       | -22826,88 | 91307,53   | 22826,88  | -91307,53  | 1  |
|   | cosð     | -0,2425         |            |        | [ /(35) ] = | 0       | 0       | -0,2425                                 | 0,9701  | [ K(35) ] = | -97014,25  | 0        | 97014,25   | 0   | [ KD(35) ] =     | -5706,72  | 22826,88   | 5706,72   | -22826,88  |    |
|   | μήκος L  | 8,25            | EA         | 800000 |             | 0       | 0       | -0,9701                                 | -0,2425 |             | 0          | 0        | 0          | 0   |                  | 22826,88  | -91307,53  | -22826,88 | 91307,53   | 17 |
|   |          |                 |            |        |             |         |         | , i i i i i i i i i i i i i i i i i i i | Í       |             |            |          |            |     |                  |           |            |           |            |    |
|   |          |                 |            |        |             |         |         |                                         |         |             |            |          |            |     |                  |           |            |           |            |    |
|   | Μέλος    | 36              | 1          |        |             |         |         |                                         |         |             |            |          |            |     | μέλος            |           |            |           |            |    |
|   | ĸċ       | αδος αργής ί :  | 8          |        |             |         |         |                                         |         |             |            |          |            |     | 36               |           | 8          | 1         | 7          |    |
|   | κόμξ     | ίος πέρατος k : | 17         |        |             | -0.6000 | 0.8000  | 0                                       | 0       |             | 50000.00   | 0        | -50000.00  | 0   |                  | 18000.00  | -24000.00  | -18000.00 | 24000.00   |    |
|   | sint     | 0.8000          |            |        |             | -0.8000 | -0.6000 | 0                                       | 0       |             | 0          | 0        | 0          | 0   |                  | -24000.00 | 32000.00   | 24000.00  | -32000.00  | 8  |
|   | cos7     | -0.6000         |            |        | [ A(36) ] = | 0       | 0       | -0.6000                                 | 0.8000  | [ K(36) ] = | -50000.00  | 0        | 50000.00   | 0   | <br>[ Kb(36) ] = | -18000.00 | 24000.00   | 18000.00  | -24000.00  |    |
|   | μήκος Ι  | 10.00           | FA         | 500000 |             | 0       | 0       | -0.8000                                 | -0.6000 |             | 0          | 0        | 0          | 0   |                  | 24000.00  | -32000.00  | -24000.00 | 32000.00   | 17 |
|   | <i>p</i> | ,               |            |        |             |         | _       | -,                                      | -,      |             | -          | -        | -          | -   |                  |           | ,          |           |            |    |
|   |          |                 |            |        |             |         |         |                                         |         |             |            |          |            |     |                  |           |            |           |            |    |
|   | Μέλος    | 37              | 1          |        |             |         |         |                                         |         |             |            |          |            |     | μέλος            |           |            |           |            |    |
|   |          | μβος αρχής ( :  | 7          |        |             |         |         |                                         |         |             |            |          |            |     | 37               |           | 7          | 1         | 8          |    |
|   | róuf     | ίος πέρατος k   | 18         |        |             | 0.4657  | 0.8849  | 0                                       | 0       |             | 58218 30   | 0        | -58218 30  | 0   | 27               | 12628 70  | 23994 53   | 12628 70  | 23994 53   |    |
|   | sing     | 0.8849          | 10         |        |             | -0.8849 | 0.4657  | 0                                       | 0       |             | 0          | ő        | 0          | ő   | <br>             | 23994 53  | 45589.60   | -23994 53 | 45589.60   | 7  |
|   | 6002     | 0.4657          |            |        | [ A(37) ] = | -0,0045 | 0,4057  | 0.4657                                  | 0 0040  | [ K(37) ] = | -59219 20  | 0        | 59219 20   | 0   | <br>[ Kb(37) ] = | -12628 70 | -22994 52  | 12529.70  | 22994 52   |    |
|   | univos l | 0,4057          | EA         | 500000 |             | ő       | ő       | 0,4037                                  | 0,0045  |             | -56216,50  | ő        | 0          | ŏ   |                  | 22004 52  | 45599.60   | 22020,70  | 45599.60   | 18 |
|   | μηκός ε  | 0,33            |            | 300000 | _           |         |         | -0,0045                                 | 0,4037  |             | 0          | <u> </u> | v          | 0   |                  | -23334,35 | -45565,60  | 23337,35  | 45565,00   |    |
|   |          |                 |            |        |             |         |         |                                         |         |             |            |          |            |     |                  |           |            |           |            |    |
| _ | 1412     | 20              |            |        |             |         |         |                                         |         |             |            |          |            |     |                  |           |            |           |            |    |
|   | wieku ç  | - So            | •          |        |             |         |         |                                         |         |             |            |          |            |     | 20               |           | 0          | 1         | 0          |    |
|   | ×6.06    | ιμους αρχης J . | 10         |        |             | 0.0000  | 1 0000  | 0                                       | 0       |             | 105252.16  | 0        | 105252.16  | 0   | 50               | 0.00      | 0.00       | 0.00      | 0.00       |    |
|   | 1000     | 1 0000          | 10         |        |             | 1,0000  | 1,0000  | ő                                       | 0       |             | 105205,10  |          | -105205,10 | ő   |                  | 0,00      | 105263.16  | 0,00      | 105262.16  | 8  |
|   | 5000     | 0,0000          |            |        | [ A(38) ] = | -1,0000 | 0,0000  | 0.0000                                  | 1 0000  | [ K(38) ] = | 105252.16  | 0        | 105252.16  | 0   | <br>[ Kb(38) ] = | 0,00      | 0.00       | 0,00      | -105205,10 |    |
|   | coso .   | 7,60            | 54         | 800000 |             | ě       | ő       | 1,0000                                  | 1,0000  |             | -105265,10 |          | 105265,10  | 0   |                  | 0,00      | 105262.16  | 0,00      | 105252.16  | 18 |
|   | μηκός ε  | 7,00            |            | 800000 | _           |         | 0       | -1,0000                                 | 0,0000  |             | 0          | <u> </u> | v          | U U | <br>             | 0,00      | -105205,10 | 0,00      | 105205,10  |    |
|   |          |                 |            |        |             |         |         |                                         |         |             |            |          |            |     |                  |           |            |           |            |    |
| - | Málas    | 20              |            |        |             |         |         |                                         |         |             |            |          |            |     |                  |           |            |           |            |    |
| _ | Νελος    | 33<br>          | 0          |        |             |         |         |                                         |         |             |            |          |            |     | μελος            |           | •          | 1         | •          |    |
|   | KC       | μοος αρχης j :  | 3          |        |             | 0.4557  | 0.8846  | 0                                       | 0       |             | 59219 20   | 0        | 59319 30   | 0   | 23               | 10000 70  | 22004 52   | 12628 70  | 22004 52   |    |
|   | коµс     | ος περατος κ :  | 19         |        |             | -0,4657 | 0,8849  | 0                                       | 0       |             | 58218,50   | 0        | -58218,50  | 0   |                  | 12628,/0  | -23994,53  | -12628,70 | 23994,53   | 9  |
|   | sino     | 0,6649          |            |        | [ A(39) ] = | -0,8849 | -0,4657 | 0.4557                                  | 0.0040  | [ K(39) ] = | 59219.20   | 0        | 50210.20   | 0   | <br>[ Kb(39) ] = | -25554,55 | 45589,60   | 25554,53  | -45589,60  |    |
|   | C050     | -0,4657         | <b>F</b> 1 | 500000 |             | 0       | 0       | -0,4657                                 | 0,8849  |             | -58218,30  | 0        | 58218,30   | 0   |                  | -12628,70 | 23994,53   | 12628,70  | -23994,53  | 18 |
|   | μηκος L  | 8,59            | EA         | 500000 | -           | 0       | 0       | -0,8849                                 | -0,4657 |             | 0          | 0        | 0          | U   |                  | 23994,53  | -45589,60  | -23994,53 | 45589,60   |    |
|   |          |                 |            |        |             |         |         |                                         |         |             |            |          |            |     |                  |           |            |           |            |    |

<u>Εικόνα 11<sup>η</sup></u>

|   | Μέλος    | 40             |    |        |             |         |         |         |         |   |             |            |   |            |   |   | μέλος        |           |            |           |            |    |
|---|----------|----------------|----|--------|-------------|---------|---------|---------|---------|---|-------------|------------|---|------------|---|---|--------------|-----------|------------|-----------|------------|----|
| 1 | κά       | μβος αρχής į : | 8  |        |             |         |         |         |         |   |             |            |   |            |   |   | 40           |           | 8          | 1         | 19         |    |
|   | κόμθ     | ος πέρατος k : | 19 |        |             | 0,5126  | 0,8586  | 0       | 0       |   |             | 64076,24   | 0 | -64076,24  | 0 |   |              | 16837,24  | 28202,39   | -16837,24 | -28202,39  |    |
|   | sinð     | 0,8586         |    |        |             | -0,8586 | 0,5126  | 0       | 0       |   |             | o          | 0 | 0          | 0 |   |              | 28202,39  | 47238,99   | -28202,39 | -47238,99  | 8  |
|   | දංශ      | 0.5126         |    |        | [ /(40) ] = | 0       | 0       | 0.5126  | 0.8586  |   | [K(40)]=    | -64076.24  | 0 | 64076.24   | 0 |   | [Kb(40)]=    | -16837.24 | -28202.39  | 16837.24  | 28202.39   |    |
|   | μήκος Ι  | 7.80           | FA | 500000 |             | 0       | 0       | -0.8586 | 0 5126  |   |             | 0          | 0 | 0          | 0 |   |              | -28202 39 | -47238.99  | 28202 39  | 47238.99   | 19 |
|   | <i>p</i> | .,             |    |        | -           |         |         | 0,0000  | 0,2120  | - |             |            |   |            |   |   |              | 20202,22  |            | 20202,22  |            |    |
|   |          |                |    |        |             |         |         |         |         |   |             |            |   |            |   |   |              |           |            |           |            |    |
| Ť | Μέλος    | 41             |    |        |             |         |         |         |         |   |             |            |   |            |   |   | μέλος        |           |            |           |            |    |
|   | wienog   | ußos govás i : | 9  |        |             |         |         |         |         |   |             |            |   |            |   |   | 41           |           | 9          | 4         | 19         |    |
|   | róut     | αστέρατος κ    | 19 |        |             | 0.0000  | 1 0000  | 0       | 0       |   |             | 119402.99  | 0 | -119402.99 | 0 |   |              | 0.00      | 0.00       | 0.00      | 0.00       |    |
|   | cia.9    | 1 0000         | 15 |        |             | 1,0000  | 0,0000  |         | 0       |   |             | 113402,55  | ő | -115402,55 | ő |   |              | 0,00      | 110402.00  | 0,00      | 119402.99  | 9  |
|   | 5000     | 0,0000         |    |        | [ ^(41) ] = | -1,0000 | 0,0000  | 0.0000  | 1 0000  |   | [ K(41) ] = | -119402.99 | 0 | 119402.99  | 0 |   | [Kb(41)] =   | 0,00      | 0.00       | 0,00      | 0.00       |    |
|   | uives l  | 6.70           | EA | 800000 |             | ő       |         | 1,0000  | 1,0000  | - |             | -113402,55 | 0 | 113402,55  |   |   |              | 0,00      | 110402.00  | 0,00      | 110402.00  | 19 |
|   | μηκός ε  | 6,70           | 28 | 800000 | _           | U U     | 0       | -1,0000 | 0,0000  | - |             | 0          | 0 | U U        | 0 |   |              | 0,00      | -113402,33 | 0,00      | 115402,55  |    |
|   |          |                |    |        |             |         |         |         |         |   |             |            |   |            |   |   |              |           |            |           |            |    |
| Ť | Málas    | 42             |    |        |             |         |         |         |         |   |             |            |   |            |   |   |              |           |            |           |            |    |
| + | Ινιελος  | 42             | 10 |        |             |         |         |         |         |   |             |            |   |            |   |   | μελος        | 1         | 0          |           | 10         |    |
|   | KO       | μοος αρχης j : | 10 |        |             | 0.5405  | 0.0505  |         | 0       |   |             | 64076.04   | 0 | 54075.24   | 0 | - | 42           | 46007.04  |            | 46007.04  | 20202.20   |    |
| _ | коµс     | ος περατος κ : | 19 |        |             | -0,5126 | 0,8586  | 0       | 0       |   |             | 64076,24   | 0 | -64076,24  | 0 |   |              | 16837,24  | -28202,39  | -16837,24 | 28202,39   | 10 |
| _ | sind     | 0,8586         |    |        | [ \(42) ] = | -0,8586 | -0,5126 | 0       | 0       | - | [ K(42) ] = | 0          | 0 | 0          | 0 | - | [ Kb(42) ] = | -28202,39 | 4/238,99   | 28202,39  | -4/238,99  |    |
| _ | coso     | -0,5126        |    |        |             | 0       | 0       | -0,5126 | 0,8586  |   |             | -64076,24  | 0 | 64076,24   | 0 | - |              | -16837,24 | 28202,39   | 16837,24  | -28202,39  | 19 |
| - | μηκος L  | 7,80           | EA | 500000 | _           | 0       | 0       | -0,8586 | -0,5126 | _ |             | 0          | 0 | 0          | 0 |   |              | 28202,39  | -4/238,99  | -28202,39 | 4/238,99   |    |
|   |          |                |    |        |             |         |         |         |         |   |             |            |   |            |   |   |              |           |            |           |            |    |
| - |          |                |    |        |             |         |         |         |         |   |             |            |   |            |   |   |              |           |            |           |            |    |
| - | Μέλος    | 43             |    |        |             |         |         |         |         |   |             |            |   |            |   |   | μέλος        |           |            |           | /          |    |
| _ | ĸċ       | μβος αρχής j : | 9  |        |             |         |         | -       | _       | - |             |            | - |            | - |   | 43           |           | 9          |           | 20         |    |
| _ | κόμδ     | ος πέρατος k : | 20 |        |             | 0,6024  | 0,7982  | 0       | 0       |   |             | 75300,86   | 0 | -75300,86  | 0 |   |              | 27326,24  | 36207,26   | -27326,24 | -36207,26  | 9  |
|   | sinថ     | 0,7982         |    |        | [ A(43) ] = | -0,7982 | 0,6024  | 0       | 0       |   | [ K(43) ] = | 0          | 0 | 0          | 0 | I | [ Kb(43) ] = | 36207,26  | 47974,63   | -36207,26 | -47974,63  |    |
|   | cost     | 0,6024         |    |        |             | 0       | 0       | 0,6024  | 0,7982  |   |             | -75300,86  | 0 | 75300,86   | 0 |   |              | -27326,24 | -36207,26  | 27326,24  | 36207,26   | 20 |
|   | μήκος L  | 6,64           | EA | 500000 | _           | 0       | 0       | -0,7982 | 0,6024  |   |             | 0          | 0 | 0          | 0 |   |              | -36207,26 | -47974,63  | 36207,26  | 47974,63   |    |
|   |          |                |    |        |             |         |         |         |         |   |             |            |   |            |   |   |              |           |            |           |            |    |
| - |          |                |    |        |             |         |         |         |         |   |             |            |   |            |   |   |              |           |            |           |            |    |
|   | Μέλος    | 44             |    |        |             |         |         |         |         |   |             |            |   |            |   |   | μέλος        |           |            |           |            |    |
|   | κά       | μβος αρχής j : | 10 |        |             |         |         |         |         |   |             |            |   |            |   |   | 44           | 1         | .0         | 2         | 20         |    |
|   | κόμθ     | ος πέρατος k : | 20 |        |             | 0,0000  | 1,0000  | 0       | 0       |   |             | 150943,40  | 0 | -150943,40 | 0 |   |              | 0,00      | 0,00       | 0,00      | 0,00       | 10 |
|   | sinថ     | 1,0000         |    |        | [Λ(44)] =   | -1,0000 | 0,0000  | 0       | 0       |   | [K(44)] =   | 0          | 0 | 0          | 0 |   | [Kb(44)] =   | 0,00      | 150943,40  | 0,00      | -150943,40 |    |
|   | cost     | 0,0000         |    |        | 1.00.01-    | 0       | 0       | 0,0000  | 1,0000  |   | 1.00.01-    | -150943,40 | 0 | 150943,40  | 0 |   | [            | 0,00      | 0,00       | 0,00      | 0,00       | 20 |
|   | μήκος L  | 5,30           | EA | 800000 |             | 0       | 0       | -1,0000 | 0,0000  |   |             | 0          | 0 | 0          | 0 |   |              | 0,00      | -150943,40 | 0,00      | 150943,40  | ~~ |
|   |          |                |    |        |             |         |         |         |         |   |             |            |   |            |   |   |              |           |            |           |            |    |
|   |          |                |    |        |             |         |         |         |         |   |             |            |   |            |   |   |              |           |            |           |            |    |

<u>Εικόνα 12<sup>η</sup></u>

|   | Μέλος   | 45              |     |        |             |         |         |          |         |    |           |            |   |            |   | μέλος        |           |            |           |            |    |  |
|---|---------|-----------------|-----|--------|-------------|---------|---------|----------|---------|----|-----------|------------|---|------------|---|--------------|-----------|------------|-----------|------------|----|--|
|   | кá      | όμβος αρχής j : | 11  |        |             |         |         |          |         |    |           |            |   |            |   | 45           | 1         | 1          | 2         | 0          |    |  |
|   | κόμθ    | δος πέρατος k : | 20  |        |             | -0,6024 | 0,7982  | 0        | 0       |    |           | 75300,86   | 0 | -75300,86  | 0 |              | 27326,24  | -36207,26  | -27326,24 | 36207,26   | l  |  |
|   | sinថ    | 0,7982          |     |        | CA(45)1-    | -0,7982 | -0,6024 | 0        | 0       |    | K(45)1-   | 0          | 0 | 0          | 0 |              | -36207,26 | 47974,63   | 36207,26  | -47974,63  | 11 |  |
|   | cost    | -0,6024         |     |        | [/(45)]=    | 0       | 0       | -0,6024  | 0,7982  | 1. | K(45)]=   | -75300,86  | 0 | 75300,86   | 0 | [KD(45)]=    | -27326,24 | 36207,26   | 27326,24  | -36207,26  |    |  |
|   | μήκος L | 6,64            | EA  | 500000 |             | 0       | 0       | -0,7982  | -0,6024 |    |           | 0          | 0 | 0          | 0 |              | 36207,26  | -47974,63  | -36207,26 | 47974,63   | 20 |  |
|   |         |                 |     |        |             |         |         |          |         |    |           |            |   |            |   |              |           |            |           |            |    |  |
|   |         |                 |     |        |             |         |         |          |         |    |           |            |   |            |   |              |           |            |           |            |    |  |
|   | Μέλος   | 46              |     |        |             |         |         |          |         |    |           |            |   |            |   | μέλος        |           |            |           |            |    |  |
|   | κά      | ομβος αρχής ί : | 10  |        |             |         |         |          |         |    |           |            |   |            |   | 46           | 1         | 0          | 2         | 1          |    |  |
|   | κόμθ    | δος πέρατος k : | 21  |        |             | 0,7809  | 0,6247  | 0        | 0       |    |           | 97608,60   | 0 | -97608,60  | 0 |              | 59517,44  | 47613,95   | -59517,44 | -47613,95  |    |  |
|   | sinð    | 0,6247          |     |        |             | -0,6247 | 0,7809  | 0        | 0       |    |           | o          | 0 | 0          | 0 |              | 47613,95  | 38091,16   | -47613,95 | -38091,16  | 10 |  |
|   | cosð    | 0,7809          |     |        | [ /(46) ] = | 0       | 0       | 0,7809   | 0,6247  | [K | K(46) ] = | -97608,60  | 0 | 97608,60   | 0 | [ KD(46) ] = | -59517,44 | -47613,95  | 59517,44  | 47613,95   |    |  |
|   | μήκος L | 5.12            | EA  | 500000 |             | 0       | 0       | -0.6247  | 0,7809  |    |           | o          | 0 | o          | 0 |              | -47613.95 | -38091,16  | 47613,95  | 38091,16   | 21 |  |
|   |         | í.              |     |        |             |         |         | <i>,</i> | l í     |    |           |            |   |            |   |              |           | , í        |           |            |    |  |
|   |         |                 |     |        |             |         |         |          |         |    |           |            |   |            |   |              |           |            |           |            |    |  |
| _ | Μέλος   | 47              |     |        |             |         |         |          |         |    |           |            |   |            |   | μέλος        |           |            |           |            |    |  |
|   | кċ      | ουθος αργής ί : | 11  |        |             |         |         |          |         |    |           |            |   |            |   | 47           | 1         | 1          | 2         | 1          |    |  |
|   | κόμβ    | δος πέρατος k : | 21  |        |             | 0.0000  | 1.0000  | 0        | 0       |    |           | 250000.00  | 0 | -250000.00 | 0 |              | 0.00      | 0.00       | 0.00      | 0.00       | 1  |  |
| _ | sinð    | 1.0000          |     |        |             | -1.0000 | 0.0000  | 0        | 0       |    |           | 0          | 0 | 0          | 0 |              | 0.00      | 250000.00  | 0.00      | -250000.00 | 11 |  |
|   | cost    | 0.0000          |     |        | [ ^(47) ] = | 0       | 0       | 0.0000   | 1.0000  | [K | K(47)]=   | -250000.00 | 0 | 250000.00  | 0 | [ Kb(47) ] = | 0.00      | 0.00       | 0.00      | 0.00       |    |  |
| _ | μήκος Ι | 3 20            | FA  | 800000 |             | 0       | 0       | -1 0000  | 0,0000  |    |           | 0          | 0 | 0          | 0 |              | 0,00      | -250000.00 | 0.00      | 250000.00  | 21 |  |
| _ |         | -,              | 2.1 |        |             | 5       | ,       | 2,2000   | 2,2000  |    |           | 2          |   | ,          |   |              | 0,00      | 222230,00  | 0,00      | 222220,00  |    |  |
|   |         |                 |     |        |             |         |         |          |         |    |           |            |   |            |   |              |           |            |           |            |    |  |
|   |         |                 |     |        |             |         |         |          |         |    |           |            |   |            |   |              |           |            |           |            |    |  |

<u>Εικόνα 13<sup>η</sup></u>

|          |        | Βαθμός<br>Ελευθερίας | Βαθμός<br>Ελευθερίας | Στήλη<br>K-bar (i) |
|----------|--------|----------------------|----------------------|--------------------|----------------------|----------------------|--------------------|----------------------|----------------------|--------------------|----------------------|----------------------|--------------------|
|          |        | (γραμμή)             | (στήλη)              | 1                  | (γραμμή)             | (στήλη)              | 2                  | (γραμμή)             | (στήλη)              | 3                  | (γραμμή)             | (στήλη)              | 4                  |
| Μέλος    | κόμβοι |                      |                      |                    |                      |                      |                    |                      |                      |                    |                      |                      |                    |
|          | 1      | 1                    | 1                    | 200000,00          | 1                    | 2                    | 0,00               | 1                    | 3                    | -200000,00         | 1                    | 4                    | 0,00               |
| 1        | 1      | 2                    | 1                    | 0,00               | 2                    | 2                    | 0,00               | 2                    | 3                    | 0,00               | 2                    | 4                    | 0,00               |
| 1        | 2      | 3                    | 1                    | -200000,00         | 3                    | 2                    | 0,00               | 3                    | 3                    | 200000,00          | 3                    | 4                    | 0,00               |
|          | 2      | 4                    | 1                    | 0,00               | 4                    | 2                    | 0,00               | 4                    | 3                    | 0,00               | 4                    | 4                    | 0,00               |
|          |        |                      |                      |                    |                      |                      |                    |                      |                      |                    |                      |                      |                    |
| Μελος    | κομβοι |                      | -                    |                    |                      |                      |                    | -                    | -                    |                    |                      | -                    |                    |
|          | 2      | 3                    | 3                    | 200000,00          | 3                    | 4                    | 0,00               | 3                    | 5                    | -200000,00         | 3                    | 6                    | 0,00               |
| 2        |        | 4                    | 3                    | 0,00               | 4                    | 4                    | 0,00               | 4                    | 5                    | 0,00               | 4                    | 6                    | 0,00               |
|          | 3      | 5                    | 3                    | -200000,00         | 5                    | 4                    | 0,00               | 5                    | 5                    | 200000,00          | 5                    | 6                    | 0,00               |
|          |        | 0                    | 3                    | 0,00               | 0                    | 4                    | 0,00               | 6                    | 5                    | 0,00               | 6                    | 0                    | 0,00               |
|          |        |                      |                      |                    |                      |                      |                    |                      |                      |                    |                      |                      |                    |
| Μέλος    | κόμβοι |                      |                      |                    |                      |                      |                    |                      |                      |                    |                      |                      |                    |
|          | 3      | 5                    | 5                    | 200000,00          | 5                    | 6                    | 0,00               | 5                    | 7                    | -200000,00         | 5                    | 8                    | 0,00               |
| 3        |        | 6                    | 5                    | 0,00               | 6                    | 6                    | 0,00               | 6                    | 7                    | 0,00               | 6                    | 8                    | 0,00               |
|          | 4      | 7                    | 5                    | -200000,00         | 7                    | 6                    | 0,00               | 7                    | 7                    | 200000,00          | 7                    | 8                    | 0,00               |
|          |        | 8                    | 5                    | 0,00               | 8                    | 6                    | 0,00               | 8                    | 7                    | 0,00               | 8                    | 8                    | 0,00               |
|          |        |                      |                      |                    |                      |                      |                    |                      |                      |                    |                      |                      |                    |
| Μέλος    | κόμβοι |                      |                      |                    |                      |                      |                    |                      |                      |                    |                      |                      |                    |
|          |        | 7                    | 7                    | 200000,00          | 7                    | 8                    | 0,00               | 7                    | 9                    | -200000,00         | 7                    | 10                   | 0,00               |
|          | 4      | 8                    | 7                    | 0,00               | 8                    | 8                    | 0,00               | 8                    | 9                    | 0,00               | 8                    | 10                   | 0,00               |
| 4        | -      | 9                    | 7                    | -200000,00         | 9                    | 8                    | 0,00               | 9                    | 9                    | 200000,00          | 9                    | 10                   | 0,00               |
|          | 5      | 10                   | 7                    | 0,00               | 10                   | 8                    | 0,00               | 10                   | 9                    | 0,00               | 10                   | 10                   | 0,00               |
|          |        |                      |                      |                    |                      |                      |                    |                      |                      |                    |                      |                      |                    |
| Μέλος    | κόμβοι |                      |                      |                    |                      |                      |                    |                      |                      |                    |                      |                      |                    |
|          | 5      | 9                    | 9                    | 200000,00          | 9                    | 10                   | 0,00               | 9                    | 11                   | -200000,00         | 9                    | 12                   | 0,00               |
| 5        |        | 10                   | 9                    | 0,00               | 10                   | 10                   | 0,00               | 10                   | 11                   | 0,00               | 10                   | 12                   | 0,00               |
| <u> </u> | 6      | 11                   | 9                    | -200000,00         | 11                   | 10                   | 0,00               | 11                   | 11                   | 200000,00          | 11                   | 12                   | 0,00               |
|          | Ŭ      | 12                   | 9                    | 0,00               | 12                   | 10                   | 0,00               | 12                   | 11                   | 0,00               | 12                   | 12                   | 0,00               |

<u>Εικόνα 14<sup>η</sup></u>

| Μέλος | κόμβοι |    |    |            |    |    |      |    |    |            |    |    |      |
|-------|--------|----|----|------------|----|----|------|----|----|------------|----|----|------|
|       | 6      | 11 | 11 | 200000,00  | 11 | 12 | 0,00 | 11 | 13 | -200000,00 | 11 | 14 | 0,00 |
| 6     | _      | 12 | 11 | 0,00       | 12 | 12 | 0,00 | 12 | 13 | 0,00       | 12 | 14 | 0,00 |
| Ŭ     | 7      | 13 | 11 | -200000,00 | 13 | 12 | 0,00 | 13 | 13 | 200000,00  | 13 | 14 | 0,00 |
|       |        | 14 | 11 | 0,00       | 14 | 12 | 0,00 | 14 | 13 | 0,00       | 14 | 14 | 0,00 |
|       |        |    |    |            |    |    |      |    |    |            |    |    |      |
|       |        |    |    |            |    |    |      |    |    |            |    |    |      |
|       |        |    |    |            |    |    |      |    |    |            |    |    |      |
| Μέλος | κόμβοι |    |    |            |    |    |      |    |    |            |    |    |      |
|       | 7      | 13 | 13 | 200000,00  | 13 | 14 | 0,00 | 13 | 15 | -200000,00 | 13 | 16 | 0,00 |
| 7     | ,      | 14 | 13 | 0,00       | 14 | 14 | 0,00 | 14 | 15 | 0,00       | 14 | 16 | 0,00 |
|       | •      | 15 | 13 | -200000,00 | 15 | 14 | 0,00 | 15 | 15 | 200000,00  | 15 | 16 | 0,00 |
|       | °      | 16 | 13 | 0,00       | 16 | 14 | 0,00 | 16 | 15 | 0,00       | 16 | 16 | 0,00 |
|       |        |    |    |            |    |    |      |    |    |            |    |    |      |
|       |        |    |    |            |    |    |      |    |    |            |    |    |      |
|       |        |    |    |            |    |    |      |    |    |            |    |    |      |
| Μέλος | κόμβοι |    |    |            |    |    |      |    |    |            |    |    |      |
|       |        | 15 | 15 | 200000,00  | 15 | 16 | 0,00 | 15 | 17 | -200000,00 | 15 | 18 | 0,00 |
| 0     | °      | 16 | 15 | 0,00       | 16 | 16 | 0,00 | 16 | 17 | 0,00       | 16 | 18 | 0,00 |
| 0     | 0      | 17 | 15 | -200000,00 | 17 | 16 | 0,00 | 17 | 17 | 200000,00  | 17 | 18 | 0,00 |
|       | 9      | 18 | 15 | 0,00       | 18 | 16 | 0,00 | 18 | 17 | 0,00       | 18 | 18 | 0,00 |
|       |        |    |    |            |    |    |      |    |    |            |    |    |      |
|       |        |    |    |            |    |    |      |    |    |            |    |    |      |
|       |        |    |    |            |    |    |      |    |    |            |    |    |      |
| Μέλος | κόμβοι |    |    |            |    |    |      |    |    |            |    |    |      |
|       |        | 17 | 17 | 200000,00  | 17 | 18 | 0,00 | 17 | 19 | -200000,00 | 17 | 20 | 0,00 |
| 0     | 9      | 18 | 17 | 0,00       | 18 | 18 | 0,00 | 18 | 19 | 0,00       | 18 | 20 | 0,00 |
| 9     | 10     | 19 | 17 | -200000,00 | 19 | 18 | 0,00 | 19 | 19 | 200000,00  | 19 | 20 | 0,00 |
|       | 10     | 20 | 17 | 0,00       | 20 | 18 | 0,00 | 20 | 19 | 0,00       | 20 | 20 | 0,00 |
|       |        |    |    |            |    |    |      |    |    |            |    |    |      |
|       |        |    |    |            |    |    |      |    |    |            |    |    |      |
|       |        |    |    |            |    |    |      |    |    |            |    |    |      |
| Μέλος | κόμβοι |    |    |            |    |    |      |    |    |            |    |    |      |
|       | 10     | 19 | 19 | 200000,00  | 19 | 20 | 0,00 | 19 | 21 | -200000,00 | 19 | 22 | 0,00 |
| 10    | 10     | 20 | 19 | 0,00       | 20 | 20 | 0,00 | 20 | 21 | 0,00       | 20 | 22 | 0,00 |
| 10    |        | 21 | 19 | -200000,00 | 21 | 20 | 0,00 | 21 | 21 | 200000,00  | 21 | 22 | 0.00 |
|       | 11     | 22 | 19 | 0.00       | 22 | 20 | 0.00 | 22 | 21 | 0.00       | 22 | 22 | 0.00 |
|       |        |    |    | 2,20       |    |    | 2,50 |    |    | 2,50       |    |    | 2,00 |
|       |        |    |    |            |    |    |      |    |    |            |    |    |      |

<u>Εικόνα 15<sup>η</sup></u>

| Μέλος | κόμβοι |    |    |            |    |    |           |    |    |            |    |    |           |
|-------|--------|----|----|------------|----|----|-----------|----|----|------------|----|----|-----------|
|       | 11     | 21 | 21 | 200000,00  | 21 | 22 | 0,00      | 21 | 23 | -200000,00 | 21 | 24 | 0,00      |
| 11    |        | 22 | 21 | 0,00       | 22 | 22 | 0,00      | 22 | 23 | 0,00       | 22 | 24 | 0,00      |
| 11    | 10     | 23 | 21 | -200000,00 | 23 | 22 | 0,00      | 23 | 23 | 200000,00  | 23 | 24 | 0,00      |
|       | 12     | 24 | 21 | 0,00       | 24 | 22 | 0,00      | 24 | 23 | 0,00       | 24 | 24 | 0,00      |
|       |        |    |    |            |    |    |           |    |    |            |    |    |           |
|       |        |    |    |            |    |    |           |    |    |            |    |    |           |
|       |        |    |    |            |    |    |           |    |    |            |    |    |           |
| Μέλος | κόμβοι |    |    |            |    |    |           |    |    |            |    |    |           |
|       | 1      | 1  | 1  | 95227,90   | 1  | 2  | 76182,32  | 1  | 25 | -95227,90  | 1  | 26 | -76182,32 |
| 10    | 1      | 2  | 1  | 76182,32   | 2  | 2  | 60945,86  | 2  | 25 | -76182,32  | 2  | 26 | -60945,86 |
| 12    | 12     | 25 | 1  | -95227,90  | 25 | 2  | -76182,32 | 25 | 25 | 95227,90   | 25 | 26 | 76182,32  |
|       | 15     | 26 | 1  | -76182,32  | 26 | 2  | -60945,86 | 26 | 25 | 76182,32   | 26 | 26 | 60945,86  |
|       |        |    |    |            |    |    |           |    |    |            |    |    |           |
|       |        |    |    |            |    |    |           |    |    |            |    |    |           |
|       |        |    |    |            |    |    |           |    |    |            |    |    |           |
| Μέλος | κόμβοι |    |    |            |    |    |           |    |    |            |    |    |           |
|       | 12     | 25 | 25 | 138817,90  | 25 | 26 | 72879,40  | 25 | 27 | -138817,90 | 25 | 28 | -72879,40 |
| 10    | 15     | 26 | 25 | 72879,40   | 26 | 26 | 38261,68  | 26 | 27 | -72879,40  | 26 | 28 | -38261,68 |
| 15    | 14     | 27 | 25 | -138817,90 | 27 | 26 | -72879,40 | 27 | 27 | 138817,90  | 27 | 28 | 72879,40  |
|       | 14     | 28 | 25 | -72879,40  | 28 | 26 | -38261,68 | 28 | 27 | 72879,40   | 28 | 28 | 38261,68  |
|       |        |    |    |            |    |    |           |    |    |            |    |    |           |
|       |        |    |    |            |    |    |           |    |    |            |    |    |           |
|       |        |    |    |            |    |    |           |    |    |            |    |    |           |
| Μέλος | κόμβοι |    |    |            |    |    |           |    |    |            |    |    |           |
|       | 14     | 27 | 27 | 168170,75  | 27 | 28 | 58859,76  | 27 | 29 | -168170,75 | 27 | 30 | -58859,76 |
| 14    | 14     | 28 | 27 | 58859,76   | 28 | 28 | 20600,92  | 28 | 29 | -58859,76  | 28 | 30 | -20600,92 |
| 14    | 15     | 29 | 27 | -168170,75 | 29 | 28 | -58859,76 | 29 | 29 | 168170,75  | 29 | 30 | 58859,76  |
|       | 15     | 30 | 27 | -58859,76  | 30 | 28 | -20600,92 | 30 | 29 | 58859,76   | 30 | 30 | 20600,92  |
|       |        |    |    |            |    |    |           |    |    |            |    |    |           |
|       |        |    |    |            |    |    |           |    |    |            |    |    |           |
|       |        |    |    |            |    |    |           |    |    |            |    |    |           |
| Μέλος | κόμβοι |    |    |            |    |    |           |    |    |            |    |    |           |
|       | 15     | 29 | 29 | 185719,88  | 29 | 30 | 41786,97  | 29 | 31 | -185719,88 | 29 | 32 | -41786,97 |
| 15    | 15     | 30 | 29 | 41786,97   | 30 | 30 | 9402,07   | 30 | 31 | -41786,97  | 30 | 32 | -9402,07  |
| 12    | 16     | 31 | 29 | -185719,88 | 31 | 30 | -41786,97 | 31 | 31 | 185719,88  | 31 | 32 | 41786,97  |
|       | 10     | 32 | 29 | -41786,97  | 32 | 30 | -9402,07  | 32 | 31 | 41786,97   | 32 | 32 | 9402,07   |
|       |        |    |    |            |    |    |           |    |    |            |    |    |           |

<u>Εικόνα 16<sup>η</sup></u>

| Μέλος   | κόμβοι |    |    |            |    |    |           |    |    |            |    |    |           |
|---------|--------|----|----|------------|----|----|-----------|----|----|------------|----|----|-----------|
|         | 16     | 31 | 31 | 132449,36  | 31 | 32 | 8829,96   | 31 | 33 | -132449,36 | 31 | 34 | -8829,96  |
| 16      | 10     | 32 | 31 | 8829,96    | 32 | 32 | 588,66    | 32 | 33 | -8829,96   | 32 | 34 | -588,66   |
| 10      | 17     | 33 | 31 | -132449,36 | 33 | 32 | -8829,96  | 33 | 33 | 132449,36  | 33 | 34 | 8829,96   |
|         | 1/     | 34 | 31 | -8829,96   | 34 | 32 | -588,66   | 34 | 33 | 8829,96    | 34 | 34 | 588,66    |
|         |        |    |    |            |    |    |           |    |    |            |    |    |           |
| Μέλος   | κόμβοι |    |    |            |    |    |           |    |    |            |    |    |           |
| · · · · |        | 33 | 33 | 132449,36  | 33 | 34 | -8829,96  | 33 | 35 | -132449,36 | 33 | 36 | 8829,96   |
| 47      | 17     | 34 | 33 | -8829.96   | 34 | 34 | 588.66    | 34 | 35 | 8829,96    | 34 | 36 | -588.66   |
| 1/      | 10     | 35 | 33 | -132449,36 | 35 | 34 | 8829,96   | 35 | 35 | 132449,36  | 35 | 36 | -8829,96  |
|         | 18     | 36 | 33 | 8829,96    | 36 | 34 | -588,66   | 36 | 35 | -8829,96   | 36 | 36 | 588,66    |
|         |        |    |    |            |    |    |           |    |    |            |    |    |           |
| Μέλος   | κόμβοι |    |    |            |    |    |           |    |    |            |    |    |           |
|         | 10     | 35 | 35 | 185719,88  | 35 | 36 | -41786,97 | 35 | 37 | -185719,88 | 35 | 38 | 41786,97  |
| 10      | 10     | 36 | 35 | -41786,97  | 36 | 36 | 9402,07   | 36 | 37 | 41786,97   | 36 | 38 | -9402,07  |
| 10      | 10     | 37 | 35 | -185719,88 | 37 | 36 | 41786,97  | 37 | 37 | 185719,88  | 37 | 38 | -41786,97 |
|         | 15     | 38 | 35 | 41786,97   | 38 | 36 | -9402,07  | 38 | 37 | -41786,97  | 38 | 38 | 9402,07   |
|         |        |    |    |            |    |    |           |    |    |            |    |    |           |
| Μέλος   | κόμβοι |    |    |            |    |    |           |    |    |            |    |    |           |
|         | 10     | 37 | 37 | 168170,75  | 37 | 38 | -58859,76 | 37 | 39 | -168170,75 | 37 | 40 | 58859,76  |
| 10      | 19     | 38 | 37 | -58859,76  | 38 | 38 | 20600,92  | 38 | 39 | 58859,76   | 38 | 40 | -20600,92 |
| 19      | 20     | 39 | 37 | -168170,75 | 39 | 38 | 58859,76  | 39 | 39 | 168170,75  | 39 | 40 | -58859,76 |
|         | 20     | 40 | 37 | 58859,76   | 40 | 38 | -20600,92 | 40 | 39 | -58859,76  | 40 | 40 | 20600,92  |
|         |        |    |    |            |    |    |           |    |    |            |    |    |           |
| Μέλος   | κόμβοι |    |    |            |    |    |           |    |    |            |    |    |           |
|         | 20     | 39 | 39 | 138817,90  | 39 | 40 | -72879,40 | 39 | 41 | -138817,90 | 39 | 42 | 72879,40  |
|         |        |    | 20 | 72070.40   | 40 | 40 | 38261.68  | 40 | 41 | 72879 40   | 40 | 42 | 20261 60  |
| 20      | 20     | 40 | 39 | -72879,40  | 40 | 10 | 56201,00  | 4  | 14 | 12010,10   | 10 | 76 | -38201,08 |
| 20      | 20     | 40 | 39 | -138817,90 | 40 | 40 | 72879,40  | 40 | 41 | 138817,90  | 40 | 42 | -72879,40 |

<u>Εικόνα 17<sup>η</sup></u>

| Μέλος | κόμβοι |    |    |           |    |    |            |    |    |           |    |    |            |
|-------|--------|----|----|-----------|----|----|------------|----|----|-----------|----|----|------------|
|       | 21     | 41 | 41 | 95227,90  | 41 | 42 | -76182,32  | 41 | 23 | -95227,90 | 41 | 24 | 76182,32   |
| 24    | 21     | 42 | 41 | -76182,32 | 42 | 42 | 60945,86   | 42 | 23 | 76182,32  | 42 | 24 | -60945,86  |
| 21    | 10     | 23 | 41 | -95227,90 | 23 | 42 | 76182,32   | 23 | 23 | 95227,90  | 23 | 24 | -76182,32  |
|       | 12     | 24 | 41 | 76182,32  | 24 | 42 | -60945,86  | 24 | 23 | -76182,32 | 24 | 24 | 60945,86   |
|       |        |    |    |           |    |    |            |    |    |           |    |    |            |
|       |        |    |    |           |    |    |            |    |    |           |    |    |            |
|       |        |    |    |           |    |    |            |    |    |           |    |    |            |
| Μέλος | κόμβοι |    |    |           |    |    |            |    |    |           |    |    |            |
|       | 2      | 3  | 3  | 0,00      | 3  | 4  | 0,00       | 3  | 25 | 0,00      | 3  | 26 | 0,00       |
| 22    | 2      | 4  | 3  | 0,00      | 4  | 4  | 250000,00  | 4  | 25 | 0,00      | 4  | 26 | -250000,00 |
| 22    | 10     | 25 | 3  | 0,00      | 25 | 4  | 0,00       | 25 | 25 | 0,00      | 25 | 26 | 0,00       |
|       | 13     | 26 | 3  | 0,00      | 26 | 4  | -250000,00 | 26 | 25 | 0,00      | 26 | 26 | 250000,00  |
|       |        |    |    |           |    |    |            |    |    |           |    |    |            |
|       |        |    |    |           |    |    |            |    |    |           |    |    |            |
|       |        |    |    |           |    |    |            |    |    |           |    |    |            |
| Μέλος | κόμβοι |    |    |           |    |    |            |    |    |           |    |    |            |
|       | 2      | 5  | 5  | 59517,44  | 5  | 6  | -47613,95  | 5  | 25 | -59517,44 | 5  | 26 | 47613,95   |
| 22    | 5      | 6  | 5  | -47613,95 | 6  | 6  | 38091,16   | 6  | 25 | 47613,95  | 6  | 26 | -38091,16  |
| 25    | 12     | 25 | 5  | -59517,44 | 25 | 6  | 47613,95   | 25 | 25 | 59517,44  | 25 | 26 | -47613,95  |
|       | 15     | 26 | 5  | 47613,95  | 26 | 6  | -38091,16  | 26 | 25 | -47613,95 | 26 | 26 | 38091,16   |
|       |        |    |    |           |    |    |            |    |    |           |    |    |            |
|       |        |    |    |           |    |    |            |    |    |           |    |    |            |
|       |        |    |    |           |    |    |            |    |    |           |    |    |            |
| Μέλος | κόμβοι |    |    |           |    |    |            |    |    |           |    |    |            |
|       | 2      | З  | 3  | 27326,24  | 3  | 4  | 36207,26   | 3  | 27 | -27326,24 | 3  | 28 | -36207,26  |
| 24    | 2      | 4  | 3  | 36207,26  | 4  | 4  | 47974,63   | 4  | 27 | -36207,26 | 4  | 28 | -47974,63  |
| 24    | 14     | 27 | 3  | -27326,24 | 27 | 4  | -36207,26  | 27 | 27 | 27326,24  | 27 | 28 | 36207,26   |
|       | 14     | 28 | 3  | -36207,26 | 28 | 4  | -47974,63  | 28 | 27 | 36207,26  | 28 | 28 | 47974,63   |
|       |        |    |    |           |    |    |            |    |    |           |    |    |            |
|       |        |    |    |           |    |    |            |    |    |           |    |    |            |
|       |        |    |    |           |    |    |            |    |    |           |    |    |            |
| Μέλος | κόμβοι |    |    |           |    |    |            |    |    |           |    |    |            |
|       | 3      | 5  | 5  | 0,00      | 5  | 6  | 0,00       | 5  | 27 | 0,00      | 5  | 28 | 0,00       |
| 25    | -      | 6  | 5  | 0,00      | 6  | 6  | 150943,40  | 6  | 27 | 0,00      | 6  | 28 | -150943,40 |
| 20    | 14     | 27 | 5  | 0,00      | 27 | 6  | 0,00       | 27 | 27 | 0,00      | 27 | 28 | 0,00       |
|       |        | 28 | 5  | 0,00      | 28 | 6  | -150943,40 | 28 | 27 | 0,00      | 28 | 28 | 150943,40  |

<u>Εικόνα 18<sup>η</sup></u>

| Μέλος  | κόμβοι |        |   |           |    |        |            |     |    |           |        |    |            |
|--------|--------|--------|---|-----------|----|--------|------------|-----|----|-----------|--------|----|------------|
|        | 4      | 7      | 7 | 27326,24  | 7  | 8      | -36207,26  | 7   | 27 | -27326,24 | 7      | 28 | 36207,26   |
| 26     | 7      | 8      | 7 | -36207,26 | 8  | 8      | 47974,63   | 8   | 27 | 36207,26  | 8      | 28 | -47974,63  |
| 20     | 14     | 27     | 7 | -27326,24 | 27 | 8      | 36207,26   | 27  | 27 | 27326,24  | 27     | 28 | -36207,26  |
|        | 14     | 28     | 7 | 36207,26  | 28 | 8      | -47974,63  | 28  | 27 | -36207,26 | 28     | 28 | 47974,63   |
|        |        |        |   |           |    |        |            |     |    |           |        |    |            |
|        |        |        |   |           |    |        |            |     |    |           |        |    |            |
| Μέλος  | κόμβοι |        |   |           |    |        |            |     |    |           |        |    |            |
|        |        | 5      | 5 | 16837,24  | 5  | 6      | 28202,39   | 5   | 29 | -16837,24 | 5      | 30 | -28202,39  |
| 27     | 3      | 6      | 5 | 28202,39  | 6  | 6      | 47238,99   | 6   | 29 | -28202,39 | 6      | 30 | -47238,99  |
| 27     |        | 29     | 5 | -16837,24 | 29 | 6      | -28202,39  | 29  | 29 | 16837,24  | 29     | 30 | 28202,39   |
|        | 15     | 30     | 5 | -28202,39 | 30 | 6      | -47238,99  | 30  | 29 | 28202,39  | 30     | 30 | 47238,99   |
|        |        |        |   |           |    |        |            |     |    |           |        |    |            |
|        |        |        |   |           |    |        |            |     |    |           |        |    |            |
| Μέλος  | κόμβοι |        |   |           |    |        |            |     |    |           |        |    |            |
| MOTOG  | κομροι | 7      | 7 | 0.00      | 7  | 8      | 0.00       | 7   | 29 | 0.00      | 7      | 30 | 0.00       |
|        | 4      | 8      | 7 | 0,00      | 8  | 8      | 119402.99  | 8   | 29 | 0,00      | ,<br>8 | 30 | -119402.99 |
| 28     |        | 29     | 7 | 0,00      | 29 | 8      | 0.00       | 29  | 29 | 0,00      | 29     | 30 | -115402,55 |
|        | 15     | 30     | 7 | 0,00      | 30 | 8      | -119402.99 | 30  | 29 | 0,00      | 30     | 30 | 119402.99  |
|        |        | 50     | , | 0,00      | 50 | 0      | -115402,55 | 50  | 25 | 0,00      | 50     | 50 | 115402,55  |
|        |        |        |   |           |    |        |            |     |    |           |        |    |            |
| 1452   |        |        |   |           |    |        |            |     |    |           |        |    |            |
| ΝΙέλος | κομροι |        | _ |           |    |        |            |     |    |           |        |    |            |
|        | 5      | 9      | 9 | 16837,24  | 9  | 10     | -28202,39  | 9   | 29 | -16837,24 | 9      | 30 | 28202,39   |
| 29     |        | 10     | 9 | -28202,39 | 10 | 10     | 47238,99   | 10  | 29 | 28202,39  | 10     | 30 | -47238,99  |
|        | 15     | 29     | 9 | -16837,24 | 29 | 10     | 28202,39   | 29  | 29 | 16837,24  | 29     | 30 | -28202,39  |
|        |        | 30     | 9 | 28202,39  | 30 | 10     | -47238,99  | 30  | 29 | -28202,39 | 30     | 30 | 47238,95   |
|        |        |        |   |           |    |        |            |     |    |           |        |    |            |
| Μέλος  | κόμβοι |        |   |           |    |        |            |     |    |           |        |    |            |
| νιέλος | κομροι | 7      | 7 | 12629 70  | 7  | 0      | 22994 52   | 7   | 21 | 12529 70  | 7      | 22 | 22004 52   |
|        | 4      | /<br>0 | 7 | 12628,70  | ,  | 0<br>0 | 25554,53   | · / | 21 | -12628,70 | /      | 32 | -25554,55  |
| 30     |        |        | 7 | 23994,53  |    | ð      | 45589,60   | 5   | 31 | -23994,53 | 8      | 32 | -45589,60  |
|        | 16     | 31     | 7 | -12628,70 | 31 | ð      | -23994,53  | 51  | 31 | 12628,70  | 31     | 32 | 23994,53   |
|        |        | 32     | 1 | -23994,53 | 32 | 8      | -45589,60  | 32  | 31 | 23994,53  | 32     | 32 | 45589,60   |

ΚΕΦΑΛΑΙΟ 5°

<u>Εικόνα 19η</u>

| Μέλος | κόμβοι |    |    |           |    |    |            |    |    |           |    |    |            |
|-------|--------|----|----|-----------|----|----|------------|----|----|-----------|----|----|------------|
|       | =      | 9  | 9  | 0,00      | 9  | 10 | 0,00       | 9  | 31 | 0,00      | 9  | 32 | 0,00       |
| 21    | 5      | 10 | 9  | 0,00      | 10 | 10 | 105263,16  | 10 | 31 | 0,00      | 10 | 32 | -105263,16 |
| 51    | 16     | 31 | 9  | 0,00      | 31 | 10 | 0,00       | 31 | 31 | 0,00      | 31 | 32 | 0,00       |
|       | 10     | 32 | 9  | 0,00      | 32 | 10 | -105263,16 | 32 | 31 | 0,00      | 32 | 32 | 105263,16  |
|       |        |    |    |           |    |    |            |    |    |           |    |    |            |
|       |        |    |    |           |    |    |            |    |    |           |    |    |            |
|       |        |    |    |           |    |    |            |    |    |           |    |    |            |
| Μέλος | κόμβοι |    |    |           |    |    |            |    |    |           |    |    |            |
|       | 6      | 11 | 11 | 12628,70  | 11 | 12 | -23994,53  | 11 | 31 | -12628,70 | 11 | 32 | 23994,53   |
| 22    | 0      | 12 | 11 | -23994,53 | 12 | 12 | 45589,60   | 12 | 31 | 23994,53  | 12 | 32 | -45589,60  |
| 52    | 16     | 31 | 11 | -12628,70 | 31 | 12 | 23994,53   | 31 | 31 | 12628,70  | 31 | 32 | -23994,53  |
|       | 10     | 32 | 11 | 23994,53  | 32 | 12 | -45589,60  | 32 | 31 | -23994,53 | 32 | 32 | 45589,60   |
|       |        |    |    |           |    |    |            |    |    |           |    |    |            |
|       |        |    |    |           |    |    |            |    |    |           |    |    |            |
|       |        |    |    |           |    |    |            |    |    |           |    |    |            |
| Μέλος | κόμβοι |    |    |           |    |    |            |    |    |           |    |    |            |
|       | 5      | 9  | 9  | 18000,00  | 9  | 10 | 24000,00   | 9  | 33 | -18000,00 | 9  | 34 | -24000,00  |
| 33    |        | 10 | 9  | 24000,00  | 10 | 10 | 32000,00   | 10 | 33 | -24000,00 | 10 | 34 | -32000,00  |
| 35    | 17     | 33 | 9  | -18000,00 | 33 | 10 | -24000,00  | 33 | 33 | 18000,00  | 33 | 34 | 24000,00   |
|       | 1/     | 34 | 9  | -24000,00 | 34 | 10 | -32000,00  | 34 | 33 | 24000,00  | 34 | 34 | 32000,00   |
|       |        |    |    |           |    |    |            |    |    |           |    |    |            |
|       |        |    |    |           |    |    |            |    |    |           |    |    |            |
|       |        |    |    |           |    |    |            |    |    |           |    |    |            |
| Μέλος | κόμβοι |    |    |           |    |    |            |    |    |           |    |    |            |
|       | 6      | 11 | 11 | 5706,72   | 11 | 12 | 22826,88   | 11 | 33 | -5706,72  | 11 | 34 | -22826,88  |
| 34    | Ŭ      | 12 | 11 | 22826,88  | 12 | 12 | 91307,53   | 12 | 33 | -22826,88 | 12 | 34 | -91307,53  |
| 51    | 17     | 33 | 11 | -5706,72  | 33 | 12 | -22826,88  | 33 | 33 | 5706,72   | 33 | 34 | 22826,88   |
|       |        | 34 | 11 | -22826,88 | 34 | 12 | -91307,53  | 34 | 33 | 22826,88  | 34 | 34 | 91307,53   |
|       |        |    |    |           |    |    |            |    |    |           |    |    |            |
|       |        |    |    |           |    |    |            |    |    |           |    |    |            |
|       |        |    |    |           |    |    |            |    |    |           |    |    |            |
| Μέλος | κόμβοι |    |    |           |    |    |            |    |    |           |    |    |            |
|       | 7      | 13 | 13 | 5706,72   | 13 | 14 | -22826,88  | 13 | 33 | -5706,72  | 13 | 34 | 22826,88   |
| 35    | -      | 14 | 13 | -22826,88 | 14 | 14 | 91307,53   | 14 | 33 | 22826,88  | 14 | 34 | -91307,53  |
|       | 17     | 33 | 13 | -5706,72  | 33 | 14 | 22826,88   | 33 | 33 | 5706,72   | 33 | 34 | -22826,88  |
|       |        | 34 | 13 | 22826,88  | 34 | 14 | -91307,53  | 34 | 33 | -22826,88 | 34 | 34 | 91307,53   |
|       |        |    |    |           |    |    |            |    |    |           |    |    |            |

ΚΕΦΑΛΑΙΟ 5°

<u>Εικόνα 20<sup>η</sup></u>

| Μέλος | κόμβοι |    |    |           |    |    |            |    |    |                                     |    |    |            |
|-------|--------|----|----|-----------|----|----|------------|----|----|-------------------------------------|----|----|------------|
|       | 8      | 15 | 15 | 18000,00  | 15 | 16 | -24000,00  | 15 | 33 | -18000,00                           | 15 | 34 | 24000,00   |
| 36    | Ŭ      | 16 | 15 | -24000,00 | 16 | 16 | 32000,00   | 16 | 33 | 24000,00                            | 16 | 34 | -32000,00  |
| 30    | 17     | 33 | 15 | -18000,00 | 33 | 16 | 24000,00   | 33 | 33 | 18000,00                            | 33 | 34 | -24000,00  |
|       | 1/     | 34 | 15 | 24000,00  | 34 | 16 | -32000,00  | 34 | 33 | -24000,00                           | 34 | 34 | 32000,00   |
|       |        |    |    |           |    |    |            |    |    |                                     |    |    |            |
|       |        |    |    |           |    |    |            |    |    |                                     |    |    |            |
|       |        |    |    |           |    |    |            |    |    |                                     |    |    |            |
| Μέλος | κόμβοι |    |    |           |    |    |            |    |    |                                     |    |    |            |
|       | 7      | 13 | 13 | 12628,70  | 13 | 14 | 23994,53   | 13 | 35 | -12628,70                           | 13 | 36 | -23994,53  |
| 27    |        | 14 | 13 | 23994,53  | 14 | 14 | 45589,60   | 14 | 35 | -23994,53                           | 14 | 36 | -45589,60  |
| 57    | 10     | 35 | 13 | -12628,70 | 35 | 14 | -23994,53  | 35 | 35 | 12628,70                            | 35 | 36 | 23994,53   |
|       | 10     | 36 | 13 | -23994,53 | 36 | 14 | -45589,60  | 36 | 35 | 23994,53                            | 36 | 36 | 45589,60   |
|       |        |    |    |           |    |    |            |    |    |                                     |    |    |            |
|       |        |    |    |           |    |    |            |    |    |                                     |    |    |            |
|       |        |    |    |           |    |    |            |    |    |                                     |    |    |            |
| Μέλος | κόμβοι |    |    |           |    |    |            |    |    |                                     |    |    |            |
|       |        | 15 | 15 | 0,00      | 15 | 16 | 0,00       | 15 | 35 | 0,00                                | 15 | 36 | 0,00       |
| 20    | •      | 16 | 15 | 0,00      | 16 | 16 | 105263,16  | 16 | 35 | 0,00                                | 16 | 36 | -105263,16 |
| 30    | 10     | 35 | 15 | 0,00      | 35 | 16 | 0,00       | 35 | 35 | 0,00                                | 35 | 36 | 0,00       |
|       | 18     | 36 | 15 | 0,00      | 36 | 16 | -105263,16 | 36 | 35 | 0,00                                | 36 | 36 | 105263,16  |
|       |        |    |    |           |    |    |            |    |    |                                     |    |    |            |
|       |        |    |    |           |    |    |            |    |    |                                     |    |    |            |
|       |        |    |    |           |    |    |            |    |    |                                     |    |    |            |
| Μέλος | κόμβοι |    |    |           |    |    |            |    |    |                                     |    |    |            |
|       |        | 17 | 17 | 12628,70  | 17 | 18 | -23994,53  | 17 | 35 | -12628,70                           | 17 | 36 | 23994,53   |
| 20    | 2      | 18 | 17 | -23994,53 | 18 | 18 | 45589,60   | 18 | 35 | 23994,53                            | 18 | 36 | -45589,60  |
| 39    | 10     | 35 | 17 | -12628,70 | 35 | 18 | 23994,53   | 35 | 35 | 12628,70                            | 35 | 36 | -23994,53  |
|       | 18     | 36 | 17 | 23994,53  | 36 | 18 | -45589,60  | 36 | 35 | -23994,53                           | 36 | 36 | 45589,60   |
|       |        |    |    |           |    |    |            |    |    |                                     |    |    |            |
|       |        |    |    |           |    |    |            |    |    |                                     |    |    |            |
|       |        |    |    |           |    |    |            |    |    |                                     |    |    |            |
| Μέλος | κόμβοι |    |    |           |    |    |            |    |    |                                     |    |    |            |
|       |        | 15 | 15 | 16837,24  | 15 | 16 | 28202,39   | 15 | 37 | -16837,24                           | 15 | 38 | -28202,39  |
| 40    | ð      | 16 | 15 | 28202,39  | 16 | 16 | 47238,99   | 16 | 37 | -28202,39                           | 16 | 38 | -47238,99  |
| 40    | 10     | 37 | 15 | -16837,24 | 37 | 16 | -28202,39  | 37 | 37 | 16837,24                            | 37 | 38 | 28202,39   |
|       | 19     | 38 | 15 | -28202,39 | 38 | 16 | -47238,99  | 38 | 37 | 28202,39                            | 38 | 38 | 47238,99   |
|       |        |    |    |           |    |    |            |    |    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |    |    |            |

<u>Εικόνα 21<sup>η</sup></u>

| Μέλος            | κόμβοι |    |    |           |    |    |            |    |    |           |    |    |            |
|------------------|--------|----|----|-----------|----|----|------------|----|----|-----------|----|----|------------|
|                  | 9      | 17 | 17 | 0,00      | 17 | 18 | 0,00       | 17 | 37 | 0,00      | 17 | 38 | 0,00       |
| 41               |        | 18 | 17 | 0,00      | 18 | 18 | 119402,99  | 18 | 37 | 0,00      | 18 | 38 | -119402,99 |
| 41               | 19     | 37 | 17 | 0,00      | 37 | 18 | 0,00       | 37 | 37 | 0,00      | 37 | 38 | 0,00       |
|                  | 15     | 38 | 17 | 0,00      | 38 | 18 | -119402,99 | 38 | 37 | 0,00      | 38 | 38 | 119402,99  |
|                  |        |    |    |           |    |    |            |    |    |           |    |    |            |
|                  |        |    |    |           |    |    |            |    |    |           |    |    |            |
|                  |        |    |    |           |    |    |            |    |    |           |    |    |            |
| Μέλος            | κόμβοι |    |    |           |    |    |            |    |    |           |    |    |            |
|                  | 10     | 19 | 19 | 16837,24  | 19 | 20 | -28202,39  | 19 | 37 | -16837,24 | 19 | 38 | 28202,39   |
| 40               | 10     | 20 | 19 | -28202,39 | 20 | 20 | 47238,99   | 20 | 37 | 28202,39  | 20 | 38 | -47238,99  |
| 4Z               | 10     | 37 | 19 | -16837,24 | 37 | 20 | 28202,39   | 37 | 37 | 16837,24  | 37 | 38 | -28202,39  |
|                  | 19     | 38 | 19 | 28202,39  | 38 | 20 | -47238,99  | 38 | 37 | -28202,39 | 38 | 38 | 47238,99   |
|                  |        |    |    |           |    |    |            |    |    |           |    |    |            |
|                  |        |    |    |           |    |    |            |    |    |           |    |    |            |
| Μέλος            | κόμβοι |    |    |           |    |    |            |    |    |           |    |    |            |
|                  |        | 17 | 17 | 27326,24  | 17 | 18 | 36207,26   | 17 | 39 | -27326,24 | 17 | 40 | -36207,26  |
| 40               | 9      | 18 | 17 | 36207,26  | 18 | 18 | 47974,63   | 18 | 39 | -36207,26 | 18 | 40 | -47974,63  |
| 43               | 20     | 39 | 17 | -27326,24 | 39 | 18 | -36207,26  | 39 | 39 | 27326,24  | 39 | 40 | 36207,26   |
|                  | 20     | 40 | 17 | -36207,26 | 40 | 18 | -47974,63  | 40 | 39 | 36207,26  | 40 | 40 | 47974,63   |
|                  |        |    |    |           |    |    |            |    |    |           |    |    |            |
|                  |        |    |    |           |    |    |            |    |    |           |    |    |            |
| Μέλος            | κόμβοι |    |    |           |    |    |            |    |    |           |    |    |            |
|                  |        | 19 | 19 | 0.00      | 19 | 20 | 0.00       | 19 | 39 | 0.00      | 19 | 40 | 0.00       |
|                  | 10     | 20 | 19 | 0.00      | 20 | 20 | 150943.40  | 20 | 39 | 0.00      | 20 | 40 | -150943.40 |
| 44               |        | 39 | 19 | 0.00      | 39 | 20 | 0.00       | 39 | 39 | 0.00      | 39 | 40 | 0.00       |
|                  | 20     | 40 | 19 | 0,00      | 40 | 20 | -150943,40 | 40 | 39 | 0,00      | 40 | 40 | 150943.40  |
|                  |        |    |    |           |    |    |            |    |    |           |    |    |            |
|                  |        |    |    |           |    |    |            |    |    |           |    |    |            |
| Μέλος            | κόμβοι |    |    |           |    |    |            |    |    |           |    |    |            |
|                  | 11     | 21 | 21 | 27326,24  | 21 | 22 | -36207,26  | 21 | 39 | -27326,24 | 21 | 40 | 36207,26   |
| 45               |        | 22 | 21 | -36207,26 | 22 | 22 | 47974,63   | 22 | 39 | 36207,26  | 22 | 40 | -47974,63  |
| - <del>1</del> 5 | 20     | 39 | 21 | -27326,24 | 39 | 22 | 36207,26   | 39 | 39 | 27326,24  | 39 | 40 | -36207,26  |
|                  | 20     | 40 | 21 | 36207,26  | 40 | 22 | -47974,63  | 40 | 39 | -36207,26 | 40 | 40 | 47974,63   |
|                  |        |    |    |           |    |    |            |    |    |           |    |    |            |
|                  |        |    |    |           |    |    |            |    |    |           |    |    |            |

ΚΕΦΑΛΑΙΟ 5°

<u>Εικόνα 22<sup>η</sup></u>

| Μέλος | κόμβοι |    |    |           |    |    |            |    |    |           |    |    |            |  |
|-------|--------|----|----|-----------|----|----|------------|----|----|-----------|----|----|------------|--|
|       | 10     | 19 | 19 | 59517,44  | 19 | 20 | 47613,95   | 19 | 41 | -59517,44 | 19 | 42 | -47613,95  |  |
| 46    | 10     | 20 | 19 | 47613,95  | 20 | 20 | 38091,16   | 20 | 41 | -47613,95 | 20 | 42 | -38091,16  |  |
| 40    | 21     | 41 | 19 | -59517,44 | 41 | 20 | -47613,95  | 41 | 41 | 59517,44  | 41 | 42 | 47613,95   |  |
|       | 21     | 42 | 19 | -47613,95 | 42 | 20 | -38091,16  | 42 | 41 | 47613,95  | 42 | 42 | 38091,16   |  |
|       |        |    |    |           |    |    |            |    |    |           |    |    |            |  |
|       |        |    |    |           |    |    |            |    |    |           |    |    |            |  |
|       |        |    |    |           |    |    |            |    |    |           |    |    |            |  |
| Μέλος | κόμβοι |    |    |           |    |    |            |    |    |           |    |    |            |  |
|       |        | 21 | 21 | 0,00      | 21 | 22 | 0,00       | 21 | 41 | 0,00      | 21 | 42 | 0,00       |  |
| 47    | 11     | 22 | 21 | 0,00      | 22 | 22 | 250000,00  | 22 | 41 | 0,00      | 22 | 42 | -250000,00 |  |
| 47    |        | 41 | 21 | 0,00      | 41 | 22 | 0,00       | 41 | 41 | 0,00      | 41 | 42 | 0,00       |  |
|       | 21     | 42 | 21 | 0,00      | 42 | 22 | -250000,00 | 42 | 41 | 0,00      | 42 | 42 | 250000,00  |  |
|       |        |    |    | ( )       |    |    | ( )        |    |    |           |    |    |            |  |
|       |        |    |    |           |    |    |            |    |    |           |    |    |            |  |
|       |        |    |    |           |    |    |            |    |    |           |    |    |            |  |

<u>Εικόνα 23<sup>η</sup></u>

|                        | Κόμβοι |             | 1          | 1         |            | 2          |            | 3          | 4          | 4          |            | 5          |            | 5         |            | 7         |            | 8          | 1          | 9          | 1          | 10         |
|------------------------|--------|-------------|------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|------------|-----------|------------|------------|------------|------------|------------|------------|
|                        |        | Βαθ. Ελευθ. | 1          | 2         | 3          | 4          | 5          | 6          | 7          | 8          | 9          | 10         | 11         | 12        | 13         | 14        | 15         | 16         | 17         | 18         | 19         | 20         |
|                        | 4      | 1           | 295227,90  | 76182,32  | -200000,00 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|                        | 1      | 2           | 76182,32   | 60945,86  | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|                        | _      | 3           | -200000.00 | 0.00      | 427326.24  | 36207.26   | -200000.00 | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00      | 0.00       | 0.00      | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       |
|                        | 2      | 4           | 0.00       | 0.00      | 36207.26   | 297974.63  | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00      | 0.00       | 0.00      | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       |
|                        |        | 5           | 0.00       | 0.00      | -200000.00 | 0.00       | 476354.68  | -19411 57  | -200000.00 | 0.00       | 0.00       | 0.00       | 0.00       | 0.00      | 0.00       | 0.00      | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       |
|                        | 3      | 6           | 0.00       | 0,00      | 0.00       | 0,00       | -19411 57  | 236273.55  | 0.00       | 0,00       | 0,00       | 0,00       | 0,00       | 0.00      | 0,00       | 0.00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|                        |        | 7           | 0.00       | 0.00      | 0.00       | 0.00       | -200000.00 | 0.00       | 439954.94  | -12212.74  | -200000.00 | 0.00       | 0.00       | 0.00      | 0.00       | 0.00      | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       |
|                        | 4      |             | 0,00       | 0,00      | 0,00       | 0.00       | 0.00       | 0.00       | -12212.74  | 212067.22  | 0.00       | 0,00       | 0,00       | 0.00      | 0,00       | 0,00      | 0,00       | 0,00       | 0.00       | 0.00       | 0.00       | 0.00       |
|                        |        |             | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 200000.00  | 212507,22  | 424027.24  | 4202.20    | 200000.00  | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|                        | 5      | 9           | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | -200000,00 | 0,00       | 434837,24  | -4202,39   | -200000,00 | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|                        |        | 10          | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | -4202,39   | 184502,15  | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|                        | 6      | 11          | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | -200000,00 | 0,00       | 418335,42  | -1167,65  | -200000,00 | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|                        |        | 12          | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | -1167,65   | 136897,13 | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|                        | 7      | 13          | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | -200000,00 | 0,00      | 418335,42  | 1167,65   | -200000,00 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
| [K, ]=                 |        | 14          | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 1167,65    | 136897,13 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
| L •• truss J           | 8      | 15          | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | -200000,00 | 0,00      | 434837,24  | 4202,39    | -200000,00 | 0,00       | 0,00       | 0,00       |
|                        | _      | 16          | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 4202,39    | 184502,15  | 0,00       | 0,00       | 0,00       | 0,00       |
| Αποτέλεσμα αυτόματης   | 9      | 17          | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | -200000,00 | 0,00       | 439954,94  | 12212,74   | -200000,00 | 0,00       |
| συνθεσης μητρωων μελων |        | 18          | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 12212,74   | 212967,22  | 0,00       | 0,00       |
|                        | 10     | 19          | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | -200000,00 | 0,00       | 476354,68  | 19411,57   |
|                        |        | 20          | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 19411,57   | 236273,55  |
|                        | 11     | 21          | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | -200000,00 | 0,00       |
|                        |        | 22          | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|                        | 12     | 23          | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|                        |        | 24          | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|                        | 13     | 25          | -95227,90  | -76182,32 | 0,00       | 0,00       | -59517,44  | 47613,95   | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|                        |        | 26          | -76182,32  | -60945,86 | 0,00       | -250000,00 | 47613,95   | -38091,16  | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|                        | 14     | 27          | 0,00       | 0,00      | -27326,24  | -36207,26  | 0,00       | 0,00       | -27326,24  | 36207,26   | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|                        |        | 28          | 0,00       | 0,00      | -36207,26  | -47974,63  | 0,00       | -150943,40 | 36207,26   | -47974,63  | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|                        | 15     | 29          | 0,00       | 0,00      | 0,00       | 0,00       | -16837,24  | -28202,39  | 0,00       | 0,00       | -16837,24  | 28202,39   | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|                        |        | 30          | 0,00       | 0,00      | 0,00       | 0,00       | -28202,39  | -47238,99  | 0,00       | -119402,99 | 28202,39   | -47238,99  | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|                        | 16     | 31          | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | -12628,70  | -23994,53  | 0,00       | 0,00       | -12628,70  | 23994,53  | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|                        | 10     | 32          | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | -23994,53  | -45589,60  | 0,00       | -105263,16 | 23994,53   | -45589,60 | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|                        | 17     | 33          | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | -18000,00  | -24000,00  | -5706,72   | -22826,88 | -5706,72   | 22826,88  | -18000,00  | 24000,00   | 0,00       | 0,00       | 0,00       | 0,00       |
|                        |        | 34          | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | -24000,00  | -32000,00  | -22826,88  | -91307,53 | 22826,88   | -91307,53 | 24000,00   | -32000,00  | 0,00       | 0,00       | 0,00       | 0,00       |
|                        | 10     | 35          | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | -12628,70  | -23994,53 | 0,00       | 0,00       | -12628,70  | 23994,53   | 0,00       | 0,00       |
|                        | 10     | 36          | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | -23994,53  | -45589,60 | 0,00       | -105263,16 | 23994,53   | -45589,60  | 0,00       | 0,00       |
|                        | 10     | 37          | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | -16837,24  | -28202,39  | 0,00       | 0,00       | -16837,24  | 28202,39   |
|                        | 19     | 38          | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | -28202,39  | -47238,99  | 0,00       | -119402,99 | 28202,39   | -47238,99  |
|                        | 20     | 39          | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | -27326,24  | -36207,26  | 0,00       | 0,00       |
|                        | 20     | 40          | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | -36207,26  | -47974,63  | 0,00       | -150943,40 |
|                        | 21     | 41          | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | -59517,44  | -47613,95  |
|                        | 21     | 42          | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | -47613,95  | -38091,16  |
|                        |        |             |            |           |            |            |            |            |            |            |            |            |            |           |            |           |            |            |            |            |            |            |
|                        |        |             |            |           |            |            |            |            |            |            |            |            |            |           |            |           |            |            |            |            |            |            |
|                        |        |             |            |           |            |            |            |            |            |            |            |            |            |           |            |           |            |            |            |            |            |            |
|                        |        |             |            |           |            |            |            |            |            |            |            |            |            |           |            |           |            |            |            |            |            |            |

<u>Εικόνα 24<sup>η</sup></u>

|            |            |            | -         |            |            |            |            |            |            |            |            |            |           |            | _          |            |            | -          |            |            |            |
|------------|------------|------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|
| 1          | 1          | 1          | 2         | 1          | .3         | 1          | 4          | 1          | 15         | 1          | 6          | 1          | .7        | 1          | .8         | 1          | .9         | 2          | 20         |            | 1          |
| 21         | 22         | 23         | 24        | 25         | 26         | 27         | 28         | 29         | 30         | 31         | 32         | 33         | 34        | 35         | 36         | 37         | 38         | 39         | 40         | 41         | 42         |
| 0,00       | 0,00       | 0,00       | 0,00      | -95227,90  | -76182,32  | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
| 0,00       | 0,00       | 0,00       | 0,00      | -76182,32  | -60945,86  | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
| 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | -27326,24  | -36207,26  | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
| 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | -250000,00 | -36207,26  | -47974,63  | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
| 0.00       | 0.00       | 0.00       | 0.00      | -59517,44  | 47613.95   | 0.00       | 0.00       | -16837,24  | -28202.39  | 0.00       | 0.00       | 0.00       | 0.00      | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       |
| 0,00       | 0,00       | 0,00       | 0,00      | 47613,95   | -38091,16  | 0,00       | -150943,40 | -28202,39  | -47238,99  | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
| 0.00       | 0.00       | 0.00       | 0.00      | 0.00       | 0.00       | -27326,24  | 36207,26   | 0.00       | 0.00       | -12628,70  | -23994,53  | 0.00       | 0.00      | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       |
| 0.00       | 0.00       | 0.00       | 0.00      | 0.00       | 0.00       | 36207,26   | -47974,63  | 0.00       | -119402.99 | -23994,53  | -45589.60  | 0.00       | 0.00      | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       |
| 0.00       | 0.00       | 0.00       | 0.00      | 0.00       | 0.00       | 0.00       | 0.00       | -16837.24  | 28202.39   | 0.00       | 0.00       | -18000.00  | -24000.00 | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       |
| 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 28202.30   | .47238.00  | 0,00       | -105263.16 | -24000.00  | -32000.00 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
| 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 20202,33   | -47236,55  | -12628.70  | 23004 53   | -24000,00  | -32000,00 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
| 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 22024,70   | -45589.60  | -22826.88  | -22820,88 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
| 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 23334,33   | -43383,00  | -22020,00  | -31307,33 | 42620,70   | 22004.52   | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
| 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | -5706,72   | 22826,88  | -12628,70  | -23994,53  | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
| 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 22826,88   | -91307,53 | -23994,53  | -45589,60  | 0,00       | 00,00      | 0,00       | 0,00       | 0,00       | 0,00       |
| 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | -18000,00  | 24000,00  | 0,00       | 0,00       | -16837,24  | -28202,39  | 0,00       | 0,00       | 0,00       | 0,00       |
| 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 24000,00   | -32000,00 | 0,00       | -105263,16 | -28202,39  | -47238,99  | 0,00       | 0,00       | 0,00       | 0,00       |
| 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | -12628,70  | 23994,53   | 0,00       | 0,00       | -27326,24  | -36207,26  | 0,00       | 0,00       |
| 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 23994,53   | -45589,60  | 0,00       | -119402,99 | -36207,26  | -47974,63  | 0,00       | 0,00       |
| -200000,00 | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | -16837,24  | 28202,39   | 0,00       | 0,00       | -59517,44  | -47613,95  |
| 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 28202,39   | -47238,99  | 0,00       | -150943,40 | -47613,95  | -38091,16  |
| 427326,24  | -36207,26  | -200000,00 | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | -27326,24  | 36207,26   | 0,00       | 0,00       |
| -36207,26  | 297974,63  | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 36207,26   | -47974,63  | 0,00       | -250000,00 |
| -200000,00 | 0,00       | 295227,90  | -76182,32 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | -95227,90  | 76182,32   |
| 0,00       | 0,00       | -76182,32  | 60945,86  | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 76182,32   | -60945,86  |
| 0,00       | 0,00       | 0,00       | 0,00      | 293563,24  | 101447,77  | -138817,90 | -72879,40  | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
| 0,00       | 0,00       | 0,00       | 0,00      | 101447,77  | 387298,70  | -72879,40  | -38261,68  | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
| 0,00       | 0,00       | 0,00       | 0,00      | -138817,90 | -72879,40  | 361641,13  | 131739,16  | -168170,75 | -58859,76  | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
| 0,00       | 0,00       | 0,00       | 0,00      | -72879,40  | -38261,68  | 131739,16  | 305755,25  | -58859,76  | -20600,92  | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
| 0.00       | 0.00       | 0.00       | 0.00      | 0.00       | 0.00       | -168170.75 | -58859.76  | 387565.13  | 100646.74  | -185719.88 | -41786.97  | 0.00       | 0.00      | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       |
| 0.00       | 0.00       | 0.00       | 0.00      | 0.00       | 0.00       | -58859.76  | -20600.92  | 100646.74  | 243883.96  | -41786.97  | -9402.07   | 0.00       | 0.00      | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       |
| 0.00       | 0.00       | 0.00       | 0.00      | 0.00       | 0.00       | 0.00       | 0.00       | -185719.88 | -41786.97  | 343426.64  | 50616.93   | -132449.36 | -8829.96  | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       |
| 0.00       | 0.00       | 0.00       | 0.00      | 0.00       | 0.00       | 0.00       | 0.00       | -41786.97  | -9402.07   | 50616.93   | 206433.10  | -8829.96   | -588.66   | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       |
| 0.00       | 0.00       | 0.00       | 0.00      | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | -132449.36 | .9920.06   | 312312.16  | 0.00      | -132449.36 | 9920.06    | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       |
| 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | -132443,30 | -0029,90   | 312312,10  | 247702.20 | -132443,30 | 500.55     | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
| 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | -0029,90   | -388,00    | 122440.26  | 247732,33 | 242426.64  | -366,00    | 105710.00  | 41796.07   | 0,00       | 0,00       | 0,00       | 0,00       |
| 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | -132449,30 | 8829,90   | 545426,64  | -50616,93  | -185719,88 | 41/86,97   | 0,00       | 0,00       | 0,00       | 0,00       |
| 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 8829,90    | -588,00   | -50010,93  | 200433,10  | 41/80,97   | -9402,07   | 0,00       | 0,00       | 0,00       | 0,00       |
| 0,00       | 0,00       | 0,00       | 0,00      | 00,0       | 0,00       | 00,0       | 00,0       | 00,0       | 00,0       | 0,00       | 0,00       | 0,00       | 00,0      | -185719,88 | 41/86,97   | 38/565,13  | -100646,/4 | -168170,75 | 58859,/6   | 0,00       | 0,00       |
| 0,00       | 00,0       | 0,00       | 0,00      | 00,0       | 00,0       | 00,0       | 00,0       | 00,0       | 00,0       | 0,00       | 0,00       | 0,00       | 00,0      | 41/86,97   | -9402,07   | -100646,74 | 243883,96  | 58859,/6   | -20600,92  | 0,00       | 0,00       |
| -27326,24  | 36207,26   | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | -168170,75 | 58859,76   | 361641,13  | -131739,16 | -138817,90 | /28/9,40   |
| 36207,26   | -47974,63  | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 58859,76   | -20600,92  | -131739,16 | 305755,25  | 72879,40   | -38261,68  |
| 0,00       | 0,00       | -95227,90  | 76182,32  | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | -138817,90 | 72879,40   | 293563,24  | -101447,77 |
| 0,00       | -250000,00 | 76182,32   | -60945,86 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 72879,40   | -38261,68  | -101447,77 | 387298,70  |

<u>Εικόνα 25<sup>η</sup></u>

<u>Βήμα 4°</u>: Καταγραφή όλων των δεδομένων επικόμβιων μεγεθών του δικτυώματος, δηλαδή των γνωστών επικόμβιων μετακινήσεων και των επιβεβλημένων επικόμβιων φορτίων και βάσει αυτών μόρφωση του Μητρώου Αναδιάταξης του δικτυώματος.







 $E=2\cdot 10^8~{
m kN/m^2}\,,~~A_1=40~{
m cm^2}\,,~~A_2=25~{
m cm^2}$ 

## <u>Εικόνα 27<sup>η</sup></u>

| Αυτόματη Δ<br>της κατάστα | ημιουργία μετά<br>ισης των βαθμώ | τη δήλωση<br>ν ελευθερίας |         |          |         |             |            |
|---------------------------|----------------------------------|---------------------------|---------|----------|---------|-------------|------------|
|                           |                                  | Κατάσταση                 | ΔΕΔΟΜΕΝ | Α ΚΟΜΒΩΝ | [Data]  | Νέα θέση    | Νέα σειρά  |
| Κόμβος                    | Βαθ. Ελευθ.                      | βαθ. Ελευθ.               | Pi      | Δi       | Ρί ή Δί | βαθ. ελευθ. | βαθ. ελευθ |
| 1                         | 1                                | 0                         |         | 0,0000   | 0,0000  | 39          | 3          |
| 1                         | 2                                | 0                         |         | 0,0000   | 0,0000  | 40          | 4          |
| 2                         | 3                                | 1                         | 0,00    |          | 0,00    | 1           | 5          |
| 2                         | 4                                | 1                         | 0,00    |          | 0,00    | 2           | 6          |
| 2                         | 5                                | 1                         | 0,00    |          | 0,00    | 3           | 7          |
| Э                         | 6                                | 1                         | 0,00    |          | 0,00    | 4           | 8          |
| 4                         | 7                                | 1                         | 0,00    |          | 0,00    | 5           | 9          |
| 4                         | 8                                | 1                         | 0,00    |          | 0,00    | 6           | 10         |
| E                         | 9                                | 1                         | 0,00    |          | 0,00    | 7           | 11         |
| 5                         | 10                               | 1                         | 0,00    |          | 0,00    | 8           | 12         |
| 6                         | 11                               | 1                         | 0,00    |          | 0,00    | 9           | 13         |
| 0                         | 12                               | 1                         | 0,00    |          | 0,00    | 10          | 14         |
| 7                         | 13                               | 1                         | 0,00    |          | 0,00    | 11          | 15         |
| /                         | 14                               | 1                         | 0,00    |          | 0,00    | 12          | 16         |
| 0                         | 15                               | 1                         | 0,00    |          | 0,00    | 13          | 17         |
| 0                         | 16                               | 1                         | 0,00    |          | 0,00    | 14          | 18         |
| 0                         | 17                               | 1                         | 0,00    |          | 0,00    | 15          | 19         |
| 9                         | 18                               | 1                         | 0,00    |          | 0,00    | 16          | 20         |
| 10                        | 19                               | 1                         | 0,00    |          | 0,00    | 17          | 21         |
| 10                        | 20                               | 1                         | 0,00    |          | 0,00    | 18          | 22         |
| 11                        | 21                               | 1                         | 0,00    |          | 0,00    | 19          | 25         |
| 11                        | 22                               | 1                         | 0,00    |          | 0,00    | 20          | 26         |
| 10                        | 23                               | 0                         |         | 0,0000   | 0,0000  | 41          | 27         |
| 12                        | 24                               | 0                         |         | 0,0000   | 0,0000  | 42          | 28         |

<u>Εικόνα 28η</u>

|     |             | _                | -,   |         | -,     | 1  |    | ı |
|-----|-------------|------------------|------|---------|--------|----|----|---|
| 12  | 23          | 0                |      | 0,0000  | 0,0000 | 41 | 27 |   |
| 12  | 24          | 0                |      | 0,0000  | 0,0000 | 42 | 28 |   |
| 12  | 25          | 1                | 0,00 |         | 0,00   | 21 | 29 |   |
| 15  | 26          | 1                | 0,00 |         | 0,00   | 22 | 30 |   |
| 14  | 27          | 1                | 0,00 |         | 0,00   | 23 | 31 |   |
| 14  | 28          | 1                | 0,00 |         | 0,00   | 24 | 32 |   |
| 15  | 29          | 1                | 0,00 |         | 0,00   | 25 | 33 |   |
| 15  | 30          | 1                | 0,00 |         | 0,00   | 26 | 34 |   |
| 16  | 31          | 1                | 0,00 |         | 0,00   | 27 | 35 |   |
| 10  | 32          | 1                | 0,00 |         | 0,00   | 28 | 36 |   |
| 17  | 33          | 1                | 0,00 |         | 0,00   | 29 | 37 |   |
| 17  | 34          | 1                | 0,00 |         | 0,00   | 30 | 38 |   |
| 1.9 | 35          | 1                | 0,00 |         | 0,00   | 31 | 39 |   |
| 10  | 36          | 1                | 0,00 |         | 0,00   | 32 | 40 |   |
| 10  | 37          | 1                | 0,00 |         | 0,00   | 33 | 41 |   |
| 15  | 38          | 1                | 0,00 |         | 0,00   | 34 | 42 |   |
| 20  | 39          | 1                | 0,00 |         | 0,00   | 35 | 1  |   |
| 20  | 40          | 1                | 0,00 |         | 0,00   | 36 | 2  |   |
| 21  | 41          | 1                | 0,00 |         | 0,00   | 37 | 23 |   |
| 21  | 42          | 1                | 0,00 |         | 0,00   | 38 | 24 |   |
|     |             | 0: δεσμευμ.      |      |         |        |    |    |   |
|     |             | 1: ελευθ.        |      |         |        |    |    |   |
|     |             |                  |      | άγνωστο |        |    |    |   |
|     |             |                  |      | μέγεθος |        |    |    |   |
|     | Βαθμοί Ελ   | <b>λευθερίας</b> |      |         |        |    |    |   |
|     | σύνολο      | 42               |      |         |        |    |    |   |
|     | ελεύθεροι   | 38               |      |         |        |    |    |   |
|     | δεσμευμένοι | 4                |      |         |        |    |    |   |
|     |             |                  |      |         |        |    |    |   |

<u>Εικόνα 29η</u>

|                        |       |             | 0.00   | 3  |                 |          |  |
|------------------------|-------|-------------|--------|----|-----------------|----------|--|
|                        |       |             | 0.00   | 4  |                 |          |  |
|                        |       |             | 0.00   | 5  |                 |          |  |
|                        |       |             | 0.00   | 6  |                 |          |  |
|                        |       |             | 0,00   | 7  |                 |          |  |
|                        |       |             | 0,00   |    |                 |          |  |
|                        |       |             | 0,00   |    |                 |          |  |
|                        |       |             | 0,00   | 10 |                 |          |  |
|                        |       |             | 0,00   | 11 |                 |          |  |
|                        |       |             | 0,00   | 17 |                 |          |  |
|                        |       |             | 0,00   | 12 |                 |          |  |
|                        |       |             | 0,00   | 14 |                 |          |  |
|                        |       |             | 0,00   | 14 |                 |          |  |
|                        |       |             | 0,00   | 15 |                 |          |  |
|                        |       |             | 0,00   | 10 |                 |          |  |
|                        |       |             | 0,00   | 17 |                 |          |  |
|                        |       |             | 0,00   | 18 |                 |          |  |
|                        |       |             | 0,00   | 19 |                 |          |  |
|                        |       |             | 0,00   | 20 |                 |          |  |
|                        |       | $[P_{f}] =$ | 0,00   | 21 |                 |          |  |
|                        |       |             | 0,00   | 22 |                 |          |  |
|                        |       |             | 0,00   | 25 |                 |          |  |
|                        |       |             | 0,00   | 26 |                 |          |  |
|                        |       |             | 0,00   | 27 |                 |          |  |
|                        |       |             | 0,00   | 28 |                 |          |  |
|                        |       |             | 0,00   | 29 |                 |          |  |
|                        |       |             | 0,00   | 30 |                 |          |  |
|                        |       |             | 0,00   | 31 |                 |          |  |
|                        |       |             | 0,00   | 32 |                 |          |  |
|                        |       |             | 0,00   | 33 |                 |          |  |
|                        |       |             | 0,00   | 34 |                 |          |  |
|                        |       |             | 0,00   | 35 |                 |          |  |
|                        |       |             | 0,00   | 36 | Ελεύθεροι Βαθμ  | ιοί      |  |
|                        |       |             | 0,00   | 37 |                 |          |  |
|                        |       |             | 0,00   | 38 | Γνωστά επικόμβ  | δια      |  |
|                        |       |             | 0,00   | 39 | φορτία και      |          |  |
|                        |       |             | 0,00   | 40 | αγνωστες μετακ  | ανησεις  |  |
|                        | [P.]  |             | 0,00   | 41 | κόμβων.         |          |  |
| αναδιάταξη [ Data ] =  | 10.11 |             | 0,00   | 42 |                 |          |  |
| arastatagit [ bata ] - | [14]  |             | 0,0000 | 1  | Δεσμευμένοι Β   | αθμοί    |  |
|                        | [45]  |             | 0,0000 | 2  | Άγνωστες αντιδρ | ράσεις   |  |
|                        |       | 1031-       | 0,0000 | 23 | και δεδομένες   |          |  |
|                        |       |             | 0,0000 | 24 | μετακινήσεις στ | ηριξεων. |  |
|                        |       |             |        |    |                 |          |  |
|                        |       |             |        |    |                 |          |  |

<u>Εικόνα 30<sup>η</sup></u>

<u>Βήμα 5°</u> : Υπολογισμός του Τροποποιημένου (Αναδιατεταγμένου) Μητρώου Στιβαρότας [K<sub>m</sub>] του δικτυώματος βάσει του Μητρώου Αναδιάταξης [V] και του Ολικού Μητρώου Στιβαρότητας [K] του φορέα: [K<sub>m</sub>] = [V] [K] [V]<sup>T</sup>

|        |    |            |            |            |            |            |            | -          | -          | -          | -         |            |           | • •        |            |            |            |            |            |            |            |            |            |
|--------|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|        |    |            |            |            |            |            |            |            |            |            |           |            |           |            |            |            |            |            |            |            |            |            |            |
|        |    | 3          | 4          | 5          | 6          | 7          | 8          | 9          | 10         | 11         | 12        | 13         | 14        | 15         | 16         | 17         | 18         | 19         | 20         | 21         | 22         | 25         | 26         |
|        | 3  | 427326,24  | 36207,26   | -200000,00 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|        | 4  | 36207,26   | 297974,63  | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | -250000,00 |
|        | 5  | -200000,00 | 0,00       | 476354,68  | -19411,57  | -200000,00 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | -59517,44  | 47613,95   |
|        | 0  | 0,00       | 0,00       | -19411,57  | 236273,55  | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 47613,95   | -38091,16  |
|        |    | 0,00       | 0,00       | -200000,00 | 0,00       | 439954,94  | -12212,74  | -200000,00 | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|        | 0  | 0,00       | 0,00       | 0,00       | 0,00       | -12212,74  | 212967,22  | 424927.24  | 0,00       | 200000     | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|        | 10 | 0,00       | 0,00       | 0,00       | 0,00       | -200000,00 | 0,00       | 434837,24  | 184502.15  | -200000,00 | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|        | 11 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0.00       | -200000.00 | 0.00       | 418335.42  | -1167.65  | -200000.00 | 0,00      | 0.00       | 0,00       | 0,00       | 0,00       | 0.00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|        | 12 | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | -1167.65   | 136897.13 | 0.00       | 0.00      | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       |
|        | 13 | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | -200000.00 | 0.00      | 418335.42  | 1167.65   | -200000.00 | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       |
|        | 14 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 1167,65    | 136897,13 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|        | 15 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | -200000,00 | 0,00      | 434837,24  | 4202,39    | -200000,00 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|        | 16 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 4202,39    | 184502,15  | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|        | 17 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | -200000,00 | 0,00       | 439954,94  | 12212,74   | -200000,00 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|        | 18 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 12212,74   | 212967,22  | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|        | 19 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | -200000,00 | 0,00       | 476354,68  | 19411,57   | -200000,00 | 0,00       | 0,00       | 0,00       |
|        | 20 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 19411,57   | 236273,55  | 0,00       | 0,00       | 0,00       | 0,00       |
|        | 21 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | -200000,00 | 0,00       | 427326,24  | -36207,26  | 0,00       | 0,00       |
|        | 22 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | -36207,26  | 297974,63  | 0,00       | 0,00       |
| [K_] = | 25 | 0,00       | 0,00       | -59517,44  | 47613,95   | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 293563,24  | 101447,77  |
|        | 20 | 0,00       | -250000,00 | 4/613,95   | -38091,16  | 0,00       | 00,0       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 101447,77  | 38/298,/0  |
|        | 27 | -27326,24  | -36207,26  | 0,00       | -150943.40 | -2/320,24  | -47074.63  | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | -138817,90 | -72879,40  |
|        | 29 | -30207,20  | -4/3/4,03  | -16837.24  | -28202.39  | 0.00       | -4/3/4,03  | -16837.24  | 28202.39   | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | -72879,40  | -38201,08  |
|        | 30 | 0.00       | 0.00       | -28202.39  | -47238.99  | 0.00       | -119402.99 | 28202.39   | -47238.99  | 0.00       | 0.00      | 0.00       | 0.00      | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0,00       | 0.00       | 0.00       |
|        | 31 | 0.00       | 0.00       | 0.00       | 0.00       | -12628.70  | -23994.53  | 0.00       | 0.00       | -12628.70  | 23994.53  | 0.00       | 0.00      | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       |
|        | 32 | 0,00       | 0,00       | 0,00       | 0,00       | -23994,53  | -45589,60  | 0,00       | -105263,16 | 23994,53   | -45589,60 | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|        | 33 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | -18000,00  | -24000,00  | -5706,72   | -22826,88 | -5706,72   | 22826,88  | -18000,00  | 24000,00   | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|        | 34 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | -24000,00  | -32000,00  | -22826,88  | -91307,53 | 22826,88   | -91307,53 | 24000,00   | -32000,00  | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|        | 35 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | -12628,70  | -23994,53 | 0,00       | 0,00       | -12628,70  | 23994,53   | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|        | 36 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | -23994,53  | -45589,60 | 0,00       | -105263,16 | 23994,53   | -45589,60  | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|        | 37 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | -16837,24  | -28202,39  | 0,00       | 0,00       | -16837,24  | 28202,39   | 0,00       | 0,00       | 0,00       | 0,00       |
|        | 38 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | -28202,39  | -47238,99  | 0,00       | -119402,99 | 28202,39   | -47238,99  | 0,00       | 0,00       | 0,00       | 0,00       |
|        | 39 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | -27326,24  | -36207,26  | 0,00       | 0,00       | -27326,24  | 36207,26   | 0,00       | 0,00       |
|        | 40 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | -36207,26  | -47974,63  | 0,00       | -150943,40 | 36207,26   | -47974,63  | 0,00       | 0,00       |
|        | 41 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | -59517,44  | -4/613,95  | 0,00       | 0,00       | 0,00       | 0,00       |
|        | 42 | 200000.00  | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | -4/613,95  | -38091,16  | 0,00       | -250000,00 | 0,00       | .76193.33  |
|        | 2  | -200000,00 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | -95227,90  | -/0182,32  |
|        | 23 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | -200000.00 | 0,00       | -/0182,32  | 00545,80   |
|        | 24 | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       |
|        |    | 0,00       | 0,00       | 0,00       | 6,00       | 0,00       | 6,66       | 6,66       | 6,00       | 0,00       | 0,00      | 6,00       | 0,00      | 0,00       | 6,00       | 0,00       | 6,66       | 6,66       | 6,66       | 0,00       | 0,00       | 0,00       | 0,00       |

<u>Εικόνα 31<sup>η</sup></u>

| 27         | 28         | 29         | 30         | 31         | 32         | 33         | 34        | 35         | 36         | 37         | 38         | 39         | 40         | 41         | 42         | 1          | 2         | 23         | 24        |   |
|------------|------------|------------|------------|------------|------------|------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|------------|-----------|---|
| -27326.24  | -36207.26  | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00      | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | -200000.00 | 0.00      | 0.00       | 0.00      | t |
| -36207.26  | -47974 63  | 0,00       | 0,00       | 0,00       | 0.00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0.00       | 0,00       | 0,00       | 0.00       | 0,00       | 0.00       | 0,00      | 0,00       | 0,00      | E |
| 0.00       | 0.00       | -16837.24  | -28202.39  | 0,00       | 0.00       | 0,00       | 0,00      | 0,00       | 0,00       | 0.00       | 0.00       | 0,00       | 0,00       | 0.00       | 0,00       | 0,00       | 0.00      | 0,00       | 0,00      | E |
| 0,00       | -150943.40 | -28202.39  | -47238.99  | 0,00       | 0.00       | 0,00       | 0,00      | 0,00       | 0,00       | 0.00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      | E |
| -27326.24  | 36207.26   | -28202,33  | -47238,55  | -12628 70  | -23004 53  | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      |   |
| 36207.26   | .47974.63  | 0,00       | -119402.99 | -73004 53  | -45589.60  | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      |   |
| 0.00       | 0.00       | -16837.24  | 28202.39   | 0.00       | 0.00       | -18000.00  | -24000.00 | 0,00       | 0.00       | 0.00       | 0.00       | 0,00       | 0,00       | 0.00       | 0.00       | 0.00       | 0.00      | 0,00       | 0.00      | E |
| 0.00       | 0,00       | 28202.39   | -47238.99  | 0.00       | -105263.16 | -24000.00  | -32000.00 | 0,00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00      | 0.00       | 0.00      | E |
| 0.00       | 0.00       | 0.00       | 0.00       | -12628.70  | 23994 53   | -5706 72   | -22826.88 | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00      | 0.00       | 0.00      |   |
| 0.00       | 0.00       | 0.00       | 0.00       | 23994 53   | -45589.60  | -22826.88  | -91307.53 | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00      | 0.00       | 0.00      |   |
| 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | -5706.72   | 22826.88  | -12628.70  | -23994 53  | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00      | 0.00       | 0.00      |   |
| 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 22826.88   | -91307.53 | -23994.53  | -45589.60  | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00      | 0.00       | 0.00      |   |
| 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | -18000.00  | 24000.00  | 0.00       | 0.00       | -16837.24  | -28202.39  | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00      | 0.00       | 0.00      | E |
| 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 24000.00   | -32000.00 | 0.00       | -105263.16 | -28202.39  | -47238.99  | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00      | 0.00       | 0.00      |   |
| 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00      | -12628.70  | 23994.53   | 0.00       | 0.00       | -27326.24  | -36207.26  | 0.00       | 0.00       | 0.00       | 0.00      | 0.00       | 0.00      |   |
| 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00      | 23994.53   | -45589.60  | 0.00       | -119402.99 | -36207.26  | -47974.63  | 0.00       | 0.00       | 0.00       | 0.00      | 0.00       | 0.00      |   |
| 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00      | 0.00       | 0.00       | -16837,24  | 28202.39   | 0.00       | 0.00       | -59517,44  | -47613,95  | 0.00       | 0.00      | 0.00       | 0.00      |   |
| 0.00       | 0.00       | 0,00       | 0,00       | 0.00       | 0.00       | 0.00       | 0.00      | 0.00       | 0,00       | 28202,39   | -47238,99  | 0.00       | -150943,40 | -47613,95  | -38091,16  | 0,00       | 0.00      | 0,00       | 0.00      |   |
| 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0.00       | -27326,24  | 36207,26   | 0,00       | 0,00       | 0,00       | 0.00      | -200000,00 | 0,00      |   |
| 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 36207,26   | -47974,63  | 0,00       | -250000,00 | 0,00       | 0,00      | 0,00       | 0,00      |   |
| -138817,90 | -72879,40  | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | -95227,90  | -76182,32 | 0,00       | 0,00      |   |
| -72879,40  | -38261,68  | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | -76182,32  | -60945,86 | 0,00       | 0,00      |   |
| 361641,13  | 131739,16  | -168170,75 | -58859,76  | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      |   |
| 131739,16  | 305755,25  | -58859,76  | -20600,92  | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      |   |
| -168170,75 | -58859,76  | 387565,13  | 100646,74  | -185719,88 | -41786,97  | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      |   |
| -58859,76  | -20600,92  | 100646,74  | 243883,96  | -41786,97  | -9402,07   | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      |   |
| 0,00       | 0,00       | -185719,88 | -41786,97  | 343426,64  | 50616,93   | -132449,36 | -8829,96  | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      |   |
| 0,00       | 0,00       | -41786,97  | -9402,07   | 50616,93   | 206433,10  | -8829,96   | -588,66   | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      |   |
| 0,00       | 0,00       | 0,00       | 0,00       | -132449,36 | -8829,96   | 312312,16  | 0,00      | -132449,36 | 8829,96    | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      |   |
| 0,00       | 0,00       | 0,00       | 0,00       | -8829,96   | -588,66    | 0,00       | 247792,39 | 8829,96    | -588,66    | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      |   |
| 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | -132449,36 | 8829,96   | 343426,64  | -50616,93  | -185719,88 | 41786,97   | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      |   |
| 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 8829,96    | -588,66   | -50616,93  | 206433,10  | 41786,97   | -9402,07   | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      |   |
| 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | -185719,88 | 41786,97   | 387565,13  | -100646,74 | -168170,75 | 58859,76   | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      |   |
| 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 41786,97   | -9402,07   | -100646,74 | 243883,96  | 58859,76   | -20600,92  | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00      |   |
| 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | -168170,75 | 58859,76   | 361641,13  | -131739,16 | -138817,90 | 72879,40   | 0,00       | 0,00      | 0,00       | 0,00      |   |
| 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 58859,76   | -20600,92  | -131739,16 | 305755,25  | 72879,40   | -38261,68  | 0,00       | 0,00      | 0,00       | 0,00      |   |
| 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | -138817,90 | 72879,40   | 293563,24  | -101447,77 | 0,00       | 0,00      | -95227,90  | 76182,32  | L |
| 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 72879,40   | -38261,68  | -101447,77 | 387298,70  | 0,00       | 0,00      | 76182,32   | -60945,86 | 4 |
| 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 295227,90  | 76182,32  | 0,00       | 0,00      |   |
| 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 76182,32   | 60945,86  | 0,00       | 0,00      |   |
| 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | -95227,90  | 76182,32   | 0,00       | 0,00      | 295227,90  | -76182,32 | L |
| 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00      | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 0,00       | 76182,32   | -60945,86  | 0,00       | 0,00      | -76182,32  | 60945,86  | 1 |
|            |            |            |            |            |            |            |           |            |            |            |            |            |            |            |            |            |           |            |           |   |
|            |            |            |            |            |            |            |           |            |            |            |            |            |            |            |            |            |           |            |           |   |

<u>Εικόνα 32<sup>η</sup></u>

| _ | [ K | m ] | • | [ <b>Δ</b> <sub>m</sub> ] | = | [ P <sub>m</sub> ] |  |                      | 4                                    |                                       |                    |
|---|-----|-----|---|---------------------------|---|--------------------|--|----------------------|--------------------------------------|---------------------------------------|--------------------|
|   | Kff | Kfs |   | [A.1                      |   | [ P. ]             |  | [ Δ <sub>f</sub> ] = | [K <sub>ff</sub> ] <sup>-1</sup> ([F | P <sub>f</sub> ] – [K <sub>fs</sub> ] | [Δ <sub>5</sub> ]) |
| _ | Ksf | Kis | • | [Δ <sub>5</sub> ]         | = | [P <sub>s</sub> ]  |  | [P <sub>S</sub> ]=   | [K <sub>sf</sub> ][Δ <sub>f</sub> ]  | + [ K <sub>ss</sub> ] [ /             | \s]                |
|   |     |     |   | γνωστά<br>μεγέθη          |   | άγνωστα<br>μεγέθη  |  |                      |                                      |                                       |                    |

<u>Εικόνα 33<sup>η</sup></u>





| Εξωτερυ              | ά Επικόμβια                | Φορτία        |                                |                          |                                        | Mat    | ακινήσεις Ελεύθερω | v Ba |
|----------------------|----------------------------|---------------|--------------------------------|--------------------------|----------------------------------------|--------|--------------------|------|
|                      |                            |               |                                |                          |                                        |        |                    |      |
|                      | 0,00                       | 3             |                                |                          |                                        |        | 0,006(00           | 3    |
|                      | 0,00                       | 4             |                                |                          |                                        |        | 0,006(00           | - 4  |
|                      | 0,00                       | 5             |                                |                          |                                        |        | 0,006+00           | 5    |
|                      | 0,00                       | 6             |                                |                          |                                        |        | 0,006+00           |      |
|                      | 0,00                       | 7             |                                |                          |                                        |        | 0,006(00           |      |
|                      | 0,00                       | 8             |                                |                          |                                        |        | 0,006+00           | . 8  |
|                      | 0,00                       | 9             |                                |                          |                                        |        | 0,006(00           | - 1  |
|                      | 0,00                       | 10            |                                |                          |                                        |        | 0,006(00           | - 10 |
|                      | 0,00                       | 11            |                                |                          |                                        |        | 0,006(00           | 11   |
|                      | 0,00                       | 12            |                                |                          |                                        |        | 0,006(00           | - 12 |
|                      | 0,00                       | 13            |                                |                          |                                        |        | 0,006(00           | 13   |
|                      | 0,00                       | 14            |                                |                          |                                        |        | 0,006(00           | 14   |
|                      | 0,00                       | 15            |                                |                          |                                        |        | 0,006(00           | 15   |
|                      | 0,00                       | 16            |                                |                          |                                        |        | 0,006+00           | - 16 |
|                      | 0,00                       | 17            |                                |                          |                                        |        | 0,006+00           | 17   |
|                      | 0,00                       | 18            |                                |                          |                                        |        | 0,006(00           | 18   |
|                      | 0,00                       | 19            | Metator                        | άσεις των ελε            | τύθερων                                |        | 0,006+00           | 19   |
|                      | 0,00                       | 20            | 60                             | ξμών του φορ             | tα                                     |        | 0,006(00           | - 20 |
| LPfJ                 | 0,00                       | 21            |                                |                          |                                        |        | +f0,006(00         | - 21 |
| -                    | 0,00                       | 22            | $[\Delta_{i}] = [K_{ii}]^{-1}$ | * (1P-1 -                | [K <sub>2</sub> ] * [A])               |        | 0,006(00           | - 22 |
|                      | 0,00                       | 25            | (                              |                          | (                                      |        | 0,006(00           | - 25 |
|                      | 0,00                       | 26            |                                |                          |                                        |        | 0,006(00           | - 26 |
|                      | 0,00                       | 27            |                                |                          |                                        |        | 0,006(00           | 27   |
|                      | 0,00                       | 28            |                                |                          |                                        |        | 0,006+00           | - 28 |
|                      | 0,00                       | 29            |                                |                          |                                        |        | 0,006(00           | - 29 |
|                      | 0,00                       | 30            |                                |                          |                                        |        | 0,006+00           | - 30 |
|                      | 0,00                       | 31            |                                |                          |                                        |        | 0,006(00           | 31   |
|                      | 0,00                       | 32            |                                |                          |                                        |        | 0,006(00           | 32   |
|                      | 0,00                       | 33            |                                |                          |                                        |        | 0,006(00           | 33   |
|                      | 0,00                       | 34            |                                |                          |                                        |        | 0,006(00           | 34   |
|                      | 0,00                       | 35            |                                |                          |                                        |        | 0,006(00           | 35   |
|                      | 0,00                       | 36            |                                |                          |                                        |        | 0,006(00           | 36   |
|                      | 0,00                       | 37            |                                |                          |                                        |        | 0,006(00           | 37   |
|                      | 0,00                       | 38            |                                |                          |                                        |        | 0,006(00           | 38   |
|                      | 0,00                       | 39            |                                |                          |                                        |        | 0,006(00           | - 39 |
|                      | 0,00                       | 40            |                                |                          |                                        |        | 0,006(00           | - 40 |
|                      | 0,00                       | 41            |                                |                          |                                        |        | 0,006(00           | 41   |
|                      | 0,00                       | 42            |                                |                          |                                        |        | 0,006+00           | 42   |
|                      |                            |               |                                |                          |                                        |        |                    |      |
|                      |                            |               |                                |                          |                                        |        |                    |      |
|                      |                            |               |                                |                          |                                        |        |                    |      |
|                      |                            |               |                                |                          |                                        |        |                    |      |
| Metai                | ανήσεις Στηρ               | ξεων          |                                |                          |                                        |        | Αντιδράσεις του φο | ρέα  |
|                      |                            |               | Αντιδράσε                      | ις του φορέα             | κατά τους                              |        |                    |      |
|                      | 0.0000                     | 1             | δεσμ                           | τυμένους βαά             | ξμούς                                  |        | 0,00               | 1    |
|                      | u,uuuu                     |               |                                |                          |                                        | [ D ]  | 0.00               | 2    |
| [ ] =                | 0,0000                     | 2             |                                |                          |                                        | I Pal  | =                  |      |
| [ Δ <sub>s</sub> ] = | 0,0000                     | 2 23          | $[P_{1}] = [K_{2}]$            | * [A] + I                | K-1 * [A-1                             | [Ps]   | = 0,00             | 23   |
| [Δ <sub>s</sub> ] =  | 0,0000<br>0,0000<br>0,0000 | 2<br>23<br>24 | $[P_x] = [K_d]$                | * [ Δ <sub>r</sub> ] + [ | [K <sub>at</sub> ] * [Δ <sub>t</sub> ] | L Ps J | = 0,00<br>0,00     | 23   |

<u>Εικόνα 35<sup>η</sup></u>

<u>Βήμα 7°</u>: Μόρφωση του Τροποποιημένου Μητρώου Επικόμβιων Μετατοπίσεων [Δm] από τα επιμέρους μητρώα επικόμβιων μετατοπίσεων [Δf] των ελεύθερων βαθμών και [ΔS] των δεσμευμένων βαθμών. Αναδιάταξη αυτού για τον προσδιορισμό του Μητρώου Επικόμβιων Μετατοπίσεων [Δ bar].



<u>Εικόνα 36η</u>


<u>Βήμα 8°:</u> Μόρφωση του Μητρώου Ακραίων Μετατοπίσεων [Di-bar] κάθε μέλους στο καθολικό σύστημα αξόνων και στη συνέχεια, μέσω του Μητρώου Μετασχηματισμού, υπολογισμός του Μητρώου Ακραίων Μετατοπίσεων [Di] στο τοπικό σύστημα αξόνων του μέλους. Τέλος, προσδιορισμός των Ακραίων Δράσεων στο τοπικό σύστημα αξόνων του μέλους, με τη βοήθεια του τοπικού του Μητρώου Στιβαρότητας και χαρακτηρισμός της αξονικής καταπόνησης ως εφελκυσμό ή θλίψη.

| ΜΕΛΟΣ                         |        | Ακραίες Ν<br>στο κι | Λετατοπίσει<br>αθολικό σύα | ς Μέλους<br>πημα | Ακραίε<br>στο κ | ες Δράσεις Ν<br>αθολικό σύο | 1έλους<br>πημα | Ακραίε<br>στο το | ς Δράσεις Ν<br>πικό του σύ | Μέλους<br>Ιστημα | Αξονικι<br>λόγω μι | ή Δύναμη Μέλους<br>ηχανικής φόρτισης |
|-------------------------------|--------|---------------------|----------------------------|------------------|-----------------|-----------------------------|----------------|------------------|----------------------------|------------------|--------------------|--------------------------------------|
|                               |        |                     |                            | Κόμβοι           |                 |                             | Κόμβοι         |                  |                            | Κόμβοι           |                    |                                      |
| 1                             |        | [Dibar] =           | 0,00000                    | 1                | [Aiber] =       | 0,000                       | 1              | [ (1) ] -        | 0,000<br>0,000             | 1                | NI (1) -           | 0.00                                 |
| Κόμβος αρχής                  | 1      | [Di-bai] -          | 0,00000<br>0,00000         | 2                | [Ai-bai] -      | 0,000<br>0,000              | 2              | [A(1)]-          | 0,000<br>0,000             | 2                | N(1)-              | θλίψη                                |
| ομρος περατος                 | 2      |                     |                            |                  |                 |                             |                |                  |                            |                  |                    |                                      |
| 2                             |        |                     | 0,00000                    | 2                |                 | 0,000                       | 2              |                  | 0,000                      | 2                |                    |                                      |
| 2                             |        | [ Di-bar ] =        | 0,00000<br>0,00000         | 2                | [ Ai-bar ] =    | 0,000                       | 2              | [ A(2) ] =       | 0,000<br>0,000             | 2                | N (2) =            | 0,00                                 |
| Κόμβος αρχής<br>όμβος πέρατος | 2<br>3 |                     | 0,00000                    | 3                |                 | 0,000                       | 3              |                  | 0,000                      | 3                |                    | θλίψη                                |
|                               |        |                     |                            |                  |                 |                             |                |                  |                            |                  |                    |                                      |
| 3                             |        |                     | 0,00000                    | 3                |                 | 0,000                       | 3              |                  | 0,000                      | 3                |                    |                                      |
|                               |        | [ Di-bar ] =        | 0,00000                    | 4                | [ Ai-bar ] =    | 0,000                       | 4              | [ A(3) ] =       | 0,000                      | 4                | N (3) =            | 0,00                                 |
| κομβος αρχής<br>όμβος πέρατος | 3<br>4 |                     | 0,00000                    |                  |                 | 0,000                       |                |                  | 0,000                      |                  |                    | θλίψη                                |

<u>Εικόνα 39η</u>

|                |   |              |         |          |              |       | -        |                  |       |     |         |        |
|----------------|---|--------------|---------|----------|--------------|-------|----------|------------------|-------|-----|---------|--------|
| 4              |   |              | 0,00000 | 4        |              | 0,000 | 4        |                  | 0,000 | 4   |         |        |
| -              |   | [Di-bar] =   | 0,00000 |          | [Ai-bar] =   | 0,000 |          | $[\Lambda(A)] =$ | 0,000 |     | N (4)   | - 0.00 |
|                |   | [ Dr bur ]   | 0,00000 | 5        | [/ii bai]    | 0,000 | 5        | [ ~(-)] -        | 0,000 | 5   | 14 (4)  | - 0,00 |
| Κόμβος αρχής   | 4 |              | 0,00000 | 5        |              | 0,000 | Ŭ        |                  | 0,000 | 5   |         | θλίψη  |
| Κόμβος πέρατος | 5 |              |         |          |              |       |          |                  |       |     |         |        |
|                |   |              |         |          |              |       |          |                  |       |     |         |        |
|                |   |              |         |          |              |       |          |                  |       |     |         |        |
|                |   |              |         |          |              |       | -        |                  |       |     |         |        |
| 5              |   |              | 0,00000 | 5        |              | 0,000 | 5        |                  | 0,000 | 5   |         |        |
| _              |   | [ Di-bar ] = | 0,00000 |          | [Ai-bar]=    | 0,000 |          | [A(5)]=          | 0,000 |     | N (5)   | = 0.00 |
|                |   |              | 0,00000 | 6        |              | 0,000 | 6        | 1. (27)          | 0,000 | 6   |         | -/     |
| Κόμβος αρχής   | 5 |              | 0,00000 |          |              | 0,000 |          |                  | 0,000 |     |         | θλίψη  |
| Κόμβος πέρατος | 6 |              |         |          |              |       |          |                  |       |     |         |        |
|                |   |              |         |          |              |       |          |                  |       |     |         |        |
|                |   |              |         |          |              |       |          |                  |       |     |         |        |
|                |   |              | 0.0000  | 1        |              | 0.000 |          |                  | 0.000 |     |         |        |
| 6              |   |              | 0.00000 | 6        |              | 0,000 | 6        |                  | 0,000 | 6   |         |        |
|                |   | [ Di-bar ] = | 0,00000 |          | [ Ai-bar ] = | 0,000 |          | [ A(6) ] =       | 0,000 |     | N (6)   | = 0,00 |
| Κόμβος αρχής   | 6 |              | 0.00000 | 7        |              | 0.000 | 7        |                  | 0.000 | 7   |         | θλίψη  |
| Κόμβος πέρατος | 7 |              | 0,00000 |          |              | 0,000 |          |                  | 0,000 |     |         |        |
| πομρος περατος |   |              |         |          |              |       |          |                  |       |     |         |        |
|                |   |              |         |          |              |       |          |                  |       |     |         |        |
|                |   |              |         |          |              |       |          |                  |       |     |         |        |
| 7              |   |              | 0,00000 | 7        |              | 0,000 | 7        |                  | 0,000 | 7   |         |        |
| /              |   | [Dibor] =    | 0,00000 | <i>'</i> | [ 4:] -      | 0,000 | <i>'</i> | [ (7) ]          | 0,000 | · · | NI / 71 | - 0.00 |
|                |   | [Di-bar]=    | 0,00000 | 0        | [Al-bar] =   | 0,000 | 0        | [A(7)]=          | 0,000 | 0   | N (7)   | = 0,00 |
|                | _ |              | 0.00000 | ŏ        |              | 0.000 | õ        |                  | 0.000 | 0   |         | θλίψο  |
| Κόμβος αρχής   | 7 |              | 0,00000 |          |              | 0,000 |          |                  | 0,000 |     |         | υλιφη  |

<u>Εικόνα 40<sup>η</sup></u>

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |    |              |         |    |   |            |       |    |           |                |    |              |        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----|--------------|---------|----|---|------------|-------|----|-----------|----------------|----|--------------|--------|
| N (8)         N (8)           N (8)         N (8)           N (9)         N (10)           N (10)         N (10)           N (10)         N (10)           N (10)         N (10)           N (11)         N (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8              |    |              | 0,00000 | 8  |   |            | 0,000 | 8  | [ 4 (0) ] | 0,000<br>0,000 | 8  | <br>N (0)    | 0.00   |
| Kóμβος αρχής         8         0.0000         9         0.000         9         0.000         9         0.000         9         0.000         9         0.000         9         0.000         9         0.000         9         0.000         9         0.000         9         0.000         9         0.000         9         0.000         9         0.000         9         0.000         9         0.000         9         0.000         9         0.000         9         0.000         9         0.000         9         0.000         9         0.000         9         0.000         9         0.000         9         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000 <t< td=""><td></td><td></td><td>[Di-bar]=</td><td>0,00000</td><td>_</td><td>l</td><td>Ai-bar ] =</td><td>0,000</td><td>_</td><td>[A(8)]=</td><td>0,000</td><td>_</td><td>N (8) =</td><td>0,00</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |    | [Di-bar]=    | 0,00000 | _  | l | Ai-bar ] = | 0,000 | _  | [A(8)]=   | 0,000          | _  | N (8) =      | 0,00   |
| Kôµβo néparo       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Κόμβος αρχής   | 8  |              | 0,00000 | 9  |   |            | 0,000 | 9  |           | 0,000          | 9  |              | θλίψη  |
| $\begin{array}{c} 9 \\ 9 \\ \hline \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Κόμβος πέρατος | 9  |              |         |    |   |            |       |    |           |                |    |              |        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |    |              |         |    |   |            |       |    |           |                |    |              |        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |    |              |         |    |   |            |       |    |           |                |    |              |        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |    |              |         |    |   |            |       |    |           |                |    |              |        |
| $\begin{bmatrix} 0,000 & 0 & 0 \\ 0,0000 & 0 & 0 \\ 0,0000 & 0 & 0 \\ 0,0000 & 0 & 0 \\ 0,0000 & 0 & 0 \\ 0,0000 & 0 & 0 \\ 0,0000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,000 & 0 & 0 \\ 0,00 & 0 & 0 \\ 0,00 $                                                                                                                                                                                                                         | Q              |    |              | 0,00000 | 9  |   |            | 0,000 | 9  |           | 0,000          | 9  |              |        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2              |    | [Di-bar] =   | 0,00000 |    | r | Aisbarl =  | 0,000 |    | [ (0) ] - | 0,000          | -  | N (9) -      | 0.00   |
| $\begin{split} & \dot{\kappa} \dot{\omega} \mu \beta_{0} c  n \dot{\rho} \eta \dot{r} c & 9 & 0.0000 & 1 & 0 & 0.000 & 1 & 0 & 0.000 & 1 & 0 & 0.000 & 1 & 0 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.0$                                                                                                                                                                                                                                                                                                                         |                |    | [ Di bai ]   | 0,00000 | 10 | 1 | All par 1  | 0,000 | 10 | [7(3)]-   | 0,000          | 10 | <br>N(3) -   | 0,00   |
| Κόμβος πέρατος       10       Image: second secon                                                                                                                                                                                                                                                                                                                                                                                                                         | Κόμβος αρχής   | 9  |              | 0,00000 |    |   |            | 0,000 |    |           | 0,000          |    |              | θλίψη  |
| $\frac{10}{10} = \begin{bmatrix} 0,0000\\ 0,0000\\ 0,0000\\ 0,0000\\ 0,0000\\ 0,0000\\ 0,0000\\ 11 \end{bmatrix} = \begin{bmatrix} 0,000\\ 0,000\\ 0,000\\ 0,0000\\ 0,0000\\ 0,0000\\ 0,0000\\ 0,0000\\ 0,0000\\ 11 \end{bmatrix} = \begin{bmatrix} 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,00\\ 0,$ | Κόμβος πέρατος | 10 |              |         |    |   |            |       |    |           |                |    |              |        |
| $ \begin{array}{c} 10 \\ 10 \\ \hline \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |    |              |         |    |   |            |       |    |           |                |    |              |        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |    |              |         |    |   |            |       |    |           |                |    |              |        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |    |              | 0.00000 |    |   |            | 0.000 |    |           | 0.000          |    |              |        |
| $\begin{bmatrix} Di-bar \end{bmatrix} = \begin{bmatrix} 0,0000 \\ 0,0000 \\ 0,0000 \\ 0,0000 \\ 0,0000 \\ 11 \\ K\dot{\alpha}\mu\beta\alpha,\pi\dot{\alpha}\rho\chi\dot{\eta}\zeta & 10 \\ K\dot{\alpha}\mu\beta\alpha,\pi\dot{\alpha}\rho\chi\dot{\eta}\zeta & 11 \\ & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10             |    |              | 0,00000 | 10 |   |            | 0,000 | 10 |           | 0,000          | 10 |              |        |
| Kôµβo       αρχής       10       0,0000       11       0,000       11       0,000       11       0,000       11       0,000       11         Kôµβo       αρχής       10       0,0000       11       0,000       11       0,000       11       0,000       11       0,000       11       0,000       11       0,000       11       0,000       11       0,000       11       0,000       11       0,000       11       0,000       11       0,000       11       0,000       0,000       11       0,000       0,000       11       0,000       11       0,000       11       0,000       11       0,000       11       0,000       11       0,000       11       0,000       11       0,000       11       0,000       0,000       11       0,000       0,000       11       0,000       0,000       11       0,000       0,000       11       0,000       11       0,000       0,000       11       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |    | [ Di-bar ] = | 0,00000 |    | [ | Ai-bar ] = | 0,000 |    | [A(10)] = | 0,000          |    | <br>N (10) = | 0,00   |
| κόμβος πέρατος       11       0,0000       11       0,0000       11       0,000       11       0,000       11       0,000       11       0,000       11       0,000       11       0,000       11       0,000       11       0,000       11       0,000       11       0,000       11       0,000       11       0,000       11       0,000       11       0,000       0,000       12       0,000       12       0,000       12       0,000       12       0,000       12       0,000       12       0,000       12       0,000       12       0,000       12       0,000       12       0,000       12       0,000       12       0,000       12       0,000       12       0,000       12       0,000       12       0,000       12       0,000       12       0,000       12       0,000       12       0,000       12       0,000       12       0,000       12       0,000       12       0,000       12       0,000       12       0,000       12       0,000       12       0,000       0,000       12       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Κόμβος σονής   | 10 |              | 0,00000 | 11 |   |            | 0,000 | 11 |           | 0,000          | 11 | <br>         | Alilup |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | κόμβος πέρατος | 10 |              | 0,00000 |    |   |            | 0,000 |    |           | 0,000          |    |              | υλιφη  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | κομρος περατος | 11 |              |         |    |   |            |       |    |           |                |    |              |        |
| 11     0,0000     11     0,0000     11       Κόμβος αρχής     11     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |    |              |         |    |   |            |       |    |           |                |    |              |        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |    |              |         |    |   |            |       |    |           |                |    |              |        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |    |              | 0,00000 |    |   |            | 0,000 |    |           | 0,000          |    |              |        |
| Kόμβος αρχής     11     0,00000     12     I (A(11) ] =     0,000     12       Κόμβος πέρατος     12     0,0000     12     0,000     12     0,000     12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11             |    |              | 0,00000 | 11 |   |            | 0,000 | 11 |           | 0,000          | 11 |              |        |
| Κόμβος αρχής         11         0,0000         12         0,000         12           Κόμβος πέρατος         12         0,000         12         0,000         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |    | [Di-bar]=    | 0,00000 |    | 1 | Ai-bar ] = | 0,000 |    | [A(11)]=  | 0,000          |    | N (11) =     | 0,00   |
| Κόμβος πέρατος 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Κόμβος αρχής   | 11 |              | 0,00000 | 12 |   |            | 0,000 | 12 |           | 0,000          | 12 |              | θλίψη  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Κόμβος πέρατος | 12 |              |         | _  |   |            |       |    |           |                |    |              |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |    |              |         |    |   |            |       |    |           |                |    |              |        |

<u>Εικόνα 41<sup>η</sup></u>

| 12                 |    |                | 0,00000                       | 1  |              | 0,000 | 1  |             | 0,000          | 1  |              |                      |
|--------------------|----|----------------|-------------------------------|----|--------------|-------|----|-------------|----------------|----|--------------|----------------------|
|                    |    | [ Di-bar ] =   | 0,00000                       |    | [ Ai-bar ] = | 0,000 |    | [A(12)] =   | 0,000          |    | <br>N (12) = | 0.00                 |
|                    |    |                | 0,00000                       | 13 |              | 0,000 | 13 | L · · (/ ]  | 0,000          | 13 | <br>/        | -,                   |
| Κόμβος αρχής       | 1  |                | 0,00000                       |    |              | 0,000 |    |             | 0,000          |    |              | θλίψη                |
| Κόμβος πέρατος     | 13 |                |                               |    |              |       |    |             |                |    |              |                      |
|                    |    |                |                               |    |              |       |    |             |                |    |              |                      |
| 12                 |    |                | 0,00000                       |    |              | 0,000 |    |             | 0,000          | 40 |              |                      |
| 13                 |    | 1011           | 0,00000                       | 13 |              | 0,000 | 13 | [ 4 (4 2) ] | 0,000          | 13 |              |                      |
|                    |    | [Di-bar]=      | 0,00000                       |    | [Ai-bar]=    | 0,000 |    | [A(13)]=    | 0,000          |    | N (13) =     | 0,00                 |
| Κόμβος αρχής       | 13 |                | 0,00000                       | 14 |              | 0,000 | 14 |             | 0,000          | 14 |              | θλίψη                |
| Κόμβος πέρατος     | 14 |                |                               |    |              |       |    |             |                |    |              |                      |
| 14                 |    |                | 0,00000                       | 14 |              | 0,000 | 14 |             | 0,000<br>0,000 | 14 |              |                      |
|                    |    | [ Di-bar ] =   | 0.00000                       |    | [ Ai-bar ] = | 0.000 |    | [A(14)]=    | 0.000          |    | N (14) =     | 0,00                 |
| Κόμβος αρχής       | 14 |                | 0.00000                       | 15 |              | 0,000 | 15 |             | 0.000          | 15 |              | θλίψη                |
| Κόμβος πέρατος     | 15 |                |                               |    |              |       |    |             |                |    |              |                      |
|                    |    |                |                               |    |              |       |    |             |                |    |              |                      |
|                    |    |                | 0,00000                       | 15 |              | 0,000 | 15 |             | 0,000          | 15 |              |                      |
| 15                 |    |                |                               |    |              | 0.000 |    |             | 0,000          |    |              |                      |
| 15                 |    | [ Di-bar ] =   | 0,00000                       |    | [Ai-bar] =   | 0,000 |    | A(15)    =  |                |    | <br>N (15) = | 0.00                 |
| 15                 |    | [Di-bar] = ·   | 0,00000<br>0,00000            | 16 | [ Ai-bar ] = | 0,000 | 16 | [ A(15) ] = | 0,000          | 16 | <br>N (15) = | 0,00                 |
| 15<br>Κόμβος αρχής | 15 | [ Di-bar ] = · | 0,00000<br>0,00000<br>0,00000 | 16 | [ Ai-bar ] = | 0,000 | 16 | [ A(15) ] = | 0,000          | 16 | N (15) =     | <b>0,00</b><br>θλίψη |

<u>Εικόνα 42<sup>η</sup></u>

| 16              |    |              | 0,00000 | 16   |              | 0,000 | 16 |                   | 0,000 | 16 |          |       |
|-----------------|----|--------------|---------|------|--------------|-------|----|-------------------|-------|----|----------|-------|
|                 |    | [ Di-bar ] = | 0,00000 |      | [ Ai-bar ] = | 0,000 |    | [A(16)] =         | 0,000 |    | N (16) = | 0,00  |
| Κόμβος αρχής    | 16 |              | 0,00000 | 17   |              | 0,000 | 17 |                   | 0,000 | 17 |          | θλίψη |
| τομβος πέρατος  | 17 |              | 0,00000 |      |              | 0,000 |    |                   | 0,000 |    |          | oncon |
| σμρος περατος   | 1/ |              |         |      |              |       |    |                   |       |    |          |       |
|                 |    |              |         |      |              |       |    |                   |       |    |          |       |
|                 |    |              |         |      |              |       |    |                   |       |    |          |       |
| 17              |    |              | 0,00000 | 17   |              | 0,000 | 17 |                   | 0,000 | 17 |          |       |
| 17              |    | [Di-bar] =   | 0,00000 | 17   | [Ai-bar] =   | 0,000 | 17 | $[\Lambda(17)] =$ | 0,000 | 17 | N (17) - | 0.00  |
|                 |    | [Di-bai] =   | 0,00000 | - 18 | [Al-bai] -   | 0,000 | 18 | [A(17)]-          | 0,000 | 18 | 14(17)-  | 0,00  |
| Κόμβος αρχής    | 17 |              | 0,00000 | 10   |              | 0,000 | 10 |                   | 0,000 | 10 |          | θλίψη |
| όμβος πέρατος   | 18 |              |         |      |              |       |    |                   |       |    |          |       |
|                 |    |              |         |      |              |       |    |                   |       |    |          |       |
|                 |    |              |         |      |              |       |    |                   |       |    |          |       |
|                 |    |              | 0.0000  |      |              | 0.000 |    |                   | 0.000 |    |          |       |
| 18              |    |              | 0.00000 | 18   |              | 0.000 | 18 |                   | 0,000 | 18 |          |       |
|                 |    | [ Di-bar ] = | 0.00000 |      | [ Ai-bar ] = | 0.000 |    | [ A(18) ] =       | 0.000 |    | N (18) = | 0,00  |
| Κόμβος αρχής    | 18 |              | 0,00000 | 19   |              | 0,000 | 19 |                   | 0,000 | 19 |          | θλίψη |
| όμβος πέρατος   | 19 |              |         |      |              |       |    |                   |       |    |          |       |
|                 |    |              |         |      |              |       |    |                   |       |    |          |       |
|                 |    |              |         |      |              |       |    |                   |       |    |          |       |
|                 |    |              |         |      |              |       |    |                   |       |    |          |       |
| 19              |    |              | 0,00000 | 19   |              | 0,000 | 19 |                   | 0,000 | 19 |          |       |
|                 |    | [ Di-bar ] = | 0,00000 |      | [ Ai-bar ] = | 0,000 |    | [A(19)] =         | 0,000 |    | N (19) = | 0,00  |
| Kéu Qana mayé - | 10 |              | 0,00000 | 20   |              | 0,000 | 20 |                   | 0,000 | 20 |          | 0)/// |
| κομρος αρχης    | 19 |              | 0,00000 |      |              | 0,000 |    |                   | 0,000 |    |          | θλιψη |
| υμρος περατος   | 20 |              |         |      |              |       |    |                   |       |    |          |       |

<u>Εικόνα 43<sup>η</sup></u>

| 20             |    |              | 0,00000 | 20 |              | 0,000 | 20 |           | 0,000 | 20 |          |        |  |
|----------------|----|--------------|---------|----|--------------|-------|----|-----------|-------|----|----------|--------|--|
| 20             |    |              | 0,00000 | 20 | C 411 - 1    | 0,000 | 20 | [ 4(20) ] | 0,000 | 20 | NI (20)  | 0.00   |  |
|                |    | [Di-bar]=    | 0,00000 |    | [Ai-bar]=    | 0,000 |    | [A(20)]=  | 0,000 |    | N (20) = | 0,00   |  |
| Κόμβος αρχής   | 20 |              | 0,00000 | 21 |              | 0,000 | 21 |           | 0,000 | 21 |          | θλίψη  |  |
| Κόμβος πέρατος | 21 |              |         |    |              |       |    |           |       |    |          |        |  |
|                |    |              |         |    |              |       |    |           |       |    |          |        |  |
|                |    |              |         |    |              |       |    |           |       |    |          |        |  |
|                |    |              |         |    |              |       |    |           |       |    |          |        |  |
|                |    |              | 0,00000 | 1  |              | 0,000 |    |           | 0,000 |    |          |        |  |
| 21             |    |              | 0.00000 | 21 |              | 0.000 | 21 |           | 0.000 | 21 |          |        |  |
|                |    | [ Di-bar ] = | 0.00000 |    | [ Ai-bar ] = | 0.000 |    | [A(21)] = | 0.000 |    | N (21) = | 0,00   |  |
| Κόμβος αρχής   | 21 |              | 0.0000  | 12 |              | 0.000 | 12 |           | 0.000 | 12 |          | θλίψη  |  |
| Κόμβος πέρατος | 12 |              | 0,00000 |    |              | 0,000 |    |           | 0,000 |    |          |        |  |
| κομρος περατος | 12 |              |         |    |              |       |    |           |       |    |          |        |  |
|                |    |              |         |    |              |       |    |           |       |    |          |        |  |
|                |    |              |         |    |              |       |    |           |       |    |          |        |  |
|                |    |              | 0.0000  |    |              | 0.000 |    |           | 0.000 |    |          |        |  |
| 22             |    |              | 0,00000 | 2  |              | 0,000 | 2  |           | 0,000 | 2  |          |        |  |
|                |    | [ Di-bar ] = | 0,00000 |    | [ Ai-bar ] = | 0,000 |    | [A(22)] = | 0,000 |    | N (22) = | 0,00   |  |
| Κόμβος αργός   | 2  |              | 0,00000 | 13 |              | 0,000 | 13 |           | 0,000 | 13 |          | Alilup |  |
| κόμβος πέρατος | 10 |              | 0,00000 |    |              | 0,000 |    |           | 0,000 |    |          | υλιφη  |  |
| κομρος περατος | 15 |              |         |    |              |       |    |           |       |    |          |        |  |
|                |    |              |         |    |              |       |    |           |       |    |          |        |  |
|                |    |              |         |    |              |       |    |           |       |    |          |        |  |
|                |    |              | 0.00000 | 1  |              | 0.000 |    |           | 0.000 |    |          |        |  |
| 23             |    |              | 0,00000 | 3  |              | 0,000 | 3  |           | 0,000 | 3  |          |        |  |
|                |    | [ Di-bar ] = | 0,00000 |    | [ Ai-bar ] = | 0,000 |    | [A(23)] = | 0,000 |    | N (23) = | 0,00   |  |
| Κόμβος αργός   | 2  |              | 0,00000 | 13 |              | 0,000 | 13 |           | 0,000 | 13 |          | Alilin |  |
| κόμρος αρχης   | 3  |              | 0,0000  | 1  |              | 0,000 |    |           | 0,000 |    |          | υλιψη  |  |
| κομρος περατος | 15 |              |         |    |              |       |    |           |       |    |          |        |  |

<u>Εικόνα 44<sup>η</sup></u>

| 24<br>Κόμβος αρχής<br>Κόμβος πέρατος | 2<br>14 | [ Di-bar ] = | 0,00000<br>0,00000<br>0,00000<br>0,00000 | 2 14    | [ Ai-bar ] = | 0,000<br>0,000<br>0,000<br>0,000 | 2 14    | [ A(24) ] = | 0,000<br>0,000<br>0,000<br>0,000 | 2 14    | N (24) = | <b>0,00</b><br>θλίψη |  |
|--------------------------------------|---------|--------------|------------------------------------------|---------|--------------|----------------------------------|---------|-------------|----------------------------------|---------|----------|----------------------|--|
| 25<br>Κόμβος αρχής<br>Κόμβος πέρατος | 3<br>14 | [ Di-bar ] = | 0,00000<br>0,00000<br>0,00000<br>0,00000 | 3       | [ Ai-bar ] = | 0,000<br>0,000<br>0,000<br>0,000 | 3       | [ A(25) ] = | 0,000<br>0,000<br>0,000<br>0,000 | 3       | N (25) = | <b>0,00</b><br>θλίψη |  |
| 26<br>Κόμβος αρχής<br>Κόμβος πέρατος | 4 14    | [ Di-bar ] = | 0,00000<br>0,00000<br>0,00000<br>0,00000 | 4<br>14 | [ Ai-bar ] = | 0,000<br>0,000<br>0,000<br>0,000 | 4       | [ A(26) ] = | 0,000<br>0,000<br>0,000<br>0,000 | 4       | N (26) = | <b>Ο,0Ο</b><br>θλίψη |  |
| 27<br>Κόμβος αρχής<br>Κόμβος πέρατος | 3 15    | [ Di-bar ] = | 0,00000<br>0,00000<br>0,00000<br>0,00000 | 3<br>15 | [ Ai-bar ] = | 0,000<br>0,000<br>0,000<br>0,000 | 3<br>15 | [ A(27) ] = | 0,000<br>0,000<br>0,000<br>0,000 | 3<br>15 | N (27) = | <b>0,00</b><br>θλίψη |  |

<u>Εικόνα 45<sup>η</sup></u>

| 20              |    |              | 0,00000 | 4  |              | 0,000 | 4  |              | 0,000 | 4  |           |       |
|-----------------|----|--------------|---------|----|--------------|-------|----|--------------|-------|----|-----------|-------|
| 20              |    | [Di-bar] -   | 0,00000 | 4  | [Ai_bar] -   | 0,000 | 4  | [ ()(28) ] - | 0,000 | 4  | NI (28) - | 0.00  |
|                 |    | [Di-bai]=    | 0,00000 | 15 | [Al-bai ] -  | 0,000 | 15 | [ A(20) ] -  | 0,000 | 15 | 14 (20) - | 0,00  |
| Κόμβος αρχής    | 4  |              | 0,00000 | 15 |              | 0,000 | 15 |              | 0,000 | 15 |           | θλίψη |
| Κόμβος πέρατος  | 15 |              |         |    |              |       |    |              |       |    |           |       |
|                 |    |              |         |    |              |       |    |              |       |    |           |       |
|                 |    |              |         |    |              |       |    |              |       |    |           |       |
|                 |    |              |         |    |              |       |    |              |       |    |           |       |
| 29              |    |              | 0,00000 | 5  |              | 0,000 | 5  |              | 0,000 | 5  |           |       |
|                 |    | [Di-bar]=    | 0,00000 |    | [Ai-bar]=    | 0,000 |    | [ A(29) ] =  | 0,000 |    | N (29) =  | 0.00  |
|                 |    |              | 0,00000 | 15 |              | 0,000 | 15 | 1 7 1        | 0,000 | 15 |           | -/    |
| Κόμβος αρχής    | 5  |              | 0,00000 |    |              | 0,000 |    |              | 0,000 |    |           | θλίψη |
| Κόμβος πέρατος  | 15 |              |         |    |              |       |    |              |       |    |           |       |
|                 |    |              |         |    |              |       |    |              |       |    |           |       |
|                 |    |              |         |    |              |       |    |              |       |    |           |       |
|                 |    |              | 0.00000 |    |              | 0.000 |    |              | 0.000 |    |           |       |
| 30              |    |              | 0,00000 | 4  |              | 0,000 | 4  |              | 0,000 | 4  |           |       |
|                 | -  | [ Di-bar ] = | 0,00000 |    | [ Ai-bar ] = | 0,000 |    | [ A(30) ] =  | 0,000 |    | N (30) =  | 0,00  |
| Κόμβος αρχής    | 4  |              | 0.00000 | 16 |              | 0.000 | 16 |              | 0.000 | 16 |           | θλίψη |
| Κόμβος πέρατος  | 16 |              | -,      | -  |              | -,    |    |              | -,    | 4  |           |       |
| noppositioparos |    |              |         |    |              |       |    |              |       |    |           |       |
|                 |    |              |         |    |              |       |    |              |       |    |           |       |
|                 |    |              |         |    |              |       |    |              |       |    |           |       |
| 21              |    |              | 0,00000 | _  |              | 0,000 | _  |              | 0,000 | _  |           |       |
| 31              |    | [Dibar]-     | 0,00000 | 5  | [Aiber]-     | 0,000 | 5  | [ (24) ] -   | 0,000 | 5  | NI (21) - | 0.00  |
|                 |    | [Di-bar]=    | 0,00000 | 16 | [Al-bat]=    | 0,000 | 16 | [ A(51) ] =  | 0,000 | 16 | N (31) =  | 0,00  |
| Κόμβος αρχής    | 5  |              | 0,00000 | 10 |              | 0,000 | 10 |              | 0,000 | 10 |           | θλίψη |
| Κόμβος πέρατος  | 16 |              |         |    |              |       |    |              |       |    |           |       |
|                 |    |              |         |    |              |       |    |              |       |    |           |       |

<u>Εικόνα 46<sup>η</sup></u>

| 32             |    | [ Di-bar ] = | 0,00000 | 6   | [ Ai-bar ] = | 0,000 | 6   | [ A(32) ] =  | 0,000<br>0,000 | 6  | N (32) =  | 0,00  |
|----------------|----|--------------|---------|-----|--------------|-------|-----|--------------|----------------|----|-----------|-------|
| Κόμβος αρχής   | 6  |              | 0,00000 | 16  |              | 0,000 | 16  |              | 0,000          | 16 |           | θλίψη |
| Κόμβος πέρατος | 16 |              |         |     |              |       |     |              |                |    |           |       |
|                |    |              |         |     |              |       |     |              |                |    |           |       |
|                |    |              |         |     |              |       |     |              |                |    |           |       |
| 33             |    | [Dibar] =    | 0,00000 | 5   | [Aibar]-     | 0,000 | 5   | [ 4(22) ] =  | 0,000<br>0,000 | 5  | NI (22) - | 0.00  |
|                |    | [Di-bai] =   | 0,00000 | 17  | [Al-Dal ] -  | 0,000 | 17  | [A(55)]-     | 0,000          | 17 | N (55) -  | 0,00  |
| Κόμβος αρχής   | 5  |              | 0,00000 | 17  |              | 0,000 | 17  |              | 0,000          | -7 |           | θλίψη |
| Κόμβος πέρατος | 17 |              |         |     |              |       |     |              |                |    |           |       |
|                |    |              |         |     |              |       |     |              |                |    |           |       |
|                |    |              |         |     |              |       |     |              |                |    |           |       |
|                |    |              | 0.00000 |     |              | 0.000 |     |              | 0.000          |    |           |       |
| 34             |    |              | 0,00000 | 6   |              | 0,000 | 6   |              | 0,000          | 6  |           |       |
|                | -  | [ Di-bar ] = | 0,00000 |     | [ Ai-bar ] = | 0,000 |     | [ A(34) ] =  | 0,000          |    | N (34) =  | 0,00  |
| Κόμβος αρχής   | 6  |              | 0.00000 | 17  |              | 0.000 | 17  |              | 0.000          | 17 |           | θλίψη |
| Κόμβος πέρατος | 17 |              | 0,00000 |     |              | 0,000 |     |              | 0,000          |    |           |       |
|                |    |              |         |     |              |       |     |              |                |    |           |       |
|                |    |              |         |     |              |       |     |              |                |    |           |       |
|                |    |              |         |     |              |       |     |              |                |    |           |       |
| 35             |    |              | 0,00000 | 7   |              | 0,000 | 7   |              | 0,000          | 7  |           |       |
|                |    | [Di-bar]=    | 0,00000 | · · | [Ai-bar]=    | 0,000 | · · | [ A(35) ] =  | 0,000          | ·  | N (35) =  | 0.00  |
|                |    | [ 01 001 ] = | 0,00000 | 17  | four period  | 0,000 | 17  | [ //[35] ] = | 0,000          | 17 | 14 (33) - | 0,00  |
| Κόμβος αρχής   | 7  |              | 0,00000 |     |              | 0,000 |     |              | 0,000          |    |           | θλίψη |
| Κόμβος πέρατος | 17 |              |         |     |              |       |     |              |                |    |           |       |

<u>Εικόνα 47η</u>

|                |    |              |         | -    |              |       |    |             |       |    |              |       |
|----------------|----|--------------|---------|------|--------------|-------|----|-------------|-------|----|--------------|-------|
| 36             |    |              | 0,00000 | 8    |              | 0,000 | 8  |             | 0,000 | 8  | <br>         |       |
|                |    | [Di-bar]=    | 0,00000 |      | [ Ai-bar ] = | 0,000 | _  | [ A(36) ] = | 0,000 | _  | <br>N (36) = | 0.00  |
|                |    |              | 0,00000 | 17   |              | 0,000 | 17 | 1 7 3       | 0,000 | 17 | <br>         |       |
| Κόμβος αρχής   | 8  |              | 0,00000 |      |              | 0,000 |    |             | 0,000 |    |              | θλίψη |
| Κόμβος πέρατος | 17 |              |         |      |              |       |    |             |       |    |              |       |
|                |    |              |         |      |              |       |    |             |       |    |              |       |
|                |    |              |         |      |              |       |    |             |       |    |              |       |
| _              |    |              | 0.00000 | 1    |              | 0.000 |    |             | 0.000 |    |              |       |
| 37             |    |              | 0,00000 | 7    |              | 0,000 | 7  |             | 0,000 | 7  |              |       |
|                |    | [ Di-bar ] = | 0,00000 | -    | [ Ai-bar ] = | 0,000 |    | [ A(37) ] = | 0,000 |    | <br>N (37) = | 0,00  |
| Κόμβος αρχής   | 7  |              | 0.00000 | - 18 |              | 0.000 | 18 |             | 0.000 | 18 | <br>         | θλίψη |
| Κόμβος πέρατος | 18 |              | -,      | -    |              | -,    |    |             | -,    |    |              |       |
|                |    |              |         |      |              |       |    |             |       |    |              |       |
|                |    |              |         |      |              |       |    |             |       |    |              |       |
|                |    |              |         |      |              |       |    |             |       |    |              |       |
| 38             |    |              | 0,00000 |      |              | 0,000 | 8  |             | 0,000 | 8  |              |       |
| 50             |    | [Di-bar]=    | 0,00000 | Ŭ    | [Ai-har]=    | 0,000 | 0  | [ 4(38) ] = | 0,000 | Ŭ  | <br>N (38) = | 0.00  |
|                |    | [ 51 54 ] =  | 0,00000 | 18   | [Arigan]=    | 0,000 | 18 | [ /(30/ ] - | 0,000 | 18 | 14 (30) -    | 0,00  |
| Κόμβος αρχής   | 8  |              | 0,00000 |      |              | 0,000 | 10 |             | 0,000 | 10 |              | θλίψη |
| Κόμβος πέρατος | 18 |              |         |      |              |       |    |             |       |    |              |       |
|                |    |              |         |      |              |       |    |             |       |    |              |       |
|                |    |              |         |      |              |       |    |             |       |    |              |       |
|                |    |              | 0.00000 |      |              | 0.000 |    |             | 0.000 |    |              |       |
| 39             |    |              | 0,00000 | 9    |              | 0,000 | 9  |             | 0,000 | 9  |              |       |
|                |    | [ Di-bar ] = | 0,00000 |      | [ Ai-bar ] = | 0,000 |    | [ A(39) ] = | 0,000 |    | <br>N (39) = | 0,00  |
| Κόμβος αρχής   | 9  |              | 0.00000 | 18   |              | 0.000 | 18 |             | 0.000 | 18 | <br>         | θλίψη |
| Κόμβος πέρατος | 18 |              | -,      |      |              | -,    |    |             | -,    |    |              |       |
|                |    |              |         |      |              |       |    |             |       |    |              |       |
|                |    |              |         |      |              |       |    |             |       |    |              |       |
|                |    |              |         |      |              |       |    |             |       |    |              |       |

<u>Εικόνα 48η</u>

| 40<br>Κόμβος αρχής<br>Κόμβος πέρατος | 8<br>19  | [ Di-bar ] = | 0,00000<br>0,00000<br>0,00000<br>0,00000 | 8<br>19  | [ Ai-bar ] = | 0,000<br>0,000<br>0,000<br>0,000 | 8<br>19  | [ A(40) ] = | 0,000<br>0,000<br>0,000<br>0,000 | 8<br>19  | N (4 | 40) = | <b>0,00</b><br>θλίψη       |
|--------------------------------------|----------|--------------|------------------------------------------|----------|--------------|----------------------------------|----------|-------------|----------------------------------|----------|------|-------|----------------------------|
| 41<br>Κόμβος αρχής<br>Κόμβος πέρατος | 9<br>19  | [ Di-bar ] = | 0,00000<br>0,00000<br>0,00000<br>0,00000 | 9        | [ Ai-bar ] = | 0,000<br>0,000<br>0,000<br>0,000 | 9        | [ A(41) ] = | 0,000<br>0,000<br>0,000<br>0,000 | 9        | N (4 | 1) =  | <b>0,00</b><br>θλίψη       |
| 42<br>Κόμβος αρχής<br>Κόμβος πέρατος | 10<br>19 | [ Di-bar ] = | 0,00000<br>0,00000<br>0,00000<br>0,00000 | 10<br>19 | [ Ai-bar ] = | 0,000<br>0,000<br>0,000<br>0,000 | 10<br>19 | [ A(42) ] = | 0,000<br>0,000<br>0,000<br>0,000 | 10<br>19 | N (4 | 12) = | <mark>0,00</mark><br>θλίψη |
| 43<br>Κόμβος αρχής<br>Κόμβος πέρατος | 9<br>20  | [ Di-bar ] = | 0,00000<br>0,00000<br>0,00000<br>0,00000 | 9<br>20  | [ Ai-bar ] = | 0,000<br>0,000<br>0,000<br>0,000 | 9<br>20  | [ A(43) ] = | 0,000<br>0,000<br>0,000<br>0,000 | 9<br>20  | N (4 | 13) = | <b>0,00</b><br>θλίψη       |

<u>Εικόνα 49<sup>η</sup></u>

| 44             |    |              | 0,00000 | 10 |              | 0,000 | 10 |             | 0,000 | 10 |           |        |
|----------------|----|--------------|---------|----|--------------|-------|----|-------------|-------|----|-----------|--------|
|                |    | [Di-bar]=    | 0,00000 |    | [Ai-bar]=    | 0,000 |    | [ A(44) ] = | 0,000 |    | N (44) =  | 0,00   |
| Κόμβος αρχής   | 10 |              | 0,00000 | 20 |              | 0,000 | 20 |             | 0,000 | 20 |           | θλίψη  |
| Κόμβος πέρατος | 20 |              |         |    |              |       |    |             |       |    |           |        |
|                |    |              |         |    |              |       |    |             |       |    |           |        |
|                |    |              |         |    |              |       |    |             |       |    |           |        |
|                |    |              |         |    |              |       |    |             |       |    |           |        |
| 45             |    |              | 0,00000 | 11 |              | 0,000 | 11 |             | 0,000 | 11 |           |        |
|                |    | [ Di-bar ] = | 0,00000 | -  | [ Ai-bar ] = | 0,000 |    | [A(45)] =   | 0,000 |    | N (45) =  | 0,00   |
| Κόμβος σοχής   | 11 |              | 0,00000 | 20 |              | 0,000 | 20 |             | 0,000 | 20 |           | Alidun |
| Κόμβος πέρατος | 20 |              | 0,00000 |    |              | 0,000 |    |             | 0,000 |    |           | ολιφή  |
| τομρος περατος | 20 |              |         |    |              |       |    |             |       |    |           |        |
|                |    |              |         |    |              |       |    |             |       |    |           |        |
|                |    |              |         |    |              |       |    |             |       |    |           |        |
| 46             |    |              | 0,00000 | 10 |              | 0,000 | 10 |             | 0,000 | 10 |           |        |
| 40             |    | [Di-bar]=    | 0,00000 |    | [Ai-bar]=    | 0,000 | 10 | [A(46)]=    | 0,000 |    | N (46) =  | 0.00   |
|                |    |              | 0,00000 | 21 |              | 0,000 | 21 | 1(/1        | 0,000 | 21 |           | -,     |
| Κόμβος αρχής   | 10 |              | 0,00000 |    |              | 0,000 |    |             | 0,000 |    |           | θλίψη  |
| Κόμβος πέρατος | 21 |              |         |    |              |       |    |             |       |    |           |        |
|                |    |              |         |    |              |       |    |             |       |    |           |        |
|                |    |              |         |    |              |       |    |             |       |    |           |        |
| 47             |    |              | 0,00000 |    |              | 0,000 |    |             | 0,000 |    |           |        |
| 47             |    | [Dibar]=     | 0,00000 | 11 | [Aibor]=     | 0,000 | 11 | [ ((47) ] - | 0,000 | 11 | N (47) -  | 0.00   |
|                |    | [ Di-bar ] = | 0,00000 | 21 | [Al-bai ] =  | 0,000 | 21 | [ (4/) ] =  | 0,000 | 21 | 14 (47) = | 0,00   |
| Κόμβος αρχής   | 11 |              | 0,00000 | 21 |              | 0,000 | 21 |             | 0,000 | ~1 |           | θλίψη  |
| (όμβος πέρατος | 21 |              |         |    |              |       |    |             |       |    |           |        |
|                |    |              |         |    |              |       |    |             |       |    |           |        |

<u>Εικόνα 50<sup>η</sup></u>

|        | Γραμμές Επιρροής εντατικών και παραμορφωσιακών μεγεθών |                 |                  |                   |                   |                   |                   |                  |                    |                    |
|--------|--------------------------------------------------------|-----------------|------------------|-------------------|-------------------|-------------------|-------------------|------------------|--------------------|--------------------|
|        |                                                        |                 |                  |                   |                   |                   |                   |                  |                    |                    |
|        | ιβος Φορτίο                                            | θέση<br>φορτίου | αξονική<br>Ν (6) | αξονική<br>Ν (34) | αξονική<br>Ν (16) | αξονική<br>Ν (28) | βύθιση<br>u2 (17) | βύθιση<br>u2 (6) | Αντίδραση<br>F1(1) | Αντίδρασι<br>F2(1) |
| κόμβος |                                                        |                 |                  |                   |                   |                   |                   |                  |                    |                    |
| 1      |                                                        | 0,0             | 0,000            | 0,000             | 0,000             | 0,000             | 0,000E+00         | 0,000E+00        | 0,000              | 1,000              |
|        |                                                        | 2,0             | -0,075           | 0,036             | -0,149            | 0,035             | -1,005E-05        | -1,137E-05       | 0,200              | 0,955              |
| 2      |                                                        | 4,0             | -0,151           | 0,073             | -0,299            | 0,069             | -2,009E-05        | -2,275E-05       | 0,401              | 0,909              |
|        |                                                        | 6,0             | -0,132           | 0,104             | -0,450            | 0,079             | -2,709E-05        | -3,026E-05       | 0,507              | 0,864              |
| 3      |                                                        | 8,0             | -0,112           | 0,136             | -0,602            | 0,089             | -3,410E-05        | -3,778E-05       | 0,612              | 0,818              |
|        |                                                        | 10,0            | -0,061           | 0,170             | -0,752            | 0,297             | -3,993E-05        | -4,388E-05       | 0,686              | 0,773              |
| 4      |                                                        | 12,0            | -0,010           | 0,204             | -0,903            | 0,505             | -4,576E-05        | -4,999E-05       | 0,760              | 0,727              |
|        |                                                        | 14,0            | 0,069            | 0,205             | -1,070            | 0,261             | -5,086E-05        | -5,479E-05       | 0,806              | 0,682              |
| 5      |                                                        | 16,0            | 0,148            | 0,206             | -1,237            | 0,016             | -5,596E-05        | -5,960E-05       | 0,852              | 0,636              |
|        |                                                        | 18,0            | 0,245            | 0,446             | -1,282            | 0,056             | -5,971E-05        | -6,539E-05       | 0,880              | 0,591              |
| 6      |                                                        | 20,0            | 0,342            | 0,687             | -1,327            | 0,097             | -6,346E-05        | -7,117E-05       | 0,908              | 0,545              |
|        |                                                        | 22,0            | 0,342            | 0,262             | -1,185            | 0,087             | -6,346E-05        | -6,603E-05       | 0,908              | 0,500              |
| 7      |                                                        | 24,0            | 0,342            | -0,163            | -1,042            | 0,076             | -6,346E-05        | -6,089E-05       | 0,908              | 0,455              |
|        |                                                        | 26,0            | 0,245            | -0,143            | -0,937            | 0,073             | -5,971E-05        | -5,694E-05       | 0,880              | 0,409              |
| 8      |                                                        | 28,0            | 0,148            | -0,124            | -0,831            | 0,070             | -5,596E-05        | -5,300E-05       | 0,852              | 0,364              |
|        |                                                        | 30,0            | 0,069            | -0,106            | -0,726            | 0,066             | -5,086E-05        | -4,789E-05       | 0,806              | 0,318              |
| 9      |                                                        | 32,0            | -0,010           | -0,088            | -0,620            | 0,061             | -4,576E-05        | -4,279E-05       | 0,760              | 0,273              |
|        |                                                        | 34,0            | -0,061           | -0,071            | -0,516            | 0,055             | -3,993E-05        | -3,711E-05       | 0,686              | 0,227              |
| 10     |                                                        | 36,0            | -0,112           | -0,054            | -0,411            | 0,048             | -3,410E-05        | -3,143E-05       | 0,612              | 0,182              |
|        |                                                        | 38,0            | -0,132           | -0,038            | -0,307            | 0,040             | -2,709E-05        | -2,479E-05       | 0,507              | 0,136              |
| 11     |                                                        | 40,0            | -0,151           | -0,023            | -0,203            | 0,031             | -2,009E-05        | -1,815E-05       | 0,401              | 0,091              |
|        |                                                        | 42,0            | -0,075           | -0,011            | -0,102            | 0,016             | -1,005E-05        | -9,077E-06       | 0,200              | 0,045              |
| 12     |                                                        | 44.0            | 0.000            | 0.000             | 0.000             | 0.000             | 0.000E+00         | 0.000E+00        | 0.000              | 0.000              |

<u>Εικόνα 51<sup>η</sup></u>



 $\not = 4.0 - \not = 4.0 - = 4.0 - \not = 4.0 - = 4.0 - \not = 4.0 - \not = 4.0 - \not = 4.0 - \not = 4.0 - = 4.0 - = 4.0 - = 4.0 - = 4.0 - = 4.0 - = 4.0 - = 4.0 - = 4.0 - = 4.0 - = 4.0 - = 4.0 - = 4.0 - = 4.0 - = 4.0 - = 4.0 - = 4.0 - = 4.0 - = 4.0 - = 4.0 - = 4.0 - = 4.0 - = 4.0 - = 4.0 - = 4.0 - = 4.0 - = 4.0 - = 4.0 - = 4.0 - = 4.0 - = 4.0 - = 4.0 - = 4.0 - = 4.0 -$ 



<u>Εικόνα 52<sup>η</sup></u>



+ 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4.0 + 4



<u>Εικόνα 53<sup>η</sup></u>





## <u>Εικόνα 54<sup>η</sup></u>



 $\not \not \leftarrow 4.0 - \vdash 4.0 - \vdash = 4.0 -$ 



<u>Εικόνα 55<sup>η</sup></u>





### <u>Εικόνα 56η</u>





<u>Εικόνα 57<sup>η</sup></u>





### <u>Εικόνα 58<sup>η</sup></u>





### <u>Εικόνα 59<sup>η</sup></u>



### <u>Εικόνα 61<sup>η</sup></u>

# Βιβλιογραφία

1. Sung, Y.-C.; Lin, T.-K.; Chiu, Y.-T.; Chang, K.-C.; Chen, K.-L.; Chang, C.-C. A bridge safety monitoring system for prestressed composite box-girder bridges with corrugated steel webs based on in-situ loading experiments and a long-term monitoring database. Eng. Struct. 2016, 126, 571–585. [CrossRef]

2. Kašpárek, J.; Ryjá<sup>°</sup>cek, P.; Rotter, T.; Polák, M.; Calçada, R. Long-term monitoring of the track-bridge interaction on an extremely skew steel arch bridge. J. Civ. Struct. Health Monit. 2020, 10, 377–3871. [CrossRef]

3. Pieraccini, M.; Fratini, M.; Parrini, F.; Atzeni, C. Dynamic Monitoring of Bridges Using a High-Speed Coherent Radar. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3284–3288. [CrossRef]

4. Pieraccini, M.; Parrini, F.; Fratini, M.; Atzeni, C.; Spinelli, P.; Micheloni, M. Static and Dynamic Testing of Bridges through Microwave Interferometry. NDT E Int. 2007, 40, 208–214. [CrossRef]

5. Gentile, C.; Bernardini, G. Radar-Based Measurement of Deflections on Bridges and Large Structures. Eur. J. Environ. Civ. Eng. 2010, 14, 495–516. [CrossRef]

6. Lipták, I.; Erdélyi, J.; Kyrinovi<sup>°</sup>c, P.; Kopá<sup>°</sup>cik, A. Monitoring of Bridge Dynamics by Radar Interferometry. Geoinform. FCE CTU 2014, 12, 10–15. [CrossRef] [PubMed]

7. Liu, X.; Tong, X.; Ding, K.; Zhao, X.; Zhu, L.; Zhang, X. Measurement of Long-Term Periodic and Dynamic Deflection of the Long-Span Railway Bridge Using Microwave Interferometry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015,

8, 4531–4538. [CrossRef] 8. Talich, M. The Effect of Temperature Changes on Vertical Deflections of Metal Rail Bridge Constructions Determined by the Ground Based Radar Interferometry Method. IOP Conf. Ser. Earth Environ. Sci. 2019, 221, 012076. [CrossRef]

9. Luzi, G.; Crosetto, M.; Fernández, E. Radar Interferometry for Monitoring the Vibration Characteristics of Buildings and Civil Structures: Recent Case Studies in Spain. Sensors 2017, 17, 669. [CrossRef]

10. Talich, M. Monitoring of horizontal movements of high-rise buildings and tower transmitters by means of ground-based interferometric radar. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2018, 42, 499–504. [CrossRef]

11. Talich, M. Using Ground Radar Interferometry for Precise Determining of Deformation and Vertical Deflection of Structures. IOP Conf. Ser. Earth Environ. Sci. 2017, 95, 032021. [CrossRef]

12. Artese, S.; Nico, G. TLS and GB-RAR Measurements of Vibration Frequencies and Oscillation Amplitudes of Tall Structures: An Application to Wind Towers. Appl. Sci. 2020, 10, 2237. [CrossRef]

13. Pieraccini, M.; Fratini, M.; Parrini, F.; Atzeni, C.; Bartoli, G. Interferometric Radar vs. Accelerometer for Dynamic Monitoring of Large Structures: An Experimental Comparison. NDT E Int. 2008, 41, 258–264. [CrossRef]

14. Akbar, S.J. Dynamic monitoring of bridges: Accelerometer Vs microwave radar interferometry (IBIS-S). J. Phys. Conf. Ser. 2021, 1882, 012124.

15. Yu, J.; Meng, X.; Yan, B.; Xu, B.; Fan, Q.; Xie, Y. Global Navigation Satellite System-based positioning technology for structural health monitoring: A review. Struct. Control Health Monit. 2020, 27, e2467. [CrossRef]

16. Liu, X.; Wang, P.; Lu, Z.; Gao, K.; Wang, H.; Jiao, C.; Zhang, X. Damage Detection and Analysis of Urban Bridges Using Terrestrial Laser Scanning (TLS), Ground-Based Microwave Interferometry, and Permanent Scatterer Interferometry Synthetic Aperture Radar (PS-InSAR). Remote Sens. 2019, 11, 580. [CrossRef]

17. Rashidi, M.; Mohammadi, M.; Sadeghlou Kivi, S.; Abdolvand, M.M.; Truong-Hong, L.; Samali, B. A Decade of Modern Bridge Monitoring Using Terrestrial Laser Scanning: Review and Future Directions. Remote Sens. 2020, 12, 3796. [CrossRef]

18. Nettis, A.; Massimi, V.; Nutricato, R.; Nitti, D.O.; Samarelli, S.; Uva, G. Satellitebased interferometry for monitoring structural deformations of bridge portfolios. Autom. Constr. 2023, 147, 104707. [CrossRef]

19. Lee, Z.-K.; Bonopera, M.; Hsu, C.-C.; Lee, B.-H.; Yeh, F.-Y. Long-term deflection monitoring of a box girder bridge with an optical-fiber, liquid-level system. Structures 2022, 44, 904–919. [CrossRef]

20. Gentile, C.; Bernardini, G. An Interferometric Radar for Non-Contact Measurement of Deflections on Civil Engineering Structures: Laboratory and Full-Scale Tests. Struct. Infrastruct. Eng. 2010, 6, 521–534. [CrossRef]

21. Xiang, J.; Zeng, Q.; Lou, P. Transverse Vibration of Train-Bridge and Train-Track Time Varying System and the Theory of Random Energy Analysis for Train Derailment. Veh. Syst. Dyn. 2004, 41, 129–155. [CrossRef]

22. Jin, Z.; Pei, S.; Li, X.; Qiang, S. Vehicle-Induced Lateral Vibration of Railway Bridges: An Analytical-Solution Approach. J. Bridge Eng. 2016, 21, 04015038. [CrossRef]

23. Miccinesi, L.; Beni, A.; Pieraccini, M. Multi-Monostatic Interferometric Radar for Bridge Monitoring. Electronics 2021, 10, 247. [CrossRef]

24. Olaszek, P.; Swiercz, A.; Boscagli, F. The Integration of Two Interferometric Radars for Measuring Dynamic Displacement of ' Bridges. Remote Sens. 2021, 13, 3668. [CrossRef]

25. Dei, D.; Mecatti, D.; Pieraccini, M. Static Testing of a Bridge Using an Interferometric Radar: The Case Study of "Ponte Degli Alpini", Belluno, Italy. Sci. World J. 2013, 2013, e504958. [CrossRef] [PubMed]

26. IDS Ingegneria Dei Sistemi, S.p.A. Static and Dynamic Testing of Bridges: Use of IBIS-FS for Measuring Deformation and Identifying Modal Analysis Parameters; IDS: Pisa, Italy, 2016; p. 56.

27. Monti-Guarnieri, A.; Falcone, P.; D'Aria, D.; Giunta, G. 3D Vibration Estimation from Ground-Based Radar. Remote Sens. 2018, 10, 1670. [CrossRef] 28. Michel, C.; Keller, S. Advancing Ground-Based Radar Processing for Bridge Infrastructure Monitoring. Sensors 2021, 21, 2172. [CrossRef]

29. Miccinesi, L.; Pieraccini, M. Bridge Monitoring by a Monostatic/Bistatic Interferometric Radar Able to Retrieve the Dynamic 3D Displacement Vector. IEEE Access 2020, 8, 210339–210346. [CrossRef]