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Περίληψη 

Η επαλήθευση του κατά πόσον μια αμφισβητούμενη χειρόγραφη υπογραφή, που παρουσιάζεται σε 

ένα άνθρωπο ή ένα αλγόριθμο, ανήκει ή όχι σε μια διεκδικούμενη ταυτότητα είναι μια αρκετά 

δύσκολη εργασία, η οποία συνήθως απαιτεί προσεκτική εξέταση, δεξιότητες και γνώσεις. Ένα 

ακριβές και αποτελεσματικό σύστημα επαλήθευσης υπογραφών μπορεί να προσφέρει σημαντική 

βοήθεια, μειώνοντας τον χρόνο που απαιτείται για την ολοκλήρωση μιας χειροκίνητης εργασίας, η 

οποία συνήθως εκτελείται από δικαστικούς γραφολόγους – Forensic Handwriting Examiner. Προς 

την κατεύθυνση αυτή, η παρούσα διπλωματική εργασία προτείνει ένα πλαίσιο επαλήθευσης εικόνων, 

με περιεχόμενο χειρόγραφων υπογραφών, στο χώρο των συμμετρικών θετικά ορισμένων (SPD) 

πινάκων, χρησιμοποιώντας μια προσέγγιση μάθησης μιας μετρικής-απόστασης με τη χρήση ενός 

νευρωνικού δικτύου ειδικού σκοπού, του οποίου η λειτουργία διέπετε από μια μετα-ευρετική 

διαδικασία βελτιστοποίησης. Συγκεκριμένα, α) οι εικόνες των υπογραφών (στατική προσέγγιση) 

απεικονίζονται ως σημεία του Riemannian SPD χώρου - πολύπτυχου και β) εφαρμόζεται μια 

προσέγγιση μάθησης μιας μετρικής - απόστασης Mahalanobis, η οποία θα ελαχιστοποιεί την 

απόσταση δειγμάτων ίδιας προέλευσης και θα μεγιστοποιεί την απόσταση δειγμάτων διαφορετικής 

προέλευσης. Τα πειραματικά αποτελέσματα με τη χρήση δύο δημοφιλών συνόλων δεδομένων 

χειρόγραφων υπογραφών από τον επονομαζόμενο και ως δυτικό κόσμο, δείχνουν ότι το 

προτεινόμενο πλαίσιο είναι συγκρίσιμο τουλάχιστον με τα τρέχοντα μοντέλα αιχμής, τα οποία 

είθισται να υλοποιούνται υπό ένα πλαίσιο ευκλείδειας φύσης, κλειστό ως προς όλες τις γνωστές μας 

πράξεις. 
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Στατική Επαλήθευση Υπογραφών, Γεωμετρία Riemann, Νευρωνικά Δίκτυα, Βελτιστοποίηση, 

Συμμετρικοί Θετικά Οριζόμενοι Πίνακες, Επεξεργασίας Εικόνας, Υπολογιστική  

Όραση, Δυαδική Ταξινόμηση 
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Abstract 

Verifying whether or not a questioned handwritten signature belongs to a claimed identity is a quite 

challenging task, usually requiring careful examination, skills and knowledge. An accurate and 

efficient signature verification system, can provide considerable assistance by reducing the time it 

takes to complete a manual task, usually performed by Forensic Handwriting Examiners. Towards 

this purpose, this thesis proposes an offline handwritten signature verification framework in the space 

of Symmetric Positive Definite matrices, by utilizing a metric learning approach which enables the 

use of a special purpose neural network, acting as a meta-heuristic optimization procedure. 

Specifically, the static signature images are mapped into points of the Symmetric Positive Definite 

Riemannian manifold and then, a metric learning approach is applied in order to learn a Mahalanobis 

based distance which will minimize the distance of similar samples and maximize the distance of 

dissimilar ones. The experimental results with the use of two popular signature datasets of western 

origin, shows that the proposed framework is comparable at least to State-of-the-Art models, typically 

realized under a framework of Euclidean nature. 

 

Keywords 

Offline Signature Verification, Riemannian Geometry, Neural Networks, Optimization, Symmetric 

Positive Definite Μatrices, Digital Image Processing, Computer Vision, Binary Classification 

  



Meta-heuristic optimization methods on SPD Manifolds and applications to computer vision 

UniWA, Department of EEE, Diploma Thesis, Alexios Giazitzis   8 

Table of Contents 

Table Catalogue ................................................................................................................................. 9 

Image Catalogue ................................................................................................................................ 9 

Alphabetical Index ............................................................................................................................ 9 

Introduction ..................................................................................................................................... 12 

1 Handwriting ....................................................................................................................... 15 

2 Background ........................................................................................................................ 17 

2.1 Recurrent Neural Networks ............................................................................................. 17 

2.1.1 Long Short-Term Memory Network ................................................................................... 20 
2.2 Meta-learning .................................................................................................................... 22 
2.3 Symmetric Positive Definite Manifold............................................................................. 23 

2.4 Optimization in SPD Manifolds ....................................................................................... 25 
2.4.1 Gradient Computation ......................................................................................................... 25 
2.5 Meta-learning on SPD Manifold ...................................................................................... 27 

3 Proposition, Experiments & Results ............................................................................... 30 

3.1 Datasets & Preprocessing ................................................................................................. 30 
3.2 Verification Framework ................................................................................................... 32 

3.3 Experiments & Results ..................................................................................................... 32 

4 Chapter 4: Conclusion ...................................................................................................... 36 

Bibliography – References – Online Sources ................................................................................ 37 

Appendix A: Table 1 ....................................................................................................................... 44 

 

  



Meta-heuristic optimization methods on SPD Manifolds and applications to computer vision 

UniWA, Department of EEE, Diploma Thesis, Alexios Giazitzis   9 

Table Catalogue 

Table 1 Intra-dataset testing results. ................................................................................................. 34 

Table 2 Inter-dataset testing EER% .................................................................................................. 34 

Table 3 Summary of WI-SV on testing EER% ................................................................................ 34 

Table 4 5-by-2 cross validation on CEDAR dataset ......................................................................... 44 

 

Image Catalogue 

Figure 1: RNN Block Diagram. ........................................................................................................ 18 

Figure 2: The unfolding property of an RNN. In this depiction, the recurrence characteristic of the 

topology is shown by the use of another hidden state and input vector by the same network. ......... 19 

Figure 3: Gradient flow on a RNN. The gradient starts from the last step of the predicted sequence 

and moves backwards towards the first, updating the weights and biases in a cumulative manner. 20 

Figure 4: (a) LSTM Block Diagram. (b) Two-way gradient flow of LSTM, red path is easier to 

compute than yellow path. ................................................................................................................. 21 

Figure 5: LSTM CEC mode gradient flow, denoted by the red path. ............................................... 22 

Figure 6: Visualization of the 2x2 SPD manifold. ............................................................................ 23 

Figure 7: (a) Step 1: Orthogonal projection of the Euclidean gradient to 𝐓𝐌𝐭𝓢𝒅
++. (b) Step 2: Move 

on the manifold using the retraction operation. ................................................................................. 26 

Figure 8: SPD meta-learning network topology. Source: [55], Learning to Optimize on SPD 

Manifolds, Gao et al. ......................................................................................................................... 29 

Figure 9: A pair of SPD matrices is mapped to a 2D Euclidean distance vector by SPD geodesic 

distance on SPD submatrices. The subscripts on the matrices denote the range of indices taken in 

both directions. .................................................................................................................................. 31 

Figure 10: The two – dimensional distance feature space of writer 1 from the CEDAR dataset. .... 31 

 

Alphabetical Index 

2C2L: 2-Channel-2-Logit 

AIM: Affine Invariant Metric 

ANN: Artificial Neural Network 

AUC: Area-Under-Curve 

AVN: Adversarial Variation Network 

BiLSTM: Bidirectional LSTM 

file://///VBoxSvr/dissertation/thesis/Giazitzis_50326201705.docx%23_Toc140002721
file://///VBoxSvr/dissertation/thesis/Giazitzis_50326201705.docx%23_Toc140002722
file://///VBoxSvr/dissertation/thesis/Giazitzis_50326201705.docx%23_Toc140002722
file://///VBoxSvr/dissertation/thesis/Giazitzis_50326201705.docx%23_Toc140002723
file://///VBoxSvr/dissertation/thesis/Giazitzis_50326201705.docx%23_Toc140002723
file://///VBoxSvr/dissertation/thesis/Giazitzis_50326201705.docx%23_Toc140002726
file://///VBoxSvr/dissertation/thesis/Giazitzis_50326201705.docx%23_Toc140002728
file://///VBoxSvr/dissertation/thesis/Giazitzis_50326201705.docx%23_Toc140002728
file://///VBoxSvr/dissertation/thesis/Giazitzis_50326201705.docx%23_Toc140002729
file://///VBoxSvr/dissertation/thesis/Giazitzis_50326201705.docx%23_Toc140002729
file://///VBoxSvr/dissertation/thesis/Giazitzis_50326201705.docx%23_Toc140002729
file://///VBoxSvr/dissertation/thesis/Giazitzis_50326201705.docx%23_Toc140002730


Meta-heuristic optimization methods on SPD Manifolds and applications to computer vision 

UniWA, Department of EEE, Diploma Thesis, Alexios Giazitzis   10 

BPPT: Back Propagation Through Time 

CEC: Constant Error Carousel 

CNN: Convolutional Neural Network 

CT: Contourlet Transform 

CVA: Cross Validation Algorithm 

DCSM: Deep Convolutional Siamese Network 

DMML: Deep Multitask Metric Learning 

DSL: Domain Specific Language 

DT: Dichotomy transform 

EER%: Equal Error Rate Percentage 

FHE: Forensic Handwriting Examiner 

FIR: Finite Impulse Response 

FPR: False Positive Rate 

gmLSTM: generalized matrix LSTM 

GSC: Gradient, Structural and Concavity 

HE: Handwriting Examiner 

HOG: Histogram of Oriented Gradients 

HSV: Handwritten Signature Verification 

IDN: Inverse Discriminatory Network 

IIR: Infinite Impulse Response 

LEM: Log-Euclidean Metric 

LSTM: Long Short-Term Memory 

MLP: Multi-Layer Perceptron 

mLSTM: matrix LSTM 

MSDN: Mutual Signature DenseNet 

NLP: Natural Language Processing 

P2S: Point-to-Set 

RBF: Radial Basis Function 

RNN: Recurrent Neural Network 

ROC: Receiver Operating Characteristic 

SGD: Stochastic Gradient Descent 

SPD: Symmetric Positive Definite 

SVM: Support Vector Machine 

TPR: True Positive Rate 

VLAD: Vector of Aggregated Local Descriptors 



Meta-heuristic optimization methods on SPD Manifolds and applications to computer vision 

UniWA, Department of EEE, Diploma Thesis, Alexios Giazitzis   11 

WD: Writer Dependent 

WI: Writer Independent 

  



Meta-heuristic optimization methods on SPD Manifolds and applications to computer vision 

UniWA, Department of EEE, Diploma Thesis, Alexios Giazitzis   12 

Introduction 

We are all witnessing that as time passes by, humans rely more and more on digital 

technologies, which by the day are improving. It is easily noticeable that we tend to use pen and paper 

less, as the digital world provides the same functionality, while also offering a lot more. Due to this, 

the majority uses one or more text processing software in order to perform a related task. It is 

important to remember though that handwriting is still used in many aspects of life, with the most 

common being signing. Authenticating a handwritten signature by utilizing computer vision is a 

captivating task, whose importance and use has been seen throughout the literature [1], [2]. 

The signature that a person produces, typically on a sheet of paper, is the outcome of a 

combination of the learned common writing characteristics and the individual’s hand motoric 

processes [3]–[6]. The handwritten signature is a trace of the hand movement a person performs, 

which is commonly acquired with the use of a pen, of any colour, and/or thickness, and a paper for 

the physical depiction. Its digital counterpart, i.e., a digital image comes from an electronic device 

typically a scanner, which creates the corresponding digital depiction. In terms of the signature 

verification community, the image of the signature, is referred to as static or offline signature. It is 

worth noting that, by using a digital pen or a tablet, it is possible to acquire a time indexed multivariate 

sequence which represents the motion rather than the visual outcome of it, termed hereafter as 

dynamic or online signature. Using any of the signature representations, it is possible to devise an 

automated signature verification digital system (simplified, SV), which basically attempts to support, 

in a robust and digital way, a number of manually performed authentication tasks, typically performed 

by a Forensic Handwriting Examiner (FHE). Initially, SV systems are categorized by the signature 

representation they utilize, termed dynamic-online or static-offline [5], [7]–[17], [17]–[22]. 

Aside from the online or offline categorization, SV systems are also classified as Writer 

Dependent (WD) or Writer Independent (WI) [23]–[29]. The first approach, WD, refers to training a 

dedicated classifier for each writer with their reference samples; this is the approach that is more 

frequently encountered in literature. On the other hand, in WI, a universal classifier attempts to adapt 

and discriminate between two types of distributions: a) the 𝜔+ genuine-to-genuine pairs of a learning 

set of signature samples, referred hereafter as the positive, similar, or intra-class, distribution, and b) 

the 𝜔− genuine-to-forgery pairs, termed hereafter as the negative, dissimilar, or inter-class, 

distribution [30]–[32]. Usually, this is done by transforming the feature space 𝐹 ∈ ℝ𝑑, the space that 

contains the features of the signatures, either extracted from the static context or acquired from the 

dynamic nature of the hand motion, which contains any two signature pairs (𝑆𝑖, 𝑆𝑗), into the 

(dis)similarity distance space 𝐷 =  |𝑆𝑖 − 𝑆𝑗| ∈ ℝ≥0
𝑑  [33].  

The design of both WD and WI oriented SV systems, is realized as a two-class classification 

problem. The positive class refers to the 𝜔+ genuine-to-genuine pairs, while the negative class refers 

to the 𝜔− genuine-to-forgery pairs, the latter being composed of forgeries of different origins. 

Therefore, it is important to note that there are different types of 𝜔− genuine-to-forgery pairs, due to 

different kinds of forgeries. According to some literature [24], [25], [34], [35], the most commonly 

encountered types of forgeries are: i) Random, ii) Casual/Zero Effort, iii) Simulated and iv) Skilled; 

all of which are explained in the following chapter. In case of a WI-SV system, in order to ensure an 

unbiased learning and evaluation procedure, the testing dataset must not belong to the signature data 

that the system was trained with. And since these systems are trained to discriminate between the 

𝜔+and 𝜔− classes, it is possible to form the negative distribution with two distinct ratios of genuine-

to-random or genuine-to-skilled forgeries. 
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In offline SV systems, the signature samples are in the form of images, which implies the use 

of Computer Vision related algorithms. An efficient and descriptive representation of images was 

introduced in [36], in which the images was were mapped to a non-Euclidean representation, by 

means of region covariance descriptors, which introduced the principles of Differential Geometry in 

computer vision, with the most common form being the space of Symmetric Positive Definite (SPD) 

matrices. This representation has been abundantly used in applications, such as fine-grained and 

generic image classification [37]–[40], few-shot learning [41], medical imaging [42], etc. Since 

similarity-based methods are geometry agnostic, it is reasonable to wonder how can the SPD manifold 

be manipulated in order to build an efficient offline SV algorithm.  

Geometry aside, similarity between two distinct samples can be easily computed by their 

corresponding distance in the feature space they reside. In the case of the SPD manifold, there is a 

plethora of formulas that measure the distance of two samples, exploiting the underlying geometry in 

a manner of ways, like the geodesic distance induced by the affine invariant Riemannian metric 

(AIM) [42], log-Euclidean metric (LEM) [43], the Jensen-Bregman LogDet Divergence [44], the 

Jeffrey Divergence [45] and the geodesic distance induced by the Bures-Wasserstein metric [46], 

Generalized Bures-Wasserstein metric [47] and log-Cholesky metric [48]. Besides the conventional 

distance measuring, metric learning has also been developed in the SPD manifold, under three major 

frameworks [49]: a) learning a distance metric in the Euclidean tangent space which is a vector space, 

b) learn a distance metric in the kernel space, and c) by projecting an initial high-dimensional SPD 

space into another, typically of lower dimension, SPD space, which preserves the manifold structure, 

and learn a corresponding metric. 

To the author’s knowledge, no prior work has been proposed in the literature in which the 

original SPD representation of an individual’s signature images is mapped to a two-dimensional 

distance space, followed by a metric learning approach for WI-SV. In literature, relative research 

direction mainly focuses on deep metric learning with methods like Signature Embedding [50], 

Histograms of Oriented Gradients (HOGs) with Deep Multitask Metric Learning [31], graph edit 

distance [51], Mutual Signature DenseNet with Deep Convolutional Siamese Network [52] and use 

of HOGS and Local Binary Patters in a Mahalanobis distance based learning algorithm [53]. 

The above examples, along with many more, theorize the existence of a Euclidean structure 

both for the data and the algorithmic development approach in the SV literature. Therefore, machine 

learning algorithms in SV are developed under the assumption that the underlying nature of the 

signature descriptors is Euclidean, as it can be seen by the amount of literature work on SV systems. 

Given the fact that the use of non-Euclidean descriptors has improved the performance of numerous 

computer vision related tasks, it is likely that the same performance improvement will arise if a similar 

approach is taken for SV methods. The proposed thesis framework’s innovative characteristics are: 

1. We transform any signature image to a 10×10 SPD space, followed by a mapping into an 

associated two-dimensional distance space. We begin by selecting a pair of signatures (𝑎, 𝑏) and 

there corresponding SPD matrices 𝒮10,𝑎
++  and 𝒮10,𝑏

++ . Next, any initial SPD matrix 𝒮10,(𝑎,𝑏)
++  is 

partitioned into two 𝒮5,(𝑎,𝑏)
++  submatrices (the block diagonal elements of the 𝒮10

++), followed by 

two distance measures between corresponding 𝒮5,(𝑎,𝑏)
++  submatrices. This attempts to depict 

pairwise characteristics in a distance-based space originating from initial SPD matrix 

representations. 

2. We, then, perform a low-dimensional Mahalanobis metric learning algorithm, by computing the 

2x2 SPD matrix that essentially dichotomized the distance space, by using a meta-heuristic 

optimization algorithm, in the form of a neural network, proposed in [54]. Specifically, the 
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optimization network is trained and used in parallel, with a complete iteration of the algorithm 

being first training the network for a few epochs and the using it to compute the SPD parameter 

for the Mahalanobis distance formula for another few epochs. The algorithm terminates when 

either the SPD parameter converges or the predefined total iterations are reached. 

This thesis is organized in the following manner: Chapter 1 presents in a glance the handwritten 

signatures concept, along with a number of characteristics that affect its formation and different 

features that can be extracted from it. Chapter 2 presents the foundations of the components utilized 

in the proposed framework, such as the Recurrent Neural Network topology and the postulates of the 

Riemannian geometry of the SPD manifold. Chapter 3 provides the full metric learning algorithm 

proposition, the experiments performed and their results. Finally, Chapter 4 provides the conclusion.  
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1 Handwriting 

Handwriting is considered to be a skill which humans learn in their early stages of life. It is a 

skill that is affected by a number of conditions, both of the human side as well as on the environment 

they are in, eventually becoming an automated task for a human to perform. As an automated task, it 

is hard to correct for potential errors once the hand movement is performed [55]. As a trait, it is unique 

to each human [3], although it is possible for some so look alike, as seen in the research done in [55], 

where they found two writers with similar handwriting. Handwriting, is affected by a plethora of 

factors, resulting in what is termed as the intra-variability of the produced content, without the loss 

of the unique writing characteristics of the person. This uniqueness means that it is difficult to 

reproduce a person’s writing, as one has to suppress their own hand motor skill that they have 

developed and then perform the task at due with the writing characteristics and variability of the 

original writer [55]. However, it is possible, through practice and given enough information of the 

writing capabilities of the person, for someone, to learn to produce simulations of high quality of their 

writing [55]. 

As mentioned, handwriting is affected by several factors, both internal and external [3]. The 

gender and age of the writer, their nationality, their dominant hand, the handwriting system of the 

country they were taught in, if they are writing from memory, i.e., if they are copying or they are 

dictated the content, their psychological state, stress levels and many more are some of the internal 

factors, while the writing device, environmental noise, the stance they have to take due to the table 

they are writing on or the chair they may be sitting in and others are external factors [3], [8]. 

Depending on which factors are involved in the process and at what level, the writer’s produced 

handwriting may change severely, possibly exceeding the normal variability that appears. 

Generally speaking, handwriting is not comprised solely on the outcome of the hand movement 

the person performs, but it is the result of a compound activity of the eye-hand coordination and the 

perceptual abilities of the writer [8]. Due to this, handwriting is considered a biometric trait [8], which 

like all other, cannot be easily modified, if at all possible. As a biometric trait, it can be and is used 

in many applications, including, but not limited to, medical, forensic and, primarily for person 

authentication and verification purposes [8].  In each application, the handwritten trace is possibly 

represented in a different manner, like an image of the handwriting, or a time-indexed series of 

different measurements of it, such as position of the vertical and horizontal axis, hand velocity, etc 

[3], [8], [55]–[57]. In the following, we will be focusing on the person authentication and verification 

aspect of handwriting, which is also part of forensic science. 

Any person may claim any given identity, by producing a look-alike handwritten signature. 

Since handwriting is unique to each person, so is the signature they produce, even more so if one 

considers that there can be many ways for one person to define its signature trace, such as having a 

legible one by signing their name, stylizing the ink trace with flourishes, etc [55], [58]. Using this 

unique aspect of signatures, it is possible to establish if any given questioned document or signature 

belongs to the claimed identity. This is a job usually performed by a Handwriting Examiner (HE) or 

Forensic Handwriting Examiner (FHE). The (F)HE must objectively reach a conclusion by comparing 

the questioned document or signature to known references of the claimed identity’s, either manually 

or through an automated verification process. In either occasion, objective features and measurement 

must be used in order for the result to not be biased. 

Given a handwritten document, a (F)HE can derive objective characteristics such as line 

lengths, turning points, intersections, legibility and per word/character features, such as line 

component ratios [3], [55], either manually or automatically should they have access to the dynamic 
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information of the hand movement. It is also possible to use digital image processing techniques if 

one digitizes the ink trace, as some aspects of these kinds of images and algorithms that use them 

have been correlated with some of the characteristics a person has during writing [3]. Since (F)HEs 

generally can only use a static representation of the signature [8], using image processing or computer 

vision techniques can be favourable as they are objective measurements, explainable and able to be 

correlated with writing aspects, in order to decide if the questioned document is genuine or a forgery. 

According to the literature, forgeries can be categorized as: a) Random: using the genuine signature 

of the person claiming to be another, b) Casual/Simple: the person forging the signature produces a 

simulating sample by only knowing the name of the claimed identity, c) Simulation: the 

(inexperienced) forger produces a sample after practicing given one or more reference samples, and 

d) Skilled: the (experienced) forger produces a sample after practicing, by using some kind of 

technique such as calligraphy [8], [34], [58]. 

When it comes to signature verification specifically, many automated systems have been 

developed, with the goal of assisting the (F)HEs [8], [9]. These systems work similarly to a (F)HE; 

they take as input at least one reference and the questioned document and they output either the 

probability of being genuine/forgery or the distance of the questioned document with the reference(s). 

Such a system could be of great help to the examiner, as it could provide a hint as to which questioned 

documents are definitely genuine/forged and which may require a more thorough examination 

conducted by the (F)HE. It is important though, for the automated verification system to be 

explainable and well defined in terms of the objective examination guidelines, as the results can 

directly affect people’s lives, since, e.g., they may be administered to courts of law [57], [59], [60]. 
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2 Background 

The proposed framework relies on neural network based around a variant of the LSTM RNN 

topology, used in-place of a handcrafted optimization algorithm, employed in the space of SPD 

matrices. This type of optimization approach, i.e., using a non-handcrafter optimization algorithm 

that learns how to optimize, is called Meta-learning. In order to build intuition behind these terms, 

how they are incorporated in the proposition and why they were chosen, this chapter focuses on an 

analytical overview of these concepts. Firstly, the basic RNN and the LSTM variant are covered, 

following up with Meta-learning and the foundations of the SPD Manifold. Lastly, the meta-learning 

neural network is presented. 

Moving forward, unless otherwise specified, matrices are denoted by capital letters, e.g., X, with 

symmetric matrices being in italic, e.g., 𝑋, while SPD matrices being in bold, e.g., 𝐗. A vector is 

denoted by a lowercase italic letter, e.g., 𝑥. The d-dimensional SPD manifold is specified by 𝒮𝑑
++, 

while the tangent space T of a point 𝐌 on the SPD manifold is denoted by T𝐌𝒮𝑑
++. Lastly, ⊙ denotes 

the Hadamard product, ⊕ denotes the element-wise addition, 𝐈𝑑 and 𝟎𝑑 represent the identity and 

zero filled matrices while any number with an arrow above it, e.g., 0⃗ , corresponds to a vector filled 

with that number. 

2.1 Recurrent Neural Networks 

Sequential data or time-indexed series exhibit relations between samples, since usually at any 

given time step, the value of a sample might be affected by any values of its previous time steps. This 

can also lead to data with variable dimensionality, which cannot be easily modelled with a standard 

MLP network topology, as the MLP does not reuse any information from a previous prediction 

besides the trained weights thus not being able to capture the entire relation between any time steps. 

In order to address this, RNN, a variant of the baseline ANN was proposed, that a) allows the use of 

data comprised of variable time steps and b) can also capture any potential associations between 

current and previous samples [61], [62]. Figure 1 shows a block diagram of the elementary building 

blocks of the basic RNN network topology. In their uninitialized state, eq. (1) and eq. (2) provide the 

typical mathematical representation and operation of the network, and are referred to as a RNN cell 

[63]. The vectors 𝑥(𝑡) ∈ ℝ
𝑓 and ℎ(𝑡−1) ∈ ℝ

𝑑, where 𝑓 and 𝑑 denote the size of each vector, 

correspond to the input data to the network and the hidden state at time step 𝑡 − 1. The matrices 

Wℎℎ ∈ ℝ
𝑑×𝑑, W𝑥ℎ ∈ ℝ

𝑓×𝑑, Wℎ𝑦 ∈ ℝ
𝑑×𝑜 , with 𝑓 and 𝑑 being the same as before and 𝑜 denoting the 

output vector size, are trainable weights of dimensions that match the output vector, denoted by the 

second letter in their subscript, when multiplied with the corresponding variable, denoted by the first 

letter in their subscript. The vectors 𝑏ℎ ∈ ℝ
𝑑  and 𝑏𝑦 ∈ ℝ

𝑜 are trainable biases, while ℎ(𝑡) ∈ ℝ
𝑑  and 

𝑦̂(𝑡) ∈ ℝ
𝑜 are the hidden state and output vectors of the network at time step 𝑡. We define the first 

time step the network will get input data and output a prediction as 𝑡 = 0, which is why the hidden 

state, ℎ𝑡, at time step 𝑡 =  −1, is either initialized with a zero valued vector or it is the output of some 

other network earlier in the architecture. 
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ℎ(𝑡) = tanh(Wℎℎ
𝑇 ℎ(𝑡−1) +W𝑥ℎ

𝑇 𝑥(𝑡) + 𝑏ℎ) (1) 

𝑦̂(𝑡) = Wℎ𝑦
𝑇 ℎ(𝑡) + 𝑏𝑦 (2) 

The dependencies of the data that the RNN can exploit, are easily identified in eq. (1). The 

hidden state, ℎ𝑡, represents the relations between each data point that the network has calculated, 

which is used for the prediction made for the next time step. The relation capturing characteristic of 

the hidden state is the result of the reuse of it from the previous time step, which in turn is also the 

result of the reuse of it from two time steps back, and so on. The hidden state can be thought of as the 

network’s memory of data it has seen, compared to the standard ANN topology which does not have 

such a mechanism, as explained earlier. Due to these, the RNN is widely used for a number of tasks, 

especially in the area of NLP, for the tasks of text generation, sentiment classification, machine 

translation, etc. 

Eq. (1) can be regarded a) as recurrent one, when computed from the origin of the time steps, 

(i.e. 𝑡 = 0), as each next calculations reuses a previous one, or b) as recursive one, if needed to be 

calculated at a later step, so at time step 𝑡 = 𝑘, ℎ(𝑘) contains all information from all previous time 

steps, with 𝑡 = 0 being the end [64]. This kind of information flow clearly suggests that the RNN 

topology is an actual IIR system. Following the example #1 of reference [63], the IIR aspect of eq. 

Figure 1: RNN Block Diagram. The blue blocks represent 

mathematical operations between variables and the green 

blocks depict operations using a single variable. The red path 

denotes the flow of the hidden state. 
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(1) and eq. (2) can be seen by setting the initial hidden state ℎ(−1) = 0⃗ , the input data 𝑥(𝑡) =  𝛿[𝑡], 

where 𝛿[𝑡] is the Kronecker Delta function, and the bias terms 𝑏ℎ = 0⃗ . So, the evaluation of eq. (1) 

for some time steps, provide some sort of the infinite impulse characteristic of the network according 

to: 

ℎ(−1) = 0⃗  

ℎ(0) = tanh(W𝑥ℎ
𝑇  1⃗ ) 

ℎ(1) = tanh(Wℎℎ
𝑇 tanh(W𝑥ℎ

𝑇 1⃗ )) 

ℎ(2) = tanh(Wℎℎ
𝑇 tanh(Wℎℎ

𝑇 tanh(W𝑥ℎ
𝑇  1⃗ ))) 

… 

Similarly, eq. (2), which is the output of the network, is just a linear combination of the corresponding 

hidden state values of the above example, which similarly displays the IIR characteristic, since the 

hidden state is defined for all time steps. Even with a single initial impulse, the RNN topology can 

produce an output for any positive time step. With this kind of representation, and regardless of the 

initial input signal, the RNN can be “unfolded” for any number of time steps, something that visually, 

is presented Figure 2. 

In practice, the RNN is usually trained as an FIR system approximation, by splitting sequences in 

places where they show no dependence with each other. This allows for finite computations, sufficient 

convergence of the given loss function and similar results1 [63]. 

The back propagation algorithm works in the RNN with a slight modification. Specifically, 

since at each time step the weights and biases are shared, since they are not time dependent functions 

and only change during back propagation, the gradient computation starts at the output of each time 

step, moves backwards in time and is accumulated at time step 𝑡 = 0, performing an update to the 

weight for the next epoch. This procedure is termed as the “Back Propagation Through Time (BPPT)” 

and visually is depicted in Figure 3. During training, the RNN topology can exhibit two kinds of 

 
1 For the interested reader, the proof for this can be seen in Proposition 1 of reference [63]. 

Figure 2: The unfolding property of an RNN. In this depiction, the recurrence characteristic of the topology is 

shown by the use of another hidden state and input vector by the same network. 
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problems: the exploding and the vanishing gradients. The first one (exploding) refers to the gradient 

computation getting larger, in an exponential rate, during the back propagation stage while the latter 

to gradient getting smaller in an exponential rate. This occurs due to the recurrence relation of eq. (1), 

as the gradients flow backwards in time, they may be getting multiplied by quite large or small 

numbers, leading to the aforementioned problems. Exploding gradients can be easily solved by 

gradient clipping, which tests if the gradient is large in some manner, either through the Frobenius or 

max norm or eigenvalues; if so, then we scale it back by that metric. 

On the other hand, vanishing gradients though are harder to solve. This prompted the proposal 

of a number of variants over the original RNN topology. Specifically, the original architecture of the 

RNN topology was modified in order to introduce nonlinear, data dependent structures, termed gates, 

which ensure that the gradient flow does not vanish, through training. As a result, the Long Short-

Term Memory (LSTM) network cell was created [65]. 

 

 

2.1.1 Long Short-Term Memory Network 

LSTM cells are a modified version of the RNN, which allow for better information flow in both 

forward and backward propagation. It was made possible, by introducing nonlinear structures that are 

trained to ensure that only relevant information, (i.e. time dependencies), affect the predictions made 

by the model in the forward pass, while making sure that the same relevance affects the network 

parameters during the backward pass. Figure 4a illustrates the LSTM architecture. It can be seen that 

besides the original hidden state vector, there exists a new one, the cell memory, 𝑐 ∈ ℝ𝑑, which is 

computed in a much simpler way. Due to the easiness of its computation, the gradient flow is easier 

to compute and not as prone to vanishing gradients in that route, contrary to the gradient flow from 

the hidden state, as seen in Figure 4b. In principle, the LSTM cell is represented by the following 

formulas. 

𝑖(𝑡) = 𝜎(W𝑥𝑖
𝑇 𝑥(𝑡) +Wℎ𝑖

T ℎ(𝑡−1) + 𝑏𝑖) (3) 

𝑓(𝑡) = 𝜎(W𝑥𝑓
T  𝑥(𝑡) +Wℎ𝑓

T  ℎ(𝑡−1) + 𝑏𝑓) (4) 

Figure 3: Gradient flow on a RNN. The gradient starts from the last step of the predicted sequence and moves 

backwards towards the first, updating the weights and biases in a cumulative manner. 
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𝑜(𝑡) =  𝜎(W𝑥𝑜
T  𝑥(𝑡) +Wℎ𝑜

T ℎ(𝑡−1) + 𝑏𝑜) (5) 

𝑐̃(𝑡) = tanh(W𝑥𝑐
T 𝑥(𝑡) +Wℎ𝑐

T ℎ(𝑡−1) + 𝑏𝑐) (6) 

𝑐(𝑡) = 𝑓(𝑡)⊙ 𝑐(𝑡−1)⊕ 𝑖(𝑡)⊙ 𝑐̃(𝑡) (7) 

ℎ(𝑡) = 𝑜(𝑡)⊙ tanh(𝑐(𝑡)) (8) 

The LSTM retains the IIR nature of the basic RNN cell and can also be unfolded. Eqs. (3)-(5) 

define the input, forget and output gates respectively. Each one of them controls different parts of the 

information flow. The input gate 𝑖(𝑡) ∈ ℝ
𝑑 controls how much and which kind of information from 

the candidate memory cell 𝑐̃(𝑡) ∈ ℝ
𝑑  are allowed to exist in the new memory cell, whilst the forget 

gate 𝑓(𝑡) ∈ ℝ
𝑑 is responsible for how much of the previous memory cell 𝑐(𝑡−1), information is going 

to be added to the new one. The output gate 𝑜(𝑡) ∈ ℝ
𝑑 controls also the information for the 

predictions. Due to these, the LSTM can capture long term dependencies better than the basic RNN, 

while also offering multiple gradient paths, which in turn resolves the vanishing gradient problem. 

Given the fact that the gates control the information flow, they are numerically bounded between 0 

and 1; this is the outcome of applying the sigmoid function 𝜎. Due to this, the data used in training 

need to be standardized, i.e., have a mean value of 0 and a standard deviation of 1, otherwise the 

LSTM performs poorly, due to the nonlinear activation functions mapping data either to 0 or 1 most 

of the times. 

(a) 

(b) 
Figure 4: (a) LSTM Block Diagram. (b) Two-way gradient flow of LSTM, red path is easier to compute than 

yellow path. 
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Although in theory, it is still possible, given some set of badly formed parameter values, for the 

vanishing gradient issue to appear, in practice it has been seen that it does not, as LSTM are mostly 

numerically stable [66]. The reason for this can be seen by setting 𝑓(𝑡) = 1⃗  and 𝑖(𝑡) = 𝑜(𝑡) = 0⃗ . It 

provides an uninterrupted, computationally efficient, gradient flow in its backward pass, as can be 

seen inFigure 5, which the creators named Constant Error Carousel (CEC) mode [65]. So, even in the 

case that the gradient flow from the hidden state output diminishes due to the nonlinear structures, 

the memory cell path does not due to linearities and the CEC. 

 
Figure 5: LSTM CEC mode gradient flow, denoted by the red path. 

2.2 Meta-learning 

Usually, neural networks are trained using a handcrafted styled optimizer, which utilizes a 

typical form of gradient descent. Such algorithms and its variants are the SGD with and without 

momentum [67], [68], Rprop [69] , RMSProp [70], Adagrad [71], Adam and Adamax [72]. Although 

capable, these do not always find a good or total minima for the loss function of the task at hand, even 

when adding additional constraints such as L2 or L1 penalties. This can be also accounted to not being 

able to consider the task's characteristics, such as the underlying data's distribution. Due to this, 

different learning rules have been formulated [73]–[76], that either use genetic algorithms, synaptic 

learning rules, or biologically matching functionalities. These formulations, along with training 

neural network models to perform weight and bias updating, are based on biological reasoning and 

knowledge reuse, thus creating task specific optimization algorithms, generally known as meta 

learning algorithms. RNNs have been used to create meta-learning algorithms, basically neural 

networks who learn to optimize parameters in a specific task, while also being able to transfer learn 

to other similar tasks with unseen data. 

Meta-learning has been practiced using many different ways of training in an extensive range 

of tasks. Hochreiter et al. in [77] trained an LSTM network, by gradient descent, to come up with an 

optimization algorithm for approximating quadratic functions using 35 examples. Li and Malik in 

[78] used reinforcement learning with a guided policy to learn better optimization algorithms in a 

number of tasks. Andrychowicz et al. in [79], Ravi and Larochelle in [80], Wichrowska in [81] and 

Rusu et al. in [82] trained recurrent models using the parameter gradients as input for a number of 

tasks. Bello et al. in [83] used reinforcement learning in order to train an RNN to generate strings in 

a Domain Specific Language (DSL) that correspond to parameter update equations given a list of 

base functions, like gradients, etc. Lee et al. in [84] formulated a meta-learning algorithm which can 
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optimize convex learners by few-shot learning. Lastly, Gao et al. in [54], [85], created the first meta-

learning optimizer for Riemannian manifolds, firstly on SPD and next generalized to other manifolds, 

by using a new LSTM variants, that utilize specific matrix operations that respect the manifold 

structure.  

In all the aforementioned tests, meta-learning algorithms have been shown to outperform 

handcrafted optimizers, therefore generalize in a more efficient way the learners in the given tasks. 

But these algorithms come also at the cost of having to train yet another type of network, which can 

be time consuming and also possibly prone to the same issues as when training an ANN by basic 

optimizers, such as over- or underfitting, non-convexity, suboptimal optima, etc. 

2.3 Symmetric Positive Definite Manifold 

Riemannian submanifolds2 are smooth (i.e. infinitely differentiable, 𝐶∞) submanifolds 

embedded in the Euclidean space, ℰ, endowed with a Riemannian metric that is obtained based on 

restrictions of the metric of ℰ [86], [87]. The most frequently used manifolds fall under this category, 

including the manifold of Symmetric Positive Definite Matrices. Some manifolds are curved, which 

makes simple tasks like addition, subtraction and gradient descent nontrivial. The SPD manifold of 

2x2 matrices can be visualized as two cones which span ℝ3, as shown in Figure 6. 

 

The SPD Manifold is defined to be the set of all symmetric, positive definite matrices. The set 

formula describing it can be seen in eq. (9). 

 
2 According to Absil et al. in [86] and Boumal in [87], these are as well Riemannian Manifolds and the most commonly 

encountered type. But in general, Riemannian Manifolds do not follow the same principle, i.e., being submanifolds of 

the Euclidean space. 

Figure 6: Visualization of the 2x2 SPD manifold. 
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𝒮𝑑
++ = {𝐌 ∈ ℝd×d | 𝐌 = 𝐌T, 𝑥T𝐌𝑥 ≥ 0, ∀ 𝑥 ∈ ℝ𝑑  \ {0⃗ }} (9) 

The tangent space of an SPD matrix 𝐌, T𝐌𝒮𝑑
++ is the space of symmetric matrices. The tangent 

bundle, T𝒮d
++, formed by this manifold and the corresponding tangent planes is a vector space of 

symmetric matrices and is seen in eq. (10). 

T𝒮𝑑
++ = { ∀ (𝐗, 𝑌) | 𝐗 ∈ 𝒮𝑑

++, 𝑌 ∈ T𝐗𝒮𝑑
++ } (10) 

The SPD Manifold when equipped with the Riemannian metric of Eq. (11), the Rao-Fisher metric 

[88], is globally diffeomorphic [89], meaning there is a one-to-one, continuously differentiable 

mapping in both directions, in the form of eq. (12) and eq. (13). 

⟨ 𝑋, 𝑌 ⟩𝐌 = tr(𝐌
−1𝑋𝐌−1𝑌)2 (11) 

𝐘 ≡ exp𝐗(𝑌) = 𝐗
1
2 exp (𝐗−

1
2𝑌𝐗−

1
2)𝐗

1
2  (12) 

𝑌 ≡ log𝐗(𝐘) =  𝐗
1
2 log (𝐗−

1
2𝐘𝐗−

1
2)𝐗

1
2 (13) 

The exp  and log  operations are defined to be the matrix exponential and logarithm, accordingly, 

which can be computed by using the eigen-decomposition of symmetric matrices, 𝑋 = UDUT, where 

U, D are the eigenvectors and eigenvalues respectively, as seen in eq. (14) and eq. (15). 

exp(𝑋) = Uexp(D)UT  (14) 

log(𝑋) =   U log(D)UT (15) 

Intuitively, the exponential map, maps a point on the SPD manifold to the tangent space 

T𝐌𝒮𝑑
++of 𝐌, i.e., 𝑓 ∶  𝒮𝑑

++ ↦ T𝐌𝒮𝑑
++, while the logarithmic map operates the reverse action, viz. 𝑓 ∶

T𝐌𝒮𝑑
++ ↦ 𝒮𝑑

++. By substituting Eq. (13) in (12), it is possible to derive the single parametric equation 

connecting two points, 𝐗, 𝐘 ∈ 𝒮d
++, with a geodesic curve 𝚪{𝐗 ,𝐘}(𝑡), which has both ends  𝐗, for 𝑡 =

 0 and 𝐘 for 𝑡 = 1. The corresponding formula is provided in eq. (16). 

𝚪{𝐗 ,𝐘}(𝑡) =   𝐗
1
2  (𝐗−

1
2𝐘𝐗−

1
2)
𝑡

𝐗−
1
2 (16) 

Using Eq. (11), the distance between two points on the manifold can be measured by substitution of 

Eq. (13), using one SPD matrix as the tangent origin. 

𝑑(𝐗, 𝐘) = ⟨ log𝐗(𝐘), log𝐗(𝐘)〉𝐗 = tr [log
2 (𝐗−

1
2𝐘𝐗−

1
2)]  =  ‖log (𝐗−

1
2𝐘𝐗−

1
2)‖

F

(17) 

where ‖⋅‖F is the Frobenius norm. Last, but not least, given the fact that SPD matrices do have a 

symmetric nature, it is easy to derive that they only have 
𝑑(𝑑+1)

2
 independent values. Also, since the 

logarithmic map, maps an SPD point to a tangent space, which is a vector space, due to it being a 

linear subspace of ℝ𝑑,𝑑 [87], a map can be derived such that 𝑓 ∶ T𝐌𝒮𝑑
++ ↦ ℝ

𝑑(𝑑+1)

2 . This map, termed 

the vec operator [42], gives the orthonormal coordinates of the tangent vector 𝑌 in the tangent space 

of 𝐗. This map is described by eq. (18) and eq. (19) while eq. (20) provides the relation between the 

Riemannian metric of Eq. (11) with Euclidean metric in ℝ
𝑑(𝑑+1)

2 . 

𝒗𝒆𝒄𝐈𝑑(𝑌) = [ 𝑌1,1, √2𝑌1,2, √2𝑌1,3, … , 𝑌2,2, √2𝑌2,3, … , 𝑌𝑑,𝑑] (18) 

𝒗𝒆𝒄𝐗(𝑌) = 𝒗𝒆𝒄𝐈𝑑 (𝐗
−
1
2𝑌𝐗−

1
2) (19) 

⟨𝑌, 𝑌〉𝐗 = ‖𝒗𝒆𝒄𝐗(𝑌)‖2
2 (20) 
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To the author’s opinion, the SPD Manifold is one the few manifolds that can be endowed with 

different Riemannian metrics, with some of them defining the exponential and logarithmic map 

differently, which leads to the geometry of the space being exploited in a different manner. Those 

metrics are the Log-Euclidean [90], Log-Cholesky [48], Bures-Wasserstein [46] and Generalized 

Bures-Wasserstein metrics [47]. 

2.4 Optimization in SPD Manifolds 

The Euclidean space is considered to be a trivial manifold with zero curvature, making it among 

the handiest to work with. Its associated metric, exponential and logarithmic maps for two vectors 

belonging to the Euclidean space, 𝑥, 𝑦 ∈ ℝ𝑛, are described by Eqs. (21)-(23), in which 𝐈n ∈ ℝ
𝑛×𝑛 is 

the diagonal identical matrix. 

⟨𝑥, 𝑦⟩ = 𝑦T𝑥 = 𝑦T𝐈n𝑥 (21) 

exp𝑥(𝑦) = 𝑥 + 𝑦 (22) 

log𝑥(𝑦) = 𝑥 − 𝑦 (23) 

As seen, the two maps, are the well-known addition and subtraction operators of vectors. If compared 

to the SPD maps, one may easy find out that both in general and in the case of the SPD manifold, the 

exponential map is the equivalent of the addition operation, while the logarithmic map is the 

equivalent of the subtraction operation, due to the fact that the tangent space being is a vector space. 

With this, it is easy to formulate a concrete formula for gradient descent in the SPD manifold. And 

since the derivative of a function 𝑓 ∶ 𝐌 ↦ ℝ1, w.r.t. 𝐌, yields a symmetric matrix at the tangent 

space3 of 𝐌, i.e., ∇𝐌𝑓(𝐌) ∈ T𝐌𝒮𝑑
++, the gradient descent formula with a step size of 𝜆 is described 

by Eq. (24). This operation is frequently referred to as the retraction operation on the manifold at a 

point 𝐌, R𝐌(𝑌), which in this case corresponds to the exponential map. 

𝐌(𝑡+1) = R𝐌 (∇𝐌(𝑡)𝑓(𝐌(𝑡))) = exp𝐌 (−𝜆 ∇𝐌(𝑡)𝑓(𝐌(𝑡))) (24) 

In general, the retraction operation and the exponential map are not necessarily the same 

operation mathematically. The retraction operation is defined as a map from the tangent space to the 

manifold with a local rigidity condition that preserves gradients at the point 𝐗 [86]. In the case of the 

SPD Manifold, the retraction operation and exponential map are the same due to the Riemannian 

metric the space is endowed with, eq. (11). With another Riemannian metric in this or another 

manifold, the retraction operation could be different from the exponential map, e.g., the Stiefel 

manifold, has multiple retraction operations with only one of them using the exponential map in it 

[91]. 

2.4.1 Gradient Computation 

The gradient of a loss w.r.t. an SPD matrix can be computed in two ways. The first being the 

standard differentiation of the equations w.r.t. the SPD matrices while taking into account the 

structure of the manifold. The other way, which is commonly utilized [91]–[94], is differentiating 

w.r.t. the matrices without taking into account any information regarding their structure. This leads 

to Euclidean gradients which are not part of the tangent space of each matrix. They are then projected 

onto the tangent space using the respective orthogonal projection formula of each Riemannian 

submanifold. For the SPD Manifolds, the orthogonal projection map of a Euclidean matrix to the 

 
3 The reason as to why the gradient of an SPD matrix is a point in its tangent space, is thoroughly explained in [86] and 

[87]. 
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tangent space of an SPD matrix, 𝜋𝐌(⋅) ∶ ℝ
𝑑×𝑑 ↦ T𝐌𝒮𝑑

++, is defined in Eq. (25). A visualization of 

the gradient descent algorithm on an SPD manifold, is provided in Figure 7. 

𝜋𝐌(X) = 𝐌(
X + XT

2
)𝐌 (25) 

 

(a) 

 

 

 

(b) 

Figure 7: (a) Step 1: Orthogonal projection of the Euclidean gradient to 𝐓𝐌𝐭𝓢𝒅
++. (b) Step 2: Move on the 

manifold using the retraction operation. 

As an example, the clustering task on the SPD manifold can be defined with eq. (26). Basically, 

for each class we need to find a point on the manifold for which the intra-class distances, calculated 

by eq. (17), will be minimized. Assuming the solution is not the mean value of points for each class, 

this problem is possible to be solved using gradient descent. Starting with the second approach, i.e., 

computing Euclidean gradients which will then be mapped to the tangent space, the derivative of eq. 

(26) w.r.t. point 𝐗, is computed through eq. (27)4. Once mapped to the tangent space, as seen in eq. 

(28), using the retraction operation, gradient descent is performed. For the initial method, i.e., 

computing the derivatives directly on the manifold, one starts by deriving eq. (28) then perform the 

retraction in eq. (29).  

min  
𝐗∈𝒮d

++
𝑓(𝑿, 𝒀𝑖) = min

𝑿∈𝒮𝑑
++
𝑑(𝑿, 𝒀𝑖) (26) 

𝜕𝑓

𝜕𝐗(𝑡)
=

−1

𝑑(𝐗(𝑡), 𝐘𝑖)
 𝐗
(𝑡)

−
1
2 log (𝐗

(𝑡)

−
1
2𝐘𝐗

(𝑡)

−
1
2)𝐗

(𝑡)

−
1
2 ∈ ℝ𝑑×𝑑  (27) 

𝜋𝐗(𝑡) (
𝜕𝑓

𝜕𝐗(𝑡)
) = 𝑿(𝑡)

(

 
 
𝜕𝑓
𝜕𝐗(𝑡)

+
𝜕𝑓
𝜕𝐗(𝑡)

T

2

)

 
 
𝑿(𝑡) =

−1

𝑑(𝐗(𝑡), 𝐘𝑖)
𝐗
(𝑡)

1
2 log (𝐗

(𝑡)

−
1
2𝐘𝐗

(t)

−
1
2)𝐗

(𝑡)

1
2 ∈ T𝐗(𝑡)𝒮𝑑

++ (28) 

𝐗(𝑡+1) = R𝐗(𝑡) (𝜋𝐗(𝑡) (
𝜕𝑓

𝜕𝐗(𝑡)
)) = exp𝐗(𝑡) (−𝜆𝜋𝐗(𝑡) (

𝜕𝑓

𝜕𝐗(𝑡)
)) (29) 

 

 
4 The computation of the derivatives in detail is out of the scope of the thesis. For the interested reader, it is suggested to 

use references [86], [87], [95]–[99] to derive the presented equations. 
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Computationally, it is much simpler to use the second approach, as many commonly used deep 

learning frameworks, such as Python’s PyTorch, Tensorflow, Apache MXNet and others, 

MATLAB’s Deep Learning Toolbox and Manopt toolbox [93], Julia’s Manifolds.jl and many others, 

implement a concept called automatic differentiation, which basically uses the chain rule to easily 

calculate the derivatives of scalar outputs w.r.t. vectors or matrices. The computed gradients are in 

the Euclidean space, which means it is simply a matter of projecting the gradients to the tangent space 

of the point in the manifold and then performing the update step.  

2.5 Meta-learning on SPD Manifold 

Meta-learning on any kind of Riemannian (sub)manifold was not performed until the proposed 

method of [54] which was formulated on the SPD manifold, and later generalized to many 

Riemannian (sub)manifolds, with [85]. As the work of this thesis utilized the proposed methods, it 

will be presented in this chapter, as it is the only meta-learning algorithm so far formulated in spaces 

of differential geometry. 

The RNN topology, and specifically the LSTM variant, has been used in many meta-learning 

methods as stated earlier, proving that they are a good choice when it comes to developing meta-

learning algorithms that are based on neural networks. They are formulated to work with Euclidean 

vectors, which hinders the usage of matrix-shaped data, but this is easily solved by modifying the 

shapes of the weights and biases to match the matrix shape that is needed. Even so, the main concern 

of using the LSTM topology, even if changed to use with matrices, is that the operations performed 

do not guarantee that the structure of the data used is preserved. For instance, in the SPD manifold, 

the meta-learning network would be needed to output symmetric matrices, as these would be used as 

gradients to the SPD matrix parameters that are optimized, since as stated earlier, the gradient 

generated from an objective function when differentiated w.r.t a SPD matrix, are symmetric matrices 

in the tangent space defined from that SPD matrix. This means, that the basic matrix multiplications 

used in the LSTM formulas, must be replaced with another kind of operation that not only performs 

a similar task but also preserves the structure of the given data. The symmetry of a matrix can be 

preserved by a bidirectional matrix multiplication, termed bilinear projection, of the data with a 

weight matrix and its transpose, 𝑂 = WT𝑋W, as proposed in [54], with W ∈ ℝo×d, being the weight 

matrix, 𝑋 ∈  𝑆𝑦𝑚𝑑 and 𝑂 ∈ 𝑆𝑦𝑚𝑜 being symmetric matrices, with the former being the input and the 

latter the output, and 𝑜 being the output dimension and 𝑑 the input dimension without them 

necessarily being of different values, i.e., it is possible that 𝑜 = 𝑑. Thus, the typical LSTM formulas 

are changed as seen in eqs. (30) - (35), which is a modification of the LSTM termed matrix LSTM 

(mLSTM). By replacing the bilinear projection with another one, suitable for the structure of the 

manifold the data reside in, the authors proposed the generalized matrix LSTM (gmLSTM) in [85]. 

𝐼(𝑡) = 𝜎(W𝑥𝑖
TX(𝑡)W𝑥𝑖 +Wℎ𝑖

T𝐻(𝑡−1)Wℎ𝑖) ∈ 𝑆𝑦𝑚
𝑜 (30) 

𝐹(𝑡) = 𝜎(W𝑥𝑓
T X(𝑡)W𝑥𝑓 +Wℎ𝑓

T 𝐻(𝑡−1)Wℎ𝑓)  ∈ 𝑆𝑦𝑚
𝑜 (31) 

𝑂(𝑡) = 𝜎(W𝑥𝑜
T X(𝑡)W𝑥𝑜 +Wℎ𝑜

T 𝐻(𝑡−1)Wℎ𝑜)  ∈ 𝑆𝑦𝑚
𝑜 (32) 

𝐶̃(𝑡) = tanh(W𝑥𝑐
T X(𝑡)W𝑥𝑐 +Wℎ𝑐

T 𝐻(𝑡−1)Wℎ𝑐)  ∈ 𝑆𝑦𝑚
𝑜 (33) 

𝐶(𝑡) = 𝐹(𝑡)⊙𝐶(𝑡−1) + 𝐼(𝑡)⊙ 𝐶̃(𝑡)  ∈ 𝑆𝑦𝑚
𝑜 (34) 

𝐻(𝑡) = 𝑂(𝑡)⊙ tanh(𝐶(𝑡)) ∈ 𝑆𝑦𝑚
𝑜 (35) 



Meta-heuristic optimization methods on SPD Manifolds and applications to computer vision 

UniWA, Department of EEE, Diploma Thesis, Alexios Giazitzis   28 

Utilizing the mLSTM as well as the retraction and projection equations of (24) and (25), the 

authors constructed the meta-learning network topology of Figure 8, where Γ𝑀(𝑡)  is eq. (24). The 

network learns to calculate the proper value update and learning rate for any given gradient, by having 

one mLSTM output matrices used to compute a new gradient-like matrix and one mLSTM whose 

output is used to calculate the learning rate. The training algorithm developed for it only requires the 

definition of an objective function for the task at hand, as it is defined to be task agnostic. This 

objective function is transformed to a meta-objective function which should accommodate multiple 

SPD matrices, the amount of which is denoted by 𝑚, if it does not by default, as this reduced 

oscillations of the updates to the network during training. As one can notice, especially when taking 

into account the experiments performed, the network learns to optimize and optimizes a single SPD 

parameter, which means it is not formulated to work with networks that may contain SPD matrices 

for weights. This is a drawback when compared with traditional handcrafted Riemannian optimizers, 

but it is alleviated by the presented fact that it converges a lot faster and a lot better. Mathematically, 

the network topology is expressed by eq. (36) through (43). The mLSTM memory matrices are shared 

by calculating their element-wise product, as this allows the optimization information from both the 

weight update and learning rate be shared. 

𝑆𝑙,(𝑡−1)  = [𝐻𝑙,(𝑡−1), 𝐶𝑙,(𝑡−1)] (36) 

𝑆𝑠,(𝑡−1)  = [𝐻𝑠,(𝑡−1), 𝐶𝑠,(𝑡−1)] (37) 

𝑆(𝑡−1) = 𝑆𝑙,(𝑡−1)⊙𝑆𝑠,(𝑡−1) (38) 

𝑆𝑙,(𝑡) = mLSTM𝑙(∇𝐌,(𝑡), 𝑆(𝑡−1)) (39) 

𝑆𝑠,(𝑡) = mLSTM𝑠(∇𝐌,(𝑡), 𝑆(𝑡−1)) (40) 

𝑈(𝑡) = 𝜋𝐌(𝑡)(W𝑠
T(𝐻𝑠,(𝑡) + ∇𝐌,(𝑡))W𝑠) (41) 

𝜆(𝑡) = 𝑤𝑙
T𝐻𝑙,(𝑡)𝑤𝑙 (42) 

𝐌(𝑡+1) = Γ𝐌(𝑡)( −𝜆(𝑡)𝑈(𝑡)) (43)

where 𝑆 = [𝐻, 𝐶] the output of the mLSTM network. In total, the meta-learning network’s parameters 

can be combined in a set 𝜙 = {W𝑠,𝑥𝑖,W𝑠,ℎ𝑖,W𝑠,𝑥𝑓,W𝑠,ℎ𝑓 ,W𝑠,𝑥𝑜 ,W𝑠,ℎ𝑜 ,W𝑠,𝑥𝑐,W𝑠,W𝑙,𝑥𝑖, 

W𝑙,ℎ𝑖,W𝑙,𝑥𝑓,W𝑙,ℎ𝑓 ,W𝑙,𝑥𝑜,W𝑙,ℎ𝑜 ,W𝑙,𝑥𝑐, 𝑤𝑙}5. 

The training algorithm for the network is split into two phases. Initially, an experience pool is 

filled by using a simple Riemannian Gradient Descent optimizer on the task’s meta-objective function 

starting with the initial SPD matrix being the identity matrix, for a predefined number of iterations. 

Once this observation stage, as it was named, is complete, the learning stage commences. For another 

predefined number of iterations, the experience pool is randomly sampled and the meta-learning 

network performs a specific number of optimization steps on the meta-objective function, 

accumulating a global loss value. Then the gradients of the accumulated loss w.r.t the network’s 

mLSTMs weights are calculated which are used with the ADAM optimization algorithm to update 

 
5 Assuming one mLSTM is used for in each cell. If multiple are used in sequence, then the set includes their parameters 

as well. 
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the network’s trainable parameters. If a specific number of training epochs have passed, the SPD 

matrix is set to the identity and the state matrices are set to matrices filled with zeros, then pushed 

into the experience pool. If not, the optimized SPD parameter along with the network’s state matrices, 

𝑺(𝑡), are pushed into the experience pool. Once the predetermined learning stage epochs are reached, 

the training ends and the trained meta-learning optimization network is returned. 

  

Figure 8: SPD meta-learning network topology. Source: [55], Learning to Optimize on SPD 

Manifolds, Gao et al. 
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3 Proposition, Experiments & Results 

This chapter covers the data preprocessing steps performed to map the static signature images 

to SPD points and then to pairwise distance vectors, the verification framework that was developed, 

the experiments performed with it and the respective results. As a reminder, the target objective is to 

calculate a 2x2 SPD matrix which when used as the covariance matrix parameter on a Mahalanobis 

distance of the pairwise distances, it will minimize the result for the similar pairs and maximize it for 

the dissimilar. 

3.1 Datasets & Preprocessing 

For the learning and testing purposes of the proposed method, two static signature datasets of 

Western origin were used: a) the CEDAR Signature Dataset [100], consisting of 55 writers with 24 

genuine samples each, and 24 (skilled) forgery samples which were obtained by 20 skillful forgers, 

and b) the offline part of the MCYT signature corpus [101], MCYT-75 (henceforth MCYT), 

consisting of 75 writers with 15 genuine and 15 (skilled) forgery samples each, with the forgeries 

being acquired from subsequent users of the signature acquisition process. 

Following the novel work which was initially proposed in [18] on the preprocessing step, after 

the images are binarized using Otsu’s thresholding [102], the binary signature images are 

morphologically thinned as many times as the corresponding optimal level was found, that being one 

for the CEDAR database and two for the MCYT dataset. Afterwards, the original image is masked 

over with its binary, skeletonized counterpart, giving back the grayscale equivalent of the 

morphologically thinned mask. Lastly, the masked grayscale image are cropped such that the 

surrounding background is removed. 

The feature extraction from the processed grayscale image is performed by applying a typical 

10-layer stack filter of eq. (44), resulting in an equivalent 10-layer stack image, and keeping only the 

values corresponding to signature trace, i.e., the background noise is not taken into account. Once 

extracted, using eq. (45), each signature image is mapped to a point 𝐂 on the SPD manifold. 

F(I) = {I, |Ix|, |Iy|, √Ix2 + Iy2, tan
−1 (

Iy

Ix
) , |Ixx|, |Iyy|, |Ixy|, x, y}  ∈ ℝ

𝑁×𝑀𝑥10 (44) 

𝐂 =
1

S − 1
∑(F(I)𝑖 −𝑚𝑒𝑎𝑛(F(I))) (F(I)𝑖 −𝑚𝑒𝑎𝑛(F(I)))

T
𝑆

𝑖=1

 (45) 

In eq. (44), I corresponds to the preprocessed grayscale image, Ix, Iy and Ixx, Iyy are the first and 

seconds directional image derivatives, Ixy is the image derivative w.r.t both directions, √Ix2 + Iy2 and 

tan−1 (
Iy

Ix
) are the magnitude and direction of the gradient, with the second being normalized in to 

radians ranging from [−𝜋, 𝜋), and x, y are the signature trace pixel coordinates normalized by the 

number of rows and columns the resized grayscale signature image has. In eq. (45), S refers to the 

number of samples contained in the feature matrix F(I), F(I)𝑖 corresponds to the i-th feature vector 

containing all 10 filter values of the corresponding signature trace pixel and 𝑚𝑒𝑎𝑛(F(I)) corresponds 

to the vector containing the mean value of each extracted feature. 

From each SPD matrix 𝐂, two 5x5 block-diagonal submatrices are identified and extracted, 

which are also SPD. Then, for each genuine-to-genuine and genuine-to-forgery pair, their submatrix 

pairs, are employed in order to calculate the geodesic distance, with the help of eq. (17). This equation 

basically utilizes the difference between two SPD matrices to measure the distance between them, so 
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similarly to [56], the feature domain is transformed to the distance feature domain, with the difference 

being that the original feature domain is the SPD manifold instead of the Euclidean space, and the 

distance space is comprised of 2D distance vectors rather than a single distance measure. A 

visualization of this method is presented in Figure 10, while a visualization of the resulting space for 

a writer of the CEDAR dataset is presented in Figure 9. Graphs for the rest of the writers of that 

dataset and all of the writers from the MCYT dataset are presented in the images folder of the online 

repository of the Python source code used for the experiments6. 

 

 
6 https://bitbucket.org/agiaz/thesis 

Figure 10: A pair of SPD matrices is mapped to a 2D Euclidean distance vector by SPD geodesic distance on SPD 

submatrices. The subscripts on the matrices denote the range of indices taken in both directions. 

Figure 9: The two – dimensional distance feature space of writer 1 from the CEDAR 

dataset. 
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3.2 Verification Framework 

The proposed handwritten signature verification algorithm utilizes a single as well as simple 

2×2 SPD matrix which is calculated using the meta-learning method developed in [54], by modifying 

its training algorithm in order to introduce a parallelization in training both the optimization neural 

network and the 2x2 SPD parameter. Therefore, we train the optimizer for a few steps at a time and 

then use it to calculate the updated SPD parameter which is used for validation, with this interchange 

running for a predetermined number of times or until convergence of the utilized loss metric is used. 

In detail, evaluation of the static signature pairwise distances are then employed in the 

determination of the Mahalanobis distance equation of eq. (46), in which 𝐌 denotes the corresponding 

SPD parameter. Then the contrastive loss is calculated by eq. (47), by including a binary label, yij,kl, 

with its value being 0 for dissimilar pairs and 1 for similar pairs, and two hyper-parameters, 𝜁𝑑 and 

𝜁𝑠, that are distance thresholds for dissimilar and similar pairs. The subscripts i and k refer to the 

writer of the dataset, while j and l refer to the sample of each writer. Due to them, the loss function 

drives the gradients to move the weights towards values that make the result of eq. (46) for dissimilar 

pairs larger, while for similar pairs smaller.  

𝑑(𝑥𝑖𝑗,𝑘𝑙, 𝐌) = 𝑥𝑖𝑗,𝑘𝑙
T 𝐌𝑥𝑖𝑗,𝑘𝑙 (46) 

𝑙(𝐷, 𝑆,𝐌) =
1

D
∑ (1 − yij,kl)max (𝜁𝑑 − 𝑑(𝑥𝑖𝑗,𝑘𝑙, 𝐌))

2

𝑖,𝑗,𝑘,𝑙∈𝐷

+
1

S
∑ yij,klmax(𝑑(𝑥𝑖𝑗,𝑘𝑙, 𝐌) − 𝜁𝑠 , 0)

2

𝑖,𝑗,𝑘,𝑙∈𝑆

 (47)

 

 

The sets D and S are the dissimilar and similar pairs in the minibatch, with each containing the indices 

of the writers and the indices of their samples that are part of the set. The training process uses a mini-

batch training approach, which is why in the loss function, the dissimilar pairs loss is normalized by 

|D|, the cardinality of the set of dissimilar pairs in the mini-batch, while the similar pairs loss by |S|, 

the cardinality of the set of similar pairs in the mini-batch. Eq. (47) is the objective function used in 

our task, which is transformed to the meta-objective function used by the meta-learning network’s 

training algorithm, by the mean value of all loss calculations per SPD matrix, as multiple SPD 

parameters are utilized to reduce training oscillations. This is depicted in eq. (48). 

ℒ(𝐷, 𝑆,𝐌) =
1

𝑚
∑ 𝑙(𝐷, 𝑆,𝐌𝑛)

𝑚

𝑛=1

 (48) 

3.3 Experiments & Results 

The outline of the training algorithm utilized for our framework can be seen in Algorithm 1. It 

is a modified version of the meta-learner’s training algorithm, as stated earlier, by splitting the 

learning state in multiple segments, with each segment followed by optimizing our final SPD 

parameter and then performing a validation step, which allows us to stop the training process if 

convergence is met. Once the training loop is done, either by reaching the predefined epochs or 

convergence of the validation metric, the most performant SPD parameter found during training is 

kept and tested. 

The training, validation and internal testing is performed by initially splitting the dataset in half, 

keeping half of the writers for training and validation and half for testing. The first half is split again, 
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with 70% of the sample pairs of each writer being used for training, and the other 30% used for 

validation. For the training part, we choose to keep the number of genuine-to-forgery pairs equal to 

that of the genuine-to-genuine for each writer, in order to have a balanced distribution of samples 

from 𝜔+and 𝜔−. The rest of the genuine-to-forgery pairs are used with the other 30% for validation. 

The validation step utilized the AUC metric of the Receiver Operating Characteristic (ROC) curve in 

order to declare the optimal operating parameters of the proposed model. The testing step utilizes the 

True Positive Rate (TPR) and False Positive Rate (FPR) measures from the ROC Curve in order to 

calculate an EER%. Once the algorithm terminates, the initial two splits are interchanged and the 

algorithm is run again, i.e., the testing part of the dataset becomes the training-validation one and 

vice-versa. We perform this form of cross-validation 5 times, thus performing a 5-by-2 cross 

validation algorithm (CVA). 

Using the 5-by-2 CVA, we perform an exhaustive hyperparameter grid search over discrete 

value ranges for some of the hyperparameters with the CEDAR dataset, with the results of it shown 

in Table 47. Next, we pick the best performing hyperparameter set, designated by a bold line on Table 

4, in order to perform two new 5-by-2 CVA for both the CEDAR and MCYT datasets. For testing, a 

reference population of 10 genuine samples from each writer are randomly sampled, while the rest of 

the genuine samples along with the skilled forgeries are used as the set of questioned samples. For 

each pair between each genuine sample and each questioned sample, the distances are calculated as 

shown in Figure 9, and are used with the SPD parameter found during the training stage. The resulting 

distances are stored for post-processing for a total of 10 times. Afterwards, for each questioned 

sample’s result, we keep the minimum, mean and maximum distances found, perform a ROC analysis 

for each distance type and use the TPR and FPR to calculate the EER%. The results of these are 

depicted in Table 1. Finally, we calculate a new SPD parameter, with each dataset without splitting 

for testing, which is then tested on the other. This allows us to see the generalization capabilities of 

the model to unseen data distributions. Table 2 contains the inter-dataset testing results. The rest of 

the hyperparameters that were predetermined and not found by the CVA, were set as: 

• Batch size = 512 samples 

• mLSTM layers = 2 

• 𝜏 = 105 if O.I = 300, 205 if O.I = 600 

• 𝑇 = 5 

• 𝑚 = 12 

• 𝜁𝑠 = 0.01 

• 𝜁𝑑 = 1 

  

 
7 Table 1 is in Appendix A due to its size. A legend is also included regarding the table headers. 



Meta-heuristic optimization methods on SPD Manifolds and applications to computer vision 

UniWA, Department of EEE, Diploma Thesis, Alexios Giazitzis   34 

Table 1  

Intra-dataset testing results. 

Dataset D.T. 
Fold 1 

EER% 

Fold 2 

EER% 

Fold 3 

EER% 

Fold 4 

EER% 

Fold 5 

EER% 

Mean 

EER% 

CEDAR min 0.91 0.98 0.75 0.75 0.6 0.8 

CEDAR mean 2.07 2.29 2.31 2.02 1.71 2.08 

CEDAR max 5.64 6.25 6.73 5.62 5.31 5.91 

MCYT min 4.67 3.91 4.59 4.11 4.71 4.4 

MCYT mean 5.71 4.57 5.25 4.93 6.03 5.3 

MCYT max 11.41 8.47 9.31 9.16 11.69 10.01 

 

 

Table 2  

Inter-dataset testing EER% 
 CEDAR MCYT 

CEDAR - 4.51 

MCYT 1.22 - 

 

Table 3  

Summary of WI-SV on testing EER% 

1st Author Ref. Method 
#Sig. 

Refs. 
CEDAR 

MCYT-

75 

Maergner [51] Graph edit distance 10 5.91 3.91 

Maergner [103] 
Graph edit distance & Inkball 

Models 
10 - 5.78 

Soleimani [31] HOG with  DMML 5 - 13.40 
 Same as above 10 - 9.86 

Kumar [104] 
Surroundedness feat. with 

MLP/RBF-SVM 
1 8.50 - 

Liu [52] 
Metric learning with MSDN with 

DCSN 
1 4.83 - 

 Same as above 1 8.26 - 
 Same as above 10 1.75 - 
 Same as above 12 1.67 - 

Zhu [105] P2S metric learning 5 5.22 4.86 

Hamadene [32] CT with DCCM 5 2.10 - 

Kalera [100] GSC feats. To Bayes Classifier 16 21.90 - 

Zois [25] Partially ordered sets 5 2.90 3.50 

Longjam [26] Hybrid CNN-BiLSTM Network N/A 0.00 - 

Parcham [106] CNNCapsNet - CBCapsNet N/A 0.00 - 

Hanif [53] VLAD N/A 0.00 - 

Li [107] AVN N/A 3.77 - 

Lin [108] 2C2L N/A 0.00 - 

Wei [109] IDN N/A 3.62 - 

Souza [24] DT with Signet 12/10 3.32 2.89 

Proposedintra 
Image to SPD to ℝ2, Mahalanobis 

distance 
10 0.61 4.11 
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Algorithm 1 Cross Validation process of SV Framework 

Input: Randomly initialized meta-learning optimizer parameters 𝜙. Randomly initialized SPD 

parameter 𝐌(𝑡). Empty experience pool 𝜓 =  ∅. Initial optimizer state 𝑆(0) = 𝟎𝑑. Initial 

meta-objective SPD parameter 𝐋(0) = 𝐈𝑑. 

Output: The SPD parameter 𝐌(𝑡). 

while 𝑖 ≠ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

  Compute 𝑙 with 𝐋(𝑡) using eq. (47) and ∇𝐋(𝑡)𝑙 

  Compute 𝐋(𝑡+1)by eq. (29) 

  Insert {(𝐋(𝑡),𝑗, 𝑆(0),𝑗)}𝑗=1
𝑚

 to 𝜓 

end  

while 𝑖𝑡𝑟 ≠ 𝑡𝑜𝑡𝑎𝑙_𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 or 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 

  while 𝑜𝑖𝑡𝑟 ≠ 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟_𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑒𝑝𝑜𝑐ℎ𝑠 

    Randomly sample {(𝐋(𝑡),𝑗, 𝑆(𝑡),𝑗)}𝑗=1
𝑚

from 𝜓 

    while 𝑠𝑡𝑒𝑝 ≠ 𝑇 

      Compute 𝑙 with 𝐋(𝑡) using eq. (47) and ∇𝐋(𝑡)𝑙 

      Update 𝐋(𝑡+1)by eq. (36) through (43) 

    end  

    Compute the loss ℒ of the optimizer by eq. (48) and ∇𝜙ℒ 

    Update 𝜙 using the ADAM algorithm 

    if 𝑡 + 𝑇 > 𝜏 

     Set 𝐋(𝑡),𝑗 = 𝐈𝑑|𝑗=1
𝑚  and 𝑆(𝑡),𝑗 = 𝟎𝑑|𝑗=1

𝑚  

    end 

    Insert {(𝐋(𝑡),𝑗, 𝑆(𝑡),𝑗)}𝑗=1
𝑚

to 𝜓 

  end  

  while 𝑙𝑖𝑡𝑟 ≠ 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑒𝑝𝑜𝑐ℎ𝑠 

    Compute 𝑙 with 𝐌(𝑡) by eq. (47) and ∇𝐌(𝑡)𝑙 

    Update 𝐌(𝑡+1)by eq. (36) through (43) 

  end  

  Calculate validation metric 𝑣 

  If 𝑣 has not changed for a 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

   Set 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 = 𝑇𝑟𝑢𝑒 

  end 

end  

Return 𝐌(𝑡) 
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4 Chapter 4: Conclusion 

In Table 4, we can see that there are more hyperparameter sets that reach equivalent results, 

meaning that possibly with a different weight initialization, they could perform similarly or better 

with the chosen one. It is also important to note, that the minimum distance type performs better in 

all of the test cases. As it can also be seen from Table 1, the intra-dataset results on CEDAR showcase 

low error rates, while on MCYT the error is comparable higher than on CEDAR, but it is comparable 

with that of the State-of-the-Art models referred in the literature. Table 2 inspection allows us to 

assert that our model is able to generalize, as the results come close with the intra-dataset ones. 

Cumulatively, the results showcase that the proposed framework, which utilizes low-dimensionality 

parameters, performs similarly to the State-of-the-Art WI-SV methods, something which is extremely 

important as it allows for similar results with a smaller computational effort. The mapping from the 

SPD space to the simple Euclidean ℝ2 space through a subSPD distance measurement seems to 

capture important information, similarly to the map proposed in [56]. For some writers of the datasets, 

this mapping showcases an easily dichotomized space, while for others the dichotomy of their 

distance space is not that much more difficult. Finally, the combination of the mapping, with the 

Mahalanobis distance learning and the SPD meta-learner, offered a performant, low-dimensionality, 

WI-SV algorithm. 

The development of a performant WI-SV system with low computational overhead is not 

impossible as presented in this thesis. Utilizing novelty methods, such as meta-learning on 

Riemannian manifolds, and the presented subSPD distance feature mapping, a system such as the one 

mentioned was developed. The proposed framework is able to generalize properly to unseen data with 

possibly different distributions, is computationally cheap, as it is only a single 2x2 SPD matrix. The 

results on two popular datasets of Western origin, CEDAR and MCYT-75, portray the capabilities of 

the proposed method. Comparing with other WI-SV methods, in Table 3, it is clear that the proposed 

framework is equally performant with more complex, computationally intensive algorithms that 

utilize a lot more parameters. Finally, on-going research includes the usage of image segments in the 

mapping to SPD and then to the distance domain, and finding different ways to extract subSPD matrix 

information between pairs.  
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Appendix A: Table 1 

• D.T. : Distance Type 

• O.I. : Observation Iterations 

• O.L.R.: Optimizer Learning Rate 

• H.L.R.: Handcrafted optimizer Learning Rate 

• L.E.: Learner Epochs 

• R.F.P. : Random Forgery Percentage 

 

 

Table 4  

5-by-2 cross validation on CEDAR dataset 

D.T. O.I. O.L.E. O.L.R H.L.R L.E. R.F.P. EER% 

min 300 200 0.001 0.1 50 0 0.81 

mean 300 200 0.001 0.1 50 0 2.31 

max 300 200 0.001 0.1 50 0 6.35 

min 300 200 0.001 0.1 50 0.5 1.03 

mean 300 200 0.001 0.1 50 0.5 2.78 

max 300 200 0.001 0.1 50 0.5 7.1 

min 300 200 0.001 0.1 50 1 0.86 

mean 300 200 0.001 0.1 50 1 2.46 

max 300 200 0.001 0.1 50 1 6.37 

min 300 200 0.0001 0.1 50 0 1.04 

mean 300 200 0.0001 0.1 50 0 2.54 

max 300 200 0.0001 0.1 50 0 6.39 

min 300 200 0.0001 0.1 50 0.5 1.08 

mean 300 200 0.0001 0.1 50 0.5 2.88 

max 300 200 0.0001 0.1 50 0.5 7.01 

min 300 200 0.0001 0.1 50 1 1.07 

mean 300 200 0.0001 0.1 50 1 2.41 

max 300 200 0.0001 0.1 50 1 6.56 

min 300 200 1.00E-05 0.1 50 0 0.76 

mean 300 200 1.00E-05 0.1 50 0 2.09 

max 300 200 1.00E-05 0.1 50 0 5.99 

min 300 200 1.00E-05 0.1 50 0.5 1.09 
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D.T. O.I. O.L.E. O.L.R H.L.R L.E. R.F.P. EER% 

mean 300 200 1.00E-05 0.1 50 0.5 2.58 

max 300 200 1.00E-05 0.1 50 0.5 6.52 

min 300 200 1.00E-05 0.1 50 1 1.05 

mean 300 200 1.00E-05 0.1 50 1 2.35 

max 300 200 1.00E-05 0.1 50 1 6.2 

min 300 200 1.00E-06 0.1 50 0 0.94 

mean 300 200 1.00E-06 0.1 50 0 2.51 

max 300 200 1.00E-06 0.1 50 0 6.29 

min 300 200 1.00E-06 0.1 50 0.5 1.03 

mean 300 200 1.00E-06 0.1 50 0.5 2.63 

max 300 200 1.00E-06 0.1 50 0.5 6.86 

min 300 200 1.00E-06 0.1 50 1 0.77 

mean 300 200 1.00E-06 0.1 50 1 2.03 

max 300 200 1.00E-06 0.1 50 1 5.72 

min 600 200 0.001 0.01 50 0 0.85 

mean 600 200 0.001 0.01 50 0 2.3 

max 600 200 0.001 0.01 50 0 5.65 

min 600 200 0.001 0.01 50 0.5 0.61 

mean 600 200 0.001 0.01 50 0.5 1.69 

max 600 200 0.001 0.01 50 0.5 5.23 

min 600 200 0.001 0.01 50 1 1.09 

mean 600 200 0.001 0.01 50 1 2.89 

max 600 200 0.001 0.01 50 1 7.14 

min 600 200 0.0001 0.01 50 0 1.04 

mean 600 200 0.0001 0.01 50 0 2.75 

max 600 200 0.0001 0.01 50 0 7.06 

min 600 200 0.0001 0.01 50 0.5 0.83 

mean 600 200 0.0001 0.01 50 0.5 2.31 

max 600 200 0.0001 0.01 50 0.5 6.26 

min 600 200 0.0001 0.01 50 1 0.89 

mean 600 200 0.0001 0.01 50 1 2.38 

max 600 200 0.0001 0.01 50 1 6.45 
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D.T. O.I. O.L.E. O.L.R H.L.R L.E. R.F.P. EER% 

min 600 200 1.00E-05 0.01 50 0 0.81 

mean 600 200 1.00E-05 0.01 50 0 2.28 

max 600 200 1.00E-05 0.01 50 0 6.19 

min 600 200 1.00E-05 0.01 50 0.5 0.87 

mean 600 200 1.00E-05 0.01 50 0.5 2.3 

max 600 200 1.00E-05 0.01 50 0.5 5.96 

min 600 200 1.00E-05 0.01 50 1 1.17 

mean 600 200 1.00E-05 0.01 50 1 2.76 

max 600 200 1.00E-05 0.01 50 1 6.97 

min 600 200 1.00E-06 0.01 50 0 0.73 

mean 600 200 1.00E-06 0.01 50 0 1.91 

max 600 200 1.00E-06 0.01 50 0 5.59 

min 600 200 1.00E-06 0.01 50 0.5 0.82 

mean 600 200 1.00E-06 0.01 50 0.5 2.23 

max 600 200 1.00E-06 0.01 50 0.5 5.99 

min 600 200 1.00E-06 0.01 50 1 0.72 

mean 600 200 1.00E-06 0.01 50 1 1.94 

max 600 200 1.00E-06 0.01 50 1 5.66 

min 300 200 0.001 0.1 100 0 1.64 

mean 300 200 0.001 0.1 100 0 3.65 

max 300 200 0.001 0.1 100 0 8.32 

min 300 200 0.001 0.1 100 0.5 1.06 

mean 300 200 0.001 0.1 100 0.5 2.63 

max 300 200 0.001 0.1 100 0.5 6.32 

min 300 200 0.001 0.1 100 1 0.67 

mean 300 200 0.001 0.1 100 1 1.85 

max 300 200 0.001 0.1 100 1 5.39 

min 300 200 0.0001 0.1 100 0 0.78 

mean 300 200 0.0001 0.1 100 0 2.19 

max 300 200 0.0001 0.1 100 0 5.98 

min 300 200 0.0001 0.1 100 0.5 0.88 

mean 300 200 0.0001 0.1 100 0.5 2.36 



Meta-heuristic optimization methods on SPD Manifolds and applications to computer vision 

UniWA, Department of EEE, Diploma Thesis, Alexios Giazitzis   47 

D.T. O.I. O.L.E. O.L.R H.L.R L.E. R.F.P. EER% 

max 300 200 0.0001 0.1 100 0.5 6.15 

min 300 200 0.0001 0.1 100 1 0.93 

mean 300 200 0.0001 0.1 100 1 2.5 

max 300 200 0.0001 0.1 100 1 6.64 

min 300 200 1.00E-05 0.1 100 0 0.83 

mean 300 200 1.00E-05 0.1 100 0 2.42 

max 300 200 1.00E-05 0.1 100 0 6.46 

min 300 200 1.00E-05 0.1 100 0.5 0.81 

mean 300 200 1.00E-05 0.1 100 0.5 2.06 

max 300 200 1.00E-05 0.1 100 0.5 5.71 

min 300 200 1.00E-05 0.1 100 1 1.01 

mean 300 200 1.00E-05 0.1 100 1 2.59 

max 300 200 1.00E-05 0.1 100 1 6.71 

min 300 200 1.00E-06 0.1 100 0 0.87 

mean 300 200 1.00E-06 0.1 100 0 2.27 

max 300 200 1.00E-06 0.1 100 0 6.19 

min 300 200 1.00E-06 0.1 100 0.5 1.36 

mean 300 200 1.00E-06 0.1 100 0.5 3.33 

max 300 200 1.00E-06 0.1 100 0.5 7.65 

min 300 200 1.00E-06 0.1 100 1 0.91 

mean 300 200 1.00E-06 0.1 100 1 2.48 

max 300 200 1.00E-06 0.1 100 1 6.39 

min 600 200 0.001 0.01 100 0 1.19 

mean 600 200 0.001 0.01 100 0 3.06 

max 600 200 0.001 0.01 100 0 7.66 

min 600 200 0.001 0.01 100 0.5 0.86 

mean 600 200 0.001 0.01 100 0.5 2.3 

max 600 200 0.001 0.01 100 0.5 6.49 

min 600 200 0.001 0.01 100 1 0.94 

mean 600 200 0.001 0.01 100 1 2.52 

max 600 200 0.001 0.01 100 1 6.56 

min 600 200 0.0001 0.01 100 0 0.86 
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D.T. O.I. O.L.E. O.L.R H.L.R L.E. R.F.P. EER% 

mean 600 200 0.0001 0.01 100 0 2.47 

max 600 200 0.0001 0.01 100 0 6.29 

min 600 200 0.0001 0.01 100 0.5 0.73 

mean 600 200 0.0001 0.01 100 0.5 2.12 

max 600 200 0.0001 0.01 100 0.5 5.89 

min 600 200 0.0001 0.01 100 1 1.02 

mean 600 200 0.0001 0.01 100 1 2.75 

max 600 200 0.0001 0.01 100 1 7.04 

min 600 200 1.00E-05 0.01 100 0 0.67 

mean 600 200 1.00E-05 0.01 100 0 1.81 

max 600 200 1.00E-05 0.01 100 0 5.27 

min 600 200 1.00E-05 0.01 100 0.5 0.95 

mean 600 200 1.00E-05 0.01 100 0.5 2.28 

max 600 200 1.00E-05 0.01 100 0.5 6 

min 600 200 1.00E-05 0.01 100 1 1.22 

mean 600 200 1.00E-05 0.01 100 1 2.79 

max 600 200 1.00E-05 0.01 100 1 7.18 

min 600 200 1.00E-06 0.01 100 0 0.81 

mean 600 200 1.00E-06 0.01 100 0 2.19 

max 600 200 1.00E-06 0.01 100 0 5.87 

min 600 200 1.00E-06 0.01 100 0.5 1.46 

mean 600 200 1.00E-06 0.01 100 0.5 3.07 

max 600 200 1.00E-06 0.01 100 0.5 7.12 

min 600 200 1.00E-06 0.01 100 1 0.83 

mean 600 200 1.00E-06 0.01 100 1 2.09 

max 600 200 1.00E-06 0.01 100 1 5.63 

min 300 200 0.001 0.1 150 0 2.53 

mean 300 200 0.001 0.1 150 0 3.95 

max 300 200 0.001 0.1 150 0 8.11 

min 300 200 0.001 0.1 150 0.5 0.81 

mean 300 200 0.001 0.1 150 0.5 2.31 

max 300 200 0.001 0.1 150 0.5 6.65 
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min 300 200 0.001 0.1 150 1 1.12 

mean 300 200 0.001 0.1 150 1 3 

max 300 200 0.001 0.1 150 1 7.06 

min 300 200 0.0001 0.1 150 0 1 

mean 300 200 0.0001 0.1 150 0 2.64 

max 300 200 0.0001 0.1 150 0 6.52 

min 300 200 0.0001 0.1 150 0.5 1.18 

mean 300 200 0.0001 0.1 150 0.5 2.97 

max 300 200 0.0001 0.1 150 0.5 7.17 

min 300 200 0.0001 0.1 150 1 0.97 

mean 300 200 0.0001 0.1 150 1 2.52 

max 300 200 0.0001 0.1 150 1 6.41 

min 300 200 1.00E-05 0.1 150 0 0.79 

mean 300 200 1.00E-05 0.1 150 0 2.16 

max 300 200 1.00E-05 0.1 150 0 6.07 

min 300 200 1.00E-05 0.1 150 0.5 1.34 

mean 300 200 1.00E-05 0.1 150 0.5 3.23 

max 300 200 1.00E-05 0.1 150 0.5 8.04 

min 300 200 1.00E-05 0.1 150 1 0.98 

mean 300 200 1.00E-05 0.1 150 1 2.66 

max 300 200 1.00E-05 0.1 150 1 6.86 

min 300 200 1.00E-06 0.1 150 0 1.27 

mean 300 200 1.00E-06 0.1 150 0 3.26 

max 300 200 1.00E-06 0.1 150 0 8.19 

min 300 200 1.00E-06 0.1 150 0.5 0.93 

mean 300 200 1.00E-06 0.1 150 0.5 2.48 

max 300 200 1.00E-06 0.1 150 0.5 6.76 

min 300 200 1.00E-06 0.1 150 1 0.97 

mean 300 200 1.00E-06 0.1 150 1 2.45 

max 300 200 1.00E-06 0.1 150 1 6.16 

min 600 200 0.001 0.01 150 0 1.1 

mean 600 200 0.001 0.01 150 0 2.52 
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max 600 200 0.001 0.01 150 0 6.71 

min 600 200 0.001 0.01 150 0.5 1.36 

mean 600 200 0.001 0.01 150 0.5 2.99 

max 600 200 0.001 0.01 150 0.5 6.85 

min 600 200 0.001 0.01 150 1 1.02 

mean 600 200 0.001 0.01 150 1 2.44 

max 600 200 0.001 0.01 150 1 6.3 

min 600 200 0.0001 0.01 150 0 1.1 

mean 600 200 0.0001 0.01 150 0 2.39 

max 600 200 0.0001 0.01 150 0 5.97 

min 600 200 0.0001 0.01 150 0.5 0.95 

mean 600 200 0.0001 0.01 150 0.5 2.43 

max 600 200 0.0001 0.01 150 0.5 6.03 

min 600 200 0.0001 0.01 150 1 1.5 

mean 600 200 0.0001 0.01 150 1 3.19 

max 600 200 0.0001 0.01 150 1 7.32 

min 600 200 1.00E-05 0.01 150 0 2.62 

mean 600 200 1.00E-05 0.01 150 0 3.35 

max 600 200 1.00E-05 0.01 150 0 7.04 

min 600 200 1.00E-05 0.01 150 0.5 1.68 

mean 600 200 1.00E-05 0.01 150 0.5 3.54 

max 600 200 1.00E-05 0.01 150 0.5 8.02 

min 600 200 1.00E-05 0.01 150 1 1.51 

mean 600 200 1.00E-05 0.01 150 1 3.16 

max 600 200 1.00E-05 0.01 150 1 7.23 

min 600 200 1.00E-06 0.01 150 0 1.11 

mean 600 200 1.00E-06 0.01 150 0 2.6 

max 600 200 1.00E-06 0.01 150 0 6.56 

min 600 200 1.00E-06 0.01 150 0.5 1.19 

mean 600 200 1.00E-06 0.01 150 0.5 3.34 

max 600 200 1.00E-06 0.01 150 0.5 7.93 

min 600 200 1.00E-06 0.01 150 1 0.92 
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mean 600 200 1.00E-06 0.01 150 1 2.35 

max 600 200 1.00E-06 0.01 150 1 6.19 
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