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Abstract

Verifying whether or not a questioned handwritten signature belongs to a claimed identity is a quite
challenging task, usually requiring careful examination, skills and knowledge. An accurate and
efficient signature verification system, can provide considerable assistance by reducing the time it
takes to complete a manual task, usually performed by Forensic Handwriting Examiners. Towards
this purpose, this thesis proposes an offline handwritten signature verification framework in the space
of Symmetric Positive Definite matrices, by utilizing a metric learning approach which enables the
use of a special purpose neural network, acting as a meta-heuristic optimization procedure.
Specifically, the static signature images are mapped into points of the Symmetric Positive Definite
Riemannian manifold and then, a metric learning approach is applied in order to learn a Mahalanobis
based distance which will minimize the distance of similar samples and maximize the distance of
dissimilar ones. The experimental results with the use of two popular signature datasets of western
origin, shows that the proposed framework is comparable at least to State-of-the-Art models, typically
realized under a framework of Euclidean nature.

Keywords

Offline Signature Verification, Riemannian Geometry, Neural Networks, Optimization, Symmetric
Positive Definite Matrices, Digital Image Processing, Computer Vision, Binary Classification
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Introduction

We are all witnessing that as time passes by, humans rely more and more on digital
technologies, which by the day are improving. It is easily noticeable that we tend to use pen and paper
less, as the digital world provides the same functionality, while also offering a lot more. Due to this,
the majority uses one or more text processing software in order to perform a related task. It is
important to remember though that handwriting is still used in many aspects of life, with the most
common being signing. Authenticating a handwritten signature by utilizing computer vision is a
captivating task, whose importance and use has been seen throughout the literature [1], [2].

The signature that a person produces, typically on a sheet of paper, is the outcome of a
combination of the learned common writing characteristics and the individual’s hand motoric
processes [3]-[6]. The handwritten signature is a trace of the hand movement a person performs,
which is commonly acquired with the use of a pen, of any colour, and/or thickness, and a paper for
the physical depiction. Its digital counterpart, i.e., a digital image comes from an electronic device
typically a scanner, which creates the corresponding digital depiction. In terms of the signature
verification community, the image of the signature, is referred to as static or offline signature. It is
worth noting that, by using a digital pen or a tablet, it is possible to acquire a time indexed multivariate
sequence which represents the motion rather than the visual outcome of it, termed hereafter as
dynamic or online signature. Using any of the signature representations, it is possible to devise an
automated signature verification digital system (simplified, SV), which basically attempts to support,
in a robust and digital way, a number of manually performed authentication tasks, typically performed
by a Forensic Handwriting Examiner (FHE). Initially, SV systems are categorized by the signature
representation they utilize, termed dynamic-online or static-offline [5], [7]-[17], [17]-[22].

Aside from the online or offline categorization, SV systems are also classified as Writer
Dependent (WD) or Writer Independent (WI) [23]-[29]. The first approach, WD, refers to training a
dedicated classifier for each writer with their reference samples; this is the approach that is more
frequently encountered in literature. On the other hand, in W1, a universal classifier attempts to adapt
and discriminate between two types of distributions: a) the w™ genuine-to-genuine pairs of a learning
set of signature samples, referred hereafter as the positive, similar, or intra-class, distribution, and b)
the w~ genuine-to-forgery pairs, termed hereafter as the negative, dissimilar, or inter-class,
distribution [30]-[32]. Usually, this is done by transforming the feature space F € R¢, the space that
contains the features of the signatures, either extracted from the static context or acquired from the
dynamic nature of the hand motion, which contains any two signature pairs (S;, S;), into the
(dis)similarity distance space D = |S; — S;| € RZ, [33].

The design of both WD and WI oriented SV systems, is realized as a two-class classification
problem. The positive class refers to the w* genuine-to-genuine pairs, while the negative class refers
to the w™ genuine-to-forgery pairs, the latter being composed of forgeries of different origins.
Therefore, it is important to note that there are different types of w™ genuine-to-forgery pairs, due to
different kinds of forgeries. According to some literature [24], [25], [34], [35], the most commonly
encountered types of forgeries are: i) Random, ii) Casual/Zero Effort, iii) Simulated and iv) Skilled;
all of which are explained in the following chapter. In case of a WI-SV system, in order to ensure an
unbiased learning and evaluation procedure, the testing dataset must not belong to the signature data
that the system was trained with. And since these systems are trained to discriminate between the
w*and w™ classes, it is possible to form the negative distribution with two distinct ratios of genuine-
to-random or genuine-to-skilled forgeries.

UniWA, Department of EEE, Diploma Thesis, Alexios Giazitzis 12
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In offline SV systems, the signature samples are in the form of images, which implies the use
of Computer Vision related algorithms. An efficient and descriptive representation of images was
introduced in [36], in which the images was were mapped to a non-Euclidean representation, by
means of region covariance descriptors, which introduced the principles of Differential Geometry in
computer vision, with the most common form being the space of Symmetric Positive Definite (SPD)
matrices. This representation has been abundantly used in applications, such as fine-grained and
generic image classification [37]-[40], few-shot learning [41], medical imaging [42], etc. Since
similarity-based methods are geometry agnostic, it is reasonable to wonder how can the SPD manifold
be manipulated in order to build an efficient offline SV algorithm.
Geometry aside, similarity between two distinct samples can be easily computed by their
corresponding distance in the feature space they reside. In the case of the SPD manifold, there is a
plethora of formulas that measure the distance of two samples, exploiting the underlying geometry in
a manner of ways, like the geodesic distance induced by the affine invariant Riemannian metric
(AIM) [42], log-Euclidean metric (LEM) [43], the Jensen-Bregman LogDet Divergence [44], the
Jeffrey Divergence [45] and the geodesic distance induced by the Bures-Wasserstein metric [46],
Generalized Bures-Wasserstein metric [47] and log-Cholesky metric [48]. Besides the conventional
distance measuring, metric learning has also been developed in the SPD manifold, under three major
frameworks [49]: a) learning a distance metric in the Euclidean tangent space which is a vector space,
b) learn a distance metric in the kernel space, and c) by projecting an initial high-dimensional SPD
space into another, typically of lower dimension, SPD space, which preserves the manifold structure,
and learn a corresponding metric.
To the author’s knowledge, no prior work has been proposed in the literature in which the
original SPD representation of an individual’s signature images is mapped to a two-dimensional
distance space, followed by a metric learning approach for WI-SV. In literature, relative research
direction mainly focuses on deep metric learning with methods like Signature Embedding [50],
Histograms of Oriented Gradients (HOGs) with Deep Multitask Metric Learning [31], graph edit
distance [51], Mutual Signature DenseNet with Deep Convolutional Siamese Network [52] and use
of HOGS and Local Binary Patters in a Mahalanobis distance based learning algorithm [53].
The above examples, along with many more, theorize the existence of a Euclidean structure
both for the data and the algorithmic development approach in the SV literature. Therefore, machine
learning algorithms in SV are developed under the assumption that the underlying nature of the
signature descriptors is Euclidean, as it can be seen by the amount of literature work on SV systems.
Given the fact that the use of non-Euclidean descriptors has improved the performance of numerous
computer vision related tasks, it is likely that the same performance improvement will arise if a similar
approach is taken for SV methods. The proposed thesis framework’s innovative characteristics are:
1. We transform any signature image to a 10x10 SPD space, followed by a mapping into an
associated two-dimensional distance space. We begin by selecting a pair of signatures (a, b) and
there corresponding SPD matrices S;y, and Sio%,. Next, any initial SPD matrix S;f s is
partitioned into two Sg (’;,b) submatrices (the block diagonal elements of the §;;), followed by

5 (ap) Submatrices. This attempts to depict
pairwise characteristics in a distance-based space originating from initial SPD matrix
representations.

2. We, then, perform a low-dimensional Mahalanobis metric learning algorithm, by computing the
2x2 SPD matrix that essentially dichotomized the distance space, by using a meta-heuristic
optimization algorithm, in the form of a neural network, proposed in [54]. Specifically, the

two distance measures between corresponding S
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optimization network is trained and used in parallel, with a complete iteration of the algorithm
being first training the network for a few epochs and the using it to compute the SPD parameter
for the Mahalanobis distance formula for another few epochs. The algorithm terminates when
either the SPD parameter converges or the predefined total iterations are reached.

This thesis is organized in the following manner: Chapter 1 presents in a glance the handwritten
signatures concept, along with a number of characteristics that affect its formation and different
features that can be extracted from it. Chapter 2 presents the foundations of the components utilized
in the proposed framework, such as the Recurrent Neural Network topology and the postulates of the
Riemannian geometry of the SPD manifold. Chapter 3 provides the full metric learning algorithm
proposition, the experiments performed and their results. Finally, Chapter 4 provides the conclusion.
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1 Handwriting

Handwriting is considered to be a skill which humans learn in their early stages of life. It is a
skill that is affected by a number of conditions, both of the human side as well as on the environment
they are in, eventually becoming an automated task for a human to perform. As an automated task, it
is hard to correct for potential errors once the hand movement is performed [55]. As a trait, it is unique
to each human [3], although it is possible for some so look alike, as seen in the research done in [55],
where they found two writers with similar handwriting. Handwriting, is affected by a plethora of
factors, resulting in what is termed as the intra-variability of the produced content, without the loss
of the unique writing characteristics of the person. This uniqueness means that it is difficult to
reproduce a person’s writing, as one has to suppress their own hand motor skill that they have
developed and then perform the task at due with the writing characteristics and variability of the
original writer [55]. However, it is possible, through practice and given enough information of the
writing capabilities of the person, for someone, to learn to produce simulations of high quality of their
writing [55].

As mentioned, handwriting is affected by several factors, both internal and external [3]. The
gender and age of the writer, their nationality, their dominant hand, the handwriting system of the
country they were taught in, if they are writing from memory, i.e., if they are copying or they are
dictated the content, their psychological state, stress levels and many more are some of the internal
factors, while the writing device, environmental noise, the stance they have to take due to the table
they are writing on or the chair they may be sitting in and others are external factors [3], [8].
Depending on which factors are involved in the process and at what level, the writer’s produced
handwriting may change severely, possibly exceeding the normal variability that appears.

Generally speaking, handwriting is not comprised solely on the outcome of the hand movement
the person performs, but it is the result of a compound activity of the eye-hand coordination and the
perceptual abilities of the writer [8]. Due to this, handwriting is considered a biometric trait [8], which
like all other, cannot be easily modified, if at all possible. As a biometric trait, it can be and is used
in many applications, including, but not limited to, medical, forensic and, primarily for person
authentication and verification purposes [8]. In each application, the handwritten trace is possibly
represented in a different manner, like an image of the handwriting, or a time-indexed series of
different measurements of it, such as position of the vertical and horizontal axis, hand velocity, etc
[3], [8], [55]-[57]. In the following, we will be focusing on the person authentication and verification
aspect of handwriting, which is also part of forensic science.

Any person may claim any given identity, by producing a look-alike handwritten signature.
Since handwriting is unique to each person, so is the signature they produce, even more so if one
considers that there can be many ways for one person to define its signature trace, such as having a
legible one by signing their name, stylizing the ink trace with flourishes, etc [55], [58]. Using this
unique aspect of signatures, it is possible to establish if any given questioned document or signature
belongs to the claimed identity. This is a job usually performed by a Handwriting Examiner (HE) or
Forensic Handwriting Examiner (FHE). The (F)HE must objectively reach a conclusion by comparing
the questioned document or signature to known references of the claimed identity’s, either manually
or through an automated verification process. In either occasion, objective features and measurement
must be used in order for the result to not be biased.

Given a handwritten document, a (F)HE can derive objective characteristics such as line
lengths, turning points, intersections, legibility and per word/character features, such as line
component ratios [3], [55], either manually or automatically should they have access to the dynamic
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information of the hand movement. It is also possible to use digital image processing techniques if
one digitizes the ink trace, as some aspects of these kinds of images and algorithms that use them
have been correlated with some of the characteristics a person has during writing [3]. Since (F)HEs
generally can only use a static representation of the signature [8], using image processing or computer
vision techniques can be favourable as they are objective measurements, explainable and able to be
correlated with writing aspects, in order to decide if the questioned document is genuine or a forgery.
According to the literature, forgeries can be categorized as: a) Random: using the genuine signature
of the person claiming to be another, b) Casual/Simple: the person forging the signature produces a
simulating sample by only knowing the name of the claimed identity, c¢) Simulation: the
(inexperienced) forger produces a sample after practicing given one or more reference samples, and
d) Skilled: the (experienced) forger produces a sample after practicing, by using some kind of
technique such as calligraphy [8], [34], [58].

When it comes to signature verification specifically, many automated systems have been
developed, with the goal of assisting the (F)HEs [8], [9]. These systems work similarly to a (F)HE;
they take as input at least one reference and the questioned document and they output either the
probability of being genuine/forgery or the distance of the questioned document with the reference(s).
Such a system could be of great help to the examiner, as it could provide a hint as to which questioned
documents are definitely genuine/forged and which may require a more thorough examination
conducted by the (F)HE. It is important though, for the automated verification system to be
explainable and well defined in terms of the objective examination guidelines, as the results can
directly affect people’s lives, since, e.g., they may be administered to courts of law [57], [59], [60].
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2  Background

The proposed framework relies on neural network based around a variant of the LSTM RNN
topology, used in-place of a handcrafted optimization algorithm, employed in the space of SPD
matrices. This type of optimization approach, i.e., using a non-handcrafter optimization algorithm
that learns how to optimize, is called Meta-learning. In order to build intuition behind these terms,
how they are incorporated in the proposition and why they were chosen, this chapter focuses on an
analytical overview of these concepts. Firstly, the basic RNN and the LSTM variant are covered,
following up with Meta-learning and the foundations of the SPD Manifold. Lastly, the meta-learning
neural network is presented.

Moving forward, unless otherwise specified, matrices are denoted by capital letters, e.g., X, with
symmetric matrices being in italic, e.g., X, while SPD matrices being in bold, e.g., X. A vector is
denoted by a lowercase italic letter, e.g., x. The d-dimensional SPD manifold is specified by S5,
while the tangent space T of a point M on the SPD manifold is denoted by TyS;*. Lastly, © denotes
the Hadamard product, @ denotes the element-wise addition, I; and 0, represent the identity and

zero filled matrices while any number with an arrow above it, e.g., 0, corresponds to a vector filled
with that number.

2.1 Recurrent Neural Networks

Sequential data or time-indexed series exhibit relations between samples, since usually at any
given time step, the value of a sample might be affected by any values of its previous time steps. This
can also lead to data with variable dimensionality, which cannot be easily modelled with a standard
MLP network topology, as the MLP does not reuse any information from a previous prediction
besides the trained weights thus not being able to capture the entire relation between any time steps.
In order to address this, RNN, a variant of the baseline ANN was proposed, that a) allows the use of
data comprised of variable time steps and b) can also capture any potential associations between
current and previous samples [61], [62]. Figure 1 shows a block diagram of the elementary building
blocks of the basic RNN network topology. In their uninitialized state, eqg. (1) and eq. (2) provide the
typical mathematical representation and operation of the network, and are referred to as a RNN cell
[63]. The vectors x) € R and h¢_1) € R?, where f and d denote the size of each vector,
correspond to the input data to the network and the hidden state at time step t — 1. The matrices
Wy, € R4 W, € RME, Wy, € R, with f and d being the same as before and o denoting the
output vector size, are trainable weights of dimensions that match the output vector, denoted by the
second letter in their subscript, when multiplied with the corresponding variable, denoted by the first
letter in their subscript. The vectors b, € R% and b, € R® are trainable biases, while h() € R4 and
V) € R are the hidden state and output vectors of the network at time step ¢. We define the first

time step the network will get input data and output a prediction as t = 0, which is why the hidden
state, h;, at time step t = —1, is either initialized with a zero valued vector or it is the output of some
other network earlier in the architecture.
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Figure 1: RNN Block Diagram. The blue blocks represent
mathematical operations between variables and the green
blocks depict operations using a single variable. The red path
denotes the flow of the hidden state.

h(t) = tanh(W;hh(t_l) + W;hx(t) + bh) (1)
Y&y = Wiyhee) + by 2)

The dependencies of the data that the RNN can exploit, are easily identified in eq. (1). The
hidden state, h., represents the relations between each data point that the network has calculated,
which is used for the prediction made for the next time step. The relation capturing characteristic of
the hidden state is the result of the reuse of it from the previous time step, which in turn is also the
result of the reuse of it from two time steps back, and so on. The hidden state can be thought of as the
network’s memory of data it has seen, compared to the standard ANN topology which does not have
such a mechanism, as explained earlier. Due to these, the RNN is widely used for a number of tasks,
especially in the area of NLP, for the tasks of text generation, sentiment classification, machine
translation, etc.

Eq. (1) can be regarded a) as recurrent one, when computed from the origin of the time steps,
(i.e. t = 0), as each next calculations reuses a previous one, or b) as recursive one, if needed to be
calculated at a later step, so at time step t = k, h(, contains all information from all previous time

steps, with t = 0 being the end [64]. This kind of information flow clearly suggests that the RNN
topology is an actual IR system. Following the example #1 of reference [63], the IIR aspect of eq.
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(1) and eq. (2) can be seen by setting the initial hidden state h_,) = 0, the input data x = &[t],

where §[t] is the Kronecker Delta function, and the bias terms b, = 0. So, the evaluation of eq. (1)
for some time steps, provide some sort of the infinite impulse characteristic of the network according
to:

hyy =0

h(y = tanh(WJ, 1)

hay = tanh(W,fhtanh(WxThT))

h(z = tanh(W/,tanh(W,, tanh(WJ, 1)))

Similarly, eq. (2), which is the output of the network, is just a linear combination of the corresponding
hidden state values of the above example, which similarly displays the IR characteristic, since the
hidden state is defined for all time steps. Even with a single initial impulse, the RNN topology can
produce an output for any positive time step. With this kind of representation, and regardless of the
initial input signal, the RNN can be “unfolded” for any number of time steps, something that visually,
is presented Figure 2.

~
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Figure 2: The unfolding property of an RNN. In this depiction, the recurrence characteristic of the topology is
shown by the use of another hidden state and input vector by the same network.

In practice, the RNN is usually trained as an FIR system approximation, by splitting sequences in
places where they show no dependence with each other. This allows for finite computations, sufficient
convergence of the given loss function and similar results! [63].

The back propagation algorithm works in the RNN with a slight modification. Specifically,
since at each time step the weights and biases are shared, since they are not time dependent functions
and only change during back propagation, the gradient computation starts at the output of each time
step, moves backwards in time and is accumulated at time step t = 0, performing an update to the
weight for the next epoch. This procedure is termed as the “Back Propagation Through Time (BPPT)”
and visually is depicted in Figure 3. During training, the RNN topology can exhibit two kinds of

! For the interested reader, the proof for this can be seen in Proposition 1 of reference [63].
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problems: the exploding and the vanishing gradients. The first one (exploding) refers to the gradient
computation getting larger, in an exponential rate, during the back propagation stage while the latter
to gradient getting smaller in an exponential rate. This occurs due to the recurrence relation of eq. (1),
as the gradients flow backwards in time, they may be getting multiplied by quite large or small
numbers, leading to the aforementioned problems. Exploding gradients can be easily solved by
gradient clipping, which tests if the gradient is large in some manner, either through the Frobenius or
max norm or eigenvalues; if so, then we scale it back by that metric.

On the other hand, vanishing gradients though are harder to solve. This prompted the proposal
of a number of variants over the original RNN topology. Specifically, the original architecture of the
RNN topology was modified in order to introduce nonlinear, data dependent structures, termed gates,
which ensure that the gradient flow does not vanish, through training. As a result, the Long Short-
Term Memory (LSTM) network cell was created [65].

ytrl :9::: Yei1
e Wy e W e W
“he s " he her
tanh et tanh he - Ttanh hit
R S Ly Lo
Whh — > 4’}“7 bh Whh — e 4’}"7 bh Whh Y }"7 bh

T Wan, T Won T

i1 Ty Tt

Figure 3: Gradient flow on a RNN. The gradient starts from the last step of the predicted sequence and moves
backwards towards the first, updating the weights and biases in a cumulative manner.

2.1.1 Long Short-Term Memory Network

LSTM cells are a modified version of the RNN, which allow for better information flow in both
forward and backward propagation. It was made possible, by introducing nonlinear structures that are
trained to ensure that only relevant information, (i.e. time dependencies), affect the predictions made
by the model in the forward pass, while making sure that the same relevance affects the network
parameters during the backward pass. Figure 4a illustrates the LSTM architecture. It can be seen that
besides the original hidden state vector, there exists a new one, the cell memory, ¢ € R%, which is
computed in a much simpler way. Due to the easiness of its computation, the gradient flow is easier
to compute and not as prone to vanishing gradients in that route, contrary to the gradient flow from
the hidden state, as seen in Figure 4b. In principle, the LSTM cell is represented by the following
formulas.

i(t) = O'(W;;X(t) + Wi’{ih(t—l) + bl) (3)
fiy = o(Wer Xty + Wig he—ry + by) (4)
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oy = 0(Wip xe) + Wiohee—1y + b,) (5)
&y = tanh(WEx(y + Wi he—1y + b.) (6)
¢y = fiy O ce-1 D iy O &y (7
hee) = o) O tanh(c() (8)

The LSTM retains the IIR nature of the basic RNN cell and can also be unfolded. Egs. (3)-(5)
define the input, forget and output gates respectively. Each one of them controls different parts of the
information flow. The input gate i, € R¢ controls how much and which kind of information from
the candidate memory cell ¢ € R® are allowed to exist in the new memory cell, whilst the forget
gate f) € R¢ is responsible for how much of the previous memory cell C(¢-1), information is going
to be added to the new one. The output gate o € R¢ controls also the information for the
predictions. Due to these, the LSTM can capture long term dependencies better than the basic RNN,
while also offering multiple gradient paths, which in turn resolves the vanishing gradient problem.
Given the fact that the gates control the information flow, they are numerically bounded between 0
and 1; this is the outcome of applying the sigmoid function a. Due to this, the data used in training
need to be standardized, i.e., have a mean value of 0 and a standard deviation of 1, otherwise the

LSTM performs poorly, due to the nonlinear activation functions mapping data either to 0 or 1 most
of the times.
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Figure 4: (a) LSTM Block Diagram. (b) Two-way gradient flow of LSTM, red path is easier to compute than
yellow path.
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Although in theory, it is still possible, given some set of badly formed parameter values, for the
vanishing gradient issue to appear, in practice it has been seen that it does not, as LSTM are mostly
numerically stable [66]. The reason for this can be seen by setting f;) = 1 and ity = 0@ = 0. It
provides an uninterrupted, computationally efficient, gradient flow in its backward pass, as can be
seen inFigure 5, which the creators named Constant Error Carousel (CEC) mode [65]. So, even in the
case that the gradient flow from the hidden state output diminishes due to the nonlinear structures,
the memory cell path does not due to linearities and the CEC.
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Figure 5: LSTM CEC mode gradient flow, denoted by the red path.

2.2 Meta-learning

Usually, neural networks are trained using a handcrafted styled optimizer, which utilizes a
typical form of gradient descent. Such algorithms and its variants are the SGD with and without
momentum [67], [68], Rprop [69] , RMSProp [70], Adagrad [71], Adam and Adamax [72]. Although
capable, these do not always find a good or total minima for the loss function of the task at hand, even
when adding additional constraints such as L2 or L1 penalties. This can be also accounted to not being
able to consider the task's characteristics, such as the underlying data's distribution. Due to this,
different learning rules have been formulated [73]-[76], that either use genetic algorithms, synaptic
learning rules, or biologically matching functionalities. These formulations, along with training
neural network models to perform weight and bias updating, are based on biological reasoning and
knowledge reuse, thus creating task specific optimization algorithms, generally known as meta
learning algorithms. RNNs have been used to create meta-learning algorithms, basically neural
networks who learn to optimize parameters in a specific task, while also being able to transfer learn
to other similar tasks with unseen data.

Meta-learning has been practiced using many different ways of training in an extensive range
of tasks. Hochreiter et al. in [77] trained an LSTM network, by gradient descent, to come up with an
optimization algorithm for approximating quadratic functions using 35 examples. Li and Malik in
[78] used reinforcement learning with a guided policy to learn better optimization algorithms in a
number of tasks. Andrychowicz et al. in [79], Ravi and Larochelle in [80], Wichrowska in [81] and
Rusu et al. in [82] trained recurrent models using the parameter gradients as input for a number of
tasks. Bello et al. in [83] used reinforcement learning in order to train an RNN to generate strings in
a Domain Specific Language (DSL) that correspond to parameter update equations given a list of
base functions, like gradients, etc. Lee et al. in [84] formulated a meta-learning algorithm which can
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optimize convex learners by few-shot learning. Lastly, Gao et al. in [54], [85], created the first meta-
learning optimizer for Riemannian manifolds, firstly on SPD and next generalized to other manifolds,
by using a new LSTM variants, that utilize specific matrix operations that respect the manifold
structure.

In all the aforementioned tests, meta-learning algorithms have been shown to outperform
handcrafted optimizers, therefore generalize in a more efficient way the learners in the given tasks.
But these algorithms come also at the cost of having to train yet another type of network, which can
be time consuming and also possibly prone to the same issues as when training an ANN by basic
optimizers, such as over- or underfitting, non-convexity, suboptimal optima, etc.

2.3 Symmetric Positive Definite Manifold

Riemannian submanifolds? are smooth (i.e. infinitely differentiable, C®) submanifolds
embedded in the Euclidean space, £, endowed with a Riemannian metric that is obtained based on
restrictions of the metric of € [86], [87]. The most frequently used manifolds fall under this category,
including the manifold of Symmetric Positive Definite Matrices. Some manifolds are curved, which
makes simple tasks like addition, subtraction and gradient descent nontrivial. The SPD manifold of
2x2 matrices can be visualized as two cones which span R3, as shown in Figure 6.
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Figure 6: Visualization of the 2x2 SPD manifold.

The SPD Manifold is defined to be the set of all symmetric, positive definite matrices. The set
formula describing it can be seen in eg. (9).

2 According to Absil et al. in [86] and Boumal in [87], these are as well Riemannian Manifolds and the most commonly
encountered type. But in general, Riemannian Manifolds do not follow the same principle, i.e., being submanifolds of
the Euclidean space.
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Sit={MeR> |M=MTx"™Mx > 0,vx € R\ {0} 9)
The tangent space of an SPD matrix M, TyS; 7 is the space of symmetric matrices. The tangent
bundle, TS;*, formed by this manifold and the corresponding tangent planes is a vector space of
symmetric matrices and is seen in eq. (10).
TS; ={VXY)|XeS; Y eSS} (10)
The SPD Manifold when equipped with the Riemannian metric of Eq. (11), the Rao-Fisher metric
[88], is globally diffeomorphic [89], meaning there is a one-to-one, continuously differentiable
mapping in both directions, in the form of eq. (12) and eq. (13).

(X,Y )y = tr(M~1XM~1Y)2 (11)
1 S A W

Y = expx(Y) = X2 exp (X 2YX 2>X2 (12)
1 1o 1\ 1

Y =logx(Y) = X2log (X 2YX 2)X2 (13)

The exp and log operations are defined to be the matrix exponential and logarithm, accordingly,
which can be computed by using the eigen-decomposition of symmetric matrices, X = UDUT, where
U, D are the eigenvectors and eigenvalues respectively, as seen in eg. (14) and eq. (15).
exp(X) = Uexp(D) UT (14)
log(X) = Ulog(D)UT (15)
Intuitively, the exponential map, maps a point on the SPD manifold to the tangent space
TmS; Tof M, ie., f: S;+ — TuS4 ™, while the logarithmic map operates the reverse action, viz. f :
TmSs T — S7F. By substituting Eq. (13) in (12), it is possible to derive the single parametric equation
connecting two points, X, Y € S, with a geodesic curve Ik y;(t), which has both ends X, for t =
0 and Y for t = 1. The corresponding formula is provided in eq. (16).

11 1\t o1
F{X’Y}(t) = X2 (X 2YX 2) X2 (16)

Using Eq. (11), the distance between two points on the manifold can be measured by substitution of
Eq. (13), using one SPD matrix as the tangent origin.

d(X,Y) = (logx(Y),logx(Y))x = tr [log2 (X_%YX_%)] = ||log <X_%YX_%>

(17)
F

where ||-||g is the Frobenius norm. Last, but not least, given the fact that SPD matrices do have a
symmetric nature, it is easy to derive that they only have @ independent values. Also, since the

logarithmic map, maps an SPD point to a tangent space, which is a vector space, due to it being a
d(d+1)
linear subspace of R%¢ [87], a map can be derived such that f : TyS;" —» R z . This map, termed

the vec operator [42], gives the orthonormal coordinates of the tangent vector Y in the tangent space
of X. This map is described by eq. (18) and eq. (19) while eq. (20) provides the relation between the

d(d+1)
Riemannian metric of Eq. (11) with Euclidean metricin R 2z .

veC[d (Y) = [ Yl,l' \/Eyl,z, \/EYI,?H . Y2’2, \/EY2,3, . Yd,d] (18)
1 1

veck(Y) = vecy, (X_EYX_E) (19)

(Y,YV)x = llveecx(MII3 (20)
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To the author’s opinion, the SPD Manifold is one the few manifolds that can be endowed with
different Riemannian metrics, with some of them defining the exponential and logarithmic map
differently, which leads to the geometry of the space being exploited in a different manner. Those
metrics are the Log-Euclidean [90], Log-Cholesky [48], Bures-Wasserstein [46] and Generalized
Bures-Wasserstein metrics [47].

2.4 Optimization in SPD Manifolds

The Euclidean space is considered to be a trivial manifold with zero curvature, making it among
the handiest to work with. Its associated metric, exponential and logarithmic maps for two vectors
belonging to the Euclidean space, x,y € R", are described by Egs. (21)-(23), in which I,, € R™*" is
the diagonal identical matrix.

(x,y) =yTx = yTlx (21)
expy(yY) =x+y (22)
log,(y) =x—y (23)

As seen, the two maps, are the well-known addition and subtraction operators of vectors. If compared
to the SPD maps, one may easy find out that both in general and in the case of the SPD manifold, the
exponential map is the equivalent of the addition operation, while the logarithmic map is the
equivalent of the subtraction operation, due to the fact that the tangent space being is a vector space.
With this, it is easy to formulate a concrete formula for gradient descent in the SPD manifold. And
since the derivative of a function f : M » R!, w.r.t. M, yields a symmetric matrix at the tangent
space® of M, i.e., Vyf (M) € TyS;*, the gradient descent formula with a step size of 1 is described
by Eq. (24). This operation is frequently referred to as the retraction operation on the manifold at a
point M, Ry (Y), which in this case corresponds to the exponential map.

Mt+1) = Rm (VM(t)f(M(t))) = expm (—/1 VM(t)f(M(t))> (24)

In general, the retraction operation and the exponential map are not necessarily the same
operation mathematically. The retraction operation is defined as a map from the tangent space to the
manifold with a local rigidity condition that preserves gradients at the point X [86]. In the case of the
SPD Manifold, the retraction operation and exponential map are the same due to the Riemannian
metric the space is endowed with, eq. (11). With another Riemannian metric in this or another
manifold, the retraction operation could be different from the exponential map, e.g., the Stiefel

manifold, has multiple retraction operations with only one of them using the exponential map in it
[91].

24.1 Gradient Computation

The gradient of a loss w.r.t. an SPD matrix can be computed in two ways. The first being the
standard differentiation of the equations w.r.t. the SPD matrices while taking into account the
structure of the manifold. The other way, which is commonly utilized [91]-[94], is differentiating
w.r.t. the matrices without taking into account any information regarding their structure. This leads
to Euclidean gradients which are not part of the tangent space of each matrix. They are then projected
onto the tangent space using the respective orthogonal projection formula of each Riemannian
submanifold. For the SPD Manifolds, the orthogonal projection map of a Euclidean matrix to the

3 The reason as to why the gradient of an SPD matrix is a point in its tangent space, is thoroughly explained in [86] and
[87].
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tangent space of an SPD matrix, my(-) : R**? & Ty ST, is defined in Eq. (25). A visualization of
the gradient descent algorithm on an SPD manifold, is provided in Figure 7.

X+ XT
am(X) = M( > >M (25)
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Figure 7: (a) Step 1: Orthogonal projection of the Euclidean gradient to Ty, S5 . (b) Step 2: Move on the
manifold using the retraction operation.

As an example, the clustering task on the SPD manifold can be defined with eq. (26). Basically,
for each class we need to find a point on the manifold for which the intra-class distances, calculated
by eq. (17), will be minimized. Assuming the solution is not the mean value of points for each class,
this problem is possible to be solved using gradient descent. Starting with the second approach, i.e.,
computing Euclidean gradients which will then be mapped to the tangent space, the derivative of eq.
(26) w.r.t. point X, is computed through eq. (27)*. Once mapped to the tangent space, as seen in eq.
(28), using the retraction operation, gradient descent is performed. For the initial method, i.e.,
computing the derivatives directly on the manifold, one starts by deriving eq. (28) then perform the
retraction in eg. (29).

)r(l;ris}f(X, Y,) = Xrgsi% d(X,Y;) (26)
of —1 ‘% ‘% ‘% ‘% dxd
= X 2log(X 2YX 2 |X 2 € R 27
Xy dXp Y) @ g( © (t)> ® @7
of L of "
of Ko X —1 % _% _% % ++
o (ax(t)> = %o 2 o = mx“) log|{ Xy YX () | X(e) € TxySa ™ (28)

of of
X(e+n) = Ry, (”Xm <ax(t))> = &Px <_’1”X<t) (ax@>> (29)

4 The computation of the derivatives in detail is out of the scope of the thesis. For the interested reader, it is suggested to
use references [86], [87], [95]-[99] to derive the presented equations.
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Computationally, it is much simpler to use the second approach, as many commonly used deep
learning frameworks, such as Python’s PyTorch, Tensorflow, Apache MXNet and others,
MATLAB’s Deep Learning Toolbox and Manopt toolbox [93], Julia’s Manifolds.jl and many others,
implement a concept called automatic differentiation, which basically uses the chain rule to easily
calculate the derivatives of scalar outputs w.r.t. vectors or matrices. The computed gradients are in
the Euclidean space, which means it is simply a matter of projecting the gradients to the tangent space
of the point in the manifold and then performing the update step.

2.5 Meta-learning on SPD Manifold

Meta-learning on any kind of Riemannian (sub)manifold was not performed until the proposed
method of [54] which was formulated on the SPD manifold, and later generalized to many
Riemannian (sub)manifolds, with [85]. As the work of this thesis utilized the proposed methods, it
will be presented in this chapter, as it is the only meta-learning algorithm so far formulated in spaces
of differential geometry.

The RNN topology, and specifically the LSTM variant, has been used in many meta-learning
methods as stated earlier, proving that they are a good choice when it comes to developing meta-
learning algorithms that are based on neural networks. They are formulated to work with Euclidean
vectors, which hinders the usage of matrix-shaped data, but this is easily solved by modifying the
shapes of the weights and biases to match the matrix shape that is needed. Even so, the main concern
of using the LSTM topology, even if changed to use with matrices, is that the operations performed
do not guarantee that the structure of the data used is preserved. For instance, in the SPD manifold,
the meta-learning network would be needed to output symmetric matrices, as these would be used as
gradients to the SPD matrix parameters that are optimized, since as stated earlier, the gradient
generated from an objective function when differentiated w.r.t a SPD matrix, are symmetric matrices
in the tangent space defined from that SPD matrix. This means, that the basic matrix multiplications
used in the LSTM formulas, must be replaced with another kind of operation that not only performs
a similar task but also preserves the structure of the given data. The symmetry of a matrix can be
preserved by a bidirectional matrix multiplication, termed bilinear projection, of the data with a
weight matrix and its transpose, 0 = WTXW, as proposed in [54], with W € R°*9, being the weight
matrix, X € Sym¢ and O € Sym® being symmetric matrices, with the former being the input and the
latter the output, and o being the output dimension and d the input dimension without them
necessarily being of different values, i.e., it is possible that o = d. Thus, the typical LSTM formulas
are changed as seen in egs. (30) - (35), which is a modification of the LSTM termed matrix LSTM
(mLSTM). By replacing the bilinear projection with another one, suitable for the structure of the
manifold the data reside in, the authors proposed the generalized matrix LSTM (gmLSTM) in [85].

Ity = o (WX yWai + WriHe—1)Wh;) € Sym® (30)
Fiey = o(WiX(eyWyr + Wy Hie—1yWys) € Sym® (31)
Oty = o(WioX(tyWio + WoH(e-1)Who) € Sym® (32)

Ciry = tanh(WX )Wy + Wi He—1)Whe) € Sym® (33)
City = Fiy © Ce—1y + Iy © Cy € Sym° (34)
Hipy =0y O tanh(C(t)) € Sym? (35)
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Utilizing the mLSTM as well as the retraction and projection equations of (24) and (25), the
authors constructed the meta-learning network topology of Figure 8, where T}, is eq. (24). The
network learns to calculate the proper value update and learning rate for any given gradient, by having
one mLSTM output matrices used to compute a new gradient-like matrix and one mLSTM whose
output is used to calculate the learning rate. The training algorithm developed for it only requires the
definition of an objective function for the task at hand, as it is defined to be task agnostic. This
objective function is transformed to a meta-objective function which should accommodate multiple
SPD matrices, the amount of which is denoted by m, if it does not by default, as this reduced
oscillations of the updates to the network during training. As one can notice, especially when taking
into account the experiments performed, the network learns to optimize and optimizes a single SPD
parameter, which means it is not formulated to work with networks that may contain SPD matrices
for weights. This is a drawback when compared with traditional handcrafted Riemannian optimizers,
but it is alleviated by the presented fact that it converges a lot faster and a lot better. Mathematically,
the network topology is expressed by eg. (36) through (43). The mLSTM memory matrices are shared
by calculating their element-wise product, as this allows the optimization information from both the
weight update and learning rate be shared.

Sie-1 = [Hie-1) Cue-1)] (36)
Sst-1) = [Hst-1) Cs -] (37)
St-1) = Si,t-1) O Sst-1) (38)
Suey = mLSTM,; (Vo)) Sce—1)) (39)
Ssty = MLSTM;(Vp 1), Sie—1)) (40)
Uty = mg, (We (Hs o) + im0 ) Ws) (41)
Ay = Wl Hyowy (42)

M(es1) = T, (A Uw) (43)

where S = [H, C] the output of the mLSTM network. In total, the meta-learning network’s parameters
can be combined in a set ¢ ={Wy;, Wspni, Wexr, We nps W 500 We no» Ws xer We, Wiy,

Wihi Wixrs Wings Wixo, Winor Wi xes w3

The training algorithm for the network is split into two phases. Initially, an experience pool is
filled by using a simple Riemannian Gradient Descent optimizer on the task’s meta-objective function
starting with the initial SPD matrix being the identity matrix, for a predefined number of iterations.
Once this observation stage, as it was named, is complete, the learning stage commences. For another
predefined number of iterations, the experience pool is randomly sampled and the meta-learning
network performs a specific number of optimization steps on the meta-objective function,
accumulating a global loss value. Then the gradients of the accumulated loss w.r.t the network’s
mLSTMs weights are calculated which are used with the ADAM optimization algorithm to update

5 Assuming one mLSTM is used for in each cell. If multiple are used in sequence, then the set includes their parameters
as well.

UniWA, Department of EEE, Diploma Thesis, Alexios Giazitzis 28



Meta-heuristic optimization methods on SPD Manifolds and applications to computer vision

the network’s trainable parameters. If a specific number of training epochs have passed, the SPD
matrix is set to the identity and the state matrices are set to matrices filled with zeros, then pushed
into the experience pool. If not, the optimized SPD parameter along with the network’s state matrices,
S® are pushed into the experience pool. Once the predetermined learning stage epochs are reached,
the training ends and the trained meta-learning optimization network is returned.

—e< M T
—@— _I |

—_— mLSTM @ @

@ @)

Figure 8: SPD meta-learning network topology. Source: [55], Learning to Optimize on SPD
Manifolds, Gao et al.

mLSTM,
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3 Proposition, Experiments & Results

This chapter covers the data preprocessing steps performed to map the static signature images
to SPD points and then to pairwise distance vectors, the verification framework that was developed,
the experiments performed with it and the respective results. As a reminder, the target objective is to
calculate a 2x2 SPD matrix which when used as the covariance matrix parameter on a Mahalanobis
distance of the pairwise distances, it will minimize the result for the similar pairs and maximize it for
the dissimilar.

3.1 Datasets & Preprocessing

For the learning and testing purposes of the proposed method, two static signature datasets of
Western origin were used: a) the CEDAR Signature Dataset [100], consisting of 55 writers with 24
genuine samples each, and 24 (skilled) forgery samples which were obtained by 20 skillful forgers,
and b) the offline part of the MCYT signature corpus [101], MCYT-75 (henceforth MCYT),
consisting of 75 writers with 15 genuine and 15 (skilled) forgery samples each, with the forgeries
being acquired from subsequent users of the signature acquisition process.

Following the novel work which was initially proposed in [18] on the preprocessing step, after
the images are binarized using Otsu’s thresholding [102], the binary signature images are
morphologically thinned as many times as the corresponding optimal level was found, that being one
for the CEDAR database and two for the MCYT dataset. Afterwards, the original image is masked
over with its binary, skeletonized counterpart, giving back the grayscale equivalent of the
morphologically thinned mask. Lastly, the masked grayscale image are cropped such that the
surrounding background is removed.

The feature extraction from the processed grayscale image is performed by applying a typical
10-layer stack filter of eq. (44), resulting in an equivalent 10-layer stack image, and keeping only the
values corresponding to signature trace, i.e., the background noise is not taken into account. Once
extracted, using eq. (45), each signature image is mapped to a point C on the SPD manifold.

I
F(D = {L, |Ix], Iy, [12 + Ig,tan-l(l—y),|lxx|, gyl eyl %, ¥} € RV*Mx10 (44)
X

S
1 T
C= GZ (F(); — mean(F(D) ) (F(), — mean(F(D)) (45)
l:
In eq. (44), I corresponds to the preprocessed grayscale image, I, I, and Iy, I, are the first and

seconds directional image derivatives, I,y is the image derivative w.r.t both directions, /I)% + I and

tan™?! (i—y) are the magnitude and direction of the gradient, with the second being normalized in to

radians ranging from [—m, ), and x,y are the signature trace pixel coordinates normalized by the
number of rows and columns the resized grayscale signature image has. In eq. (45), S refers to the
number of samples contained in the feature matrix F(I), F(I); corresponds to the i-th feature vector
containing all 10 filter values of the corresponding signature trace pixel and mean(F(I)) corresponds
to the vector containing the mean value of each extracted feature.

From each SPD matrix C, two 5x5 block-diagonal submatrices are identified and extracted,
which are also SPD. Then, for each genuine-to-genuine and genuine-to-forgery pair, their submatrix
pairs, are employed in order to calculate the geodesic distance, with the help of eq. (17). This equation
basically utilizes the difference between two SPD matrices to measure the distance between them, so
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similarly to [56], the feature domain is transformed to the distance feature domain, with the difference
being that the original feature domain is the SPD manifold instead of the Euclidean space, and the
distance space is comprised of 2D distance vectors rather than a single distance measure. A
visualization of this method is presented in Figure 10, while a visualization of the resulting space for
a writer of the CEDAR dataset is presented in Figure 9. Graphs for the rest of the writers of that
dataset and all of the writers from the MCYT dataset are presented in the images folder of the online
repository of the Python source code used for the experiments®.
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Figure 10: A pair of SPD matrices is mapped to a 2D Euclidean distance vector by SPD geodesic distance on SPD
submatrices. The subscripts on the matrices denote the range of indices taken in both directions.
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3.2 Verification Framework

The proposed handwritten signature verification algorithm utilizes a single as well as simple
2x2 SPD matrix which is calculated using the meta-learning method developed in [54], by modifying
its training algorithm in order to introduce a parallelization in training both the optimization neural
network and the 2x2 SPD parameter. Therefore, we train the optimizer for a few steps at a time and
then use it to calculate the updated SPD parameter which is used for validation, with this interchange
running for a predetermined number of times or until convergence of the utilized loss metric is used.

In detail, evaluation of the static signature pairwise distances are then employed in the
determination of the Mahalanobis distance equation of eq. (46), in which M denotes the corresponding
SPD parameter. Then the contrastive loss is calculated by eq. (47), by including a binary label, y;; x,

with its value being 0 for dissimilar pairs and 1 for similar pairs, and two hyper-parameters, {; and
(s, that are distance thresholds for dissimilar and similar pairs. The subscripts i and k refer to the
writer of the dataset, while j and | refer to the sample of each writer. Due to them, the loss function
drives the gradients to move the weights towards values that make the result of eq. (46) for dissimilar
pairs larger, while for similar pairs smaller.

d(xij,kl' M) = szj,kzMxij,kz (46)
1 2
l(D, S, M) = B Z (1 - Yij,kl) max ((d - d(xij,kl, M))
i,j,klED
1
+§ yija max(d(x; 0, M) — g, 0)2 (47)
i,jklES

The sets D and S are the dissimilar and similar pairs in the minibatch, with each containing the indices
of the writers and the indices of their samples that are part of the set. The training process uses a mini-
batch training approach, which is why in the loss function, the dissimilar pairs loss is normalized by
|D|, the cardinality of the set of dissimilar pairs in the mini-batch, while the similar pairs loss by |[S],
the cardinality of the set of similar pairs in the mini-batch. Eq. (47) is the objective function used in
our task, which is transformed to the meta-objective function used by the meta-learning network’s
training algorithm, by the mean value of all loss calculations per SPD matrix, as multiple SPD
parameters are utilized to reduce training oscillations. This is depicted in eq. (48).

£(D,S,M) = %Z I(D,S,M,) (48)
n=1

3.3 Experiments & Results

The outline of the training algorithm utilized for our framework can be seen in Algorithm 1. It
is a modified version of the meta-learner’s training algorithm, as stated earlier, by splitting the
learning state in multiple segments, with each segment followed by optimizing our final SPD
parameter and then performing a validation step, which allows us to stop the training process if
convergence is met. Once the training loop is done, either by reaching the predefined epochs or
convergence of the validation metric, the most performant SPD parameter found during training is
kept and tested.

The training, validation and internal testing is performed by initially splitting the dataset in half,
keeping half of the writers for training and validation and half for testing. The first half is split again,
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with 70% of the sample pairs of each writer being used for training, and the other 30% used for
validation. For the training part, we choose to keep the number of genuine-to-forgery pairs equal to
that of the genuine-to-genuine for each writer, in order to have a balanced distribution of samples
from w*and w™. The rest of the genuine-to-forgery pairs are used with the other 30% for validation.
The validation step utilized the AUC metric of the Receiver Operating Characteristic (ROC) curve in
order to declare the optimal operating parameters of the proposed model. The testing step utilizes the
True Positive Rate (TPR) and False Positive Rate (FPR) measures from the ROC Curve in order to
calculate an EER%. Once the algorithm terminates, the initial two splits are interchanged and the
algorithm is run again, i.e., the testing part of the dataset becomes the training-validation one and
vice-versa. We perform this form of cross-validation 5 times, thus performing a 5-by-2 cross
validation algorithm (CVA).

Using the 5-by-2 CVA, we perform an exhaustive hyperparameter grid search over discrete
value ranges for some of the hyperparameters with the CEDAR dataset, with the results of it shown
in Table 4’. Next, we pick the best performing hyperparameter set, designated by a bold line on Table
4, in order to perform two new 5-by-2 CVA for both the CEDAR and MCYT datasets. For testing, a
reference population of 10 genuine samples from each writer are randomly sampled, while the rest of
the genuine samples along with the skilled forgeries are used as the set of questioned samples. For
each pair between each genuine sample and each questioned sample, the distances are calculated as
shown in Figure 9, and are used with the SPD parameter found during the training stage. The resulting
distances are stored for post-processing for a total of 10 times. Afterwards, for each questioned
sample’s result, we keep the minimum, mean and maximum distances found, perform a ROC analysis
for each distance type and use the TPR and FPR to calculate the EER%. The results of these are
depicted in Table 1. Finally, we calculate a new SPD parameter, with each dataset without splitting
for testing, which is then tested on the other. This allows us to see the generalization capabilities of
the model to unseen data distributions. Table 2 contains the inter-dataset testing results. The rest of
the hyperparameters that were predetermined and not found by the CVA, were set as:

e Batch size = 512 samples
e mMLSTM layers =2
e 7 =105if O.1 =300, 205 if O.1 = 600

e T=5
e m=12
e (,=0.01
e (=1

"Table 1 is in Appendix A due to its size. A legend is also included regarding the table headers.
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Table 1
Intra-dataset testing results.
Dataset DT, Foldl Fold2 Fold3 Fold4 Fold5 Mean
EER% EER% EER% EER% EER% EER%
CEDAR min 0.91 0.98 0.75 0.75 0.6 0.8
CEDAR mean  2.07 2.29 2.31 2.02 1.71 2.08
CEDAR max  5.64 6.25 6.73 5.62 5.31 591
MCYT min 4.67 3.91 4.59 411 4.71 4.4
MCYT mean 5.71 4.57 5.25 4.93 6.03 53
MCYT max 1141 8.47 9.31 9.16 1169 10.01
Table 2
Inter-dataset testing EER%
CEDAR MCYT
CEDAR - 451
MCYT 1.22 -
Table 3
Summary of WI-SV on testing EER%
1st Author Ref. Method #519. cepar MEYT-
Refs. 75
Maergner [51] Graph edit distance 10 591 3.91
Graph edit distance & Inkball
Maergner [103] Models 10 - 5.78
Soleimani [31] HOG with DMML 5 - 13.40
Same as above 10 - 9.86
Surroundedness feat. with
Kumar [104] MLP/RBE-SVM 1 8.50 -
. Metric learning with MSDN with
Liu [52] DCSN 1 4.83 -
Same as above 1 8.26 -
Same as above 10 1.75 -
Same as above 12 1.67 -
Zhu [105] P2S metric learning 5 5.22 4.86
Hamadene [32] CT with DCCM 5 2.10 -
Kalera [100] GSC feats. To Bayes Classifier 16 21.90 -
Zois [25] Partially ordered sets 5 2.90 3.50
Longjam [26] Hybrid CNN-BILSTM Network N/A 0.00 -
Parcham [106] CNNCapsNet - CBCapsNet N/A 0.00 -
Hanif [53] VLAD N/A 0.00 -
Li [107] AVN N/A 3.77 -
Lin [108] 2C2L N/A 0.00 -
Wei [109] IDN N/A 3.62 -
Souza [24] DT with Signet 12/10 3.32 2.89
Proposedine Image to SPD to R?, Mahalanobis 10 0.61 411
distance
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Algorithm 1 Cross Validation process of SV Framework

Input:  Randomly initialized meta-learning optimizer parameters ¢p. Randomly initialized SPD
parameter M ,). Empty experience pool ¢ = @. Initial optimizer state Siq) = 0. Initial
meta-objective SPD parameter Loy = I4.

Output: The SPD parameter M ;).

while [ # observation_iterations
Compute [ with L using eq. (47) and Vil
Compute L.q)by €q. (29)

Insert {(L(z),» S(O)J)};n:l oy

end
while itr # total_learning_iterations oOr convergence
while  oitr # optimizer_learning_epochs
Randomly sample {(Ls) ;, S(t),j)}ﬁlfrom P
while step #T
Compute [ with L using eq. (47) and VL(t)l
Update L.1)by €qg. (36) through (43)
end
Compute the loss £ of the optimizer by eq. (48) and V4 £
Update ¢ using the ADAM algorithm
ift+T>1
| Set Ly, = oIy and S = 0417,
end
Insert {(Ls) S(t)_j)};nzlto P
end
while  litr # learning_epochs
Compute [ with M, by eq. (47) and VM(t)l
Update M ;,,by eq. (36) through (43)
end
Calculate validation metric v
If v has not changed for a convergence_iterations
Set convergence = True
end
end

Return M(t)
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4 Chapter 4: Conclusion

In Table 4, we can see that there are more hyperparameter sets that reach equivalent results,
meaning that possibly with a different weight initialization, they could perform similarly or better
with the chosen one. It is also important to note, that the minimum distance type performs better in
all of the test cases. As it can also be seen from Table 1, the intra-dataset results on CEDAR showcase
low error rates, while on MCYT the error is comparable higher than on CEDAR, but it is comparable
with that of the State-of-the-Art models referred in the literature. Table 2 inspection allows us to
assert that our model is able to generalize, as the results come close with the intra-dataset ones.
Cumulatively, the results showcase that the proposed framework, which utilizes low-dimensionality
parameters, performs similarly to the State-of-the-Art WI-SV methods, something which is extremely
important as it allows for similar results with a smaller computational effort. The mapping from the
SPD space to the simple Euclidean R? space through a subSPD distance measurement seems to
capture important information, similarly to the map proposed in [56]. For some writers of the datasets,
this mapping showcases an easily dichotomized space, while for others the dichotomy of their
distance space is not that much more difficult. Finally, the combination of the mapping, with the
Mahalanobis distance learning and the SPD meta-learner, offered a performant, low-dimensionality,
WI-SV algorithm.

The development of a performant WI-SV system with low computational overhead is not
impossible as presented in this thesis. Utilizing novelty methods, such as meta-learning on
Riemannian manifolds, and the presented subSPD distance feature mapping, a system such as the one
mentioned was developed. The proposed framework is able to generalize properly to unseen data with
possibly different distributions, is computationally cheap, as it is only a single 2x2 SPD matrix. The
results on two popular datasets of Western origin, CEDAR and MCYT-75, portray the capabilities of
the proposed method. Comparing with other WI-SV methods, in Table 3, it is clear that the proposed
framework is equally performant with more complex, computationally intensive algorithms that
utilize a lot more parameters. Finally, on-going research includes the usage of image segments in the
mapping to SPD and then to the distance domain, and finding different ways to extract subSPD matrix
information between pairs.
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Appendix A: Table 1

e D.T.: Distance Type

e O.l.: Observation lterations

e O.L.R.: Optimizer Learning Rate

e H.L.R.: Handcrafted optimizer Learning Rate
e L.E.: Learner Epochs

e R.F.P.: Random Forgery Percentage

Table 4
5-by-2 cross validation on CEDAR dataset
D.T. O.. O.LE. O.LR HLR L.E. RFP EER%
min 300 200 0.001 0.1 50 0 0.81
mean 300 200 0.001 0.1 50 0 2.31
max 300 200 0.001 0.1 50 0 6.35
min 300 200 0.001 0.1 50 0.5 1.03
mean 300 200 0.001 0.1 50 0.5 2.78
max 300 200 0.001 0.1 50 0.5 7.1
min 300 200 0.001 0.1 50 1 0.86
mean 300 200 0.001 0.1 50 1 2.46
max 300 200 0.001 0.1 50 1 6.37
min 300 200 0.0001 0.1 50 0 1.04
mean 300 200 0.0001 0.1 50 0 2.54
max 300 200 0.0001 0.1 50 0 6.39
min 300 200 0.0001 0.1 50 0.5 1.08
mean 300 200 0.0001 0.1 50 0.5 2.88
max 300 200 0.0001 0.1 50 0.5 7.01
min 300 200 0.0001 0.1 50 1 1.07
mean 300 200 0.0001 0.1 50 1 2.41
max 300 200 0.0001 0.1 50 1 6.56
min 300 200 1.00E-05 0.1 50 0 0.76
mean 300 200 1.00E-05 0.1 50 0 2.09
max 300 200 1.00E-05 0.1 50 0 5.99
min 300 200 1.00E-05 0.1 50 0.5 1.09
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D.T. O.. O.LE. O.L.R HLR LE. RFP. EER%
mean 300 200 1.00E-05 0.1 50 0.5 2.58
max 300 200 1.00E-05 0.1 50 0.5 6.52
min 300 200 1.00E-05 0.1 50 1 1.05
mean 300 200 1.00E-05 0.1 50 1 2.35
max 300 200 1.00E-05 0.1 50 1 6.2
min 300 200 1.00E-06 0.1 50 0 0.94
mean 300 200 1.00E-06 0.1 50 0 2.51
max 300 200 1.00E-06 0.1 50 0 6.29
min 300 200 1.00E-06 0.1 50 0.5 1.03
mean 300 200 1.00E-06 0.1 50 0.5 2.63
max 300 200 1.00E-06 0.1 50 0.5 6.86
min 300 200 1.00E-06 0.1 50 1 0.77
mean 300 200 1.00E-06 0.1 50 1 2.03
max 300 200 1.00E-06 0.1 50 1 5.72
min 600 200 0.001 0.01 50 0 0.85
mean 600 200 0.001 0.01 50 0 2.3
max 600 200 0.001 0.01 50 0 5.65
min 600 200 0.001 0.01 50 0.5 0.61
mean 600 200 0.001 0.01 50 0.5 1.69
max 600 200 0.001 0.01 50 0.5 5.23
min 600 200 0.001 0.01 50 1 1.09
mean 600 200 0.001 0.01 50 1 2.89
max 600 200 0.001 0.01 50 1 7.14
min 600 200 0.0001 0.01 50 0 1.04
mean 600 200 0.0001 0.01 50 0 2.75
max 600 200 0.0001 0.01 50 0 7.06
min 600 200 0.0001 0.01 50 0.5 0.83
mean 600 200 0.0001 0.01 50 0.5 2.31
max 600 200 0.0001 0.01 50 0.5 6.26
min 600 200 0.0001 0.01 50 1 0.89
mean 600 200 0.0001 0.01 50 1 2.38
max 600 200 0.0001 0.01 50 1 6.45
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D.T. O.. O.LE. O.L.R HLR LE. RFP. EER%
min 600 200 1.00E-05 0.01 50 0 0.81
mean 600 200 1.00E-05 0.01 50 0 2.28
max 600 200 1.00E-05 0.01 50 0 6.19
min 600 200 1.00E-05 0.01 50 0.5 0.87
mean 600 200 1.00E-05 0.01 50 0.5 2.3
max 600 200 1.00E-05 0.01 50 0.5 5.96
min 600 200 1.00E-05 0.01 50 1 1.17
mean 600 200 1.00E-05 0.01 50 1 2.76
max 600 200 1.00E-05 0.01 50 1 6.97
min 600 200 1.00E-06  0.01 50 0 0.73
mean 600 200 1.00E-06  0.01 50 0 191
max 600 200 1.00E-06  0.01 50 0 5.59
min 600 200 1.00E-06  0.01 50 0.5 0.82
mean 600 200 1.00E-06  0.01 50 0.5 2.23
max 600 200 1.00E-06  0.01 50 0.5 5.99
min 600 200 1.00E-06  0.01 50 1 0.72
mean 600 200 1.00E-06  0.01 50 1 1.94
max 600 200 1.00E-06  0.01 50 1 5.66
min 300 200 0.001 0.1 100 0 1.64
mean 300 200 0.001 0.1 100 0 3.65
max 300 200 0.001 0.1 100 0 8.32
min 300 200 0.001 0.1 100 0.5 1.06
mean 300 200 0.001 0.1 100 0.5 2.63
max 300 200 0.001 0.1 100 0.5 6.32
min 300 200 0.001 0.1 100 1 0.67
mean 300 200 0.001 0.1 100 1 1.85
max 300 200 0.001 0.1 100 1 5.39
min 300 200 0.0001 0.1 100 0 0.78
mean 300 200 0.0001 0.1 100 0 2.19
max 300 200 0.0001 0.1 100 0 5.98
min 300 200 0.0001 0.1 100 0.5 0.88
mean 300 200 0.0001 0.1 100 0.5 2.36
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D.T. O. O.LE. O.LR HLR LE. RFP. EER%
max 300 200 0.0001 0.1 100 0.5 6.15
min 300 200 0.0001 0.1 100 1 0.93
mean 300 200 0.0001 0.1 100 1 25
max 300 200 0.0001 0.1 100 1 6.64
min 300 200 1.00E-05 0.1 100 0 0.83
mean 300 200 1.00E-05 0.1 100 0 2.42
max 300 200 1.00E-05 0.1 100 0 6.46
min 300 200 1.00E-05 0.1 100 0.5 0.81
mean 300 200 1.00E-05 0.1 100 0.5 2.06
max 300 200 1.00E-05 0.1 100 0.5 5.71
min 300 200 1.00E-05 0.1 100 1 1.01
mean 300 200 1.00E-05 0.1 100 1 2.59
max 300 200 1.00E-05 0.1 100 1 6.71
min 300 200 1.00E-06 0.1 100 0 0.87
mean 300 200 1.00E-06 0.1 100 0 2.27
max 300 200 1.00E-06 0.1 100 0 6.19
min 300 200 1.00E-06 0.1 100 0.5 1.36
mean 300 200 1.00E-06 0.1 100 0.5 3.33
max 300 200 1.00E-06 0.1 100 0.5 7.65
min 300 200 1.00E-06 0.1 100 1 0.91
mean 300 200 1.00E-06 0.1 100 1 2.48
max 300 200 1.00E-06 0.1 100 1 6.39
min 600 200 0.001 0.01 100 0 1.19
mean 600 200 0.001 0.01 100 0 3.06
max 600 200 0.001 0.01 100 0 7.66
min 600 200 0.001 0.01 100 0.5 0.86
mean 600 200 0.001 0.01 100 0.5 2.3
max 600 200 0.001 0.01 100 0.5 6.49
min 600 200 0.001 0.01 100 1 0.94
mean 600 200 0.001 0.01 100 1 2.52
max 600 200 0.001 0.01 100 1 6.56
min 600 200 0.0001 0.01 100 0 0.86
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D.T. O. O.LE. O.LR HLR LE. RFP. EER%
mean 600 200 0.0001 0.01 100 0 2.47
max 600 200 0.0001 0.01 100 0 6.29
min 600 200 0.0001 0.01 100 0.5 0.73
mean 600 200 0.0001 0.01 100 0.5 2.12
max 600 200 0.0001 0.01 100 0.5 5.89
min 600 200 0.0001 0.01 100 1 1.02
mean 600 200 0.0001 0.01 100 1 2.75
max 600 200 0.0001 0.01 100 1 7.04
min 600 200 1.00E-05 0.01 100 0 0.67
mean 600 200 1.00E-05 0.01 100 0 1.81
max 600 200 1.00E-05 0.01 100 0 5.27
min 600 200 1.00E-05 0.01 100 0.5 0.95
mean 600 200 1.00E-05 0.01 100 0.5 2.28
max 600 200 1.00E-05 0.01 100 0.5 6
min 600 200 1.00E-05 0.01 100 1 1.22
mean 600 200 1.00E-05 0.01 100 1 2.79
max 600 200 1.00E-05 0.01 100 1 7.18
min 600 200 1.00E-06 0.01 100 0 0.81
mean 600 200 1.00E-06 0.01 100 0 2.19
max 600 200 1.00E-06 0.01 100 0 5.87
min 600 200 1.00E-06 0.01 100 0.5 1.46
mean 600 200 1.00E-06 0.01 100 0.5 3.07
max 600 200 1.00E-06 0.01 100 0.5 7.12
min 600 200 1.00E-06 0.01 100 1 0.83
mean 600 200 1.00E-06 0.01 100 1 2.09
max 600 200 1.00E-06 0.01 100 1 5.63
min 300 200 0.001 0.1 150 0 2.53
mean 300 200 0.001 0.1 150 0 3.95
max 300 200 0.001 0.1 150 0 8.11
min 300 200 0.001 0.1 150 0.5 0.81
mean 300 200 0.001 0.1 150 0.5 2.31
max 300 200 0.001 0.1 150 0.5 6.65
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D.T. O. O.LE. O.LR HLR LE. RFP. EER%
min 300 200 0.001 0.1 150 1 1.12
mean 300 200 0.001 0.1 150 1 3
max 300 200 0.001 0.1 150 1 7.06
min 300 200 0.0001 0.1 150 0 1
mean 300 200 0.0001 0.1 150 0 2.64
max 300 200 0.0001 0.1 150 0 6.52
min 300 200 0.0001 0.1 150 0.5 1.18
mean 300 200 0.0001 0.1 150 0.5 2.97
max 300 200 0.0001 0.1 150 0.5 7.17
min 300 200 0.0001 0.1 150 1 0.97
mean 300 200 0.0001 0.1 150 1 2.52
max 300 200 0.0001 0.1 150 1 6.41
min 300 200 1.00E-05 0.1 150 0 0.79
mean 300 200 1.00E-05 0.1 150 0 2.16
max 300 200 1.00E-05 0.1 150 0 6.07
min 300 200 1.00E-05 0.1 150 0.5 1.34
mean 300 200 1.00E-05 0.1 150 0.5 3.23
max 300 200 1.00E-05 0.1 150 0.5 8.04
min 300 200 1.00E-05 0.1 150 1 0.98
mean 300 200 1.00E-05 0.1 150 1 2.66
max 300 200 1.00E-05 0.1 150 1 6.86
min 300 200 1.00E-06 0.1 150 0 1.27
mean 300 200 1.00E-06 0.1 150 0 3.26
max 300 200 1.00E-06 0.1 150 0 8.19
min 300 200 1.00E-06 0.1 150 0.5 0.93
mean 300 200 1.00E-06 0.1 150 0.5 2.48
max 300 200 1.00E-06 0.1 150 0.5 6.76
min 300 200 1.00E-06 0.1 150 1 0.97
mean 300 200 1.00E-06 0.1 150 1 2.45
max 300 200 1.00E-06 0.1 150 1 6.16
min 600 200 0.001 0.01 150 0 1.1
mean 600 200 0.001 0.01 150 0 2.52
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D.T. O. O.LE. O.LR HLR LE. RFP. EER%
max 600 200 0.001 0.01 150 0 6.71
min 600 200 0.001 0.01 150 0.5 1.36
mean 600 200 0.001 0.01 150 0.5 2.99
max 600 200 0.001 0.01 150 0.5 6.85
min 600 200 0.001 0.01 150 1 1.02
mean 600 200 0.001 0.01 150 1 2.44
max 600 200 0.001 0.01 150 1 6.3
min 600 200 0.0001 0.01 150 0 1.1
mean 600 200 0.0001 0.01 150 0 2.39
max 600 200 0.0001 0.01 150 0 5.97
min 600 200 0.0001 0.01 150 0.5 0.95
mean 600 200 0.0001 0.01 150 0.5 2.43
max 600 200 0.0001 0.01 150 0.5 6.03
min 600 200 0.0001 0.01 150 1 15
mean 600 200 0.0001 0.01 150 1 3.19
max 600 200 0.0001 0.01 150 1 7.32
min 600 200 1.00E-05 0.01 150 0 2.62
mean 600 200 1.00E-05 0.01 150 0 3.35
max 600 200 1.00E-05 0.01 150 0 7.04
min 600 200 1.00E-05 0.01 150 0.5 1.68
mean 600 200 1.00E-05 0.01 150 0.5 3.54
max 600 200 1.00E-05 0.01 150 0.5 8.02
min 600 200 1.00E-05 0.01 150 1 1.51
mean 600 200 1.00E-05 0.01 150 1 3.16
max 600 200 1.00E-05 0.01 150 1 7.23
min 600 200 1.00E-06 0.01 150 0 1.11
mean 600 200 1.00E-06 0.01 150 0 2.6
max 600 200 1.00E-06 0.01 150 0 6.56
min 600 200 1.00E-06 0.01 150 0.5 1.19
mean 600 200 1.00E-06 0.01 150 0.5 3.34
max 600 200 1.00E-06 0.01 150 0.5 7.93
min 600 200 1.00E-06 0.01 150 1 0.92
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D.T. O. O.LE. O.LR HLR LE. RFP. EER%

mean 600 200 1.00E-06 0.01 150 1 2.35

max 600 200 1.00E-06 0.01 150 1 6.19
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