
Αθήνα, ΦεβρουάρΙΟς 2022

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ

Σχολή ΜηχανΙκών

Τμήμα ΜηχανΙκών ΠληροφορΙκής καΙ ΥπολογΙστών

Πρόγραμμα ΜεταπτυχΙακών Σπουδών (ΠΜΣ) ΚυβερνοασφάλεΙα

(Cybersecurity)

Πρώτες ενέργεΙες κατά την αντΙμετώπΙση συμβάντος ασφαλείας

σχετΙζόμενο με συσκευές Android

Συγγραφείς

Δονάτος Δόσης

ΑΜ: 2010

&
ΜΙχαήλ Κωτσής

ΑΜ: 2015

ΕπΙβλέπων:

ΠαναγΙώτης ΡΙζομυλΙώτης

Athens, February 2022

UNIVERSITY OF WEST ATTICA

Faculty of Engineering

Department of Informatics and Computer Engineering

Cybersecurity

First steps in incident response related to Android Based Devices

Students:

Δονάτος Δόσης

R.N.: 2010

&
ΜΙχαήλ Κωτσής

R.N.: 2015

Supervisor:

Panagiotis Rizomiliotis

Μέλη Εξεταστικής Επιτροπής συμπεριλαμβανομένου και του Εισηγητή

Η μεταπτυχιακή διπλωματική εργασία εξετάστηκε επιτυχώς από την κάτωθι Εξεταστική Επιτροπή:

Α/Α ΟΝΟΜΑ- ΕΠΩΝΥΜΟ ΥΠΟΓΡΑΦΗ

1

ΠΑΝΑΓΙΩΤΗΣ

ΡΙΖΟΜΥΛΙΩΤΗΣ

2

ΠΑΝΑΓΙΩΤΗΣ

ΓΙΑΝΝΑΚΟΠΟΥΛΟΣ

3

ΣΤΕΦΑΝΟΣ

ΓΚΡΙΤΖΑΛΗΣ

i

Table of Contents

Abstract ... iv
Περίληψη.. v
Acknowledgements .. vii
Disclaimer .. viii
Tables List ... ix
Figures List... x

Chapter 1. Introduction in DFIR for Android Devices .. 1
1.1. Incident Response .. 1

1.1.1. An Incident Response Plan .. 1
1.1.1.1 Preparation .. 1
1.1.1.2 Identification .. 2
1.1.1.3 Containment .. 2
1.1.1.4 Eradication .. 3
1.1.1.5 Recovery ... 3
1.1.1.6 Lessons Learned ... 3
1.1.1.7 IR Handling Report .. 3
1.1.2. Incident Response Team ... 4
1.1.2.1 IR Team Model .. 4
1.1.2.2 Members of the IR Team ... 4
1.1.2.3 IR Team Preparing .. 5
1.1.2.4 IR Team Roles .. 5

1.2. Android Forensics... 6
1.2.1. Data acquisition ... 6
1.2.2. A forensic image .. 6
1.2.2.1 Physical image (full file system) ... 6
1.2.2.2 Logical image (partial logical or partial file system) 7
1.2.2.3 Selective or Targeted image .. 7
1.2.3. Partition ... 7
1.2.4. Android File System .. 7
1.2.5. Android Debug Bridge ... 9
1.2.6. Android Boot Loader .. 9
1.2.7. Known IR Practices on acquiring Android devices10
1.2.7.1 Device is powered off ...10
1.2.7.2 Device is powered on and unlocked ..10
1.2.7.3 Device is on and locked ..10

1.3. Structured Query Language (SQL) and SQLite Data ...11
1.3.1. SQLite Database Structure ...11
1.3.1.1 Header ...11
1.3.1.2 SQLite Pragma Statements ..12
1.3.1.3 B-Tree Pages ...13
1.3.1.4 Freelist Pages ..13
1.3.1.5 Atomic Commit in SQLite ..13
1.3.1.6 Rollback Journal ...14
1.3.1.7 Write Ahead Log (WAL) and Shared Memory (shm)14

1.4. Forensics tools solutions ...15
1.4.1. Android Mobile Devices Acquisition and Examination15
1.4.2. SQLite Databases Examination, Recovery and Analysis17

ii

Chapter 2. Preparation and Examination of an Android Device19
2.1. Getting Root access ..19

2.1.1. Getting root access on LG G6 ..19
2.1.2. Getting root access on Samsung A50 ...20
2.1.3. Wiping the device ...20

2.2. Extracting the data manually ..21
2.3. Extracting the data via software ...24

2.3.1. Speed of imaging and transferring data ..32
2.4. Examination of the acquired data ...33

Chapter 3. Android Incident Response Scenario ..40
3.1. The scenario ...40
3.2. Experiments Goals ..40
3.3. Messaging Application Choice ...41
3.4. Followed Methodology ...42
3.5. General information about Viber, WhatsApp & Telegram44

3.5.1. Viber...44
3.5.1.1 General Information ..44
3.5.1.2 Viber’ s Communication Encryption .. 45
3.5.2. WhatsApp ...45
3.5.2.1 General Information ..45
3.5.2.2 WhatsApp’s Communication Encryption .. 46
3.5.3. Telegram ..46
3.5.3.1 General Information ..46
3.5.3.2 Telegram’s Communication Encryption.. 46
3.5.3.3 Telegram’s Privacy Concerns .. 47

3.6. Applications’ Cloud Servers .. 47

Chapter 4. Viber application Scenario ...50
4.1. Viber’ s Examination .. 50

4.1.1. Android 9 vs Android 11 Comparison ..50
4.1.2. General information about the under-examination database51
4.1.3. Analysis of the “viber_messages.db” .. 54
4.1.4. Volatility of the “viber_messages.db” .. 57
4.1.5. Retrieving the messages in question and the timebomb feature60

4.2. Viber’s Media Files Attachments .. 65
4.2.1. LG device’s media artifacts .. 66
4.2.1. Samsung device’s media artifacts ... 67

4.3. Final Conclusions on Viber ..68

Chapter 5. WhatsApp application Scenario ...69
5.1. WhatsApp’s Examination .. 69

5.1.1. Android 9 vs Android 11 Comparison ..69
5.1.2. General information about the under-examination database69
5.1.3. Analysis of the “msgstore.db” and the “wa.db” .. 70
5.1.4. Volatility of the “msgstore.db” .. 73
5.1.5. Retrieving the messages in question ..74
5.1.6. WhatsApp Backup ..80

5.2. WhatsApp’s Media Files Attachments... 80
5.2.1. Media persistence on WhatsApp Server ...81
5.2.2. LG device’s media artifacts .. 82

iii

5.2.3. Samsung device’s media artifacts ... 82
5.3. Final Conclusions on WhatsApp ..83

Chapter 6. Telegram application Scenario ...84
6.1. Telegram’s Examination ..84

6.1.1. Android 9 vs Android 11 Comparison ..84
6.1.2. General information about the under-examination database84
6.1.3. Analysis of the “cache4.db” .. 85
6.1.3.1 Analysis of TDSs ..87
6.1.4. Volatility of the “cache4.db” .. 92
6.1.5. Retrieving the messages in question and the timebomb feature92
6.1.6. Wiped Databases ...95

6.2. Telegram’s Media Files Attachments .. 95
6.2.1. Normal chat media transmission ...96
6.2.2. Secret chat media transmission ..97
6.2.3. Final Conclusions on Telegram ..99

Chapter 7. Dual Applications Feature .. 100

Chapter 8. Applications Comparison ... 102

Conclusions, Challenges & Future Work .. 103

References.. 105

Appendix .. 112
A1. ... 112
A2. ... 112

iv

Abstract

Digital Forensics as a science is the process of acquiring, preserving, analyzing, and reporting

of raw data residing in electronic or digital devices using scientific methods that are

demonstrably reliable, verifiable and repeatable, such that they may be used in judicial and

other format proceedings (SWGDE, 2014). One of the most particular circumstances that

digital forensics must be applied is during the handling of a security incident where the

operations of the first responders are extremely important and critical and a mistake is usually

irreversible.

Mobile devices are in fact a computer in small form, equipped with high performance

processor, huge storage, and enhanced functionality. They have become an essential part of

the owner’s live since they have drastically revolutionized the way that everyday activities (e.g.,

connecting with other people, e-banking) are achieved. As a result, a mobile device is now a

huge repository that holds sensitive and personal information about its owner. A huge

percentage of these personal and sensitive information is originated from social media and

instant messaging applications like Viber, WhatsApp, and Telegram. In 2021, the number of

mobile devices operating worldwide stood at almost 15 billion and their number is expected to

reach 18.22 billion by 2025 (O’ Dea S., 2021).

The huge proliferation of mobile devices and the social media and instant messaging

applications have also shaped modern crime. Almost in every form of crime, bad actors make

use of these technologies for planning and operating. This has, in turn, led to the development

of a branch of digital forensics solely dedicated to mobile devices. Mobile forensics have

unique characteristics and peculiarities since some of the core principles of other digital

forensics do not apply like data preservation. Data inside a mobile device is continuously

modified and the standard write protection techniques cannot be applied. For that reason, the

actions of a first responder / examiner have even greater impact in the event of handling a

mobile device as evidence.

The content of this Thesis is divided into four distinct parts. The first part introduces the

concepts of digital criminology when dealing with a security incident, as well as basic concepts

related to the forensic examination of a mobile phone device with Android operating system

installed. The structure and basic elements of the SQLite database, on which most of the

applications on such a device are based, are then analyzed. In addition, well-known and

widespread forensic and non-forensic tools and software used to examine both Android

devices and databases (SQLite) are presented. The second part presents suggested methods

for obtaining administrative rights on two devices of different manufacturer (LG, Samsung) and

different operating system version (Android 9 and Android 11), to create forensic copies

(physical image) and examine them more effectively. In the third part, a description of a

hypothetical scenario based on realistic incidents, the structure of the experiments and the

followed methodology are given. Furthermore, in this part is explained the selection of the

messaging applications Viber, WhatsApp and Telegram used for the experiments. The fourth

part presents an analysis of the aforementioned messaging applications’ operation, their

examination and finally, the results of the experiments and a comparative analysis among

them.

Key words: DFIR, First Responders, Mobile forensics, Android Applications, Viber,

WhatsApp, Telegram.

v

Περίληψη

Η επιστήμη της ψηφιακής εγκληματολογίας (Digital Forensics) είναι η διαδικασία της συλλογής,

διατήρησης, ανάλυσης και ερμηνείας δεδομένων που αποθηκεύονται σε ψηφιακή μορφή με

επιστημονικό τρόπο, ώστε να μπορούν να αξιοποιηθούν σε νομικές διαδικασίες (SWGDE,

2014). Κύριος στόχος κατά την εξέταση μίας ψηφιακής συσκευής είναι η εξαγωγή και η

ανάκτηση όλων των δεδομένων και πληροφοριών που βρίσκονται σε αυτή χωρίς όμως να

επηρεαστεί η ίδια η συσκευή και τα δεδομένα που φέρει. Μία από τις πιο ιδιάζουσες εφαρμογές

της ψηφιακής εγκληματολογίας είναι η αντιμετώπιση συμβάντων ασφαλείας (Incident

Response), κατά την οποία οι ενέργειες των πρώτων ανταποκριτών είναι ιδιαίτερα σημαντικές

και κάθε λάθος κίνηση συνήθως μη αναστρέψιμη.

Αναμφίβολα, στη σύγχρονη κοινωνία η πιο διαδεδομένη ψηφιακή συσκευή είναι το κινητό

τηλέφωνο, το οποίο έχει μετατραπεί σε ψηφιακό συνεργάτη του ανθρώπου. Μία συσκευή

κινητής τηλεφωνίας αποτελεί σήμερα ένα αποθετήριο με τεράστιο όγκο πληροφοριών,

προερχόμενες σε μεγάλο ποσοστό από την αλληλεπίδραση του χρήστη μέσω εφαρμογών

κοινωνικής δικτύωσης και ανταλλαγής μηνυμάτων, όπως για παράδειγμα το Viber, το

WhatsApp και το Telegram. Ο τεράστιος όγκος πληροφοριών αυτών δικαιολογείται από το

γεγονός ότι βρίσκεται σε συνεχή λειτουργία και διεπαφή με το χρήστη. Σήμερα,

χρησιμοποιούνται σχεδόν δεκαπέντε (15) δισεκατομμύρια συσκευές κινητής τηλεφωνίας σε

παγκόσμιο επίπεδο, ενώ εκτιμήσεις κάνουν λόγω για αύξηση του αριθμού πάνω από τα

δεκαοκτώ (18) δισεκατομμύρια έως το 2025 (O’ Dea S., 2021).

Η τεράστια διάδοση του κινητού τηλεφώνου και των εφαρμογών κοινωνικής δικτύωσης και

ανταλλαγής μηνυμάτων έχουν διαμορφώσει και την σύγχρονη εγκληματικότητα. Σχεδόν σε όλα

τα εγκλήματα η βασική μορφή επικοινωνίας μεταξύ των υπόπτων/δραστών πραγματοποιείται

διαμέσου εφαρμογών ανταλλαγής μηνυμάτων που βρίσκονται εγκατεστημένες σε συσκευές

κινητής τηλεφωνίας. Αυτή η ευρέα διάδοση των κινητών τηλεφώνων ως μέσο διευκόλυνσης ή

ακόμη και διάπραξης εγκλημάτων οδήγησε στην ανάπτυξη ενός ξεχωριστού κλάδου ψηφιακής

εγκληματολογίας, που εστιάζει αποκλειστικά σε αυτές (Mobile Forensics). Ο εν λόγω κλάδος

έχει αρκετές ιδιαιτερότητες, καθώς βασικές αρχές αναιρούνται ή παρακάμπτονται, καθόσον τα

δεδομένα της συσκευής συνεχώς μεταβάλλονται. Ως απόρροια αυτού, σε αντίθεση με τους

γενικούς κανόνες της ψηφιακής εγκληματολογίας, τα δεδομένα είναι αδύνατο να παραμείνουν

άθικτα σε κάθε πράξη. Έτσι, η κάθε επέμβαση από μεριάς των πρώτων ανταποκριτών και

εξεταστών είναι ζωτικής σημασίας.

Το περιεχόμενο της παρούσας εργασίας διαχωρίζεται σε τέσσερα διακριτά μέρη. Στο πρώτο

μέρος εισάγονται οι έννοιες της ψηφιακής εγκληματολογίας κατά την αντιμετώπιση ενός

περιστατικού ασφαλείας, καθώς επίσης αναφέρονται και βασικές έννοιες που σχετίζονται με

την εγκληματολογική εξέταση μίας συσκευής κινητού τηλεφώνου με εγκατεστημένο λειτουργικό

Android. Στη συνέχεια αναλύονται η δομή και τα βασικά στοιχεία της βάσης δεδομένων τύπου

SQLite, στην οποία βασίζεται η πλειονότητα των εφαρμογών σε μία τέτοια συσκευή. Επιπλέον

παρουσιάζονται γνωστά και ευρέως διαδεδομένα εγκληματολογικά και μη εργαλεία και

λογισμικά που χρησιμοποιούνται για την εξέταση τόσο των Android συσκευών όσο και των

βάσεων δεδομένων (SQLite). Στο δεύτερο μέρος παρουσιάζονται προτεινόμενοι μέθοδοι για

απόκτηση διαχειριστικών δικαιωμάτων σε δύο συσκευές διαφορετικού κατασκευαστή (LG,

Samsung) και διαφορετικής έκδοσης λειτουργικού συστήματος (Android 9 και Android 11), με

απώτερο σκοπό την δημιουργία εγκληματολογικών αντιγράφων (physical image) και την

αποτελεσματικότερη εξέτασή τους. Ακολούθως, στο τρίτο μέρος περιγράφονται ένα υποθετικό

vi

σενάριο βασισμένο σε ρεαλιστικά περιστατικά, πάνω στο οποίο θα βασιστούν τα πειράματα

που θα πραγματοποιηθούν στην παρούσα εργασία και η μεθοδολογία που ακολουθήθηκε

τόσο για την πειραματική διαδικασία, όσο και για την επιλογή των εφαρμογών ανταλλαγής

μηνυμάτων Viber, WhatsApp και Telegram. Στο τέταρτο μέρος παρουσιάζεται η ανάλυση, η

εξέταση και τα αποτελέσματα των πειραμάτων για την εκάστοτε προαναφερθείσα εφαρμογή,

καθώς επίσης παρουσιάζεται και η συγκριτική τους ανάλυση.

Λέξεις κλειδιά: DFIR, First Responders, Mobile forensics, Android Applications, ενέργειες

πρώτου προσαράξαντα σε περιστατικό ασφαλείας, εγκληματολογική εξέταση

κινητών, εφαρμογές Android, Viber, WhatsApp, Telegram.

vii

Acknowledgements

We would like to express our sincere thankfulness to our beloved wives Helen and Spyridoula

for supporting us to our educational journey and give us all the needed time and space.

Of course, want to say a big thanks to our professor P. Rizomiliotis who put his trust on our

idea and support us till the end of this Thesis.

Last but not least comes our Chief Commander of our digital forensics’ lab, A. Vasilaras without

his will for everyday progress and excel of our tasks nothing of this would have been done.

viii

Disclaimer

This Thesis has been for educational purposes and there is no intention to inspire persons

acting malicious or illegal.

The methods are presented made it much easier to make conclusions and is not advised to

use if there are not specific and reasoned purposes.

Unlocking and rooting a device can easily set the device unstable or even nonfunctioning.

Moreover, the daily usage of these devices is defined as insecure since all security fail safes

have been disabled.

ix

Tables List

Table 1. Some examples of the evolution of Androids’ partition tables. 8

Table 2. Cellebrite UFED 4PC user interface. Acquisition methods while the Samsung A50
device is connected ... 27

Table 3. OXYGEN Forensic Extractor user interface. Acquiring methods while the Samsung
A50 device is connected .. 29

Table 4. MSAB XRY user interface. Acquiring methods while the LG G6 device is
connected .. 31

Table 5. Chat applications’ total downloads (Source: Google Play Store) 41

Table 6. Chat application databases’ characteristics (sort alphabetically) 42

Table 7. Chat application databases’ main characteristics (sort alphabetically) 43

Table 8. Total conducted experiments’ number .. 44

Table 9. WhatsApp, Telegram and Viber applications’ cloud servers where the devices
connected (tool used: ntopng with geoip plugin, device examined: Samsung
A50) ... 48

Table 10. FBI’ ability legally content access of Viber, WhatsApp and Telegram. Content of
FBI’s training document released on Jun. 2021 (Cimpanu C., 2021) 49

Table 11. Comparing settings of “viber_messages.db” on different versions of the
application (tool used: SQL Expert) .. 54

Table 12. TDSs (Telegram Data Structure) objects in Normal Chat thread 88

Table 13. TDSs (Telegram Data Structure) objects in Secret Chat thread 89

Table 14. Media file TDS (Telegram Data Structure) objects in Secret Chat thread 90

Table 15. How to decode participant’ s “uid” from a Telegram’s Secret Chat. 90

Table 16. Comparison of how UFED PA (above) and Oxygen Forensics (below) were able
to decode different kind of TDS (Telegram Data Structure)............................. 92

Table 17. Records of a Secret Chat in “cache4” database’s WAL file. 93

Table 18. The state of “cache4.db” and its WAL file in different conditions 95

Table 19. Progress of experiments’ results on “cache4.db” and its WAL file. 95

Table 20. Correlation of a sent image file’s record in “cache4.db” with “imgcache.sqlite” file
(tool used: DB Browser for SQLite, Examined Device: LG G6) 97

Table 21. Detection of a sent image file in “cache4.db” from a Secret chat thread 98

Table 22. Retrieving artifacts from the “graph.db” for media transfers of Telegram’s Normal
Chat thread (tool used: DB Browser for SQLite, Examined Device: Samsung
A50) ... 99

Table 23. The volatility of each application in different conditions. 102

x

Figures List

Figure 1. Denial of access on Samsung A50 device’s filesystem as simple user 8

Figure 2. Flow of Boot Sequence on Android Devices (González J., 2012) 9

Figure 3. Viber-messages SQLite database header parsed via X-Ways forensics Software
in hex mode. ... 11

Figure 4. Viber-messages SQLite database header parsed via FQLite 12

Figure 5. SQLite Pragma Statements from DB Browser for SQLite interface. 12

Figure 6. SQL journal transaction process flow .. 14

Figure 7. SQL -wal transaction process flow .. 15

Figure 8. SQL -shm transaction process flow... 15

Figure 9. TWRP settings parameter “Use rm -rf instead of formatting” 20

Figure 10. Partition table view of LG G6 device via ADB command 21

Figure 11. Partition table symlinks view of LG G6 device via ADB command. 22

Figure 12. Magnet Acquire user interface while LG G6 is connected 24

Figure 13. Speed monitoring while acquiring LG G6 device with MAGNET Acquire. 32

Figure 14. Speed monitoring while acquiring Samsung A50 device with MAGNET Acquire.
. .. 32

Figure 15. aLEAPP user interface ... 33

Figure 16. DB Browser for SQLite user interface (database: “viber_messages.db”) 34

Figure 17. SQlite Expert user interface (database: “viber_messages.db”) 34

Figure 18. Oxygen forensic SQlite Viewer user interface (database: “viber_messages.db”).
. .. 35

Figure 19. Magnet Axiom Forensics user interface (database: “viber_messages.db”) 35

Figure 20. UFED Physical Analyzer user interface (database: “viber_messages.db”) 36

Figure 21. Autopsy Suite user interface (database: “viber_messages.db”) 36

Figure 22. Paraben E3 user interface (database: “viber_messages.db”) 36

Figure 23. Belkasoft X user interface (database: “viber_messages.db”). 37

Figure 24. X-ways Forensics user interface (database: “viber_messages.db”) 38

Figure 25. SQLite Forensic Explorer user interface (database: “viber_messages.db”) 38

Figure 26. FQLite user interface (database: “viber_messages.db”) 38

Figure 27. Andriller user interface (default decoders for databases) 39

Figure 28. Forensic Toolkit for SQLite user interface. .. 39

Figure 29. Workflow of the applications’ choice. .. 42

Figure 30. Workflow of methodology .. 44

Figure 31. Comparison of the “viber_messages-journal” file size while increasing the size
of main database with transaction between two (2) active users. The journal
file is always 381 kb (Examined Device: LG Device). 51

xi

Figure 32. Comparison of “viber_messages.db” journal file’s size while increasing the size
of main database with transaction among four (4) active users on the
Samsung A50 device. ... 52

Figure 33. Comparison of “viber_messages.db”-journal file’s size while increasing the size
of main database with transaction among four (4) active users on the LG G6
device. .. 52

Figure 34. Comparison of “viber_messages” database in Samsung A50 (left) and in LG G6
(right) (tool used: SQLite Expert) ... 53

Figure 35. SQLite Pragma Statements of “viber_messages.db” in edit mode (tool used: DB
Browser for SQLite)... 53

Figure 36. Depiction of the tables tree of “viber_messages.db” ... 54

Figure 37. Some of the columns that are consisted in “messages” table. 54

Figure 38. SQL query combining some of the columns and tables 56

Figure 39. Adding another case statement in the previous SQL query, it can be viewed if
the message has been edited or not.. 56

Figure 40. The device’s “viber_messages.db” was not modified after 20 hours, even
changing its state several times ... 57

Figure 41. How “viber_messages.db” and its journal file are altered after one message was
sent (tool used: Oxygen Sqlite Viewer, Examined Device: Samsung A50)....

. .. 58

Figure 42. How “viber_messages.db” journal file was altered after one message was sent
(tool used: FQLite, Examined Device: Samsung A50) 58

Figure 43. How “viber_messages.db” journal file was altered after two messages were sent
(tool used: Oxygen Sqlite Viewer, Examined Device: Samsung A50) 58

Figure 44. How “viber_messages.db” journal file was altered after three messages were
sent (tool used: Oxygen Sqlite Viewer, Examined Device: Samsung A50)....

. .. 58

Figure 45. How “viber_messages.db” journal file was altered after three messages were
opened by the receiver. By changing the “read_message_time” flag, all
records which were previously unread are moved to the journal (tool used:
Oxygen Sqlite Viewer, Examined Device: Samsung A50) 59

Figure 46. Before removing Viber Notification: 18 messages existed in
“viber_messages.db” and 16 messages existed in journal (tool used:
Belkasoft-X, Examined Device: Samsung A50) ... 59

Figure 47. After having Viber Notification removed: 18 messages existed in
“viber_messages.db” and 33 messages existed in it’s journal file. Removing
messages notification can potentially push something important out from the
journal file by replacing it (tool used: Belkasoft-X, Examined Device:
Samsung A50) .. 60

Figure 48. Use of timebombs and how they are depicted in the “viber_messages.db” (tool
used: DB Browser for SQLite, Examined Device: Samsung A50) 60

Figure 49. Searching timebombs messages content using “user_id” in
“viber_messages.db” (tool used: X-Ways Forensics, Examined Device:
Samsung A50) .. 61

xii

Figure 50. How “viber_messages” journal file was modified after messages with timebomb
were deleted (tool used: FQLite Examined Device: Samsung A50) 62

Figure 51. How “viber_messages” journal file was modified after timebomb messages were
deleted (tool used: Belkasoft-X, Examined Device: Samsung A50) 62

Figure 52. How “viber_messages” file was modified after timebomb messages were deleted
(tool used: Oxygen Forensic SQLite, Examined Device: Samsung A50) 62

Figure 53. How “viber_messages” journal file was modified five minutes after the
conversation thread was deleted (tool used Belkasoft-X, Examined Device:
Samsung A50) .. 62

Figure 54. How “viber_messages” journal file was modified five minutes after the
conversation thread was deleted (tool used: Oxygen Forensic SQlite,
Examined Device: Samsung A50) ... 63

Figure 55. How “viber_messages” journal file was modified five minutes after the timebomb
messages were deleted (tool used: Oxygen Forensic SQlite, Examined
Device: LG G6) ... 63

Figure 56. How “viber_messages” journal file was modified 1, 6, 24 and 48 hours after the
conversation thread was deleted with the device in several states. The
timebomb messages were deleted permanently (tool used: Oxygen Forensic
SQLite, Examined Device: LG G6) .. 64

Figure 57. How “viber_messages” journal file was modified five minutes after the timebomb
messages were deleted (tool used: UFED PA, Examined Device: LG G6)64

Figure 58. How “viber_messages” journal file was modified 1, 6, 24 and 48 hours after the
conversation thread was deleted with the device in several states. The
timebomb messages were deleted permanently (tool used: UFED PA,
Examined Device: LG G6). .. 64

Figure 59. How “viber_messages” journal file is modified after five (5) additional messages
were received and not opened by the user (tool used: Oxygen Forensic
SQLite, Examined Device: Samsung A50). Only the messages that
contained records from the “msg_info” column remained. 64

Figure 60. How “viber_messages” journal file is modified after the notification, of the
previously received messages, is removed from the device. The data are
further corrupted introducing false positive records (tool used: Oxygen
Forensic SQLite, Examined Device: Samsung A50). 65

Figure 61. The “extra_uri” and “body” columns of the table “messages” in
“viber_messages.db” (Examined Device: LG G6) 65

Figure 62. The “msg_info” column of the table “messages” in “viber_messages.db”
(Examined Device: LG G6).. 65

Figure 63. Media files thumbnails location (Examined Device: LG G6). 66

Figure 64. Media files cache location (Examined Device: LG G6) 66

Figure 65. LG G6’s “trashcan.db” WAL file record (tool used: Oxygen Forensic SQlite) 66

Figure 66. Parsing “imagecache0.sqlite” (tool used: DB Browser for SQLite, Examined
Device: LG G6) ... 66

Figure 67. The “trash” table of Samsung’s “local.db” (tool used: Forensic Toolkit for SQLite,
Examined Device: Samsung A50) ... 67

xiii

Figure 68. The “MediaAttribute” table of Samsung “graph.db” (tool used: Oxygen Forensic
SQLite, Examined Device: Samsung A50). ... 68

Figure 69. The “files” table of Samsung “core2.db” (tool used: Oxygen Forensic SQLite,
Examined Device: Samsung A50). .. 68

Figure 70. Analysis of “msgstore.db” properties (tools used: SQLite Expert (left) & DB
Browser for SQLite (right))... 70

Figure 71. Depiction of the tables tree of “msgstore.db” ... 71

Figure 72. Depiction of the tables tree of “wa.db” .. 71

Figure 73. SQL Diagram of the joined tables (tool used: Forensic Browser for SQLite) 72

Figure 74. SQL query combining several columns from three different tables in two different
databases. .. 72

Figure 75. Differences in the “msgstore.db” after the receipt of one message (tool used: KS
DB Merge Tools) ... 73

Figure 76. Differences in the “msgstore.db” after sending one media file (tool used: KS DB
Merge Tools) ... 73

Figure 77. Parsing messages’ content in “msgstore.db”. The tool did not succeed to parse
any of the records in question (tool used: FQLite, Examined Device:
Samsung A50) .. 74

Figure 78. Parsing messages’ content in “msgstore.db”. The tool managed to retrieve/parse
some of the records in question (tool used: Magnet Axiom, Examined
Device: Samsung A50).. 74

Figure 79. Parsing messages’ content in “msgstore.db”. The tool was able to retrieve all of
the records in question (tool used: Belkasoft-X, Examined Device: Samsung
A50) .. 75

Figure 77. Searching for messages content using “key_remote_jid” in “msgstore.db” (tool
used: X-Ways Forensics, Examined Device: Samsung A50) 75

Figure 81. The undeleted records after transmission using SQL queries in a reconstructed
database made from “msgstore.db” and its WAL file (tools used: Forensic
Browser for SQLite & DB Browser for SQLite, Examined Device: Samsung
A50) .. 76

Figure 82. How “msgstore.db” and its WAL file were modified after 2 hours with no activity
by the user (tools used: Forensic Browser for SQLite & DB Browser for
SQLite, Examined Device: Samsung A50) .. 77

Figure 83. The “msgstore.db” and its corresponding WAL file were modified after several
messages received/sent/read/deleted (tools used: Forensic Browser for
SQLite & DB Browser for SQLite, Examined Device: Samsung A50) 78

Figure 84. How “msgstore.db” and its WAL file are modified after a second deletion of a
chat thread. The in-question messages were still retrievable. The messages
83 and 84 were removed (tools used: Forensic Browser for SQLite & DB
Browser for SQLite, Examined Device: Samsung A50) 78

Figure 85. How “msgstore.db” and its WAL file alters after a second deletion of a chat
thread. The messages of interest (between 70 and 81) were removed. The
deleted messages 83 and 84 were still retrievable (tools used: Forensic
Browser for SQLite & DB Browser for SQLite, Examined Device: LG G6).79

xiv

Figure 86. Decrypting a crypt14 backup with free tool «WhatsApp Crypt14 Database
Decrypter» (ElDavoo D., 2021). .. 80

Figure 87. The path that the WhatsApp transmitted files were stored (tool used: X-WAYS
Forensic, Examined Device: LG G6) ... 80

Figure 88. The path that the WhatsApp transmitted files’ hashes were stored (tool used: X-
WAYS Forensic, Examined Device: LG G6) .. 81

Figure 89. The WhatsApp media files trash folder (tool used: X-WAYS Forensic, Examined
Device: LG G6) ... 81

Figure 90. Download transmitted files via WhatsApp server .. 81

Figure 91. Media urls and decryption keys were stored on “message_media” table of
“msgstore.db” ... 82

Figure 92. Decrypting downloaded from WhatsApp server media files, by using python
script named «whatsapp-media-decrypt». ... 82

Figure 93. Viewing the “imgcache.sqlite” file (BLOB) (tool used: DB Browser for SQLite,
Examined Device: LG G6). .. 82

Figure 94. Exploring “MediaAttribute” table of Samsung “graph.db” (tool used: Oxygen
Forensic SQlite, Examined Device: Samsung A50). 83

Figure 95. Properties of “cache4.db” (tools used: SQLite Expert (left) & DB Browser for
SQLite (right)) ... 85

Figure 96. Depiction of the tables tree of “cache4_db”. .. 86

Figure 97. SQL query combining several columns from different tables from “cache4.db”...

. .. 87

Figure 98. Use of dual Viber application. (Device used: Samsung A50) 100

Figure 99. Depiction of second Viber account’s separate databases (path:
«/user/95/com.viber.voip/databases», Examined Device: Samsung A50).....

. .. 100

Figure 100. The second Viber user (95) has a separate folder structure for media located
in «/media/95/Adroid/data/com.viber.voip/file/User photos». The original
user of the device is located in folder (0) (Examined Device: Samsung A50).

. .. 101

1

Chapter 1.

Introduction in DFIR for Android Devices

The acronym DFIR stands for Digital Forensics Incident Response and as its name states,

is about forensics in digital evidence (hardware devices or software) during an incident response.

In this chapter basic concepts about an incident response (IR) plan and team are presented.

Moreover, there is an introduction to Android forensics basics, such as data acquisition methods,

filesystems, partitions, connection methods (ADB) and known practices on how to prepare and

acquire an android device during a security incident. Since the vast majority of android applications

and operating systems utilizes the SQLite database format, a thorough forensic analysis of its

structure and features is included. Finally, a brief reference of several forensic software and

toolkits solutions for Android in general and SQLite in specific, is made.

1.1. Incident Response

An easy way to determine what the term “incident response” means exactly, is to think a

how-to guide for a potential cyberattack in an organization. Is a plan in which are referred as many

threats and scenario attacks as possible, with detailed plan on how to identify, restrain, prioritize,

and eliminate each and every one of them (Cynet, 2021). Throughout the incident response plan,

an organization make its employees be aware of security incidents in order to prevent severe

attacks and be ready to spot as soon as possible an attacker and stop his acts. The purpose is to

minimize the caused damage and the arisen loss.

1.1.1. An Incident Response Plan

In order to make an incident response plan an organization must determine what is the

main reason of doing so. To be more specific if the main reason is to avoid data loss the

procedures in the response plan should include a way to always keep secure a backup of the

essential files. Of course, as everything in security, the accepted budget-to-invest is for sure

something to bear in mind. Especially if the hole plan is undertaken from outside of organization

experts. Below is presented a summary of common use strategy of making an incident response

plan (Cynet, 2021).

1.1.1.1 Preparation

Firstly, there must be an assessment of risks and specification of critical incidents based

on sensitive assets in order to build a team to handle all these incidents. This team is known also

as “Computer Security Incident Response Team (CSIRT)”. The preparation step should include:

 Making a strict and clear policy with rules, principles, and practices to help security

processes. For example, there would be a displayed banner informing the users that

every activity is being monitored and any unauthorized act or violation will be punished.

2

 A response strategy on how to prioritize and handle incidents according to its impact

on organization. There is quite a difference between a login credentials hack of a

simple user from an admin.

 A who-to-contact-with policy. In any instance that may occur there should be specific

persons from organization’ s IR team or/and law enforcement.

 Creating documentation on who, what, when, where, why and how any procedure in

organization works. If something is against this documentation, there may be an

intruder’ s act.

 Making the IR Team a good one. By choosing members from different expertise

(security, IT, human resources, public relations etc.), keep them up to date with training

and access to professional tools, an organization make it more feasible to be protected

from the known threats.

1.1.1.2 Identification

In this step the IR Team must detect any deviations from normal organization’ s operations

and determine whether represents a security incident or not, and how important is. An

identification procedure may include:

 A monitoring set up for all sensitive infrastructure.

 Setting up a platform to analyze and report, if possible, any security incident which

occurred from several sources, such as log files, alerts, error/fault messages, any other

tools.

 Establish communication/support center for notifying IR Team.

 Documentation in detail of who, what, where, why and how incident responders must

act.

 Making threat detection and prevention capabilities.

1.1.1.3 Containment

In order to limit the caused damage and prevent any spreading while keep untouched any

evidence needed there are a few measures that an organization should take. These measures

could be:

 A short-term limitation of the damage before gets worse, by isolating specific network

spaces for example, preventing the propagation.

 Taking a forensic image of the affected hard disks before wipe and rewrite on them.

Thus, there will be evidence for further investigation or accusing the intruder in court.

 A long-term limitation of the damage by addressing the root cause, fixing any back

doors, and deleting any accounts or authentication mechanism used by attacker.

3

1.1.1.4 Eradication

In this step any identified malwares or malicious artifacts are removed, and the affected

systems are restored back to normal. An eradication process may include:

 A complete wipe and re-image of all affected hard disks in order to find out if all

malicious content has gone successfully.

 Making sure that the root cause is not able to damage/hack any system in the future.

 Making sure that any system is up to date, any software is upgraded and there is no

unnecessary service running on them.

 Using anti-malware and anti-virus software for detecting any remaining malicious

packages.

1.1.1.5 Recovery

In this step is ensured that all systems are cleaned and fully operational again. In recovery

process:

 Based on IR Team findings and prompts will be decided the exact date and time of

system services restoring.

 After restoring, tests and verification is needed to ensure that everything works as it

should.

 Observe any abnormal behaviors by monitoring for a while after the incident.

 Applying anything could be helping to prevent the same attack.

1.1.1.6 Lessons Learned

After every security incident, the IR Team should gather all the important information

acquired due to handling and the whole process, for extracting any lessons that could be used in

future incident response activity. So, this step could include:

 Document a full picture of the incident until it’ s end.

 Publish a detailed report answering once again who, what, where, why, and how.

 Notice what didn’t go as good as it could or gone bad.

 Share and discuss learned lessons and findings with others working in the same field

to immediately implement preventing measures.

1.1.1.7 IR Handling Report

A well-presented IR handling report has to include:

 The time and date when the incident was first detected.

 How it detected and by whom.

 The extend of the impact.

4

 What took to contain and eradicate it.

 Acts during recovery.

 The best practices used by IR Team. What went as it should.

 What requires improvement.

1.1.2. Incident Response Team

1.1.2.1 IR Team Model

An IR Team could take one of the following three models, based on NIST framework

(Cynet, 2021):

1. Central, where the whole organization’ s incidents are managed from a
centralized body.

2. Distributed, where there are several teams coordinate each other if needed.
Each team is responsible for a specific part of the IT infrastructure, physical
location, or department.

3. Coordinated, where there is command or knowledge center consists of a
central team, which monitors systems and sound the alarm for distributed
teams as required, providing the necessary assistance.

There is no restriction about the general form of IR Teams, but based on their tasks they

are usually divided in three main types:

 A team which is responsible for preventing, detecting, and responding to
incident response cyber security events or incidents, known as Computer
Security Incident Response Team (CSIRT).

 A team with similar task as the previous one but with prioritizing the
development on threat intelligence and best practices based on security
responses. This team focuses on partnerships with government, law
enforcement, academia, and industry and it is known as Computer Emergency
Response Team (CERT).

 A team which is responsible for monitoring and directing incident response and
defending systems. Its tasks include controls configuration and overseeing
general operations. This team is well known as Security Operations Center
(SOC) and in general includes a CSIRT or CERT teams with a broader scope
of cyber security.

1.1.2.2 Members of the IR Team

To achieve the effectiveness of an IR Team, must include a variety of professions and

expertise. As it is true, there are some prerequisites to bear in mind while building an IR Team,

such as:

 Availability. There is a need for 24/7 assistance and critical incident handling.

 If human resources are limited a virtual or on-call members may be required for dealing

with problems when they occur, no matter the time or the place.

5

 A senior-level executive, like a chief information security officer (CISO) is a good asset

in a team. This is the person who can communicate the importance of the incident to

high level personnel and also find the required funding when needed.

 Technical diversity between the members to more easily identify and handle threats

and find solutions.

 All persons should be moral and have a team spirit in order to create strong

relationships which will lead to great collaboration and communication through the

stressful situations that definitely will arise.

1.1.2.3 IR Team Preparing

No matter how good prepared the members of a team as individuals are, always should

train together. Some wise principles to train an IR Team are: i). The supplementation of cyber

security management tools to gain a more secure profile of what an incident is. For instance, the

members of the team could monitor carefully to spot local network (intranet) traffic’s misuse or

abuse. Not only find anomalies or suspicious acts in accesses, but could also watch for abnormal

consumptions, like when there is a dropdown in performance due to big demands for exporting

data. In these situations, the team could note what a normal user/system behavior is look like and

what is not. ii). The centralization of all members efforts when something occurs. In an

organization there are so many different systems and subsystems with different software and logs

files. So, in order to be always aware of what is happening there must be a central system of

parsing, monitoring and alerting when needed. A way to achieve that is by implementing a system

information and event management (SIEM). In addition, there are also security orchestration,

automation, and response (SOAR) solutions, making easier to get alerted when something goes

wrong and automate protective procedures, standardizing responding eco-systems. iii). Learn to

act base investigating findings and not by gut feelings. All members must be aware of when you

underestimate an attack and you think that you got everything write because of your experience

is likely to miss something that will cause your organization’ s revenue, brand fame or worse. So,

is better to make an accurate conclusion during investigations, than based on faulty assumptions.

Once an IR Team gets a clear view of the whole incident affection, could response effectively and

efficiently remediate the damage.

1.1.2.4 IR Team Roles

As a good point to start is to divide IR Team into following roles:

 A team leader, who will be responsible for coordinating activities and reporting to

upper-level management.

 A communications guy who has the responsibility for managing communications not

only throughout the team and organization, but also throughout stakeholders,

customers, and public authorities so that everyone is properly informed about any

incidents.

 An investigation’s leader, who will perform as a first investigation commander, giving

guidance in analysis and evaluating the primary results.

6

 More than one member, if possible, who perform as analysts and researchers. They

are about to provide threat intelligence and context for an incident. These members

usually conduct the first responders’ activities.

 Lastly, there must be a legal representant, who acts like a lawyer and make that every

act is compliant with law enforcement, and standards of integrity for forensic evidence.

1.2. Android Forensics

To cut long story short, digital forensics is a science or a scientific procedure that like

common forensics looking for evidence in a digital world. A recovered deleted message from a

mobile phone, is like a fingerprint from the burglar on the banker’s desk. Like in all the forensics,

when something happened and there is a need for digital investigation, the “crime scene” must

remain intact, in order to keep evidence unaltered. In this thesis we would try to clarify how the

interfering with digital evidence, and to be more specific android-based devices, alter the integrity

of data and the course of investigations (Gogolin, 2021). At the next chapters there will be focus

on android forensics and the DFIR including such devices, but before that we must define the

main terms that will be used.

1.2.1. Data acquisition

In digital forensics data acquisition, is the process of copying the data without tampering

and make them available for presenting, examining, analyzing, and storing purposes. The data

are located or stored to be more accurate, in storages like hard disks, memories (i.e., RAM), usb,

cd-rom, on motherboard memory chips (mobile cell phones), etc.

1.2.2. A forensic image

In order to acquire the data from a storage space of a device a clone must be created, and

thus not modifying them. A forensic image is just that, an unaltered copy of electronic data which

are stored in a device. The proper way to take a forensic image is by using forensic tools or/and

write-block hardware or software. There are multiple methods of data imaging, but not each one

includes every single bit of data from the device they are extracted from. The choice of the method

or type of imagining is up to device unique specifications, encryption, and security restrictions.

The source storage capacity is also a factor to keep in mind, because if there is no need of keeping

everything inside it, the best to do is to make a selective acquiring. Once the image is taken, the

forensics examinations are good to go without the fear of tampering and alter the physical device’s

stored data. Thus, we also gain the integrity of acquired data.

1.2.2.1 Physical image (full file system)

A physical image is a full clone of a data storage source. With term “clone” it means a bit-

by-bit copy including all partitions, unallocated and unused space of a storage. As always is

written, a physical image includes all the source’s zeros and ones (Vasilaras A., 2016). This type

of imaging gives access throughout the examination process by forensic tools in the deleted and

occasionally formatted files. A physical image could be a raw image file (i.e. .dd) or a compressed

7

one (i.e. .E01) without all the zeros (no stored data) of the storage source. Not all the image’ s

formats are compatible with any forensic tool.

1.2.2.2 Logical image (partial logical or partial file system)

In contrast with physical, a logical image includes only the data that is visible to the file

system. Is a sound forensic method to acquire data from a storage source, but there are missing

much data fragments. For instance, if a mobile application has been deleted by the user, the

examination couldn’t be able to show that the app it was installed in first place (Tahiri S., 2016).

1.2.2.3 Selective or Targeted image

In addition to above mentioned methods, there is one more costless in terms of resources

and time and quicker most of the times. This method requires to know exactly what you want to

extract from the storage source for examining and analyzing. Needless to say, that this method is

like logical and so no unused or unallocated space or file fragments is feasible to be restored

(Precise Law, 2017).

1.2.3. Partition

Partitions are logical divisions of a storage memory (i.e., hard disk) which is being

recognized by the operating system as a separate unit (Rahmanpour, 2019). When partitioning is

applied, there is a more convenience way to store and organize files and also works as a protection

for sensitive data. In an android device for example, there are partitions that user data are stored

and partitions that user can tamper with, in which sensitive data for the operating device are

included. Hence, no matter how user interact, the device can always be formatted and restored in

order to operate without problems.

1.2.4. Android File System

State of the art android devices tend to have larger internal storage than their ancestors

did, and their operating systems use their internal storage as a hard drive (i.e., sda) and not as an

SD card (i.e., mmcblk0). The table below depicts the structure of the partition table in different

android versions.

8

Android 2.2.2. Froyo
(Samsung GT-i5500)

(created by: X-WAYS
Investigator)

Android 5.1.1 Lollipop
(Nexus 7)

(created by: adb shell
command line view)

Android 9 Pie

(LG G6 [H870])

(created by: adb shell
command line view)

Android 11

(Samsung A50)

(created by: adb shell
command line view)

Table 1. Examples of the evolution of Androids’ partition tables.

The fundamental principle that lies in every device is that the largest partition contains the

user data. However, several changes in the partition structure of the OS are observed, depending

not only on the variations of the android versions, but also on the proprietary vendor’s firmware.

From forensic view, this is the partition which contains the vast majority of valuable evidence data.

Examiners should be aware that only super user (su) has access to all of the filesystem (Figure

2).

Figure 1. Denial of access on Samsung A50 device’s filesystem as simple user.

9

1.2.5. Android Debug Bridge

Creating a forensic image of an android device is impossible without setting up a

connection bridge first. The way to achieve that is by a command-line tool known as ADB or

Android Debug Bridge. This communication method is based on Linux kernel and works like

command-line shell. In the official android development site, they refer to ADB capabilities as «a

variety of device actions, such as installing and debugging apps, and it provides access to a Unix

shell that you can use to run a variety of commands on a device» (SalvationDATA, 2020).

1.2.6. Android Boot Loader

Bootloader known also as boot manager or bootstrap loader is a vendor-proprietary image

responsible for boot the kernel on an android device. It monitors the device state and is responsible

for initializing the T.E.E (Trusted Execution Environment). The main property is to verify

the boot and recovery partitions’ integrity, before continuing to the execution of kernel. When

something is out of order displays the corresponding boot state warnings. When is unlocked it

makes it possible to install a custom firmware or/and giving full access privileges. Hence,

modifications and more advanced access on the system are allowed (Bair J., 2017). In general

bootloader on android devices is locked and is responsible for what programs are loading and

starts to run when the device is turned on.

Figure 2. Flow of Boot Sequence on Android Devices (González J., 2012)

https://source.android.com/security/trusty
https://source.android.com/security/verifiedboot/verified-boot

10

1.2.7. Known IR Practices on acquiring Android devices

Every time an android device is examined for a security incident the extraction of data is

crucial. For this reason, the acquisition of a device’s physical image is important r, in order to have

extensive access to its stored data. But as it is already mentioned not every incident complies with

examiner’s or incident responder’s convenience. As Mahalik et al. (2021) points out, before

proceeding in data acquisition there are several steps to walk through in order to prepare the

android device for the extraction. The power status, of most android devices, is a crucial factor

relating to the procedures that have to be followed.

1.2.7.1 Device is powered off

If the device is powered off an attempt to get a physical acquisition is a sound choice, but

if the extraction fails then the device must be turned on and continue as shown in the next two

occasions.

1.2.7.2 Device is powered on and unlocked

The steps that are followed on this case are:

 Network connections must be disabled such as Wi-Fi, Hotspots, Bluetooth or mobile

data and the device must be set on airplane mode while removing any sim cards.

 Preparation of the device for data extraction by removing any passcodes and enabling

the “USB Debugging” and “stay awake” option from the settings and disabling any

screen lock features.

 Choosing the acquiring method. First of all, a physical acquisition must be attempted

and if this method is not supported, then other extractions (logical, file system, backup)

have to be attempted.

 Imaging extra media and sim cards. The examination of any sim cards or/and external

memory cards included in source device have also to be added to the evidence

collection procedure.

1.2.7.3 Device is on and locked

There are at least two kind of lock protections on android devices. The first one is before

android system is fully loaded which is a passphrase with digits and/or letters and the second one

is screen lock (pattern, pin code, password, biometrics). If a physical image acquisition can be

achieved without tampering device settings, then is highly recommended to proceed with the

extraction without any further delay. Network isolation step is still the first thing to do when you

want to examine a device. Some forensic tools have their custom bootloaders and will try to use

them for gaining access to the device’s data, by bypassing any lock, but if this fails then there are

not many options left. The searches must be focused on how to get the passcode from the owner

or other sources (use known pin codes like birthdays or examine associated media or hard disks).

After having completed the above procedure and the device is now unlocked, the described in

previous paragraph steps remain the same.

11

1.3. Structured Query Language (SQL) and SQLite Data

SQLite is lightweight, self-contained database type that fulfills the ACID (Atomicity-

Consistency-Isolation-Durability) properties for reliable transactions. The database can be easily

integrated into any application without the necessity of any server software (Pawlaszczyk &

Hummert, 2021). The efficiency of an android application’s operation depends on both the android

and SQL programming skills of the developer.

1.3.1. SQLite Database Structure

1.3.1.1 Header

The filename extension of an SQLite database is irrelevant as it can be found as db2, db3,

SQLite or none. The proper way to examine the properties of a database is by inspecting the

header of a file. The header of an SQLite database is comprised of it’s first one hundred (100)

bytes divided into several fields. (SQLite, 2021)

Figure 3. Viber-messages SQLite database header parsed via X-Ways forensics Software in hex mode.

Nowadays, several forensic software products provide a way to interpreter those one

hundred (100) header bytes by parsing them.

12

Figure 4. Viber-messages SQLite database header parsed via FQLite.

In terms of forensics, some interesting points in the header, are the number of freelist

pages (bytes 36 to 40), the auto vacuum feature (bytes 52 to 56) and the incremental vacuuming

(bytes 64 to 68). The above information can determine whether deleted records can be recovered.

(Nemetz et al., 2018)

1.3.1.2 SQLite Pragma Statements

As it is defined by the official site of SQLite (2021), PRAGMA statements are SQL

extensions for SQLite and are used for controlling various environmental variables and state flags

within the SQLite database. There is a vital difference between PRAGMA statements and SQLite

commands although they are using the same interface. There are specific PRAGMA statements

that can be removed or added in an updated future release of an SQLite database, with no

guarantee of backwards compatibility. Below is depicted some of the “Pragmas” that can be

viewed or edited by a database tool.

Figure 5. SQLite Pragma Statements from DB Browser for SQLite interface.

13

The most interesting parameters, as shown at the above picture, for database forensics,

from DFIR spectre are the following:

 Auto Vacuum: this parameter indicates how database freelist pages are being

handled when a data deletion commit occurs. When it is enabled (registered value

“Full” or “1”), the freelist pages are moved to the end of the database file and are

removed after the end of every transaction commitment. On the other hand, if it has a

value of “None” or “0” that means the auto-vacuum PRAGMA statement is disabled

and no matter what insertions or deletions are committed, the database’s file size is

retained, as unused data are added to freelist pages and reused for subsequent

inserts.

 Journal Mode: this parameter defines how the journal file interacts with the “main”

database every time a transaction is committed. If value of “DELETE” is selected

(default value), the rollback journal is invalidated at the completion of each transaction.

The other used method for journaling mode is “WAL” that uses the write-ahead log

instead of the rollback journal.

 Journal Size Limit: this parameter may be used for size limitation of rollback-journal

and WAL files. By default, the size parameter takes the value of “-1”, for unlimited

journal size, but as it will be proved during in the experiments held in this thesis the

android application’s database have a size limitation of their rollback journal files.

 Secure Delete: this is a boolean parameter and holds values “on” or “off”. When the

value is ‘on’ SQLite overwrites deleted content with zeros thus wiping the deleted data.

“Secure_delete” is quite a CPU and disk intensive process with great impact in battery

life. For this reason, the vast majority of applications on android devices has the

“secure_delete” option disabled.

1.3.1.3 B-Tree Pages

The B-tree pages store the active data from the tables and indexes divided in four main

areas: the page header, the cell pointer array, the unallocated space, and the cell content area.

The latter is comprised by the active records, the free blocks, and the fragmented bytes. In some

cases, it is possible to recover data from the unallocated space and the freeblocks, but it is nearly

impossible from the fragmented bytes, as their size is too small (less than 4 bytes).

1.3.1.4 Freelist Pages

Freelist pages are the ones, which are not currently used by a database. Their records

were deleted, and they are flagged for re-use at a later time. By default, SQLite does not wipe

their contents and so there is a possibility to recover deleted records. This is not possible, if the

pragma statement of “secure_delete” is enabled meaning that SQLite overwrites deleted content

with zeros (SQLite, 2021). Other page types are the overflow, the pointer map and the lockbyte

pages but since, they have not any forensic interest will not be further examined.

1.3.1.5 Atomic Commit in SQLite

As it is already mentioned, SQLite is ACID compliant. For this reason, its atomic commit

feature is very important. Atomic commit is achieved when all database changes occur within a

14

single transaction (SQLite, 2021). This is implemented through the rollback journal (legacy) or,

since SQLite 3.7, with the Write Ahead Log (WAL). These two methods utilize very different

approaches for the atomic commit and rollback features of a database. The method is used can

be determined by bytes 18 and 19 of the file header. If the value, in the header, is set to “01 01”

the rollback journal is used and if the value is set to “02 02” then the WAL method is used.

1.3.1.6 Rollback Journal

SQL .journal file holds a copy of the page prior to committing a transaction and if the

transaction is committed, it is invalidated, but if the transaction fails, the page is copied back to

the main database. The reasons why there may be a failed transaction vary. Some examples are

file overwriting, file locking issues or failure in synchronization with the storage media. There are

five Rollback Journal modes: Delete, Truncate, Persist, Memory and Off. The Delete mode is the

default one. On the contrary, Memory and Off modes are rarely encountered. The selected mode

cannot be determined by the file header but can be found into PRAGMA statements (SQLite,

2021). The Rollback Journal could have an invalid state, which is potentially a previous version of

the state of the main database or a valid/hot one which indicates that the last transaction failed

leaving the main database unmodified. There are cases, especially after a fresh installation of an

application in mobile applications in which the journal/wal file and the main database is not present

in the device’s folder structure.

Figure 6. SQL journal transaction process flow.

1.3.1.7 Write Ahead Log (WAL) and Shared Memory (shm)

The WAL process, which was implemented after SQLite 3.7, takes a different approach by

leaving the main database intact and committing the changes to a separate file. The pages of the

main database are left unmodified until a WAL checkpoint is reached. Usually this happens after

one thousand (1.000) commits, when the application forces a commit back to the main database.

The examination of the WAL file provides information about the most recent state of the database.

For instance, recently deleted data cannot be found in the main database but might be located in

the database’s WAL file.

15

Figure 7. SQL -wal transaction process flow.

The Shared Memory file contains an index of the most current version of each page since

the last checkpoint. Thus, an application can decide wherefrom the most recent data exists in

order to pull them off.

Figure 8. SQL -shm transaction process flow.

1.4. Forensics tools solutions

1.4.1. Android Mobile Devices Acquisition and Examination

There are a lot of information about forensic tools supporting android forensics. In fact

there are plenty of sources that describe them and compare their capabilities and features

(Easttom, C., 2021, Easttom, C., 2021, Raji et al., 2018, Vasilaras A., 2016). In the section below,

the major capabilities of commercial and non-commercial well-known software and tools used for

android forensic purposes are outlined. Some of the mentioned tools are used both for extracting

and analyzing data, while others are used only for examinations. Most of the tools’ user interfaces

will be included in the next chapter.

16

 Autopsy. A free of cost software suite developed by Brian Carrier and his team. There is
an Android Analyzer module for android devices which works with physical images and file
system dumps. In newer versions (4.18 and above) the aLEAPP parser has been
implemented in the Android Analyzer module. It supports images created from other tools
such as Cellebrite and MSAB.

 aLEAPP. A noncommercial github tool written in Python by a law enforcement officer
Alexis Brignoni. This tool is a log events and protobuf parser and works also with physical
or file system dumps files (.zip, .tar) and creates a report including all valuable data.

 Andriller. A freeware utility including a collection of tools for android based devices, which
can perform both forensic analysis and acquisition.

 Cellebrite UFED. A commercial tool that includes UFED touch or UFED 4PC and UFED
physical Analyzer. The first two are utilized for extraction purposes providing a user-friendly
interface. The last one is utilized for analyzing the device’s extraction.

 Magnet Forensics. Magnet provides both an acquisition (Magnet Acquire) and an
examination and analysis tool (Magnet Axiom). Also, it provides a very convenient report
for viewing the evidence findings. It also supports various type of images including the
ones created from Cellebrite.

 Oxygen forensics. Oxygen Extractor supports a variety of different chipsets as well as
the abovementioned tools. The analyzing tool (Oxygen Detective) is capable of building
connections and correlations among multiple acquired evidence devices as well as
visualizing them in a user-friendly manner. It also supports images created from other tools
such as Cellebrite and MSAB.

 Belkasoft. Belkasoft X is another useful tool combining extractions from android devices
and supports their examination and analysis.

 MSAB. XRY digital data is able to extract data from mobile devices (both physical and
logical) and XAMN is used to analyze and examine them.

 MOBILedit. Through MOBILedit Forensic Express tool, android physical and/or logical
extractions as well as analysis of the extracted data are feasible. It supports Cellebrite and
Oxygen exported images.

 Access Data. Since Forensic ToolKit (FTK) v7.4.104 there is an addon for mobile data
analysis and chat application parsing tool It also provides a QView viewer for more
convenient visualization of examined data. It supports Cellebrite and MSAB exports.

 Hancom. MD-Series tools provide several different solutions for acquiring and examining
android devices. Among other extraction methods, JTag (via MD-box) is included.

 Paraben E3 Forensic Platform. A platform which supports all kind of acquisitions and
forensic examinations.

 X-Ways. Since the android filesystem is similar/same to UNIX/LINUX, X-ways can provide
an accurate and fast hex interpreter parser and file system viewer.

Most of the referred tools have the capabilities of bypassing, removing or brute forcing the

pin code, pattern, or password security measures of android devices. In addition of the previous

mentioned features, the tool should include a decryption method of the device’s data. More and

more applications implement cypher methods in order to encrypt their databases but not all of the

tools are capable of decrypting and parsing every single one of them. Bear in mind that some

versions of the abovementioned commercial tools are only available for law enforcement agencies

and not for enterprises. Specifically, the law enforcement versions include extra features and

artifacts for both extraction and analysis. Be aware that there is not a tool that supports every

17

single android device or chipset. For this reason, the examiners should wisely select the tools that

will help them in their work.

1.4.2. SQLite Databases Examination, Recovery and Analysis

The forensic analysis of an SQLite Database’s live records is relatively easy compared to

deleted ones. The SQLite Carving for deleted records is a difficult and tedious task for various

reasons. Firstly, the number of forensically interesting applications, which use SQLite databases,

and the speed these are being updated is too fast for any tool to keep up with. Secondly, the

pragma statements (e.g., secure_delete, autovacuum etc.), which are implemented by the

application’s developers and the way unallocated space and free blocks (containing random

fragments of data), are located in these pages, makes the carving of any useful information is

challenging to say at least. Some options for recovering and analyzing data from SQLite

Databases are:

 aLEAPP (Free). The integrated python scripts which are implemented in the tool can
create a useful report of android artifacts, including records from applications’ databases.
In addition, the SQL queries inside the scripts could be used separately for browsing
SQLite databases in other software such as DB Browser for SQLite. One disadvantage is
that it cannot retrieve deleted records.

 DB Browser for SQLite (Free). One of the most known and useful tools is DB Browser
for SQLite. It does not have the automated ability to parse journal or deleted records. It is
not considered as forensic software as the user can modify the examined database’s data.

 SQlite Expert (Free and Propietary). SQlite Expert can visualize and modify BLOB fields
and present multiple databases in one tree. It is also not considered as forensic software
as the user can modify examined database’s data.

 Oxygen forensic SQlite Viewer (Propietary). Part of Oxygen forensic Suite which can
recover deleted records and parse journal and wal files.

 Magnet Axiom Forensics (Propietary). Magnet Axiom suite integrates an SQLite Viewer
which has the automated ability to parse and combine the main database with its
corresponding WAL/Journal file.

 UFED Physical Analyzer (Proprietary). Ufed includes the most popular mobile
application’s database schemas and via App Genie and SQlite Wizard features, can
potentially recover/parse deleted records.

 Autopsy Suite (Free). Autopsy, is the best known free forensic suite and with the usage
of python plugins can parse SQLite Databases and their deleted records.

 Paraben E3 (Free and Proprietary). Paraben E3 free edition can parse SQLite Databases
but not Journal / Wal files.

 Belkasoft X (Proprietary). Belkasoft X can parse records from SQLite Database and their
corresponding Journal / wal files.

 X-ways Forensics (Proprietary). X-ways, by creating virtual files, can analyze SQLite
databases.

 acquire Forensics (Shareware). Acquire SQLite Forensic Explorer has the ability to parse
and recover records from an SQLite database (including records residing in journal/wal
file) even if they are corrupted or deleted.

 FQlite (Free). FQLite is a tool to find and restore deleted records in SQLite databases. It
therefore examines the database for entries marked as deleted. Those entries can be
recovered and displayed.

18

 Andriller (Free). Has a variety of tools for parsing and decrypting databases but it cannot
retrieve deleted records.

 KS DB Merge Tools for SQLite (Free & Proprietary). A tool for comparing the same
database in different states based on the schema, the tables, and the data inside them.
The tool uses a GUI version of the “sqldiff” executable.

 Forensic Toolkit for SQLite. This is a toolkit which includes three separate tools: “The
Forensic Browser”, “Forensic Recovery” and “SQLite Forensic Explorer” for SQLite. Each
of these tools has different usage. For example, “Forensic Browser” has the ability to
reconstruct a database including the records from its wal/journal file.

Some other known command line tools which could be used are undark (Nemetz et al.,

2018) and bring2lite (Meng & Baier, 2019).

19

Chapter 2.

Preparation and Examination of an Android Device

In this chapter, the preparation required for gaining admin privileges (root) and examining

of two different Android OS devices is presented. An LG G6 (H870) with Android 9 and a Samsung

A50 (A505FN/DS) device with Android 11 were utilized and granted root access by unlocking

bootloader, installing custom recovery menu and software. The important folders and files of the

filesystem are referenced. The commands (CLI) which were used to navigate in the filesystem

and extract the desired data are also analyzed. In addition, user interfaces of several software and

tools for extracting and examining data are presented.

2.1. Getting Root access

In order to gain a root access, the devices’ bootloaders have to be unlocked and a custom

recovery image known as Team Win Recovery Project (TWRP) has to be installed. This has as a

result, third-party firmware can be installed, and full system backups can be created. The

unlocking of the device’s bootloader requires the enabling of USB-Debugging and OEM unlocking

options. The above-mentioned settings can be found under Developer Options. After that, the

device can be put in bootloader mode via Command Prompt or Terminal command with the

command:

adb reboot bootloader

After this step the bootloader unlocking procedure varies depending on the device-

vendor’s requirements. For instance, LG requires to send the unique device id and IMEI through

their developer portal in order to receive back a binary unlock file (unlock.bin), whereas Xiaomi

uses the Mi Unlock application for this purpose (Xiaomi MIUI, 2021). In any case the userdata

partition is wiped when the bootloader unlocks. After having unlocked the devices’ bootloader, the

“Magisk” solution (Magisk Manager, 2021) was chosen for getting root access. As the official

developer, John Wu, refers «Magisk is a systemless rooting», which means that the core code of

the mobile’s operating system is not altered.

2.1.1. Getting root access on LG G6

The examined LG G6 device had the following specifications:

 Android Kernel version is 3.18.120.

 Android 9 with security patch dated in May of 2019 (Latest available).

 The official rom firmware which was installed is the latest available (v30b-EUR-XX).

The “3.2.3-Nebula-Alpha_20180813 TWRP” from XDA-developers forum (zefie, 2017)

was used as a recovery image, and the Magisk version 23.0 was installed for granting root access

20

privileges to the system. For further convenience, an extra Magisk module was installed, named

“Busybox for android NDK 1.33.1”, which offers additional Unix commands (i.e., netcat).

2.1.2. Getting root access on Samsung A50

The examined Samsung device had the following specifications:

 Android Kernel version is 4.14.113.

 Android 11 with security patch dated in July of 2021.

 The official rom firmware which was installed has the built number “a505fxxs9cuf1”.

The “3.5.0_9_0 (UNOFFICIAL recovery)”1 from XDA-Developers forum (redymedan, 2021)

was used as a recovery image and the unofficial Magisk version 22.1 was installed in order to get

administrating (root) permissions. For further convenience, the Magisk module, “Busybox for

android NDK 1.33.1” was also installed. In addition, on the custom recovery image (twrp), the

“multidisabler-samsung 3.1” from Macdonald, I. (2020) addon was installed, in order to disable the

auto-reflash of stock recovery, which is implemented from Samsung as a countermeasure, against

the unauthorized installation of third-party firmware.

2.1.3. Wiping the device

By enabling the parameter “Use rm -rf instead of formatting” in the Settings menu of TWRP,

a force deletion of every file/folder in the userdata directory was succeeded.

Figure 9. TWRP settings parameter “Use rm -rf instead of formatting”.

1 This is an unofficial TWRP. At the time there is not an official TWRP supporting android 11 for Samsung A50.

21

2.2. Extracting the data manually

For the acquisition of the data with ADB commands (Tamma et el., 2020), both Windows

and Linux environment systems were utilized. In the Windows environment (Microsoft Windows

10) the SDK platform tools v. 31.03 were utilized. Furthermore, the “ncat” binary was used instead

of the netcat executable that is detected as a malicious one from the majority of antiviruses.

Additionally, all the executables were added to the environmental path of the operating system for

convenience. In the Linux environment (ubuntu 20.04) the same version of the SDK platform tools

was installed by copying them to the usr/bin folder instead of installing the obsolete ones from the

repository of the Ubuntu operating system. The following commands were used:

 Directing commands to the only attached USB device (mobile phone) (“-d”) or (“-s”)2

$ adb -d shell

 Getting root access (super user)

$ su

 Previewing partition table3

cat /proc/partitions

Figure 10. Partition table view of LG G6 device via ADB command.

 Previewing the symlinks of the partitions table by navigating to the path

«dev/block/platform/soc/624000.ufshc/by-name» and listing all the files.

cd / dev/block/platform/soc/624000.ufshc/by-name

2 if multible devices were connected.
3 Notice: the largest partitions usually is the whole block.

22

o adb forward tcp:300004

Figure 11. Partition table symlinks view of LG G6 device via ADB command.

This could be very useful when a targeted acquisition is needed (e.g., userdata partition).

 Acquiring data. The procedure is divided in three parts:

o Firstly, in a terminal a bridge must be established between the host computer and

the device in order for the acquired data to be copied back to the host:

4 The usage of a high port number is recommended because windows 10 OS tends to block any connection in lower
ones.

ls -l

23

o Secondly, in another terminal which is already running inside the shell of the android

device the partition that must be acquired can be copied through the desired port to

the host computer. By choosing the sda partition in Samsung A50 device, a full

physical image acquisition is conducted:

o # dd if=/dev/block/sda | nc -l -p 30000

o Thirdly, the acquired image can be “pushed” to a chosen path in the first terminal via

the netcat5 executable:

o ncat 127.0.0.1 30000 > android_image.dd -v (-v for verbose)

On some occasions, when specific folders and files are aimed, a targeted extraction can

be applied. A forensic copying could be done, to a SD card6, by a combination of “adb pull” and

copy (cp) commands. The main concern in this scenario is to preserve the source’s timestamps.

5 “nc” in Linux or “ncat” in Windows.
6 An external SD card was used in order not to ensure the integrity of the internal storage of the examined device.

24

This can be achieved by adding the “-a” parameter in the adb pull command. For instance, the

commands used for the forensic extraction of a specific Viber application’s folder were:

o cp -pvR /data/data/com.viber.voip /sdcard0/forensics/ (-p for preserve, -v for verbose,

-R for recursively)

or

o cp -R --preserve=timestamps /data/data/com.viber.voip/databases/* sdcard0/

forensics/ (coping only the databases’ folder while preserving the timestamps)

o adb pull -a /sdcard0/forensics/com.viber.voip C:\forensics\viber_data_package (-a

preserves file timestamp and mode)

The usage of two different commands was chosen because, when trying to execute the

command “adb pull -a” directly from the «/data/data» folder it was unsuccessful, since the “adb

root” command was not working. This feature is by default disabled on production build devices

and in order to enable it the “ro. secure” file (Skulkin et al., 2018) has to be modified.

2.3. Extracting the data via software

In contrast to the command line approach (adb), several user-friendly forensic tools can

be used for the acquisition of an android device. Some of them are presented below.

 Magnet Acquire.

Figure 12. Magnet Acquire user interface while LG G6 is connected.

25

 UFED 4PC.

Software GUI
When the device is connected and auto detected

by the software

The options are more or less the same for every
android device

An Advanced Logical Acquire is feasible by
enabling some parameters under the Developer

Options Settings

After doing that the device info is read and displayed to the examiner

Next step is choosing the artifacts and data extracted

26

There is also a File System acquisition choice to
extract data from the device’s File System

Most cases require to boot the device into
Download Mode

Finally in many cases a physical acquisition is also supported regardless the root status of the device

27

Table 2. Cellebrite UFED 4PC user interface. Acquisition methods while the Samsung A50 device is
connected.

 OXYGEN

Software GUI

Samsung Android Option

Selection of Supported Samsung Devices in
Samsung Android Option

(searching model “A50”)

28

Samsung Exynos Option

Android Backup (via ADB)

29

Android Physical (via ADB)

Table 3. OXYGEN Forensic Extractor user interface. Acquiring methods while the Samsung A50 device is
connected.

30

 XRY

Software GUI

Connecting the device

Logical (Full read) Option

31

Physical Option

Table 4. MSAB XRY user interface. Acquiring methods while the LG G6 device is connected.

32

2.3.1. Speed of imaging and transferring data

The speed of data extraction of a device’s storage is depended on the quality and length

of used cables and of course the device itself. Some vendors, as a cost reduction method,

implement an older USB 2.0 chipset on the devices irrespective the existence of a high-speed

USB – C port on them. To take a glance of how the transfer speed is affected by these two factors

in two different devices with the same acquiring setup (same PC, cable and software), an example

between Samsung A50 and LG G6 is presented below (Figures 13 and 14). As shown the write

speed is dramatically lower in Samsung, with value of 43MB/sec, compared with LG’ s 108MB/s

while using the Magnet Acquire forensic tool.

Figure 13. Speed monitoring while acquiring LG G6 device with MAGNET Acquire.

Figure 14. Speed monitoring while acquiring Samsung A50 device with MAGNET Acquire.

33

2.4. Examination of the acquired data

There is a wide range of options for software and tools specialized in the examination and

analysis of the acquired databases. The criteria of choice are the examiners’ experience and the

available budget. While non-commercial tools may lack of special features, technical support and

a user-friendly interface, the commercial ones have a significant cost that tend to be in the form of

an annual subscription. Below are depicted some of the user interfaces of the abovementioned

tools that are referred in paragraph §1.4.2. It has to be mentioned that the following used tools are

for demonstration reasons and in-depth exploring their capabilities is out of scope of this Thesis.

The choice of the used tool was depended on the examination and the analysis of the instant

messaging application’s databases.

 aLEAPP.

Figure 15. aLEAPP user interface.

34

 DB Browser for SQLite.

Figure 16. DB Browser for SQLite user interface (database: “viber_messages.db”).

 SQlite Expert.

Figure 17. SQlite Expert user interface (database: “viber_messages.db”).

35

 Oxygen forensic SQlite Viewer.

Figure 18. Oxygen forensic SQlite Viewer user interface (database: “viber_messages.db”).

 Magnet Axiom Forensics.

Figure 19. Magnet Axiom Forensics user interface (database: “viber_messages.db”).

36

 UFED Physical Analyzer.

Figure 20. UFED Physical Analyzer user interface (database: “viber_messages.db”).

 Autopsy Suite.

Figure 21. Autopsy Suite user interface (database: “viber_messages.db”).

 Paraben E3.

Figure 22. Paraben E3 user interface (database: “viber_messages.db”).

37

 Belkasoft X.

Figure 23. Belkasoft X user interface (database: “viber_messages.db”).

 X-ways Forensics.

38

Figure 24. X-ways Forensics user interface (database: “viber_messages.db”).

 SQLite Forensic Explorer.

Figure 25. SQLite Forensic Explorer user interface (database: “viber_messages.db”).

 FQLite.

Figure 26. FQLite user interface (database: “viber_messages.db”).

39

 Andriller.

Figure 27. Andriller user interface (default decoders for databases).

 Forensic Toolkit for SQLite.

Figure 28. Forensic Toolkit for SQLite user interface.

40

Chapter 3.

Android Incident Response Scenario

This Thesis focused on DFIR actions and their consequences. This was achieved by

creating and executing a possible realistic scenario. In this chapter are referenced the retained

scenario, the desired goals of the experiments, the methodology and the procedure on which the

choice of instant messaging applications was based. General information about the Viber,

WhatsApp and Telegram applications and their communication encryption are mentioned. What

is more, the location of the applications communication servers for Greece (Athens) territory is

presented via an IDS solution implementation (ntopng with geoip plugin) and the difficulty to

retrieve content from the companies’ cloud servers based on an FBI document.

3.1. The scenario

Some organizations contain and manage much, sensitive, information for example,

nuclear power plant or a military intelligence facility. A person inside the organization facilities

wants to send a classified piece of information which saw on a desk or on a desktop. This person

could be either an insider (Industrial espionage) or a random visitor. So, this individual uses a

mobile phone and via a social chatting application sends a message (saved or non-saved-contact)

with the intel-photo included. After having sent the message, the in-question chat thread is deleted

by the user, before the incident response team has the chance to spot and seize the mobile device.

The device is either a LG G6 or a Samsung A50 which were detailed in the previous chapter. In

these scenarios both hypothetical situations were included where the shared images were

captured directly using the chat application or/and the device’s default camera application.

3.2. Experiments Goals

The volatility or the persistence of evidence is a crucial subject in forensics. Specially in

mobile forensics one common question which often arises is related to the handling of the device

after its seizure and the actions that must be taken by the IFR. For this purpose, a simple scenario

was developed, which is not far from reality. In this scenario an employee (insider), or a random

visitor, of an organization/industry using a smartphone’s instant messaging application, takes

pictures containing classified information from a screen of an unlocked workstation and sends

them to a third party alongside some text messages. After that, the suspect immediately deletes

the in-question chat thread. These actions come to security team’s attention, who apprehends the

suspect and seizes the device.

Three key aspects regarding the seized device should be examined to determine the best

course of actions from an IFR perspective for the retrieval of the incriminating messages and the

receiver’s identity:

- The time that has passed from the seizure of the device and until its forensic acquisition

- The status of the device

41

- The interaction with the messaging application either by the user before the seizure or by
the IFR after it.

The main goal of these experiments is to determine under which conditions and actions

the in-question data are preserved.

3.3. Messaging Application Choice

For the scenario two devices (LG G6 and Samsung A50), running a different Android OS

Version, were prepared according to the procedures described in Chapter 3 of this Thesis.

Different sim cards were activated. Nine of the most popular messaging application were installed

using the same version of apk (through “adb -d install” command), a new user was added, and

chat messages were exchanged. In Table 5 is presented the popularity of chosen applications,

as it is referenced on the official’s digital distributor site and Android Market (Google Play Store).

Furthermore, no additional applications were installed (e.g., google accounts) except the under-

examination ones to mitigate the level of “noise” and unrelated data.

Application

Total Downloads

Facebook Messenger 5B+

WhatsApp 5B+

Viber 1B+

Telegram 1B+

Skype 1B+

LINE 500M+

imo 500M+

WeChat 100M+

kik 100M+

Signal 50M+

Table 5. Chat applications’ total downloads (Source: Google Play Store).

All the user data including contacts, messages and call logs are stored in SQLite

databases inside the applications’ folders in the device’s filesystem. As it was analyzed in

paragraph §1.3.1.2 the key factor for recovering deleted records (e.g., deleted messages in the

scenario’s case) depends on the settings and features of these databases. With the usage of

forensic tools, described in paragraph §1.4, those nine applications’ databases were compared.

The forensically interesting settings of these applications are presented in Table 6.

Application

Version

Journaling
Mode

Encryption

Auto
Vacuum

mode

Messages Databases

Facebook
Messenger

339.0.0.18.118 Journal No Full com.facebook.orca/databases/threads.db2

imo 2021.11.2051 WAL No Full com.imo.android.imoim/databases/imofriends_xxxxxx.db

kik 15.38.1.25235 WAL No Full kik.android/databases/xxxxxx.kikDatabase.db

42

• Unlock

Bootloader

Device • Install TWRP &

Preparation
Magisk
Manager

• Get Root
Privileges

Application 9 messaging
Installation applications

Examination
& Analysis

• Device’s image
• Application’s

Databases

i). Viber

Final Choice ii). WhatsApp

iii). Telegram

LINE 11.19.1 Journal No Full jp.naver.line.android/databases/naver_line

Signal 5.26.11 WAL Yes Unknown org.thoughtcrime.securesms/databases/signal.db

Skype 8.78.0.164 WAL No Full com.skype.raider/databases/s4l-live:cid.xxxxx.db

Telegram 7.9.3 WAL No None org.telegram.messenger/files/cache4.db

Viber 16.4.0.8 Journal No Full com.viber.voip/databases/”viber_messages.db”

WeChat 8.0.16 WAL Yes None com.tencent.mm/files/Micromsg/xxxxxx/EnMicroMsg.db

WhatsApp 2.21.22.27 WAL No Full com.whatsapp/databases/”msgstore.db”

Table 6. Chat application databases’ characteristics (sort alphabetically).

From the above nine applications, three of them were chosen based on the differences of

their databases' settings such as the type of journaling they use (rollback journal/wal). Those apps

are Viber, WhatsApp and Telegram, which have also been correlated in the past as all together

by Botha et al. (2019) and Sutikno et al. (2016), or with other instant messaging applications

(Onovakpuri P., 2018). Even though the encryption of the WeChat app was bypassed (Rathi et

al., 2018) its examination would not add any further value, since by itself alone does not affect

under which conditions the database is modified.

The above methodology is depicted in Figure 29.

Figure 29. Workflow of the applications’ choice.

3.4. Followed Methodology

Before the main scenario’s experiments there was a reconnaissance phase involving:

 The understanding of the folder structure, file size and parameters of the databases

inside the application after a user has been added. This was achieved by initializing

this new user, removing the application, and repeating the process several times.

 The analysis of the interested databases regarding to their tables and columns.

 The understanding of the behavior of the database after examining a single record (text

message) in several states (not sent, sent, not delivered, delivered, received etc.) and

pinpointing the modified columns.

 The identification of the affected files and databases in the operating system besides

the ones residing in the applications’ folders when a media or a text message is

exchanged.

43

The main phase of the scenario’s experiments involved the examination of the two devices

regarding the three key factors, which were previously mentioned:

 The time that has elapsed until and after the device’s seizure.

 The status of the device before and after the seizure.

 The application’s database modification by sending, receiving, reading or deleting

additional messages during the above-mentioned time.

There is a correlation among these three key factors. For example, the longer the device

is connected to a network the more likely an application’s database modification might occur. The

media files (pictures) and the messages which were sent/received and must be retrieved are

mentioned in Appendix A2 and are exactly the same for all the experiments. For the creation of

a realistic populated database, the exchange of those messages occurred among the exchange

of other, unrelated, text messages between four (4) active users as it depicted in Appendix A1.

On some occasions (especially in Telegram) the number of the messages of Appendix A1 were

not enough to draw any definite conclusions. In this case there was an exchange among the four

(4) users of more messages in the form “This is message X”, where X represents a sequential

numbering (i.e., “This is message 200”). The experimentation phases had to be adjusted

according to the unique features and characteristics of each tested application. For example, some

of the messages of Appendix A2 in the Viber application included “autodelete” feature (timebomb),

whereas in WhatsApp application this feature was ignored since autodeletion feature was

activated after 24-hours. Apart of that, forensic images of the devices were acquired in several

time frames and in devices’ different statuses and conditions to determine if any modification of

the databases can occur based solely on these two factors. The main time frames and under

examination conditions are represented in Table 7.

Status

(Always after deleting the
messages of Appendix A2)

Time Frame

Action

Standby As soon as possible None

Standby After 2/6/24 hours None

Standby As soon as possible Removing Sim

Airplane mode After 2/6/24 hours None

After reboot 24 hours Removed Sim

After shutdown 48 hours None

Faraday box After 2/6/24 hours None

Table 7. Chat application databases’ main characteristics (sort alphabetically).

After the scenario’s main phase was completed, more experiments were conducted, which

were unique for each tested application regarding some of their distinctive features. For example,

in the Viber application the behavior of the journal file was examined regarding its size and

correlation with the number of active users. In WhatsApp application was examined the behavior

of the database after a local backup has been created and the ability to decrypt it. The above-

mentioned methodology was organized into a workflow consisted of distinct phases (Figure 30).

The experiments that were conducted were identical for both the devices but differed based on

the examined application. Their total number for both the devices is presented on Table 8.

44

Figure 30. Workflow of methodology.

Application

Physical
Images

Acquiring Database’s folder
Exchanged
Messages Reconnaissance

Phase
Main

Phase
Last

Phase

Viber 48 10 164 30 336

WhatsApp 12 6 168 - 660

Telegram 12 6 180 - 2.200

Table 8. Total conducted experiments’ number.

3.5. General information about Viber, WhatsApp & Telegram

3.5.1. Viber

3.5.1.1 General Information

It was founded by Israelian Talmon Marco back in 2010 and joined Google Play Store two

years after, in 2012. In 2014 Viber was bought by the Japanese company Rakuten and in 2016

the end-to-end encryption as a default setting was implemented. Viber has implemented the

feature of automatically disappearing messages after a brief period of time that they have been

45

read by the receiver. This period can vary from 10 seconds to 24 hours. Viber application can be

installed in an Android or an iOS device and only after this initial setup the user can be install a

version of it on a personal computer running Windows, Mac, or Linux operating system. According

to Viber statistics (99Content, 2021) nowadays Viber market has been expanded to over 190

countries and in March 2020 there were almost 1.17 billion registered users worldwide. Among

the countries in which Viber has significant popularity are Ukraine, Greece, Belarus, Russia, and

Philippines.

3.5.1.2 Viber’ s Communication Encryption

The Viber app provides an end-to-end encryption, including calls, one-on-one or group

messages and media sharing. Encryption keys are stored only on the communicating “clients”,

and no one can access them, including Viber servers.

For exchanging messages for example, as official Viber’s site refers (Rakuten Viber, 2021):

Every time a device A sends a message to a device B, an ephemeral one-time 128-bit symmetric

key is being generated and used for the encryption of the message body, using the Salsa20

encryption algorithm. «Then the ephemeral message key is encrypted using each recipient’s

session key. The sender device sends a unified message to the server, containing one encrypted

cyphertext and a set of encrypted ephemeral keys. A server-side fan-out slices this message and

delivers the relevant parts to each target device. The two devices take turns at advancing the

session keys in a process called ratcheting. Each time the direction of the conversation changes,

the device whose turn it is randomly generates a new Ratchet key pair, and once again performs

the following sequence: TempKey = HMAC_SHA256(RootKey, DH (RatchetA, RatchetB)) New

RootKey = HMAC_SHA256(TempKey, "root") SessionKey = HMAC_SHA256(TempKey, "mesg")

With Ratchetthis_device being the private part of the newly derived key-pair. Alongside each

message, the public part of the Ratchetthis_device is also sent. The recipient runs DH with its last

private ratchet together with the sender’s public ratchet» (Rakuten Viber, 2021). By implementing

this double-ratchet method there is a forward and backwards secrecy of and even if there is a

compromise of keys, previous or/and future messages cannot be decrypted. Moreover, peer’s

authentication is being maintained by the algorithm, because the root keys’ DH (Diffie–Hellman)

chain began with both devices’ ID Keys. So, the entire chain is considered as trusted, if the peer’s

ID key confirmed as trusted at any point. Calls are being encrypted through an ephemeral 256-bit

Curve25519 key-pair and the conversion of the RTP stream to SRTP via Salsa20 algorithm. Media

sharing encryption uses an ephemeral, symmetric Salsa20 key, an HMAC (Hash-based message

authentication code) signature and an MD5 signature for the file encryption in the Viber’s storage

server.

3.5.2. WhatsApp

3.5.2.1 General Information

It was founded, by Brian Acton and Jan Koum, former employees of Yahoo!, in 2009. In

2013 Google made an offer of ten (10$) billion US dollars, but the offer was rejected. In 2014 it

was acquired by Facebook, currently known as Meta Platforms. The acquisition has risen some

privacy concerns among the users causing them to migrate at different messaging platforms.

WhatsApp has a different approach to implementing the feature of automatically disappearing

messages where there is a longer lasting period of time for these messages. This period of time

46

can be either 24 hours,7 days or 90 days. WhatsApp is a cross platform app and can be installed

and used on Android or iOS mobile devices and on Windows PC, Mac or Linux desktop or laptop.

According to WhatsApp statistics (99Content, 2021) in India the application has over half a billion

users. Overall, there more than two billion users accessing the application every month. In several

countries including China, the United Arab Emirates, Iran, Syria, North Korea and Cuba the usage

of the application is blocked or restricted. The application has often been accused, especially in

India, for the spread of misinformation, propaganda and fake news. For this reason, WhatsApp in

2020 forced a limit of chat forwarding (Singh S., 2020).

3.5.2.2 WhatsApp’s Communication Encryption

WhatsApp features an end-to-end encryption to all types of communications. The term

“end-to-end encryption” is defined by app’s programmers (WhatsApp, 2021) «as communications

that remain encrypted from a device controlled by the sender to one controlled by the recipient,

where no third parties (not directly participants), not even WhatsApp or parent company Facebook,

can access the content in between». As official WhatsApp’s site refers for exchanging and

transmitting messages, media files, calls etc., when a session is established, the content is

encrypted because “clients” exchange messages with a Message Key using AES256 in CBC

mode for encryption and HMAC-SHA256 for authentication. The Message Key for each message

is an ephemeral and the one-time key, is derived from a sender’s Chain Key that “ratchets” forward

with every sent message. In addition, a new Chain Key is created by a new ECDH agreement

which performed with each message roundtrip. The combination of both an immediate “hash

ratchet” and a round trip “DH ratchet” provides more secrecy. Another step forward to security, is

that all communications between application’s clients and servers use Noise Pipes with

Curve25519, AES-GCM, and SHA256 from the Noise Protocol Framework for long running

interactive connections. Thus, there are a superfast connection setup and resume, a metadata

encryption, and no private authentication keys/credentials storing on servers (only public

authentication keys).

3.5.3. Telegram

3.5.3.1 General Information

It was founded by the Russian brothers Pavel and Nikolai Durov, who had already lunched

an online Russian social media and networking service called “VK” (V Kontakte). It is a cloud-

based messaging app which was launched in 2013. The main characteristics of the application

are the open-source code and the ability to create secret, end-to-end encrypted and self-

destructing messages and chats (Telegram, 2021). Today, Telegram is available in 155 countries

with more than 550 million active users per month. The country with the most installations (over

210 million) is India, followed by Russia and Indonesia (Dean B., 2021). Telegram can be installed

on every platform such as Android, iOS, Windows PC, Mac or Linux.

3.5.3.2 Telegram’s Communication Encryption

Unlike Viber and WhatsApp, Telegram does not enable, by default, end-to-end encryption.

Once a chat message arrives at the Telegram servers, it is encrypted using MTProto (v2), while

at rest on the servers. However, Telegram could read chat data since it handles encryption and

decryption of the messages at its (Telegram) servers. E2E encryption is supported only if the

47

secret chat feature is chosen. MTProto is a custom mobile protocol designed by Telegram and it

has been criticized many times by cryptography experts (Saribekyan & Margvelashvili, 2017, Lee

et al., 2017, Jakobsen & Orlandi, 2016). MTProto (v2) uses Diffie-Hellman (DH) key exchange,

Secure Hash Algorithm 256 (SHA-256), Key Derivation Function (KDF), and AES-256 in IGE

mode as cryptographic primitive (End-to-End Encryption, Secret Chats) (telegram.org). Even if it

is differentiated from the first version with features like extra padding bytes in the computation of

msg_key, researchers from the University of London and ETH Zurich have documented significant

problems in terms of Telegram’s current encryption system security (Albrecht et al., 2021).

3.5.3.3 Telegram’s Privacy Concerns

The by default lack of E2E encryption has risen several privacy concerns. According to

app’s privacy policy it is possible to «…collect metadata such as your IP address, devices, and

Telegram apps you have used, history of username changes, etc.». This in conjunction with the

fact that the messages are being encrypted on Telegram servers raise some red flags regarding

users’ privacy.

3.6. Applications’ Cloud Servers

Obtaining data such as account information or exchanged messages, from messaging

applications’ private company servers is a difficult and complex process. The two main reasons

are:

1. The locations of both servers (Table 8) and companies where different legislation is

implemented. To put this in perspective:

 Viber is owned by a Japanese company, based in Luxembourg. The messages originating

from Greece were relayed/routed from servers in U.S.A.

 WhatsApp is owned by an American company. The messages originating from Greece

were relayed/routed from servers in Germany.

 Telegram is registered as an American LLC and UK LLP, with headquarters in Dubai. The

messages originating from Greece were relayed/routed from servers in England.

48

Telegram (UK) and WhatsApp (Germany) servers (AWS)

Telegram Server (UK)

WhatsApp Server (Germany)

Viber media server (USA)

Viber text messages server (USA)

Table 9. WhatsApp, Telegram and Viber applications’ cloud servers where the devices connected (tool
used: ntopng with geoip plugin, device examined: Samsung A50).

2. Even if this Kafkaesque legal system is bypassed and a court order is executed, as an FBI

training document indicates, there is little that could be done to gain access to the content of
encrypted messages from secure messaging services (Cimpanu C., 2021). In Table 9 is
presented the contents of the above-mentioned document for the messaging applications that

49

are examined in this Thesis concerning the data that can be retrieved from the company’s
servers.

App Legal process & additional details

Viber * No message content.

* Provides account (i.e., phone number) registration data and IP address at time of
creation.

* Message history: time, date, source number, and destination number.

WhatsApp * Message content limited.

* Subpoena: can render basic subscriber records.

* Court order: Subpoena return as well as information like blocked users.

* Search warrant: Provides address book contacts and WhatsApp users who have the
target in their address book contacts.

* Pen register: Sent every 15 minutes, provides source and destination for each
message.

* If target is using an iPhone and iCloud backups enabled, iCloud returns may contain
WhatsApp data, to include message content.

Telegram * No message content.

* No contact information provided for law enforcement to pursue a court order. As per
Telegram’s privacy statement, for confirmed terrorist investigations, Telegram may
disclose IP and phone number to relevant authorities.

Table 10. FBI’ ability legally content access of Viber, WhatsApp and Telegram. Content of FBI’s training
document released on Jun. 2021 (Cimpanu C., 2021).

It follows from all the foregoing that, if the data (messages) are not preserved and

forensically retrieved from the devices it will be extremely difficult to do so from anywhere else.

50

Chapter 4.

Viber application Scenario

In this chapter the Viber application’s examination and the related results are presented

regarding text and media exchanged messages and the volatility of the database in which they

are stored. At first, there is a reference on the application database’s location, it’s features and the

differences between an Android 9 and an Android 11 examined device. After that there is an

analysis of the tables and columns of the database and the queries that were built in order to view

the desired ones. In addition, the volatility of deleted text and media messages is examined

through multiple experiments. Furthermore, some unique characteristics of the application are

examined, and final conclusions are drawn.

4.1. Viber’ s Examination

The used .apk for both the devices was the Viber v.16.4.0.8 which was released in October

2021. The application’ s file and folder structure is well known and documented over the years for

both educational/research (Hermawan et al., 2021, Anglano et al., 2016) and forensic purposes

(Belkasoft, 2021). In this Thesis the focus is on the messaging database and the modifications

which occur after sending, receiving, reading and deleting messages or/and elapsed time and the

device’s status. The goal is to examine under which conditions deleted records can be recovered.

Since this is not a black box experiment and as matter of fact, there is a total control of the device

it is much safer to draw some conclusions. The above-mentioned “messaging database” is named

“viber_mesages.db” and is located, among others, in the path:

«data/data/com.viber.voip/databases». The access to this path is normally prohibited, so the

examiner must either have “root” access to the device or acquire a physical image of it.

4.1.1. Android 9 vs Android 11 Comparison

The structure of the database’s folder («data/data/com.viber.voip/databases») in the

16.4.0.8 version of the application in the two devices had some minor differences:

 Firstly, the google API (“com.google.android.datatransport.events.db”) and “cdr.db” (Call

Details Records - Metadata) databases in the Android 9 device used the newer WAL

journaling mode. On the contrary the newer Android 11 device used the legacy journal

mode. Those two databases do not have any participation in the experiment or

differentiation on the results and therefore were not taken into consideration.

 Secondly, the initial size of the “viber_messages” databases and the overall size of their

corresponding journal files differentiated in the two devices. The initial database (right after

the first login of a user), in five different occasions on each device, had a small difference

in size. This was depended on the volume of the initial pushed data by the company’s

server to the “chat_extension”, “chat_suggestions” etc. tables.

51

4.1.2. General information about the under-examination database

Generally, the initial size of the “viber_mesages” database, before any transactions, was

approximately 380 kb and the journal’s size was 80 kb. After having created several transactions

(sending/receiving) among four (4) users, it was observed that the maximum size of the journal

file, was related to the number of the active users and the type of transaction that had occurred.

The size of the main database is constantly altered as a result of the “auto_vacuum” PRAGMA

statement (Figure 31).

Figure 31. Comparison of the “viber_messages-journal” file size while increasing the size of main database
with transaction between two (2) active users. The journal file is always 381 kb (Examined
Device: LG Device).

The way the size of journal file was increased or decreased followed a certain pattern. For

four (4) active users, after the transmission and receival of several text, photos and video

messages, the size of the journal file was always 409 kb for the Samsung device and 393 kb for

the LG Device. After a total deletion of the exchanged messages, the size of the file grown (721

kb for Samsung and 777 kb for the LG) but remained stable through the rest of the experiments

even after sending and receiving more content on the two devices (Figures 32 and 33).

52

Figure 32. Comparison of “viber_messages.db”
journal file’s size while increasing the size of main
database with transaction among four (4) active
users on the Samsung A50 device.

Figure 33. Comparison of “viber_messages.db”-
journal file’s size while increasing the size of main
database with transaction among four (4) active users
on the LG G6 device.

There was a clear correlation between the size of the journal file and the number of the

active users. A conclusion that could be drawn from this is that the size of the journal file of

“viber_messages” database, does not necessarily correlate with the volume of the recovered

deleted content from one user/chat thread. The active pragma statements for the databases in the

two devices can be examined from the file headers. The examination and comparison which is

depicted in Figures 34 and 35 involves copies of the examined databases by using the non-

forensic tools: “SQLite Expert” and “DB Browser for SQLite”. When a non-forensic tool is used

there is a probability that the data of main database could be modified, especially if the database

coexists in the same path as its journal/wal file.

53

Figure 34. Comparison of “viber_messages” database in Samsung A50 (left) and in LG G6 (right) (tool
used: SQLite Expert).

Figure 35. SQLite Pragma Statements of “viber_messages.db” in edit mode (tool used: DB Browser for
SQLite).

The analysis of the active pragma statements from the database-file headers yield that

both databases:

 had the Full auto_vacuum enabled and did not create freelist pages,

 used rollback journal as a journaling mode with unlimited size (-1), in theory.

The meaning and forensic value of these pragma statements (enabled options) have been

analyzed in paragraph §1.3.1.2. All these settings render the data, especially the deleted ones,

extremely volatile. The settings of the “viber_messages” database have been changed over the

years. In older versions there were some key differences in the database which allowed an

examiner to recover records with a greater success rate. At least until the 2017 versions of the

application, freelist pages were created and kept in the database (Table 10).

54

Table 11. Comparing settings of “viber_messages.db” on different versions of the application (tool used:
SQL Expert).

4.1.3. Analysis of the “viber_messages.db”

The “viber_messages” database was composed by twenty-four (24) tables (Figure 36).

The two (2) most forensically interesting tables, for the examined scenario were the “messages”

(Figure 37) and “participants_info”.

Figure 36. Depiction of the tables tree of
“viber_messages.db”.

Figure 37. Some of the columns that are
consisted in “messages” table.

Version 49- September 2017 Version 72- October 2021

Version 72- June 2021

55

The “messages” table contained the most interesting columns. Some of the column names

are self-explanatory, such as the “body” which contains the body of the message. On the contrary

others need to be explained regarding their type of content and form:

 The “msg_date” column contained the timestamp when a message was created, and

it was encoded in Unix Millisecond (Java Time).

 The “send_type” column’s value indicated the direction of the message. When the

value was “1” meant that it was an outgoing message. Any other value indicated that

it was an incoming one.

 The “unread” column’s value was “1” or “0”. The value “1” indicated that the message

had not yet been read and value “0” that the message had been viewed.

 The “status” column contained information about whether the message was not sent

(“0”) (e.g., problem in the device’s network connection), sent but not delivered (“1”), or

delivered (“2”).

 The “read_message_time” column contained information about the timestamp of the

read time of a message by its receiver.

 The “msg_info” column contained several types of information e.g., the metadata of

a transmitted media file or if a message has been edited by the user.

The “participants_info” table contained information about the participants. In this table,

the phone number and the contact’s name could be found. The data in the columns of this table

were combined with the data of the columns of the “messages” table in order to create new tables

which contained easily understandable results. This was achieved through simple SQL queries

(Figures 38 and 39) and by joining the “member_id” and “user_id” columns of these two tables.

56

Figure 38. SQL query combining some of the columns and tables.

Figure 39. Adding another case statement in the previous SQL query, it can be viewed if the message has
been edited or not.

At this point it must be mentioned that the columns’ names inside the tables and the

meaning of the corresponding flags/data are modified among versions. For example, in the Viber

v.16.4.7.2, the “unread” column was absent and was replaced with the “open” column. Those two

57

columns differ not only in name but also in meaning. In the “unread” column the value of “1” meant

that the message was not read by the user, in contrast with the column “open” where the flag “1”

meant the exact opposite (that the message was read by the user). This means that the SQL

queries that were executed in this Thesis might not be applicable in other versions of these

applications.

4.1.4. Volatility of the “viber_messages.db”

The experiments confirmed that the crucial data in the “viber_messages” database and its

corresponding journal file are not susceptible to any of device status changes or time, including:

 Leaving the device powered on with active network. Take note that in the experiments

that were executed it was not taken under consideration the possibility of a remote

wipe of the device. Forensically is highly recommended to disable all the network

connections of the device.

 Leaving the device in a faraday box with network.

 Putting the device in airplane mode.

 Rebooting the device.

 Shutting down the device.

 Removing the SIM card (which was the only thing associated with account), while the

device was live and after it was deactivated and then powered on without the SIM.

All the above experiments were repeated in several time frames and did not modify by any

means the two files. During the experiments there was only one case, in which “killing” (closing)

the application manually from the background and reopening it, modified the files. That exception

had to do with “bad timing” because at that moment Viber’s server happened to push some new

data in the “chatex_suggestions” table in “viber_messages.db”. As long as there were not any

interactions with the application, the examined database was not modified even after several hours

(Figure 40) or even days.

Figure 40. The device’s “viber_messages.db” was not modified after 20 hours, even changing its state
several times.

58

As mentioned before, the schema which Viber has implemented in the last versions,

renders the data extremely volatile. By sending just one message the record was present three

times in the main database and its journal file. Every time the record changes it’s state (from sent

to delivered, or from delivered to have been read by the receiver) its previous version is moved to

the journal file. Only the most recent status of the record resides in the main database while the

previous states of the same record reside in the journal file (Figure 41).

Figure 41. How “viber_messages.db” and its journal file are altered after one message was sent (tool used:
Oxygen Sqlite Viewer, Examined Device: Samsung A50).

This was verified through the FQLite tool. In Figure 42 it can be observed that the same

message (record) existed two times in the journal file and one time in the main database (latest

state). The same rule applied when more messages were sent as it can be viewed in Figures 43

to 45.

Figure 42. How “viber_messages.db” journal file was altered after one message was sent (tool used:
FQLite, Examined Device: Samsung A50).

Figure 43. How “viber_messages.db” journal file was altered after two messages were sent (tool used:
Oxygen Sqlite Viewer, Examined Device: Samsung A50).

Figure 44. How “viber_messages.db” journal file was altered after three messages were sent (tool used:
Oxygen Sqlite Viewer, Examined Device: Samsung A50).

59

Figure 45. How “viber_messages.db” journal file was altered after three messages were opened by the
receiver. By changing the “read_message_time” flag, all records which were previously unread
are moved to the journal (tool used: Oxygen Sqlite Viewer, Examined Device: Samsung A50).

So, the database and its journal file were modified when:

! a message was created. It did not matter whether was successfully sent or not.

! a message was received.

! a message was opened. This was regardless of if it was an outgoing message read by

the receiver or an incoming read by the user.

! a message or a thread was deleted by the user or by timebomb.

! a bot message (ads) was received, opened, or deleted.

! a message notification was removed (Figures 46 and 47).

! if new data were pushed by Viber’ s server (e.g., download new emoticons suggestion).

Figure 46. Before removing Viber Notification: eighteen (18) messages existed in “viber_messages.db” and
16 messages existed in journal (tool used: Belkasoft-X, Examined Device: Samsung A50).

60

Figure 47. After having Viber Notification removed: eighteen (18) messages existed in “viber_messages.db”
and thirty-three (33) messages existed in it’s journal file. Removing messages notification can
potentially push something important out from the journal file by replacing it (tool used: Belkasoft-
X, Examined Device: Samsung A50).

4.1.5. Retrieving the messages in question and the timebomb feature

During the experiments some of the exchanged messages of the scenario included the

timebomb feature. Timebomb is a message autodeletion setting. The user predefines an

autodeletion timer countdown which is activated after a message has been read by the receiver.

After that the exchanged message is deleted from the chat thread. The Viber application treats

these kinds of messages like normal ones, and the only element that differentiates them, is the

flag “autodelete” which is displayed as “timebomb/X” (where X= 10,60,3600 seconds) in the body

of the message (Figure 48).

Figure 48. Use of timebombs and how they are depicted in the “viber_messages.db” (tool used: DB Browser
for SQLite, Examined Device: Samsung A50).

By examining the database and its journal file with the X-Ways Forensics, or any other

HEX Editor, and searching it by the value inside the “user_id” column, which contains the user

that sent the messages, it could be observed that the messages with enabled timebomb setting

still existed and could be retrieved as long as no other commits were executed to the database

(Figure 49). To make things clearer: the timebomb feature added an extra state to the record

when it deleted it. Since the journal file is the invalid previous version of the database it could still

be retrieved.

61

Figure 49. Searching timebombs messages content using “user_id” in “viber_messages.db” (tool used: X-
Ways Forensics, Examined Device: Samsung A50).

The problem lies that with the speed that the applications are updating their settings and

databases, it is very difficult for forensic tools, free or commercial, to keep up with the correct

parsing of the application’s databases and journal/wal files. The verification by using multiple tools

could help, with the retrieval of most of the records, but at the end, it is necessary to dive straight

into file itself in a hex level to ensure that nothing is missed. The experiments showed that the

usage of the contents of the column “user_id” as a searchable string can preview some fast results.

It is understandable that viewing the data of the file as hexadecimal is a hard task, but

unfortunately necessary and vital in many cases (AskClees, 2020). Several forensic tools (free

and commercial) and the way they parse the deleted timebomb records are depicted in (Figures

50 to 52).

On some occasions a forensic tool returned one message of the deleted ones after the

timebomb feature has been activated (Figure 50), whereas examining the same database with

different tools retrieved the most if not all of the erased, by timebomb, messages (Figures 51 and

52). This comparison is not made to point out the advantage of one software/tool over another but

to point out that multiple ones have to be used in order to draw a final and detailed conclusion.

62

Figure 50. How “viber_messages” journal file was modified after messages with timebomb were deleted

(tool used: FQLite Examined Device: Samsung A50).

Figure 51. How “viber_messages” journal file was modified after timebomb messages were deleted (tool
used: Belkasoft-X, Examined Device: Samsung A50).

Figure 52. How “viber_messages” file was modified after timebomb messages were deleted (tool used:
Oxygen Forensic SQLite, Examined Device: Samsung A50).

After the manual deletion of the conversation thread which also contained timebomb

messages, the forensic tools, without tweaking them, were still able to recover several records,

with different levels of success (Figures 53 and 54).

Figure 53. How “viber_messages” journal file was modified five minutes after the conversation thread was

deleted (tool used Belkasoft-X, Examined Device: Samsung A50).

63

Figure 54. How “viber_messages” journal file was modified five minutes after the conversation thread was
deleted (tool used: Oxygen Forensic SQlite, Examined Device: Samsung A50).

It has to be mentioned that in the latter example the timebomb messages had not yet been

vacuumed. In a realistic scenario the acquisition of the data after five minutes it is considered

impossible. The full “auto_vacuum” feature of the database irretrievably removes the timebomb

records after a few minutes, making it impossible to recover them, while the records/messages

which were manually deleted (the ones that existed in the previous state of the database) are still

recoverable. This procedure is independent of the device’s brand or OS version. The exact

timeframe in which full “auto_vacuum” is triggered could not be pinpointed. Figures 55 to 58

depicts the way that the messages table in the Viber database in the LG device is modified through

time using several forensic tools and software.

Figure 55. How “viber_messages” journal file was modified five minutes after the timebomb messages were
deleted (tool used: Oxygen Forensic SQlite, Examined Device: LG G6).

64

Figure 56. How “viber_messages” journal file was modified 1, 6, 24 and 48 hours after the conversation
thread was deleted with the device in several states. The timebomb messages were deleted
permanently (tool used: Oxygen Forensic SQLite, Examined Device: LG G6).

Figure 57. How “viber_messages” journal file was modified five minutes after the timebomb messages were
deleted (tool used: UFED PA, Examined Device: LG G6)

Figure 58. How “viber_messages” journal file was modified 1, 6, 24 and 48 hours after the conversation
thread was deleted with the device in several states. The timebomb messages were deleted
permanently (tool used: UFED PA, Examined Device: LG G6).

As already shown even one commit to the database was enough to lose the majority off

the “incriminating messages”. By receiving just five (5) messages from a third participant almost

all the previous commits were vacuumed and thus permanently deleting the messages of interest

(Figures 59 and 60).

Figure 59. How “viber_messages” journal file is modified after five (5) additional messages were received
and not opened by the user (tool used: Oxygen Forensic SQLite, Examined Device: Samsung
A50). Only the messages that contained records from the “msg_info” column remained.

65

Figure 60. How “viber_messages” journal file is modified after the notification, of the previously received
messages, is removed from the device. The data are further corrupted introducing false positive
records (tool used: Oxygen Forensic SQLite, Examined Device: Samsung A50).

In conclusion, just three actions-commits, involving receiving messages, reading incoming

messages, or having outcoming messages, read by another participant (receiver) etc., were

enough to erase every trace of the records of interest.

4.2. Viber’s Media Files Attachments

In the experiments two media files, were sent, one which created through the default

camera application of the device and the other, was created via the internal camera feature of the

Viber application. The media file was stored at «media/0/Pictures/Viber» if it was captured by the

internal feature of the application or at «media/0/DCIM/Camera/» if it was captured by the default

camera application of the device. Since the application did not automatically remove the media

file from the filesystem when the messages which included it, was deleted, it was removed

manually. In addition, the trash bin folder of the photo gallery application was emptied. The trash

bin folder is an OS feature where after a media file’s deletion, it is moved and kept separately for

a period of time. This period varies, and for the LG device is 7 days as for the SAMSUNG device

is 30 days. For media files except the columns which were mentioned in paragraph §4.1.3, there

were also two more, which were extremely useful. The “msg_info” (Figure 61) which contained

the metadata of the sent files in JSON format and the “extra_uri” (Figure 62) in which the internal

storage path of the file is mentioned.

Figure 61. The “extra_uri” and “body” columns of the table “messages” in “viber_messages.db” (Examined
Device: LG G6).

Figure 62. The “msg_info” column of the table “messages” in “viber_messages.db” (Examined Device: LG
G6).

The thumbnails of the media files, which were created during the transmission, were stored

at the path «/media/0/Android/data/com.viber.voip/files/.thumbnails/» (Figure 63). In order to

correlate the content of the transmitted message with a media file (picture) with a picture’s created

thumbnail, a comparison was made between their timestamps. One other path where artifacts can

be found is the cache folder of the Viber application at «/media/0/Android/data/com.viber.voip/

cache/ImageFetcherThumb» (Figure 64).

66

Figure 63. Media files thumbnail’s location (Examined Device: LG G6).

Figure 64. Media files cache location (Examined Device: LG G6).

4.2.1. LG device’s media artifacts

In the LG device the thumbnails of the media gallery were stored at path:

«media/0/DCIM/.thumbnails». The timestamp when the user deleted the files and when the trash

bin was emptied could be retrieved from the contents of the “trashcan.db” database and it’s WAL

file located at the path: «/data./data/com.android.gallery3d/databases/» (Figure 65).

Figure 65. LG G6’s “trashcan.db” WAL file record (tool used: Oxygen Forensic SQlite).

Furthermore, the conversion of the blob file named “imagecache.0”, which is located at the

path: «/media/0/Android/data/com.android.gallery3d/cache», with a free tool (slo-sleuth, 2021) to

a SQLite database and then parsing it with DB Browser for SQLite, provides valuable information

about the captured media files (Figure 66).

Figure 66. Parsing “imagecache0.sqlite” (tool used: DB Browser for SQLite, Examined Device: LG G6).

67

Το summarize all the above-mentioned artifacts, they are presented in chronological order:

• At 31-10-2021 10:07:16 UTC a media file named «20211031_120716» was captured

by the device’s camera application and stored at path: «../DCIM/Camera/» as the item

«949» in the device’s “InternalPath”. The file’s content is presented at the “Thumbnail”

column (Figure 66).

• At 31-10-2021 10:08:07 UTC the file is imported at the application for transmission and

a cache file is created (Figure 64).

• At 31-10-2021 10:08:09 UTC the file’s thumbnail is created and stored permanently at

path: «media/0/Android/data/com.viber.voip/files/.thumbnails/» (Figure 63).

• At 31-10-2021 10:08:12 UTC the file is sent as a message. The “extra_uri” and “body”

columns depict the original internal path of the media (Figure 61), and the media’s

filename is shown inside the JSON file (Figure 62).

• The file is deleted and removed from the trash bin of the device’s gallery application

(Figure 65).

Finally, if the location tag’ s setting was enabled in the examined device, the geolocation

of the captured pictures could be found in the file

«/media/0/Android/data/com.android.gallery3d/cache/rev_geocoding.0».

4.2.1. Samsung device’s media artifacts

The Samsung device has a modified version of stock android. It does not use the Android’s

default camera or photo gallery applications. The pictures’ thumbnails are located in the Samsung

gallery application at path: «/data/com.sec.android.gallery.3d/cache/». The analysis of the

“local.db” database located at the path: «/data/com.sec.android.gallery.3d/databases/» and

specifically the “trash” table of this database provided the timestamps of media deletion (Figure

67). Most of the column names of this table were self-explanatory.

Figure 67. The “trash” table of Samsung’s “local.db” (tool used: Forensic Toolkit for SQLite, Examined
Device: Samsung A50).

68

Two more databases which contained interesting artifacts were:

 The “graph.db” located at path: «/data/com.samsung.mlp/databases» (Figure 68). MLP
stands for Mobile Location Protocol, and it can be used, among others, to track the media
files which were sent as messages.

Figure 68. The “MediaAttribute” table of Samsung “graph.db” (tool used: Oxygen Forensic SQLite,
Examined Device: Samsung A50).

 The “core2.db” at path: «/data/com.sec.android.app.camera/databases/» (Figure 69),

contained information only about the pictures created via the camera application.

Figure 69. The “files” table of Samsung “core2.db” (tool used: Oxygen Forensic SQLite, Examined Device:
Samsung A50).

4.3. Final Conclusions on Viber

To sum up, DFIR Team members should avoid interacting with the Viber Application on

android devices (remove notifications, read messages etc). In addition, they must isolate the

device from networks, so that the Viber server cannot push any new data (i.e., read a sent

message from a third participant/receiver). The experiments showed that the elapsed time or the

state of the device (turned on/off, reboot, removing SIM etc.) did not alter the in-question data

(deleted). Information about the in-question messages, especially the ones that contain media

files, might be retrieved from artifacts residing in files and databases of other OS applications.

69

Chapter 5.

WhatsApp application Scenario

In this chapter the WhatsApp application’s examination and the related results are

presented regarding text and media exchanged messages and the volatility of the database in

which they are stored. Like in the previous chapter there is a reference on the application

database’s location, it’s features and the differences between an Android 9 and an Android 11

examined device. After that there is an analysis of the tables and columns of the database and

the queries that were built in order to view the desired ones. In addition, the volatility of deleted

text and media messages is examined through multiple experiments. Furthermore, some unique

characteristics of the application are examined, and final conclusions are drawn.

5.1. WhatsApp’s Examination

The used .apk for both the devices was the WhatsApp v.2.21.22.27 and its release date

was on 8th November 2021. Application’ s data’s, file and folder structure is well known and

documented over the years for both educational/research (Rathi et al., 2018, Zhang et al., 2018)

and forensic purposes (Belkasoft, 2021). There is an interesting approach made by Mirza et al.

(2020) in which artifacts can be retrieved, under specific circumstances from the notification

system of the application. As it has already been mentioned this Thesis is focused on the actions

of an DFIR and the methodology best suited to be followed regarding the preservation of deleted

data (messages). There were two databases that contained forensically interesting artifacts: the

“msgstore.db” which included the messages, and the “wa.db” which included information about

the user contacts. Both databases were located at the path:

«/data/data/com.whatsapp/databases». Furthermore, the private encryption key was retrieved

from the path: «/data/data/com.whatsapp/files» and used for the decryption of the user’s chat

backup. Once again, it must be pointed out that access to these paths is normally prohibited, so

either the examiner must have root access to the device or acquire a physical image of it to extract

them.

5.1.1. Android 9 vs Android 11 Comparison

The initial size of the “msgstore.db” on both devices, running different Android version, was

988kb. However, the WAL file’s initial size differed. On the LG Device (Android 9) its size was

12kb, growing to the maximum of 477kb, and on the Samsung Device (Android 11) it had a steady

size of 512kb.

5.1.2. General information about the under-examination database

The header and PRAGMA statements of the “msgstore.db” database analysis, by using

the non-forensic tools “SQL Expert” and “DB Browser for SQLite” showed that (Figure 70):

 had the Full auto_vacuum enabled and did not create freelist pages,

 used WAL as a journaling mode,

70

 the WAL Auto Checkpoint had been set at one thousand (1.000) commits (default

size).

The meaning and forensic value of these pragma statements (enabled options) have been

analyzed in paragraph §1.3.1.2. All these settings render the data, especially the deleted ones,

volatile. However, the use of WAL as a journaling mode provides some leniency in comparison to

the use of the rollback journal in the Viber application.

Figure 70. Analysis of “msgstore.db” properties (tools used: SQLite Expert (left) & DB Browser for SQLite
(right)).

The “wa.db” database contained information about the contacts of the user and

participants in the chat threads. Since it is not frequently modified (a user does not add or delete

contacts every minute) it can be characterized as a “steadier” database and even though it will be

utilized in the SQL queries, its properties, will not be analyzed any further.

5.1.3. Analysis of the “msgstore.db” and the “wa.db”

The “msgstore” database was composed by one hundred and forty-two (142) tables

(Figure 69). The two (2) most forensically interesting tables for the examined scenario were the

“messages” and “message_media”. The “wa” database was composed by twenty-four (24) tables

(Figure 70) with the most forensically interesting table to be the “wa_contacts”.

71

Figure 71. Depiction of the tables
tree of “msgstore.db”.

Figure 72. Depiction of the tables
tree of “wa.db”.

Among the most interesting columns of the “msgstore” database’s table “messages” were:

 The “key remote jid” contained the WhatsApp ID of the contact.

 The “timestamp” contained the timestamp of the message creation, and it was

encoded in Unix Millisecond (Java Time).

 The “key_from_me” contained information about the message direction.

 The “media_wa_type” identified the type of message (i.e., text, media, audio, video).

 The “data” contained the body of the text message.

 The “media_url” was the web location of the encrypted media in WhatsApp servers.

 The “media_caption” contained the title of the transmitted media.

Among the most interesting columns of the “msgstore” database’s table

“message_media” were:

 The “file_path” contained the original file path of the media file in the device’s

filesystem.

 The “message_url” was the web location of the encrypted media’ s in WhatsApp

servers.

 The “media_key” contained the decryption key in binary form (BLOB).

Among the most interesting columns of the “wa” database’s table “wa_contacts” were:

 The “number” contained the phone number associated to the contact.

 The “display name” contained the contact’s display name.

72

At this point it must be mentioned that the columns’ names inside the tables and the

meaning of the corresponding flags/data are modified among versions. A further analysis for most

of the above-mentioned tables and their columns is made by Anglano C. (2014). To get an

overview of the user’s activity the two different databases (“msgstore” and “wa”) had to be attached

and the three tables had to be combined (Figure 73). The creation of the queries was a bit more

complicated (Figure 74).

Figure 73. SQL Diagram of the joined tables (tool used: Forensic Browser for SQLite)

Figure 74. SQL query combining several columns from three different tables in two different databases.

A misperception is that since the WAL’s checkpoint is at one thousand (1.000) commits

there is “plenty of room” for many messages to be stored. Examinations showed that by sending

one plain text message there were fifteen (15) different commits (Figure 75) to the “msgstore”

database and by sending one media file fifty (50) commits occurred (Figure 76).

73

Figure 75. Differences in the “msgstore.db” after the receipt of one message (tool used: KS DB Merge
Tools).

Figure 76. Differences in the “msgstore.db” after sending one media file (tool used: KS DB Merge Tools).

5.1.4. Volatility of the “msgstore.db”

The experiments confirmed that both the “msgstore” database and its WAL file were

extremely volatile. However, certain actions/statuses/time did not seem to alter the data inside the

“messages” or “message_media” tables. Those tested circumstances were:

 Leaving the device powered on and having enabled network connections.

 When device’s boot sequence finished (reboot/restart) and the application auto starts.

 At opening of the application after closing it.

 Every few hours even in airplane mode.

 Leaving the device in a faraday box with or without network.

The database’s “messages” or “message_media” tables were modified when:

! a message was created. It did not matter if it was successfully sent or not.

! a message was received.

! a message was opened. This was regardless of whether it was an outgoing message

which was read by the receiver or an incoming which was read by the user.

74

! a message or a thread was deleted.

During the experiments the devices did not receive any bot messages (ads). Another

finding was that the incoming message notifications did not modify the “messages” table as it did

on the examination of the Viber application. The record of one message was present in the WAL

file multiple times due to its state changes (sent, delivered, read) or it’s status alterations (live,

deleted). So, there were cases where a message record was created, sent and deleted and never

committed to the main database. All these records resided only in the WAL file.

5.1.5. Retrieving the messages in question

At the time of the experimentation phase WhatsApp’s implementation for messages

autodeletion was a predefined period of time of seven (7) days. This was the only available option

and because of the long duration of this feature it was not taken under consideration. The reason

was that in an DFIR scenario the procedures and actions are supposed to occur in a short period

of time. As already mentioned, it is very difficult for the forensic tools, free or commercial, to keep

up with the applications’ settings and databases updating speed. The automated parsing, of the

forensics tools, specifically regarding the WAL file, still had different levels of success as is

depicted in Figures 77 to 79. In general, in order to verify and preview results, related to the

communication with a specific contact, the searchable string of its WhatsApp ID (column

“key_remote_jid”) was used in a Hex Viewer (e.g., X-Ways Forensics) (Figure 80).

Figure 77. Parsing messages’ content in “msgstore.db”. The tool failed to parse any of the records in
question (tool used: FQLite, Examined Device: Samsung A50).

Figure 78. Parsing messages’ content in “msgstore.db”. The tool managed to retrieve/parse some of the
records in question (tool used: Magnet Axiom, Examined Device: Samsung A50).

75

Figure 79. Parsing messages’ content in “msgstore.db”. The tool was able to retrieve all the records in
question (tool used: Belkasoft-X, Examined Device: Samsung A50).

Figure 80. Searching for messages content using “key_remote_jid” in “msgstore.db” (tool used: X-Ways
Forensics, Examined Device: Samsung A50).

To monitor the experiments, course the “msgstore” database and its WAL file were

combined into a new database. After having done that, several queries were executed. At first,

the undeleted records could be detected in the WAL file after the messages were sent/received

(Figure 81). The messages were characterized as “committed”. This meant that when the one

thousand (1000) commits-checkpoint was reached they would be moved to the main database.

76

Figure 81. The undeleted records after transmission using SQL queries in a reconstructed database
made from “msgstore.db” and its WAL file (tools used: Forensic Browser for SQLite & DB
Browser for SQLite, Examined Device: Samsung A50).

When the messages thread was deleted, and after 2 hours with no activity by the user, it

was still feasible to detect them. Their status had been altered (“Live Record Status” and “Record

Location” columns) (Figure 82).

77

Figure 82. How “msgstore.db” and its WAL file were modified after 2 hours with no activity by the user (tools
used: Forensic Browser for SQLite & DB Browser for SQLite, Examined Device: Samsung A50).

After several messages were received, sent, read and/or deleted, the status of the in-

question messages inside the WAL had been changed (“Record Location” column) (Figure 83).

78

Figure 83. The “msgstore.db” and its corresponding WAL file were modified after several messages
received/sent/read/deleted (tools used: Forensic Browser for SQLite & DB Browser for SQLite,
Examined Device: Samsung A50).

When a second deletion of a chat thread related to the same user was made, the two

devices behaved differently because of their WAL file size. As mentioned in paragraph §5.1.1 the

Samsung device’s WAL size was able to retain the in-question messages (Figure 84), unlike the

LG device where the same messages were removed (Figure 85). The difference in size and

therefore the capacity for temporarily storing data in the WAL file of the two devices produces

varied results. In the Samsung device the deleted records were preserved, even after the

exchange of ten more messages than in the LG device. Only after twenty more messages were

exchanged the in-question messages were also removed.

One more thing to notice is that in the Samsung device even though the in-question

messages were retained (records 167 to 175), the was a removal of two more recently deleted

records (records 183 to 185). So, there was an assumption about WAL file behavior, that

confirmed several times. The assumption was that the application chose to remove as little data

as possible from its database.

Figure 84. How “msgstore.db” and its WAL file are modified after a second deletion of a chat thread. The
in-question messages were still retrievable. The messages 83 and 84 were removed (tools used:
Forensic Browser for SQLite & DB Browser for SQLite, Examined Device: Samsung A50).

79

Figure 85. How “msgstore.db” and its WAL file alters after a second deletion of a chat thread. The messages

of interest (between 70 and 81) were removed. The deleted messages 83 and 84 were still
retrievable (tools used: Forensic Browser for SQLite & DB Browser for SQLite, Examined Device:
LG G6).

As demonstrated the size, the type, and the complexity of the database, in comparison

with Viber’s one, works in favor of an DFIR team rather against it. The in-question messages were

deleted after all the below actions were executed:

i. receiving approximately thirty-three (33) new messages (forty-three (43) at the

Samsung device),

ii. reading fourteen (14) messages,

iii. sending two (2) messages and

iv. deleting five (5) additional messages.

These numbers are not absolute since different conditions and user actions could, slightly,

modify these results. For example, the reading of an incoming message has a smaller impact (less

commits) in the WAL file than creating and sending one. This means that there is a bigger margin

for reading incoming messages than sending ones, until a WAL checkpoint is reached and so the

in question deleted messages are permanently removed.

80

5.1.6. WhatsApp Backup

One of WhatsApp application’ s feature is the ability to store a local or cloud backup of the

user’s messages database in an encrypted form. The backups have file names ending with

“.cryptNN” extension, where “NN” is the number of the encryption version such as “crypt5”,

“crypt7”, ”crypt12” (Ghannam H. A., 2018). The latest is “crypt14”. The decryption of the backup

requires the usage of the private key which is stored at the path «/data/data/com.whatsapp/files».

There are many tools which have the ability to decrypt these backups, but not all of them can

decrypt the latest versions. One solution for decrypting the “crypt14” backup version is depicted

below (Figure 86).

Figure 86. Decrypting a crypt14 backup with free tool «WhatsApp Crypt14 Database Decrypter» (ElDavoo
D., 2021).

The backup can be executed either manually by the user or at a time interval. Before the

backup the application committed all changes residing in the WAL file to the main database and

then executed the “auto_vacuum” PRAGMA statement, leading to the permanent removal of all

the deleted records. A more detailed reference on WhatsApp backup was made by Orr & Castro

(2018), which includes the usage of a specific tool, named WhatsApp Key/DB Extractor (2016), to

extract the key of the device’s RAM. Unfortunately, this tool is obsolete and does not support

newer versions of Android or WhatsApp. A downgrade procedure of the application is required.

5.2. WhatsApp’s Media Files Attachments

The media transmission procedure was the same as it was explained in paragraph §4.2.

In WhatsApp application when a chat thread including media, is deleted, these media files and

their temporary created ones are also erased from the device’s filesystem. WhatsApp transmitted

files were stored at path: «/media/0/Android/media/com.whatsapp/WhatsApp/Media/WhatsApp

Images» (Figure 87), while their hashes were stored at path:

«/media/0/Android/media/com.whatsapp/WhatsApp/.Shared» (Figure 88). There was also a

folder at path: «/media/0/Android/media/com.whatsapp/WhatsApp/.trash», where deleted files

were located (Figure 89). As depicted in below figures, the files are erased and only their record

traces could be found.

Figure 87. The path that the WhatsApp transmitted files were stored (tool used: X-WAYS Forensic,
Examined Device: LG G6).

81

Figure 88. The path that the WhatsApp transmitted files’ hashes were stored (tool used: X-WAYS Forensic,
Examined Device: LG G6).

Figure 89. The WhatsApp media files trash folder (tool used: X-WAYS Forensic, Examined Device: LG G6).

5.2.1. Media persistence on WhatsApp Server

Even though the media files cannot be recovered locally, there is a possibility to do it

remotely. After their transmission and encryption with a unique key, media are stored at WhatsApp

media server to be received by any participant. The duration of the persistence on the server

varies. Angus M. (2018) have made the hypothesis that if the encrypted media on the server are

to be forwarded from user to user, the deletion timer is being reset. The files can be downloaded

via a “wget” script or simply by using a web browser. In the conducted examinations it was possible

to download files via WhatsApp server even after 36 hours of the original transmission time

(Figure 90). As claimed in 2018 when the above paper was published, the media were saved at

an unencrypted format. Nowadays they are encrypted with AES-256. The decryption key was

found at the “message_media” table under the “media_key” column (Figure 91). This column was

characterized as blob (thumbnails). By converting the contents of the column to a hex value and

with the usage of a python script (i.e., “whatsapp-media-decrypt”) the media was able to be

retrieved (Figure 92). Unfortunately, even though the decryption key could be retrieved, after the

deletion of the in-question messages it had a smaller persistence than the other records. The

record was wiped after the exchange of just five (5) messages in any case (notice that the other

rules about the non-alteration of the database still applied, like reboot, elapsed time, etc).

Figure 90. Download transmitted files via WhatsApp server.

82

Figure 91. Media urls and decryption keys were stored on “message_media” table of “msgstore.db”.

Figure 92. Decrypting downloaded from WhatsApp server media files, by using python script named

«whatsapp-media-decrypt».

5.2.2. LG device’s media artifacts

In the LG device, even if there was no content of the media that were captured through the

WhatsApp application’s camera feature, thumbnails of those captured through the device’s

camera application and then sent via WhatsApp application could still be found and parsed at the

path: «media\0\Android\data\com.android.gallery3d\cache\imgcache.0» (Figure 93).

Figure 93. Viewing the “imgcache.sqlite” file (BLOB) (tool used: DB Browser for SQLite, Examined Device:
LG G6).

5.2.3. Samsung device’s media artifacts

The Samsung device has a modified version of stock android. It does not use the Android’s

default camera or photo gallery applications, but not the ones that were captured through the

WhatsApp application’s camera feature. The pictures’ thumbnails are located in the Samsung

gallery application at path: «/data/com.sec.android.gallery.3d/cache/». As presented in paragraph

§4.2.1 the analysis of the “local” database located at the path:

«/data/com.sec.android.gallery.3d/databases/» and specifically the “trash” table could provide the

timestamps of media deletion. In “graph.db” database located at

«/data/com.samsung.mlp/databases», it was still possible to track the media files which were sent

as messages via the WhatsApp application (Figure 94).

83

Figure 94. Exploring “MediaAttribute” table of Samsung “graph.db” (tool used: Oxygen Forensic SQlite,
Examined Device: Samsung A50).

5.3. Final Conclusions on WhatsApp

To sum up, it is impossible to avoid the modification of “msgstore” database’ s WAL file,

however certain types of actions (e.g., reboot, closing/opening the application) does not seem to

alter the data of the database’s critical “messages” table. The usage of the WAL file as a journaling

mode provides some leniency to the DFIR Team members, because as the experiments proved

it was able to retain a sufficient amount of deleted data. However, there is a time pressure

regarding a potential application’s auto backup execution and the deletion of the media files from

the media server.

84

Chapter 6.

Telegram application Scenario

In this chapter the Telegram application’s examination and the related results are

presented regarding text and media exchanged messages and the volatility of the database in

which they are stored. Like in the two previous chapters there is a reference on the application

database’s location, it’s features and the differences between an Android 9 and an Android 11

examined device. After that there is an analysis of the tables and columns of the database and

the queries that were built in order to view the desired ones. In addition, the volatility of deleted

text and media messages is examined through multiple experiments. Furthermore, some unique

characteristics of the application are examined, and final conclusions are drawn.

6.1. Telegram’s Examination

The used .apk for both the devices was the Telegram v.7.9.3 with released date in August

of 2021. Application’ s data, file and folder structure are not as well-known as to other applications.

Anglano et al. (2017) have made an excellent job in terms of educational and research spectre.

The examined database for this application was the “cache4.db” located at the path:

«data/data/org.telegram.messenger/files». In this scenario’s experiments more than one thousand

and one hundred (1.100) messages were exchanged in total for each device, among four users.

The different approach which was taken this time, was related to the creation and existence of

freelist pages in the database and the need to study them. This was achieved by creating a large

amount of data traffic inside the application’s database. The access to these files and folders is

normally prohibited to the user, so either the examiner must have root access to the device or

acquire a physical image of it.

6.1.1. Android 9 vs Android 11 Comparison

There were no differences in the folder structure or the files of the application on both

examined devices. In any case the initial size of “cache4.db” was 1.336 kb and its corresponding

WAL file was 4.475kb.

6.1.2. General information about the under-examination database

The header and PRAGMA statements of the “cache4” database analysis, by using the

non-forensic tools “SQL Expert” and “DB Browser for SQLite” showed that (Figure 95):

 created freelist pages since the auto_vacuum feature was disabled,

 used WAL as a journaling mode,

 the WAL Auto Checkpoint had been set at one thousand (1.000) commits (default

size).

85

Figure 95. Properties of “cache4.db” (tools used: SQLite Expert (left) & DB Browser for SQLite (right)).

6.1.3. Analysis of the “cache4.db”

The “cache4” database was composed by fifty-two (52) tables (Figure 96). The six (6)

most forensically interesting tables for the examined scenario were the “dialogs”, “enc_chats”,

“messages”, “user_contacts_v7”, “user_phones_v7” and “users”.

Among the most interesting columns of the “dialogs” table were:

 The “did”, contained the dialog id of the secret or normal chat.

 The “date”, contained the timestamp of a chat-thread’s last message in Unix Seconds.

 The “unread count”, contained information about the unread messages of the dialog.

 The “last_mid”, “inbox_max” and “outbox_max” which in conjunction could clarify the

size of the dialog.

Under the “enc_chats” table the “uid”, “user” and “name” columns were the most

valuable. The records included in these columns had to be compared with some of the records on

the “messages” table to get information about the participants of a secret chat.

Among the most interesting columns of the “messages” table were:

 The “uid”, contained the participant of a normal or a secret chat.

 The “read_state”, had information about the message’s read status.

 The “send_state”, clarified whether the outgoing message was actually sent (i.e., network

unavailability).

 The “date”, contained the timestamp of the message in Unix Seconds.

86

 The “body” contained the body of the text message, along with several other information,

in a binary serialized form. From now on, these types of data will be referred as “TDS”

(Telegram Data Structure). This term was introduced by Anglano et al. (2017).

 The “out”, contained information about the message direction.

 The “TTL”, kept the timer set by the user for autodeleting the message.

The “user_contacts_v7”, “user_phones_v7” and “users” tables contained information

about the users participating in chat threads.

Figure 96. Depiction of the tables tree of “cache4_db”.

The form of data inside the TDSs was an obstacle to preview results from a created SQL

query. (Figure 97).

87

Figure 97. SQL query combining several columns from different tables from “cache4.db”.

6.1.3.1 Analysis of TDSs

Anglano et al. (2017) explain that the serialized data are structured in the Telegram

Language as composite types (include integers and strings) and defined by a 4-byte integer

number in little Indian. Each 4-bytes integer comprise one object type. In April 2020 through the

examination of 42.000 lines of Telegram code, 1.340 objects were found (dfirfpi, 2020). Telegram

Team adds, removes or redefines these objects by adding or removing application’s features.

Boiko M. (2018) explains some of these objects, even though many of them have been redefined.

Analysis of some of the TDSs and objects found in the examined application’s version are

presented below throughout examples. In the first example there is an exchange of two messages

(one incoming and one outgoing) of a normal chat thread (records 162 and 163). In every TDS

specific 4-byte integer (in little Indian) have a specific meaning (Table 11).

Records including normal chat messages.

The “users” table of the “cache4.db”. The record 1 (device’s user) and record 2 are the participants.

88

Objects in record 162 (Normal Incoming Message)

BCE383D2 Integer flagging this TDS as a normal message between two users

72A879A3 The hex value of the user’s id sending the message in the conversation (1923643811)

72A879A3 The hex value of the user’s id participating in the conversation (1923643811)

61A2A8A1 The timestamp of the message (1638049953) in Unix Seconds

Objects in record 163 (Normal Outgoing Message)

BCE383D2 Integer flagging this TDS as a normal message between two users

71711C43 The hex value of the user’s id sending the message in the conversation (1903238211)

72A879A3 The hex value of the user’s id participating in the conversation (1923643811)

61A2A8DB The timestamp of the message (1638050011) in Unix Seconds

Table 12. TDSs (Telegram Data Structure) objects in Normal Chat thread

In the second example there is an exchange of two messages (one incoming and one

outgoing) of a secret chat thread (records 225 and 226). In every TDS specific 4-byte integer (in

little Indian) have a specific meaning (Table 12).

Records including secret chat messages.

The “users” table of the “cache4.db”. The record 1 (device’s user) and record 3 are the participants.

Objects in record 225 (Secret Outgoing Message)

555555FA Integer flagging this TDS as a secret message between two users

71711C43 The hex value of the user’s id sending the message in the conversation (1903238211)

7F4310F4 The hex value of the user’s id receiving the message in the conversation (2135101684)

61A51ADA The timestamp of the message (1638210266) in Unix Seconds

89

Objects in record 226 (Secret Incoming Message)

555555FA Integer flagging this TDS as a secret message between two users

7F4310F4 The hex value of the user’s id sending the message in the conversation (2135101684)

71711C43 The hex value of the user’s id receiving the message in the conversation (1903238211)

61A51AE7 The timestamp of the message (1638210279) in Unix Seconds

Table 13. TDSs (Telegram Data Structure) objects in Secret Chat thread.

In Table 13 the objects of an outgoing message containing media file is presented. As

occurred the TDS structure had the same logic.

90

555555FA Integer flagging this TDS as a secret message between two users

71711C43
The hex value of the user’s id sending the message in the conversation
(1903238211)

7F4310F4
The hex value of the user’s id receiving the message in the conversation
(2135101684)

61A707A7 The timestamp of the message (1638336423) in Unix Seconds

695150D7 End of the media message caption

The original path of the media file and the temporary path in the cache folder of the application are
readable in ASCII characters.

Table 14. Media file TDS (Telegram Data Structure) objects in Secret Chat thread.

Another interesting artifact was that in secret chats the user participant’s “uid” in the

conversation is hidden, unlike in the normal ones. The way to decode this number is by converting

it to a hex value, and then converting the first eight (8) bytes back to decimal.

Record from the “messages” table where the “uid” of the chat participant is encoded

The value(dec) 6895359982712127488 is converted to (hex) 5FB1 3D5F 0000 0000

The value (hex) 5FB1 3D5F is converted back a decimal value 1605451103 and can be located in the
“enc_chats” table.

Records from the table “enc_chats”. The record 2
indicates the “uid” of the chat’s thread participant.

Records from the table “users”.

Table 15. How to decode participant’ s “uid” from a Telegram’s Secret Chat.

With the volume of objects being added, removed and modified, forensic tools are unable

to decode a part of them. A simple example is that the latest versions, of two popular forensic

tools, at the time of this Thesis, could decode several types of TDSs.

91

UFED PA v7.50 decoded normal chat media messages

UFED PA v7.50 did not decode secret media messages

Oxygen Forensics v14.1 did not decode normal chat media messages

92

Table 16. Comparison of how UFED PA (above) and Oxygen Forensics (below) were able to decode
different kind of TDS (Telegram Data Structure)

6.1.4. Volatility of the “cache4.db”

The experiments confirmed that both the “cache4” database and its corresponding WAL

file were not susceptible to certain device status changes, which did not seem to alter the data

inside the “messages” table. Those actions included:

 Leaving the device powered on and with network.

 After the finishing boot sequence of the device and the application auto starts when

network was available.

 At opening of the app after closing it.

Under the following circumstances the “cache4” database was not modified:

 Leaving the device powered on in airplane mode.

 Rebooting/turning off the device while it was in airplane mode.

 At closing the app and removing it from the task manager of the android device.

 Removing the SIM card (which was the only thing associated with account), while the

device is live and after it was deactivated and then powered on without the SIM.

 Removing notifications of incoming messages.

The database’s “messages” table was modified when:

! a message was created. It does not matter if it was successfully sent or not.

! a message was received.

! a message was opened. This was regardless of whether it was an outgoing message

which was read by the receiver or an incoming which was read by the user.

! a message or a thread was deleted.

6.1.5. Retrieving the messages in question and the timebomb feature

Telegram implements a timebomb/autodelete feature but only in the secret chat section

(the E2E encrypted section). The autodelete feature could vary, from one (1) second to a few

days. Nevertheless, this feature did not affect the ability to recover this kind of messages, since it

did not have any other additional properties except the data in column “TTL”, which represents

the timer until deletion, in seconds. Every time a message’s state changed the whole record was

moved inside the WAL file creating a new separate record.

Oxygen Forensics v14.1 decoded secret media messages

93

Initial state of the database (1.336 kb in size)

Query which was executed

The same secret message has three different records inside the WAL

Table 17. Records of a Secret Chat in “cache4” database’s WAL file.

Telegram did not have the full “auto_vacuum” PRAGMA statement enabled and thus it

creates freelist pages. As mentioned in paragraph §1.3.1.4 the existence of freelist pages enables

the possibility of retrieving deleted messages. However, even if it had not the “secure_delete”

PRAGMA statement enabled it had implemented some kind of failsafe for wiping the deleted

records. This was tested multiple times in both devices by deleting hundreds of records, creating

freelist pages, and attempting to recover them. In every case, immediately after the deletion, most

of the messages were recoverable, but after committing some new ones (incoming or outgoing)

all the messages residing in the main database were erased (Table 17). This was verified by

searching specific messages as a string, in the database and WAL file, with a hex editor.

94

Records that were parsed from the database and its WAL

file before deletion

State of the database (1.568 kb in size) before deleting all

records

Records that were parsed from the database and its WAL

file after deletion

State of the database (1.568 kb in size) after deleting all

records

Records that were parsed from the database and its WAL

file after committing new records.

State of the database (1.568 kb in size) after committing

twenty incoming messages

95

Table 18. The state of “cache4.db” and its WAL file in different conditions.

There was a difference in the gravity of the acts. An outgoing message occupied more

records and space in the WAL file than reading an incoming message. The element of luck is also

involved. A crucial factor is the timing of the in-question messages deletion. Whether it occurs

right after a WAL commit to the database, or before it. This is a parameter purely random and

cannot be controlled in realistic situations. In Table 18 is presented a list of the different

experiments which were executed (Test No), the prior condition before deleting the in-question

messages (Parameters prior to deletion), the different actions in which they were still recoverable

and are green colored (Incoming/Outgoing/Opened/Deleted Messages) and the action which

finally led to the removal of the chat thread from the main database or the WAL file and is red

coloured (Parameters prior to deletion).

Test
No

Parameters prior to
deletion

D
E

L
E

T
IO

N
 O

F
 T

H
E

 I
N

-Q
U

E
S

T
IO

N
 C

H
A

T
 T

H
R

E
A

D

Incoming
Messages

Outgoing
Messages

Messages that
were opened

Messages that
were deleted

Action that removed the
messages in-question

1 None 15 5 15 None 10 outgoing messages

2
All messages of the

database were deleted
50 None 20 None

the rest 30 messages
were opened

3

60 messages included
on the thread alongside
with in-question ones

were deleted

50

None

None

80 (From other

chat thread)

50 messages were

opened

4 None 20 60 None 10 incoming messages

5 WAL commit was forced
7
 20 15 None None

40 messages were
opened

6

All messages of the
database were deleted,
and WAL commit was

forced

70

None

None

None

70 read

7 None 50 None None None 70 read

Table 19. Progress of experiments’ results on “cache4.db” and its WAL file.

6.1.6. Wiped Databases

In Telegram there were two occasions where no records of the database were recoverable.

i. When the user logged out of the device, triggering a complete database’s wipe and ii. By clearing

the local database from the settings menu. In any case the difference between the timestamp of

“cache4.db” and the Android’ OS usage history application, might be a strong indicator that one

of the above occasions have occurred.

6.2. Telegram’s Media Files Attachments

The media transmission procedure was the same as it was explained in paragraph §4.2.

Telegram administrated the shared media files, in a different way based on the type of the chat

thread (normal/secret).

7
 The database was monitored in real time by exchanging single messages, until a WAL commit occurred.

96

6.2.1. Normal chat media transmission

In a normal chat thread, when the in-app camera feature was used, the media files were

saved to the following paths:

 media\0\Pictures\Telegram. The files stored by their captured file name (e.g.,

«IMG_20211125_102653_487.jpg») and

 media\0\Telegram\Telegram Images. The files stored by their, by the transmitted, via the

Telegram server, name (e.g., «-5834547226205076084_121.jpg»).

After a media file deletion some artifacts which have remained on the android operating

system were utilized to retrieve its information. To be more accurate this was done by comparing

those artifacts with the records located in “cache4” database. Those artifacts’ paths were analyzed

in previous corresponding paragraphs (§4.2 and §5.2), for each device. Samsung device’s path

was «data\com.sec.android.gallery3d\cache», and the LG device’s paths were: i.

«media\0\DCIM\.thumbnails» and ii. «media\0\Android\data\com.android.gallery3d\cache\

imgcache.0». An example of the latter is presented in Table 19.

Record in the “cache4.db”

Contents of the TDS

97

1. a normal media message is sent

2. by the user 1903238211

3. to the user 1923643811

4. at 1637828820

5. where media file’s name is IMG 20211125102653487

Viewing the “imgcache.sqlite” file (BLOB)

Table 20. Correlation of a sent image file’s record in “cache4.db” with “imgcache.sqlite” file (tool used: DB
Browser for SQLite, Examined Device: LG G6).

6.2.2. Secret chat media transmission

In a secret chat when the media were captured with in-app camera feature never resided

outside the cache folder of the application. After deleting the secret chat messages, it was

impossible to retrieve/determine the content of the files (attachments) which were sent. During the

experiments, it was observed that the corresponding thumbnail files had always a minus one in its

file name values than the ones in the database. For instance, the thumbnail of the transmitted

media named “-2147483648_-21002.jpg”, but in the database record its name was “-

2147483648_-21003.jpg”. This was a recurring pattern, but it was not decoded.

98

Table 21. Detection of a sent image file in “cache4.db” from a Secret chat thread.

One last interesting fact was that the secret media transmission was the only one that was

not recorded in the “graph.db” located in the path «/data/com.samsung.mlp/databases» of the

Samsung device. On the contrary the media sent as normal chat message could be retrieved from

the “graph” database (Table 21).

99

Table 22. Retrieving artifacts from the “graph.db” for media transfers of Telegram’s Normal Chat thread
(tool used: DB Browser for SQLite, Examined Device: Samsung A50).

6.2.3. Final Conclusions on Telegram

To sum up, certain types of actions modified the “cache4.db” database’s WAL file but did

not seem to alter data of the database’s crucial “messages” table. The usage of the WAL file as

journaling mode and its size, almost 5mb, provides a sufficient level of leniency to the DFIR Team

members, because as the experiments proved it was able to retain a vast amount of deleted data.

In the case of shared media files via an encrypted (secret) chat it was impossible to retrieve any

content of them.

“MediaAttribute” table of Samsung “graph.db”

Normal Chats’s Record and its TDS from “cache4.db”

100

Chapter 7.

Dual Applications Feature

In this chapter usage of android’s dual application feature was examined. This feature

involves the creation of different accounts in the same device’s application. It is branded with

different names depending on the device like “Dual apps” for LG or “Dual Messenger” for Samsung

(Figure 98). When this feature is enabled a second user is created in the filesystem with individual

folders and files and separate read/execute/write permissions (Figures 99 and 100). Specifically

for the creation of a Viber’s second user’s profile it is not mandatory to have a second SIM installed

on the device. The second user’s profile verification can be done through a separate device.

Figure 98. Use of dual Viber application. (Device used: Samsung A50)

Figure 99. Depiction of second Viber account’s separate databases (path:
«/user/95/com.viber.voip/databases», Examined Device: Samsung A50).

101

Figure 100. The second Viber user (95) has a separate folder structure for media located in
«/media/95/Adroid/data/com.viber.voip/file/User photos». The original user of the device is
located in folder (0) (Examined Device: Samsung A50).

The feature adds a new layer of complexity and difficulty to the investigation for two

reasons. Firstly, if the user logs in from another device (e.g., the one with the SIM associated with

the account) the investigator can only see the initial login screen of the application’s second

version. This action does not remove the user’s data from the filesystem. A second reason is that

if the user disables the application’s second profile from the device’s system settings, the

corresponding folder structure is deleted, while the second profile’s folder remains. This would be

an indicator that additional examination like carving the acquired image for deleted databases

must be done.

102

Chapter 8.

Applications Comparison

In this chapter the results of every examined instant messaging application are

summarized and compered, in order to gain an overall view.

The volatility of each application’s data in different conditions is presented in Table 23.

The crucial data is never altered by the elapsed time or the changes at the device’s status. The

interaction with system notifications affected vital data only in the Viber application. Any message

creation, reading and deletion affected all examined applications. WhatsApp and Telegram had

some unique features (e.g., WhatsApp local backup) which might modify application’s data.

Regarding exchanged media files, Viber leaved significant number of artifacts on the device’s

internal storage. The same applied to certain occasions in Telegram (on normal chat messages).

In case of WhatsApp application there was also a possibility of retrieving exchanged media files

from its cloud server.

Applications

Time

elapsed

Device’s

status

Interacting with

Notifications

Message

(Read/Sent/Delete)

Unique
features

Media
Retrieval from

device’s
storage

Media
Retrieval

from app’s
Servers

Viber       

WhatsApp * *     

Telegram  *     ** 

Table 23. The volatility of each application in different conditions.

The usage of rollback journal as a journaling mode in Viber application rendered the data

extremely volatile. After exchanging a few messages all the in-question records (deleted

messages) were erased. On the other hand, the usage of the WAL as a journaling mode in

WhatsApp and Telegram applications, resulted in the preservation of the in-question records after

multiple actions (exchange messages/read/delete). The Telegram WAL’s file size which was ten

times bigger compared to the same file of the WhatsApp application, could retain a larger amount

of data, including deleted ones.

All in all, the Viber application is the most volatile one related to retrieving deleted

messages records and the least one when it comes to retrieving deleted media files. Telegram

application is the least volatile in respect of retrieving deleted messages records, however the

recovery of artifacts as for deleted media files depends on the chat thread type (normal/secret).

The WhatsApp is the only application that even there were no traces left of a deleted exchanged

media file on the examined device, it was possible to retrieve it from its Server.

* Not crucial data.
** Depending on the message’s type (normal/secret).

103

Conclusions, Challenges & Future Work

To sum everything up, throughout the experiments done in this thesis several conclusions

could be drawn about the most acceptable and forensic-sound first steps while handling an

incident relating to instant messaging applications on an android-based mobile device. First and

foremost, the seizure of the device must happen as soon as possible. By leaving the device at the

suspect’s possession there is a certainty that more messages will be exchanged and thus

application’s data will be further modified. There is always the element of chance as an unforeseen

factor, such as multiple incoming messages, unexpectedly modifying irreversibly vital data (i.e.,

erase in-question deleted records). Once the device is seized the very first step is to block the

incoming data, which will lead to the modification of database’s volatile data and hence a potential

key evidence removal. This could be achieved by disconnecting the device from the network (e.g.,

airplane mode, faraday bag or shutdown). The successful recovery of deleted content

(messages/media) is determined by two key factor categories.

 The first category is related to IR team’s actions regarding the incident. These actions are:

 Block the device’s network connections. The used method is irrelevant (deactivate the

device, airplane mode).

 Not remove any devices notification messages.

 Not try to create new messages. There are reported occasions in which members of

the IR team tried to lure the third-party participants into revealing their identity by

exchanges messages.

 Not read unread messages.

As the experiments showed, once the aforementioned policies are followed the elapsed

time does not modify the crucial data. The same applies to device’s different statuses (powered

on/off, reboot, plugged in, etc.).

 The second category is related to IR team’s followed methodology regarding the evidence
(data) forensic examination. This methodology must include:

 Validation of the result. There is no known forensic tool able to decrypt and examine

all chat messaging application databases. So, the results must be confirmed and

validated by using multiple forensic tools. There are instances where the validation is

feasible by diving into the raw data and examining the files in their hexadecimal

representation.

 Experimentation and Analysis. During the development of application versions different

database schema/pragma statements and folder structure is implemented. The

evidence’s specific installed and running application version should be examined

through research and development to test the validity of the results.

From the scope of digital evidence forensics, there are always three main challenges on

two different areas. From a legal standpoint there are obstacles of bureaucracy which emerge and

delay the technical procedures of starting the seizure and the examination of the suspect device.

From a technical standpoint there are two main problems. On one hand there is the device’s

acquisition, which should be a physical one in order to access most of its data. Such acquisition

104

is not always supported all devices’ vendors and models. On the other hand, there is the

decoding/parsing of the volatile database files is not always up to date or not even supported by

forensic tool. It is more than necessary to have updated digital forensic tools and simplify the IR-

related legislation.

As future work, more android applications should be examined to find out if there are more

volatile data on their databases and how react in different occasions.

105

References

Albrecht, M. R., Mareková, L., Paterson, K. G. & Stepanovs, I. (2021), Four Attacks and a Proof

for Telegram, In 43rd IEEE Symposium on Security and Privacy (IEEE S&P 2022), San
Francisco, CA, USA, 22 – 26/05/2022, deposited on: 21/09/2021, DOI: 10.3929/ethz-b-
000506353.

Anglano, C., Canonico, M. & Guazzone, M. (2017), Forensic analysis of telegram messenger on
android smartphones, Digital Investigation, vol. 23, pp. 31-49, published on: 20/09/2017,
DOI: 10.1016/j.diin.2017.09.002.

Anglano, C., Canonico, M., & Guazzone, M. (2016), Forensic analysis of the ChatSecure instant
messaging application on android smartphones, Digital Investigation, vol 19, 2016, pp. 44-
59, published on: 15/10/2016, DOI: 10.1016/j.diin.2016.10.001, last accessed 13/11/2021.

Anglano, C. (2014), Forensic Analysis of WhatsApp Messenger on Android Smartphones, Digital
Investigation, vol. 11(3), pp. 201-213, published on: 27/05/2014, DOI:
10.1016/j.diin.2014.04.003.

Angus, M. (2018), WhatsApp server-side media persistence, Digital Investigation, vol. 25, pp. 114-
115, published on: 25/04/2018, DOI: 10.1016/j.diin.2018.04.005.

Bair, J. (2017), Seeking the Truth from Mobile Evidence, Basic Fundamentals, Intermediate and
Advanced Overview of Current Mobile Forensic Investigations, Elsevier, London, UK,
published on: 13/11/2017, ISBN: 978-0-12-811056-0.

Botha, J., Van ‘t Wout, C. & Leenen, L. (2019), Proceedings of the 18th European Conference on
Cyber Warfare and Security (ECCWS 2019), Hosted by University of Coimbra, Portugal,
4-5/7/2019, Academic Conferences and Publishing International Limited Reading, UK, pp.
55-62, ISBN: 978-1-912764-28-0.

SWGDE (2014), Digital and Multimedia Evidence (Digital Forensics) as a Forensic Science
Discipline, Scientific Working Group on Digital Evidence, published on: 05/09/2014,
retrieved from: https://drive.google.com/file/d/1OBux0n7VZQe7HSgObwAtmhz5LgwvX0o
Y/view, last accessed 31/01/2022.

Easttom, C. (2021), An In-Depth Guide to Mobile Device Forensics, CRC Press, Boca Raton,
Florida, published on: 22/10/2021, DOI: 10.1201/9781003118718.

Easttom, C. (2021), Digital forensics, investigation, and response Fourth Edition, Information
Systems Security & Assurance Series, Jones & Bartlett Learning, Burlington,
Massachusetts, USA, published on 24/08/2021, ISBN 9781284226065.

Ghannam, H. A. (2018), Forensic Analysis of Artifacts of Giant Instant Messaging “WhatsApp” in
Android Smartphone. Journal of Applied Information, Communication and Technology,
vol.5(2), pp. 63-72, published on: 03/10/2018, DOI: 10.33555/ejaict.v5i2.55.

Gogolin, G. (2021), Digital Forensics Explained Second Edition, CRC Press, Boca Raton, Florida,
published on: 12/04/2021, ISBN 9780367503437.

https://doi.org/10.3929/ethz-b-000506353
https://doi.org/10.3929/ethz-b-000506353
https://doi.org/10.1016/j.diin.2017.09.002
https://doi.org/10.1016/j.diin.2016.10.001
https://doi.org/10.1016/j.diin.2014.04.003
https://doi.org/10.1016/j.diin.2018.04.005
https://drive.google.com/file/d/1OBux0n7VZQe7HSgObwAtmhz5LgwvX0o%20Y/view
https://drive.google.com/file/d/1OBux0n7VZQe7HSgObwAtmhz5LgwvX0o%20Y/view
https://doi.org/10.1201/9781003118718
https://doi.org/10.33555/ejaict.v5i2.55

106

Jakobsen, J. & Orlandi, C. (2016), On the CCA (in) security of MTProto, In Proceedings of the 6th
Workshop on Security and Privacy in Smartphones and Mobile Devices, pp. 113-116,
published on: 10/2016, retrieved from URL: https://eprint.iacr.org/2015/1177.pdf.

Lee, J., Choi, R., Kim, S. & Kim, K. (2017), Security analysis of end-to-end encryption in Telegram,
2017 Symposium on Cryptography and Information Security (SCIS 2017), Naha, Japan,
The Institute of Electronics, Information and Communication Engineers, published on:
01/2017, retrieved from URL:
https://caislab.kaist.ac.kr/publication/paper_files/2017/SCIS17_JU.pdf.

Hermawan, T., Suryanto, Y., Alief, F. & Roselina, L. (2021), Android Forensic Tools Analysis for
Unsend Chat on Social Media, 2020 3rd International Seminar on Research of Information
Technology and Intelligent Systems (ISRITI), 2020, pp. 233-238, published on:
13/01/2021, DOI: 10.1109/ISRITI51436.2020.9315364, last accessed 13/11/2021.

Meng, C., Baier, H. (2019), bring2lite: A Structural Concept and Tool for Forensic Data Analysis
and Recovery of Deleted SQLite Records, Digital Investigation, vol. 29, pp. 31-41,
published on: 14/07/2019, DOI: 10.1016/j.diin.2019.04.017, last accessed 09/11/2021.

Mahalik, H., Bair, J, Brignoni, A., Coates, S., Dickinson, M., Epifani, M., Hyde, J., Katalov, V.,
Koenig, S., Lorentz, P., Poirier, C., Reiber, L., Westman, M., Williamson, M., Whiffin, I. &
Skulkin, O. (2021), Six Steps To Successful Mobile Validation, SANS Institute Reading
Room site.

Mirza, M. M., Salamh, F. E. & Karabiyik, U. (2020), An Android Case Study on Technical Anti-
Forensic Challenges of WhatsApp Application, 2020 8th International Symposium on
Digital Forensics and Security (ISDFS), pp. 1-6, published on: 15/06/2020, DOI:
10.1109/ISDFS49300.2020f.9116192.

Nemetz, S., Schmitt, S. & Freiling, F. (2018), A standardized corpus for SQLite database forensics,
Digital Investigation, vol. 24, pp. 121-130, published on: 21/03/2018, DOI:
10.1016/j.diin.2018.01.015, last accessed 09/11/2021.

Onovakpuri, P. (2018), Forensics Analysis of Skype, Viber and WhatsApp Messenger on Android
Platform, International Journal of Cyber-Security and Digital Forensics (IJCSDF), Hong
Kong, vol. 7, no. 2, pp. 119-131, published on: 06/2018, DOI: 10.17781/P002369.

Orr, D. A., Castro, A. (2018), Whatsapp Messenger on the Android Platform: A Forensic
Examination of a Physical Device, Forensic Science: Methods and Techniques, issue
2018(1), pp. 04-19, published on: 20/09/2018, DOI: 10.33513/FSMT/1801-05.

Pawlaszczyk, D., Hummert, C. (2021), Making the Invisible Visible –Techniques for Recovering
Deleted SQLite Data Records, The International Journal of Cyber Forensics and Advanced
Threat Investigations under a Creative Commons License, vol. 1(1-3), pp. 27-41, published
on: 15/02/2021, DOI: 10.46386/ijcfati.v1i1-3.17, last accessed 09/11/2021.

Raji, M., Wimmer, H. & Haddad, R. J. (2018), Analyzing Data from an Android Smartphone while
Comparing between Two Forensic Tools, SoutheastCon 2018, 2018, pp. 1-6, published
on: 04/10/2018, DOI: 10.1109/SECON.2018.8478851, last accessed 14/11/2021.

https://eprint.iacr.org/2015/1177.pdf
https://caislab.kaist.ac.kr/publication/paper_files/2017/SCIS17_JU.pdf
https://doi.org/10.1109/ISRITI51436.2020.9315364
https://doi.org/10.1016/j.diin.2019.04.017
https://doi.org/10.1109/ISDFS49300.2020.9116192
https://doi.org/10.1016/j.diin.2018.01.015
http://dx.doi.org/10.17781/P002369
https://doi.org/10.33513/FSMT/1801-05
https://doi.org/10.46386/ijcfati.v1i1-3.17
https://doi.org/10.1109/SECON.2018.8478851

107

Rathi, K., Karabiyik, U., Aderibigbe, T. & Chi, H. (2018), Forensic analysis of encrypted instant
messaging applications on Android, 2018 6th International Symposium on Digital Forensic
and Security (ISDFS), pp. 1-6, published on: 07/05/2018, DOI:
10.1109/ISDFS.2018.8355344.

Saribekyan, H. & Margvelashvili, A. (2017), Security Analysis of Telegram 6.857 Final Project,
published on 2017, retrieved from URL: https://www.semanticscholar.org/paper/Security-
Analysis-of-Telegram-6-.-857-Final-Project-
Saribekyan/fabe0871280513af67b23438ce17ca8c6c79a2d8, last accessed on
05/12/2021.

Skulkin, O., Tindall, D. & Tamma, R. (2018), Learning Android Forensics Analyze Android Devices
With The Latest Forensic Tools And Techniques, 2nd Edition, published by Packt
Publishing Ltd, December 2018, Birmingham UK, pp. 73-94 & 135-148, ISBN: 978-1-
78913-101-7.

Sutikno, T., Handayani, L., Stiawan, D., Riyadi, M.A. & Subroto, I. (2016). WhatsApp, Viber and
Telegram: which is the Best for Instant Messaging?, International Journal of Electrical and
Computer Engineering (IJECE), vol. 6, no. 3, pp. 909-914, published on: 26/05/2016, DOI:
10.11591/ijece.v6i3.10271.

Tamma, R., Skulkin, O., Mahalik, H., Bommisetty, S. (2020), Practical Mobile Forensics Fourth
Edition, Forensically investigate and analyze iOS, Android, and Windows 10 devices,
Packt Publishing, Birmingham, UK, published on: 04/2020, ISBN 978-1-83864-752-0.

Vasilaras, A. (2016), Android Forensics in Android Smart Devices, MSc Thesis, Advanced
Informatics and Computing Systems, Security Management Engineering, Department of
Informatics, University of Piraeus, created on 03/2016.

Zhang, H., Chen, L. & Liu, Q. (2018), Digital Forensic Analysis of Instant Messaging Applications
on Android Smartphones, 2018 International Conference on Computing, Networking and
Communications (ICNC), pp. 647-651, published on: 21/06/2018, DOI:
10.1109/ICCNC.2018.8390330.

Internet Sites/Forums/Blogs:

askclees1711 (2020), SQLite Databases at hex level, AskClees, published on: 20/10/2020,
retrieved from URL: https://askclees.com/2020/11/20/sqlite-databases-at-hex-level, last
accessed 13/11/2021.

Belkasoft (2021), ANDROID VIBER FORENSICS WITH BELKASOFT X, retrieved from URL:
https://belkasoft.com/android_viber_forensics, last accessed 13/11/2021.

Belkasoft (2021), Whitepaper: WhatsApp Forensics on Smartphones, retrieved from URL:
https://belkasoft.com/whitepaper_whatsapp_forensics, last accessed 24/11/2021.

Boiko (Бойко), M. (2018), TELEGRAM ELECTRONIC CORRESPONDENCE RESEARCH ON
ANDROID DEVICES («ДОСЛІДЖЕННЯ ЕЛЕКТРОННОЇ ПЕРЕПИСКИ TELEGRAM НА
ПРИСТРОЯХ ANDROID»), Kiev, 2018, CACHE4.DB FILE OF TELEGRAM FOR
ANDROID (PART 1), Digital Forensics (dflab.blogspot), published on: 03/01/2019,
retrieved from URL: https://dflab.blogspot.com/2019/01/cache4db-file-of-telegram-for-
android.html, last accessed on 05/12/2021.

https://doi.org/10.1109/ISDFS.2018.8355344
https://www.semanticscholar.org/paper/Security-Analysis-of-Telegram-6-.-857-Final-Project-Saribekyan/fabe0871280513af67b23438ce17ca8c6c79a2d8
https://www.semanticscholar.org/paper/Security-Analysis-of-Telegram-6-.-857-Final-Project-Saribekyan/fabe0871280513af67b23438ce17ca8c6c79a2d8
https://www.semanticscholar.org/paper/Security-Analysis-of-Telegram-6-.-857-Final-Project-Saribekyan/fabe0871280513af67b23438ce17ca8c6c79a2d8
http://doi.org/10.11591/ijece.v6i3.pp909-914
https://doi.org/10.1109/ICCNC.2018.8390330
https://askclees.com/2020/11/20/sqlite-databases-at-hex-level
https://belkasoft.com/android_viber_forensics
https://belkasoft.com/whitepaper_whatsapp_forensics
https://dflab.blogspot.com/2019/01/cache4db-file-of-telegram-for-android.html
https://dflab.blogspot.com/2019/01/cache4db-file-of-telegram-for-android.html

108

Cimpanu, C. (2021), FBI document shows what data can be obtained from encrypted messaging
apps, created on: 30/11/2021, retrieved from URL: https://therecord.media/fbi-document-
shows-what-data-can-be-obtained-from-encrypted-messaging-apps, last accessed
09/12/2021.

Cynet (2021), NIST Incident Response Plan: Building Your Own IR Process Based on NIST
Guidelines, last updated on 03/11/2021, retrieved from URL:
https://www.cynet.com/incident-response/nist-incident-response, last accessed
09/11/2021.

Cynet (2021), Incident Response SANS: The 6 Steps in Depth, last updated on 03/11/2021,
retrieved from URL: https://www.cynet.com/incident-response/incident-response-sans-
the-6-steps-in-depth, last accessed 09/11/2021.

Cynet (2021), Incident Response Team: A Blueprint for Success, last updated on 03/11/2021,
retrieved from URL: https://www.cynet.com/incident-response/incident-response-team-a-
blueprint-for-success, last accessed 09/11/2021.

Cynet (2021), What is Incident Response? People, Processes and Tools [2021 Guide], last
updated on 06/2021, retrieved from URL: https://www.cynet.com/incident-response, last
accessed 09/11/2021.

Dean, B. (2021), How Many People Use Telegram in 2021? 55 Telegram Stats, BACKLINKO,
published on: 14/10/2021, retrieved from URL: https://backlinko.com/telegram-users, last
accessed 05/12/2021.

dfirfpi (2020), teleparser, ZENA FORENSICS something about digital forensics and something
not, published on: 06/04/2020, retrieved from URL: https://blog.digital-
forensics.it/2020/04/teleparser.html, last accessed on 05/12/2021.

ElDavoo, D. (2021), WhatsApp Crypt14 Database Decrypter, GitHub, created on: 29/08/2021,
retrieved from URL: https://github.com/ElDavoo/WhatsApp-Crypt14-Decrypter, last
accessed 24/11/2021.

González, J. (2012), From PowerOn to Android – The Boot Sequence, My Cellar Door, published
on: 24/08/2012, retrieved from URL: https://javigon.com/2012/08/24/from-poweron-to-
android-the-boot-sequence, last accessed 14/11/2021.

Macdonald, I. (2020), multidisabler-samsung, GitHub, created on: 30/12/2020, retrieved from
URL: https://github.com/ianmacd/multidisabler-samsung, last accessed 09/11/2021.

Magisk Manager (2021), Download Magisk Manager Latest Version 23.0 For Android 2021,
retrieved from URL: https://magiskmanager.com, last accessed 09/11/2021.

Rakuten Viber (2021), Viber Encryption Overview, retrieved from URL:
https://www.viber.com/app/uploads/viber-encryption-overview.pdf, last accessed
22/11/2021.

Precise Law (2017), What is a Forensic Image?, Precise, published on: 09/11/2017, retrieved from
URL: https://discovery.precise-law.com/what-is-a-forensic-image, last accessed
09/11/2021.

https://therecord.media/fbi-document-shows-what-data-can-be-obtained-from-encrypted-messaging-apps
https://therecord.media/fbi-document-shows-what-data-can-be-obtained-from-encrypted-messaging-apps
https://www.cynet.com/incident-response/nist-incident-response/
https://www.cynet.com/incident-response/incident-response-sans-the-6-steps-in-depth
https://www.cynet.com/incident-response/incident-response-sans-the-6-steps-in-depth
https://www.cynet.com/incident-response/incident-response-team-a-blueprint-for-success
https://www.cynet.com/incident-response/incident-response-team-a-blueprint-for-success
https://www.cynet.com/incident-response
https://backlinko.com/telegram-users
https://blog.digital-forensics.it/2020/04/teleparser.html
https://blog.digital-forensics.it/2020/04/teleparser.html
https://github.com/ElDavoo/WhatsApp-Crypt14-Decrypter
https://javigon.com/2012/08/24/from-poweron-to-android-the-boot-sequence
https://javigon.com/2012/08/24/from-poweron-to-android-the-boot-sequence
https://github.com/ianmacd/multidisabler-samsung
https://magiskmanager.com/
https://www.viber.com/app/uploads/viber-encryption-overview.pdf
https://discovery.precise-law.com/what-is-a-forensic-image

109

Rahmanpour, A. (2019), Preparing For Computer Forensics Investigation (Partitions), Threat
Hunting, published on: 31/12/2019, retrieved from URL:
https://www.threathunting.se/2019/12/31/preparing-for-computer-forensics-investigation-
partitions, last accessed 09/11/2021.

redymedan (2021), [TWRP][Root] Unofficial TWRP 3.5.0 Android 11 for Galaxy A50, created on:
13/03/2021, XDA Developers, retrieved from URL: https://forum.xda-
developers.com/t/twrp-root-unofficial-twrp-3-5-0-android-11-for-galaxy-a50.4246581, last
accessed 09/11/2021.

SalvationDATA (2020), [Case Study] Mobile Forensics: Forensic Data Extraction from Android
Devices Using ADB (Android Debug Bridge) Part II, published on 05/06/2020, retrieved
from URL: https://blog.salvationdata.com/2020/06/05/case-study-mobile-forensics-
forensic-data-extraction-from-android-devices-using-adb-android-debug-bridge-part-ii,
last accessed 09/11/2021.

Singh S. (2020), WhatsApp has a fake news problem: Here’s everything that it’s doing to fight it
in wake of Coronavirus outbreak, Financial Express, created on: 07/04/2020, retrieved
from URL: https://www.financialexpress.com/industry/technology/whatsapp-has-a-fake-
news-problem-heres-everything-that-its-doing-to-fight-it-in-wake-of-coronavirus-
outbreak/1921515/, Last accessed 08/12/2021.

SQLite.org (2021), Atomic Commit In SQLite, retrieved from URL:
https://www.sqlite.org/atomiccommit.html, last accessed 09/11/2021.

SQLite.org (2021), PRAGMA Statements (journal mode), retrieved from URL:
https://www.sqlite.org/pragma.html#pragma_auto_vacuum, last accessed 09/11/2021.

SQLite.org (2021), Database File Format, retrieved from URL:
https://www.sqlite.org/fileformat2.html, last accessed 09/11/2021.

SQLite.org (2021), PRAGMA Statements, retrieved from URL:
https://www.sqlite.org/pragma.html#pragma_secure_delete, last accessed 09/11/2021.

SQLite.org (2021), PRAGMA Statements (journal mode), retrieved from URL:
https://www.sqlite.org/pragma.html#pragma_journal_mode, last accessed 09/11/2021.

SQLite.org (2021), PRAGMA Statements (journal mode), retrieved from URL:
https://www.sqlite.org/pragma.html#pragma_journal_size_limit, last accessed
09/11/2021.

O’ Dea, S. (2021), Forecast number of mobile devices worldwide from 2020 to 2025 (in billions),
statista, published on 24/09/2021, retrieved from URL:
https://www.statista.com/statistics/245501/multiple-mobile-device-ownership-worldwide,
last accessed 31/01/2022.

Tahiri, S. (2016), Android forensic logical acquisition, INFOSEC, published on: 16/03/2016,
retrieved from URL: https://resources.infosecinstitute.com/topic/android-forensic-logical-
acquisition, last accessed 09/11/2021.

Telegram (2021), The Evolution of Telegram, retrieved from URL: https://telegram.org/evolution,
last accessed on 05/12/2021.

https://www.threathunting.se/2019/12/31/preparing-for-computer-forensics-investigation-partitions
https://www.threathunting.se/2019/12/31/preparing-for-computer-forensics-investigation-partitions
https://forum.xda-developers.com/t/twrp-root-unofficial-twrp-3-5-0-android-11-for-galaxy-a50.4246581/
https://forum.xda-developers.com/t/twrp-root-unofficial-twrp-3-5-0-android-11-for-galaxy-a50.4246581/
https://blog.salvationdata.com/2020/06/05/case-study-mobile-forensics-forensic-data-extraction-from-android-devices-using-adb-android-debug-bridge-part-ii
https://blog.salvationdata.com/2020/06/05/case-study-mobile-forensics-forensic-data-extraction-from-android-devices-using-adb-android-debug-bridge-part-ii
https://www.financialexpress.com/industry/technology/whatsapp-has-a-fake-news-problem-heres-everything-that-its-doing-to-fight-it-in-wake-of-coronavirus-outbreak/1921515/
https://www.financialexpress.com/industry/technology/whatsapp-has-a-fake-news-problem-heres-everything-that-its-doing-to-fight-it-in-wake-of-coronavirus-outbreak/1921515/
https://www.financialexpress.com/industry/technology/whatsapp-has-a-fake-news-problem-heres-everything-that-its-doing-to-fight-it-in-wake-of-coronavirus-outbreak/1921515/
https://www.sqlite.org/atomiccommit.html
https://www.sqlite.org/pragma.html%23pragma_auto_vacuum
https://www.sqlite.org/pragma.html%23pragma_auto_vacuum
https://www.sqlite.org/fileformat2.html
https://www.sqlite.org/pragma.html#pragma_secure_delete
https://www.sqlite.org/pragma.html#pragma_journal_mode
https://www.sqlite.org/pragma.html%23pragma_journal_size_limit
https://www.statista.com/statistics/245501/multiple-mobile-device-ownership-worldwide
https://resources.infosecinstitute.com/topic/android-forensic-logical-acquisition
https://resources.infosecinstitute.com/topic/android-forensic-logical-acquisition
https://telegram.org/evolution

110

Telegram (2021), End-to-End Encryption, Secret Chats, retrieved from URL:
https://core.telegram.org/api/end-to-end, last accessed on 05/12/2021.

WhatsApp (2021), WhatsApp Encryption Overview, Technical white paper, retrieved from URL:
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf, last accessed on
22/11/2021.

Xiaomi MIUI (2021), Unlock Your Mi Device, retrieved from URL:
https://en.miui.com/unlock/download_en.html, last accessed 09/11/2021.

zefie (2017), [RECOVERY][UNOFFICIAL][US997/H870][rel_o2/rel_t2][2018-06-08] Melina TWRP
v3.2.1, created on: 20/12/2017, XDA Developers, retrieved from URL: https://forum.xda-
developers.com/t/recovery-unofficial-us997-h870-rel_o2-rel_t2-2018-06-08-melina-twrp-
v3-2-1.3722199, last accessed 09/11/2021.

99Content (2021), Viber Statistics, 99FIRMS BLOG, retrieved from URL:
https://99firms.com/blog/viber-statistics, last accessed 13/11/2021.

99Content (2021), Whatsapp Statistics, 99FIRMS BLOG, retrieved from URL:
https://99firms.com/blog/whatsapp-statistics, last accessed 23/11/2021.

Software, Tool and Utilities’ Official Sites:

Access Data (FTK): https://accessdata.com/products-services/forensic-toolkit-ftk

Acquire Forensics (SQLite Forensic Explorer):
https://www.acquireforensics.com/services/database-forensics.html

aLEAPP: https://github.com/abrignoni/ALEAPP

Andriller: https://0x1.gitlab.io/phone/Andriller

Android Gallery BlobCache Files: https://github.com/slo-sleuth/android_blob_cache

Autopsy: http://sleuthkit.org/autopsy/docs/user-docs/4.19.2

Autopsy-Plugins: https://github.com/markmckinnon/Autopsy-Plugins

Belkasoft: https://belkasoft.com/android

bring2lite: https://github.com/bring2lite/bring2lite

Cellebrite UFED: https://www.cellebrite.com/en/ufed

Cellebrite Physical Analyzer: https://www.cellebrite.com/en/physical-analyzer

Forensic SQLite Data Recovery Tool (FQLite): https://www.staff.hs-mittweida.de/~pawlaszc/fqlite

Forensic Toolkit for SQLite: https://sqliteforensictoolkit.com/sqlite-forensic-toolkit

Hancom (MD-Series): http://www.hancomgmd.com/product &
https://www.youtube.com/watch?v=YVkh7qFBVHc&ab_channel=TeelTechnologiesCan
ada

https://core.telegram.org/api/end-to-end
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://en.miui.com/unlock/download_en.html
https://forum.xda-developers.com/t/recovery-unofficial-us997-h870-rel_o2-rel_t2-2018-06-08-melina-twrp-v3-2-1.3722199/
https://forum.xda-developers.com/t/recovery-unofficial-us997-h870-rel_o2-rel_t2-2018-06-08-melina-twrp-v3-2-1.3722199/
https://forum.xda-developers.com/t/recovery-unofficial-us997-h870-rel_o2-rel_t2-2018-06-08-melina-twrp-v3-2-1.3722199/
https://99firms.com/blog/viber-statistics
https://99firms.com/blog/whatsapp-statistics
https://accessdata.com/products-services/forensic-toolkit-ftk
https://www.acquireforensics.com/services/database-forensics.html
https://github.com/abrignoni/ALEAPP
https://0x1.gitlab.io/phone/Andriller
https://github.com/slo-sleuth/android_blob_cache
http://sleuthkit.org/autopsy/docs/user-docs/4.19.2/
https://github.com/markmckinnon/Autopsy-Plugins
https://belkasoft.com/android
https://github.com/bring2lite/bring2lite
https://www.cellebrite.com/en/ufed
https://www.cellebrite.com/en/physical-analyzer
https://www.staff.hs-mittweida.de/~pawlaszc/fqlite
https://sqliteforensictoolkit.com/sqlite-forensic-toolkit
http://www.hancomgmd.com/product/
https://www.youtube.com/watch?v=YVkh7qFBVHc&ab_channel=TeelTechnologiesCan%20a
https://www.youtube.com/watch?v=YVkh7qFBVHc&ab_channel=TeelTechnologiesCan%20a

111

KS DB Merge Tools for SQLite: https://www.db-merge-tools.net/sqlite-diff-merge-overview.html

Magnet Forensics (Axiom & Acquire): https://www.magnetforensics.com/products/magnet-axiom-
cyber & https://www.magnetforensics.com/resources/magnet-acquire

Melina TWRP v3.2.1: https://forum.xda-developers.com/t/recovery-unofficial-us997-h870-rel_o2-
rel_t2-2018-06-08-melina-twrp-v3-2-1.3722199

MOBILedit: https://www.mobiledit.com/forensic-express-personal

MSAB (XRY): https://www.msab.com/law-enforcement/forensic-examiners

multidisabler-samsung: https://github.com/ianmacd/multidisabler-samsung

ncat: https://nmap.org/ncat

Oxygen forensics: https://www.oxygen-forensic.com/en/products/oxygen-forensic-detective

Paraben Forensics (E3 Forensic Platform): https://paraben.com/free-dfir-tools

Salvationdata (DBF6300): https://www.salvationdata.com/database-forensic-analysis-system

Sqlitebrowser: https://github.com/sqlitebrowser/sqlitebrowser

SQLite Expert database administration: http://www.sqliteexpert.com

Undark: https://github.com/alitrack/undark

WhatsApp Crypt14 Database Decrypter: https://github.com/ElDavoo/WhatsApp-Crypt14-
Decrypter.

WhatsApp Key/DB Extractor: https://github.com/EliteAndroidApps/WhatsApp-Key-DB-Extractor

whatsapp-media-decrypt: https://github.com/sh4dowb/whatsapp-media-decrypt

X-Ways: http://www.x-ways.net/forensics

https://www.db-merge-tools.net/sqlite-diff-merge-overview.html
https://www.magnetforensics.com/products/magnet-axiom-cyber
https://www.magnetforensics.com/products/magnet-axiom-cyber
https://www.magnetforensics.com/resources/magnet-acquire
https://forum.xda-developers.com/t/recovery-unofficial-us997-h870-rel_o2-rel_t2-2018-06-08-melina-twrp-v3-2-1.3722199/
https://forum.xda-developers.com/t/recovery-unofficial-us997-h870-rel_o2-rel_t2-2018-06-08-melina-twrp-v3-2-1.3722199/
https://www.mobiledit.com/forensic-express-personal
https://www.msab.com/law-enforcement/forensic-examiners
https://github.com/ianmacd/multidisabler-samsung
https://nmap.org/ncat
https://www.oxygen-forensic.com/en/products/oxygen-forensic-detective
https://paraben.com/free-dfir-tools
https://www.salvationdata.com/database-forensic-analysis-system/
https://github.com/sqlitebrowser/sqlitebrowser
http://www.sqliteexpert.com/
https://github.com/alitrack/undark
https://github.com/ElDavoo/WhatsApp-Crypt14-Decrypter
https://github.com/ElDavoo/WhatsApp-Crypt14-Decrypter
https://github.com/EliteAndroidApps/WhatsApp-Key-DB-Extractor
https://github.com/sh4dowb/whatsapp-media-decrypt
http://www.x-ways.net/forensics/

112

Appendix

A1.

A/A Sender Receiver Content Acquisition

1 Bad Actor_2 Edgar How are you my friend? data0_0_1

2 Bad Actor_2 Edgar It is been a long time since we talked data0_0_2

3 Bad Actor_2 Edgar Are you in Boston? data0_1

4 Edgar Reading the messages by (Receiver) data0_1_1

5 Michael Bad Actor_2 5 lyrics from the poem “The Crow” (1-5) data0_2

6 Bad Actor_2 Edgar Did Mike really send you a great poem?

He should send me more

Who wrote it?

data0_3

7 Reading a random message bot message data0_3_1

8 Bad Actor_1 Bad Actor_2 5 lyrics from the poem “The Crow” (6-10) data0_4

9 Reading the messages sent from Bad Actor_1 data0_4_1

10 Bad Actor_2 Bad Actor_1 Mike sent some lyrics from the same poem

Where did you find it?

data1

11 Deleted chat thread with Edgar data2

12 Bad Actor_1 Bad Actor_2 5 lyrics from the poem “The Crow” (11-15) data3

13 Reading the messages sent from Michael data3_1

14 Bad Actor_2 Michael Scenario (10 messages from which 2 photos) (see
Appendix A2)

data4

(Non-Deleted)

data4_1

(Deleted)

15 Closing the app from background data5

16 Edgar Bad Actor_2 5 lyrics from the poem “The Crow” (16-20) data6

17 Removing the messages notification data7

18 Rebooting the device data8

19 Opening the app data9

20 Bad Actor_2 Michael WHAT IS WRONG WITH YOU TWO AND THIS POEM data10

21 Reading the messages sent from Edgard data11

22 Michael Bad Actor_2 1 lyric from the poem “The Crow” (21) data12

23 Rebooting the device data13

24 Opening the app data14

25 Michael Bad Actor_2 4 lyrics from the poem “The Crow” (22-25) data15

26 Edgar Bad Actor_2 5 lyrics from the poem “The Crow” (26-30) data16

27 Bad Actor_1 Bad Actor_2 5 lyrics from the poem “The Crow” (31-35) data17

A2.

A/A Sender Receiver Action / Content Parameters

1 Bad Actor_1 Michael Message: I am sending the photo

113

2 Bad Actor_1 Michael Action: Sending photo from gallery

3 Bad Actor_1 Michael Message: Did you receive it?

4 Michael Bad Actor_1 Message: Yes send the second one

5 Bad Actor_1 Michael Action: Sending photo from app’s camera feature

6 Bad Actor_1 Michael Message: This will cost you 1000 euros

7 Michael Bad Actor_1 Message: We agreed on five hundred Timebomb at 60 seconds

8 Bad Actor_1 Michael I want more Timebomb at 60 seconds

9 Michael Bad Actor_1 WE WILL SEE Timebomb at 60 seconds

10 Bad Actor_1 Michael I think they saw me. I must delete those Timebomb at 60 seconds

		2023-08-29T11:05:38+0300
	PANAGIOTIS RIZOMYLIOTIS

		2023-08-30T11:56:04+0300

		2023-09-04T00:40:26+0300
	Panagiotis Giannakopoulos

