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Abstract 

The present master thesis focuses on investigating and analyzing issues related to 

the detection of grapevine varieties through the analysis of specific grapevine 

properties. These properties mostly concern the amount of chlorophyll present in 

the leaves of the plants, the overall health or the existence of any signs of stress, 

which affects significantly the process of photosynthesis and the density of the vines’ 

canopy. 

In order to provide a comprehensive theoretical approach of the issue, a narrative 

literature review was conducted, focusing on various aspects related to vines. This 

review encompassed an exploration of common diseases affecting vines, the 

methodologies employed for data collection and subsequent analysis, as well as the 

techniques used for identifying diseases or deficiencies in vine plants. Additionally, 

a systematic literature review was conducted to examine the identification of 

different vegetation varieties through image analysis. 

To evaluate the health status of the vine, vegetation indicators were employed with 

the aim of identifying the aforementioned properties. Data collection in the study 

area included multispectral images captured by other researchers in 2022 through a 

UAV (Unmanned Aerial Vehicle) flight over the vineyards of the Agricultural Products 

Technology Institute in Lykovrisi. These images were used to generate an orthophoto 

of the area, which was subsequently examined. The study area has the unique 

characteristic of housing wide and diverse vine varieties, comprising over a thousand 

different types. As part of the research, a sub-vineyard of four acres area was 

examined, encompassing a total of 112 vine varieties. To accurately detect the 

precise locations of each of these varieties, ground surveying measurements were 

taken and a vine map was created. 

 

To isolate the parts depicting vines οn the image, supervised classification 

algorithms were executed. After the classification process, a mask was applied to 

cover the areas of the image that represented shadows or the ground. In the 

remaining areas (vine areas), seven vegetation indices were implemented. Among 

these indices, two pairs that exhibited the least correlation with each other were 

selected, resulting in a total of four indices. The indices' outcomes were then 

incorporated by two clustering algorithms: a vector quantization algorithm and a 

probabilistic model. The primary objective of these algorithms was to group varieties 

with similar characteristics into classes. Each algorithm was implemented using the 

four vegetation indices, and their respective outputs were subsequently compared 

to identify the varieties classified in the same class by both algorithms. This process 

of identifying varieties with similar characteristics provides valuable insights into 

vine growth and health. Furthermore, it enables farmers to employ similar 

approaches on varieties with similar properties for essential works, such as watering, 

fertilization, and harvesting. 
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Περίληψη 

Στην παρούσα εργασία ερευνήθηκαν και αναλύθηκαν ζητήματα που αφορούν την 

ανίχνευση ποικιλιών αμπελιών μέσω της ανάλυσης ιδιοτήτων του αμπελιού. Οι 

ιδιότητες αυτές αφορούν την ποσότητα της χλωροφύλλης στα φύλλα των φυτών, 

την υγεία ή την ύπαρξη στρες, γεγονός το οποίο συνδέεται με την διαδικασία της 

φωτοσύνθεσης, καθώς και την πυκνότητα του φυλλώματος των αμπελιών.  

Για την θεωρητική προσέγγιση του θέματος πραγματοποιήθηκε αρχικά περιγραφική 

βιβλιογραφική ανασκόπηση η οποία εστιάζει στα αμπέλια, στις ασθένειες από τις 

οποίες συνήθως προσβάλλονται, τις μεθόδους με τις οποίες γίνεται η συλλογή 

δεδομένων, και τις τεχνικές με τις οποίες εντοπίζονται ασθένειες ή ελλείψεις στα 

αμπέλια. Επιπλέον πραγματοποιήθηκε και συστηματική βιβλιογραφική ανασκόπηση 

που αφορά τον εντοπισμό διαφορετικών ποικιλιών βλάστησης μέσω εικόνων.  

Για την ανάλυση της κατάστασης της υγείας του αμπελιού, εφαρμόστηκαν δείκτες 

βλάστησης οι οποίοι στοχεύουν στον εντοπισμό των ιδιοτήτων που 

προαναφέρθηκαν. Σχετικά με την συλλογή δεδομένων στην περιοχή μελέτης, 

χρησιμοποιήθηκαν πολυφασματικές εικόνες οι οποίες συλλέχθηκαν από άλλους 

ερευνητές το 2022 μέσω πτήσης UAV (Unmanned aerial vehicle ) στους αμπελώνες 

του Ινστιτούτο Τεχνολογίας Αγροτικών Προϊόντων στην Λυκόβρυση Αττικής. Από τις 

εικόνες αυτές παράχθηκε ορθοφωτογραφία της περιοχής η οποία έχει το ιδιαίτερο 

χαρακτηριστικό ότι περιέχει πλήθος διαφορετικών ποικιλιών αμπελιών, και 

συγκεκριμένα περισσότερες από χίλιες. Στο πλαίσιο της εργασίας μελετήθηκε μία 

υπό-περιοχή τεσσάρων στρεμμάτων στην οποία βρίσκονται 112 ποικιλίες αμπελιού. 

Για να εντοπιστεί η ακριβής θέση κάθε ποικιλίας πραγματοποιήθηκαν επίγειες 

τοπογραφικές μετρήσεις και δημιουργήθηκε χάρτης των ποικιλιών.  

Προκειμένου να απομονωθούν τα τμήματα της εικόνας που απεικονίζουν αμπέλια, 

εκτελέστηκαν αλγόριθμοι επιβλεπόμενης ταξινόμησης. Μετά τη διαδικασία 

ταξινόμησης τοποθετήθηκε μια μάσκα στις περιοχές τις εικόνας που απεικόνιζαν 

σκιές ή έδαφος. Στις υπόλοιπες περιοχές (αμπέλια) εφαρμόστηκαν επτά δείκτες 

βλάστησης. Μεταξύ αυτών των δεικτών επιλέχθηκαν δύο ζεύγη που εμφάνιζαν τη 

μικρότερη συσχέτιση μεταξύ τους, οπότε συνολικά χρησιμοποιήθηκαν τέσσερις 

δείκτες. Τα αποτελέσματα από την εφαρμογή των δεικτών χρησιμοποιήθηκαν από 

δύο αλγορίθμους συσταδοποίησης, έναν αλγόριθμο διανυσματικής κβαντοποίησης 

και ένα πιθανολογικό μοντέλο με στόχο ποικιλίες με παρόμοια χαρακτηριστικά ώστε 

να ταξινομηθούν στην ίδια κλάση. Κάθε αλγόριθμος υλοποιήθηκε λαμβάνοντας 

υπόψη τους τέσσερις δείκτες βλάστησης και στην συνέχεια τα αποτελέσματα τους 

συγκρίθηκαν προκειμένου να βρεθούν οι ποικιλίες τις οποίες και οι δύο αλγόριθμοι 

ταξινόμησαν στην ίδια κλάση. Ο εντοπισμός ποικιλιών με παρόμοια χαρακτηριστικά 

δίνει χρήσιμες πληροφορίες για την ανάπτυξη και την υγεία του αμπελιού και 

συμβάλει στο ότι οι γεωργοί μπορούν να τις αντιμετωπίζουν με παρόμοιο τρόπο σε 

διαδικασίες όπως το πότισμα, η λίπανση ή η συγκομιδή. 
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1. Introduction 

Viticulture requires monitoring and care all year, in order to lead to a good quality 

harvest. Using precision agriculture methods, a danger or a disease could be 

detected early enough without any crop destruction (Anastasiou et al., 2019). 

Vineyard's production has much importance for a lot of countries like France, Italy, 

Greece, Spain, USA etc., due to economic, social and environmental factors (Jones, 

2011). Hence, sustainable management of vineyards could be of high importance for 

countries and companies that own such areas. Overall, the methods for vegetation 

monitoring can be separated into two categories: 

(a) Laboratory methods need the collection of leaves, fruits, soil, etc., for the 

detailed analysis of the plant's health status. Such a method is costly, time-

consuming, and demands the destruction of a part of the plant.  

(b) Non-destructive methods like proximal and remote sensing provide important 

information for the plant’s health without any destruction and with less both in cost 

and time (Kasimati et al., 2022). 

Remote sensing is a method that obtains information about the electromagnetic 

radiation of objects from distance. The objects reflect the sunlight, which travels 

to the sensor in different lengths of waveform. Depending on the type of sensor the 

reflection values can be recorded in a big range of wavelength values, such as the 

visible (RGB), near-infrared (NIR), shortwave infrared (SWIR), thermal infrared (TIR), 

or microwave spectrum. Those types of sensors constitute passive remote sensing, 

which means that they only collect the reflected energy of objects. There is also 

active remote sensing, such as radar or LIDAR devices, which emit their own signal 

and then collect its reflection (Wójtowicz et al., 2016). Remote sensing platforms 

can be either satellites or unmanned aerial systems (UAS), while proximal sensing is 

cameras located on vehicles or mounted on ground systems.  

Satellite images cover large areas and can be acquired easily and, therefore, saving 

considerable time in the whole procedure; however, there are limits in the final 

spatial resolution for precision agriculture applications. On the other hand, 

capturing aerial images via UAV systems is an expensive and difficult method as it 

needs an expert pilot and specific equipment. Nevertheless, it is possible to acquire 

both high spatial and spectral resolution (from multispectral and/or hyperspectral 

cameras) and cover a large enough area by adjusting the flight height (Sassu et al., 

2021).  

Multispectral and hyperspectral images provide a lot of information about plants’ 

health. Vegetation reflection in the visible spectrum gives information about the 

pigments of the leaves so differences in plant health are distinct. In the range of NIR 

spectrum, information about the internal leaf structure is possible to be extracted, 

and also the lack of an element or the presence of a disease can be detected. These 
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spectral values depend on the variety of the plant, the growth stage, the quantity 

of content in the plant’s tissue, etc. (Akkara, 2022). 

Apart from the selection of the proper image acquisition method, another important 

factor for the data clustering of vineyard varieties (or on the detection of an 

element, a disease etc.) is the optimal choice of the classification algorithm. 

Clustering and machine learning methods have been used in literature for diseases 

or nutrients detection. Also, vegetation indices can provide significant information 

for a plant’s health. Therefore, by combining methods and different data types for 

the detection of plants conditions, more accurate results can be carried out. 

1.1 Problem description 

Grapevine health depends on different physical, chemical and topographic factors. 

Climate, chemical composition of the soil, existence of weeds, pests or diseases they 

can all influence the productivity of the viticulture (Giovos et al., 2021). Moreover, 

different varieties of the same plant in the same area can also present differences 

in the yield, concerning either the growth phases or the grapes or wine quality. Thus, 

different growth stages need different monitoring.  

Consequently, there is a great need for the differentiation between vines 

encountered at the same area, and also the correlation between varieties and the 

emergence of some substances is an important factor that must be detected. The 

results of this correlation will lead to the creation of a vineyard map. For a farmer, 

knowing of the specific location of each variety may contribute to the avoidance of 

misplanting, the assurance of each variety’s quality, etc. (Karakizi et al., 2016). 

Thereupon, the importance of detecting different varieties in viticulture seems to 

have a leading role in the cultivation and the proper management by the farmers. 

1.2 Objective 

Concerning the need for an efficient management of different vineyard varieties 

located in the same area, it is purposeful to implement methods for the classification 

of varieties with common characteristics. The aim of this master thesis is the 

detection and analysis of several different vineyard varieties through their spectral 

properties. Multispectral images apart from the visible (RGB), they also include the 

Red Edge, and the Near-Infrared areas of the spectrum, and they can provide 

information about the plant's health and state, conditions that are not always visible 

with bare eyes. To this purpose, vegetation indices will be used. Each index provides 

details about the health and the condition of an element in vineyards. Therefore, 

by combining information from vegetation indices, a method for the efficient 

clustering of vineyards’ varieties with same characteristics will be employed. The 

scope of this method is to provide information to the farmers about the specific 

characteristics of grapevine varieties; such information can be valuable for the 

vineyard management, when they have to make decisions about the planting, 

pruning, fertilizing and harvesting during its life cycle.    
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1.3 Research questions 

The present work endeavors to analyze the spectral values of different vineyards 

varieties, to find the common properties between them and to cluster them in 

groups. The specific questions that this research aims to respond are:  

 

- How so far scientific literature has approached the issue of the detection of 

different varieties and which tools and methods have been preferred more?  

 

- How can spectral properties of multispectral images be used to detect and analyze 

various vineyard varieties? 

 

- Which vegetation indices are most effective in providing information about the 

health and condition of grapevine varieties? 

 

- How can the clustering of vineyard varieties with similar characteristics can be 

undertaken using a combination of vegetation indices? 

 

- For vineyard’s varieties, is it possible different clustering/classification methods 

to find similar outcomes?  

 

- What is the information provided from an area with a lot of different varieties 

about the topographic or the physical parameters?  

 

1.4 Research methodology 

In the initial phase of this study, a comprehensive literature review was conducted. 

Specifically, a narrative literature review was employed to explore the conventional 

diseases affecting vineyards and the crucial nutrient elements necessary for vine 

growth. The analysis also included an examination of common methods for image 

acquisition, considering parameters such as focus levels and growth stages. 

Subsequently, a systematic literature review was undertaken to explore the 

classification of vegetation varieties. A total of 10 relevant documents were 

selected, using the PRISMA method, key findings from these documents were 

extracted and the conclusions of the review were presented. 

Following the literature review, a collection of aerial multispectral images was used 

for the creation of an orthophoto image. The vine segments within the orthophoto 

were then isolated and retained for further analysis. Subsequently, a clustering 

method was defined to group vineyard varieties with similar characteristics, which 

was afterwards implemented on the orthophoto. Figure 1 illustrates the sequential 

steps followed in the present work.  
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Figure 1: Research methodology diagram. 

 

1.5 Structure 

In the second chapter of the master thesis, a narrative literature review is conducted 

on the vineyard diseases detection methods, vineyard varieties, and classification 

algorithms. It is important to highlight the frequently used methods for both data 

acquisition and classification. Subsequently, a systematic literature review was 

performed, specifically targeting the detection of varieties. The purpose of this 

review is to identify literature that has not sufficiently examined topics about 

varieties detection, allowing this master's thesis to provide valuable information for 

the classification of varieties. 

In the third chapter, the conducted experiment is analyzed. Specifically, the 

characteristics of the study area where the experiment took place are discussed, 

and the acquired image dataset and its properties are presented. Furthermore, this 

dataset is processed to generate an orthophotomap, which is then used as the final 

image for the classification implementation. 

The image generated needs to undergo processing to retain only the areas containing 

vine pixels.  

In the fourth chapter, some classification algorithms were implemented to 

determine the optimal one that provides the best vine’s classification. Based on the 

results of this classification, masks were applied to each variety, enabling them to 

be treated as distinct polygonal regions. Furthermore, some of the most significant 

vegetation indices that provide information about the health of the plants were 

introduced. These indices were applied to the varieties, and a mean value was 

calculated for each of them. Next, the correlation between the executed indices 
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was analyzed, and the least correlated indices were selected for the classification 

of varieties. Continuing, using two classifiers, the varieties were categorized into 

three different groups based on the mean values obtained from the index 

implementation. These results were analyzed, and several observations were made. 

The fifth chapter consists of the discussion of the findings, the conclusions drawn as 

well as the contribution of the research along with some proposals for future 

research. 
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2. Literature Review 

Vineyards are faced with various challenges throughout their lifecycle. Farmers need 

to monitor several common issues during the growth period of vineyards, including 

vineyard productivity (Ballesteros et al., 2020; J. Tang et al., 2016),(Arab et al., 

2021; Maimaitiyiming et al., 2019)), plant water stress ((Loggenberg et al., 2018; 

Pôças et al., 2020; Z. Tang et al., 2022)), and nutrient concentrations, such as 

nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and 

Βoron (B) (Chancia et al., 2021; Moghimi et al., 2020; X. Peng et al., 2022). Nutrients 

have a decisive role in the vineyards growth as nitrogen is important for the 

productivity of the plant, phosphorus participates in the development of 

reproductive parts of the plant, while potassium contributes on the movement of 

substances in the plant. Many research documents focus on the detection of specific 

diseases, such as Grapevine vein-clearing virus (Nguyen et al., 2021), Mildew 

disease (Chen et al., 2020; Hernández et al., 2021; X. Peng et al., 2022; Z. Tang et 

al., 2022), Flavescense Dorée grapevine disease (Silva et al., 2021), and Esca 

disease ((Alessandrini et al., 2021; Kirti et al., 2021)). Another important factor that 

affects productivity and the monitoring procedure of a disease growth is the 

vineyard’s variety; with more than 10,000 varieties of grapes at a global level, 

varieties, similar to the detection of diseases, can be identified more easily under 

specific conditions. 

An important factor that facilitates the detection of specific conditions in varieties 

is the focus level; depending on the specific characteristics to be examined, the 

focus can be directed towards either a particular part of the plant or encompass the 

entire field. The capture distance is adjusted accordingly. The most commonly used 

focus levels include the total vineyard area, canopy, berries, or leaves. 

The focus level plays a crucial role in the detection of varieties or diseases; the 

closer the distance from the plants the earlier specific plant characteristics can be 

detected. According to Ballesteros et al. (2020) , aerial images, unlike close-up 

captures, provide the opportunity to obtain not only spectral information but also 

geometric characteristics of the canopy. Other distinctions between close and long 

shots depend on factors, such as the size of the area of interest, the availability of 

collected data, and the timing of data acquisition. 

2.1 Narrative Literature Review 

2.1.1 Growth stages 

An important factor for the vines’ health monitoring and production is the growth 

stage during the data collection. For the determination of the grapevine growth 

stage, three different systems have been developed until today (COOMBE, 1995). 

The first one created by Baggiolini (1952), the second one by Eichhorn and Lorenz 

(1977) and the third one called the BBCH system was developed as a model for the 

European Union and adapted for the grapevine by Lorenz et al. (1994). The Baggiolini 
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system consists of 10 stages, but in the newest version another six more stages have 

been added; thus, resulting in a total of 16 stages (A-P). The Eichhorn and Lorenz 

(E-L) system includes 22 different stages, whereas the BBCH system consists of 10 

macro-stages. Table 1 presents the modified E-L system along with the descriptive 

name of each of the stages.  

 

Growth stage Details 

Budburst  4 Green tip; first leaf tissue visible 

Shoots 10 cm  12 5 leaves separated; shoots about 10 cm 
long, inflorescence clear 

Flowering begins  19 About 16 leaves separated: beginning of 

flowering (first flower caps loosening) 

Full bloom  23 17-20 leaves separated; 50% caps off 
(= full bloom) 

Setting  27 Setting; young berries enlarging (>2 mm 

diam.), bunch at right angles to stem 

Berries pea size 31 Berries pea-size (7 mm diam.) 

Veraison  35 Berries begin to colour and enlarge 

Harvest  38 Berries harvest-ripe 

Table 1: Details about vineyards’ growth stages  

In most studies, the growth stage of vineyards is considered in the detection of 

varieties or diseases. In the study of J. Tang et al. (2016), aerial and proximal images 

were collected during the shoot and veraison stages. The research indicated that for 

better accuracy, proximal images should be taken earlier in the growth stage. The 

study of Peng et al. (2022) used aerial images to collect data at various growth 

stages, including new shoot growth, flowering, fruit expansion, veraison, and 

maturity. It was found that the quantity of nitrogen gradually decreases as the 

growth period progresses. Specifically, nitrogen content is higher at the new shoot 

growth stage compared to the fruit expansion stage, veraison and maturity stage, 

and nearly zero at the flowering stage. The highest uncertainties for potassium were 

observed during the fruit expansion stage, and for phosphorus it was during the 

veraison and maturity stages.  

Two articles compared data collected from a UAV (Unmanned Aerial Vehicle) and 

spectrometer with Sentinel-2 data. The first article (Kasimati et al., 2022) claims 

that UAV and Spectrosense with GNSS (Global Navigation Satelite Systems) provide 

better results during the mid-late season with full canopy growth, specifically during 

the pea-sized berries and veraison growth stages. However, the Sentinel-2 images 

were less reliable in terms of grape quality. The second paper (Kasimati et al., 2021) 

argues that UAV + Spectrosense + GNSS provide better results in identifying soluble 

solids in wine grapes, followed by the CropCircle sensor, and then the Sentinel-2 

imagery. The results from the UAV and Spectrosense + GNSS data were obtained 

during the pea-sized berries and veraison growth stages. In addition to Sentinel-2 
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images, (Arab et al., 2021) also used images from Landsat-8 during different growth 

periods: Bud break, Flowering, Fruit Set, Max-Canopy Expansion, Ripening, and 

Harvest. The results showed that the correlation between grape yield and NDVI 

(Normalized Difference Vegetation Index), LAI (Leaf Area Index), and NDWI 

(Normalized Difference Water Index) indices was very low during flowering and 

harvest periods but high during maximum canopy expansion. 

Based on the above, the growth stage at which a vine disease or phenomenon is 

visible using images or spectroscopy depends on the specific phenomenon being 

investigated. 

2.1.2 Data acquisition methods 

In literature, several studies have deployed a UAV platform for acquiring 

multispectral images. The spatial resolution of the final image depends on the flight 

height. For instance, in Ballesteros et al., (2020), the resulting image from the 

multispectral Sequoia camera (Parrot, Paris, France) had a ground resolution of 7 

cm at a flight height of 80m, whereas at a flight height of 30m the spatial resolution 

was 4cm (Romero et al., 2018). Similarly, in Mazzia et al., (2020) and (Kasimati et 

al., 2021) using the Parrot Sequoia camera at flight heights of 35m and 30m, the 

ground resolution was 5cm and 3cm, respectively. Padua et al. (2020) deployed the 

Micro-MCA camera and achieved a spatial resolution of 1.6cm at a flight height of 

30m. Z. Tang et al., (2022), used the MicaSense RedEdge camera at a height of 120m 

above the ground resulting in a final image resolution of 8cm. 

The aforementioned methods were implemented in wide areas of vineyards. 

Therefore, aerial multispectral photography is useful for phenomena occurring 

across broader fields rather than focusing on individual vines. These research studies 

were used for productivity measurement, water status or stress detection, and for 

assessing inclusiveness of nutrients, such as nitrogen, phosphorus, potassium, 

soluble solids, and more. 

Some documents used hyperspectral images for studying specific characteristics of 

vineyards. Loggenberg et al., (2018) and Nguyen et al., (2021) implemented 

terrestrial methods for hyperspectral data collection; Silva et al. (2021) and 

Hernández et al. (2021) took images under laboratory conditions. Only Chancia et 

al. (2021) integrated a hypespectral camera on a UAS platform. Capturing specific 

conditions depends on the focus level of the object. In contrast to the predominantly 

wide-area usage of multispectral images, hyperspectral images were employed to 

capture vines at the canopy or leaf level, with only one of them addressing a broader 

variety area. 

In addition to multispectral and hyperspectral photography, RGB cameras are 

commonly used as well. For instance, Chancia et al. (2021) deployed a GoPro camera 

mounted on a vehicle, Fuentes et al. (2021) used an iPhone11 attached to a selfie 

stick, Kerkech et al. (2020) and Zhou et al. (2021) employed a UAV and the MAPIR 
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Survey2 and Parrot Sequoia+ agricultural camera, respectively. Alessandrini et al. 

(2021) manually captured images using two smartphones and a tablet, while Miranda 

et al., (2022) utilized a DALSA Genie NanoC2590 camera, and Hernández et al. (2021) 

conducted image acquisition using the Canon EOS 5D. 

Some studies employed alternative methods for image acquisition, such as 

spectrometer (Maimaitiyiming et al., 2019; Pôças et al., 2020), thermal imagery 

(Fuentes et al., 2019; Reyes Rojas et al., 2021), satellite images (Sentinel-2, 

Landsat-8) (Arab et al., 2021; Kisekka et al., 2022), DNA testing (Ampatzidis et al., 

2020) or a pre-existing dataset (Cruz et al., 2019; Kaur et al., 2022). These methods 

can provide satisfactory results in detecting disease or substances in plants.  

2.1.3 Data Classification Algorithms 

Data classification algorithms have the ability to consider a range of variables 

related to vineyards, and assess the relation between these variables in near real 

time, using entire images or segments with common characteristics (Volpi et al., 

2021). Chen et al., (2020) suggest that the evaluation of grapevine diseases can be 

enhanced by incorporating parameters such as weather conditions, location, and the 

age of the plant. Additionally, other studies implemented weather conditions, such 

as rainfall, temperature and other climatic variables to develop predictive models 

for disease detection in vineyards (Rossi & Caffi, 2007; Rouzet & Jacquin, 2003). 

Machine learning methods encompass different approaches. Supervised methods 

involve training and testing datasets, while unsupervised methods employ clustering 

techniques to analyse data (Dale et al., 2018). In literature, numerous studies have 

used one or more classifiers or machine learning algorithms to detect diseases or 

identify natural ingredients. Among the 47 examined documents, the most 

commonly employed algorithms are Random Forest, Support Vector Machine, 

Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), and various 

regressors. The following diagram illustrates the distribution of algorithms used for 

disease detection across the 47 articles. 

 

Figure 2: Machine Learning Methods used more in literature 
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The key points drawn from these articles are the following:  

o Many of the studies implemented pre-existed Convolutional Neural Network 

(CNN) models for classification purposes. The most frequently used models 

are AlexNet (5 times), SegNet (1 time), LeNet (2 times), ResNet (employed 5 

times in various editions, such as ResNet-34, ResNet-50, hybrid ResNet-Jaya 

model, ResNet-V2, and ResNet-101). 

o Some of the algorithms were developed by the authors themselves and results 

were compared with pre-existing models or methods, like RandomForest, 

XGBoost, SVM, k-NN and others. 

o A common evaluation metric in these publications is model accuracy. Among 

various methods, ResNet algorithms consistently exhibited higher accuracy 

compared to other approaches. 

o When it comes to disease detection, algorithms have generally achieved a 

satisfactory level of accuracy in recognizing different types of leaf diseases 

or distinguishing between healthy and affected leaves. 

2.1.4 Vegetation Indices 

In addition to machine learning methods, various vegetation indices have been 

deployed to classify crops components or diseases. These indices are used to identify 

key characteristics of vineyards, such as productivity, irritation, water status, 

diseases, chemical elements, or other conditions.  

Regarding productivity, J. Tang et al., (2016) emphasized the significance of NDVI-

blue, while (Ballesteros et al., 2020) found that the NDVIwiv (well-illuminated 

vegetation) index yielded important results. (Maimaitiyiming et al., 2019) focused 

on the water index, whereas (Arab et al., 2021) considered the NDVI and LAI as the 

most important indices. 

For irritation detection, (Ohana-Levi et al., 2019) identified as crucial the CWSI 

(Crop Water Stress Index). (Romero et al., 2018) suggested the OSAVI index for water 

stress detection, while Z. Tang et al., (2022) found the NDRE and GRVI indices to be 

significant. 

In the detection of Grapevine vein-clearing virus (GVCV), the FRI1 (physiology 

indices), WSCT (physiology indices), and AntGitelson (pigment index) were 

determined as the most significant indices by Nguyen et al., (2021). 

For the detection of pests caused by Lycorma delicatula, ARVI, OSAVI, and GNDVI 

were found to be the most effective indices Zby Zhou et al., (2021). 

Finally, Moghimi et al., (2020) selected the NDRE index for the detection of chemical 

elements such as N, P, K, Ca, Mg, and B. 

Detailed documentation of the indices used in this thesis can be found in the sub-

section 4.2. 
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2.2 Vineyard varieties detection 

A systematic literature review was conducted to gather and analyze publications 

related to the detection of varieties in plants. There are two types of literature 

reviews: narrative and systematic. The former describes and discusses scientific 

topics from a theoretical standpoint without explaining the methodology and 

evaluation of the research (Rother, 2007). The latter is a methodological approach 

that aims to provide an up-to-date summary of an issue (Higgins JPT, 2022). Initially, 

research questions and keywords are defined, and specific criteria are selected to 

narrow down the search to a specific area of interest; subsequently, the findings are 

presented and evaluated (Kitchenham et al., 2009). 

A way to visualize the process of a systematic literature review (SLR) is by using the 

PRISMA diagram, which includes a 27-item checklist and a four-phase flow diagram, 

ensuring a transparent SLR reporting(Liberati et al., 2009). 

As a result, firstly a search was conducted in the Scopus library using specific 

keywords related to the research topic of vineyard varieties detection. The keywords 

used were: ("varieties detection" OR "varieties classification") AND ("agriculture" OR 

"crops" OR "cultivars" OR "vegetation") AND ("UAV" OR "drone" OR "satellite"). The 

initial search provided a total of 79 documents. Then, the search was refined by 

limiting the document type to articles and setting the language to English, resulting 

in 51 documents.  

The abstracts of these 51 documents were read, and 12 documents were selected as 

the most relevant based on their abstracts. Subsequently, the full texts of these 

selected documents were read and, after thorough evaluation, 8 documents were 

chosen to meet the requirements of the research.  

In addition to these 8 documents, two more relevant documents related to the 

research topic were included as supporting literature to enhance the evaluation of 

the topic (Figure 3). 
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Figure 3: PRISMA diagram steps from the systematic literature review 

2.2.1 Selected documents analysis 

The selected documents can be divided into four different groups, depending on the 

distance level at which the image datasets for variety detection were collected. The 

first group pertains to laboratory photography conditions, where the examination of 

the variety was conducted at leaf level. This means that leaves are isolated from 

the plants, photos are captured under laboratory conditions, and then classification 

is performed on these photos. The second group consists of photos taken at ground 

level in the field. The third group involves aerial photos captured from a UAV 

platform, and the fourth group deals with satellite images. Figure 4 illustrates the 

number of documents corresponding to each group along with Table 2. 

 

Figure 4: Number of studied documents about distance level image capturing  
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ID Crop Num. of 

varieties 

detecte

d 

Focus 

Level 

Acquisition method Spectral 

range 

Best 

Classifier  

References 

1 Grapev

ines 

5 Ground ASD FieldSpec®3 

spectroradiometer 

350-975, 976–

1770, 1771–

2500 nm 

SVM (Mirzaei et 

al., 2019) 

2 Grapev

ines 

4 Ground 

 

Portable 

Spectroradiometer 

(FieldSpec3, 

Analytical Spectral 

Devices, Boulder, 

CO, USA) 

between 350 

nm and 2500 

nm 

SVM and 

discriminator 

analysis 

 (Al-Saddik 

et al., 

2019) 

3 Lettuc

e 

3 Ground 

 

RGB camera RGB YOLO-VOLO-

LS 

 (Zhang & 

Li, 2022) 

4 Peanut

s 

4 Laborat

ory 

Image-l “spectral 

image” series 

hyperspectral 

machine 

R, G and B 
were set to 
638.7, 551.58 
and 442.95 nm 

MF-

LightGBM-

SEL 

 (Wu et al., 

2022) 

5 Grapev

ines 

6 Ground 

 

Open dataset of RGB 

images 

RGB fusion of fc6 

(in AlexNet 

network) and 

Fc1000 (in 

ResNet50 

network) 

 (Y. Peng et 

al., 2021) 

6 Cassav

a 

47 Laborat

ory 

 

Cellular phone or a 

digital camera 

RGB ANN 

algorithm 

 (Unajan & 

Gerardo, 

2019) 

7 Grapev

ines 

3 Laborat

ory 

 

RGB images RGB Linear 

Discriminant 

Analysis 

 (Marques 

et al., 

2019) 

8 Grapev

ines 

7 Laborat

ory 

 

OPPO Android phone 

RGB camera 

RGB Decision Tree 

(DT) 

 (Garcia et 

al., 2022) 

9 Maize 25 Aerial Parrot Sequoia 

multispectral 

camera 

Green (0.53–

0.57 m), Red 

(0.64–0.68 m), 

Rededge 

(0.73–0.74 m) 

and Near-

Infrared (0.77–

0.81 m) 

Vegetation 

Indices 

(Chivasa et 

al., 2020) 

10 Grapev

ines 

4 Satellit

e 

World View 2 pan-

sharpening images 

(multispectral data) 

RGB, NIR, 

coastal, 

yellow, red-

edge, NIR 

SVM (Karakizi et 

al., 2016) 

 

Table 2: Documents examined within the systematic literature review process 

Each document follows a specific approach for varieties detection based on its 

objectives. 

In the document of (Mirzaei et al., 2019), hyperspectral data was utilized for the 

detection of vineyard varieties. Before the classification, they attempted to reduce 
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the dataset dimensions by selecting only the important bands for the final 

procedure. To achieve this, they implemented the PLSR and ANOVA-PCA methods; 

the latter was finally chosen due to its higher accuracy results. Subsequently, the 

SVM and LDA classifiers were compared with the SVM, demonstrating higher accuracy 

and, thus, being retained for further analysis. They also concluded that the optimal 

wavelengths and indices for discriminating vineyard varieties from each other are 

the 695, 752, 1148, 1606 nm and 582, 687, 1154, 1927 nm and R680, WI, SGB and 

RATIO975_2, DattA, Greenness at leaf and canopy levels, respectively.  

Al-Saddik et al., (2019) had as objective to detect the Flavescence dorée disease 

across four different vineyard varieties. The successive projection algorithm (SPA) 

and various vegetation indices (VI) were employed for disease detection. These 

methods were compared against SVM and discriminator analysis (DA), and it was 

concluded that the SPA method achieved the most accurate disease classification. 

The experiment was implemented on both healthy and diseased leaves and 12 of the 

most common vegetation indices were tested as they are related with disease 

appearance on vegetation. 

In the study made by Zhang & Li, (2022), the goal was the detection of five lettuce 

varieties at seven different growth stages. It was observed that the earlier the 

growth stage, the more challenging it became to detect varieties or diseases. 

Initially, the VOLO-D1 classifier was used for varieties detection, but difficultiew 

were encountered in identifying varieties during the early growth stages. To address 

that issue, a new method called the YOLO-VOLO-LS classifier was proposed, capable 

of detecting varieties at an earlier stage. The results of the classification achieve 

high correlation: 95.961, 93.452, 96.059, 96.014, 96.039 in Val-acc, Test-acc, 

Recall, Precision, F1-score, respectively Only RGB images were utilized for variety 

detection, which resulted in limited information compared to multispectral or 

hyperspectral images. 

Wu et al., (2022) attempted the classification of peanut seeds into four different 

varieties. Unlike others, this research focused on classifying the seeds rather than 

the plant leaves, and although the method differed, the procedure for variety 

detection followed the same principles. Hyperspectral sensors were deployed for 

data collection, providing a wide spectral range to identify differences between 

seeds. A machine learning algorithm was utilized for classification, which was later 

compared with four other algorithms. The results indicated that the proposed 

algorithm, using hyperspectral data, achieved the best performance. 

In the document of Y. Peng et al., (2021), CNN and SVM algorithms were applied to 

an open RGB dataset of ground vineyard image. The dataset insists of five grapevine 

varieties. These algorithms relied on deep feature detection of different varieties 

by focusing on various levels of fused data. This approach differed from other 

methods that primarily focused on the spectral values of the image pixels. The fusion 
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of fc6 (in AlexNet network) and Fc1000 (in ResNet50 network) deep features 

obtained the best identification performance. 

Unajan & Gerardo (2019) , aimed to detect varieties in images in a manner similar 

to D3 and D5. Since RGB images alone are not suitable for vegetation detection based 

only on pixel values, the focus shifted to object detection; 15 leaf features were 

used to detect 47 varieties, which were detected with an 85.11% accuracy by 

implementing the ANN algorithm. 

In the study of Marques et al., (2019), a method was developed to detect grapevine 

varieties based on color and shape features. RGB images were utilized, along with 

the Linear Discriminant Analysis method for image classification, achieving an 87% 

accuracy for the entire dataset of images. 

Garcia et al. (2022) , also used RGB images and 26 features to classify 1,149 images 

into seven different grapevine varieties. Three supervised algorithms were 

implemented for classification, with the decision trees algorithm making the best 

results, achieving an accuracy of 89%. 

In the document of Chivasa et al. (2020), multispectral images captured from a UAV, 

were used to detect 25 maize varieties. Vegetation indices were also employed to 

calculate the ground MSV infection at three different growth stages and they were 

classified into resistant, moderately resistant, and susceptible, respectively, with 

an overall classification accuracy of 77.3%. Six vegetation indices implemented on 

three different growth stages. Then some variables were tested with GNDVI, 

CIgreen, CIrededge, and the red band seemed the most important for the 

classification.  

Finally, in the study made by Karakizi et al. (2016), World View 2 satellite images 

were employed to detect three, four, five, and six different grapevine varieties in 

four different regions. The method used for variety detection was object-based 

classification. 

 

2.2.2 Systematic literature review key summaries 

Completing the systematic literature review on crop variety detection, it is 

important to highlight certain conclusions that contribute to the rest of the master 

thesis. 

• Firstly, it is crucial to note that the more spectral values we can acquire from an 

image dataset, the more information can be extracted about vegetation health, 

varieties, or specific features. By using only RGB images, the methods applied for 

the acquisition of effective results are often limited to feature or object detection. 

These methods typically involve convolution, artificial neural networks, and 

machine learning algorithms. Multispectral or hyperspectral images have an 
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advantage over RGB images because they provide more detailed information by 

analyzing the spectral values of vegetation in the near-infrared or short-wave 

infrared spectrum. By combining vegetation indices or fusing them with other types 

of information, even more detailed information can be obtained. 

• Secondly, the growth stage during data collection is an important factor for 

detecting diseases, infections, and varieties. The documents of (Zhang & Li, 2022) and 

Marques et al. (2019) detected lettuce and grapevine varieties at three and two 

growth stages, respectively. These documents concluded that the earlier the growth 

stage, the less information can be extracted from the plant's leaves. It may be 

valuable to implement variety detection at different growth stages to draw 

conclusions about the optimal period for variety detection. 

• Moreover, when dealing with hyperspectral data, dimension reduction is essential 

for efficient data utilization. Hyperspectral sensors often capture data across more 

than 200 spectral bands, but not all bands necessarily provide useful information 

about plant health or varieties. Algorithms, such as PCA, ANOVA, or PLSR, as used in 

the document of Mirzaei et al. (2019) , offering the opportunity to decrease the 

analysis time and extract only the optimal information from the datasets. 

• Another crucial aspect is the utility of vegetation indices in providing valuable 

insights about plants. These indices play a significant role in procedures aimed at 

detecting phenomena in vegetation areas; for expample Chivasa et al., (2020) tested 

commonly used vegetation indices, such as NDVI, GNDVI, NDVIrededge, SR, CIgreen, 

and CIrededge. 

• Last but not least, the capturing distance and camera 's spectral information are 

factors that can be chosen according to the available time and the area of interest. 

Laboratory conditions may offer more detailed results, but they are time and cost 

consuming, especially for frequent data collection or large areas. On the other hand, 

satellite images are easily accessible, available every few days, and they can provide 

coverage of different areas simultaneously. Their spatial resolution, however, is 

lower compared to aerial or ground images. Aerial images combine the advantages 

of ground and satellite images, making them a suitable solution for frequent data 

collection in a specific area with good both spatial and spectral resolution. 
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3. Material and methods 

3.1 Study area 

The wider study area of this research is Lykovrisi, in the northern part of Athens 

Metropolitan Area (AMA) within the Attica region (Figure 5). More specifically, the 

field work in this research took place at the Institute of Technology of Agricultural 

Products located in the southwestern part of Lykovrisi. This area is home to over 

1,000 different vineyard varieties, making it an intriguing location for implementing 

the methods described in this thesis. The abundance of diverse varieties presents 

the opportunity to evaluate various characteristics of the vineyard plants. Figure 5 

displays the Institute's location within the Attica region. 

(a) 

(b) 

Figure 5: Location of the study area:(a): location of the Institute of Technology of Agricultural Products, (b) 
its vineyards)  
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3.2 Equipment 

The vineyard area was captured using the multispectral camera Micasense RedEdge-

M, which consists of 5 bands (Blue: 475 nm, Green: 550nm, Red: 668nm, RedEdge: 

717nm, Near Infrared: 840nm).  

 

 

Figure 6: Micasense RedEdge-M multispectral camera 

 

With the camera providing bands in five different spectral values, a wealth of 

information about the vineyard's condition can be extracted from the images. For 

instance, vegetation typically exhibits lower values in the blue and red wavelength 

while higher values are observed in the green and near-infrared spectrum. By 

combining the values of near infrared spectrum with the red spectrum, differences 

in vegetation and other land covers, as well as within the same type of vegetation, 

can be observed. 

The images were collected by the laboratory of Remote Sensing of the National and 

Technical University of Athens. Furthermore, in the given dataset reflectance panel 

images were not included, and as a result the images used in the methods 

implementation are not radiometrically calibrated.  

The UAV dataset consists of 53 images, with each one containing information from 

five different spectral bands (Figure 7).  

 

Figure 7:  A sample of images captured from the multispectral camera. 
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3.3 Orthophotomap creation 

The production of the orthophotomap was carried out using the commercial software 

Metashape (Agisoft, 2015). This software uses the algorithms of Structure from 

Motion (SfM), Multi View Stereo (MVS), and SIFT (Scale-Invariant Feature Transform) 

(Lowe, 1999), which work with multiple overlapping images. These algorithms 

identify common points among the images and calculate the camera's position at the 

capturing time. This process generates a sparse point cloud. The next step involves 

creating a dense point cloud to reconstruct a 3D model using images with known 

positions in space. Consequently, the surface of the study area and the Digital 

Elevation Model (DEM) are generated. Finally, this procedure leads to the creation 

of the orthophotomap for the area of interest.  

The method used for the orthophotomap creation is illustrated in Figure 8. 

 

Figure 8: Diagram of steps for the orthophoto creation 

 

 

 

 

 

 

 

Aligning photos: Sparse 

point cloud creation 

Building dense point cloud 

Building digital elevation 

model 

Building orthomosaic 
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3.3.1 Sparse point cloud creation 

Firstly, the sparse point cloud was created by aligning common points among the 

overlapping images with high accuracy. "High accuracy" indicates that the algorithm 

makes use of the entire image resolution to identify these common points. 

 

 

Figure 9: Sparse point cloud of the area of interest 
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3.3.2 Building dense point cloud 

After the generation of the sparse point cloud, additional computational algorithms 

are applied to densely reconstruct the points of the study area. In this process, the 

software analyzes the images and calculates the depth information for each pixel by 

comparing it with neighboring pixels. By using the known camera positions and 

orientations from the sparse point cloud, the software estimates the 3D coordinates 

for the rest points of the source images. This results in a much denser point cloud, 

whose reconstruction algorithm uses various techniques to interpolate the missing 

depth information and define the point cloud. The goal is to densely capture the 

geometry of the scene, integrating as many points as possible. The following 

representations illustrate the dense point cloud that was created based on the 

sparse point cloud. 

 

 

Figure 10: Dense point cloud of the area of interest 
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3.3.3 Building Digital Elevation Model 

The Digital Elevation Model (DEM) was then created from the dense point cloud, 

including a grid created based on the dense point cloud; on this grid each point 

represents an elevation value (Figure 11).. 

 

Figure 11: Digital Elevation Model of the area of interest 

 

3.3.4 Building the orthomosaic 

An orthomosaic is a high-resolution and orthorectified image created based on 

source photos. It is an accurate representation of the Earth’s surface with minimum 

distortions and can be used for various purposes, such as measurements, surveying 

mapping and more. In order to generate an orthomosaic, the source images and a 

surface model are required. In the current project, the surface model used is the 

DEM; alternatively, a mesh surface can also be used for the orthomosaic creation. 

Figure 12 represents the final orthomosaic, while Figure 13 shows the georeferenced 

image on a map.  
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Figure 12: Orthomosaic of the area of interest. 

 

 

Figure 13: Georeferenced orthophoto of the area of interest. 
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3.4 Area of Interest: Selection and Analysis 

A small part was selected from the entire captured area for further analysis with the 

final area of interest (AOI) being approximately 3000 m2.  

 

Figure 14: Selected part of vineyard for analysis 

3.4.1 Information about selected AOI 

Within the selected AOI, a total of 113 different vineyard varieties are located, with 

each variety consisting of 2 to 10 vineyard plants, meaning that the number of vines 

changes among the different varieties. Consequently, certain varieties offer more 

information regarding spectral values on the plant canopy due to having more plants 

compared to others. As a result, the accuracy of detecting different varieties may 

also fluctuate throughout the AOI. 

 

Figure 15: Area of interest 
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3.4.2 Spectral profile pixel analysis 

The image of the AOI contains information from five different spectral bands. In 

order to extract the maximum from these bands, it is necessary to combine them 

and identify the areas where each band contributes the most valuable data. By doing 

so, an analysis about each band with its mean value and standard deviation is initially 

calculated (Figure 16 and Table 1). 

 

Figure 16: Spectral values of each band of area of interest 

 

Bands Mean value Std Dev 

Band 1 0.06 0.02 

Band 2 0.12 0.04 

Band 3 0.12 0.06 

Band 4 0.26 0.10 

Band 5 0.47 0.2 

Table 3: Mean values and Standard deviation of each band 

 

The values of each band were separated into five parts. Moreover, an equalization 

on values was applied for better visualization results. As each band has a different 

mean value, it is distinct to provide also different information about images’ 

objects. By focusing on each band it can be observed that the higher values in band 

1 and 3 depicts ground pixels, while the higher values in bands 4 and 5 are for 

vegetation pixels and band 2 values presents both ground and vegetation pixels 

(Figure 17-21). 
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Band 1   

 

 

 

Figure 17: Spectral values of Band 1 

Band 2   

 

 

 

 

Figure 18: Spectral values of Band 2 
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Band 3   

 

 

 

Figure 19: Spectral values of Band 3 

Band 4   

 

 

 

Figure 20: Spectral values of Band 4 
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Band 5   

 

 

 

Figure 21: Spectral values of Band 5 

 

3.5 Field measurements of varieties 

The purpose of conducting field measurements for variety identification is to 

accurately detect the exact locations where each variety begins and ends. To map 

these locations of the varieties, a GNSS GINTEC-M20 receiver was deployed (Figure 

22), which is capable of tracking and processing signals from all active satellite 

systems, including GPS, Glonass, Galileo, and BeiDou. This receiver is capable of 

achieving horizontal position accuracy of less than 2 cm. 

                       

Figure 22:  GINTEC-M20 GNSS receiver 

In the vineyard fields, labels for each variety are positioned at the starting point of 

each variety; the locations of these labels were surveyed using the GNSS receiver 

and in the GGRS87 coordinate reference system, which is the National Greek 

Coordinate system. 
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Measuring the precise position of each variety is crucial because it ensures that the 

ground truth of the variety's dataset is significantly more accurate.  

                 

Figure 23. Labels for the position of different vine varieties. 

The image below shows the measured points of each distinct variety represented by 

red dots.  It is evident that the first rows contain about 5 varieties each, while the 

number of different varieties decreases on the last rows.  

 

Figure 24: Position of the beginning and the ending of each vine variety.  
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4. Results 

4.1 Mask creation of vineyard region 

If to achieve optimal classification between vine, ground, and shadow pixels, aiming 

to isolate the vine pixels, it is requested to use a mask in the specific area. This 

process is crucial to focus only on examining the vine canopy area in the subsequent 

steps. However, apart from vine, ground, and shadow areas, there also weeds; 

distinguishing this type of vegetation as a separate class poses more challenges, as 

it consists of low vegetation that may also include ground pixels. Therefore, during 

the classification process, weed pixels will be categorized within the ground class.  

The definition of training and test samples, along with the implementation of various 

classification algorithms, was conducted. The objective is to determine the most 

effective classifier for these three regions of interest. Four classifiers were 

executed, including three supervised algorithms (Maximum Likelihood, Minimum 

Distance, and Mahalanobis Distance) and one unsupervised algorithm (Iso Data). 

4.1.1 Definition of training and testing samples 

For the training and testing of these algorithms, 35 samples were used for each 

region of interest; specifically, 28 samples for training (Figure 25a), while the 

remaining 7 for algorithm testing (Figure 25b). 

  
  

(a) (b) 

 

Figure 25: (a) Training and (b) testing samples for the classification 
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4.1.2 Classification of vineyard, ground and shadow pixels 

After defining the training and testing samples, the algorithms were executed, and 

the results are presented in Table 4 and Figure 26 and Figure 27. Specifically, the 

following table and diagram illustrate the percentage of area occupied by each class 

in the classified image for each classification algorithm. 

 

Training 

  

Supervised classification %  

Unsupervised 

classification 

Maximum 

likelihood 

Minimum 

Distance 

Mahalanobis 

Distance Iso data 

Shadow 21.81  24.14 28.12 25.03 

Ground 46.57 46.91 53.7 55.21 

Vines 31.62 22.15 25.03 19.75 

Table 4:Results of supervised classification 

 

 

Figure 26: Classification results of each algorithm 
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RGB 

 
Maximum Likelihood 

 
Minimum Distance 

 
Mahalanobis Distance 

 
Iso Data 

  

Ground 

 Shadow 

Vines 

 

Figure 27: Classification results on a part of the image. 

  

4.1.3 Classifiers’ evaluation 

For the classifiers’ evaluation, confusion matrices were created for both training 

and testing sets (Table 5) 

Maximum Likelihood 

Class test_shadow    test_ground  test_vines Total   

Shadow  93.97 0.66 0.91 24.13 

Ground 5.69 97.35 0.30 38.59 

Vines 0.33 1.98 98.79 37.28 

Total 100 100 100 100 

 

Minimum Distance 

Class test_shadow    test_ground  test_vines Total   

Shadow  94.31 0.51 3.11 24.97 

Ground 5.69 97.28 11.30 42.62 

Vines 0 2.20 85.60 32.41 

Total 100 100 100 100 
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Mahalanobis Distance 

Class test_shadow    test_ground  test_vines Total   

Shadow  94.08 0.66 5.69 25.92 

Ground 5.92 98.46 1.14 39.37 

Vines 0 0.88 93.18 34.70 

Total 100 100 100 100 

 

Iso Data 

Class test_shadow    test_ground  test_vines Total   

Shadow  95.65 0.66 3.18 25.39 

Ground 4.35 97.65 16.60 44.38 

Vines 0 1.69 80.21 30.23 

Total 100 100 100 100 

Table 5:  Confusion matrices between training and testing sets 

Table 6 and Figure 28 presents the classification results, indicating that the 

Maximum likelihood algorithm provides the higher percentage of correct classified 

vineyard pixels.  

Testing 
  

Supervised classification  
Unsupervised 

classification 

Maximum 

likelihood  
Minimum 

Distance  
Mahalanobis 

Distance  Iso Data  

Shadow  93.97 94.31 94.08 95.65 

Ground  97.35 97.28 98.46 97.65 

Vines  98.79 85.60 93.18 80.21 

Table 6:  Classification results 

 

Figure 28: Diagram of classification results 
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As evident from the Table 6 above, the Iso Data classifier achieved higher accuracy 

in classifying shadow pixels, the Mahalanobis distance classifier performed better in 

classifying ground pixels, while the Maximum Likelihood algorithm demonstrated 

higher accuracy in classifying vine pixels. Since only the vine pixels are required for 

the subsequent steps, the results that are further analyzed are those obtained from 

the Maximum Likelihood classification and a mask will be implemented to exclude 

ground and shadow pixels. 

 

4.1.4 Image noise removal and mask implementation 

The classified image that was generated includes pixels that do not belong to the 

objects in the image; these pixels are considered noise. The objective of this step is 

to isolate noisy pixels from the image and exclude them from the final result; this 

procedure is known as "sieve classes". Specifically, the user selects the window size 

(pixel connectivity=8) for scanning the image, and objects within a class that contain 

less than 15 pixels are isolated. Consequently, these pixels are labeled as 

“unclassified”. 

Notably, the vine class was isolated from the resulting image, and a mask was 

created (Figure 29) with the vine mask is presented before and after applying the 

sieve classes procedure; The vine area is reduced from 31.67% of the entire image 

to 31.14%. 

  

 

Figure 29: Noise removal results 

 

Taking into account that the focus is only on the vines, it was intentional to apply 

masks to the ground and shadow areas in the image; thus, the remaining pixels, 

corresponding to the vines, are considered the regions of interest and were retained, 

with the final image comprising vine pixels (Figure 30). 
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Figure 30: Mask of vines 

4.2 Vegetation indices analysis 

Since the final region of interest was identified on the image, seven vegetation 

indices were calculated. The purpose of this step is to identify indices that have 

lower correlation with each other; this approach will help in clustering varieties with 

the purpose to detect varieties with common needs or even to identify which of 

them are on the same growth stage. For instance, if certain varieties are growing at 

a faster rate than others, their fertilizer or water needs may differ, accordingly. 

Moreover, variations in ground characteristics across different locations within the 

same vineyard field can also impact the growth requirements of the vines. The 

selected indices for implementation and analysis on the area of interest are 

presented shortly in Table 7. 

Index name Formula Reference 

Chlorophyll Index Green (Clgr) CLGR= (NIR/GREEN)-1 (Gitelson et al., 2005) 

Chlorophyll Index - Red-Edge (Clre) CLRE= [(NIR/RedEdge)-1] (Gitelson et al., 2005) 

CVI (Chlorophyll Vegetation Index) CVI= (NIR/GREEN) *(RED/GREEN) (Vincini et al., 2008) 

NDVI (Normalized difference 
vegetation index) 

NDVI= (B5-B3)/(B3+B5) 
  

(Rouse JW, 1974) 

GNDVI (Green Normalized difference 
vegetation index):  

GNDVI= (NIR-
GREEN)/(NIR+GREEN) 

(Gitelson et al., 1996) 

EVI 2 (Enhanced vegetation index) EVI 2= 2.5*(B5-B3)/(B5+2.4*B3+1) 
  

(Clevers, 1999; 
Kaufman, 1997) 

RVI (Ratio Vegetation Index) RVI= NIR/RED (Jordan, 1969) 

Table 7: Vegetation indices used 
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4.2.1 Information about selected vegetation indices  

(Gitelson et al., 2005) developed two vegetation indices: Chlorophyll Index Green 

and Chlorophyll Index – Red-Edge (Clre) in order to estimate the chlorophyll content 

in crops. They conducted experiments in soybean and maize crops but they also 

proposed the implementation of these indices for other crops. In their study they 

examined parameters such as LAI, Chl, canopy architecture and leaf structure to 

estimating these indices. (Gitelson et al., 2005)  also proposed the green chlorophyll 

index (CIgreen), which is a technique based on linear regression of the model against 

the total chlorophyll content in the canopy; they found a high correlation between 

CIgreen and canopy chlorophyll content in maize and soybean crops. The Clgreen 

index was proposed as (NIR/GREEN)-1, where NIR and GREEN represents the 

reflectance for the Near Infrared and Green bands, respectively. 

(Jiang, 2008) considered the findings of (Clevers, 1999)regarding the high correlation 

among visible bands in agriculture fields, and the research of (Kaufman, 1997) and 

(Karnieli, 2001) who stated that “under clear sky conditions, the SWIR spectral bands 

are highly correlated with the visible (blue, green and red) spectral bands over 

various land covers”. Based on these insights, Jiang (2008), made the assumption 

that “visible bands are highly related to each other over agriculture fields”. 

Consequently, they formulated the EVI2 index equation. That index was tested 

worldwide on 40 sites with diverse ground and crops type (agriculture, grassland, 

forests) and diverse weather conditions and the implementation of the tests lasted 

for six years (2000-2005). 

(Vincini et al., 2008) proposed the leaf chlorophyll index for canopy-scale in order 

to estimate the chlorophyll concentration in crops leaves. They conducted 

experiments to evaluate the effectiveness of this index on sugar beet canopies and 

they recommended to use this index during periods when crops have open canopies. 

(Gitelson et al., 1996) attempted to use the green band in the chlorophyll calculation 

for crops and they observed that the green index is more sensitive to chlorophyll 

concentration compared to the red band.   

The leaf pigment of plants provides considerable information about the plant’s 

health status. Reflectance values of plants, obtained through specific 

measurements, it is used in order to measure contents, such as chlorophyll, 

carotenoids, and other nutrients (Gitelson et al., (2006). Chlorophyll has the 

property to absorb the light energy and contributes to the photosynthetic process, 

while carotenoids protect the photosynthetic systems from damage.  
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4.2.2 Ground truth of vineyards varieties 

Next objective is the vine’s attribute analysis that will facilitate drawing conclusions 

about the differences or similarities between various vine varieties. The area of 

interest consists of 26 vine rows, approximately at 54 m each. Each row consists of 

1 to 5 different varieties and, therefore, 112 different varieties are located in the 

entire study area. Figure 31 illustrates the ground truth of varieties in the area of 

interest. A, B, C, D and E are the code of each different variety that a row of vines 

may include. If in a row there are 5 different varieties, the code for each variety in 

the specific row will be for example 2A, 2B, 2C, 2D and 2E. If a row of vines has only 

2 different varieties the codes for that row will be 18A and 18B.  Each row depicts 

each variety in different colour. It is important to note that within the area of 

interest there are not present the same variety more than once.   

 

 

Figure 31: Ground truth of varieties’ location 

4.2.3 Vegetation indices implementation 

To carry out the analysis, the seven different vegetation indices mentioned above 

were applied to the image; for each variety the average reflectance value for each 

index was calculated and presented in the following sections of 4.2.3. 
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4.2.3.1 Chlorophyll Index Green (Clgr) 

 

 

 

Figure 32: Chlorophyll Index Green (Clgr) implementation. 

 

Mean value of Chlorophyll Index Green 

  Α Β C D Ε 

1 -0,39 -0,45 -0,44 -0,50 -0,71 

2 -0,47 -0,50 -0,47 -0,56 -0,50 

3 -0,46 -0,41 -0,41 -0,47 -0,46 

4 -0,47 -0,45 -0,47 -0,51 -0,43 

5 -0,44 -0,46 -0,51 -0,48 -0,45 

6 -0,43 -0,48 -0,47 -0,50 -0,43 

7 -0,42 -0,40 -0,47 -0,48 -0,44 

8 -0,40 -0,38 -0,43 -0,45 -0,43 

9 -0,44 -0,42 -0,48 -0,45 -0,41 

10 -0,45 -0,44 -0,45 -0,46 -0,47 

11 -0,44 -0,43 -0,43 -0,48 -0,43 

12 -0,41 -0,41 -0,45 -0,54 -0,47 

13 -0,41 -0,43 -0,47 -0,44 -0,46 

14 -0,46 -0,51 -0,47 -0,45 -0,46 

15 -0,46 -0,43 -0,44 -0,42 -0,45 

16 -0,46 -0,44 -0,45 -0,43 -0,50 
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17 -0,44 -0,46 -0,40 -0,44  

18 -0,46 -0,47    

19 -0,46 -0,43 -0,50   

20 -0,47 -0,47 -0,44   

21 -0,47 -0,45 -0,46   

22 -0,46 -0,45 -0,48   

23 -0,50     

24 -0,44 -0,52 -0,53 -0,50 -0,51 

25 -0,46 -0,55 -0,48 -0,54  

26 -0,49 -0,45 -0,48 -0,51  

 

Table 8: Mean value of Chlorophyll Index Green for each variety. 

 

4.2.3.2 Chlorophyll Index - Red-Edge (Clre) 
 

 

 

Figure 33: Chlorophyll Index - Red-Edge (Clre) implementation 
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Mean value of Chlorophyll Index - Red-Edge (Clre)  

  Α Β C D Ε 

1 1,33 1,22 1,13 0,97 1,16 

2 1,17 1,06 1,02 0,90 1,04 

3 1,15 1,10 1,28 1,03 1,08 

4 1,06 1,04 1,10 0,87 1,10 

5 1,10 1,05 1,01 0,95 1,16 

6 1,05 1,00 1,01 0,87 1,19 

7 1,10 1,18 0,89 1,04 1,08 

8 1,20 1,15 1,00 0,85 1,15 

9 1,08 1,13 0,99 0,99 1,27 

10 1,17 0,98 1,02 0,95 1,04 

11 1,00 1,15 1,09 1,00 1,11 

12 1,05 1,10 1,01 0,98 1,18 

13 1,09 1,12 1,05 1,13 1,09 

14 1,03 1,16 1,10 1,02 1,11 

15 1,15 1,21 1,15 1,18 1,13 

16 1,18 1,18 1,26 1,34 1,08 

17 1,28 1,07 1,40 1,25  

18 1,27 1,10    

19 1,19 1,33 1,15   

20 1,24 1,01 1,05   

21 1,19 1,05 1,05   

22 1,15 1,12 1,04   

23 1,12     

24 1,18 1,25 1,15 1,07 0,97 

25 1,20 1,03 1,17 0,97  

26 1,19 1,21 1,07 1,06  

 

Table 9: Mean value of Chlorophyll Index - Red-Edge (Clre) for each variety 
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4.2.3.3 CVI (Chlorophyll Vegetation Index) 

 

 

Figure 34: CVI (Chlorophyll Vegetation Index) implementation 

 

Mean value of Chlorophyll Vegetation Index 

  Α Β C D Ε 

1 2,84 2,72 2,51 2,21 2,50 

2 3,62 3,07 2,84 2,05 2,29 

3 2,83 3,01 3,02 2,94 2,64 

4 3,91 2,44 2,83 2,46 3,26 

5 3,26 3,16 2,86 2,55 3,19 

6 2,64 2,88 3,13 2,90 3,06 

7 2,69 3,23 2,61 3,05 2,60 

8 2,96 2,90 2,94 2,48 2,75 

9 2,85 3,04 2,62 2,48 2,99 

10 3,06 2,41 2,69 2,72 2,68 

11 2,64 3,08 3,15 2,79 2,55 

12 2,81 3,34 3,05 3,54 3,09 

13 2,80 3,14 3,12 3,08 3,20 

14 2,72 3,70 2,95 2,86 3,37 

15 2,99 3,15 3,02 2,79 3,05 

16 2,92 2,66 3,09 3,21 3,32 
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17 3,53 3,01 3,67 3,40  

18 3,29 2,94    

19 3,09 3,50 3,21   

20 3,44 2,66 2,71   

21 3,03 2,41 2,74   

22 3,01 2,81 2,65   

23 3,26     

24 3,11 3,48 3,65 2,87 2,69 

25 2,81 3,01 3,15 2,94  

26 3,25 3,20 2,74 2,67  

 

Table 10: Mean value of CVI (Chlorophyll Vegetation Index) for each variety 

 

4.2.3.4 NDVI (Normalized difference vegetation index) 

 

 

 

Figure 35: NDVI (Normalized difference vegetation index) implementation 
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Mean value of NDVI  

  Α Β C D Ε 

1 0,82 0,78 0,80 0,80 0,77 

2 0,76 0,74 0,77 0,80 0,79 

3 0,80 0,79 0,82 0,77 0,79 

4 0,74 0,78 0,77 0,76 0,77 

5 0,78 0,76 0,75 0,77 0,78 

6 0,78 0,74 0,75 0,74 0,80 

7 0,78 0,79 0,75 0,76 0,78 

8 0,79 0,80 0,77 0,76 0,80 

9 0,78 0,79 0,77 0,78 0,80 

10 0,79 0,78 0,77 0,77 0,77 

11 0,79 0,79 0,77 0,77 0,79 

12 0,77 0,81 0,77 0,73 0,78 

13 0,77 0,79 0,76 0,79 0,79 

14 0,77 0,76 0,78 0,78 0,78 

15 0,78 0,81 0,79 0,81 0,79 

16 0,79 0,80 0,80 0,82 0,77 

17 0,80 0,80 0,82 0,81  

18 0,80 0,79    

19 0,80 0,81 0,79   

20 0,79 0,78 0,78   

21 0,80 0,81 0,79   

22 0,79 0,79 0,76   

23 0,78     

24 0,81 0,78 0,77 0,78 0,75 

25 0,81 0,76 0,81 0,74  

26 0,79 0,81 0,79 0,78  

 

Table 11: Mean value of NDVI (Normalized difference vegetation index) for each variety 
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4.2.3.5 GNDVI (Green Normalized difference vegetation index) 

 

 

 

Figure 36: GNDVI (Green Normalized difference vegetation index) implementation 

 

Mean value of GNDVI 

  Α Β C D Ε 

1 0,69 0,66 0,66 0,64 0,63 

2 0,68 0,64 0,66 0,62 0,64 

3 0,68 0,68 0,70 0,66 0,66 

4 0,67 0,64 0,65 0,62 0,67 

5 0,68 0,66 0,64 0,63 0,68 

6 0,65 0,63 0,65 0,63 0,69 

7 0,65 0,69 0,62 0,66 0,65 

8 0,67 0,68 0,66 0,62 0,67 

9 0,66 0,68 0,64 0,64 0,68 

10 0,68 0,64 0,65 0,65 0,64 

11 0,65 0,68 0,67 0,65 0,66 

12 0,65 0,70 0,66 0,65 0,67 

13 0,65 0,68 0,65 0,68 0,68 

14 0,65 0,68 0,67 0,66 0,68 

15 0,67 0,70 0,68 0,68 0,68 

16 0,67 0,67 0,69 0,71 0,67 
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17 0,70 0,68 0,72 0,71  

18 0,69 0,67    

19 0,68 0,71 0,68   

20 0,69 0,65 0,65   

21 0,68 0,66 0,66   

22 0,67 0,67 0,63   

23 0,67     

24 0,69 0,68 0,69 0,66 0,63 

25 0,68 0,65 0,69 0,63  

26 0,68 0,70 0,66 0,65  

 

Table 12: Mean value of GNDVI (Green Normalized difference vegetation index) for each variety 

 

4.2.3.6 EVI 2 (Enhanced vegetation index) 

 

 

 

Figure 37: EVI 2 (Enhanced vegetation index) implementation 
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Mean value of EVI 2  

  Α Β C D Ε 

1 0,86 0,80 0,82 0,77 0,53 

2 0,75 0,73 0,77 0,71 0,77 

3 0,80 0,82 0,85 0,77 0,80 

4 0,73 0,80 0,78 0,74 0,80 

5 0,79 0,77 0,72 0,77 0,79 

6 0,81 0,74 0,75 0,73 0,82 

7 0,81 0,83 0,76 0,75 0,81 

8 0,83 0,85 0,80 0,79 0,82 

9 0,81 0,82 0,76 0,80 0,83 

10 0,79 0,81 0,79 0,78 0,77 

11 0,80 0,81 0,79 0,77 0,83 

12 0,82 0,83 0,78 0,68 0,78 

13 0,82 0,81 0,76 0,80 0,78 

14 0,78 0,72 0,78 0,80 0,77 

15 0,79 0,82 0,81 0,83 0,80 

16 0,79 0,82 0,80 0,83 0,74 

17 0,80 0,79 0,84 0,81  

18 0,79 0,79    

19 0,79 0,82 0,76   

20 0,77 0,78 0,81   

21 0,78 0,82 0,79   

22 0,79 0,80 0,76   

23 0,75     

24 0,82 0,73 0,71 0,76 0,73 

25 0,80 0,70 0,78 0,69  

26 0,76 0,80 0,78 0,75  

 

Table 13: Mean value of EVI 2 (Enhanced vegetation index) for each variety 
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4.2.3.7 RVI (Ratio Vegetation Index) 

 

 

 

Figure 38: RVI (Ratio Vegetation Index) implementation 

 

Mean value of RVI 

  Α Β C D Ε 

1 11,75 10,63 11,34 10,77 8,80 

2 8,36 7,99 9,78 10,45 10,27 

3 11,09 10,32 12,13 9,04 10,47 

4 7,57 10,44 8,90 8,72 9,18 

5 9,59 8,60 8,44 8,94 9,77 

6 9,59 7,56 7,81 7,38 10,86 

7 9,46 10,23 8,18 8,76 9,72 

8 9,96 10,31 8,90 8,55 10,79 

9 9,96 10,19 9,27 9,99 11,38 

10 10,39 9,61 9,37 9,24 9,22 

11 9,87 10,26 9,36 9,14 10,51 

12 9,29 11,55 9,49 7,08 9,67 

13 9,05 10,19 8,71 10,17 9,89 

14 9,07 8,83 9,87 9,36 9,36 

15 9,73 11,47 10,47 11,20 10,43 

16 9,66 11,29 11,10 12,13 8,71 
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17 10,58 10,36 12,15 11,59  

18 10,77 10,40    

19 10,63 11,46 10,32   

20 9,86 9,45 9,84   

21 10,72 11,42 10,20   

22 10,03 9,98 9,28   

23 9,39     

24 10,87 9,79 8,91 9,60 8,76 

25 11,18 8,27 11,09 7,82  

26 10,10 11,12 10,38 9,91  

Table 14: Mean value of RVI (Ratio Vegetation Index) for each variety 

4.2.4 Qualitive evaluation of indices 

The results of the indices implementation are presented in aggregate in the Figure 

39.  

RGB CLGR 
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NDVI GNDVI 
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EVI2 RVI 

 

 
 

Figure 39: Indices implementation on the image in the masked areas 

These vegetation indices have different spectral band combinations and calculation 

methods, allowing them to capture specific aspects of vegetation health, density, 

and chlorophyll content. The optical results for the above-presented indices are 

summarized below: 

• Chlorophyll green index - CLGR: it focuses specifically on the green band and 

it shows sensitivity to chlorophyll concentration. It is observed that in almost 

the entire study area the values remain consistently low, while only a few 

plants exhibit higher values. Also, higher chlorophyll values are presented on 

the center of each plant as there the foliage is denser. 

• Chlorophyll red-edge index - CLRE: it aims to calculate chlorophyll 

concentration in vegetation by using the reflectance in the red-edge region 

of the electromagnetic spectrum. It is particularly effective in differentiating 

vegetation types and detecting stress in plants. It is evident that a small area 

shows higher values, indicating the presence of stress. 

• Chlorophyll Vegetation Index - CVI: it directly estimates the chlorophyll 

content in plant leaves and provides insights into leaf health and 

photosynthetic activity. In the study area high concentration values are 

missing. 

• Normalized Difference Vegetation Index – NDVI: is a widely used vegetation 

index that evaluates the health and vigor of vegetation. It provides 

information about the density and amount of green vegetation. On the 
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produced image it seems that all the vines do not provide the same amount 

of greenness. The difference in this value is related either to the health or 

the lack of a substance on the leaves or indicates that some plants are younger 

than others. 

• Green Normalized Difference Vegetation Index – GNDVI: is similar to NDVI 

but uses the green band instead of the red band. The main characteristic is 

that indicates the areas where the vegetation is denser. It is evident that the 

vines in the center region of the study area show higher values of the GNDVI 

index. 

• Enhanced Vegetation Index 2 – EVI2: EVI2 is an improved version of the 

traditional EVI. It incorporates adjustments to account for atmospheric 

influences, canopy, and soil. EVI2 provides a more accurate estimation of 

vegetation conditions, particularly in areas with dense canopies. It seems that 

only some areas show high values. 

• Ratio Vegetation Index - RVI: it evaluates vegetation health and it is sensitive 

to changes in chlorophyll content and can indicate plant stress. The RVI image 

showed that only small parts of the entire area appear stress. 

4.2.5 Quantitative analyses of vegetation indices 

The following steps include a quantitative procedure to evaluate the vegetation 

indices for clustering varieties into categories with common characteristics. These 

steps consist of correlating the indices, along with keeping and further analyzing 

those that indicate lower correlation with each other. From the correlation matrix, 

two sets of different indices were retained, within a total of four out of the seven 

indices. Then, two different clustering methods were implemented to categorize 

varieties into four different groups with similar properties. The results of the 

clustering methods are illustrated and analyzed in the subsequent steps, and finally, 

the results of the entire index analysis procedure is presented.  

4.2.5.1 Correlation matrix between vegetation indices 

Firstly, a matrix was calculated containing the mean values for each vegetation 

index measured in all the varieties (Table 14). 

 

Table 15: Dataframe with index values. 
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The correlation matrix consists of 112 rows equal to the total number of different 

varieties and seven columns, one for each vegetation index. The correlation matrix 

between the mean values of each index in relation with the others is presented in 

Figure 40.: 

 

Figure 40: Correlation matrix between indices 

Observing the correlation matrix, the following conclusions can be drawn: 

• The CVI index appears to have the lowest correlation with most of the other 

indices. Specifically, it shows a correlation lower than or equal to 0.1 with 

the RVI, EVI2, NDVI and CLGR indices.  

• The CLRE index shows lower correlation values at 0.33 and 0.38 with the 

CLGR and EVI2 indices, respectively. 

• The indices with higher correlation values are NDVI with the RVI index, and 

CLGR with the EVI2 index. Their correlation value is almost equal to 1, 

indicating that they have nearly identical results.  

For a reliable analysis of the vineyard varieties, it is crucial to retain only the indices 

that exhibit low correlation with each other. In the subsequent steps of the 

procedure, two sets comprising of a total of four different vegetation indices will be 

selected. By considering the lower values in the correlation matrix, we chose the 

following pairs of indices: 

• CVI- RVI 

• CLGR- CLRE 
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4.2.5.2 Linear transformation of indices’ values 

The value range of each index varies between different scales. It is important 

though, for better visualization and a more reliable classification, the values range 

to be adjusted between 0 and 1. To achieve that a linear transformation was 

executed on the indices value table (Figure 41 and 42).. 

 

Figure 41: Linear transformed values of CVI and RVI indices. 

 

 

Figure 42: Linear transformed values of CLGR and CLRE indices. 

4.3 Clustering of vineyard varieties 

4.3.1 Clustering methods 

Clustering algorithms fall into two broad categories. The first category is the hard 

clustering, where each data point belongs exclusively to a single cluster. An example 

of such an algorithm is the k-means method. The second category is known as soft 

clustering, where each data point can be assigned to multiple clusters 

simultaneously. A common algorithm for soft clustering is the Gaussian mixture 

model (Figure 43) and these are the methods selected for the data clustering. 
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k-means clustering Gaussian mixture model 

Figure 43: Clustering algorithms presentation 

 

Regarding the k-means method, it is an unsupervised classification which executes 

an iterative process to cluster data points into groups based on their similarity. The 

aim is to minimize the sum of distances between data points and their cluster 

centroids, for an accurate grouping. In the k-means algorithm the Squared Euclidean 

distance is used, where each centroid represents the mean of the points within that 

cluster. 

Gaussian mixture model, which is the second clustering method applied, it is a 

probabilistic model, which assumes that all data points are generated from a 

combination of a finite number of Gaussian distributions with unknown parameters. 

The method uses the expectation-maximization (EM) algorithm to fit the models. It 

also has the capability to draw confidence ellipsoids for multivariate models and 

compute the Bayesian Information Criterion to determine the optimal number of 

clusters in the data. The Gaussian Mixture offers various options to constrain the 

covariance of the estimated difference classes, including spherical, diagonal, tied 

or full covariance. 

4.3.2 K-means clustering implementation  

The first implemented clustering method is the k-means algorithm, for which the 

chosen distance metric is the Squared Euclidean distance, and the number of 

clusters is set to k=3. The classification results are depicted in the Figure 44. To 

assess the quality of the classification results in terms of cluster compactness, 

cluster distance, and overlapping, the silhouette coefficient was used. The 

silhouette coefficient values range between -1 and 1, where a value of 1 indicates 

that the data points within each cluster are highly compact and the clusters are 

clearly distinct from each other. Values near 0 suggest the presence of overlapping 

between data points, while a value of -1 represents the worst-case scenario. 
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4.3.2.1 K-means clustering on CLGR- CLRE pair indices 

 

Figure 44: Clusters of k-means classification between CLGR and CLRE indices 

Based on the above visualizations, it is evident that the values of each variety are 

evenly distributed across the three classes. 

 

Figure 45: Silhouette Value of CLGR and CLRE clustering 

The silhouette coefficient was calculated to be 0.50 (Figure 45). Generally, a 

silhouette score of 0.5 or higher is considered indicative of good clustering. 

Therefore, based on the threshold of 0.5, the results can be considered satisfactory, 

and can be retained. 

4.3.2.2 K-means clustering on CVI – RVI pair indices 

The classification results of k-means algorithm for the indices pair CVI – RVI are 

displayed in Figure 46. 
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Figure 46: Clusters of k-means classification between CVI and RVI indices 

Based on the above visualizations, it is evident that the values of each variety are 

also evenly distributed across the three classes.  

 

Figure 47: Silhouette Value of CVI and RVI clustering 

The silhouette coefficient was calculated to be 0.52. Therefore, based on the 

threshold of 0.5, the results can be considered satisfactory and they are be retained. 

4.3.3 Gaussian mixture model clustering implementation 

Continuing, the second algorithm, the Gaussian mixture model, it is used to cluster 

the same pairs of indices in also three classes.  

The machine learning algorithm can be implemented by taking into consideration 

two parameters: the value of sigma, which can be either diagonal or full, and the 

shared covariance value, which can be set as true or false.  

In diagonal covariance matrices, the predictors are not correlated with each other. 

The ellipses’ axes are either parallel or perpendicular to the x and y axes. This 

specification increases the number of parameters, but it is more solid compared to 

using the full covariance. 
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In the full covariance there are no restrictions on the orientation of the ellipses’ 

axis. However, using full covariance significantly increases the number of 

parameters, which may lead to a higher probability of overfitting.  

In the shared covariance matrices, all components have the same covariance matrix. 

This means that the size and the orientation of the ellipses are identical. Using 

shared covariance is more solid compared to unshared covariance, as the number of 

parameters is increased only for one component. 

In the unshared covariance matrices, each component has its own covariance matrix. 

This allows for differentiation in the size and orientation of the ellipses, with the 

number of parameters able to increase depending on the size and the orientation of 

the ellipses, but this approach can effectively capture covariance differences among 

components. 

 

4.3.3.1 Gaussian mixture model clustering on CLGR- CLRE pair indices  

The values distribution for the CLGR- CLRE indices pair is presented in Figure 48. 

 

Figure 48: Values distribution of CLGR – CLRE indices 

 

Based on the algorithm implementation, the results for all combinations of the 

parameters are shown in Figure 49. 
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Figure 49: Gaussian mixture model clustering results for CLGR – CLRE indices (where 1,2,3 is the resulted 
clusters) 

Based on the above visualizations, it appears that the combination of sigma-full and 

shared covariance-true exhibits the most even distribution of values among the three 

classes. 

4.3.3.2 Gaussian mixture model clustering on CVI – RVI pair indices 

Firstly, the values distribution for the CVI-RVI indices pair is shown in Figure 50. 

 

Figure 50: Values distribution of CVI – RVI indices 
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After the algorithm implementation, the results for all combinations of the 

parameters are presented in Figure 51.  

 

Figure 51: Gaussian mixture model clustering results for CVI- RVI indices (where 1,2,3 is the resulted clusters) 

Taking into account the above visualizations, it appears that the combination of 

sigma-diagonal and shared covariance-false exhibits the most even distribution of 

values among the three classes. 

4.4 Clustering algorithms analysis 

After the classification of the varieties' dataset in two different ways and for two 

combination of pair indices, we evaluated these results. For each algorithm, the 

results made from the two-index clustering are compared with each other and with 

the purpose to extract observations related with varieties that both pair of indices 

classified together, as having common characteristics. For the implementation of 

this method the results of the first pair of index classification grouped in three 

classes (based on the classification results), and compared with the same results 

from the second pair of indices. In Table 15 are presented the variety codes and 

names that the algorithms cluster in the same class, whereas Figures 52-55 show 

maps with the location of these varieties inside the vineyard field. 
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K-means Gaussian Mixture model 

class1 class2 class3 class1 class2 class3 

A6 A23 A1 A6 A1 A3 

A9 B2 A3 A7 A2 A10 

A11 B14 A10 A11 A16 B16 

A14 B24 A17 A12 A17 B17 

B4 B25 A18 A13 A18 B18 

B10 C5 A19 A14 A20 B22 

B20 C24 A21 B20 A23 C1 

B21 D6 A22 C9 A26 C15 

C2 D12 A24 C10 B14 C26 

C4 D25 A25 C20 B15 D1 

C7 E16 B3 D4 B19 D2 

C9  B7 D5 B24 D15 

C10  B8 D8 B26 D26 

C14  B9 D10 C3 E2 

C20  B11 D11 C16 E3 

C21  B12 D14 C17 E6 

C22  B13 E7 C19 E8 

C26  B15  C24 E15 

D5  B16  C25  

D8  B19  D16  

D9  B26  D17  

D10  C1  E9  

D11  C3  E12  

D14  C15    

E3  C16    

E7  C17    

E10  C25    

  D13    

  D15    

  D16    

  D17    

  E6    

  E8    

  E9    

  E15    

 

Table 16: Final clustering of varieties 

Should be noted that the exact names of varieties cannot be revealed as this 

information is confidential.  
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Figure 52:  K-means clustering results 

 

Figure 53: Gaussian mixture model clustering results 
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Figure 54: Clustering results by the combination of k-means and Gaussian mixture model algorithms in three 
classes 

 

Figure 55: Clustering results by the combination of k-means and Gaussian mixture model algorithms in four 
classes 
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4.4.1 Key points from the clustering implementation  

Based on the above implementation and the subsequent visualization, the key points 

found are the following:  

• Regarding the k-means algorithm results, and considering the total of the four 

indices studied (RVI- CVI and the CLGR – CLRE), most of the varieties were 

classified into the 3 classes. Specifically, 73 of the 112 varieties were 

classified into the three groups. 

• Gaussian mixture model used a stricter classification, as it takes into 

consideration more parameters and from the four indices analysis classified 

58 of the 112 indices into 3 classes. This number is much smaller in contrast 

with the k-means classification as it represents almost half of the total 

varieties. 

• Many of the varieties were classified in a common class by both clustering 

algorithms, which ensures the validity of the method.  

• The rest of the varieties are characterized as unclassified as the two different 

pair of indices clustered them in different classes. 

• Another important observation is that varieties that belong in the same class, 

except for the spectral characteristics they may have in common, they have 

also spatial correlation with each other. This means that neighbor vines, 

except for spectral characteristics, they also share the same ground 

conditions; soil characteristics of an area can influence the vine’s growth 

either in a positive or in a negative way. Thus, the ground substances are 

responsible for the condition inside the plant’s tissue and leaves. 

• The spectral values of a plant, apart from the plant’s health status, depend 

also on its growth stage. Therefore, it is possible that vines that neighbor may 

grow simultaneously and this status is related to the portion of water or 

fertilizers that they have absorbed. 
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5. Discussion - Conclusion – Further Research 

The present study aimed to examine the feasibility of using multispectral images to 

detect different varieties of a crop, specifically grapevines. The main objective was 

to find differences between multiple grape varieties using only the information 

provided by the spectral profiles of the leaf surfaces. The images used in the study 

were collected through UAV (Unmanned Aerial Vehicle) flights, focusing on entire 

sections of the selected vineyard (located in Lykovrisi area at the northern part of 

Attica region) and only on the canopy of them. Extensive literature research 

revealed that this topic seems to have not been sufficiently examined so far, as 

usually an area that produces either table grapes or wine would involve one or a 

small number of varieties. The study area had the characteristic of containing many 

varieties in a very small area, and the sample from each variety was also relatively 

small.  

Initially, the research showed that it was not feasible to classify and differentiate 

grape varieties correctly via only using the bands of the multispectral camera. 

Therefore, it was decided to create categories where the varieties belonging to the 

same group would show common characteristics that would emerge after applying 

vegetation indices to the image. Indeed, the varieties were successfully classified 

into three classes, although some remained unclassified based on the indicated 

features. Additionally, the classification was performed using two different 

algorithms to verify the results of one method against the other. It was found that 

several varieties were classified together by both algorithms. The results indicated 

also that some of the varieties included in this study did exhibit common 

characteristics in terms of spectral information. By observing the final map, it 

emerged that in some cases, the varieties classified in the same class were spatially 

related. This observation raises the question: if these methods applied in an area 

containing only one variety, would the values of the indices within clusters of 

vineyards show such significant differences or would they be very similar, making it 

more challenging to classify them into different distinctive classes? In other words, 

the classification derived from this study is influenced by the unique characteristics 

of the varieties examined, or it was because the vines, due to soil characteristics, 

water and fertilizer quantities received by the vines, might exhibit different 

characteristics? 

In this study, certain vegetation indices were selected to differentiate grape 

varieties by identifying their features. The underlying assumption was that each 

variety possesses distinctive characteristics and, therefore, the growth time and the 

likelihood of lacking certain substances, leaf density etc. may alter depending on 

the variety. Thus, it is possible to encounter such differences in the same variety, 

but this is an issue that should be investigated in future work. 

From the maps that were generated after applying the indices, it became apparent 

that in certain areas, almost all the indices yielded higher values compared to other 

points in the study area. Considering the small area covered by each variety, it can 

be concluded that when a region of the vineyard, which includes more than one 

variety, exhibits high values in certain region, it is maybe related to the 
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characteristics of that area. This means that either the plants in that specific 

location grow faster or that they have developed stress due to their proximity, which 

results in similar spectral information. To validate the results obtained from this 

study, in addition to the comparisons made using different algorithms and to ensure 

consistent conclusions, it would be quite essential to have conducted ground 

measurements, as well on the leaves of the vines in some areas. 

As the appearance of diseases is of greater concern to farmers regarding vineyards, 

it is important to predict or detect diseases or nutrient deficiencies as soon as 

possible, with the aim to prevent damage or crop loss. Vegetation indices are a way 

to consider the spectral bands with the most significant information for identifying 

plant characteristics. The indices used in this study mainly identified the chlorophyll 

content in vine leaves, determined whether the plant is healthy, indicated areas of 

stress, or aimed to highlight regions with denser canopy, among other factors. These 

are some of the basic characteristics that can be detected using multispectral 

images. However, for deeper analysis and identification of specific substances in 

plant leaves, the spectral information provided by the five spectral bands of 

multispectral images is not sufficient. Hyperspectral images are needed to capture 

values in the near-infrared and shortwave infrared regions of the spectrum at very 

narrow ranges, in order to identify values that can represent more distinctly the 

absence or presence of a substance. Therefore, in a continuation of this research, it 

would be beneficial to differentiate the varieties using the spectral information 

obtained from a hyperspectral camera. With the large number of spectral bands 

offered by a hyperspectral camera, it becomes possible to examine very specific 

ranges of values, and it would be important to identify those values that can 

differentiate the varieties with each other.  

The knowledge of the different varieties’ characteristics is very important for the 

farmers due to various reasons. First, they can optimize the yield of the specific 

variety. Different grapevines may have varying yields, time of ripening, disease 

resistance, and other growth characteristics. By accurately detecting and identifying 

these characteristics, farmers can make specific decisions about planting, pruning, 

and harvesting, ultimately optimizing their yield and maximizing productivity. 

Moreover, it is possible for certain varieties to exhibit different levels of resistance 

specific diseases or pests. By detecting and differentiating these characteristics, 

farmers can implement the proper disease management strategies, to minimize crop 

losses and protect their vineyards. Another important issue is that when a farmer 

plants grapevines in a new field, there is need to select the most suitable variety 

for their specific growing conditions in order to adapt their cultivation practices 

accordingly. For these reasons it is crucial to know and differentiate the 

characteristics of each variety and this information to be used for the best utilization 

of the vineyard. 

In conclusion, to extract information about the growth of grapevines or any other 

plant based on their variety, several validations and complex analysis need to be 

conducted, taking into consideration multiple factors. This study was a starting point 
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for gathering information about grapevines in relation to different varieties. 

Nevertheless, there are still many potential applications and further scientific 

research in farming sector that can be carried out in the future, including the 

introduction of hypespectral cameras, data fusion with in situ and satellite data and 

imagery, as well as deep and machine learning, time series and multi-dimensional 

vector analysis along with increasing computational capabilities offered by the 

continual advancement of technology. 
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