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Abstract

It is well known that digital images are used every day in many fields,
which include medicine, agriculture and law enforcement. The systems
used in the above fields require the input images to be of high quality
without noise. However, there are many factors that can reduce the quality
of an image. One of them is low light conditions, e.g when the image is
taken at night time and/or indoors. Due to these conditions, the light
reflected from the scene and reaching the sensor is very weak resulting in
final images characterized by low contrast and brightness, with pixel
values concentrated in the left part of the histogram, which introduces noise
and color distortions. Such images must be enhanced before being used in
vision systems. The purpose of this work is the study and application of
such image processing methods, that are known as Low Light Image
Enhancement (LLIE) methods, and aim to enhance dark images without
introducing additional noise. Initially, a variety of learning free algorithms
are studied, which apply a mathematical operation to each image. Then, in
an attempt to improve the results, machine learning methods are involved,
specifically deep learning models, which use information from the
available data set, to learn the representation between the dark and ground
truth images. For this purpose, two variations of a Convolutional Neural
Network architecture are proposed. All the methods are applied to the
RELLISUR dataset, which includes truly dark images, rather than images
produced by applying a transformation to the ground truth images, and is
divided into different darkness levels. The results of the methods are
evaluated by metrics that either use a reference image or not. This
evaluation led to the conclusion that classical methods, although they give
satisfactory results, show weakness in excessively dark images,
introducing additional noise and color distortions. On the other hand, the
deep learning methods that were applied, and especially the two proposed
variations, produced more accurate visual results where the experimental
images are characterized by high contrast and brightness.
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Chapter 1 — An Introduction

At this first chapter we will introduce basic concepts of Digital Image
Processing, with a brief summarization of historical background. After that
we will describe the Low Light Image Enhancement (LLIE) problem that
we will try to solve and the dataset to be used. At the end of the chapter we
will include a brief list with the algorithms that will be used, and describe
the quality metrics which will be used for the assessment of each method.

1.1 Image Processing

As humans we rely heavily on vision to make sense of the world around
us. By making sense we mean processes such as recognizing objects,
identifying differences between objects and generally gaining a more
general sense of the landscape/scene that we see with our eyes. Thus, we
understand that as an image we could define any scene (moving or static)
that represents something. This scene, however, can be altered by
phenomena such as low lighting, fog, or even by movement since in reality
no scene is static. Nevertheless, in most cases, we remain able to interpret
what we see, which is due to the fact that the human brain "processes" the
image, improves it, and gives it meaning, with this whole process
happening instantaneously. In this sense, we could define as image
processing the process that the human brain follows to give meaning to
what we see. So, we understand how important a process it is, since our
survival is largely based on it.

But images appear not only as the scenes we see in the world around us,
but also as the results of digital processes such as taking digital images and
producing digital scenes using a computer. These images are called digital,
and they can be corrupted by the same factors, such as the introduction of
noise during the transfer or compression of an image, or even the partial
destruction of a related file. In this case, appropriate image processing
methods exist and are applied, to recover and improve each image. At this
point we can give a clearer and stricter definition of the field of image
processing.

—
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Digital image processing: is defined as the processing of a digital image,
using a computer, with the ultimate goal of either improving/retrieving
visual information for use by humans or machines, or extracting additional
visual information such as image segmentation.|[11]

At this point let us mention that a more rigorous definition of a digital
image is a 2D function, f(x,y), where the spatial coordinates (x,y) as well
as the intensity f(x,y) are discrete quantities.

As we will see below, digital images are used in every aspect of everyday
life, from agriculture and industry, as well as in every form of science such
as medicine, astronomy. In each of these areas, we process digital images
to extract some useful information from them. For example, in agriculture
we can use satellite images to learn about the distribution of crops on a land
surface, in medicine we can use CAT scans to find the location of a
malignant tumor, and in astronomy we can use data from telescopes to find
the structure of a distant celestial body.

In order to produce reliable results, all these applications must use high-
quality images in visual information that contain minimal noise and visual
distortions. This is almost never possible since digital images can be
subject to various kinds of distortions such as noise, blurring, etc. (See
subsection 1.3). This is where the field of digital image processing (or pre-
processing as it is called, in the context of each application) enters, where
we process an image, before feeding it to any of the above applications,
with the aim of either improving it or extracting additional information.
More details will be mentioned in a later section, in this chapter.

Based on what was mentioned above we understand the importance of the
field of digital image processing. In the following we will study in a little
more detail the applications where digital images are used as well as the
various stages of processing to which these images are subject in order to
remove noise and extract information. Then we will analyze the part on
which the rest of the work will focus, strictly defining the problem to be
tackled and describing the course we will follow.




1.2 Digital Image Processing applications

As mentioned above, digital images are used in a multitude of applications.
In this section we will refer to each of them in a little more detail by
describing basic examples. The main areas we will look at are applications
in medicine, agriculture and law enforcement.

Medicine

This is one of the most important areas of using digital images and digital
image processing. The most basic use is the processing of images from
examinations such as MRI and CT scans to extract (visual) information that
can lead to a diagnosis and selection of appropriate treatment for each
patient.

MRI, or Magnetic Resonance Imaging, is a medical imaging technique that
uses strong magnetic fields and radio waves to produce images that depict
the organs and general anatomy of the (human) body. The end result is a
cross-section depicting the anatomy of the region of interest. For example,
figure 1.1 depicts images of the brain as obtained from MRI scans. Doctors
can then use these images to find abnormalities or even conditions in the
area of interest (here in the brain) such as cancerous tumors, cysts and
tissue diseases. For example, figure 1.2 shows an MRI of a brain in which
a cancerous tumor has been detected.

Figure 1.1: MRI Scans of the Human brain*

1 From https://www.melbourneradiology.com.au/diagnostic-imaging/mri-scan-brain/

(5 )
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BRAIN TUMOR

Figure 1.2: Cancerous tumor as detected by MRI scan®

CT scans can lead to the same or even better conclusions, the results of
which are 2d slices that can be combined to construct a 3d representation
of the body's anatomy. Unlike MRI scans, CT scans do not use strong
magnetic fields, but a set of thin X-ray beams that scans the patient. It is
usually used in patients who have a metal implant for which an MRI scan
is not indicated. For example, figure 1.3 demonstrates an image from CT
scans of soft tissues. CT scans can then be used by doctors to detect
abnormalities in the area of interest (here in the soft tissues) such as
cancerous tumors and internal bleeding. Figure 1.4 depicts cancerous
tumors (early stages above and advanced below) as detected by CT scans

[1].

2 From https://www.cancer.gov/rare-brain-spine-tumor/tumors/diffuse-midline-gliomas
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Eiwcova 1.4: Cancerous tumors in the lungs as detected by CT scans [1]

3 From https://www.medicalnewstoday.com/articles/153201



https://www.medicalnewstoday.com/articles/153201

In an attempt to automate the diagnosis process, digital images produced
by MRI and CT scans can be used in classification algorithms, to classify
tissues into healthy and non-healthy, as well as to locate cancerous tumors

2].

Agriculture

Another large area of application of digital imaging is agriculture. In this
case, remote sensing images, which have been taken from a satellite, are
used. The images taken and processed usually depict pieces of land which
may include forested areas, are intended for cultivation or are already
cultivated and we want to examine the distribution and health of the crops.

For example, if the area of interest consists of forest land, roads and
residential areas, then on the satellite images a classification algorithm is
applied so that each pixel is classified into one of these three categories. In
this way one have the possibility, using these results, to control (using
historical data) the evolution of urban expansion and the results of human
activity, as well as the evolution of forest expansion
(forestation/deforestation)[3]. For example, in figure 1.5 a satellite image
of the city of Maanshan in China is depicted, and figure 1.6 demonstrates
the classification in each class [4]. These images come from the Landsat-
5TM satellite.
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Figure 1.5: Satellite image of Maanshan city in China[4]
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Figure 1.6: Result after classifying each pixel in the respective class[4]

Law enforcement and video surveillance

The last area to be examined 1s law enforcement and video surveillance. In
this case, key applications include digital images of fingerprints as well as
images from security cameras (derived from video frames) that can be used
to identify the perpetrator or to prevent suspicious activity.

In the first case, digital fingerprint images are used to build a huge database
of' such images. These can then be used to identify the perpetrator at a crime
scene where fingerprints have been collected. An example of such an image
[5] is shown in figure 1.7 below. Once a fingerprint is collected from a
crime scene, it is compared to this massive database until a match is found.
To do this, a matching algorithm is applied to the digital image of the
fingerprint that through a process looks for the appropriate match for the
digital image it gets as input. One such example is shown in figure 1.8
where the Minutia Cylinder-Code (MCC) method is boosted using GPU
for greater performance [6].




Figure 1.7: Digital images of fingerprints of an adult (left) and a child (right) [5]
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Figure 1.8: Fingerprint matching using MCC algorithm boosted with GPU [6]

In the second case we refer to digital images as obtained from security
cameras or traffic control cameras (from their frames). These images (or
series of images) can be used to detect illegal activity and prevent a crime.
For example, in figure 1.9 images from security cameras are depicted that
have recorded the theft of objects. These images come from the DCSASS
dataset created by Sultani et al [7] and contains 16853 videos, which are




used to train suspicious activity prevention and recognition systems. As for
example in [8] where the authors have trained a CNN to recognize robbery
and shooting footage.

A different approach is to use digital images from traffic control cameras,
either to detect license plates of vehicles exceeding the speed limit or to
identify and report accidents for faster response. For example, figure 1.10
shows images from a traffic control camera before and after a car accident.
Such images were used by [9] to train an automatic intersection accident
detection system.

Figure 1.10: Images from a traffic control camera before (left) and after (right)

automatic accident detection [9]




1.3 Noise and degradations

Based on what was mentioned in the previous subsection, it is understood
how important digital images are in our daily lives. In all the above cases,
the digital images are used as input to some digital image processing
system with the final aim of extracting useful (visual) information. For
example, in MRI scans, a segmentation algorithm could be applied that
segments a brain scan into healthy tissue and a cancerous tumor, leading to
automated diagnosis [10]. However, in order to make a correct and reliable
diagnosis, the images that are used as input of the diagnosis system must
be of high quality and not be altered by factors such as noise and artifacts.
In remote sensing images, classification algorithms can be applied that
assign each pixel to a class, such as land, crops, bare ground, etc. For this
classification to be correct, the images must also be of high quality and not
been altered by factors such as fog/cloudiness and noise due to
transmission from the satellite to the terrestrial systems. Finally, and in the
automatic accident detection system, the images are passed through a
pipeline in which appropriate features are extracted, which are used to
detect accidents. Even in this case, introducing noise/blurring into the
image can dramatically reduce system performance leading to incorrect
results.

It can be seen that in all cases the input images of the respective system
must be clear and of high visual quality, otherwise there is a risk that the
results produced will be incorrect and unreliable. In the real world,
however, this is very rare, as digital images can be corrupted by many
factors. The two dominant factors are either of a technical nature such as
for example the noise introduced during the capture and transmission of an
image, or of natural origin due to the environment where the capture is
made (low lighting, moving objects/blurring, fog) [11].

For noise due to the technical part (reception, transmission) two major
categories can be distinguished, Gaussian noise and salt and pepper noise.
Below a brief description of these two categories is given.

Gaussian Noise

This type of noise can be introduced into a digital image both during
reception and during transmission. During shooting Gaussian noise can
occur from the sensor and can be due to low lighting levels or high
temperature. Gaussian noise is additive noise and changes the value of each
pixel slightly by an amount that follows a Gaussian distribution [12].

10
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Lnoise (%, ¥) = Ijean(x,y) + g (Zxéon 1.1)

where Inise 1S the image with noise, I¢ean 1S the clean image, (X,y) are the
spatial coordinates of each pixel, lhoise(X,y) and Igean(X,y) are the gray values
of the pixel (x,y) of the image with noise and without noise respectively.
Finally, g is the amount by which the value of each pixel changes, and has
a probability distribution that of the Gaussian distribution:

(g-w?

xe 202 (Xyéom 1.2)

P(g) =

2mo2

Below is an example of Gaussian noise. This result was produced using
MATLAB and the image of Lena* and introducing Gaussian noise with
mean value u=0.005 and variance 6=0.01.

Figure 1.11: Image without noise (left) and with Gaussian noise (right) with u=0.005
and 6=0.01

4 http://www.lenna.org/

11

—
| —


http://www.lenna.org/

Salt and Pepper noise

This is the appearance of black and white pixels randomly distributed
across the image. The appearance of this kind of noise is due to variations
in the image signal during its transmission. During the transmission of the
image, some pixels become corrupted and are replaced by the maximum or
minimum value that a pixel can take (255 and 0 respectively for an 8-bit
image) [12].

In Figure 1.12 an example of salt and pepper noise is depicted, again using
Lena's image.

Figure 1.12: Image without noise (left) and with salt and pepper noise (right)

In addition to technical reasons, the visual information in an image can also
be altered by the (environmental) conditions that prevail during the capture
of the image. Two very basic examples are blurring due to the movement
of an object at the time of shooting and low light conditions (which is also
the problem we will try to solve at the following chapters).

Blurring

It is a distortion of an image that is mainly due to movement of either the
object of interest or the camera itself [13]. Typical examples are the images
and videos resulting from traffic control cameras. As mentioned above,
such images can be used to recognize the license plate number of a car, but
because the objects are in motion, the characteristic noise of blurring

12
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occurs, making it difficult to recognize the license plates. Figures 1.13 and
1.14 demonstrate an example of a blurred image of a car and a license plate
as derived from the study in [14].

A !
RA Sl00Y

Figure 1.13: Blurred car and license plate images [14]

Figure 1.14: Blurred license plate image [14]

Low light conditions

This is noise introduced into an image when the lighting level of the scene
is extremely low [15]. This is mainly because the light reflected from the
surface of the objects i1s weak leading to chromatic aberrations and noise.
This kind of noise can dramatically reduce the performance of systems
using digital images. As a typical example images from security system

13

—
| S—



cameras are mentioned, which during the night face a problem with low
light conditions [16]. Figure 1.15 depicts an example of such an image.

Figure 1.15: Images as they appear in low light conditions [16]

Such images cannot be fed to the systems mentioned in the previous sub-
section because they will produce unreliable results, which can lead to
wrong decisions. Before feeding them to these systems we should first
denoise them by applying a suitable image denoising algorithm to improve
the input quality of the system. Noise due to low light conditions, as well
as low light image enhancement are the main topic of this thesis, during
which we will develop and test/evaluate a set of algorithms, commenting
on the results and comparing the performance of the algorithms with each
other.

In the next sub-section, the problem of low light conditions will be
described in more detail and we will study the data set, which will be used
in the rest of the thesis for the application and evaluation of each low light
image enhancement method.

14
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1.4 Low Light Images and the RELLISUR Dataset

As mentioned above, low light images are images taken in low light
conditions, such as indoors, at night or on cloudy days. Due to these
conditions, the light reflected from the surface of the objects in the scene
is weak, resulting in reduced image quality due to noise and color
distortions. The quality of such images can become even worse after
processes such as conversion, storage and transfer, processes that
themselves introduce additional noise.

More specifically, for an image to be considered as low light, the lighting
conditions must not satisfy certain criteria. But it is impossible to define
theoretical values for a low-light environment, as a result of which there
are no unified standards. The standard can change depending on the
manufacturer/researcher, for example Hikvision uses illuminance (lux
measurement units) as a criterion and has the following categories 1) dark
level (0.011lux-0.11ux), 11) moonlight level(0.0011ux-0.01lux) and 1iii)
starlight level (smaller than 0.001lux). In [17], where the dataset we will
use comes from, as brightness levels they use the Exposure Value (EV)
which will be defined later when the dataset is going to be described.

Images taken in such conditions show low brightness levels, low contrast,
narrow gray range and color distortions. To see this better we will use the
RELLISUR dataset [17], which we will describe next. Specifically, the
average brightness and contrast for all images of each brightness level
separately (details at the end of this sub-section) will be calculated, and
then a random low light image from each brightness level and its respective
histogram will be displayed. Also, for comparison purposes the same
procedure will be applied for the corresponding ground truth images.
Histograms have been generated by MATLAB software.

15
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Darkness Level: 3.0

Low Light Image

Figure 1.16: Random low light image from Darkness Level 3.0
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Figure 1.17: Histogram of all gray values of the figure 1.16
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Figure 1.18: histogram of Figure 1.16 per channel

Low Light Image

Figure 1.19: Normal light version of 1.16 figure
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Histogram of all gray values
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Figure 1.20: Histogram of all gray values of the figure 1.19
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Figure 1.21: histogram of Figure 1.19 per channel
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Figure 1.22: Comparison of histograms per channel

Darkness Level: 3.5

Low Light Image

Figure 1.23: Random low light image from Darkness Level 3.5
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Figure 1.24: Histogram of all gray values of the figure 1.23
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Figure 1.25: histogram of Figure 1.23 per channel
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Normal Light Image

LEERRR. .t

[#

Figure 1.26: Normal light version of 1.23 figure
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Figure 1.27: Histogram of all gray values of the figure 1.26
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Figure 1.28: histogram of Figure 1.26 per channel
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Figure 1.29: Comparison of histograms per channel
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Darkness Level: 4.0

Low Light Image

Figure 1.30: Random low light image from Darkness Level 4.0
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Figure 1.31: Histogram of all gray values of the figure 1.30
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Figure 1.32: histogram of Figure 1.30 per channel

Normal Light Image

Figure 1.33: Normal light version of 1.30 figure
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Figure 1.34: Histogram of all gray values of the figure 1.33
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Figure 1.35: histogram of Figure 1.33 per channel
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Figure 1.36: Comparison of histograms per channel

Darkness Level: 4.5

Low Light Image

Figure 1.37: Random low light image from Darkness Level 4.5

26

—
| —



< 10% Histogram of all gray values

16

14 |

12F

10

Figure 1.38: Histogram of all gray values of the figure 1.37
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Figure 1.39: histogram of Figure 1.37 per channel




Normal Light Image

Figure 1.40: Normal light version of 1.37 figure
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Figure 1.41: Histogram of all gray values of the figure 1.40
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Figure 1.42: histogram of Figure 1.40 per channel
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Figure 1.43: Comparison of histograms per channel
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Darkness Level: 5.0

Low Light Image

Figure 1.44: Random low light image from Darkness Level 5.0
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Figure 1.45: Histogram of all gray values of the figure 1.44
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Figure 1.46: histogram of Figure 1.44 per channel

Normal Light Image

Figure 1.47: Normal light version of 1.44 image
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Figure 1.48: Histogram of all gray values of the figure 1.47
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Figure 1.49: histogram of Figure 1.47 per channel
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Figure 1.50: Comparison of histograms per channel

In all cases of darkness level one can see, from the histograms, that the
pixel values for all color channels are concentrated in the left part of the
histogram due to the low light conditions. As the level increases, this
accumulation on the left side becomes more pronounced leading to
increasingly darker images. Moreover, for all color channels the difference
between maximum and minimum pixel value is very small, which confirms
that low light images show low contrast. It is also worth commenting that
the differences between pixel values between channels are very small. This
leads to not being able to distinguish color and introduces color distortions.
We see this become more pronounced at higher levels, with levels 4.5 and
5.0 being so dark that we can't make out any color at all. As a little spoiler
note that this will be seen in the continuation of the thesis, where the
algorithms to be applied will have a very difficult time restoring the color
information for these levels.

Regarding the brightness values table 1.1 presents these values of the
average brightness for each darkness level of the data set that will be used.
These values have been calculated with the help of MATLAB software. In
addition, a diagram of these values per partition of the data set (train, test,
validation, see the description of the set below) is presented, from where
the decreasing trend of the values as the Darkness Level increases can be
confirmed.
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16,7090 16,8166 16,7994 16,7750
11,7838 11,8761 11,8420 11,8340
8,2093 8,3013 8,2430 8,2512
5,6584 5,7407 5,6592 5,6861
3,9589 3,9634 3,8872 3,9365
Table 1.1: Brightness per data set per darkness level

Train Dataset Brightness vs Darkness Level
18 16,7090
16
14
12
10

Brightness

o N B O

3.0 3.5 4.0 4.5 5.0
Darkness Level

Figure 1.51: Brightness vs Darkness level for low light train dataset

Validation Dataset Brightness vs Darkness Level
18 16,8166
16
14
12
10

Brightness

o N b O

3.0 3.5 4.0 4.5 5.0
Darkness Level

Figure 1.52: Brightness vs Darkness level for low light validation dataset
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Test Dataset Brightness vs Darkness Level
18 16,7994

16
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Brightness

o N B O

3.0 3.5 4.0 4.5 5.0
Darkness Level

Figure 1.53: Brightness vs Darkness level for low light test dataset

Total Brightness vs Darkness Level
18 16,7750
16
14
12
10

Brightness

o N B O

3.0 3.5 4.0 4.5 5.0
Darkness Level

Figure 1.54: Brightness vs Darkness level for the whole low light dataset

In contrast to what have been mentioned so far, in ground truth images the
pixel values are spread over the entire width of the histogram, leading to
high contrast values and images rich in visual information. The differences
between pixel values between channels are large enough to provide the user
rich color information. These features are what the algorithms will try to
restore in the low light images, in the continuation of the work. Each
algorithm will be applied to the RELLISUR dataset, which is described
immediately below.
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RELLISUR Dataset

In [17] the authors present a data set that includes real low light low
resolution images and the corresponding Normal light high resolution
ground truth images, hence the name of the set, Real Low-Light Image
Super Resolution. Their main purpose is to study Low Light Image
Enhancement and Super Resolution together and not separately as is
usually done. For this purpose, the authors collected images of different
resolutions for the same static scene, varying the focal length of the camera,
while at the same time they also collected images of different low light
levels by gradually reducing the exposure time. Before proceeding to the
detailed description of the data set, let us comment that due to the change
in the focal length, misalignment of the image pairs may occur, something
that 1s dealt with by a suitable post processing pipeline.

More specifically, the set consists of a sequence of Normal Light images
of static scenes, scaled x1, x2 and x4, together with 5 low light images
scaled x1, one for each darkness level. The scales express the resolution of
the image, and since doubling the focal length leads to a doubling of the
scale, images of different resolutions are obtained using focal lengths
70mm (x1), 140mm (x2) and 280mm (x4). The x1 images are 625x625
pixels, x2 are 1250x1250 pixels and x4 are 2500x2500 pixels. For the

different brightness levels the Exposure Value is used, which is calculated
2

as log, (NT), where N is the f-stop number of the lens and t is the exposure
time. A reduction of -1.0EV corresponds to half the exposure time, for
constant N. This way images are taken for different values of under
exposure, using exposure values -2.5,-3.0,-3.5,-4.0,-4.5, -5.0EV from the
camera's auto exposure setting. Based on this, the Darkness Levels
mentioned above are defined as 2.5, 3.0, 3.5, 4.0, 4.5 and 5.0 (here we do
not use 2.5 for reasons that will be mentioned later). As the Darkness Level
increases, the images get darker with a narrow gray value range, the pixel
values are concentrated close to 0 and the average brightness of the set
decreases, as can be seen from figures 1.16 — 1.54. For the sake of
completeness, a sequence of such images is listed, using x1 scale images
and darkness level 3.0-5.0, since we will deal with them in the rest of the
thesis.
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Normal Light

The set consists of 850 such image sequences, and if we take into account
all resolution scale levels and all darkness levels, 12750 pairs of LLLR -
NLHR images are obtained.

It was mentioned above that changing the focal length can lead to
misalignment of the image pairs. In addition to this, other external factors
can affect the final result, for example during shooting the wind may shake
the camera leading to motion blur. For this reason, the authors apply a post-
processing pipeline to the images they have collected. First, they check the
collected images one by one to discard those that are out of focus,
incorrectly exposed or contain moving objects. Then, using appropriate
software [18] they remove chromatic aberration and lens distortion. At this
point it should be commented that since it is difficult to remove the
distortion from the corner areas of each image, they apply cropping of the
x4 NLHR images to a size of 2500x2500 pixels. To deal with the problem
of misalignment introduced due to a change in focal length, they register
all images to match the x4 NLHR image of each sequence. They first detect
and match SURF features [19] between the x1 and x4 NL images, using a
downsampled version of the x4 image as the target. The coordinates they
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calculated from the above step are used to calculate a homography through
MSAC [20] and with the translation parameters calculated they align the
x1l LL and NL images to the x4 NLHR reference image. The same
procedure is applied for x2 images. Figure 1.55 shows a summary of the
post-processing pipeline.

1: Distortion correction 2: Center region extraction

Remove chromatic ]
I = s

; N
aberration and [ ==
distortion

ﬁ 3 Center crop
et

HR image HR center region

3: Homography Estimation 3: lmage registration

| Compute A - Apply
homography homogr: _ homography hy
‘g

H
NLLR image HR center region Unaligned LR imag Aligned LR Images

Figure 1.55: Summary of the post-processing pipeline [17]

Finally, let's comment on some statistics of the images of the data set. As it
can be seen from figures 1.16 to 1.50, listed above, the NL images are
characterized by sufficient exposure and have clear details and sharpness,
with their histogram evenly distributed throughout the gray range. On the
contrary, the LL images have very small contrast and intense color
distortion, something that becomes more intense as the darkness level
increases, while the values of their histogram are concentrated in the left
part of it, at values mainly lower than 50, making the problem of LLIE
even harder.

1.5 LLIE: Techniques and Evaluation

As mentioned above, these types of images cannot be fed to computer
vision systems, because the low brightness, strong color distortion and the
accompanying noise will lead to unreliable results. To deal with this
problem there are two approaches. The first is the improvement of the
image acquisition system hardware, using low light circuits [15]. Such
systems use high performance charge-coupled devices or complementary
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metal-oxide-semiconductors, so their technology and manufacturing
method are extremely complex [21]. Although such cameras have been
released on the market, we specifically mention the Nocturn XL by
Photonis®, they are not used in everyday applications because their cost is
particularly high.

Figure 1.56: Nocturn XL low light camera from Photonis®

The second and preferable solution is the development of digital image
processing algorithms to improve low light images. This area of research
is called Low Light Image Enhancement (LLIE) and has the main purpose
of improving the contrast of such images, restoring the brightness and
preserving/enhancing the visual information of LL images, while avoiding
noise enhancement, so that they can then be used in optical systems such
as those mentioned above. The purpose of this thesis is the presentation,
implementation and evaluation of such algorithms, using the RELLISUR
data set.

The images used on a daily basis are mostly colored, i.e. they consist of the
three color channels Red, Green and Blue, so the algorithms that will be
studied are designed for colored image enhancement. This can be done in
two approaches. The first approach is to use the RGB color space directly

5 https://www.adept.net.au/cameras/photonis/nocturnXL.shtml
6 https://www.photonis.com/products/nocturn-xl|

( 1
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https://www.photonis.com/products/nocturn-xl

and apply the respective algorithm to each color band separately, following
a grayscale image enhancement process, as shown in the figure below.

Input Output
™ R Gray image enhancement R"
RGB | G | Gray image enhancemen> G' = R'GB’
» B | Gray image enhancemen> B’

Figure 1.57: LLIE pipeline in the RGB color space [15]

The second approach is to use a different color space, like for example HSI
(Hue, Saturation and Intensity). In this case the brightness component I and
the Saturation component S, are extracted and enhanced separately, while
keeping the Hue component constant, as shown in figure 1.58. This
approach has the advantage of preserving the color information contained
in H, but is obviously more complex.

Input RGB

Space transformation

HSI
] ¥
H S !
Unchanged | Enhanced@ Enhmce@
H’ S’ r
[ ] I
asr

Space transformation

Output R'G'B’

Figure 1.58: LLIFE pipeline in the HSI color space [15]
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In the continuation of the work the first approach will be used, as it is
simpler and can lead to faster results helping the real time application of
such algorithms.

Regarding the algorithms that will be developed in the following chapters,
they can be categorized into the following two major categories:

Learning free algorithms

These are digital image processing algorithms, which do not involve
learning using the ground truth images, but directly process the LL image
using some sort of mathematical operation. We mention by name the
classic algorithms that will be developed during the work, and they will be
described in more detail in the respective chapter.

- Linear Stretching

- Gamma transformation

* Logarithmic transformation
- Histogram equalization

- Single Scale Retinex

- Multi Scale Retinex

- Defogging/Dehaze

Machine learning — deep learning based algorithms

These are algorithms that use the ground truth images to learn features
based on which they will enhance the low light image. Here we will use
deep learning paradigm, which essentially is a black box that at its input
we give it the low light image and this in turn gives us the Normal Light
image at the output. In particular we will use an architecture called Low
Light CNN (LLCNN) which will be described in its respective chapter.

The above algorithms will be applied per darkness level so that we can
compare their performance on increasingly darker images. But since the
authors have put all the images in one folder, we split them into separate
folders, using the script presented at the end of the chapter. Furthermore,
for reasons that will be explained in a later chapter, the data set must be
divided into training set, validation set and test set. This has already been
done by the authors. Finally, since we are only interested in the LLIE, we
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will only use the LL images and the corresponding x1 NL ground truth
images. The distribution of the data is shown in the next table.

Darkness Train Validation Test Total Training(%) Validation(%) Test(%)
Level

2.5 181 10 16 207 87% 5% 8%
3.0 722 43 85 850 85% 5% 10%
3.5 722 43 85 850 85% 5% 10%
4.0 722 43 85 850 85% 5% 10%
4.5 718 43 84 845 85% 5% 10%
5.0 541 33 69 643 84% 5% 11%
Total 3606 215 424 4245 85% 5% 10%

Table 1.2: Separation to training set, validation set and test set of RELLISUR

The division that has been made 1s 85% training set, 10% test set and 5%
validation set. In the continuation of the work, the 2.5 darkness level will
not be used because it has few images compared to the other levels.

As mentioned above we will apply these algorithms by darkness level so
that we can compare their performance. To do this, however, some
evaluation metrics should be defined from which the performance of each
algorithm will be derived, so that we have some number to make
comparisons. The metrics that will be used next can be divided into two
large categories depending on whether they need a ground truth image or
not. These two categories are 1) Full reference evaluation metrics, in which
to calculate the value of the metric we need reference images, and 1i) No-
Reference evaluation metrics, which do not need ground truth images. The
metrics we will use are presented below.

Full Reference Evaluation Metrics

Let Ien(i,)) be the image obtained after LLIE of an LL image, and I4(1,)) the
ground truth image, with i=1,....M «at j=1,...,N. Then the following
evaluation metrics can be defined:

Mean Square Error (MSE)

It expresses the deviation of the enhanced image from the ground truth and
1s calculated as follows:
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M N

1 .. 12

MSE = ZZ[Igt(l,J) — Len (i, )]
j=1

i=1

This definition can be extended to RGB images as well

MSERGB =

Wl =

[MSEred + MSEgreen + MSEblue]

Based on the definition we understand that a small value of MSE implies
a greater similarity between enhanced and ground truth image.

Peak signal-to-noise ratio (PSNR)
The PSNR 1is calculated as follows:

2

MAX:
PSNR = 10 * log, MSE?”

Where MAX, is the maximum gray value that a pixel can take, i.e. 255 in

our case. This is the most commonly used metric for evaluating a denoising
method. From the definition we understand that the higher the value of
PSNR the more similar the enhanced and ground truth images are.

Structural Similarity Index Metric (SSIM)

The two metrics we mentioned above simply calculate an error between
the two images, without taking into account the characteristics of the
human visual system. For this reason in [22] SSIM was proposed where it
takes into account the structural similarity of the two images. Specifically,
the evaluation 1s done taking into account the luminance 1(Ien,lg), contrast
C(Ien,Igt), and structure s(Ien,ly) between the two images. These three
measures are combined in the final SSIM value:

SSIM = F[1(Ien, Iyt ), ¢ (Iens Lge ) S (Iens Lyt )]
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The smallest value this index can take is 0, and the largest 1, and the closer
to 1 the value is, the more similar the two images are.

Based on [22] the functions used in the above expressions are:

] 2y T 0
(xly)_ 2+ 2+C
Uy T Uy 1
. y) = 20,0, + C,
ey RN R
() = 2t
’ 0,0y + C3

Where C; = (K;L)? a small constant for the case that the u2 + uf, 1s close
to zero, L is the range of the pixel values (here 255) and K;<<I a small
constant. Also C, = (K,L)?, with K,<<1, and C3 = % The p, ox are the

average brightness and the standard deviation (as a measure of contrast),
and are defined in the known manner:

N
_ Zi=1%i

Mx N
1

_ §V=1(xi - :ux)z 2
O = N—1

While the o,y 1s the correlation coefficient and is defined as:

Opy = (ﬁ) i(xi — ) (Vi — 1y)

Based on these it follows that the final form of the SSIM metric is:

—
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(2.ux.uy + Cl)(zo-xy + CZ)

SSIM(x, =
Y = T rai 6

and is also the relation implemented by the MATLAB function.

For the evaluation metrics with reference a special function in MATLAB
1s built, which will be described at the end of this chapter.

No Reference Evaluation Metrics

For an 1mage 1(i,)), with size MxN the following metrics can be defined
without a ground truth image:

Mean Value (MV)

This is the average value of the pixel values of the image, i.e. its brightness.
The smaller this average value, the darker the image, and correspondingly,
the higher the average value, the brighter the colors. The formula by which
it is calculated is:

1 M N
MV = Z z 1(i,]
M*N 2Ly ,-=1( 7

It can be generalized to RGB images as follows:

MVRed + MVGreen + MVBlue
3

MVgep =

Standard Difference (STD)

It is the variation of pixel values around the mean value, and thus can be a
measure of contrast. A large value corresponds to an image with high
contrast, so more visual information. The STD for a gray scale image is
calculated by the formula:
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L YN, )) — MV]?

STD =
M x N

The formula can also be generalized to RGB images, in the known way:

STDRed + STDGreen + STDBlue
3

STDggp =

Blind/Referenceless Image Spatial QUality Evaluator (BRISQUE)

This 1s a metric based on the fact that undistorted images exhibit certain
statistical properties that change when distortions are introduced into the
image. Characteristically, we mention that the power spectrum of an image

without distortions is a function of the frequency f, and has the form fiy,

with y being an exponent, the value of which varies little from image to
image [23]. Images containing distortions will deviate from these natural
statistics, so in this way the quality of an image can be quantified. Based
on this we understand that the lower the value of BRISQUE, the closer to
undistorted images the image under consideration is, so the better its visual
quality is. To properly model natural statistics, however, a function must
be trained on a huge set of undistorted images. In the context of the thesis,
we use the corresponding MATLAB function’.

Naturalness Image Quality Evaluator (NIQE)

This is a metric based on Natural Scene Statistics [24]. Specifically, the
authors extract features from a set of natural images, and use them to
train/learn a multivariate gaussian distribution. Then, for each image, the
quality of which they want to calculate, they extract NSS characteristics
and based on these they fit a multivariate gaussian distribution. As image
quality, they define the distance between the gaussian distribution as
derived from the image, and the gaussian distribution they trained in the
previous step. Based on this we understand that the lower the value of the

7 https://ch.mathworks.com/help/images/ref/brisque.html
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NIQE metric, the higher the quality of the image under consideration. In
the context of this thesis, we use the ready-made function of MATLABS,

Experiments and evaluation of results

It was mentioned at the beginning of the subsection that we will apply a
variety of low light image enhancement techniques. The process of
experimentation and evaluation of the results, which we will follow for
each technique, consists of the following steps:

- Each technique/algorithm will be applied to each darkness level
separately so that the performance of the algorithm in comparison to how
dark an image is can be evaluated. At this point, let us mention that all
techniques will be applied exclusively to the RGB color space for reasons
of simplicity. In addition, we will not use the darkness level 2.5, because it
has few images compared to the rest darkness levels.

- For the result that will be obtained for each darkness level for each
algorithm, the value of all the metrics we mentioned will be calculated, for
each image, and we will save the result in an excel file. From this excel file
a table will be constructed that will contain the minimum, maximum and
average value of each metric, per darkness level, as well as the
corresponding values for the original dataset. Based on this table we will
make line charts of PSNR and SSIM.

- The original, ground truth and the image resulting from each method will
be depicted, corresponding to the smallest and largest experimental PSNR,
as well as their histograms for comparison. We will also do this for a
random image, per darkness level, so that we can have a more complete
view of the results (depending on the method we are studying, details in
the next 2 chapters).

Here it should be mentioned that we will do this for each
technique/algorithm separately, but in the last chapter we will combine all
these results in order to compare the techniques with each other,
commenting on the respective results.

In the following subsection the scripts used/referred to during this chapter
will be presented, and briefly describe the steps that they follow.

8 https://ch.mathworks.com/help/images/ref/nige.html
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1.6 Scripts Used

We mentioned above that in [17] the authors provide all the images in one
folder and that we should split the images by darkness level (for each of
the train/test/validation classes). This was done with the help of the script
shown below.

1 close all; clear; clc; format compact;

2

EJ XFOR CREATING LOW LIGHT TRAINING SET

4 ¥images = imageDatastore( D:\AIMAQMATIKH\RELLISUR-Dataset\Train‘LLLR");

5

6 ¥FOR CREATING LOW LIGHT VALIDATION SET

7 ¥images = imageDatastore('D:‘\AIMAQMATIKH\RELLISUR-Dataset‘\Wall\LLLR');

8

& #FOR CREATING LOW LIGHT TEST SET
18 images = imageDatastore('D:\AIMAOMATIKH\RELLISUR-Dataset \Test\LLLR");
11
12 data_size = size(images.Files);
13 numfiles = data_size(1);

14

15 for index=1l:numfiles

16 image_name = char(images.Files{index));

17 if image name((end-6):{end-4)) == '5.8' %this will change depending the darkness level

18 img = readimage(images,index);

19 %&file_path = ['D:\AINAOMATIKH\TRAINING IMAGES\S5.8%LL-5.8\",image_name((end-12):(end-8))," .png"];
28 #%file_path = ['D:\AI TIKH\VALIDATION IMAGES\5.@\LL-5.8\",image_name((end-12):(end-8))," .png"];
21 file path = ['D:\AI IATIKHWTEST IMAGES\S5.@\LL-5.2%',image_name((end-12):(end-8)), " .png'];
22 imwrite(img,file_path);

23 end

24 end

25

Figure 1.59: Script for creating datasets per darkness level for LL images

In lines 3 to 10 we read the data set we are interested in. Because we have
train/test/validation each time we will have 2 of the 3 data sets commented.
For each set case, we run the script 6 times, once for each darkness level,
changing the value in darkness level on lines 17,19,20,21. Essentially we
run a loop through all train/test/split images and if their name contains the
darkness level we are interested in, then we save them in the appropriate
folder.

We follow a similar procedure for the ground truth images, as shown in
figure 1.60. At the end of this process we have at our disposal
train/test/validation datasets, per darkness level.
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-l klose all; clear; clc; format compact;

2

3 ¥FOR CREATING WNORLMAL LIGHT TRAINING SET

4 ENL_images = imageDatastore('D:\AIMAOMATIKHA\RELLISUR-Dataset\Train\NLHR\X1");
= ¥LL_images = imageDatastore( 'D:\AIMAQMATIKH\TRAINING IMAGES\5.@\LL-5.8");

6

7 ¥FOR CREATING NORMAL LIGHT VALIDATION DET

8 ¥NL_images = imageDatastore('D:\AIMAOMATIKH\RELLISUR-Dataset\Val\MLHR\X1")

g ¥LL_images = imageDatastore('D:“AIMAQMATIKH\VALIDATION IMAGES\5.8\LL-5.8");
1@
11 ¥#FOR CREATING NORMAL LIGHT TEST DET
12 ML_images = imageDatastore('D:)\ MATIKHV\RELLISUR-Dataset\Test\MLHRWX1')
13 LL_images = imageDatastors(’ MIMATIKHA\TEST IMAGES\5.8\LL-5.8");
14
15 data_size = size(NL_images.Files);
16 numfiles = data_size(1);
17

18 low_size = size(LL_images.Files);

19 LLnum = low_size(l);

28

21 for index=1l:numfiles

22 nl_name = char(NL_images.Files(index));

23 for i=1:LlLnum

24 11_name = char({LL_images.Files({i));

AT if nl_name({end-8):(end-4)) == 11 name((end-8):(end-4))

26 img = readimage(NL_images,index);

27 %file_path = ['D:\AINAOMATIKH\TRAINING IMAGES\5.@\NL-5.8\',nl_name((end-3):(end-4)),".png'];
28 ¥file_path = ['D:\AINAQMATIKHWALIDATION AGESYS5.@\NL-5.8\",nl| name((end-8):(end-4)),".png"];
29 file_path = ['D:\AINAQMATIKH\TEST IMAGES\5.2\ML-5.0%',nl_name({end-8):(end-4)}, " .png'];
3é imwrite(img,file_path);

31 break

32 end

33 end

34 end

35

Figure 1.60: Script for creating datasets per darkness level for NL images

In this case we read both NL images and LL images per darkness level, and
compare with the file names (each image has a unique name). By doing a
loop through the normal light images, if the LL dataset contains an image
with the same name as that of the respective NL image, then we save this
normal light image in an appropriate folder. So now we have ground truth
images per darkness level, and by extension image pairs that can be used
for evaluation with reference or training of a deep learning model.

In subsection 1.4 we showed a random image from each darkness level
along with the corresponding ground truth, their histograms as well as a
comparison of these histograms. This was done using the following scripts.
In figure 1.61 we see the final script that produces the results of section
1.4. In lines 4-16 we read the LL and NL data sets, and since we have 5
different darkness levels, we will run the script 5 times, each time having
a different level uncommented. In lines 18-23 we find the size of each data
set, and generate a random integer in the range 1 to the size of the set.
Finally, we read the LL and NL version of the image corresponding to this
integer and display them along with their histograms using the
HISTOGRAMS function shown in Figures 1.62 and 1.63. This function
takes as input the LL and NL images, first displays the LL image, the
histogram for all gray values of the pixels, regardless of channel, and then
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the histogram per channel using the sub plots feature. Then it does the same
process for the NL 1image, and finishes by calling the
histogram comparison function, to compare their histograms. This
function is shown in figure 1.64, takes as input the LL and NL images and
initially calculates the histogram of each channel separately. With this
information, and using the sub plot feature, it displays a figure containing
the images as well as their histograms per channel.

1 - klnse all; clear; clc;-furmat compact;

2

E}

a4 %loading low light data

5 XLL_images = imageDatastore('D:\AINAQMATIKHWTRAINING IMAGES\3.@\LL-3.8');
= ELL_images = imageDatastore('D:\AINAOMATIKHA\TRAINING IMAGESA3.5%\LL-3.5");
7 ¥LL_images = imageDatastore( 'D:\AINAOQMATIKHATRAINING IMAGES\4.8\LL-4.8");
8 HLL_images = imageDatastore('D:\AINAOQMATIKHAWTRAINING IMAGES'4.5%\LL-4.5");
9 LL_images = imageDatastore( ' D:\AIMAQMATIKH\TRAINING IMAGESYS.2%LL-5.2");
16
11 ¥loading normal light data
12 XNL_images = imageDatastore( 'D:\AINAOQMATIKHATRAINING IMAGES\3.@\NL-3.8');
13 ENL_images = imageDatastore('D:\AINAQMATIKHAWTRAINING IMAGES\3.5\NL-3.5');
14 XNL_images = imageDatastore('D:\AINAOMATIKHATRAINING IMAGES\4.8\NL-4.8');
15 ENL_images = imageDatastore('D:\AINAQMATIKHWTRAINING IMAGES'4.5\NL-4.5");
16 NL_images = imageDatastore('D:\AINAQMATIKHWTRAINING IMAGES\S5.8%NL-5.@');
17
18 Enumber of images
19 ims = size(LL_images.Files);
28 numdfImages = ims(1);
21
22 Xgenerating a random number im the range [1,numOfImages]
23 idx = randi{numofImages,1);
24
25
26 %low light random image
27 LL = readimage({LL_images,idx);
28 ¥normal light random image
29 ML = readimage{ML_images,idx);
38
21 Zhistograms figures
32 HISTOGRAMS{LL,MNLY)
33

Figure 1.61: Script to display random images and their histograms
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1 function HISTOGRAMS(LL_image,NL_image)

2
3 T
4 % Function that prints the low and normal light images, their respective
g X histogram of gray values and the histograms per channel. Heeded for
[ % the thesis analysis.

7 % Author: Panagiotis Koutsaftis aivc2lele
8 e e R
9

18 H====================c=cs-=msomooooo-

11 XHistograms for the Low Light image

12 ¥=====================================

13

14 Alow light image

15 figure

16 imshew(LL_image)

17 title('Low Light Image')

18

19 Zhistogram of gray values

28 figure

21 imhist(LL_image)

22 title("Histogram of all gray values")

23 xlim{[@, 255])

24 ylim{[@,max({imhist{LL_image))}+10aa])

2L

26

27 Zhistogram per channel

28 figure

29 subplot(3,1,1)

E1:] imhist(LL_image(:,:,1));

21 title("Red Channel Histogram")

32 xlim{[®@,255])

33 ylim{[@,max({imhist(LL_image(:,:,1)))+12aa])
34 subplot(3,1,2)

3% imhist(LL_image(:,:,2));

36 title('Green channel histogram')

37 x1lim{[@, 255])

38 ylim{[@,max({imhist({LL_image(:,:,2)))+1e2a])
39 subplot(3,1,3)

g imhist({LL_image(:,:,3));

41 title('Blue channel histogram®)

42 xlim{[@, 255])

43 ylim{[@,max({imhist{LL_image(:,:,3)))+1028])

44

Figure 1.62: Function for histograms part 1
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44

45 ¥=====================================

46 ¥Histograms for the Normal Light image

a7 S ——

48

49 %¥low light image

58 figure

% | imshow(MNL_image)

G2 title('Mormal Light Image’)

53

G4 Zhistogram of gray wvalues

55 figure

CH imhist(MNL_image)

L7 title("Histogram of all gray wvalues")

L8 x1lim{[@®,255])

£o ylim{[@,max{imhist{NL_image))+1@8a])

68

61

62 Zhistogram per channel

63 figure

64 subplot(3,1,1)

65 imhist(MNL_image(:,:,1));

66 title("Red Channel Histogram")

67 xlim{[®,255])

68 ylim{[@,max{imhist({NL_image(:,:,1)))+1@aa])
69 subplot(3,1,2)

78 imhist(MNL_image(:,:,2));

71 title('Green channel histogram')

72 xlim{[@,255])

73 ylim{[@,max({imhist(ML_image(:,:,2)))+1@aa])
74 subplot(3,1,3)

75 imhist(ML_image(:,:,3));

76 title('Blue channel histocgram')

77 x1lim{[@,255])

78 ylim{[@,max{imhist(ML_image(:,:,3) ) )+1a82])
79

80 ¥=================s==sssoosssssssossssss===oeo
81 & COMPARING THE HISTOGRAMS

82 ¥===================ssssoosssssooosssossomooes
83 histogram_comparison{LL_images,ML_image)

Figure 1.63: Function for histograms part 2
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1 functicn histogram_comparison(LL_image,NL_image)

2
3 f==========================================================================
4 % Function that prints the low light and mormal light images, and their
g % respective histograms per channel, needed for comparison.
6 % Author: Panagiotis Koutsaftis aivc2lele

7 e e e L et
2 Xhistogram values array of each LL_image component
Q LL red = imhist(LL image(:,:,1)};

1@ LL_green = imhist{LL_image{:,:,2));

11 LL_blue = imhist(LL_image{:,:,3));

12

13 Xhistogram values array of each NL_image component
14 ML_red = imhist({NL_image(:,:,1));

15 ML_green = imhist{HL_image(:,:,2));

16 ML _blue = imhist(MNL _image(:,:,3});

17

18 figure

19 #setting the size of the plot

Pl set(gef, 'Position’, get(@, 'Scresnsize’));

21 Hplot of low light image

22 subplot(3,3,1)

23 imshow(LL_image)

24 title('Low Light Image’);

25 Zplot of normal light image

26 subplot(3,3,3)

27 imshow(NL_image)

28 title("MNormal Light Imzge");

29 Xhistogram of low light image per channel

38 subplot(3,3,4:86)

21 plot{LL_red, 'r")

32 hold an

33 plot({LL_green,’'g")

34 plot(LL_blue, 'blus’)

35 title('Low Light Image Histogram Values')

36 hold off

27 Zhistogram of normal light image per channel

38 subplot(3,3,7:9)

39 plot{NL_red, 'r")

aA@ hold on

41 plot{NL_green,’'g')

42 plot(NL_blue, 'blus'}

43 title("MNormal Light Image Histogram Values™)

a4 hold off

Figure 1.64: Function to compare histograms

Following, at section 1.4, we calculated the average brightness of the LL
images, per darkness level and per partition. This was done with the help
of the scripts shown in figures 1.65 and 1.66.
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1 Elose all; clear; clc; format long;

2

3 H==========================================================================

4 X LOW LIGHT IMAGES

5 H=======================ss————mmssmssssom—mmmssss———mmmmsssmsmmmmmmmssmms o

6

7 ¥Training Data

2 B -

9 ®LL_images_train = imageDatastore( D:\AIMAQMATIKH\TRAINING IMAGESY3.@\LL-3.B');
1@ ®LL_images_train = imageDatastore( D:\AIMAQMATIKH\TRAINING IMAGESY3.5\LL-3.5");
11 XLL_images_train = imageDatastore(’D:\AIMAQMATIKH\TRAINING IMAGESW4.8\LL-4.2');
12 ¥LL_images_train = imageDatastore(’D:\AIMAQGMATIKH\TRAINING IMAGESW4.5\LL-4.5"});
13 LL_images_train = imageDatastore('D:‘\AIMAQMATIKHYTRAINING IMAGES\S.@\LL-5.8');
14
15 #validation Data
16 Hmmmm e
17 ®LL_images_val = imageDatastore('D:\AIMAOMATIKH\VALIDATION IMAGESY3.@\LL-3.B');
18 XLL_images_val = imageDatastore('D:\AIMAOMATIKH\VALIDATION IMAGESY3.5\LL-3.5"});
19 ®LL_images_val = imageDatastore('D:\AIMAQMATIKH\VALIDATION IMAGESW4.8\LL-4.2');
28 ¥LL_images_wal = imageDatastore('D:\AIMNAOMATIKHA\WALIDATION IMAGESY4.5\LL-4.5');
21 LL_images_val = imageDatastore( D:\AIMNAOMATIKH\WALIDATION IMAGES\5.2\LL-5.8");
22
23 %Test Data
24 K-

25 XLL_images_test = imageDatastore( ' D:\AINAOMATIKH\TEST IMAGES\3.@\LL-3.@");

26 ¥LL _images_test = imageDatastore( ' D:\AINAOQMATIKH\TEST IMAGES\3.5\LL-3.5");

7 ¥LL _images_test = imageDatastore( ' D:\AINAOMATIKH\TEST IMAGES‘4.@\LL-4.8");

28 ¥LL_images_test = imageDatastore( ' D:\AINAOMATIKH\TEST IMAGES\4.5\LL-4.5");

29 LL_images_test = imageDatastore( D:‘AINAOMATIKHA\TEST IMAGESYS5.@%\LL-5.8');

38

31 [LL_Train,LL_wval,LL_test] = Brightness{LL_images_train,LL_images_val,LL_images_test});
=)

Figure 1.65: Brightness calculation for the LL dataset

In the script of figure 1.65, we read the data set for each partition (train,
test and validation) of the LL dataset and using the Brightness function we
calculate the average value of the brightness of each set. We repeat this
process 5 times, once for each value of the darkness level. We store these
values in an excel file, where we construct the table presented in section
1.4, as well as the corresponding line charts. The Brightness function we
mentioned earlier, shown in figure 1.66, takes as input the data stores of
each partition of the data set. For each datastore it calculates the average
value of the brightness of all the images contained in it, and returns this
result.

54

—
| —



1 function [BR_Train,BR_Val,BR_Test] = Brightness({train_datastore,val_datastore,test_datastore)
2
3 ¥========================s=====s=====s========s=====s=====s=========s========
4 % Function that calculates the mean brightness of a dataset. For our
=1 % purpose we have train, test and validation datasets so we need the
6 % results for all 3 of them.

7 ¥ Author: Panagiotis Koutsaftis

3 ¥========================s=====s=====s========s=====s=====s=========s========
9 ¥TRAIN DATASTORE

1@ ¥size of the dataset

11 files = size(train_datastore.Files);

12 numOfImages = files(1);

13

14 brs = zeros([1,num0fImages]);

15

16 for index=1:numOfImages

7 img = readimage(train_datastore,index);

18 brs{index) = mean({mean{mean{img)));

19 end

20

21 BR_Train = mean(brs);

22

23 ¥VALIDATION DATASTORE

24 ¥size of the dataset

25 files = size(val_datastore.Files);

26 numDfImages = files(1);

28 brs = zeros([1,num0fImages]);

20 for index=1:numOfImages

38 img = readimage(val_datastore,index);

31 brs{index) = mean(mean{mean{img)));

32 end

33

34 BR_Val = mean{brs);

35

36 ¥TEST DATASTORE
7 ¥size of the dataset

38 files = size(test_datastore.Files);

30 numOfImages = files(1);

4

41 brs = zeros([1,num0fImages]);

42 for index=1:numOfImages

43 img = readimage(test_datastore,index);

44 brs{index) = mean({mean{mean{img)));

45 end

46

47 BR_Test = mean(brs);

Figure 1.66: Brightness calculation function for datastore

Finally, we must also mention the functions which will calculate the quality
metrics we described above. We have constructed 3 different functions, a
function that calculates metrics with reference (figure 1.67), a function that
calculates metrics with no reference (figure 1.68), and a function that
combines the two previous functions (figure 1.69).
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1 function [MSE,PSNR,S5IM] = Ref_QA(input_image,ref_image)

2

3 ¥========s===============s==========s==s==ss===sS=s==ssssssssssssssssssssssss
4 % Function that calculates full reference quality metrics. It takes as

g % input the (probably distorted) image and the respective reference images
i % (some times called ground truth) and calculates and returns the MSE, the
7 % PSMR and the S5IM. For the MSE we are using a custom calculatiom and for
3 % PSMR and S5IM we are using the MATLAB functions.

g % Author: Panagiotis Koutsaftis aivc2l@ls
18 Hmmmmmmmmmmmmmmm o
11
12 ¥checking the size of the images
13 if size(input image) ~= size(ref _image)
14 error( 'The size of the images must be the same.')
15 end
16
17 ¥converting the images to double, needed for the calculations
18 double_input = double(input_image);
19 double_ref = double(ref_imags);
28
21 %size of the images
22 [rows,columns,bands] = size(ref_image);
23
24 #calculating the MSE metric Ualud
25 diff_walue = (double_ref-double_input}."2;
26 sum_value = sum(diff_wvalue,"sll"});
27 MSE = sum _wvalue/(rows*columns®bands);
28
29 %calculating the PSNR metric value
38 PENR = psnr{input_image,ref_image);
31
22 #calculating the S5IM metric value
33 S5IM = ssim(input_image,ref_image);

Figure 1.67: Function that calculates metrics with reference

The function presented at figure 1.67 takes as input an image (which here
will have resulted from some LLIE method), as well as the corresponding
ground truth image, and calculates the MSE, the PSNR and the SSIM.
Before that, of course, it checks if the images have the same size, in case a
mistake is made and images of a different size are entered. If the images
are not the same size, then an error is thrown and the metrics are not
calculated. For MSE we use a custom calculation, utilizing the
vectorization capabilities of MATLAB, while for PSNR and SSIM, we use
the default functions of MATLAB.
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1 function [MV,STD,BR,NQ] = noRef QA({input_image)

2

3 H========================= ======== ==========================
4 ¥ Function that takes as imput an image (probably distorted), and

5 % calculates no reference quality metrics. For Mean Value and 5TD we are
6 % using custom calculations and for BRISQUE and NIQE we are using the

7 % MATLAB functions.

8 ¥ Author: Panagiotis Koutsaftis aivcziele

9 H========================= ======== ==========================
18
11 ¥converting the image to double for the calculations
12 double_image = double(input_image);
13
14 ¥size of the input image
15 [rows,columns,bands] = size(input_image);
16
17 ¥calculating the Mean Value metric
18 summ = sum(double_image, "all"});
19 prod = rows*columns®bands;
28
23 MV = summ/prod;
22
23 ¥calculating the STD metric
24 sum_value = 2;
25 for band=1:bands
26 for row=l:rows
27 for column=1:columns
28 prod_value = double_image (row,column,band)®(double_image(row,columns,band)-MV)}~2;
29 sum_value = sum_value + prod_value;
3@ end
31 end
32 end
=25 5TD = sgrt(sum_vslue/(rows*columns®bands});
34 |
35 ¥calculating the BRISQUE metric
36 BR = brisque(input_image);
37
38 ¥calculating the NIQE metric
39 NQ = nige(input_image);

Figure 1.68: Function that calculates metrics without a reference

The function presented at figure 1.68 takes as input an image, which here
will have been obtained as the result of an LLIE method, and calculates
quality metrics without a reference. Specifically, it calculates MV and
STD, using a custom calculation, as well as BRISQUE and NIQE, using
MATLAB built-in functions.

The above two functions are combined in the function shown in figure
1.69. This function takes as input the datastores that contain the ground
truth images and the images that have been derived from the LLIE method.
Then, for each LLIE datastore image, they calculate 7 metrics and store
them in an array. This array has 7 columns, and each row corresponds to a
datastore image. As we will see in the next chapter, the results of this
function, for each method, will be saved in an excel file, which we will use
for our analysis.
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1 functicn assessment_array = assessment{GT_images,EXP_images)

2

3 e e e e
4 *% Returns a matrix whos each column is a assessment metric. The columns
g % of the matrix are of the form:

6 ¥ MSE | P5MR 55IM MV 5TD BRISQUE NIQE

Fi ¥ and each row corresponds to an image of the datastore inputed.

8 % The inputs are the Ground Truth images datastore (GT_images) and the
9 % results of the experiments (LLIE) images datastore.
18 ¥ Author: Panagiotis Koutsaftis aivc21818)
11 H==========================================================================
12
13 #size of the dataset
14 files = size(GT_images.Files);
15 numOfImages = files{1);
16
17 ¥szize of the assessment array
18 array_size = [numOfImages,7];
19 ass_array = zeros{array_size);

26

21 for index=1:numOfImages

22 exp_image = readimage(EXP_images,index);

23 ref_image = readimage{GT_images,index);

24 ¥reference based metric

25 [ass_array{index,1}),...

26 ass_array({index,2),...

27 ass_array(index,3}] = Ref_QA(exp_image,ref_image);

28

29 %no reference metrics

38 [ass_array{index,4),...

31 ass_array{index,5), ...

22 ass_array(index,8),...

33 ass_array({index,7)] = noRef QA{exp_image);

34 end

35

36 ¥returning the final result

27 assessment_array = &s55_&rray;

38

Figure 1.69: Function to calculate metrics for each image of an image datastore

The rest of the thesis is structured as follows. In chapter 2 we will describe,
develop and implement a set of classical algorithms, each time evaluating
their performance. In chapter 3 we will study deep learning methods,
specifically the LLCNN architecture. We will implement 3 different
variations of the architecture, which we will evaluate one by one. Finally,
in chapter 4 we will combine the results of these two chapters, comparing
the methods with each other and making the final comments.
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Chapter 2 — Classical Algorithms

In this chapter we will study classic algorithms, classic in the sense that no
learning process is applied, just a procedure on all the gray values of the
image. The algorithms we will use are the following:

* Linear Transformation

- Gamma Correction

- Log Correction

- Histogram Equalization
- Single Scale Retinex

* Multi Scale Retinex

- Defogging

We will dedicate a separate section to each algorithm, where we will
describe the basic theory on which it is based, as well as the algorithm we
developed to implement it. Then, after we have implemented this
algorithm, we will do the evaluation process that we mentioned in the
previous chapter, commenting in detail on the performance of the
algorithm. Specifically, after we have applied the respective algorithm to
all darkness levels, we will calculate the metrics for all images, per
darkness level, and find the average, minimum and maximum value. We
will put this information in a table, which will help us see the performance
of the algorithm, compared to increasing the darkness level. In addition,
we will also visualize some of these results, making line charts of PSNR
and SSIM, having the darkness level on the horizontal axis and the
average/minimum/maximum value of these metrics on the vertical axis.

In addition to the comparison per darkness level, however, we should also
compare with the original images. For this reason, we list the following
tables, which contain the values of all metrics per darkness level, for the
original LL images.
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Training Set

=
o

694,2298
22113,74
A\Eaes 8120,938

=
o

4,684181
19,71577
A\EAEls 9,389779

o
o

0,037753
0,821144
A\EHAEs 0,186715

i
o

3,903747
40,07623
A\EAE S 16,70904

i
o

3,030453
466,8792
A\EHAE S 63,8632

R
o

26,2064
53,5648
A\EHAE S 42,86169

R
o

3,624159
28,38801
A\Y3.Xc| ) 5,953999

3.5

987,9748
23930,72
9210,818

3.5

4,341247
18,18335
8,812748

3.5

0,026298
0,667332
0,121845

3.5

2,607797
29,92136
11,78385

3.5

2,164115
354,4259
39,63141

3.5

27,80528
52,32394
44,69262

3.5

3,791547
29,98147
6,430537

4.0
1116,853
25217,72
10058,92
PSNR(dB)
4.0
4,113745
17,65084
8,413043
SSIM
4.0
0,019684
0,506031
0,078906
MV
4.0
1,795818
22,01305
8,209293
STD
4.0
1,400256
248,8485
24,20026
BRISQUE
4.0
28,61415
53,49069
45,91238
NIQE
4.0
3,834637
9,986371
6,791194

4.5

1217,962
26171,44
10716,88

4.5

3,952528
17,27446
8,124518

4.5

0,011422
0,372401
0,051244

4.5

1,237321

15,99964
5,65843

4.5

1,290644
170,0167
14,58906

4.5

32,65158
54,157

46,30607

4.5

4,060596
8,761582
7,070335

5.0

1287,082
26857,84
11386,35

5.0

3,840093

17,03474
7,86331

5.0

0,006831
0,269124
0,033721

5.0
0,96892

11,30301
3,95891

5.0

1,013056
109,9066
8,716472

5.0

33,99084
53,12867
46,25342

5.0

4,215045
8,356537
7,256138

Table 2.1: Metrics for the LL training set per darkness level
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3.0
1375,33

16874,81

A\EAE S 8645,529

=
o

5,858414
16,74674
AVERAGE 9,1413

o
o

0,098815
0,322285
A\EHAE S 0,174184

i
o

3,773228
27,52754
A\EHAE s 16,81664
.0
,463488

532,613
A\EHAE s 73,01146

a W

R
o

35,5969
49,64644
AAEHAE s 43,1338

R
o

4,403839
8,495525
A\EiE S 5,763418

3.5

1510,026

18427,87
9782,52

3.5

5,476053
16,34096
8,592476

3.5

0,060259
0,222141
0,112741

3.5

2,541548
19,98084
11,87607

3.5

3,835223
478,0768
48,25011

3.5
39,259

49,76786

44,79345

3.5

4,338387
8,61579

6,324112

4.0
1610,815
19575,38
10662,97
PSNR(dB)
4.0
5,213701
16,06035
8,210792
SSIM
4.0
0,036179
0,150546
0,073196
MV
4.0
1,676796
14,30895
8,301261
STD
4.0
2,23666
422,7642
32,32744
BRISQUE
4.0
41,82411
50,78904
45,70872
NIQE
4.0
5,169145
7,875118
6,730714

4.5

1682,786
20368,45
11324,07

4.5

5,041224

15,87051
7,94494

4.5

0,021741
0,132669
0,048115

4.5

1,116654
10,17944
5,740736

4.5

1,402841
366,5849
21,81565

4.5

43,55633
51,29625
46,86152

4.5

5,183885
8,09575

7,102945

S
=]
(=5
]
=,
=]
=
N
("]
-

5.0

1728,921
20970,15
12103,18

5.0

4,914787
15,75305
7,698427

5.0

0,013508
0,123763
0,031549

5.0

0,782438
7,029027
3,963351

5.0

0,980341

316,3779
17,0961

5.0

43,67322
50,97988
46,93666

5.0

5,634729
8,169879
7,329499

Table 2.2: Metrics for the LL validation set per darkness level
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Test Set

3.0 3.5 4.0 4.5 5.0
1746,415 1932,691 2048,551 2127,227 2170,74
17362,83 19102,99 20490,78 21484,75 22175,88
8096,235 9201,305 10060,86 10691,6 10996,82
PSNR(dB)
3.0 3.5 4.0 4.5 5.0
5,734599 5,319789 5,015219 4,8095 4,671995
15,70933 15,26918 15,01634 14,85267 14,76473
9,390119 8,80953 8,408226  8,14007 8,048578
SSIM
3.0 3.5 4.0 4.5 5.0
0,071396 0,041151 0,024618 0,01545 0,012159
0,518529 0,383841 0,28422 0,202743 0,147703
0,178076 0,11419 0,072755 0,04675 0,031035
MV
3.0 3.5 4.0 4.5 5.0
4,872527 3,260436 2,052688 1,28439 0,896013
30,96231 22,77383 16,68102 11,81068 8,350514
16,79939 11,84197 8,242994 5,659169 3,887245
STD
3.0 3.5 4.0 4.5 5.0
7,536119 4,363014 2,368673 1,370221 0,957235
306,4076 216,4918 146,3811 95,435 32,1226
60,86651 37,35876 22,52707 13,4657 7,593418
BRISQUE
3.0 3.5 4.0 4.5 5.0
27,67109 28,61396 30,19841 37,9339 34,70331
51,90809 51,9671 52,22648 53,48977 51,22521
42,4467 44,38108 45,89925 46,69552 46,64028
NIQE
3.0 3.5 4.0 4.5 5.0
3,913654 3,966301 3,903091 4,265955 4,312168
9,995018 9,474245 9,219952 10,14361 8,689374
5,944108 6,356478 6,686632 7,085731 7,245217
Table 2.3: Metrics for the LL test set per darkness level

We notice that in all cases, as the darkness level increases, the quality of
the images decreases, which is also reflected in the values of the metrics.
The PSNR and SSIM values decrease significantly, MSE, BRISQUE and
NIQE increase, as the darkness level increases. Furthermore, from the MV
we see that the average value of the pixels, as the darkness level increases,
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1s concentrated closer to zero, with the accumulation of values around this
average value becoming more intense, as can also be seen from the STD.
For the sake of completeness, we also list PSNR and SSIM values line
charts for each set per darkness level.
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Figure 2.1: PSNR vs Darkness Level for LL training set

PSNR vs Darkness Level - Validation Set
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Figure 2.2: PSNR vs Darkness Level for LL validation set
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Figure 2.3: PSNR vs Darkness Level for LL test set

0,9
0,8
0,7
0,6

0,5

SSIM

0,4
0,3
0,2

0,1

SSIM vs Darkness Level - Training Set
=@=|I[N e==@=NMAX ==@=AVERAGE

0,821144

0,372401

0,269124

0,186715
0,121845 0078906
0,037753 0,026298 ~0-019684- 007 i1£21z2uzt 8,8328431
o= —C= = —C— —3
3.0 3.5 4.0 45 5.0

Darkness Level

Figure 2.4: SSIM vs Darkness Level for LL training set
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SSIM vs Darkness Level - Validation Set
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Figure 2.5: SSIM vs Darkness Level for LL validation set

SSIM vs Darkness Level - Test Set
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Figure 2.6: SSIM vs Darkness Level for LL test set

From the above figures we clearly see the decreasing course of the metrics,
with the increase of the darkness level, something that we expect to observe
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in the experimental results as well. That is, we expect that as the darkness
level increases, the performance of each algorithm decreases. Furthermore,
we expect that as the darkness level increases, the difficulty of restoring
the color information also increases, as the gray range between the different
channels is very small, even non-existent, making it difficult for the
algorithms to distinguish between colors.

In the rest of the chapter, we will initially study simple point transformation
algorithms, i.e. algorithms that apply some mathematical function to each
pixel individually. After that, we will study algorithms that, instead of
pointwise operations, apply a function per region of an image, mainly
through convolution with some window.

2.1 Linear Stretching

The first LLIE method we will study is the simple linear transformation. It
is a simple linear transformation whose purpose is to expand the pixel
values of each image, over the entire available range of brightness values.
The mathematical formula we apply has the general form:

y=ax+b

Assuming the available range of brightness values 1S [Xmin,Xmax], and that
the range of brightness values of the image under study 1s [Xiow,Xnigh] then
the following relations should hold:

Xmin = AXjow + b

Xmax = AXpign + b

From these relations the following arise:

Xmax — Xmin

a =
Xnhigh — Xiow

b= Xmin — AXjow
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By substituting into the original relation, we obtain the final transformation
that we will apply to the value of each pixel. The final transformation is as
follows:

_ [*max ~ Xmin
y= _ * X+ Xmin
Xhigh — Xiow

The brackets [...] symbolize rounding to the nearest integer. At this point
we must comment that this transformation assumes that the image contains
at least two different brightness values, 1.e. that Xj,w#Xnign, Otherwise the
whole calculation breaks down.

This is a very simple method in terms of implementation. The function that
implements the simple linear transformation is shown in Figure B.2.1 of
Appendix B. Having this function at our disposal, we can apply it to the
LL images for the training/validation/test sets. This is done using the scripts
presented in Figures B.2.2 and B.2.3 in Appendix B. From the execution
of these scripts, the experimental results of the method are obtained, the
evaluation of which is done using the evaluation script, as shown in figure
B.2.4 of appendix B. This process results in 3 excel files, one for training,
one for validation and one for test set, containing the values of the metrics
per darkness level. We summarize these results in the following tables. In
addition to the tables of summary results, we also present line charts of
PSNR and SSIM per darkness level to see how performance is affected as
the Darkness Level increases. Finally, we also present a line chart of the
average PSNR and average SSIM, of the experimental results, compared
to the corresponding values for the LL images, so that we can see to what
extent the result has improved in each case.
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Training Set

3.0 3.5 4.0 4.5 5.0
140,6326 203,7791 262,9136 317,5228 475,9967
17965,93 19081,58 19543,25 19628,85 20239,29
AAEde s 3731,675 3974,85  4111,352  4253,159  4595,576
PSNR(dB)
3.5 4.0 4.5 5.0
5,586306 5,324661 5,220836 5,201856 5,06885
26,64994 25,03921 23,93267 23,11305 21,35476
ANEHEE 1422736 14,01798 13,8992 13,64032  13,08758
SSIM
3.5 4.0 4.5 5.0
-0,01566 -0,04379 -0,03538 -0,08685 -0,03875
0,899859 0,894662 0,881832 0,798625 0,707873
A\/EHAE s 0,465584  0,415016 0,367744  0,314237  0,25971
MV
3.5 4.0 4.5 5.0
4,821523 3,772983 3,017588 2,442978 2,823903
191,9387 182,5086 170,0278 163,4803 141,7101
AA/EHAE S 56,61093  54,97912  53,25364 50,95261 48,39107
STD
3.5 4.0 4.5 5.0
9,913017 7,069264 4,359558 2,907033 2,215631
2081,952 2096,541 2009,683 1901,554 1046,678
AAEHAE S 347,094 338,1003  334,4234  328,8191  324,4536
BRISQUE
3.5 4.0 4.5 5.0
11,94034 11,57572 13,45012 14,41438 11,7375
50,66308 53,24597 54,05845 55,83886 55,7311
A\/EHAes 36,12506  36,49375  36,58132 37,1757 37,97463
NIQE
3.5 4.0 4.5 5.0
2,875239 3,135501 3,338467 3,198216  3,14447
24,4297 25,14077 14,33871 7,857469 10,02405
AWVEiels 4,541229  4,631631  4,716879 4,914912  5,25733
Table 2.4: Metrics for linear transformation results on the training set

=
o

R i i o
o o o o

R
o

68

—
| —



PSNR value(dB)
- N N w
w o w o

=
o
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Figure 2.7: Experimental results PSNR vs Darkness level for training set
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Figure 2.8: Experimental results SSIM vs Darkness level for training set
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Average Experimental Results PSNR vs LL Images PSNR
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Figure 2.9: Experimental vs LL images PSNR

Average Experimental SSIM vs LL Images SSIM
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Figure 2.10: Experimental vs LL Images SSIM
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3.5 4.0 4.5 5.0
308,5986 284,0276 441,5432 526,1866 820,5039
13437,68 14964,13 16550,91 17377,8 18087,02
A\siaels 4208,435  4531,364 4755,887 4834,363  5105,572
PSNR(dB)
3.5 4.0 4.5 5.0
6,847561 6,380288 5,942584 5,730857 5,557133
23,23686 23,5972 21,68107 20,91941 18,99
AVEiaels 13,82967  13,52229  13,22249  13,09242  12,69521
SSIM
3.5 4.0 4.5 5.0
0,134799 0,089868 0,065766 0,049744 0,00626
0,780555 0,715798 0,686459 0,668334 0,609025
A\=iaels 0,449906 0,409326 0,363171 0,324284  0,288493
MV
3.5 4.0 4.5 5.0
10,25712 8,253354 5,962295 4,101435 4,43837
152,0089 150,41 149,4178 126,1608 124,0191
AV=iaels 50,11081  48,76431  47,93793 46,1699 46,07687
STD
Level 3.0 3.5 4.0 4.5 5.0
34,76049 33,50606 19,62656 10,98974 24,1064
952,968 928,3534 887,8849 860,0366 788,0675
ANEHAES 289,4232 283,093 283,9726 281,2327 286,2259
BRISQUE
Level 3.0 3.5 4.0 4.5 5.0
28,19167 25,37716 19,39476 13,79219 20,01727
50,63807 47,29578 51,15442 50,13438 51,51757
AAUEHes 38,82453  38,53557  38,26206 38,49837 36,71361
NIQE
Level 3.0 3.5 4.0 4.5 5.0
2,956701 3,262675 3,305161 3,583528 3,916476
5,891986 6,225532 7,497119 7,183078 8,788216
AVAEiaels 4,498095 4,54172  4,673231  4,815871  5,133486
Table 2.5: Metrics for linear transformation results on the validation set
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Figure 2.11: Experimental results PSNR vs Darkness level for validation set

0,9
0,8
0,7
0,6

0,5

SSIM

0,4
0,3
0,2
0,1

SSIM vs Darkness Level - Validation Images

=@=MIN =@=NMAX ==@==AVERAGE

0,78
.\OZL 0,69 0,67
I Nl
0,45 5aT
- | 0,36
o — 0,32
TC== 0,29
m——
—
0,13
C 0’09 0,07 0[05
® —_— o 0,01
ﬂ
3.0 3.5 4.0 4.5 5.0

Darkness Level

Figure 2.12: Experimental results SSIM vs Darkness level for validation set
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Figure 2.13: Experimental vs LL images PSNR for validation images

0,5
0,45
0,4
0,35
0,3
0,25

SSIM

0,2
0,15
0,1
0,05

Average Experimental SSIM vs LL Images SSIM

e=@==Fxperimental ==@==Original

0,45

0,17
0,11
0,07
0,05 0,03
° —
3.0 3.5 4.0 4.5 5.0

Darkness Level

Figure 2.14: Experimental vs LL Images SSIM for validation images
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Test Set

=
o

3.5 4.0 4.5 5.0
167,7695 249,8631 231,3624 273,2801 387,9315
11909,9 14153,97 15975,41 17498,34 18647,51
AN\EHAE s 3740,161  3986,346  4168,522  4342,931  4556,062
PSNR(dB)
3.5 4.0 4.5 5.0
7,371722 6,622021 6,096283 5,700836 5,424595
25,88367 24,15378 24,48788 23,76472 22,24325
AA/EHAe s 13,86573 13,6508 13,4439  13,22458 12,8527
SSIM
3.5 4.0 4.5 5.0
0,053248 0,014873 -0,03912 -0,02264 -0,06225
0,904539 0,85597 0,819707 0,749933 0,683889
AAEHAEE 0,462487  0,417892  0,366401 0,316112 0,246587
MV
3.5 4.0 4.5 5.0
4,872527 3,326587 2,284477 1,704316 1,32702
144,0537 137,4864 145,3222 134,9407 120,8073
ANEHAES 5434299 53,33926  52,16029 49,44718 47,2227
STD
3.5 4.0 4.5 5.0
28,8886 17,63814 10,08556 6,524338 4,096829
1156,826 1166,538 1166,294 1129,775 1039,747
ANEHAE S 324,3299  322,9576  320,3612  310,9592  299,8686
BRISQUE
3.5 4.0 4.5 5.0
16,12207 17,48292 13,68804 13,65398 16,21911
45,7412 47,02508 53,74219 52,27514 52,15374
A\/EHe s 35,82426  36,04668 36,136 36,85172 37,98579
NIQE
3.5 4.0 4.5 5.0
3,152656 3,260483 3,343861 3,659053 3,815
6,995996 6,806179 7,691173 9,328607 10,33267
ANEHAES 4,532523 4,59056  4,685158 4,977698  5,202868
Table 2.6: Metrics for linear transformation results on the test set
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Figure 2.15: Experimental results PSNR vs Darkness level for test set
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Figure 2.16: Experimental results SSIM vs Darkness level for test set
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Average Experimental PSNR vs LL Images PSNR
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Figure 2.17: Experimental vs LL images PSNR for test images

Average Experimental SSIM vs LL Images SSIM
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Figure 2.18: Experimental vs LL Images SSIM for test images

5.0

We notice that the linear transformation, although simple, improves the
results quite a bit. Regarding the metrics with reference, in all cases, the
MSE decreases and the PSNR, SSIM increases. The reduction of MSE with
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the simultaneous increase of PSNR means that the image is visually
improved and comes closer to the ground truth image. The increase in
SSIM shows us that the images are not only improved visually but also
improve the structural information, recovering a large part of this
information. We see a similar improvement in the metrics without
reference, where the MV increases, which means that the brightness of the
image also increases, while at the same time the STD increases, which
means that the pixel values are more spread around the average value,
which is desirable, as we want these values to be evenly distributed over
the entire range of the histogram. At the same time, the values of BRISQUE
and NIQE decrease, which shows us that the images we recover from the
linear transformation are closer to natural statistics, 1.e. they include visual
information of better quality.

This improvement can also be seen visually in the line charts of PSNR and
SSIM per darkness level for average PSNR and SSIM of both the
experimental results and original LL images. In all cases, we observe that
for each darkness level the result improves, as the method leads to higher
average values of these metrics, compared to the original LL images.
Finally, we also present the line charts per darkness level for the minimum,
maximum and average PSNR and SSIM, based on which we can evaluate
the performance of the algorithm in relation to the darkness level. We
notice that as the darkness level increases, the performance of the algorithm
decreases, since the chart follows a downward path. This performance
degradation is to be expected, as as the darkness level increases, the pixel
values are more and more concentrated at zero, and the gray range is almost
non-existent, making it difficult for the algorithm to retrieve any kind of
information.

For the visual representation of the results, we will also display images
from the experimental results. Specifically, from each darkness level we
select the images that correspond to the maximum and minimum PSNR.
For these images, we will show the corresponding Ground Truth and LL
image, as well as their histograms, to enable comparisons, and to confirm
the comments we made above.
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Figure 2.19: Histogram of original 3.0 LL image

78

—
| —



i Red Channel Histogram

6 J
at |
2F J
- R i gl
L] 50 100 150 2000 250
x 10" Green channel histogram
1 |
2F J
B — — i b |
L] 50 100 150 200 250
x 10" Blue channel histogram
4t |
2F J
 ——————— bbb b
1] 50 100 150 200 250

Figure 2.20: Histogram of 3.0 NL image
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Figure 2.21: Histogram of 3.0 Experimental result

In the image corresponding to the minimum experimental PSNR, the
method struggles to restore all the visual information. Observing the
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histograms, we see that the Ground Truth image consists mainly of white
color, that is, the number of pixel values are concentrated in the right part
of the histogram, near the value 255. This is not an image with histogram
that is spread over the entire available gray value range. The linear
transformation aims to spread the histogram over the entire available range
of values, as a result of which it is impossible to reproduce the histogram
of the Ground Truth image, which is also confirmed by the above results.
Comparing the histograms of the LL image and the experimental result,
indeed the algorithm has flattened the histogram, but it has failed to
reproduce the Ground Truth image, which is expected, for the reasons we
mentioned above.

MAX PSNR
Original Low Light Normal Light Experimental Result
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Figure 2.22: Histogram of original 3.0 LL image
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Figure 2.23: Histogram of 3.0 NL image
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Figure 2.24: Histogram of 3.0 experimental result

In the case of the maximum experimental PSNR, we have a Ground Truth
image with a histogram that spans the entire available value range, so we
expect the linear transformation to be able to reproduce the result. Indeed,
we see that the experimental result is visually very close to the ground
truth. The method has spread the histogram of the LL image over the entire
available value range, with the form of the histogram of the experimental
result being similar to that of the histogram of the ground truth image,
justifying the visual result as well.
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Darkness Level: 3.5

MIN PSNR

Original Low Light Normal Light Experimental Result

And in the case of Darkness Level 3.5 we notice that the same image
corresponds to the minimum experimental PSNR, for the same reasons we
mentioned in Darkness Level 3.0. The ground truth image consists mainly
of white color, causing its histogram to be clustered on the right side near
the value 255, which is impossible to reproduce by the linear
transformation.
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Figure 2.25: Histogram of 3.5 LL image
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Figure 2.26: Histogram of 3.5 NL image
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Figure 2.27: Histogram of 3.5 experimental result
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Figure 2.28: Histogram of 3.5 LL image

85

—

—t



Red Channel Histogram

2 T ™3

1 L -

0 f

Li] 50 100 180 250
w100 Green channel histogram

e i

1k i

0 f -

L1] 50 100 180 250
Blue channel histogram

15000 b

10000 E

5000f 1

V) -

L1] 50 100 150 250

Figure 2.29: Histogram of 3.5 NL image
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Figure 2.30: Histogram of 3.5 experimental result
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In the case of the maximum experimental PSNR, the same image
corresponds to that of Darkness Level 3.0, for the same reasons mentioned
above. The ground truth image consists of a histogram spread over the
entire available range of values, which can be reproduced by linear
transformation. Indeed, the linear transformation succeeds in reproducing
it and recovering much of the visual information, which can be seen from
the images themselves, with the experimental result being visually very
close to the ground truth.

Darkness Level: 4.0
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Original Low Light Normal Light Experimental Result
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Figure 2.31: Histogram of 4.0 LL Image
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Figure 2.32: Histogram of 4.0 NL Image
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Figure 2.33: Histogram of 4.0 experimental result

And in the case of Darkness Level 4.0, the image corresponding to the
minimum experimental PSNR is the same as that of Darkness Levels 3.0
and 3.5, for the same reasons. The histogram of the ground truth image is
concentrated near the value 255, which cannot be reproduced by the linear
transformation, since its logic is to take a histogram with low contrast, and
spread it over the entire available range of brightness values , increasing
the contrast in this way.

MAX PSNR

Original Low Light Normal Light Experimental Result
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Figure 2.34: Histogram of 4.0 LL Image
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Figure 2.35: Histogram of 4.0 NL Image
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Figure 2.36: Histogram of experimental result

In the case of the maximum experimental PSNR, we have an image where
the ground truth case consists of a histogram that is spread over the entire
range of available values, so we expect the method to be able to reproduce
this. Indeed, the image resulting from the application of the linear
transformation is visually very close to the ground truth image. The
histogram of the LL image has been spread over the whole range of
luminance values, with the histogram of the experimental result having the
same form as the ground truth. Something else that is noticed is that in the
experimental result there have started to be some color distortions, which
is due to the fact that the LL image has started to become too dark, making
it difficult to fully recover the color information. This is also reflected in
the histogram, as the pixel values of the experimental result have been
distributed in fewer values in the histogram, compared to the histogram of
the ground truth image, which means that we will also have less color
information.

91

—
| —
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Figure 2.37: Histogram of 4.5 LL Image
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Figure 2.38: Histogram of 4.5 NL Image
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Figure 2.39: Histogram of 4.5 experimental result




Here again, the minimum experimental PSNR corresponds to the same
image as in all previous cases, for the same reasons we mentioned.
Furthermore, the fact that the images have become too dark at this level
makes it even more difficult for the algorithm to recover visual
information.
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Figure 2.40: Histogram of 4.5 LL Image
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Figure 2.41: Histogram of 4.5 NL Image
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Figure 2.42: Histogram of 4.5 experimental result
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In the case of the maximum experimental PSNR, we have a ground truth
image with a high contrast histogram, which spans the entire available
value range, so we expect the algorithm to be able to recover a large part
of the visual information. Indeed, the experimental result is visually very
close to the ground truth image, with the histogram having the same form
as the ground truth. However, we have to comment that the experimental
result shows chromatic aberrations, which is due to the fact that the images
have now become too dark, making it difficult for the algorithm to recover
all the visual information. We can see this by comparing the experimental
histogram with the corresponding ground truth. In particular, we see that
in the experimental result the pixel values are distributed in fewer gray
levels, compared to the ground truth case, which means that we have less
visual information, leading to the observed color changes.

Darkness Level: 5.0
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Figure 2.43: Histogram of 5.0 LL Image
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Figure 2.44: Histogram of 5.0 NL Image
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Figure 2.45: Histogram of 5.0 experimental result

At Darkness Level 5.0, the case of minimum experimental PSNR
corresponds to an image with a ground truth histogram spread over the
entire value range. We would expect the method to be able to recover most
of the visual information. But as we can see it fails to do so, with the
experimental result remaining dark and the corresponding histogram
remaining piled up on the left side, close to 0. This is due to the fact that
we are at the highest darkness level, as a result of which the images are too
dark making it difficult to retrieve visual information.
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MAX PSNR

Original Low Light Normal Light Experimental Result

In the case of the maximum experimental PSNR, we see that the ground
truth histogram is spread over the entire range of available values and not
concentrated at one point. According to the comment we made above, we
would expect the method not to give good results, and the experimental
image to remain dark. But we see that in this case, the linear transformation
manages to recover a large part of the visual information, with the
experimental result being, visually, very close to the ground truth image.
Nevertheless, there are color distortions, which are more intense compared
to the previous darkness levels. This is due to the fact that the images have
become too dark, making it difficult to restore the color information.
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Figure 2.46: Histogram of 5.0 LL Image
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Figure 2.47: Histogram of 5.0 NL Image
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Figure 2.48: Histogram of 5.0 experimental result

At this point it is worth commenting on the results as a whole, starting with
the case of the images corresponding to the minimum experimental PSNR.
From the above, we notice that the method has difficulty in images that
consist mainly of white pixels, i.e. in images where the pixel values in the
histogram are accumulated in the right part of it, close to the value 255.
The purpose of the linear transformation is to take an image that has low
contrast, and output a high-contrast image whose histogram is spread over
all available luminance values. Based on this, we understand that the
behavior we mentioned for the images with the minimum PSNR is
expected, as the ground truth images are characterized by low contrast,
with the difference that the pixel values are concentrated in the right part
of the histogram. So, by its very nature, it is impossible for the algorithm
to retrieve this kind of information. An exception to this is Darkness Level
5.0, where all we can comment on is that the image is so dark that it
becomes almost impossible to retrieve visual information, in most cases of
images.

For the images corresponding to the maximum experimental PSNR, at all
darkness level values, the method gives very good results since the
experimental result is optically very close to the ground truth case,
recovering a large part of the visual information. In addition, in all cases,
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the experimental histogram has a similar form to the ground truth, with the
only difference being that in the experimental, the graylevel values are
distributed in fewer levels of the histogram, compared to the ground truth
case. This becomes more pronounced as the darkness level increases,
which is to be expected since LL images become too dark and due to the
very narrow gray range between the bands it becomes too difficult to
recover the correct distribution of values. This results in the chromatic
aberrations observed, which become more pronounced as the darkness
level increases.

In summary, the linear transformation, although simple, managed to
increase the average PSNR of the images by 5.3dB (on average), and the
SSIM by 0.3, noticeably improving the LL images and recovering much of
the visual information. A noted weakness is that it struggles with images
that contain mostly white, i.e. images for which the graylevel values are
clustered on the right side of the histogram. This is due to the very nature
of the method, as the linear transformation aims to take a low-contrast
image, and output a high-contrast image whose graylevel values are evenly
spread over the entire available range. So, it is practically impossible to
reproduce the result we described above. In addition, color distortions of
the experimental results were observed, which become more intense as the
darkness level increases. These distortions are due to the fact that by
increasing the darkness level, the images become too dark, making it
difficult to retrieve color information. This can be confirmed by studying
the histograms of the LL images and the experimental results. For the LL
images, as we increase the darkness level, the graylevel values accumulate
more and more intensively in the left part of the histogram, with the
dynamic range between the color bands decreasing, and becoming almost
zero, as a result of which the algorithm is struggling to retrieve the correct
color information. For the histograms of the experimental results, we notice
that as the darkness level increases, the graylevel values are distributed in
fewer and fewer levels in the histogram, indicating that we have less
visual/color information at our disposal, confirming that the method
struggles to retrieve it.

The problems we described above are to be expected, as we implemented
a very simplistic algorithm, using a simple linear function. In the next two
subsections, we go a step further, increasing the complexity of the
algorithm by applying non-linear functions to the value of each pixel.
Specifically, we will apply gamma transformation and logarithmic
transformation, commenting on the results.
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2.2 Gamma Correction

This is a point transformation, like the linear one, except that in this case
we apply a non-linear function. Specifically, we raise the value of each
pixel to a power denoted by vy, and is called the correction constant [15].
The mathematical formula we apply is:

ILL(irj)>y

1(i,j) = 255« (W

Based on the value of v, the gamma transform can take several forms,
which are shown in the figure below:
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Figure 2.49: Gamma correction for different y values®

We notice that for y<1 the transform can enhance the dark areas of an image
while preserving the bright areas, making it a suitable algorithm for LLIE.
This is also a simple algorithm in terms of implementation, which is done

% From Image Processing courses’ presentations on point transformations (AIVC 2021-2022)
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by the function shown in Figure B.2.5, of Appendix B. Obviously there is
no ideal value for the correction constant, so we will do 3 different
experiments for 3 different values of the exponent. Specifically, we will
use a small value y=0.1, a medium range value y=0.3 and a large value
v=0.8. We notice that all 3 values are smaller than 1, since we are interested
in enhancing the dark areas of each image. The experimental procedure is
implemented with the script presented in Figures B.2.6 and B.2.7 of
Appendix B. After the application of this script, we have at our disposal
the experimental results, the evaluation of which is done with the program
presented in figure B.2.8 of appendix B. This results in 3 excel files for
each value of the correction constant, which contain the metric values for
each image, per darkness level. We use these values for the construction of
summary tables, presented below, as well as for line charts with the
maximum/minimum/average value of PSNR and SSIM per Darkness
Level. In addition, we also present line charts of the average PSNR and
SSIM both for the experimental results (for each value of the correction
constant) and for the original LL images, per Darkness Level, to compare
how much the result improved in each case.

Training Set

Gamma: 0.1

3.0 3.5 4.0 4.5 5.0
3492,335 2913,357 2209,13 1763,437 1393,58
20898,08 18814,88 16538,25 14034,5 11870,66
9656,502 8303,092 7022,815 5842,988 4982,011
PSNR(dB)
3.0 3.5 4.0 4.5 5.0
4,92974 5,385788 5,945909 6,658835 7,386053
12,69964 13,48687 14,68859 15,6672 16,68949
8,462102 9,135615 9,873598 10,67336 11,35184
SSIM
3.0 3.5 4.0 4.5 5.0
0,138094  0,0746 0,072032 0,070804 0,07431
0,784723 0,764291 0,792453 0,773365 0,660347
0,43329 0,416952 0,393062 0,360888 0,316111
MV
3.0 3.5 4.0 4.5 5.0
120,9224 104,6519 93,97881 85,44764 79,44174
201,6598 194,7715 187,9614 181,0711 174,7407
183,8029 174,6706 164,3499 152,2717 140,1474
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STD
3.5 4.0 4.5 5.0
33,72569 38,89726 46,72629 59,29285 67,64118
1753,653 1930,043 1737,16 1763,661 1509,233
AAEAEs 332,5491 383,1862  454,6074 542,2311  609,6619
BRISQUE
3.5 4.0 4.5 5.0
7,30566 8,238828 10,33431 8,726207 14,80831
53,42801 52,09375 50,56757 50,83908 56,06952
A\EAEE 34,01972 30,15561 26,92062  27,10983  30,46322
NIQE
3.5 4.0 4.5 5.0
2,733553 2,733897 2,836254 2,896855 3,084281
9,966678 11,21531 10,33209 11,1693 13,15784
ANEHAEs 4,184109 4,288651  4,558946  4,973441  5,543359
Table 2.7: Gamma correction results with gamma=0.1 on training set
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Figure 2.50: Experimental results PSNR vs darkness level for training images
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SSIM vs Darkness Level - Training Images y=0.1
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Figure 2.51: Experimental results SSIM vs Darkness Level for training images

For a correction constant of 0.1 a phenomenon is observed which is
opposite to what we have explained and seen so far, the PSNR increases
with the increase of the darkness level, and the SSIM remains almost
constant. Nevertheless, if we look at figure 2.56, we see that the
experimental PSNR is smaller than the corresponding LL images and as
the darkness level increases it becomes slightly better than the original.
Similar behavior for the average experimental SSIM, which is only slightly
better than the original one. This is because we use too small correction
constant value, the dark areas are over-enhanced, and the result resembles
an image taken in over-exposed conditions. We can confirm this from the
values of the metrics. MSE and SSIM decrease, while PSNR increases,
which means that in terms of brightness there is an improvement, due to
over-amplification, but we lose visual information (color, texture, etc.).
MYV and STD increase, which means that the brightness of the experimental
results increases, with a greater variation of pixel values, confirming the
over-amplification we mentioned above. Finally, BRISQUE appears to
decrease, while NIQE increases with increasing darkness level.
Nevertheless, their values remain high, which means that we are far from
natural statistics and the quality of the images is low.
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Gamma: 0.3

3.0 3.5 4.0 4.5 5.0
77,67357 174,9375 217,7657 356,7575 411,034
4999,258 6527,41 8416,371 10295,27 12372,87
A\/EHAEs 1088,054  1165,344  1486,076  2036,705 2859,597
PSNR(dB)
3.5 4.0 4.5 5.0
11,14175 9,983395 8,879555 8,004427 7,2061
29,22807 25,70198 24,75091 22,60707 21,99203
AA/EHAEs 18,27623 18,0992 17,15091  15,76744 14,31027
SSIM
3.5 4.0 4.5 5.0
0,2624 0,166688 0,173362 0,12898 0,079298
0,905391 0,87733 0,834898 0,728988 0,665505
A\/EHAes 0,625351  0,585148 0,530487 0,462446 0,383664
MV
3.5 4.0 4.5 5.0
52,49691 43,30077 36,96539 31,8751 30,00851
126,3678 113,7167 102,4598 91,86411 86,89999
AVERAGE 102,63 91,22191 80,30041 69,747 60,55807
STD
3.5 4.0 4.5 5.0
28,52611 38,21951 47,61383 55,1259 51,11637
1100,658 1020,813 840,9665 730,1673 568,798
A\EHAE s 288,1971 261,18 241,2811 227,3242 213,4258
BRISQUE
3.5 4.0 4.5 5.0
12,91418 8,124384 7,212181 10,75759 7,86179
51,79565 51,43248 49,08752 51,30185 53,2092
AAEHAe s 32,73577  30,65061  29,04878  29,23709 31,08535
NIQE
3.5 4.0 4.5 5.0
2,281133 2,205605 2,522284 2,845994 2,980289
27,7329 14,82724 7,045798 7,259057 8,408454
AN/EHE s 3,861293  3,905891  4,026759  4,234008 4,520591
Table 2.8: Gamma correction results with gamma=0.3 on training set
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Figure 2.52: Experimental results PSNR vs Darkness Level for training images
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Figure 2.53: Experimental results SSIM vs Darkness Level for training images

For a correction constant of 0.3 the best results are obtained. From Figures
2.56 and 2.57 we see that the PSNR and SSIM increase significantly,
especially compared to the other fixed correction cases, indicating the
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improvement of the result. From the values of the quality metrics, we
observe the expected behavior. MSE increases, and PSNR and SSIM
decrease with increasing darkness level. For the metrics without reference,
we observe that MV and STD decrease with increasing darkness level,
meaning that the experimental results become darker with pixel values
clustering more strongly around the mean brightness. BRISQUE appears
to decrease, but at darkness level 5.0 its value increases again, while NIQE
increases as the darkness level increases, which means that as the darkness
level increases, the experimental result moves away from the natural
statistics. This is to be expected as the LL images are so dark that it is very
difficult to recover all the visual information.

Gamma: 0.8

3.0 3.5 4.0 4.5 5.0
2354911 638,7423 818,7235 978,2881  1102,84
18599,15 20853,84 22573,11 23968,91 25075,65
6245,303 7493,574 8559,884 9459,695 10350,67
PSNR(dB)
3.0 3.5 4.0 4.5 5.0
5,435872 4,938944 4,594889 4,334321 4,138282
24,41106 20,07755 18,99943 18,22614 17,70568
10,61229  9,75991 9,146126 8,68727 8,296137
SSIM
3.0 3.5 4.0 4.5 5.0
0,090189 0,063361 0,047123 0,030086 0,019451
0,900089 0,84427 0,723619 0,578283 0,429113
0,333679 0,237395 0,165022 0,113012 0,077469
MV
3.0 3.5 4.0 4.5 5.0
7,706682 5,479142  4,01214 2,960862 2,56154
53,15215 41,73805 32,42197 24,91649 18,68465
27,17741 20,44234 15,19282 11,15423 8,272058
STD
3.0 3.5 4.0 4.5 5.0
8,157182 6,703032 4,874029 4,382126 3,802528
555,2159 425,6451 319,3716 235,7316 166,5757
102,1569 69,65883 47,04096 31,50935 21,05261
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o
o

19,25237
52,24875
A\EAElS 40,43959

o
o

3,07697
28,89557

3.5

24,59563
50,75109
42,28604

3.5
2,947374
29,00329

BRISQUE
4.0

30,63588
50,85141
43,38832

NIQE

4.0

3,360021
8,645698

4.5

26,80585
50,66531
43,94171

4.5
3,646621
7,143216

5.0

32,21923
49,1188

44,09995

5.0
3,706228
7,207026

A\/EiAes 4,891538  5,039388 5,11548  5,189293  5,229769
Table 2.9: Gamma correction results with gamma=0.8 on training set
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Figure 2.54: Experimental results PSNR vs Darkness Level for training images
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SSIM vs Darkness Level - Training Images y=0.8
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Figure 2.55: Experimental results SSIM vs Darkness Level for training images

First let's comment that for a correction constant of 0.8, the LL images
improve little, if at all. From figure 2.56 we see that the average
experimental PSNR is almost the same as that of the LL images, while from
figure 2.57 we notice that the SSIM increases slightly compared to the
equivalent of the LL images. This is to be expected, as 0.8 is quite close to
unity, meaning it leaves images almost the same, with the enhancement of
dark areas being minimal. Regarding the quality metrics, we notice that as
the darkness level increases, the MSE increases and the PSNR, SSIM
decrease. This means that as the darkness level increases, the performance
of the algorithm decreases. The same is observed in the metrics without
reference, where MV and STD decrease, with the increase of darkness
level, which means that the experimental result is darker and the
accumulation of gray value values in the left part of the histogram is more
intense as the darkness level increases. Finally, BRISQUE and NIQE
increase with the increase of the darkness level, which means that we move
further and further away from natural statistics, 1.e. the quality of the result
decreases.
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Average Experimental Results PSNR vs LL Images PSNR
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Figure 2.56: Experimental results average PSNR vs LL Images PSNR training set

Average Experimental Results SSIM vs LL Images SSIM
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Figure 2.57: Experimental results average SSIM vs LL Images SSIM training set
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Validation Set

Gamma: 0.1

o
o

3.5 4.0 4.5 5.0
4716,067 4024,531 3303,853 2913,828 2459,264
14488,02 12326,77 10161,99 8703,311 7534,811
A\siaels 8925,79  7618,675 6405,466  5312,38 4417,184
PSNR(dB)
3.5 4.0 4.5 5.0
6,520713 7,222311 8,061014 8,733959  9,36008
11,395 12,08365 12,9406 13,48616 14,22275
AVsiaels 8,76159  9,455652  10,21875 11,03285 11,82816
SSIM
3.5 4.0 4.5 5.0
0,134004 0,107176 0,099659 0,097444 0,079812
0,715257 0,70296 0,670455 0,627034 0,531918
A\i=iaels 0,418485 0,405261 0,386034 0,356182 0,314588
MV
3.5 4.0 4.5 5.0
121,8897 107,9297 95,06113 83,04376 72,29713
197,1613 189,545 182,0081 173,4699 162,6872
AVEiaels 181,7992  172,7059 162,7023  151,1262 139,8752
STD
Level 3.0 3.5 4.0 4.5 5.0
44,24661 55,27024 67,43236 134,1586 169,3051
1039,836 1079,864 1083,361 1220,335 1274,665
ANEHAEE 366,2691  406,7496  485,8542 574,629 661,4552
BRISQUE
Level 3.0 3.5 4.0 4.5 5.0
19,52548 14,57927 16,43556 16,10552 18,73141
49,12868 45,45907 45,50902 47,4785 45,14583
AN/EHAEE 3493686 31,9376 28,21715 27,37557  28,83888
NIQE
Level 3.0 3.5 4.0 4.5 5.0
3,10295 2,920346 3,083566 3,2515 3,685535
5,58288 7,080189 7,782515 9,071174 9,721552
AVAEiaels 4,167536  4,285659  4,512699 4,790659  5,545879
Table 2.10: Gamma correction results with gamma=0.1 on validation set
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Figure 2.58: Experimental results PSNR vs Darkness Level for validation images
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Figure 2.59: Experimental results SSIM vs Darkness Level for validation images
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Gamma: 0.3

=
o

3.5 4.0 4.5 5.0
267,843 230,9084 425,646 738,7127 856,3532
2304,938 3317,243 4518,973 5774,478 7306,562
AA/EHe s 1014,28  1167,498  1556,901  2154,386 3053,646
PSNR(dB)
3.5 4.0 4.5 5.0
14,50421 12,92303 11,58041 10,51568 9,493673
23,852 24,49641 21,84032 19,44605 18,80427
A\/EHAes 18,50834  17,97769  16,76959  15,32995  13,84067
SSIM
3.5 4.0 4.5 5.0
0,33885 0,319395 0,280134 0,227697 0,187511
0,857265 0,820759 0,75274 0,646054 0,534375
A\/EHes 0,609748 0,57124  0,520152 0,456374 0,378221
MV
3.5 4.0 4.5 5.0
57,3758 48914 41,17625 31,55225 25,70099
120,6786 108,1126 96,53481 85,42025 74,69721
AA/EHAEs 101,8351  90,56641  79,88459  69,61952  60,43669
STD
.0 3.5 4.0 4.5 5.0
1,55341 57,72348 65,08179 70,35501 87,21818
917,072 862,5249 795,6935 726,7177 663,2902
AAEHAES 306,4455  277,1235  258,5589 243,794  232,7557
BRISQUE
3.5 4.0 4.5 5.0
19,94405 20,15696 16,79414 16,31987 11,59378
47,22796 46,42544 48,30353 49,67849 46,94207
A\EHAEs 34,05078  32,32407  29,77512  29,68226 29,76644
NIQE
3.5 4.0 4.5 5.0
2,717332 2,913007 2,942696 3,082985 3,076332
4,988848 5,646397 5,590788 6,18522 7,292711
AN/EHAe s 3,780538  3,889061 4,002844 4,163379  4,414815
Table 2.11: Gamma correction results with gamma=0.3 on validation set
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PSNR vs Darkness Level - Validation Images y=0.3
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Figure 2.60: Experimental results PSNR vs Darkness Level for validation images

SSIM vs Darkness Level - Validation Images y=0.3
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Figure 2.61: Experimental results SSIM vs Darkness Level for validation images
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Gamma: 0.8

=
o

3.5 4.0 4.5 5.0
1042,077 1232,974 1392,912 1519,05 1604,615
14014,97 15906,57 17436,79 18598,68 19565,15
AAEHAE S 6682,69  7989,379 9097,949 10013,54 11032,63
PSNR(dB)
3.5 4.0 4.5 5.0
6,664881 6,115037 5,716138 5,435981 5,215971
17,95181 17,22126 16,69157 16,31508 16,07709
AN/EHAE S 10,29957  9,496342  8,914999  8,488085 8,109008
SSIM
3.5 4.0 4.5 5.0
0,195894 0,138413 0,089786 0,056434 0,036445
0,499425 0,385344 0,28504 0,21245 0,189438
AAEHAEE 0,316549 0,22328  0,155066 0,106681 0,071292
MV
3.5 4.0 4.5 5.0
7,915052 5,663216 3,955056 2,75103 2,027544
40,09343 30,82955 23,5171 17,79241 13,12119
AAUEHe s 27,25292 20,52525  15,30684 11,2737  8,259593
STD
3.5 4.0 4.5 5.0
15,55257 11,41576  7,37885 5,041852 3,755176
591,8927 531,6727 472,207 412,9465 360,7552
AAEdAe s 112,265 79,04753  56,03444  39,41447 30,0183
BRISQUE
3.5 4.0 4.5 5.0
33,51088 36,04395 36,75638 38,91164 40,66837
51,57402 49,54069 49,70543 47,08922 47,449
ANEHAEE 40,93952 42,63984  43,77389  43,87909 43,80592
NIQE
3.5 4.0 4.5 5.0
3,626792 3,933872 4,040729 4,417297 4,53521
6,025387 6,097099 6,51747 6,33248 6,798714
A\EHAes 4,763561  4,92659  5,051903  5,206314 5,285254
Table 2.12: Gamma correction results with gamma=0.8 on validation set
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PSNR vs Darkness Level - Validation Images y=0.8
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Figure 2.62: Experimental results PSNR vs Darkness Level for validation images

SSIM vs Darkness Level - Validation Images y=0.8
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Figure 2.63: Experimental results SSIM vs Darkness Level for validation images
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Average Experimental Results PSNR vs LL Images PSNR
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Figure 2.64: Experimental results average PSNR vs LL Images PSNR validation set

Average Experimental Results SSIM vs LL Images SSIM
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Figure 2.65: Experimental results average SSIM vs LL Images SSIM validation set

In the validation set, the same behavior that we described above is
observed. For a correction constant of 0.1 an increase in PSNR is observed
with the increase in darkness level accompanied by an increase in MV. This
means that there is an over-enhancement of the dark areas. For a correction
constant of 0.8, the experimental results are almost the same as the original
ones, with the metrics improving little to none. For a correction constant
of 0.3 the best experimental results are obtained with the metrics improving
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noticeably and following the expected behavior where with an increase in
the darkness level the performance of the method decreases.

Test set

Gamma: 0.1

3.0 3.5 4.0 4.5 5.0
4121,143 3382,117 2860,049 2314,887 2110,043
17608,52 15647,18 13558,57 11249,82 8859,983
9782,883 8404,342 7080,542 5884,045 5107,944
PSNR(dB)
3.0 3.5 4.0 4.5 5.0
5,673576 6,186443 6,808664 7,619346 8,656475
11,98063 12,83892 13,56707 14,48551 14,88789
8,364756 9,039792 9,793367 10,5984 11,20805
SSIM
3.0 3.5 4.0 4.5 5.0
0,138341 0,117251 0,098057 0,046338 0,034257
0,63151 0,637687 0,634567 0,619031 0,59981
0,416709 0,40099 0,37642 0,351118 0,301781
MV
3.0 3.5 4.0 4.5 5.0
137,3061 116,933 98,82618 86,23649 76,65392
195,4895 188,4743 181,6946 175,192 165,912
184,0343 174,7313 163,899 151,1306 138,2066
STD
3.0 3.5 4.0 4.5 5.0
80,66917 91,22746 92,03232 90,85099 110,0861
1670,4 1840,856 1680,723 1575,155 1520,272
366,52 419,9366 494,5804 576,0743 638,7289
BRISQUE
3.0 3.5 4.0 4.5 5.0
17,02536 16,04095 14,40754 15,52033 12,72685
52,34262 54,92836 50,32158 54,84874 47,87191
33,58486 30,43935 27,54319 27,37307 30,54417
NIQE
3.0 3.5 4.0 4.5 5.0
2,786929 3,024351 3,213892 3,063518 3,389537
6,869445 8,670685 9,212725 9,863945 12,66689
4,100519 4,224289 4,614678 5,138227 5,806921
Table 2.13: Gamma correction results with gamma=0.1 on test set
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Figure 2.66: Experimental results PSNR vs Darkness Level for test images

0,7
0,6
0,5

0,4

SSIM

0,3
0,2

0,1

SSIM vs Darkness Level - Test Images y=0.1

=@=MIN =@=MAX ==@=AVERAGE

0,63 0,64 0,63
’ 0,62 0,60
o= = —C— ,
—o ——0
o 0,40 0,38
o= —— ' 0,35
+

NO

0,14 0,12 010
E 7
® 0,05 0,03
3.0 3.5 4.0 4.5 5.0

Darkness Level

Figure 2.67: Experimental results SSIM vs Darkness Level for test images
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Gamma: 0.3

=
o

3.5 4.0 4.5 5.0
566,9636 381,9993 293,9843 308,2724 444,748
2912,935 3984,445 5393,18 6899,346 8480,456
AN/EHAe s 1112,552 1186,356  1511,129 2062,235 2753,428
PSNR(dB)
3.5 4.0 4.5 5.0
13,4875 12,12712 10,81235 9,742725 8,846612
20,59525 22,31018 23,44756 23,24146 21,64966
A\/EHe s 17,97308  17,85597  16,96888 15,65196  14,34958
SSIM
3.5 4.0 4.5 5.0
0,244846 0,241308 0,218396 0,136132 0,101705
0,814859 0,792386 0,751306 0,730607 0,639024
A\/EHAE S 0,622504  0,581671  0,524011 0,458485 0,371508
MV
3.5 4.0 4.5 5.0
60,5788 49,18751 39,77025 33,23326 28,35013
119,0886 105,7416 94,83806 83,94127 74,21792
AAEHAE S 102,7424  91,26644  80,18108 69,3653 59,60535
STD
3.5 4.0 4.5 5.0
55,19374 55,14246 68,3997 81,92215 74,94261
971,9228 893,3015 739,4919 619,7472 533,662
AAEHAE s 297,6778  269,6679  248,3169  232,4155  213,8727
BRISQUE
3.5 4.0 4.5 5.0
19,35772 12,73897 13,81803 16,29003 14,95675
53,45456 53,69587 50,2357 52,12136 53,59033
AA/EHAE s 33,82035  31,89493  30,05075 30,16164 31,54129
NIQE
3.5 4.0 4.5 5.0
2,610174 2,800546 2,839478 3,045056  3,27112
6,322647 6,274885 6,635347 7,212518 10,00072
AN/EHAe s 3,756558  3,820402  3,979833  4,291749  4,641307
Table 2.14: Gamma correction results with gamma=0.3 on test set
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Figure 2.68: Experimental results PSNR vs Darkness Level for test images
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Figure 2.69: Experimental results SSIM vs Darkness Level for test images
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Gamma: 0.8

=
o

3.5 4.0 4.5 5.0
1313,444 1567,784 1780,979 1941,367 2034,901
14408,37 16430,43 18199,92 19591,55 20641,49
A\EHAEs 6218,285  7477,161  8554,739  9431,377  9987,48
PSNR(dB)
3.5 4.0 4.5 5.0
6,544655 5,974314 5,530109 5,210115 4,983394
16,94669 16,17794 15,62421 15,24973 15,04537
A\/EHAes 10,60835  9,753801  9,138732  8,700986 8,477435
SSIM
3.5 4.0 4.5 5.0
0,125241 0,096621 0,071167 0,046685 0,033329
0,722072 0,601766 0,487604 0,369566 0,27941
AAEHAE S 0,322691  0,226356  0,154698 0,105021 0,072121
MV
3.5 4.0 4.5 5.0
9,320111 6,640524 4,723703 3,214721 2,348037
43,36353 33,60762 26,04361 19,59635 14,71899
AAEHe s 27,27331 20,51481  15,23529 11,1478 8,11725
STD
3.5 4.0 4.5 5.0
20,4017 13,33742 8,047375 5,025998  3,72357
383,6804 289,9309 211,8665 150,1097 59,73326
A\EHAEE 99,43363  67,27887 44,9797  29,93183  19,02574
BRISQUE
3.5 4.0 4.5 5.0
21,94246 29,96811 31,93656 28,4657 34,37305
50,11899 52,61293 50,16068 48,63274 48,54284
ANEHAEE 40,10249  42,14368  43,34135  43,89441  43,82847
NIQE
3.5 4.0 4.5 5.0
3,404385 3,525715 3,478853 3,729426 3,793956
8,517159 7,958126 6,778532 7,287785 7,794703
A\/EHAE s 4930637 5,035766 5,161385 5,220602  5,30716
Table 2.15: Gamma correction results with gamma=0.8 on test set
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PSNR vs Darkness Level - Test Images y=0.8
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Figure 2.70: Experimental results PSNR vs Darkness Level for test images
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Figure 2.71: Experimental results SSIM vs Darkness Level for test images
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Average Experimental Results PSNR vs LL Images PSNR
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Figure 2.72: Experimental results average PSNR vs LL Images PSNR test set
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Figure 2.73: Experimental results average SSIM vs LL Images SSIM test set

And for the test set, the same conclusions as above are obtained, so we will
not comment anything further.

Based on the above we can reach some conclusions about the gamma
transformation. First, values of the correction constant close to unity (here
0.8) improve the LL images little or not at all, which is expected due to the

126

—
| S—



mathematical function we apply. For very small values of the correction
constant (here 0.1) from the evaluation metrics we came to the conclusion
that there is an excessive enhancement of the dark regions, which can lead
to the further distortion of the visual information, with a result that is
visually far from the ground truth case. Finally, we must comment that for
medium range values of the correction constant (here 0.3) the method gives
the best results, significantly improving the values of the metrics, as can be
seen from the corresponding diagrams. All three of these conclusions will
be confirmed next, where for each darkness level we will display a random
image for each correction constant value, along with the corresponding LL
and Ground truth cases, as well as their respective histograms.

Darkness Level: 3.0

Original Low Light Normal Light

Gamma: 0.1 Gamma: 0.3 Gamma: 0.8
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Figure 2.74: Histogram of 3.0 LL image
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Figure 2.75: Histogram of 3.0 NL Image
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Figure 2.76: Histogram of 3.0 experimental result with gamma=0.1

w107 Red Channel Histogram
2 -
-‘| e
0 | I -
L] 50 100 150 200 250
5 « 107 Green channel histogram
2 5
-1 -
0 } =
L] 50 100 150 2000 250
« 107 Blue channel histogram
2 T T T T ]
-1 45
0 } =
0 50 100 150 200 250

Figure 2.77: Histogram of 3.0 experimental result with gamma=0.3
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Figure 2.78: Histogram of 3.0 experimental result with gamma=0.8

We notice that the conclusions reached above are confirmed. For a
correction constant of 0.8, the experimental result remains dark and is
almost the same as the original LL image, which can also be seen from the
corresponding histograms, in which in both cases the values accumulate in
the left part of them. For a correction constant of 0.1, the excessive
enhancement of the dark areas mentioned above i1s observed, with the
experimental result characterized by strong color distortions. This can also
be seen from the corresponding histogram, in which we notice that the pixel
values accumulate in its right part. Finally, for a correction constant of 0.3,
the best result is obtained, with the experimental image being visually very
close to the ground truth. Nevertheless, some color distortions are still
observed, but most of the visual information has been recovered.
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Darkness Level: 3.5

Original Low Light Normal Light

Gamma: 0.1 Gamma: 0.3 Gamma: 0.8
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Figure 2.79: Histogram of 3.5 LL image
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Figure 2.80: Histogram of 3.5 NL image
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Figure 2.81: Histogram of 3.5 experimental result with gamma=0.1
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Figure 2.82: Histogram of 3.5 experimental result with gamma=0.3
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Figure 2.83: Histogram of 3.5 experimental result with gamma=0.8

For darkness level 3.5 we can also observe what we mentioned above. For
a correction constant of 0.8, the experimental result remains dark and the
same as the original LL image, which is also confirmed by the
corresponding histograms, in which the pixel values accumulate on the left
side, with very little contrast. Similarly, for a correction constant of 0.1, the
dark areas are overenhanced, introducing strong color distortions, and with
the pixel values in the histogram clustered to the right of it. Finally, for
correction constant 0.3 again the best result is obtained, having recovered
most of the color information.
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Darkness Level: 4.0

Original Low Light Normal Light
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Figure 2.84: Histogram of 4.0 LL image
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Figure 2.85: Histogram of 4.0 NL image

136

—
| —




« 109 Red Channel Histogram
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Figure 2.86: Histogram of 4.0 experimental result with gamma=0.1
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Figure 2.87: Histogram of 4.0 experimental result with gamma=0.3
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Figure 2.88: Histogram of 4.0 experimental result with gamma=0.8

For darkness level 4.0 we can make the same observations as above. The
case of a correction constant of 0.8 does not improve the result at all, with
the experimental image remaining dark and the pixel values clustered in
the left part of the histogram. For a correction constant of 0.1, there is an
over-enhancement of dark regions, with chromatic distortions becoming
more pronounced, and pixel values clustering in the right part of the
experimental histogram. Finally, for a correction constant of 0.3, the best
result is obtained, and we recover a large part of the visual information.
Here it is worth commenting on that for y=0.3 we have color distortions,
which are more pronounced compared to darkness level 3.0 and 3.5, which
is expected due to the increase in darkness level.
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Darkness Level: 4.5

1.0Z
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Figure 2.89: Histogram of 4.5 LL image
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Figure 2.90: Histogram of 4.5 NL image
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Figure 2.91: Histogram of 4.5 experimental result with gamma=0.1
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Figure 2.92: Histogram of 4.5 experimental result with gamma=0.3
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Figure 2.93: Histogram of 4.5 experimental result with gamma=0.8

For darkness level 4.5 we notice that again for a correction constant of 0.8
the LL image does not improve at all, with the pixel values being
accumulated in the left part of the histogram. For a correction constant of
0.1 there is again an over-enhancement of the dark areas, which leads to
the enhancement of chromatic aberrations and the introduction of more
noise. Finally, for a correction constant of 0.3 the best result is obtained,
compared to the other two cases. Nevertheless, the experimental result is
characterized by color distortions, more intense compared to the previous
darkness levels, which is due to the fact that the images are very dark and
make it difficult to retrieve the correct color information.
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Darkness Level: 5.0
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Figure 2.94: Histogram of 5.0 LL image
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Figure 2.95: Histogram of 5.0 NL image
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Figure 2.96: Histogram of 5.0 experimental result with gamma=0.1
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Figure 2.97: Histogram of 5.0 experimental result with gamma=0.3
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Figure 2.98: Histogram of 5.0 experimental result with gamma=0.8

For darkness level 5.0 we observe that for a correction constant of 0.8 the
LL image does not improve at all, and the pixel values remain concentrated
in the left part of the histogram. For a correction constant of 0.1 there is an
over-enhancement of the dark areas resulting in the further introduction of
chromatic aberrations, which greatly reduce the quality of the result.
Finally, for a correction constant of 0.3, the best result is obtained,
compared to the other 2 cases, but strong color distortions are detected.
This is due to the fact that the images have become too dark, making it
difficult for the method to recover all the visual information.

It is worth at this point to comment on the results as a whole. For a
correction constant of 0.8 we observe that at all darkness levels, the LL
images are improved little or not at all. We can see this, firstly from the
values of the quality metrics, which in all cases are almost the same as the
values of the original LL images, but also from the random images we
displayed for each darkness level. The experimental result remains dark,
and the pixel values remain accumulated in the left part of the histogram.
If we look at figure 2.49, with the gamma transformation curves for each
value of the correction constant, we can understand that this fact was
expected. The specific value of the correction constant is very close to
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unity, so after applying the gamma transform, it leaves the respective LL
image almost unchanged.

For a correction constant of 0.1 we noticed at all darkness levels that the
dark areas are over-enhanced, and the end result is as if the images were
taken in over-exposed lighting conditions. This can first be seen from the
metrics, as this is the only case so far where MV increases with increasing
darkness level, which means that the average brightness of the given image
also increases. In addition to the metrics, it can also be seen from the
random images we displayed for each darkness level, where in each case
the pixels were concentrated in the right part of the histogram. This
phenomenon had the effect of amplifying the existing noise as well as
increasing the color distortions, greatly reducing the quality of the final
experimental result. This fact was again expected, as from figure 2.49 we
can see that values of the correction constant close to 0 have the property
of strongly enhancing dark areas. For the sake of completeness, however,
we had to test all value cases.

In the case where we used a correction constant of 0.3, the best results were
obtained for all darkness levels. Quality metrics improved noticeably, with
PSNR and SSIM taking their maximum values (compared to the other 2
cases). From the random images we displayed for each darkness level, we
see that the experimental results for y=0.3 are visually closer to the ground
truth case, having recovered much of the visual information. However, we
must comment that for all darkness levels, color distortions appeared in the
experimental results, which became more intense with the increase of the
darkness level. This is justified by the fact that the images become darker
and darker, and correspondingly the dynamic range becomes smaller and
smaller, making it extremely difficult to fully and correctly recover the
color information.
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2.3 Log Correction

This i1s a pointwise, non-linear transformation, like the gamma
transformation, except in this case we assume that between pixels of the
LL image and the pixels of the NL image there is a logarithmic relationship.
The mathematical function we apply to the value of each pixel has the
form:

1G,)) =logyo(1 + ¢+ 1, (i, )))

Where ¢ is a control constant, depending on the value of which, the
function can take various forms. Some examples are shown in figure 2.99.
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Figure 2.99: Log correction for different control parameter values
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For values of the control constant greater than 1 we see that the function
can enhance the dark areas of an image, so it could be applied for LLIE.
This is also a simple algorithm, in terms of implementation. The
implementation of the method is done with the function presented in image
B.2.9 of appendix B. This function is applied to all LL images for each
darkness level, which is done through the script presented in images B.2.10
and B. 2.11 of appendix B. Obviously, as in the case of the gamma
transform, there 1s no ideal value of the constant ¢, and for this reason we
will experiment with 3 different values. Specifically, we will apply the
method with a small value of ¢ = 1, a medium range value of c=10, and a
large value of ¢=50. From this process, the experimental results are
obtained, for each value of the parameter, the evaluation of which is done
through the script presented in figure B.2.12 of appendix B. From this
process, 3 excel files are produced for each value of the constant c, which
contain the values of the metrics for each image of the experimental results,
which will be used for the construction of summary tables, presented
below. In addition, we also construct line charts with
maximum/minimum/average PSNR and SSIM per darkness level, to see
how the performance is affected by the darkness level. Finally, we also
present line charts of the average PSNR and SSIM, per darkness level, both
for the experimental results and for the original LL images, to see how
much the result improves in each case.

Training Set

c=1

3.0 3.5 4.0 4.5 5.0
1150,396  1230,74 1294,044 1343,92 1373,67
25750,42 26525,18 27074,25 27510,78 27783,26
10438,65 10920,6 11292,59 11593,25 12014,23
PSNR(dB)
3.0 3.5 4.0 4.5 5.0
4,02296 3,894221 3,80524 3,735775 3,692972
17,52233 17,22914 17,01131 16,84707 16,75198
8,246039 8,043762 7,893969 7,773268 7,620914
SSIM
3.0 3.5 4.0 4.5 5.0
0,014623 0,010004 0,005747 0,003263 0,002069
0,391483 0,302258 0,234753 0,185888 0,150379
0,067145 0,045045 0,030031 0,019979 0,01319

149

—
| —



MV
3.5 4.0 4.5 5.0
1,592122 1,044902 0,68809 0,424698 0,263826
15,11501 11,56136 8,694798 6,439869 4,607421
AAEAEE 6,876141  4,914041  3,447475  2,371986  1,641106
STD
3.5 4.0 4.5 5.0
0,927363 0,59725 0,418809 0,419849 0,333316
95,58026 72,70247 54,30994 39,16158 26,71166
A\/Eies 15,71822 10,13654  6,405503  3,974903 2,458903
BRISQUE
3.5 4.0 4.5 5.0
31,54555 35,82797 38,55014 39,18579 41,19538
64,45784 61,20449 61,1918 56,83263 55,68347
A\EAels 45,65275  45,51481  45,18829  44,84094 44,83776
NIQE
3.5 4.0 4.5 5.0
4,032914 4,19765 4,769732 4,956976 5,177708
13,04435 12,70734 11,64523 10,03232 10,37437
A\EHAEls 6,924142  7,375425  7,782276 8,133508  8,38073
Table 2.16: Log correction results with c=1 on training set
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PSNR vs Darkness Level - Training Images c=1

=@=|V|IN =@=MAX ==@==AVERAGE

s 17,52 17,23 17,01 16,85 16,75
e o — —C= —— =0
14
%‘ 12
g 10 8,25 8,04 7,89 7,77 7,62
9 8 G e S —o— —
6 4,02 3,89 3,81 3,74 3,69
4 (o —Q ® ® ®
2
0
3.0 3.5 4.0 4.5 5.0

Darkness Level

Figure 2.100: Experimental results PSNR vs Darkness Level for training images
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SSIM vs Darkness Level - Training Images c=1
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Figure 2.101: Experimental results SSIM vs Darkness Level for training images

For a control constant of 1 we see that the LL images do not improve at all.
MSE is very large and increases with increasing darkness level, while
PSNR and SSIM are very small and decrease with increasing darkness
level. Regarding the metrics with no reference, we notice that MV and STD
are very small and decrease with the increase of darkness level, which
means that the experimental results remain dark and the pixel values
accumulate close to zero. BRISQUE and NIQE increase with increasing
darkness level, which means that the image quality gets worse.

(]
I
[y
(=)

3.0 3.5 4.0 4.5 5.0
42,11946 169,5279 159,4157 506,3822 906,1422
12458,48 14923,75 17766,71 20328,87 22417,82
2933,97 4435592 5962,914 7399,069 8773,965
PSNR(dB)
3.0 3.5 4.0 4.5 5.0
7,176152 6,392023 5,634734 504967 4,62487
31,88598 25,83839 26,10549 21,08602 18,55884
14,2882 12,22883 10,81663 9,806838 9,054303
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SSIM
3.5 4.0 4.5 5.0
0,155937 0,108413 0,077067 0,056754 0,037932
0,884471 0,839788 0,860778 0,792306 0,642864
A\Eies 0,573592 0,439176  0,313687 0,212219 0,141129
MV
3.5 4.0 4.5 5.0
13,77962 9,595425 6,810115 4,803523 3,874113
85,06351 69,68224 56,105 44,31212 33,91846
A\Faels 50,01966 37,99691  28,15938  20,38493  14,79352
STD
3.5 4.0 4.5 5.0
21,38145 16,62244 11,08291 9,911588 8,102828
868,4807 745,0139 603,2324 478,8048 357,9306
A\Eies 233,8997  170,6357  120,3637  82,02715 54,81495
BRISQUE
3.5 4.0 4.5 5.0
14,79688 17,84928 21,70912 25,00103 25,54882
50,35989 49,89327 48,38213 47,79668 48,59574
AVERAGE 36,311 37,22384 37,85137 38,28925 38,61274
NIQE
3.5 4.0 4.5 5.0
2,644477 2,714278 3,099516 3,285837 3,409037
26,92967 27,54845 12,37783 6,954204 7,303726
A\EAEE 4,486564  4,603463  4,669125 4,757833  4,844949
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PSNR vs Darkness Level - Training Images c=10
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Figure 2.102: Experimental results PSNR vs Darkness Level for training images
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Figure 2.103: Experimental results SSIM vs Darkness Level for training images

For a control constant of 10, there is an improvement in the result. The
quality metrics improve with respect to the corresponding values of the LL
images, and the expected behavior is observed with the increase of the
darkness level. MSE increases, while PSNR and SSIM decrease with
increasing darkness level, indicating that the performance of the method
decreases with increasing darkness level. Regarding the metrics with no
reference, MV and STD are larger than the c=1 case, and decrease with
increasing darkness level. Furthermore, BRISQUE and NIQE increase as
the darkness level increases, which means that we move away from natural
statistics, with the visual quality of the experimental result decreasing with

SSIM vs Darkness Level - Training Images c=10
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c=50
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i
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i
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Figure 2.104: Experimental results PSNR vs Darkness Level for training images
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Figure 2.105: Experimental results SSIM vs Darkness Level for training images

For a control constant of 50 the best results are obtained, compared to the
other two cases. All quality metrics improve significantly compared to the
corresponding values of LL images, and follow the expected behavior with

SSIM vs Darkness Level - Training Images c=50
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increasing darkness level.

From Figures 2.106 and 2.107 we see that indeed the best results are
obtained for a control constant of 50, with the PSNR and SSIM values
improving noticeably. In addition, we notice that for control constant 1 the
result is worse than the original LL images, 1.e. instead of an improvement
we have a degradation of the result. Finally, for a control constant of 10,

the improvement is minimal.
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Average Experimental Results PSNR vs LL images PSNR
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Figure 2.106: Experimental results average PSNR vs LL Images PSNR training set

Average Experimental Results SSIM vs LL images SSIM
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Figure 2.107: Experimental results average SSIM vs LL Images SSIM training set
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Table 2.19: Log correction results with c=1 on validation set
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PSNR vs Darkness Level - Validation Images c=1
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Figure 2.108: Experimental results PSNR vs Darkness Level for validation images
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Figure 2.109: Experimental results SSIM vs Darkness Level for validation images

For control constant 1 the same behavior as the training set is observed.
The values of the metrics do not improve at all compared to the original
LL images, with the results being worse than the original ones, as can be
seen from Figures 2.114 and 2.115.
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Table 2.20: Log correction results with c=10 on validation set
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PSNR vs Darkness Level - Validation Images c=10
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Figure 2.110: Experimental results PSNR vs Darkness Level for validation images
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Figure 2.111: Experimental results SSIM vs Darkness Level for validation images

For a control constant of 10, the validation set shows the same behavior as
the training set. There is a slight improvement in the quality metric values,
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but with the increase in darkness level,
much different from those for LL images
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Table 2.21: Log correction results with c=50 on validation set
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PSNR vs Darkness Level - Validation Images c=50
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Figure 2.112: Experimental results PSNR vs Darkness Level for validation images
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Figure 2.113: Experimental results SSIM vs Darkness Level for validation images

For a control constant of 50, the best results are obtained for the validation
set, as it was for the training set. There is a clear improvement in the quality
metric values compared to the original LL images, as can be seen in Figures
2.114 and 2.115.
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Average Experimental Results PSNR vs LL Images PSNR
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Figure 2.114: Experimental results average PSNR vs LL Images PSNR validation set

Average Experimental Results SSIM vs LL Images SSIM
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Figure 2.115: Experimental results average SSIM vs LL Images SSIM validation set
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Table 2.22: Log correction results with c=1 on test set
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PSNR vs Darkness Level - Test Images c=1
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Figure 2.116: Experimental results PSNR vs Darkness Level for test images
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Figure 2.117: Experimental results SSIM vs Darkness Level for test images

For a control constant of 1, the test set exhibits the same behavior as the
training and validation sets. The quality metrics do not improve at all, but
become worse than those of the original LL images. This can also be
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confirmed from Figures 2.122 and 2.123, with the average values of PSNR
and SSIM for each control constant value.
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Figure 2.118: Experimental results PSNR vs Darkness Level for test images
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Figure 2.119: Experimental results SSIM vs Darkness Level for test images

For a control constant of 10 we observe that there is a minimal
improvement of the quality metric values, following the same behavior as
the training and validation sets. The metric values are only marginally
better than those of the original LL images, and become worse as the

darkness level increases.
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Table 2.24: Log correction results with c=50 on test set
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Figure 2.120: Experimental results PSNR vs Darkness Level for test images

SSIM vs Darkness Level - Test Images c=50
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Figure 2.121: Experimental results SSIM vs Darkness Level for test images

The case of control constant 50 gives the best results, compared to the other
two values, just as it happens in the training and validation sets, with the
values of the quality metrics improving noticeably.
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Average Experimental Results PSNR vs LL Images PSNR
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Figure 2.122: Experimental results average PSNR vs LL Images PSNR test set

Average Experimental Results SSIM vs LL Images SSIM
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Figure 2.123: Experimental results average SSIM vs LL Images SSIM test set

Based on what we mentioned above, we notice that for a control constant
of 1 the logarithmic transformation does not improve the original LL
images at all, but on the contrary worsens their quality, which is reflected
in the values of the quality metrics, which in all cases of darkness level are
worse than the original ones before applying the method. For a control
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constant of 10, the situation improves slightly, as for small darkness levels
(3.0 and 3.5) the values of the quality metrics become better, but for the
rest of the darkness levels the results have little difference from the initial
values for the LL images. This is due to a combination of 2 factors, the first
of which is that for small values of the correction constant the method does
not work, and the second is that the images become very dark, making it
even more difficult to retrieve visual information. These two factors lead
to the low-quality experimental results of control constants 1 and 10. In the
case where we use control constant 50, the best results are obtained,
compared to the other 2 cases, with the metric values improving
significantly. Specifically, the average PSNR improves by 8.96dB and the
average SSIM increases by 0.43. Based on these we can conclude that the
logarithmic transformation works better for large values of the control
constant, although we should be careful with the values we choose, to avoid
the phenomenon of over-amplification of the dark areas, which appeared
during the transformation Gamma.

To confirm the above conclusions, we will show a random image from each
darkness level, for each value of the control constant, together with the
corresponding LL and ground truth, accompanied by the respective
histograms.

Darkness Level: 3.0

Original Low Light Normal Light
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Figure 2.124: Histogram of 3.0 LL image

172

—
| —



Red Channel Histogram

10000

[=]

=
£

1040 150 200
Green channel histogram

10000

(=]

=
g

100 150 200
Blue channel histogram

10000

(=]

=]

50 100 150 200

Figure 2.125: Histogram of 3.0 NL image
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Figure 2.126: Histogram of 3.0 Experimental result image with c=1
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Figure 2.127: Histogram of 3.0 Experimental result image with c=10
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Figure 2.128: Histogram of 3.0 Experimental result image with c=50
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For darkness level 3.0 we can observe the behavior we mentioned above.
For a control constant of 1 the LL image does not improve at all, with the
image remaining dark. This can also be seen from the histograms, where
in figure 2.126 we see that in the experimental histogram the pixel values
accumulate in its left part, with this accumulation being more intense
compared to the histogram of LL image, confirming that the result is worse
than the original pictures. For a control constant of 10 there is a slight
improvement in the image, with dark areas enhanced and details now
discernible. The histogram, as we see from figure 2.127, has started to be
distributed over a larger range of values, with its form being similar to that
of the ground truth case. Nevertheless, the result can be further improved,
which is done in the case of the control constant 50. For this value of the
control constant the best result is obtained, the dark regions are fully
enhanced and most of the visual information is recovered. Furthermore, as
we can see from figure 2.128, the histogram has spread over the entire
available value range, with its form being very close to that of the ground
truth case. Finally, let us comment that no color distortions are observed,
like those we saw in the case of the gamma transformation.

Darkness Level: 3.5

Original Low Light Normal Light
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Figure 2.129: Histogram of 3.5 LL image
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Figure 2.130: Histogram of 3.5 NL image
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Figure 2.131: Histogram of 3.5 Experimental result image with c=1
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Figure 2.132: Histogram of 3.5 Experimental result image with c=10
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Figure 2.133: Histogram of 3.5 Experimental result image with c=50
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In the case of darkness level 3.5, the same behavior is observed again. For
control constant 1 the experimental result is worse than the original LL
image, which can also be confirmed by the histogram. In figure 2.131, with
the histogram of the experimental result, we see that the pixel values are
more strongly accumulated in the left part, compared to the LL image, that
is, the experimental result is darker than the original LL image, and of
worse quality. For a control constant of 10, the result improves slightly, as
we can now distinguish details, with the histogram spread over a larger
range of values. The result improves even more in the case where we use a
control constant of 50, with the dark areas fully enhanced and a large
percentage of the visual information recovered. Moreover, from figure
2.133 we see that the experimental histogram has a form that is very close
to the ground truth case, confirming the improvement of the result.

Darkness Level: 4.0

Original Low Light

c=1 c=10 c=50
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Figure 2.134: Histogram of 4.0 LL image
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Figure 2.135: Histogram of 4.0 NL image
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Figure 2.136: Histogram of 4.0 Experimental result image with c=1
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Figure 2.137: Histogram of 4.0 Experimental result image with c=10
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Figure 2.138: Histogram of 4.0 Experimental result image with c=50

In the case of darkness level 4.0 we can observe the expected behavior. For
a control constant of 1 the result, instead of improving, becomes worse,
with the image remaining dark. This is also confirmed by the experimental
histogram, where from figure 2.136 we see that the pixel values accumulate
in the left part, much more strongly than in relation to the LL image. For a
control constant of 10, the result improves little, as the image remains dark,
although we can make out quite a bit of detail. Finally, for a control
constant of 50 we recover most of the visual information, with dark areas
fully enhanced. From figure 2.138 we see that the histogram is spread over
a larger range of values, with its form close to that of the ground truth case.

182

—
| —



Darkness Level: 4.5
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Figure 2.139: Histogram of 4.5 LL image
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Figure 2.140: Histogram of 4.5 NL image
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Figure 2.141: Histogram of 4.5 Experimental result image with c=1
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Figure 2.142: Histogram of 4.5 Experimental result image with c=10
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Figure 2.143: Histogram of 4.5 Experimental result image with c=50

For a control constant of 1 we observe that the result does not improve at
all, but instead the image becomes darker and of lower quality. This is also
confirmed by the histogram in figure 2.141, from where we see that the
pixel values are all clustered in the left part of it, more strongly than in
relation to the LL image. For a control constant of 10 the result improves
little, since the image remains dark, and the pixel values remain
concentrated in the left part of the histogram. In the case where we use a
control constant of 50, the best result is obtained compared to the other 2
cases. Most of the visual information has been recovered, and the pixel
values have been spread over a wider range of values. What we can
observe, however, is the appearance of color distortions, which are due to
the fact that the images have become too dark, making it difficult to retrieve
complete and correct color information.
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Darkness Level: 5.0
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Figure 2.144: Histogram of 5.0 LL image
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Figure 2.145: Histogram of 5.0 NL image
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Figure 2.146: Histogram of 5.0 Experimental result image with c=1
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Figure 2.147: Histogram of 5.0 Experimental result image with c=10
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Figure 2.147: Histogram of 5.0 Experimental result image with c=50

For darkness level 5.0 and control constant 1 again the result does not
improve at all, but becomes worse, as the image becomes darker and the
pixel values are concentrated in the left part of the histogram, more strongly
than in the original LL image. For a control constant of 10, again there is
little improvement as the pixel values remain clustered on the left side of
the histogram, as seen in Figure 2.147, with the image remaining dark
having recovered little visual information. For a control constant of 50
again the best result is obtained, compared to the other two cases, as we
have recovered a large part of the visual information. Furthermore, from
the histogram in Figure 2.147 we can see that the pixel values are spread
over a larger range of values, with the histogram shape resembling that of
the ground truth case. Finally, we have to comment that color distortions
appear here as well, due to the fact that the images are too dark to fully
recover the color information.

At this point it is worth briefly commenting on all the above results of the
logarithmic transformation. For a control constant of 1 we observed that
the LL images do not improve at all, but instead become worse. Images
become darker, with pixel values clustering more heavily on the left side
of the histogram. For a control constant of 10, the result is slightly
improved, which is confirmed by the improvement of the quality metrics
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as well as the recovery of a small part of the visual information. However,
as the darkness level increases, the performance of the method degenerates
and the results for a control constant of 10 become comparable to those for
a control constant of 1. In the case where we use a control constant of 50,
the best results are obtained, and the algorithm manages to recover most of
the visual information. This is also reflected in the values of the quality
metrics, which improve noticeably, as well as in the histograms, which in
any case have a form that resembles the ground truth case. However, at
high darkness levels (4.5, 5.0) color distortions begin to be observed, as
well as a decrease in the performance of the algorithm. This is because the
images have become too dark, with very little to zero dynamic range,
making it very difficult to fully and correctly recover color information.

2.4 Histoeram Equalization

In this section we will apply a pointwise transformation called histogram
equalization, the logic of which is based on the fact that if the pixel values
are evenly distributed over all possible gray levels, the image will have
high contrast and high dynamic range [15]. The goal is to find a suitable
mathematical function that takes as input a low-contrast image and outputs
an image whose histogram will approximate the normal distribution. In this
way we will manage to enhance the dark areas of each image, so histogram
equalization is suitable for LLIE.

Histogram equalization uses two basic concepts of image processing, the
probability density function (pdf) and the cumulative distribution function
(cdf). If we consider I(i,j) as the image under consideration, with N being
the total number of pixels and L the number of gray levels, then the pdf is
defined as:

p(k) = %

Where ny is the number of pixels with gray value k (k=0,1,...,L-1). The pdf
expresses the percentage of pixels with gray value k, or otherwise the
probability that a pixel has gray value k. Obviously, by definition, it does:
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Lip(k) =1
k=1

Accordingly, the cdf is defined as follows:

b= p =23 n,
k=0 k=0

and expresses the percentage of pixels in the image, which have a gray
value less than or equal to m, or otherwise the probability that a pixel has
a gray value less than or equal to m.

Based on these, the transformation that we will apply to each pixel of the
image is derived, which is:

Iy, (k) = [(L - 1)P(k)]

This is an implementationally simple transformation that is implemented
with the function shown in Figure B.2.13 of Appendix B. We will apply
this function to all images in the dataset, which is done using the scripts
shown in figures B.2.14 and B.2.15, of appendix B. After the application
of these scripts, we have at our disposal the experimental results, per
darkness level and per set (training, validation, test). Based on these we
will calculate the evaluation metrics in order to evaluate the performance
of the method. The calculation is done with the script presented in figure
B.2.16 of appendix B. After its application, 3 excel files are generated (one
for each set) that contain the values of the metrics per image and darkness
level, and we can use them for the construction summary tables, which will
contain the minimum/maximum/average value of each metric, per
darkness level. In addition, we will also construct line charts with the
minimum/maximum/average value of PSNR and SSIM per darkness level,
to see how the performance of the method is affected as the darkness level
increases. Finally, we will also present line charts with the average value
of PSNR and SSIM, before and after applying the method, to see how much
the quality metrics of then LL images are improved. First we will present
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these results, and then, we will display the images corresponding to the
minimum and maximum experimental PSNR, accompanied by the
corresponding LL and ground truth cases as well as the related histograms,
in order to visually comment on the result.

Training Set

3.0 3.5 4.0 4.5 5.0
421,0046 441,9709 517,6390989 590,5857 660,5967
12408,14 12359,92 12639,4027 13519,73 14621,51
3071,221 3145,256 3262,668015 3468,21  3659,15
PSNR(dB)
3.0 3.5 4.0 4.5 5.0
7,193738281 7,210649 7,113538 6,821124 6,480882
21,88793497 21,67687 20,99053 20,41797 19,93144
14,01144036 13,89799 13,72839 13,4587 13,17517
SSIM
3.0 3.5 4.0 4.5 5.0
-0,02341408 -0,04635 -0,06808 -0,15138 -0,15752
0,787580525 0,764571 0,761787 0,736809 0,725542
0,400328107 0,364868 0,3249 0,280182 0,230345
MV
3.0 3.5 4.0 4.5 5.0
127,0685056 126,9022 126,7785 127,0456 127,0612
142,1202654 151,1714 154,5217 157,6636 161,1524
127,9949542 128,5551 129,5186 131,3005 133,734
STD
3.0 3.5 4.0 4.5 5.0
158,809322 178,1034 208,1213 227,0157 329,4894
1396,637581 1395,106 1398,889 1377,956 1357,603
870,9182373 864,2766 853,7109 835,8393 812,0992
BRISQUE
3.0 3.5 4.0 4.5 5.0
3,716687142 3,154421 4,505201 6,952224 9,015325
52,79433739 54,91105 58,1652 58,19425 59,30204
28,24526558 29,50091 31,61575 34,67411 38,37626
NIQE
3.0 3.5 4.0 4.5 5.0
2,46136462 2,623508 2,847146 3,009361 3,203958
24,53955714 12,42223 9,341568 10,73782 11,23613
4,005421566 4,330952 4,710459 5,164884 5,671135
Table 2.25: HE quality metrics on training set
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Figure 2.148: Experimental results PSNR vs Darkness level for training set
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Figure 2.149: Experimental results SSIM vs Darkness level for training set
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Average Experimental Results PSNR vs LL Images PSNR
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Figure 2.150: Experimental vs LL images PSNR

Average Experimental Results SSIM vs LL Images SSIM
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Figure 2.151: Experimental vs LL images SSIM

We notice that histogram equalization improves the quality metrics values
significantly, with the average PSNR increasing by an average of 5.14dB,
and the average SSIM by 0.22. Moreover, the expected behavior is
observed with the increase of the darkness level, as we observe that the
MSE increases, while the PSNR and SSIM decrease, which means that the
performance of the algorithm decreases with the increase of the darkness
level. At this point we have to comment that for PSNR and SSIM the rate
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of decrease of their values with the increase of the darkness level is smaller
compared to the methods we have seen so far, which means that it is more
resistant to the change of the darkness level. Regarding the values of the
quality metrics with no reference, we see that the MV increases, i.e. the
images become brighter, and the STD is also larger, compared to the
original images, which means that the pixel values are spread over a wider
range of values around average. Finally, BRISQUE and NIQE increase
with increasing darkness level, which means that we are moving away from
natural statistics. This is to be expected as, as the darkness level increases,
the images become very dark making it much more difficult to retrieve the
full visual information.

Validation Set

3.0 3.5 4.0 4.5 5.0
439,5438 480,4772813 529,7034 584,3981 703,0401
12809,33 13628,13055 14841,78 18367,84 19703,56
3009,335 3120,370316 3302,063 3579,684 3677,492
PSNR(dB)
3.0 3.5 4.0 4.5 5.0
7,05554 6,786440756 6,415942 5,490224 5,185356
21,70078 21,31407503 20,89048 20,46372 19,661
14,51815 14,3807657 14,16873 13,89425 13,83293
SSIM
3.0 3.5 4.0 4.5 5.0
0,083985 0,070406396 0,055704 0,021274 0,021279
0,783691 0,750853004 0,716853 0,680148 0,610063
0,415319 0,382625468 0,346071 0,302454 0,279778
MV
3.0 3.5 4.0 4.5 5.0
127,1019  127,088425 126,8991 127,1712 127,7105
139,1523 144,9227998 151,3749 159,7386 167,1147
128,538 129,2522622 130,2573 131,9691 133,7172
STD
3.0 3.5 4.0 4.5 5.0
521,6171 479,0979246 410,3607 321,6802 507,0534
1345,086 1345,688009 1337,153 1310,609 1273,174
881,7714 871,5300366 859,2557 836,429 827,838
BRISQUE
3.0 3.5 4.0 4.5 5.0
7,375161 6,534256878 10,97686 18,7654 14,85068
48,79476 49,62103107 54,99201 53,48019 55,02543
30,19114 30,40059761 31,95058 34,43156 36,31509
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NIQE
3.0 3.5 4.0 4.5 5.0
2,54717  3,12256287  3,39889 3,711442 4,055303
6,625679 7,575652513 9,891647 8,9151 9,910555
AAEiES 3,908225  4,217832807  4,564158  5,074119  5,642139
Table 2.26: HE quality metrics on validation set

PSNR vs Darkness Level - Validation Images

=@=MIN ==@=VAX ==@==AVERAGE

25
21,70 21,31 20,89 20,46
: 19,66
[ — == === > .’
20
. 14,52 14,38 14,17 13,89 13,83
g = —— —— = —e
o
&
a 10
7,06 6,79 6,42
5,49 5,19
. o — —e == —
0
3.0 35 4.0 4.5 5.0

Darkness Level

Figure 2.152: Experimental results PSNR vs Darkness level for validation set
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Figure 2.153: Experimental results SSIM vs Darkness level for validation set
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Figure 2.154: Experimental vs LL images PSNR
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Average Experimental Results SSIM vs LL Images SSIM
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Figure 2.155: Experimental vs LL images SSIM

The same behavior is observed in the validation set as well. The results
improve noticeably, and the metrics follow the expected path as the
darkness level increases. MSE increases while PSNR and SSIM decrease
with increasing darkness level. Let us comment that here too the rate of fall
of these values is lower compared to the methods we have seen so far.

Test Set

i
o

3.5 4.0 4.5 5.0
239,1835597 258,6719 288,2718 372,3504 588,9472
12536,48023 15140,82 17434,88 18912,68 19070,45
A\/Eiels 3000,909179  3111,417  3271,808 3603,883  4024,52
PSNR(dB)
3.5 4.0 4.5 5.0
7,149047407 6,329309 5,716613 5,363272 5,327195
24,34349036 24,00331 23,53278 22,42129 20,43004
A\/Eies 14,31840327  14,16896  13,96122  13,59259 13,09024
SSIM
3.5 4.0 4.5 5.0
0,005895394 0,003846 -0,00881 -0,11043 -0,15504
0,724767459 0,691906 0,654576 0,615887 0,558024
A\EAEE 0,436750452 0,3975 0,352682 0,299397 0,251513
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o
o
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4.0

442,058
1260,695
842,2514

BRISQUE

4.0
7,270009
56,33996
31,31449
NIQE
4.0
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PSNR vs Darkness Level - Test Images
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Figure 2.156: Experimental results PSNR vs Darkness level for test set
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SSIM vs Darkness Level - Test Images
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Figure 2.157: Experimental results SSIM vs Darkness level for test set
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Figure 2.158: Experimental vs LL images PSNR
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Average Experimental Results SSIM vs LL Images SSIM
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Figure 2.159: Experimental vs LL images SSIM

And in the case of the test set, we see the same behavior, with the increase
in the darkness level reducing the performance of the algorithm.

Commenting on the results as a whole, we notice that the histogram
equalization noticeably improves the values of the metrics, and by
extension the quality of the LL images. Furthermore, with increasing
darkness level, the expected behavior is observed, as the values of the
quality metrics decrease with increasing darkness level. In particular, the
MSE increases, while the PSNR and SSIM decrease with the increase of
the darkness level, which means that the image quality decreases and that
we move away from the ground truth case. At this point we have to
comment, however, that the rate at which these two metrics decrease is
very small, which indicates that the method is resistant to variations in the
darkness level. For the quality metrics with no reference, we see that MV
remains roughly constant with increasing darkness level, and similar
behavior is observed for STD. This confirms the fact that the method is
resistant to changes in the darkness level. Finally, BRISQUE and NIQE
increase with increasing darkness level, which means that we are moving
away from natural statistics. This is because the images become very dark,
making it difficult to retrieve the full visual information.

To justify the results visually, we will present the images corresponding to
the minimum and maximum PSNR for each darkness level. In addition,
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together we will present the corresponding LL and ground truth cases,
together with their histograms, commenting each time on the results.

Darkness Level: 3.0
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Figure 2.160: Histogram of original LL Image
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Figure 2.161: Histogram of NL Image
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Figure 2.162: Histogram of experimental result with min PSNR
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For darkness level 3.0 the experimental result corresponding to the
minimum PSNR is characterized by strong color distortions and, although
a large part of visual details has been recovered, it remains far from the
ground truth case. If we observe the histogram of the ground truth case, we
see that the pixel values are not distributed over the entire available range,
but remain in the left part of the histogram, in a larger range compared to
the LL image. We know that the purpose of histogram equalization is to
spread the pixel values across the available range of values, which is
achieved as we can see from the histogram in Figure 2.162. Based on this
we understand that it is impossible to reproduce the ground truth case, and
for that reason the experimental result shows large color distortions and is
far from the ground truth image.

MAX PSNR

Original Low Light Normal Light Experimental Result
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Figure 2.163: Histogram of original LL Image
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Figure 2.164: Histogram of NL Image
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Figure 2.165: Histogram of experimental result with max PSNR

In this case we see from the histogram in figure 2.164 that the ground truth
image is characterized by a histogram with values evenly distributed
throughout the range, so we expect the experimental result to correctly
reproduce the ground truth case. Indeed, as we see the experimental result
is visually the same as the ground truth image, and most of the color and
visual information has been recovered. This is also confirmed by the
histogram, in figure 2.165, whose form is very close to the ground truth
case, with the pixel values distributed almost uniformly throughout the
available value range, simultaneously increasing the contrast of the image.
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Darkness Level: 3.5

MIN PSNR

Original Low Light Normal Light Experimental Result
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Figure 2.166: Histogram of original LL Image
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Figure 2.167: Histogram of NL Image
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Figure 2.168: Histogram of experimental result with min PSNR
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For darkness level 3.5, the image with the minimum experimental PSNR
is the same as that obtained for darkness level 3.0. Here again, the
histogram of the ground truth case is characterized by values that are
concentrated in the left part of the histogram, and not evenly distributed
throughout the available range. So, we understand that histogram
equalization cannot reproduce this effect, as its purpose is to produce an
image with histogram values evenly distributed throughout the available
range of values. Thus, here 1s an image with strong color distortions, far
from the ground truth case.
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Figure 2.169: Histogram of original LL Image
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Figure 2.170: Histogram of NL Image
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Figure 2.171: Histogram of experimental result with max PSNR
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For the case of the maximum experimental PSNR, the same picture is
obtained with darkness level 3.0. The ground truth image is characterized
by a histogram with values spread over the entire available range, so it is
easy to reproduce by applying histogram equalization. Indeed, the
experimental result is visually very close to the ground truth case, having
managed to recover most of the visual information. This is also confirmed
by the histogram in figure 2.171, which is very close to the ground truth
case, with the pixel values almost evenly distributed over the entire range
of available values.

Darkness Level: 4.0

MIN PSNR

Original Low Light Normal Light Experimental Result
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Figure 2.172: Histogram of original LL Image
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Figure 2.173: Histogram of NL Image
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Figure 2.174: Histogram of experimental result with min PSNR
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In the case of darkness level 4.0 for the minimum experimental PSNR, a
similar case arises as what we saw above. The first thing we can comment
on is that the original LL image is too dark, which we can also confirm
from its histogram in figure 2.172, where we see that the values are
clustered in a narrow range in the left part. So, we expect that full and
correct visual information cannot be retrieved. Second, the ground truth
image is characterized by a histogram with values that are not distributed
over the entire available range of values, as seen in Figure 2.173, which
histogram equalization cannot reproduce. The combination of these two
factors leads to a result with the minimum experimental PSNR, with the
image characterized by strong chromatic aberrations, and its pixel values
distributed in very few gray levels, which justifies the chromatic
aberrations as well.

MAX PSNR
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Figure 2.175: Histogram of original LL Image
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Figure 2.176: Histogram of NL Image
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Figure 2.177: Histogram of experimental result with max PSNR

For the case of the maximum experimental PSNR, the same picture is
obtained with darkness levels 3.0 and 3.5. The ground truth case of this
image is characterized by a histogram with values spread across the
available range, which is easy to reproduce by histogram equalization.
Indeed, the experimental result is visually very close to the ground truth
case, and the only negative we can notice is a fading of the colors. This can
be justified by the fact that the LL image is very dark, which makes it
difficult to recover the full color information, which is also confirmed by
the experimental histogram, where we observe that the pixel values are
distributed in fewer gray levels, compared to the earlier cases, explaining
the less color information.
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Darkness Level: 4.5

MIN PSNR

Original Low Light Normal Light Experimental Result
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Figure 2.178: Histogram of original LL Image
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Figure 2.179: Histogram of NL Image
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Figure 2.180: Histogram of experimental result with min PSNR
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For darkness level 4.5 the image with the minimum experimental PSNR is
the same as the one obtained for darkness level 4.0. We notice that the
experimental result is characterized by strong color distortions and is
visually far from the ground truth case. This is due to the two main factors,
which we mentioned above. First, the image is very dark, with pixel values
clustered in the left part of the histogram, resulting in a very small dynamic
range, making it very difficult to retrieve full and correct visual
information. Second, the ground truth image has a histogram with values
that are not distributed across the available range, which histogram
equalization cannot reproduce. The combination of these two factors leads
to the low quality result observed.
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Figure 2.182: Histogram of NL Image
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Figure 2.183: Histogram of experimental result with max PSNR

In the case of the maximum experimental PSNR we observe that the
experimental result is visually very close to the ground truth case. The
histogram of the ground truth image is characterized by values spread over
the entire range of available values, so histogram equalization can
reproduce this. Indeed, the resulting experimental histogram is close to the
ground truth case, with the only difference being that in the experimental
the pixel values are distributed in fewer gray value levels. This is because
the image i1s too dark making it very difficult to recover the full visual
information. Nevertheless, the resulting image is satisfactory given the
darkness level.
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Darkness Level: 5.0
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Figure 2.184: Histogram of original LL Image
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Figure 2.185: Histogram of NL Image
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Figure 2.186: Histogram of experimental result with min PSNR
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For darkness level 5.0, the experimental result corresponding to the
minimum PSNR is characterized by strong color distortions and limited
details. This is because the image is too dark, with pixel values
accumulating on the left side of the histogram, making it difficult to
retrieve visual information. This is also reflected in the experimental
histogram of figure 2.186, where we see that the pixel values have been
distributed in minimal gray value levels, explaining the intense color
distortions and the low quality of the experimental result.
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Figure 2.187: Histogram of original LL Image
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Figure 2.188: Histogram of NL Image
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Figure 2.189: Histogram of experimental result with max PSNR
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For the case of the maximum experimental PSNR, the same picture as that
of darkness level 4.5 is obtained. The experimental result is visually very
close to the ground truth case, with the only negative we have to comment
on are some color distortions that appear. These are due to the fact that, as
we study the highest darkness level, the images are too dark so that it is
impossible to fully recover the visual information. Nevertheless, the
resulting image is impressive, if we take into account that we are studying
the highest darkness level.

Overall commenting on the results of the histogram equalization, we notice
that it gives very good results with the performance of the algorithm being
resistant to the variations of the darkness level, as we observed in the
above. One of the negatives observed is that the method has difficulty
retrieving images, which the respective ground truth case has histograms
with values that are not distributed over the entire available value range. In
these cases, it gives images with strong color distortions, retrieving the
wrong visual information. This is due to the nature of the algorithm, as its
purpose is to take a low-contrast image and output an image whose pixel
values are evenly distributed throughout the available value range. So, we
understand that it is impossible to reproduce the results we mentioned
above, leading to the wrong retrieval of visual information. On the other
hand, in the cases where the ground truth images have histograms with
values distributed throughout the available range, impressive results are
obtained, even at high darkness levels, reflecting the strength and
robustness of the method.
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2.5 Single Scale Retinex

In this case, we will take a different approach to the LLIE problem. Until
now we have applied pointwise transformations, using various
mathematical functions on the pixel values. A disadvantage of this
approach is that it does not take into account possible correlations between
neighboring pixels. For this reason we will try to depart from this logic and
apply spatial filters using the act of convolution, thus taking into account
such possible correlations.

The algorithm that we will study first belongs to a large family of
algorithms, which are based on the Retinex Theory developed by Land and
McCann [25], and studies the perception of color by the human eye and the
modeling of color invariance. The main goal of the theory is to calculate
the reflective nature of an object in the scene, removing the effect of
brightness. According to the theory, the human visual system keeps only
the information related to the characteristics of the objects in the scene,
such as the reflection coefficient, and for this reason it is easy for us to
adapt regardless of the brightness or changes in the brightness. The model
derived from the theory says that an image can be expressed as follows:

I(x,y) = R(x,y)L(x,y)

where R(x,y) is the reflectivity coefficient, and expresses the reflective
nature of the surface of an object, and L(x,y) is the luminance factor that
depends on the luminance conditions of the scene. Based on these we
understand that R(x,y) determines the nature of the image, while L(x,y)
determines the dynamic range of the image. According to the theory, if we
can estimate L(x,y) from the image, then we can isolate R(x,y). This will
lead us to a result that is independent of the amount of brightness, thereby
enhancing the image.

The above logic can be applied to enhance dark images, so a way to
calculate R(x,y) remains to be found. One of the many algorithms that have
been proposed for this purpose is the Single Scale Retinex, proposed by
Jobson et al.[26]. According to this algorithm, R(x,y) can be calculated as
follows:
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Ri(x,y) = log[l;(x,y)] — log[G (x,y) * I;(x, )]

where R(X,y) is the refrection image, I(x,y) is the input image, 1 is for the
color channels ( I = {R, G, B}), * denotes the convolution operation and
G(x,y) is the surround function. The authors use a Gaussian distribution as
the surround function, which has the form:

G(x,y) = Ke_(%)

where c is the scale parameter, and K is a normalization constant that
ensures that the function satisfies the criterion:

Jf G(x,y)dxdy =1

The final result obtained from the above must be mapped to the range
[0,255], something that is done with a simple linear transformation, which
has the form:

Ri(x' y) - Rmin

Rmax - Rmin

Ri(x,y) = 255] ]

Practically, we create a 2D mask with the same dimensions as these images
(disregarding the third dimension with the color bands) and Gaussian
distribution values, and apply convolution of this mask with each channel
of the image. The shape of the mask, also called the surround function, can
be seen in the image below.
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0.0006

Figure 2.190: Surround function with ¢ = 30 [26]

This function can take different forms depending on the value of the
constant ¢. Obviously there is no ideal value of the constant, it depends on
the problem we are studying. After applying the convolution, we calculate
the logarithms, we also apply the linear transformation, which we
mentioned above, and the final form of the coefficient R 1s obtained. R 1is
the final enhanced image, which we will compare with the ground truth
images, and it is an image that is independent of the lighting conditions.

The method we have described is more complicated in terms of
implementation than what we have done so far. It is implemented with the
function shown in figure B.2.17 of appendix B. We will apply this function
to each image of the data set, which is done with the scripts shown in
figures B.2.18 and B.2.19 of appendix B. As we said, there is no ideal value
of the constant ¢, for this reason we use 3 different values, a small, a
medium and a large value, in order to evaluate the effect of the constant on
the performance of the algorithm. After applying these scripts, we have the
experimental results at our disposal. We will use them to calculate
performance metrics, based on the value of which we will evaluate the
performance of the algorithm. This is done with the script presented in
Figure B.2.20 of Appendix B. After its application we have values of the
metrics per image, which will be used to build summary tables with the
minimum/maximum/average value, per darkness level, constant value ¢
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and set, presented next. In addition, we will also construct line charts of
these values per darkness level, for PSNR and SSIM. Finally, we will
construct line charts with the average value of PSNR and SSIM, for the
original images and for the experimental results so that we can quantify
how much the result improves and which value of the constant ¢ is more
appropriate.

Training Set

c=10

3.0 3.5 4.0 4.5 5.0
665,0725 668,5667 787,96 569,1219 1015,734
17684,25 17719,33 16972,41 18009,17 17169,11
5103,033 5229,953 5259,419 5167,714 4885421
PSNR(dB)
3.0 3.5 4.0 4.5 5.0
5,654936 5,646332 5,833368 5,575866 5,783326
19,90211 19,87936 19,16576 20,57875 18,063
11,58772 11,47048 11,42904 11,46914 11,65905
SSIM
3.0 3.5 4.0 4.5 5.0
-0,15197 -0,45574 -0,54387 -0,49599 -0,03388
0,788078 0,754543 0,770589 0,702689 0,619275
0,334179 0,321747 0,303168 0,280441 0,242273
MV
3.0 3.5 4.0 4.5 5.0
84,96666 87,15809 89,15464 81,3479 75,70744
197,6954 200,0791 187,466 178,3255 172,9067
142,4572 143,0743 142,8123 141,3077 138,2819
STD
3.0 3.5 4.0 4.5 5.0
42,81076 40,52304 41,78316 4593321 65,11519
487,8006 520,2408 564,6657 581,5751 464,9702
212,9648 213,6606 218,6065 228,4065 238,1422
BRISQUE
3.0 3.5 4.0 4.5 5.0
6,345484 9,577115 8,348036 9,684713 14,49088
53,72307 56,14981 58,0542 5896327 58,90108
32,54928 34,67815 37,46238 40,2265 42,32244
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NIQE
3.5 4.0 4.5 5.0
2,451916 2,557915 3,076157 3,380398 3,333449
27,08438 26,2094 8,73375 9,039466 9,068266
AAEE s 3,96099  4,251106 4,60689 5,081881  5,616927
Table 2.28: SSR results with c=10 on training set

o
o

PSNR vs Darkness Level - Training Images c=10

=@=V|IN =@=VAX ==@==AVERAGE

25
19,90 19,88 1917 20,58
20 o e *.-—I ‘\18;06
@ 15
o 11,59 11,47 11,43 11,47 11,66
S -~ — ° - -o
$ 10
5,65 5,65 5,83 5,58 5,78
5 ® > — — —0
0
3.0 35 4.0 4.5 5.0

Darkness Level

Figure 2.191: Experimental results PSNR vs Darkness Level for training images
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Figure 2.192: Experimental results SSIM vs Darkness Level for training images
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For ¢c=10 the values of the metrics improve little, which indicates that small
values of the constant ¢ are not suitable for enhancing LL images. What is
worth commenting on is that increasing the darkness level does not seem
to affect the performance of the algorithm, as the changes in the metrics
from level to level are minimal.

c=120

3.0 3.5 4.0 4.5 5.0
218,03 235,6003 255,956 337,5466 540,311
13485,81 12750,26 11954,9 10911,53 9032,903
3311,263 3176,813 2996,014 2812,846 2720,194
PSNR(dB)
3.0 3.5 4.0 4.5 5.0
6,832034 7,075613 7,355344 7,751948  8,57253
24,74564 24,40905 24,04915 22,84747 20,80437
13,97501 14,15994 14,34833 14,47918 14,4895
SSIM
3.0 3.5 4.0 4.5 5.0
-0,19865 -0,00447 -0,02796 -0,00581 -0,0676
0,842349 0,859943 0,846912 0,804219 0,77709
0,504164 0,487171 0,459649 0,41515 0,355029
MV
3.0 3.5 4.0 4.5 5.0
70,57968 61,64816 51,29523 40,76593 45,28514
224,0603 218,3537 204,2371 190,0457 179,4277
134,2252 130,946 126,6804 121,3403 115,3027
STD
3.0 3.5 4.0 4.5 5.0
75,57473 78,30564 63,78141 65,60575 58,90308
963,797 933,9817 895,0092 887,7652 791,0142
360,4645 353,5516 349,6594 348,4279 351,556
BRISQUE
3.0 3.5 4.0 4.5 5.0
8,35327 4,095686 6,280565 5,089578  8,70187
48,51535 49,13184 54,29911 54,68566 57,18713
29,7353 28,685 28,71063 30,15051 32,47091
NIQE
3.0 3.5 4.0 4.5 5.0
2,117876 2,165019 2,446189 2,558543 2,958166
25,60202 25,89071 7,755804 7,782287 8,664149
3,634559 3,828597 4,066188 4,41904 4,877193
Table 2.29: SSR results with c=120 on training set
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PSNR vs Darkness Level - Training Images c=120
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Figure 2.193: Experimental results PSNR vs Darkness Level for training images

SSIM vs Darkness Level - Training Images c=120
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Figure 2.194: Experimental results SSIM vs Darkness Level for training images

For ¢=120 the values of the metrics improve noticeably, which shows us
that large values of the constant perform better. Here we can also observe
that the increase in the darkness level does not seem to affect the
performance of the algorithm, as the changes in the values of the metrics
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are minimal. Trying to further increase the performance of the method we
will further increase the value of the constant c.

c =400
[
X :o 3.5 4.0 45
(L 1364565 2259383 290,3078 226,6083
(0 1425836 12868,81 1146655 8946,979
2848523 2638,634 2415037 2236,694
] PSNR(dB)
E :o 3.5 4.0 45
C L0 6590108 7,035419 7,536475  8,61404
L0 2678086 24,5909 23,50222 24,57804
1495259 1529433 1553013 15,6157
O ssiv
E :o 3.5 4.0 45
(LT -0,18055 -0,04623 -0,01665 -0,06182
(. 087093 0,881541 0,849421 0,818976
0,550661 0,534302 0,499555 0,445963
O v
3.0 35 4.0 45
(L 57,21979 47,82103 39,29376 30,53282
(0 2266883 220,3872 205,393 189,9874
131,8968 127,1471 121,253 114,3453
3.0 35 4.0 45
(L 4475635 47,47545 47,16199 50,09331
(0 145256 1403,184 1347318 1248426
434,7157 427,9926 422,7907 419,0516
] BRISQUE
3.0 35 4.0 45
L0 7131121 3,211743 6125323 6,185697
(0 5037515 51,07172 54,55468 55,01573
30,31216 29,29636 29,5549 31,09955
L Niae
3.0 3.5 4.0 45
L 2,182783  2,245904 2,526631 2,870625
(. 2555784 2582074 7,75195  7,93017
3,717744 3,923541 4,175947 4,542315
Table 2.29: SSR results with c=400 on training set

{ 234 }
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5.0
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22,17882
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5.0
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5.0

38,73608
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5.0

69,29461
1084,216
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5.0

9,250425
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5.0

3,028016
9,222819
4,995335
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Figure 2.195: Experimental results PSNR vs Darkness Level for training images

SSIM vs Darkness Level - Training Images c=400
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Figure 2.196: Experimental results SSIM vs Darkness Level for training images

For a value of the constant c=400 the best results are obtained and, as we
expected, the performance of the algorithm increases. We can also observe
that the values of the metrics are not much affected by changes in the
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darkness level, which indicates that the method is robust to changes in
brightness.

Average Experimental Results PSNR vs LL Images PSNR

17
16
15

13
12
11
10

PSNR(dB)

=@ =10
=@ =120
=@==c =400

LL Images

=@==C=10 =@=c=120 ==@=c=400 LL Images
—0 == =C—= o)
o —s = —C O
o= = ® = —
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Figure 2.197: Experimental results average PSNR vs LL Images PSNR training set

Average Experimental Results SSIM vs LL Images SSIM
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Figure 2.198: Experimental results average SSIM vs LL Images SSIM training set
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The above 2 diagrams confirm what we have mentioned so far. For ¢c=10
the worst results are obtained, as the values of the metrics improve little.
By increasing the value of the constant to 120 the results improve
significantly with both PSNR and SSIM increasing, which means that the
quality of the experimental images becomes better. For a value of the
constant 400 the best results of the method are obtained, giving the greatest
improvement of the metrics, which means that the method works better for
large values of the constant. Finally, what is observed in all cases is that
with the change of the darkness level, the values of the quality metrics are
not strongly affected, which indicates that the method presents a robustness
to the changes of the darkness level.

Validation Set
c=10

3.0 3.5 4.0 4.5 5.0
1120,861 1136,636 1220,439 1286,684 1387,72
11827,88 1369522 13859,43 14608,67 14516,86
4743,751  4867,5 4898,797 4887,402 4696,366
PSNR(dB)
3.0 3.5 4.0 4.5 5.0
7,401733 6,765115  6,71335 6,484697 6,512077
17,63529 17,57459 17,26564 17,03609 16,70778
11,94941 11,82721 11,74782 11,73686 11,88849
SSIM
3.0 3.5 4.0 4.5 5.0
0,055716 -0,09136 0,053598 0,026899 0,016744
0,606157 0,573933 0,569404 0,504718 0,434409
0,331513 0,289061 0,290769 0,261503 0,247608
MV
3.0 3.5 4.0 4.5 5.0
102,0629 93,97228 91,04463 85,05681 76,88142
196,3755 187,0055 167,4845 163,0169 162,6015
141,238 141,5049 141,2411 139,9921 138,2873
STD
3.0 3.5 4.0 4.5 5.0
95,96961 61,06201 67,95074 114,2522 111,416
518,8461 498,8457 495,6769 444,6703 352,6008
218,941 214,1372 219,347 230,9905 246,0822
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o
o

10,89029
51,67118

A\EAES 33,71082

o
o

2,998674
5,18835
3,888575

AVERAGE

3.5

17,53461
50,84251
32,75258

3.5

3,119284
5,764339
4,108558

BRISQUE
4.0

11,23896
53,15401
35,35772

NIQE

4.0

3,294057
7,407522
4,470427

4.5
11,84823
55,9085
39,877

4.5

3,701252
7,423493
4,914164

Table 2.30: SSR results with ¢=10 on validation set
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Figure 2.199: Experimental results PSNR vs Darkness Level for validation images
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SSIM vs Darkness Level - Validation Images c=10
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Figure 2.200: Experimental results SSIM vs Darkness Level for validation images

In the validation set for a constant value of 10, the same result is observed.
Metric values are slightly improved, while not affected by changes in
darkness level, as values change little with increasing darkness level.

c=120

Level 3.0 35 4.0 4.5 5.0
490,6158 491,8833 613,7923 709,3058 938,7886
6883,106 6909,615 6551,809 6772,402 7231,468
\/5:cs 2535213 2475623 2323,985 2266,112 2301,947
PSNR(dB)
3.0 3.5 4.0 4.5 5.0
9,752959 9,736265 9,967191 9,823377 9,538539
2122339 21,21218 20,25059 19,62247 18,40513
C\Sc: 1484071 14,95595 1504602 15,07053 15,02285
SSIM
3.0 35 4.0 4.5 5.0
0,220902 0,240388 0,215231 0,137386 0,119603
0,640065 0,662773 0,645681 0,62625 0,54312
565 0,494436 0,478924 0,465298 0,420243 0,375224
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o
o

78,25968
189,1468
A\Ee s 129,2179

o
o

91,2851
629,984
A\EHAE S 362,7206

i
o

15,02842
44,73476
A\EE S 32,18605

i
o

2,582034
5,275927
A\EE s 3,579442

3.5

72,95907
189,2707
126,1003

3.5

91,64222
666,9648
351,2691

3.5

15,17382
44,56322
31,25244

3.5

2,886905
5,311754
3,741029

MV
4.0
67,13712
179,6815
121,6357

STD
4.0
140,0873
685,6692
345,4371
BRISQUE
4.0
11,58418
48,02092
30,43138

NIQE
4.0
2,956562
6,107417
4,009803

4.5

56,02913
174,2548
117,1295

4.5

106,5155
666,2329
343,0534

4.5

9,339646
46,56028
29,77621

4.5

3,471019
6,806349
4,335317

Table 2.31: SSR results with ¢c=120 on validation set

PSNR vs Darkness Level - Validation Images c=120
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Figure 2.201: Experimental results PSNR vs Darkness Level for validation images
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SSIM vs Darkness Level - Validation Images c=120
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Figure 2.202: Experimental results SSIM vs Darkness Level for validation images

For ¢=120 the results improve more than the value 10, with the quality
metric values improving noticeably. Here it is also observed that the
increase of the darkness level affects the performance of the algorithm
little.

c =400

i
o

3.5 4.0 4.5 5.0
314,9185 362,2658 571,7531 661,3695 817,1816
6559,855 5988,816 5158,321 4690,48 6068,914
S\Eiaels 2128,25  2029,028 1892,113 1798,513  1906,452
PSNR(dB)

Level 3.0 3.5 4.0 4.5 5.0
9,961862 10,35739 11,00572 11,41863 10,29969
23,14882 22,54053 20,55872 19,92636 19,00762
S\Eiaels 15,79225  15,98274  16,11191 16,18117 15,93109
SSIM

Level 3.0 3.5 4.0 4.5 5.0
0,253195 0,241165 0,236888 0,093702 0,081437
0,731272 0,723638 0,73018 0,723783 0,637829
S\9iaels 0,538236 0,533056 0,508235 0,458337 0,399252

241

—
| —



MV
3.5 4.0 4.5 5.0
69,68754 61,55004 54,69286 41,49248 36,5903
189,1467 185,3203 179,2269 172,5822 160,2555
A\Eaels ) 127,1889 122,989 117,0598 110,8203 105,698
STD
3.5 4.0 4.5 5.0
102,8901 97,18159 139,1741 181,0856 223,9553
795,8389 887,3056 921,0668 904,8474 687,3111
AWVEiels 424,4696  413,3726  408,8238 406,291  411,9462
BRISQUE
3.5 4.0 4.5 5.0
17,96417 15,91031 11,18123 9,36628 10,39591
44,88108 44,59353 47,42726 47,79321 51,70994
A\Eiiels ) 32,54338  31,84641  31,12422 30,73773  31,37985
NIQE
3.5 4.0 4.5 5.0
2,619685 2,904302 2,987092 3,471582 3,701899
5,34221 5,398016 6,827672 6,814667 7,480987
AN\/Eaels ] 3,655544  3,831344  4,109938  4,443149 4,861035
Table 2.32: SSR results with c=400 on validation set
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PSNR vs Darkness Level - Validation Images c=400
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Figure 2.203: Experimental results PSNR vs Darkness Level for validation images
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SSIM vs Darkness Level - Validation Images c=400
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Figure 2.204: Experimental results SSIM vs Darkness Level for validation images

For a value of ¢=400 the best results are obtained, compared to the other
two values, with the values of the quality metrics improving even further.
And here it is observed that the increase of the darkness level has little
effect on the performance of the method.

Average Experimental Results PSNR vs LL Images PSNR

=@=C=10 =@=c=120 ==@=c=400 LL Images

17

16 p— —C— — =G —0

15 o= =0= -9 o —Q
= 14
S 13

4 12 = —— —0 P —
Z 11
o 10
9
8
7

3.0 3.5 4.0 4.5 5.0

=@ =10 11,94941155 11,82721152 11,7478155 11,73686315 11,88849417

=@==c =120 14,84071329 14,95595152 15,04602029 15,0705254 15,0228545
=== =400 15,79224843 15,98274312 16,11191037 16,18117307 15,93109384
LLImages 9,141299525 8,592476357 8,210792032 7,944940079 7,698426907

Darkness Level

Figure 2.205: Experimental results average PSNR vs LL Images PSNR validation set
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Average Experimental Results SSIM vs LL Images SSIM

@@= =10 =@=c=120 c=400 LL Images
0,6
0,5
: C—= — -4
0,4 .
e
2 0,3
7 : — TTT——————
0,2
0,1
3.0 3.5 4.0 4.5 5.0
—@=—c =10 0,331512963 0,289060617 0,290769244 0,261502886 0,247607623
=@ =120 0,494436008 0,478924495 0,46529824 0,420242952 0,375224227
c=400 0,538235919 0,533056202 0,508234698 0,458336561 0,399252102
LLImages 0,174183974 0,112740718 0,073196246 0,04811527 0,031549265
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Figure 2.206: Experimental results average SSIM vs LL Images SSIM validation set

From figures 2.205 and 2.206 we can confirm what we have mentioned so
far about the validation set. For a value constant of 10 the worst results are
obtained, compared to the other 2 cases, as the values of the quality metrics
improve little. For c=120 there is a noticeable improvement, while the best
results are obtained for a constant value of 400, which indicates that the
method works better for large values of the constant c. Furthermore, we
have to comment that for all 3 constant cases, increasing the darkness level
seems to have little effect on the result, as the changes in the metrics

between the darkness levels are very small.
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Test Set
c=10

o
o

793,3752
15923,63
A\Eiels 5117,849

=
o

6,110382
19,13602
A\Ees 11,53249

o
o

-0,15662
0,654343
A\EEE 0,315422

e
o

94,72846
178,9696
A\Ee s 141,3639

Level 3.0

99,49659
416,7925
AVERAGENWXI WYY/

Level 3.0

8,608202
51,82803
AVERAGENRCE A0V

Level 3.0

2,625362
6,666938
AVERAGENEER LY/l

Table 2.33: SSR results with ¢c=10 on test set

3.5

854,0801
15935,55
5203,936

3.5

6,107134
18,81582
11,44863

3.5

-0,12027
0,597969
0,318593

3.5
94,1652

180,6366

141,9851

3.5

84,50468
408,1921
226,4084

3.5

7,733923
54,12057
35,64141

3.5

2,759295
7,255504
4,184468

4.0
764,9538
16486,47
5150,267
PSNR(dB)
4.0
5,959528
19,29445
11,4401
SSIM
4.0
-0,01056
0,568566
0,304157
MV
4.0
84,7259
173,5919
141,3764
STD
4.0
72,18497
405,5388
226,598
BRISQUE
4.0
10,20985
54,92622
38,17466
NIQE
4.0
3,025844
8,072716
4,566907
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4.5

890,5549
16825,83
5068,238

4.5

5,871038
18,6342

11,47188

4.5

-0,08647
0,542466
0,283947

4.5

80,57854
168,6112
139,7564

4.5

97,15905
414,4966
229,9208

4.5

15,71469
55,80246
39,86305

4.5

3,436691
8,661863
5,041816

5.0

1094,199
16977,58
5042,712

5.0

5,832046
17,73984
11,48913

5.0

-0,13553

0,441656
0,23884

5.0

75,04263
168,5379
137,1447

5.0
98,4362

439,6693

246,9516

5.0
22,6036

58,10413

42,12886

5.0

3,750788

9,355186
5,54784
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PSNR vs Darkness Level - Test Images c=10
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Figure 2.207: Experimental results PSNR vs Darkness Level for test images

SSIM vs Darkness Level - Test Images c=10

=@=|V|IN =@=MAX ==@==AVERAGE
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== MAX 0,654342572 0,597968959 0,568565645 0,542466418 0,441655534

=@==AVERAGE  0,315422178 0,318592898 0,304157097 0,283946771 0,23884049

Darkness Level

Figure 2.208: Experimental results SSIM vs Darkness Level for test images

In the test set for c=10 the values of the metrics improve slightly, and again
it is observed that the increase of the darkness level affects the performance
of the algorithm little.
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c=120

Level 3.0

623,7859
12116,68
C\EiaEls 2984,535

Level 3.0

7,296966
20,18045
CA\Eaels 14,3581

Level 3.0

-0,02609
0,835326
A\E5aEs 0,505492

Level 3.0

78,30545
185,9098
SA\Ee s 132,0241

Level 3.0

152,2116
716,7778
S\Esaes 381,8004

Level 3.0

13,34064
45,86726
A\Esaes 31,13592

Level 3.0

2,233963
6,310102
S\Ees 3,599169

3.5

428,9748
10413,52
2834,202

3.5

7,954827
21,80649
14,56672

3.5

0,034913
0,840405
0,503125

3.5

77,83582
181,6558
128,9872

3.5

155,6314
654,963

373,9314

3.5

16,18832
45,35414
30,45156

3.5

2,450123
6,366701
3,740196

4.0
503,6118
9699,958
2624,815
PSNR(dB)
4.0
8,263105
21,10984
14,80539
SSIM
4.0
-0,0211
0,807879
0,472478
MV
4.0
68,79508
174,9467
124,5424
STD
4.0
144,3233
632,1502
365,5278
BRISQUE
4.0
10,71426
56,43702
29,65138
NIQE
4.0
2,677566
7,328085
4,02374

4.5

671,3737
7622,337
2427,107

4.5

9,309922
19,86116
14,97838

4.5
0,07162

0,766564
0,43676

4.5

65,87347
168,1169
118,4373

4.5
139,727
627,576

364,2542

4.5

13,63365
55,29666
30,92537

4.5

3,172146
7,965271
4,445925

Table 2.34: SSR results with ¢c=120 on test set
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5.0

873,2447
6402,572
2373,824

5.0

10,06726
18,71944
14,90557

5.0

0,053441
0,665627
0,368593

5.0

55,82128

161,4083
110,883

5.0

122,0124
618,0282
354,8834

5.0

11,31916
59,15522
32,78221

5.0

3,396478

10,40969
4,93059
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PSNR vs Darkness Level - Test Images c=120
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Figure 2.209: Experimental results PSNR vs Darkness Level for test images

SSIM vs Darkness Level - Test Images c=120
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Figure 2.210: Experimental results SSIM vs Darkness Level for test images

For ¢=120 better results are obtained, with the values of the metrics
improving noticeably. In this case we also notice that the increase in the
darkness level does not affect the performance of the algorithm, as the
changes in the values of the metrics are minimal.

248

—
| S—



c =400

Level 3.0
593,094

12334,22

A\E5AEl s 2590,489

Level 3.0

7,219688
20,39957
A\Eiaeis 15,29788

Level 3.0

0,025812
0,860339
C\Eiies 0,567147

Level 3.0

78,68453
185,2713
A\E5aels 130,7205

Level 3.0

142,8349
955,9174
C\E5aels ) 448,1803

Level 3.0

14,85065
46,03544
A\Esaeis 31,71538

Level 3.0

2,332474
6,315058
S\Ees 3,660502

3.5

373,2489
9799,854
2351,502

3.5

8,218608
22,41082
15,72012

3.5

0,067173
0,856229
0,558782

3.5

73,90002
179,1413
125,9893

3.5

137,0771
896,8672
441,0832

3.5

16,15412
47,14661
31,16946

3.5

2,545658
6,513556
3,817886

4.0
435,7023
8303,944
2103,758
PSNR(dB)
4.0
8,937959
21,73891
16,08146
SSIM
4.0
0,014516
0,834269
0,521125
MV
4.0
61,9698
172,5438
119,6509
STD
4.0
134,3869
811,1136
432,825
BRISQUE
4.0
6,683483
56,53913
30,34369
NIQE
4.0
2,879262
7,272534
4,119616

4.5

532,9734
6114,674
1943,646

4.5

10,26707
20,86375
16,18764

4.5

0,069533
0,808534
0,469443

4.5

55,92087
163,9449
112,4539

4.5

134,4727
805,7538
427,1154

4.5

11,81652

53,42747
31,5162

4.5
3,23918

8,615225

4,551726

Table 2.35: SSR results with c=400 on test set
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5.0

502,9805

5485,475
1943,74

5.0

10,73866

21,11529
15,9054

5.0

0,004629
0,694088
0,392017

5.0

45,83023
154,4602
102,4706

5.0

131,3789
759,6219
404,4057

5.0

12,25513
59,2341

33,75235

5.0

3,417642
10,53776
5,036026
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PSNR vs Darkness Level - Test Images c=400
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Figure 2.211: Experimental results PSNR vs Darkness Level for test images

SSIM vs Darkness Level - Test Images c=400
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Figure 2.212: Experimental results SSIM vs Darkness Level for test images

For ¢c=400 again the best results are obtained, with the values of the metrics
improving further. Here it is also observed that the increase in the darkness
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level has little effect on the performance of the algorithm, as can be seen
from the values of the metrics.

Average Experimental Results PSNR vs LL Images PSNR

=@==C=10 =@=c=120 ==@=c=400 LL Images
17
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Figure 2.213: Experimental results average PSNR vs LL Images PSNR test set

Average Experimental Results SSIM vs LL Images SSIM

=@=C=10 =@=c=120 =@=c=400 LL Images
0,6
| qu ==
0,5 C C=—== ~
0,4
= P
= 0,3 e ——— o=
(%] —
0,2
0,1
0
3.0 3.5 4.0 4.5 5.0
=@=c =10 0,315422178 0,318592898 0,304157097 0,283946771 0,23884049

=@=c =120 0,505491801 0,503125186 0,472478228 0,436760216 0,36859324
=@==c =400 0,567146974 0,558782474 0,521125394 0,469442983 0,392016624
LL Images  0,178076079 0,114190342 0,072755485 0,04674998 0,031034913

Darkness Level

Figure 2.214: Experimental results average SSIM vs LL Images SSIM test set
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At this point it is worth commenting on the results as a whole. For a
constant value of 10 we saw that the worst results occur for the quality
metric values, as they improve little. Compared to PSNR we have that it
improves on average by 3.01dB and SSIM by 0.2. From these we
understand that a small value of ¢ is not enough to enhance the LL images.
By increasing the value of the constant to 120, the quality metric values
improve noticeably, with PSNR increasing by an average of 5.77dB and
SSIM by 0.35. We understand that larger values of the constant are needed
to clearly enhance dark images. Further increasing the value of the constant
to 400, the quality metric values improve even more, with PSNR increasing
by 6.85dB and SSIM by 0.39. Based on this we understand that large values
of the constant ¢ are needed to improve and enhance the LL images, which
is explained by the fact that the higher the value of the constant, the more
information we get from the neighboring pixels. This above information
helps to increase the quality of the final result. Finally, it was observed that
increasing the darkness level has little effect on the performance of the
algorithm, since the values of the quality metrics from level to level do not
change strongly. This can be explained by the nature of the algorithm since,
as we mentioned in the theoretical part, the final result recovered is
independent of the lighting conditions, which is also confirmed by the
experimental results of the quality metric values. Any reduction in these
values is due to the fact that the images become too dark, with the result
that the information of the reflectance coefficients cannot be fully
recovered.

To confirm our results visually we will present, for each darkness level, the
result for a random image per value of constant c. In addition, they will be
accompanied by the original LL image and the corresponding ground truth
so that we can compare them with each other. Finally, together we will
present the respective histogram of each image.
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Darkness Level: 3.0

Original Low Light Normal Light

Varker tl Biotek udtert 2014 af
Ellen Kyllemese

c=10 c=120 c =400

For darkness level 3.0 we notice that the experimental result obtained for
c=10 does not visually resemble the ground truth case at all, and is
characterized by strong color distortions and noise. This fact justifies what
we have reported so far and explains the minimal improvement of the
quality metric values. For c=120 the result is noticeably improved, as we
recover a large part of the visual information, while for ¢=400 the best
experimental result is obtained, with the image being visually very close to
the ground truth case. From the experimental histograms we observe that
in all 3 cases histograms similar to those of the ground truth case are
obtained, but for c=400 the best result is again obtained.
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w109 Red Channel Histogram

Figure 2.216: Histogram of 3.0 NL image
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Figure 2.215: Histogram of 3.0 LL image
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w 107 Red Channel Histogram
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Figure 2.217: Histogram of 3.0 Experimental result image with c=10
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Figure 2.218: Histogram of 3.0 Experimental result image with c=120
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=107 Red Channel Histogram
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Figure 2.219: Histogram of 3.0 Experimental result image with c=400

Darkness Level: 3.5

Original Low Light Normal Light

256

—
| —



c=10 c=120 ¢ =400
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Figure 2.220: Histogram of 3.5 LL image
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Figure 2.221: Histogram of 3.5 NL image
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Figure 2.222: Histogram of 3.5 Experimental result image with c=10
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Red Channel Histogram
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Figure 2.223: Histogram of 3.5 Experimental result image with c=120
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Figure 2.224: Histogram of 3.5 Experimental result image with c=400
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For darkness level 3.5 we also observe that the experimental result for a
constant of 10 is characterized by intense noise and color distortions,
explaining the minimal improvement of the quality metric values. For
c=120 the result is noticeably improved, as we also recover the color
information while the noise is reduced. For c=400 the best result is
obtained, which we can also confirm from the experimental histogram of
figure 2.224, from where we see that its form is very close to that of the
ground truth case.

Darkness Level: 4.0
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Figure 2.225: Histogram of 4.0 LL image

Red Channel Histogram

0 a0 100 130

Green channel histogram

0 50 100 150

Blue channel histogram

0 50 100 150

Figure 2.226: Histogram of 4.0 NL image
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Figure 2.227: Histogram of 4.0 Experimental result image with c=10
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Figure 2.228: Histogram of 4.0 Experimental result image with c=120
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Figure 2.229: Histogram of 4.0 Experimental result image with c=400

In the case of darkness level 4.0 again for c=10 the worst result is obtained,
with the image characterized by intense noise and color distortions. The
algorithm succeeds in recovering the edge and general texture information
of the image but fails to recover the color information. This is achieved by
increasing the value of the constant to c=120, which significantly improves
the result, with the optimal gain being at ¢c=400. Then the best result is
obtained, which can also be confirmed by the experimental histogram in
figure 2.229, where we see that a form has been recovered that is very close
to the ground truth case.
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Darkness Level: 4.5

Original Low Light Normal Light

For darkness level 4.5 we observe that for c=10 the worst result is obtained,
compared to the other two constant cases. The general texture of the image
is recovered, but not the color information, resulting in a noisy image.
Increasing the value of the constant allows us to recover the color
information, partially for c=120 and fully for c=400, which indicates that
large values of the constant work better for this problem. This is also
confirmed by the histograms, where in figure 2.233 the histogram for
c=120 is very close to the form of the ground truth case, while in figure
2.234 we see that for c=400 the histogram improves even more.
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Figure 2.230: Histogram of 4.5 LL image
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Figure 2.231: Histogram of 4.5 NL image
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Red Channel Histogram

Figure 2.233: Histogram of 4.5 Experimental result image with c=120
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Figure 2.232: Histogram of 4.5 Experimental result image with c=10
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Figure 2.234: Histogram of 4.5 Experimental result image with c=400
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In the case of darkness level 5.0 we again observe that for c=10 the worst
result is obtained, compared to the other two constant values. Here again
we see that the general texture of the image is recovered, but not the color
information. By increasing the value of the constant, we manage to recover
the color information, with ¢c=400 giving the best result. Nevertheless, we
see that there are starting to be some color distortions. This is because the
images have now become very dark, making it difficult to even retrieve the
reflectance index.
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Figure 2.235: Histogram of 5.0 LL image
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Figure 2.236: Histogram of 5.0 NL image
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Figure 2.237: Histogram of 5.0 Experimental result image with c=10
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Figure 2.238: Histogram of 5.0 Experimental result image with c=120
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Figure 2.239: Histogram of 5.0 Experimental result image with c=400
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At this point it is worth commenting in general on the results obtained from
all the above analysis. We observed that the method for a constant value of
c=10, slightly improves the values of the quality metrics, with the images
remaining of low quality. This is also confirmed by the experimental results
we showed above, where we saw that the images are characterized by
strong noise and color distortions. However, the method managed to
recover the general texture of the image (edges etc), which means that
small values of the constant c can recover such local information but cannot
restore the color information. The recovery of the visual information is
achieved by using larger values of the constant c. The best result is obtained
for c=400, where the greatest improvement of the quality metric values is
observed, and in addition the recovery of most of the visual information.
This 1s also confirmed by the histograms we presented above, where we
see that for each darkness level case the experimental histogram, for c=400,
has a form very close to the ground truth case. Finally, we observed that
the performance of the method is not affected by the increase of the
darkness level and the values of the quality metrics change little with its
increase, and the visual results remain of high quality. This resistance to
the change of the darkness level is due to the nature of the algorithm, as its
purpose is to recover the reflectance coefficient of the scene, which is
independent of the distribution and amount of brightness.

In summary, the method gives impressive results, but again we need to
choose an appropriate value of the parameter. In the next section we take
the method a step further by choosing multiple parameter values and
combining the results of the individual SSRs to capture the advantages of
each value range.
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2.6 Mult1 Scale Retinex

This is an extension of the algorithm analyzed in the previous section. One
of the drawbacks noted by the authors was that the SSR algorithm cannot
strike a balance between detailed enhancement information and color
fidelity, which we also observed in our experiments, a problem due to the
method's use of only one parameter. The solution they came up with was
to use more than one parameter and combine the results [27]. The new
algorithm is called Multi Scale Retinex, from the fact that it uses more than
one parameter, and the final result comes from the relation:

N
RMSRl- = E wani
n=1

where I = {R, G, B} is the respective color band, Rysr 1s the final result
from the application of the MSR algorithm, R, is the result of the SSR
method for parameter c,, N is the total number of parameters we combine,
and o, is the weight of each parameter. The only difference with before is
that the surround function is now defined as follows:

X242
Y

G,(x,y) = Ke cn

)

where K is the known normalization parameter.

The question that arises is how many parameters we need to combine and
what value the weight of each parameter should take. After
experimentation the authors [27] concluded that N = 3 parameters are

sufficient, with the weights taking values w, = %= § Basically we

calculate the SSR for 3 different parameters, one small, one large and one
of medium range, and the average is the MSR result. This is more complex,
from the point of view of implementation, algorithm, which is
implemented with the function MultiScaleRetinex, shown in Figure B.2.21
of Appendix B. We will apply this function to all images in the data set,
which is done with the scripts presented in Figures B.2.22 and B.2.23 of
appendix B. After applying them we have at our disposal the experimental

272

—
| —



results, based on which we should evaluate the performance of the
algorithm. To do this we will calculate the performance metrics per image,
which we do with the script shown in Figure B.2.24 of Appendix B. With
the results we will construct summary tables with the min/max/average
value of each quality metric, and line charts of PSNR and SSIM per
darkness level, in order to evaluate to what extent the performance of the
algorithm is affected by the darkness level. In addition, we will construct
line charts with the average PSNR and SSIM for both the experimental
results and the original LL images, to see how much the quality of the
images improves.

Training Set

3.0 3.5 4.0 4.5 5.0

239,0187383
13097,86103
3379,384613

3.0

6,958799827
24,34648411
13,65861109

3.0

-0,06493951
0,832428477
0,495980155

376,0939 364,2164
11641,21 10765,59
3274,808 3102,219

PSNR(dB)

4.0
7,470822 7,810424
22,37784 22,51721
13,79953 13,98663

SSIM

3.5 4.0
0,009564  0,01649
0,806773 0,815764
0,480622 0,452868

MV

3.5

422,496
9428,147
2897,322

4.5
8,38654

21,87258

14,17075

4.5

0,023541
0,800235
0,411343

477,2309
8680,177
2729,704

5.0

8,745518
21,34352
14,34421

5.0

-0,04538

0,744977
0,35308

3.0

77,61995349
213,5505903
136,1930133

3.5

69,77116
204,8339
133,7225

4.0
63,98045
199,0324
130,2485
STD
4.0
63,75354
766,6946
304,9774
BRISQUE
4.0
5,335673
54,67282
31,95871

4.5

57,80047
186,1193
125,6644

5.0

57,72048896
174,0790682
120,2392155

3.0

60,08477997
824,9398009
308,7757309

3.5

61,94379
802,2118
305,1568

4.5

64,29322
708,9291
307,9945

5.0
57,9565
654,083
314,0277

3.0

3,670254295
49,91066681
30,62401427

3.5

4,144557
52,96108
30,70467

4.5

4,507405

57,06991
34,1668

5.0
10,16488
57,57594
36,15179
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NIQE

3.0 3.5 4.0 4.5 5.0

2,272376124 2,323353 2,693318 2,990678 3,165905

26,04609304 25,93341 7,916273 8,079607 8,777403
A\Eies 3,780759247  4,011987  4,291982  4,685047 5,166678

Table 2.36: MSR results on training set

PSNR vs Darkness Level - Training Images
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Figure 2.240: Experimental results PSNR vs Darkness level for training set

SSIM vs Darkness Level - Training Images
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Figure 2.241: Experimental results SSIM vs Darkness level for training set

274

—
| —



In the training set we notice that the method noticeably improves the values
of the metrics. For the quality metrics with reference, we see that with the
increase of the darkness level the MSE and PSNR improve while the SSIM
decreases. From this we understand that in the experimental result the
image brightness increases but the image texture information is not
recovered. Based on this, we expect the experimental results to be
characterized by over-exposure, i.e. the dark areas are over-enhanced and
there are chromatic aberrations. For the quality metrics with no reference,
we see that MV decreases with increasing darkness level, albeit slightly,
while STD increases, meaning that the experimental results become
slightly darker, but the pixel values are spread over a wider range around
the mean value, i.e. we have a greater contrast. Finally, BRISQUE and
NIQE increase with increasing darkness level, which means that we are
moving away from natural statistics. This is to be expected as increasing
the darkness level makes the images darker making it more difficult to
recover the full visual information.

Average Experimental PSNR vs LL Images PSNR
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Figure 2.242: Experimental results vs LL Images PSNR
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Average Experimental SSIM vs LL Images SSIM
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Figure 2.243: Experimental results vs LL Images SSIM

Validation Set

i
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623,1883076
7182,040078
A\EE s 2769,145168

R
o

9,568325366
20,18461064
A\Eiels 14,3556775

Level 3.0

0,236413655
0,661268243
S\Eiels 0,484409754

Level 3.0
89,6359808

191,5559151

S\Eiels 132,5484274

Level 3.0

89,20510441
520,4262103
S\Eiaels 310,2819892

3.5 4.0
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PSNR(dB)
3.5 4.0
9,526387 9,422182
20,18071 20,22607
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SSIM
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187,1986 173,8436

130,1981 126,6455
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3.5 4.0

87,31398 155,5189
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4.5

731,4565
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0,140034
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71,66087
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o
o

20,39048869
44,75672323
A\EAEls 33,49175538

o
o

2,753264454
5,450169652
A\EiE s 3,731817046

3.5

13,77273

45,07539
31,3582

3.5

2,945994
5,528314
3,896872

BRISQUE
4.0
13,30271
49,79098
32,26555
NIQE
4.0
3,081627
6,857618
4,198798

Table 2.37: MSR results on validation set
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Figure 2.244: Experimental results PSNR vs Darkness level for validation set
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Figure 2.245: Experimental results SSIM vs Darkness level for validation set
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Figure 2.246: Experimental results vs LL Images PSNR
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Average Experimental SSIM vs LL Images SSIM
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Figure 2.247: Experimental rvesults vs LL Images SSIM

The same behavior as described above is observed in the validation set.
MSE and PSNR improve with increasing darkness level, while SSIM
decreases. As for the quality metrics with no reference, MV decreases
while STD increases with increasing darkness level, meaning that the
experimental results become slightly darker, with pixel values spread more
widely around the mean value. Finally, both BRISQUE and NIQE follow
an upward trend with the increase of the darkness level, so we move away
from natural statistics, for the same reasons we mentioned above.

Test Set
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Figure 2.248: Experimental results PSNR vs Darkness level for test set
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Figure 2.249: Experimental results SSIM vs Darkness level for test set
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Average Experimental SSIM vs LL Images SSIM
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Figure 2.251: Experimental rvesults vs LL Images SSIM

In the test set the same behavior as we mentioned above is observed. MSE
and PSNR improve with increasing darkness level, while SSIM decreases.
Accordingly, the MV decreases with the increase of the darkness level,
while the STD remains approximately constant (but larger than the
corresponding one in the LL case). Finally, BRISQUE and NIQE increase
with increasing darkness level, which means we are moving away from
natural statistics for the same reasons.

Commenting on the results as a whole, we noticed that the values of the
quality metrics improved significantly by applying the method, with PSNR
increasing by an average of 5.48dB and SSIM by 0.34. Moreover, it was
observed that the increase of the darkness level has little effect on the
values of the metrics, as the value change from level to level is very small,
which means that the method is characterized by robustness to the changes
of the darkness level, a characteristic inherited from the SSR algorithm.
For the quality metrics with reference, we saw that MSE and PSNR
improve with increasing darkness level while SSIM decreases. Based on
this we expect there to be instances of images where dark areas have been
over-enhanced, without preserving image texture, leading to these metric
results. For the quality metrics with no reference, we see that MV decreases
with increasing darkness level, while STD generally increases, meaning
that images become slightly darker with increasing darkness level, but with
pixel values spread over a wider range around average brightness. Finally,
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BRISQUE and NIQE follow an upward path with the increase of the
darkness level, which means that we are moving away from natural
statistics. This is to be expected as with the increase of the darkness level
the images become very dark making it difficult to recover the full visual
information.

To see the results of the method visually we will display, for each darkness
level, the image corresponding to the minimum experimental PSNR and
the image corresponding to the maximum experimental PSNR, together
with the LL image and ground truth cases. In addition, we will also display
the corresponding histograms, so that we can evaluate the result.

Darkness Level: 3.0

MIN PSNR

Original Low Light Normal Light Experimental Result
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Figure 2.252: Histogram of LL image
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Figure 2.253: Histogram of NL image
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Figure 2.254: Histogram of 3.0 Experimental Result with min PSNR

For darkness level 3.0 in the case of the minimum experimental PSNR we
see that the experimental result is characterized by a strong enhancement
of the dark areas. If we compare it with the ground truth case it is as if the
photo was taken in bright lighting conditions, confirming what we
mentioned above. The same conclusion can be reached from the
histograms. In the histogram of the ground truth case (figure 2.253) the
values are distributed in the gray value levels less than 150, while in the
experimental histogram (figure 2.254) the values are accumulated in the
right part of the histogram. Nevertheless, the original dark image has been
enhanced, recovering the color and visual information, just more than it
should be compared to the ground truth case. At higher darkness levels we
expect this over-amplification to lead to color distortions as well.
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Figure 2.255: Histogram of LL image
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Figure 2.256: Histogram of NL image
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Figure 2.257: Histogram of 3.0 Experimental Result with max PSNR
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In the case of the maximum PSNR we see that in the experimental result
the visual information has been fully recovered, which can also be
confirmed by the experimental histogram. From figure 2.257 we see that
the shape of the experimental histogram is very close to the shape of the
ground truth case (figure 2.256).
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Figure 2.258: Histogram of LL image
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Figure 2.259: Histogram of NL image
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Figure 2.260: Histogram of 3.5 Experimental Result with min PSNR
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For darkness level 3.5 in the case of the minimum experimental PSNR, the
same problem is observed as we saw at darkness level 3.0, i.e. the dark
areas have been enhanced more than they should be. Here we see that color
distortions are also introduced, which we mentioned above. From the
histogram we see that, while in the ground truth case (figure 2.259) the
values are distributed up to gray value level 150, in the experimental case
(figure 2.260) the values are accumulated in the right part of the histogram,
explaining also the over-amplification of dark areas.
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Figure 2.261: Histogram of LL image
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Figure 2.262: Histogram of NL image
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Figure 2.263: Histogram of 3.5 Experimental Result with max PSNR

291

—
| —



In the case of the maximum experimental PSNR, the same image is
obtained with darkness level 3.0. We see that the method has recovered
most of the visual information, which is also confirmed by the histograms.
From figure 2.263 with the experimental histogram we see that its form is
very close to the ground truth case (figure 2.262) confirming the high
quality of the result.

Darkness Level: 4.0

MIN PSNR

Original Low Light Normal Light Experimental Result

107 Red Channel Histogram

8 - . .

[

4

2

0 . .

0 50 100 150 200 250

<107 Green channel histogram

x10° Blue channel histogram

0 50 100 150 200 250

Figure 2.264: Histogram of LL image
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Figure 2.265: Histogram of NL image
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Figure 2.266: Histogram of 4.0 Experimental Result with min PSNR
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For darkness level 4.0 in the case of the minimum experimental PSNR we
see that again the image has been enhanced more than it should be, thus
introducing additional noise and color distortions. We can see this from the
corresponding histograms, where in figure 2.265 with the histogram of the
ground truth case the pixels are distributed up to the gray value level 100,
while in the experimental histogram (figure 2.266) we see that they are
distributed throughout the available range of values . This results in the
experimental image having greater contrast and brightness than the ground
truth case.
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Figure 2.267: Histogram of LL image
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Figure 2.268: Histogram of NL image
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Figure 2.269: Histogram of 4.0 Experimental Result with max PSNR
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In the case of the maximum experimental PSNR the experimental result is
optically very close to the ground truth case, but we have to notice that
color distortions have started to appear, which means that we recover less
visual information. This is due to the fact that we now combine the results
from 3 different SSRs with different parameter values, and the result
corresponding to parameter c=10 causes these distortions. We recall that
for c=10 in the case of SSR we recovered the texture of the image but not
the color information, which seems to appear here too, just less strongly.
Nevertheless, the experimental histogram (figure 2.269) has a form very
similar to that of the ground truth case (figure 2.268).
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w 10% Red Channel Histogram
Al i
2 L -
=
0 50 100 150 250
w 100 Green channel histogram
4 L -
2 L -
=
250
Blun chan nel histng‘am
3 .
2 -
ik .
1] -
250

Figure 2.271: Histogram of NL image
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Figure 2.272: Histogram of 4.5 Experimental Result with min PSNR

For darkness level 4.5 in the case of the minimum experimental PSNR we
again observe that the experimental result is characterized by intense color
distortions due to the fact that there is an over-enhancement of the dark
areas of the image. This is also confirmed by the histograms as in the
ground truth histogram (figure 2.271) we see that the pixel values are
concentrated below the gray level 120-150, while in the experimental case
(figure 2.272) they are distributed throughout the available range. That is,
it is characterized by greater contrast and brightness, explaining the
experimental result.
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Figure 2.273: Histogram of LL image
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Figure 2.275: Histogram of 4.5 Experimental Result with max PSNR
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In the case of the maximum experimental PSNR, the same image is
obtained with the darkness level 4.0, again we can observe that it is
characterized by color distortions. This is due to the reasons we mentioned
above, but also to the fact that the images have now become very dark,
making it difficult to recover the full visual information. This is also
justified by the histogram of the original LL image (figure 2.273) where
we see that the pixel values are accumulated at the left end of the histogram,
with the dynamic range being too small for the method to recover
information.
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Figure 2.276: Histogram of LL image
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Figure 2.277: Histogram of NL image
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Figure 2.278: Histogram of 5.0 Experimental Result with min PSNR

At darkness level 5.0 in the case of the minimum experimental PSNR we
again observe that the experimental result is characterized by strong color
distortions, which is due to the fact that the dark image has been enhanced
more than it should. This is also confirmed by the histograms, where in the
ground truth histogram (figure 2.277) we see that the pixel values are
distributed in gray values below 100, while in the experimental histogram
(figure 2.278) they are distributed throughout the available range
explaining the excessive amplification of the image.
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Figure 2.279: Histogram of LL image
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Figure 2.280: Histogram of NL image

304

—
| —



10" Red Channel Histogram

0 50 100 150 200 250
x10% Green channel histogram

0 50 100 150 200 250
10 Blue channel histogram

0 50 100 150 200 250

Figure 2.281: Histogram of 5.0 Experimental Result with max PSNR

In the case of the maximum experimental PSNR, the same image is
obtained again and we notice here too that, while we have recovered the
general texture of the image, intense color distortions are detected. This is
due to 2 factors. First, because we are at the highest darkness level, the
images have become too dark making it difficult to retrieve visual
information. Second, as we mentioned above, we combine 3 different SSR
parameters, and the parameter c=10 seems to negatively affect the result,
since as we saw in the case of SSR, with this parameter we recover the
general texture of the image but not the color information, something
which is also found here.

At this point it is worth commenting on the MSR results in general. For the
case of the minimum experimental PSNR we observed that at all darkness
levels the image appears to be over-enhanced, leading to the introduction
of additional noise and color distortions. This is something we predicted
would happen from when we analyzed the values of the performance
metrics, and it is confirmed by the histograms. In particular, it was found
that this problem occurs in cases where in the ground truth histogram the
pixel values are concentrated in gray values smaller than 120-150, while
the experimental histogram has values that are distributed throughout the
available range. This leads the experimental image to be characterized by
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greater brightness and contrast, explaining the difference between ground
truth and experiment.

In the case of the maximum experimental PSNR it was observed that, while
the experimental histogram was very close to the ground truth, color
distortions began to appear, which became more pronounced with the
increase of the darkness level. The main reason for this is that we combine
three different SSRs with different ¢ values (10, 120 and 400), thus keeping
not only the advantages but also the disadvantages of each constant. In the
previous section we saw that for c=10 we recover the general texture of the
image but not the color information, which is also found in MSR to some
extent. So, c=10 introduces this problem into the MSR algorithm, leading
to what we mentioned above. A solution to this problem could be either to
only use large values of constant ¢ or to reduce the weight of the constant
c=10 so that it affects the final result less.
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2.7 Defogging

In this section we will follow a completely different logic from what we
have done so far. The basic idea we will use is that if we invert an RGB LL
image, the result will visually resemble an NL image taken in a foggy
environment [28]. An example from [28] is shown in the figure below.

Figure 2.282: Example of inverted and foggy images. LL images (up), inverted LL
images (middle) and foggy images (down)

So, we understand that if we apply a defogging algorithm we can enhance
the dark areas of each image. The logic we will follow is the following,
first we will invert the respective LL image, and then we will apply the
defogging algorithm. We will also invert the resulting image, leading to the
enhanced image. The defogging algorithm we will use was developed by
He et al [29], and is implemented in MATLAB. We used the ready-made
MATLAB algorithm, as it will be much more optimized than any custom
implementation we tried, which could affect the final result.

The function with which we implement the above logic is shown in figure
B.2.25 of appendix B. This function should be applied to all the images in
the data set, which is done with the scripts shown in figures B.2.26 and
B.2.27. By implementing these scripts, we have at our disposal the
experimental results, based on which we should evaluate the performance
of the algorithm. For this purpose, we calculate the values of the
performance metrics, which we mentioned in the previous chapter, by
applying the script B.2.28. With the results obtained from this process we
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construct summary tables with the minimum/maximum/average value of
the metrics, per darkness level, as well as the corresponding line charts for
PSNR and SSIM per darkness level, in order to evaluate how much it
affects the performance of the algorithm. In addition, we will construct line
charts of the average value of PSNR and SSIM for the original data and the
experimental results, to see how much the quality of the original images
improves.

Training Set

3.0 3.5 4.0 45 5.0
166,4880299 204,0602 249,1574 266,8422 419,855
13455,74764 11434,72 9091,67 10719,28  12630,2
1831,89316 1595,682 1517,898 1778,449 2450,031
PSNR(dB)
3.0 3.5 4.0 45 5.0
6,841725275 7,548547 8,544367 7,829147  7,1167
25,91697347 25,03322 24,16607 23,86826 21,89981
17,01193611 17,55716 17,44126 16,52327 15,07257
SSIM
3.0 3.5 4.0 4.5 5.0
0,102150389 0,066611 0,018291 0,002594 -0,03143
0,847232814 0,859476 0,850552 0,816003 0,759134
0,565489767 0,541727 0,496939 0,426593 0,343103
MV
3.0 3.5 4.0 4.5 5.0
38,30934784 29,74768 24,71322 20,23132 16,48683
217,123014 206,4308 198,5501 185,169 165,4016
109,8345775 101,9563 91,80097 80,64505 71,54522
STD
3.0 3.5 4.0 4.5 5.0
124,2078657 78,44636 56,16059 4850621 60,01531
2478,126117 2445413 2382,601 2299,339 1302,489
683,841285 664,65 637,6705 591,4989 546,1223
BRISQUE
3.0 3.5 4.0 4.5 5.0
5,693960706 5,048779  6,94949 8,300922 10,11482
53,29122631 54,40798 55,38682 55,85574 55,08724
30,43225908 31,71846 32,65922 34,73858 36,38779
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NIQE
3.5 4.0 4.5 5.0
2,53731623 2,647062 2,97515 2,981025 3,18421
24,02631122 24,30622 16,72756 8,061458 10,26958
A\EiES 3,938023694  4,220215  4,498758  4,856623 5,28723
Table 2.39: Dehaze results on training set
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Figure 2.283: Experimental results PSNR vs Darkness level for training set
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Figure 2.284: Experimental results SSIM vs Darkness level for training set
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Average Experimental SSIM vs LL Images SSIM
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Figure 2.286: Experimental results vs LL Images SSIM

In the training set we notice that the values of the metrics improve
noticeably. In addition, we can comment that the metrics follow the
expected course with the increase of the darkness level. Specifically, MSE
increases while PSNR and SSIM decrease with increasing darkness level.
As for the quality metrics with no reference, MV and STD decrease with
increasing darkness level, which means that the experimental result
becomes darker, with pixel values distributed in a smaller range around the
mean value. BRISQUE and NIQE increase with increasing darkness level,
which means we are moving away from natural statistics. This behavior is
due to the fact that with the increase of the darkness level the pixel values
accumulate in the left part of the histogram, more and more strongly, with
the result that the dynamic range is too small, and it becomes difficult to
recover the full and correct visual information.
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=
o

220,5636787
6770,723197
A\EE s 1420,379441

=
o

9,824453017
24,69546364
A\EAEs 17,68237967

o
o

0,314569225
0,836163065
A\ 0,588453739

i
o

29,06169173
178,6966605
A\E3aEls 105,8838475

i
o

139,0443437
1227,630152
A\EHAES 674,6028981

R
o

12,05318979
46,86835028
A\EHAE s 31,73859324

R
o

2,818848052
5,524429442
A\EiE s 3,842801574

3.5 4.0
295,5619 349,3644
6757,127 5549,348
1341,641 1425,283
PSNR(dB)
3.5 4.0
9,833183 10,68838
23,42432 22,69802
17,97748 17,57373
SSIM
3.5 4.0
0,232451 0,233714
0,816592 0,783494
0,568545 0,523373
MV
3.5 4.0
22,84662 18,17203
180,1882 166,0237
98,91091 89,84609
STD
3.5 4.0
146,8853 159,1865
1263,146 1265,366
651,7221 629,6494
BRISQUE
3.5 4.0
8,842169 11,23205
48,49695 48,38407
31,66663 32,98724
NIQE
3.5 4.0
3,124162  3,07862
6,299291 7,878939
4,080517 4,376685

Table 2.40: Dehaze results on validation set
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Figure 2.287: Experimental results PSNR vs Darkness level for validation set
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Figure 2.288: Experimental results SSIM vs Darkness level for validation set
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Figure 2.289: Experimental results vs LL Images PSNR
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Figure 2.290: Experimental results vs LL Images SSIM

In the validation set the values of the metrics improve noticeably, and we
observe the same behavior as the darkness level increases. The MSE
increases and the PSNR and SSIM decrease with the increase of the
darkness level, which means that the experimental result moves away from
the ground truth case. MV and STD decrease with increasing darkness
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level, meaning that images become darker with pixel values spread over a
smaller range around the average brightness.

Test Set

3.0 3.5 4.0 4.5 5.0
233,5081993 300,7754 332,1464 439,0632 535,4297
10244,75109 8765,05 6329,959 7127,002 5362,924
1770,137098 1653,327 1655,357 1972,755 2646,74
PSNR(dB)
3.0 3.5 4.0 4.5 5.0
8,025789496  8,70326 10,11679 9,601735 10,83679
24,44778226 23,34838 22,91751 21,70553 20,84378
17,18743152 17,47945 17,13891 16,00111 14,42391
SSIM
3.0 3.5 4.0 4.5 5.0
0,18713404 0,129753 0,124088 0,065689 -0,01252
0,870310321 0,87548 0,850346 0,770045 0,58176
0,594287549 0,561553 0,5086 0,438122 0,337125
MV
3.0 3.5 4.0 4.5 5.0
32,55782741 25,02718 14,00675 13,26788 10,89123
170,8152124 173,0631 161,0322 152,8835 145,1221
106,3222952 99,77421 90,64965 78,97358 68,62438
STD
3.0 3.5 4.0 4.5 5.0
168,8599085 92,12444 76,77816 72,33594 88,56258
1731,38169 1678,286 1570,726 1355,347 1187,504
686,6604479 662,5162 627,4498 569,5787 491,4949
BRISQUE
3.0 3.5 4.0 4.5 5.0
5,022448887 6,432561 10,37047 15,05212 15,02235
55,9694651 56,59765 52,56129 52,69716 57,20963
30,22222332 31,29291 32,54937 34,7753 37,39497
NIQE
3.0 3.5 4.0 4.5 5.0
2,747940028 2,839296 2,944278 3,360973  3,34478
6,655770079 7,049703 7,965978 9,226072 10,22829
3,858973321 4,133813 4,486066 4,90713 5,256686
Table 2.41: Dehaze results on test set
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Figure 2.291: Experimental results PSNR vs Darkness level for test set
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Figure 2.292: Experimental results SSIM vs Darkness level for test set
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Figure 2.293: Experimental results vs LL Images PSNR
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Figure 2.294: Experimental results vs LL Images SSIM

In the test set we observe the same behavior, with the values of the metrics
improving and following the expected course with the increase of the
darkness level.
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Commenting on the results as a whole, we see that the metric values
improve noticeably, with PSNR increasing by an average of 8.2dB and
SSIM by 0.38. In addition, for this method we observe that the expected
course 1s followed with the increase of the darkness level, as from the
values of the metrics we see that the performance of the algorithm
decreases with the increase of the darkness level. This is because by
increasing the darkness level, the images become very dark, which means
that the inverted images will be characterized by large percentages of
foggyness, resulting in the defogging algorithm not being able to remove
it completely. This will lead to the experimental result not being fully
amplified and introducing extra noise.

To visually see the results of the algorithm, but also to confirm what we
have mentioned so far, we will display for each darkness level the images
that correspond to the minimum and maximum experimental PSNR. In
addition, we will display the corresponding LL and ground truth images,
as well as their histograms.

Darkness Level: 3.0

MIN PSNR

\
B -

Original Low Light Normal Light Experimental Result
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Figure 2.295: Histogram of LL image
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Figure 2.296: Histogram of NL image
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Figure 2.297: Histogram of 3.0 Experimental Result with min PSNR

For darkness level 3.0 in the case of the minimum experimental PSNR we
see that the image is overenhanced, with the experimental result being
brighter than the ground truth case. Nevertheless, the color information is

fully recovered and no color distortions or extra noise appear.

MAX PSNR

Original Low Light Normal Light Experimental Result
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Figure 2.298: Histogram of LL image
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Figure 2.299: Histogram of NL image
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Figure 2.300: Histogram of 3.0 Experimental Result with max PSNR

In the case of the maximum experimental PSNR we see that the
experimental result is visually very close to the ground truth case. Image
texture as well as color information are fully recovered, justifying the
maximum value of PSNR. This is also confirmed by the experimental
histogram (figure 2.300) whose form is similar to the ground truth case
(figure 2.299).
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Figure 2.301: Histogram of LL image
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Figure 2.302: Histogram of NL image
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Figure 2.303: Histogram of 3.5 Experimental Result with min PSNR

For darkness level 3.5 in the case of the minimum experimental PSNR the
same image is obtained as for darkness level 3.0, again we notice that it has
been enhanced more than it should be. Here too, much of the visual
information has been recovered, such as colors and texture. We must
notice, however, that color distortions begin to appear, which is due to the
fact that we are at a greater darkness level than before, as a result of which
it is more difficult to retrieve the color information.

MAX PSNR

Original Low Light Normal Light Experimental Result
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Figure 2.304: Histogram of LL image
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Figure 2.305: Histogram of NL image
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Figure 2.306: Histogram of 3.5 Experimental Result with max PSNR

In the case of the maximum experimental PSNR we observe that the
experimental result is visually very close to the ground truth case, which is
also confirmed by the experimental histogram (figure 2.306) whose form
is very close to the ground truth case (figure 2.305). The only thing we
have to comment on is that, as can be seen from image 2.306, the pixel
values of the experimental results are distributed in specific gray value
levels, something we had also observed in the histogram equalization.

Darkness Level: 4.0

MIN PSNR

Original Low Light Normal Light Experimental Result
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Figure 2.307: Histogram of LL image
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Figure 2.308: Histogram of NL image
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Figure 2.309: Histogram of 4.0 Experimental Result with min PSNR

For darkness level 4.0 in the case of the minimum experimental PSNR we
see that the experimental result does not resemble the ground truth case, as
the background of the image has been enhanced and the vehicle has
remained dark, explaining the minimum value of the PSNR. This is also
confirmed by the histograms, where in the experimental histogram (figure
2.309) we see that the pixel values remain concentrated in the left part of
the histogram, while in the ground truth histogram (figure 2.310) the values
are distributed throughout the available range, with the more in the right
part of the histogram.
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Figure 2.310: Histogram of LL image
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Figure 2.311: Histogram of NL image
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Figure 2.312: Histogram of 4.0 Experimental Result with max PSNR
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In the case of the maximum experimental PSNR we see that the
experimental result is visually very close to the ground truth case,
explaining the maximum value that the metric takes. This is also confirmed
by the experimental histogram (figure 2.312) where we see that its form is
very close to the ground truth case, with the only difference being that the
pixel values are distributed in specific gray value levels.
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Figure 2.313: Histogram of LL image
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Figure 2.314: Histogram of NL image
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Figure 2.315: Histogram of 4.5 Experimental Result with min PSNR

332

—
| S—



For darkness level 4.5 in the case of the minimum experimental PSNR we
see that the experimental result is characterized by intense color
distortions, and remains darker than the ground truth case, explaining the
minimum value of the metric. And from the histograms we see that the
experimental histogram (figure 2.315) is completely different from the
corresponding ground truth (figure 2.314). The same problem was also
detected at darkness level 4.0 at the minimum experimental PSNR, where
it was observed that while the ground truth histogram is distributed
throughout the available range with most values accumulated in the right
part, the corresponding experimental one fails to reproduce this
information. Based on these we understand that the method has difficulties
in such cases, producing low quality results with intense color distortions
and noise.

MAX PSNR

Original Low Light Normal Light Experimental Result
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Figure 2.316: Histogram of LL image
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Figure 2.317: Histogram of NL image
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Figure 2.318: Histogram of 4.5 Experimental Result with max PSNR

In the case of the maximum experimental PSNR we see that the
experimental result is visually very close to the ground truth case, with the
impressive thing being that the reflections of the objects in the image have
also been recovered. This is also confirmed by the histograms where we
see that the experimental (figure 2.318) has a form very close to the
corresponding ground truth (figure 2.317) with the only difference being
that the pixel values are distributed in fewer gray value levels. This
difference also explains some color changes observed in the experimental
image.
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Figure 2.319: Histogram of LL image
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Figure 2.320: Histogram of NL image
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Figure 2.321: Histogram of 5.0 Experimental Result with min PSNR
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For darkness level 5.0 in the case of the minimum experimental PSNR, the
same image is obtained as for darkness level 4.5, confirming what we
mentioned above. That is, the method has difficulty in images where the
ground truth case is characterized by a histogram in which the values are
clustered in the right part of the histogram.
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Figure 2.322: Histogram of LL image
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Figure 2.323: Histogram of NL image
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Figure 2.324: Histogram of 5.0 Experimental Result with max PSNR
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In the case of the maximum experimental PSNR, the experimental result is
visually very close to the ground truth case, and is characterized by
minimal color distortions, which is particularly impressive as we are at the
maximum darkness level. The high quality of the result is also confirmed
by the histograms. From figure 2.324, with the experimental histogram, we
see that it has a form very close to the corresponding ground truth case
(figure 2.323), with the only difference being that the pixel values are
distributed in fewer gray value levels. This difference also explains the
color changes we mentioned above.

At this point it is worth commenting on the results of the method as a
whole. We saw that the method significantly improves LL images by
increasing the average PSNR by 8.2dB and the average SSIM by 0.38. In
the case of the minimum experimental PSNR we saw that the method either
over-enhances the image, leading to the introduction of additional noise
and color distortions, or fails to recover certain features. We also saw that
the method struggles on images where the pixel values of the ground truth
image are clustered in the right part of the histogram. This is due to the
nature of the method, as its purpose is to recover an image with pixel values
spread over the entire available range and with high contrast. So, we
understand that it is impossible to reproduce such cases. In the case of the
maximum experimental PSNR we saw that the experimental results are
visually very close to the ground truth case, with the method having
recovered most of the visual information. Even at a very high darkness
level the method performs very well, specifically mentioning the result at
darkness level 4.5 where even the reflections of the objects have been
recovered, as well as the result at darkness level 5.0 where most of the color
information has been recovered. The high quality of the results is also
confirmed by the histograms, as in all cases the experimental histogram has
a form similar to the corresponding ground truth. The only difference
observed is that in the experimental case, the pixel values are distributed in
fewer gray value levels. This can be explained by the fact that the images
are very dark, and the dynamic range between the bands is very small,
making it difficult to fully recover the histogram distribution.
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Chapter 3 — Deep Learning Techniques

3.1 Introduction

In this chapter we will use a completely different approach to the solution
of the LLIE problem. A more general way to express the problem is through
the relationship:

I, = fyL)

where LL image and NL image are connected through a function f(-), which
introduces noise into the image making it darker. From this we understand
that 1f we can find or approximate the function f, then we will have solved
the LLIE problem. The methods we studied in the previous chapter are all
model based, as they try to guess a model that describes the function f,
which has 2 major drawbacks. The first is that in all cases constants are
introduced, the values of which we must choose. Because every problem
is different, we have to experiment each time with different values of the
constants, and choose the best one from them, which does not guarantee us
that we have actually found the optimal value, and it is also time-
consuming. The second is that none of the models use information from
the dataset, 1.e. they are not data driven models. Both disadvantages can be
addressed with learning methods, specifically Deep Learning which we
will use in this section. deep learning techniques can be used to learn
mappings, or more precisely approximations of mappings, between a
specific input and a specific output using an iterative process, which
minimizes the error between the desired output and the actual output of the
DL architecture [30].

Since both the input and the output of the problem we are studying are
images, we will use convolutional neural networks, which were first
introduced by Lecun et al. [31] for automating the categorization of
handwritten characters. The basic logic behind CNNss is to pass the input
image through a convolutional layer which will extract features that can
help solve the problem we are studying. The result of the first level is
passed through a second level, extracting higher level features and so on.
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In the case of character classification from [31] the final level features are
flattened and passed through a set of neurons that will give the final result
of the classification.

C3:f. maps 16@10x10
C1: feature maps S4:f. maps 16@5x5

INPUT 6@28x28

32x32

S52: f. maps
6@14x14

|
| | Full coanecTion | Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

Figure 3.1: LeNet-5 architecture for handwritten digits [31]

To train such models we need a data set where each input corresponds to a
unique defined output. In this case we have the LL images as well as the
corresponding ground truth/NL images. This set should be broken into
train/validation/test, with the training set used to train the model, the
validation set to check that the model is not overfitting the training set
during training, and the test set for the final control of the model's
generalizability, i.e. its performance on data it has not encountered during
training. In the training stage, an iterative algorithm called back-
propagation [32] is applied, which minimizes the error between the desired
output (Yreal) and the actual output of the model (ymode1), Which is a function
of the form:

Error = D (Yreat» Ymodel)

Based on the above we understand that we have to make some decisions,
such as what form the error function will have and how many convolutional
levels the architecture we will build will have. CNNs combine a set of
feature maps to achieve the final result, so we expect to get a better result
the deeper the network, i.e. the more convolutional layers the model has.
One of the first problems created by increasing the number of
convolutional levels is the vanishing/exploding gradients, the existence of
which slows down the training of the model [33]. The second is the
degradation problem where it was observed that as the depth of the network
increases, its accuracy saturates and then begins to decline [34]. The two
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main ideas proposed to deal with these problems, as well as to increase the
accuracy of the models, are Residual Learning [34] and the Inception
module [35], which we will implement during the construction of the
architecture we will use. The basic idea of Residual Learning is to use
shortcut connections between convolutional layers, as shown in figure 3.2.

X

k A

weight layer
f'(x) 1 relu

weight layer

X
identity

Figure 3.2: Shortcut connection in Residual Learning net [34]

In the Inception module the basic idea is that multiple layers connect to the
same previous layer, and their outputs are concatenated into an output
vector [35].

In this chapter we will try to construct a DL architecture, which will solve
the LLIE problem by learning the mapping between the space of LL images
and the space of NL images, using the two basic ideas we mentioned above.
We will then enrich this architecture in an effort to improve the result each
time, studying different variations. The data is already broken into
train/test/validation, and we will use the train data to train the architecture,
the validation to confirm that the architecture does not overfits the train
data, and the test data to evaluate the generalization ability of the model.
At this point we should comment that since we are only interested in the
generalization ability of each model, we will present and comment on the
results only from the test set, which includes images that the model did not
encounter during training.
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3.2 LL-CNN: Original Architecture

The basic architecture we will use was proposed by Tao et al. [36] and is
called Low Light Convolutional Neural Network (LL-CNN). Its main
purpose is to learn suitable feature maps, the combination of which
produces enhanced images, which appear as if they were taken under
normal lighting conditions. The architecture used by the authors is shown
in the figure below.
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Figure 3.3: LL-CNN architecture [36]

We see that the input image first passes through a convolutional layer, the
purpose of which is pre-processing. At the end, before the output, there is
another convolutional layer whose purpose is to combine the feature maps
into the final output image, i.e. to make the output have the appropriate
size. In between, there are properly designed convolutional modules, which
are designed to deal with the problem of vanishing gradients, offering the
possibility to make the architecture deeper. The form of the convolutional
module is shown in figure 3.4 below.
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Figure 3.4: Convolutional module architecture [36]

We see that the convolutional module is inspired by the Inception module
and Residual Learning. Initially, the input of the module is processed in
two different ways, on the left it goes through 2 convolutional layers (3x3)
and on the right through one convolutional layer (1x1). The results are
combined into a vector, simply instead of being concatenated, they are
added, a process inspired by Inception Modules. Then, the resulting vector
goes through two paths, first through 2 convolutional layers (3x3) and
secondly, it goes straight to the output bypassing the two convolutional
layers. These two results are added together, a process inspired by Residual
Learning. Each convolutional layer of the architecture uses 64 filters (ie 64
feature maps), except for the last one where the number of filters depends
on the number of color channels we want the output to have. Based on these
we understand that we have to choose the number of convolutional
modules that we will use. For the sake of experimentation, we will apply
the model three different times with 1, 3 and 5 convolutional modules
respectively, so that we can compare the performance in relation to the
number of modules. Finally, each convolutional layer has ReLU as
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activation function, while as error function we use Mean Squared Error
(the authors define an error function based on SSIM, but for simplicity we
change it and use MSE). More details on the implementation, training and
testing of the model are presented in appendix B.

In the following, we present the results of each architecture on the test data
only, since we are interested in the generalization ability of the models. We
construct tables with the minimum/maximum/average value of the quality
metrics, as well as line charts with the corresponding PSNR and SSIM, in
order to see how the darkness level affects the performance of the model.
In addition, we also construct line charts with the average value of PSNR
and SSIM for all modules as well as for the LL data, in order to see which
number of modules gives the best results and how much the images
improve.

1 module

3.0 3.5 4.0 4.5 5.0
64,00632 6571979 117,2084 117,3277 626,9481
3743,257 3609,557 5276,802 4208,941 7417,438
589,5228 595,127 999,0249 858,434 2655,512
PSNR(dB)
3.0 3.5 4.0 4.5 5.0
12,39831 12,55626 10,9071 11,88908 9,428264
30,06858 29,95384 27,44122 27,4368 20,15849
21,99681 21,9135 19,22709 20,01199 14,22402
SSIM
3.0 3.5 4.0 4.5 5.0
0,24571 0,237992  0,14365 0,024684 0,028431
0,899974 0,900537 0,792575 0,753381 0,605255
0,697193 0,682368 0,578808 0,485678 0,361786
MV
3.0 3.5 4.0 4.5 5.0
45,49428 4563054 28,00752 47,55223 99,52001
128,4906 127,5039 115,8126 129,9237 156,0764
99,37198 98,72828 79,32872 98,06009 133,7876
STD
3.0 3.5 4.0 4.5 5.0
59,83054 74,57957 49,11963 52,83164 66,23288
930,2407 975,8653 832,8613 978,381 1056,601
328,6329 341,9338 255,5311 345,315 467,8872
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BRISQUE
3.5 4.0 4.5 5.0
37,15248 38,68091 38,67962 42,59008 43,46492
53,66808 54,99189 57,07783 57,97389 57,34084
A\/Eiaels | 45,59591  46,18324 48,91179 49,24229 50,01282
NIQE

3.5 4.0 4.5 5.0
4,231179 3,967828 4,305972 4,113166 4,130589
7,562505  7,48527 6,764829 5,998782 5,515432
A\/Eaels | 5073763 4,99647 5,289502 4,768394  4,596427
Table 3.1: LLCNN results on test set — 1 CNN module
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Figure 3.5: Experimental results PSNR vs Darkness level for test set
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SSIM vs Darkness Level - Test Images 1 module

—0—MIN MAX AVERAGE
1 0,90 0,90
o 0.79 0,75
038 0,70 0,68 |
0,7 0,58 0,61
s 2'2 0,49
a 0,36
0,4
03 025 0,24
0.2 0,14
0,1 0,02 0,03
0
3.0 3.5 4.0 45 5.0

Darkness Level

Figure 3.6: Experimental results SSIM vs Darkness level for test set

For one convolutional module we see that the values of the quality metrics
improve noticeably. The MSE is greatly reduced, compared to the original
images, and the PSNR and SSIM are increased. For the quality metrics
with no reference we notice that MV and STD increase, which means that
the images are now indeed brighter, with pixel values spread more widely
around the mean value, i.e. the images also have bigger contrast.
BRISQUE and NIQE continue to have a large value, which means that DL
techniques cannot recover the complete information of natural statistics.
Furthermore, we see that the expected path is followed with increasing
darkness level, as the quality of the metrics decreases as it increases. MSE
increases, while PSNR and SSIM decrease. This is due to the fact that by
increasing the darkness level, the images become very dark, making it
difficult to retrieve the full information.
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3 modules

=
o

59,77004
3918,951
AAEE S 634,722

=
o

12,19911
30,36597
565 21,80508

o
o

0,324578
0,913249
A\EAEs 0,695826

i
o

34,23039
119,4801
A\EHAE S 86,5292

i
o

67,43443
771,1021
A\EHAE S 238,4436

R
o

34,3626
54,27313
S\EHAE S 46,0759

R
o

4,036433
8,754551
A\Ee s 5,230862

Table 3.2: LLCNN results on test set — 3 CNN modules

3.5

36,24526
3963,741
717,4708

3.5

12,14975
32,53829
21,04742

3.5

0,315974
0,900375
0,690745

3.5

37,90919
114,8552
84,36512

3.5

46,93583
649,7872
224,6997

3.5

36,70928
52,29309
45,55895

3.5

4,351935
7,740933
5,098118

4.0
70,22316
3545,339
653,3445
PSNR(dB)
4.0
12,63423
29,666
21,32991
SSIM
4.0
0,103897
0,888413
0,607084
MV
4.0
46,00376
127,4471
98,0996
STD
4.0
47,66101
868,719
290,6476
BRISQUE
4.0
40,5214
55,40144
47,57644
NIQE
4.0
4,643276
7,474711
5,175296
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4.5

392,4378

5257,203
1130,7

4.5

10,92326
22,19309
18,20765

4.5

0,240917
0,764861
0,498138

4.5
65,432

140,9266

112,9711

4.5

96,73802
938,4278
339,4225

4.5

43,04002
57,22629
49,40058

4.5

4,514113
6,651145
5,147363

5.0

241,2912

3509,249
1002,31

5.0

12,67866
24,30539
18,90393

5.0

0,039864
0,672576
0,413824

5.0

56,01839
125,7178
97,62692

5.0

32,45479

759,7665
256,864

5.0

43,45819
58,06572
51,77529

5.0

4,776201
5,918743
5,219693
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Figure 3.7: Experimental results PSNR vs Darkness level for test set
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Figure 3.8: Experimental vesults SSIM vs Darkness level for test set
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For 3 convolutional modules the values of the metrics are greatly
improved, with the MSE decreasing and the PSNR and SSIM increasing
indicating the increase in the quality of the results. Also, MV and STD are
increased which means images are brighter, and with more contrast, as the
pixel values are spread over a wider range around the average brightness.
BRISQUE and NIQE also have large values here, which means that we are
moving away from natural statistics, even if the result improve visually.
Finally, we see that the expected behavior is followed with the increase of
the darkness level, as the quality of the metrics decreases with its increase.

5 modules

3.0 3.5 4.0 4.5 5.0
43,95319 270,1427 177,359 191,175 458,578
3362,776 4603,534 5294,692 5870,252  6906,46
521,8074 809,4739 810,0255 1300,905 2159,329
PSNR(dB)
3.0 3.5 4.0 4.5 5.0
12,86382 11,49989 10,8924 10,44424 9,738249
31,7009 23,81487 25,64227 25,31649 21,51667
23,10539 19,89816 20,15362 17,76384 15,30689
SSIM
3.0 3.5 4.0 4.5 5.0
0,178961 0,224381 0,249354 0,020598 0,028057
0,927742 0,881537 0,82451 0,718493 0,704068
0,735481 0,696412 0,586369 0,359358 0,326991
MV
3.0 3.5 4.0 45 5.0
38,91114 61,88751 52,09949 55,82323 62,1317
124,3378 136,6255 139,8324 119,9074 99,69276
95,72208 111,1108 106,6565 86,97369 76,94136
STD
3.0 3.5 4.0 4.5 5.0
60,9497 93,02488 86,39266 149,7656 103,4771
929,1197 879,7557 1028,407 572,7684 436,5832
303,6118 298,8985 330,4392 316,7163 310,8114
BRISQUE
3.0 3.5 4.0 4.5 5.0
35,93147 36,67733 43,41745 43,45818 44,95327
52,97696 53,56573 56,73413 63,55916 66,15108
44,40987 45,9194 49,06635 5540452 56,17681
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NIQE
3.0 3.5 4.0 4.5 5.0
4,020012 4,294638 4,452095 5,002217 5,451129
8,350197 7,704777 7,106451 9,033405 9,518737
AWVEiels 4,964992  5,456095 5,265027 5,838698 6,648088
Table 3.3: LLCNN results on test set — 5 CNN modules

PSNR vs Darkness Level - Test Images 5 modules
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Figure 3.9: Experimental results PSNR vs Darkness level for test set
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Figure 3.10: Experimental results SSIM vs Darkness level for test set
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For 5 convolutional modules again the values of the metrics improve
noticeably as the MSE decreases and the PSNR and SSIM increase,
compared to the original LL images. Also, MV and STD are increased,
meaning images become brighter and with bigger contrast. BRISQUE and
NIQE continue to have large values, which confirms to us that DL models
have difficulty recovering natural statistics. Finally, we must comment that
again with the increase in the darkness level the performance of the model
decreases, which is to be expected for the reasons we described above.

Average Experimental Results PSNR vs LL Images PSNR

=@=1 module ==@=3 modules 5 modules LL Images

25
23

21 [ =
17

15 \

13
11
9
7

PSNR(dB)

3.0 3.5 4.0 4.5 5.0
=@=—1 module = 21,99681065 21,91349739 19,22708837 20,01199471 14,224016
=@=—3 modules 21,80508368 21,04741646 21,32990812 18,20765078 18,90392769
5 modules 23,10539329 19,89815985 20,15361902 17,76383703 15,30689243
LLImages = 9,390119091 8,809530067 8,408226349 8,140069704 8,048577867

Darkness Level

Figure 3.11: Experimental results average PSNR vs LL Images PSNR test set

Average Experimental Results SSIM vs LL Images SSIM
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=@=—3 modules  0,695825936 0,690745065 0,60708371 0,49813809 0,413823953
5 modules 0,735481269 0,696411519 0,586369281 0,359358454 0,326990724
LLImages = 0,178076079 0,114190342 0,072755485 0,04674998 0,031034913
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Figure 3.12: Experimental results average PSNR vs LL Images PSNR test set

At this point it is worth commenting on the results as a whole. In all cases
we saw that the metric values were greatly improved, with MSE decreasing
and PSNR and SSIM increasing, indicating the effectiveness of this
method. In addition, MV and STD are increased, which means that the
experimental images are brighter and with higher contrast, since the pixel
values are spread over a larger range around the mean brightness. The only
negative thing we have to comment on is that BRISQUE and NIQE do not
improve, with their values remaining large, which shows us that the results
obtained from DL methods are far from natural statistics. This is because
as the image passes through the various layers of the model, it is subjected
to several filters leading to this effect. Finally, in all cases we observe that
with the increase of the darkness level the performance of the model
decreases, as the quality of the values of the metrics decreases. This is due
to the fact that as the darkness level increases, the images become too dark,
and the dynamic range too small, which makes it difficult to retrieve visual
information. A solution to this would be to train the architecture more for
larger darkness levels to give the model time to learn more. Nevertheless,
the improvement in the metrics is impressive, and the fact that these results
are obtained on our test set shows that the model has a strong generalization
ability.

Regarding the number of convolutional modules, from figures 3.11 and
3.12 we see that there are no big differences in the performance of each
case. One module achieves an increase in average PSNR by 10.91dB, 3 by
11.71dB and 5 by 10.68dB, while for SSIM the improvement is by 0.47,
0.5 and 0.45 respectively. In addition, we see that for large darkness levels
the 3 modules give slightly better results, so in the end these are the ones
that perform best. Finally, let us comment that all 3 cases have been trained
for the same number of epochs, so there is a possibility that the 5 modules
would have given better results if we had trained them more, since they
have more parameters.

Overall, we saw very impressive results in terms of metric values. To see
the results visually we will present, for each darkness level, the results for
a random image, together with the corresponding LL and ground truth
cases. We will also present their histograms to see if the correct information
for the histogram was retrieved.
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Darkness Level: 3.0

Original Low Light Normal Light

1 module 3 modules 5 modules
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Figure 3.13: Histogram of 3.0 LL image
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Figure 3.14: Histogram of 3.0 NL image
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Figure 3.15: Histogram of 3.0 experimental result with 1 module
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Figure 3.16: Histogram of 3.0 experimental result with 3 modules
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Figure 3.17: Histogram of 3.0 experimental result with 5 modules

For darkness level 3.0 we see that in all three cases the experimental result
is visually very close to the ground truth case, as a large part of the visual
information has been recovered. This is also confirmed by the experimental
histograms, which in all cases, their form is very close to that of the ground
truth image. Nevertheless, we must comment that for 3 convolutional
modules, a slightly better result is obtained, as more correct color
information has been recovered, and the histogram is almost the same as
the corresponding ground truth.

358

—
| —



Darkness Level: 3.5

Original Low Light Normal Light

1 module 3 modules 5 modules
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Figure 3.18: Histogram of 3.5 LL image
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Figure 3.19: Histogram of 3.5 NL image
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Figure 3.20: Histogram of 3.5 experimental result with 1 module
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Figure 3.21: Histogram of 3.5 experimental result with 3 modules
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Figure 3.22: Histogram of 3.5 experimental result with 5 modules
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For darkness level 3.5 impressive results are obtained as well, with the LL
image being fully enhanced and most of the visual information recovered,
for all cases of convolutional modules. This is also confirmed by the
experimental histograms, where in all cases their form is very close to that
of the ground truth image. Moreover, here too the 3 convolutional modules
seem to produce a slightly better result, indicating what we mentioned
above.

Darkness Level: 4.0

Original Low Light Normal Light
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Figure 3.23: Histogram of 4.0 LL image
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Figure 3.24: Histogram of 4.0 NL image
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Figure 3.25: Histogram of 4.0 experimental result with 1 module
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Figure 3.26: Hstogram of 4.0 experimental result with 3 modules
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Figure 3.27: Histogram of 4.0 experimental result with 5 modules

For darkness level 4.0 the first effects of increasing the darkness level start
to be seen, as in the experimental results the general texture of the image
has been recovered but not the color information. The experimental
histograms have a shape very close to the corresponding ground truth case,
confirming the enhancement of the dark image. However, the LL image
has started to become too dark, with the dynamic range being too small,
making the retrieval of color information difficult, leading to the results we

SCc.
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Darkness Level: 4.5
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Figure 3.28: Histogram of 4.5 LL image
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Figure 3.29: Histogram of 4.5 NL image
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Figure 3.30: Histogram of 4.5 experimental result with 1 module
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Figure 3.31: Histogram of 4.5 experimental result with 3 modules
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Figure 3.32: Histogram of 4.5 experimental result with 5 modules

368

—
| —



In the case of darkness level 4.5 we again notice that, while the general
texture of the image has been recovered and the LL image has been
enhanced, the color information has not been restored. Here again the lack
of color is because the images are too dark making it difficult to retrieve
the color information. A solution to this problem would be to train the
model more for large darkness levels so that it has time to learn the
information needed to retrieve the color.

Darkness Level: 5.0
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Figure 3.33: Histogram of 5.0 LL image
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Figure 3.34: Histogram of 5.0 NL image
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Figure 3.35: Histogram of 5.0 experimental result with 1 module
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Figure 3.36: Histogram of 5.0 experimental result with 3 modules
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Figure 3.37: Histogram of 5.0 experimental result with 5 modules

For darkness level 5.0 we also notice that the color information is not
restored, but the model has managed to recover the general texture of the
image, as well as the details, without introducing additional noise and
artifacts, which is particularly impressive. The experimental histograms, in
all cases, have a form very close to the corresponding ground truth, with
the histogram for 3 convolutional modules being the best. As we mentioned
before, the recovery of the color information could also be recovered by
further training the model.

Overall, we saw that the architecture we built gave very impressive results,
greatly improving the values of the metrics, with the average PSNR
increasing up to 11.71dB and the SSIM by 0.5 (values for the case with 3
convolutional modules that gave the best results). The improvement in the
quality of the images was also confirmed by the visual results we presented,
with the LL images being fully enhanced without the introduction of
additional noise or artifacts (which was strongly observed in the case of
classical methods). In addition, it was observed that with the increase of
the darkness level it becomes more difficult to retrieve the color
information, since the resulting images are black and white. This is due to
the fact that for large darkness levels the images are too dark, with the
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dynamic range too small, making it more difficult to learn the full mapping
that will lead to color restoration. The fact that the general texture of the
image is recovered means that if we gave more time (and data) to the model
it could also recover the color information. So, a solution to this is the
further training of the model for higher darkness levels. Finally, from the
three cases of convolutional modules, we saw that in the given training
conditions the model with 3 convolutional modules performs better, as it
leads to the greatest improvement of the metrics and performs better in the
large darkness levels, compared to the other two cases.

3.3 LL-CNN: 1 Variation

In the previous section we saw that the architecture we designed produces
very impressive results, but struggles to recover color information for
higher darkness levels, resulting in black and white images. One solution
we mentioned is to further train the model for large darkness levels to
recover the color as well. Due to limited computing resources, another way
to deal with it would be to make the model learn more low level features
that might help to recover the color as well. For this reason, in the
architecture we presented earlier, we add an additional 3 convolutional
layers, between the convolutional modules and the output layer. The
implementation details of these layers are presented in appendix B. These
additional convolutional layers act both as post processing steps and for
learning additional features that can help in the recovery of color
information as well. We repeat the experiments with the new form of the
architecture, and present the results on the test set since we are interested
in the generalizability of the model.
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1 module

=
o

3.5 4.0 4.5 5.0
96,80228 65,58468 72,6814 97,79351 528,1886
4167,11 4159,735 4878,609 4774,116 5669,801
A\/Eiaels | 594,7516  682,6434 806,4392 867,1724 1371,427
PSNR(dB)
3.5 4.0 4.5 5.0
11,93245 11,94015 11,24784 11,34187 10,59513
28,27195 29,96278 29,51657 28,2277 20,90291
ANEaels ] 21,98932  21,37298  20,34762  20,02487 17,36206
SSIM
3.5 4.0 4.5 5.0
0,255508 0,251793 -0,16438 -0,08179 -0,18834
0,915518 0,914636 0,859552 0,767284 0,763961
A\Eiaels 0,729288 0,696488 0,452581 0,452772 0,34826
MV
3.5 4.0 4.5 5.0
47,72041 32,19816 46,2511 45,11351 71,33703
131,8304 117,613 129,0201 129,6187 143,1904
A\/Eels ] 102,9921  85,37628 97,92211 97,94818 115,8154
STD
3.5 4.0 4.5 5.0
89,75246 50,56022 56,36618 46,75957 68,2928
1035,856 869,4787 947,505 887,7119 1010,549
A\/e3iaels | 358,8593 336,6523 329,3787 304,9104 387,3231
BRISQUE
3.5 4.0 4.5 5.0
35,85155 35,84404 37,22929 40,01978 43,27264
51,24883 54,05877 54,65608 58,02733 156,17784
A\/Eiaels | 43,95986  46,22144  46,00282 49,00711 49,93145
NIQE
3.5 4.0 4.5 5.0
3,486145 3,655138 3,980192 3,950654 4,08138
7,709424 6,987334 6,541648 5,749939 5,430819
A\Eaels | 4,581822  4,635425  4,528655 4,460164 4,511685
Table 3.4: LLCNN I* variation results on test set — I CNN module
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PSNR vs Darkness Level - Test Images 1 module
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Figure 3.38: Experimental results PSNR vs Darkness level for test set
SSIM vs Darkness Level - Test Images 1 module
=@—MIN =@=MAX ==@=AVERAGE
1
® e
0,8 M
0,6
s 0,4
a 0,2
0
0,2
-0,4
3.0 3.5 4.0 4.5 5.0
—=@— MIN 0,25550786  0,251793459 = -0,164382064 = -0,081793159 = -0,188340025
=@ MAX 0,91551828  0,914635795  0,859551576 = 0,767284429  0,76396134

=@==AVERAGE  0,729287558 0,696487705 0,4525806 0,452772027 0,348259862

Darkness Level

Figure 3.39: Experimental results SSIM vs Darkness level for test set

For 1 convolutional module the values of the metrics improve noticeably,
as the MSE decreases and the PSNR and SSIM increase, compared to the
original LL images. In addition, MV and STD increase, which means that
the experimental images are brighter, since they have a higher average
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brightness, and have a higher contrast as the pixel values are spread over a
larger range around the average brightness. BRISQUE and NIQE continue
to have large values, which shows that with DL models we cannot recover
the natural statistics, something we also found in the previous section.
Finally, as the darkness level increases, the expected behavior is observed,
as the quality of the metrics decreases. Specifically, MSE increases and
PSNR and SSIM decrease with increasing darkness level, and similarly
MV and STD also decrease with increasing darkness level. As we
mentioned above, this could be solved by further training the model for
large darkness levels.

3 modules

3.0 3.5 4.0 4.5 5.0
139,8357 55,47963 62,18725 107,7509 182,9754
4673,288 3123,43 3793,452 3812,375 4110,048
634,6368 554,7044 603,7259 657,5905 887,8519
PSNR(dB)
3.0 3.5 4.0 4.5 5.0
11,43458 13,18449 12,34046 12,31885 11,99233
26,67462 30,68947 30,19379 27,80659 25,50688
21,50457 22,46352 21,94701 21,39252 19,6565
SSIM
3.0 3.5 4.0 4.5 5.0
0,177864 0,065313 0,312374 0,140107 -0,05215
0,934763 0,943638 0,856044 0,911381 0,709297
0,715544 0,685708 0,676907 0,623833 0,435932
MV
3.0 3.5 4.0 45 5.0
51,56754 43,73285 51,93238 46,87704 51,93238
135,8206 123,6079 132,1517 129,5823 132,1517
105,6586 94,97591 99,04177 95,81691 99,04177
STD
3.0 3.5 4.0 4.5 5.0
119,3738 90,00752 35,43465 62,67123 60,01391
1032,159 916,947 913,3763 806,6738 881,5942
375,6467 313,5944 300,1116 245,5469 271,1893
BRISQUE
3.0 3.5 4.0 4.5 5.0
38,12286 36,39868 40,92492 37,49894 43,4405
53,93185 51,19811 53,97783 54,31783 57,36054
4539954 44,68683 47,82419 46,59224 49,7923
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NIQE
3.0 3.5 4.0 4.5 5.0
4,252357  4,16975 4,362417 4,478127 4,424179
8,018875 8,321446 7,286521 6,786895 6,167481
A\/Eiaels ] 5,192974  5,066215 5,127456 5,119233 5,233816
Table 3.5: LLCNN I*' variation results on test set — 3 CNN modules

PSNR vs Darkness Level - Test Images 3 modules
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Figure 3.40: Experimental results PSNR vs Darkness level for test set
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Figure 3.41: Experimental results SSIM vs Darkness level for test set

377

—
| —



For 3 convolutional modules again, we can observe an improvement of the
metrics, as the MSE decreases and the PSNR and SSIM increase, which
means that the experimental images come closer visually to the ground
truth case. Moreover, MV and STD are increased, compared to the original
LL images, which means that the experimental images are brighter and
with higher contrast. Despite this, BRISQUE and NIQE continue to have
large values, something we found and explained in the previous section.
Finally, the expected behavior is again observed with the increase of the
darkness level, as the performance of the model decreases.

5 modules

3.0 3.5 4.0 4.5 5.0
58,64497 72,65532 155,9949 97,63911 1239,511
3707,553 3119,224 3288,394 5027,542 6936,387
623,8515 573,6459 672,0668 1140,519 3163,393
PSNR(dB)
3.0 3.5 4.0 4.5 5.0
12,43993 13,19034 12,96096 11,11725 9,71947
30,4485 29,51813 26,1997 28,23457 17,1983
22,11363 22,20917 21,07984 18,66252 13,47252
SSIM
3.0 3.5 4.0 4.5 5.0
0,195842 0,162419 0,166974 0,168237 -0,00482
0,920853 0,904978 0,828577 0,771529 0,609581
0,740001 0,717316 0,568654 0,492206 0,263974
MV
3.0 3.5 4.0 4.5 5.0
34,12043 48,12263 50,20952 38,88862 95,47895
117,0227 124,0975 125,1285 113,5511 102,2477
85,91909 98,02158 96,81714 78,89687 96,95219
STD
3.0 3.5 4.0 4.5 5.0
54,75704 64,092 53,02597 54,39942 108,8808
934,404 862,7025 867,199 684,8469 153,6646
316,6737 300,166 269,842 212,4173 136,1414
BRISQUE
3.0 3.5 4.0 4.5 5.0
33,35861 35,78578 37,15804 34,86287 45,17703
54,26366 52,49631 50,64247 53,24163 50,80452
46,78519 44,80433 44,45097 47,20074 47,83929
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NIQE
3.0 3.5 4.0 4.5 5.0
4,269911 4,123655 4,634809 4,265357 7,041879
8,313357 8,024193 9,543192 7,866149 11,70887
A\Eiels 5,203072  5,236256  5,723349 5,007355 9,882166
Table 3.6: LLCNN I*' variation results on test set — 5 CNN modules

PSNR vs Darkness Level - Test Images 5 modules
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Figure 3.42: Experimental results PSNR vs Darkness level for test set

SSIM vs Darkness Level - Test Images 5 modules
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Figure 3.43: Experimental results SSIM vs Darkness level for test set
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For all 5 convolutional modules we observe a clear improvement in the
metric values as we see that the MSE decreases and the PSNR and SSIM
increase, which indicates the improvement in the quality of the images. For
quality metrics with no reference, MV increases, meaning the experimental
images are brighter, and STD also increases, meaning the experimental
results are also characterized by higher contrast. BRISQUE and NIQE
continue to have large values, which is seen in all cases so far. Finally, with
the increase of the darkness level, the expected behavior is observed, as the
images become darker with the result that the model has difficulty learning
the representation between LL space and NL space.

Average Experimental Results PSNR vs LL Images PSNR

e=@==1] module ==@==3 modules 5 modules LL Images

25
23 o

21 \ o v ~
19 ®
17

15
13
11
9
7

PSNR(dB)

3.0 3.5 4.0 4.5 5.0
==@—1 module 21,98932351 21,37298035 20,34762276 20,02486661 17,36205666
==@=3 modules 21,50456642 22,46352399 21,94700562 21,39252213 19,65649612
5 modules  22,11362823 22,20916738 21,07984441 18,66251695 13,47252241
LLImages = 9,390119091 8,809530067 8,408226349 8,140069704 8,048577867

Darkness Level

Figure 3.44: Experimental results average PSNR vs LL Images PSNR test set
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Average Experimental Results SSIM vs LL Images SSIM

=@==1 module 3 modules 5 modules LL Images
0,7 ! —_—

0,6
0,5

0,4 — \.

SSIM

3.0 3.5 4.0 4.5 5.0
=@=—1 module | 0,729287558 0,696487705 0,4525806 0,452772027 0,348259862
3 modules  0,715544007 0,685707875 0,676906945 0,62383339 0,435932032
5 modules  0,740000659 0,717316386 0,568654098 0,492205674 0,263974441
LLImages @ 0,178076079 0,114190342 0,072755485 0,04674998 0,031034913

Darkness Level

Figure 3.45: Experimental results average SSIM vs LL Images SSIM test set

Overall, we observed that all three cases of convolutional modules
significantly improve the values of the metrics, as the MSE decreases and
the PSNR and SSIM increase, compared to the initial values for the LL
images, which means that after applying the model, the images come
visually closer to the ground truth case. For the quality metrics with no
reference, we saw that MV and STD increase, i.e. the images become
brighter, since their average brightness increases, and have higher contrast,
since the pixel values are spread over a larger range around the average
brightness. BRISQUE and NIQE continue to have large values even after
applying the model, which means that with DL techniques we cannot
recover the natural statistics, which is due to the continuous filtering that
the images undergo as they pass through the model, such as also explained
in the previous subsection. Finally, with the increase in the darkness level,
a decrease in the performance of the model was observed, as expected.
Increasing the darkness level means that the images become very dark,
with the dynamic range being too small, making it difficult to learn the
model, leading to a decrease in its performance.

Testing three different cases of number of convolutional modules we saw
that 1 module led to an increase in average PSNR by 11.65dB and SSIM
by 0.45, 3 convolutional modules increased PSNR by 12.83dB and SSIM
by 0.54, and 5 convolutional modules increased the PSNR by 10.94dB and
SSIM by 0.47, so based on these values it shows that the 3 convolutional
modules perform better. From figures 3.44 and 3.45 we see that at darkness
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levels 3.0 and 3.5 all three cases of convolutional modules have almost the
same performance, while at higher darkness levels there starts to be a
clearer separation. In particular we see that the 3 convolutional modules
perform better for large darkness levels, while the cases with 1 and 5
modules have decreasing performance. For the case of 1 module, the
reduced performance is explained by the fact that we have fewer features
compared to the other cases, thus less information for the approximation of
the representation. On the contrary, for the case of 5 modules we have more
features, and because we train all cases for the same number of epochs, the
model does not have time to fully learn the representation, leading to
decreasing performance. All this confirms that, for the specific training
conditions, the 3 convolutional modules have the best performance.

All cases, however, produce an impressive improvement in quality metric
values, which shows us that our architecture is characterized by very good
generalization ability. To see the results visually, we will display, for each
darkness level, a random image for each case of convolutional modules. In
addition, we will display the corresponding ground truth and LL images,
along with all the respective histograms, so that we can compare the results.

Darkness Level: 3.0

Original Low Light Normal Light
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1 module 3 modules 5 modules
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Figure 3.46: Histogram of 3.0 LL image
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Figure 3.47: Histogram of 3.0 NL image
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Figure 3.48: Histogram of 3.0 experimental result with 1 module
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Red Channel Histogram
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Figure 3.49: Histogram of 3.0 experimental result with 3 modules

Red Channel Histogram

10000

0 20 100 150 200
Green channel histogram

0 50 100 150 200
Blue channel histogram

0 50 100 150 200

Figure 3.50: Histogram of 3.0 experimental result with 5 modules
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For darkness level 3.0 we see that in all three cases the experimental images
are visually very close to the ground truth case, with the LL image being
fully enhanced. This is also confirmed by the histograms, where we see
that the experimental histograms are characterized by a large contrast, and
have a form similar to that of the ground truth histogram.

Darkness Level: 3.5

Original Low Light Normal Light

1 module 3 modules 5 modules
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Figure 3.51: Histogram of 3.5 LL image
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Figure 3.52: Histogram of 3.5 NL image
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Figure 3.53: Histogram of 3.5 experimental result with 1 module
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Figure 3.54: histogram of 3.5 experimental result with 3 modules
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Figure 3.55: histogram of 3.5 experimental result with 5 modules

For darkness level 3.5 again we notice that the LL image has been fully
enhanced, for all three cases of convolutional modules. Here it starts to
look like the 3 convolutional modules produce a slightly better result, as
we mentioned before. The image is enhanced better compared to the other
two cases, since for 1 and 5 convolutional modules some color distortions
appear, and in addition the histogram for 3 convolutional modules is closer
to the ground truth form than the other two cases.
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Darkness Level: 4.0
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Figure 3.56: Histogram of 4.0 LL image
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Figure 3.57: Histogram of 4.0 NL image

391

—
| —




Red Channel Histogram

10000 - . '
5000 .
0 e e
o 50 100 150 200 250
Green channel histogram
1 I T T T T T |
5000 1
0 i e
0 50 100 150 200 250
Blue channel histogram
10000} .
5000 1
0 e H
0 50 100 150 200 250
Figure 3.58: Histogram of 4.0 experimental result with 1 module
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Figure 3.59: Histogram of 4.0 experimental result with 3 modules
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Figure 3.60: Histogram of 4.0 experimental result with 5 modules

For darkness level 4.0 we see that the experimental results are visually very
close to the ground truth case. Nevertheless, due to the increase in the
darkness level, we see that the model is starting to struggle, as was also
found from the values of the metrics. In particular, for 1 convolutional
module it seems that the color information has not been fully recovered,
with the image appearing almost black and white, while for 5 convolutional
modules the color seems to fade. For 3 convolutional modules the best
result is obtained, with the LL image being fully enhanced, recovering a

large part of the color information.
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Darkness Level: 4.5
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Figure 3.61: Histogram of 4.5 LL image
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Figure 3.62: Histogram of 4.5 NL image
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Figure 3.63: Histogram of 4.5 experimental result with 1 module
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Figure 3.64: Histogram of 4.5 experimental result with 3 modules
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Figure 3.65: Histogram of 4.5 experimental result with 5 modules
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For darkness level 4.5 we also notice that the LL image has been enhanced
and we have recovered most of the visual information in all three cases of
number of convolutional modules. However, again we see that for 1 and 5
convolutional modules the color information has not been recovered, while
the 3 convolutional modules perform better, as we noticed from the values
of the quality metrics.

Darkness Level: 5.0

Original Low Light Normal Light

1 module 3 modules 5 modules
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Figure 3.66: Histogram of 5.0 LL image
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Figure 3.67: Histogram of 5.0 NL image
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Figure 3.68: Histogram of 5.0 experimental result with 1 module
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Figure 3.69: Histogram of 5.0 experimental result with 3 modules
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Figure 3.70: Histogram of 5.0 experimental result with 5 modules

For darkness level 5.0 we see that the model fails to fully restore the LL
image. For 1 and 3 convolutional modules the general texture of the image
1s recovered, but without color information, while for 5 convolutional
modules the result collapses completely and nothing is recovered. This is
also confirmed by the values of the quality metrics we saw earlier, where
for darkness level 5.0 and 5 convolutional modules the values of the
metrics were of very low quality.

Based on what we have seen so far, we can notice that by adding the extra
convolutional layers at the end of the architecture the performance
improves, which is reflected both in the values of the performance metrics
and in the visual results we presented above. Also, we saw that here too the
3 convolutional modules perform better than the other two cases, as they
give the greatest improvement in the values of the metrics and recover most
of the visual information. In the case of the 1 convolutional module, the
reduced performance, compared to the three, is due to the fact that it learns
fewer features, so it cannot properly approximate the mapping we want.
For the 5 convolutional modules, the reduced performance is because we
train the model for the same number of epochs as the 3 modules
counterpart, and because it has more parameters, it does not have time to
learn the correct mapping between LL space and NL space. These reasons

400

—
| —



lead to the reduced performance, for all darkness levels, where we saw that
modules 1 and 5 cannot restore the correct color information.

Furthermore, we noticed that as the darkness level increased the
performance of the models decreased, until we reached the point where no
image was even recovered for darkness level 5.0 with 5 convolutional
modules. This is due to the fact that as the darkness level increases, the
images become darker, and the dynamic range very small, as a result of
which it becomes more and more difficult to learn the appropriate features
to enhance the image. A solution to this problem would be the further
training of each model for the highest darkness levels.

3.4 LL-CNN: 2™ Variation

In this section we will take a completely different approach to training our
model, which is inspired by the article by He et al. [37], whose main
purpose is the binarization of historical documents. The authors first
assume that the ground truth image is degraded by various factors, which
is expressed as:

x=x,+e

where X, it is the ground truth picture, x is the degraded image and e is the
degradation. In this case, the basic approach to binarization with a CNN
implementation is:

x, = CNN(x)

1.e. to give the network the degraded image directly, and it should give us
the binary map xp. In this case, however, the model has to learn the
degradation e, so as to remove it and recover the x,, as well as the
appropriate threshold to produce the correct binary map X». An easier way
suggested by the authors is for the model to learn the degradation only, so
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that it simply aims to enhance the degraded image, and then the result is
the input of a simple binarization method. This is expressed as:

X, =CNN(x)+x - CNN(x)= —(x—xy,) = —e

that is, we train the model on the differences of the ground truth from the
degraded image, so that it learns the noise and then remove it, giving in the
end the approximation of the ground truth image, which can be an input for
a simple binarization method.

Inspired by this logic, we consider that an LL image is the result of a
degradation of the NL case. Specifically, we consider that a distribution e
has been subtracted from the distribution of the NL image causing the pixel
values of the image to decrease and by extension its brightness is also
decreased. This is expressed as:

XL = XN — €

So, we could train the model in such a way that it learns the e distribution
subtracted from the NL images, and then simply take the LL image, add e,
and the end result is the experimental approximation of the NL image.
Practically, to do this we will give as input to CNN the LL image and as
output the difference of LL from the NL image, which is expressed as:

CNN(xy,) = xy, —xy, =e

More comments and details on the implementation of the model can be
found in appendix B. Below we present the results of the method.
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1 module

=
o

3.5 4.0 4.5 5.0
44,8655 51,40863 72,33348 67,07643 124,8454
3426,169 3265,252 3514,585 3872,334 3797,664
A\/E3aels | 557,1199 560,0896 643,0971 746,0152 940,0249
PSNR(dB)
3.5 4.0 4.5 5.0
12,78272 12,99164 12,67206 12,25108 12,33564
31,61168 31,02044 29,53741 29,8651 27,16708
A\Eaels | 22,57655  22,50693  21,55051 20,81169 19,35751
SSIM
3.5 4.0 4.5 5.0
0,16662 0,331274 0,356948 0,188938 -0,00692
0,873029 0,914021 0,84586 0,795518 0,69899
A\/Eiaels | 0,70848 0,719564  0,66433 0,593542 0,457478
MV
3.5 4.0 4.5 5.0
40,35464 37,98863 40,55524 39,07245 44,94147
125,3565 121,9536 122,1946 125,3441 123,0417
A\Eiels 95,69192  91,97912  90,66982 91,22758 88,1989
STD
3.0 3.5 4.0 4.5 5.0
81,0865 43,56196 39,04175 36,89214 15,40106
1015,306 940,3215 875,3764 905,8084 879,953
AN/Esaels ] 392,1139  357,2528 337,8879 333,0688 306,8235
BRISQUE
3.5 4.0 4.5 5.0
30,66738 32,14165 30,38641 34,68553 39,89657
52,5706 54,24775 52,44835 55,14162 55,30365
ANEaels | 42,27799  44,36251  45,26857  46,31306  48,73257
NIQE
3.5 4.0 4.5 5.0
3,226166 3,457054 3,172748 2,901554 3,362073
7,459132  6,97466 5,820608 5,202869 4,938754
AV Eae s 4,372061  4,328679  3,892451  3,879764 3,978083
Table 3.7: LLCNN 2" variation results on test set — 1 CNN module
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PSNR vs Darkness Level - Test Images 1 module

== MIN =@=MAX AVERAGE
35 31,61
. 31,02 29,54 29,87
30 o ij
25 22,58 22,51 51 55
— 2081 19,36
£ 20
<
Z 15 12,78 12,99 12,67 12,25 12,34
e = — == P —0
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5
0
3.0 3.5 4.0 4.5 5.0
Darkness Level
Figure 3.71: Experimental results PSNR vs Darkness level for test set
SSIM vs Darkness Level - Test Images 1 module
== MIN =@=MAX AVERAGE
1 0,91
0,87 0,85
0,80
0,8 0,71 0,72
0.6 0,70
0,59
0,6
0,46
S 0,36
2 04 0,33
(%]
0,2
0
3.0 3.5 4.0 4.5 5.0
-0,2

Darkness Level

Figure 3.72: Experimental results SSIM vs Darkness level for test set

For 1 convolutional module we see that there is a clear improvement in the
metric values. In comparison, the MSE decreases and the PSNR and SSIM
increase, compared to the values of the LL images, which indicates to us
that the experimental results are closer to the ground truth. For the quality
metrics with no reference, we see that MV and STD increase, which means
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the average brightness of the images increase, and they have more contrast
since the pixel values are spread over a larger range around the mean value.
BRISQUE and NIQE continue to have large values, which was also
observed in the previous models. Finally, with the increase of the darkness
level, the expected behavior of the quality metric values is observed. MSE
increases while PSNR and SSIM decrease. Similarly, MV and STD
decrease, indicating that for higher darkness levels the experimental results
are slightly darker and with lower contrast, compared to those for lower
darkness levels.

3 modules

3.0 3.5 4.0 4.5 5.0
40,71857 55,4298 101,387 71,92499 158,7336
3210,264 3832,068 3375,599 4332,126 3975,209
505,5116 531,9541 629,4446 763,5596 1041,046
PSNR(dB)
3.0 3.5 4.0 4.5 5.0
13,0654 12,29647 12,84729 11,76379 12,1372
32,03288 30,69337 28,07098 29,56201 26,12412
23,13364 22,87258 21,55021 20,66279 18,77477
SSIM
3.0 3.5 4.0 4.5 5.0
0,278397 0,238313 0,345479 0,31257  -0,0438
0,929208 0,93818 0,844109 0,817252 0,715171
0,752665 0,736254 0,652447  0,6392 0,438079
MV
3.0 3.5 4.0 45 5.0
42,08232 45,0009 48,48013 35,9042 49,0481
123,7666 129,0055 126,2409 122,4265 124,1735
95,20668 97,77026 95,55316 86,37298 86,58998
STD
3.0 3.5 4.0 4.5 5.0
101,4863 48,80962 35,34517 72,4157 55,66089
939,3368 958,1431 695,7557 750,4654 739,3788
340,2848 339,7319 271,9623 269,1615 221,3384
BRISQUE
3.0 3.5 4.0 4.5 5.0
31,00837 30,99294 33,74013 38,46947 31,22574
51,46777 52,74651 51,6601 54,08553 57,80188
42,1966 43,83368 44,74185 46,4601 48,53072
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NIQE
3.0 3.5 4.0 4.5 5.0
3,492939 3,838286 3,712709 4,164159 4,183028
8,414258 8,292538 6,986006 6,658586 6,336475
A\/Eiels | 4,581849 4,648733  4,379942  4,662573  4,852334
Table 3.8: LLCNN 2" variation results on test set — 3 CNN modules

PSNR vs Darkness Level - Test Images 3 modules

=@=M|IN =@=MAX ==@==AVERAGE

35 32,03 30,69 5

9,56
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Figure 3.73: Experimental results PSNR vs Darkness level for test set

SSIM vs Darkness Level - Test Images 3 modules

—@—MIN —@—MAX =—@—AVERAGE
1 0,93 0,94
0,84 0,82
08 0.75 0,74 0,72
0,65 0,64

0,6
0,44
s 0,35
5 04 0,28 0,31
w)
0,2
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-0,2
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Figure 3.74: Experimental results SSIM vs Darkness level for test set
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For 3 convolutional modules, a large improvement in metric values is
observed, with MSE decreasing and PSNR and SSIM increasing, which
indicates that the experimental images are approaching the ground truth
case. Accordingly, MV and STD are increased which means that the images
become brighter and with higher contrast. BRISQUE and NIQE continue
to have great values, which is to be expected based on what we've seen so
far in this chapter. Moreover, with the increase of the darkness level, the
expected behavior is observed, as the MSE increases, while the PSNR and
SSIM follow a decreasing course. Similarly, MV and STD decrease with
increasing darkness level which means that the experimental results
become slightly darker.

5 modules

3.0 3.5 4.0 4.5 5.0
69,88142 82,00898 144,7691 90,87492 452,1589
3888,196 3522,887 4038,085 4556,142 4911,079
530,5903 582,4703 642,3333 773,1256 1219,048
PSNR(dB)
3.0 3.5 4.0 4.5 5.0
12,23332 12,66182 12,06905 11,54483 11,21903
29,68719 28,99219 26,52404 28,54636 21,57789
22,73854 22,30665 21,36374 20,738 17,80868
SSIM
3.0 3.5 4.0 4.5 5.0
0,073512 -0,05811 0,284734 0,16876 -0,17205
0,956513 0,938152 0,820341 0,82127 0,710033
0,709187 0,625161 0,633963 0,625798 0,408104
MV
3.0 3.5 4.0 4.5 5.0
46,41683 39,9024 48,69199 33,00827 73,51005
129,7605 125,8774 131,0014 122,3284 139,6465
100,0741 93,9319 102,0196 85,69117 113,1274
STD
3.0 3.5 4.0 4.5 5.0
119,7383 24,86499 85,98113 41,80059 113,7915
1027,345 928,3512 845,0857 845,8448 670,4729
367,6629 309,1584 291,2608 269,2211 257,0771
BRISQUE
3.0 3.5 4.0 4.5 5.0
31,72861 32,89929 32,55808 34,581 36,95518
51,29019 51,67033 50,84819 52,75801 52,28734
43,25488 44,42939 44,73829 4579551 4565563
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NIQE
3.5 4.0 4.5 5.0
3,963563 4,201967 3,947916 4,076733 3,857366
7,907503 8,180129  8,56234 7,693572 8,485583
A\/Eiels ) 5080761 5,187741 4,88935 4,947641 5,4042
Table 3.9: LLCNN 2" variation results on test set — 5 CNN modules

o
o

PSNR vs Darkness Level - Test Images 5 modules

=@=MIN =@=MAX ==@==AVERAGE

29,69 28,99 28,55

PSNR(dB)

3.0 3.5 4.0 4.5 5.0
Darkness Level

Figure 3.75: Experimental results PSNR vs Darkness level for test set

SSIM vs Darkness Level - Test Images 5 modules
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Figure 3.76: Experimental results SSIM vs Darkness level for test set
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For 5 convolutional modules we again observe an improvement in the
values of the metrics. The MSE decreases and the PSNR and SSIM
increase, compared to the values for the LL images, which means that there
is a visual improvement of the results. Also, MV and STD increase, so
experimental images will be brighter and characterized by higher contrast,
which confirms the enhancement of LL images. BRISQUE and NIQE
continue to have great values, as expected. Finally, with the increase in the
darkness level, the expected course is followed here as well, as the quality
of the metrics decreases with its increase.

Average Experimental Results PSNR vs LL Images PSNR

=@=1 module ==@=3 modules 5 modules LL Images

= NONIND
|

PSNR(dB)

3.0 3.5 4.0 4.5 5.0
=—@—1 module = 22,57654861 22,50692942 21,5505116 20,81169308 19,35751477
=@=—3 modules | 23,13364284 22,87258271 21,55020818 20,66278568 18,77477089
5 modules  22,73854332 22,30665118 21,36373892 20,73800078 17,80867543
LLImages = 9,390119091 8,809530067 8,408226349 8,140069704 8,048577867

Darkness Level

Figure 3.77: Experimental results average PSNR vs LL Images PSNR test set

Average Experimental Results SSIM vs LL Images SSIM

e=@==] module ==@==3 modules 5 modules LL Images

—_—

—— -

SSIM
©O000000
OFRNWEAUIONI0

3.0 3.5 4.0 4.5 5.0
=—@=—1 module = 0,708479842 0,719564119 0,664329798 0,593542015 0,457477868
=@=3 modules | 0,75266508 0,736254157 0,652446881 0,639199923 0,43807933
5 modules 0,709186549 0,625160951 0,633962532 0,625797579 0,408104156
LLImages = 0,178076079 0,114190342 0,072755485 0,04674998 0,031034913

Darkness Level

Figure 3.78: Experimental results average SSIM vs LL Images SSIM test set
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Overall, we saw that for all cases of number of convolutional modules there
i1s a clear improvement of the metric values, which also indicates the
enhancement of LL images. For 1 convolutional module the average PSNR
increases by 12.8dB, for 3 it increases by 12.64dB and for 5 it increases by
12.43dB. Similarly, the mean SSIM increases by 0.54 for 1 convolutional
module, and by 0.56 and 0.52 for 3 and 5 convolutional modules
respectively. From figures 3.77 and 3.78 we see that there is no great
variation in the values of the metrics with the increase in the number of
convolutional modules, which is also confirmed by the average increase in
PSNR and SSIM that we mentioned above. We understand that based on
metric values alone, we cannot decide which case of number of
convolutional modules is better. Ideally, we would choose the case with 1
convolutional module as it has fewer parameters and is easier to train.
Finally, we noticed that as the darkness level increases, the performance of
the model decreases. This is to be expected as with the increase of the
darkness level the images become very dark, with the dynamic range being
small, as a result of which it is difficult to learn the necessary features to
enhance the images. As we mentioned in the previous models, a solution
to this problem could be the further training of the model at higher darkness
levels, so that it has time to learn all the features it needs.

To visually see the results of the model we will display, for each darkness
level, a random image for each case of number of convolutional modules,
together with the corresponding LL and ground truth images. In addition,
we will also display the respective histograms, to confirm that the visual
information has been completely recovered.

Darkness Level: 3.0

Original Low Light Normal Light
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1 module 3 modules 5 modules
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Figure 3.79: Histogram of 3.0 LL image
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Figure 3.80: Histogram of 3.0 NL image
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Figure 3.81: Histogram of 3.0 experimental result with 1 module
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Figure 3.82: Histogram of 3.0 experimental result with 3 modules
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Figure 3.83: Histogram of 3.0 experimental result with 5 modules
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For darkness level 3.0 we see that the LL image has been fully enhanced
for all three cases of the number of convolutional modules, as both the
color information and the details of the image have been recovered, with
the experimental results being visually very close to the ground truth case.
The quality of the result is also confirmed by the histograms, where in all
three cases, the experimental histograms have a shape almost identical to
the corresponding ground truth, which means that all the visual information
has been recovered. As we mentioned above, we cannot decide which case
of convolutional modules is better, as all three give impressive results.

Darkness Level: 3.5

Original Low Light Normal Light

N

1 module 3 modules 5 modules
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Figure 3.84: Histogram of 3.5 LL image
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Figure 3.85: Histogram of 3.5 NL image
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Figure 3.86: Histogram of 3.5 experimental result with 1 module
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Figure 3.87: Histogram of 3.5 experimental result with 3 modules

416

—
| —



Red Channel Histogram

0 50 100 150 200 250
Green channel histogram

N i

| i H
0 30 100 130 200 250
Blue channel histogram

0 50 100 150 200 250

Figure 3.88: Histogram of 3.5 experimental result with 5 modules

For darkness level 3.5 again impressive results are obtained with the LL
image being fully enhanced in all 3 cases of number of convolutional
modules. This is also confirmed by the histograms, as all the three
experimental histograms have a shape almost identical to the
corresponding ground truth.

Darkness Level: 4.0

1
Original Low Light Normal Light
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1 module 3 modules 5 modules
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Figure 3.89: Histogram of 4.0 LL image
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Figure 3.90: Histogram of 4.0 NL image
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Figure 3.91: Histogram of 4.0 experimental result with 1 module
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Figure 3.92: Histogram of 4.0 experimental result with 3 modules
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Figure 3.93: Histogram of 4.0 experimental result with 5 modules
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For darkness level 4.0 we also see that the LL image is fully enhanced, for
all three cases of number of convolutional modules, without the
introduction of additional noise or color distortions. The experimental
histograms confirm the quality of the results, and in all 3 cases, their shape
is very close to the shape of the corresponding ground truth. What we can
observe, however, is that the result for 5 convolutional modules is slightly
better, as the color information has been restored to a greater extent. From
this we understand that the difficulty has started to appear due to the
increase in the darkness level, as we analyzed above.

Darkness Level: 4.5

Original Low Light Normal Light

1 module 3 modules 5 modules

421

—
| —



x 107 Red Channel Histogram

6 - '
4 i
P ]
0 .
0 50 100 150 250
10" Green channel histogram
4 ]
2 |
0 .
0 50 100 150 250
x10° Blue channel histogram
10 |
5 |
0 -
0 50 100 150 250
Figure 3.94: Histogram of 4.5 LL image
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Figure 3.95: Histogram of 4.5 NL image
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Figure 3.96: Histogram of 4.5 experimental result with 1 module
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Figure 3.97: Histogram of 4.5 experimental result with 3 modules
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Figure 3.98: Histogram of 4.5 experimental result with 5 modules

For darkness level 4.5 we observe that the LL image is fully enhanced in
all 3 cases of convolutional modules. Nevertheless, we see that color
distortions appear, as the colors in the experimental results are not exactly
the same as the corresponding ones in the ground truth case. This is due to
the fact that the images have started to become very dark making it very
difficult to retrieve the full visual information.

Darkness Level: 5.0

Original Low Light Normal Light
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1 module 3 modules 5 modules
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Figure 3.99: Histogram of 5.0 LL image
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Figure 3.100: Histogram of 5.0 NL image
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Figure 3.101: Histogram of 5.0 experimental result with 1 module
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Figure 3.102: Histogram of 5.0 experimental result with 3 modules
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Figure 3.103: Histogram of 5.0 experimental result with 5 modules
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For darkness level 5.0 we notice that the general texture and details of the
ground truth image are restored, but not the color information. This also
explains the decrease in the values of the metrics with the increase in the
darkness level that we observed above. The images have now become too
dark, resulting in the model being unable to learn the features needed to
restore color, leading to the visual effects observed.

In general, we noticed that this particular method gave impressive results.
At all darkness levels the metric values were greatly improved, and most
of the visual information was recovered. It was observed that the number
of convolutional modules does not strongly affect the result, and the values
of the metrics remain more or less the same, and the visual results are
similar to each other. Based on this we understand that we can simply
choose the architecture with the fewest parameters since it will be easier
and faster to train, and produce comparable results to the more complex
architectures. In addition, we saw that with the increase of the darkness
level, the model faced difficulties in retrieving the color information, since
at high darkness levels the images are almost black and white. This is due
to the fact that as the darkness level increases, the images become too dark,
with the dynamic range being too small, making it difficult to learn features
that can also restore color information. A solution to this problem would be
to give the model more time to learn these features, that is, to train it for
more epochs, so that it has time to learn the correct mapping from the LL
space to the NL space. Nevertheless, the resulting images are very
promising, as even for darkness level 5.0 where there is no color at all, the
details of the ground truth image such as texture and edges have been fully
restored.
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Chapter 4 — Final Techniques Comparison

In this chapter we will make a more general comparison of the methods we
developed in the previous two chapters. We will start from the classic
methods, we will move on to the DL methods and finally we will compare
them all with each other. The comparison will be based on how much the
values of the quality metrics improve, as well as how complex each method
is. At the end of the chapter, we will summarize our results and refer to
future research that can be done in the field.

4.1 Classical Methods Comparison

During the second chapter we implemented and applied a set of classic
image processing techniques to enhance LL images. We started with point
processing methods, which included linear transformation, logarithmic and
exponential transformation, and histogram equalization. Then we went a
step further and applied more complex techniques, namely the SSR and
MSR that are based on the Retinex theory, which we mentioned. Finally,
we applied a method based on image dehazing, as it was observed that the
negative of an LL image is as if the image was taken in foggy conditions.
In all cases we have seen that satisfactory results are obtained, but there are
also cases where the experimental result is characterized by additional
noise and color distortions. In this section we will compare the classic
methods with each other to see which one performs better. The comparison
will be based on how much the values of the evaluation metrics improve.
Specifically, we will use PSNR, SSIM and MYV, displaying their average
values per method and per darkness level, and we will also include the
corresponding values for LL images to see how much they improve for
each method. For methods where we experimented with multiple
parameter values, we will only use the quality metric values of the
parameter that gave the best results. Finally, we must comment that since
we will compare with the DL methods as well, here the results we will
display are based on the test set.
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Average PSNR(dB)

Level 3.0 3.5 4.0 4.5 5.0
Original LL 9,390119 8,80953 8,408226 8,14007 8,048578
Linear 13,86573 13,6508 13,4439 13,22458 12,8527
Transformation

Gamma (0.3) 17,97308 17,85597 16,96888 15,65196 14,34958
Log (50) 14,82221 19,0108 20,9166 17,57403 14,59449
HE 14,3184 14,16896 13,96122 13,59259 13,09024
SSR (400) 15,29788 15,72012 16,08146 16,18764 15,9054
MSR 13,8474 14,0304 14,26856 14,49206 14,52812
Dehaze 17,18743 17,47945 17,13891 16,00111 14,42391

Table 4.1: Average PSNR per method

Average PSNR per Darkness Level for each Classical
Method
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Figure 4.1: Average PSNR per darkness level per method

We see that the average PSNR improves noticeably in all cases. The linear
transformation performs the least, compared to the other cases, increasing
the average PSNR by only 4.85dB, which is to be expected as it is the
simplest method of all, applying a simple linear function. The next two
worst performing methods are histogram equalization which increases the
average PSNR by 5.27dB, on average, and MSR which increases the
average PSNR by 5.67Db. The histogram equalization method performs
less well than the other methods due to its simplicity, as it is a simple
transformation based on the cumulative probability function. In addition,
we saw that there are several ground truth images, whose histogram is not
spread evenly over the entire available range. Histogram equalization by
its nature aims for the final image to be characterized by a histogram with
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pixel values evenly distributed, so we understand that it cannot reproduce
the results we mentioned above, leading to the reduced performance
observed. Regarding the MSR, we described in the second chapter that it
is the combination of 3 different SSRs with parameters 10, 120 and 400.
When we were studying the SSR we saw that for a parameter of 10 intense
noise and color distortions are introduced into the experimental result.
Because of this, the corresponding result in MSR is also affected, causing
the reduced performance, compared to the rest of the algorithms. Then
above follow the SSR with parameter 400, the method based on image
dehazing, and the gamma transformation with parameter 0.3, which
increase the average PSNR by 7.28dB, 7.89dB and 8dB respectively. The
most efficient method appears to be the logarithmic transformation, which
increases the average PSNR by 8.82dB. We see that the 2 most efficient
methods are pointwise non-linear transformations. The reason they give
better overall results is because they are selected in such a way that they
only enhance the dark areas of an image and not the entire image. Because
of this, at low darkness levels they give very good results, and indeed they
are the most efficient methods, but at high darkness levels, where the
images consist only of dark areas, their performance drops, as can be seen
from figure 4.1.

A general behavior we observe is that as the darkness level increases, the
average experimental PSNR decreases. An exception to this are the SSR
and MSR algorithms, which follow an increasing path with the increase of
the darkness level. For the remaining methods, the decrease in PSNR is
due to the fact that the images become very dark, with the dynamic range
becoming smaller and smaller, making it very difficult to retrieve visual
information. The SSR and MSR algorithms are an exception because their
ultimate purpose is not simply to retrieve visual information, but the
reflectance coefficient of the scene. This information is independent of the
brightness level of the scene, and for this reason the performance of the
methods is not affected by increasing the darkness level. Moreover, we see
that with increasing darkness level the performance of methods based on
point transformations decreases, and for large darkness levels algorithms
based on spatial filters are much more efficient. For these high darkness
levels the images are too dark, as we mentioned above, with the result that
a simple point transformation that looks at the value of only one pixel is
not enough to fully improve the image. This explains the fact that more
complex algorithms are more efficient for large darkness levels.
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Average SSIM

Level 3.0 3.5 4.0 4.5 5.0
Original LL 0,178076 0,11419 0,072755 0,04675 0,031035
Linear 0,462487 0,417892 0,366401 0,316112 0,246587
Transformation

Gamma (0.3) 0,622504 0,581671 0,524011 0,458485 0,371508
Log (50) 0,610923 0,61743 0,581146 0,502621 0,385608
HE 0,43675 0,3975 0,352682 0,299397 0,251513
SSR (400) 0,567147 0,558782 0,521125 0,469443 0,392017
MSR 0,494448 0,494892 0,465544 0,42746 0,359022
Dehaze 0,594288 0,561553 0,5086 0,438122 0,337125

Table 4.2: Average SSIM per method

Average SSIM per Darkness Level for each Classical

Method
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Figure 4.2: Average SSIM per darkness level per method

From the SSIM values we see that the two least efficient methods are
histogram equalization and linear transformation, which increase the
average SSIM by 0.26 and 0.27 respectively, same thing we also observed
by studying the PSNR. This is followed by MSR, the method based on
dehazing, and SSR with a parameter of 400, which increase SSIM by 0.36,
0.4, and 0.41, respectively. The most efficient methods appear to be the
gamma transformation with a parameter of 0.3, which increases the mean
SSIM by 0.42, and the logarithmic transformation with a parameter of 50,
which increases the mean SSIM by 0.45. Here again, as in the case of
PSNR, we see that the simplest methods are also the least efficient. The
simplicity of the function we apply to each pixel is not sufficient to fully
recover the visual information, leading to the reduced performance
observed. Furthermore, the algorithms that increase SSIM the most are
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non-linear transformations, as in the case of PSNR. However, we notice
that with an increase in the darkness level, the performance of these
algorithms decreases faster, compared to the other methods.

By increasing the darkness level, the performance of all algorithms
decreases, with the exception of MSR and SSR with parameter 400, where
this decrease is less noticeable. As we mentioned above, the purpose of
MSR and SSR is to recover the reflectance coefficient of the scene, and not
to directly enhance the image, which is independent of the amount of
brightness of the scene, thus explaining the minimal dependence of the
final result on the darkness level. Also, we see that the non-linear methods
give very good results for small darkness levels, but at large levels their
performance is greatly reduced, which is due to the fact that the images
have become very dark, resulting in the fact that a mathematical operation
on a single pixel is not enough, and we need for information from
neighboring pixels as well, something that the other methods (MSR, SSR,
dehazing) do.

Average MV

Level 3.0 3.5 4.0 4.5 5.0
Original LL 16,79939 11,84197 8,242994 5,659169 3,887245
Linear 54,34299 53,33926 52,16029 49,44718 47,2227
Transformation

Gamma (0.3) 102,7424 91,26644 80,18108 69,3653 59,60535
Log (50) 137,4292 113,1232 90,4949 70,26011 53,44228
HE 127,9495 128,6499 129,8455 132,1473 134,6972
SSR (400) 130,7205 125,9893 119,6509 112,4539 102,4706
MSR 134,7028 132,3205 128,5233 123,5492 116,8328
Dehaze 106,3223 99,77421 90,64965 78,97358 68,62438

Table 4.3: Average MV per method
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Average MV per Darkness Level for each Classical
Method
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Figure 4.3: Average MV per darkness level per method

Studying the average brightness, we see that the linear transformation
remains the least efficient method, as it only increases the average
brightness by 42.01. The order of performance of the remaining algorithms
changes, compared to what we saw before, as now the most efficient
method for increasing brightness is histogram equalization, which
increases the average brightness by 121.37. This is expected due to the
nature of the method, which aims for the experimental result to be
characterized by pixel values that are uniformly distributed throughout the
available value range. This results in images with greater contrast, which
also leads to greater brightness. MSR and SSR with a parameter of 400
follow immediately after, increasing the average brightness by 117.9 and
108.97 respectively. Less efficient are the logarithmic transformation, the
dehazing-based method, and the gamma transformation, which increase the
average brightness by 83.66, 79.58, and 71.34, respectively. The decrease
in performance with the increase in darkness level is observed only in the
logarithmic transformation and the gamma transformation, while in the
other cases the increase in brightness remains almost constant.

In general, from all the above analysis, we saw that the linear
transformation is the least efficient method of enhancing LL images,
compared to the other methods, which is due to the simplicity of the
mathematical expression we apply to the pixel values. In addition, we saw
that non-linear transformations give the greatest increase in metrics with
reference (PSNR and SSIM), but their performance drops very quickly
with the increase in darkness level, which combined with the very small
increase in average brightness, makes them unreliable algorithms. It was
also observed that histogram equalization, although it produces the greatest
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increase in average brightness, the results it produces do not recover all the
information needed for the ground truth case. This is mainly due to the
nature of the algorithm and dataset, as the dataset contains several ground
truth images whose pixel values are not uniformly distributed over the
entire available value range. Histogram equalization aims for the final
result to be characterized by pixel values evenly distributed throughout the
histogram, so we understand that it is impossible to reproduce many of the
data set results. This explains the reduced performance in the quality
metrics with reference, while it is the method that gives the greatest
increase in average brightness. Based on this we understand that histogram
equalization could be used as a general method of increasing the brightness
of an image, but it depends on the data set we are studying, as it seems that
in RELLISUR it is not efficient enough. Then we saw that the method
based on dehazing gives moderate results but has a relatively stable
performance with the increase of the darkness level. Something similar was
observed for MSR and SSR which produce moderate results, but have
stable performance with increasing darkness level. As we described above,
this is due to the fact that their purpose is to recover the reflectivity of the
scene, and not to directly enhance the image, information that is
independent of the amount and distribution of brightness in the image. In
chapter 2, however, we saw that these two methods introduce additional
noise and intense color distortions in the experimental result, something
that does not appear in the dehazing method, which produces impressive
visual results even at high darkness levels. From all this we understand
that, of the classical methods, the best one for the solution of LL is the one
based on dehazing, as it noticeably increases the values of the metrics, its
performance does not depend strongly on the darkness level, and produces
impressive visual results, with the experimental images being very close to
the ground truth case, having recovered most of the visual information.
Obviously, there is also a lot of room for improvement as we can also
improve the fog removal model, making the algorithm even more efficient.
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4.2 Deep Learning Methods Comparison

In this section we will compare the Deep Learning methods we developed
during the third chapter. In chapter 3 we used the LL-CNN architecture
[36], where we first implemented it exactly as described in the related
article by the authors. Then we made 2 variations, where in the first we
introduced additional convolutional layers, which acted as post-processing
filters, while in the second variation we trained the network based on the
difference of LL from the ground truth image. In all cases we experimented
with a different number of convolutional modules, and in particular we
experimented with 1, 3 and 5 modules. In the first two cases we saw that
the 3 convolutional modules perform better, so we will use the metric
values for this case only. In the last variation we saw that there is no great
differentiation of the results, but the case with 1 convolutional module,
performs a little better at large darkness levels. Because of this, and the fact
that it gives the same results while being less complex, we will use the 1
module case in our analysis.

Average PSNR(dB)
Level 3.0 3.5 4.0 4.5 5.0
Original LL 9,390119 §8,80953 8,408226  8,14007 8,048578
LLCNN (3) 21,80508 21,04742 21,32991 18,20765 18,90393
LLCNN++ (3) 21,50457 22,46352 21,94701 21,39252 19,6565
LLCNN+DO (1) 22,57655 22,50693 21,55051 20,81169 19,35751

Table 4.4: Average PSNR per DL method

Average PSNR per Darkness Level for each DL

Method
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Figure 4.4: Average PSNR per darkness level per DL method
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Regarding the average experimental PSNR we see from figure 4.4 that
there are no strong differences. LLCNN++ with 3 modules increases the
average PSNR by 12.83dB, followed by the second variant which increases
the average PSNR by 12.8dB, and finally it is the original architecture
which increases the PSNR by 11.7dB, confirming that the differences are
minimal. Furthermore, we notice that increasing the darkness level does
not affect the result much, as the change of the values of the metrics is
small from level to level. At small darkness levels, all three architectures
have almost the same performance, but at larger ones we see that the
original architecture lags behind, and the two variations we implemented
prevail.

Average SSIM

Level 3.0 3.5 4.0 4.5 5.0

Original LL 0,178076 0,11419 0,072755 0,04675 0,031035
LLCNN (3) 0,695826 0,690745 0,607084 0,498138 0,413824
LLCNN++ (3) 0,715544 0,685708 0,676907 0,623833 0,435932
LLCNN+DO (1) 0,70848 0,719564 0,66433 0,593542 0,457478

Table 4.5: Average SSIM per DL method

Average SSIM per Darkness Level for each DL Method
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Figure 4.5: Average SSIM per darkness level per DL method

Similar conclusions can be reached by studying the average value of SSIM.
From figure 4.5 we see that again there are no strong differences in the
performance of the architectures, which is also confirmed by the values of
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the average SSIM increase. The original architecture increases the average
SSIM by 0.49, while the first and second variants both increase it by 0.54.
In this case, performance decreases with increasing darkness level, which
is more pronounced in the original architecture. The two variants we
implemented have almost the same performance at each darkness level. We
find that the second variant has the advantage, as it produces equally good
results using fewer parameters.

Average MV
Level 3.0 3.5 4.0 4.5 5.0
Original LL 16,79939 11,84197 8,242994 5,659169 3,887245
LLCNN (3) 86,52921 84,36512 98,0996 112,9711 97,62692
LLCNN++ (3) 105,6586 94,97591 99,04177 95,81691 99,04177
LLCNN+DO (1) 95,69192 91,97912 90,66982 91,22758 88,1989

Table 4.6: Average MV per DL method

Average MV per Darkness Level for each DL Method
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Figure 4.6: Average MV per darkness level per DL method

In the case of the average brightness, we again observe that there are no
strong differences. The original architecture increases the average
brightness by 86.63, and the first and second variants increase the
brightness by 89.62 and 82.27 respectively. In addition, we observe that the
increase of the darkness level does not affect the result, since the change of
the values of the metric from level to level is small for all three cases of
architectures.
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Overall, we saw that all three cases of architectures have a comparable
performance, as the values of the metrics of interest are not characterized
by sharp variations. If we look more closely at the results, however, we can
notice that at high darkness levels the original architecture performs less
well compared to the two variants. The lower performance is due to the
fact that this architecture learns fewer features, as it has fewer
convolutional layers than the other two architectures, and also because it is
trained for fewer epochs. As for the other two architectures, we noticed that
at all darkness levels they perform almost the same, with the first variant
being slightly more efficient at higher darkness levels. Nevertheless, the
second variant has the advantage that it consists of fewer convolutional
modules (i.e. fewer parameters) and for the same training conditions
produces the same qualitative results as the first variant. The reason it
performs better with fewer parameters is because it only has to learn the
distribution extracted from the ground truth case, rather than the entire
mapping, making the model's work easier. Based on all the above analysis
we understand that the best architecture we could use is the second variant,
as with fewer parameters it can produce the same quality results, and it is
easier to train. Obviously there is also a lot of room for improvement, as
one could further optimize the architecture with hyperparameter tuning,
more training, and using patches rather than the whole image, procedures
that were not done in the present work due to limited resources.

4.3 Final Comparison

In this subsection we will compare all the methods against each other,
based on how well they improve the evaluation metrics we are interested
in, as well as on how complex they are. The values of the metrics are shown
in the tables of the previous two subsections, so here we will only show the
line charts for visualization purposes.
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Average PSNR per Darkness Level for All Methods
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Figure 4.7: Average PSNR per darkness level for all LLIE methods

We see that all DL architectures outperform all classical algorithms,
indicating that in general, techniques with learning are superior to classical
techniques. In addition to performing better, we saw that in classical
techniques we had to choose the value of a set of parameters, showing here
only the cases of parameters that give the best results. However, we don't
know if there is another better value of these parameters, and
experimenting to find it would be time-consuming. Models based on
learning avoid this search, as they use information extracted from the data
to correctly model the relationship between LL space and NL space.

440

—
| —



Average SSIM per Darkness Level for All Methods
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Figure 4.8: Average SSIM per darkness level for all LLIE methods

We reach the same conclusion by studying SSIM, as from figure 4.8 we
see that for all darkness levels the Deep Learning methods perform better
than the classic methods, giving higher values of the specific quality
metric. The DL techniques we applied learn many low level features that
help them recover local information (texture etc.), something that is not
done in classical algorithms, thus explaining the increased performance of
DL techniques.
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Average MV per Darkness Level for All Methods
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Figure 4.9: Average MV per darkness level for all LLIE methods

In the case of MV we see that the order changes as now the DL techniques
give an average improvement, while the classic techniques of histogram
equalization and Retinex Based methods give a greater increase in the
average brightness for each darkness level. The reason this happens is that
the specific classical techniques aim to produce an image with high
contrast, the histogram equalization by spreading the pixel values across
the available range, and the Retinex based methods by recovering the
reflectivity of the scene. But we saw that the ground truth data set also
consists of images that do not have high contrast and pixel values
distributed throughout the available range, which have been
experimentally over-enhanced, as we also saw in chapter 2. DL techniques
aim to approximate the appropriate mapping between the LL set that we
give as input and the NL set that we give as output. Since the NL set also
consists of images that are not characterized by high brightness, it is
expected that they will increase the average brightness only as much as
necessary. This explains the fact that in this specific metric with no
reference, the classical algorithms seem to perform better, but in reality
they simply over-enhance the images, which does not correspond to the
reality of the data set we are studying, and is also justified by the fact that
in the metrics with reference the DL techniques give much better results.

Based on the above analysis, we conclude that DL techniques are more
efficient than classical techniques, as they improve more the values of the
metrics with reference, and better respond to the needs of the data set (e.g.

442

—
| —



they do not cause over-enhancement as for example equalization
histogram). Which approach we actually use depends on the problem we
have to solve as well as the data we have available. In the case where we
have ground truth data available, as in the RELLISUR set we studied, it is
better to use methods with learning, such as DL techniques we saw in
chapter 3, adapting and optimizing the model to the needs. However, if we
do not have ground truth data, it is obviously better to use some of the
classical techniques. A combination of techniques could also be used,
where as a first step we apply one of the classical techniques (preferably
the dehaze-based method, for the reasons we mentioned in section 4.1) to
produce quasi ground truth images, and as a next step to train a DL model
based on these.

4.4 Conclusion and Future work

In this last subsection we will summarize the analysis so far, drawing final
conclusions and outlining steps for future research. We have seen that all
applications involving the use of digital images require these images to be
of high quality without noise. However, there are many factors that can
reduce the quality of an image. One of them is low-light conditions, which
result in images characterized by low contrast and brightness, and the
introduction of additional noise and color distortions. To use these images,
they must first be appropriately enhanced, an area of research called Low
Light Image Enhancement (LLIE). The first approach we took to solve the
LLIE problem was to apply classical image processing methods, which
either applied a mathematical function to the value of each pixel or
performed a convolution operation with a window. We first used a simple
linear transformation, and while it did enhance the images to a degree, it
was the least efficient algorithm, for each darkness level. Then we applied
non-linear functions, such as the gamma transform and the logarithmic
transform, where for small darkness levels they were among the most
efficient classical methods, but their performance decreased drastically
with the increase of the darkness level, making these methods unreliable
for solving the problem. We then applied histogram equalization, and we
saw that it did enhance the LL images but much more than it should, which
led to reduced performance on metrics with reference as it introduced more
noise and chromatic distortions. Nevertheless, it could be used as a general
method of enhancing dark images, but not in the context of the data set we
studied. Following, we applied methods based on the Retinex theory,
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where we saw that their great advantage is their resistance to the darkness
level, since their performance remained almost constant with its increase.
But we also noticed that color distortions appeared here, resulting in a
decrease in the quality of the images. Finally, we applied a method based
on defogging, with the logic that the negative of an LL image is as if the
image was taken in foggy conditions. If we apply a fog removal method to
the negative and reverse the result then we see that an enhanced LL image
is obtained. We saw that this particular method gave impressive results,
even at high darkness levels, without introducing additional noise or color
distortions. For the reasons we described above (no need to select
parameters, it has room for improvement, it is resistant to increasing the
darkness level, etc.) we chose it as the best of the classic methods.

Continuing, in chapter 3 we followed a different path, using Deep Learning
techniques, in an attempt to exploit all the information present in the data
set, to approximate the mapping between LL images space and NL images
space. We started by applying the original LL-CNN architecture, and we
saw that it gave impressive results improving all metric values, much more
than the classical algorithms. However, it was observed that for large
darkness levels it faced difficulty in retrieving the color information. In an
attempt to solve this problem, we proposed a variation of the original
architecture, where we added additional convolutional layers in order to
learn additional features, which could help in recovering the color
information. We saw that it did improve the results, but by making the
architecture more complex and increasing the training difficulty. In an
effort to facilitate the training process we introduced a different logic.
Specifically, we assumed that the LL images have been derived from the
NL images by subtracting a degradation image, e. So, we made the network
learn this degradation, by giving it as input the LL images and as expected
output the difference between NL and LL images. This way we managed
to get performance results comparable to the other architectures, using
fewer parameters. For this reason, we concluded that this particular
architecture with this training method is the best approach for solving the
LLIE problem.

At this point, before concluding the thesis, it is worth referring to future
research steps that could be implemented. Starting from the classic point
processing algorithms, an exhaustive experimentation could be done either
to find a suitable mathematical function whose application to the value of
each pixel will give better results, or to find the optimal parameter values

(for the transformations that have parameters such as gamma
transformation and logarithmic transformation). For the methods using
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Retinex theory, one could first experiment with different parameter values
of the surround function, since here we have seen that small values have
very poor performance. In addition, we could experiment with different
forms of the surround function, since in this work we used the default
function proposed by the authors [26, 27]. Finally, for the method that uses
the defogging/dehaze algorithm, we could experiment with different
defogging algorithms and see if the performance of the method can be
further improved.

Obviously, what we mentioned in the previous paragraph are fine-tuning
approaches to the specific data set, which are time-consuming and tedious.
For this reason, we applied Deep Learning methods, where we saw that
they are characterized by increased performance. On the architecture we
presented we could make changes such as different loss function and
different loss minimization algorithms, and in addition apply
hyperparameter tuning, to further increase the performance of the model.
Also, either different architectures or even a different DL paradigm could
be tested, by applying generative architectures (GANSs, diffusion models).
Finally, we could apply a combination of classical methods with DL
techniques. For example, we could implement a CNN architecture that
approximates the fog model of negative LL images, and then apply this
defogging model to classical method based on dehaze.

In conclusion, all the methods we described during this thesis are applied
to the RGB color space. Although this approach gives satisfactory results,
it has the disadvantage that it ignores the possible correlations that exist
between the color bands. Based on this we understand that we could also
experiment with different color spaces, such as HSI, and compare the
results between them.
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B — Code

B.2: Chapter 2 Code

Here we present the scripts we used during chapter 2, detailing the steps
for each section of the chapter.

Linear Streaching

The implementation function of the linear transformation is:

1 function ML_image = simple_linear_transformation(LL_image,range_min,range_max)
2

3 H==========================================================================
4 % Function for linear stretching of an image. The function takes as input
= % the image we want to stretch and the range of the available gray walues
6 % (usually range_min=8 and range_max=255). After that the function applies
i % the simple linear stretching algorithm and returns the result.

8 % Author: Panagiotis Koutsaftis aivc2iele

g H===========s========s=sss====sssssssssSssssssssssSSSSsSSssssssssssssssssos
1@
11 Xconverting the image to double for calculations
12 LL_image = double(LL_image);
112
14 Zsize of the image
15 [rows,columns, bands] = size(LL_image);
16
17 #dynamic range of the ML image gray values
18 range_diff = range_max-range_min;
19
28 Xpreallocating the matrix for the NL image with zeros
21 ML_image = zeros{size(LL_image)};
22
23 Xappliying linear stratching to the RGBE components
24 for band=1:bands
25 %x_low
26 f min = min{min{LL_image(:,:,band))});
27 %x_high
28 T max = max({max{LL_image(:,:,band))});
29 diff = {(LL_image(:,:,band)-f_min)./(f_max-f_min);
38 temp = round{(diff.*range_diff)}+range_min);
31 NL_image(:,:,band) = temp;
32 end
33
34 Zconverting the result to uintd
35 ML_image = uintB8(NL_image);
36

Figure B.2.1: Simple linear transformation implementation function
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This function accepts as input the image to which we want to apply the
linear transformation, as well as the range of available brightness values
(Xmin=rangemin and Xmax=rangemax). It then converts the image into a double
data type so that operations can be performed on the pixel values, and
calculates the dimensions of the image and the dynamic range of the
available brightness values. Then it goes and applies the linear
transformation formula to every pixel in the image. Specifically, here we
apply it to each channel separately, utilizing the vectorization capabilities
of MATLAB. We calculate for each channel X and Xuigh and we apply the
linear transformation formula. We store the result in an array, which we
initialized with zeros, and convert its values to uint8, so that it can be used
as an image and not as a simple array with double values.

Now that we have the function to calculate the linear transformation, we
need to apply it to all the images in our dataset. We will apply the function
per darkness level, saving the results in separate folders, which we will
then use to evaluate the method. The scripts where we apply the function
are presented in the following images.

1 close all; clear; clc; format compact;

2

3 %loading the data

4 %LL_images = imageDatastore('D:\AIMAOMATIKH\TRAINING IMAGES\2.5\LL-2.5");

5 %LL_images = imageDatastore('D:\AIMAOMATIKH\TRAINING IMAGES\3.@\LL-3.@');

6 #LL_images = i D: \AIMAQMATIKH\TRAINING IMAGES\3.5\LL-3.5");

7 #LL_images = i D:\AIMAQMATIKH\TRAINING IMAGES\4.@\LL-4.2");

8 #LL_images = imageDatastor \AIMAOMATIKH\TRAINING IMAGES\4.5\LL-4.5");

g LL_images = imageDatastore( 'D:\AIMAOMATIKH'\TRAINING IMAGES\5.2\LL-5.0');

18

11

12 ksize of the dataset

13 files = size(LL_images.Files);

14 numdfImages = files(1);

15

16

17

18 %applying Simple Linear Transformation

19 for index=1:num0fImages

208 LL_img = readimage(LL_images,index);

21 image_name = char(LL_images.Files(index));

22 ¥NL_img = readimage(NL_images,index);

23 NL_linear = simple_linear_transformation(LL_img,®,255);

24 #file_path = ['D:\AIMAQMATIKH\Experiments Results Methods\2.5\Linear Transformation\', -4)),".png’]
25 #file_path = [ IMAQMATIKH\Experiments Res Methods\3.@\Linear Transformation\',image_name( -41),".png']
26 #file_path = [ IMAQMATIKH\Experiments R Methods\3.5\Linear Transformation\',ima -4)),".png’]
27 #file_path = [ IMAQMATIKH\Experiments R Methods\4.@\Linear Transformation\',ima ( -4)),".png’]
28 #file_path = [ AQMATIKH\Experiments Results\Classical Methods\4.5\Linear Transformation\',image_name((end-8):(end-4))," .png']
29 file_path = IATIKH\Experiments Results\Classical Methods\5.@\Linear Transformation\',image_name((end-8):(end-4)), " .png’];
38 imwrite(NL_linear,file_path);

31 end

32

Figure B.2.2: Script to apply linear transformation to the training data
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1 Iclose all; clear; clc; format compact;

2

3

4 ¥ VALIDATION IMAGES

5

6 ¥reading the Low Light Data (VALIDATION)

7 ¥LL_images = imageDatastore('D:\AIMAQMATIKH\VALIDATION IMAGES\3.@\LL-3.8'};

8 ¥LL_images = imageDatastore('D:\AIMAQMATIKH\VALIDATION IMAGES\3.5\LL-3.5');

9 #LL_images = imageDatastore('D:\AINADMATIKH\VALIDATION IMAGES\4.B\LL-4.8');

10 ¥LL_images = imageDatastore('D:\AIMAQMATIKH\VALIDATION IMAGES\4.5\LL-4.5'};

11 LL_images = imageDatastore('D:\AINAQMATIKH\VALIDATION IMAGES\S.2\LL-5.2");

12

13 ¥size of the dataset

14 files = size(LL_images.Files);

15 num0fImeges = files(1);

16

17 disp(‘Working on validation images...")

18 ¥applying Simple Linear Transformation on Validation Images

19 for index=1:num0fImages

28 LL_img = readimage(LL_images,index);

21 image_name = char(LL_images.Files(index));

22 ¥NL_img = readimage(NL_images,index);

23 NL_linear = simple_linear_transformation(LL_img,8,255);

24 %file_path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods_ValidationImages\3.@\Linear Transformation\',image_name((end-8):(end-4)), .png'];
25 %file_path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods ValidationImages\3.5\Linear Transformation\',image name((end-8):(end-4)), .png'];
26 %file_path = ['D:\AINMADMATIKH\Experiments Results\Classical Methods_ValidationImages\4.@\Linear Transformation\',image_name((end-8):(end-4)), .png'];
27 %file_path = ['D:\AINADMATIKH\Experiments Results\Classical Methods_ValidationImages\4.5\Linear Transformation\',image_name((end-8):(end-4)), .png'];
28 file_path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods_ValidationImages\5.@\linear Transformation\',image_name((end-8):(end-4)),".png'];
29 imwrite(NL_linear,file_path);

36 end

EXN

32 disp('Done with Validation Images!')

33

34 % TEST IMAGES

35

36 %reading the Low Light Data (TEST)

37 %LL_images = imageDatastore('D:\AINAMMATIKH\TEST INAGES\3.@\LL-3.@');

38 %LL_images = imageDatastore(’D:\AINAQMATIKH\TEST IMAGES\3.5\LL-3.5);

39 #LL_images = imageDatastore('D:\AIMAMMATIKH\TEST IMAGES\4.0\LL-4.0");

48 %LL_images = imageDatastore('D:\AIMAMMATIKH\TEST IMAGES\4.5\LL-4.5");

41 LL_images = imageDatastore('D:\AINAMATIKH\TEST IMAGES\5.@\LL-5.2");

42

43 ¥size of the dataset

44 files = size(LL_images.Files);

45 num0fInages = files(1);

46

a7 disp('Working on Test images...')

43 %applying Simple Linear Transformation on Validation Images

49 for index=1:num0fImages

5@ LL_img = readimage(LL_imsges,index);

51 image _name = char(LL_images.Files(index));

52 ¥NL_img = readimage(NL_images,index);

53 NL_linear = simple_linear_transformation(LL_img,®,255);

54 %file_path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods_TestImages\3.@\linear Transformation\',image_name((end-8):(end-4)),".png"];
55 %file_path = ['D:\AIMAQMATIKH\Experiments Results\Classical Methods_TestImages\3.5\linear Transformation\',image_name((end-8):(end-4)),".png’];
56 %file_path = ['D:\AIMAQMATIKH\Experiments Results\Classical Methods_TestImages\4.@\linear Transformation\',image_name((end-8):(end-4)),".png’];
57 %file_path = ['D:\AIMAQMATIKH\Experiments Results\Classical Methods_TestImages\4.5\linear Transformation\',image_name((end-8):(end-4)),"'.png'];
58 file_path = ['D:\AIMAQMATIKH\Experiments Results\Classical Methods_TestImages\S.@\Linear Transformation\',image_name((end-8):(end-4)),".pnz'];
59 imwrite(NL_linear,file_path);

66 end

61 disp('Done with Test Images!')

62 disp('DONE!")

Figure B.2.3: Script to apply linear transformation to validation and test data

In all cases we read the images and put them into a datastore, and calculate
the size of the datastore (needed for the loop). Then, for each image of each
set, we apply the linear transformation function, and save the result in a
suitable folder, with the same name as the original LL image. Note that the
script is executed 5 times, once for each darkness level, each time having
the respective darkness level out of comment.
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After this process is completed, we have at our disposal the experimental
results of the linear transformation method. For these results we will
calculate the metrics we mentioned above so that we can evaluate the
performance of the algorithm. To calculate the metrics we applied the script
presented in figure B.2.4.

1 close all; clear; clc; format long;

2 tic

2

a

= % TRAINING IMAGES

6

7

8 disp({'Woriking on Training Imagss...')

9

18 * GROUND TRUTH IMAGES

11

12

13 NL_images3@ = imageDatastore( D:‘\AINAOMATIKH\TRAINING IMAGES\3.@\MNL-3.2');

14 NL_images35 = imageDatastore(’'D:‘\AINAGMATIKH\TRAINING IMAGES\3.5\MNL-3.5");

15 NL_images4@ = imageDatastore(’ INAQMATIKHYTRAINING E vML-4.2");

16 NL_images45 = imageDatastore( D:‘\AINAOMATIKH\TRAINING IMAGES\4.5%\MNL-4.5");

17 NL_images5@ = imageDatactore( D:‘\AINAOMATIKHA\TRAINING IMAGES\5.8\MNL-5.2');

18

19

20 % IMAGES FROM THE LINEAR TRANSFORMATION METHOD

21

22

23 NL_exp_res3@ = imageDatastore( 'D:\AINAOMATIKH\Experiments Results'Classical Methods\3.8\Linear Transformation');
24 NL_exp_res35 = imageDatastore( 'D:\AINAQMATIKH\Experiments Results‘Classical Methods\3.3\Linear Transformation');
25 NL_exp_res4@ = imageDatastore( 'D:%AIN TIKH\Experiments Results‘Classical Methods'\4.@\Linear Transformstion');
26 NL_exp_res45 = imageDatastore( 'D:\AIN TIKH\Experiments Results\Classical| Methods\4.5\Linear Transformastion');
27 NL_exp_res5@ = imageDatastore('D:\AINAGMATIKH\Experiments Results‘Classical Methods\5.@\Linear Transformation');
28

29 %assessment for 3.8 image dataset

38 metrics_arr3@ = assessment(NL_images3@,NL_exp_res3@);

21 ¥assessment for 3.5 image dataset

32 metrics_arr3s = assessment(NL_images3S,NL_exp_res3s);

33 %assessment for 4.8 image dataset

34 metrics_arrd® = assessment(NL_images4@,NL_exp_res4@);

35 %assessment for 4.5 image dataset

36 metrics_arrd5 = assessment(NL_images45,NL_exp_res45);

37 ¥assessment for 5.8 image dataset

38 metrics_arr5@ = assessment(NL_images5@,NL_exp_res5e);

39

48 ¥columns titles

41 var_names = {'MSE', PSNR", SSIM','MV', STD', BRISQUE’, 'NIQE'};
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42
43
a4
45
46
47
as
49
58
51
52
53
54
55
56
57
58
59
50
61
62
63
64
65
56
67
63
69
70
71
72
73
74
75
76
77
78
79

28
81
82
83
84
8%
86
87
88
89
96
al
92
93
a4
95
96
97
98
99
1lee

le2
183
1e4
1es
186
187
les
189
116
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

%convert the matrices to tables with column names

table3e =
table3s =
tablede =
tableds =
tablese =

#saving

array2table(metrics_arrie,
array2table(metrics_arris,
array2table(metrics_arr4e,
array2table(metrics_arr4s,
array2table(metrics_arrse,

the results to an excel file

'VeriablsNames',var_names)
)

"VariableNames',var_names);
)
)

'VWariableNames',var_names

3

'VarizbleNames' ,var_names);

‘VariazblsNames' ,var_names);

3

writetable(table3d, 'linsar_transformation_assessment_training.xlsx', 'Sheet

writetable(table35, "linear_transformation_assessment_training.xlsx', 'Sheet

writetable(tabledd, 'linsar_transformation_assessment_training.xlsx', 'Shest
writetable(tableds, 'linzar_transformation_assessment_training.xlsx', 'Sheet

writetable(tables@, 'linsar_transformation_assessment_training.xlsx', 'Sheet

disp('Done with Training Images!')

Htesting
*%I_rel =
HI_exp =

4.8 images

*figure

readimage (NL_images48,69);
readimage (NL_exp_res48,69);

Emontage({I_rel,I_exp})

VALIDATION IMAGES

on Walidation Images...")

GROUND TRUTH IMAGES

ML_imagss30 =
ML_images35 =
ML_images4d =
ML_images45 =
ML_imagesS@ =

imageDatastore( ' D: \AINAOMATIKH\WALIDATION
imsgeDatastore( D \AINAOMATIKHYWWALIDATION
imsgeDatastore("D: \AINAOMATIKH\WALIDATION
imsgeDatastore( D \AINAOMATIKHWWALIDATION
imageDatastore( ' D: \AIMNAOMATIKH\VALIDATION

IMAGES\3.@\NL-3.8"
IMAGESY3.5%NL-3.5"
IMAGES\4.8\NL-4.8"
IMAGES\4.5%NL-4.5"
IMAGES\S. @\NL-5.8"

* IMAGES FROM THE LINEAR TRANSFORMATION METHOD

NL_exp_res3@ =
NL_exp_res35 =
NL_exp_resdd =
ML_exp_resas =
NL_exp_res5@ =

imageDatastore('D:
imageDatastore( 'D:
imageDatastore('D:
imageDatastore('D:
imageDatastore( 'D:

Hassessment for
metrics_arr3@ =
Hassessment for
metrics_arr3s =
¥assessment for
metrics_arrd@ =
Hassessment for
metrics_arrdS =
Hassessment for
metrics_arrs5@ =

Fcolumns titles
var_names = {'MSE", 'PSNR','55IM",

3.0 image dataset
assessment(NL_images38,HL_exp_res38);
3.5 image dataset
assessment{NL_images35,HL_exp_res35);
4.6 image dataset
sssessment{NL_imagesd4@,NL_exp_res4@);
4.5 image dataset
assessment(NL_images45,HL_exp_resd5);
5.2 image dataset
assessment{NL_images50,HL_exp_res5a);

\ATINANMATIKH\Experiments
VATNAOMATIKHY Experiment s
A\AINANMATIKH\Experiments
\AINMAOMATIKH\Experiments
VATNAOMATIKHY Experiment s

v, ST

HFconvert the matrices to tables with column names

tablede =
table3s =
tabledl =
tableds =
tableS@ =

¥saving the results to an excel file
writetable(table3d, 'linear transformation assessment validation.xlsx','Sheet','3.2');
writetable(table35, ' linear_transformation_assessment_validation.xlsx','Sheet’,'3.5");
writetable(tableda, 'linzar_transformation_assessment_validation.xlsx','Sheet’,'4.2");
writetable(table45, 'linear transformation assessment validation.xlsx','Sheet','4.5');
writetable(table5@, ' linsar_transformation_assessment_validation.xlsx','Sheet’,'5.2');

disp('Done with Validation Images

]

Resultsi\Classical Methods_validationImages\3
Results\Classical Methods ValidationImages\3
ResultsiClassical Methods_validstionImages\4
Results\Classical Methods_ValidationImages\4
Results\Classical Methods ValidationImages\5

D', BRISQUE', 'NIQE'};

array2table(metrics_arr3@, 'VariableNames',var_names);
array2table(metrics_arr3s, Varisblelames',var names);
array2table(metrics_arr4@,'VariableNames',var_names);
array2table(metrics_arrd5, 'VariableNames',var_names);
array2table(metrics_arr5@, ' Varisblelames',var names);

1 TEST

IMAGES

disp('Working on Test Images...')

—
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T126

127 x GROUND TRUTH IMAGES

128

129

128 NL_images36 = imsgeDatastore('D AOMATTKHATEST TMAGES\Z.@WNL-3.8');

131 ML_images35 = imageDatastore('D AOMATIKH\TEST IMAGESY\3.5\NL-3.5');

132 NL_images46 = imsgeDatastore('D AOMATTKHATEST TMAGES\4.8WNL-4.8');

133 ML_images45 = imageDatastore('D AOMATIKH\TEST IMAGES‘\4.5\NL-4.5');

134 NL_images56 = imageDatastore(’D:\ATMAQMATIKH\TEST IMAGES\5.G\NL-5.8');

135

136

137 -1 IMAGES FROM THE LINEAR TRANSFORMATION METHOD

138

139

148 ML_exp_res3@ = imageDatastore( 'D:\a ATIEH\Experiments lethods_TestImzges\3.@\Linear Transformation');
141 ML_exp_res35 = imageDatastore('D: ATIKH\Experiments lethods_TestImages\3.5%\Linear Transformation’);
142 NL_exp_res4d = imageDatastore( 'D:\4 IKH\Experiments lethods_TestImsges'4.@hLi r Transformation');
143 ML_exp_res45 = imageDatastore('D: IKH\Experiments lethods TestImages\4.54L1 r Transformation®);
144 ML_exp_res5@ = imageDatastore{'D:\a MATIKH\Experiments lethods_TestImsges\5S.@\Linear Transformation');
145

146 ¥assessment for 3.8 image dataset

147 metrics_arr3® = assessment(NL_images36,NL_exp_res3d);

148 ¥assessment for 3.5 image dataset

149 metrics_arr3s = assessment(NL_images35,NL_exp_res3s);

158 ¥assessment for 4.2 image dataset

151 metrics_arrdd = assessment{NL_images4d,NL_exp_resda);

152 %assessment for 4.5 image dataset

153 metrics_arr4s = assessment{NL_images45,NL_exp_res4s);

154 %assessment for 5.8 image dataset

155 metrics_arr5@ = assessment{NL_images5e,NL_exp_res5a);

156

157 #columns titles

158 var_names = {'MSE','PSNR','SSIM','MW', STD', BRISQUE', 'NIQE'};

159

168 #convert the matrices to tables with column names

161 tsble3@ = array2table(metrics_arr3@, 'VariableNames',var_names);

162 table3s = array2table(metrics_arr35, 'Variablelames',var_names);

163 table4@ = array2table(metrics_arr4@, 'VariableNames',var_names);

164 table4s = array2table(metrics_arr45, 'VariableNames',var_names);

165 table5@ = array2table(metrics_arr5e, 'VariableNames',var_names);

166

167 %saving the results to an excel file

168 writetable(table3@, 'linsar_transformation_assessment_test.xlsx’, 'Sheet','3.2');

169 writetable(table35, '1i transformation_ sment_test.x ", 'Sheet','3.5");

178 writetable(tablede, '1i r_transformation_as sment_test.x ', 'Sheet’,'4.0");

171 writetable(tableds, '1i transformation_ sment_test.xlsx','Sheet','4.5');

172 writetable(table5@, 'linsar_transformation_assessment_test.xlsx’, 'Sheet','5.2');

Figure B.2.4: Linear transformation valuation script

We start by reading the ground truth, and experimentally produced images,
for the training set, and store them in image datastores. Then, we use the
assessment function, which we described above, and calculate the matrix
with the metrics for each image of each datastore, saving the results in an
excel file. We apply the same procedure for the validation and test sets.
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Gamma Correction

1 function ML_image = gamma_correction(LL_imags,gamma)

2

3 ¥========c======z===================s==ssssssssssosssoosoosoooooooosossssssss
4 ¥ Function that implements the Gamma correction algorithm. It takes as

g % input the Low Light image and the walue of the exponent and outputs the

[ ¥ image after applying gamma correction.

7 ¥ Author: Panagiotis Koutsaftis aiwvc2lele

8 ¥========c======z===================s==ssssssssssosssoosoosoooooooosossssssss
9
18 ¥converting to double needed for operations
11 LL image = double{LL_image);
12
13 #applying the gamma correction
14 ML_image = round{{(LL_image./255)."gamma}.*®255);
15
16 ¥converting back to uint8 cause we need to return an image
17 ML_image = wint3(ML_image);

Figure B.2.5: Implementation of the gamma correction algorithm

The function accepts as input the LL image to which we want to apply the
gamma transformation, as well as the value of the correction constant. It
then converts the image to the double data type, which is needed to do
arithmetic operations, and then applies the transformation. We divide the
image values by 255 so that the number we raise to vy is in the range [0,1],
then raise to the correction constant and multiply by 255 so that the result
is in the range [0,255]. Finally, we round the result and convert it to uint8,
since we want to return an image and not just a matrix with values.

We will apply this function to enhance the LL images, which we do with
the script shown in the following images. First, we read the images, where
we want to apply the algorithm, using Image Datastore. Then, for each
image contained in the Datastore, we apply the function and store the result
in a folder in an appropriate path, applying the function 3 separate times,
one for each value of the correction constant. We execute this script 5
times, once for each brightness level, and we follow the same procedure
for the validation and test datasets, as shown in figure B.2.7.
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1 close all; clear; clc; format compact;
2

3

4 %loading the data

5. ¥LL_images = imageDatastore( 'D:\AIMAOMATIKH\TRATINING IMAGES\3.@\LL-3.8");

6 ¥LL_images = imageDatastore( 'D:\AIMAOMATIKH\TRATNING IMAGES\3.5\LL-3.5");

7 XLL images = imageDatastore( 'D:\AIMNAQMATIKH\TRAINING IMAGES\4.0\LL-4.2');

8 %LL _images = imageDatastore(’ AIMAQMATIKH\TRAINING IMAGES\4.5\LL-4.5");

9 LL_images = imageDatastore('D INAQMATIKHATRAINING IMAGESYS.@\LL-5.8');
18
11 ¥size of the dataset
12 files = size(LL_images.Files);
13 numofImages = files(1);
14

15 %applying Gamma Transformation with gamma = @.1

16 for index=1:numOfImages

17 LL_img = readimage(LL_images,index);

18 image_name = char(LL_images.Files(index));

19 %NL_img = readimage(NL_images, index);

26 NL_gam = gamma_correction(LL_img,8.1);

21 %file path = ['D:\AINAGMATIKH\Experiments Results\Classical Methods\3.@\Gamma correction\gamma_@1\',image_name((end-8):(end-4)),".png'];
22 %file path = ['D:\AINAGMATIKH\Experiments Results\Classical Methods\3.5\Gamma correction\gamma_@1\',image_name((end-8):(end-4)),".png

23 %file_path = ['D:\AIMAQMATIKH\Experiments Results\Classical Methods\4.@\Gamma correction\gamms_@1\',image_name{(end-8):(end-4))," .png"
24 %file_path = ['D:\AIMAQMATIKH\Experiments Results\Classical Methods\4.5\Gamma correction\gamma_91\’,image_name((end-8):(end-4))," .png'];
25 file_path = [ D:\AINAQMATIKH\Experiments Results\Classical Methods\5.2\Gamma correction\gamma_81\',image_name({end-8): (end-4)), .png'];
26 imerite(NL_gam,file path);

27 end

28

29 %applying Gamma Transformation with gamma = .3

L for index=1:numOfImages

31 LL_img = readimage(LL_images,index);

32 image_name = char(LL_images.Files(index));

33 %NL_img = readimage(NL_images,index);

34 NL_gam = gamma_correction(LL_img,8.3);

35 %file path = ['D:\AINAGMATIKH\Experiments Results\Classical Methods\3.@\Gamma correction\gamma_@3\',image_name((end-8):(end-4)),".png'];
36 %file_path = ['D:\AIMAQMATIKH\Experiments Results\Classical Methods\3.5\Gamma correction\gamma_93\’,image_name((end-8):(end-4))," .png'];
37 %file_path = ['D:\AIMAQMATIKH\Experiments Results\Classical Methods\4.0\Gamma correction\gamma_93\’,image_name((end-8):(end-4))," .png'];
28 %file_path = ['D:\AIMAQMATIKH\Experiments Results\Classical Methods\4.5\Gamma correction\gamma_93\’,image_name((end-8):(end-4))," .png'];
39 file_path = [° IAMATIKH\Experiments Results\Classical Metheds\5.8\Gamma correction\gamma_83\',image_name({end-8):(end-4)), .png'];
10 imwrite(NL_gam,file_path};
41 end
4z
42
43 %applying Gamma Transformation with gamma = 0.8
a4 for index=1:numOfImages
45 LL_img = readimage(LL_images,index);
46 image_name = char(LL_images.Files(index));
47 KNL_img = readimage(NL_images, index);
48 NL_gam = gamma_correction(LL_img,8.8);|
a9 %file path = ['D:\AINAGMATIKH\Experiments Results\Classical Methods\3.@\Gamma correction\gamma_@8\',image_name((end-8):(end-4)),".png'];
5@ %file_path = ['D:\AIMAOMATIKH\Experiments Results\Classical Methods\3.5\Gamma correction\gamma_8\',image_name((end-8):(end-4))," .png' 5
51 %file_path = ['D:\AIMAQMATIKH\Experiments Results\Classical Methods\4.0\Gamma correction\gamma_98\’,image_name((end-8):(end-4))," .png'];
52 %file_path = ['D:\AIMAQMATIKH\Experiments Results\Classical Methods\4.5\Gamma correction\gamma_98\',image_name((end-8):(end-4))," .png’'];
53 file_path = [ D:\AINAQMATIKH\Experiments Results\Classical Methods\5.2\Gamma correction\gamma_88\',image_name({end-8): (end-4)), .png'];
54 imwrite(NL_gam,file_path};

55. end

Figure B.2.6: applying gamma correction to training dataset

After this process is completed, we have the experimental results of the
specific method, and we can apply the evaluation algorithm, as presented
in the previous section. Here it is configured a bit differently, as we have 3
different experiments (3 different correction constants). The script we
apply for the evaluation is shown in figure B.2.8.
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close all; clear; clc; format compact;

% VALIDATION IMAGES

%reading the Low Light Data (VALIDATION)

9 %LL_images - imageDatastore(’D:\AIMAQMATIKH\VALIDATION IMAGES\3.8\LL-3.0"
1@ ¥LL_images = imageDatastore(’D:\AIMAQMATIKH\VALIDATION IMAGES\3.5\LL-3.5"
11 %LL_images = imageDatastore (’D:\ATMAQMATTKH\VALTDATION THAGES\4.6\LL-4.6"
12 %LL_images - imageDatastore(’D: \AIMAQMATIKH\VALIDATION IMAGES\4.5\LL-4.5"

13 LL_images = imageDatastore('D:\AIMAOMATIKH\VALIDATION IMAGES\5.2\LL-5.8);
14
15 %size of the dataset
16 files = size(LL_images.Files);
17 nunofImages = files(1);
18
19 disp('Working on validation images...®
20 %applying Gamma Transformation with gamma = @.1
21 for index=1:nunOfImages
22 LL_ing = readimage(LL_images, index);
23 image_name = char(LL_images.Files(index));
2 %NL_img = readimage(NL_images,index);
25 NL_gam = gamma_correction(LL_img,8.1);
26 %file_path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods_ValidationImages\3.8\Gamma correction\gamma_01\",image_name((end-8): (end-4)), .png"];
27 %file_path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods_ValidationImages\2.5\Gamma correction\gamma_01\",image_name((end-8):(end-4)), .png"];
28 %file path = ['D:\AINMQMATIKH\Experiments Results\Classical Methods validationImages\d.@\Gamma correction\gamma_@1\",image_name((end-8):(end-4))," .png'];
29 %file_path = ['D:\AIMAQMATIKH\Experiments Results\Classical Methods_ValidationImages\4.5\Gamma correction\gamma_01\",image_name((end-8):(end-4))," .png"]s
EL) file_path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods ValidationImages\S.9\Gamma correction\gamms_91%',image_name((end-8):(end-4))," .ong’1;
31 imurite(NL_gam, file_path);
32 end
33 disp('Done with gamma=g.1!')
31
35 %applying Gamma Transformation with gamma = .3
36 for index=1:nun0fImages
37 LL_ing = readimage(LL_images,index);
38 image_name = char(LL_images.Files(index));
39 ¥NL_img = readimage(NL_images, index);
40 NL_gam = gamma_correction(LL_ing,8.3);
41 %file_path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods_ValidationImages\2.@\Gamma correction\gamma_03\",image_name((end-8):(end-4)), .png"];
a2 %file path = ['D:\AINMQMATIKH\Experiments Results\Classical Methods validationImages\3.5\Gamma correction\gamma_@3\",image name((end-8):(end-4))," .png'];
43 %file_path - \AIMAQMATIKH\Experiments Results\Classical Methods_ValidationImages\4.8\Gamma correction\gamma_03\",image_name((end-8):(end-4))," .png']s
44 %file path = :\AINAQMATIKH\Experiments Results\Classical Methods_ValidationIm \4.5\Gamma correction\gamma_03\",image_name((end-8):(end-4)), .png’];
45 file_path = ['D:\AINAGMATIKH\Experiments Results\Classical Methods ValidationImages\s.@\Gamna correction\gamma 03\',image_name((end-8):(end-4)),".png'1;
46 dmwrite (NL_gam, file_path);
a7 end

48 disp('Dene with gamma=g.3!')

49

58 %applying Gamma Transformation with gamma = 0.8

51 for index=Ll:num0fImages

52 LL_img = readimege(LL_images, index);

53 image name = char(LL_images.Files(index));

54 %NL_ing = readimage(NL_images,index);

55 NL_gom = gomma_correction(LL_ing,0.8);

56 %file_path = ['D:\AINAGMATIKH\Experiments Results\Classical Methods_ValidationImages\3.@\Gamma correction\gamma_08\",image_name((end-8):(end-4))," .png'];
57 %file_path = ['D:\AIMAQMATIKH\Experiments Results\Classical Methods_ValidationImages\3.5\Gamma correction\gamma_88\",image_name((end-8):(end-4))," .png'];

58 %file_path = ['D:\AIMAQMATIKH\Experiments Results\Classical Methods_ValidationImages\4.e\Gemma correction\gamma_08\',image_name((end-8):(end-4))," .png'];

59 %file path = ['D:\AINNQMATIKH\Experiments Results\Classical Methods_ValidationImages\4.5\Gamma correction\gamma_08\',image_name((end-8):(and-4))," .png’1;
) file_path = ['D:\AINAMATIKH\Experiments Results\Classical Methods ValidationImages\5.0\Gawna correction‘gamma_88\',image_name((end-8):(end-4)), .ong'];
61 imurite(NL_gsn, file_psth);

62 end

63 disp('Done with gamma=8.5!')

6 disp('Done with validation images!')

65

66

67 % TEST IMaces

68

69 %reading the Low Light Data (TEST)

70 %LL_images = imageDatastore(’D:\AIMAQMATIKH\TEST IMAGES\3.@\LL-3.0°);

71 %LL_images = imageDatastore(’D:\AIMAMATIKH\TEST IMAGES\3.5\LL-3.5);

72 %LL_images = imageDatastore(’D:\AIMADMATIKH\TEST IMAGES\4.6\LL-4.8");

73 %LL_images = imageDatastore(’D:\AIMAQMATIKH\TEST IMAGES\4.5\LL-4.5°);

74 LL_images = imageDatastore('D:\AIMAQMATIKH\TEST IMAGES\S.@\LL-5.0');

75

76 %size of the dataset

77 files = size(LL_images.Files);

78 nun0fInages = files(1);

79

80 disp('Working on Test images...')

80 disp('Working on Test images...')

81 %applying Gamma Transformation with gamma = 6.1

82 for index=1:numOfImages

83 LL_img = readimage(LL_images,index);

84 image_name = char(LL_images.Files(index));

85 ¥NL_ing = readimage(NL_images,index);

86 NL_gam = gamma_correction(LL_img,@.1);

87 %file_path = ['D:\AIMAMMATIKH\Experiments Results\Classical Methods TestImages\3.@\Gamma correction\gamma_81\',image_name((end-8):(end-4)),".png'];
88 %file_path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods_TestImages\3.5\Gamma correction\gamma_o1\',image_name((end-8):(end-4)),".png'];
89 %file_path = ['D:\AIMAQMATIKH\Experiments Results\Classical Methods_TestImages\4.@\Gamma correction\gamma_01\',image_name((end-8):(end-4)),".png']s
20 %file path = ['D:\AIMAGMATIKH\Experiments Results\Classical Methods TestImeges\d.S\Gemma correction\gamma_81\',image_name((end-8):(end-4)),".png'];
91 file_path = ['D:\AIMAQMATIKK\Experiments Results\Classical Methods_TestImages\S.e\Gamma correction‘gamma_21\',image_name((end-8):(end-4)),".eng’1;
92 imurite(NL_gam, file_path);

93 end

94 disp('Done with gamm

95

26 %applying Gamma Transformation with gamma = 6.3

97 um0f Images

98 readimage (LL_images, index);

29 image_name = char(LL_images.Files(index));

100 ¥NL_ing = readimage(NL_images,index);

1e1 NL_gan = gamma_correction(LL_img,.3};

102 %file_path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods_TestImages\3.@\Gamma correction\gamma_e3\',image_name((end-8):(end-4)),".png'];
103 %file_path = ['D:\AIMAMMATIKH\Experiments Results\Classical Methods_TestImages\3.5\Gamma correction\gamma_03\',image_name((end-8):(end-4))," .png'];
104 %file_path = ['D:\AIMAGMATIKH\Experiments Results\Classical Methods TestImeges\d.@\Gamma correction\gamma_83\',image_name((end-8):(end-4)),".png'];
165 %file_path = ['D:\AIMAQMATIKH\Experiments Results\Classical Methods_TestImages\4.5\Gamma correction\gamma_03\',image_name((2nd-8):(end-4)),".png']s
106 file_path = ['D:\AIMAOMATIKH\Experiments Results\Classical Methods_TestImages\S.0\Gamma correction‘gamma_83\',image_name((end-8):(end-4)),".png'];
1e7 imurite(NL_gam,Tile_path);

108 end

109 disp('Done with gamma=0.3!")

110

111 %applying Gamma Transformation with gamma = 6.8

112

113 LL_img = readimage(LL_images,index);

114 image_name = char(LL_images.Files(index));

115 ¥NL_ing = readimage(NL_images,index);

116 NL_gam = gamma_correction(LL_img,@.8);

117 %file_path = ['D:\AIMAMMATIKH\Experiments Results\Classical Methods TestImages\3.@\Gamma correction\gamma_88\',image_name((end-8):(end-4)),".png'];
118 %file path = ['D:\OINAQMATIKH\Experiments Results\Classical Methods TestImeges\3.5\Gamma correction\gamma_@s\',image_name((end-8):(end-a)),".png'];
119 %file_path = ['D:\AIMAQMATIKH\Experiments Results\Classical Methods_TestImages\4.@\Gamma correction\gamma_08\',image_name((end-8):(end-4))," .png']s
120 %file_path = ['D:\AIMAMMATIKH\Experiments Results\Classical Methods TestImages\4.5\Gamma correction\gamma_88\',image_name((end-8):(end-4)),".png'];
121 file_path = ['D:\AIMAQMATIKK\Experiments Results\Classical Methods_TestImages\S.@\Gamma correction‘gamma_98\',image_name((end-8):(end-4)),".eng’1;
122 imurite(NL_gam, file_path);

123 end

124 disp('Done with gamma

125 disp('Done with test images!')

126 disp('Done!")

Figure B.2.7: applying gamma correction to validation and test datasets
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klase all; cl
tic

o

ear; clc; format long;

%

.

TRAINING IMAGES

disp('Working

¥Ground Truth
NL_images3e =
NL_images35 =
NL_images48
NL_images4s
NL_imagesse =

XImages from
NL_exp_res3@
NL_exp_res35
NL_exp_resda
NL_exp_resd5
NL_exp_res5@

on Training Images...")

images

imageDatastore( D:WAINAOMATIKHLYTRAINING IMAGES'3.@%\NL-3.

MAGESN3.5\NL-3
imageDatastore( D:WAINAOMATIKHL\TRAINING IMAGES' 4.2 \NL-4.
IMAGES 4.5 \NL-4.
imageDatastore( D:WAINAOMATIKHLYTRAINING IMAGESYS.@\NL-5.

imageDatastore( D: \ATNADMATIKH\TRATNING

imageDatastore( D:WAINAMATIKHYTRAINING

Gamma correction with Gamma=8.1

= imageDatastore( ' D:\AINAOMATIKH\Experiments

= imageDatastors('D: \AINAOMATIKH\Experiments

= imageDatastore('D: \AINAOMATIKH\Experiments

= imageDatastore('D:\AINAGMATIKH\Experiments
('D:

= imageDatastore \AIMAOMATIKH\Experiments

ResultsiClassical| Methods'\3.@\Gamma
ResultsiClassical Methods'3.5%Gamma
ResultsiClassical Methods'\4.8\Gamma
ResultsiClassical Methods'4.5%Gamma
ResultsiClassical| Methods\5.@%Gamma

Fassessment for
metrics_arr3e =
¥assessment for
metrics_arr3s =
Fassessment for
metrics_arrd® =
¥assessment for
metrics_arr4s =
Fassessment for
metrics_arr5e =

¥columns titles

3.8 image dataset

assessment({NL_images3@,NL_exp_res3@);

3.5 image dataset

assessment(NL_images35,NL_exp_res3s);

4.8 image dataset

assessment({NL_images4@,NL_exp_res4@);

4.5 image dataset

assessment(NL_images45,NL_exp_res4s5);

5.8 image dataset

assessment({NL_images5@,NL_exp_res58);

var_names = {'MSE','PSNR','SSIM’, 'MV','STD', 'BRISQUE', 'NIQE'};

¥convert the matrices to tables with column names
table3@ = array2table(metrics_arrie,
table35 = array2table(metrics_arr3s,
tabled4® = array2table(metrics_arrde,
tabled5 = array2table(metrics_arr4s,
table5@ = array2table(metrics_arrse,

%saving the res

writetable(table3@, "Gamma@l_sssessment_training.
writetable(table3s, "Gamma@l_sssessment_training.
writetable(table4@, "Gamma@l_sssessment_training.
writetable(tabled5, "Gamma®l_sssessment_training.
writetable(table5@, "Gamma@l_sssessment_training.

disp{'Done with

¥Images from Gamma correction with Gamma=@.3
("D:\AINAOMATIKHYExperiments
('D:NAINAOMATIKHN Experiments

imageDatastore( 'D: \AIMMMATIKH Experiments
('D:
('D:

NL_exp_res3e =
NL_exp_res3s =
NL_exp_res48 =
NL_exp_resd45 =
NL_exp_res58 =

¥assessment for
metrics_arr3e =
¥assessment for
metrics_arr3s =
¥assessment for
metrics_arrd@ =
¥assessment for
metrics_arr4s =
¥assessment for
metrics_arrse =

Fcolumns titles
var_names = {°M

ults to an excel file

gamma=@.1!")
imageDatastore
imageDatastore

imageDatastore
imageDatastore

3.8 image dataset

NAIMAOMATIKHYExperiments
NAIMAOMATIKH\Experiments

‘VariableNames®,var_names);
‘WariahleNames ' ,var_names);
'VariableNames',var_names);
‘VariableNames®,var_names);
‘VariableNames®,var_names);

xlsx', 'Sheet’,'3.8")
xlsx', 'Sheet','3.5");
xlsx', 'Sheet’, '4.8");
5)
@)

H

H

xlsx', 'Sheet','4
xlex', "Sheet','5

H

sssessment({NL_images3@,NL_exp_res38);

3.5 image dataset

sssessment{NL_images35,NL_exp_res35);

4.8 image dataset

sssessment{NL_images4@,NL_esxp_resda);

4.5 image dataset

assessment({NL_images45,HL_exp_res45);

5.8 image dataset

assessment({NL_images5@,NL_exp_resSa);

SE','PSNR’,SSIM',"

', sTD

*,"BRISQUE", 'NIQE'};

¥convert the matrices to tables with column names

table3@ = array
table35 = array
table4d = array
table45 = array
table5@ = array

Fsaving the res

writetable(table3a, 'Gammad3_sssessment_training.
writetable(table35, "Gamma®@3_sssessment_training.
writetable(tableda, 'Gammad3_sssessment_training.
writetable(table45, "Gamma®@3_sssessment_training.
writetable(table5@, 'Gamma@3_sssessment_training.

disp( 'Done with

2table(metrics_arr3@, 'VarisbleNames',var_names);
2table{metrics_arr35, 'VarisbleNames®,var_names);
2table(metrics_arrd4@, 'VariasbleNames',var_names);
2table{metrics_arr4d5s, 'VarisbleNames®,var_names);
2table(metrics_arrS@, 'VariasbleNames',var_names);

ults to an excel file

gamma=@.3!")

—

xlsx', 'Sheet', 3.8
xlex', "Sheet', 3.5
xlsx','Sheet', 4.6
4.5
5.8

H
H

)
)
1i
)
)

xlex', "Sheet',’ H

xlsx', 'Sheet',’

H

Results\Classical| Methods\3.@\Gamma
Results\Classical| Methods\3.5\Gamma
Results\Classical| Methods\4.@\Gamma
ResultsiClassical Methods\4.5'\Gamma
Results\Classical| Methods\5.@\Gamma

correctiongamma_@l1");
correction\gamma_@1");
correctiongamma_a1°");
correctiongamma_@1"});
correctiongamma_@l1");
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correction\gamma_@3°);
correction\gamma_@3");
correction‘gamma_@3");
correction\gamma_@3");
correction‘gamma_@3");



B

88 %Images from Gamma correction with Gamma=@.8
29 NL_exp_res3@ = imageDatastore('D:\AINAOMATIKH\Experiments Resultsi\Classical| Methods\3.@\Gamma correction‘\gamma_@3');
L] NL_exp_res35 = imageDatastore('D:\AINAOMATIKH\Experiments Results‘(lassical| Methods\3.5\Gamma correction‘gamma_63');
a1 HL_exp_res4@ = imageDatastore( D:\AINAMATIKH\Experiments Results‘Classical Methods\4.@%\Gamma correction‘\gamma_83");
92 ML_exp_res45 = imageDatastore( D:\AINAQMATIKH\Experiments ResultshClassical Methods\4.5%Gamma correctiongamma_@88°);
93 NL_exp_res5@ = imageDatastore('D:\AINAOMATIKH\Experiments Results\Classical| Methods\5.@\Gamma correction‘gamma_@3');
94
495 ¥assessment for 3.0 image dataset
96 metrics_arr3@ = sssessment(NL_images3@,NL_exp_res3@);
a7 %assessment for 3.5 image dataset
a8 metrics_arr35 = assessment(NL_images3s,NL_exp_res35);
99 ¥assessment for 4.0 image dastaset

lee metrics_arr4@ = sssessment(NL_images4@,NL_exp_res4@);

lel %assessment for 4.5 image dataset

la2 metrics_arrd5 = assessment(NL_images45,NL_exp_resd5);

183 ¥assessment for 5.0 image dstasst

le4 metrics_arr5@ = sssessment(NL_images5@,NL_exp_res5@);

1es

l1e6 %columns titles

187 var_names = {'MSE',"PSNR','SSIM", 'MV' D', "BRISQUE", '"NIQE"};

1as

109 ¥convert the matrices to tables with column names

118 table3@ = array2table(metrics_arr3a, 'Variablelames',var_names};

111 table35 = array2table(metrics_arr35, 'VariableNames',var_names);

112 table4@ = array2table(metrics_arr4@, 'VarisbleNsmes',var_names);

113 table4s = array2table(metrics_arr4s, 'varizbleNsmes',var_names);

114 table5@ = array2table(metrics_arr5@, 'Variablelames®,var_names);

115

116 ¥saving the results to an excel file

117 writetable(table3e, 'Gamma@s_sssessment_training.xlsx', 'Sheet','3.8');

118 writetable(table35, "Gamma@s_assessment_training.xlsx', 'Sheet','3.5");

119 writetable(tabledd, "Gamma@s_sssessment_training.xlsx', 'Sheet','4.8");

120 writetable(tableds, "Gamma@8_sssessment_training.xlsx', 'Sheet', '4.5');

121 writetable(tables@, "Gamma@s_sssessment_training.xlsx', 'Sheet','5.@");

122 disp{'Done with gammz=@.3!")

123 disp{'Done with Training Images!')

124

125 *:

126 % VALIDATION IMAGES

127 %

128 disp('Werking with Validation Images...')

129

130 %Ground Truth images

131 NL_images30 = imageDatastore( D:\AINAOMATIKHA\VALIDATION IMAGESY3.@\NL-3.2');

132 NL_images35 = imageDatastore( D:)\AINAOMATIKH\WALIDATION IMAGES\3.5\NL-3.5');

133 ML:ima;esMa = ima;aData;mre{‘D:\aInAnHAT]KH\VALIDATIGN 1|~'ﬁGES\4.a\NL-4.e'};

134 NL_images45 = imageDatastore(’'D:\AINAOMATIKH\VALIDATION IMAGES\4.5\NL-£.5');

135 NL_imagesS® = imageDatastore(’'D:\AINAOMATIKH\VALIDATION IMAGES\S.B\NL-5.8');

136

137 %Images from Gamma correction with Gamma=a.1

138 NL_exp_res3@ = imageDatastore('D:\AIMNOMATIKH\Experiments Results\Classical Methods_ValidstionImages\3.8\Gamma correction‘gamma_e1');

139 NL_exp_res35 = imageDatastore('D:\AIMAGMATIKH\Experiments Results\Classical Methods_ValidstionImages\3.5\Gamma correction\gamma_21');

148 NL_exp_res49 = imageDatastore('D:\AIMAIMATIKH\Experiments Results\Classical Methods ValidstionImages\4.@\Gamma correction\gamma 21');

141 NL_exp_res45 = imageDatastore('D:\AINNOMATIKH\Experiments Results\Classical Methods ValidstionImages\4.5\Gamma correction‘gamma @1');

142 NL_exp_res5@ = imageDatastore('D:\AIMAGMATIKH\Experiments Results\Classical Methods_ValidstionImages\5.2\Gamma correction\gamma_21');

143

144 %assessment for 3.0 image dataset

145 metrics_arr3@ = assessment(NL_images30,NL_exp_res3o);

146 %assessment for 3.5 image dataset

147 metrics_arr35 = assessment(NL_images35,NL_exp_res35);

148 #assessment for 4.8 image dataset

149 metrics_arrd@ = assessment(NL_images40,NL_exp_resdd);

156 %assessment for 4.5 image dataset

151 metrics_arrd5 = assessment(NL_images45,NL_exp_res45);

152 %assessment for 5.0 image dataset

153 metrics_arr5@ = assessment(NL_images5@,NL_exp_res50);

154

155 %columns titles

156 var_names = { MSE', PSNR', SSIM’, 'MV', STD', BRISQUE’, 'NIQE };

157

158 %convert the matrices to tables with column names

159 table3d = array2table(metrics arr3e, Varizblelames',var_names);

168 table3s = array2table(metrics_arr3s,'VariableNames',var_names);

161 tabledd = array2table(metrics_arra®, 'Varisblelames',var_names);

162 tabledS = array2table(metrics_arrdS, Varizblelames',var_names);

163 tableSe = array2table(metrics_arrSe, 'VariableNames',var_names);

164

165 %saving the results to an excel file

166 writetable(table3@, 'Gamma@l sssessment validation.xlsx', ‘Sheet’,’'3.27);

167 writetable(table35, 'Gamma@l_sssessment validation.xlsx', 'Sheet','3.5");

168 writetable(tableda, 'Gammadl_sssessment_validation.xlsx 1.8°);

169 writetable(tabled5, Gamma®l sssessment validation. 4.5);

178 writetable(table5@, 'Ganma@l_sssessment validation. 5.8');

171 disp('Done with gamma=8.1!")

172

173 %Images from Gamma correction with Gamma=a.3

174 NL_exp_res3@ = imageDatastore('D:\AINAOMATIKH\Experiments Results\Classical| Methods_ValidstionImages\3.@\Gamma correctiongamma_83');

175 NL_exp_res35 = imageDatastore('D:\AIMAGMATIKH\Experiments Results\Classical Methods_ValidstionImages\3.5\Gamma correction\gamma_23');

176 NL_exp_res4@ = imageDatastore('D:\AINNOMATIKH\Experiments Results\Classical Methods ValidstionImages\4.8\Gamma correction‘gamma @3');

177 NL_exp_resd5 = imageDatastore('D:\AIMAGMATIKH\Experiments Results\Classical Methods_ValidstionImages\4.5\Gamma correctiongamma_83');
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213

223
224
225
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229
230
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253
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255
256
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263
264

NL_exp_res35 = imageDatastore('D:‘\AIMAMMATIKH\Experiments Results\Classical Methods ValidationImeges'\32.5\Gamma correction‘igamma_e3
NL_exp_res48 = imageDatastore('D:\AINMAGMATIKH\Experiments Results\Classical i
NL_exp_res45 = imageDatastore('D:\AIMAQMATIKH\Experiments
NL_exp_res5@ = imageDatastore('D:‘\AIMAMMATIKH\Experiments Results\Classical Methods ValidationImages\5.@\Gamma correction‘igamma_e3

%assessment for 3.0 image dataset
metrics_arr3@ = assessment(NL_images3@,NL_exp_res38);
%assessment for 3.5 image dataset
metrics_arr35 = assessment(NL_images35,NL_exp_res35);
%assessment for 4.0 image dataset
metrics_arr4® = assessment(NL_imagesd®,NL_exp res4s);
%assessment for 4.5 image dataset
metrics_arrd5 = assessment(NL_imagesd5,NL_exp_res45);
%assessment for 5.0 image dataset

metrics_arr5@ = assessment(NL_imagesSe,NL_exp_res50);

%columns titles

var_names = {'MSE','PSNR','SSIM', 'MV', 'STD', 'BRISQUE’, 'NIQE'};

Zconvert the matrices to tables with column names

table3® = array2table(metrics_arr3e,'Variablelames',var_names);
table35 = srray2table(metrics_arr35, Varisblelames',var_names);
tabledd = array2table(metrics_arrdd, Varizblelames',var_names);

tableds = array2table(metrics_arrdS,'Variablelames',var_names);
table5® = srray2table(metrics_arr5@, Varisblelames',var_names);

Hsaving the results to an excel file

writetable(table3a, ‘Gamma@3_sssessment_validation.xlsx', 'sheet’,'3.
writetable(table35, "Gammad3_sssessment_validation.xlsx', Sheet’,'3.

writetable(tablea, 'Ganmad?_assessment_validation.xlsx
writetable(tableas, 'Ganmag3_sssessment_validation.xlsx

writetable(table5@, "Gammad3_sssessment_validation.xlsx', 'Sheet’,’'s.

disp('Done with gamma=e.3!')

%Images from Gamma correction with Gamma=08.8

NL_exp_res3@ = imageDatastore( D:\AIMAQMATIKH\Experiments Results\Classical Methods ValidstionImsges\3.@\Gamma correction)\gammz 85
NL_exp_res35 = imageDatastore('D:\AIMAOMATIKH\Experiments Results\Classical !
NL_exp_resdd = imageDatastore( D:\AIMAGMATIKH\Experiments ResultsiClassical !
NL_exp_res4S = imageDatastore( D:\AIMAGMATIKH\Experiments Results\Classical !
NL_exp_res5e = imageDatastore('D:\AIMAQMATIKH\Experiments Results\Classical Methods ValidstionImages\S.e\Gamma correction\gammz e

%assessment for 3.0 image dataset
metrics_arr3@ = assessment(NL_images3@,NL_exp_res38);
%assessment for 3.5 image dataset
metrics_arr35 = assessment(NL_images35,NL_exp_res35);

¥assessment for 4.0 image dataset

e)
5)
sheet’,'s.0");
5)
@)

Sheet®,'4.5");

ethods_ValidationImages'

metrics_arrdl@ = assessment(NL_images4@,NL_exp_res4@);

Xassessment for 4.5 image dataset

metrics_arrd5 = assessment(NL_imagesd5,NL_exp_res45);

Xassessment for 5.0 image dataset

metrics_arr5@ = assessment(NL_images5@,NL_exp_res5@);

%columns titles

var_names = {"MSE', 'PSNR','S5IM', W', 5TD

%convert the matrices to tables with column names

', BRISQUE', "NIQE'};

table3d = array2table(metrics_arr3s, 'Varisblellomes',var_names);

table3s = array2table(metrics_arr3s, 'Varisblellomes',var_names);

tabledd = srray2table(metrics_arrd®, 'Varisblellames®,var_names);
table45 = array2table(metrics_arr4s, 'VarisbleNames',var_names);
table5@ = array2table(metrics_arr5@, 'VarisbleNames®,var_names);

¥saving the results to an excel file

writetable(table3@, "Gammads_sssessment_validation
writetable(table35, "Gammads_assessment_validation
writetable(tabled@, 'Gammads_sssessment_validation.
writetable(tabled5, Gammads_sssessment validation.

writetable(tableS, 'Gamma®s_sssessment validation
disp('Done with gamma=0.8!")
disp('Done with validation Images!')

oxlsx', 'Sheet','s.

xlsx', "Sheet’,'3.2")
Sheet’,'32.5")
Sheet','4.8");
5"
2')

xlsx'
xlsx'

xlsx', 'Sheet', 4.

% TEST IMAGES
P
disp('Working with Test Images...')

%Ground Truth images

ML_images3@ = imageDatastore( D:\AINAQMATIKHATEST
NL_images35 = imageDatastore( D:\AIMAQMATIKHATEST
NL_images4@ = imageDatastore( D:\AIMAOMATIKHATEST
NL_images45 = imageDatastore( D:\AIMAOMATIKHATEST
ML_images5@ = imageDatastore( D:\AIMAOMATIKHATEST

%Images from Gamma correction with Gamma=8.1

NL_exp_res3® = imsgeDatastore('D:\AIMAMMATIKH\Experiments
NL_exp_res35 = imageDatastore('D:\AIMAOMATIKH\Experiments

IMAGES\3.@\NL-3.2");
IMAGES\3.54NL-3.5");
IMAGES\4.@\NL-2.2");
IMAGES\4.5\NL-4.5");
IMAGESAS.@\NL-5.2" )3

Results\Classical| Methods_TestImages\3.8\Gamma

ResultsiClassical| Methods_TestImages\3.5\Gamma

ethods_ValidationImages\4.8\Gamma correction’igamma_832
ResultsiClassical Methods_ValidationImsges\4.5\Gamma correction)\gamma_93'

S\Gamma correction'\gamma @8

)
)
ethods_ValidstionImages\4.8\Gamma correction\gamms_03');
ethods_ValidstionImages\4.5\Gamma correction\gamma_25')

)

ML_exp_res4@ = imageDatastore( 'D:\AINAQMATIKH\Experiments

NL_exp_res45
NL_exp_ress@

= imageDatastore( 'D: \AINAQMATIKH\Experiments
= imageDatastore( 'D:\AINAOMATIKH\Experiments

—

ResultsWClassical Metheds TestImages\4.2\Gamma
ResultsiClassical Metheods TestImage:
ResultsiClsssical Methods_TestImages\5.0\Gamma

\4.5\Gamma

RE

s
bi

"

correction\gamma_61');
carrectionigamma_81');
correction\gamms_@1');
correction\gamms_@1');
correctiontgammz_81');
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264
265
266
267

269
278
271
272
273
274
275
276
277
278
279
288

282
283

285
286
287
288
289
298
201
292
293
204
295
296
297
298
299
3ee
3ol
382
3e3

3e5
306

388

3e8
389
318
311
312
255
314
315
316
317
318
319
328
321
322
Iz
324
325
326
327
328
329
33@
331
332
333
334
335
336
337
338
339
34a
341
342
342
344
345
346

%assessment for 3.8 image dataset

metrics_arr3® = assessment(NL_images38,NL_exp_res38);

%assessment for 3.5

metrics_arr3S = assessment(NL_images35,NL_exp_res35);

image dataset

Xassessment for 4.2 image dataset

metrics_arr4® = assessment(NL_images4@,NL_exp_res4@);

¥assessment for 4.5

metrics_arrd5 = assessment{NL_images45,HL_exp_resd5);

image dataset

¥assessment for 5.9 image dataset

metrics_arr5® = assessment{NL_images5@,HL_exp_res5@);

%columns titles
var_names = {'MSE',

%convert the matrices to tables with column names
table3® = array2table(metrics_arr3e,
table3s = array2table(metrics_arr3s,
table4® = array2table(metrics_arr4e,
table4s = array2table(metrics_arr4s,
tables@ = array2table(metrics_arrse,

'PSHR',SSIM', 'MV', STD', 'BRISQUE', 'NIQE'};

¥saving the results to an excel file

writetable(table3e,
writetable(table3s,
writetable(tablesd,
writetable(tabless,
writetable(table5a,

‘Gamma@l_sssessment_test.
‘Gamma@l_assessment_test.
‘Gamma®l_sssessment_test.
‘Gamma®l_assessment_test.
‘Gamma®l_sssessment test.

disp('Done with gamma=0.11")

XImages from Gamma correction with Gamma=8.3

NL_exp_res3@ = imageDatastore('D:\AINAQMATIKH\Experiments
NL_exp_res35 = imageDatastore('D:\AINAQMATIKH\Experiments
NL_exp_res4@ = imageDatastore('D:\AINAGMATIKH\Experiments
NL_exp_res45 = imageDatastore('D:\AINAGMATIKH\Experiments
NL_exp_res5@ = imageDatastore('D:‘\AINAGMATIKH\Experimsnts

%assessment for 3.8 image dataset

metrics_arr3® = assessment(NL_images38,NL_exp_res38);

%assessment for 3.5 image dataset

metrics_arr3S = assessment(NL_images35,NL_exp_res35);

Xassessment for 4.2 image dataset

metrics_arr4® = assessment(NL_images4@,NL_exp_res4@);

¥assessment for 4.5 image dataset

metrics_arrd5 = assessment{NL_imagesd5,NL_exp_res45);

metrics_arrdS = assessment{NL_images45,NL_exp_res45);

%assessment for 5.8 image dataset

metrics_arr5@ = assessment({NL_images5@,NL_exp_resS@);

%columns titles

var_names = {'MSE','PSNR','SSIM','MV','STD', 'BRISQUE', 'NIQE'};

Xconvert the matrices to tables with column names
table3® = array2table(metrics_arr3e,
table35 = array2table(metrics_arr3s,
tabledd = srray2table(metrics_arrda,
tableas = array2table(metrics_arrds,
table5@ = array2table(metrics_arrse,

¥saving the results to an excel fil

n

‘wariablelames®,var_names
‘VariableMames®,var_names
‘VarisbleMNames®,var_names
‘VariableNames',var_names
‘VarisbleNames',var_names

ResultsiClassical Methods_TestImages\3.@\Gamma
RezultsiClassical Methods_TestImsges\3.5\Gamma
thods_TestImages\4.2\Gamma
ResultsiClassical Methods_TestImages\4.5\Gamma
Results\Classical Methods_TestImages\5.@\Gamma

‘VariazbleNames',var_names);
‘VariableNames',var_names);
‘VariableNames',var_names);
‘VariableNsmes',var_names);
‘VariableMames',var_names);

writetable(table3@, 'Gamma@3_sssessment_test.xlsx', 'Sheet’,’
writetable(table3s, GammaB3_sssessment_test.xlsx','Sheet’,’

writetable(table4o, 'Gamma®3_ass

ssment_test.xlsx', 'Sheet’,

writetable(table4s, 'Gammad2_sssessment_test.xlsx', 'Sheet’,’
writetable(table5d, Gammal3_sssessment_test.xlsx','Sheet’,’

disp('Done with gamma=6.3!")

%Images from Gamma correction with Gamma=@.8

NL_exp_res3@ = imageDatastore('D: \AIMAOMATIKH\Experiments
NL_exp_res35 = imageDatastore('D:\AIMAOMATIKH\Experiments
NL_exp_res4@ = imageDatastore('D:\AIMAOMATIKH\Experiments
HL_exp_res45 = imageDatastore( 'D: \AIMAQMATIKH\Experiments
NL_exp res5@ = imageDatastore( ' D:\AINAQMATIKH\Experiments

%assessment for 3.8 image dataset

metrics_arr3@ = assessment(NL_images3@,NL_exp_res3@);

Xassessment for 3.5 image dataset

metrics_arr35S = assessment{NL_images35,NL_exp_res35);

%assessment for 4.0 image dotaset

metrics_arrd@ = assessment(NL_images4@,NL_exp_res4@);

%assessment for 4.5 image dataset

metrics_arrd5 = assessment{NL_imsges45,ML_exp_resd5);

Xassessment for 5.0 image dataset

metrics_arr50 = assessment(NL_imagesS@,NL_exp_ressS@);

thods_TestImages\3
Results\Classical Methods_TestImages\3
Results\Classical Methods_TestImages\4
thods TestImages\4.5\Gamma
Results\Classical Methods TestImages\5.@\Gamma

correction\gamma_83');
correctiongamma_83');
correctiongamma_83');
correctionigamma_83');
correctiongamma_83');

correctiongammz_88");
correction\gamma_88");
correction\gamma_o8");
correctiongamma_88");
correctionigamma_@8'});

—
| S—
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344 metrics_arrdS = sssessment(NL_images45,NL_exp_resd5);

345 ¥assessment for 5.2 image dataset

346 metrics_arr5@ = assessment(NL_imsges5@,NL_exp_res5@);

347

343 Zcolumns titles

349 var_names = {'MSE', PSNR', SSIM','MV', STD', 'BRISQUE', 'NIQE'};
3Lta

351 ¥convert the matrices to tables with column names

352 table3® = array2table(metrics_arr3@, 'VarisbleNames',var_names);
353 table35 = array2table(metrics_arr35, 'VarisbleMNamss',var_names);
354 tabledd = array2table(metrics_arr4@, 'VarisbleMNamss',var_names);
355 tabled45 = array2table(metrics_arr4s, 'VarizbleNames',var_names);
356 table5@ = array2table(metrics_arr5@, 'VarizbleNames',var_names);
357

358 ¥saving the results to an excel file

359 writetable(table3@, 'Gamma®8_assessment_test.xlsx','Sheet’,’3.@");
360 writetable(table35, "Gamma®8_assessment_test.xlsx','Sheet’,'3.5");
361 writetable(tabledd, "Gamma®5_sassessment_test.xlsx', 'Sheet’,'4.8");
362 writetable(tabled5, "Gamma®s_sassessment_test.xlsx', 'Sheet’,'4.5");
363 writetable(table5@, "Gamma®s_assessment_test.xlsx', 'Sheet’,'5.2");
364 disp('Done with gammz=8.3!")

365 disp('Done with Test Imeges!")

366 disp({'Done! ")}

367 toc

Figure B.2.8: Assessment script for Gamma correction algorithm

As in the case of the linear transformation, we read the ground truth images
as well as the results of the experiments, using Image Datastores, and apply
the assessment function, which we described in the chapter 1. This process
i1s done 3 times, once for each value of the correction constant, and we
repeat it for the validation and test sets as well. We save the results in excel
files, which we will use for the summarization.

Log Correction

The function with which we implement the logarithmic transformation is
shown in figure B.2.9, which follows below. This function takes as input
the LL image and the value of the constant c. First, it converts the data type
of each pixel value to double, so that we can do arithmetic operations
freely, and divides by 255 so that the values of each pixel are in the range
[0,1]. Then we apply the logarithmic function, as presented in chapter 2,
and multiply the result by 255, so that the values are in the range [0.255].
Finally, we convert the result to data type uint8, since we want to return an
image, and not a simple matrix of values.
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1 function NL_image = log_correction(LL_image,control_parameter)

2

3 ¥===================sss=ssssssssssssssssssosossoososSooSSSSoSSSSSoSSSSososo=s
4 % Function that implements the Log correction algorithm. It takes as

5 % input the Low Light image and the value of the control parameter and

& ¥ outputs the image after applying log correction.

7 ¥ Author: Panagiotis Koutsaftis aivc21@1@

8 e e e e et
9
18 ¥converting to double needed for operations
11 LL_image = double(LL_image);
12
13 ¥normalizing the image values before applying log function
14 norm_LL = LL image./255;
15
16 #%applying the log correction function
17 ML_image = {logl®{norm_LL.*control_parameter+l)).*255;
18
19 #converting back to uint8 cause we need to return an image
28 NL_image = uint8(NL_image);|

Figure B.2.9: Implementation of the log correction algorithm

We will apply this function to all LL images, for each darkness level, which
is done by applying the scripts shown in images B.2.10 and B.2.11. As we
can see, each script reads the images for the darkness level we are
interested in, using the image datastores of MATLAB. It then counts the
number of images contained in the dataset, which is used to loop over those
images. Inside the loop we read the respective LL Image of the datastore,
apply the log correction function and save the result in a suitable folder.
We apply this loop 3 times, once for each value of the parameter. In
addition, we execute these scripts 5 times, once for each darkness level
case, uncommenting each time the path of the darkness level we are
interested in.
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close all; clear; clc; format compact;

1
2
3
4 #loading the data

5 HLL_images = imageDatastore('D:\AIMAQMATIKH\TRAINING IMAGES\2.5\LL-2.5");
6 ¥LL_images = imageDatastore('D:\AINADMATIKH\TRAINING IMAGES\3.@\LL-3.8');
7 HLL_images = imageDatastore('D:\AINADMATIKH\TRAINING IMAGES\3.5\LL-3.5');
8 HLL_images = imageDatastore('D:\AIMAQMATIKH\TRAINING IMAGES\4.@\LL-4.8");
a

%LL_images = imageDatastore('D:\AINAQMATIKH\TRAINING IMAGES\4.5\LL-4.5");
10 LL_images = imageDatastore('D:\AIMAQMATIKH\TRAINING IMAGES\5.04LL-5.0");
11
12 %size of the dataset
13 files = size(LL_images.Files);
14 numOfImages = files(1);
15
16 %applying Logarithmic Transformation with control parameter = 1
17 for index=1:numOfImages
18 LL_img = readimage(LL_images,index);
19 image_name = char(LL_images.Files(index});
28 %HL_img = readimage(NL_images,index);
21 NL_log = log_correction(LL_img,1);
22 %file_psth = ['D:\AINAQMATIKH\Experiments Results\Classical Methods\2.5\Log correction\control_1\',image_name((end-8): (end-4))," .png'1;
23 %file_path = ['D:\AINMAQMATIKH\Experiments Results\Classical Methods\3.@\Log correction\control_1\',image_name((end-8): (end-4))," .png'];
24 %file_path = ['D:\AINAOMATIKH\Experiments Results\Classical Methods\3.5\Log correction\control_1\",image_name((end-8): (end-4)},".png'];
25 %file psth = ['D:\AIMAQMATIKH\Experiments Results\Classical Methods\4.8\Log correction\control 1\',image_name((end-8):(end-4))," .png'];
26 %file_path = ['D:\AINMAQMATIKH\Experiments Results\Classical Methods\4.5\Log correction\control_1\',image_name((end-8): (end-4))," .png'];
27 file_path = ['D:\AINAQMATIKH\Experiments Results\Classical Metheds\5.@\Log correction\control_1\',image_name((end-8):(end-4)), " .png"1;
28 imwrite(NL_log,file path};
29 end
3e
31 %spplying Logarithmic Transformation with control parameter = 10
32 for index=1:numOfImages
33 LL_img = readimage{LL_imsges,index);
34 image_nsme = char(LL_images.Files(index});
35 %NL_img = readimage(NL_images,index);
26 NL_log = log_correction(LL_img,18);
37 %file path = ['D:\AIMAQMATIKH\Experiments Results\Classical Methods\2.5\Log correction\control _1@\',image name((end-8): prg'1;
38 %file_path = ['D:\AIMAQMATIKH\Experiments Results\Classical Methods\3.@\Log correction\control_1@\',image_name((end-8): *png'ls
39 %file_path = ['D:\AINADMATIKH\Experiments Results\Classical Methods\3.5\Log correction\control_1@\',image name((end-8): .png'l;
48 %file_path = ['D:\AIMAQMATIKH\Experiments Results\Classical Methods\4.@\Log correction\control_1@\',image name((end-8): png'1;
a1 %file_path = ['D:\AIMAQMATIKH\Experiments Results\Classical Methods\4.5\Log correction\control_1@\',image_name((end-8): prg’1s
42 file_path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods\5.8\log correction\control_1@\',image_name((end-8): (end-4)),"'.png'];
a3 imwrite(NL_log,file_path};
a4 end
a5
4L
46 %applying Logarithmic Trensformation with centrol parameter = 5@
47 for index=1:numOfImages
a8 LL_img = readimage(Ll_imsges,index);
49 image_name = char(LL_images.Files(index));
3] ¥NL_img = readimage(NL_images, index);
51 NL_log = log_correction(LL_img,58);
52 %file_path = ['D:\AINAOMATIKH\Experiments Results\Classical Methods\2.5\Log correction’control_56\',image_name((end-8):(end-2)), .png'];
53 %file_path = ['D:\AINAGMATIKH\Experiments Results\Classical Methods\3.@\Log correction\control 5@\',image_name((end-8):(end-2))," .png'];
£4 %file_path = ['D:\AIMAOMATIKH\Experiments Results\Classical Methods\3.5\Log correction\control_50\',image_name((end-8):(end-4)), .png’];
55 %file_path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods\4.@\Log correction\control 5@\',image_name((end-8):(end-2))," .png'];
56 %file_path = ['D:\AIMAOMATIKH\Experiments Results\Classical Methods\4.5\Log correction\control_50\',image_name((end-8):(end-4)), .png’];
57 file_path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods\5.@\leg correction\contrel_5@\',image_name{(end-8):(end-4))," .png'];
g imerite(NL_log,file_path);
59 end

Figure B.2.10: script for applying log correction to training dataset per darkness level




klose a11; clear; clc; format compact;

% VALIDATION IMAGES

%reading the Low Light Data (VALIDATION)

%LL_images = imageDatastore('D:\AINAQMATIKH\VALIDATION IMAGES\3.e\LL-3.8");
%LL_images = imageDatastore('D: \ATNAQMATIKH\VALIDATION IMAGES\3.5\LL-3.5');
%LL_images = imageDatastore('D:\ATNAOMATIKH\VALTDATION IMAGES\4.8\LL-4.8');
%LL_images = imageDatastore('D:\AINAQMATIKH\VALIDATION IMAGES\4.5\LL-4.5');
LL_images = imageDatastore('D:\ATMAQMATIKH\VALIDATION TMAGES\S.@\LL-5.8");

%size of the dataset
files = size(LL_images.Files);
numOfImages = files(1);

disp('Working on validation images...')
%applying Gamma Transformation with gamma = @.1
for index=1:numOfInages
LL_img = readimage(LL_images,index);
image_name = char (LL_images.Files(index));
%NL_img = readimage(NL_images,index);
NL_gam = gamma_correction(LL_img,8.1);

%file path = [ 'D:\AIMAOMATIKH\Experiments Results\Classical Methods ValidationImages\3.0\Gamma correction\gamma_81\",image_name((end-8):(end-4)),.png'l;
%file_path = ['D:\AIMAOMATIKH\Experiments Results\Classical Methods_ValidationImages\3.5\Gamma correction\gamma_@1\',image_name((end-8):(end-4))," .png'];
%file path = ['D:\AIMAOMATIKH\Experiments Results\Classical Methods ValidationImages\4.@\Gamma correction\gamma_81\",image name((end-8):(end-4)),".png'l;
%file_path = ['D:\AINAOMATIKH\Experiments Results\Classical Methods_ValidationImages\4.5\Ganma correction\gamma_@1\",image_name((end-8):(end-4)),".png"'];

file_path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods ValidationImages\5.8\Gamma correction\gamma @1\",image_name((end-8):(end-4)),".png" 15

imwrite(NL_gam,file_path);
end
disp('Done with gamma=8.1!")

%applying Gamma Transformation with gamma = @.3

for index=1:numOfInages
LL_img = readimage(LL_images,index);
image_name = char (LL_images.Files(index));
%NL_img = readimage(NL_images,index);
NL_gam = gamma_correction(LL_img,8.3);

%file path = ['D:\AIMAOMATIKH\Experiments Results\Classical Methods ValidationImages\3.@\Gamma correction\gamma_83\",image name((end-8):(end-4)),".png'l;
%file_path = ['D:\AINMAOMATIKH\Experiments Results\Classical Methods_ValidationImages\3.5\Gamma correction\gamma_@3\',image_name((end-8):(end-4))," .png'];
%file path = ['D:\AIMAOMATIKH\Experiments Results\Classical Methods ValidationImages\4.@\Gamma correction\gamma_83\",image name((end-8):(end-4)),".png'l;
%file_path = ['D:\AINAOMATIKH\Experiments Results\Classical Methods_ValidationImages\4.5\Ganma correction\gamma_@3\',image_name((end-8):(end-4)),".png"'];

file_path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods ValidationImages\5.8\Gamma correction\gamma @3\",image_name((end-8):(end-4)),".png" 15

imwrite(NL_gam,file_path);
end

disp('Done with gamma=e.3!")

%applying Gamma Transformation with gamma = 0.8
for index=

tnumOfImages
LL_img = readimage(LL_images,index);
image name = char(LL_images.Files(index));

%NL_img = readimage(NL_images, index);
NL_gam = gamma_correction(LL_img,8.8);

%file_psth = ['D:\AINAGMATIKH\Experiments Results\Classical Methods_ValidationImages\3.e\Gamma correction\gamma_8\',image_name((end-8):(end-4)), .png'];
%file_path = ['D:\AINAGMATIKH\Experiments Results\Classical Methods_ValidationImages\3.5\Gamma correction\gamma_88\',image_name((end-8):(end-4)), .png'l;
%file_path = ['D:\AINAGMATIKH\Experiments Results\Classical Methods_ValidationImages\4.@\Gamma correction\gamma_88\',image_name((end-8):(end-4)), .png'l;
%file_path = ['D:\AINAGMATIKH\Experiments Results\Classical Methods_ValidationImages\4.5\Gamma correction\gamma_88\',image_name((end-8):(end-4)), .png'];

file_path = ['D:\AINAOMATIKH\Experiments Results\Classical Methods_ValidationImages\5.@\Gamma correction\gamma_@s\', image_name((end-8):(end-4))," .png'];

imwrite(NL_gam,file_path);
end
disp(’Done with gamma=6.8!")
disp('Done with validation images!')

% TEST IMAGES

%reading the Low Light Data (TEST)

%LL images = imageDatastore('D:\AIMAQMATIKH\TEST IMAGES\3.@\LL-3.2');
%LL_images = imageDatastore('D:\AIMAQMATIKH\TEST IMAGES\3.5\LL-3.5');
%LL_images = imageDatastore('D:\AIMAOMATIKH\TEST IMAGES\4.@\LL-4.8");
%LL_images = imageDatastore('D:\AIMAQMATIKH\TEST IMAGES\4.5\LL-4.5");

LL_images = imageDatastore( 'D:\AIMAOMATIKH\TEST IMAGES\5.8\LL-5.8");

%size of the dataset
files = size(LL_images.Files);
numOfImages = files(1);

disp('Working on Test images...")

%applying Gamma Transformstion with gamma = 0.1

for index=1:numofImages
L
image_name = char(LL_images.Files(index}));

_img = readimsge(LL_imsges,index);

¥NL_img = readimage(NL_images,index);

NL_gam = gamma_correction(LL img,8.1);
%file_path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods_TestImages\3.@\Gamms

%file_path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods_TestImages\3.5\Gamma
%file path = ['D:\AIMAOMATIKH\Experiments Results\Classical Methods TestImages\4.@\Gamma
%file path = ['D:\AIMAQMATIKH\Experiments Results\Classical Methods TestImages\4.5\Gamma

correction\gamma_e1\",image_name({end-8):(end-4)), .png'];
correction\gamma_01\',image_name((end-8): (end-4)), ' .png'I;
correction\gamma_81\",image_name((end-8):(end-4))," .png'];
correction\gamma_81\",image_name((end-8):(end-4)), .png'];

file_path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods TestImages\S.8\Gamma correctionigamma_81%',image_name((end-8):(end-4)), .ong’1;

imerite(NL_gsm,file_psth);
end

disp('Done with gamms=0.1

%applying Gamma Transformation with gamma = 0.3
for index=1:numOfImages
LL_img = readimage(LL_images,index);
image_name = char(LL_images.Files{index));
¥NL_img = readimage(HL_images,index);

NL_gam = gamma_correction(LL_img,8.3);
%file path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods TestImages\3.@\Gamma

%file path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods TestImages\3.5\Gamma
%file_path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods_TestImages\4.@\Gamma
%file_path = ['D:\AIMAOMATIKH\Experiments Results\Classical Methods_TestImages\4.S\Gamma

correction\gamma_83\",image_name((end-8): (end-4)), .png'];
correction\gamma_03\',image_name((end-8): (end-4)), .png'1;
correction\gamma_g3\",image_name({end-8):(end-4)), .png'];
correction\gamma_g3\",image_name((end-8):(end-4))," .png'];

file_path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods_TestImages\S.@\Gamma correction\gamma_83\',image_name((end-8):(end-4))," .png’1;

imerite(NL_gam,file_path);
end
disp('Done with gamma=g.31")




119
111
112
113
114
115
116
117
118
119
128
121
122
123 e
124 di
125 di.
126 di.

png

png
)»"png!

png

ng'1;

Figure B.2.11: script for applying log correction to test dataset per darkness level

After this process is completed, we will have the experimental results
available. Based on these we will evaluate the performance of the method,
which 1s done by applying the script shown in figure B.2.12. We read the
ground truth images and experimental results, using Image Datastores, and
apply the assessment function. The results of the function are saved in an
excel file, with an appropriate name, which has a sheet for each darkness
level. This procedure is applied for each value of the control constant, and
for each set (training, validation and test), so at the end we will have 9 excel
files that we can work with.
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TRAINING IMAGES

disp{'Working on Training Images...')

¥Ground Truth
NL_images3d =
NL_images35 =
NL_images4@ =
ML_images4s =
NL_imagesse =

¥Images from
HL_exp_res3@ =
ML_exp_res35 =
NL_exp_resdd =
HNL_exp_res45 =
HL_exp_res5@ =

¥assessment for
metrics_arr3@ =
¥assessment for
metrics_arr3s =
¥assessment for
metrics_arr4e =
¥assessment for
metrics_arrds =
¥assessment for
metrics_arrse =

images

¥columns titles

var_names = {"MSE', 'PSNR",'S5IM',"'MV",'STD

imageDatastore('D: \AINAOMATIKH\TRAINING
imageDatastore (" D: WATMAOMATIKHATRAINING
imageDatastore( " D: WAINAOMATIKH\TRAINING
imageDatastore( D: WAIMAOMATIKH\TRAINING
imageDatastore( " D: WAINAOMATIKH\TRAINING

Log correction with control=1
imageDatastore( 'D: WATMAOMATIKH Experiments
imageDatastore( 'D: \AIMAOMATIKH\Experiments
imzgeDatastore('D: \AIMADMATIKH\Experiments
imageDatastore( 'D: \AIMAQMATIKH\Experiments
imageDatastore( 'D: WAIMNAQMATIKHExperiments

3.2 image dataset
assessment(NL_images3@,NL_exp_res3a@);
3.5 image dataset
assessment(NL_images35,ML_exp_res35);
4.8 image dataset
assessment(NL_images4@,NL_exp_res4@);
4.5 image dataset
assessment{NL_images45,ML_exp_res45);
5.0 image dataset
assessment{NL_images5@,NL_exp_res5@);

¥convert the matrices to tables with column names

table3d =
table3s =
tabledd =
tableas =
tablese =

array2table(metrics_arr3e,
array2table(metrics_arr3s,
array2table({metrics_arr4e,
array2tsble(metrics_arr4s,
array2table(metrics_arrse,

¥saving the results to an excel file

writetable{table3a,
writetable(table3s,
writetable(tablede,
writetable{table4s,

'LOG_controll_assessment_training.
'LOG_controll_assessment_training
'LOG_controll_assessment_training
'LOG_controll_assessment_training
writetable(table5@, 'LOG_controll_assessment_trasining

disp('Done with control=1!")

STmsges From
NL_exp_res3@
NL_exp_res3s
NL_exp_res4@
NL_exp_res4s
NL_exp_ress@

¥assessment for 3.0 image dataset

metrics_arr3e
%assessment T
metrics_arr3s
Hassessment
metrics_arrd@
Xassessment
metrics_arrds
Hassessment f
metrics_arrse

%columns titl
var_names = {

'WariableMames®,var_names

)
)
'WariableMames',var_names);
‘WarizbleNames® ,var_names)
)

MAGESA3.
MAGES\3.

2');
505
IMAGES\4.8\NL-4.8');
ERVH
AV H

', "BRISQUE", 'NIQE'};

‘VariableNames' ,var_names);

H

H

‘WarizbleNames®,var_names);

wlsx', "Sheet’,
xlsw', "Sheet”,
#lsx', "Sheet”,
xlsx', "Sheet’,
xlsx', "Sheet’,

B\NL-3
5\NL-32

IMAGES 4.5 \NL-4.
IMAGES\5.8\NL-5.

Results'Classical Methods\3.8\log
ResultshClassical M
ResultshClassical Methods\4.08%Log
Results\Classical Methods'4.5%Log
Results'\Classical Methods\5.8%Log

'3.0');
EERY
"a.0');
Aty
'5.0');

ethods\3.5\Log

Log correction with
= imageDatastore( 'D:
= imageDatastore( 'D:
= imageDatastore( 'D:
= imageDatastore( 'D:
= imageDatastore( 'D:

control=1@

\ATMAOMATIKH\Experiments
\ATMAOMATIKH\Experiments
NATMAGMATIKHExperiments
NATMAGMATIKHExperiments
NAIMAQMATIKH\Experiments

= sssessment(NL_images30,ML_exp_res3@);

ar

3.5 image dataset

= assessment(NL_images35,ML_exp_res35);

or

4.0 image dataset

= sssessment(NL_images4@,NL_exp_res4d);

or

4.5 image dataset

= assessment(NL_images45,NL_exp_res45);

or

5.8 image dataset

= assessment(NL_imagesS@,NL_exp_ressa);

es

TMSE', PSNR®,'SSIM’,

M, 5TD

%convert the matrices to tables with column names

table3e =
table3s =
tabledd =
table4s =
tablese =

%saving the r
writetable(tal
writetable(tal
writetable(tal
writetable(tal
writetable(ta
disp('Done wi

%Images from
NL_exp_res3@
NL_exp_res3s
NL_exp_resd@
NL_exp_res4s
NL_exp_res5@

¥assessment for 3.9 image dataset
metrics_arr3@ = sssessment(NL_images30,NL_exp_res3@);

%assessment for 3.5 image dataset

metrics_arr3s

esults
ble3a,’
ble35, "
bleda,
bled5, "
blesa,
th contral-1e!')

Log correction with
= imageDatastore( 'D:
= imageDatastore( 'D:
= imageDatastore('D:
= imageDatastore( 'D:
= imageDatastore( 'D:

LOG_controlld_s
'LOG_controlla s

teo an excel file
LOG_controlld_as
LOG_controlle_s

control=5@

NAIMAQMATIKH\Experiments
NAIMAQMATIKH\Experiments
NAIMAQMATIKHExperiments
NAIMAQMATIKHExperiments
NAIMAQMATIKHExperiments

= assessment(NL_images35,NL_exp_res35);

—

sessment_training.xlsx”
szessment_treining.xlsx’
"LOG_controll® _sssessment_training.xlsx”
ssessment_training.xlsx’
ssessment_training.xlsx','Sheet','s.

Results\Classica

Results\Classical
Results\Classical Methods\4.8\Llog
Results\Classical Methods\4.5\Llog
Results\Classical Methods\5.@\Llog

', UBRISQUE', "NIQE'};

srray2table(metrics_arr30, 'VarisbleNames',var_names);
srray2table(metrics_arr35, 'VarisbleNames',var_names);
srray2table(metrics_arrae, Varisblelames',var_names);
srray2table(metrics_arras, 'VariableNames',var_names);
array2table(metrics_arrse, VariableNames',var_names);

Results\Classical Methods\3.@\Llog
Results\Classical Methods\3.5\Log
ResultsiClsssical Methods\4.@\Log
ResultsiClassical Methods\4.5\Log
ResultsiClsssical Methods\5.@\Log

467

Methods)\3.@%Log
ethods\3.5%Log

correctionlcontrol_1@');
correction\control_1@');
correction\control_1@');
correction\control_1@');
correction\control_1@');

correction\control_5@');
correction\control_5@');
carrectionlcontrol_58');
correction\control_58°);
correctionicontrol_5@°);

'

correctioncontrol_1');
correction\control_1');
correction\control_1');
correction\control_1');
correctionicontrol_1');



99
lee
1e1
1e2
1e3
104
1e5
106
1e7
1e8
1e9
11e
111
112
113
114
115
116
117
118
119
12e
121
122
123
124
125
126
127
128
129
13e
131
132
133
134
135
136
137
138
138
148
141
142
143
144
146
147
148
149
15@
151
152
153
154
155
156
157
158
159
168
161
162
163
164
165
166
167
168
169
178
171
172
173
174
175
176
177
178
179
18@
181
182
183
184

186
187
188
189

%assessment for
metrics_arrd@ =
%assessment for
metrics_arrds =
%assessment for
metrics_arrSe =

%columns titles
var_names = {'M

%convert the ma
table3@ = array
table35 = array
table4? = array
table45 = array
table5@ = array

Xsaving the res
writetable(tabl
writetable(tabl
writetable(tabl
writetable(tabl
writetable(tabl
disp('Done with
disp('Done with

P

4.2 image dataset
assessment(NL_images4@,NL_exp_resda);
4.5 image dataset
assessment(NL_images45,NL_exp_res4S);
5.0 image dataset
assessment(NL_imagesSa,NL_exp_ressa);

SE*,"PSNR',SSIM', 'MV',"STD

trices to tables with column names

', "BRISQUE", "NIQE'};

2table(metrics_arr3@, 'VarizbleNames',var_names);
2table(metrics_arr35, 'VarizbleNames',var_names);
2table(metrics_arrd@, 'VarizbleNames',var_names);
2table(metrics_arr45, 'VarizbleNames',var_names);
2table(metrics_arr5@, 'VarizbleNames',var_names);

ults to an excel file

e3@, "LOG_controlS@_sssessment_training.xlsx','Sheet’,’3.0
e35, "LOG_controlS@_sssessment_training.xlsx', 'Sheet’,’3.5
248, "LOG_controlS@_sssessment_training.xlsx', 'Sheet’, 4.0
245, "LOG_controlS@_sssessment_training.xlsx', 'Sheet’, 4.5
e5@, "LOG_controlS@_sssessment_training.xlsx','Sheet’,’'5.0

control=5a!"})
Training Images!’)

)
)
)
)
)

%

P

VALIDATION IMAGES

disp( 'Working w

%Ground Truth i
NL_images3@ = i
NL_images35 = i
NL_images4o = i
NL_images45 = i
NL_imagess@ = i

#Images from Lo
NL_exp_res3@ =
NL_exp_res3s =
NL_sxp_resde =
NL_exp_resds =
NL_exp_res5e =

¥assessment for
metrics_arri@ =

ith validation Images...")
mages

mageDatastore(’
mageDatastore( D:
mageDatastore(’
mageDatastore(’
mageDatastore( D:

NAINAMMATIKHYWALIDATION
VAIMAOMATIKHYWALIDATION
AINAOMATIKHYWALIDATION
AINAOMATIKHYWALIDATION
VAIMAOMATIKHYWALIDATION

g correction with control=1

imageDatastore( ' D:\AINAGMATIKH\Experiments
imageDatastore( ' D:\AINAGMATIKH\Experiments
imageDatastore( ' D:\AINAGMATIKH\Experiments
imageDatastore( ' D:\AINAGMATIKH\Experiments
imageDatastore( ' D:\AINAGMATIKH\Experiments

3.9 image dataset
assessment(ML_images3@,NL_exp_res3@);

IMAGESY3.@\NL-3.2");
IMAGESY3.5\NL-3.5" )3
IMAGES'4.@\NL-4.2" )5
IMAGESY4.5\NL-4.5" )3
IMAGESY5.@\NL-5.2" )5

ResultsiClassical Methods_ValidationImages\2
ResultsiClassical Methods_ValidationImages\2
ResultsiClassical Methods_ValidationImagesi4
ResultsiClassical Methods_ValidationImagesi4
ResultsiClassical Methods_ValidationImages\5

.@\log
.S\log
.@\log
.S\log
.@\log

Xassessment for 3.5 image dataset
metrics_arr3ds =

%assessment for 4.8 image dotaset

sssessment(NL_images3S,NL_exp_res35);

metrics_orrd® = assessment(NL_images4,NL_exp_res48);

Xassessment for 4.5 image dataset
metrics_arrds =
¥assessment for 5.8 image dataset

assessment(NL_images45,NL_exp_res45);

metrics_arr5e =

%columns titles

[

var_names =

%convert the ma

table3@ = array
table3s = array
table4® = array
tabledS = array
tableS@ = array

Xsaving the res

assessment(NL_images5@,NL_exp_res50);

SE', "PSNR',*SSIM', "MV', 'STD', 'BRISQUE", "NIQE'};

trices to tables with column names

2table(metrics_arr3e, 'VarizbleNames ' ,var_names);
2table(metrics_arr3s, 'VariszbleNames ' ,var_names);
2table(metrics_arr4@, 'VariableNames',var_names);
2table(metrics arrd5, 'Varisblelames’,var _names);

2table(metrics_arr5@, 'Variablelames',var_names);

ults to an excel file

writetable(table3@, 'LOG_controll_assessment_validation.xlsx’, 'Sheet','3.2");
writetable(table35, 'LOG_controll_assessment_validation.xlsx’, 'Sheet','3.5");
writetable(table4@, 'LOG_controll_assessment_validation.xlsx', 'Sheet','4.2");
writetable(table45, LOG_controll_assessment_validation.xlsx', 'Sheet','4.5");
writetable(tableS@, 'LOG_controll assessment_validation.xlsx','sSheet','s.8')}

disp('Done with

¥Images from Lo
NL_exp_res3@ =
NL_exp_res35s =
NL_exp_res4@ =
NL_exp_res45 =
NL_exp_res58 =

%assessment for
metrics_arrie =
¥assessment for
metrics_arr3s =
%assessment for
metrics_arr4@ =
Xassessment for
metrics_arr4s =
%assessment for
metrics_arr5e =

contral=1!")

g correction with control=1@

imageDatastore( ' D: \AIMAOMATIKH\Experiments
imageDatastore( ' D: \AINADMATIKH\Experiments
imageDatastore( ' D: \AINADMATIKH\Experiments
imageDatastore( 'D: \AIMAQMATIKH Experiments
imageDatastore( 'D: \ATMAOMATIKHY Experiments

3.2 image dataset
assessment(NL_images3@,NL_exp_res3@);
3.5 image dataset
assessment(NL_images35,NL_exp_res35);
4.8 image dataset
sssessment(NL_imagesad,NL_exp_res4d);
4.5 image dataset
assessment(NL_images45,NL_exp_resd5);
5.2 image dataset
assessment(NL_images5@,NL_exp_res5@);

—
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4.

Results\Classical) Methods_validstionImages\3.2%\Log
Results\Classical| Methods_ValidstionImages\3.5\Log
ResultsiClassical| Methods ValidationImag:
Results\Classical| Methods ValidstionImages\4.5\Log

2\Log

Results\Clsssical| Methods ValidstionImages\5.8\Log

correctionicontrol_1');
correctionicontrol_1');
correctionicontrol_1');
}H
}H

correctiontcontrol_1°
correctiontcontrol_1°

correctionicontrol_1@');
correctioni\control_1@');
correction\contrel_10');
correction\control_18');
correction\control_18');

'



191
192
193
194
195
196
197
198
199
200
201
2@2
2e3
284
285
206
207
288
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
238
231
232
233
234
235
236
237

238
239
248
241
242
243
244
245
246
247
248
249
258
251
252
253
254
255
256
257
258
259
268
261
262
263
264
265
266
267
268
269
278
271
272
273
274
275
276
277
278
279
288
281
282
283
284

¥columns titles
var_names = {'MSE','PSNR",'SSIM®, MV", 'STD

¥convert the matrices to tables with column names

table3e

', "BRISQUE", 'NIQE'};

array2table(metrics_arr3@, 'Variableliames',var_names);

table35 = array2table(metrics_arr35, 'VariableNames ' ,var_names);
table4® = array2table(metrics_arr4@, 'VariableNames',var_names);
tablea5 = array2table(metrics_arras,'Variablelames',var_names);

table5e

¥%saving the results to an excel file

writetable(table3@, 'LOG_controlld_sssessment_validation.xlsx', "Sheet’,"3.
writetable(table3s, 'LOG_controlld_sssessment_vslidation.xlsx','sheet’,'3.
writetable(tabled@, 'LOG_controlld _sssessment_validation.xlsx' 4.
writetable(table45, 'LOG_controll®_sssessment_validation.xlsx','Sheet’,'4.
writetable(tables@, 'LOG_controlld_assessment_validation.xlsx', 'Sheet','s

disp('Done with control=18!"})

%Imoges from Log correction with control=5@

NL_exp_res3@ = imageDatastore('D: \AINAGMATIKH\Experiments
'D: VAINADMATIKH ) Experiments
"D NAIMAOMATIKH\Experiments
"D NAINMAGMATIKH\Experiments
'D: YAINAOMATIKH\Experiments

NL_exp_res35 = imageDatastore
NL_exp_res4@ = imageDatastore
NL_exp_res45 = imageDatastore
NL_exp_res5@ = imageDatastore

Hassessment for 3.0 image dataset

metrics_arr38 = assessment(NL_images38,HL_exp_res3a);

¥assessment for 3.5 image dataset

metrics_arr35 = assessment(NL_images3S,NL_exp_res35);

Xassessment for 4.2 image dataset

metrics_arrd® = assessment(NL_images4@,NL_exp_res4@);

%assessment for 4.5 image dataset

metrics_arrd5 = assessment(NL_images4S,NL_exp_res45);

Hassessment for 5.0 image dataset

metrics_arrS8 = assessment(NL_imagesSe,HL_exp_res5a);

¥columns titles

array2table(metrics_arrse, 'VarizbleNames',var_names);

2%
5%)
2")
5%)
8)

ResultshClassical Methods_validationImages\3.@\Log
Results\Classical Methods_ValidationImages\3.5\Log
Results\Classical| Methods_ValidationImages\4.2\Log
Results'Classical| Methods ValidationImages\4.5%Log
Results\Classical Methods_ValidationImages\S.8\Log

var_names = {'MSE','PSNR','SSIM’,'My','STD', 'BRISQUE", 'NIQE'};

¥convert the matrices to tables with column names

table3® = array2table(metrics_arr3@, 'VarizbleNames ' ,var_names);
table35 = array2table(metrics_arr35, 'VariableNames',var_names);

tabledd

array2table(metrics_arr4d, 'Variablelames',var_names);

tabledS = array2table(metrics_arrd5, 'VarizbleNames',var_names);
table5e = array2table(metrics_arrS@, 'Variablelames',var_names);

Xsaving the results to an excel file

writetable(ta
writetable(ta
writetable(ta
writetable(ta
writetable(ta
disp('Done wi
disp('Done wi

%

ble3@, 'LOG_controls@_sssessment_vslidation.xlsx','shest’,'3.2");
ble3s, 'LOG_controls@_sssessment_vslidestion.xlsx','Shest’,'3.5");
bledd, 'LOG_control5@_asssessment_walidation.xlsx', 'Sheet’,'4.8");
bleds, 'LOG_control5@_asssessment_walidation.xlsx', Sheet’,'4.5");
ble5@, 'LOG_control5@_assessment_validation.xlsx','Sheet’,'5.8');

th contrel=11")
th validation Images!')

%

kY

TEST IMAGES

disp( 'Working

%Ground Truth
NL_images3@ =
NL_images3s =
NL_images4o =
NL_images45 =
NL_images5@ =

¥Images from
NL_exp_res3a@
NL_exp_res35
NL_exp_resd4a
NL_exp_res45
NL_exp_res5@

Hassessment T
metrics_arr3e
Hassessment T
metrics_arr3s
%assessment T
metrics_arrd4d
%assessment T
metrics_arr4s
#assessment T
metrics_arrse

%columns titl
var_names = {

%convert the
tahledd = arr
tahle3s = arr
tabledl = arr
tabled45 = arr
table5@ = arr

with Test Images...")

images

imageDatastore( ' D:\AINAOMATIKHATEST
imageDatastore( ' D:\AINAOMATIKHATEST
imageDatastore(’ D:\AINAOMATIKHA\TEST
imageDatastore( D:\AIMAQMATIKHA\TEST
imageDatastore( ' D:\AINAOMATIKH\TEST

Log correction with control=1

= imageDatastore( 'D:\AIMAOMATIKH\Experiments
= imageDatastore( ' D: \AIMAOMATIKH\Experiments
= imageDatastore( ' D: \AIMAOMATIKH\Experiments
= imageDatastore('D: \AIMAQMATIKH\Experiments
= imageDatastore('D: \AIMAOMATIKH\Experiments

or 3.2 image dataset
= sssessment{NL_images3@,NL_exp_res3@);
or 3.5 image dataset
= assessment(NL_images35,NL_exp_res35);
or 4.2 image dataset
= assessment(NL_images4@,NL_exp_res4@);
or 4.5 image dataset
= sssessment{NL_images45,NL_sxp_res45);
or 5.2 image dataset
= assessment(NL_images5@,NL_exp_res5@);

es

IMAGES\3.0\NL-3.8");
IMAGES\3.5\NL-3.5");
TMAGES\4.0\NL-4.8");
IMAGES\4.5\NL-4.5");
IMAGES\S.O\NL-5.8");

Results\Classical Methods_TestImages\3.@\lLog
ResultsiClassical Methods TestImages\3.5\lLog
ResultsiClassical Methods TestImages\4.@\lLog
ResultsiClassical Methods_TestImages'4.5\log
Results\Classical Methods_TestImages\5.2\lLog

'MSE', 'PSNR',"SSIM',"MV','STD', "BRISQUE", "NIQE"};

matrices to tables with column names
ay2table(metrics_arr3a,
ay2table(metrics_arr3s,
ay2table(metrics_arr4o,
ay2table(metrics_arr4s,
ay2table(metrics_arrsa,

—
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'WarisbleNames' ,var_names);
'WarisbleNames' ,var_names);
‘WariableNames',var_names);
'WariableNames' ,var_names);
'WariableNames',var_names);

correctionicontrol 5@
correction‘cantrol 58
correctionicontrel 5@
correctioncontrel 58
correction\control_56

correctionicontrol_1
correctioncontrol_1
correctioncontrol_1

correctioncontrel_1'
correction\contrel_1°

)
)
)
)
)

'



253
286
287
288
289
208
201
202
293
294
295

297
298
299
3ee
L
3e2
3e3
a4
3es
3e6
3e7
3es
3e9
31e
311
312
313
314
315
316
317
318
319
328
321
322
323
324
325
326
327
328

329
338
331
332
333
334
335
336
337
338
339
348
341
342
343
244
345
346
347
348
349
358
351
352
353
354
355
356
357
358
359
36@
361
362
363
364
365
366
367

¥saving the results to an excel file

writetable(table3@, 'L0OG_controll_assessment_test.
writetable(table35, 'L0G_controll_assessment_test.
writetable(table4d, 'L0OG_controll_assessment_test.
writetable(table45, 'L0G_controll_assessment_test.
writetable(table5@, 'L0OG_controll_assessment test.

disp{'Done with control=1!")

¥Images from
NL_exp_res3@
NL_exp_res35
NL_exp_res4@
NL_exp_res45
NL_exp_ressa

Log correction with control=18

= imageDatastore( ' D:\AIMAOMATIKH\Experiments
= imageDatastore( ' D:\AINMAOMATIKH\Experiments
= imageDatastore( ' D:\AINMAOMATIKH\Experiments
= imageDatastore( ' D:\AINMAOMATIKH\Experiments
= imageDatastore( ' D:\AINMANMATIKH\Experiments

¥assessment for 3.0 image dataset
metrics_arr3@ = assessment{NL_images3@,NL_exp_res3@);
¥assessment for 3.5 image dataset

metrics_arr3s

= assessment(NL_images35,NL_exp_res35);

¥assessment for 4.8 image dataset
metrics_arrd4® = assessment(NL_images40,NL_exp_resda);
¥assessment for 4.5 image dataset

metrics_arrds
Hassessment for
metrics_arr5@ =

= assessment{NL_images45,NL_exp_res45);
5.8 image dataset

xlsx','Sheet','3.8");
xlsx','Sheet','3.5");
xlsx','Sheet', '4.2");
xlsx','Sheet', '4.5");
xlsx','Sheet','5.8');

Results\Classical Methods_TestImages\3.
Results‘\Classical Methods_TestImages\3.
ethods_TestImagesi4.
ResultsiClassical Methods TestImages\4.
Resultsh\Classical Methods_TestImages\5.

Results‘\Classical

%columns titles

var_names = {'HMSE', 'PSNR","SSIM', "MV

assessment(NL_images50,NL_exp_res5@);

,'STD',"BRISQUE", "NIQE'};

Hconvert the matrices to tables with column names

table3e
table3s
tabledd
tableds
table5@

array2table(metrics_arr3e,
array2table(metrics_arr3s,
array2table(metrics_arr4@,
array2table(metrics_arr4s,
srray2table(metrics_arrSa,

‘VarizbleNsmes®,var_names);
‘VarizbleNsmes®,var_names);
‘VariableNames®,var_names);
‘VariableNames®,var_names);
‘VariableNames®,var_names);

¥saving the results to an excel file

writetable(table3@, 'LOG_controll@_sssessment_test.
writetable(table35, ' LOG_controll@_sssessment_test.
writetable(table4®d, ' LOG_controll@_sssessment_test.
writetable(table45, ' LOG_controlld_sssessment_test.
writetable(table58, 'L0OG_controll® assessment_test.

disp{'Done with control=18!")

HImages from
NL_exp_res3@
NL_exp_res35
NL_exp_resda
NL_exp_res4s
NL_exp_res5e@

Log correction with control=5@
= imageDatastore('D: \AINAOMATIKH\Experiments

= imageDatastore(’ AINAQMATIKH\Experiments
= imageDatastore(’ ATNAQMATIKH\Experiments
= imageDatastore(’ ATNAOMATIKH\Experiments

= imageDatastore('D: \AINAOMATIKH\Experiments

¥assessment for 3.2 image dataset
metrics_arr3@ = assessment(NL_images3@,NL_exp_res3a);
¥assessment for 3.5 image dataset

metrics_arr3s

= assessment(ML_images35,NL_exp_res35);

¥assessment for 4.9 image dataset
metrics_arrd@ = sssessment({NL_images4@,NL_exp_resda);
¥assessment for 4.5 image dataset

metrics_arras
Xassessment for

= assessment(NL_images45,NL_exp_res45);
5.2 image dataset

metrics_arr5@ = sssessment({NL_images50,NL_exp_res5a);

Hcolumns titles
var_names = {'MSE",'PSNR', SSIM","MV", STD', 'BRISQUE", 'NIQE"};

Hconvert the

matrices to tables with column names

xlsx','shest”,"2.07);
xlsx','shest”,"2.57);
xlsx', 'sheet”,"4.07);
xlsx', "Sheet”,"4.57);
xlsx', Sheet’,'5.8");

Results\Classical Methods_TestImages\3
Results\Classical Methods_TestImages\3
Results\Classical Methods_TestImages\4
Results\Classical Methods_TestImages\4
Results\Classical Methods_TestImages\5

table3® = array2table(metrics_arr3@, 'VariablsNames',var_names);

table35 = array2table(metrics_arr35, 'VariableNames®,var_names);

table4® = array2table(metrics_arr4@,'VarisbleNames®,var_names);
table45 = array2table(metrics_arr45, 'VariableNames',var_names);

table5@ = array2table(metrics_arrse, 'VarizbleNames',var_names);

¥saving the results to an excel file
writetable(table3®, " LOG_control5@_assess
writetable(table35, " LOG_control5@_sssess

writetable(tableds5, " L0OG_control5@ assessment_test

writetable(table5e, " L0G_control5@_assess
disp{'Done with control=5@!")

disp{'Done with Test Images!")
disp{'Done!")

toc

meni_test
meni_test
writetable(tabled@, "LOG_control5@ sssessment_test.
m
m

xlsx',"Sheet’, "2
.xlsx',"Sheet’,'2
xlsx', "Sheet’,'4
.x1lsx',"Sheet’, "4
.¥x1sx', "Sheet’,'S

Figure B.2.12: Assessment script for Log correction algorithm

—

@\Log
S\Log
e\Log
S'lLog
a\Log

correctionicontrel_1@');
correction\control_10');
correction\control_10');
correction\contreol_18");
correctioncontrol_1a');

@\Log correction\control_5@');
.5%Log correctionicontrol_5@');
.@\Log correctionicontrol_5@');
.S'Log correction‘control_56');

.@\Log correctionicontrol_5@');
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Histogram Equalization

The function with which we implement the histogram equalization is
shown in figure B.2.13 below.

1 functicn ML_image = HistogramEqualization{LL_image)

2

3 ¥===============s=========s===s=ss=s======s====s=ssssssSsssssssssssssssssssss
4 % Function that implements the Histogram Equalization Algorithm.

5 % We are going to use MATLAB's histeq function for optimization reasons.
6 % The function expects a grayscale image as an input.

¥ ¥ For that reason we apply the function to each channel of the RGE image
8 ¥ separately.

9 % Author: Panagiotis Koutsaftis aivc2lele
18 Y===================================================================oo===as
11
12 ¥RGB image channels
13 Red = LL_image(:,:,1);
14 Green = LL_image{:,:,2);
15 Blue = LL_image(:,:,3);
16
17 ¥applying histreg
18 Red_he = histeq(Red);
19 Green_he = histeq(Green);
28 Blue_he = histeq{Blue);
21
22 ¥defining an empty matrix with the same size as the input image
23 ML = zeros{size(LL_image));
24 ML(:,:,1) = Red_he;
25 ML(:,:,2) = Green_he;
26 ML(:,:,3) = Blue_he;
27
23 ¥converting the result to uints
29 NL_image = wints8(NL);|

Figure B.2.13: Implementation of histogram equalization

In this particular case, we do not implement the method from scratch, but
use the ready-made MATLAB function, as it will be much faster and
optimized than any attempt at a custom implementation. The histeq
function of MATLAB expects in its input a grayscale image, and for this
reason we apply per-channel equalization of the input image. So, the
function shown above accepts as input the LL image that we want to
enhance. It then separates the channels of the input image, and applies
histogram equalization to each of them separately. Then, we simply define
a matrix with the same dimensions as the input image, and store there the
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result of the histogram equalization. Finally, we convert this matrix to uint8
data type, since we want to return an image and not just a table of values.

We apply this function to each image of the data set with the scripts
presented in Figures B.2.14 and B.2.15.

1 close all; clear; clc; format long;

2

2

4 %loading the data

5 ¥LL_images = imageDatastore("D:‘\AINAQMATIKH\TRAINING IMAGES\2.5%\LL-2.5"};

6 ¥LL_images = imageDatastor VAIMAGMATIKHATRAINING IMAGES\3.@\LL-3.8");

7 ¥LL_images = imageDatastor D: \AIMAQMATIKHATRAINING IMAGES\3.5%\LL-3.5");

3 ¥LL_images = imageDatastor SWAIMAQMATIKH\TRAINING IM

g ¥LL_images = imageDatastor NAIMAQMATIKHA\TRAINING IM

1e LL_images = imageDatastore('D:\AIMAQMATIKH\TRAINING IMAGES\5.2%\LL-5.8");

11

12 ¥size of the dataset

13 files = size(LL_images.Files);

14 numDfImages = files(1);

15

16 ¥applying Histogram Equalization

17 for index=1:num0fImages

18 LL_img = readimage(LL_images,index);

19 image_namz = char{LL_images.Files{index));

28 %¥NL_img = readimage(NL_images,index);

21 NL_he = HistogramEqualization(LL_img);

22 %file_path = ['D:\AINAOMATIKH\Experiments Results\Classical Methods%2.5\HE\', image_name(({end-8): ))s".png’l;
23 %file_path = ['D:\AINAOMATIKH\Experiments Results\Classical Methods\3.@\HE\', image_name((end-8 V). -png’ls
24 %file_path = ['D:\AINAOMATIKH\Experiments Results\Classical Methods\3.5\HE\", image_name({end-8 -4)), " .png']s
25 %file_path = ['D:\AINAOMATIKH\Experiments Results\Classical Methods'4.8\HE\", image_name ((end-8 V¥t png’l;
26 %file_path = ['D: NAOMATIKH\Experiments Results\Classical Methods‘4.5\HE\',image_name({end-8):(end-4))," .png'];
27 file_path = ['D:\AINAOMATIKHA\Experiments Results\Classical Methods\5.@\HE\',image_name((end-8):(end-4))," .png"];
28 imerite(NL_he,file_path);

29 end

Figure B.2.14: script for applying HE to training dataset per darkness level

As we can see, we read the images using Image Datastores, find the size of
the set, information that we will use in the following loop. Inside the loop,
we apply HE to each image in the dataset and save the result to an
appropriate folder. We apply this script 5 times, once for each darkness
level, uncommenting the appropriate line each time.

We apply the same procedure for the validation and test sets, as shown in
figure B.2.15.
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1 klose all; clear; clc; format long;
2
3
4 % WALIDATION IMAGES
L
6 %reading the Low Light Data (VALIDATION)
7 %LL_images = imageDatastore('D:\AINAOMATIKH\VALIDATION IMAGES\3.@%\LL-3.8"');
8 %LL_images = imageDatastore( D:\AINAOMATIKH\VALTDATION IMAGES\3.5%LL-3.5");
9 %LL_images = imageDatastore( D:\AINAQMATIKH\VALIDATION IMAGES\4.@%LL-4.8');
10 ¥LL_images = imageDatastore('D:\AINAOMATIKH\VALIDATION IMAGES\4.5%\LL-4.5"};
11 LL_images = imageDatastore('D:\AIMAOMATIKH\VALIDATION IMAGES\S.@\LL-5.2");
12
13 ¥size of the dataset
14 files = size(LL_images.Files);
15 num0fImages = files(1);
16
17 disp('Working on validation images...')
18 %applying Histogram Equalization
19 for index=1:numOfImages
28 LL_img = readimage(LL_images,index);
21 image_name = char(LL_images.Files(index));
22 %HL_img = readimage(NL_images, index);
23 NL_he = HistogramEqualization{LL_img);
24 %file_path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods_ValidationImages\3.@\HE\',image_name((end-8):(end-4))," .png'];
25 %file_path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods_ValidationImages\3.5\HE\",image_name((end-8):(end-4)), .png'];
26 %file_path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods_ValidationImages\4.8\HE\",image_name((end-8):(end-4)), .png'];
27 %file_path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods ValidationImages\4.5\HE\',image_name((end-8):(end-4))," .png'1;
28 file path = [ INANATIKH\Experiments ResultsiClassical Methods_ValidationImages\5.@\HE'',image_name((end-8): (end-4)), .png'];
29 imurite(NL_he,file path);
3e end
31 disp('Done with walidation images!")
32
32
=E
34 % TEST IMAGES
35
36 #reading the Low Light Data (TEST)
37 %LL_images = imageDatastore('D:\AINAQMATIKH\TEST IMAGES\3.8\LL-3.@');
38 %LL_images = imageDatastore('D:\AINAQMATIKH\TEST IMAGESY3.5\LL-3.5');
39 %LL_images = imageDatastore('D:\AINAQMATIKH\TEST IMAGES\4.8\LL-4.0');
48 %LL_images = imageDatastore('D:\AINAQMATIKH\TEST IMAGESY4.5\LL-4.5');
41 LL_images = imageDatastore( 'D:\AINAQMATIKH\TEST IMAGES\5.@\LL-5.8");
42
43 #size of the dataset
44 files = size(LL_images.Files);
45 numofImages = files(1);
46
47 disp('Working on Test images...')
48 #%applying Histogram Equalization
49 for index=1:numOfImages
1] LL_img = readimage(LL_images,index);
51 image_name = char(LL_images.Files(index));
52 %¥NL_img = readimage(NL_images,index);
53! NL_he = HistogramEqualization(LL_img);
c4 %file_path = [ 'D:\AINAQMATIKH\Experiments Results\Classical Methods_TestImages\3.@\HE\',image_name((end-8):(end-4)), .png'];
55 %file path = [ 'D:\AINAQMATIKH\Experiments Results\Classical Methods_TestImages\3.5\HE\',image name((end-8):(end-4))," .png'];
56 %file_path = [ 'D:\AINAQMATIKH\Experiments Results\Classical Methods_TestImages\4.@\HE\',image name((end-8):(end-4))," .png'];
57 %file_path = [ 'D:\AINAQMATIKH\Experiments Results\Classical Methods_TestImages\4.S\HE\',image name((end-8):(end-4))," .png'];
58 file_path = ['D:ZAINAOMATIKH\Experiments Results\Classical Methods_TestImages\5.@\HE\',image_name({end-8):(end-4)), .png'];
59 imwrite(NL_he,file_path);
66 end
61 disp('Done with test images!’)
62 disp('Done!")

Figure B.2.15: script for applying HE to validation and test datasets per darkness level

Then we have to calculate the metric evaluations for the results obtained
from the above, This is done with the script shown in figure B.2.16.

473

—
| S—



= B BV R VU N

close all; clear; clc; format long;

tic

b3 TRAINING IMAGES

disp('Weriking on Training Images..."')

* GROUND TRUTH TMAGES

NL_images3@ = imageDatastore( 'D:\AINAOMATIKH\TRAIMNING IMAGESY3.@\MNL-2.8")
NL_images35 = imageDatastore( D: \AINAOMATIKHY\TRAIMNING IMAGES 3.5 \NL-3.5")
NL_images4® = imageDatastore( D: \AINAOMATIKHYZTRAINING IMAGES 4.2%\MNL-4.8°);
NL_images45 = imageDatastore( ' D:\AINAOMATIKHYTRAINING IMAGES 4.5\MNL-4.5")
NL_images5@ = imageDatastore( D: \AIMNAMMATIKHYTRAINING IMAGES\S.@\MNL-3.8°)

% IMAGES FROM THE HISTOGRAM EQUALIZATION METHOD

ML_exp_res3@ = imageDatastore( 'D:%\AIMAOMATIKH Experiments ResultshClassical Methods\3.
NL_exp_res35 = imageDatastore( D: \AINMAOMATIKHAExperiments ResultshClassical Methodsh3.
ML_exp_res4@ = imageDatastore( 'D:“\AIMAOMATIKHYExperiments ResultshClassical Methods'4.
NL_exp_res45 = imageDatastore( ' D: \AINAOMATIKHYExperiments ResultshClassical Methods'4.
NL_exp_res58 = imageDatastore( D:\ATNAOMATIKHAExperiments ResultsiClassical Methods\5.

F¥assessment for 3.8 image dataset
metrics_arr3@ = assessment(NL_images3@,NL_exp_res3@);
¥assessment for 2.5 image dataset
metrics_arr35 = assessment{NL_images35,NL_exp_res35);
¥assessment for 4.8 image dataset
metrics_arr4® = assessment{NL_images4@,NL_exp_res4@);
¥assessment for 4.5 image dataset
metrics_arr4s = assessment{NL_images45,NL_exp_res45);
¥assessment for 5.8 image dataset
metrics arr5® = assessment{NL_images5@,NL_exp_res5@);

H¥columns titles
var_names = {"MSE", 'PSNR","S5IM", 'MV', 'STD', 'BRISQUE", "NIQE'};

#convert the matrices to tables with column names

table3@ = array2table(metrics_arr3@, 'VariableNames',var_names);
table35 = array2table(metrics_arr3s, 'VariasbleNames',var_names);
tabled4® = array2table(metrics_arr4@, 'VariableNames',var_names);
table45 = array2table(metrics_arr45, 'VariableNames',var_names);
tablese = array2table(metrics_arrse, 'VarisbleNsmes',var_names);

%saving the results to an excel file

writetable(table3@, "Hiztogram_Equalizstion_sassessment_training.xlsx', 'Sheet/','3.0");
writetable(table35, "Histogram_Equalizstion_assessment_training.xlsx', 'Sheet/','3.5");
writetable(tabled@, "Histogram_Equalization_assessment_training.xlsx', 'Sheet,'4.8"');
writetable(table45, "Histogram_Equalization_sssessment_training.xlsx', 'Sheet|,'4.5");
writetable(table5@, "Histogram_Equalization_assessment_training.xlsx', 'Sheet,'5.8"');

disp('Done with Training Images!’)

&
o

* VALIDATION IMAGES
P

P

disp('Working on validation Images...")

P

x GROUND TRUTH IMAGES
&

NL_images3@ = imageDatastore('D:\AINAOMATIKHWALIDATION IMAGESY3.@%\NL-3.2');
NL_images35 = imageDatastore('D:‘\AIMAOMATIKHWALIDATION IMAGESY3.5%\NL-3.5');
NL_images4@ = imageDatastore('D:\AIMAOMATIKHW\WALIDATION IMAGES‘4.@\NL-4.2'});
NL_images45 = imageDatastore('D:\AINAOMATIKHWWALIDATION IMAGES‘4.5%NL-4.5'});
NL_images5@ = imageDatastore( D: \AIMAOMATIKHWALIDATION IMAGESYS.@\NL-5.2');

* IMAGES FROM THE HISTOGRAM EQUALIZATION METHOD

NL_exp_res3@ = imageDatastore( 'D:\AIMAOMATIKH\Experiments Results\Classical Methods ValidationImages'3
NL_exp_res35 = imageDatastore( 'D:\AIMAOMATIKH\Experiments Results\Classical Methods_ValidationImages'3

B\HE');
S\HE" )3
BVHE' ) ;
S\HE");
BVHE' )3

LBVHE');
LSWHE'):

NL_exp_res4@ = imageDatastore( 'D:\AIMAQMATIKH\Experiments Results‘Classical Methods_ValidationImages'\4.@\HE');
NL_exp_res45 = imageDatastore( 'D:\AIMAOMATIKH\Experiments Results‘iClassical Methods_ValidationImages\4.5\HE');

NL_exp_res5@ = imageDatastore( D:\AINAOMATIKH\Experiments Results‘Classical Methods ValidationImages\s
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116
117
118
119
12@
123
122
123
124
125
126
127
128
129

126
13e

121
122
122
124
135
136
137
138
139
14a
141
142
143
144
145
146
147
1428

ise
151
152
IS
154
155
156
157
158
15%
168
161
162
163
154
165
166
167
168
169
i17a
171

Hassessment for 3.8 image dataset
metrics_arrie =
Hassessment for 3.5 image dataset
metrics_arris =
Hassessment for 4.8 image dataset
metrics_arrde =
Hassessment for 4.5 image dataset
metrics_arrds =
Hassessment for 5.8 image dataset

metrics_arrse =

Fcolumns titles

var_names = {"MSE', "PSNR", "SSIM", "MV

'L, '5TD

assessment{NL_images3@,NL_exp_res3@);
assessment{NL_images35,NL_exp_res35);
assessment{NL_images4@,NL_exp_res40);
assessment{NL_images45,NL_exp_resd45);

assessment{NL_imagess@,NL_exp_res5@);

'L "BRISQUE", 'NIQE'};

#convert the matrices to tables with column names

‘WariableNames ' ,var_names);
‘VariableNsmes ' ,var_names);
‘WariableNames ' ,var_names);
‘VariableNsmes ' ,var_names);
‘WariableNames ' ,var_names);

table3® = array2table(metrics_arr3e,
table35 = array2table(metrics_arr3s,
tabled4e = array2table(metrics_arr4e,
table45 = array2table(metrics_arr45,
tablese = array2table(metrics_arrse,

Feaving the results to an excel file
writetable{table3a,
writetable({table3s,
writetable{tableda,
writetable(tableas,
writetable(tables5a,

disp{ 'Done with Walidation Images!")

"Histogram_Equalization_asse
"Hisztogram_Equalization_asse
"Histogram_Equalization_asse
"Histogram_Equalizstion_sssess
"Histogram_Equalization_asse

"Sheet',
"Sheet’,
"Sheet',
"Sheet’,
"Sheet',

xlsx'

wlzx',
xls=',
wlzx',
xlsx"',

ssment_validetion.
essment_wvalidation.
sssment_validation.
szment_validstion.
ssm

ent_wvalidation.

ML_images3@ =
ML_imagess35 =
ML_images4d =
ML_imagess4s =
ML_images5e =

imageDatastore( D: WAIMAOMATIKHA\TEST
imageDatastore{ D: WAIMAOMATIKHA\TEST
imageDatastore( D: WAIMAOMATIKHA\TEST
imageDatastore{ D: WAIMAOMATIKHA\TEST
imageDatastore( D: WAIMAOMATIKHA\TEST

IMAGESHNI.@WNL-3.@" )3
IMAGES"Y3.5%ML-3.5");
IMAGES 4. @NL-4.8" )3
IMAGES 4. SWNL-4.5" )3
IMAGESHNS.@WNL-5.@" )3

k4 IMAGES FROM THE HISTOGRAM EQUALTZATION METHOD

ML_exp_res3a@ =
NL_exp_res3s =
NL_exp_res49 =
ML_exp_res45 =
NL_exp_ress5a =

%assessment for 3.8 image dataset
metrics_arr3e =
%¥assessment for 3.5 image dataset
metrics_arr3s =
%assessment for 4.8 image dataset
metrics_arr4e =
Xassessment for 4.5 image dataset
metrics_arr4s =
Xassessment for 5.2 image dataset

metrics_arrs5e =

Fcolumns titles
var_names =

¥convert the matrices to tables with

table3® = array2table(metrics_arr3e,
table35 = array2table(metrics_arr3s,
table4® = array2table(metrics_arr4e,
tabled4s = array2table({metrics_arras,
table5® = array2table(metrics_arrse,

¥saving the results to an excel file

imageDatastore( D: \AIMAOMATIKH\Experimsnts
imageDatastore( 'D: \AINAOMATIKH Experiments
imageDatastore( 'D: \AIMAGMATIKH\Experiments
imageDatastore( 'D: \AIMAOMATIKH\Experiments
imageDatastore( 'D: WAIMAOMATIKH Experiments

column names
‘WariableNames ' ,var_names);
‘wariablelames',var_names);
‘VariableNames ' ,var_names);
‘wariableNames',var_names);
‘VariableNames ' ,var_names);

writetable(table2d, "Histogram_Equalizstion_sssess

writetable(table35, 'Histogram_Equalization_as
writetable({tabled®, "Histogram_Equalizstion_sas
writetable(tablea5s, 'Histogram_Equalization_as
writetable(table5@, "Histogram_Equalization_as

disp('Done with Test Images!')
disp{ 'Done!"}
toc

Figure B.2.16: Assessment script for HE
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ses55

m
m
sessment_test.
m
m

Results'Classical Methods_TestImagssi3
ResultsiClassical| Methods_TestImages\3

ResultsiClassical Methods TestImageshS

assessment{NL_images3@,NL_exp_res3@);
assessment{NL_images35,NL_exp_res35);
assessment(NL_images4@,NL_exp_res4@);
assessment(NL_images45,NL_exp_res45);

assessment(NL_images5@,NL_exp_res5a);

{"MSE',"PSNR', SSIM', "MV', 'STD', BRISQUE', 'NIQE'};

.xlsx’, "Sheet”, "

3.0
.xlsx', 'Shest’,'32.5
xlsx"', "Sheet”,"4.0"
4.5
5.2

wn
T
m
n
e
.

xlsx
.xlsx

W wow
o
o
.

SBWHE ) ;
SWHE');:

Results'Classical Methods TestImages'4.@%HE");
ResultsiClassical| Methods_TestImages'4.5\HE');

SBMHE" ) ;

'



We read the ground truth images and experimental results, using Image
Datastores, and apply the assessment function. We save the results in an
excel file with a suitable name, with each sheet corresponding to a darkness
level. We apply this process for all three cases (training, validation and test
sets), so at the end of the process we will have 3 excel files that we can
work with.

Single Scale Retinex

The function that implements the Single Scale Retinex method is shown in
figure B.2.17 below. The function takes as input the LL image we want to
enhance, as well as the value of the constant ¢ needed for the surround
function. Then we convert the image into a double data type, which is
needed for the operations, and we normalize the values by dividing by 255.
At this point, let us comment that we also add a very small value, here 0.01,
because then we will apply a logarithmic function, which at 0 goes to
infinity, and we want to avoid that. Then we construct an empty table, with
the same dimensions as these images, and there we store the values of the
surround function. Then, we apply the operation we saw in chapter 2 to
calculate R, on each channel of the image, and convert the final result to
uint8, since we want to return an image and not just an array of values.

We will apply this function to all images in the dataset. This is done with
the scripts presented in images B.2.18 and B.2.19.
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1 function ML_image = SingleScaleRetinex(LL_image,c)

2

3 H==========================================================================
4 * This function implements the Single Scale Retinex method for low
= * light image enhancement reasons. It takes as input the low light image
L] * and the surround parameter c, used by the surround gaussian function,
7 £ and outputs the enhanced normal light image.

8 * Article Reference:

=] x D. J. Jobson, Z. Rahman, and G. A. Woodell,
1e £ "t Properties and performance of a center/surround retinex,'’
11 -4 IEEE Trans. Image Process., wvol. 6, no. 3, pp. 4510462, Mar. 1997.
12 E
13 * Function Author: Panagiotis Koutsaftis
14 E
15 ¥==========================================================================
16
17 ¥=size of the input image
18 [rows,columns,bands] = size(LL_image):
19
26 Fconverting the image to double for calculations
21 LL_double = double(LL_image)}:
22 Fnormalizing the image by dividing with 255, adding @.81 for the log
23 LL_double = (LL_double/255)+8.81;
24
25 #center of the image
26 cent = ceil{rows/2);
27 Finitializing the wvalues of thee filter
28 filt = zeros(rows,columns);
29 %initializing & sum needed for normalization reasons
I8 summ = @;
31 ¥creating the gaussian filter
32 for i=1:rows

33 for j=l:columns

34 r = ({cent-i)"2+(cent-j)"2);

35 Filt(i,j) = exp(-(r/{c"2)));

36 summ = swumm + Filt{i,j);

a7 end

38 end

39 Fnormalizing the values of the filter
a8 fFilt = filt/summ;
41
42 Finitializing the output normal light image
43 NL_image = zeros{rows,columns,bands);
44
45 ¥calculating the retinex for each color band
45 for band=1:bands
47 %convolution with the filter
48 conv = imfilter({LL_double(:,:,band),filt, 'replicate’, ' 'same’);
449 ¥retinex output

58 R = log(LL_double(:,:,band))}-log(conv]);

% | ¥min wvalue

L2 R_min = min(min{R)};

53 RE_max = max(max{R));

4 %normalizing to [@,255]

55 R_t = 255%((R-R_min)./{R_max-R_min));

56 %final band output

57 ML_image(:,:,band) = R_t;

58 end

Lo
[+1=] ¥converting to uinta
61 NL_image = uint3({MNL_image};
62

Figure B.2.17: Implementation of SSR
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1 klnse all; clear; clc; format compact;

2

3

4 %loading the data

5 HLL_images = imageDatastore(’D:\AINAQMATIKH\TRAINING IMAGES‘\3.@\LL-3.@");
6 ¥LL_images = imageDatastore('D:\AIMAQMATIKH\TRAINING IMAGESY3.5%LL-3.5");
7 HLL_images = imageDatastore(’D:\AINAQMATIKH\TRAINING IMAGES‘4.@\LL-4.@");
8 %LL_images = imageDatastore( D:\AIMAQMATIKH\TRAINING IMAGES\4.5\LL-4.5');
9 LL_images = imageDatastore('D: \AINAOMATIKHATRAINING IMAGES\5.2\LL-5.8')
18

11 #size of the dataset

12 files = size(LL_images.Files);

13 numOfImages = files(1l);

14

15 %applying SSR with surround parameter c=1@

16 for index=1:num0fImages

17 LL_img = readimage(LL_images,index);

18 image_name = char(LL_images.Files({index));

19 ¥NL_img = readimage(NL_images,index);

28 NL_SSR = SingleScaleRetinex(LL_img,18);

21 %file_path =

22 %file_path =

23 %file path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods\4.@\55R\c_1@\',image_name((end-8):(end-4)),"
24 %file_path = ['D:\AIMAQMATIKH\Experiments Results\Classical Methods\4.5\55R\c_1@\",image_name((end-8):(end-4)),"
25

26 imwrite(NL_SSR,file_path);

27 end

28

29

3e %applying SSR with surround parameter c=129

31 for index=1:num0fImages

32 LL_img = readimasge(LL_images,index);

33 image_name = char(LL_images.Files({index));

34 ¥NL_img = readimage(NL_images,index);

35 NL_SSR = SingleScaleRetinex(LL_img,120);

36 %file_path =

37 %file_path =

38

39
48
41 imwrite(NL_SSR,file_path);
42 end
43
44
45 ¥applying SSR with surround parameter c=488
46 for index=1:num0fImages
47 LL_img = readimage(LL_images,index);
43 image_name = char(LL_images.Files(index));
49 %¥NL_img = readimage(NL_images,index);

ca NL_55R = SingleScaleRetinex(LL_img,400);

51

52

53

54

55

56 imwrite(NL_SSR,file_path);

57 end

Figure B.2.18: script for applying SSR to training dataset per darkness level

AAIMADMATIKH\Experiments Results\Classical Methods\3.@\SSR\c_1@\',image_name((end-8):(end-4)),"
:\AINAQMATIKH\Experiments Results\Classical Methods\3.5\55R\c_l@\",image_name((end-8): (end-4)),"

-png' s
-png’1i
-png'1;
-png'li

file path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods\5.@\55R\c_1@\',image_name((end-8):(end-4))," .png'];

\AIMAQMATIKH\Experiments Results\Classical Methods\3.@\5SR\c_128\",image name((end-8):(end-4))," .png'];
\AINAQMATIKH\Experiments Results\Classical Methods\3.5\55R\c_12@\",image_name((end-8): (end-4)),".png'];

%file_path = ['D:\AINAOMATIKH\Experiments Results\Classical Methods\4.@\S5SR\c_12@\",image_name((end-8):(end-4))," .png"];
%file_path = ['D:\AINMAQMATIKH\Experiments Results\Classical Methods\4.5\55R\c_12@\",image_name((end-8): (end-4)),".png'];
file path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods\5.@\55R\c_1208%',image_name((end-8): (end-4)), .png’'];

%¥file_path = ['D:\AINAOMATIKH\Experiments Results\Classical Methods\3.0@\5SR\c_488\",image_name((end-8):{end-4}), .png'];
%file_path = ['D:\AINAOMATIKH\Experiments Results\Classical Methods\3.5\55R\c_488\",image_name((end-8):{end-4}), .png'];
%file_path = ['D:\AINAOMATIKH\Experiments Results\Classical Methods\4.@\S5S5R\c_488\",image_name((end-8):{end-4}), .png'];
%¥file_path = ['D:\AINAOMATIKH\Experiments Results\Classical Methods\4.5\S5R\c_488\",image_name((end-8):{end-4)})," .png"'];
file_path = ['D:\AINAOMATIKH\Experiments Results‘\Classical Methods\5.@\55R\c_488%"',image_name((end-8):(end-4)})," .png"];




1 klose all; clear; clec; format longs
2
3
4 % VALIDATION IMAGES
5
6 %resding the Low Light Data (VALIDATION)
7 %LL_imsges = imsgeDatsstore(’D:\AIMAQMATIKH\VALIDATION IMAGES\3.8\LL-3.8");
8 %LL_imsges = imsgeDatsstore( D:\AIMAQMATIKH\VALIDATION IMAGESY3.5\LL-3.5");
E) %LL_images = imageDatastore( D:\AIMAQMATIKH\VALIDATION IMAGES\4.8\LL-4.8");
10 %LL_images = imageDatastore( D:\AIMAQMATIKH\VALIDATION IMAGES\4.5\LL-4.5");
11 LL_images - imageDatastore( D:\AINAQMATIKH\VALIDATION IMAGES\S.@\LL-5.8°);
12
13 %size of the dataset
14 files - size(LL_images.Files);
15 numOfImages - files(1);
16
17 disp(working on validation images...')
18 %applying SSR with surround parameter c=1@
19 for index=1:numOfImages
20 LL_img = readimage(LL_images,index);
21 imsge_name = char(LL_images.Files(index));
22 %NL_img - readimage(NL_images,index);
23 NL_SSR - SingleScaleRetinex(LL_img,1@};
24 %file_path — ['D:\ATMAOMATIKH\Experiments Results\Classical Methods_ValidationImages\3.8\SSR\c_18\",image_name((end-8):(end-4)), " .png"1;
25 %file_path — ['D:\ATMAOMATIKH\Experiments Results\Classical Methods_ValidationImages\3.5\SSR\c_18\",image_name((end-8):(end-4)), " .png"'1;
26 %file_path = ['D:\AIMAOMATIKH\Experiments Results\Classical Methods_validationImages\4.@\SSR\c_18\",image_name((end-8):(end-4)), .png"1;
27 %file_path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods_walidationImages\a.5\SSR\c_1@\',image_name((end-8):(end-a)), " .png'];
28 file_path = ['D:\AIMAOMATIKH\Experiments Results\Classical Methods_validationImages\5.@\SSR\c_10\,image_name((end-8):(end-4))," .png'];
29 imwrite(NL_SSR,file_path);
EL:] end
21 disp(’Done with parameter c=18!°)
32
33 %applying SSR with surround parameter c-120
34 for index-1:numOfImages
35 LL_img = readimage(LL_images,index);
36 imsge_name = char(LL_images.Files(index));
37 %nL_img = readimage(NL_images,index);
38 NL_SSR = SingleScaleRetinex(LL_img,12@);
39 %file_path = ['D:\AIMAOMATIKH\Experiments Results\Classical Methods_ValidationImages\3.@\SSR\cC_120\",image_name((end-8):(end-4))," .
10 %file_path = ['D:\AIMAOMATIKH\Experiments Results\Classical Methods_ValidationImages\3.S\SSR\c_120\",image_name((end-8):(end-4))," .
41 %file_path = ['D:\AIMAOMATIKH\Experiments Results\Classical Methods_ValidationImages\4.@\SSR\c_120\",image_name((end-8):(end-4))," .
42 %file_path — ['D:\AIMAOMATIKH\Experiments Results\Classical Methods_ValidationImages\4.5\SSR\c_120\",image_name((end-8):(end-4)),".
43 file_path - ['D:\AIMAQMATIKH\Experiments Results\Classical Methods_ValidationImages\5.0\SSR\c_128\",image_name((end-8):(end-4)), .pns'1;
44 imerite(NL_SSR,file_path);
4s end
a6 disp('Done with parameter c=120!")
as %applying SSR with surround parameter c=489
a9 for index=1:numOfImages
1) LL_img = readimage(LL_images,index);
51 image_name = char(LL_images.Files(index));
52 %NL_img - readimage(NL_images,index);
53 NL_SSR = singlescaleRetinex(LL_img,48@);
54 %file_path — ['D:\AINAGMATIKH\Experiments Results\Classical Methods_ValidationImages\3.8\SSR\c_4@8@\",image_name({end-8): (end-4)), .png"1;
55 %file_path = ["D:\AINAGMATIKH\Experiments Results\Classical Methods_ValidationImages\3.S\SSR\c_4@@\’,image nzme((end-8):(end-4)), .png"1;
56 %file_path — ['D:\AINAGMATIKH\Experiments Results\Classical Methods_ValidationImages\4.8\SSR\c_4@@\",image_name({end-8): (end-4)), .png"1;
57 %file_path = ['D:\AINAGMATIKH\Experiments Results\Classical Methods_validstionImages\4.S\SSR\c_a@@\’,image_nzme({end-8):(end-4)), .png"1;
58 file_path - ['D:\AINAOMATIKH\Experiments Results\Classical Methods_ValidationImages\5.@\SSR\c_40@\',image_name((end-8):(end-4}), .png" 13
L) imwrite(NL_SSR,fils_path);
68 end
61 disp( 'Cons with parameter c=d@0!')
62 disp( 'Done with validation data!’)
63
64
65 E TEST IMAGES
66
67 %reading the Low Light Data (TEST)
68 %LL_images = imsgeDatastore( D:\AIMAQMATIKH\TEST IMAGES\3.@\LL-3.8");
69 %LL_images = imsgeDatastore(’D:\ATMAQMATIKH\TEST TMAGES\3.5\LL-3.5");
7e %LL_images = imsgeDatastore( D:\AIMNAQMATIKH\TEST IMAGES\4.@\LL-2.8");
71 %LL_images - imsgeDatastore(’D:\AIMAQMATIKH\TEST IMAGES\4.5\LL-%.5");
72 LL_images = imageDatastore( ' D:\AIMAOMATIKH\TEST IMAGES\S.@\LL-5.8°);
73
74 %size of the dataset
75 files - size(LL_images.Files);
76 numofImsges = files(1);
77
78 disp( 'Working on Test imsges...")
79 Zapplying SSR with surround parameter c-10
EES for index=1:numOfImages
81 LL_img - resadimage(LL_images,index);
82 image_name = char(LL_images.Files(index});
83 %NL_img - readimage(NL_images,index);
84 NL_SSR = SingleScaleRetinex(LL_img,18);
£ %file_path = [ D:\AINAGMATIKH\Experiments Results\Classical Methods_TestImages\3.0\SSR\c_18\",image_name((end-8):(end-4)),  .png’
86 %file_path = ['D:\AINAOMATIKH\Experiments Results\Classical Methods_TestImages\3.5\SSR\c_18\",image_name((end-8):(end-4))." .png'1:
87 %file_path = [ D:\AINAGMATIKH\Experiments Results\Classical Methods_TestImages\4.@\SSR\c_18\",image_name((end-8):(end-4)),  .png’
88 %file_path — ["D:\AINAGMATIKH\Experiments Results\Classical Methods_TestImages\4.5\SSR\c_18\", image_name((end-8): (end-4)), " .png' s
29 file_path = ['D:\AINAGMATIKH\Experiments Results\Classical Methods_TestImages\5.8\SSR\c_l1e\’,image_name((end-8):(end-4)), .png'1;
98 imwrite(NL_SSR,file_path);
o1 end
as disnf ' None with nacameter co180°)
o3
94 %applying SSR with surround parameter c=126
=13 for index=1:numOfImages
a6 LL_img = readimsge{LL_images,index);
o7 image_name = char(LL_images.Files{index)};
o8 %NL_img = readimage(NL_images,index);
99 NL_SSR — SingleScaleRetinex(LL_img,12@);
180 %file_path = ['D:\ATNAOMATIKH\Experiments Results\Classical Methods_TestImages\3.8\SSR\c_128\',image_name((end-5):(end-4)), '.png'];
181 %file_path = ['D:\AIMAQMATIKH\Experiments Results\Classical Methods_TestImages\3.5\SSR\c_120\",imags_name({end-8): (end-4))}, .png'];
182 %file_path = ['D:\AIMAQMATIKH\Experiments Results\Classical Methods_TestImages\4.@\SSR\c_120\",imags_name({end-8): (end-4)), .png'];
103 %file path = [ D:\AIMAQMATIKM\Experiments Results\Classical Methods TestImages\4.5\SSR\c_12@\°,image name((end-8):(end-4)), .png’]
104 file_path = ['D:\AINAOMATIKH\Experiments Results\Classical Methods_TestImages\5.2\SSR\c_12@\",image_name((end-8):(end-3)), ' .png'];
185 imwrite(NL_SSR,file_path);
186 end
187 disp({'Done with parameter c=128!')
1es
109 %applying SSR with surround parameter c-48@
1le for index=1:numOfImages
ilsldl LL_img = readimage(LL_images,index);
i3 image_name = char(LL_images.Files{index});
113 %NL_img = readimage(NL_images,index);
114 NL_SSR = SingleScaleRetinex(LL_img,40@);
115 %file_path = ['D:\AINAOMATIKH\Experiments Results\Classical Methods_TestImages\3.@\SSR\c_4@@\',image_name((end-8):(end-4))," .png'];
116 %file_path = ['D:\AINAOMATIKH\Experiments Results\Classical Methods_TestImages\3.5\SSR\c_40@\',image_name((end-8): (end-4))," .png']
117 %file_path = ['D:\ATMAOMATIKH\Experiments Results\Classical Methods_TestImages\4.@\SSR\c_4@8\',image_name((end-8): (end-4))," ' .png']
118 %file_path = ['D:\AIMAQMATIKH\Experiments Results\Classical Methods_TestImages\4.5\SSR\c_480\",image_name((end-8):(end-4)}, .png'];
119 file_path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods_TestImages\5.2\SSR\c_40@\',image_name((end-8):(end-4)), .png'];
128 imwrite(NL_SSR,file_path);
121 end
122 disp{'Done with parameter c=308!')
123 disp('Done with test data!')
124 disp{'Dene!’)

Figure B.2.19: script for applying SSR to validation and test datasets per darkness level




In both cases we read the LL images using Image Datastores, and apply the
SSR function to each image in the respective dataset. Note that since there
is no ideal value of the constant ¢, we apply the method 3 times, for 3
different values of the constant. The results are saved in a folder with an
appropriate name. In addition, we apply the method per darkness level, so
we run the script 5 times, once for each darkness level, uncommenting the
appropriate line each time. We apply this procedure for all sets (training,
validation and test).

After applying this script, we have at our disposal the experimental results
per darkness level and per value of the constant c. We will use these images
to calculate performance metric values. This is done with the script shown
in Figure B.2.20.

1 klose all; clear; clc; format long;
2 tic
E]
4 === === === ============================
= % TRAINING IMAGES
& === === === ============================
7 disp({'Working on Training Images...')
8
9 ¥Ground Truth images
18 NL_images3@ = imageDatastore(’ -3.e");
11 NL_images35 = imageDatastore(’ 3.57);
12 NL_images4@ = imageDatastore(’ 4.2°);
13 NL_images45 = imageDatastore(’ 4.5°);
14 NL_imagesSe = imageDatastore( ' D:hl 5.8°);
15
16 ¥Images from S5R with c=18@
17 NL_exp_res3@ = imageDatastore('D:) OMATIKHYExperiments Resultsh H
18 NL_exp_res35 = imageDatastore(’ ATIKH%Experiments Results H
19 NL_exp_res4@ = imageDatastore(’ ATIKHExperiments Results H
28 NL_sxp_res45 = imageDatastors( 'D:) ATIKHExperiments Results H
21 NL_exp_res3@ = imagelatastore('D:" OMATIKHYExperiments Results‘\Classical Methods\5.@%\55R\c_18°);
22
23 %assessment for 3.0 image dataset
24 metrics_arr3@ = sssessment(NL_images3@,NL_exp_res3@);
25 *%assessment for 3.5 image dataset
26 metrics_arr35 = assessment(NL_images35,NL_exp_res3s);
27 ¥assessment for 4.0 image dataset
28 metrics_arrd@ = assessment(NL_images4@,NL_exp_res4@);
29 tassessment for 4.5 image dataset
38 metrics_arrd5 = assessment(NL_images45,NL_exp_res45);
31 tassessment for 5.@ image dataset
32 metrics_arr5@ = assessment(NL_images5@,NL_exp_ressa);
23
34 ¥columns titles
35 var_names = {'MSE',’PSNR','SSIM",'MV','STD', 'BRISQUE', 'NIQE'};
36
37 %convert the matrices to tables with column names
38 table3@ = array2table(metrics_arr3@, 'VarizbleNames',var_names);
39 table35s = array2table(metrics_arr3s, 'Var mes ', var_names);
49 table4@ = array2table(metrics_arr4@, 'VarizbleMames ' ,var_names);
41 table4s = array2table(metrics_arr4s, 'Va mes ' ,var_names);
42 table5@ = array2table(metrics_arr5e, 'Varis Mames ' ,var_names);
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43
a4
45
46
a7
48
49
1:)
51
52
53
54
55
56
57
3
59
66
61
62
63
64
65
66
67
62
69
7@
71
72
73
74
75
76
77
78
79
28
31
32
83
34
85
26
37
33
39
28
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

¥saving the res
writetable(tabl
writetable(tabl
writetable(tabl
writetable(tabl
writetable(tabl
disp('Done with

%Images from 55
NL_exp_res3a =
NL_exp_res35 =
NL_exp_resd4d =
NL_exp res45 =
NL_exp_ress@ =

¥assessment for
metrics_arr3@ =
¥assessment for
metrics_arr3s =
¥assessment for
metrics_arrdg =
¥assessment for
metrics_arrd4s =
¥assessment for
metrics_arrse =

%columns titles
var_names = {'M

Fconvert the ma

table3® = array2table(metrics_arr3e, 'VarizbleNames' ,var_names)
table35 = array2table(metrics_arr3s,'VarisbleNames' ,var_names);
bE

ults to an excel file

e3@, 'S5R_cl@_sssessment_training.xlsx', 'Sheet',’3.8")
€35, '55R_cl@_sssessment_training.xlsx', 'Sheet',’3.5")
4@, "55R_cl@_sssessment_training.xlsx', 'Sheet','4.@")
245, '55R_c10_zssessment_training.xlsx', 'Sheet','4.5")
e58, "'SSR_cl16_assessment_training.xlsx', 'Sheet','5.8")

c=10!")

R with c=128@

imageDatastore( 'D: \AINAOMATIKH\Experiments
imageDatastore( 'D: \AINAQMATIKH\Experiments
imageDatastore( 'D: \AIMAOMATIKH\Experiments
imageDatastore( 'D:\AINAOMATIKH\Experiments
imageDatastore( 'D: \AINAOMATIKH\Experiments

3.2 image dataset
assessment{NL_images3@,NL_exp_res3@);
3.5 image dataset
assessment{NL_images35,NL_exp_res35);
4.8 image dataset
sssessment{NL_images4@,NL_exp_res4@);
4.5 image dataset
assessment{NL_images45,NL_exp_res4s);
5.8 image dataset
sssessment{NL_imagesS0,NL_exp_ressa);

SE', 'PSNR', " 5SIM’

trices to tables with column names

Results'iClassical Methods\3.8\55R\c_120");
Results\Classical| Methods\3.5\55R\c_128");
Results'Classical Methods'\4.8%\558\c_120");
Results'Classical Methods'\4.5\558\c_120");
Results'iClassical Methods\5.8%\55R\c_120");

LMV, STD', TBRISQUE®, "NIQE'};

3

tabled4® = array2table(metrics_arr4@, 'VarizbleNames' ,var_names
table45 = array2table(metrics_arras, 'VariableNames',var_names);

tableS@ = array2table(metrics_arrse, 'VariableNames',var_names);

%saving the res
writetable(tabl
writetable(tabl
writetable(tabl
writetable(tabl
writetable(tabl
disp('Done with

¥Images from S5
NL_exp_res3a
NL_exp_res35 =
NL_exp_resd4a =
NL_exp_resd45 =
NL_exp_ressa =

¥assessment for
metrics arr3e =
¥assessment for
metrics arr3s =
¥assessment for
metrics arrdg =
¥assessment for
metrics_arrds =
¥assessment for
metrics_arr5e =

¥columns titles

ults to an excel file

e38, "SSR_c128_assessment_training.xlsx', 'Sheet','3.8");
e35, 'S5R_cl12@_sssessment_training.xlsx’, 'Sheet’, '3.5"');
4@, "55R_cl2@_sssessment_training.xlsx’, 'Sheet', '4.2");

€45, "55R_cl2@_sssessment_training.xlsx’, 'Sheet', '4.5
e5@, "SSR_c128_assessment_training.xlsx®, 'Sheet','5.8’

c=1201")

R with c=4@@

= imasgeDatastore( ' D: \AINAOMATIKH Experiments

imageDatastore( ' D: \AINAOMATIKH\Experiments
imageDatastore( ' D: \AINAOMATIKH\Experiments
imageDatastore( ' D: \AINAOMATIKH\Experiments
imageDatastore( ' D: \AINAOMATIKH\Experiments

3.0 image dataset
assessment(NL_images3@,NL_exp_res3@);
3.5 image dataset
assessment(NL_images35,NL_exp_res35);
4.8 image dataset
assessment(NL_images48,NL_exp_res4d@);
4.5 image dataset
sssessment(NL_imagesa5,NL_exp_resd5);
5.8 image dataset
sssessment(NL_images5@,NL_exp_res50);

Results'Classical Methods\3.@%55RN\c_40@");
Results\Classical| Methods\3.5455R\c_488");
Results‘\Classical| Methods\4.84\55R\c_4088");
Results\Classical| Methods'\4.5455R\c_488");
Results‘\Classical| Methods\5.8455R\c_488");

var_names = {'MSE’, PSNR','SSIM’,'MV', STD', BRISQUE", 'NIQE'};

¥convert the ma
table3e@ = array
table35 = array
tablede = array
tabledas = array
tables@ = array

¥saving the res
writetable(tabl
writetable(tabl
writetable(tabl
writetable(tabl
writetable(tabl
disp('Done with
disp('Done with

trices to tables with column names

2table(metrics_arr3e, 'VarizbleNames ' ,var_names);
2table(metrics_arr3s, 'VariszbleNames ' ,var_names);
2table(metrics_arrdd, 'VarizbleNames ' ,var_names);
2table(metrics_arras, 'VarisbleNames ' ,var_names);
2table(metrics_arrs5e, 'VarisbleNames ' ,var_names);

ults to an excel file

230, "S5R_c488_sssessment_training.xlsx’, 'Sheet’,
235, "S5R_c488_sssessment_training.xlsx’, "Sheet',’
e4@, "S5R_c488_sssessment_training.xlsx", 'Sheet’,
245, "S5R_c488_sssessment_training.xlsx', 'Sheet’,
258, "S5R_c488_sssessment_training.xlsx", 'Sheet',’

c=408!")
Training Images!")

[N, T )
L

3.
3.
4.
4.
5.
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126
127
128
129
130
131
132
123
134
135
136
137
138
139
149
141
142
143
144
145
146
147
148
149
158
153
152
153
154
55
156
157
158
159
160
161
162
163
164
165
166
167
168
169
i7e
171

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
288
201
202
203
284
205
286
2a7
288
289
21@
211
212
213
214
215

% VALIDATION IMAGES
%,
disp('Working with validation Images...')

#Ground Truth images

ML_images3® = imageDatastore( D:\AINAOMATIKHVWALL
ML_images35 = imageDatastore('D:‘\AINAMATIKHVWALL
NL_images4® = imageDatastore( D:‘\AINAOMATIKHAVALT
NL_images45 = imageDatastore('D:\AINAOMATIKH\VALI
ML_images5® = imageDatastore( D:\AINAOMATIKHVWALL

#Images from S5R with c=1@

NL_exp_res3@ = imageDatastore('D:\AINAOMATIKH\Exp
ML_exp res35 = imageDatastore( D: \AIMAQMATIMH)\Exp
ML_exp_res4@ = imageDatastore( D: \AIMAQMATIMH\Exp
ML_exp_res45 = imageDatastore('D: \AIMAQMATIKH\Exp
NL_exp_res58 = imageDatastore('D: \AINAOMATIKH\Exp

Xassessment for 3.9 image dataset
metrics_arr3@ = assessment(NL_images30,NL_exp_res
%assessment for 3.5 image dataset
metrics_arr35 = assessment(NL_images35,NL_exp_res
Xassessment for 4.9 image dataset

DATION IMAGESY3.@\NL-3.2'});
DATION IMAGES%3.5%\NL-3.5');
DATION IMAGESh4.@\NL-4.8');
DATION IMAGES“4.5%\NL-4.5"});
DATION IMAGES\5.@\NL-5.2'});

eriments Results‘Classical Methods_ValidationImages\3
eriments ResultshClassical Methods ValidationImzges'2
eriments ResultshClassical Methods_VvalidationImages'4
eriments Results‘Classical Methods_ValidationImages'4
eriments ResultshClassical Methods_ValidationImages\5

3@);

35);

metrics_arr4® = assessment(NL_images4@,NL_exp_ress4@);

%assessment for 4.5 image dataset

metrics_arrd5 = assessment(NL_images45,NL_exp_resd5);

Xassessment for 5.9 image dataset

metrics_arr5@ = assessment(NL_imagesso,NL_exp_res

%columns titles

var_names = {'MSE',"PSNR','SSIM','Myv','STD', BRIS
¥convert the matrices to tables with column names
table3d = array2table(metrics_arr3@, 'VariablsName
table35 = array2table(metrics_arr35, 'VariableMame
table4® = array2table(metrics_arr4e, 'VariableName
table4s = array2table(metrics_arr4s, 'VariableName
table5@ = array2table(metrics_arr5@, 'VariabhleName

¥saving the results to an excel file

writetable(table3@, 'SSA_cl@_assessment_validation.
writetable(table35, 'S5R_c1@_assessment_vaslidation.
writetable(table48, 'SSR_c1@ assessment_vaslidation.
writetable(table45, "SSR_c1@_assessment_validation.
writetable(table5@, 'SSR_cl@_assessment_validation.

disp('Done with c=1@!")

XImages from SSR with c=12@

NL_exp_res3@ = imageDatastore( D:\AIMAQMATIKH\Experiments Results\Classical Methods_validationImages\3.2%55R%c_1207)
AINAQMATIKH\Experiments Results\Clsssical Methods_ValidstionImages'\3.5%SSR%\c_12@")
AINAOMATIKHExperiments ResultsiClassical Methods_walidationImages'4.8%\SS5R\c_120°);
)
)

(
NL_exp_res35 = imageDatastore(
NL_exp_res4a imageDatastore(

NL_exp_res45 = imageDatastore(’

¥assessment for 3.2 image dataset

5@);
QUE", "NIQE"};

s',var_names);
s',var_names);
s, var_names);
)
)

s',var_names);

s',var_names);

xlsx', "Sheet’,'2.27);
xlsx', "Sheet’,'32.5");
xlsx', 'Sheet’,'4.28");
xlsx', "Sheet’, '4.5");
xlsx', "Sheet’,'5.2");

AAINAOMATIKH\Experiments ResultsiClassical Methods_WalidationImasges'\4.5%S5R\c_12@°
NL_exp_res58 = imageDatastore('D:\AIMAOMATIKH\Experiments Results\Classsical Methods ValidationImages\5.8%SSR\c_128"

metrics_arr3® = assessment(NL_images3@,NL_exp_res3@);

Hassessment for 3.5 image dataset

metrics_arr35 = assessment(MNL_images35,NL_exp_res35);

Hassessment for 4.9 image dataset

metrics_arr4@ = assessment(NL_images4@,NL_exp_res4@);

Hassessment for 4.5 image dataset

metrics_arr4s = assessment(NL_images45,NL_exp_res45);

Hassessment for 5.@ image dataset

metrics_arr5@ = assessment(NL_images56,NL_exp res58);

#columns titles

var_names = {'MSE',"PSNR','SSIM', 'MV', 'STD", BRISQUE", '"NIQE"};

#convert the matrices to tables with column names
table3® = array2table(metrics_arr3e, 'VarisbleNames
table3s = array2table(metrics_arr3s, 'VarisbleNames
table42 = array2table(mstrics_arr4e, 'VarizbleNames
tableas = array2table(metrics_arr4s, 'VarizbleNames
tables@ = array2table(mstrics_arrse, 'VarizbleNames

¥saving the results to an excel file

writetable{table3@, 'SSR_cl22 assessment_welidation.
writetable{table35, "SSR_c12@_assessment_wvslidation.
writetable(table4®, 'S5R_c128_assessment_validation.
writetable(table45, 'SS5R_c12@_assessment_validation.
writetable(table5@, "'SSR_c12@_assessment_validation.

disp('Done with c=12a!")

#Images from SSR with c=40@8
NL_exp_res3@ = imageDatastore(’

NL_exp_res3s imageDatastore(’

NL_exp_resda

AAINAOMATIKH\Experiments ResultsiClassical Methods_ValidstionImages'3
SNAIMAOMATIKHYExperiments Resultsi\Classical Methods validationImagesh3
imageDatastore( 'D: \AINAOMATIKH Experiments ResultsiClsssical Methods WalidstionImages'4
NL_exp_res45 = imageDatastore( 'D:\AIMAOMATIKH\Experiments Results\Clsssical Methods WalidstionImages'4

" ,Var_names);

)

" ,Var_names);

,var_names);
)
)

svar_names);

svar_names);

xlsx','Sheet','3.0");
xlsx', 'Sheet','3.5");
xlsx', 'Sheet',"4.0");
5°)
a’)

H
H

H

xlsx',"'Sheet', "4,
wlsx","Sheet','S

H

.@\SSR\c_1a');
L54SSRAC_18');
LB\SSRYC_18');
LSWSSRAc_187);
.@\SSR\c_1a');

H

H

H

H

.@\SSR\c_480");
.5\SSR\c_480');
LB\SSR\c_480');
L5\SSR\c_480');

NL_exp_res58 = imageDatastore('D:\AIMAOMATIKH\Experiments Results‘\Classical Methods_ValidastionImages\5.8%S5R\c_488");
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216
217
218
219
228
221
222
223
224
225
226
227
228
229
238
231
232
233
234
225
236
237
238
239
248
241
2432
243
244

245
246
247
248
249
258
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
278
271
272
273
274
S
276
277
278
279
288
281
282
283
284
285
286
287
288
289
298
291
292

Xasses
metric
Xasses
metric
Xasses
metric
Xasses
metric
Xasses
metric

Xcolum

var_na

sment for
s_arrig =
sment for
s_arris =
sment for
s_arrdg =
sment for
s_arrd4s =
sment for
s_arrze =

ns titles

mes =

3.2 image dataset
assessment({NL_images3@,NL_exp_res3@);
3.5 image dataset
assessment{NL_images35,NL_exp_res35);
4.2 image dataset
assessment{NL_images4@,NL_exp_res4a);
4.5 image dataset
assessment({NL_images45,NL_exp_res45);
5.8 image dataset
assessment({NL_imagesS@,NL_exp_res5e);

{"MSE®,"PSNR', SSIM","MW', 'STD', "BRISQUE", "NIQE'};

Fconvert the matrices to tables with column names

table3
table3
table4
tablesq
table5s

B =
5 =
B =
5 =
B =

array2table(metrics_arr3a,
array2table(metrics_arr3s,
array2table(metrics_arr4a,
array2table(metrics_arr4s,
array2table(metrics_arrsa,

¥saving the results to an excel file

writetable(table3n, "SSR_c498_ assessment_walidation.xlsx', 'Sheet',”
writetable(table35, "S5R_c40@_assessment_wvaelidation.xlsx', "Sheet’,”
writetable(tabled4d, "SSR_c40@_ assessment_walidation.xlsx', 'Sheet',"
writetable(tabled5, "S5R_c40@_sasssessment_wvalidation.xlsx', 'Sheet’,”
writetable(tableSe, "SSR_c4P@_assessment_walidation.xlsx', 'Sheet’,”

disp( 'Done with c=488!")
disp('Done with Validation Images!’)

‘WariableNMames' ,var_names);
'WariableNames' ,var_names);
"WarisbleNames' ,var_names);
'WariableNames' ,var_names);
"WarisbleNames' ,var_names);

%*

TEST IMAGES

disp( ‘working

#Ground Truth
NL_images3e =
NL_images3s =
NL_images4e =
NL_images45 =
NL_images58 =

#Images from
MNL_exp_res3@
MNL_exp_res35
NL_exp_resda
NL_exp_res4s
MNL_exp_resse

Fassessment
metrics_arr3e
%assessment T
metrics_arr3s
¥assessment T
metrics_arrdd
Fassessment F
metrics_arr4s
¥assessment T
metrics_arr5e

Fcolumns titl
var_names =

with Test Images...

images

imageDatastore(’
imageDatastore(’
imageDatastore(’
imageDatastore(’
imageDatastore(’

S5R with c=1@

= imageDatastore(
= imageDatastore(
= imageDatastore(
= imageDatastore(
= imageDatastore(

or

= assessment{NL_:
3.5 image dataset
= assessment{NL_:

or

or

= assessment{ML_:

or

or

es

)

D:AATAAOMATIKHYTEST IMAGESHS
D NAIMAQMATIKHYTEST IMAGESYS
D \AINAQMATIKHATEST
D:\AIMAOMATIKHATEST

D NATAAOMATIKHYTEST TMAGESHLS

'D: NAIMAOMATIKH\Experiments
"D NAIMAOMATIKHAExperiments
"D VATNAOMATIKH Experiments
'D:\AINAOMATIKH\Experiments
"D NAIMAOMATIKH\Experiments

1.2 image dataset

images3@,NL_exp_res3@);

images35,NL_exp_res35);

4.8 image dataset

images4@,NL_exp_resdd);

4.5 image dataset
= assessment{MNL_:
5.2 image dataset
= assessment{NL_:

images45,NL_exp_res45);

images5@,NL_exp_res5@);

%convert the matrices to tables with column names

table3@ =
table3s =
tablede =
tableds =
tableSe =

array2table(metrics_arr3a,
array2table(metrics_arr3s,
array2table(metrics_arr4e,
array2table(metrics_arr45s,
array2table(metrics_arr5a,

‘VariableNames ' ,var_na
‘variableNames',var_na
‘variableNames ' ,var_na
'VariableNames',var_na
‘VariableMames',var_nai

¥saving the results to an excel file

writetable(ta
writetable(ta
writetable(ta
writetable(ta
writetable(ta
disp('Done wi

bleza,
ble3s,
bledad,

"SSR_cl@_as
'SSR_clé_as
'SS5R_cl@_as
bled4s, 'S5R_cl@_as
bles@, 'S5R_cl@_as
th e=18!1")

xlzx', Sheet’,
xlsx', 'Sheet’,

.xlsx"',"Sheet”,

sessment_test
sessment_test
sessment_test
.xlsx"', Sheet”,
xlsx"', Sheet”,

sessment_test
sessment_test

483

IMAGES 4.@\NL-4.
IMAGESY4.5\NL-4.

LB\NL-3.8');
L5\NL-3.5');
e');
50
LB\NL-5.8");

Results'Classical Methods_TestImages'3
Results\Classical Methods_TestImages\3
ResultshClassical Methods_TestImagesi4
ResultshClassical Methods_TestImages'4
ResultshClassical Methods_TestImages)\5

{'MSE", 'PSNR", "SSIM', "MV", 'STD", "BRISQUE", 'NIQE"};

mes);
mes);
mes);
mes);
mes);

'3.8")
'3.5%)
‘a.e');
*a.5%)
'5.8")

@ owm @ o &
et ot et
e W

[

LB\SSRYc_18');
LSVSSRY\C_18');
.B\SSRYc_18");
LSWSSRYe_18');
LB\SSRYC_18');

—
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293

294 %Images from SSR with c=128@

295 NL_exp_res30 = imageDatastore( 'D:“\ALMAIMATIKHYExperiments Results‘Classical Methods_TestImages\2.@\S5R\c_128");
296 NL_exp_res35 = imageDatastors( 'D:\AIMAOMATIKH \Experiments Results'Classical Methods_TestImages\3.5\S5R4c_128");
297 NL_exp_res4® = imageDatastore(’ ATTIKHYExperiments Results‘(Classical Methods_TestImages\4.@\55R%c_128");
208 ML_exp_res45 = imageDatastors(' MIMATIKH\Experiments Results\Classical Methods TestImages\4.5\55R%c_120");
299 NL_exp_res5® = imageDatastore( 'D:\AIMAIMATIKHYExperiments Results‘Classical Methods_TestImages\5.@\55R%\c_128");
Joea

381 %assessment for 3.2 image dataset

382 metrics_arr3@ = assessment(NL_images38,NL_exp_res38);

383 %assessment for 3.5 image dataset

3e4 metrics_arr35 = assessment({NL_images35,ML_exp_res35);

3es ¥assessment for 4.2 image dataset

Jeoe metrics_arr4@ = assessment(NL_images4@,NL_exp_res4@);

387 %assessment for 4.5 image dataset

3es metrics_arrd45 = assessment(NL_images45,NL_exp_resd5);

389 %assessment for 5.8 image dataset

31e metrics_arrse = sssessment(NL_imagessS@,NL_exp_resse);

311

312 ¥columns titles

313 var_names = {'MSE’, 'PSMR', SSIM", "MV","STD", 'BRISQUE", '"NIQE"};

314

315 ¥convert the matrices to tables with column names

316 table3@ = array2table(metrics_arr3e, 'VarizbleNames',var_names);

317 table3s = array2table(metrics_arr3s, 'VariableNames®,var_names);

318 table4l = array2table(metrics_arr4e, 'VariableNames®,var_names);

319 tabled45 = array2table(metrics_arr45, 'VariableNamss',var_names);

328 table5@ = array2table(metrics_arr5@, 'VariableNames',var_names);

321

322 ¥saving the results to an excel file

323 writetable(table3@, 'SSR_c12@_sssessment_test.xlsw', 'Sheet',’3.0");

324 writetable(table35, 'SSR_c12@_sssessment_test.xlsx', 'Sheet’,"3.5");

325 writetable(tabled4@, 'SSR_c12@_sssessment_test.xlsx', 'Shest',’4.8");

326 writetable(tabled5, 'SSR_c12@8_assessment_test.xlsx', 'Sheet','4.5");

327 writetable(table5@, 'S5R_c128_sssessment_test.xlsx', 'Sheet','5.8");

328 disp({'Done with c=120!")

329

338 %Images from SSR with c=4@8@

331 NL_exp_res30 = imageDatastors( 'D:M\ALMAOMATIKHAExperiments Results‘Classical Methods_TestImages\3.@2\S5RY\c_4@8°");
332 NL_exp_res35 = imageDatastore(’ ATAAIMATIKH\Experiments Results'Classical Methods_TestImages\3.5\55R%c_4@@");
333 NL_exp_resd4@ = imageDatastors(' WATIKH\Experiments ResultsiClassical Methods TestImages\4.2\55R%c_480");
334 NL_exp_res45 = imageDatastors(’ TIKH\Experiments ResultshClassical Methods _TestImages\4.5\55RYc_4@0°);
335 NL_exp_res50 = imageDatastore( 'D:\ALMAMATIKHYExperiments Results‘\Classical Methods_TestImages\5.@\S5R\c_488°");
336

336

337 ¥assessment for 3.8 image dataset

338 metrics_arr3® = assessment({NL_images3®,NL_exp_res3a);

339 ¥assessment for 2.5 image dataset

348 metrics_arr3S = assessment{NL_images35,NL_exp_res35);

341 ¥assessment for 4.8 image dataset

342 metrics_arrd® = assessment({NL_images48,NL_exp_resda);

343 ¥assessment for 4.5 image dataset

344 metrics_arrd4S = assessment{NL_images45,NL_exp_resd45);

345 ¥assessment for 5.8 image dataset

346 metrics_arrse = assessment({NL_images5®,NL_exp_ressa);

347

248 ¥columns titles

349 var_names = {'MSE’,"PSNR', 'SSIM", 'MV',"STD', 'BRISQUE', "NIQE"};

3te

351 ¥convert the matrices to tables with column names

352 table3® = array2table(metrics_arr3@, 'VariableMames',var_names);

353 table35 = array2table(metrics_arr35, 'VarisbleMames',var_names);

354 table4a® = array2table(metrics_arr4e, 'VariableNames® ,var_names);

3ES tabled45 = array2table(metrics_arr45, 'VariableMNames ' ,var_names);

356 tableS® = array2table(metrics_arr5e, 'VarisbleMames',var_names);

357

358 ¥saving the results to an excel file

359 writetable(table3d, "55R_c402_sssessment_test.xlsx', 'Sheet’,’'3.8");

3668 writetable(table35, "S5R_c408 _sssessment_test.wlsx', 'Sheet’,'3.5");

361 writetable(tabled®d, "SSR_c408 assessment_test.xlsx', 'Sheet’,"4.8');

362 writetable(table45, "S5R_c4@2_sssessment_test.xlsx', 'Sheet’, "4.5");

363 writetable(table5d, "SSR_c402_sssessment_test.xlsx', 'Sheet’,'5.8");

364 disp{ 'Done with c=48a!")

365 disp{ 'Done with Test Images!"')

366 dizsp( 'Donel")

Figure B.2.20: Assessment script for SSR

484

—
| S—



We read the experimental results as well as the ground truth images, using
Image Datastores, and apply the assessment function that calculates the
values of the metrics per image. The result is saved in an excel file with a
suitable name. This procedure is applied for all darkness levels, so the final
excel will have 5 sheets, one for each darkness level. In addition, this
procedure is applied for all values of the constant ¢ and for all sets (training
validation and test), so at the end we will have 9 excel files that will each
have 5 sheets, one for each darkness level. This data can then be used to
evaluate the performance of the algorithm.

Multi Scale Retinex

The function that implements the MSR method is shown in figure B.2.21
below. The function takes as input the LL image that we want to enhance,
as well as the 3 values of the constants c that the method needs. Then we
check if the values of the constants belong to the desired range, and if they
don't then the algorithm stops and displays a relevant error. If the values
belong to the range we want, then we define an empty table with the same
dimensions as the input image. Then we apply the method per band.
Specifically, we apply the Single Scale Retinex function, described above,
for each value of the constant, sum the results and divide by 3. Finally, we
convert the result to uint8, since we want to return an image and not just
an array of values.
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1 Hunctiun ML_image = HultiScaleRetinex{LL_image,c_ﬁmall,c_medium,c_hig).
2
3 f==========================================================================
4 % This function implements the Multi Scale Retinex method for low
5 % light image enhancement reasons. Function inputs:
6 % 1) LL_image: the low light image
7 & 2) c_small: value of the small scale (<=28)
8 %  3) c_medium: value of the medium scale (>28, <=288)
q % 4) c_big: value of the big scale (>20a)
18 %  Outputs the enhanced normal light image
11 %  Article Reference:
12 #* 0. J. Jobson, Z. Rahman and G. A. Woodell,
13 % "A multiscale retinex for bridging the gap between color images
14 % and the human observation of scenes,” in IEEE Transactions on Image
15 % Processing, vol. 6, no. 7, pp. 965-976, July 1997,
16 & doi: 10.118%/83.597272.
17 &
18 - Function Author: Panagiotis Koutsaftis
19 %
28 o mmmm e e
21
22 #checking the wvalues of the surround parameters
23 if c_smzll > 2@
24 error('c_small must be smaller of or equsl to 28.7)
a5 end
26 if c_medium<=26 || c_medium>208
27 error('c_medium must be in the range [20,208).")
28 end
29 if c_big<=280
30 error('c_big must be bigger than 28@.")
31 end
32
323 %size of the input image
34 [rows,columns,bands] = size(LL_image);
35
36 %initializing the Retinex output with zeros
37 R_msr = zeros{rows,columns,bands);
33
39 #calculating the Retinex output
48 for band=1:bands
41 R msr(:,:,band) = {double(SingleScaleRetinex(LL_image(:,:,band),c_small})
42 +double(SinglescaleRetinex({LL_image(:,:,band),c_medium}) ...
43 +double(SingleScaleRetinex({LL_image(:,:,band),c_big))).*(1/3);
a4 end
45
46 #final output as uintd
47 ML_image = uvintd3(R_msr);

Figure B.2.21: Implementation of MSR

We will apply this function to all images in the dataset. This is done with
the scripts presented in Figures B.2.22 and B.2.23, below.
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1 close all; clear; clc; format compact;

2

3

4 %loading the data

= %LL_images = imageDatastore('D:\AINAOMATIKH\TRAINING TMAGES\3.@\LL-3.8'});

6 %LL_images = imageDatastore(’'D:\AINAQMATIKH\TRAINING IMAGES\3.5\LL-3.5'});

7 %LL_images = imageDatastore :NAIMAQMATIKH\TRAINING IMAGES\4.@\LL-4.8");

8 %LL_images = imageDatastore SAIMAQMATIKHA\TRAINING IMAGES\4.5%\LL-4.5");

2] LL_images = imageDatastore('D:\AINAOMATIKH\TRAINING IMAGESY5.2%LL-5.@")
1@
11 ¥cize of the dataset
12 files = size(LL_images.Files);
13 numDfImages = files(1);
14

15 %applying MSR with surround parameters c_small=19, c_medium=128, c_big=40@

16 for index=1l:numOfImages

17 LL_img = readimage(LL_images,index);

18 image_name = char(LL_images.Files(index));

19 %NL_img = readimage(NL_images,index);

28 ML_MSR = MultiscsleRetinex(LL_img,l@,120,40@);

21 %file_path = ['D:\AINAGMATIKH\Experiments Results‘Classical Methods\3.@\M5R\",image_name((end-8):(end-4)), g
22 %file_path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods\3.5\MSR\',image_name((end-8):(end-4)}), ng
23 %file_path = ['D:\ATMAGMATIKH\Experiments Results‘Classical Me s 1SR\ ", image_name((end-8): (end-4)), g’
24 #file_path = [ 'D:\AINAQMATIKH\Experiments Results\Classical Methods'4.5\MSR\',image_name((end-8):(end-4)}), .png
25 file_path = ['D:%AINAOMATIKH\Experiments Results\Classical Methods\3.2%MSR\',image_name((end-8):(end-4))," .png’
26 imwrite(NL_MSR,file_path);

27 end

Figure B.2.22: script for applying MSR to training dataset per darkness level

We read the images using Image Datastores and then apply the method to
each image in each set. For values of the constants we use 10, 120 and 400,
which are also the experimental values we used in the case of SSR. The
results are saved in an appropriate folder. We apply this process 5 times,
once for each darkness level, uncommenting the appropriate line each time.
We apply the same procedure for the validation and test sets, as shown in

figure B.2.23.
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1 klose all; clear; clc; format compact;

2

3

4 % VALIDATION IMAGES

5

6 %reading the Low Light Data (VALIDATION)

7 %LL_imsges = imageDatastore(’D:\AINAOMATIKH\VALTDATION IMAGES\3.@\LL-3.@");

a8 HLL_images = imageDatastore('D:\AINAOMATIKH\VALIDATION IMAGES\3.S5\LL-3.5');

a %LL_imsges = imageDatastore(’D:\AINAOMATIKH\VALTDATION IMAGES\4.@\LL-4.@");

1a HLL_images = imageDatastore('D:\AINAOMATIKH\VALIDATION IMAGES\4.S5\LL-4.5');

11 LL_images = imageDatastore('D: MATIKH\VALIDA TMAGES\S.8\LL-5.8");

12

13 %size of the dataset

14 files = size(LL_images.Files);

15 num0fImeges = files(1);

16

17 disp('working on validstion images...')

18 %applying MSR with surround parameters c_small=18, c_medium=120, c_big=4@@

19 for index=1:numofImsges

28 LL_img = readimsge(LL_images,index);

21 image _name = char(LL_images.Files(index));

22 ¥HL_img = readimage(NL_images,index);

23 NL_MSR = MultiScaleRetinex(LL_img,10,120,408);

24 %file_path = ['D:\AINMAQMATIKH\Experiments Results\Classical Methods_ValidationImages\3.@\MSR\',image_name((end-8):(end-4))," .png'];
25 %file_path = ['D:\AIMAQMATIKH\Experiments Results\Classical Methods_ValidationImages\3.5\MSR\',image_name((end-8): (end-4)), .png’];
26 %file_path = [ 'D:\AIMAQMATIKH\Experiments Results\Classical Methods_ValidationImages\4.@\MSR\',image_name((end-8): (end-2)),".png’];
27 %file_path = ['D:\AIMAQMATIKH\Experiments Results\Classical Methods_ValidationImages\4.5\MSR\',image_name((end-8): (end-4)), .png’];
28 file_path = ['D:\AINAQMATIKH\Experiments Results\Classical Metheds WalidationImages\5.@\MSR\',image_name((end-8):(end-4)), .png'];
29 imurite(NL_MSR,file_path);

38 end

31 disp('Done with validation images!')

32

32

33

34 -1 TEST IMAGES

25

36 #reading the Low Light Data (TEST)

37 ELL_images = imageDatastore('D:\AIMAOMATIKHATEST IMAGES\3.@\LL-3.8");

38 %LL_images = imageDatastore(D:\ATMAOMATIKH\TEST IMAGES\3.5\LL-3.5");

39 %LL_images = imageDatastore(’D:\AIMAOMATIKH\TEST IMAGES\4.8\LL-4.8');

40 %LL_images = imageDatastore(D:\AIMAOMATIKH\TEST IMAGES\&4.5\LL-4.5);

41 LL_images = imageDatastore( 'D:\AIMAOMATIKH\TEST IMAGES\S.@\LL-5.8");

42

43 #size of the dataset

44 files = size(LL_images.Files);

45 numofImages = files(1);

45

47 disp('Working on Test images...')

43 %applying MSR with surround parameters c_small=18, c_medium=128, c_big=488

49 for index=1:num0OfImages

58 LL_img = readimage(LL_images,index);

o1 image_name = char(LL_images.Files(index));

52 %NL_img = readimage(NL_images,index);

53 NL_MSR = MultiScaleRetinex(LL_img,1@,120,408);

54 %file_path = ['D:\AINAGMATIKH\Experiments Results\Classical Methods_TestImages\3.@\MSR\',image_name((end-8):(end-4)), " .png'];
55 %file_path = ['D:\ATNAOMATIKH\Experiments Results\Classical Methods_TestImages\3.5\MSR\",image_name((end-8):(end-4)),".png"1;
56 %file_path = ['D:\AINAOMATIKH\Experiments Results\Classical Methods_TestImages\4.@\MSR\',image_name(({end-8):(end-4)),".png"];
57 %file_path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods_TestImages\4.5\M5R\",image_name((end-8):(end-4)),".png"];
58 file_path = ['D:\AINAOMATIKH\Experiments Results\Classical Methods_TestImages\5.8\MSR\',image_name((end-8):(end-4)), .png'1;
59 imwrite(NL_MsSR,file_path);
66 end
61 disp{'Done with test images!")
62 disp('Done!")

Figure B.2.23: script for applying MSR to validation and test datasets per darkness
level

After applying this procedure, we have the experimental results at our
disposal. Based on these we will calculate values of performance metrics,
which will be used to evaluate the algorithm. This is done with the script
shown in Figure B.2.24.
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1

klose all; clear; clc; format long;

tic

MNL_images3@ =
ML_images35 =
MNL_images4@ =
ML_images45 =
ML_imagess@ =

imageDatastore( D: WAINAOMATIKHYTRAINING
imageDatastore( D: WAINAOMATIKHYTRAINING
imageDatastore( D: WAINAOMATIKHYTRAINING
imageDatastore( D: WAINAOMATIKHYTRAINING
imageDatastore( D: WAINAOMATIKHYTRAINING

MAGES\3.0\MNL-3.2")
MAGESN\3.5\ML-3.5")
MAGES \4.@\NL-2.2");
MAGES 4 .5\MNL-2.5")
MAGES\5.0\MNL-5.@2")

THE MSR

METHOD

NL_exp_res3a =
NL_exp_res3s =
NL_exp_resd4a =
NL_exp_resd4s =
NL_exp_res5@ =
%assessment for 3.8 image dataset
metrics_arrie =
%assessment for 3.5 image dataset
metrics_arr3s =
¥assessment for 4.8 image dataset
metrics_arrd4@ =
%assessment for 4.5 image dataset
metrics_arrd4s =
¥assessment for 5.8 image dataset

metrics_arrse =

%columns titles

imageDatastore( 'D: \ATMNADMATIKH\Experiments
imageDatastore( 'D: \AIMNAOMATIKH\Experiments
imageDatastore( 'D: \AIMAOMATIKH\Experiments
imageDatastore( 'D: \AIMNAOMATIKH\Experiments
imageDatastore( 'D: \AIMNAOMATIKH\Experiments

Methods'\3.

Results\Classical
Results\Classical| Methods\3.5\M5R");
ResultsiClassical Methods\4.8%M3R');
Results\Classical| Methods\4.5\M5R");
Results\Classical| Methods\5.8\M5R");

assessment{NL_images30,NL_exp_res3a);
assessment{NL_images35,NL_exp_res35);
assessment{NL_images40,NL_exp_res4a);
assessment{NL_images45,NL_exp_res45);

assessment{NL_images58,NL_exp_res5a);

var_names = {'MSE’, PSNR',"SSIM', 'My', 'STD', BRISQUE', 'NIQE"};

#convert the matrices to tables with column names

table3@ = array2table(metrics_arr3@, 'VariableNames',var_names);
table35 = array2table(metrics_arr35, 'VarizbleNames',var_names);
table4@ = array2table(metrics_arrd4@, 'VarizbleNames',var_names);
tableas = array2table(metrics_arr4s, 'VarizbleNames',var_names);
table5@ = array2table(metrics_arr5@, 'VarisbleNames',var_names);

¥saving the results to an excel file

writetable(table3@, 'MSA_assessment_training.xlsx', 'Sheet’, "3,
writetable(table3s, 'MSR_assessment_training.xlsx', ' sheet”, '3,
writetable{tabled4d, 'MSR_assessment_training.xlsx', 'Sheet”, '4.
writetable(table45, 'MSR_assessment_training.xlsx', 'Sheet’, '4.
writetable{table5@, 'MSR_assessment_training.xlsx', 'Sheet”, '5.

disp({'Done with Training Images!')

[T R ]

VALIDATION IMAGES

isp('Werking on validstion Images...")

2 3R 32 O 38 3% a0 3R af

GROUND TRUTH IMAGES

NL_images3@ =
NL_images3s =
NL_images4a =
NL_images4s =
NL_images5@ =

imageDatastore( D:
imageDatastore('D:
imageDatastore( 'D:
imageDatastore('D:
imageDatastore('D:

WAIMAOMATIKHWWALIDATION
WATIAAGMATIKHAWALIDATION
WAIMAOMATIKHWWALIDATION
WAIMAOMATIKHVWALIDATION
AAINAOMATIKHYWALIDATION

IMAGESY3.@\NL-3.8")};
TMAGESY3.5%NL-3.5");
IMAGES 4. @YNL-4.2");
IMAGESY4.5%NL-4.5");
IMAGESY5.@ \NL-5.2");

kS

i€

IMAGES FROM THE

MSR METHOD

NL_exp res3@
NL_exp_res35
NL_exp_res4e
NL_exp_res45
NL_exp_res5e

imageDatastore( ' D: WAIMAOMATIKH\Experiments
imageDatastore( ' D: \ATMAGMATIKH  Experiments

imageDatastore( ' D: \AIMAOMATIKH\Experiment

imageDatastore( D: \AIMAOMATIKH\Experiments
imageDatastore( ' D: \AIMAGMATIKH\Experiments

ResultsiClassical Methods ValidationImages'3
ResultsiClassical Methods_ValidationImages\3
s Results\Classical Methods_ValidationImages'4
ResultsiClassical Methods_validationImagesi4
ResultsiClassical Methods_ValidationImages\s

B\MSR ') ;

L@\MSR")
LSAMSR')
LBAMSR') 3
)
)

H

LSWMSR') 3
LBNMSR') 5

H

489

—
| S—



35
86
37
88
39
Sa
L b
92
932
94
a5
96
a7
a8
99
1ea
1el
1lez2
1e3
1le4
1e5
186
1e7
1es
1e9
1iae
111
112
113
114
115
116
117
118
119
1za
121
122
123
124
125
126
127
128
129
13@
131
132
133
134
135
136
137
138
139
148
141
142
143
144
145
146
147
148
149
15e
151
152
153
154
155
156
157
158
159
168
161
162
163
164
165
166
167
168
169
i7e

Fassessment fTor
metrics_arrie =
Hassessment for
metrics_arris =
Fassessment for
metrics_arr4e =
#assessment for
metrics_arrd4s =
Hassessment for
metrics_arrse =

Fcolumns titles

3.2 image dataset
assessment(NL_images3@,MNL_exp_res3a@);
3.5 image dataset
assessment{NL_images35,ML_exp_res35);
4.2 image dataset
assessment{NL_images48,HML_exp_res4@);
4.5 image dataset
assessment(NL_images45,NL_exp_res45);
5.8 image dataset
assessment(NL_images50,NL_exp_ress5a);

var_names = {'MSE", "PSNR', SSIM", 'Mv', STD', 'BRISQUE", 'NIQE'};

Fconvert the matrices to tables with column names

table3@ = array2table(metrics_arr3e, 'VariableNames' ,var_names);
table35 = array2table(metrics_arr3s, 'VariableNames' ,var_names);
tabled4® = array2table(metrics_arr4e, 'VariasblsNames' ,var_names);
table45 = array2table(metrics_arr45, 'VariasbleNames' ,var_names);
tableS® = array2table(metrics_arrs5e, 'VariableMames' ,wvar_names);

Fsaving the results to an excel file

writetable{table3@, '"MSR_assessment_wvalidation.xlsx", "Sheet','3.8")
writetable{table35, 'M5R_assessment_wvalidstion.xlsx", "Sheset','3.5")
writetable(table4d, "MSR_assessment_wvalidation.xlsx", "Sheet','4.8");
writetable{table45, "MSR_assessment_wvalidation.xlsx", "Shest','4.5")
writetable{table5@, 'M5R_assessment_wvalidation.xlsx", "Shest’','5.28")

disp{ 'Done with

validation Images!")

TEST IMAGES

NL_images3@ = imageDatastore( D:“AINAOMATIKHYWTEST IMAGESY3.@\ML-3.@');
NL_images35 = imageDatastore( D:“AINAOMATIKHYWTEST IMAGESY3.5%ML-3.5");
NL_images4® = imageDatastore( D:“AINAOMATIKHYWTEST IMAGES'4.@\ML-4.8');
NL_images45 = imageDatastore( D:“AINAOMATIKHWYWTEST IMAGES“4.5%ML-4.5");
NL_images5@ = imageDatastore( D:“AINAOMATIKHYWTEST IMAGESYS5.@\ML-5.@');

IMAGES FROM THE MSR METHOD

NL_exp_res3@ =

¥assessment for

¥assessment for

#assessment for

#assessment for

Fcolumns titles
var_names = {'MSE', PSNR', SSIM", 'MV',"'STD", BRISQUE", "NIQE"};

disp('Done! ')

"MSR_assessment_test.xlsx’, "Shest’,
"MSR_assessment_test.xlsx’, "Shest’,
"MSR_assessment_test.xlsx’, "Shest’,
"MSR_assessment_test.xlsx’, "Shest’,
"MSR_assessment_test.xlsx’, 'Sheet

imageDatastore( D: WAIMAGMATIKH\Experiments ResultsiClassical Methods TestImages)3
NL_exp_res35 = imageDatastore( 'D:\AIMAOMATIKH\Experiments ResultsiClassical Methods_TestImages'3
NL_exp_res4@ = imageDatastore( 'D:\AIMAOMATIKH\Experiments Results‘Classical Methods TestImagesi4
NL_exp_res45 = imageDatastore( 'D:\AIMAOMATIKH\Experiments Results‘Classical Methods TestImagesi4
NL_exp_res5@ = imageDatastore('D:\AIMAOMATIKH\Experiments Results‘Classical Methods_TestImages)\S

%assessment for 3.2 image dataset
metrics_arr3@ = sssessment(NL_images3@,NL_exp_res3a@);
3.5 image dataset
metrics_arr35 = sssessment(NL_images35,NL_exp_res35);
4.2 image dataset
metrics_arr4@ = sssessment(NL_images4e,NL_exp_res4@);
4.5 image dataset
metrics_arr45 = sssessment(NL_imagesa5,NL_exp_resa5);
5.8 image dataset
metrics_arr5@ = sssessment(NL_images5@,NL_exp_res5@);

¥convert the matrices to tables with column names

table3@ = array2table(metrics_arr3e, 'VarizblelNsmes',var_names);
table35 = array2table(metrics_arr3s, 'VarizbleNsmes',var_names);
table4® = array2table(metrics_arr4e, 'VarizbleNsmes',var_names);
tableas = array2table(metrics_arr4s, 'VarizblelNsmes',var_names);
tablese = array2table(metrics_arr5e, 'VarizblelNsmes’,var_names);

%saving the results to an excel file
writetable(table3a,
writetable(table3s,
writetable(tableaa,
writetable(tableas,
writetable(tablesa,

[ S SR VTR T}

disp('Done with Test Images!')

Figure B.2.24: Assessment script for MSR

LBAMSRT )
LSAMSRT Y
LBAMSR);
LSAMSRT Y
LBAMSR);
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We read the experimental results and ground truth images using Image
Datastores, and apply the assessment function to calculate the metrics. The
results are saved in excel files with a suitable name. We apply this process
per darkness level and per set (training, validation, test) so at the end we
have 3 excel files (one for each set), each of which has 5 sheets (one for
each darkness level) with the values of the metrics per image.

Dehaze

The function that implements the LLIE with Dehaze method is shown in
figure B.2.25 below.

1 function ML_image = MatlabDehaze(LL_image)

2

3 e e e e e e e L et
4 #% Function that implements the Dehaze LLIE algorithm. The functions takes
5 ¥ as input the LL image we want to enhance and outputs the enhanced image.
6 # Author: Panagiotis Koutsaftis aivc2l@le

7 ¥===============z===========s=sss=ssssssssssossssossooosoooooooooososSsSososs
8

=) %size of the image
18 [rows,columns,bands] = size(LL_image);
11
12 ¥converting the image to double for the calculations
13 LL = double(LL_image);
14
15 ¥inverting the image
16 temp = 255%ones(rows,columns,bands);
17 inv = uintS(temp - LL);
18
19 ¥applying matlab's dehazing function
208 final _inv = imreducehaze(inv,Method="approxdcp”);
21
22 ¥inverting again
23 final_inv = temp -double(final_inv);
24
25 #final result
26 NL image = wint&(final inv)j

Figure B.2.25: Implementation of Dehaze LLIE algorithm

The function takes as input the LL image we want to enhance, calculates
the dimensions and converts it into a double data type needed for the
calculations. It then inverts it and applies MATLAB's imreducehaze
function. This function applies a dehazing algorithm. We used a ready-
made MATLAB function and did not implement it from scratch for
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optimization reasons. Finally, it reverses the result of dehaze again,
converts it to uint8 and this is the final result returned.

We will apply this function to all images in the dataset. This is done with
the scripts presented in images B.2.26 and B.2.27.

1 clase all; clear; clc; format compact;
2
)
4 ¥loading the data
5] LL_images = imageDatastore('D:%\AI
6 %¥LL_images = imageDatastore
7 %LL_images = imageDatastore
¥LL_images = imageDatastore(
& ¥LL_images = imageDatastore('D:\AINAOMATIKH\TRAINING IMAGES\5.8\LL-5.8");
1@
11 ¥size of the dataset
12 files = size(LL_images.Files);
13 num0fImages = files(1);
14 |
15 tic
16 ¥applying matlab's dehaze function
17 for index=1:numOfImages
18 LL_img = readimage(LL_images, index);
19 image name = char(LL_images.Files{index));
28 NL_MD = MatlabDehaze(LL_img);
21 file_path = ["D:" KH\Experiments Resultsh cal | N3 b Dehaze\',image_name({end-8):(end-4)), .png'];
22 p IKH\Experiments Results\ i s} zel', 1 ame( (e :(end-4})," ‘1
3 e ‘D: WTIKH\Experiments Resu d-8):(end-4)),
24 th = ['D:\ MATIKH\Experiments Resu d-8):(end-4)), 1
25} %file_path = [ 'D:\ATAAQMATIKH\Experiments Result -8):(end-4))," .png’1;
26 imwrite(NL_MD,file_path);
27 end
28 toc
29 disp('Done!")

Figure B.2.26: script for applying dehaze to training dataset per darkness level

We read the LL images using Image Datastores and apply the function to
each image in the set. The result is saved in a folder with an appropriate
name. We apply this procedure to each darkness level, i.e. we run the script
5 times, uncommenting the appropriate line each time. We apply the exact
same procedure for the validation and test sets, as shown in image B.2.27.
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1 close all; clear; clc; format compact;

2

3

4 % VALIDATION IMAGES

5

6 %reading the Low Light Data (VALIDATION)

7 %LL_images = imageDatastore( 'D:\AIMAGMATIKH\WALIDATION IMAGES\3.@\LL-3.8");

8 ¥LL _images = imageDatastore('D:\AINANMATIKH\VALIDATION IMAGES\3.5\LL-3.5');

9 HLL_images imageDatastore( 'D: \AINANMATIKH\VALIDATION IMAGES\4.@\LL-4.8');

18 %LL_images = imageDatastore( 'D:\AIMAGMATIKH\WALIDATION IMAGES\4.5\LL-4.5");

11 LL_images = imageDatastore('D: \AIMAOMATIKHV, \TION IMAGES\S5.2W\LL-5.2");

12

13 %size of the dataset

14 files = size(LL_images.Files);

15 numOfImages = files(1);

16

17 tic

18 %applying matlab’'s dehaze function

19 for index=1:numOfImsges

20 LL_img = readimage(LL_images,index);

21 image_name = char(LL_images.Files(index));

22 NL_MD = MatlabDehaze(LL_img);

23 %file_path = [ 'D:\AIMAGMATIKH\Experiments Results\Classical Methods_ValidstionImages\3.@\Matlab Dehaze\',image_name((end-8):(end-4))," .png'];
24 %file_path = ['D:\AIMAQMATIKH\Experiments Results\Classical Methods_ValidationImages\3.5\Matlab Dehaze\',image_name((end-8):(end-4)),".png'];
25 %file_path = [ 'D:\AINAOMATIKH\Experiments Results\Classical Methods_ValidationImages\4.0\Matlab Dehaze\',image_name((end-8):(end-4))," .png'];
26 %file_path = [ 'D: \AIMAGMATIKH\Experiments Results\Classical Methods_ValidationImages\4.5\Matlab Dehaze\',image_name((end-8):(end-4))," .png'];
27 file_path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods ValidationImages\5.2\Matlab Dehaze\',image_name((end-8):(end-4)),".png"];
28 imurite(NL_MD,file_path);

29 end

38 toc

a1 disp('Done wi

22 disp('Done

33

24

35 % TEST IMAGES

36

37 %reading the Low Light Data (TEST)

38 %LL_images = imageDatastore('D:\AIMAQMATIKH\TEST IMAGES\3.8\LL-3.8");

39 %LL_images = imageDatastore('D:\AIMAQMATIKH\TEST IMAGES\3.5\LL-3.5");

48 %LL_images = imageDatastore('D:\AIMAQMATIKH\TEST IMAGES\4.8\LL-4.8");

41 %LL_images = imageDatastore('D:\AIMAQMATIKH\TEST IMAGES\4.5\LL-4.5");

42 LL_images = imageDatastore('D:\AINMAGMATIKH\TEST IMAGES\S.8\LL-5.8');

43

a4 Xsize of the dataset

45 files = size(LL_images.Files);

45 numofImages = files(1);

47

48 tic

a9 %applying matlab's dehaze function

3] for index=1:numOfImages

51 LL_img = readimege(LL_imeges,index);

52 image_name = char(LL_images.Files(index));

53 NL_MD = MatlabDehaze({LL_img);

54 %file path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods TestImages\3.@\Matlab Dehaze\',image name((end-8):(end-4)), .png']:
55 %file path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods TestImages\3.S5\Matlab Dehaze\',image name((end-8):(end-4)), .png']:
56 %file path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods TestImages\4.@\Matlab Dehaze\',image name((end-8):(end-4)), .png']:
57 %file path = ['D:\AINAQMATIKH\Experiments Results\Classical Methods TestImages\4.5\Matlab Dehaze\',image name((end-8):(end-4)), .png']:
58 file path = ['D:%AIMNAOMATIKH\Experiments Results\Classical Metheds TestImages\5.2\Matlab Dehazel',image_name((end-8):(end-4)), .png’1;
59 imwrite(NL_MD,file path);

68 end

61 toc

62 disp('Done with Matlab Dehaze function!')

63 disp('Done with test images!’)

64 disp('Done!")

Figure B.2.27: script for applying dehaze to validation and test datasets per darkness
level

Upon completion of this process, we have at our disposal the experimental
results, which we will use to calculate performance metrics. This is done
with the script shown in Figure B.2.28 below.
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close all; clear; clc; format long;

tic

a

a

* TRAINING IMAGES

a

a

disp('Woriking on Training Images...')

a

* GROUND TRUTH IMAGES
a

NL_images3@ =
NL_images3s =
NL_images4@ =
NL_images45 =
NL_images5@8 =

imageDatastore (' D:\AINAOMATIKHYTRAINING
imageDatastore (' D:\AINAOMATIKHYTRAINING
imageDatastore (' D:\AINAOMATIKHYTRAINING
imageDatastore (' D:\AINAOMATIKHYTRAINING
imageDatastore( D: \AINAOMATIKH\TRAINING

MAGES\3.@\NL-3.8")
MAGES\3.5\NL-3.5")
MAGES‘\4.B8\NL-4.2");
MAGES \4.5\NL-4.5")
MAGES\S5.@\NL-5.8")

EL

IMAGES FROM THE MATLAB

DEHAZE METHOD

NL_exp_res3@ =
NL_exp_res35 =
NL_exp_resd4a =
NL_exp_res45 =
NL_exp_res5@ =

¥assessment for
metrics_arrie =
¥assessment for
metrics_arris =
¥assessment for
metrics_arrde =
¥assessment for
metrics_arrds =
¥assessment for
metrics_arrse =

3.0 image dataset
3.5 image dataset
4.0 image dataset
4.5 image dataset

5.8 image dataset

Fcolumns titles
var_names = {'MSE’, PSNR','SSIM’,'MV','STD', BRISQUE', 'NIQE'};

¥convert the matrices to tables with column names

tablese =
table3s =
tabledd =
tabless =
tablese =

Fsaving

writetable(table3@, ‘Matlab_Dehaze_assessment_training.
writetable(table3s, 'Matlab_Dehaze_a
writetable(tabled@, 'Matlab_Dehaze_a
writetable(table45, 'Matlab_Dehaze_sassessment_training.
writetable({table5@d, 'Matlab_Dshaze_szssessment_training.

array2table(metrics_arr3e, 'VariableNames ' ,var_names
array2table(metrics_arr35, 'VariableNames',var_names

)
)
array2table(metrics_arr4@, 'VariableNames®,var_names);
array2table(metrics_arr4s, 'VariableNames®,var_names)
)

array2table(metrics_arr5e, 'VariableNames ' ,var_names

the results to an excel file

xlsx
ment_training.xlsx

ment_training.

won

5
I3

xlex
xlsx
xLlsx

disp('Done with Training Images!")

imageDatastore( ' D: \AIMAOMATIKH\Experiments
imageDatastore( ' D: \AIMAOMATIKH\Experiments
imageDatastore( ' D: \AIMAOMATIKH\Experiments
imageDatastore( ' D: \AIMAOMATIKH\Experiments
imageDatastore( ' D: \AIMAOMATIKH\Experiments

ResultshiClassical Methods\3.@
ResultshiClassical Methods\3.5
ResultshiClassical Methods\4.@
ResultshiClassical Methods\4.5

ResultshiClassical Methods\5.@

assessment(NL_images3@,NL_exp_res3a);
assessment({NL_images35,NL_exp_res3s);
assessment(NL_images4@,NL_exp_res4d);
assessment({NL_images45,NL_exp_res4s);

assessment(NL_images5@,NL_exp_resS@);

H

H

H

H

', 'Sheet’,'3.0"
', 'Sheet',"3.5"
', 'Sheet',"4.0"
', 'Sheet', "4.5"
', 'Sheet’,"5.08");

VALIDATION IMAGES

isp( 'Workin

g

on Validation Images...')

8 38 38 O 3R 3R 3R AR 3R

GROUND TRUTH IMAGES

NL_images3@
NL_images35
NL_images40
NL_images45
NL_images5@

imageDatastore( D:\AINAOMATIKH\WALIDATION
imageDatastore( D: \ATNAOMATIKH\WALIDATION
imageDatastore( ' D: \AINAOMATIKH\WALIDATION
imageDatastore( D:\AINAOMATIKH\WALIDATION
imageDatastore( ' D: \AINAOMATIKH\VALIDATION

IMAGES\3.@\NL-3.8");
IMAGES\3.5\NL-3.5");
IMAGES 4. @\NL-4.8" )
IMAGES 4. 5\NL-4.5" )
IMAGES\S.@\NL-5.2");

kL

i€

IMAGES FROM THE MATLAB DEHAZE METHOD

NL_exp_res38@
NL_exp_res35
NL_exp_res4e
NL_exp_res45
NL_exp_res5@

imageDatastore( 'D: \ATMNADMATIKH\Experiments
imageDatastore('D: \AIMAOMATIKH\Experiments
imageDatastore( ' D: \AIMAQMATIKH\Experiments
imageDatastore('D: \AIMAQMATIKH\Experiments
imageDatastore( 'D: \AIMNADMATIKH\Experiments
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Results\Classical| Methods_ValidationImages\3.
Results\Classical Methods_ValidstionImages\3.
Results\Classical Methods_validstionImagesi4.
ResultsiClassical Methods_validstionImages\4.
Results\Classical| Metheds_ValidationImages\5.

‘WMatlab
‘WMatlab
‘WMatlab
‘WMatlab
‘WMatlab

2\Matlab
5\Matlab
e\Matlab
S'Matlab
@\Matlab

Dehaze’);
Dehaze’);
Dehaze’);
Dehaze’);
Dehaze’);

Dehaze');
Dehaze');
Dehaze');
Dehaze');
Dehaze');

'



146
147
148
149
15a
151
152
153
154
155
156
157
158
159
168
161
162
163
164
165
166
167

#assessment for
metrics_arri@ =
#assessment for
metrics_arr3is =
*%assessment for
metrics_arr4g =
*%assessment for
metrics_arr4s =
*%assessment for
metrics_arr5e =

3.2 image dataset
3.5 image dataset
4.2 image dataset
4.5 image dataset

5.2 image dataset

¥columns titles

War_namess =

#convert the matrices to tables with column names

tablese
table3s
tableds
tableds
tablese

Xsaving

writetable(table3@, "Matlab_Dehaze_assessm
writetable(table35, "Matlab_Dehaze_assessm
writetable(tabled4®, "Matlab_Dehaze_sassessment_validation.xlsx
writetable(table45, "Matlab_Dehaze_assessm
writetable(table5@, "Matlab_Dehaze_assessm

disp('Done with Validation Im

= array2table(metrics_arr3e, 'VariazbleNames'
= array2table(metrics_arr3s, 'VarizbleNames'
= array2table(metrics_arr4e, 'VariazbleNames'
= array2table(metrics_arr45, 'VarizbleNames'

assessment{NL_images38,NL_exp_res38);
assessment{NL_images35,NL_exp_res35);
assessment{NL_images48,NL_exp_res4a);
assessment{NL_images45,NL_exp_res45);

assessment{NL_images58,NL_exp_res5a);

[ MSE’, "PSNR', SSIM’, 'MV', STD', 'BRISQUE’, "NIQE'};

SVar_names)

SVar_names) ;

SVar_names)

SVar_names) ;

= array2table(metrics_arr5e, 'VariableMames' ,var_names)

the results to an excel file

s
=5

[T
m
il
n
-

ent_validation.xlsx
ent_validation.xlsx

ent_validation.xlsx', 'Sheet”, 2
ent_validation.xlsx', 'Sheet 3

', "Sheet", "4.
', 'Sheet",'4
', "Sheet","'5

@ Ve ne
T
e

disp{ 'Working on

Test Images...")

GROUND TRUTH IMAGES

NL_images3® = i
NL_images35 = i
NL_images4® = i
NL_images45 = i
NL_images58 = i

mageDatastore( D: \ATAAOMATIKHATEST
mageDatastore( D: \ATAAOMATIKHATEST
mageDatastore( D: \ATAAOMATIKHATEST
mageDatastore( D: \ATAAOMATIKHATEST
mageDatastore( D: \ATAAOMATIKHATEST

IMAGESHY3.@\NL-3.@")
IMAGESY3.5%NL-3.5")
TMAGESH4 . @\NL-4.8");
IMAGES4. SWNL-4.5")
IMAGESHYS5.@%NL-5.@")

IMAGES FROM THE MATLAB DEHAZE METHOD

NL_exp_res3@
NL_exp_res3s
NL_exp_res4a
ML_exp_res4s =
ML_exp_ress@ =

%assessment for
metrics_arr3e =
%assessment for
metrics_arr3s =
%assessment for
metrics_arrdd =
%assessment for
metrics_arrds =
%assessment for
metrics_arrse =

¥columns titles
var_names = {'M

¥convert the ma

table3® = array
table3s = array
tsbledd = array
tsbled5 = array

tableS® = array
%saving the res
writetsble(tabl
writetsble(tabl
writetsble(tabl
writetsble(tabl
writetable(tabl

imageDatastore( ' D: \AINAQMATIKH\Experiments
imageDatastore( ' D: \AINAQMATIKH\Experiments
imageDatastore( ' D: \AINAQMATIKH\Experiments
imageDatastore( ' D: \AINAQMATIKH\Experiments
imageDatastore( ' D: \AINAQMATIKH\Experiments

3.9 image dataset
sssessment(NL_images3@,NL_exp_res3d);
3.5 image dataset
sssessment(NL_images35,NL_exp_res35);
4.9 image dataset
sssessment(NL_images4@,NL_exp_res4d);
4.5 image dataset
sssessment(NL_images45,NL_exp_res4s);
5.2 imsge dataset
assessment(NL_imagesS5@,NL_exp ressa@);

SE',"PSNR',"SSIM", '"MV',"STD", "BRISQUE', "MIQE'};
trices to tables with column names

2table(metrics_arr3e, 'VerisbleNames',var_names);
2table(metrics_arr3s, 'VerisbleNames',var_names);
2table(metrics_arr4d, 'VarisbleNames',var_names);
2table(metrics_arrds, 'Varisblelames',var_names);
2table(metrics_arr5e, 'Varisblelames',var_names);

ults to an excel file

238, 'Matlab_Dehaze_sssessment_test.xlsx', 'Sheet®,

m
e35, 'Matlab_Dehaze_sssessment_test.xlsx’, Sheet”
248, 'Matlab_Dehaze_sssessment_test.xlsx’, 'Sheet”
245, 'Matlab_Dehaze sssessment_test.xlsx', Sheet”

m

e58, 'Matlab_Dehaze zssess

Figure B.2.28: Assessment script for Dehaze

ent_test.xlsx', 'Sheet’,

El
El
4.2°);
a
s

ResultsiClassical Methods TestImages®
ResultsiClassical Methods TestImages®
ResultsiClassical Methods TestImages'4.®\Matlab
ResultsiClassical Methods TestImages'4.5\Matlab
ResultsiClassical Methods TestImages\S

3
3

.e\Matlab
.S\Matlab

.e\Matlab

Dehaze');
Dehaze');
Dehaze');
Dehaze');
Dehaze');
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We read the experimental as well as ground truth images using Image
Datastores, and apply the assessment function to each image in the set. The
results are saved in an excel file with an appropriate name. We apply this
procedure for all darkness levels and for all sets (training, validation, test).
So in the end we will have 3 excel files (one for each set) that will have 5
sheets (one for each darkness level).

B.3: Chapter 3 Code

LLCNN — Original Architecture

The architecture we study consists of a series of convolutional modules.
The implementation of the convolutional module is shown in figure B.3.1
below.

dd()([x_left,x right])

ottom = tfl.RelU()(x add)
¥_bottom = tfl.Conv2D(filters=filter,kernel size=( } s strides=1,padding="same" ) (x_bottom)
x_bottom = tfl.RelU bottom)
¥_bottom .Conv2D(filters=filter,kernel size=( } s strides=1,padding="same" ) (x_bottom)

output = tfl.RelU()(x final)

return output

Figure B.3.1: Implementation of the convolutional module

We see that the function takes as input the output of the previous layer, as
well as the number of filters, which if not defined then is by default 64.
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First, we define the inception based part, with the left part consisting of the
two convolutional layers with 64 filters and 3x3 each, with the output
passing through a ReLU function, and the right part consisting of a 1x1
convolutional layer with 64 filters. We then add these two outputs, with the
result passing through the Residual Learning based part. This part consists
of two 3x3 convolutional layers with 64 filters and ReLU activation
function, as well as a shortcut connection that is added to the result of these
two layers. As output, the function gives the output of the module, which
will be passed to the next layer.

Based on this we can define the overall architecture of the model, which is
shown in figure B.3.2 below.

fl.Conv2D(filters=64,kernel size=(1,1),strides=1,padding="sames")(input tensor)
f1.RelU()(x)

in range(num of modules):
x = conv_module(x)

outputs = tfl.Conv2D(filters=3,kernel size=(1,1),strides=1,padding="same")(x)

return outputs

Figure B.3.2: defining the LLCNN architecture

As input, the function takes the input tensor, which we define next, and its
size depends on the data set we use, as well as the number of convolutional
modules we want the architecture to have, with the default being 5. First,
we define the pre-processing 1x1 convolutional layer, which will consist
of 64 filters and will have a ReLU activation function. The output of this
layer then goes through the series of convolutional modules we defined
above. Finally, the result goes through a 1x1 convolutional layer, which
consists of only 3 filters, since we are studying RGB images.

Having defined the architecture, we can initialize and train the model. The
initialization is shown in figure B.3.3 below.
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model input =

g =

output = LLCNN model

= ﬁodel(muﬂel_input,deEl_ﬂutput}

2
=]

model.compile(optimizer=opt, loss=loss,metrics=[ ‘'mean_squared_error’])
model . summary ()

Figure B.3.3: initialization of the DL model

First, we define the input of the model, which will have the same size as
that of the respective image. Then we initialize the LLCNN architecture,
where at this point we choose the number of convolutional modules we
want it to have (1, 3 or 5). Next, we group the input layer and the LLCNN
architecture, and then define the error function as well as the minimization
algorithm to use. For simplicity we use MSE as the error function, and
SGD as the optimizer. Finally, we compile the model, and we can proceed
with its training.

To train the model we need to read and normalize the data. This is done as
shown in figure B.3.4 below.

498

—
| —



print(
Loading the training data...

Data loaded!

.reshape(train_input.shape[2],train_input.shape[2],train_input

train_input
train_ input

index in range({train output.sh
data.appen rain_output[ ind train_output.shape strain_output strain_output.shape[4]))

train_ocutput = np.array(data
train_output - train_output

print

wal_output
print(

Loading the walidation data...

Data loaded

al_input.shape}
1_cutput.shape]

primty(

data = []
index in range(val input.shape[
data.append(val input[ind = 1_input.shape[2],val input.shape[2],val input.shape[4

wal_input — np.array(data)
wal_input — val_input

data L1
index in range(wval_output.shape
data.append(val_output[index,®e, :1.reshape(val_output. e[2 € val_output.shape[4

utput = np.array(data
utput wal_ output/

al_input.shape}
al_output.shape]

Figure B.3.4: reading and normalizing the training and validation data
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First, we read the training set we are interested in (since we have 5 different
darkness levels) and normalize them by dividing by 255. Then we apply
the same process to the validation data. Upon completion of this process
we have at our disposal what we need to train the model, which is done as
shown in figure B.3.5.

print(*Training the model...")

model.fit{train_input, train_output, epochs=18, batch size-=18, verbose=1,validation_data=(val input,val_ output)}
print( *\n\nTraining completed! ")

Figure B.3.5: training of the LLCNN model

Due to a lack of computing resources, the training is only done for 10
epochs with the batch size also being 10. With the completion of this
process, we can apply the trained model to the test set to evaluate its
generalization ability. First we read and normalize the test set, in the same
way we applied for the training and validation sets (figure B.3.6).

test_output =

print( \nTrai
Loading the test data...

Training Data Loaded!

data = []
for index in range(test inpuf.sh
data.append(te input[index, ]-reshape(test input.shape[2],test input.shape[2],test input.shape[4]))

test input = np.array({data)

:].reshape(test _output.shape[2],test output.shape[3],test output.shape[4]1))

test_outputs/zss

{test_input.shape} ')
: {test_output.shape} ')

Figure B.3.6: reading and normalizing the test set
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We then apply the model to the test set, and save the results in a suitable
folder so that we can later use them to evaluate the method.

for index in range(test pred.shape[@]):
cv2. imwrite(path+’ /'+str(index+1)+".png' ,test pred[index,:,:,:]*255)

Figure B.3.7: applying the model to the test set and saving the results

Upon completion of this process, we have the experimental results
available, which we can use to calculate performance metrics. This is done
with the script shown in Figure B.3.8 below.

501

—
| —



264
265
266
267
268

278
271
272
273

275
276
277
278

288
281

283
284
285
286

288
289
290
291

293
294
295
296

298
299

L
3e2
3e3
304

387
208
389
31@
311
312
313
214
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
248
341
242
243
244
245
346
247
348
249
358
351

TEST IMAGES

P
E
P
disp('Working

%Ground Truth
NL_images38 =
NL_images35 =
NL_images4@
NL_images45s
NL_images5@ =

on Test Images...")

images

imageDatastore( D:\AINAOMATIKHLGROUND TRUTH
imageDatastore(’ AINAOMATIKHLGROUND TRUTH
imageDatastore(’ AINAOMATIKHLGROUND TRUTH
imageDatastore( D:YAINAOMATIKH\GROUND TRUTH
imageDatastore( D: Y\ AINAOMATIKH\GROUND TRUTH

DEEP
DEEP
DEEP
DEEP
DEEP

LEARNING\Tesith\3.
LEARNING\Test\3.
LEARNING\Test\4.
LEARNING\Test\4.
LEARNING\Test\5.

LLCNN-1 MODULE

NL_exp_res3@
NL_exp_res3s
NL_exp_res4@
NL_exp_res45
NL_exp_res5e

#assessment for

metrics_arrie

¥ascessment for

metrics_arr3s

%assessment for

metrics_arrdd

#assessment for

metrics_arr4s

¥ascessment for

metrics_arr5e

imageDatastore( 'D: \AINAQMATIKH\Experiments
imageDatastore( 'D: \AINAQMATIKHExperiments
imageDatastore( 'D: \AINAQMATIKHExperiments
imageDatastore( ' D: \AIMAOMATIKH\Experiments
imageDatastore( 'D:\AIMAOMATIKHExperiments

3.2 image dataset
= assessment(NL_images3@,NL_exp_res3@);
3.5 image dataset
= assessment(NL_images35,NL_exp_res35);
4.2 image dataset
= sssessment{NL_images40,NL_exp_res48);
4.5 image datasst
= assessment(NL_images45,NL_exp_res45);
5.0 image dataset
= assessment(NL_images5@,NL_exp_res58);

#columns titles

var_names = {'

MSE', "PSNR', 'SSIM", 'MV', " STD

%convert the matrices to tables with column names

table3d =
table3s =
tzblade =
tsble4s =
tablese =

srray2table(metrics_arr38,
array2table(metrics_arr3s,
array2table(metrics_arrda,
arrayztable(metrics_arrds,
array2table(metrics_arrse,

%saving the results to an excel file
writetable(table3@, 'LLCHNN_lModule_sssessmen
writetable(table3s, 'LLCNN_1Module_assessmen

oA

writetable(tabledd, "LLCMN_1Module_assessment_f

writetable(tabled5, 'LLCNN_1Module_assessment

,*
2
3

.xlsx',"Sheet’,"3.0"
.xlsx', 'Shest','3.5"
.xlsx', "Sheet’,"'4.0"
.xlsx', 'Sheet','4.5"

writetable(table5@, 'LLCNN_1Module_assessment_test.xlsx', 'Sheet’,'5.8°

disp('Done with 1 module!')

5.

ResultsiDesp
Results\Desp

Learning
Learning
Results\Deep Learning
Results\Deep

Results\Deep

Learning
Learning

', 'BRISQUE’, 'NIQE'};

‘VariableNames',var_names);
‘VariableNames',var_names);
'WariableMames',var_names);
'WariableMames',var_names);
'VariableNames',var_names);

%

P

LLCNN-3 MODULES

NL_exp_res3@
ML_exp_res35
HL_exp_res4@
MNL_exp_resds
HL_exp_resse

= imageDatastore( ' D: \AIMAQMATIKH\Experiments
imageDatastore( ' D:\AIMAQMATIKH\Experiments
imageDatastore( 'D: \AIMAOMATIKH\Experiments
= imageDatastore( ' D:\AIMAIMATIKH\Experiments
= imageDatastore('D:\AIMAGMATIKH\Experiments

%assessment for 3.8 image dataset
metrics_arr3e =
%assessment for 3.5 image dataset
metrics_arr3s =
%assessment for 4.2 image dataset
metrics_arrad =
¥assessment for 4.5 image dataset
metrics_arrds =
%assessment for 5.0 image dataset

metrics_arrSe =

%columns titles

assessment(NL_images38,NL_exp_res38);
assessment(NL_images35,NL_exp_res35);
assessment(NL_images4d,NL_exp_resda);
assessment(NL_imagesd5,NL_exp_resds);

assessment(NL_images50,NL_exp_res50);

Results\Desp
Results'\Deep
Results\Desp
ResultsiDesp
Results\Deep

Learning
Learning
Learning
Learning
Learning

var_names = {'MSE','PSNR','SSIM','MV','STD', 'BRISQUE', 'NIQE'};

%convert the matrices to tables with column names

table3@ = array2table(metrics_arr3e, 'VarisbleNsmes',var_names);
table35 = array2table(metrics_arr35, 'VarizbleMames',var_names);
tabled4@ = array2table(metrics_arrd@, 'VarisbleNsmes',var_names);
table45 = array2table(metrics_arr45, 'VariableNames',var_names);

table50 =

%saving the results to an excel file
writetable(table3@, 'LLCNN_3Modules_ssse
writetable(table35, "LLCMN_3Modules

w

writetable(tabled5, 'LLCNN_3Modules_asse

ssment_test.xlsx', 'Sheet','3

ssessment_test.xlsx', 'Sheet',’3
writetable(table4@, 'LLCNN_3Modules_assessment_test.xlsx', 'Sheet','4
ssment_test.xlsx', 'Sheet’,'4
writetable(table58, 'LLCNN_3Modules_assessment_test.xlsx','Sheet','S

—

array2table(metrics_arr5, 'Varisblelames',var_names);

e')
5%)
ay;
5')
@')

Results\LLCHNWLLCNN_Experiment_Resultsh\3.e@\l
Results\LLCNNA\LLCNN_Experiment Results\3.5\1
Results\LLCNNA\LLCNN_Experiment Resultsi4.@\l
Results\LLCHNA\LLCNN_Experiment_Resultsi\4.5%1
Results\LLCNMYLLCNN_Experiment_Results)\5.@\1

Results\LLCHNYLLCNN_Experiment_Resultsh3.e\2
Results\LLCHNA\LLCNN_Experiment_Results)2.5\3
Results\LLCHNYLLCNN_Experiment Resultsid.e\3
Results\LLCHNALLCNN_Experiment_Resultsh4.5\3
Results'\LLCHNYLLCNN_Experiment_Results5.8\3

module');
module’);
module’);
module’);

module')s

modules’);
modules’);
modules’);
modules’);
modules’);
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253 disp('Done with 3 modules!'})

354

255 e

356 % LLCNN-5 MODULES

357 6

358 NL_exp_res3@ = imageDatastore('D s Learning modules®);
359 ML_exp_res35 = imageDatastore('D s Learning modules’);
3608 NL_exp_res4@ = imageDatastore('D: s Learning modules®);
361 NL_exp_resd5 = imageDatastore('D s Learning modules®);
362 NL_exp_res5@ = imageDatastore('D ts Learning modules”);
363

264 %assessment for 3.9 image dataset

365 metrics_arr3@ = assessment(NL_images3@,NL_exp_res3a);

366 %assessment for 3.5 image dataset

367 metrics_arr35 = assessment(ML_images35,NL_exp_res35);

368 %¥assessment for 4.0 image dataset

369 metrics_arrdd = assessment(NL_imagesdd,NL_exp_resdd);

376 ¥sssessment for 4.5 image dataset

371 metrics_arrd5 = assessment(NL_images4S,NL_exp_res45);

372 %assessment for 5.9 image dataset

373 metrics_arr5@ = assessment(NL_images50,HL_exp_res5@);

274

375 %columns titles

376 var_names = {'MSE','PSNR",'SSIM', MV", 'STD', 'BRISQUE", 'NIQE'};

377

378 ¥convert the matrices to tables with

379 table3d = array2table(metrics_arr3a,’ - names);

388 table35 = array2table(metrics_arr3s,’ _names);

381 table4@ = array2table(metrics_arr4e,’ _names);

282 table4s = array2table(metrics_arrds,’ _names);

383 table5@ = array2table(metrics_arr5@, 'V _names);

384

385 %saving the results to an excel file

386 writetable(table3@, "LLCNN d ‘Sheet’, "

387 writetable(table3s, "LLC ‘Sheet', "

388 writetable(tabledd, "LLCNN ‘Sheet', "4

389 writetable(tabled5, "LLCMN_SHM ‘Sheet','4.5");

3908 writetable(table5@, 'LLCNN_5NM ‘Sheet','5.8');

391

392 disp('Dons with odules!’)

203 disp('Done w + Images!®)

394 disp('Dene!')

Figure B.3.8: Assessment script for test set

We first read the ground truth and experimental images using image
datastores, and then apply the assessment function to calculate the
performance metrics. The results are saved in a suitable excel file that will
be used later for the construction of summary tables. We apply this process
for each darkness level and each number of convolutional modules, so at
the end of the process we will have 3 excel files (one for each number of
modules) with each having 5 sheets (one for each darkness level).
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LLCNN — 1% variation

We follow exactly the same process as the original LLCNN architecture,
with the only difference being the schema of the architecture as well as
some choices of the training process. The architecture in this case is shown
in figure B.3.9 below.

model {input_tensor,filters,num _of |

tfl.Conw2D{ filters=64,kernel_size=(1,1),strides=1,padding="=zame" }{(Input tensor)
tFl.Relu}{x)
1 in range{num_of modules):

x = conv_module(x)

filters=filters,kernel_size=(1,1),strides=1,padding="same" ) {x)

) p5trides=1,padding="sams

X
X . s=Fi ), 5trides=1, padding="sams
X

outputs = tfl.Conv2D{filters=3,kernel size=(1,1),strides=1,padding="same

return outputs

Figure B.3.9: first variation of the LLCNN architecture

We see that the implementation is exactly the same, with the only
difference being that we have added three 1x1 convolutional layers
between the convolutional modules and the output layer. The number of
filters in these layers can be defined by the user, but we will use 64. The
purpose of these filters is to act as a post-processing step, possibly
increasing the performance of the model. The next steps are exactly the
same as the previous case, with the only difference being that we train the
model for 20 epochs instead of 10.

With the completion of the whole process, we have at our disposal the
experimental results. These can be used to calculate performance metrics,
which i1s done with the script shown in Figure B.3.10 below.
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273
274
275
276
277

279
280
281
282
283
284

2856
287
288
289
298
291
292
293
294
295
296
297
298
299
300
301
382

304

385
3e6

307
389
31@
311

313

325

333

335

E TEST IMAGES

disp( 'Working on Test Images...')

%Ground Truth images

NL_images3@ = imageDatastore(’D:\AIMAQMATIKH\GROUND TRUTH
NL_images35 = imageDatastore( D:\AINAOMATIKH\GROUND TRUTH
NL_images4@ = imageDatastore( D:\AIMNAOMATIKH\GROUND TRUTH
NL_images45 = imsgeDatastore( D:\AIMNAOMATIKH\GROUND TRUTH
= imageDatastore( D:'AIMADMATIKHYGROUND TRUTH

DEEP LEARNING%Test\3.@');
DEEP LEARNING\Test\3.5');
DEEP LEARNING\Test\4.2');
DEEP LEARNING\Test\4.5);
DEEP LEARNING'Test\5.8°);

% LLCNN-1 MODULE

NL_exp_res3@ = imageDatastore
NL_exp_res35 = imageDatastore

{'D:\AINAQMATIKH\Experiments
('o:
NL_exp_res4d = imageDatastore('D
('D
{('D

\AINAQMATIKHAExperiments
LATAQMATIKH\ Experiments
WAINAMATIKH) Experiments
:\AINAQMATIKH\Experiments

NL_exp_res45 = imageDatastore

NL_exp_resS@ = imageDatastore
%assessment for 3.8 image dataset
metrics_arr3@ = sssessment(NL_images3@,NL_exp_res3e);
¥assessment for 3.5 image dataset
metrics_arr35 = sssessment(NL_images35,NL_exp_res35);
%assessment for 4.0 image dataset
metrics_arr4® = sssessment(NL_images40,NL_exp_res4d);
%assessment for 4.5 image dataset
metrics_arr4S = assessment(NL_images45,NL_exp_res45);
¥assessment for 5.0 image dataset
metrics_arr5@ = assessment(ML_images5@,NL_exp_ress5e);

%columns titles
war_names = {'MSE", 'PSNR','SSIM", 'MV','STD

%convert the matrices to tables with column names

Results\Deep Learning Results\LLCNM++A\LLCMN++ Experiment Resultsi2.2:\1
Results\Deep Learning Results\LLCNN++\LLCMN++ Experiment Resultsi3.5\1

ResultsiDeep Learning Results\LLCHN++\LLCNN++_Experiment |

esultsi4.e\l

Results\Deep Learning Results\LLCNN++\LLCNN++_Experiment_Results\4.541
Results\Deep Learning Results\LLCHN++\LLCNN++_Experiment_Results\5.e\1

', "BRISQUE', 'NIQE'};

table3@ = array2table(metrics_arr3e, 'VarisblsNames®,var_names);
table35 = array2table(metrics_arr35, 'VariableNames®,var_names);
tabledd = array2table(metrics_arr4®, 'VarisbleNames',var_names);

tsbleds = arrsy2table(metrics_arrd5, 'Varisblelames',var_names);

tableSe = array2table(metrics_arr50, 'Varisblelames',var_names);

¥saving the results to an excel file

writetable(table3@, ' LLCNN_PLUS_1Module_assessment_test.xlsx', 'Sheet','3.8
writetable(table3s, ' LLCNN_PLUS_1Module_assessment_test.x1sx’, 'Sheet','3.5
writetable(table4d, ' LLCNN_PLUS_1Module_assessment_test.xlsx','Sheet','4.@
writetable(table4s,’ LLCNN_PLUS_1Module_assessment_test.xlsx’, 'Sheet’,'4.5

writetable(tableSe, LLCNN_PLUS_lModule_sssessment_test.xlsx’, 'Sheet','s.

disp('Done with 1 module!’)

.

% LLCNM-3 MODULES

NL_exp_res3@ = imageDatastore('D:\AINAOMATIKH\Experiments
NL_exp_res35 = imageDatastore('D:\AINAGMATIKH\Experiments

g
(

NL_exp_res4@ = imageDatastore( 'D:“\AIMAQMATIKH\Experiments
T
T

HL_exp_res45 = imageDatastore('D:\AINAGMATIKH\Experiments
NL_exp_res5@ = imageDatastore('D:\AINAGMATIKH\Experiments
%assessment for 3.0 image dataset

metrics_arr3@ = assessment(NL_images3@,NL_exp_res3a);
%assessment for 3.5 image dataset

metrics_arr3S = sssessment(NL_images35,NL_exp_res3s);
%assessment for 4.0 image dataset

metrics_arr4® = assessment(NL_images4@,NL_exp_res4a);
¥assessment for 4.5 image dataset

metrics_arrdS = assessment(NL_images45,NL_exp_res45);
%assessment for 5.8 image dataset

metrics_arrS® = assessment(NL_images58,NL_exp res5a);

%columns titles
var_names = {'MSE’,'PSNR','ssIM','MV','STD

%convert the matrices to tables with column names

ResultsiDeep Learning
ResultsiDeep Learning
Results\Deep Learning
ResultsiDeep Learning
Results\Deep Learning

', 'BRISQUE’, 'NIQE'};

Results\LLCNN++\LLCNN++_Experiment_Results\3.e\3
Results\LLCHN++L\LLCNN++_Experiment Results\3.5\3
Results\LLCHN++\LLCMN++ Experiment Results\4.0\3
Results\LLCNN++\LLCNN++_Experiment_Resultsi4.543
Results\LLCHN++\LLCNN++_Experiment_Results\5.e\3

table3@ = array2table(metrics_arr3@, 'VarizbleNames',var_names);

table35 = array2table(metrics_arr3s,
tabledd = array2table(metrics_arraa,
tableds = array2table(metrics_arras,
tablese = array2table(metrics_arrse,

"VarisbleNames',var_names);
"VariableNames',var_names);
"Variablelames',var_names);
"VarisbleNames',var_names);

%saving the results to an excel file
writetable(table3@, ' LLCNN_PLUS_3Modules
writetable(table35, 'LLCNN_PLUS_ 3Modules

writetable(tableds, ' LLCNN_PLUS_3Modules
writetable(tableSe, LLCNN_PLUS 3Modules

ssessment_test

_assessment_test.
_assessment_test.

writetable(table4@,’ LLCNN_PLUS_3Modules_sssessment_test.
£l

_a

ssessment_test.

xlsx', 'Sheet','2
xlsx', 'Sheet”,"2.
x1sx', Sheet','4.
q
5

.xlsx', Shest’,
xlsx','Sheet’,

module’);
module’);
module’);
module’);
module’);

modules');
modules');

)

)
modules’);
modules');

)

modules');
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353 disp('Done with 3 module!")

254

355

356 % LLCNN-5 MODULES

357

358 NL_exp_res3@ = imageDatastore('D: \Experiments Learning \5 modules');
359 NL_exp_res35 = imageDatastors('D ts g 5 modules');
360 NL_exp_resad = imageDatastore('D ts g 5 modules');
361 NL_exp_res45 = imageDatastore('D \Experiments Learning \5 modules');
362 NL_exp res50 = imageDatastore('D \Experiments Learning "5 modules');
363

364 %assessment for 3.8 image dataset

365 metrics_arr3® = assessment(NL_imeges38,NL_exp_res38);

366 %assessment for 3.5 image dstaset

367 metrics_arr3s = assessment(NL_images35,NL_exp_res35);

368 Xassessment for 4.8 image dataset

369 metrics_arrd4® = assessment(NL_images4@8,NL_exp res4d);

376 ¥assessment for 4.5 image dataset

371 metrics_arrds = assessment(NL_images4S,NL_exp_resds);

372 %assessment for 5.2 image dataset

373 metrics_arr5@ = assessment(NL_imagesSe,NL_exp_resse);

374

375 %columns titles

376 var_names = {'MSE','PSNR','SSIM",'MV',’'STD', 'BRISQUE’, 'NIQE'};

377

378 %convert the matrices to tables with column names

379 table3@ = srray2table(metrics_arr30, 'V s ,var_names);

288 table3s = array2table(metrics_arr3s,’ s',var_names);

381 table4® = array2table(metrics_arrdd, ', var_names);

382 tableds = array2table(metrics_arrds, ,var_names);

283 tables@ = array2table(metrics_arrse, ;

384

385 ¥saving the results to an excel file

386 writetable(table3@, "LLCNN_ d st.xlsx',’ 3.8');

387 writetable(table3s, "LLCN cxlsx', " 3.5");

388 writetable(tabled@, "LLCNP Wxlsxt, 4.2°);

389 writetable(tableds, "LLCN st.xlsx',”’ 4.5');

390 writetable(tableS@, "LLCNN_ st.xlsx', ' 5.8');

3091

292 disp('Done with 5 modules!')

293 disp('Done with Test Images!')

194 disp('Done!")

Figure B.3.10: Assessment script for the test set

The process is the same as in the previous case, and in the end 3 excel files
(one for each number of convolutional modules) with 5 sheets each (one
for each darkness level) result. These files will be used to build summary
tables, based on which we will evaluate the performance of the model.
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LLCNN — 2" variation

As we mentioned in chapter 3, the model will be trained taking as input the
classic LL image input and as output the difference of the LL image from
the ground truth case. As an architecture we will use the first variation we
described above, so the only thing that changes is the data handling we do.
This is shown in the figures below.

(train_input.shape
print(f train_output.sha

print(

data = []
for index in range(train_input.shape
data.append (train_input[index, .reshape(train_input.shape[2],train_input.shape[3],train_input.shape[4]))

train_input = np.array{data)
train_input = train_input/255

data = []
for index in range(train_sutput.shap:
data.append (train_output[index reshape (train_output.shape[2],train_output.shape[2],train_output.shape[4]})

train_output = np.array{data)
train_output = train_output/255

train_input.shape} ')
train_output.shape} ")

output sha
Reshaping
Input shap
output shape:

print({cnn_output.shape)

Figure B.3.11: data handling for the training data

We see that we read the data in the same way as before, and then calculate
the difference between the ground truth image and the LL image, which
will be the output of the model. We follow the same procedure for the
validation data, as shown in figure B.3.12.
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for index in range(val_input
data.append(val_input[inde: :].reshape (val_input.shape[2],val_input.shape[3],val_input.shape[4]})

val_input = np.array(data)
val_input = wval_input/255

data = []
for index in range(val_output.shape[8])
data.append(val_output[index,®,:,:,:].reshape(val_output.shape[2],val_output.shape[3],val output.shape[4]))

val_output = np.array(data)
val_output = val_output/2ss

al_input.shape} ')
val _output.shape]')

Input shape
Output shape: (

primt{cnn_val.shape)

Figure B.3.12: data handling for the validation data

Once we have the data ready in the format we want, we need to train the
model. This can be seen in figure B.3.13 where we see that as input we
give the LL images, while as output we now have the differences we
calculated above. The training is done for 20 epochs, as in the previous
case.

prin oo =T,

model. cnn_output, epochs=28, batch_size-5, verbose=1,validation| data={val_input,cnn_val))
print({ \ninTraining ted! ")

Image B.3.13: training of the model

After completing the training of the model, we need to apply it to the test
data to evaluate its generalization ability. First, we apply the model to the
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test data to calculate the appropriate difference e for each image, and then
we add this predicted difference to the test LL images to produce the final
experimental images. This process is shown in figure B.3.14.

Figure B.3.14: making predictions on the test set

After the final experimental images are produced, we save them in exactly
the same way as we analyzed in the first variation. These images will be
used to evaluate the method, calculating the evaluation metrics we
mentioned above. The metrics are calculated using the script shown in
Figure B.3.15 below.

264

265 % TEST IMAGES

266 5

267 disp('Working on Test Images...')

268

269 %Ground Truth images

278 HL_images3@ = imageDatastore('D ATIKH\GROUND TRUTH DEEP LEARNING\Test\3

271 NL_images35 = imageDatastore KH\GROUND TRUTH DEEP LEARN

272 NL_images4@ = imageDatastore GROUND TRUTH DEEP LEARN

273 NL_imagesd5 = imageDatastore GROUND TRUTH DEEP LEARN

274 NL_imagesS@ = imageDatastore(’

275

276

277

278 % LLCNN-1 MODULE

279 3

238 NL_exp_res3@ = imageDatastore(’ LLCNN+DeepOt \LLCHN+D: )
281 NL_exp_res3s = i tastore(’ | LLCHN-+D: )
282 NL_exp_res4d = imageDatastore( 4 LLCHN+D: )i
283 NL_exp_resas = imageDatastore(’ £ \ LLCHN-+D: )
284 NL_exp_res56 = imageDatastore('D: lts\Deep Learning LLCNN+DeepOt 14 LLCNA-D: )
285

286 %a ment for 3.0 image dataset

287 _arr3@ = assessment(NL_i 38, NL_exp_res3a)

288 ment for 3.5 image da

289 _arr35 = assessment(N ges3s,NL_exp_res3s);

290 ment for 4.8 image da

291 metrics_arrd® = assessment(NL_images4d,NL_exp_resda);

292 %assessment for 4.5 image datas

293 metrics_arrdS = sssessment{NL_images45,NL_exp_res45);

204 %a ment for 5.8 image datas

295 metrics_arr5@ = assessment(HL_images50,NL_exp_res50);

296

297 %columas titles

298 var_names = {'MSE','PSNR',’SSIM','MV','STD', BRISQUE', NIQE'}

299

308 %convert the matrices to tables with

3e1 table3e = arrsy2table(metrics_arr3e, le ar_names);

302 table3s = array2table(metrics_arr3s, r_names);

383 table4@ = array2table(metrics_arr4@, names)

304 tableds = array2table(metrics_arras, r_names);

3e5 tableSe = array2table(metrics_arre, ,var_names);
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371

373
374
375

377
378
379
388
381
382
383
384
385

387

391

%saving the results to an e
writetable(tablesa, LLCNN DI
writetable(table3s,  LLCNN
writetable(tableda,
writetable(tabledS,
writetable(tablesa,

disp(’Done with 1 mod

% LLCNN-3 MODULES

NL_exp_res3@ = imageDatastore('D
HL_exp_res35 - imageDatastore('D:
NL_exp_res4@ = imageDatastore(’D
NL_exp_resd5 = imageDatastore(’D:\AIMAMMATIKH\Experiments Results
NL_exp_resse = imageDatastore(’D

MATIXKH\Experinents Result

ent for 3.0 image dataset
_arr30 = assessment(NL_images30,NL_exp_res38);
r 3.5 image dataset
assessment (HL_images3s,NL_exp_res35);
4.8 image dataset
assessment (HL_imagesao,NL_exp_resd);
4.5 image dataset
assessment (NL_imagesas,NL_exp_resds);
© image dataset
metrics_arr5e = assessment(NL_imagesso,NL_exp_resse);

%columns titles
var_names = {'MSE', 'PSNR","

LMV, "STD', 'BRISQUE', "NIQE'};

%co
table3@ - array2table(metrics_arr3o,’
table3s = arrayatable(metrics_arr3s,’
table4d - array2table(metrics_arrdd,’
tableds = array2table(metrics_arrds,”
table5@ - array2table(metrics_arr5o,’

the matrices to tables with column names
svar_names) ;
,var_names);
svar_names) ;
,var_names);
svar_names) ;

%sav

ng the results

writetable(table3a, xlsx’, Sheet’ 5
writetable(table3s, t.xlsx", 'Sheet’ B
writetable(tablede, "LLCNN_D st.xlsx’, Sheet’

writetable(tableds, LLCUN DX
writetable(tablese,

xlsx', 'sheet’, "

t.xlsx’, 'Sheet’,’

disp('Done with 3

NL_exp_res3@ = imageDatastors('D:
NL_exp_res35 = imageDatastore('D
NL_exp_res4d = imageDatastore('D:\d
NL_exp_resdS = imageDatastors('D:
NL_exp_res5a = imageDatastore('D

%assessment for 3.0 image dataset
metrics_arr3@ = assessment(NL_images3o,NL_exp_res3@);
%assessment for 3.5 image dataset
metrics_arr3S = assessment(NL_images35,NL_exp_res35);
%assessment for 4.0 image dataset
metrics_arrd@ = assessment(NL_imagesd®,NL_exp_res4@);
%assessment for 4.5 image dataset
metrics_arrdS = assessment(NL_imagesds,NL_exp_res4s);
%assessment for 5.0 image dataset

metrics_arr50 = sssessment(NL_images50,NL_exp_res58);

%columns titles
var_names - {'MSE', 'PSNR’,

»'MV','STD',"BRISQUE", 'NIQE'};

%convert the matrices to tables with column names

table3@ = array2tsble(metrics_arr3@, 'V
table3s = array2table(metrics_arr3s, Variablel
table4d - array2table(metrics_arr4e, 'Varisbl
tableds = array2table(metrics_arras,
table50 = array2table(metrics_arr5@, ‘Varisblel

Lvar_names);
,var_names);
s var_names);
*,var_names);

,var_names);

%saving the results to an
writetable(table3e, 'LLCHN_|
writetable(table3s,
writetable(tableaa, 'LLCNN_|
writetable(table4s, 'LLCHN
writetable(table5@, 'LLCNK

oxlsx’, 'Sheet', "
xlsx','Sheet'

.xlsx','Sheet',
disp(Done

disp('Done
disp('Done

x1sx", "Sheet’,”

.xlsx','Sheet', 4.

Learning
Learn
Learning
Learning

Learning

Figure B.3.15: Assessment script for test set

We start by reading the ground truth images as well as the experimental
results for each case of number of convolutional modules, using the feature
of image datastores. Then we apply the assessment function to calculate
the metrics, saving the final results in excel files. At the end of the process
we have at our disposal 3 excel files (one for each case of number of
convolutional modules) with each one having 5 sheets, one for each
darkness level, which will be used to construct summary tables and

LLCNN+DeepOts
LLCNN+DeepOt

LLCNN+DeepOts
LLCNN+DeepOt

diagrams for the evaluation of the method.

\S module
\S modules');

\S modules');
\S module

madule

Zoom: 100%
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