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Abstract 

 

It is well known that digital images are used every day in many fields, 

which include medicine, agriculture and law enforcement. The systems 

used in the above fields require the input images to be of high quality 

without noise. However, there are many factors that can reduce the quality 

of an image. One of them is low light conditions, e.g when the image is 

taken at night time and/or indoors. Due to these conditions, the light 

reflected from the scene and reaching the sensor is very weak resulting in 

final images characterized by low contrast and brightness, with pixel 

values concentrated in the left part of the histogram, which introduces noise 

and color distortions. Such images must be enhanced before being used in 

vision systems. The purpose of this work is the study and application of 

such image processing methods, that are known as Low Light Image 

Enhancement (LLIE) methods, and aim to enhance dark images without 

introducing additional noise. Initially, a variety of learning free algorithms 

are studied, which apply a mathematical operation to each image. Then, in 

an attempt to improve the results, machine learning methods are involved, 

specifically deep learning models, which use information from the 

available data set, to learn the representation between the dark and ground 

truth images. For this purpose, two variations of a Convolutional Neural 

Network architecture are proposed. All the methods are applied to the 

RELLISUR dataset, which includes truly dark images, rather than images 

produced by applying a transformation to the ground truth images, and is 

divided into different darkness levels. The results of the methods are 

evaluated by metrics that either use a reference image or not. This 

evaluation led to the conclusion that classical methods, although they give 

satisfactory results, show weakness in excessively dark images, 

introducing additional noise and color distortions. On the other hand, the 

deep learning methods that were applied, and especially the two proposed 

variations, produced more accurate visual results where the experimental 

images are characterized by high contrast and brightness. 
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Chapter 1 – An Introduction 
 

At this first chapter we will introduce basic concepts of Digital Image 

Processing, with a brief summarization of historical background. After that 

we will describe the Low Light Image Enhancement (LLIE) problem that 

we will try to solve and the dataset to be used. At the end of the chapter we 

will include a brief list with the algorithms that will be used, and describe 

the quality metrics which will be used for the assessment of each method. 

 

1.1 Image Processing 
 

As humans we rely heavily on vision to make sense of the world around 

us. By making sense we mean processes such as recognizing objects, 

identifying differences between objects and generally gaining a more 

general sense of the landscape/scene that we see with our eyes. Thus, we 

understand that as an image we could define any scene (moving or static) 

that represents something. This scene, however, can be altered by 

phenomena such as low lighting, fog, or even by movement since in reality 

no scene is static. Nevertheless, in most cases, we remain able to interpret 

what we see, which is due to the fact that the human brain "processes" the 

image, improves it, and gives it meaning, with this whole process 

happening instantaneously. In this sense, we could define as image 

processing the process that the human brain follows to give meaning to 

what we see. So, we understand how important a process it is, since our 

survival is largely based on it. 

But images appear not only as the scenes we see in the world around us, 

but also as the results of digital processes such as taking digital images and 

producing digital scenes using a computer. These images are called digital, 

and they can be corrupted by the same factors, such as the introduction of 

noise during the transfer or compression of an image, or even the partial 

destruction of a related file. Ιn this case, appropriate image processing 

methods exist and are applied, to recover and improve each image. At this 

point we can give a clearer and stricter definition of the field of image 

processing. 
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Digital image processing: is defined as the processing of a digital image, 

using a computer, with the ultimate goal of either improving/retrieving 

visual information for use by humans or machines, or extracting additional 

visual information such as image segmentation.[11] 

At this point let us mention that a more rigorous definition of a digital 

image is a 2D function, f(x,y), where the spatial coordinates (x,y) as well 

as the intensity f(x,y) are discrete quantities.  

As we will see below, digital images are used in every aspect of everyday 

life, from agriculture and industry, as well as in every form of science such 

as medicine, astronomy. In each of these areas, we process digital images 

to extract some useful information from them. For example, in agriculture 

we can use satellite images to learn about the distribution of crops on a land 

surface, in medicine we can use CAT scans to find the location of a 

malignant tumor, and in astronomy we can use data from telescopes to find 

the structure of a distant celestial body.  

In order to produce reliable results, all these applications must use high-

quality images in visual information that contain minimal noise and visual 

distortions. This is almost never possible since digital images can be 

subject to various kinds of distortions such as noise, blurring, etc. (See 

subsection 1.3). This is where the field of digital image processing (or pre-

processing as it is called, in the context of each application) enters, where 

we process an image, before feeding it to any of the above applications, 

with the aim of either improving it or extracting additional information. 

More details will be mentioned in a later section, in this chapter. 

Based on what was mentioned above we understand the importance of the 

field of digital image processing. In the following we will study in a little 

more detail the applications where digital images are used as well as the 

various stages of processing to which these images are subject in order to 

remove noise and extract information. Then we will analyze the part on 

which the rest of the work will focus, strictly defining the problem to be 

tackled and describing the course we will follow. 
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1.2 Digital Image Processing applications 
 

As mentioned above, digital images are used in a multitude of applications. 

In this section we will refer to each of them in a little more detail by 

describing basic examples. The main areas we will look at are applications 

in medicine, agriculture and law enforcement. 

Medicine 

This is one of the most important areas of using digital images and digital 

image processing. The most basic use is the processing of images from 

examinations such as MRI and CT scans to extract (visual) information that 

can lead to a diagnosis and selection of appropriate treatment for each 

patient. 

MRI, or Magnetic Resonance Imaging, is a medical imaging technique that 

uses strong magnetic fields and radio waves to produce images that depict 

the organs and general anatomy of the (human) body. The end result is a 

cross-section depicting the anatomy of the region of interest. For example, 

figure 1.1 depicts images of the brain as obtained from MRI scans. Doctors 

can then use these images to find abnormalities or even conditions in the 

area of interest (here in the brain) such as cancerous tumors, cysts and 

tissue diseases. For example, figure 1.2 shows an MRI of a brain in which 

a cancerous tumor has been detected. 

 

 

Figure 1.1:  MRI Scans of the Human brain1 

 
1 From https://www.melbourneradiology.com.au/diagnostic-imaging/mri-scan-brain/  

https://www.melbourneradiology.com.au/diagnostic-imaging/mri-scan-brain/
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Figure 1.2: Cancerous tumor as detected by MRI scan2 

  

CT scans can lead to the same or even better conclusions, the results of 

which are 2d slices that can be combined to construct a 3d representation 

of the body's anatomy. Unlike MRI scans, CT scans do not use strong 

magnetic fields, but a set of thin X-ray beams that scans the patient. It is 

usually used in patients who have a metal implant for which an MRI scan 

is not indicated. For example, figure 1.3 demonstrates an image from CT 

scans of soft tissues. CT scans can then be used by doctors to detect 

abnormalities in the area of interest (here in the soft tissues) such as 

cancerous tumors and internal bleeding. Figure 1.4 depicts cancerous 

tumors (early stages above and advanced below) as detected by CT scans 

[1]. 

 
2 From https://www.cancer.gov/rare-brain-spine-tumor/tumors/diffuse-midline-gliomas  

https://www.cancer.gov/rare-brain-spine-tumor/tumors/diffuse-midline-gliomas
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Figure 1.3: CT scans of soft tissues3 

 

 

Εικόνα 1.4: Cancerous tumors in the lungs as detected by CT scans [1] 

 
3 From https://www.medicalnewstoday.com/articles/153201  

https://www.medicalnewstoday.com/articles/153201
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In an attempt to automate the diagnosis process, digital images produced 

by MRI and CT scans can be used in classification algorithms, to classify 

tissues into healthy and non-healthy, as well as to locate cancerous tumors 

[2].  

 

Agriculture 

Another large area of application of digital imaging is agriculture. In this 

case, remote sensing images, which have been taken from a satellite, are 

used. The images taken and processed usually depict pieces of land which 

may include forested areas, are intended for cultivation or are already 

cultivated and we want to examine the distribution and health of the crops. 

For example, if the area of interest consists of forest land, roads and 

residential areas, then on the satellite images a classification algorithm is 

applied so that each pixel is classified into one of these three categories. In 

this way one have the possibility, using these results, to control (using 

historical data) the evolution of urban expansion and the results of human 

activity, as well as the evolution of forest expansion 

(forestation/deforestation)[3]. For example, in figure 1.5 a satellite image 

of the city of Maanshan in China is depicted, and figure 1.6 demonstrates 

the classification in each class [4]. These images come from the Landsat-

5TM satellite. 

 

Figure 1.5: Satellite image of Maanshan city in China[4] 
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Figure 1.6: Result after classifying each pixel in the respective class[4] 

 

 

Law enforcement and video surveillance 

The last area to be examined is law enforcement and video surveillance. In 

this case, key applications include digital images of fingerprints as well as 

images from security cameras (derived from video frames) that can be used 

to identify the perpetrator or to prevent suspicious activity. 

In the first case, digital fingerprint images are used to build a huge database 

of such images. These can then be used to identify the perpetrator at a crime 

scene where fingerprints have been collected. An example of such an image 

[5] is shown in figure 1.7 below. Once a fingerprint is collected from a 

crime scene, it is compared to this massive database until a match is found. 

To do this, a matching algorithm is applied to the digital image of the 

fingerprint that through a process looks for the appropriate match for the 

digital image it gets as input. One such example is shown in figure 1.8 

where the Minutia Cylinder-Code (MCC) method is boosted using GPU 

for greater performance [6]. 
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Figure 1.7: Digital images of fingerprints of an adult (left) and a child (right) [5] 

 

 

Figure 1.8: Fingerprint matching using MCC algorithm boosted with GPU [6] 

 

In the second case we refer to digital images as obtained from security 

cameras or traffic control cameras (from their frames). These images (or 

series of images) can be used to detect illegal activity and prevent a crime. 

For example, in figure 1.9 images from security cameras are depicted that 

have recorded the theft of objects. These images come from the DCSASS 

dataset created by Sultani et al [7] and contains 16853 videos, which are 
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used to train suspicious activity prevention and recognition systems. As for 

example in [8] where the authors have trained a CNN to recognize robbery 

and shooting footage. 

A different approach is to use digital images from traffic control cameras, 

either to detect license plates of vehicles exceeding the speed limit or to 

identify and report accidents for faster response. For example, figure 1.10 

shows images from a traffic control camera before and after a car accident. 

Such images were used by [9] to train an automatic intersection accident 

detection system. 

 

 

Figure 1.9: Theft shots as recognized by the algorithm of [8] 

 

 

Figure 1.10: Images from a traffic control camera before (left) and after (right) 

automatic accident detection [9] 
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1.3 Noise and degradations 
 

Based on what was mentioned in the previous subsection, it is understood 

how important digital images are in our daily lives. In all the above cases, 

the digital images are used as input to some digital image processing 

system with the final aim of extracting useful (visual) information. For 

example, in MRI scans, a segmentation algorithm could be applied that 

segments a brain scan into healthy tissue and a cancerous tumor, leading to 

automated diagnosis [10]. However, in order to make a correct and reliable 

diagnosis, the images that are used as input of the diagnosis system must 

be of high quality and not be altered by factors such as noise and artifacts. 

In remote sensing images, classification algorithms can be applied that 

assign each pixel to a class, such as land, crops, bare ground, etc. For this 

classification to be correct, the images must also be of high quality and not 

been altered by factors such as fog/cloudiness and noise due to 

transmission from the satellite to the terrestrial systems. Finally, and in the 

automatic accident detection system, the images are passed through a 

pipeline in which appropriate features are extracted, which are used to 

detect accidents. Even in this case, introducing noise/blurring into the 

image can dramatically reduce system performance leading to incorrect 

results. 

It can be seen that in all cases the input images of the respective system 

must be clear and of high visual quality, otherwise there is a risk that the 

results produced will be incorrect and unreliable. In the real world, 

however, this is very rare, as digital images can be corrupted by many 

factors. The two dominant factors are either of a technical nature such as 

for example the noise introduced during the capture and transmission of an 

image, or of natural origin due to the environment where the capture is 

made (low lighting, moving objects/blurring, fog) [11]. 

For noise due to the technical part (reception, transmission) two major 

categories can be distinguished, Gaussian noise and salt and pepper noise. 

Below a brief description of these two categories is given. 

Gaussian Noise 

This type of noise can be introduced into a digital image both during 

reception and during transmission. During shooting Gaussian noise can 

occur from the sensor and can be due to low lighting levels or high 

temperature. Gaussian noise is additive noise and changes the value of each 

pixel slightly by an amount that follows a Gaussian distribution [12]. 
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𝐼𝑛𝑜𝑖𝑠𝑒(𝑥, 𝑦) = 𝐼𝑐𝑙𝑒𝑎𝑛(𝑥, 𝑦) + 𝑔 (Σχέση 1.1) 

 

where Inoise is the image with noise, Ιclean is the clean image, (x,y) are the 

spatial coordinates of each pixel, Inoise(x,y) and Iclean(x,y) are the gray values 

of the pixel (x,y) of the image with noise and without noise respectively. 

Finally, g is the amount by which the value of each pixel changes, and has 

a probability distribution that of the Gaussian distribution: 

 

𝑃(𝑔) =  √
1

2𝜋𝜎2
∗ 𝑒

−
(𝑔−𝜇)2

2𝜎2  (Σχέση 1.2) 

 

Below is an example of Gaussian noise. This result was produced using 

MATLAB and the image of Lena4 and introducing Gaussian noise with 

mean value μ=0.005 and variance σ=0.01. 

 

 

Figure 1.11: Image without noise (left) and with Gaussian noise (right) with μ=0.005 

and σ=0.01 

 

 

 
4 http://www.lenna.org/  

http://www.lenna.org/
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Salt and Pepper noise 

This is the appearance of black and white pixels randomly distributed 

across the image. The appearance of this kind of noise is due to variations 

in the image signal during its transmission. During the transmission of the 

image, some pixels become corrupted and are replaced by the maximum or 

minimum value that a pixel can take (255 and 0 respectively for an 8-bit 

image) [12]. 

In Figure 1.12 an example of salt and pepper noise is depicted, again using 

Lena's image. 

 

 

Figure 1.12: Image without noise (left) and with salt and pepper noise (right) 

 

In addition to technical reasons, the visual information in an image can also 

be altered by the (environmental) conditions that prevail during the capture 

of the image. Two very basic examples are blurring due to the movement 

of an object at the time of shooting and low light conditions (which is also 

the problem we will try to solve at the following chapters). 

 

Blurring 

It is a distortion of an image that is mainly due to movement of either the 

object of interest or the camera itself [13]. Typical examples are the images 

and videos resulting from traffic control cameras. As mentioned above, 

such images can be used to recognize the license plate number of a car, but 

because the objects are in motion, the characteristic noise of blurring 
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occurs, making it difficult to recognize the license plates. Figures 1.13 and 

1.14 demonstrate an example of a blurred image of a car and a license plate 

as derived from the study in [14].  

 

 

Figure 1.13: Blurred car and license plate images [14] 

 

 

Figure 1.14: Blurred license plate image [14] 

 

Low light conditions 

This is noise introduced into an image when the lighting level of the scene 

is extremely low [15]. This is mainly because the light reflected from the 

surface of the objects is weak leading to chromatic aberrations and noise. 

This kind of noise can dramatically reduce the performance of systems 

using digital images. As a typical example images from security system 
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cameras are mentioned, which during the night face a problem with low 

light conditions [16]. Figure 1.15 depicts an example of such an image. 

 

 

Figure 1.15: Images as they appear in low light conditions [16] 

 

Such images cannot be fed to the systems mentioned in the previous sub-

section because they will produce unreliable results, which can lead to 

wrong decisions. Before feeding them to these systems we should first 

denoise them by applying a suitable image denoising algorithm to improve 

the input quality of the system. Noise due to low light conditions, as well 

as low light image enhancement are the main topic of this thesis, during 

which we will develop and test/evaluate a set of algorithms, commenting 

on the results and comparing the performance of the algorithms with each 

other. 

In the next sub-section, the problem of low light conditions will be 

described in more detail and we will study the data set, which will be used 

in the rest of the thesis for the application and evaluation of each low light 

image enhancement method. 
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1.4 Low Light Images and the RELLISUR Dataset 
 

As mentioned above, low light images are images taken in low light 

conditions, such as indoors, at night or on cloudy days. Due to these 

conditions, the light reflected from the surface of the objects in the scene 

is weak, resulting in reduced image quality due to noise and color 

distortions. The quality of such images can become even worse after 

processes such as conversion, storage and transfer, processes that 

themselves introduce additional noise. 

More specifically, for an image to be considered as low light, the lighting 

conditions must not satisfy certain criteria. But it is impossible to define 

theoretical values for a low-light environment, as a result of which there 

are no unified standards. The standard can change depending on the 

manufacturer/researcher, for example Hikvision uses illuminance (lux 

measurement units) as a criterion and has the following categories i) dark 

level (0.01lux-0.1lux), ii) moonlight level(0.001lux-0.01lux) and iii) 

starlight level (smaller than 0.001lux). In [17], where the dataset we will 

use comes from, as brightness levels they use the Exposure Value (EV) 

which will be defined later when the dataset is going to be described. 

Images taken in such conditions show low brightness levels, low contrast, 

narrow gray range and color distortions. To see this better we will use the 

RELLISUR dataset [17], which we will describe next. Specifically, the 

average brightness and contrast for all images of each brightness level 

separately (details at the end of this sub-section) will be calculated, and 

then a random low light image from each brightness level and its respective 

histogram will be displayed. Also, for comparison purposes the same 

procedure will be applied for the corresponding ground truth images. 

Histograms have been generated by MATLAB software. 
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Darkness Level: 3.0 

 

Figure 1.16: Random low light image from Darkness Level 3.0 

 

Figure 1.17: Histogram of all gray values of the figure 1.16 
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Figure 1.18: histogram of Figure 1.16  per channel 

 

 

Figure 1.19: Normal light version of 1.16 figure 
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Figure 1.20: Histogram of all gray values of the figure 1.19 

 

Figure 1.21: histogram of Figure 1.19  per channel 
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Figure 1.22: Comparison of histograms per channel 

 

Darkness Level: 3.5 

 

Figure 1.23: Random low light image from Darkness Level 3.5 
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Figure 1.24: Histogram of all gray values of the figure 1.23 

 

 

Figure 1.25: histogram of Figure 1.23  per channel 
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Figure 1.26: Normal light version of 1.23 figure 

 

 

Figure 1.27: Histogram of all gray values of the figure 1.26 
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Figure 1.28: histogram of Figure 1.26  per channel 

 

 

Figure 1.29: Comparison of histograms per channel 
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Darkness Level: 4.0 

 

Figure 1.30: Random low light image from Darkness Level 4.0 

 

 

Figure 1.31: Histogram of all gray values of the figure 1.30 
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Figure 1.32: histogram of Figure 1.30 per channel 

 

 

Figure 1.33: Normal light version of 1.30 figure 
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Figure 1.34: Histogram of all gray values of the figure 1.33 

 

 

Figure 1.35: histogram of Figure 1.33 per channel 
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Figure 1.36: Comparison of histograms per channel 

 

Darkness Level: 4.5 

 

Figure 1.37: Random low light image from Darkness Level 4.5 
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Figure 1.38: Histogram of all gray values of the figure 1.37 

 

Figure 1.39: histogram of Figure 1.37 per channel 
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Figure 1.40: Normal light version of 1.37 figure 

 

Figure 1.41: Histogram of all gray values of the figure 1.40 



 

 29 

 

Figure 1.42: histogram of Figure 1.40 per channel 

 

 

Figure 1.43: Comparison of histograms per channel 
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Darkness Level: 5.0 

 

Figure 1.44: Random low light image from Darkness Level 5.0 

 

Figure 1.45: Histogram of all gray values of the figure 1.44 



 

 31 

 

Figure 1.46: histogram of Figure 1.44 per channel 

 

Figure 1.47: Normal light version of 1.44 image 
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Figure 1.48: Histogram of all gray values of the figure 1.47 

 

 

Figure 1.49: histogram of Figure 1.47 per channel 
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Figure 1.50: Comparison of histograms per channel 

 

In all cases of darkness level one can see, from the histograms, that the 

pixel values for all color channels are concentrated in the left part of the 

histogram due to the low light conditions. As the level increases, this 

accumulation on the left side becomes more pronounced leading to 

increasingly darker images. Moreover, for all color channels the difference 

between maximum and minimum pixel value is very small, which confirms 

that low light images show low contrast. It is also worth commenting that 

the differences between pixel values between channels are very small. This 

leads to not being able to distinguish color and introduces color distortions. 

We see this become more pronounced at higher levels, with levels 4.5 and 

5.0 being so dark that we can't make out any color at all. As a little spoiler 

note that this will be seen in the continuation of the thesis, where the 

algorithms to be applied will have a very difficult time restoring the color 

information for these levels. 

Regarding the brightness values table 1.1 presents these values of the 

average brightness for each darkness level of the data set that will be used. 

These values have been calculated with the help of MATLAB software. In 

addition, a diagram of these values per partition of the data set (train, test, 

validation, see the description of the set below) is presented, from where 

the decreasing trend of the values as the Darkness Level increases can be 

confirmed. 
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Darkness Level Train Validation Test Total 

3.0 16,7090 16,8166 16,7994 16,7750 

3.5 11,7838 11,8761 11,8420 11,8340 

4.0 8,2093 8,3013 8,2430 8,2512 

4.5 5,6584 5,7407 5,6592 5,6861 

5.0 3,9589 3,9634 3,8872 3,9365 

Table 1.1: Brightness per data set per darkness level 

 

 

Figure 1.51: Brightness vs Darkness level for low light train dataset 

 

 

Figure 1.52: Brightness vs Darkness level for low light validation dataset 

16,7090

11,7838

8,2093

5,6584

3,9589

0

2

4

6

8

10

12

14

16

18

3.0 3.5 4.0 4.5 5.0

B
ri

gh
tn

es
s

Darkness Level

Train Dataset Brightness vs Darkness Level

16,8166

11,8761

8,3013

5,7407

3,9634

0

2

4

6

8

10

12

14

16

18

3.0 3.5 4.0 4.5 5.0

B
ri

gh
tn

es
s

Darkness Level

Validation Dataset Brightness vs Darkness Level



 

 35 

 

Figure 1.53: Brightness vs Darkness level for low light test dataset 

 

 

Figure 1.54: Brightness vs Darkness level for the whole low light dataset 

 

In contrast to what have been mentioned so far, in ground truth images the 

pixel values are spread over the entire width of the histogram, leading to 

high contrast values and images rich in visual information. The differences 

between pixel values between channels are large enough to provide the user 

rich color information. These features are what the algorithms will try to 

restore in the low light images, in the continuation of the work. Each 

algorithm will be applied to the RELLISUR dataset, which is described 

immediately below. 
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RELLISUR Dataset 

In [17] the authors present a data set that includes real low light low 

resolution images and the corresponding Normal light high resolution 

ground truth images, hence the name of the set, Real Low-Light Image 

Super Resolution. Their main purpose is to study Low Light Image 

Enhancement and Super Resolution together and not separately as is 

usually done. For this purpose, the authors collected images of different 

resolutions for the same static scene, varying the focal length of the camera, 

while at the same time they also collected images of different low light 

levels by gradually reducing the exposure time. Before proceeding to the 

detailed description of the data set, let us comment that due to the change 

in the focal length, misalignment of the image pairs may occur, something 

that is dealt with by a suitable post processing pipeline. 

More specifically, the set consists of a sequence of Normal Light images 

of static scenes, scaled x1, x2 and x4, together with 5 low light images 

scaled x1, one for each darkness level. The scales express the resolution of 

the image, and since doubling the focal length leads to a doubling of the 

scale, images of different resolutions are obtained using focal lengths 

70mm (x1), 140mm (x2) and 280mm (x4). The x1 images are 625x625 

pixels, x2 are 1250x1250 pixels and x4 are 2500x2500 pixels. For the 

different brightness levels the Exposure Value is used, which is calculated 

as 𝑙𝑜𝑔2 (
𝑁2

𝑡
), where N is the f-stop number of the lens and t is the exposure 

time. A reduction of -1.0EV corresponds to half the exposure time, for 

constant N. This way images are taken for different values of under 

exposure, using exposure values -2.5,-3.0,-3.5,-4.0,-4.5, -5.0EV from the 

camera's auto exposure setting. Based on this, the Darkness Levels 

mentioned above are defined as 2.5, 3.0, 3.5, 4.0, 4.5 and 5.0 (here we do 

not use 2.5 for reasons that will be mentioned later). As the Darkness Level 

increases, the images get darker with a narrow gray value range, the pixel 

values are concentrated close to 0 and the average brightness of the set 

decreases, as can be seen from figures 1.16 – 1.54. For the sake of 

completeness, a sequence of such images is listed, using x1 scale images 

and darkness level 3.0-5.0, since we will deal with them in the rest of the 

thesis. 
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  3.0       3.5    4.0 

 

   

       4.5       5.0       Normal Light 

 

The set consists of 850 such image sequences, and if we take into account 

all resolution scale levels and all darkness levels, 12750 pairs of LLLR - 

NLHR images are obtained. 

It was mentioned above that changing the focal length can lead to 

misalignment of the image pairs. In addition to this, other external factors 

can affect the final result, for example during shooting the wind may shake 

the camera leading to motion blur. For this reason, the authors apply a post-

processing pipeline to the images they have collected. First, they check the 

collected images one by one to discard those that are out of focus, 

incorrectly exposed or contain moving objects. Then, using appropriate 

software [18] they remove chromatic aberration and lens distortion. At this 

point it should be commented that since it is difficult to remove the 

distortion from the corner areas of each image, they apply cropping of the 

x4 NLHR images to a size of 2500x2500 pixels. To deal with the problem 

of misalignment introduced due to a change in focal length, they register 

all images to match the x4 NLHR image of each sequence. They first detect 

and match SURF features [19] between the x1 and x4 NL images, using a 

downsampled version of the x4 image as the target. The coordinates they 
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calculated from the above step are used to calculate a homography through 

MSAC [20] and with the translation parameters calculated they align the 

x1 LL and NL images to the x4 NLHR reference image. The same 

procedure is applied for x2 images. Figure 1.55 shows a summary of the 

post-processing pipeline. 

 

 

Figure 1.55: Summary of the post-processing pipeline [17] 

 

Finally, let's comment on some statistics of the images of the data set. As it 

can be seen from figures 1.16 to 1.50, listed above, the NL images are 

characterized by sufficient exposure and have clear details and sharpness, 

with their histogram evenly distributed throughout the gray range. On the 

contrary, the LL images have very small contrast and intense color 

distortion, something that becomes more intense as the darkness level 

increases, while the values of their histogram are concentrated in the left 

part of it, at values mainly lower than 50, making the problem of LLIE 

even harder. 

 

1.5 LLIE: Techniques and Evaluation 
 

As mentioned above, these types of images cannot be fed to computer 

vision systems, because the low brightness, strong color distortion and the 

accompanying noise will lead to unreliable results. To deal with this 

problem there are two approaches. The first is the improvement of the 

image acquisition system hardware, using low light circuits [15]. Such 

systems use high performance charge-coupled devices or complementary 
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metal-oxide-semiconductors, so their technology and manufacturing 

method are extremely complex [21]. Although such cameras have been 

released on the market, we specifically mention the Nocturn XL by 

Photonis5, they are not used in everyday applications because their cost is 

particularly high. 

 

Figure 1.56: Nocturn XL low light camera from Photonis6 

 

The second and preferable solution is the development of digital image 

processing algorithms to improve low light images. This area of research 

is called Low Light Image Enhancement (LLIE) and has the main purpose 

of improving the contrast of such images, restoring the brightness and 

preserving/enhancing the visual information of LL images, while avoiding 

noise enhancement, so that they can then be used in optical systems such 

as those mentioned above. The purpose of this thesis is the presentation, 

implementation and evaluation of such algorithms, using the RELLISUR 

data set. 

The images used on a daily basis are mostly colored, i.e. they consist of the 

three color channels Red, Green and Blue, so the algorithms that will be 

studied are designed for colored image enhancement. This can be done in 

two approaches. The first approach is to use the RGB color space directly 

 
5 https://www.adept.net.au/cameras/photonis/nocturnXL.shtml  
6 https://www.photonis.com/products/nocturn-xl  

https://www.adept.net.au/cameras/photonis/nocturnXL.shtml
https://www.photonis.com/products/nocturn-xl
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and apply the respective algorithm to each color band separately, following 

a grayscale image enhancement process, as shown in the figure below. 

 

Figure 1.57: LLIE pipeline in the RGB color space [15] 

 

The second approach is to use a different color space, like for example HSI 

(Hue, Saturation and Intensity). In this case the brightness component I and 

the Saturation component S, are extracted and enhanced separately, while 

keeping the Hue component constant, as shown in figure 1.58. This 

approach has the advantage of preserving the color information contained 

in H, but is obviously more complex. 

 

 

Figure 1.58: LLIE pipeline in the HSI color space [15] 
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In the continuation of the work the first approach will be used, as it is 

simpler and can lead to faster results helping the real time application of 

such algorithms. 

Regarding the algorithms that will be developed in the following chapters, 

they can be categorized into the following two major categories: 

Learning free algorithms 

These are digital image processing algorithms, which do not involve 

learning using the ground truth images, but directly process the LL image 

using some sort of mathematical operation. We mention by name the 

classic algorithms that will be developed during the work, and they will be 

described in more detail in the respective chapter. 

∙ Linear Stretching 

∙ Gamma transformation 

∙ Logarithmic transformation 

∙ Histogram equalization 

∙ Single Scale Retinex 

∙ Multi Scale Retinex 

∙ Defogging/Dehaze 

 

Machine learning – deep learning based algorithms 

These are algorithms that use the ground truth images to learn features 

based on which they will enhance the low light image. Here we will use 

deep learning paradigm, which essentially is a black box that at its input 

we give it the low light image and this in turn gives us the Normal Light 

image at the output. In particular we will use an architecture called Low 

Light CNN (LLCNN) which will be described in its respective chapter. 

The above algorithms will be applied per darkness level so that we can 

compare their performance on increasingly darker images. But since the 

authors have put all the images in one folder, we split them into separate 

folders, using the script presented at the end of the chapter. Furthermore, 

for reasons that will be explained in a later chapter, the data set must be 

divided into training set, validation set and test set. This has already been 

done by the authors. Finally, since we are only interested in the LLIE, we 
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will only use the LL images and the corresponding x1 NL ground truth 

images. The distribution of the data is shown in the next table. 

 

Darkness 
Level 

Train Validation Test Total Training(%) Validation(%) Test(%) 

2.5 181 10 16 207 87% 5% 8% 

3.0 722 43 85 850 85% 5% 10% 

3.5 722 43 85 850 85% 5% 10% 

4.0 722 43 85 850 85% 5% 10% 

4.5 718 43 84 845 85% 5% 10% 

5.0 541 33 69 643 84% 5% 11% 

Total 3606 215 424 4245 85% 5% 10% 

Table 1.2: Separation to training set, validation set and test set of RELLISUR 

 

The division that has been made is 85% training set, 10% test set and 5% 

validation set. In the continuation of the work, the 2.5 darkness level will 

not be used because it has few images compared to the other levels. 

As mentioned above we will apply these algorithms by darkness level so 

that we can compare their performance. To do this, however, some 

evaluation metrics should be defined from which the performance of each 

algorithm will be derived, so that we have some number to make 

comparisons. The metrics that will be used next can be divided into two 

large categories depending on whether they need a ground truth image or 

not. These two categories are i) Full reference evaluation metrics, in which 

to calculate the value of the metric we need reference images, and ii) No-

Reference evaluation metrics, which do not need ground truth images. The 

metrics we will use are presented below. 

 

 

Full Reference Evaluation Metrics 

Let Ien(i,j) be the image obtained after LLIE of an LL image, and Igt(i,j) the 

ground truth image, with i=1,…,M και j=1,…,N. Then the following 

evaluation metrics can be defined: 

Mean Square Error (MSE) 

It expresses the deviation of the enhanced image from the ground truth and 

is calculated as follows: 
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𝑀𝑆𝐸 =  
1

𝑀 ∗ 𝑁
∗ ∑ ∑[𝐼𝑔𝑡(𝑖, 𝑗) − 𝐼𝑒𝑛(𝑖, 𝑗)]

2
𝑁

𝑗=1

𝑀

𝑖=1

 

 

This definition can be extended to RGB images as well 

 

𝑀𝑆𝐸𝑅𝐺𝐵 =
1

3
[𝑀𝑆𝐸𝑟𝑒𝑑 + 𝑀𝑆𝐸𝑔𝑟𝑒𝑒𝑛 + 𝑀𝑆𝐸𝑏𝑙𝑢𝑒] 

 

Based on the definition we understand that a small value of MSE implies 

a greater similarity between enhanced and ground truth image. 

 

Peak signal-to-noise ratio (PSNR) 

The PSNR is calculated as follows: 

 

PSNR = 10 ∗ log10

𝑀𝐴𝑋𝐼𝑒𝑛

2

𝑀𝑆𝐸
 

 

Where 𝑀𝐴𝑋𝐼𝑒𝑛
 is the maximum gray value that a pixel can take, i.e. 255 in 

our case. This is the most commonly used metric for evaluating a denoising 

method. From the definition we understand that the higher the value of 

PSNR the more similar the enhanced and ground truth images are. 

Structural Similarity Index Metric (SSIM) 

The two metrics we mentioned above simply calculate an error between 

the two images, without taking into account the characteristics of the 

human visual system. For this reason in [22] SSIM was proposed where it 

takes into account the structural similarity of the two images. Specifically, 

the evaluation is done taking into account the luminance l(Ien,Igt), contrast 

c(Ien,Igt), and structure s(Ien,Igt) between the two images. These three 

measures are combined in the final SSIM value: 

 

𝑆𝑆𝐼𝑀 = 𝐹[𝑙(𝐼𝑒𝑛, 𝐼𝑔𝑡), 𝑐(𝐼𝑒𝑛, 𝐼𝑔𝑡), 𝑠(𝐼𝑒𝑛, 𝐼𝑔𝑡)] 
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The smallest value this index can take is 0, and the largest 1, and the closer 

to 1 the value is, the more similar the two images are. 

Based on [22] the functions used in the above expressions are: 

 

𝑙(𝑥, 𝑦) =
2𝜇𝑥𝜇𝑦 + 𝐶1

𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1
 

𝑐(𝑥, 𝑦) =
2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2
 

𝑠(𝑥, 𝑦) =
𝜎𝑥𝑦 + 𝐶3

𝜎𝑥𝜎𝑦 + 𝐶3
 

 

Where 𝐶1 = (𝐾1𝐿)2 a small constant for the case that the 𝜇𝑥
2 + 𝜇𝑦

2  is close 

to zero, L is the range of the pixel values (here 255) and K1<<1 a small 

constant. Also 𝐶2 = (𝐾2𝐿)2, with Κ2<<1, and 𝐶3 =
𝐶2

2
. The μx, σx are the 

average brightness and the standard deviation (as a measure of contrast), 

and are defined in the known manner: 

 

𝜇𝑥 =
∑ 𝑥𝑖

𝑁
𝑖=1

𝑁
 

𝜎𝑥 = (
∑ (𝑥𝑖 − 𝜇𝑥)2𝑁

𝑖=1

𝑁 − 1
)

1
2

 

 

While the σxy is the correlation coefficient and is defined as: 

 

𝜎𝑥𝑦 = (
1

𝛮 − 1
) ∑(𝑥𝑖 − 𝜇𝑥)(𝑦𝑖 − 𝜇𝑦)

𝛮

𝜄=1

 

 

Based on these it follows that the final form of the SSIM metric is: 
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𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
 

 

and is also the relation implemented by the MATLAB function.  

For the evaluation metrics with reference a special function in MATLAB 

is built, which will be described at the end of this chapter. 

 

No Reference Evaluation Metrics 

For an image I(i,j), with size ΜxΝ the following metrics can be defined 

without a ground truth image: 

Mean Value (MV) 

This is the average value of the pixel values of the image, i.e. its brightness. 

The smaller this average value, the darker the image, and correspondingly, 

the higher the average value, the brighter the colors. The formula by which 

it is calculated is: 

 

𝑀𝑉 =
1

𝑀 ∗ 𝑁
∑ ∑ 𝐼(𝑖, 𝑗)

𝑁

𝑗=1

𝑀

𝑖=1
 

 

It can be generalized to RGB images as follows: 

 

𝑀𝑉𝑅𝐺𝐵 =
𝑀𝑉𝑅𝑒𝑑 + 𝑀𝑉𝐺𝑟𝑒𝑒𝑛 + 𝑀𝑉𝐵𝑙𝑢𝑒

3
 

 

Standard Difference (STD) 

It is the variation of pixel values around the mean value, and thus can be a 

measure of contrast. A large value corresponds to an image with high 

contrast, so more visual information. The STD for a gray scale image is 

calculated by the formula: 
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𝑆𝑇𝐷 =  √
∑ ∑ [𝐼(𝑖, 𝑗) − 𝑀𝑉]2𝑁

𝑗=1
𝑀
𝑖=1

𝑀 ∗ 𝑁
 

 

The formula can also be generalized to RGB images, in the known way: 

 

𝑆𝑇𝐷𝑅𝐺𝐵 =
𝑆𝑇𝐷𝑅𝑒𝑑 + 𝑆𝑇𝐷𝐺𝑟𝑒𝑒𝑛 + 𝑆𝑇𝐷𝐵𝑙𝑢𝑒

3
 

 

Blind/Referenceless Image Spatial QUality Evaluator (BRISQUE) 

This is a metric based on the fact that undistorted images exhibit certain 

statistical properties that change when distortions are introduced into the 

image. Characteristically, we mention that the power spectrum of an image 

without distortions is a function of the frequency f, and has the form 
1

𝑓𝛾
, 

with γ being an exponent, the value of which varies little from image to 

image [23]. Images containing distortions will deviate from these natural 

statistics, so in this way the quality of an image can be quantified. Based 

on this we understand that the lower the value of BRISQUE, the closer to 

undistorted images the image under consideration is, so the better its visual 

quality is. To properly model natural statistics, however, a function must 

be trained on a huge set of undistorted images. In the context of the thesis, 

we use the corresponding MATLAB function7. 

 

Naturalness Image Quality Evaluator (NIQE) 

This is a metric based on Natural Scene Statistics [24]. Specifically, the 

authors extract features from a set of natural images, and use them to 

train/learn a multivariate gaussian distribution. Then, for each image, the 

quality of which they want to calculate, they extract NSS characteristics 

and based on these they fit a multivariate gaussian distribution. As image 

quality, they define the distance between the gaussian distribution as 

derived from the image, and the gaussian distribution they trained in the 

previous step. Based on this we understand that the lower the value of the 

 
7 https://ch.mathworks.com/help/images/ref/brisque.html  

https://ch.mathworks.com/help/images/ref/brisque.html
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NIQE metric, the higher the quality of the image under consideration. In 

the context of this thesis, we use the ready-made function of MATLAB8. 

 

Experiments and evaluation of results 

It was mentioned at the beginning of the subsection that we will apply a 

variety of low light image enhancement techniques. The process of 

experimentation and evaluation of the results, which we will follow for 

each technique, consists of the following steps: 

∙ Each technique/algorithm will be applied to each darkness level 

separately so that the performance of the algorithm in comparison to how 

dark an image is can be evaluated. At this point, let us mention that all 

techniques will be applied exclusively to the RGB color space for reasons 

of simplicity. In addition, we will not use the darkness level 2.5, because it 

has few images compared to the rest darkness levels. 

∙ For the result that will be obtained for each darkness level for each 

algorithm, the value of all the metrics we mentioned will be calculated, for 

each image, and we will save the result in an excel file. From this excel file 

a table will be constructed that will contain the minimum, maximum and 

average value of each metric, per darkness level, as well as the 

corresponding values for the original dataset. Based on this table we will 

make line charts of PSNR and SSIM. 

∙ The original, ground truth and the image resulting from each method will 

be depicted, corresponding to the smallest and largest experimental PSNR, 

as well as their histograms for comparison. We will also do this for a 

random image, per darkness level, so that we can have a more complete 

view of the results (depending on the method we are studying, details in 

the next 2 chapters). 

Here it should be mentioned that we will do this for each 

technique/algorithm separately, but in the last chapter we will combine all 

these results in order to compare the techniques with each other, 

commenting on the respective results. 

In the following subsection the scripts used/referred to during this chapter 

will be presented, and briefly describe the steps that they follow. 

 
8 https://ch.mathworks.com/help/images/ref/niqe.html  

https://ch.mathworks.com/help/images/ref/niqe.html


 

 48 

1.6 Scripts Used 
 

We mentioned above that in [17] the authors provide all the images in one 

folder and that we should split the images by darkness level (for each of 

the train/test/validation classes). This was done with the help of the script 

shown below. 

 

 

Figure 1.59: Script for creating datasets per darkness level for LL images 

 

In lines 3 to 10 we read the data set we are interested in. Because we have 

train/test/validation each time we will have 2 of the 3 data sets commented. 

For each set case, we run the script 6 times, once for each darkness level, 

changing the value in darkness level on lines 17,19,20,21. Essentially we 

run a loop through all train/test/split images and if their name contains the 

darkness level we are interested in, then we save them in the appropriate 

folder. 

We follow a similar procedure for the ground truth images, as shown in 

figure 1.60. At the end of this process we have at our disposal 

train/test/validation datasets, per darkness level. 
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Figure 1.60: Script for creating datasets per darkness level for NL images 

 

In this case we read both NL images and LL images per darkness level, and 

compare with the file names (each image has a unique name). By doing a 

loop through the normal light images, if the LL dataset contains an image 

with the same name as that of the respective NL image, then we save this 

normal light image in an appropriate folder. So now we have ground truth 

images per darkness level, and by extension image pairs that can be used 

for evaluation with reference or training of a deep learning model. 

In subsection 1.4 we showed a random image from each darkness level 

along with the corresponding ground truth, their histograms as well as a 

comparison of these histograms. This was done using the following scripts. 

In figure 1.61 we see the final script that produces the results of section 

1.4. In lines 4-16 we read the LL and NL data sets, and since we have 5 

different darkness levels, we will run the script 5 times, each time having 

a different level uncommented. In lines 18-23 we find the size of each data 

set, and generate a random integer in the range 1 to the size of the set. 

Finally, we read the LL and NL version of the image corresponding to this 

integer and display them along with their histograms using the 

HISTOGRAMS function shown in Figures 1.62 and 1.63. This function 

takes as input the LL and NL images, first displays the LL image, the 

histogram for all gray values of the pixels, regardless of channel, and then 
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the histogram per channel using the sub plots feature. Then it does the same 

process for the NL image, and finishes by calling the 

histogram_comparison function, to compare their histograms. This 

function is shown in figure 1.64, takes as input the LL and NL images and 

initially calculates the histogram of each channel separately. With this 

information, and using the sub plot feature, it displays a figure containing 

the images as well as their histograms per channel. 

 

 

Figure 1.61: Script to display random images and their histograms 
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Figure 1.62: Function for histograms part 1 
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Figure 1.63: Function for histograms part 2 
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Figure 1.64: Function to compare histograms 

 

Following, at section 1.4, we calculated the average brightness of the LL 

images, per darkness level and per partition. This was done with the help 

of the scripts shown in figures 1.65 and 1.66. 
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Figure 1.65: Brightness calculation for the LL dataset 

 

 

In the script of figure 1.65, we read the data set for each partition (train, 

test and validation) of the LL dataset and using the Brightness function we 

calculate the average value of the brightness of each set. We repeat this 

process 5 times, once for each value of the darkness level. We store these 

values in an excel file, where we construct the table presented in section 

1.4, as well as the corresponding line charts. The Brightness function we 

mentioned earlier, shown in figure 1.66, takes as input the data stores of 

each partition of the data set. For each datastore it calculates the average 

value of the brightness of all the images contained in it, and returns this 

result. 
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Figure 1.66: Brightness calculation function for datastore 

 

Finally, we must also mention the functions which will calculate the quality 

metrics we described above. We have constructed 3 different functions, a 

function that calculates metrics with reference (figure 1.67), a function that 

calculates metrics with no reference (figure 1.68), and a function that 

combines the two previous functions (figure 1.69). 
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Figure 1.67: Function that calculates metrics with reference 

 

The function presented at figure 1.67 takes as input an image (which here 

will have resulted from some LLIE method), as well as the corresponding 

ground truth image, and calculates the MSE, the PSNR and the SSIM. 

Before that, of course, it checks if the images have the same size, in case a 

mistake is made and images of a different size are entered. If the images 

are not the same size, then an error is thrown and the metrics are not 

calculated. For MSE we use a custom calculation, utilizing the 

vectorization capabilities of MATLAB, while for PSNR and SSIM, we use 

the default functions of MATLAB. 
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Figure 1.68: Function that calculates metrics without a reference 

 

The function presented at figure 1.68 takes as input an image, which here 

will have been obtained as the result of an LLIE method, and calculates 

quality metrics without a reference. Specifically, it calculates MV and 

STD, using a custom calculation, as well as BRISQUE and NIQE, using 

MATLAB built-in functions. 

The above two functions are combined in the function shown in figure 

1.69. This function takes as input the datastores that contain the ground 

truth images and the images that have been derived from the LLIE method. 

Then, for each LLIE datastore image, they calculate 7 metrics and store 

them in an array. This array has 7 columns, and each row corresponds to a 

datastore image. As we will see in the next chapter, the results of this 

function, for each method, will be saved in an excel file, which we will use 

for our analysis. 
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Figure 1.69: Function to calculate metrics for each image of an image datastore 

 

The rest of the thesis is structured as follows. In chapter 2 we will describe, 

develop and implement a set of classical algorithms, each time evaluating 

their performance. In chapter 3 we will study deep learning methods, 

specifically the LLCNN architecture. We will implement 3 different 

variations of the architecture, which we will evaluate one by one. Finally, 

in chapter 4 we will combine the results of these two chapters, comparing 

the methods with each other and making the final comments. 
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Chapter 2 – Classical Algorithms 
 

In this chapter we will study classic algorithms, classic in the sense that no 

learning process is applied, just a procedure on all the gray values of the 

image. The algorithms we will use are the following: 

∙ Linear Transformation 

∙ Gamma Correction 

∙ Log Correction 

∙ Histogram Equalization 

∙ Single Scale Retinex 

∙ Multi Scale Retinex 

∙ Defogging 

We will dedicate a separate section to each algorithm, where we will 

describe the basic theory on which it is based, as well as the algorithm we 

developed to implement it. Then, after we have implemented this 

algorithm, we will do the evaluation process that we mentioned in the 

previous chapter, commenting in detail on the performance of the 

algorithm. Specifically, after we have applied the respective algorithm to 

all darkness levels, we will calculate the metrics for all images, per 

darkness level, and find the average, minimum and maximum value. We 

will put this information in a table, which will help us see the performance 

of the algorithm, compared to increasing the darkness level. In addition, 

we will also visualize some of these results, making line charts of PSNR 

and SSIM, having the darkness level on the horizontal axis and the 

average/minimum/maximum value of these metrics on the vertical axis. 

In addition to the comparison per darkness level, however, we should also 

compare with the original images. For this reason, we list the following 

tables, which contain the values of all metrics per darkness level, for the 

original LL images. 
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Training Set 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 694,2298 987,9748 1116,853 1217,962 1287,082 

MAX 22113,74 23930,72 25217,72 26171,44 26857,84 

AVERAGE 8120,938 9210,818 10058,92 10716,88 11386,35  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 4,684181 4,341247 4,113745 3,952528 3,840093 

MAX 19,71577 18,18335 17,65084 17,27446 17,03474 

AVERAGE 9,389779 8,812748 8,413043 8,124518 7,86331  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,037753 0,026298 0,019684 0,011422 0,006831 

MAX 0,821144 0,667332 0,506031 0,372401 0,269124 

AVERAGE 0,186715 0,121845 0,078906 0,051244 0,033721  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 3,903747 2,607797 1,795818 1,237321 0,96892 

MAX 40,07623 29,92136 22,01305 15,99964 11,30301 

AVERAGE 16,70904 11,78385 8,209293 5,65843 3,95891  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 3,030453 2,164115 1,400256 1,290644 1,013056 

MAX 466,8792 354,4259 248,8485 170,0167 109,9066 

AVERAGE 63,8632 39,63141 24,20026 14,58906 8,716472  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 26,2064 27,80528 28,61415 32,65158 33,99084 

MAX 53,5648 52,32394 53,49069 54,157 53,12867 

AVERAGE 42,86169 44,69262 45,91238 46,30607 46,25342  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 3,624159 3,791547 3,834637 4,060596 4,215045 

MAX 28,38801 29,98147 9,986371 8,761582 8,356537 

AVERAGE 5,953999 6,430537 6,791194 7,070335 7,256138 

Table 2.1: Metrics for the LL training set per darkness level 
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Validation Set 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 1375,33 1510,026 1610,815 1682,786 1728,921 

MAX 16874,81 18427,87 19575,38 20368,45 20970,15 

AVERAGE 8645,529 9782,52 10662,97 11324,07 12103,18  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 5,858414 5,476053 5,213701 5,041224 4,914787 

MAX 16,74674 16,34096 16,06035 15,87051 15,75305 

AVERAGE 9,1413 8,592476 8,210792 7,94494 7,698427  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,098815 0,060259 0,036179 0,021741 0,013508 

MAX 0,322285 0,222141 0,150546 0,132669 0,123763 

AVERAGE 0,174184 0,112741 0,073196 0,048115 0,031549  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 3,773228 2,541548 1,676796 1,116654 0,782438 

MAX 27,52754 19,98084 14,30895 10,17944 7,029027 

AVERAGE 16,81664 11,87607 8,301261 5,740736 3,963351  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 6,463488 3,835223 2,23666 1,402841 0,980341 

MAX 532,613 478,0768 422,7642 366,5849 316,3779 

AVERAGE 73,01146 48,25011 32,32744 21,81565 17,0961  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 35,5969 39,259 41,82411 43,55633 43,67322 

MAX 49,64644 49,76786 50,78904 51,29625 50,97988 

AVERAGE 43,1338 44,79345 45,70872 46,86152 46,93666  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 4,403839 4,338387 5,169145 5,183885 5,634729 

MAX 8,495525 8,61579 7,875118 8,09575 8,169879 

AVERAGE 5,763418 6,324112 6,730714 7,102945 7,329499 

Table 2.2: Metrics for the LL validation set per darkness level 
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Test Set 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 1746,415 1932,691 2048,551 2127,227 2170,74 

MAX 17362,83 19102,99 20490,78 21484,75 22175,88 

AVERAGE 8096,235 9201,305 10060,86 10691,6 10996,82  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 5,734599 5,319789 5,015219 4,8095 4,671995 

MAX 15,70933 15,26918 15,01634 14,85267 14,76473 

AVERAGE 9,390119 8,80953 8,408226 8,14007 8,048578  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,071396 0,041151 0,024618 0,01545 0,012159 

MAX 0,518529 0,383841 0,28422 0,202743 0,147703 

AVERAGE 0,178076 0,11419 0,072755 0,04675 0,031035  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 4,872527 3,260436 2,052688 1,28439 0,896013 

MAX 30,96231 22,77383 16,68102 11,81068 8,350514 

AVERAGE 16,79939 11,84197 8,242994 5,659169 3,887245  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 7,536119 4,363014 2,368673 1,370221 0,957235 

MAX 306,4076 216,4918 146,3811 95,435 32,1226 

AVERAGE 60,86651 37,35876 22,52707 13,4657 7,593418  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 27,67109 28,61396 30,19841 37,9339 34,70331 

MAX 51,90809 51,9671 52,22648 53,48977 51,22521 

AVERAGE 42,4467 44,38108 45,89925 46,69552 46,64028  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 3,913654 3,966301 3,903091 4,265955 4,312168 

MAX 9,995018 9,474245 9,219952 10,14361 8,689374 

AVERAGE 5,944108 6,356478 6,686632 7,085731 7,245217 

Table 2.3: Metrics for the LL test set per darkness level 

 

We notice that in all cases, as the darkness level increases, the quality of 

the images decreases, which is also reflected in the values of the metrics. 

The PSNR and SSIM values decrease significantly, MSE, BRISQUE and 

NIQE increase, as the darkness level increases. Furthermore, from the MV 

we see that the average value of the pixels, as the darkness level increases, 
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is concentrated closer to zero, with the accumulation of values around this 

average value becoming more intense, as can also be seen from the STD. 

For the sake of completeness, we also list PSNR and SSIM values line 

charts for each set per darkness level. 

 

 

Figure 2.1: PSNR vs Darkness Level for LL training set 

 

 

Figure 2.2: PSNR vs Darkness Level for LL validation set 
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Figure 2.3: PSNR vs Darkness Level for LL test set 

 

 

Figure 2.4: SSIM vs Darkness Level for LL training set 
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Figure 2.5: SSIM vs Darkness Level for LL validation set 

 

 

 

Figure 2.6: SSIM vs Darkness Level for LL test set 
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in the experimental results as well. That is, we expect that as the darkness 

level increases, the performance of each algorithm decreases. Furthermore, 

we expect that as the darkness level increases, the difficulty of restoring 

the color information also increases, as the gray range between the different 

channels is very small, even non-existent, making it difficult for the 

algorithms to distinguish between colors. 

In the rest of the chapter, we will initially study simple point transformation 

algorithms, i.e. algorithms that apply some mathematical function to each 

pixel individually. After that, we will study algorithms that, instead of 

pointwise operations, apply a function per region of an image, mainly 

through convolution with some window. 

 

2.1 Linear Stretching 
 

The first LLIE method we will study is the simple linear transformation. It 

is a simple linear transformation whose purpose is to expand the pixel 

values of each image, over the entire available range of brightness values. 

The mathematical formula we apply has the general form: 

 

𝑦 = 𝑎𝑥 + 𝑏 

 

Assuming the available range of brightness values is [xmin,xmax], and that 

the range of brightness values of the image under study is [xlow,xhigh] then 

the following relations should hold: 

 

𝑥𝑚𝑖𝑛 = 𝑎𝑥𝑙𝑜𝑤 + 𝑏 

𝑥𝑚𝑎𝑥 = 𝑎𝑥ℎ𝑖𝑔ℎ + 𝑏 

 

From these relations the following arise: 

 

𝑎 =
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

𝑥ℎ𝑖𝑔ℎ − 𝑥𝑙𝑜𝑤
 

𝑏 =  x𝑚𝑖𝑛 − 𝑎𝑥𝑙𝑜𝑤 
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By substituting into the original relation, we obtain the final transformation 

that we will apply to the value of each pixel. The final transformation is as 

follows: 

 

𝑦 =  [
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

𝑥ℎ𝑖𝑔ℎ − 𝑥𝑙𝑜𝑤
∗ 𝑥 + 𝑥𝑚𝑖𝑛] 

 

The brackets [...] symbolize rounding to the nearest integer. At this point 

we must comment that this transformation assumes that the image contains 

at least two different brightness values, i.e. that xlow≠xhigh, otherwise the 

whole calculation breaks down. 

This is a very simple method in terms of implementation. The function that 

implements the simple linear transformation is shown in Figure B.2.1 of 

Appendix B. Having this function at our disposal, we can apply it to the 

LL images for the training/validation/test sets. This is done using the scripts 

presented in Figures B.2.2 and B.2.3 in Appendix B. From the execution 

of these scripts, the experimental results of the method are obtained, the 

evaluation of which is done using the evaluation script, as shown in figure 

B.2.4 of appendix B. This process results in 3 excel files, one for training, 

one for validation and one for test set, containing the values of the metrics 

per darkness level. We summarize these results in the following tables. In 

addition to the tables of summary results, we also present line charts of 

PSNR and SSIM per darkness level to see how performance is affected as 

the Darkness Level increases. Finally, we also present a line chart of the 

average PSNR and average SSIM, of the experimental results, compared 

to the corresponding values for the LL images, so that we can see to what 

extent the result has improved in each case. 
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Training Set 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 140,6326 203,7791 262,9136 317,5228 475,9967 

MAX 17965,93 19081,58 19543,25 19628,85 20239,29 

AVERAGE 3731,675 3974,85 4111,352 4253,159 4595,576  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 5,586306 5,324661 5,220836 5,201856 5,06885 

MAX 26,64994 25,03921 23,93267 23,11305 21,35476 

AVERAGE 14,22736 14,01798 13,8992 13,64032 13,08758  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN -0,01566 -0,04379 -0,03538 -0,08685 -0,03875 

MAX 0,899859 0,894662 0,881832 0,798625 0,707873 

AVERAGE 0,465584 0,415016 0,367744 0,314237 0,25971  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 4,821523 3,772983 3,017588 2,442978 2,823903 

MAX 191,9387 182,5086 170,0278 163,4803 141,7101 

AVERAGE 56,61093 54,97912 53,25364 50,95261 48,39107  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 9,913017 7,069264 4,359558 2,907033 2,215631 

MAX 2081,952 2096,541 2009,683 1901,554 1046,678 

AVERAGE 347,094 338,1003 334,4234 328,8191 324,4536  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 11,94034 11,57572 13,45012 14,41438 11,7375 

MAX 50,66308 53,24597 54,05845 55,83886 55,7311 

AVERAGE 36,12506 36,49375 36,58132 37,1757 37,97463  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 2,875239 3,135501 3,338467 3,198216 3,14447 

MAX 24,4297 25,14077 14,33871 7,857469 10,02405 

AVERAGE 4,541229 4,631631 4,716879 4,914912 5,25733 

Table 2.4: Metrics for linear transformation results on the training set 
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Figure 2.7: Experimental results PSNR vs Darkness level for training set 

 

 

Figure 2.8: Experimental results SSIM vs Darkness level for training set 
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Figure 2.9: Experimental vs LL images PSNR 

 

 

Figure 2.10: Experimental vs LL Images SSIM 
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Validation Set 

 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 308,5986 284,0276 441,5432 526,1866 820,5039 

MAX 13437,68 14964,13 16550,91 17377,8 18087,02 

AVERAGE 4208,435 4531,364 4755,887 4834,363 5105,572  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 6,847561 6,380288 5,942584 5,730857 5,557133 

MAX 23,23686 23,5972 21,68107 20,91941 18,99 

AVERAGE 13,82967 13,52229 13,22249 13,09242 12,69521  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,134799 0,089868 0,065766 0,049744 0,00626 

MAX 0,780555 0,715798 0,686459 0,668334 0,609025 

AVERAGE 0,449906 0,409326 0,363171 0,324284 0,288493  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 10,25712 8,253354 5,962295 4,101435 4,43837 

MAX 152,0089 150,41 149,4178 126,1608 124,0191 

AVERAGE 50,11081 48,76431 47,93793 46,1699 46,07687  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 34,76049 33,50606 19,62656 10,98974 24,1064 

MAX 952,968 928,3534 887,8849 860,0366 788,0675 

AVERAGE 289,4232 283,093 283,9726 281,2327 286,2259  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 28,19167 25,37716 19,39476 13,79219 20,01727 

MAX 50,63807 47,29578 51,15442 50,13438 51,51757 

AVERAGE 38,82453 38,53557 38,26206 38,49837 36,71361  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 2,956701 3,262675 3,305161 3,583528 3,916476 

MAX 5,891986 6,225532 7,497119 7,183078 8,788216 

AVERAGE 4,498095 4,54172 4,673231 4,815871 5,133486 

Table 2.5: Metrics for linear transformation results on the validation set 
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Figure 2.11: Experimental results PSNR vs Darkness level for validation set 

 

 

Figure 2.12: Experimental results SSIM vs Darkness level for validation set 
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Figure 2.13: Experimental vs LL images PSNR for validation images 

 

 

Figure 2.14: Experimental vs LL Images SSIM for validation images 
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Test Set 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 167,7695 249,8631 231,3624 273,2801 387,9315 

MAX 11909,9 14153,97 15975,41 17498,34 18647,51 

AVERAGE 3740,161 3986,346 4168,522 4342,931 4556,062  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 7,371722 6,622021 6,096283 5,700836 5,424595 

MAX 25,88367 24,15378 24,48788 23,76472 22,24325 

AVERAGE 13,86573 13,6508 13,4439 13,22458 12,8527  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,053248 0,014873 -0,03912 -0,02264 -0,06225 

MAX 0,904539 0,85597 0,819707 0,749933 0,683889 

AVERAGE 0,462487 0,417892 0,366401 0,316112 0,246587  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 4,872527 3,326587 2,284477 1,704316 1,32702 

MAX 144,0537 137,4864 145,3222 134,9407 120,8073 

AVERAGE 54,34299 53,33926 52,16029 49,44718 47,2227  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 28,8886 17,63814 10,08556 6,524338 4,096829 

MAX 1156,826 1166,538 1166,294 1129,775 1039,747 

AVERAGE 324,3299 322,9576 320,3612 310,9592 299,8686  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 16,12207 17,48292 13,68804 13,65398 16,21911 

MAX 45,7412 47,02508 53,74219 52,27514 52,15374 

AVERAGE 35,82426 36,04668 36,136 36,85172 37,98579  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 3,152656 3,260483 3,343861 3,659053 3,815 

MAX 6,995996 6,806179 7,691173 9,328607 10,33267 

AVERAGE 4,532523 4,59056 4,685158 4,977698 5,202868 

Table 2.6: Metrics for linear transformation results on the test set 
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Figure 2.15: Experimental results PSNR vs Darkness level for test set 

 

 

Figure 2.16: Experimental results SSIM vs Darkness level for test set 
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Figure 2.17: Experimental vs LL images PSNR for test images 

 

 

Figure 2.18: Experimental vs LL Images SSIM for test images 

 

We notice that the linear transformation, although simple, improves the 

results quite a bit. Regarding the metrics with reference, in all cases, the 

MSE decreases and the PSNR, SSIM increases. The reduction of MSE with 
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the simultaneous increase of PSNR means that the image is visually 

improved and comes closer to the ground truth image. The increase in 

SSIM shows us that the images are not only improved visually but also 

improve the structural information, recovering a large part of this 

information. We see a similar improvement in the metrics without 

reference, where the MV increases, which means that the brightness of the 

image also increases, while at the same time the STD increases, which 

means that the pixel values are more spread around the average value, 

which is desirable, as we want these values to be evenly distributed over 

the entire range of the histogram. At the same time, the values of BRISQUE 

and NIQE decrease, which shows us that the images we recover from the 

linear transformation are closer to natural statistics, i.e. they include visual 

information of better quality. 

This improvement can also be seen visually in the line charts of PSNR and 

SSIM per darkness level for average PSNR and SSIM of both the 

experimental results and original LL images. In all cases, we observe that 

for each darkness level the result improves, as the method leads to higher 

average values of these metrics, compared to the original LL images. 

Finally, we also present the line charts per darkness level for the minimum, 

maximum and average PSNR and SSIM, based on which we can evaluate 

the performance of the algorithm in relation to the darkness level. We 

notice that as the darkness level increases, the performance of the algorithm 

decreases, since the chart follows a downward path. This performance 

degradation is to be expected, as as the darkness level increases, the pixel 

values are more and more concentrated at zero, and the gray range is almost 

non-existent, making it difficult for the algorithm to retrieve any kind of 

information. 

For the visual representation of the results, we will also display images 

from the experimental results. Specifically, from each darkness level we 

select the images that correspond to the maximum and minimum PSNR. 

For these images, we will show the corresponding Ground Truth and LL 

image, as well as their histograms, to enable comparisons, and to confirm 

the comments we made above. 
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Darkness Level: 3.0 

MIN PSNR 

 

Original Low Light  Normal Light   Experimental Result 

 

 

Figure 2.19: Histogram of original 3.0 LL image 
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Figure 2.20: Histogram of 3.0 NL image 

 

Figure 2.21: Histogram of 3.0 Experimental result 

 

In the image corresponding to the minimum experimental PSNR, the 

method struggles to restore all the visual information. Observing the 
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histograms, we see that the Ground Truth image consists mainly of white 

color, that is, the number of pixel values are concentrated in the right part 

of the histogram, near the value 255. This is not an image with histogram 

that is spread over the entire available gray value range. The linear 

transformation aims to spread the histogram over the entire available range 

of values, as a result of which it is impossible to reproduce the histogram 

of the Ground Truth image, which is also confirmed by the above results. 

Comparing the histograms of the LL image and the experimental result, 

indeed the algorithm has flattened the histogram, but it has failed to 

reproduce the Ground Truth image, which is expected, for the reasons we 

mentioned above. 

 

 

 

ΜΑΧ PSNR 

 

Original Low Light  Normal Light   Experimental Result 
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Figure 2.22: Histogram of original 3.0 LL image 

 

 

Figure 2.23: Histogram of 3.0 NL image 
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Figure 2.24: Histogram of 3.0 experimental result 

 

In the case of the maximum experimental PSNR, we have a Ground Truth 

image with a histogram that spans the entire available value range, so we 

expect the linear transformation to be able to reproduce the result. Indeed, 

we see that the experimental result is visually very close to the ground 

truth. The method has spread the histogram of the LL image over the entire 

available value range, with the form of the histogram of the experimental 

result being similar to that of the histogram of the ground truth image, 

justifying the visual result as well. 
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Darkness Level: 3.5 

MIN PSNR 

 

Original Low Light  Normal Light   Experimental Result 

 

And in the case of Darkness Level 3.5 we notice that the same image 

corresponds to the minimum experimental PSNR, for the same reasons we 

mentioned in Darkness Level 3.0. The ground truth image consists mainly 

of white color, causing its histogram to be clustered on the right side near 

the value 255, which is impossible to reproduce by the linear 

transformation. 

 

 

Figure 2.25: Histogram of 3.5 LL image 
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Figure 2.26: Histogram of 3.5 NL image 

 

         

Figure 2.27: Histogram of 3.5 experimental result 
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MAX PSNR 

 

Original Low Light  Normal Light   Experimental Result 

 

 

 

Figure 2.28: Histogram of 3.5 LL image 
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Figure 2.29: Histogram of 3.5 NL image 

 

 

Figure 2.30: Histogram of 3.5 experimental result 
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In the case of the maximum experimental PSNR, the same image 

corresponds to that of Darkness Level 3.0, for the same reasons mentioned 

above. The ground truth image consists of a histogram spread over the 

entire available range of values, which can be reproduced by linear 

transformation. Indeed, the linear transformation succeeds in reproducing 

it and recovering much of the visual information, which can be seen from 

the images themselves, with the experimental result being visually very 

close to the ground truth. 

 

 

 

 

 

 

 

Darkness Level: 4.0 

MIN PSNR 

 

Original Low Light  Normal Light   Experimental Result 
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Figure 2.31: Histogram of 4.0 LL Image 

 

 

Figure 2.32: Histogram of 4.0 NL Image 
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Figure 2.33: Histogram of 4.0 experimental result 

 

And in the case of Darkness Level 4.0, the image corresponding to the 

minimum experimental PSNR is the same as that of Darkness Levels 3.0 

and 3.5, for the same reasons. The histogram of the ground truth image is 

concentrated near the value 255, which cannot be reproduced by the linear 

transformation, since its logic is to take a histogram with low contrast, and 

spread it over the entire available range of brightness values , increasing 

the contrast in this way. 

 

MAX PSNR 

 

Original Low Light  Normal Light   Experimental Result 
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Figure 2.34: Histogram of 4.0 LL Image 

 

 

Figure 2.35: Histogram of 4.0 NL Image 
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Figure 2.36: Histogram of experimental result 

 

In the case of the maximum experimental PSNR, we have an image where 

the ground truth case consists of a histogram that is spread over the entire 

range of available values, so we expect the method to be able to reproduce 

this. Indeed, the image resulting from the application of the linear 

transformation is visually very close to the ground truth image. The 

histogram of the LL image has been spread over the whole range of 

luminance values, with the histogram of the experimental result having the 

same form as the ground truth. Something else that is noticed is that in the 

experimental result there have started to be some color distortions, which 

is due to the fact that the LL image has started to become too dark, making 

it difficult to fully recover the color information. This is also reflected in 

the histogram, as the pixel values of the experimental result have been 

distributed in fewer values in the histogram, compared to the histogram of 

the ground truth image, which means that we will also have less color 

information. 
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Darkness Level: 4.5 

MIN PSNR 

 

Original Low Light  Normal Light   Experimental Result 

 

 

Figure 2.37: Histogram of 4.5 LL Image 
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Figure 2.38: Histogram of 4.5 NL Image 

 

 

Figure 2.39: Histogram of 4.5 experimental result 
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Here again, the minimum experimental PSNR corresponds to the same 

image as in all previous cases, for the same reasons we mentioned. 

Furthermore, the fact that the images have become too dark at this level 

makes it even more difficult for the algorithm to recover visual 

information. 

 

MAX PSNR 

 

Original Low Light  Normal Light   Experimental Result 

 

 

Figure 2.40: Histogram of 4.5 LL Image 
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Figure 2.41: Histogram of 4.5 NL Image 

 

 

Figure 2.42: Histogram of 4.5 experimental result 
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In the case of the maximum experimental PSNR, we have a ground truth 

image with a high contrast histogram, which spans the entire available 

value range, so we expect the algorithm to be able to recover a large part 

of the visual information. Indeed, the experimental result is visually very 

close to the ground truth image, with the histogram having the same form 

as the ground truth. However, we have to comment that the experimental 

result shows chromatic aberrations, which is due to the fact that the images 

have now become too dark, making it difficult for the algorithm to recover 

all the visual information. We can see this by comparing the experimental 

histogram with the corresponding ground truth. In particular, we see that 

in the experimental result the pixel values are distributed in fewer gray 

levels, compared to the ground truth case, which means that we have less 

visual information, leading to the observed color changes. 

 

 

 

Darkness Level: 5.0 

MIN PSNR 

 

Original Low Light  Normal Light           Experimental Result 
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Figure 2.43: Histogram of 5.0 LL Image 

 

 

Figure 2.44: Histogram of 5.0 NL Image 
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Figure 2.45: Histogram of 5.0 experimental result 

 

At Darkness Level 5.0, the case of minimum experimental PSNR 

corresponds to an image with a ground truth histogram spread over the 

entire value range. We would expect the method to be able to recover most 

of the visual information. But as we can see it fails to do so, with the 

experimental result remaining dark and the corresponding histogram 

remaining piled up on the left side, close to 0. This is due to the fact that 

we are at the highest darkness level, as a result of which the images are too 

dark making it difficult to retrieve visual information. 
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MAX PSNR 

 

Original Low Light  Normal Light        Experimental Result 

 

In the case of the maximum experimental PSNR, we see that the ground 

truth histogram is spread over the entire range of available values and not 

concentrated at one point. According to the comment we made above, we 

would expect the method not to give good results, and the experimental 

image to remain dark. But we see that in this case, the linear transformation 

manages to recover a large part of the visual information, with the 

experimental result being, visually, very close to the ground truth image. 

Nevertheless, there are color distortions, which are more intense compared 

to the previous darkness levels. This is due to the fact that the images have 

become too dark, making it difficult to restore the color information.  
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Figure 2.46: Histogram of 5.0 LL Image 

 

 

Figure 2.47: Histogram of 5.0 NL Image 
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Figure 2.48: Histogram of 5.0 experimental result 

 

At this point it is worth commenting on the results as a whole, starting with 

the case of the images corresponding to the minimum experimental PSNR. 

From the above, we notice that the method has difficulty in images that 

consist mainly of white pixels, i.e. in images where the pixel values in the 

histogram are accumulated in the right part of it, close to the value 255. 

The purpose of the linear transformation is to take an image that has low 

contrast, and output a high-contrast image whose histogram is spread over 

all available luminance values. Based on this, we understand that the 

behavior we mentioned for the images with the minimum PSNR is 

expected, as the ground truth images are characterized by low contrast, 

with the difference that the pixel values are concentrated in the right part 

of the histogram. So, by its very nature, it is impossible for the algorithm 

to retrieve this kind of information. An exception to this is Darkness Level 

5.0, where all we can comment on is that the image is so dark that it 

becomes almost impossible to retrieve visual information, in most cases of 

images. 

For the images corresponding to the maximum experimental PSNR, at all 

darkness level values, the method gives very good results since the 

experimental result is optically very close to the ground truth case, 

recovering a large part of the visual information. In addition, in all cases, 
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the experimental histogram has a similar form to the ground truth, with the 

only difference being that in the experimental, the graylevel values are 

distributed in fewer levels of the histogram, compared to the ground truth 

case. This becomes more pronounced as the darkness level increases, 

which is to be expected since LL images become too dark and due to the 

very narrow gray range between the bands it becomes too difficult to 

recover the correct distribution of values. This results in the chromatic 

aberrations observed, which become more pronounced as the darkness 

level increases. 

In summary, the linear transformation, although simple, managed to 

increase the average PSNR of the images by 5.3dB (on average), and the 

SSIM by 0.3, noticeably improving the LL images and recovering much of 

the visual information. A noted weakness is that it struggles with images 

that contain mostly white, i.e. images for which the graylevel values are 

clustered on the right side of the histogram. This is due to the very nature 

of the method, as the linear transformation aims to take a low-contrast 

image, and output a high-contrast image whose graylevel values are evenly 

spread over the entire available range. So, it is practically impossible to 

reproduce the result we described above. In addition, color distortions of 

the experimental results were observed, which become more intense as the 

darkness level increases. These distortions are due to the fact that by 

increasing the darkness level, the images become too dark, making it 

difficult to retrieve color information. This can be confirmed by studying 

the histograms of the LL images and the experimental results. For the LL 

images, as we increase the darkness level, the graylevel values accumulate 

more and more intensively in the left part of the histogram, with the 

dynamic range between the color bands decreasing, and becoming almost 

zero, as a result of which the algorithm is struggling to retrieve the correct 

color information. For the histograms of the experimental results, we notice 

that as the darkness level increases, the graylevel values are distributed in 

fewer and fewer levels in the histogram, indicating that we have less 

visual/color information at our disposal, confirming that the method 

struggles to retrieve it. 

The problems we described above are to be expected, as we implemented 

a very simplistic algorithm, using a simple linear function. In the next two 

subsections, we go a step further, increasing the complexity of the 

algorithm by applying non-linear functions to the value of each pixel. 

Specifically, we will apply gamma transformation and logarithmic 

transformation, commenting on the results. 
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2.2 Gamma Correction 
 

This is a point transformation, like the linear one, except that in this case 

we apply a non-linear function. Specifically, we raise the value of each 

pixel to a power denoted by γ, and is called the correction constant [15]. 

The mathematical formula we apply is: 

 

𝐼(𝑖, 𝑗) =  255 ∗ (
𝐼𝐿𝐿(𝑖, 𝑗)

255
)

𝛾

 

 

Based on the value of γ, the gamma transform can take several forms, 

which are shown in the figure below: 

 

Figure 2.49: Gamma correction for different γ values9 

 

We notice that for γ<1 the transform can enhance the dark areas of an image 

while preserving the bright areas, making it a suitable algorithm for LLIE. 

This is also a simple algorithm in terms of implementation, which is done 

 
9 From Image Processing courses’ presentations on point transformations (AIVC 2021-2022) 
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by the function shown in Figure B.2.5, of Appendix B. Obviously there is 

no ideal value for the correction constant, so we will do 3 different 

experiments for 3 different values of the exponent. Specifically, we will 

use a small value γ=0.1, a medium range value γ=0.3 and a large value 

γ=0.8. We notice that all 3 values are smaller than 1, since we are interested 

in enhancing the dark areas of each image. The experimental procedure is 

implemented with the script presented in Figures B.2.6 and B.2.7 of 

Appendix B. After the application of this script, we have at our disposal 

the experimental results, the evaluation of which is done with the program 

presented in figure B.2.8 of appendix B. This results in 3 excel files for 

each value of the correction constant, which contain the metric values for 

each image, per darkness level. We use these values for the construction of 

summary tables, presented below, as well as for line charts with the 

maximum/minimum/average value of PSNR and SSIM per Darkness 

Level. In addition, we also present line charts of the average PSNR and 

SSIM both for the experimental results (for each value of the correction 

constant) and for the original LL images, per Darkness Level, to compare 

how much the result improved in each case. 

 

Training Set 

Gamma: 0.1 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 3492,335 2913,357 2209,13 1763,437 1393,58 

MAX 20898,08 18814,88 16538,25 14034,5 11870,66 

AVERAGE 9656,502 8303,092 7022,815 5842,988 4982,011  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 4,92974 5,385788 5,945909 6,658835 7,386053 

MAX 12,69964 13,48687 14,68859 15,6672 16,68949 

AVERAGE 8,462102 9,135615 9,873598 10,67336 11,35184  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,138094 0,0746 0,072032 0,070804 0,07431 

MAX 0,784723 0,764291 0,792453 0,773365 0,660347 

AVERAGE 0,43329 0,416952 0,393062 0,360888 0,316111  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 120,9224 104,6519 93,97881 85,44764 79,44174 

MAX 201,6598 194,7715 187,9614 181,0711 174,7407 

AVERAGE 183,8029 174,6706 164,3499 152,2717 140,1474 
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STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 33,72569 38,89726 46,72629 59,29285 67,64118 

MAX 1753,653 1930,043 1737,16 1763,661 1509,233 

AVERAGE 332,5491 383,1862 454,6074 542,2311 609,6619  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 7,30566 8,238828 10,33431 8,726207 14,80831 

MAX 53,42801 52,09375 50,56757 50,83908 56,06952 

AVERAGE 34,01972 30,15561 26,92062 27,10983 30,46322  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 2,733553 2,733897 2,836254 2,896855 3,084281 

MAX 9,966678 11,21531 10,33209 11,1693 13,15784 

AVERAGE 4,184109 4,288651 4,558946 4,973441 5,543359 

Table 2.7:  Gamma correction results with gamma=0.1 on training set 

 

 

Figure 2.50: Experimental results PSNR vs darkness level for training images 
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Figure 2.51: Experimental results SSIM vs Darkness Level for training images 

 

For a correction constant of 0.1 a phenomenon is observed which is 

opposite to what we have explained and seen so far, the PSNR increases 

with the increase of the darkness level, and the SSIM remains almost 

constant. Nevertheless, if we look at figure 2.56, we see that the 

experimental PSNR is smaller than the corresponding LL images and as 

the darkness level increases it becomes slightly better than the original. 

Similar behavior for the average experimental SSIM, which is only slightly 

better than the original one. This is because we use too small correction 

constant value, the dark areas are over-enhanced, and the result resembles 

an image taken in over-exposed conditions. We can confirm this from the 

values of the metrics. MSE and SSIM decrease, while PSNR increases, 

which means that in terms of brightness there is an improvement, due to 

over-amplification, but we lose visual information (color, texture, etc.). 

MV and STD increase, which means that the brightness of the experimental 

results increases, with a greater variation of pixel values, confirming the 

over-amplification we mentioned above. Finally, BRISQUE appears to 

decrease, while NIQE increases with increasing darkness level. 

Nevertheless, their values remain high, which means that we are far from 

natural statistics and the quality of the images is low. 
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Gamma: 0.3 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 77,67357 174,9375 217,7657 356,7575 411,034 

MAX 4999,258 6527,41 8416,371 10295,27 12372,87 

AVERAGE 1088,054 1165,344 1486,076 2036,705 2859,597  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 11,14175 9,983395 8,879555 8,004427 7,2061 

MAX 29,22807 25,70198 24,75091 22,60707 21,99203 

AVERAGE 18,27623 18,0992 17,15091 15,76744 14,31027  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,2624 0,166688 0,173362 0,12898 0,079298 

MAX 0,905391 0,87733 0,834898 0,728988 0,665505 

AVERAGE 0,625351 0,585148 0,530487 0,462446 0,383664  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 52,49691 43,30077 36,96539 31,8751 30,00851 

MAX 126,3678 113,7167 102,4598 91,86411 86,89999 

AVERAGE 102,63 91,22191 80,30041 69,747 60,55807  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 28,52611 38,21951 47,61383 55,1259 51,11637 

MAX 1100,658 1020,813 840,9665 730,1673 568,798 

AVERAGE 288,1971 261,18 241,2811 227,3242 213,4258  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 12,91418 8,124384 7,212181 10,75759 7,86179 

MAX 51,79565 51,43248 49,08752 51,30185 53,2092 

AVERAGE 32,73577 30,65061 29,04878 29,23709 31,08535  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 2,281133 2,205605 2,522284 2,845994 2,980289 

MAX 27,7329 14,82724 7,045798 7,259057 8,408454 

AVERAGE 3,861293 3,905891 4,026759 4,234008 4,520591 

Table 2.8:  Gamma correction results with gamma=0.3 on training set 
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Figure 2.52:  Experimental results PSNR vs Darkness Level for training images 

 

 

Figure 2.53: Experimental results SSIM vs Darkness Level for training images 
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improvement of the result. From the values of the quality metrics, we 

observe the expected behavior. MSE increases, and PSNR and SSIM 

decrease with increasing darkness level. For the metrics without reference, 

we observe that MV and STD decrease with increasing darkness level, 

meaning that the experimental results become darker with pixel values 

clustering more strongly around the mean brightness. BRISQUE appears 

to decrease, but at darkness level 5.0 its value increases again, while NIQE 

increases as the darkness level increases, which means that as the darkness 

level increases, the experimental result moves away from the natural 

statistics. This is to be expected as the LL images are so dark that it is very 

difficult to recover all the visual information. 

 

 
 

 

Gamma: 0.8 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 235,4911 638,7423 818,7235 978,2881 1102,84 

MAX 18599,15 20853,84 22573,11 23968,91 25075,65 

AVERAGE 6245,303 7493,574 8559,884 9459,695 10350,67  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 5,435872 4,938944 4,594889 4,334321 4,138282 

MAX 24,41106 20,07755 18,99943 18,22614 17,70568 

AVERAGE 10,61229 9,75991 9,146126 8,68727 8,296137  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,090189 0,063361 0,047123 0,030086 0,019451 

MAX 0,900089 0,84427 0,723619 0,578283 0,429113 

AVERAGE 0,333679 0,237395 0,165022 0,113012 0,077469  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 7,706682 5,479142 4,01214 2,960862 2,56154 

MAX 53,15215 41,73805 32,42197 24,91649 18,68465 

AVERAGE 27,17741 20,44234 15,19282 11,15423 8,272058  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 8,157182 6,703032 4,874029 4,382126 3,802528 

MAX 555,2159 425,6451 319,3716 235,7316 166,5757 

AVERAGE 102,1569 69,65883 47,04096 31,50935 21,05261 
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BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 19,25237 24,59563 30,63588 26,80585 32,21923 

MAX 52,24875 50,75109 50,85141 50,66531 49,1188 

AVERAGE 40,43959 42,28604 43,38832 43,94171 44,09995  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 3,07697 2,947374 3,360021 3,646621 3,706228 

MAX 28,89557 29,00329 8,645698 7,143216 7,207026 

AVERAGE 4,891538 5,039388 5,11548 5,189293 5,229769 

Table 2.9:  Gamma correction results with gamma=0.8 on training set 

 

 

Figure 2.54: Experimental results PSNR vs Darkness Level for training images 
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Figure 2.55: Experimental results SSIM vs Darkness Level for training images 
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Figure 2.56: Experimental results average PSNR vs LL Images PSNR training set 

 

 

Figure 2.57: Experimental results average SSIM vs LL Images SSIM training set 
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Validation Set 

Gamma: 0.1 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 4716,067 4024,531 3303,853 2913,828 2459,264 

MAX 14488,02 12326,77 10161,99 8703,311 7534,811 

AVERAGE 8925,79 7618,675 6405,466 5312,38 4417,184  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 6,520713 7,222311 8,061014 8,733959 9,36008 

MAX 11,395 12,08365 12,9406 13,48616 14,22275 

AVERAGE 8,76159 9,455652 10,21875 11,03285 11,82816  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,134004 0,107176 0,099659 0,097444 0,079812 

MAX 0,715257 0,70296 0,670455 0,627034 0,531918 

AVERAGE 0,418485 0,405261 0,386034 0,356182 0,314588  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 121,8897 107,9297 95,06113 83,04376 72,29713 

MAX 197,1613 189,545 182,0081 173,4699 162,6872 

AVERAGE 181,7992 172,7059 162,7023 151,1262 139,8752  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 44,24661 55,27024 67,43236 134,1586 169,3051 

MAX 1039,836 1079,864 1083,361 1220,335 1274,665 

AVERAGE 366,2691 406,7496 485,8542 574,629 661,4552  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 19,52548 14,57927 16,43556 16,10552 18,73141 

MAX 49,12868 45,45907 45,50902 47,4785 45,14583 

AVERAGE 34,93686 31,9376 28,21715 27,37557 28,83888  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 3,10295 2,920346 3,083566 3,2515 3,685535 

MAX 5,58288 7,080189 7,782515 9,071174 9,721552 

AVERAGE 4,167536 4,285659 4,512699 4,790659 5,545879 

Table 2.10:  Gamma correction results with gamma=0.1 on validation set 
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Figure 2.58: Experimental results PSNR vs Darkness Level for validation images 

 

 

 

Figure 2.59: Experimental results SSIM vs Darkness Level for validation images 
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Gamma: 0.3 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 267,843 230,9084 425,646 738,7127 856,3532 

MAX 2304,938 3317,243 4518,973 5774,478 7306,562 

AVERAGE 1014,28 1167,498 1556,901 2154,386 3053,646  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 14,50421 12,92303 11,58041 10,51568 9,493673 

MAX 23,852 24,49641 21,84032 19,44605 18,80427 

AVERAGE 18,50834 17,97769 16,76959 15,32995 13,84067  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,33885 0,319395 0,280134 0,227697 0,187511 

MAX 0,857265 0,820759 0,75274 0,646054 0,534375 

AVERAGE 0,609748 0,57124 0,520152 0,456374 0,378221  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 57,3758 48,914 41,17625 31,55225 25,70099 

MAX 120,6786 108,1126 96,53481 85,42025 74,69721 

AVERAGE 101,8351 90,56641 79,88459 69,61952 60,43669  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 51,55341 57,72348 65,08179 70,35501 87,21818 

MAX 917,072 862,5249 795,6935 726,7177 663,2902 

AVERAGE 306,4455 277,1235 258,5589 243,794 232,7557  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 19,94405 20,15696 16,79414 16,31987 11,59378 

MAX 47,22796 46,42544 48,30353 49,67849 46,94207 

AVERAGE 34,05078 32,32407 29,77512 29,68226 29,76644  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 2,717332 2,913007 2,942696 3,082985 3,076332 

MAX 4,988848 5,646397 5,590788 6,18522 7,292711 

AVERAGE 3,780538 3,889061 4,002844 4,163379 4,414815 

Table 2.11:  Gamma correction results with gamma=0.3 on validation set 
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Figure 2.60: Experimental results PSNR vs Darkness Level for validation images 

 

 

 

Figure 2.61: Experimental results SSIM vs Darkness Level for validation images 
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Gamma: 0.8 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 1042,077 1232,974 1392,912 1519,05 1604,615 

MAX 14014,97 15906,57 17436,79 18598,68 19565,15 

AVERAGE 6682,69 7989,379 9097,949 10013,54 11032,63  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 6,664881 6,115037 5,716138 5,435981 5,215971 

MAX 17,95181 17,22126 16,69157 16,31508 16,07709 

AVERAGE 10,29957 9,496342 8,914999 8,488085 8,109008  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,195894 0,138413 0,089786 0,056434 0,036445 

MAX 0,499425 0,385344 0,28504 0,21245 0,189438 

AVERAGE 0,316549 0,22328 0,155066 0,106681 0,071292  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 7,915052 5,663216 3,955056 2,75103 2,027544 

MAX 40,09343 30,82955 23,5171 17,79241 13,12119 

AVERAGE 27,25292 20,52525 15,30684 11,2737 8,259593  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 15,55257 11,41576 7,37885 5,041852 3,755176 

MAX 591,8927 531,6727 472,207 412,9465 360,7552 

AVERAGE 112,265 79,04753 56,03444 39,41447 30,0183  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 33,51088 36,04395 36,75638 38,91164 40,66837 

MAX 51,57402 49,54069 49,70543 47,08922 47,449 

AVERAGE 40,93952 42,63984 43,77389 43,87909 43,80592  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 3,626792 3,933872 4,040729 4,417297 4,53521 

MAX 6,025387 6,097099 6,51747 6,33248 6,798714 

AVERAGE 4,763561 4,92659 5,051903 5,206314 5,285254 

Table 2.12:  Gamma correction results with gamma=0.8 on validation set 
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Figure 2.62: Experimental results PSNR vs Darkness Level for validation images 

 

 

Figure 2.63: Experimental results SSIM vs Darkness Level for validation images 
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Figure 2.64: Experimental results average PSNR vs LL Images PSNR validation set 

 

 

Figure 2.65: Experimental results average SSIM vs LL Images SSIM validation set 
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noticeably and following the expected behavior where with an increase in 

the darkness level the performance of the method decreases. 

 

Test set 

Gamma: 0.1 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 4121,143 3382,117 2860,049 2314,887 2110,043 

MAX 17608,52 15647,18 13558,57 11249,82 8859,983 

AVERAGE 9782,883 8404,342 7080,542 5884,045 5107,944  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 5,673576 6,186443 6,808664 7,619346 8,656475 

MAX 11,98063 12,83892 13,56707 14,48551 14,88789 

AVERAGE 8,364756 9,039792 9,793367 10,5984 11,20805  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,138341 0,117251 0,098057 0,046338 0,034257 

MAX 0,63151 0,637687 0,634567 0,619031 0,59981 

AVERAGE 0,416709 0,40099 0,37642 0,351118 0,301781  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 137,3061 116,933 98,82618 86,23649 76,65392 

MAX 195,4895 188,4743 181,6946 175,192 165,912 

AVERAGE 184,0343 174,7313 163,899 151,1306 138,2066  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 80,66917 91,22746 92,03232 90,85099 110,0861 

MAX 1670,4 1840,856 1680,723 1575,155 1520,272 

AVERAGE 366,52 419,9366 494,5804 576,0743 638,7289  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 17,02536 16,04095 14,40754 15,52033 12,72685 

MAX 52,34262 54,92836 50,32158 54,84874 47,87191 

AVERAGE 33,58486 30,43935 27,54319 27,37307 30,54417  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 2,786929 3,024351 3,213892 3,063518 3,389537 

MAX 6,869445 8,670685 9,212725 9,863945 12,66689 

AVERAGE 4,100519 4,224289 4,614678 5,138227 5,806921 

Table 2.13:  Gamma correction results with gamma=0.1 on test set 



 

 121 

 

Figure 2.66: Experimental results PSNR vs Darkness Level for test images 

 

 

 

Figure 2.67: Experimental results SSIM vs Darkness Level for test images 
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Gamma: 0.3 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 566,9636 381,9993 293,9843 308,2724 444,748 

MAX 2912,935 3984,445 5393,18 6899,346 8480,456 

AVERAGE 1112,552 1186,356 1511,129 2062,235 2753,428  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 13,4875 12,12712 10,81235 9,742725 8,846612 

MAX 20,59525 22,31018 23,44756 23,24146 21,64966 

AVERAGE 17,97308 17,85597 16,96888 15,65196 14,34958  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,244846 0,241308 0,218396 0,136132 0,101705 

MAX 0,814859 0,792386 0,751306 0,730607 0,639024 

AVERAGE 0,622504 0,581671 0,524011 0,458485 0,371508  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 60,5788 49,18751 39,77025 33,23326 28,35013 

MAX 119,0886 105,7416 94,83806 83,94127 74,21792 

AVERAGE 102,7424 91,26644 80,18108 69,3653 59,60535  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 55,19374 55,14246 68,3997 81,92215 74,94261 

MAX 971,9228 893,3015 739,4919 619,7472 533,662 

AVERAGE 297,6778 269,6679 248,3169 232,4155 213,8727  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 19,35772 12,73897 13,81803 16,29003 14,95675 

MAX 53,45456 53,69587 50,2357 52,12136 53,59033 

AVERAGE 33,82035 31,89493 30,05075 30,16164 31,54129  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 2,610174 2,800546 2,839478 3,045056 3,27112 

MAX 6,322647 6,274885 6,635347 7,212518 10,00072 

AVERAGE 3,756558 3,820402 3,979833 4,291749 4,641307 

Table 2.14:  Gamma correction results with gamma=0.3 on test set 
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Figure 2.68: Experimental results PSNR vs Darkness Level for test images 

 

 

 
Figure 2.69: Experimental results SSIM vs Darkness Level for test images 
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Gamma: 0.8 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 1313,444 1567,784 1780,979 1941,367 2034,901 

MAX 14408,37 16430,43 18199,92 19591,55 20641,49 

AVERAGE 6218,285 7477,161 8554,739 9431,377 9987,48  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 6,544655 5,974314 5,530109 5,210115 4,983394 

MAX 16,94669 16,17794 15,62421 15,24973 15,04537 

AVERAGE 10,60835 9,753801 9,138732 8,700986 8,477435  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,125241 0,096621 0,071167 0,046685 0,033329 

MAX 0,722072 0,601766 0,487604 0,369566 0,27941 

AVERAGE 0,322691 0,226356 0,154698 0,105021 0,072121  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 9,320111 6,640524 4,723703 3,214721 2,348037 

MAX 43,36353 33,60762 26,04361 19,59635 14,71899 

AVERAGE 27,27331 20,51481 15,23529 11,1478 8,11725  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 20,4017 13,33742 8,047375 5,025998 3,72357 

MAX 383,6804 289,9309 211,8665 150,1097 59,73326 

AVERAGE 99,43363 67,27887 44,9797 29,93183 19,02574  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 21,94246 29,96811 31,93656 28,4657 34,37305 

MAX 50,11899 52,61293 50,16068 48,63274 48,54284 

AVERAGE 40,10249 42,14368 43,34135 43,89441 43,82847  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 3,404385 3,525715 3,478853 3,729426 3,793956 

MAX 8,517159 7,958126 6,778532 7,287785 7,794703 

AVERAGE 4,930637 5,035766 5,161385 5,220602 5,30716 

Table 2.15:  Gamma correction results with gamma=0.8 on test set 
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Figure 2.70: Experimental results PSNR vs Darkness Level for test images 

 

 

 
Figure 2.71: Experimental results SSIM vs Darkness Level for test images 
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Figure 2.72: Experimental results average PSNR vs LL Images PSNR test set 

 

 
Figure 2.73: Experimental results average SSIM vs LL Images SSIM test set 

 

And for the test set, the same conclusions as above are obtained, so we will 

not comment anything further. 

Based on the above we can reach some conclusions about the gamma 

transformation. First, values of the correction constant close to unity (here 

0.8) improve the LL images little or not at all, which is expected due to the 
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mathematical function we apply. For very small values of the correction 

constant (here 0.1) from the evaluation metrics we came to the conclusion 

that there is an excessive enhancement of the dark regions, which can lead 

to the further distortion of the visual information, with a result that is 

visually far from the ground truth case. Finally, we must comment that for 

medium range values of the correction constant (here 0.3) the method gives 

the best results, significantly improving the values of the metrics, as can be 

seen from the corresponding diagrams. All three of these conclusions will 

be confirmed next, where for each darkness level we will display a random 

image for each correction constant value, along with the corresponding LL 

and Ground truth cases, as well as their respective histograms.  

 

Darkness Level: 3.0 

 

Original Low Light     Normal Light 

 

Gamma: 0.1  Gamma: 0.3  Gamma: 0.8 
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Figure 2.74: Histogram of 3.0 LL image 

 

 

Figure 2.75: Histogram of 3.0 NL Image 



 

 129 

 

Figure 2.76: Histogram of 3.0 experimental result with gamma=0.1 

 

 

Figure 2.77: Histogram of 3.0 experimental result with gamma=0.3 
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Figure 2.78: Histogram of 3.0 experimental result with gamma=0.8 

 

We notice that the conclusions reached above are confirmed. For a 

correction constant of 0.8, the experimental result remains dark and is 

almost the same as the original LL image, which can also be seen from the 

corresponding histograms, in which in both cases the values accumulate in 

the left part of them. For a correction constant of 0.1, the excessive 

enhancement of the dark areas mentioned above is observed, with the 

experimental result characterized by strong color distortions. This can also 

be seen from the corresponding histogram, in which we notice that the pixel 

values accumulate in its right part. Finally, for a correction constant of 0.3, 

the best result is obtained, with the experimental image being visually very 

close to the ground truth. Nevertheless, some color distortions are still 

observed, but most of the visual information has been recovered. 
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Darkness Level: 3.5 

 

 

Original Low Light  Normal Light 

 

 

 

Gamma: 0.1  Gamma: 0.3  Gamma: 0.8 
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Figure 2.79: Histogram of 3.5 LL image 

 

 

Figure 2.80: Histogram of 3.5 NL image 
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Figure 2.81: Histogram of 3.5 experimental result with gamma=0.1 

 

 

Figure 2.82: Histogram of 3.5 experimental result with gamma=0.3 
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Figure 2.83: Histogram of 3.5 experimental result with gamma=0.8 

 

For darkness level 3.5 we can also observe what we mentioned above. For 

a correction constant of 0.8, the experimental result remains dark and the 

same as the original LL image, which is also confirmed by the 

corresponding histograms, in which the pixel values accumulate on the left 

side, with very little contrast. Similarly, for a correction constant of 0.1, the 

dark areas are overenhanced, introducing strong color distortions, and with 

the pixel values in the histogram clustered to the right of it. Finally, for 

correction constant 0.3 again the best result is obtained, having recovered 

most of the color information. 
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Darkness Level: 4.0 

 

 

Original Low Light    Normal Light 

 

 

Gamma: 0.1  Gamma: 0.3   Gamma: 0.8 
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Figure 2.84: Histogram of 4.0 LL image 

 

 

Figure 2.85: Histogram of 4.0 NL image 
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Figure 2.86: Histogram of 4.0 experimental result with gamma=0.1 

 

 

Figure 2.87: Histogram of 4.0 experimental result with gamma=0.3 
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Figure 2.88: Histogram of 4.0 experimental result with gamma=0.8 

 

For darkness level 4.0 we can make the same observations as above. The 

case of a correction constant of 0.8 does not improve the result at all, with 

the experimental image remaining dark and the pixel values clustered in 

the left part of the histogram. For a correction constant of 0.1, there is an 

over-enhancement of dark regions, with chromatic distortions becoming 

more pronounced, and pixel values clustering in the right part of the 

experimental histogram. Finally, for a correction constant of 0.3, the best 

result is obtained, and we recover a large part of the visual information. 

Here it is worth commenting on that for γ=0.3 we have color distortions, 

which are more pronounced compared to darkness level 3.0 and 3.5, which 

is expected due to the increase in darkness level. 
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Darkness Level: 4.5 

 

 

Original Low Light   Normal Light 

 

Gamma: 0.1  Gamma: 0.3  Gamma:0.8 
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Figure 2.89: Histogram of 4.5 LL image 

 

 

Figure 2.90: Histogram of 4.5 NL image 
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Figure 2.91: Histogram of 4.5 experimental result with gamma=0.1 

 

 

Figure 2.92: Histogram of 4.5 experimental result with gamma=0.3 



 

 142 

 

Figure 2.93: Histogram of 4.5 experimental result with gamma=0.8 

 

For darkness level 4.5 we notice that again for a correction constant of 0.8 

the LL image does not improve at all, with the pixel values being 

accumulated in the left part of the histogram. For a correction constant of 

0.1 there is again an over-enhancement of the dark areas, which leads to 

the enhancement of chromatic aberrations and the introduction of more 

noise. Finally, for a correction constant of 0.3 the best result is obtained, 

compared to the other two cases. Nevertheless, the experimental result is 

characterized by color distortions, more intense compared to the previous 

darkness levels, which is due to the fact that the images are very dark and 

make it difficult to retrieve the correct color information. 
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Darkness Level: 5.0 

 

 

Original Low Light   Normal Light 

 

 

Gamma: 0.1  Gamma: 0.3  Gamma: 0.8 
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Figure 2.94: Histogram of 5.0 LL image 

 

 

Figure 2.95: Histogram of 5.0 NL image 
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Figure 2.96: Histogram of 5.0 experimental result with gamma=0.1 

 

 

Figure 2.97: Histogram of 5.0 experimental result with gamma=0.3 
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Figure 2.98: Histogram of 5.0 experimental result with gamma=0.8 

 

For darkness level 5.0 we observe that for a correction constant of 0.8 the 

LL image does not improve at all, and the pixel values remain concentrated 

in the left part of the histogram. For a correction constant of 0.1 there is an 

over-enhancement of the dark areas resulting in the further introduction of 

chromatic aberrations, which greatly reduce the quality of the result. 

Finally, for a correction constant of 0.3, the best result is obtained, 

compared to the other 2 cases, but strong color distortions are detected. 

This is due to the fact that the images have become too dark, making it 

difficult for the method to recover all the visual information. 

It is worth at this point to comment on the results as a whole. For a 

correction constant of 0.8 we observe that at all darkness levels, the LL 

images are improved little or not at all. We can see this, firstly from the 

values of the quality metrics, which in all cases are almost the same as the 

values of the original LL images, but also from the random images we 

displayed for each darkness level. The experimental result remains dark, 

and the pixel values remain accumulated in the left part of the histogram. 

If we look at figure 2.49, with the gamma transformation curves for each 

value of the correction constant, we can understand that this fact was 

expected. The specific value of the correction constant is very close to 
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unity, so after applying the gamma transform, it leaves the respective LL 

image almost unchanged. 

For a correction constant of 0.1 we noticed at all darkness levels that the 

dark areas are over-enhanced, and the end result is as if the images were 

taken in over-exposed lighting conditions. This can first be seen from the 

metrics, as this is the only case so far where MV increases with increasing 

darkness level, which means that the average brightness of the given image 

also increases. In addition to the metrics, it can also be seen from the 

random images we displayed for each darkness level, where in each case 

the pixels were concentrated in the right part of the histogram. This 

phenomenon had the effect of amplifying the existing noise as well as 

increasing the color distortions, greatly reducing the quality of the final 

experimental result. This fact was again expected, as from figure 2.49 we 

can see that values of the correction constant close to 0 have the property 

of strongly enhancing dark areas. For the sake of completeness, however, 

we had to test all value cases. 

In the case where we used a correction constant of 0.3, the best results were 

obtained for all darkness levels. Quality metrics improved noticeably, with 

PSNR and SSIM taking their maximum values (compared to the other 2 

cases). From the random images we displayed for each darkness level, we 

see that the experimental results for γ=0.3 are visually closer to the ground 

truth case, having recovered much of the visual information. However, we 

must comment that for all darkness levels, color distortions appeared in the 

experimental results, which became more intense with the increase of the 

darkness level. This is justified by the fact that the images become darker 

and darker, and correspondingly the dynamic range becomes smaller and 

smaller, making it extremely difficult to fully and correctly recover the 

color information. 
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2.3 Log Correction 
 

This is a pointwise, non-linear transformation, like the gamma 

transformation, except in this case we assume that between pixels of the 

LL image and the pixels of the NL image there is a logarithmic relationship. 

The mathematical function we apply to the value of each pixel has the 

form: 

 

𝐼(𝑖, 𝑗) = log10(1 + 𝑐 ∗ 𝐼𝐿𝐿(𝑖, 𝑗)) 

 

Where c is a control constant, depending on the value of which, the 

function can take various forms. Some examples are shown in figure 2.99. 

 

Figure 2.99: Log correction for different control parameter values 
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For values of the control constant greater than 1 we see that the function 

can enhance the dark areas of an image, so it could be applied for LLIE. 

This is also a simple algorithm, in terms of implementation. The 

implementation of the method is done with the function presented in image 

B.2.9 of appendix B. This function is applied to all LL images for each 

darkness level, which is done through the script presented in images B.2.10 

and B. 2.11 of appendix B. Obviously, as in the case of the gamma 

transform, there is no ideal value of the constant c, and for this reason we 

will experiment with 3 different values. Specifically, we will apply the 

method with a small value of c = 1, a medium range value of c=10, and a 

large value of c=50. From this process, the experimental results are 

obtained, for each value of the parameter, the evaluation of which is done 

through the script presented in figure B.2.12 of appendix B. From this 

process, 3 excel files are produced for each value of the constant c, which 

contain the values of the metrics for each image of the experimental results, 

which will be used for the construction of summary tables, presented 

below. In addition, we also construct line charts with 

maximum/minimum/average PSNR and SSIM per darkness level, to see 

how the performance is affected by the darkness level. Finally, we also 

present line charts of the average PSNR and SSIM, per darkness level, both 

for the experimental results and for the original LL images, to see how 

much the result improves in each case. 

 

Training Set 

c=1 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 1150,396 1230,74 1294,044 1343,92 1373,67 

MAX 25750,42 26525,18 27074,25 27510,78 27783,26 

AVERAGE 10438,65 10920,6 11292,59 11593,25 12014,23  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 4,02296 3,894221 3,80524 3,735775 3,692972 

MAX 17,52233 17,22914 17,01131 16,84707 16,75198 

AVERAGE 8,246039 8,043762 7,893969 7,773268 7,620914  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,014623 0,010004 0,005747 0,003263 0,002069 

MAX 0,391483 0,302258 0,234753 0,185888 0,150379 

AVERAGE 0,067145 0,045045 0,030031 0,019979 0,01319 
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MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 1,592122 1,044902 0,68809 0,424698 0,263826 

MAX 15,11501 11,56136 8,694798 6,439869 4,607421 

AVERAGE 6,876141 4,914041 3,447475 2,371986 1,641106  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,927363 0,59725 0,418809 0,419849 0,333316 

MAX 95,58026 72,70247 54,30994 39,16158 26,71166 

AVERAGE 15,71822 10,13654 6,405503 3,974903 2,458903  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 31,54555 35,82797 38,55014 39,18579 41,19538 

MAX 64,45784 61,20449 61,1918 56,83263 55,68347 

AVERAGE 45,65275 45,51481 45,18829 44,84094 44,83776  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 4,032914 4,19765 4,769732 4,956976 5,177708 

MAX 13,04435 12,70734 11,64523 10,03232 10,37437 

AVERAGE 6,924142 7,375425 7,782276 8,133508 8,38073 

Table 2.16: Log correction results with c=1 on training set 

 

 

Figure 2.100: Experimental results PSNR vs Darkness Level for training images 
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Figure 2.101: Experimental results SSIM vs Darkness Level for training images 

 

For a control constant of 1 we see that the LL images do not improve at all. 

MSE is very large and increases with increasing darkness level, while 

PSNR and SSIM are very small and decrease with increasing darkness 

level. Regarding the metrics with no reference, we notice that MV and STD 

are very small and decrease with the increase of darkness level, which 

means that the experimental results remain dark and the pixel values 

accumulate close to zero. BRISQUE and NIQE increase with increasing 

darkness level, which means that the image quality gets worse. 

  

 

c = 10 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 42,11946 169,5279 159,4157 506,3822 906,1422 

MAX 12458,48 14923,75 17766,71 20328,87 22417,82 

AVERAGE 2933,97 4435,592 5962,914 7399,069 8773,965  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 
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SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,155937 0,108413 0,077067 0,056754 0,037932 

MAX 0,884471 0,839788 0,860778 0,792306 0,642864 

AVERAGE 0,573592 0,439176 0,313687 0,212219 0,141129  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 13,77962 9,595425 6,810115 4,803523 3,874113 

MAX 85,06351 69,68224 56,105 44,31212 33,91846 

AVERAGE 50,01966 37,99691 28,15938 20,38493 14,79352  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 21,38145 16,62244 11,08291 9,911588 8,102828 

MAX 868,4807 745,0139 603,2324 478,8048 357,9306 

AVERAGE 233,8997 170,6357 120,3637 82,02715 54,81495  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 14,79688 17,84928 21,70912 25,00103 25,54882 

MAX 50,35989 49,89327 48,38213 47,79668 48,59574 

AVERAGE 36,311 37,22384 37,85137 38,28925 38,61274  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 2,644477 2,714278 3,099516 3,285837 3,409037 

MAX 26,92967 27,54845 12,37783 6,954204 7,303726 

AVERAGE 4,486564 4,603463 4,669125 4,757833 4,844949 

Table 2.17: Log correction results with c=10 on training set 

 

 

Figure 2.102: Experimental results PSNR vs Darkness Level for training images 
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Figure 2.103: Experimental results SSIM vs Darkness Level for training images 

 

For a control constant of 10, there is an improvement in the result. The 

quality metrics improve with respect to the corresponding values of the LL 

images, and the expected behavior is observed with the increase of the 

darkness level. MSE increases, while PSNR and SSIM decrease with 

increasing darkness level, indicating that the performance of the method 

decreases with increasing darkness level. Regarding the metrics with no 

reference, MV and STD are larger than the c=1 case, and decrease with 

increasing darkness level. Furthermore, BRISQUE and NIQE increase as 

the darkness level increases, which means that we move away from natural 

statistics, with the visual quality of the experimental result decreasing with 

increasing darkness level. 

c = 50 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 188,0061 137,5447 103,7085 148,5744 198,1153 
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SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,165409 0,148303 0,119653 0,060882 0,016329 

MAX 0,900087 0,930409 0,90992 0,849867 0,776973 

AVERAGE 0,594567 0,599284 0,564726 0,487891 0,387825  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 48,12243 35,75146 27,04635 20,31815 17,99765 

MAX 194,585 163,5684 135,5424 116,0806 100,3914 

AVERAGE 137,3111 112,9854 90,36633 70,33211 54,49079  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 80,21196 89,77202 95,60216 81,21205 75,39581 

MAX 2085,714 1799,995 1472,419 1314,607 1208,574 

AVERAGE 713,2332 612,9932 502,3531 395,2466 302,7045  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 5,358579 4,680931 7,847411 11,00519 12,55915 

MAX 51,44345 50,52788 53,30538 54,53145 55,62918 

AVERAGE 32,09664 30,95293 31,97628 33,86062 35,9871  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 2,242354 2,173021 2,566859 2,948489 3,051233 

MAX 25,61689 26,02209 8,833151 7,446648 8,212591 

AVERAGE 3,928974 4,089681 4,30353 4,587479 4,888292 

Table 2.18: Log correction results with c=50 on training set 

 

 

Figure 2.104: Experimental results PSNR vs Darkness Level for training images 
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Figure 2.105: Experimental results SSIM vs Darkness Level for training images 

 

For a control constant of 50 the best results are obtained, compared to the 

other two cases. All quality metrics improve significantly compared to the 

corresponding values of LL images, and follow the expected behavior with 

increasing darkness level.  

From Figures 2.106 and 2.107 we see that indeed the best results are 

obtained for a control constant of 50, with the PSNR and SSIM values 

improving noticeably. In addition, we notice that for control constant 1 the 
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Figure 2.106: Experimental results average PSNR vs LL Images PSNR training set 

 

 

Figure 2.107: Experimental results average SSIM vs LL Images SSIM training set 
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Validation Set 

c = 1 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 1628,71 1690,142 1737,611 1769,059 1790,034 

MAX 19961 20625,95 21126,67 21462,78 21729,31 

AVERAGE 11055,66 11556,84 11941,92 12231,32 12747,47  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 5,12898 4,986664 4,882492 4,813944 4,760345 

MAX 16,01237 15,85157 15,73128 15,65338 15,60219 

AVERAGE 8,04165 7,846894 7,702929 7,59776 7,458581  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,029973 0,018938 0,011746 0,007474 0,0045 

MAX 0,126596 0,10804 0,097283 0,090328 0,086229 

AVERAGE 0,060913 0,041013 0,027805 0,019165 0,013376  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 1,549638 1,000642 0,593799 0,37321 0,220961 

MAX 10,91523 8,069728 5,872225 4,221559 2,959349 

AVERAGE 6,916212 4,947855 3,482149 2,408004 1,63909  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 1,852095 1,164383 0,662383 0,414455 0,284926 

MAX 95,10262 85,18198 75,6174 66,21395 57,91399 

AVERAGE 17,35171 11,61218 7,815267 5,234261 3,926796  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 41,96625 41,62356 41,54807 42,05184 41,65584 

MAX 57,80742 55,87842 52,83205 55,46545 52,22314 

AVERAGE 46,50328 46,10468 45,56008 45,2162 44,80103  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 4,730215 5,706043 6,273572 6,443305 6,878924 

MAX 9,099827 9,292974 9,07556 9,178307 9,672329 

AVERAGE 6,824987 7,475221 7,90187 8,264813 8,483055 

Table 2.19: Log correction results with c=1 on validation set 
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Figure 2.108: Experimental results PSNR vs Darkness Level for validation images 

 

 

Figure 2.109: Experimental results SSIM vs Darkness Level for validation images 
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c = 10 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 584,9529 860,4201 1115,709 1326,344 1473,978 

MAX 8480,949 11176,47 13659,3 15697,94 17476,44 

AVERAGE 3172,155 4764,539 6369,222 7853,734 9409,65  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 8,846359 7,647755 6,776521 6,172377 5,706274 

MAX 20,45959 18,7837 17,6553 16,90424 16,44589 

AVERAGE 13,69775 11,81964 10,50093 9,561354 8,814844  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,302136 0,257723 0,180801 0,109948 0,067585 

MAX 0,722033 0,584069 0,472778 0,370078 0,242925 

AVERAGE 0,557293 0,424795 0,303331 0,20648 0,132153  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 14,00318 9,689803 6,508856 4,391124 3,103696 

MAX 71,03485 55,81298 43,6163 32,70043 24,20066 

AVERAGE 50,17504 38,19036 28,40812 20,63152 14,72766  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 41,73803 28,80771 17,60765 11,17202 7,832456 

MAX 729,9616 657,4974 592,1293 529,202 474,4819 

AVERAGE 246,4542 182,063 131,3782 91,59303 64,6523  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 23,89007 28,73192 32,41299 29,22142 34,34498 

MAX 47,97598 46,69466 47,14542 46,89696 44,59126 

AVERAGE 37,40734 37,92862 38,44142 38,55464 38,44289  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 3,329063 3,49355 3,578824 4,017817 3,989238 

MAX 5,402191 5,584824 5,932847 6,623467 6,163965 

AVERAGE 4,388928 4,52681 4,657536 4,760438 4,851294 

Table 2.20: Log correction results with c=10 on validation set 
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Figure 2.110: Experimental results PSNR vs Darkness Level for validation images 

 

 

Figure 2.111: Experimental results SSIM vs Darkness Level for validation images 
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but with the increase in darkness level, the experimental results are not 

much different from those for LL images. 

 

c = 50 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 173,0703 236,5667 163,379 427,6937 545,1057 

MAX 8242,691 4688,932 2437,267 4800,684 7751,772 

AVERAGE 2276,441 851,6959 666,5707 1444,341 3045,971  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 8,970114 11,42006 14,26177 11,31777 9,236794 

MAX 25,74858 24,39127 25,99884 21,81947 20,766 

AVERAGE 15,52221 19,72104 21,10747 17,25842 13,98398  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,209478 0,203483 0,141076 0,094871 0,14184 

MAX 0,837241 0,851423 0,832643 0,7503 0,608247 

AVERAGE 0,598857 0,606628 0,575211 0,505534 0,39874  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 52,20364 38,42516 27,23087 19,16659 14,10746 

MAX 179,8483 150,9461 126,153 101,9985 81,69774 

AVERAGE 137,03 113,0062 90,73357 70,94576 54,28716  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 152,4524 151,1566 137,5207 97,73425 73,37161 

MAX 1235,666 1228,703 1166,116 980,6299 798,9623 

AVERAGE 737,1489 634,7624 524,3859 412,5428 313,7163  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 12,28138 7,513229 10,44922 11,58201 11,80987 

MAX 45,81359 48,7408 54,85708 52,25491 50,84027 

AVERAGE 34,03565 32,62372 32,83111 33,14358 34,43288  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 2,761001 3,017186 3,114857 3,519655 3,699833 

MAX 5,54555 5,553362 6,460767 6,504754 7,424094 

AVERAGE 3,838583 3,971662 4,205644 4,483011 4,811183 

Table 2.21: Log correction results with c=50 on validation set 
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Figure 2.112: Experimental results PSNR vs Darkness Level for validation images 

 

 

Figure 2.113: Experimental results SSIM vs Darkness Level for validation images 
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Figure 2.114: Experimental results average PSNR vs LL Images PSNR validation set 

 

 

Figure 2.115: Experimental results average SSIM vs LL Images SSIM validation set 
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Test Set 

c = 1 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 2043,187 2116,679 2174,85 2212,273 2231,654 

MAX 21006,29 21750,28 22342,17 22774,62 23073,27 

AVERAGE 10441,65 10929,08 11306,31 11572,29 11615,42  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 4,90731 4,756155 4,63955 4,556292 4,499712 

MAX 15,02772 14,87425 14,75651 14,68242 14,64454 

AVERAGE 8,243062 8,039969 7,889197 7,789404 7,806113  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,021674 0,012547 0,006574 0,003317 0,00357 

MAX 0,244173 0,171878 0,125829 0,092113 0,069254 

AVERAGE 0,061807 0,040918 0,02688 0,017739 0,01183  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 1,966409 1,320028 0,781811 0,444646 0,273638 

MAX 11,98828 9,002481 6,723855 4,823458 3,445938 

AVERAGE 6,911006 4,940685 3,461869 2,375729 1,607916  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 2,237172 1,388126 0,717591 0,400911 0,31117 

MAX 63,59741 47,36323 33,6482 22,98484 8,388868 

AVERAGE 15,13708 9,651144 6,017383 3,714627 2,151359  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 32,76911 38,39742 38,34528 41,59701 41,65263 

MAX 64,61011 68,47998 59,28402 52,70005 52,49523 

AVERAGE 46,08738 46,21883 45,42459 45,1587 45,26535  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 4,342711 4,619607 5,13221 5,223913 5,369609 

MAX 9,555313 10,0075 10,01027 9,726514 9,414107 

AVERAGE 6,906518 7,368854 7,747159 8,085139 8,42788 

Table 2.22: Log correction results with c=1 on test set 
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Figure 2.116: Experimental results PSNR vs Darkness Level for test images 

 

 

Figure 2.117: Experimental results SSIM vs Darkness Level for test images 
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confirmed from Figures 2.122 and 2.123, with the average values of PSNR 

and SSIM for each control constant value. 

 

c = 10 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 78,54687 339,1828 1028,517 1644,707 1866,827 

MAX 8578,332 11223,44 13933,41 16293,11 18203,23 

AVERAGE 2895,467 4396,903 5932,394 7355,09 8445,688  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 8,796775 7,629543 6,69023 6,010764 5,52932 

MAX 29,17951 22,82647 18,00869 15,96992 15,41976 

AVERAGE 14,31675 12,24365 10,81243 9,821376 9,229135  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,214692 0,176644 0,128681 0,074542 0,050204 

MAX 0,90248 0,821121 0,674199 0,554673 0,429683 

AVERAGE 0,572003 0,43341 0,304707 0,203949 0,132794  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 16,45095 11,50642 7,997039 5,13745 3,584051 

MAX 73,0239 58,57621 46,51969 35,59909 26,87461 

AVERAGE 50,16085 38,14374 28,27685 20,40455 14,50323  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 47,87727 33,55352 18,83544 10,96006 7,657869 

MAX 606,5987 506,9348 406,7248 315,5567 150,3359 

AVERAGE 231,6704 167,1262 116,2235 78,27165 49,53739  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 22,40827 21,88402 23,65389 26,01816 28,05007 

MAX 48,54499 50,25315 49,03543 49,23788 48,00299 

AVERAGE 36,60648 37,70654 38,23703 38,70577 38,68672  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 3,182201 3,338981 3,401796 3,702826 3,751078 

MAX 7,200654 6,932764 6,261882 7,044526 7,330747 

AVERAGE 4,437645 4,548818 4,679047 4,815784 4,906994 

Table 2.23: Log correction results with c=10 on test set 
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Figure 2.118: Experimental results PSNR vs Darkness Level for test images 

 

 

Figure 2.119: Experimental results SSIM vs Darkness Level for test images 
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c = 50 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 239,579 270,5548 154,0493 230,494 191,5334 

MAX 11332,93 7503,139 3853,38 6294,927 8112,887 

AVERAGE 2614,328 1038,526 703,5616 1372,141 2649,829  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 7,587383 9,378374 12,27239 10,1409 9,03905 

MAX 24,33632 23,80825 26,25421 24,50421 25,30836 

AVERAGE 14,82221 19,0108 20,9166 17,57403 14,59449  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,194941 0,174166 0,121044 0,082028 0,047548 

MAX 0,847754 0,892556 0,908981 0,824637 0,720324 

AVERAGE 0,610923 0,61743 0,581146 0,502621 0,385608  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 56,65485 41,68285 30,39575 22,80462 16,68435 

MAX 172,1099 149,3428 126,0709 103,3519 83,8651 

AVERAGE 137,4292 113,1232 90,4949 70,26011 53,44228  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 174,912 130,5094 115,6348 98,48667 73,50882 

MAX 1894,964 1575,038 1240,717 938,2727 708,0402 

AVERAGE 733,639 619,883 499,3963 387,9718 284,3082  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 16,1751 12,84582 11,00716 11,23866 16,30634 

MAX 46,18415 48,72177 55,369 53,35234 58,48296 

AVERAGE 33,46303 32,71173 32,01516 33,30971 36,2968  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 2,593586 2,888011 3,109754 3,388232 3,577005 

MAX 6,42902 6,330552 6,556469 8,485191 8,281337 

AVERAGE 3,837928 4,016739 4,272004 4,62412 4,918593 

Table 2.24: Log correction results with c=50 on test set 
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Figure 2.120: Experimental results PSNR vs Darkness Level for test images 

 

 

Figure 2.121: Experimental results SSIM vs Darkness Level for test images 
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Figure 2.122: Experimental results average PSNR vs LL Images PSNR test set 

 

 

Figure 2.123: Experimental results average SSIM vs LL Images SSIM test set 
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constant of 10, the situation improves slightly, as for small darkness levels 

(3.0 and 3.5) the values of the quality metrics become better, but for the 

rest of the darkness levels the results have little difference from the initial 

values for the LL images. This is due to a combination of 2 factors, the first 

of which is that for small values of the correction constant the method does 

not work, and the second is that the images become very dark, making it 

even more difficult to retrieve visual information. These two factors lead 

to the low-quality experimental results of control constants 1 and 10. In the 

case where we use control constant 50, the best results are obtained, 

compared to the other 2 cases, with the metric values improving 

significantly. Specifically, the average PSNR improves by 8.96dB and the 

average SSIM increases by 0.43. Based on these we can conclude that the 

logarithmic transformation works better for large values of the control 

constant, although we should be careful with the values we choose, to avoid 

the phenomenon of over-amplification of the dark areas, which appeared 

during the transformation Gamma. 

To confirm the above conclusions, we will show a random image from each 

darkness level, for each value of the control constant, together with the 

corresponding LL and ground truth, accompanied by the respective 

histograms. 

 

Darkness Level: 3.0 

 

Original Low Light   Normal Light 
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 c = 1    c = 10   c = 50 

 

 

 

Figure 2.124: Histogram of 3.0 LL image 
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Figure 2.125: Histogram of 3.0 ΝL image 

 

 

Figure 2.126: Histogram of 3.0 Experimental result image with c=1 
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Figure 2.127: Histogram of 3.0 Experimental result image with c=10 

 

 

Figure 2.128: Histogram of 3.0 Experimental result image with c=50 
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For darkness level 3.0 we can observe the behavior we mentioned above. 

For a control constant of 1 the LL image does not improve at all, with the 

image remaining dark. This can also be seen from the histograms, where 

in figure 2.126 we see that in the experimental histogram the pixel values 

accumulate in its left part, with this accumulation being more intense 

compared to the histogram of LL image, confirming that the result is worse 

than the original pictures. For a control constant of 10 there is a slight 

improvement in the image, with dark areas enhanced and details now 

discernible. The histogram, as we see from figure 2.127, has started to be 

distributed over a larger range of values, with its form being similar to that 

of the ground truth case. Nevertheless, the result can be further improved, 

which is done in the case of the control constant 50. For this value of the 

control constant the best result is obtained, the dark regions are fully 

enhanced and most of the visual information is recovered. Furthermore, as 

we can see from figure 2.128, the histogram has spread over the entire 

available value range, with its form being very close to that of the ground 

truth case. Finally, let us comment that no color distortions are observed, 

like those we saw in the case of the gamma transformation. 

 

Darkness Level: 3.5 

 

Original Low Light   Normal Light 
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 c = 1    c = 10    c = 50 

 

 

Figure 2.129: Histogram of 3.5 LL image 
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Figure 2.130: Histogram of 3.5 NL image 

 

 

Figure 2.131: Histogram of 3.5 Experimental result image with c=1 
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Figure 2.132: Histogram of 3.5 Experimental result image with c=10 

 

 

Figure 2.133: Histogram of 3.5 Experimental result image with c=50 
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In the case of darkness level 3.5, the same behavior is observed again. For 

control constant 1 the experimental result is worse than the original LL 

image, which can also be confirmed by the histogram. In figure 2.131, with 

the histogram of the experimental result, we see that the pixel values are 

more strongly accumulated in the left part, compared to the LL image, that 

is, the experimental result is darker than the original LL image, and of 

worse quality. For a control constant of 10, the result improves slightly, as 

we can now distinguish details, with the histogram spread over a larger 

range of values. The result improves even more in the case where we use a 

control constant of 50, with the dark areas fully enhanced and a large 

percentage of the visual information recovered. Moreover, from figure 

2.133 we see that the experimental histogram has a form that is very close 

to the ground truth case, confirming the improvement of the result. 

 

Darkness Level: 4.0 

 

Original Low Light   Normal Light 

 

 c = 1    c = 10    c = 50 
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Figure 2.134: Histogram of 4.0 LL image 

 

 

Figure 2.135: Histogram of 4.0 NL image 
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Figure 2.136: Histogram of 4.0 Experimental result image with c=1 

 

 

Figure 2.137: Histogram of 4.0 Experimental result image with c=10 
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Figure 2.138: Histogram of 4.0 Experimental result image with c=50 

 

In the case of darkness level 4.0 we can observe the expected behavior. For 

a control constant of 1 the result, instead of improving, becomes worse, 

with the image remaining dark. This is also confirmed by the experimental 

histogram, where from figure 2.136 we see that the pixel values accumulate 

in the left part, much more strongly than in relation to the LL image. For a 

control constant of 10, the result improves little, as the image remains dark, 

although we can make out quite a bit of detail. Finally, for a control 

constant of 50 we recover most of the visual information, with dark areas 

fully enhanced. From figure 2.138 we see that the histogram is spread over 

a larger range of values, with its form close to that of the ground truth case. 
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Darkness Level: 4.5 

 

Original Low Light   Normal Light 

 

 c = 1    c = 10    c = 50 
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Figure 2.139: Histogram of 4.5 LL image 

 

 

Figure 2.140: Histogram of 4.5 NL image 
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Figure 2.141: Histogram of 4.5 Experimental result image with c=1 

 

 

Figure 2.142: Histogram of 4.5 Experimental result image with c=10 
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Figure 2.143: Histogram of 4.5 Experimental result image with c=50 

 

For a control constant of 1 we observe that the result does not improve at 

all, but instead the image becomes darker and of lower quality. This is also 

confirmed by the histogram in figure 2.141, from where we see that the 

pixel values are all clustered in the left part of it, more strongly than in 

relation to the LL image. For a control constant of 10 the result improves 

little, since the image remains dark, and the pixel values remain 

concentrated in the left part of the histogram. In the case where we use a 

control constant of 50, the best result is obtained compared to the other 2 

cases. Most of the visual information has been recovered, and the pixel 

values have been spread over a wider range of values. What we can 

observe, however, is the appearance of color distortions, which are due to 

the fact that the images have become too dark, making it difficult to retrieve 

complete and correct color information. 
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Darkness Level: 5.0 

 

Original Low Light   Normal Light 

 

 c = 1    c = 10    c = 50 
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Figure 2.144: Histogram of 5.0 LL image 

 

 

Figure 2.145: Histogram of 5.0 NL image 
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Figure 2.146: Histogram of 5.0 Experimental result image with c=1 

 

 

Figure 2.147: Histogram of 5.0 Experimental result image with c=10 

 



 

 190 

 

Figure 2.147: Histogram of 5.0 Experimental result image with c=50 

 

For darkness level 5.0 and control constant 1 again the result does not 

improve at all, but becomes worse, as the image becomes darker and the 

pixel values are concentrated in the left part of the histogram, more strongly 

than in the original LL image. For a control constant of 10, again there is 

little improvement as the pixel values remain clustered on the left side of 

the histogram, as seen in Figure 2.147, with the image remaining dark 

having recovered little visual information. For a control constant of 50 

again the best result is obtained, compared to the other two cases, as we 

have recovered a large part of the visual information. Furthermore, from 

the histogram in Figure 2.147 we can see that the pixel values are spread 

over a larger range of values, with the histogram shape resembling that of 

the ground truth case. Finally, we have to comment that color distortions 

appear here as well, due to the fact that the images are too dark to fully 

recover the color information. 

At this point it is worth briefly commenting on all the above results of the 

logarithmic transformation. For a control constant of 1 we observed that 

the LL images do not improve at all, but instead become worse. Images 

become darker, with pixel values clustering more heavily on the left side 

of the histogram. For a control constant of 10, the result is slightly 

improved, which is confirmed by the improvement of the quality metrics 
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as well as the recovery of a small part of the visual information. However, 

as the darkness level increases, the performance of the method degenerates 

and the results for a control constant of 10 become comparable to those for 

a control constant of 1. In the case where we use a control constant of 50, 

the best results are obtained, and the algorithm manages to recover most of 

the visual information. This is also reflected in the values of the quality 

metrics, which improve noticeably, as well as in the histograms, which in 

any case have a form that resembles the ground truth case. However, at 

high darkness levels (4.5, 5.0) color distortions begin to be observed, as 

well as a decrease in the performance of the algorithm. This is because the 

images have become too dark, with very little to zero dynamic range, 

making it very difficult to fully and correctly recover color information. 

 

2.4 Histogram Equalization 
 

In this section we will apply a pointwise transformation called histogram 

equalization, the logic of which is based on the fact that if the pixel values 

are evenly distributed over all possible gray levels, the image will have 

high contrast and high dynamic range [15]. The goal is to find a suitable 

mathematical function that takes as input a low-contrast image and outputs 

an image whose histogram will approximate the normal distribution. In this 

way we will manage to enhance the dark areas of each image, so histogram 

equalization is suitable for LLIE. 

Histogram equalization uses two basic concepts of image processing, the 

probability density function (pdf) and the cumulative distribution function 

(cdf). If we consider I(i,j) as the image under consideration, with Ν being 

the total number of pixels and L the number of gray levels, then the pdf is 

defined as: 

 

𝑝(𝑘) =  
𝑛𝑘

𝑁
 

 

Where nk is the number of pixels with gray value k (k=0,1,…,L-1). The pdf 

expresses the percentage of pixels with gray value k, or otherwise the 

probability that a pixel has gray value k. Obviously, by definition, it does: 
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∑ 𝑝(𝑘)

𝐿−1

𝑘=1

= 1 

 

Accordingly, the cdf is defined as follows: 

 

𝑃(𝑚) = ∑ 𝑝(𝑘)

𝑚

𝑘=0

=
1

𝑁
∑ 𝑛𝑘

𝑚

𝑘=0

 

 

and expresses the percentage of pixels in the image, which have a gray 

value less than or equal to m, or otherwise the probability that a pixel has 

a gray value less than or equal to m. 

Based on these, the transformation that we will apply to each pixel of the 

image is derived, which is: 

 

𝛪𝑁𝐿(𝑘) =  [(𝐿 − 1)𝑃(𝑘)] 

 

This is an implementationally simple transformation that is implemented 

with the function shown in Figure B.2.13 of Appendix B. We will apply 

this function to all images in the dataset, which is done using the scripts 

shown in figures B.2.14 and B.2.15, of appendix B. After the application 

of these scripts, we have at our disposal the experimental results, per 

darkness level and per set (training, validation, test). Based on these we 

will calculate the evaluation metrics in order to evaluate the performance 

of the method. The calculation is done with the script presented in figure 

B.2.16 of appendix B. After its application, 3 excel files are generated (one 

for each set) that contain the values of the metrics per image and darkness 

level, and we can use them for the construction summary tables, which will 

contain the minimum/maximum/average value of each metric, per 

darkness level. In addition, we will also construct line charts with the 

minimum/maximum/average value of PSNR and SSIM per darkness level, 

to see how the performance of the method is affected as the darkness level 

increases. Finally, we will also present line charts with the average value 

of PSNR and SSIM, before and after applying the method, to see how much 

the quality metrics of then LL images are improved. First we will present 
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these results, and then, we will display the images corresponding to the 

minimum and maximum experimental PSNR, accompanied by the 

corresponding LL and ground truth cases as well as the related histograms, 

in order to visually comment on the result. 

 

Training Set 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 421,0046 441,9709 517,6390989 590,5857 660,5967 

MAX 12408,14 12359,92 12639,4027 13519,73 14621,51 

AVERAGE 3071,221 3145,256 3262,668015 3468,21 3659,15  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 7,193738281 7,210649 7,113538 6,821124 6,480882 

MAX 21,88793497 21,67687 20,99053 20,41797 19,93144 

AVERAGE 14,01144036 13,89799 13,72839 13,4587 13,17517  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN -0,02341408 -0,04635 -0,06808 -0,15138 -0,15752 

MAX 0,787580525 0,764571 0,761787 0,736809 0,725542 

AVERAGE 0,400328107 0,364868 0,3249 0,280182 0,230345  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 127,0685056 126,9022 126,7785 127,0456 127,0612 

MAX 142,1202654 151,1714 154,5217 157,6636 161,1524 

AVERAGE 127,9949542 128,5551 129,5186 131,3005 133,734  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 158,809322 178,1034 208,1213 227,0157 329,4894 

MAX 1396,637581 1395,106 1398,889 1377,956 1357,603 

AVERAGE 870,9182373 864,2766 853,7109 835,8393 812,0992  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 3,716687142 3,154421 4,505201 6,952224 9,015325 

MAX 52,79433739 54,91105 58,1652 58,19425 59,30204 

AVERAGE 28,24526558 29,50091 31,61575 34,67411 38,37626  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 2,46136462 2,623508 2,847146 3,009361 3,203958 

MAX 24,53955714 12,42223 9,341568 10,73782 11,23613 

AVERAGE 4,005421566 4,330952 4,710459 5,164884 5,671135 

Table 2.25: HE quality metrics on training set 



 

 194 

 

 

Figure 2.148: Experimental results PSNR vs Darkness level for training set 

 

 

Figure 2.149: Experimental results SSIM vs Darkness level for training set 
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Figure 2.150: Experimental vs LL images PSNR 

 

 

Figure 2.151: Experimental vs LL images SSIM 

 

We notice that histogram equalization improves the quality metrics values 

significantly, with the average PSNR increasing by an average of 5.14dB, 

and the average SSIM by 0.22. Moreover, the expected behavior is 

observed with the increase of the darkness level, as we observe that the 

MSE increases, while the PSNR and SSIM decrease, which means that the 

performance of the algorithm decreases with the increase of the darkness 

level. At this point we have to comment that for PSNR and SSIM the rate 
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of decrease of their values with the increase of the darkness level is smaller 

compared to the methods we have seen so far, which means that it is more 

resistant to the change of the darkness level. Regarding the values of the 

quality metrics with no reference, we see that the MV increases, i.e. the 

images become brighter, and the STD is also larger, compared to the 

original images, which means that the pixel values are spread over a wider 

range of values around average. Finally, BRISQUE and NIQE increase 

with increasing darkness level, which means that we are moving away from 

natural statistics. This is to be expected as, as the darkness level increases, 

the images become very dark making it much more difficult to retrieve the 

full visual information. 

Validation Set 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 439,5438 480,4772813 529,7034 584,3981 703,0401 

MAX 12809,33 13628,13055 14841,78 18367,84 19703,56 

AVERAGE 3009,335 3120,370316 3302,063 3579,684 3677,492  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 7,05554 6,786440756 6,415942 5,490224 5,185356 

MAX 21,70078 21,31407503 20,89048 20,46372 19,661 

AVERAGE 14,51815 14,3807657 14,16873 13,89425 13,83293  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,083985 0,070406396 0,055704 0,021274 0,021279 

MAX 0,783691 0,750853004 0,716853 0,680148 0,610063 

AVERAGE 0,415319 0,382625468 0,346071 0,302454 0,279778  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 127,1019 127,088425 126,8991 127,1712 127,7105 

MAX 139,1523 144,9227998 151,3749 159,7386 167,1147 

AVERAGE 128,538 129,2522622 130,2573 131,9691 133,7172  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 521,6171 479,0979246 410,3607 321,6802 507,0534 

MAX 1345,086 1345,688009 1337,153 1310,609 1273,174 

AVERAGE 881,7714 871,5300366 859,2557 836,429 827,838  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 7,375161 6,534256878 10,97686 18,7654 14,85068 

MAX 48,79476 49,62103107 54,99201 53,48019 55,02543 

AVERAGE 30,19114 30,40059761 31,95058 34,43156 36,31509 
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NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 2,54717 3,12256287 3,39889 3,711442 4,055303 

MAX 6,625679 7,575652513 9,891647 8,9151 9,910555 

AVERAGE 3,908225 4,217832807 4,564158 5,074119 5,642139 

Table 2.26: HE quality metrics on validation set 

 

 

Figure 2.152: Experimental results PSNR vs Darkness level for validation set 
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Figure 2.153: Experimental results SSIM vs Darkness level for validation set 

 

 

Figure 2.154: Experimental vs LL images PSNR 
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Figure 2.155: Experimental vs LL images SSIM 

 

The same behavior is observed in the validation set as well. The results 

improve noticeably, and the metrics follow the expected path as the 

darkness level increases. MSE increases while PSNR and SSIM decrease 

with increasing darkness level. Let us comment that here too the rate of fall 

of these values is lower compared to the methods we have seen so far. 
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SSIM 

Level 3.0 3.5 4.0 4.5 5.0 
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0,42
0,38

0,35

0,30
0,28

0,17

0,11

0,07
0,05

0,03

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

3.0 3.5 4.0 4.5 5.0

SS
IM

Darkness Level

Average Experimental Results SSIM vs LL Images SSIM

Experimental Original



 

 200 

 
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 127,1964766 127,0717 127,2591 127,3106 127,2778 

MAX 137,1473075 148,0392 157,8103 164,3262 166,6853 

AVERAGE 127,9494737 128,6499 129,8455 132,1473 134,6972  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 386,139099 425,2195 442,058 470,8506 395,7738 

MAX 1343,650473 1312,27 1260,695 1249,68 1184,382 

AVERAGE 862,7810241 855,5218 842,2514 821,2246 786,2158  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 4,401809978 7,89315 7,270009 13,12065 12,85632 

MAX 59,64634688 59,56688 56,33996 57,22262 54,78736 

AVERAGE 29,55965034 30,80847 31,31449 33,91571 38,08425  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 2,545997664 2,755651 3,246542 3,530169 3,828247 

MAX 8,500301515 7,463091 9,121375 9,93999 11,37396 

AVERAGE 3,933127676 4,234365 4,663744 5,121773 5,646432 

Table 2.27: HE quality metrics on test set 

 

 

Figure 2.156: Experimental results PSNR vs Darkness level for test set 
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Figure 2.157: Experimental results SSIM vs Darkness level for test set 

 

 

Figure 2.158: Experimental vs LL images PSNR 
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Figure 2.159: Experimental vs LL images SSIM 

 

And in the case of the test set, we see the same behavior, with the increase 

in the darkness level reducing the performance of the algorithm. 

Commenting on the results as a whole, we notice that the histogram 

equalization noticeably improves the values of the metrics, and by 

extension the quality of the LL images. Furthermore, with increasing 

darkness level, the expected behavior is observed, as the values of the 

quality metrics decrease with increasing darkness level. In particular, the 

MSE increases, while the PSNR and SSIM decrease with the increase of 

the darkness level, which means that the image quality decreases and that 

we move away from the ground truth case. At this point we have to 

comment, however, that the rate at which these two metrics decrease is 

very small, which indicates that the method is resistant to variations in the 

darkness level. For the quality metrics with no reference, we see that MV 

remains roughly constant with increasing darkness level, and similar 

behavior is observed for STD. This confirms the fact that the method is 

resistant to changes in the darkness level. Finally, BRISQUE and NIQE 

increase with increasing darkness level, which means that we are moving 

away from natural statistics. This is because the images become very dark, 

making it difficult to retrieve the full visual information. 
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0,44

0,40

0,35

0,30

0,25

0,18

0,11

0,07
0,05

0,03

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

3.0 3.5 4.0 4.5 5.0

SS
IM

Darkness Level

Average Experimental Results SSIM vs LL Images SSIM

Experimental Original



 

 203 

together we will present the corresponding LL and ground truth cases, 

together with their histograms, commenting each time on the results. 

 

Darkness Level: 3.0 

MIN PSNR 

 

Original Low Light Normal Light  Experimental Result 

 

 

Figure 2.160: Histogram of original LL Image 
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Figure 2.161: Histogram of NL Image 

 

 

Figure 2.162: Histogram of experimental result with min PSNR 
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For darkness level 3.0 the experimental result corresponding to the 

minimum PSNR is characterized by strong color distortions and, although 

a large part of visual details has been recovered, it remains far from the 

ground truth case. If we observe the histogram of the ground truth case, we 

see that the pixel values are not distributed over the entire available range, 

but remain in the left part of the histogram, in a larger range compared to 

the LL image. We know that the purpose of histogram equalization is to 

spread the pixel values across the available range of values, which is 

achieved as we can see from the histogram in Figure 2.162. Based on this 

we understand that it is impossible to reproduce the ground truth case, and 

for that reason the experimental result shows large color distortions and is 

far from the ground truth image. 

 

 

 

 

MAX PSNR 

 

Original Low Light Normal Light  Experimental Result 
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Figure 2.163: Histogram of original LL Image 

 

 

Figure 2.164: Histogram of NL Image 

 



 

 207 

 

Figure 2.165: Histogram of experimental result with max PSNR 

 

In this case we see from the histogram in figure 2.164 that the ground truth 

image is characterized by a histogram with values evenly distributed 

throughout the range, so we expect the experimental result to correctly 

reproduce the ground truth case. Indeed, as we see the experimental result 

is visually the same as the ground truth image, and most of the color and 

visual information has been recovered. This is also confirmed by the 

histogram, in figure 2.165, whose form is very close to the ground truth 

case, with the pixel values distributed almost uniformly throughout the 

available value range, simultaneously increasing the contrast of the image. 
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Darkness Level: 3.5 

MIN PSNR 

 

Original Low Light Normal Light  Experimental Result 

 

 

Figure 2.166: Histogram of original LL Image 
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Figure 2.167: Histogram of NL Image 

 

 

Figure 2.168: Histogram of experimental result with min PSNR 
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For darkness level 3.5, the image with the minimum experimental PSNR 

is the same as that obtained for darkness level 3.0. Here again, the 

histogram of the ground truth case is characterized by values that are 

concentrated in the left part of the histogram, and not evenly distributed 

throughout the available range. So, we understand that histogram 

equalization cannot reproduce this effect, as its purpose is to produce an 

image with histogram values evenly distributed throughout the available 

range of values. Thus, here is an image with strong color distortions, far 

from the ground truth case. 

MAX PSNR 

 

Original Low Light Normal Light  Experimental Result 

 

 

Figure 2.169: Histogram of original LL Image 
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Figure 2.170: Histogram of NL Image 

 

 

Figure 2.171: Histogram of experimental result with max PSNR 
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For the case of the maximum experimental PSNR, the same picture is 

obtained with darkness level 3.0. The ground truth image is characterized 

by a histogram with values spread over the entire available range, so it is 

easy to reproduce by applying histogram equalization. Indeed, the 

experimental result is visually very close to the ground truth case, having 

managed to recover most of the visual information. This is also confirmed 

by the histogram in figure 2.171, which is very close to the ground truth 

case, with the pixel values almost evenly distributed over the entire range 

of available values. 

Darkness Level: 4.0 

MIN PSNR 

 

Original Low Light Normal Light  Experimental Result 

 

 

Figure 2.172: Histogram of original LL Image 
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Figure 2.173: Histogram of NL Image 

 

 

Figure 2.174: Histogram of experimental result with min PSNR 
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In the case of darkness level 4.0 for the minimum experimental PSNR, a 

similar case arises as what we saw above. The first thing we can comment 

on is that the original LL image is too dark, which we can also confirm 

from its histogram in figure 2.172, where we see that the values are 

clustered in a narrow range in the left part. So, we expect that full and 

correct visual information cannot be retrieved. Second, the ground truth 

image is characterized by a histogram with values that are not distributed 

over the entire available range of values, as seen in Figure 2.173, which 

histogram equalization cannot reproduce. The combination of these two 

factors leads to a result with the minimum experimental PSNR, with the 

image characterized by strong chromatic aberrations, and its pixel values 

distributed in very few gray levels, which justifies the chromatic 

aberrations as well. 

 

 

 

MAX PSNR 

 

Original Low Light Normal Light  Experimental Result 
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Figure 2.175: Histogram of original LL Image 

 

 

Figure 2.176: Histogram of NL Image 
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Figure 2.177: Histogram of experimental result with max PSNR 

 

For the case of the maximum experimental PSNR, the same picture is 

obtained with darkness levels 3.0 and 3.5. The ground truth case of this 

image is characterized by a histogram with values spread across the 

available range, which is easy to reproduce by histogram equalization. 

Indeed, the experimental result is visually very close to the ground truth 

case, and the only negative we can notice is a fading of the colors. This can 

be justified by the fact that the LL image is very dark, which makes it 

difficult to recover the full color information, which is also confirmed by 

the experimental histogram, where we observe that the pixel values are 

distributed in fewer gray levels, compared to the earlier cases, explaining 

the less color information. 
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Darkness Level: 4.5 

MIN PSNR 

 

Original Low Light Normal Light  Experimental Result 

 

 

Figure 2.178: Histogram of original LL Image 
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Figure 2.179: Histogram of NL Image 

 

 

Figure 2.180: Histogram of experimental result with min PSNR 
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For darkness level 4.5 the image with the minimum experimental PSNR is 

the same as the one obtained for darkness level 4.0. We notice that the 

experimental result is characterized by strong color distortions and is 

visually far from the ground truth case. This is due to the two main factors, 

which we mentioned above. First, the image is very dark, with pixel values 

clustered in the left part of the histogram, resulting in a very small dynamic 

range, making it very difficult to retrieve full and correct visual 

information. Second, the ground truth image has a histogram with values 

that are not distributed across the available range, which histogram 

equalization cannot reproduce. The combination of these two factors leads 

to the low quality result observed. 

 

 

 

 

MAX PSNR 

 

Original Low Light Normal Light  Experimental Result 
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Figure 2.181: Histogram of original LL Image 

 

 

Figure 2.182: Histogram of NL Image 
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Figure 2.183: Histogram of experimental result with max PSNR 

 

In the case of the maximum experimental PSNR we observe that the 

experimental result is visually very close to the ground truth case. The 

histogram of the ground truth image is characterized by values spread over 

the entire range of available values, so histogram equalization can 

reproduce this. Indeed, the resulting experimental histogram is close to the 

ground truth case, with the only difference being that in the experimental 

the pixel values are distributed in fewer gray value levels. This is because 

the image is too dark making it very difficult to recover the full visual 

information. Nevertheless, the resulting image is satisfactory given the 

darkness level. 
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Darkness Level: 5.0 

MIN PSNR 

 

Original Low Light Normal Light Experimental Result 

 

 

Figure 2.184: Histogram of original LL Image 
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Figure 2.185: Histogram of NL Image 

 

 

Figure 2.186: Histogram of experimental result with min PSNR 
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For darkness level 5.0, the experimental result corresponding to the 

minimum PSNR is characterized by strong color distortions and limited 

details. This is because the image is too dark, with pixel values 

accumulating on the left side of the histogram, making it difficult to 

retrieve visual information. This is also reflected in the experimental 

histogram of figure 2.186, where we see that the pixel values have been 

distributed in minimal gray value levels, explaining the intense color 

distortions and the low quality of the experimental result. 

 

MAX PSNR 

 

Original Low Light Normal Light  Experimental Result 

 

 

Figure 2.187: Histogram of original LL Image 
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Figure 2.188: Histogram of NL Image 

 

 

Figure 2.189: Histogram of experimental result with max PSNR 
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For the case of the maximum experimental PSNR, the same picture as that 

of darkness level 4.5 is obtained. The experimental result is visually very 

close to the ground truth case, with the only negative we have to comment 

on are some color distortions that appear. These are due to the fact that, as 

we study the highest darkness level, the images are too dark so that it is 

impossible to fully recover the visual information. Nevertheless, the 

resulting image is impressive, if we take into account that we are studying 

the highest darkness level. 

Overall commenting on the results of the histogram equalization, we notice 

that it gives very good results with the performance of the algorithm being 

resistant to the variations of the darkness level, as we observed in the 

above. One of the negatives observed is that the method has difficulty 

retrieving images, which the respective ground truth case has histograms 

with values that are not distributed over the entire available value range. In 

these cases, it gives images with strong color distortions, retrieving the 

wrong visual information. This is due to the nature of the algorithm, as its 

purpose is to take a low-contrast image and output an image whose pixel 

values are evenly distributed throughout the available value range. So, we 

understand that it is impossible to reproduce the results we mentioned 

above, leading to the wrong retrieval of visual information. On the other 

hand, in the cases where the ground truth images have histograms with 

values distributed throughout the available range, impressive results are 

obtained, even at high darkness levels, reflecting the strength and 

robustness of the method. 
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2.5 Single Scale Retinex 
 

In this case, we will take a different approach to the LLIE problem. Until 

now we have applied pointwise transformations, using various 

mathematical functions on the pixel values. A disadvantage of this 

approach is that it does not take into account possible correlations between 

neighboring pixels. For this reason we will try to depart from this logic and 

apply spatial filters using the act of convolution, thus taking into account 

such possible correlations. 

The algorithm that we will study first belongs to a large family of 

algorithms, which are based on the Retinex Theory developed by Land and 

McCann [25], and studies the perception of color by the human eye and the 

modeling of color invariance. The main goal of the theory is to calculate 

the reflective nature of an object in the scene, removing the effect of 

brightness. According to the theory, the human visual system keeps only 

the information related to the characteristics of the objects in the scene, 

such as the reflection coefficient, and for this reason it is easy for us to 

adapt regardless of the brightness or changes in the brightness. The model 

derived from the theory says that an image can be expressed as follows: 

 

𝛪(𝑥, 𝑦) = 𝑅(𝑥, 𝑦)𝐿(𝑥, 𝑦) 

 

where R(x,y) is the reflectivity coefficient, and expresses the reflective 

nature of the surface of an object, and L(x,y) is the luminance factor that 

depends on the luminance conditions of the scene. Based on these we 

understand that R(x,y) determines the nature of the image, while L(x,y) 

determines the dynamic range of the image. According to the theory, if we 

can estimate L(x,y) from the image, then we can isolate R(x,y). This will 

lead us to a result that is independent of the amount of brightness, thereby 

enhancing the image. 

The above logic can be applied to enhance dark images, so a way to 

calculate R(x,y) remains to be found. One of the many algorithms that have 

been proposed for this purpose is the Single Scale Retinex, proposed by 

Jobson et al.[26]. According to this algorithm, R(x,y) can be calculated as 

follows: 
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𝑅𝑖(𝑥, 𝑦) = log[𝐼𝑖(𝑥, 𝑦)] − log[𝐺(𝑥, 𝑦) ∗ 𝐼𝑖(𝑥, 𝑦)] 

 

where R(x,y) is the refrection image, I(x,y) is the input image, i is for the 

color channels ( I = {R, G, B}), * denotes the convolution operation and 

G(x,y) is the surround function. The authors use a Gaussian distribution as 

the surround function, which has the form: 

 

𝐺(𝑥, 𝑦) =  𝐾𝑒
−(

𝑥2+𝑦2

𝑐2 )
 

 

where c is the scale parameter, and Κ is a normalization constant that 

ensures that the function satisfies the criterion: 

∬ 𝐺(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 1 

 

The final result obtained from the above must be mapped to the range 

[0,255], something that is done with a simple linear transformation, which 

has the form: 

 

𝑅𝑖
′(𝑥, 𝑦) = 255[

𝑅𝑖(𝑥, 𝑦) − 𝑅𝑚𝑖𝑛

𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛
] 

 

Practically, we create a 2D mask with the same dimensions as these images 

(disregarding the third dimension with the color bands) and Gaussian 

distribution values, and apply convolution of this mask with each channel 

of the image. The shape of the mask, also called the surround function, can 

be seen in the image below. 
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Figure 2.190: Surround function with c = 30 [26] 

 

This function can take different forms depending on the value of the 

constant c. Obviously there is no ideal value of the constant, it depends on 

the problem we are studying. After applying the convolution, we calculate 

the logarithms, we also apply the linear transformation, which we 

mentioned above, and the final form of the coefficient R is obtained. R is 

the final enhanced image, which we will compare with the ground truth 

images, and it is an image that is independent of the lighting conditions. 

The method we have described is more complicated in terms of 

implementation than what we have done so far. It is implemented with the 

function shown in figure B.2.17 of appendix B. We will apply this function 

to each image of the data set, which is done with the scripts shown in 

figures B.2.18 and B.2.19 of appendix B. As we said, there is no ideal value 

of the constant c, for this reason we use 3 different values, a small, a 

medium and a large value, in order to evaluate the effect of the constant on 

the performance of the algorithm. After applying these scripts, we have the 

experimental results at our disposal. We will use them to calculate 

performance metrics, based on the value of which we will evaluate the 

performance of the algorithm. This is done with the script presented in 

Figure B.2.20 of Appendix B. After its application we have values of the 

metrics per image, which will be used to build summary tables with the 

minimum/maximum/average value, per darkness level, constant value c 
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and set, presented next. In addition, we will also construct line charts of 

these values per darkness level, for PSNR and SSIM. Finally, we will 

construct line charts with the average value of PSNR and SSIM, for the 

original images and for the experimental results so that we can quantify 

how much the result improves and which value of the constant c is more 

appropriate. 

 

 
 

Training Set 

c = 10 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 665,0725 668,5667 787,96 569,1219 1015,734 

MAX 17684,25 17719,33 16972,41 18009,17 17169,11 

AVERAGE 5103,033 5229,953 5259,419 5167,714 4885,421  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 5,654936 5,646332 5,833368 5,575866 5,783326 

MAX 19,90211 19,87936 19,16576 20,57875 18,063 

AVERAGE 11,58772 11,47048 11,42904 11,46914 11,65905  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN -0,15197 -0,45574 -0,54387 -0,49599 -0,03388 

MAX 0,788078 0,754543 0,770589 0,702689 0,619275 

AVERAGE 0,334179 0,321747 0,303168 0,280441 0,242273  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 84,96666 87,15809 89,15464 81,3479 75,70744 

MAX 197,6954 200,0791 187,466 178,3255 172,9067 

AVERAGE 142,4572 143,0743 142,8123 141,3077 138,2819  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 42,81076 40,52304 41,78316 45,93321 65,11519 

MAX 487,8006 520,2408 564,6657 581,5751 464,9702 

AVERAGE 212,9648 213,6606 218,6065 228,4065 238,1422  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 6,345484 9,577115 8,348036 9,684713 14,49088 

MAX 53,72307 56,14981 58,0542 58,96327 58,90108 

AVERAGE 32,54928 34,67815 37,46238 40,2265 42,32244 
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NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 2,451916 2,557915 3,076157 3,380398 3,333449 

MAX 27,08438 26,2094 8,73375 9,039466 9,068266 

AVERAGE 3,96099 4,251106 4,60689 5,081881 5,616927 

Table 2.28: SSR results with c=10 on training set 

 

 

Figure 2.191: Experimental results PSNR vs Darkness Level for training images 

 

 

Figure 2.192: Experimental results SSIM vs Darkness Level for training images 
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For c=10 the values of the metrics improve little, which indicates that small 

values of the constant c are not suitable for enhancing LL images. What is 

worth commenting on is that increasing the darkness level does not seem 

to affect the performance of the algorithm, as the changes in the metrics 

from level to level are minimal.  

c = 120 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 218,03 235,6003 255,956 337,5466 540,311 

MAX 13485,81 12750,26 11954,9 10911,53 9032,903 

AVERAGE 3311,263 3176,813 2996,014 2812,846 2720,194  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 6,832034 7,075613 7,355344 7,751948 8,57253 

MAX 24,74564 24,40905 24,04915 22,84747 20,80437 

AVERAGE 13,97501 14,15994 14,34833 14,47918 14,4895  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN -0,19865 -0,00447 -0,02796 -0,00581 -0,0676 

MAX 0,842349 0,859943 0,846912 0,804219 0,77709 

AVERAGE 0,504164 0,487171 0,459649 0,41515 0,355029  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 70,57968 61,64816 51,29523 40,76593 45,28514 

MAX 224,0603 218,3537 204,2371 190,0457 179,4277 

AVERAGE 134,2252 130,946 126,6804 121,3403 115,3027  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 75,57473 78,30564 63,78141 65,60575 58,90308 

MAX 963,797 933,9817 895,0092 887,7652 791,0142 

AVERAGE 360,4645 353,5516 349,6594 348,4279 351,556  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 8,35327 4,095686 6,280565 5,089578 8,70187 

MAX 48,51535 49,13184 54,29911 54,68566 57,18713 

AVERAGE 29,7353 28,685 28,71063 30,15051 32,47091  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 2,117876 2,165019 2,446189 2,558543 2,958166 

MAX 25,60202 25,89071 7,755804 7,782287 8,664149 

AVERAGE 3,634559 3,828597 4,066188 4,41904 4,877193 

Table 2.29: SSR results with c=120 on training set 
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Figure 2.193: Experimental results PSNR vs Darkness Level for training images 

 

 

Figure 2.194: Experimental results SSIM vs Darkness Level for training images 
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are minimal. Trying to further increase the performance of the method we 

will further increase the value of the constant c. 

 

c = 400 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 136,4565 225,9383 290,3078 226,6083 393,7303 

MAX 14258,36 12868,81 11466,55 8946,979 7741,064 

AVERAGE 2848,523 2638,634 2415,037 2236,694 2232,624  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 6,590108 7,035419 7,536475 8,61404 9,242797 

MAX 26,78086 24,5909 23,50222 24,57804 22,17882 

AVERAGE 14,95259 15,29433 15,53013 15,6157 15,429  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN -0,18055 -0,04623 -0,01665 -0,06182 -0,02408 

MAX 0,87093 0,881541 0,849421 0,818976 0,77949 

AVERAGE 0,550661 0,534302 0,499555 0,445963 0,377521  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 57,21979 47,82103 39,29376 30,53282 38,73608 

MAX 226,6883 220,3872 205,393 189,9874 183,0885 

AVERAGE 131,8968 127,1471 121,253 114,3453 107,133  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 44,75635 47,47545 47,16199 50,09331 69,29461 

MAX 1452,56 1403,184 1347,318 1248,426 1084,216 

AVERAGE 434,7157 427,9926 422,7907 419,0516 417,0082  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 7,131121 3,211743 6,125323 6,185697 9,250425 

MAX 50,37515 51,07172 54,55468 55,01573 57,19508 

AVERAGE 30,31216 29,29636 29,5549 31,09955 33,60713  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 2,182783 2,245904 2,526631 2,870625 3,028016 

MAX 25,55784 25,82074 7,75195 7,93017 9,222819 

AVERAGE 3,717744 3,923541 4,175947 4,542315 4,995335 

Table 2.29: SSR results with c=400 on training set 
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Figure 2.195: Experimental results PSNR vs Darkness Level for training images 

 

 

Figure 2.196: Experimental results SSIM vs Darkness Level for training images 
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darkness level, which indicates that the method is robust to changes in 

brightness.  

 

 

Figure 2.197: Experimental results average PSNR vs LL Images PSNR training set 

 

 

Figure 2.198: Experimental results average SSIM vs LL Images SSIM training set 
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The above 2 diagrams confirm what we have mentioned so far. For c=10 

the worst results are obtained, as the values of the metrics improve little. 

By increasing the value of the constant to 120 the results improve 

significantly with both PSNR and SSIM increasing, which means that the 

quality of the experimental images becomes better. For a value of the 

constant 400 the best results of the method are obtained, giving the greatest 

improvement of the metrics, which means that the method works better for 

large values of the constant. Finally, what is observed in all cases is that 

with the change of the darkness level, the values of the quality metrics are 

not strongly affected, which indicates that the method presents a robustness 

to the changes of the darkness level. 

 

 

 

Validation Set 

c = 10 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 1120,861 1136,636 1220,439 1286,684 1387,72 

MAX 11827,88 13695,22 13859,43 14608,67 14516,86 

AVERAGE 4743,751 4867,5 4898,797 4887,402 4696,366  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 7,401733 6,765115 6,71335 6,484697 6,512077 

MAX 17,63529 17,57459 17,26564 17,03609 16,70778 

AVERAGE 11,94941 11,82721 11,74782 11,73686 11,88849  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,055716 -0,09136 0,053598 0,026899 0,016744 

MAX 0,606157 0,573933 0,569404 0,504718 0,434409 

AVERAGE 0,331513 0,289061 0,290769 0,261503 0,247608  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 102,0629 93,97228 91,04463 85,05681 76,88142 

MAX 196,3755 187,0055 167,4845 163,0169 162,6015 

AVERAGE 141,238 141,5049 141,2411 139,9921 138,2873  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 95,96961 61,06201 67,95074 114,2522 111,416 

MAX 518,8461 498,8457 495,6769 444,6703 352,6008 

AVERAGE 218,941 214,1372 219,347 230,9905 246,0822 
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BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 10,89029 17,53461 11,23896 11,84823 22,44026 

MAX 51,67118 50,84251 53,15401 55,9085 54,57432 

AVERAGE 33,71082 32,75258 35,35772 39,877 42,90613  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 2,998674 3,119284 3,294057 3,701252 4,107469 

MAX 5,18835 5,764339 7,407522 7,423493 7,909965 

AVERAGE 3,888575 4,108558 4,470427 4,914164 5,440554 

Table 2.30: SSR results with c=10 on validation set 

 

 

 

Figure 2.199: Experimental results PSNR vs Darkness Level for validation images 
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Figure 2.200: Experimental results SSIM vs Darkness Level for validation images 

 

In the validation set for a constant value of 10, the same result is observed. 

Metric values are slightly improved, while not affected by changes in 

darkness level, as values change little with increasing darkness level. 
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MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 78,25968 72,95907 67,13712 56,02913 50,97294 

MAX 189,1468 189,2707 179,6815 174,2548 167,1306 

AVERAGE 129,2179 126,1003 121,6357 117,1295 113,4445  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 91,2851 91,64222 140,0873 106,5155 197,2576 

MAX 629,984 666,9648 685,6692 666,2329 592,769 

AVERAGE 362,7206 351,2691 345,4371 343,0534 351,3859  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 15,02842 15,17382 11,58418 9,339646 8,835785 

MAX 44,73476 44,56322 48,02092 46,56028 50,93568 

AVERAGE 32,18605 31,25244 30,43138 29,77621 30,64459  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 2,582034 2,886905 2,956562 3,471019 3,646924 

MAX 5,275927 5,311754 6,107417 6,806349 6,775985 

AVERAGE 3,579442 3,741029 4,009803 4,335317 4,72591 

Table 2.31: SSR results with c=120 on validation set 

 

 

Figure 2.201: Experimental results PSNR vs Darkness Level for validation images 
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Figure 2.202: Experimental results SSIM vs Darkness Level for validation images 

 

For c=120 the results improve more than the value 10, with the quality 

metric values improving noticeably. Here it is also observed that the 

increase of the darkness level affects the performance of the algorithm 

little. 
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MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 69,68754 61,55004 54,69286 41,49248 36,5903 

MAX 189,1467 185,3203 179,2269 172,5822 160,2555 

AVERAGE 127,1889 122,989 117,0598 110,8203 105,698  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 102,8901 97,18159 139,1741 181,0856 223,9553 

MAX 795,8389 887,3056 921,0668 904,8474 687,3111 

AVERAGE 424,4696 413,3726 408,8238 406,291 411,9462  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 17,96417 15,91031 11,18123 9,36628 10,39591 

MAX 44,88108 44,59353 47,42726 47,79321 51,70994 

AVERAGE 32,54338 31,84641 31,12422 30,73773 31,37985  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 2,619685 2,904302 2,987092 3,471582 3,701899 

MAX 5,34221 5,398016 6,827672 6,814667 7,480987 

AVERAGE 3,655544 3,831344 4,109938 4,443149 4,861035 

Table 2.32: SSR results with c=400 on validation set 

 

 

Figure 2.203: Experimental results PSNR vs Darkness Level for validation images 
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Figure 2.204: Experimental results SSIM vs Darkness Level for validation images 

 

For a value of c=400 the best results are obtained, compared to the other 

two values, with the values of the quality metrics improving even further. 

And here it is observed that the increase of the darkness level has little 

effect on the performance of the method. 

 

 

Figure 2.205: Experimental results average PSNR vs LL Images PSNR validation set 

0,25 0,24 0,24

0,09 0,08

0,73 0,72 0,73 0,72

0,64

0,54 0,53
0,51

0,46

0,40

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

3.0 3.5 4.0 4.5 5.0

SS
IM

Darkness Level

SSIM vs Darkness Level - Validation Images c=400

MIN MAX AVERAGE

3.0 3.5 4.0 4.5 5.0

c = 10 11,94941155 11,82721152 11,7478155 11,73686315 11,88849417

c = 120 14,84071329 14,95595152 15,04602029 15,0705254 15,0228545

c = 400 15,79224843 15,98274312 16,11191037 16,18117307 15,93109384

LL Images 9,141299525 8,592476357 8,210792032 7,944940079 7,698426907

7
8
9

10
11
12
13
14
15
16
17

P
SN

R
(d

B
)

Darkness Level

Average Experimental Results PSNR vs LL Images PSNR

c = 10 c = 120 c = 400 LL Images



 

 244 

 

Figure 2.206: Experimental results average SSIM vs LL Images SSIM validation set 

 

From figures 2.205 and 2.206 we can confirm what we have mentioned so 

far about the validation set. For a value constant of 10 the worst results are 

obtained, compared to the other 2 cases, as the values of the quality metrics 

improve little. For c=120 there is a noticeable improvement, while the best 

results are obtained for a constant value of 400, which indicates that the 

method works better for large values of the constant c. Furthermore, we 

have to comment that for all 3 constant cases, increasing the darkness level 

seems to have little effect on the result, as the changes in the metrics 

between the darkness levels are very small. 

 

 

 

 

 

 

 

 

 

 

3.0 3.5 4.0 4.5 5.0

c = 10 0,331512963 0,289060617 0,290769244 0,261502886 0,247607623

c = 120 0,494436008 0,478924495 0,46529824 0,420242952 0,375224227

c = 400 0,538235919 0,533056202 0,508234698 0,458336561 0,399252102

LL Images 0,174183974 0,112740718 0,073196246 0,04811527 0,031549265

0

0,1

0,2

0,3

0,4

0,5

0,6

SS
IM

Darkness Level

Average Experimental Results SSIM vs LL Images SSIM

c = 10 c = 120 c = 400 LL Images



 

 245 

Test Set 

c = 10 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 793,3752 854,0801 764,9538 890,5549 1094,199 

MAX 15923,63 15935,55 16486,47 16825,83 16977,58 

AVERAGE 5117,849 5203,936 5150,267 5068,238 5042,712  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 6,110382 6,107134 5,959528 5,871038 5,832046 

MAX 19,13602 18,81582 19,29445 18,6342 17,73984 

AVERAGE 11,53249 11,44863 11,4401 11,47188 11,48913  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN -0,15662 -0,12027 -0,01056 -0,08647 -0,13553 

MAX 0,654343 0,597969 0,568566 0,542466 0,441656 

AVERAGE 0,315422 0,318593 0,304157 0,283947 0,23884  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 94,72846 94,1652 84,7259 80,57854 75,04263 

MAX 178,9696 180,6366 173,5919 168,6112 168,5379 

AVERAGE 141,3639 141,9851 141,3764 139,7564 137,1447  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 99,49659 84,50468 72,18497 97,15905 98,4362 

MAX 416,7925 408,1921 405,5388 414,4966 439,6693 

AVERAGE 230,2727 226,4084 226,598 229,9208 246,9516  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 8,608202 7,733923 10,20985 15,71469 22,6036 

MAX 51,82803 54,12057 54,92622 55,80246 58,10413 

AVERAGE 33,21045 35,64141 38,17466 39,86305 42,12886  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 2,625362 2,759295 3,025844 3,436691 3,750788 

MAX 6,666938 7,255504 8,072716 8,661863 9,355186 

AVERAGE 3,965499 4,184468 4,566907 5,041816 5,54784 

Table 2.33: SSR results with c=10 on test set 
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Figure 2.207: Experimental results PSNR vs Darkness Level for test images 

 

 

Figure 2.208: Experimental results SSIM vs Darkness Level for test images 
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c = 120 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 623,7859 428,9748 503,6118 671,3737 873,2447 

MAX 12116,68 10413,52 9699,958 7622,337 6402,572 

AVERAGE 2984,535 2834,202 2624,815 2427,107 2373,824  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 7,296966 7,954827 8,263105 9,309922 10,06726 

MAX 20,18045 21,80649 21,10984 19,86116 18,71944 

AVERAGE 14,3581 14,56672 14,80539 14,97838 14,90557  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN -0,02609 0,034913 -0,0211 0,07162 0,053441 

MAX 0,835326 0,840405 0,807879 0,766564 0,665627 

AVERAGE 0,505492 0,503125 0,472478 0,43676 0,368593  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 78,30545 77,83582 68,79508 65,87347 55,82128 

MAX 185,9098 181,6558 174,9467 168,1169 161,4083 

AVERAGE 132,0241 128,9872 124,5424 118,4373 110,883  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 152,2116 155,6314 144,3233 139,727 122,0124 

MAX 716,7778 654,963 632,1502 627,576 618,0282 

AVERAGE 381,8004 373,9314 365,5278 364,2542 354,8834  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 13,34064 16,18832 10,71426 13,63365 11,31916 

MAX 45,86726 45,35414 56,43702 55,29666 59,15522 

AVERAGE 31,13592 30,45156 29,65138 30,92537 32,78221  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 2,233963 2,450123 2,677566 3,172146 3,396478 

MAX 6,310102 6,366701 7,328085 7,965271 10,40969 

AVERAGE 3,599169 3,740196 4,02374 4,445925 4,93059 

Table 2.34: SSR results with c=120 on test set 
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Figure 2.209: Experimental results PSNR vs Darkness Level for test images 

 

 

Figure 2.210: Experimental results SSIM vs Darkness Level for test images 
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c = 400 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 593,094 373,2489 435,7023 532,9734 502,9805 

MAX 12334,22 9799,854 8303,944 6114,674 5485,475 

AVERAGE 2590,489 2351,502 2103,758 1943,646 1943,74  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 7,219688 8,218608 8,937959 10,26707 10,73866 

MAX 20,39957 22,41082 21,73891 20,86375 21,11529 

AVERAGE 15,29788 15,72012 16,08146 16,18764 15,9054  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,025812 0,067173 0,014516 0,069533 0,004629 

MAX 0,860339 0,856229 0,834269 0,808534 0,694088 

AVERAGE 0,567147 0,558782 0,521125 0,469443 0,392017  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 78,68453 73,90002 61,9698 55,92087 45,83023 

MAX 185,2713 179,1413 172,5438 163,9449 154,4602 

AVERAGE 130,7205 125,9893 119,6509 112,4539 102,4706  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 142,8349 137,0771 134,3869 134,4727 131,3789 

MAX 955,9174 896,8672 811,1136 805,7538 759,6219 

AVERAGE 448,1803 441,0832 432,825 427,1154 404,4057  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 14,85065 16,15412 6,683483 11,81652 12,25513 

MAX 46,03544 47,14661 56,53913 53,42747 59,2341 

AVERAGE 31,71538 31,16946 30,34369 31,5162 33,75235  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 2,332474 2,545658 2,879262 3,23918 3,417642 

MAX 6,315058 6,513556 7,272534 8,615225 10,53776 

AVERAGE 3,660502 3,817886 4,119616 4,551726 5,036026 

Table 2.35: SSR results with c=400 on test set 
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Figure 2.211: Experimental results PSNR vs Darkness Level for test images 

 

 

Figure 2.212: Experimental results SSIM vs Darkness Level for test images 
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level has little effect on the performance of the algorithm, as can be seen 

from the values of the metrics. 

 

 

Figure 2.213: Experimental results average PSNR vs LL Images PSNR test set 

 

 

Figure 2.214: Experimental results average SSIM vs LL Images SSIM test set 
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At this point it is worth commenting on the results as a whole. For a 

constant value of 10 we saw that the worst results occur for the quality 

metric values, as they improve little. Compared to PSNR we have that it 

improves on average by 3.01dB and SSIM by 0.2. From these we 

understand that a small value of c is not enough to enhance the LL images. 

By increasing the value of the constant to 120, the quality metric values 

improve noticeably, with PSNR increasing by an average of 5.77dB and 

SSIM by 0.35. We understand that larger values of the constant are needed 

to clearly enhance dark images. Further increasing the value of the constant 

to 400, the quality metric values improve even more, with PSNR increasing 

by 6.85dB and SSIM by 0.39. Based on this we understand that large values 

of the constant c are needed to improve and enhance the LL images, which 

is explained by the fact that the higher the value of the constant, the more 

information we get from the neighboring pixels. This above information 

helps to increase the quality of the final result. Finally, it was observed that 

increasing the darkness level has little effect on the performance of the 

algorithm, since the values of the quality metrics from level to level do not 

change strongly. This can be explained by the nature of the algorithm since, 

as we mentioned in the theoretical part, the final result recovered is 

independent of the lighting conditions, which is also confirmed by the 

experimental results of the quality metric values. Any reduction in these 

values is due to the fact that the images become too dark, with the result 

that the information of the reflectance coefficients cannot be fully 

recovered. 

To confirm our results visually we will present, for each darkness level, the 

result for a random image per value of constant c. In addition, they will be 

accompanied by the original LL image and the corresponding ground truth 

so that we can compare them with each other. Finally, together we will 

present the respective histogram of each image. 
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Darkness Level: 3.0 

 

Original Low Light   Normal Light 

 

c = 10    c = 120     c = 400 

 

For darkness level 3.0 we notice that the experimental result obtained for 

c=10 does not visually resemble the ground truth case at all, and is 

characterized by strong color distortions and noise. This fact justifies what 

we have reported so far and explains the minimal improvement of the 

quality metric values. For c=120 the result is noticeably improved, as we 

recover a large part of the visual information, while for c=400 the best 

experimental result is obtained, with the image being visually very close to 

the ground truth case. From the experimental histograms we observe that 

in all 3 cases histograms similar to those of the ground truth case are 

obtained, but for c=400 the best result is again obtained.  
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Figure 2.215: Histogram of 3.0 LL image 

 

 

Figure 2.216: Histogram of 3.0 NL image 
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Figure 2.217: Histogram of 3.0 Experimental result image with c=10 

 

 

Figure 2.218: Histogram of 3.0 Experimental result image with c=120 
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Figure 2.219: Histogram of 3.0 Experimental result image with c=400 

 

Darkness Level: 3.5 

 

Original Low Light   Normal Light 
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 c = 10    c = 120   c = 400 

 

 

Figure 2.220: Histogram of 3.5 LL image 
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Figure 2.221: Histogram of 3.5 NL image 

 

 

Figure 2.222: Histogram of 3.5 Experimental result image with c=10 
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Figure 2.223: Histogram of 3.5 Experimental result image with c=120 

 

 

Figure 2.224: Histogram of 3.5 Experimental result image with c=400 
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For darkness level 3.5 we also observe that the experimental result for a 

constant of 10 is characterized by intense noise and color distortions, 

explaining the minimal improvement of the quality metric values. For 

c=120 the result is noticeably improved, as we also recover the color 

information while the noise is reduced. For c=400 the best result is 

obtained, which we can also confirm from the experimental histogram of 

figure 2.224, from where we see that its form is very close to that of the 

ground truth case. 

 

 

Darkness Level: 4.0 

 

Original Low Light   Normal Light 

 

 c = 10    c = 120   c = 400 
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Figure 2.225: Histogram of 4.0 LL image 

 

 

Figure 2.226: Histogram of 4.0 NL image 
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Figure 2.227: Histogram of 4.0 Experimental result image with c=10 

 

 

Figure 2.228: Histogram of 4.0 Experimental result image with c=120 
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Figure 2.229: Histogram of 4.0 Experimental result image with c=400 

 

In the case of darkness level 4.0 again for c=10 the worst result is obtained, 

with the image characterized by intense noise and color distortions. The 

algorithm succeeds in recovering the edge and general texture information 

of the image but fails to recover the color information. This is achieved by 

increasing the value of the constant to c=120, which significantly improves 

the result, with the optimal gain being at c=400. Then the best result is 

obtained, which can also be confirmed by the experimental histogram in 

figure 2.229, where we see that a form has been recovered that is very close 

to the ground truth case. 
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Darkness Level: 4.5 

 

Original Low Light   Normal Light 

 

 c = 10    c = 120   c = 400 

 

For darkness level 4.5 we observe that for c=10 the worst result is obtained, 

compared to the other two constant cases. The general texture of the image 

is recovered, but not the color information, resulting in a noisy image. 

Increasing the value of the constant allows us to recover the color 

information, partially for c=120 and fully for c=400, which indicates that 

large values of the constant work better for this problem. This is also 

confirmed by the histograms, where in figure 2.233 the histogram for 

c=120 is very close to the form of the ground truth case, while in figure 

2.234 we see that for c=400 the histogram improves even more. 
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Figure 2.230: Histogram of 4.5 LL image 

 

 

Figure 2.231: Histogram of 4.5 NL image 
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Figure 2.232: Histogram of 4.5 Experimental result image with c=10 

 

 

Figure 2.233: Histogram of 4.5 Experimental result image with c=120 
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Figure 2.234: Histogram of 4.5 Experimental result image with c=400 

 

 

Darkness Level: 5.0 

 

Original Low Light   Normal Light 



 

 268 

 

 c = 10    c = 120   c = 400 

 

In the case of darkness level 5.0 we again observe that for c=10 the worst 

result is obtained, compared to the other two constant values. Here again 

we see that the general texture of the image is recovered, but not the color 

information. By increasing the value of the constant, we manage to recover 

the color information, with c=400 giving the best result. Nevertheless, we 

see that there are starting to be some color distortions. This is because the 

images have now become very dark, making it difficult to even retrieve the 

reflectance index. 

 

 

Figure 2.235: Histogram of 5.0 LL image 
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Figure 2.236: Histogram of 5.0 NL image 

 

 

Figure 2.237: Histogram of 5.0 Experimental result image with c=10 

 



 

 270 

 

Figure 2.238: Histogram of 5.0 Experimental result image with c=120 

 

 

Figure 2.239: Histogram of 5.0 Experimental result image with c=400 
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At this point it is worth commenting in general on the results obtained from 

all the above analysis. We observed that the method for a constant value of 

c=10, slightly improves the values of the quality metrics, with the images 

remaining of low quality. This is also confirmed by the experimental results 

we showed above, where we saw that the images are characterized by 

strong noise and color distortions. However, the method managed to 

recover the general texture of the image (edges etc), which means that 

small values of the constant c can recover such local information but cannot 

restore the color information. The recovery of the visual information is 

achieved by using larger values of the constant c. The best result is obtained 

for c=400, where the greatest improvement of the quality metric values is 

observed, and in addition the recovery of most of the visual information. 

This is also confirmed by the histograms we presented above, where we 

see that for each darkness level case the experimental histogram, for c=400, 

has a form very close to the ground truth case. Finally, we observed that 

the performance of the method is not affected by the increase of the 

darkness level and the values of the quality metrics change little with its 

increase, and the visual results remain of high quality. This resistance to 

the change of the darkness level is due to the nature of the algorithm, as its 

purpose is to recover the reflectance coefficient of the scene, which is 

independent of the distribution and amount of brightness. 

In summary, the method gives impressive results, but again we need to 

choose an appropriate value of the parameter. In the next section we take 

the method a step further by choosing multiple parameter values and 

combining the results of the individual SSRs to capture the advantages of 

each value range. 
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2.6 Multi Scale Retinex 
 

This is an extension of the algorithm analyzed in the previous section. One 

of the drawbacks noted by the authors was that the SSR algorithm cannot 

strike a balance between detailed enhancement information and color 

fidelity, which we also observed in our experiments, a problem due to the 

method's use of only one parameter. The solution they came up with was 

to use more than one parameter and combine the results [27]. The new 

algorithm is called Multi Scale Retinex, from the fact that it uses more than 

one parameter, and the final result comes from the relation: 

 

𝑅𝑀𝑆𝑅𝑖
= ∑ 𝜔𝑛𝑅𝑛𝑖

𝑁

𝑛=1

 

 

where I = {R, G, B} is the respective color band, RMSR is the final result 

from the application of the MSR algorithm, Rn is the result of the SSR 

method for parameter cn, Ν is the total number of parameters we combine, 

and ωn is the weight of each parameter. The only difference with before is 

that the surround function is now defined as follows: 

 

𝐺𝑛(𝑥, 𝑦) = 𝐾𝑒
−(

𝑥2+𝑦2

𝑐𝑛
2 )

 

 

where K is the known normalization parameter. 

The question that arises is how many parameters we need to combine and 

what value the weight of each parameter should take. After 

experimentation the authors [27] concluded that N = 3 parameters are 

sufficient, with the weights taking values ωn = 
1

𝑁
=  

1

3
. Basically we 

calculate the SSR for 3 different parameters, one small, one large and one 

of medium range, and the average is the MSR result. This is  more complex, 

from the point of view of implementation, algorithm, which is 

implemented with the function MultiScaleRetinex, shown in Figure B.2.21 

of Appendix B. We will apply this function to all images in the data set, 

which is done with the scripts presented in Figures B.2.22 and B.2.23 of 

appendix B. After applying them we have at our disposal the experimental 
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results, based on which we should evaluate the performance of the 

algorithm. To do this we will calculate the performance metrics per image, 

which we do with the script shown in Figure B.2.24 of Appendix B. With 

the results we will construct summary tables with the min/max/average 

value of each quality metric, and line charts of PSNR and SSIM per 

darkness level, in order to evaluate to what extent the performance of the 

algorithm is affected by the darkness level. In addition, we will construct 

line charts with the average PSNR and SSIM for both the experimental 

results and the original LL images, to see how much the quality of the 

images improves. 

   

Training Set 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 239,0187383 376,0939 364,2164 422,496 477,2309 

MAX 13097,86103 11641,21 10765,59 9428,147 8680,177 

AVERAGE 3379,384613 3274,808 3102,219 2897,322 2729,704  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 6,958799827 7,470822 7,810424 8,38654 8,745518 

MAX 24,34648411 22,37784 22,51721 21,87258 21,34352 

AVERAGE 13,65861109 13,79953 13,98663 14,17075 14,34421  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN -0,06493951 0,009564 0,01649 0,023541 -0,04538 

MAX 0,832428477 0,806773 0,815764 0,800235 0,744977 

AVERAGE 0,495980155 0,480622 0,452868 0,411343 0,35308  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 77,61995349 69,77116 63,98045 57,80047 57,72048896 

MAX 213,5505903 204,8339 199,0324 186,1193 174,0790682 

AVERAGE 136,1930133 133,7225 130,2485 125,6644 120,2392155  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 60,08477997 61,94379 63,75354 64,29322 57,9565 

MAX 824,9398009 802,2118 766,6946 708,9291 654,083 

AVERAGE 308,7757309 305,1568 304,9774 307,9945 314,0277  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 3,670254295 4,144557 5,335673 4,507405 10,16488 

MAX 49,91066681 52,96108 54,67282 57,06991 57,57594 

AVERAGE 30,62401427 30,70467 31,95871 34,1668 36,15179 
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NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 2,272376124 2,323353 2,693318 2,990678 3,165905 

MAX 26,04609304 25,93341 7,916273 8,079607 8,777403 

AVERAGE 3,780759247 4,011987 4,291982 4,685047 5,166678 

Table 2.36: MSR results on training set 

 

 

Figure 2.240: Experimental results PSNR vs Darkness level for training set 

 

 

Figure 2.241: Experimental results SSIM vs Darkness level for training set 

6,96 7,47 7,81 8,39 8,75

24,35
22,38 22,52 21,87 21,34

13,66 13,80 13,99 14,17 14,34

0

5

10

15

20

25

30

3.0 3.5 4.0 4.5 5.0

P
SN

R
(d

B
)

Darkness Level

PSNR vs Darkness Level - Training Images

MIN MAX AVERAGE

-0,06
0,01 0,02 0,02

-0,05

0,83 0,81 0,82 0,80
0,74

0,50 0,48 0,45
0,41

0,35

-0,2

-0,1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

3.0 3.5 4.0 4.5 5.0

SS
IM

Darkness Level

SSIM vs Darkness Level - Training Images

MIN MAX AVERAGE



 

 275 

In the training set we notice that the method noticeably improves the values 

of the metrics. For the quality metrics with reference, we see that with the 

increase of the darkness level the MSE and PSNR improve while the SSIM 

decreases. From this we understand that in the experimental result the 

image brightness increases but the image texture information is not 

recovered. Based on this, we expect the experimental results to be 

characterized by over-exposure, i.e. the dark areas are over-enhanced and 

there are chromatic aberrations. For the quality metrics with no reference, 

we see that MV decreases with increasing darkness level, albeit slightly, 

while STD increases, meaning that the experimental results become 

slightly darker, but the pixel values are spread over a wider range around 

the mean value, i.e. we have a greater contrast. Finally, BRISQUE and 

NIQE increase with increasing darkness level, which means that we are 

moving away from natural statistics. This is to be expected as increasing 

the darkness level makes the images darker making it more difficult to 

recover the full visual information. 

 

 

 

Figure 2.242: Experimental results vs LL Images PSNR 
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Figure 2.243: Experimental results vs LL Images SSIM 

 

Validation Set 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 623,1883076 623,749 617,2673 731,4565 783,202 

MAX 7182,040078 7251,731 7427,834 7707,048 8060,856 

AVERAGE 2769,145168 2725,16 2582,451 2467,49 2439,683  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 9,568325366 9,526387 9,422182 9,261923 9,066992 
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SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,236413655 0,226961 0,217423 0,140034 0,074072 

MAX 0,661268243 0,652107 0,639521 0,613577 0,564632 

AVERAGE 0,484409754 0,466641 0,450391 0,407962 0,366332  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 89,6359808 85,63742 78,46438 71,66087 66,51949 

MAX 191,5559151 187,1986 173,8436 169,2548 161,553 

AVERAGE 132,5484274 130,1981 126,6455 122,6473 119,1433  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 89,20510441 87,31398 155,5189 156,3432 182,4837 

MAX 520,4262103 536,5168 561,4693 553,4804 510,1748 

AVERAGE 310,2819892 301,3072 300,84 303,3144 314,9064 

0,50 0,48
0,45

0,41
0,35

0,19

0,12
0,08

0,05 0,03

0

0,1

0,2

0,3

0,4

0,5

0,6

3.0 3.5 4.0 4.5 5.0

SS
IM

Darkness Level

Average Experimental SSIM vs LL Images SSIM 

Experimental Original



 

 277 

 
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 20,39048869 13,77273 13,30271 9,728214 19,90264 

MAX 44,75672323 45,07539 49,79098 51,09212 53,61671 

AVERAGE 33,49175538 31,3582 32,26555 34,02478 36,77653  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 2,753264454 2,945994 3,081627 3,568085 3,790819 

MAX 5,450169652 5,528314 6,857618 7,060859 7,510053 

AVERAGE 3,731817046 3,896872 4,198798 4,551309 4,993498 

Table 2.37: MSR results on validation set 

 

 

Figure 2.244: Experimental results PSNR vs Darkness level for validation set 
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Figure 2.245: Experimental results SSIM vs Darkness level for validation set 

 

 

Figure 2.246: Experimental results vs LL Images PSNR 
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Figure 2.247: Experimental results vs LL Images SSIM 

 

The same behavior as described above is observed in the validation set. 

MSE and PSNR improve with increasing darkness level, while SSIM 

decreases. As for the quality metrics with no reference, MV decreases 

while STD increases with increasing darkness level, meaning that the 

experimental results become slightly darker, with pixel values spread more 

widely around the mean value. Finally, both BRISQUE and NIQE follow 

an upward trend with the increase of the darkness level, so we move away 

from natural statistics, for the same reasons we mentioned above. 

 

 

 

Test Set 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 595,1434001 454,3975 503,6561 746,8116 1056,331 

MAX 12233,56487 10107,89 8248,23 6891,934 7025,85 

AVERAGE 3172,983224 3034,013 2809,739 2604,865 2522,586  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 7,255273315 8,084198 8,967196 9,747393 9,663815 

MAX 20,38458739 21,55644 21,10946 19,39869 17,8928 

AVERAGE 13,8473982 14,0304 14,26856 14,49206 14,52812 
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SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN -0,04963782 -0,00582 0,001933 0,03819 0,001959 

MAX 0,804322955 0,812055 0,800866 0,75322 0,662687 

AVERAGE 0,49444828 0,494892 0,465544 0,42746 0,359022  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 92,23430912 90,68733 80,99062 73,28001 66,8349 

MAX 181,9084305 179,722 170,8068 165,9089 159,2396 

AVERAGE 134,7027633 132,3205 128,5233 123,5492 116,8328  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 132,7014967 131,6914 140,3584 132,8207 130,7277 

MAX 546,5499845 537,9095 531,1892 521,0306 548,5769 

AVERAGE 324,7389508 320,5775 316,2193 318,1805 314,5282  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 5,515242743 6,978605 7,375897 9,15082 19,42719 

MAX 44,96910758 47,34848 53,40312 55,24281 56,39208 

AVERAGE 31,62241267 31,72421 31,88589 33,40184 36,94428  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 2,37114704 2,53802 2,896025 3,262259 3,546717 

MAX 6,389086432 6,629393 7,433644 8,502454 9,709264 

AVERAGE 3,748432604 3,916484 4,239833 4,686582 5,16485 

Table 2.38: MSR results on test set 

 

 

Figure 2.248: Experimental results PSNR vs Darkness level for test set 
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Figure 2.249: Experimental results SSIM vs Darkness level for test set 

 

 

Figure 2.250: Experimental results vs LL Images PSNR 
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Figure 2.251: Experimental results vs LL Images SSIM 

 

In the test set the same behavior as we mentioned above is observed. MSE 

and PSNR improve with increasing darkness level, while SSIM decreases. 

Accordingly, the MV decreases with the increase of the darkness level, 

while the STD remains approximately constant (but larger than the 

corresponding one in the LL case). Finally, BRISQUE and NIQE increase 

with increasing darkness level, which means we are moving away from 

natural statistics for the same reasons. 

Commenting on the results as a whole, we noticed that the values of the 
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increasing by an average of 5.48dB and SSIM by 0.34. Moreover, it was 
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BRISQUE and NIQE follow an upward path with the increase of the 

darkness level, which means that we are moving away from natural 

statistics. This is to be expected as with the increase of the darkness level 

the images become very dark making it difficult to recover the full visual 

information. 

To see the results of the method visually we will display, for each darkness 

level, the image corresponding to the minimum experimental PSNR and 

the image corresponding to the maximum experimental PSNR, together 

with the LL image and ground truth cases. In addition, we will also display 

the corresponding histograms, so that we can evaluate the result. 

 

 

Darkness Level: 3.0 

MIN PSNR 

 

Original Low Light Normal Light  Experimental Result 
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Figure 2.252: Histogram of LL image 

 

 

Figure 2.253: Histogram of NL image 
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Figure 2.254: Histogram of 3.0 Experimental Result with min PSNR 

 

For darkness level 3.0 in the case of the minimum experimental PSNR we 

see that the experimental result is characterized by a strong enhancement 

of the dark areas. If we compare it with the ground truth case it is as if the 

photo was taken in bright lighting conditions, confirming what we 

mentioned above. The same conclusion can be reached from the 

histograms. In the histogram of the ground truth case (figure 2.253) the 

values are distributed in the gray value levels less than 150, while in the 

experimental histogram (figure 2.254) the values are accumulated in the 

right part of the histogram. Nevertheless, the original dark image has been 

enhanced, recovering the color and visual information, just more than it 

should be compared to the ground truth case. At higher darkness levels we 

expect this over-amplification to lead to color distortions as well. 
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MAX PSNR 

 

Original Low Light Normal Light  Experimental Result 

 

 

Figure 2.255: Histogram of LL image 
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Figure 2.256: Histogram of NL image 

 

 

Figure 2.257: Histogram of 3.0 Experimental Result with max PSNR 
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In the case of the maximum PSNR we see that in the experimental result 

the visual information has been fully recovered, which can also be 

confirmed by the experimental histogram. From figure 2.257 we see that 

the shape of the experimental histogram is very close to the shape of the 

ground truth case (figure 2.256). 

 

Darkness Level: 3.5 

MIN PSNR 

 

Original Low Light Normal Light  Experimental Result 

 

 

Figure 2.258: Histogram of LL image 



 

 289 

 

 

Figure 2.259: Histogram of NL image 

 

 

Figure 2.260: Histogram of 3.5 Experimental Result with min PSNR 
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For darkness level 3.5 in the case of the minimum experimental PSNR, the 

same problem is observed as we saw at darkness level 3.0, i.e. the dark 

areas have been enhanced more than they should be. Here we see that color 

distortions are also introduced, which we mentioned above. From the 

histogram we see that, while in the ground truth case (figure 2.259) the 

values are distributed up to gray value level 150, in the experimental case 

(figure 2.260) the values are accumulated in the right part of the histogram, 

explaining also the over-amplification of dark areas. 

MAX PSNR 

 

Original Low Light Normal Light  Experimental Result 

 

 

Figure 2.261: Histogram of LL image 
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Figure 2.262: Histogram of NL image 

 

 

Figure 2.263: Histogram of 3.5 Experimental Result with max PSNR 
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In the case of the maximum experimental PSNR, the same image is 

obtained with darkness level 3.0. We see that the method has recovered 

most of the visual information, which is also confirmed by the histograms. 

From figure 2.263 with the experimental histogram we see that its form is 

very close to the ground truth case (figure 2.262) confirming the high 

quality of the result. 

 

Darkness Level: 4.0 

MIN PSNR 

 

Original Low Light Normal Light Experimental Result 

 

 

Figure 2.264: Histogram of LL image 
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Figure 2.265: Histogram of NL image 

 

 

Figure 2.266: Histogram of 4.0 Experimental Result with min PSNR 
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For darkness level 4.0 in the case of the minimum experimental PSNR we 

see that again the image has been enhanced more than it should be, thus 

introducing additional noise and color distortions. We can see this from the 

corresponding histograms, where in figure 2.265 with the histogram of the 

ground truth case the pixels are distributed up to the gray value level 100, 

while in the experimental histogram (figure 2.266) we see that they are 

distributed throughout the available range of values . This results in the 

experimental image having greater contrast and brightness than the ground 

truth case. 

MAX PSNR 

 

Original Low Light Normal Light  Experimental Result 

 

 

Figure 2.267: Histogram of LL image 
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Figure 2.268: Histogram of NL image 

 

 

Figure 2.269: Histogram of 4.0 Experimental Result with max PSNR 
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In the case of the maximum experimental PSNR the experimental result is 

optically very close to the ground truth case, but we have to notice that 

color distortions have started to appear, which means that we recover less 

visual information. This is due to the fact that we now combine the results 

from 3 different SSRs with different parameter values, and the result 

corresponding to parameter c=10 causes these distortions. We recall that 

for c=10 in the case of SSR we recovered the texture of the image but not 

the color information, which seems to appear here too, just less strongly. 

Nevertheless, the experimental histogram (figure 2.269) has a form very 

similar to that of the ground truth case (figure 2.268). 

  

 

Darkness Level: 4.5 

MIN PSNR 

 

Original Low Light Normal Light  Experimental Result 
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Figure 2.270: Histogram of LL image 

 

 

Figure 2.271: Histogram of NL image 
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Figure 2.272: Histogram of 4.5 Experimental Result with min PSNR 

 

For darkness level 4.5 in the case of the minimum experimental PSNR we 

again observe that the experimental result is characterized by intense color 

distortions due to the fact that there is an over-enhancement of the dark 

areas of the image. This is also confirmed by the histograms as in the 

ground truth histogram (figure 2.271) we see that the pixel values are 

concentrated below the gray level 120-150, while in the experimental case 

(figure 2.272) they are distributed throughout the available range. That is, 

it is characterized by greater contrast and brightness, explaining the 

experimental result. 
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MAX PSNR 

 

Original Low Light Normal Light      Experimental Result 

 

 

 

Figure 2.273: Histogram of LL image 
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Figure 2.274: Histogram of NL image 

 

 

Figure 2.275: Histogram of 4.5 Experimental Result with max PSNR 
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In the case of the maximum experimental PSNR, the same image is 

obtained with the darkness level 4.0, again we can observe that it is 

characterized by color distortions. This is due to the reasons we mentioned 

above, but also to the fact that the images have now become very dark, 

making it difficult to recover the full visual information. This is also 

justified by the histogram of the original LL image (figure 2.273) where 

we see that the pixel values are accumulated at the left end of the histogram, 

with the dynamic range being too small for the method to recover 

information. 

 

 

 

Darkness Level: 5.0 

MIN PSNR 

 

Original Low Light Normal Light  Experimental Result 
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Figure 2.276: Histogram of LL image 

 

 

Figure 2.277: Histogram of NL image 
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Figure 2.278: Histogram of 5.0 Experimental Result with min PSNR 

 

At darkness level 5.0 in the case of the minimum experimental PSNR we 

again observe that the experimental result is characterized by strong color 

distortions, which is due to the fact that the dark image has been enhanced 

more than it should. This is also confirmed by the histograms, where in the 

ground truth histogram (figure 2.277) we see that the pixel values are 

distributed in gray values below 100, while in the experimental histogram 

(figure 2.278) they are distributed throughout the available range 

explaining the excessive amplification of the image. 
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Figure 2.279: Histogram of LL image 

 

 

Figure 2.280: Histogram of NL image 
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Figure 2.281: Histogram of 5.0 Experimental Result with max PSNR 

 

In the case of the maximum experimental PSNR, the same image is 

obtained again and we notice here too that, while we have recovered the 

general texture of the image, intense color distortions are detected. This is 

due to 2 factors. First, because we are at the highest darkness level, the 

images have become too dark making it difficult to retrieve visual 

information. Second, as we mentioned above, we combine 3 different SSR 

parameters, and the parameter c=10 seems to negatively affect the result, 

since as we saw in the case of SSR, with this parameter we recover the 

general texture of the image but not the color information, something 

which is also found here. 

At this point it is worth commenting on the MSR results in general. For the 

case of the minimum experimental PSNR we observed that at all darkness 

levels the image appears to be over-enhanced, leading to the introduction 

of additional noise and color distortions. This is something we predicted 

would happen from when we analyzed the values of the performance 

metrics, and it is confirmed by the histograms. In particular, it was found 

that this problem occurs in cases where in the ground truth histogram the 

pixel values are concentrated in gray values smaller than 120-150, while 

the experimental histogram has values that are distributed throughout the 

available range. This leads the experimental image to be characterized by 
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greater brightness and contrast, explaining the difference between ground 

truth and experiment. 

In the case of the maximum experimental PSNR it was observed that, while 

the experimental histogram was very close to the ground truth, color 

distortions began to appear, which became more pronounced with the 

increase of the darkness level. The main reason for this is that we combine 

three different SSRs with different c values (10, 120 and 400), thus keeping 

not only the advantages but also the disadvantages of each constant. In the 

previous section we saw that for c=10 we recover the general texture of the 

image but not the color information, which is also found in MSR to some 

extent. So, c=10 introduces this problem into the MSR algorithm, leading 

to what we mentioned above. A solution to this problem could be either to 

only use large values of constant c or to reduce the weight of the constant 

c=10 so that it affects the final result less. 
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2.7 Defogging 
 

In this section we will follow a completely different logic from what we 

have done so far. The basic idea we will use is that if we invert an RGB LL 

image, the result will visually resemble an NL image taken in a foggy 

environment [28]. An example from [28] is shown in the figure below. 

 

 

Figure 2.282: Example of inverted and foggy images. LL images (up), inverted LL 

images (middle) and foggy images (down) 

So, we understand that if we apply a defogging algorithm we can enhance 

the dark areas of each image. The logic we will follow is the following, 

first we will invert the respective LL image, and then we will apply the 

defogging algorithm. We will also invert the resulting image, leading to the 

enhanced image. The defogging algorithm we will use was developed by 

He et al [29], and is implemented in MATLAB. We used the ready-made 

MATLAB algorithm, as it will be much more optimized than any custom 

implementation we tried, which could affect the final result. 

The function with which we implement the above logic is shown in figure 

B.2.25 of appendix B. This function should be applied to all the images in 

the data set, which is done with the scripts shown in figures B.2.26 and 

B.2.27. By implementing these scripts, we have at our disposal the 

experimental results, based on which we should evaluate the performance 

of the algorithm. For this purpose, we calculate the values of the 

performance metrics, which we mentioned in the previous chapter, by 

applying the script B.2.28. With the results obtained from this process we 
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construct summary tables with the minimum/maximum/average value of 

the metrics, per darkness level, as well as the corresponding line charts for 

PSNR and SSIM per darkness level, in order to evaluate how much it 

affects the performance of the algorithm. In addition, we will construct line 

charts of the average value of PSNR and SSIM for the original data and the 

experimental results, to see how much the quality of the original images 

improves. 

 

 

 

Training Set 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 166,4880299 204,0602 249,1574 266,8422 419,855 

MAX 13455,74764 11434,72 9091,67 10719,28 12630,2 

AVERAGE 1831,89316 1595,682 1517,898 1778,449 2450,031  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 6,841725275 7,548547 8,544367 7,829147 7,1167 

MAX 25,91697347 25,03322 24,16607 23,86826 21,89981 

AVERAGE 17,01193611 17,55716 17,44126 16,52327 15,07257  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,102150389 0,066611 0,018291 0,002594 -0,03143 

MAX 0,847232814 0,859476 0,850552 0,816003 0,759134 

AVERAGE 0,565489767 0,541727 0,496939 0,426593 0,343103  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 38,30934784 29,74768 24,71322 20,23132 16,48683 

MAX 217,123014 206,4308 198,5501 185,169 165,4016 

AVERAGE 109,8345775 101,9563 91,80097 80,64505 71,54522  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 124,2078657 78,44636 56,16059 48,50621 60,01531 

MAX 2478,126117 2445,413 2382,601 2299,339 1302,489 

AVERAGE 683,841285 664,65 637,6705 591,4989 546,1223  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 5,693960706 5,048779 6,94949 8,300922 10,11482 

MAX 53,29122631 54,40798 55,38682 55,85574 55,08724 

AVERAGE 30,43225908 31,71846 32,65922 34,73858 36,38779 
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NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 2,53731623 2,647062 2,97515 2,981025 3,18421 

MAX 24,02631122 24,30622 16,72756 8,061458 10,26958 

AVERAGE 3,938023694 4,220215 4,498758 4,856623 5,28723 

Table 2.39: Dehaze results on training set 

 

 

Figure 2.283: Experimental results PSNR vs Darkness level for training set 
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Figure 2.284: Experimental results SSIM vs Darkness level for training set 

 

 

Figure 2.285: Experimental results vs LL Images PSNR 
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Figure 2.286: Experimental results vs LL Images SSIM 

 

In the training set we notice that the values of the metrics improve 

noticeably. In addition, we can comment that the metrics follow the 

expected course with the increase of the darkness level. Specifically, MSE 

increases while PSNR and SSIM decrease with increasing darkness level. 

As for the quality metrics with no reference, MV and STD decrease with 

increasing darkness level, which means that the experimental result 

becomes darker, with pixel values distributed in a smaller range around the 

mean value. BRISQUE and NIQE increase with increasing darkness level, 

which means we are moving away from natural statistics. This behavior is 

due to the fact that with the increase of the darkness level the pixel values 

accumulate in the left part of the histogram, more and more strongly, with 

the result that the dynamic range is too small, and it becomes difficult to 

recover the full and correct visual information. 
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Validation Set 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 220,5636787 295,5619 349,3644 499,9832 664,5735 

MAX 6770,723197 6757,127 5549,348 5070,605 6688,351 

AVERAGE 1420,379441 1341,641 1425,283 1787,256 2580,837  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 9,824453017 9,833183 10,68838 11,08021 9,877613 

MAX 24,69546364 23,42432 22,69802 21,14125 19,90537 

AVERAGE 17,68237967 17,97748 17,57373 16,52677 14,90225  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,314569225 0,232451 0,233714 0,14826 0,042888 

MAX 0,836163065 0,816592 0,783494 0,738112 0,681188 

AVERAGE 0,588453739 0,568545 0,523373 0,451531 0,363531  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 29,06169173 22,84662 18,17203 14,50566 12,13161 

MAX 178,6966605 180,1882 166,0237 162,3518 149,3092 

AVERAGE 105,8838475 98,91091 89,84609 79,82501 69,71872  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 139,0443437 146,8853 159,1865 116,7613 105,9819 

MAX 1227,630152 1263,146 1265,366 1182,203 1081,7 

AVERAGE 674,6028981 651,7221 629,6494 579,8391 523,3451  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 12,05318979 8,842169 11,23205 12,71975 14,15758 

MAX 46,86835028 48,49695 48,38407 49,83659 51,71048 

AVERAGE 31,73859324 31,66663 32,98724 34,83542 34,37112  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 2,818848052 3,124162 3,07862 3,713084 3,952176 

MAX 5,524429442 6,299291 7,878939 7,572838 8,866386 

AVERAGE 3,842801574 4,080517 4,376685 4,727797 5,160134 

Table 2.40: Dehaze results on validation set 
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Figure 2.287: Experimental results PSNR vs Darkness level for validation set 

 

 

Figure 2.288: Experimental results SSIM vs Darkness level for validation set 
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Figure 2.289: Experimental results vs LL Images PSNR 

 

 

Figure 2.290: Experimental results vs LL Images SSIM 
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level, meaning that images become darker with pixel values spread over a 

smaller range around the average brightness. 

 

Test Set 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 233,5081993 300,7754 332,1464 439,0632 535,4297 

MAX 10244,75109 8765,05 6329,959 7127,002 5362,924 

AVERAGE 1770,137098 1653,327 1655,357 1972,755 2646,74  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 8,025789496 8,70326 10,11679 9,601735 10,83679 

MAX 24,44778226 23,34838 22,91751 21,70553 20,84378 

AVERAGE 17,18743152 17,47945 17,13891 16,00111 14,42391  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,18713404 0,129753 0,124088 0,065689 -0,01252 

MAX 0,870310321 0,87548 0,850346 0,770045 0,58176 

AVERAGE 0,594287549 0,561553 0,5086 0,438122 0,337125  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 32,55782741 25,02718 14,00675 13,26788 10,89123 

MAX 170,8152124 173,0631 161,0322 152,8835 145,1221 

AVERAGE 106,3222952 99,77421 90,64965 78,97358 68,62438  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 168,8599085 92,12444 76,77816 72,33594 88,56258 

MAX 1731,38169 1678,286 1570,726 1355,347 1187,504 

AVERAGE 686,6604479 662,5162 627,4498 569,5787 491,4949  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 5,022448887 6,432561 10,37047 15,05212 15,02235 

MAX 55,9694651 56,59765 52,56129 52,69716 57,20963 

AVERAGE 30,22222332 31,29291 32,54937 34,7753 37,39497  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 2,747940028 2,839296 2,944278 3,360973 3,34478 

MAX 6,655770079 7,049703 7,965978 9,226072 10,22829 

AVERAGE 3,858973321 4,133813 4,486066 4,90713 5,256686 

Table 2.41: Dehaze results on test set 
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Figure 2.291: Experimental results PSNR vs Darkness level for test set 

 

 

Figure 2.292: Experimental results SSIM vs Darkness level for test set 
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Figure 2.293: Experimental results vs LL Images PSNR 

 

 

Figure 2.294: Experimental results vs LL Images SSIM 

 

In the test set we observe the same behavior, with the values of the metrics 

improving and following the expected course with the increase of the 

darkness level. 
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Commenting on the results as a whole, we see that the metric values 

improve noticeably, with PSNR increasing by an average of 8.2dB and 

SSIM by 0.38. In addition, for this method we observe that the expected 

course is followed with the increase of the darkness level, as from the 

values of the metrics we see that the performance of the algorithm 

decreases with the increase of the darkness level. This is because by 

increasing the darkness level, the images become very dark, which means 

that the inverted images will be characterized by large percentages of 

foggyness, resulting in the defogging algorithm not being able to remove 

it completely. This will lead to the experimental result not being fully 

amplified and introducing extra noise. 

To visually see the results of the algorithm, but also to confirm what we 

have mentioned so far, we will display for each darkness level the images 

that correspond to the minimum and maximum experimental PSNR. In 

addition, we will display the corresponding LL and ground truth images, 

as well as their histograms. 

 

 

Darkness Level: 3.0 

MIN PSNR 

 

Original Low Light Normal Light  Experimental Result 
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Figure 2.295: Histogram of LL image 

 

 

Figure 2.296: Histogram of NL image 
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Figure 2.297: Histogram of 3.0 Experimental Result with min PSNR 

 

For darkness level 3.0 in the case of the minimum experimental PSNR we 

see that the image is overenhanced, with the experimental result being 

brighter than the ground truth case. Nevertheless, the color information is 

fully recovered and no color distortions or extra noise appear. 

 

MAX PSNR 

 

Original Low Light Normal Light  Experimental Result 
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Figure 2.298: Histogram of LL image 

 

 

Figure 2.299: Histogram of NL image 
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Figure 2.300: Histogram of 3.0 Experimental Result with max PSNR 

 

In the case of the maximum experimental PSNR we see that the 

experimental result is visually very close to the ground truth case. Image 

texture as well as color information are fully recovered, justifying the 

maximum value of PSNR. This is also confirmed by the experimental 

histogram (figure 2.300) whose form is similar to the ground truth case 

(figure 2.299). 

 

Darkness Level: 3.5 

MIN PSNR 

 

Original Low Light Normal Light  Experimental Result 
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Figure 2.301: Histogram of LL image 

 

 

Figure 2.302: Histogram of NL image 
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Figure 2.303: Histogram of 3.5 Experimental Result with min PSNR 

 

For darkness level 3.5 in the case of the minimum experimental PSNR the 

same image is obtained as for darkness level 3.0, again we notice that it has 

been enhanced more than it should be. Here too, much of the visual 

information has been recovered, such as colors and texture. We must 

notice, however, that color distortions begin to appear, which is due to the 

fact that we are at a greater darkness level than before, as a result of which 

it is more difficult to retrieve the color information. 

 

MAX PSNR 

 

Original Low Light Normal Light    Experimental Result 
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Figure 2.304: Histogram of LL image 

 

 

Figure 2.305: Histogram of NL image 
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Figure 2.306: Histogram of 3.5 Experimental Result with max PSNR 

In the case of the maximum experimental PSNR we observe that the 

experimental result is visually very close to the ground truth case, which is 

also confirmed by the experimental histogram (figure 2.306) whose form 

is very close to the ground truth case (figure 2.305). The only thing we 

have to comment on is that, as can be seen from image 2.306, the pixel 

values of the experimental results are distributed in specific gray value 

levels, something we had also observed in the histogram equalization. 

 

Darkness Level: 4.0 

MIN PSNR 

 

Original Low Light Normal Light     Experimental Result 
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Figure 2.307: Histogram of LL image 

 

 

Figure 2.308: Histogram of NL image 
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Figure 2.309: Histogram of 4.0 Experimental Result with min PSNR 

 

For darkness level 4.0 in the case of the minimum experimental PSNR we 

see that the experimental result does not resemble the ground truth case, as 

the background of the image has been enhanced and the vehicle has 

remained dark, explaining the minimum value of the PSNR. This is also 

confirmed by the histograms, where in the experimental histogram (figure 

2.309) we see that the pixel values remain concentrated in the left part of 

the histogram, while in the ground truth histogram (figure 2.310) the values 

are distributed throughout the available range, with the more in the right 

part of the histogram. 
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MAX PSNR 

 

Original Low Light Normal Light    Experimental Result 

 

 

Figure 2.310: Histogram of LL image 
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Figure 2.311: Histogram of NL image 

 

 

Figure 2.312: Histogram of 4.0 Experimental Result with max PSNR 
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In the case of the maximum experimental PSNR we see that the 

experimental result is visually very close to the ground truth case, 

explaining the maximum value that the metric takes. This is also confirmed 

by the experimental histogram (figure 2.312) where we see that its form is 

very close to the ground truth case, with the only difference being that the 

pixel values are distributed in specific gray value levels. 

 

Darkness Level: 4.5 

MIN PSNR 

 

Original Low Light Normal Light  Experimental Result 

 

 

Figure 2.313: Histogram of LL image 
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Figure 2.314: Histogram of NL image 

 

 

Figure 2.315: Histogram of 4.5 Experimental Result with min PSNR 
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For darkness level 4.5 in the case of the minimum experimental PSNR we 

see that the experimental result is characterized by intense color 

distortions, and remains darker than the ground truth case, explaining the 

minimum value of the metric. And from the histograms we see that the 

experimental histogram (figure 2.315) is completely different from the 

corresponding ground truth (figure 2.314). The same problem was also 

detected at darkness level 4.0 at the minimum experimental PSNR, where 

it was observed that while the ground truth histogram is distributed 

throughout the available range with most values accumulated in the right 

part, the corresponding experimental one fails to reproduce this 

information. Based on these we understand that the method has difficulties 

in such cases, producing low quality results with intense color distortions 

and noise. 

 

 

 

MAX PSNR 

 

Original Low Light Normal Light  Experimental Result 
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Figure 2.316: Histogram of LL image 

 

 

Figure 2.317: Histogram of NL image 



 

 335 

 

Figure 2.318: Histogram of 4.5 Experimental Result with max PSNR 

 

In the case of the maximum experimental PSNR we see that the 

experimental result is visually very close to the ground truth case, with the 

impressive thing being that the reflections of the objects in the image have 

also been recovered. This is also confirmed by the histograms where we 

see that the experimental (figure 2.318) has a form very close to the 

corresponding ground truth (figure 2.317) with the only difference being 

that the pixel values are distributed in fewer gray value levels. This 

difference also explains some color changes observed in the experimental 

image. 
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Darkness Level: 5.0 

MIN PSNR 

 

Original Low Light Normal Light     Experimental Result 

 

 

Figure 2.319: Histogram of LL image 
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Figure 2.320: Histogram of NL image 

 

 

Figure 2.321: Histogram of 5.0 Experimental Result with min PSNR 
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For darkness level 5.0 in the case of the minimum experimental PSNR, the 

same image is obtained as for darkness level 4.5, confirming what we 

mentioned above. That is, the method has difficulty in images where the 

ground truth case is characterized by a histogram in which the values are 

clustered in the right part of the histogram. 

 

MAX PSNR 

 

Original Low Light Normal Light  Experimental Result 

 

 

Figure 2.322: Histogram of LL image 
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Figure 2.323: Histogram of NL image 

 

 

Figure 2.324: Histogram of 5.0 Experimental Result with max PSNR 
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In the case of the maximum experimental PSNR, the experimental result is 

visually very close to the ground truth case, and is characterized by 

minimal color distortions, which is particularly impressive as we are at the 

maximum darkness level. The high quality of the result is also confirmed 

by the histograms. From figure 2.324, with the experimental histogram, we 

see that it has a form very close to the corresponding ground truth case 

(figure 2.323), with the only difference being that the pixel values are 

distributed in fewer gray value levels. This difference also explains the 

color changes we mentioned above. 

At this point it is worth commenting on the results of the method as a 

whole. We saw that the method significantly improves LL images by 

increasing the average PSNR by 8.2dB and the average SSIM by 0.38. In 

the case of the minimum experimental PSNR we saw that the method either 

over-enhances the image, leading to the introduction of additional noise 

and color distortions, or fails to recover certain features. We also saw that 

the method struggles on images where the pixel values of the ground truth 

image are clustered in the right part of the histogram. This is due to the 

nature of the method, as its purpose is to recover an image with pixel values 

spread over the entire available range and with high contrast. So, we 

understand that it is impossible to reproduce such cases. In the case of the 

maximum experimental PSNR we saw that the experimental results are 

visually very close to the ground truth case, with the method having 

recovered most of the visual information. Even at a very high darkness 

level the method performs very well, specifically mentioning the result at 

darkness level 4.5 where even the reflections of the objects have been 

recovered, as well as the result at darkness level 5.0 where most of the color 

information has been recovered. The high quality of the results is also 

confirmed by the histograms, as in all cases the experimental histogram has 

a form similar to the corresponding ground truth. The only difference 

observed is that in the experimental case, the pixel values are distributed in 

fewer gray value levels. This can be explained by the fact that the images 

are very dark, and the dynamic range between the bands is very small, 

making it difficult to fully recover the histogram distribution. 
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Chapter 3 – Deep Learning Techniques 
 

 

3.1 Introduction 
 

In this chapter we will use a completely different approach to the solution 

of the LLIE problem. A more general way to express the problem is through 

the relationship: 

 

𝐼𝐿𝐿 = 𝑓(𝐼𝑁𝐿) 

 

where LL image and NL image are connected through a function f(∙), which 

introduces noise into the image making it darker. From this we understand 

that if we can find or approximate the function f, then we will have solved 

the LLIE problem. The methods we studied in the previous chapter are all 

model based, as they try to guess a model that describes the function f, 

which has 2 major drawbacks. The first is that in all cases constants are 

introduced, the values of which we must choose. Because every problem 

is different, we have to experiment each time with different values of the 

constants, and choose the best one from them, which does not guarantee us 

that we have actually found the optimal value, and it is also time-

consuming. The second is that none of the models use information from 

the dataset, i.e. they are not data driven models. Both disadvantages can be 

addressed with learning methods, specifically Deep Learning which we 

will use in this section. deep learning techniques can be used to learn 

mappings, or more precisely approximations of mappings, between a 

specific input and a specific output using an iterative process, which 

minimizes the error between the desired output and the actual output of the 

DL architecture [30]. 

Since both the input and the output of the problem we are studying are 

images, we will use convolutional neural networks, which were first 

introduced by Lecun et al. [31] for automating the categorization of 

handwritten characters. The basic logic behind CNNs is to pass the input 

image through a convolutional layer which will extract features that can 

help solve the problem we are studying. The result of the first level is 

passed through a second level, extracting higher level features and so on. 
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In the case of character classification from [31] the final level features are 

flattened and passed through a set of neurons that will give the final result 

of the classification. 

 

 

Figure 3.1: LeNet-5 architecture for handwritten digits [31] 

 

To train such models we need a data set where each input corresponds to a 

unique defined output. In this case we have the LL images as well as the 

corresponding ground truth/NL images. This set should be broken into 

train/validation/test, with the training set used to train the model, the 

validation set to check that the model is not overfitting the training set 

during training, and the test set for the final control of the model's 

generalizability, i.e. its performance on data it has not encountered during 

training. In the training stage, an iterative algorithm called back-

propagation [32] is applied, which minimizes the error between the desired 

output (yreal) and the actual output of the model (ymodel), which is a function 

of the form: 

 

𝐸𝑟𝑟𝑜𝑟 = 𝐷(𝑦𝑟𝑒𝑎𝑙 , 𝑦𝑚𝑜𝑑𝑒𝑙) 

 

Based on the above we understand that we have to make some decisions, 

such as what form the error function will have and how many convolutional 

levels the architecture we will build will have. CNNs combine a set of 

feature maps to achieve the final result, so we expect to get a better result 

the deeper the network, i.e. the more convolutional layers the model has. 

One of the first problems created by increasing the number of 

convolutional levels is the vanishing/exploding gradients, the existence of 

which slows down the training of the model [33]. The second is the 

degradation problem where it was observed that as the depth of the network 

increases, its accuracy saturates and then begins to decline [34]. The two 
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main ideas proposed to deal with these problems, as well as to increase the 

accuracy of the models, are Residual Learning [34] and the Inception 

module [35], which we will implement during the construction of the 

architecture we will use. The basic idea of Residual Learning is to use 

shortcut connections between convolutional layers, as shown in figure 3.2. 

 

Figure 3.2: Shortcut connection in Residual Learning net [34] 

 

In the Inception module the basic idea is that multiple layers connect to the 

same previous layer, and their outputs are concatenated into an output 

vector [35]. 

In this chapter we will try to construct a DL architecture, which will solve 

the LLIE problem by learning the mapping between the space of LL images 

and the space of NL images, using the two basic ideas we mentioned above. 

We will then enrich this architecture in an effort to improve the result each 

time, studying different variations. The data is already broken into 

train/test/validation, and we will use the train data to train the architecture, 

the validation to confirm that the architecture does not overfits the train 

data, and the test data to evaluate the generalization ability of the model. 

At this point we should comment that since we are only interested in the 

generalization ability of each model, we will present and comment on the 

results only from the test set, which includes images that the model did not 

encounter during training. 
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3.2 LL-CNN: Original Architecture 
 

The basic architecture we will use was proposed by Tao et al. [36] and is 

called Low Light Convolutional Neural Network (LL-CNN). Its main 

purpose is to learn suitable feature maps, the combination of which 

produces enhanced images, which appear as if they were taken under 

normal lighting conditions. The architecture used by the authors is shown 

in the figure below. 

 

 

Figure 3.3: LL-CNN architecture [36] 

 

We see that the input image first passes through a convolutional layer, the 

purpose of which is pre-processing. At the end, before the output, there is 

another convolutional layer whose purpose is to combine the feature maps 

into the final output image, i.e. to make the output have the appropriate 

size. In between, there are properly designed convolutional modules, which 

are designed to deal with the problem of vanishing gradients, offering the 

possibility to make the architecture deeper. The form of the convolutional 

module is shown in figure 3.4 below. 
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Figure 3.4: Convolutional module architecture [36] 

 

We see that the convolutional module is inspired by the Inception module 

and Residual Learning. Initially, the input of the module is processed in 

two different ways, on the left it goes through 2 convolutional layers (3x3) 

and on the right through one convolutional layer (1x1). The results are 

combined into a vector, simply instead of being concatenated, they are 

added, a process inspired by Inception Modules. Then, the resulting vector 

goes through two paths, first through 2 convolutional layers (3x3) and 

secondly, it goes straight to the output bypassing the two convolutional 

layers. These two results are added together, a process inspired by Residual 

Learning. Each convolutional layer of the architecture uses 64 filters (ie 64 

feature maps), except for the last one where the number of filters depends 

on the number of color channels we want the output to have. Based on these 

we understand that we have to choose the number of convolutional 

modules that we will use. For the sake of experimentation, we will apply 

the model three different times with 1, 3 and 5 convolutional modules 

respectively, so that we can compare the performance in relation to the 

number of modules. Finally, each convolutional layer has ReLU as 
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activation function, while as error function we use Mean Squared Error 

(the authors define an error function based on SSIM, but for simplicity we 

change it and use MSE). More details on the implementation, training and 

testing of the model are presented in appendix B. 

In the following, we present the results of each architecture on the test data 

only, since we are interested in the generalization ability of the models. We 

construct tables with the minimum/maximum/average value of the quality 

metrics, as well as line charts with the corresponding PSNR and SSIM, in 

order to see how the darkness level affects the performance of the model. 

In addition, we also construct line charts with the average value of PSNR 

and SSIM for all modules as well as for the LL data, in order to see which 

number of modules gives the best results and how much the images 

improve. 

 

 

1 module 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 64,00632 65,71979 117,2084 117,3277 626,9481 

MAX 3743,257 3609,557 5276,802 4208,941 7417,438 

AVERAGE 589,5228 595,127 999,0249 858,434 2655,512  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 12,39831 12,55626 10,9071 11,88908 9,428264 

MAX 30,06858 29,95384 27,44122 27,4368 20,15849 

AVERAGE 21,99681 21,9135 19,22709 20,01199 14,22402  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,24571 0,237992 0,14365 0,024684 0,028431 

MAX 0,899974 0,900537 0,792575 0,753381 0,605255 

AVERAGE 0,697193 0,682368 0,578808 0,485678 0,361786  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 45,49428 45,63054 28,00752 47,55223 99,52001 

MAX 128,4906 127,5039 115,8126 129,9237 156,0764 

AVERAGE 99,37198 98,72828 79,32872 98,06009 133,7876  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 59,83054 74,57957 49,11963 52,83164 66,23288 

MAX 930,2407 975,8653 832,8613 978,381 1056,601 

AVERAGE 328,6329 341,9338 255,5311 345,315 467,8872 
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BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 37,15248 38,68091 38,67962 42,59008 43,46492 

MAX 53,66808 54,99189 57,07783 57,97389 57,34084 

AVERAGE 45,59591 46,18324 48,91179 49,24229 50,01282  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 4,231179 3,967828 4,305972 4,113166 4,130589 

MAX 7,562505 7,48527 6,764829 5,998782 5,515432 

AVERAGE 5,073763 4,99647 5,289502 4,768394 4,596427 

Table 3.1: LLCNN results on test set – 1 CNN module 

 

 

Figure 3.5: Experimental results PSNR vs Darkness level for test set 
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Figure 3.6: Experimental results SSIM vs Darkness level for test set 

 

For one convolutional module we see that the values of the quality metrics 

improve noticeably. The MSE is greatly reduced, compared to the original 

images, and the PSNR and SSIM are increased. For the quality metrics 

with no reference we notice that MV and STD increase, which means that 

the images are now indeed brighter, with pixel values spread more widely 

around the mean value, i.e. the images also have bigger contrast. 

BRISQUE and NIQE continue to have a large value, which means that DL 

techniques cannot recover the complete information of natural statistics. 

Furthermore, we see that the expected path is followed with increasing 

darkness level, as the quality of the metrics decreases as it increases. MSE 

increases, while PSNR and SSIM decrease. This is due to the fact that by 

increasing the darkness level, the images become very dark, making it 

difficult to retrieve the full information. 
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3 modules 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 59,77004 36,24526 70,22316 392,4378 241,2912 

MAX 3918,951 3963,741 3545,339 5257,203 3509,249 

AVERAGE 634,722 717,4708 653,3445 1130,7 1002,31  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 12,19911 12,14975 12,63423 10,92326 12,67866 

MAX 30,36597 32,53829 29,666 22,19309 24,30539 

AVERAGE 21,80508 21,04742 21,32991 18,20765 18,90393  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,324578 0,315974 0,103897 0,240917 0,039864 

MAX 0,913249 0,900375 0,888413 0,764861 0,672576 

AVERAGE 0,695826 0,690745 0,607084 0,498138 0,413824  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 34,23039 37,90919 46,00376 65,432 56,01839 

MAX 119,4801 114,8552 127,4471 140,9266 125,7178 

AVERAGE 86,52921 84,36512 98,0996 112,9711 97,62692  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 67,43443 46,93583 47,66101 96,73802 32,45479 

MAX 771,1021 649,7872 868,719 938,4278 759,7665 

AVERAGE 238,4436 224,6997 290,6476 339,4225 256,864  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 34,3626 36,70928 40,5214 43,04002 43,45819 

MAX 54,27313 52,29309 55,40144 57,22629 58,06572 

AVERAGE 46,0759 45,55895 47,57644 49,40058 51,77529  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 4,036433 4,351935 4,643276 4,514113 4,776201 

MAX 8,754551 7,740933 7,474711 6,651145 5,918743 

AVERAGE 5,230862 5,098118 5,175296 5,147363 5,219693 

Table 3.2: LLCNN results on test set – 3 CNN modules 
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Figure 3.7: Experimental results PSNR vs Darkness level for test set 

 

 

Figure 3.8: Experimental results SSIM vs Darkness level for test set 
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For 3 convolutional modules the values of the metrics are greatly 

improved, with the MSE decreasing and the PSNR and SSIM increasing 

indicating the increase in the quality of the results. Also, MV and STD are 

increased which means images are brighter, and with more contrast, as the 

pixel values are spread over a wider range around the average brightness. 

BRISQUE and NIQE also have large values here, which means that we are 

moving away from natural statistics, even if the result improve visually. 

Finally, we see that the expected behavior is followed with the increase of 

the darkness level, as the quality of the metrics decreases with its increase. 

 

 

5 modules 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 43,95319 270,1427 177,359 191,175 458,578 

MAX 3362,776 4603,534 5294,692 5870,252 6906,46 

AVERAGE 521,8074 809,4739 810,0255 1300,905 2159,329  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 12,86382 11,49989 10,8924 10,44424 9,738249 

MAX 31,7009 23,81487 25,64227 25,31649 21,51667 

AVERAGE 23,10539 19,89816 20,15362 17,76384 15,30689  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,178961 0,224381 0,249354 0,020598 0,028057 

MAX 0,927742 0,881537 0,82451 0,718493 0,704068 

AVERAGE 0,735481 0,696412 0,586369 0,359358 0,326991  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 38,91114 61,88751 52,09949 55,82323 62,1317 

MAX 124,3378 136,6255 139,8324 119,9074 99,69276 

AVERAGE 95,72208 111,1108 106,6565 86,97369 76,94136  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 60,9497 93,02488 86,39266 149,7656 103,4771 

MAX 929,1197 879,7557 1028,407 572,7684 436,5832 

AVERAGE 303,6118 298,8985 330,4392 316,7163 310,8114  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 35,93147 36,67733 43,41745 43,45818 44,95327 

MAX 52,97696 53,56573 56,73413 63,55916 66,15108 

AVERAGE 44,40987 45,9194 49,06635 55,40452 56,17681 
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NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 4,020012 4,294638 4,452095 5,002217 5,451129 

MAX 8,350197 7,704777 7,106451 9,033405 9,518737 

AVERAGE 4,964992 5,456095 5,265027 5,838698 6,648088 

Table 3.3: LLCNN results on test set – 5 CNN modules 

 

 

Figure 3.9: Experimental results PSNR vs Darkness level for test set 

 

 

Figure 3.10: Experimental results SSIM vs Darkness level for test set 
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For 5 convolutional modules again the values of the metrics improve 

noticeably as the MSE decreases and the PSNR and SSIM increase, 

compared to the original LL images. Also, MV and STD are increased, 

meaning images become brighter and with bigger contrast. BRISQUE and 

NIQE continue to have large values, which confirms to us that DL models 

have difficulty recovering natural statistics. Finally, we must comment that 

again with the increase in the darkness level the performance of the model 

decreases, which is to be expected for the reasons we described above. 

 

 

Figure 3.11: Experimental results average PSNR vs LL Images PSNR test set 
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Figure 3.12: Experimental results average PSNR vs LL Images PSNR test set 

 

At this point it is worth commenting on the results as a whole. In all cases 

we saw that the metric values were greatly improved, with MSE decreasing 

and PSNR and SSIM increasing, indicating the effectiveness of this 

method. In addition, MV and STD are increased, which means that the 

experimental images are brighter and with higher contrast, since the pixel 

values are spread over a larger range around the mean brightness. The only 

negative thing we have to comment on is that BRISQUE and NIQE do not 

improve, with their values remaining large, which shows us that the results 

obtained from DL methods are far from natural statistics. This is because 

as the image passes through the various layers of the model, it is subjected 

to several filters leading to this effect. Finally, in all cases we observe that 

with the increase of the darkness level the performance of the model 

decreases, as the quality of the values of the metrics decreases. This is due 

to the fact that as the darkness level increases, the images become too dark, 

and the dynamic range too small, which makes it difficult to retrieve visual 

information. A solution to this would be to train the architecture more for 

larger darkness levels to give the model time to learn more. Nevertheless, 

the improvement in the metrics is impressive, and the fact that these results 

are obtained on our test set shows that the model has a strong generalization 

ability. 

Regarding the number of convolutional modules, from figures 3.11 and 

3.12 we see that there are no big differences in the performance of each 

case. One module achieves an increase in average PSNR by 10.91dB, 3 by 

11.71dB and 5 by 10.68dB, while for SSIM the improvement is by 0.47, 

0.5 and 0.45 respectively. In addition, we see that for large darkness levels 

the 3 modules give slightly better results, so in the end these are the ones 

that perform best. Finally, let us comment that all 3 cases have been trained 

for the same number of epochs, so there is a possibility that the 5 modules 

would have given better results if we had trained them more, since they 

have more parameters. 

Overall, we saw very impressive results in terms of metric values. To see 

the results visually we will present, for each darkness level, the results for 

a random image, together with the corresponding LL and ground truth 

cases. We will also present their histograms to see if the correct information 

for the histogram was retrieved. 
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Darkness Level: 3.0 

 

Original Low Light  Normal Light 

 

1 module   3 modules   5 modules 
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Figure 3.13: Histogram of 3.0 LL image 

 

 

Figure 3.14: Histogram of 3.0 NL image 
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Figure 3.15: Histogram of 3.0 experimental result with 1 module 

 

 

Figure 3.16: Histogram of 3.0 experimental result with 3 modules 
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Figure 3.17: Histogram of 3.0 experimental result with 5 modules 

 

For darkness level 3.0 we see that in all three cases the experimental result 

is visually very close to the ground truth case, as a large part of the visual 

information has been recovered. This is also confirmed by the experimental 

histograms, which in all cases, their form is very close to that of the ground 

truth image. Nevertheless, we must comment that for 3 convolutional 

modules, a slightly better result is obtained, as more correct color 

information has been recovered, and the histogram is almost the same as 

the corresponding ground truth. 
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Darkness Level: 3.5 

 

Original Low Light   Normal Light 

 

1 module   3 modules   5 modules 

 

Figure 3.18: Histogram of 3.5 LL image 
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Figure 3.19: Histogram of 3.5 NL image 

 

 

Figure 3.20: Histogram of 3.5 experimental result with 1 module 
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Figure 3.21: Histogram of 3.5 experimental result with 3 modules 

 

 

Figure 3.22: Histogram of 3.5 experimental result with 5 modules 
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For darkness level 3.5 impressive results are obtained as well, with the LL 

image being fully enhanced and most of the visual information recovered, 

for all cases of convolutional modules. This is also confirmed by the 

experimental histograms, where in all cases their form is very close to that 

of the ground truth image. Moreover, here too the 3 convolutional modules 

seem to produce a slightly better result, indicating what we mentioned 

above. 

 

 

Darkness Level: 4.0 

 

Original Low Light   Normal Light 

 

1 module   3 modules   5 modules 
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Figure 3.23: Histogram of 4.0 LL image 

 

 

Figure 3.24: Histogram of 4.0 NL image 
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Figure 3.25: Histogram of 4.0 experimental result with 1 module 

 

 

Figure 3.26: Hstogram of 4.0 experimental result with 3 modules 
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Figure 3.27: Histogram of 4.0 experimental result with 5 modules 

 

For darkness level 4.0 the first effects of increasing the darkness level start 

to be seen, as in the experimental results the general texture of the image 

has been recovered but not the color information. The experimental 

histograms have a shape very close to the corresponding ground truth case, 

confirming the enhancement of the dark image. However, the LL image 

has started to become too dark, with the dynamic range being too small, 

making the retrieval of color information difficult, leading to the results we 

see. 
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Darkness Level: 4.5 

 

Original Low Light   Normal Light 

 

1 module   3 modules   5 modules 

 

Figure 3.28: Histogram of 4.5 LL image 
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Figure 3.29: Histogram of 4.5 NL image 

 

 

Figure 3.30: Histogram of 4.5 experimental result with 1 module 
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Figure 3.31: Histogram of 4.5 experimental result with 3 modules 

 

 

Figure 3.32: Histogram of 4.5 experimental result with 5 modules 
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In the case of darkness level 4.5 we again notice that, while the general 

texture of the image has been recovered and the LL image has been 

enhanced, the color information has not been restored. Here again the lack 

of color is because the images are too dark making it difficult to retrieve 

the color information. A solution to this problem would be to train the 

model more for large darkness levels so that it has time to learn the 

information needed to retrieve the color. 

 

 

Darkness Level: 5.0 

 

Original Low Light   Normal Light 

 

1 module   3 modules   5 modules 
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Figure 3.33: Histogram of 5.0 LL image 

 

 

Figure 3.34: Histogram of 5.0 NL image 
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Figure 3.35: Histogram of 5.0 experimental result with 1 module 

 

 

Figure 3.36: Histogram of 5.0 experimental result with 3 modules 
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Figure 3.37: Histogram of 5.0 experimental result with 5 modules 

 

For darkness level 5.0 we also notice that the color information is not 

restored, but the model has managed to recover the general texture of the 

image, as well as the details, without introducing additional noise and 

artifacts, which is particularly impressive. The experimental histograms, in 

all cases, have a form very close to the corresponding ground truth, with 

the histogram for 3 convolutional modules being the best. As we mentioned 

before, the recovery of the color information could also be recovered by 

further training the model. 

Overall, we saw that the architecture we built gave very impressive results, 

greatly improving the values of the metrics, with the average PSNR 

increasing up to 11.71dB and the SSIM by 0.5 (values for the case with 3 

convolutional modules that gave the best results). The improvement in the 

quality of the images was also confirmed by the visual results we presented, 

with the LL images being fully enhanced without the introduction of 

additional noise or artifacts (which was strongly observed in the case of 

classical methods). In addition, it was observed that with the increase of 

the darkness level it becomes more difficult to retrieve the color 

information, since the resulting images are black and white. This is due to 

the fact that for large darkness levels the images are too dark, with the 
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dynamic range too small, making it more difficult to learn the full mapping 

that will lead to color restoration. The fact that the general texture of the 

image is recovered means that if we gave more time (and data) to the model 

it could also recover the color information. So, a solution to this is the 

further training of the model for higher darkness levels. Finally, from the 

three cases of convolutional modules, we saw that in the given training 

conditions the model with 3 convolutional modules performs better, as it 

leads to the greatest improvement of the metrics and performs better in the 

large darkness levels, compared to the other two cases. 

 

 

 

 

3.3 LL-CNN: 1st Variation 
 

In the previous section we saw that the architecture we designed produces 

very impressive results, but struggles to recover color information for 

higher darkness levels, resulting in black and white images. One solution 

we mentioned is to further train the model for large darkness levels to 

recover the color as well. Due to limited computing resources, another way 

to deal with it would be to make the model learn more low level features 

that might help to recover the color as well. For this reason, in the 

architecture we presented earlier, we add an additional 3 convolutional 

layers, between the convolutional modules and the output layer. The 

implementation details of these layers are presented in appendix B. These 

additional convolutional layers act both as post processing steps and for 

learning additional features that can help in the recovery of color 

information as well. We repeat the experiments with the new form of the 

architecture, and present the results on the test set since we are interested 

in the generalizability of the model. 
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1 module 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 96,80228 65,58468 72,6814 97,79351 528,1886 

MAX 4167,11 4159,735 4878,609 4774,116 5669,801 

AVERAGE 594,7516 682,6434 806,4392 867,1724 1371,427  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 11,93245 11,94015 11,24784 11,34187 10,59513 

MAX 28,27195 29,96278 29,51657 28,2277 20,90291 

AVERAGE 21,98932 21,37298 20,34762 20,02487 17,36206  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,255508 0,251793 -0,16438 -0,08179 -0,18834 

MAX 0,915518 0,914636 0,859552 0,767284 0,763961 

AVERAGE 0,729288 0,696488 0,452581 0,452772 0,34826  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 47,72041 32,19816 46,2511 45,11351 71,33703 

MAX 131,8304 117,613 129,0201 129,6187 143,1904 

AVERAGE 102,9921 85,37628 97,92211 97,94818 115,8154  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 89,75246 50,56022 56,36618 46,75957 68,2928 

MAX 1035,856 869,4787 947,505 887,7119 1010,549 

AVERAGE 358,8593 336,6523 329,3787 304,9104 387,3231  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 35,85155 35,84404 37,22929 40,01978 43,27264 

MAX 51,24883 54,05877 54,65608 58,02733 56,17784 

AVERAGE 43,95986 46,22144 46,00282 49,00711 49,93145  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 3,486145 3,655138 3,980192 3,950654 4,08138 

MAX 7,709424 6,987334 6,541648 5,749939 5,430819 

AVERAGE 4,581822 4,635425 4,528655 4,460164 4,511685 

Table 3.4: LLCNN 1st variation results on test set – 1 CNN module 
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Figure 3.38: Experimental results PSNR vs Darkness level for test set 

 

 

Figure 3.39: Experimental results SSIM vs Darkness level for test set 

 

For 1 convolutional module the values of the metrics improve noticeably, 

as the MSE decreases and the PSNR and SSIM increase, compared to the 

original LL images. In addition, MV and STD increase, which means that 

the experimental images are brighter, since they have a higher average 
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brightness, and have a higher contrast as the pixel values are spread over a 

larger range around the average brightness. BRISQUE and NIQE continue 

to have large values, which shows that with DL models we cannot recover 

the natural statistics, something we also found in the previous section. 

Finally, as the darkness level increases, the expected behavior is observed, 

as the quality of the metrics decreases. Specifically, MSE increases and 

PSNR and SSIM decrease with increasing darkness level, and similarly 

MV and STD also decrease with increasing darkness level. As we 

mentioned above, this could be solved by further training the model for 

large darkness levels. 

 

3 modules 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 139,8357 55,47963 62,18725 107,7509 182,9754 

MAX 4673,288 3123,43 3793,452 3812,375 4110,048 

AVERAGE 634,6368 554,7044 603,7259 657,5905 887,8519  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 11,43458 13,18449 12,34046 12,31885 11,99233 

MAX 26,67462 30,68947 30,19379 27,80659 25,50688 

AVERAGE 21,50457 22,46352 21,94701 21,39252 19,6565  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,177864 0,065313 0,312374 0,140107 -0,05215 

MAX 0,934763 0,943638 0,856044 0,911381 0,709297 

AVERAGE 0,715544 0,685708 0,676907 0,623833 0,435932  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 51,56754 43,73285 51,93238 46,87704 51,93238 

MAX 135,8206 123,6079 132,1517 129,5823 132,1517 

AVERAGE 105,6586 94,97591 99,04177 95,81691 99,04177  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 119,3738 90,00752 35,43465 62,67123 60,01391 

MAX 1032,159 916,947 913,3763 806,6738 881,5942 

AVERAGE 375,6467 313,5944 300,1116 245,5469 271,1893  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 38,12286 36,39868 40,92492 37,49894 43,4405 

MAX 53,93185 51,19811 53,97783 54,31783 57,36054 

AVERAGE 45,39954 44,68683 47,82419 46,59224 49,7923 
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NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 4,252357 4,16975 4,362417 4,478127 4,424179 

MAX 8,018875 8,321446 7,286521 6,786895 6,167481 

AVERAGE 5,192974 5,066215 5,127456 5,119233 5,233816 

Table 3.5: LLCNN 1st variation results on test set – 3 CNN modules 

 

 

Figure 3.40: Experimental results PSNR vs Darkness level for test set 

 

 

Figure 3.41: Experimental results SSIM vs Darkness level for test set 
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For 3 convolutional modules again, we can observe an improvement of the 

metrics, as the MSE decreases and the PSNR and SSIM increase, which 

means that the experimental images come closer visually to the ground 

truth case. Moreover, MV and STD are increased, compared to the original 

LL images, which means that the experimental images are brighter and 

with higher contrast. Despite this, BRISQUE and NIQE continue to have 

large values, something we found and explained in the previous section. 

Finally, the expected behavior is again observed with the increase of the 

darkness level, as the performance of the model decreases. 

5 modules 

 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 58,64497 72,65532 155,9949 97,63911 1239,511 

MAX 3707,553 3119,224 3288,394 5027,542 6936,387 

AVERAGE 623,8515 573,6459 672,0668 1140,519 3163,393  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 12,43993 13,19034 12,96096 11,11725 9,71947 

MAX 30,4485 29,51813 26,1997 28,23457 17,1983 

AVERAGE 22,11363 22,20917 21,07984 18,66252 13,47252  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,195842 0,162419 0,166974 0,168237 -0,00482 

MAX 0,920853 0,904978 0,828577 0,771529 0,609581 

AVERAGE 0,740001 0,717316 0,568654 0,492206 0,263974  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 34,12043 48,12263 50,20952 38,88862 95,47895 

MAX 117,0227 124,0975 125,1285 113,5511 102,2477 

AVERAGE 85,91909 98,02158 96,81714 78,89687 96,95219  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 54,75704 64,092 53,02597 54,39942 108,8808 

MAX 934,404 862,7025 867,199 684,8469 153,6646 

AVERAGE 316,6737 300,166 269,842 212,4173 136,1414  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 33,35861 35,78578 37,15804 34,86287 45,17703 

MAX 54,26366 52,49631 50,64247 53,24163 50,80452 

AVERAGE 46,78519 44,80433 44,45097 47,20074 47,83929 
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NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 4,269911 4,123655 4,634809 4,265357 7,041879 

MAX 8,313357 8,024193 9,543192 7,866149 11,70887 

AVERAGE 5,203072 5,236256 5,723349 5,007355 9,882166 

Table 3.6: LLCNN 1st variation results on test set – 5 CNN modules 

 

 

Figure 3.42: Experimental results PSNR vs Darkness level for test set 

 

 

Figure 3.43: Experimental results SSIM vs Darkness level for test set 
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For all 5 convolutional modules we observe a clear improvement in the 

metric values as we see that the MSE decreases and the PSNR and SSIM 

increase, which indicates the improvement in the quality of the images. For 

quality metrics with no reference, MV increases, meaning the experimental 

images are brighter, and STD also increases, meaning the experimental 

results are also characterized by higher contrast. BRISQUE and NIQE 

continue to have large values, which is seen in all cases so far. Finally, with 

the increase of the darkness level, the expected behavior is observed, as the 

images become darker with the result that the model has difficulty learning 

the representation between LL space and NL space. 

 

 

 

Figure 3.44: Experimental results average PSNR vs LL Images PSNR test set 
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Figure 3.45: Experimental results average SSIM vs LL Images SSIM test set 

 

Overall, we observed that all three cases of convolutional modules 

significantly improve the values of the metrics, as the MSE decreases and 

the PSNR and SSIM increase, compared to the initial values for the LL 

images, which means that after applying the model, the images come 

visually closer to the ground truth case. For the quality metrics with no 

reference, we saw that MV and STD increase, i.e. the images become 

brighter, since their average brightness increases, and have higher contrast, 

since the pixel values are spread over a larger range around the average 

brightness. BRISQUE and NIQE continue to have large values even after 

applying the model, which means that with DL techniques we cannot 

recover the natural statistics, which is due to the continuous filtering that 

the images undergo as they pass through the model, such as also explained 

in the previous subsection. Finally, with the increase in the darkness level, 

a decrease in the performance of the model was observed, as expected. 

Increasing the darkness level means that the images become very dark, 

with the dynamic range being too small, making it difficult to learn the 

model, leading to a decrease in its performance. 

Testing three different cases of number of convolutional modules we saw 

that 1 module led to an increase in average PSNR by 11.65dB and SSIM 

by 0.45, 3 convolutional modules increased PSNR by 12.83dB and SSIM 

by 0.54, and 5 convolutional modules increased the PSNR by 10.94dB and 

SSIM by 0.47, so based on these values it shows that the 3 convolutional 

modules perform better. From figures 3.44 and 3.45 we see that at darkness 

3.0 3.5 4.0 4.5 5.0
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levels 3.0 and 3.5 all three cases of convolutional modules have almost the 

same performance, while at higher darkness levels there starts to be a 

clearer separation. In particular we see that the 3 convolutional modules 

perform better for large darkness levels, while the cases with 1 and 5 

modules have decreasing performance. For the case of 1 module, the 

reduced performance is explained by the fact that we have fewer features 

compared to the other cases, thus less information for the approximation of 

the representation. On the contrary, for the case of 5 modules we have more 

features, and because we train all cases for the same number of epochs, the 

model does not have time to fully learn the representation, leading to 

decreasing performance. All this confirms that, for the specific training 

conditions, the 3 convolutional modules have the best performance. 

All cases, however, produce an impressive improvement in quality metric 

values, which shows us that our architecture is characterized by very good 

generalization ability. To see the results visually, we will display, for each 

darkness level, a random image for each case of convolutional modules. In 

addition, we will display the corresponding ground truth and LL images, 

along with all the respective histograms, so that we can compare the results. 

 

Darkness Level: 3.0 

 

Original Low Light   Normal Light 
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1 module   3 modules   5 modules 

 

 

Figure 3.46: Histogram of 3.0 LL image 
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Figure 3.47: Histogram of 3.0 NL image 

 

 

Figure 3.48: Histogram of 3.0 experimental result with 1 module 
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Figure 3.49: Histogram of 3.0 experimental result with 3 modules 

 

 

Figure 3.50: Histogram of 3.0 experimental result with 5 modules 
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For darkness level 3.0 we see that in all three cases the experimental images 

are visually very close to the ground truth case, with the LL image being 

fully enhanced. This is also confirmed by the histograms, where we see 

that the experimental histograms are characterized by a large contrast, and 

have a form similar to that of the ground truth histogram. 

 

 

Darkness Level: 3.5 

 

Original Low Light   Normal Light 

 

1 module   3 modules   5 modules 
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Figure 3.51: Histogram of 3.5 LL image 

 

 

Figure 3.52: Histogram of 3.5 NL image 
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Figure 3.53: Histogram of 3.5 experimental result with 1 module 

 

 

Figure 3.54: histogram of 3.5 experimental result with 3 modules 
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Figure 3.55: histogram of 3.5 experimental result with 5 modules 

 

For darkness level 3.5 again we notice that the LL image has been fully 

enhanced, for all three cases of convolutional modules. Here it starts to 

look like the 3 convolutional modules produce a slightly better result, as 

we mentioned before. The image is enhanced better compared to the other 

two cases, since for 1 and 5 convolutional modules some color distortions 

appear, and in addition the histogram for 3 convolutional modules is closer 

to the ground truth form than the other two cases. 
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Darkness Level: 4.0 

 

Original Low Light   Normal Light 

 

1 module   3 modules   5 modules 
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Figure 3.56: Histogram of 4.0 LL image 

 

 

Figure 3.57: Histogram of 4.0 NL image 
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Figure 3.58: Histogram of 4.0 experimental result with 1 module 

 

 

Figure 3.59: Histogram of 4.0 experimental result with 3 modules 
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Figure 3.60: Histogram of 4.0 experimental result with 5 modules 

 

For darkness level 4.0 we see that the experimental results are visually very 

close to the ground truth case. Nevertheless, due to the increase in the 

darkness level, we see that the model is starting to struggle, as was also 

found from the values of the metrics. In particular, for 1 convolutional 

module it seems that the color information has not been fully recovered, 

with the image appearing almost black and white, while for 5 convolutional 

modules the color seems to fade. For 3 convolutional modules the best 

result is obtained, with the LL image being fully enhanced, recovering a 

large part of the color information. 

 

 

 

 

 

 

 

 



 

 394 

Darkness Level: 4.5 

 

Original Low Light   Normal Light 

 

1 module   3 modules   5 modules 

 

 

Figure 3.61: Histogram of 4.5 LL image 
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Figure 3.62: Histogram of 4.5 NL image 

 

 

Figure 3.63: Histogram of 4.5 experimental result with 1 module 
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Figure 3.64: Histogram of 4.5 experimental result with 3 modules 

 

 

Figure 3.65: Histogram of 4.5 experimental result with 5 modules 
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For darkness level 4.5 we also notice that the LL image has been enhanced 

and we have recovered most of the visual information in all three cases of 

number of convolutional modules. However, again we see that for 1 and 5 

convolutional modules the color information has not been recovered, while 

the 3 convolutional modules perform better, as we noticed from the values 

of the quality metrics. 

 

Darkness Level: 5.0 

 

Original Low Light   Normal Light 

 

1 module   3 modules   5 modules 
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Figure 3.66: Histogram of 5.0 LL image 

 

 

Figure 3.67: Histogram of 5.0 NL image 



 

 399 

 

Figure 3.68: Histogram of 5.0 experimental result with 1 module 

 

 

Figure 3.69: Histogram of 5.0 experimental result with 3 modules 
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Figure 3.70: Histogram of 5.0 experimental result with 5 modules 

 

For darkness level 5.0 we see that the model fails to fully restore the LL 

image. For 1 and 3 convolutional modules the general texture of the image 

is recovered, but without color information, while for 5 convolutional 

modules the result collapses completely and nothing is recovered. This is 

also confirmed by the values of the quality metrics we saw earlier, where 

for darkness level 5.0 and 5 convolutional modules the values of the 

metrics were of very low quality. 

Based on what we have seen so far, we can notice that by adding the extra 

convolutional layers at the end of the architecture the performance 

improves, which is reflected both in the values of the performance metrics 

and in the visual results we presented above. Also, we saw that here too the 

3 convolutional modules perform better than the other two cases, as they 

give the greatest improvement in the values of the metrics and recover most 

of the visual information. In the case of the 1 convolutional module, the 

reduced performance, compared to the three, is due to the fact that it learns 

fewer features, so it cannot properly approximate the mapping we want. 

For the 5 convolutional modules, the reduced performance is because we 

train the model for the same number of epochs as the 3 modules 

counterpart, and because it has more parameters, it does not have time to 

learn the correct mapping between LL space and NL space. These reasons 
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lead to the reduced performance, for all darkness levels, where we saw that 

modules 1 and 5 cannot restore the correct color information. 

Furthermore, we noticed that as the darkness level increased the 

performance of the models decreased, until we reached the point where no 

image was even recovered for darkness level 5.0 with 5 convolutional 

modules. This is due to the fact that as the darkness level increases, the 

images become darker, and the dynamic range very small, as a result of 

which it becomes more and more difficult to learn the appropriate features 

to enhance the image. A solution to this problem would be the further 

training of each model for the highest darkness levels. 

 

 

3.4 LL-CNN: 2nd Variation 
 

In this section we will take a completely different approach to training our 

model, which is inspired by the article by He et al. [37], whose main 

purpose is the binarization of historical documents. The authors first 

assume that the ground truth image is degraded by various factors, which 

is expressed as: 

 

𝑥 = 𝑥𝑢 + 𝑒 

 

where  xu it is the ground truth picture, x is the degraded image and e is the 

degradation. In this case, the basic approach to binarization with a CNN 

implementation is: 

 

𝑥𝑏 = 𝐶𝑁𝑁(𝑥) 

 

i.e. to give the network the degraded image directly, and it should give us 

the binary map xb. In this case, however, the model has to learn the 

degradation e, so as to remove it and recover the xu, as well as the 

appropriate threshold to produce the correct binary map xb. An easier way 

suggested by the authors is for the model to learn the degradation only, so 
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that it simply aims to enhance the degraded image, and then the result is 

the input of a simple binarization method. This is expressed as: 

 

𝑥𝑢 = 𝐶𝑁𝑁(𝑥) + 𝑥 → 𝐶𝑁𝑁(𝑥) =  −(𝑥 − 𝑥𝑢) =  −𝑒 

 

that is, we train the model on the differences of the ground truth from the 

degraded image, so that it learns the noise and then remove it, giving in the 

end the approximation of the ground truth image, which can be an input for 

a simple binarization method. 

Inspired by this logic, we consider that an LL image is the result of a 

degradation of the NL case. Specifically, we consider that a distribution e 

has been subtracted from the distribution of the NL image causing the pixel 

values of the image to decrease and by extension its brightness is also 

decreased. This is expressed as: 

 

𝑥𝐿𝐿 = 𝑥𝑁𝐿 − 𝑒 

 

So, we could train the model in such a way that it learns the e distribution 

subtracted from the NL images, and then simply take the LL image, add e, 

and the end result is the experimental approximation of the NL image. 

Practically, to do this we will give as input to CNN the LL image and as 

output the difference of LL from the NL image, which is expressed as: 

 

𝐶𝑁𝑁(𝑥𝐿𝐿) =  𝑥𝑁𝐿 − 𝑥𝐿𝐿 = 𝑒 

 

More comments and details on the implementation of the model can be 

found in appendix B. Below we present the results of the method. 
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1 module 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 44,8655 51,40863 72,33348 67,07643 124,8454 

MAX 3426,169 3265,252 3514,585 3872,334 3797,664 

AVERAGE 557,1199 560,0896 643,0971 746,0152 940,0249  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 12,78272 12,99164 12,67206 12,25108 12,33564 

MAX 31,61168 31,02044 29,53741 29,8651 27,16708 

AVERAGE 22,57655 22,50693 21,55051 20,81169 19,35751  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,16662 0,331274 0,356948 0,188938 -0,00692 

MAX 0,873029 0,914021 0,84586 0,795518 0,69899 

AVERAGE 0,70848 0,719564 0,66433 0,593542 0,457478  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 40,35464 37,98863 40,55524 39,07245 44,94147 

MAX 125,3565 121,9536 122,1946 125,3441 123,0417 

AVERAGE 95,69192 91,97912 90,66982 91,22758 88,1989  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 81,0865 43,56196 39,04175 36,89214 15,40106 

MAX 1015,306 940,3215 875,3764 905,8084 879,953 

AVERAGE 392,1139 357,2528 337,8879 333,0688 306,8235  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 30,66738 32,14165 30,38641 34,68553 39,89657 

MAX 52,5706 54,24775 52,44835 55,14162 55,30365 

AVERAGE 42,27799 44,36251 45,26857 46,31306 48,73257  
NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 3,226166 3,457054 3,172748 2,901554 3,362073 

MAX 7,459132 6,97466 5,820608 5,202869 4,938754 

AVERAGE 4,372061 4,328679 3,892451 3,879764 3,978083 

Table 3.7: LLCNN 2nd variation results on test set – 1 CNN module 
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Figure 3.71: Experimental results PSNR vs Darkness level for test set 

 

 

Figure 3.72: Experimental results SSIM vs Darkness level for test set 

 

For 1 convolutional module we see that there is a clear improvement in the 

metric values. In comparison, the MSE decreases and the PSNR and SSIM 

increase, compared to the values of the LL images, which indicates to us 

that the experimental results are closer to the ground truth. For the quality 

metrics with no reference, we see that MV and STD increase, which means 
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the average brightness of the images increase, and they have more contrast 

since the pixel values are spread over a larger range around the mean value. 

BRISQUE and NIQE continue to have large values, which was also 

observed in the previous models. Finally, with the increase of the darkness 

level, the expected behavior of the quality metric values is observed. MSE 

increases while PSNR and SSIM decrease. Similarly, MV and STD 

decrease, indicating that for higher darkness levels the experimental results 

are slightly darker and with lower contrast, compared to those for lower 

darkness levels. 

 

 

3 modules 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 40,71857 55,4298 101,387 71,92499 158,7336 

MAX 3210,264 3832,068 3375,599 4332,126 3975,209 

AVERAGE 505,5116 531,9541 629,4446 763,5596 1041,046  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 13,0654 12,29647 12,84729 11,76379 12,1372 

MAX 32,03288 30,69337 28,07098 29,56201 26,12412 

AVERAGE 23,13364 22,87258 21,55021 20,66279 18,77477  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,278397 0,238313 0,345479 0,31257 -0,0438 

MAX 0,929208 0,93818 0,844109 0,817252 0,715171 

AVERAGE 0,752665 0,736254 0,652447 0,6392 0,438079  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 42,08232 45,0009 48,48013 35,9042 49,0481 

MAX 123,7666 129,0055 126,2409 122,4265 124,1735 

AVERAGE 95,20668 97,77026 95,55316 86,37298 86,58998  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 101,4863 48,80962 35,34517 72,4157 55,66089 

MAX 939,3368 958,1431 695,7557 750,4654 739,3788 

AVERAGE 340,2848 339,7319 271,9623 269,1615 221,3384  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 31,00837 30,99294 33,74013 38,46947 31,22574 

MAX 51,46777 52,74651 51,6601 54,08553 57,80188 

AVERAGE 42,1966 43,83368 44,74185 46,4601 48,53072 
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NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 3,492939 3,838286 3,712709 4,164159 4,183028 

MAX 8,414258 8,292538 6,986006 6,658586 6,336475 

AVERAGE 4,581849 4,648733 4,379942 4,662573 4,852334 

Table 3.8: LLCNN 2nd variation results on test set – 3 CNN modules 

 

 

Figure 3.73: Experimental results PSNR vs Darkness level for test set 

 

 

Figure 3.74: Experimental results SSIM vs Darkness level for test set 
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For 3 convolutional modules, a large improvement in metric values is 

observed, with MSE decreasing and PSNR and SSIM increasing, which 

indicates that the experimental images are approaching the ground truth 

case. Accordingly, MV and STD are increased which means that the images 

become brighter and with higher contrast. BRISQUE and NIQE continue 

to have great values, which is to be expected based on what we've seen so 

far in this chapter. Moreover, with the increase of the darkness level, the 

expected behavior is observed, as the MSE increases, while the PSNR and 

SSIM follow a decreasing course. Similarly, MV and STD decrease with 

increasing darkness level which means that the experimental results 

become slightly darker. 

5 modules 
 

MSE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 69,88142 82,00898 144,7691 90,87492 452,1589 

MAX 3888,196 3522,887 4038,085 4556,142 4911,079 

AVERAGE 530,5903 582,4703 642,3333 773,1256 1219,048  
PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 12,23332 12,66182 12,06905 11,54483 11,21903 

MAX 29,68719 28,99219 26,52404 28,54636 21,57789 

AVERAGE 22,73854 22,30665 21,36374 20,738 17,80868  
SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 0,073512 -0,05811 0,284734 0,16876 -0,17205 

MAX 0,956513 0,938152 0,820341 0,82127 0,710033 

AVERAGE 0,709187 0,625161 0,633963 0,625798 0,408104  
MV 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 46,41683 39,9024 48,69199 33,00827 73,51005 

MAX 129,7605 125,8774 131,0014 122,3284 139,6465 

AVERAGE 100,0741 93,9319 102,0196 85,69117 113,1274  
STD 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 119,7383 24,86499 85,98113 41,80059 113,7915 

MAX 1027,345 928,3512 845,0857 845,8448 670,4729 

AVERAGE 367,6629 309,1584 291,2608 269,2211 257,0771  
BRISQUE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 31,72861 32,89929 32,55808 34,581 36,95518 

MAX 51,29019 51,67033 50,84819 52,75801 52,28734 

AVERAGE 43,25488 44,42939 44,73829 45,79551 45,65563 
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NIQE 

Level 3.0 3.5 4.0 4.5 5.0 

MIN 3,963563 4,201967 3,947916 4,076733 3,857366 

MAX 7,907503 8,180129 8,56234 7,693572 8,485583 

AVERAGE 5,080761 5,187741 4,88935 4,947641 5,4042 

Table 3.9: LLCNN 2nd variation results on test set – 5 CNN modules 

 

 

Figure 3.75: Experimental results PSNR vs Darkness level for test set 

 

 

Figure 3.76: Experimental results SSIM vs Darkness level for test set 
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For 5 convolutional modules we again observe an improvement in the 

values of the metrics. The MSE decreases and the PSNR and SSIM 

increase, compared to the values for the LL images, which means that there 

is a visual improvement of the results. Also, MV and STD increase, so 

experimental images will be brighter and characterized by higher contrast, 

which confirms the enhancement of LL images. BRISQUE and NIQE 

continue to have great values, as expected. Finally, with the increase in the 

darkness level, the expected course is followed here as well, as the quality 

of the metrics decreases with its increase.  

 

 

Figure 3.77: Experimental results average PSNR vs LL Images PSNR test set 

 

 

Figure 3.78: Experimental results average SSIM vs LL Images SSIM test set 
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Overall, we saw that for all cases of number of convolutional modules there 

is a clear improvement of the metric values, which also indicates the 

enhancement of LL images. For 1 convolutional module the average PSNR 

increases by 12.8dB, for 3 it increases by 12.64dB and for 5 it increases by 

12.43dB. Similarly, the mean SSIM increases by 0.54 for 1 convolutional 

module, and by 0.56 and 0.52 for 3 and 5 convolutional modules 

respectively. From figures 3.77 and 3.78 we see that there is no great 

variation in the values of the metrics with the increase in the number of 

convolutional modules, which is also confirmed by the average increase in 

PSNR and SSIM that we mentioned above. We understand that based on 

metric values alone, we cannot decide which case of number of 

convolutional modules is better. Ideally, we would choose the case with 1 

convolutional module as it has fewer parameters and is easier to train. 

Finally, we noticed that as the darkness level increases, the performance of 

the model decreases. This is to be expected as with the increase of the 

darkness level the images become very dark, with the dynamic range being 

small, as a result of which it is difficult to learn the necessary features to 

enhance the images. As we mentioned in the previous models, a solution 

to this problem could be the further training of the model at higher darkness 

levels, so that it has time to learn all the features it needs. 

To visually see the results of the model we will display, for each darkness 

level, a random image for each case of number of convolutional modules, 

together with the corresponding LL and ground truth images. In addition, 

we will also display the respective histograms, to confirm that the visual 

information has been completely recovered. 

 

Darkness Level: 3.0 

 

Original Low Light   Normal Light 
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1 module   3 modules   5 modules 

 

 

Figure 3.79: Histogram of 3.0 LL image 
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Figure 3.80: Histogram of 3.0 NL image 

 

 

Figure 3.81: Histogram of 3.0 experimental result with 1 module 
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Figure 3.82: Histogram of 3.0 experimental result with 3 modules 

 

 

Figure 3.83: Histogram of 3.0 experimental result with 5 modules 
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For darkness level 3.0 we see that the LL image has been fully enhanced 

for all three cases of the number of convolutional modules, as both the 

color information and the details of the image have been recovered, with 

the experimental results being visually very close to the ground truth case. 

The quality of the result is also confirmed by the histograms, where in all 

three cases, the experimental histograms have a shape almost identical to 

the corresponding ground truth, which means that all the visual information 

has been recovered. As we mentioned above, we cannot decide which case 

of convolutional modules is better, as all three give impressive results. 

 

Darkness Level: 3.5 

 

Original Low Light   Normal Light 

 

1 module   3 modules      5 modules 
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Figure 3.84: Histogram of 3.5 LL image 

 

 

Figure 3.85: Histogram of 3.5 NL image 
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Figure 3.86: Histogram of 3.5 experimental result with 1 module 

 

 

Figure 3.87: Histogram of 3.5 experimental result with 3 modules 
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Figure 3.88: Histogram of 3.5 experimental result with 5 modules 

 

For darkness level 3.5 again impressive results are obtained with the LL 

image being fully enhanced in all 3 cases of number of convolutional 

modules. This is also confirmed by the histograms, as all the three 

experimental histograms have a shape almost identical to the 

corresponding ground truth. 

Darkness Level: 4.0 

 

Original Low Light   Normal Light 
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1 module   3 modules   5 modules 

 

 

Figure 3.89: Histogram of 4.0 LL image 

 



 

 419 

 

Figure 3.90: Histogram of 4.0 NL image 

 

 

Figure 3.91: Histogram of 4.0 experimental result with 1 module 
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Figure 3.92: Histogram of 4.0 experimental result with 3 modules 

 

 

Figure 3.93: Histogram of 4.0 experimental result with 5 modules 
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For darkness level 4.0 we also see that the LL image is fully enhanced, for 

all three cases of number of convolutional modules, without the 

introduction of additional noise or color distortions. The experimental 

histograms confirm the quality of the results, and in all 3 cases, their shape 

is very close to the shape of the corresponding ground truth. What we can 

observe, however, is that the result for 5 convolutional modules is slightly 

better, as the color information has been restored to a greater extent. From 

this we understand that the difficulty has started to appear due to the 

increase in the darkness level, as we analyzed above. 

 

Darkness Level: 4.5 

 

Original Low Light   Normal Light 

 

1 module   3 modules   5 modules 
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Figure 3.94: Histogram of 4.5 LL image 

 

 

Figure 3.95: Histogram of 4.5 NL image 
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Figure 3.96: Histogram of 4.5 experimental result with 1 module 

 

 

Figure 3.97: Histogram of 4.5 experimental result with 3 modules 
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Figure 3.98: Histogram of 4.5 experimental result with 5 modules 

 

For darkness level 4.5 we observe that the LL image is fully enhanced in 

all 3 cases of convolutional modules. Nevertheless, we see that color 

distortions appear, as the colors in the experimental results are not exactly 

the same as the corresponding ones in the ground truth case. This is due to 

the fact that the images have started to become very dark making it very 

difficult to retrieve the full visual information. 

Darkness Level: 5.0 

 

Original Low Light   Normal Light 
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1 module   3 modules   5 modules 

 

 

Figure 3.99: Histogram of 5.0 LL image 
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Figure 3.100: Histogram of 5.0 NL image 

 

 

Figure 3.101: Histogram of 5.0 experimental result with 1 module 
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Figure 3.102: Histogram of 5.0 experimental result with 3 modules 

 

 

Figure 3.103: Histogram of 5.0 experimental result with 5 modules 
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For darkness level 5.0 we notice that the general texture and details of the 

ground truth image are restored, but not the color information. This also 

explains the decrease in the values of the metrics with the increase in the 

darkness level that we observed above. The images have now become too 

dark, resulting in the model being unable to learn the features needed to 

restore color, leading to the visual effects observed. 

In general, we noticed that this particular method gave impressive results. 

At all darkness levels the metric values were greatly improved, and most 

of the visual information was recovered. It was observed that the number 

of convolutional modules does not strongly affect the result, and the values 

of the metrics remain more or less the same, and the visual results are 

similar to each other. Based on this we understand that we can simply 

choose the architecture with the fewest parameters since it will be easier 

and faster to train, and produce comparable results to the more complex 

architectures. In addition, we saw that with the increase of the darkness 

level, the model faced difficulties in retrieving the color information, since 

at high darkness levels the images are almost black and white. This is due 

to the fact that as the darkness level increases, the images become too dark, 

with the dynamic range being too small, making it difficult to learn features 

that can also restore color information. A solution to this problem would be 

to give the model more time to learn these features, that is, to train it for 

more epochs, so that it has time to learn the correct mapping from the LL 

space to the NL space. Nevertheless, the resulting images are very 

promising, as even for darkness level 5.0 where there is no color at all, the 

details of the ground truth image such as texture and edges have been fully 

restored. 
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Chapter 4 – Final Techniques Comparison 
 

In this chapter we will make a more general comparison of the methods we 

developed in the previous two chapters. We will start from the classic 

methods, we will move on to the DL methods and finally we will compare 

them all with each other. The comparison will be based on how much the 

values of the quality metrics improve, as well as how complex each method 

is. At the end of the chapter, we will summarize our results and refer to 

future research that can be done in the field. 

 

4.1 Classical Methods Comparison 
 

During the second chapter we implemented and applied a set of classic 

image processing techniques to enhance LL images. We started with point 

processing methods, which included linear transformation, logarithmic and 

exponential transformation, and histogram equalization. Then we went a 

step further and applied more complex techniques, namely the SSR and 

MSR that are based on the Retinex theory, which we mentioned. Finally, 

we applied a method based on image dehazing, as it was observed that the 

negative of an LL image is as if the image was taken in foggy conditions. 

In all cases we have seen that satisfactory results are obtained, but there are 

also cases where the experimental result is characterized by additional 

noise and color distortions. In this section we will compare the classic 

methods with each other to see which one performs better. The comparison 

will be based on how much the values of the evaluation metrics improve. 

Specifically, we will use PSNR, SSIM and MV, displaying their average 

values per method and per darkness level, and we will also include the 

corresponding values for LL images to see how much they improve for 

each method. For methods where we experimented with multiple 

parameter values, we will only use the quality metric values of the 

parameter that gave the best results. Finally, we must comment that since 

we will compare with the DL methods as well, here the results we will 

display are based on the test set. 

 

 

 



 

 430 

 
Average PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

Original LL 9,390119 8,80953 8,408226 8,14007 8,048578 

Linear 
Transformation 

13,86573 13,6508 13,4439 13,22458 12,8527 

Gamma (0.3) 17,97308 17,85597 16,96888 15,65196 14,34958 

Log (50) 14,82221 19,0108 20,9166 17,57403 14,59449 

HE 14,3184 14,16896 13,96122 13,59259 13,09024 

SSR (400) 15,29788 15,72012 16,08146 16,18764 15,9054 

MSR 13,8474 14,0304 14,26856 14,49206 14,52812 

Dehaze 17,18743 17,47945 17,13891 16,00111 14,42391 

Table 4.1: Average PSNR per method 

 

 

Figure 4.1: Average PSNR per darkness level per method 

 

We see that the average PSNR improves noticeably in all cases. The linear 

transformation performs the least, compared to the other cases, increasing 

the average PSNR by only 4.85dB, which is to be expected as it is the 

simplest method of all, applying a simple linear function. The next two 

worst performing methods are histogram equalization which increases the 

average PSNR by 5.27dB, on average, and MSR which increases the 

average PSNR by 5.67Db. The histogram equalization method performs 

less well than the other methods due to its simplicity, as it is a simple 

transformation based on the cumulative probability function. In addition, 

we saw that there are several ground truth images, whose histogram is not 

spread evenly over the entire available range. Histogram equalization by 

its nature aims for the final image to be characterized by a histogram with 
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pixel values evenly distributed, so we understand that it cannot reproduce 

the results we mentioned above, leading to the reduced performance 

observed.  Regarding the MSR, we described in the second chapter that it 

is the combination of 3 different SSRs with parameters 10, 120 and 400. 

When we were studying the SSR we saw that for a parameter of 10 intense 

noise and color distortions are introduced into the experimental result. 

Because of this, the corresponding result in MSR is also affected, causing 

the reduced performance, compared to the rest of the algorithms. Then 

above follow the SSR with parameter 400, the method based on image 

dehazing, and the gamma transformation with parameter 0.3, which 

increase the average PSNR by 7.28dB, 7.89dB and 8dB respectively. The 

most efficient method appears to be the logarithmic transformation, which 

increases the average PSNR by 8.82dB. We see that the 2 most efficient 

methods are pointwise non-linear transformations. The reason they give 

better overall results is because they are selected in such a way that they 

only enhance the dark areas of an image and not the entire image. Because 

of this, at low darkness levels they give very good results, and indeed they 

are the most efficient methods, but at high darkness levels, where the 

images consist only of dark areas, their performance drops, as can be seen 

from figure 4.1. 

A general behavior we observe is that as the darkness level increases, the 

average experimental PSNR decreases. An exception to this are the SSR 

and MSR algorithms, which follow an increasing path with the increase of 

the darkness level. For the remaining methods, the decrease in PSNR is 

due to the fact that the images become very dark, with the dynamic range 

becoming smaller and smaller, making it very difficult to retrieve visual 

information. The SSR and MSR algorithms are an exception because their 

ultimate purpose is not simply to retrieve visual information, but the 

reflectance coefficient of the scene. This information is independent of the 

brightness level of the scene, and for this reason the performance of the 

methods is not affected by increasing the darkness level. Moreover, we see 

that with increasing darkness level the performance of methods based on 

point transformations decreases, and for large darkness levels algorithms 

based on spatial filters are much more efficient. For these high darkness 

levels the images are too dark, as we mentioned above, with the result that 

a simple point transformation that looks at the value of only one pixel is 

not enough to fully improve the image. This explains the fact that more 

complex algorithms are more efficient for large darkness levels. 
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Average SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

Original LL 0,178076 0,11419 0,072755 0,04675 0,031035 

Linear 
Transformation 

0,462487 0,417892 0,366401 0,316112 0,246587 

Gamma (0.3) 0,622504 0,581671 0,524011 0,458485 0,371508 

Log (50) 0,610923 0,61743 0,581146 0,502621 0,385608 

HE 0,43675 0,3975 0,352682 0,299397 0,251513 

SSR (400) 0,567147 0,558782 0,521125 0,469443 0,392017 

MSR 0,494448 0,494892 0,465544 0,42746 0,359022 

Dehaze 0,594288 0,561553 0,5086 0,438122 0,337125 

Table 4.2: Average SSIM per method 

 

 

Figure 4.2: Average SSIM per darkness level per method 

 

From the SSIM values we see that the two least efficient methods are 

histogram equalization and linear transformation, which increase the 

average SSIM by 0.26 and 0.27 respectively, same thing we also observed 

by studying the PSNR. This is followed by MSR, the method based on 

dehazing, and SSR with a parameter of 400, which increase SSIM by 0.36, 

0.4, and 0.41, respectively. The most efficient methods appear to be the 

gamma transformation with a parameter of 0.3, which increases the mean 

SSIM by 0.42, and the logarithmic transformation with a parameter of 50, 

which increases the mean SSIM by 0.45. Here again, as in the case of 

PSNR, we see that the simplest methods are also the least efficient. The 

simplicity of the function we apply to each pixel is not sufficient to fully 

recover the visual information, leading to the reduced performance 

observed. Furthermore, the algorithms that increase SSIM the most are 
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non-linear transformations, as in the case of PSNR. However, we notice 

that with an increase in the darkness level, the performance of these 

algorithms decreases faster, compared to the other methods. 

By increasing the darkness level, the performance of all algorithms 

decreases, with the exception of MSR and SSR with parameter 400, where 

this decrease is less noticeable. As we mentioned above, the purpose of 

MSR and SSR is to recover the reflectance coefficient of the scene, and not 

to directly enhance the image, which is independent of the amount of 

brightness of the scene, thus explaining the minimal dependence of the 

final result on the darkness level. Also, we see that the non-linear methods 

give very good results for small darkness levels, but at large levels their 

performance is greatly reduced, which is due to the fact that the images 

have become very dark, resulting in the fact that a mathematical operation 

on a single pixel is not enough, and we need for information from 

neighboring pixels as well, something that the other methods (MSR, SSR, 

dehazing) do. 

 

 
 

Average MV 

Level 3.0 3.5 4.0 4.5 5.0 

Original LL 16,79939 11,84197 8,242994 5,659169 3,887245 

Linear 
Transformation 

54,34299 53,33926 52,16029 49,44718 47,2227 

Gamma (0.3) 102,7424 91,26644 80,18108 69,3653 59,60535 

Log (50) 137,4292 113,1232 90,4949 70,26011 53,44228 

HE 127,9495 128,6499 129,8455 132,1473 134,6972 

SSR (400) 130,7205 125,9893 119,6509 112,4539 102,4706 

MSR 134,7028 132,3205 128,5233 123,5492 116,8328 

Dehaze 106,3223 99,77421 90,64965 78,97358 68,62438 

Table 4.3: Average MV per method 
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Figure 4.3: Average MV per darkness level per method 

 

Studying the average brightness, we see that the linear transformation 

remains the least efficient method, as it only increases the average 

brightness by 42.01. The order of performance of the remaining algorithms 

changes, compared to what we saw before, as now the most efficient 

method for increasing brightness is histogram equalization, which 

increases the average brightness by 121.37. This is expected due to the 

nature of the method, which aims for the experimental result to be 

characterized by pixel values that are uniformly distributed throughout the 

available value range. This results in images with greater contrast, which 

also leads to greater brightness. MSR and SSR with a parameter of 400 

follow immediately after, increasing the average brightness by 117.9 and 

108.97 respectively. Less efficient are the logarithmic transformation, the 

dehazing-based method, and the gamma transformation, which increase the 

average brightness by 83.66, 79.58, and 71.34, respectively. The decrease 

in performance with the increase in darkness level is observed only in the 

logarithmic transformation and the gamma transformation, while in the 

other cases the increase in brightness remains almost constant. 

In general, from all the above analysis, we saw that the linear 

transformation is the least efficient method of enhancing LL images, 

compared to the other methods, which is due to the simplicity of the 

mathematical expression we apply to the pixel values. In addition, we saw 

that non-linear transformations give the greatest increase in metrics with 

reference (PSNR and SSIM), but their performance drops very quickly 

with the increase in darkness level, which combined with the very small 

increase in average brightness, makes them unreliable algorithms. It was 

also observed that histogram equalization, although it produces the greatest 
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increase in average brightness, the results it produces do not recover all the 

information needed for the ground truth case. This is mainly due to the 

nature of the algorithm and dataset, as the dataset contains several ground 

truth images whose pixel values are not uniformly distributed over the 

entire available value range. Histogram equalization aims for the final 

result to be characterized by pixel values evenly distributed throughout the 

histogram, so we understand that it is impossible to reproduce many of the 

data set results. This explains the reduced performance in the quality 

metrics with reference, while it is the method that gives the greatest 

increase in average brightness. Based on this we understand that histogram 

equalization could be used as a general method of increasing the brightness 

of an image, but it depends on the data set we are studying, as it seems that 

in RELLISUR it is not efficient enough. Then we saw that the method 

based on dehazing gives moderate results but has a relatively stable 

performance with the increase of the darkness level. Something similar was 

observed for MSR and SSR which produce moderate results, but have 

stable performance with increasing darkness level. As we described above, 

this is due to the fact that their purpose is to recover the reflectivity of the 

scene, and not to directly enhance the image, information that is 

independent of the amount and distribution of brightness in the image. In 

chapter 2, however, we saw that these two methods introduce additional 

noise and intense color distortions in the experimental result, something 

that does not appear in the dehazing method, which produces impressive 

visual results even at high darkness levels. From all this we understand 

that, of the classical methods, the best one for the solution of LL is the one 

based on dehazing, as it noticeably increases the values of the metrics, its 

performance does not depend strongly on the darkness level, and produces 

impressive visual results, with the experimental images being very close to 

the ground truth case, having recovered most of the visual information. 

Obviously, there is also a lot of room for improvement as we can also 

improve the fog removal model, making the algorithm even more efficient. 
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4.2 Deep Learning Methods Comparison 
 

In this section we will compare the Deep Learning methods we developed 

during the third chapter. In chapter 3 we used the LL-CNN architecture 

[36], where we first implemented it exactly as described in the related 

article by the authors. Then we made 2 variations, where in the first we 

introduced additional convolutional layers, which acted as post-processing 

filters, while in the second variation we trained the network based on the 

difference of LL from the ground truth image. In all cases we experimented 

with a different number of convolutional modules, and in particular we 

experimented with 1, 3 and 5 modules. In the first two cases we saw that 

the 3 convolutional modules perform better, so we will use the metric 

values for this case only. In the last variation we saw that there is no great 

differentiation of the results, but the case with 1 convolutional module, 

performs a little better at large darkness levels. Because of this, and the fact 

that it gives the same results while being less complex, we will use the 1 

module case in our analysis. 
 

Average PSNR(dB) 

Level 3.0 3.5 4.0 4.5 5.0 

Original LL 9,390119 8,80953 8,408226 8,14007 8,048578 

LLCNN (3) 21,80508 21,04742 21,32991 18,20765 18,90393 

LLCNN++ (3) 21,50457 22,46352 21,94701 21,39252 19,6565 

LLCNN+DO (1) 22,57655 22,50693 21,55051 20,81169 19,35751 

Table 4.4: Average PSNR per DL method 

 

 

Figure 4.4: Average PSNR per darkness level per DL method 
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Regarding the average experimental PSNR we see from figure 4.4 that 

there are no strong differences. LLCNN++ with 3 modules increases the 

average PSNR by 12.83dB, followed by the second variant which increases 

the average PSNR by 12.8dB, and finally it is the original architecture 

which increases the PSNR by 11.7dB, confirming that the differences are 

minimal. Furthermore, we notice that increasing the darkness level does 

not affect the result much, as the change of the values of the metrics is 

small from level to level. At small darkness levels, all three architectures 

have almost the same performance, but at larger ones we see that the 

original architecture lags behind, and the two variations we implemented 

prevail.  

 
 

Average SSIM 

Level 3.0 3.5 4.0 4.5 5.0 

Original LL 0,178076 0,11419 0,072755 0,04675 0,031035 

LLCNN (3) 0,695826 0,690745 0,607084 0,498138 0,413824 

LLCNN++ (3) 0,715544 0,685708 0,676907 0,623833 0,435932 

LLCNN+DO (1) 0,70848 0,719564 0,66433 0,593542 0,457478 

Table 4.5: Average SSIM per DL method 

 

 

Figure 4.5: Average SSIM per darkness level per DL method 
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the average SSIM increase. The original architecture increases the average 

SSIM by 0.49, while the first and second variants both increase it by 0.54. 

In this case, performance decreases with increasing darkness level, which 

is more pronounced in the original architecture. The two variants we 

implemented have almost the same performance at each darkness level. We 

find that the second variant has the advantage, as it produces equally good 

results using fewer parameters. 

 
 

Average MV 

Level 3.0 3.5 4.0 4.5 5.0 

Original LL 16,79939 11,84197 8,242994 5,659169 3,887245 

LLCNN (3) 86,52921 84,36512 98,0996 112,9711 97,62692 

LLCNN++ (3) 105,6586 94,97591 99,04177 95,81691 99,04177 

LLCNN+DO (1) 95,69192 91,97912 90,66982 91,22758 88,1989 

Table 4.6: Average MV per DL method 

 

 

Figure 4.6: Average MV per darkness level per DL method 

 

In the case of the average brightness, we again observe that there are no 

strong differences. The original architecture increases the average 

brightness by 86.63, and the first and second variants increase the 
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increase of the darkness level does not affect the result, since the change of 

the values of the metric from level to level is small for all three cases of 

architectures. 
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Overall, we saw that all three cases of architectures have a comparable 

performance, as the values of the metrics of interest are not characterized 

by sharp variations. If we look more closely at the results, however, we can 

notice that at high darkness levels the original architecture performs less 

well compared to the two variants. The lower performance is due to the 

fact that this architecture learns fewer features, as it has fewer 

convolutional layers than the other two architectures, and also because it is 

trained for fewer epochs. As for the other two architectures, we noticed that 

at all darkness levels they perform almost the same, with the first variant 

being slightly more efficient at higher darkness levels. Nevertheless, the 

second variant has the advantage that it consists of fewer convolutional 

modules (i.e. fewer parameters) and for the same training conditions 

produces the same qualitative results as the first variant. The reason it 

performs better with fewer parameters is because it only has to learn the 

distribution extracted from the ground truth case, rather than the entire 

mapping, making the model's work easier. Based on all the above analysis 

we understand that the best architecture we could use is the second variant, 

as with fewer parameters it can produce the same quality results, and it is 

easier to train. Obviously there is also a lot of room for improvement, as 

one could further optimize the architecture with hyperparameter tuning, 

more training, and using patches rather than the whole image, procedures 

that were not done in the present work due to limited resources. 

 

4.3 Final Comparison 
 

In this subsection we will compare all the methods against each other, 

based on how well they improve the evaluation metrics we are interested 

in, as well as on how complex they are. The values of the metrics are shown 

in the tables of the previous two subsections, so here we will only show the 

line charts for visualization purposes. 
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Figure 4.7: Average PSNR per darkness level for all LLIE methods 

 

We see that all DL architectures outperform all classical algorithms, 

indicating that in general, techniques with learning are superior to classical 

techniques. In addition to performing better, we saw that in classical 

techniques we had to choose the value of a set of parameters, showing here 

only the cases of parameters that give the best results. However, we don't 

know if there is another better value of these parameters, and 

experimenting to find it would be time-consuming. Models based on 

learning avoid this search, as they use information extracted from the data 

to correctly model the relationship between LL space and NL space. 
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Figure 4.8: Average SSIM per darkness level for all LLIE methods 

 

We reach the same conclusion by studying SSIM, as from figure 4.8 we 

see that for all darkness levels the Deep Learning methods perform better 

than the classic methods, giving higher values of the specific quality 

metric. The DL techniques we applied learn many low level features that 

help them recover local information (texture etc.), something that is not 

done in classical algorithms, thus explaining the increased performance of 

DL techniques. 
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Figure 4.9: Average MV per darkness level for all LLIE methods 

 

In the case of MV we see that the order changes as now the DL techniques 

give an average improvement, while the classic techniques of histogram 

equalization and Retinex Based methods give a greater increase in the 

average brightness for each darkness level. The reason this happens is that 

the specific classical techniques aim to produce an image with high 

contrast, the histogram equalization by spreading the pixel values across 

the available range, and the Retinex based methods by recovering the 

reflectivity of the scene. But we saw that the ground truth data set also 

consists of images that do not have high contrast and pixel values 

distributed throughout the available range, which have been 

experimentally over-enhanced, as we also saw in chapter 2. DL techniques 

aim to approximate the appropriate mapping between the LL set that we 

give as input and the NL set that we give as output. Since the NL set also 

consists of images that are not characterized by high brightness, it is 

expected that they will increase the average brightness only as much as 

necessary. This explains the fact that in this specific metric with no 

reference, the classical algorithms seem to perform better, but in reality 

they simply over-enhance the images, which does not correspond to the 

reality of the data set we are studying, and is also justified by the fact that 

in the metrics with reference the DL techniques give much better results. 

Based on the above analysis, we conclude that DL techniques are more 

efficient than classical techniques, as they improve more the values of the 

metrics with reference, and better respond to the needs of the data set (e.g. 
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they do not cause over-enhancement as for example equalization 

histogram). Which approach we actually use depends on the problem we 

have to solve as well as the data we have available. In the case where we 

have ground truth data available, as in the RELLISUR set we studied, it is 

better to use methods with learning, such as DL techniques we saw in 

chapter 3, adapting and optimizing the model to the needs. However, if we 

do not have ground truth data, it is obviously better to use some of the 

classical techniques. A combination of techniques could also be used, 

where as a first step we apply one of the classical techniques (preferably 

the dehaze-based method, for the reasons we mentioned in section 4.1) to 

produce quasi ground truth images, and as a next step to train a DL model 

based on these. 

 

4.4 Conclusion and Future work 
 

In this last subsection we will summarize the analysis so far, drawing final 

conclusions and outlining steps for future research. We have seen that all 

applications involving the use of digital images require these images to be 

of high quality without noise. However, there are many factors that can 

reduce the quality of an image. One of them is low-light conditions, which 

result in images characterized by low contrast and brightness, and the 

introduction of additional noise and color distortions. To use these images, 

they must first be appropriately enhanced, an area of research called Low 

Light Image Enhancement (LLIE). The first approach we took to solve the 

LLIE problem was to apply classical image processing methods, which 

either applied a mathematical function to the value of each pixel or 

performed a convolution operation with a window. We first used a simple 

linear transformation, and while it did enhance the images to a degree, it 

was the least efficient algorithm, for each darkness level. Then we applied 

non-linear functions, such as the gamma transform and the logarithmic 

transform, where for small darkness levels they were among the most 

efficient classical methods, but their performance decreased drastically 

with the increase of the darkness level, making these methods unreliable 

for solving the problem. We then applied histogram equalization, and we 

saw that it did enhance the LL images but much more than it should, which 

led to reduced performance on metrics with reference as it introduced more 

noise and chromatic distortions. Nevertheless, it could be used as a general 

method of enhancing dark images, but not in the context of the data set we 

studied. Following, we applied methods based on the Retinex theory, 
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where we saw that their great advantage is their resistance to the darkness 

level, since their performance remained almost constant with its increase. 

But we also noticed that color distortions appeared here, resulting in a 

decrease in the quality of the images. Finally, we applied a method based 

on defogging, with the logic that the negative of an LL image is as if the 

image was taken in foggy conditions. If we apply a fog removal method to 

the negative and reverse the result then we see that an enhanced LL image 

is obtained. We saw that this particular method gave impressive results, 

even at high darkness levels, without introducing additional noise or color 

distortions. For the reasons we described above (no need to select 

parameters, it has room for improvement, it is resistant to increasing the 

darkness level, etc.) we chose it as the best of the classic methods. 

Continuing, in chapter 3 we followed a different path, using Deep Learning 

techniques, in an attempt to exploit all the information present in the data 

set, to approximate the mapping between LL images space and NL images 

space. We started by applying the original LL-CNN architecture, and we 

saw that it gave impressive results improving all metric values, much more 

than the classical algorithms. However, it was observed that for large 

darkness levels it faced difficulty in retrieving the color information. In an 

attempt to solve this problem, we proposed a variation of the original 

architecture, where we added additional convolutional layers in order to 

learn additional features, which could help in recovering the color 

information. We saw that it did improve the results, but by making the 

architecture more complex and increasing the training difficulty. In an 

effort to facilitate the training process we introduced a different logic. 

Specifically, we assumed that the LL images have been derived from the 

NL images by subtracting a degradation image, e. So, we made the network 

learn this degradation, by giving it as input the LL images and as expected 

output the difference between NL and LL images. This way we managed 

to get performance results comparable to the other architectures, using 

fewer parameters. For this reason, we concluded that this particular 

architecture with this training method is the best approach for solving the 

LLIE problem. 

At this point, before concluding the thesis, it is worth referring to future 

research steps that could be implemented. Starting from the classic point 

processing algorithms, an exhaustive experimentation could be done either 

to find a suitable mathematical function whose application to the value of 

each pixel will give better results, or to find the optimal parameter values 

(for the transformations that have parameters such as gamma 

transformation and logarithmic transformation). For the methods using 
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Retinex theory, one could first experiment with different parameter values 

of the surround function, since here we have seen that small values have 

very poor performance. In addition, we could experiment with different 

forms of the surround function, since in this work we used the default 

function proposed by the authors [26, 27]. Finally, for the method that uses 

the defogging/dehaze algorithm, we could experiment with different 

defogging algorithms and see if the performance of the method can be 

further improved.  

Obviously, what we mentioned in the previous paragraph are fine-tuning 

approaches to the specific data set, which are time-consuming and tedious. 

For this reason, we applied Deep Learning methods, where we saw that 

they are characterized by increased performance. On the architecture we 

presented we could make changes such as different loss function and 

different loss minimization algorithms, and in addition apply 

hyperparameter tuning, to further increase the performance of the model. 

Also, either different architectures or even a different DL paradigm could 

be tested, by applying generative architectures (GANs, diffusion models). 

Finally, we could apply a combination of classical methods with DL 

techniques. For example, we could implement a CNN architecture that 

approximates the fog model of negative LL images, and then apply this 

defogging model to classical method based on dehaze. 

In conclusion, all the methods we described during this thesis are applied 

to the RGB color space. Although this approach gives satisfactory results, 

it has the disadvantage that it ignores the possible correlations that exist 

between the color bands. Based on this we understand that we could also 

experiment with different color spaces, such as HSI, and compare the 

results between them. 
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B – Code 
 

B.2: Chapter 2 Code 
 

Here we present the scripts we used during chapter 2, detailing the steps 

for each section of the chapter. 

 

Linear Streaching 

The implementation function of the linear transformation is: 

 

 

Figure B.2.1: Simple linear transformation implementation function 
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This function accepts as input the image to which we want to apply the 

linear transformation, as well as the range of available brightness values 

(xmin=rangemin and xmax=rangemax). It then converts the image into a double 

data type so that operations can be performed on the pixel values, and 

calculates the dimensions of the image and the dynamic range of the 

available brightness values. Then it goes and applies the linear 

transformation formula to every pixel in the image. Specifically, here we 

apply it to each channel separately, utilizing the vectorization capabilities 

of MATLAB. We calculate for each channel xlow and xhigh and we apply the 

linear transformation formula. We store the result in an array, which we 

initialized with zeros, and convert its values to uint8, so that it can be used 

as an image and not as a simple array with double values. 

Now that we have the function to calculate the linear transformation, we 

need to apply it to all the images in our dataset. We will apply the function 

per darkness level, saving the results in separate folders, which we will 

then use to evaluate the method. The scripts where we apply the function 

are presented in the following images. 

 

Figure Β.2.2: Script to apply linear transformation to the training data 
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Figure Β.2.3: Script to apply linear transformation to validation and test data 

 

In all cases we read the images and put them into a datastore, and calculate 

the size of the datastore (needed for the loop). Then, for each image of each 

set, we apply the linear transformation function, and save the result in a 

suitable folder, with the same name as the original LL image. Note that the 

script is executed 5 times, once for each darkness level, each time having 

the respective darkness level out of comment. 
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After this process is completed, we have at our disposal the experimental 

results of the linear transformation method. For these results we will 

calculate the metrics we mentioned above so that we can evaluate the 

performance of the algorithm. To calculate the metrics we applied the script 

presented in figure B.2.4. 
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Figure Β.2.4: Linear transformation valuation script 

 

We start by reading the ground truth, and experimentally produced images, 

for the training set, and store them in image datastores. Then, we use the 

assessment function, which we described above, and calculate the matrix 

with the metrics for each image of each datastore, saving the results in an 

excel file. We apply the same procedure for the validation and test sets. 
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 Gamma Correction 

 

Figure B.2.5: Implementation of the gamma correction algorithm 

 

The function accepts as input the LL image to which we want to apply the 

gamma transformation, as well as the value of the correction constant. It 

then converts the image to the double data type, which is needed to do 

arithmetic operations, and then applies the transformation. We divide the 

image values by 255 so that the number we raise to γ is in the range [0,1], 

then raise to the correction constant and multiply by 255 so that the result 

is in the range [0,255]. Finally, we round the result and convert it to uint8, 

since we want to return an image and not just a matrix with values. 

We will apply this function to enhance the LL images, which we do with 

the script shown in the following images. First, we read the images, where 

we want to apply the algorithm, using Image Datastore. Then, for each 

image contained in the Datastore, we apply the function and store the result 

in a folder in an appropriate path, applying the function 3 separate times, 

one for each value of the correction constant. We execute this script 5 

times, once for each brightness level, and we follow the same procedure 

for the validation and test datasets, as shown in figure B.2.7. 
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Figure Β.2.6: applying gamma correction to training dataset 

 

After this process is completed, we have the experimental results of the 

specific method, and we can apply the evaluation algorithm, as presented 

in the previous section. Here it is configured a bit differently, as we have 3 

different experiments (3 different correction constants). The script we 

apply for the evaluation is shown in figure B.2.8. 
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Figure Β.2.7: applying gamma correction to validation and test datasets 
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Figure Β.2.8: Assessment script for Gamma correction algorithm 

 

As in the case of the linear transformation, we read the ground truth images 

as well as the results of the experiments, using Image Datastores, and apply 

the assessment function, which we described in the chapter 1. This process 

is done 3 times, once for each value of the correction constant, and we 

repeat it for the validation and test sets as well. We save the results in excel 

files, which we will use for the summarization. 

 

Log Correction 

The function with which we implement the logarithmic transformation is 

shown in figure B.2.9, which follows below. This function takes as input 

the LL image and the value of the constant c. First, it converts the data type 

of each pixel value to double, so that we can do arithmetic operations 

freely, and divides by 255 so that the values of each pixel are in the range 

[0,1]. Then we apply the logarithmic function, as presented in chapter 2, 

and multiply the result by 255, so that the values are in the range [0.255]. 

Finally, we convert the result to data type uint8, since we want to return an 

image, and not a simple matrix of values. 
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Figure Β.2.9: Implementation of the log correction algorithm 

 

 

We will apply this function to all LL images, for each darkness level, which 

is done by applying the scripts shown in images B.2.10 and B.2.11. As we 

can see, each script reads the images for the darkness level we are 

interested in, using the image datastores of MATLAB. It then counts the 

number of images contained in the dataset, which is used to loop over those 

images. Inside the loop we read the respective LL Image of the datastore, 

apply the log correction function and save the result in a suitable folder. 

We apply this loop 3 times, once for each value of the parameter. In 

addition, we execute these scripts 5 times, once for each darkness level 

case, uncommenting each time the path of the darkness level we are 

interested in. 
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Figure B.2.10: script for applying log correction to training dataset per darkness level 
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Figure B.2.11: script for applying log correction to test dataset per darkness level 

 

After this process is completed, we will have the experimental results 

available. Based on these we will evaluate the performance of the method, 

which is done by applying the script shown in figure B.2.12. We read the 

ground truth images and experimental results, using Image Datastores, and 

apply the assessment function. The results of the function are saved in an 

excel file, with an appropriate name, which has a sheet for each darkness 

level. This procedure is applied for each value of the control constant, and 

for each set (training, validation and test), so at the end we will have 9 excel 

files that we can work with. 



 

 467 



 

 468 



 

 469 



 

 470 

 

Figure Β.2.12: Assessment script for Log correction algorithm 
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Histogram Equalization 

The function with which we implement the histogram equalization is 

shown in figure B.2.13 below. 

 

 

Figure B.2.13: Implementation of histogram equalization 

 

In this particular case, we do not implement the method from scratch, but 

use the ready-made MATLAB function, as it will be much faster and 

optimized than any attempt at a custom implementation. The histeq 

function of MATLAB expects in its input a grayscale image, and for this 

reason we apply per-channel equalization of the input image. So, the 

function shown above accepts as input the LL image that we want to 

enhance. It then separates the channels of the input image, and applies 

histogram equalization to each of them separately. Then, we simply define 

a matrix with the same dimensions as the input image, and store there the 
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result of the histogram equalization. Finally, we convert this matrix to uint8 

data type, since we want to return an image and not just a table of values. 

We apply this function to each image of the data set with the scripts 

presented in Figures B.2.14 and B.2.15. 

 

 

Figure B.2.14: script for applying ΗΕ to training dataset per darkness level 

 

As we can see, we read the images using Image Datastores, find the size of 

the set, information that we will use in the following loop. Inside the loop, 

we apply HE to each image in the dataset and save the result to an 

appropriate folder. We apply this script 5 times, once for each darkness 

level, uncommenting the appropriate line each time. 

We apply the same procedure for the validation and test sets, as shown in 

figure B.2.15. 
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Figure B.2.15: script for applying ΗΕ to validation and test datasets per darkness level 

 

Then we have to calculate the metric evaluations for the results obtained 

from the above, This is done with the script shown in figure B.2.16. 
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Figure Β.2.16: Assessment script for HE 
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We read the ground truth images and experimental results, using Image 

Datastores, and apply the assessment function. We save the results in an 

excel file with a suitable name, with each sheet corresponding to a darkness 

level. We apply this process for all three cases (training, validation and test 

sets), so at the end of the process we will have 3 excel files that we can 

work with. 

 

Single Scale Retinex 

The function that implements the Single Scale Retinex method is shown in 

figure B.2.17 below. The function takes as input the LL image we want to 

enhance, as well as the value of the constant c needed for the surround 

function. Then we convert the image into a double data type, which is 

needed for the operations, and we normalize the values by dividing by 255. 

At this point, let us comment that we also add a very small value, here 0.01, 

because then we will apply a logarithmic function, which at 0 goes to 

infinity, and we want to avoid that. Then we construct an empty table, with 

the same dimensions as these images, and there we store the values of the 

surround function. Then, we apply the operation we saw in chapter 2 to 

calculate R, on each channel of the image, and convert the final result to 

uint8, since we want to return an image and not just an array of values. 

We will apply this function to all images in the dataset. This is done with 

the scripts presented in images B.2.18 and B.2.19. 
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Figure B.2.17: Implementation of SSR 
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Figure B.2.18: script for applying SSR to training dataset per darkness level 
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Figure B.2.19: script for applying SSR to validation and test datasets per darkness level 
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In both cases we read the LL images using Image Datastores, and apply the 

SSR function to each image in the respective dataset. Note that since there 

is no ideal value of the constant c, we apply the method 3 times, for 3 

different values of the constant. The results are saved in a folder with an 

appropriate name. In addition, we apply the method per darkness level, so 

we run the script 5 times, once for each darkness level, uncommenting the 

appropriate line each time. We apply this procedure for all sets (training, 

validation and test). 

After applying this script, we have at our disposal the experimental results 

per darkness level and per value of the constant c. We will use these images 

to calculate performance metric values. This is done with the script shown 

in Figure B.2.20.  
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Figure Β.2.20: Assessment script for SSR 
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We read the experimental results as well as the ground truth images, using 

Image Datastores, and apply the assessment function that calculates the 

values of the metrics per image. The result is saved in an excel file with a 

suitable name. This procedure is applied for all darkness levels, so the final 

excel will have 5 sheets, one for each darkness level. In addition, this 

procedure is applied for all values of the constant c and for all sets (training 

validation and test), so at the end we will have 9 excel files that will each 

have 5 sheets, one for each darkness level. This data can then be used to 

evaluate the performance of the algorithm. 

 

Multi Scale Retinex 

The function that implements the MSR method is shown in figure B.2.21 

below. The function takes as input the LL image that we want to enhance, 

as well as the 3 values of the constants c that the method needs. Then we 

check if the values of the constants belong to the desired range, and if they 

don't then the algorithm stops and displays a relevant error. If the values 

belong to the range we want, then we define an empty table with the same 

dimensions as the input image. Then we apply the method per band. 

Specifically, we apply the Single Scale Retinex function, described above, 

for each value of the constant, sum the results and divide by 3. Finally, we 

convert the result to uint8, since we want to return an image and not just 

an array of values. 
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Figure B.2.21: Implementation of ΜSR 

 

We will apply this function to all images in the dataset. This is done with 

the scripts presented in Figures B.2.22 and B.2.23, below. 
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Figure B.2.22: script for applying ΜSR to training dataset per darkness level 

 

We read the images using Image Datastores and then apply the method to 

each image in each set. For values of the constants we use 10, 120 and 400, 

which are also the experimental values we used in the case of SSR. The 

results are saved in an appropriate folder. We apply this process 5 times, 

once for each darkness level, uncommenting the appropriate line each time. 

We apply the same procedure for the validation and test sets, as shown in 

figure B.2.23. 
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Figure B.2.23: script for applying ΜSR to validation and test datasets per darkness 

level 

 

After applying this procedure, we have the experimental results at our 

disposal. Based on these we will calculate values of performance metrics, 

which will be used to evaluate the algorithm. This is done with the script 

shown in Figure B.2.24. 
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Figure Β.2.24: Assessment script for ΜSR 
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We read the experimental results and ground truth images using Image 

Datastores, and apply the assessment function to calculate the metrics. The 

results are saved in excel files with a suitable name. We apply this process 

per darkness level and per set (training, validation, test) so at the end we 

have 3 excel files (one for each set), each of which has 5 sheets (one for 

each darkness level) with the values of the metrics per image. 

 

Dehaze 

The function that implements the LLIE with Dehaze method is shown in 

figure B.2.25 below. 

 

 

Figure B.2.25: Implementation of Dehaze LLIE algorithm 

 

The function takes as input the LL image we want to enhance, calculates 

the dimensions and converts it into a double data type needed for the 

calculations. It then inverts it and applies MATLAB's imreducehaze 

function. This function applies a dehazing algorithm. We used a ready-

made MATLAB function and did not implement it from scratch for 
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optimization reasons. Finally, it reverses the result of dehaze again, 

converts it to uint8 and this is the final result returned. 

We will apply this function to all images in the dataset. This is done with 

the scripts presented in images B.2.26 and B.2.27. 

 

 

Figure B.2.26: script for applying dehaze to training dataset per darkness level 

 

We read the LL images using Image Datastores and apply the function to 

each image in the set. The result is saved in a folder with an appropriate 

name. We apply this procedure to each darkness level, i.e. we run the script 

5 times, uncommenting the appropriate line each time. We apply the exact 

same procedure for the validation and test sets, as shown in image B.2.27. 
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Figure B.2.27: script for applying dehaze to validation and test datasets per darkness 

level 

 

Upon completion of this process, we have at our disposal the experimental 

results, which we will use to calculate performance metrics. This is done 

with the script shown in Figure B.2.28 below. 
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Figure Β.2.28: Assessment script for Dehaze 
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We read the experimental as well as ground truth images using Image 

Datastores, and apply the assessment function to each image in the set. The 

results are saved in an excel file with an appropriate name. We apply this 

procedure for all darkness levels and for all sets (training, validation, test). 

So in the end we will have 3 excel files (one for each set) that will have 5 

sheets (one for each darkness level). 

 

B.3: Chapter 3 Code 
 

LLCNN – Original Architecture 

The architecture we study consists of a series of convolutional modules. 

The implementation of the convolutional module is shown in figure B.3.1 

below. 

 

 

Figure B.3.1: Implementation of the convolutional module 

 

We see that the function takes as input the output of the previous layer, as 

well as the number of filters, which if not defined then is by default 64. 
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First, we define the inception based part, with the left part consisting of the 

two convolutional layers with 64 filters and 3x3 each, with the output 

passing through a ReLU function, and the right part consisting of a 1x1 

convolutional layer with 64 filters. We then add these two outputs, with the 

result passing through the Residual Learning based part. This part consists 

of two 3x3 convolutional layers with 64 filters and ReLU activation 

function, as well as a shortcut connection that is added to the result of these 

two layers. As output, the function gives the output of the module, which 

will be passed to the next layer. 

Based on this we can define the overall architecture of the model, which is 

shown in figure B.3.2 below. 

 

 

Figure B.3.2: defining the LLCNN architecture 

 

As input, the function takes the input tensor, which we define next, and its 

size depends on the data set we use, as well as the number of convolutional 

modules we want the architecture to have, with the default being 5. First, 

we define the pre-processing 1x1 convolutional layer, which will consist 

of 64 filters and will have a ReLU activation function. The output of this 

layer then goes through the series of convolutional modules we defined 

above. Finally, the result goes through a 1x1 convolutional layer, which 

consists of only 3 filters, since we are studying RGB images. 

Having defined the architecture, we can initialize and train the model. The 

initialization is shown in figure B.3.3 below. 
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Figure B.3.3: initialization of the DL model 

 

First, we define the input of the model, which will have the same size as 

that of the respective image. Then we initialize the LLCNN architecture, 

where at this point we choose the number of convolutional modules we 

want it to have (1, 3 or 5). Next, we group the input layer and the LLCNN 

architecture, and then define the error function as well as the minimization 

algorithm to use. For simplicity we use MSE as the error function, and 

SGD as the optimizer. Finally, we compile the model, and we can proceed 

with its training. 

To train the model we need to read and normalize the data. This is done as 

shown in figure B.3.4 below. 
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Figure B.3.4: reading and normalizing the training and validation data 
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First, we read the training set we are interested in (since we have 5 different 

darkness levels) and normalize them by dividing by 255. Then we apply 

the same process to the validation data. Upon completion of this process 

we have at our disposal what we need to train the model, which is done as 

shown in figure B.3.5. 

 

 

Figure B.3.5: training of the LLCNN model 

 

Due to a lack of computing resources, the training is only done for 10 

epochs with the batch size also being 10. With the completion of this 

process, we can apply the trained model to the test set to evaluate its 

generalization ability. First we read and normalize the test set, in the same 

way we applied for the training and validation sets (figure B.3.6). 

 

 

Figure B.3.6: reading and normalizing the test set 
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We then apply the model to the test set, and save the results in a suitable 

folder so that we can later use them to evaluate the method. 

 

 

Figure B.3.7: applying the model to the test set and saving the results 

 

Upon completion of this process, we have the experimental results 

available, which we can use to calculate performance metrics. This is done 

with the script shown in Figure B.3.8 below. 
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Figure B.3.8: Assessment script for test set 

 

We first read the ground truth and experimental images using image 

datastores, and then apply the assessment function to calculate the 

performance metrics. The results are saved in a suitable excel file that will 

be used later for the construction of summary tables. We apply this process 

for each darkness level and each number of convolutional modules, so at 

the end of the process we will have 3 excel files (one for each number of 

modules) with each having 5 sheets (one for each darkness level). 
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LLCNN – 1st variation 

We follow exactly the same process as the original LLCNN architecture, 

with the only difference being the schema of the architecture as well as 

some choices of the training process. The architecture in this case is shown 

in figure B.3.9 below. 

 

 

Figure B.3.9: first variation of the LLCNN architecture 

 

We see that the implementation is exactly the same, with the only 

difference being that we have added three 1x1 convolutional layers 

between the convolutional modules and the output layer. The number of 

filters in these layers can be defined by the user, but we will use 64. The 

purpose of these filters is to act as a post-processing step, possibly 

increasing the performance of the model. The next steps are exactly the 

same as the previous case, with the only difference being that we train the 

model for 20 epochs instead of 10. 

With the completion of the whole process, we have at our disposal the 

experimental results. These can be used to calculate performance metrics, 

which is done with the script shown in Figure B.3.10 below. 
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Figure B.3.10: Assessment script for the test set 

 

The process is the same as in the previous case, and in the end 3 excel files 

(one for each number of convolutional modules) with 5 sheets each (one 

for each darkness level) result. These files will be used to build summary 

tables, based on which we will evaluate the performance of the model. 
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LLCNN – 2nd variation 

As we mentioned in chapter 3, the model will be trained taking as input the 

classic LL image input and as output the difference of the LL image from 

the ground truth case. As an architecture we will use the first variation we 

described above, so the only thing that changes is the data handling we do. 

This is shown in the figures below. 

 

 

Figure B.3.11: data handling for the training data 

 

We see that we read the data in the same way as before, and then calculate 

the difference between the ground truth image and the LL image, which 

will be the output of the model. We follow the same procedure for the 

validation data, as shown in figure B.3.12. 
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Figure B.3.12: data handling for the validation data 

 

Once we have the data ready in the format we want, we need to train the 

model. This can be seen in figure B.3.13 where we see that as input we 

give the LL images, while as output we now have the differences we 

calculated above. The training is done for 20 epochs, as in the previous 

case. 

 

 

Image B.3.13: training of the model 

 

After completing the training of the model, we need to apply it to the test 

data to evaluate its generalization ability. First, we apply the model to the 
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test data to calculate the appropriate difference e for each image, and then 

we add this predicted difference to the test LL images to produce the final 

experimental images. This process is shown in figure B.3.14. 

 

 

 

Figure B.3.14: making predictions on the test set 

 

After the final experimental images are produced, we save them in exactly 

the same way as we analyzed in the first variation. These images will be 

used to evaluate the method, calculating the evaluation metrics we 

mentioned above. The metrics are calculated using the script shown in 

Figure B.3.15 below. 
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Figure B.3.15: Assessment script for test set 

 

We start by reading the ground truth images as well as the experimental 

results for each case of number of convolutional modules, using the feature 

of image datastores. Then we apply the assessment function to calculate 

the metrics, saving the final results in excel files. At the end of the process 

we have at our disposal 3 excel files (one for each case of number of 

convolutional modules) with each one having 5 sheets, one for each 

darkness level, which will be used to construct summary tables and 

diagrams for the evaluation of the method. 
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