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ABSTRACT 
 

The exploitation of wind energy potential for the production of electrical energy from 

renewable sources has been in a continuous uptrend since the beginning of the 21st century. 

The demand for larger, more efficient and safer wind turbines has stimulated research on a 

multitude of fields, ranging from composite materials to automation control systems. A 

challenging aspect in the operation of all energy production systems is the uninterrupted and 

optimal power generation, which can be realized through the implementation of different 

condition monitoring methods. Likewise, condition monitoring in wind turbines enables 

operators to obtain real-time operation data, keeping track of the system’s health and 

intervening with preventive maintenance when deemed necessary. Emphasis is given on both 

structural and functional condition of wind turbines, implementing methods that require the 

least downtime for fault diagnosis and classification. In this master’s thesis a bibliographic 

review and categorization of modern (State-of-the-Art) model-based methodologies for 

performance and condition monitoring will be carried out. 
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INTRODUCTION 
 

Energy has been a crucial factor in the development of mankind and the driving force of its 

ability to attain high standards of living. From pre-industrial society to the energy devouring 

civilization of the Anthropocene, the need to consume and thus produce more energy has been 

on an unstoppable uptrend as can be seen in Fig.1[1]. Significant shifts in economic and social 

structure can be traced back to the invention and utilization of new energy production methods 

and technologies. The first industrial revolution was mostly a result of the steam engine’s 

introduction to the world and the production capabilities that arose from it. In the same fashion, 

the second industrial revolution was mostly the result of the introduction of the internal 

combustion engine and the emergence of electrification. In both cases the result was a 

significant increase in energy production capability, through fossil fuel reserves utilization. 

Fossil fuels like coal and oil reserves have been formed through heat and pressure applied on 

organic matter over the course of millions of years, and as products of such a process their 

finite nature is evident. 

 

By the late 19th century, the introduction of electricity for residential and industrial use, has led 

the foundation of the society as we observe it in the present. Following the invention of the 

steam turbine in 1882, that in its principle is still used today, electricity generation became 

possible through utilization of steam produced using coal and oil. In the mid-20th century, 

another improvement in mankind’s capacity to produce energy took place, initially as a 

byproduct of the ongoing nuclear arms race, with the introduction of nuclear power reactors. 

Utilizing nuclear fission to heat water, thus producing steam that eventually would drive a 

steam turbine producing electrical energy. Though the then expected escalation in nuclear 

power utilization ultimately did not take place, as opposition to its use became evident 

following limited but significant safety incidents. 

 

For the most part of the last two centuries, the means of energy generation has been solely 

dependent on fossil fuels. As more often than not in nature, everything comes with a cost. 

Heavy industrialization along with rampant consumerism, made possible by the extensive 

energy generation capabilities of the last century, are taking a toll on earth’s climate. Fossil 

fuel combustion is the lead source of direct carbon dioxide emissions, through the years 1960-

2018, in the region of European Union[2]. Carbon dioxide (CO2), the most prominent of the 

greenhouse gases, has the ability to absorb and emit infrared radiation, consequently trapping 

energy that heats the lower part of the atmosphere. Greenhouse gases along with heat radiated 

back from the atmosphere, are a part of the natural greenhouse effect that drives earth surface 

temperature to around 15⁰C on average. While natural occurring greenhouse gasses 

concentration is beneficial for sustaining living conditions on earth, the increased human-

induced greenhouse gasses are increasing temperature on earth’s surface and subsequently rise 

sea’s level along with possible increase in the occurrence frequency of natural phenomena like 

droughts and storms[3]. 

 

The global need for decarbonization has put alternative energy sources at the forefront of public 

and technological discourse. More specific renewable energy sources, that as the name 

suggests, have the characteristic of being naturally replenished at a higher rate than that of 

being consumed. There is a wide range of renewable energy sources that are in different 

commercialization status levels, from mature and economically competitive to those that are 

still in research or escalation phase, currently used for electricity generation. 
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Figure 1: Power production 1800-2021 

 

Hydroelectricity, electrical power generated by the utilization of fast flowing water 

(hydropower). A hydroelectric power station complex usually involves a dam and a water 

reservoir formed by it. By converting the potential energy of dammed water to kinetic through 

guiding it by pipes at the lower part of the dam, the spin of a turbine coupled to a generator is 

made possible, thus resulting in electricity generation. 

 

Geothermal, electrical power generated from the utilization of geothermal energy. Inside a 

geothermal power station, steam produced by hot water flowing up from a geothermal reservoir 

is used to drive steam turbines, eventually generating electricity.  

 

Tidal, electricity generated by utilizing the tides. Tidal forces are a result of gravitational 

attraction variations between Sun, Earth and the Moon. The most used method includes tidal 

stream generators, turbines that are similar to the wind turbine, utilizing the kinetic energy of 

flowing water to generate electrical power.  

 

Solar, electrical power generated from the direct conversion of sunlight. By utilizing the 

photovoltaic effect, solar panels can convert light directly into an electric current. A 

photovoltaic power station usually is comprised of large arrays of solar panels and their 

subsequent electrical support equipment. 

 

Wind, electricity generated by harnessing the kinetic energy of the wind. A wind farm is 

usually comprised of a group of wind turbines, which utilize wind energy to spin a rotor that is 

coupled to a generator, thus producing electrical power. 

 

Biomass, electrical power generated by the direct combustion of biomass. Energy crops 

alongside some food crops are harvested and then burned to produce steam, which in turn drives 

a steam turbine producing electricity. 

 

The above renewable energy sources along with alternative but not renewable energy sources 

like nuclear power, are contributing increasingly to the global energy mix in an attempt to 

mitigate the effects of fossil fuel usage. Some of them, like hydropower and solar are well 

established electricity generation methods, contributing 15.2% and 3.7% respectively in global 

electricity generation. On the other hand, generation methods like tidal are under development, 

researching the opportunities and feasibility of these power generation methods. Lastly there 

are methods that in recent years have passed the experimental stage and are now in full 
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commercialization status. In particular, the wind energy sector has been developing rapidly in 

the last few years, mostly because of the apparent advantages seen in its utilization. It has come 

to contribute 6.6% to global electricity generation and is projected to keep increasing in the 

future.  

 

Wind is an inexhaustible energy source that is readily available in most parts of the world, thus 

making the selection of proper geographical location for the installation of wind parks, a matter 

of collecting and processing environmental and wind data. Overall, wind conversion to 

electricity has a high energy conversion efficiency, with commercial wind turbines operating 

at efficiency ranges of 40-50%, pushing the boundary more and more near Betz’s Law 

theoretical maximum of 59%. Furthermore, in contrast to most of the other sources of energy, 

the process of converting wind’s kinetic energy to electricity does not require the use of water. 

It is projected that by 2030 the replacement of fossil fuel in the energy mix, by wind turbines, 

will result in 1.22 billion m3  less water consumption per year[4]. Another big advantage is that 

wind energy is space efficient, meaning that even though wind farms can occupy a lot of space, 

wind turbines themselves just need to be spaced at specific distances leaving free space 

between. This enables the utilization of this free space for other purposes, like farming, in 

contrast to solar farms that fully occupy a lot of space.  

 

This fact along with the high wind availability in remote locations, far from urbanized 

territories, also makes small to medium wind turbines the perfect solution for microgrid 

integration in farmlands or small communities. Off-grid configuration of wind farms extend 

the use of wind turbines to more remote applications in these areas, such as water pumping etc. 

Another similar application, though in utility scale, is the production of hydrogen through 

electrolysis using electricity generated by off-grid wind farms. It is forecasted that there will 

be a significant growth of wind farm electricity generation dedicated to hydrogen production 

by 2050[5]. 

 

There are though a couple of problems arising from wind farm installations, such as noise 

pollution and visual disturbance. Noise produced by the rotating blades of wind turbine can 

potentially have a negative impact on local wildlife, and more specific it can disrupt wildlife’s 

survival mechanisms[6]. Also, there are varied reactions to the sight of wind farms in rural 

areas, with some people holding a negative opinion on how wind turbines alter aesthetically 

the natural environment. The wind energy sector is implementing different ways to try to 

address those issues, from control algorithms that optimize rotor speed and pitch angle to keep 

noise levels low, to neutral coloring and arraying in a visually pleasing manner. A partial 

solution to both issues referenced has also been given by offshore wind farms, that allow the 

use of sea territories for wind turbine installation. 

 

Off-shore wind farm installation from 1991 and onwards, has also enabled the use of much 

larger wind turbines than on-shore, resulting in greater wind energy capture. Combined with 

winds of higher speeds and more consistent direction at sea, offshore farms provide such an 

advantage in power generation, that overcome the higher construction costs and significant 

maintenance operation difficulties. It is projected that by 2050 electricity produced by offshore 

wind farms will account for 34% of global electricity generation. 

 

Lastly, wind energy penetration has been also boosted by recent progress on battery 

technology, that has made feasible the integration of BESS (Battery Energy Storage System) 

to the existing power grid. Battery storage helps to mitigate one of the most prominent 

disadvantages of wind energy, power fluctuations caused by the intermittent nature of wind. 
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This is accomplished by providing short-term and long-term energy storage, thus increasing 

the reliability of wind energy, resulting in matching energy demand even in low wind time 

periods. 

 

The practical and economic advantages of wind energy have led to an increase of global wind 

power capacity by 102 GW in 2021 as can be seen in Fig.2, mainly driven by China and 

followed by Europe and the US in wind turbine installations.  

 

 
Figure 2: Wind power global capacity 

 

Consequently, this uptrend has been the driving force for research and innovation in a multitude 

of different scientific and technological fields. The need for bigger, more efficient and safer 

wind turbines has led to research ranging from the field of composite materials to this of control 

systems and automation. Off-shore wind turbine installation has allowed rotors of bigger 

diameter to be installed in wind turbines, thus challenging the blade manufacturers to scale up. 

Followed by advancements in blade construction techniques and materials, that resulted to the 

production of blades going up to 107 meters long. Advancements are also occurring in control 

systems field, where the utilization of advanced control methods together with the use of real 

operation data in model simulations have led to the increase of stability and efficiency of wind 

turbines[7].  

 

Like all power generation plants, wind turbines consist of many subsystems, sensors and 

actuators, that offer operational real-time data. In an ongoing pursuit of cost effective, optimal 

and uninterrupted wind energy generation, the need for performance and condition monitoring 

systems utilizing those data, is paramount. The ability to monitor the efficiency and health of 

a wind turbine offers many advantages, from the crucial function of fault detection to predictive 

maintenance methods that heavily reduce downtime and O&M costs. In this direction, there is 

ongoing research on the leading methods of performance and condition monitoring, from 

classic vibration analysis to model-based techniques. The aim of this thesis is to review and 

categorize these modern model-based methodologies, used for performance and condition 

monitoring, offering a solid insight in this field.  
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1. THE WIND TURBINE 
1.1 A BRIEF HISTORY 

 

The utilization of wind power and its harvest to produce work has been known to mankind 

since ancient times. From the sailing ships that ruled the seas for almost two millennia, to 

various windmill structures utilized to replace human and animal work, wind power has been 

a prime mover until the emergence of fossil fuels. Earliest accounts of such wind powered 

machines place their origin in ancient Persia, where the panemone windmill, a kind of vertical 

axis windmill design, was used primarily as grain grinder. From that point onward the 

utilization of windmills spread to Europe and China, evolving in the process and finally 

forming the more common horizontal axis windmill. 

 

The use of horizontal-axis windmills beginning around 12th century in Europe, has provided 

the necessary mechanical work for processes like cereal grinding and irrigation. The windmill 

was comprised by the main structure on which the horizontal windshaft was mounted, sails that 

were initially made of cloth and eventually replaced by connected wooden shutters, were 

attached to the windshaft. Wind would eventually spin the windshaft, that subsequently through 

various gears and shafts, would transmit the motion to the millstones grinding the grain. 

Windmills became popular in Europe and continued to serve as prime movers until mid-19th 

century, when the industrial revolution would eventually replace them through the use of steam 

engine and later the internal combustion engine. For the next few decades, interest on wind 

power and wind powered machines became stagnant, as the convenience of mobility and 

availability that the new internal combustion engines were offering was winning the race 

against wind’s intermittent nature and windmill’s stationary structure. 

 

 
Figure 3: Brush’s windmill  

 

Revitalized interest appeared as rapid spread of electrification became evident in early 20th 

century, alongside continuous development in the field of aerodynamics, driven mostly by the 

pioneering airplane development. Electricity generating windmills considered the last 

development stage of the continuously evolving windmill design, was seen as a perfect solution 

for electrifying remote areas and habitats, that their connection to main grid was either not 

possible or not financially viable at the time. In 1887 a pioneer of modern wind energy, Charles 

F. Brush invented a 12kW electricity generating windmill, seen in Fig.3, utilizing a direct 
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current generator and considered to be the first fully automatically operating windmill in the 

world. It had a rotor with a diameter of 17m, consisting of 144 blades made of wood and was 

operational for twenty years until 1908. While being a landmark in modern wind energy 

development, Brush’s windmill also demonstrated the limited effectiveness of multi-blade low-

speed rotors in electricity generation.  

 

Forward to 1891 when Danish professor Poul LaCour was appointed to the experimental station 

of Askov, conducting research on wind turbine systems. He developed a four-bladed wind 

turbine that generated DC electricity, with different power configurations ranging from 5kW 

to 25kW. LaCour was also the first to use a wind tunnel to test the designs of his rotors, enabling 

him to better experiment in the concepts of aerodynamics. Many of his wind turbines were 

operational in Denmark by 1910, mainly on remote agricultural and village areas[8]. By 1930 

we have the first appearance of the concept that came to form the modern horizontal axis wind 

turbine (HAWT), Marcellus and Joseph Jacob’s three-bladed wind turbine. It had both a 32V 

and a 110V DC configuration and could produce up to 3kW, while the production of these 

models continued until 1957. 

 

 
Figure 4: Different types of wind turbines 

 

As research and development in the field of wind turbines rekindled in the early parts of 20th 

century, two very different and innovative types of wind turbines emerged as can be seen in 

Fig.4, the Savonius and Darrieus types. In 1922 a Finish engineer named Sigurd J. Savonius 

developed a new kind of vertical axis wind turbine (VAWT), implementing what later came to 

be known as the Savonius rotor. The rotor was formed in an S-shaped cross section, many times 

constructed by two halves of a cylinder cut longitudinally and then joined together on opposite 

edges, capturing wind from any direction and utilizing drag as the force for moving the rotor. 

Although a relatively easy to build device, documented power coefficients in the range of 0.18-

0.23 along with heavy weight were some of the obstacles towards mass adoption of this wind 

turbine type.  

 

Four years later in 1926, French aeronautical engineer Georges Darrieus develops another type 

of VAWT that later became known as the Darrieus wind turbine. This time the rotor consisted 

of two curved blades joined at their edges to a vertical shaft, this concept enabled wind capture 

from any direction and transmission of torque to the generator housed below the rotor. At that 

point wind turbines had already become a generally reliable DC electricity generation method 

mainly for battery charging applications, but their use mainly continued in remote locations 

not able to be connected to the main grid. The next big advancement in wind turbine 

development came as the result of pushing forward towards large scale electricity production 

using wind turbines. By 1931 the first fully interconnected to the AC utility grid wind turbine 
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was developed in USSR, the 100kW Balaclava wind turbine with its 30m diameter stayed in 

operation for two years.  

 

In the other side of the Atlantic Ocean, Palmer C. Putnam began developing a 1.25MW wind 

turbine during the late 1930s. In cooperation with Smith Company, an experienced 

manufacturer of hydroelectric turbines, Putnam managed to construct a prototype of his wind 

turbine at Vermont, USA by 1941. It had a 53m rotor diameter and a 37m truss tower, while 

introducing some of the key elements of modern wind turbines, such as full blade pitch control, 

two-bladed teetered rotor hub and active yaw control. It operated for 1000 hours, until a bearing 

failure along with wartime production obstacles lead to its prolonged standstill in 1943 and 

eventually to its permanent cease of operation in 1945. Nevertheless, it retained the first place 

as the world’s largest wind turbine constructed for a staggering four-decade period until 1979. 

 

Wind power enters again a period of low interest until the early 1970s, mostly as a result of 

inexpensive fossil-fuel usage, but various research and engineer teams in Denmark, Germany 

and USA continue designing and constructing wind turbines at a slower pace. Moving forward 

renewed interest and development advancements re-emerge along 1973’s global oil crisis, 

leading the U.S. Department of Energy to formulate a plan under which research and 

development of new wind turbines would take place. It included a three-stage research and 

development process, in order to identify design issues and gather operational data, then put to 

the test new designs based on the previously gathered knowledge and finally pushing on for 

performance and reliability optimization. Additionally, trying to cover the full market spectrum 

possible utilization, it opted for development of various sizes, from small to large scale utility 

ones[9].  

 

The first product of this plan was the construction of the Mod-0 experimental HAWT, a 100kW 

wind turbine with 38.1m rotor diameter, by a NASA engineering team in Lewis Research 

Center. It was a two-bladed downwind rotor position HAWT, with a modern nacelle design 

housing the necessary equipment like the gearbox and the synchronous generator, that also 

implemented full blade pitch control and automatic yaw control system. Mod-0 became the 

testbed for many different theories and approaches in hardware and software configurations, 

from probing into variable-speed constant-frequency (VSCF) operation to validating 

computer-based models and control algorithms. It remained operational from 1975 to 1987, 

producing extensive operational data and knowledge in the direction of modern wind turbine 

design. Development of wind turbines under the Federal Wind Energy Program continued 

through Mod-1 & Mod-2 eventually to 3.2MW Mod-5 HAWT, the first ever large-scale wind 

turbine operating at variable-speed constant-frequency mode, thus enabling greater wind 

energy capture[9]. Same progress was also seen in Europe were in countries like Denmark, 

Netherlands and Germany government-driven projects led to the construction of various wind 

turbine prototypes. A few examples include the Swedish 2.5MW KaMeWa HAWT installed 

on the island of Gotland, the German 360kW Monopteros HAWT installed on 1981 and the 

British 3MW LS-1 HAWT installed in 1987.  

 

Development continued through the 1990s with wind turbine prototypes reaching tower heights 

of 60-70m high and rotor diameters of 70-80m. Three-bladed rotors were established as the 

new norm, while blade pitch control and active yaw control came to be crucial subsystems for 

operational efficiency and optimal control. In 1991 the first offshore farm was constructed off 

the coast of Denmark, consisted of eleven 450kW wind turbines that were operational for 26 

years until their decommissioning in 2017, showing the way to even larger wind turbine 

development. Off-shore wind turbine installations also pointed out many and serious 
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challenges, that came to be with increasingly larger wind turbine designs and remote location 

installations under harsh environmental conditions. 

 

The knowledge gathered in the last two decades of the 20th century has been crucial on the path 

to commercialization, that begun in the early 21st century, providing robust foundation for the 

wind energy sector expansion that followed. By 2000 the common modern wind turbine had 

already taken form as a three-bladed upwind rotor position HAWT, capable of VSCF 

operational mode and delivering power output in the range of megawatts.  

 

 
Figure 5: GE's Haliade-X wind turbine prototype 

 

High rate of wind energy adoption of the last two decades, has stimulated constant research 

and development on wind turbine systems, enabling larger, more efficient and more reliable 

wind turbine designs. In 2019 General Electric commissioned its first Haliade-X prototype on 

the shore of Rotterdam’s port, seen in Fig.5, that eventually became the first wind turbine to 

achieve rated power of 14MW. The Haliade-X has a rotor diameter of 220m and a total 

combined height of 260m, effectively becoming the biggest wind turbine globally in operation. 

It will be utilized in the first offshore wind fam in the USA outside the shore of Massachusetts, 

where 64 units will be constructed resulting in a nameplate capacity of 804MW.  

 

Continuous development in the fields of aerodynamics, electrical equipment and control 

systems has enabled the design of the modern wind turbine and will ensure further development 

in the future of wind turbine design and construction. Latest developments mostly target cost-

effective along optimal and reliable wind energy utilization, contributing even more on wind 

energy’s penetration to the global energy mix. 
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1.2 MODERN DESIGN 

 

As a result of continuous development and improvements over the past years, the modern wind 

turbine design has been commercially mass produced from the early 21st century to the present 

day. The most common commercial type implements the HAWT configuration and 

consequently this type will be used as a reference design for parts and equipment discussed on 

the rest of this thesis. Some of the modern HAWT’s main characteristics are the tubular tower 

made of multiple steel sections that implements a conical shape, the nacelle structure that 

houses the drivetrain and part of the electrical equipment and the rotor consisting of the hub 

and three blades attached to it.  

 

The bottommost structural part of the wind turbine is the tower, most of the time mounted on 

concrete foundations for on-shore installations, but generally mounted on various types of 

foundations for off-shore farms. Tower design takes into consideration various aspects, from 

wind speeds at different elevations to structural loads and material usage. It is a known fact 

that as we ascend in altitude wind speed tends to increase and also appears to be less turbulent, 

with that fact considered wind energy capture follows the rule of higher the elevation of the 

rotor the better. So, it mainly comes down to finding the optimal balance between higher energy 

capture and increasing construction costs, as material use naturally increases along with tower’s 

height. The wind turbine’s tower is commonly constructed using prefabricated tubular steel 

sections of 20-30m in height, that are connected and bolted together on site. A conical shape is 

adopted with tubular sections on the base of the tower having bigger diameter than those on 

the top, thus achieving higher strength while saving on materials. As mentioned before the 

tower’s main purpose is raising the rotor-nacelle structure to the desired height for optimal 

operation, while withstanding loads generated by wind gusts and yaw rotation. It also houses 

power and signal cables descending from the nacelle along a portion of electrical equipment 

and depending on wind turbine’s size has internal or external access by ladder, or even internal 

automated elevators for large utility-scale wind turbines. There are also other types of towers 

in use, like lattice type towers utilizing steel profiles welded in place or pole type towers used 

mainly in small wind turbines, but tubular tower is the prevailing one in commercial medium-

large scale wind turbines.  

 

Wind turbine towers are mainly categorized in two groups with respect to their stiffness, the 

relationship between the tower’s natural frequency and the blade’s passing by the tower 

frequency. If the tower’s natural frequency is higher than that of the passing blades, the tower 

is categorized as stiff, having the advantage of being partially unaffected by the rotor’s motion 

while increasing the construction cost. If the frequency relationship is the other way around the 

tower is categorized as soft, reducing construction costs but having the tower’s natural 

frequency lying inside the operational passing-blade frequency range. There is also a sub-

category of soft type, where the natural frequency of the tower is also below the rotor 

frequency, known as the soft-soft type. As it can be deducted from the advantages and 

disadvantages of both categories, the preferred type of wind turbine tower is the soft one as it 

cuts down on construction costs but requires a careful design and dynamic analysis to ensure 

that the wind turbine will remain out of resonance territory while operational. 

 

On top of the tower sits the yaw system, that consists of the yaw bearing, yaw drives and yaw 

brakes. The yaw system’s function is to rotate the nacelle of the wind turbine with respect to 

the horizontal plane (azimuth) while withstanding various loads and momenta applied, so that 

the rotor is always tracking the wind and consequently provides higher wind capture. In the 

modern design of wind turbines an active-yaw system is used, which implements a closed-loop 
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control using a wind vane to determine wind direction. Then the difference between nacelle’s 

azimuth orientation and wind’s direction is calculated, known as yaw error, and appropriate 

adjustments to nacelle’s orientation take place. The yaw system is also crucial in untwisting 

power and signal cables in wind turbines that do not implement slip-ring couplers, as 

continuous one-sided rotation can twist those cables past their torsional and bending limits.  

 

The most crucial component of the yaw system, in terms of static and dynamic load capacity, 

wear resistance and longevity, is the yaw bearing. There are two different types of yaw bearings 

widely used, the ball/roller yaw bearing and the gliding yaw bearing. Both of them have 

advantages and disadvantages in their operation, nowadays the most commonly used are the 

single-row four-point contact ball bearings[10]. The ball/roller bearing type is essentially a 

slew ring configuration, that enables the coupling of two mechanical components while 

allowing rotation of one with respect to the other.  The yaw bearing’s outer ring is mounted on 

the flange at the top of the tower, while the nacelle chassis is mounted on its inner ring, so that 

the nacelle can rotate with respect to the tower. On the periphery of the outer yaw ring there is 

an integrated gear, at which multiple pinion gears or worm gears are meshed.  

 

 
Figure 6: Nacelle structural diagram 

 

These pinion or worm gears are driven by the yaw drives, usually powerful AC motors coupled 

with reduction gearboxes to increase torque, in order to make the nacelle rotate in the horizontal 

plane. Commonly, multiple yaw motors are implemented in the yaw system design to guarantee 

a more consistent and smooth rotation of the nacelle. There are also cases that electric motors 

are replaced by hydraulic drive systems, that eliminate the need to use yaw braking systems as 

they will be presented in the next part, although these systems display the usual downsides of 

high-pressure hydraulic systems like leakages and valve clogging. 

 

In order for the yaw system to be able to cope with cyclic yaw moments and to properly 

stabilize the rotation of the nacelle by eliminating gear backlash, a yaw braking mechanism has 

to be implemented.  There are different strategies on how to effectively implement yaw 

breaking, using a variance of electrical and mechanical arrangements. The main types of yaw 

breaking can be distinguished in the below categories: 
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• Friction damped yaw (passive), where the yaw motion is damped by means of friction. 

There are different configurations that implement that principle, most usually making 

use of friction pads in contact with either a horizontal surface below the nacelle or a 

secondary ring above the yaw bearing. In this case yaw drives always work against the 

friction provided by those pads and there is no need for control of this process. 

 

• Fixed yaw (active), where a brake disc is implemented on which brake calipers act 

upon. When the nacelle is rotating, brake calipers are disengaged resulting in a smooth 

rotation, while they are engaged again when nacelle is stationary providing stability. 

That option requires a control scheme, that regulates calipers between 

engaged/disengage positions according to the operational status of the yaw system.  

 

On the inner ring of the yaw bearing sits the bedplate of the nacelle, which serves as a mounting 

platform for the drivetrain and the cover of the nacelle. The bedplate is the main structural 

component of the nacelle and is designed so it can transfer the various bending moments, torque 

and thrust from the rotor, rotating shaft and gearbox to the yaw bearing and consequently to 

the tower. In order for the bedplate to be able to cope with high static and dynamic loads, most 

commonly a two-part bedplate design is implemented, consisting of two separate sections, a 

cast base structure and a welded profile structure[11]. This way the cast base frame provides 

the high structural stiffness and robustness needed, while the welded profile frame helps in 

reducing weight while not lacking in strength. These two parts are then bolted together to form 

the bedplate. 

 

As seen on Fig.6 the bedplate serves as a platform for mounting various equipment located in 

the inner hull of the nacelle, such as the gearbox and the generator. One of the most crucial 

parts is the rotor main bearing that allows the rotor to spin freely and transmit torque through 

the main shaft to the gearbox or generator, while simultaneously supporting the rotor’s weight 

and coping with various additional loads applied by the wind. The most common configuration 

of main shaft bearings dictates the use of two bearings, a front and a rear one. The front bearing 

is mounted on the bedplate of the nacelle and is located as close as possible to the hub 

connection, thus minimizing the gravity moment of the rotor mass. The rear bearing is 

positioned close to the gearbox coupling, thus moderating bearing loads applied by shaft 

momentum. While this is the most basic and common way of bearing configuration regarding 

the main shaft, there are also various other implementations making use of single, double or 

even triple bearing configurations[12]. Furthermore, there are configurations that integrate the 

main bearing inside the gearbox, thus enabling more compact nacelle and drivetrain designs. 

 

In rotor main bearing manufacturing, different types of rolling elements are used resulting in 

different bearing characteristic properties. There are spherical roller bearings, which have the 

attribute of being internally self-aligning and have a high radial load capacity, tapered roller 

bearings that offer a combination of radial and axial load capacity and cylindrical roller 

bearings that offer low friction operation while having high radial load capacity[12]. A critical 

factor in choosing between different types of rolling elements is the use or not of a gearbox in 

the drivetrain configuration.  

 

The gearbox is a mechanical device used to step-up the rotational speed of the rotor shaft (low-

speed shaft), in order to produce higher rotational speed on the generator shaft (high-speed 

shaft), bringing it in the range required by the generator to produce electricity. To achieve this 

increase in speed, gearboxes implement several multiplication stages, consisting of various 

types of gears. Wind turbine gearbox configurations are usually classified in two main 
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categories, the ones that use parallel gears and the ones that use planetary gears. In the first 

category there is also a sub-categorization between a parallel configuration implementing spur 

gears and a parallel configuration implementing helical gears, with spur gears offering easier 

assembly and large gear ratios, while helical gears offer better mechanical strength and smooth 

operation. On the other hand a planetary gear configuration offers the highest efficiency along 

with compact size and low operation noise levels, but comes with the cost of higher mechanical 

complexity[13]. There are also cases where both planetary and parallel gears are implemented 

in combination inside gearboxes.  

 

 
Figure 7:  Different type of drivetrain configurations 

 

Furthermore, continuous research in the field of gearbox applications for wind turbines has 

already created prospects for future alternative designs, capable of addressing current 

limitations and reliability issues. From continuously variable transmission (CVT) and 

hydraulic transmission configurations, both capable of continuously varying the transmission 

ratio, to integrated magnetic gears and electric generators that increase reliability through the 

elimination of rolling elements and consequently friction present in the classic mechanical 

gearboxes[14]. 

 

While generally modern variable-speed wind turbines implement a gearbox in order to convert 

low speed main shaft rotation to high-speed secondary (generator) shaft rotation capable of 

driving a generator, there are cases that direct drive (DD) systems are implemented in wind 

turbines. Although at an increased cost and weight along with the need of high-torque rated 

generators, DD wind turbines offer the benefit of removing the highest-rate of failure 

component of a wind turbine, the gearbox. Thus, the use of a gearbox as a part of the drivetrain 

together with the type of the wind turbine’s connection to the utility grid and power flow 

control, lead to a principal classification of HAWT systems. 
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This classification is also based on the type of generator used for converting rotor’s torque to 

electricity and consequently on the rest of the electrical equipment configuration implemented. 

As primarily stated by Hansen et al.[15] and later extended by Serano and Lacal [16] the main 

types of wind turbine drivetrain configurations as seen in Fig.7 are the following: 

 

• Type A, where a squirrel cage induction generator (SCIG) is used directly coupled to 

the grid. There is no speed-regulation and consequently no need for power converter 

implementation, as rotor’s speed has limited response to wind speed variations. 

 

• Type B, where a wounded rotor induction generator (WRIG) is used, along with a 

variable resistance component that enables the regulation of the current flowing through 

the rotor’s windings. It offers operational speed variability but at the cost of high 

electrical losses. 

 

• Type C, where a doubly fed induction generator (DFIG) is used with its stator windings 

directly connected to the grid and its rotor’s windings connected to a back-to-back 

converter. This enables a wider range of operating speed, as the use of a full power 

converter allows the rotor’s frequency to differ from grid frequency, while reducing 

electrical losses. 

 

• Type D, where either an electrically excited synchronous generator (EESG) or a 

permanent magnet synchronous generator (PMSG) is used connected to a full power 

converter. In a direct drive configuration, where the generator’s shaft is coupled directly 

with the rotor, the full power back-to-back converter provides speed control in a wide 

operation range along enhanced grid functionality. 

 

• Type E, where as in type D either an PMSG or an EESG can be used. This configuration 

again benefits from the use of a full power converter and its capabilities, while the 

implementation of a gearbox allows the usage of reduced-size generators. 

 

• Type F, where a high-speed asynchronous generator connected, usually an SCIG, is 

connected to a full power converter and then to the grid. Again, the full power converter 

is used to control rotational speed by varying the operation frequency. 

 

Depending on the type of the wind turbine, the electromechanical equipment configuration that 

forms the drivetrain and the power conversion system can vary. Mainly the focus goes on 

achieving higher integration of the mechanical parts, like the gearbox, main bearing and 

generator, in order to reduce overall mass of the nacelle. Also, on the power conversion front 

permanent magnet synchronous generators (PMSG) are increasingly used instead of doubly 

fed induction generators (DFIG), although concerns exist about PMSGs dependance on rare-

earth materials for the manufacturing of permanent magnets[17].     

 

Another crucial component of the wind turbine system, that is housed inside the nacelle, is the 

brake subsystem. There are different brake types used for this application, that are classified 

with respect to their principle of activation and operation, being hydraulic, pneumatic and 

electromechanical. The usual configuration of a mechanical brake system comes in the form of 

a brake disc and caliper, where under normal operation the brake disc rotates freely between 

the stationary and the moving part of the caliper, while when on braking operation the caliper 

pushes a pair of pads against the disc creating friction and thus slowing the rotation of the shaft. 
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Usually, the brake is mounted on the high-speed shaft of the drivetrain contributing to reduced 

fatigue loading of the gearbox, while utilizing its torque-multiplying effect for more efficient 

braking. Operation-wise mechanical brakes can be employed to fulfill different tasks, 

depending on the design of the wind turbine and the braking functionality chosen. These tasks 

vary from being used only as parking brakes after the rotor has already come to a standstill, to 

being able to arrest the rotor in conditions of high wind and overspeed events if all other braking 

systems fail. In cases where the mechanical brake is the primary means of stopping the rotor, 

it is commonly agreed by manufacturers that a fail-safe tactic should be employed, one of them 

being the implementation of redundant brake systems.  

 

It is evident that the variability of use cases results in a wide range of brake system designs, 

made to optimize the balance between various existing restrictions and adequate clamping 

force to provide efficient braking operation. Some of the factors that are involved in brake 

design, besides caliper force and friction coefficient, are power dissipation of the pads, the 

temperature rise of the brake disc and centrifugal stresses applied on the brake disk. 

 

 
Figure 8: Control system diagram of a PMSG wind turbine 

 

Furthermore, partly housed inside and partly mounted on the outside of the nacelle, there is an 

electrical, control and instrumentation system. Placed inside the nacelle are the enclosures and 

cabinets that contain all the necessary electrical equipment from circuit brakers and contactors 

to programmable logic controllers, industrial fieldbuses and input/output signal cards. Usually 

installed in more than one cabinet, it is paramount for proper operation and maximum useful 

time of the electrical and electronic equipment to be properly ventilated, while being protected 

against dust or other extreme environmental conditions that may be present on-site. Part of the 

electrical system equipment inside the nacelle are also the power cables connecting the output 

of the generator with the power converter, the electrical switch gear that enables the control of 

power transfer and usually the interconnected modules that form the back-to-back full power 

converter. There are also cases where this equipment is divided between the nacelle and the 

bottom of the tower in order to reduce the weight and dimensions of the nacelle. In these cases, 

a high-speed industrial fieldbus is implemented enabling communication between subsystems. 

 

Mounted on the nacelle is all the necessary instrumentation equipment, consisting of 

anemometers, windvanes and vibration sensors, along with various other types of sensors. This 

network of sensors is what essentially enables the control system of the wind turbine to sense 
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its environment and consequently drive its operational state accordingly. This is accomplished 

by forwarding all digital and analog signals acquired by sensors to the controller, where a 

control software usually implementing a closed-loop control scheme, evaluates those signals 

based on its programmed instructions and then drives the outputs of the control system 

accordingly. The main control system, as can be seen in Fig.8, is tasked with normal operation 

functions like start-up, shut-down, power production and all the required procedures that allow 

the transition between these operational states. 

 

Besides the ‘normal’ control system of the wind turbine, a safety system is always implemented 

for events that reside outside the range of normal operation, like electrical grid loss and extreme 

winds. In these cases, the safety system steps in overriding the main control system, to achieve 

bringing the wind turbine to a full rest or to idle-speed by feathering the blades. In order for a 

safety system to be fail-safe and reliable, a high grade of independence between it and the main 

control system needs to be ensured. For that reason safety systems are designed without the use 

of programmable controller or any other form of computer and microprocessor, most 

commonly implementing a purely electrical hard-wired circuit of normally open relay 

contacts[18]. Part of this circuitry can be over-speed sensors, controller watchdog-driven relays 

and emergency stop buttons used locally by the operator.      

 

The last of the three main parts of a wind turbine is the rotor, coupled to either a gearbox or 

directly to the generator shaft and supported by the main bearing. The rotor consists of two 

discrete structures, the rotor hub and the blades. The rotor hub is usually manufactured by 

casting, commonly using spheroidal graphite iron (SGI) as the material of choice[18]. Rotor 

hub designs mainly fall between two different design approaches, a tri-cylindrical concept and 

a spherical one.  

 

Hub design also varies with respect to the type of regulation scheme the wind turbine 

implements, so there are the following approaches: 

 

• Pitch-control, where the aerodynamic power generated by the rotor is regulated by 

adjusting the pitch angle of the blades. In this configuration active stall or feathering 

can be achieved by rotating the blades and thus changing the angle of attack. This 

control scheme requires the implementation of hydraulic or electromechanical 

actuators, capable of full-span pitching of the blades. Hub designs to accommodate that 

functionality are more complicated and expensive, as they have to facilitate threes pitch 

motors along with pitch bearings where the blades will be coupled, but the gains of fast 

and effective speed and power control of these wind turbine systems are evident[19]. 

 

• Stall-control, where the blades are designed in such a way that stall effect is induced 

in high wind, without needing pitch control on the blades. In this case pitch motors are 

not used, so the blades are attached directly and firmly to the rotor hub. This 

configuration results in less expensive and less complicated rotor hub designs, as it 

eliminates the need for a pitch control system and all its mechanical and electrical 

components. 

 

The second part of a rotor’s structure is the blade, which is what essentially converts the kinetic 

energy of the wind to rotation of the rotor, by utilizing the aerodynamic force of lift (HAWT). 

The wind turbine’s blade is in principle an airfoil, designed in such shape to create low pressure 

on its upper surface and high pressure on its lower surface, thus generating the lift required to 

produce rotational motion. In modern HAWT designs three blades are commonly used,  as 
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continuous tests and development have shown that a three-bladed design has the right balance 

between high energy yield, improved stability and structural durability[20].  

 

The blades are manufactured using various types of composite materials and commonly they 

are formed by binding together three different sub-assemblies. These consist of the two 

aeroshells, one for the suction side and one for the pressure side, along with an internal sear 

web structure or a box-shaped spar as can be seen in Fig.9. The aeroshells are manufactured 

with the widely used technique of resin infusion, where resin flows under pressure in a sealed 

mold containing the composite fibers[21]. Fiberglass, carbon fiber and Kevlar are some of the 

materials that are used, usually woven into fabric inside the mold and eventually coated with a 

type of thermoset epoxy resin.  

 

 
Figure 9: Parts of the blade 

 

After being coated with the resin, a curing procedure is followed where the aeroshells are 

subjected to heat and pressure, that makes the resin bond with the fibers and eventually harden. 

The aeroshell parts are what gives the blade its aerodynamic properties, making it capable of 

maintaining a high lift-to-drag ratio which is paramount for the efficient operation of the wind 

turbine. 

 

The part that gives the blade its strength and stability characteristics is the spar, enabling the 

blade to withstand the flap-wise bending moments. The spar is commonly manufactured using 

the process of pultrusion[22], where a continuous feed of fibers passes through a resin bath and 

eventually through a heated die that hardens the resin and solidifies the resulting composite 

material. After the manufacturing of the separate structures, all the discrete parts are bonded 

together using adhesive materials like two-part epoxy and polyurethane, providing rigid 

bonding and high durability.  

 

Quality control examination of the structural characteristics of the finished blade is usually the 

last step in this manufacturing procedure. The blade undergoes thorough testing and inspection 

in order to ensure compliance with existing standards for durability, strength and performance. 

Various non-destructive testing methods are used in this procedure, ranging from x-ray imaging 
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to ultra-sonic inspection[23] along with fatigue and mechanical tests. This step is crucial for 

the blade manufacturing procedure, as the produced blades have to withstand various stresses 

and environmental conditions throughout their operational lifetime. Dynamic loads from wind 

gusts, corrosion from rain and sea salt sprays and lightning strikes are some of the 

environmental conditions that the blades are going to be subjected to during operation. 

Combining advanced manufacturing techniques and proper quality control procedures, blade 

designs are produced with a lifetime estimation of 20-25 years[24]. 

 

Also, worth mentioning is the ongoing research and development of methods to recycle wind 

turbine blades at the end of their operational lifetime. With the decommissioning of wind 

turbines, the remaining blades made by composite materials amassed into various landfills, 

pose a critical problem to a sustainable wind energy sector. It is projected that by 2025, the 

annual waste of composite materials resulting from the decommissioning of wind turbines will 

reach 66.000 tons[25]. The current approach mainly aims at two approaches, reuse approach 

and repurpose approach.  

 

The reuse approach opts for the refurbishment of blades that come to decommission stage, in 

order to reuse them in wind turbine installations, practically extending their service life beyond 

20-25 years. This is a much more efficient recycling approach, as it maintains the intended 

functionality of the blade over a longer period of time. Nevertheless, operational life extension 

cannot be an indefinitely re-occurring recycling method, as many blades do not meet the 

condition criteria of reusability after their decommissioning. In these cases, the second 

approach is selected, by repurposing the decommissioned blades to be used with a different 

purpose than they were designed. Several examples of such approaches exist, usually in the 

domain of civil engineering, where decommissioned wind turbine blades were used in various 

applications because of their structural properties[26].  

 

As a part of the repurposing approach, the blades can be also mechanically or chemically 

recycled. In the process of chemical solvents are used to help break down the composite 

materials that form the blade, producing recycled materials of better quality than its 

counterpart, mechanical recycling where various processes like shredding and crushing are 

implemented[27]. After all, the ongoing pursue of higher sustainability in wind turbines and 

specifically in blade manufacturing and recycling, is paving the way for novel composite 

material recycling technologies for decommissioned blades and new recyclable composite 

material for the manufacturing of new ones. 
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1.3 BASIC PRINCIPLES OF OPERATION 

 

As a refence design to examine the principles of operation, a PMSG, variable-speed, gearbox 

equipped, full-span pitch control wind turbine will be used. In this way all parts of the wind 

turbine system and their involvement along the electricity generation process, from wind 

capture to grid connection, can be presented properly. As discussed previously, a wind turbine 

is used to extract the kinetic energy of the wind and convert it to electricity. The kinetic energy 

of the wind can be derived by the following equation: 

 

𝐸𝑘𝑖𝑛 𝑤𝑖𝑛𝑑 =
1

2
𝑉𝜌𝑣2 (1.1) 

 

Where: 

𝑉 is the volume of the air. 

𝜌 is the density of the air. 

𝑣 is the wind speed.  

 

If we take into consideration that energy is power multiplied by time, then we can get the wind 

power equation: 

 

𝑃𝑤𝑖𝑛𝑑 =
1

2
𝜌𝐴𝑣3 (1.2) 

 

Where: 

𝐴 is the rotor swept area. 

 

In reality, the effective usable power that can be extracted by the wind, is less than that 

described in the above equation. The reason behind this is that for the wind to have a continuous 

flow, wind speed behind the rotor cannot be zero. So apparently only a portion of the available 

kinetic energy of the wind can be utilized, which can be calculated using the principles of 

conservation of mass and momentum of air flowing through an ideal open-disk actuator[28]. 

The maximum limit that the power coefficient could ideally reach for that conversion was first 

published by Albert Betz in 1919, and its calculation can be seen below: 

 

𝐶𝑃𝑚𝑎𝑥 =
𝑃𝑒𝑓𝑓

𝑃𝑤𝑖𝑛𝑑
=

16

27
≈ 0.59 (1.3) 

 

So, a wind turbine can ideally capture 59% of wind’s available power, with the effective 

coefficient of modern utility-scale wind turbines attaining at peak 70-80% of Betz’s limit. 

Moving from the theoretical concept of the actuator disk, which essentially is a simplified 

model of a wind turbine rotor, the incorporation of complex three-dimensional flow effects in 

the interaction of a blade and wind flow forms is essential.   

 

A body immersed in a gas is acted upon by a force, which is the direct result of the relative 

motion between the body and the gas. In the case of a wind turbine, the flow of wind passing 

over the blade, which adopts an airfoil shape with a suction surface (upper) and a pressure 

surface (lower), creates two distinct regions a high velocity and low pressure on the upper 

surface and a low velocity and high pressure on the lower surface. The result of the blade being 
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between those two regions, is the aerodynamic force applied on the blade with a direction 

determined by the angle of attack, that is the angle between blade’s chord line and the vector 

of relative wind velocity. The angle of attack can be regulated by the pitch control system as it 

will be presented in the control part of the operational analysis. 

 

 

The aerodynamic force vector can be further resolved to its two distinct components, the lift 

vector perpendicular to relative wind direction and the drag vector parallel to relative wind 

direction as can be seen in Fig.10. 

 

 
Figure 10: Rotor blade forces created by wind flow. 

 

The lift force is what eventually causes the rotor hub, where the blade is connected, to rotate in 

the direction of the lift vector. This is accomplished by the torque that lift generates on the LSS, 

where the rotor is coupled from one side and the entry side of the gearbox to the other. The 

equation of power in Watts that is produced by the rotation of the rotor is as follows: 

 

𝑃𝑊 =
1

2
𝜌𝐴𝐶𝑝(𝛽, 𝜆)𝑣3 (1.4) 

 

Where: 

𝐶𝑝 is the power coefficient. 

𝛽 is the blade pitch angle. 

𝜆 is the tip speed ratio. 

 

In order for the rotor to face in the same direction where the wind comes from, so to have 

maximum efficiency in capturing the kinetic energy of the wind, a closed-loop control utilizes 

the position of the nacelle and a wind vane as inputs and the waw system as an output. The 

position of the nacelle is usually sensed through an encoder system coupled to the yaw motors, 

which is evaluated along with the wind vane measurement to calculate the yaw error. A yaw 

error is the difference between the actual position of the nacelle and the wind direction, which 

then drives the yaw system to correct the nacelle’s position. The sequence is as follows, yaw 

brakes are disengaged, and nacelle starts rotating to the proper direction for bringing yaw error 

to zero, after reaching that position the yaw motors stop to actuate and the yaw brakes re-

engage to keep the nacelle steady. The key goal, operational-wise, of the yaw system is to 
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achieve balance between high generation efficiency and increased maintenance costs of 

frequent yaw operations.  

 

Back to the rotating LSS which is directly connected to the first stage of a gearbox, that as 

discussed previously consists of multiple stages of multiplication constructed of gears, to 

increase the rotational speed of the LSS. The first stage of a gearbox usually implements a 

planetary gear configuration, that consists of a sun gear, a ring gear and several planet gears 

meshed between. The main purpose of the first stage is to increase rotational speed while 

decreasing torque. Several additional multiplication stages can be implemented, depending on 

the specific wind turbine design. Lastly, a helical gear configuration is usually implemented as 

the ultimate multiplication stage that drives the high-speed shaft (HSS) and consequently the 

generator. 

 

On the generator side the HSS is directly coupled to the rotor of a PMSG, which as the name 

implies consists of permanent magnets. As the rotor of the generator rotates, it creates a rotating 

magnetic field inside the generator, whose rotating speed is directly proportional to the number 

of magnetic pole pairs. Usually, PMSGs implement an even number of poles and their total 

number varies. The output frequency of a PMSG depends on the number of the pole pairs and 

its synchronous speed and is given in Hertz by the equation that follows: 

 

𝑓 = 𝜔
𝑃

120
(1.5) 

 

Where: 

𝜔 is the rotational speed in rpm. 

𝑃 is the number of the poles the rotor implements. 

 

The stator of the generator is the stationary armature that is electrically connected to a load, in 

this case to the generator-side module of the back-to-back power converter. The rotating 

magnetic field produced by the rotor, induces electrical current in the windings of the stator’s 

armature, which in turn produce a rotating magnetic field on the stator, rotating in the same 

direction with the rotor’s magnetic field and in a fixed relative position to it.  

 

 
Figure 11: Control scheme of PMSG wind turbine 

 

By regulating the current on the stator winding, torque control can be implemented that 

regulates the rotational speed of the generator shaft, while generating power. The 

electromagnetic torque is the main governor of the shaft’s rotational speed, as it can be seen in 
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the following equation of motion for a typical PMSG: 

 

𝐽
𝑑𝜔𝑚

𝑑𝑡
= 𝑇𝑚 − 𝑇𝑒 − 𝐵𝜔𝑚 (1.6) 

 

Where: 

𝐽 is the total inertia of the generator system. 

𝜔𝑚 is the rotational speed of the generator’s rotor. 

𝐵 is the friction factor. 

Tm is the mechanical torque of the generator shaft. 

𝑇𝑒 is the electromagnetic torque applied by the converter’s current control.  

 

 

In a variable speed wind turbine, a full power back-to-back converter that is seen in Fig.11 is 

used to allow for the rotational speed of the generator shaft to be independent of the grid’s 

frequency by utilizing the DC link between the generator-side and grid-side modules of the 

converter. The generator-side converter implements various control schemes to regulate the 

magnitude and the phase of the stator current, in order to maximize the power output[29]. The 

maximum power output at different wind speeds is directly dependent to Cp, thus consequently 

to tip-speed ratio λ and the pitch angle β. So for the wind turbine to attain the maximum Cp, it 

needs to track the desired  rotational speed of the HSS to meet the optimum value of tip-speed 

ratio, while adjusting for wind speed changes[30]. 

 

 
Figure 12: The operational regions of a wind turbine 

 

To accomplish this the controller of the wind turbine implements two distinct control schemes, 

torque control as described previously and blade pitch control. In accordance to that the wind 

turbine operation can be divided in 4 regions as can be seen in Fig.12[31]: 

 

• Region 1, where the wind turbine control system senses the wind speed, to decide if it 

should start the operation. Different aerodynamic and design characteristics play an 

important role in specifying the ideal cut-in wind speed. Further from that, there is 

usually no other control strategy in this region of operation. 
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• Region 2, where the wind turbine control system utilizes the generator torque control 

to regulate the rotational speed of the rotor, while capturing as much wind power as 

possible. Usually in that region the controller tracks the optimum tip-speed ratio, until 

it reaches rated wind speed, rated power and consequently rated torque. Yaw control is 

also implemented in that region to track wind direction. 

 

• Region 3, where the wind turbine control system utilizes the blade pitch control to 

decrease the fraction of captured wind power. As this region lies above the rated wind 

speed, where the maximum power output is already attained, a PI controller is 

implemented to regulate pitch, so no electrical or mechanical loads are exceeded. As a 

result, a maximum power output is maintained between rate and cut-out wind speed. 

 

• Region 4, where the wind turbine control system or in severe events the fail-safe 

system, bring the turbine to a standstill. This comes as a result of measured wind speeds 

beyond the cut-out speed, where mechanical loads and moments are above the 

specifications and limitations of the wind turbine design. In this case the turbine 

decreases its rotational speed, usually by feathering the blades and eventually comes in 

a parking position by engaging the mechanical brake. 

 

As mentioned above, there is a control scheme transition between region 2 and region 3 of the 

operation, where torque control switches to pitch control. In order to avoid the two control 

schemes interfering with each other, thus both trying to regulate the rotational speed with 

significant problems arising both below and above rated wind speed, the wind speed at which 

pitch control is enabled is pushed a bit above the rated wind speed[18]. 

 

Back to the power converter as seen in Fig.13, where the generator-side module takes as input 

the 3-phase AC voltage of variable frequency from the generator, as a result of the variable 

rotational speed of the HSS. The converter implements a configuration of bidirectional IGBT-

freewheeling diode pairs to rectify AC to DC, thus enabling the DC link connection between 

the two converter modules. Also, between the two converter modules and connected to the DC 

link, there is a braking chopper utilized in grid fault events to limit the DC voltage rise and 

dissipate the energy to its resistor[32]. 

 

 
Figure 13: A back-to-back converter topology 

 

On the grid side converter, which has as input the DC link and its output is connected through 

a transformer to the grid, there is a different control objective. It implements the same 

configuration of bidirectional IGBT-freewheeling diode pairs as the generator-side module, but 

for the reverse operation of inverting DC to AC using the pulse-width modulation (PWM) 

technique with switching operations in the range of several kHz per second. The voltage control 
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loop of the grid-side inverter regulates the DC link voltage at a reference value, ensuring that 

the power flows from the DC link to the grid, while achieving a steady state by increasing or 

decreasing the current flow to the grid[33]. 

 

Between the output of the grid-side converter module and the point of common coupling with 

the grid, a filter and a transformer are commonly interposed. The filter is used to reduce 

harmonic distortion, introduced by the converter in the process of converting the variable 

output of the generator to a constant voltage and frequency output, and prevent harmonic 

distortion injection to the grid. The transformer satisfies a number of requirements, to begin 

with it provides electrical isolation between the wind turbine and the grid, offering increased 

reliability and safety for equipment and maintenance personnel. Also, it is used to match the 

output voltage of the wind turbine with that of the grid in cases that these two differ, by 

implementing a step-down or a step-up configuration transformer at the point of common 

coupling. 

 

All the aforementioned operation principles, from the aerodynamic force generated by the wind 

to the power transfer regulation of the power converter, are harmoniously and effectively 

combined and regulated under the supervisory control of the system’s main controller. During 

all the operational states described, the main controller of the wind turbine controls the 

transition between the different states of the system and ensures smooth operation of the 

various internal control loops. A programmable logic controller is used for that task, as 

mentioned previously, along a configuration of various sensors and actuators. Usually a 

multiple-input multiple-output (MIMO) control architecture is implemented that takes into 

account various inputs, like wind speed rotational speed and pitch angle, and produces a desired 

set of outputs including control torque and pitch actuation. These control loops can also be 

decoupled in a way that will create multiple single-input single-output (SISO) systems, 

dynamically interacting with each other as each operational state requires[18]. In all of the 

above cases the need for a linearized model of the wind turbine dynamics is essential in 

enabling the design of effective and efficient controllers.  

 

There can be different controller design approaches and implementations, from classical PI 

control algorithms to more advanced like fuzzy logic and model-based control algorithms. 

Classical control design methods can result in relatively simple but effective PI and PID 

algorithms, that can be further improved by implementing techniques like non-linear gains and 

variable limits. Furthermore, there are also advanced design methods taking into account a 

subset or even the full model of the wind turbine’s dynamics to provide state estimates of the 

system, thus enabling the implementation of optimal-feedback techniques like the linear 

quadratic gaussian (LQG) control. This method implements a state estimator like the Kalman 

filter to predict the system’s states and an optimal state feedback used to minimize the cost 

function, defined as a quadratic function of the system’s states and the control actions. It is an 

ideal controller design method for reducing both blade and tower loads, while effectively 

achieving the primary control goal of regulating rotational speed and power[34]. Lastly, there 

are control design methods that are implemented in cases where either the system dynamics 

are not fully known or there are significant non-linearities. Fuzzy logic controllers can be used 

to determine the right control actions after imposing certain rules to the measured signals, as 

neural network controllers can produce the desired control actions after being trained on a set 

of conditions, while also being programmed to dynamically reconfigure their control 

algorithm[35]. Both the later control design methods have little penetration in the commercial 

wind turbine design, as usually the system dynamics are well known and available making 

these approaches doubtfully beneficial.   
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1.4 MAINTENANCE & MONITORING REQUIREMENTS 

 

It is evident that wind turbines are a complex electricity generation system, combining multiple 

sub-systems in order to operate properly and efficiently, usually under harsh environmental 

conditions. Like on every other type of electricity generation plant, wind turbine’s operational 

reliability and consequently electricity generation availability, is a critical factor in viability 

and adoption rate of wind energy. The reliability of a system is the probability of the system 

performing adequately for an intended period of time, while the availability of a system is the 

probability of it being operational at any point in time. Usually, reliability is defined before the 

operation of the system and depends on the individual reliability of the different components 

combined[36], while availability is quantitatively calculated by operational data while system 

is operational. Typical availability of onshore wind turbines is around 97%, but for offshore 

farms the availability can be considerably lower as a direct result of extreme weather conditions 

and site accessibility[37]. Unexpected failures can result to extensive downtime increase, 

greatly affecting wind turbine availability, along with the need for maintenance operations to 

address the faults. Furthermore, repairing and maintenance costs are a significant part of a wind 

turbine’s operation and maintenance expenditure (OPEX), which respectively represents 25-

35% of the wind turbine’s lifetime cost[38] impacting greatly the levelized cost of energy 

(LCOE) as seen in Fig.14.  

 

 
Figure 14: O&M costs as a percentage of LCOE 

 

In order to quantify the availability of a wind turbine, the introduction of some new parameters 

is necessary. First of all, there is the mean time between failures (MTBF), which is the time 

between the occurrence of two successive failures. Then there is the mean time to repair 

(MTTR), which is the time required for repair actions, including failure detection and accessing 

the site, to be concluded after a failure occurrence. Combining those two parameters, both 

measured in hours, we can derive the equations needed for calculating reliability and 

availability[39]:  

 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  𝑒− 
𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒

𝑀𝑇𝐵𝐹

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹 + 𝑀𝑇𝑇𝑅

(1.7) 

 

By observing the aforementioned equations, it can be concluded that the higher the MTBF is, 
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the higher the reliability and availability of the wind turbine are consequently. It can also be 

concluded that MTTR is a crucial parameter regarding availability, as higher recovery times 

mean higher downtime for the wind turbine and consequently lower availability. So, 

component reliability, failure rate and repair times along efficient maintenance operations are 

all crucial factors in maintaining high availability in wind turbine systems. 

 

 
Figure 15: Maintenance strategies with respect to wind turbine condition 

 

To tackle the challenges of reliability, failure recovery and availability management of wind 

turbines there are four maintenance strategies commonly used, as seen in Fig.15: 

 

• Preventive, where a time-base maintenance (TBM) approach is implemented. Its main 

principle lies in trying to avoid component failures by organizing periodic maintenance 

activities to ensure system integrity and reliability. As a scheduled task it offers the 

advantages of planned spare parts lead time and maintenance equipment availability, 

while on the downside it does not allow to fully utilize components’ lifespan. 

 

• Corrective, where a failure-based maintenance (FBM) approach is implemented. In 

this strategy maintenance is a reactive task after a failure has occurred, with the target 

of repairing the failed component to return at nominal operation. This method, although 

it favors the full utilization of components’ lifecycle, needs a quick-response high 

technical expertise labor force in order to limit downtime.  

 

• Predictive, where a condition-based maintenance (CBM) approach is implemented. 

The main characteristic of this approach is the use of various sensors and supervisory 

control and data acquisition (SCADA) data, in order to monitor the condition and 

performance of the wind turbine. Operational data are then used in comparison to 

nominal or threshold values, to evaluate the need for maintenance actions on certain 

components before the failure occurs.  

 

• Opportunistic, where an opportunity-based maintenance (OBM) approach is 

implemented. In this strategy the underlying principle is the utilization of the 

opportunity that the repair of a component provides, to also commence preventive 

maintenance for other components meeting the specified requirements, while the 

maintenance and repair team is on site, thus leading to reduced cost of maintenance and 

repair operations. 
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A combination of the above strategies is what the wind sector currently employs, with 

preventive maintenance being the most preferred method. While the combination of preventive 

and corrective maintenance strategies was the modus operandi for operation and maintenance 

(O&M) activities on onshore wind turbines, offshore wind farms’ environmental conditions 

along accessibility issues, request a better approach to O&M planning of maintenance and 

repair tasks. Utilizing the predictive maintenance strategy, an optimum point between 

preventive and corrective maintenance can be achieved, where unnecessary repair actions are 

prevented while unplanned downtime is minimized[40]. Therefore, condition-based 

monitoring has been on an uptrend, as it is documented to achieve higher availability of wind 

turbines while reducing O&M costs. The continuous development of monitoring and inspection 

techniques, along with the standardization of SCADA systems as a part of wind turbine 

installation, have also contributed to the increased attention CBM has received in the wind 

energy sector. 

  

 
Figure 16: Failure rate described by the "Bathtub curve" 

 

In order to identify and assess the downtime factors and parameters as well as critical 

components of the wind turbine, thus enabling the efficient implementation of condition and 

performance monitoring, there is a significant need for conducting reliability analyses. Apart 

from being utilized to improve wind turbine design and predict possible wind energy harvest 

and availability, reliability analyses also contribute to identifying critical components of a wind 

turbine system. There is a wide range of reliability analyses available in the literature, 

conducted from early 2000s to this date mainly in Europe, U.S. and China, with a timeframe 

spanning from one to fifteen years[40]. These include wind turbines of various types and sizes, 

as well as both onshore and offshore wind farm installations. 

 

The aggregation and comparison of different reliability analyses results can provide precious 

insight on the development of novel and efficient CBM systems, by utilizing the data of failure 

rate and downtime per subsystem and component. In order for researchers who conduct 

reliability analyses, to be able to efficiently link failure events with the culprit hardware or 

software, there is a need for a predefined taxonomy.  

 

There are several different taxonomies, standards and guidelines on dividing the components 

of a wind turbine in hierarchical levels, that help to achieve efficient data collection and enable 
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accurate failure correlation with individual components and sub-assemblies[41]. Some of the 

taxonomies used in reliability and availability research are presented here: 

 

• ReliaWind, the taxonomy developed for the ReliaWind project, which investigated 

current wind turbine reliability and recommended methods of collecting and processing 

operational data to measure availability[42]. 

 

• RDS-PP, the taxonomy of the Reference Designation System for Power Plants is a 

standard for wind turbine components that was adapted from taxonomies used in other 

power systems and industries. 

 

• AWE, the taxonomy developed for the Advanced Wind Energy Systems Operation and 

Maintenance Expertise (AWESOME), a European project targeting to optimize 

maintenance methods by implementing prognosis of component failures[43]. 

 

• CARR, the taxonomy developed to be used in the reliability analysis for offshore wind 

turbines by Carrol et al.[44].  

 

• CREW, the taxonomy developed by Sandia National Laboratories for the Continuous 

Reliability Enhancement for Wind Program[45]. It was developed specifically for wind 

turbine systems, enabling SCADA variables to be matched directly to individual 

components. 

 

• GADS, the taxonomy used for the Generating Availability Data Systems database 

created by the North American Electric Reliability Corporation (NERC)[46]. This 

taxonomy is used as a standard, to which all data reported in this database by electricity 

producers should apply. 

 

• ISO 14224, the taxonomy used for the standardization of reliability assessments in oil 

and gas industry[47]. While being a comprehensive taxonomy that covers various 

aspects of a system, it is not wind specific.  

 

• IEC 61400-26, the taxonomy which is part of the IEC 61400 standard for a wide range 

of design specifications in wind turbines. It aims to provide standardized metrics to 

create methods for availability calculation and reporting.   

 

Multiple taxonomies and standards that overlap at various points, along the reluctance of the 

wind energy sector to come to an agreement regarding the implementation of a universal set of 

standards, has made wide range failure and reliability assessments challenging in terms of data 

quality and cohesion[48]. Thus, the ongoing research on reliability analyses and tools for wind 

turbines, along with the continuous call for a universal and OEM-agnostic set of predefined 

standards for data collection and processing is showing the way to improvement. 

 

Nevertheless, despite the non-uniformity of data and component classification between the 

various reliability analyses, there is plethora of information about fault and failure rates on 

wind turbine sub-systems and components that can lead to safe conclusions about critical 

components for CBM. Usually there is a quantification with respect to failure rate per sub-

assembly/component along with the downtime that occurred as a result of these failures, as it 

can be seen on Fig.17 & 18 from the reliability data review by Dao et all.[38]. In this review 

the data from 18 different sources, containing both onshore and offshore wind turbines, are 
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used and compared in order to identify critical sub-assemblies in terms of failure rate and 

downtime. It implements a slightly modified version of the aforementioned ReliaWind 

taxonomy for classification purposes, that breaks down the wind turbine system into sub-

systems and sub-systems in turn to sub-assemblies. Lower order components included in sub-

assemblies, like yaw motors and converters, are not used in the scope of this specific review. 

 

 
Figure 17: Critical sub-assemblies in terms of failure rates 

 

It can be identified according to data gathered, that the most critical sub-assemblies of a wind 

turbine system with respect to failure rate are the electrical, control, blades and hub, pitch and 

generator, with the criticality order being a bit different between onshore and offshore turbines. 

While with respect to downtime the most critical sub-assemblies on both onshore and offshore 

wind turbines are the gearbox, blades and hub, generator and drivetrain.  

 

 
Figure 18: Critical sub-assemblies in terms of downtime. 

 

Utilizing these results as reference, it becomes clear that reliability analyses are paramount to 

effective implementation of condition monitoring systems that are designed and fine-tuned 

with respect to the criticality of the various sub-assemblies, thus addressing the challenges 

present in real world operational conditions of a wind turbine. While operational a wind turbine 

system can exhibit abnormal behavior, unexpected deviation from the nominal behavior that 

leads to system interruptions and production decrease. The abnormal behavior of a system can 

be generally categorized into faults and failures, with faults being recognized as an unexpected 

deviation of system’s structure or parameters from the nominal, while failures being the 

inability of a sub-system or component to perform its intended function[49]. Thus, monitoring 

techniques can by implemented that aim at detecting faults on critical components, before these 



41 

 

can evolve to failures and eventually increased downtime for the wind turbine along higher 

O&M costs.  

 
Table 1 

Components Causes of Faults 

 

 

Gearbox 

• Imbalance/misalignment of shaft 

• Damage on bearing and gears 

• Poor lubrication 

• Oil leakage or high temperature 

 

Generator 
• Excessive vibration 

• High temperature 

• Insulation damage 

 

Blades & Hub 
• Corrosion 

• Deformation of blades 

• Imbalance of the rotor 

 

Brake 
• Hydraulic/mechanical/electrical error 

• Pad wear-out 

• Overspeed 

 

 

Electrical 

• Corrosion 

• Electrical leaks 

• Board delamination 

• Cold-solder joints 

 

Sensors 
• Physical damage 

• Hardware/software communication error 

• Data processing error 

 

 

Drivetrain 

• Stress 

• Overheating 

• Coupling failure 

• Corrosion 

 

 

Generally, the faults of a wind turbine system can be classified in two distinct categories, 

temporary random faults and wear-out faults. In the first case faults are short-termed occurring 

events that are the result of factors such as wind speed, thermal issues and bad quality sensor 

data, while on the second case faults are long-term usually permanent events that are result of 

failing components that need repair or replacing[50]. Wear-out faults are usually the culprit of 

wind turbine sub-system failures and consequently downtime, while temporary random faults 

can also indicate patterns that may require action, like control system issues or sensor circuitry 

redesign. Some of the faults that can occur in wind turbine parts are presented in table 1. 
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2. PERFORMANCE & CONDITION MONITORING 
2.1 PRINCIPLES & NEEDS 

 

As mentioned in the previous chapter, predictive maintenance has become a key element in the 

effort to reduce O&M expenditure, especially as the offshore installation share continuous to 

increase globally. Predictive maintenance procedure’s success and effectiveness is mainly 

dependent on the ability to accurately monitor the condition and performance of a wind turbine, 

in order to be able to identify components and sub-assemblies in need of repair or replacement.  

So, condition monitoring (CM) is generally defined as the process of monitoring the 

operational parameters of a physical system, in order to identify deviations from nominal state 

and abnormal behavior, as an indication of an occurring or developing fault[49]. For the 

successful implementation of such systems, there has to exist prior knowledge of parameter 

values and thresholds under normal operation conditions, in order to form a distinct segregation 

between normal operation parameter values and faulty operation parameter values.  

 

CM’s recorded implementation history starts during the Industrial Revolution when railway 

maintenance engineers and technicians, commonly known as the “Wheel Tappers”, utilized a 

long handheld hammer to check the condition of railcars’ wheels. By tapping the wheel with 

the hammer, the condition was assessed with respect to the produced sound, either it was a 

high-pitched ring meaning the wheel’s condition was good or a dull flat sound meaning cracks 

were present and wheel’s condition was compromised[51]. CM and CBM were also utilized 

on early steam engines used in railways, as locomotive engineers being near the engine’s 

machinery would regularly become aware of early-stage defects on the equipment. This 

included steam leakages on various parts, which when identified resulted in CBM procedures 

to correct the issues. Such methods were present on almost all machinery related industrial 

operations and systems from then onwards, either depending on human presence and sensing 

capabilities or later on to electronic sensors and computers. 

 

Condition monitoring offers a wide range of advantages in every system that is implemented, 

especially in power plants and energy generation systems of every kind, that above all require 

high availability and the least downtime possible. Some of the advantages that CM offers in 

wind turbine installations are listed below: 

 

• Increased Availability, as a result of CM utilization that allows for early stage 

developing fault detection and the execution of the respective predictive maintenance 

tasks before a failure occurs, that ultimately result in increased reliability and asset’s 

operational lifetime. By having smaller maintenance tasks that can be planned ahead, 

maintenance workforce efficiency is also increased. 

 

• Reduced Downtime is also an advantage of CM implementation through predictive 

maintenance that allows targeted and on-time repair operations, that almost eliminate 

unplanned failures and eventually downtime. 

 

• Reduced Maintenance Cost, by utilizing CM as mentioned before to implement 

predictive maintenance tasks, thus avoiding reactive maintenance practices that have 

always an increased cost as well as collateral costs like ones induced by increased 

downtime.  
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• Prioritization of Maintenance Activities is also a result of CM allowing for 

prioritization of critical maintenance tasks, instead of relying on first come first serve 

basis. This also allows for better part and work order management that also positively 

impacts maintenance efficiency. 

 

While continuously evolving cyber-physical systems (CPS) introduce increasing complexity, 

the need for deeper and more extensive knowledge of their behavior along with accurate data 

collection and processing is evidently fundamental to the development of CM systems[52]. 

With known and distinguishable borders between normal and abnormal operation states, a fault 

diagnosis scheme can be implemented. 

 

 
Figure 19: Fault diagnosis tasks 

 

As can be seen in Fig.19 fault diagnosis (FD) has three distinct tasks, that need to be completed 

in order to determine the kind, location and the time of occurrence of a specific fault[53]. These 

tasks are: 

 

• Fault Detection, the task of determining the presence of a fault and the time of its 

occurrence. 

 

• Fault Isolation, the task of determining the kind and location of the detected error. 

 

• Fault Identification, the task of determining the type, magnitude and cause of a 

detected fault. 

 

While in most cases no clear distinction exists in the literature between FD and CM, resulting 

in equivalent use of these two terms, there is a difference with regard to the output of each 

method. Online condition monitoring (as described later) produces a continuous output through 

time, while fault diagnosis provides a dichotomous output at each given time[54]. In general 

terms it can be argued that fault diagnosis is an extension to condition monitoring, as it enables 

the detection and identification of faults, taking advantage of the continuous condition 

evaluation that CM provides. Using continuously gathered information about the health 

condition of a system through CM can also enable the implementation of a fault prognosis 

scheme, in order to predict possible fault occurrences in the future.  
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By implementing a fault-evolution model, current health condition values and trends can be 

extrapolated, resulting to the future fault trend and possible fault predictions. As it can be seen 

in Fig.20 by Mazzoleni et al.[54], CM is utilized in predicting future faults of a system, as it is 

the case at t = 3 by continuously processing real time condition values and iteratively providing 

a fault prognosis output, while also enabling fault diagnosis when a fault occurs and is detected 

at t = 7 . 

 

 
Figure 20: CM, FD and FP concepts 

 

The ability of a CM implementation to provide continuous information about the health 

condition of a wind turbine system, by recording and processing operational data in real-time, 

leads to the first distinction between CM schemes. The first broad classification of CM 

techniques divides them into two categories, offline CM and online CM.  

 

Offline CM is usually implemented in cases that have to do with moderately critical systems 

& subsystems, that a periodic inspection is deemed to be sufficient to determine their condition, 

instead of continuous online monitoring during operation. It explicitly requires the wind turbine 

to be stopped for the maintenance personnel to inspect it, either visually or by other technical 

means. Offline CM includes the below methods: 

 

• Oil Debris Analysis, a periodic routine analysis of oil used as lubricant in various 

mechanical parts such as gearboxes, generators and bearing. The main aim of this 

method is to identify possible oil degradation and contamination, by examining the 

condition and quality of the lubricant, which is mainly affected by parameters such as 

viscosity, water content, oxidation level, etc.[55]. The monitoring of such diagnostic 

parameters is mainly carried out by implementing laboratory techniques, after the 

sampling of the lubricant which usually takes place every six months. 

 

• Vibration Analysis, an analysis of the vibration response measured on parts of a wind 

turbine. Usually, this method applies to wind turbine blades, where an impulse is 

induced to the blade and the response is measured and processed using Fast Fourier 

Transform (FFT) to evaluate possible structural degradation. Offline vibration analysis 

requires the removal of the monitored blade and the placement of it on a test set-up, 

used to induce impact or load conditions to the blade. 
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• Acoustic Emission Analysis, an analysis of acoustic waves that are generated by the 

wind turbine blades as they undergo stress loading. Acoustic sensors are placed across 

the blade at predefined locations, which enable better location identification during the 

testing, record acoustic waves and implement FFT to analyze them. This method relies 

on the presence of acoustic emission in a fiberglass structure under load, that indicates 

the presence of a fault[56]. It also requires the removal of the monitored blade and the 

placement of it on a test set-up, used to induce load conditions to the blade. 

 

• Visual Inspection, is the simplest condition monitoring method that implements the 

visual inspection, aided by visual equipment or by plain eyesight, of wind turbine parts 

and sub-systems[57]. It can be used to inspect the blade’s surface structural condition 

as well as leaks of lubricants in mechanical rotating parts or electrical insulation 

degradation. It can also utilize visual aid equipment such as infrared cameras to measure 

the temperature of various components.  

 

To begin with, it is evident that offline methods do not provide the advantage of reducing 

downtime, which is one of the crucial aims of modern O&M strategies, as they require that the 

wind turbine is not operational during the monitoring and inspection operations. While oil 

debris analysis method can be crucial in determining the health condition of the lubricant, it 

comes at the high cost of conducting specialized laboratory analyses while also maintaining 

the inherent limitations of the sampling methods used[58].  Visual inspection, while appealing 

as a cost-efficient method of CM, is clearly the most un-sophisticated approach and is heavily 

affected by subjective judgement of the personnel conducting it. Also, visual inspection has 

the downside of having to manually integrate the resulting report’s information to maintenance 

databases, while also being of no value for CM information software systems as the visual 

reports cannot be integrated to them in a meaningful and effective way. 

 

Furthermore, the implementation of non-destructive testing (NDT) techniques like vibration 

and acoustic emission analyses used in offline CM, although it provides valuable information 

about the condition of wind turbine blades, has limited implementation value in commercial 

wind turbine sector as it requires the disassembly of the blades to take place. Besides that, the 

need of specialized impact and load test benches that can facilitate these kinds of tests, would 

dictate the transportation of heavy wind turbine blades to such facilities, with consequent cost 

and complexity increase. It is through an ideal implementation for prototype testing and 

certification purposes of wind turbine blades, that can be carried out in testing facilities without 

having to consider disassembly or downtime factors imposed to operational commercial wind 

turbines. 

 

On the other hand, online CM takes place while the wind turbine is operational, providing some 

advantages over the offline methods. First and most important of all, it does not have a negative 

effect on power production as the wind turbine remains operational without increased 

downtime, while also giving the advantage of providing a deeper insight in the condition of 

sub-systems and components that cannot be achieved only by on-the-spot check. There are 

different ways to implement online CM systems, with respect to data acquisition method and 

hardware/software configuration. The first category is custom-made sensor CM configuration, 

that uses hardware tailored to the needs of specific wind turbine CM, along with custom 

hardware allowing for the processing and storage of acquired data. While this method provides 

the advantages of designing a system that can meet the high sampling rate and process 

capability that some of the measured data require, thus resulting in increased CM and FD 

capabilities on dynamic systems such as wind turbines, it comes at the cost of increased 
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complexity and higher implementation costs as it requires additional hardware to be installed 

on different wind turbine systems varying in structure. Even though the aforementioned 

qualities make this solution unviable for commercial wind turbine installations, they can be of 

great utilization for research and testing purposes as well as in prototype testing and 

certification procedures, where the need of high sampling rate capabilities and custom-tailored 

sensor installation overcomes the high implementations costs. 

 

 
Figure 21: Information through SCADA utilization diagram 

 

The second category is the SCADA-based online CM configuration, where the CM systems 

utilize the data acquisition by the already implemented SCADA system of the wind turbine, as 

can be seen in Fig.21. In this case there is no need to install additional hardware on site, as the 

needed equipment is already implemented, usually either for the control or for SCADA 

purposes of the wind turbine system. As SCADA systems are now part of the standard 

implementation in commercial wind turbine installations, it becomes obvious that this method 

has the advantage of low implementation cost and complexity, as most equipment utilized is 

already installed. While in most cases commercial SCADA systems can have lower sampling 

rates and less storage capability than custom-made solutions, the advantage of being an out of 

the box data acquisition solution along the wide adoption of SCADA systems in wind energy 

sector makes this method appealing and financially viable. Lastly, SCADA and online CM 

systems can be interconnected, in a way that SCADA can provide data to the CM system for 

monitoring while the CM system can report back to the SCADA interface alarms and faults, 

providing the O&M teams with a fault reporting system essential for remote wind turbine 

installations. 

 

As it can easily be deduced from the aforementioned advantages and disadvantages of the two 

categories of online CM, SCADA-based CM systems is the most appealing option for 

commercial wind turbine installations. The simplicity and efficiency of common SCADA 

implementation in modern wind turbines, along the already existing extensive communication 
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network that allows for real-time data acquisition in almost every geographical location around 

the globe, provide the solid foundation on which state-of-art online CM methods prosper.  

 

 
Figure 22: Online CM methods 

 

Online CM and FD methods can be broadly classified in three main categories, as seen in 

Fig.22, with respect to the type of data used, methods of data processing and overall 

functionality: 

 

• Signal-Based Methods, where signals like vibration and acoustic emission are 

measured by various sensors and then relayed to online CM systems, usually with the 

involvement of either custom sensors and signal acquisition systems or SCADA 

systems. Then after a preliminary signal processing stage, the real time signal values 

are checked against healthy wind turbine threshold values obtained from prior 

knowledge of monitored wind turbines, to provide a fault diagnostic result[49]. 

 

• Model-Based Methods, where a model of the physical system is implemented by either 

utilizing the fundamental understanding of the physics involved, or from the utilization 

and processing of a large volume of historical data, linking measured input and output 

process data. Then this model is given the same inputs as the physical system, to 

simulate the same conditions for the model, while the deviation of physical and model 

outputs is measured to provide a fault diagnostic result[59]. 

 

• Hybrid Methods, where a combination of the above methods is used to monitor the 

condition of a physical system and provide FD. 

 

 

Two points of clarification should be presented, with respect to model-based CM and FD 

methods, so that the following classification and analysis of different model-based techniques 

is consistent with the scope of this thesis, as well as the already existing literature. Firstly, some 

of the model-based CM methods can be found through the literature as being identified by 

various titles, such as History-Based Methods[59], Data-Driven Methods[60][54] and 

Knowledge-Based Methods[61][49], while also being classified as a stand-alone category of 

online CM in some cases or a sub-category of model-based methods on others. Secondly, there 
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is an evident overlap of model-based methods and knowledge-based methods in the existing 

literature that may lead to confusion in classifying and categorizing these methods. That been 

said, from that point and onward CM and FD methods that do not use a mathematical model 

based on the system’s physics, but otherwise utilize a model derived by formulating a link 

between measured input and output values, are going to be considered model-based methods. 

 

 
Figure 23: Hardware and Analytical redundancy schemes 

 

Furthermore, to strengthen even more the interrelation of those approaches, both methods are 

based on the framework of analytical redundancy, which in contrast to the traditional approach 

of hardware redundancy, is achieved not by implementing a physical duplicate of the sensors 

or the monitored system but rather by either using the knowledge of the physics and dynamics 

of the system or by extracting information about them from operational data. In this case, the 

physical duplicate of the system is replaced with software that simulates it using the respective 

model, as can be seen in Fig.23. Continuous advance on the control theory domain has 

significantly helped in the wide adoption of these methods for CM and FD across various fields 

and applications. Analytical redundancy is generally considered more effective than hardware 

redundancy, despite that specific drawbacks do exist at its implementation, like inevitable 

modelling errors along the high complexity of the wind turbine dynamics[50]. 
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2.2 SIGNAL-BASED METHODS 

 

Signal-based methods for online CM are primarily based on the evaluation of signals measured, 

by various sensors installed on a wind turbine, such as electrical, vibration and sound signals.  

More precisely, these methods utilize only the output signals of the wind turbine for feature 

extraction and analysis in order to provide CM and FD, as can be seen in Fig.24. The basic 

principle of these methods relies on the consensus that there are process signals that can provide 

information about developing or already occurred faults on a wind turbine, which in respect 

can be presented in the form of symptoms after a signal processing stage[60]. The resulting 

symptoms can then be compared against prior knowledge acquired from healthy wind turbines 

checking trends and thresholds, in order to reach a fault diagnostic decision, thus not requiring 

knowledge of the physics governing a wind turbine system nor a mathematical model of the 

dynamics of it.  

 

Signal-based methods, commonly require the installation of custom sensors on the body and 

other various parts of the wind turbine along with signal conditioning and acquisition 

equipment, that can increase significantly the complexity and cost of such implementations. 

Although, this can be mitigated by the wide adoption of SCADA systems in wind turbine 

installations, that can provide signal acquisition through already installed by default sensors 

used either for the control scheme of the wind turbine or for purely CM reasons, although the 

need for high sampling rates and consequently increased data storage capabilities still presents 

a challenge for commercial adoption. 

 

 
Figure 24: Signal-based CM & FD diagram 

 

The most commonly used and intuitive signal-based method for CM and FD, is the limit 

checking of a measured variable. By prior knowledge, a set of thresholds can be deduced in 

order to define a normal operation range with respect to the value of the measured variable. 

 

𝑦𝑚𝑖𝑛 < 𝑦(𝑡) <  𝑦𝑚𝑎𝑥  (2.1) 

 

As can be seen on the preceding equation, by using a lower and an upper limit for the absolute 

value of the acquired signal, we create a normal operation zone that enables CM and 

consequently FD in case the value exceeds those limits. Despite its wide-spread adoption in 
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almost every industrial process, limit checking accuracy and efficiency is bound by a constant 

trade-off between false positive and early-stage FD[62]. 

An extension of this approach is the implementation of trend checking, where the trend of the 

measured signal is used for CM and FD. The tend of a signal can be acquired by various 

methods, like the implementation of a linear filter and moving average[63], wavelet 

decomposition and ordinary least squares regression[64]. The required normal operation range 

is again defined, this time with respect to the rate of change of the selected signal’s value, 

providing a better chance of FD at an early stage. Limit checking and trend checking of 

measured signals can also be combined as methods, in an attempt to alleviate each other’s 

drawbacks.  

 

2.2.1 WIND TURBINE SIGNALS 

 

The most common signals used are the following: 

 

• Vibration is the most commonly utilized signal in signal-based online CM methods. 

Sensors used in vibration signal monitoring include velocity sensors, displacement 

sensors and accelerometers, that are installed at various positions of the wind 

turbine[65]. Vibration monitoring is mostly utilized in an effort to identify faults at the 

wind turbine’s drivetrain, as the vibration signal of the rotating components can provide 

information about the mode and location of a developing or an existing fault[55]. 

Usually, the acquired vibration time series are converted to the frequency domain, 

implementing a Fast Fourier Transform (FFT)[66] in order to isolate and identify the 

fault-related frequencies, while also providing the ability to identify the severity of the 

fault through the magnitude of the vibration component. Some of the drawbacks of 

using the vibration signal for CM and FD, are that it cannot be of any help in identifying 

faults at components with no moving parts, it is usually a costly CM implementation as 

it requires most of the time custom sensor and acquisition systems to be installed and 

lastly it is considered inefficient at detecting developing faults at an early stage due to 

low signal-to-noise ratio (SNR). 

 

• Acoustic Emission is also a commonly used signal in such methods, that uses an array 

of acoustic emission (AE) sensors to record and then analyze sounds produced by the 

wind turbine. It is commonly employed to detect structural defects or damage, in parts 

like the gearbox, blades and generator[65]. The basic principle of acoustic emission 

analysis, is to utilize the elastic waves produced by various materials used in a wind 

turbine as a result of occurring deformation and damage, to provide a diagnostic 

decision[67]. The most common implementation of AE monitoring utilizes optic fiber 

displacement sensors and piezoelectric sensors, that offer a high SNR and consequently 

increased efficiency in detecting faults at an early stage. Like all monitoring methods 

AE monitoring has its drawbacks, like the accuracy needed on the proximity between 

the AE sensors installed on a wind turbine and the large number of AE sensors required 

for accurate CM and FD. Moreover, similar to vibration monitoring it has an increased 

installation cost, due to the need for custom signal acquisition systems and high 

sampling rates. 

 

• Temperature is also used as an indicator of possible component degradation and 

developing faults in signal-based CM methods. Thermocouples and optical pyrometers 

are the commonly used sensors in temperature monitoring, providing information on 

temperature variation that can be caused by underlying faults such as mechanical 



51 

 

damage of various components or insufficient lubrication[68]. It can be utilized to 

detect faults in various wind turbine components, such as the gearbox, generator 

winding and bearings, main bearing and the hydraulic system[55]. While temperature 

monitoring (TM) is considered a cost effective and generally reliable CM method, there 

are certain drawbacks in its implementation. Firstly, it is quite difficult for TM to 

identify early-stage developing faults, combined with equal difficulty at locating the 

source and identifying the reasons behind the observed temperature variation, and lastly 

the observed tendency of thermal sensors to fail in harsh environments. 

 

• Torque is primarily used for CM and FD on wind turbine drivetrain. The main goal of 

torque monitoring is to identify torsional oscillation and shifts in the torque-speed ratio, 

as a direct result of rotor faults such as mass imbalance along torque perturbations on 

the main shaft originating from higher load conditions[69]. There are two kinds of 

sensors used for torque measurement, rotary torque sensors placed in line with the 

respective rotating shafts to measure torque and reaction torque sensors used to measure 

bending moments. Generally, it is considered a costly and invasive option for CM, 

while it also presents practical installation complexity due to the need of in line 

positioning. Consequently, torque monitoring as a CM technique exhibits a very limited 

adoption in commercial wind turbines. 

 

• Electrical Signals, such as power, voltage, current and various control signals are also 

utilized for signal-based online CM. The spectra of various electrical signals can be 

analyzed to provide information regarding harmonic components and their magnitude, 

which can be utilized to provide fault diagnosis at an early stage[65]. Voltage and 

current measurements of the stator can be used to monitor the condition of the 

generator, while the power measurements can provide information useful to determine 

possible electrical imbalance of the rotor and even decreased blade stiffness[70][71]. 

Lastly, electrical and control signals are also the only signals that can provide CM and 

FD for the power converter. Electrical signal monitoring has the advantages of not 

being an invasive method and being quite straightforward method to implement, cause 

most of those signals are already monitored in wind turbine for control and SCADA 

purposes, thus also resulting in lower implementation cost. Also, electrical signal 

measurements are generally cost effective compared to mechanical measurements, as 

sensors needed for mechanical measurements tend to be more expensive. While 

exhibiting the aforementioned advantages, electrical signal monitoring has also 

disadvantages, like being highly system-specific and having a low SNR[55].  

 

• Strain is measured and utilized to provide information about the blade condition and 

identify possible structural defects or damage on them. These include also possible 

icing of the blades, mass unbalance and lightning strikes induced deformity and 

damage. The strain sensors, usually fiber optic sensors, are power passive components 

and are commonly mounted on the surface of the blade or embedded in its layers. Strain-

based CM can provide detection of developing faults at an early stage, due to being 

highly sensitive to even slight structural changes, while it requires a low sampling rate 

and consequently a lower implementation cost at it mainly implements a time-domain 

FD[69]. On the other hand, it requires the sensors to be continuously and firmly 

attached to the monitored material, which might not be the case in high levels of 

deformation where the sensor and the material can even be separated, to provide 

accurate measurements. 

 



52 

 

• Oil Parameters, such as viscosity, levels, temperature, pressure and water content can 

be monitored and analyzed to provide information about lubricant’s contamination and 

degradation levels. That in their turn provide information about the condition of various 

wind turbine components that are lubricated, such as the gearbox, bearings and 

generator, so FD can be accomplished at an early stage[72]. While the off-line variation 

of oil CM described on a previous chapter, is the dominant approach in commercial 

wind turbines, the online oil CM methods that employ various sensor to collect real-

time information about the oil condition have helped to overcome some of its inherent 

drawbacks[73][74]. Nevertheless, online CM continues to exhibit certain drawbacks, 

such as higher implementation costs due to additional sensor installation needed and an 

observed vagueness in interpreting real-time measurements due to wind turbine’s 

operational status impacting oil parameters. 

 

• Ultrasound is also utilized to monitor the structural integrity of various wind turbine 

components, like the rotor blades, nacelle and tower. The underlying principle is that 

structural defects and faults can affect the characteristics of ultrasonic waves 

propagation and reflection, like amplitude attenuation and phase shift, thus through 

signal-processing methods enable accurate and efficient CM and FD on these 

components[75]. It usually requires the installation of ultrasonic transducers on the 

surface of the monitored component, in order to capture the reflected or the transmitted 

ultrasonic waves. Nevertheless, new types of ultrasonic transducers that do not require 

contact with the monitored component, like air-coupled transducers (ACT) and 

electromagnetic acoustic transducers (EAT), are more suited to wind turbine CM 

applications[76]. While generally being a highly sensitive and accurate method for 

structural CM and FD, it has high initial implementation cost along a difficulty to 

monitor geometrically irregular components. 

 

• Radiography, commonly known as X-ray imaging is utilized to reveal structural 

defects and alteration of wind turbine components, like the rotor blades, nacelle and 

tower. Specifically real-time radiography implements an array of digital radiation-

sensitive sensors installed on the monitored component, thus providing immediate data 

capturing and real-time analysis, able to provide efficient FD along magnitude 

determination of the respective damage[77]. The equipment used for radiography is 

highly portable and capable of accurate CM and FD, however health risks associated 

with the presence of nearby personnel along high implementation costs are significant 

drawbacks in the adoption of this method. 

 

• SCADA Signals are usually statistical features like minimum and maximum, mean and 

standard deviation of various signals measured by the control and SCADA systems of 

commercial wind turbines. These signals can include rotor speed, wind speed and 

power, while the sampling rate of these signals can vary from 30 seconds to 10 minutes 

usually implementing a rolling window average. The analysis of these signals against 

known trends and thresholds can provide FD for various wind turbine components, 

while keeping low implementation costs since the sensors and data acquisition system 

is already a part if the wind turbine installation. However, the low sampling rate of such 

signals makes it almost impossible to preserve the whole information of the dynamical 

features of wind turbine operation and faults, thus making signal-based FD with 

frequency domain tools highly unpractical[69]. 

 

Furthermore, there are novel and advanced methods for signal-based online CM like 
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thermography analysis (TA)[78], shock pulse method (SPM)[79] and fiber Bragg grating 

(FBG)[80], that while they do provide highly promising results in wind turbine CM and FD, 

the high complexity along increased implementation costs have not allowed their adoption in 

the commercial wind turbine domain yet.  

 

2.2.2 SIGNAL PROCESSING AND FEATURE EXTRACTION 

 

Besides the aforementioned absolute value and trend limit checking process on the acquired 

signal waveform, a signal conditioning and processing task is synchronously executed by the 

CM system, in order to pre-process the signal, extract the features and consequently analyze 

the symptoms needed for FD. This is based on the fact that various acquired signals exhibit 

oscillations of harmonic and/or stochastic nature, that can be used to identify occurring or 

developing faults in various components of the wind turbine. To obtain this information, the 

required features like amplitude, phase, frequency spectrum and correlation functions are 

calculated and later compared against features extracted during healthy operational states to 

provide CM and FD. Specifically in the case of wind turbine signal-based CM and FD, various 

signals can exhibit the characteristic of having a variable frequency spectrum, due to the very 

nature of variable-speed rotating rotor of the wind turbine. In this case, where a non-stationery 

signal has to be analyzed, there are additional approaches to be utilized, as the classic signal 

analysis tools would only provide an average result which would not be accurately associated 

to specific instants of the timeseries[62]. To summarize, the nature and scope of the extracted 

features as can be seen n Fig.25, are used to categorize signal-based CM methods in three 

distinct categories[54].  

 

 
Figure 25: Time and frequency domain visualization 

 

First, there is the Time domain, where the features are extracted by utilizing the time-domain 

behavior of the measured signal. Observing the amplitude variation of a signal over time to 

locate discrepancies or other features is probably the most intuitive approach in signal-based 

CM, as it also is an inherent technique used in observation by human beings. It requires the 

real-time acquired timeseries of the selected signals, with a predefined sampling rate adequate 

to capture fast variations. There are also various time-domain parameters and methods that can 
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be utilized to monitor the wind turbine dynamics and provide accurate FD, like the root mean 

square (RMS), Dynamic Time Warping (DTW) and Correlated Kurtosis (CK)[81]. The DTW 

algorithm is implemented to calculate the similarity between two time-series that exhibit speed 

variation, while CK is utilized to detect periodic impulses as a result of a fault in rotating 

equipment. 

 
Table 2 

Methods Domain Function Complexity/Computational Cost Sampling Rate 

Synchronous 

Sampling 

 

Time 

Signal 

Conditioning 

 

Low/Medium 

 

Medium-High 

Hilbert  

Transform 

 

Time 

Signal 

Conditioning 

 

Medium/Medium 

 

Medium-High 

Envelope 

Analysis 

 

Time 

Feature 

Extraction 

 

Low/Medium 

 

Medium-High 

Statistical  

Analysis 

 

Time/Frequency 

Feature 

Extraction 

 

Low/Low 

 

Any 

 

FFT 

 

Frequency 

Feature 

Extraction 

 

Medium/Medium 

 

Medium-High 

 

STFT 

 

Time-Frequency 

Feature 

Extraction 
 

High/High 

 

Medium-High 

Wavelet 

Transform 

 

Time/Frequency 

Signal 

Conditioning 

 

Low/Medium 

 

Medium-High 

 

The second category of signal-based CM methods is that of the Frequency domain, where a 

variety of spectral analysis tools and techniques are implemented to compute the spectrum of 

a signal. Most of the time this is accomplished by calculating the Discrete Fourier Transform 

(DFT), to obtain the frequency equivalent of the time-domain waveform[82]. Then the various 

spectra are analyzed and compared against threshold and trends previously obtained from 

healthy operational wind turbines to provide a FD decision. Usually frequency-domain 

methods require an increased sampling rate of the determined CM signals, in order to be able 

to capture high frequency vibrations and acoustic emission[83]. 

Lastly, in an effort to improve the ability to process signals, both time and frequency domain 

techniques are employed in combination to process and extract features of various signals. 

Thus, has emerged the third and last category of signal-based CM methods, the Time-

Frequency domain, where various techniques are utilized that combine time-domain and 

frequency-domain analysis to provide accurate FD on wind turbines. These include the Short 

Time Fourier Transform (STFT)[84], Wigner-Ville Distribution (WVD)[85] and Empirical 

Wavelet Transform (EWT)[86]. 

 

Some of the most commonly used techniques and methods in signal processing and feature 

extraction, are the following: 

 

• Synchronous Sampling is utilized to convert the non-stationary signal characteristics 

to constant values, so that other signal-based processes for feature extraction can be 

implemented. This technique is especially useful in wind turbine signal-based CM, as 

the variance in rotational speed of the rotor in most wind turbines, results in non-

stationary vibration and electrical signals. To address this issue, multiple synchronous 

sampling algorithms and methodologies are developed and implemented[87][88]. 

 

• Hilbert Transform is used to calculate instantaneous amplitude and phase of signals, 

and to demodulate signals like vibration and torque in the time domain. While the wind 
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turbine is operational, an occurring fault can induce vibration to various components, 

which in turn can modulate the measured signals for the online CM, making the fault 

signature extraction impossible due to this induced modulation[72]. So, the Hilbert 

transform is mainly used as a first stage of signal processing in FD of wind turbine 

components, such as the gearbox and bearings. It can also be combined with empirical 

mode decomposition (EMD) to provide FD for various cases and components[89][90]. 

While it provides the best results, from the envelope detection point of view, it has the 

drawback that it cannot be applied on any signal already processed by another envelope 

analysis method[91]. 

 

• Envelope Analysis, is the utilization of the signal’s envelope, or also commonly 

referred to as the amplitude modulating component of the signal, to identify developing 

and occurring faults on a wind turbine[72]. Envelope analysis can either be based on 

Hilbert transform, or on a band-pass filter method for signal demodulation purposes. 

More specifically, a band-pass filter can be utilized to extract the periodic impact 

component resulting from a bearing fault, as the first step in obtaining the amplitude 

envelope of the signal[92]. 

 

• Fast Fourier Transform, or commonly abbreviated as FFT, is the method of 

transforming a time-domain signal’s waveform to its frequency-domain equivalent. In 

wind turbine CM and FD, FFT is implemented to obtain the frequency spectrum of a 

measured signal, followed by an analysis of harmonic components that are directly 

linked to certain wind turbine faults. This method is commonly used to provide FD on 

components such as the gearbox, blades and generator, by processing acoustic emission 

and vibration signals[72]. While it is the most commonly used frequency-domain 

technique, FFT cannot be implemented in non-stationary signals as the ones produced 

by variable-speed wind turbines, thus the need for pre-processing methods that enable 

FFT’s implementation on the resulted spectra[93][94]. 

 

• Statistical Analysis, utilizes a multitude of statistical features, such as mean value, root 

mean square (RMS) value, kurtosis (4th standardized moment of a probability 

distribution) and skewness (3rd standardized moment of a probability distribution)[95] 

to provide reference and threshold values from healthy operational wind turbines. 

While the wind turbine is operational, the same statistical features are extracted from 

the real-time signal measurements and are compared against the previously obtained 

and defined thresholds to produce a FD decision[72]. These methods provide the 

advantage of dumping random influences caused by the variable wind fields using the 

mean values for environmental signals, while also being relatively easy to implement 

and quite mature in the wind energy CM field[96]. On the other hand, while being quite 

successful at the FD detection task, statistical methods can rarely provide information 

about the fault location and mode due to their inherent noise sensitivity and difficulty 

to distinguish the possible causes for similar effects. 

 

• Wavelet Transform, is implemented to decompose a signal into different frequency 

channels on a logarithmic scale, in order to present them as a hierarchically structured 

set of basic and wavelet functions[97]. The wavelet is a square-integrable function with 

a zero mean, that oscillates in amplitude and decays to zero on both sides of waveform’s 

central position. This method enables a more accurate approximation of short-time 

signal variations with sharp transients and ultimately provides a better resolution both 

in time and frequency domains. 
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2.2.3 ADVANTAGES & DISADVANTAGES 

 

As it becomes evident, signal-based CM and FD methods utilize previous knowledge of various 

wind turbine signals thresholds and behaviors, gathered and analyzed at healthy operational 

state periods. By comparing real-time values gathered continuously from the wind turbine 

against these predefined limits and behavior patterns, signal-based methods can provide 

accurate and efficient CM and FD, thus also enabling predictive maintenance utilization. Most 

of the time in order to implement these methods, various sensors and real-time data acquisition 

systems are required along specialized signal-processing and data storage equipment as seen 

in Fig.26, while SCADA systems can also be utilized for signal-sensing and data acquisition. 

 

 
Figure 26: Signal-based CM & FD steps 

 

One of the most promoted and at the same time debated advantages that signal-based methods 

exhibit, is not requiring almost any knowledge of the physics and dynamics of the wind turbine 

as a system, as they do not implement a physics-based or I/O-based model of the wind turbine 

for CM and FD purposes. While in this way generic CM and FD methods and systems can be 

of use in wind turbine installations without the need for specialized personnel and analysis, in 

the end the omission of such valuable information as the system’s dynamics and physics can 

undermine the capabilities of accurate and efficient CM and FD as discussed below. 

 

Signal-based methods combined with a condition monitoring system (CMS) implementing 

custom sensor configurations and the accompanying data acquisition hardware, can provide 

highly accurate and specialized CM and FD capabilities tailored to specific wind turbine needs. 

That said, these implementations come with certain drawbacks, such as increased CM costs 

due to additional equipment needed for these methods along high complexity of installation 

and calibration of the aforementioned equipment. Also, as mentioned previously in this chapter, 

due to the very nature of the wind turbine operation process and its dynamics, most of the 

signals utilized in signal-based CM and FD are non-stationary with a frequency variation over 

time. Non-stationary signals require the implementation of time-frequency domain signal 
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processing and analysis methods that usually have high implementation complexity along 

increased computational cost. Lasty, for the complete coverage of a wind turbine’s CM and FD 

requirements, a combination of the aforementioned signal processing, feature extraction 

methods and signal-sensing capabilities will need to be utilized to provide accuracy, efficiency 

and completeness.  

 

On the other hand, signal-based methods and CMS combined with SCADA systems for signal-

sensing and acquisition, can also provide accurate and efficient CM and FD capabilities, though 

most of the time inferior to custom signal-based configurations. The reason behind this, is that 

SCADA systems usually provide 10 minute averages of the selected signals/variables that are 

acquired with 1Hz sampling rate, in order to decrease as possible the network bandwidth 

needed for data transmission[98]. So, it becomes evident that with the specific sampling rates 

and timeframes most of the features arising from the dynamics of the wind turbine operation, 

like high frequency vibrations and acoustic emissions are lost and consequently valuable 

information for CM and FD is lost too. While the obvious advantage of this method lies in not 

requiring the installation and calibration of additional sensors and signal acquisition equipment 

as most commercial wind turbines have SCADA as a de facto component, thus not increasing 

the overall CM and eventually O&M cost, it also exhibits the advantage of being almost a turn-

key solution for various wind turbine installations most of the time regardless of specific design 

features and component configurations. 

 

From the financial point of view, it comes down to finding the right balance between high CM 

investment costs for higher accuracy and efficiency in FD and the O&M cost reduction by 

early-stage FD preventing increased downtime and component/sub-assembly replacements. 

Ultimately, both these categories exhibit a significant drawback with respect to their ability to 

identify and accurately interpret signal behavior, especially in modern wind turbines with the 

inherent variability in operating conditions and regions, without knowledge of the wind turbine 

system dynamics and physics. Evaluating a threshold or a trend the same way in every 

operating region of the wind turbine is destined to fall short in accuracy and efficiency, as while 

a certain value or trend might be a fault indicator in one operating region, the same value or 

trend can be normal behavior in another operating region. In order to tackle this drawback, 

various classification methods and algorithms have been implemented with the aim of 

clustering observations to identify healthy and faulty states, but with no significant advantages 

over other methods being observed in the literature. This void in identifying variable operating 

conditions and capturing the transient dynamics of the wind turbine system, thus providing 

both higher accuracy and efficiency in wind turbine CM and FD, is what the model-based CM 

and FD methods are aiming to fill. 
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2.3 MODEL-BASED METHODS 

 

Model-based methods rely on the concept of analytical redundancy, by utilizing the underlying 

relationships between measured input and output variables of the monitored system, to provide 

accurate and efficient CM and FD. These relationships come in the form of a model of the 

monitored system, obtained either by knowledge and utilization of the physical principles and 

laws that govern the system’s behavior or by various system identification techniques. Model-

based CM and FD have their origin in the early 1970s when the failure detection filter, the first-

ever model based FD method for linear systems, was proposed by R.Beard[99] and 

H.Jones[100]. From that point and onwards model-based CM and FD theory and consequently 

methods have been on a rapid development path, as can be seen in Fig.27, boosted by the 

advances on control theory and computer science, along the ongoing demand for safe and 

highly reliable large scale plants and processes[60]. 

 

 
Figure 27: Historical development of mode-based methods 

 

In contrast to signal-based methods that only acquire and evaluate the output signals of the 

monitored process with signal-processing methods and feature extraction, model-based 

methods utilize both input and output signals of the monitored process in order to provide CM 

and FD. More specifically in the case of wind turbines, model-based methods do not require 

the acquisition and processing of high-frequency measurements of signals, as is the case with 

signal-based methods, but rather use signals and measurements of both the inputs and the 

outputs, acquired by the SCADA system or even directly by the control system that are already 

utilized for control purposes. Consequently, the additional equipment for sensing, processing 

and storage along the resulting increased cost that is necessary for signal-based CM and FD is 

eliminated in that way, making model-based methods more appealing for commercial adoption 

in the wind energy sector. 

 

The input and output variables utilized by model-based methods most commonly include wind 

speed, wind direction, control inputs, rotational speed and power among others, while they can 

also include qualitative information in the form of SCADA real-time events and alarms. The 

acquisition and transmission to the CMS is exclusively carried out by the SCADA system. 
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Model-based CM and FD methods can generally be separated into two distinct categories[61]: 

 

• Quantitative, where the utilized model incorporates the input-output relationships of 

the process in terms of mathematical functions.  

 

• Qualitative, where the utilized model incorporates the input-output relationships of the 

process in terms of qualitative functions.  

 

Qualitative approaches are usually implemented in cases where the development of a sound 

mathematical model for a process is deemed too difficult or time consuming, thus the utilization 

of “cruder” descriptions is mostly preferred for CM and FD purposes[101]. Also, qualitative 

approaches are necessary in cases and applications where the faults cannot be described by 

quantitative means like “the wind vane is broken” or the real-time information fed to the model 

is of qualitative nature and cannot be transformed to a quantitative measurement like “the wind 

speed is high”.  

 

Qualitative model-based approaches include among others: 

 

• Fault Tree, where the graphical representation of the pathways within a dynamic 

system that can lead to a particular fault, is utilized as the model. Those pathways 

interconnect various events through the use of logic symbols, like AND & OR, 

eventually leading to the top-most event which is the occurrence of that fault[102]. 

Some of the fault tree model-based implementations for wind turbine CM and FD that 

can be seen throughout the literature, include cases of drivetrain[103] and gearbox 

FD[104]. 

 

• Signed Directed Graph, where the system structure is modeled by using nodes and 

direction branches, that represent system variables and cause-effect relations between 

them respectively[105]. The nodes that represent system variables are assumed to be in 

one of three possible states of ‘high’, ‘normal’ and ‘low’, with respect to the intended 

state of the system variable, designated by the signs ‘+’, ‘0’ and ‘–‘ respectively. While 

the branches can represent positive or negative influence to the destination node 

variable, designated by signs ‘+’ and ‘–‘ respectively[106]. By utilizing nodes with non-

zero value, which designate a deviation from normal state, and moving along branches 

designating fault propagation, a cause-effect graph can be generated providing FD. 

Some cases of SDG implementation on wind turbine CM and FD are presented in detail 

in Refs.[107], [108]. 

 

• Fuzzy Logic, where the system and its processes are described by qualitative linguistic 

terms, that take into account their imprecise nature[59]. The effect of linguistic 

variables, or soft variables as can be found in the literature, can be captured by 

implementing the three-stage process of fuzzification - fuzzy rule definition – 

defuzzification[109]. Fuzzification refers to the assignment of measured variables to 

fuzzy sets utilizing a suitable rule known as membership degree. Next IF-THEN 

reasoning is applied in order to decide on the possible output generated by these 

fuzzified inputs. Lastly the resulting output is quantified via an inverse fuzzification 

technique(defuzzification). The implementation of linguistic variables and rules for 

model-based CM and FD in wind turbines is presented extensively in Refs. [110], [111]. 
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While the use of qualitative approaches in CM and FD is quite appealing, especially in cases 

of high uncertainty or vague understanding of a system’s structure and parameters, they also 

exhibit significant drawbacks. One of them is their observed inability to detect soft faults when 

implemented on their one, a result stemming from their relatively unrefined nature[101]. On 

the other hand, quantitative model-based approaches utilize analytical mathematical models of 

the monitored system, that incorporate the system’s transient dynamics, in order to provide CM 

and FD. These can be physical models based on 1st principles or models obtained through 

various system identification techniques, that can be implemented after a stage of validation. 

Quantitative model-based approaches can be divided in three distinct categories: 

 

• Residual Generation, is the approach that relies on the implementation of a model in 

order to calculate the variation between measured and estimated output variables for 

the production of a residual quantity[101]. The residual can be then evaluated with 

various methods and techniques, in order to produce a fault diagnosis decision. It is the 

most common approach implemented for wind turbine CM and FD purposes and its 

principles along various modelling methods and implementations will be extensively 

presented and reviewed in the later parts of this thesis. 

 

• Fault Estimation, is the approach that relies on a fault estimator structure for model-

based CM and FD purposes[112]. The general scheme of fault estimation includes a 

fault estimator that is utilized to detect the fault, while a bank of additional fault 

estimators are implemented for fault isolation purposes to identify the type and location 

of the fault[113]. While the fault estimator design can be either of static or dynamic 

nature, with the nonlinear dynamics of the wind turbine system under consideration, 

the implementation of adaptive filters[114] and fuzzy sliding mode estimators[115] 

have recently been proposed for CM and FD.  

 

• Set Membership, is the approach that relies on system consistency checking by 

utilizing a set of mathematical models of the system[116]. This approach considers 

model uncertainties and noise as unknown parameters, but bounded between upper and 

lower limits known a priori, while a set of all the possible states of the system in healthy 

condition is calculated that are consistent with these boundaries and the system’s given 

model[117]. To provide CM and FD, the consistency between the measured system’s 

state and the aforementioned set of possible states is checked, resulting to a fault 

detection if the measurement is not consistent with any possible model of the set. This 

approach exhibits the advantage of not requiring threshold implementation while 

limiting false alarms in fault detection[118]. On the other hand, this method can lead to 

undetected faults due to the propagation of model uncertainty to the residual limits, that 

can lead to faults generating smaller residual quantities than residual uncertainty[119]. 

 

Quantitative models and model-based methods for CM and FD exhibit certain advantages like: 

 

• They can provide the most accurate estimation of a system’s outputs, when they are 

properly and accurately formulated, thus the most accurate and efficient FD. 

• They can be utilized to model both “healthy” and “faulty” operation of a system, 

making the differentiation between those two states easily distinguishable. 

• The transients in a highly dynamic system, such as the wind turbine, can only be 

captured and modelled by detailed quantitative physical models. 
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Along some observed drawbacks: 

 

• Quantitative models can be highly complex and quantitative model-based methods for 

CM and FD are usually computationally intensive. 

• The effort and time commonly required for the development of these models is 

significant. 

 

While all three of quantitative model-based methods for CM and FD in wind turbines are 

briefly presented above, the scope and focus of this thesis is basically on the residual generation 

approach, its implementation variations and the methods used to obtain the models required for 

it. 

 

2.3.1 RESIDUAL GENERATION APPROACH 

 

The first step of every model-based method is to obtain an, as much as possible, accurate model 

of the monitored system and that is also the case with residual generation approaches. Once the 

model is obtained and validated, it is utilized to reproduce the system’s behavior by using the 

same input values 𝑢(𝑡) to predict the physical system’s output values. The difference between 

observed 𝑦(𝑡) and predicted 𝑦̂(𝑡) output values, commonly referred to as the residual, is what 

eventually carries the most important and needed information for CM and successful FD. As 

J.Chen and R.Patton clearly defined it, and as also can be seen in Fig.28, model-based CM and 

FD is “..the determination of faults of a system from the comparison of available system 

measurements with a priori information represented by the system’s mathematical model, 

through generation of residual quantities and their analysis.”[101]. 

 

 
Figure 28: Model-based CM & FD diagram 

 

The most common approach to model-based CM is to model the normal behavior of a system, 

by categorizing and processing data based on normal operation conditions and healthy system 

status so that in ideal conditions the residual carries only the fault information, thus the 

resulting residual should always have a value close to zero when there is neither a developing 

nor an already occurred fault.  

 

So, if the residual generation process is well constructed to provide a residual quantity 
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unaffected by uncertainty and disturbances, the fault detection scheme follows the general logic 

of:  

𝑖𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 0  𝑡ℎ𝑒𝑛 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑖𝑛 𝑛𝑜𝑟𝑚𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑒 

𝑖𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 ≠ 0  𝑡ℎ𝑒𝑛 𝑎 𝑓𝑎𝑢𝑙𝑡 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 

 

So, the last stage in model-based CM and FD sequence is to evaluate the residual that was 

generated, in order to produce a diagnostic decision on whether a fault alarm should be 

triggered or not. As it becomes evident, in residual generation model-based methods the CM 

and FD structure is comprised by two distinct stages, as was first proposed by E.Chow and 

A.Willsky[120]: 

 

• Residual Generation is the process where the residual signal is generated by utilizing 

the system’s model and the available input/output values information. The residual 

signal is inherently independent of the input/output variables, under ideal modelling 

and generation conditions. So, with proper modelling, the generated residual signal is 

the representation of the fault symptom that is extracted from the system, thus making 

the preservation of as much information as possible during the process of residual 

generation of paramount importance. The various methods utilized to generate a 

residual for CM and FD purposes are extensively presented and reviewed in chapter 3 

of this thesis. 

 

• Decision Making is the process where the generated residual is checked against a 

predetermined decision rule, to determine the development or the occurrence of a fault. 

The decision can be produced by threshold checking of the residual signal instantaneous 

values and moving averages, by implementing various statistical methods and fuzzy 

logic methods. It is a crucial stage of model-based CM and FD process, as it is what 

ultimately produces the diagnostic decision. 

 

The first stage is what usually dominates the debate in the existing literature for the residual 

generation approach, regarding the different methods and models utilized for residual 

generation purposes. This stems from the fact that the stage of decision making is generally 

considered to be relatively easier and more straightforward, if it is implemented on well 

designed and accurately calculated residual quantities[101]. The challenges arising and the 

possible shortcomings in the effort to design a residual generator that provides a well-defined 

residual are presented in 2.3.2. 

 

Nevertheless, the research in the domain of residual evaluation and the decision-making stage 

is also crucial in order to provide efficient and accurate model-based CM and FD. Residual 

evaluation process is of paramount importance, especially in cases that unknown disturbances 

and model uncertainties are part of the residual signal, resulting in a residual that can vary 

significantly from zero without an underlying fault present. In order to provide FD in such 

cases there is the need to extract fault-related information by means of residual signal post-

processing and evaluation.  

 

The different approaches to residual evaluation can be classified in four broad categories[121]: 

 

• Threshold Approach is the utilization of thresholds against which the residual quantity 

is compared to provide a diagnostic decision. Fixed thresholds were initially used for 

residual evaluation, implementing a static limit that if it is surpassed a fault alarm is 

generated, thus facing the problem of choosing a too low or too high threshold leading 
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in false fault alarms or faults being undetected respectively. To address this issue an 

adaptive threshold approach was proposed[122], that takes into consideration the 

unknown inputs to follow and adapt to the system’s operation, thus creating a time-

variant threshold that reduces false alarm and undetected faults incidents[123]. The use 

of adaptive thresholds in wind turbine CM and FD is presented in Refs. [124], [125]. 

 

• Statistical Approach is the utilization of various statistical methods to process and 

check the residual quantity in order to provide a diagnostic decision[126]. Various 

statistical tools can be utilized for that purpose, like the whiteness, mean and covariance 

of the resulting residual[127]. One of those methods known as the generalized 

likelihood ratio (GLR) was proposed by A.Willsky and H.Jones[128], where the 

residual is expressed explicitly in two terms that are used to calculate the likelihood of 

a fault occurrence[126]. The use of GLR tests in wind turbine CM and FD is presented 

in Refs. [129]–[131]. 

 

• Fuzzy Approach is the utilization of fuzzy logic to evaluate the residual quantity in 

order to provide a diagnostic decision. This approach follows the previously mentioned 

fuzzy logic sequence of fuzzification - fuzzy rule definition – defuzzification, to first 

generate the membership functions of the residual’s fuzzy sets, then define the 

underlying rules between the residuals and faults, and lastly convert the fuzzy 

information acquired into a valid diagnostic decision on the occurrence of a fault[121]. 

The use of fuzzy logic in wind turbine CM and FD is presented in Refs. [132], [133].  

 

• Neural Network Approach is the utilization of various artificial neural networks 

(ANN) to evaluate the residual quantity in order to provide a diagnostic decision. In 

order to implement such an approach, the utilized ANN needs to be trained with data 

sets of previously recorded residual values along their corresponding fault presence 

information[121]. After the training phase the ANN can be deployed to evaluate real-

time residual quantities, providing a diagnostic decision on fault presence[134].  

 

2.3.2 ROBUST RESIDUAL GENERATION ISSUES 

 

As mentioned before, model-based CM and FD methods utilize analytical models of the 

monitored system for diagnostic purposes, thus the higher the accuracy of the model’s 

representation of the physical system’s dynamic behavior, the higher is the efficiency and 

accuracy of FD capabilities of the CMS. On the other hand, modelling uncertainties and errors 

along with disturbances affecting the plant, are inevitable in complex cyber-physical systems 

and they need to be addressed in order to obtain satisfactory results in residual generation. 

Added to that fact, real systems and processes usually have a strongly non-linear behavior, that 

poses a serious challenge in the task of accurately modeling them. Variation in operating states 

of dynamic systems resulting in time-varying system parameters, along induced disturbances 

and noise with unknown characteristics and effects, can result in significant discrepancy 

between real system’s and mathematical model’s behavior[135].   

 

As it becomes evident, the most important and at the same time most demanding aspect of 

residual model-based CM and FD, is the achievement of residual generation robustness against 

the effects of unknown inputs, modeling uncertainties and noise disturbances. The concept of 

robustness in the residual generation framework, can be defined as the ability of the residual to 

be highly sensitive to faults while remaining highly insensitive to unknown inputs, model 

uncertainties and induced disturbances across the whole operational range of the system[60]. 
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In order to investigate how this decoupling of the residual quantity from the aforementioned 

effects can be achieved, the mathematical model of the system including this information needs 

to be derived. 

 

The state-space linear time-invariant (LTI) model equations of the system are as follows: 

 

{
 𝑥̇(𝑡) = (𝐴 + 𝛥𝐴)𝑥(𝑡) + (𝐵 + 𝛥𝐵)𝑢(𝑡) + 𝐸1𝑑(𝑡) + 𝑅1𝑓(𝑡) 

𝑦(𝑡) = (𝐶 + 𝛥𝐶)𝑥(𝑡) + 𝐸2𝑑(𝑡) + 𝑅2𝑓(𝑡)                               
(2.2) 

Where:   

 u(t) is the system’s input. 

 x(t) is the system’s state. 

 y(t) is the system’s output. 

 A, B, C are matrices that represent the system’s parameters. 

 ΔA, ΔB, ΔC are matrices that represent the modelling errors. 

d(t) is the disturbance vector. 

E1, E2 are the disturbance input distribution matrices. 

f(t) is the fault vector.  

R1, R2 are the fault entry matrices.  

 

 
Figure 29: System block diagram 

 

The transfer function can be derived from the state-space equations: 

𝑦(𝑠) = (𝐺𝑢(𝑠) + 𝛥𝐺𝑢(𝑠))𝑢(𝑠) + 𝐺𝑑(𝑠)𝑑(𝑠) + 𝐺𝑓(𝑠)𝑓(𝑠) (2.3) 

Where, as seen in Fig.29: 

 ΔGu(s) is the representation of modelling errors. 

Gd(s)d(s) is the representation of disturbances affecting the system. 

  

These two terms combined represent the modelling uncertainty’s influence on the transfer 

function. By taking into consideration the generalized representation of a residual generator 

proposed by R.Patton and J.Chen[136]: 
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𝑟(𝑠) =  𝐻𝑢(𝑠)𝑢(𝑠) + 𝐻𝑦(𝑠)𝑦(𝑠) (2.4) 

 

Where: 

r(s) is the Laplace transform of the residual. 

u(s) is the Laplace transform of the system’s input. 

y(s) is the Laplace transform of the system’s output. 

Hu(s), Hy(s) are linear transfer matrices. 

 

System’s output y(s) can be substituted, utilizing the transfer function derived earlier, thus the 

residual generator equation becomes: 

𝑟(𝑠) =  𝐻𝑦(𝑠)𝐺𝑓(𝑠)𝑓(𝑠) + 𝐻𝑦(𝑠)𝛥𝐺𝑢(𝑠)𝑢(𝑠) + 𝐻𝑦(𝑠)𝐺𝑑(𝑠)𝑑(𝑠) (2.5) 

It is evident by the previous equation, that the residual is affected by both modelling 

uncertainties and disturbances affecting the process. The first objective is to totally decouple 

the residual from the disturbances affecting the system, thus providing a robust residual 

generation, by designing a residual generator that satisfies the condition: 

𝐻𝑦(𝑠)𝐺𝑑(𝑠)𝑑(𝑠) → 0 (2.6) 

There are different approaches proposed to achieve total disturbance decoupling, including 

unknown input observer (UIO) and eigenstructure assignment, that will be presented in Chapter 

3. In many cases it is impossible to fully decouple the residual from disturbances, by satisfying 

the previous criterion, thus other approaches can be implemented in order to achieve partial 

decoupling. Partial decoupling can be accomplished by introducing a compromise between 

residual’s robustness and sensitivity, in order to satisfy the minimization of a performance 

index[137].   

 

The performance index takes the form of:  

 

𝐼 =
‖
𝜕𝑟
𝜕𝑑

‖

‖
𝜕𝑟
𝜕𝑓

‖
(2.7) 

 

Where: 

 ∂r/∂d is the change of the residual quantity with respect to change in disturbances. 

 ∂r/∂f is the change of the residual quantity with respect to change in faults. 

 

By trying to minimize the performance index, the sensitivity of the residual to disturbances at 

the numerator is decreased, while the sensitivity of the residual to the faults at the denominator 

stays constant. Approaches and tools for optimizing the aforementioned performance index are 

presented in detail in Ref. [138]. 
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The second objective is to provide robustness against modelling uncertainties and errors, a task 

that is more difficult than that of decoupling the residual from disturbances. To that end there 

are two proposed approaches to tackle this: 

• Active Robustness is the approach that attempts to account for model uncertainties at 

the residual design stage.  

• Passive Robustness is the approach that utilizes adaptive thresholds at the decision-

making stage to mitigate the effects of modelling uncertainties. 

 

In the first case, the modelling uncertainty and errors are approximated as the output of the 

unknown but bounded disturbance affecting the system through a known filter, that can be 

represented by the following relation: 

 

𝛥𝐺𝑢(𝑠)𝑢(𝑠)  ≈  𝐺𝑑1(𝑠)𝑑1(𝑠) (2.8) 

 

Where: 

 Gd1(s) is an estimated transfer function matrix. 

 d1(s) is an unknown vector representing modeling error as disturbance. 

  

By utilizing this approximate structure, which includes modelling uncertainty as disturbance, 

residual generators can be designed that achieve robust CM and FD. In the second case, the 

task of providing robust FD is transferred to the decision-making stage. As real applications 

rarely offer the ideal conditions for robust residual generation, especially with respect to the 

modelling uncertainty and errors, passive robustness is an alternative to active robustness in 

cases where the latter is impossible[101]. As discussed previously, the case of residual being 

zero even without faults present is rare in complex cyber-physical systems, thus making the 

implementation of a threshold for diagnostic decision necessary.  

 

 
Figure 30: The concept of adaptive threshold 

 

If a fixed threshold is implemented, there is the risk of low sensitivity to faults if the threshold 

is too high or the possibility of a high false alarm rate if the threshold is too low. Added to that 

problem is the variation of residual as a result of modelling uncertainty, that can result in large 

maneuvers that no fixed threshold can provide efficient diagnostic decision as seen in Fig. 30. 

In these cases the use of an adaptive threshold, which takes into account the modelling 
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uncertainty, noise and operating point of the system, is paramount for accurate and efficient 

FD[101]. In order to determine adaptive thresholds, we take into account that total disturbance 

decoupling is achieved at the residual generation stage, thus the residual’s uncertainty is only 

affected by modelling uncertainty, giving the fault free residual as: 

 

𝑟(𝑠) =  𝐻𝑦(𝑠)𝛥𝐺𝑢(𝑠)𝑢(𝑠) (2.9) 

Accepting that the modelling errors can be bounded by a limit value δ: 

 

‖𝛥𝐺𝑢(𝑗𝜔)‖ ≤ 𝛿 (2.10) 

 

Thus, an adaptive threshold T(s) can be determined with the form of: 

𝑇(𝑠) = 𝛿𝐻𝑦(𝑠)𝑢(𝑠) (2.11) 

In this way the threshold can adapt both to the operating inputs of the system and to the bounded 

modelling uncertainty. By combining active and passive robustness approaches, an efficient 

and accurate FD is possible in complex cyber-physical systems like the wind turbine. To 

conclude, the success of model-based CM and FD processes heavily depends on the modelling 

technique used and the accuracy of the model produced for the respective monitored system. 
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3. RESIDUAL GENERATION METHODS 
3.1 MODELLING PRINCIPLES 

 

The first step in the design and implementation of model-based residual approach CM and FD, 

is the formulation of the system’s model, with the model’s observed accuracy and fidelity being 

on the one hand and on the other complexity and formulation time. The right balance between 

those factors for the respective modelling needs is the most crucial design goal, as it enables 

the formulation of a model that includes the dynamics and information needed but without 

adding unnecessary complexity.   

 

 
Figure 31: Modelling techniques’ spectrum 

 

In general terms the mathematical models of systems and processes can be efficiently obtained 

by implementing two distinct approaches, as can be seen in Fig.31: 

 

• Theoretical Modelling, where the model of the system is derived using mathematical 

representations of the fundamental laws of nature, requiring deep understanding of the 

parameters and dynamics of the system. 

 

• Experimental Modelling, where the model of the system is derived utilizing system 

identification techniques, to formulate mathematical representations of system’s input-

output relationships. 

 

In theoretical modelling, also known as first principles modelling, the various subsystems and 

processes known parameters and dynamics are combined to produce the system’s model. 

Theoretical modelling can be based on: 

 

• Balance equations for masses, stored energies and impulses. 

 

• Phenomenological equations of thermodynamics. 

 

• Entropy balance equations of irreversible processes. 

 

• Constitutive equations of the relation between different physical quantities. 

 

 

 



69 

 

The result is usually a theoretical model with a set of differential equations, that have a specific 

known structure and  specific known parameters, as can be seen for the wind turbine in 

Fig.32[62]. Theoretical modelling requires a sound understanding of the physical laws that 

govern the system’s behavior and more often than not the obtained model is extensive and 

exhibits high complexity, requiring simplification in order to be utilized for CM and FD. 

Simplification can be effectively achieved by utilizing two approaches, either the reduction of 

the model order or the linearization of the system model around a specific operating point. 

 

 
Figure 32: Interactions between subsystem models. 

 

On the other hand, experimental modelling is based on the availability of input/output 

measurements in order to obtain a mathematical model of the process. No prior knowledge on 

physical laws and dynamics of the system are required, relying only in system identification 

techniques to provide the mathematical relations between inputs and outputs, while the relation 

of the calculated parameters to physical processes and quantities remains unknown.  

 

Furthermore, in cyber-physical systems and processes, that usually present highly non-linear 

behavior and in some cases their parameters are not fully known, theoretical and experimental 

modelling can be combined in order to tackle these difficulties. These include cases where the 

model structure can be obtained through theoretical modelling, but the model parameters need 

to be calculated and defined from the available measurements. Also, there can be applications 

where even the structure of the model is unknown and cannot be defined using differential 

equations. Though, a fuzzy structure can be deduced by utilizing the general knowledge of 

physical rules and parameter estimation can be obtained through experimental modelling 

methods.  
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3.2 FIRST PRINCIPLES MODELLING 

3.2.1 NON-LINEAR 

 

As a highly dynamic and inherently non-linear system, the wind turbine is most accurately 

represented by non-linear theoretical models. In order to obtain a non-linear model of the wind 

turbine, all of its subsystems’ models and dynamics, as can be seen in Fig.33, should be 

represented by a set of mathematical equations derived from the knowledge of physical laws.  

 

 
Figure 33: Wind turbine model components and interactions. 

In general, as has also been presented in section 1.3, the main function of a wind turbine is to 

capture the kinetic energy of the wind in the form of aerodynamic torque applied to the wind 

turbine rotor. To efficiently achieve that, a yaw system that helps to track the wind direction 

and a blade pitch system that can alter the aerodynamic performance of the blades with respect 

to different operation ranges, are implemented. Aerodynamic torque applied to the rotor 

induces a rotation speed to the rotor’s shaft, which through the wind turbine drivetrain is 

transferred to the main shaft of the generator. The converter tries to control the generator shaft 

speed, as commanded by the control system using torque reference setpoints, thus providing 

power generation and transmission to the grid. 

 

By utilizing the knowledge of physical laws and system’s dynamics, we can formulate 

equations that accurately describe aerodynamic torque applied to the rotor as: 

 

𝑇𝑎 =
1

6
∑𝜌𝐴𝑅𝑉𝑟

2𝐶𝑞(𝛽𝑖, 𝜆)

3

𝑖=1

(3.2.1) 

 

Where: 

 𝑇𝑎 is the aerodynamic torque. 

 𝜌 is the air density. 

 𝐴 is the rotor swept area. 

𝑉𝑟 is the relative velocity of the wind. 

𝐶𝑞 is the aerodynamic coefficient. 

𝛽𝑖 is the pitch angle of the ith blade. 

𝜆 is the tip-speed ratio. 
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The drivetrain model as a rotational system with two degrees of freedom: 

 

𝜔̇𝑟(𝑡) =  𝜔𝑟(𝑡) −
1

𝑁𝑔
𝜔𝑔(𝑡) (3.2.2) 

 

Where: 

 𝜔𝑟(𝑡) is the rotor speed. 

 𝜔𝑔(𝑡) is the speed of the generator shaft. 

 𝑁𝑔 is the drivetrain speed ratio. 

The electrical pitch actuation system model as: 

 

𝛽̇(𝑡) =  −𝛼𝛽(𝛽(𝑡) + 𝑓𝛽) + 𝛼𝛽𝛽𝑟𝑒𝑓(𝑡) + 𝛥𝑓𝑃𝐴𝐷(𝑡) (3.2.3) 

 

Where: 

 𝛽(𝑡) is the actual pitch angle of the blade. 

 𝛽𝑟𝑒𝑓(𝑡) is the reference/target pitch angle of the blade.  

 𝛼𝛽 = 1/τβ which is the pitch actuator’s time constant. 

 𝑓𝛽 is the pitch angle offset. 

 𝛥𝑓𝑃𝐴𝐷(𝑡) is the representation of time constant variation effect on the pitch system. 

 

The full back-to-back converter model as: 

 

𝑇̇𝑔 = −𝑎𝑔 (𝑇𝑔 + 𝑓𝑇𝑔
) + 𝑎𝑔𝑇𝑔 𝑟𝑒𝑓 + 𝛥𝑓𝐺𝐶  (3.2.4) 

 

Where: 

 𝑎𝑔 = 1/τg with τg the time delay of the converter. 

 𝑇𝑔, 𝑇𝑔 𝑟𝑒𝑓   are the actual generator shaft torque and desired torque setpoint respectively. 

 𝑓𝑇𝑔
 is the generator torque offset due to converters characteristics. 

  𝛥𝑓𝐺𝐶  is the representation of increased converter delays effect on the converter system. 

 

These are some of the wind turbine’s subsystem and subprocess models as they can be seen in 

Fig.33, by integrating the rest of the sub-models a full order state-space model can be obtained 

as extensively presented in Refs. [139],[116]. The non-linear dynamic model obtained by this 

process of theoretical modelling, that usually includes the power electronics control and control 

system dynamics, can usually be of the eleventh order.  

 

While sometimes ideal for testing controller schemes in off-line simulations at the design stage 

of a wind turbine, the full-state non-linear model is quite complex and computationally 

demanding for CM and FD purposes. The first approach to tackle this is the reduction of the 

model’s order, by introducing simplification assumptions, while also trying to maintain the 

model’s dynamics relevant to CM and FD defined aims and purposes. By implementing such 

a process, the model can be reduced to seventh or even third order, reducing computational 

complexity while also retaining the ability to produce valid and very similar results compared 

to the full-state non-linear model. 
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3.2.2 LINEAR TIME INVARIANT 

 

The second approach is to use a linearized wind turbine model in order to reduce the complexity 

and decrease the computational cost, while preserving the needed dynamics for accurate CM 

and FD. This is usually achieved by linearizing the non-linear wind turbine model around 

different operating points, by choosing an operational trajectory as defined in Ref. [116]. By 

linearizing Eq. 3.2.1 around the chosen operation point, the linear aerodynamic behavior 

assumes the form: 

 

𝑇𝛼 = 𝑇𝛼,𝑉𝑟
𝑉̃𝑟 +

1

3
∑𝑇𝛼,𝛽𝑖

𝛽̃𝑖

3

𝑖=1

+ 𝑇𝛼,𝜔𝑟
𝜔̃𝑟 (3.2.5) 

 

Where: 

 𝑂𝑃 = (𝑉𝑟 , 𝛽, 𝜔𝑟) is the desired operation trajectory of the LTI model. 

 𝑇𝛼,𝑉𝑟
= (

𝜕𝑇𝛼

𝜕𝑣𝑟
) |𝑂𝑃  and  𝑉̃𝑟 = 𝑉𝑟 − 𝑉̅𝑟 

 𝑇𝛼,𝛽𝑖
= (

𝜕𝑇𝛼

𝜕𝛽𝑖
) |𝑂𝑃  and  𝛽𝑖 = 𝛽𝑖 − 𝛽̅𝑖 

 𝑇𝛼,𝜔𝑟
= (

𝜕𝑇𝛼

𝜕𝜔𝑟
) |𝑂𝑃 and  𝜔̃𝑟 = 𝜔𝑖 − 𝜔̅𝑖 

 

 Thus, the linear time invariant state-space model of the wind turbine takes the form: 

 

{
𝑥̇ = 𝐴𝑥 + 𝐵𝑢 + 𝐹𝑎𝑓𝑎 + 𝑅𝑉𝑟

𝑦 = 𝐶𝑥 + 𝐹𝑆𝑓𝑠 + 𝐷               
(3.2.6) 

 

Where: 

 𝑥 is the state of the system that includes ωr, ωg, Tg, β1, β2, β3, 𝛽̇1, 𝛽̇2, 𝛽̇3. 

 𝑢 is the input of the system that includes Tg ref, β1 ref, β2 ref, β3 ref. 

 𝐴, 𝐵, 𝐶 and 𝐷 are the state, input, output and I/O transmission matrices respectively. 

 𝑓𝑎, 𝑓𝑠 are the actuator and sensor faults respectively. 

 𝑅 is the input matrix of disturbance. 

 

Worth mentioning at this point, is the fact that modern wind turbine modelling suites are 

commonly used, like the fatigue, aerodynamics, structures and turbulence (FAST) currently 

known as OpenFAST. It is a simulation suite[140] developed by the National Renewable 

Energy Laboratory (NREL) of the U.S, for research and development purposes. It is utilized 

for simulating the total wind turbine system as in Fig.33, as also for testing applications for 

control, CM and FD purposes for real wind turbine systems, both in academia and in 

industry[141]. While OpenFAST is a multi-physics simulation suite that utilizes coupled non-

linear wind turbine dynamics to simulate the wind turbine behavior, it can also be used to 

linearize the full system non-linear model around a chosen operation point, providing easier 

access to accurate LTI models of the wind turbine subsystems and processes[142]. To that end, 

P.Odgaard and K.Johnson had proposed a challenge back in 2013 to design FD and fault 

tolerant control systems, tested and validated against the FAST’s 5MW wind turbine 

benchmark model[143]. 

 

While linear time invariant models achieve decreased complexity and consequently reduced 

computational needs, a significant advantage for on-line CM and FD systems, the results of 
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these models of the wind turbine can exhibit significant inconsistency compared to the highly 

non-linear wind turbine behavior. Thus, the need to obtain more accurate models for FD and 

even control purposes led to new methods of modelling utilizing the first principles. 

 

3.2.3 LINEAR PARAMETER VARYING 

 

An extension to the modelling accuracy and utilization efficiency of the linear time invariant 

model of the wind turbine, is achieved by the linear parameter varying (LPV) modelling, that 

implements a set of linearized models around several operation points. As seen on Fig. 12, the 

wind turbine has different operation points and ranges mainly identified and categorized with 

respect to wind speed variation through time. Wind speed variation also affects aerodynamic 

torque Ta and consequently the state matrix A of the state-space equations Eq. 3.2.5, thus 

forming the LPV state-space equations accordingly: 

 

{ 
𝑥̇ = 𝐴(𝜃)𝑥 + 𝐵𝑢 + 𝐹𝑎𝑓𝑎 + 𝑅(𝜃)𝑉𝑟
𝑦 = 𝐶𝑥 + 𝐹𝑆𝑓𝑠 + 𝐷                            

(3.2.7) 

 

Where: 

 𝐴(𝜃) is the variable state matrix. 

 𝑅(𝜃) is the variable matrix of disturbance. 

 𝜃 is the set of all possible operation points. 

 

Also, it is assumed that the wind turbine operation points are bounded, satisfying the following 

equation:  

 

𝑂𝑃𝑚𝑖𝑛 ≤ 𝑂𝑃(𝑘) ≤ 𝑂𝑃𝑚𝑎𝑥 (3.2.8) 

 

Where: 

 OP(k) = (Vr(k), β(k), ωr(k)) is the set of operation points. 

 𝑘 is the number of linearized models utilized. 

 

In order to efficiently and accurately implement the LPV model of the wind turbine, an 

estimation of the operation point θ needs to be available and considered. LPV modelling 

structure and theoretical principles were first introduced by J.Shamma and M.Athans[144], on 

an attempt to provide sound theoretical background and extend the benefits of gain scheduling 

for robust performance and system stability on control applications. This modelling method is 

also considered as a better approach at simplifying and linearizing the full-state non-linear 

model, compared to simple LTI approaches. Mainly, because it also maintains the ability to 

accurately model the wind turbine behavior in all of its operation range, without using multiple 

LTI models[145]. LPV models have been proposed on various papers[146], [147], as the choice 

that best serves the modelling needs for fault-tolerant model predictive control (MPC) on wind 

turbines, while also being effectively used for CM and FD purposes[148]. 

 

While commonly the LPV model is based on a set of first principles LTI models, it can also be 

obtained through a ‘gray-box’ approach, where the structure of the models is determined and 

the parameters are estimated utilizing wind turbine measurements and system identification 

techniques[149]. System identification methods will be extensively presented in section 3.3, 

but worth mentioning at this point is the fact that theoretical and experimental modelling can 

be combined, to provide better modelling capabilities for real cyber-physical applications. 
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More specifically, the task of estimating the parameters of LPV models can be reduced to a 

simple linear regression problem, as it has already been proposed by B.Bamieh and 

L.Giarré[150]. 

 

3.3 SYSTEM IDENTIFICATION MODELLING 

3.3.1 ARX & ARMAX 

 

System identification techniques rely on identifying the wind turbine model, by utilizing data 

sets of measured input and output variables, commonly acquired by SCADA systems. For this 

method the ability to provide an accurate and effective model of the wind turbine relies in the 

task of identifying and using measurements of healthy wind turbine operation, to obtain a 

dynamic operation model free of fault-induced behavior. To this end, the most intuitive and 

simple strategy is implementing auto-regression, that is based on the concept of LTI systems 

to relate the system’s output to its input through a linear function[151]. 

 

The first part of the ARX model (AR) is the definition of the model output as a linear 

combination of its previous output values and a stochastic process: 

 

𝑦𝑡
(𝐴𝑅)

= ∑𝑎𝑖𝑦𝑡−𝑖

𝑝

𝑖=1

+ 𝜀𝑡 (3.3.1) 

 

Where: 

 𝑦𝑡
(𝐴𝑅)

 is the auto regressive model output at time t. 

 𝑝 is the order of the model. 

 𝑎𝑖 is the ith parameter of the model. 

 𝜀𝑡 is the white noise effect on the system. 

 

The order of the system defines the number of previous output values that are considered to 

affect the current output of the system. In the pursuit of extending the basic AR model, to 

incorporate the effect of environmental inputs to the system, the concept of exogenous input is 

introduced. The exogenous input is crucial in modelling a wind turbine system through system 

identification, as it provides the framework to include environmental factors such as wind 

velocity, wind direction and air density as exogenous inputs contributing to the system’s output. 

Thus, the second part of the ARX model (X) is the definition of the model output as a linear 

combination of exogenous inputs: 

 

𝑦𝑡
(𝑋)

= ∑𝛽𝑖𝑢𝑡−𝑖

𝑞

𝑖=1

+ 𝜀𝑡 (3.3.2) 

 

Where: 

 𝑦𝑡
(𝑋)

 is the exogenous input model output at time t. 

 𝑞 is the order of the model. 

 𝛽𝑖 is the ith parameter of the model. 

 𝜀𝑡 is the white noise effect on the system. 

 

By Combining the two models, an ARX model of the system is obtained: 
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𝑦𝑡 = ∑𝑎𝑖𝑦𝑡−𝑖 +

𝑝

𝑖=1

∑𝛽𝑖𝑢𝑡−𝑖

𝑞

𝑖=1

+ 𝜀𝑡 (3.3.3) 

 

The ARX model represents a dynamic system, such as a wind turbine, in discrete time that 

utilizes time delay to take into account the time difference between input and observed output 

values. It can also incorporate the modelling of multiple-input multiple-output (MIMO) 

systems[152]. Utilizing least squares (LS) regression, an optimization method that aims to 

minimize the squared discrepancies between the input/output measurements observed and their 

expected values, the parameters of the ARX model can be accurately estimated in real-time as 

can be seen in Fig.34[153]. 

 

 
Figure 34: Fitting an ARX model with MATLAB. 

 

In order to treat the white noise component as a factor affecting the system’s output, thus 

allowing the modelling of the disturbances as a moving average of white noise, the concept of 

moving average (MA) is introduced in extent to the concept of autoregression[151]. The MA 

model of a specified system has the form of: 

 

𝑦𝑡
(𝑀𝐴)

= 𝜇 + ∑𝜃𝑖𝜀𝑡−𝑖

𝑘

𝑖=1

(3.3.4) 

 

Where: 

 𝑦𝑡
(𝑀𝐴)

 is the moving average model output at time t. 

 𝜇 is the mean value of the observed output measurements. 

 𝜃𝑖 is the ith parameter of the model. 

 𝑘 is the order of the model. 

 

By combining these two concepts, the auto-regression moving-average (ARMAX) model is 

obtained: 

 

𝑦𝑡 = 𝜀𝑡 + ∑𝑎𝑖𝑦𝑡−𝑖 +

𝑝

𝑖=1

∑𝛽𝑖𝑢𝑡−𝑖 + ∑𝜃𝑖𝜀𝑡−𝑖

𝑘

𝑖=1

𝑞

𝑖=1

(3.3.5) 

 

The implementation or ARX and ARMAX models is consistently present throughout the 

academia, for wind farm short-term power forecasting[154] and of course wind turbine CM 

and FD purposes[155]–[157].  
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3.3.2 NARX & NARMAX 

 

An extension of the auto-regression and moving-average concepts in the non-linear modelling 

field, the non-linear autoregressive model with exogenous input (NARX) and the non-linear 

autoregressive moving-average model with exogenous input (NARMAX) are introduced. First 

proposed by I.Leontaritis and A.Billings[158] for deterministic non-linear multivariable 

systems, was then extended to stochastic non-linear multivariable systems[159]. As the main 

concept, with respect to combining the AR and MA concepts, is the same as in the LTI 

identification framework, only the NARMAX model will be defined as: 

 

𝑦(𝑡) = 𝐹[𝑦(𝑡 − 1), 𝑦(𝑡 − 2), . . , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡 − 𝑑), 𝑢(𝑡 − 𝑑 − 1), . . , 𝑢(𝑡 − 𝑑 − 𝑛𝑢),

𝑒(𝑡 − 1), 𝑒(𝑡 − 2), . . , 𝑒(𝑡 − 𝑛𝑒)] + 𝑒(𝑡)
(3.3.6) 

 

Where: 

 𝑦(𝑡), 𝑢(𝑡), and 𝑒(𝑡) are the system output, input and white noise sequences. 

 𝑛𝑦, 𝑛𝑢 and 𝑛𝑒 are the orders of the model. 

 𝑑 is the time delay between the given input and the observed output. 

 𝐹[∙] is a non-linear function. 

 

As in the case of ARMAX model, though with linear relations, NARMAX is modelling the 

system output as the result of the non-linear combination of previous output, input and white 

noise values. The noise term e(t) is critical in accommodating the modelling of measurement 

errors, modelling uncertainties and various disturbances and can be defined as: 

 

𝑒(𝑡) = 𝑦(𝑡) − 𝑦̂(𝑡|𝑡 − 1) (3.3.7) 

 

The process of identifying a NARMAX model requires the estimation of both the structure and 

the parameters of the non-linear system, from the input/output measurements. This can be a 

daunting task, as practically the possible non-linear representations of F[∙] can be theoretically 

infinite[160]. On the other hand, NARMAX modelling has the advantage of requiring 

relatively small data sets of input/output measurements in order to estimate a model, making it 

quite useful for applications that cannot provide large data sets of operational measurements. 

As for the non-linear unknown mapping F[∙], it can be approximated by various structures such 

as power-form polynomials, rational models, neural networks and fuzzy logic models[161].  

 

When implementing a polynomial function as F[∙], the NARMAX model assumes the form: 

 

𝑦(𝑡) = ∑𝜃𝑘𝑔𝑘(𝒙)

𝑛

𝑘

(3.3.8) 

 

Where: 

 𝜃𝑘 are the coefficients of the polynomial. 

 𝑔𝑘 represents the multivariable polynomial terms. 

 𝑚 is the highest order of the polynomial terms. 

 𝒙 is the vector containing previous output, input and noise values. 

 

Generally polynomial NARMAX models are considered an attractive option among the various 
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non-linear representations, due to their inherent simplicity and straightforward representation 

of the dynamical properties of the monitored system. On the other hand, polynomial based 

NARMAX can exhibit significant difficulty in describing highly non-linear behaviors[161]. 

The implementation of polynomial NARX and NARMAX models for wind turbine control, 

CM and FD purposes, is presented extensively in Refs. [162], [163] 

 

 
Figure 35:MLP neural network 

 

Another method of approximating the non-linear function F[∙], is the implementation of multi-

layer perceptron (MLP), a multi-layer artificial neural network (ANN) structure as seen in 

Fig.35. While the implementation of ANN methods for residual generation is presented 

separately in section 3.7, a brief explanation of how MLPs are utilized to approximate the non-

linear function will be presented. ANNs can be generally defined as a computational paradigm, 

inspired directly by the capability of learning that neurobiological systems exhibit, in which a 

set of classifying computational nodes known as ‘neurons’ is implemented[164]. The basic 

principle of ANNs functionality, lies in the concept of the ‘neuron’ being capable of exhibiting 

two or more distinct output states, based on the weighted average of its inputs and a threshold 

term: 

 

𝑦 = 𝑔 (𝜇 + ∑𝑤𝑖𝑥𝑖

𝑛

𝑖=1

) (3.3.9) 

 

Where: 

 𝑦 is the output of a single node. 

 𝑔 is a non-linear activation function. 

 𝜇 is the threshold term. 

 𝑤𝑖are the various node weights. 

 𝑥𝑖 are the node inputs. 

 

The most commonly used activation function, is the sigmoid function: 

 

𝑔(𝑥) =
1

1 + 𝑒−𝑥
(3.3.10) 



78 

 

The MLP structure consists of the input and output layer, followed by a designer-defined 

number of interconnected hidden layers between them. By training the MLP model through the 

processing of input/output data, the model can calibrate the weights and parameters in order to 

‘learn’ the underlying relationship between them, thus accurately approximate the system 

behavior. Theoretical research has come to the conclusion, that given there are enough nodes 

in a hidden layer, only one of these layers is needed for accurately approximating a function. 

Thus, the MLP NARMAX model becomes: 

 

𝑦𝑘(𝑡) = ∑𝑤𝑘𝑖
(𝑜)

𝛼𝑖 (∑𝑤𝑖𝑗
(ℎ)

𝑥𝑗(𝑡) + 𝜇𝑖
(ℎ)

  

𝑛

𝑗=1

)

𝑛ℎ

𝑖=1
 

(3.3.11) 

 

Where: 

 𝑘 is the number of outputs. 

 𝑛ℎ is the number of hidden neurons. 

 𝑛 is the number of inputs. 

 𝑤𝑘𝑖
(𝑜)

, 𝑤𝑖𝑗
(ℎ)

 are the weights of the ANN output and hidden layers. 

 𝛼𝑖 are predetermined non-linear scalar functions. 

 𝑥𝑗(𝑡) is the vector containing previous output, input and noise values. 

 𝜇𝑖
(ℎ)

 is the ith threshold term. 

 

So, as becomes evident in Eq.3.3.11, the output of the model is essentially the weighted average 

of the hidden layer’s nodes output. If the sigmoid activation function in Eq.3.3.10 is used, the 

MLP NARMAX model assumes the form: 

 

𝑦𝑘(𝑡) = ∑ 
𝑤𝑘𝑖

(𝑜)

1 + 𝑒
−(∑ 𝑤𝑖𝑗

(ℎ)
𝑥𝑗(𝑡)+𝜇𝑖

(ℎ)
  𝑛

𝑗=1 )

𝑛ℎ

𝑖=1

(3.3.12) 

 

These type of MLP NARX and NARMAX models can be used for wind turbine CM and FD 

purposes, as presented in Refs. [162], [165], providing improvements to auto-regression results 

and enabling aging detection in wind turbines respectively. Lastly, both NARX and NARMAX 

modelling can also be extended in MIMO systems, providing models that obtain the form: 

 

𝑦1(𝑡) = 𝐹1[𝑦1
(𝑘)

, … , 𝑦𝑠
(𝑘)

, 𝑢1
(𝑘)

, … , 𝑢𝑟
(𝑘)

, 𝑒1
(𝑘)

, … , 𝑒𝑠
(𝑘)

] + 𝑒1(𝑡)

𝑦2(𝑡) = 𝐹2[𝑦1
(𝑘)

, … , 𝑦𝑠
(𝑘)

, 𝑢1
(𝑘)

, … , 𝑢𝑟
(𝑘)

, 𝑒1
(𝑘)

, … , 𝑒𝑠
(𝑘)

] + 𝑒2(𝑡)

⋮

𝑦𝑠(𝑡) = 𝐹𝑠[𝑦1
(𝑘)

, … , 𝑦𝑠
(𝑘)

, 𝑢1
(𝑘)

, … , 𝑢𝑟
(𝑘)

, 𝑒1
(𝑘)

, … , 𝑒𝑠
(𝑘)

] + 𝑒𝑠(𝑡)

(3.3.13) 

 

Where: 

 𝑟, 𝑠 are the number of system inputs and outputs respectively. 

 𝑦𝑗
(𝑘)

= 𝑦𝑗(𝑡 − 1), 𝑦𝑗(𝑡 − 2), … , 𝑦𝑗(𝑡 − 𝑛𝑦) 

 𝑢𝑖
(𝑘)

= 𝑢𝑖(𝑡 − 1), 𝑢𝑖(𝑡 − 2), … , 𝑢𝑖(𝑡 − 𝑛𝑢) 

 𝑒𝑗
(𝑘)

= 𝑒𝑗(𝑡 − 1), 𝑒𝑗(𝑡 − 2), … , 𝑒𝑗(𝑡 − 𝑛𝑒) *Only for NARMAX 
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3.3.3 TAKAGI-SUGENO FUZZY REPRESENTATION 

 

Based on the same principle as LPV modelling, the concurrent use of multiple LTI models to 

fully and accurately model the non-linear wind turbine behavior across the full operation range, 

Takagi-Sugeno (TS) fuzzy modelling pushes even more the boundaries between theoretical 

and experimental modelling. TS prototypes can be utilized to provide a fuzzy multiple-input 

single-output (MISO) model to approximate the wind turbine non-linear behavior, utilizing 

wind turbine measurements to identify and estimate the TS prototype parameters[166]. 

 

The model is based on a set of fuzzy rules that are defined as: 

 

𝑅𝑖 ∶ 𝐼𝐹 𝑥 𝑖𝑠 𝐴𝑖  𝑇𝐻𝐸𝑁 𝑦𝑖 = 𝑓𝑖(𝑥) (3.3.14) 

 

Where: 

 𝑘 is the total number of fuzzy rules.  

 𝑅𝑖 is the ith fuzzy rule. 

 𝑥 is the input (antecedent variable) of the fuzzy model. 

 𝑦𝑖 is the output (consequent variable) of the fuzzy model. 

 𝐴𝑖 is the input fuzzy set of the ith rule. 

 𝑓𝑖 is the ith linearized model. 

 

The number of rules implemented in a TS model, is equal to the total operating regions of the 

system, where input/output relationships can be efficiently and accurately represented by the 

same LTI model[167]. The fuzzy set 𝐴𝑖 of the ith rule, is defined by a multivariate membership 

function: 

 

𝜇𝛢𝜄
(𝑥): ℝ𝑝 → [0,1] (3.3.15) 

 

Generally, a TS model can efficiently approximate the system behavior, if the consequent 

outputs 𝑦𝑖  of the model are represented as linear auto-regressive models[166]. So, 𝑓𝑖 are linear 

auto-regressive parametric models that have the same fixed structure across all rules, with the 

only varying term of the model being the parameters as seen in Fig.36.  

 

 
Figure 36: Output of a three TS fuzzy rule model. 
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These linearized models commonly take the form: 

 

𝑦𝑖 = 𝑎𝑖
𝑇𝑥 + 𝑏𝑖 (3.3.16) 

 

Where: 

 𝑎𝑖 is a parameter vector. 

 𝑏𝑖 is a scalar offset. 

 

In order for the TS model to produce an output, the degree of fulfillment of the antecedent must 

be calculated. The degree of fulfillment determines to what degree the respective fuzzy rule is 

valid, a procedure that is mandatory when multiple inputs are implemented, so that the total 

match between all inputs and the antecedent rule is defined. The degree of fulfillment on 

multivariate antecedent fuzzy sets is equal to the membership degree of the given input: 

  

𝜆𝑖(𝑥) = 𝜇𝐴𝑖
(𝑥) (3.3.17) 

 

Where: 

 𝜆𝑖(𝑥) is the degree of fulfillment of the antecedent. 

 

Lastly, the total output of the model is obtained by the weighted average of all the individual 

rule’s outputs. Thus, the TS model assumes the form: 

 

𝑦̂ =
∑ 𝜆𝑖(𝑥)𝑦𝑖

𝐾
𝑖=1

∑ 𝜆𝑖(𝑥)𝐾
𝑖=1

(3.3.18) 

 

While the if-then rules are usually defined based on the expert’s knowledge of the wind turbine 

dynamics, in order to properly combine the various linear models used, the parameters of the 

TS prototype need to be estimated by utilizing wind turbine measurements. The techniques and 

methods to estimate the TS prototype’s parameters, are extensively presented in Refs. [166], 

[167]. Incorporating the TS modelling logic to the wind turbine system, thus utilizing the 

linearized models described in section 3.2.2 for all the different operating points of the wind 

turbine, a space-state TS model as presented in Ref.[116] can be obtained with the form: 

 

{
𝑥̇ = ∑𝜇𝑖(𝑍(𝑡))(𝐴𝑖𝑥 + 𝐵𝑢

𝑞

𝑖=1

+ 𝐹𝑎𝑓𝑎 + 𝑅𝑖𝑉𝑟)

𝑦 = 𝐶𝑥 + 𝐹𝑠𝑓𝑠                                                     

(3.3.19) 

 

Where: 

 𝑞 is the number of fuzzy rules implemented. 

 𝑍(𝑡) = [𝜔𝑟 , 𝛽, 𝑉𝑟] 
 𝜇𝑖(𝑍(𝑡)) = 𝜆𝑖(𝑍(𝑡))/∑ 𝜆𝑖(𝑍(𝑡))𝑞

𝑖=1  

 𝑓𝑎 are the actuator faults. 

 𝑅𝑖 is the disturbance input vector. 
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3.4 PARITY SPACE APPROACH 

3.4.1 TRANSFER FUNCTION REPRESENTATION 

 

The parity space approach is the most straightforward of the residual generation methods for 

model-based CM and FD, utilizing the model of the system obtained by the methods presented 

in section 3.3, to form parity equations utilized to check the consistency between system and 

model output. The resulting residual quantity, or parity vector as mentioned in this scope, that 

in ideal conditions is decoupled from the system operating states and disturbances, deviates 

significantly from zero in case of an occurring fault. Parity space approach can be implemented 

both utilizing transfer function and state-space models, allowing more freedom to design parity 

equations in the latter case while providing a more straightforward implementation on the 

former one. 

 

 
Figure 37: Pariy space approach with transfer function 

 

By utilizing the transfer function option to obtain the parity equations, the wind turbine process 

and model of Fig.28 can be replaced by Gw and Gm respectively as seen in Fig.37, which are 

defined as: 

 

𝐺𝑤(𝑠) =
𝐴(𝑠)

𝐵(𝑠)
   (3.4.1) 

 

And: 

 

𝐺𝑀(𝑠) =
𝐴̂(𝑠)

𝐵̂(𝑠)
(3.4.2) 

 

By combining Eq.3.4.1 and Eq.3.4.2 in order to form the residual generator with parity 

approach as seen in Fig.37, the resulting residual takes the form: 

 

𝑟(𝑠) = (
𝐴(𝑠)

𝐵(𝑠)
−

𝐴̂(𝑠)

𝐵̂(𝑠)
)𝑢(𝑠) (3.4.3) 

 

In order to incorporate both occurring faults and noise induced to the wind turbine, along the 
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modelling errors Eq.3.4.3 becomes: 

 

𝑟(𝑠) = 𝛥𝐺(𝑠)𝑢(𝑠) +
𝐴(𝑠)

𝐵(𝑠)
𝑓𝑎(𝑠) + 𝑓𝑠(𝑠) + 𝑛(𝑠) (3.4.4) 

 

Where: 

 𝛥𝐺(𝑠) are the modelling errors. 

 𝑓𝑎(𝑠) are the state additive faults. 

 𝑓𝑠(𝑠) are the output additive faults. 

 𝑛(𝑠) is the noise. 

 

Assuming that a robust residual generation is accomplished, as presented in section 2.3.2 and 

the residual is decoupled from noise and modelling errors, Eq.3.4.4 becomes what is commonly 

known as the parity equation: 

 

𝑟(𝑠) =
𝐴(𝑠)

𝐵(𝑠)
𝑓𝑢(𝑠) + 𝑓𝑦(𝑠) (3.4.5) 

 

Though a really difficult task to accomplish, the decoupling of the residual quantity from those 

factors, the presence of which is usually tackled in the residual evaluation phase through 

methods like the adaptive threshold.  

 

3.4.2 STATE SPACE REPRESENTATION 

 

 
Figure 38:State-space residual generation with parity equations 

 

A better result, can be also achieved if the internal state variables can be measured, or if a 

MIMO model is implemented[135]. With this purpose, the parity relations can also be extended 

to the LTI state-space discrete-time representation of the system[168], resulting in: 
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{ 
𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐹𝑎𝑓𝑎(𝑡) + 𝑅1𝑑𝑎(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐹𝑠𝑓𝑠(𝑡) + 𝑅2𝑑𝑠(𝑡)                          
(3.4.6) 

 

Where: 

 𝐴, 𝐵, 𝐶 the state, input and output matrices respectively. 

 𝐹𝑎 , 𝐹𝑠 are the fault input matrices. 

 𝑓𝑎 , 𝑓𝑠 are the additive state and output faults respectively. 

 𝑅1, 𝑅2 are the disturbance input matrices. 

 𝑑𝑎, 𝑑𝑠 are the additive input and output disturbances. 

 

In order to achieve notation simplification, a state-space model without the disturbance and 

fault presence is utilized[62], to define a preliminary residual quantity. So, by eliminating fault 

and disturbance terms, as they can be seen on Fig.38, Eq.3.4.6 assumes the form: 

 

{ 
𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡)                         
(3.4.7) 

 

By taking into account the discrete-time relationship between the internal state and the output 

of the system, it can be derived that: 

 

𝑦(𝑡 + 1) = 𝐶𝐴𝑥(𝑡) + 𝐶𝐵𝑢(𝑡)   (3.4.8) 

 

And: 

 

𝑦(𝑡 + 2) = 𝐶𝐴𝑥(𝑡 + 1) + 𝐶𝐵𝑢(𝑡 + 1)  

                                 = 𝐶𝐴2𝑥(𝑡) + 𝐶𝐴𝐵𝑢(𝑡) + 𝐶𝐵𝑢(𝑡 + 1)
(3.4.9) 

 

Thus, the relationship representation for the nth sample can be derived from Eq.3.4.8 and 

Eq.3.4.9 as: 

 

𝑦(𝑡 + 𝑛) = 𝐶𝐴𝑛𝑥(𝑡) + 𝐶𝐴𝑛−1𝐵𝑢(𝑡) + ⋯+ 𝐶𝐵𝑢(𝑡 + 𝑛 − 1) (3.4.10) 

 

By incorporating all the redundant equations in the respective matrices, that are generated for 

every time instant and for a time window of length 𝑛 + 1, Eq.3.4.10 can be defined as: 

 

𝑌(𝑡 + 𝑛) = 𝑇𝑥(𝑡) + 𝑄𝑈(𝑡 + 𝑛) (3.4.11) 

 

Or time shifted backwards by n, Eq.3.4.11 assumes the form: 

 

𝑌(𝑡) = 𝑇𝑥(𝑡 − 𝑛) + 𝑄𝑈(𝑡) (3.4.12) 

 

Where: 

 𝑌(𝑡) = [

𝑦(𝑡 − 𝑛)

𝑦(𝑡 − 𝑛 + 1)
⋮

𝑦(𝑡)

] 𝑇 =

[
 
 
 
 

𝐶
𝐶𝐴
𝐶𝐴2

⋮
𝐶𝐴𝑛]
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 𝑈(𝑡) = [

𝑢(𝑡 − 𝑛)

𝑢(𝑡 − 𝑛 + 1)
⋮

𝑢(𝑡)

] 𝑄 =

[
 
 
 
 

0 0 ⋯ 0
𝐶𝐵 0 ⋯ 0
𝐶𝐴𝐵 𝐶𝐵 ⋯ 0

⋮ ⋮ ⋱ ⋮
𝐶𝐴𝑛−1𝐵 𝐶𝐴𝑛−2𝐵 ⋯ 𝐶𝐵 0

 

]
 
 
 
 

 

 

Thus, Eq.3.4.12 associates the input and output signals at time instance 𝑡 with the initial state 

vector 𝑥(𝑡 − 𝑛) over a time interval of length 𝑛 + 1. As the state vector 𝑥(𝑡) is unknown and 

thus cannot be a part of the residual quantity, Eq.3.4.12 is multiplied by a vector 𝑤𝑇 that is 

designed to verify the relation 𝑤𝑇𝑇 = 0 and thus eliminate this term: 

 

𝑤𝑇𝑌(𝑡) = 𝑤𝑇𝑇𝑥(𝑡 − 𝑛) + 𝑤𝑇𝑄𝑈(𝑡)

= 𝑤𝑇𝑄𝑈(𝑡)               
(3.4.13) 

 

While some of the elements of 𝑤𝑇are necessary to be utilized in order to obtain Eq.3.4.13, the 

rest can be chosen freely in order to obtain special features from the resulting residual quantity, 

such as structured residuals[62] or decouple the residual from the effect of unknown inputs. In 

order to achieve this, Eq.3.4.12 is multiplied with a vector 𝑊 that includes the vector  𝑤𝑇 plus 

the freely chosen elements, that still verify the relations: 

 

𝑊𝑇 = 0 
𝑊𝑄𝑢 = 0   

(3.4.14) 

 

Where: 

 𝑄𝑢 is a matrix similar to Q but with 𝑅1 in place of 𝐵. 

 

By implementing this filtering of unknown inputs and re-introducing the fault and disturbance 

terms omitted for simplicity in Eq.3.4.7, the residual quantity is defined as: 

 

𝑟(𝑡) = 𝑊𝑄𝑓𝑓(𝑡) + 𝑊𝑄𝑑𝑑(𝑡) (3.4.15) 

 

Where: 

 𝑄𝑓𝑓, 𝑄𝑑 are matrices similar to Q but for faults and disturbance respectively.   

 𝑓(𝑡)  are the total additive state and output faults. 

 𝑑(𝑡)  are the total additive input and output disturbances. 

 

It is evident from Eq.3.4.15, that the residual quantity depends only on the presence and effects 

of occurring faults and disturbance, thus efficient and accurate CM and FD can be 

accomplished. While the state-space parity method provides greater freedom in designing the 

residual generating  vector 𝑊, that can be utilized to design enhanced residuals, it comes at an 

increased sensitivity to noise and is not as straightforward implemented as the transfer function 

method[62]. Nevertheless, a robust and isolable residual quantity can be also be obtained by 

utilizing the orthogonal parity relations method proposed by J.Getler, X.Fang and Q.Luo[169], 

to provide robustness against additive uncertainty and/or structured residuals.  

 

Enhanced residuals can be obtained either by providing to the residual quantity the property of 

structure or the property of direction[62], as can be seen in Fig.39 and Eq.3.4.15. In the first 

case structured residuals are designed in such a way that certain faults influence some of the 
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resulting residuals but not the rest. 

 

 
Figure 39: Structured and directed residuals represantation repsectively. 

 

Thus, the decoupling between specific residuals and specific faults can be accomplished, 

providing increased isolability. In the second approach, the design of directed residual is such 

that each specific fault has the corresponding residual vector always pointing in the same fixed 

direction. The extra information that this approach provides is that the length of the residual 

vector is proportional to the magnitude/size of the fault that occurred, enabling not only the 

isolation of the fault but also more accurate fault identification in terms of magnitude 

estimation as well. 

 

3.4.3 APPLICABILITY 

 

Parity equations are implemented for wind turbine CM and FD purpose on various occasions:  

 

• Interval non-linear parameter-varying (INLPV) parity equations are utilized to provide 

CM and FD on a wind farm, taking into account the unknown but assumed to be 

bounded noise and modelling errors, with satisfactory results[170].  

• A parity-based approach utilizing input/output measurements to design a residual 

generator and an optimal scheme to select parity vectors for fault tolerant control, are 

presented extensively in Ref. [171].  

• Parity equations are also implemented, along interval constraints satisfaction (ICS) 

techniques in order to provide robust FD on wind turbine, with positive results 

compared to existing literature in Ref. [172].  

 

Worth mentioning, is the fact that both these last two examples utilize the NREL’s 5MW wind 

turbine model implemented in FAST referenced in section 3.2.2, to check and validate the 

efficiency and accuracy of their proposed FD methods. Overall, parity-based residual 

generation approaches have advantages and disadvantages[101], as is the case for every 

residual generation method. More specifically parity-based methods exhibit the following 

advantages: 

 

• Increased efficiency and accuracy in fault isolation, due to the utilization of orthogonal 

parity relations, to produce structured residuals. Design of directional residuals can also 

help in this direction, although it is quite difficult to implement. 
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• The design of the residual generator based on parity space is systematic, fairly easy and 

straightforward, as is the implementation and execution of the FD algorithm. 

• Robustness of the residual can be achieved, both/either by orthogonal parity relations 

to counter additive uncertainty and/or optimally robust parity relations to tackle the 

unknown but bounded errors. 

• The reaction of the residual, quantity produced by parity-based methods, to an incipient 

fault is very fast, enabling early-stage FD. 

 

On the other hand, the following disadvantages are also present: 

 

• A priori knowledge of the system structure is mandatory for the implementation of 

parity-based methods, that also needs to be reasonably accurate. 

• Only linear or linearized models can be utilized in parity-based methods, thus CM and 

FD based on them can encounter difficulties for highly complex and non-linear systems 

like the wind turbine. 

• While an additional filter can be applied to the residual to handle system noise, taking 

into consideration noise statistics in designing the residual generator is fairly difficult.  
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3.5 OBSERVER APPROACH 

3.5.1 GENERAL STATE OBSERVER 

 

While many similarities can be found between the parity space approach and the observer 

approach for residual generation, as pointed out by various sources throughout the existing 

literature[60], [101], [121], the main principle behind the observer design and implementation 

is to estimate the system output based on the available input and output measurements. The 

observer approach is a well-studied and commonly implemented approach, as it provides a 

flexible structure and exhibits great similarity to the Luenberger observer[173] as can be seen 

in Fig.40. Output estimation as a residual generation method has two distinct categories, 

observer-based approaches which are considered state/output estimation methods in a 

deterministic setting and Kalman filter approaches that are presented in section 3.5.3 and are 

considered state/output estimation methods in a stochastic setting. 

 

 
Figure 40: Structure of general observer 

 

In order to implement a generalized observer scheme, the LTI state-pace model of the system 

is considered, in this case in continuous-time: 

 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡)                 
(3.5.1) 

 

Where: 

 𝑥(𝑡) is the state vector. 

 𝑢(𝑡) is the input vector. 

 𝑦(𝑡) is the output vector. 

 𝐴, 𝐵, 𝐶 are the state, input and output matrices respectively. 

 

In order to design the observer, the structure and parameters of the model need to be known a 

priori. Also, the observability of the system needs to be ensured, by proving that the 

observability matrix 𝑂 constructed by the pair of matrices A, C has full rank: 
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𝑂 = [𝐶 𝐶𝐴 𝐶𝐴2 ⋯ 𝐶𝐴𝑛−1]𝑇 (3.5.2) 

 

Should satisfy the rank criterion: 

 

det(𝑂) ≠ 0 (3.5.3) 

 

By proving that the system is observable, the ability to estimate the system current state only 

through linear combination of the measured outputs is ensured. By implementing the state 

observer structure, the following equations are obtained: 

 

𝑥̂̇(𝑡) = 𝐴𝑥̂(𝑡) + 𝐵𝑢(𝑡) + 𝐻𝑒(𝑡) (3.5.4) 

 

And: 

 

𝑒(𝑡) = 𝑦(𝑡) − 𝐶𝑥̂(𝑡) (3.5.5) 

 

Where: 

 𝑒(𝑡) is the error term. 

 𝐻 is the observer matrix. 

 

By combining Eq.3.5.4 and Eq.3.5.5, the observer implementation form is obtained: 

 

𝑥̂̇(𝑡) = [𝐴 − 𝐻𝐶]𝑥̂(𝑡) + 𝐵𝑢(𝑡) + 𝐻𝑦(𝑡) (3.5.6) 

 

Defining the state error as the difference between the actual state of the system and the state 

estimation produced by the observer: 

 

𝑥̃̇(𝑡) = 𝑥̇(𝑡) − 𝑥̂̇(𝑡) (3.5.7) 

 

Where: 

 𝑥̃(𝑡 + 1) is the state error. 

 

Substituting Eq.3.5.1 and Eq.3.5.6 into Eq.3.5.7: 

 

𝑥̃̇(𝑡) = [𝐴 − 𝐻𝐶]𝑥̃(𝑡) (3.5.8) 

 

Assuming that the observer is stable, by proper design of the observer matrix and pole 

placement, then the state error as defined in Eq.3.5.8 is decreased asymptotically, regardless of 

its initial value: 

 

lim
𝑡→∞

𝑥̃(𝑡) = 0 (3.5.9) 

 

In this way, the state estimation produced by the observer will eventually, after an initial time 

period, be exactly the same as the real state of the system.  
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By taking into consideration the faults and disturbances the wind turbine experiences, as can 

be seen in Fig.38, the state error of Eq.3.5.4 assumes the form: 

 

𝑥̃̇(𝑡) = [𝐴 − 𝐻𝐶]𝑥̃(𝑡) + 𝑅1𝑑𝑎(𝑡) + 𝐹𝑎𝑓𝑎(𝑡) − 𝐻𝑅2𝑑𝑠(𝑡) − 𝐻𝐹𝑠𝑓𝑠(𝑡) (3.5.10) 

 

And the output error in Eq.3.5.5 becomes: 

 

𝑒(𝑡) = 𝐶𝑥̃(𝑡) + 𝑅2𝑑2(𝑡) + 𝐹𝑠𝑓𝑠(𝑡) (3.5.11) 

 

Where: 

 𝐴, 𝐵, 𝐶 the state, input and output matrices respectively. 

 𝐹𝑎 , 𝐹𝑠 are the fault input matrices. 

 𝑓𝑎 , 𝑓𝑠 are the additive state and output faults respectively. 

 𝑅1, 𝑅2 are the disturbance input matrices. 

 𝑑𝑎, 𝑑𝑠 are the additive input and output disturbances. 

 

So, after the initial deviation is eliminated, the state and output error are only dependent on 

occurring faults and induced disturbances. The state error 𝑥̃(𝑡) can be used as a residual, if the 

scope of the specific CM and FD scheme aims to identify occurring primary faults in the states 

of the system, as described in Ref. [62]. More often, the output error 𝑒(𝑡)is utilized for CM and 

FD purposes, that exhibits a constant offset when input or output faults are present. This is only 

applicable to cases where occurring faults result to a constant residual value, in contrast to the 

cases where faults can exhibit sinusoidal-like behavior.  

 

It can be observed by utilizing the Laplace transform of Eq.3.5.6 and applying it to Eq.3.5.4 

and Eq.3.5.5, thus getting: 

 

𝑒(𝑠) = 𝐶[𝑠𝐼 − (𝐴 − 𝐻𝐶)]−1[𝐹𝑎𝑓𝑎(𝑠) − 𝐻𝑅2𝐹𝑠𝑓𝑠(𝑠)] + 𝐹𝑠𝑓𝑠(𝑠) (3.5.12) 

 

And implementing the final value theorem on Eq.3.5.12: 

 

lim
𝑡→∞

𝑒(𝑡) = lim
𝑠→0

𝑠𝑒(𝑠) = 𝐶[𝐻𝐶 − 𝐴]−1[𝐹𝑎𝑓𝑎0 − 𝐻𝑅2𝐹𝑠𝑓𝑠0] + 𝐹𝑠𝑓𝑠0 (3.5.13) 

 

It is evident that the value of the output error has a constant deviation due to the presence of 

input and/or output faults. The observer matrix H can also be designed in such a way that 

provides structured residuals for more efficient fault isolation. This can be accomplished by 

introducing fault influence vectors, as described in Ref. [62], so that for every possible fault a 

corresponding independent fault influence vector is determined.  

 

3.5.2 UNKNOWN INPUT DIAGNOSTIC OBSERVER 

 

While what was presented in section 3.5.1 is the default structure of a state estimation observer, 

in the scope of wind turbine CM and FD the estimation of the state is not the primary objective, 

as the main aim is the generation of the residual quantity. Thus, the approach of residual 

generation through the use of observers, is mainly implemented using output observers as seen 

in Fig.41[174]. Such an observer is the unknown input diagnostic observer (UIDO), based on 

the well-established unknown input observer (UIO) design, that is implemented due to its 

known ability to decouple the residual from control inputs and unknown disturbance. 
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Figure 41: UIDO structure. 

 

The difference between these two generally similar schemes, is that UIO is used to reconstruct 

the state variables of the system under monitoring, while UIDO is mostly aimed towards 

residual generation[60]. Considering the system described previously, the first step is to 

construct the new observer state variables through linear transformation: 

 

𝑧(𝑡) = 𝑇1𝑥(𝑡) (3.5.14) 

 

And the new output as: 

𝑗(𝑡) = 𝑇2𝑦(𝑡) (3.5.15) 

 

Where: 

 𝑧(𝑡) is the state vector of the observer. 

 𝑗(𝑡) is the output vector of the observer. 

 

Now the transformed observer structure, as can be seen in Fig.41, becomes: 

 

𝑧̂̇ = 𝐴𝑧𝑧̂(𝑡) + 𝐵𝑧𝑢(𝑡) + 𝐻𝑧𝑦(𝑡)

𝑗̂(𝑡) = 𝐶𝑧𝑧̂(𝑡)                                
(3.5.16) 

 

And the state error: 

 

𝑧̃(𝑡) = 𝑧̂(𝑡) − 𝑇1𝑥(𝑡) (3.5.17) 

 

By incorporating system and observer state equations to Eq.3.5.17, see Eq.3.5.10 for reference, 

the state error becomes: 

 

𝑧̃̇(𝑡) =  𝐴𝑧𝑧̃(𝑡) + (𝑇1𝐴𝑧 + 𝐻𝑧𝐶 − 𝑇1𝐴)𝑥(𝑡) + (𝐵𝑧 − 𝑇1𝐵)𝑢(𝑡)

     = −𝑇1𝑅1𝑑𝑎(𝑡) + (𝐻𝑧𝐹𝑠 − 𝑇1𝐹𝑎)𝑓(𝑡)                                  
(3.5.18) 
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And the residual: 

𝑟(𝑡) = 𝐶𝑧𝑧̃(𝑡) + (𝐶𝑧𝑇1 − 𝐶𝑇2)𝑥(𝑡) + 𝑇2𝐹𝑠𝑓(𝑡) (3.5.19) 

 

Where: 

 𝑓(𝑡) the total additive faults, both state and output, occurring in the system. 

 

It becomes obvious from Eq.3.5.18 and Eq.3.5.19 that the residual 𝑟(𝑡) is affected by the 

unknown input (disturbance) 𝑑𝑎(𝑡). In order to decouple the residual from the control input, 

unknown state and disturbance, the following relations must be satisfied: 

 

𝑇1𝐴 − 𝑇1𝐴𝑧 = 𝐻𝑧𝐶  
                𝐵𝑧 = 𝑇1𝐵  

        𝑇1𝐹𝑎 = 0  
} 𝑠𝑒𝑒 𝐸𝑞. 3.5.18

𝐶𝑧𝑇1 − 𝐶𝑇2 = 0          𝑠𝑒𝑒 𝐸𝑞. 3.5.19

(3.5.20 − 23) 

 

There are various methods and approaches to solve the equations in Eq.3.5.20-23, in order to 

accomplish robust residual generation[60], like the eigen-structure assignment, that was 

proposed by Patton et al.[175], [176] or the utilization of the Kronecker canonical form[62]. 

By solving the equations, using either of the approaches referenced, the state error takes the 

form: 

 

𝑧̃̇(𝑡) = 𝐴𝑧𝑧̃(𝑡) + (𝐻𝑧𝐹𝑠 − 𝑇1𝐹𝑎)𝑓(𝑡) (3.5.24) 

 

And the residual: 

 

𝑟(𝑡) = 𝐶𝑧𝑧̃(𝑡) + 𝑇2𝐹𝑠𝑓(𝑡) (3.5.25) 

 

By assuming that the state error 𝑧̃(𝑡) asymptotically approaches zero, given the observer is 

designed correctly, the residual is decoupled from control inputs and unknown disturbances 

and is only affected by the occurring faults as can be seen in Eq.3.5.25.  

 

The UIDO implementation that achieves total residual decoupling, provides the ability to detect 

incipient or faults of low magnitude, even if arbitrarily large modelling errors exist[121]. It 

though requires that the disturbance input matrix 𝑅1 is precisely known, as it is considered in 

the design of the transformation matrix 𝑇1.  

 

 
Figure 42: Bank of observers for different configurations. 
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The CM and FD UIDO scheme can be further extended to provide efficient and accurate fault 

isolation, by implementing a bank of diagnostic observers, as can be seen in Fig.42. In this 

case, there are two different approaches to designing the bank of observers structure. The first 

one is to design observers so that each of them utilizes all the system inputs but only one output. 

So, in that case the nth residual quantity will be affected by the nth output fault, while the rest 

of the residual will remain zero if other faults are not present. The second approach is used to 

design observers that each of them utilizes all the system outputs but only one input. In this 

way and by following a similar design process as previously, the nth residual quantity will be 

affected by the nth input fault. So, by evaluating the set of residuals, accurate fault isolation can 

be accomplished, for input and output faults. 

 

3.5.3 KALMAN FILTER 

 

One of the earliest proposed residual generators schemes, is the Kalman filter residual 

generation structure[60]. While general observers and UIOs, as presented in section 3.5.1-2, 

are an ideal residual generation approach for deterministic systems, the Kalman filter is their 

ideal counterpart for stochastic systems. As will become evident in this section, they also share 

quite many similarities both in structure and in implementation, resulting in the consideration 

of the Kalman filter as another type of observer. A Kalman filter implementation for residual 

generation can be seen on Fig.43, with distinct both its prediction and correction sub-structures. 

 

 
Figure 43:Residual generation with Kalman filter. 

 

Assuming a MIMO, linear and time-invariant system model, with stochastic disturbances in 

discrete-time as: 

 

𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝑅1𝑑𝑎(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝑑𝑠(𝑡)              
(3.5.26) 

 

Where: 

 𝐴, 𝐵, 𝐶 the state, input and output matrices respectively. 

 𝑑𝑎(𝑡), 𝑑𝑠(𝑡)  the stochastic noise input and output disturbances. 

 𝑅1 the input disturbance entry matrix. 

While the matrices 𝐴, 𝐵, 𝐶 and 𝑅1 are assumed to be known, the initial state 𝑥(0) is not. Initial 
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state condition along the stochastic noise variables 𝑑𝑎(𝑡), 𝑑𝑠(𝑡) are assumed to be statistically 

independent and exhibit a Gaussian distribution[62] with mean expected values: 

 

𝐸{𝑥(0)} = 𝑥0

𝐸{𝑑𝑎(𝑡)} = 0   

𝐸{𝑑𝑠(𝑡)} = 0  

(3.5.27) 

 

And the corresponding covariance matrices: 

 

𝑋0 = 𝐸{(𝑥(0) − 𝑥0)(𝑥(0) − 𝑥0)
𝑇}

                            𝑀 = 𝐸{𝑑𝑎(𝑡)𝑑𝑎
𝑇(𝑡)}                                                     

 𝑁 = 𝐸{𝑑𝑠(𝑡)𝑑𝑠
𝑇(𝑡)}                          

(3.5.28) 

 

Assuming that the normal distribution matrices 𝑀, 𝑁 are known, so the size of stochastic noise 

can be defined, the aim of the Kalman filter is to provide an estimate of the state vector 𝑥(𝑡) 

based only on the input and output measurements. Considering only the estimation of the 

current and the one step-ahead state, by using two different time instants, such that: 

 

{
𝑡 > 𝑗, 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑝ℎ𝑎𝑠𝑒
 𝑡 = 𝑗, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑝ℎ𝑎𝑠𝑒  

(3.5.29) 

  

Where: 

 𝑡 is the current time instant. 

 𝑗 is the time instant of the used measurement. 

 

The optimal state estimate equation takes the form: 

 

𝑥̂(𝑡|𝑗) = 𝐸{𝑥(𝑡)|𝑌𝑗} (3.5.30) 

 

Where: 

 𝑗 is the time instant of the used measurement. 

 𝑌𝑗 = {𝑦(0), 𝑦(1),… , 𝑦(𝑡)} with respect to the estimation and correction phase. 

 

And the estimation error equation becomes: 

 

𝑥̃(𝑡|𝑗) = 𝑥(𝑡) − 𝑥̂(𝑡|𝑗) (3.5.31) 

 

By utilizing Eq.3.5.26, the state variable for time instant 𝑡 can be estimated with the available 

measurements at time instant 𝑡 − 1: 

 

𝑥̂(𝑡|𝑡 − 1) = 𝐴𝑥̂(𝑡 − 1|𝑡 − 1) + 𝐵𝑢(𝑡 − 1) + 𝑅1𝑑̃𝑎 (3.5.32) 

 

While 𝑑𝑎(𝑡) is unknown, so an approximation 𝑑̃𝑎 is utilized, it can safely be assumed that: 

 

𝑑̃𝑎 = 𝐸{𝑑𝑎(𝑡)} = 0 (3.5.33) 

Thus, Eq.3.5.32 assumes the form: 
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𝑥̂(𝑡|𝑡 − 1) = 𝐴𝑥̂(𝑡 − 1|𝑡 − 1) + 𝐵𝑢(𝑡 − 1) (3.5.34) 

 

And the equation of the available output for the time instant 𝑡: 

 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝑑𝑠(𝑡) (3.5.35) 

 

A new state estimation as a weighted mean at time instant 𝑡 can be obtained: 

 

𝑥̂(𝑡|𝑡) = (𝐼 − 𝐾′)𝑥̂(𝑡|𝑡 − 1) + 𝐾′𝑥(𝑡)

                         = 𝑥̂(𝑡|𝑡 − 1) + 𝐾′[𝑥(𝑡) − 𝑥̂(𝑡|𝑡 − 1)]
(3.5.36) 

 

Where: 

 𝐾′ is a matrix suitably defined. 

 

By utilizing the output at time instance 𝑡 and with 𝐾′ = 𝐾𝐶 the estimation assumes the form: 

 

𝑥̂(𝑡|𝑡) = 𝑥̂(𝑡|𝑡 − 1) + 𝐾𝐶[𝑥(𝑡) − 𝑥̂(𝑡|𝑡 − 1)]

= [𝐼 − 𝐾𝐶]𝑥̂(𝑡|𝑡 − 1) + 𝐾𝑦(𝑡)  
(3.5.37) 

 

Consequently from Eq.3.5.37, the recursive estimation algorithm admits the form: 

 

𝑥̂(𝑡|𝑡) = 𝑥̂(𝑡|𝑡 − 1) + 𝐾(𝑡)[𝑦(𝑡) − 𝐶𝑥̂(𝑡|𝑡 − 1)] (3.5.38) 

 

Where: 

𝐾(𝑡) a time-variant correction matrix.  

 

𝐾(𝑡)  is designed with the aim of minimizing the covariance matrix of the estimation error and 

is also computed in a recursive manner. First the estimate of the correction matrix based on 

measurements up to time instance 𝑡 − 1 is obtained, and then this estimate is updated by 

considering the latest available measured values at time instance 𝑡, as presented in detail in 

Ref. [62]. With the prediction equation as Eq.3.5.34 and the correction equation as Eq.3.5.38 

combined together, the prediction equation of the Kalman filter as seen in Fig.43 is obtained: 

 

𝑥̂(𝑡|𝑡) = 𝐴𝑥̂(𝑡 − 1|𝑡 − 1) + 𝐵𝑢(𝑡 − 1) + 𝐾(𝑡)[𝑦(𝑡) − 𝐶𝑥̂(𝑡|𝑡 − 1)] (3.5.39) 

 

The basic principle of the Kalman filter implementation for CM and FD purposes, becomes 

evident by observing the basic characteristic of the innovation (correction) process part of the 

filter. Generally, the Kalman filtering process can be defined as a continuous loop of 

consecutive prediction and correction cycles, as can be seen in Fig.44, in order to produce an 

optimal estimate of the state vector. After every prediction cycle, the predicted state is corrected 

by incorporating the residual quantity resulting from the state estimation multiplied by the 

output matrix 𝐶. 
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Figure 44: Kalman continuous loop. 

 

The residual quantity, commonly known as innovation in the scope of Kalman filter, which is 

the difference between the a priori prediction of the output and the current output measurement, 

is multiplied by the filter gain matrix 𝐾 in order to generate an optimal state estimation. By 

considering this residual generation sequence, the residual quantity for time instant 𝑡 takes the 

form: 

 

𝑟(𝑡) = 𝑦(𝑡) − 𝐶𝑥̂(𝑡|𝑡) (3.5.40) 

 

Under ideal fault-free conditions, the residual 𝑟(𝑡) is a zero mean white Gaussian noise with a 

known covariance, as the residual is only affected by white noise term 𝑑𝑠(𝑡). If a fault occurs 

the residual quantity is no longer a zero mean white noise, which in fact can be determined by 

a GLR test, that was presented in section 2.3.1, indicating the existence of fault and thus 

providing accurate FD[177].  

 

Even though FD can be evidently provided in this case by a single Kalman filter, there still 

remains the task of fault isolation. Single Kalman filter implementation can be extended, 

similarly to the case presented in section 3.5.2 for the observer approach, to a structure known 

as a bank of Kalman filters. In this implementation a multitude of Kalman filters are utilized to 

provide FD and fault isolation to occurring sensor faults. The underlying principle of this 

method is designing each Kalman filter to incorporate a specific fault in its estimation, thus 

when this fault occurs all Kalman filters will generate large estimation errors except this 

one[178]. By monitoring all the residual generated and evaluating their variation and 

differences, accurate CM and FD can be accomplished. On the other hand, for providing FD 

and fault isolation for actuator faults, the concept of the robust Kalman filter (RKF) can be 

utilized[179].  

 

3.5.4 APPLICABILITY 

 

The observer approach is widely used for CM and FD purposes on wind turbines, both in 

industry and in academia. Implementations of the observer approach usually utilize the 

complete linear model of the wind turbine, in order to take advantage of the well-studied and 

established linear observer design theory. Note that, non-linear observers can also be 

implemented, to address the coupled dynamics and high non-linear nature of the wind 

turbine[180]. At this point is worth mentioning that the distinction between UIO and UIDO in 

the FD framework is vague in the existing literature, mainly because of the similar design 

procedure, while the difference between these two observers lies in the implementation aim as 

mentioned previously[54]. The UIDO , which essentially is a UIO aimed at residual generation, 

can also be found in literature as output or functional observer as seen in Refs. [54], [62]. 
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UIDO schemes are utilized in several wind turbine CM and FD applications: 

 

• The rotor speed, generator speed and pitch angle are utilized as the wind turbine outputs 

to generate residuals through the use of a UIDO, evaluated by a fixed threshold to 

provide actuator and sensor FD[181].  

• A UIDO is used in conjunction with a fuzzy TS model, to provide efficient and accurate 

FD in wind turbine systems[182], [183]. 

• A robust residual generation approach is proposed in Ref. [184], that utilizes the UIDO 

scheme to provide actuator and sensor FD in a wind turbine. 

 

The Luenberger observer is also implemented for wind turbine CM and FD, among others in 

the following cases: 

 

• A Luenberger observer is utilized to provide FD in full-scale back-to-back converters 

with PMSG, by using current based residuals and adaptive thresholds[185]. 

• The generator speed and bending momenta based residuals, generated by the 

implementation of a Luenberger observer, are used to provide FD on 3MW wind 

turbine[186]. 

• A modified Luenberger observer is utilized to generate pitch angle-based residuals, in 

order to provide FD for the pitch-actuation system[187]. 

• Stator and rotor current-based residuals are generated by a Luenberger observer in order 

to provide CM and FD for current sensors installed on a DFIG wind turbine[188]. 

 

Lastly a new approach in the observer-based residual generation domain of wind turbine CM 

and FD, the sliding mode observer (SMO)[189], can be used to provide robustness against 

modelling uncertainties and disturbances. There are several examples throughout existing 

literature of SMO implementations: 

 

• A SMO is used to generate residual of pitch and drivetrain system’s variables, in order 

to provide CM and FD on sensor faults, on the wind turbine benchmark model 

referenced in section 3.2.2[190]. 

• In an extension to the previous work, SMO is utilized to provide CM an FD on actuator 

faults of the pitch and drivetrain system of the same benchmark wind turbine 

model[191]. 

• Lastly, SMO is utilized along a benchmark wind turbine LPV model developed by 

Aalborg University, to provide robust FD for pitch actuator faults[192]. 

 

Kalman filter is also widely implemented in the wind energy sector for CM and FD purposes, 

including the following cases: 

 

• A Kalman filter is utilized to generate residual quantities, in order to provide CM and 

FD of actuator and sensor faults, in the hydraulic blade pitch system of NREL’s 5MW 

benchmark model[193]. 

• Residuals generated by an extended Kalman filter (EKF)[194], are utilized to provide 

real-time fast and accurate FD on actuator and sensor faults, of a 660kW wind turbine 

installed in Iran[195]. 

• A Kalman filter implementation is also proposed for residual generation and 

consequently FD for actuator and sensor faults, on a hydraulic blade pitch system[196].  

• An EKF is implemented in order to provide temperature-based residual generation, for 
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FD purposes on the liquid cooling subsystem of the wind turbine generator[197]. 

 

Generally, the observer-based approach for CM and FD exhibits the following advantages: 

 

• It can provide fault isolation either by structured residual using a generalized observer 

scheme, or by directional residual vectors. 

• The generated residual has a very fast response to incipient faults, enabling early-stage 

accurate FD. 

• Very suitable method for FD both in actuators and in sensors, as presented in the bank 

of observers scheme.  

• Increased residual generation robustness, by UIO implementation and eigen-structure 

assignment techniques. 

 

And the respective drawbacks: 

 

• A priori knowledge of the whole wind turbine linearized model is mandatory for the 

implementation of observer-based methods, in order to take advantage of linear 

observer design theory, that also needs to be reasonably accurate. 

• By utilizing linear or linearized models, CM and FD based on them can encounter 

difficulties for highly complex and non-linear systems as the wind turbine. 
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3.6 PARAMETER ESTIMATION APPROACH 

3.6.1 GENERAL SCHEME 

 

The parameter estimation approach as a residual generation method for CM and FD, that can 

be seen in Fig.45, is mainly based on the assumption that occurring faults are reflected on the 

values of the system parameters[198]. In this way if a fault occurs, a variation on the parameter 

values both for the physical system and the corresponding model will be observed. While on 

parity space and observer approaches both the structure and the parameters of the model are 

required to be known a priori, in parameter estimation approach only the structure of the system 

is required to be known utilizing theoretical modelling.  

 

 
Figure 45: Parameter estimation FD scheme 

 

Considering a general mathematical model for a monitored system, given by an input-output 

representation, with the form: 

 

𝑦(𝑡) = 𝑓(𝑢, 𝑑, 𝜃, 𝑥) (3.6.1) 

Where: 

 𝑦(𝑡) is the output vector. 

 𝑢(𝑡) is the input vector. 

 𝑥(𝑡) is the partially measurable state vector. 

 𝑑(𝑡) is the total model uncertainty and noise affecting the system. 

 𝜃 are the model parameters. 

 

By using first principles modelling, an accurate structure of the dynamic model can be 

obtained, that will provide a solid base on which model parameter estimation will take place. 

An essential requirement for the accurate implementation of parameter estimation as a FD 

method, is that the model parameters to be estimated 𝜃𝑖, can be explicitly mapped or at least 

expressed in dependence to the system’s parameters/coefficients 𝑝𝑗. That is not always 

possible, as in same cases the identified model parameters cannot be converted back to 

parameters of the physical system.[101] Nevertheless, the model of Eq.3.6.1 can be linearized 

at a specified operating point, that can be defined as an input/output differential equation: 

 

𝑎𝑛𝑦(𝑛)(𝑡) + ⋯+ 𝑎1𝑦(𝑡) + 𝑦(𝑡) = 𝑏0𝑢(𝑡) + ⋯+ 𝑏𝑚𝑢(𝑚)(𝑡) (3.6.2) 
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Where: 

 𝛹𝑇(𝑡) = [𝑦(𝑛)(𝑡)…𝑦(𝑡)  𝑢(𝑡)…+ 𝑢(𝑚)(𝑡)] 
 𝜃 = [𝑎𝑛 …𝑎1 𝑏𝑚 …𝑏0]

𝑇 

  

Next the relationship between the model parameters 𝜃 and the system parameters 𝑝 must be 

defined, in order to be able to determine changes in the system parameters though the 

observation and evaluation of model parameter estimates[199]: 

 

𝜃 = 𝑓(𝑝) (3.6.3) 

 

In order to obtain the required knowledge on model and system parameters under normal 

operation, so that they can be later used to generate the parameter residuals, the parameters of 

the model need to be identified while the monitored system is operating under fault-free 

conditions. To accomplish this task, two different approaches can be utilized. Firstly, a non-

recursive approach utilizing the LS algorithm to provide an estimation of the model parameters 

is implemented, based on the residual between the system and the model output in discrete 

time: 

 

𝑟(𝑡) = 𝑦(𝑡) − 𝜃𝛹𝑇(𝑡) (3.6.4) 

 

The aim is to minimize the sum of the squared residuals/errors: 

 

𝑉 = ∑𝑟2(𝑡) = 𝑟𝑇𝑟

𝑁

𝑡=1

(3.6.5) 

 

By defining: 

 

𝑑𝑉

𝑑𝜃
= 0 (3.6.6) 

 

The non-recursive form of the LS model parameters estimates is obtained: 

 

𝜃 = [𝑀𝑇𝑀]−1𝑀𝑇𝑌 (3.6.7) 

 

Where: 

 𝜃 are the estimates of the model parameters. 

 𝑀 is a matrix whose columns are vectors 𝛹 for successive time instances. 

 𝑌 is a vector of the output at the respective time instances. 

 

The second approach utilizes a recursive LS (RLS) algorithm, as presented by R.Iserman[62], 

that transforms the non-recursive estimation equation to: 

 

𝜃(𝑡 + 1) = 𝜃(𝑡) + 𝑔(𝑡)[𝑦(𝑡 + 1) − 𝛹𝑇(𝑡 + 1)𝜃(𝑡)] (3.6.8) 
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Where: 

 𝑔(𝑡) is the correction factor. 

 

So, by combining Eq.3.6.4 and Eq.3.6.8 we get the final form of the RLS algorithm: 

 

𝜃(𝑡 + 1) = 𝜃(𝑡) + 𝑔(𝑡)𝑟(𝑡 + 1) (3.6.9) 

 

After the first stage of model parameter estimation under fault-free conditions is achieved, the 

model’s and physical system’s parameters normal values can be defined. Along with them, 

static and adaptive thresholds and patterns of these values are defined, that are going to serve 

as fault indicators on the online phase of this method. For the online CM and FD stage of the 

parameter estimation approach, an online parameter identification algorithm like the one used 

to obtain the fault-free model parameters estimation is implemented, to continuously estimate 

the model’s parameters. In order though to implement the RLS algorithm for real-time online 

estimation, a modification needs to take place in order for the algorithm to reduce the previous 

values considered. This can be accomplished by techniques like the forgetting factor or the 

sliding data window[200]. Then the difference between the real-time estimation of the 

parameters and the obtained estimated parameter values under fault-free operation is utilized 

as a residual: 

 

𝑟𝜃𝑖
(𝑡) = 𝜃𝑖0 − 𝜃𝑖(𝑡) (3.6.10) 

 

Where: 

 𝑟𝜃𝑖
(𝑡) is the residual of the ith model parameter. 

 𝜃𝑖0 is the estimation of ith model parameter under fault-free conditions. 

 𝜃𝑖(𝑡) is estimation of ith model parameter at time instant 𝑡. 

 

This way efficient and accurate CM and FD of the monitored system can be provided, based 

on the variation of the estimated model parameters as a direct result of occurring faults.  

The residual evaluation stage, even though it does not evaluate the output residual as presented 

in section 2.3.1, it can utilize the same processing and evaluation tools. Though, fault isolation 

cannot be efficiently and accurately provided, as the model parameters by themselves are not 

necessarily directly associated with the system’s parameters. If they can be converted and 

mapped though back to the parameters of the system by an inverse function of Eq.3.6.3: 

 

𝑝 = 𝑓−1(𝜃) (3.6.11) 

 

The variation on model parameters can be directly corelated to the variation of the physical 

parameters, thus enabling the generation of residual quantities based on the difference Δp: 

 

𝑟𝑝𝑖
(𝑡) = 𝑝𝑖0 − 𝑝̂𝑖(𝑡) (3.6.12) 

 

Where: 

 𝑟𝑝𝑖
(𝑡) is the residual of the ith physical parameter. 

 𝑝𝑖0 is the estimation of ith physical parameter under fault-free conditions. 

 𝑝̂𝑖(𝑡) is estimation of ith physical parameter at time instant 𝑡. 
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If the residuals of the physical parameters are available, they can be utilized for fault isolation 

as they are directly associated with specific sub-assemblies and sub-components of the 

monitored system, by implementing techniques like the influence matrix approach[201]. 

 

3.6.2 APPLICABILITY 

 

An interesting result is obtained by combining parameter estimation approach and observer-

based approach for CM and FD, that is commonly known as the adaptive observer scheme. 

Adaptive observers, although based on the same basic principles as the rest of observers 

presented in section 3.5, they have the extra functionality of simultaneously estimating the 

system parameters along the state and output estimation[202]. This ability makes them a highly 

suitable CM and FD method, in applications were all or some system parameters are unknown, 

but still an estimation of the state/output is needed to generate residual quantities for FD[203]. 

 

Parameter estimation techniques for CM and FD purposes on wind turbine systems are not so 

widely utilized. They can be implemented as a standalone residual generation method, or more 

commonly in conjunction with other methods, as is the case with adaptive observers. Some 

examples include: 

 

• An adaptive parameter estimation algorithm has been implemented to estimate the 

parameters of a hydraulic pitch system, in order to generate residuals for CM and FD 

purpose, and was tested against the NRELS’s 1.5MW benchmark model[204]. 

• LPV recursive parameter estimation along the interval prediction algorithm, are utilized 

for pitch angle-based residual generation in order to identify faults in hydraulic pitch 

actuation system.[205] 

• An adaptive observer is implemented to generate residual for FD purposes on several 

wind turbine subsystems, tested against a benchmark model[206]. 

 

Generally, parameter estimation approach for CM and FD exhibits the following advantages: 

 

• Detection and isolation of faults in parameters is very straightforward. 

• The size and magnitude of parameter deviations are easily captured. 

• The model structure needs to be known a priori, but not the systems parameter allowing 

CM and FD in systems with unknown parameters. 

• Excellent adaptive and self-learning performance, given that the parameter estimation 

method/algorithm is adaptive. 

• Robust against noise induced in the measurements. 

 

The drawbacks are as follows: 

 

• Residual reaction to incipient faults is generally slow. 

• Fault isolation is generally not easy, as the model parameters do not uniquely 

correspond to parameters of the system. 

• The design procedure of parameter estimation methods, while systematic, is not that 

simple. 
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3.7 NEURAL NETWORK APPROACH 

3.7.1 FEED FORWARD NETWORKS 

 

The last two decades ANNs are widely discussed and implemented in model-based methods 

for CM and FD in various systems and processes, and more specifically in residual generation-

based approaches. ANNs can be highly efficient in modelling highly non-linear and dynamic 

systems, by providing a close approximation of any continuous non-linear function[176]. 

Generally, there are two main approaches in ANN implementation for system modelling and 

consequently residual generation: 

 

• Feed-Forward Neural Network (FNN), where there are no feedback loops or cycles 

between the neurons and information propagates only in one direction. This direction 

goes from the input to the output layer, as has been presented in section 3.3.2 with the 

ANN approximation of the non-linear function in NARMAX implementation. 

 

• Recurrent Neural Network, on the other hand, has a bi-directional propagation of 

information. This is achieved by extending the feed-forward networks’ unidirectional 

information propagation with feedback loops between output and input nodes. These 

feedback loops enable some of the outputs of the ANN nodes to influence some of its 

subsequent inputs. 

 

In the scope of online CM and FD, the most commonly used approach is that of FNN. The 

underlying principle of utilizing a FNN for residual generation is the implementation of a two-

stage scheme, as can be seen in Fig.46, that enables the formulation of the model and its 

consequent utilization. 

 

 
Figure 46: Training and residual generation stages of ANN 

 

The first stage of this process requires the training of the ANN with system/process operational 

data under fault-free conditions, in order to obtain a “black-box” model approximating the 

healthy state system’s behavior. Then the model is utilized in parallel with the monitored 

system, to generate residual quantities for CM and FD purposes. One of the FNN schemes that 

is widely utilized is the MLP presented in 3.3.2. Its structure consists of the input and output 

layers, along the interconnected hidden layers between them. A single-hidden layer MLP can 

be represented by the equation: 
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𝑦𝑘 = ∑𝑤𝑘𝑖
(𝑜)

𝛼𝑖 (∑𝑤𝑖𝑗
(ℎ)

𝑢𝑗 + 𝜇𝑖
(ℎ)

  

𝑛

𝑗=1

)

𝑛ℎ

𝑖=1
 

(3.7.1) 

 

Where: 

 𝑘 is the number of outputs. 

 𝑛ℎ is the number of hidden neurons. 

 𝑛 is the number of inputs. 

 𝑤𝑘𝑖
(𝑜)

, 𝑤𝑖𝑗
(ℎ)

 are the weights of the ANN output and hidden layer. 

 𝛼𝑖 are predetermined non-linear scalar functions. 

 𝑢𝑗  is the input vector. 

 𝜇𝑖
(ℎ)

 is the ith bias term. 

 

Another commonly used FNN is the radial basis function neural network (RBFNN) seen in 

Fig.47, which essentially consists of three layers, the input, output and a single-hidden 

layer[207]. 

 

 
Figure 47: RBFNN structure. 

 

Each node of the hidden layer represents a single radial basis function, with a given center point 

and respective width, that can be represented as: 

 

𝜑𝑖(𝑢) = 𝜑(‖𝑢 − 𝑐𝑖‖, 𝜎) (3.7.2) 

 

Where: 

 𝜑𝑖 is the ith radial basis function. 

 𝑢 is the input vector. 

 𝑐𝑖 is the ith center point. 

 𝜎 is the defined width parameter. 

 

A radial basis function is essentially a function whose value is only dependent on the distance 

between its input and a given fixed center point. There are various types of radial basis 

functions that can be utilized to construct a RBFNN, like multiquadric and inverse quadratic 

functions, with the Gaussian function being the most widely used. 
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The Gaussian function has the form: 

 

𝜑(𝑢) = 𝑎𝑒
− 

(𝑢−𝑐𝑢 )
2

2𝜎2  
(3.7.3) 

 

Where: 

 𝑎 is the height of the curve’s peak. 

 𝑢 is the input of the Gaussian function.  

 𝑐𝑢  is the curve’s center point. 

 𝜎 is the standard deviation parameter. 

 

 
Figure 48: Various Gaussian functions 

 

Various Gaussian functions can be seen in Fig.48, with different values for center point 𝑐 and 

standard deviation 𝜎, clearly exhibiting the principal property of the output being only 

dependent on the distance between the input and the center point defined. The Euclidean 

distance is usually implemented in cases of radial basis functions, but other metrics, like the 

Mahalanobis distance can also be utilized with positive results[208]. By combining several 

radial basis functions, a close approximation of a non-linear function can be generated in the 

form of a RBFNN.  

 

Thus, a RBFNN can be described as the sum of all the radial basis functions’ weighted outputs, 

that takes the form: 

 

𝑦𝑘 = ∑𝑤𝑘𝑖𝜑𝑖(𝑢) + 𝑤𝑘0

𝑛ℎ

𝑖=1

(3.7.3) 

 

Where: 

 𝑘 is the number of outputs. 

 𝑛ℎ is the number of hidden neurons. 

 𝑤𝑘𝑖 is the weight of the ith hidden layer neuron. 

 𝑢 is the input vector. 

 𝑤𝑘0 is the bias term. 
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3.7.2 SUPERVISED LEARNING 

 

In order to train the FNNs, so to accurately and efficiently adjust their weights, various methods 

of supervised learning (SL) approaches and algorithms can be utilized. SL is defined as the 

machine learning (ML) paradigm in which a training set of paired input-output data is utilized 

in order to construct an input-output relationship model of a system[209].  

 

In the case of MLP network the most common method used for training is the backpropagation 

algorithm, where the difference between the estimated and the desired output is propagated 

backwards in order to adjust the node weights. The first step of the backpropagation algorithm 

approach requires the forward propagation of input data to generate the estimated output. Then 

the error term is obtained as the squared difference between the estimated and the desired 

output, thus making the task of adjusting the node weights to obtain a better output estimation 

a mean squared error (MSE) minimization problem[210]. By considering the MSE loss 

function as: 

 

𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

(3.7.4) 

 

Where: 

 𝑛 is the total number of input-output data pairs. 

 𝑦𝑖 is the desired output observed in the data set. 

 𝑦̂𝑖 is the estimated output generated by the MLP. 

 

The derivative of the loss function with respect to the weights of the nodes is then calculated 

for every node in the hidden layer of the MLP, and the previous weight is then adjusted by a 

negative multiple of the derivative in order to move the weight in the direction that decreases 

the cost function[211]. This procedure is called gradient descent and provides the framework 

to achieve the minimum value of the cost function in a given number of backpropagation 

iterations. Thus, the new weight equation assumes the form: 

 

𝑤𝑗
𝑛𝑒𝑤 = 𝑤𝑗

𝑜𝑙𝑑 − 𝑎
𝜕𝐸

𝜕𝑤𝑗

(3.7.5) 

 

Where: 

 𝑤𝑗 is the weight of the jth node of the hidden layer. 

 𝑎 is the learning rate parameter. 

 
𝜕𝐸

𝜕𝑤𝑗
 is the partial derivative of the cost function 𝐸 with respect to weight 𝑤𝑗.   

 

There are two considerations that should be taken into account regarding the learning rate 

parameter choice, in order to achieve the accurate and efficient training of the MLP. First the 

learning rate parameter should always be positive in order to guarantee that whatever the sign 

of the derivative, and consequently the slope’s direction, the change to the node’s weight will 

result in a decrease of the cost function. So, by considering a positive learning rate parameter, 

if the slope is positive a decrease to the weight will result to a decrease of the cost function in 

contrast to a negative slope where an increase to the node’s weight will result to a decrease of 

the cost function. The second consideration has to do with the progress towards the optimal 
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estimation of the output the backpropagation algorithm achieves in each iteration. While 

choosing a higher learning rate value can potentially decrease the time the network needs to 

converge to the optimal output estimation, it can also result to an overshoot and consequently 

miss of the global minimum of the cost function as can be seen on Fig.49. On the other hand, 

a too low learning rate value can increase the needed iterations number, making the 

convergence of the MPL a highly time-consuming procedure. 

 

 
Figure 49: Backpropagation with different learning rate values. 

 

In the RBFNN case a similar learning approach is utilized in order to accurately and efficiently 

adjust the weights of the nodes, to consequently achieve convergence of the network to the 

optimal output estimation. The difference that RBFNN exhibits compared to MLP is that the 

center points of the radial basis functions should also be trained in order to construct an efficient 

RBFNN model. In this stage of RBFNN training, unsupervised learning approaches are 

typically utilized, with the most prominent approach being that of clustering[212]. 

 

The unsupervised k-means clustering algorithm is mainly used in order to partition the data set 

of the inputs to an arbitrary number of clusters, with the aim of minimizing the variance within 

each cluster[213]. The k-means objective function has the form: 

 

𝐾 = ∑ ∑ 𝑧𝑖𝑘

𝑚

𝑘=1

‖𝑢𝑖 − 𝑐𝑘‖
2

𝑛

𝑖=1

(3.7.6) 

 

Where: 

 𝑛 is the number of input data instances. 

 𝑚 is the number of clusters. 

 𝑧𝑖𝑘 is a binary value indicating if the ith input instance belongs to the kth cluster. 

 𝑢𝑖 is the ith input instance. 

 𝑐𝑘 is the center of the kth cluster. 

 

Thus, by trying to minimize the k-means objective function the clusters’ means or centroids 

are calculated, that then can be used as the center point of the respective radial basis functions. 

Usually, the width of radial basis functions has a fixed value and is proportional to the 

maximum distance between input instances and the calculated centroid. 

 

After the training phase, the chosen ANN model is ready to be validated by utilizing a defined 

validation data set. The validation data set is similar to the training one in terms of healthy 



107 

 

operation conditions and is fed to the generated model in order to observe its efficiency and 

accuracy to estimate the output of the system. Once the validation phase is over and if the 

results are satisfactory the ANN model is ready to be implemented in parallel to the physical 

system in order to be utilized in residual generation CM and FD. 

 

3.7.3 APPLICABILITY 

 

Artificial neural networks are consistently gaining ground on CM and FD applications due to 

their proven ability to generate accurate models of complex non-linear cyber-physical systems. 

They can be particularly useful in applications where due to complexity and uncertainty the 

mathematical modelling of a system through first principles method is highly complex and time 

consuming. Recurrent neural networks can also be of use in CM and FD applications, although 

the dynamic feedback of the recurrent network can render the ANN highly unstable[101]. 

Besides the residual generation stage, ANNs are extensively implemented in the residual 

evaluation phase due to their proven ability to efficiently and accurately solve classification 

problems. 

 

ANN methods for residual generation in CM and FD of wind turbines can be found extensively 

in the existing literature. Some of them include: 

 

• A multi-layer NARX is implemented utilizing the ANN approach to approximate the 

non-linear function, in order to generate residuals that are then used to detect and 

identify faults contributed to the ageing of the wind turbine[165]. 

• An MLP structure with a tapped delay line is implemented in order to obtain a NARX 

model that is utilized for residual generation. The resulting residuals are utilized to 

provide accurate CM and FD on wind turbine benchmark model[214]. 

• An open loop NARX model, as the result of a MLP with a delay line, is utilized to 

generate residuals for CM and FD purposes on wind turbine benchmark model[215]. 

• A RNN approach combined with an adaptive threshold method to provide robust FD in 

wind turbine systems is presented and tested against a wind turbine benchmark model 

simulation[216].   

 

ANN approaches for residual generation generally exhibit the following advantages: 

 

• They require little or not at all a priori knowledge of the system to be modelled, 

providing high flexibility for modelling complex systems. 

• They can handle both linear and non-linear systems universally. 

• The structure of the network can be chosen both by experience and through a trial-and-

error sequence. 

• The weights of the nodes are determined through training with data sets. 

 

While on the other hand some drawbacks do exist: 

 

• They require a large training data set of historical operation data in order to be trained 

effectively. 

• The models obtained by ANN methods are black-box models and do not provide any 

knowledge on their internal design. 

• FNNs are static non-linear mappings between input and outputs, thus cannot properly 

represent a dynamic system, while adding a dynamic feedback, results in instability. 
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CONCLUSION & FUTURE TRENDS 
 

As it becomes evident throughout this thesis, the provision of efficient and accurate CM and 

FD systems for wind turbines is of paramount importance in the effort to reduce O&M cost 

and consequently reduce the OPEX. Achieving this goal will greatly impact the efficiency of 

wind turbines as it will lead to a reduced LCOE, the basic measure of energy generation means 

investment profitability, that can potentially lead to an increase of the wind energy adoption 

rate. In the urgent need to de-carbonize energy production the wind energy can play a vital role, 

even if the need for stable and continuous means of energy production along energy storage 

systems will still be needed for a successful transition. 

 

Wind turbines are highly complex cyber-physical systems with a multitude of mechanical and 

electronic parts, that need to be in good condition in order to achieve efficient power generation 

and avoid faults and unplanned maintenance and repair downtime. Added to the difficulty 

arising from the system complexity, wind turbine installations must withstand harsh 

environmental and operational conditions due to the nature of the geographical location of the 

installations. This can be further amplified by the increased rate of offshore wind turbine 

installations where not only the environmental conditions worsen, due to the corrosive nature 

of salt, but also the accessibility of these sites is limited and usually comes with an increased 

O&M cost. In order to tackle all the aforementioned obstacles and difficulties, the utilization 

of accurate CM and FD is crucial in the task of providing predictive maintenance capabilities, 

that reduce unplanned maintenance tasks and avoid the increased downtime due to critical 

faults. Condition monitoring and fault diagnosis methods have both evolved rapidly in the last 

three decades as a direct result of the ongoing demand for safe and efficient complex cyber-

physical systems. More specifically residual-based CM and FD are extensively implemented 

in a wide area of applications, that also includes the wind turbine systems. Residual-based 

methods and generally model based-methods have undergone a continuous and consistent 

development from the 1970s and onwards, initially driven by the advancements in control 

theory and later by the emergence of modern computer science and the consequent high 

computational power.   

 

In contrast to the signal-based methods, that explicitly require the installation of extra hardware 

and software equipment in order to fulfill their need for custom sensor measurements and high 

sampling rates, model-based methods usually do not require any of these additions. Based on 

the utilization of SCADA historical and real-time data, which are nowadays easily available 

due to the wide adoption of SCADA systems in new wind turbine installations, model-based 

methods can provide accurate and effective CM and FD. By implementing residual-based CM 

and FD methods, extensively known and established theoretical and practical tools can be 

utilized to design robust residual generators that can simplify and facilitate the residual 

evaluation stage. From first principles modelling to ANN black-box models an extended range 

of modelling tools can be utilized with respect to the given model requirements and the a priori 

knowledge of the system structure and parameters. Various residual generator frameworks and 

structures have been presented in this thesis, each of them with their own advantages and 

disadvantages, that can be utilized by themselves in stand-alone applications or in a 

combination scheme. The choice of a residual generation method ultimately comes down to 

efficiently addressing the specific needs of CM and FD that a wind turbine exhibits, while also 

trying to address a broader range of CM and FD objectives in order to provide an as much as 

possible generic CMS solution that can be mass adopted by wind energy industry. 

 

While wind turbine CM and FD residual-based methods have come a long way both in the 



109 

 

academia and the industrial domain, there is a need for more efficient connection between these 

two areas in order to propagate novel research of CMS to the real-world applications while also 

getting their highly beneficial feedback. To that end as well as to the improvement of wind 

turbine CM and FD research, there are some crucial points that need to be addressed: 

 

• There is an evident need for a unified and globally adopted wind turbine taxonomy that 

categorizes components and sub-assemblies based on criticality factors and fault to 

downtime evaluation, in order to facilitate the generation for accurate reliability 

analyses. This will enable the accurate correlation of failures to specific components 

and subassemblies, while it will also provide insight to the incipient failures that 

ultimately result in faults and downtime increases.  

 

• The unwillingness of the wind energy industry to share SCADA historical data and 

information of wind turbine operation with the academia researchers has delayed the 

evaluation of CM and FD methods under research, while it has also withheld possible 

insights in this domain. Even though wind turbine benchmark model simulations have 

enabled researchers to partially overcome this obstacle, a collaboration on that matter 

would be highly beneficial for both sides.  

 

• As a result of the CM and FD theory and methods preceding the modern wind turbine 

design and needs, among other reasons too, there exists an extensive overlap between 

different categories of model-based methods both in terminology and in methodology. 

While at some cases the overlap is unavoidable due to actual similarities, either in 

design theory or in implementation method, most of these cases are due to unintentional 

vagueness and misinterpretation of CM and FD principles adopted form general theory 

to the wind turbine domain. A clarification and a unified approach to this matter, with 

respect to the wind turbine domain, should also be considered. 

 

Lastly, regarding future improvements and extensions of wind turbine CM and FD methods 

and applications, two concepts show future potential and realistic implementation possibility: 

 

• The first one has to do with the extension of CMSs to incorporate the functionality of 

fault prognosis. While research is already underway in this domain, extensive studies 

and experimentation are still in their infancy, mostly due to the difficulties arising from 

high complexity non-linear behavior of wind turbine systems combined with the 

already challenging nature of prognosis implementation. Nevertheless, the continuance 

and intensification of research in this direction can be highly beneficial as successful 

prognosis can decrease even more the O&M costs and help completely avoid critical 

faults. 

 

• The second is mostly a concept of holistic approach to wind turbine management, in 

terms of combining condition monitoring and fault diagnosis with fault-tolerant control 

and intelligent decision-making to provide an extension to available control of wind 

turbines in a farm level. In this framework the information obtained by the CMS is not 

only utilized to assess the health condition and fault occurrence in the wind turbine, but 

is also utilized to provide fault-tolerant control be readjusting the control logic on the 

fly with respect to the occurring fault. This approach can enable operators to maintain 

higher availability while also avoiding the evolution of failures to faults. 
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