

UNIVERSITY OF WEST ATTICA

&

UNIVERSITY OF LIMOGES

Master’s Thesis

Visual scripting tools for machine learning development

Panagiotis Kyrkos

(aivc20013)

Supervisor: Anastasios Kesidis

Athens, September 2023

Visual scripting tools for machine learning development

Μέλη εξεταστικής επιτροπής συμπεριλαμβανομένου και του Εισηγητή

Η διπλωματική εργασία εξετάστηκε επιτυχώς από την κάτωθι Εξεταστική Επιτροπή

Α/α ΟΝΟΜΑ ΕΠΩΝΥΜΟ ΒΑΘΜΙΔΑ/ΙΔΙΟΤΗΤΑ ΨΗΦΙΑΚΗ ΥΠΟΓΡΑΦΗ

1 Αναστάσιος Κεσίδης Καθηγητής

2 Πάρις Μαστοροκώστας Καθηγητής

3 Παναγιώτα Τσελέντη ΕΔΙΠ

ΔΗΛΩΣΗ ΣΥΓΓΡΑΦΕΑ ΜΕΤΑΠΤΥΧΙΑΚΗΣ ΕΡΓΑΣΙΑΣ

Ο κάτωθι υπογεγραμμένος Παναγιώτης Κύρκος του Αποστόλου με αριθμό μη-

τρώου aivc20013 φοιτητής του Προγράμματος Μεταπτυχιακών Σπουδών Τε-

χνητή Νοημοσύνη και Οπτική Υπολογιστική του Τμήματος Μηχανικών Πληρο-

φορικής της Σχολής Μηχανικών του Πανεπιστημίου Δυτικής Αττικής, δηλώνω

ότι:

«Είμαι συγγραφέας αυτής της μεταπτυχιακής εργασίας και ότι κάθε βοήθεια την

οποία είχα για την προετοιμασία της, είναι πλήρως αναγνωρισμένη και αναφέρε-

ται στην εργασία. Επίσης, οι όποιες πηγές από τις οποίες έκανα χρήση δεδομέ-

νων, ιδεών ή λέξεων, είτε ακριβώς είτε παραφρασμένες, αναφέρονται στο σύ-

νολό τους, με πλήρη αναφορά στους συγγραφείς, τον εκδοτικό οίκο ή το περιο-

δικό, συμπεριλαμβανομένων και των πηγών που ενδεχομένως χρησιμοποιήθη-

καν από το διαδίκτυο. Επίσης, βεβαιώνω ότι αυτή η εργασία έχει συγγραφεί από

μένα αποκλειστικά και αποτελεί προϊόν πνευματικής ιδιοκτησίας τόσο δικής μου,

όσο και του Ιδρύματος.

Παράβαση της ανωτέρω ακαδημαϊκής μου ευθύνης αποτελεί ουσιώδη λόγο για

την ανάκληση του πτυχίου μου».

Ο Δηλών

Abstract

In computer science and not only, many and various software exist to design and

implement different system using purely visual methods. These methods can greatly

vary depending on the task to be solved and the field that the specific software is

made for. The purpose of this thesis is the analysis, the design and the development

of a visual scripting tool for machine learning development. At first various basic

terms and information are explained about artificial intelligence, visual scripting

tools and game engines. Current state is also described along with the current similar

tools that exist. Afterwards, the Unity game engine is described, with which the

visual scripting tool was implemented with. The basic mechanisms of Unity are ex-

plicated as they are required for the proper understanding of the implementation of

the tool. Next the goal of the thesis is described, that is to say the analysis, the

utilization and the design of the mentioned tool. Later, the implementation of Deci-

sion Tree Module Designer is discussed in detail, as to how the software is designed,

how the interface works and looks and the user controls. Moreover, the core features

are shown and explained along with the simulation mode. Then some early work in

progress is shown that was implemented. Finally, the ways of possible utilization of

such a tool are presented and analyzed in depth, followed by the future plans for the

tool and how it can be improved with new features and better interface.

Table of contents
Chapter 1 Introduction ... 10

1.1 Artificial Intelligence ... 1

1.1.1 Machine Learning ... 2

1.1.2 Deep Learning ... 2

1.1.3 Neural Networks ... 3

1.2 Visual Design Tools ... 4

1.2.1 UML .. 4

1.2.2 2D/3D Image editing and modelling tools .. 5

1.2.3 Sound design tools .. 5

1.2.4 Game engines .. 6

1.2.5 Database/Code Design .. 6

1.3 Game Engines .. 7

1.3.1 Unity ... 7

1.3.2 Unreal Engine ... 9

1.4 Visual Scripting tools ... 12

1.5 Current State .. 14

1.5.1 Netron ... 14

1.5.2 TensorSpace .. 14

1.5.3 Gephi ... 15

1.5.4 TensorFlow Playground .. 15

1.5.5 NN-SVG ... 15

Chapter 2 Unity Engine ... 17

2.1 General Terms .. 17

2.1.1 3D Model .. 17

2.1.2 Texture .. 17

2.2 Unity Specific Terms ... 18

2.2.1 GameObject .. 18

2.2.2 Components .. 19

2.2.3 Scenes ... 19

Chapter 3 Thesis Purpose ... 21

3.1 Machine Learning Algorithms ... 21

3.2 Design .. 22

3.2.1 Modules ... 22

3.2.2 Module Designer ... 22

3.2.3 Module Designer Visualization .. 23

3.2.4 Module Designer Interface ... 24

3.2.5 Module Designer Code Conversion .. 25

3.2.6 Upper Level Designer ... 26

3.3 Benefits .. 27

Chapter 4 Panoptes .. 29

4.1 Introduction .. 29

4.1.1 Choice of game engine .. 29

4.2 Folder Structure ... 29

4.3 Design .. 30

4.4 User Interface ... 31

4.4.1 Main Interface ... 32

4.4.2 Tree Visualization ... 35

4.5 Controls .. 37

4.6 Features .. 38

4.6.1 Tree Creation .. 38

4.6.2 Tree Saving ... 39

4.6.3 Tree Loading ... 39

4.6.4 Clear All .. 39

4.6.5 Automatic drawing .. 39

4.6.6 Node Manipulation ... 41

4.6.7 Node Connections ... 44

4.6.8 Input Data .. 44

4.6.9 Simulation ... 45

Chapter 5 Future Development Plan .. 51

5.1 Designers .. 51

5.2 General Improvements ... 51

Chapter 6 Conclusion ... 53

Chapter 7 Appendix ... 55

7.1 Domain Classes and Utils .. 55

7.1.1 Decision Tree .. 55

7.1.2 Decision Tree Factories .. 57

7.1.3 Decision Tree Repositories ... 58

7.1.4 Generic Utils ... 59

7.1.5 Generic Extensions ... 60

7.1.6 Decision Tree Validators .. 61

7.1.7 Constants ... 61

7.1.8 Enums ... 61

7.1.9 Neural Network ... 62

7.2 Unity MonoBehaviour Classes .. 66

7.2.1 Generic User Interface .. 66

7.2.2 Generic Helpers .. 69

7.2.3 Decision Tree .. 73

References .. 92

Table of Images

Image 1: Deep Learning Neural Network Example .. 4

Image 2: UML example [5] ... 5

Image 3:Blender Shader Editor .. 5

Image 4:Audacity Audio Editor ... 6

Image 5: SQL Server Management Studio Diagram Mode ... 7

Image 6:Unity Logo ... 7

Image 7: Unity Tech Demo "Enemies".. 9

Image 8: Unreal Engine 5 showcase .. 10

Image 9: Unreal Engine 5 user interface .. 11

Image 10: Unreal Engine 5 Blueprint editor .. 11

Image 11:Unreal Engine 5 Shader editor ... 12

Image 12:Netron visualization mode ... 14

Image 13: TensorSpace playground number draw example .. 15

Image 14: TensorFlow Playerground interface .. 15

Image 15: NN-SVG Interface .. 16

Image 16: Retro phone 3D model .. 17

Image 17: 3D model without (A) and with a texture (B) ... 18

Image 18: Unity Inspector Window ... 19

Image 19: Unity scene window .. 20

Image 20: Neural Network Visualization .. 23

Image 21: Decision Trees Visualization .. 23

Image 22: KNN Visualization ... 24

Image 23: Neural Network Designer Interface Mock .. 25

Image 24: Upper Level Designer ... 26

Image 25: User interface numbered ... 32

Image 26: User input panel for saving ... 32

Image 27: User panel for tree loading .. 33

Image 28: Add input button panel ... 33

Image 29: Input data panel with data ... 34

Image 30: Simulation steps panel .. 34

Image 31: New node button panel .. 35

Image 32: Console panel .. 35

Image 33: Tree visualization with Weight node selected .. 35

Image 34: Simulation Visualization ... 36

Image 35: Tree creation demo (before button clicked) .. 38

Image 36: Tree creation demo (after button clicked) ... 38

Image 37: Redraw function code snippet ... 39

Image 38: Demo tree default redraw ... 40

Image 39: Demo tree after removing Weight node and Redrawing 40

Image 40: Demo tree after removing Weight and Smoker nodes and Redrawing 41

Image 41: Demo tree after removing Weight, Smoker and High Risk nodes and

Redrawing .. 41

Image 42: Node Delete code snippet ... 42

Image 43: Node visualization before and after delete of node "High Risk" 43

file:///C:/Users/Mr%20-K-/Desktop/Panagiotis_Kyrkos_Thesis_2_0%20rev03.docx%23_Toc147155707
file:///C:/Users/Mr%20-K-/Desktop/Panagiotis_Kyrkos_Thesis_2_0%20rev03.docx%23_Toc147155712
file:///C:/Users/Mr%20-K-/Desktop/Panagiotis_Kyrkos_Thesis_2_0%20rev03.docx%23_Toc147155722
file:///C:/Users/Mr%20-K-/Desktop/Panagiotis_Kyrkos_Thesis_2_0%20rev03.docx%23_Toc147155724
file:///C:/Users/Mr%20-K-/Desktop/Panagiotis_Kyrkos_Thesis_2_0%20rev03.docx%23_Toc147155725
file:///C:/Users/Mr%20-K-/Desktop/Panagiotis_Kyrkos_Thesis_2_0%20rev03.docx%23_Toc147155726

Image 44: Node before and after rename ... 43

Image 45: Get Available Inputs code snippet .. 45

Image 46: Clear last input example ... 45

Image 47: Simulation demo tree .. 46

Image 48: Simulation demo input data .. 46

Image 49: Simulation demo after starting Simulation ... 47

Image 50: Simulation demo step 2 ... 47

Image 51: Simulation demo step 3 ... 48

Image 52: Simulation demo step 4 ... 48

Image 53: Simulation demo step 5 ... 49

Image 54: Simulation demo step 6 ... 49

Image 55: Console error after pressing "Next Step" in simulation panel while in final

step ... 50

Chapter 1 Introduction
The purpose of this thesis, is the analysis, design and the implementation of a visual

scripting tool for machine learning. Although there are many and various software

around artificial intelligence, almost all focus on other aspects instead of the visual

part, and those that do focus on visual aspect, they do not try to mix with the actual

implementation of the machine learning algorithms. The software that was created

as part of this thesis called Panoptes, is a visual tool to design, implement and adjust

machine learning algorithms and more specifically decision trees. The tool was de-

signed using the Unity game engine. All necessary features and mechanisms of

Unity are described which are needed for the proper understanding of the imple-

mentation of the tool. Afterwards, the benefits of such a tool are described in detail

and later on the implementation, user interface, controls, graphics and the current

version features are analyzed in depth. These are then followed by the feature plans

for the development of the software, that if implemented can turn the tool into the

ultimate tool for designing and implement various machine learning systems.

1

In this chapter, all the basic and necessary information about artificial intelligence,

visual design tools, game engines will be discussed. This chapter is important for

the proper understanding of the upcoming chapters, especially the ones that go in

detail about the tool. Apart from the mentioned information, similar tools that exist

and implement part of the software will also be covered in the chapter.

1.1 Artificial Intelligence

In the realm of technological advancements, one concept has captured the imagina-

tion of scientists, innovators, and society at large: Artificial Intelligence (AI). As

we navigate the complexities of the modern world, AI has emerged as a ground-

breaking discipline that aims to replicate human intelligence and cognitive abilities

in machines. It holds the promise of transforming the way we live, work, and interact

with the world around us.

Artificial Intelligence refers to the development and deployment of intelligent ma-

chines that can perform tasks that typically require human intelligence. These ma-

chines are designed to perceive their environment, reason, learn from experience,

and make decisions based on the information available to them. Through the amal-

gamation of various disciplines, including computer science, mathematics, and cog-

nitive science, AI seeks to create systems that can emulate human-like thinking,

problem-solving, and decision-making capabilities.

At its core, AI encompasses a range of techniques and methodologies aimed at ena-

bling machines to exhibit intelligent behavior. These techniques include machine

learning, where algorithms are trained on vast amounts of data to identify patterns

and make predictions, as well as natural language processing, which enables ma-

chines to understand and generate human language. Additionally, AI encompasses

computer vision, robotics, expert systems, and many other subfields, each contrib-

uting to different aspects of intelligent machine capabilities.

The applications of AI are far-reaching and diverse. In healthcare, AI-powered sys-

tems can analyze medical data, assist in disease diagnosis, and aid in the develop-

ment of personalized treatment plans. In finance, AI algorithms can analyze market

trends, optimize investment strategies, and detect fraudulent transactions. In trans-

portation, AI can improve the efficiency of traffic management, enable autonomous

vehicles, and enhance logistics operations. These are just a few examples among

countless others that showcase the potential of AI to revolutionize industries and

enhance human capabilities.

However, the development and deployment of AI also raise significant questions

and challenges. Ethical considerations, such as privacy, bias, and accountability,

come to the forefront as AI systems make decisions that impact individuals and so-

ciety as a whole. The fear of job displacement due to automation and concerns about

the concentration of power in the hands of AI systems also loom large. It is crucial

to address these challenges and develop frameworks that ensure responsible and

ethical AI development and deployment.

2

1.1.1 Machine Learning

Machine learning is a subset of artificial intelligence that focuses on the develop-

ment of algorithms and statistical models that enable computers to learn and make

predictions or decisions without being explicitly programmed. It is a field that ex-

plores how machines can automatically learn and improve from experience or data,

allowing them to adapt and perform tasks more accurately and efficiently over time.

At its core, machine learning involves training models on large datasets to recognize

patterns, extract meaningful insights, and make predictions or take actions based on

that knowledge. These models are designed to learn from examples and observa-

tions, identify underlying relationships or trends, and generalize that knowledge to

make predictions or decisions on new, unseen data.

There are various types of machine learning algorithms, each with its own charac-

teristics and applications. Supervised learning is one common approach, where

models are trained using labeled data, with each example paired with the correct

output or target value. The model learns to map inputs to outputs by finding patterns

in the labeled data, enabling it to make predictions on new, unlabeled data.

Unsupervised learning, on the other hand, deals with unlabeled data, and the goal is

to discover hidden patterns or structures within the dataset. These algorithms aim to

identify clusters, associations, or anomalies in the data, providing insights into the

underlying structure of the information.

Another approach is reinforcement learning, which involves training an agent to

interact with an environment and learn by receiving feedback in the form of rewards

or punishments. The agent learns through trial and error, gradually optimizing its

actions to maximize the cumulative reward it receives.

Machine learning finds applications across numerous domains. In image and speech

recognition, machine learning models can be trained to accurately classify and un-

derstand visual or audio data. In natural language processing, machine learning al-

gorithms enable machines to understand and generate human language, powering

applications like chatbots and language translation. Machine learning is also widely

used in recommendation systems, fraud detection, sentiment analysis, and many

other areas where data-driven predictions or decisions are required.

In summary, machine learning is a branch of artificial intelligence that focuses on

enabling computers to learn and improve from data without explicit programming.

By leveraging algorithms and statistical models, machines can identify patterns,

make predictions, and make decisions based on the knowledge acquired from train-

ing datasets. Through its various techniques and applications, machine learning has

the potential to drive innovation and provide valuable insights across numerous

fields.

1.1.2 Deep Learning

Deep learning is a branch of artificial intelligence that focuses on creating algo-

rithms and models inspired by the human brain's neural networks. It involves train-

ing complex computational systems called neural networks to recognize patterns

3

and make intelligent decisions. By using layers of interconnected nodes and large

amounts of data, deep learning enables machines to learn and improve their perfor-

mance over time without explicit programming. It has found applications in various

fields, including image and speech recognition, natural language processing, and

autonomous driving.

1.1.3 Neural Networks

A neural network [1] [2], also known as an artificial neural network (ANN), is a

computational model inspired by the structure and functioning of the human brain's

biological neural networks. It is a fundamental component of deep learning and

plays a crucial role in various machine learning applications.

At its core, a neural network consists of interconnected nodes, or artificial neurons,

organized into layers. These layers are typically categorized into three types: input

layer, hidden layers, and output layer. The input layer receives the initial data or

input features, while the output layer produces the desired output or prediction. The

hidden layers, positioned between the input and output layers, perform complex

computations and enable the network to learn and extract meaningful representa-

tions from the data.

Each node in a neural network receives inputs, processes them using an activation

function [3], and produces an output signal. The activation function determines the

node's output based on a weighted sum of its inputs, which are adjusted by values

known as weights and biases. The weights represent the strength of the connections

between nodes, while biases allow for fine-tuning the node's response.

During the training process, the neural network learns to adjust the weights and bi-

ases iteratively to minimize the difference between its predictions and the desired

outputs. This optimization is typically achieved using algorithms like backpropaga-

tion, which calculate the gradients of the network's error with respect to its weights

and biases, and update them accordingly.

By stacking multiple layers and nodes, neural networks can learn hierarchical rep-

resentations of data. Lower layers capture simple features, while higher layers ex-

tract more abstract and complex patterns. This ability to automatically learn and

represent data in multiple levels of abstraction is one of the key strengths of neural

networks.

Neural networks are capable of solving a wide range of tasks, including classifica-

tion, regression, pattern recognition, and sequence generation. Different types of

neural networks have been developed for specific tasks, such as convolutional neu-

ral networks (CNNs) for image analysis, recurrent neural networks (RNNs) for se-

quential data, and generative adversarial networks (GANs) for generating new con-

tent.

4

The success of neural networks stems from their ability to learn from data, general-

ize to unseen examples, and make predictions or decisions without being explicitly

programmed. With the availability of large datasets and advances in computational

power, neural networks have become increasingly powerful tools for solving com-

plex problems in various fields, driving advancements in artificial intelligence and

machine learning.

1.2 Visual Design Tools

In computer science and not only, many and various software exist to design and

implement different system using purely visual methods. These methods can greatly

vary depending on the task to be solved and the field that the specific software is

made for. These tools, usually make heavy use of the user interface, along with

mouse and keyboard shortcuts. Some of them can also use touch screen or voice

commands for the design part. Various tools will be mentioned and although they

maybe not seem connected with each other, all these tools use visual methods to

design and implement systems, assets, etc.

1.2.1 UML

The unified modeling language (UML) [4] is a general-purpose modeling language

that is intended to provide a standard way to visualize the design of a system.

UML, although not a software, it is used extensively across computer science to

design systems, both in paper and in computer using specific software.

Image 1: Deep Learning Neural Network Example

5

Image 2: UML example [5]

1.2.2 2D/3D Image editing and modelling tools

Something completely different than the mentioned UML, is software that is used

in both 2D image editing and 3D modelling. Some known tools for image processing

are Microsoft Paint, Gimp, Adobe Photoshop and for 3D modelling, Blender, 3ds

max or AutoCAD. All these tools, allow the manipulation and the implementation

of various things, either that be images or 3D models using purely visual methods.

Image 3:Blender Shader Editor

1.2.3 Sound design tools

Even for sound there are tools to help with the design of it. These tools usually show

to the user the waves of a sound and the user can manipulate it using the mouse to

alter it or add effects to it.

6

Image 4:Audacity Audio Editor

1.2.4 Game engines

Game engines is one of the best examples of tools where the user designs something

using purely visual aspects of the software. The most common example is the level

design tools inside game engines, where the user designs the 3D or 2D levels of the

game. However, many game engines, have extra “sub” tools for the creation of other

aspects of the game as well. For example one of these sub tools, are “Quest” design

tools, with which the user usually drags and drops nodes to create tree/path based

diagrams, which is then is translated to game code. Other game engines, such as the

Unreal Engine have node based systems to even design actual code.

1.2.5 Database/Code Design

Another area where visual design tools are used are database tools and specific code

IDEs. For databases, there are plenty development environments where the user can

design using diagrams and drag and drop mechanisms to design table relationships

and then automatically the software can generate the needed scripts. A couple of

examples are SQL Server Management Studio (SSMS) or MySQL Workbench. For

code it is not very common to have visual design tools, but there are examples either

in the form of game for educational purposes and others.

7

Image 5: SQL Server Management Studio Diagram Mode

1.3 Game Engines

As mentioned above, game engines [6] is probably one of the best examples that

make use of custom tools to design various sub systems of the game using visual

design, that being from a game level, to the sound system of a game or actual code

using node based editors. Also since the tool that was created as part of this thesis

is created using the Unity engine, a short mention of the 3 most popular game en-

gines will follow.

A gaming engine is a software development environment, also referred to as a “game

architecture” or “game framework,” with settings and configurations that optimize

and simplify the development of video games across a variety of programming lan-

guages. A gaming engine may include a 2D or 3D graphics rendering engine that’s

compatible with different import formats, a physics engine that simulates real-world

activities, artificial intelligence (AI) that automatically responds to the player’s ac-

tions, a sound engine that controls sound effects, an animation engine, and a host of

other feature.

1.3.1 Unity

Unity [7] [8] is a powerful and

popular cross-platform game en-

gine and development tool used

to create video games, simula-

tions, and interactive experi-

ences. It provides a comprehen-

sive set of tools and features that Image 6:Unity Logo

8

enable developers to build games for various platforms, including mobile devices, com-

puters, consoles, and even virtual reality (VR) and augmented reality (AR) devices.

Unity offers a visual editor that allows developers to create and manipulate game ob-

jects, design levels, set up scenes, and implement game mechanics without the need for

extensive coding. However, it also provides a robust scripting API in C# (C sharp) for

more advanced programming and customization.

Key features of Unity include:

1. Cross-platform development: Unity allows developers to create games for

multiple platforms using a single codebase, saving time and effort in porting

games to different devices.

2. Visual editor: Unity's intuitive visual editor allows designers and artists to create

and edit game assets, scenes, and user interfaces without extensive program-

ming knowledge.

3. Asset Store: Unity has a vast Asset Store where developers can find a wide range

of ready-to-use assets, such as 3D models, textures, audio clips, and scripts, to

enhance their projects.

4. Scripting in C#: Unity uses C# as its primary scripting language, which provides

a powerful and widely supported programming framework for implementing

game logic and behavior.

5. Physics and animation systems: Unity includes built-in physics and animation

systems that simplify the creation of realistic movements, collisions, and inter-

actions within the game world.

6. Multiplayer and networking support: Unity offers features and tools for devel-

oping multiplayer games, including networking capabilities for both local and

online multiplayer experiences.

7. 2D and 3D capabilities: Unity supports both 2D and 3D game development,

allowing developers to create a wide range of game genres and styles.

8. Extensibility and integration: Unity can be extended through custom tools,

plugins, and third-party integrations, enabling developers to incorporate addi-

tional functionality or connect with external services and APIs.

Unity has a large and active community of developers who share knowledge, tutorials,

and resources, making it a popular choice for both indie developers and larger game

9

studios. It has been used to create numerous successful games and is known for its

versatility, performance, and ease of use

Image 7: Unity Tech Demo "Enemies"

1.3.2 Unreal Engine

Unreal Engine [9] is a powerful and widely used game engine developed by Epic

Games. It provides a comprehensive suite of tools and features for creating high-quality

video games, simulations, and interactive experiences. Unreal Engine is renowned for

its advanced graphics capabilities, versatility, and flexibility.

Here are some key features of Unreal Engine:

1. Real-time rendering: Unreal Engine excels in rendering realistic and immersive

visuals in real-time, making it suitable for creating visually stunning games and

experiences.

2. Blueprint visual scripting: Unreal Engine offers a node-based visual scripting

system called Blueprint, which allows developers and designers to create game

logic, behavior, and interactions without extensive coding. It is a beginner-

friendly approach that simplifies the development process.

3. C++ programming: Unreal Engine provides a powerful and robust program-

ming framework in C++, allowing developers to write code for more complex

systems and optimize performance.

4. High-fidelity graphics: Unreal Engine supports advanced rendering techniques,

including dynamic lighting, physically based materials, global illumination, and

post-processing effects, enabling developers to achieve highly realistic visuals.

5. Animation and cinematics: Unreal Engine offers a comprehensive animation

system that allows developers to create complex character animations, cine-

matic sequences, and cutscenes. It supports skeletal animation, inverse kinemat-

ics, and facial animation.

10

6. Blueprints visual scripting: Unreal Engine offers a node-based visual scripting

system called Blueprints, which allows developers and designers to create game

logic, behavior, and interactions without extensive coding. It is a beginner-

friendly approach that simplifies the development process.

7. Physics simulation: Unreal Engine includes a robust physics simulation system

that enables realistic object interactions, rigid body dynamics, cloth simulation,

and destruction effects.

8. Virtual Reality (VR) and Augmented Reality (AR) support: Unreal Engine pro-

vides built-in support for developing VR and AR experiences, making it a pop-

ular choice for creating immersive virtual reality games and applications.

9. Multiplatform development: Unreal Engine supports multiple platforms, includ-

ing PC, consoles, mobile devices, and VR/AR devices, allowing developers to

target a wide range of platforms with a single codebase.

10. Marketplace and community: Unreal Engine has a thriving marketplace where

developers can access a vast library of assets, plugins, and tools to enhance their

projects. The community surrounding Unreal Engine is active and supportive,

providing tutorials, documentation, and forums for knowledge sharing.

Image 8: Unreal Engine 5 showcase

Unreal Engine has been used to create numerous critically acclaimed and commercially

successful games, ranging from small indie titles to large-scale productions. It offers a

comprehensive set of tools and features that empower developers to bring their creative

visions to life. The latest version of the engine is Unreal Engine 5 as of 2023.

11

Image 9: Unreal Engine 5 user interface

Unreal Engine Design Tools

Unreal Engine is probably the best example of a tool that contains various visual design

sub tools for almost everything. There is the main blueprint design tool that the user

can use to design actual code using a node based editor. These nodes are then translated

into the native game engine language C++.

Image 10: Unreal Engine 5 Blueprint editor

12

Another common sub tool is material/shader editor where the user can design materials

and shaders which are then translated into graphic shader code which is used in 3D

design.

Audio editor is another sub tool, which is used to design various sound systems and

connect sounds to create complex sequences or add effects to existing ones.

There are also tools for animations and user interface design, where the user can design

animations for the 3D models and user interface sub tool can be used to design the

whole for the game.

To conclude these are only some of the tools that Unreal Engine has to help with various

systems. This makes design for many amateur and inexperienced users much easier,

without the need of technical knowledge.

Image 11:Unreal Engine 5 Shader editor

1.4 Visual Scripting tools

As mentioned above, there are many examples of tools that make use of a visual

way to design systems in many and various fields. Visual scripting tools are tools

focused on code such as the Unreal Engine Blueprint Editor that was mentioned

before.

Visual scripting tools are beneficial for several reasons, especially in the context of

programming and game development:

1. Accessibility: Visual scripting tools lower the barrier to entry for individuals

who are not proficient in traditional coding languages. They enable artists,

designers, and non-programmers to create complex logic and functionality

without the need to write code manually. This accessibility democratizes the

13

development process and encourages more people to participate in creating

interactive experiences.

2. Rapid Prototyping: Since the process is more visual and intuitive, designers

and developers can quickly experiment with different ideas and see the re-

sults in real-time. This iterative approach speeds up the development cycle

and helps identify potential design flaws or improvements early on.

3. No Syntax Errors: Visual scripting tools eliminate syntax-related errors com-

monly found in traditional coding. Since the logic and structure are visually

represented, the chances of making syntax mistakes are significantly re-

duced. This leads to fewer bugs and a more reliable development process.

4. Collaboration: They facilitate collaboration between programmers and other

team members. Artists, designers, and content creators can use visual script-

ing to implement their ideas directly, reducing the need for constant back-

and-forth with programmers. This collaborative environment fosters effi-

cient teamwork and enables a seamless integration of various elements in a

project.

5. Educational Tool: They server as excellent educational tools, especially for

beginners learning programming concepts. It provides a more tangible and

visual representation of code execution, helping newcomers grasp funda-

mental programming principles without feeling overwhelmed by syntax and

code structures.

6. Flexibility and Experimentation: Visual scripting tools often come with a

wide range of pre-built components and functions that users can combine

creatively. This flexibility allows developers to experiment and explore dif-

ferent solutions, leading to innovative and unique approaches to problem-

solving.

7. Game Development: In the game development industry, visual scripting is

particularly useful for creating gameplay mechanics, AI behaviors, event

handling, and other interactive elements. Game designers can visually map

out complex game logic and interactions, empowering them to create capti-

vating and interactive game experiences.

8. Code Comprehension: Visual scripting can also help programmers better un-

derstand complex codebases. By visually representing the underlying code's

logic, it becomes easier for developers to follow the flow and relationships

between different components, making maintenance and debugging more

manageable.

Overall, visual scripting tools are valuable because they make programming more

accessible to a broader audience, enable rapid prototyping, improve collaboration,

reduce errors, and enhance the creative potential of developers and designers alike.

They serve as powerful aids in both the learning process and the development of

complex interactive experiences.

14

1.5 Current State

The purpose of this thesis is to create a tool for the design of various machine learn-

ing systems. Some similar tools are described below to show the current state on the

visual design tools.

1.5.1 Netron

Netron [10] is an open-source tool for visualizing neural network models. It supports

various deep learning frameworks, such as TensorFlow, PyTorch, ONNX, and

Caffe. Netron allows you to load trained models and explore their architecture, in-

spect layers, and view inputs and outputs. It provides an intuitive interface for un-

derstanding the structure and flow of information in neural networks.

Although it is not a tool to design neural network models, it helps with the visuali-

zation of them which is very similar, yet only a part of the design process.

Image 12:Netron visualization mode

1.5.2 TensorSpace

TensorSpace [11] is a JavaScript library that focuses on 3D visualizations of neural

network models. It allows you to create interactive 3D representations of models

and their layers, providing a unique perspective for visualizing and understanding

neural networks. TensorSpace integrates with popular deep learning libraries like

TensorFlow.js and Keras.

Again similar to Netron, TensorSpace is used for the visualization part but goes one

step further by visualizing the networks in 3D space. It also provides various

realtime examples.

15

Image 13: TensorSpace playground number draw example

1.5.3 Gephi

Although not specifically designed for neural networks, Gephi [12] is a powerful

graph visualization tool that can be useful for visualizing network architectures and

their connections. It allows you to create interactive graph visualizations, analyze

network properties, and explore complex relationships within neural networks.

1.5.4 TensorFlow Playground

TensorFlow Playground [13] is a web-based interactive visualization tool provided

by Google that allows users to experiment with various neural network architectures

and hyperparameters using a simple GUI. It's great for understanding how different

configurations affect the behavior of neural networks in real-time.

Image 14: TensorFlow Playerground interface

1.5.5 NN-SVG

NN-SVG [14] is an online tool that helps visualize neural network architectures by

generating Scalable Vector Graphics (SVG) representations of the models. Users

16

can customize the layout and design to create informative visualizations. Again, alt-

hough just a visualization tool, the result if very helpful to understand the basic

structure of a neural network and modify the visualization of it such as the edge

width.

Image 15: NN-SVG Interface

17

Chapter 2 Unity Engine
In the first chapter Unity game engine was mentioned. Unity, is the game engine

that was selected for the creation of the software prototype. In this chapter, certain

Unity mechanisms and terms will be described in more detail.

2.1 General Terms

To begin with, some basic terms will be described that are important and useful

across all game engines.

2.1.1 3D Model

A 3D model is a digital representation of a three-

dimensional object or scene. It is created using

specialized software or 3D modeling tools,

which allow users to construct and manipulate

objects in a virtual space. 3D models can be

highly detailed and realistic, capturing the shape,

texture, and appearance of real-world objects or

imaginary creations.

In a 3D model, objects are typically represented

using polygons, which are flat surfaces con-

nected by edges and vertices. These polygons are

combined to form the overall shape of the model.

Additional details, such as textures, colors, and

lighting, can be applied to the model to enhance its realism. 3D models are usually

created using specialized software such as 3ds Max, Blender, Maya and others.

2.1.2 Texture

In 3D modeling, texture refers to the surface characteristics and appearance applied to

a 3D model. It is a 2D image that is mapped onto the surface of a 3D object to give it

color, pattern, detail, and realism. Textures provide visual information about the mate-

rial, such as its roughness, smoothness, reflectivity, and other surface properties.

Textures can be created using image-editing software or generated procedurally

through algorithms. They can range from simple colors and patterns to highly detailed

images that replicate real-world materials like wood, metal, fabric, or skin. Common

types of textures include diffuse maps (color and pattern information), specular maps

(highlighting areas of reflectivity), normal maps (creating the illusion of surface de-

tails), and displacement maps (altering the geometry to create surface irregularities).

Image 16: Retro phone 3D model

18

Image 17: 3D model without (A) and with a texture (B)

2.2 Unity Specific Terms

In this paragraph, certain basic and specific to unity term will be explained which

are the GameObjects, Components and Scenes.

2.2.1 GameObject

In the Unity game engine, a GameObject is a fundamental building block and the basic

unit of any scene or game object hierarchy. It represents an entity or object in the virtual

world of a game.

A GameObject is an empty container that can hold components, which define the be-

havior and functionality of the object. Components are attached to a GameObject to

give it properties and capabilities such as rendering, physics, scripting, audio, and more.

Examples of components include Mesh Renderer (for visual rendering), Rigidbody (for

physics simulation), Collider (for collision detection), and Script (for custom behavior

using scripts written in languages like C#).

By attaching different combinations of components to a GameObject, you can define

how it looks, behaves, interacts with other objects, and responds to user input or game

events.

19

2.2.2 Components

A GameObject has Components which are essentially classes that implement most

of the functionality that is related to the GameObject. Once a GameObject is instan-

tiated it has a default Component called Transform. Transform is a class that con-

tains all the needed information about the 3D po-

sition, rotation and scaling of the object.

In Image 18, the inspector window is shown. In-

spector window is the window that shows all in-

formation about a GameObject. In this image, a

cube is selected from the current Scene. In the top

part of the window certain basic information about

the GameObject exist such as Tag and Layer. Be-

low these information, all the components are

shows which are collapsible panels. Transform is

the component that was explained above. Mesh

Filter is a required component to show a 3D

model. Afterwards there is the Box Collider com-

ponent which gives an object the ability to detect

collisions. Finally there is the Mesh Renderer

component, which is required in order to properly

show the selected model in the Mesh Filter com-

ponent. Another smaller panel can also be noticed

which is the 3D object’s material and shader.

It is important to note that only public variables

are shown and can be modified in the inspector

which they can be even altered during game mode.

There is also the Debug view in the inspector win-

dow where private and protected variables are

shown, but cannot be modified.

2.2.3 Scenes

A scene refers to a self-contained environment or

level within a game or application. It represents a

specific portion or area of your project where you

can place and organize various game objects, characters, terrain, lights, and other

elements. Scenes in Unity allow you to break down your project into smaller, man-

ageable parts, making it easier to design and develop different parts of your game

or application separately. For example, you might have one scene for the main menu,

another for the game level, and yet another for a settings screen. Each scene in Unity

consists of a collection of GameObjects, which are the fundamental building blocks

of your game or application. GameObjects can represent characters, objects, cam-

eras, lights, and more. By placing and configuring these GameObjects within a

scene, you define the visual and interactive aspects of your project. Scenes also

control the flow and progression of your game. You can transition between scenes

Εικόνα 2.1: Παράθυρο Inspector στην

Unity
Image 18: Unity Inspector Window

20

to create a seamless experience, such as moving from a menu scene to a gameplay

scene or from one level to another.

Image 19: Unity scene window

21

Chapter 3 Thesis Purpose
The purpose of this thesis is to design a system that provides the user to design and

implement various machine learning algorithms in a visual design/scripting way. As

mentioned in chapter 1.4, visual scripting tools make things a lot easier to the user

both inexperienced and experienced and are especially useful to quickly create pro-

totypes even without great knowledge, as no code is needed. Before it is explained

how such a system can be designed, it is important to mention what a machine learn-

ing algorithm is along with examples of the most common ones.

3.1 Machine Learning Algorithms

Machine learning algorithms are computational algorithms designed to analyze and in-

terpret data, recognize patterns, and make predictions or decisions without explicit pro-

gramming instructions. These algorithms are a core component of machine learning, a

field of artificial intelligence that focuses on developing systems capable of learning

and improving from data.

Here are some common machine learning algorithms:

1. Linear Regression: This algorithm is used for regression tasks, where the goal

is to predict a continuous output variable based on input features by fitting a

linear equation to the data.

2. Logistic Regression: Logistic regression is used for classification tasks, where

the goal is to predict discrete class labels based on input features. It models the

relationship between the features and the probability of belonging to a particular

class.

3. Decision Trees: Decision trees [15] are versatile algorithms that can be used for

both classification and regression tasks. They create a tree-like model of deci-

sions based on features to reach the predicted output.

4. Random Forest: Random forest is an ensemble learning method that combines

multiple decision trees. It improves accuracy and reduces overfitting by aggre-

gating predictions from individual trees.

5. Support Vector Machines (SVM): SVM is a popular algorithm for classification

tasks. It finds an optimal hyperplane that separates different classes with the

maximum margin.

6. K-Nearest Neighbors (KNN): KNN is a simple algorithm that classifies new

data points based on their proximity to labeled data points. It assigns the class

label based on the majority vote of its k nearest neighbors.

7. Naive Bayes: Naive Bayes is a probabilistic classifier based on Bayes' theorem.

It assumes that the features are conditionally independent, simplifying the com-

putation of probabilities.

8. Neural Networks: Neural networks are a class of algorithms inspired by the

structure and function of biological brains. They consist of interconnected nodes

or "neurons" organized in layers and are capable of learning complex patterns

and relationships in data.

9. Gradient Boosting Algorithms: Algorithms like AdaBoost, Gradient Boosting

Machines (GBM), and XGBoost build an ensemble of weak prediction models,

combining their predictions to produce a stronger model.

22

10. Clustering Algorithms: Clustering algorithms, such as K-Means, Hierarchical

Clustering, and DBSCAN, group similar data points together based on their

characteristics or distances.

3.2 Design

The design of a system is important because it determines the system's architecture,

functionality, performance, reliability, scalability, and user experience. A well -de-

signed system is organized, efficient, robust, user-friendly, and easier to maintain

and scale. It plays a crucial role in achieving optimal performance, meeting func-

tional requirements, and ensuring a positive user experience.

3.2.1 Modules

Designing a system that does more than one thing often leads to cramped systems

that are either not properly scalable or not very user friendly. To solve this, the

system can be splitted into modules, where each module will be the “designer” of a

specific machine learning algorithm. The modules will not affect each other and

should be purely distinguishable from each other. However, each module should

have the ability to cooperate with other modules on an “upper” level designer.

Each module being separate can give a clean architecture and also scalability so that

the modules can be added in the future or adjusted separately without breaking each

other.

3.2.2 Module Designer

Designer is the most important tool in a visual scripting/design system, as it provides

the user with an interface to design whatever he wants. A designer is consisted of

three parts, the visualization of the system that is to be designed e.g. nodes, lines ,

the main interface part where the user can create and modify the system and the

code conversion part that converts whatever the user has designed into actual code

or script so that it can be executed somewhere.

23

3.2.3 Module Designer Visualization

As mentioned, visualization is fundamentally how a system is shown to the user

graphically such as nodes, lines, graphs etc. Visualization obviously, should be dif-

ferent for each module, as each machine algorithm has different requirements and

components, so the visualization should be

different. Although in most similar software

visualization is done in 2D, it would be best

for the system to make use of both a 2D per-

spective and a 3D one. 2D visualization would

help getting a better idea of the module archi-

tecture/design, while the 3D view would be

great to get a better view and understanding of

certain machine learning algorithms, includ-

ing using the extra Z dimension to better or-

ganize the module’s items.

Some examples for the visualization of ma-

chine learning algorithms follow.

Neural Network Visualization

For example a neural network could be visual-

ized as the following image. Neural networks

are consisted of an input layer, hidden layer and output layer, along with their con-

nections. All these layers should be visualized to the user. Moreover the interface

should also include more information such as the weights, activation function and

more detailed nodes e.g. instead of a hidden layer it could show all hidden layers

and the neurons of them.

Decision Tree Visualization

Decision trees are another common machine learning algorithm and the visualiza-

tion of it could be very similar to the neural network one. Essentially both are graphs

so the visualization part is very similar, which are nodes connected with lines. How-

ever they function differently so not all things are going to be the same. Neural

networks are more complicated and so they should contain more information.

Image 21: Decision Trees Visualization

Image 20: Neural Network Visualization

24

 K-Nearest Neighbors (KNN)

As both neural networks and decision trees are visualized in a similar way, another

machine learning algorithm K-Nearest Neighbors, is a good example of how a mod-

ule can be very different from another. KNN is visualized using a 2D plot that con-

tain usually colored dots or different symbols to distinguish each category.

Image 22: KNN Visualization

3.2.4 Module Designer Interface

As stated, a designer is consisted of a “design” interface that is used to actually

design the system. Again this varies depending on the system that is to be designed

as every machine learning algorithm has different requirements.

Neural Network Designer Interface

25

A designer interface for a neural network for example could contain input panels or

a form of wizard to create a neural network and adjust parameters such as the acti-

vation function, amount of nodes on each layer, which nodes are connected with

each other, weights, etc. Also a set of buttons can control the visibility of the net-

work, such as how the nodes are shown or a button to toggle a “higher level” view

so that hidden layers are not shown in detailed.

Image 23: Neural Network Designer Interface Mock

3.2.5 Module Designer Code Conversion

The final part of the module designer is the code conversion part. The idea behind

it, is that once the user designs the wanted system using the interface described

above, the system will then be converted into actual code or some sorts of scripting

language that can be run in a software. As mentioned in all the previous parts, this

part as well highly depends on the machine learning algorithm in question. As the

neural network was described in more detailed, an example will be given for it.

For the neural network, each node that is shown in the user should be a separate

classes which could help in the visualization of it, or for performance reasons could

be arrays. At first, once the user creates a network, the network will be visualized.

In order to be visualized the code behind it needs to be created first so it can be the

classes or arrays mentioned above. In more detail a class could be a Neuron or a

26

Synapse along with the needed properties, but this is that if the system is design

using an OOP architecture.

3.2.6 Upper Level Designer

As pointed it out earlier, each module should be separate so that it does not affect

other modules. Although modules are independent and should work separately for

each machine learning algorithm, an upper level designer can exist to combine them.

So the upper level designer in essence is a way for the user to design a larger scale

system by combining each module he created with each other. For example a neural

network output could feed the input nodes of another neural network. It is only log-

ical, that not all modules can be combined with all other modules, so it is very im-

portant to have certain interfaces for each module. These interfaces can determine

which module can be connected with other modules.

Converters

Converters are a special type of node in the designer that can be used to convert data

from one form to another. This is very useful especially since most data require

some sort of manipulation in order for the modules to be connected.

Operators

Operators are another type of special node in the designer. Their purpose is to apply

various operations to data from the output of a module. Operations could vary from

simple addition or subtraction to complex math functions.

The following image shows how the upper level designer can look.

Image 24: Upper Level Designer

In the above image, an example is shown where Neural Network 1 connects and feeds

its output to Neural Network 2. Afterwards Neural Network 2 passes its output through

a data converter. Data converter then converts the data into a suitable form of data to

27

be then fed as input in Neural Network 3. Finally Neural Network 3 output is connected

to a decision tree.

Interface

The user interface of the designer should contain some sort of module selection

menu in the form of a dropdown list for example. The user should also be able to

connect and move modules around.

Another function the system could have is to select a node of the system and then “zoom

in” to go into details of it. By zooming in the node could then be converted in real time

into the detailed view of the selected node such as a neural network.

3.3 Benefits

The benefits of the system that is analyzed within this chapter as described next in

detail.

No Coding

This is usually the most important aspect of a visual scripting tool. No code means

users without knowledge of programming or scripting languages can use the system

to design various machine learning algorithms. Still, knowledge of machine learning

is required in order to properly design and parameterize an algorithm. It is common

for mathematicians, data analysts often to lack technical knowledge, so visual script-

ing closes this gap. Moreover, it also makes the tool more accessible to younger

ages. Also, no coding means that the user can focus on the algorithm itself without

having to worry about usual technical issues, such as compilation and logical errors.

Visualization

Visualization is strongly connected with the no coding part, as the user uses the

interface to design algorithms. Visualization of both 3D and 2D can help the user to

better understand a system, which can also help in the design process. Also, using

existing examples, it can also act as an educational tool to explain the design of each

machine learning algorithm. Moreover by having various preferences the user can

adjust colors and other graphical aspects to make the software and algorithms’ de-

sign more to his liking. Furthermore, visualization should be implemented in a way

to allow the user to fully explore a machine learning algorithm both in a high level

and a low level e.g. in case of a neural network, user could simply see the basic

layers and by zooming in, all neurons could be shown along with detailed connec-

tions.

User Interface and User Experience

Interface and user experience (UX) are among the most important aspects of a soft-

ware, especially one that is focused on visual scripting. By providing the user with

a clean interface design and use of mouse and keyboard shortcuts, user experience

should be optimal. Also if user interface is implemented properly, it can allow users

with disabilities to make use of the software either by using proper interface princi-

ples e.g. font, colors, etc... or by even making use of voice commands.

28

Prototyping

All tools that use visual design systems are great for prototyping and a lot faster

than common methods such as normal programming. It is important to remember,

that prototyping is probably one of the most important if not the most important

aspects of AI. AI design takes a lot of tries to properly implement something, so

having a quick and flexible way to do it can save a huge amount of time.

Scalability

As mentioned, scalability is one of the most important parts of any system. Many

systems fail on this part, as they are usually designed to solve specific issues, usually

with limited development time, hence developers usually make compromises and

break architecture patterns which means bugs and scalability issues. Modules solve

this issue, because they are separate sub systems which allow each system to work

separately, hence each module can be expanded, improved or solve issues from tech-

nical aspect separately. Also new modules can be added without breaking existing

architecture.

Abstract Implementation

As the system is described how it can work, it can be implemented in various tech-

nologies as long as they can support the visualization part. This includes game en-

gines, custom graphical engines or common graphical frameworks such as

OpenGL/WebGL. That means the software can be implemented to work in all oper-

ating systems, web (hosted in a website) and work on different hardware as long as

they support graphics.

Also by using proper and clean code for an object oriented architecture and by fol-

lowing the SOLID [16] principles, it means that the software can be shared with

collaborators, extended, modified, tested, and refactored with fewer complications.

Lightweight

As long as a proper implementation architecture is used and the technology used for

graphics is GPU accelerated the software should be able to run perfectly and without

performance issues in most hardware.

29

Chapter 4 Panoptes
In this chapter, Panoptes will be analyzed. Panoptes is the software that was imple-

mented as part of this thesis. The software was mentioned Panoptes from a character

from Greek mythology. He is often referred to as "Panoptes the All-Seeing" or "Pan-

optes the Giant" [17]. In Greek mythology, Panoptes was a giant with a hundred

eyes all over his body. He was said to be a servant of the goddess Hera. Similar to

how Panoptes was referred as "Panoptes the All-Seeing", the software allows to

“see” everything from low level to higher level, hence the all-seeing.

4.1 Introduction

Panoptes was implemented in Unity that was mentioned in Chapter 2 on version

2022.2.17f1. The software currently supports the design, visualization and simula-

tion of a decision trees and the visualization of a neural network. Panoptes current

language is English.

4.1.1 Choice of game engine

There are many game engines to choose from, but Unity was a good choice as it

provides 3D graphics and it is very lightweight so the final executable can run

smoothly on hardware with even limited computational resources (CPU, GPU,

RAM). On the contrary, game engines such as Unreal Engine or Cry Engine require

more computational resources. Furthermore, Unity language is C#, which is a very

versatile, object oriented, strong typed and also has a big community with many

libraries and frameworks to use. Moreover, Unity can also generate final executa-

bles for all operating systems (Windows, MacOS, Linux), all game platforms (Play

Station, XBox, etc), all mobile operating systems (Android, IOS) as well as WebGL

to allow deployment on web. Unity also supports VR and AR, which can provide a

unique user experience.

4.2 Folder Structure

This section describes how the folders are organized in the software. Folder organ-

ization is an important part of the implementation of the project as it helps the pro-

grammers to work more effectively and makes the software management and scaling

easier. Note that only the “top-level” folder structure is explained as there are a lot

more subfolders within these ones.

 Assets

 Resources

 Materials

 Meshes

 Prefabs

 Textures

 Scenes

 Prefabs

 Scripts

 Classes

 MonoBehaviour

30

Assets

This is the first folder that is created from Unity and is the main folder that contains

all elements of the game.

Resources

Is used to store all assets that are usually needs loading during runtime.

Materials

Contains all the materials used in the game from GameObjects.

Meshes

Contains all the 3D models used in the game.

Prefabs

Contains all the game Prefabs. Prefabs are combinations of many GameObjects

which in essence form a small tree of other GameObjects.

Textures

Contains all the textures, meaning all the “images” used on 3D models or 2D inter-

face.

Scenes

Contains all the scenes/levels used in the software.

Scripts

Contains all the code. It is divided in Classes and MonoBehaviour sub folders.

Classes folder contains all the folders that do not inherit from the MonoBehaviour

Unity class, which means they cannot be added as a component in a GameObject.

This includes all domain classes for decision tree and neural network and includes

helper functions along with proper sub classes to allow the implementation of re-

pository and factory patterns.

In contrast, MonoBehaviour folder contains all the classes that inherit from Mono-

Behaviour that can be used as components in GameObject, which include user in-

terface manipulation and actual game mechanisms.

4.3 Design

The classes are structured in a way to follow the SOLID [16] principles as much as

possible. Factory, repository and observer design patterns are used as well as de-

pendency injection logic.

Memory tree vs Game Objects

In various parts across the chapter, the term “memory tree” is used. Memory tree is

referred to the actual domain model classes that have to do with the decision tree.

31

The term is used to distinguish itself from the gameobjects of Unity engine which

are used in the visualization part but also act as a bridge to the actual domain models.

Factory Pattern

Factories are used in creation of objects, to allow a single place to create objects.

Repository Pattern

Repositories are used to write or read data from a source, in this case system text

files.

Observer Pattern

Observer pattern is used to allow communication between objects, specifically

monobehaviour gameobjects. Also, this pattern is used extensively in Unity engine

itself.

Dependency Injection Pattern

Due to how Unity works, the typical dependency injection cannot be applied as seen

in other software such as web or desktop applications in .net or java frameworks.

However, a similar approach was used in most cases to allow objects independent

of their dependencies.

Validators

Validators allow for validations to happen in a specific class and be separated from

the main code. Currently this approach is used only in connecting nodes which in-

cludes various checks.

Exception Handling

Although not a design pattern, exception handling is done broadly in the software

to minimize user exceptions and show proper messages. Also, the console panel

explained in the next paragraph also shows exceptions show that the user can see if

an exception occurs.

4.4 User Interface

Before mechanisms and features are analyzed, it is important that user interface is

properly explained so that the features are fully comprehensible.

32

4.4.1 Main Interface

Image 25: User interface numbered

In the above Image 25 the main user interface is shown with numbered sections.

Section 1 – Top Panel

Top panel includes five buttons.

 Generate Demo Button: Generates a predefined decision tree demo.

 Clear All Button: Clears everything up for the current decision tree, which

includes both memory objects and gameobjects.

 Redraw Button: Redraws current tree. This can also be used to “reformat”

a tree as it uses a specific algorithm to draw the nodes.

 Save Tree Button: Saves the current tree. When pressed it shows a small

input panel for user to enter the name.

Image 26: User input panel for saving

33

 Load Tree Button: Loads a saved tree. When pressed it shows a small panel

where the user can select one of the available saved trees from a dropdown

list.

Image 27: User panel for tree loading

Section 2 – Input Data Panel

Input data panel is used for input insertion for the current tree.

 Generate Random Input Button: Generates a random input pattern for the

tree.

 Add Input Button: Shows a pop up so that the user can select a value from

a dropdown list based on current node, based on the available branches.

Image 28: Add input button panel

 Clear All Input Button: Clears all input data.

 Clear Last Input Button: Clears the last value of the input data.

34

 Input Data Panel: Contains all input data, steps used for simulation.

Image 29: Input data panel with data

Section 3 – Simulation Panel

Simulation panel includes all the interface elements that have to do about the tree

simulation.

 Simulate Button: Starts the simulation of the current tree.

 Prev Step Button: Once simulation is started, it returns to the previous

state/step.

 Next Step Button: Once simulation is started, it proceeds to the next

state/step.

 Reset Simulation Button: Resets the simulation.

 Simulation Steps Panel: Shows current simulation steps.

Image 30: Simulation steps panel

Section 4 – Node Manipulation Panel

Node manipulation panel has all interface elements that has to do with node manip-

ulation.

 Add Node Button: Adds a new node. The user can put the desired name in

the pop up panel input field.

35

Image 31: New node button panel

 Remove Node Button: Removes the currently selected node.

 Rename Node Button: Renames a node with the specified new name.

 Set as Root Button: Sets the selected node as root node.

Section 5 – Console Panel

Console panel is used to show various messages from logging. It includes different

coloring depending on the log type. White is used for normal logging, yellow for

warning and red for errors and exceptions.

Image 32: Console panel

4.4.2 Tree Visualization

Tree visualization is referred to all elements used in visualization of tree.

Image 33: Tree visualization with Weight node selected

In the above Image 33, the visualization of the demo tree is shown. In the image certain

elements can be shown, such as the cubes and lines connecting them. Rectangles rep-

resent the tree nodes while the lines represent the branches connecting the nodes.

36

Node Visualization

As mentioned, nodes are represented by rectangles and are colorized differently so that

the user can easily understand what type of node they are.

 Blue Node: Represents the root node.

 Yellow Node: Represents a decision node.

 Green Node: Represents a leaf node.

 Node with red outline: If a node has a red outline it means that it is either

selected by the user, or is used in the current simulation step.

Also, nodes can be manipulated and moved around freely by the user.

Branches Visualization

Lines represent the branches of the trees. Their coloring represents the branch direction.

 Line coloring: Yellow color is used to show the source of the branch and Red

color is used to show the target of the branch.

 Line text: The text centered on top of the line represents the branch value.

Thins to note is that lines hence branches, cannot exist on their own and always shown

when two nodes are connected. Moreover, lines update themselves whenever a node is

used and update their start and end point coordinates accordingly. Lines will also update

their text so that when moved, text is always in the center of the line.

Simulation Visualization

Simulation is a core aspect of the software and it needs a way to be visualized so that

the user can actually see the visualization.

Image 34: Simulation Visualization

As seen in the above Image 34, the red outlines for nodes and red lines are used to

visualize the current simulations steps. Simulation will be discussed in details in the

coming paragraphs.

37

4.5 Controls

Controls is referred to how the user interacts with the software with either keyboard

or mouse.

Camera

Camera is currently set to Orthographic mode. In order to move the camera around

the mouse wheel can be pressed and then drag the mouse. Mouse wheel is also used

to zoom in and out depending on the roll direction. Note that even though the camera

is only Orthographic, the application is fully 3D, which means that changing a sim-

ple setting in Unity inspector can alter the mode to Perspective. Currently Perspec-

tive is disabled due to the lack of fully proper controls such as rotating camera and

moving in 3D space with full freedom.

Nodes

Node manipulation can be done using the mouse and keyboard.

 Selecting Node: Can be done by pressing the left click when the cursor is

over a node. When the node is selected, a red outline should show around the

node.

 Deselecting Node: Can be done by various ways, but mainly when pressing

left or right click while the cursor is at a blank space.

 Deleting Node: Can be done by selecting a node and pressing the “Delete”

key on keyboard. Same result can be achieved using the “Remove Node”

button. Node coloring will also change the affected nodes such as the parent

of deleted node depending on whether the nodes has changed type e.g. from

leaf node to decision node.

 Moving Node: By selecting a node with left click and holding the left click,

the node can be dragged around and follow the cursor. Moving a node will

update the connection if any accordingly.

 Node Connect: To connect a node with another node, the user has to first

select a node and then right click when the cursor is over the desired node.

That connects the selected node to the node that the cursor is currently on

top of. If the nodes are successfully connected, a new branch/line should

show connecting the nodes. Node coloring will also change depending on

whether any of the nodes has changed type e.g. from leaf node to decision

node.

 Node Disconnect: Disconnecting works exactly as connecting, but instead

of creation new branches it removes existing ones.

38

4.6 Features

In its current version Panoptes is focused on the design, implementation and simu-

lation of decision tree module. Below all the mechanisms that are implemented are

shown and described.

4.6.1 Tree Creation

Decision tree creation currently supports an example “Heart Attack Risk” demo and

also supports creation from scratch. In the first image below, the red rectangle high-

lights the button used to generate the predefined demo. The second image shows

what happens when the button is pressed, which is to create a predefined tree as

shown.

Image 35: Tree creation demo (before button clicked)

Image 36: Tree creation demo (after button clicked)

Creation from scratch is simply done by adding a new node manually.

39

4.6.2 Tree Saving

Tree saving allows the user to save the current tree. If a tree is already loaded, then

the popup input field is already populated with that tree’s name. If the same name

is used, then the file will be overwritten. For the saving the proper repository is used,

which serializes the tree class and saves it to a .json file in

C:\Users\<LOCAL_USERNAME>AppData\LocalLow\Panagiotis Kyrkos\Panop-

tes\Saved\Modules\Decision Tree.

If the directory doesn’t exist as it happens in the first saving, it will be created.

Currently saving node gameobjects locations is not supported.

4.6.3 Tree Loading

Tree loading allows the user to load a saved tree. When the appropriate button is

pressed a popup shows with a dropdown list that is populated with the names of the

saved trees. The user can then select one of the values in the dropdown and load the

tree. Currently since saving node gameobjects locations is not supported, all the

newly loaded trees use an algorithm to draw the nodes. Note that both saving and

loading use a framework called Newtonsoft [18] for the .json serialization.

4.6.4 Clear All

Clear all is a function that allows the user to erase the current tree, which includes

everything both memory tree and the all related gameobjects such as nodes, lines,

texts etc.

4.6.5 Automatic drawing

Automatic drawing is a function that draws a loaded tree or redraws the current tree.

It uses an algorithm that creates and connects all needed elements both on memory

and gameobjects. Redraw function is used when selecting the demo generation or

when the user loads a saved tree.

Image 37: Redraw function code snippet

The above code snippet shows a part of the function that does the positioning of the

next to be created node. The math function is currently fairly simple and does not cur-

rently handles all cases properly. Also the redraw function, as shown in the snippet it

uses recursion.

In the images below it is shown how the tree redraws itself when pressing the redraw

button after the user deletes certain nodes. The “Redraw” button is pressed after each

node deletion.

40

1. First the “Weight” decision node is deleted.

2. Then the “Smoker” decision node is deleted.

3. Finally the “High Risk” node is deleted.

Image 38: Demo tree default redraw

Image 39: Demo tree after removing Weight node and Redrawing

41

Image 40: Demo tree after removing Weight and Smoker nodes and Redrawing

Image 41: Demo tree after removing Weight, Smoker and High Risk nodes and Redrawing

4.6.6 Node Manipulation

Node manipulation includes all the actions that are related to tree nodes.

42

Adding Node

New node is supported which can be done by pressing the “Add Node” button. When

adding node, an input can be given by the user which determines the node

name/value. If the user has already selected a node when adding a node, then the

newly created node will be connected to the selected one. The user will also be

shown a second popup to insert the branch value. The first node to be added is au-

tomatically set as the root node.

Deleting Node

Deleting node can be achieved by pressing the “Remove Node” button or pressing

the “Delete” keyboard key. This action requires a node to be selected and this node

cannot be the root node. When deleting a node, all the direct connected outgoing

branches and all sub children nodes and their branches will be removed using a

recursive function.

Image 42: Node Delete code snippet

43

Image 43: Node visualization before and after delete of node "High Risk"

Rename Node

Rename node is a simple function to rename the selected node. Can be done via pressing

the “Rename Node” button.

Image 44: Node before and after rename

Set Root Node

Set root node changes the current root node of the tree. Can be done by pressing the

“Set as Root” button. Requires a selected node.

44

4.6.7 Node Connections

Node connections are the mechanism that allows the user to connect a node to an-

other node. Connecting two nodes will also update the memory tree as well as the

gameobjects. Connecting nodes require certain checks in order to be allowed.

These checks are:

 Both source and target node need to be non nullable. This means that the user

needs to have selected node (source node) and cursor when right clicking be

on top of another node (target node).

 Source node and target node cannot be the same. Connecting a node to itself

is not allowed.

 Target node cannot be the tree’s root node. Root node is the start of the tree,

so no other node can connect to it.

 Target node must not be the parent of the source node. This would lead to a

bidirectional connection of nodes which is not allowed on decision trees.

 Target node having a parent. If a target node is connected, it means it already

has a parent node and only one parent is allowed per node.

4.6.8 Input Data

Input data are all the elements that are related to input added by the user and used

in simulation. The current input values are shown in the left top panel “Input Data”.

The following actions are available:

Generate Random Input

Creates a random input for the current tree. This can be used to populate quickly

with data for a simulation.

Add Input

Manually add input. When the “Add Input” button is pressed the system will check

the current input data values and will iterate the tree to find which node is the last

one based on that data. If the node found is not a leaf node which means it has more

paths to proceed, the user is shown a popup with a dropdown populated with these

available branch values (inputs).

45

Image 45: Get Available Inputs code snippet

Clear All Input

Clears all the current input data. Can be run by pressing the “Clear All Input” button.

Clear Last Input

Clears the last added input. Can be run by pressing the “Clear Last Input” button.

Image 46: Clear last input example

4.6.9 Simulation

Simulation is one of the core aspects of the applications. The simulation uses the

input data described in 4.6.8 and simulates the run on the current tree. Simulation’s

main purpose is to visualize which can aid the user to have a good understanding of

46

the machine learning algorithm that is shown, in this case the decision tree. Simula-

tion supports a step-by-step visualization with the ability to go to both previous and

next steps.

A demo is shown below with step-by-step pictures.

Image 47: Simulation demo tree

Image 48: Simulation demo input data

47

Image 49: Simulation demo after starting Simulation

Image 50: Simulation demo step 2

48

Image 51: Simulation demo step 3

Image 52: Simulation demo step 4

49

Image 53: Simulation demo step 5

Image 54: Simulation demo step 6

The last image shows the simulation end. Each image step is after pressing the “Next

Step”. The highlighted in red is the current activated nodes and branches in each step.

After the end is reached, pressing the “Next Step” button throws a warning.

50

Image 55: Console error after pressing "Next Step" in simulation panel while in final step

51

Chapter 5 Future Development Plan
Panoptes that was discussed in the previous chapter, is only a very early prototype

of the design system that was analyzed in this Thesis. Being an early prototype there

are many things that can be improved and added in all aspects. Despite the fact that

being an early prototype, the software was implemented in such a way that allows

easy expansion and reusing code and systems that are already implemented.

Future add-ons and improvements are discussed in the following paragraphs.

5.1 Designers

In this section, all plans for both system and module designers will be examined.

More Modules

Probably the most important is to add more modules as there are many machine

learning algorithms such as Linear regression, Logistic regression, SVM algorithm,

Naïve Bayes algorithm, KNN algorithm, K-means, Random forest algorithm, Di-

mensionality reduction algorithms and others.

Entity Grouping

A useful add-on would be a function to allow “grouping” of entities. Grouping can

contain naming and also be visualized using an outline that shows the name of

group. Groups should also include a mechanism to allow the module nodes to be

“combined” into one node when the user zooms out and show in detail when the

user zooms in. Grouping should be implemented both for System Designer and

Module Designers.

Templates

Templates are useful in designer applications so that the user can use a template so

that he does not have to start to design something from scratch. Templates can either

be system created or user created.

System Designer

Currently system designer is still very work in progress. Features such as loading

and saving need to be added. Data Manipulators and Operators can also be imple-

mented to allow for things such as math functions, array manipulations, etc.

5.2 General Improvements

Panoptes can be improved a lot further on some general aspects, to become a much

more mature, easier to control and more accessible software. Some of the improve-

ments that can be done are explained in detail afterwards.

User Interface

User interface can be improved in all aspects of the software and contain more in-

formation, smoother graphics and transitions to provide the user with the optimal

experience. This includes supports for different resolutions

52

Settings

More settings and preferences mean more control for the user. Settings to control

aspects such as the colors, font of labels, meshes used in visualization.

Accessibility

Supporting more languages by adding a Localization system will greatly help the

software to be accessible for more people. Also, many people have disabilities of

various kinds, so improving the software in such way that it provides proper access

to user with disabilities. That can be different colors for people with eye color blind-

ness, more sounds, different fonts that are clearer and larger. Moreover, a voice

controlled could help with people that have body disabilities and cannot properly

used mouse or keyboard.

Sounds

Sounds are not included in this version but they could be added to allow a better

experience. That can include sounds for simple pop-up messages to error warnings.

This is directly connected with accessibility and disabilities as it will allow more

users to use the software.

Exporting to other systems

In this version the software was designed to work with Windows. Unity supports

exporting and creating an executable for other OS such as MacOS, Linux, Mobile,

IOs, WebGL and game platforms. Although the code is not fully compatible for each

system, only minor changes are required in order to work.

VR/AR

Virtual Reality (VR) and Augmented Reality (AR) are very trending technologies

these past few years. Although not fully embraced by most users yet, both technol-

ogies seem promising. Many applications use VR and AR to improve user experi-

ence.

Testing other Game Engines

Although Panoptes was implemented with Unity, it could worth investigating and

experimenting with implementing the same system on a different game engine or

technology to see if there are more benefits, either from performance or graphics.

53

Chapter 6 Conclusion
Artificial Intelligence, despite being is an old field in computer science, the last

years due to the great advances in hardware and software, it has been rapidly devel-

oping and expanding to allow technology to reach a whole new level. This advance-

ment, requires proper tools in order to allow proper and full usage at their full po-

tential of the artificial intelligence and machine learning algorithms. Although many

tools exist for various purposes, most of them lack a proper interface or have no at

all and still do not cover many of algorithms. Advancement in technology, also

brought many changes in game engines and allow easier, faster, better and more

optimized ways to create games and “serious” games. It is important to always keep

in mind that game engines are not used exclusively for game development and that

they are great tools to be used in visualization of other software as well.

Visual scripting is also another core system and software design approach that seems

to be developing in the last years. Although, it may not be a good option for very

large software, it can be used to design and implement smaller difficult and complex

systems without the user having knowledge in coding. It also allows for rapid de-

ployment due to the nature of it, usually being with simple buttons and controls.

They are also a great for educational purposes as users tend to understand things a

lot better when shown in a visual way and even more when combing with audio

stimulus as well.

Utilizing game engines to create visual scripting tools for artificial intelligence is

an innovative way to move forward. Artificial intelligence, is often hard to under-

stand and gets very complex, so having a visual aid, not only it can help with edu-

cational purposes to allow users to better comprehend the artificial intelligence do-

main, but can also help with system design and implementation. Even experienced

users tend to have trouble creating such systems, since they usually require good

knowledge of things such as programming or math. Visually designing a system

takes the programming out of the picture, so that the user can fully focus on design

the system without having distractions caused from programming such as errors,

exceptions, etc.

The developed system “Panoptes” that was analyzed, designed and implemented as

part of this thesis, achieves creating a system that utilizes Unity game engine to

create a visual scripting and design tool for artificial intelligence and machine learn-

ing algorithms. Simulation mode also achieves a great way to visualize how a ma-

chine learning algorithm works, so that even a new to the field user can fully under-

stand how it works.

While developing the “Panoptes”, certain difficulties were encountered such as find-

ing a proper way to bind the actual decision tree data structure to the visual aspect

of (Unity game objects) and have it behave as one so all the changes done on the

visual design area are respectively done in the actual tree structure as well and vice

versa. Furthermore, a small yet important problem that came up was the branch vis-

ualization. Although in other technologies or game engines, this would normally be

a simple task of drawing a simple line between points, in Unity it proved challenging

54

as each line/branch is essentially a new game object which needs extra handling as

to how it is connected to the tree data structure branch and the cleanup of it as well.

Another difficulty was creating a way to properly draw and connect the nodes auto-

matically from the data structure when no nodes are drawn, which was successfully

implemented using a custom algorithm that handles most cases.

Lastly, the final important issue that was encountered, was the business logic and

writing all the rules and validations needed so that to prevent the user doing actions

that do not make sense. It was solved by properly implementing all needed checks

and not allowing the user to do those actions.

Apart from the problems that were encountered, developing a software such as “Pan-

optes” was a challenging task. It required proper code structure as well as following

good coding practices so that the tool is as expandable as possible without many

changes or issues. The tool was implemented in such a way that is possible to easily

create designers similar machine learning algorithms that use graphs as visualiza-

tion. Moreover, developing a visual design tool, essentially is creating an “editor”

for a user, so the design and implementation requires knowledge of various fields in

computer science, mainly in programming and computer graphics but for user inter-

face as well so that the tool, needs to be as self-explanatory to user as possible.

Furthermore, Unity game engine proved a great technology to build the software as

it provides a lightweight executable that is suitable to most desktop computers with-

out needing high requirements for hardware, as well as being able to export it to

many and different platforms very easily. It is also easy to work with graphics and

has many capabilities as to extend the software in the future to provide the optimal

user experience. Finally, C# programming language combined with .Net framework

that are used for the programming part that is supported by Unity were great, robust

and flexible technologies to program the software. They provided a way to focus on

the actual development and design of the software without having a lot of technical

issues that are found in other programming languages or technologies.

In conclusion, as artificial intelligence is greatly progressing, software similar to

“Panoptes” will greatly aid in the understanding, design and implementation of it

and allow more rapid growth of the field which can lead to new technologies and

innovations.

55

Chapter 7 Appendix

7.1 Domain Classes and Utils

7.1.1 Decision Tree
using System;

namespace Modules.DecisionTree
{
 [Serializable]
 public class DecisionTree
 {

 public string Name { get; set; }

 public DecisionTreeNode RootNode { get; set; }

 public DecisionTree() { }

 public DecisionTree(string name)
 {
 Name = name;
 }

 }
}

using System;

namespace Modules.DecisionTree
{
 [Serializable]
 public class DecisionTreeBranch
 {
 public DecisionTreeNode Node { get; set; }

 public string Name { get; set; }

 public DecisionTreeBranch() { }

 public DecisionTreeBranch(string name)
 {
 Name = name;
 }

 public DecisionTreeBranch(string name, string nodeName)
 {
 Name = name;
 Node = new DecisionTreeNode(nodeName);
 }

 }
}

using System;
using System.Collections.Generic;
using System.Linq;

namespace Modules.DecisionTree

56

{
 [Serializable]
 public class DecisionTreeNode
 {

 public string Name { get; set; }

 //if no children - then leaf node
 public List<DecisionTreeBranch> Branches { get; set; }

 public bool IsRootNode { get; set; } = false;
 public bool IsLeafNode => Branches?.Any() != true && !IsRootNode;

 public bool IsDecisionNode => !IsLeafNode && !IsRootNode;

 public DecisionTreeNode() { }

 public DecisionTreeNode(string name)
 {
 Name = name;
 }

 public string GetNodeType()
 {
 if (IsRootNode) { return "Root Node"; }
 if (IsDecisionNode) { return "Decision Node"; }
 if (IsLeafNode) { return "Leaf Node"; }
 return string.Empty;
 }

 public bool IsParentOf(DecisionTreeNode child)
 {
 if (child == null)
 {
 return false;
 }

 if (Branches.IsNullOrEmpty())
 {
 return false;
 }

 return Branches.Any(b => b.Node == child);
 }

 }
}

using Modules.DecisionTree;
using System.Collections.Generic;

public static class DecisionTreeUtil
{

 /// <summary>
 /// Creates a random input list for the specified decision tree
 /// </summary>
 /// <param name="decisionTree"></param>
 /// <returns></returns>

57

 public static List<string> CreateRandomInputForDecisionTree(Decision-
Tree decisionTree)
 {
 var node = decisionTree.RootNode; //temp node
 var inputList = new List<string>();

 while (!node.IsLeafNode)
 {
 var randomBranchIndex = RandomUtil.GetRandomPosi-
tive(node.Branches.Count); //get random branch
 inputList.Add(node.Branches[randomBranchIndex].Name);
 node = node.Branches[randomBranchIndex].Node;
 }

 return inputList;
 }
}

7.1.2 Decision Tree Factories
using Modules.DecisionTree;
using System.Collections.Generic;

public static class DecisionTreeFactory
{
 public static DecisionTree CreateDemoHeartAttackRiskDecisionTree()
 {
 var tree = new DecisionTree("Heart Attack Risk");

 var firstBranch = new DecisionTreeBranch("<18")
 {
 Node = new DecisionTreeNode("Weight")
 {
 Branches = new List<DecisionTreeBranch>
 {
 new DecisionTreeBranch("<=60","Low Risk"),
 new DecisionTreeBranch(">60","High Risk")
 }
 }
 };

 var secondBranch = new DecisionTreeBranch("18-30", "Low Risk");

 var thirdBranch = new DecisionTreeBranch(">30")
 {
 Node = new DecisionTreeNode("Smoker")
 {
 Branches = new List<DecisionTreeBranch>
 {
 new DecisionTreeBranch("no","Low Risk"),
 new DecisionTreeBranch("yes", "High Risk")
 }
 }
 };

 tree.RootNode = new DecisionTreeNode("Age")
 {
 IsRootNode = true,
 Branches = new List<DecisionTreeBranch> { firstBranch, sec-
ondBranch, thirdBranch }
 };

58

 return tree;
 }
}

7.1.3 Decision Tree Repositories
using Modules.DecisionTree;
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using UnityEngine;

public class DecisionTreeRepository
{

 public static void SaveToFile(DecisionTree tree)
 {
 try
 {
 var jsonTree = Newtonsoft.Json.JsonConvert.SerializeOb-
ject(tree);

 var filePath = FileIOUtil.GetSavePathForFile(tree.Name, Mod-
uleType.DecisionTree);

 Directory.CreateDirectory(Path.GetDirectoryName(filePath));

 StreamWriter writer = new StreamWriter(filePath, false);

 writer.WriteLine(jsonTree);

 writer.Close();
 }
 catch (Exception ex)
 {
 Debug.LogException(ex);
 }
 }

 public static DecisionTree LoadFromFile(string treeName)
 {
 try
 {
 var filePath = FileIOUtil.GetSavePathForFile(treeName, Module-
Type.DecisionTree);

 Directory.CreateDirectory(Path.GetDirectoryName(filePath));

 StreamReader reader = new StreamReader(filePath);

 var jsonTree = reader.ReadToEnd();

 reader.Close();

 return Newtonsoft.Json.JsonConvert.DeserializeObject<Decision-
Tree>(jsonTree);
 }
 catch (Exception ex)
 {

59

 Debug.LogException(ex);
 return null;
 }
 }

 public static List<string> GetAllNames()
 {
 try
 {
 var filePath = FileIOUtil.GetSavePath(ModuleType.Decision-
Tree);

 var files = Directory.GetFiles(filePath);

 //remove path keep only file name without extension
 return files.Select(f => Path.GetFileNameWithoutExten-
sion(f)).ToList();
 }
 catch (Exception ex)
 {
 Debug.LogException(ex);
 return new List<string>();
 }
 }

}

7.1.4 Generic Utils
public static class FileIOUtil
{
 public static string ConvertIllegalFileCharactersToUnderscores(string
filename)
 {
 var newFilename = filename;

 foreach (char c in System.IO.Path.GetInvalidFileNameChars())
 {
 newFilename = newFilename.Replace(c, '_');
 }

 return newFilename;
 }

 /// <summary>
 /// Converts the given filename to appropriate filename (removes ille-
gal characters) and returns the full path
 /// </summary>
 /// <param name="filename"></param>
 /// <returns></returns>
 public static string GetSavePathForFile(string filename,ModuleType
moduleType)
 {
 return
 $"{GetSavePath(moduleType)}/" +
 $"{ConvertIllegalFileCharactersToUnderscores(filename)}.json";
 }

 public static string GetSavePath(ModuleType moduleType)
 {
 return
 $"{FileSaveContants.FileSavePath}/" +

60

 $"{FileSaveContants.FileSaveFolderName}/" +
 $"{FileSaveContants.ModulesFolderName}/" +
 $"{ModuleTypeUtil.ModuleTypeToName(moduleType)}";
 }
}

public static class ModuleTypeUtil
{
 public static string ModuleTypeToName(ModuleType type)
 {
 return type switch
 {
 ModuleType.DecisionTree => "Decision Tree",
 ModuleType.NeuralNetwork => "Neural Network",
 _ => "Undefined",
 };
 }
}

using System;

/// <summary>
/// Utility Class to handle Random operations
/// </summary>
public static class RandomUtil
{
 private static Random rnd = new Random();
 public static int GetRandom()
 {
 return rnd.Next();
 }

 public static int GetRandomPositive(int maxValue)
 {
 return rnd.Next(maxValue);
 }

 public static int GetRandomRange(int minValue,int maxValue)
 {
 return rnd.Next(minValue, maxValue);
 }
}

7.1.5 Generic Extensions
using System.Collections.Generic;

public static class ListExtensions
{
 public static bool IsNullOrEmpty<T>(this List<T> list)
 {
 return list == null || list.Count == 0;
 }
}

61

7.1.6 Decision Tree Validators
using Modules.DecisionTree;

/// <summary>
/// Validator for node connection
/// </summary>
public static class DecisionTreeNodeConnectionValidator
{
 public static ValidationResult Validate(DecisionTreeNode sourceNode,
DecisionTreeNode targetNode,bool targetNodeHasParent)
 {
 //validations
 if (sourceNode == null || targetNode == null)
 {
 return new ValidationResult("Trying to connect null nodes!");
 }

 if (sourceNode == targetNode)
 {
 return new ValidationResult("Cannot connect the node to it-
self!");
 }

 //check if target node is parent of source node
 if (targetNode.IsParentOf(sourceNode))
 {
 return new ValidationResult("Target node is parent to source
node and bidirectional connection is not allowed on decision trees!");
 }

 if (targetNodeHasParent && !sourceNode.IsParentOf(targetNode))
 {
 return new ValidationResult("Cannot connect to a node that is
already connected!");
 }

 if (targetNode.IsRootNode)
 {
 return new ValidationResult("Cannot connect node to root
node!");
 }

 return new ValidationResult();

 }
}

7.1.7 Constants
using UnityEngine;

public static class FileSaveContants
{
 public static string FileSavePath = Application.persistentDataPath;
 public const string FileSaveFolderName = "Saved";
 public const string ModulesFolderName = "Modules";
}

7.1.8 Enums
public enum ModuleType

62

{
 DecisionTree = 1,
 NeuralNetwork = 2
}

7.1.9 Neural Network
using System;
using System.Security.Cryptography;

namespace Assets.Scripts.Classes.NeuralNetwork
{
 public class CryptoRandom
 {
 public double RandomValue { get; set; }

 public CryptoRandom()
 {
 using (RNGCryptoServiceProvider p = new RNGCryptoServicePro-
vider())
 {
 Random r = new Random(p.GetHashCode());
 this.RandomValue = r.NextDouble();
 }
 }
 }
}

namespace Assets.Scripts.Classes.NeuralNetwork
{
 public class Dendrite
 {
 public double Weight { get; set; }

 public Dendrite()
 {
 CryptoRandom n = new CryptoRandom();
 this.Weight = n.RandomValue;
 }
 }
}

using System.Collections.Generic;

namespace Assets.Scripts.Classes.NeuralNetwork
{
 public class Layer
 {
 public List<Neuron> Neurons { get; set; }
 public int NeuronCount => Neurons.Count;

 public Layer(int numNeurons)
 {
 Neurons = new List<Neuron>(numNeurons);
 }
 }
}

using System;
using System.Collections.Generic;

63

namespace Assets.Scripts.Classes.NeuralNetwork
{
 public class Neuron
 {
 public List<Dendrite> Dendrites { get; set; }
 public double Bias { get; set; }
 public double Delta { get; set; }
 public double Value { get; set; }

 public int DendriteCount => Dendrites.Count;

 public Neuron()
 {
 Random n = new Random(Environment.TickCount);
 this.Bias = n.NextDouble();

 this.Dendrites = new List<Dendrite>();
 }
 }
}

using System;
using System.Collections.Generic;
using System.Text;

namespace Assets.Scripts.Classes.NeuralNetwork
{
 public class NeuralNetwork
 {
 public List<Layer> Layers { get; set; }
 public double LearningRate { get; set; }
 public int LayerCount => Layers.Count;
 public string Name { get; set; }

 public NeuralNetwork(double learningRate, int[] layers)
 {
 if (layers.Length < 2) return;

 Name = "NeuralNetwork" + new Guid();

 this.LearningRate = learningRate;
 this.Layers = new List<Layer>();

 for (int l = 0; l < layers.Length; l++)
 {
 Layer layer = new Layer(layers[l]);
 this.Layers.Add(layer);

 for (int n = 0; n < layers[l]; n++)
 layer.Neurons.Add(new Neuron());

 layer.Neurons.ForEach((nn) =>
 {
 if (l == 0)
 nn.Bias = 0;
 else
 for (int d = 0; d < layers[l - 1]; d++)
 nn.Dendrites.Add(new Dendrite());
 });

64

 }
 }

 private double Sigmoid(double x)
 {
 return 1 / (1 + Math.Exp(-x));
 }

 public double[] Run(List<double> input)
 {
 if (input.Count != this.Layers[0].NeuronCount) return null;

 for (int l = 0; l < Layers.Count; l++)
 {
 Layer layer = Layers[l];

 for (int n = 0; n < layer.Neurons.Count; n++)
 {
 Neuron neuron = layer.Neurons[n];

 if (l == 0)
 neuron.Value = input[n];
 else
 {
 neuron.Value = 0;
 for (int np = 0; np < this.Layers[l - 1].Neu-
rons.Count; np++)
 neuron.Value = neuron.Value + this.Layers[l -
1].Neurons[np].Value * neuron.Dendrites[np].Weight;

 neuron.Value = Sigmoid(neuron.Value + neu-
ron.Bias);
 }
 }
 }

 Layer last = this.Layers[this.Layers.Count - 1];
 int numOutput = last.Neurons.Count;
 double[] output = new double[numOutput];
 for (int i = 0; i < last.Neurons.Count; i++)
 output[i] = last.Neurons[i].Value;

 return output;
 }

 public bool Train(List<double> input, List<double> output)
 {
 if ((input.Count != this.Layers[0].Neurons.Count) || (out-
put.Count != this.Layers[this.Layers.Count - 1].Neurons.Count)) return
false;

 Run(input);

 for (int i = 0; i < this.Layers[this.Layers.Count - 1].Neu-
rons.Count; i++)
 {
 Neuron neuron = this.Layers[this.Layers.Count - 1].Neu-
rons[i];

 neuron.Delta = neuron.Value * (1 - neuron.Value) * (out-
put[i] - neuron.Value);

65

 for (int j = this.Layers.Count - 2; j > 2; j--)
 {
 for (int k = 0; k < this.Layers[j].Neurons.Count; k++)
 {
 Neuron n = this.Layers[j].Neurons[k];

 n.Delta = n.Value *
 (1 - n.Value) *
 this.Layers[j + 1].Neurons[i].Den-
drites[k].Weight *
 this.Layers[j + 1].Neurons[i].Delta;
 }
 }
 }

 for (int i = this.Layers.Count - 1; i > 1; i--)
 {
 for (int j = 0; j < this.Layers[i].Neurons.Count; j++)
 {
 Neuron n = this.Layers[i].Neurons[j];
 n.Bias = n.Bias + (this.LearningRate * n.Delta);

 for (int k = 0; k < n.Dendrites.Count; k++)
 n.Dendrites[k].Weight = n.Dendrites[k].Weight +
(this.LearningRate * this.Layers[i - 1].Neurons[k].Value * n.Delta);
 }
 }

 return true;
 }

 /// <summary>
 /// Returns a text representation of the NeuralNetwork current
state
 /// </summary>
 /// <returns></returns>
 public override string ToString()
 {
 var sb = new StringBuilder("Name: " + this.Name);
 sb.AppendLine();

 for (int l = 0; l < this.Layers.Count; l++)
 {
 sb.AppendLine("\tLayer " + l.ToString() + " (" + this.Lay-
ers[l].NeuronCount.ToString() + " neurons)");

 for (int n = 0; n < this.Layers[l].NeuronCount; n++)
 {
 sb.AppendLine("\t\tNeuron " + n.ToString() + " (" +
this.Layers[l].Neurons[n].DendriteCount.ToString() + " dendrites)");
 sb.AppendLine("\t\t\tBias: " + this.Layers[l].Neu-
rons[n].Bias.ToString());
 sb.AppendLine("\t\t\tDelta: " + this.Layers[l].Neu-
rons[n].Delta.ToString());
 sb.AppendLine("\t\t\tValue: " + this.Layers[l].Neu-
rons[n].Value.ToString());
 sb.AppendLine("\t\t\tDendrites");

 for (int d = 0; d < this.Layers[l].Neurons[n].Den-
driteCount; d++)
 {

66

 sb.AppendLine("\t\t\t\tDendrite " + d.ToString() +
" weight: " + this.Layers[l].Neurons[n].Dendrites[d].Weight);
 }
 }
 }

 return sb.ToString();
 }
 }
}

7.2 Unity MonoBehaviour Classes

7.2.1 Generic User Interface
using System.Collections.Generic;
using TMPro;
using UnityEngine;
using UnityEngine.UI;

public class ConsolePanelController : MonoBehaviour
{
 public ScrollRect ScrollRect;

 private Color DefaultLogColor = Color.white;

 private Dictionary<LogType, Color> LogTypeColors = new Diction-
ary<LogType, Color>()
 {
 {LogType.Warning, Color.yellow},
 {LogType.Error, Color.red},
 {LogType.Exception, Color.red},
 {LogType.Log, Color.white},
 };

 void OnEnable()
 {
 Application.logMessageReceived += HandleLog;
 }

 void OnDisable()
 {
 Application.logMessageReceived -= HandleLog;
 }

 void HandleLog(string logString, string stackTrace, LogType logType)
 {
 CreateLogEntryUI(logString, logType);
 }

 void CreateLogEntryUI(string log,LogType logType)
 {
 //create appropriate text mesh gameobject
 CreateTextMeshProGUIObject(log, logType);

 //forces canvas ui update so that the below command works properly
 Canvas.ForceUpdateCanvases();

 //scroll to bottom (last item)
 ScrollRect.verticalNormalizedPosition = 0f;
 }

67

 private GameObject CreateTextMeshProGUIObject(string log, LogType
logType)
 {
 var textGameObject = new GameObject
 {
 name = "log_" + log
 };

 textGameObject.transform.parent = ScrollRect.content;

 var textMeshPro = textGameObject.AddComponent<TextMeshProUGUI>();
 textMeshPro.text = log;
 textMeshPro.alignment = TextAlignmentOptions.Left;
 textMeshPro.enableAutoSizing = true;
 textMeshPro.autoSizeTextContainer = true;
 textMeshPro.fontSizeMax = 10;
 textMeshPro.fontSizeMin = 5;

 if (LogTypeColors.TryGetValue(logType,out var textColor))
 {
 textMeshPro.color = textColor;
 }
 else
 {
 textMeshPro.color = DefaultLogColor;
 }

 return textGameObject;
 }

}

using System.Collections.Generic;
using TMPro;
using UnityEngine;
using UnityEngine.Events;

public class InputPanelManager : MonoBehaviour
{

 public GameObject InputPanel;

 private TMP_InputField _mainInputField;
 private TextMeshProUGUI _titleTextMesh;
 private TMP_Dropdown _dropdown;

 private UnityAction<string> _actionToTriggerOnSubmit;
 private UnityAction _actionToTriggerAfterHideOnSubmit;

 private bool _dropdownMode = false;

 private void Awake()
 {
 _mainInputField = InputPanel.transform.Find("MainInputField").Get-
Component<TMP_InputField>();
 _titleTextMesh = InputPanel.transform.Find("InputTextPanel").Get-
ComponentInChildren<TextMeshProUGUI>();
 _dropdown = InputPanel.transform.Find("Dropdown").GetCompo-
nent<TMP_Dropdown>();
 }

68

 public void ShowInputPanelWithDropdown(UnityAction<string> actionTo-
TriggerOnSubmit,List<string> dropdownValues, string messageBoxTitle =
null)
 {
 _actionToTriggerOnSubmit = actionToTriggerOnSubmit;

 _dropdown.AddOptions(dropdownValues);

 _dropdownMode = true;

 _mainInputField.gameObject.SetActive(!_dropdownMode);
 _dropdown.gameObject.SetActive(_dropdownMode);

 InputPanel.SetActive(true);
 }

 public void ShowInputPanel(UnityAction<string> actionToTriggerOnSub-
mit, string messageBoxTitle = null) => ShowInputPanel(actionToTriggerOn-
Submit,null,null,messageBoxTitle);

 public void ShowInputPanel(UnityAction<string> actionToTriggerOnSub-
mit, UnityAction actionToTriggerAfterHideOnSubmit = null, string over-
rideInput = null,string messageBoxTitle = null)
 {
 _actionToTriggerOnSubmit = actionToTriggerOnSubmit;
 _actionToTriggerAfterHideOnSubmit = actionToTriggerAfterHideOnSub-
mit;

 //if contains a value
 if (!string.IsNullOrWhiteSpace(overrideInput))
 {
 _mainInputField.text = overrideInput;
 }

 //if contains a value
 if (!string.IsNullOrWhiteSpace(messageBoxTitle))
 {
 _titleTextMesh.text = messageBoxTitle;
 }
 else
 {
 _titleTextMesh.text = "Enter value";
 }

 _dropdownMode = false;

 _mainInputField.gameObject.SetActive(!_dropdownMode);
 _dropdown.gameObject.SetActive(_dropdownMode);

 InputPanel.SetActive(true);

 }

 public void OnMainInputPanelButtonCancelClick() => CloseInput-
PanelAndClearMainInputFieldAndDropdown();

 public void OnMainInputPanelButtonSubmitClick()
 {
 string actionStringParam;

 if (!_dropdownMode)

69

 {
 var inputText = _mainInputField.text.Trim();

 //should implement throwing a message box to inform user of
validation error
 if (string.IsNullOrEmpty(inputText))
 {
 Debug.LogWarning("Input Panel Submit clicked without in-
put");
 return;
 }

 actionStringParam = inputText;
 }
 else
 {
 actionStringParam = _dropdown.options[_dropdown.value].text;
 }

 //invoke action and clear
 _actionToTriggerOnSubmit.Invoke(actionStringParam);
 _actionToTriggerOnSubmit = null;

 CloseInputPanelAndClearMainInputFieldAndDropdown();

 if (_actionToTriggerAfterHideOnSubmit != null)
 {
 _actionToTriggerAfterHideOnSubmit.Invoke();
 _actionToTriggerAfterHideOnSubmit = null;
 }

 }

 private void CloseInputPanelAndClearMainInputFieldAndDropdown()
 {
 InputPanel.SetActive(false);
 _dropdown.ClearOptions();
 _mainInputField.text = string.Empty;
 }

}

7.2.2 Generic Helpers
using UnityEngine;

public class CameraMovement : MonoBehaviour
{
 public float MoveSpeed = 30;
 public float ZoomSpeed = 10;

 public float ZoomSpeedOrthographic = 0.5f;

 public float mouseSensitivity = 01.0f;

 private Vector3 lastPosition;
 private Camera _camera;

 private void Awake()
 {
 _camera = GetComponent<Camera>();
 }

70

 void Update()
 {
 //keyboard movement
 float xAxisValue = Input.GetAxis("Horizontal") * MoveSpeed *
Time.deltaTime;
 float yAxisValue = Input.GetAxis("Vertical") * MoveSpeed *
Time.deltaTime;
 float zAxisValue = Input.mouseScrollDelta.y * ZoomSpeed *
Time.deltaTime;

 if (_camera.orthographic == true)
 {
 var newSize = _camera.orthographicSize - ZoomSpeedOrthographic
* zAxisValue;
 if (newSize > 2)
 {
 _camera.orthographicSize = newSize;
 }
 }
 else
 {
 transform.position = new Vector3(transform.position.x + xAxis-
Value, transform.position.y + yAxisValue, transform.position.z + zAxis-
Value);
 }

 //mouse panning
 if (Input.GetMouseButtonDown(2))
 {
 lastPosition = Input.mousePosition;
 }

 if (Input.GetMouseButton(2))
 {
 var delta = Input.mousePosition - lastPosition;
 transform.Translate(-delta.x * mouseSensitivity, -delta.y *
mouseSensitivity, 0);
 lastPosition = Input.mousePosition;
 }

 }
}

using cakeslice;
using UnityEngine;

public class ObjectSelector : MonoBehaviour
{
 public Color SelectedObjectColor = Color.blue;
 public GameObject SelectedObject;
 private bool _isMouseDragging = false;

 // Update is called once per frame
 void Update()
 {

 bool isOverUI = UnityEngine.EventSystems.EventSystem.cur-
rent.IsPointerOverGameObject();

 if (isOverUI)

71

 {
 return;
 }

 if (Input.GetKeyDown(KeyCode.Delete))
 {
 if (SelectedObject != null)
 {
 FindObjectOfType<DecisionTreeDesignerController>().Remove-
SelectedNode();
 SelectObject(null);
 }
 }

 if (Input.GetMouseButtonDown(0))
 {

 }

 //right click - deselect or link nodes
 if (Input.GetMouseButtonDown(1))
 {
 bool hit = Physics.Raycast(Camera.main.ScreenPointToRay(In-
put.mousePosition), out var hitInfo);

 if (hit && hitInfo.transform.gameObject.tag.Equals("Se-
lectable"))
 {
 var targetTreeNodeScript = hitInfo.transform.gameOb-
ject.GetComponent<DecisionTreeNodeMono>();

 if (SelectedObject != null && targetTreeNodeScript !=
null)
 {
 var sourceTreeNodeScript = SelectedObject.GetCompo-
nent<DecisionTreeNodeMono>();

 if (sourceTreeNodeScript != null)
 {
 FindObjectOfType<DecisionTreeDesignerControl-
ler>().ConnectNodes(sourceTreeNodeScript, targetTreeNodeScript);
 }
 }
 }

 SelectObject(null);

 }

 //left click - main selection
 if (Input.GetMouseButtonDown(0))
 {
 bool hit = Physics.Raycast(Camera.main.ScreenPointToRay(In-
put.mousePosition),out var hitInfo);

 if (hit)
 {
 if (!hitInfo.transform.gameObject.tag.Equals("Se-
lectable"))
 {
 return;
 }

72

 SelectObject(hitInfo.transform.gameObject);
 _isMouseDragging = true;
 }
 else
 {
 SelectObject(null);
 }

 }

 if (Input.GetMouseButtonUp(0))
 {
 _isMouseDragging = false;
 }

 if (_isMouseDragging && SelectedObject != null)
 {
 var mousePosition = Camera.main.ScreenToWorldPoint(In-
put.mousePosition);
 SelectedObject.transform.position = new Vector3(mousePosi-
tion.x, mousePosition.y, SelectedObject.transform.position.z);
 }

 }

 void SelectObject(GameObject selectedGameObject)
 {
 if (SelectedObject == selectedGameObject)
 {
 return;
 }

 //deselect previous object if any
 if (SelectedObject != null)
 {
 //old way that changes object's material
 //change color of prev selected item to default state
 //_currentSelectedObject.GetComponent<Renderer>().mate-
rial.SetColor("_Color", _currentSelectedObjectColor);

 //since outline component is used, just destroy it
 Destroy(SelectedObject.GetComponent<Outline>());

 SelectAllLineRenderers(SelectedObject, false);

 //if same object deselect
 if (SelectedObject == selectedGameObject)
 {
 SelectedObject = null;
 return;
 }
 }

 SelectedObject = selectedGameObject;

 if (SelectedObject == null)
 {
 return;
 }

73

 //old way that changes object's material
 // Get the Renderer component from the new cube
 //var renderer = _currentSelectedObject.GetComponent<Renderer>();

 //_currentSelectedObjectColor = renderer.material.color;

 //// Call SetColor using the shader property name "_Color" and
setting the color to red
 //renderer.material.SetColor("_Color",SelectedObjectColor);

 //since outline component is used, add it
 SelectedObject.AddComponent<Outline>();

 SelectAllLineRenderers(SelectedObject, true);
 }

 void SelectAllLineRenderers(GameObject gameObject,bool selected)
 {
 var lineRenderers = gameObject.GetComponentsInChildren<LineRen-
derer>();

 foreach (var lineRenderer in lineRenderers)
 {
 var lineColor = selected ? Color.red : Color.yellow;

 lineRenderer.material.color = lineColor;
 lineRenderer.material.color = lineColor;
 }
 }

}

7.2.3 Decision Tree
using Modules.DecisionTree;
using TMPro;
using UnityEngine;

public class DecisionTreeLine : MonoBehaviour
{

 public DecisionTreeBranch TreeBranch { get; set; }

 public DecisionTreeNodeMono SourceNode { get; set; }

 public DecisionTreeNodeMono TargetNode { get; set; }

 private LineRenderer _lineRenderer;

 private Transform _textMeshProTransform;

 private void Awake()
 {
 _lineRenderer = gameObject.AddComponent<LineRenderer>();

 _lineRenderer.material = (Material)Resources.Load("Materials/Den-
driteMat", typeof(Material));
 _lineRenderer.widthMultiplier = 0.2f;
 _lineRenderer.positionCount = 2;
 ResetColors();
 }

74

 public void Initialize(Vector3 posA, Vector3 posB, DecisionTreeBranch
branch, DecisionTreeNodeMono sourceNodeScript)
 {
 SourceNode = sourceNodeScript;
 name = "branch_"+ branch.Name;
 transform.position = posA;

 TreeBranch = branch;

 _lineRenderer.SetPosition(0, posA);
 _lineRenderer.SetPosition(1, posB);

 var textPosition = (posB - posA) / 2 + posA;

 _textMeshProTransform = CreateTextMeshProObject(
 textPosition,
 transform,
 branch.Name).transform;
 }

 // Update is called once per frame
 void Update()
 {
 if (SourceNode != null)
 {
 _lineRenderer.SetPosition(0, SourceNode.transform.position);
 }

 if (TargetNode != null)
 {
 _lineRenderer.SetPosition(1, TargetNode.transform.position);
 }

 if (SourceNode == null || TargetNode == null)
 {
 return;
 }

 _textMeshProTransform.position = (TargetNode.transform.position -
SourceNode.transform.position) / 2 + SourceNode.transform.position;

 }

 public void ResetColors()
 {
 _lineRenderer.startColor = Color.white;
 _lineRenderer.endColor = Color.red;
 }

 private GameObject CreateTextMeshProObject(Vector3 position, Transform
parent, string branchName)
 {
 var textGameObject = new GameObject();
 textGameObject.name = "branch_text" + branchName;
 textGameObject.transform.position = position;
 textGameObject.transform.parent = parent;

 var textMeshPro = textGameObject.AddComponent<TextMeshPro>();
 textMeshPro.text = branchName;
 textMeshPro.color = Color.black;
 textMeshPro.alignment = TextAlignmentOptions.Center;

75

 textMeshPro.enableAutoSizing = true;
 textMeshPro.autoSizeTextContainer = true;
 textMeshPro.fontSizeMax = 10;
 textMeshPro.fontSizeMin = 5;

 return textGameObject;
 }
}

using Modules.DecisionTree;
using System.Collections.Generic;
using System.Linq;
using TMPro;
using UnityEngine;

public class DecisionTreeInputDataController : MonoBehaviour
{
 public List<string> InputList { get; private set; } = new
List<string>();

 List<GameObject> _inputListGameObjects = new List<GameObject>();

 private DecisionTreeDesignerController _designerController;

 private InputPanelManager _inputPanelManager;

 private GameObject _inputDataContent;

 // Start is called before the first frame update
 void Start()
 {
 _designerController = GetComponent<DecisionTreeDesignerControl-
ler>();
 _inputPanelManager = FindObjectOfType<InputPanelManager>();
 _inputDataContent = GameObject.Find("InputDataContent");
 }

 public void OnGenerateRandomInputDataButtonClick()
 {
 if (_designerController.DecisionTree == null)
 {
 //add error handling
 Debug.LogWarning("Decision Tree cannot be empty.");
 return;
 }

 var inputList = DecisionTreeUtil.CreateRandomInputForDecision-
Tree(_designerController.DecisionTree);

 ClearUp();

 foreach (var input in inputList)
 {
 InputList.Add(input);
 inputListGameObjects.Add(CreateTextMeshProGUIObject("input"
+ input, _inputDataContent.transform, input));
 }
 }

 public void OnClearAllInputDataButtonClick() => ClearUp();

76

 public void OnClearLastInputDataButtonClick()
 {
 if (InputList.IsNullOrEmpty())
 {
 Debug.LogWarning("No input data found!");
 return;
 }

 InputList.RemoveAt(InputList.Count - 1);
 Destroy(_inputListGameObjects[_inputListGameObjects.Count - 1]);
 _inputListGameObjects.RemoveAt(_inputListGameObjects.Count - 1);

 }

 public void OnAddInputDataButtonClick()
 {
 if (_designerController.DecisionTree == null)
 {
 //add error handling
 Debug.LogWarning("Decision Tree cannot be empty.");
 return;
 }

 var availableInputs = GetAvailableInputs();

 if (availableInputs.IsNullOrEmpty())
 {
 Debug.LogWarning("No available inputs found!");
 return;
 }

 _inputPanelManager.ShowInputPanelWithDropdown(
 selectedInput =>
 {
 Debug.Log("Input " + selectedInput + " was added");
 InputList.Add(selectedInput);
 _inputListGameObjects.Add(CreateTextMeshProGUIObject("in-
put_" + selectedInput, _inputDataContent.transform, selectedInput));
 },
 availableInputs,
 "Select an input (branch)"
);
 }

 public void ClearUp()
 {
 if (InputList.Count <= 0)
 {
 return;
 }

 Debug.Log("Clearing up Input Data List......");

 _inputListGameObjects.ForEach(go => Destroy(go));
 _inputListGameObjects.Clear();

 InputList.Clear();
 }

 private List<string> GetAvailableInputs()
 {

77

 var availableInputs = new List<string>();

 var decisionTree = _designerController.DecisionTree;

 //if list empty, then show branches of root node
 if (InputList.IsNullOrEmpty())
 {
 return _designerController.DecisionTree.RootNode.Branches.Se-
lect(b=> b.Name).ToList();
 }

 //if more than one input, we need to iterate each node of tree to
find current node and availabe options(brances)

 DecisionTreeNode currentNode = _designerController.Decision-
Tree.RootNode;

 for (int i=0;i<InputList.Count;i++)
 {
 var branch = currentNode.Branches.FirstOrDefault(b => b.Name
== InputList[i]);

 //if branch exists based on input, change current iterated
node
 if (branch != null)
 {
 currentNode = branch.Node;

 if (i == InputList.Count - 1) //if this is the last added
element of list
 {
 return currentNode?.Branches?.Select(b =>
b.Name).ToList();
 }

 continue;
 }

 }

 return availableInputs;
 }

 private GameObject CreateTextMeshProGUIObject(string objectName,
Transform parent, string text)
 {
 var textGameObject = new GameObject();
 textGameObject.name = objectName;
 textGameObject.transform.parent = parent;

 var textMeshPro = textGameObject.AddComponent<TextMeshProUGUI>();
 textMeshPro.text = text;
 textMeshPro.color = Color.white;
 textMeshPro.alignment = TextAlignmentOptions.Center;
 textMeshPro.enableAutoSizing = true;
 textMeshPro.autoSizeTextContainer = true;
 textMeshPro.fontSizeMax = 30;
 textMeshPro.fontSizeMin = 5;

 return textGameObject;
 }

78

}

using Modules.DecisionTree;
using TMPro;
using UnityEngine;
using System.Collections.Specialized;
using System.Collections.ObjectModel;
using System.Linq;

public class DecisionTreeNodeMono : MonoBehaviour
{
 public DecisionTreeNode TreeNode { get; set; }
 public ObservableCollection<DecisionTreeLine> OutgoingBranchScripts {
get; set; } = new();
 public DecisionTreeNodeMono ParentNodeScript;

 public Color RootNodeColor = Color.red;
 public Color DecisionNodeColor = Color.yellow;
 public Color LeafNodeColor = Color.green;

 private void Awake()
 {
 OutgoingBranchScripts.CollectionChanged += OnDecisionTree-
BranchScriptsModified;
 }

 public void Initialize(DecisionTreeNode node)
 {
 TreeNode = node;
 UpdateNodeName(node.Name);
 UpdateColorStatus();
 }

 private void OnDecisionTreeBranchScriptsModified(object sender, Noti-
fyCollectionChangedEventArgs e) => UpdateColorStatus();

 public void UpdateColorStatus()
 {
 if (TreeNode.IsLeafNode)
 {
 SetColor(LeafNodeColor);
 }
 else if (TreeNode.IsRootNode)
 {
 SetColor(RootNodeColor);
 }
 else if (TreeNode.IsDecisionNode)
 {
 SetColor(DecisionNodeColor);
 }
 else
 {
 SetColor(Color.white);
 }

 }

 public void UpdateNodeName(string newNodeName)
 {
 TreeNode.Name = newNodeName;

79

 gameObject.name = "node_" + newNodeName;
 GetComponentInChildren<TextMeshPro>().text = newNodeName;

 }

 /// <summary>
 /// Manually call destroy; Should not use OnDestroy event since it's
triggered more times than wanted
 /// </summary>
 public void Destroy()
 {
 Debug.Log("Destroying node: " + TreeNode.Name);

 //clean up parent node
 if (ParentNodeScript != null)
 {
 //remove connection with parent
 ParentNodeScript.DeconnectNode(this);
 }

 //cleanup all sub children and branches
 foreach (var branchScript in OutgoingBranchScripts.ToList())
 {
 branchScript.TargetNode.Destroy();
 }

 Destroy(gameObject);
 }

 /// <summary>
 /// Removes connection with specified node
 /// </summary>
 /// <param name="targetNode"></param>
 public void DeconnectNode(DecisionTreeNodeMono targetNode)
 {
 if (targetNode == null)
 {
 Debug.LogWarning("Cannot deconnect null node!");
 }

 var branchScript = OutgoingBranchScripts.FirstOrDefault(l =>
l.TargetNode == targetNode);

 if (branchScript == null)
 {
 Debug.Log("No branch connected on node: " + TreeNode.Name);
 return;
 }

 Debug.Log("Destroying connected branch: " + branchScript.Tree-
Branch.Name);

 //cleanup memory branch
 TreeNode.Branches.Remove(branchScript.TreeBranch);

 //remove branch script from parent node
 OutgoingBranchScripts.Remove(branchScript);

 targetNode.ParentNodeScript = null;

 //destroy branch gameobject
 Destroy(branchScript.gameObject);

80

 }

 private void SetColor(Color color)
 {
 // Get the Renderer component from the new cube
 var renderer = GetComponent<Renderer>();

 // Call SetColor using the shader property name "_Color" and set-
ting the color to red
 renderer.material.SetColor("_Color", color);
 }

}

using cakeslice;
using Modules.DecisionTree;
using System.Collections.Generic;
using System.Linq;
using TMPro;
using UnityEngine;
using UnityEngine.UI;

/// <summary>
/// Used to control all simulation related actions including generated in-
put
/// </summary>
public class DecisionTreeSimulationController : MonoBehaviour
{
 public ScrollRect SimulationScrollRect;

 private DecisionTreeDesignerController _designerController;
 private DecisionTreeInputDataController _inputDataController;
 private DecisionTree DecisionTree => _designerController.DecisionTree;

 private bool _simulationMode = false;

 private DecisionTreeNode _currentNode = null;
 private int _currentInputValueIndex;
 private GameObject _currentNodeGameObject = null;

 private List<GameObject> _simulatedGameObjects = new List<GameOb-
ject>();

 // Start is called before the first frame update
 void Start()
 {
 _designerController = GetComponent<DecisionTreeDesignerControl-
ler>();
 _inputDataController = GetComponent<DecisionTreeInputDataControl-
ler>();
 }

 public void OnSimulateButtonClick()
 {
 if (_simulationMode)
 {
 Debug.LogWarning("Reset simulation in order to start it
again.");
 return;
 }

81

 if (DecisionTree == null)
 {
 Debug.LogWarning("Decision Tree cannot be empty.");
 return;
 }

 //if empty input list
 if (_inputDataController.InputList.IsNullOrEmpty())
 {
 Debug.LogWarning("Input list cannot be empty.");
 return;
 }

 _simulatedGameObjects.Clear();//should adjust to clear components
 _currentInputValueIndex = 0;

 UpdateCurrentNode(DecisionTree.RootNode, _designerController.Deci-
sionTreeGameObject.transform.GetChild(0).gameObject);

 CreateTextMeshProGUIObject("sim_input_text_" + _currentNode.Name,
SimulationScrollRect.content.transform, $"{_currentNode.GetNodeType()}:
{_currentNode.Name}");

 _simulationMode = true;

 }

 public void OnResetSimulationClick()
 {

 if (!_simulationMode)
 {
 Debug.LogWarning("Must be in simulation mode in order to stop
it.");
 return;
 }

 //clean up ui
 foreach (Transform child in SimulationScrollRect.content.trans-
form)
 {
 Destroy(child.gameObject);
 }

 foreach (var go in _simulatedGameObjects)
 {
 var treeLineScript = go.GetComponent<DecisionTreeLine>();

 if (treeLineScript != null)
 {
 treeLineScript.ResetColors();
 continue;
 }

 Destroy(go.GetComponent<cakeslice.Outline>());
 }

 _simulatedGameObjects.Clear();//should adjust to clear components
 _currentInputValueIndex = 0;

 _simulationMode = false;
 }

82

 public void OnSimulatePreviousStepButtonClick()
 {
 if (!_simulationMode)
 {
 //add error handling
 Debug.LogWarning("Must be in simulation mode.");
 return;
 }

 if (_currentInputValueIndex == 0) //first element exit
 {
 //add error handling
 Debug.LogWarning("This is the first step cannot go further
back!");
 return;
 }

 var treeLineScript = _currentNodeGameObject.GetComponent<Decision-
TreeLine>();

 if (treeLineScript == null) //if last selected object is node ob-
ject
 {
 var treeNodeScript = _currentNodeGameObject.GetComponent<Deci-
sionTreeNodeMono>();

 Destroy(treeNodeScript.GetComponent<cakeslice.Outline>());

 _simulatedGameObjects.RemoveAt(_simulatedGameObjects.Count -
1);
 _currentNodeGameObject = _simulatedGameObjects.Last();

 }
 else //if last selected object is line object
 {
 treeLineScript.ResetColors();

 _simulatedGameObjects.RemoveAt(_simulatedGameObjects.Count -
1);
 _currentNodeGameObject = _simulatedGameObjects.Last();

 _currentInputValueIndex--;

 }

 Destroy(SimulationScrollRect.content.transform.GetChild(Simula-
tionScrollRect.content.transform.childCount - 1).gameObject);

 }

 public void OnSimulateNextStepButtonClick()
 {
 if (!_simulationMode)
 {
 //add error handling
 Debug.LogWarning("Must be in simulation mode.");
 return;
 }

 if (_currentInputValueIndex == _inputDataController.Input-
List.Count) //last element exit

83

 {
 //add error handling
 Debug.LogWarning("This is the final step cannot go further!");
 return;
 }

 var inputValue = _inputDataController.InputList[_currentInput-
ValueIndex]; //branch value

 var treeLineScript = _currentNodeGameObject.GetComponent<Decision-
TreeLine>();

 if (treeLineScript == null) //if last selected object is node ob-
ject
 {
 var treeNodeScript = _currentNodeGameObject.GetComponent<Deci-
sionTreeNodeMono>();

 if (!treeNodeScript.TreeNode.IsLeafNode)
 {
 var nextBranchGameObject = treeNodeScript.Out-
goingBranchScripts.First(s => s.TreeBranch.Name == inputValue);
 AddBranchLineToSimulationList(nextBranchGameObject.gameOb-
ject);
 CreateTextMeshProGUIObject("sim_input_text_"+ next-
BranchGameObject.TreeBranch.Name, SimulationScrollRect.content.trans-
form,"Branch: "+ nextBranchGameObject.TreeBranch.Name);
 }
 }
 else //if last selected object is line object
 {
 UpdateCurrentNode(treeLineScript.TreeBranch.Node, treeLine-
Script.TargetNode.gameObject);
 CreateTextMeshProGUIObject("sim_input_text_" + _current-
Node.Name, SimulationScrollRect.content.transform, $"{_current-
Node.GetNodeType()}: {_currentNode.Name}");
 _currentInputValueIndex++;

 }

 }

 private void AddBranchLineToSimulationList(GameObject lineGameObject)
 {
 lineGameObject.GetComponent<LineRenderer>().startColor =
Color.red;
 lineGameObject.GetComponent<LineRenderer>().endColor = Color.red;
 _currentNodeGameObject = lineGameObject;
 _simulatedGameObjects.Add(lineGameObject);
 }

 private void UpdateCurrentNode(DecisionTreeNode treeNode, GameObject
treeNodeGameObject)
 {
 _currentNode = treeNode;
 _currentNodeGameObject = treeNodeGameObject;

 _currentNodeGameObject.AddComponent<cakeslice.Outline>();

 _simulatedGameObjects.Add(_currentNodeGameObject);

84

 }

 private GameObject CreateTextMeshProGUIObject(string objectName,
Transform parent, string text)
 {
 var textGameObject = new GameObject();
 textGameObject.name = objectName;
 textGameObject.transform.parent = parent;

 var textMeshPro = textGameObject.AddComponent<TextMeshProUGUI>();
 textMeshPro.text = text;
 textMeshPro.color = Color.white;
 textMeshPro.alignment = TextAlignmentOptions.Left;
 textMeshPro.enableAutoSizing = true;
 textMeshPro.autoSizeTextContainer = true;
 textMeshPro.fontSizeMax = 15;
 textMeshPro.fontSizeMin = 5;

 return textGameObject;
 }

}

using Modules.DecisionTree;
using System.Collections.Generic;
using UnityEngine;

[RequireComponent(typeof(DecisionTreeSimulationController))]
[RequireComponent(typeof(DecisionTreeInputDataController))]
public class DecisionTreeDesignerController : MonoBehaviour
{
 public DecisionTree DecisionTree { get; private set; }

 public GameObject DecisionTreeGameObject { get; private set; } = null;

 public GameObject NodePrefab;

 public float XDistance = 6f;
 public float YDistance = 6f;

 private InputPanelManager _inputPanelManager;

 private DecisionTreeNodeMono _rootNodeObject;
 private DecisionTreeInputDataController _treeInputDataController;

 // Start is called before the first frame update
 void Start()
 {
 _inputPanelManager = FindObjectOfType<InputPanelManager>();
 _treeInputDataController = GetComponent<DecisionTreeInputDataCon-
troller>();
 }

 public void OnSaveTreeButtonClick()
 {
 //show new node input box and add node
 _inputPanelManager.ShowInputPanel(
 inputTreeName =>
 {
 DecisionTree.Name = inputTreeName;
 DecisionTreeRepository.SaveToFile(DecisionTree);

85

 Debug.Log("Tree saved with name: " + inputTreeName);
 },
 null,
 DecisionTree.Name,
 "Enter tree name (don't modify if you want to override exist-
ing tree file)"
);
 }

 public void OnLoadTreeButtonClick()
 {

 var treeNames = DecisionTreeRepository.GetAllNames();

 if (treeNames.IsNullOrEmpty())
 {
 Debug.LogWarning("No saved trees found!");
 return;
 }

 //show new node input box and add node
 _inputPanelManager.ShowInputPanelWithDropdown(
 enteredTreeName =>
 {
 var loadedTree = DecisionTreeRepository.LoadFromFile(en-
teredTreeName);

 if (loadedTree == null)
 {
 Debug.LogError("Error loading decision tree with name
" + enteredTreeName);
 return;
 }

 Debug.Log("Tree loaded with name: " + enteredTreeName);

 ClearAll();

 DecisionTree = loadedTree;

 DrawTree();
 },
 treeNames,
 "Select a tree to load"
);
 }

 public void OnClearAllButtonClick() => ClearAll();

 public void OnRedrawButtonClick()
 {
 if (DecisionTree == null)
 {
 Debug.Log("No tree found!");
 return;
 }

 ClearAll(true); //remove only gameobjects
 DrawTree();

 }

86

 /// <summary>
 /// Removes all tree related game objects
 /// </summary>
 private void ClearAll(bool onlyGameObjects = false)
 {
 if (DecisionTreeGameObject != null)
 {
 Debug.Log("Removing Decision Tree GameObjects...");
 Destroy(DecisionTreeGameObject);
 }

 _treeInputDataController.ClearUp();

 if (!onlyGameObjects)
 {
 Debug.Log("Removing memory Decision Tree...");
 DecisionTree = null;
 }
 }

 private void DrawTree()
 {
 CreateDecisionTreeGameObject();

 Debug.Log("Drawing tree...");
 Vector3 rootNodePosition = Vector3.zero;
 DrawNodes(DecisionTree.RootNode, rootNodePosition);
 }

 private void CreateDecisionTreeGameObject()
 {
 DecisionTreeGameObject = new GameObject("DecisionTree");
 DecisionTreeGameObject.transform.position = Vector3.zero;
 }

 public void OnGenerateDemoButtonClick()
 {
 ClearAll();

 DecisionTree = DecisionTreeFactory.CreateDemoHeartAttackRiskDeci-
sionTree();

 DrawTree();

 }

 private void DrawNodes(DecisionTreeNode node, Vector3 currentPosition,
Transform parentTransform = null,DecisionTreeLine prevLine = null)
 {

 var nodeGameObject = Instantiate(NodePrefab);

 nodeGameObject.transform.position = currentPosition;

 var nodeScript = nodeGameObject.GetComponent<Decision-
TreeNodeMono>();

 nodeScript.Initialize(node);

 nodeGameObject.transform.parent = DecisionTreeGameObject.trans-
form;

87

 if (node.IsRootNode)
 {
 _rootNodeObject = nodeScript;
 }

 if (prevLine != null)
 {
 nodeScript.ParentNodeScript = prevLine.SourceNode;
 prevLine.TargetNode = nodeScript;
 }

 if (node.IsLeafNode)
 {
 return;
 }

 for (int i = 0; i < node.Branches.Count; i++)
 {
 var newPos = currentPosition + new Vector3(-
((float)(node.Branches.Count - 1)/ 2)*XDistance + i* XDistance, -YDis-
tance, 0);

 var lineGameObject = new GameObject();
 var lineScript = lineGameObject.AddComponent<Decision-
TreeLine>();

 lineScript.Initialize(currentPosition, newPos,
node.Branches[i], nodeScript);

 lineGameObject.transform.parent = DecisionTreeGameOb-
ject.transform;

 nodeScript.OutgoingBranchScripts.Add(lineScript);

 DrawNodes(node.Branches[i].Node, newPos, nodeGameObject.trans-
form, lineScript);
 }
 }

 #region NodeActions

 private DecisionTreeNodeMono AddNode(string nodeName)
 {

 //generate empty decision tree if none
 if (DecisionTreeGameObject == null)
 {
 CreateDecisionTreeGameObject();
 }

 DecisionTree ??= new DecisionTree();

 var nodeGameObject = Instantiate(NodePrefab);
 nodeGameObject.transform.position = Vector3.zero;
 var nodeScript = nodeGameObject.GetComponent<Decision-
TreeNodeMono>();

 var treeNode = new DecisionTreeNode(nodeName);

 //if tree has no root yet, make the new node root
 if (DecisionTree.RootNode == null)
 {

88

 DecisionTree.RootNode = treeNode;
 treeNode.IsRootNode = true;
 }

 nodeScript.Initialize(treeNode);

 nodeGameObject.transform.parent = DecisionTreeGameObject.trans-
form;

 return nodeScript;
 }

 private void ConnectNodeToSelectedNode(DecisionTreeNodeMono node)
 {
 // if a node is selected, place new node below it and connect the
nodes
 var selectedNode = GetSelectedNode();

 if (selectedNode == null)
 {
 return;
 }

 ConnectNodes(selectedNode, node);

 node.transform.position += selectedNode.transform.position + new
Vector3(0, -YDistance, 0);
 }

 public void OnAddNodeButtonClick()
 {
 DecisionTreeNodeMono addedNodeScript = null;

 //show new node input box and add node
 _inputPanelManager.ShowInputPanel(
 newNodeName =>
 {
 addedNodeScript = AddNode(newNodeName);
 },
 () => //action todo after node insert
 {
 ConnectNodeToSelectedNode(addedNodeScript);
 },
 null,
 "Enter node name"
);

 }

 public void OnRenameNodeButtonClick()
 {

 var selectedNode = GetSelectedNode();

 if (!selectedNode)
 {
 Debug.LogWarning("Rename node button was clicked without se-
lecting node.");
 return;
 }

 var selectedDecisionTreeNodeName = selectedNode?.TreeNode.Name;

89

 _inputPanelManager.ShowInputPanel(
 newNodeName =>
 {
 var selectedNode = GetSelectedNode();
 selectedNode.UpdateNodeName(newNodeName);
 },
 null,
 selectedDecisionTreeNodeName,
 "Enter node name");
 }

 public void OnRemoveNodeButtonClick()
 {
 RemoveSelectedNode();
 }

 public void RemoveSelectedNode()
 {
 var selectedNode = GetSelectedNode();

 if (selectedNode == null)
 {
 Debug.Log("No node is selected.");
 return;
 }

 if (selectedNode.TreeNode == DecisionTree.RootNode)
 {
 Debug.Log("Cannot delete root node");
 return;
 }

 Debug.Log($"Removing selected node: {selectedNode.name}.");

 selectedNode.Destroy();
 }

 public void OnSetRootNodeButtonClick()
 {
 var selectedNode = GetSelectedNode();

 if (GetSelectedNode() == null)
 {
 return;
 }

 //reset old root node (if any) to normal
 if (_rootNodeObject)
 {
 _rootNodeObject.TreeNode.IsRootNode = false;
 _rootNodeObject.UpdateColorStatus();
 }

 //convert to new root node
 selectedNode.TreeNode.IsRootNode = true;
 DecisionTree.RootNode = selectedNode.TreeNode;
 _rootNodeObject = selectedNode;
 _rootNodeObject.UpdateColorStatus();
 }

 private DecisionTreeNodeMono GetSelectedNode()

90

 {
 var objectSelector = FindAnyObjectByType<ObjectSelector>();

 if (objectSelector == null || objectSelector.SelectedObject ==
null)
 {
 return null;
 }

 var selectedNode = objectSelector.SelectedObject.GetComponent<De-
cisionTreeNodeMono>();

 return selectedNode;

 }

 public void ConnectNodes(DecisionTreeNodeMono sourceNode, Decision-
TreeNodeMono targetNode)
 {

 var validationResult = DecisionTreeNodeConnectionValidator.Vali-
date(sourceNode.TreeNode, targetNode.TreeNode, targetNode.ParentNodeScript
!= null);

 if (!validationResult.Success)
 {
 Debug.LogWarning(validationResult.ErrorMessage);
 return;
 }

 //if source node already connected to target node deconnect them
 if (targetNode.ParentNodeScript == sourceNode)
 {
 sourceNode.DeconnectNode(targetNode);
 return;
 }

 _inputPanelManager.ShowInputPanel(
 newBranchName =>
 {

 var newBranch = new DecisionTreeBranch(newBranchName);

 if (sourceNode.TreeNode.Branches == null)
 {
 sourceNode.TreeNode.Branches = new List<DecisionTree-
Branch>();
 }

 newBranch.Node = targetNode.TreeNode;

 sourceNode.TreeNode.Branches.Add(newBranch);

 var lineScript = new GameObject().AddComponent<Decision-
TreeLine>();
 lineScript.Initialize(sourceNode.transform.position, tar-
getNode.transform.position, newBranch, sourceNode);

 lineScript.transform.parent = DecisionTreeGameOb-
ject.transform;

 lineScript.TargetNode = targetNode;

91

 sourceNode.OutgoingBranchScripts.Add(lineScript);

 targetNode.ParentNodeScript = sourceNode;
 },null,null, "Enter branch value");
 }

 #endregion
}

92

References

[1] https://www.ibm.com/topics/neural-networks.

[2] https://azure.microsoft.com/en-us/resources/cloud-computing-

dictionary/artificial-intelligence-vs-machine-learning/#introduction.

[3] https://www.v7labs.com/blog/neural-networks-activation-functions.

[4] https://en.wikipedia.org/wiki/Unified_Modeling_Language.

[5] https://medium.com/@smagid_allThings/uml-class-diagrams-tutorial-step-by-

step-520fd83b300b.

[6] https://en.wikipedia.org/wiki/Game_engine.

[7] Unity, “Unity3d,” https://unity.com/.

[8] https://en.wikipedia.org/wiki/Unity_(game_engine).

[9] https://www.unrealengine.com/en-US/unreal-engine-5.

[10] https://github.com/lutzroeder/netron.

[11] https://tensorspace.org/.

[12] https://gephi.org/.

[13] https://playground.tensorflow.org.

[14] https://alexlenail.me/NN-SVG/index.html.

[15] https://en.wikipedia.org/wiki/Decision_tree.

[16] https://www.digitalocean.com/community/conceptual-articles/s-o-l-i-d-the-first-

five-principles-of-object-oriented-design.

[17] https://en.wikipedia.org/wiki/Argus_Panoptes.

[18] "Github," https://github.com/JamesNK/Newtonsoft.Json.

		2023-10-09T10:51:27+0300
	Anastasios Kesidis

		2023-10-09T12:18:39+0300
	Paris Mastorokostas

		2023-10-09T12:21:53+0300
	Panagiota Tselenti

