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ABSTRACT 

The camera calibration process has been a prominent subject of research in photo-

grammetry and computer vision for decades. It is an essential part of numerous applica-

tions in which it directly affects accuracy and geometric quality of results. However, it does 

not have a single optimal solution; thus, many methods have been proposed to handle 

the different applications. With the increasing adoption of digital photogrammetric appli-

cations, there comes a need for robust and flexible techniques that operate autono-

mously. That is what camera autocalibration, or alternatively self-calibration, aims to ad-

dress. Extended research has already been and is still being done in this field in such a 

short amount of time so that keeping up with current trends can be difficult. That is why 

reviews and surveys are important to aggregate all the information. This thesis is a review 

focused on selected multi-image autocalibration methods. In the first part, the fundamen-

tals of the camera calibration process and the traditional calibration methods are ana-

lyzed. A selection of state-of-the-art automated traditional methods are analyzed and 

compared. Then, the fundamentals of camera self-calibration and its conventional meth-

ods are reviewed. Finally, a selection of state-of-the-art self-calibration methods are ana-

lyzed and compared. 
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Section 1: Introduction 

The interest in computer vision and photogrammetry continues to grow as the field 

consistently advances (Forlani et al., 2015) and becomes more accessible to the broader 

public, as a result of the decreased cost and increased availability of camera equipment 

and pertinent algorithms. The drawback of the prominence of low-cost digital cameras is 

the decrease in image quality as well as in geometric stability, as observed by Läbe & 

Förstner (2004). Subsequently, a subject of interest for researchers has been the tackling 

of such problems. 

Camera calibration is an essential process for a plethora of photogrammetric appli-

cations, like 3D reconstruction (Fathi & Brilakis, 2014; Sturm, 2000b; Wang et al., 2005; 

Wilczkowiak et al., 2001), robot vision (Davis et al., 2017; Ito, 1990; Kroeger et al., 2019), 

digital elevation models (Garcia & de Oliveira, 2021; Setiawan et al., 2013), augmented 

reality (Baratoff et al., 2002; Gibson et al., 2002), autonomous driving (Martins et al., 2020; 

Song et al., 2016; Xu et al., 2019), and sports (Choi & Seo, 2011; Wu et al., 2020). This 

process expresses the computation of the camera intrinsic (focal length, principal point, 

pixel size, lens distortions) and extrinsic (translation, rotation) parameters by observing a 

single or multiple images. These parameters are then used for estimating the spatial co-

ordinates of the objects projected onto the camera. As a result, the accuracy of the com-

puted camera parameters directly affects the accuracy of the estimated world geometry. 

When analyzing the camera calibration process there are multiple different factors 

that have to be considered depending on the application being examined. There is no 

single camera calibration method to cover all possible photogrammetric applications, 

therefore research on the topic has been broad and diverse in terms of approaches. The 

factor of system cost is important for the calibration method since researchers and com-

mercial users usually have to deal with a limited budget. It is for this reason that the dif-

ferent proposed methods have to be reviewed and critically evaluated, in order to refine 

knowledge, update on recent developments, and identify shortcomings. Such a review 

may too be beneficial for new researchers regarding the current state of the subject. 

In the literature, camera calibration techniques are typically divided into three main 

categories: traditional calibration methods, self-calibration methods, and active-vision 

methods (Long & Dongri, 2019; Song et al., 2013; Wang et al., 2010). The main distinctive 
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characteristic of traditional calibration methods, also referred to as photogrammetric cali-

bration methods, is the requirement of some type of calibration target whose geometry is 

known, in contrast to self-calibration methods that do not require calibration targets. Ac-

tive-vision methods are an intermediate between these two categories, as they do not 

require a known object but a known camera motion. Recently, a large variety of ap-

proaches based on deep learning technology have also been suggested (Liao et al., 

2023). Since these approaches do not accurately fit within the aforementioned categories, 

it is preferred to classify them in their own category which will not be dealt with in the 

present thesis. 

While the traditional target-based methods tend to perform with great precision, they 

are often not possible or difficult to reproduce in real-world scenarios. On that account, 

self-calibration methods, also referred to as autocalibration, present a valuable tool for 

practical applications. Additionally, the ability to automate these methods further expe-

dites their process. A major benefit of automating the calibration process is that photo-

grammetry becomes more accessible to everyone (Romero & Quintana, 2023). Accord-

ingly, camera autocalibration becomes more desirable than other methods that require 

proper user input. 

The principal proposition of autocalibration is that the camera parameters can be ex-

tracted from a set of images that have no predetermined reference points. The advantage 

of this method is that users do not have to construct and include specific objects while 

capturing the photographs. In addition, the ability to use photographs that were not initially 

captured for the purpose of photogrammetric applications opens up new possibilities. 

However, when considering the automation of the calibration process it is notable that the 

traditional calibration methods have also been partially automated as far as the calibration 

object detection goes (Fraser, 2013). A basic overview of these approaches is included 

as part of this review, with the goal to contrast and compare the advantages and disad-

vantages of using them over self-calibration methods. 

The thesis is structured in the following way. In Section 2, the fundamentals of camera 

calibration are explained, specifically the camera model. In Section 3, the traditional cali-

bration methods are analyzed and compared. Section 4 contains a review of various 

state-of-the-art automated approaches based on traditional calibration methods. Each 
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method is given a brief overview and at the end of the section, they are summarized and 

compared. Section 5 is the survey of self-calibration methods, where the fundamentals of 

self-calibration are explained and the conventional methods are analyzed and compared. 

In Section 6, various state-of-the-art self-calibration methods are reviewed in the same 

way as in Section 4. Section 7 contains the conclusions, where a brief summary of the 

observations of this review is given, and future considerations are made. 
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Section 2: Camera Calibration 

The objective of the camera calibration process is to calculate the internal and exter-

nal parameters of a camera by examining an associated image. These parameters define 

the projection of the 3D world geometry to the 2D image plane. The transformation of 3D 

world coordinates to 2D image coordinates has been described by Tsai (1987) as a 4-

step transformation, as illustrated in Figure 1. The first step is a rigid body transformation 

from real-world coordinates (X,Y,Z) to camera coordinates (Xc,Yc,Zc). The second step is 

perspective projection of the camera coordinates (Xc,Yc,Zc) to image coordinates (x,y), 

assuming an ideal (no distortions) pinhole camera model (Figure 2). The transformation 

in this step is not invertible because the depth information is lost. Step three is the non-

linear transformation caused by lens distortion and step four is the image coordinate to 

pixel coordinate transformation. 

 

Figure 1: Transformation from 3D world coordinates to 2D image coordinates (Tsai, 1987) 

 

The first step of the transformation is dependent on the extrinsic parameters of the 

camera, while the rest of the steps are dependent on its intrinsic parameters. Extrinsic 

parameters refer to the camera orientation in relation to the world and consist of a rotation 

matrix R and a translation vector t. Intrinsic parameters refer to the internal geometry of 

the camera system and consist of the focal length f, the principal point offset O’(xo,yo), the 

pixel scale factors (mx,my), the skew coefficient γ, and the lens distortion coefficients. 
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Equation (2.1) represents the perspective transformation for a pinhole camera model (Fig-

ure 2), where P is the projection matrix (or camera matrix) and K is the intrinsic matrix 

(camera matrix): 

[
𝑥
𝑦
1
] = 𝑃 [

𝑋
𝑌
𝑍
1

] = 𝐾[𝑅|𝑇] [

𝑋
𝑌
𝑍
1

]   (2.1) 

 

 

𝐾 = [
𝑓 ∙ 𝑚𝑥 𝛾

0 𝑓 ∙ 𝑚𝑦

0 0

𝑥𝑜 0
𝑦𝑜 0
1 0

]   (2.2) 

 

 

Figure 2: Ideal pinhole camera model 

 

Out of all of these variables, the lens distortion coefficients are the only non-linear 

parameters, and for this reason some methods omit them during the initial calibration 

process and attempt to correct the errors afterwards by adopting the bundle adjustment 

technique (Triggs et al., 2000). The following subsections define the camera parameters 

in a more detailed way in order to better define the problem of camera calibration. 

 
Oc 

(x,y) 

(X,Y,Z) 

Image 
Plane 

X 
Z 

Y 

O’ 
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2.1 Extrinsic Parameters 

Extrinsic camera parameters are also referred to as exterior orientation and represent 

the camera pose as a set of six parameters, three for the translation and three for the 

rotation around the three camera axes. The camera translation is defined by the ground 

coordinates of the center of projection Oc(Xc,Yc,Zc), the rotation by the 3x3 rotation matrix 

R(rij). The camera extrinsic parameters determine the camera pose, which is indispensa-

ble in order to understand the motion of the camera between multiple images. The 4x4 

extrinsic matrix is deconstructed into its elements as: 

[𝑅|𝑇] = [

𝑟1,1 𝑟1,2

𝑟2,1 𝑟2,2

𝑟1,3 𝑡1
𝑟2,3 𝑡2

𝑟3,1 𝑟3,2

0 0
𝑟3,3 𝑡3
0 1

]    (2.3) 

 

2.2 Intrinsic Parameters 

Intrinsic camera parameters represent the geometrical and physical aspects of the 

camera. Because these parameters depend on the camera model, there are several fea-

tures to be considered for the calibration. In general, one may say the more parameters 

considered for the camera calibration the better the accuracy of the reprojection will be; 

however, “over-parameterization” should always be avoided. 

The most basic feature of an ideal pinhole camera model is the focal length f (also 

found in literature as camera constant c), which is basically the physical distance of the 

image plane from the pinhole. For the case of camera with thin lens, the distance between 

the lens and the image plane is the principal distance c, while the focal length represents 

the distance when the lens is focused at infinity. For this reason, the parameter consid-

ered for the camera calibration is the principal distance c (also found in literature as cam-

era constant c). The relationship between focal length f and principal distance c of a thin 

lens is given by Equation (2.4), where S is the distance of the lens from the projected 

object (focusing distance):  
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1

𝑓
=

1

𝑆
+

1

𝑐
   (2.4) 

 

Another important phenomenon to be considered is that, as a rule, the trace O’(xo,yo) 

of the center of projection on the image plane (principal point) does not coincide with the 

center of the image coordinates (x = y = 0). This can be corrected with a simple displace-

ment of the image coordinates origin to the principal point O’(xo,yo). Abiding by these 

characteristics, the projection matrix K’ of an ideal lens camera with principal point offset 

is given by Equation (2.5): 

𝑲′ = [
𝑐 0 𝑥𝑜

0 𝑐 𝑦𝑜

0 0 1
]   (2.5) 

 

Because the main focus of modern photogrammetry is, of course, on digital cameras, 

the structure of the camera sensor has also to be accounted for. Particularly, the shape 

of the pixels of a real sensor is not perfectly square but rectangular (difference in scale 

between the two axes). This scale difference can be calculated either by denoting a scale 

factor for each direction, mx and my, or by normalizing the scale for one axis and defining 

the differential scale factor m (aspect ratio) for the other axis. Additionally, the camera 

sensor may demonstrate a skewness instead of being perfectly orthogonal. Considering 

the angle θ as the angle formed between the two axis of the image plane, the skewed 

coordinates xs,ys can be determined by Equation (2.6). Figure 3 illustrates the skewness 

of the image plane. For simplification of the calibration matrix, the skewness coefficient γ 

is used for the transformations. These parameters represent the affine distortions of the 

camera. The camera matrix of an affine sensor K’’ is presented in Equation (2.7). 

 

[
𝑥𝑠

𝑦𝑠
] = [

1 −cot⁡(𝜃)

0
1

sin⁡(𝜃)

] [
𝑥
𝑦]   (2.6) 

 

𝑲′′ = [

𝑐 𝛾 𝑥𝑜

0 𝑐(1 + 𝑚) 𝑦𝑜

0 0 1
]   (2.7) 
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where 𝛾 = −𝑐 ∙ 𝑡𝑎𝑛(𝜃) 

 

 

Figure 3: Image plane with skewness 

  

2.3 Lens Distortions 

Up to this point, only the linear transformations have been taken into account. By 

assuming a distortion free camera model, a straight world line is expected to be a straight 

line in the image plane. In reality, the camera lens distorts the image because of imper-

fections of the lens shape and the lens to sensor composition. According to Weng et al. 

(1992), there are three types of lens distortion. The first is the radial distortion caused by 

the imperfect curvature of the lens and is indicated by the light rays bending more when 

near the edges of the image than they do at its center. This distortion is expressed as a 

radial displacement of the image points. When the displacement is directed inwards, it is 

referred to as pincushion distortion, while when the displacement is directed outwards it 

is referred to as barrel distortion. A geometric representation of the radial distortions is 

illustrated in Figure 4. The polynomial expression in Equation (2.8) expresses the sym-

metric radial distortion for a centered lens, where ρ is the radial distance from the center 

of the image (in fact from the principal point) and ki for i=1,2,3… are the radial distortion 

coefficients. 
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𝛥𝑟 = 𝑘1𝜌
3 + 𝑘2𝜌

5 + 𝑘3𝜌
7 + ⋯  (2.8) 

 

 

 

Figure 4: Pinhole camera projection model with radial distortions 

 

The second type of lens distortion is the decentering distortion. This is a non-sym-

metric distortion that can be caused by the misalignment of the lens elements in a camera. 

This type of distortion is a combination of non-symmetric radial distortion and tangential 

distortion. The effects of radial and tangential distortion are illustrated by Figure 5. The 

displacement caused by decentering distortion can by calculated by Equation (2.9) for the 

x axis and (2.10) for the y axis. 

 

𝛥𝑡𝑥 = 𝑝1(𝑟
2 + 2(𝑥 − 𝑥0)

2) + 2𝑝2(𝑥 − 𝑥0)(𝑦 − 𝑦0)  (2.9) 

 

𝛥𝑡𝑦 = 𝑝2(𝑟
2 + 2(𝑦 − 𝑦0)

2) + 2𝑝1(𝑥 − 𝑥0)(𝑦 − 𝑦0)  (2.10) 

 

where 𝑟2 = (𝑥 − 𝑥0)
2 + (𝑦 − 𝑦0)

2 and p1, p2 are the decentering distortion coefficients. 
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Figure 5: Representation of radial and tangential distortion  

 

The third type of distortion is the thin prism distortion caused by a slight tilt between 

the lens and the camera, as illustrated by Figure 6. This type of distortion also causes 

both radial distortion and tangential distortion. For simplification purposes, the aggregate 

of these non-linear distortions can be combined in the lens distortion correction terms 

Δx(x,y) for the x axis and Δy(x,y) for the y axis. The complete camera matrix is thus ex-

pressed: 

 

𝑲 = [
𝑐 𝛾 𝑥𝑜 + 𝛥𝑥
0 𝑐(1 + 𝑚) 𝑦𝑜 + 𝛥𝑦
0 0 1

]   (2.11) 

 

 

 

x 

y 

 

Δr 
Δt 

pideal 
preal 

Δr = radial distortion 

Δt = tangential distortion 
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Figure 6: Camera assembly where sensor and lens are not parallel 

  

  

Vertical 
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Camera 

Lens 
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Section 3: Traditional Calibration Methods 

The proposition of traditional camera calibration methods is that if an object with 

known geometry is depicted in images, then the camera parameters can be calculated by 

simple mathematical transformations. The real-world coordinates of the known object are 

associated with the image coordinates so that the unknown projection matrix can be 

solved for. The most widely adopted algorithmic approaches representing these methods 

are the direct linear transform (DLT) (Abdel-Aziz & Karara, 2015), Tsai’s two-step method 

(Tsai, 1987), dual-plane method (Martins et al., 1981; Wei & De Ma, 1991), and Zhang’s 

calibration method (Zhang, 2000). 

 

3.1 Single Image Approach 

Single-image calibration presupposes the existence of an array of well-distributed 

points of known world coordinates (3D test-fields). Such test-fields may be appropriate 

for either terrestrial or even for aerial cameras. Clearly, such arrays are difficult to create 

and, even more so, to maintain. Hence, they are now rarely used. Of interest here, how-

ever, is mainly the algorithmic treatment of single images for the purposes of calibration. 

The DLT algorithm (initially presented by Abdel-Aziz & Karara as early as 1971) is a 

convenient simplified approach to the problem of single-image camera calibration. The 

11 independent elements of the projection matrix are calculated using linear equations 

for a set of 6 or more reference world points. The process is not iterative (although it can 

be subsequently refined iteratively); therefore, calculations are fast and simple. This al-

gorithm can output accurate results but only after the lens distortions have been corrected 

(Heikkila & Silven, 1997). 

The basis of the DLT method is the well-known collinearity condition. Equation (3.1) 

is a rendition of the transformation of the world coordinates to image coordinates, and 

Equations (3.2) and (3.3) express the transformations for each coordinate: 

 

[
𝑥
𝑦
−𝑐

] = 𝜆 [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] [

𝑋 − 𝑋𝑐

𝑌 − 𝑌𝑐

𝑍 − 𝑍𝑐

]   (3.1) 
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where λ is a scale factor 

 

 

𝑥 + 𝑐
𝑎11(𝑋−𝑋𝑐)+𝑎12(𝑌−𝑌𝑐)+𝑎13(𝑍−𝑍𝑐)

𝑎31(𝑋−𝑋𝑐)+𝑎32(𝑌−𝑌𝑐)+𝑎33(𝑍−𝑍𝑐)
= 0   (3.2) 

 

𝑦 + 𝑐
𝑎21(𝑋−𝑋𝑐)+𝑎22(𝑌−𝑌𝑐)+𝑎23(𝑍−𝑍𝑐)

𝑎31(𝑋−𝑋𝑐)+𝑎32(𝑌−𝑌𝑐)+𝑎33(𝑍−𝑍𝑐)
= 0   (3.3) 

 

The DLT method permutates the Equations (2.2) and (2.3) to (2.4) and (2.5), where 

Li for i=1…11 are the DLT parameters. 

 

𝑥 +
𝐿1𝑋+𝐿2𝑌+𝐿3𝑍+𝐿4

𝐿9𝑋+𝐿10𝑌+𝐿11𝑍+1
= 0   (3.4) 

 

𝑦 +
𝐿5𝑋+𝐿6𝑌+𝐿7𝑍+𝐿8

𝐿9𝑋+𝐿10𝑌+𝐿11𝑍+1
= 0   (3.5) 

 

For n number of control points in the 3D space with known coordinates (xn,yn), the 

Equation (3.6) associates the resulting system of equations. The camera calibration is 

then resolved by least-square estimation, as denoted by Equation (3.7). 

 

[
 
 
 
 
𝑥1

𝑦1

…
𝑥𝑛

𝑦𝑛]
 
 
 
 

= 𝜆

[
 
 
 
 
𝑋1

0
…
𝑋𝑛

0

𝑌1

0
…
𝑌𝑛

0

𝑍1

0
…
𝑍𝑛

0

1
0
…
1
0

0
𝑋1

…
0
𝑋𝑛

0
𝑌1

…
0
𝑌𝑛

0
𝑍1

…
0
𝑍𝑛

0
1
…
0
1

−𝑥1𝑋1

−𝑦1𝑋1

…
−𝑥𝑛𝑋𝑛

−𝑦𝑛𝑋𝑛

−𝑥1𝑌1

−𝑦1𝑌1

…
−𝑥𝑛𝑌𝑛

−𝑦𝑛𝑌𝑛

−𝑥1𝑍1

−𝑦1𝑍1

…
−𝑥𝑛𝑍𝑛

−𝑦𝑛𝑍𝑛]
 
 
 
 

[
 
 
 
 
𝐿1

𝐿2
…

𝐿10

𝐿11]
 
 
 
 

  (3.6) 

 

𝑈 = 𝐴 ∙ 𝐿
⁡

⇒ 𝐿 = [𝐴𝑇𝐴]−1𝐴𝑇 ∙ 𝑈   (3.7) 

 

The mayor benefit of the DLT algorithm is the simplicity and convenience it offers. 

However, its accuracy is severely restricted by the need for an ideal camera setting and 
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optimal control points. Several improvements have been suggested over the years to 

account for these DLT limitations (Hatze, 1988; Heikkila & Silven, 1997; Zhao et al., 

2016). 

As an improvement to the DLT method, Tsai’s method considers the lens distortions 

as a radial distortion factor. This method is separated into two steps; and thus it is also 

referred to as the two-step method. In the first step, the extrinsic parameters are solved 

by linear equations, while in the second step, the intrinsic parameters are solved by non-

linear optimization. This calibration method assumes the camera model to adhere to the 

framework presented in Figure 4. 

There are two different cases for which Tsai’s method can be used, one for planar 

control points and the other for non-planar control points. Assuming that a 2D planar pat-

tern is used as a calibration object, an important prerequisite for this method is that the 

camera scale factor m is known, usually supplied by the manufacturer. Moreover, the 

principal point O’ is assumed to be on the center of the camera’s digital sensor. The first 

step starts with the estimation of the rotation matrix R, Equation (3.8), and part of the 

translation matrix T, Equation (3.9), by solving Equation (3.10). 

 

𝑹 = [

𝑟1 𝑟2 𝑟3
𝑟4 𝑟5 𝑟6
𝑟7 𝑟8 𝑟9

]  (3.8) 

 

𝑻 = [
𝑇𝑋

𝑇𝑌

𝑇𝑍

]  (3.9) 

[𝑦𝑖𝑋𝑖 𝑦𝑖𝑌𝑖 𝑦𝑖 −𝑥𝑖𝑋𝑖 𝑥𝑖𝑌𝑖]

[
 
 
 
 
 
𝑇𝑌

−1𝑟1
𝑇𝑌

−1𝑟2
𝑇𝑌

−1𝑇𝑋

𝑇𝑌
−1𝑟4

𝑇𝑌
−1𝑟5 ]

 
 
 
 
 

= 𝑥𝑖   (3.10) 

 

This linear system consists of 5 unknowns, so it needs more than five known control 

points from the calibration pattern in order to be solved. The factor |Tx| is arbitrarily scaled 
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to ±1, so as to calculate the other factors. Remark that the sign of Tx is determined by 

choosing a control point that is far from the image center, calculating the projection coor-

dinates, and checking that the result is consistent with the observed image coordinates. 

The other factors are then calculated by solving the Equations (3.11). 

 

𝑟1 = 𝑇𝑌
−1𝑟1, 𝑟2 = (𝑇𝑌

−1𝑟2)𝑇𝑌, 𝑟4 = (𝑇𝑌
−1𝑟4)𝑇𝑌,

𝑟5 = (𝑇𝑌
−1𝑟5)𝑇𝑌, 𝑇𝑋 = (𝑇𝑌

−1𝑇𝑋)𝑇𝑌 ⁡
   (3.11) 

 

The remaining part of the rotation matrix can be solved by Equation (3.12). 

 

𝑹 = [

𝑟1 𝑟2 √(1 − 𝑟1
2 − 𝑟2

2)

𝑟4 𝑟5 𝑠√(1 − 𝑟4
2 − 𝑟5

2)
𝑟7 𝑟8 𝑟9

]  (3.12) 

where s = -sgn(r1r4 + r2r5) 

 

Having calculated most of the extrinsic parameters, the second step of Tsai’s method 

consists of estimating the intrinsic parameters, including the radial distortions. The princi-

pal distance and the factor Tz are calculated by solving the linear system in Equation 

(3.13). 

 

[𝑢𝑖 −𝛥𝑦𝑦𝑖] [
𝑓
𝑇𝑍

] = 𝑤𝑖𝛥𝑦𝑦𝑖   (3.13) 

where 𝑢𝑖 = 𝑟4𝑋𝑖 + 𝑟5𝑌𝑖 + 𝑟6 ∙ 0 + 𝑇𝑌 and 𝑤𝑖 = 𝑟7𝑋𝑖 + 𝑟8𝑌𝑖 + 𝑟9 ∙ 0 

 

For the estimation of the radial distortion coefficients and the correct principal point 

O’, a non-linear optimization method has to be used to minimize Equation (3.14). This 

step is referred to as bundle adjustment. 

 

∑ (𝑥𝑖 − 𝑥𝑝𝑖)
2𝑁

𝑖=1 + ∑ (𝑦𝑖 − 𝑦𝑝𝑖)
2𝑁

𝑖=1   (3.14) 

where xpi and ypi are the predicted image coordinates based on the estimated values. 
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This process can also be performed for non-planar 3D calibration points and for mul-

tiple images in order to achieve better precision with small changes to the algorithm. 

The results of this method are very accurate and the implementation is simple, there-

fore it has been very popular for various photogrammetric applications (Choi & Seo, 2011; 

Gee et al., 2015). However, it has also been criticized for being very sensitive to errors 

(Tiscareño et al., 2019), which is detrimental for low-quality images or inexperienced us-

ers. 

 

3.2 Multi-Image Approach 

Zhang’s method utilizes a planar pattern, usually a chessboard pattern, in order to 

streamline the detection of feature points. This method requires a set of at least three 

images where the planar pattern is placed at different positions and orientations relative 

to the camera. The relations of the feature points are used for the linear calculation of the 

projection matrix, and subsequently, the camera parameters are extracted using a closed-

form solution. Next, the radial distortion coefficients are calculated by solving the linear 

least-squares, and, finally, the maximum likelihood criterion is applied to refine the results. 

The target plane is assumed to be at Z=0 of the world coordinates. The planar pro-

jection of that plane can be defined by the homography H of Equation (3.15). 

 

[
𝑥
𝑦
1
] = 𝑲[𝑟1 𝑟2 𝑟3 𝑡] [

𝑋
𝑌
0
1

] = 𝑯 [

𝑋
𝑌
0
1

]   (3.15) 

 

[ℎ1 ℎ2 ℎ3] = 𝜆𝑲[𝑟1 𝑟2 𝑡]   (3.16) 

where λ is a scale factor. 

 

Since r1 and r2 are orthonormal, the Equations (3.17) and (3.18) can be derived. 

These equations are related to the image of the absolute conic, which is explained in 

Section 5. 
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ℎ1
𝑇𝑲−𝑇𝑲−1ℎ2 = 0   (3.17) 

 

ℎ1
𝑇𝑲−𝑇𝑲−1ℎ1 = ℎ2

𝑇𝑲−𝑇𝑲−1ℎ2   (3.18) 

 

To solve the linear equations, a symmetric 3x3 matrix B is defined by Equation (3.19). 

 

𝑩 = 𝑲−𝑇𝑲−1 = [

𝐵11 𝐵12 𝐵13

𝐵21 𝐵22 𝐵23

𝐵31 𝐵32 𝐵33

]  (3.19) 

𝑩 =

[
 
 
 
 
 

1

𝑐𝑥
2

−
𝑠

𝑐𝑥
2𝑐𝑦

𝑦0𝑠−𝑥0𝑐𝑦

𝑐𝑥
2𝑐𝑦

−
𝑠

𝑐𝑥
2𝑐𝑦

𝑠2

𝑐𝑥
2𝑐𝑦

2
+

𝑦0

𝑐𝑦
2

−
𝑠(𝑦0𝑠−𝑥0𝑐𝑦)

𝑐𝑥
2𝑐𝑦

2
−

𝑦0

𝑐𝑦
2

𝑦0𝑠−𝑥0𝑐𝑦

𝑐𝑥
2𝑐𝑦

−
𝑠(𝑦0𝑠−𝑥0𝑐𝑦)

𝑐𝑥
2𝑐𝑦

2
−

𝑦0

𝑐𝑦
2

(𝑦0𝑠−𝑥0𝑐𝑦)2

𝑐𝑥
2𝑐𝑦

2
+

𝑦0
2

𝑐𝑦
2
+ 1

]
 
 
 
 
 

  (3.20) 

where cx=c*mx and cy=c*my 

The matrix B can be expressed as a vector b in equation (3.21). 

 

𝒃 =

[
 
 
 
 
 
𝐵11

𝐵12

𝐵22

𝐵13

𝐵23

𝐵33]
 
 
 
 
 

  (3.21) 

 

From the above, the Equation (3.22) is derived. 

 

ℎ𝑖
𝑇𝑩ℎ𝑗 = 𝑣𝑖𝑗

𝑇𝒃  (3.22) 

where hi is the vector for column i=1,2,3 of homography H. 
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ℎ𝑖 = [

ℎ𝑖1

ℎ𝑖2

ℎ𝑖3

]  (3.23) 

𝑣𝑖 =

[
 
 
 
 
 
 

ℎ𝑖1ℎ𝑗1

ℎ𝑖1ℎ𝑗2 + ℎ𝑖2ℎ𝑗1

ℎ𝑖2ℎ𝑗2

ℎ𝑖3ℎ𝑗1 + ℎ𝑖1ℎ𝑗3

ℎ𝑖3ℎ𝑗2 + ℎ𝑖2ℎ𝑗3

ℎ𝑖3ℎ𝑗3 ]
 
 
 
 
 
 

  (3.24) 

 

By associating Equations (3.17) and (3.18) with Equation (3.24), the Equation (3.25) 

is inferred. 

[
𝑣12

𝑇

(𝑣11 − 𝑣22)
𝑇] 𝑏 = 0

⁡
⇒𝑉𝑏 = 0⁡  (3.25) 

where V contains an array for all observed values and therefore is a 2nx6 matrix for 

n equal to the number of images obtained for the calibration.  

 

Given that the homography matrix H can be solved by the DLT method in subsection 

3.1, the linear system of Equations (3.25) can be solved for b. Since the system has 6 

unknowns, there needs to be at least 3 images to arrive at a unique solution for b. The 

intrinsic parameters can be extracted from vector b by solving Equations (3.26). 

 

𝑦0 =
𝐵12𝐵13−𝐵11𝐵23

𝐵11𝐵22−𝐵12
2

𝜆 = 𝐵33 −
𝐵13

2+𝑦0(𝐵12𝐵13−𝐵11𝐵23)

𝐵11

𝑐⁡𝑚𝑥 = √
𝜆

𝐵11

𝑐⁡𝑚𝑦 = √
𝜆𝐵11

𝐵11𝐵22−𝐵12
2

𝛾 =
−𝐵12(𝑐⁡𝑚𝑥)2𝑐⁡𝑚𝑦

𝜆

𝑥0 =⁡
𝛾𝑦0

𝑐⁡𝑚𝑦
−

𝐵13(𝑐⁡𝑚𝑥)2

𝜆

   (3.26) 
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Considering that the camera matrix K has been estimated, the extrinsic parameters 

can be subsequently calculated by Equations (3.27). 

 

𝑟1 = 𝜆𝑲−1ℎ1

𝑟2 = 𝜆𝑲−1ℎ2
𝑟3 = 𝑟1 × 𝑟2
𝑡 = 𝜆𝑲−1ℎ3

𝑤𝑖𝑡ℎ⁡𝜆 =
1

‖𝑲−1ℎ1‖
=

1

‖𝑲−1ℎ2‖

   (3.27) 

 

To estimate the radial distortion coefficients, Equation (3.28) is used to associate the 

first two distortion coefficients with the ideal coordinates (xi,yi), the observed coordinates 

(x,y) and the observed normalized image coordinates (u,v). 

 

[
(𝑥𝑖 − 𝑥0)(𝑢

2 + 𝑣2) (𝑥𝑖 − 𝑥0)(𝑢
2 + 𝑣2)2

(𝑦𝑖 − 𝑦0)(𝑢
2 + 𝑣2) (𝑦𝑖 − 𝑦0)(𝑢

2 + 𝑣2)2] [
𝑘1

𝑘2
] = [

𝑥 − 𝑥𝑖

𝑦 − 𝑦𝑖
]  (3.28) 

 

By combining all control points for all images, the resulting Equation (3.29) is solved 

by linear least-squares, as given by Equation (3.30). 

 

𝑫𝒌 = 𝒅   (3.29) 

where 𝑘 = [𝑘1, 𝑘2]
𝑇 

 

𝒌 = (𝑫𝑇𝑫)−1𝑫𝑇𝒅   (3.30) 

 

The results can be refined by applying a non-linear optimization method to minimize 

the distance between estimated projected image points and observed image points, sim-

ilar to Tsai’s method in subsection 3.1. Through the process, the properties of the rotation 

matrix R have to be considered to estimate the best rotation matrix from a general 3×3 

matrix. 

This method is much more complicated than the ones mentioned above but the re-

sults are very accurate and the approach is highly flexible. This has made it one of the 
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most popular calibration algorithms, getting implemented in various open-source and 

commercial software, like MATLAB (Mathworks Inc., 2016) and OpenCV (Eser, 2021). 

 

3.3 Comparisons between traditional methods 

Table 1 summarizes in the author’s opinion the advantages and disadvantages of the 

most popular traditional calibration methods. The flexibility of each method is considered 

as its ability to be adapted for different photogrammetric applications, while the complexity 

is assessed by the user knowledge required in conjunction with the computational cost. 

The image quantity required for each method is important because methods that can 

work with only a single image offer versatility for applications with limited views. On the 

contrary, single-image methods tend to result in lower precision and noise sensitivity. The 

DLT algorithm has the capacity to get high accuracy for the results but only if the lens 

distortions are insignificant or have been pre-corrected by other means. In terms of flexi-

bility, the DLT algorithm has the advantage of having a very low computational cost and 

only requiring one image, which means that the complexity is very low and therefore can 

be used for a variety of simple applications. However, the lack of accurate lens distortion 

calibration and the need for appropriate accurate 3D control points reduces the flexibility 

of the DLT algorithm. Tsai’s method is more flexible due to the ability to calibrate radial 

distortions but counterbalances by having a slightly more complex calibration, due to the 

non-linear step. The accuracy of Tsai’s method is also very sensitive to noise which can 

make it undesirable for various applications where very accurate control points are not 

present. Zhang’s method has a substantial increase in complexity due to more images 

being required and the calculations having higher computation costs. Regardless of the 

complexity, Zhang’s method is highly flexible and accurate through a more robust calibra-

tion framework that is not sensitive to noise, considers radial distortions, and can easily 

be adapted for a variety of applications. Moreover, the chessboard calibration pattern that 

is used for Zhang’s method is easy to be acquired, since it is a common and simple pat-

tern. 

 It is apparent that these methods provide high accuracy but are not very flexible and 

require a good understanding of the method by the user. The practical advancement for 
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these methods is the automation of the calibration process, which is discussed in the next 

section. 

 

Table 1: Traditional Calibration Methods Comparisons 

Method 
Image  

Quantity 
Accuracy Flexibility Complexity 

DLT (Abdel-Aziz & 

Karara, 2015) 
1 

High, for no dis-

tortions 
Medium Low 

Tsai (Tsai, 1987) 1 or more 
High, but  

sensitive to errors 
Medium Medium 

Zhang (Zhang, 2000) At least 3 High High High 
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Section 4: Automated Calibration Methods 

The automation of the traditional camera calibration methods can be achieved by the 

development of algorithms that automatically detect planar patterns within the image. The 

procedure of the photogrammetric application still needs to ensure that such an object 

exists within the images, but once the images are obtained the calibration process is fully 

automatic. The most common calibration target for such methods has been the 2D chess-

board pattern because of how effortless its creation is; nevertheless, many other designs 

have also been proposed. 

 

4.1 State-of-the-art Automated Methods 

An approach for automatic calibration using 2D chessboard patterns has been pre-

sented by Douskos et al. (2007). This approach uses corner extraction and point ordering 

to detect the chessboard pattern in multiple images, the vanishing points for an initial 

estimation of the camera parameters, and bundle adjustment for the final parameter es-

timation. It cannot not calculate the actual extrinsic orientation of the camera because of 

the chessboard’s symmetry. The results are as accurate as other planar pattern methods, 

considering that enough good-quality images are used. It is a very simple and effective 

approach that has also been developed into an open-source software called FAUCCAL 

(Fully Automatic Camera Calibration) (Douskos et al., 2009). 

A very similar but more sophisticated approach was developed Wohlfeil et al. (2019). 

The proposed approach uses a chessboard pattern that covers almost the entire image 

plane and contains specific markers in order to calculate the camera orientation. The 

advantages of this approach are the low computational cost and the very accurate results. 

A concern about this method is the construction of a sufficiently large pattern, which can 

be unreasonable for applications where the camera is located far away from the target. 

The authors suggest using the markers to configure multiple chessboard patterns instead 

of one. 

The employment of multiple chessboard patterns within each image was examined 

by Grammatikopoulos et al. (2019). The proposed approach uses multiple unordered co-

planar chessboards instead of a single one. The identical small chessboard patterns are 
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placed in a semi-structured composition on a bigger plane, and the pattern detection and 

parameter estimations follow a similar methodology as the previously mentioned ap-

proaches. Figure 7 shows examples for the images used for the implementation of this 

method. The results are as accurate as other approaches with the added benefit of an 

easier-to-implement configuration for specific applications. The application that motivated 

this approach is the Unmanned Aerial Vehicle (UAV) photogrammetry, where the camera 

is situated very far from the calibration target and therefore the construction of a suffi-

ciently large pattern is impractical. 

 

 

Figure 7: Image dataset for calibration using multiple unordered coplanar chessboards by (Grammatikopoulos et al., 2019) 

 

Another approach to improve upon the chessboard pattern method was suggested 

by Xu et al. (2016). The proposition of this approach is to calibrate based on the 2D per-

pendicular lines extracted from a 2D chessboard pattern, instead of feature points. The 

objective of this approach is to reduce the instability of the traditional calibration methods 

by utilizing the geometrical information of perpendicular lines. An example to illustrate the 

line recognition of this method is presented in Figure 8. The results are indeed more ac-

curate and resistant to noise when compared to Zhang’s and Tsai’s methods. The ap-

proach is also able to handle larger distances of the pattern from the camera in a more 

reliable way. 
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Figure 8: Image example for the recognition of 2D lines from a chessboard pattern by ( Xu et al., 2016) 

 

Instead of the traditional chessboard pattern, Chen & Pan (2020) suggested the use 

of a synthetic random speckle pattern, illustrated in Figure 9. For this approach, the fea-

ture points of the calibration target are detected using the digital image correlation (DIC) 

algorithm (Pan et al., 2013), and subsequently the camera parameters are calculated 

using Zhang’s method. Compared to chessboard patterns, this method offers better au-

tomatic feature point extraction and improved lens distortion correction. While the results 

are very accurate, this approach is limited by the speckle pattern resolution, which needs 

to be large enough to be correctly perceived by the camera sensor. This can be a signif-

icant drawback for low-quality digital cameras. 

 

 

Figure 9: Example of random speckle pattern 
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As an alternative to the 2D calibration targets presented so far, Forbes et al. (2002) 

examined automatic camera calibration using 3D target objects. The 3D structure is 

marked with coded target patterns so that feature points can be detected without knowing 

the object geometry beforehand. The calibration process combines Tsai’s method with a 

pose estimation algorithm for an initial estimation and then refines the parameters using 

bundle adjustment. The precision of this approach has been reported as very high, and 

the configuration is relatively flexible. However, the construction of the 3D calibration tar-

get is much more complex than that of a 2D plane. 

 

 

Figure 10: Example of 3D calibration object by (Forbes et al., 2002) 

 

 

4.3 Comparisons between automated methods 

Our summary and comparison of the featured methods is presented in Table 2. All 

methods presented here have high adequate accuracy to be comparable to previous tra-

ditional calibration methods. The method that utilizes 2D perpendicular lines and that us-

ing a synthetic random speckle pattern can even surpass the precision of traditional meth-

ods under specific conditions. In terms of flexibility, certain methods are constrained by 

impractical requirements. In particular, the full-image chessboard is infeasible for long-

range photography or any other application where the chessboard pattern has to cover a 

large surface. The synthetic random speckle pattern is also limited by the camera resolu-

tion and the availability of such a pattern in a realistic setting. The 2D chessboard pattern 
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approach of the FAUCCAL software relies upon the variety in images to cover the differ-

ent perspectives in order to produce good results. Contrary to the restricted character of 

these methods, the approaches of multiple unordered coplanar chessboards and the 2D 

perpendicular lines attempt to rectify difficult applications by offering better flexibility. 

The complexity of these methods is another important factor that has to be evaluated, 

as the purpose of automating the camera calibration process is to simplify the procedure. 

On that account, the methods that only require a chessboard pattern photographed from 

different perspectives are quite simple to implement and have low computational cost, 

depending only on the optimization of the pattern detection algorithms. The full-image 

chessboard method is a slight exception because it needs special markers on top of the 

chessboard pattern. The method of multiple unordered coplanar chessboards is consid-

ered more complex than other methods because the setup of multiple chessboards is 

more elaborate. Similarly, the synthetic random speckle pattern is more difficult to pro-

duce than its chessboard counterpart. The 3D calibration target is, of course, also more 

difficult to create. Overall, the presented methods have low computational costs and in 

principle do not require any advanced expertise on the subject to be conducted. 

Each of these methods presents certain advantages over the others that can make it 

stand out for specific applications. The full image chessboard method achieves very high 

precision for very low computation cost for close-range photography. The multiple unor-

dered coplanar chessboards method presents a practical solution for UAVs or long-range 

photography. The 2D perpendicular lines method is very resilient to noisy or low-resolu-

tion images. The synthetic random speckle pattern method has the ability to rectify im-

ages with significant lens distortions. Finally, the 3D calibration target method can be 

adapted for a very wide variety of applications where the camera is moving around the 

world space without moving the calibration target for each image. 

All these approaches are accessible, low-cost, and automated enough to be usable 

in real applications, provided that each method can be more effective for different appli-

cations. In the author’s view, the methods presenting a promising solution for common 

photogrammetric problems are the multiple unordered coplanar chessboards and the 2D 

perpendicular lines. These two methods offer a cost-effective solution for calibrations 
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where the camera may be quite far away from the target. Further research on this topic 

would be valuable for the photogrammetric community. 

 

Table 2: Automated Calibration Methods Comparisons 

Method Accuracy Flexibility Complexity Advantage 

FAUCCAL 

(Douskos et al., 

2009) 

High, but no 

extrinsic ori-

entation 

Medium Low 

Fully imple-

mented on 

open-source 

software 

Full Image  

Chessboard 

(Wohlfeil et al., 

2019) 

High 

Low, because 

of the target 

size 

Low 

Very low com-

putation cost 

for very high 

accuracy 

Multiple Unordered 

 Coplanar  

Chessboards 

(Grammatikopoulos 

et al., 2019) 

High High Medium 

Very practical 

for applica-

tions where 

the camera is 

far from target 

2D Perpendicular 

Lines  

(G. Xu et al., 2016) 

Very high High Low 
Resilience to 

noise 

Synthetic Random 

Speckle Pattern 

(Chen & Pan, 

2020) 

Very high Medium Medium 

High accuracy 

for cameras 

with high lens 

distortions 

3D Calibration  

Target (Forbes et 

al., 2002) 

High High Medium 
Very flexible 

method 
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Section 5: Self-Calibration Methods 

As explained in the previous section, the traditional calibration methods require some 

known geometry within the image, which in some cases could be impossible. That is 

where the need for self-calibration methods emerges. The premise of camera self-cali-

bration is that, by establishing specific constraints, the camera parameters can be recov-

ered simply from a series of images. The constraints can be applied to either the intrinsic 

parameters, the scene, or the camera motion.  

 

5.1 Theoretical background for self-calibration 

An important concept for self-calibration is the absolute conic Ω, which is a conic at 

the infinity plane Π∞, as seen in Figure 11. The absolute conic’s perspective projection is 

invariant to the camera position and only depends on the camera’s intrinsic parameters. 

That attribute is useful because the intrinsic parameters can be derived from the motion 

between multiple images of the same camera. 

A practical representation of the absolute conic is constituted by the Dual Absolute 

Quadric Ω*, defined in Equation (5.1), whose image projection ω* is calculated by Equa-

tion (5.2). The absolute quadric is a quadric at the plane at infinity, whose planes are 

tangent to the absolute conic. 

 

𝜴∗ = [

1 0
0 1
0 0
0 0

0 0
0 0
1 0
0 0

]  (5.1) 

 

𝝎𝑖
∗ ≈ 𝑷𝑖𝜴

∗𝑷𝑖
𝑇

   (5.2) 

where i is an index for the camera viewpoint. 

 

Solving Equation (5.2) using (2.1) and (5.1), the image of the absolute quadric is 

defined by Equation (5.3): 
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𝝎𝑖
∗ ≈ 𝑲𝑖𝑲𝑖

𝑇
   (5.3) 

 

The image of the absolute conic can be translated between two camera viewpoints 

by using the homography H of the plane at infinity, where the conic is situated, as in 

Equation (5.4). 

 

𝝎𝑖 ≈ 𝑯𝑖𝑗
∞⁡−𝑇𝝎𝑗𝑯𝑖𝑗

∞⁡−1
   (5.4) 

 

By considering the absolute conic present in all images and applying the epipolar 

transformation, we obtain the Equation (5.5) which is known as the Kruppa equation 

(Faugeras et al., 1992): 

[𝒆]×
𝑇𝑲𝑲𝑇[𝒆]× ≅ 𝑭𝑇𝑲𝑲𝑇𝑭   (5.5) 

where F is the fundamental matrix and ei are the image epipoles 

 

 

Figure 11: The absolute conic Ω (located in the infinity plane π∞) and its projection ω in the images 

 

5.2 Conventional self-calibration methods 

The first self-calibration method presented by Faugeras et al. (1992) proposed that 

by solving the Kruppa equations for at least three images the camera parameters will be 

obtained. For each pair of images, the first step is to find points matched between the 

Absolute 
Conic 

Ω

 

 

 

ω1 

ω2 
Ο1 

Ο2 

e1 
e2 

π∞ 
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images and compute their epipoles. Then, a Kruppa equation (5.5) can be computed for 

each image of the pair. Once at least 6 Kruppa equations have been solved, the intrinsic 

parameters can be extracted from the image of the absolute conic ω. 

The reason that three images are required is because each pair of images produces 

two Kruppa equations and 5 intrinsic parameters are unknown. It is obviously important 

for this method that the intrinsic parameters are constant for all images. 

While reviewing this method, it is important to acknowledge that Kruppa equations 

have problematic specific cases that cannot be resolved, as analyzed by Kahl (1999) and 

Sturm (2000a). Figure 12 displays such a case, where the geometry of the scene is prob-

lematic because one pair of viewpoints has an absolute quadric that is identical with an-

other absolute quadric of a different pair of viewpoints. 

 

 

Figure 12: Problematic pair of viewpoints where Kruppa equations fail, by (Sturm, 2000a) 

 

An application of this method was examined by Luong & Faugeras (1997) for 3D 

reconstruction. The application produced acceptable results with the only input being the 

point correspondences between the images. The precision was lower than traditional cal-

ibration methods and the computational cost much higher, but it proved that camera cal-

ibration can be performed without using calibration targets. Several other approaches 

based on this method were proposed and produced similar results (Hartley, 1994a; 

Pollefeys & Van Gool, 1999; Pollefeys & van Goot, 1997). 

As a substitution for the absolute conic method, Triggs (1997) introduced the concept 

of absolute quadric. The method starts with an initial projective reconstruction and then 
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the absolute quadric and the image conic are found at the same time by using nonlinear 

(sequential quadratic programming) or quasi-linear techniques. The camera calibration 

and Euclidean structure are recovered by correcting the initial estimated projections. Fi-

nally, the bundle adjustment method is used to refine the results. Like in the absolute 

conic case, 3 images from different viewpoints and constant intrinsic parameters are 

enough for the calibration. The procedure still has a high computational cost but is simpler 

than the absolute conic method. 

The requirement of constant intrinsic parameters for the implementation of these self-

calibration methods poses a fundamental problem for practical applications. Especially in 

modern digital photography where the feature of automatic focus to adapt to the scene is 

very common. Pollefeys et al. (1999) proved that self-calibration using the Kruppa equa-

tions is possible for varying intrinsic camera parameters as long as the image rows and 

columns are orthogonal, meaning that there is no skewness in the image plane. Similarly, 

Heyden & Åström (1997) proved that knowing even one intrinsic parameter is sufficient 

for the absolute quadric self-calibration method. A more robust and flexible algorithm was 

proposed by Seo & Heyden (2000), where the orthogonality constraints are used after an 

initial projective reconstruction to iteratively calculate the varying intrinsic parameters. The 

important restriction of this algorithm is that the images must have a constant aspect ratio 

and no skewness. 

A method for self-calibration for a camera with a fixed position and variable rotation 

has been proposed by Hartley (1994b). In this case, the camera calibration is accom-

plished by finding matching points and calculating the projective transformations between 

the images. This method has lower computational cost and provides better accuracy than 

most self-calibration methods but addresses a limited number of practical cases. A similar 

method was proposed by Moons et al. (1996), with the difference that the relative object-

camera translation remains constant between the images. Further analysis on rotating 

camera self-calibration has been done by Zheng & Li (2014). 

Another approach for self-calibration is performed by utilizing the planar geometry in 

the world. Triggs (1998) described a method of self-calibration by observing a plane 

shape located in the images. This method establishes a numerical algorithm that itera-

tively optimizes the constraints of the scene plane to projected plane collineations. The 
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first iteration of this method was efficient but unstable and unoptimized, so Malis & Cipolla 

(2000a, 2000b) made several improvements. Those and other planar self-calibration 

techniques were evaluated by Gurdjos & Sturm (2003) and were found to produce good 

results. 

 

5.3 Comparisons between conventional self-calibration methods 

The characteristics of the various self-calibration methods, as concentrated by the 

author, are presented in Table 3. A considerable disadvantage of these applications is 

that they tend to produce low-accuracy results, unlike traditional calibration methods 

where high accuracy is expected. The planar self-calibration techniques tend to perform 

more accurately than other self-calibration methods. The rotating camera method is one 

of the more accurate self-calibration methods, which however is not that important be-

cause the constraint of the camera position significantly limits the flexibility of this method. 

On the contrary, all other presented self-calibration methods are highly flexible and can 

be utilized for a great variety of applications where the precision threshold is low. 

The complexity of these methods is difficult to measure because it often depends on 

the application where they are being applied. In general, the absolute conic and absolute 

quadric methods have very high computational costs due to the amount of non-linear 

equations that have to be solved. At the same time, these methods require a good under-

standing from the perspective of the user in order to be implemented. The orthogonality 

constraint method and the planar self-calibration method have the advantage of requiring 

fewer computations than the preceding self-calibration methods. The rotating cameras 

method is the exception because the fixed camera potion simplifies the computations by 

a considerable amount. 
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Table 3: Self-Calibration Methods Comparisons 

Method 
Image  

Quantity 
Accuracy Flexibility Complexity 

Absolute Conic 

(Faugeras et al., 

1992) 

3 or more Low High High 

Absolute Quadric 

(Triggs, 1997) 
3 or more Low High 

High, but 

lower than ab-

solute conic 

Orthogonality 

 Constraint  

(Seo & Heyden, 

2000) 

3 or more Low 

High,  

assuming 

camera with 

no skewness 

Medium 

Rotating Camera 

(Hartley, 1994b) 
3 or more Medium 

Low, because 

the camera is 

stationary 

Low 

Planar  

Self-calibration 

(Malis & Cipolla, 

2000a) 

5 or more Medium High Medium 
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Section 6: State-of-the-art Self-calibration Methods 

As observed in the previous section, the domain of camera self-calibration is intricate 

and constantly improving. There is no established ideal approach because each method 

is meant to accommodate different applications with different constraints. However, a 

common aspect between the most conventional self-calibration methods is that the cali-

bration precision is generally lower than that of traditional methods. This section examines 

the state-of-the-art self-calibration approaches that attempt to overcome the typical self-

calibration limitations. 

 

6.1 State-of-the-art self-calibration methods 

A novel approach to self-calibration was introduced by Wong et al. (2003), which 

takes advantage of the contours of objects of revolution. An example of the geometry of 

such an object is illustrated by Figure 13. The assumption is that objects of revolution, 

like bowls and vases, are very common in photographs, so their symmetric features can 

be utilized. Specifically, the silhouette of the object of revolution is detected, its revolution 

axis is defined based on the silhouette’s symmetry, and by relating the vanishing points 

with the revolution axis an initial parameter estimation is done. The initial estimation is 

then optimized by repeating for multiple images. This method was also implemented and 

evaluated by Hödlmoser et al. (2010) for low-cost cameras. The results were accurate, 

but not as precise as traditional methods. 

 

 

Figure 13: Object of revolution projected to a camera, by (Wong et al., 2003) 
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A camera calibration algorithm based on vanishing points was proposed by 

Grammatikopoulos et al. (2007). The algorithm starts by automatically extracting three 

finite vanishing points from at least one image and performs line-fitting combined with 

lens distortions estimation. The intrinsic camera parameters are then estimated from the 

vanishing point pairs. Lastly, the calibration adjustment procedure is implemented to re-

fine the estimated parameters. The progress for each step of this method is illustrated by 

Figure 14. This approach relies on the orthogonality and parallelism that exist in man-

made environments. The algorithm is fully automatic and produces accurate enough re-

sults. 

 

 

Figure 14: Left: Extracted edges, Middle: Vanishing lines, Right: Vanishing lines after lens distortion correction, by 

(Grammatikopoulos et al., 2007) 

 

A practical planar self-calibration approach was presented by Herrera et al. (2016). 

The framework of this approach starts with feature matching, continues with projective 

reconstruction and bundle adjustment, follows it up with homography-based calibration, 

and ends with a metric reconstruction and bundle adjustment. The results are surprisingly 

accurate for a self-calibration method and can even rival the accuracy of traditional meth-

ods. 

Adam et al. (2013) utilized unstructured planar objects to implement an automated 

plane-based self-calibration method that is accomplished directly by bundle adjustment. 

The method requires multiple images of geometry with a distinct texture so that the Scale-

Invariant Feature Transform (SIFT) operator can be used to find matching points. Using 

the matching point, the images can be connected with inter-image homographies via a 
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Random Sample Consensus (RANSAC) method. After the initial estimations, the unsuit-

able images are discarded so the self-calibration bundle adjustment process is sufficient 

for the parameter calibration. This method is also fully automatic, requiring only an appro-

priate use case. 

A more specialized camera self-calibration method for multiple cameras was intro-

duced by Wang et al. (2019) for use in motion capture systems. For the purposes of this 

method, a moving small object, like a tennis ball, is considered as a single point on the 

image plane. That point is moved in a specific motion and through projective reconstruc-

tion and reprojection the full trajectory of the point is calculated. The projection matrix for 

each camera is then estimated based on that trajectory. The resulting precision is efficient 

for the purposes of motion capture. 

 

6.2 Comparisons between state-of-the-art self-calibration methods 

The state-of-the-art self-calibration methods are compared in Table 4. The objects of 

revolution method appears to achieve better accuracy than most conventional self-cali-

bration methods but not by a significant margin. This method also has lowered flexibility 

because the existence of an appropriate shape in the image is not granted. The vanishing 

points method is similar in terms of accuracy and also depends on the scene geometry, 

even though the existence of orthogonal objects in the scene is much more likely. The 

improved planar self-calibration method is more robust than other methods and even sur-

passes the traditional calibration methods in terms of accuracy. The primary advantage 

of planar self-calibration is that planar objects are very common in most photogrammetric 

applications. Herrera et al. (2016) suggest that this method can even replace traditional 

chessboard patterns. The unstructured planar objects method presents similar results 

with the only difference that a distinct texture is used to define the object, which is slightly 

less common and therefore reduces the flexibility of the system. All of these methods are 

accompanied by very high computational costs due to the advanced non-linear computa-

tions involved with the process. An exception to this is the method for the unmarked hu-

man motion capture system, which is more specialized and less complicated for an inex-

perienced user. 
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Most of the presented methods appear to have less flexibility than the conventional 

self-calibration methods while gaining significantly on the accuracy scale. This phenom-

enon indicates that the camera calibration process has to adapt to the relevant application 

it is used for in order to achieve better results. 

 

Table 4: State-of-the-art Self-Calibration Methods Comparisons 

Method Accuracy Flexibility Complexity 

Objects of  

Revolution (Wong 

et al., 2003) 

Medium Medium High 

Vanishing Points 

(Grammatikopoulos 

et al., 2007) 

Medium Medium High 

Improved Planar 

Self-calibration 

(Herrera et al., 

2016) 

High High High 

Unstructured  

Planar Objects 

(Adam et al., 2013) 

High Medium High 

Unmarked Human 

Motion Capture 

System (J. Wang et 

al., 2019) 

High, considering 

the application and 

not general use 

Low Low 
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Section 7: Conclusions 

The camera calibration process has been a subject of research for decades and 

through this time it has matured and advanced into more sophisticated algorithms. The 

discussion around the subject has shifted from just increasing accuracy to decreasing 

complexity and reinforcing convenience. Because of the amount of photogrammetric and 

computer vision applications where camera calibration is needed, an analogous amount 

of research is being conducted. As this thesis has exemplified, there is no universal cam-

era calibration method that can be integrated into every possible application. 

The general trend in camera calibration has been to automate the process as much 

as possible in order to accommodate the influx of inexperienced users who have easy 

access to photogrammetric applications. While self-calibration methods have come a long 

way in terms of accuracy, traditional methods are still very popular among researchers 

because of the low computational costs. In theory, self-calibration should be more desir-

able because of the lack of prerequisites, but in practice the cost of the calibration target 

for automated traditional methods is negligible. There are still many applications where 

calibration targets are impossible or problematic, like UAV photogrammetry, virtual reality, 

and augmented reality. 

In this thesis, the fundamentals of camera calibration, and specifically the camera 

intrinsic and extrinsic parameters, were described and analyzed. Some of the most pop-

ular traditional camera calibration methods were explained and compared in terms of per-

formance, expressed by accuracy, flexibility and complexity. For the category of auto-

mated calibration methods, a variety of state-of-the-art calibration methods, that use cal-

ibration target but are fully automatic, were presented and compared with the same met-

rics of performance. Then, the basis for self-calibration methods was described and the 

most important self-calibration methods were outlined and compared. Lastly, a variety of 

state-of-the-art self-calibration methods were analyzed and compared by the perfor-

mance metrics explained above. 

A lot of the state-of-the-art methods reviewed in this thesis look very promising for 

further research, on how they can apply to different photogrammetric applications or what 

algorithmic optimizations can be done to improve the performance. A branch that has 

great potential and was not included in this thesis is that of camera calibration using deep 
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learning, which is being steadily adopted by more researchers. This review can hopefully 

be a guide to reinforce future studies. 
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