ITANEIIIXTHMIO AYTIKHX ATTIKHX

2XOAH MHXANIKQN

TMHMA MHXANIKQN ITAHPO®OPIKHX KAI
YITIOAOTI'TXTQN

AIITAQMATIKH EPTAXIA

Application of Machine Learning Methods on Astronomical Databases

E@appoyn Teyvik@v Mnyoavikic Madnong e Aotpovoukég Baoeig
AgdopEveV

Anoctoroc-Hpaxing Kvparéog
A.M. 711171037

Empiérov KaOnyntc: Nwkéraog Bacihdg
YovempPrénov: Eppoavovni Mapatooing

ABnva, Oxtodpprog 2023

AIMMAQMATIKH EPTAZIA
Application of Machine Learning Methods on Astronomical Databases
E@appoyn Teyvik@v Mnyoavikins Madnong og Aotpovopikéc Baoseig Agoopévav

Anéctoroc-Hpaxing Kvparéog
A.M. 711171037

I'oooa Xuyypagpig: AyyMka
Empiérov KaOnynmec: Nwéraog Baocirhdg
YovemPrénov: Eppavoonih Mzrpatcoing

EyxpiOnke andé v tppuern e€etaotikn emrpom) v Hépmty 12/10/2023

(Ymoypaon) (Ymoypaon) (Yroypaon)

H Digitally si d b . iqi i . 4 igitally signe
Nikolaos gigkio%(yf:\ggggi ’ GeorgIOS gegc::glg:'s%?gg > éhrlstlnal gh%iztil:w); anedby
. ate: .10. . . eorgoulaki
Vasilas 13:21:02 +0300 Bardis ~ Dae20210.0 OO 210,14

ki 20:45:08 +03'00
Nwéroog Bacirhdg I'eopyrog Mmapong Xprotive I'ewpyoviakn
KaOnyntmc Enixovpoc KaOnyntig EAIIT

AHAQXH XYTTPA®EA AIITAQMATIKHXY EPTAXIAX

O xdtodt vroyeypoappévog Amdoctolog-Hpoxing Kvpariéog tov lmdvvn, pe apBpd untpoov
711171037 @ortmig tov Tunuotog Mnyoavikdv IIAnpoeopikng kot YmoAoylotdv ng ZyoAng
Mnyovikov tov [Tavemiotnuiov Avtikng ATTikng, NAdve OtL:

«Befordve 611 elpon cvyypoaeéag avtig g AmAopatikng epyaciog kot KOs Bonfela tnv omoia iya
YL TNV TPOETOLUAGIO TNG, €ivOl TANPWOS OvayVOPIoUEVT] Kol avapépeTal otny gpyacia. Emiong, ot
omolec mnYyég oamd TIG omoieg €kavo ypnomn dedouévav, Wedv N Aéfewv, eite axpifog eite
TOPOUPPACUEVES, AVOPEPOVTOL GTO GHVOAD TOVG, LE TANPT OVAPOPE GTOVG GLYYPUPEIS, TOV EKOOTIKO
01KO 1] TO TEPLOOIKO, CLUTEPIAAUPAVOUEVAOV KL TOV TNYDV TOV EVOEYOUEVOGC PN oILomombnkay ard
to dwdiktvo. Emiong, Pefardve 6Tt avt) 1 epyacio Exel ocvyypapel omd HEVO OTOKAEIOTIKG KOt
OmOTEAEL TPOIOV TVEVUATIKNG 1O10KTNGIAG TOGO O1KNG LoV, 0G0 Kot Tov [dpvpatog.

[MopaPacn g oveTEPO OKAINUATKNG oL gvBOVNG amoTelel OVGLOAN AOYO Yo TNV OVAKANGT TOL
TTUYIOL HOLY.

O/H AnAov/odoa

EYXAPIXTIEX

Ba MBeia va gvuyaplotom tov lmdvvn Mréhda-Behidn kot ™ Aéomowva Xoatindnuntpiov yo tnv
TOPOYN TOL GLVOAOL dedopévev, OTmg kot Tov Eppavounh Mrpoatcdin v tnv kabodnynor| toug
ko' OAN TN O1GpKELL TNG SIMAOUATIKNAG EPYUGING.

ABSTRACT

The accurate determination of galaxy redshift is a fundamental pursuit in modern astronomy,
providing crucial information about cosmic distances, age, and evolutionary processes. This
dissertation delves into the application of machine learning techniques for the precise prediction of
galaxy redshifts, addressing a persistent challenge in astrophysical research.

Motivated by the complexity of astronomical datasets and the potential for enhancing
predictive accuracy, this study leverages convolutional neural networks (CNNs), a subset of artificial
neural networks, to decode galaxy spectra. Inspired by the success of CNNs in image processing, the
goal is to extract intricate spectral patterns that conventional analytical methods may overlook.

This research signifies the synergy between astronomy and computational methodologies. It
aims to demonstrate the practical utility of machine learning in astronomy, specifically in the context
of redshift prediction, utilizing data sourced from the Gaia mission.

Our results highlight the power of machine learning, particularly CNNs, in redshift
estimation. The trained model showcases commendable accuracy, particularly within specific redshift
ranges.

Keywords: Convolutional Neural Networks, Galaxy redshift, Machine Learning, Gaia Mission

IIEPIAHYH

O axpifrig mpocsdloplopds ™G €pLOPNG UETATOTIONG TOV YoAUSIDY omotelel BepeAiddn
emdimén ™G oOyxpovng ooTPOVOUING, TOPEXOVTNG KPIGUYEG TANPOPOPIEC Y10, TIC KOOUIKEG
OmOoTACELS, TNV NAKia Kot Tig egMkTikég dadikaoies. H mapodoo dumhmpatikny epyacio epPabiover
OTNV EPOPLOYN TEXVIKOV UNYOVIKNG HABNong vy v akpiPn tpofreyn tov epubfpodv petatonicemv
TOV YOAaEIOV, VTIHETORILOVTAG L0 ETIHOVT TPOKANGT] GTNV 0GTPOPLGIKT £PELVA.

Me kivTpo TNV TOAVTAOKOTITO TMV OGTPOVOUIK®Y GUVOA®Y dEGOUEVOV KOl TN SLVATOTTA
evioyvong g axpifelag mpoPreync, N HeAETN owth a&lOTOlEl TO GUVEMKTIKG VEVPOVIKA OlkTva
(Convolutional Neural Networks - CNNs), éva DTOGUVOLO TOV TEXVNTAOV VELPOVIKOV SIKTOHMV, Y10
NV omoK®OKOToiNo™ TV UoHdTOV TV Yoraslov. Eunvevouévo and v emttvyio tov CNN oty
emetepyacio wovag, o otoyog eivar va e&oyBodv mepinhoka PUOUATIKA HOTIPo TOL Ol GUUPATIKESG
avaALTIKéG pébodot pmopet va mapoafrémovy.

H £épguva avut) onuatodotel tn cvvépyelo HETOED TG OGTPOVOUING KOl T®V VTOAOYIGTIKOV
pebodoroyimv. Z1dyoc TG gival vo avadei&et Ty TPOKTIKN ¥PNOIUOTNTO TG UNYAVIKNG pdbnong otnv
OOTPOVOMIO, OLYKEKPIWEVO OTO TAQICIO TG TPOPAEYNG 1TNG HETATOMIONG TOL £pLOPOY,
YPNOYOTOIDVTOG OESOUEVE, TTOV TTPOEPYOVTAL 0t TNV amoctoAr Gaia.

To amoteléopatd pog avadekvhiovy Ty SOVAUN TNG UNYOVIKNG pnabnong, dimg tov CNN,
omv ektiunon ¢ epubpng petatdmiong. To exkmoidevuévo poviélo mopovotdlel afloonueio
axpifela, WOwitepa 08 GUYKEKPIUEVE VPN EPLOPOV LETATOTIGEWDV.

AgEaic-kherdna: Zuveliktikd Nevpovikd Alktva, EpuBpn petatomion yoha&iov, Mnyavikn Mdabnon,

Amooctoin Gaia

10

Table of Contents

Introduction

1.1 Object, Purpose, and Objectives

1.2 Methodology

1.3 Structure

Background

2.1 TheGaiaMission
2.1.1 Objective and Methodology
2.1.2 SPectroscopyo e i e e

2.2 Galaxyredshift oL

2.3 Artificial Intelligence L.

24 Machine Learning oL
2.4.1 Artificial Neural Networks
242 Mechanism of operation
2.4.3 Convolutional Neural Networks
244 Activation functionso
245 Lossfunctions,
24.6 Optimizers v v v i i
247 Batchsize oo
248 Epochs
249 Common training roadblocks

Data Preparation

3.1 Source & Composition
32 Analysis
3.3 Preprocessingo
34 Splitting
Methodology
4.1 Why convolutional neural networks?
4.2 Hyperparameter Optimization
4.2.1 Methodologies of Optimization
422 Results L
4.3 Training & Validation

Results & Discussion

5.1 Error & Standard Deviation
5.2 Visual Analysis
Conclusions

12

15
15
15
15

16
16
16
16
16
17
17
18
19
19
21
23
23
24
24
24

26
26
26
29
29

30
30
30
30
31
31

35
35
36

39

List of Figures

O 00 9 O Lt A W N~

H_
- O

e e e e
00 N N L AW N

Venn diagram of Artificial Intelligence 17
Visualization of an artificial neural network oL 18
Neurons of a convolutional layer (right) connected to their receptive field (left) 20
Pooling layer with a2x2 filter 20
Typical CNN architecture o e 21
The sigmoid function 21
Thetanh function e 22
The ReLU function e 22
Redshift distribution per binof 0.01 27
A randomly selected galaxy spectra 28
Average flux values for galaxy spectra within various redshiftranges 28
Datasplit e e 29
Training and validation loss after 20epochs 32
Training and validation loss after 30 epochs 33
Training and validation Mean Absolute Error 34
Mean error and standard deviation per redshiftbin o000 35
Histogram of the predicted and true redshifts 36
Two dimensional histogram of the predicted and true redshifts 37

13

List of Tables

1 Three randomly selected galaxies from the dataset.

2 Final architecture of the model

3 Mean error, standard deviation

and percentage of data per redshift bin of 0.05

14

1 Introduction

1.1 Object, Purpose, and Objectives

This dissertation primarily addresses the critical issue of accurate galaxy redshift estimation. Galaxy
redshifts are pivotal in modern astronomy, providing crucial insights into cosmic distances, universe
evolution, and more. The topic is of significant interest and relevance within the field.

The main goal of this dissertation is to advance galaxy redshift estimation by applying advanced
machine learning techniques, specifically Convolutional Neural Networks (CNNs). The objective is
evaluating the performance and accuracy of a trained CNN model in predicting galaxy redshifts with the
aim to understand the practical applications of this model in astronomical research.

The contribution of this work lies in advancing knowledge within the field of galaxy redshift estimation.
By applying state-of-the-art machine learning techniques, we aim to provide an innovative approach to

predicting galaxy redshifts, potentially improving accuracy and efficiency in astronomy.

1.2 Methodology

The methodology of this dissertation involves designing, training, and evaluating the performance of a
trained Convolutional Neural Network (CNN). The CNN is trained on a dataset of galaxy spectra sourced
from the European Space Agency’s Gaia mission which came already preprocessed and cleaned, ready for
model training. The CNN is then trained on the dataset and evaluated on a test set of galaxy spectra.

For the actual implementation of the CNN, the Python programming language was used, along with
the Keras deep learning library.

1.3 Structure

The subsequent chapters of this dissertation are organized as follows:

1. Introduction (the current chapter): Provides an overview of the dissertation’s focus, objectives,
methodology, and innovation.

2. Background: Introduce foundational concepts related to the Gaia mission, galaxy redshift and
machine learning methods.

3. Data Preparation: Details the process of selecting and cleaning galaxy spectra data for model
training.

4. Methodology: Elaborates on the methodologies used for CNN model training and evaluation.

5. Results: Presents the findings of our experiments, assesses model performance, and discusses
implications.

6. Conclusion: Summarizes key takeaways and outlines potential areas for future research.

15

2 Background

2.1 The Gaia Mission

The Gaia space mission, conducted by the European Space Agency (ESA), is a scientific endeavor designed
to create an accurate three-dimensional map of the Milky Way galaxy and enhance our understanding of
our cosmic surroundings. This mission relies on precise instrumentation and astrometry.

2.1.1 Objective and Methodology

Gaia employs an array of instruments onboard, with its primary tool being the Astrometric Instrument.
This instrument is equipped with two telescopes and a complex set of detectors. Gaia’s main objective is
to measure the positions and motions of over a billion stars with unprecedented accuracy. By repeatedly
observing these stars over time, Gaia constructs a precise 3D model of the Milky Way galaxy.!

2.1.2 Spectroscopy

One of Gaia’s notable capabilities is its ability to disperse starlight into spectra. This is achieved
through a dedicated Spectroscopic Instrument. This instrument allows Gaia to analyze the spectra of stars,
providing valuable insights into their physical properties, such as composition, temperature, and luminosity.
Spectroscopy enables the classification of stars into various categories, including main-sequence stars,
giants, and white dwarfs.

The capacity to disperse starlight into spectra has implications for the study of galaxy redshift. Gaia’s
Spectroscopic Instrument can also be utilized to analyze the light emitted by galaxies. By measuring
the redshift of galaxy spectra, astronomers can gain insight into the relative motion of galaxies and their
distances from us. This redshift data contributes to our understanding of the expanding universe and
connects our discussion to the subsequent section, where we delve into the concept of galaxy redshift in
greater detail.

2.2 Galaxy redshift

Galaxy redshift is a fundamental astronomical property that describes the relative motion of a galaxy with
respect to Earth. The redshift of a galaxy is measured by analyzing the spectrum of light emitted by the
galaxy, which appears to be shifted towards longer wavelengths due to the Doppler effect. Redshift is a
crucial parameter in astronomy, as it provides information about the distance, velocity, and evolution of
galaxies.
The redshift of a galaxy has no units, and is defined as the fractional shift in the wavelength of light
emitted by the galaxy. Specifically, the redshift “z” is defined as:
_ Aobsv — Aemit
B)\emit
where A5, i the observed wavelength of light from the galaxy, and A.,,;; is the wavelength of that
same light as emitted by the galaxy. A redshift of z = 0 corresponds to no shift in the wavelength (i.e.,
the observed and emitted wavelengths are the same), while a redshift of z = 1 corresponds to a shift of
100% in the wavelength (i.e., the observed wavelength is twice as long as the emitted wavelength).

!Gaia Overview. ESA. September 26 2023. https://www.esa.int/Science_Exploration/Space_Science/Gaia/Gaia_overview

16

https://www.esa.int/Science_Exploration/Space_Science/Gaia/Gaia_overview

Accurate and efficient estimation of galaxy redshift is essential for a wide range of astronomical
studies, including galaxy formation and evolution, large-scale structure of the universe, and dark matter
distribution. However, measuring galaxy redshifts can be a challenging task due to various factors such as
observational noise, instrumental effects, and variations in galaxy spectra.’

2.3 Artificial Intelligence

Artificial Intelligence, commonly abbreviated as Al, signifies the result of extensive research and devel-
opment spanning several decades, aimed at equipping machines with intelligence and decision-making
abilities resembling those of humans.

One of the defining features of Al is its adaptability—machines equipped with Al algorithms can
analyze vast datasets, identify intricate patterns, and make decisions guided by these insights. This
adaptability is particularly evident in the field of Machine Learning, a subset of Al that focuses on the
development of algorithms capable of learning from data.

Avrtificial Intelligence

Machine Learning

Neural Networks

Generative
Models

Figure 1: Venn diagram of Artificial Intelligence?

2.4 Machine Learning

Machine Learning (ML) is the driving force behind the remarkable progress witnessed in Al. At its core,
ML provides the tools and methodologies for machines to learn from experience and iteratively improve
their performance on a specific task. Unlike traditional programming, where explicit instructions dictate
behavior, ML algorithms discern patterns and relationships within data, allowing them to generalize and
make informed decisions when exposed to new information.

ML empowers machines to evolve autonomously, making it indispensable in an era characterized by
ever-expanding datasets and complex problems. It encompasses various paradigms, including supervised

*What do redshifts tell astronomers. EarthSky. October 4 2023. https://earthsky.org/astronomy-essentials/what-is-a-redshift/
3 Artificial Intelligence relation to Generative Models subset, Venn diagram. Wikipedia. September 28 2023. https:
/len.wikipedia.org/wiki/File:Artificial_Intelligence_relation_to_Generative_Models_subset,_Venn_diagram.png

17

https://earthsky.org/astronomy-essentials/what-is-a-redshift/
https://en.wikipedia.org/wiki/File:Artificial_Intelligence_relation_to_Generative_Models_subset,_Venn_diagram.png
https://en.wikipedia.org/wiki/File:Artificial_Intelligence_relation_to_Generative_Models_subset,_Venn_diagram.png

learning, unsupervised learning, and reinforcement learning, each tailored to specific applications and

data types.

2.4.1 Artificial Neural Networks

Artificial neural networks (ANNSs) are a type of machine learning algorithm that is inspired by biological
neural networks in animals. ANNs are composed of individual processing units called neurons, which
are organized into layers. Each neuron receives input from other neurons in the previous layer, applies a
mathematical operation to that input, and passes the output to the next layer. The output of the final layer
of neurons is the predicted output of the network for a given input.

The input layer is the entry point of the neural network, accepting the initial data or features. Each
neuron in this layer corresponds to a specific feature, and the values assigned to these neurons represent
the input data.

Hidden layers, as the name suggests, are intermediary layers that lie between the input and output
layers. These layers contain neurons that process and transform the data as it flows through the network.
The presence of multiple hidden layers enables ANNs to capture complex patterns and relationships
within the data.

The output layer is responsible for producing the final result, whether it’s a classification, prediction,
or decision. The number of neurons in this layer corresponds to the desired number of output classes or
the nature of the prediction task.

inputs output

Figure 2: Visualization of an artificial neural network®

Inside every connection between neurons are numerical parameters known as weights and biases.
These parameters are the essence of a neural network, as they determine the strength and significance of
the connections between neurons.

Weights represent the strength of the connections between neurons. Each connection has an associated
weight, which multiplies the output of one neuron before it’s passed as input to the next neuron. During
training, ANNs adjust these weights to minimize the difference between their predictions and the actual
outcomes, effectively learning from the data.

Biases are additional parameters that are essential for fine-tuning the behavior of individual neurons.
They ensure that neurons can activate even when the weighted sum of their inputs is zero. Biases enable
ANNSs to model complex functions and make predictions beyond linear relationships in the data.

A single neuron can be described as the sum of its inputs multiplied by their corresponding weights,
plus the bias. This sum is then passed through an activation function, which determines the neuron’s
output. The activation function is a mathematical function that introduces non-linearity into the network,

“Michael A. Nielsen. Neural networks and Deep Learning. Determination Press. 2015

18

allowing it to learn complex patterns and relationships in the data. We will discuss activation functions in
more detail later on.

Mathematically, the output of a neuron can be described as:

y=F_ wiwi+b)
=1

where y is the output of the neuron, f is the activation function, w; is the weight of the ith input, x; is
the sth input, b is the bias, and n is the total number of inputs.

2.4.2 Mechanism of operation

The operation of an ANN is divided into two fundamental phases: the forward pass and the backward
pass. During the forward pass, input data is propagated through the network from the input layer to the
output layer. Each neuron processes its inputs, applies the activation function, and passes the result to the
next layer.

The backward pass, also known as backpropagation, is where the magic of learning happens. In this
phase, the network compares its predictions with the actual outcomes, calculating the discrepancy between
the two. It then propagates this error backward through the network, adjusting the weights and biases
to minimize a specified loss function. The loss function serves as a measure of the error between the
network’s predictions and the actual target values. By diminishing this loss, the neural network enhances
its capacity to make increasingly accurate predictions.’

The backpropagation algorithm process depends on an optimization technique known as gradient
descent. Gradient descent determines how the network’s weights should be updated to minimize the loss
function. To achieve this, it computes the gradient of the loss function with respect to each weight in the
network. In other words, it calculates the rate of change of the loss concerning individual weights. This
gradient offers crucial guidance, pointing the way toward the most rapid reduction in the loss function.

As the gradient highlights the direction of steepest descent, it becomes the “compass” for the adjust-
ment of weights. Weight updates are made proportionally to the gradient, ensuring that changes are made
more significantly in areas where the loss function is decreasing most rapidly. This iterative process of
calculating gradients and updating weights continues until the network converges to a state where the loss

is minimized to the greatest extent possible.

2.4.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a specific type of ANN that has proven to be highly effective
for tasks involving image and video analysis, such as object detection, segmentation, and classification.
CNN s are inspired by the structure and function of the visual cortex in animals that is tuned to detect
specific visual features. In a similar way, CNNs are designed to learn and extract meaningful features
from raw data.

The key differentiator of CNNs is their use of convolutional layers, which enable the network to
automatically learn and extract local spatial features from raw input data. In a convolutional layer, each
neuron is connected only to a small, localized region of the input data, known as the receptive field. By
sharing weights across all neurons within a receptive field, the network can efficiently learn to detect local
patterns and features, regardless of their location within the input image.

SFrancois Chollet. Deep Learning with Python. Manning Publications. 2017
®What is Gradient Descent?. IBM. September 27 2023. https://www.ibm.com/topics/gradient-descent

19

https://www.ibm.com/topics/gradient-descent

—=00000

Figure 3: Neurons of a convolutional layer (right) connected to their receptive field (left)’

CNN s typically also include pooling layers, which downsample the output of the previous layer by
taking the maximum or average value within small local regions. This helps to reduce the dimensionality
of the input and extract higher-level features from the local features learned in the previous convolutional

layer.

Single depth slice
1 0o 2 3

6 8

—>
1 0 3
2 4

4 6
3 1
1 2

v

Y

Figure 4: Pooling layer with a 2x2 filter

The final layers of a CNN are fully connected layers, which take the outputs of the previous convo-
Iutional and pooling layers and use them to make a prediction. In the case of image classification, for
example, the output of the final fully connected layer might be a vector of probabilities indicating the
likelihood of each possible class. In our case, instead of class probabilities, the output of the final fully
connected layer will yield a single numeric value representing the predicted redshift of the observed

galaxy.’

"Input volume connected to a convolutional layer. Wikipedia Commons. September 28 2023. https://en.wikipedia.org/wiki/
File:Conv_layer.png

8Pooling layer with a 2x2 filter and stride = 2. Wikipedia Commons. September 28 2023. https://en.wikipedia.org/wiki/File:
Max_pooling.png

%Francois Chollet. Deep Learning with Python. Manning Publications. 2017

20

https://en.wikipedia.org/wiki/File:Conv_layer.png
https://en.wikipedia.org/wiki/File:Conv_layer.png
https://en.wikipedia.org/wiki/File:Max_pooling.png
https://en.wikipedia.org/wiki/File:Max_pooling.png

Fully
Connected

Convolution

o
| =
—+
=
=
—

Input
Lry-.

et Tgaiy

o Re ke

Figure 5: Typical CNN architecture!”

2.4.4 Activation functions

Activation functions are mathematical functions that are applied to the output of each neuron in a neural
network. They are used to introduce non-linearity into the network, which is essential for learning complex
patterns and relationships in the data. The most common activation functions used in neural networks are
the sigmoid, tanh, and ReLU functions. For convolutional neural networks, the ReLU function is typically
used for all layers except the output layer, which uses a linear activation function.!!

The sigmoid function is defined as:
_ 1
S l4e®

where z is the input to the function. The sigmoid function is a smooth, S-shaped function that returns

o(x)

a value between 0 and 1. It is commonly used in binary classification problems, where it is used to convert

the output of the final layer to a probability between 0 and 1.2
. -
0.5
| 5 | |
-6 -4 -2 0 2 4 6

Figure 6: The sigmoid function'?

Phung, & Rhee,. (2019). A High-Accuracy Model Average Ensemble of Convolutional Neural Networks for Classification
of Cloud Image Patches on Small Datasets. Applied Sciences. 9. 4500. 10.3390/app9214500.

"Rectified Linear Units (ReLU) in Deep Learning. Kaggle. September 27 2023. https://www.kaggle.com/code/dansbecker/r
ectified-linear-units-relu-in-deep-learning

12 Activation Functions in Neural Networks. Towards Data Science. September 27 2023. https://towardsdatascience.com/activ
ation-functions-neural-networks- 1cbd9f8d91d6

BSigmoid function. Wikipedia Commons. September 28 2023. https://en.wikipedia.org/wiki/File:Logistic-curve.svg

21

https://www.kaggle.com/code/dansbecker/rectified-linear-units-relu-in-deep-learning
https://www.kaggle.com/code/dansbecker/rectified-linear-units-relu-in-deep-learning
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://en.wikipedia.org/wiki/File:Logistic-curve.svg

The tanh function is defined as:

et —e %
et 4+ e %

where x is the input to the function. The tanh function is also a smooth, S-shaped function that returns

tanh(z) =

a value between -1 and 1. It is similar to the sigmoid function, but it is zero-centered.'*

tanh(x)

Figure 7: The tanh function'>
Finally, the ReLU function is defined as:

0 ifx<O
ReLU(x) =
x otherwise
where x is the input to the function. The ReLLU function is a simple function that returns O if the input

is negative, and the input itself if the input is positive.

-10.0 -7.5 -5.0 =25 0.0 2.5 5.0 7.5

Figure 8: The ReLU function'¢

14 Activation Functions in Neural Networks. Towards Data Science. September 27 2023. https://towardsdatascience.com/activ
ation-functions-neural-networks- 1cbd9f8d91d6
5Tanh function. Wikipedia Commons. September 28 2023. https://en.wikipedia.org/wiki/File:Hyperbolic_Tangent.svg

22

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://en.wikipedia.org/wiki/File:Hyperbolic_Tangent.svg

2.4.5 Loss functions

Loss functions are mathematical functions that are used to measure the difference between the predicted
output of a neural network and the actual output. They are used to guide the training process by indicating
how well the network is performing. The most common loss functions used in neural networks are the
mean squared error (MSE) and mean absolute error (MAE) functions.

The MSE function is defined as:

n

1 .
MSE = — > (i — i)
i=1

The MAE function is defined as:

1 n
MAE = — i — Ui
n Zz; |yz yz’
where y; is the actual output and g; is the predicted output for the ith sample, and n is the total number
of samples.
Another loss function that is commonly used in neural networks is the Huber loss function. It is less

sensitive to outliers in data than the squared error loss. It’s defined as:

1~ J 5(vi —9:)° if Jy; — gil <6

Ls =
n = | lyi — il — 6% otherwise

where § is a small constant.

2.4.6 Optimizers

Optimizers serve as pivotal components in the training of neural networks, enabling the iterative adjustment
of network weights to minimize the loss function and enhance overall performance. They play a crucial
role in guiding the network’s convergence toward optimal solutions. In the realm of CNNs, several
optimizers are frequently employed to fine-tune model parameters. Notable among them are the stochastic
gradient descent (SGD), Adam, and Adamax optimizers.

SGD is a foundational optimizer that forms the basis for many modern variants. It operates by
updating weights in the direction that reduces the loss function. Although simple, SGD can be effective in
optimizing neural networks, especially when coupled with proper learning rate schedules.!”

The Adam optimizer, which stands for Adaptive Moment Estimation, is a powerful and widely adopted
optimization algorithm. It combines the benefits of both momentum-based updates and adaptive learning
rates. Adam maintains two moving averages for each weight, resulting in efficient and adaptive weight
updates. This optimizer excels in handling non-stationary or noisy objective functions, making it a popular
choice for training CNNs.!8

Adamax is an extension of the Adam optimizer that offers certain advantages in terms of computational
efficiency.

16Jason Brownlee. A Gentle Introduction to the Rectified Linear Unit (ReLU). Machine Learning Mastery. September 28
2023. https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks

7Stochastic Gradient Descent (SGD). GeeksForGeeks. September 27 2023. https://www.geeksforgeeks.org/ml-stochastic-
gradient-descent-sgd/

18 Adam: A Method for Stochastic Optimization. arXiv. September 27 2023. https://arxiv.org/abs/1412.6980

23

https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks
https://www.geeksforgeeks.org/ml-stochastic-gradient-descent-sgd/
https://www.geeksforgeeks.org/ml-stochastic-gradient-descent-sgd/
https://arxiv.org/abs/1412.6980

2.4.7 Batch size

The batch size is a parameter in the training phase of a neural network. It signifies the number of data
samples that are processed in a single forward and backward pass during each training iteration. The
choice of batch size carries significant implications for the network’s training dynamics.

Utilizing a larger batch size can expedite the training process, as more samples are processed in
parallel. This can lead to faster convergence, especially on hardware optimized for parallel computations.
However, there is a trade-off, as larger batch sizes can increase the risk of overfitting. The network might
memorize the training data rather than learning to generalize from it.

Conversely, a smaller batch size entails processing fewer samples at once. This can result in slower
training progress, particularly on hardware with limited parallelism. However, smaller batch sizes often
lead to better generalization, as the network receives a more diverse set of samples during training. It is

less likely to memorize the training data and is more likely to extract meaningful patterns.'®

2.4.8 Epochs

Epochs refer to the number of times the entire training dataset is processed by the neural network. Each
epoch represents a complete cycle through the dataset, during which the network updates its weights based
on the observed errors. The choice of the number of epochs is another vital training hyperparameter.

Training for too few epochs may result in an underfit model, and, conversely, training for an excessive
number of epochs can lead to overfitting, more about these two concepts in the next section.

Determining the ideal number of epochs involves a balance between achieving convergence and
avoiding overfitting. Typically, researchers employ techniques like early stopping, which monitors
validation performance and halts training when it starts to degrade, to guide epoch selection.

2.4.9 Common training roadblocks

Overfitting and underfitting where mentioned before as two common problems that can occur during the
training of a neural network. There are also other common problems that can occur during training, such
as vanishing and exploding gradients.

2.4.9.1 Opverfitting & Underfitting Overfitting occurs when a model learns to fit the training data too
closely. In other words, it captures not just the underlying patterns but also the noise in the data. As a
result, the model performs exceptionally well on the training data but poorly on unseen data. Overfitting
is a sign that the model has become too complex, often due to hyperparameters like a high degree of
polynomial features or a large number of hidden layers in a neural network.

Underfitting on the other hand, occurs when a model is too simple to capture the underlying patterns
in the data. It fails to learn from the training data effectively and, as a consequence, performs poorly
both on the training set and unseen data. Underfitting can be a result of hyperparameters that restrict the
model’s capacity, such as a shallow architecture or a low learning rate.

To mitigate overfitting, regularization techniques such as dropout, L1/L2 regularization, and early
stopping are commonly employed. These methods introduce constraints on the model’s parameters,
discouraging it from fitting noise in the data. In the case of underfitting, model architecture adjustments,
including increasing the depth and complexity of neural networks, may be necessary. A careful balance

How to Control the Stability of Training Neural Networks With the Batch Size. Machine Learning Mastery. September
27 2023. https://machinelearningmastery.com/how-to-control-the-speed-and-stability- of-training-neural-networks-with-
gradient-descent-batch-size/

24

https://machinelearningmastery.com/how-to-control-the-speed-and-stability-of-training-neural-networks-with-gradient-descent-batch-size/
https://machinelearningmastery.com/how-to-control-the-speed-and-stability-of-training-neural-networks-with-gradient-descent-batch-size/

between model complexity and the size of the training dataset is crucial to combat both overfitting and
underfitting effectively.?’

2.4.9.2 Vanishing & Exploding Gradients Vanishing gradients are another issue in neural networks,
particularly in networks with many layers. When backpropagating errors through deep architectures,
gradients can become infinitesimally small. This phenomenon impedes the effective update of weights
in earlier layers, causing slow convergence or stagnation in learning. Vanishing gradients restrict the
network’s capacity to capture long-range dependencies in sequential data or hierarchies of features in
deep convolutional networks.

Conversely, exploding gradients occur when gradients become exceedingly large. This can lead to
unstable training dynamics, as the weights are updated too drastically. Exploding gradients are often a
result of poor weight initialization or a high learning rate.

Several strategies have been proposed to address vanishing and exploding gradients. Weight initializa-
tion techniques, such as Xavier (Glorot) initialization, are designed to ensure proper scaling of weights,
helping to alleviate the vanishing gradient problem. Gradient clipping, which involves bounding gradients
during training, prevents them from reaching extremely high values, mitigating the issue of exploding
gradients. Additionally, the use of activation functions with derivatives that do not approach zero or
infinity, such as the Rectified Linear Unit (ReLU), has become prevalent in deep neural networks, offering
some resilience against vanishing and exploding gradients.?!

D 0verfitting and Underfitting With Machine Learning Algorithms. Machine Learning Mastery. October 6 2023. https:
//machinelearningmastery.com/overfitting- and-underfitting- with-machine-learning-algorithms/

2I'The Challenge of Vanishing/Exploding Gradients in Deep Neural Networks. Analytics Vidhya. October 6 2023. https:
/Iwww.analyticsvidhya.com/blog/2021/06/the-challenge-of-vanishing-exploding- gradients-in-deep-neural-networks/

25

https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://www.analyticsvidhya.com/blog/2021/06/the-challenge-of-vanishing-exploding-gradients-in-deep-neural-networks/
https://www.analyticsvidhya.com/blog/2021/06/the-challenge-of-vanishing-exploding-gradients-in-deep-neural-networks/

3 Data Preparation

3.1 Source & Composition

N.B: The data collection and cleaning was already done by loannis Bellas-Velidis and Despina Hatzidim-
itriou who worked on Gaia’s Unresolved Galaxy Classifier (UGC) and who generously provided us with
the dataset. What follows is their process of obtaining it.”

The instances of the data set are selected galaxies with known redshifts. The target value is the redshift
of the source galaxy or a specific value derived from it. The input data are the flux values of the sampled
BP/RP (blue/red photometers, the instruments on board Gaia) spectrum of the galaxy??. The edges of the
BP spectrum are truncated by removing the first 34 and the last 6 samples, to avoid low signal-to-noise
data. Similarly, the first 4 and the last 10 samples are removed from the RP spectrum. The “truncated”
spectra are then concatenated to form the vector of 186 (80 BP + 106 RP) fluxes in the 366nm to 996nm
wavelength range.

The galaxies used for the dataset were selected from the Sloan Digital Sky Survey Data Release 16
(SDSS DR16) archive. Galaxies with bad or missing photometry, size, or redshift were rejected. The
SDSS galaxies were cross-matched with the observed Gaia galaxies. The result was a dataset of SDSS
galaxies that were also observed by Gaia. Due mainly to the photometric limit of the Gaia observations,
most of the high-redshift galaxies (z > 1.0) are absent. The high redshift regime is very sparsely populated
and would lead to a very unbalanced training set. Thus, an upper limit of z = 0.6 was imposed to the
SDSS redshifts, rendering a total of 520.393 sources with 0 < z < 0.6 forming the final dataset.

3.2 Analysis

The following section provides an overview of the dataset used for training the CNN model. It includes a
sample of the data and a brief data analysis of the data’s distribution and characteristics.

Table 1: Three randomly selected galaxies from the dataset.

z fluxg fluzxy fluzs .. fluxisgs fluzigq fluzxiss
0.1735581 0.539 0.514 0.439 ... 2909 2.705 2.386
0.2647779 -0.213 -0.14 0.052 ... 13.063 12.639 12.429
0.1288678 0.394 0.329 0.287 ... 5484 5.281 5.123

This table shows a sample of the dataset which includes 3 randomly selected galaxies. The first

column is the redshift z of the galaxy, and the remaining columns are its first and last 3 flux values.

“Bellas-Velidis & Hatzidimitriou. Unresolved Galaxy Classifier (UGC). September 30 2023. https:/gea.esac.esa.int/archive
/documentation/GDR3/Data_analysis/chap_cu8par/sec_cu8par_apsis/ssec_cu8par_apsis_ugc.html

“René Andrae. Sampled Mean Spectrum generator (SMSgen). Gaia Archive. September 30 2023. https:/gea.esac.esa.int/arc
hive/documentation/GDR3/Data_analysis/chap_cu8par/sec_cu8par_apsis/ssec_cu8par_apsis_smsgen.html

26

https://gea.esac.esa.int/archive/documentation/GDR3/Data_analysis/chap_cu8par/sec_cu8par_apsis/ssec_cu8par_apsis_ugc.html
https://gea.esac.esa.int/archive/documentation/GDR3/Data_analysis/chap_cu8par/sec_cu8par_apsis/ssec_cu8par_apsis_ugc.html
https://gea.esac.esa.int/archive/documentation/GDR3/Data_analysis/chap_cu8par/sec_cu8par_apsis/ssec_cu8par_apsis_smsgen.html
https://gea.esac.esa.int/archive/documentation/GDR3/Data_analysis/chap_cu8par/sec_cu8par_apsis/ssec_cu8par_apsis_smsgen.html

Distribution of Redshifts

20000 ~

15000 -

10000 ~

Number of Galaxies

5000 4

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Redshift

Figure 9: Redshift distribution per bin of 0.01

The figure above shows the distribution of the redshifts in the dataset. The x-axis represents the
redshift, and the y-axis represents the number of galaxies in the dataset with that redshift. The redshifts
are split into bins of 0.01, and the number of galaxies in each bin is plotted. The figure shows that the
redshifts are not uniformly distributed, but instead, they follow a highly skewed (skewness of 1.094)
normal distribution. The mean of the redshifts is 0.142, the median 0.126 and the standard deviation is
0.079.

The 99th percentile of the redshifts is approximately 0.37, which means that 99% of the galaxies have
a redshift of z < 0.37. As we will see later on, this will have an impact on the performance of the model
in the redshifts of that range.

27

Galaxy Spectra

—— Galaxy #497365, z = 0.2211003

Flux

Wavelength (366nm to 996nm)

Figure 10: A randomly selected galaxy spectra

This figure shows a randomly selected galaxy spectra. The x-axis represents the wavelength in
nanometers, and the y-axis represents the flux. The dip in the middle of the spectrum is the point where

the BP and RP spectra are concatenated.

Average Flux for Different Redshift Ranges

Redshifts 0-0.1

Redshifts 0.1-0.2
Redshifts 0.2-0.3
Redshifts 0.3-0.4
Redshifts 0.4-0.5
Redshifts 0.5-0.6

Flux

Wavelength (366nm to 996nm)

Figure 11: Average flux values for galaxy spectra within various redshift ranges

This figure shows the average flux values for galaxy spectra within various redshift ranges.
We split the redshifts into 6 ranges: [0,0.1), [0.1,0.2), [0.2,0.3), [0.3,0.4), [0.4,0.5), and [0.5, 0.6].
For each range, we calculated the average flux values of 1000 randomly chosen galaxies (or all available,

if fewer than 1000 were in a range).

28

The figure shows that the average flux values decrease as the redshift increases. This might also
explain why our model performs worse on higher redshifts, as the flux values are “flatter”, and their
features and characteristics less pronounced.

3.3 Preprocessing

Data preprocessing is a crucial step in machine learning, as it can significantly impact the performance
of a model. It involves transforming raw data into a format that is more suitable for machine learning
algorithms. This process can include various steps, such as data cleaning, feature scaling and normalization,
and data splitting.>*

Feature scaling is a preprocessing step to standardize the range of independent variables or features in
the dataset. It ensures that no single feature disproportionately influences the learning process. Common
scaling techniques include min-max scaling, Z-score normalization, and robust scaling. Properly scaled
features promote faster convergence and more stable training.

On our dataset, since the data was already cleaned, the only preprocessing step we had to apply was
min-max scaling to the flux values, which rescales them to the range [0, 1]. Other scaling techniques were
also tested, but min-max scaling yielded the best results.

It is mathematically defined as:

Tnorm = L
Tmazr — Tmin

where z is the original data and z;,,;, and 2,4, are the minimum and maximum values of z, respec-

tively.

3.4 Splitting

Data is typically split into three sets: a training set, a validation set, and a test set. The training set is used
to train the neural network, the validation set is used to fine-tune hyperparameters and monitor model
performance during training, and the test set evaluates the model’s performance on unseen data. This
separation ensures that the model’s performance metrics are reliable indicators of its generalization ability.

Our dataset was first split into a training and a test set. The training set contained 90% of the data,
while the test set contained the remaining 10%. Then of the training set, 30% was used as a validation set.
This resulted in a training set of 63% of the data, a validation set of 27% of the data, and a test set of 10%
of the data.

67% 23% 10%
Training Set Validation —Test—
Set Set

Figure 12: Data split

2*Why Data should be Normalized before Training a Neural Network. Towards Data Science. September 26 2023. https:
/Itowardsdatascience.com/why-data-should-be-normalized-before-training-a-neural-network-c626b7f66c7d

29

https://towardsdatascience.com/why-data-should-be-normalized-before-training-a-neural-network-c626b7f66c7d
https://towardsdatascience.com/why-data-should-be-normalized-before-training-a-neural-network-c626b7f66c7d

4 Methodology

4.1 Why convolutional neural networks?

The basis of the decision to use a convolutional neural network is within the nature of the input data.
Galaxy spectra, represented as a one dimensional array of flux values have similar characteristics to those
of images. It is essentially a one dimensional image, where each “pixel”, or, flux at a particular wavelength
is correlated with its neighbours. One could thing of this problem as trying to predict the frequency (or
wavelength) of a sine wave.

Convolutional neural networks excel at capturing local patterns within data. Unlike traditional neural
networks that treat each data point independently, CNNs use convolutional layers to slide over the input,
extracting relevant features through a receptive field.

Another significant advantage of CNNss is their ability to perform dimensionality reduction effectively.
By applying convolutional and pooling layers, these networks reduce the length of the input while retaining
essential features. This is particularly advantageous when working with one dimensional arrays, as it
helps in condensing the spectral information while simultaneously preserving the most critical spectral
features.

4.2 Hyperparameter Optimization

Hyperparameters are the knobs and levers of a machine learning model. While regular parameters are
learned from the training data (e.g., the weights in a neural network), hyperparameters are predefined
settings that dictate how a model learns. These settings influence various aspects of the learning process,
including the learning rate, the number of hidden layers and their units, the batch size, etc.

4.2.1 Methodologies of Optimization

Hyperparameter optimization involves exploring various combinations of hyperparameters to find the
optimal configuration. Several methods exist for this, including grid search, random search, and Bayesian
optimization.

The traditional way of performing hyperparameter optimization has been grid search, which is simply
an exhaustive searching through a manually specified subset of the hyperparameter space of a model.

Secondly, random search simply selects hyperparameters randomly. While it might not explore every
combination, it often reaches near-optimal configurations faster than grid search, especially when only a
small number of hyperparameters affects the final performance of the model.?

Finally, Bayesian optimization employs probabilistic models to guide the search efficiently. It smartly
explores the space of potential choices of hyperparameters by deciding which combination to explore
next based on previous observations. This makes it more efficient than random and grid search, as it can
reach near-optimal configurations faster.”® For this reason, and since Keras provides a simple API for it,
Bayesian optimization was chosen for hyperparameter optimization.

The search space of hyperparameters was chosen as: the number of convolutional layers, the number
of filters in each convolutional layer, the kernel size of each convolutional layer, the number of dense

»Random Search for Hyper-Parameter Optimization. Journal of Machine Learning Research. https://www.cs.ubc.ca/labs/alg
orithms/Projects/SMAC/papers/11-LIONS5-SMAC.pdf

2Sequential model-based optimization for general algorithm configuration. Learning and Intelligent Optimization. Lecture
Notes in Computer Science. https://www.cs.ubc.ca/labs/algorithms/Projects/SMAC/papers/11-LION5-SMAC.pdf

30

https://www.cs.ubc.ca/labs/algorithms/Projects/SMAC/papers/11-LION5-SMAC.pdf
https://www.cs.ubc.ca/labs/algorithms/Projects/SMAC/papers/11-LION5-SMAC.pdf
https://www.cs.ubc.ca/labs/algorithms/Projects/SMAC/papers/11-LION5-SMAC.pdf

layers, the number of units in each dense layer, their activation functions, the loss function, and the

optimizer.

4.2.2 Results

The final architecture of the model (after Bayesian hyperparameter optimization) is as follows:

Table 2: Final architecture of the model.

Layer type Filters / Units Kernel Size # of Params
Convolutional 256 5 1536
Max Pooling - - 0
Convolutional 256 5 327936
Max Pooling - - 0
Convolutional 128 3 98432
Max Pooling - - 0
Convolutional 64 2 16448
Max Pooling - - 0
Flatten - - 0
Dense 256 - 147712
Dense 256 - 65792
Dense 128 - 32896
Dense 64 - 8256
Dense 1 - 65
Total 699.073

The optimizer and loss function used (after hyperparameter optimization) was the Adamax optimizer
with the default starting learning rate of 0.001 and the huber loss function with the default parameters,
respectively.

The batch size and number of epochs were not included in the search space of hyperparameters, but
instead were chosen manually after experimentation using the early stopping technique. The batch size
was chosen as 16 and the number of epochs as 20.

4.3 Training & Validation

The model was trained on a single AMD RX 6600 GPU with 8GB of VRAM. The training process took
approximately 1 hour and 15 minutes. The training and validation loss and mean absolute error (MAE)

are shown in the figures below.

31

Training and Validation Loss

X % Training Loss
Validation Loss
0.00065 4
0.00060 4
] x
n
3
0.00055 - x
x
X
X %
¥ x
0.00050 X x o
x
X %
X x x »

T T T T T T T T T T T T T T T T T T T T
01 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19
Epochs

Figure 13: Training and validation loss after 20 epochs

We can see from the training and validation loss figure that the model doesn’t overfit, as the training
loss decreases monotonically the validation loss closely follows it. The training loss is slightly lower than
the validation loss, which is expected, as the validation set is data that the model hasn’t seen before.

It might seem from this figure that if we were to train the model for more epochs, the training and
validation losses would continue to decrease. However, this is not the case, as the model has already
converged, and training it for more epochs would only lead to overfitting, as shown by the next figure.

32

Training and Validation Loss

X ¥ Training Loss
WValidation Loss
0.00065 4
0.00060 -
x

%]
g

0.00055 X

x
x
X %
¥ x
0.00050 - X 3 v
¥ % x
X x
X w X x »
X » » * %
0.00045 X X x

T T T T
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Epochs

Figure 14: Training and validation loss after 30 epochs

From this figure we can see that the training loss continues to decrease after 20 epochs, but the

validation loss keeps hovering around the same value (0.00050) as with 20 epochs. This is a clear sign

that the model has converged and is now overfitting.

33

Training and Validation Mean Absolute Error (MAE)

X ¥ Training MAE

0.026 - Validation MAE

0.025 ~
» 0.024 - X
;]
5

X
0.023 ~
X
X
X % »
0.022 - X
X x
¥ x
T X X ox oy

T T T T T T T T T T T T T T T T T T T T
01 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19
Epochs

Figure 15: Training and validation Mean Absolute Error

This figure shows the Mean Absolute Error (MAE) of the training and validation sets. The MAE is a
metric that measures the average difference between the model’s predictions and the actual values. It’s a
common metric used to evaluate the accuracy of regression models.

The training loss seems to converge to a value of approximately 0.021 after 20 epochs. The validation
loss is also exactly the same, which means that the model performs equally well on the training and
validation sets. This is a good sign, as it means that the model generalizes well to unseen data.

34

5 Results & Discussion

Next we will discuss the results of the model and its performance on the test set by analyzing its

performance on the different redshift ranges through looking at different figures and metrics.

5.1 Error & Standard Deviation

The model was evaluated on the test set, which contained 10% of the data (around 52.000 samples). The

test set was not used during training, so it represents unseen data.

It achieved a mean absolute error (MAE) of 0.021 on the test set which, practically, means that the

model’s predictions are on average 0.021 away from the actual values. For example, if the actual redshift

of a galaxy is 0.142 (the dataset’s mean redshift), the model’s prediction will be either 0.163, or 0.121, on

average. Now, let’s look at the model’s performance on more specific different redshift ranges.

Table 3: Mean error, standard deviation and percentage of data per

redshift bin of 0.05

redshift bin mean error std (o) % of data
0.00-0.05 0.0216 0.0236 6.62
0.05-0.10 0.0117 0.0208 27.77
0.10-0.15 0.0013 0.0243 28.99
0.15-0.20 -0.0081 0.0296 16.61
0.20-0.25 -0.0110 0.0346 8.80
0.25-0.30 -0.0122 0.0333 6.00
0.30-0.35 -0.0248 0.0351 3.55
0.35-0.40 -0.0458 0.0416 1.15
0.40-045 -0.0793 0.0593 0.30
0.45-0.50 -0.1327 0.0806 0.11
0.50-0.55 -0.1804 0.1128 0.06
0.55-0.60 -0.2100 0.0978 0.04

Mean error between CNN and SDSS

Mean error and std between CNN and SDSS

0.4 4

0.29

- 2(SD5S)

00l 3

= z(CNN)

zDiff

0.4 4

0.21

- z(5DsS)

0.01

= z(CNN)

zDiff

== Mean Error
=== Standard Deviation

0.3
redshift

T T
0.0 0.1 0.2

T
0.4

T
0.5

0.6

T T T T
0.3 0.4 0.5 0.6

redshift

T T T
0.0 0.1 0.2

Figure 16: Mean error and standard deviation per redshift bin

35

The absolute mean error is < |0.21] for the whole dataset, and the standard deviation is < 0.1. As the
redshift increases, the absolute mean error also increases, and the standard deviation increases as well.
This is expected, as the model was trained on a dataset that contained mostly low redshift galaxies.

Since, though, 99% of the galaxies have a redshift of z < 0.37, we can calculate the mean absolute
error for the first 7 bins (0 to 0.35) to determine the model’s performance on the overwhelming majority
of the data. The mean absolute error for these bins is 0.013 and the mean standard deviation is 0.032. This
means that the model’s predictions are on average 0.013 away from the actual values, which is a very
good result.

We can also pick out the best performing bins which are the 2nd, 3rd, 4th, 5th and 6th redshift bins,
and which constitute 88.17% of the data. The mean error in these bins is 0.00886.

The best performing bin is the 3rd bin (0.10 - 0.15) with 29% of the data and a mean error of 0.0013
and a standard deviation of 0.0243. This means that the model’s predictions are on average 0.0013 away
from the actual values, which is an excellent result.

The worst performing bins are the 9th, 10th, 11th and 12th redshift bins, which constitute 0.51% of
the data. The mean absolute error in these bins is 0.15.

The first bin (0.00 - 0.05) is also a relatively badly performing bin, at least compared to the next 6,
with a mean error of 0.0216. This is not entirely expected, since galaxies with such a low redshift, and
therefore close to Earth, should have low signal-to-noise spectra and thus have cleaner data for a model to
learn from.

A final note is that the model’s bias is negative, which means that it tends to predict lower redshifts
than the actual values.

5.2 Visual Analysis

cnn vs SDSS

B redshift (SDSS)

1600 - [redshift (cnn)

1400 +

1200 4

1000 +

800 -

600

400 ~

200

0.0 0.1 0.2 0.3 0.4 0.5 0.6
redshift

Figure 17: Histogram of the predicted and true redshifts

36

This figure shows a histogram of the predicted and true redshifts. The x-axis represents the redshift, and
the y-axis represents the number of galaxies with that redshift. The blue bars represent the true redshifts,
and the beige bars represent the predicted redshifts.

If the model could predict the redshifts perfectly, the beige bars would be exactly on top of the blue
bars. However, we can see that the beige bars are not exactly on top of the blue bars. The model misses
the double peaks around the 0.1 redshift mark and instead has a single higher peak, and there are some
ranges where the model predicts lower redshifts than the true values for example around the 0.2 redshift
mark.

Overall, though, as we also saw in the previous section, the model’s predictions are very close to the
true values, and the histogram shows that the model performs very well.

cnn vs 5D55

101

redshift (cnn)

. . . 107
0.1 0.2 0.3 0.4 0.5

redshift (SDSS)

Figure 18: Two dimensional histogram of the predicted and true redshifts

This figure shows a two dimensional histogram of the predicted and true redshifts. The x-axis
represents the true redshift, and the y-axis represents the predicted redshift. The color of each point
represents the number of galaxies with that true and predicted redshift. Worth noting is that the color
scale is logarithmic, so the redder the color, the (exponentially) more galaxies there are with that true and
predicted redshift.

For a perfect fit, all of the points would be on the black diagonal line. Obviously, we can see that the
points are not exactly on it but are very close to it.

This type of plot is also useful for seeing the outliers of the model. The outliers are the points that are
far away from the diagonal line. We can see that there are some outliers, but they are very few (in the
order of 100s) compared to the total number of galaxies (in the order of 10.000s).

We can also see the model’s negative bias in the upper redshift ranges as the points are, on average,

37

slightly below the diagonal line the more you go up in redshift. We can also note that most of the outliers
are also below the diagonal line, so they could be a contributing factor to the model’s negative bias.

This concludes the results and discussion chapter. Next we will look at the conclusions of this
dissertation.

38

6 Conclusions

In this dissertation, we trained and evaluated a Convolutional Neural Network that predicts galaxy redshifts.
This work leveraged the dataset generously provided by Ioannis Bellas-Velidis and Despina Hatzidimitriou
who worked on Gaia’s Unresolved Galaxy Classifier (UGC).

The findings reveal that the CNN exhibits a commendable performance in predicting galaxy redshifts.
The model achieved a mean absolute error (MAE) of 0.021 on the test set, signifying a high level of
accuracy. This result showcases the model’s capability to make predictions with an average deviation of
only 0.021 from actual values, on average.

Furthermore, a detailed examination of the model’s performance across different redshift ranges
demonstrated its robustness. Notably, for redshift ranges within the 0.00 - 0.35 interval, encompassing the
overwheling majority of the data, the model displayed an even more impressive MAE of 0.013.

While the model’s predictions exhibited a slight negative bias, especially in higher redshift ranges,
this bias remains a potential area for future refinement. The two-dimensional histogram analysis revealed
that outliers were relatively scarce, affirming the model’s consistency in predicting redshifts.

This research contributes to the field of astronomy and machine learning by showcasing the effec-
tiveness of CNNGs in redshift prediction tasks, particularly for galaxies with low to moderate redshifts.
These results have significant implications for astronomical studies, facilitating more precise estimations
of galaxy redshifts and consequently enhancing our understanding of the cosmos.

In closing, this work serves as a foundation for further exploration into machine learning applications in
astrophysics. Future endeavors could explore methods for mitigating the model’s bias and bad performance
in higher redshift ranges and investigate the integration of additional data sources to increase predictive
accuracy.

39

Appendix

Sources

Books

1.
2.

Francois Chollet. Deep Learning with Python. Manning Publications. 2017
Michael A. Nielsen. Neural networks and Deep Learning. Determination Press. 2015

Papers

1.

Adam: A Method for Stochastic Optimization. arXiv. September 27 2023. https://arxiv.org/abs/14
12.6980

Phung, & Rhee,. (2019). A High-Accuracy Model Average Ensemble of Convolutional Neural
Networks for Classification of Cloud Image Patches on Small Datasets. Applied Sciences. 9. 4500.
10.3390/app9214500.

Bergstra, James & Bengio, Y.. (2012). Random Search for Hyper-Parameter Optimization. The
Journal of Machine Learning Research. 13. 281-305.

Sequential model-based optimization for general algorithm configuration. Learning and Intelligent
Optimization. Lecture Notes in Computer Science. https://www.cs.ubc.ca/labs/algorithms/Projects
/SMAC/papers/11-LION5-SMAC.pdf

Website sources

1.

10.

Gaia Overview. ESA. September 26 2023. https://www.esa.int/Science_Exploration/Space_Scienc
e/Gaia/Gaia_overview

. What do redshifts tell astronomers. EarthSky. October 4 2023. https://earthsky.org/astronomy-

essentials/what-is-a-redshift/

What is Gradient Descent?. IBM. September 27 2023. https://www.ibm.com/topics/gradient-
descent

Why Data should be Normalized before Training a Neural Network. Towards Data Science.
September 26 2023. https://towardsdatascience.com/why-data-should-be-normalized-before-
training-a-neural-network-c626b7f66¢7d

Stochastic Gradient Descent (SGD). GeeksForGeeks. September 27 2023. https://www.geeksforge
eks.org/ml-stochastic-gradient-descent-sgd/

Rectified Linear Units (ReLU) in Deep Learning. Kaggle. September 27 2023. https://www.kaggle
.com/code/dansbecker/rectified-linear-units-relu-in-deep-learning

. Activation Functions in Neural Networks. Towards Data Science. September 27 2023. https:

/Itowardsdatascience.com/activation-functions-neural-networks- 1cbd9f8d91d6

How to Control the Stability of Training Neural Networks With the Batch Size. Machine Learning
Mastery. September 27 2023. https://machinelearningmastery.com/how-to-control-the-speed-and-
stability-of-training-neural-networks- with-gradient-descent-batch-size/

Jason Brownlee. A Gentle Introduction to the Rectified Linear Unit (ReLU). Machine Learning
Mastery. September 28 2023. https://machinelearningmastery.com/rectified-linear-activation-
function-for-deep-learning-neural-networks

René Andrae. Sampled Mean Spectrum generator (SMSgen). Gaia Archive. September 30 2023.
https://gea.esac.esa.int/archive/documentation/GDR3/Data_analysis/chap_cu8par/sec_cu8par_a

40

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://www.cs.ubc.ca/labs/algorithms/Projects/SMAC/papers/11-LION5-SMAC.pdf
https://www.cs.ubc.ca/labs/algorithms/Projects/SMAC/papers/11-LION5-SMAC.pdf
https://www.esa.int/Science_Exploration/Space_Science/Gaia/Gaia_overview
https://www.esa.int/Science_Exploration/Space_Science/Gaia/Gaia_overview
https://earthsky.org/astronomy-essentials/what-is-a-redshift/
https://earthsky.org/astronomy-essentials/what-is-a-redshift/
https://www.ibm.com/topics/gradient-descent
https://www.ibm.com/topics/gradient-descent
https://towardsdatascience.com/why-data-should-be-normalized-before-training-a-neural-network-c626b7f66c7d
https://towardsdatascience.com/why-data-should-be-normalized-before-training-a-neural-network-c626b7f66c7d
https://www.geeksforgeeks.org/ml-stochastic-gradient-descent-sgd/
https://www.geeksforgeeks.org/ml-stochastic-gradient-descent-sgd/
https://www.kaggle.com/code/dansbecker/rectified-linear-units-relu-in-deep-learning
https://www.kaggle.com/code/dansbecker/rectified-linear-units-relu-in-deep-learning
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://machinelearningmastery.com/how-to-control-the-speed-and-stability-of-training-neural-networks-with-gradient-descent-batch-size/
https://machinelearningmastery.com/how-to-control-the-speed-and-stability-of-training-neural-networks-with-gradient-descent-batch-size/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks
https://gea.esac.esa.int/archive/documentation/GDR3/Data_analysis/chap_cu8par/sec_cu8par_apsis/ssec_cu8par_apsis_smsgen.html
https://gea.esac.esa.int/archive/documentation/GDR3/Data_analysis/chap_cu8par/sec_cu8par_apsis/ssec_cu8par_apsis_smsgen.html

psis/ssec_cu8par_apsis_smsgen.html

11. Bellas-Velidis & Hatzidimitriou. Unresolved Galaxy Classifier (UGC). September 30 2023. https:
//gea.esac.esa.int/archive/documentation/GDR3/Data_analysis/chap_cu8par/sec_cu8par_apsis/s
sec_cu8par_apsis_ugc.html

12. Overfitting and Underfitting With Machine Learning Algorithms. Machine Learning Mastery.
October 6 2023. https://machinelearningmastery.com/overfitting-and-underfitting- with-machine-
learning-algorithms/

13. The Challenge of Vanishing/Exploding Gradients in Deep Neural Networks. Analytics Vidhya.
October 6 2023. https://www.analyticsvidhya.com/blog/2021/06/the-challenge-of-vanishing-
exploding-gradients-in-deep-neural-networks/

Code

The code for this dissertation along with the markdown source, figures, etc. can also be found in the
following GitHub repository: https://github.com/kiraleos/dissertation

import matplotlib.pyplot as plt

import matplotlib.colors

import numpy as np

import os

import pandas as pd

import random

import tensorflow as tf

from sklearn.preprocessing import MinMaxScaler, StandardScaler, QuantileTransfor

from sklearn.model_selection import train_test_split

HIST_BIN_SCALE = 100
plt.hist(
redshifts,
bins=np.linspace (min (redshifts), max (redshifts), HIST_BIN_SCALE),
edgecolor="black',
alpha=1,
color="grey'
)
plt.xlabel ('"Redshift"')
plt.ylabel ('Number of Galaxies')
plt.title('Distribution of Redshifts')

plt.savefig('../figures/redshift_distribution.png')
plt.show ()

percentile_values = [25, 50, 75, 90, 95, 99]

percentiles = np.percentile(redshifts, percentile_values)

plt.figure(figsize=(10, 5))

41

https://gea.esac.esa.int/archive/documentation/GDR3/Data_analysis/chap_cu8par/sec_cu8par_apsis/ssec_cu8par_apsis_smsgen.html
https://gea.esac.esa.int/archive/documentation/GDR3/Data_analysis/chap_cu8par/sec_cu8par_apsis/ssec_cu8par_apsis_smsgen.html
https://gea.esac.esa.int/archive/documentation/GDR3/Data_analysis/chap_cu8par/sec_cu8par_apsis/ssec_cu8par_apsis_ugc.html
https://gea.esac.esa.int/archive/documentation/GDR3/Data_analysis/chap_cu8par/sec_cu8par_apsis/ssec_cu8par_apsis_ugc.html
https://gea.esac.esa.int/archive/documentation/GDR3/Data_analysis/chap_cu8par/sec_cu8par_apsis/ssec_cu8par_apsis_ugc.html
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://www.analyticsvidhya.com/blog/2021/06/the-challenge-of-vanishing-exploding-gradients-in-deep-neural-networks/
https://www.analyticsvidhya.com/blog/2021/06/the-challenge-of-vanishing-exploding-gradients-in-deep-neural-networks/
https://github.com/kiraleos/dissertation

redshifts_sorted = np.sort (redshifts)

cumulative_curve = np.arange(l, len(redshifts_sorted)

+ 1)

plt.plot (redshifts_sorted, cumulative_curve, color='grey',

plt.xlabel ('"Redshift')
plt.ylabel ('"Cumulative Probability')
plt.title('Cumulative Curve of Redshifts')

/ len(redshifts_sorte

label="'Cumulative Cur

line_colors = ['red', 'orange', 'yellow', 'green', 'blue', 'purple']
i=20
x_ticks = []
for percentile in percentiles:
plt.axvline (percentile, color=line_colors[i], linestyle='—--",

x_ticks.append(percentile.round(2))
i +=1

plt.xlabel ('"Redshift')

plt.ylabel ('Cumulative Probability')
plt.title('Cumulative Curve of Redshifts')
plt.legend()

plt.xticks (x_ticks)

plt.show ()

print ('Mean, median and Standard Deviation:'")
print (' Mean: ', np.mean(redshifts).round(3))
print (' Median: ', np.median (redshifts) .round(3))
print (' Std Dev: ', np.std(redshifts).round(3))

print ('Skewness and Kurtosis:'")

print (' Skewness: ', pd.Series(redshifts) .skew())
print (' Kurtosis: ', pd.Series(redshifts) .kurt())
random_samples = data.sample (n=1)

grayscale_colors = ['0O', '0.2', '0.4', '0.6', '0.8"]

plt.figure (figsize=(10, 5))
i=0

for index, row in random_samples.iterrows() :

plt.plot (row.index[1:], row.values[l:], label=f'Galaxy #{index}, =z

i4=1

plt.xticks ([])

42

label=f"{perce

{row.va

plt.yticks ([])

plt.xlabel ('Wavelength (366nm to 996nm) ")
plt.ylabel ("Flux'")

plt.title('Galaxy Spectra')

plt.legend()

plt.savefig('../figures/galaxy_spectra.png')

plt.show ()

redshift_ranges = [(0O, O0.1), (0.1, 0.2), (0.2, 0.3), (0.3, 0.4), (0.4, 0.5), (0.
num_samples_per_range = 1000

average_flux_per_range = []

for start, end in redshift_ranges:
filtered_indices = np.where((redshifts >= start) & (redshifts < end)) [0]

if len(filtered_indices) >= num_samples_per_range:

selected_indices = np.random.choice(filtered indices, num_samples_per_ra
else:

selected_indices = filtered_indices
average_flux = np.mean (spectral[selected_indices], axis=0)

average_flux_per_range.append (average_flux)

average_flux_per_range = np.array (average_flux_per_range)
wavelengths = np.arange (186)
grayscale_colors = ['0O', '0.2', '0.4', '0.5', '0O.6', '0.7']

plt.figure(figsize=(10, 6))
for i, (start, end) in enumerate (redshift_ranges):
plt.plot (
wavelengths,
average_flux_per_rangel[i],
label=f'Redshifts {start}-{end}’,

color = grayscale_colors[i]

plt.xlabel ('Wavelength (366nm to 996nm) ")
plt.ylabel ('"Flux")

plt.xticks ([])

plt.yticks ([])

plt.title('Average Flux for Different Redshift Ranges')
plt.legend()

plt.savefig('../figures/average_flux.png')

43

plt.show ()

redshift_ranges = np.arange(0, 0.6, 0.05)

percent

ages

[]

for i in range(len(redshift_ranges)) :

start = redshift_ranges([i]
if i == len(redshift_ranges) - 1: end = redshift_ranges[i] + 0.05
else: end = redshift_ranges[i + 1]

filtered_indices

= np.where ((redshifts >= start) & (redshifts < end)) [0]

percentages.append(len(filtered_indices) / len(redshifts))

print ('Percentage of Data in Each Redshift Range')

print ('
print ('

| Redshift Range | Percentage |')
R | —mmm ")

for i in range(len (percentages)) :

start = redshift_ranges[i]

if i == len(redshift_ranges) - 1: end = redshift_ranges[i] + 0.05

else: end = redshift_ranges[i + 1]

print (f'| {start:.2f}-{end:.2f} | {100 x percentages[i]:.2f} [|")
seed_value = 4

random. seed (seed_value)

np.random. seed (seed_value)

tf.random.set_seed(seed_value)

SAVE_FIGURES = True

data = pd.read_csv('./training data/TESTclean.csv'")
spectra = np.array(data.iloc[:, 1:])

redshifts = np.array(data.iloc[:, 01)

min _max_scaler = MinMaxScaler ()

spectra = min_max_scaler.fit_transform(spectra)

spectra_train,

model =
tf.
tf.
tf.
tf.
tf.
tf.
tf.
tf.
tf.

spectra_test, redshift_train, redshift_test = train_test_split (sp

tf.keras.Sequential ([

keras.
keras.
keras.
keras.
keras.
keras.
keras.
keras.

keras.

layers.
layers
layers
layers
layers
layers
layers
layers

layers

InputlLayer (input_shape=(186, 1)),

.ConvlD (filters=256, kernel_size=5, activation='relu'),
.MaxPoolinglD(),
.ConvlD (filters=256, kernel_size=5, activation='relu'),
.MaxPoolinglD (),
.ConvlD (filters=128, kernel_size=3, activation='relu'),
.MaxPoolinglD(),
.ConvlD (filters=64, kernel_size=2, activation='relu'),
.MaxPoolinglD(),

44

tf.keras.layers.Flatten(),

tf.keras.layers.Dense (units=256, activation='relu'),
tf.keras.layers.Dense (units=256, activation='relu'),
tf.keras.layers.Dense (units=128, activation='relu'),
tf.keras.layers.Dense (units=64, activation='relu'),
tf.keras.layers.Dense (units=1, activation='linear')

1)

model.compile (optimizer="adamax', loss='huber', metrics=['mean_absolute_error'])

batch_size = 16
epochs = 20
validation_split = 0.3

history = model.fit (spectra_train, redshift_train, epochs=epochs, batch_size=bat

history_df = pd.DataFrame (history.history)
history_df.to_csv('./history.csv')
model.save ('./model.keras')

model = tf.keras.models.load model ('./model.keras')

plt.scatter (history_df.index, history_df['loss'], label='Training Loss', marker=
plt.scatter (history_df.index, history_df['val_loss'], label='Validation Loss', m
plt.xlabel ("Epochs'")

plt.xticks (np.arange (0, epochs, 1))

plt.ylabel ('Loss')

plt.legend ()

plt.title('Training and Validation Loss')

plt.figure ()

plt.scatter (history_df.index, history_df['mean_absolute_error'], label='Training
plt.scatter (history_df.index, history_df['val_mean_absolute_error'], label='Vali
plt.xlabel ('Epochs'")

plt.xticks (np.arange (0, epochs, 1))

plt.ylabel ('Loss')

plt.legend()

plt.title('Training and Validation Mean Absolute Error (MAE)"')

plt.show ()

spectra_to_predict = spectra_test
redshifts_true = redshift_test

redshift_predicted = model.predict (spectra_to_predict, batch_size=1000)
redshift_predicted

np.reshape (redshift_predicted, (spectra_to_predict.shapel0]

45

mae = np.mean (np.abs (redshifts_true - redshift_predicted))
print ("MAE: "', mae)

BINS = 200

CMAP = 'inferno'

plt.figure ()

plt.hist2d(redshifts_true, redshift_predicted, bins=BINS, norm=matplotlib.colors
plt.plot ([0, 0.6, [0, 0.61, '-', c="black")

plt.xlabel ('redshift (SDSS) ')
plt.ylabel ('redshift (cnn)")
plt.colorbar ()

plt.title("cnn vs SDSS")

HIST_BIN_SCALE = 150

plt.figure ()

plt.hist (redshifts_true, bins=np.linspace (min (redshifts_true), max(redshifts_tru
plt.hist (redshift_predicted, bins=np.linspace (min (redshifts_true), max(redshifts
plt.xlabel ('redshift!')

plt.title("cnn vs SDSS")

plt.legend()

BIN_SIZE = 0.05

absolute_error = redshift_predicted - redshifts_true

bins = np.arange (0, max(redshifts_true) + BIN_SIZE, BIN_SIZE)

bin_indices = np.digitize (redshifts_true, bins)

mean_errors = [np.mean (absolute_error[bin_indices == i]) for i in range(l, len(b
std_errors = [np.std(absolute_error[bin_indices == i]) for i in range(l, len(bin
bin_centers = (bins[:-1] + bins[1:]) / 2

plt.figure ()

plt.errorbar (bin_centers, mean_errors, yerr=std_errors, fmt='o', ecolor='black',
plt.plot ([0, 0.61, [0, 01)

plt.xlabel ("redshift')

plt.ylabel ('zDiff = z (CNN) - z(SDSS)")

plt.ylim([-0.59, 0.597)

plt.xlim ([0, 0.6])

plt.title(f"Mean error between CNN and SDSS")

plt.figure ()
plt.hlines (mean_errors, bins[:-1], bins[1:], colors=['blue'], linewidth=3.0, lab
plt.hlines (std_errors, bins[:-1], bins[l:], colors=['red'], linewidth=3.0, label

46

plt

.plot ([0, O0.6], [0, 0], c='black', linewidth=0.5)

plt.xlabel ('redshift")

plt.ylabel ('zDiff = z (CNN) - z(SDSS)")
plt.ylim([-0.59, 0.59])

plt.title(f"Mean error and std between CNN and SDSS")
plt.legend()

print ("| redshift bin | mean error | std error |[")
print ("|-——-——————————— |- | - [")

for i in range(len(mean_errors)) :

print (£"| {bins[i]:.2f} - {bins[i+1]:.2f} | {mean_errors[i]:

47

41}

{std_erro

	Introduction
	Object, Purpose, and Objectives
	Methodology
	Structure

	Background
	The Gaia Mission
	Objective and Methodology
	Spectroscopy

	Galaxy redshift
	Artificial Intelligence
	Machine Learning
	Artificial Neural Networks
	Mechanism of operation
	Convolutional Neural Networks
	Activation functions
	Loss functions
	Optimizers
	Batch size
	Epochs
	Common training roadblocks

	Data Preparation
	Source & Composition
	Analysis
	Preprocessing
	Splitting

	Methodology
	Why convolutional neural networks?
	Hyperparameter Optimization
	Methodologies of Optimization
	Results

	Training & Validation

	Results & Discussion
	Error & Standard Deviation
	Visual Analysis

	Conclusions

		2023-10-12T13:21:02+0300
	Nikolaos Vasilas

		2023-10-13T20:07:47+0300
	Georgios Bardis

		2023-10-14T20:45:08+0300
	Christina Georgoulaki

