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Abstract 

Unmanned Aerial Vehicle (UAV) technology has witnessed remarkable advancements, permeating 

various industries. Quadcopters, a specialized type of UAV with four rotors, are at the forefront of 

these innovations with recent trends and future projections indicating that the utilization of multiple 

quadcopters, forming what it is referred to as a swarm of quadcopters, is poised for substantial growth. 

However, the inherently nonlinear and highly complex behavior of quadcopters introduces serious 

challenges in terms of efficiently controlling them, necessitating the need of developing advanced 

control methods and intricate frameworks, particularly when addressing the collective behavior of a 

swarm. In response to these challenges, this diploma thesis introduces a comprehensive Distributed 

Model Predictive Control (DMPC) framework, designed to enable precise trajectory tracking for a 

swarm of quadcopters. Building upon the initial introduction of a Model Predictive Control (MPC) 

scheme for addressing the trajectory tracking task of a single quadcopter, which employs MPCs and 

Proportional-Integral-Derivative (PID) controllers in a cascaded design, the proposed framework 

seamlessly scales its capabilities. Through the integration of an inter-agent communication strategy, it 

achieves the transition to effective, autonomous and distributed control over quadcopter swarms, even 

in complex scenarios such as trajectory tracking with collision avoidance and obstacle evasion. The 

distributed nature of the proposed approach eliminates the necessity for a central controller, thus 

enhancing the system’s resilience in the event of individual failures, or communication disruptions, 

and offers easy adaptation to various swarm sizes. Additionally, the proposed framework diverges 

from conventional methods by liberating the agents of the swarm from following predetermined 

trajectories and predefined formation strategies. Instead, it empowers agents to dynamically tailor their 

behavior, enabling them to closely follow real-time desired trajectories with responsive agility to 

unpredicted scenarios. To evaluate the efficiency and practicality of the proposed framework, 

simulations have been conducted for trajectory tracking, including scenarios involving suddenly 

appearing obstacles. The results endorse its suitability for quadcopter swarm control and illuminate its 

potential application across a broad spectrum of domains, where the swarm’s precision, adaptability 

and robustness are paramount.   

 

Keywords 

Agent swarms, cascaded design, collision avoidance, Distributed Model Predictive Control (DMPC), 

inter-agent communication, Model Predictive Control (MPC), obstacle avoidance, Proportional-

Integral-Derivative (PID) controller, quadcopter, trajectory tracking, Unmanned Aerial Vehicles 

(UAVs).  
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Περίληψη 

Η τεχνολογία των Μη Επανδρωμένων Εναέριων Οχημάτων (UAV) έχει γνωρίσει αξιοσημείωτες 

εξελίξεις, διεισδύοντας σε διάφορους κλάδους. Τα τετρακόπτερα, ένα εξειδικευμένο είδος UAV με 

τέσσερις ρότορες, βρίσκονται στο προσκήνιο αυτών των καινοτομιών, με τις πρόσφατες τάσεις και τις 

μελλοντικές προβλέψεις να δείχνουν ότι η χρήση πολλαπλών τετρακόπτερων, που σχηματίζουν αυτό 

που αναφέρεται ως σμήνος τετρακόπτερων, βρίσκεται σε πορεία σημαντικής ανάπτυξης. Ωστόσο, η 

εγγενώς μη γραμμική κι ιδιαίτερα πολύπλοκη συμπεριφορά των τετρακόπτερων εισάγει σοβαρές 

προκλήσεις σχετικά με τον αποτελεσματικό έλεγχό τους, γεγονός που καθιστά αναγκαία την ανάπτυξη 

προηγμένων μεθόδων ελέγχου και πολύπλοκων πλαισίων, ιδίως όταν πρόκειται για τη συλλογική 

συμπεριφορά ενός σμήνους. Ως απάντηση σε αυτές τις προκλήσεις, η παρούσα διπλωματική εργασία 

εισάγει ένα ολοκληρωμένο πλαίσιο Κατανεμημένου Προβλεπτικού Ελέγχου Μοντέλου (DMPC), 

σχεδιασμένο για να επιτρέπει την επακριβή παρακολούθηση τροχιάς για ένα σμήνος τετρακόπτερων. 

Στηριζόμενο στην αρχική εισαγωγή ενός συστήματος Προβλεπτικού Ελέγχου Μοντέλου (MPC) για 

την αντιμετώπιση του ζητήματος της παρακολούθησης τροχιάς ενός τετρακοπτέρου, το οποίο 

χρησιμοποιεί MPCs και ελεγκτές Αναλογικού-Ολοκληρωτικού-Διαφορικού μέρους (PID) σε 

αλυσιδωτή σχεδίαση, το προτεινόμενο πλαίσιο κλιμακώνει απρόσκοπτα τις δυνατότητές του. Μέσω 

της ενσωμάτωσης μιας στρατηγικής για την επικοινωνία μεταξύ των πρακτόρων του σμήνους, 

επιτυγχάνεται η μετάβαση σε αποτελεσματικό, αυτόνομο και κατανεμημένο έλεγχο σμήνους 

τετρακόπτερων, ακόμα και σε περίπλοκα σενάρια όπως η παρακολούθηση τροχιάς με αποφυγή 

σύγκρουσης και εμποδίων. Ο κατανεμημένος χαρακτήρας της προτεινόμενης προσέγγισης εξαλείφει 

την ανάγκη για έναν κεντρικό ελεγκτή, ενισχύοντας έτσι την ανθεκτικότητα του συστήματος σε 

περίπτωση μεμονωμένων αστοχιών ή διαταραχής της επικοινωνίας και προσφέροντας εύκολη 

προσαρμογή σε διάφορα μεγέθη σμήνους. Επιπλέον, το προτεινόμενο πλαίσιο αποκλίνει από τις 

συμβατικές μεθόδους απελευθερώνοντας τους πράκτορες του σμήνους από το να ακολουθούν 

προκαθορισμένες τροχιές και προσχεδιασμένες στρατηγικές σχηματισμού. Αντ’ αυτού, δίνει την 

δυνατότητα στους πράκτορες να προσαρμόζουν δυναμικά την συμπεριφορά τους, επιτρέποντάς τους 

να ακολουθούν στενά τις επιθυμητές τροχιές σε πραγματικό χρόνο με ευέλικτη ανταπόκριση σε 

απρόβλεπτα σενάρια. Για την αξιολόγηση της αποτελεσματικότητας και της πρακτικότητας του 

προτεινόμενου πλαισίου, πραγματοποιήθηκαν προσομοιώσεις για την παρακολούθηση τροχιάς, 

συμπεριλαμβανομένων σεναρίων που περιλαμβάνουν ξαφνικά εμφανιζόμενα εμπόδια. Τα 

αποτελέσματα επικυρώνουν την καταλληλότητά του για τον έλεγχο σμήνους τετρακόπτερων και 

φωτίζουν την δυνατότητα εφαρμογής του σε ένα ευρύ φάσμα τομέων, όπου η ακρίβεια, η  

προσαρμοστικότητα κι η ανθεκτικότητα του σμήνους είναι υψίστης σημασίας.  
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INTRODUCTION 

The realm of UAVs has witnessed remarkable progress in recent years, owing to their industrial 

and commercial applications, as well as their use in mobile edge computing, cellular communication, 

smart healthcare, remote sensing or relief operations in disaster environments. Their successful use in 

different scenarios has presented the promising avenue for UAVs to achieve even more complex 

missions and revolutionize modern technology and industry [1]. 

 A special type of UAV, belonging to the broader category of aerial vehicles known as 

multicopters or multirotors, is the quadcopter. Quadcopters are equipped with four independently 

controlled rotors, organized into two diametrically opposing groups. Essentially, the way of controlling 

the position and orientation of a quadrotor is through the variation of the speed of each rotor, and, thus, 

the variation of the produced forces and moments along the three axes of the 3D space. Overall, the 

quadrotor is a highly nonlinear underactuated system, with six degrees of freedom and only four inputs, 

presenting intricate dynamics, a sensitive behavior and intertwined terms [2]. The synergy of internal 

complexities and external factors, such as wind disturbances or environmental uncertainties, renders 

accurate trajectory tracking a challenging task for the quadcopter, which demands sophisticated control 

algorithms and rapid response capabilities. 

Despite their popularity and due to the challenges mainly associated with the trajectory tracking 

task, there is a wide range of applications that are challenging to achieve with a single quadcopter, thus 

necessitating the need of a swarm of drones that use collective behavior [3]. Swarm of quadcopters 

has been one of the most recent and prominent examples of swarm robotics, finding success in dealing 

with precision, reliability and swiftness with complicated tasks, such as search-and-rescue missions, 

precision agriculture or environmental monitoring [4]. This comes with the need for advanced control 

strategies that will enable the effective operation of quadcopter swarms in dynamic and unconstructed 

environments.  

Managing the control of a single quadcopter, let alone orchestrating the coordination of a 

swarm of quadcopters with multiple agents, presents a multifaceted challenge. When confronted with 

the intricacies of managing a swarm, it becomes imperative to address not only the inherent 

complexities involved in controlling individual quadcopters, but also novel challenges. Among these, 

paramount is the necessity for seamless and efficient communication among swarm agents, a critical 

factor in averting collisions, both among the agents themselves and with potential obstacles. 

This intricate interplay of factors has spurred extensive research endeavors for the development 

of efficient control methodologies and techniques. More specifically, in literature, linear Proportional-

Integral-Derivative (PID) control is one of the most common control techniques for an individual 
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quadcopter, due to its simplicity [5]. Nevertheless, PID control seems to fall short when dealing with 

more complicated tasks or with swarms, and it is mainly considered to perform in combination with 

other techniques. Different control methods that have been proposed for swarm control include Linear 

Quadratic Regulator (LQR) [6] , backstepping [7], sliding mode [8] and neural networks [9]. However, 

one of the most prevalent and efficient control techniques for swarm control is Model Predictive 

Control (MPC) [10][11][12][13], which is an advanced control configuration that utilizes a 

mathematical model of the system in order to optimize the produced control inputs over a finite time 

horizon, while also considering and respecting the dynamic constraints imposed. Depending on the 

application of the swarm, multiple MPC algorithms and frameworks have been developed, such as 

Distributed MPC or Centralized MPC, along with various strategies for formation control, especially 

for the trajectory tracking task, which is a fundamental aspect of swarm robotics applications.  

In this diploma thesis, a Distributed Model Predictive Control (DMPC) framework is 

developed for trajectory tracking with obstacle evasion. Expanding on the implementation of Model 

Predictive Control (MPC) for an individual quadcopter [14] - a design which employs MPCs for the 

position regulation and Proportional-Integral-Derivative (PID) controllers for the angles’ regulation in 

a cascaded design - this framework is used to orchestrate the collective behavior of a swarm of 

quadcopters. These are controlled autonomously from individual MPCs in a distributed way, while 

their communication was achieved through inter-agent sharing of information regarding their predicted 

positions in the three-dimensional space.  

The proposed framework for controlling a quadcopter swarm eliminates the need for a central 

controller, thus resulting in a more robust and resilient system, in case of individual failure or 

communication disruption. Moreover, as the swarm size increases, the control framework can 

accommodate additional agents, without significant modifications, making it suitable for different 

applications where the number of agents can widely vary. Additionally, since each quadrotor can 

independently plan its trajectory, while considering the intentions of the other agents, enhanced 

adaptability is allowed, which makes for precise collision avoidance, obstacle evasion and a safe 

operation. This framework comes with additional advantages, as well, including reduced bandwidth 

and energy requirements, improved privacy-security as well as a significantly simpler optimization 

problem that needs to be solved by each agent in comparison to the centralized framework. 

Furthermore, the proposed framework is characterized by the absence of predetermined 

trajectories for each agent, which deviates from conventional methods adopted by many other 

researchers in the field [15][16][17]. Instead, each agent dynamically adjusts its behavior to closely 

follow the real-time desired trajectory, allowing for more agile responses to changing conditions and 

unforeseen obstacles. This improved adaptability of the swarm in unpredictable scenarios is further 
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facilitated by the absence of a formation control strategy. The quadrotors are able to autonomously 

and dynamically determine their positions and find their formations online, making them better 

equipped to respond dynamically to changes in the trajectory. 

 The proposed framework underwent evaluation across different simulated scenarios, 

demonstrating its efficiency not only in complex trajectory tracking, but in scenarios involving the 

sudden appearance of obstacles, as well.  

The structure of the presented diploma thesis is organized as follows: 

Chapter 1. provides a comprehensive understanding of the quadcopter, delving into its motion 

characteristics and the mathematical model that describes its kinematics and dynamics. In this way, it 

sets the stage for an in-depth investigation of the control strategies. 

 

Chapter 2. explores the application of PID control for a single quadcopter, aiming to gain a 

deeper understanding of its dynamic behavior. It also highlights areas where PID control may not be 

ideally suitable, thus paving the way for the exploration of a more advanced control strategy.  

 

Chapter 3. is dedicated to designing an MPC control system for a single quadcopter, which also 

incorporates aspects of PID control, and aims for precise trajectory tracking. Its evaluation not only 

serves as a benchmark for the system’s capabilities, but also bolsters the argument for its scalability to 

swarm applications. 

 

Chapter 4. focuses on the implementation of the MPC control system within the context of a 

swarm of quadcopters, culminating in the development of a Distributed MPC framework. This 

framework, which is evaluated through different simulations, ensures that the agents are able to follow 

the trajectory path while avoiding collision with each other and navigating around obstacles.  

 

Chapter 5. is dedicated to the conclusions of the diploma thesis. It encompasses a meticulous 

summary, a detailed analysis of the results, a comprehensive examination of the challenges 

encountered, in-depth discussions, and the exploration of potential avenues for further research and 

expansion.  
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CHAPTER 1: The dynamic behavior of the quadcopter 

In this chapter, a comprehensive overview of the quadrotor is provided, including its basic 

characteristics, the reference system used, the principles of its space motion, and the mathematical 

model implemented. Finally, an open-loop simulation is performed to show the model's inherent 

behavior and the challenges presented. Overall, this chapter serves as a foundation for the subsequent 

chapters. 

 

1.1 The Quadrotor 

A quadrotor, also known as a quadcopter or a quadrotor helicopter, is a type of UAV 

(unmanned aerial vehicle) that has become increasingly popular in recent years, due to its versatility, 

maneuverability, and relatively low cost. Unlike traditional helicopters which have one or two large 

rotors, quadrotors have four independently controlled rotors on the extremities of a rigid frame and an 

electronic board in the middle. This configuration serves as an advantage, making them useful for a 

wide range of applications that span many different fields. [2] 

The field of quadrotor technology is advancing rapidly and is only expected to continue to grow 

in the coming years. Some of its most promising applications are in search and rescue, especially for 

inaccessible or unsafe environments, agriculture, construction, building exploration, mapping, 

personal use, aerial photography or videography and entertainment. As new technologies continue to 

be integrated into the design and operation of quadrotors, even more possibilities are emerging, 

including providing innovative solutions for urban air mobility, environmental monitoring, disaster 

response or space exploration. [18] 

The design of a quadrotor usually follows a cross (x) or a plus (+) configuration with opposing 

motors rotating in the same direction, as illustrated in Figure 1. By dividing the motors into two groups 

with two diametrically opposing motors in each one, the observation is made simpler: for the plus 

configuration, the front propellers ΩΝ and ΩS rotate clockwise (CW), while rear propellers ΩW and ΩE  

rotate counterclockwise (CCW). On the other hand, for the cross configuration, the propellers are 

divided into the ones rotating CW (ΩNW and ΩSE) and the ones rotating CCW (ΩNE and ΩSW). This 

division cancels out the unwanted yawing moment, as spinning all rotors in the same direction would 

cause the quadrotor to constantly rotate around its z-axis. 
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Figure 1. Flight configuration types of the quadrotor 

 

 

1.2 The Reference System 

The reference system provides a standardized frame of reference that allows accurate and 

consistent design and measurements, as well as effective communication and coordination between 

multiple vehicles. In the case of the quadrotor, to describe its general position, various body frame 

reference systems can be used. Some of the most popular ones, used in aerial navigation and control 

systems design the ABC, the East-North-Up (ENU) or the North-East-Down (NED), which is 

described below. The selection of a reference system in control design is a contractual agreement 

between those involved in the design process.  

The NED reference system stands for North-East-Down, as it has its three orthogonal axes 

oriented along the geodetic directions defined by the Earth surface; the x-axis points north parallel to 

the geoid surface, in the polar direction, the y-axis points east parallel to the geoid surface, along a 

latitude curve, and the z-axis points downward, towards and antiparallel to the Earth surface, as 

presented in Figure 2.  

It is a widely recognized and accepted reference system, particularly in aerospace applications, 

like the quadrotor presented in the current diploma thesis. One plausible reason is that it provides an 

intuitive representation of position and orientation; humans have used North and East directions to 

navigate themselves for centuries, while the Down direction aligns with gravity, making it easier to 

visualize.  

While following the NED reference system, it is possible to use the right-hand rule with the 

thumb pointing downwards and towards the positive z-axis to efficiently portray the positive direction 

of the three axes. Moreover, the orientation of movement can be represented through the thumb rule, 
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while also bearing in mind that the axis at which the rotational movement is performed remains 

constant. 

 

  

 

Figure 2. The NED (North-East-Down) reference system for the quadrotor 

 

 

1.3 The Space Motion 

The space motion of the rigid body aircraft can be divided into two parts, which are the 

barycenter movement and the movement around the barycenter with six degrees of freedom (DOF); 

three translational and three rotational movements along the three axes. By adjusting the speeds of its 

four motors, forces and moments such as thrust, rolling, pitching and yawing are produced. More 

specifically: 

• Thrust, otherwise known as throttle, refers to the vertical movement of the quadrotor. There 

are three scenarios: if the thrust provided is equal to the quadrotor’s weight (i.e., mg) then the 

quadrotor hovers in place, if the thrust is bigger in value than mg then the quadrotor moves 

upwards and if it is smaller the quadrotor moves downwards. The logic behind this is that the 

direction of thrust is the direction of motion of the quadrotor, so to change the direction of the 

vertical motion means altering the thrust. 

• Roll refers to the rotation around the x-axis of the body frame, so a left or right lateral 

movement which occurs when propellers 2-3 (of Figure 3) speed quicker and 1-4 speed slower, 

or when 1-4 speed quicker and 2-3 speed slower, respectively.  

• Pitch refers to the rotation around the y-axis of the body frame, so a forward or reverse lateral 

movement of the quadrotor; for forward motion propellers 3-4 speed quicker and 1-2 speed 

slower, while for reverse motion the exact opposite holds.  
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• Yaw is the rotation around the z-axis of the body frame, and it can be realized by a reactive 

torque relative to the rotor speed. It refers to the rotational movement towards the left (CCW) 

or the right (CW); for CCW motion motors 1-3 speed quicker and 2-4 slower, while for CW 

motion 2-4 speed quicker and 1-3 slower. 

  

 
 

Figure 3. Roll, pitch, and yaw movement for the quadrotor 
 
 
 

The quadrotor system is a flight vehicle of lightweight structure and, therefore, gyroscopic 

effects or moments resulting from the rotation of the rigid body and the four propellers should be 

included in the dynamic model. Specifically, gyroscopic effect is the ability (or tendency) of the 

rotating body to maintain a steady direction of its axis of rotation and only appears in the lightweight 

construction quadrotor. [2] 

One crucial point that affects the motion of the quadrotor, especially in outdoor environments, 

is disturbances, including the effect of wind on its flight dynamics. In the presence of wind, the 

quadrotor may experience drifting from its intended path or even instability. To address this issue, 

quadrotors use various techniques, with a common approach being to adjust the pitch and roll angles 

of the quadrotor to counteract the effects of the wind or using wind sensors to measure the wind speed 

and direction and then adjusting the motor speeds accordingly. Whatever the case, understanding the 

impact of wind on quadrotor motion is extremely important for a successful operation. For that reason, 

it is important to have a mathematical model which accurately represents its dynamics, while 
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considering the laws that describe its behavior and the numerous possible disturbances it may 

encounter. 

 

1.4 The Mathematical Model 

System modelling is a fundamental aspect of control engineering that involves creating the 

mathematical representation of real-world systems, by capturing the essential dynamics, behaviors, 

and relationships within them. A mathematical model is a set of equations that represent the behavior 

of a system, using differential equations, transfer functions, state-space representations, or other 

mathematical formalisms, as derived from physical principles, empirical data, or a combination of 

both.  

That being said, it is important to highlight the fact that a model can never perfectly replicate 

real systems, as they often present complexities, uncertainties or unmodeled dynamics that make 

creating an exact replica in a mathematical form impossible. So, the goal is to create a representation 

that closely approximates the behavior of the real system, thus enabling control design and analysis.  

In the context of the quadrotor, it is a system that has a highly nonlinear and time-varying 

behavior, making it a complex dynamic system. Its complicated design creates the necessity of certain 

assumptions for the creation of its mathematical model and thus its control: 

1. The quadrotor and its propellers are rigid bodies. 

2. The structure is ideally symmetric, so the moment of inertia tensor has just diagonal inertia 

terms. 

3. There is an inertia frame and a body-fixed reference frame. 

4. The origin and axes of the body-fixed frame coincide with the barycenter and the axis of the 

quadrotor. 

5. The ground effect is ignored.[2][19] 

The dynamics of the quadrotor can be adequately described through a mathematical model, 

derived from the application of Newton’s law of motion or the Euler-Lagrange methodology, in the 

form of a set of first-order differential equations that relate the accelerations to the forces and torques. 

The orientation of a quadcopter at each time instant can be described using numerous 

formalisms, one of the most widely known being the Euler angles. A set of three angles, introduced 

by Leonhard Euler, is used to represent the orientation of a rigid body in three-dimensional space 

relative to a fixed coordinate system. The three angles are often denoted by the symbols φ (for roll 

angle), θ (for pitch angle), and ψ (for yaw angle), for the x, y, and z axes, respectively. The order in 
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which these rotations are performed can vary, depending on the convention used, with the most 

common ones being the "XYZ" or the "ZYX" conventions.  

For the ZYX Euler angles (Figure 4) the sequence in which the rotation matrices are multiplied 

follows a rotation about the z axis, followed by the y axis, followed by the x axis, with every rotation 

occurring with respect to the body-fixed reference frame. The transformation matrix from the body 

reference system to the inertial system, using the aforementioned rotational conventions, can be 

described by the rotation matrix 𝑹𝑧𝑦𝑥(𝜑, 𝜃, 𝜓): 

 

𝑹𝑧𝑦𝑥(𝜑, 𝜃, 𝜓) = 𝑹𝑧(𝜓) ∙ 𝑹𝑦(𝜃) ∙ 𝑹𝑥(𝜑) = 

 

 

[

𝑐𝜓 −𝑠𝜓 0

𝑠𝜓 𝑐𝜓 0

0 0 1

] ∙  [
𝑐𝜃 0 𝑠𝜃

0 1 0
−𝑠𝜃 0 𝑐𝜃

] ∙  [

1 0 0
0 𝑐𝜙 −𝑠𝜙

0 𝑠𝜙 𝑐𝜙

] = 

 

 

= [

𝑐𝜃𝑐𝜓 𝑠𝜙𝑠𝜃𝑐𝜓 − 𝑐𝜙𝑠𝜓 𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓

𝑐𝜃𝑠𝜓 𝑠𝜙𝑠𝜃𝑠𝜓 + 𝑐𝜙𝑐𝜓 𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓

−𝑠𝜃 𝑠𝜙𝑐𝜃 𝑐𝜙𝑐𝜃

]  (1.1) 

 

 

 

where 𝑐𝜙 = 𝑐𝑜𝑠(𝜙), 𝑠𝜙 = sin(𝜙) , 𝑐𝜃 = cos(𝜃) , 𝑠𝜃 = sin(𝜃) , 𝑐𝜓 = cos(𝜓) 𝑎𝑛𝑑 𝑠𝜓 = sin(𝜓) and 

the angles should be in the range of 𝜑,𝜓 ∈ [−𝜋, 𝜋] and 𝜃 ∈ [−
𝜋

2
,
𝜋

2
]. 

 

 
 

Figure 4. The Euler angles for the quadrotor 
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Referring to the vectors [𝑥 𝑦 𝑧 𝜑 𝜃 𝜓]𝑇 and [𝑢 𝑣 𝑤 𝑝 𝑞 𝑟]𝑇, which contain the linear and angular 

position of the quadrotor with respect to the earth frame and the linear and angular velocities with 

respect to the body frame, respectively, from the kinematics analysis, it is concluded that: 

 

𝒗 = 𝑹𝒛𝒚𝒙 ∙ 𝒗𝑩       (1.2) 

 

𝝎 = 𝜯 ∙ 𝝎𝜝      (1.3) 

 

 

where 𝒗 = [𝑥̇ 𝑦̇ 𝑧̇]𝑇 ∈ ℝ3, 𝝎 = [𝜑̇ 𝜃̇ 𝜓̇]
𝑇

∈ ℝ3 , 𝒗𝑩 = [𝑢 𝑣 𝑤]𝑇 ∈ ℝ3 , 𝝎𝜝 = [𝑝 𝑞 𝑟]𝑇 ∈ ℝ3 and T is 

a matrix for angular transformations: 

 

 

𝜯 = (

1 𝑠𝜙𝑡𝜃 𝑐𝜙𝑡𝜃
0 𝑐𝜙 −𝑠𝜙

0
𝑠𝜙

𝑐𝜃

𝑐𝜙

𝑐𝜃

)     (1.4) 

 

 

where 𝑡𝜃 = tan(𝜃). So, the kinematic model of the quadrotor can be written as followed: 

 

 

𝑥̇ = 𝑤[𝑠𝜙𝑠𝜓 + 𝑐𝜙𝑐𝜓𝑠𝜃] − 𝑣[𝑐𝜙𝑠𝜓 − 𝑐𝜓𝑠𝜙𝑠𝜃] + 𝑢[𝑐𝜓𝑐𝜃] 

 

𝑦̇ = 𝑣[𝑐𝜙𝑐𝜓 + 𝑠𝜙𝑠𝜓𝑠𝜃] − 𝑤[𝑐𝜓𝑠𝜙 − 𝑐𝜙𝑠𝜓𝑠𝜃] + 𝑢[𝑐𝜃𝑠𝜓] 

 

𝑧̇ = 𝑤[𝑐𝜙𝑐𝜃] − 𝑢[𝑠𝜃] + 𝑣[𝑐𝜃𝑠𝜙] 

 

𝜑̇ = 𝑝 + 𝑟[𝑐𝜙𝑡𝜃] + 𝑞[𝑠𝜙𝑡𝜃] 

 

𝜃̇ = 𝑞[𝑐𝜙] − 𝑟[𝑠𝜙] 

𝜓̇ = 𝑟
𝑐𝜙

𝑐𝜃
+ 𝑞

𝑠𝜙

𝑐𝜃
 

       (1.5) 
                                                            

 

 

From Newton’s law about the total force acting on the quadrotor, the dynamic model in the body frame 

can be expressed as: 
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𝑓𝑥 = 𝑚(𝑢̇ + 𝑞𝑤 − 𝑟𝑣) 

 

𝑓𝑦 = 𝑚(𝑣̇ − 𝑝𝑤 + 𝑟𝑢) 

 

𝑓𝑧 = 𝑚(𝑤̇ + 𝑝𝑣 − 𝑞𝑢) 

 

𝑚𝑥 = 𝑝̇𝐼𝑥 − 𝑞𝑟𝐼𝑦 + 𝑞𝑟𝐼𝑧 

 

𝑚𝑦 = 𝑞̇𝐼𝑦 + 𝑝𝑟𝐼𝑥 − 𝑝𝑟𝐼𝑧 

 

𝑚𝑧 = 𝑟̇𝐼𝑧 − 𝑝𝑞𝐼𝑥 + 𝑝𝑞𝐼𝑦 

                 (1.6) 

 

with 𝒎𝑩 = [𝑚𝑥 𝑚𝑦 𝑚𝑧]
𝑇 ∈ ℝ3 denoting the torques along the three axes, I the diagonal inertia matrix 

and m the mass of the quadrotor. Bearing in mind that the external forces and the external moments in 

the body frame are given by: 

 

𝒇𝑩 = 𝑚𝑔𝑹𝑇 ∙ 𝒆̂𝒛 − 𝑓𝑡𝒆̂𝟑 + 𝒇𝒘     (1.7) 

 

𝒎𝑩 = 𝝉𝑩 − 𝒈𝒂 + 𝝉𝒘               (1.8) 

 

 

 

respectively, with 𝒇𝒘 representing the forces produced by wind, 𝒆̂𝒛 the unit vector in the z axis, 𝑓𝑡𝒆̂𝟑 

the product of the total thrust generated and the unit vector in the body z axis, 𝒈𝒂 the gyroscopic 

moments because of the combined rotation of the rotors, 𝝉𝑩 the control torques as a result of differences 

in the rotor speeds and 𝝉𝒘 the torques produced by winds. So, the dynamic model of the quadrotor in 

the body frame can be expressed as: 

 

 

−𝑚𝑔𝑠𝜃 + 𝑓𝑤𝑥 = 𝑚(𝑢̇ + 𝑞𝑤 − 𝑟𝑣) 

 

𝑚𝑔[𝑐𝜃𝑠𝜙] + 𝑓𝑤𝑦 = 𝑚(𝑣̇ − 𝑝𝑤 + 𝑟𝑢) 

 

𝑚𝑔[𝑐𝜃𝑐𝜙] + 𝑓𝑤𝑧 − 𝑓𝑡 = 𝑚(𝑤̇ + 𝑝𝑣 − 𝑞𝑢) 

 

𝜏𝑥 + 𝜏𝑤𝑥 = 𝑝̇𝐼𝑥 − 𝑞𝑟𝐼𝑦 + 𝑞𝑟𝐼𝑧 

 

𝜏𝑦 + 𝜏𝑤𝑦 = 𝑞̇𝐼𝑦 + 𝑝𝑟𝐼𝑥 − 𝑝𝑟𝐼𝑧 

 

𝜏𝑧 + 𝜏𝑤𝑧 = 𝑟̇𝐼𝑧 − 𝑝𝑞𝐼𝑥 + 𝑝𝑞𝐼𝑦 

           (1.9) 
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while making the fair assumption that the inertia of each rotor is small.  

By organizing the state’s vector as a combination of the three Euler angles [𝜙  𝜃  𝜓]𝑇, the three 

rotational velocities [𝑝  𝑞  𝑟]𝑇, the three translational velocities [𝑢 𝑣 𝑤]𝑇  and the three positions along 

x, y, and z axis [𝑥 𝑦 𝑧]𝑇 as follows: 

 

 

𝒙 = [𝜑 𝜃 𝜓 𝑝 𝑞 𝑟 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧]𝑇 ∈ ℝ3           (1.10) 

 

 

            

the equations of the dynamic behavior of the quadrotor can be written in state-space form [2] as 

follows: 

 

 

𝜑̇ = 𝑝 + 𝑟[𝑐𝜙𝑡𝜃] + 𝑞[𝑠𝜙𝑡𝜃]     

 

 𝜃̇ = 𝑞[𝑐𝜙] − 𝑟[𝑠𝜙]      

 

𝜓̇ = 𝑟
𝑐𝜙

𝑐𝜃
+ 𝑞

𝑠𝜙

𝑐𝜃
  

 

𝑝̇ =
𝐼𝑦 − 𝐼𝑧

𝐼𝑥
𝑟𝑞 +

𝜏𝑥 + 𝜏𝑤𝑥

𝛪𝑥
 

 

𝑞̇ =
𝐼𝑧 − 𝐼𝑥

𝐼𝑦
𝑝𝑟 +

𝜏𝑦 + 𝜏𝑤𝑦

𝛪𝑦
 

 

𝑟̇ =
𝐼𝑥 − 𝐼𝑦

𝐼𝑧
𝑝𝑞 +

𝜏𝑧 + 𝜏𝑤𝑧

𝛪𝑧
 

 

𝑢̇ = 𝑟𝑣 − 𝑞𝑤 − 𝑔[𝑠𝜃] +
𝑓𝑤𝑥

𝑚
 

 

𝑣̇ = 𝑝𝑤 − 𝑟𝑢 − 𝑔[𝑠𝜙𝑐𝜃] +
𝑓𝑤𝑦

𝑚
 

 

𝑤̇ = 𝑞𝑢 − 𝑝𝑣 + 𝑔[𝑐𝜃𝑐𝜙] +
𝑓𝑤𝑧 − 𝑓𝑡

𝑚
 

 

𝑥̇ = 𝑤[𝑠𝜙𝑠𝜓 + 𝑐𝜙𝑐𝜓𝑠𝜃] − 𝑣[𝑐𝜙𝑠𝜓 − 𝑐𝜓𝑠𝜙𝑠𝜃] + 𝑢[𝑐𝜓𝑐𝜃] 

 

 𝑦̇ = 𝑣[𝑐𝜙𝑐𝜓 + 𝑠𝜙𝑠𝜓𝑠𝜃] − 𝑤[𝑐𝜓𝑠𝜙 − 𝑐𝜙𝑠𝜓𝑠𝜃] + 𝑢[𝑐𝜃𝑠𝜓]    

 

𝑧̇ = 𝑤[𝑐𝜙𝑐𝜃] − 𝑢[𝑠𝜃] + 𝑣[𝑐𝜃𝑠𝜙]  
 

   (1.11) 
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The (1.11) is a set of twelve overly complex and non-linear first-order differential equations 

with intertwined terms. Τhe roll, pitch and yaw rates are represented by the first three equations that 

consider the rotational velocities and they use trigonometric functions to relate these rates of change 

of the angles to each other. The next three equations describe the proportional relation between the 

rotational accelerations with the moments of inertia and the torques acting on the quadrotor. The 

following three equations describe the quadrotor's translational dynamics, while considering the forces 

acting on it, including gravity, wind forces and the thrust force generated by the rotors. The final three 

equations describe the position rates and their relation to the velocities and angles of the quadrotor. 

Nevertheless, instead of describing the wind disturbances through the terms τw and fw for the 

torques and forces that are created due to the wind, it is preferable to use the friction coefficients. These 

are denoted as kp, kq, kr, ku, kv and kw for the rotational and translational accelerations in the x, y, and 

z axes, respectively [2]. So, they can be incorporated into the (1.11) set of equations, affecting only 

the 𝑝̇, 𝑞̇, 𝑟̇, 𝑢̇, 𝑣̇, 𝑤̇ formulas as follows: 

 

𝑝̇ =
𝐼𝑦 − 𝐼𝑧

𝐼𝑥
𝑟𝑞 +

𝜏𝑥 + 𝜏𝑤𝑥

𝛪𝑥
− 𝑘𝑝𝑝 

 

𝑞̇ =
𝐼𝑧 − 𝐼𝑥

𝐼𝑦
𝑝𝑟 +

𝜏𝑦 + 𝜏𝑤𝑦

𝛪𝑦
− 𝑘𝑞𝑞 

 

𝑟̇ =
𝐼𝑥 − 𝐼𝑦

𝐼𝑧
𝑝𝑞 +

𝜏𝑧 + 𝜏𝑤𝑧

𝛪𝑧
− 𝑘𝑟𝑟 

 

𝑢̇ = 𝑟𝑣 − 𝑞𝑤 − 𝑔[𝑠𝜃] +
𝑓𝑤𝑥

𝑚
− 𝑘𝑢𝑢 

 

𝑣̇ = 𝑝𝑤 − 𝑟𝑢 − 𝑔[𝑠𝜙𝑐𝜃] +
𝑓𝑤𝑦

𝑚
− 𝑘𝑣𝑣 

 

𝑤̇ = 𝑞𝑢 − 𝑝𝑣 + 𝑔[𝑐𝜃𝑐𝜙] +
𝑓𝑤𝑧 − 𝑓𝑡

𝑚
− 𝑘𝑤𝑤 

 

(1.12) 

 

However, the equations presented so far consider neither the gyroscopic effect nor the motors’ 

angular velocities. That being said, it is possible to relate the forces and torques acting on the system 

with the angular velocities 𝛺1 , 𝛺2 , 𝛺3 , 𝛺4 through the following equations [2]:  
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𝑓𝑡 = 𝑏(𝛺1
2 + 𝛺2

2 + 𝛺3
2 + 𝛺4

2) 

 

𝜏𝑥 = 𝑏𝑙(𝛺3
2 − 𝛺1

2) 

 

𝜏𝑦 = 𝑏𝑙(𝛺4
2 − 𝛺2

2) 

 

𝜏𝑧 = 𝑑(𝛺2
2 + 𝛺4

2 − 𝛺1
2 − 𝛺3

2) 

(1.13) 

 

 

where 𝑙 is the distance between the rotors and the center of the quadrotor, 𝑏 the thrust coefficient, and 

𝑑 the drag coefficient. The thrust coefficient is a parameter used to model the relationship between the 

thrust generated by the motor and the square of its rotational speed. It depends on many factors, 

including the motor's design and propellers, as well as the occurring environmental conditions. On the 

contrary, the aerodynamic drag force is a resistive air force that opposes to the motion of the quadrotor, 

so the drag coefficient represents the proportionality between the drag force and the square of the 

velocity of the quadrotor. It is an essential part to consider when designing and controlling the 

quadrotor, as it highly influences its stability, maneuverability, and energy efficiency. From the 

equations (1.13) it is possible to derive the angular velocities through the matrix form: 

 

 

[

𝑓𝑡
𝜏𝑥

𝜏𝑦

𝜏𝑧

] = [

𝑏 𝑏 𝑏 𝑏
−𝑏𝑙 0 𝑏𝑙 0
0 −𝑏𝑙 0 𝑏𝑙

−𝑑 𝑑 −𝑑 𝑑

 ] ∙

[
 
 
 
 
𝛺1

2

𝛺2
2

𝛺3
2

𝛺4
2]
 
 
 
 

→ 𝑄 = 𝐴 ∙ 𝛺 → 𝛺 = 𝛢−1 ∙ 𝑄   (1.14) 

 

 

so, the angular velocities are: 

 

[

𝜔1

𝜔2

𝜔3

𝜔4

] = √𝛺      

  (1.15) 

 

Consequently, bearing in mind that the overall motor’s rotation for the quadrotor system is given by: 

 

𝜔𝑟 = 𝜔1 − 𝜔2 + 𝜔3 − 𝜔4     (1.16) 
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it is possible to rewrite the equations related to 𝑝̇ and 𝑞̇, by adding in combination both the actuator 

dynamics and the gyroscopic effect as follows, where 𝐽𝑟 is the gyroscopic coefficient: 

 

 

𝑝̇ =
𝐼𝑦 − 𝐼𝑧

𝐼𝑥
𝑟𝑞 +

𝜏𝑥 + 𝜏𝑤𝑥

𝛪𝑥
− 𝑘𝑝𝑝 − 𝐽𝑟𝑝𝜔𝑟 

 

𝑞̇ =
𝐼𝑧 − 𝐼𝑥

𝐼𝑦
𝑝𝑟 +

𝜏𝑦 + 𝜏𝑤𝑦

𝛪𝑦
− 𝑘𝑞𝑞 + 𝐽𝑟𝑞𝜔𝑟 

(1.17) 

 

Thus, the complete mathematical model in the state-space form, is given by the following set of 

equations (1.18), with 𝜔𝑟 deriving from a combination of equations (1.13), (1.14) and (1.15): 

 

𝜑̇ = 𝑝 + 𝑟[𝑐𝜙𝑡𝜃] + 𝑞[𝑠𝜙𝑡𝜃]     

 

 𝜃̇ = 𝑞[𝑐𝜙] − 𝑟[𝑠𝜙]      

 

𝜓̇ = 𝑟
𝑐𝜙

𝑐𝜃
+ 𝑞

𝑠𝜙

𝑐𝜃
  

 

𝑝̇ =
𝐼𝑦 − 𝐼𝑧

𝐼𝑥
𝑟𝑞 +

𝜏𝑥 + 𝜏𝑤𝑥

𝛪𝑥
− 𝑘𝑝𝑝 − 𝐽𝑟𝑝𝜔𝑟 

 

𝑞̇ =
𝐼𝑧 − 𝐼𝑥

𝐼𝑦
𝑝𝑟 +

𝜏𝑦 + 𝜏𝑤𝑦

𝛪𝑦
− 𝑘𝑞𝑞 + 𝐽𝑟𝑞𝜔𝑟 

 

𝑟̇ =
𝐼𝑥 − 𝐼𝑦

𝐼𝑧
𝑝𝑞 +

𝜏𝑧 + 𝜏𝑤𝑧

𝛪𝑧
− 𝑘𝑟𝑟 

 

𝑢̇ = 𝑟𝑣 − 𝑞𝑤 − 𝑔[𝑠𝜃] +
𝑓𝑤𝑥

𝑚
− 𝑘𝑢𝑢 

 

𝑣̇ = 𝑝𝑤 − 𝑟𝑢 − 𝑔[𝑠𝜙𝑐𝜃] +
𝑓𝑤𝑦

𝑚
− 𝑘𝑣𝑣 

 

𝑤̇ = 𝑞𝑢 − 𝑝𝑣 + 𝑔[𝑐𝜃𝑐𝜙] +
𝑓𝑤𝑧 − 𝑓𝑡

𝑚
− 𝑘𝑤𝑤 

𝑥̇ = 𝑤[𝑠𝜙𝑠𝜓 + 𝑐𝜙𝑐𝜓𝑠𝜃] − 𝑣[𝑐𝜙𝑠𝜓 − 𝑐𝜓𝑠𝜙𝑠𝜃] + 𝑢[𝑐𝜓𝑐𝜃] 

 

 𝑦̇ = 𝑣[𝑐𝜙𝑐𝜓 + 𝑠𝜙𝑠𝜓𝑠𝜃] − 𝑤[𝑐𝜓𝑠𝜙 − 𝑐𝜙𝑠𝜓𝑠𝜃] + 𝑢[𝑐𝜃𝑠𝜓]    

 

𝑧̇ = 𝑤[𝑐𝜙𝑐𝜃] − 𝑢[𝑠𝜃] + 𝑣[𝑐𝜃𝑠𝜙]     

(1.18) 
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The (1.18) set of non-linear first-order differential equations represents the mathematical model 

used in the presented diploma thesis. Having considered the underlying physics and the sophisticated 

mathematical framework regarding the system’s geometry and the possible numerous disturbances, it 

is anticipated that this model will effectively demonstrate the complex dynamic behavior of the 

quadrotor. 

 

1.5 Open-loop Simulation 

Although the open-loop simulation is not an exact representation of the real world and usually 

includes limitations or inaccuracies, it is considered a valuable tool for the control systems area. The 

reason behind that is that it offers an insight into how the system responds to different inputs and how 

its behavior is affected by various parameters.  

In the context of the quadrotor, control refers to the ability to manipulate the thrusts and torques 

applied to the vehicle, to achieve the desired flight behavior. The thrust is related to the vertical 

movement while the torques produce rotations, which help the quadrotor move in the x or y direction.  

The inputs to the system are the total thrust and the torques in the x, y, and z axes, known as 

the control vector 𝒖 = [𝑓𝑡   𝜏𝑥  𝜏𝑦  𝜏𝑧]
𝑇 ∈ ℝ4, while the output is the state-space vector 𝒙 =

[𝜑  𝜃  𝜓  𝑝  𝑞  𝑟  𝑢  𝑣  𝑤  𝑥  𝑦  𝑧]𝛵 ∈  ℝ12 with twelve variables that describe the exact condition of the 

quadrotor in the 3D environment. By choosing specific values for the control vector u and the 

parameters, it is possible to create an open-loop graph that depicts the free behavior of the quadrotor 

in the form of the twelve system states.  

It is noted that for the open-loop simulation, and for the following simulations presented in 

Chapter 2., the ode3 (Bogacki-Shampine) solver will be employed; it is a fixed-step solver that 

computes the state of the model as an explicit function of the current value of the state and the 

derivatives using the Bogacki-Shampine formula integration technique. The characteristics of the 

quadrotor simulated are presented in Table 1 and the state-space variables examined are presented in 

Table 2 as follows:   
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Table 1. Constants for the simulation of the quadrotor 

 

Symbol Description Arithmetic value Units 

m Mass of the quadrotor 1 𝑘𝑔 

l Arm length of the quadrotor 0.24 𝑚 

g Gravitational acceleration 9.81 𝑚 𝑠2⁄  

𝐽𝑟 Gyroscopic moment 1.08 ∙ 10−6 𝑘𝑔 ∙ 𝑚2 

𝐼𝑥 Moment of inertia in roll 8 ∙ 10−3 𝑘𝑔 ∙ 𝑚2 

𝐼𝑦 Moment of inertia in pitch 8 ∙ 10−3 𝑘𝑔 ∙ 𝑚2 

𝐼𝑧 Moment of inertia in yaw 14.2 ∙ 10−3 𝑘𝑔 ∙ 𝑚2 

b Thrust constant 54.2 ∙ 10−6 unitless 

d Drag constant 1.1 ∙ 10−6 unitless 

𝑘𝑝 Friction coefficient for translational movement in the x axis 0.03 unitless 

𝑘𝑞 Friction coefficient for translational movement in the y axis 0.03 unitless 

𝑘𝑟 Friction coefficient for translational movement in the z axis 0.01 unitless 

𝑘𝑢 Friction coefficient for rotational movement in the x axis 0.048 unitless 

𝑘𝑣 Friction coefficient for rotational movement in the y axis 0.11 unitless 

𝑘𝑤 Friction coefficient for rotational movement in the z axis 0.046 unitless 
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Table 2. The state-space variables of the quadrotor system 

 

Symbol Description Units 

φ Roll angle rad 

θ Pitch angle rad 

ψ Yaw angle rad 

p Rotational velocity in the x axis rad/sec 

q Rotational velocity in the y axis rad/sec 

r Rotational velocity in the z axis rad/sec 

u Translational velocity in the x axis m/sec 

v Translational velocity in the y axis m/sec 

w Translational velocity in the z axis m/sec 

x Position x m 

y Position y m 

z Position z m 

 

For the open-loop simulation for the quadrotor system, assuming an input vector of zero and 

that all of the state parameters have an initial value of zero, it is anticipated that, even in the absence 

of control inputs, the quadrotor will present changes due to the vehicle’s inherent characteristics and 

external forces acting on it.  

More specifically, based on the Equations 1.18, it is clear that the quadrotor system is subject 

to three main forces: thrust force (produced by the propellers), wind forces and gravity. That being 

said, for a control vector equal to zero, meaning that there is no control input applied to the system, 

the quadrotor is not actively controlled or stabilized, so its motion is governed by the balance of the 

forces acting on it.  

Considering the NED reference system, the gravity force acting on the vehicle is positive as it 

coincides with the barycenter of the earth, causing it to move downwards. Therefore, in order for the 

quadrotor to move upwards, the thrust force needs to be applied in the negative direction, but it will 

cause the quadrotor to move this way only if that force, also known as lift force, is greater than the 

force of gravity. Additionally, any external forces acting on the quadrotor, such as wind forces, could 

affect the amount and direction of the thrust generated by the rotors, and, as a result, the quadrotor's 

altitude in the z-axis and the corresponding translational velocity.  
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On the other hand, in order for the quadrotor to rotate in x, y or z axes (roll, pitch, yaw motion, 

respectively) there should be torques acting on the system, which is not the case for a control input as 

the one employed in this simulation. The open – loop simulation graph for a simulation time of 10 

seconds is presented in Figure 5. 

 

 

 

Figure 5. Open-loop simulation for zero input and zero initial values for the quadrotor system 
 
 

Given the specified input, it is evident that solely the altitude, z, and the translational velocity 

in the z axis, w, were affected, as was anticipated, and that the quadcopter moves “downwards”, since 

there is not ground in the simulation, driven by the force of gravity. 

Although the graph does not show all the details about how the quadrotor behaves, it confirms 

that the quadrotor is an overly sensitive system, with an extremely quick reaction to changes, while 

also highlighting the fact that some of its characteristics are inherent to its dynamic nature.  

The information obtained from the open-loop simulation will be used in the upcoming chapters, 

to develop control strategies that are both robust and agile. By considering these factors in the control 

design process, it is expected that the resulting control system will perform with improved stability, 

accuracy, and responsiveness. 
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CHAPTER 2: PID Control of the Quadrotor 

In the second chapter, a thorough examination of a single quadrotor control system employing 

PID controllers is presented. The chapter begins with an examination of the basic principles of the PID 

controller, including its mathematical formulation. Subsequently, the relevant control system's design 

is provided. Finally, the system’s performance is demonstrated through simulation tests for both step 

inputs and trajectory following, for a comprehensive evaluation over the suitability and the challenges 

of such approach for the control of the quadrotor.  

 

2.1 The PID Controller 

A PID (Proportional-Integral-Derivative) controller is a widely used feedback control 

mechanism first introduced by Elmer Sperry in 1911, but it was not until the 1930s that it became 

popular [20]. Its acronym is indicative of the three primary control actions that it applies to the system, 

as they work together to keep a stable and accurate control of a physical process. 

More specifically, the Proportional (P) part of a PID controller is the first and simplest control 

action as it depends solely on the difference between the desired set point and the value of the 

controlled variable, known as the error term. Its goal is to reduce the error by producing an output that 

is directly proportional to the size of it; the larger the error, the larger the control signal, and the faster 

the system’s response to it. The coefficient that scales the output is called the Proportional gain or Gain 

factor (Kp) and the output signal is given by: 

 

𝑃𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐾𝑝 ∙ 𝑒𝑟𝑟𝑜𝑟 = 𝐾𝑝 ∙ 𝑒(𝑡)    (2.1) 

 

However, using proportional control is not sufficient to successfully control a complex system, 

since it produces overshoots and/or oscillations and it does not eliminate the steady-state error. 

The Integral (I) part of the PID controller is the one responsible for eliminating the steady-state 

error, since it continuously sums up the error over time, integrates it and generates an output that is 

proportional to the accumulated error; the larger the error and the longer it persists; the larger the output 

signal produced by the I term and the faster the controller’s response to eliminate it. As the error 

decreases, the proportional part diminishes while the integral part intensifies until the error is zero. The 

Integral gain (Ki) determines the amount of response to the accumulated error with the output signal 

given by: 
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𝐼𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐾𝐼 ∙ 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙(𝑒𝑟𝑟𝑜𝑟) = 𝐾𝐼 ∙ ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0
   (2.2) 

 

 Nonetheless, the I term often presents challenges as it creates the possibility of integral windup, 

a phenomenon that occurs when the accumulated error exceeds the limits of the controller’s range 

causing the integral term to continue accumulating the error and producing an increasing control signal 

even though the output of the controller has reached its saturation limits. This relates to the fact that 

the I term increases the number of poles at zero, which can result in overshoots, oscillations, or 

instability, especially for nonlinear complex systems. 

Finally, the Derivative (D) part of the PID produces a response proportional to the process 

variable's rate of change. So, by dampening the response of the controller to sudden changes, it 

improves the transient response (i.e., smaller overshoot) and produces fewer oscillations. Using the 

Derivative gain (KD), the formula for the output signal is given by: 

 

𝐷𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐾𝐷 ∙
𝑑(𝑒𝑟𝑟𝑜𝑟)

𝑑𝑡
= 𝐾𝐷 ∙

𝑑𝑒(𝑡)

𝑑𝑡
     (2.3) 

 

Yet, the D term also presents disadvantages with the main one being the possibility of the 

phenomenon called derivative kick, which occurs when the reference signal is non-differentiable. One 

possible approach to combatting this phenomenon is to design a specialized PID controller circuit, that 

will be explained in detail in sub-chapter 2.3.1. Moreover, in practical control systems, the use of the 

derivative term can be problematic due to its sensitivity to noise, as it amplifies the high-frequency 

components of the error signal. Therefore, it should be approached with caution and careful tuning to 

avoid instability or deficient performance, especially when there is significant noise in measurements. 

However, there are methods to deal with the noise amplification problem, such as adding a lowpass 

filter in series with the derivative gain. 

Figure 6 presents the typical structure of a PID controller, used to control the response of a 

process. 
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Figure 6. The Block Diagram of a PID controller 

  

As illustrated in Figure 6, the PID controller takes as input the error signal 𝑒(𝑡), which is the 

difference between the reference signal 𝜏(𝑡) and the output signal of the process, 𝑦(𝑡). This error 

signal is then used to calculate the control signal 𝑢(𝑡) that is applied to the system. This is a 

combination of the three terms of the PID controller (the Proportional, the Integral, and the Derivative 

part) summed together and weighted by their respective gain constants:  

 

𝑢(𝑡) = 𝐾𝑝 ∙ 𝑒(𝑡) + 𝐾𝐼 ∙ ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0
+ 𝐾𝐷 ∙

𝑑𝑒(𝑡)

𝑑𝑡
     (2.4) 

 

In consequence, the process of choosing the appropriate Kp, Ki and Kd gains, called tuning, is 

crucial for achieving a satisfactory performance and stability of the closed-loop control scheme. Even 

though there are several methods for PID tuning, like the Ziegler-Nichols or the Cohen-Coon method, 

it is a process extremely dependable on trial-and-error, especially since the objectives of the three parts 

are often contradictory. Thus, it is important to bear in mind the specific system that the PID controller 

is applied on, as well as the aims and the prioritized goals set. [20] 

 

2.2 Design of the PID Control System 

As far as the quadrotor is concerned, it is a sensitive and dynamic system, so the control system 

designed for it must be capable of responding rapidly to changing flight conditions, while also ensuring 

its stability and safety. It is also crucial to highlight the fact that it is an underactuated nonlinear 

complex mechanical system since it has six degrees of freedom (DOF) but only four inputs, which 

complicates the design even further.  
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For such underactuated system as the one presented, for all six degrees of freedom to be 

controlled, it is necessary to find a way to use the available control inputs to achieve the desired 

movements. One common approach is the use of a cascaded formulation where the output of one 

controller is used as the setpoint for the next controller in the hierarchy, a process known as Cascaded 

Control Loops. [21] 

In a cascaded PID control system, there are multiple PID controllers working in series in a way 

that the output of one PID controller is fed into the input of the PID controller next to it. In a typical 

system of that kind, the internal controller is responsible for controlling the variable, through which 

the overall process variable is controlled. More specifically, as presented in Figure 7, the process target 

is given as reference input to the outer PID controller which, in turn creates the inner target and feeds 

it to the inner loop controller. The latter produces the control action applied to the process. The design 

is completed with a feedback control mechanism for both the outer and the inner loop controllers.  

 

 

 

Figure 7. The Block Diagram of a cascaded PID system 

 

In the case of the quadrotor, there is the need for at least two targets to be controlled through 

others, so it is possible to use four PID controllers for instantaneous regulation; one for the altitude z 

which produces the ft, one for the roll angle φ, one for the pitch angle θ and one for the yaw angle ψ. 

While bearing in mind that the quadrotor’s lateral motion in the x and y axes is affected by the lateral 

thrusts as well as the angles φ and θ, it is possible to use the cascade control strategy, as follows:  

• For the x-direction control, the outer loop PID controller uses the x position reference as input 

and produces a θ angle output, which is fed as reference input to the inner loop PID controller 

for the pitch angle regulation. Then, this controller produces the torque τy  as output.  

• For the y-direction control, the outer loop PID controller uses the y position reference as input 

and produces a φ angle output, which is fed as reference input to the inner loop PID controller 

for the roll angle regulation. Then, this controller produces the torque τx as output.  
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With that control design, as depicted in Figure 8, the quadrotor’s system can be controlled effectively 

and with adequate precision, despite the limitations of the available control inputs.  

 

 

 

Figure 8. The designed cascaded PID control system for the quadrotor 

 

More specifically, the inputs to the control system are the position references x, y, and z, as 

well as the reference for the yaw angle ψ, which usually equals to zero, while the outputs of the system 

are the twelve variables that utterly describe the quadrotor’s behavior in 3D space. These references 

are fed as inputs to the PID controllers: the one for altitude z, the one for the yaw angle and the outer-

loop controllers for position x and y. The first two instantly produce the variables of the control vector 

ft and τz, respectively, while the latter two feed their outputs into the inner loop controllers for roll and 

pitch angle, eventually producing the torques τy and τx. 

In that way, the quadrotor’s plant, which follows the mathematical model explained at Chapter 1., 

receives the control vector 𝒖 = [𝑓𝑡  𝜏𝑥  𝜏𝑦  𝜏𝑧]
𝑇 ∈ ℝ4 and produces as output the state-space vector 

𝒙 = [𝜑  𝜃  𝜓  𝑝  𝑞  𝑟  𝑢  𝑣  𝑤  𝑥  𝑦  𝑧]𝛵 ∈  ℝ12 . The state-space variables are given as feedback to the 

respective controllers to enable closed-loop control of the system and thus being able to adjust the 

input to achieve the desired output. This feedback control mechanism, apart from being part of the PID 

control, is an essential aspect of the quadrotor control, as it provides the conditions for the vehicle to 

adapt to changes or disturbances in the environment. 
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2.3 Tuning the PID controllers 

The process of tuning the PID controllers, while following the cascaded PID design explained, 

required a thorough understanding of the system dynamics. More specifically, when employing PID 

controllers, the signal given as input is the error signal which corresponds to the difference between 

the desired-reference signal and the current-actual signal, as follows:  

 

𝑒𝑟𝑟𝑜𝑟 𝑠𝑖𝑔𝑛𝑎𝑙 = 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑖𝑔𝑛𝑎𝑙 − 𝑎𝑐𝑡𝑢𝑎𝑙 𝑠𝑖𝑔𝑛𝑎𝑙 = 𝑟(𝑡) − 𝑦(𝑡)  (2.5) 

 

When working with the NED coordinate system, the positive z axis, which in the quadrotor’s 

case is relevant to the altitude, is defined pointing downwards. That said, increasing the altitude 

corresponds to a negative change in z and, as a result, a negative thrust command should be applied. 

During the tuning process, it is important to also remember that the PID controller for the altitude has 

an extra term added to its output, the gravity compensation. Another particularity of the NED system 

which affects the tuning of the PIDs is that a negative pitch angle drives the system to the positive x 

direction; these are all important notes taken into consideration during the tuning and the simulation 

part of the system’s design. 

 Moreover, to achieve the desired performance, careful coordination between the inner and 

outer loop controllers is crucial. More specifically, a good technique turned out to be tuning the inner 

loop PIDs first and then fine tuning the outer loop PIDs, while taking into account the interdependence 

with the inner ones. Furthermore, a step-by-step approach was utilized; adjusting the proportional gains 

first and, upon achieving a satisfactory system response, the derivative gain was employed to enhance 

the system’s stability. Finally, a small integral gain was introduced to eliminate the steady-state error, 

while ensuring that the response was not negatively affected.  

The objective in mind was to produce responses that are as similar as possible to first-order 

responses (i.e., zero overshoot and zero oscillations), while also maintaining a quick enough response 

for such a dynamic and sensitive system as that of the quadrotor.  

 

2.4 Simulation analysis and results 

The design of a system can often be affected by the type of input used as a reference signal, 

and this is also true when employing PID controllers. To investigate such an impact, two cases will be 

presented in the following sub-chapters. The first case will involve simulating the control system with 

a step input to examine how the controller responds to a sudden change in the reference signal. The 
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second case will involve simulating the control system for trajectory tracking, which is a more complex 

scenario that involves following a specific path or trajectory. Through the examination of these two 

cases, valuable insights can be gained into the behavior and performance of PID controllers under 

different input signal conditions for the quadrotor system. 

Before presenting the simulation results, it is important to highlight the fact that, in many cases, 

the cascaded PID system is designed in a way that the inner loop PIDs have a faster response (i.e., 

smaller sampling time) than the outer loops. This ensures that the inner loops can quickly respond to 

errors in the system and/or correct them, providing greater overall accuracy. However, in the 

simulations presented in this thesis, the fundamental sample time is constant, equal to 𝑇𝑠 = 0.02 

seconds and the same for all PID controllers, for a more general representation. 

 

2.4..1 Simulation for step input  

When applying a step input, one of the challenges faced is that it is not a continuous function; 

this creates the phenomenon previously referred to as derivative kick. As a result, calculating the 

signal’s derivative becomes a perplexing task, which poses a significant problem when the control 

system design includes PID controllers. Without the derivative part, the PID controller cannot be finely 

tuned and thus the overall performance is negatively impacted.  

One solution to this problem is to use the state variables as feedback in the derivative path, 

rather than the error signal. In that way, the controller responds to changes in the state variable instead 

of changes in the error signal, enabling the simulation of the system despite the discontinuity of the 

step input. In order to implement this solution, the derivative term of the PID controller should be 

subtracted from the controller’s output, instead of being added.  

In more detail, as defined in Equation 2.5, the error signal is expressed as 𝑒0 = 𝑟(𝑡) −  𝑦(𝑡), 

where 𝑟(𝑡) is the reference signal at time t and 𝑦(𝑡) is the output signal at time t. Calculating the 

derivative of the error signal will give 
𝑑𝑒(𝑡)

𝑑𝑡
= 

𝑑𝑟(𝑡)

𝑑𝑡
− 

𝑑𝑦(𝑡)

𝑑𝑡
, and for a step input fired at time t1 as 

reference, the derivative of the error signal will be: 

➢ undefined for 𝑡1, as the derivative of a discontinuous function goes to infinity. 

➢ 
𝑑𝑒(𝑡)

𝑑𝑡
=  0 − 

𝑑𝑦(𝑡)

𝑑𝑡
= − 

𝑑𝑦(𝑡)

𝑑𝑡
 for 𝑡 > 𝑡1 

This method provides a simple and practical solution for dealing with step inputs, which 

ensures that the controller can effectively regulate the system, even in the presence of discontinuous 
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inputs. As a result, the system's performance can be improved, leading to better control of the process 

being regulated. 

Below, in Figure 9, the diagram of such PID design is presented for the controllers 

corresponding to the angles and the positions x and y, whereas the PID design for the altitude z is 

depicted in Figure 10, including the gravitational compensation term. In Table 3, the gains 𝑘𝑃, 𝑘𝐼 and 

𝑘𝐷 for all the PID controllers used in the simulation design are presented, after the process of tuning.  

 

 

 

Figure 9. The general PID block diagram for step input 

 

 

 

 

Figure 10. The PID block diagram for the altitude z, when employing a step reference input 
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Table 3. The PID parameters for step reference input – PID design control 
 

 Proportional gain 𝑘𝑃 Integral gain 𝑘𝐼 Derivative gain 𝑘𝐷 

PID controller for position x -0.25 -0.0001 -0.3 

PID controller for position y 0.15 0.0001 0.25 

PID controller for altitude z -1.5 -0.001 -2.55 

PID controller for roll angle φ 0.9 0.01 0.1 

PID controller for pitch angle θ 0.6 0.001 0.1 

PID controller for yaw angle ψ 1.5 0.001 0.65 

 

 

 Assuming the step reference inputs 𝑧𝑟𝑒𝑓 = −1 [𝑚],  𝑥𝑟𝑒𝑓 = 1 [𝑚],  𝑦𝑟𝑒𝑓 = 1 [𝑚] and 𝜓𝑟𝑒𝑓 =

0.1 [𝑟𝑎𝑑], the graphs regarding the positions x, y, and z (Figure 11Figure 11, Figure 12 and Figure 

13), as well as the outputs of the PID controllers, φ and θ (Figure 14 and Figure 15), the angle psi 

(Figure 16), the thrust (Figure 17) and the torques produced (Figure 18, Figure 19 and Figure 20), are 

presented below: 

 

 

 

Figure 11. Position x in relation to time for step reference input equal to 1 [m] using the PID design 
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Figure 12. Position y in relation to time for step reference input equal to 1 [m] using the PID design 
 

 

 

 

Figure 13. Position z in relation to time for step reference input equal to -1[m] using the PID design 
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Figure 14. Roll angle φ in relation to time for step reference input using the PID design 
 
 

 

 

 

Figure 15. Pitch angle θ in relation to time for step reference input using the PID design 
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Figure 16. Yaw angle ψ in relation to time for step reference input using the PID design 
 
 
 

 
 

Figure 17. Thrust ft in relation to time for step reference input using the PID design 
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Figure 18. Torque tx in relation to time for step reference input using the PID design 
 
 
 
 

 

 

 

Figure 19. Torque ty in relation to time for step reference input using the PID design 
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Figure 20. Torque tz in relation to time for step reference input using the PID design 
 

 

Based on the graphs presented, it can be observed that the designed PID control system 

performs well in controlling the quadrotor for a step reference input. More specifically, the x, y, and z 

positions, as well as the yaw angle ψ, reach their appropriate values in a relatively short settling and 

rising time, without any overshoot or oscillations. At the same time, the integral part of the PID 

controllers, despite its small value, ensures that there is zero steady state error.  

The roll and pitch angles have an interesting response, due to the fast dynamics of the quadrotor 

system; they exhibit sharp movements before stabilizing to zero. Nevertheless, these angles remain 

small and do not exceed the generally considered boundaries of [−
𝜋

2
  

𝜋

2
]. The same logic applies for 

the torques and the thrust produced (i.e., the control vector) that are small in value, present a quick 

response and stabilize at zero when the quadrotor has reached the desired reference. The graphs that 

show the response of the signals produced by the PID controllers are always crucial in evaluating not 

only the simulation performance, but also the ability of such simulation to successfully work in real-

life conditions. 

Overall, the graphs demonstrate the success of the cascaded PID control system in controlling 

a quadrotor for a step reference input, as all controlled variables reach their setpoints in a timely manner 

and without significant deviations. However, there is always room for improvement, especially when 

it comes to how fast the system’s response is. Comparable results are expected for subsequent steps in 

different timesteps. 
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For the purpose of simulation and analysis, let us assume the following steps that describe a 

flight trajectory consisting of takeoff, a square flight pattern and landing:  

 

1. step 𝑧 = −5 [𝑚] at time 𝑡 = 0 [𝑠𝑒𝑐] 

2. step 𝑥 = 2 [𝑚] at time 𝑡 = 15 [𝑠𝑒𝑐] 

3. step 𝑦 = 2 [𝑚] at time 𝑡 = 30 [𝑠𝑒𝑐] 

4. step 𝑥 = 0 [𝑚] at time 𝑡 = 45 [𝑠𝑒𝑐] 

5. step 𝑦 = 0 [𝑚] at time 𝑡 = 60 [𝑠𝑒𝑐] 

6. step 𝑧 = 0 [𝑚] at time 𝑡 = 75 [𝑠𝑒𝑐] 

 

In this scenario, the quadrotor takes off vertically from a stationary position until it reaches a certain 

altitude. Then, it transitions to a horizontal flight square pattern and finally to a vertical flight pattern, 

until it descends back to the starting point. Figure 21, presents a visual representation of this movement. 

 

 
 

  Figure 21. Consecutive steps path visualization  

 

The PID control system's performance for the concept of consecutive steps path is shown in 

the figures below. It should be noted that the tuning of the PIDs is the same as that of the previous 

simulation and that the yaw angle ψ is kept at zero [rad]. This is the case for most quadrotor flights, as 

they use differential thrust to control their yaw motion. When the yaw angle is zero, the vehicle is in a 

stable hover, the thrust from each rotor is balanced and any desired change in yaw direction is achieved 

by adjusting the relative speeds of the rotors. Figures 22 to 31 present the produced graphs. 
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Figure 22. Position x in relation to time for step path reference using the PID design 

 
 
 

 

 

Figure 23. Position y in relation to time for step path reference using the PID design 
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Figure 24. Position z (altitude) in relation to time for step path reference using the PID design 
 

 

 

 

 

Figure 25. Roll angle φ in relation to time for step path reference using the PID design 
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Figure 26. Pitch angle θ in relation to time for step path reference using the PID design 
 
 
 
 

 

 

Figure 27. Yaw angle ψ in relation to time for step path reference using the PID design 
 

 

 



Development of a distributed model predictive control framework for autonomous unmanned aerial vehicle swarms 

UNIWA, Department of Electrical & Electronics Engineering, Diploma thesis, Despoina – Panagiota Vavelidou 
  52 

 

 

Figure 28. Thrust ft in relation to time for step path reference using the PID design 
 

 

 

 

 

Figure 29. Torque tx in relation to time for step path reference using the PID design 
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Figure 30. Torque ty in relation to time for step path reference using the PID design 
 
 
 

 

 

Figure 31. Torque tz in relation to time for step path reference using the PID design 

 

This simulation demonstrates the success of the designed cascaded PID control system for the 

step path reference input. Although there are slight differences compared to the better performance of 

the control system at step input (i.e., minor deviations at some points for the height z), the system’s 

performance is satisfactory.  
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2.4..2 Simulation for trajectory tracking   

The ability of a system to follow a desired course or trajectory over time is referred to as 

trajectory tracking or path following. The reference trajectory designates the desired path that the 

system should follow, while the end goal is to achieve precise and reliable control of the system.  

Trajectory path is considered more complex than the step inputs, as it involves tracking a 

continuously changing path, rather than simply responding to a step change. More specifically, in 

trajectory tracking the control system must take into consideration not only the current state of the 

system, but also other parameters, to smoothly follow the desired path without overshooting or 

oscillating. For comparison and analysis reasons, two trajectory paths are examined: 

1) The first trajectory set is:   

𝑥𝑟𝑒𝑓(𝑡) = 0.5 ∙ cos (0.15 ∙ 𝑡) 

𝑦𝑟𝑒𝑓(𝑡) = 0.5 ∙ sin (0.15 ∙ 𝑡) 

𝑧𝑟𝑒𝑓(𝑡) = −1 − 0.1 ⋅ 𝑡 

 

2) The second trajectory set is:  

𝑥𝑟𝑒𝑓(𝑡) = 0.5 ∙ cos (0.5 ∙ 𝑡) 

𝑦𝑟𝑒𝑓(𝑡) = 0.5 ∙ sin (0.5 ∙ 𝑡) 

𝑧𝑟𝑒𝑓(𝑡) = −1 −⋅ 𝑡 

 

The trajectory paths used in this study are continuous, which eliminates the need for the PID 

controllers to be designed in the same way as for a step input. However, trajectory tracking is typically 

more challenging than following a constant input, particularly for rapid trajectories. As a result, it is 

expected that the designed PID control system will not perform as well for the trajectory paths as it 

did for step references, especially for the second set of trajectories which is faster than the first one, as 

indicated by the higher frequency.  

Figure 32 and Figure 33 present the updated design of the PID controllers, while Table 4 

displays the PID tuning parameters used to track both trajectory sets. Finally, the simulation graphs 

are presented, as well as a graph representing the system's performance by showing both the actual and 

the reference trajectories on the same axes. 
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                Figure 32. The general PID design for the trajectory tracking 
 
 

 

 

               Figure 33. The PID design for the controller of the altitude z, for trajectory tracking 
 

 

Table 4. The PID parameters for the trajectory tracking – PID design control 
 

 Proportional gain 𝑘𝑃 Integral gain 𝑘𝐼 Derivative gain 𝑘𝐷 

PID controller for position x -0.25 -0.001 -0.3 

PID controller for position y 0.05 0 0.45 

PID controller for altitude z -3.5 -0.001 -4 

PID controller for roll angle φ 0.2 0 0.1 

PID controller for pitch angle θ 0.4 0.0001 0.1 

PID controller for yaw angle ψ 0.01 0 0.001 
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2.4..2.1 Simulation for the 1st trajectory set 

 

 

 

Figure 34. Position x and xref in relation to time for trajectory tracking (1st set) using the PID design 
 

 

 

 

 

Figure 35. Position y and yref in relation to time for trajectory tracking (1st set) using the PID design 
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Figure 36. Position z and zref in relation to time for trajectory tracking (1st set) using the PID design 
 

Based on the simulation graphs depicting the controller's response for the three axes and the 

reference trajectories (Figure 34, Figure 35, Figure 36), it can be observed that the controller performs 

adequately well, with room for improvement. The best performance is observed for the y-axis 

trajectory, followed by the z-axis trajectory, whereas the most challenging one is the x-axis trajectory.  

However, it is important to highlight the fact that the most evident deviations from the reference 

trajectory are at the start of the simulation, which is understandable since the quadrotor’s initial 

conditions may not coincide with the initial reference positions. Therefore, observing initial deviations 

followed by convergence towards the reference, is an encouraging sign for the controller’s 

performance, as it indicates that the control system can adapt to the reference trajectory and track it, 

as intended.  
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Figure 37. Roll angle φ in relation to time for trajectory tracking (1st set) using the PID design 
 

 
 

 

 

Figure 38. Pitch angle θ in relation to time for trajectory tracking (1st set) using the PID design 
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Figure 39. Yaw angle ψ in relation to time for trajectory tracking (1st set) using the PID design 
 

 

 

 

 

Figure 40. Thrust ft in relation to time for trajectory tracking (1st set) using the PID design 
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Figure 41. Torque tx in relation to time for trajectory tracking (1st set) using the PID design 
 

 

 

 

 

Figure 42. Torque ty in relation to time for trajectory tracking (1st set) using the PID design 
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Figure 43. Torque tz in relation to time for trajectory tracking (1st set) using the PID design 
 

 

As observed in the corresponding responses, the quadrotor’s angles (Figure 37, Figure 38, 

Figure 39) display sharp movements at the beginning of the simulation and then oscillations. The same 

is true for the thrust and torques (τx, τy, and τz) produced (Figure 40, Figure 41, Figure 42, Figure 43). 

However, they do not exceed the generally considered boundaries and indicate that the controller can 

control the quadrotor’s motion while respecting its physical limitations.  

 

 

 

Figure 44. Actual trajectory compared to reference trajectory for the 1st set using the PID design 
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The graph presented in Figure 44 shows the spiral-like shape of the trajectory set examined for 

three time periods. More specifically, the quadrotor, starting at (0.5, 0, -1), follows a sinusoidal path 

in the x and y direction, while simultaneously ascending along the z axis with a linear slope.   

By comparing the reference trajectory with the actual trajectory, the controller can track the 

desired trajectory well, with deviations particularly at the start of the simulation, as explained before, 

while it manages to minimize those over time. However, visual inspection alone may not provide an 

accurate assessment of the controller’s performance; for more quantitative evaluation, quality 

estimators like MSE appear to be useful.  

Mean Squared Error (MSE) is a commonly used evaluation measure in many fields, including 

control systems. It is used to evaluate the accuracy of a control system by comparing the actual-

produced values to the reference-desired ones through the average of their squared differences, as 

follows: 

𝑀𝑆𝐸 =  
1

𝑛
  ∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1       (2.6) 

 

where 𝑛 is the number of data points, 𝑦𝑖 the reference value, and 𝑦̂𝑖 the actual value. Squaring the 

differences eliminates negative values for the differences and thus ensuring that the MSE is greater 

than or equal to zero, with smaller values indicating that the desired trajectory is closer to the actual 

trajectory and so a better performance is achieved (a controller with MSE = 0 is an ideal one).  

The MSE values can be computed for each axis separately, to get a more precise measure of 

the controller’s performance for each reference, but also for the entire trajectory following as a way of 

evaluating the overall controller’s tracking performance. This can be achieved through the average of 

the MSE calculated for each axis.  

Overall, the calculation of MSE is a useful tool for optimizing the system’s performance, 

identifying any potential error or issues that need to be addressed, ensuring that the controller is 

accurately tracking the desired trajectory and thus helping us make informed decisions about the 

examined control system or compare different ones.  

Apart from the calculation of the MPC value for each one of the three axes, it is also important 

to calculate the average Euclidean distance between the actual and the reference trajectories; this 

quantitative evaluation metric provides insights into how closely the actual trajectories of the 

quadcopter follow the desired ones in the 3D space. That being said, it assesses the overall performance 

of the control system across all dimensions by considering both the magnitude and the direction of the 

deviations. As is the case with the simple MSE, smaller values indicate higher accuracy. The 

mathematical formula for the Mean Euclidean distance is: 
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𝑀𝑒𝑎𝑛 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
1

𝑛
∑ √(𝑥𝑖 − 𝑥̂𝑖)

2 + (𝑦𝑖 − 𝑦̂𝑖)
2 + (𝑧𝑖 − 𝑧̂𝑖)

2𝑛
𝑖=1             (2.7)

  

where 𝑛 is the number of data points, 𝑥𝑖 , 𝑦𝑖, 𝑧𝑖 the reference values in the x, y, z axes, and 𝑥̂𝑖, 𝑦̂𝑖 , 𝑧̂𝑖 the 

actual values in the x, y and z axes, respectively. For the 1st trajectory set the MSE values calculated 

for the x, y, and z axes, as well as the Mean Euclidean Distance, are presented in Table 5: 

 

Table 5. The MSE values for the three axes – 1st trajectory using the PID design 

 

 Mean Squared Error (MSE) 

x-axis trajectory 0.0020 

y-axis trajectory 9.2778 e-05 

z-axis trajectory 0.0059 

Mean Euclidean Distance 0.0205 

 

Based on the calculated MSE values for the x, y, and z axes trajectories, it becomes apparent 

that the quadrotor can follow the three trajectories well, with the y-axis trajectory showing the best 

performance, as indicated by the smallest MSE value (the one closest to zero). The x and z axes 

trajectories also perform well, with room for improvement, especially for the z axis which presents the 

largest MSE value. To improve the performance in these directions, it may be necessary to further tune 

the corresponding PID controllers or consider using a different control system altogether.  

However, considering the tracking errors that appear due to the initial conditions in axes x and 

z, it is fair to say that the results are exceptionally well for a cascaded PID control system that is 

controlling a quadrotor. Besides, it is important to bear in mind that PID controllers are particularly 

good at controlling linear systems, but, generally, they do not perform as well for complex non-linear 

systems as the one examined. 

 

2.4..2.2 Simulation for the 2nd trajectory set 
 

For the tracking of the second trajectory, the corresponding graphs are presented in Figures 45 

to 54. 
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Figure 45. Position x and xref in relation to time for trajectory tracking (2nd set) using the PID design 
 
 
 
 

 

 

Figure 46. Position y and yref in relation to time for trajectory tracking (2nd set) using the PID design 
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Figure 47. Position z and zref in relation to time for trajectory tracking (2nd set) using the PID design 
 

 

 

 

 

Figure 48. Roll angle φ in relation to time for trajectory tracking (2nd set) using the PID design 
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Figure 49. Pitch angle θ in relation to time for trajectory tracking (2nd set) using the PID design 
 

 

 

 

 

Figure 50. Yaw angle in relation to time for trajectory tracking (2nd set) using the PID design 
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Figure 51. Thrust ft in relation to time for trajectory tracking (2nd set) using the PID design 
 
 

 

 

 

Figure 52. Torque tx in relation to time for trajectory tracking (2nd set) using the PID design 
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Figure 53. Torque ty in relation to time for trajectory tracking (2nd set) using the PID design 
 
 
 

 

 

Figure 54. Torque tz in relation to time for trajectory tracking (2nd set) using the PID design 

 

As anticipated, the second trajectory set exhibits lower tracking performance compared to the 

first set, primarily due to its faster profile. More specifically, the PID control system appears to be 

struggling to accurately follow the trajectory in cases where there are rapid changes in orientation, as 

the system’s response is slower than the rate at which the trajectory is changing. This is evident not 
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only in the simulation graphs for x, y, and z (Figure 45, Figure 46, Figure 47), but also in the spiral 

graph (Figure 55), where the deviations from the desired trajectory become more apparent:  

 

 

Figure 55. Actual trajectory compared to reference trajectory for the 2nd set using the PID design 
 
 
 

Consequently, the calculated Mean Squared Error (MSE) values are also higher, reflecting the 

larger tracking errors between the reference trajectory and the actual response, as presented in the 

following table (Table 6):  

 

Table 6. The MSE values for the three axes – 2nd trajectory using the PID design 
 

 Mean Squared Error (MSE) 

x-axis trajectory 0.0068 

y-axis trajectory 0.0011 

z-axis trajectory 0.0197 

Mean Euclidean Distance 0.0741 

 

In summary, although the designed PID control system demonstrated acceptable results in the 

examined cases (step input, consecutive steps, path following for a slow and a fast set), it may not be 

the optimal choice for controlling the quadrotor system. This is graphically and quantitatively evident 

in the case of trajectory following, especially for the 2nd set examined, where the PID control system 

had a suboptimal performance in keeping up with the fast setpoint trajectory. While PID controllers 

excel in systems with fast dynamics, they struggle when dealing with high-frequency trajectories.  
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Moreover, the use of PID controllers for the quadrotor system presented many challenges, one 

of which is the difficulty of tuning. More specifically, tuning multiple PID controllers that control 

various aspects of the quadrotor, but have interlinked performances at the same time, is a challenging 

task. Additionally, tuning the values, following a method of trial-and-error, is susceptible to errors, 

which may lead to mediocre performance, instability or even inability to perform the simulation due 

to singularities. Furthermore, PID control is limited in its ability to accurately control a system, as it 

relies solely on the proportional, integral, and derivative values to adjust the system's response, which 

may not be enough for most dynamic systems.  

Overall, nonlinear, and dynamic systems, such as the one examined, exhibit a complex 

behavior, making them a challenging control problem. Especially for the case of unexpected changes 

or disturbances in the process, classical control methods, like PID control, seem to fall short of ensuring 

reliable and accurate tracking. This is often called Virtual Control Loss (VCL) where the control 

system fails to effectively control the process, despite appearing functionally normal. To address these 

challenges, alternative and more advanced control methods are necessary for optimal results. Model 

Predictive Control (MPC) is one highly advanced control method that promises better performance 

and robustness for complex systems. 

The next chapter will explore the application of MPC for controlling the quadrotor system. Its 

performance will be compared to that of the cascaded PID controller examined so far, providing 

insights into the relative strengths and weaknesses, and determining the best approach for the system.  
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CHAPTER 3: Model Predictive Control (MPC) for the Quadrotor system 

This chapter aims to provide a comprehensive exploration of the Model Predictive Control 

(MPC) algorithm for a single quadcopter, which will act as the foundation for controlling a swarm of 

quadcopters. Firstly, a detailed overview of MPC is presented, emphasizing its operational 

mechanisms and its fundamental algorithmic principles. Then, the appropriate MPC algorithm is 

applied to a single quadrotor for the control of its position in the x, y, and z coordinates in 3D space, 

requiring precise control. Finally, in order to compare the performance of the MPC - based control 

strategy with that of PID control and determine the confidence that it can be used for a swarm of 

drones, simulations are conducted for trajectory tracking.  

 

3.1 The Model Predictive Control (MPC) 

Model Predictive Control, or MPC, is an intelligent control method that utilizes the model of a 

system in order to make predictions about its future outputs and ultimately compute the optimal input 

that will allow the plant to follow a desired reference. The history of MPC technology can be traced 

back to the early 1960s when Kalman explored the optimality of linear control systems. However, it 

was not until the late 1970s that notable applications of MPC emerged, such as MPHC or DMC 

(Dynamic Matrix Control) for the control of the transients of dynamic systems in chemical applications 

[22]. Over the years, multiple generations of MPC technologies have been developed, an evolution 

that has seen advancements in handling constraints and nonlinearities, improving stability, offering 

robust control performance, and providing more sophisticated control strategies.  

Today, MPC is widely used in various fields, including process industries (e.g., for oil refining, 

chemicals or pharmaceuticals) [23], power systems (e.g. for power generation, transmission and 

energy storage) [24], automotive (e.g. in hybrid and electric vehicles for autonomous driving) [25], 

robotics and automation (e.g. for trajectory planning, motion control or robotic coordination) [26][10], 

aerospace and aviation (e.g. for navigation and control), building automation (e.g. for energy 

management) [27], and many more.  

Furthermore, there is an abundance of different MPC variations, extensions and tailored 

algorithms developed for specific applications. Some of the most widespread MPC algorithms are 

Nonlinear MPC (NMPC) [13], Linear MPC (LMPC) (Adaptive or Gain-scheduled) [28], Dynamic 

Matrix Control (DMC) [29] or Quadratic Dynamic Matrix Control (QDMC), Robust MPC (RMPC) 

[30], Economic MPC (EMPC) [31], Explicit MPC [32] and more, each of which presents its benefits 

and limitations, as presented in Figure 56; the selection of the algorithm depends on the specific control 



Development of a distributed model predictive control framework for autonomous unmanned aerial vehicle swarms 

UNIWA, Department of Electrical & Electronics Engineering, Diploma thesis, Despoina – Panagiota Vavelidou 
  72 

objectives, system dynamics, requirements, constraints and the trade-off between performance and 

computational complexity.  

  

 

 

Figure 56. Model Predictive Control Algorithms over the years with their relative strengths 
 

 

Most systems exhibit nonlinear or time – varying dynamics, making it crucial to employ an 

appropriate MPC control algorithm that can handle such characteristics. Nonlinear model predictive 

control is commonly utilized in systems featuring nonlinear constraints and a nonlinear cost function 

to enhance precision and accuracy. This approach is effective for systems characterized by nonlinear 

behavior, ensuring better performance and reliability. On the other hand, if the system can be 

adequately linearized, a linear MPC approach is recommended due to its simplicity and reduced 

computational cost. 

More specifically, Linear MPC can be utilized not only for linear cost functions, but for 

nonlinear cost functions and linear dynamic systems, as well. LMPC can be further categorized into 

Adaptive MPC and Gain – Scheduled MPC. In the first case, the states and constraints remain constant 

across different operating conditions, and a linear model is derived at runtime, since the system is 

linearized at each operating point. Conversely, in the second case, each controller is independently 

executed since the dynamics and characteristics of the system change across different operating 

conditions. Furthermore, Adaptive LMPC, unlike traditional LMPC where the model parameters are 
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assumed to be known and constant, continuously adapts the parameters during the control process 

based on the measured data, making it a suitable control strategy for time – varying systems [22]. 

By carefully selecting the appropriate MPC variant based on the system's linearity and 

characteristics, more accurate and efficient control can be achieved. In general, MPC is such a 

widespread control method because it presents various distinct advantages over others, with the main 

ones being:  

• Handling MIMO (Multiple Input Multiple Output) systems: in complex control 

problems there are usually multiple variables, interacting loops and interactions 

between the inputs and the outputs. Thus, there is the need of a multivariable controller 

that can handle such systems through a systematic framework; MPC is able of doing 

so, in contrast to simplified control methods, like PID controllers, in which the control 

loops operate as if the interactions are zero.  

• Handling constraints: MPC can handle constraints on both the system states and the 

control inputs, which is especially crucial in process control applications, where 

satisfying constraints is affiliated with operating within safe limits. In other advanced 

control methods, like LQR, the constraints cannot be directly handled and may require 

additional techniques to accommodate them.  

• Handling Nonlinear systems: by incorporating a nonlinear objective function and 

nonlinear constraints, MPC can effectively handle complex nonlinear systems, in 

contrast to other control methods that assume linearity.  

• Preview capability: in MPC the preview capability is similar but more advanced than 

feedforward control; it takes into consideration the future system behavior – the 

predicted future states, to proactively respond to changes in the system, even in the case 

of disturbances, uncertainties, modelling errors or time delays. This improves the 

controller’s overall performance, robustness, adaptability, and efficiency and wins over 

other control methods that do not account for future predictions.  

• Optimal control performance: MPC solves an optimization problem at each time step, 

which allows a comprehensive control strategy that captures the desired control 

objectives, such as minimizing energy consumption, and allows time-varying control.  

Model Predictive Control, despite its advantages, comes with certain disadvantages, as well. 

One significant drawback is its computational complexity, since MPC involves solving an optimization 

problem at each time step. This complexity increases with the increasing number of states in the 

system, the number of constraints, and the length of the design parameters of Prediction and Control 
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Horizons, that will be extensively analyzed in subchapter 3.2. Thus, the computational demands 

presented, which are also associated with the concern of memory usage, can pose challenges, 

especially if the implementation is done on embedded hardware with limited memory, or if the 

application requires that the algorithm be solved within a small time interval (in the order of 

milliseconds).  

To mitigate these challenges, various techniques have been developed, such as algorithmic 

optimizations, sparse matrix representations, hardware acceleration, model order reduction techniques, 

setting a maximum number of iterations, as well as some special variations of MPC, like the 

aforementioned Explicit MPC. These techniques aim to improve the efficiency and feasibility of 

implementing MPC in resource-constrained environments. So, to implement Model Predictive Control 

practically and effectively, it is vital to carefully consider the computational requirements and 

limitations of the specific application. 

 

3.2 The Design parameters of MPC 

The MPC algorithm demands certain design parameters to be chosen, that highly affect the 

controller's performance, including responsiveness and robustness. Additionally, the computational 

burden and real-world implementation feasibility are also impacted by these parameter choices. 

Therefore, their selection necessitates careful consideration of the specific control objectives or 

requirements, while also striking a balance between control performance and computational efficiency. 

These design parameters, that will be discussed thoroughly are:  

• Sample Time (Ts) 

• Prediction Horizon (P or HP)  

• Control Horizon (M or HC) 

• Constraints 

• Weights 

The first crucial design parameter in MPC is Sample Time (Ts), which represents the rate at 

which the controller executes the control algorithm. In general, a smaller sample time allows more 

accuracy and responsiveness, as the controller is able to react fast enough to changes and disturbances. 

However, an exceedingly small Ts can result in excessive computational cost, thus potentially 

impeding real-world implementation and may also not manage to solve the optimization problem in 

the appropriate time. Contrary, a larger sample time may hinder the controller’s ability to react quickly 

enough, compromising the control performance. A commonly recommended guideline is to select a 
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sample time that accommodates 10-20 samples within the rise time of the open-loop response [33]; 

this can serve as a starting point, but the optimal choice of Ts is ultimately a multi-variable decision.  

Another important design parameter is the Prediction Horizon (P or HP) which determines the 

number of predicted future timesteps. Selecting an appropriate Prediction Horizon is vital, as it impacts 

the controller's ability to anticipate and respond to future system behavior. If it is too short, the 

controller may not be able to effectively capture the dynamics of the system, leading to inadequate 

precision. On the other hand, if Hp is excessively long, a significant portion of the computed predictions 

may be rendered irrelevant in the case of unexpected events or disturbances, thus resulting in 

unnecessary computational burden.  

More specifically, for a faster trajectory with frequent changes, a smaller Hp is required as it 

needs to accurately anticipate changes in orientation. That being said, the choice of the Prediction 

Horizon can vary based on the specific application and requirements; recommendations such as 20-30 

samples ensuring it covers the open-loop transient response of the system can serve as a starting point 

[33], but factors such as the dynamics of the system, the reference trajectory characteristics, and any 

constraints or limitations of the system are definitive in such choice.  

Apart from the Prediction Horizon, the MPC algorithm is also strongly affected by another 

horizon called the Control Horizon (M or HC), which refers to the number of control moves or 

adjustments considered until a particular time step Μ. Again, there should be careful consideration 

before choosing such horizon, as a value that is too small may not allow the controller to achieve the 

best possible maneuver, while by increasing it, the prediction accuracy is improved, as it can help 

account for variations in the trajectory, but at the cost of complexity. This is because each control move 

in the HC is a free variable that needs to be computed by the optimizer, so the smaller the Control 

Horizon the fewer the design variables of the optimization problem and thus the fewer the 

computations.  

The control horizon is always chosen to be less than or equal to the prediction horizon, because 

if the control horizon was bigger, then the optimizer would be instructed to determine control inputs 

of the system without knowing its state. This is contradictory and it would result to a certain and 

complete failure of the controller. So, by setting 𝐻𝐶 ≤ 𝐻𝑃  the control actions are concentrated within 

the range where the predictions are reliable, optimizing control performance within a well-defined time 

frame. 

In the special case where the control horizon is equal to the prediction horizon, it is implied 

that the controller is making control moves by leveraging the maximum available predictive 

information, so it can determine a control action for each one of the predictions obtained. However, 

when it comes to linear models, it is observed that, only the initial control moves have a significant 
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impact on the system's response, while the influence of the subsequent control moves diminishes, 

because the future predictions become less accurate as the time horizon extends into the future.  

This is proof that the choices of the two horizons in Model Predictive Control are intertwined, 

so selecting their appropriate values involves considering the diminishing returns associated with 

extending the horizons and ensuring that control actions are focused on reliable predictions within a 

relevant time span. A general rule of thumb is to set the Control Horizon to around 10%-20% of the 

Prediction Horizon, for a balance between obtaining accurate predictions and maintaining 

computational efficiency.  

 In the previous section, it was mentioned that one of the advantages of MPC is its ability to 

handle constraints. Constraints is an important factor that needs to be taken into consideration when 

employing Model Predictive Control, as they express the constraints that need to be satisfied when 

solving the optimization problem and so they allow the controller to account for the limitations and 

operational requirements of the system. Constraints can be classified into two main categories: hard 

constraints (e.g., safety limits), which cannot be violated, and soft constraints, which are usually 

associated with optimization criteria or performance objectives and can be violated under certain 

circumstances, without resulting in immediate failure of the system. The MPC algorithm considers 

both hard and soft constraints during the optimization process. 

Finally, another fundamental point in the design of the MPC algorithm is the assignment of 

weights. MPC can have multiple objectives, which are typically defined through the objective function 

of the formulated optimization problem. These goals (for example tracking a setpoint as closely as 

possible, minimizing aggressive control moves, optimizing energy consumption etc.) can be 

conflicting or competing. To address this, the MPC algorithm allows for the weighting of different 

objectives to prioritize certain goals over others and finding a balance that aligns with the desired 

system behavior; the higher the weight the higher the significance of the specific objective. By 

adjusting the weights, system designers and control engineers can influence the controller's decision-

making process according to the specific requirements and trade-offs of the application. 

 

3.3 The Strategy of MPC 

After having described the design parameters of the MPC algorithm, it is possible to analyze 

its strategy – how it works. So, model predictive control, or MPC, is an advanced feedback control 

mechanism that relies on a model of a system, hence its name, to predict its future behavior. Its 

objective is to select the best control action – the best input to the plant that drives it to reference.  
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More specifically, at each timestep 𝑘, MPC receives or estimates the current state of the plant 

and it then calculates the optimal sequences of control actions that minimize the cost over the finite 

time prediction horizon, i.e., for steps 𝑘 = 𝑡 + 0, 𝑡 + 1, , … , 𝑡 + 𝑝, where 𝑝 is the number of upcoming 

points in the prediction horizon. This is achieved in a systematic way; by solving, at each timestep, a 

constrained optimization problem that relies on the model and depends on the current system state.  

So, the optimization algorithm employed minimizes the objective - cost function, at each time 

step, over HP, ultimately generating the optimal control input u(t); a vector with dimensions equal to 

the control horizon. The objective function (or cost function) is part of the modelling of the system 

and, in the general case, can be expressed as:  

 

𝐽 =  ∑ 𝑤𝑒 ∙ 𝑒𝑘+𝑖
2𝐻𝑃

𝑖=1 + ∑ 𝑤𝛥𝑢 ∙ 𝛥𝑢𝑘+𝑖
2𝐻𝑃−1

𝑖=0     (3.1) 

 

where HP the prediction horizon, k the timestep at discrete time, e the error vector that represents the 

difference between the reference output and the actual produced output, Δu denotes the deviation of 

the control action between successive timesteps, and we , wΔu are the corresponding weights.  

That being said, the predicted path with the smallest value of J gives the optimal solution to the 

problem. However, at the current time step 𝑘, MPC applies only the first step of the optimal sequence 

(i.e., the vector that has the same dimensions as the length of the control horizon), while the rest of 

them are used as initializations for the next iteration, at which the process is repeated. This is because 

the measurement that the controller gets at the next timestep (𝑘 + 1) may be slightly different to what 

MPC predicted during the previous timestep, due to disturbances or unexpected events. So, 

implementing only the first control action provides some sort of adaptation to changing dynamics and 

measurements. [22] 

Figure 57 presents the strategy followed by the MPC algorithm; a strategy that takes under 

consideration the past and current state of the system.  
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Figure 57. Visual representation of the MPC strategy 
 
 

In a typical control circuit utilizing Model Predictive Control (MPC), like the one presented in 

Figure 58, the reference signal is provided as input to the MPC controller, which comprises an 

optimizer, a prediction model (representing the system dynamics), constraints, and a cost function. The 

optimizer is the one responsible for solving the optimization problem to determine the optimal vector 

of control moves that minimizes the cost, while satisfying the constraints.  

Then, only the first value of the optimal control trajectory is applied to the plant, which 

represents the physical system being controlled. The plant processes the control input (while also 

considering any disturbances), and produces an output vector, which serves as feedback to the MPC 

controller, allowing it to continuously update its predictions and adjust the control moves in response 

to changes in the system and external disturbances. This feedback loop enables the MPC controller to 

effectively track the desired references and maintain control over the plant's behavior. 
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Figure 58. The typical design of an MPC circuit 
 
 

3.4 Design of the MPC system 

This sub-chapter focuses on the formulation of the problem for the quadrotor system within the 

context of MPC; it delves into the specific details of the employed MPC algorithm, the prediction 

model utilized, and the optimization problem that needs to be solved.  

More specifically, in order to regulate the quadrotor system, three separate MPC controllers 

can be employed, one for position z, one for position x and one for position y. However, due to the 

interdependence or coupling between the variables x and y, an alternative approach is viable and 

expected to perform exceptionally well; the two MPCs corresponding to x and y can be integrated into 

a single unified MPC controller, utilized to address the control requirements of both these positions 

simultaneously.  

The control system design utilizes both the positions (x, y, z) and their corresponding velocities 

as references, which are fed into the MPC controllers responsible for governing the quadrotor's motion. 

To ensure accurate and stable control, a closed-loop feedback system is implemented that incorporates 

both the relevant states of the quadrotor system and the already implemented (previous) control policy, 

which is used as input for the MPC controllers during the prediction phase. In this way, the control 

system can continuously monitor the quadrotor's performance and make necessary adjustments to 

maintain precise control. 
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The MPC controller for position x and y produces the reference angles θ (pitch angle) and φ 

(roll angle), respectively, that will be fed into separate PID controllers for angle regulation. It is noted 

that angle ψ (yaw angle) will also be controlled using a PID controller. By utilizing this cascaded 

control approach, as presented in Figure 59, the quadrotor system is expected to introduce significant 

enhancements in terms of precision, stable regulation and adaptability of its position and orientation.  

 

 

 

Figure 59. The cascaded control system utilizing MPC controllers and PID controllers 
 
 
 

This design remains largely similar to the one presented in Chapter 2, as the fundamental 

characteristics of the quadrotor system have not changed; it is an underactuated system with six degrees 

of freedom, and so a cascaded design is still necessary to effectively control all its parameters. The 

main difference lies in the substitution of the outer – loop PID controllers with MPC controllers for 

position control in the x, y, and z directions. On the contrary, PID controllers are still employed for 

regulating the quadrotor’s angles in the inner loop. Moreover, it should be highlighted that since MPC 

controllers have distinctive characteristics and operational principles than PID controllers, the tuning 

of the remaining inner-loop controllers is also expected to require adjustments to account for the 

updated specific dynamics.  

Employing MPC controllers for position control in the x, y, and z directions while utilizing 

PID controllers for angle regulation is based on the characteristics and requirements of the quadrotor 

system. More specifically, MPC is a model-based control technique that excels in handling complex 
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dynamics, constraints, and predictive control objectives, so by utilizing it for position control the 

quadrotor system can benefit from precise and dynamic control of the quadrotor's position, while also 

accounting for factors such as trajectory tracking or obstacle evasion. 

On the other hand, angles φ, θ and ψ are overly sensitive parameters that require accurate 

control, but they do not involve complex predictive dynamics, like position control does. In that case, 

PID controllers are well-suited for angle regulation due to their simplicity and effectiveness; MPC can 

also be employed for a more advanced and precise angle regulation, however, it is important to 

consider the trade-offs, as MPC controller is far more complex, and it certainly requires more 

computational resources in comparison to PIDs.  

The choice to employ MPC for position control and PID controllers for angle regulation strikes 

a balance between computational efficiency and control accuracy. MPC handles the more complex 

and predictive aspects of position control, while PID controllers efficiently handle the sensitive and 

rapid angle regulation. This combination allows for a robust control strategy that ensures precise 

position control while maintaining stable and accurate orientation throughout the quadrotor's flight. 

 
 

3.4..1 The prediction model (or system model) 

In Model Predictive Control, the mathematical model plays a crucial role as the whole strategy 

is based on it to predict the system’s future behavior over a finite time horizon and optimize the control 

inputs. That being said, the accuracy and fidelity of the employed model are determining the 

effectiveness of the MPC control. In Chapter 2, the mathematical model of the quadrotor system was 

derived, and building upon that foundation, it will be extended to obtain the prediction model necessary 

for implementing MPC. 

More specifically, to derive the prediction model for the MPC strategy, the second derivatives 

of x, y and z will be examined. These can be derived from the set (1.18) of non-linear first order 

differential equations and Newton’s law: 

 

𝑚𝒗̇ = 𝑹 ∙ 𝒇𝑩 = 𝑚𝑔𝒆̂𝒛 − 𝑓𝑡𝑹 ∙ 𝒆̂𝟑    (3.2) 

 

and they can be expressed as follows: 

 

 

 



Development of a distributed model predictive control framework for autonomous unmanned aerial vehicle swarms 

UNIWA, Department of Electrical & Electronics Engineering, Diploma thesis, Despoina – Panagiota Vavelidou 
  82 

𝑥̈ = − 
𝑓𝑡
𝑚

[𝑠𝜙𝑠𝜓 + 𝑐𝜙𝑐𝜓𝑠𝜃] 

𝑦̈ = − 
𝑓𝑡
𝑚

[𝑐𝜙𝑠𝜓𝑠𝜃 − 𝑐𝜓𝑠𝜙] 

𝑧̈ = 𝑔 −
𝑓𝑡
𝑚

 [𝑐𝜙𝑐𝜃)] 

(3.3) 

 

To obtain a suitable prediction model for the MPC strategy an approximation method like the Forward 

Euler method (Figure 60) should be utilized; this numerical method can be used to numerically first-

order differential equations, for linear systems and it can also be used to derive the corresponding 

discrete-time linear system. It  discretizes the continuous-time system into discrete timesteps (k) using 

sampling time Ts. In the general case, assuming a first-order ODE: 

 

𝑑𝑔

𝑑𝑡
= 𝑓(𝑡, 𝑔)      (3.3) 

 

the approximation produces 

𝑔(𝑡+𝑇𝑠)−𝑔(𝑡)

𝑇𝑠
≈ 𝑓(𝑡, 𝑔)     (3.4) 

 

 

By discretizing equation (3.4) and assuming a small sample time 𝑇𝑠 = ℎ = 𝑡𝑛+1 − 𝑡𝑛 the following 

form is derived: 

𝑔𝑛+1−𝑔𝑛

𝑇𝑠
≈ 𝑓(𝑡𝑛, 𝑔𝑛)     (3.5) 

 

Moving forward, replacing ≈ with = for convenience without forgetting the fact that the expression 

lurks an approximation error which grows with increasing 𝑇𝑠, equation (3.5) can be written as follows, 

when the future values are moved to the LHS and the past values to the RHS: 

 

𝑔𝑛+1 = 𝑔𝑛 + 𝑇𝑠 ∙ 𝑓(𝑡𝑛, 𝑔𝑛)     (3.6) 

 

which represents a way to step forward in time. From equation (3.6) it is obvious that the smaller the 

sampling time the better the accuracy of the approximation model; the trade-off between computational 

burden as well as real-world implementation should be taken into consideration.  
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Figure 60. Visual representation of the Forward Euler method 

 

 

So, by applying this specific first-order numerical procedure, the prediction model states that 

each new value of the solution is equal to the previous known value plus the product of the sampling 

time (Ts) and the values of its first-order differential equation. This method and the overall logic will 

be used to obtain the prediction model for the current diploma thesis as presented in detail for each of 

the MPC controllers in the following sections.  

 

3.4..1.1 The prediction model for the MPC related to altitude z 

As described in the set of equations (3.3), the second order derivative for the altitude is given 

by the expression 𝑧̈ = 𝑔 −
𝑓𝑡

𝑚
 [𝑐𝜙𝑐𝜃] that describes a time-varying complex system. Writing it in state 

space form produces the following two expressions: 

 

𝑧1 = 𝑧 →  𝑧̇1 = 𝑧2       (3.7) 

 

𝑧2 = 𝑧̇  →  𝑧̇2 = 𝑔 −
𝑓𝑡

𝑚
[𝑐𝜙𝑐𝜃]     (3.8) 

 

Now, it is possible to apply the Forward Euler method which will produce the following expression: 

 

𝑧1(𝑘 + 1) = 𝑧1(𝑘) + 𝑇𝑠 ∙ 𝑧2(𝑘)    (3.9) 

 

𝑧2(𝑘 + 1) = 𝑧2(𝑘) + 𝑇𝑠 ∙ (𝑔 −
𝑓𝑡

𝑚
[𝑐𝑜𝑠𝜑(𝑘)𝑐𝑜𝑠𝜃(𝑘)]     (3.10)      
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where 𝑧̇1 represents the altitude and 𝑧̇2 the velocity of the altitude. Using linear Algebra and matrix 

representation, the equations (3.9) and (3.10) can be written in the form 𝑧(𝑘 + 1) = 𝐴 ∙ 𝑧(𝑘) + 𝐵𝑘 ∙

𝑓𝑡(𝑘) + 𝐸 , where A and E matrices are constant, B matrix is time-varying, and 𝑧(𝑘) =

 [𝑧1(𝑘)  𝑧2(𝑘)]𝑇 as follows:  

 

𝑧(𝑘 + 1) = [
1 𝑇𝑠

0 1
] ∙ 𝑧(𝑘) + [

0
−𝑇𝑠

𝑚
[𝑐𝑜𝑠𝜑(𝑘)𝑐𝑜𝑠𝜃(𝑘)] ∙ 𝑓𝑡(𝑘) + [

0
𝑇𝑠𝑔

]  (3.11) 

 

So, the prediction model (3.11) is the one used for the MPC of the altitude z and predicts the 

position z as well as the velocity of the position z. By breaking down the different terms in this equation 

a better analysis is achieved: 

• The 𝐴 ∙ 𝑧(𝑘) = [
1 𝑇𝑠

0 1
] ∙ 𝑧(𝑘) term represents the state update equation, as it indicates that the 

next value of z is obtained by multiplying the previous, and so known, value of z with the 

transition matrix A. This matrix incorporates the dynamics of the system and relates the current 

state to the next state. 

• The 𝐵𝑘 ∙ 𝑓𝑡(𝑘) = [
0

−𝑇𝑠

𝑚
[𝑐𝑜𝑠𝜑(𝑘)𝑐𝑜𝑠𝜃(𝑘)] ∙ 𝑓𝑡(𝑘) term accounts for the impact of the control 

input on the next value of z. More specifically, it involves the total thrust generated by rotors, 

which corresponds to the first value of the control input u(x), as well as the angles φ and θ at 

the current timestep. By multiplying the control inputs with the appropriate scaling factors and 

incorporating the mass (m) of the system, this term influences the change in z between 

consecutive time steps. 

• The 𝐸 = [
0

𝑇𝑠𝑔
] term represents the effect of gravitational forces on the system’s vertical 

position and thus on the next value of z, by incorporating the gravitational acceleration (g) and 

the sampling time (Ts). 

 

Overall, the prediction model for the altitude of the quadrotor suggests that the next value of z 

at time step (k+1) is determined by combining the previous value z(k) with the influence of the system 

dynamics, control inputs, and gravitational forces. By iteratively applying this prediction model, the 

evolution of z over time can be estimated based on the current state and inputs. 
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3.4..1.2 The prediction model for the MPC related to position x 

Following a similar logic for position x, the second-order derivative expression for x, 𝑥̈ =

− 
𝑓𝑡

𝑚
[𝑠𝜙𝑠𝜓 + 𝑐𝜙𝑐𝜓𝑠𝜃] should be first written in state space form, as follows:  

𝑥1 = 𝑥 →  𝑥̇1 = 𝑥2     (3.12) 

 

𝑥2 = 𝑥̇  →  𝑥̇2 = −
𝑓𝑡

𝑚
[𝑠𝜙𝑠𝜓 + 𝑐𝜙𝑐𝜓𝑠𝜃]   (3.13) 

 

and the Forward Euler method will result in the following two equations: 

 

𝑥1(𝑘 + 1) = 𝑥1(𝑘) + 𝑇𝑠 ∙ 𝑥2(𝑘)    (3.14) 

 

𝑥2(𝑘 + 1) = 𝑥2(𝑘) + 𝑇𝑠 ∙ (−
𝑓𝑡

𝑚
(𝑠𝑖𝑛𝜑(𝑘)𝑠𝑖𝑛𝜓(𝑘) + 𝑐𝑜𝑠𝜑(𝑘)𝑐𝑜𝑠𝜓(𝑘)𝑠𝑖𝑛𝜃(𝑘))       (3.15) 

 

By analyzing equation (3.15), it becomes evident that the control of position in the x axis is 

dependent on the angles for roll, pitch, and yaw, especially on the pitch angle, which is the one inner 

– loop design variable. So, since position x cannot be directly controlled without accounting for the 

pitch angle θ, the incorporation of what is called virtual control [34] becomes necessary, for 

developing a prediction model that controls the variable x. More specifically, in complex systems, 

there is often an interdependence between different variables and thus some may be controlled 

indirectly through others. In that situation, virtual control provides a flexible and efficient approach to 

address control challenges arising from interdependent variables, by facilitating the control process, 

regulating the desired variables indirectly and establishing a virtual relationship between them.  

So, by employing virtual control, the controller generates control inputs – commands for the 

influencing variable, while the virtual control system translate those into corresponding actions – 

adjustments for the controlled variable; in the examined case, according to the cascaded control design 

in use, the influencing variable is the pitch angle θ, while the controlled variable is the position x. 

Assuming the following virtual control variable: 

 

𝑢𝑥 = 𝑠𝜙𝑠𝜓 + 𝑐𝜙𝑐𝜓𝑠𝜃 → 𝑢𝑥(𝑘) =  𝑠𝑖𝑛𝜑(𝑘)𝑠𝑖𝑛𝜓(𝑘) + 𝑐𝑜𝑠𝜑(𝑘)𝑐𝑜𝑠𝜓(𝑘)𝑠𝑖𝑛𝜃(𝑘)  (3.16) 

 

the equation (3.15) gets the following form: 
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𝑥2(𝑘 + 1) = 𝑥2(𝑘) + 𝑇𝑠 ∙ (−
𝑓𝑡

𝑚
) ∙ 𝑢𝑥    (3.17) 

 

Combining equations (1.14) and (1.17) using matrix representation in Linear Algebra, produces the 

following prediction model used for the Model Predictive Control of position x in the form 𝑥(𝑘 + 1) =

𝐴 ∙ 𝑥(𝑘) + 𝐵𝑘 ∙ 𝑢𝑥 : 

 

𝑥(𝑘 + 1) = [
1 𝑇𝑠

0 1
] ∙ 𝑥(𝑘) + [

0
−𝑇𝑠𝑓𝑡(𝑘)

𝑚

] ∙ 𝑢𝑥    (3.18) 

 

where 𝑢𝑥 is the virtual control variable of equation (3.16), matrix A is equal to [
1 𝑇𝑠

0 1
] and is constant, 

and matrix 𝐵𝑘 is [
0

−𝑇𝑠𝑓𝑡(𝑘)

𝑚

] and depends on the total thrust generated by rotors at the current time step 

𝑘. More specifically: 

• The 𝐴 ∙ 𝑥(𝑘) = [
1 𝑇𝑠

0 1
] ∙ 𝑥(𝑘) term represents the state update equation for the position 

variable x. It indicates that the next value of x at time step (k+1) is obtained by multiplying the 

previous known value x(k) by the state transition matrix A, which incorporates the dynamics 

of the system and relates the current state to the next state. 

• The term 𝐵𝑘 ∙ 𝑢𝑥 = [
0

−𝑇𝑠𝑓𝑡(𝑘)

𝑚

] ∙ 𝑢𝑥 accounts for the impact of control inputs on the next value 

of x; it involves the virtual control input ux and the total thrust generated control input ft at time 

step k. By multiplying the first with the appropriate scaling factor and incorporating the system 

mass (m), this term influences the change in x between consecutive time steps. Moreover, the 

negative sign indicates that the force input acts in the opposite direction of the position change. 

 

Overall, the prediction model suggests that the next value of x is determined by the previous 

value with the influence of the system dynamics and the virtual control variable; by iteratively applying 

this prediction model, the estimation of the evolution of x over time is obtained. 

 
 

3.4..1.3 The prediction model for the MPC related to position y 

The design of the prediction model for y follows a similar rationale to that of position x within 

the MPC framework. More precisely, like x, the position y cannot be directly controlled and requires 

regulation through the roll angle φ. Hence, the prediction model for y incorporates the principles of 
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virtual control to establish a relationship between y and the roll angle φ. So, starting with the second-

order derivative expression 𝑦̈ = − 
𝑓𝑡

𝑚
[𝑐𝜙𝑠𝜓𝑠𝜃 − 𝑐𝜓𝑠𝜙], it will be written in state-space form: 

 

𝑦1 = 𝑦 →  𝑦̇1 = 𝑦2     (3.19) 

 

𝑦2 = 𝑦̇  →  𝑦̇2 = −
𝑓𝑡

𝑚
[𝑐𝜙𝑠𝜓𝑠𝜃 − 𝑐𝜓𝑠𝜙]      (3.20) 

     

and the Forward Euler method will result in the following two equations: 

 

𝑦1(𝑘 + 1) = 𝑦1(𝑘) + 𝑇𝑠 ∙ 𝑦2(𝑘)    (3.21) 

 

𝑦2(𝑘 + 1) = 𝑦2(𝑘) + 𝑇𝑠 ∙ [−
𝑓𝑡

𝑚
(𝑐𝑜𝑠𝜑(𝑘)𝑠𝑖𝑛𝜓(𝑘)𝑠𝑖𝑛𝜃(𝑘) − 𝑐𝑜𝑠𝜓(𝑘)𝑠𝑖𝑛𝜑(𝑘))]        (3.22) 

 

Analogous to the virtual control variable ux, by setting the virtual control variable uy equal to: 

 

𝑢𝑦 = 𝑐𝜙𝑠𝜓𝑠𝜃 − 𝑐𝜓𝑠𝜙 → 𝑢𝑦(𝑘) = 𝑐𝑜𝑠𝜑(𝑘)𝑠𝑖𝑛𝜓(𝑘)𝑠𝑖𝑛𝜃(𝑘) − 𝑐𝑜𝑠𝜓(𝑘)𝑠𝑖𝑛𝜑(𝑘)    

(3.23) 

 

the equation (3.22) gets the following form: 

 

𝑦2(𝑘 + 1) = 𝑦2(𝑘) + 𝑇𝑠 ∙ [−
𝑓𝑡

𝑚
∙ 𝑢𝑦(𝑘)]    (3.24) 

 

Combining equations (3.21) and (3.24) using matrix representation in Linear Algebra, produces the 

following prediction model used for the Model Predictive Control of position y in the form 𝑦(𝑘 + 1) =

𝐴 ∙ 𝑦(𝑘) + 𝐵𝑘 ∙ 𝑢𝑦 : 

 

𝑦(𝑘 + 1) = [
1 𝑇𝑠

0 1
] ∙ 𝑦(𝑘) + [

0
−𝑇𝑠𝑓𝑡(𝑘)

𝑚

] ∙ 𝑢𝑥    (3.18) 
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where 𝑢𝑥 is the virtual control variable of equation (3.23), matrix A is equal to [
1 𝑇𝑠

0 1
] and it is 

constant, and matrix 𝐵𝑘 is [
0

−𝑇𝑠𝑓𝑡(𝑘)

𝑚

] and dependent on the total thrust generated by rotors at the current 

time step 𝑘. More specifically: 

• The 𝐴 ∙ 𝑦(𝑘) = [
1 𝑇𝑠

0 1
] ∙ 𝑦(𝑘) term represents the state update equation for the position 

variable y, indicating that the next value of y is obtained by multiplying the previous known 

value y(k) by the state transition matrix A. 

The term 𝐵𝑘 ∙ 𝑢𝑦 = [
0

−𝑇𝑠𝑓𝑡(𝑘)

𝑚

] ∙ 𝑢𝑦 accounts for the impact of control inputs on the next value 

of y; it involves the virtual control input uy and the total thrust generated control input ft at time 

step 𝑘.  

 

3.4..2 The optimization problem  
 

The optimization problem in Model Predictive Control (MPC) is a principal component of the 

control strategy, which aims to determine the optimal control inputs over the finite prediction horizon. 

The objective of the optimization problem is to minimize a cost function, while satisfying operational 

constraints.  

In that context, the formulation of the optimization problem typically involves three key 

elements: the design variables, which directly influence the system's behavior and are adjusted by the 

MPC algorithm to achieve the desired position tracking, the objective function, which reflects the 

performance objectives and priorities of the control system, comprising terms that quantify different 

aspects of control performance, and constraints, which represent limitations or bounds on the system's 

states, control inputs, or other variables. All of these will be analyzed in detail separately for the three 

MPCs over the next sections. 

For this diploma thesis, the MATLAB function called fmincon will be used for solving the 

constrained nonlinear optimization or nonlinear programming problem formulated, through a Medium 

Scale Optimization algorithm called Sequential Quadratic Programming (SQP).  

More specifically, the SQP algorithm, which presents good convergence properties, due to the 

use of second-order information and/or trust regions, and the ability to handle both equality and 

inequality constraints, works by iteratively adjusting the decision variables to minimize the objective 

function, while satisfying the constraints. More specifically, until a certain stopping criterion is met, 
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starting from an initial point guess, it solves a subproblem at each iteration, by performing a line search 

and by updating the estimate of the Hessian of the Lagrangian at each iteration of the algorithm.  

So, once the optimization problem terminates, fmincon returns the optimal solution for the 

decision or control variables that minimize the objective function and respect the constraints.  

 

3.4..2.1 The optimization problem for the MPC related to the altitude z 

Regarding the control of altitude following the MPC strategy, the control input that directly 

affects z is the total thrust generated by rotors (ft), as aforementioned. However, instead of choosing 

the absolute total thrust as the design variable to the optimization problem, it is beneficial to choose 

the change in total thrust, denoted as Δft, instead. By utilizing this specific design variable, the MPC 

algorithm can limit sudden and drastic variations in the motor’s output, thus mitigating the risk of 

excessive stain or wear on the motors and ensuring the well-being and longevity of the real-life system. 

More specifically, in the quadrotor’s control system design it is always essential to consider 

the physical limitations and capabilities of the motors, as rapid or significant changes in thrust can lead 

to motor saturation, overheating or mechanical failure. By optimizing the change in thrust, the MPC 

controller is expected not only to respect the operational limits but also achieve better stability and 

performance of the control, as the MPC will be able to fine-tune the quadrotor’s movements in the z 

direction.  

Since Δft represents the change in thrust between consecutive time steps, or the relationship 

between the total thrust at the current timestep and the previous total thrust, it is given by the following 

equation: 

 

𝛥𝑓𝑡(𝑘) = 𝑓𝑡(𝑘) − 𝑓𝑡(𝑘 − 1)     (3.19) 

 

So, in essence, by optimizing the change in thrust, the MPC controller will indirectly also 

determine the optimal control sequence of the absolute thrust ft, through (3.19), for each time step 𝑘. 

The first element of this optimal control sequence is chosen to be applied as the input to the system at 

the current time step, according to the MPC algorithm. 

The objective function, by definition, is a function of the control variables and it quantifies the 

performance objectives of the control system. It consists of terms that capture desired behaviors, such 

as tracking a reference trajectory, minimizing control effort, or avoiding constraints violations, with 

the weights assigned to each term reflecting their relative importance. In the case of altitude z, the 

objective function J that needs to be minimized for HC ≤ HP is set to be the following:  
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𝐽𝑧 = 𝑒𝑇 ∙ 𝑄1 ∙ 𝑒 + 𝑒̇𝑇  ∙ 𝑄2 ∙ 𝑒̇ + 𝛥𝑓𝑡
𝑇 ∙ 𝑅 ∙ 𝛥𝑓𝑡   (3.20) 

 

where 𝑒 is the error vector, 𝑒̇ the derivative of the error, Δ𝑓𝑡 the design variable, Q1, Q2 and R the 

penalty matrices. More specifically: 

• 𝑒 represents the error vector, which is the difference between the reference trajectory of 

altitude z and the predicted trajectory of z, over the prediction horizon, since 𝑒(𝑘 + 𝑖), 𝑖 =

1, … , ℎ𝑝 is equal to 𝑒(𝑘 + 𝑖) = 𝑟(𝑘 + 𝑖) − 𝑧̂(𝑘 + 𝑖).  

• The matrix Q1 is a positive semi-definite weighting-penalty matrix with elements on the main 

diagonal, that influences how the controller responds to different state deviations by assigning 

weights to the different components of error vector 𝑒. By adjusting the values in the Q1 matrix, 

the control of the importance or priority given to each component of the state error in the cost 

function is made possible.  

• 𝑒̇ represents the rate of change of the error vector 𝑒 or, in other words, the velocity at which 

the system is deviating from the desired state trajectory. At this point, it is crucial to underscore 

the fact that the viable incorporation of trajectory derivatives arises solely from the 

foundational assumption made during the modeling of the quadrotor system. Specifically, it 

was presumed that the references, alongside their corresponding derivatives, are both 

boundedly limited and known a priori. By virtue of adopting this assumption within the model, 

the feasibility of leveraging trajectory derivatives in the trajectory following context becomes 

apparent.  

• The matrix Q2 is a positive semi-definite penalty matrix with elements on the main diagonal, 

that assigns weights to the components of the state error derivative vector. Similar to the Q1 

matrix, adjusting the values in Q2 prioritize the components of the state error rate in the cost 

function. 

• Δft is the design variable of the optimization problem and it represents the sequence of thrust 

changes over the control horizon HC.  

The matrix R is a positive definite weighting matrix, with elements on the main diagonal, used 

to penalize deviations of the design variable between successive timesteps. Therefore, it 

determines the cost or penalty associated with the control effort and influences the control 

strategy to optimize the thrust changes, thus helping to balance the control effort and achieve 

smoother control actions. 
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The objective function combines these elements to form a composite cost function: the first 

term, 𝑒𝑇 ∙ 𝑄1 ∙ 𝑒 , penalizes state errors, aiming to minimize deviations between the predicted and 

desired state trajectories, the second term, 𝑒̇𝑇  ∙ 𝑄2 ∙ 𝑒̇ dictates the MPC controller not only to consider 

the magnitude of the state error, but also to penalize its rapid changes, thus ensuring an accurate and a 

smooth tracking of the reference trajectory, and the third term, 𝛥𝑓𝑡
𝑇 ∙ 𝑅 ∙ 𝛥𝑓𝑡, penalizes the change in 

thrust, encouraging control actions that are smoother and consistent with the system's capabilities. 

Overall, the goal of the optimization problem is to minimize the value of the objective function 

𝐽𝑧, thereby achieving a trade-off between tracking accuracy (minimizing state errors), tracking 

smoothness (minimizing the derivative if state errors) and control effort (minimizing thrust changes). 

The weights assigned in the penalty matrices allow for the customization of the control objectives, 

adapting the controller's behavior based on the specific requirements and performance goals of the 

quadrotor system.  

Finally, after defining the design variables and the objective function, it is essential to establish 

constraints to form a complete optimization problem. The following constraints are the ones 

considered in the context of MPC for quadrotor control in the current diploma thesis. 

The first constraint defines the allowable range-limits for the change in total thrust (Δft), which 

is the selected design variable, to prevent excessive or abrupt variations in the control input, that could 

lead to system instability of actuator limitations. The lower bound ensures a minimum change in thrust, 

while the upper bound restricts the maximum thrust change: 

 

𝛥𝑓𝑡𝑚𝑖𝑛
 ≤  𝛥𝑓𝑡(𝑘 + 𝑖)  ≤  𝛥𝑓𝑡𝑚𝑎𝑥

 , 𝑖 = 0,… ,𝛨𝐶   (3.21) 

 

So, by optimizing the change in thrust, the MPC controller will indirectly also determine the 

optimal control sequence of the absolute thrust ft, through (3.19), for each time step 𝑘. The first element 

of this optimal control sequence is chosen to be applied as the input to the system at the current time 

step, according to the MPC algorithm. 

The second constraint defines the permissible range for the total thrust (ft), thus ensuring that 

it remains within the operational limits of the quadrotor system preventing overloading the motors or 

operating outside the safe zone. The lower bound ensures a minimum thrust requirement, while the 

upper bound limits the maximum thrust that the system can generate:  

 

𝑓𝑡𝑚𝑖𝑛
 ≤  𝑓𝑡(𝑘 + 𝑖)  ≤  𝑓𝑡𝑚𝑎𝑥

 , 𝑖 = 0,… ,𝐻𝑃               (3.22) 
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The third constraint enforces the condition that the change in total thrust beyond the control 

horizon is zero. The controller plans for the thrust changes only within the control horizon, and beyond 

that horizon, the control action is held constant, thus simplifying the optimization problem, and 

ensuring a meaningful and feasible control sequence within the defined horizon:  

 

𝛥𝑓𝑡(𝑘 + 𝑖) = 0 , 𝑖 = 𝐻𝐶 + 1,… ,𝐻𝑃    (3.23) 

 

By incorporating these constraints into the optimization problem, the MPC controller can 

generate control actions that satisfy both the desired control objectives (minimizing the cost function) 

and the system's operational constraints, resulting in safe and effective control of the quadrotor system. 

By combining equations (3.20), (3.21), (3.22) and (3.23), the complete optimization problem that will 

be used for the MPC of the altitude z is: 

 

min
𝛥𝑓𝑡(𝑘),… , 𝛥𝑓𝑡(𝑘 + 𝐻𝐶)  𝐽 = 𝑒𝑇 ∙ 𝑄1 ∙ 𝑒 + 𝑒̇𝑇  ∙ 𝑄2 ∙ 𝑒̇ + 𝛥𝑓𝑡

𝑇 ∙ 𝑅 ∙ 𝛥𝑓𝑡 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜            𝛥𝑓𝑡𝑚𝑖𝑛
 ≤  𝛥𝑓𝑡(𝑘 + 𝑖)  ≤  𝛥𝑓𝑡𝑚𝑎𝑥

 , 𝑓𝑜𝑟 𝑖 = 0, . . , 𝐻𝐶 

𝑓𝑡𝑚𝑖𝑛
 ≤  𝑓𝑡(𝑘 + 𝑖)  ≤  𝑓𝑡𝑚𝑎𝑥

 , 𝑓𝑜𝑟 𝑖 = 0, . . , 𝐻𝑃 

𝛥𝑓𝑡(𝑘 + 𝑖) = 0 , 𝑓𝑜𝑟 𝑖 = 𝐻𝐶 + 1,… , 𝐻𝑃 

          (3.24) 

 

3.4..2.2 The optimization problem for the MPC related to the position x 

 

As aforementioned, based on the relationship between the position in the x-axis and the pitch 

angle θ, it is necessary to introduce the virtual control variable ux to indirectly control x through angle 

regulation. In that context, similar to the approach taken for altitude control, the design variable is 

chosen to be the change in the virtual control variable, denoted as Δux, which is equal to: 

 

𝛥𝑢𝑥(𝑘) = 𝑢𝑥(𝑘) − 𝑢𝑥(𝑘 − 1)    (3.25) 

 

So, the MPC algorithm calculates the optimal sequence of Δux values, which are translated into 

the appropriate changes in the virtual control variable ux, through equation (3.25). Moreover, since the 

MPC controller for the x position operates as the outer loop of the PID controller for θ angle regulation, 

it is responsible for providing the reference θ angle to the relevant PID controller. Consequently, the 
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expression for θ needs to be written in relation to the virtual control variable ux, something that can be 

achieved by solving equation (3.16) for θ(k): 

 

𝜃(𝑘) =  sin−1(
𝑢𝑥(𝑘)

𝑐𝑜𝑠𝜑(𝑘)
) , assuming that 𝜓 ≅ 0 

 

𝑤𝑖𝑡ℎ 𝑐𝑜𝑠𝜑(𝑘) ≠ 0 →  𝜑 ≠ ± 𝑘 ∙
𝜋

2
 , 𝑘 = 1,… , ℤ  

 

or 

 

𝜃(𝑘) =  sin−1(
𝑢𝑥(𝑘)− 𝑠𝑖𝑛𝜑(𝑘)𝑠𝑖𝑛𝜓(𝑘)

𝑐𝑜𝑠𝜑(𝑘)𝑐𝑜𝑠𝜓(𝑘)
) , for 𝜓 ≠ 0 

 

𝑤𝑖𝑡ℎ 𝑐𝑜𝑠𝜑(𝑘) ∙ 𝑐𝑜𝑠𝜓(𝑘) ≠ 0 {
 𝑐𝑜𝑠𝜑(𝑘)  ≠ 0 → 𝜑 ≠ ± 𝑘 ∙

𝜋

2
 , 𝑘 = 1,… , ℤ 

𝑐𝑜𝑠𝜓(𝑘) ≠ 0 →  𝜓 ≠ ± 𝑘 ∙
𝜋

2
 , 𝑘 = 1,… , ℤ

 

(3.26) 

 

As it can be observed, equation (3.26) produces a constraint to ensure that the denominator is 

not equal to zero, since then it would result in an undefined solution. To avoid this constraint violation, 

in the general case where angle ψ is not equal to zero, it is necessary to ensure that 𝑐𝑜𝑠𝜑(𝑘)𝑐𝑜𝑠𝜓(𝑘) 

is nonzero, which can be achieved by appropriately selecting the roll angle φ(k) and yaw angle ψ(k) 

within their valid ranges of ± 𝑘 ∙
𝜋

2
  during the control process. When these angles exceed 90 degrees, 

the system becomes highly unstable and may exhibit uncontrollable or unpredictable behavior, and 

that is why these constraints have already been imposed during the modelling of the quadrotor system.  

Once the design variable has been defined, the next step is to construct the objective function 

for the MPC controller. Similar to the altitude control case, the objective function for the x position 

control can be formulated with three terms: the first term penalizes the error between the desired x 

position and the predicted x position, ensuring that the MPC controller drives the system with accuracy, 

the second term penalizes the derivative of the error, aiming to achieve smooth and stable control, by 

anticipating changes in the error, and the third term is designed to encourage the system to minimize 

unnecessary movements or control actions, thus promoting energy efficiency and reducing 

unnecessary adjustments. 
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𝐽𝑥 = 𝑒𝑇 ∙ 𝑄1 ∙ 𝑒 + 𝑒̇𝑇  ∙ 𝑄2 ∙ 𝑒̇ + 𝛥𝑢𝑥
𝑇 ∙ 𝑅 ∙ 𝛥𝑢𝑥   (3.27) 

 

The specific weights assigned to each term in the objective function depend on the control 

objectives and priorities of the system and they determine the relative importance of each term in 

shaping the control behavior.  

The constraints for the MPC controller in the x position follow a similar logic as with the 

altitude control. So, firstly, there are upper and lower bounds set for the design variable, the virtual 

control variable (Δux), that limit the amount of control input that can be applied at each time step, 

preventing excessive or impractical control actions. Similarly, there are also upper and lower bounds 

defined for the virtual control variable, that restrict the magnitude of the control input, preventing 

control inputs from becoming too large or too small, which can lead to instability or insufficient 

control.  

 

𝛥𝑢𝑥𝑚𝑖𝑛
 ≤  𝛥𝑢𝑥(𝑘 + 𝑖)  ≤  𝛥𝑢𝑥𝑚𝑎𝑥

 , 𝑖 = 0,… ,𝛨𝐶   (3.28) 

 

𝑢𝑥𝑚𝑖𝑛
 ≤  𝑢𝑥(𝑘 + 𝑖)  ≤  𝑢𝑥𝑚𝑎𝑥

 , 𝑖 = 0,… ,𝐻𝑃   (3.29) 

 

Finally, again, there is the constraint that enforces the condition that the change in total thrust 

beyond the control horizon is zero, thus helping guarantee the effectiveness and reliability of the MPC 

control strategy: 

 

𝛥𝑢𝑥(𝑘 + 𝑖) = 0 , 𝑖 = 𝐻𝐶 + 1,… , 𝐻𝑃    (3.30) 

 

So, by combining the objective function, with the constraints, the total optimization problem 

for the control of position in the x-axis is formulated as follows: 

 

min
𝛥𝑢𝑥(𝑘),… , 𝛥𝑢𝑥(𝑘 + 𝐻𝐶)  𝐽𝑥 = 𝑒𝑇 ∙ 𝑄1 ∙ 𝑒 + 𝑒̇𝑇  ∙ 𝑄2 ∙ 𝑒̇ + 𝛥𝑢𝑥

𝑇 ∙ 𝑅 ∙ 𝛥𝑢𝑥 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜            𝛥𝑢𝑥𝑚𝑖𝑛
 ≤  𝛥𝑢𝑥(𝑘 + 𝑖)  ≤  𝛥𝑢𝑥𝑚𝑎𝑥

 , 𝑖 = 0,… ,𝐻𝐶 

𝑢𝑥𝑚𝑖𝑛
 ≤  𝑢𝑥(𝑘 + 𝑖)  ≤  𝑢𝑥𝑚𝑎𝑥

 , 𝑖 = 0,… , 𝐻𝑃 

𝛥𝑢𝑥(𝑘 + 𝑖) = 0 , 𝑖 = 𝐻𝐶 + 1,… , 𝐻𝑃 

(3.31) 
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3.4..2.3 The optimization problem for the MPC related to the position y 

The optimization problem for controlling the y position of the quadrotor can be formulated in 

a manner completely analogous to the one for the x position. That being said, the design variable is 

chosen to be the change in the virtual control variable, denoted as Δuy, for indirect control of the y 

position through the roll angle φ:  

 

𝛥𝑢𝑦(𝑘) = 𝑢𝑦(𝑘) − 𝑢𝑦(𝑘 − 1)    (3.32) 

 

So, the MPC algorithm calculates the optimal sequence of Δuy values, which are translated into 

the appropriate changes in the virtual control variable uy, through equation (3.32), and since the MPC 

controller for the y position operates as the outer loop of the PID controller for φ angle regulation, it 

is responsible for providing the reference φ angle to the relevant PID controller.  

After performing the necessary calculations to determine the expression for the reference angle 

θ, denoted as expression (3.36), it becomes feasible to incorporate this value into equation (3.23). By 

doing so, the expression that characterizes the reference angle φ is obtained, taking into account a non-

zero angle ψ. Conversely, if ψ is chosen to be assumed as zero, primarily for the sake of practicality 

and simulation purposes, it is possible to directly acquire the expression for the reference angle φ from 

equation (3.23). 

𝜑(𝑘) =  sin−1(𝑢𝑦) , assuming that 𝜓 ≅ 0 

 

or 

 

𝜑(𝑘) =  −sin−1(𝑢𝑦(𝑘) ∙ cos𝜓 (𝑘) − sin𝜓 (𝑘) ∙ 𝑢𝑥(𝑘)) , for 𝜓 ≠ 0 

(3.33) 

 

Similarly to x, the objective function is constructed to minimize a combination of error terms, 

including the error in the y position, the derivative of the error, which is the velocity in the y axis, and 

a term that encourages smooth and efficient control actions. These terms are weighted by appropriate 

matrices to reflect the importance and desired behavior of each component. 

 

𝐽𝑦 = 𝑒𝑇 ∙ 𝑄1 ∙ 𝑒 + 𝑒̇𝑇  ∙ 𝑄2 ∙ 𝑒̇ + 𝛥𝑢𝑥
𝑇 ∙ 𝑅 ∙ 𝛥𝑢𝑥    (3.34) 
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Moreover, analogous constraints to those for x are imposed on the design variable 𝛥𝑢𝑥 and its 

absolute value 𝑢𝑥 to ensure that the control input remains within permissible bounds.  

 

𝛥𝑢𝑦𝑚𝑖𝑛
 ≤  𝛥𝑢𝑦(𝑘 + 𝑖)  ≤  𝛥𝑢𝑦𝑚𝑎𝑥

 , 𝑖 = 0,… ,𝛨𝐶   (3.35) 

 

𝑢𝑦𝑚𝑖𝑛
 ≤  𝑢𝑦(𝑘 + 𝑖)  ≤  𝑢𝑦𝑚𝑎𝑥

 , 𝑖 = 0,… ,𝐻𝑃   (3.36) 

 

Also, there is the constraint that enforces the condition that the change in the control variable 

beyond the control horizon is zero, for adherence to algorithm-specific requirements: 

 

𝛥𝑢𝑦(𝑘 + 𝑖) = 0 , 𝑖 = 𝐻𝐶 + 1,… ,𝐻𝑃    (3.37) 

 

So, by combining the objective function, with the constraints, the total optimization problem 

for the control of position in the x-axis is formulated as follows: 

 

min
𝛥𝑢𝑦(𝑘),… , 𝛥𝑢𝑦(𝑘 + 𝐻𝐶)  𝐽𝑦 = 𝑒𝑇 ∙ 𝑄1 ∙ 𝑒 + 𝑒̇𝑇  ∙ 𝑄2 ∙ 𝑒̇ + 𝛥𝑢𝑦

𝑇 ∙ 𝑅 ∙ 𝛥𝑢𝑦 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜            𝛥𝑢𝑦𝑚𝑖𝑛
 ≤  𝛥𝑢𝑦(𝑘 + 𝑖)  ≤  𝛥𝑢𝑦𝑚𝑎𝑥

 , 𝑖 = 0,… ,𝐻𝐶  

𝑢𝑦𝑚𝑖𝑛
 ≤  𝑢𝑦(𝑘 + 𝑖)  ≤  𝑢𝑦𝑚𝑎𝑥

 , 𝑖 = 0,… , 𝐻𝑃 

𝛥𝑢𝑦(𝑘 + 𝑖) = 0 , 𝑖 = 𝐻𝐶 + 1,… ,𝐻𝑃 

(3.38) 

 

3.4..3 The terminal constraint 

In control systems theory, terminal constraint refers to a condition-constraint imposed on the 

system’s state variables at the final time instant, also known as the terminal time, to specify a desired 

behavior at the end of a given time period. It adds an additional requirement that the system must 

satisfy at the final time, in addition to the usual constraints on the state and control variables throughout 

the time horizon. 

In MPC, the terminal constraint plays a crucial role as it is an effective way to achieve closed-

loop stability; it acts like an attractor towards the desired reference trajectory, ensuring that the MPC 

drives the system towards the reference setpoint and maintains it there. The assurance of stability 



Development of a distributed model predictive control framework for autonomous unmanned aerial vehicle swarms 

UNIWA, Department of Electrical & Electronics Engineering, Diploma thesis, Despoina – Panagiota Vavelidou 
  97 

through the terminal constraint in the context of control systems can be attributed to its pivotal role in 

fostering convergence towards desired trajectories, while minimizing tracking errors [35]. 

More specifically, the terminal constraint ensures that the system matches the desired state at 

the final step of the prediction horizon, which, consequently, implies that the tracking error e at the 

terminal time instant is zero. Generally speaking, in control systems, the goal is to minimize the 

tracking error so a terminal constraint that enforces the aforementioned condition makes it possible to 

ensure that the error is minimized; as time approaches infinity (𝑡 → ∞), the error asymptotically 

approaches zero, indicating convergence to the desired trajectory.  

That being said, according to Lyapunov’s theorem, when the error approaches zero, as it is the 

case with the employment of terminal constraint, the objective function is minimized, thus resulting in 

a decreasing function. Additionally, if the objective function is quadratic and positively defined, as it 

is the case for all of the objective functions in the examined quadrotor system, this allows for the 

establishment of a positive-definite objective function (𝐽 ≥ 0). So, a positive-definite and increasing 

function has its lower bound at zero and thus the system adheres to the principles of asymptotic stability 

[36].   

In the context of trajectory following in MPC, and as far as the quadrotor is concerned, three 

terminal constraints can be imposed, one for each of the three 3D coordinates, and they should be 

included in the optimization problem formulation for every timestep k within the MPC algorithm: 

 

• Terminal constraint for altitude z: 𝑧̂(𝑘 + 𝐻𝑃) = 𝑧𝑟(𝑘 + 𝐻𝑃) 

• Terminal constraint for position x:  𝑥̂(𝑘 + 𝐻𝑃) = 𝑥𝑟(𝑘 + 𝐻𝑃) 

• Terminal constraint for position y:  𝑦̂(𝑘 + 𝐻𝑃) = 𝑦𝑟(𝑘 + 𝐻𝑃) 

(3.39) 

where 𝑧̂, 𝑥̂ , 𝑦̂ represent the predicted states of the system at the end of the prediction horizon and 𝑧𝑟 , 

𝑥𝑟 , 𝑦𝑟 the desired system states at the same time step.  

As it can be observed from (3.39), the satisfaction of the terminal constraint in MPC relies on 

ensuring an adequate prediction horizon (HP) that allows the system sufficient time – an extended time 

window, to converge towards the reference trajectory. If the prediction horizon is too short, it restricts 

the system's ability to adjust its trajectory and may impede convergence to the desired state. In such 

cases, the system may not have ample time to respond to disturbances, adapt its control inputs, and 

adequately track the reference trajectory. Consequently, the terminal constraint may remain 

unsatisfied. 
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In contrast, a longer prediction horizon allows for a more comprehensive planning and 

adjustment of control actions, granting the system sufficient time to approach and align with the 

reference trajectory. By providing this extended duration, the system can effectively navigate towards 

the desired state and satisfy the terminal constraint within the specified time frame. Altogether, the 

complete optimization problems for x, y and z are presented in the set of equations (3.40): 

 

min
𝛥𝑓𝑡(𝑘),… , 𝛥𝑓𝑡(𝑘 + 𝐻𝐶)  𝐽 = 𝑒𝑇 ∙ 𝑄1 ∙ 𝑒 + 𝑒̇𝑇  ∙ 𝑄2 ∙ 𝑒̇ + 𝛥𝑓𝑡

𝑇 ∙ 𝑅 ∙ 𝛥𝑓𝑡 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜            𝛥𝑓𝑡𝑚𝑖𝑛
 ≤  𝛥𝑓𝑡(𝑘 + 𝑖)  ≤  𝛥𝑓𝑡𝑚𝑎𝑥

 , 𝑓𝑜𝑟 𝑖 = 0, . . , 𝐻𝐶 

𝑓𝑡𝑚𝑖𝑛
 ≤  𝑓𝑡(𝑘 + 𝑖)  ≤  𝑓𝑡𝑚𝑎𝑥

 , 𝑓𝑜𝑟 𝑖 = 0, . . , 𝐻𝑃 

𝛥𝑓𝑡(𝑘 + 𝑖) = 0 , 𝑓𝑜𝑟 𝑖 = 𝐻𝐶 + 1,… , 𝐻𝑃 

𝑧̂(𝑘 + 𝐻𝑃) = 𝑧𝑟(𝑘 + 𝐻𝑃) 

 

min
𝛥𝑢𝑥(𝑘),… , 𝛥𝑢𝑥(𝑘 + 𝐻𝐶)  𝐽𝑥 = 𝑒𝑇 ∙ 𝑄1 ∙ 𝑒 + 𝑒̇𝑇  ∙ 𝑄2 ∙ 𝑒̇ + 𝛥𝑢𝑥

𝑇 ∙ 𝑅 ∙ 𝛥𝑢𝑥 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜            𝛥𝑢𝑥𝑚𝑖𝑛
 ≤  𝛥𝑢𝑥(𝑘 + 𝑖)  ≤  𝛥𝑢𝑥𝑚𝑎𝑥

 , 𝑖 = 0,… ,𝐻𝐶 

𝑢𝑥𝑚𝑖𝑛
 ≤  𝑢𝑥(𝑘 + 𝑖)  ≤  𝑢𝑥𝑚𝑎𝑥

 , 𝑖 = 0,… , 𝐻𝑃 

𝛥𝑢𝑥(𝑘 + 𝑖) = 0 , 𝑖 = 𝐻𝐶 + 1,… , 𝐻𝑃 

𝑥̂(𝑘 + 𝐻𝑃) = 𝑥𝑟(𝑘 + 𝐻𝑃) 

 

min
𝛥𝑢𝑦(𝑘),… , 𝛥𝑢𝑦(𝑘 + 𝐻𝐶)  𝐽𝑦 = 𝑒𝑇 ∙ 𝑄1 ∙ 𝑒 + 𝑒̇𝑇  ∙ 𝑄2 ∙ 𝑒̇ + 𝛥𝑢𝑦

𝑇 ∙ 𝑅 ∙ 𝛥𝑢𝑦 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜            𝛥𝑢𝑦𝑚𝑖𝑛
 ≤  𝛥𝑢𝑦(𝑘 + 𝑖)  ≤  𝛥𝑢𝑦𝑚𝑎𝑥

 , 𝑖 = 0,… ,𝐻𝐶  

𝑢𝑦𝑚𝑖𝑛
 ≤  𝑢𝑦(𝑘 + 𝑖)  ≤  𝑢𝑦𝑚𝑎𝑥

 , 𝑖 = 0,… , 𝐻𝑃 

𝛥𝑢𝑦(𝑘 + 𝑖) = 0 , 𝑖 = 𝐻𝐶 + 1,… ,𝐻𝑃 

𝑦̂(𝑘 + 𝐻𝑃) = 𝑦𝑟(𝑘 + 𝐻𝑃) 

(3.40) 

 

However, it is important to remember that the utilization of a single MPC controller for both x 

and y axes involves formulating an optimization problem that combines the individual optimization 

problems for x and y and imposes a common prediction and control horizon.  

Within this context, to implement the code of the MPC algorithm, it is possible to use the 

variable u in order to encompass both control variables ux and uy, for a unified problem. However, in 
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order to facilitate effective tuning, distinct bounds are assigned to the control variables for both x and 

y and penalties specific to each axis. 

In this integrated framework, the individual objective functions for the x and y axes are 

combined into a single optimization problem through summation, as presented in set of equations 

(3.41). This means that the optimization process now seeks to optimize the combined objective, which 

considers both the x-axis and y-axis control objectives. By summing the separate objective functions, 

the coordination and balance of control inputs between the x and y axes are prioritized, thus providing 

a coherent and coordinated movement in both directions. 

 

min
𝛥𝑢(𝑘),… , 𝛥𝑢(𝑘 + 𝐻𝐶)   

𝐽 = 𝑒𝑥
𝑇 ∙ 𝑄1𝑥 ∙ 𝑒𝑥 + 𝑒̇𝑥

𝑇  ∙ 𝑄2𝑥 ∙ 𝑒̇𝑥 + 𝛥𝑢𝑥
𝑇 ∙ 𝑅𝑥 ∙ 𝛥𝑢𝑥 + 𝑒𝑦

𝑇 ∙ 𝑄1𝑦 ∙ 𝑒𝑦 + 𝑒̇𝑦
𝑇  ∙ 𝑄2𝑦 ∙ 𝑒̇𝑦 + 𝛥𝑢𝑦

𝑇 ∙ 𝑅𝑦 ∙ 𝛥𝑢𝑦 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜            𝛥𝑢𝑥𝑚𝑖𝑛
, 𝛥𝑢𝑦𝑚𝑖𝑛

 ≤  𝛥𝑢(𝑘 + 𝑖)  ≤  𝛥𝑢𝑥𝑚𝑎𝑥
 , 𝛥𝑢𝑦𝑚𝑎𝑥

, 𝑖 = 0,… ,𝐻𝐶  

𝑢𝑥𝑚𝑖𝑛
, 𝑢𝑦𝑚𝑖𝑛

 ≤  𝑢(𝑘 + 𝑖)  ≤  𝑢𝑥𝑚𝑎𝑥
 , 𝑢𝑦𝑚𝑎𝑥

, 𝑖 = 0,… ,𝐻𝑃 

𝛥𝑢(𝑘 + 𝑖) = 0 , 𝑖 = 𝐻𝐶 + 1,… ,𝐻𝑃 

𝑥̂(𝑘 + 𝐻𝑃) = 𝑥𝑟(𝑘 + 𝐻𝑃), 𝑦̂(𝑘 + 𝐻𝑃) = 𝑦𝑟(𝑘 + 𝐻𝑃) 

(3.41) 

 

3.5 Simulation analysis and results 

For comparative analysis purposes, the same trajectories explored in Chapter 2., using only 

PIDs, will be re-evaluated with the new MPC control scheme design. It is anticipated that the predictive 

capability of MPC will yield superior results, enabling the precise tracking of even high-speed 

trajectories. The control and prediction horizons are presented in Table 7 : 

 

Table 7. MPC parameters for z and x-y for a single quadcopter 

 

MPC horizons 

Hc for z 3 

Hp for z 30 

Hc for x-y 6 

Hp for x-y 20 
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The selection of the prediction and control horizons, as well as the decision to employ distinct 

horizons for altitude z and positions x-y, was made under careful consideration of the trajectory 

complexities in 3D space, as well as the trade-off between performance and computational burden.  

More specifically, for the z-axis, the examined trajectory offers greater ease of following, as it 

doesn’t involve changes in orientation. Consequently, a smaller control horizon was deemed sufficient, 

thus reducing computational cost. Conversely, the x-y trajectory is far more complex, necessitating a 

larger control horizon to enable responsiveness, maneuvers and improved control performance. 

However, since the control horizon impacts computational costs, a value of 6 was considered adequate 

to account for these factors without excessive computational burden. 

Moreover, regarding Prediction Horizons, for z-axis trajectory, a substantial prediction horizon 

was chosen to facilitate the anticipation of future states, given its inherent simplicity. In contrast, the 

x-y trajectory necessitates a slightly shorter Prediction Horizon to ensure the system’s ability to 

promptly adapt to changes in orientation and position. Nevertheless, it's important to acknowledge that 

in the general scenario, identical values are chosen for the prediction horizon in both the z-axis and x-

y trajectories. 

In summary, the selection of the specific values for control and prediction Horizons presented 

was a product of thorough trial and error, while also bearing in mind a pragmatic approach that 

optimizes the computational resources and addressing the complexities of the trajectory.  

 

Table 8. The PID values for angle regulation for the MPC design for a single quadcopter 

 

PID values 

 Proportional gain 𝑘𝑃 Integral gain 𝑘𝐼 Derivative gain 𝑘𝐷 

PID controller for angle phi 0.15 0.0001 0.3 

PID controller for angle theta 0.05 0.0001 0.25 

PID controller for angle psi 0.005 0.0001 0.01 

 
 

The choice of the PID values for angle regulation, as presented in Table 8, follows a similar 

methodology to that employed in Chapter 2. More specifically, the process begun by selecting the 

proportional gain aimed to minimize the error between the reference angle generated by the MPC for 

positions x-y and the actual angle of the PID control. This choice necessitated a small value, given the 

sensitivity of angular control. Then, a larger derivative value was chosen to mitigate oscillations in the 
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system, and finally, a very small value for the integral gain was adopted to ensure that the steady state 

error converges to zero, while preventing the possibility of integral windup. 

 
 

Table 9. The selected penalty matrices for the MPC design for a single quadcopter 
 

Peanalty matrices 

 Error penalty matrix Q1 Velocity penalty matrix Q2 Design variable penalty matrix R 

altitude z 𝑑𝑖𝑎𝑔(1 ∙ 𝑜𝑛𝑒𝑠(ℎ𝑝, 1)) 𝑑𝑖𝑎𝑔(0.05 ∙ 𝑜𝑛𝑒𝑠(ℎ𝑝, 1)) 𝑑𝑖𝑎𝑔(0.5 ∙ 𝑜𝑛𝑒𝑠(ℎ𝑐, 1)) 

position x 𝑑𝑖𝑎𝑔(1 ∙ 𝑜𝑛𝑒𝑠(ℎ𝑝𝑥𝑦, 1)) 𝑑𝑖𝑎𝑔(0.01 ∙ 𝑜𝑛𝑒𝑠(ℎ𝑝𝑥𝑦, 1)) 𝑑𝑖𝑎𝑔(0.75 ∙ 𝑜𝑛𝑒𝑠(ℎ𝑐𝑥𝑦, 1)) 

position y 𝑑𝑖𝑎𝑔(1 ∙ 𝑜𝑛𝑒𝑠(ℎ𝑝𝑥𝑦, 1)) 𝑑𝑖𝑎𝑔(0.01 ∙ 𝑜𝑛𝑒𝑠(ℎ𝑝𝑥𝑦, 1)) 𝑑𝑖𝑎𝑔(0.5 ∙ 𝑜𝑛𝑒𝑠(ℎ𝑐𝑥𝑦, 1)) 

 

As described in sub-chapter 3.4.2., the penalty matrices, used to assign weights to the terms of 

the objective functions, are positive semi-definite matrices with elements along the main diagonal and 

dimensions relevant to the specified horizons. The selection of their values, as presented in Table 9, is 

contingent upon the objectives established by the designer, as well as the specific attributes of the 

system.  

More specifically, through a process of trial and error, the error penalty matrix denoted as Q1, 

is chosen to have a relatively high value – being the largest among the matrices. This choice prioritizes 

the minimization of errors between the actual and the reference trajectories. Conversely, the velocity 

(the derivative of the error) penalty matrix Q2 is selected to have a smaller value, allowing for the 

correction of initial errors stemming from the quadrotor’s starting conditions.  

Finally, the design variable penalty matrix, R, contains relatively small values in order to 

protect the system from exhibiting overly abrupt behavior. Consequently, the biggest value is assigned 

to x-position, which is associated to the particularly sensitive angle theta.  
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It is also important to highlight the fact that, penalty matrices are commonly assigned varying 

values along the diagonal, with larger values typically placed towards the end. This practice is related 

to the assumption that the values produced towards the end of the horizon tend to be less reliable or 

more prone to uncertainty. Consequently, by assigning to them larger penalty values, the control 

system penalizes them more to maintain better control or tracking performance. However, in this 

diploma thesis, for ease of tuning, a uniform value was applied throughout the entire diagonal. 

 

Table 10. The minimum - maximum values for the variables for the MPC design for a single quad 
 

Min and max values for the variables 

 Minimum value Maximum value 

ft [N] -20 20 

ux [rad] -0.18 0.18 

uy [rad] -0.2 0.2 

dft [N] -10 10 

dux [rad] -0.05 0.05 

duy [rad] -0.06 0.06 

 
 

The selection of values for the control variables (Δft, Δ𝑢𝑥, Δ𝑢𝑦) and the variables from which 

they stem (𝑓𝑡 , 𝑢𝑥, 𝑢𝑦), as presented in Table 10, involved a meticulous process of trial and error 

coupled with considerations of real-life implementation. In particular, the values were deliberately 

chosen within a narrow range since the quadrotor is a highly sensitive system that is prone to abrupt 

behavior. Moreover, for the sake of simplifying the tuning process, the decision was made to set the 

minimum and maximum values equal and opposite.  

 

3.5..1 Simulation for the 1st trajectory set 

The simulation graphs for the slow trajectory set and for a time span of half a period 

(approximately 1047 timesteps) for visual clarity are presented below: 
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Figure 61. Position x and xref in relation to time for trajectory tracking (1st set) using the MPC design 

 

 

 
 

Figure 62. Position y and yref in relation to time for trajectory tracking (1st set) using the MPC design 

 

 
 



Development of a distributed model predictive control framework for autonomous unmanned aerial vehicle swarms 

UNIWA, Department of Electrical & Electronics Engineering, Diploma thesis, Despoina – Panagiota Vavelidou 
  104 

 
 

Figure 63. Position z and zref in relation to time for trajectory tracking (1st set) using the MPC design 
 
 

As depicted in Figure 61, Figure 62 and Figure 63, the quadrotor demonstrates an exceptional 

ability to closely follow the prescribed x, y, and z trajectories. More specifically, initially, the quadrotor 

swiftly converges to the target trajectory, displaying a rapid 'catching' capability. Then, once aligned 

with the desired path, it exhibits remarkable stability, with a high level of precision. Notably, the y-

position, characterized by a cosine trajectory, exhibits the best tracking performance, which is 

attributed to the favorable alignment of the initial condition with the trajectory. So, overall, these 

figures highlight the ability of the MPC contorllers to achieve great performace in terms of minimizing 

the tracking errors along all directions. 

In addition to the precise tracking of positions, it is worth highlighting the behavior of the 

angles (Figure 64, Figure 65 and Figure 66), which are generated as references by the MPC controller 

for x (related to angle theta) and y (related to angle phi). The quadrotor exhibits a notably sharp 

response in regulating these angles, presenting rapid alignment with the desired orientations, and the 

same is true for the control inputs (Figure 67, Figure 68, Figure 69 and Figure 70).  

More specifically, during the initial stages of the trajectory tracking, both the angles and the 

associated control inputs exhibit sharp and dynamic behavior, but as the quadrotor approaches its 

desired path, there is a transition to a stable state characterized by minimal variations around zero.  
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Figure 64. Roll angle φ in relation to time for trajectory tracking (1st set) using the MPC design 

 

 

 

 
 

Figure 65. Pitch angle θ in relation to time for trajectory tracking (1st set) using the MPC design 
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Figure 66. Yaw angle ψ in relation to time for trajectory tracking (1st set) using the MPC 

design 

 

 

 

 
 

Figure 67. Thrust ft in relation to time for trajectory tracking (1st set) using the MPC design 
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Figure 68. Torque τx in relation to time for trajectory tracking (1st set) using the MPC design 

 

 

 

 

 
 

Figure 69. Torque τy in relation to time for trajectory tracking (1st set) using the MPC design 
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Figure 70. Torque τz in relation to time for trajectory tracking (1st set) using the MPC design 

 
 

Furthermore, apart from the individual graphs for positions x, y, and z, it is essential to create 

a 3D visualization of the trajectory to observe the quadrotor's behavior in three-dimensional space. In 

Figure 71, the spiral-like trajectory for three complete periods is presented for that purpose.  

 
 

 
 

Figure 71. Actual trajectory compared to reference trajectory for the 1st set using the MPC design 
 

 

Figure 71 reveals the quadrotor's exceptional ability to closely adhere to the trajectory, even 

during changes in orientation, and it does so with remarkable agility. This quantitative precision is 
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further elucidated by the calculation of  the MSE values for each of the three separate axes and the 

overall system, as displayed in Table 11 for three time periods. The diminutive values are indicative 

of the system's exceptional performance, in all axes and overall.   

 

Table 11. The MSE values for the three axes – 1st trajectory using the MPC design 

 

 Mean Squared Error (MSE) 

x-axis trajectory 0.0007 

y-axis trajectory 0.0000 

z-axis trajectory 0.0024 

Mean Euclidean Distance 0.0043 

 

 

3.5..2 Simulation for the 2nd trajectory set 
 

Analogously to the simulation of the slow trajectory, the simulation graphs for the fast (the 2nd) 

trajectory will be held for a timespan of half a period (approximately 214 timesteps). 

 

 
 

Figure 72. Position x and xref in relation to time for trajectory tracking (2nd set) using the MPC design 
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Figure 73. Position y and yref in relation to time for trajectory tracking (2nd set) using the MPC design 

 

 

 

 

Figure 74. Altitude z and zref in relation to time for trajectory tracking (2nd set) using the MPC design 

 

As evident from Figure 72, Figure 73 and Figure 74, which illustrate the tracking performance 

along the X-Y and Z axes, respectively, through the use of MPC design, the quadrotor exhibits 

exceptional performance. Despite the faster nature of this trajectory set, there is demonstrated 

remarkable agility, swiftness in adapting to changes in orientation and prompt aligning with the desired 
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trajectory. In the following graphs (Figures 75 to 81) the angles and control inputs that make for this 

tracking performance are presented. 

 

 

 

Figure 75. Roll angle φ in relation to time for trajectory tracking (2nd set) using the MPC design 

 
 

 

 

Figure 76. Pitch angle θ in relation to time for trajectory tracking (2nd set) using the MPC design 
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Figure 77. Yaw angle ψ in relation to time for trajectory tracking (2nd set) using the MPC design 

 

 

 

 

Figure 78. Thrust ft in relation to time for trajectory tracking (2nd set) using the MPC design 
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Figure 79. Torque τx in relation to time for trajectory tracking (2nd set) using the MPC design 

 

 

 

Figure 80. Torque τy in relation to time for trajectory tracking (2nd set) using the MPC design 
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Figure 81. Torque τz in relation to time for trajectory tracking (2nd set) using the MPC design 

 

The angles and control inputs display sharp and dynamic responses, underscoring the 

quadrotor’s ability to execute rapid and agile maneuvers, thus resulting to precise tracking and control. 

The trajectory for the 2nd reference set in 3D space is presented in Figure 82 as a clear evidence of the 

quadrotor’s exceptional performance thanks to the MPC design employed.  

 

 

Figure 82. Actual trajectory compared to reference trajectory for the 2nd set using the MPC design 
 

The MSE values for the 2nd trajectory are presented in Table 12: 
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Table 12. The MSE values for the three axes – 2nd trajectory using the MPC design 
 

 Mean Squared Error (MSE) 

x-axis trajectory 0.0024 

y-axis trajectory 0.0000 

z-axis trajectory 0.0081 

Mean Euclidean Distance 0.0145 

 
 
 

3.5..3 Comparison with the PID design 

From the presented graphs and the evaluation index MSE calculations, it becomes evident that 

the MPC design, which incorporates two MPCs for position and three PIDs for angle regulation 

respectively, outperforms the PID design, which utilizes a total of six PIDs for both position and angle 

regulation. This compelling evidence highlights the advanced capabilities of MPC, which offers a 

superior tracking performance, making it a very suitable choice for complex systems where precision 

and adaptability are paramount.  

More specifically, the MSE, which is a key indicator of tracking accuracy, showcases a 

substantial difference; the MSE for the MPC design is approximately five times smaller than that of 

the PID design (1st set: 0.0043 vs 0.0205, 2nd set: 0.0145 vs 0.0741), underscoring the superior 

performance of the former.  

Furthermore, when examining the angles, as well as the control inputs, intriguing dynamics are 

unveiled. More precisely, in the MPC design these parameters exhibit a more dynamic behavior, with 

steeper and more pronounced changes. While tuning plays an important role in this behavior, it also 

highlights that the MPC design employs more aggressive control actions, that makes for swift and 

adaptive responses, ultimately contributing to a superior tracking performance. This, of course, comes 

with more energy consumption – computational load.  

In Table 13, a comprehensive comparison of the PID and the MPC design for the quadrotor 

system examined is presented, highlighting their distinct characteristics and performance attributes. 

These observations align with the established theoretical principles and advantages of MPC presented 

in section 3.1. 
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Table 13. Comparison between the PID design and the MPC design 

 

 Quadrotor PID design Quadrotor MPC design 

Mean Squared Error higher due to reactive control lower due to predictive control 

Adaptability limited high 

Control Precision limited high 

Constraint Handling none efficient handling 

Computational load lower higher 

Response Time slower faster 

Multi-variable Control separate PIDs for each variable 
unified control with consideration of 

the interdependence between x and y 

 

Overall, the simulations conducted provide clear evidence that the Model Predictive Control 

(MPC) strategy employing two MPCs for position control and three inner-loop PID controllers for 

angle regulation, outperforms the design that employs only PID controllers, by a significant margin. 

This exceptional performance can be attributed to the multiple advantages and predictive nature of 

MPC, which allows for precise control and trajectory tracking. That being said, while the tuning 

process may be intricate, it offers the flexibility to fine-tune numerous parameters in order to achieve 

the desired performance.  

So, after conducting a thorough evaluation and assessment of the performance of MPC in the 

context of trajectory tracking, spanning two distinctly paced scenarios, it becomes apparent that this 

advanced control strategy has not only established its efficacy, but also reveals a wealth of potential 

for application in even more intricate systems. More specifically, the promising outcomes observed in 

this chapter inspire confidence in its versatility and adaptability, and thus, in its application to address 

the unique challenges posed by a swarm of quadrotors, as opposed to the control of a single entity.  

The transition from the realm of single-agent control to orchestrating the collective behavior 

of a swarm is an example of harnessing the full spectrum of MPC’s capabilities and underscores the 

potential of this control strategy in real-world scenarios, ranging from autonomous surveillance and 

precision agriculture to disaster response and environmental monitoring, where the autonomous 

coordination of multiple agents is paramount. 

It is within this context that the next chapter is explored, where the application of MPC to 

swarm robotics takes center stage, offering a promising glimpse into the future of autonomous multi-

agent systems. 
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CHAPTER 4: Swarm of quadcopters 

In the final chapter of this diploma thesis, the proposed control framework presented in Chapter 

3, with two separately working Model Predictive Controllers, is utilized for the management of 

multiple quadcopter agents, rather than a single quadcopter, also known as a swarm of quadcopters. In 

this context, the chapter begins by providing some introductory information about the swarms, as well 

as the distributed MPC (DMPC) framework implemented. Finally, in order to establish the efficiency 

and functionality of the designed control system, simulations are conducted for trajectory tracking, 

with emphasis on guaranteeing not only collision avoidance between the agents of the swarm, but 

obstacle avoidance, as well.   

 

4.1 Swarm 

A swarm of quadrotors, commonly referred to as a quadcopter swarm or a drone swarm, 

embodies the collective intelligence of multiple autonomous or semi-autonomous quadrotors that work 

collaboratively to achieve a common goal. By leveraging the power of cooperation and coordination, 

quadrotor swarms unlock unprecedented capabilities, enabling them to perform complex tasks that 

would be beyond the reach of a single drone. As a result, quadrotor swarms find applications in many 

industries or domains, like surveillance, search and rescue in disaster scenarios, precision agriculture, 

environmental monitoring, communication relay and more [4]. Figure 83 presents a swarm of five 

quadcopter agents. 

 

 

Figure 83. Visual representation of a swarm of quadcopters with 5 agents 

 

In the context of swarms, formation [37] refers to the spatial arrangement of the drones and 

how they maintain specific spatial configuration while performing tasks collectively, which can change 

depending on the specific application, mission objectives, and the complexity of the swarm task. 

Whatever the case, orchestrating a swarm of quadrotors is a challenging task that requires the 
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combination of advanced control algorithms, reliable communication systems, and well-coordinated 

design and planning. This is because, there are several factors that need to be addressed for an effective 

and safe operation, including: 

• Communication and Coordination: the quadcopters must be able to share information 

to work collaboratively and maintain cohesion, under a robust and low-latency 

communication network. 

• Collision Avoidance: avoiding collisions between quadrotors is critical for ensuring the 

safety and integrity of the swarm, as it navigates through complex environments or 

potential hazards. Thus, the relevant mechanisms must be robust enough and able to 

adjust trajectories in real-time.  

• Path Planning: efficient path planning is necessary to optimize the trajectories of 

individual quadrotors and the overall swarm, while also considering factors such as 

energy consumption, mission objectives, obstacle avoidance, formation control and 

dynamic changes in the environment.  

• Scalability: as the number of drones in the swarm increases, the complexity of 

communication and coordination grows exponentially, thus requiring sophisticated 

algorithms to ensure efficient cooperation.  

 

Finally, depending on various factors like the swarm’s size, the nature of the task, the available 

computational resources or the communication capabilities, different control strategies can be chosen, 

combined, or even customized to suit specific applications. In the context of swarm, a control strategy 

is the approach or methodology used for coordination and control of autonomous agents, to achieve a 

collective goal or perform a task. Some common control strategies used in swarm robotics are:   

• Distributed Control: this strategy involves giving each agent a (certain) degree of 

autonomy and decision-making capabilities. The communication between the agents 

and, ultimately, the coordinated behavior, is achieved through information sharing. [29] 

• Centralized Control: in contrast to distributed control, this strategy involves a single 

central controller that makes the decisions and sends the commands to all agents. This 

approach is common in scenarios when real-time coordination is critical. [38] 

• Hierarchical Control: with this strategy, there is a centralized controller placed 

somewhere that determines high-level actions, as well as distributed controllers at each 

agent to implement these actions. [39] 
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• Leader-Follower Control: some agents within the swarm act as leaders, which make 

decisions and guide the behavior of the swarm, while the rest act as followers of the 

leader. [40] 

• Learning-Based Control: the agents learn and adapt their behavior over time, by using 

machine learning techniques, such as reinforcement learning or neural networks. [41] 

 

4.2 Design of the quadrotor swarm 

The control architecture employed for the swarm in the scenario of trajectory tracking is the 

same as that for Chapter 3., which incorporates two MPC controllers, one devoted to managing altitude 

(z-axis), and the other for the x-y plane, as well as three Proportional-Integral-Derivative (PID) 

controllers for the regulation of the inner-loop angles.  

This MPC control strategy is used for the developing of a comprehensive distributed MPC 

(DMPC) framework, that orchestrates the collective behavior of the swarm. In that context, the 

different agents are controlled autonomously, eliminating the necessity of a single - central controller, 

which could serve as a potential point of failure. Moreover, the proposed framework doesn’t 

predetermine the trajectories for each agent, but each one of them adjusts its behavior to closely follow 

the real-time desired trajectory, allowing for more agile responses to changing conditions and 

unforeseen obstacles.  

Furthermore, in the context of a swarm, as already mentioned in sub-chapter 4.1., a mechanism 

is required to facilitate communication among the agents to prevent collisions. When using the 

aforementioned control framework, it is important to remember that there are two distinct controllers 

utilized for position control that solve two separate optimization problems, with the z-axis MPC taking 

precedence.  

That being said, a straightforward approach to address this is to initiate the procedure by 

executing the z-axis MPC controller, while maintaining the existing framework intact and without 

incorporating any collision avoidance provisions at this stage. Subsequently, upon generating the 

solution, the z-axis control output ft is transmitted to the x-y MPC controller, accompanied by the x-

y-z triad data predictions from the prior time instant k-1. So, within the x-y controller's MPC scheme, 

a collision avoidance constraint is introduced, as a nonlinear constraint function in the optimization 

problem, which is designed to ascertain the euclidean distance between the focal agent and all other 

agents throughout the prediction horizon. In the general case, this 3D distance must be greater than the 

agents' radius, which essentially defines a safety margin as an imaginary sphere around them.  
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𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑎𝑣𝑜𝑖𝑑𝑎𝑛𝑐𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡: 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴𝑔𝑒𝑛𝑡𝑖, 𝐴𝑔𝑒𝑛𝑡𝑗) = 

       = √(𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦𝑗)

2
+ (𝑧𝑖 − 𝑧𝑗)

2
> 𝑎𝑔𝑒𝑛𝑡′𝑠 𝑟𝑎𝑑𝑖𝑢𝑠 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑜𝑓 𝐻𝑝           (4.1) 

 

where (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) represent the position of the current agent 𝐴𝑔𝑒𝑛𝑡𝑖 and (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) represents the 

position of the other agents 𝐴𝑔𝑒𝑛𝑡𝑗, in the three-dimensional space.  

Concurrently, the x-y-z triad for the current agent is accounted for, where z-component 

information stems from the completed z-axis MPC’s predictions and the x-y components emanate from 

the ongoing x-y controller's prognostications at that specific point in discrete time k. This strategy is 

presented in Figure 84. 

 

 

 

Figure 84. The Distributed MPC framework communication strategy for collision avoidance 
 
 

This inter-agent communication allows the quadrotors to make decisions based on not only 

their own state but also the predictions regarding the states of the other agents, thus being able to adjust 

their trajectories and avoid potential collisions while also working together to achieve their individual 

and overall optimization objectives.  

It is important to note that this proposed strategy is attuned to prioritizing control for altitude 

z, since it is arbitrarily assumed that the z-axis will present a better trajectory (i.e., a smaller error) than 

that of x-y. However, while this compromise, necessitated by the dual-controller framework, is not an 

optimized way of approaching the swarm case, it offers a pragmatic means to address collision 

avoidance concerns within the given context. 

Finally, this diploma thesis does not employ a predefined formation control strategy for the 

swarm; instead, the quadrotors autonomously and dynamically determine their positions and 

formations during operation (online). This means that since the quadrotors are able to communicate 
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and coordinate their movements, through the aforementioned strategy, they make decisions 

collectively to achieve the desired formation, without the absolute need for a fixed strategy set 

beforehand. 

 

4.3 Simulation for trajectory tracking with collision avoidance 

For this simulation, a multi-agent swarm composing of three identical quadcopters 

commencing from an initial configuration where each agent occupies an adjacent position in the x axis 

is being considered (Agent 1: x = -1 [m], Agent 2: x = 0 [m], Agent 3: x = 1 [m]). The reference 

trajectory is: 

𝑥𝑟𝑒𝑓(𝑡) = 5 ∙ cos (0.5 ∙ 𝑡) 

𝑦𝑟𝑒𝑓(𝑡) = 5 ∙ sin (0.5 ∙ 𝑡) 

𝑧𝑟𝑒𝑓(𝑡) = −1 − 0.1 ⋅ 𝑡 

 

The tuning parameters are presented in the following Tables. More specifically, Table 14 

presents the chosen horizons for the swarm. The Control Horizons have remained the same as those 

chosen in Chapter 3, due to their excellent performance, while the Prediction Horizons have been 

extended slightly compared to the previous chapter, maintaining uniformity for both z and x-y 

dimensions, in pursuit of a more universally applicable approach. Table 15 presents the PID values for 

the swarm, which are generally basic values for angle regulation PID control without excessive tuning. 

Contrary, the values of the penalty matrices, as depicted in Table 16, are carefully and intentionally 

chosen to be relatively small, especially for the error penalty matrix Q1. Generally basic values were 

also chosen for the maximum and minimum parameter values in Table 17.  

Moreover, in the MPC framework designed for an individual quadcopter, terminal constraints 

were implemented for both the z-axis and the x-y plane. However, in the context of swarm control, a 

strategic decision was made to simplify the system while preserving its efficiency. Thus, the terminal 

constraint was retained exclusively for the z-axis; a simplification driven by the need for enhanced 

maneuverability and adaptability required for such complex task.  

Finally, given that the quadrotors examined have an arm length of 0.24 m, a safety radius of 

0.3 m around each agent is deemed acceptable. At this point it is important to highlight the fact that 

the tuning parameters and variables remain consistent for all agents, as it is assumed that they are 

geometrically identical quadcopters. 
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Table 14. The selected swarm Control and Prediction Horizons for z and x-y 

 

MPC horizons 

Hc for z 3 

Hp for z 40 

Hc for x-y 6 

Hp for x-y 40 

 

 

Table 15. The PID values for angle regulation for the Distributed MPC design for a swarm of quads 
 

PID values 

 Proportional gain 𝑘𝑃 Integral gain 𝑘𝐼 Derivative gain 𝑘𝐷 

PID controller for angle phi 0.05 0.0001 0.15 

PID controller for angle theta 0.05 0.0001 0.15 

PID controller for angle psi 0.005 0.0001 0.05 

 

 

Table 16. The selected Penalty Matrices for the Distributed MPC design for a swarm of quadcopters 
 

Peanalty matrices 

 Error penalty matrix Q1 Velocity penalty matrix Q2 Design variable penalty matrix R 

altitude z 𝑑𝑖𝑎𝑔(2 ∙ 𝑜𝑛𝑒𝑠(ℎ𝑝, 1)) 𝑑𝑖𝑎𝑔(0.05 ∙ 𝑜𝑛𝑒𝑠(ℎ𝑝, 1)) 𝑑𝑖𝑎𝑔(0.01 ∙ 𝑜𝑛𝑒𝑠(ℎ𝑐, 1)) 

position x 𝑑𝑖𝑎𝑔(1.5 ∙ 𝑜𝑛𝑒𝑠(ℎ𝑝𝑥𝑦, 1)) 𝑑𝑖𝑎𝑔(0.5 ∙ 𝑜𝑛𝑒𝑠(ℎ𝑝𝑥𝑦, 1)) 𝑑𝑖𝑎𝑔(0.01 ∙ 𝑜𝑛𝑒𝑠(ℎ𝑐𝑥𝑦, 1)) 

position y 𝑑𝑖𝑎𝑔(1.5 ∙ 𝑜𝑛𝑒𝑠(ℎ𝑝𝑥𝑦, 1)) 𝑑𝑖𝑎𝑔(0.5 ∙ 𝑜𝑛𝑒𝑠(ℎ𝑝𝑥𝑦, 1)) 𝑑𝑖𝑎𝑔(0.01 ∙ 𝑜𝑛𝑒𝑠(ℎ𝑐𝑥𝑦, 1)) 
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Table 17. The minimum-maximum swarm values for the variables for the Distributed MPC design  

 

Min and max values for the variables 

 Minimum value Maximum value 

ft [N] -20 20 

ux [rad] -0.2 0.2 

uy [rad] -0.2 0.2 

dft [N] -5 5 

dux [rad] -0.05 0.05 

duy [rad] -0.05 0.05 

 
 
 

At this point, it is important to highlight the fact that, while the collision avoidance constraint 

(specified by equation 4.1) dictates that the Euclidean distance between the quadcopters should exceed 

the certain chosen radius, different simulation scenarios conducted witnessed violations of this 

constraint. One possible explanation is that the solver responsible for evaluating these distances, i.e., 

SQP, relies on the predictions produced by the MPC models at the previous timesteps and not on the 

current positions. That being said, if these predictions are significantly wrong, the solver might 

erroneously conclude that the real constraint is satisfied and that there aren’t any collisions detected 

between the agents of the swarm.  

In light of these observations, one potential solution turned out to be increasing the radius value 

used in this constraint, thus making the constraint bound stricter, to account for uncertainties and 

inaccuracies. After several trial-and-error attempts, it was determined that setting the constraint radius 

to three (3) times its original value effectively addressed the issue (Table 18). 

 

Table 18. The chosen radiuses for collision avoidance in trajectory tracking of the swarm 
 

Chosen radiuses 

Agents’ safe radius 0.3 [m] 

Collision avoidance constraint radius 3∙agents’ safe radius [m]  

 

Figure 85, Figure 86 and Figure 87 present the trajectory tracking of the agents of the swarm 

with respect to the reference trajectories for x, y, and z axes, respectively, while Figure 88 presents the 

trajectory of the swarm in three-dimensional space. Since all agents share the same reference trajectory 
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rather than a predefined one, it is expected that there will be deviations for the trajectory tracking in 

the x-y plane, due to the imperative need to avoid collisions. On the contrary, with regard to trajectory 

tracking along the z-axis, since there are no constraints related to collision avoidance in the MPC for 

the z-axis, it is expected that the behavior of the agents will maintain the same or relevant altitude.  

 

 

 

Figure 85. Position x tracking for the agents of the swarm using Distributed MPC 

 

 

 

 
 

Figure 86. Position y tracking for the agents of the swarm using Distributed MPC 
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Figure 87. Position z tracking for the agents of the swarm using Distributed MPC 

 

 

 

 
 

Figure 88. The 3D trajectory tracking for the agents of the swarm using Distributed MPC 

 
 

As anticipated, the agents display minor deviations from the actual trajectory in the x and y 

axes, which primarily stem from the need to steer clear of potential collisions among themselves. 

However, the overarching observation is that the agents effectively adhere to the reference trajectory, 

without the imposition of a separate and predetermined reference trajectory for each one of the agents 

or a predefined formation. In other words, they collectively navigate while maintaining a certain degree 

of flexibility in their individual paths; a behavior that underscores their ability to autonomously and 

intelligently adapt their movements to ensure collision-free operation and precise trajectory tracking.  
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The efficacy of the designed DMPC methodology employed can be further evaluated through 

the calculation of an evaluation index, such as the average sum of euclidean distances (obtained by the 

calculation of the 3D distances of all agents at every timestep divided by the total number of timesteps 

k).  

This calculation is highly dependent on the chosen constraint radius value, since opting for a 

smaller value effectively relaxes the constraint, making it less stringent. Consequently, this adjustment 

allows for the agents’ trajectories to be closer in proximity, while still be considered compliant with 

the constraint, which ultimately results in a more favorable evaluation index. Contrary, increasing the 

constraint radius leads to the tightening of bounds, since the agents must adhere to a greater constraint 

value. This interdependence between the tracking evaluation index and the constraint radius is 

presented in Table 19. 

 

Table 19. Comparison between the constraint radius and tracking evaluation index using Distributed 

MPC 
 

Chosen constraint radius Average Sum of Euclidean Distance for three time periods 

3 ∙ 𝑟𝑎𝑑𝑖𝑢𝑠 2.19 

2.7 ∙ 𝑟𝑎𝑑𝑖𝑢𝑠 2.04 

2.5 ∙ 𝑟𝑎𝑑𝑖𝑢𝑠 1.95 

2.3 ∙ 𝑟𝑎𝑑𝑖𝑢𝑠 1.85 

2 ∙ 𝑟𝑎𝑑𝑖𝑢𝑠 Collision constraint violation 

 

 

4.4 Trajectory tracking with obstacle evasion 

To incorporate obstacle avoidance within the Distributed MPC framework, a distinct constraint 

is essential to be included into the optimization problem alongside the collision avoidance constraint. 

More specifically, considering an obstacle represented by a sphere along the reference path, with its 

center on such path at coordinates (Ox, Oy, Oz) and a known radius, it is possible to introduce a 

constraint that enforces that the Euclidean distance between each agent of the swarm and the center of 

the obstacle to be greater than the agent’s radius and the obstacle’s radius for all of the prediction 

horizon. Mathematically, this can be expressed as: 
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𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑒𝑣𝑎𝑠𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡: 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴𝑔𝑒𝑛𝑡𝑖, 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒) = 

= √(𝑥𝑖 − 𝑂𝑥)2 + (𝑦𝑖 − 𝑂𝑦)
2
+ (𝑧𝑖 − 𝑂𝑧)2 > (𝑎𝑔𝑒𝑛𝑡′𝑠 𝑟𝑎𝑑𝑖𝑢𝑠 + 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒′𝑠 𝑟𝑎𝑑𝑖𝑢𝑠) 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑜𝑓 𝐻𝑝 

 (4.2) 

 

where (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) represents the position of the agent and (𝑂𝑥, 𝑂𝑦, 𝑂𝑧) represents the center of the 

obstacle, in the three-dimensional space. This constraint ensures that the agents maintain a safe 

distance from the obstacle at all times.  

It is important to note that, in order to simulate a scenario that closely resembles real-life 

situations and practical swarm applications, it’s essential to ensure that the swarm becomes aware of 

the obstacle only when the agents are within a close proximity to it. That being said, the obstacle 

avoidance constraint characterized by equation 4.2, should only be activated when the Euclidean 

distance between the current-real position of the agent and the center of the obstacle exceeds a 

predetermined threshold distance. In practical terms, this mimics how a swarm of quadcopter agents 

would encounter obstacles in real world, using cameras, LiDAR or other sensor systems for proximity 

awareness and obstacle perception. Figure 89 presents the updated strategy employed, that 

incorporates obstacle avoidance: 

 

 

 

Figure 89. The Distributed MPC framework with collision and obstacle avoidance 
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4.4..1 Simulation analysis and results 
 

For this simulation, there are three identical quadcopter agents in the swarm, which start from 

an initial configuration of adjacent positions in the y axis (Agent 1: x = 2 [m], y = 2 [m], z = -2 [m] , 

Agent 2: x = 2 [m], y = 3 [m], z = -2 [m] and Agent 3: x = 2 [m], y = 1 [m], z = -2 [m]). The reference 

trajectory examined is: 

𝑥𝑟𝑒𝑓(𝑡) = 2 + 1.5𝑡 

𝑦𝑟𝑒𝑓(𝑡) = 2 + 0.7𝑡 

𝑧𝑟𝑒𝑓(𝑡) = −2 − 0.1𝑡 

 

and the obstacle (its center) appears suddenly at coordinates: 

 

𝑂𝑥 = 9.5 [𝑚] 

𝑂𝑦 = 5.5 [𝑚] 

𝑂𝑧 = −2.3 [𝑚] 

 

The tuning parameters for obstacle evasion largely mirror those used for simple trajectory 

tracking, presented in sub-chapter 4.3. However, given the challenging task faced by the swarm agents 

— following a trajectory amidst sudden obstacle appearances while adhering to the terminal constraint 

for the z-axis — specific modifications were considered necessary. 

More specifically, the PID controllers’ settings, as well as the maximum and minimum values 

for the variables of the optimization problems remained consistent. However, the prediction horizons 

were deliberately extended, both in the z-axis and the x-y plane, as presented in Table 20 providing 

the agents with a broader prediction scope to effectively capture the dynamics of the environment. 

 

 

Table 20 . The updated swarm control and prediction Horizons for z and x-y for obstacle evasion 
 

MPC horizons 

Hc for z 3 

Hp for z 50 

Hc for x-y 6 

Hp for x-y 50 

 

Additionally, particular emphasis was placed on selecting appropriate values for the penalty 

matrices (Table 21), specifically targeting Q1 and Q2, corresponding to the error and velocity error 

matrices. In this specific configuration, smaller values were chosen for Q1 to enable accurate tracking 

without veering so closely as to risk collision, while the Q2 matrices were intentionally set to zero for 
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all three dimensions. This deliberate adjustment nullifies the influence of velocity errors between the 

actual and reference velocities within the objective functions. Consequently, the agents' task becomes 

more manageable, and the swarm can navigate through complex scenarios, such as sudden obstacle 

appearances, with enhanced robustness. The rationale behind setting the Q2 matrices to zero is 

followed by the exclusion of the velocity component in the z axis terminal constraint; a decision that 

grants the system with additional flexibility. 

Moreover, The R matrix, serving as the penalty matrix for motion economy, was specifically 

augmented within the framework. This adjustment was crucial as it emphasizes the need for swarm 

agents to navigate both left and right of obstacles while ensuring they do not deviate excessively from 

their designated trajectory. This delicate balance in lateral movement is vital for maintaining precision 

in obstacle evasion scenarios. Finally, Table 22 presents the chosen radius for the swarm collision and 

obstacle avoidance simulation. 

 

Table 21. The updated warm Penalty Matrices for the Distributed MPC design with obstacle evasion 

 

Peanalty matrices 

 Error penalty matrix Q1 Velocity penalty matrix Q2 Design variable penalty matrix R 

altitude z 𝑑𝑖𝑎𝑔(1 ∙ 𝑜𝑛𝑒𝑠(ℎ𝑝, 1)) 𝑑𝑖𝑎𝑔(0 ∙ 𝑜𝑛𝑒𝑠(ℎ𝑝, 1)) 𝑑𝑖𝑎𝑔(0.1 ∙ 𝑜𝑛𝑒𝑠(ℎ𝑐, 1)) 

position x 
𝑑𝑖𝑎𝑔(0.75

∙ 𝑜𝑛𝑒𝑠(ℎ𝑝𝑥𝑦 , 1)) 
𝑑𝑖𝑎𝑔(0 ∙ 𝑜𝑛𝑒𝑠(ℎ𝑝𝑥𝑦, 1)) 𝑑𝑖𝑎𝑔(0.5 ∙ 𝑜𝑛𝑒𝑠(ℎ𝑐𝑥𝑦, 1)) 

position y 
𝑑𝑖𝑎𝑔(0.75

∙ 𝑜𝑛𝑒𝑠(ℎ𝑝𝑥𝑦 , 1)) 
𝑑𝑖𝑎𝑔(0 ∙ 𝑜𝑛𝑒𝑠(ℎ𝑝𝑥𝑦, 1)) 𝑑𝑖𝑎𝑔(0.5 ∙ 𝑜𝑛𝑒𝑠(ℎ𝑐𝑥𝑦, 1)) 

 
 

Table 22. The chosen radiuses for swarm collision and obstacle avoidance in trajectory tracking 
 

Chosen radiuses 

Agents’ safe radius 0.3 [m] 

Obstacle’s radius 1 [m] 

Threshold visibility distance 3 [m] 

Collision avoidance constraint radius 3 ∙agents’ safe radius [m] 

Obstacle avoidance constraint radius (obstacle’s radius + 2.5∙agents’ radius) [m]  
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Figure 90, Figure 91 and Figure 92 depict the swarm’s trajectory tracking with obstacle evasion in the 

x, y and z dimensions, respectively, while Figure 93 illustrates the trajectory in three-dimensional 

space.  

 

 

 

Figure 90. Position x tracking for the agents of the swarm using Distributed MPC 
 
 
 

 
 

Figure 91. Position y tracking for the agents of the swarm using Distributed MPC 
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Figure 92. Position z tracking for the agents of the swarm using Distributed MPC 
 

 

 

 

Figure 93. The 3D swarm trajectory tracking with obstacle avoidance using Distributed MPC 
 
 

The graphs presented offer a comprehensive visual representation of the swarm's ability to 

adapt its path dynamically. This adaptation ensures accurate trajectory tracking while effectively 

avoiding obstacles and maintaining safe distances between agents to prevent collisions. Moreover, the 

Average Sum of the Euclidean Distances among the agents throughout the simulation (500 timesteps) 

stands at 2.88, providing quantitative confirmation of the swarm's precise tracking capabilities, as well 

as the Distributed Model Predictive Control (DMPC) framework’s effectiveness in managing 

challenging swarm tasks.  
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CHAPTER 5: Conclusions 

5.1 Summary, results and challenges 

This diploma thesis embarked on a journey aiming to address the complex challenges 

associated with controlling a swarm of quadcopters in the scenario of trajectory tracking in 

unstructured environments. For this purpose, it proposed a comprehensive distributed model predictive 

control (DMPC) framework, capable of orchestrating the collective behavior of a quadcopter swarm, 

with not only precise trajectory tracking but intelligent collision and obstacle avoidance, as well; a task 

crucial for real-world applications. 

The research began with a thorough exploration of quadcopter dynamics. This involved 

constructing a mathematical model to describe its complex and nonlinear behavior, followed by the 

design of a PID cascaded control system. This endeavor not only deepened the understanding of the 

control challenges associated with an individual quadcopter, but also revealed that relying solely on 

PID control is insufficient for satisfactorily addressing the complexities of path following, especially 

for faster trajectories in 3D-space. 

In the subsequent phase, following the assessment of PID's subpar performance, a model 

predictive control (MPC) design was adopted for an individual quadcopter. This approach involved 

integrating the benefits of the sophisticated MPC method with that of PID control. Specifically, MPCs 

were utilized for position regulation, while PID controllers were employed for angle regulation in a 

cascaded design, for trajectory tracking scenarios. The simulations demonstrated the system's 

remarkable ability to handle path following tasks, instilling confidence in its potential for application 

in a quadcopter swarm.  

In the final phase, the MPC control design for the quadcopter was extended to a swarm 

scenario. In this setup, each agent was autonomously controlled through individual MPCs within a 

distributed MPC framework (DMPC). Through inter-agent communication, involving their predicted 

positions in three-dimensional space, the system aimed to ensure trajectory tracking, collision 

avoidance and obstacle evasion. The simulations presented and the evaluation indexes calculated stand 

as a testament to the success of this method and the swarm’s ability to navigate in environments, while 

avoiding obstacles and collisions between the agents, thus affirming its effectiveness in challenging 

scenarios.  

The proposed framework boasts several strengths. First, after thorough evaluation in a single 

quadcopter scenario, it consciously opted for a hybrid approach that employs both MPC for certain 

aspects of control and PID for others. This decision was made to harness the unique advantages of 

each approach, while striking a balance between optimal performance and computational efficiency. 
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Moreover, the design of a linear prediction model further simplifies future real-life implementation, 

thus enhancing the project's practical viability. 

 However, the framework’s strongest point lies primarily in its utilization of distributed control. 

This design choice enhances the system's reliability significantly, eliminating the dependency on a 

central controller, that traditionally decides for other agents and sends commands. This absence of 

centralization ensures a more robust system operation with no single point of failure. Furthermore, 

considering its applicability in various real-world trajectory tracking missions, the method can easily 

accommodate different numbers of agents tailored to specific applications. Another advantage of the 

distributed approach is the considerably simpler optimization problem that needs to be solved by each 

agent, compared to the more intricate problem in a centralized approach.   

Additionally, a key innovative aspect lies in the absence of predefined trajectories for 

individual agents. Instead, each agent dynamically navigates its path, avoiding obstacles and 

maintaining a safe distance from other agents without adhering to any specific formation. This dynamic 

adaptability sets it apart from traditional control methods and highlights the framework's robustness 

and agility especially in unpredictable scenarios.  

The research journey encountered several significant challenges. Understanding the intricate 

behavior of both individual quadcopters and the collaborative dynamics within a quadcopter swarm 

was a formidable task. This complexity escalated when designing a framework capable of addressing 

these intricacies, especially in the context of complex tasks such as real-time trajectory tracking 

involving dynamic obstacles. Tackling these challenges necessitated meticulous tuning, 

experimentation, careful consideration of the system’s complexities and innovative solutions. Among 

those, the communication strategy's approach stands out as it involves a necessary compromise; 

favoring the z-axis, as the MPC for altitude must be implemented first. Nevertheless, this strategy 

proves to be effective and functional within the context of the study. 

 

5.2 Discussion and expansions 

While this thesis offers a comprehensive and efficient examination of the control of quadcopter 

swarms, open matters and avenues for extension persist. The translation of simulations into tangible 

real-world applications of a Distributed Model Predictive Control (DMPC) framework stands as an 

important challenge, concerning hardware integration, scalability for scenarios demanding extensive 

coverage and real-time obstacle detection technologies. 

Furthermore, the inclusion of terminal region constraints instead of terminal constraints within 

the swarm’s behavior presents an intriguing avenue of exploration, as it simplifies the optimization 
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problem and unveils possibilities for diverse applications. Moreover, another viable path for 

investigation is the design of a singular MPC for the three axes, aimed to mitigate the perceived bias 

towards the z axis. 

Finally, exploring the advantages of machine learning techniques, such as neural 

networks[42]–[47], presents a compelling avenue for extension. Integrating these techniques in control 

schemes [48][49][50] could enhance the swarm’s decision-making capabilities, allowing it to adapt 

more effectively in unforeseen scenarios, thereby broadening its scope of application. 
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