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Abstract

Unmanned Aerial Vehicle (UAV) technology has witnessed remarkable advancements, permeating
various industries. Quadcopters, a specialized type of UAV with four rotors, are at the forefront of
these innovations with recent trends and future projections indicating that the utilization of multiple
quadcopters, forming what it is referred to as a swarm of quadcopters, is poised for substantial growth.
However, the inherently nonlinear and highly complex behavior of quadcopters introduces serious
challenges in terms of efficiently controlling them, necessitating the need of developing advanced
control methods and intricate frameworks, particularly when addressing the collective behavior of a
swarm. In response to these challenges, this diploma thesis introduces a comprehensive Distributed
Model Predictive Control (DMPC) framework, designed to enable precise trajectory tracking for a
swarm of quadcopters. Building upon the initial introduction of a Model Predictive Control (MPC)
scheme for addressing the trajectory tracking task of a single quadcopter, which employs MPCs and
Proportional-Integral-Derivative (PID) controllers in a cascaded design, the proposed framework
seamlessly scales its capabilities. Through the integration of an inter-agent communication strategy, it
achieves the transition to effective, autonomous and distributed control over quadcopter swarms, even
in complex scenarios such as trajectory tracking with collision avoidance and obstacle evasion. The
distributed nature of the proposed approach eliminates the necessity for a central controller, thus
enhancing the system’s resilience in the event of individual failures, or communication disruptions,
and offers easy adaptation to various swarm sizes. Additionally, the proposed framework diverges
from conventional methods by liberating the agents of the swarm from following predetermined
trajectories and predefined formation strategies. Instead, it empowers agents to dynamically tailor their
behavior, enabling them to closely follow real-time desired trajectories with responsive agility to
unpredicted scenarios. To evaluate the efficiency and practicality of the proposed framework,
simulations have been conducted for trajectory tracking, including scenarios involving suddenly
appearing obstacles. The results endorse its suitability for quadcopter swarm control and illuminate its
potential application across a broad spectrum of domains, where the swarm’s precision, adaptability
and robustness are paramount.

Keywords

Agent swarms, cascaded design, collision avoidance, Distributed Model Predictive Control (DMPC),
inter-agent communication, Model Predictive Control (MPC), obstacle avoidance, Proportional-
Integral-Derivative (PID) controller, quadcopter, trajectory tracking, Unmanned Aerial Vehicles
(UAVs).
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Iepiinynm

H teyvoloyio twv Mn Emoavdpopévav Evaéprov Oymuatov (UAV) éxel yvopicer a&loonueinteg
e€elielg, delodvovtag o ddpopovg kKAadovs. Ta tetpakdmtepa, Eva eEeldikevpévo gidog UAV pe
T€00EPIG POTOPES, PPICKOVIOL GTO TPOCKIVIO QLTOV TMOV KOVOTOUIDV, UE TIC TPOCPATES TAGELS KO TIC
HEALOVTIKEG TTPOPAEYELG VO delyvouV OTL 1) ¥PNION TOAAATAGY TETPAKOTTEP®V, TOL SYNUATICOVY AVTO
OV AVAPEPETAL MG GUNVOG TETPAKOTTEPMV, PpiokeTal o€ mopeia onuavTiknG avantuéng. Qot6c0, N
EYYEVAOC UM YPOUUIKT Kl 1O10HTEPO TOADTAOKT] CUUTEPIPOPE TWV TETPUKOTTEPWOV EICAYEL GOPAPES
TPOKANGELS GYETIKA LLE TOV OTOTELECUATIKO EAEYYO TOVG, YEYOVOG TOL KaO1GTA avarykaio TNV avamTuén
nponyuEvev uefddwv eAéyyov kot TOAOTAOK®V TANGi®V, 1010¢ 6Tav TPOKEITUL Yol T GLAAOYIKY|
CLUTEPLPOPE EVOG GUVOLG. Q¢ OTAVTNON G OVTES TIG TPOKANGELS, 1] TOPOVGH SUTAMUATIKY EpYUGio
glodyel éva olokAnpopévo miaioclo Kataveunuévov IlpoPientikod EAEyyov Movtélov (DMPC),
OYEOLOGLLEVO Y10l VO, EMTPETEL TNV EMOKPLPY| TAPUKOAOVONGT TPOYLAG Y10 £VOL GUNVOG TETPOKOTTEPWV.
Zmpuouevo oty apyikn elcaymyn evog cvothuatog [poPrentikov EAEyyov Movtéhov (MPC) yia
TNV QVTILETOTION TOL {NTNUATOG TNG TopakoAovONoNG TPOYLIS €VOG TETPUKOTTEPOV, TO OMOI0
yponowomotei MPCs kot eheyktég Avoloyikod-OlokAnpotikod-Atopopikod pépovg (PID) oe
aAVGLOWMTY 6Yed10GT, TO TPOTEWVOUEVO TAOIGLO KAUOK®OVEL APOGKONTTO TIG duvaTOTNTEG TOV. Mécm
NG EVOOUATOONG HOG GTPATNYIKNG Yo TNV E€MKOvOvVio HETAE) TOV TPAKTOP®V TOL GUNVOLG,
EMTUYYAVETAL 1 UETAPOOT OE OMOTEAEGUOTIKO, OVTOVOUO KOl KOTOVEUNUEVO EAEYYO GUIVOLG
TETPOKOTTEPMV, OKOUO KOl 0€ TEPIMAOKA GEVAPLO OTMG 1 TOPAKOAOVONGN TPOYLES HE AmOPLYN
oLYKpovoNS Kot EPUTodimv. O KATAVEUNUEVOS YOPAKTNPAS TNG TPOTEWVOUEVNG TPOGEYYIoNG eadeipet
™V ovAYKN Yo €vov KEVIPIKO €AEYKTY], eVIoYDOVTOG £€TGL TNV OVOEKTIKOTNTO TOV GLGTNUOTOS GE
TEPIMTOON UEUOVOUEVAOV OGTOYUOV 1 STOPOYNG TNG EMKOWVMOVING Kol TPOGPEPOVTOS EVKOAN
TPOCAPLOYY| GE Obpopa peyédn ounvovs. Emumdéov, 10 mpotevdpuevo mAaiclo amokAivel amd Tig
ocvopupatikég peBOSoOVG ameAeVBEPMOVOVTOG TOVG TPAKTOPES TOL GUNVOLS amd TO Vo aKoAovBovV
TPOKOOOPICUEVEG TPOYIEG KO TPOCYEOIACUEVEG GTPUTNYIKES CYNUATIGHOV. AVt avtovl, oivel v
dVVATOTNTO GTOVS TPAKTOPES VO TPOGOPUOLOVV SVVAUIKE TNV GUUTEPLUPOPEA TOVG, ETTPETOVTAS TOVG
va. akoAovBohv otevd Tig emBLUNTEG TPOYLEG GE TPOYUOTIKO XPOVO HE EVEMKTN OVTATOKPIOT| OE
anpoPrenta cevapla. [a v aloAdynon g OmMOTEAECUOTIKOTNTAG KoL TNG TPOKTIKOTNTOS TOV
TPOTEWVOUEVOL TAOLGIOV, TPOAYLOTOTOMONKAY TPOCOUOIMGELS Yo TNV TOPUKOAOVONOT TPOYLAC,
ocvoumepthappavopévov  cevapiov mov mepthapupdvouv  Eapvikd epeoviiopeva  gumdole.  Ta
QTOTEAEGLOTO. ETKVPDOVOLY TNV KATOAANAOTNTE TOV Yo TOV EAEYYO GUVOLS TETPAKOTTEP®OV KO
ootilovy TV dvvoTdTNTO £QOPUOYNS TOV o€ £va. €upy Qdoud Topéwv, O6mov M oakpifela, M
TPOGOPUOCTIKOTNTO KL 1] OVOEKTIKOTNTA TOL GUVOVG Eivol vYioTNG onpaciag.

A&Eerg — KA1,

Alvodot) oyediaor, Avaroyikdg-OAoKANPOTIKOG-ALHPOPIKOS EAEYKTNG, AmOQLYY gumodiov,
amo@Lyn oLYKpovons, emkowvovia petald mpoktopwv, Katavepunuévog IpoPrentikdg Eleyyog
Movtéhov, pn emavopopéva evoéplo oxfuato, mopakolovdnon tpoyids, IlpoPrenticodg "EAeyyog
Movtélov, TPAKTOPES TOL GUNVOVG, TETPUKOTTEPO.
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INTRODUCTION

The realm of UAVs has witnessed remarkable progress in recent years, owing to their industrial
and commercial applications, as well as their use in mobile edge computing, cellular communication,
smart healthcare, remote sensing or relief operations in disaster environments. Their successful use in
different scenarios has presented the promising avenue for UAVs to achieve even more complex
missions and revolutionize modern technology and industry [1].

A special type of UAV, belonging to the broader category of aerial vehicles known as
multicopters or multirotors, is the quadcopter. Quadcopters are equipped with four independently
controlled rotors, organized into two diametrically opposing groups. Essentially, the way of controlling
the position and orientation of a quadrotor is through the variation of the speed of each rotor, and, thus,
the variation of the produced forces and moments along the three axes of the 3D space. Overall, the
quadrotor is a highly nonlinear underactuated system, with six degrees of freedom and only four inputs,
presenting intricate dynamics, a sensitive behavior and intertwined terms [2]. The synergy of internal
complexities and external factors, such as wind disturbances or environmental uncertainties, renders
accurate trajectory tracking a challenging task for the quadcopter, which demands sophisticated control
algorithms and rapid response capabilities.

Despite their popularity and due to the challenges mainly associated with the trajectory tracking
task, there is a wide range of applications that are challenging to achieve with a single quadcopter, thus
necessitating the need of a swarm of drones that use collective behavior [3]. Swarm of quadcopters
has been one of the most recent and prominent examples of swarm robotics, finding success in dealing
with precision, reliability and swiftness with complicated tasks, such as search-and-rescue missions,
precision agriculture or environmental monitoring [4]. This comes with the need for advanced control
strategies that will enable the effective operation of quadcopter swarms in dynamic and unconstructed
environments.

Managing the control of a single quadcopter, let alone orchestrating the coordination of a
swarm of quadcopters with multiple agents, presents a multifaceted challenge. When confronted with
the intricacies of managing a swarm, it becomes imperative to address not only the inherent
complexities involved in controlling individual quadcopters, but also novel challenges. Among these,
paramount is the necessity for seamless and efficient communication among swarm agents, a critical
factor in averting collisions, both among the agents themselves and with potential obstacles.

This intricate interplay of factors has spurred extensive research endeavors for the development
of efficient control methodologies and techniques. More specifically, in literature, linear Proportional-

Integral-Derivative (PID) control is one of the most common control techniques for an individual
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quadcopter, due to its simplicity [5]. Nevertheless, PID control seems to fall short when dealing with
more complicated tasks or with swarms, and it is mainly considered to perform in combination with
other techniques. Different control methods that have been proposed for swarm control include Linear
Quadratic Regulator (LQR) [6] , backstepping [7], sliding mode [8] and neural networks [9]. However,
one of the most prevalent and efficient control techniques for swarm control is Model Predictive
Control (MPC) [10][11][12][13], which is an advanced control configuration that utilizes a
mathematical model of the system in order to optimize the produced control inputs over a finite time
horizon, while also considering and respecting the dynamic constraints imposed. Depending on the
application of the swarm, multiple MPC algorithms and frameworks have been developed, such as
Distributed MPC or Centralized MPC, along with various strategies for formation control, especially
for the trajectory tracking task, which is a fundamental aspect of swarm robotics applications.

In this diploma thesis, a Distributed Model Predictive Control (DMPC) framework is
developed for trajectory tracking with obstacle evasion. Expanding on the implementation of Model
Predictive Control (MPC) for an individual quadcopter [14] - a design which employs MPCs for the
position regulation and Proportional-Integral-Derivative (P1D) controllers for the angles’ regulation in
a cascaded design - this framework is used to orchestrate the collective behavior of a swarm of
quadcopters. These are controlled autonomously from individual MPCs in a distributed way, while
their communication was achieved through inter-agent sharing of information regarding their predicted
positions in the three-dimensional space.

The proposed framework for controlling a quadcopter swarm eliminates the need for a central
controller, thus resulting in a more robust and resilient system, in case of individual failure or
communication disruption. Moreover, as the swarm size increases, the control framework can
accommodate additional agents, without significant modifications, making it suitable for different
applications where the number of agents can widely vary. Additionally, since each quadrotor can
independently plan its trajectory, while considering the intentions of the other agents, enhanced
adaptability is allowed, which makes for precise collision avoidance, obstacle evasion and a safe
operation. This framework comes with additional advantages, as well, including reduced bandwidth
and energy requirements, improved privacy-security as well as a significantly simpler optimization
problem that needs to be solved by each agent in comparison to the centralized framework.

Furthermore, the proposed framework is characterized by the absence of predetermined
trajectories for each agent, which deviates from conventional methods adopted by many other
researchers in the field [15][16][17]. Instead, each agent dynamically adjusts its behavior to closely
follow the real-time desired trajectory, allowing for more agile responses to changing conditions and

unforeseen obstacles. This improved adaptability of the swarm in unpredictable scenarios is further
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facilitated by the absence of a formation control strategy. The quadrotors are able to autonomously
and dynamically determine their positions and find their formations online, making them better
equipped to respond dynamically to changes in the trajectory.

The proposed framework underwent evaluation across different simulated scenarios,
demonstrating its efficiency not only in complex trajectory tracking, but in scenarios involving the
sudden appearance of obstacles, as well.

The structure of the presented diploma thesis is organized as follows:

Chapter 1. provides a comprehensive understanding of the quadcopter, delving into its motion
characteristics and the mathematical model that describes its kinematics and dynamics. In this way, it

sets the stage for an in-depth investigation of the control strategies.

Chapter 2. explores the application of PID control for a single quadcopter, aiming to gain a
deeper understanding of its dynamic behavior. It also highlights areas where PID control may not be

ideally suitable, thus paving the way for the exploration of a more advanced control strategy.

Chapter 3. is dedicated to designing an MPC control system for a single quadcopter, which also
incorporates aspects of PID control, and aims for precise trajectory tracking. Its evaluation not only
serves as a benchmark for the system’s capabilities, but also bolsters the argument for its scalability to

swarm applications.

Chapter 4. focuses on the implementation of the MPC control system within the context of a
swarm of quadcopters, culminating in the development of a Distributed MPC framework. This
framework, which is evaluated through different simulations, ensures that the agents are able to follow
the trajectory path while avoiding collision with each other and navigating around obstacles.

Chapter 5. is dedicated to the conclusions of the diploma thesis. It encompasses a meticulous
summary, a detailed analysis of the results, a comprehensive examination of the challenges
encountered, in-depth discussions, and the exploration of potential avenues for further research and

expansion.
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CHAPTER 1: The dynamic behavior of the quadcopter

In this chapter, a comprehensive overview of the quadrotor is provided, including its basic
characteristics, the reference system used, the principles of its space motion, and the mathematical
model implemented. Finally, an open-loop simulation is performed to show the model's inherent
behavior and the challenges presented. Overall, this chapter serves as a foundation for the subsequent

chapters.

1.1 The Quadrotor

A quadrotor, also known as a quadcopter or a quadrotor helicopter, is a type of UAV
(unmanned aerial vehicle) that has become increasingly popular in recent years, due to its versatility,
maneuverability, and relatively low cost. Unlike traditional helicopters which have one or two large
rotors, quadrotors have four independently controlled rotors on the extremities of a rigid frame and an
electronic board in the middle. This configuration serves as an advantage, making them useful for a
wide range of applications that span many different fields. [2]

The field of quadrotor technology is advancing rapidly and is only expected to continue to grow
in the coming years. Some of its most promising applications are in search and rescue, especially for
inaccessible or unsafe environments, agriculture, construction, building exploration, mapping,
personal use, aerial photography or videography and entertainment. As new technologies continue to
be integrated into the design and operation of quadrotors, even more possibilities are emerging,
including providing innovative solutions for urban air mobility, environmental monitoring, disaster
response or space exploration. [18]

The design of a quadrotor usually follows a cross (x) or a plus (+) configuration with opposing
motors rotating in the same direction, as illustrated in Figure 1. By dividing the motors into two groups
with two diametrically opposing motors in each one, the observation is made simpler: for the plus
configuration, the front propellers Qx and Qs rotate clockwise (CW), while rear propellers Qw and Qe
rotate counterclockwise (CCW). On the other hand, for the cross configuration, the propellers are
divided into the ones rotating CW (Qnw and Qsg) and the ones rotating CCW (Qne and Qsw). This
division cancels out the unwanted yawing moment, as spinning all rotors in the same direction would

cause the quadrotor to constantly rotate around its z-axis.
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Figure 1. Flight configuration types of the quadrotor

1.2 The Reference System

The reference system provides a standardized frame of reference that allows accurate and
consistent design and measurements, as well as effective communication and coordination between
multiple vehicles. In the case of the quadrotor, to describe its general position, various body frame
reference systems can be used. Some of the most popular ones, used in aerial navigation and control
systems design the ABC, the East-North-Up (ENU) or the North-East-Down (NED), which is
described below. The selection of a reference system in control design is a contractual agreement

between those involved in the design process.

The NED reference system stands for North-East-Down, as it has its three orthogonal axes
oriented along the geodetic directions defined by the Earth surface; the x-axis points north parallel to
the geoid surface, in the polar direction, the y-axis points east parallel to the geoid surface, along a
latitude curve, and the z-axis points downward, towards and antiparallel to the Earth surface, as

presented in Figure 2.

It is a widely recognized and accepted reference system, particularly in aerospace applications,
like the quadrotor presented in the current diploma thesis. One plausible reason is that it provides an
intuitive representation of position and orientation; humans have used North and East directions to
navigate themselves for centuries, while the Down direction aligns with gravity, making it easier to

visualize.

While following the NED reference system, it is possible to use the right-hand rule with the
thumb pointing downwards and towards the positive z-axis to efficiently portray the positive direction

of the three axes. Moreover, the orientation of movement can be represented through the thumb rule,
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while also bearing in mind that the axis at which the rotational movement is performed remains

constant.

Y’ sourh pot

X

Figure 2. The NED (North-East-Down) reference system for the quadrotor

1.3 The Space Motion

The space motion of the rigid body aircraft can be divided into two parts, which are the
barycenter movement and the movement around the barycenter with six degrees of freedom (DOF);
three translational and three rotational movements along the three axes. By adjusting the speeds of its
four motors, forces and moments such as thrust, rolling, pitching and yawing are produced. More
specifically:

e Thrust, otherwise known as throttle, refers to the vertical movement of the quadrotor. There
are three scenarios: if the thrust provided is equal to the quadrotor’s weight (i.e., mg) then the
quadrotor hovers in place, if the thrust is bigger in value than mg then the quadrotor moves
upwards and if it is smaller the quadrotor moves downwards. The logic behind this is that the
direction of thrust is the direction of motion of the quadrotor, so to change the direction of the
vertical motion means altering the thrust.

e Roll refers to the rotation around the x-axis of the body frame, so a left or right lateral
movement which occurs when propellers 2-3 (of Figure 3) speed quicker and 1-4 speed slower,
or when 1-4 speed quicker and 2-3 speed slower, respectively.

e Pitch refers to the rotation around the y-axis of the body frame, so a forward or reverse lateral
movement of the quadrotor; for forward motion propellers 3-4 speed quicker and 1-2 speed

slower, while for reverse motion the exact opposite holds.
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e Yaw is the rotation around the z-axis of the body frame, and it can be realized by a reactive
torque relative to the rotor speed. It refers to the rotational movement towards the left (CCW)
or the right (CW); for CCW motion motors 1-3 speed quicker and 2-4 slower, while for CW

motion 2-4 speed quicker and 1-3 slower.

Throttle Control Roll Control

[438 0

ey B

x

Descend
Pitch Control

Move Back Move Forward " Rotate Right ' Rotate Left

Figure 3. Roll, pitch, and yaw movement for the quadrotor

The quadrotor system is a flight vehicle of lightweight structure and, therefore, gyroscopic
effects or moments resulting from the rotation of the rigid body and the four propellers should be
included in the dynamic model. Specifically, gyroscopic effect is the ability (or tendency) of the
rotating body to maintain a steady direction of its axis of rotation and only appears in the lightweight
construction quadrotor. [2]

One crucial point that affects the motion of the quadrotor, especially in outdoor environments,
is disturbances, including the effect of wind on its flight dynamics. In the presence of wind, the
quadrotor may experience drifting from its intended path or even instability. To address this issue,
quadrotors use various techniques, with a common approach being to adjust the pitch and roll angles
of the quadrotor to counteract the effects of the wind or using wind sensors to measure the wind speed
and direction and then adjusting the motor speeds accordingly. Whatever the case, understanding the
impact of wind on quadrotor motion is extremely important for a successful operation. For that reason,

it is important to have a mathematical model which accurately represents its dynamics, while
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considering the laws that describe its behavior and the numerous possible disturbances it may

encounter.

1.4 The Mathematical Model

System modelling is a fundamental aspect of control engineering that involves creating the
mathematical representation of real-world systems, by capturing the essential dynamics, behaviors,
and relationships within them. A mathematical model is a set of equations that represent the behavior
of a system, using differential equations, transfer functions, state-space representations, or other
mathematical formalisms, as derived from physical principles, empirical data, or a combination of
both.

That being said, it is important to highlight the fact that a model can never perfectly replicate
real systems, as they often present complexities, uncertainties or unmodeled dynamics that make
creating an exact replica in a mathematical form impossible. So, the goal is to create a representation
that closely approximates the behavior of the real system, thus enabling control design and analysis.

In the context of the quadrotor, it is a system that has a highly nonlinear and time-varying
behavior, making it a complex dynamic system. Its complicated design creates the necessity of certain
assumptions for the creation of its mathematical model and thus its control:

1. The quadrotor and its propellers are rigid bodies.
2. The structure is ideally symmetric, so the moment of inertia tensor has just diagonal inertia
terms.

There is an inertia frame and a body-fixed reference frame.

4. The origin and axes of the body-fixed frame coincide with the barycenter and the axis of the
quadrotor.
5. The ground effect is ignored.[2][19]

The dynamics of the quadrotor can be adequately described through a mathematical model,
derived from the application of Newton’s law of motion or the Euler-Lagrange methodology, in the
form of a set of first-order differential equations that relate the accelerations to the forces and torques.

The orientation of a quadcopter at each time instant can be described using numerous
formalisms, one of the most widely known being the Euler angles. A set of three angles, introduced
by Leonhard Euler, is used to represent the orientation of a rigid body in three-dimensional space
relative to a fixed coordinate system. The three angles are often denoted by the symbols ¢ (for roll

angle), 0 (for pitch angle), and y (for yaw angle), for the x, y, and z axes, respectively. The order in
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which these rotations are performed can vary, depending on the convention used, with the most
common ones being the "XYZ" or the "ZY X" conventions.

For the ZY X Euler angles (Figure 4) the sequence in which the rotation matrices are multiplied
follows a rotation about the z axis, followed by the y axis, followed by the x axis, with every rotation
occurring with respect to the body-fixed reference frame. The transformation matrix from the body
reference system to the inertial system, using the aforementioned rotational conventions, can be

described by the rotation matrix R, (¢, 8,9):

Rzyx((PJ 0,9) =R,() Ry(e) ‘R, (@) =

|:C¢ _SIIJ O] [CB 0 59] 1 0 0
0 0 1 L=sg 0 «¢p

CQCII) S¢SQC¢ - C¢S¢ C¢Sng + S¢Sw
= |CoSy S¢pSeSy + CoCy CopSoSy — SpCy (11)
—Sp S¢C9 C¢C9

where cg4 = cos(), s¢ = sin(¢p),cg = cos(8),sg = sin(8), ¢y = cos(y) and sy, = sin(yp) and

the angles should be in the range of ¢, € [~m, 7] and 6 € [, 7].

Figure 4. The Euler angles for the quadrotor
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Referring to the vectors [x y z ¢ 8 ¥]T and [uvw p q r]”, which contain the linear and angular
position of the quadrotor with respect to the earth frame and the linear and angular velocities with

respect to the body frame, respectively, from the kinematics analysis, it is concluded that:

V=R, Vp (1.2)

w=T" wpg (1.3)

wherev =[xy z]T €R3, w = [([)91/)]TER3,VB =[luvw]T€R3, wg=[pqgr]" e R3andTis

a matrix for angular transformations:

1 S¢t9 C¢t9

r={0 % S (1.4)
0 2
Co Co

where tg = tan(0). So, the kinematic model of the quadrotor can be written as followed:

X = W[S¢S¢ + c¢c¢59] - v[c¢s¢ - C¢S¢Sg] + u[c¢c9]
y = U[C¢C¢ + S¢S¢Sg] - W[Cwsqb - C¢Sw$9] + u[CQSw]
zZ= W[C¢C9] —ulsg] + v[cgs¢]

©=p+ T'[C¢tg] + q[s¢t9]

0 = qlcg] —ls4]

, c S
p=rLiqt
Co Co

(1.5)

From Newton’s law about the total force acting on the quadrotor, the dynamic model in the body frame

can be expressed as:
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fr =m(@@+ qw —rv)

fy = m@ —pw + ru)

f, = m(Ww + pv — qu)
my = ply, — qrl, + qrl,
m,, = qly, + prl, — prl,

m, =71, — pql, + pql,
(1.6)

withmg = [m, m, m,]" € R? denoting the torques along the three axes, | the diagonal inertia matrix

and m the mass of the quadrotor. Bearing in mind that the external forces and the external moments in

the body frame are given by:

fB=ngT'éz_ftéS + fw (1-7)

Mmp=Tg—ggq+Tw (1.8)

respectively, with f,, representing the forces produced by wind, &, the unit vector in the z axis, f;e3
the product of the total thrust generated and the unit vector in the body z axis, g, the gyroscopic
moments because of the combined rotation of the rotors, Tz the control torques as a result of differences
in the rotor speeds and t,, the torques produced by winds. So, the dynamic model of the quadrotor in

the body frame can be expressed as:

—mgsg + fux = m@ + qw — rv)
mg [C95¢] + fwy = m(v —pw + ru)
mglcocy| + fuz — fo = mOv + pv — qu)
Ty + Twx = Pl — qrly, + qrl,

Ty + Ty = qly, + pri, — pri,

T, + Twy = Tl — pqly + pql,
(1.9)
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while making the fair assumption that the inertia of each rotor is small.
By organizing the state’s vector as a combination of the three Euler angles [¢ 8 y]7, the three
rotational velocities [p q r]7, the three translational velocities [u v w]T and the three positions along

X, Y, and z axis [x y z]T as follows:

x=[p0yYpqruvwxyz]’ eR? (1.10)

the equations of the dynamic behavior of the quadrotor can be written in state-space form [2] as
follows:

Q.D =p + T[C¢t9] + CI[Sd)tQ]

6 =qlcg| —[s4]

Gt S0
lp—r66+q66
I I T, +71T
p= yI qu_l_ xI wx
X X
R S 9 Ty + Tyy
q= pr
L, L,
7;_Ix Iy T, + Ty,
, P4 1,
u=rv—qw—g[59]+@

. I
V= pw—ru—g[s¢cg] +%

. fwz_ft
W =qu —pv +g[cec¢] + -

X = W[S¢S¢ + c¢c¢59] - v[c¢s¢, - c¢,s¢59] + u[c¢09]

y = v[cd,cw + s¢s¢59] - W[C¢S¢ - c¢s¢,59] + u[ceslp]

zZ = W[C¢C9] —ufsg] + v[ces¢]

(1.11)
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The (1.11) is a set of twelve overly complex and non-linear first-order differential equations
with intertwined terms. The roll, pitch and yaw rates are represented by the first three equations that
consider the rotational velocities and they use trigonometric functions to relate these rates of change
of the angles to each other. The next three equations describe the proportional relation between the
rotational accelerations with the moments of inertia and the torques acting on the quadrotor. The
following three equations describe the quadrotor's translational dynamics, while considering the forces
acting on it, including gravity, wind forces and the thrust force generated by the rotors. The final three
equations describe the position rates and their relation to the velocities and angles of the quadrotor.

Nevertheless, instead of describing the wind disturbances through the terms 1w and fw for the
torques and forces that are created due to the wind, it is preferable to use the friction coefficients. These
are denoted as Kp, Kq, kr, ku, kv and kw for the rotational and translational accelerations in the x, y, and

z axes, respectively [2]. So, they can be incorporated into the (1.11) set of equations, affecting only

L, —1 T, +71
. y z x wx
= —k
IL,—1 T, +7T
qg= ZI xpr+ yI Wy—qu
y y
L. —1 T,+7
r=x1 ypq+ZIWZ—krr
VA zZ
fWX

u=rv—qw—g[se]+7—kuu

fwy
5 = —ry — WYk
V=pw-—ru g[s¢69] + oV

fwz_ft_
m

W =qu-—pv+ g[cgc¢] + k,w

(1.12)

However, the equations presented so far consider neither the gyroscopic effect nor the motors’
angular velocities. That being said, it is possible to relate the forces and torques acting on the system

with the angular velocities 2, , 2, , 25, 2, through the following equations [2]:
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fe =b(0? + 03 + 03+ 03)
T, = bl(25 — 07)
T, = bl(0} — 02)

T, = d(25 +0F - 0F - 03)
(1.13)

where [ is the distance between the rotors and the center of the quadrotor, b the thrust coefficient, and
d the drag coefficient. The thrust coefficient is a parameter used to model the relationship between the
thrust generated by the motor and the square of its rotational speed. It depends on many factors,
including the motor's design and propellers, as well as the occurring environmental conditions. On the
contrary, the aerodynamic drag force is a resistive air force that opposes to the motion of the quadrotor,
so the drag coefficient represents the proportionality between the drag force and the square of the
velocity of the quadrotor. It is an essential part to consider when designing and controlling the
quadrotor, as it highly influences its stability, maneuverability, and energy efficiency. From the

equations (1.13) it is possible to derive the angular velocities through the matrix form:

ft b b b b -Qg

Ty -bl 0 bl 0 05 A _oa-1.

- 0 b 0 bl|lgs|"@=A0m0=4""0 (1.14)
ol l-d d -d dl |y

so, the angular velocities are:

%I

(1.15)

Consequently, bearing in mind that the overall motor’s rotation for the quadrotor system is given by:

Wy = W1 — Wy + W3 — Wy (1.16)

UNIWA, Department of Electrical & Electronics Engineering, Diploma thesis, Despoina — Panagiota Vavelidou
28



Development of a distributed model predictive control framework for autonomous unmanned aerial vehicle swarms

it is possible to rewrite the equations related to p and ¢, by adding in combination both the actuator

dynamics and the gyroscopic effect as follows, where J,. is the gyroscopic coefficient:

I, -1, Ty + Ty

p= rq + - kpp = Jrpw,
Iy Iy
IL,—1 T, +7T

q= ZI xpr+ 3 i Wy_qu + Jrqu,
y y

(1.17)
Thus, the complete mathematical model in the state-space form, is given by the following set of
equations (1.18), with w, deriving from a combination of equations (1.13), (1.14) and (1.15):
Q.D =p + T[C¢t9] + CI[Sd)tQ]

6 =qlcg] —[s4]

, c S
p=rL4+q2
Co Co
L, —1 T, +71
p= - qu = Wx_kpp_]rpwr
Iy I
I,—1 T, +7T
g="""pr+>1—2—k,q+/Jqw,
L, L,
L —1 T,+7T
F== ypq+z Wz—krr
I, I,
fo

u=rv—qw—g[se]+7—kuu

fwy
5 = — gy — WYk
V=pw-—r1u g[s¢69] + U

fwz_ft_
m

W =qu-—pv+ g[cgc¢] + k,w

X = W[S¢S¢ + c¢c¢59] - v[c¢s¢, - c¢,s¢59] + u[c¢09]

y = v[cd,cw + s¢s¢59] - W[C¢S¢ - c¢s¢,59] + u[ceslp]

zZ= W[C¢C9] —ulsg] + v[cgs¢]
(1.18)
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The (1.18) set of non-linear first-order differential equations represents the mathematical model
used in the presented diploma thesis. Having considered the underlying physics and the sophisticated
mathematical framework regarding the system’s geometry and the possible numerous disturbances, it
is anticipated that this model will effectively demonstrate the complex dynamic behavior of the

quadrotor.

1.5 Open-loop Simulation

Although the open-loop simulation is not an exact representation of the real world and usually
includes limitations or inaccuracies, it is considered a valuable tool for the control systems area. The
reason behind that is that it offers an insight into how the system responds to different inputs and how
its behavior is affected by various parameters.

In the context of the quadrotor, control refers to the ability to manipulate the thrusts and torques
applied to the vehicle, to achieve the desired flight behavior. The thrust is related to the vertical
movement while the torques produce rotations, which help the quadrotor move in the x or y direction.

The inputs to the system are the total thrust and the torques in the X, y, and z axes, known as

the control vector u = [f; 7, 7, 7,]" € R* while the output is the state-space vector x =

[ 0 Y pqgruvwxy z]T € R? with twelve variables that describe the exact condition of the
quadrotor in the 3D environment. By choosing specific values for the control vector u and the
parameters, it is possible to create an open-loop graph that depicts the free behavior of the quadrotor
in the form of the twelve system states.

It is noted that for the open-loop simulation, and for the following simulations presented in
Chapter 2., the ode3 (Bogacki-Shampine) solver will be employed; it is a fixed-step solver that
computes the state of the model as an explicit function of the current value of the state and the
derivatives using the Bogacki-Shampine formula integration technique. The characteristics of the
quadrotor simulated are presented in Table 1 and the state-space variables examined are presented in
Table 2 as follows:
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Table 1. Constants for the simulation of the quadrotor

Symbol Description Arithmetic value = Units

m Mass of the quadrotor 1 kg

I Arm length of the quadrotor 0.24 m

g Gravitational acceleration 9.81 m/s?
I, Gyroscopic moment 1.08-107° kg - m?
L Moment of inertia in roll 8-1073 kg - m?
L, Moment of inertia in pitch 8-1073 kg - m?
L Moment of inertia in yaw 14.2-1073 kg - m?
b Thrust constant 54.2-107° unitless
d Drag constant 1.1-107° unitless
ky Friction coefficient for translational movement in the x axis 0.03 unitless
kg Friction coefficient for translational movement in the y axis 0.03 unitless
k, Friction coefficient for translational movement in the z axis 0.01 unitless
k., Friction coefficient for rotational movement in the x axis 0.048 unitless
k, Friction coefficient for rotational movement in the y axis 0.11 unitless
ky, Friction coefficient for rotational movement in the z axis 0.046 unitless
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Table 2. The state-space variables of the quadrotor system

Symbol Description Units
© Roll angle rad
0 Pitch angle rad
1] Yaw angle rad
p Rotational velocity in the x axis rad/sec
q Rotational velocity in the y axis rad/sec
r Rotational velocity in the z axis rad/sec
u Translational velocity in the x axis m/sec
\% Translational velocity in the y axis m/sec
w Translational velocity in the z axis m/sec
X Position x m
y Position y m
vA Position z m

For the open-loop simulation for the quadrotor system, assuming an input vector of zero and
that all of the state parameters have an initial value of zero, it is anticipated that, even in the absence
of control inputs, the quadrotor will present changes due to the vehicle’s inherent characteristics and
external forces acting on it.

More specifically, based on the Equations 1.18, it is clear that the quadrotor system is subject
to three main forces: thrust force (produced by the propellers), wind forces and gravity. That being
said, for a control vector equal to zero, meaning that there is no control input applied to the system,
the quadrotor is not actively controlled or stabilized, so its motion is governed by the balance of the
forces acting on it.

Considering the NED reference system, the gravity force acting on the vehicle is positive as it
coincides with the barycenter of the earth, causing it to move downwards. Therefore, in order for the
quadrotor to move upwards, the thrust force needs to be applied in the negative direction, but it will
cause the quadrotor to move this way only if that force, also known as lift force, is greater than the
force of gravity. Additionally, any external forces acting on the quadrotor, such as wind forces, could
affect the amount and direction of the thrust generated by the rotors, and, as a result, the quadrotor's

altitude in the z-axis and the corresponding translational velocity.
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On the other hand, in order for the quadrotor to rotate in x, y or z axes (roll, pitch, yaw motion,
respectively) there should be torques acting on the system, which is not the case for a control input as
the one employed in this simulation. The open — loop simulation graph for a simulation time of 10

seconds is presented in Figure 5.

450

400

350

— (rad)
—8 (rad)
Y (rad)
—p (rad/sec)
g (rad/sec)

Open-loop Simulation - Output in relation to time

r (rad/sec)
—u (m/sec)
—v (m/sec)
—w (m/sec)

X {m)
—y{(m)

z(m)

State-space variables
- N N w
w [=] [43] o
o o o o

-
o
o

\
'x
‘\

[

Time (seconds)

Figure 5. Open-loop simulation for zero input and zero initial values for the quadrotor system

Given the specified input, it is evident that solely the altitude, z, and the translational velocity
in the z axis, w, were affected, as was anticipated, and that the quadcopter moves “downwards”, since
there is not ground in the simulation, driven by the force of gravity.

Although the graph does not show all the details about how the quadrotor behaves, it confirms
that the quadrotor is an overly sensitive system, with an extremely quick reaction to changes, while
also highlighting the fact that some of its characteristics are inherent to its dynamic nature.

The information obtained from the open-loop simulation will be used in the upcoming chapters,
to develop control strategies that are both robust and agile. By considering these factors in the control
design process, it is expected that the resulting control system will perform with improved stability,

accuracy, and responsiveness.
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CHAPTER 2: PID Control of the Quadrotor

In the second chapter, a thorough examination of a single quadrotor control system employing
PID controllers is presented. The chapter begins with an examination of the basic principles of the PID
controller, including its mathematical formulation. Subsequently, the relevant control system's design
is provided. Finally, the system’s performance is demonstrated through simulation tests for both step
inputs and trajectory following, for a comprehensive evaluation over the suitability and the challenges

of such approach for the control of the quadrotor.

2.1 The PID Controller

A PID (Proportional-Integral-Derivative) controller is a widely used feedback control
mechanism first introduced by Elmer Sperry in 1911, but it was not until the 1930s that it became
popular [20]. Its acronym is indicative of the three primary control actions that it applies to the system,
as they work together to keep a stable and accurate control of a physical process.

More specifically, the Proportional (P) part of a PID controller is the first and simplest control
action as it depends solely on the difference between the desired set point and the value of the
controlled variable, known as the error term. Its goal is to reduce the error by producing an output that
is directly proportional to the size of it; the larger the error, the larger the control signal, and the faster
the system’s response to it. The coefficient that scales the output is called the Proportional gain or Gain

factor (Kp) and the output signal is given by:

Poutpur = Ky - error = K, - e(t) (2.1)

However, using proportional control is not sufficient to successfully control a complex system,
since it produces overshoots and/or oscillations and it does not eliminate the steady-state error.

The Integral (1) part of the PID controller is the one responsible for eliminating the steady-state
error, since it continuously sums up the error over time, integrates it and generates an output that is
proportional to the accumulated error; the larger the error and the longer it persists; the larger the output
signal produced by the I term and the faster the controller’s response to eliminate it. As the error
decreases, the proportional part diminishes while the integral part intensifies until the error is zero. The
Integral gain (Kji) determines the amount of response to the accumulated error with the output signal

given by:
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Ioytpue = Ki - Integral(error) = K; - fote(t)dt (2.2)

Nonetheless, the I term often presents challenges as it creates the possibility of integral windup,
a phenomenon that occurs when the accumulated error exceeds the limits of the controller’s range
causing the integral term to continue accumulating the error and producing an increasing control signal
even though the output of the controller has reached its saturation limits. This relates to the fact that
the | term increases the number of poles at zero, which can result in overshoots, oscillations, or
instability, especially for nonlinear complex systems.

Finally, the Derivative (D) part of the PID produces a response proportional to the process
variable's rate of change. So, by dampening the response of the controller to sudden changes, it
improves the transient response (i.e., smaller overshoot) and produces fewer oscillations. Using the

Derivative gain (Kp), the formula for the output signal is given by:

d(error)
at

Kp - =2 (2.3)

Doutput =Kp -
Yet, the D term also presents disadvantages with the main one being the possibility of the
phenomenon called derivative kick, which occurs when the reference signal is non-differentiable. One
possible approach to combatting this phenomenon is to design a specialized PID controller circuit, that
will be explained in detail in sub-chapter 2.3.1. Moreover, in practical control systems, the use of the
derivative term can be problematic due to its sensitivity to noise, as it amplifies the high-frequency
components of the error signal. Therefore, it should be approached with caution and careful tuning to
avoid instability or deficient performance, especially when there is significant noise in measurements.
However, there are methods to deal with the noise amplification problem, such as adding a lowpass
filter in series with the derivative gain.
Figure 6 presents the typical structure of a PID controller, used to control the response of a

process.
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Figure 6. The Block Diagram of a PID controller

As illustrated in Figure 6, the PID controller takes as input the error signal e(t), which is the
difference between the reference signal t(t) and the output signal of the process, y(t). This error
signal is then used to calculate the control signal u(t) that is applied to the system. This is a
combination of the three terms of the PID controller (the Proportional, the Integral, and the Derivative

part) summed together and weighted by their respective gain constants:

de(t)
dt

u(®) = K, - e(t) + K, - [, e(t)dt + Kp - (2.4)

In consequence, the process of choosing the appropriate Kp, Ki and Kgq gains, called tuning, is
crucial for achieving a satisfactory performance and stability of the closed-loop control scheme. Even
though there are several methods for PID tuning, like the Ziegler-Nichols or the Cohen-Coon method,
it is a process extremely dependable on trial-and-error, especially since the objectives of the three parts
are often contradictory. Thus, it is important to bear in mind the specific system that the PID controller

is applied on, as well as the aims and the prioritized goals set. [20]

2.2 Design of the PID Control System

As far as the quadrotor is concerned, it is a sensitive and dynamic system, so the control system
designed for it must be capable of responding rapidly to changing flight conditions, while also ensuring
its stability and safety. It is also crucial to highlight the fact that it is an underactuated nonlinear
complex mechanical system since it has six degrees of freedom (DOF) but only four inputs, which
complicates the design even further.

UNIWA, Department of Electrical & Electronics Engineering, Diploma thesis, Despoina — Panagiota Vavelidou
36



Development of a distributed model predictive control framework for autonomous unmanned aerial vehicle swarms

For such underactuated system as the one presented, for all six degrees of freedom to be
controlled, it is necessary to find a way to use the available control inputs to achieve the desired
movements. One common approach is the use of a cascaded formulation where the output of one
controller is used as the setpoint for the next controller in the hierarchy, a process known as Cascaded
Control Loops. [21]

In a cascaded PID control system, there are multiple PID controllers working in series in a way
that the output of one PID controller is fed into the input of the PID controller next to it. In a typical
system of that kind, the internal controller is responsible for controlling the variable, through which
the overall process variable is controlled. More specifically, as presented in Figure 7, the process target
is given as reference input to the outer PID controller which, in turn creates the inner target and feeds
it to the inner loop controller. The latter produces the control action applied to the process. The design
is completed with a feedback control mechanism for both the outer and the inner loop controllers.

Inner Loop
Process
Target
Process
Inner Loop Feedback
Cuter Loop Feedback e S

Figure 7. The Block Diagram of a cascaded PID system

In the case of the quadrotor, there is the need for at least two targets to be controlled through
others, so it is possible to use four PID controllers for instantaneous regulation; one for the altitude z
which produces the f;, one for the roll angle ¢, one for the pitch angle 6 and one for the yaw angle .
While bearing in mind that the quadrotor’s lateral motion in the x and y axes is affected by the lateral
thrusts as well as the angles ¢ and 6, it is possible to use the cascade control strategy, as follows:

e For the x-direction control, the outer loop PID controller uses the x position reference as input
and produces a 6 angle output, which is fed as reference input to the inner loop PID controller
for the pitch angle regulation. Then, this controller produces the torque ty as output.

e For the y-direction control, the outer loop PID controller uses the y position reference as input
and produces a ¢ angle output, which is fed as reference input to the inner loop PID controller
for the roll angle regulation. Then, this controller produces the torque tx as output.

UNIWA, Department of Electrical & Electronics Engineering, Diploma thesis, Despoina — Panagiota Vavelidou
37



Development of a distributed model predictive control framework for autonomous unmanned aerial vehicle swarms

With that control design, as depicted in Figure 8, the quadrotor’s system can be controlled effectively

and with adequate precision, despite the limitations of the available control inputs.
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Figure 8. The designed cascaded PID control system for the quadrotor

More specifically, the inputs to the control system are the position references x, y, and z, as
well as the reference for the yaw angle v, which usually equals to zero, while the outputs of the system
are the twelve variables that utterly describe the quadrotor’s behavior in 3D space. These references
are fed as inputs to the PID controllers: the one for altitude z, the one for the yaw angle and the outer-
loop controllers for position x and y. The first two instantly produce the variables of the control vector
ft and T, respectively, while the latter two feed their outputs into the inner loop controllers for roll and
pitch angle, eventually producing the torques ty and .

In that way, the quadrotor’s plant, which follows the mathematical model explained at Chapter 1.,

receives the control vector u = [f; 7, 7, 7,]" € R* and produces as output the state-space vector

x=[p08yYpqgruvwxyz]l € R . The state-space variables are given as feedback to the
respective controllers to enable closed-loop control of the system and thus being able to adjust the
input to achieve the desired output. This feedback control mechanism, apart from being part of the PID
control, is an essential aspect of the quadrotor control, as it provides the conditions for the vehicle to

adapt to changes or disturbances in the environment.
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2.3 Tuning the PID controllers

The process of tuning the PID controllers, while following the cascaded PID design explained,
required a thorough understanding of the system dynamics. More specifically, when employing PID
controllers, the signal given as input is the error signal which corresponds to the difference between

the desired-reference signal and the current-actual signal, as follows:

error signal = reference signal — actual signal = r(t) — y(t) (2.5)

When working with the NED coordinate system, the positive z axis, which in the quadrotor’s
case is relevant to the altitude, is defined pointing downwards. That said, increasing the altitude
corresponds to a negative change in z and, as a result, a negative thrust command should be applied.
During the tuning process, it is important to also remember that the PID controller for the altitude has
an extra term added to its output, the gravity compensation. Another particularity of the NED system
which affects the tuning of the PIDs is that a negative pitch angle drives the system to the positive x
direction; these are all important notes taken into consideration during the tuning and the simulation
part of the system’s design.

Moreover, to achieve the desired performance, careful coordination between the inner and
outer loop controllers is crucial. More specifically, a good technique turned out to be tuning the inner
loop PIDs first and then fine tuning the outer loop PIDs, while taking into account the interdependence
with the inner ones. Furthermore, a step-by-step approach was utilized; adjusting the proportional gains
first and, upon achieving a satisfactory system response, the derivative gain was employed to enhance
the system’s stability. Finally, a small integral gain was introduced to eliminate the steady-state error,
while ensuring that the response was not negatively affected.

The objective in mind was to produce responses that are as similar as possible to first-order
responses (i.e., zero overshoot and zero oscillations), while also maintaining a quick enough response

for such a dynamic and sensitive system as that of the quadrotor.

2.4 Simulation analysis and results

The design of a system can often be affected by the type of input used as a reference signal,
and this is also true when employing PID controllers. To investigate such an impact, two cases will be
presented in the following sub-chapters. The first case will involve simulating the control system with

a step input to examine how the controller responds to a sudden change in the reference signal. The
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second case will involve simulating the control system for trajectory tracking, which is a more complex
scenario that involves following a specific path or trajectory. Through the examination of these two
cases, valuable insights can be gained into the behavior and performance of PID controllers under
different input signal conditions for the quadrotor system.

Before presenting the simulation results, it is important to highlight the fact that, in many cases,
the cascaded PID system is designed in a way that the inner loop PIDs have a faster response (i.e.,
smaller sampling time) than the outer loops. This ensures that the inner loops can quickly respond to
errors in the system and/or correct them, providing greater overall accuracy. However, in the
simulations presented in this thesis, the fundamental sample time is constant, equal to T; = 0.02

seconds and the same for all PID controllers, for a more general representation.

24..1 Simulation for step input

When applying a step input, one of the challenges faced is that it is not a continuous function;
this creates the phenomenon previously referred to as derivative kick. As a result, calculating the
signal’s derivative becomes a perplexing task, which poses a significant problem when the control
system design includes PID controllers. Without the derivative part, the PID controller cannot be finely
tuned and thus the overall performance is negatively impacted.

One solution to this problem is to use the state variables as feedback in the derivative path,
rather than the error signal. In that way, the controller responds to changes in the state variable instead
of changes in the error signal, enabling the simulation of the system despite the discontinuity of the
step input. In order to implement this solution, the derivative term of the PID controller should be
subtracted from the controller’s output, instead of being added.

In more detail, as defined in Equation 2.5, the error signal is expressed as e, = r(t) — y(t),

where r(t) is the reference signal at time t and y(t) is the output signal at time t. Calculating the

de(t) _ dr(t) _ dy(t)
Toat dt '

derivative of the error signal will give and for a step input fired at time t; as

reference, the derivative of the error signal will be:

» undefined for t,, as the derivative of a discontinuous function goes to infinity.

> de(t) = 0— dy(t) —

d
— O g st
dt dt dt

This method provides a simple and practical solution for dealing with step inputs, which

ensures that the controller can effectively regulate the system, even in the presence of discontinuous
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inputs. As a result, the system's performance can be improved, leading to better control of the process
being regulated.

Below, in Figure 9, the diagram of such PID design is presented for the controllers
corresponding to the angles and the positions x and y, whereas the PID design for the altitude z is
depicted in Figure 10, including the gravitational compensation term. In Table 3, the gains kp, k; and

kp, for all the PID controllers used in the simulation design are presented, after the process of tuning.

Proportional gain ke
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+
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Figure 9. The general PID block diagram for step input

Proportional gain ke

("
Step, -

e
S

——

Integral gain ki — =z ’|—>( b Plant model

Derivative gainko |———

—eeeeeeeeeep{ M )

Figure 10. The PID block diagram for the altitude z, when employing a step reference input
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Table 3. The PID parameters for step reference input — PID design control

Proportional gain kp Integral gain k; | Derivative gain kj
PID controller for position x -0.25 -0.0001 -0.3
PID controller for position y 0.15 0.0001 0.25
PID controller for altitude z -1.5 -0.001 -2.55
PID controller for roll angle ¢ 0.9 0.01 0.1
PID controller for pitch angle 6 0.6 0.001 0.1
PID controller for yaw angle v 1.5 0.001 0.65

Assuming the step reference inputs z,..r =

-1 [m], Xref = 1 [m], Vref = 1 [m] and l/Jref =

0.1 [rad], the graphs regarding the positions X, y, and z (Figure 11Figure 11, Figure 12 and Figure
13), as well as the outputs of the PID controllers, ¢ and 6 (Figure 14 and Figure 15), the angle psi

(Figure 16), the thrust (Figure 17) and the torques produced (Figure 18, Figure 19 and Figure 20), are

presented below:
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Figure 11. Position x in relation to time for step reference input equal to 1 [m] using the PID design
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Figure 12. Position y in relation to time for step reference input equal to 1 [m] using the PID design
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Figure 13. Position z in relation to time for step reference input equal to -1[m] using the PID design
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Figure 14. Roll angle ¢ in relation to time for step reference input using the PID design
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Figure 16. Yaw angle v in relation to time for step reference input using the PID design
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Figure 17. Thrust f; in relation to time for step reference input using the PID design
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Figure 18. Torque tx in relation to time for step reference input using the PID design
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Figure 19. Torque ty in relation to time for step reference input using the PID design
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Figure 20. Torque t; in relation to time for step reference input using the PID design

Based on the graphs presented, it can be observed that the designed PID control system
performs well in controlling the quadrotor for a step reference input. More specifically, the X, y, and z
positions, as well as the yaw angle v, reach their appropriate values in a relatively short settling and
rising time, without any overshoot or oscillations. At the same time, the integral part of the PID
controllers, despite its small value, ensures that there is zero steady state error.

The roll and pitch angles have an interesting response, due to the fast dynamics of the quadrotor

system; they exhibit sharp movements before stabilizing to zero. Nevertheless, these angles remain
small and do not exceed the generally considered boundaries of [—g g] The same logic applies for

the torques and the thrust produced (i.e., the control vector) that are small in value, present a quick
response and stabilize at zero when the quadrotor has reached the desired reference. The graphs that
show the response of the signals produced by the PID controllers are always crucial in evaluating not
only the simulation performance, but also the ability of such simulation to successfully work in real-
life conditions.

Overall, the graphs demonstrate the success of the cascaded PID control system in controlling
a quadrotor for a step reference input, as all controlled variables reach their setpoints in a timely manner
and without significant deviations. However, there is always room for improvement, especially when
it comes to how fast the system’s response is. Comparable results are expected for subsequent steps in

different timesteps.
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flight trajectory consisting of takeoff, a square flight pattern and landing:

o ok~ w0 N RF

For the purpose of simulation and analysis, let us assume the following steps that describe a

stepz = —5[m] attime t = 0 [sec]

step x = 2 [m] attime t = 15 [sec]
stepy = 2 [m] attime t = 30 [sec]
step x = 0 [m] at time t = 45 [sec]
stepy = 0 [m] attime t = 60 [sec]

stepz = 0 [m] attime t = 75 [sec]

In this scenario, the quadrotor takes off vertically from a stationary position until it reaches a certain

altitude. Then, it transitions to a horizontal flight square pattern and finally to a vertical flight pattern,

until it descends back to the starting point. Figure 21, presents a visual representation of this movement.

Figure 21. Consecutive steps path visualization

The PID control system's performance for the concept of consecutive steps path is shown in

the figures below. It should be noted that the tuning of the PIDs is the same as that of the previous

simulation and that the yaw angle v is kept at zero [rad]. This is the case for most quadrotor flights, as

they use differential thrust to control their yaw motion. When the yaw angle is zero, the vehicle isin a

stable hover, the thrust from each rotor is balanced and any desired change in yaw direction is achieved

by adjusting the relative speeds of the rotors. Figures 22 to 31 present the produced graphs.
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Figure 22. Position x in relation to time for step path reference using the PID design
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. Position y in relation to time for step path reference using the PID design
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Figure 24. Position z (altitude) in relation to time for step path reference using the PID design
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Figure 25. Roll angle ¢ in relation to time for step path reference using the PID design
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Figure 26. Pitch angle 0 in relation to time for step path reference using the PID design
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Figure 27. Yaw angle v in relation to time for step path reference using the PID design
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Figure 28. Thrust f; in relation to time for step path reference using the PID design
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Figure 29. Torque tx in relation to time for step path reference using the PID design
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Figure 30. Torque ty in relation to time for step path reference using the PID design
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Figure 31. Torque t; in relation to time for step path reference using the PID design

This simulation demonstrates the success of the designed cascaded PID control system for the
step path reference input. Although there are slight differences compared to the better performance of
the control system at step input (i.e., minor deviations at some points for the height z), the system’s

performance is satisfactory.

UNIWA, Department of Electrical & Electronics Engineering, Diploma thesis, Despoina — Panagiota Vavelidou
53



Development of a distributed model predictive control framework for autonomous unmanned aerial vehicle swarms

2.4..2 Simulation for trajectory tracking

The ability of a system to follow a desired course or trajectory over time is referred to as
trajectory tracking or path following. The reference trajectory designates the desired path that the
system should follow, while the end goal is to achieve precise and reliable control of the system.

Trajectory path is considered more complex than the step inputs, as it involves tracking a
continuously changing path, rather than simply responding to a step change. More specifically, in
trajectory tracking the control system must take into consideration not only the current state of the
system, but also other parameters, to smoothly follow the desired path without overshooting or
oscillating. For comparison and analysis reasons, two trajectory paths are examined:

1) The first trajectory set is:

Xref(t) = 0.5+ cos (0.15 - t)
Yreft) = 0.5 sin (0.15 - t)
Zref(t) = —1-01-¢

2) The second trajectory set is:
Xrefr) = 0.5+ cos (0.5 ¢t)
yref(t) = 0-5 " Sln (0.5 " t)
Zrepr) = —1—t

The trajectory paths used in this study are continuous, which eliminates the need for the PID
controllers to be designed in the same way as for a step input. However, trajectory tracking is typically
more challenging than following a constant input, particularly for rapid trajectories. As a result, it is
expected that the designed PID control system will not perform as well for the trajectory paths as it
did for step references, especially for the second set of trajectories which is faster than the first one, as
indicated by the higher frequency.

Figure 32 and Figure 33 present the updated design of the PID controllers, while Table 4
displays the PID tuning parameters used to track both trajectory sets. Finally, the simulation graphs
are presented, as well as a graph representing the system's performance by showing both the actual and

the reference trajectories on the same axes.
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Figure 32. The general PID design for the trajectory tracking
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o

Figure 33. The PID design for the controller of the altitude z, for trajectory tracking

Table 4. The PID parameters for the trajectory tracking — PID design control

Proportional gain kp Integral gain k; Derivative gain kj,
PID controller for position x -0.25 -0.001 -0.3
PID controller for position y 0.05 0 0.45
PID controller for altitude z -3.5 -0.001 -4
PID controller for roll angle ¢ 0.2 0 0.1
PID controller for pitch angle 6 0.4 0.0001 0.1
PID controller for yaw angle v 0.01 0 0.001
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Figure 34. Position x and Xrf in relation to time for trajectory tracking (1% set) using the PID design
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Figure 35. Position y and yrer in relation to time for trajectory tracking (1% set) using the PID design
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Figure 36. Position z and zrrin relation to time for trajectory tracking (1% set) using the PID design

Based on the simulation graphs depicting the controller's response for the three axes and the
reference trajectories (Figure 34, Figure 35, Figure 36), it can be observed that the controller performs
adequately well, with room for improvement. The best performance is observed for the y-axis
trajectory, followed by the z-axis trajectory, whereas the most challenging one is the x-axis trajectory.

However, it is important to highlight the fact that the most evident deviations from the reference
trajectory are at the start of the simulation, which is understandable since the quadrotor’s initial
conditions may not coincide with the initial reference positions. Therefore, observing initial deviations
followed by convergence towards the reference, is an encouraging sign for the controller’s
performance, as it indicates that the control system can adapt to the reference trajectory and track it,

as intended.
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Figure 37. Roll angle ¢ in relation to time for trajectory tracking (1% set) using the PID design
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Figure 38. Pitch angle 0 in relation to time for trajectory tracking (1% set) using the PID design
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Figure 39. Yaw angle y in relation to time for trajectory tracking (1% set) using the PID design
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Figure 40. Thrust f; in relation to time for trajectory tracking (1% set) using the PID design
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Figure 41. Torque tx in relation to time for trajectory tracking (1% set) using the PID design
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Figure 42. Torque ty in relation to time for trajectory tracking (1% set) using the PID design
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Figure 43. Torque t; in relation to time for trajectory tracking (1% set) using the PID design

As observed in the corresponding responses, the quadrotor’s angles (Figure 37, Figure 38,
Figure 39) display sharp movements at the beginning of the simulation and then oscillations. The same
is true for the thrust and torques (tx, ty, and 1) produced (Figure 40, Figure 41, Figure 42, Figure 43).
However, they do not exceed the generally considered boundaries and indicate that the controller can

control the quadrotor’s motion while respecting its physical limitations.

Actual Trajectory
= == Reference Trajectory

15

10

Figure 44. Actual trajectory compared to reference trajectory for the 1% set using the PID design
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The graph presented in Figure 44 shows the spiral-like shape of the trajectory set examined for
three time periods. More specifically, the quadrotor, starting at (0.5, 0, -1), follows a sinusoidal path
in the x and y direction, while simultaneously ascending along the z axis with a linear slope.

By comparing the reference trajectory with the actual trajectory, the controller can track the
desired trajectory well, with deviations particularly at the start of the simulation, as explained before,
while it manages to minimize those over time. However, visual inspection alone may not provide an
accurate assessment of the controller’s performance; for more quantitative evaluation, quality
estimators like MSE appear to be useful.

Mean Squared Error (MSE) is a commonly used evaluation measure in many fields, including
control systems. It is used to evaluate the accuracy of a control system by comparing the actual-
produced values to the reference-desired ones through the average of their squared differences, as

follows:

1 ~
MSE = = (v — 9)? (2.6)

where n is the number of data points, y; the reference value, and y; the actual value. Squaring the
differences eliminates negative values for the differences and thus ensuring that the MSE is greater
than or equal to zero, with smaller values indicating that the desired trajectory is closer to the actual
trajectory and so a better performance is achieved (a controller with MSE = 0 is an ideal one).

The MSE values can be computed for each axis separately, to get a more precise measure of
the controller’s performance for each reference, but also for the entire trajectory following as a way of
evaluating the overall controller’s tracking performance. This can be achieved through the average of
the MSE calculated for each axis.

Overall, the calculation of MSE is a useful tool for optimizing the system’s performance,
identifying any potential error or issues that need to be addressed, ensuring that the controller is
accurately tracking the desired trajectory and thus helping us make informed decisions about the

examined control system or compare different ones.

Apart from the calculation of the MPC value for each one of the three axes, it is also important
to calculate the average Euclidean distance between the actual and the reference trajectories; this
guantitative evaluation metric provides insights into how closely the actual trajectories of the
quadcopter follow the desired ones in the 3D space. That being said, it assesses the overall performance
of the control system across all dimensions by considering both the magnitude and the direction of the
deviations. As is the case with the simple MSE, smaller values indicate higher accuracy. The

mathematical formula for the Mean Euclidean distance is:
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Mean Euclidean Distance = % VG =22+ (i — 9)% + (7 — 2)? 2.7

where n is the number of data points, x;, y;, z; the reference values in the X, y, z axes, and x;, y;, Z; the
actual values in the x, y and z axes, respectively. For the 1% trajectory set the MSE values calculated

for the X, y, and z axes, as well as the Mean Euclidean Distance, are presented in Table 5:

Table 5. The MSE values for the three axes — 1% trajectory using the PID design

Mean Squared Error (MSE)

X-axis trajectory 0.0020

y-axis trajectory 9.2778 e-05

z-axis trajectory 0.0059
Mean Euclidean Distance 0.0205

Based on the calculated MSE values for the X, y, and z axes trajectories, it becomes apparent
that the quadrotor can follow the three trajectories well, with the y-axis trajectory showing the best
performance, as indicated by the smallest MSE value (the one closest to zero). The x and z axes
trajectories also perform well, with room for improvement, especially for the z axis which presents the
largest MSE value. To improve the performance in these directions, it may be necessary to further tune
the corresponding PID controllers or consider using a different control system altogether.

However, considering the tracking errors that appear due to the initial conditions in axes x and
z, it is fair to say that the results are exceptionally well for a cascaded PID control system that is
controlling a quadrotor. Besides, it is important to bear in mind that PID controllers are particularly
good at controlling linear systems, but, generally, they do not perform as well for complex non-linear

systems as the one examined.

2.4.2.2 Simulation for the 2" trajectory set

For the tracking of the second trajectory, the corresponding graphs are presented in Figures 45
to 54.
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Figure 45. Position x and X in relation to time for trajectory tracking (2" set) using the PID design
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Figure 46. Position y and yrer in relation to time for trajectory tracking (2" set) using the PID design
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Figure 47. Position z and zr in relation to time for trajectory tracking (2" set) using the PID design
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Figure 48. Roll angle ¢ in relation to time for trajectory tracking (2" set) using the PID design
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Figure 49. Pitch angle @ in relation to time for trajectory tracking (2" set) using the PID design
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Figure 50. Yaw angle in relation to time for trajectory tracking (2" set) using the PID design
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Figure 51. Thrust f in relation to time for trajectory tracking (2" set) using the PID design
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. Torque tx in relation to time for trajectory tracking (2" set) using the PID design
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Figure 53. Torque ty in relation to time for trajectory tracking (2" set) using the PID design
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Figure 54. Torque t, in relation to time for trajectory tracking (2" set) using the PID design

As anticipated, the second trajectory set exhibits lower tracking performance compared to the
first set, primarily due to its faster profile. More specifically, the PID control system appears to be
struggling to accurately follow the trajectory in cases where there are rapid changes in orientation, as

the system’s response is slower than the rate at which the trajectory is changing. This is evident not
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only in the simulation graphs for X, y, and z (Figure 45, Figure 46, Figure 47), but also in the spiral

graph (Figure 55), where the deviations from the desired trajectory become more apparent:

Actual Trajectory
= == Reference Trajectory

05

Y 05 05 X

Figure 55. Actual trajectory compared to reference trajectory for the 2" set using the P1D design

Consequently, the calculated Mean Squared Error (MSE) values are also higher, reflecting the
larger tracking errors between the reference trajectory and the actual response, as presented in the
following table (Table 6):

Table 6. The MSE values for the three axes — 2™ trajectory using the PID design

Mean Squared Error (MSE)

X-axis trajectory 0.0068
y-axis trajectory 0.0011
z-axis trajectory 0.0197
Mean Euclidean Distance 0.0741

In summary, although the designed PID control system demonstrated acceptable results in the
examined cases (step input, consecutive steps, path following for a slow and a fast set), it may not be
the optimal choice for controlling the quadrotor system. This is graphically and quantitatively evident
in the case of trajectory following, especially for the 2" set examined, where the PID control system
had a suboptimal performance in keeping up with the fast setpoint trajectory. While PID controllers

excel in systems with fast dynamics, they struggle when dealing with high-frequency trajectories.
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Moreover, the use of PID controllers for the quadrotor system presented many challenges, one
of which is the difficulty of tuning. More specifically, tuning multiple PID controllers that control
various aspects of the quadrotor, but have interlinked performances at the same time, is a challenging
task. Additionally, tuning the values, following a method of trial-and-error, is susceptible to errors,
which may lead to mediocre performance, instability or even inability to perform the simulation due
to singularities. Furthermore, PID control is limited in its ability to accurately control a system, as it
relies solely on the proportional, integral, and derivative values to adjust the system's response, which
may not be enough for most dynamic systems.

Overall, nonlinear, and dynamic systems, such as the one examined, exhibit a complex
behavior, making them a challenging control problem. Especially for the case of unexpected changes
or disturbances in the process, classical control methods, like PID control, seem to fall short of ensuring
reliable and accurate tracking. This is often called Virtual Control Loss (VCL) where the control
system fails to effectively control the process, despite appearing functionally normal. To address these
challenges, alternative and more advanced control methods are necessary for optimal results. Model
Predictive Control (MPC) is one highly advanced control method that promises better performance
and robustness for complex systems.

The next chapter will explore the application of MPC for controlling the quadrotor system. Its
performance will be compared to that of the cascaded PID controller examined so far, providing

insights into the relative strengths and weaknesses, and determining the best approach for the system.
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CHAPTER 3: Model Predictive Control (MPC) for the Quadrotor system

This chapter aims to provide a comprehensive exploration of the Model Predictive Control
(MPC) algorithm for a single quadcopter, which will act as the foundation for controlling a swarm of
quadcopters. Firstly, a detailed overview of MPC is presented, emphasizing its operational
mechanisms and its fundamental algorithmic principles. Then, the appropriate MPC algorithm is
applied to a single quadrotor for the control of its position in the X, y, and z coordinates in 3D space,
requiring precise control. Finally, in order to compare the performance of the MPC - based control
strategy with that of PID control and determine the confidence that it can be used for a swarm of

drones, simulations are conducted for trajectory tracking.

3.1 The Model Predictive Control (MPC)

Model Predictive Control, or MPC, is an intelligent control method that utilizes the model of a
system in order to make predictions about its future outputs and ultimately compute the optimal input
that will allow the plant to follow a desired reference. The history of MPC technology can be traced
back to the early 1960s when Kalman explored the optimality of linear control systems. However, it
was not until the late 1970s that notable applications of MPC emerged, such as MPHC or DMC
(Dynamic Matrix Control) for the control of the transients of dynamic systems in chemical applications
[22]. Over the years, multiple generations of MPC technologies have been developed, an evolution
that has seen advancements in handling constraints and nonlinearities, improving stability, offering
robust control performance, and providing more sophisticated control strategies.

Today, MPC is widely used in various fields, including process industries (e.g., for oil refining,
chemicals or pharmaceuticals) [23], power systems (e.g. for power generation, transmission and
energy storage) [24], automotive (e.g. in hybrid and electric vehicles for autonomous driving) [25],
robotics and automation (e.g. for trajectory planning, motion control or robotic coordination) [26][10],
aerospace and aviation (e.g. for navigation and control), building automation (e.g. for energy
management) [27], and many more.

Furthermore, there is an abundance of different MPC variations, extensions and tailored
algorithms developed for specific applications. Some of the most widespread MPC algorithms are
Nonlinear MPC (NMPC) [13], Linear MPC (LMPC) (Adaptive or Gain-scheduled) [28], Dynamic
Matrix Control (DMC) [29] or Quadratic Dynamic Matrix Control (QDMC), Robust MPC (RMPC)
[30], Economic MPC (EMPC) [31], Explicit MPC [32] and more, each of which presents its benefits

and limitations, as presented in Figure 56; the selection of the algorithm depends on the specific control
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objectives, system dynamics, requirements, constraints and the trade-off between performance and

computational complexity.
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Figure 56. Model Predictive Control Algorithms over the years with their relative strengths

Most systems exhibit nonlinear or time — varying dynamics, making it crucial to employ an
appropriate MPC control algorithm that can handle such characteristics. Nonlinear model predictive
control is commonly utilized in systems featuring nonlinear constraints and a nonlinear cost function
to enhance precision and accuracy. This approach is effective for systems characterized by nonlinear
behavior, ensuring better performance and reliability. On the other hand, if the system can be
adequately linearized, a linear MPC approach is recommended due to its simplicity and reduced
computational cost.

More specifically, Linear MPC can be utilized not only for linear cost functions, but for
nonlinear cost functions and linear dynamic systems, as well. LMPC can be further categorized into
Adaptive MPC and Gain — Scheduled MPC. In the first case, the states and constraints remain constant
across different operating conditions, and a linear model is derived at runtime, since the system is
linearized at each operating point. Conversely, in the second case, each controller is independently
executed since the dynamics and characteristics of the system change across different operating
conditions. Furthermore, Adaptive LMPC, unlike traditional LMPC where the model parameters are
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assumed to be known and constant, continuously adapts the parameters during the control process

based on the measured data, making it a suitable control strategy for time — varying systems [22].

By carefully selecting the appropriate MPC variant based on the system's linearity and

characteristics, more accurate and efficient control can be achieved. In general, MPC is such a

widespread control method because it presents various distinct advantages over others, with the main

ones being:

Handling MIMO (Multiple Input Multiple Output) systems: in complex control
problems there are usually multiple variables, interacting loops and interactions
between the inputs and the outputs. Thus, there is the need of a multivariable controller
that can handle such systems through a systematic framework; MPC is able of doing
S0, in contrast to simplified control methods, like PID controllers, in which the control
loops operate as if the interactions are zero.

Handling constraints: MPC can handle constraints on both the system states and the
control inputs, which is especially crucial in process control applications, where
satisfying constraints is affiliated with operating within safe limits. In other advanced
control methods, like LQR, the constraints cannot be directly handled and may require
additional techniques to accommodate them.

Handling Nonlinear systems: by incorporating a nonlinear objective function and
nonlinear constraints, MPC can effectively handle complex nonlinear systems, in
contrast to other control methods that assume linearity.

Preview capability: in MPC the preview capability is similar but more advanced than
feedforward control; it takes into consideration the future system behavior — the
predicted future states, to proactively respond to changes in the system, even in the case
of disturbances, uncertainties, modelling errors or time delays. This improves the
controller’s overall performance, robustness, adaptability, and efficiency and wins over
other control methods that do not account for future predictions.

Optimal control performance: MPC solves an optimization problem at each time step,
which allows a comprehensive control strategy that captures the desired control

objectives, such as minimizing energy consumption, and allows time-varying control.

Model Predictive Control, despite its advantages, comes with certain disadvantages, as well.

One significant drawback is its computational complexity, since MPC involves solving an optimization

problem at each time step. This complexity increases with the increasing number of states in the

system, the number of constraints, and the length of the design parameters of Prediction and Control
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Horizons, that will be extensively analyzed in subchapter 3.2. Thus, the computational demands
presented, which are also associated with the concern of memory usage, can pose challenges,
especially if the implementation is done on embedded hardware with limited memory, or if the
application requires that the algorithm be solved within a small time interval (in the order of
milliseconds).

To mitigate these challenges, various techniques have been developed, such as algorithmic
optimizations, sparse matrix representations, hardware acceleration, model order reduction techniques,
setting a maximum number of iterations, as well as some special variations of MPC, like the
aforementioned Explicit MPC. These techniques aim to improve the efficiency and feasibility of
implementing MPC in resource-constrained environments. So, to implement Model Predictive Control
practically and effectively, it is vital to carefully consider the computational requirements and
limitations of the specific application.

3.2 The Design parameters of MPC

The MPC algorithm demands certain design parameters to be chosen, that highly affect the
controller's performance, including responsiveness and robustness. Additionally, the computational
burden and real-world implementation feasibility are also impacted by these parameter choices.
Therefore, their selection necessitates careful consideration of the specific control objectives or
requirements, while also striking a balance between control performance and computational efficiency.
These design parameters, that will be discussed thoroughly are:

e Sample Time (Ts)

e Prediction Horizon (P or Hp)
e Control Horizon (M or Hc)
e Constraints

e Weights

The first crucial design parameter in MPC is Sample Time (Ts), which represents the rate at
which the controller executes the control algorithm. In general, a smaller sample time allows more
accuracy and responsiveness, as the controller is able to react fast enough to changes and disturbances.
However, an exceedingly small Ts can result in excessive computational cost, thus potentially
impeding real-world implementation and may also not manage to solve the optimization problem in
the appropriate time. Contrary, a larger sample time may hinder the controller’s ability to react quickly

enough, compromising the control performance. A commonly recommended guideline is to select a
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sample time that accommodates 10-20 samples within the rise time of the open-loop response [33];
this can serve as a starting point, but the optimal choice of Ts is ultimately a multi-variable decision.

Another important design parameter is the Prediction Horizon (P or Hp) which determines the
number of predicted future timesteps. Selecting an appropriate Prediction Horizon is vital, as it impacts
the controller's ability to anticipate and respond to future system behavior. If it is too short, the
controller may not be able to effectively capture the dynamics of the system, leading to inadequate
precision. On the other hand, if H, is excessively long, a significant portion of the computed predictions
may be rendered irrelevant in the case of unexpected events or disturbances, thus resulting in
unnecessary computational burden.

More specifically, for a faster trajectory with frequent changes, a smaller Hy is required as it
needs to accurately anticipate changes in orientation. That being said, the choice of the Prediction
Horizon can vary based on the specific application and requirements; recommendations such as 20-30
samples ensuring it covers the open-loop transient response of the system can serve as a starting point
[33], but factors such as the dynamics of the system, the reference trajectory characteristics, and any
constraints or limitations of the system are definitive in such choice.

Apart from the Prediction Horizon, the MPC algorithm is also strongly affected by another
horizon called the Control Horizon (M or Hc), which refers to the number of control moves or
adjustments considered until a particular time step M. Again, there should be careful consideration
before choosing such horizon, as a value that is too small may not allow the controller to achieve the
best possible maneuver, while by increasing it, the prediction accuracy is improved, as it can help
account for variations in the trajectory, but at the cost of complexity. This is because each control move
in the Hc is a free variable that needs to be computed by the optimizer, so the smaller the Control
Horizon the fewer the design variables of the optimization problem and thus the fewer the
computations.

The control horizon is always chosen to be less than or equal to the prediction horizon, because
if the control horizon was bigger, then the optimizer would be instructed to determine control inputs
of the system without knowing its state. This is contradictory and it would result to a certain and
complete failure of the controller. So, by setting H. < Hp the control actions are concentrated within
the range where the predictions are reliable, optimizing control performance within a well-defined time
frame.

In the special case where the control horizon is equal to the prediction horizon, it is implied
that the controller is making control moves by leveraging the maximum available predictive
information, so it can determine a control action for each one of the predictions obtained. However,

when it comes to linear models, it is observed that, only the initial control moves have a significant
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impact on the system's response, while the influence of the subsequent control moves diminishes,
because the future predictions become less accurate as the time horizon extends into the future.

This is proof that the choices of the two horizons in Model Predictive Control are intertwined,
so selecting their appropriate values involves considering the diminishing returns associated with
extending the horizons and ensuring that control actions are focused on reliable predictions within a
relevant time span. A general rule of thumb is to set the Control Horizon to around 10%-20% of the
Prediction Horizon, for a balance between obtaining accurate predictions and maintaining
computational efficiency.

In the previous section, it was mentioned that one of the advantages of MPC is its ability to
handle constraints. Constraints is an important factor that needs to be taken into consideration when
employing Model Predictive Control, as they express the constraints that need to be satisfied when
solving the optimization problem and so they allow the controller to account for the limitations and
operational requirements of the system. Constraints can be classified into two main categories: hard
constraints (e.g., safety limits), which cannot be violated, and soft constraints, which are usually
associated with optimization criteria or performance objectives and can be violated under certain
circumstances, without resulting in immediate failure of the system. The MPC algorithm considers
both hard and soft constraints during the optimization process.

Finally, another fundamental point in the design of the MPC algorithm is the assignment of
weights. MPC can have multiple objectives, which are typically defined through the objective function
of the formulated optimization problem. These goals (for example tracking a setpoint as closely as
possible, minimizing aggressive control moves, optimizing energy consumption etc.) can be
conflicting or competing. To address this, the MPC algorithm allows for the weighting of different
objectives to prioritize certain goals over others and finding a balance that aligns with the desired
system behavior; the higher the weight the higher the significance of the specific objective. By
adjusting the weights, system designers and control engineers can influence the controller's decision-

making process according to the specific requirements and trade-offs of the application.

3.3 The Strategy of MPC

After having described the design parameters of the MPC algorithm, it is possible to analyze
its strategy — how it works. So, model predictive control, or MPC, is an advanced feedback control
mechanism that relies on a model of a system, hence its name, to predict its future behavior. Its

objective is to select the best control action — the best input to the plant that drives it to reference.
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More specifically, at each timestep k, MPC receives or estimates the current state of the plant
and it then calculates the optimal sequences of control actions that minimize the cost over the finite
time prediction horizon, i.e., forsteps k =t + 0,t + 1,, ..., t + p, where p is the number of upcoming
points in the prediction horizon. This is achieved in a systematic way; by solving, at each timestep, a
constrained optimization problem that relies on the model and depends on the current system state.

So, the optimization algorithm employed minimizes the objective - cost function, at each time
step, over Hp, ultimately generating the optimal control input u(t); a vector with dimensions equal to
the control horizon. The objective function (or cost function) is part of the modelling of the system

and, in the general case, can be expressed as:
_ H 2 Hp—-1 2
] = 2i=P1 We " €4+ Zi=P0 Wy " AUy (3-1)

where Hp the prediction horizon, k the timestep at discrete time, e the error vector that represents the
difference between the reference output and the actual produced output, Au denotes the deviation of
the control action between successive timesteps, and we, Wy are the corresponding weights.

That being said, the predicted path with the smallest value of J gives the optimal solution to the
problem. However, at the current time step k, MPC applies only the first step of the optimal sequence
(i.e., the vector that has the same dimensions as the length of the control horizon), while the rest of
them are used as initializations for the next iteration, at which the process is repeated. This is because
the measurement that the controller gets at the next timestep (k + 1) may be slightly different to what
MPC predicted during the previous timestep, due to disturbances or unexpected events. So,
implementing only the first control action provides some sort of adaptation to changing dynamics and
measurements. [22]

Figure 57 presents the strategy followed by the MPC algorithm; a strategy that takes under

consideration the past and current state of the system.
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Figure 57. Visual representation of the MPC strategy

In a typical control circuit utilizing Model Predictive Control (MPC), like the one presented in
Figure 58, the reference signal is provided as input to the MPC controller, which comprises an
optimizer, a prediction model (representing the system dynamics), constraints, and a cost function. The
optimizer is the one responsible for solving the optimization problem to determine the optimal vector

of control moves that minimizes the cost, while satisfying the constraints.

Then, only the first value of the optimal control trajectory is applied to the plant, which
represents the physical system being controlled. The plant processes the control input (while also
considering any disturbances), and produces an output vector, which serves as feedback to the MPC
controller, allowing it to continuously update its predictions and adjust the control moves in response
to changes in the system and external disturbances. This feedback loop enables the MPC controller to

effectively track the desired references and maintain control over the plant's behavior.
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Figure 58. The typical design of an MPC circuit

3.4 Design of the MPC system

This sub-chapter focuses on the formulation of the problem for the quadrotor system within the
context of MPC,; it delves into the specific details of the employed MPC algorithm, the prediction
model utilized, and the optimization problem that needs to be solved.

More specifically, in order to regulate the quadrotor system, three separate MPC controllers
can be employed, one for position z, one for position x and one for position y. However, due to the
interdependence or coupling between the variables x and y, an alternative approach is viable and
expected to perform exceptionally well; the two MPCs corresponding to x and y can be integrated into
a single unified MPC controller, utilized to address the control requirements of both these positions
simultaneously.

The control system design utilizes both the positions (X, y, z) and their corresponding velocities
as references, which are fed into the MPC controllers responsible for governing the quadrotor's motion.
To ensure accurate and stable control, a closed-loop feedback system is implemented that incorporates
both the relevant states of the quadrotor system and the already implemented (previous) control policy,
which is used as input for the MPC controllers during the prediction phase. In this way, the control
system can continuously monitor the quadrotor's performance and make necessary adjustments to

maintain precise control.
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The MPC controller for position x and y produces the reference angles 6 (pitch angle) and ¢
(roll angle), respectively, that will be fed into separate PID controllers for angle regulation. It is noted
that angle v (yaw angle) will also be controlled using a PID controller. By utilizing this cascaded
control approach, as presented in Figure 59, the quadrotor system is expected to introduce significant

enhancements in terms of precision, stable regulation and adaptability of its position and orientation.
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Figure 59. The cascaded control system utilizing MPC controllers and PID controllers

This design remains largely similar to the one presented in Chapter 2, as the fundamental
characteristics of the quadrotor system have not changed; it is an underactuated system with six degrees
of freedom, and so a cascaded design is still necessary to effectively control all its parameters. The
main difference lies in the substitution of the outer — loop PID controllers with MPC controllers for
position control in the X, y, and z directions. On the contrary, PID controllers are still employed for
regulating the quadrotor’s angles in the inner loop. Moreover, it should be highlighted that since MPC
controllers have distinctive characteristics and operational principles than PID controllers, the tuning
of the remaining inner-loop controllers is also expected to require adjustments to account for the
updated specific dynamics.

Employing MPC controllers for position control in the X, y, and z directions while utilizing
PID controllers for angle regulation is based on the characteristics and requirements of the quadrotor

system. More specifically, MPC is a model-based control technique that excels in handling complex

UNIWA, Department of Electrical & Electronics Engineering, Diploma thesis, Despoina — Panagiota Vavelidou

80



Development of a distributed model predictive control framework for autonomous unmanned aerial vehicle swarms

dynamics, constraints, and predictive control objectives, so by utilizing it for position control the
quadrotor system can benefit from precise and dynamic control of the quadrotor's position, while also
accounting for factors such as trajectory tracking or obstacle evasion.

On the other hand, angles ¢, 6 and y are overly sensitive parameters that require accurate
control, but they do not involve complex predictive dynamics, like position control does. In that case,
PID controllers are well-suited for angle regulation due to their simplicity and effectiveness; MPC can
also be employed for a more advanced and precise angle regulation, however, it is important to
consider the trade-offs, as MPC controller is far more complex, and it certainly requires more
computational resources in comparison to PIDs.

The choice to employ MPC for position control and PID controllers for angle regulation strikes
a balance between computational efficiency and control accuracy. MPC handles the more complex
and predictive aspects of position control, while PID controllers efficiently handle the sensitive and
rapid angle regulation. This combination allows for a robust control strategy that ensures precise

position control while maintaining stable and accurate orientation throughout the quadrotor's flight.

34.1 The prediction model (or system model)

In Model Predictive Control, the mathematical model plays a crucial role as the whole strategy
is based on it to predict the system’s future behavior over a finite time horizon and optimize the control
inputs. That being said, the accuracy and fidelity of the employed model are determining the
effectiveness of the MPC control. In Chapter 2, the mathematical model of the quadrotor system was
derived, and building upon that foundation, it will be extended to obtain the prediction model necessary
for implementing MPC.

More specifically, to derive the prediction model for the MPC strategy, the second derivatives
of x, y and z will be examined. These can be derived from the set (1.18) of non-linear first order

differential equations and Newton’s law:

mv =R-fg=mge,— f;R-e&; (3.2)

and they can be expressed as follows:
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To obtain a suitable prediction model for the MPC strategy an approximation method like the Forward
Euler method (Figure 60) should be utilized; this numerical method can be used to numerically first-
order differential equations, for linear systems and it can also be used to derive the corresponding
discrete-time linear system. It discretizes the continuous-time system into discrete timesteps (k) using
sampling time Ts. In the general case, assuming a first-order ODE:

dg _

T=ft9) (3.3)
the approximation produces

g(t+Ts)—g(8) _ f(t;g) (34)

T, -

By discretizing equation (3.4) and assuming a small sample time T, = h = t,,,; — t,, the following

form is derived:

P2 f (tn Gn) (35)

Moving forward, replacing ~ with = for convenience without forgetting the fact that the expression
lurks an approximation error which grows with increasing T, equation (3.5) can be written as follows,

when the future values are moved to the LHS and the past values to the RHS:

In+1 = 9n + T f(tn' gn) (3-6)

which represents a way to step forward in time. From equation (3.6) it is obvious that the smaller the
sampling time the better the accuracy of the approximation model; the trade-off between computational

burden as well as real-world implementation should be taken into consideration.
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Figure 60. Visual representation of the Forward Euler method

So, by applying this specific first-order numerical procedure, the prediction model states that
each new value of the solution is equal to the previous known value plus the product of the sampling
time (Ts) and the values of its first-order differential equation. This method and the overall logic will
be used to obtain the prediction model for the current diploma thesis as presented in detail for each of

the MPC controllers in the following sections.

34.1.1 The prediction model for the MPC related to altitude z

As described in the set of equations (3.3), the second order derivative for the altitude is given

fe
m

by the expression Z = g — = [c4cq] that describes a time-varying complex system. Writing it in state

space form produces the following two expressions:
71 =2 > Z; =27, (3.7
=% > 1= g~ 1t[cyco] (38)

Now, it is possible to apply the Forward Euler method which will produce the following expression:

2k +1) = z,(k) + T, - z,(k) (3.9)
z(k +1) = 2,(k) + Ty - (g — L [cosqp(k)cost (k)] (3.10)
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where z; represents the altitude and z, the velocity of the altitude. Using linear Algebra and matrix
representation, the equations (3.9) and (3.10) can be written in the form z(k + 1) = A - z(k) + By -
fi(k) + E , where A and E matrices are constant, B matrix is time-varying, and z(k) =
[z,(k) z,(k)]T as follows:

1 T, 0 0
z(k+1) = 0 1] -z(k) + [—T [COS(p(k)cose(k)l - fr (k) + [ng] (3.11)

m
So, the prediction model (3.11) is the one used for the MPC of the altitude z and predicts the

position z as well as the velocity of the position z. By breaking down the different terms in this equation

a better analysis is achieved:

e TheA-z(k) = (1) Tis] - z(k) term represents the state update equation, as it indicates that the

next value of z is obtained by multiplying the previous, and so known, value of z with the
transition matrix A. This matrix incorporates the dynamics of the system and relates the current
state to the next state.

e The By - fi(k) = [—FTS [COS(p((I)c)COSH(k)l - f (k) term accounts for the impact of the control
input on the next value of z. More specifically, it involves the total thrust generated by rotors,
which corresponds to the first value of the control input u(x), as well as the angles ¢ and 6 at
the current timestep. By multiplying the control inputs with the appropriate scaling factors and
incorporating the mass (m) of the system, this term influences the change in z between

consecutive time steps.
0 o .
e The E = [T g] term represents the effect of gravitational forces on the system’s vertical
S

position and thus on the next value of z, by incorporating the gravitational acceleration (g) and

the sampling time (Ts).

Overall, the prediction model for the altitude of the quadrotor suggests that the next value of z
at time step (k+1) is determined by combining the previous value z(k) with the influence of the system
dynamics, control inputs, and gravitational forces. By iteratively applying this prediction model, the

evolution of z over time can be estimated based on the current state and inputs.
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34.1.2 The prediction model for the MPC related to position x

Following a similar logic for position x, the second-order derivative expression for x, ¥ =

ft . . . i
- [s¢Sy + cgCySe] should be first written in state space form, as follows:
xl =X - .7.C1 == xZ (312)
Xy = X - 56'2 = —%[Sd,slp + C¢C¢SQ] (313)

and the Forward Euler method will result in the following two equations:
Xk +1) =x,(k) + Ts - (— % (sin(p(k)sim/)(k) + cosp(k)cosy(k)sinf (k)) (3.15)

By analyzing equation (3.15), it becomes evident that the control of position in the x axis is
dependent on the angles for roll, pitch, and yaw, especially on the pitch angle, which is the one inner
— loop design variable. So, since position x cannot be directly controlled without accounting for the
pitch angle 6, the incorporation of what is called virtual control [34] becomes necessary, for
developing a prediction model that controls the variable x. More specifically, in complex systems,
there is often an interdependence between different variables and thus some may be controlled
indirectly through others. In that situation, virtual control provides a flexible and efficient approach to
address control challenges arising from interdependent variables, by facilitating the control process,
regulating the desired variables indirectly and establishing a virtual relationship between them.

So, by employing virtual control, the controller generates control inputs — commands for the
influencing variable, while the virtual control system translate those into corresponding actions —
adjustments for the controlled variable; in the examined case, according to the cascaded control design
in use, the influencing variable is the pitch angle 6, while the controlled variable is the position x.

Assuming the following virtual control variable:

Uy = S¢Sy + CpCySe = Uy (k) = sing(k)sinp (k) + cosp(k)cosy(k)sinb (k) (3.16)

the equation (3.15) gets the following form:
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x,(k+1) = x,(k) + T, - (— g) Cu, (3.17)

Combining equations (1.14) and (1.17) using matrix representation in Linear Algebra, produces the
following prediction model used for the Model Predictive Control of position x in the form x(k + 1) =
A x(k)+ By -uy:

0
x(k+1) = (1) 7;5] -x(k) + [—Tsft(k)l-ux (3.18)

where wu,, is the virtual control variable of equation (3.16), matrix A is equal to [(1) 7%] and is constant,

0
and matrix By, is l—Tsft(k)l and depends on the total thrust generated by rotors at the current time step
m

k. More specifically:

e The A-x(k) = (1) 7;5 :

variable x. It indicates that the next value of x at time step (k+1) is obtained by multiplying the

x(k) term represents the state update equation for the position

previous known value x(k) by the state transition matrix A, which incorporates the dynamics

of the system and relates the current state to the next state.

0
e Theterm By - u, = l_Tsft(k)l - u, accounts for the impact of control inputs on the next value

m

of x; it involves the virtual control input uy and the total thrust generated control input f; at time
step k. By multiplying the first with the appropriate scaling factor and incorporating the system
mass (m), this term influences the change in x between consecutive time steps. Moreover, the

negative sign indicates that the force input acts in the opposite direction of the position change.

Overall, the prediction model suggests that the next value of x is determined by the previous
value with the influence of the system dynamics and the virtual control variable; by iteratively applying

this prediction model, the estimation of the evolution of x over time is obtained.

34.1.3 The prediction model for the MPC related to position y

The design of the prediction model for y follows a similar rationale to that of position x within
the MPC framework. More precisely, like X, the position y cannot be directly controlled and requires

regulation through the roll angle ¢. Hence, the prediction model for y incorporates the principles of
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virtual control to establish a relationship between y and the roll angle ¢. So, starting with the second-

order derivative expression y = — %[C(pSlpSQ - c¢s¢], it will be written in state-space form:
Vi=Y 2> V1= (3.19)
— .t
Y2=Y = Y2 = = [cpsyse — cySp) (3.20)

and the Forward Euler method will result in the following two equations:
yilk +1) = y;(k) + Ts - y, (k) (3.21)
v (k+1)=y,(k)+ T - [—%(cosw(k)sinlp(k)sine(k) — cosy(k)singp(k))] (3.22)
Analogous to the virtual control variable uyx, by setting the virtual control variable uy equal to:

Uy, = CySySg — CyS¢ — Uy (k) = cosp(k)siny(k)sinb (k) — cosy(k)sing (k)
(3.23)

the equation (3.22) gets the following form:
ya(k +1) = y2(0) + T+ [~ 2, () (3.24)
Combining equations (3.21) and (3.24) using matrix representation in Linear Algebra, produces the

following prediction model used for the Model Predictive Control of positiony inthe form y(k + 1) =
A-y(k)+ By u,y:

_[ T 0
yk+1D =g 7| v+ |l - uy (3.18)
m
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where u, is the virtual control variable of equation (3.23), matrix A is equal to [(1) 711_5] and it is

0
constant, and matrix B, is [_Tsft(k)] and dependent on the total thrust generated by rotors at the current
m

time step k. More specifically:

1 Ty,
0 1

variable y, indicating that the next value of y is obtained by multiplying the previous known

e The A-y(k) = [ y(k) term represents the state update equation for the position

value y(K) by the state transition matrix A.

0
_Tsft(k)] - u,, accounts for the impact of control inputs on the next value
m

The term By - u,, =

of y; it involves the virtual control input uy and the total thrust generated control input f at time

step k.

3.4.2 The optimization problem

The optimization problem in Model Predictive Control (MPC) is a principal component of the
control strategy, which aims to determine the optimal control inputs over the finite prediction horizon.
The objective of the optimization problem is to minimize a cost function, while satisfying operational
constraints.

In that context, the formulation of the optimization problem typically involves three key
elements: the design variables, which directly influence the system's behavior and are adjusted by the
MPC algorithm to achieve the desired position tracking, the objective function, which reflects the
performance objectives and priorities of the control system, comprising terms that quantify different
aspects of control performance, and constraints, which represent limitations or bounds on the system's
states, control inputs, or other variables. All of these will be analyzed in detail separately for the three
MPCs over the next sections.

For this diploma thesis, the MATLAB function called fmincon will be used for solving the
constrained nonlinear optimization or nonlinear programming problem formulated, through a Medium
Scale Optimization algorithm called Sequential Quadratic Programming (SQP).

More specifically, the SQP algorithm, which presents good convergence properties, due to the
use of second-order information and/or trust regions, and the ability to handle both equality and
inequality constraints, works by iteratively adjusting the decision variables to minimize the objective

function, while satisfying the constraints. More specifically, until a certain stopping criterion is met,
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starting from an initial point guess, it solves a subproblem at each iteration, by performing a line search
and by updating the estimate of the Hessian of the Lagrangian at each iteration of the algorithm.
So, once the optimization problem terminates, fmincon returns the optimal solution for the

decision or control variables that minimize the objective function and respect the constraints.

34.2.1 The optimization problem for the MPC related to the altitude z

Regarding the control of altitude following the MPC strategy, the control input that directly
affects z is the total thrust generated by rotors (ft), as aforementioned. However, instead of choosing
the absolute total thrust as the design variable to the optimization problem, it is beneficial to choose
the change in total thrust, denoted as Af, instead. By utilizing this specific design variable, the MPC
algorithm can limit sudden and drastic variations in the motor’s output, thus mitigating the risk of
excessive stain or wear on the motors and ensuring the well-being and longevity of the real-life system.

More specifically, in the quadrotor’s control system design it is always essential to consider
the physical limitations and capabilities of the motors, as rapid or significant changes in thrust can lead
to motor saturation, overheating or mechanical failure. By optimizing the change in thrust, the MPC
controller is expected not only to respect the operational limits but also achieve better stability and
performance of the control, as the MPC will be able to fine-tune the quadrotor’s movements in the z
direction.

Since Af; represents the change in thrust between consecutive time steps, or the relationship
between the total thrust at the current timestep and the previous total thrust, it is given by the following

equation:

Aft(k) = ft(k) — fr(k—1) (3.19)

So, in essence, by optimizing the change in thrust, the MPC controller will indirectly also
determine the optimal control sequence of the absolute thrust fi, through (3.19), for each time step k.
The first element of this optimal control sequence is chosen to be applied as the input to the system at
the current time step, according to the MPC algorithm.

The objective function, by definition, is a function of the control variables and it quantifies the
performance objectives of the control system. It consists of terms that capture desired behaviors, such
as tracking a reference trajectory, minimizing control effort, or avoiding constraints violations, with
the weights assigned to each term reflecting their relative importance. In the case of altitude z, the

objective function J that needs to be minimized for Hc < Hp is set to be the following:
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J=e€" Qe+ & -Qyé+Af R Af; (3.20)

where e is the error vector, é the derivative of the error, Af; the design variable, Q1, Q2 and R the

penalty matrices. More specifically:

e represents the error vector, which is the difference between the reference trajectory of
altitude z and the predicted trajectory of z, over the prediction horizon, since e(k + i), i =
1,..,hpisequalto e(k + i) = r(k + i) — 2(k + i).

The matrix Q1 is a positive semi-definite weighting-penalty matrix with elements on the main
diagonal, that influences how the controller responds to different state deviations by assigning
weights to the different components of error vector e. By adjusting the values in the Q1 matrix,
the control of the importance or priority given to each component of the state error in the cost
function is made possible.

é represents the rate of change of the error vector e or, in other words, the velocity at which
the system is deviating from the desired state trajectory. At this point, it is crucial to underscore
the fact that the viable incorporation of trajectory derivatives arises solely from the
foundational assumption made during the modeling of the quadrotor system. Specifically, it
was presumed that the references, alongside their corresponding derivatives, are both
boundedly limited and known a priori. By virtue of adopting this assumption within the model,
the feasibility of leveraging trajectory derivatives in the trajectory following context becomes
apparent.

The matrix Q2 is a positive semi-definite penalty matrix with elements on the main diagonal,
that assigns weights to the components of the state error derivative vector. Similar to the Q:
matrix, adjusting the values in Q2 prioritize the components of the state error rate in the cost
function.

Aft is the design variable of the optimization problem and it represents the sequence of thrust
changes over the control horizon Hc.

The matrix R is a positive definite weighting matrix, with elements on the main diagonal, used
to penalize deviations of the design variable between successive timesteps. Therefore, it
determines the cost or penalty associated with the control effort and influences the control
strategy to optimize the thrust changes, thus helping to balance the control effort and achieve

smoother control actions.
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The objective function combines these elements to form a composite cost function: the first
term, e - Q, - e , penalizes state errors, aiming to minimize deviations between the predicted and
desired state trajectories, the second term, é” - Q, - ¢ dictates the MPC controller not only to consider
the magnitude of the state error, but also to penalize its rapid changes, thus ensuring an accurate and a
smooth tracking of the reference trajectory, and the third term, Af;T - R - Af;, penalizes the change in
thrust, encouraging control actions that are smoother and consistent with the system's capabilities.

Overall, the goal of the optimization problem is to minimize the value of the objective function
J,, thereby achieving a trade-off between tracking accuracy (minimizing state errors), tracking
smoothness (minimizing the derivative if state errors) and control effort (minimizing thrust changes).
The weights assigned in the penalty matrices allow for the customization of the control objectives,
adapting the controller's behavior based on the specific requirements and performance goals of the
quadrotor system.

Finally, after defining the design variables and the objective function, it is essential to establish
constraints to form a complete optimization problem. The following constraints are the ones
considered in the context of MPC for quadrotor control in the current diploma thesis.

The first constraint defines the allowable range-limits for the change in total thrust (Aft), which
is the selected design variable, to prevent excessive or abrupt variations in the control input, that could
lead to system instability of actuator limitations. The lower bound ensures a minimum change in thrust,

while the upper bound restricts the maximum thrust change:

So, by optimizing the change in thrust, the MPC controller will indirectly also determine the
optimal control sequence of the absolute thrust f;, through (3.19), for each time step k. The first element
of this optimal control sequence is chosen to be applied as the input to the system at the current time
step, according to the MPC algorithm.

The second constraint defines the permissible range for the total thrust (ft), thus ensuring that
it remains within the operational limits of the quadrotor system preventing overloading the motors or
operating outside the safe zone. The lower bound ensures a minimum thrust requirement, while the

upper bound limits the maximum thrust that the system can generate:

ftmin S ft(k+l) S ftmax' i:0,...,HP (322)
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The third constraint enforces the condition that the change in total thrust beyond the control
horizon is zero. The controller plans for the thrust changes only within the control horizon, and beyond
that horizon, the control action is held constant, thus simplifying the optimization problem, and

ensuring a meaningful and feasible control sequence within the defined horizon:

By incorporating these constraints into the optimization problem, the MPC controller can
generate control actions that satisfy both the desired control objectives (minimizing the cost function)
and the system's operational constraints, resulting in safe and effective control of the quadrotor system.
By combining equations (3.20), (3.21), (3.22) and (3.23), the complete optimization problem that will
be used for the MPC of the altitude z is:

min T . - B _

Af. (), o, Afu(k + Hp) ] =€ "Quret € -Qpré+ Afy - R-Af;

subject to Afpn < Afe(k+10) < Af, fori=0,.., Hc
ftmin < ft(k‘l'i) < ftmax:fori =0,..,Hp

Aft(k‘l‘l) = 0,f07‘i= Hc+ 1,...,Hp
(3.24)

3.4.2.2 The optimization problem for the MPC related to the position x

As aforementioned, based on the relationship between the position in the x-axis and the pitch
angle 0, it is necessary to introduce the virtual control variable ux to indirectly control x through angle
regulation. In that context, similar to the approach taken for altitude control, the design variable is

chosen to be the change in the virtual control variable, denoted as Aux, which is equal to:
Auy (k) = u(k) —u,(k—1) (3.25)

So, the MPC algorithm calculates the optimal sequence of Aux values, which are translated into
the appropriate changes in the virtual control variable ux, through equation (3.25). Moreover, since the
MPC controller for the x position operates as the outer loop of the PID controller for 6 angle regulation,

it is responsible for providing the reference 6 angle to the relevant PID controller. Consequently, the
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expression for 6 needs to be written in relation to the virtual control variable ux, something that can be

achieved by solving equation (3.16) for 6(Kk):

9(k) = sin‘l(CZ‘;‘gzl)c)) , assuming that ¢ = 0

/A

with cosp(k) #0 - (p;ti-k-z

Jk=1,..,Z

or

. —1 Ux(k)—sinp(k)sinyp(k)
0(k) = sin™1( e (0 20e () ), fory # 0

3

cosp(k) #0 o ++tk-— ,k=1,..,Z

SEN)

with cos@ (k) - cosy (k) # 0
cosP(k) #0 - p#+k-=,k=1,..,7Z

N

(3.26)

As it can be observed, equation (3.26) produces a constraint to ensure that the denominator is
not equal to zero, since then it would result in an undefined solution. To avoid this constraint violation,
in the general case where angle v is not equal to zero, it is necessary to ensure that cosg (k)cosy (k)
IS nonzero, which can be achieved by appropriately selecting the roll angle ¢(k) and yaw angle y(k)

within their valid ranges of + k - % during the control process. When these angles exceed 90 degrees,

the system becomes highly unstable and may exhibit uncontrollable or unpredictable behavior, and
that is why these constraints have already been imposed during the modelling of the quadrotor system.

Once the design variable has been defined, the next step is to construct the objective function
for the MPC controller. Similar to the altitude control case, the objective function for the x position
control can be formulated with three terms: the first term penalizes the error between the desired x
position and the predicted x position, ensuring that the MPC controller drives the system with accuracy,
the second term penalizes the derivative of the error, aiming to achieve smooth and stable control, by
anticipating changes in the error, and the third term is designed to encourage the system to minimize
unnecessary movements or control actions, thus promoting energy efficiency and reducing

unnecessary adjustments.
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J,=eT-Q,-e+ el -Q,-é+Aul -R- Au, (3.27)

The specific weights assigned to each term in the objective function depend on the control
objectives and priorities of the system and they determine the relative importance of each term in
shaping the control behavior.

The constraints for the MPC controller in the x position follow a similar logic as with the
altitude control. So, firstly, there are upper and lower bounds set for the design variable, the virtual
control variable (Aux), that limit the amount of control input that can be applied at each time step,
preventing excessive or impractical control actions. Similarly, there are also upper and lower bounds
defined for the virtual control variable, that restrict the magnitude of the control input, preventing
control inputs from becoming too large or too small, which can lead to instability or insufficient

control.
Auy, o < Au(k+10) < Auy, o, 1=0,..,He (3.28)

Uy pin < Ux(kK+10) < i=0,..,Hp (3.29)

uxmax ’
Finally, again, there is the constraint that enforces the condition that the change in total thrust
beyond the control horizon is zero, thus helping guarantee the effectiveness and reliability of the MPC

control strategy:
Au,(k+i)=0,i=H;+1,.., Hp (3.30)

So, by combining the objective function, with the constraints, the total optimization problem

for the control of position in the x-axis is formulated as follows:

min o
Auy (k), ..., Au, (k + He) Jx=e

subject to Auy o < Au(k+10) < Auy, i=0,..,H;

'Q1'6’+ éT Q23+AuTRAu
X X

Uy < Up(k+H1) < i=0,.., Hp

uxmax ’
Aux(k+l):0, i:Hc+1,...,Hp
(3.31)
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3.4.2.3 The optimization problem for the MPC related to the position y

The optimization problem for controlling the y position of the quadrotor can be formulated in
a manner completely analogous to the one for the x position. That being said, the design variable is
chosen to be the change in the virtual control variable, denoted as Auy, for indirect control of the y

position through the roll angle ¢:

Auy, (k) = uy (k) — uy (k — 1) (3.32)

So, the MPC algorithm calculates the optimal sequence of Auy values, which are translated into
the appropriate changes in the virtual control variable uy, through equation (3.32), and since the MPC
controller for the y position operates as the outer loop of the PID controller for ¢ angle regulation, it
is responsible for providing the reference ¢ angle to the relevant PID controller.

After performing the necessary calculations to determine the expression for the reference angle
0, denoted as expression (3.36), it becomes feasible to incorporate this value into equation (3.23). By
doing so, the expression that characterizes the reference angle ¢ is obtained, taking into account a non-
zero angle y. Conversely, if y is chosen to be assumed as zero, primarily for the sake of practicality
and simulation purposes, it is possible to directly acquire the expression for the reference angle ¢ from
equation (3.23).

@(k) = sin"*(u,) , assuming that ) = 0

or

@(k) = —sin™(u, (k) - cosy (k) — sinp (k) - uy (k) , for p # 0
(3.33)

Similarly to x, the objective function is constructed to minimize a combination of error terms,
including the error in the y position, the derivative of the error, which is the velocity in the y axis, and
a term that encourages smooth and efficient control actions. These terms are weighted by appropriate
matrices to reflect the importance and desired behavior of each component.

Jy=e"-Q e+ é" -Qy-é+Aul-R-Au, (3.34)
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Moreover, analogous constraints to those for x are imposed on the design variable Au, and its

absolute value u, to ensure that the control input remains within permissible bounds.

Auymin < Auy(k+i) < Auymax, i=0,..,H (3.35)
uy < uy(k+i) < Uy i=0,..,Hp (3.36)

Also, there is the constraint that enforces the condition that the change in the control variable
beyond the control horizon is zero, for adherence to algorithm-specific requirements:

So, by combining the objective function, with the constraints, the total optimization problem
for the control of position in the x-axis is formulated as follows:

min
My (K), ..., Ay (ke + He) Iy = el Qe+ éT -Q,-é +Au§.R - Au,,
subject to Auyml,n < duy,(k+i) < Auymax, i=0,..,H;
uy < uy(k+i) < uy i=0,..,Hp
Muy(k+i) =0, i=H;+1, .. Hp
(3.38)

3.4.3 The terminal constraint

In control systems theory, terminal constraint refers to a condition-constraint imposed on the
system’s state variables at the final time instant, also known as the terminal time, to specify a desired
behavior at the end of a given time period. It adds an additional requirement that the system must
satisfy at the final time, in addition to the usual constraints on the state and control variables throughout
the time horizon.

In MPC, the terminal constraint plays a crucial role as it is an effective way to achieve closed-
loop stability; it acts like an attractor towards the desired reference trajectory, ensuring that the MPC
drives the system towards the reference setpoint and maintains it there. The assurance of stability
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through the terminal constraint in the context of control systems can be attributed to its pivotal role in
fostering convergence towards desired trajectories, while minimizing tracking errors [35].

More specifically, the terminal constraint ensures that the system matches the desired state at
the final step of the prediction horizon, which, consequently, implies that the tracking error e at the
terminal time instant is zero. Generally speaking, in control systems, the goal is to minimize the
tracking error so a terminal constraint that enforces the aforementioned condition makes it possible to
ensure that the error is minimized; as time approaches infinity (t — o), the error asymptotically
approaches zero, indicating convergence to the desired trajectory.

That being said, according to Lyapunov’s theorem, when the error approaches zero, as it is the
case with the employment of terminal constraint, the objective function is minimized, thus resulting in
a decreasing function. Additionally, if the objective function is quadratic and positively defined, as it
is the case for all of the objective functions in the examined quadrotor system, this allows for the
establishment of a positive-definite objective function (J = 0). So, a positive-definite and increasing
function has its lower bound at zero and thus the system adheres to the principles of asymptotic stability
[36].

In the context of trajectory following in MPC, and as far as the quadrotor is concerned, three
terminal constraints can be imposed, one for each of the three 3D coordinates, and they should be
included in the optimization problem formulation for every timestep k within the MPC algorithm:

e Terminal constraint for altitude zz.  Z(k + Hp) = z,.(k + Hp)
e Terminal constraint for position x:  X(k + Hp) = x,.(k + Hp)
e Terminal constraint for positiony:  y(k + Hp) = y,.(k + Hp)
(3.39)

where Z, X , y represent the predicted states of the system at the end of the prediction horizon and z, ,
X, , Vy the desired system states at the same time step.

As it can be observed from (3.39), the satisfaction of the terminal constraint in MPC relies on
ensuring an adequate prediction horizon (Hp) that allows the system sufficient time — an extended time
window, to converge towards the reference trajectory. If the prediction horizon is too short, it restricts
the system's ability to adjust its trajectory and may impede convergence to the desired state. In such
cases, the system may not have ample time to respond to disturbances, adapt its control inputs, and
adequately track the reference trajectory. Consequently, the terminal constraint may remain

unsatisfied.
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In contrast, a longer prediction horizon allows for a more comprehensive planning and
adjustment of control actions, granting the system sufficient time to approach and align with the
reference trajectory. By providing this extended duration, the system can effectively navigate towards
the desired state and satisfy the terminal constraint within the specified time frame. Altogether, the

complete optimization problems for x, y and z are presented in the set of equations (3.40):
min —oT.0. . 3T .0 - ¢ T.p.
Af,(K), ., Afo(k + Hy) J=e" -Qi-e+ é -Q,-é+Afy -R-Af;
subject to Ay < Af(k+10) < Af, ,fori=0,..,He
Aft(k‘l‘i):O,fori:Hc+1,...,Hp
ZA(k + HP) = Zr(k + HP)
min —oT.0. - 3T .0, - 6 T.p.
A (K), ..., Ay (k + Hp) Jy=¢e Qi-e+ e -Q,-é+Au, - R-Au,
subject to Auy, < Au(k+10) < Auy, i=0,.., H

< u(k+i) < i=0,..,Hp

Uy max "’

Aux(k+l):0, i:HC+1F"'IHP
f(k + HP) = xr(k + HP)

Uy min

mln — ,T . . +'T_ -'+AT.R_A
Auy(k)p,Auy(k+HC) ]y_e Ql e e QZ e Uy Uy

subject to Auymin < Auy(k+i) < Auymax, i=0,..,H;
uy < uy(k+i) < uy i=0,..,Hp
Auy(k+l):(), i:Hc‘l‘l,...,HP
y(k + Hp) = yr(k + Hp)
(3.40)

However, it is important to remember that the utilization of a single MPC controller for both x
and y axes involves formulating an optimization problem that combines the individual optimization
problems for x and y and imposes a common prediction and control horizon.

Within this context, to implement the code of the MPC algorithm, it is possible to use the

variable u in order to encompass both control variables ux and uy, for a unified problem. However, in
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order to facilitate effective tuning, distinct bounds are assigned to the control variables for both x and
y and penalties specific to each axis.

In this integrated framework, the individual objective functions for the x and y axes are
combined into a single optimization problem through summation, as presented in set of equations
(3.41). This means that the optimization process now seeks to optimize the combined objective, which
considers both the x-axis and y-axis control objectives. By summing the separate objective functions,
the coordination and balance of control inputs between the x and y axes are prioritized, thus providing
a coherent and coordinated movement in both directions.

min
Au(k),...,Au(k + H;)
J=er Quy ex+ &5 ~Quy by +Auy Ry Auy+e) Qe+ &) -Qqy &, +4uj Ry, - Au,

subject to Auxmin,Auymin < du(k+i) < Auy,,,. ,Auymax, i=0,.., H;

Ut i Uy, <ulk+i) < (LI
Au(k‘l‘l):(), i:Hc‘l‘l,...,HP
£k + Hp) = x,(k + Hp), 9(k + Hp) = yy(k + Hyp)

(3.41)

3.5 Simulation analysis and results

For comparative analysis purposes, the same trajectories explored in Chapter 2., using only
PIDs, will be re-evaluated with the new MPC control scheme design. It is anticipated that the predictive
capability of MPC will yield superior results, enabling the precise tracking of even high-speed

trajectories. The control and prediction horizons are presented in Table 7 :

Table 7. MPC parameters for z and x-y for a single quadcopter

MPC horizons

H. for z 3
H, for z 30
H. for x-y 6
Hp for x-y 20
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The selection of the prediction and control horizons, as well as the decision to employ distinct
horizons for altitude z and positions x-y, was made under careful consideration of the trajectory
complexities in 3D space, as well as the trade-off between performance and computational burden.

More specifically, for the z-axis, the examined trajectory offers greater ease of following, as it
doesn’t involve changes in orientation. Consequently, a smaller control horizon was deemed sufficient,
thus reducing computational cost. Conversely, the x-y trajectory is far more complex, necessitating a
larger control horizon to enable responsiveness, maneuvers and improved control performance.
However, since the control horizon impacts computational costs, a value of 6 was considered adequate
to account for these factors without excessive computational burden.

Moreover, regarding Prediction Horizons, for z-axis trajectory, a substantial prediction horizon
was chosen to facilitate the anticipation of future states, given its inherent simplicity. In contrast, the
X-y trajectory necessitates a slightly shorter Prediction Horizon to ensure the system’s ability to
promptly adapt to changes in orientation and position. Nevertheless, it's important to acknowledge that
in the general scenario, identical values are chosen for the prediction horizon in both the z-axis and x-
y trajectories.

In summary, the selection of the specific values for control and prediction Horizons presented
was a product of thorough trial and error, while also bearing in mind a pragmatic approach that

optimizes the computational resources and addressing the complexities of the trajectory.

Table 8. The PID values for angle requlation for the MPC design for a single guadcopter

PID values
Proportional gain kp Integral gain k; | Derivative gain kp,
PID controller for angle phi 0.15 0.0001 0.3
PID controller for angle theta 0.05 0.0001 0.25
PID controller for angle psi 0.005 0.0001 0.01

The choice of the PID values for angle regulation, as presented in Table 8, follows a similar
methodology to that employed in Chapter 2. More specifically, the process begun by selecting the
proportional gain aimed to minimize the error between the reference angle generated by the MPC for
positions x-y and the actual angle of the PID control. This choice necessitated a small value, given the

sensitivity of angular control. Then, a larger derivative value was chosen to mitigate oscillations in the
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system, and finally, a very small value for the integral gain was adopted to ensure that the steady state

error converges to zero, while preventing the possibility of integral windup.

Table 9. The selected penalty matrices for the MPC design for a single quadcopter

Peanalty matrices

Error penalty matrix Q1 Velocity penalty matrix Q> | Design variable penalty matrix R

altitude z diag(1 - ones(hp, 1)) diag(0.05 - ones(hp, 1)) diag (0.5 - ones(hc, 1))

positionx = diag(1- ones(hpxy, 1)) diag(0.01 - ones(hpxy, 1)) diag(0.75 - ones(hcxy, 1))

positiony | diag(1- ones(hpyy, 1)) | diag(0.01-ones(hpyy, 1)) diag (0.5 - ones(hcyy, 1))

As described in sub-chapter 3.4.2., the penalty matrices, used to assign weights to the terms of
the objective functions, are positive semi-definite matrices with elements along the main diagonal and
dimensions relevant to the specified horizons. The selection of their values, as presented in Table 9, is
contingent upon the objectives established by the designer, as well as the specific attributes of the
system.

More specifically, through a process of trial and error, the error penalty matrix denoted as Q1,
is chosen to have a relatively high value — being the largest among the matrices. This choice prioritizes
the minimization of errors between the actual and the reference trajectories. Conversely, the velocity
(the derivative of the error) penalty matrix Q2 is selected to have a smaller value, allowing for the
correction of initial errors stemming from the quadrotor’s starting conditions.

Finally, the design variable penalty matrix, R, contains relatively small values in order to
protect the system from exhibiting overly abrupt behavior. Consequently, the biggest value is assigned

to x-position, which is associated to the particularly sensitive angle theta.

UNIWA, Department of Electrical & Electronics Engineering, Diploma thesis, Despoina — Panagiota Vavelidou
101



Development of a distributed model predictive control framework for autonomous unmanned aerial vehicle swarms

It is also important to highlight the fact that, penalty matrices are commonly assigned varying
values along the diagonal, with larger values typically placed towards the end. This practice is related
to the assumption that the values produced towards the end of the horizon tend to be less reliable or
more prone to uncertainty. Consequently, by assigning to them larger penalty values, the control
system penalizes them more to maintain better control or tracking performance. However, in this

diploma thesis, for ease of tuning, a uniform value was applied throughout the entire diagonal.

Table 10. The minimum - maximum values for the variables for the MPC design for a single quad

Min and max values for the variables

Minimum value Maximum value
i [N] -20 20
Ux [rad] -0.18 0.18
Uy [rad] -0.2 0.2
dfi [N] -10 10
dux [rad] -0.05 0.05
duy [rad] -0.06 0.06

The selection of values for the control variables (Af,, Au,, Au,,) and the variables from which

they stem (ft,ux,uy), as presented in Table 10, involved a meticulous process of trial and error
coupled with considerations of real-life implementation. In particular, the values were deliberately
chosen within a narrow range since the quadrotor is a highly sensitive system that is prone to abrupt
behavior. Moreover, for the sake of simplifying the tuning process, the decision was made to set the

minimum and maximum values equal and opposite.

35.1 Simulation for the 1%t trajectory set

The simulation graphs for the slow trajectory set and for a time span of half a period

(approximately 1047 timesteps) for visual clarity are presented below:
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Figure 61. Position x and Xrer in relation to time for trajectory tracking (1% set) using the MPC design
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Figure 62. Position y and yrer in relation to time for trajectory tracking (1% set) using the MPC design
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Figure 63. Position z and z in relation to time for trajectory tracking (1% set) using the MPC design

As depicted in Figure 61, Figure 62 and Figure 63, the quadrotor demonstrates an exceptional
ability to closely follow the prescribed X, y, and z trajectories. More specifically, initially, the quadrotor
swiftly converges to the target trajectory, displaying a rapid 'catching’ capability. Then, once aligned
with the desired path, it exhibits remarkable stability, with a high level of precision. Notably, the y-
position, characterized by a cosine trajectory, exhibits the best tracking performance, which is
attributed to the favorable alignment of the initial condition with the trajectory. So, overall, these
figures highlight the ability of the MPC contorllers to achieve great performace in terms of minimizing
the tracking errors along all directions.

In addition to the precise tracking of positions, it is worth highlighting the behavior of the
angles (Figure 64, Figure 65 and Figure 66), which are generated as references by the MPC controller
for x (related to angle theta) and y (related to angle phi). The quadrotor exhibits a notably sharp
response in regulating these angles, presenting rapid alignment with the desired orientations, and the
same is true for the control inputs (Figure 67, Figure 68, Figure 69 and Figure 70).

More specifically, during the initial stages of the trajectory tracking, both the angles and the
associated control inputs exhibit sharp and dynamic behavior, but as the quadrotor approaches its

desired path, there is a transition to a stable state characterized by minimal variations around zero.
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Figure 64. Roll angle ¢ in relation to time for trajectory tracking (1% set) using the MPC design
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Figure 65. Pitch angle 0 in relation to time for trajectory tracking (1% set) using the MPC design
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Figure 66. Yaw angle v in relation to time for trajectory tracking (1% set) using the MPC

design
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Figure 67. Thrust f; in relation to time for trajectory tracking (1% set) using the MPC design

UNIWA, Department of Electrical & Electronics Engineering, Diploma thesis, Despoina — Panagiota Vavelidou
106



Development of a distributed model predictive control framework for autonomous unmanned aerial vehicle swarms

Torque tx in relation to discrete time
I I I

0.8 N

0.4

0.2

tx (Nm)

'08 l l L l
0 100 200 300 400 500 600 700 800 900 1000

timesteps k

Figure 68. Torque 1« in relation to time for trajectory tracking (1% set) using the MPC design
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Figure 69. Torque Ty in relation to time for trajectory tracking (1% set) using the MPC design
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Figure 70. Torque 1 in relation to time for trajectory tracking (1% set) using the MPC design

Furthermore, apart from the individual graphs for positions X, y, and z, it is essential to create
a 3D visualization of the trajectory to observe the quadrotor's behavior in three-dimensional space. In

Figure 71, the spiral-like trajectory for three complete periods is presented for that purpose.
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Figure 71. Actual trajectory compared to reference trajectory for the 1% set using the MPC design

Figure 71 reveals the quadrotor's exceptional ability to closely adhere to the trajectory, even

during changes in orientation, and it does so with remarkable agility. This quantitative precision is
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further elucidated by the calculation of the MSE values for each of the three separate axes and the
overall system, as displayed in Table 11 for three time periods. The diminutive values are indicative

of the system's exceptional performance, in all axes and overall.

Table 11. The MSE values for the three axes — 1% trajectory using the MPC design

Mean Squared Error (MSE)

X-axis trajectory 0.0007
y-axis trajectory 0.0000
z-axis trajectory 0.0024
Mean Euclidean Distance 0.0043
3.5..2 Simulation for the 2" trajectory set

Analogously to the simulation of the slow trajectory, the simulation graphs for the fast (the 2"%)

trajectory will be held for a timespan of half a period (approximately 214 timesteps).
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Figure 72. Position x and Xre in relation to time for trajectory tracking (2" set) using the MPC design
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Figure 73. Position y and Yrer in relation to time for trajectory tracking (2" set) using the MPC design
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Figure 74. Altitude z and zr in relation to time for trajectory tracking (2" set) using the MPC design

As evident from Figure 72, Figure 73 and Figure 74, which illustrate the tracking performance
along the X-Y and Z axes, respectively, through the use of MPC design, the quadrotor exhibits
exceptional performance. Despite the faster nature of this trajectory set, there is demonstrated

remarkable agility, swiftness in adapting to changes in orientation and prompt aligning with the desired
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trajectory. In the following graphs (Figures 75 to 81) the angles and control inputs that make for this

tracking performance are presented.
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Figure 75. Roll angle ¢ in relation to time for trajectory tracking (2" set) using the MPC design
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Figure 76. Pitch angle 0 in relation to time for trajectory tracking (2" set) using the MPC design
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Figure 77. Yaw angle vy in relation to time for trajectory tracking (2" set) using the MPC design

22

Total thrust ft generated by rotors in relation to discrete time
T T T I I

18
16

14 .

ft (N)

2 | | | | | |
0 50 100 150 200 250 300

timesteps k

Figure 78. Thrust f; in relation to time for trajectory tracking (2" set) using the MPC design
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Figure 79. Torque « in relation to time for trajectory tracking (2" set) using the MPC design
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Figure 80. Torque Ty in relation to time for trajectory tracking (2" set) using the MPC design
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Figure 81. Torque 1 in relation to time for trajectory tracking (2" set) using the MPC design

The angles and control inputs display sharp and dynamic responses, underscoring the
quadrotor’s ability to execute rapid and agile maneuvers, thus resulting to precise tracking and control.
The trajectory for the 2" reference set in 3D space is presented in Figure 82 as a clear evidence of the

quadrotor’s exceptional performance thanks to the MPC design employed.
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Figure 82. Actual trajectory compared to reference trajectory for the 2" set using the MPC design

The MSE values for the 2" trajectory are presented in Table 12:
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Table 12. The MSE values for the three axes — 2" trajectory using the MPC design

Mean Squared Error (MSE)

X-axis trajectory 0.0024

y-axis trajectory 0.0000

z-axis trajectory 0.0081

Mean Euclidean Distance 0.0145
3.5..3 Comparison with the PID design

From the presented graphs and the evaluation index MSE calculations, it becomes evident that
the MPC design, which incorporates two MPCs for position and three PIDs for angle regulation
respectively, outperforms the PID design, which utilizes a total of six PIDs for both position and angle
regulation. This compelling evidence highlights the advanced capabilities of MPC, which offers a
superior tracking performance, making it a very suitable choice for complex systems where precision
and adaptability are paramount.

More specifically, the MSE, which is a key indicator of tracking accuracy, showcases a
substantial difference; the MSE for the MPC design is approximately five times smaller than that of
the PID design (1% set: 0.0043 vs 0.0205, 2" set: 0.0145 vs 0.0741), underscoring the superior
performance of the former.

Furthermore, when examining the angles, as well as the control inputs, intriguing dynamics are
unveiled. More precisely, in the MPC design these parameters exhibit a more dynamic behavior, with
steeper and more pronounced changes. While tuning plays an important role in this behavior, it also
highlights that the MPC design employs more aggressive control actions, that makes for swift and
adaptive responses, ultimately contributing to a superior tracking performance. This, of course, comes
with more energy consumption — computational load.

In Table 13, a comprehensive comparison of the PID and the MPC design for the quadrotor
system examined is presented, highlighting their distinct characteristics and performance attributes.
These observations align with the established theoretical principles and advantages of MPC presented

in section 3.1.
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Table 13. Comparison between the PID design and the MPC design

Quadrotor PID design

Quadrotor MPC design

Mean Squared Error

higher due to reactive control

lower due to predictive control

Adaptability limited high
Control Precision limited high
Constraint Handling none efficient handling
Computational load lower higher
Response Time slower faster

Multi-variable Control

separate PI1Ds for each variable

unified control with consideration of

the interdependence between x and y

Overall, the simulations conducted provide clear evidence that the Model Predictive Control
(MPC) strategy employing two MPCs for position control and three inner-loop PID controllers for
angle regulation, outperforms the design that employs only PID controllers, by a significant margin.
This exceptional performance can be attributed to the multiple advantages and predictive nature of
MPC, which allows for precise control and trajectory tracking. That being said, while the tuning
process may be intricate, it offers the flexibility to fine-tune numerous parameters in order to achieve
the desired performance.

So, after conducting a thorough evaluation and assessment of the performance of MPC in the
context of trajectory tracking, spanning two distinctly paced scenarios, it becomes apparent that this
advanced control strategy has not only established its efficacy, but also reveals a wealth of potential
for application in even more intricate systems. More specifically, the promising outcomes observed in
this chapter inspire confidence in its versatility and adaptability, and thus, in its application to address
the unique challenges posed by a swarm of quadrotors, as opposed to the control of a single entity.

The transition from the realm of single-agent control to orchestrating the collective behavior
of a swarm is an example of harnessing the full spectrum of MPC’s capabilities and underscores the
potential of this control strategy in real-world scenarios, ranging from autonomous surveillance and
precision agriculture to disaster response and environmental monitoring, where the autonomous
coordination of multiple agents is paramount.

It is within this context that the next chapter is explored, where the application of MPC to
swarm robotics takes center stage, offering a promising glimpse into the future of autonomous multi-

agent systems.
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CHAPTER 4: Swarm of quadcopters

In the final chapter of this diploma thesis, the proposed control framework presented in Chapter
3, with two separately working Model Predictive Controllers, is utilized for the management of
multiple quadcopter agents, rather than a single quadcopter, also known as a swarm of quadcopters. In
this context, the chapter begins by providing some introductory information about the swarms, as well
as the distributed MPC (DMPC) framework implemented. Finally, in order to establish the efficiency
and functionality of the designed control system, simulations are conducted for trajectory tracking,
with emphasis on guaranteeing not only collision avoidance between the agents of the swarm, but

obstacle avoidance, as well.

4.1 Swarm

A swarm of quadrotors, commonly referred to as a quadcopter swarm or a drone swarm,
embodies the collective intelligence of multiple autonomous or semi-autonomous gquadrotors that work
collaboratively to achieve a common goal. By leveraging the power of cooperation and coordination,
quadrotor swarms unlock unprecedented capabilities, enabling them to perform complex tasks that
would be beyond the reach of a single drone. As a result, quadrotor swarms find applications in many
industries or domains, like surveillance, search and rescue in disaster scenarios, precision agriculture,
environmental monitoring, communication relay and more [4]. Figure 83 presents a swarm of five

quadcopter agents.

Figure 83. Visual representation of a swarm of quadcopters with 5 agents

In the context of swarms, formation [37] refers to the spatial arrangement of the drones and
how they maintain specific spatial configuration while performing tasks collectively, which can change
depending on the specific application, mission objectives, and the complexity of the swarm task.
Whatever the case, orchestrating a swarm of quadrotors is a challenging task that requires the
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combination of advanced control algorithms, reliable communication systems, and well-coordinated

design and planning. This is because, there are several factors that need to be addressed for an effective

and safe operation, including:

Communication and Coordination: the quadcopters must be able to share information
to work collaboratively and maintain cohesion, under a robust and low-latency
communication network.

Collision Avoidance: avoiding collisions between quadrotors is critical for ensuring the
safety and integrity of the swarm, as it navigates through complex environments or
potential hazards. Thus, the relevant mechanisms must be robust enough and able to
adjust trajectories in real-time.

Path Planning: efficient path planning is necessary to optimize the trajectories of
individual quadrotors and the overall swarm, while also considering factors such as
energy consumption, mission objectives, obstacle avoidance, formation control and
dynamic changes in the environment.

Scalability: as the number of drones in the swarm increases, the complexity of
communication and coordination grows exponentially, thus requiring sophisticated

algorithms to ensure efficient cooperation.

Finally, depending on various factors like the swarm’s size, the nature of the task, the available

computational resources or the communication capabilities, different control strategies can be chosen,

combined, or even customized to suit specific applications. In the context of swarm, a control strategy

is the approach or methodology used for coordination and control of autonomous agents, to achieve a

collective goal or perform a task. Some common control strategies used in swarm robotics are:

Distributed Control: this strategy involves giving each agent a (certain) degree of
autonomy and decision-making capabilities. The communication between the agents
and, ultimately, the coordinated behavior, is achieved through information sharing. [29]
Centralized Control: in contrast to distributed control, this strategy involves a single
central controller that makes the decisions and sends the commands to all agents. This
approach is common in scenarios when real-time coordination is critical. [38]

Hierarchical Control: with this strategy, there is a centralized controller placed
somewhere that determines high-level actions, as well as distributed controllers at each

agent to implement these actions. [39]
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e Leader-Follower Control: some agents within the swarm act as leaders, which make
decisions and guide the behavior of the swarm, while the rest act as followers of the
leader. [40]

e Learning-Based Control: the agents learn and adapt their behavior over time, by using

machine learning techniques, such as reinforcement learning or neural networks. [41]

4.2 Design of the quadrotor swarm

The control architecture employed for the swarm in the scenario of trajectory tracking is the
same as that for Chapter 3., which incorporates two MPC controllers, one devoted to managing altitude
(z-axis), and the other for the x-y plane, as well as three Proportional-Integral-Derivative (PID)
controllers for the regulation of the inner-loop angles.

This MPC control strategy is used for the developing of a comprehensive distributed MPC
(DMPC) framework, that orchestrates the collective behavior of the swarm. In that context, the
different agents are controlled autonomously, eliminating the necessity of a single - central controller,
which could serve as a potential point of failure. Moreover, the proposed framework doesn’t
predetermine the trajectories for each agent, but each one of them adjusts its behavior to closely follow
the real-time desired trajectory, allowing for more agile responses to changing conditions and
unforeseen obstacles.

Furthermore, in the context of a swarm, as already mentioned in sub-chapter 4.1., a mechanism
is required to facilitate communication among the agents to prevent collisions. When using the
aforementioned control framework, it is important to remember that there are two distinct controllers
utilized for position control that solve two separate optimization problems, with the z-axis MPC taking
precedence.

That being said, a straightforward approach to address this is to initiate the procedure by
executing the z-axis MPC controller, while maintaining the existing framework intact and without
incorporating any collision avoidance provisions at this stage. Subsequently, upon generating the
solution, the z-axis control output f; is transmitted to the x-y MPC controller, accompanied by the x-
y-z triad data predictions from the prior time instant k-1. So, within the x-y controller's MPC scheme,
a collision avoidance constraint is introduced, as a nonlinear constraint function in the optimization
problem, which is designed to ascertain the euclidean distance between the focal agent and all other
agents throughout the prediction horizon. In the general case, this 3D distance must be greater than the

agents' radius, which essentially defines a safety margin as an imaginary sphere around them.
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Collision avoidance constraint: Euclidean Distance(Agent;, Agent;) =

= \/(xl- —x) + (i —y;) + (2 — z)" > agent's radius, for all of Hp (4.1)

where (x;, y;, z;) represent the position of the current agent Agent; and (x;,y;,z;) represents the
position of the other agents Agent;, in the three-dimensional space.

Concurrently, the x-y-z triad for the current agent is accounted for, where z-component
information stems from the completed z-axis MPC’s predictions and the x-y components emanate from
the ongoing x-y controller's prognostications at that specific point in discrete time k. This strategy is

presented in Figure 84.

Collision avoidance constraint:
Euclidean Distance (Agent_i, Agent_j) =

=V((x i-x_j)*2+(y_i-y j)*2+(z_i-z j)*2) > radius
for all of the prediction horizon

' ™

/ -\' g s
MPC for altitude z ft, predictions z (for k) for the current agent MPC for posmon_x and pos_lt!on Y
(without a constraint for collision — (with a const.ralnt for collision
avoidance) predictions x,y and z (for k-1) for the other agent: avoidance)
\ ) N __/'

Figure 84. The Distributed MPC framework communication strategy for collision avoidance

This inter-agent communication allows the quadrotors to make decisions based on not only
their own state but also the predictions regarding the states of the other agents, thus being able to adjust
their trajectories and avoid potential collisions while also working together to achieve their individual
and overall optimization objectives.

It is important to note that this proposed strategy is attuned to prioritizing control for altitude
z, since it is arbitrarily assumed that the z-axis will present a better trajectory (i.e., a smaller error) than
that of x-y. However, while this compromise, necessitated by the dual-controller framework, is not an
optimized way of approaching the swarm case, it offers a pragmatic means to address collision
avoidance concerns within the given context.

Finally, this diploma thesis does not employ a predefined formation control strategy for the
swarm; instead, the quadrotors autonomously and dynamically determine their positions and

formations during operation (online). This means that since the quadrotors are able to communicate
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and coordinate their movements, through the aforementioned strategy, they make decisions
collectively to achieve the desired formation, without the absolute need for a fixed strategy set

beforehand.

4.3 Simulation for trajectory tracking with collision avoidance

For this simulation, a multi-agent swarm composing of three identical quadcopters
commencing from an initial configuration where each agent occupies an adjacent position in the x axis
IS being considered (Agent 1: x = -1 [m], Agent 2: x = 0 [m], Agent 3: X = 1 [m]). The reference
trajectory is:

Xref(t) = 5 cos (0.5-¢)

Yreft) = 5 sin (0.5 - t)
Zref(t) = -1-0.1-t

The tuning parameters are presented in the following Tables. More specifically, Table 14
presents the chosen horizons for the swarm. The Control Horizons have remained the same as those
chosen in Chapter 3, due to their excellent performance, while the Prediction Horizons have been
extended slightly compared to the previous chapter, maintaining uniformity for both z and x-y
dimensions, in pursuit of a more universally applicable approach. Table 15 presents the PID values for
the swarm, which are generally basic values for angle regulation PID control without excessive tuning.
Contrary, the values of the penalty matrices, as depicted in Table 16, are carefully and intentionally
chosen to be relatively small, especially for the error penalty matrix Q1. Generally basic values were
also chosen for the maximum and minimum parameter values in Table 17.

Moreover, in the MPC framework designed for an individual quadcopter, terminal constraints
were implemented for both the z-axis and the x-y plane. However, in the context of swarm control, a
strategic decision was made to simplify the system while preserving its efficiency. Thus, the terminal
constraint was retained exclusively for the z-axis; a simplification driven by the need for enhanced
maneuverability and adaptability required for such complex task.

Finally, given that the quadrotors examined have an arm length of 0.24 m, a safety radius of
0.3 m around each agent is deemed acceptable. At this point it is important to highlight the fact that
the tuning parameters and variables remain consistent for all agents, as it is assumed that they are

geometrically identical quadcopters.
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Table 14. The selected swarm Control and Prediction Horizons for z and x-y

MPC horizons

H. for z 3
Hp for z 40
H. for x-y 6
Hp for x-y 40

Table 15. The PID values for angle requlation for the Distributed MPC design for a swarm of quads

PID values
Proportional gain kp Integral gain k; | Derivative gain kj
PID controller for angle phi 0.05 0.0001 0.15
PID controller for angle theta 0.05 0.0001 0.15
PID controller for angle psi 0.005 0.0001 0.05

Table 16. The selected Penalty Matrices for the Distributed MPC design for a swarm of guadcopters

Peanalty matrices

Error penalty matrix Q1 Velocity penalty matrix Q2 | Design variable penalty matrix R

altitude z diag(2 - ones(hp, 1)) diag(0.05 - ones(hp, 1)) diag(0.01 - ones(hc, 1))

position X | diag(1.5- ones(hpyy, 1)) = diag(0.5 - ones(hpyy, 1)) diag(0.01 - ones(hcyy, 1))

positiony ' diag(1.5- ones(hpxy, 1)) diag(0.5 - ones(hpxy, 1)) diag(0.01 - ones(hcxy, 1))
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Table 17. The minimum-maximum swarm values for the variables for the Distributed MPC design

Min and max values for the variables

Minimum value Maximum value
fi [N] -20 20
ux [rad] -0.2 0.2
Uy [rad] -0.2 0.2
dfi [N] -5 5
duy [rad] -0.05 0.05
duy [rad] -0.05 0.05

At this point, it is important to highlight the fact that, while the collision avoidance constraint
(specified by equation 4.1) dictates that the Euclidean distance between the quadcopters should exceed
the certain chosen radius, different simulation scenarios conducted witnessed violations of this
constraint. One possible explanation is that the solver responsible for evaluating these distances, i.e.,
SQP, relies on the predictions produced by the MPC models at the previous timesteps and not on the
current positions. That being said, if these predictions are significantly wrong, the solver might
erroneously conclude that the real constraint is satisfied and that there aren’t any collisions detected
between the agents of the swarm.

In light of these observations, one potential solution turned out to be increasing the radius value
used in this constraint, thus making the constraint bound stricter, to account for uncertainties and
inaccuracies. After several trial-and-error attempts, it was determined that setting the constraint radius

to three (3) times its original value effectively addressed the issue (Table 18).

Table 18. The chosen radiuses for collision avoidance in trajectory tracking of the swarm

Chosen radiuses

Agents’ safe radius 0.3 [m]
Collision avoidance constraint radius 3-agents’ safe radius [m]

Figure 85, Figure 86 and Figure 87 present the trajectory tracking of the agents of the swarm
with respect to the reference trajectories for x, y, and z axes, respectively, while Figure 88 presents the
trajectory of the swarm in three-dimensional space. Since all agents share the same reference trajectory
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rather than a predefined one, it is expected that there will be deviations for the trajectory tracking in

the x-y plane, due to the imperative need to avoid collisions. On the contrary, with regard to trajectory

tracking along the z-axis, since there are no constraints related to collision avoidance in the MPC for

the z-axis, it is expected that the behavior of the agents will maintain the same or relevant altitude.

Pasition x [m]

Position y [m]

Position x for all agents of the swarm
T

Agent 1: Actual x

Agent 2: Actual x
Agent 3: Actual x
— — —Reference x

200 400 600 800 1000 1200 1400 1600 1800
Time Steps (k)

Figure 85. Position x tracking for the agents of the swarm using Distributed MPC

Position y for all agents of the swarm
I

I I
‘ Agent 1: Position y
Agent 2: Position y
Agent 3: Position y
— — — Reference Trajectory: Position y

200 400 600 800 1000 1200 1400 1600 1800
Time Steps (k)

Figure 86. Position y tracking for the agents of the swarm using Distributed MPC
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5 Position z for all agents of the swarm
T

- Agent 1: Pasition z
— Agent 2: Position z
3 o Agent 3: Position Z _
- - — — Reference Trajectory: Position z

Position z [m]
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[
A
\
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Figure 87. Position z tracking for the agents of the swarm using Distributed MPC
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Figure 88. The 3D trajectory tracking for the agents of the swarm using Distributed MPC

As anticipated, the agents display minor deviations from the actual trajectory in the x and y
axes, which primarily stem from the need to steer clear of potential collisions among themselves.
However, the overarching observation is that the agents effectively adhere to the reference trajectory,
without the imposition of a separate and predetermined reference trajectory for each one of the agents
or a predefined formation. In other words, they collectively navigate while maintaining a certain degree
of flexibility in their individual paths; a behavior that underscores their ability to autonomously and

intelligently adapt their movements to ensure collision-free operation and precise trajectory tracking.
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The efficacy of the designed DMPC methodology employed can be further evaluated through
the calculation of an evaluation index, such as the average sum of euclidean distances (obtained by the
calculation of the 3D distances of all agents at every timestep divided by the total number of timesteps
k).

This calculation is highly dependent on the chosen constraint radius value, since opting for a
smaller value effectively relaxes the constraint, making it less stringent. Consequently, this adjustment
allows for the agents’ trajectories to be closer in proximity, while still be considered compliant with
the constraint, which ultimately results in a more favorable evaluation index. Contrary, increasing the
constraint radius leads to the tightening of bounds, since the agents must adhere to a greater constraint
value. This interdependence between the tracking evaluation index and the constraint radius is

presented in Table 19.

Table 19. Comparison between the constraint radius and tracking evaluation index using Distributed

MPC
Chosen constraint radius Average Sum of Euclidean Distance for three time periods
3 - radius 2.19
2.7 - radius 2.04
2.5 radius 1.95
2.3 radius 1.85
2 - radius Collision constraint violation

4.4 Trajectory tracking with obstacle evasion

To incorporate obstacle avoidance within the Distributed MPC framework, a distinct constraint
is essential to be included into the optimization problem alongside the collision avoidance constraint.
More specifically, considering an obstacle represented by a sphere along the reference path, with its
center on such path at coordinates (Ox, Oy, Oz) and a known radius, it is possible to introduce a
constraint that enforces that the Euclidean distance between each agent of the swarm and the center of
the obstacle to be greater than the agent’s radius and the obstacle’s radius for all of the prediction

horizon. Mathematically, this can be expressed as:
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Obstacle evasion constraint: Euclidean Distance(Agent;, Obstacle) =

= \/(xi —0,)%+ (yl- — y)z + (z; — 0,)? > (agent's radius + obstacle's radius)

forall of Hp
4.2)

where (x;,y;,z;) represents the position of the agent and (0,, 0,,0,) represents the center of the
obstacle, in the three-dimensional space. This constraint ensures that the agents maintain a safe
distance from the obstacle at all times.

It is important to note that, in order to simulate a scenario that closely resembles real-life
situations and practical swarm applications, it’s essential to ensure that the swarm becomes aware of
the obstacle only when the agents are within a close proximity to it. That being said, the obstacle
avoidance constraint characterized by equation 4.2, should only be activated when the Euclidean
distance between the current-real position of the agent and the center of the obstacle exceeds a
predetermined threshold distance. In practical terms, this mimics how a swarm of quadcopter agents
would encounter obstacles in real world, using cameras, LIDAR or other sensor systems for proximity
awareness and obstacle perception. Figure 89 presents the updated strategy employed, that

incorporates obstacle avoidance:

Collision avoidance constraint:
Euclidean Distance (Agent_i, Agent_j) =
=V((x_i-x_j)"2 + (y_i-y_j)*2 +(z_i-z_j)*2) > radius
for all of the prediction horizon

e ~, i, predictions z (for k) for the current agent, /"~ N

. real positions x,y,z for the current agent MPC for position x and position y
MPC for altitude z
s

(without any constraints) predictions x,y and z (for k-1) for the other agent

(with constraints for collision and
obstacle avoidance)
o /

Obstacle avoidance constraint:
Euclidean Distance(Agent_i, sphere- obstacle)= V((x_pred_i - x_sphere)*2 +

(y_pred_i-y_sphere)*2 + (z_pred_i - z_sphere)*2) >= R_agent + R_sphere
for all of the prediction horizon
activated only if the real 3D distance is bigger than the threshold visibility
distance

Figure 89. The Distributed MPC framework with collision and obstacle avoidance
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44.1 Simulation analysis and results

For this simulation, there are three identical quadcopter agents in the swarm, which start from
an initial configuration of adjacent positions in the y axis (Agent 1: x =2 [m],y =2 [m],z =-2 [m],
Agent2: x=2[m],y=3[m],z=-2[m]and Agent 3: x =2 [m], y =1 [m], z=-2 [m]). The reference
trajectory examined is:

Xref(t) = 2+ 1.5t
Yref(t) = 2+ 0.7t
Zref(t) = -2 —-0.1t

and the obstacle (its center) appears suddenly at coordinates:

0, = 9.5 [m]
0, = 5.5 [m]
0, =—2.3[m]

The tuning parameters for obstacle evasion largely mirror those used for simple trajectory
tracking, presented in sub-chapter 4.3. However, given the challenging task faced by the swarm agents
— following a trajectory amidst sudden obstacle appearances while adhering to the terminal constraint
for the z-axis — specific modifications were considered necessary.

More specifically, the PID controllers’ settings, as well as the maximum and minimum values
for the variables of the optimization problems remained consistent. However, the prediction horizons
were deliberately extended, both in the z-axis and the x-y plane, as presented in Table 20 providing

the agents with a broader prediction scope to effectively capture the dynamics of the environment.

Table 20 . The updated swarm control and prediction Horizons for z and x-y for obstacle evasion

MPC horizons

H. for z 3
Hp for z 50
Hc for x-y 6
Hp for x-y 50

Additionally, particular emphasis was placed on selecting appropriate values for the penalty
matrices (Table 21), specifically targeting Q1 and Qz, corresponding to the error and velocity error
matrices. In this specific configuration, smaller values were chosen for Q1 to enable accurate tracking

without veering so closely as to risk collision, while the Q> matrices were intentionally set to zero for
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all three dimensions. This deliberate adjustment nullifies the influence of velocity errors between the
actual and reference velocities within the objective functions. Consequently, the agents' task becomes
more manageable, and the swarm can navigate through complex scenarios, such as sudden obstacle
appearances, with enhanced robustness. The rationale behind setting the Q> matrices to zero is
followed by the exclusion of the velocity component in the z axis terminal constraint; a decision that
grants the system with additional flexibility.

Moreover, The R matrix, serving as the penalty matrix for motion economy, was specifically
augmented within the framework. This adjustment was crucial as it emphasizes the need for swarm
agents to navigate both left and right of obstacles while ensuring they do not deviate excessively from
their designated trajectory. This delicate balance in lateral movement is vital for maintaining precision
in obstacle evasion scenarios. Finally, Table 22 presents the chosen radius for the swarm collision and

obstacle avoidance simulation.

Table 21. The updated warm Penalty Matrices for the Distributed MPC design with obstacle evasion

Peanalty matrices

Error penalty matrix Q1 Velocity penalty matrix Q2 | Design variable penalty matrix R

altitude z diag(1 - ones(hp, 1)) diag(0 - ones(hp, 1)) diag(0.1- ones(hc, 1))
diag(0.75

position x diag(0 - ones(hpyy, 1)) diag(0.5 - ones(hcyy, 1))
- ones(hpyy, 1))
diag(0.75

position y diag(0 - ones(hpyy, 1)) diag (0.5 - ones(hcyy, 1))

: ones(hpxy, 1))

Table 22. The chosen radiuses for swarm collision and obstacle avoidance in trajectory tracking

Chosen radiuses

Agents’ safe radius 0.3 [m]
Obstacle’s radius 1 [m]
Threshold visibility distance 3 [m]
Collision avoidance constraint radius 3 -agents’ safe radius [m]

Obstacle avoidance constraint radius | (obstacle’s radius + 2.5-agents’ radius) [m]
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Figure 90, Figure 91 and Figure 92 depict the swarm’s trajectory tracking with obstacle evasion in the

X, y and z dimensions, respectively, while Figure 93 illustrates the trajectory in three-dimensional

space.

18 Position x for all agents of the swarm

T I [
Agent 1: Actual x
Agent 2: Actual x
Agent 3: Actual x

— — — Reference x

Position x [m]

0 50 100 150 200 250 300 350 400 450 500
Time Steps (k)

Figure 90. Position x tracking for the agents of the swarm using Distributed MPC

1 Position y for all agents of the swarm
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Agent 1: Position y
Agent 2: Position y
Agent 3: Position y y
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Position y [m]
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Time Steps (k)

Figure 91. Position y tracking for the agents of the swarm using Distributed MPC
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2 Position z for all agents of the swarm
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Figure 92. Position z tracking for the agents of the swarm using Distributed MPC
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Figure 93. The 3D swarm trajectory tracking with obstacle avoidance using Distributed MPC

The graphs presented offer a comprehensive visual representation of the swarm's ability to
adapt its path dynamically. This adaptation ensures accurate trajectory tracking while effectively
avoiding obstacles and maintaining safe distances between agents to prevent collisions. Moreover, the
Average Sum of the Euclidean Distances among the agents throughout the simulation (500 timesteps)
stands at 2.88, providing quantitative confirmation of the swarm's precise tracking capabilities, as well
as the Distributed Model Predictive Control (DMPC) framework’s effectiveness in managing

challenging swarm tasks.
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CHAPTER 5: Conclusions

5.1 Summary, results and challenges

This diploma thesis embarked on a journey aiming to address the complex challenges
associated with controlling a swarm of quadcopters in the scenario of trajectory tracking in
unstructured environments. For this purpose, it proposed a comprehensive distributed model predictive
control (DMPC) framework, capable of orchestrating the collective behavior of a quadcopter swarm,
with not only precise trajectory tracking but intelligent collision and obstacle avoidance, as well; a task
crucial for real-world applications.

The research began with a thorough exploration of quadcopter dynamics. This involved
constructing a mathematical model to describe its complex and nonlinear behavior, followed by the
design of a PID cascaded control system. This endeavor not only deepened the understanding of the
control challenges associated with an individual quadcopter, but also revealed that relying solely on
PID control is insufficient for satisfactorily addressing the complexities of path following, especially
for faster trajectories in 3D-space.

In the subsequent phase, following the assessment of PID's subpar performance, a model
predictive control (MPC) design was adopted for an individual quadcopter. This approach involved
integrating the benefits of the sophisticated MPC method with that of PID control. Specifically, MPCs
were utilized for position regulation, while PID controllers were employed for angle regulation in a
cascaded design, for trajectory tracking scenarios. The simulations demonstrated the system's
remarkable ability to handle path following tasks, instilling confidence in its potential for application
in a quadcopter swarm.

In the final phase, the MPC control design for the quadcopter was extended to a swarm
scenario. In this setup, each agent was autonomously controlled through individual MPCs within a
distributed MPC framework (DMPC). Through inter-agent communication, involving their predicted
positions in three-dimensional space, the system aimed to ensure trajectory tracking, collision
avoidance and obstacle evasion. The simulations presented and the evaluation indexes calculated stand
as a testament to the success of this method and the swarm’s ability to navigate in environments, while
avoiding obstacles and collisions between the agents, thus affirming its effectiveness in challenging
scenarios.

The proposed framework boasts several strengths. First, after thorough evaluation in a single
quadcopter scenario, it consciously opted for a hybrid approach that employs both MPC for certain
aspects of control and PID for others. This decision was made to harness the unique advantages of

each approach, while striking a balance between optimal performance and computational efficiency.
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Moreover, the design of a linear prediction model further simplifies future real-life implementation,
thus enhancing the project's practical viability.

However, the framework’s strongest point lies primarily in its utilization of distributed control.
This design choice enhances the system's reliability significantly, eliminating the dependency on a
central controller, that traditionally decides for other agents and sends commands. This absence of
centralization ensures a more robust system operation with no single point of failure. Furthermore,
considering its applicability in various real-world trajectory tracking missions, the method can easily
accommodate different numbers of agents tailored to specific applications. Another advantage of the
distributed approach is the considerably simpler optimization problem that needs to be solved by each
agent, compared to the more intricate problem in a centralized approach.

Additionally, a key innovative aspect lies in the absence of predefined trajectories for
individual agents. Instead, each agent dynamically navigates its path, avoiding obstacles and
maintaining a safe distance from other agents without adhering to any specific formation. This dynamic
adaptability sets it apart from traditional control methods and highlights the framework's robustness
and agility especially in unpredictable scenarios.

The research journey encountered several significant challenges. Understanding the intricate
behavior of both individual quadcopters and the collaborative dynamics within a quadcopter swarm
was a formidable task. This complexity escalated when designing a framework capable of addressing
these intricacies, especially in the context of complex tasks such as real-time trajectory tracking
involving dynamic obstacles. Tackling these challenges necessitated meticulous tuning,
experimentation, careful consideration of the system’s complexities and innovative solutions. Among
those, the communication strategy's approach stands out as it involves a necessary compromise;
favoring the z-axis, as the MPC for altitude must be implemented first. Nevertheless, this strategy

proves to be effective and functional within the context of the study.

5.2 Discussion and expansions

While this thesis offers a comprehensive and efficient examination of the control of quadcopter
swarms, open matters and avenues for extension persist. The translation of simulations into tangible
real-world applications of a Distributed Model Predictive Control (DMPC) framework stands as an
important challenge, concerning hardware integration, scalability for scenarios demanding extensive
coverage and real-time obstacle detection technologies.

Furthermore, the inclusion of terminal region constraints instead of terminal constraints within

the swarm’s behavior presents an intriguing avenue of exploration, as it simplifies the optimization
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problem and unveils possibilities for diverse applications. Moreover, another viable path for
investigation is the design of a singular MPC for the three axes, aimed to mitigate the perceived bias
towards the z axis.

Finally, exploring the advantages of machine learning techniques, such as neural
networks[42]-[47], presents a compelling avenue for extension. Integrating these techniques in control
schemes [48][49][50] could enhance the swarm’s decision-making capabilities, allowing it to adapt

more effectively in unforeseen scenarios, thereby broadening its scope of application.
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