

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ

Διπλωματική εργασία

Ανάλυση της ευστάθειας μετά από βλάβη επιβατηγού οχηματαγωγού πλοίου μέσω ντετερμινιστικής και πιθανοθεωρητικής προσέγγισης.

INVESTIGATION OF THE STABILITY OF A RO-PAX BY USING DETERMINISTIC AND PROBABILISTIC APPROACHES

Συγγραφέας:

ΣΥΒΙΤΟΣ ΝΙΚΟΛΑΟΣ

A.M.: 18393051

Επιβλέπων: Ιωάννης Τίγκας, Επίκουρος Καθηγητής

Αιγάλεω, 2023

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ

Διπλωματική εργασία

«Ανάλυση της ευστάθειας μετά από βλάβη επιβατηγού οχηματαγωγού πλοίου μέσω ντετερμινιστικής και πιθανοθεωρητικής προσέγγισης.»

Συγγραφέας

Νικόλαος Γ. Συβίτος (Α.Μ.: 18393051)

Επιβλέπων Καθηγητής

Τίγκας Ιωάννης

Ημερομηνία εξέτασης

26/10/2023

Εξεταστική Επιτροπή

Ιωάννης Τίγκας, Επίκουρος καθηγητής Πα.Δ.Α. Θωμάς Μαζαράκος, Επίκουρος Καθηγητής Πα.Δ.Α. Σοφία Πέππα, Αναπληρώτρια Καθηγήτρια Πα.Δ.Α.

ΔΗΛΩΣΗ ΣΥΓΓΡΑΦΕΑ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ

Ο κάτωθι υπογεγραμμένος Συβίτος Νικόλαος του Γεωργίου, με αριθμό μητρώου 18393051 φοιτητής του Πανεπιστημίου Δυτικής Αττικής της Σχολής Μηχανικών του Τμήματος Ναυπηγών Μηχανικών, δηλώνω υπεύθυνα ότι:

«Είμαι συγγραφέας αυτής της διπλωματικής εργασίας και ότι κάθε βοήθεια την οποία είχα για την προετοιμασία της είναι πλήρως αναγνωρισμένη και αναφέρεται στην εργασία. Επίσης, οι όποιες πηγές από τις οποίες έκανα χρήση δεδομένων, ιδεών ή λέξεων, είτε ακριβώς είτε παραφρασμένες, αναφέρονται στο σύνολό τους, με πλήρη αναφορά στους συγγραφείς, τον εκδοτικό οίκο ή το περιοδικό, συμπεριλαμβανομένων και των πηγών που ενδεχομένως χρησιμοποιήθηκαν από το διαδίκτυο. Επίσης, βεβαιώνω ότι αυτή η εργασία έχει συγγραφεί από μένα αποκλειστικά και αποτελεί προϊόν πνευματικής ιδιοκτησίας τόσο δικής μου, όσο και του Ιδρύματος.

Παράβαση της ανωτέρω ακαδημαϊκής μου ευθύνης αποτελεί ουσιώδη λόγο για την ανάκληση του διπλώματός μου».

Ο Δηλών

Συβίτος Νικόλαος

ΕΥΧΑΡΙΣΤΙΕΣ

Η παρούσα διπλωματική εργασία αποτελεί τον επίλογο στο προπτυχιακό μέρος των σπουδών μου στο τμήμα Ναυπηγών Μηχανικών του Πανεπιστημίου Δυτικής Αττικής. Σε αυτό το σημείο θα ήθελα να ευχαριστήσω θερμά τους καθηγητές μου, που κατά τη διάρκεια των σπουδών μου κατάφεραν να μεταλαμπαδεύσουν τις απαραίτητες γνώσεις, που θα αποτελέσουν εφόδιο στη μετέπειτα ζωή μου ως ναυπηγός. Επίσης, θα ήθελα να εκφράσω ευγνωμοσύνη στην οικογένεια μου, καθώς χωρίς την ψυχολογική υποστήριξή τους δεν θα είχα φέρει εις πέρας το συγκεκριμένο ταξίδι. Ευχαριστώ θερμά τη 'ΣΚΥΡΟΣ ΝΑΥΤΙΚΗ ΕΤΑΙΡΕΙΑ' για την παροχή των απαραίτητων πληροφοριών για την εκπόνηση της διπλωματικής εργασίας. Θα ήταν παράλειψη να μην ευχαριστήσω τον επιβλέποντα καθηγητή κ. Τίγκα Ιωάννη για την πολύτιμη και ουσιαστική καθοδήγησή του καθ όλη τη διάρκεια της διπλωματικής εργασίας.

Αφιερώνω την εργασία μου,

Στον Άρη Στο Γιώργο Στη Μυρσίνη

ΠΕΡΙΛΗΨΗ

Η παρούσα διπλωματική εργασία έχει ως αντικείμενο τον τρισδιάστατο σχεδιασμό υπάρχοντος επιβατηγού πλοίου Ro-Pax με τη χρήση ειδικού σχεδιαστικού προγράμματος και τον έλεγχο ευστάθειας και ευστάθειας μετά από βλάβη. Ο τρισδιάστατος σχεδιασμός πραγματοποιήθηκε με τη χρήση του προγράμματος *Rhinoceros 3D*, ενώ οι μελέτες ευστάθειας στο υδροστατικό πρόγραμμα *MaxSurf*. Περισσότερες λεπτομέρειες για τα συγκεκριμένα προγράμματα παρουσιάζονται στο κεφάλαιο <u>6</u>.

Αρχικά, πραγματοποιείται μια ιστορική αναδρομή για το ζήτημα της άθικτης ευστάθειας και της ευστάθειας μετά από βλάβη, καθώς και μια σύντομη αναφορά στην εξέλιξη του τρισδιάστατου σχεδιασμού. Έπειτα, επεξηγούνται βασικές έννοιες για την κατανόηση της παρούσας διπλωματικής εργασίας, κυρίως για το αντικείμενο της ευστάθειας μετά από βλάβη.

Σημαντικό μέρος της παρούσας διπλωματικής αποτελεί η επεξήγηση και η κατανόηση των μεθόδων εκτίμησης της ευστάθειας μετά από βλάβη που θα εφαρμοστούν στο Υπολογιστικό μέρος.

Στο Υπολογιστικό μέρος πραγματοποιείται το μοντέλο της γάστρας του πλοίου Ro-Pax, έχοντας ως δεδομένα το General Arrangement Plan και το σχέδιο γραμμών του υπάρχοντος πλοίου. Είναι απαραίτητη η σύγκριση της γάστρας που δημιουργήθηκε με την υπάρχουσα, μέσω του IACS ("IACS UR-L5 Req. 2004/Rev.4 2020") [1]. Στη συνέχεια, αφού γίνει η προσθήκη των διαμερισμάτων, των δεξαμενών και των κατάλληλων κριτηρίων βάση των κανονισμών θα πραγματοποιηθεί μελέτη της άθικτης ευστάθειας. Για την ευστάθεια μετά από βλάβη θα γίνει η χρήση του προσδιοριστικού, αλλά και του πιθανοθεωρητικού μοντέλου που επεξηγούνται στο κεφάλαιο <u>4</u>.

Τέλος, πραγματοποιούνται οι συγκρίσεις μεταξύ των δύο μεθόδων και εξάγονται τα απαραίτητα συμπεράσματα.

Λέξεις κλειδιά: Τρισδιάστατος σχεδιασμός, Ευστάθεια μετά από βλάβη, Προσδιοριστική μέθοδος, Πιθανοθεωρητική μέθοδος.

ABSTRACT

The purpose of this thesis, is initially a 3D design of an existing Ro-Pax ship and additionally a procedure to check the intact stability and damage stability, using the appropriate programs. More specifically, the 3D design was carried out using the Rhinoceros 3D program and the stability studies were carried out using the hydrostatic program MaxSurf. More details about these programs are analyzed in chapter <u>6</u>.

First, a historical review of the issue of intact stability and damage stability is given, as well as a brief reference to the development of 3D design. Moreover, basic definitions for the comprehension of this thesis are given, especially for the damage stability.

A significant part of this thesis is the understanding of the damage stability assessment methods that will be applied in the computational part.

In the computational part, the 3D model of the hull of the Ro-Pax is made, taking as data the general arrangement plan and the lines plan. It is necessary to compare the constructed hull with the existing one, through IACS ("IACS UR-L5 Req. 2004/Rev.4 2020") [1]. Then, after adding the compartments, tanks and the appropriate criteria based on the regulations in MaxSurf, the intact stability control will be done. For the damage stability, the deterministic as well as the probabilistic model will be used. These models are explained in chapter $\frac{4}{2}$.

Finally, comparisons between the two methods are made and the necessary conclusions are made.

Keywords: 3D design, Damage stability, Deterministic method, Probabilistic method

ΠΕΡΙΕΧΟΜΕΝΑ	

ΕΥΧΑΡΙΣΤΙΕΣ	5
ПЕРІЛНҰН	6
ABSTRACT	7
ΠΕΡΙΕΧΟΜΕΝΑ	8
1. ΕΙΣΑΓΩΓΗ	10
2. IΣТОРІКН ANAΔPOMH	11
2.1. ΑΡΧΙΚΗ ΕΥΣΤΑΘΕΙΑ	11
2.2. ΕΥΣΤΑΘΕΙΑ ΜΕΤΑ ΑΠΟ ΒΛΑΒΗ	14
2.3. ΣΧΕΔΙΑΣΗ	17
3. ΘΕΩΡΗΤΙΚΟ ΥΠΟΒΑΘΡΟ	18
3.1. ΙΣΟΡΡΟΠΙΑ ΤΩΝ ΠΛΟΙΩΝ ΚΑΙ ΕΥΣΤΑΘΕΙΑ	18
3.2. ΜΕΘΟΔΟΙ ΜΕΛΕΤΗΣ ΤΗΣ ΚΑΤΑΣΤΑΣΗΣ ΠΛΟΙΟΥ ΜΕΤΑ ΑΠΟ ΒΛΑΒΗ	21
3.3. ΕΠΙΔΡΑΣΗ ΕΛΕΥΘΕΡΩΝ ΕΠΙΦΑΝΕΙΩΝ	21
3.4. Δ IAX Ω PHTOTHTA	23
4. ΜΕΘΟΔΟΙ ΕΚΤΙΜΗΣΗΣ ΕΥΣΤΑΘΕΙΑΣ ΜΕΤΑ ΑΠΟ ΒΛΑΒΗ	24
4.1. ΠΡΟΣΔΙΟΡΙΣΤΙΚΗ ΜΕΘΟΔΟΣ	24
4.2. ΠΙΘΑΝΟΘΕΩΡΗΤΙΚΗ ΜΕΘΟΔΟΣ	25
4.2.1. ΕΠΙΤΕΥΧΘΕΝΤΑΣ ΔΕΙΚΤΗΣ ΥΠΟΔΙΑΙΡΕΣΗΣ	25
4.2.2. ΑΠΑΙΤΟΥΜΕΝΟΣ ΔΕΙΚΤΗΣ ΥΠΟΔΙΑΙΡΕΣΗΣ	27
5. ПЛОІА ТУПОУ RO-PAX	28
5.1. ПЕРІГРАФН	28
5.2 ΤΟ ΖΗΤΗΜΑ ΤΗΣ ΑΣΦΑΛΕΙΑΣ ΣΤΑ ΠΛΟΙΑ ΤΥΠΟΥ RO-PAX	28
6. ΜΟΝΤΕΛΟΠΟΙΗΣΗ	29
6.1. RHINOCEROS	29
6.2. MAXSURF	29
7. ΥΠΟΛΟΓΙΣΤΙΚΟ ΜΕΡΟΣ	30
7.1. ΠΕΡΙΓΡΑΦΗ ΥΠΟΛΟΓΙΣΤΙΚΟΥ ΜΕΡΟΥΣ	30
7.2. ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΠΛΟΙΟΥ	30
7.3. ΔΕΔΟΜΕΝΑ ΣΧΕΔΙΑ - ΙΝΡUT DATA	31
7.3. ΚΑΤΑΣΚΕΥΗ ΤΡΙΣΔΙΑΣΤΑΤΟΥ ΜΟΝΤΕΛΟΥ	33
7.4. ΣΧΕΔΙΑΣΗ ΔΙΑΜΕΡΙΣΜΑΤΩΝ ΚΑΙ ΔΕΞΑΜΕΝΩΝ ΣΤΟ MAXSURF	55
7.5. ΕΙΣΑΓΩΓΗ ΚΕΥ ΡΟΙΝΤS	57
7.6. ΔΗΜΙΟΥΡΓΙΑ ΚΑΤΑΣΤΑΣΕΩΝ ΦΟΡΤΩΣΗΣ	57
7.7. ΕΛΕΓΧΟΣ ΑΘΙΚΤΗΣ ΕΥΣΤΑΘΕΙΑΣ	61
7.8. ΕΛΕΓΧΟΣ ΕΥΣΤΑΘΕΙΑΣ ΜΕΤΑ ΑΠΟ ΒΛΑΒΗ	65
7.8.1. ΕΦΑΡΜΟΓΗ ΠΡΟΣΔΙΟΡΙΣΤΙΚΟΥ ΜΟΝΤΕΛΟΥ	65
7.8.2. ΕΦΑΡΜΟΓΗ ΠΙΘΑΝΟΘΕΩΡΗΤΙΚΟΥ ΜΟΝΤΕΛΟΥ	69

ΑΠΟΤΕΛΕΣΜΑΤΑ/ΣΥΜΠΕΡΑΣΜΑΤΑ	75
ΠΡΟΤΑΣΕΙΣ	77
ПАРАРТНМА	78
ΠΑΡΑΡΤΗΜΑ Α: ΣΤΟΙΧΕΙΑ ΚΡΙΤΗΡΙΩΝ SOLAS ΓΙΑ ΤΟ ΠΛΟΙΟ ΑΝΑΦΟΡΑΣ 7	78
ΠΑΡΑΡΤΗΜΑ Β: ΕΛΕΓΧΟΣ ΣΕΝΑΡΙΩΝ ΒΛΑΒΗΣ	33
ΒΙΒΛΙΟΓΡΑΦΙΑ10	25

1. ΕΙΣΑΓΩΓΗ

Η ασφάλεια των θαλάσσιων μεταφορών αποτελεί ένα σημαντικό θέμα που επηρέασε τη ναυτιλιακή κοινότητα στο παρελθόν και διαδραματίζει πρωταρχικό ρόλο στην κατασκευή των πλοίων και τη σημερινή εποχή. Ένα πλοίο θεωρείται ασφαλές, όταν συμβαδίζει με ορισμένους κανονισμούς, όπου διαφοροποιούνται αναλόγως με το είδος του πλοίου. Με το πέρας των χρόνων παρατηρείται η θεσμοθέτηση αυστηρότερων κανονισμών, έχοντας ως βασικούς στόχους την αύξηση της ασφάλειας ύστερα από ένα ατύχημα και κυρίως τη διαφύλαξη της ανθρώπινης ζωής. Υπεύθυνος για την καθιέρωση και την εφαρμογή των συγκεκριμένων κανονισμών αποτελεί ο Παγκόσμιος Οργανισμός Ναυτιλίας *Ι.Μ.Ο (International Maritime Organization)*. Ο *ΙΜΟ* ιδρύθηκε το 1948 από πολλές χώρες και η σύμβαση που υπογράφηκε επιβάλλει στα πλοία να συμβαδίζουν με τα πρότυπα ασφαλείας στη ναυσιπλοΐα και στον περιορισμό της θαλάσσιας και ατμοσφαιρικής ρύπανσης.

Άρρηκτα συνδεδεμένο κομμάτι στην ασφάλεια ενός πλοίου αποτελεί αδιαμφισβήτητα η επιβίωσή τους μετά από κατάκλυση ενός ή περισσότερων διαμερισμάτων. Η κατάκλυση επιτυγχάνεται έπειτα από ρήγμα στο εξωτερικό περίβλημα ενός πλοίου και έχει σημαντική επίδραση στην ευστάθεια ενός πλοίου. Επομένως, η μελέτη και η σχεδίαση πρέπει να πραγματοποιείται με γνώμονα όχι μόνο την άθικτη κατάσταση ενός πλοίου, αλλά και τη συμπεριφορά του μετά από βλάβη.

Αντικείμενο της παρούσας εργασίας, αποτελεί η ανάλυση της ευστάθειας μετά από βλάβη ενός υπάρχοντος επιβατηγού πλοίου, με χρήση ντετερμινιστικής και πιθανοθεωρητικής προσέγγισης. Ο σχεδιασμός της γάστρας του συγκεκριμένου επιβατηγού θα υλοποιηθεί σε τρισδιάστατο σχεδιαστικό πρόγραμμα και έπειτα θα γίνει η εισαγωγή της στο κατάλληλο πρόγραμμα για τη μελέτη της ευστάθειας του.

2. ΙΣΤΟΡΙΚΗ ΑΝΑΔΡΟΜΗ

2.1. ΑΡΧΙΚΗ ΕΥΣΤΑΘΕΙΑ

Από την πρώτη επαφή του ανθρώπου με τη ναυσιπλοΐα, η ασφάλεια ενός πλοίου και κατά συνέπεια η πλευστότητα και η ευστάθειά του αποτέλεσαν καίρια ζητήματα άμεσης αντιμετώπισης. Η έννοια της άντωσης προσεγγίστηκε αρχικά από τον Αρχιμήδη (287-212 π.Χ.) όπου σύμφωνα με αυτό «Κάθε σώμα το οποίο είναι βυθισμένο σε ρευστό, δέχεται άνωση ίση με το βάρος του νερού που εκτοπίζει.» Αυτή είναι η γνωστή και ως «Αρχή του Αρχιμήδη» και αποτέλεσε τα θεμέλια για τις βασικές έννοιες της υδροστατικής ενός πλοίου. [2] Μαθηματικά η άνωση εκφράζεται από τη σχέση $\mathbf{A} = \rho \, \mathbf{g} \, \mathbf{V} (1)$

Όπου ρ: Η πυκνότητα του ρευστού που εξετάζεται.

- g: Η επιτάχυνση της βαρύτητας.
- **V**: Ο όγκος του βυθισμένου σώματος.

Εικόνα 1: Αρχή του Αρχιμήδη <u>Πηγή: https://www.ortsa.gr/</u>

Στο έργο του «Περὶ τῶν ἐπιπλεόντων σωμάτων» ήταν ο πρώτος που έθεσε την έννοια της ευστάθειας και του μοχλοβραχίονα μεταφοράς, ως ικανότητας ενός επιπλέοντος σώματος να επανέρχεται στην αρχική κατάσταση ισορροπίας ενώ βρίσκεται υπό κάποια κλίση. [3]

Εικόνα 2: Αρχιμήδης <u>Πηγή: https://www.meteology.gr/</u>

Αρκετά χρόνια μετά ο Γάλλος μαθηματικός *Paul Hoste* (1652-1700) έκανε μια απόπειρα να ποσοτικοποιήσει το πρόβλημα της ευστάθειας στα πλοία. Οι υπολογισμοί του, λόγω της μη διατύπωσης της έννοιας του απειροστικού λογισμού, περιείχαν αρκετά σφάλματα. [3]

Εικόνα 3: Έργο του Paul Hoste Πηγή: https://gallica.bnf.fr/ark:/12148/btv1b86265881.image

Την ίδια περίπου εποχή, έπειτα από αρκετά πολεμικά ατυχήματα λόγω προβλημάτων ευστάθειας, ο Anthony Deane (1638-1721) ένας Ναυπηγός από τη Βρετανεία παρουσίασε μια μέθοδο για τον υπολογισμό του κατάλληλου οπλισμού και της κατάλληλης ποσότητας έρματος, ώστε ένα πλοίο να βρίσκεται στο κατάλληλο βύθισμα. Κατάφερε να να υπολογίσει το βυθισμένο όγκο των πλοίων προσεγγίζοντας τα εμβαδά των νομέων με τη χρήση εμβαδών γνωστών σχημάτων, τα οποία στη συνέχεια πολλαπλασιάζονταν με την ισαπόσταση του εκάστοτε νομέα. [3]

Εικόνα 4: Anthony Deane <u>Πηγή: https://en.wikipedia.org/wiki/Anthony_Deane_(shipwright)</u>

Ο Γάλλος Pierre Bouguer (1698-1758) όρισε την έννοια του μετάκεντρου, αλλά και της μετακεντρικής ακτίνας. Η μετακεντρική ακτίνα και η θέση του κέντρου βάρους ενός πλοίου μπορούσαν πλέον να αποτελέσουν ένα μέτρο για την ευστάθεια ενός πλοίου. [4] [5]

Εικόνα 5: Διάγραμμα Μετάκεντρου του Bouguer <u>Πηγή: https://www.calameo.com/read/003094022e25baadf89f3</u>

Οι μελέτες του επαληθεύθηκαν και από τον Ελβετό *Leonard Euler* (1707-1783), ο οποίος στο έργο «*Scientia Navalis*» διερεύνησε την ικανότητα επαναφοράς ενός σώματος σε όρθια θέση με τη χρήση σφηνών αναδυόμενου και βυθιζόμενου όγκου. [4] [5]

Εικόνα 6: Η εφαρμογή σφηνών από τον Euler σε εγκάρσια διατομή Πηγή: https://www.calameo.com/read/003094022e25baadf89f3

Ο Άγγλος μαθηματικός George Atwood (1745-1807), έπειτα από μελέτη της ευστάθειας σε σώματα απλής γεωμετρίας, κατέληξε στο γεγονός ότι η μελέτη της ευστάθειας πρέπει να μελετάται υπό ένα συγκεκριμένο εύρος γωνιών, ενώ για πρώτη φορά παρουσίασε την έννοια του μοχλοβραχίονα επαναφοράς. Έπειτα από τις μελέτες των των Reed (1868) και Denny (1887) ο μοχλοβραχίονας επαναφοράς συμπεριλήφθηκε στα κριτήρια ευστάθειας. [3]

2.2. ΕΥΣΤΑΘΕΙΑ ΜΕΤΑ ΑΠΟ ΒΛΑΒΗ

Το ζήτημα της ευστάθειας μετά από βλάβη και γενικότερα η επιβίωση ενός πλοίου μετά την κατάκλυση διαμερισμάτων, έχει έρθει στο προσκήνιο αρκετούς αιώνες πριν. Το 1830 εξετάστηκε για πρώτη φορά η υδατοστεγής υποδιαίρεση.

Η πρώτη νομοθετική παρέμβαση πραγματοποιήθηκε το 1854 (Μ.Βρετανία) σύμφωνα με την οποία, όλα τα πλοία από 100t και πάνω έπρεπε να διαθέτουν φρακτές μπροστά και πίσω από το μηχανοστάσιο. Εκτός από τις παραπάνω φρακτές και την πρωραία φρακτή που είχε ήδη θεσπιστεί, η νομοθεσία απαιτούσε και μια μικρού μεγέθους φρακτή η οποία θα περίκλειε το πίσω μέρος του άξονα.

Μελέτες το 1862 έδειξαν ότι η ύπαρξη των παραπάνω φρακτών δεν εξασφαλίζουν την επιβίωση ενός πλοίου και ότι ο εκάστοτε ναυπηγός, αναλόγως την περίπτωση, είναι ελεύθερος να προσδιορίσει τα κατάλληλα μέτρα για να είναι ένα πλοίο ασφαλές.

Το 1866 μετά το ναυάγιο ενός επιβατηγού (London) και την απώλεια 233 ανθρώπων, οι ναυπηγοί Russell και Reed, θέσπισαν την εγκατάσταση διαμήκων και εγκαρσίων φρακτών. Επίσης, στην περίπτωση που ένα πλοίο είναι επιβατηγό να έχει τη δυνατότητα να επιβιώνει έπειτα από κατάκλυση δύο συνεχόμενων διαμερισμάτων. Τέλος, υπήρξε και πρόταση για χρήση διπλού πυθμένα τόσο για αύξηση της αντοχής, αλλά και για λόγους περιορισμού του χώρου κατάκλυσης μετά από βλάβη.

Παρόλο που έγιναν οι παραπάνω συστάσεις, το 1875 παρατηρήθηκε ότι ο μεγαλύτερος αριθμός των πλοίων δεν τηρούσε τις απαιτήσεις, ενώ σε πολλές περιπτώσεις οι υπάρχουσες φρακτές ήταν σχεδόν άχρηστες στο θέμα της επιβίωσης μετά από βλάβη, καθώς έφταναν το πολύ μέχρι το ύψος της ισάλου.

Το 1882 σύμφωνα με το Βρετανικό Νηογνώμονα, η εγκατάσταση των φρακτών σε όλα τα πλοία από 85,4m και πάνω έπρεπε να γίνεται ανάλογα με το μήκος του εκάστοτε πλοίου.

Το 1887 συστάθηκε η τοποθέτηση φρακτών με τέτοιο τρόπο, ώστε το πλοίο να συνεχίσει να επιπλέει για συγκεκριμένο χρόνο μετά από μια κατάκλυση.

Το 1890, κατατέθηκε επίσημη πρόταση για τοποθέτηση φρακτών, ώστε ένα πλοίο να επιβιώνει έπειτα από την κατάκλυση δύο διαδοχικών διαμερισμάτων « (First Bulkhead Committee». Η επιτροπή αυτή πρότεινε επίσης την εγκατάσταση ειδικών συστημάτων, όπου θα επέτρεπε το νερό να διαπερνά μέσα από μια διαμήκη φρακτή μέσω ειδικών βαλβίδων. Η συγκεκριμένη βαλβίδα βοηθάει στην εξισορρόπηση σε περίπτωση κατάκλυσης για την αποφυγή μεγάλης εγκάρσιας κλίσης λόγω ασύμμετρης κατάκλυσης.

Το 1900 υιοθετήθηκε ένα μοντέλο υποδιαίρεσης, το οποίο δεν βρήκε ουσιαστική ανταπόκριση.

Το ναυάγιο του Τιτανικού το 1912 σηματοδότησε σημαντικές αλλαγές στον τομέα της ναυτιλίας. Επιτεύχθηκε μέσω της δεύτερης «Bulkhead Committee» ο προσδιορισμός της κατάλληλης μεθόδου για τον καθορισμό της στεγανής υποδιαίρεσης σε ένα πλοίο. Επίσης, παρουσιάστηκε για πρώτη φορά μια μέθοδος υπολογισμού η γνωστή και ως μέθοδος των κατακλύσιμων μηκών (Floodable Lengths). Ουσιαστικά κατακλύσιμο μήκος είναι το μέγιστο μήκος που μπορεί να έχει ένα διαμέρισμα, έτσι ώστε όταν κατακλυστεί να μην οδηγεί σε βύθιση της γάστρας πέραν μιας συγκεκριμένης γραμμής. Η γραμμή αυτή ονομάζεται margin line και βρίσκεται 76mm κάτω από το κατάστρωμα στο οποίο καταλήγουν οι εγκάρσιες φρακτές. [4] [6]

Εικόνα 7: Το ναυάγιο του Τιτανικού <u>Πηγή:https://eclass.uniwa.qr/courses/NA255/</u>

Επόμενο βήμα μετά το ναυάγιο του Τιτανικού ήταν η ίδρυση της SOLAS το 1914 για την προάσπιση της ανθρώπινης ασφάλειας. Κατά τη διάρκεια της συζήτησης αποφασίστηκε το γεγονός ότι η στεγανή υποδιαίρεση θα καθορίζεται τόσο από το μήκος, όσο και από τον αριθμό των επιβατών σε ένα πλοίο. Επίσης, οι κανονισμοί θα ήταν πιο ελαστικοί σε περιπτώσεις φορτηγών πλοίων, γεγονός που αντικατοπτρίζεται και στην τιμή του κριτηρίου υπηρεσίας. Από το κριτήριο υπηρεσίας υπολογίζεται και ο συντελεστής υποδιαίρεσης *F*. Το γινόμενο του κατακλύσιμου μήκους με το συντελεστή υποδιαίρεσης δίνει το επιτρεπτό μήκος ενός διαμερίσματος.

Το 1929 υπήρξαν ελάχιστες τροποποιήσεις στη SOLAS όπου σύμφωνα με αυτές είχαμε για πρώτη φορά διεθνείς κανονισμούς για την υποδιαίρεση ενός πλοίου. Πιο συγκεκριμένα, πλοία με συντελεστή υποδιαίρεσης από 1 μέχρι 0,5 θα πρέπει να αντέχουν κατάκλυση μόνο ενός διαμερισμάτων και από 0,5 μέχρι 0,33 να αντέχουν κατάκλυση δύο διαδοχικών διαμερισμάτων και από 0,33 μέχρι 0,25 να αντέχουν κατάκλυση τριών διαμερισμάτων. Όπως αναφέρθηκε και παραπάνω κατάκλυση δύο διαφορετικές περιπτώσεις όποια πλοία έχουν τόσο εμπόρευμα, όσο και επιβάτες θα πρέπει να αντέχουν τα επιβατηγά και ενός διαμερίσματος τα φορτηγά. Για διαφορετικές περιπτώσεις όποια πλοία έχουν τόσο εμπόρευμα, όσο και επιβάτες θα πρέπει να πραγματοποιείται γραμμική παρεμβολή βάση του κριτηρίου υπηρεσίας. Στη SOLAS'29 κρίθηκε ότι για τα πλοία της εποχής δεν ήταν επικίνδυνη η περίπτωση ασύμμετρης κατάκλυσης, κυρίως λόγω της καλλίγραμμης μορφής που είχαν οι γάστρες. Τέλος, καθορίστηκε η τιμή για το υποτιθέμενο μήκος ρήγματος ως 0,02*L +3,05 (m), η οποία αργότερα μεταβλήθηκε σε 0,03L + 3,0 (m) (όπου L το μήκος ενός πλοίου).

Το 1932 η συνεχής αύξηση του πλάτους στις κατασκευές των πλοίων έφερε στο προσκήνιο το ζήτημα της ασύμμετρης κατάκλυσης. Ως αποτέλεσμα, προστέθηκε στη νομοθεσία η απαίτηση μέγιστης κλίσης 7 μοιρών μετά από βλάβη.

Στη SOLAS'48, έγιναν περαιτέρω βήματα στο ζήτημα της ευστάθειας μετά από βλάβη με την καθιέρωση βασικών απαιτήσεων, όπως την τελική κατάσταση που έχει ένα πλοίο μετά από κατάκλυση, το θετικό μετακεντρικό ύψος και την απαίτηση για 7 μοίρες τελική κλίση (σε μερικές περιπτώσεις 15 μοίρες).

Μετά από το ναυάγιο του επιβατηγού Andrea Doria το 1956 παρατηρήθηκε ότι η SOLAS'48 ήταν ελλιπής. Με τη SOLAS'60, η απαίτηση για θετικό μετακεντρικό ύψος (GM>0m) μεταβλήθηκε σε GM>0,05m για τις περιπτώσεις δυσμενών καιρικών φαινομένων (Ισχυροί άνεμοι και κύματα). Το 1960 προτάθηκε από το Γερμανό Wendel ένα πιθανοτικό μοντέλο για τον καθορισμό της ευστάθειας μετά από βλάβη. Η έντονη ανταπόκριση αυτού του νέου μοντέλου συντέλεσε στην καθιέρωση του από τον ΙΜΟ το 1974.

Οι απαιτήσεις του προσδιοριστικού μοντέλου που θα συζητηθεί και στο κεφάλαιο 4.1. δεν σταμάτησαν να εξελίσσονται και το 1980 ενσωματώθηκαν κριτήρια για

περιπτώσεις ενδιάμεσης κατάκλυσης, καθώς και απαιτήσεις για το εύρος της καμπύλης του μοχλοβραχίονα.

Το 1987 το ναυάγιο του Herald of Free Enterprise οδήγησε στη SOLAS'90 κατά την οποία τα υπάρχοντα πλοία είχαν ένα περιθώριο σταδιακής προσαρμογής. Τα κριτήρια θα αναλυθούν στο κεφάλαιο <u>4.1.</u>

Εικόνα 8:Ναυάγιο Herald of Free Enterprise <u>Πηγή:https://www.youtube.com/watch?v=j5lfcYcYsu8</u>

Μετά το ατύχημα του *Estonia* (1994), κρίθηκε επιτακτική η ανάγκη μελέτης της ευστάθειας συνυπολογίζοντας και όγκο νερού στο χώρο των οχημάτων. Ο ΙΜΟ θεώρησε αυστηρή τη συγκεκριμένη απαίτηση και δεν την έκανε αποδεκτή.

Εικόνα 9: Ναυάγιο Estonia <u>Πηγή:https://www.youtube.com/watch?v=YOeGKBomA3U</u>

Σε μια συνάντηση το 1996 στην Στοκχόλμη [7] αποφασίστηκε ότι κάθε πλοιοκτήτης θα έχει τη δυνατότητα να αποδείξει την ευστάθεια ενός πλοίου με βάση τα πειράματα σε ένα υπό κλίμακα μοντέλου αυτού.

Το 2009 τέθηκε ένα ενιαίο πιθανοτικό πλαίσιο για όλους τους τύπους των πλοίων. [4] [6]

2.3. ΣΧΕΔΙΑΣΗ

Οι εφαρμογές Η/Υ καλύπτουν ένα ευρύτατο φάσμα προβλημάτων που προέρχονται από τη μελέτη, σχεδίαση, κατασκευή και διαχείριση κατασκευών. Στο κομμάτι της ναυπηγικής οι πλωτές κατασκευές και ιδιαίτερα τα πλοία, είναι τρισδιάστατα, γεωμετρικά περίπλοκα αντικείμενα με σημαντική πολυπλοκότητα. Ο πρώτος που προσέγγισε τον τρισδιάστατο σχεδιασμό ήταν ο Γάλλος μηχανικός *Pierre Bézier* (1910-1999) ο οποίος ήταν ο δημιουργός του προγράμματος σχεδιασμού UNISURF για εφαρμογές στη βιομηχανία των αυτοκινήτων. [8]

Εικόνα 11: Pierre Bézier <u>Πηγή: https://en.wikipedia.orq/wiki/Pierre_B%C3%A9zier</u>

Την ίδια εποχή, O Ivan Stutherland δημιούργησε το Sketchpad το οποίο σηματοδότησε την ανάπτυξη του τρισδιάστατου προγραμματισμού και της παραμετρικής σχεδίασης. Ο χρήστης σχεδιάζει απευθείας στην οθόνη του υπολογιστή με ένα ειδικό στυλό. Το στυλό αυτό χρησιμοποιείται τόσο για τη μετακίνηση των τμημάτων του σχεδίου στην οθόνη, όσο και για τις τροποποιήσεις αυτών. Το πρόγραμμα περιείχε και μια σειρά από κουμπιά ελέγχου (διαγραφή, μετακίνηση κλπ.). Για τα δεδομένα της εποχής παρείχε αρκετά ακριβείς σχεδιάσεις και εύκολες τροποποιήσεις υπαρχουσών σχεδίων. [8] [9]

Εικόνα 12: Sketchpad <u>Πηγή: https://bimaplus.org/news/the-very-beginning-of-the-digital-representation-ivan-sutherland-sketchpad/</u>

3. ΘΕΩΡΗΤΙΚΟ ΥΠΟΒΑΘΡΟ 3.1. ΙΣΟΡΡΟΠΙΑ ΤΩΝ ΠΛΟΙΩΝ ΚΑΙ ΕΥΣΤΑΘΕΙΑ

Είναι σημαντικό να διατυπωθούν οι ορισμοί της ισορροπίας και της ευστάθειας για την πληρέστερη κατανόησή τους.

Ένα σώμα βρίσκεται σε **ισορροπία** όταν η συνισταμένη όλων των δυνάμεων, αλλά και των ροπών ισούται με μηδέν. Αναλόγως με τη συμπεριφορά ενός σώματος μετά από μια διαταραχή, χωρίζουμε την ισορροπία σε τρεις κατηγορίες:

-Όταν ένα σώμα δεχτεί μια διαταραχή, ενώ βρίσκεται στη θέση ισορροπίας του και τείνει να επαναφέρει σε αυτή, τότε λέμε ότι βρίσκεται σε κατάσταση ευσταθούς ισορροπίας.

-Όταν ένα σώμα έπειτα από μια διαταραχή τείνει να ισορροπήσει σε διαφορετική θέση, τότε λέμε ότι βρίσκεται σε κατάσταση ουδέτερης ισορροπίας.

-Όταν ένα σώμα έπειτα από μια διαταραχή δεν επιστρέφει σε θέση ισορροπίας, τότε λέμε ότι βρίσκεται σε κατάσταση ασταθούς ισορροπίας. [3] [10]

<u>Πηγή: https://www.researchgate.net/publication/320216159 Increasing the Road Safety of E-</u> bike Design of Protective Shells Based on Stability Criterion/figures?lo=1

Στην περίπτωση ενός πλοίου οι δυνάμεις που επιδρούν σε κατάσταση ήρεμης θάλασσας είναι εκείνες του βάρους και της άντωσης. Με τις δυνάμεις αυτές να ασκούνται στο κέντρο βάρους και στο κέντρο άντωσης αντίστοιχα. Μετά από μια διαταραχή το πλοίο υπάρχει περίπτωση να λάβει μια κλίση και η θέση του κέντρου άντωσης να απομακρυνθεί από το διάμηκες επίπεδο συμμετρίας. Μετά τη διαταραχή το κέντρο άντωσης μεταφέρεται προς τη μεριά της κλίσης. Αυτό έχει αποτέλεσμα να απομακρυνθούν οι άξονες στις οποίες ενεργούν το βάρος και η άντωση και να δημιουργηθεί ροπή. [3] [10]

Εικόνα 14: Η μετακίνηση της θέσης του κέντρου άντωσης έπειτα από μια εξωτερική διαταραχή <u>Πηγή: https://eclass.uniwa.gr/courses/NA254/</u>

Όπως αναφέρθηκε και παραπάνω, η διερεύνηση του ζητήματος της ευστάθειας και της ισορροπίας ενός επιπλέοντος σώματος διατυπώθηκε για πρώτη φορά από τον Αρχιμήδη. Σύμφωνα με όσα γράφτηκαν στο έργο του, το βάρος ενός σώματος που ισορροπεί στην επιφάνεια ενός ρευστού, εξισορροπείται από τη δύναμη άντωσης η οποία είναι ίση με το βάρος του υγρού που εκτοπίζει. Είναι εύκολα αντιληπτό ότι η συγκεκριμένη Αρχή δεν επαρκεί για την πρόβλεψη της ευστάθειας, καθώς αναφέρεται αποκλειστικά στο κομμάτι της υδροστατικής ισορροπίας. Ως ευστάθεια ορίζουμε την ικανότητα ενός πλωτού μέσου ή σώματος που έχει καταδυθεί να επανέρχεται στην κανονική θέση ισορροπίας του, όταν απομακρυνθεί από αυτή για μια οποιαδήποτε αιτία, όπως είναι για παράδειγμα τα κύματα, οι μεταβολές και μετατοπίσεις του φορτίου ή οι δυνάμεις του αέρα.

Ένα πλοίο είναι ευσταθές όταν αυτό μετά από μια διαταραχή επανέρχεται στη θέση ισορροπίας του.

Ασταθές είναι ένα πλοίο έχει στην περίπτωση που το πλοίο απομακρύνεται από τη θέση ισορροπίας και το κέντρο βάρους βρίσκεται πάνω από το μετάκεντρο. Αυτό έχει ως αποτέλεσμα να δημιουργηθεί ροπή ανατροπής.

Ουδέτερη ευστάθεια έχει στην περίπτωση το κέντρο βάρους η θέση του μετάκεντρου ταυτίζονται. Επομένως, το ζεύγος των δυνάμεων βάρους και άντωσης ισούται με μηδέν. Στην πράξη αυτό σημαίνει, ότι το πλοίο ισορροπεί υπό γωνία ή ακόμα και με ανατροπή, το οποίο εξαρτάται από την καμπύλη του μοχλοβραχίονα GZ.

Συνεπώς, το μετακεντρικό ύψος GM επηρεάζει σημαντικά την ευστάθεια ενός πλοίου για μικρές γωνίες κλίσης.

- Για θετικό μετακεντρικό ύψος το πλοίο έχει θετική ευστάθεια.
- Για μηδενικό μετακεντρικό ύψος το πλοίο έχει ουδέτερη ευστάθεια.
- Για αρνητικό μετακεντρικό ύψος το πλοίο έχει αρνητική ευστάθεια.

Εικόνα 15: Θέσεις του κέντρου βάρους και του μετακέντρου

<u>Πηγή:</u>

https://eclass.snd.edu.gr/modules/document/file.php/TOM2110/%CE%94%CE%B9%CE%B1%CE%BB%CE%AD%CE %BE%CE%B5%CE%B9%CF%82/2015.12_L.09.pdf

Εικόνα 16:Πλοίο σε μικρή εγκάρσια κλίση Πηγή: https://eclass.uniwa.gr/courses/NA254/

Στην παραπάνω εικόνα η ροπή που δημιουργείται από το ζεύγος δυνάμεων είναι ουσιαστικά η **ροπή επαναφοράς** που τείνει να επαναφέρει το πλοίο στη θέση ισορροπίας του. Η απόσταση μεταξύ του αρχικού άξονα και εκείνου της άντωσης μετά την κλίση ονομάζεται **μοχλοβραχίονας επαναφοράς** (GZ). Σε όλα τα παραπάνω έχει ληφθεί η παραδοχή ότι η θέση του μετάκεντρου είναι σταθερή. Στην πραγματικότητα για γωνίες κλίσης μεγαλύτερες των 10° η θέση του μετακέντρου μεταβάλλεται. Συνεπώς, κύριο μέτρο της ευστάθειας ενός πλοίου αποτελεί το GZ. Οι μοχλοβραχίονες υπολογίζονται για συγκεκριμένες τιμές εκτοπισμάτων και για διάφορες γωνίες εγκάρσιας κλίσης που δύναται να λάβει ένα πλοίο. Το διάγραμμα που προκύπτει από τους υπολογισμένους μοχλοβραχίονες με τις αντίστοιχες γωνίες ονομάζεται καμπύλη στατικής ευστάθειας GZ-φ. [8] [10] [11]

Εικόνα 17: Καμπύλη στατικής ευστάθειας GZ-φ <u>Πηγή: https://images.app.goo.gl/7ZibyemdSqZebCCu6</u>

3.2. ΜΕΘΟΔΟΙ ΜΕΛΕΤΗΣ ΤΗΣ ΚΑΤΑΣΤΑΣΗΣ ΠΛΟΙΟΥ ΜΕΤΑ ΑΠΟ ΒΛΑΒΗ

Μέθοδος Χαμένης Άντωσης

Η συγκεκριμένη μέθοδος χρησιμοποιείται και από το πρόγραμμα ευστάθειας της παρούσας εργασίας. Τα κύρια χαρακτηριστικά αυτής της μεθόδου είναι ότι το διαμέρισμα που έχει κατακλυστεί δεν παρέχει πλέον άντωση και ότι ο όγκος του συγκεκριμένου χώρου θεωρούμε ότι δεν ανήκει πλέον στο πλοίο. Σύμφωνα με αυτή τη μέθοδο το εκτόπισμα και το κέντρο βάρους είναι σταθερά, αλλά η θέση ισορροπίας μεταβάλλεται.

Μέθοδος πρόσθετου βάρους

Αντιθέτως, σε αυτή την περίπτωση ο όγκος του νερού που εισέρχεται στο πλοίο μετά από βλάβη προστίθεται στο υπάρχον εκτόπισμα του πλοίου και το καινούργιο κέντρο βάρους υπολογίζεται από τις ροπές του άθικτου πλοίου και του κατακλύσιμου νερού. Τέλος, συνυπολογίζεται και η επίδραση των ελευθέρων επιφανειών. [4] [6]

3.3. ΕΠΙΔΡΑΣΗ ΕΛΕΥΘΕΡΩΝ ΕΠΙΦΑΝΕΙΩΝ

Όπως είδαμε παραπάνω στη μέθοδο του πρόσθετου βάρους συνυπολογίζεται και η επίδραση των ελεύθερων επιφανειών. Επομένως, είναι απαραίτητο να κατανοηθεί η έννοια της ελεύθερης επιφάνειας. Σε όλα τα πλοία είναι απαραίτητη η ύπαρξη δεξαμενών για διάφορες χρήσεις (Καυσίμου, φρέσκου νερού, έρματος κλπ.). Σε μερικές περιπτώσεις, οι δεξαμενές αυτές δεν είναι τελείως γεμάτες. Επομένως, η έννοια της ελεύθερης επιφάνειας αφορά την επιφάνεια του ρευστού μιας δεξαμενής με μερική πλήρωση. Η ελεύθερη επιφάνεια δύναται να δημιουργήσει πρόβλημα στην ευστάθεια, καθώς κατά τις κινήσεις του πλοίου το ρευστό μετακινείται ακούσια προς την πλευρά που παίρνει κλίση το πλοίο. [4] [11] [12]

Εικόνα 18: Παράδειγμα ελεύθερης επιφάνειας

<u>Πηγή:https://eclass.hna.gr/modules/document/file.php/TOM2110/%CE%94%CE%B9%CE%B1%CE%BB%CE%A</u> <u>D%CE%BE%CE%B5%CE%B9%CF%82/2016.01_L.13.pdf</u>

Σύμφωνα με τον καθηγητή *Jenkins* του Πανεπιστημίου της Γλασκώβης, η επίδραση των ελευθέρων επιφανειών δεν εξαρτάται από την ποσότητα ενός ρευστού και μπορεί να εκφραστεί ως μείωση του αρχικού *GM*. Η σχέση που παρουσίασε είναι η εξής:

$$GM_V = GM - \frac{y_f * I_f}{\Delta} \quad (2)$$

Όπου γ: το ειδικό βάρος του ρευστού

Ιf η δεύτερη ροπή επιφάνειας του ρευστού

Δ: Το εκτόπισμα του πλοίου

GM_V: Το μειωμένο μετακεντρικό ύψος

Η επίδραση της ελεύθερης επιφάνειας μπορεί να μειωθεί με τη χρήση φρακτών (διαμήκων και εγκαρσίων) και τη χρήση δεξαμενών που δεν έχουν μεγάλο όγκο.

Εικόνα 19:Μείωση της επίδρασης της ελεύθερης επιφάνειας με χρήση διαμήκης φρακτής <u>Πηγή: https://repository.kallipos.gr/handle/11419/550</u>

Τέλος, όταν η στάθμη του υγρού μέσα στη δεξαμενή είναι πολύ υψηλή ή πολύ χαμηλή και το υγρό έρχεται σε επαφή με το κάτω ή το άνω μέρος της δεξαμενής, (εικόνες B,C) τότε υπάρχει περιορισμός του φαινομένου (φαινόμενο *pocketing*) [4] [6]

Εικόνα 20: Φαινόμενο Pocketing

<u>Inyń:https://eclass.hna.gr/modules/document/file.php/TOM2110/%CE%94%CE%B9%CE%B1%CE%BB%CE%AD%</u> CE%BE%CE%B5%CE%B9%CF%82/2016.01 L.13.pdf

3.4. ΔΙΑΧΩΡΗΤΟΤΗΤΑ

Κατά την εισροή ύδατος σε ένα διαμέρισμα ενός πλοίου, είναι απαραίτητο να ποσοτικοποιηθεί ο πραγματικός όγκος κατάκλυσής του. Η ύπαρξη αντικειμένων μέσα στο διαμέρισμα έχει ως αποτέλεσμα ο όγκος κατάκλυσης να είναι μικρότερος από το θεωρητικό όγκο του. Η διαχωρητότητα (permeability) είναι ουσιαστικά το ποσοστό ενός χώρου που δύναται να κατακλυστεί με νερό. Σύμφωνα με τους κανονισμούς της SOLAS οι τιμές της διαχωρητότητας λαμβάνονται ως εξής: [13] [14]

Spaces	Permeability
Appropriated to stores	0,60
Occupied by accommodation	0,95
Occupied by machinery	0,85
Void spaces	0,95
Intended for liquids	0 or 0,95

Πίνακας 2:Διαχωρητότητα διαφόρων χώρων ενός πλοίου σύφμωνα με το Chapter II-1/Regulation 7-3 της SOLAS <u>Πηγή:https://www.imorules.com/GUID-5E936405-2058-47BE-AC3F-EBD7E4B31636.html</u>

4. ΜΕΘΟΔΟΙ ΕΚΤΙΜΗΣΗΣ ΕΥΣΤΑΘΕΙΑΣ ΜΕΤΑ ΑΠΟ ΒΛΑΒΗ

Οι μέθοδοι εκτίμησης ευστάθειας μετά από βλάβη χωρίζονται σε δύο βασικές κατηγορίες. Η μια είναι η προσδιοριστική μέθοδος ή ντετερμινιστική και η άλλη η πιθανοθεωρητική. Οι δύο αυτές μέθοδοι έχουν κάποιες διαφορές κυρίως στη διαδικασία εφαρμογής τους οι οποίες θα αναλυθούν παρακάτω.

4.1. ΠΡΟΣΔΙΟΡΙΣΤΙΚΗ ΜΕΘΟΔΟΣ

Όπως αναφέρθηκε και στο κεφάλαιο 2.2, η εξέλιξη και η αυστηροποίηση των κανονισμών ήταν αποτέλεσμα μιας σειράς ναυτικών ατυχημάτων και της ανάγκης αύξησης της ανθρώπινης ασφάλειας εν πλω. Η προσδιοριστική μέθοδος αποτελεί μια ημιεμπειρική μέθοδο και αναλύει περιπτώσεις βλάβης μέσα σε προβλεπόμενα όρια τα οποία θα δούμε παρακάτω. Οι κανονισμοί εναπομένουσας ευστάθειας της SOLAS'90 περιλαμβάνουν τα εξής:

- Το πλοίο πρέπει να έχει ελάχιστος εύρος ευστάθειας 15°, ξεκινώντας από τη μέγιστη τελική γωνία ισορροπίας που δεν μπορεί να είναι μεγαλύτερη των 7° στην περίπτωση κατάκλυσης ενός διαμερίσματος και 12° στην κατάκλυση δύο διαμερισμάτων.
- Η επιφάνεια κάτω από το μοχλοβραχίονα θα πρέπει να είναι τουλάχιστον 0,015m rad.
- Θα πρέπει GZ>0,1m καθώς και 0,04m μεγαλύτερη από το μοχλοβραχίονα της μεγαλύτερης από τις ακόλουθες ροπές:
 - Λόγω ταυτόχρονης μετακίνησης επιβατών προς την ίδια πλευρά ενός πλοίου.
 - 2. Λόγω καθέλκυσης σωστικών λέμβων.
 - 3. Λόγω της επίδρασης του ανέμου.
- > Θα πρέπει GM> 0,05m στις περιπτώσεις συμμετρικής κατάκλυσης.

Εικόνα 21:Απαιτήσεις ευστάθειας μετά από βλάβη του προσδιοριστικού μοντέλου <u>Πηγή:https://www.calameo.com/read/003094022e25baadf89f3</u>

Βασικό χαρακτηριστικό της συγκεκριμένης μεθόδου είναι ότι τα χαρακτηριστικά του ρήγματος ήταν προδιαγεγραμμένα. Πιο συγκεκριμένα:

- Μήκος ρήγματος ίσο με 0,03L + 3m ή 11m όποιο είναι μικρότερο.
- Εισχώρηση ίση με το 1/5 του πλάτους.

Επίσης, η βλάβη θεωρείται ότι εκτείνεται κατακόρυφα από τη βασική γραμμή B.L. προς τα πάνω.

Γενικότερα η κατάσταση που βρίσκεται ένα πλοίο μετά από κατάκλυση αποτελεί ένα σύνθετο και πολλές φορές απρόβλεπτο πρόβλημα, δημιουργώντας αρκετές αντιπαραθέσεις. Μερικές από αυτές είναι το κρίσιμο ύψος κύματος που ανατρέπεται ένα πλοίο (πλέον 2,5 με 3m), ο όγκος του νερού που δύναται να κατακλύσει ένα γκαράζ και η πιθανή μετακίνηση οχημάτων, καθώς και η ασύμμετρη κατάκλυση.

Ιδιαίτερη συζήτηση σχετικά με το προσδιοριστικό μοντέλο αποτέλεσε το ερώτημα αν η ελαχιστοποίηση της απόστασης των φρακτών οδηγούσε σε μεγαλύτερη ασφάλεια, καθώς με τη μείωση των αποστάσεων αυξανόταν η πιθανότητα να χτυπηθεί μια φρακτή και να υπάρξει μεγαλύτερος όγκος κατάκλυσης. Αδιαμφισβήτητα σε περιπτώσεις κατάκλυσης ενός διαμερίσματος η ασφάλεια αυξάνεται, αλλά δημιουργήθηκε η ανάγκη υλοποίησης μιας πιο ορθολογικής μεθόδου προσδιορισμού της ασφάλειας ενός πλοίου. Αυτό επιτεύχθηκε με την εισαγωγή της πιθανοθεωρητικής μεθόδου που αναλύεται στο κεφάλαιο <u>4.2.</u> [4]

4.2. ΠΙΘΑΝΟΘΕΩΡΗΤΙΚΗ ΜΕΘΟΔΟΣ

Όπως αναφέραμε και στο κεφάλαιο 2.2 η έννοια του πιθανοτικού μοντέλου παρουσιάστηκε από τον Kurt Wendel το 1960. Σύμφωνα με το Γερμανό, η ασφάλεια ενός πλοίου καθορίζεται μέσω στατιστικών στοιχείων ατυχημάτων και πιθανοτήτων. Σύμφωνα με τον Wendel, ένας τρόπος να ποσοτικοποιήσει κάποιος την ασφάλεια ενός πλοίου, συναρτήσει του τρόπου υποδιαίρεσής του, είναι να θεωρήσει ότι ισούται με: «το λόγο του αριθμού των ρηγμάτων που δεν οδηγούν σε βύθιση το πλοίο (ή χαμηλής επικινδυνότητας ρήγματα) προς τον αριθμό των ρηγμάτων που είναι δυνατό να συμβούν». [4] [6] [15]

4.2.1. ΕΠΙΤΕΥΧΘΕΝΤΑΣ ΔΕΙΚΤΗΣ ΥΠΟΔΙΑΙΡΕΣΗΣ

Στην πιθανοθεωρητική μέθοδο τα χαρακτηριστικά του ρήγματος εκλαμβάνονται ως τυχαίες μεταβλητές και η εκάστοτε βλάβη περιγράφεται από τη θέση του ρήγματος κατά μήκος του πλοίου και τη διαμήκη έκτασή του, το βάθος διείσδυσης και την κατακόρυφη έκταση της βλάβης. Τα παραπάνω εκφράζονται μέσω των συντελεστών *pi*, *ri* και *vi*. Επίσης, λαμβάνεται υπόψιν και από τη δεσμευμένη πιθανότητα επιβίωσης του πλοίου η οποία συμβολίζεται με *si*. Όταν ο συντελεστής της πιθανότητας επιβίωσης ενός πλοίου είναι *si*=0, τότε έχουμε απώλεια του πλοίου σε αντίθεση με την τιμή *si*=1 όπου έχουμε επιβίωση.

Με βάση τα παραπάνω υπολογίζεται ο επιτευχθέντας δείκτης υποδιαίρεσης Α για μια κατάσταση φόρτωσης ως εξής:

$$Ai = \sum_{i=1}^{t} pi * vi * si (3)$$

Όπου

i: σενάριο που εξετάζεται

t: συνολικά σενάρια

pi: πιθανότητα κατάκλυσης χώρου στην εκάστοτε διαμήκη θέση ενός πλοίου. Περιλαμβάνει και το συντελεστή *ri* που επεξηγήθηκε παραπάνω. Ουσιαστικά ο συντελεστής *pi* εξαρτάται και από τη διαμήκη, αλλά και την εγκάρσια υποδιαίρεση ενός πλοίου.

Ο συντελεστής vi εξαρτάται αντίστοιχα από την καθ'ύψος στεγανή υποδιαίρεση, καθώς και από το βύθισμα της εκάστοτε κατάστασης. [4] [6] [15]

Εικόνα 22:Χαρακτηριστικά τρίγωνα σε σχέση με τα οποία προσδιορίζονται η θέση και το μήκος ενός ρήγματος Πηγή:https://www.calameo.com/read/003094022e25baadf89f3

4.2.2. ΑΠΑΙΤΟΥΜΕΝΟΣ ΔΕΙΚΤΗΣ ΥΠΟΔΙΑΙΡΕΣΗΣ

Για την εξασφάλιση της ασφάλειας ενός πλοίου είναι απαραίτητη η σύγκριση του επιτευχθέντα δείκτη υποδιαίρεσης με τον απαιτούμενο δείκτη υποδιαίρεσης R. Σύμφωνα με τον καινούργιο κανονισμό (SOLAS - Chapter ll-1 -subdivision and stability - Part B-1), ο υπολογισμός του απαιτούμενου δείκτη υποδιαίρεσης γίνεται βάση του παρακάτω πίνακα:

Persons on board	R
N < 400	<i>R</i> = 0.722
$400 \leq N \leq 1,350$	R = N / 7,580 + 0.66923
$1,350 < N \le 6,000$	$R = 0.0369 \times Ln (N + 89.048) + 0.579$
N > 6,000	$R = 1 - (852.5 + 0.03875 \times N) / (N + 5,000)$

Πίνακας 2:Απαιτούμενος δείκτης υποδιαίρεσης (MSC.421(98))

Στην προκειμένη περίπτωση το πλοίο πρέπει να συμμορφώνεται με βάση τους παλιούς κανονισμούς του απαιτούμενου δείκτη υποδιαίρεσης (MSC.216(82)). Οι υπολογισμοί πραγματοποιήθηκαν βάση της παρακάτω σχέσης (4). Ο απαιτούμενος δείκτης υποδιαίρεσης R, συσχετίζεται με κάποια σημαντικά ως προς την ασφάλεια χαρακτηριστικά ενός πλοίου. Τα χαρακτηριστικά αυτά είναι ο αριθμός των ανθρώπων που βρίσκονται πάνω στο πλοίο, το φορτίο, το μήκος υποδιαίρεσης και το περιβάλλον.

Εικόνα 24:Παράγοντες που επηρεάζουν την ασφάλεια ενός πλοίου <u>Πηγή:https://dspace.lib.ntua.gr/xmlui/bitstream/handle/123456789/40459/%ce%94%ce%b9%cf%80%ce%bb%cf</u> <u>%89%ce%bc%ce%b1%cf%84%ce%b9%ce%ba%ce%ae%20%ce%95%cf%81%ce%b3%ce%b1%cf%83%ce%af%ce%b1</u> <u>1.pdf?sequence=1&isAllowed=y</u>

Για τα πλοία επιβατηγού τύπου ο απαιτούμενος δείκτης υποδιαίρεσης R υπολογίζεται από τον τύπο (MSC.216(82)):

$$R = 1 - \frac{5000}{Ls + 2.5 * N_p + 15.225}$$
(4)

Όπου:

Ls: το μήκος υποδιαίρεσης

 $N_p = NI + 2N2$

Όπου N1: Ο αριθμός ανθρώπων πάνω στο πλοίο, στους οποίους παρέχονται σωσίβιες λέμβοι.

N2: Ο αριθμός των ανθρώπων (μαζί με του πληρώματος), που επιτρέπονται πάνω στο πλοίο, επιπλέον του αριθμού N1.

Στην παρούσα εργασία, θα πραγματοποιηθεί έλεγχος συμμόρφωσης του επιτευχθέντα δείκτη υποδιαίρεσης και σύμφωνα με τον καινούργιο κανονισμό (SOLAS - Chapter ll-1 -subdivision and stability - Part B-1). [4] [6] [15]

5. ΠΛΟΙΑ ΤΥΠΟΥ RO-PAX

5.1. ПЕРІГРАФН

Ως επιβατηγό πλοίο (passenger ship), χαρακτηρίζεται ένα πλοίο που κρίνεται κατάλληλο να μεταφέρει 12 επιβάτες και πάνω. Το πλοίο RO-RO (roll-on/roll-of) είναι ένας τύπος εμπορικού πλοίου που μεταφέρει αποκλειστικά τροχοφόρα φορτία, όπως φορτηγά, αυτοκίνητα, ρυμουλκούμενα ή ημιρυμουλκούμενα. Τα συγκεκριμένα πλοία χρησιμοποιούν ράμπες, είτε ενσωματωμένες είτε επίγειες, για τη φορτοεκφόρτωση τροχοφόρων φορτίων που βρίσκονται πλωραία ή πρυμναία, ενώ πολλές φορές συναντάται και στις δύο.

Ο συνδυασμός των παραπάνω περιπτώσεων, δηλαδή η ταυτόχρονη μεταφορά επιβατών και τροχοφόρων φορτίων, συνθέτει ένα είδος πλοίου το οποίο ονομάζεται Ro-Pax. Τα συγκεκριμένα πλοία είναι κατάλληλα σχεδιασμένα, ώστε να παρέχουν ποιοτική μετακίνηση των επιβατών με υψηλή ταχύτητα υπηρεσίας. Η φορτοεκφόρτωση οχημάτων πραγματοποιείται χωρίς τη χρήση επιπλέον φορτοεκφορτωτικών μέσων, αλλά με τη χρήση καταπέλτη πρύμνηθεν ή πρώραθεν.

Εικόνα 25: Τρόπος φορτοεκφόρτωσης τροχοφόρων φορτίων στα RO-PA <u>Πηγή:</u> <u>https://dspace.lib.ntua.gr/xmlui/bitstream/handle/123456789/40459/%ce%94%ce%b9%cf%</u> <u>80%ce%bb%cf%89%ce%b1%cf%84%ce%b9%ce%ba%ce%ba%ce%ae%20%ce%95%cf%81%ce</u> <u>%b3%ce%b1%cf%83%ce%af%ce%b11.pdf?sequence=1&isAllowed=y</u>

Η διάταξή των συγκεκριμένων πλοίων αποτελείται συνήθως από τρία επίπεδα. Στο πρώτο και κατώτερο βρίσκονται οι χώρουι του μηχανοστασίου, στο δεύτερο επίπεδο τα καταστρώματα των οχημάτων, ενώ στο τρίτο τα καταστρώματα ενδιαίτησης των επιβατών. Τα συγκεκριμένα πλοία μπορούν να κατηγοριοποιηθούν σε κλειστά και σε ανοιχτά, αναλόγως αν το κύριο κατάστρωμα των οχημάτων είναι ανοιχτό ή κλειστό.

5.2 ΤΟ ΖΗΤΗΜΑ ΤΗΣ ΑΣΦΑΛΕΙΑΣ ΣΤΑ ΠΛΟΙΑ ΤΥΠΟΥ RO-PAX

Στην περίπτωση του ανοιχτού τύπου, το κατάστρωμα δεν προστατεύεται από πάνω μειώνοντας έτσι την ασφάλεια σε καταστάσεις ανοιχτής θάλασσας. Στα συμβατικά πλοία η γάστρα χωρίζεται σε ένα αριθμό διαμερισμάτων με τη χρήση φρακτών. Οι φρακτές αυτές περιορίζουν ή καθυστερούν την εισροή ύδατος, ενώ πολλές φορές αποτρέπουν και τη βύθιση ενός πλοίου. Το κατάστρωμα των οχημάτων συνήθως δεν διαθέτει εγκάρσιες φρακτές. Επομένως, ακόμα και στις περιπτώσεις κλειστού και προστατευμένου καταστρώματος η απουσία εσωτερικών φρακτών στο χώρο των οχημάτων, αυξάνει τον κίνδυνο σε περίπτωση κατάκλυσης του εσωτερικού του. Λύση για το συγκεκριμένο πρόβλημα δεν υπάρχει, καθώς ένα κατάστρωμα οχημάτων πρέπει να είναι σχεδιασμένο με τέτοιον τρόπο ώστε να επιτρέπει τη μετακίνηση των οχημάτων

από την πλώρη στην πρύμνη και αντίστροφα. Όπως αντιλαμβάνεται κανείς, η κατάκλυση σε χώρο οχημάτων μπορεί να αποτελέσει καταστροφικό γεγονός στην ευστάθεια ενός πλοίου, ενώ η πιθανή μετακίνηση οχημάτων δύναται να οδηγήσει σε ανατροπή του πλοίου λόγω μεγάλης εγκάρσιας κλίσης. [6] [16] [17]

6. ΜΟΝΤΕΛΟΠΟΙΗΣΗ

6.1. RHINOCEROS

Το Rhinoceros πρόκειται για ένα σχεδιαστικό πρόγραμμα με τη βοήθεια ηλεκτρονικού υπολογιστή (Computer Aided Design – CAD) το οποίο δημιουργήθηκε για πρώτη φορά από τον Αμερικανό Robert McNeel & Associates. Το πρόγραμμα διαθέτει πληθώρα εντολών και είναι κατάλληλο για τη δημιουργία και επεξεργασία καμπυλών ελευθέρας μορφής, που είναι ιδιαίτερα σημαντική για τη σχεδίαση γεωμετρικά πολύπλοκων σχημάτων, όπως είναι αυτά που χρησιμοποιούνται στη ναυπηγική βιομηχανία. Εκτός από τη ναυπηγική, βρίσκει εφαρμογές και σε άλλους τομείς όπως: ο βιομηχανικός σχεδιασμός, η αυτοκινητοβιομηχανία, η αρχιτεκτονική κ.α. Στην παρούσα διπλωματική η γάστρα του πλοίου σχεδιάστηκε στο Rhinoceros. [18]

6.2. MAXSURF

Το MaxSurf αποτελεί ένα ειδικό ναυπηγικό πρόγραμμα της Bentley, το οποίο είναι κατάλληλο για έλεγχο άθικτης ευστάθειας και ευστάθειας μετά από βλάβη. Το πρόγραμμα αυτό χρησιμοποιεί τη μέθοδο της χαμένης άντωσης που εξηγήθηκε στο κεφάλαιο 3.2. Η γάστρα που σχεδιάστηκε στο Rhinoceros σε τρισδιάσταση μορφή εισάγεται στο Maxsurf, όπου θα γίνει εισαγωγή των φρακτών, των διαμερισμάτων και των δεξαμενών και θα πραγματοποιηθεί έλεγχος άθικτης ευστάθειας και ευστάθειας και ευστάθειας μετά από βλάβη για διάφορες καταστάσεις φόρτωσης. Το πρόγραμμα διαθέτει τη δυνατότητα εισαγωγής downflooding points, (Key points) τα οποία είναι τα πρώτα σημεία που θα εισέλθει νερό σε περίπτωση που το πλοίο λάβει συγκεκριμένη κλίση. Τα σημεία αυτά συνήθως μπορεί να είναι μη υδατοστεγείς πόρτες ή ακόμα και εξαερισμοί. Το MaxSurf έχει την ικανότητα μελέτης της ευστάθειας μετά από βλάβη του ντετερμινιστικού, όσο και με του πιθανοθεωρητικού μοντέλου που αναλύθηκαν στο κεφάλαιο <u>4</u>. [19] [20]

7. ΥΠΟΛΟΓΙΣΤΙΚΟ ΜΕΡΟΣ

7.1. ΠΕΡΙΓΡΑΦΗ ΥΠΟΛΟΓΙΣΤΙΚΟΥ ΜΕΡΟΥΣ

Όπως αναφέρθηκε και παραπάνω στο υπολογιστικό μέρος θα γίνει χρήση δύο προγραμμάτων. Το πρώτο πρόγραμμα (*Rhinoceros*) περιλαμβάνει τη τρισδιάστατη σχεδίαση της γάστρας μέσω των ναυπηγικών γραμμών και του σχεδίου γενικής διάταξης. Εκτός από τη γάστρα κατασκευάστηκαν συγκεκριμένοι χώροι στο κατάστρωμα οχημάτων, καθώς και το κατάστρωμα των στεγανών φρακτών (*Bulkhead deck*) (δηλαδή το κατάστρωμα όπου καταλήγουν οι στεγανές φρακτές). Οι παραπάνω κατασκευές θα βοηθήσουν στην οριοθέτηση των διαμερισμάτων στο υδροστατικό πρόγραμμα *MaxSurf*. Στο δεύτερο πρόγραμμα πραγματοποιήθηκε η τοποθέτηση των δεξαμενών και των διαμερισμάτων και ο έλεγχος άθικτης ευστάθειας μετά από βλάβη. Το συγκεκριμένο πρόγραμμα παρέχει τη δυνατότητα μελέτης της ευστάθειας μετά από βλάβη και με χρήση πιθανοθεωρητικού μοντέλου εκτός από ντετερμινιστικού. Οι διαδικασίες συνοψίζονται στο παρακάτω γράφημα:

Εικόνα 26: Πορεία Υπολογιστικού Μέρους

7.2. ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΠΛΟΙΟΥ

Στον παρακάτω πίνακα παρουσιάζονται κάποια βασικά χαρακτηριστικά του πλοίου.

Name of ship	C/P ACHILLEAS
Port of Registry	Piraeus, Greece
Туре	CAR/PASSENGER SHIP
Year Built	1987
Dimensions	
Length Overall (LOA)	95,57m
Length Between Perpendiculars (LBP)	84,3m
Breadth (MLD.)	16,60m /15,00m
Depth up to Wagon deck	5,50m
Ισαπόσταση νομέων (Frame Spacing)	0,600m
Drafts	
Max Draft MLD.	4,05m
Max Draft incl. Keel plate	4,064m
Accommodati	on
Number of passengers	600
Speed	
Service speed	17,5knots

Πίνακας 3:Κύρια χαρακτηριστικά πλοίου

7.3. ΔΕΔΟΜΕΝΑ ΣΧΕΔΙΑ - ΙΝΡUΤ DATA

Για την εκπόνηση της παρούσας εργασίας η ΄ΣΚΥΡΟΣ ΝΑΥΤΙΚΗ ΕΤΑΙΡΕΙΑ΄΄ μας παρείχε τα παρακάτω:

Σχέδιο γραμμών (Lines plan) από το οποίο δημιουργήθηκε η γάστρα του πλοίου.

Εικόνα 27: Εγκάρσιο επίπεδο (Body plan)

Πρόκληση στο συγκεκριμένο σημείο αποτέλεσε το γεγονός ότι το σχέδιο γραμμών αφορούσε τη σχεδίαση του πλοίου πριν από τη μετασκευή που πραγματοποιήθηκε. Το πλοίο πριν τη μετασκευή περιείχε καταπέλτη οχημάτων στην πλώρη.

Εικόνα 28: Πλοίο πριν (αριστερά) και μετά τη μετασκευή στην πλώρη (δεξιά)

Στη διάθεση μας είχαμε επίσης και τη Διαμήκη όψη (*Profile*), καθώς και πίνακα συντεταγμένων (*offset table*). Ο πίνακας αυτός παρέχει απαραίτητες συντεταγμένες για τη σχεδίαση τόσο των νομέων, όσο και των ισάλων.

													OFFSE				TABLE								_				_		-		-		-	-	-
					HALF		60	SADTH													YERGHT		A801	e	81	32		LINE									
20.	anst Linit	0.25	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00 AV. L.	R.L.A.	DR.S.L	CENTER	0.50	100	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.60	6.00	6.50	7.00	A.L.	LINE	68.3.L.J	R.C.L.	ar. 5.6.	OF.C.L.	a-diamonitive	
,								/			3.65	5.19	5.78	5.78	1.50	-						4.50	4.53	1.65	4.87	5.28					5.66	6.06	6.06	11-02	11.06	11-16	
											6.74	5.49	5.97	5.97	1.28	-						4.28	2.31	1.12	4.65	5.01 .					5.65	645	6.00	11.02	11.05	11.15	
P.											\$15	5.77	6.18	6.18	1.06	-					+	1.06	4.10	4.21	4.41	1.71	5.29				6.64	6.04	6.06	11.02	11.06	11.16	
4										1.81	5.67	615	6.47	6.27	3.25	-	_		-			3.75	3.79	3-87	4.07	1.35	4.81				551	5.91	5.96	10.91	10.96	11.01	
			2.23	2.87	2.00	2.61	2.27	2.30	3.70	5.36	6.09	6.50	6.94	6.74	3.43	-		3.4.7	3.47	0.33	3.33	3.67	3.55	3.66	3.83	1.07	1.10	4.95			5.36	5.76	5.81	10.76	10.81	10.86	
	2.40	2.29	2.73	2.00	2.00	2.07	2.83	1.92	4.78	5.77	6.44	4.87	7.00	7.00	3.13	-		3.13	-345-	0	2.92	3.19	3.28	3.40	3.57	3.83	1.16	1.56			5.21	5.61	5.66	10.61	10.66	10.7/	_
	2.60	2.20	230	3.04	3.05	3.01	3.13	3.90	5.86	6.17	6.75	7.17	7.24	7.26	2.8.5	-		280	2-89		081	2.85	3.02	3.16	3.34	2.57	3.86	4.15	4.78		5.11	5.51	5.56	10.51	10.56	10.61	
	2.40	2.16	200	182	173	160	101	5.16	6.15	6.80	7.21	7.59	7.65	7.65	2.26	2.24	2.26	2.09	2.51		0.47	2.03	2.48	2.72	2.95	3.15	3.10	1.75	4.21	e.86	5.10	5.50	1	10.50		10.60	
	2.32	2.01	1.81	1.53	1.32	4.32	5.18	4.10	6.73	7.17	7.44	7.87	7.96	7.96	145	165	1.65	1.15	0.25		0.25	0.93	1.70	2.18	241	2.66	2.96	3.29	3.76	4.65	1	1		200		-	
	218	1.27	1.55	1.16	4.61	5.32	6.10	4.48	7.08	7.53	7.47	8.05	8.18	8.18	1.10	1.40	107	0.57	0.07		0.12	0.43	0.91	1.39	1.78	2.11	2.43	2.82	3.37								
	1.96	102	1.01	4.79	\$.50	6.16	6.68	7.03	7.27	7.40	7.48	8.12	8.27	8.27	0.60	040	0.50	0.21	0		0.06	0.19	0.45	0.79	1.15	150	1.87	231	2.94								
	2.60	1.68	1.00	4.05	1.1.8	6.34	7.13	7.28	7.92	1	1	8.13	1.30	8.30	0	0	0	0			0.02	005	0.11	0.21	0.36	0.57	0.87	1.02	2.12								
	2.60	5.11	5.79	6.47	6.85	7.04	7.15	7.23	7-32			0.45	1		1		1	1			0.02	0.05	0.07	0.13	0.28	0.38	0.42	102	1.85								
	2.60	1.92	\$ 40	6.28	6.67	6.85	7.68	2.22	7.32	7.40		1							0	0	0.02	0.05	0.09	0.16	0.18	0.45	0.75	1.25	2.10								
	1.41	2.44	in	5.28	5.93	6.40	6.74	7.00	7.20	7.85	7.48						0	0	0.04	0.09	0.16	0.27	0.40	0.59	0.83	1.15	1.26	2.13	3.00								
	0.40	1.92	2.60	10	1.10	5.06	1.63	6.16	6.60	7.00	7.18	8.15				0	0.00	0.19	0.33	0.50	0.70	0.96	1.24	1.57	1.94	2.38	2.87	3.40	1.00	4.65							
,	4.40	1.45	1.76	2.32	14	6.11	4.23	5.02	SRR	6.41	7.02	8.05	8-30			0.05	0.21	0.57	0.61	0.89	1.19	~55	1.92	2.20	2.73	3.16	3.42	1.08	119	4.78							
	0.20	0.32	1.12	/ 87	2.51	3.12	3.69	4-18	1.90	5.65	6.32	7.65	- 3:33	8.30		0.14	0-62	0.75	1.11	150	1.91	2.34	2.76	3.17	2.59	3.97	4.30	1.59	4.80	1.96						1	
2	0.14	0.40	0.65	1.13	1.61	2.11	2.62	3.15	3.72	1.35	5.19	6.64	7.84	3.10		0.11	0.85	1.37	1.90	2.87	2.86	2.32	3.75	4.10	4.40	4.65	1.21	4.98	5-05	4.58	5.10	5.50	5.56	10.50	10.56	10.10	
	0.10	0.23	0.36	0.4	0.93	1.26	1.63	2.03	2.50	3.03	3.74	5.44	6.32	7.76		0.75	1.59	2.38	2.97	3.50	4.97	1.35	4.65	1.86	501	5.12	519	5.28	6.61	9.26	525	5.65	5.70	10.64	10.20	10.74	
e.	0.09	0.17	0.26	0.45	0.66	0.90	1.18	1.50	1.86	7.33	2.96	4.53	6.02	7.35		1.13	2.20	3.01	3.67	4.07	\$.53	4.80	4.99	5.13	5.24	5.32	5.19	7-20	9.45		642	5-82	5.86	10.81	10.86	10.91	
2	0.08	0.46	0.19	0.31	0.44	0.60	0.78	1.00	1.26	1.59	2.11	3.50	5.22 5.34	6.77		1.68	3.02	3.87	4.41	4.76	500	5.19	5.30	5.40	5.63	6.53	8.17	10.02			5-57	5.97	401	10.96	11.01	11.25	
x	0.08	0.10	0.13	0.18	0.23	0.31	0.40	0.52	0.66	0.87	1.28	2.29	4.38	6.00	0	2.9/	122	4.75	5-06	5.26	5.40	5.50	\$2.5	6.04	7.69	9.45	11.00				5.61	6.04	6.06	11.02	11.06	12-02	
p												120	-3.50	- 107	1.20	4.69	10	1.12	5.10	100	0.03	111	7.47	0.00							111	6.06	6.06	11.02	11.06	12.02	

Εικόνα 29: Πίνακας Συντεταγμένων (Offset Table)

• Σχέδιο γενικής διάταξης (General Arrangement Plan)

Εικόνα 30: Σχέδιο γενικής διάταξης (General Arrangement Plan)

Το παραπάνω σχέδιο κρίθηκε απολύτως απαραίτητο, καθώς παρείχε αρκετή πληροφορία για τη πλώρη του πλοίου, δεδομένου ότι η τοποθέτηση του κάθε καταστρώματος σε κατάλληλη κλίμακα και σε κατάλληλο ύψος στο σχεδιαστικό πρόγραμμα επέτρεψε στην ακριβέστερη διαμόρφωσή της.

• Capacity Plan

Το συγκεκριμένο σχέδιο είναι απαραίτητο για τη τοποθέτηση των δεξαμενών και των φρακτών στο *MaxSurf*.

Εικόνα 31: Capacity plan

7.3. ΚΑΤΑΣΚΕΥΗ ΤΡΙΣΔΙΑΣΤΑΤΟΥ ΜΟΝΤΕΛΟΥ

ΒΗΜΑ 1: ΕΙΣΑΓΩΓΗ ΤΩΝ ΑΠΑΡΑΙΤΗΤΩΝ ΣΧΕΔΙΩΝ ΣΤΟ RHINOCEROS

Έχοντας ανοίξει το σχεδιαστικό πρόγραμμα με την εντολή ("import") εισάγουμε το εγκάρσιο επίπεδο (body plan) και το profile από το σχέδιο γενικής διάταξης. Τα παραπάνω πρέπει να τοποθετηθούν στην κατάλληλη κλίμακα. Αυτό θα επιτευγθεί με την εντολή ("ScaleNU"). Η συγκεκριμένη εντολή επιτρέπει τη διαστατοποίηση τόσο στον οριζόντιο, όσο και στον κάθετο άξονα. Για τη σωστή διαστατοποίηση του Profile έγινε χρήση βασικών διαστάσεων (Μήκος μεταξύ καθέτων LBP (84,30m) και ύψος Wagon Deck (5,50m), ενώ για το Bodyplan έγινε χρήση του ημιπλάτους (8,30m) και του βυθίσματος (4,05m). Το συγκεκριμένο βήμα ήταν ιδιαίτερα σημαντικό καθώς η λανθασμένη διαστασιολόγηση ή η περίπτωση στραμμένης σάρωσης του σχεδίου θα οδηγούσε σε ανακριβή αποτελέσματα. Στην προκειμένη περίπτωση η σάρωση του body plan δεν ήταν ευθυγραμμισμένη με τον άξονα Oxyz, οπότε έγινε χρήση της εντολής ("rotate"). Επόμενο βήμα, αποτέλεσε η εισαγωγή των καταστρωμάτων που θα αποδώσουν μεγαλύτερη πληροφορία στο μέρος της πλώρης. Στη συγκεκριμένη περίπτωση, για την εντολή ("ScaleNU") γρησιμοποιήθηκε το μέγιστο πλάτος (16,60m), καθώς και το μήκος μεταξύ καθέτων (84,30m). Όλα τα παραπάνω τοποθετήθηκαν στη σωστή θέση με την εντολή ("move").

Εικόνα 32:Στιγμιότυπο από το Rhinoceros μετά τις παραπάνω διαδικασίες

ΒΗΜΑ 2: ΣΧΕΔΙΑΣΗ ΝΟΜΕΩΝ

Για τη συγκεκριμένη διαδικασία χρησιμοποιήθηκε κυρίως ο πίνακας συντεταγμένων και με τη βοήθεια του Body plan γινόταν η επαλήθευση των αποτελεσμάτων. Για την τοποθέτηση περισσότερων σημείων των νομέων χρησιμοποιήθηκαν τόσο τα σημεία τομής των ισάλων με τους νομείς, όσο και τα ύψη από τη βασική γραμμή. Επόμενο βήμα αποτελεί η τοποθέτηση του κάθε νομέα στη σωστή θέση με τη βοήθεια του Frame Spacing. Η συγκεκριμένη διαδικασία αποδείχθηκε αρκετά απαιτητική, καθώς οι δεδομένοι νομείς του σχεδίου δεν αντιστοιχούσαν σε ακέραιο αριθμό ισαπόστασης. Επίσης, δεν ήταν δυνατή η εισαγωγή και η διαστατοποίηση του διαμήκους επιπέδου από το σχέδιο γραμμών, επομένως, η εύρεση της κάθε απόστασης πραγματοποιήθηκε με τη βοήθεια κλιμακόμετρου. Μετά την τοποθέτηση των σημείων στην κατάλληλη ισαπόσταση, με την εντολή ("InterpCrv") ενώνουμε τα σημεία του κάθε νομέα και με το ("curvature graph") διορθώνουμε την καμπυλότητα, τροποποιώντας ελάχιστα τα σημεία ελέγχου, όπου κρίνεται απαραίτητο.

Εικόνα 33: Παράδειγμα επεξεργασίας καμπυλότητας με το Curvature Graph

Εικόνα 34: Στιγμιότυπο μετά τη σχεδίαση των νομέων

ΒΗΜΑ 3: ΣΧΕΔΙΑΣΗ PROFILE

Με τη βοήθεια των κατάλληλων σχεδίων που εισάχθηκαν από το Σχέδιο Γενικής Διάταξης στο Βήμα 1 σχεδιάστηκε το *profile*. Απαραίτητη προϋπόθεση είναι η σχεδίαση των τριών καταστρωμάτων που απεικονίζονται στην παρακάτω εικόνα. Τα τρία καταστρώματα (5,50m)(8,00m)(10,50m) σε συνδυασμό με το διάμηκες επίπεδο θα δώσουν περαιτέρω πληροφορία για τη μετέπειτα κατασκευή της πλώρης. Τα καταστρώματα στα σημεία της πλώρης και της πρύμνης είχαν μια μικρή ανύψωση επομένως, ήταν απαραίτητη η ταυτόχρονη επεξεργασία τόσο στο *Top View*, όσο και στο *Front View*.

Εικόνα 35:Στιγμιότυπο μετά τη σχεδίαση του Profile.

ΒΗΜΑ 4: ΣΧΕΔΙΑΣΗ ΙΣΑΛΩΝ

Η σχεδίαση απαιτεί τα σημεία που προκύπτουν από την τομή της κάθε ισάλου με τον κάθε νομέα, που έχουν εισαχθεί από το προηγούμενο βήμα, καθώς επίσης και ορισμένες μετρήσεις με κλιμακόμετρο στην περιοχή της χοάνης. Οι μετρήσεις αυτές κρίνονται απολύτως απαραίτητες καθώς ο πίνακας συντεταγμένων δεν παρέχει επαρκή πληροφορία για τη συγκεκριμένη περιοχή.

Εικόνα 36: Περιοχή στην οποία πραγματοποιήθηκαν μετρήσεις

Στο συγκεκριμένο βήμα έγινε η χρήση των εντολών ("Plane") και ("move") στο κατάλληλο ύψος, και ("Intersect") με τους νομείς και το profile, καθώς η τροποποίηση της καμπυλότητας ορισμένων νομέων οδήγησε στη μικρή απόκλιση από τα αρχικά σημεία. Με την εντολή ("InterpCrv") σχεδιάστηκαν οι παρακάτω ίσαλοι. Στο σημείο αυτό χρησιμοποιήθηκε και η εντολή mirror.

Εικόνα 37: Στιγμιότυπο μετά τη σχεδίαση των ισάλων.
ΒΗΜΑ 5: ΣΧΕΔΙΑΣΗ ΕΠΙΦΑΝΕΙΩΝ

Η εντολή που χρησιμοποιήθηκε είναι το ("curve network"), ενώ σε μερικές περιπτώσεις ("planar curve"). Ιδιαίτερα απαιτητικό σημείο κρίθηκε το σημείο της χοάνης. Στο σημείο εκείνο δημιουργήθηκαν επιπλέον νομείς για τη δημιουργία καλύτερων επιφανειών. Μετά τη δημιουργία επιφανειών στο μισό πλοίο χρησιμοποιήθηκε η εντολή ("mirror").

Εικόνα 38: Δημιουργία επιφανειών στο σημείο της χοάνης

Εικόνα 39: Δημιουργία επιφανειών στην πλώρη

Εικόνα 40: Τελική μορφή γάστρας

ΒΗΜΑ 6: ΕΛΕΓΧΟΣ ΕΠΙΦΑΝΕΙΩΝ

Ο έλεγχος της τελικής επιφάνειας πραγματοποιήθηκε με τις εντολές ("Surface Curvature Analysis") και με το ("Zebra Analysis"). Οι παραπάνω εντολές είναι κατάλληλες για τον εντοπισμό των σημείων με έντονες μεταβολές της γεωμετρίας. Όπως είναι λογικό τα σημεία εκείνα είναι κυρίως της πρύμνης και της πλώρης. Στο κεφάλαιο 7.5 θα δούμε αν η γάστρα που δημιουργήθηκε τηρεί τα κριτήρια (URL-5) έτσι ώστε να είναι αποδεκτή.

Εικόνα 41: Έλεγχος με Curvature Analysis

Εικόνα 42: Έλεγχος με Zebra Analysis

ΒΗΜΑ 7: ΣΧΕΔΙΑΣΗ ΧΩΡΩΝ ΣΤΟ ΚΑΤΑΣΤΡΩΜΑ ΟΧΗΜΑΤΩΝ

Όπως αναφέρθηκε και προηγουμένως είναι απαραίτητη η δημιουργία ορισμένων χώρων στο Rhinoceros στο κατάστρωμα οχημάτων, έτσι ώστε να γίνει η σωστή διαμερισματοποίηση στο πρόγραμμα MaxSurf με τη χρήση ("Boundary Surfaces"). Επίσης, σχεδιάστηκε το κατάστρωμα στεγανών φρακτών. Βλέποντας το εγχειρίδιο ευστάθειας και διαγωγής, παρατηρούμε ότι υπάρχουν συνολικά πέντε χώροι που εμπεριέχονται στο χώρο του γκαράζ. Το MaxSurf δεν επιτρέπει την τομή δύο χώρων εκτός και αν ο δεύτερος είναι κάποια δεξαμενή. Είναι επομένως αναγκαίος ο διαχωρισμός των συγκεκριμένων χώρων με μορφή επιφανειών στο Rhinoceros. Το εγχειρίδιο διαγωγής και ευστάθειας παρέχει πληροφορία έξι συντεταγμένων (Xmin, Xmax, Ymin, Ymax, Zmin, Zmax) για την ακριβή σχεδίασή τους στα τρία επίπεδα. Από την εικόνα 43 λείπει το καπάκι του χώρου 1 ώστε να είναι ορατή η εσωτερική διαρρύθμιση. Οι επιφάνειες που θα δημιουργηθούν θα οριστούν στο βήμα 8 ως κατασκευές κατά την επεξεργασία στο MaxSurf Modeler και όχι σαν μέρος της γάστρας. Το βήμα αυτό είναι απολύτως απαραίτητο για την μετέπειτα επεξεργασία και επιλογή των επιφανειών αυτών ως τοιχώματα του εκάστοτε χώρου.

Οι χώροι που κατασκευάστηκαν είναι οι εξής:

- Garage SP NET R13 (FRAMES -5 εώς 133). Ο χώρος αυτός είναι ουσιαστικά ο καθαρός χώρος των οχημάτων χωρίς να εμπεριέχονται οι υπόλοιποι πέντε χώροι σε αυτόν.
- 2. Stairs (P) GAR DK. R1301 (FRAMES -5 εώς 21).
- 3. *HYD PUMP RM* (S) GAR DK. R1302 (FRAMES -6 εώς 7).
- 4. STAIRS (P) GAR DK. R1303 (FRAMES 55 εώς 62).
- 5. *STAIRS (S) GAR DK. R1304 (FRAMES* 55 εώς 62).
- 6. LIFT_TRUNK (P) Above Garage (FRAMES 21 εώς 26).

Η εισαγωγή των χώρων αυτών με την εντολή ("Boundary Surfaces") στο πρόγραμμα Maxsurf πραγματοποιείται στο κεφάλαιο <u>7.4.</u> Παρακάτω παρουσιάζονται αριθμημένοι οι παραπάνω χώροι.

Εικόνα 43: Δημιουργία επιπλέον κατασκευών στο χώρο του γκαράζ

ΒΗΜΑ 8: ΕΛΕΓΧΟΣ ΥΔΡΟΣΤΑΤΙΚΩΝ ΣΤΟΙΧΕΙΩΝ

Μετά την εκπόνηση του 3D μοντέλου της γάστρας, είναι απαραίτητη η σύγκριση των υδροστατικών στοιχείων της γάστρας που δημιουργήθηκε με τα υδροστατικά στοιχεία που περιέχονται στο εγχειρίδιο διαγωγής και ευστάθειας πλοίου (trim and stability booklet). Για την εκπόνηση της παραπάνω διαδικασίας, πρέπει να γίνει εισαγωγή του μοντέλου σε πρόγραμμα υπολογισμού ευστάθειας. Όπως αναφέρθηκε και παραπάνω το πρόγραμμα που θα χρησιμοποιηθεί στην παρούσα εργασία είναι το MaxSurf Stability. Για να πραγματοποιηθεί η εισαγωγή της γάστρας, πρέπει το αρχείο να βρίσκεται σε συμβατή μορφή με το Maxsurf. Πραγματοποιείται αποθήκευση του τρισδιάστατου μοντέλου σε μορφή 3dm. και ανοίγοντας το MaxSurf modeler πραγματοποιούμε ("import"). Στο MaxSurf Modeler ορίζουμε την επιλογή 200 sections για μεγαλύτερη ακρίβεια. Στη συνέχεια με την επιλογή ορίζεται το ύψος της ισάλου, το μήκος μεταξύ καθέτων και τέλος το σύστημα αναφοράς (είτε στο μέσο του πλοίου για να συμβαδίζουν τα αποτελέσματα με το εγχειρίδιο διαγωγής και ευστάθειας.

teference pt.						
		Z	zeWSpt.			FP
Longitudinal D	atum			Vertical Datum		
Longitudinal D O Aft Perp.	atum -42,15 m	Set to DWL] [Vertical Datum	4,05 m]
Longitudinal D Aft Perp. Midships	atum -42,15 m 0 m	Set to DWL		Vertical Datum ODWL OBaseline	4.05 m 0 m	Find Base
Longitudinal D Aft Perp. Midships Fwd Perp.	atum -42.15 m 0 m 42.15 m	Set to DWL		Vertical Datum ODWL Baseline O0ther	4.05 m 0 m 0 m	Find Base
Longitudinal D Aft Perp. Midships Fwd Perp.	atum -42.15 m 0 m 42.15 m -42 15 m	Set to DWL Set to DWL Aft extent		Vertical Datum DWL Baseline Other	4.05 m 0 m 0 m	Find Base
Longitudinal D Aft Perp. Midships Fwd Perp. Other	atum 42,15 m 0 m 42,15 m 42,15 m	Set to DWL Set to DWL Aft extent Fwd extent		Vertical Datum O DWL Baseline O Other	4.05 m 0 m 0 m	Find Base

Εικόνα 44 :Ορισμός μήκους καθέτων, ύψος ισάλου και σύστημα αναφοράς

Τελευταίο βήμα πριν την εισαγωγή στο *Maxsurf stability* αποτελεί ο ορισμός των χώρων που δημιουργήθηκαν στο βήμα 7 ως κατασκευές και όχι σαν μέρος της γάστρας. Στο τμήμα αυτό συμπεριλαμβάνεται και το κατάστρωμα στεγανών φρακτών. Η εντολή στο *MaxSurf* ονομάζεται ("*Use-> Structure*").

Εικόνα 45: Στιγμιότυπο χωρίς τις κατασκευές (αριστερά) και με τις κατασκευές (δεξιά)

Με το πέρας των παραπάνω, αποθηκεύεται το αρχείο στον υπολογιστή και γίνεται χρήση του MaxSurf stability για τον υπολογισμό των υδροστατικών.

Εικόνα 46: Μοντέλο της γάστρας στο Maxsurf Stability

Στο MaxSurf υπάρχει ειδική επιλογή για τη μελέτη των υδροστατικών ("Upright hydrostatics"). Από τα ("Analysis->Trim και Analysis->Draft") ορίζονται η διαγωγήtrim του πλοίου καθώς και το εύρος των βυθισμάτων όπου επιθυμούμε να πραγματοποιηθεί η μελέτη. Αφού ορίστηκαν τα παραπάνω από το ("Analysis->Start Hydrostatics"), εκτελείται η μελέτη των υδροστατικών. Στο εγχειρίδειο διαγωγής δίνεται το εύρος των υδροστατικών για διαγωγή από -0,25m εώς 0.75m και για βυθίσματα από 3,3m ως 4,4m. Στη συγκεκριμένη εργασία ο έλεγχος των υδροστατικών πραγματοποιήθηκε για trim=0 και η σύγκριση των αποτελεσμάτων έγινε σύμφωνα με τα πρότυπα του IACS ("IACS UR-L5 Req. 2004/Rev.4 2020"). Τα επιτρεπόμενα όρια δίνονται από τον παρακάτω πίνακα.

Hull Form Dependent	
Displacement	+/- 2%
Longitudinal center of buoyancy, from AP	+/- 1% / 50 cm
Vertical center of buoyancy	+/- 1% / 5 cm
Transverse center of buoyancy	+/- 0.5% of B / 5 cm
Longitudinal center of flotation, from AP	+/- 1% / 50 cm
Moment to trim 1 cm	+/- 2%
Transverse metacentric height	+/- 1% / 5 cm
Longitudinal metacentric height	+/- 1% / 50 cm
Cross curves of stability	+/- 5 cm
Compartment dependent	
Volume or deadweight	+/- 2%
Longitudinal center of gravity, from AP	+/- 1% / 50 cm
Vertical centre of gravity	+/- 1% / 5 cm
Transverse center of gravity	+/- 0.5% of B / 5 cm
Free surface moment	+/- 2%
Shifting moment	+/- 5%
Level of contents	+/- 2%
Trim and stability	
Draughts (forward, aft, mean)	+/- 1% / 5 cm
GMt (both solid and corrected for free surfaces)	+/- 1% / 5 cm
GZ values	+/- 5% / 5 cm
Downflooding angle	+/- 20
Equilibrium angles	+/- 1 ⁰
Distance from WL to unprotected and	+/- 5% / 5 cm
weathertight openings, or other relevant point, if	
applicable	
Areas under righting arm curve	+/- 5% / 0.0012mrad

Εικόνα 47: Πίνακας με τις επιτρεπόμενες αποκλίσεις κατά URL-5 <u>Πηγή:https://iacs.org.uk/media/3026/ur-I5corr1.pdf</u>

Εικόνα 48: Εύρος βυθισμάτων για τη μελέτη των υδροστατικών

Παρακάτω παρουσιάζονται πίνακες με σύγκριση των υδροστατικών στοιχείων και των παραμετρικών καμπυλών ευστάθειας που προέκυψαν από το πρόγραμμα ευστάθειας με εκείνα του εγχειριδίου διαγωγής και ευστάθειας. Η τελευταία στήλη του κάθε πίνακα περιλαμβάνει την επί της εκατό απόκλιση των τιμών και πρέπει να βρίσκεται εντός των επιτρεπόμενων ορίων σύμφωνα με τον πίνακα 47.

HYDROSTATICS FOR TRIM = 0M				
	DISPLACEMENT (t)			
DRAFT (m)	MAXSURF	STABILITY BOOKLET	Difference (%)	
3,300	2101	2113,4	0,590	
3,350	2148	2160,7	0,591	
3,400	2195	2208,4	0,610	
3,450	2242	2256,5	0,647	
3,500	2290	2305,1	0,659	
3,550	2338	2354,2	0,693	
3,600	2387	2403,7	0,700	
3,650	2436	2453,8	0,731	
3,700	2486	2504,2	0,732	
3,750	2536	2555,2	0,757	
3,800	2586	2606,7	0,800	
3,850	2637	2658,5	0,815	
3,900	2689	2710,9	0,814	
3,950	2741	2763,7	0,828	
4,000	2793	2817,0	0,859	
4,050	2846	2870,7	0,868	
4,100	2899	2924,9	0,893	
4,150	2953	2979,6	0,901	
4,200	3008	3034,7	0,888	
4,250	3062	3090,3	0,924	
4,300	3118	3146,3	0,908	
4,350	3173	3202,6	0,933	
4,400	3229	3259,2	0,935	

Πίνακας 4: Αποκλίσεις των εκτοπισμάτων

HYDROSTATICS FOR TRIM = 0M				
	LCB FROM AP (m)			
DRAFT (m)	MAXSURF	STABILITY BOOKLET	Difference (%)	
3,300	40,741	40,542	0,491	
3,350	40,719	40,524	0,481	
3,400	40,695	40,505	0,469	
3,450	40,669	40,484	0,457	
3,500	40,643	40,463	0,445	
3,550	40,616	40,44	0,435	
3,600	40,588	40,415	0,428	
3,650	40,559	40,391	0,416	
3,700	40,53	40,365	0,409	
3,750	40,499	40,338	0,399	
3,800	40,468	40,31	0,392	
3,850	40,435	40,281	0,382	
3,900	40,401	40,25	0,375	
3,950	40,366	40,219	0,365	
4,000	40,33	40,187	0,356	
4,050	40,293	40,153	0,349	
4,100	40,256	40,12	0,339	
4,150	40,218	40,085	0,332	
4,200	40,18	40,05	0,325	
4,250	40,142	40,015	0,317	
4,300	40,103	39,979	0,310	
4,350	40,063	39,943	0,300	
4,400	40,024	39,907	0,293	

Πίνακας 5: Αποκλίσεις της διαμήκους κέντρου άντωσης

HYDROSTATICS FOR TRIM = 0M					
	LCF FROM AP (m)				
DRAFT (m)	MAXSURF	STABILITY BOOKLET	Difference (%)		
3,300	39,746	39,743	0,008		
3,350	39,672	39,692	0,050		
3,400	39,556	39,632	0,192		
3,450	39,444	39,517	0,185		
3,500	39,335	39,456	0,307		
3,550	39,294	39,286	0,020		
3,600	39,198	39,24	0,107		
3,650	39,104	39,127	0,059		
3,700	39,038	39,057	0,049		
3,750	38,876	38,946	0,180		
3,800	38,805	38,897	0,237		
3,850	38,753	38,841	0,227		
3,900	38,571	38,641	0,181		
3,950	38,48	38,608	0,332		
4,000	38,406	38,455	0,127		
4,050	38,314	38,369	0,143		
4,100	38,226	38,283	0,149		
4,150	38,144	38,198	0,141		
4,200	38,06	38,12	0,157		
4,250	37,983	38,042	0,155		
4,300	37,907	37,967	0,158		
4,350	37,835	37,897	0,164		
4,400	37,763	37,821	0,153		

Πίνακας 6: Αποκλίσεις της διαμήκους θέσης του κέντρου πλευστότητας

HYDROSTATICS FOR TRIM = 0M				
	MTc (tonne.m)			
DRAFT (m)	MAXSURF	STABILITY BOOKLET	Difference (%)	
3,300	40,305	41,06	1,839	
3,350	41,131	41,804	1,610	
3,400	42,125	42,578	1,064	
3,450	43,131	43,592	1,058	
3,500	44,141	44,4	0,583	
3,550	44,891	45,675	1,716	
3,600	45,875	46,454	1,246	
3,650	46,881	47,524	1,353	
3,700	47,779	48,436	1,356	
3,750	49,121	49,537	0,840	
3,800	50,094	50,385	0,578	
3,850	50,992	51,296	0,593	
3,900	52,513	52,877	0,688	
3,950	53,637	53,732	0,177	
4,000	54,713	55,163	0,816	
4,050	55,891	56,339	0,795	
4,100	57,09	57,548	0,796	
4,150	58,281	58,765	0,824	
4,200	59,525	60,028	0,838	
4,250	60,77	61,304	0,871	
4,300	62,055	62,618	0,899	
4,350	63,386	63,962	0,901	
4,400	64,754	65,354	0,918	

Πίνακας 7: Αποκλίσεις της ροπής για τη δημιουργία διαγωγής ενός εκατοστού

HYDROSTATICS FOR TRIM = 0M				
	KMt (m)			
DRAFT (m)	MAXSURF	STABILITY BOOKLET	Difference (%)	
3,300	8,114	8,157	0,527	
3,350	8,112	8,15	0,466	
3,400	8,111	8,145	0,417	
3,450	8,111	8,14	0,356	
3,500	8,111	8,137	0,320	
3,550	8,112	8,134	0,270	
3,600	8,113	8,131	0,221	
3,650	8,115	8,129	0,172	
3,700	8,12	8,126	0,074	
3,750	8,126	8,126	0,000	
3,800	8,131	8,124	0,086	
3,850	8,136	8,123	0,160	
3,900	8,146	8,132	0,172	
3,950	8,151	8,132	0,234	
4,000	8,154	8,139	0,184	
4,050	8,159	8,143	0,196	
4,100	8,164	8,147	0,209	
4,150	8,168	8,152	0,196	
4,200	8,172	8,158	0,172	
4,250	8,178	8,165	0,159	
4,300	8,183	8,173	0,122	
4,350	8,19	8,182	0,098	
4,400	8,197	8,193	0,049	

Πίνακας 8: Αποκλίσεις του ύψους του μετακέντρου

CROSS CURVES				
	KN 10 deg (m)			
DISPLACEMENT (MT)	MAXSURF	STABILITY BOOKLET	Difference (m)	
1000	1,586	1,571	0,015	
1100	1,549	1,535	0,014	
1200	1,518	1,506	0,012	
1300	1,494	1,482	0,012	
1400	1,474	1,464	0,010	
1500	1,459	1,449	0,010	
1600	1,446	1,437	0,009	
1700	1,437	1,428	0,009	
1800	1,43	1,421	0,009	
1900	1,424	1,416	0,008	
2000	1,42	1,412	0,008	
2100	1,417	1,409	0,008	
2200	1,416	1,407	0,009	
2300	1,417	1,408	0,009	
2400	1,423	1,413	0,010	
2500	1,433	1,422	0,011	
2600	1,445	1,433	0,012	
2700	1,456	1,444	0,012	
2800	1,467	1,455	0,012	
2900	1,477	1,464	0,013	
3000	1,486	1,473	0,013	

Πίνακας 9: Αποκλίσεις τιμών των Cross Curves στις 10^o

CROSS CURVES				
	KN 20 deg (m)			
DISPLACEMENT (MT)	MAXSURF	STABILITY BOOKLET	Difference (m)	
1000	3,08	3,051	0,029	
1100	3,031	3,002	0,029	
1200	2,989	2,962	0,027	
1300	2,962	2,935	0,027	
1400	2,955	2,928	0,027	
1500	2,952	2,926	0,026	
1600	2,951	2,925	0,026	
1700	2,951	2,926	0,025	
1800	2,951	2,926	0,025	
1900	2,951	2,928	0,023	
2000	2,952	2,929	0,023	
2100	2,953	2,936	0,017	
2200	2,954	2,937	0,017	
2300	2,955	2,938	0,017	
2400	2,957	2,939	0,018	
2500	2,958	2,94	0,018	
2600	2,959	2,941	0,018	
2700	2,96	2,942	0,018	
2800	2,961	2,943	0,018	
2900	2,961	2,943	0,018	
3000	2,962	2,943	0,019	

Πίνακας 10: Αποκλίσεις τιμών των Cross Curves στις 20⁰

CROSS CURVES				
	KN 30 deg (m)			
DISPLACEMENT (MT)	MAXSURF	STABILITY BOOKLET	Difference (m)	
1000	4,456	4,412	0,044	
1100	4,466	4,425	0,041	
1200	4,471	4,432	0,039	
1300	4,47	4,433	0,037	
1400	4,465	4,429	0,036	
1500	4,454	4,42	0,034	
1600	4,443	4,409	0,034	
1700	4,431	4,398	0,033	
1800	4,419	4,387	0,032	
1900	4,407	4,376	0,031	
2000	4,396	4,365	0,031	
2100	4,385	4,355	0,030	
2200	4,375	4,345	0,030	
2300	4,365	4,335	0,030	
2400	4,356	4,327	0,029	
2500	4,347	4,318	0,029	
2600	4,339	4,31	0,029	
2700	4,331	4,303	0,028	
2800	4,324	4,296	0,028	
2900	4,318	4,298	0,020	
3000	4,312	4,291	0,021	

Πίνακας 11: Αποκλίσεις τιμών των Cross Curves στις 30^{0}

CROSS CURVES				
	KN 40 deg (m)			
DISPLACEMENT (MT)	MAXSURF	STABILITY BOOKLET	Difference (m)	
1000	5,526	5,477	0,049	
1100	5,529	5,479	0,050	
1200	5,532	5,482	0,050	
1300	5,536	5,488	0,048	
1400	5,54	5,494	0,046	
1500	5,544	5,501	0,043	
1600	5,549	5,507	0,042	
1700	5,553	5,512	0,041	
1800	5,557	5,518	0,039	
1900	5,56	5,522	0,038	
2000	5,562	5,526	0,036	
2100	5,564	5,529	0,035	
2200	5,566	5,531	0,035	
2300	5,566	5,531	0,035	
2400	5,564	5,531	0,033	
2500	5,561	5,527	0,034	
2600	5,556	5,523	0,033	
2700	5,551	5,519	0,032	
2800	5,546	5,514	0,032	
2900	5,542	5,509	0,033	
3000	5,537	5,505	0,032	

Πίνακας 12: Αποκλίσεις τιμών των Cross Curves στις 40^{0}

CROSS CURVES				
	KN 50 deg (m)			
DISPLACEMENT (MT)	MAXSURF	STABILITY BOOKLET	Difference (m)	
1000	6,353	6,304	0,049	
1100	6,365	6,316	0,049	
1200	6,377	6,33	0,047	
1300	6,389	6,343	0,046	
1400	6,4	6,355	0,045	
1500	6,411	6,367	0,044	
1600	6,421	6,378	0,043	
1700	6,43	6,388	0,042	
1800	6,44	6,398	0,042	
1900	6,45	6,409	0,041	
2000	6,461	6,42	0,041	
2100	6,473	6,432	0,041	
2200	6,486	6,446	0,040	
2300	6,497	6,457	0,040	
2400	6,507	6,468	0,039	
2500	6,515	6,476	0,039	
2600	6,52	6,481	0,039	
2700	6,524	6,485	0,039	
2800	6,526	6,488	0,038	
2900	6,526	6,489	0,037	
3000	6,524	6,488	0,036	

Πίνακας 13: Αποκλίσεις τιμών των Cross Curves στις 50^0

CROSS CURVES								
		KN 60 deg (m)						
DISPLACEMENT (MT)	MAXSURF	STABILITY BOOKLET	Difference (m)					
1000	7,011	6,962	0,049					
1100	7,044	6,995	0,049					
1200	7,073	7,025	0,048					
1300	7,098	7,05	0,048					
1400	7,116	7,068	0,048					
1500	7,128	7,081	0,047					
1600	7,135	7,088	0,047					
1700	7,139	7,092	0,047					
1800	7,139	7,092	0,047					
1900	7,136	7,089	0,047					
2000	7,132	7,086	0,046					
2100	7,126	7,08	0,046					
2200	7,119	7,074	0,045					
2300	7,111	7,066	0,045					
2400	7,102	7,057	0,045					
2500	7,092	7,047	0,045					
2600	7,083	7,039	0,044					
2700	7,072	7,03	0,042					
2800	7,061	7,019	0,042					
2900	7,049	7,007	0,042					
3000	7,036	7,001	0,035					

Πίνακας 14: Αποκλίσεις τιμών των Cross Curves στις 60^0

CROSS CURVES								
		KN 70 deg (m)						
DISPLACEMENT (MT)	MAXSURF	STABILITY BOOKLET	Difference (m)					
1000	7,468	7,416	0,052					
1100	7,479	7,428	0,051					
1200	7,484	7,433	0,051					
1300	7,482	7,431	0,051					
1400	7,477	7,427	0,050					
1500	7,469	7,422	0,047					
1600	7,457	7,412	0,045					
1700	7,443	7,401	0,042					
1800	7,427	7,389	0,038					
1900	7,409	7,369	0,040					
2000	7,388	7,351	0,037					
2100	7,366	7,33	0,036					
2200	7,343	7,305	0,038					
2300	7,319	7,281	0,038					
2400	7,296	7,257	0,039					
2500	7,273	7,234	0,039					
2600	7,251	7,212	0,039					
2700	7,228	7,19	0,038					
2800	7,207	7,169	0,038					
2900	7,186	7,148	0,038					
3000	7,165	7,129	0,036					

Πίνακας 15: Αποκλίσεις τιμών των Cross Curves στις 70⁰

CROSS CURVES								
		KN 80 deg (m)						
DISPLACEMENT (MT)	MAXSURF	STABILITY BOOKLET	Difference (m)					
1000	7,478	7,425	0,053					
1100	7,452	7,4	0,052					
1200	7,427	7,375	0,052					
1300	7,402	7,353	0,049					
1400	7,378	7,331	0,047					
1500	7,354	7,323	0,031					
1600	7,331	7,3	0,031					
1700	7,308	7,278	0,030					
1800	7,286	7,256	0,030					
1900	7,264	7,234	0,030					
2000	7,242	7,211	0,031					
2100	7,22	7,189	0,031					
2200	7,197	7,166	0,031					
2300	7,175	7,144	0,031					
2400	7,152	7,122	0,030					
2500	7,129	7,099	0,030					
2600	7,105	7,077	0,028					
2700	7,081	7,053	0,028					
2800	7,056	7,029	0,027					
2900	7,029	7,004	0,025					
3000	7,003	6,976	0,027					

Πίνακας 16: Αποκλίσεις τιμών των Cross Curves στις 80^{0}

ΣΧΟΛΙΑΣΜΟΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

- Η εξαγωγή των παραπάνω δεδομένων πραγματοποιήθηκε μέσω του ("Current Window Results") από το πρόγραμμα MaxSurf και πραγματοποιήθηκε η σύγκριση τους με τα στοιχεία που περιέχει το βιβλίο διαγωγής και ευστάθειας.
- Στο τμήμα των υδροστατικών συγκρίσεων, οι αποκλίσεις των στοιχείων του προγράμματος MaxSurf με εκείνα του εγχειριδίου διαγωγής και ευστάθειας, βρίσκονται εντός επιτρεπόμενων ορίων που ορίζει ο IACS ("IACS UR-L5 Req. 2004/Rev.4 2020").
- Στους πίνακες σύγκρισης των παραμετρικών καμπυλών ευστάθειας, από τις 10° μέχρι και τις 60° οι αποκλίσεις βρίσκονται εντός των επιτρεπόμενων ορίων. Στις 70° και στις 80° για χαμηλές τιμές εκτοπισμάτων οι τιμές βρίσκονται οριακά εκτός επιτρεπόμενων ορίων. Το γεγονός αυτό δεν αποτελεί σημαντικό πρόβλημα, καθώς οι αποκλίσεις είναι αρκετά κοντά στα όρια που ορίζει ο IACS. Επιπλέον,στις μεγάλες γωνίες κλίσης είναι λογικό να παρουσιάζονται προβλήματα

Εκιπλεον, στις μεγαλες γωντες κλισης είναι λογικό να παρουσιαζονται προρληματα ευστάθειας, ειδικά σε περιπτώσεις που έχουν βυθιστεί τα Downflooding points. Η εισροή νερού από αυτά τα ανοίγματα έχει αρνητικές επιδράσεις στην ευστάθεια ενός πλοίου δημιουργώντας επιπλέον βάρος, αλλά και μεγάλες τιμές στις ελεύθερες επιφάνειες. Σύμφωνα με τους υπάρχοντες κανονισμούς σε τέτοιου είδους περιπτώσεις θεωρούμε ότι το πλοίο έχει ήδη χαθεί γι'αυτό και οι συγκεκριμένες αποκλίσεις δεν επηρεάζουν σημαντικά την πορεία της σχεδίασης, ή τη μελέτη της ευστάθειας που ακολουθεί.

7.4. ΣΧΕΔΙΑΣΗ ΔΙΑΜΕΡΙΣΜΑΤΩΝ ΚΑΙ ΔΕΞΑΜΕΝΩΝ ΣΤΟ MAXSURF

Μετά τον υδροστατικό έλεγχο, επόμενο βήμα αποτελεί η σχεδίαση των διαμερισμάτων και των δεξαμενών του πλοίου. Για την εκπόνηση της συγκεκριμένης διαδικασίας είναι απαραίτητη η χρήση του Capacity plan καθώς και του εγχειριδίου διαγωγής και ευστάθειας του πλοίου. Από το Capacity plan βλέπουμε επίσης τις θέσεις των φρακτών. Έχοντας επιλέξει ως σύστημα αναφοράς το μέσο του πλοίου από το ("Window -> Input -> Bulkheads") πραγματοποιείται η εισαγωγή των εγκαρσίων φρακτών.

	Name	Location m	Туре
1	BULKHEAD 1	-37,950	Transverse bulkhead
2	BULKHEAD 2	-31,950	Transverse bulkhead
3	BULKHEAD 3	-24,750	Transverse bulkhead
4	BULKHEAD 4	-17,550	Transverse bulkhead
5	BULKHEAD 5	-9,750	Transverse bulkhead
6	BULKHEAD 6	-1,950	Transverse bulkhead
7	BULKHEAD 7	4,050	Transverse bulkhead
8	BULKHEAD 8	10,050	Transverse bulkhead
9	BULKHEAD 9	16,050	Transverse bulkhead
10	BULKHEAD 10	22,050	Transverse bulkhead
11	BULKHEAD 11	31,050	Transverse bulkhead
12	BULKHEAD 12	37.050	Transverse bulkhead

Εικόνα 49: Θέση Εγκαρσίων φρακτών

Για την εισαγωγή των διαμερισμάτων και των δεξαμενών έγινε χρήση της επιλογής ("Window-> Input -> Room Definition"). Η επιλογή αυτή οδηγεί σε έναν πίνακα όπου ο χρήστης του προγράμματος μπορεί να σχεδιάσει χώρους σε ένα πλοίο. Η σχεδίαση πραγματοποιείται με την αρχική επιλογή του τύπου του χώρου (διαμέρισμα ή δεξαμενή) και την επιλογή της διαχωρητότητας όπως επεξηγήθηκε στο κεφάλαιο 3.4. Στην περίπτωση της δεξαμενής υπάρχει και η κατάλληλη προεπιλογή ρευστού με την αντίστοιχη πυκνότητα (π.χ. θαλασσινό νερό, γλυκό νερό, λάδι, πετρέλαιο κ.α.). Τέλος, η σωστή τοποθέτηση του εκάστοτε χώρου θα γίνει με τη βοήθεια συντεταγμένων των ορίων του χώρου κατά το διάμηκες, το εγκάρσιο και το κατακόρυφο επίπεδο. Για τους χώρους πολύπλοκης γεωμετρίας, όπως είναι το Garage αντί για συντεταγμένες έγινε χρήση των ειδικών επιφανειών που σχεδιάστηκαν στο πρόγραμμα Rhinoceros. Η εντολή που εφαρμόστηκε βρίσκεται στο ("Window-> Input -> Room Definition-> Boundary Surfaces") και είναι απαραίτητη η επιλογή των απαραίτητων επιφανειών που οριοθετούν τον εκάστοτε χώρο. Παρακάτω παρουσιάζεται ο χώρος των οχημάτων.

Εικόνα 50: Η σχεδίαση του χώρου των οχημάτων με την επιλογή "Boundary surfaces"

	Name	Type	Intact Perm, %	Damaged Perm, %	Specific	Fluid	Boundary Surfaces	Aft	Fore	F.Port	F.Stbd.	F.Top	F.Bott.
1	GAR, FORE TRUNK - R1307 (P)	Compartme	95	95	g.urrig	4100	none	37.650	46.880	-8,180	-2.200	11.050	5.700
2	GAR. FORE TRUNK - R1308 (S)	Compartme	95	95			none	37.650	46.880	2,200	8,180	11.050	5.700
3	TUNNEL SPACE (C) - R094	Compartme	95	95			none	-24,750	-17.550	-3.740	3,740	3.800	0.000
4	TUNNEL SPACE (C) - R102	Compartme	95	95			none	-31,950	-24,750	-3.740	3,740	5 540	0.000
5	GARAGE SP NET - R13	Compartme	90	90				-45,150	37,649	-8.300	8.300	11.045	5,700
6	STEER GEAR RM - R12	Compartme	85	85			none	-45 999	-37,950	-8.900	8,900	5,700	0.340
7	STAIRS (P) - R1301	Compartme	95	95				-45,150	-26.367	-8.900	-3.100	11.040	5.700
8	HYD PUMP RM (S) 1302	Compartme	95	95				-45,150	-37.955	2,800	6,740	11.040	5.770
9	STARS (S) GAR DK R1304	Compartme	95	95				-9.150	-4.951	6.500	8,900	10.510	5.540
10	STARS (P) GAR DK R1303	Compartme	95	95				-9.150	-4.951	-8.300	-6.500	10.510	5.540
11	LIFT TRUNK (P) above Gar - R103	Compartme	95	95				-26,280	-23.560	-8.900	-5,700	10.520	5.540
12	NO 3 VOID (P) - R092	Compartme	95	95			none	-24,750	-17.550	-8.900	-3.000	5.540	3.800
13	NO 3 VOID (S) - R093	Compartme	95	95			none	-24,750	-17.550	3.000	8,900	5.510	3.800
14	AFT E ROOM RO86	Compartme	85	85			none	-17.550	-9.750	-8.900	8,900	5 540	-2.000
15	FORE E ROOM RO85	Compartme	85	85			none	-9.750	-1.950	-8.900	8,900	5.540	-2 000
16	PUMP ROOM- RO7	Compartme	95	95			none	-1.950	4.050	-8.900	8.900	5 560	1.000
17	SEWAGE RM - ROS	Compartme	95	95			none	4 050	10.050	-8.900	8,900	5.560	1,200
18	NO 2 VOID - RO5	Compartme	95	95			none	10.050	16.050	-8.900	8,900	5 560	1,200
19	VOID EX NO 1 WBT (P) - RO4	Compartme	85	85			none	16.050	22 050	-8.900	0.000	5 560	1,200
20	VOID EX NO 1 WBT (S) - RO41	Compartme	85	85			none	16.050	22,050	0.000	8,900	5.510	1,200
21	BOWTHR ABOVE DB - RO3	Compartme	85	85			none	22,050	31.050	-8.900	8.900	5.560	1.000
22	NO 1 VOID ABOVE BL - RO2	Compartme	95	95			none	31,050	37,050	-8,900	8,900	5,700	2 000
23	BOW THRUSTER VOID	Compartme	95	95			none	22 050	31.050	-8.900	8.900	1.000	-2.000
24	FORE PEAK TANK - RO1	Tank	95	95	1.025	Sea Water	none	37.050	43,220	-8.800	8,800	5,700	-2 000
25	NO 1 DB WB TK (C)	Tank	95	95	1.025	Sea Water	none	31.050	37.050	-8.800	8.800	2,100	-2.000
26	NO 2 DB WB TK (C)	Tank	95	95	1.025	Sea Water	none	16.050	22.050	-8.800	8,800	1,200	-2.000
27	NO 3 DB WB TK (C) - RO51	Tank	95	95	1,025	Sea Water	none	10.050	16.050	-8,800	8,800	1,200	-2.000
28	NO 4 DB TK (P) - R10	Tank	95	95	1.025	Sea Water	none	-31,950	-24.750	-8.800	-3.000	5.540	1.240
29	NO 4 DB TK (S) - R101	Tank	95	95	1.025	Sea Water	none	-31,950	-24,750	3,000	8,800	5.540	1,240
30	AFTER PEAK TANK - R11	Tank	95	95	1.025	Sea Water	none	-37.950	-31.950	-8.800	8.800	5,700	-2.000
30	AFTER PEAK TANK - R11	Tank	95	95	1.025	Sea Water	0008	-37.950	-31,950	-8.800	8.800	5,700	-2.000
31	NO 1 DB DO TK (P) - RO61	Tank	95	95	0.87	Diesel	none	4 050	10.050	-8.800	0.000	1,200	-2.000
32	NO 1 DB DO TK (S) - RO62	Tank	95	95	0.87	Diesel	none	4.050	10.050	0.000	8.800	1.200	-2.000
33	NO 2 DB DO TK (P) - RO73	Tank	95	95	0.87	Diesel	none	-1.950	4.050	-8.800	0.000	1.000	-2.000
34	NO 2 DB DO TK (S) - RO74	Tank	95	95	0.87	Diesel	none	-1.950	4.050	0.000	8.800	1.000	-2.000
35	NO 3 DB DO TK (P) - RO811	Tank	95	95	0.87	Diesel	none	-4.950	-1.950	-8.800	0.000	1.000	-2.000
36	NO 3 DB DO TK (S) - RO812	Tank	95	95	0.87	Diesel	none	-4.950	-1.950	0.000	8,800	1.000	-2.000
37	M/E SERVICE DO TK - RO71	Tank	85	95	0.87	Diesel	none	2.850	4.050	4,600	6,100	5.300	2,960
38	M/E SETTLING DO TK - R072	Tank	85	95	0.87	Diesel	none	2.850	4.050	3,100	4,500	5.300	2,960
39	G/E SERVICE DO TK	Tank	95	95	0.87	Diesel	none	2,850	4.050	2,000	3.000	5.300	2.960
40	LO SUMP TK (P)	Tank	95	95	0,9	Lube Oil	none	-13,950	-10,950	-2,950	0,000	1,000	-2,000
41	LO SUMP TK (S)	Tank	95	95	0.9	Lube Oil	none	-13.950	-10.950	0.000	2.950	1.000	-2.000
42	AUX LO TK - RO 82	Tank	95	95	0.9	Lube Oil	none	-7,950	-4,950	-8,800	0,000	1,000	-2,000
43	LO STORAGE NO 4	Tank	95	95	0.9	Lube Oil	none	2.850	4.050	0.000	1,200	5,100	3.000
44	LO STORAGE NO 5	Tank	95	95	0,9	Lube Oil	none	2,850	4,050	-1,200	0.000	5,100	3,000
45	LO STORAGE NO 6	Tank	95	95	0.9	Lube Oil	none	2.850	4.050	-2.400	-1.200	5,100	3,000
46	FRESH WATER TK (P) - R09	Tank	95	95	1	Fresh Water	none	-24,750	-17,550	-8,800	-3.000	3,800	0,150
47	FRESH WATER TK (S) - R091	Tank	95	95	1	Fresh Water	none	-24,750	-17,550	3,000	8,800	3,800	0,150
48	BILGE TANK (C) - RO83	Tank	95	95	1	Custom 1	none	-7,950	-4,950	0.000	3,000	1,000	-2.000
49	WASTE OIL TK (S) - RO84	Tank	95	95	1	Custom 2	none	-7,950	-4,950	3,000	8,800	1,000	0,020
50	SEWAGE TK	Tank	95	95	1	Custom 3	none	7,050	9,450	-3,300	-0.500	3,600	1,200

Εικόνα 51: Room Definition

Εικόνα 52: Στιγμιότυπο με τις δεξαμενές στο MaxSurf

7.5. ΕΙΣΑΓΩΓΗ ΚΕΥ ΡΟΙΝΤS

Επόμενο βήμα αποτελεί η εισαγωγή Key Points, όπου ουσιαστικά αποτελούν οι συντεταγμένες ανοιγμάτων που υπάρχουν στο πλοίο, τα οποία δεν είναι γίνεται να κλείσουν τελείως. Συνεπώς, όταν η στάθμη της θάλασσας φτάσει στα σημεία αυτά εισέρχεται νερό στο εσωτερικό του πλοίου. Παρακάτω απεικονίζονται οι θέσεις των συγκεκριμένων ανοιγμάτων όπως λήφθηκαν από το βιβλίο διαγωγής και ευστάθειας.

	Name	Long. Pos. m	Offset m	Height m	Туре	Linked to	Flood from
1	DF point	37,050	0,000	11,200	Downflooding p	None	Sea
2	DF point	37,050	-3,500	11,200	Downflooding p	None	Sea
3	DF point	30,750	8,000	11,200	Downflooding p	None	Sea
4	DF point	30,750	-8,000	11,200	Downflooding p	None	Sea
5	DF point	3,450	8,300	11,200	Downflooding p	None	Sea
6	DF point	3,450	-8,000	11,200	Downflooding p	None	Sea
7	DF point	-4,050	8,000	11,200	Downflooding p	None	Sea
8	DF point	-4,050	-8,000	11,200	Downflooding p	None	Sea
9	DF point	-8,550	-8,000	11,200	Downflooding p	None	Sea
10	DF point	-8,550	8,000	11,200	Downflooding p	None	Sea
11	DF point	-15,150	-7,900	11,200	Downflooding p	None	Sea
12	DF point	-15,150	7,900	11,200	Downflooding p	None	Sea
13	DF point	-21,150	7,700	11,200	Downflooding p	None	Sea
14	DF point	-21,150	-7,700	11,200	Downflooding p	None	Sea
15	DF point	-36,450	2,000	11,200	Downflooding p	None	Sea

Εικόνα 53: Συντεταγμένες των Key Points στο Room Definition

7.6. ΔΗΜΙΟΥΡΓΙΑ ΚΑΤΑΣΤΑΣΕΩΝ ΦΟΡΤΩΣΗΣ

Τελευταίο βήμα πριν τους ελέγχους ευστάθειας αποτελεί η δημιουργία των καταστάσεων φόρτωσης. Σύμφωνα με τον κώδικα άθικτης ευστάθειας (Intact Stability Code) προβλέπεται η εξέταση συγκεκριμένων καταστάσεων φόρτωσης. Πιο συγκεκριμένα για τα επιβατηγά πλοία γίνεται εξέταση τριών καταστάσεων (100% Departure, Load case 50% και 10% Arrival).

- Στην κατάσταση 100% Departure (Full Load Departure) στο Trim and Stability Booklet εκτός από το Lightship έχει προστεθεί το συνολικό βάρος των επιβατών του πληρώματος, των αποσκευών και των προμηθειών. Όλα αυτά έχουν συμπεριληφθεί στο πεδίο Passengers/Cargo όπως φαίνεται στην εικόνα 54. Εκτός από τα παραπάνω υπάρχει συγκεκριμένη πλήρωση στις δεξαμενές έρματος/λαδιού/πετρελαίου/φρέσκου νερού και λυμάτων. Όλα τα παραπάνω προστίθενται στο Lightweight του πλοίου. Τέλος, σημαντικό μέρος αποτελεί και η ρύθμιση των ελευθέρων επιφανειών όπως επεξηγήθηκε και στο κεφάλαιο 3.3, για τις δεξαμενές που δεν έχουν 100% πληρότητα. Σε μερικές περιπτώσεις δεξαμενών με πολύ μικρό όγκο οι ελεύθερες επιφάνειες δεν λαμβάνονται υπόψιν.
- Στην ενδιάμεση κατάσταση 50%, η πληρότητα των δεξαμενών του πετρελαίου έχουν πέσει περίπου στο 50%, ενώ του φρέσκου νερού στο 50% της αρχικής

ποσότητας. Τα εφόδια έχουν μειωθεί ελάχιστα, ενώ η πληρότητα των δεξαμενών αποβλήτων έχει αυξηθεί συγκριτικά με την προηγούμενη κατάσταση.

Στην κατάσταση 10% Arrival (Full Load Arrival), η πληρότητα των δεξαμενών πετρελαίου και φρέσκου νερού έχουν πέσει κοντά στο 10%, ενώ έχει ανέβει η πληρότητα των δεξαμενών αποβλήτων. Επίσης, και στη συγκεκριμένη κατάσταση φόρτωσης το βάρος των επιβατών και των αποσκευών παραμένει σταθερό, ενώ υπάρχει μια μείωση στο βάρος των προμηθειών.

	Item Name	Quantit	Unit Mass tonne	Total Mass tonne	Unit Volume m^3	Total Volume m^3	Long. Arm m	Trans. Arm m	Vert. Arm m	Total FSM tonne. m	FSM Тур
1	Lightship	1	2177,90	2177,900			-1,840	-0,030	6,680	0,000	User S
2	Constants	1	0,000	0,000			0,000	0,000	0,000	0,000	User S
3	Passengers/Cargo	1	454,600	454,600			-7,780	0,000	8,060	0,000	User S
4	Stores	1	0,000	0,000			0,000	0,000	0,000	0,000	User S
5	TOTAL			2632,500			-2,866	-0,025	6,918	0,000	
6							-				
7	BALLAST										
8	FORE PEAK TANK - RO1	0%	57,793	0,000	56,384	0,000	40,856	-0,122	0,000	0,000	Maxim
9	NO 1 DB WB TK (C)	0%	16,300	0.000	15,902	0.000	36,895	-0,178	0.000	0.000	Maxim
10	NO 2 DB WB TK (C)	100%	31,186	31,186	30,425	30,425	18,820	0,000	0,729	0,000	Maxim
11	NO 3 DB WB TK (C) - RO51	0%	46,941	0,000	45,796	0,000	15,934	-0,565	0,000	0,000	Maxim
12	NO 4 DB TK (P) - R10	0%	83,684	0,000	81,643	0,000	-24,872	-2,620	1,240	0,000	Maxim
13	NO 4 DB TK (S) - R101	0%	83,684	0.000	81,643	0.000	-24,872	1,883	1,240	0.000	Maxim
14	AFTER PEAK TANK - R11	0%	223,118	0,000	217,676	0,000	-32,045	-1,851	-0,003	0,000	Maxim
15	TOTAL BALLAST	5,75%	542,705	31,186	529,468	30,425	18,820	0,000	0,729	0,000	
16		-									
17	DIESEL										
18	NO 1 DB DO TK (S) - RO62	98%	26.810	26.274	30.817	30,200	6.951	2.318	0.664	0.000	User S
19	NO 1 DB DO TK (P) - RO61	98%	26.810	26.274	30.817	30,200	6.943	-2.413	0.664	0.000	User S
20	NO 2 DB DO TK (P) - R073	98%	25,701	25,187	29.541	28,951	1,000	-2.716	0.538	99.074	User S
21	NO 2 DB DO TK (S) - R074	98%	25,701	25,187	29.541	28,951	1.006	2.613	0.538	99.074	User S
22	NO 3 DB DO TK (P) - R0811	0%	13 533	0.000	15 556	0.000	-1.967	-2 497	0.000	0.000	Maxim
23	NO 3 DB DO TK (S) - R0812	0%	13 533	0.000	15 556	0.000	-1.967	-0.117	0.000	0.000	Maxim
24	M/E SETTLING DO TK - R072	97%	2 907	2 820	3.342	3 241	3 451	3 794	4.095	0.000	User S
25	M/E SERVICE DO TK - R071	3%	3 115	0.093	3 580	0 107	3 476	5 116	3 006	0.000	User S
26	G/E SERVICE DO TK	97%	2 321	2 251	2 668	2 588	3 451	2 497	4 095	0.000	User S
27	TOTAL DIESEL	76.97%	140.433	108.087	161.417	124,238	4.010	0.108	0.768	198.147	
28		,		100,001		121,200	4,010	0,100	0,100	100,111	
29	LUBOIL										
30	LO SUMP TK (P)	70%	6 983	4 888	7 759	5 431	-12 398	-1 673	0.398	5 843	Maxim
31	LO SUMP TK (S)	70%	6 983	4 888	7 759	5 431	-12 398	1 476	0.398	5 843	Maxim
32	AUX LOTK - RO 82	66%	13 653	9.011	15 170	10 012	-6.411	-3.049	0.409	56 949	Maxim
33	LO STORAGE NO 4	52%	2 586	1 344	2 873	1 4 9 4	3.452	0.590	3 546	0.000	User S
34	LO STORAGE NO 5	4%	2 586	0 103	2 873	0 115	3 472	-0.725	3 048	0.000	User S
35	LO STORAGE NO 6	4%	2,586	0 103	2 873	0 115	3,472	-1.925	3 048	0,000	User S
36	TOTAL LUB OIL	57.49%	35.376	20,339	39,306	22,599	8.537	.1.372	0.638	68,636	00010
37		51,457	55,510	20,000	55,500	22,000	-0,001	-1,012	0,000	00,000	
38	ERESH WATER										
39	FRESH WATER TK (P) - RO9	66%	57 256	37 789	57 256	37 789	-20 725	-4 346	2 101	44 890	Maxim
40	FRESH WATER TK (S) - RO91	66%	57 256	37 789	57 256	37 789	-20 753	4 207	2 100	44,890	Maxim
40	TOTAL ERESH WATER	66%	114 513	75 579	114 513	75 579	20,739	.0.070	2 100	89,780	TTACT
42	TOTAL TREST HATER	0074	114,515	10,010	114,515	13,313	-20,100	-0,010	2,100	00,100	
43	MISCELLANEOUS										
40	BILGE TANK (C) - RO83	1%	8 533	0.085	8 533	0.085	-6 136	0 289	0.025	6 750	Maxim
45	WASTE OIL TK (S) - RO84	1%	6 637	0.066	6 637	0.066	-6 148	3 189	0.072	9,230	Maxim
46	SEWAGE TK	2%	15 322	0.306	15 322	0,306	8 346	-2 712	1 251	4 390	Maxim
47	TOTAL MISC	1 5%	30 492	0.458	30 492	0.458	3 549	1 298	0.852	20 370	
48	TO THE MILD'S	1,374	30,432	0,430	30,432	0,450	5,545	-1,230	0,032	20,570	
49	Total Loadcase			2868 148	875 196	253 298	2 881	0.030	6.447	376 933	
50	ES correction			2000,140	313,130	200,200	-1,001	-0,050	0.131	51 0,555	
51	VCG fluid								6.578		
									01010		

LOADCASE 100%

Εικόνα 54: Πληρότητα των δεξαμενών στο Loadcase 100% Departure

LOADCASE 50%

	Item Name	Quantit	Unit Mass tonne	Total Mass tonne	Unit Volume m^3	Total Volume m^3	Long. Arm m	Trans. Arm m	Vert. Arm m	Total FSM tonne. m	FSM Type
1	Lightship	1	2177,90	2177,900			-1,840	-0,030	6,680	0,000	User Speci
2	Constants	1	0,000	0,000			0,000	0,000	0,000	0,000	User Speci
3	Passengers/Cargo	1	454,000	454,000			-7,780	0,070	8,050	0,000	User Speci
4	Stores	1	0,000	0,000			0,000	0,000	0,000	0,000	User Speci
5	TOTAL			2631,900			-2,865	-0,013	6,916	0,000	
6											
7	BALLAST					1				1	
8	FORE PEAK TANK - RO1	0%	57,793	0,000	56,384	0,000	38,777	0,000	0,000	0,000	Maximum
9	NO 1 DB WB TK (C)	0%	16,300	0,000	15,902	0,000	33,924	0,000	0,000	0,000	Maximum
10	NO 2 DB WB TK (C)	100%	31,186	31,186	30,425	30,425	18,820	0,000	0,729	0,000	Maximum
11	NO 3 DB WB TK (C) - RO51	0%	46,941	0,000	45,796	0,000	12,734	0,000	0,000	0,000	Maximum
12	NO 4 DB TK (P) - R10	0%	83,684	0,000	81,643	0,000	-27,315	-3,228	1,240	0,000	Maximum
13	NO 4 DB TK (S) - R101	0%	83,684	0,000	81,643	0,000	-27,315	3,228	1,240	0,000	Maximum
14	AFTER PEAK TANK - R11	0%	223,118	0,000	217,676	0,000	-36,982	0,000	-0,003	0,000	Maximum
15	TOTAL BALLAST	5,75%	542,705	31,186	529,468	30,425	18,820	0,000	0,729	0,000	
16											
17	.DIE SEL										
18	NO 1 DB DO TK (S) - RO62	80%	26,810	21,448	30,817	24,653	6,921	2,265	0,566	82,710	Maximum
19	NO 1 DB DO TK (P) - RO61	72%	26,810	19,304	30,817	22,188	6,916	-2,214	0,522	82,710	Maximum
20	NO 2 DB DO TK (P) - RO73	64%	25,701	16,449	29,541	18,906	0,979	-2,488	0,378	0,000	User Speci
21	NO 2 DB DO TK (S) - RO74	64%	25,701	16,449	29,541	18,906	0,979	2,488	0,378	0,000	User Speci
22	NO 3 DB DO TK (P) - RO811	0%	13,533	0,000	15,556	0,000	-3,446	-1,306	0,000	0,000	Maximum
23	NO 3 DB DO TK (S) - RO812	0%	13,533	0,000	15,556	0,000	-3,446	1,306	0,000	0,000	Maximum
24	M/E SETTLING DO TK - RO72	15%	2,907	0,436	3,342	0,501	3,450	3,800	3,135	0,000	User Speci
25	M/E SERVICE DO TK - RO71	3%	3,115	0,093	3,580	0,107	3,450	5,350	2,995	0,000	User Speci
26	G/E SERVICE DO TK	22%	2,321	0,511	2,668	0,587	3,450	2,500	3,217	0,000	User Speci
27	TOTAL DIESEL	53,19%	140,433	74,689	161,417	85,850	4,254	0,124	0,508	165,420	
28											
29	LUB OIL										
30	LO SUMP TK (P)	70%	6,983	4,888	7,759	5,431	-12,416	-1,574	0,394	5,776	Maximum
31	LO SUMP TK (S)	70%	6,983	4,888	7,759	5,431	-12,416	1,574	0,394	5,776	Maximum
32	AUX LO TK - RO 82	50%	13,653	6,826	15,170	7,585	-6,436	-2,450	0,308	56,949	Maximum
33	LO STORAGE NO 4	52%	2,586	1,344	2,873	1,494	3,450	0,600	3,546	0,000	User Speci
34	LO STORAGE NO 5	4%	2,586	0,103	2,873	0,115	3,450	-0,600	3,042	0,000	User Speci
35	LO STORAGE NO 6	4%	2,586	0,103	2,873	0,115	3,450	-1,800	3,042	0,000	User Speci
36	TOTAL LUB OIL	51,32%	35,376	18,154	39,306	20,171	-8,812	-0,891	0,625	68,502	
37	-										
38	.FRESH WATER										
39	FRESH WATER TK (P) - R09	28%	57,256	16,032	57,256	16,032	-20,592	-3,817	1,391	44,890	Maximum
40	FRESH WATER TK (S) - R091	40%	57,256	22,903	57,256	22,903	-20,660	3,985	1,653	44,890	Maximum
41	TOTAL FRESH WATER	34%	114,513	38,934	114,513	38,934	-20,632	0,772	1,545	89,780	
42											
43	MISCELLANEOUS										
44	BILGE TANK (C) - RO83	10%	8,533	0,853	8,533	0,853	-6,449	1,473	0,052	6,750	Maximum
45	WASTE OIL TK (S) - R084	25%	6,637	1,659	6,637	1,659	-6,409	3,923	0,262	9,230	Maximum
46	SEWAGE TK	25%	15,322	3,830	15,322	3,830	8,250	-1,900	1,500	4,390	Maximum
47	TOTAL MISC	20,8%	30,492	6,343	30,492	6,343	2,438	0,077	0,981	20,370	
48											
49	Total Loadcase			2801,207	875,196	181,724	-2,707	-0,004	6,548	344,072	
50	FS correction								0,123		
51	VCG fluid								6,671		

Εικόνα 55: Πληρότητα δεξαμενών στο Loadcase 50%

ARRIVAL 10%

	ltem Name	Quantit	Unit Mass tonne	Total Mass tonne	Unit Volume m^3	Total Volume m^3	Long. Arm m	Trans. Arm m	Vert. Arm m	Total FSM tonne. m	FSM Type
1	Lightship	1	2177,90	2177,900			-1,840	-0.030	6,680	0,000	User Speci
2	Constants	1	0,000	0,000			0,000	0,000	0,000	0,000	User Speci
3	Passengers/Cargo	1	453,300	453,300			-7,780	0,070	8,050	0,000	User Speci
4	Stores	1	0,000	0,000			0,000	0,000	0,000	0,000	User Speci
5	TOTAL			2631,200			-2,863	-0,013	6,916	0,000	
6								-		-	
7	BALLAST										
8	FORE PEAK TANK - RO1	0%	57,793	0,000	56,384	0,000	40,856	-0,122	0,000	0,000	Maximum
9	NO 1 DB WB TK (C)	0%	16,300	0,000	15,902	0,000	36,895	-0,178	0,000	0,000	Maximum
10	NO 2 DB WB TK (C)	100%	31,186	31,186	30,425	30,425	18,820	0,000	0,729	0,000	Maximum
11	NO 3 DB WB TK (C) - RO51	0%	46,941	0,000	45,796	0,000	15,934	-0,565	0,000	0,000	Maximum
12	NO 4 DB TK (P) - R10	0%	83,684	0,000	81,643	0,000	-24,872	-2,620	1,240	0,000	Maximum
13	NO 4 DB TK (S) - R101	0%	83,684	0,000	81,643	0,000	-24,872	1,883	1,240	0,000	Maximum
14	AFTER PEAK TANK - R11	0%	223,118	0,000	217,676	0,000	-32,045	-1,851	-0,003	0,000	Maximum
15	TOTAL BALLAST	5,75%	542,705	31,186	529,468	30,425	18,820	0,000	0,729	0,000	
16	1										
17	DIESEL										
18	NO 1 DB DO TK (S) - RO62	4%	26,810	1,072	30,817	1,233	7,417	0,706	0,072	82,710	Maximum
19	NO 1 DB DO TK (P) - RO61	32%	26,810	8,579	30,817	9,861	6,941	-2,312	0,299	82,710	Maximum
20	NO 2 DB DO TK (P) - RO73	0%	25,701	0,000	29,541	0,000	3,768	-2,437	0,000	0,000	Maximum
21	NO 2 DB DO TK (S) - RO74	0%	25,701	0,000	29,541	0,000	3,978	-0,117	0,000	0,000	Maximum
22	NO 3 DB DO TK (P) - RO811	0%	13,533	0,000	15,556	0,000	-1,967	-2,497	0,000	0,000	Maximum
23	NO 3 DB DO TK (S) - RO812	0%	13,533	0,000	15,556	0,000	-1,967	-0,117	0,000	0,000	Maximum
24	M/E SETTLING DO TK - R072	15%	2,907	0,436	3,342	0,501	3,455	3,759	3,137	0,000	User Speci
25	M/E SERVICE DO TK - R071	3%	3,115	0,093	3,580	0,107	3,476	5,116	3,006	0,000	User Speci
26	G/E SERVICE DO TK	22%	2,321	0,511	2,668	0,587	3,454	2,486	3,218	0,000	User Speci
27	TOTAL DIESEL	7,61%	140,433	10,692	161,417	12,290	6,650	-1,468	0,555	165,420	
28											
29	LUB OIL										
30	LO SUMP TK (P)	70%	6,983	4,888	7,759	5,431	-12,398	-1,673	0,398	5,843	Maximum
31	LO SUMP TK (S)	70%	6,983	4,888	7,759	5,431	-12,398	1,476	0,398	5,843	Maximum
32	AUX LO TK - RO 82	50%	13,653	6,826	15,170	7,585	-6,403	-3,026	0,334	56,949	Maximum
33	LO STORAGE NO 4	52%	2,586	1,344	2,873	1,494	3,452	0,590	3,546	0,000	User Speci
34	LO STORAGE NO 5	4%	2,586	0,103	2,873	0,115	3,472	-0,725	3,048	0,000	User Speci
35	LO STORAGE NO 6	4%	2,586	0,103	2,873	0,115	3,472	-1,925	3,048	0,000	User Speci
36	TOTAL LUB OIL	51,32%	35,376	18,154	39,306	20,171	-8,789	-1,162	0,637	68,636	
37											
38	FRESH WATER										
39	FRESH WATER TK (P) - R09	2%	57,256	1,145	57,256	1,145	-19,914	-3,312	0,415	44,890	Maximum
40	FRESH WATER IK (S) - RO91	11%	57,256	6,298	57,256	6,298	-20,439	3,504	0,881	44,890	Maximum
41	IOTAL FRESH WATER	6,5%	114,513	1,443	114,513	1,443	-20,358	2,455	0,809	89,780	
42	MISSELLANDOUS										
43	MISCELLANEOUS	401/	0.522	0.053	0.522	0.050	6 250	0.075	0.077	6 750	Marian
44	BILGE TANK (C) - R083	10%	0,533	0,053	0,533	0,000	-0,350	0,075	0,077	0,750	Maximum
45	WASTE OIL TK (S) - R084	50%	6,637	3,318	6,637	3,318	-6,396	3,995	0,395	9,230	Maximum
40	TOTAL MISC	20.046	15,322	14,001	15,322	11,001	3,004	-1,948	1,802	4,441	waximum
4/	IUTAL MISC	38,81%	30,492	11,832	30,492	11,832	3,094	-0,078	1,283	20,421	
40	Total Loadcasc			2710 500	975 400	82 462	2 629	0.020	6 720	344 367	
49	ES correction			2/10,508	875,196	02,102	-2,038	-0,020	0,136	344,201	
51	VCG fluid								6 962		
101	1 CO IIUIU								0,003		

Εικόνα 56: Πληρότητα δεξαμενών στο Loadcase 10% Arrival

7.7. ΕΛΕΓΧΟΣ ΑΘΙΚΤΗΣ ΕΥΣΤΑΘΕΙΑΣ

Είναι απαραίτητο να επιλέξουμε τους απαραίτητους κανονισμούς άθικτης ευστάθειας στους οποίους επιθυμούμε να συμμορφώνεται το πλοίο. Η διαδικασία αυτή γίνεται μέσω του ("Analysis->Criteria"). [21]

Εικόνα 57: Κριτήρια άθικτης ευστάθειας

Τα κριτήρια απεικονίζονται αναλυτικά στο Παράρτημα.

Στη συνέχεια από την επιλογή ("Analysis -> Set Analysis Type -> Equilibrium") θα πραγματοποιηθούν οι υδροστατικοί υπολογισμοί για την εκάστοτε κατάσταση φόρτωσης.

Full Load Departure 100%	
Draft Amidships m	4,043
Displacement t	2868
Heel deg	-0,9
Draft at FP m	3,787
Draft at AP m	4,300
Draft at LCF m	4,074
Trim (+ve by stern) m	0,513
WL Length m	86,709
Beam max extents on WL m	14,915
Wetted Area m^2	1452,669
Waterpl. Area m^2	1052,232
Prismatic coeff. (Cp)	0,592
Block coeff. (Cb)	0,502
Max Sect. area coeff. (Cm)	0,892
Waterpl. area coeff. (Cwp)	0,814
LCB from zero pt. (+ve fwd) m	-2,910
LCF from zero pt. (+ve fwd) m	-5,013
KBm	2,398
KG fluid m	6,578
BMt m	5,818
BML m	173,402
GMt corrected m	1,637
GML m	169,221
KMt m	8,215
KML m	175,775
Immersion (TPc) tonne/cm	10,785
MTc tonne.m	57,574
RM at 1deg = GMt.Disp.sin(1) tonne.m	81,953
Max deck inclination deg	0,9648
Trim angle (+ve by stern) deg	0,3485

Πίνακας 17: Υδροστατικά στοιχεία κατάστασης φόρτωσης 100%

Loadcase 50%	
Draft Amidships m	3,985
Displacement t	2801
Heel deg	0,0
Draft at FP m	3,760
Draft at AP m	4,210
Draft at LCF m	4,010
Trim (+ve by stern) m	0,450
WL Length m	85,656
Beam max extents on WL m	14,899
Wetted Area m ²	1434,027
Waterpl. Area m^2	1039,607
Prismatic coeff. (Cp)	0,595
Block coeff. (Cb)	0,512
Max Sect. area coeff. (Cm)	0,901
Waterpl. area coeff. (Cwp)	0,815
LCB from zero pt. (+ve fwd) m	-2,731
LCF from zero pt. (+ve fwd) m	-4,761
KBm	2,357
KG fluid m	6,671
BMt m	5,851
BML m	172,233
GMt corrected m	1,537
GML m	167,920
KMt m	8,208
KML m	174,588
Immersion (TPc) tonne/cm	10,656
MTc tonne.m	55,798
RM at 1deg = GMt.Disp.sin(1) tonne.m	75,153
Max deck inclination deg	0,3059
Trim angle (+ve by stern) deg	0,3059

Πίνακας 18: Υδροστατικά στοιχεία κατάστασης φόρτωσης 50%

Full load Arrival 10%	
Draft Amidships m	3,899
Displacement t	2711
Heel deg	-0,7
Draft at FP m	3,675
Draft at AP m	4,123
Draft at LCF m	3,923
Trim (+ve by stern) m	0,449
WL Length m	85,314
Beam max extents on WL m	14,865
Wetted Area m^2	1409,864
Waterpl. Area m ²	1023,918
Prismatic coeff. (Cp)	0,592
Block coeff. (Cb)	0,505
Max Sect. area coeff. (Cm)	0,894
Waterpl. area coeff. (Cwp)	0,807
LCB from zero pt. (+ve fwd) m	-2,664
LCF from zero pt. (+ve fwd) m	-4,584
KB m	2,304
KG fluid m	6,863
BMt m	5,905
BML m	171,609
GMt corrected m	1,345
GML m	167,049
KMt m	8,208
KML m	173,898
Immersion (TPc) tonne/cm	10,495
MTc tonne.m	53,712
RM at 1deg = GMt.Disp.sin(1) tonne.m	63,619
Max deck inclination deg	0,7591
Trim angle (+ve by stern) deg	0,3051

Πίνακας 19: Υδροστατικά στοιχεία κατάστασης φόρτωσης 10% Arrival

Η	μελέτη	άθικτης	ευστάθειας	; θα	πραγματοποιηθεί	για	τις	τρεις	καταστάσεις	που
δη	μιουργή	θηκαν στ	το προηγούμ	ιενο	κεφάλαιο.					

	LOADCASE 100% DEPARTURE					
Code	Criteria	Value	Units	Actual	Status	Margin %
267(85) Ch2 - General Criteria	2.2.1: Area 0 to 30	3,1513	m.deg	14,8994	Pass	+372,80
267(85) Ch2 - General Criteria	2.2.1: Area 0 to 40	5,1566	m.deg	26,4392	Pass	+412,72
267(85) Ch2 - General Criteria	2.2.1: Area 30 to 40	1,7189	m.deg	11,5397	Pass	+571,34
267(85) Ch2 - General Criteria	2.2.2: Max GZ at 30 or greater	0,200	m	1,489	Pass	+644,50
267(85) Ch2 - General Criteria	2.2.3: Angle of maximum GZ	25,0	deg	50,9	Pass	+103,64
267(85) Ch2 - General Criteria	2.2.4: Initial GMt	0,150	m	1,637	Pass	+991,33
267(85) Ch2 - General Criteria	2.3: Severe wind and rolling				Pass	
	Angle of steady heel shall not be greater than (<=)	16,0	deg	3,8	Pass	+76,27
	Area1 / Area2 shall not be less than (>=)	100,00	%	850,23	Pass	+750,23
3.1 Passenger Ships	3.1.1: Passenger crowding: angle of equilibrium	10,0	deg	4,8	Pass	+51,51
3.1 Passenger Ships	3.1.2: Turn: angle of equilibrium	10,0	deg	1,5	Pass	+84,77

11170000000000000000000000000000000000
--

Εικόνα 58: Καμπύλη μοχλοβραχίονα επαναφοράς για την κατάσταση 100% Departure

	LOADCASE 50%					
Code	Criteria	Value	Units	Actual	Status	Margin %
267(85) Ch2 - General Criteria	2.2.1: Area 0 to 30	3,1513	m.deg	14,7514	Pass	+368,10
267(85) Ch2 - General Criteria	2.2.1: Area 0 to 40	5,1566	m.deg	25,9825	Pass	+403,87
267(85) Ch2 - General Criteria	2.2.1: Area 30 to 40	1,7189	m.deg	11,2311	Pass	+553,39
267(85) Ch2 - General Criteria	2.2.2: Max GZ at 30 or greater	0,200	m	1,429	Pass	+614,50
267(85) Ch2 - General Criteria	2.2.3: Angle of maximum GZ	25,0	deg	50,9	Pass	+103,64
267(85) Ch2 - General Criteria	2.2.4: Initial GMt	0,150	m	1,537	Pass	+924,67
267(85) Ch2 - General Criteria	2.3: Severe wind and rolling				Pass	
	Angle of steady heel shall not be greater than (<=)	16,0	deg	3,5	Pass	+78,17
	Area1 / Area2 shall not be less than (>=)	100,00	%	870,42	Pass	+770,42
	0.4.4 D	40.0		1.2		. 50 57
3.1 Passenger Ships	3.1.1: Passenger crowding: angle of equilibrium	10,0	deg	4,6	Pass	+53,57
3.1 Passenger Ships	3.1.2: Turn: angle of equilibrium	10,0	deg	1,0	Pass	+90,46

Πίνακας 21: Πίνακας ελ	έγχου κριτηρίων.	ευστάθειας για τ	ην κατάσταση 50%
------------------------	------------------	------------------	------------------

Εικόνα 59: Καμπύλη μοχλοβραχίονα επαναφοράς για την κατάσταση 50%

	LOADCASE 10% ARRIVAL					
Code	Criteria	Value	Units	Actual	Status	Margin %
267(85) Ch2 - General Criteria	2.2.1: Area 0 to 30	3,1513	m.deg	12,8616	Pass	+308,14
267(85) Ch2 - General Criteria	2.2.1: Area 0 to 40	5,1566	m.deg	22,9579	Pass	+345,21
267(85) Ch2 - General Criteria	2.2.1: Area 30 to 40	1,7189	m.deg	10,0963	Pass	+487,37
267(85) Ch2 - General Criteria	2.2.2: Max GZ at 30 or greater	0,200	m	1,271	Pass	+535,50
267(85) Ch2 - General Criteria	2.2.3: Angle of maximum GZ	25,0	deg	50,0	Pass	+100,00
267(85) Ch2 - General Criteria	2.2.4: Initial GMt	0,150	m	1,343	Pass	+795,33
267(85) Ch2 - General Criteria	2.3: Severe wind and rolling				Pass	
	Angle of steady heel shall not be greater than (<=)	16,0	deg	4,7	Pass	+70,32
	Area1 / Area2 shall not be less than (>=)	100,00	%	879,84	Pass	+779,84
3.1 Passenger Ships	3.1.1: Passenger crowding: angle of equilibrium	10,0	deg	6,1	Pass	+39,37
3.1 Passenger Ships	3.1.2: Turn: angle of equilibrium	10,0	deg	1,7	Pass	+83,20

Πίνακας 22: Πίνακας ελέγχου κριτηρίων ευστάθειας για την κατάσταση 10% Arrival

Εικόνα 60: Καμπύλη μοχλοβραχίονα επαναφοράς για την κατάσταση 10% Arrival

7.8. ΕΛΕΓΧΟΣ ΕΥΣΤΑΘΕΙΑΣ ΜΕΤΑ ΑΠΟ ΒΛΑΒΗ

7.8.1. ΕΦΑΡΜΟΓΗ ΠΡΟΣΔΙΟΡΙΣΤΙΚΟΥ ΜΟΝΤΕΛΟΥ

Πρώτο βήμα για τον έλεγχο της ευστάθειας μετά από βλάβη αποτελεί η δημιουργία των καταστάσεων βλάβης λόγω ρήγματος (*Damage Cases*). Όπως αναφέρθηκε και στη θεωρία βασικό χαρακτηριστικό της συγκεκριμένης μεθόδου είναι ότι τα χαρακτηριστικά του ρήγματος είναι προδιαγεγραμμένα. Πιο συγκεκριμένα:

- Μήκος ρήγματος ίσο με 0,03L + 3m ή 11m όποιο είναι μικρότερο.
- Εισχώρηση ίση με το 1/5 του πλάτους.

Επίσης, λαμβάνουμε υπόψιν πάντα τη δυσμενέστερη περίπτωση, άρα το ρήγμα θεωρούμε ότι "χτυπάει" και φρακτή. Αυτό έχει ως αποτέλεσμα την εισροή υδάτων σε δύο διαμερίσματα και το πλοίο να πρέπει να ικανοποιεί όλους τους κανονισμούς. Ήδη

Όνομα	Απόσταση από το μέσο του πλοίου (m)
Compartment 1	-46 εώς -37,95
Compartment 2	-37,95 εώς -31,95
Compartment 3	-31,95 εώς -24,75
Compartment 4	-24,75 εώς -17,55
Compartment 5	-17,55 εώς -9,75
Compartment 6	-9,75 εώς -1,95
Compartment 7	-1,95 εώς 4,05
Compartment 8	4,05 εώς 10,05
Compartment 9	10,05 εώς 16,05
Compartment 10	16,05 εώς 22,05
Compartment 11	22,05 εώς 31,05
Compartment 12	31,05 εώς 37,05
Compartment 13	37,05 εώς 43,22

από το κεφάλαιο <u>7.4.</u> έχουμε ορίσει τη θέση των εγκαρσίων φρακτών στο πλοίο μας. Από τον ορισμό των φρακτών προκύπτουν τα παρακάτω διαμερίσματα:

Πίνακας 23: Αποστάσεις Διαμερισμάτων

Σύμφωνα με τους παραπάνω κανονισμούς τα διαμερίσματα και οι δεξαμενές που κατακλύζονται σε κάθε σενάριο βλάβης είναι τα εξής:

	Room	Intact	D1.1	D2.1	D3.1	D4.1	D5.2	D6.1	D7.1	D8.1	D8.11	D9.1	D10.1	D11.1
1	Case type													
2	Has RoRo spaces													
3	GAR. FORE TRUNK - R1307 (P)													
4	GAR. FORE TRUNK - R1308 (S)													
5	TUNNEL SPACE (C) - R094													
6	TUNNEL SPACE (C) - R102													
7	GARAGE SP NET - R13													
8	STEER.GEAR RM - R12													
9	STAIRS (P) - R1301													
10	HYD PUMP RM (S) 1302													
11	STAIRS (S) GAR DK R1304													
12	STAIRS (P) GAR DK R1303													
13	LIFT_TRUNK (P) above_Gar - R103													
14	NO 3 VOID (P) - RO92													
15	NO 3 VOID (S) - RO93													
16	AFT E.ROOM R086													
17	FORE E.ROOM R085													
18	PUMP ROOM- RO7													
19	SEWAGE RM - RO6													
20	NO 2 VOID - RO5					2								
21	VOID_EX_NO 1 WBT (P) - RO4													
22	VOID_EX_NO 1 WBT (S) - RO41													
23	BOWTHR.ABOVE DB - R03													
24	NO 1 VOID ABOVE BL - RO2													
25	BOW THRUSTER VOID													
26	FORE PEAK TANK - RO1													
27	NO 1 DB WB TK (C)													
28	NO 2 DB WB TK (C)		0											
29	NO 3 DB WB TK (C) - RO51													
30	NO 4 DB TK (P) - R10													
31	NO 4 DB TK (S) - R101													
32	AFTER PEAK TANK - R11													
33	NO 1 DB DO TK (P) - RO61													
34	NO 1 DB DO TK (S) - RO62													
35	NO 2 DB DO TK (P) - R073												0	
36	NO 2 DB DO TK (S) - RO74													
37	NO 3 DB DO TK (P) - RO811													
38	NO 3 DB DO TK (S) - RO812	0	0			0		0	0	0	0	0	0	0
39	M/E SERVICE DO TK - RO/1													
40	M/E SETTLING DO TK - R072													
41	G/E SERVICE DO TK													
42	LO SUMP TK (P)													
43	LO SUMP TK (S)													
44	AUX LO TK - RO 82													
45	LO STORAGE NO 4	0	0	0	0	0	0			0	0	0		
46	LO STORAGE NO 5	0	0		0	0				0	0	0		
47	LO STORAGE NO 6	0	0		0	0	0			0				
48	FRESH WATER TK (P) - RO9	0	0	0	0	0	0			0			0	
49	FRESH WATER TK (S) - RO91	0	0	0	0	0	0	0	0	0			0	0
50	BILGE TANK (C) - RO83	0												
51	WASTE OIL TK (S) - R084													
52	JSEWAGE TK													

Εικόνα 61: Πίνακας σεναρίων κατάκλυσης μετά από βλάβη

Τελευταίο βήμα πριν τον έλεγχο των παραπάνω σεναρίων για τις τρεις καταστάσεις φόρτωσης, αποτελεί ο εκ νέου ορισμός των κριτηρίων ευστάθειας, αυτή τη φορά για ευστάθεια μετά από βλάβη. [22]

Η διαδικασία αυτή γίνεται μέσω του ("Analysis->Criteria").

Εικόνα 62: Κριτήρια ευστάθειας μετά από βλάβη

Τα κριτήρια ευστάθειας μετά από βλάβη παρουσιάζονται αναλυτικά στο Παράρτημα.

Παρακάτω παρουσιάζεται ο έλεγχος του πρώτου σεναρίου βλάβης για τις τρεις καταστάσεις φόρτωσης. Τα υπόλοιπα σενάρια παρουσιάζονται στο παράρτημα.

Loadcase - Full Load Departure Damage Case - D1.1

Code	Criteria	Value	Units	Actual	Status	Margin
						%
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	49,5	Pass	+229,90
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	12,3683	Pass	+1339,17
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	1,358	Pass	+3295,00
	8.2.3.3: Wind heeling arm	0,040	m	1,457	Pass	+3542,50
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	1,489	Pass	+2878,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,665	Pass	+3230,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ	12,0	deg	0,7	Pass	+93,93
	based		_			

Loadcase - Loadcase 50% Damage Case - D1.1

Stability GZ DF point = 50,8 deg. 8.2.3.3: Passenger crowding heeling arm 8.2.3.3: Wind heeling arm 8.6.1 Residual GM with symmetrical flooding GM at 0,0 deg = 1,563 m Max GZ = 1,429 m at 50,9 deg.

Code	Criteria	Value	Units	Actual	Status	Margin
						%
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	50,7	Pass	+238,05
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	12,2770	Pass	+1328,56
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	1,296	Pass	+3140,00
	8.2.3.3: Wind heeling arm	0,040	m	1,397	Pass	+3392,50
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	1,429	Pass	+2758,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,563	Pass	+3026,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ	12,0	deg	0,1	Pass	+99,07
	based					

Loadcase - Full Load Arrival Damage Case - D1.1

Stability

GZ DFpoint=51,4 deg. 8.2.3.3: Passenger crowding heeling arm

8.2.3.3: Wind heeling arm 8.6.1 Residual GM with symmetrical flooding GM at 0,0 deg = 1,365 m Max GZ = 1,272 m at 50 deg.

Code	Criteria	Value	Units	Actual	Status	Margin
						%
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	50,8	Pass	+238,86
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	10,6748	Pass	+1142,12
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	1,134	Pass	+2735,00
	8.2.3.3: Wind heeling arm	0,040	m	1,239	Pass	+2997,50
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	1,272	Pass	+2444,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,365	Pass	+2630,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ	12,0	deg	0,6	Pass	+95,17
	based		_			

7.8.2. ΕΦΑΡΜΟΓΗ ΠΙΘΑΝΟΘΕΩΡΗΤΙΚΟΥ ΜΟΝΤΕΛΟΥ

★ <u>ΚΑΤΑΣΤΑΣΕΙΣ ΦΟΡΤΩΣΗΣ</u>

Η πιθανοθεωρητική μέθοδος πραγματοποιείται για τρεις καταστάσεις φόρτωσης. Η επιλογή τους γίνεται με τέτοιον τρόπο, ώστε να καλύπτουν όλα τα σενάρια φόρτωσης. Τα βυθίσματα των τριών καταστάσεων αυτών είναι τα παρακάτω:

- > Η φόρτωση με το μέγιστο βύθισμα (ds- Deepest Subdivision Draught).
- > Η φόρτωση με το ελάχιστο βύθισμα (dL- Lightest Subdivision Draught).
- Η ενδιάμεση κατάσταση όπου το βύθισμα της υπολογίζεται από τον τύπο :

$$d_p = d_L + 0.6 * (d_s - d_L) (5)$$

Στην περίπτωσή μας η φόρτωση οι συγκεκριμένες καταστάσεις φόρτωσης με τα βυθίσματα τους είναι οι εξής:

5	Loadcases		
6	Deepest subdivision draft (summer loadline) Loadcase	Full Load Departure draft: 4,043 m	
7	Partial subdivision draft Loadcase	Loadcase 50% draft: 3,985 m	
8	Light service draft Loadcase	Full Load Arrival draft: 3,899 m	ļ

Εικόνα 63: Στιγμιότυπο από το Maxsurf με τις τρεις καταστάσεις φόρτωσης

Πράγματι με τη χρήση της σχέσης (3) έχουμε ότι d_p =3,9854m, αποτέλεσμα αρκετά κοντά με την ενδιάμεση κατάσταση φόρτωσης. Οι παραπάνω καταστάσεις είναι όμοιες με εκείνες της προσδιοριστικής μεθόδου στο κεφάλαιο <u>7.6.</u> και επιλέχθηκαν στο επίπεδο ("Window -> Damage -> Global").

* <u>ΕΠΙΛΟΓΗ ΠΑΡΑΜΕΤΡΩΝ - INPUT PARAMETERS (GLOBAL TABLE)</u>

Α) ΠΑΛΙΟΣ ΚΑΝΟΝΙΣΜΟΣ

Εκτός από τις καταστάσεις φόρτωσης που αναφέρθηκαν παραπάνω είναι απαραίτητη και η επιλογή του κατάλληλου κανονισμού. Στην περίπτωσή μας επιλέχθηκε ο *MSC.216(82)*. Έπειτα, ορίστηκε ο τύπος του πλοίου (*Passenger*), καθώς και η μεριά της βλάβης (*Port*) και η θέση της πρώτης ζώνης (*Stern*). Για τον υπολογισμό του απαιτούμενου δείκτη υποδιαίρεσης ορίστηκαν και οι παράμετροι *N1* και *N2*.

- Όπου N1 ο αριθμός των ανθρώπων πάνω στο πλοίο στους οποίους παρέχονται σωσίβιες λέμβοι. Στην περίπτωση μας N1=0, διότι δεν υπάρχουν σωσίβιες λέμβοι πάνω στο πλοίο, αλλά εφαρμόζεται το σύστημα MES-Marine Evacuation System.
- N2, ο συνολικός αριθμός των ανθρώπων που επιτρέπονται πάνω στο πλοίο (μαζί με το πλήρωμα).

Όπως αναφέρθηκε και στο κεφάλαιο <u>4.2.2.</u> ο απαιτούμενος δείκτης υποδιαίρεσης υπολογίζεται βάση της παρακάτω σχέσης:

$$R = 1 - \frac{5000}{Ls + 2.5 * N_p + 15.225}$$
(6)

Όπου:

Ls: το μήκος υποδιαίρεσης.

και $N_p = NI + 2N2$ ο αριθμός των ανθρώπων με βάση τον οποίο υπολογίζεται ο απαιτούμενος δείκτης υποδιαίρεσης. Με βάση τον παραπάνω τύπο ο απαιτούμενος δείκτης υποδιαίρεσης είναι ίσος με **R=0,72707.**

Β) ΚΑΙΝΟΥΡΙΟΣ ΚΑΝΟΝΙΣΜΟΣ

Σύμφωνα με τον καινούργιο κανονισμό ο υπολογισμός του απαιτούμενου δείκτη υποδιαίρεσης δεν απαιτεί τη γνώση του μήκους υποδιαίρεσης αλλά πραγματοποιείται με τη βοήθεια του πίνακα 2 του κεφαλαίου <u>4.2.2</u>.

Σύμφωνα με τον πίνακα αυτό για N=600, έχουμε ότι:

$$R = \frac{N}{7580} + 0,66923 (7) => \mathbf{R} = 0,748386$$

◊ <u>ΣΤΕΓΑΝΗ ΥΠΟΔΙΑΙΡΕΣΗ ΤΟΥ ΠΛΟΙΟΥ</u>

Για να πραγματοποιηθεί ο υπολογισμός του δείκτη υποδιαίρεσης του πλοίου, είναι απαραίτητος ο διαχωρισμός του πλοίου σε ζώνες. Οι ζώνες αυτές ορίστηκαν με βάση τις εγκάρσιες και διαμήκεις φρακτές και τα καταστρώματα. Ο καθορισμός των παραπάνω πραγματοποιήθηκε στο Maxsurf από το πεδίο ("Window -> Damage") και έπειτα zones, Long. Bhds και Decks αντίστοιχα.

Εικόνα 64: Στιγμιότυπο από το Maxsurf για την επιλογή των απαραίτητων ζωνών

Με τον ορισμό των παραπάνω ζωνών θα δημιουργηθούν τα σενάρια βλάβης. Παρακάτω απεικονίζεται ο καθορισμός των ζωνών κατά το εγκάρσιο, το διάμηκες και το κατακόρυφο επίπεδο.

	Namo	Aft	Fwd	Length	Centre	
	Mame	m	m	m	m	
1	Zone 1	-45,999	-37,950	8,049	-41,974	
2	Zone 2	-37,950	-31,950	6,000	-34,950	
3	Zone 3	-31,950	-24,750	7,200	-28,350	
4	Zone 4	-24,750	-17,550	7,200	-21,150	
5	Zone 5	-17,550	-9,750	7,800	-13,650	
6	Zone 6	-9,750	-1,950	7,800	-5,850	
7	Zone 7	-1,950	4,050	6,000	1,050	
8	Zone 8	4,050	10,050	6,000	7,050	
9	Zone 9	10,050	16,050	6,000	13,050	
10	Zone 10	16,050	22,050	6,000	19,050	
11	Zone 11	22,050	31,050	9,000	26,550	
12	Zone 12	31,050	37,050	6,000	34,050	
13	Zone 13	37,050	48,500	11,450	42,775	

Εικόνα 65: Ζώνες κατά το εγκάρσιο επίπεδο

	Zones	Shell half-beam	Num, L.	b 1	b 2
	Lones	m	Hum L.	m	m
1	1 adjacent zone				
2	Zone 1, 1	8,300	0	n/a	n/a
3	Zone 2, 1	8,300	0	n/a	n/a
4	Zone 3, 1	8,300	1	3,740	n/a
5	Zone 4, 1	8,300	1	3,740	n/a
6	Zone 5, 1	8,300	0	n/a	n/a
7	Zone 6, 1	8,300	0	n/a	n/a
8	Zone 7, 1	8,300	0	n/a	n/a
9	Zone 8, 1	8,300	0	n/a	n/a
10	Zone 9, 1	8,300	0	n/a	n/a
11	Zone 10, 1	8,300	1	0,000	n/a
12	Zone 11, 1	8,300	0	n/a	n/a
13	Zone 12, 1	8,300	0	n/a	n/a
14	Zone 13, 1	8,300	0	n/a	n/a

Εικόνα 66: Ζώνες κατά το διάμηκες επίπεδο

	Zones	Num. Decks	H 1	H 2	H 3	H 4	H 5	H 6	Η7
			m	m	m	m	m	m	m
1	1 adjacent zone								
2	Zone 1, 1	1	5,700	n/a	n/a	n/a	n/a	n/a	n/a
3	Zone 2, 1	1	5,700	n/a	n/a	n/a	n/a	n/a	n/a
4	Zone 3, 1	1	5,540	n/a	n/a	n/a	n/a	n/a	n/a
5	Zone 4, 1	2	3,800	5,540	n/a	n/a	n/a	n/a	n/a
6	Zone 5, 1	1	5,540	n/a	n/a	n/a	n/a	n/a	n/a
7	Zone 6, 1	1	5,540	n/a	n/a	n/a	n/a	n/a	n/a
8	Zone 7, 1	2	1,000	5,560	n/a	n/a	n/a	n/a	n/a
9	Zone 8, 1	2	1,200	5,560	n/a	n/a	n/a	n/a	n/a
10	Zone 9, 1	2	1,200	5,560	n/a	n/a	n/a	n/a	n/a
11	Zone 10, 1	2	1,200	5,560	n/a	n/a	n/a	n/a	n/a
12	Zone 11, 1	2	1,000	5,560	n/a	n/a	n/a	n/a	n/a
13	Zone 12, 1	2	2,100	5,700	n/a	n/a	n/a	n/a	n/a
14	Zone 13, 1	1	5,700	n/a	n/a	n/a	n/a	n/a	n/a

Εικόνα 67: Ζώνες κατά το κατακόρυφο επίπεδο

Εικόνα 68: Απεικόνιση των Damage zones για το πλοίο αναφοράς
♦ <u>ΔΙΑΧΩΡΗΤΟΤΗΤΕΣ</u>

Τελευταίο βήμα πριν την έναρξη της μελέτης αποτελεί ο ορισμός της διαχωρητότητας των χώρων και των δεξαμενών. Ως RO-RO spaces χαρακτηρίζονται οι χώροι που είναι φορτωμένα τα οχήματα. Η διαχωρητότητα δεν έχει ίδια τιμή και στις τρεις καταστάσεις. Ορίζουμε $P_s=0,9 P_p=0,9$ και $P_L=0,95$.

Spaces	Permeability	Permeability	Permeability	
	at draught ds	at draught dp	at draught dl	
Appropriated to stores	0.60	0.60	0.60	
Occupied by accommodation	0.95	0.95	0.95	
Occupied by machinery	0.85	0.85	0.85	
Void spaces	0.95	0.95	0.95	
Intended for liquids	0 or 0.95 *	0 or 0.95 *	0 or 0.95 *	
Dry cargo spaces	0.70	0.80	0.95	
Container spaces	0.70	0.80	0.95	
Ro-ro spaces	0.90	0.90	0.95	
Cargo liquids	0.70	0.80	0.95	
* whichever results in the more severe				

Εικόνα 69: Διαχωρητότητες χώρων και δεξαμενών σε κάθε κατάσταση φόρτωσης

★ ΣΥΓΚΕΝΤΡΩΤΙΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ

Α) ΠΑΛΙΟΣ ΚΑΝΟΝΙΣΜΟΣ

Υπενθυμίζουμε ότι για να συμμορφώνεται ένα πλοίο με τους κανονισμούς θα πρέπει ο επιτευχθέντας δείκτης υποδιαίρεσης να είναι μεγαλύτερος ή ίσος από τον απαιτούμενο δείκτη υποδιαίρεσης (A≥R). Εκτός από την παραπάνω απαίτηση πρέπει οι τρεις παρακάτω επιμέρους δείκτες να είναι μεγαλύτεροι ή ίσοι με Aj≥0,9R ή αλλιώς Aj≥ 0,65436.

MSC.216(82) Required subdivision index	
Pax ships: R = 1 - 5000 / (L_s + 2.5 N + 15225)	0,72707
Reduction factor for R	1,000
Required subdivision index (appying reduction factor)	0,72707
Factor of R for required subdivision index for each loadcase	0,900
Required subdivision index for each loadcase	0,65436

Οι τρεις επιμέρους δείκτες είναι οι αντίστοιχοι επιτευχθέντες δείκτες υποδιαίρεσης που υπολογίζονται από την κάθε κατάσταση φόρτωσης.

- > As, για την κατάσταση φόρτωσης με το μεγαλύτερο βύθισμα.
- Α_p, για την ενδιάμεση κατάσταση.
- AL, για την κατάσταση φόρτωσης με το μικρότερο βύθισμα.

Τέλος, ο αθροιστικός επιτευχθέντας δείκτης υποδιαίρεσης είναι ίσος με:

 $A = 0.4 * A_S + 0.4 * A_P + 0.2 * A_L$ (8)

Και έχουμε πει προηγουμένως ότι $Aj = \sum p_i v_i s_i$ (9).

Παρακάτω απεικονίζονται τα συγκεντρωτικά αποτελέσματα του πιθανοθεωρητικού μοντέλου για τον παλιό κανονισμό.

Ο επιτευχθέντας δείκτης υποδιαίρεσης στην κατάσταση του μέγιστου βυθίσματος βγήκε ίσος με $A_s=0,99578$, στην ενδιάμεση κατάσταση ίσος με $A_p=0,995678$ και στην κατάσταση με το ελάχιστο βύθισμα ίσος με $A_L=0,99307$. Υπενθυμίζουμε ότι ο κάθε επιτευχθέντας δείκτης υποδιαίρεσης πρέπει να είναι μεγαλύτερος από το 0.9R, δηλαδή μεγαλύτερος από 0,65436. Όπως αντιλαμβάνεται κανείς $A_p\geq0,9R$, $A_s\geq0,9R$ και $A_L\geq0,9R$. Επιπλέον ο συνολικός επιτευχθέντας δείκτης υποδιαίρεσης είναι ίσος με:

 $A = 0.4A_{S} + 0.4A_{P} + 0.2A_{L} (10) \Longrightarrow A = 0.4 * 0.99578 + 0.4 * 0.995678 + 0.2 * 0.99307$

Άρα A=0,995197 και πρέπει $A \ge R$ ή $A \ge 0,72707$, <u>οπότε τηρούνται όλες οι</u> <u>απαιτήσεις των κανονισμού.</u>

Εικόνα 71:Τρίγωνα πιθανοτήτων κατάκλυσης

Β) ΚΑΙΝΟΥΡΙΟΣ ΚΑΝΟΝΙΣΜΟΣ

Όπως αναφέρθηκε και στα προηγούμενα κεφάλαια για τον καινούργιο κανονισμό δεν αλλάζει κάτι πέρα από την τιμή του απαιτούμενου δείκτη υποδιαίρεσης R. Υπενθυμίζουμε ότι από τον πίνακα 2 στο κεφάλαιο <u>4.2.2.</u> από το δεύτερο τύπο για N=600 έχει υπολογιστεί ότι **R=0,748386**. Ομοίως σε αυτή την περίπτωση για να συμμορφώνεται ένα πλοίο με τους κανονισμούς θα πρέπει ο επιτευχθέντας δείκτης υποδιαίρεσης (A≥R). Εκτός από την παραπάνω απαίτηση πρέπει οι τρεις επιμέρους δείκτες (έχουν ίδια τιμή ανεξαρτήτως κανονισμού) να είναι μεγαλύτεροι ή ίσοι με Αj≥0,9R ή αλλιώς Aj≥ 0,67355. Επομένως, ο επιτευχθέντας δείκτης υποδιαίρεσης στην κατάσταση του μέγιστου βυθίσματος είναι ίσος με A_s=0,99578, στην ενδιάμεση κατάσταση ίσος με A_p=0,995678 και στην κατάσταση με το ελάχιστο βύθισμα ίσος με A_L=0,99307. Όπως αντιλαμβάνεται κανείς και σε αυτή την περίπτωση A_p≥0,9R, A_s≥0,9R και A_L≥0,9R. Τέλος, η συνολική τιμή του επιτευχθέντα δείκτη υποδιαίρεσης είναι ίσος με A=0,995197 και πρέπει Α≥ R ή A≥ 0,74839, <u>οπότε και σε αυτή την περίπτωση</u> τηρούνται όλες οι απαιτήσεις των κανονισμού.

Required Subdivision Index-> R	
Pax Ships R= N/7580+0,66923	0,748386
Reduction Factor for R	1
Required subdivision index (applying	0,748386
reduction factor)	
Factor of R for required subdivision index	0,9
for each loadcase	
Required subdivision index for each	0,67355
loadcase	

Αντίστοιχα ο πίνακας για τον καινούργιο κανονισμό είναι ο εξής:

Πίνακας 24: Διαδικασία υπολογισμών με τη βοήθεια υπολογιστικού φύλλου

★ ΥΠΟΛΟΓΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ ΑΠΩΛΕΙΑΣ ΖΩΗΣ (PLL)

Για μια πιο ολοκληρωμένη εικόνα της ασφάλειας των επιβατών πάνω στο πλοίο υπολογίζεται και η πιθανότητα απώλειας ανθρώπινης ζωής συναρτήσει του επιτευχθέντα δείκτη υποδιαίρεσης (A). Η πιθανότητα υπολογίζεται από τη σχέση (11).

$$\begin{aligned} PLL &= \left[P_f * \left(P_r * P_1 + P_l * P_1 + P_t * P_2 \right) * P_c * P_s * (1 - A) * F_f + P_{sl} * \left(P_r * P_1 + P_l * P_1 + P_t * P_2 \right) * P_c * P_s * (1 - A) * F_s \right] * (N * 0.75) * L_t (11) \end{aligned}$$

Επομένως, οι παράγοντες που επηρεάζουν τη πιθανότητα απώλειας ζωής συνοψίζονται στον παρακάτω πίνακα.

Συχνότητα σύγκρουσης για πλοία Ro-Pax > 1.000 GT	Pc	7,778*10^-3
Πιθανότητα πλοίο να χτυπηθεί	Ps	0,689655
	Pr	Σε πορεία (4%)
Περιοχή λειτουργίας τη στιγμή του ατυχήματος	Pl	Σε περιορισμένα ύδατα(23%)
	Pt	Σε λιμάνι (73%)
Πιθανότητα εισροής υδάτων όταν το πλοίο πλέει ή είναι σε περιορισμένα ύδατα	P ₁	0,423077
Πιθανότητα εισροής υδάτων όταν το πλοίο βρίσκεται σε λιμάνι.	P ₂	0,117647
Πιθανότητα αργής/γρήγορης βύθισης	P_{sl}/P_f	0,5/0,5
Απώλειες σε περίπτωση αργής/γρήγορης βύθισης	F _s /F _f	5%/80%
Ποσοστό συνολικού αριθμού επιβατών στο πλοίο		75%
Πιθανότητα ανατροπής/Βύθισης		1-A
Διάρκεια ζωής πλοίου (χρόνια)	Lt	30
Μέγιστος αριθμός επιβαινόντων στο πλοίο	N	600

Πίνακας 25: Παράγοντες που επηρεάζουν το PLL

Για κάθε πλοίο οι παράγοντες που μεταβάλλονται είναι εκείνοι στο σκούρο πλαίσιο [(P(1-A), L_t και N]. Η πιθανότητα απώλειας ανθρώπινης ζωής υπολογίζεται για μια εκτιμώμενη ζωή L_t=30 χρόνια και πιθανότητα βύθισης P(1-A)= 0,004803 και μέγιστο αριθμό επιβατών N=600. Για τον υπολογισμό επιλέχθηκε ο απαιτούμενος δείκτης υποδιαίρεσης με βάση τον παλιό κανονισμό.

(11)=>PLL=0,02958

Επομένως, κατά τη διάρκεια ζωής του πλοίου είναι πιθανόν να χαθούν 0,02958 ανθρώπινες ζωές.

ΑΠΟΤΕΛΕΣΜΑΤΑ/ΣΥΜΠΕΡΑΣΜΑΤΑ

Η παρούσα διπλωματική εργασία είχε ως αντικείμενο τον τρισδιάστατο σχεδιασμό γάστρας υπάρχοντος επιβατηγού πλοίου RO-PAX και τη μελέτη της ευστάθειας του τόσο με τη βοήθεια του προσδιοριστικού, όσο και με του πιθανοθεωρητικού μοντέλου. Για τον τρισδιάστατο σχεδιασμό έγινε η χρήση του προγράμματος Rhinoceros και τα αποτελέσματα της σχεδίασης συμβάδιζαν με την πραγματική γάστρα, ικανοποιώντας τα πρότυπα του IACS ("IACS UR-L5 Reg. 2004/Rev.4 2020"). Τα αποτελέσματα αυτά προσφέρουν πολύτιμες πληροφορίες σχετικά με την καταλληλότητα του σχεδιασμού για πραγματικές εφαρμογές και την τήρηση των υφιστάμενων προτύπων. Μοναδική εξαίρεση αποτέλεσαν οι πίνακες σύγκρισης των παραμετρικών καμπυλών ευστάθειας για τις 70° και 80° και για χαμηλές τιμές εκτοπισμάτων. Η διαφορά αυτή πιθανόν να οφείλεται στην έντονη αλλαγή γεωμετρίας για μικρά βυθίσματα, κυρίως στην περιοχή της πρύμνης. Στις μεγάλες γωνίες κλίσης είναι λογικό να παρουσιάζονται προβλήματα ευστάθειας, ειδικά σε περιπτώσεις που έχουν βυθιστεί τα Downflooding points. Η εισροή νερού από αυτά τα ανοίγματα έχει αρνητικές επιδράσεις στην ευστάθεια ενός πλοίου δημιουργώντας επιπλέον βάρος, αλλά και μεγάλες τιμές στις ελεύθερες επιφάνειες. Με την ανάλυση των καμπυλών ευστάθειας είναι δυνατή η εκτίμηση της αρχικής και της τελικής ευστάθειας του πλοίου, επιτρέποντας τον προσδιορισμό του κατά πόσον το πλοίο είναι σε θέση να αντέξει εξωτερικές δυνάμεις, όπως ο άνεμος και τα κύματα, γωρίς να υπερβεί τα όρια ευστάθειας. Επομένως, η διαφορά στις τόσο μεγάλες γωνίες κλίσης που κατά πάσα πιθανότητα ήδη έχει χαθεί το πλοίο και αφορούν καταστάσεις ακραίων καιρικών φαινομένων, δεν επηρέασε την πορεία της εργασίας ούτε στο σχεδιαστικό μέρος, ούτε στην μελέτη της ευστάθειας που ακολούθησε.

Στη συνέχεια μελετήθηκε η άθικτη ευστάθεια και η ευστάθεια μετά από βλάβη με τη γρήση της προσδιοριστικής μεθόδου. Τα αποτελέσματα της συγκεκριμένης μεθόδου συμβάδιζαν με τους υπάρχοντες κανονισμούς της SOLAS. Η χρήση της πιθανοθεωρητικής μεθόδου επιβεβαίωσε τα αποτελέσματα της προσδιοριστικής, αποδίδοντας έναν επιτευχθέντα δείκτη υποδιαίρεσης μεγαλύτερο από τον απαιτούμενο δείκτη υποδιαίρεσης και του παλιού και του καινούργιου κανονισμού των πλοίων. Η σύγκριση του απαιτούμενου δείκτη υποδιαίρεσης με τον επιτευχθέντα δείκτη υποδιαίρεσης είναι ουσιώδης για την αξιολόγηση της ασφάλειας και της αξιοπλοΐας ενός σκάφους. Το αποτελεσμα της σύγκρισης παρέχει πληροφορίες σχετικά με την αποτελεσματικότητα του σχεδιασμού υποδιαίρεσης του πλοίου και τη συμμόρφωσή του τόσο με τα παλιότερα, όσο και με τα τωρινά κανονιστικά πρότυπα. Για τον υπολογισμό της πιθανότητας απώλειας ανθρώπινης ζωής επιλέχθηκε ο απαιτούμενος δείκτης υποδιαίρεσης με βάση τον παλιό κανονισμό στον οποίο πρέπει να συμμορφώνεται το συγκεκριμένο πλοίο. Όπως αντιλαμβάνεται κανείς, η μικρή διαφορά στους απαιτούμενους δείκτες υποδιαίρεσης R των δύο κανονισμών, δεν θα απέδιδε μεγάλη απόκλιση στη συγκεκριμένη τιμή.

Συγκρίνοντας τις δύο μεθόδους παρατηρούμε αρκετές διαφορές ως προς τον τρόπο προσέγγισής τους. Στην περίπτωση της ντετερμινιστικής μεθόδου, πραγματοποιείται έλεγχος μόνο στις δυσμενέστερες καταστάσεις, δηλαδή στα σημεία των φρακτών και με το μήκος ρήγματος τοποθετημένο κατάλληλα ώστε να υπάρχει η δυσμενέστερη βλάβη. Στην περίπτωση της πιθανοθεωρητικής μεθόδου, υπάρχει μια καλύτερη εικόνα των καταστάσεων βλάβης με όλα τα σενάρια που δύναται να υπάρξουν. Η μέθοδος αυτή λόγω του μεγάλου αριθμού των σεναρίων βλάβης είναι αρκετά πιο χρονοβόρα σε αντίθεση με την προσδιοριστική μέθοδο. Σε καμία περίπτωση η πιθανοθεωρητική μέθοδος δεν αντικαθιστά τη ντετερμινιστική, αλλά δύναται να εντοπίσει τρωτά σημεία στο σχεδιασμό ή τη λειτουργία ενός πλοίου τα οποία η ντετερμινιστική μέθοδος μπορεί να παραλείψει.

Συνοψίζοντας, η ντετερμινιστική και η πιθανοθεωρητική μέθοδος, αποτελούν απαραίτητα εργαλεία για τη διασφάλιση της ανθεκτικότητας και της ασφάλειας των πλοίων έναντι ατυχημάτων και καταστάσεων έκτακτης ανάγκης. Η ενσωμάτωσή τους στο σχεδιασμό, τη λειτουργία και τα κανονιστικά πλαίσια των πλοίων είναι απαραίτητη για τη διαφύλαξη ζωών, την προστασία του περιβάλλοντος και τη βελτίωση της συνολικής ασφάλειας των ναυτιλιακών επιχειρήσεων.

ΠΡΟΤΑΣΕΙΣ

Για την τρισδιάστατη σχεδίαση της γάστρας του πλοίου, ακολουθούν προτάσεις τόσο για τη βελτίωση της διαδικασίας του σχεδιασμού, όσο και του τελικού μοντέλου του πλοίου. Αρχικά για την εκπόνηση του σχεδίου, προτείνεται η ψηφιοποίηση και των υπόλοιπων όψεων (εκτός του Body Plan), γεγονός που δεν ήταν εφικτό, λόγω του τρόπου απεικόνισής τους στο pdf που ήταν στη διάθεση μας για επεξεργασία. Η αντικατάσταση της χρήσης κλιμακόμετρου με τη διάθεση επιπλέον όψεων, θα ελλάτωνε σημαντικά τις αποκλίσεις μεταξύ των δύο γαστρών. Για τη βελτίωση του τελικού μοντέλου, συνιστάται η εισαγωγή της γάστρας σε λογισμικό CFD (Computational Fluid Dynamics) για την ακριβή προσομοίωση της υδροδυναμικής του πλοίου. Η εισαγωγή ροής γύρω από τη γάστρα θα παρέχει σημαντικές πληροφορίες για τη βελτιστοποίηση του σχεδιασμού. Εκτός από τη χρήση λογισμικού CFD προτείνεται και η χρήση τεχνολογίας VR (Virtual Reality) για τη δημιουργία διασραστικών προτοτύπων πλοίου. Αυτό θα επιτρέψει στην καλύτερη αξιολόγηση της πορείας του σχεδιασμού.

Για το μέρος της ευστάθειας, προτείνεται η διεξαγωγή μιας ολοκληρωμένης συγκριτικής ανάλυσης της ντετερμινιστικής και πιθανοθεωρητικής μεθόδου, αξιολογώντας τα πλεονεκτήματα, τις αδυναμίες και τη δυνατότητα εφαρμογής τους σε διαφορετικά θαλάσσια σενάρια. Επίσης, θα μπορούσε να διερευνηθεί ποια μέθοδος είναι καταλληλότερη για συγκεκριμένους τύπους και μεγέθη πλοίων, αλλά και συνθήκες λειτουργίας. Για παράδειγμα, στα επιβατηγά πλοία όπου η ασφάλεια των επιβατών είναι επιτακτική, είναι πιθανόν η εφαρμογή της πιθανοθεωρητικής μέθοδου να είναι καταλληλότερη από την προσδιοριστική, δεδομένου ότι τα αποτελέσματά της δίνουν πληρέστερη εικόνα για την ασφάλεια ενός πλοίου. Επιπρόσθετα, ενδιαφέρουσα πρόταση αποτελεί η δημιουργία ενός ολοκληρωμένου πλαισίου εκτίμησης κινδύνου που συνδυάζει τόσο την πιθανοθεωρητική, όσο και τη ντετερμινιστική προσέγγιση. Το πλαίσιο αυτό θα πρέπει να λαμβάνει υπόψη όχι μόνο την πιθανότητα ζημίας αλλά και τις συνέπειες, συμπεριλαμβανομένων των περιβαλλοντικών επιπτώσεων (διαρροή φορτίου, πετρελαίου ή απελευθέρωση επικίνδυνων υλικών). Είναι σημαντική η διεξαγωγή εκτεταμένων μελετών περιπτώσεων με χρήση πραγματικών δεδομένων και ιστορικών περιστατικών. Αυτό θα βοηθήσει στην τελειοποίηση και επικύρωση του πιθανοτικού και ντετερμινιστικού μοντέλου, καθιστώντας τα πιο αξιόπιστα. Τέλος, εκτός από τα παραπάνω είναι σημαντική και η ενημέρωση των εμπλεκόμενων φορέων, όπου θα επιτευχθεί με την ανάπτυξη εξειδικευμένων εκπαιδευτικών προγραμμάτων για τα πληρώματα των πλοίων και τους φορείς αντιμετώπισης έκτακτης ανάγκης. Είναι απαραίτητο να διασφαλιστεί ότι το προσωπικό είναι καλά προετοιμασμένο για να γειρίζεται αποτελεσματικά τα σενάρια βλάβης.

ПАРАРТНМА

ΠΑΡΑΡΤΗΜΑ Α: ΣΤΟΙΧΕΙΑ ΚΡΙΤΗΡΙΩΝ SOLAS ΓΙΑ ΤΟ ΠΛΟΙΟ ΑΝΑΦΟΡΑΣ

	267(85) Ch2 - General Criteria 2.2.1: Area 0 to 30	Value	Units
1	from the greater of		
2	spec. heel angle	0,0	deg
3	angle of equilibrium		deg
4	to the lesser of		
5	spec. heel angle	30,0	deg
6	spec. angle above equilibrium	0,0	deg
7	angle of first GZ peak		deg
8	angle of max. GZ		deg
9	first flooding angle of the	Downfloodin	deg
10	immersion angle of	DeckEdge	deg
11	angle of vanishing stability		deg
12	shall not be less than (>=)	3,1513	m.deg

Πίνακας 25: Area 0-30

		267(85) Ch2 - General Criteria 2.2.1: Area 0 to 40	Value	Units
1		from the greater of		
2	Image: Contract of the second seco	spec. heel angle	0,0	deg
3		angle of equilibrium		deg
4		to the lesser of		
5		spec. heel angle	40,0	deg
6		spec. angle above equilibrium	0,0	deg
7		angle of first GZ peak		deg
8		angle of max. GZ		deg
9		first flooding angle of the	Downfloodin	deg
10		immersion angle of	DeckEdge	deg
11		angle of vanishing stability		deg
12		shall not be less than (>=)	5,1566	m.deg

Πίνακας 26: Area 0-40

	267(85) Ch2 - General Criteria 2.2.1: Area 30 to 40	Value	Units
1	from the greater of		
2	spec. heel angle	30,0	deg
3	angle of equilibrium		deg
4	to the lesser of		
5	spec. heel angle	40,0	deg
6	spec. angle above equilibrium	0,0	deg
7	angle of first GZ peak		deg
8	angle of max. GZ		deg
9	first flooding angle of the	Downfloodin	deg
10	immersion angle of	DeckEdge	deg
11	angle of vanishing stability		deg
12	shall not be less than (>=)	1,7189	m.deg

Πίνακας 27: Area 30-40

	267(85) Ch2 - General Criteria 2.2.2: Max GZ at 30 or greater	Value	Units
1	in the range from the greater of		
2	spec. heel angle	30,0	deg
3	angle of equilibrium		deg
4	to the lesser of		
5	spec. heel angle	90,0	deg
6	spec. angle above equilibrium	0,0	deg
7	angle of first GZ peak		deg
8	angle of max. GZ		deg
9	first flooding angle of the	Downfloodin	deg
10	shall not be less than (>=)	0,200	m

Πίνακας 28: Max GZ or Greater

	267(85) Ch2 - General Criteria 2.2.3: Angle of maximum GZ	Value	Units
1	limited by first GZ peak angle		deg
2	first flooding angle of the	Downfloodin	deg
3	shall not be less than (>=)	25,0	deg

Πίνακας 29: Angle of Maximum GZ

	267(85) Ch2 - General Criteria 2.2.4: Initial GMt	Value	Units
1	spec. heel angle	0,0	deg
2	angle of equilibrium		deg
3	Select calculation from list		
4	shall not be less than (>=)	0,150	m

Πίνακας 30:Initial GMt

		267(85) Ch2 - General Criteria 2.3: Severe wind and rolling	Value	Units
1		Wind arm = a P A (h - H) / (g disp.) cos^n(phi)		
2	$\overline{\Box}$	constant: a =	0,99966	
3	$\overline{\Box}$	wind model	Pressure	
4		wind pressure: P =	504,0	Pa
5		area centroid height (from zero point): h =	7,550	m
6		total area: A =	970,000	m^2
7		additional area: A =	50,000	m^2
8		height of lateral resistance: H =	0,000	m
9		H = mean draft / 2		m
10		H = vert. centre of projected lat. u'water area		m
11		H = waterline	1	m
12		cosine power: n =	0	
13		gust ratio	1,5	
14		Area2 integrated to the lesser of		
15		roll back angle from equilibrium (with steady heel arm)	25,0	deg
16		2.3: IMO roll back angle	not calculat	deg
17		roll back to equilibrium (ignoring heel arm)		deg
18		roll back to specified heel angle	0,0	deg
19		Area 1 upper integration range, to the lesser of:		
20		spec. heel angle	50,0	deg
21		angle of first GZ peak		deg
22		angle of max. GZ	1	deg
23	2	angle of max. GZ above gust heel arm		deg
24		first flooding angle of the	Downfloodin	deg
25		angle of vanishing stability (with gust heel arm)	1	deg
26		Angle for GZ(max) in GZ ratio, the lesser of:		
27		spec. heel angle	180,0	deg
28		angle of first GZ peak		deg
29		angle of max. GZ		deg
30		first flooding angle of the	Downfloodin	deg
31		Select required angle for angle of steady heel ratio:	DeckEdgel	
32		Include GZ reduction: GZ' = GZ - B cos^m (phi)		
33		B =	0,000	m
34		m =	1	
35		Criteria:		
36		Angle of steady heel shall not be greater than (<=)	16,0	deg
37		Angle of steady heel / Deck edge immersion angle shall not be gr	80,00	%
38		Area1 / Area2 shall not be less than (>=)	100,00	%
39		GZ(equilibrium) / GZ(max) shall be less than (<)	0,00	%
40		Area 1 shall not be less than (>=)	0.0000	m.deg

Πίνακας 31: Severe wind and rolling

	3.1 Passenger Ships 3.1.1: Passenger crowding: angle of equilibrium	Value	Units
1	Pass. crowding arm = nPass M / disp. D cos^n(phi)		
2	number of passengers: nPass =	600	
3	passenger mass: M =	0,075	tonne
4	distance from centre line: D =	8,300	m
5	cosine power: n =	0	
6	shall not be greater than (<=)	10,0	deg

Πίνακας 32: Passenger crowding: angle of equilibrium

	3.1 Passenger Ships 3.1.2: Turn: angle of equilibrium	Value	Units
1	Turn arm = a v^2 / (R g) h cos^n(phi)		
2	constant: a =	1,02	2
3	vessel speed: v =	9,200) kn
4	turn radius: R =	0,000) m
5	turn radius, R, as percentage of Lwl	510,00) %
6	Vertical lever: h =	0,000) m
7	h = KG		m
8	h = KG - mean draft / 2		m
9	h = KG - vert. centre of projected lat. u'water area		m
10	cosine power: n = Double of	click to provide Fir	d/Repla
11	shall not be greater than (<=)	10,0) deg

Πίνακας 33: Turn: angle of equilibrium

	SOLAS, II-1/8 8.2.3.3: Passenger crowding heeling arm	Value	Units
1	Pass. crowding arm = nPass M / disp. D cos^n(phi)		
2	number of passengers: nPass =	600	
3	passenger mass: M =	0,075	tonne
4	distance from centre line: D =	8,300	m
5	cosine power: n =	0	

Πίνακας 34: Passenger crowding heeling arm

	SOLAS, II-1/8 8.2.3.3: Wind heeling arm	Value	Units
1	Wind arm = a P A (h - H) / (g disp.) cos^n(phi)		
2	constant: a =	1	
3	wind model	Pressure	
4	wind pressure: P =	120,0	Pa
5	area centroid height (from zero point): h =	7,550	m
6	approx. area centroid height: h = A/Lwl + TmidWL		m
7	total area: A =	970,000	m^2
8	additional area: A =	0,000	m^2
9	height of lateral resistance: H =	0,000	m
10	H = mean draft / 2		m
11	H = vert. centre of projected lat. u'water area		m
12	H = waterline		m
13	H = baseline		m
14	cosine power: n =	0	
15	gust ratio	1	

Πίνακας 35: Wind heeling arm

	SOLAS, II-1/8 8.2.3.1: Range of residual positive stability	Value	Units
1	from the greater of		
2	spec. heel angle	0,0	deg
3	angle of equilibrium		deg
4	to the lesser of		
5	first flooding angle of the	Downfloodin	deg
6	immersion angle of	Marginline	deg
7	angle of vanishing stability		deg
8	shall not be less than (>=)	15,0	deg

Πίνακας 36: Range of residual positive stability

		SOLAS, II-1/8 8.2.3.2: Area under residual GZ curve	Value	Units
1		from the greater of		
2		spec. heel angle	0,0	deg
3		angle of equilibrium		deg
4		to the lesser of		
5		spec. heel angle	27,0	deg
6		spec. angle above equilibrium	0,0	deg
7		angle of first GZ peak		deg
8		angle of max. GZ		deg
9		first flooding angle of the	Downfloodin	deg
10		immersion angle of	DeckEdge	deg
11	2	angle of vanishing stability		deg
12		shall not be less than (>=)	0,8594	m.deg

Πίνακας 37: Area under residual GZ curve

		SOLAS, II-1/8 8.2.3.3: Maximum residual GZ (method 1)	Value	Units
1		8.2.3.3: Passenger crowding heeling arm		
2		8.2.3.3: Launching heeling moment		
3		8.2.3.3: Wind heeling arm		
4		in the range from the greater of		
5		spec. heel angle	0,0	deg
6		spec. angle above equilibrium	0,0	deg
7	2	spec. angle above equilibrium with heel arm	0,0	deg
8		to the lesser of		
9		fraction of upper angle	100,00	%
10	2	spec. heel angle	90,0	deg
11		spec. angle above equilibrium (with heel arm)	0,0	deg
12		angle of first GZ peak		deg
13		angle of max. GZ		deg
14	2	angle of max. GZ above heel arm		deg
15		angle of margin line immersion		deg
16		angle of deck edge immersion		deg
17	2	first flooding angle of the	Downfloodin	deg
18		Criteria: max GZ above heel arm shall not be less than (>=)		
19	2	8.2.3.3: Passenger crowding heeling arm	0,040	m
20		8.2.3.3: Launching heeling moment	0,040	m
21	2	8.2.3.3: Wind heeling arm	0,040	m
22		8.2.3.3: Passenger crowding heeling arm + 8.2.3.3: Launching heel	0,040	m
23		8.2.3.3: Passenger crowding heeling arm + 8.2.3.3: Wind heeling a	0,040	m
24		8.2.3.3: Launching heeling moment + 8.2.3.3: Wind heeling arm	0,040	m
25		8.2.3.3: Passenger crowding heeling arm + 8.2.3.3: Launching heel	0,040	m

Πίνακας 38: Maximum residual GZ

	SOLAS, II-1/8 8.2.4.a Maximum GZ (intermediate stages)	Value	Units
1	in the range from the greater of		
2	spec. heel angle	0,0	deg
3	angle of equilibrium		deg
4	to the lesser of		
5	spec. heel angle	180,0	deg
6	spec. angle above equilibrium	20,0	deg
7	angle of first GZ peak		deg
8	angle of max. GZ		deg
9	first flooding angle of the	Downfloodin	deg
10	shall be greater than (>)	0,050	m

Πίνακας 39: Maximum GZ

		SOLAS, II-1/8 8.6.1 Residual GM with symmetrical flooding	Value	Units
1	N	spec. heel angle	0,0	deg
2		angle of equilibrium		deg
3		Select calculation from list		
4		shall not be less than (>=)	0,050	m

Πίνακας 40: Residual GM with symmetrical flooding

	SOLAS, II-1/8 8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ based	Value	Units
1	shall not be greater than (<=)	12,0	deg

Πίνακας 41: Heel angle at equilibrium for unsymmetrical flooding - GZ based

		SOLAS, II-1/8 8.6.3: Margin line immersion - Equil based	Value	Units
Γ	1	the min. freeboard of the	Marginline	
	2	shall be greater than (>)	0,000	m

Πίνακας 42: Margin line immersion- Equil Based

ΠΑΡΑΡΤΗΜΑ Β: ΕΛΕΓΧΟΣ ΣΕΝΑΡΙΩΝ ΒΛΑΒΗΣ

Loadcase - Full Load Departure Damage Case - D2.1

Code	Criteria	Value	Units	Actual	Status	Margin
						%
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	34,9	Pass	+132,41
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	7,3288	Pass	+752,78
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,239	Pass	+497,50
	8.2.3.3: Wind heeling arm	0,040	m	0,338	Pass	+745,00
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,369	Pass	+638,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,546	Pass	+2992,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ	12,0	deg	0,6	Pass	+94,78
	based		-			

Loadcase - Full Load Departure Damage Case - D3.1

Stability
GZ GZ
DF point = 35,7 deg.
8.2.3.3: Pass enger crowding heeling arm
8.2.3.3: Wind heeling arm

8.6.1 Residual GM with symmetrical flooding GM at 0,0 deg = 1,628 m

Max GZ = 0,339 m at 15,5 deg.

Code	Criteria	Value	Units	Actual	Status	Margin
						%
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	35,1	Pass	+134,05
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	6,8656	Pass	+698,88
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,209	Pass	+422,50
	8.2.3.3: Wind heeling arm	0,040	m	0,308	Pass	+670,00
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,339	Pass	+578,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,628	Pass	+3156,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ	12,0	deg	0,6	Pass	+94,68
	based					

Loadcase - Full Load Departure Damage Case - D4.1

Code	Criteria	Value	Units	Actual	Status	Margin
SOLAS IL-1/8	8 2 3 1 Ranne of residual positive stability	15.0	dea	36.1	Pass	+140.35
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0.8594	m.dea	7,4749	Pass	+769.79
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0.040	m	0.238	Pass	+495,00
	8.2.3.3: Wind heeling arm	0,040	m	0,336	Pass	+740,00
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,368	Pass	+636,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,849	Pass	+3598,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ	12,0	deg	0,6	Pass	+95,17
	based					

Loadcase - Full Load Departure Damage Case - D5.2

Code	Criteria	Value	Units	Actual	Status	Margin
						%
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	36,9	Pass	+145,88
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	7,8174	Pass	+809,63
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,251	Pass	+527,50
	8.2.3.3: Wind heeling arm	0,040	m	0,352	Pass	+780,00
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,384	Pass	+668,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,926	Pass	+3752,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ	12,0	deg	0,3	Pass	+97,27
	based					

Loadcase - Full Load Departure Damage Case - D6.1

GZ GZ DF point = 38,9 deg. 8.2.3.3: Passenger crowding heeling arm 8.2.3.3: Wind heeling arm

8.6.1 Residual GM with symmetrical fooding GM at 0.0 deg = 1.760 m MaxGZ = 0.409 m at 15.5 deg.

Code	Criteria	Value	Units	Actual	Status	Margin
						%
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	38,4	Pass	+156,15
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	8,3139	Pass	+867,41
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,274	Pass	+585,00
	8.2.3.3: Wind heeling arm	0,040	m	0,377	Pass	+842,50
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,409	Pass	+718,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,760	Pass	+3420,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ	12,0	deg	0,5	Pass	+95,63
	based					

Loadcase - Full Load Departure Damage Case - D7.1

Stability GZ DF point = 39,1 deg. 8 2.3.3: Pass enger crowding heeling arm 8 2.3.3: Wind heeling arm 8 8.0.1 Res idual GM with symmetrical flooding GM at 0,0 deg = 1,994 m Max GZ = 0,391 m at 15,5 deg.

Code	Criteria	Value	Units	Actual	Status	Margin
						%
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	37,9	Pass	+152,97
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	7,7388	Pass	+800,48
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,258	Pass	+545,00
	8.2.3.3: Wind heeling arm	0,040	m	0,359	Pass	+797,50
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,391	Pass	+682,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,994	Pass	+3888,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ	12,0	deg	1,2	Pass	+90,07
	based					

Loadcase - Full Load Departure Damage Case - D8.1

Code	Criteria	Value	Units	Actual	Status	Margin
						%
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	39,2	Pass	+161,22
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	7,9719	Pass	+827,62
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,265	Pass	+562,50
	8.2.3.3: Wind heeling arm	0,040	m	0,365	Pass	+812,50
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,396	Pass	+692,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,970	Pass	+3840,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ	12,0	deg	0,7	Pass	+93,90
	based					

Loadcase - Full Load Departure Damage Case - D8.11

Code	Criteria	Value	Units	Actual	Status	Margin
						%
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	41,5	Pass	+176,33
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	7,1382	Pass	+730,60
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,241	Pass	+502,50
	8.2.3.3: Wind heeling arm	0,040	m	0,343	Pass	+757,50
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,375	Pass	+650,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,270	Pass	+2440,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ	12,0	deg	0,8	Pass	+93,50
	based					

Loadcase - Full Load Departure Damage Case - D9.1

Code	Criteria	Value	Units	Actual	Status	Margin
						%
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	42,3	Pass	+182,07
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	5,3064	Pass	+517,46
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,172	Pass	+330,00
	8.2.3.3: Wind heeling arm	0,040	m	0,273	Pass	+582,50
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,305	Pass	+510,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	0,799	Pass	+1498,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ	12,0	deg	1,2	Pass	+89,92
	based					

Loadcase - Full Load Departure Damage Case - D10.1

Code	Criteria	Value	Units	Actual	Status	Margin
						%
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	29,5	Pass	+96,88
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	4,4587	Pass	+418,81
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,112	Pass	+180,00
	8.2.3.3: Wind heeling arm	0,040	m	0,211	Pass	+427,50
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,243	Pass	+386,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,372	Pass	+2644,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ	12,0	deg	0,8	Pass	+93,13
	based					

Loadcase - Full Load Departure Damage Case - D11.1

GZ GZ DF point = 39,2 deg. 8.2.3.3: Passenger crowding heeling arm 8.2.3.3: Wind heeling arm 8.6.1 Residual GM with symmetrical flooding GM at 0,0 deg = 1,295 m MaxGZ = 0,346 m at 18,2 deg.

Code	Criteria	Value	Units	Actual	Status	Margin
						%
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	35,5	Pass	+136,58
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	6,4780	Pass	+653,78
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,216	Pass	+440,00
	8.2.3.3: Wind heeling arm	0,040	m	0,315	Pass	+687,50
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,346	Pass	+592,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,295	Pass	+2490,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ	12,0	deg	0,8	Pass	+93,48
	based					

<u>Loadcase - Loadcase 50%</u> Damage Case - D2.1

Code	Criteria	Value	Units	Actual	Status	Margin
						%
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	35,8	Pass	+138,47
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	7,5164	Pass	+774,61
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,242	Pass	+505,00
	8.2.3.3: Wind heeling arm	0,040	m	0,343	Pass	+757,50
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,375	Pass	+650,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,433	Pass	+2766,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ	12,0	deg	0,1	Pass	+99,20
	based					

Loadcase - Loadcase 50% Damage Case - D3.1

Code	Criteria	Value	Units	Actual	Status	Margin
						%
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	36,0	Pass	+140,24
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	7,0546	Pass	+720,88
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,212	Pass	+430,00
	8.2.3.3: Wind heeling arm	0,040	m	0,313	Pass	+682,50
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,345	Pass	+590,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,460	Pass	+2820,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ	12,0	deg	0,1	Pass	+99,19
	based					

Stability

GZ GZ DF point = 37 deg. 8.2.3.3: Passenger crowding heeling arm 8.2.3.3: Wind heeling arm 8.6.1 Residual GM with symmetrical flooding GM at 0,0 deg = 1,672 m

Max GZ = 0,374 m at 15,5 deg.

Code	Criteria	Value	Units	Actual	Status	Margin
						%
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	36,9	Pass	+146,25
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	7,6660	Pass	+792,02
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,240	Pass	+500,00
	8.2.3.3: Wind heeling arm	0,040	m	0,342	Pass	+755,00
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,374	Pass	+648,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,672	Pass	+3244,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ	12,0	deg	0,1	Pass	+99,27
	based					

Loadcase - Loadcase 50% Damage Case - D5.2

Code	Criteria	Value	Units	Actual	Status	Margin
						%
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	37,4	Pass	+149,65
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	7,8185	Pass	+809,76
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,248	Pass	+520,00
	8.2.3.3: Wind heeling arm	0,040	m	0,350	Pass	+775,00
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,382	Pass	+664,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,759	Pass	+3418,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ	12,0	deg	0,1	Pass	+99,13
	based					

Loadcase - Loadcase 50% Damage Case - D6.1

Code	Criteria	Value	Units	Actual	Status	Margin %
						70
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	38,9	Pass	+159,32
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	8,6242	Pass	+903,51
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,284	Pass	+610,00
	8.2.3.3: Wind heeling arm	0,040	m	0,388	Pass	+870,00
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,421	Pass	+742,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,701	Pass	+3302,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ	12,0	deg	0,1	Pass	+99,22
	based					

Loadcase - Loadcase 50% Damage Case - D7.1

Code	Criteria	Value	Units	Actual	Status	Margin
						%
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	38,5	Pass	+156,63
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	7,6278	Pass	+787,58
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,250	Pass	+525,00
	8.2.3.3: Wind heeling arm	0,040	m	0,353	Pass	+782,50
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,385	Pass	+670,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,804	Pass	+3508,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ	12,0	deg	0,8	Pass	+93,12
	based		-			

Loadcase - Loadcase 50% Damage Case - D8.1

Code	Criteria	Value	Units	Actual	Status	Margin
						%
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	40,2	Pass	+168,17
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	8,1976	Pass	+853,87
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,271	Pass	+577,50
	8.2.3.3: Wind heeling arm	0,040	m	0,372	Pass	+830,00
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,405	Pass	+710,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,818	Pass	+3536,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ	12,0	deg	0,3	Pass	+97,48
	based					

Loadcase - Loadcase 50% Damage Case - D8.11

Code	Criteria	Value	Units	Actual	Status	Margin %
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	42,0	Pass	+180,07
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	7,2324	Pass	+741,57
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,244	Pass	+510,00
	8.2.3.3: Wind heeling arm	0,040	m	0,347	Pass	+767,50
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,380	Pass	+660,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,225	Pass	+2350,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ	12,0	deg	0,5	Pass	+96,16
	based					

Loadcase - Loadcase 50% Damage Case - D9.1

 Stability

 GZ

 DF point = 43,7 deg.

 8.2.3.3: Passenger crowding heeling arm

 8.2.3.3: Wind heeling arm

 8.6.1 Residual GM with symmetrical flooding GM at 0,0 deg = 0,758 m

 Max GZ = 0,309 m at 20 deg.

Code	Criteria	Value	Units	Actual	Status	Margin
						%
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	43,0	Pass	+186,74
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	5,3781	Pass	+525,80
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,173	Pass	+332,50
	8.2.3.3: Wind heeling arm	0,040	m	0,276	Pass	+590,00
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,309	Pass	+518,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	0,758	Pass	+1416,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ	12,0	deg	0,7	Pass	+93,89
	based					

Loadcase - Loadcase 50% Damage Case - D10.1

Code	Criteria	Value	Units	Actual	Status	Margin
1						70
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	30,9	Pass	+106,06
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	5,1032	Pass	+493,81
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,136	Pass	+240,00
	8.2.3.3: Wind heeling arm	0,040	m	0,237	Pass	+492,50
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,269	Pass	+438,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,235	Pass	+2370,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ	12,0	deg	0,1	Pass	+98,99
	based					

Loadcase - Loadcase 50% Damage Case - D11.1

Code	Criteria	Value	Units	Actual	Status	Margin %
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	36,3	Pass	+142,02
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	6,8930	Pass	+702,07
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,234	Pass	+485,00
	8.2.3.3: Wind heeling arm	0,040	m	0,335	Pass	+737,50
					_	
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,367	Pass	+634,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,223	Pass	+2346,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ based	12,0	deg	0,1	Pass	+99,00

Loadcase - Full Load Arrival Damage Case - D2.1

Stability

- GZ GZ DF point = 36,7 deg. 8.2.3.3: Passenger crowding heeling arm 8.2.3.3: Wind heeling arm 8.6.1 Residual GM with symmetrical flooding GM at 0,0 deg = 1,227 m Max GZ = 0,33 m at 17,3 deg.

Code	Criteria	Value	Units	Actual	Status	Margin
						%
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	36,2	Pass	+141,31
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	6,3768	Pass	+642,00
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,193	Pass	+382,50
	8.2.3.3: Wind heeling arm	0,040	m	0,297	Pass	+642,50
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,330	Pass	+560,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,227	Pass	+2354,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ	12,0	deg	0,5	Pass	+95,97
	based					

<u>Loadcase - Full Load Arrival</u> Damage Case - D3.1

 Stability

 GZ

 DF point = 36,9 deg.

 8.2.3.3: Passenger crowding heeling arm

 8.2.3.3: Wind heeling arm

 8.6.1 Residual GM with symmetrical flooding GM at 0,0 deg = 1,159 m

 Max GZ = 0,298 m at 16,4 deg.

Code	Criteria	Value	Units	Actual	Status	Margin
						%
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	36,4	Pass	+142,93
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	5,8890	Pass	+585,25
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,160	Pass	+300,00
	8.2.3.3: Wind heeling arm	0,040	m	0,265	Pass	+562,50
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,298	Pass	+496,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,159	Pass	+2218,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ	12,0	deg	0,5	Pass	+95,97
	based					

Loadcase - Full Load Arrival Damage Case - D4.1

Code	Criteria	Value	Units	Actual	Status	Margin
						%
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	37,4	Pass	+149,09
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	6,4825	Pass	+654,30
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,188	Pass	+370,00
	8.2.3.3: Wind heeling arm	0,040	m	0,292	Pass	+630,00
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,325	Pass	+550,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,341	Pass	+2582,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ	12,0	deg	0,4	Pass	+96,39
	based					

<u>Loadcase - Full Load Arrival</u> Damage Case - D5.2

Stability GZ

- DF point = 38,2 deg. 8.2.3.3: Passenger crowding heeling arm
- 8.2.3.3: Wind heeling arm
- 8.6.1 Residual GM with symmetrical flooding GM at 0,0 deg = 1,467 m Max GZ = 0,328 m at 15,5 deg.

Code	Criteria	Value	Units	Actual	Status	Margin
						%
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	37,5	Pass	+149,91
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	6,4617	Pass	+651,88
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,190	Pass	+375,00
	8.2.3.3: Wind heeling arm	0,040	m	0,295	Pass	+637,50
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,328	Pass	+556,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,467	Pass	+2834,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ based	12,0	deg	0,7	Pass	+94,32

Loadcase - Full Load Arrival Damage Case - D6.1

Code	Criteria	Value	Units	Actual	Status	Margin
						%
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	38,8	Pass	+158,52
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	8,2586	Pass	+860,97
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,268	Pass	+570,00
	8.2.3.3: Wind heeling arm	0,040	m	0,373	Pass	+832,50
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,406	Pass	+712,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,648	Pass	+3196,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ	12,0	deg	0,2	Pass	+98,39
	based					

Loadcase - Full Load Arrival Damage Case - D7.1

Code	Criteria	Value	Units	Actual	Statu	Margin
					S	%
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	38,6	Pass	+157,05
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	6,8261	Pass	+694,29
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,215	Pass	+437,50
	8.2.3.3: Wind heeling arm	0,040	m	0,320	Pass	+700,00
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,353	Pass	+606,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,650	Pass	+3200,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ	12,0	deg	1,1	Pass	+90,45
	based					

Loadcase - Full Load Arrival Damage Case - D8.1

Code	Criteria	Value	Units	Actual	Status	Margin
						%
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	40,7	Pass	+171,35
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	7,0534	Pass	+720,74
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,220	Pass	+450,00
	8.2.3.3: Wind heeling arm	0,040	m	0,325	Pass	+712,50
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,358	Pass	+616,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,565	Pass	+3030,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ based	12,0	deg	0,6	Pass	+94,60

Loadcase - Full Load Arrival Damage Case - D8.11

Code	Criteria	Value	Units	Actual	Status	Margin
						%
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	42,1	Pass	+180,91
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	6,3377	Pass	+637,45
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,204	Pass	+410,00
	8.2.3.3: Wind heeling arm	0,040	m	0,309	Pass	+672,50
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,343	Pass	+586,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,089	Pass	+2078,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ	12,0	deg	0,8	Pass	+93,27
	based					

Loadcase - Full Load Arrival Damage Case - D9.1

Code	Criteria	Value	Units	Actual	Status	Margin
						%
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	38,4	Pass	+155,79
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	4,4548	Pass	+418,36
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,131	Pass	+227,50
	8.2.3.3: Wind heeling arm	0,040	m	0,236	Pass	+490,00
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,269	Pass	+438,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	0,628	Pass	+1156,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ	12,0	deg	1,4	Pass	+88,22
	based					

Loadcase - Full Load Arrival Damage Case - D10.1

Stability

GZ

DF point = 37,4 deg.

8.2.3.3: Passenger crowding heeling arm
8.2.3.3: Wind heeling arm
8.6.1 Residual GM with symmetrical flooding GM at 0,0 deg = 1,015 m

Max GZ = 0,239 m at 15,5 deg.

Code	Criteria	Value	Units	Actual	Status	Margin %
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	28,6	Pass	+91,00
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	4,3180	Pass	+402,44
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,101	Pass	+152,50
	8.2.3.3: Wind heeling arm	0,040	m	0,206	Pass	+415,00
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,239	Pass	+378,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,015	Pass	+1930,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ based	12,0	deg	0,6	Pass	+95,02

Loadcase - Full Load Arrival Damage Case - D11.1

Stability

tability
GZ
DF point = 41,1 deg.
8.2.3.3: Passenger crowding heeling arm
8.2.3.3: Wind heeling arm
8.6.1 Residual GM with symmetrical flooding GM at 0,0 deg = 1,062 m
Max GZ = 0,33 m at 19,1 deg.

Code	Criteria	Value	Units	Actual	Status	Margin
						%
SOLAS, II-1/8	8.2.3.1: Range of residual positive stability	15,0	deg	33,4	Pass	+122,61
SOLAS, II-1/8	8.2.3.2: Area under residual GZ curve	0,8594	m.deg	5,8788	Pass	+584,06
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0,040	m	0,192	Pass	+380,00
	8.2.3.3: Wind heeling arm	0,040	m	0,297	Pass	+642,50
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0,050	m	0,330	Pass	+560,00
SOLAS, II-1/8	8.6.1 Residual GM with symmetrical flooding	0,050	m	1,062	Pass	+2024,00
SOLAS, II-1/8	8.6.2: Heel angle at equilibrium for unsymmetrical flooding - GZ based	12,0	deg	0,6	Pass	+94,80

ΒΙΒΛΙΟΓΡΑΦΙΑ

- «IACS UR-L5 Req. 2004/Rev.4 2020,» IACS, 2020. [Ηλεκτρονικό]. Available: https://iacs.org.uk/resolutions/unified-requirements/ur-l/ur-l5-rev4-cln. [Πρόσβαση 22 October 2023].
- [2] «Wikipedia Αρχή του Αρχιμήδη,» [Ηλεκτρονικό]. Available: https://el.wikipedia.org/wiki/%CE%91%CF%81%CF%87%CE%AE_%CF%84%CE%BF% CF%85_%CE%91%CF%81%CF%87%CE%B9%CE%BC%CE%AE%CE%B4%CE%B7#:~:tex t=%CE%97%20%CE%91%CF%81%CF%87%CE%AE%20%CF%84%CE%BF%CF%85%20 %CE%91%CF%81%CF%87%CE%B9%CE%BC%CE%AE%CE%B4%CE%B7%20%CE%BA% CE%B1%CE%. [Πρόσβαση 22 October 2023].
- [3] «Ζαβαλάνι, Μ., 2022. ΕΠΙΔΡΑΣΗ ΕΥΣΤΑΘΕΙΑΣ ΑΠΟ ΤΗ ΜΕΤΑΤΟΠΙΣΗ ΦΟΡΤΙΟΥ
 ΣΙΤΗΡΩΝ ΣΕ ΠΛΟΙΟ ΜΕΤΑΦΟΡΑΣ ΧΥΔΗΝ ΦΟΡΤΙΟΥ, προπτυχιακή διπλωματική
 εργασία.,» [Ηλεκτρονικό]. Available:
 https://polynoe.lib.uniwa.gr/xmlui/bitstream/handle/11400/3112/Zavalani_14026.
 pdf?sequence=1&isAllowed=y. [Πρόσβαση 22 October 2023].
- [4] «Σπύρου, Κ., 2015. Δυναμική ευστάθεια πλοίου.,» [Ηλεκτρονικό]. Available: https://www.calameo.com/read/003094022e25baadf89f3. [Πρόσβαση 22 October 2023].
- [5] «HISTORY OF STABILITY CRITERIA,» [Ηλεκτρονικό]. Available: https://www.prs.pl/uploads/history_of_stability_criteria.pdf. [Πρόσβαση 22 October 2023].
- [6] «Σιφναίος, Α., 2022. Βελτιστοποίηση της ευστάθειας μετά από βλάβη επιβατηγού οχηματαγωγού πλοίου,» [Ηλεκτρονικό]. Available: https://polynoe.lib.uniwa.gr/xmlui/bitstream/handle/11400/2458/na_16096.pdf?s equence=1&isAllowed=y&fbclid=IwAR2U_jIuZszMRIApB8KxL61T0lzq_3B2hOlawFkj mvClSqBzhruYXi2sklk [. [Πρόσβαση 22 October 2023].
- [7] «Stockholm Regional Agreement 1996,» [Ηλεκτρονικό]. Available: https://assets.publishing.service.gov.uk/media/5a756afbed915d7314959ce4/hsc19 94apc_adt01.pdf. [Πρόσβαση 22 October 2023].
- [8] «Φλεριανού, Α., 2023. Μετασκευή Megayacht, τρισδιάστατος σχεδιασμός και ανάλυση της ευστάθειας του, προπτυχιακή διπλωματική εργασία,» [Ηλεκτρονικό]. Available: https://polynoe.lib.uniwa.gr/xmlui/handle/11400/3604. [Πρόσβαση 22 October 2023].
- [9] «Wikipedia- Sketchpad,» [Ηλεκτρονικό]. Available: https://en.wikipedia.org/wiki/Sketchpad. [Πρόσβαση 22 October 2023].
- [10] K.J. Rawson & E.C. Tupper, BAΣIKH Θ EΩPIA ΠΛΟΙΟΥ ΤΟΜΟΣ 1, 2022.
- [11] «Τζαμπίρας, Γ., 2015. Υδροστατική και ευστάθεια πλοίου.,» [Ηλεκτρονικό].
 Available: https://repository.kallipos.gr/handle/11419/550. [Πρόσβαση 22 October 2023].

- [12] «Υπχος (Μ) Ι. Δήμου ΠΝ. (2016). Η επίδραση των ελεύθερων επιφανειών των υγρών στην ευστάθεια ενός πλοίου.,» [Ηλεκτρονικό]. Available: https://eclass.hna.gr/. [Πρόσβαση 22 October 2023].
- [13] «IMO RULES,» [Ηλεκτρονικό]. Available: https://www.imorules.com/MSCRES_281.85_ANN_PTB.html. [Πρόσβαση 22 October 2023].
- [14] «Ιωάννης Τίγκας (PhD, M. F. C., 2023) Υπολογισμοί Κατάκλυσης Μέθοδοι της Χαμένης Άντωσης και του Πρόσθετου Βαρους,» [Ηλεκτρονικό]. Available: https://eclass.uniwa.gr/courses/NA255/.
- [15] «Ιωάννης Τίγκας (PhD, M. F. C., 2023). Πιθανοτική μέθοδος εκτίμησης της ευστάθειας πλοίου μετά από βλάβη.,» [Ηλεκτρονικό]. Available: https://eclass.uniwa.gr/courses/NA255/. [Πρόσβαση 22 October 2023].
- [16] C. Roussou, «Συστηματική μελέτη ευστάθειας πλοίου ROPAX μετά από βλάβη, προπτυχιακή διπλωματική εργασία,» 2015. [Ηλεκτρονικό]. Available: https://dspace.lib.ntua.gr/xmlui/bitstream/handle/123456789/40459/%ce%94%ce%b9%cf%
 80%ce%bb%cf%89%ce%bc%ce%b1%cf%84%ce%b9%ce%ba%ce%ae%20%ce%95%cf%81%ce %b3%ce%b1%cf%83%ce%af%ce%b11.pdf?sequence=1&isAllowed=y.
 [Πρόσβαση 22 October 2023].
- [17] «Κανελοπούλου, Α., 2013. Έρευνα για ευστάθεια μετά από βλάβη σε επιβατηγό οχηματαγωγό πλοίο με χρήση του ναυπηγικού προγράμματος NAPA, προπτυχιακή διπλωματική εργασία.,» [Ηλεκτρονικό]. Available: https://dspace.lib.ntua.gr/xmlui/bitstream/handle/123456789/38330/kanellopoulo u_ropax.pdf?sequence=1. [Πρόσβαση 22 October 2023].
- [18] «Rhinoceros 3D Rhino 6 for Windows and Mac,» 2023. [Ηλεκτρονικό]. Available: https://www.rhino3d.com/. [Πρόσβαση 22 October 2023].
- [19] «MAXSURF Stability . www.bentley.com. (n.d.). Bentley | Infrastructure & Engineering Software & Solutions.,» [Ηλεκτρονικό]. [Πρόσβαση 22 October 2023].
- [20] «MAXSURF Modeler . www.bentley.com.,» [Ηλεκτρονικό]. Available: https://www.bentley.com/en.. [Πρόσβαση 22 October 2023].
- [21] «RESOLUTION MSC.267(85) (adopted on 4 December 2008) ADOPTION OF THE INTERNATIONAL CODE ON INTACT STABILITY, 2008 (2008 IS CODE),» IMO, 4 December 2008. [Hλεκτρονικό]. Available: https://www.cdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResoluti ons/MSCResolutions/MSC.267(85).pdf. [Πρόσβαση 22 October 2023].
- [22] «RESOLUTION MSC.429(98)/REV.1 (adopted on 11 November 2020) REVISED EXPLANATORY NOTES TO THE SOLAS CHAPTER II-1 SUBDIVISION AND DAMAGE STABILITY REGULATIONS,» [Hλεκτρονικό]. Available: https://www.cdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResoluti ons/MSCResolutions/MSC.429(98)%20Rev.1.pdf. [Πρόσβαση 22 October 2023].