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ΠΕΡΙΛΗΨΗ 
 

Η παρούσα διατριβή ασχολείται με τη δημιουργία συστημάτων ελέγχου με προβλεπτικά μοντέλα 
(Model predictive control - MPC) βάσει δεδομένων και μεθόδων βελτιστοποίησης με χρήση 
εργαλείων υπολογιστικής νοημοσύνης (computational intelligence - CI) και μηχανικής μάθησης 
(machine learning - ML). Λαμβάνονται υπόψη τόσο οι θεωρητικές όσο και οι πρακτικές πτυχές 
του MPC με βάση την υπολογιστική νοημοσύνη καθώς και της μεταευρετικής βελτιστοποίησης, 
και παρουσιάζονται τα οικονομικά πλεονεκτήματα των προτεινόμενων αλγορίθμων σε σχέση με 
τη βελτιστοποίηση & τον προβλεπτικό έλεγχο ενός ποικίλου φάσματος εφαρμογών μηχανικής. 

Πρώτον, όσον αφορά τη μεταευρετική βελτιστοποίηση, ένας σημαντικός στόχος της παρούσας 
διατριβής είναι η αντιμετώπιση προβλημάτων υψηλής διαστατικότητας, μη κυρτών προβλημάτων 
με αποδεκτή ακρίβεια επίλυσης. Για το λόγο αυτό, επινοείται ένας συνεργατικός αλγόριθμος 
σμήνους σωματιδίων, ικανός να χρησιμοποιεί συνεργατικά σμήνη σωματιδίων σε 
ομαδοποιημένες μεταβλητές σχεδιασμού. Η ομαδοποίηση πραγματοποιείται με την εφαρμογή 
ενός αλγορίθμου εντοπισμού κοινότητας στον πίνακα ευαισθησίας του εξεταζόμενου συστήματος, 
εντοπίζοντας έτσι μεταβλητές σχεδιασμού που είναι δομικά ή τοπολογικά αλληλένδετες. Η 
προτεινόμενη μέθοδος προσομοιώνεται σε ένα δοκιμαστικό σύστημα της IEEE και, σε συνδυασμό 
με ένα μοντέλο πρόβλεψης φορτίου με μηχανική μάθηση που αναπτύσσεται επίσης στην παρούσα 
διατριβή, συνθέτει μια αποτελεσματική πρόταση για αποδοτικό & οικονομικό έλεγχο έξυπνων 
δικτύων. 
Δεύτερον, σχεδιάζεται ένας μη γραμμικός ελεγκτής MPC με χρήση δεδομένων που βασίζεται σε 
νευρωνικά δίκτυα συναρτήσεων ακτινικής βάσης για παρακολούθηση τροχιάς. Η τυπική απόδοση 
του MPC εξαρτάται σε μεγάλο βαθμό από την ποιότητα του μοντέλου πρόβλεψης- αν αυτό είναι 
ανακριβές, τότε οι κινήσεις ελέγχου που προκύπτουν από τη λύση του προβλήματος βέλτιστου 
ελέγχου θα είναι μη βέλτιστες για το πραγματικό σύστημα. Αυτό σημαίνει ότι ένα 
γραμμικοποιημένο μοντέλο ενός συστήματος υψηλής διαστατικότητας με σημαντικές μη 
γραμμικότητες θα είναι ακατάλληλο για χρήση στο πλαίσιο του MPC, ενώ η αντίστοιχη 
ολοκληρωμένη μορφή των διαφορικών εξισώσεων του κρίνεται υπολογιστικά δαπανηρή. 
Μάλιστα, σε ορισμένες περιπτώσεις, ένα τέτοιο φυσικό μοντέλο διαφορικών εξισώσεων μπορεί 
να είναι εξαιρετικά δύσκολο να δημιουργηθεί για ορισμένες περιπτώσεις, επιβάλλοντας μια 
προσέγγιση βάσει δεδομένων. Ως εκ τούτου, η παρούσα διατριβή προτείνει τη χρήση ενός 
μοντέλου πρόβλεψης MPC με δίκτυα συναρτήσεων ακτινικής βάσης όπου είναι απαραίτητο, 
χρησιμοποιώντας καταγεγραμμένα δεδομένα του συστήματος. Η ικανότητα του προτεινόμενου 
σχήματος MPC στο χειρισμό των δύο προαναφερθέντων ζητημάτων μοντελοποίησης 
παρουσιάζεται για την περίπτωση ενός συστήματος ενεργής ανάρτησης με υψηλή διαστατικότητα, 
καθώς και για τη δημιουργία μοντέλων κινούμενων εμποδίων βάσει δεδομένων για τον έλεγχο 
πλοήγησης πλοίων για την αποφυγή σύγκρουσης με χρήση MPC. 

Ως φυσική συνέχεια της εργασίας σχετικά με το MPC παρακολούθησης τροχιάς, η τρίτη 
συνεισφορά αυτής της διατριβής είναι η δημιουργία ενός σχήματος οικονομικού MPC βάσει 
δεδομένων για τον αποτελεσματικό και οικονομικό έλεγχο ενός συστήματος πρόωσης πλοίου. Η 
συγκεκριμένη επιλογή της μελέτης περίπτωσης είναι ιδιαίτερα αιτιολογημένη, καθώς πρόκειται 
για ένα αντικείμενο υψηλής οικονομικής σημασίας για τον ναυτιλιακό τομέα της ελληνικής 
οικονομίας. Αρχικά, κατασκευάζεται ένας σταθεροποιητικός νόμος ελέγχου EMPC για το 
πρόβλημα της οικονομικής πρόωσης πλοίου και συγκρίνεται με το κλασσικό MPC  τύπου 
παρακολούθησης τροχιάς, επιβεβαιώνοντας μια σημαντική διαφορά στην αποδοτικότητα 
καυσίμου. Χρησιμεύοντας ως αποδεικτικό σκαλοπάτι, τα αποτελέσματα αυτά εμπνέουν την 
ανάπτυξη ενός EMPC ελεγκτή βασισμένου σε δεδομένα για την πρόωση πλοίων που βασίζεται 
στην ενισχυτική μάθηση. Ο αλγόριθμος μάθησης που αναπτύσσεται & εφαρμόζεται είναι σε θέση 
να χειριστεί τις δομικές αποκλίσεις μοντελοποίησης μεταξύ πραγματικού συστήματος και 



μοντέλου, επιτυγχάνοντας έτσι υψηλότερες επιδόσεις κλειστού βρόχου και, τελικά, απτά 
οικονομικά οφέλη.  
Τέλος, προκειμένου να αξιοποιηθούν τόσο τα αποτελέσματα του MPC για την παρακολούθηση 
τροχιάς & της αποφυγής σύγκρουσης όσο και τα αποτελέσματα του EMPC για την οικονομική 
πρόωση των πλοίων, προτείνεται ένας νόμος ελέγχου για τον έλεγχο πλοήγησης και οικονομικής 
πρόωσης των πλοίων βάσει δεδομένων και τίθενται τα θεωρητικά θεμέλια για περαιτέρω έρευνα 
& ανάπτυξη. Τέλος, η γνώμη του συγγραφέα είναι ότι οι εργασίες που παρουσιάζονται στην 
παρούσα διατριβή μπορούν να επεκταθούν και σε άλλους τομείς της μηχανικής & πρακτικές 
εφαρμογές. 
 

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Συστήματα αυτομάτου ελέγχου & Υπολογιστική νοημοσύνη 

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: έλεγχος βάσει δεδομένων, οικονομικός έλεγχος με προβλεπτικά μοντέλα, 
δίκτυα ακτινικών συναρτήσεων βάσης, υπολογιστική νοημοσύνη, μεταευρετική βελτιστοποίηση, 
βελτιστοποίηση σμήνους σωματιδίων, έξυπνα δίκτυα, ενεργή ανάρτηση, έλεγχος πρόωσης 
πλοίων, έλεγχος πλοήγησης πλοίων 
  



 

ABSTRACT 

 

This thesis addresses the creation of data-driven model predictive control (MPC) schemes and 
optimization methods utilizing computational intelligence (CI) & machine learning (ML) tools. 
Both theoretical and practical aspects of CI-based MPC as well as metaheuristic optimization are 
taken into account, and the economic merits of the proposed algorithms are showcased over the 
optimization & predictive control of a diverse range of engineering applications. 

First, regarding metaheuristic optimization, a significant objective of this thesis is to address high-
dimensional, non-convex problems with reasonable solution accuracy. For this reason, a 
cooperative particle swarm algorithm is devised, capable of using cooperative particle sets on 
grouped design variables. The grouping occurs by applying a community-detection algorithm over 
the sensitivity matrix of the system at hand, thus identifying design variables that are structurally 
or topologically interrelated. The proposed method is tested on an IEEE benchmark system, and, 
together with a machine-learning ensemble load prediction model that is also developed in this 
thesis, an effective proposition for efficient & economic smart grid dispatch is made.  

Second, a data-driven tracking nonlinear model predictive controller is devised based on radial 
basis function neural networks. Standard MPC performance heavily relies on the quality of the 
prediction model; if it is inaccurate, then the control actions yielded by the solution of the optimal 
control problem will be suboptimal for the real plant. This means that a linearized model of a high-
dimensional system with significant nonlinearities will be unfit for usage within MPC, while its 
respective ODE-integrated form will be too computationally expensive. Such a first-principles 
ODE model may be extremely hard to yield for some cases, mandating a data-driven approach. 
Therefore, this thesis proposes complementing an MPC prediction model with radial basis function 
networks whenever necessary, using recorded plant data. The ability of the proposed MPC scheme 
in handling the two aforementioned modelling drawbacks is showcased for the case of a high-
dimensional active suspension plant, as well as for the data-driven vessel trajectory inference for 
collision avoidance using MPC. 

As a natural continuation of the work on tracking MPC, the third contribution of this thesis is the 
creation of a data-driven economic MPC scheme for the efficient & economic control of a vessel 
propulsion system. This specific choice of case study is highly motivated, since it is an item of 
significant economic importance for the maritime sector of the Greek economy. Initially, a 
stabilizing EMPC control law is constructed for the vessel propulsion problem and compared to 
standard tracking MPC, confirming a significant difference in fuel-efficiency. Serving as proof of 
concept, these results inspire the development of a data-driven EMPC for vessel propulsion based 
on reinforcement learning. This learning scheme is able to handle structural modelling 
discrepancies between plant and model, therefore achieving higher closed loop performance and 
tangible economic benefit. 

Lastly, in order to leverage both the collision avoidance tracking MPC and the economic vessel 
propulsion EMPC results, a control law for the data-driven navigation & economic propulsion 
control of vessels is proposed and its theoretical foundation for further development is laid. Also, 
it is the author’s opinion that the work presented in this thesis is extendable to other engineering 
domains and practical applications. 

SUBJECT AREA: Control Systems & Computational Intelligence 

KEYWORDS: data-driven control, economic model predictive control, radial basis function 
networks, computational intelligence, metaheuristic search, particle swarm optimization, smart 
grids, active suspension, vessel propulsion control, vessel trajectory tracking 
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Chapter 1:   

Introduction 

The extensive arsenal of mathematical programming tools has been put to use against some 

of the most challenging engineering optimization problems; indeed, standard deterministic 

optimization methods have been implemented successfully, including gradient-based 

methods, Newton-Raphson methods, interior point methods [9]–[11] and others. Since 

deterministic optimization approaches usually enjoy a solid theoretical foundation and 

rigorous proofs of convergence, they can be implemented within sophisticated algorithms 

and solve safety-critical optimization problems [12], [13]. Deterministic optimization 

methods generally exhibit low computational complexity, which, historically, was a 

significant concern to be addressed for real-life implementation. Today, the impressive 

developments regarding hardware architecture and embedded computing within a range of 

consumer devices and industrial applications, have led to the ever-increasing 

dimensionality of engineering & decision-making optimization problems to be solved. 

Today’s state-of-the-art commercial & academic deterministic-based solvers that can 

address large problems utilize the latest advancements in numerical computing and 

mathematical optimization; notable examples include the sparsity-handling CVXGEN 

solver [14] or the FORCESpro interior point solver oriented for multistage problems [15]. 

Still, most of the deterministic-based optimization approaches come with three inherent 

disadvantages, namely (a) poor performance on non-convex optimization problems due to 

entrapment in local minima, (b) inability to handle mixed design variables and (c) 

unsuitability for multi-objective problems, as they cannot easily deal with discontinuous or 

concave Pareto fronts [16]. Given that a significant portion of the modern engineering 

optimization problems are non-convex, multi-objective in nature and contain mixed integer 

and continuous design variables, it is easily understood that nowadays, these methods may 

not be the best choice at hand. 

Still, the aforementioned deterministic solvers remain the powerhouse of constrained finite-

time optimal control, otherwise called model predictive control. The MPC control 

framework uses a dynamic model of the controlled plant in order to predict its response to 

a control input; then, based on this model, a constrained optimization problem is formulated 

which is solved at each control sampling instance. Since its original inception [17], [18], 

the MPC community has developed a mature theoretical foundation in order to address 

distributed [19], robust [20], and economic control [21] of systems. This theoretical 
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foundation will grant control stability guarantees to a properly formulated MPC scheme 

and, if the aforementioned deterministic solvers are employed as well, then numerical 

stability will also be afforded. For this reason, MPC has found a number of applications 

within the process [22] & automotive [4], [23] industries, as well as vehicle guidance, 

navigation & control (GNC) [2], [13], [24]. Notwithstanding its attractive stability 

properties, standard MPC performance heavily relies on the quality of the controller model; 

if it is inaccurate, then the control actions yielded by the solution of the MPC optimization 

problem will not be optimal for the real plant. Typical adaptive control techniques for MPC 

[25] could address modeling inaccuracies if they are merely parametric – however, if there 

also exist structural differences between the real plant and the controller model, (e.g. the 

plant is of higher order) then such techniques may not deliver the optimal control law. In 

addition, a large plant model with significant nonlinearities would render a standard 

integrated model computationally prohibitive to evaluate in real time, while its linearized 

counterpart would also fail to adequately capture the underlying dynamics. Moreover, the 

complexity of the actual process to be controlled could be so high, that a mathematical 

representation in ODE form would be impossible, thus rendering the MPC approach 

ineffective.  

The nature of the MPC modelling shortcomings & deterministic optimization flaws that 

were previously discussed, hints at the idea of employing computational intelligence (CI) 

& machine learning (ML) techniques in order to alleviate them. The domain of CI refers to 

the theory, design and development of biologically-inspired algorithmic paradigms, 

encompassing the respective scientific disciplines of neural networks (NNs), fuzzy theory 

and evolutionary computation. A NN can be used to model black-box dynamics, since it 

constitutes a massively parallel network that can learn & generalize through a set of training 

examples; notable NN categories include feedforward NNs, convolutional NNs, recurrent 

NNs, etc [26]. In turn, as a branch of CI, metaheuristic optimization is motivated by 

biological processes such as genetic evolution & swarm intelligence in order to construct 

optimization algorithms that overcome the drawbacks associated with deterministic 

optimization. These algorithms usually evolve a population of candidate solutions in a 

stochastic manner, achieving superior exploration capabilities for optimization problems. 

Moreover, they can handle non continuous and concave Pareto fronts, generating several 

elements of the optimal set in a single run. Notable swarm intelligence methods include 

particle swarm optimization (PSO) & ant colony optimization (ACO), while evolutionary 

algorithms include genetic algorithms (GAs) and artificial immune systems. In general, NN 

methods have found numerous applications for modeling nonlinear processes in the 
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industry [27]–[29] while metaheuristic optimization algorithms have been successfully 

implemented in parameter estimation and non-convex optimization of large-scale systems 

[4], [30]–[33]. 

It appears then, that the capabilities of CI-based methods can be leveraged for the design of 

novel data-driven MPC schemes & optimization algorithms. Indeed, NN-based models are 

an attractive option for substituting - or complementing - first-principle models. Radial 

basis function networks (RBFN) in particular are widely considered for modeling nonlinear 

dynamics; consisting of a single middle layer, they can be easily trained using the fuzzy 

means (FM) algorithm, resulting in models of increased accuracy [34] and low 

computational complexity during real-time evaluation [35]. As these advantages are of 

significance in the context of predictive control, RBFNs constitute a popular choice in 

conjunction with MPC [36]. Another data-driven control approach that can amend 

modelling inaccuracy is learning-based MPC [37], which can be constructed by employing 

ML tools such as reinforcement learning (RL) [38]. RL is a sequential decision-making 

algorithm that adapts a parametric representation of the process using a trial-and-error 

procedure. In the case of MPC, the RL component utilizes recorded closed-loop data in 

order to learn new controller parametrizations, which are iteratively applied in real-time in 

order to achieve improved control performance. In turn, CI methods (particularly, 

metaheuristic optimization algorithms), can also be used to address large-scale, non-

convex, multi-modal optimization problems that frequently arise in modern decision-

making schemes. Since metaheuristic optimization algorithms rely on stochastic search, 

they are less prone to entrapment in local minima, contrary to standard deterministic 

solvers. In addition, they can be extended in order to exploit the structural topology of the 

optimization problem, by grouping the design variables accordingly in cooperation sets, 

thus creating so-called “cooperative” algorithms; these have been very effective in tackling 

high dimensional problems [39], [40]. 

Motivated by the aforementioned discussion, this thesis approaches data-driven MPC and 

optimization from a computational intelligence & machine learning perspective. Therefore, 

its main objectives are as follows: 

 Regarding MPC, RBF models are employed in order to model highly nonlinear 

and/or unknown process dynamics which would be otherwise prohibitive to address 

using standard ODE integrated models. In addition, an economic MPC control law 

is paired with an RL component, thus producing a data-driven MPC scheme capable 
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of handling significant structural & parametric plant-model mismatches and 

disturbances in real time.  

 Regarding metaheuristic optimization, special interest is placed in creating a 

particle-swarm-based algorithm that can handle large problems. For this reason, a 

cooperative algorithm together with a design-variable-partitioning scheme is 

devised and applied to a high-dimensional decision-making problem.  

It should be noted that in the context of this thesis, the case studies used to evaluate these 

methods are chosen with two qualities in mind: The first is their ability to highlight the 

challenges that CI-based approaches intend to solve, therefore enhancing its academic 

value. The second is relevance to the current objectives of the Greek industrial sector, thus 

highlighting the practical merit of this research. To this end, the applications mainly revolve 

around efficient smart grid operation, as well as economic navigation and propulsion of 

freight vessels. 
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1.1 Outline & Contribution 

This dissertation is organized into three main parts. The first and second part pertain to 

introductory material and required preliminaries, spanning Chapters 1-4. Here, basic 

notions of mathematical programming and convex optimization are presented, together 

with some notable algorithmic concepts found within MPC solvers and elsewhere. Next, a 

brief introduction is given to the CI-based methods that are used in this work: These include 

the class of radial basis function NNs together with the fuzzy-means training algorithm, as 

well as some notable metaheuristic algorithm categories, such as particle swarm. Lastly, a 

short presentation of optimal control & MPC concepts is given in Chapter 4, including basic 

stability notions for both tracking and economic MPC that are employed in this thesis. 

The third part of this dissertation contains Chapters 5-7 and presents the design & the 

application of the proposed methods and algorithms that were developed in the context of 

this PhD: 

 Chapter 5: Computational Intelligence Methods for efficient Smart Grid 

Dispatch  

This chapter presents the CI-based methods that were developed in order to tackle 

the two main problems related to smart grid dispatch, namely the accurate load 

forecasting task and the efficient power dispatch of distributed renewable sources. 

The proposed load prediction algorithm makes use of a pool of several machine-

learning and CI-based models, which are evaluated on-line using a novel dynamic 

selection algorithm. This leads to high prediction performance for a number of 

horizons, as tested on data from a Greek distribution network substation. Next, a 

cooperative particle-swarm algorithm is designed for the optimal power flow 

problem of electrical distribution networks with high penetration of photovoltaic 

sources. The proposed method makes use of a community-detection algorithm in 

order to exploit the topology of the problem and thus assign effective cooperation 

sets based on the notion of electrical distance. The economic effectiveness of the 

method is demonstrated on an IEEE benchmark system with various scenarios. 

Lastly, it is noted that both the load prediction and the optimal power flow methods 

proposed here went on to be incorporated in a real smart grid decision support 

system.  

 

 Chapter 6: Data-driven Tracking Nonlinear Model Predictive Control 
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This chapter presents the design of data-driven tracking MPC methods based on 

radial basis function NNs in order to adequately capture nonlinear or otherwise 

hard-to-model plant dynamics. Two representative case studies are thus chosen: The 

first refers to the control of a vehicle’s active suspension, which, due to its high-

dimensionality and nonlinearity, prohibits the usage of standard linear or ODE-

integrated MPC models. The proposed scheme is evaluated on a detailed full car 

model for various road and excitation scenarios. The second case study of this 

chapter pertains to the vessel collision avoidance control using obstacle trajectory 

models trained on real automatic identification system (AIS) data. Here, the 

motivation of using a data-driven MPC approach is that no first-principles model 

could address the inference of obstacle vessel trajectories. The proposed control 

method utilizes RBF models trained on historic AIS data, leading to safer and more 

economical vessel trajectories than using an MPC controller with naïve, straight-

line obstacle trajectory predictions. 

 Chapter 7: Data-driven Economic Nonlinear Model Predictive Control 

In this chapter, a data-driven economic nonlinear MPC scheme is presented for the 

economic control of a vessel propulsion system. This specific choice of a case study 

is highly motivated, both as a practical continuation of the vessel-control-related 

work presented in Chapter 6, and as an item of significant economic importance for 

the marine sector of the Greek economy. First, a stabilizing EMPC control law is 

constructed for the vessel propulsion case, showing significant fuel-efficiency 

improvement compared to a standard MPC. This control law served as a proof of 

concept for the development of a data-driven EMPC based on reinforcement 

learning, capable of handling structural modelling discrepancies that are ever-

present between real vessel propulsion systems and the respective controller 

models. In addition, this RL-based economic MPC scheme incorporates an 

economic stage cost that accurately describes the real high-level chartering 

economics of freight shipping, rather than an ad-hoc tracking stage cost, leading to 

tangible economic improvements, as simulated on various scenarios. Lastly, in 

order to combine the aforementioned economic propulsion results & the vessel 

trajectory tracking controller from chapter 6, a control law for the data-driven 

autonomous navigation & economic propulsion control of vessels is designed and 

presented. 

Finally, this dissertation is concluded in Chapter 8. 
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Chapter 2:   

Deterministic and Metaheuristic Optimization 

Mathematical optimization, or mathematical programming, is a process that optimizes 

(maximizes or minimizes) the value of an objective function with respect to a set of 

constraints. Optimization problems arise in all engineering disciplines, and especially in 

control systems and control theory in general.  

There are two different types of optimization methods that are widely used today. 

Deterministic methods use specific rules for moving from one candidate solution to another, 

and provide theoretical certificates for the optimality of the reported solution. Non-

deterministic (stochastic or metaheuristic) methods employ probabilistic processes to 

evolve candidate solutions. Due to these processes, metaheuristic methods usually do not 

provide optimality certificates for their solution, still, they possess certain properties that 

deterministic algorithms do not exhibit, such as the ability to converge to better solutions 

when the program is non-convex and multi-modal.  

In the following chapter, notable methodologies of both categories are briefly presented in 

detail from a theoretical point of view, and their relevance as applied solvers for the 

optimization problems encountered in this work is highlighted. 



 

 

2.1 Deterministic Optimization 

This section assumes standard optimization knowledge, namely, types of optimization 

problems, characteristics of convex functions, as well as Lagrangian functions and duality 

theory. Some general concepts regarding quadratic programs and optimality conditions are 

introduced, before presenting notable deterministic optimization methods that are used in 

this thesis. 

2.1.1 Introduction to Quadratic Programs 
Consider the general non-linear program formulation: 

min
௫∈ℝ೙

𝑓(𝑥) (2.1.1a) 
                                         subject to 𝑔(x) = 0 (2.1.1b) 

h(x) ≥ 0 (2.1.1c) 

where f: ℝ௡ → ℝ is the objective function, 𝑔: ℝ௡ → ℝ௣ is the equality constraint function, 

and ℎ: ℝ௡ → ℝ௤ is the inequality constraint function. Functions f, 𝑔, ℎ are assumed to be 

continuously differentiable up to two times or more. Setting these functions as 

𝑓(𝑥) = 𝑞்𝑥 +
1
2

𝑥்𝐻𝑥 (2.1.2a) 

𝑔(x) = 𝐴𝑥 − 𝑏 (2.1.2b) 
h(x) = Cx − d (2.1.2c) 

where 𝑞 ∈ ℝ௡, 𝐴 ∈ ℝ௣×௡, 𝑏 ∈ ℝ௣, 𝐶 ∈ ℝ௠×௡, 𝑑 ∈ ℝ௠, 𝐻 ∈ ℝ௡×௡ means that Problem 

(24) becomes a Quadratic Program (QP). Note that 𝐻 is usually called “Hessian matrix” of 

the problem since 𝐻 = ∇ଶ f(x). The Hessian matrix also encapsulates an important property 

of QPs: if 𝐻 ≻ 0, the QP is convex, meaning that solutions are significantly easier to find, 

while non-convex QPs with 𝐻 ≺ 0 may have multiple local minima and therefore are very 

hard to solve. 

2.1.2 Optimality Conditions 
Consider the following unconstrainted optimization problem: 

min
௫∈஽

𝑓(𝑥) (2.1.3) 

Where 𝑓: 𝐷 → ℝ, and 𝐷 is the feasible domain of 𝑓, where 𝑓 a continuous and twice 

differentiable function. 

Theorem 2.1.1 (Second order Necessary Conditions): Given a local minimizer x∗ of a twice-

differentiable function f, then  

∇ଶ 𝑓(x⋆) ≽ 0 (2.1.4) 
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Proof: If ∇ଶ f(x⋆) ⋡ 0 then a descent direction 𝑝 exists so that 𝑝் ∇ଶ f(x⋆) 𝑝 < 0. This 

means that once again, there exists a feasible descent direction in which 𝑓(𝑥) can be further 

minimized. A step size 𝑘 > 0 small enough so that ∀𝜅 ∈ [0, 𝑘] we have x⋆ + κp ∈ 𝐷 and 

∇ 𝑓(x⋆ + 𝜅𝑝)் 𝑝 < 0. Employing the 2nd order Taylor expansion yields: 

𝑓(x⋆ + 𝑘𝑝) = 𝑓(x⋆) + 𝑘 ∇ 𝑓(x⋆ + 𝜅𝑝)் 𝑝 +
1
2

𝑘ଶ𝑝் ∇ଶ 𝑓(x⋆) 𝑝 (2.1.5) 

Since the third term of the RHS is < 0, it means that 𝑓(x⋆ + 𝑘𝑝) < 𝑓(x⋆), i.e. x⋆ is not a 

minimizer. ∎ 

Next, for the case of continuous convex functions [41], sufficient optimality conditions can 

be constructed. 

Theorem 2.1.2 (Convex First Order Sufficient Conditions): Given a stationary point xത of a 

convex function f, then xത is indeed the global minimizer x⋆ of f. 

Proof: We know that since f is convex, we have for any feasible y: 

𝑓(y) ≥ 𝑓(x⋆) + ∇ 𝑓(x⋆)் (𝑦 − x⋆) ≥ 𝑓(x⋆) (2.1.6) 

Assuming the above doesn’t hold, then there exists a y with ∇ 𝑓(x∗)் (y − x⋆) < 0. Using 

a Taylor expansion 

𝑓(𝑥∗ + 𝑡(𝑦 − 𝑥⋆)) = 𝑓(𝑥⋆) + 𝑡𝛻 𝑓(𝑥⋆)் (𝑦 − 𝑥⋆) + 𝑂(𝑡) (2.1.7) 

Here, the 2nd term is < 0 and the third term can be omitted as t becomes small enough. This 

means that  f(x⋆ + t(y − x⋆)) < 𝑓(x⋆), i.e. x⋆ is not a minimizer. ∎ 

The above results can be generalized in order to include smooth nonlinear functions f. 

Theorem 2.1.3 (Second Order Sufficient Conditions): Given a stationary point xത of a 

smooth & twice-differentiable function f and  

∇ଶ 𝑓(xത) ≻ 0 (2.1.8) 

then 𝑥̅ is a strict local minimizer of 𝑓. 

Proof: The idea is to consider a small closed “ball” B around xത so that ∀𝑥 ∈ 𝐵 we have 

𝛻ଶ 𝑓(x) ≻ 0, i.e. f can be considered convex in that region. Then, Theorem 2.1.2 can be 

leveraged and the Theorem is proved. ∎ 

Consider now the Lagrangian of the general NLP (2.1.1), which is not assumed to be 

convex. We write its Lagrangian as  



 

 

ℒ(𝑥, 𝜆, 𝜈) = 𝑓(𝑥) + ෍ 𝜆௜ ℎ௜(𝑥)
௣

௜ୀଵ

+ ෍ 𝜈௜ 𝑔௜(𝑥)
௠

௜ୀଵ

 (2.1.9) 

with 𝐝𝐨𝐦 ℒ = 𝐷 × ℝ௣ × ℝ௠, λ୧ the Lagrange multiplier of inequality constraint h୧ and 𝜈୧ 

the Lagrange multiplier of equality constraint 𝑔୧. Vectors λ, ν are otherwise called dual 

variables of the problem. The Lagrange dual function can be subsequently defined as the 

infimum of the Lagrangian over x: 

𝐿(𝜆, 𝜈) = inf
௫∈஽

ℒ(𝑥, 𝜆, 𝜈) (2.1.10) 

Note that the Lagrange dual function 𝐿(𝜆, 𝜈) can be used to generate a lower bound on the 

optimal value x⋆ of Problem (2.1.1): 

𝐿(𝜆, 𝜈) ≤ x⋆,  ∀𝜆 ≽ 0, 𝜈 (2.1.11) 

This lower bound is nontrivial when it also holds (𝜆, 𝜈)𝜖 𝐝𝐨𝐦 𝐿. When we also have 𝜆 ≽

0, then the respective (𝜆, 𝜈) pair is called dual feasible. It is practical to see which (𝜆, 𝜈) 

pair will yield the best lower bound. For this reason, the Lagrange dual problem is 

formulated: 

max 𝐿(𝜆, 𝜈) (2.1.12a) 
                                                        subject to 𝜆 ≽ 0 (2.1.12b) 

The (𝜆⋆, 𝜈⋆) pair is referred to as the optimal Lagrange multipliers. Note that this is a convex 

optimization problem, regardless of whether the original Problem (2.1.1) is convex. For its 

optimal value, denoted as 𝐿⋆, it holds that: 

𝐿⋆ ≤ x⋆ (2.1.13) 

Which is true even when the original problem is not convex. This property is called weak 

duality, and the difference x⋆ − 𝐿⋆ is called the duality gap. If inequality (2.1.13) is strong, 

that is x⋆ = 𝐿⋆, then strong duality holds, meaning that the duality gap is zero. Strong 

duality of the Lagrange dual does not hold in general; is a given only if the primal Problem 

(2.1.1) is convex, otherwise special conditions must be established, called constraint 

qualifications. One such constraint qualification is Slater’s condition [41].  

Another important concept that arises from strong duality is the following; let x⋆ be a primal 

optimal and (𝜆⋆, 𝜈⋆) the dual optimal points. Then, 

𝐿(𝜆⋆, 𝜈⋆) ≤ 𝑓(x⋆) + ෍ 𝜆௜
⋆ ℎ௜(x⋆)

௣

௜ୀଵ

+ ෍ 𝜈௜
⋆ 𝑔௜(x⋆)

௠

௜ୀଵ

 (2.1.14) 
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This follows because inf
௫∈஽

ℒ(𝑥, 𝜆⋆, 𝜈⋆) is less than or equal to ℒ(𝑥, 𝜆, 𝜈) at x⋆. Since λ୧
⋆ ≥ 0, 

h୧(x⋆) ≥ 0, and g୧(x⋆) = 0, it is concluded that 

෍ 𝜆௜
⋆ ℎ௜(x⋆)

௣

௜ୀଵ

= 0 (2.1.15) 

Which also yields: 

𝜆௜
⋆ ℎ௜(x⋆) = 0,   𝑖 = 1, … , 𝑝 (2.1.16) 

This is called the complementary slackness condition, and is equivalently expressed as 

𝜆௜
⋆ > 0 → ℎ௜(x⋆) = 0   or  ℎ௜(x⋆) < 0 → 𝜆௜

⋆ = 0 (2.1.17) 

meaning that λ୧
⋆ is zero unless h୧(x⋆) is active (=0) at the optimum.  

Using the complementary slackness condition, the Karush-Kuhn-Tucker conditions can be 

expressed. Since x⋆ minimizes ℒ(𝑥, 𝜆⋆, 𝜈⋆), this means that its gradient goes to zero [41]: 

∇ℒ(x⋆, 𝜆⋆, 𝜈⋆) = ∇𝑓(x⋆) + ෍ 𝜆௜
⋆ ∇ℎ௜(x⋆)

௣

௜ୀଵ

+ ෍ 𝜈௜
⋆ ∇𝑔௜(x⋆)

௠

௜ୀଵ

= 0   (2.1.18) 

This results in the following optimality conditions: 

Theorem 2.1.4 (Karush-Kuhn-Tucker conditions / First-order necessary conditions for 

optimality (FONC)): The primal-dual variable set x⋆, λ⋆, ν⋆ is guaranteed to be optimal 

when the following conditions are met: 

ℎ௜(x⋆) ≥ 0 (2.1.19a) 
𝜆௜

⋆ ≥ 0 (2.1.19b) 
𝜆௜

⋆ℎ௜(x⋆) = 0 (2.1.19c) 

∇𝑓(x⋆) + ෍ 𝜆௜
⋆ ∇ℎ௜(x⋆)

௣

௜ୀଵ
= 0 (2.1.19d) 

Proof: See [41]. ∎ 

In the above, it is of course assumed that the linear independence constraint qualification 

(LICQ) holds. In the case where the problem at hand is convex, then we also have that the 

duality gap is zero. Note that the KKT conditions are equivalent to ∇f(x⋆) = 0 condition 

for unconstrained optimization. 

2.1.3 Newton-based Methods 

Newton's method as an optimization technique is applied to the first derivative 𝑓ᇱ of a 

double differentiable function 𝑓 to find the roots of the derivative (i.e., the solutions of 

𝑓ᇱ(𝑥) = 0), also known as the stationary points of 𝑓. These solutions can be minimum, 

maximum, or saddle points. 



 

 

The idea behind Newton's method is that the function 𝑓 under consideration is locally 

approximated by a quadratic function, which is minimized in the case where the minimum 

of 𝑓 is sought [42]. This is achieved by constructing a sequence 𝑥௞, which converges to 

some 𝑥∗, for which 𝑓ᇱ(𝑥∗) = 0. That is, 𝑥∗ is a stationary point of 𝑓. Thus, 𝑓 is 

approximated by the second-order Taylor expansion: 

𝑓(𝑥) ≃ 𝑓(𝑥௞) + 𝛻𝑓(𝑥௞)(𝑥 − 𝑥௞) +
1
2

(𝑥 − 𝑥௞)்𝛻ଶ𝑓(𝑥௞)(𝑥 − 𝑥௞). (2.1.20) 

The RHS of 3.11 is minimized by the sequence: 

𝑥௞ାଵ = 𝑥௞ − [𝛻ଶ𝑓(𝑥௞)]ିଵ𝛻𝑓(𝑥௞)். (2.1.21) 

Taking into account the second-order sufficiency conditions (Theorem 2.1.3), we assume 

that near 𝑥∗, the Hessian matrix 𝛻ଶ𝑓(𝑥௞) is positive definite. Given continuous second 

order derivatives for 𝑓, it indeed holds that 𝛻ଶ𝑓(𝑥௞) ≻ 0 near 𝑥∗, meaning that the method 

is well defined in its neighbourhood [43]. Then, the following hold: 

1. If the initial point 𝑥଴ is sufficiently close to 𝑥∗, the sequence (2.1.21) converges to 

𝑥∗ with quadratic convergence. 

2. The norm of the gradients ‖∇𝑓௞‖ also quadratically converges to 0. 

2.1.4 Active Set Methods 
Active set algorithms are widely used for cases of parametric quadratic programs, 

significantly boosting the solution speed. The idea is to identify the active constraints within 

the set of inequality constraints ℎ(𝑥) before solution. These constraints are subsequently 

expressed as equality constraints, resulting in an equality-constrained QP subproblem 

which is simpler to solve.   

Consider the following convex QP (𝐻 ≽ 0): 

min
௫∈ℝ೙

𝑞்𝑥 +
1
2

𝑥்𝐻𝑥 (2.1.22a) 

                                                  s.t. 𝐴𝑥 + 𝑏 ≥ 0 (2.1.22b) 

Applying the KKT conditions (2.1.19) yields: 

𝐻x⋆ + q − A୘λ⋆ = 0 (2.1.23a) 
Ax⋆ + 𝑏 ≥ 0 (2.1.23b) 

𝜆⋆ ≥ 0 (2.1.23c) 
𝜆௜

⋆(Ax⋆ + 𝑏)௜ = 0,   for i = 1, … , p (2.1.23d) 

Before applying the active set method to calculate the primal-dual pair (x⋆, λ⋆ ) as well as 

the corresponding active set 𝒜(x⋆) ⊂ {1, … , p} that satisfy the KKT conditions, the 

following index set notation is used: 
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Active inequality index set 𝔸 ⊂ {1, … , p} (2.1.24a) 
Inactive inequality index set 𝕀 = {1, … , p}\𝔸 (2.1.24b) 

Meaning that the following expressions hold: 

𝑏 = ൬
𝑏𝔸

𝑏𝕀
൰ , 𝐴 = ൬

𝐴𝔸

𝐴𝕀
൰ , 𝐴𝑥 + 𝑏 ≥ 0 ⟺ 𝐴𝔸𝑥 + 𝑏𝔸 ≥ 0 AND 𝐴𝕀𝑥 + 𝑏𝕀 ≥ 0  (2.1.25) 

It can be shown that x⋆ is a global minimizer of Problem (2.1.22) iff there exist index sets 

𝔸 & 𝕀 as well as a dual variable 𝜆𝔸
⋆  so that the following (modified) KKT conditions hold: 

𝐻x⋆ + q − 𝐴𝔸
୘λ⋆ = 0 (2.1.26a) 

𝐴𝔸x⋆ + 𝑏𝔸 = 0 (2.1.26b) 
𝐴𝕀x⋆ + 𝑏𝕀 ≥ 0 (2.1.26c) 

𝜆𝔸
⋆ ≥ 0 (2.1.26d) 

𝜆⋆ = ൬𝜆𝔸
⋆

𝜆𝕀
⋆ ൰ , with 𝜆𝕀

⋆ = 0 (2.1.26e) 

The dual variable λ𝕀
⋆ is by definition zero since it is the Lagrange multiplier of an inactive 

inequality constraint. The idea is to solve (2.1.26a) and (2.1.26b) for x⋆ and λ⋆ iteratively 

by changing set 𝔸 accordingly, until (2.1.26c) and (2.1.26d) are satisfied. The interested 

reader can find a detailed active-set algorithm in source. It is briefly noted that these 

algorithms are commonly paired with sequential quadratic programming (SQP) solvers, 

where the general NLP (2.1.1) is treated by iteratively solving the following QP: 

min
௫∈ℝ೙

∇𝑓(𝑥௞)்𝑝 +
1
2

𝑝்𝐻𝑝 (2.1.27a) 

                                             s.t. ℎ(𝑥௞) + ణ௛
ణ௫

ቚ
௫ೖ

𝑝 ≥ 0 (2.1.27b) 

It can be shown that this QP has the same active set as the original NLP. 

2.1.5 Interior Point Methods 
Interior point methods (IPMs) are widely used for solving large convex optimization 

problems that include inequality constraints, assuming that they are strictly feasible, so that 

an optimal primal-dual variable set x⋆, λ⋆, ν⋆ exists. IPMs employ Newton’s Method as 

described in subsection 2.1.3 in order to equivalently solve either sequential equality-

constrained problems, or modified versions of the KKT conditions (2.1.19). The problems 

that can be solved span linear programs (LPs), QPs, quadratically-constrained QPs 

(QCQPs), and others, as long as f(x), ℎ(𝑥) and 𝑔(𝑥) are twice differentiable. The idea is to 

replace the non-smooth KKT conditions (2.1.19a-c) with a slacked approximation. 

Condition 𝜆௜
⋆ℎ௜(x⋆) = 0 becomes 𝜆௜

⋆ℎ௜(x⋆) = 𝜎 where 𝜎 > 0 is a small slack variable, and 

the smooth KKT-based problem is formulated: 



 

 

∇𝑓(𝑥) − ෍ ∇
௤

௜ୀଵ

ℎ௜(𝑥)𝜆௜ = 0 (2.1.28a) 

𝜆௜ℎ௜(𝑥) − 𝜎 = 0, i = 1, … , p (2.1.28b) 

This problem is solvable using Newton’s method, and is shown that as the relaxation 

diminishes, i.e. 𝜎 → 0, then the slacked solutions x෤(σ), λ෨(τ) approach the optimal solutions 

of the NLP x⋆, λ⋆. IPMs have exhibited powerful results for the case of QP and other convex 

programming problems, as well as general nonlinear programs (2.1.1). 

2.1.6 Semi-Definite Programming 
A special class of convex programs utilize linear matrix inequalities (LMIs) as constraints: 

𝐵଴ + ෍ 𝐵௜𝑥௜

௡

௜ୀଵ

≽ 0 (2.1.29) 

Here, 𝐵଴,…௠ 𝜖 𝕊௞, where 𝕊௞ is the space of symmetric matrices with dimensions ℝ௞×௞. 

When a convex program involves the constraint of positive-definitiveness of a design 

matrix, then it is called a semi-definite program (SDP):  

min
௫∈ℝ೙

𝑐்𝑥 (2.1.30a) 

                                             s.t. 𝐵଴ + ∑ 𝐵௜𝑥௜
௡
௜ୀଵ ≽ 0 (2.1.30b) 

𝐴𝑥 − 𝑏 = 0 (2.1.30c) 

It is noted that the SDP form generalizes over LPs, QPs, as well as QCQPs (e.g. if the 𝐵௜ 

matrices are set as diagonal, then generalized inequality (2.1.30b) is equivalent to a set of 

linear inequalities, thus representing an LP). Multiple applications of SDPs can be found, 

pertaining to matrix eigenvalue optimization, matrix norm minimization, etc. Apart from 

the specialized SDP solvers that exist, e.g. [44], a useful approach to solving SDPs is using 

the barrier method, coupled with an IPM formulation. The SDP (2.1.30) is transformed as: 

min
௫∈ℝ೙

𝑐்𝑥 + 𝜇 𝐽(𝐵଴ + ෍ 𝐵௜𝑥௜

௡

௜ୀଵ

) (2.1.31a) 

                                             s.t. 𝐴𝑥 − 𝑏 = 0 (2.1.31b) 

Where 𝐽(∙) is called the log barrier function and is denoted as: 

 𝐽(𝑋) = − ln det (𝑋) (2.1.32) 

The benefit of employing this approach is that IPM methods can readily be used, enjoying 

polynomial complexity [45]. 
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2.2 Metaheuristic Optimization 

The typical deterministic optimization methods that were presented in Section 2.1 come 

with certain optimality guarantees, which is an important feature. However, they also come 

with three inherent disadvantages, namely (a) poor performance on non-convex 

optimization problems, (b) inability to handle discrete design variables and (c) unsuitability 

for multi-objective problems, as they cannot easily deal with discontinuous or concave 

Pareto fronts [16]. Given that a significant portion of engineering optimization problems 

are non-convex, multi-objective in nature and contain mixed integer and continuous design 

variables, it is easily understood that nowadays, deterministic methods may not be the best 

choice for every application. Metaheuristic methods on the other hand, constitute a class of 

optimization algorithms, or algorithmic frameworks, that are in principle better equipped to 

overcome the difficulties commonly encountered in optimization, and provide better quality 

solutions than deterministic approaches. 

This section briefly discusses the main categories of metaheuristic methods, and presents 

the particle swarm optimization that is used in the context of this thesis in detail. 

2.2.1 Brief Literature Review 
Evolutionary Computation: Evolutionary computation (EC) is a widely used computer 

science discipline, comprising methods that simulate the evolution of members of a 

population which are regarded as possible solutions to the optimization problem. Each 

individual receives a measure of fitness, and then a selection procedure uses biologically 

inspired techniques to stimulate the solutions with high levels of fitness. Genetic algorithms 

(GAs) [46] and differential evolution [47] comprise the two most distinctive representatives 

of EC, albeit a number of other EC techniques have also been proposed [48]. Genetic 

algorithms are search algorithms which iteratively evolve a population of candidate 

solutions encoded as chromosomes, through genetically inspired operations like crossover 

and mutation; a selection process picks the solutions that will be passed onto the next 

iteration. GA techniques are able to perform reliably and can easily collaborate with 

existing models and systems [49], as well as integrate into hybrid approaches [50]. 

Additionally, they are easily scalable with parallel implementation abilities [51], [52] and 

they impose no restrictions on the functions they process. 

Swarm intelligence: Swarm intelligence methods exhibit characteristics seen in 

decentralized, self-organized groups of biological organisms. SI systems typically consist 

of a population of simple agents that interact locally with each other and with their 

environment; these interactions, albeit local, aim to lead to the emergence of a "smart" 



 

 

global behavior. A notable SI method is the ant colony optimization. The main idea is the 

simultaneous development of multiple threads (possible solutions) based on local data and 

a dynamic memory structure containing information on the quality of previous results. ACO 

has proven to be effective in solving combinatorial optimization problems and has found 

application in a number of fields in industry [53], but presents some limitations in dealing 

with continuous design variables. Various modifications of the original algorithm have been 

reported in the literature [54]–[56]. 

Non-population-based methods: Unlike the previously mentioned categories, which evolve 

a population or swarm of solutions, some of the early metaheuristic methods were based on 

modifying a single solution, the most prominent being simulated annealing (SA) [57] and 

tabu search (TS) [58]. SA draws inspiration from the search of a minimum energy state 

which occurs during the process of annealing in metallurgy. Its distinct characteristic is that 

it allows for temporarily accepting a worse solution with a probability, which becomes 

smaller as the iterations progress. SA tuning involves only a few parameters while an 

obvious advantage involves the significantly reduced computational cost as a result of 

operating on a single solution; on the other hand, accuracy is usually inferior compared to 

population-based methods. Recent advances and SA modifications are reported in [59], 

[60]. TS owes its name to the so-called tabu lists, that record the search history in order to 

avoid cycling, i.e. revisiting previously found solutions. The basic idea behind TS has been 

subjected to a number of modifications, which improve the algorithm’s efficiency [61]. TS 

is suitable for large-scale optimization problems as it combines the significant advantage 

of reduced computational complexity with reasonable performance in terms of accuracy, 

albeit it cannot compete with population-based methods in that respect. 

Artificial immune systems: Artificial immune systems (AIS) are inspired by theoretical 

immunology, simulating the processes used by the biological immune system to respond to 

external threats. AIS follow a distributed model with an absence of any point of total 

control, using exclusively local information. Due to their inherent decentralized nature, AIS 

require minimal CPU and memory resources, in contrast to population-based techniques. 

On the other hand, AIS may need customization in order to solve optimization problems 

unlike the rest of the methods presented in this section. AIS-based techniques have been 

extensively studied and applied to many engineering fields [62], including power grid 

applications [63], [64]. They provide inspiration for hybrid methodologies with remarkable 

characteristics [65]. 



Development of optimization and data-driven model predictive control methods using computational intelligence 
techniques: Design and applications with emphasis on the economic operation of engineering systems 

Myron Papadimitrakis 
48 

2.2.2 Particle Swarm Optimization 
Particle swarm optimization (PSO) [66] comprises one of the most important swarm 

intelligence methodologies. The algorithm encodes a population of possible solutions 

(particles), which are driven towards optimality by exchanging local and global 

information. Each particle updates its position by considering the best position it had 

occupied in the past, the best position of the swarm and stochastic parameters averting the 

algorithm from becoming trapped in local minima. PSO requires no special encoding, thus 

enjoying an advantage over other metaheuristic methods. Its simplicity, combined with 

effectiveness and speed, make PSO ideal for use in applications where computational cost 

is a critical parameter. Due to these merits, PSO has been widely used, while various 

modifications have been proposed [67], [68], aiming to cure its defects, which are mainly 

associated with premature convergence.  

The PSO algorithm is described as follows: 

Algorithm 2.2.1 Simple particle swarm algorithm 
Initialize for every particle i: 
 Randomize Position x୧ୢ

଴ , Set best position p୧ୢ
଴ ← x୧ୢ

଴ , Calculate fitness value 𝑓൫x௜ୢ
଴ ൯ 

 Find best fitness value among particles, set it as current global best p୥ୢ
଴ . 

while termination condition false 
 for particle i: 
  Calculate new particle speed as 𝑣௜ௗ

௧ାଵ ← 𝑣௜ௗ
௧ + 𝑐ଵ ∙ 𝑟𝑎𝑛𝑑(0,1) ∙ ൫𝑝௜ௗ

௧ − 𝑥௜ௗ
௧ ൯ + 𝑐ଶ ∙

𝑟𝑎𝑛𝑑(0,1) ∙ ൫𝑝௚ௗ
௧ − 𝑥௜ௗ

௧ ൯ 
  Calculate new particle position 𝑥௜ௗ

௧ାଵ ← 𝑥௜ௗ
௧ + 𝑣௜ௗ

௧ାଵ 
  Calculate new fitness value 𝑓൫x௜ୢ

௧ାଵ൯ 
  If 𝑓൫x௜ୢ

௧ାଵ൯ ≥ 𝑓൫p୧ୢ
୲ ൯:  p୧ୢ

୲ ← x௜ୢ
௧ାଵ; 

  If 𝑓൫x௜ୢ
௧ାଵ൯ ≥ 𝑓൫p௚ୢ

୲ ൯:  p௚ୢ
୲ ← x௜ୢ

௧ାଵ; 
  k ← 𝑘 + 1 

Multiple variants of this basic algorithm exist, pertaining to the addition of inertial weights 

[69], constriction factors [70], and cooperative particle partitions [71]. 

 



 

 

Chapter 3:   

Radial Basis Function Neural Networks 

Simple machine learning models (such as linear models) cannot account for the underlying 

nonlinearities of a complex engineering system. Methods based on computational 

intelligence, e.g. neural networks (NNs), seem to be an attractive alternative, as they are 

very effective in modeling nonlinear plants [26] and can be configured to accommodate for 

changes in plant parameters. Radial basis function (RBF) NNs constitute a popular neural 

network architecture with numerous applications in nonlinear system identification and 

control, both in industry and academia [72]. They are widely considered for modeling 

nonlinear dynamics, mainly because of their simple structure and increased accuracy [34]. 

They are comprised of a single hidden layer which is linearly attached to the output layer 

of the network, meaning that the employed training algorithms are faster and more efficient 

than their more complicated multilayer perceptron (MLP) counterparts [34].  

In this section, the basic formulation of RBF NNs is presented, as well as the fuzzy-means 

training algorithm that is used in the context of this thesis. 



Development of optimization and data-driven model predictive control methods using computational intelligence 
techniques: Design and applications with emphasis on the economic operation of engineering systems 

Myron Papadimitrakis 
50 

3.1 Basic Formulation 

In RBFN, the training procedure aims to find the multidimensional surface that best 

approximates a set of training examples. This surface is constructed as a sum of simpler 

surfaces exhibiting radial basis symmetry around centers specifically placed in the input 

space. Training an RBFN corresponds to finding the number of RBF centers, their 

coordinates in the input space and the weights connecting the hidden layer to the output 

layer.  

A typical RBF NN structure can be found in Fig. 3.1.1. The input layer distributes N input 

variables to L nodes of the hidden layer. Each node of the hidden layer is comprised of a 

center with N dimensions. The hidden layer performs a nonlinear transformation that maps 

the input space on a new, higher dimensional space. The first step in calculating the output 

is to compute the activity 𝜇௟(𝒖(𝑘))for every node l and every datapoint k; this is calculated 

as the Euclidean norm of the difference between the kth input vector 𝒖(𝑘) and the lth node 

center 𝒖ෝ௟: 

𝜇௟(𝒖(𝑘)) = ‖𝒖(𝑘) − 𝒖ෝ௟‖ = ඩ෍(𝒖(𝑘) − 𝒖ෝ௟)ଶ
ே

௜ୀଵ

,   𝑘 = 1, … , 𝐾 (3.1.1) 

Using the activity 𝜇௟(𝒖(𝑘)), the node activation function can be computed. In this work, a 

typical activation function is used. 

Then, for each datapoint and each node, an activation function value is computed. The 

hidden node responses for the k-th datapoint are written as: 

  

 

Figure 3.1.1: Schematic of an RBF network: The input layer distributes N input variables to L nodes 
of the hidden layer. Each node of the hidden layer is comprised of a center with N dimensions. The 
hidden layer performs a nonlinear transformation that maps the input space on a new, higher 
dimensional space. The weighted sum of the nodes constitutes the output. 
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𝒛(𝑘) = ൣ𝑔൫𝜇ଵ(𝒖(𝑘))൯, 𝑔൫𝜇ଶ(𝒖(𝑘))൯, … , 𝑔൫𝜇௅(𝒖(𝑘))൯൧ (3.1.2) 

The final output value 𝑦ො of the RBF NN is then calculated as a linear combination of the 

hidden note responses, 

𝑦ො(𝑘) = 𝒛(𝑘) 𝒘  (3.1.3) 

where 𝒘 is a vector containing synaptic weights. For a given real output vector Y, after 

formulating the vector of hidden node responses Z, the weight vector 𝒘 can be calculated 

trivially by least squares in matrix form: 

𝒘் = 𝒀்𝒁 (𝒁்𝒁)ିଵ  (3.1.4) 

Thus, it can be concluded that the most important stage of creating the RBF NN is the 

establishment of the hidden node centers 𝒖ෝ௟. 
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3.2 Fuzzy Means RBF 

A standard approach to determine the coordinates of the RBF centers involves the k-means 

algorithm [73], for a given number of centers; however, as this number is not a priori 

known, a tedious trial-and-error procedure is required to determine it. The fuzzy means 

algorithm is well suited for this task  [34], because it follows a fuzzy clustering approach in 

order to determine the node centers. Consider a system with N normalized input variables 

𝑢௜. In order to create a fuzzy partitioning of the input space, the domain of each input 

variable 𝑢௜ must be segmented into S one-dimensional fuzzy subspaces (FS). Each subspace 

𝑨௟ where 𝑙 = 1, … , 𝑆 is created by combining N fuzzy sets for each input direction. It is 

possible to define the fuzzy subspaces through the center vector 𝒂௟ containing the centers 

and the side vector 𝛿𝒂. 

The resulting subspaces form a grid in the N-dimensional input space, where each node of 

the grid is a candidate RBF center. The FM algorithm aims to determine which candidate 

nodes will be finally selected as centers. This is accomplished through the use of a 

membership function 𝜇஺೗ formulated as: 

𝜇஺೗൫𝒖(𝑘)൯ = ቊ1 − 𝑑௥
௟ ൫𝒖(𝑘)൯, 𝑖𝑓 𝑑௥

௟ ൫𝒖(𝑘)൯ ≤ 1
0, 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (3.2.1) 

The distance 𝑑௥
௟ ൫𝒖(𝑘)൯ is computed as 

𝑑௥
௟ ൫𝒖(𝑘)൯ = ඩ෍൫𝑎௜,௝௜

௟ − 𝑢௜(𝑘)൯
ଶ

ே

௜ୀଵ

൫√𝑁𝛿𝒂൯൘   (3.2.2) 

where 𝒖(𝑘)is the kth input vector, 𝑎௜,௝௜
௟  is the center of the fuzzy subspace 𝐀௟, a  is half the 

width which is the same for each input, and N is the dimensionality of the input space. Eq. 

(3.2.2) defines a surface in the input space that bounds the input vectors that will be covered 

by fuzzy subspace 𝐀௟, or in other words, that will receive nonzero membership degree in 

the membership function. The FM algorithm uses a fast-non-iterative procedure to find a 

subset of the subspaces, so that all input datapoints are covered by at least one fuzzy 

subspace. Therefore, the resulting RBF NN relies only on the number of fuzzy sets s, which 

can be yielded through exhaustive search of a short range. 

 



 

 

Chapter 4:   

Model Predictive Control 

The model predictive control class of control methods originate from the intersection of 

mathematical optimization and control theory [74]. The MPC algorithm makes use of a 

dynamic model of the plant in order to calculate an approximation of the plant’s future 

response to the control inputs. Based on this model, a constrained optimization problem is 

formulated online to obtain the optimal sequence of control moves for a given time horizon. 

Due to being able to accommodate for plant nonlinearities, and its abilities to handle MIMO 

formulations, various physical constraints [75], and multiple objectives [76], MPC has 

emerged as a highly successful control scheme with applications in various fields during 

the last decades [74].  

Consider the following discrete-time dynamical system: 

𝑥௞ାଵ = 𝑓(𝑥௞, 𝑢௞) (4.0.1) 

Here, 𝑢௞ ∈ ℝ௡ೠ is denoted as the input vector and 𝑥௞ ∈ ℝ௡ೣ the state vector. For 

generality’s sake, (4.0.1) can also be written in form 𝑥ା = 𝑓(𝑥, 𝑢). Given an initial state 𝑥଴ 

and a control sequence 𝑢଴, … , 𝑢ேିଵ up to timestep 𝑁 − 1, this discrete time system could 

be sequentially simulated to obtain 𝑥ଵ, … , 𝑥ே.  

Next, the foundation of MPC controllers can be laid out in this section. 
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4.1 Linear Quadratic Regulator 

As a precursor to MPC, it serves to initially present the linear quadratic regulator (LQR). 

First, using simple calculations of the system’s (4.0.1) Jacobian around a specific origin, a 

linearized discrete-time system is created as follows: 

𝑥௞ାଵ = 𝐴𝑥௞ + 𝐵𝑢௞ (4.1.1) 

Where 𝐴 ∈ ℝ௡ೣ×௡ೣ is the state transition matrix and 𝐵 ∈ ℝ௡ೠ×௡ೠ the input matrix. For 

generality in model representation, the output equation can be included, 

𝑦௞ାଵ = 𝐶𝑥௞ାଵ + 𝐷𝑢௞ (4.1.2) 

however, in this analysis it is set that 𝐶 = 𝐼 (i.e. the states are fully measured) and 𝐷 = 0. 

The origin of linearization is considered as the desired optimal control setpoint, which for 

simplicity is set to 0. Then, an objective function 𝐽(⋅) is defined measuring the deviation of 

sequences 𝒖 = 𝑢଴, … , 𝑢ேିଵ and 𝑥ଵ, … , 𝑥ே from the setpoint using the sum of squares: 

𝐽(𝑥଴, 𝑢) =
1
2

෍ ℓ(𝑥௞, 𝑢௞) +
ேିଵ

௞ୀ଴

𝑉௙(𝑥ே) (4.1.3a) 

ℓ(𝑥௞, 𝑢௞) = 𝑄்𝑥௞𝑄 + 𝑅்𝑢௞𝑅 (4.1.3b) 

𝑉௙(𝑥ே) = 𝑄௙
்𝑥ே𝑄௙ (4.1.3c) 

Here, ℓ(⋅) is called the stage cost and 𝑉௙(⋅) the terminal penalty, while matrices 𝑄, 𝑅 

represent tuning parameters. Large values of 𝑄 incentivize the quicker return of the state to 

the setpoint, while large values of 𝑅 penalize large control actions. Matrix 𝑄௙ weighs the 

terminal state penalty. Using (4.1.3a), the optimal finite-horizon linear-quadratic (LQ) 

problem can be formulated: 

min
௨

𝐽(𝑥଴, 𝑢) (4.1.4) 

In order to ensure tractability of this optimal control problem (OCP), the 𝑄, 𝑅 and 𝑄௙ 

matrices must be symmetric and positive-semidefinite. Since 𝑥଴ is known, this problem can 

be formulated to be solved with backward dynamic programming (DP). A detailed 

presentation is beyond the scope of this thesis, however the main results are stated; the 

optimal control policy resulting from the finite-horizon Problem (4.1.4) at each stage 𝑘 is: 

𝑢௞
⋆ = 𝐾(𝑘)𝑥     𝑘 = 𝑁 − 1, 𝑁 − 2, … 0 (4.1.5) 

Where 𝐾(𝑘) is the Riccati matrix, 

𝐾(𝑘) =  −(𝐵்𝛱(𝑘 + 1)𝐵 + 𝑅)ିଵ𝐵்𝛱(𝑘 + 1)𝐴      𝑘 = 𝑁 − 1, 𝑁 − 2, … , 0 (4.1.6) 

𝛱(⋅) is the Riccati iteration defined as 

𝛱(𝑘 − 1) = 𝑄 + 𝐴்𝛱(𝑘)𝐴 − 𝐴்𝛱(𝑘)𝐵(𝐵்𝛱(𝑘)𝐵 + 𝑅)ିଵ𝐵்𝛱(𝑘)𝐴             (4.1.7) 



 

 

 𝑘 = 𝑁, 𝑁 − 1, … , 0 

With 𝛱(𝑁) = 𝑄௙, as the iterates are calculated backward. Lastly, the optimal cost-to-go is 

calculated as follows for up to time 𝑁: 

𝐽௞
଴ =

1
2

𝑥்𝛱(𝑘)𝑥,   𝑘 = 𝑁, 𝑁 − 1, … , 0 (4.1.8) 

The above notions can be extended for the infinite horizon LQ case, with objective function: 

𝐽(𝑥଴, 𝑢) =
1
2

෍ ℓ(𝑥௞, 𝑢௞) +
ஶ

௞ୀ଴

𝑉௙(𝑥௞, 𝑢௞) (4.1.9) 

By again iterating the Riccati equation, the so-called optimal infinite horizon control law 

together with the optimal cost-to-go are yielded: 

𝑢ஶ
଴ = 𝐾𝑥     𝑉ஶ

଴(𝑥) =
1
2

𝑥்𝛱(𝑘)𝑥 (4.1.10) 

where the gain and Riccati iteration are defined as: 

𝐾 = −(𝐵்𝛱𝐵 + 𝑅)ିଵ 𝐵்𝛱𝐴 (4.1.11a) 
𝛱 = 𝑄 + 𝐴்𝛱𝐴 − 𝐴்𝛱𝐵(𝐵்𝛱𝐵 + 𝑅)ିଵ𝐵்𝛱𝐴 (4.1.11b) 

It is noted that control law (4.1.10) has guaranteed nominal stability given controllability 

for the (𝐴, 𝐵) pair and 𝑄 ≽ 0, 𝑅 ≽ 0, because then a positive-definite solution of (4.1.11b) 

exists and the eigenvalues of (𝐴 + 𝐵𝐾) are less than unity. 
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4.2 Nonlinear Tracking MPC 

Even though the infinite-horizon control law 𝑢ஶ
଴  generated by DP has guaranteed nominal 

stability under mild assumptions, there are multiple practical impediments to its use. These 

pertain to the desirability of feedback due to uncertainty, the handling of nonlinear 

dynamical systems and the incorporation of constraints in the OCP. The idea of MPC is to 

generate the optimal control sequence 𝑢௞
⋆  online for the current timestep given the current 

state 𝑥଴ and a finite time horizon, while honoring constraints on states and inputs. Consider 

the constraints of the nonlinear discrete-time system (4.0.1): 

(𝑥, 𝑢) ∈ ℤ (4.2.1) 

Where ℤ denotes the admissible set of states and inputs 𝕏 × 𝕌, where 𝕏 and 𝕌 are the 

admissible state and input spaces, respectively. Space ℤ is generally required to be a convex 

polyhedron and can include inequalities, equality constraints, and rate constraints. The OCP 

pertaining to a constrained tracking nonlinear MPC (NMPC) is formulated as: 

min
௫,௨

 𝐽ே(𝑥, 𝑢) (4.2.2a) 

s. t. (𝑥, 𝑢) ∈ ℤ,   𝑥ே ∈ 𝕏௙ (4.2.2b) 

   𝑥଴ = 𝑥଴
ᇱ  (4.2.2c) 

𝑥ା = 𝑓(𝑥, 𝑢) (4.2.2d) 

Where the stage cost ℓ(⋅) and the terminal penalty 𝑉௙(⋅) are denoted as (4.1.3b), (4.1.3c) 

and  

 𝐽ே(𝑥, 𝑢) = ෍ ℓ(𝑥௞, 𝑢௞) +
ேିଵ

௞ୀ଴

𝑉௙(𝑥ே) (4.2.3) 

An additional constraint set 𝕏௙ ⊆ 𝕏 is also included, which represents the terminal 

constraint set. An alternative representation to OCP (4.2.2) can be constructed; considering 

space 𝕏௙ together with ℤ, the implicit 𝑢 constraint 𝑢 𝜖 𝒰ே is formed, denoted as: 

 𝒰ே(𝑥) ≔ {𝑢|(𝑥, 𝑢) ∈ ℤே} (4.2.4) 

Where ℤே ≔ ൛(𝑥, 𝑢)|൫𝜑(𝑘; 𝑥, 𝑢), 𝑢(𝑘)൯ ∈ ℤ, ∀𝑘 ∈ 𝕀଴:ேିଵ , 𝜑(𝑁; 𝑥, 𝑢) ∈ 𝕏௙ൟ, and 𝜑 is 

some continuous function. Then, (4.2.2) can be written 

𝐽ே
଴ (𝑥) ≔ min

௨
{ 𝐽ே(𝑥, 𝑢)|𝑢 ∈ 𝒰ே(𝑥)} (4.2.5) 

Note that this optimization problem with a design variable of 𝑢 is parametrized by 𝑥, 

inserted in both the cost  𝐽ே(𝑥, 𝑢) and the constraint set 𝒰ே(𝑥). Next, 𝒳ே is defined, which 

represents the subset of 𝑥 ∈ 𝕏 for which (4.2.5) has a solution: 



 

 

𝒳ே ≔ {𝑥 ∈ ℝ|𝒰ே(𝑥) ≠ ∅} (4.2.6) 

Then, the following Lemma can be stated. 

Lemma 4.2.1 (A solution exists for OCP (4.2.5)): Suppose the following assumptions hold: 

A. The functions 𝑓: ℤ → ℝ௡, ℓ: ℤ → ℝஹ଴, 𝑉௙: 𝕏௙ → ℝஹ଴ are continuous and, without 

violating generality, a zero origin is assumed so that 𝑓(0, 0) = 0, ℓ(0, 0) = 0, 

𝑉௙(0) = 0. 

B. The state-input admissible set ℤ = 𝕏 × 𝕌 is closed, 𝕌 and 𝕏௙ ⊆ 𝕏 are compact, 

and all sets contain the origin. 

Then: 

1) Cost function  𝐽ே(𝑥, 𝑢) is continuous in ℤே. 

2) The control constraint set 𝒰ே(𝑥) is compact. 

3) ∀𝑥 ∈ 𝒳ே a solution to Problem (4.2.5) exists. 

Proof: See Proposition 2.4 [20] ∎ 

Finally, the MPC control law for timestep 𝑘 can be formulated, 

𝜅௺(𝑥) ≔ 𝑢଴
⋆ (4.2.7) 

where 𝑢଴
⋆ is the first element of the optimal control sequence yielded by the solution of 

(4.2.5): 

𝑢⋆ = arg min
௨

{ 𝐽ே(𝑥, 𝑢)|𝑢 ∈ 𝒰ே(𝑥)} (4.2.8) 
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4.3 Stability for MPC 

Classically, the stability of the MPC control law presented in the previous section employed 

Lyapunov-based tools and theorems. Some definitions regarding stability theory are in 

order; First, the origin (0, 0) ∈ ℝ௡ is called globally asymptotically stable (GAS) for the 

system 𝑥௞ାଵ = 𝑓(𝑥௞, 𝑢௞) if the origin is locally stable and if the origin is also globally 

attractive. The definition of local stability is: if ∀𝜀 ∈ ℝା a 𝛿 ∈ ℝା exists so that |𝑥| > 𝛿 

implies {|𝜑(𝑘; 𝑥)| < 𝜀 | ∀𝑘 ∈ 𝕀ା }, which alternatively is stated as: for small state 

perturbations from the origin, subsequent perturbations are also small. Similarly, the origin 

is called globally attractive if {|𝜑(𝑘; 𝑥)| → 0 |𝑘 → ∞, ∀𝑥 ∈ ℝ௡  }. Next, some useful 

function classes must be defined: a function is called 𝒦-class if it is continuous, zero at the 

origin, and strictly increasing; next, a 𝒦ஶ-class function is an unbounded 𝒦-class function; 

and lastly, a continuous function 𝛽(⋅) is a 𝒦ℒ-class function if ∀𝑘 ∈ 𝕀ା, 𝛽(⋅, 𝑘) remains a 

𝒦-class function and {𝛽(𝑠, 𝑖) → 0 |𝑖 → ∞, ∀𝑠 ∈ ℝା}, while 𝛽(𝑠,⋅) remains nonincreasing.  

Finally, the definition of a Lyapunov function can be presented: Suppose that the admissible 

state space 𝕏 ⊆ ℝ௡ of dynamical system 𝑥௞ାଵ = 𝑓(𝑥௞, 𝑢௞) is positive invariant (i.e. if 

𝑥(𝑡) ∈ 𝕏 ⇒ 𝑥(𝜏) ∈ 𝕏 ∀𝜏 > 𝑡). Then, a function 𝐽: ℝ௡ → ℝஹ଴ is a Lyapunov function in 𝕏 

if there exist 𝑎ଵ, 𝑎ଶ ∈ 𝒦ஶ and a positive-definite continuous 𝑎ଷ function so that ∀𝑥 ∈ 𝕏 it 

holds: 

𝐽(𝑥) ≥ 𝑎ଵ(|𝑥|) (4.3.1a) 

𝐽(𝑥) ≤ 𝑎ଶ(|𝑥|) (4.3.1b) 

𝐽൫𝑓(𝑥)൯ − 𝑓(𝑥) ≤ −𝑎ଷ(|𝑥|) (4.3.1c) 

The basic Lyapunov stability theorem can now be stated. 

Theorem 4.3.1 (Lyapunov Stability Theorem): Suppose a system 𝑥ା = 𝑓(𝑥, 𝑢), 𝑥 ∈ 𝕏  with 

𝕏 positive invariant. If a Lyapunov function exists in 𝕏 for this system, then the origin is 

asymptotically stable in 𝕏, and if 𝕏 = ℝ௡, then the origin is GAS. Lastly, if there also exists 

𝑎௜(|𝑥|) = 𝑐௜|𝑥|𝒶 with 𝒶, 𝑐௜ ∈ ℝவ଴ ∀𝑖 ∈ {1,2,3}, then the origin is called exponentially 

stable. 

Proof: See Theorem 2.13 [20]. ∎ 

Therefore, the idea of MPC stability is to show that the value function 𝐽ே
଴ ቀ𝑓൫𝑥, 𝜅௺(𝑥)൯ቁ of 

the respective OCP is a valid Lyapunov function. It can be shown that when the MPC 

constituents ℓ, 𝑉௙, and 𝕏௙ are appropriately chosen, then it holds that 𝐽ே
଴ ቀ𝑓൫𝑥, 𝜅௺(𝑥)൯ቁ ≤

𝐽ே
଴ (𝑥) − ℓ(𝑥, 𝜅௺(𝑥)). 



 

 

Theorem 4.3.2 (Asymptotic stability of the origin): Suppose assumptions of Lemma 4.2.1 

(A-C) are satisfied as well as 

A. 𝑓(𝑥, 𝑢) ∈ 𝕏௙, and 𝑉௙൫𝑓(𝑥, 𝑢)൯ − 𝑉௙(𝑥) ≤ −ℓ(𝑥, 𝑢) 𝑟. 

B. There exist 𝒦ஶ functions 𝑎ଵ, 𝑎௙ so that {ℓ(𝑥, 𝑢) ≥ 𝑎ଵ(|𝑥|) | ∀(𝑥, 𝑢) ∈ ℤ} and 

൛𝑉௙(𝑥) ≤ 𝑎௙(|𝑥|) | ∀𝑥 ∈ 𝕏௙ൟ. 

C. Weak controllability exists, namely for α 𝒦ஶ-class 𝑎(⋅) function it holds 

{𝐽ே
଴ (𝑥) ≤ 𝑎(|𝑥|) | ∀𝑥 ∈ 𝒳ே}  (Alternatively 𝕏௙ = {0}, i.e., there exists a terminal 

equality constraint to the origin). 

D. 𝒦ஶ-class 𝑎ଵ(⋅) and 𝑎ଶ(⋅) functions exist such that {𝑎ଵ(|𝑥|) ≤ 𝐽ே
଴ (𝑥) ≤ 𝑎ଶ(|𝑥|)} 

and ቄ 𝐽ே
଴ ቀ𝑓൫𝑥, 𝜅௺(𝑥)൯ቁ − 𝐽ே

଴ (𝑥) ≤ −𝑎ଵ(𝑥, 𝜅௺(𝑥)ቅ 

Then, the origin of 𝑥௞ାଵ = 𝑓(𝑥௞, 𝜅௺(𝑥௞)) is asymptotically stable in 𝒳ே. 

Proof: This proof is beyond the scope of this presentation and can be found in [20], see 

Proposition 2.15 and 2.16; however, it is noted that the lower bound property for 𝐽ே
଴ (𝑥) is 

satisfied by opting for a positive definite stage cost ℓ(𝑥, 𝑢), with 𝑄 and 𝑅 also being positive 

definite. ∎ 

A natural question to ask is whether the existence of a terminal constraint set 𝕏୤ is 

mandatory for asymptotic stability. There is significant motivation for its omission, since 

an OCP without terminal constraints is easier to solve, and the performance of the respective 

MPC is usually higher. Consider an OCP which satisfies Assumptions A, B of Lemma 4.2.1 

& Assumption A of Theorem 4.3.2 meaning that there exists a local control law 𝜅௙: 𝕏୤ → 𝕌 

which is a Lyapunov function in 𝕏୤ (a quadratic and positive definite V୤ fulfils this). The 

idea is to implicitly satisfy the requirement of a terminal constraint by replacing V୤ with 

𝛽V୤, where 𝛽 ≥ 1 a sufficiently large parameter so that the optimal terminal state is 

nevertheless within 𝕏୤. The full result by Limon et al. [77] is stated: 

Theorem 4.3.3 (Stability at the origin; terminally unconstrained MPC): Suppose an OCP 

problem with 𝐽௺
ఉ(𝑥, 𝑢) = ∑ ℓ(𝑥௞, 𝑢௞) +ேିଵ

௞ୀ଴ 𝛽𝑉௙(𝑥ே), and the associated x-parametrized 

problem 𝐽௺
଴,ఉ(𝑥) = min

௨
ቄ𝐽௺

ఉ(𝑥, 𝑢)|𝑢 ∈ 𝒰ఉ,ே(𝑥)ቅ. Then, the region of attraction 𝛤௺
ఉ ≔

ቄ𝑥| 𝐽௺
଴,ఉ ≤ 𝑁𝑑 + 𝛽𝑎ቅ where 𝑑 > 0 such that ℓ(x, u) ≥ 𝑑 is positive invariant for the system 

𝑓(⋅). 
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Proof: See paper [77]. ∎ 

The importance of this theorem is that if we require that the initial state 𝑥଴
ᇱ  to lie in the 

region of attraction 𝛤௺
ఉ, then the terminal constraint is implicitly satisfied and is thus not 

needed to be included in the OCP formulation. 



 

 

4.4 Nonlinear Economic MPC 

The NMPC control law presented in the previous section is well-equipped to handle 

tracking problems. These include vehicle navigation and guidance, disturbance rejection, 

setpoint tracking of low-level objectives present in industrial processes and others, with 

great performance. However, the high-level objectives of such processes dictate the direct, 

online optimization of economic goals, which may be generic – i.e., not representable by 

tracking cost formulations. This is the motivation behind the creation of economic MPC. 

Consider once again a discrete-time dynamical system, 

𝑥ା = 𝑓(𝑥, 𝑢) (4.4.1) 

and a generic cost function ℓ௘(x, u) which does not measure deviation from an origin, but 

rather an economic objective of the process; this implies that this cost function may not be 

positive definite. The optimal economic steady state (𝑥௦, 𝑢௦) of system resulting from the 

pair ൫𝑓(⋅), ℓ௘(⋅)൯ can be calculated as: 

(𝑥௦, 𝑢௦)  = arg min
(௫,௨)∈ℤ

{ℓ௘(x, u)|𝑥ା = 𝑓(𝑥, 𝑢)} (4.4.2) 

Typically for standard tracking NMPC, this steady-state (𝑥௦, 𝑢௦) would be set as the 

setpoint with the stage cost formulation, requiring that (𝑥௦, 𝑢௦) is tracked. In EMPC 

however, ℓ௘(x, u) is used directly as a stage cost. It can be shown that a solution to its OCP 

exists. 

Theorem 4.4.1 (A solution to the economic OCP exists): Consider the following OCP 

problem: 

𝐽௘,ே
଴ (𝑥) ≔ min

௨
൛ 𝐽௘,ே(𝑥, 𝑢)|𝑢 ∈ 𝒰ே(𝑥)ൟ (4.4.3a) 

 𝐽௘,ே(𝑥, 𝑢) = ෍ ℓ௘(𝑥௞, 𝑢௞)
ேିଵ

௞ୀ଴

 (4.4.3b) 

Together with the following assumptions 

A. The functions 𝑓: ℤ → ℝ௡, ℓ௘: ℤ → ℝஹ଴ are continuous, meaning that a (𝑥௦, 𝑢௦)  

exists (4.4.2). 

B. The state-input admissible set ℤ = 𝕏 × 𝕌 is closed. 𝕌 is compact and uniformly 

bounded in 𝕏. 

C. There is no terminal cost function 𝑉௙, instead the terminal set contains only the 

optimal steady state 𝕏௙ = {𝑥௦}, and ℓ௘ is lower bounded. 
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Then, a solution to Problem (4.4.3) exists. 

Proof: See Proposition 2.4 [20]. ∎ 

Theorem 4.4.1 implies that the EMPC control law 𝜅௘,௺ is well defined and the closed loop 

system is 𝑥ା = 𝑓(𝑥, 𝜅௘,௺(𝑥)). Note that 𝐽௘,ே
଴  is not a Lyapunov function due to the non-

positive definite stage cost ℓୣ. Still, it can be shown that control law 𝜅௘,௺(𝑥) can yield an 

average closed-loop performance that is economically better than the optimal steady-state 

performance (𝑥௦, 𝑢௦) [78]; the practical effect is that control law 𝜅௘,௺(𝑥) would periodically 

cycle the system around the steady-state (𝑥௦, 𝑢௦), instead of stabilizing towards it. 

4.4.1 Dissipativity and Stability Analysis 
The notion of dissipativity is central to the stability analysis of the EMPC control law 

𝜅௘,௺(𝑥). The idea of dissipativity has roots in physical systems: Consider mechanical 

energy being supplied to a system by performing work at a given rate. This energy can be 

considered as a storage function, translating work on the system to stored energy. For a 

dissipative system, the rate of change in the storage function (i.e., stored energy) is strictly 

less than the supplied work. Simply put, the system 𝑥ା = 𝑓(𝑥, 𝑢) is characterized as 

dissipative w.r.t supply rate 𝑠: ℤ → ℝ if a storage function 𝜆: 𝕏 → ℝ exists such that 

∀(𝑥, 𝑢) ∈ ℤ:  

𝜆൫𝑓(𝑥, 𝑢)൯ − 𝜆(𝑥) ≤ 𝑠(𝑥, 𝑢) (4.4.4) 

In addition, strict dissipativity holds w.r.t 𝑠 and a 𝑥௦, if a 𝑎(⋅) ∈ 𝒦ஶ exists such that 

∀(𝑥, 𝑢) ∈ ℤ: 

𝜆൫𝑓(𝑥, 𝑢)൯ − 𝜆(𝑥) ≤ 𝑠(𝑥, 𝑢) (4.4.5) 

Using the notion of a storage function and dissipativity, one can state the following: 

Theorem 4.4.2 (Asymptotic stability of EMPC for dissipative systems): Suppose the 

assumptions of Theorem 4.4.1 hold and 

A. The function ൛𝐽ሚ௘,ே
଴ = 𝐽௘,ே

଴ (⋅) + 𝜆(⋅)ൟ: 𝒳ே → ℝ is continuous at the steady state 

(𝑥௦, 𝑢௦) 

B. The system 𝑓(𝑥, 𝑢) is strictly dissipative with supply rate 𝑠(𝑥, 𝑢) = ℓ௘(𝑥, 𝑢) −

ℓ௘(𝑥௦, 𝑢௦) 

Then, the steady-state (𝑥௦, 𝑢௦) of 𝑥ା = 𝑓(𝑥, 𝜅௘,௺(𝑥)) is asymptotically stable in 𝒳ே. 

Proof: Function 𝐽௘,ே
଴ (⋅) is no longer a Lyapunov function since ℓ௘(⋅) is not positive definite. 

Reference [79] constructs a new, rotated stage cost of the form: 



 

 

ℓ෨(𝑥, 𝑢) = ℓୣ(𝑥, 𝑢) − ℓୣ(𝑥௦, 𝑢௦) + 𝜆(𝑥) − 𝜆൫𝑓(𝑥, 𝑢)൯ (4.4.6a) 

Since the system is dissipative, it holds that the rotated stage cost ℓ෨(𝑥, 𝑢) has the properties: 

ℓ෨(𝑥, 𝑢) ≥ 𝑎(|𝑥 − 𝑥௦|)   &   ℓ෨(𝑥௦, 𝑢௦) = 0 (4.4.6b) 

This means that Assumption B of Theorem 4.3.2 is satisfied, and the standard procedure 

can be employed in order to show that the new OCP 𝐽ሚ௘,ே
଴  is indeed a Lyapunov function, 

therefore proving asymptotic stability. ∎ 

The stability Theorem 4.4.2 includes periodic processes and time-varying systems. It should 

be noted, however, that the creation of the stability-enforcing storage function λ(⋅) is an ad-

hoc procedure, meaning that it may be difficult to compute it for most practical applications. 
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Part III:  Design & Applications 



 

 

Chapter 5:   

Computational Intelligence Methods for efficient Smart Grid 

Dispatch 

Electricity generation and distribution has undergone a major development in the last 

decades moving from a conventional centralized generation towards a distributed, small-

scale, producer-consumer (prosumer) model, connected to the distribution network [80]. 

This evolution has been made possible by the development of a reliable information and 

communication infrastructure, but it also gave rise to certain challenges, which were met 

through the emergence of the smart grid [81]. The technological framework defined by the 

smart grid enables a more reliable, more efficient, and more economical operation, capable 

of accommodating increased utilization of renewable energy sources (RES) and energy 

storage systems. On one hand, system operators now have an abundance of incoming 

information and available control decisions at their disposal in order to control critical 

network state variables. On the other hand, they must deal with modern challenges that arise 

in the typical operational tasks of the grid [80]. These tasks can be broadly categorized into 

two classes of problems, namely optimal power flow (OPF), and resource scheduling (see 

fig. 5.0.1). However, there also exists a ubiquitous utility task pertaining to the electric load 

forecasting, which encompasses the operational tasks residing in the OPF and resource 

scheduling categories. 

From an optimization perspective, this new distributed generation paradigm offers 

significant potential for the application of new methods, capable of handling the 

aforementioned challenges. These methods must be able to cope with a larger amount of 

design variables of diverse nature, while taking into account a significant number of 

 
Figure 5.0.1: The current paradigm in smart grid dispatch 
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incoming state measurements from the grid. In addition, they must provide satisfactory 

solution accuracy combined with reasonable computational complexity, even when applied 

to multiple optimization objectives.  

This chapter employs computational intelligence methods in order to tackle the two main 

problems related to smart grid dispatch; the first case-study is the load forecasting task using 

an ensemble of multiple machine learning methods, while the second is the OPF problem 

using a PSO-based metaheuristic method.  



 

 

5.1 Electrical Load Prediction using Machine Learning method 

ensembles 

The increasing penetration of renewable energy sources tends to redirect the power systems 

community’s interest from the traditional power grid model towards the smart grid 

framework. During this transition, load forecasting for various time horizons constitutes an 

essential electric utility task in network planning, operation, and management. This chapter 

presents a novel mixed power-load forecasting scheme for multiple prediction horizons 

ranging from 15 min to 24 h ahead. The proposed approach makes use of a pool of models 

trained by several machine-learning methods with different characteristics, namely neural 

networks, linear regression, support vector regression, random forests, and sparse 

regression. The final prediction values are calculated using an online decision mechanism 

based on weighting the individual models according to their past performance.  

The proposed scheme is evaluated on real electrical load data sensed from a high 

voltage/medium voltage substation and is shown to be highly effective, as it results in R2 

coefficient values ranging from 0.99 to 0.79 for prediction horizons ranging from 15 min 

to 24 h ahead, respectively. The method is compared to several state-of-the-art machine-

learning approaches, as well as a different ensemble method, producing highly competitive 

results in terms of prediction accuracy. 

5.1.1 Introduction & Literature review 
Generation intermittency of RES within the smart grid context has a two-fold effect: from 

the distribution system operator (DSO) perspective, uncertainty in distributed generation 

compromises the ability to effectively plan short-term power dispatch [82], while from the 

energy market bidder perspective, stochasticity severely constrains their bidding strategy 

and thus, reduces profit margins [83]. These shortcomings underline the importance of the 

application of effective electric load prediction models in the context of multiple 

operational aspects of the smart grid, such as power stability and security. Especially in the 

case of micro-grids, storage management is critical and cannot be accomplished without 

the aid of accurate short-term load forecasts for load shifting and balancing operations [84]. 

Moreover, the grid extension and the increasing exploitation of smart meters affect the 

efficient operation of the grid, leading to a complex and multifaceted framework [85]. 

Regarding the distribution network on the substation level, load forecasting up to one day 

ahead, could be a valuable asset in the grid’s optimization tasks [5]. Such actions can be 

carried out, not only by controlling the on-load tap changer and capacitor bank movements, 
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which is currently the industry standard, but also by operation scheduling of batteries in the 

near future. Load forecasting with multiple time horizons participates in different, 

interdependent levels of operation of a power grid and thus can make a significant 

contribution to addressing the aforementioned challenges. A pivotal feature of smart grid is 

the bidirectional power flow and communication through administrators of generation, 

transmission, distribution, and end-users. As a result, the corresponding energy data contain 

mixed power-load (hereby referred to as ’mixed load’). While the majority of the load 

forecasting models found in the literature predict the electric load production or 

consumption, the differences between them are frequently studied as well. The forecasting 

of the so-called net load proves useful for tackling load volatility due to increasing RES 

penetration [86]. These net energy load prediction models utilize historic distribution grid 

load data as well as measurements of weather features on a substation level in order to infer 

the net active power (AP) demand of the distribution grid. 

To this end, the field of computational intelligence, and more specifically, the branch of 

machine learning [87] has proved to be an invaluable source providing a multitude of 

approaches to solving the aforementioned problem. ML comprises methodologies that are 

capable of extracting knowledge from historical data in order to develop black-box models, 

tackling the problem of requiring specific information about the process and avoiding 

altogether the computationally intensive use of first-principle equations.  ML algorithms 

can exhibit a number of important advantages like efficiency, increased prediction 

accuracy, robustness, etc, but require a number of suitable data to do so. Notable ML 

methodologies used within load forecasting pertain to linear regression (LR) [88], sparse 

coding [89] & support vector regression [90], as well as more advanced neural network 

approaches such as feed-forward neural networks [91], RBF networks [28], and others. For 

a detailed literature review, the interested reader is referred to [7] as well as Chapter 3. 

It is apparent from the literature that the problem of electric load forecasting has been 

addressed by multiple machine-learning methods, but without any of them achieving 

universal superiority in terms of performance. This observation is confirmed not only by 

studying the individual research results but also by assessing various benchmark 

comparisons in the literature [92]. The inability of universal prediction effectiveness of the 

aforementioned models is to be expected taking into account the undesirable characteristics 

of the load forecasting problem, which include non-linearities and high levels of noise in 

the associated data. Furthermore, load time series are not statistically static [93], due to the 

volatile, rapidly changing nature of the weather conditions that affect their power generation 



 

 

component. Different classes of machine-learning methods can cope better with some of 

these issues but usually underperform with respect to others, e.g., linear models are more 

robust to noise but cannot capture the non-linearities present in the load forecasting 

problem. To make things worse, though all of these problems are inherent to load 

forecasting, their mixture composition changes depending on the time horizon one tries to 

predict for, making it impossible to single out a unique machine-learning method that could 

outperform the others across different prediction horizons, e.g., linear methods are often 

found to perform better in short-term horizons, where data tend to be noisy, but the non-

linearities can usually be adequately approximated by linear models, but mostly fail in 

longer time horizons, where the role of the non-linearities is dominant. It should be noted 

that the previous observation about the inability of a single method to beat all the others is 

not only tied to the context of load forecasting, but reveals a more generic concept in 

machine-learning and optimization, as expressed by the “no free lunch” theorem [94].  

To remedy this predicament, one could resort to using a multi-model approach [95], 

combining multiple machine-learning methods. Unfortunately, in a real-time deployment 

scenario, an important practical consideration arises for multi-model schemes: How does 

one select the most suitable model from a pool of trained models for the next prediction 

timestep? One solution is to employ a rule-based decision system that uses a priori available 

knowledge, such as the time of day and measured weather conditions at the substation level. 

This presents a significant impediment. Not only are the rules of such a system difficult to 

conceptualize, but they also offer no guarantee of continuously optimal model selection. 

Doing away with a decision system altogether is also problematic since the individually 

generated predictions do not offer any actionable insight by themselves. A practical 

workaround is to discard such selection rules and instead employ a weighting system that 

assesses models only by using their past prediction performance [96]. The weighting of the 

output results of basic forecasting LSTM models in [97] is based on the similarity degree 

between target and identified standard values of load consumption. Two different 

approaches for determining the weights of multiple forecasters are followed in [98], using 

a novel incremental ensemble weight updating strategy and the minimum-error method, 

respectively. Alternatively, an extreme learning machine can be employed for combining 

the outputs of a pool of forecasts, as in [99]. An intelligent decision-making support scheme, 

including predictive performance evaluation, model properties analysis, structure and 

fusion strategy optimization, and optimal model preference selection, is incorporated with 

an evolutionary ensemble learning method proposed in [100] for short-term load 
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forecasting (STLF) problems. Finally, an automated system is established in [101] based 

on hidden Markov chains for extracting similar day profiles to obtain the best model from 

a library of available forecasting models. Differently from the previous works, the output 

neural network (NN) models result from multiple training cycles based on snapshots [102] 

or the hidden features of a Random Vector Functional Link network [103].  

It has become clear that the necessity of providing mixed load forecasts, and indeed for 

multiple short-term horizons, is a factor of paramount importance in the upcoming 

transition to smart electricity grids. Moreover, according to the preceding literature review, 

it is evident that in order to enhance the predictive capability of a model, it should 

incorporate more than one machine-learning methodologies, which of course should be able 

to handle the complex dynamic behavior of the mixed load. Finally, such a methodology is 

necessary to be applicable in an online implementation, which means that the final 

predictions should be provided in a reasonable amount of time and respond to the behavior 

of the load through a dynamic decision mechanism.  

Realizing the aforementioned requirements and seeking to fill the corresponding research 

gaps, a novel forecasting scheme is presented here that is able to efficiently address the 

diverse and adverse characteristics of the load forecasting problem for various prediction 

horizons. The proposed method seeks to create an ensemble of prediction models based on 

multiple machine-learning techniques comprising different beneficial characteristics that 

have only been used individually for load forecasting before. Indeed, the sparse coding 

method introduced in the proposed model has been published very recently and used for the 

first time in ensemble schemes. As the participating techniques excel in different aspects of 

the load forecasting problem, their combined usage introduced in this work provides the 

ensemble with the ability to outperform each individual method in all the horizons tested. 

In order to efficiently combine the different machine-learning techniques, the proposed 

method employs an error-based metric on a rolling window of past predictions. This 

approach enhances the novelty of the proposed method as it does away with the adversity 

exhibited by complex, rule-based model selection systems. By combining the beneficial 

characteristics of the aforementioned techniques, the proposed scheme demonstrates 

superior performance in terms of prediction accuracy, compared to all the submodels, as 

well as a recently proposed MLP model ensemble from the literature [104], through a wide 

range of different prediction horizons, spanning from 15 min to 24 h-ahead. Thus, reliable 

forecasts can be obtained for: (a) One hour ahead or less, which are valuable for various 

applications at the transmission and distribution network, (b) one day ahead, contributing 



 

 

to the scheduling of generation sources and (c) intra-day forecasting, so as to achieve better 

optimization results. As a result, the introduced model ensemble can become a powerful 

tool for administrators and participants in the energy market, easily exploitable in both 

operational and managerial tasks of smart grids. It should be noted that, at least to the 

author’s best knowledge, no machine-learning approach that is able to handle this range of 

prediction horizons has been proposed in the literature. Furthermore, the proposed approach 

expands the existing literature by using mixed power-load data, i.e., data that include 

renewable generation measurements. Although there is an abundance of work in forecasting 

the net power load, the literature on mixed-load forecasting is very scarce. It should be 

pointed out that the employment of mixed measurements is aligned with the requirements 

of modern smart grids, where the penetration of renewable resources is a key feature. 

5.1.2 The load forecasting objective 
The load forecasting problem that is of interest in this work spans several different time 

horizons: 15 min, 1-hr, 2-hr, 3-hr, 6-hr, and 24-hr. This case study makes use of real data 

from a high voltage/medium voltage substation located in mainland Europe, measured 

during the years 2017–2018. The corresponding MV distribution network contains multiple 

photovoltaic sites; as a result, the data measurements in question constitute mixed power-

load recordings, which correspond to the mixed AP demand of the distribution grid from 

the transmission grid. The load measurements have been recorded every minute and contain 

the mixed AP demand, as well as cloud coverage, wind speed, humidity, and temperature, 

as measured from the substation’s weather station. Due to practical concerns, individual 

power generation or weather data from the aforementioned photovoltaic sites should not be 

taken into account for the creation of the input dataset since these will normally not be 

available for a real-life implementation. In short, in this work, the substation’s historical 

measurements of load and weather conditions are available for the creation of a prediction 

model of the mixed AP demand of the grid. 

5.1.3 Methodology 

5.1.3.1 The ensemble algorithm 

Recognizing the individual advantages and disadvantages of the machine-learning methods, 

the proposed scheme seeks to create an ensemble that will successfully combine their merits 

in a single approach. For example, neural-network-based models such as RBF do exhibit 

superior prediction performance only as long as the input data point lies well within the 

domain of the input training dataset. On the other hand, linear and sparse prediction models, 
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in general, show much better extrapolative performance, even though they are unable to 

capture more complex, non-linear dynamics. In other words, by toggling between the robust 

linear models and the more sensitive but also more effective non-linear ones, a superior 

approach to load time series prediction can be constructed. 

In order to obtain the best possible performance of each sub-model, their optimal training 

configuration has to be determined. Starting with the simpler methods used, a linear and a 

sparse regression (SR) model are trained by least squares and fast iterative shrinkage 

thresholding algorithm, respectively, the latter being a faster implementation of the 

corresponding iterative shrinkage thresholding algorithm used for load forecasting [3]. In 

the case of the sparse coding approach, sparsity is induced by the ℓଶ norm and the 

regularization parameter was set by trial and error to 0.01. Subsequently, a random forest 

regressor is employed, where the number of decision trees is selected to be 15 so as to keep 

the training time at a reasonable level without reducing its predictive ability. As regards the 

non-linear methods, an SVR model with Gaussian kernel function was developed [105], 

using sequential minimal optimization for training and Bayesian optimization to optimize 

the model’s hyperparameters [106]. Two NN models are also introduced, featuring two 

different architectures. The first one is a two-layered MLP network trained by the 

Levenberg–Marquardt backpropagation algorithm [107], following a 10-fold cross-

validation. The neurons of each layer are chosen by trial and error as 20 and 10. It is noted 

that, in order to compensate for the performance dependence of the MLP training methods 

to initialization, the training procedure was conducted 10 different times, with different 

randomly initialized weights of the network. The second NN uses an RBF architecture and 

is trained using the fuzzy means technique [108], an algorithm that has found many 

successful applications due to the increased accuracy it provides [4] combined with fast 

training times [27]. In this work, the FM algorithm has been tested for a range of fuzzy sets 

between 4 and 15. When deployed online, the proposed approach evaluates a MAE metric 

on a rolling window of past predictions coming from a pool of trained models in order to 

create a weight vector for the next timestep prediction. An important item of the proposed 

method to be specified is the length of the rolling window. It can be easily inferred that this 

depends not only on the prediction horizon but also on the statistical properties of the 

predicted variable (a more volatile, non-stationary time series would require shorter rolling 

window horizons). Once the model pool has been populated by trained models, the optimum 

length of the rolling window is calculated in an exhaustive search manner over the same 

validation data in the range of 3–15 regressive timesteps. The proposed method operates as 

follows: For each timestep k, all trained models in the pool are evaluated concurrently. Their 



 

 

current prediction performance is assessed by applying the MAE metric on their previous 

predictions up to a rolling time window of length ℎ௪ 

𝑀𝐴𝐸௜(𝑘) =
∑ |𝑦ො௜(𝑘 − 𝑗) − 𝑦(𝑘 − 𝑗)|௛ೢିଵ

௝ୀ଴

ℎ௪
 (5.1.1) 

where 𝑦ො௜(𝑘) are the predictions of the i-th model and 𝑦 are the actual values of the 

timeseries at timestep k. Then, the MAE metric is used to calculate the prediction weight of 

each model for the next timestep 𝑘 + 1 

𝑤௜(𝑘 + 1) =
𝑀𝐴𝐸௜

ିଵ(𝑘)
∑ 𝑀𝐴𝐸௜

ିଵ(𝑘)ே
௜ୀଵ

 (5.1.2) 

where 𝑀𝐴𝐸௜ is the MAE of the i-th prediction model, N is the total number of models in 

the model pool, and 𝑤௜ is the prediction weight for the next timestep. The prediction output 

of the proposed method is calculated as the weighted sum of the model predictions 𝑦ො௜ 

𝑦ො(𝑘 + 1) = ∑ 𝑤௜(𝑘 + 1)ே
௜ୀଵ 𝑦ො௜(𝑘 + 1)   (5.1.3) 

A snapshot of a two-model example version of the proposed method is shown in fig. 5.1.1. 

Note that the proposed method combines the strengths of the individual models by placing 

greater weight on the current better-performing model for the time window of length hw. At 

first, both 𝑦ොଵ and 𝑦ොଶ models appear ineffective as individual predictors of the 𝑦 time series. 

However, after closer inspection, 𝑦ොଶ performs better for the first half of 𝑦, while 𝑦ොଵ for the 

 

Figure 5.1.1: Schematic for a two-model version of the proposed method, where y denotes the real 
load, 𝒚ෝ௜ the prediction of the i-th model, 𝒚ෝ the weighted prediction and k the current timestep. The 
ensemble model recognizes the superiority of 𝒚ෝଵ over 𝒚ෝଶ and, within the rolling window, adapts its 
weights accordingly, achieving highly accurate prediction for the next timestep k + 1. 
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second half. By placing greater weight on the model with the best past prediction 

performance within the horizon hw, the proposed method is able to toggle towards the best 

available model for the current circumstance. The result is an overall superior prediction 

performance. 

5.1.3.2 Data Preprocessing and Model Training 

Unavoidably, the substation measurements contain large periods of missing or corrupt data 

owing to sensor downtime or malfunction. For the scope of this case study, no missing data 

imputation has been performed-instead, corrupted data and outlier removal was the main 

focus of the preprocessing operation. Due to the sheer size of the dataset, manual 

preprocessing was impossible, mandating the creation of a bad data detection routine. 

Corrupted values were decidedly easy to detect since the corresponding AP signal exhibited 

unusually low variance around a constant value. However, outlier values on mixed load 

data were a challenge to successfully handle—a review of the challenges of this topic, as 

well as effective techniques, is available on [109]. The chosen technique must be 

sufficiently effective at classifying outliers in data, while avoiding false positives. In this 

case study, a rolling median window threshold approach is used, as it was found to 

compromise well between the aforementioned points. A two-day snapshot from the 

application of this algorithm to raw electrical load data is presented in Figure 5.1.2. The 

outliers usually originate from noisy sensor readings [110]. As part of data preprocessing, 

 

Figure 5.1.2: Operation of the rolling median threshold outlier detection algorithm. The data points 
marked as outliers exceed the median value of the time window multiplied by a user-specified 
threshold factor. 
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 a resampling step also took place, where each sample was defined as an average of 15 one-

Table 5.1.1.  Description of training variables of the forecasting models for the different prediction 
horizons examined in the case study. Each row of the table refers to the different groups of input 
variables, whereas the last row refers to the output variable. 
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Figure 5.1.3: Overview of the proposed model ensemble. Its application in mixed load forecasting 
comprises a series of steps, i.e. raw data acquisition, data preprocessing, collection of input 
variables, splitting of the dataset in a training and a testing subset, training of submodels, generation 
of the next AP forecast by each submodel, weighting of the individual predictions, and, lastly, 
calculation of the next AP final forecast. 



Development of optimization and data-driven model predictive control methods using computational intelligence 
techniques: Design and applications with emphasis on the economic operation of engineering systems 

Myron Papadimitrakis 
76 

minute measurements. 

The task of input variable selection is closely related to the prediction horizon. All models 

developed in the context of this study are considered autoregressive with exogenous 

variables, as they use inputs that consist of previous values of the output and weather data. 

A set of inputs was initially constructed for each prediction horizon based on the literature. 

Subsequently, the contribution of these variables to the prediction accuracy improvement 

was examined by trial and error, sometimes leading to shorter input sets for some of the 

horizons. Alternatively, other approaches, such as gradient boosting decision tree and 

Pearson correlation coefficient [111], attention mechanism [112], or Exploratory Data 

Analysis [113], are considered to have an effective contribution during input features 

reduction and selection. However, it is important to note that for each horizon, inputs remain 

the same for all machine-learning methods used in the present study. 

The selected input variables which all models accept could be divided into 4 categories, as 

described in Table 5.1.1, namely (a) current and past AP values, (b) difference between 

current and past AP values, (c) average of past AP values, and (d) weather measurements. 

It has to be noted that 𝒑(௧) values contain the current and past, average and difference 

measures of the AP values, 𝒑ෝ(௧ା௦) is the output, i.e., the mixed power load s 15-minute 

intervals ahead, whereas 𝒘(௧) components contain the respective weather-related inputs of 

cloud coverage, wind speed, humidity, and temperature, respectively. 

  

 

Once the preprocessing stage has been completed and input variables have been selected, 

the dataset was partitioned in a yearly manner in order to select the training datasets. At this 

point, an important consideration should be made. As mentioned in the introductory section, 

the load time series consists of a load and generation component. The statistical properties 

of both of these components are not static in relation to time, especially on a long-term 

scale. The network physically expands, incorporating more consumers as well as RES 

generators, each with different load and generation profiles, respectively. Therefore, it 

makes sense to select training datasets as close to the actual prediction interval as possible. 

Since the available data concern two successive years, the data corresponding to 2017 were 

selected as the training subset, and the data corresponding to 2018 were selected as the 

testing dataset. A point worth mentioning is that no permutation step is taking place before 

training. This means that the data used for testing are considered completely unseen for the 



 

 

proposed model, yielding a more reliable forecasting model. Due to confidentiality reasons, 

the real and predicted mixed load values have been normalized in order to be presented. 

Finally, it should be noted that models that require a validation step during training, namely 

models based on MLP and RBF NNs, do so using 10-fold cross-validation, while in the 

case of models that require multiple training runs for each training seed, the best-performing 

model on the validation data is kept. An overview of the implementation of the proposed 

model is provided in Figure 6, which illustrates, in the form of a block diagram, the entire 

sequence of steps that take place, starting from the acquisition of the raw AP data from the 

substation to the derivation of the final forecasts. It has to be highlighted that this figure is 

generic and does not refer to a particular prediction horizon.  

At this point, it should be mentioned that in order to evaluate the accuracy of the proposed 

method, it was considered appropriate to compare it with a model ensemble from the 

literature. To be more specific, a method proposed for load forecasting based on an 

ensemble of multiple MLP neural networks is employed [104]. Consequently, following 

the experimental protocol described in this work, a number of feed-forward NNs, with a 

single hidden layer, were trained on 14 different random initializations of the weights. For 

each initialization, the number of neurons in the hidden layer ranged from 3 to 50. The 

hyperbolic tangent sigmoid function was selected as the transfer function among the NNs’ 

layers, while all NNs were trained using the resilient backpropagation algorithm. The neural 

networks were arranged in ascending order with respect to the MAPE error on a common 

validation set, which, in this case, was defined as 20% of the training dataset. Then, the 

networks corresponding to the first 5 MAPE errors were selected, and the final forecasts 

were obtained by averaging the individual forecasts of these 5 models. 

 

5.1.4 Results & discussion 
In this section, the results of extensive simulations of the proposed model are presented. A 

set of scatterplots is shown in fig. 5.1.4, representing the actual versus the predicted values 

mixed load values for 1, 2, 3, 6, and 24-h-ahead horizons, respectively, through the whole 

testing dataset. The diagonal line implies a complete match between real values and 

forecasts. The axes are presented in units of normalized AP. 
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Additional results are provided in Table 5.1.2, which contains information about the 

forecasting performance of the proposed method in comparison to the individual machine-

learning methods comprising the model pool. In order to distinguish the results for different 

prediction time horizons, the table is divided into sections. The accuracy of model 

predictions is evaluated through the correlation coefficient (R2), RMSE and MAE, 

considering them as representative and efficient criteria [114]. For comparative reasons, the 

table also contains the values of the indices for all submodels, as well as their percentage 

of ranking in the first place. This quantity, labeled as “Rank 1” in Table 5.1.2, denotes how 

 

Figure 5.1.4 Scatterplots of actual versus predicted mixed load for (a) 15-min, (b) 1-h, (c) 2-h, (d) 
3-I, (e) 6-h, and (f) 24-h ahead prediction. The predicted values residing on the diagonal line are 
identical to the actual values. Each mark refers to a data point and shows the deviation of its 
predicted value from its actual value. 



 

 

many times each submodel scored the 1st rank among all submodels, i.e., achieved the 

Table 5.1.2: Performance of the proposed multi-model scheme, the MLP model ensemble of [104], 
and individual machine-learning models for each prediction horizon. The values of ΜΑΕ, RMSE, 
and R2, achieved by each model, are presented, as well as the percentage that each submodel 
achieved the lowest MAE among all submodels. 

Method R2 ΜΑΕ RMSE Rank1 
 15 min 

Proposed 0.98613 0.26120 0.4703 - 
MLP ensemble 0.9852 0.2760 0.4869 - 

MLP 0.98568 0.26936 0.4782 19.25% 
RBF 0.98574 0.27095 0.4773 19.94% 
LR 0.98562 0.26700 0.4793 10.49% 

SVR 0.98541 0.26931 0.4829 14.23% 
RF 0.98373 0.29531 0.5071 24.27% 
SR 0.98561 0.26715 0.4795 11.82% 

 1 h 
Proposed 0.93793 0.60224 0.9946 - 

MLP ensemble 0.9344 0.6330 1.0240 - 
MLP 0.91697 0.66794 1.1500 21.56% 
RBF 0.93253 0.64235 1.0374 20.77% 
LR 0.93168 0.64174 1.0438 8.91% 

SVR 0.93008 0.65376 1.0562 10.70% 
RF 0.92912 0.67311 1.0614 20.79% 
SR 0.93045 0.64079 1.0532 17.27% 

 2 h 
Proposed 0.88147 0.88279 1.3767 - 

MLP ensemble 0.8838 0.8965 1.3721 - 
MLP 0.84455 0.99479 1.5854 20.32% 
RBF 0.87052 0.96255 1.4472 18.32% 
LR 0.87233 0.93356 1.4377 11.20% 

SVR 0.86949 0.93765 1.4537 11.38% 
RF 0.86653 0.96596 1.4675 22.94% 
SR 0.86953 0.93189 1.4534 15.92% 

 3 h 
Proposed 0.84143 1.0599 1.5871 - 

MLP ensemble 0.8359 1.0859 1.6192 - 
MLP 0.78486 1.2504 1.8538 18.08% 
RBF 0.82483 1.1367 1.6727 20.14% 
LR 0.82241 1.1270 1.6843 8.74% 

SVR 0.81914 1.1512 1.6997 11.82% 
RF 0.81895 1.1391 1.7006 23.67% 
SR 0.81893 1.1229 1.7007 17.54% 

 6 h 
Proposed 0.83251 1.1144 1.6462 - 

MLP ensemble 0.8272 1.1951 1.6888 - 
MLP 0.83036 1.1758 1.6733 20.77% 
RBF 0.80289 1.2848 1.8037 21.31% 
LR 0.77800 1.3308 1.9141 10.34% 

SVR 0.75400 1.4300 2.0150 16.42% 
RF 0.81341 1.2119 1.7549 21.08% 
SR 0.77373 1.3413 1.9325 10.08% 

 24 h 
Proposed 0.78474 1.1835 1.8174 - 

MLP ensemble 0.7827 1.2372 1.8468 - 
MLP 0.78073 1.2313 1.8553 21.93% 
RBF 0.73576 1.4119 2.0367 21.83% 
LR 0.75712 1.3188 1.9526 11.16% 

SVR 0.73669 1.3031 2.0331 16.82% 
RF 0.76487 1.2694 1.9212 16.71% 
SR 0.74761 1.3419 1.9905 11.56% 
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lowest MAE.  

The aforementioned form of ranking of the submodels can be seen graphically in fig. 5.1.5. 

More specifically, each subfigure 5.1.5a–f refers to 15 min, 1, 2, 3, 6, and 24-h prediction 

 

 

 

 

Figure 5.1.5: Pie charts depicting the ranking of the submodels included in the proposed model 
ensemble for (a) 15-min, (b) 1-h, (c) 2-h, (d) 3-h, (e) 6-h, and (f) 24-h ahead prediction. Each pie 
chart refers to a ranking position and shows the percentage that each submodel was ranked in that 
position. Each submodel is represented by a different color and pattern. 

MLP RBF LR SVR RF SR



 

 

horizons, respectively. Each one of these subfigures contains 6 pie charts, denoting 1st to 

6th rank for the models. To be more specific, each pie chart shows the percentages 

corresponding to how many times each submodel ranked in the respective place, according 

to its weighted MAE. For example, the 2nd pie of Figure 5.1.5a implies that for 15 min-

 

 

 

Figure 5.1.6: Results for a randomly selected 12-h window for (a) 15-min, (b) 1-h, (c) 2-h, (d) 3-
h, (e) 6-h, and (f) 24-h ahead predictions. Subgraphs labeled 1 depict actual and predicted value 
results, whereas subgraphs labeled 2 depict the best submodel performance results. 
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ahead forecasting, the MLP submodel ranked in the 2nd place among all models with a 

percentage of 17%, the SR submodel with a percentage of 21%, etc. Finally, analytical 

graphs are provided for each prediction time horizon, with Figure 5.1.6a1–f1 to depict 

forecasts of 15 min, 1, 2, 3, 6, and 24 h-ahead, respectively, where a randomly chosen 12-

h time window (from 09:00 to 21:00) of real AP values and the respective predictions are 

shown for an arbitrarily chosen day belonging to the testing subset (the same day and the 

same window is used for all horizons). These graphs are accompanied by Figure 5.1.6a2–

f2, which indicates which submodel has the largest weight for every predicted data point 

using a bar plot. 

At this point, it should be pointed out that providing accurate predictions is indeed a 

challenging task due to both grid and data-related reasons. First, the system’s expandability 

can be a limiting factor for the accuracy of future forecasts. At the same time, this is 

reinforced by inherent characteristics of the load time series, such as non-linearity and 

uncertainty. In the face of these challenges, the proposed method seems to be quite 

effective, providing reliable predictions. From fig. 5.1.4a–f, conclusions are drawn about 

the quality of predictions. When the prediction time horizon is too short (fig. 5.1.4a), the 

forecast error is distributed close to the diagonal line, which implies quite accurate 

predictions. With increasing prediction horizon, the forecasts become less accurate (fig. 

5.1.4b–f), as obviously, the pairs of real and predicted values are scattered further from the 

ideal line.  

Looking at Table 5.1.2, it is observed that the proposed model outmatches all individual 

submodels, and the competitive MLP model ensemble in terms of MAE, and R2 and RMSE. 

Moreover, this conclusion applies to all prediction time horizons. As the prediction horizon 

gets longer, the forecasting error increases, which is absolutely reasonable. The only 

exceptions are the R2 and RMSE values obtained by the MLP model ensemble for 2 h 

prediction horizon, which slightly exceeds those of the proposed model. However, these 

differences cannot be considered significant as they are marginal, while on the other hand, 

the corresponding value of the MAE index clearly favors the proposed method. A result 

worth mentioning is the improvement of the multi-model performance over the current best 

sub-model that occurs in most cases while the horizon is getting longer. More specifically, 

the reduction of MAE that the proposed approach achieves over the best of the individual 

models ranges from 0.03411 to 0.3156. Such an improvement in performance could be 

partly explained by the occurrence of uncertainty in the load time series. As the prediction 



 

 

horizon is getting longer, the level of uncertainty is also increased, which is better addressed 

by the ensemble model than each individual submodel alone.  

Regarding the efficiency of the individual models of the pool, the results of MAE, RMSE, 

and R2 show that there is not just one model to prevail over the others in all cases. For the 

shorter prediction horizons and, more specifically, up to 3 h, LR and SR appear to achieve 

marginally smaller forecasting errors than their non-linear counterparts. Although the non-

linearities are an intrinsic characteristic of mixed load [115], this behavior becomes more 

apparent as the prediction horizon is getting longer. As a result, models which are based on 

LR are able to provide robust results for very short-term forecasts. On the other hand, one 

major advantage of neural networks is their capability of modelling non-linear systems. An 

important observation is that neural networks appear to perform better for longer prediction 

horizons, and this can be attributed to the fact that, as the prediction horizon is getting 

longer, the non-linear properties of the load are becoming more dominant. Therefore, when 

predictions for longer horizons are required, MLP neural networks take the lead. However, 

the same does not apply to RBF networks. As stated above, in order for RBF networks to 

perform well, dense and suitable data are required. Consequently, their performance is 

reduced for 24-h prediction horizons, where the input information is poorer due to the 

resampling process. Although the remaining models of the pool, SVR and RF networks, 

present a moderate predictive capability, they contribute positively to the overall 

performance of the proposed model. This conclusion confirms the need to use multiple 

models in order to enhance the reliability of load predictions. 

Several quite interesting conclusions can also be drawn from the pie charts in Figure 5.1.5. 

Each percentage in the pies represents the degree to which the respective model yielded the 

highest weight or equivalently the lowest MAE. The highest percentages of the first rank 

(above 18%) belong to MLP, RBF, and RF, and this applies for all horizons except that of 

24 h, where SVR takes the place of RF. RF, in particular, scores lower MAE most of the 

time when the prediction horizon does not exceed 3 h. Beyond that point, RBF neural 

networks outperform the rest of the submodels. An interesting observation is that the 

aforementioned models have equally high percentages in the sixth rank. Thus, these 

methods either achieve very good or poor performance. This observation is quite significant 

and strongly enhances the usefulness and effectiveness of our proposed method. The 

percentages of the rest of the pool models are, in most cases, divided into the intermediate 
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rankings, with the exception of the high percentage of SVR in the sixth rank for the 6-h 

horizon. 

5.1.5 Conclusions and Future Prospects 
In this section, a multi-model ensemble prediction system was presented for the AP 

prediction for various horizons. It should be noted here that a limitation of the present study 

is that it did not involve predictions for long-term horizons. Although investigating longer 

prediction horizons is outside the scope of this work, the proposed model ensemble could 

serve as the basis for designing such a tool. On the other hand, it is quite probable that a 

different set of input variables, presenting higher correlation with the long-term evolution 

of the mixed load would be needed in this case. Another promising direction for future 

research towards this direction includes the integration of graph neural networks, which 

have been proved to be a promising candidate due to their ability to successfully interpret 

spatiotemporal features of the input data. 

Driven by the increased performance of the proposed methodology in mixed load 

forecasting, its application could be extended to other critical sectors of the smart grid, such 

as forecasting the electricity price and the production from RES, in order to more efficiently 

schedule conventional sources. Arguably, the most important smart grid operational aspect 

that the proposed load prediction scheme can be incorporated in is the real-time power 

dispatch, since accurate short-term load predictions are paramount for the formulation of 

the grid’s optimal power flow problem. 

 



 

 

5.2 Optimal Power Flow using Community-detection-based Cooperative 

Particle Swarm Optimization 

The penetration level of photovoltaic (PV) systems is set to increase in the following years 

and already distribution networks (DNs) are straining to overcome the adverse voltage 

effects caused by reverse power flows and intermittent generation phenomena. Moreover, 

regular voltage optimization approaches that employ PV inverters as control devices, 

cannot deal effectively with the escalating dimensionality of the problem.  

This section introduces a reactive power optimization method for PV-heavy DNs based on 

cooperative particle swarm optimization (PSO). The proposed approach makes use of 

multiple swarms, each swarm containing a group of design variables that are interrelated 

with respect to the optimization objective; a community detection algorithm is employed to 

assign the design variables to the different swarms, by identifying voltage-decoupled zones 

of the grid. The different swarms cooperate by exchanging information in order to better 

explore the search space, while still solving the optimization problem as a whole. The 

feasibility and effectiveness of the proposed scheme are demonstrated through comparisons 

with other approaches for various load and generation scenarios on the IEEE 123-bus 

distribution system. 

5.2.1 Introduction to power dispatch in distribution grids 
So far, reactive power optimization strategies using traditional voltage control devices have 

proven inadequate to address these concerns [116]. In the past, PV inverters were prohibited 

from contributing to reactive power compensation (RPC), constantly operating on a unity 

power factor and dealing with any overvoltage issues only by active power curtailment 

(APC). Indeed, even though this was the established policy for European DSOs [117], its 

effectiveness is challenged [118]: traditional control means, usually implemented on a 

substation level, could not address local voltage deteriorations caused by high PV 

penetration distributed over the grid [119]. Today, PV inverters have emerged as suitable 

control devices, as indicated by various research works [120], [121], and as reflected by the 

increasing confidence of DSOs in including them in the optimal reactive power flow 

(ORPF) problem formulation [117]. 

Traditionally, the ORPF problem has been addressed using standard mathematical 

optimization methods, such as gradient-based and interior point methods [11]. Since these 

methods came with certain disadvantages (the main one being their inability to handle non-

convexity), research interest turned towards metaheuristic methods, which were inherently 
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better equipped for the problem at hand: firstly, their stochastic nature allowed them to 

overcome local minima, and secondly, their utilization of multiple solution vectors enabled 

augmented search domain exploration capabilities. One of the most important 

metaheuristics is particle swarm optimization (PSO), which makes use of a population of 

potential solutions represented by particles that exchange information in the context of the 

problem’s search space. The PSO method was first applied in the context of OPF in [68], 

and since then multiple of its variants have been developed that consider technical, 

economic and environmental optimization objectives [31], [122]. Still, the ever-increasing 

inclusion of PV inverters in the ORPF calculations has led to a stark increase in the number 

of design variables to optimize; unfortunately, this surge in the dimensionality of the 

optimization problem severely compromises the exploration and exploitation capabilities 

of metaheuristic methods, including PSO [123]. 

To cope with the problem of increasing dimensionality, latest research is mainly oriented 

towards more sophisticated, network partition-based approaches that seek to utilize the 

underlying topological structure of the grid [124]. The primary motivation has been the 

construction of distributed control schemes, requiring the network to be broken up into 

loosely coupled zones: [120] applies clustering to formulate an alternating direction method 

of multipliers algorithm for the ORPF of a DN, while use grid partitioning methods in order 

to identify islands in active distribution networks. A secondary motivation for partition-

based approaches has been the need to reformulate the original problem into tractable and 

individually solvable optimization problems, for decentralized schemes [125] or two-level 

control strategies [126], [127]. The success of this reformulation originates from the basis 

of network partitioning: if the partitions are created in terms of bus voltage sensitivity with 

respect to control variable perturbations, then the voltage optimization objective of the 

resulting zone-based problems can be pursued in an independent manner. Such an example 

is shown in [121], where the voltage profile of each voltage-decoupled zone of the DN is 

successfully optimized using a PSO algorithm, by toggling the setpoints of PV inverters in 

the zone independently. 

On the other hand, decentralized optimization schemes fail to take into account possible 

interactions between zones, as complete voltage decoupling is only an ideal assumption. 

There exist though a certain class of metaheuristic optimization methods that can exploit 

the same premise as decentralized schemes, i.e. grouping the design variables based on the 

effect they collectively have on the objective function, while still solving a unified 

optimization problem in a centralized way; these methods are called “cooperative” and have 



 

 

proven very effective in tackling high dimensional problems. The success of the 

aforementioned techniques in complex multimodal optimization has been highlighted in 

many works [39], [40] involving diverse optimization problems [128]. To the author’s best 

knowledge though, no application of cooperative optimization methods on ORPF exists [1]. 

In this Section, a novel cooperative PSO (CPSO) framework is presented for the 

optimization and control of PV-heavy DNs. The proposed scheme employs multiple 

swarms to optimize different zones of the DN, where each zone contains design variables 

that are interrelated with respect to the optimization objective. Furthermore, in order to 

assign efficiently the design variables to the different swarms, a technique based on the 

Girvan-Newman community detection algorithm [129] is proposed. It should be noted that 

grouping the design variables to different zones/swarms is used only to facilitate the 

algorithm to better explore the search space; nevertheless, the objective function takes into 

account the whole grid, solving the optimization problem in a centralized way. Thus, a main 

advantage of the proposed scheme is that it retains its effectiveness even in networks with 

weakly-decoupled zones (such as networks with a moderate degree of meshing [125]), in 

contrast to decentralized voltage optimization schemes. Moreover, the CPSO algorithm 

exhibits robust characteristics, as it maintains a high degree of exploration inherent in 

population-based algorithms, while also employing a zone-based exploitation capability of 

candidate solutions that is necessary in order to overcome the challenges present in DNs. 

These characteristics allow it to efficiently cope with the high rate of penetration of PV 

systems that increases the optimization problem dimensionality. The proposed method is 

assessed for voltage deviation minimization, as well as the minimization of real power 

losses for an IEEE distribution grid, under various load and generation profiles.  

 

5.2.2 Optimal Power Flow Problem Statement 
The primary task of OPRF is to ensure that the bus voltage magnitudes stay within 

operational limits. This is especially needed in PV-heavy distribution grids where cloud 

coverage can obscure specific grid areas, thus rendering traditional control means with a 

grid-wide effect unsuitable. The communication infrastructure of the smart grid paradigm 

has allowed the inclusion of PV inverters as reactive power control devices: by tweaking 

the power factor of a PV inverter, an almost real-time dispatch of reactive power at the point 

of common coupling is allowed, resulting in increased control versatility. Fig. 5.2.1 shows 
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the inverter capability curve; the inverter’s power rating, coupled with the APC that is 

applied on the PV’s generated power, denote its operating bounds in PQ space. 

The formulation of the voltage deviation minimization problem for a PV-heavy smart 

distribution grid with controllable inverters is described below: 

min
௨∈ℝ೙ೠ

𝑓(𝑢) (5.2.1a) 
                s.t.     𝑃 ೔ − 𝑃஽೔ = 𝑉௜ ∑ 𝑉௝൫𝐺௜௝ 𝑐𝑜𝑠𝜃௜௝ + 𝐵௜௝ 𝑠𝑖𝑛𝜃௜௝൯ ே್ೠೞ

௝ୀଵ  (5.2.1b) 

𝑄ீ೔ − 𝑄஽೔ = 𝑉௜ ෍ 𝑉௝൫𝐺௜௝ 𝑠𝑖𝑛𝜃௜௝ + 𝐵௜௝ 𝑐𝑜𝑠𝜃௜௝൯
ே್ೠೞ

௝ୀଵ
 (5.2.1c) 

𝑉௟௢௪௘௥ ≤ 𝑉௜ ≤ 𝑉௨௣௣௘௥ (5.2.1d) 
𝐴𝑃𝐶௞ ≤ 0.8 (5.2.1e) 

−90° ≤ 𝜑௉௏ഉ ≤ 90° (5.2.1f) 
𝑄௞,௠௜௡ ≤ 𝑄௞ ≤ 𝑄௞,௠௔௫ (5.2.1g) 

  

where:  

𝑃 ೔ = ൜
𝑃௉௏ೖ 𝐴𝑃𝐶௞, 𝑖 ∈ 𝐾

0, 𝑖 ∉ 𝐾  (5.2.2a) 

𝑄ீ೔ = ൜𝑄௞, 𝑖 ∈ 𝐾
0, 𝑖 ∉ 𝐾  (5.2.2b) 

𝑄௞,௠௜௡ = −ට𝑆௞
ଶ − ൫𝑃௉௏ೖ 𝐴𝑃𝐶௞൯

ଶ
 (5.2.2c) 

𝑄௞,௠௔௫ = ට𝑆௞
ଶ − ൫𝑃௉௏ೖ 𝐴𝑃𝐶௞൯

ଶ
 (5.2.2d) 

where 𝑁௕௨௦ is the number of buses in the network and 𝑃 ೔, 𝑄ீ೔,  𝑃஽೔, 𝑄஽೔ are the active and 

reactive power generation and demand in each bus i, respectively; 𝐵௜௝ and 𝐺௜௝ are the 

susceptance and conductance of the branch connecting the nodes i and j, respectively, while 

𝑉௜ and 𝑉௝ are their corresponding voltage magnitudes; 𝐴𝑃𝐶௞, 𝜑௉௏ഉ  and 𝑆௞ are the APC 

percentages, the power factor angle, and the nominal power rating of the kth inverter, 

respectively; 𝑃௉௏ೖ  is the generated active power of the kth PV panel, while 𝑄௞ is the 

 

Figure 5.2.1: Reactive capability curve of a PV inverter in PQ space. 

(1-APC)



 

 

generated reactive power of the kth inverter. Lastly, K is the set of bus numbers where PV 

installations are placed, and has a length of 𝛮௉௏. 

The objective 𝑓(𝑢) of the optimization problem is, in the case of voltage deviation 

minimization (VDM): 

𝑓(𝑢) = ෍ |1 − 𝑉௜|
ே್ೠೞ

௜ୀଵ

 (5.2.3) 

where the aim is to minimize the sum of absolute bus voltage magnitude deviations 𝑉௜ from 

the nominal value of 1 p.u, for every bus i. In the case of real power losses minimization 

(RPLM): 

𝑓(𝑢) = ෍ |𝐼௞|ଶ

ே೗೔೙೐ೞ

௞ୀଵ

𝑅௞ (5.2.4) 

where 𝐼௞ is the magnitude of the electrical current through the resistance 𝑅௞ of line k. The 

design variable vector u contains the APC and reactive power injection of each PV 

installation: 

𝑢 = ൣ𝑄ଵ, 𝐴𝑃𝐶ଵ, 𝑄ଶ, 𝐴𝑃𝐶ଶ, … 𝑄௺ುೇ, 𝐴𝑃𝐶௺ುೇ൧ (5.2.5) 

The optimization problem constraints consist of the power flow equations (5.2.1b,c), and 

the network operational constraints (5.2.1d-g). In this work, 𝑉௟௢௪௘௥ and 𝑉௨௣௣௘௥ are set as 

0.95, 1.05 and 0.98, 1.02 for the VDM and RPLM objectives, respectively; tighter bounds 

must be used in the case of RPLM in order to ensure voltage quality, since the voltage 

deviations are not minimized explicitly. In any case, operational constraint (5.2.1d) exists 

in order to make sure that no single bus voltage magnitude enters an unsafe operation zone. 

Next, APC percent is bounded to 80% in order to promote RES penetration in the grid. It is 

assumed that the 𝜑௉௏ഉ of each inverter is unbounded, because the consideration of harmonic 

distortion effects of high-power factor angles is beyond the scope of this research. To 

summarize, Problem (5.2.1) is a non-convex constrained optimization problem belonging 

to the NP-hard class of problems. The inclusion of a realistic modeling of the inverter’s 

RPC capability as a function of its APC (as opposed to treating it as a bounded variable) 

adds to the total constraint complexity, while the fairly large number of design variables (2 

per PV installation) contribute to high dimensionality. 
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5.2.3 Methodology 

5.2.3.1 Distribution network partitioning 

As described earlier, there exist multiple advantages in partitioning a large distribution grid 

in terms of facilitating the solution of the optimization problem. Apart from practical 

motivations such as the decentralization of grid control, the partitioning of the optimization 

problem into smaller ones can alleviate the high problem dimensionality that is nowadays 

inherent in grids with a high penetration of distributed generation. More importantly for 

this work, cooperative optimization schemes can especially exploit problem partitioning in 

order to produce higher-quality solutions. 

Since the objective of interest is to minimize the voltage deviations of the grid by optimizing 

the active and reactive power of distributed generators, one should seek to partition the 

aforementioned grid on a voltage sensitivity basis [124]. In particular, by accounting for 

the underlying dynamics of the network, areas that are loosely-coupled in terms of voltage 

fluctuation incurred by a reactive, or active power injection on a specific bus can be 

identified. Considering only the first-order perturbations on the original power flow 

equations (5.2.1b,c), a linearized set of equations occur: 

ቂ𝛥𝜶
𝛥𝑽ቃ = ൤

𝑺ఈ௉ 𝑺ఈொ
𝑺௏௉ 𝑺௏ொ

൨ ൤𝛥𝑷
𝛥𝑸൨ (5.2.6) 

Here, 𝛥𝜶 ∈ ℝଵ×ே್ೠೞ is the vector of incremental changes of the voltage angle, 𝛥𝑽 ∈

ℝଵ×ே್ೠೞ is the vector of incremental changes of the voltage magnitude, and 𝛥𝑷 ∈

ℝଵ×ே್ೠೞ, 𝛥𝑸 ∈ ℝଵ×ே್ೠೞ are the perturbations of the reactive and active power, respectively. 

The relationship between reactive/active power perturbations and bus voltage magnitudes 

and angles is represented by sensitivity matrices; 𝑺ఈ௉ ∈ ℝே್ೠೞ×ே್ೠೞ, 𝑺ఈொ ∈ ℝே್ೠೞ×ே್ೠೞ, 

𝑺௏௉ ∈ ℝே್ೠೞ×ே್ೠೞ and 𝑺௏ொ ∈ ℝே್ೠೞ×ே್ೠೞ are the voltage angle and magnitude sensitivity 

matrices, with regards to active and reactive power, respectively. Keeping in mind the 

original motivation for grid partitioning, the 𝑺௏௉ and 𝑺௏ொ sensitivity matrices are of interest, 

since their physical interpretation refers to the propagation of voltage magnitude variations 

through the distribution grid, due to active and reactive power injections at a bus. For 

example, the element i, j of the 𝑺௏ொ sensitivity matrix represents the sensitivity of the i-th 

bus voltage magnitude to the injected reactive power at bus j. 

In order to yield the optimal grid partitions, one needs to formulate a community detection 

problem [130]. Girvan and Newman proposed an algorithm for community detection in 

complex networks that does not require a predetermined number of communities (hereby 



 

 

referred to as “partitions”) [129]. The algorithm accepts a weighted adjacency matrix (or 

edge-weight matrix) that corresponds to the undirected graph structure of the electrical grid 

and generates the optimal partitions 𝐶∗ = ൛𝐶ଵ
∗, 𝐶ଶ

∗, … , 𝐶ே೎
∗ ൟ based on a modularity index ρ: 

𝜌 =
1

2𝑚
෍ ቎ ෍ ቆ𝑊௜௝ −

𝑘௜𝑘௝

2𝑚
ቇ 𝜃(𝑖, 𝑗)

ே್ೠೞ

௝

቏
ே್ೠೞ

௜

 (5.2.7a) 

𝑚 = (1 2⁄ ) ෍ ෍ 𝑊௜௝
௝௜

,   𝑘௜ = ෍ 𝐴௜௝
௝

 (5.2.7b) 

Here, 𝑊௜௝ is the weighted adjacency matrix, m is the total average edge weight matrix and 

𝑘௜ is the average weight of all edges connected to the i node. 𝜃(𝑖, 𝑗) is a membership 

function for nodes belonging in the same partition 𝐶௞, so that: 

𝜃(𝑖, 𝑗) = ൜1, 𝑗 ∈ 𝐶௞
0, 𝑗 ∉ 𝐶௞

,   𝑖𝑓 𝑖 ∈ 𝐶௞ (5.2.8) 

Since the optimal partitions are sought on a voltage magnitude sensitivity basis, the 

weighted adjacency matrix 𝑊௜௝ ∈ ℝே್ೠೞ×ே್ೠೞ is: 

𝑊௜௝ = ቆ
𝑺௏௉

௦ + 𝑺௏ொ
௦

2
ቇ ∘ 𝐴௜௝ (5.2.9) 

Here, ∘ denotes element-by-element multiplication, and 𝐴௜௝ is the graph’s adjacency matrix 

(𝐴௜௝ = 1 if an edge from node i to j exists, 𝐴௜௝ = 0 if not). 𝑺௏௉
௦ , 𝑺௏ொ

௦  are symmetric versions 

of the 𝑺௏௉ and 𝑺௏ொ matrices, created by averaging between the original matrices and their 

own transposition: 

𝑺௏௉
௦ =

𝑺௏௉ + 𝑺௏௉
்

2
, 𝑺௏ொ

௦ =
𝑺௏ொ + 𝑺௏ொ

்

2
 (5.2.10) 

The motivation behind this step is the near-unity 𝑅 𝑋 ⁄ ratio of distribution grids [131], 

which corresponds to equal bus voltage sensitivity to active and reactive power injections. 

The result is a symmetric weighted adjacency matrix 𝑊௜௝ that weighs the network buses in 

terms of voltage sensitivity to reactive and active power perturbations, with higher weight 

corresponding to a higher degree of voltage coupling [121]. In the end, the Girvan-Newman 

algorithm [129] can be applied to the community detection problem, in order to yield the 

optimal partitions. These partitions will contain buses that are highly coupled among 

themselves with respect to voltage fluctuations. 

5.2.3.2 Cooperative PSO for partitioned electrical networks 
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The concept of cooperation between candidate solutions of a population has been applied 

in various metaheuristics, such as evolutionary algorithms and PSO [132], [133]. 

Specifically for the PSO category, the first cooperative instance that occurred was the 

CPSO-S framework [134], which splits a solution vector of n parts into exactly n 1-D 

particles; a generalized version of this approach is introduced in [135], where the solution 

vector is split into Nc groups with Nc ≤ 𝑛, where n is the length of the solution vector. It is 

obvious that a prerequisite for the implementation of cooperative approaches is the 

assortment of the n design variables in Nc groups. 

Therefore, since design variables are grouped on the basis of interrelation with respect to 

the optimization objective (that is, depending on whether their perturbations have a similar 

system-wide effect), it becomes apparent that for the smart grid voltage optimization 

problem, control devices that reside in a highly-coupled network zone should be grouped 

together. By utilizing information about the underlying electrical dynamics of the DN, the 

partitioning algorithm described in section 2.2 yields the voltage-decoupled zones 𝐶∗ , 

which in turn indicate the swarms 𝑃௞, k=1,2,.., Nc, where Nc is the total number of swarms: 

𝑃௞ = ቄ𝑄ଵ, 𝐴𝑃𝐶ଵ, 𝑄ଶ, 𝐴𝑃𝐶ଶ, … , 𝑄௺ುೖ, 𝐴𝑃𝐶௺ುೖ
ቅ (5.2.11) 

Here, 𝛮௉ೖ is the total number of PV installations that reside in network partition 𝐶௜
∗ (it is 

assumed that 𝛮௉ೖ ≥ 1 for every 𝐶௜
∗). For each swarm 𝑃௞, the particle position 𝑃௞𝑥௜௝(𝑡) and 

velocity 𝑃௞𝑣௜௝(𝑡)  are updated according to: 

𝑃௞𝑣௜௝(𝑡 + 1) = 𝑤𝑃௞𝑣௜௝(𝑡 + 1) + 𝑐ଵ𝑟ଵ,௜(𝑡)ൣ𝑃௞𝑦௜௝(𝑡) − 𝑃௞𝑥௜௝(𝑡)൧
+ 𝑐ଶ𝑟ଶ,௜(𝑡)ൣ𝑃௞𝑦ො௜(𝑡) − 𝑃௞𝑥௜௝(𝑡)൧ 

(5.2.12a) 

𝑃௞𝑥௜௝(𝑡 + 1) = 𝑃௞𝑥௜௝(𝑡) + 𝑃௞𝑣𝑖𝑗(𝑡 + 1) (5.2.12b) 

Where 𝑃௞𝑦௜௝(𝑡) stands for the best personal position of particle i, in dimension j for swarm 

k at iteration t and 𝑃௞𝑦ො௜(𝑡) denotes the global best position vector of particle i for swarm k 

at iteration t; 𝑟ଵ,௜(𝑡) and 𝑟ଶ,௜(𝑡) are randomly sampled numbers from a uniform distribution 

in the range [0 1], while 𝑐ଵ, 𝑐ଶ denote the acceleration coefficients and 𝑤 the inertia 

coefficient. In order to control the exploration-exploitation trade-off, a velocity clamping 

constant 𝑃௞𝑣௠௔௫ is employed to regulate the particle positions in the range 

[−𝑃௞𝑣௠௔௫ 𝑃௞𝑣௠௔௫]. 

As each swarm 𝑃௞ contains a distinctive part of the original 𝒖 vector (14), the right 

cooperation between the swarms’ agents is essential in order to calculate the fitness function 

for the overall optimization problem. This task is feasible by utilizing a context vector 𝒖௉ೖ 



 

 

formed by linking each of the particle positions of swarm Pk with the global best positions 

of the remaining swarms: 

 

 

𝑢௉ೖ = ൣ𝑃ଵ 𝑦ො, … , 𝑃௞ିଵ 𝑦ො, 𝑃௞𝑥௜, 𝑃௞ାଵ 𝑦ො, … , 𝑃ே೎ 𝑦ො൧ (5.2.13) 
  

Algorithm 5.2.1 Cooperative particle swarm algorithm 
Input:  𝑄ீ, 𝑄஽, 𝑃 , 𝑃஽, 𝑉 : Network parameters 
    s: Swarm size population 
    Iter: Maximum number of iterations 
    c1, c2 w, 𝑃௞, 𝑃௞𝑣௠௔௫: PSO configuration parameters 

Output: 𝒖ෝ optimized PV installation control vector 
1: Initialize the particles 𝑃௞𝑥௜ for all swarms 𝑘 at random positions 
2: Calculate fitness 𝑓൫𝒖௉ೖ൯ and set global bests for all swarms 𝑃௞𝑦ො(0), k=1,2,…, Nc  
3:   For =1: Iter: 
4:      For k = 1: Nc 
5:            If stagnation criterion is met for kth swarm:   
6:              reset particles 𝑃௞𝑥௜(𝑡) 
8:      For =1: s: 
9:            Calculate fitness 𝑓൫𝒖௉ೖ൯ and 𝑃௞𝑦௜(𝑡) 
11:          Calculate global best 𝑃௞𝑦ො(𝑡) for swarm k  
12:          For i =1: s: 
13:              For j=1: 𝛮௉ೖ: 
14:         Update velocity 𝑃௞𝑣௜௝(𝑡 + 1) 
15:         Update particle's position 𝑃௞𝑥௜௝(𝑡 + 1) 

This means that despite the fact that the network is partitioned into several distinct sub-

swarms, the fitness function evaluation for each swarm’s individual particle is estimated 

using the whole design vector. After forming the context vector 𝒖௉ೖ , the fitness function 

evaluation 𝑓൫𝒖௉ೖ൯ takes place by utilizing the objective function f with respect to swarm k.  

A problem often encountered by PSO-based schemes is stagnation, which is related to the 

problem of particles being trapped in suboptimal solutions during the optimization process.  

This phenomenon limits the space exploration capabilities of the particles and is alleviated 

by implementing a resetting criterion which is described with detail in [128]. This is 

expected to increase the effectiveness of the method, since Problem (5.2.1) contains 

multiple local minima, when applied either for RPLM or VDM. The pseudocode for the 

proposed CPSO framework is given in Algorithm 5.2.1. 

The cooperative PSO approach presents three important features with respect to the ORPF 

problem. First, the fitness function is evaluated after updating each part of the solution 
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vector that corresponds to the respective swarm particles, resulting in finer-grained credit 

assignment. This addresses the classic “two steps forward - one step back” problem often 

encountered by PSO schemes, where a solution vector update improves one part of the 

solution vector but impairs another. This phenomenon is especially evident for the case of 

a network with voltage decoupled zones, where a part of a solution vector that corresponds 

to a specific zone may converge faster than others. The second advantage is related to the 

increased number of the combinations of different individuals that correspond to different 

swarms, boosting in this way the diversity of the solution context vector. Lastly, the third 

advantage refers to the robustness of the algorithm, even when applied in networks with 

weakly voltage-decoupled zones; CPSO consolidates the partitioned design variables in one 

design vector at the end of every iteration, thus taking into account any inter-zonal effects. 

 

5.2.4 Results 

5.2.4.1 Setup 

The IEEE 123-bus distribution system [136] is elected as a suitable testbed for the 

simulation studies. Its large scale can accommodate a high number of PV installations, 

which warrants the application of cooperative optimization methods. Moreover, it is a well-

studied case in the field of zone-based voltage control, therefore providing a reference point 

for discussion [120], [121]. The original IEEE 123-bus is an unbalanced system, containing 

multiple voltage regulators as well as a tap transformer at the slack bus. For this study, 

transformer and regulator taps are considered fixed; this way, only the PV inverter 

 

Figure 5.2.2: The partitioned IEEE 123 network. Red nodes denote PV installations. 



 

 

capability is considered for the reactive power optimization. Lastly, the bus numbering is 

rearranged for clarity. The modified IEEE 123-bus network is shown in fig 5.2.2; here, 

colored areas denote the network partitions as obtained by the application of the community 

detection algorithm described in section 2.2. Next, 20 PV installations are placed 

throughout the grid, spanning capacities from 140-280 kW. Each inverter’s nominal power 

is +10% of its respective installed PV capacity, as is usual practice. The inverters can curtail 

the generated PV power and control the power factor of the injected power in the grid. 

  

To simulate different DN states, three different scenarios are created. The first two are 

snapshot scenarios (i.e., static), and are used in order to infer statistical conclusions for the 

performance of the proposed method. To be more specific, scenario 1 is used to assess 

performance for the VDM objective and represents the phenomenon of partial cloudiness, 

resulting in severe undervoltage. Scenario 2 is employed to evaluate the performance of the 

RPLM objective and assumes full solar irradiance, resulting in overvoltage in certain buses 

of the grid. Scenario 3 is used to demonstrate the applicability of the proposed method, and 

refers to the hourly setpoint optimization of PV inverters for a full day; here, both VDM 

and RPLM objectives are addressed. PV system specifications and information for 

scenarios 1 and 2 are shown in Tables 5.2.1, 5.2.2. The load scaling factor, as well as the 

solar irradiation percent for each network zone corresponding to scenario 3 are shown in 

fig. 5.2.3. In order to illustrate the effectiveness of the proposed method, two competing 

schemes are introduced: the first scheme, based on [121] formulates a decentralized 

optimization problem for each network partition, and solves each problem independently 

using a PSO algorithm with adaptive weights (the scheme is hereby referred to as “dPSO”). 

The second scheme applies a standard centralized PSO algorithm [137] to the original 

problem. The proposed method, as well as the two competing schemes, are contrasted with 

the network’s default state, where all PV inverters operate at unity power factor and zero 

APC. The tuning parameters for each one of the competing schemes are shown in Table 

5.2.3; they were selected based on indicative values found in the literature [1], [123], [138], 

in conjunction with a trial-and-error procedure. To be more specific, exponentially 

decreasing inertia was selected for the proposed CPSO method, while an adaptive inertia 
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technique [137] was found to produce the best results for standard PSO and dPSO. Velocity 

clamping constants were selected to a value equal to 20% of the range of each design 

variable. Finally, each method uses the same value for the acceleration coefficients c1 and 

c2. 

Table 5.2.1 Most common optimization objectives 

# Bus PV 
Capacity 

Power 
rating Zone # Bus PV 

Capacity 
Power 
rating Zone 

1 6 140 155 𝐶ଵ 11 100 280 310 𝐶ଷ 
2 10 140 155 𝐶ଵ 12 119 280 310 𝐶ଷ 
3 117 140 155 𝐶ଵ 13 109 280 310 𝐶ଷ 
4 27 180 200 𝐶ଶ 14 111 280 310 𝐶ଷ 
5 26 180 200 𝐶ଶ 15 78 280 310 𝐶ସ 
6 41 180 200 𝐶ଶ 16 88 280 310 𝐶ସ 
7 45 180 200 𝐶ଶ 17 92 280 310 𝐶ସ 
8 50 180 200 𝐶ଶ 18 82 280 310 𝐶ସ 
9 55 140 155 𝐶ଵ 19 21 180 200 𝐶ଶ 

10 68 280 310 𝐶ଷ 20 63 280 310 𝐶ଷ 
 
Table 5.2.2 Snapshot Scenario information 

Scenario Slack bus nominal 
voltage (p.u.) 

Average irradiance 
percent per zone 

Load multiplier per 
zone 

  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 
1 1.00 100 80 50 50 1 1 1 1 
2 1.02 100 100 100 100 1.6 1 0.4 0.4 

 
Table 5.2.3 Tuning parameters for all methods 

Scheme Swarm 
size 

Stall 
iterations 

Coefficients 
c1, c2 

Function 
Tolerance 

Inertia 
type 

Inertia 
range 

CPSO 30 40 1.2 10-6 Exponential [1, 0.75] 
PSO 30 40 1.49 10-6 Adaptive [1.1, 0.1] 

dPSO 30 40 1.49 10-6 Adaptive [1.1, 0.1] 
 

 

Figure 5.2.3: Scenario 3 load and solar irradiance profile for each one of the  
𝐶௜ network partitions. This scenario represents a day with partial cloudiness. 



 

 

 

5.2.4.2 Results & Discussion 

Since the three competing schemes are based on stochastic search, multiple runs are needed 

to properly assess their performance. To be more specific, a total number of 20 runs for 

each scenario is performed, starting from different randomly chosen initial particle 

positions in each run. In order to reach valid conclusions regarding the statistical superiority 

of the proposed scheme, a t-test between CPSO and each one of its rivals has been applied 

for scenarios 1-2. The null hypothesis is that the results produced by the two competing 

methodologies are generated by populations with the same mean. Tables 5.2.4, 5.2.5 depict 

the average and standard deviation values, as well as the best value for the objective 

function from the 20 runs, together with the p-value corresponding to the t-test and the 

average number of function evaluations of each method for scenarios 1 and 2, respectively; 

the voltage profiles for an indicative run of each scenario are shown in Figs. 5.2.4a-4b. 

Regarding scenario 1, CPSO achieves 50% and 68% lower average objective value (sum 

of voltage deviations) in comparison to PSO and dPSO, respectively. Similar performance 

is recorded for scenario 2 where the objective of RPLM (total power losses in MW) is 

addressed: a 28% and 76% improvement is achieved over PSO and dPSO, respectively. 

The superiority of CPSO is also confirmed when comparing the best runs of each method: 

in scenario 1, CPSO achieves a 25% and 64% improvement over PSO and dPSO, 

respectively, while in scenario 2, CPSO scores 14% and 77% improvements over PSO and 

dPSO, respectively. The statistical significance of these results is established by the t-test 
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with a confidence interval of over 99.99%, as indicated by the produced p-values. It should 

be noted that the proposed method achieves this performance while staying within voltage 

magnitude bounds as specified in subsection 5.2.2, in contrast to dPSO which violates the 

upper voltage limit on buses 85-98 for some of the runs corresponding to scenario 2, as also 

shown in the indicative run of Fig. 5.2.4b. In addition, the superior performance of the 

proposed method retains consistency, i.e., the method converges around the same solution 

for each different run. This is indicated by the low value of standard deviation for both 

scenarios, and is testimony to the increased search space exploitation capabilities inherent 

to the CPSO algorithm. Lastly, it should be emphasized that the proposed method achieves 

the aforementioned performance improvements with a reasonable computational burden, as 

indicated by the number of average objective function evaluations: when compared to 

dPSO, CPSO exhibits consistently lower computational requirements in both scenarios. 

However, CPSO is surpassed by standard PSO in this aspect; this is to be expected, as CPSO 

Table 5.2.4 Scenario 1: Statistical results for VDM objective 

 Objective value 
average 

Objective value 
standard 
deviation 

Best 
Objective 

value 
p-value 

Average 
function 

evaluations1 
CPSO 0.7006 0.0603 0.6241 - 5260 
PSO 1.4192 0.4183 0.8364 1.73E-08 1760 

dPSO 2.2109 0.2295 1.7594 1.71E-25 6520 
 
Table 5.2.5 Scenario 2: Statistical results for RPLM objective 

 Objective value 
average 

Objective value 
standard 
deviation 

Best 
Objective 

value 
p-value 

Average 
function 

evaluations2 
CPSO 0.01035 0.00072 0.00918 - 8520 
PSO 0.01395 0.00202 0.01068 2.513E-08 4560 

dPSO 0.04307 0.00230 0.04027 5.543E-37 9240 
1 convergence to the 1st decimal 
2 convergence to the 3rd decimal 

 

Figure 5.2.4: (a) Bus voltages for the VDM objective on scenario 1  (b) Bus voltages for the RPLM 
objective on scenario 2 



 

 

applies more objective function evaluations per algorithm iteration than PSO, but on the 

other hand, it manages to greatly outperform the latter in terms of optimization 

performance.  

There exist multiple reasons for the superior statistical performance of CPSO in scenarios 

1 & 2. As mentioned earlier, standard PSO suffers from the “two steps forward - one step 

back” problem and cannot effectively explore the available search space. This is evident 

from the convergence curves of the best runs of scenario 1, that are shown in Fig. 5.2.5; 

considering the first 30 iterations, CPSO achieves a rapid improvement in objective value, 

in contrast to PSO, which appears to stall multiple times over the same period. Moreover, 

CPSO achieves superior exploitation characteristics, since it converges to the 1st decimal 

much earlier than PSO. dPSO also sufficiently exploits the search space of each of the four 

zone-based optimization problems, which appear as distinct “steps” on the convergence 

curve; the quick convergence of each problem to the 1st decimal confirms this observation. 

It should be noted that, on one hand, dPSO retains the important practical advantage of 

complete decentralization [121], which CPSO and PSO lack.  On the other hand, dPSO 

exhibits worse exploration capabilities out of the other two schemes. This can be attributed 

to the fact that as the algorithm progresses from one zone-based problem to the next, it 

cannot account for inter-zone effects, which are strong for the test case selected in this work. 

The result is an overall deterioration of optimization performance. 

To assess the performance of the proposed scheme in a more demanding application, 

scenario 3 was employed, which concerns intra-day hourly voltage control using PV-

inverters.  The optimization results for both the VDM and the RPLM objectives are shown 

 

Figure 5.2.5: Convergence graph for the best runs of scenario 1. Coloured rectangles denote 
convergence to the 1st decimal. Note that the convergence curve of dPSO corresponds to the 
successive minimization of the four zone-based optimization problems 
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in Table 5.2.6 for each daylight hour, while voltage profiles for the VDM objective for 2 

indicative buses are shown in Figs. 5.2.6a and 5.2.6b, respectively. In scenario 3, the 

superiority of the proposed scheme is also confirmed: for the VDM objective, CPSO scores 

a 35% and 47% improvement of performance over the PSO and dPSO schemes 

respectively, when assessing the intraday aggregated sums of voltage deviations. 

The application of the proposed method for the RPLM objective yields similar performance, 

since the proposed method achieves 9.5% and 18% lower real power losses aggregated over 

the 8-17hr timeframe, when compared to PSO and dPSO, respectively.  Even higher 

differences are observed in the 12-15hr timeframe, where the irradiance profiles for each 

zone reach their highest values: 21% and 40% real power losses reduction is achieved 

compared to PSO and dPSO, respectively; this is due to the higher power output the of PV 

panels that enable increased RPC capabilities for the PV inverters. Meanwhile, the lowest 

differences between the three methods are observed at 17:00, where the available power 

output drops sharply in conjunction with a network load increase; this leads to all required 

power being drawn from the slack bus (hence the proportionally higher losses in 

comparison to past hours). All in all, the properties of scenario 3 clearly illustrate the 

applicability of the proposed scheme: the differences in the available power between PV 

installations, which are in turn owed to the zone-based fluctuations of solar irradiance, 

greatly hinder the effective exploitation and exploration of the search space; yet, CPSO 

manages to exploit candidate solutions in a zone-based manner, while also retaining its 

original exploration capabilities, thus arriving at better solutions overall compared to its 

rivals. The standard PSO scheme generally outperforms the dPSO one for the VDM and 

RPLM objectives for the same reason; the aforementioned fluctuations of solar irradiance 

induce strong inter-zone effects, that render dPSO ineffective. 

 

Figure 5.2.6: (a) Voltage profiles for the VDM control objective on scenario 3 for bus 28  (b) 
Voltage profiles for the VDM control objective on scenario 3 for bus 121   



 

 

 

5.2.5 Conclusions & Future Prospects 
In this section, a cooperative PSO algorithm employing multiple swarms that are dedicated 

to the exploration of different search space partitions is introduced. Moreover, a practical 

methodology for the identification of the aforementioned search space partitions for the 

ORPF problem is presented, which is built upon the underlying topological characteristics 

of the network at hand. This methodology groups highly-coupled design variables together, 

with respect to voltage fluctuations incurred by active and reactive power perturbations. 

The effectiveness of the CPSO algorithm was demonstrated in simulation studies carried 

out in the IEEE 123-bus distribution system, and its performance improvements over a 

standard PSO and a decentralized PSO formulation were statistically evaluated.  

It should be noted that the proposed community-detection-based CPSO optimization 

algorithm can be generalized to other engineering systems that contain a distinct structural 

topology, e.g., large industrial processes or other utility networks. To the author’s best 

knowledge, no other optimization approach, whether deterministic or metaheuristic, can 

encode topological information of the system to be optimized. Lastly, from an academic 

perspective, the community detection approach also lays the groundwork for future research 

and development of other cooperative metaheuristics [133]. 

 

 
Table 5.2.6 Scenario 3: Results for the intraday application of VDM and RPLM 
objectives 

 VDM objective (p.u. voltage) RPLM objective (kW) 
Time 

Instance CPSO PSO dPSO CPSO PSO dPSO 

8 hr 0.0954 0.3650 0.3944 36.7 38.8 41.9 
9 hr 0.1072 0.1450 0.1555 30.0 32.5 35.6 
10 hr 0.1278 0.1663 0.1498 32.8 33.8 40.6 
11 hr 0.1260 0.1651 0.3624 22.9 26.1 26.5 
12 hr 0.1203 0.1855 0.2627 20.4 23.8 24.5 
13 hr 0.0717 0.1314 0.1374 11.4 14.6 23.1 
14 hr 0.0797 0.1252 0.1564 12.2 19.4 25.3 
15 hr 0.0729 0.1393 0.1154 11.6 13.2 23.5 
16 hr 0.1429 0.1874 0.2073 28.6 31.7 34.3 
17 hr 0.2087 0.2310 0.2295 126.6 134.5 131.8 
Sum: 1.1530 1.8416 2.1714 333.2 368.4 407.1 
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Chapter 6:   

Data-driven Tracking Nonlinear Model Predictive Control 

MPC has emerged as a highly successful control scheme with applications in various fields 

during the last decades [74]. The MPC algorithm makes use of a dynamic model of the 

plant in order to calculate an approximation of the plant’s response to the control inputs. 

Based on this model, a constrained optimization problem is formulated online to obtain the 

optimum sequence of control moves for a given time horizon. It is apparent that the MPC 

scheme effectiveness relies on the prediction accuracy of the plant model, as model 

inconsistencies can lead to poor choices regarding the control moves. Thus, in cases of 

highly nonlinear plant dynamics, it is a viable strategy to consider nonlinear plant models 

[139], integrated using typical Runge-Kutta techniques; on the other hand, such an approach 

adds a significant computational load in solving the optimization problem. Due to this 

reason, nonlinear MPC approaches are usually coupled with techniques for alleviating the 

increased computational burden, like online linearization [140], [141]; still, such techniques 

are not always attainable, especially for cases of large models. 

In contrast, methods based on computational intelligence, e.g. neural networks (NNs), seem 

to be an attractive alternative, as they are very effective in modeling nonlinear plants [26], 

and are usually cheaper to evaluate online than Runge-Kutta integrations of first-principle 

models. In addition, for systems where proper ODEs are either unavailable or are simply 

unable to encapsulate the complexity of the real process, data-driven computational 

intelligence methods can be employed due to their black-box nature. Radial basis function 

networks in particular are widely considered for modeling nonlinear dynamics, mainly 

because of their simple structure and increased accuracy [34]. As these advantages are of 

paramount importance in the context of predictive control, RBFNs constitute a popular 

choice in conjunction with MPC [36]. This data-driven computational intelligence approach 

has enhanced the capabilities of the MPC algorithm with various applications [142]–[144].  

The purpose of this chapter is to present data-driven tracking MPC controllers that employ 

RBF models in order to address nonlinear or otherwise hard-to-model processes within 

MPC’s prediction module. For this reason, two representative cases studies have been 

chosen: The first refers to the control of a vehicle’s active suspension system, which 

exhibits relatively high-dimensionality and significant nonlinearity, thus rendering linear 

models or ODE RK4-based approaches prohibitive. The second addresses the trajectory-



 

 

following control of a vessel with the objective of avoiding moving obstacles; the future 

trajectory of these obstacles is unknown, and a data-driven trajectory prediction model built 

on past AIS data is required to be employed. 
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6.1 Data-driven tracking MPC for active suspension control 

Active suspension systems in road vehicles are applied in order to mitigate the road-induced 

chassis vertical accelerations more effectively than standard passive suspensions, thus 

increasing comfort and handling. Such systems are greatly assisted by road preview 

schemes, consisting of special sensors usually based on laser scanners (e.g. LiDAR 

sensors), which detect road irregularities ahead of the vehicle and feed this information to 

a control system, designed to manipulate the active suspension accordingly. In this section, 

a model predictive controller with road preview, incorporating radial basis function models, 

is presented as a control scheme for a full car active suspension system. Substituting the 

standard linear predictive models with RBF ones, helps to approximate efficiently the 

significant nonlinearities present in the suspension system, so as to improve MPC 

performance. Special care is taken to alleviate the increased computational complexity 

entailed in the RBF models, in order to ensure that online implementation of the controller 

is feasible. The proposed scheme is evaluated on a detailed simulated full car model under 

various road excitation types, while making use of a realistic approach for incorporating 

LiDAR road scanner noise. Comparisons to a passive suspension system, as well as a 

standard MPC controller with a fully linear plant model, demonstrate the performance 

potential of using RBF prediction models in a road preview MPC context. 

6.1.1 Introduction 
The suspension system of a conventional road vehicle serves to keep the wheels in a relative 

position with the chassis while traveling. The two main design objectives are ride comfort 

for passengers, which is directly linked to the vertical acceleration of the vehicle’s chassis, 

and road holding capabilities, often expressed as a load variation on the vehicle’s tire [145]. 

Active suspension systems are usually implemented in vehicles through a hydraulic system 

that powers a piston placed in parallel to a conventional spring and damper, allowing for 

the direct pursuit of both objectives, i.e. ride comfort and vehicle handling [75]. The piston 

is controlled so as to exert desired forces on the wheel in the vertical direction. This system 

can achieve the aforementioned objectives in varying road conditions, as well as 

compensate for changes in the suspension dynamic behavior, which are inevitable through 

the life cycle of the vehicle [143], The challenge of controlling the vertical dynamics of a 

vehicle is that its behavior is far from ideal. Notably, hydraulic and geometrical non-

linearities, as well as cubic terms of displacement and velocity exhibited by the springs and 

dampers, are the main sources of this behavior; ignoring these characteristics can lead to 



 

 

sub-par results. In this respect, nonlinear control strategies need to be considered, so that 

the above requirements are addressed. 

The development of such strategies has been a topic of research since 1970, and several 

methods have been proposed to date. In [146], an adaptive backstepping control method 

with a grey signal predictor used for the estimation of system states is applied for the 

integrated control of heave and pitch dynamics of a vehicle. Α control method that also 

utilizes a state predictor is presented in [147], where a Kalman filter is used for the 

estimation of the road type, in order to toggle between energy-saving and high-performance 

control modes. A similar scheme is presented in [148] that takes the nonlinear dynamics of 

the actuators into account, albeit for a half-car suspension model. Various techniques that 

can circumvent the suspension nonlinearities have been built upon the classic methodology 

of skyhook damping. For example, in [149] a 6 DoF half-car active suspension is controlled 

by a combined skyhook damping and fuzzy logic controller, where the original, non-linear 

actuator dynamics are approximated by a linear equation. In [150], an adaptive neuro fuzzy 

inference controller is presented for the control of a full car active suspension. Initially, a 

fraction-order-PID controller is implemented, so that the necessary data for training the 

inference model can be generated. Then, the proposed controller is implemented on an 

FPGA module in order to accelerate computations. Other neural network-based approaches 

have been applied in feedback linearization control schemes [151], [152] for the control of 

the full car active suspension vertical dynamics. Lastly, a fuzzy-PID control strategy is 

presented in [153] for the vibration control of a linear quarter-car active suspension, using 

an evolutionary computation algorithm for the optimization of the control parameters. 

A control scheme that can directly accommodate for plant nonlinearities is model predictive 

control [74]. Though, as stated earlier, the vertical vehicle dynamics exhibit significant 

nonlinearities, up to now it was not the ability of MPC to incorporate nonlinear models, but 

rather its other merits, that have made it popular for active suspension design. An additional 

motivation is that MPC is suitable for integrating a road preview scheme, which can feed 

the active suspension control scheme with valuable information (Fig. 6.1.1). To be more 

specific, the vehicle can scan the road ahead using appropriate sensors, and supply this 

information to the controller, thus greatly enhancing performance [76]. The performance 

potential of MPC preview schemes has been confirmed for active suspensions in terms of 
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energy expenditure [154]. In real-world applications, this preview technology is realized 

with LiDAR sensors, which, nevertheless exhibit a varying degree of measurement noise 

[155]. In [75] an MPC controller with preview (MPC-P) was applied to the active 

suspension full car problem to minimize roll and heave accelerations under several 

constraints, using a reduced model of the plant. Even though the wheel dynamics are not 

included in the MPC model on the basis that they exhibit higher frequency dynamics than 

the actuator, the proposed scheme achieves satisfactory performance. It should be noted 

that the hydraulic actuator dynamics are not included in the modeling stage but are 

substituted by the hydraulic actuators’ displacement - this significantly reduces the plant 

nonlinearity, since hydraulic fluid flow through the actuator is a nonlinear phenomenon. In 

[76] an MPC-P controller with a linear model is created based on a simplified quarter car 

plant and compared to a skyhook-damping controller in a real world application. 

Even though the results reported in these works are very encouraging, the potential of using 

MPC for active suspension design is not yet fully reaped, as the employed linear models 

cannot account for the nonlinearities present. Methods based on computational intelligence, 

e.g. neural networks (NNs), seem to be an attractive alternative, as they are very effective 

in modeling nonlinear plants [26] and can be configured to accommodate for changes in 

plant parameters. Radial basis function networks (RBFN) in particular are widely 

considered for modeling nonlinear dynamics, mainly because of their simple structure and 

increased accuracy [34]. It should be noted that RBF networks have been used extensively 

in automotive system modeling and control: in [144] an RBFN is used for the modeling of 

the wheel-slip dynamics of an anti-lock braking system. In [143] adaptive RBFNs are 

applied for the modeling of lateral and longitudinal dynamics of a 3 DoF vehicle model, for 

usage in a highway lane tracking PD-controller. In [36] an RBF network is used to explicitly 

model an MPC controller for the control of a semi-active suspension.  Surprisingly, it seems 

 

 

Figure 6.1.1: Active suspension (a) with and (b) without road preview information 



 

 

that no RBFN approaches for modeling the vertical dynamics of a full car model have been 

reported in literature.  

The main contributions of the proposed approach are the following: 

 A method for developing a full car vertical dynamics model based on RBFNs is 

introduced. The new approach (a) is purely data-driven and does not make use of 

cumbersome first-principle equations, (b) can take into account plant nonlinearities, 

and (c) is computationally efficient as it makes use of the FM algorithm for training 

the networks. 

 A nonlinear MPC framework is introduced for active suspension design, making 

use of road preview information. Nonlinearities that arise when modeling the 

vertical chassis dynamics of the full car are approximated with the aforementioned 

RBFN model. To the author’s best knowledge, no MPC-P full car active suspension 

control scheme that directly accommodates for model nonlinearities exists, much 

less one that applies RBFN models. 

 A new method for initializing the MPC optimization problem using an inverse 

model of the plant [156], which is also based on RBFNs, is used in order to minimize 

the computational burden needed for calculating the control actions, without 

compromising the model’s predictive abilities. This is an important practical 

consideration, so as to ensure real-time implementation of the proposed approach. 

 A realistic representation of noise induced by the road preview functionality is 

devised, based on studies regarding LiDAR sensors [157], [155]. The aim is to 

simulate the effect of road preview inaccuracies on the MPC controller 

performance, in order to confirm the robustness of the proposed scheme.  

The rest of this section is structured as follows: In the next section, the plant equations of 

the full car and electrohydraulic actuating system are presented, together with the LiDAR 

road preview scheme. Subsection 6.1.3 starts with an introduction to the RBFN architecture 

and the FM algorithm and continues with a detailed description of the modeling approach 

followed and the produced results. Subsection 6.1.4 introduces the proposed controller, 

including a description of the MPC formulation and a discussion about expediting the 

solution to the optimization problem through an appropriate solution initialization 

technique. Then, in subsection 5 the case study is presented in detail, containing a 

description of the setup and the controller tuning procedure, followed by the produced 
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results and relative discussion. Finally, the chapter ends with concluding remarks and 

directions for future work. 

 

 

 

6.1.2 Active Suspension Control Problem Statement 

6.1.2.1 Active suspension plant 

The electrohydraulic piston-valve system is the powerhouse of an active suspension, since 

it is where the control force originates from. Hydraulic fluid is pumped from the oil sump 

by the axial pump and raised to the supply pressure. When the power servovalve is open, 

high pressure fluid flows to either one of the actuator chambers, while low pressure fluid 

flows from the other one back to the sump. Between the two actuator chambers a pressure 

difference is created, which results in the actuator force. The dynamics of the actuator 

pressure are highly nonlinear [158], since they are nonlinearly related to the hydraulic fluid 

flow through the servovalve. 

Next, the vertical dynamics of the vehicle are presented. These can be approximated using 

a 7 DoF full car model. The model is based on an abstraction of the actual car, which is 

modeled as a rectangle representing the sprung inertia, with four masses at each corner, 

amounting to the unsprung masses, as shown in Fig. 6.1.2. This model can describe the 

heave z, roll θ and pitch φ modes of the sprung mass mspr, as well as each unsprung mass 

heave displacement zw. Each unsprung mass muns can be displaced along the vertical axis, 

and is connected to the sprung mass by a spring k, a damper d and a hydraulic actuator that 

exerts a force of Fa in parallel. The tire stiffness is modeled as a spring kt between each 

unsprung mass and the road profile wi. Each actuator is described by a valve displacement 

xi,6 and a valve input ui. The inputs to the full car plant are the four valve inputs and the four 

road profiles for each wheel. Table 6.1.1 depicts the derivative state equations for the 

model; for simplicity, numbered notation is adopted for each state, or input variable. The 

index i ∈ {1, 2, 3, 4, 5} corresponds to {Front Left, Front Right, Rear Left, Rear Right, 

Chassis}. The index j ∈ {1, 2, 3, 4, 5, 6} denotes a specific state, as shown in Table 6.1.1. 

For example, x1,5 indicates the actuator pressure state of the front left wheel. The values 

employed for model parameters are shown in Table 6.1.2; these values were chosen to 

provide a realistic full car representation based on [158] and [159]. Note the nonlinear 

spring and damping terms. 



 

 

In short, the full car active suspension plant can be described at each continuous time instant 

t as a system comprised of 30 states, stored in state matrix 𝑋: 

1,1 1,6

5,1 5,6

( ) ( )
( )

( ) ( )

x t x t
X t

x t x t

 
   
  

 (6.1.19) 

that accepts as input a vector of each wheel’s control signal 𝑢: 

   1 2 3 4( ), ( ), ( ), ( )u t u t u t u t u t  (6.1.20) 

and a road profile vector w, consisting of the load profile for each separate wheel: 

   1 2 3 4( ), ( ), ( ), ( )w t w t w t w t w t  (6.1.21) 

 

 

 Table 6.1.1: Full car state equations and functions 

A. State Differential Equations  
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(6.1.1) 
(6.1.2) 
(6.1.3) 
(6.1.4) 

(6.1.5) 
(6.1.6) 
(6.1.7) 
(6.1.8) 
(6.1.9) 
(6.1.10) 
(6.1.11) 
(6.1.12) 

B. Functions  
 ( ) 1 2, 1 2s i i i     (6.1.13) 

   i,6 i,5 i,6 i,6 i,5, ( ) /dP xv sQ x x C S x P sign x x    (6.1.14) 

     ,3 ,4 ,4 ,3 ,4 ,3 ,4 ,3 ,4 ,3, | | b | | signlin sym n
i i i i i i i

onlin
bs s s i i isxF x x x x x x xb x xb        (6.1.15) 

     3

,2 ,1 ,2 ,1,1 ,2, lin
i

nonlin
ks s i i s i iiF k x x k x xx x      (6.1.16) 

   ,2 ,2,kt i i t i iF x w k x w   (6.1.17) 

   ,1 ,2 ,3 ,4 ,5,) ,( i i i i istrut ks bs PF i F Fx x x Ax x     (6.1.18) 
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6.1.2.2 Road Preview System 

In order to measure the real road height profile vector  tw onboard LiDAR sensors that 

scan the road ahead can be used, such as in [75], [76]. A very detailed description about the 

practical aspects of road previewing in active suspensions takes place in [160], while a real-

world implementation is given in [157]. LiDAR sensors are subject to a variety of 

  

Figure 6.1.2: 7 DoF full car model 

Table 6.1.2: Full car plant and electrohydraulic system parameters 

Symbol Description Value Units 
Ps Supply Pressure to Valve 5 106 Pa 
Ap Actuator Piston Area 3.35 10-4 m2 
Ctm Leakage constant  22 10-11 - 
α Hydraulic Coefficient 4.51 1012 N/m5 

ρ Density of Hydraulic Fluid 850 kg/m3 

τ Time constant of valve 5 10-3 s 
Cd Discharge Coefficient 0.7 - 
Sxv Valve width 4.1 10-3 m 
bs

lin Linear damping coefficient 2000 N s/m 
bs

sym Symmetric damping coefficient 400 N s/m 
bs

nonlin Nonlinear damping coefficient 100 N (m/s)-1/2 
ks

lin Linear spring coefficient 25000 N/m 
ks

nonlin Nonlinear spring coefficient 25 104 N/m3 
kt Tire spring coefficient 19 104 N/m 
btrack Wheel track width 2.5 m 
Lbase Wheelbase 4 m 
Ixx X moment of inertia 550 kg m2 

Iyy Y moment of inertia 300 kg m2 

mspr Sprung mass 1800 kg 
muns Unsprung mass 40 kg 

 

 



 

 

measurement errors, mainly arising from photon interference and scattering [155]. In order 

to model such errors, an additive Gaussian noise to all measurements is assumed in [160]. 

However, it has been observed that LiDAR measurement errors can vary in magnitude, in 

relation to the distance of the measured profile, e.g. an almost linearly-increasing error in 

relation to distance for a kinematic scanning LiDAR is reported in [161]. A simple 

experiment is set up in [157], and an increasing relative error in relation to distance is also 

observed. In order to provide a more realistic representation of measurement error induced 

by the LiDAR sensor, we assume an additive Gaussian noise for the previewed road, with 

increasing standard deviation as the distance from the sensor increases: 

 2( ) ( ) 0, ( ) , [0, ]m r pw d w d L d d l    (6.1.22) 

Here, 𝑤௠ denotes the road profile height as measured by the LiDAR sensor, 𝑤௥ the real 

road profile height at distance d from the sensor, lp the preview length, and 𝐿 is a random 

value sampled from a Gaussian distribution, where the standard deviation 𝜎 is a linear 

function of d. An example of the measured road 𝑤௠ is shown in Fig. 6.1.3. 

 

6.1.3 Methodology 

6.1.3.1 Creation of the controller model 

The general mathematical notation for a discrete model f of the full car plant is: 

  

 

Figure 6.1.3: 1.5s of scanned-ahead road, in a road preview MPC context. The relative error increases 
with the distance from the LiDAR sensor 
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        1 ,u ,wX k f X k k k    (6.1.23a) 

   1 2 3 4( ), ( ), ( ), ( )w k w k w k w k w k  (6.1.23b) 

   1 2 3 4( ), ( ), ( ), ( )u k u k u k u k u k  (6.1.24) 

The model f accepts as inputs the current state matrix 𝑋(𝑘) (19), the current control vector 

𝑢(𝑘) and the current road profile vector 𝑤(𝑘) at discrete time k, and generates the 

prediction for the state matrix 𝑋(𝑘 + 1) at the next discrete instance. In order to 

approximate the function matrix f and build a discrete data-driven model of the full car 

plant, a suitable input-output dataset must be created. The input data are comprised of a 

random road signal to the four wheels and a random valve displacement signal to the four 

actuators. The road signal is generated as per the ISO 8606 standard that specifies the power 

spectral density of random road profiles of different quality [162] – for the task at hand, a 

type ‘E’ road is chosen. The valve displacement signal is generated from a uniform 

distribution within the valves’ operating range, namely ±10mm. The aforementioned input 

is applied on the full car plant, and its output, which consists of the state variables as 

described by (6.1.19), is used to create an input-output dataset of 40000 datapoints. The 

dataset is subsequently split in a 50-25-25% manner, in order to create the training, 

validation and testing subsets, respectively; the first subset is used for calculating the model 

parameters, the second for model selection and the third for independently evaluating model 

performance. 

Once those datasets are acquired, least squares regression on the training subset can be 

used in order to obtain the parameters for a discrete linear state model. The goodness of fit 

is evaluated on the testing subset using the coefficient of determination (R2) and the mean 

absolute error (MAE). The results are shown in Table 6.1.3: as expected, the states (or their 

derivatives - for the chassis modes) that contain nonlinear terms, namely 

𝑥௜,ସ, 𝑥௜,ହ, 𝑥̇ହ,ଵ, 𝑥̇ହ,ଶ   and  𝑥̇ହ,ଷ, fail to be modeled sufficiently. 

Having in mind that the produced model will be incorporated in a control scheme, it is 

important to note that the 𝑥௜,ହ state corresponds to the actuator pressure of each wheel (and 

thus to the control force), hence it is directly related to the effectiveness of the applied 

control actions (6.1.5). If the MPC controller over/underestimates it after a control move, 

then the control performance will be directly compromised. Similar concerns are raised for 

the 𝑥̇ହ,ଵ state derivative, as it represents the controlled variable. Lastly, state derivatives 

𝑥̇ହ,ଶ, 𝑥̇ହ,ଷ, which concern roll and pitch accelerations, indirectly influence all plant states. 

Correctly estimating the particular quantities can have a significant effect to the overall 

model performance, but unfortunately the respective equations are nonlinear in nature; this 



 

 

is apparent from (6.1.1-12), but also confirmed in practice, as shown in Table 6.1.3. For 

this reason, RBFN dynamic models were used for the aforementioned states / state 

derivatives, while for the rest of the states, linear models were applied, in order to reduce 

the computational cost of calculating the overall model response; it should be noted that 

when used for MPC, this model will be evaluated multiple times when solving the 

optimization problem, in order to calculate each control action. 

A main consideration when training the RBFN models using the FM algorithm is the 

choice of the number of fuzzy sets s. The performance of an RBFN model will increase 

with increasing fuzzy sets, until it begins to overfit on the training data, thus compromising 

its generalization ability, i.e. its performance on new data. Overfitting occurs because the 

increasing network complexity allows for modeling the noise present in the training data 

[26], a fact which bears a detrimental effect on the network’s ability to make accurate 

predictions for new data not included in the training subset. In order to establish the 

optimum value for s, a validation data subset must be also employed; to be more specific, 

a different network is trained for each value of s in the range {4-20}, using only the training 

subset, and then the value of s that maximizes the performance on the validation subset is 

chosen [108]. 

The results for the individual RBFN models used on the independent testing subset are 

shown in Table 6.1.3. These include the number of fuzzy sets and centers generated from 

the proposed training procedure, as well as prediction metrics on a random road testing 

subset. It is clear that the one-step ahead prediction performance of the individual RBFN 

models is superior to their linear counterparts, when modelling the highly nonlinear 

states/derivatives 𝑥௜,ସ, 𝑥௜,ହ, 𝑥̇ହ,ଵ, 𝑥̇ହ,ଶ, 𝑥̇ହ,ଷ. Thus, two full car models are created; one with 

linear models for all the states, and one applying RBFN models for the nonlinear ones. 

The two resulting car models (hereby referred to as “Linear” and “RBF-Linear”) are 

essentially one-step-ahead prediction models, but their performance when predicting 

multiple steps ahead must be also assessed, in order to evaluate their suitability for 

integration in an MPC context. This can be accomplished by recurrently applying the 

model, each time using as input states the state predictions produced by the model for the 

previous time step. Fig. 6.1.5 compares the 35-step ahead prediction performance of the 

two models for a random road profile and control input signal, selected from the 

aforementioned testing subset. The RBF-Linear car model clearly outperforms the linear 

car model for the multiple-step-ahead prediction of the controlled variable (chassis heave 
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acceleration), as the former achieves a MAE of 0.1082 and an R2 of 0.9812, while the latter 

Table 6.1.3: Model comparison statistics 

States 
Linear model RBFN Model 

R2 MAE # of 
Centers 

# of Fuzzy 
Sets R2 MAE 

1,1x  0.9960 0.0021 - - - - 
1,2x  0.9990 6.1e-4 - - - - 
1,3x  0.9855 0.0371 - - - - 
1,4x  0.9893 0.0287 5121 9 0.9910 0.0156 
1,5x  0.9652 0.5159 8131 12 0.9908 0.2425 
1,6x  0.9998 3.36e-5 - - - - 
5,1x  0.9865 0.3213 5121 9 0.9920 0.1656 
5,2x  0.9909 0.1021 5121 9 0.9946 0.0628 
5,3x  0.9875 0.1204 5121 9 0.9918 0.0852 
5,4x  0.9924 0.0014 - - - - 
5,5x  0.9962 5.2e-4 - - - - 
5,6x  0.9993 5.0e-4 - - - - 

The metrics were generated from a random road testing run. Only the results of the front left wheel are 

presented; the rest of the wheels are omitted because they exhibit almost identical metrics. 

 

 
  

 

Figure 6.1.4: Linear and RBF-linear car model comparison for multiple-step-ahead evaluation. (a) 
heave acceleration modeling comparison, (b) modeling error comparison 

 



 

 

a MAE of 0.1483 and an R2 of 0.9528. 

6.1.3.2 Model Predictive Controller 

The proposed active suspension control scheme involves using an MPC controller, in 

conjunction with road preview information. There exist numerous formulations for the 

active suspension problem, as far as the design variables in the MPC objective function are 

concerned. In [76] wheel load and suspension displacement are explicitly minimized. This 

work aims to minimize the chassis heave acceleration, as the proposed scheme is concerned 

with vehicle passengers comfort [163]. 

At each discrete time point k, the following OCP is formulated: 

min
௫,௨

 𝐽ே(𝑥, 𝑢) (6.1.25a) 

s. t. (𝑥, 𝑢) ∈ ℤ,   𝑥ே ∈ 𝕏௙ (6.1.25b) 

   𝑥଴ = 𝑥଴
ᇱ  (6.1.25c) 

𝑥ା = 𝑓ோ஻ி(𝑥, 𝑢) (6.1.25d) 

Where the objective function  𝐽ே(⋅), quadratic stage cost ℓ(⋅) and terminal penalty 𝑉௙(⋅) are 

denoted as follows: 

 𝐽ே(𝑥, 𝑢) = ෍ ℓ(𝑥௞, 𝑢௞) +
ேିଵ

௞ୀ଴

𝑉௙(𝑥ே) (6.1.26a) 

ℓ(𝑥௞, 𝑢௞) = 𝑥௞
்𝑄𝑥௞ + 𝑢௞

்𝑅𝑢௞ (6.1.26b) 
𝑉௙(𝑥ே) = 𝑥ே

்𝑄௙𝑥ே (6.1.26c) 

Here, ℤ = 𝕏 × 𝕌 denote the admissible state and input space, 𝕏௙ = {0} is the terminal set, 

𝑄 ∈ ℝ௡ೣ×௡ೣ, 𝑅 ∈ ℝ௡ೠ×௡ೠ and 𝑄௙ ∈ ℝ௡ೣ×௡ೣ are positive-definite weighting matrices, 𝑁 is 

a prediction horizon, and 𝑓ோ஻ி is the “RBF-Linear” controller model that was constructed 

in subsection 6.1.3.1.  

Corollary 6.1.1 (Asymptotic stability of MPC (6.1.25-26)): Suppose assumptions of 

Theorem 4.4.2 are satisfied as well as 

A. State transition function 𝑥ା = 𝑓ோ஻ி(𝑥, 𝑢) is bounded & continuous ∀(𝑥, 𝑢) ∈ ℤ, 

𝑓ோ஻ி(𝑥, 𝑢) ∈ 𝕏௙ and 𝑓ோ஻ி(0,0) = 0 

Then, the origin of 𝑥ା = 𝑓ோ஻ி൫𝑥, 𝜅௺(𝑥)൯ is asymptotically stable in 𝒳ே, where  𝜅௺(𝑥) is 

the MPC control law described in (6.1.25). 
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Proof: Given that the stage cost ℓ(⋅) and the terminal cost 𝑉௙(⋅) are positive definite 

functions, together with the assumption that the 𝑓ோ஻ி(⋅) responses are bounded and 

continuous for all admissible (𝑥, 𝑢), then Theorem 4.4.2 can be leveraged to show 

asymptotic stability of the scheme. ∎ 

To ensure real-time implementation of the proposed control scheme 6.1.25-26, the 

optimization problem should be solved within one sampling time period, thus enabling the 

controller to calculate new actions for each discrete time step. In addition, in order to 

accurately track the fast dynamics imposed to the car by the high frequency road excitations, 

the controller sampling period should be kept as small as possible [164]. In the case of MPC 

controllers, the sampling time is essentially dictated by the time needed to solve the 

optimization problem, this being the bottleneck in the control action calculation procedure. 

Unfortunately, notwithstanding the improved approximation capabilities throughout the 

whole operating region offered by an RBF model, its use in MPC transforms the 

optimization problem to a nonlinear one, thus bearing a negative effect on the time required 

for obtaining a satisfactory solution.   

A standard approach for speeding up the optimization procedure in MPC, is to initialize the 

optimization problem formulated during each time step with the optimal control moves 𝐮∗ 

resulting from the previous time step, after removing the first move which has already been 

implemented. However, this technique may not be adequate for the particular application; 

the fast-changing road conditions may in turn cause the car’s state to change rapidly, thus 

rendering the previous time step solution obsolete. In this case, the optimizer starts from a 

poor initial value, which can lead to longer computational times for solving the problem.  

In this work, a more elaborate initialization technique is used, which has been shown to 

significantly expedite the solution procedure [156]. To be more specific, an inverse RBF 

model of the plant is trained offline. This model can be then applied at each time step to 

provide a sequence of actions 𝐮௜௡௩ for the entire control horizon; calculating  𝑢௜௡௩  is very 

fast, because no optimization procedure is involved. On the other hand, it should be noted 

that 𝑢௜௡௩ offers only a feasible trajectory to the setpoint, without taking into account the 

aspect of optimality; though directly applying it to the real plant could yield subpar results, 

it can be used as a hot-start for the MPC optimizer. Thus, for every new formulation of the 

MPC optimization problem occurring at each discrete time step, a suboptimal solution is 

first obtained using the inverse model, and then passed on to the optimization solver as an 

initial guess. More details about this type of initialization can be found in [156]. 

 



 

 

6.1.4 Results 

6.1.4.1 Case Study & Setup 

In this case study, the proposed RBFN-MPC approach is evaluated on a simulated full car 

plant, under various road excitation types. A linear MPC-P controller and a passive full car 

suspension are also presented for comparison purposes. The full car plant described in 

subsection 6.1.2 is simulated by numerically solving the state equations (6.1.1-12) using a 

Runge-Kutta 4-5 formula [165]. Two MPC controllers were created, hereby referred to as 

MPC-L and MPC-RBF-L, employing the linear and RBF-linear full car models, 

respectively. In both controllers, the MPC optimization problem was solved using an active-

set method, as described in [156]. All simulations were realized in MATLAB environment 

and a desktop computer with an Intel i9-9960X CPU and 64 GB of RAM. The sampling 

time for both controllers was set to 100ms of simulated time. 

The control objective is to maximize passenger comfort. This could be taken as equivalent 

to minimizing the heave acceleration, as is done in [75]. However, different, more 

sophisticated performance metrics for comfort quantification also exist. ISO 2631 [166] 

sets standards for exposure of humans to vibration, and applies not only to vehicles, but to 

all vibrating environments as well. According to this standard, humans are more sensitive 

to heave acceleration in the range of 4-8 Hz. A more road-vehicle-oriented discussion about 

passenger comfort criteria takes place in [163].  It should also be noted that vehicle comfort 

should be evaluated both on bump and random road tests, for completeness sake. 

 In light of the above, it was decided to compare the competing schemes in three 

different tests (Fig. 6.1.5): a one-sided pulse bump with a height of 5 cm, a one-sided 

symmetric ramp bump with a maximum height of 12 cm and a duration of 0.3 s, and a 30m 

stretch of random road of class “E” [162], traversed at 10 m/s vehicle speed. For the bump 

tests, importance is placed on the max absolute acceleration (MAA), the sum of absolute 

errors (SAE) and the settling time; these are deemed important, since any changes to them 

are directly perceived by the passengers. For the random road test, besides the sum of 

absolute errors, the fast Fourier transform (FFT) of the heave acceleration is computed, 

since it gives a clearer picture of controller performance, together with the squared heave 

displacement, as dictated by the Steffens comfort metric [163]: 

2 3
2

1257.62 10 1
c

X cm
f

  
      

 
 (29) 
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X is the square of the chassis displacement in cm, and fc is its frequency in Hz. The Steffens 

criterion sets a bound on the FFT of the chassis heave displacement, which signifies 

discomfort. Thus, the furthest away the frequency response of the chassis displacement is 

from that bound, the better the vehicle’s suspension is performing. In addition, an important 

consideration must be made regarding the road holding capability of the proposed scheme. 

This capability can be quantified by the vertical acceleration of each wheel, which should 

not be too high, otherwise the tire contact patch may be perturbed or completely detached 

from the road, resulting in loss of road holding [145], [167]. While increasing ride comfort 

remains as the sole control objective of the proposed scheme, it must be verified that the 

road holding capability does not deteriorate in comparison to the passive suspension case. 

Therefore, the average root mean square (RMS) values of the vertical acceleration of each 

wheel are calculated for the random road case, as it is the case most likely to cause such a 

phenomenon. 

  

 

Figure 6.1.5: Road scenarios for simulation: (a) Right-sided pulse bump, (b) Right-sided ramp 
bump, (c) Random road profile 

 



 

 

Finally, the tuning parameters of the two MPC controllers are presented. Tuning of the two 

MPC controllers amounts to determining the optimum values for standard MPC parameters, 

namely the prediction and control horizons hp and hc, the Θ, Ω vectors and the objective 

function weights ω and θ, but also for the road preview length lp. The reason that lp 

constitutes a tuning parameter is that the previewed road information quality deteriorates 

over distance due to noise, as discussed in section 2.3; so, there exists a maximum effective 

length of previewed road that is useful for the controller. 

 A low value for the hc parameter is chosen a priori, since it will result to a lower 

number of control variables to be optimized online, and thus, to a faster solution of the MPC 

problem. The rest of the tuning parameters are optimized offline using the particle swarm 

optimization (PSO) method [66]. PSO is a favorable choice, because of its effectiveness in 

solving nonlinear optimization problems, in conjunction with its simplicity. The tuning 

procedure was run on two cases: the first involves a one-sided pulse bump of 8 cm height, 

and the second a random road of class “E”. The tuning optimization objective for both cases 

is the minimization of the sum of absolute heave acceleration over the timespan of the 

simulation. The results of the tuning procedure for the bump and random road cases for 

both controllers are shown in Tables 6.1.4 and 6.1.5, respectively, which contain the 

selected values for the tuning parameters described in the first paragraph of this subsection.  

Using two different tuning scenarios aims to cater to the differences of two distinct types 

of roads that can occur – a well-paved road with the occasional anomaly (bump case) or a 

badly paved road or dirt track (random road case). Note that this practice does not violate 

the practicality of the proposed scheme in a real-world implementation; the controller could 

 Table 6.1.4: Bump road tuning parameters 
 MPC Linear MPC Linear - RBF 

hp 15 15 
lp (m) 5 5 

𝑄 9.42 104 𝐼௡ೣ×௡ೣ 8.17 104 𝐼௡ೣ×௡ೣ 
𝑅 1.45 104 𝐼௡ೠ×௡ೠ 1.99 104 𝐼௡ೠ×௡ೠ 

𝑄௙ 9.30 104 𝐼௡ೣ×௡ೣ 8.23 104 𝐼௡ೣ×௡ೣ 
 
Table 6.1.5: Random road tuning parameters 

 MPC Linear MPC Linear - RBF 
N 7 7 

lp (m) 3.1 3.2 
𝑄 9.42 104 𝐼௡ೣ×௡ೣ 9.73 104 𝐼௡ೣ×௡ೣ 
𝑅 1.15 104 𝐼௡ೠ×௡ೠ 5.93 104 𝐼௡ೠ×௡ೠ 

𝑄௙ 9.40 104 𝐼௡ೣ×௡ೣ 9.60 104 𝐼௡ೣ×௡ೣ 
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toggle between on-road and off-road modes either manually or automatically [147], as is 

the case in most modern vehicles with adjustable suspension today. 

 

6.1.4.2 Results & Discussion 

The proposed MPC-RBF-L controller is applied to the road scenarios shown in Fig. 6.1.6, 

and compared to MPC-L and a passive suspension. The responses of the two controllers, 

along with the passive suspension, are shown in Figs. 6.1.7-9, while numerical results are 

given in Tables 6.1.6-8. Each table corresponds to a specific road scenario, and contains the 

simulation metrics for the two controllers and the passive suspension, as discussed in 

subsection 6.1.4.1. 

As far as the pulse bump scenario (Fig. 6.1.7) is concerned, the MPC-RBF-L controller is 

able to reduce the SAE by 10% compared to MPC-L, and 28% compared to the passive 

 

Figure 6.1.6: Results of a pulse bump test: (a) chassis heave acceleration response, (b) chassis heave 
displacement, (c) front right pressure of the hydraulic actuator 

 



 

 

suspension. The settling time also shows significant improvement. In the ramp bump test 

(Fig. 6.1.7), the MPC-RBF-L controller reduces the SAE by 11.5% compared to MPC-L, 

and 37% compared to the passive suspension. No reduction in settling time is achieved by 

the two MPC controllers when compared to the passive suspension in this case – this can 

be attributed to the fact that when the road disturbance ended, the absolute value of the 

heave acceleration was so small that the controllers decided not to act. The SAE is overall 

more effectively reduced on the ramp than the bump test for both MPC controllers. The 

reason is that the road disturbance is less abrupt and therefore both controllers can track it 

better.  

On the random road (Fig. 6.1.8) the proposed controller reduces the SAE by 10% and 20%, 

compared to MPC-L and the passive suspension, respectively. Here, the frequency-domain 

response is of larger importance: the MPC-RBF-L generally performs well in the 4-8 Hz 

  

 

Figure 6.1.7: Results of a ramp bump test: (a) chassis heave acceleration response, (b) chassis heave 
displacement, (c) front right pressure of the hydraulic actuator 
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range, with a 44% reduction of the chassis acceleration response at eigenfrequency 

compared to the passive car and a 22% reduction compared to MPC-L. This frequency 

range is of interest, since any vibrations herein incur the most discomfort for humans, 

according to ISO 2631 [166]. The chassis heave frequency response peaks at 4 Hz and then 

trails off towards zero for higher frequencies. It appears that both MPC controllers fail to 

control any heave acceleration responses over 10Hz. This can be attributed to the high MPC 

sample time, which renders both controllers unable to monitor higher frequency responses. 

The Steffens control metric though, gives a clear indication of the superiority of the 

proposed controller over the rest of the competing schemes. This metric describes a 

threshold for vibratory environments that, once exceeded, human discomfort is induced; as 

shown in Fig. 6.1.8c, the proposed scheme manages to remain largely below this threshold. 

In particular, for the eigenfrequency of the chassis, the MPC-RBF-L reduces the FFT of the 

heave displacement by 45.7% compared to the passive suspension and 45.4% compared to 

the MPC-L controller. Lastly, by assessing the average RMS value for the vertical 

acceleration of each wheel, one sees that both MPC controllers perform slightly worse than 

  

 

Figure 6.1.8: Results of a random road test: (a) chassis heave acceleration, (b) chassis heave 
acceleration FFT response, (c) chassis heave displacement FFT response 

 



 

 

the passive suspension on this respect; the MPC-L vertical wheel acceleration value is 

6.31% larger than the passive suspension one, while the respective MPC-RBF-L value is 

4.5% larger. This result is to be expected, since the sampling frequency of 10 Hz of both 

MPC controllers is lower than the wheel-hop mode frequency, which usually resides in the 

10-12 Hz range [167]. Still, this small difference in the aforementioned RMS values does 

not constitute a significant deterioration of road holding performance for the proposed 

scheme, thus its potential for practical applications in chassis vibration control is not 

diminished. 

In general, when evaluating SAE as an overall performance metric on the three tests, both 

MPC controllers significantly increase riding comfort compared to the passive suspension. 

The MPC-L performance, while being better than the passive suspension, significantly 

deteriorates when applied to random road conditions; this is due to the limited accuracy of 

the linear prediction model. The MPC-RBF-L superior performance in all three tests is 

attributed to the better state approximation capabilities of the RBF-linear model, which 

enable the computation of more accurate control moves. It should be noted that the actual 

time needed by the MPC-RBF-L controller for solving the optimization problem was 

measured to be equal, or smaller to the selected controller sampling time, thus allowing for 

real-time implementation of the proposed scheme. 

 

6.1.5 Conclusion & Future Prospects 
In this section, the application of RBFN models trained with the FM algorithm for the 

nonlinear states resulted in the successful modeling of the full car plant. Because of the 

increased computational requirements that the usage of nonlinear prediction models entails, 

efforts to reduce the overall computational burden of the MPC solution process were made, 

namely, through the usage of an inverse model of the plant for initializing the optimization 
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problem. The proposed MPC scheme was implemented using a realistic LiDAR scanning 

noise model, tuned using PSO and simulated in three different road scenarios, namely pulse 

bump, ramp bump and random road.  

In general, this case study has demonstrated the effectiveness of a data-driven MPC 

controller constructed using CI techniques for problems with high-dimensionality and high-

nonlinearity. The RBF models used herein are cheaper to evaluate online than the respective 

ODE integrations of the first-principle equations of the full car plant, and can achieve 

increased accuracy compared to a linearized model. The proposed controller can be 

extended to other engineering systems; furthermore, future research plans include the use 

of RBF networks for modeling the vehicle lateral and yaw dynamics [168], in order to 

accommodate for the significant nonlinearities arising from lateral tire force behavior. The 

resulting models could be incorporated in data-driven advanced driver assistance systems 

(ADAS), thus producing vehicle stability [169], or active torque vectoring [170] controllers 

of increased performance. 

 

 

 

Table 6.1.6: Pulse bump simulation results 

Performance metrics Passive 
Car 

MPC 
Linear 

MPC Linear - 
RBF 

Max absolute acceleration (m/s2) 2.79 2.3 2.33 
Settling time (s) 2.85 2.85 1.81 
Sum of absolute error (m/s2) 113 90.6 81.4 

 
Table 6.1.7: Ramp bump simulation results 

Performance metrics Passive 
Car 

MPC 
Linear 

MPC Linear – 
RBF 

Max absolute acceleration (m/s2) 2.054 1.489 1.31 
Settling time (s) 1.66 2.02 1.65 
Sum of absolute error (m/s2) 101 97.1 81.0 

 
Table 6.1.8: Random road simulation results 

Performance metrics Passive Car MPC 
Linear 

MPC Linear - 
RBF 

Sum of absolute error (m/s2) 126.61 112.50 101.05 
Heave acceleration FFT at 
eigenfrequency (m/s2) 81.6 57.92 45.14 

Squared heave displacement FFT at 
eigenfrequency (cm2)  199.1 198 108.1 

Average RMS value for the vertical 
acceleration of each wheel (m/s2) 5.494 5.864 5.754 

 

 



 

 

6.2 Data-driven tracking MPC for vessel trajectory control with collision 

avoidance using real AIS data 

The field of automatic collision avoidance for surface vessels has been an active field of 

research in recent years, aiming for the decision support of officers in conventional vessels, 

or the creation of autonomous vessel controllers. In this chapter, the multi-ship control 

problem is addressed using a data-driven model predictive controller that makes use of 

obstacle ship trajectory prediction models built on the RBF framework and trained on real 

AIS data sourced from an open-source database. The usage of such sophisticated trajectory 

prediction models enables the controller to correctly infer the existence of a collision risk 

and apply evasive control actions in a timely manner, thus accounting for the slow dynamics 

of a large vessel, such as container ships, and enhancing the cooperation between controlled 

vessels. The proposed method is evaluated on a real-life case from the Miami port area, and 

its generated trajectories are assessed in terms of safety, economy and COLREG 

compliance by comparison with an identical MPC controller utilizing straight-line 

predictions for the obstacle vessel. 

6.2.1 Introduction 
In the last two decades, research on automatic collision avoidance (CA) and optimal path 

planning for surface vessels has intensified, driven by the ever-growing density of maritime 

traffic in narrow waterways, such as gulfs, ports and canals [171]. Motivated by the design 

of autonomous surface vehicles (ASV) controllers, but also aiming for the decision support 

of officers on watch (OOW) of conventional vessels [172], control and optimization tools 

that ensure the safety and the cost effectiveness of navigational actions are being intensively 

developed. These tools are perceptive of the surrounding environment through arrays of 

sensors, radars and other positioning and communication aids. In this context, the automatic 

identification system encompasses most aforementioned technologies in order to gather 

positioning and other vessel data. The already vast AIS comprises an ever-expanding 

worldwide maritime trajectory dataset which is made available by vessels, port authorities 

and other platforms in charge of efficient and safe maritime path planning. Given the fact 

that the majority of vessel accidents are related to erroneous handling rather than equipment 

failure or environmental conditions [173], these tools aim to phase out the human OOW as 

a vessel controller, or at least augment their navigational decision-making using 

optimization- and prediction-based methods. 
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The formulation of the trajectory optimization problem used in CA controllers must take 

multiple aspects of vessel navigation into account, while being perceptive of their 

surrounding environment in real time. The generation of control actions that will result in 

a trajectory remaining sufficiently clear from any stationary or moving objects is not the 

sole objective: an efficient controller should also ensure the economy of the control actions, 

as well as the adherence to the collision avoidance rules, commonly known as the 

COLREGs [174]. Multiple CA controllers have been proposed that fulfil the 

aforementioned specifications; in [175] a hierarchical multiobjective optimization problem 

is formulated, that generates an intermediate waypoint for the controlled vessel while 

accounting for the good seamanship rules. In [176] a fuzzy-Bayesian CA controller is 

formulated capable of addressing multiple obstacle vessels at once. In [177], optimal 

trajectories for the CA problem are generated using a B-Spline-based search algorithm. 

Lastly, in [178] a CA controller utilizes a probabilistic method in order to infer the one-

step-ahead position of obstacle vessels, while also accounting for non-COLREG-compliant 

obstacle vessels. 

In general, it has been observed that controllers that are not model-based can have trouble 

incorporating crucial aspects of the trajectory optimization problem, thus compromising 

practicality. Without a working model of the controlled vessel, its maneuvering capabilities 

cannot be easily included in the formulation, neither can the effect of environmental 

conditions be quantified [12], [179]. For these reasons, model predictive control emerges 

as an effective control method for the problem at hand, because it utilizes a model of the 

plant in order to compute an optimal control trajectory based on the predicted trajectory of 

other ships in the vicinity. As a framework, MPC can account for the uncertainties of both 

the utilized model of the plant and the trajectory prediction models of other ships, while 

also incorporating all possible control objectives (such as navigational risk, course 

smoothness or deviation from the original path) in a single cost function. Some CA 

controllers based on MPC have been proposed in the literature; a robust MPC controller 

utilizing straight-line obstacle vessel trajectory predictions is proposed in [12], capable of 

COLREG compliance and handling of multiple obstacles. In [180], motion planning for an 

autonomous vessel using a sampling-based MPC method takes place. In [181], an MPC 

controller for the CA task is built by approximating the behavior of an LQR controller, thus 

ensuring asymptotic stability of the system. In [13], a neural network is used to approximate 

the MPC response for the generation of COLREG compliant trajectories for multi ship 

encounters, is presented. In addition, MPC has been integrated in distributed control 

frameworks of multi-ship schemes; for example, a distributed MPC scheme has been 



 

 

employed for a multi-vessel formation controller with collision avoidance capabilities 

[182], or for the robust distributed control of multiple vessels operating for the inter-

terminal transport of containers [183].  

It becomes apparent that for the scope of the CA task, information about the future 

trajectories of other ships plays a central role. Prevalent in non-data driven methodologies 

already used for the vessel trajectory prediction (VTP) problem is the first principles-based 

modeling technique [184], carrying a number of significant shortcomings, such as their 

inherent complexity, which has a greater negative impact due to the fact that the model is 

usually employed multiple times within the duration of each MPC sample. In order to 

simplify the solution of the employed kinematic differential equations and facilitate the 

real-time prediction of future states, these types of models are usually created using several 

assumptions which try to approximate real-world conditions, but also make the final model 

far less accurate. Therefore, one should employ a more sophisticated, data-driven approach 

for the creation of effective trajectory prediction models that are included in MPC 

controllers. Machine learning has answered the call of producing highly accurate models 

which may be easily integrated in predictive frameworks through the use of black-box 

modeling, and more specifically artificial neural network approaches [185]. NNs employ 

different architectures in order to remap the original non-linear problem to a higher-

dimensional input space and approximate its dynamics utilizing standard functions. In this 

context, various NN techniques have been successfully utilized in control frameworks 

solving the vessel trajectory prediction problem. 

Feedforward NN architectures, most commonly represented by the multilayer perceptrons 

have been employed to solve the VTP problem as in [186], [187], where MLP NNs are 

trained using the well-established backpropagation algorithm (BP) outperforming rival 

methodologies i.e., linear models and Kalman filters. In [187] a real AIS dataset gathered 

from the confined space of a river waterway is used to approximate the vessel dynamics in 

such environments. BP has been the baseline of more efficient training methods as in [188], 

where different computational intelligence (CI) approaches like differential evolution, 

genetic algorithms, and swarm-based techniques are used to modify the original BP 

algorithm in order to create more accurate feedforward NN models. Other NN architectures, 

like support vector machines have been employed in conjunction with CI optimization 

techniques i.e., the particle swarm optimization algorithm, on AIS datasets to solve the VTP 

problem [189]. In most cases the inherent abilities of NN architectures which can meet the 
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standard of high accuracy are limited to a one-step ahead prediction horizon, in the sense 

that multi-step ahead predictions would require an approximation of unknown future states 

to be made and present an error enlarged through propagation to the end of the prediction 

horizon. Such an error would become critically high after a small number of steps rendering 

the control framework useless. 

To overcome this problem, long-term trajectory prediction approaches have been devised 

with the inclusion of memory features, such as the recurrent neural networks (RNNs) with 

their most notable representative i.e., the long short-term memory (LSTM) NNs already 

used in the context of the VTP problem [190]–[193]. Besides trajectory modeling and 

prediction in open waters, advances have also been made in crowded port waters as in [194], 

where another modification of the RNNs, namely the bidirectional gated recurrent unit (Bi-

GRU), is used to address the VTP problem outperforming standard NN methods in such 

scenarios. GRUs are promising candidates for predicting the collective behavior of vessel 

fleets [195]. Within the context of VTP, RBFs have been integrated in control frameworks 

by approximating unknown vessel parameters [196]–[198]. Recently, RBFs have been 

applied on real AIS data in order to produce highly accurate models for one-step and multi-

step ahead predictions [6], showing their potential in being integrated to receding horizon 

control methodologies. 

Remarkably, in the research works regarding the design of CA controllers, there are no 

instances where the multi-step-ahead trajectory prediction of moving obstacles is addressed 

in such a systematic manner; in most of the reviewed case studies these trajectories are 

either known a priori, or there are no obstacle ships present whatsoever. An exception 

occurs in [12], where straight line trajectory predictions are employed, based on estimated 

current course and speed for the moving obstacle. Indeed, such an approach yields 

satisfactory approximation results in an open sea setting where ships are expected to travel 

in a straight line but is of little practical use for the cases of narrow gulfs, ports, or canals 

where ships need to maneuver in order to navigate through. To the author’s best knowledge, 

no such implementation occurs for the design of a multi-ship MPC CA controller, much 

less a nonlinear one. 

In this section, a multi-ship MPC controller utilizing RBF prediction models is presented 

for the CA task. The RBF prediction models are trained using real AIS datasets sourced 

from an open-source database, and are integrated in an MPC controller for the trajectory 

prediction of obstacle ships that may pose a CA threat. The usage of such sophisticated 

prediction models supplies the controller with high-accuracy information, thus allowing for 



 

 

the timely application of appropriate control moves that will result in a safe and efficient 

trajectory. The proposed method is tested in a CA setting occurring at the Miami port area, 

and its performance is illustrated by the comparison with an MPC controller utilizing 

straight-line prediction models.  

The section is structured as follows. In subsection 6.2.2 the AIS-data-driven methodology 

for the creation of the RBF trajectory prediction models is presented. In section 6.2.3 some 

preliminaries on maritime collision avoidance and optimal trajectory generation are 

described, and later, the proposed method is presented. In section 6.2.4, the case study based 

on the port of Miami is outlined, and the simulation results are discussed in depth. Lastly, 

in section 6.2.5, concluding remarks are made. 

 

6.2.2 Creation of RBF-based Trajectory Prediction Models 
Recently it has been shown [6] that RBF NNs trained with the fuzzy means algorithm are 

ideal candidates for integration to receding horizon control frameworks in the context of 

the VTP problem. RBFs are already very popular in numerous diverse applications where 

they have been successfully employed to approximate nonlinear system and process 

dynamics in order to predict future states and subsequently participate in the formulation of 

robust control frameworks [199]. However, best modeling practices for RBF networks 

mandate that a training dataset should be error- and noise-free, a case which is far from 

truth when using data from AIS transceivers. AIS data are irregularly sampled and contain 

heavy noise, missing data, and erroneous values. Thus, before employing any modeling 

technique, proper preprocessing is in order. 

The Marine Cadastre service (www.marinecadastre.gov) has been the source of all data 

used in this work. MarineCadastre.gov is a is a service which gathers and publicly provides 

AIS data to marine planning initiatives. In this work, data from all days between 1st July 

2019 and 30th June 2020 have been included and filtered to keep vessels sailing an area 

around the port of Miami covered by the geolocation rectangle defined by the latitudes of 

25.720o through 25.840o and the longitudes of -80.145o through -80.042o. To conform to 

the initial assumption of similar size and similar dynamics we allowed only cargo ships 

sailing on engine power into the dataset, further filtering the dataset to yield a total of 180 

vessels. 

To address the problems of sample irregularity, noise, and erroneous values, the dataset was 

resampled to 120 seconds, which was deemed enough to capture the high inertia dynamics 

http://www.marinecadastre.gov/
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of large cargo ships. The interpolation technique applied on the data to perform the 

resampling was the Akima piecewise cubic interpolation [200] which is quite effective on  

geolocation data, performing a mild denoising as well. A heuristic which rejects very far-

off outlier values due to GPS errors was also applied. The trajectories were split in data 

samples each one containing ten consecutive vessel positions. Mind that each trajectory’s 

starting point should be the last point of the previous one resulting in an overlap of one 

point, but this final position will be used as the model’s output, so no actual overlapping 

exists within the input data. The resampling and splitting process yielded a total of about 

14k samples from 3.1k resampled trajectories of the initial 180 vessels. Algorithm 6.2.1 

depicts the step-by-step procedure of preprocessing. 

Once the AIS transceiver data has been preprocessed, VTP algorithms can be employed 

together with CA techniques in order to identify imminent threats and navigate safely and 

efficiently within heavily crowded port areas or open seas. Let us suppose an available AIS 

dataset, comprising an arbitrary number of vT  trajectories for a total of V vessels, where 

 1,2,...,v V . Let us also suppose that the included trajectories contain an arbitrary number 

of ,v tK  AIS messages ,v t
kAISm  (timestamped geolocation and other data). In this work, for 

simplicity reasons, we employ the following format in AIS messages 

 , , , ,v t v t v t v t
k k k kAISm dt y x  (6.2.1) 

where  ,1,2,..., v tk K , ,v t
kdt  denotes the message timestamp, while ,v t

ky  and ,v t
kx  are the 

respective latitude and longitude contained in the k-th AIS message for the t-th trajectory 

of the v-th vessel. The fact that there are unknown parameters e.g., the state and controls of 

the vessels, prohibits the use of kinematics in calculating future vessel states. Nevertheless, 

the vessel dynamics exist in the information hidden within the dataset and can be extracted 

and, in most cases, approximated by using a black-box modeling technique such as RBF 

NNs. We can assume that a common underlying pattern exists in the dynamics of same-

size vessels executing similar maneuvers, for example when approaching or leaving a port, 

Algorithm 6.2.1 Preprocessing algorithm for AIS data 
Initialize for every entry i: 
 Keep Vessel ID, timestamp, latitude, and longitude. 
         Sort dataset by vessel ID and sort each vessel data by date. 
         Apply resampling and outlier filtering on the data of each vessel to achieve a resampling 
         of 120 seconds. 
For vessel i: 
         Split vessel data into trajectories containing ten consecutive vessel positions each. 
         Create final preprocessed dataset which should contain the vessel ID and final 10-position 
         trajectories. Reject timestamp information. 
 



 

 

when berthing, when crossing waterway paths, etc. Thus, if a suitable dataset of sufficient 

size is made available, an RBF NN can be trained to perform one-step-ahead predictions 

about a vessel’s future geolocation by using past AIS messages as seen in the following 

equations 
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 (6.2.3) 

where N is the number of past AIS messages given as inputs to the RBF NN. 

Delta values of the last position of each sample were used as the model’s output, while the 

first nine positions were the model’s input 
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dy
RBFNN y x y x
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 (6.2.4) 

The ,
1ˆ v t

kdy   and ,
1ˆ v t

kdx   values may be added to the last input position to calculate the final 

predicted vessel position. Based on the above procedure, the results of the modeling process 

produced an RBF model of very high accuracy [6]. The step-by-step procedure of the 

modeling stage can be seen in Algorithm 6.2.2. 

Note that, the number of past inputs was determined after a trial-and-error procedure, where 

several RBF models were trained using a different number of inputs. After testing inputs in 

the range of 3 to 15 past vessel positions, data obtained on model performance showed that 

using less than nine inputs produced models with reduced prediction accuracy, while using 
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more than nine inputs increased the model’s complexity without any accuracy gain 

compared to the model using nine inputs. 

Moreover, a series of tests has been performed by the recurrent application of this model 

based on a horizon of 5 timesteps for all trajectories of the testing subset, where at each 

successive timestep the model had to use an increasing number of its own previous 

predictions. As the model uses more of its past predictions, accuracy decreases due to the 

enlargement of the propagated prediction error. Such a test can provide intuition on the 

models’ ability to be incorporated in receding horizon predictive frameworks. The quality 

metrics used for these tests were the root mean squared error (RMSE) and the root mean 

squared haversine formula distance (RMSHFD). The haversine formula is commonly used 

to measure great circle distances on spherical surfaces. Table 6.2.1 presents the performance 

metrics obtained after the recurrent application of the chosen model in order to make 

predictions for the full length of the trajectories included in the testing subset of the training 

procedure. Mean RMSE values for the two outputs of the model, namely the latitude and 

longitude, are provided in degrees, where in can be seen that the error lies in the order of 

1.5 thousandth of a degree. The mean RMSHFD metric shows the respective error margin 

in meters when combining the two model outputs to get the actual predicted future vessel 

Algorithm 6.2.2 Creation of RBF models for the VTP task 
Initialize: 
       Load final preprocessed dataset  
For vessel i: 
   Replace the final value of all included 10-position trajectories with the  

   respective delta value according to 
         

      

, , ,
10 10 9

, , ,
10 10 9

v t v t v t

v t v t v t

dy y y
dx x x

, so that each trajectory  

   sample is in the form   
, , , , , , , ,

1 1 2 2 9 9...v t v t v t v t v t v t v t v ty x y x y x dy dx . 

 
   Randomly permute the trajectory samples of i vessel. 
 
   Split the trajectory samples of i vessel into training, validation, and testing  
   subsets (in this work a 50%-25%-25% percentage split is used). Do this so that  
   all vessels contribute to all three subsets according to the chosen splitting. 
 
Merge all subset samples e.g., all training samples of all vessels together in one  
single dataset that will be used for training. Do the same for the validation and testing subsets. 
 
Normalize the inputs and outputs of the training subset. Apply the normalization coefficients to 
the validation and testing subsets.  
 
Apply the fuzzy means algorithm on the training and validation dataset using the nine first sets 
of , ,v t v ty x values as inputs and the last set of , ,v t v tdy dx  values as output. 
 
Yield RBF model trained on VTP data  

 



 

 

position for all tested trajectories. More details on the modeling procedure for the one-step 

ahead models, including detailed results and comparison with other machine learning 

approaches can be found in [6].  

6.2.3 Vessel Collision Avoidance Problem Statement 
The objective of maritime collision avoidance is the generation of a risk-free trajectory 

which the controlled vessel should follow. A well-defined and effective method of assessing 

collision risk in the near future is the closest point of approach (CPA). Stemming from the 

concept of the CPA, two metrics are defined: time to CPA (TCPA) and distance to CPA 

(DCPA) (see Fig. 6.2.2). A discussion regarding the quick calculation of TCPA and DCPA 

using the line-of-sight (LOS) distance between the controlled vessel and the obstacle ship 

is presented in [175]. These metrics depict the urgency of the collision danger of vessel i 

with another vessel j as well as its magnitude, and by specifying lowest acceptable 

thresholds 𝑑௠௜௡and 𝑡௠௜௡ concerning the minimum DCPA and minimum TCPA, 

respectively, one can construct a risk cost function, as presented in [175]: 

𝑓௥,௜௝ =

⎩
⎪
⎨

⎪
⎧exp ൬𝑎଴ ቀ𝑑௠௜௡ − 𝐷𝐶𝑃𝐴൫𝑇௜, 𝑇௝൯ + 𝑡௠௜௡ − 𝑇𝐶𝑃𝐴൫𝑇௜, 𝑇௝൯ቁ൰ − 1,   

𝑖𝑓 𝐷𝐶𝑃𝐴൫𝑇௜, 𝑇௝൯ ≤ 𝑑௠௜௡   𝑎𝑛𝑑   𝑇𝐶𝑃𝐴൫𝑇௜, 𝑇௝൯ ≤ 𝑡௠௜௡

0,   𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6.2.5) 

Here, 𝑎଴ is a scaling parameter, and 𝑇௜ denotes the trajectory matrix containing the x-y 

position of the i vessel for every timestep: 

𝑇௜ = ൥
𝑥ଵ 𝑦ଵ
⋮ ⋮

𝑥௡ 𝑦௡

൩ (6.2.6) 

By combining TCPA and DCPA, the spatial-temporal nature of a maritime collision risk 

with vessel i is successfully reflected. The physical interpretation of equation (6.2.12) is 

that a candidate trajectory with larger minimum distance from an obstacle ship occurring at 

an earlier time will always be safer than a path with a smaller minimum distance and/or 

earlier time of occurrence. Common values for 𝑡௠௜௡and 𝑑௠௜௡ are 10min and 0.6nm; because 

Table 6.2.1. Performance metrics of the produced RBF NN model 

 RBF NN 
 Latitude (y) Longitude (x) 

Mean RMSE (deg) 1439·10-6 1567·10-6 
 Best combined RBF models 

Mean RMSHFD (m) 1200 
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the present work is concerned with CA in busy waterways such as ports, a lower 𝑑௠௜௡value 

of 0.4nm is used. In any case, equation (6.2.12) can be readily incorporated in the cost 

function of an MPC optimization problem formulation. 

A second item in the domain of trajectory generation is efficiency. Vessels should strive to 

not deviate too much from their original course, when addressing a collision risk with 

another vessel. The efficiency of the generated trajectory 𝑇௜ for vessel i can be reflected by 

calculating the sum of absolute deviations from the original trajectory 𝑇ைீ,௜ 

𝑓ௗ,௜ = ฮ𝑇ைீ,௜ − 𝑇௜ฮ. (6.2.7) 

Next, an important requirement to be fulfilled when addressing the problem of CA are the 

COLREGs [174]. The implementation of the COLREGs restrict the domain of possible 

candidate paths according to the type of encounter, for example “head-on”, “crossing” and 

“overtaking”. Head-on vessels should pass each other on the port side, while a vessel 

crossing from the starboard side should be given way. A visual depiction of the encounter 

rules takes place in Fig. 6.2.2. Multiple approaches for the modeling of the COLREG rules 

have been made in the literature [172], [175], [178], although these are usually concerned 

with a one-step-ahead calculation. However, for the case of an MPC controller, in order to 

ensure COLREG compliance for a candidate trajectory, all of its waypoints must be taken 

into account. By assuming that the LOS angle is increasing in the anti-clockwise direction, 

one needs to evaluate whether the LOS angles of each sequential trajectory timestep 

position are increasing monotonically, in order to confirm the compliance of the trajectory 

for the ‘head-on’ and ‘give-way’ situations. 

 
Figure 6.2.1. Illustration of the CPA metrics, as well as the LOS angle concept.  

   
Figure 6.2.2. (a) a head-on situation between two ships (b) a crossing situation between two ships (give-

way); the orange ship must give way to the crossing ship on its starboard side. 

 

(a) (b)



 

 

The idea is depicted in Fig. 6.2.4, where a head-on encounter between vessels i and j occurs; 

here, the LOS angles for trajectory 𝑇௜  monotonically increase, therefore it is deemed as 

compliant. In contrast, the monotonically decreasing LOS angles of the 𝑇௜
ᇱ trajectory 

confirm its non-compliance as per the COLREGs intentions. A penalty for non-compliance 

of a vessel i encountering a vessel j in a ‘head-on’ or ‘give-way’ situation can therefore be 

formulated, 

𝑃௜௝ = ቊ
1, 𝑖𝑓 𝑎௅ைௌ೔ೕ ↘  

0, 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6.2.8) 

where 𝑎௅ைௌ೔ೕ is the LOS angle vector, calculated for each trajectory point of encountering 

vessel i and the current position of encountered vessel j. 

 

6.2.4 Methodology 

6.2.4.1 Vessel Kinematic Model Creation 

Τhe generated vessel trajectory, apart from being safe and COLREG compliant, should also 

take into account the maneuvering capabilities of the controlled vessel, i.e. it should be 

guaranteed that the trajectory is kinematically possible to be tracked by the vessel. The 

feasible search domain of the trajectory optimization problem can be constructed by a 

purely geometric approach in the case of a one-step-ahead calculation, such as in [175], 

where the design variables are the vessel’s next position and course. However, the extension 

of this geometric approach to multiple-steps-ahead requires the application of nonlinear 

constraints that would bound every sequential vessel position with its previous one, in order 

to enforce technical feasibility. For this reason, a model-based approach is preferred. The 

Nomoto models constitute a class of vessel course models that are tailored for this task, and 

have been widely adopted, not only for the design of CA schemes [201], but also for path 

tracking controllers [202]. The 1st order linear Nomoto model is shown as follows: 

𝑇௦
𝑑𝜔
𝑑𝑡

+ 𝜔 = 𝐾௦𝑎 (6.2.9) 

Here, ω is the angular velocity of the vessel, while 𝑎 is the control input to the vessel’s 

rudder. The maneuvering capabilities of the vessel are reflected by the 𝑇௦ and 𝐾௦ constants, 

called time constants and rudder gain constants, respectively, while typical values are in the 

[0.5, 2] range for both. Solving the differential equation (16) by assuming constant rudder 
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angle input for a t time interval, the 1st order linear Nomoto model can be discretized as 

follows [178]: 

𝛥𝜃(𝑡) = 𝐾௦ 𝑎 ൭𝑡 − 𝑇௦ + 𝑇௦ exp ൬
𝑡

𝑇௦
൰൱ (6.2.10) 

Here, Δθ is the course change that would occur if a control input of 𝑎 was applied and held 

for a time period of 𝑡. By setting this time period t as the discretization interval 𝛥𝑡, a course 

model can be used to create a discrete vessel position model as follows: 

𝜃௞ାଵ = 𝜃௞ିଵ + 𝛥𝜃௞(𝑎௞) (6.2.11a) 

𝑥௞ାଵ = 𝑥௞ + cos(𝜃௞ାଵ) 𝑉௞ 𝛥𝑡 (6.2.11b) 
𝑦௞ାଵ = 𝑦௞ + sin(𝜃௞ାଵ) 𝑉௞ 𝛥𝑡 (6.2.11c) 

Here, 𝜃௞, 𝑥௞, 𝑦௞ is the current course, horizontal displacement and vertical displacement 

according to a global reference frame, respectively, while 𝑉௞ is the vessel velocity. The 

discretization interval 𝛥𝑡 can be set according to the simulation resolution required. Eqs. 

(6.2.11) constitute a discrete position model 𝐿௜ for the i-th vessel, 

𝑥௜(𝑘 + 1) = 𝐿௜(𝑢௜, 𝑥௜(𝑘)) (6.2.12) 

with input vector 𝑢௜ = [𝑎 𝑉] and state vector 𝑥௜ = [𝜃 𝑥 𝑦]. By evaluating the discrete 

vessel position model 𝐿௜ for {1,2, … , 𝑛} consecutive timesteps, where n the total timesteps, 

a trajectory 𝑇௜ can be created for the i-th vessel, as shown in eq. (13). 

6.2.4.2 MPC scheme with Collision Avoidance 

The MPC framework has demonstrated its aptitude in handling the uncertainties and 

nonlinearities of the CA problem multiple times in the literature [12], [24] , however, no 

other works have incorporated a data-based obstacle trajectory prediction model in their 

formulation, much less a nonlinear one. In MPC, the optimal control moves of the 

controlled vessels are calculated for multiple steps ahead by solving a constrained optimal 

control problem, with constraints in real time, for each controller sample time 𝑡௖௦௧. The cost 

function of the OCP is constituted by a prediction horizon N. Given a set of controlled 

vessels 𝒱௖ = {1, 2, … , 𝑁௖} and a set of non-controlled or obstacle vessels 𝒱௢ = {1, 2, … , 𝑁௢}  

where 𝑁௖ and 𝑁௢ are the total number of controlled and non-controlled vessels, respectively, 

the OCP’s cost function can be formulated as the summation of all the cost functions of the 

respective controlled vessels for the kth timestep: 

𝑚𝑖𝑛
௎(௞)

𝐽ே(𝑋(𝑘), 𝑈(𝑘), 𝑋௢(𝑘)) (6.2.13a) 

𝑠. 𝑡.   𝑈(𝑘) ∈ 𝕌 (6.2.13b) 
   𝑥଴ = 𝑥଴

ᇱ  (6.2.13c) 



 

 

𝑃(X) = 0 (6.2.13d) 
𝑁ௗ൫𝑇௜, 𝑇௝൯ ≥ d௘ (6.2.13e) 

𝑋ା = 𝑓ே௢௠(X, 𝑈) (6.2.13f) 
𝑋௢ = 𝑓ோ஻ி(𝑋෨௢) (6.2.13g) 

𝑋(𝑘) and 𝑋௢(𝑘) contain the states of the controlled and obstacle vessels, respectively, in a 

single state matrix. 𝑈(𝑘) is the input matrix and is created by the horizontal concatenation 

of the input vectors of all controlled vessels 𝒱௖, up to horizon 𝑁 at timestep k: 

𝑈(𝑘) = ቎
𝑢ଵ(𝑘) 𝑢ଵ(𝑘 + 1) ⋯ 𝑢ଵ(𝑘 + 𝑁 − 1)

⋮ ⋱ ⋮
𝑢ே೎(𝑘) 𝑢ே೎(𝑘 + 1) ⋯ 𝑢ே೎(𝑘 + 𝑁 − 1)

቏ (6.2.14) 

Next 𝑋(𝑘) and 𝑋௢(𝑘) are created by the horizontal concatenation of the state vectors of all 

controlled and non-controlled vessels 𝒱௖ and 𝒱௢, respectively, up to the prediction horizon 

𝑁. 

𝑋(𝑘) = ቎
𝑥ଵ(𝑘) 𝑥ଵ(𝑘 + 1) ⋯ 𝑥ଵ(𝑘 + 𝑁 − 1)

⋮ ⋱ ⋮
𝑥ே೎(𝑘) 𝑥ே೎(𝑘 + 1) ⋯ 𝑥ே೎(𝑘 + 𝑁 − 1)

቏ (6.2.15a) 

           𝑋௢(𝑘) = ቎
𝑥௢,ଵ(𝑘) 𝑥௢,ଵ(𝑘 + 1) ⋯ 𝑥௢,ଵ(𝑘 + 𝑁 − 1)

⋮ ⋱ ⋮
𝑥௢,ே೚(𝑘) 𝑥௢,ே೚(𝑘 + 1) ⋯ 𝑥௢,ே೚(𝑘 + 𝑁 − 1)

቏ (6.2.15b) 

For simplicity, because consecutive state vectors 𝑥௜(𝑘) up to 𝑥௜(𝑘 + 𝑁 − 1) constitute a 

single trajectory 𝑇௜(𝑘), one can write 𝑋(𝑘) and 𝑋௢(𝑘) as the concatenation of the 

trajectories of the respective vessel sets 𝒱௖, 𝒱௢ as per equation (6.2.15): 

𝑋(𝑘) = ൥
𝑇ଵ(𝑘)

⋮
𝑇ଶ(𝑘)

൩    𝑋௢(𝑘) = ቎
𝑇௢,ଵ(𝑘)

⋮
𝑇௢,ே೚(𝑘)

቏. (6.2.16) 

State transition function 𝑋ା = 𝑓ே௢௠(𝑋, 𝑈) represents the kinematic model that is used for 

the controlled vessels. 𝕌 represents the admissible input space, 𝕏 the admissible state space 

denoted by constraints (6.2.13c-g), and ℤ = 𝕏 × 𝕌 the admissible state-input space. One 

can also rewrite 𝑋(𝑘) as the vertical concatenation of the two state matrices 𝑋(𝑘),  𝑋௢(𝑘), 

containing the trajectories of all vessels 𝒱 = 𝒱௖⋃𝒱௢: 

𝑋(𝑘) = ൣ𝑇ଵ(𝑘) … 𝑇ே೎(𝑘) 𝑇௢,ଵ(𝑘) … 𝑇௢,ே೚(𝑘)൧
். (6.2.17) 

Returning to OCP (6.2.13), 𝐽ே(∙) represents the cost function: 
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𝐽ே(𝑋, 𝑈,  𝑋௢) = ෍ ൥෍ ℓ௜൫𝑋(𝑘 + 𝑗), 𝑈(𝑘 + 𝑗),  𝑋௢(𝑘 + 𝑗)൯
௜∈௏

ேିଵ

௝ୀ଴

+ ෍ 𝑉௙௜
൫𝑋(𝑘 + 𝑁 − 1)൯

௜∈௏

൩ + ෍ 𝐺(𝑈(𝑘))
௜∈௏

 

(6.2.18) 

The 𝐺(∙) function, weighted by the 𝑎ீ parameter, encourages the smoothness of the control 

actions and consequently, the generated trajectories of the controlled vessels: 

𝐺(𝑈௜(𝑘)) = 𝑎ீ ෍ฮ𝑈௜,௝ାଵ(𝑘) − 𝑈௜,௝(𝑘)ฮ
ଶ

ேିଵ

௝ୀଵ

. (6.2.19) 

Next, ℓ௜(∙) is the stage cost function of the i-th controlled vessel, and consolidates the 

collision avoidance and course keeping objectives: 

ℓ௜(𝑋, 𝑈,  𝑋௢) = 𝑎௥ ቌ ෍ ቀ𝑓௥,௜௝
ଶ൫𝑋௜, 𝑋௝൯ቁ

௝∈𝒱೎\௜

+ ෍ ൬𝑓௥,௜௝
ଶ ቀ𝑋௜, 𝑋௢௝ቁ൰

௝∈𝒱೚

ቍ 
1

|𝒱\𝑖|

+ 𝑎ௗ 𝑓ௗ,௜
ଶ(𝑋௜). 

(6.2.20) 

In equation (6.2.20), 𝑓௥,௜௝(∙) is the collision risk between the i-th and the j-th vessel, as 

calculated using their respective trajectories 𝑋௜(𝑘),  𝑋௝(𝑘) by applying equation (6.2.5), and 

𝑓ௗ,௜(∙) is the deviation from the original trajectory 𝑇ைீ,௜, as expressed in equation (6.2.7). 

Both terms are weighted by the 𝑎௥ and 𝑎ௗ weighting parameters, respectively. Since we are 

concerned with the safety of the generated trajectory throughout the whole prediction 

horizon, the mean collision risk from all vessels in set 𝒱\𝑖 is evaluated, in contrast to other 

approaches [175], where only the maximum collision risk at time k is minimized. This way, 

all possible collision risks are addressed and reduced simultaneously, thus avoiding the 

adverse possibility of evading one collision risk and increasing another. Moreover, the 

reason that risk avoidance is entered as a control objective in equation (6.2.20) and not as a 

hard optimization constraint is to ensure the feasibility of the OCP (6.2.13) in the case of 

the existence of an inescapable collision risk; as shown in equation (6.2.5), risk is a function 

of distance to CPA, meaning that the controller will continue to attempt to maximize that 

distance, thus continuing to fulfil the control intention. Lastly, the terminal cost for each 

vessel 𝑉௙௜
 is calculated as the cost of deviation from the original trajectory for the last state: 

𝑉௙௜
൫𝑋௜(𝑘)൯ = 𝑓ௗ,௜

ଶ ቀ𝑋௜,ே(𝑘)ቁ. (6.2.21) 

At this point, it must be noted that since the state matrix 𝑋(𝑘) consolidates all controlled 

vessel trajectories, a degree of cooperation is induced. Lastly, returning to the OCP denoted 



 

 

in equation (6.2.13), the 𝑈(𝑘) input matrix is bounded by the upper and lower matrices 𝑈௨, 

𝑈௟, respectively. The function 𝑃(⋅)  returns the COLREG non-compliance penalties for the 

controlled vessels 𝑉௖ as calculated in equation (6.2.8), and are required to be zero via an 

equality constraint. The function 𝑁ௗ(⋅) returns the DCPAs of all controlled vessels 𝒱௖, 

requiring them to be above an emergency distance 𝑑௘ (𝑑௘ ≤ 𝑑௠௜௡). The inclusion of this 

constraint in the OCP constitutes a hard guarantee of collision avoidance. 

The next item to be addressed regarding the MPC formulation is the used model that maps 

the input variables 𝑈 to the state variables of the controlled vessels 𝑋௖. Here, the 1st order 

linear Nomoto model is used, as described in equation (6.2.11): 

𝑥௜(𝑘 + 1) = 𝑓ே௢௠൫𝑢௜,  𝑥௜(𝑘)൯, 𝑖 ∈ 𝒱௖,  (6.2.22a) 

𝑥௜(𝑘 + 1) = 𝑓ே௢௠,௥௘௔௟൫𝑢௜ + 𝑒(𝑢௜),  𝑥௜(𝑘)൯, 𝑒(𝑢௜) = 𝑢௜ 𝑁ீ(0, 𝜎ଶ) (6.2.22b) 

Note that 𝑓ே௢௠(⋅) represents the controller model and 𝑓ே௢௠,௥௘௔௟ the plant model used in 

simulations, which contains input noise that accounts for modeling error e and 

environmental parameters; 𝑁ீ  is a random variable sampled from a Gaussian distribution 

with a standard deviation of σ.  

Finally, the state matrix of the non-controlled vessels 𝑋௢(𝑘) representing the trajectories of 

the obstacles is unknown, and thus an estimation is required, based on past positions. For 

this task, the prediction model 𝑓ோ஻ி(⋅) presented in Chapter 3 is employed for each non-

controlled vessel j, and its trajectory is estimated using its past nine positions 𝑥෤௢,௝ that were 

measured: 

𝑇෠௢,௝(𝑘′) = 𝑓ோ஻ி ቀ𝑥෤௢,௝(𝑘′), 𝑥෤௢,௝(𝑘′ − 1), … , 𝑥෤௢,௝(𝑘′ − 9)ቁ , 𝑗 ∈ 𝒱௢. (6.2.23) 

Note that, in order to filter out possible noise during obstacle position measurement 𝑥෤௢,௝, a 

larger timestep is used, which is a multiple of the controller timestep 𝑘, i.e. 𝑘ᇱ = 𝛼𝑘, where 

𝛼 is an integer. In other words, the obstacle trajectory predictions are refreshed every 𝑘ᇱ, 

meaning that the controller uses the same predictions during the range [𝑘ᇱ, 𝑘ᇱ + 1].  

Still, the deployment of 𝑓ோ஻ி(⋅) in MPC poses a significant challenge, since its generated 

predictions 𝑇෠௢,௝ that form 𝑋௢(𝑘) enter the objective function 𝐽ே(⋅) as shown in eq. (6.2.18), 

and can thus affect its Lyapunov characteristics. It is noted that since 𝑋௢(𝑘) is refreshed on 

a larger sampling time than MPC, it can be considered as a piece-wise constant signal within 

the OCP (6.2.13). By furthermore treating it as a control reference signal, one can possibly 
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utilize stability results on tracking NMPC for piece-wise constant reference signals, such 

as the one recently proposed by Limon et al. [203]: The idea is to add an artificial reference 

signal as an extra decision variable in the OCP, in order to circumvent any loss of feasibility 

originating from external changes to the setpoint. The convergence to the (original) setpoint 

is subsequently pursued by extending the OCP’s objective function 𝐽ே(⋅) with a term that 

penalizes the difference of the artificial reference from the setpoint. The new OCP is thus 

formulated: 

𝑚𝑖𝑛
௎(௞),௑೚

(ೌ)(௞)
𝐽ே

(௔)ቀ𝑋(𝑘), 𝑈(𝑘), 𝑋௢(𝑘), 𝑋௢
(௔)(𝑘)ቁ (6.2.24a) 

𝑠. 𝑡.   (6.2.13b − h) (6.2.24b) 

Where the new objective function 𝐽ே
(௔) is given by: 

𝐽ே
(௔)ቀ𝑋, 𝑈, 𝑋௢, 𝑋௢

(௔)ቁ = 

෍ ൥෍ ℓ௜ ቀ𝑋(𝑘 + 𝑗), 𝑈(𝑘 + 𝑗),  𝑋௢(𝑘 + 𝑗) − 𝑋௢
(௔)(𝑘 + 𝑗)ቁ

௜∈௏

ேିଵ

௝ୀ଴

+ ෍ 𝑉௙௜
൫𝑋(𝑘 + 𝑁 − 1)൯

௜∈௏

൩ + ෍ 𝐺(𝑈(𝑘))
௜∈௏

+ 𝑉ைቀ𝑋௢, 𝑋௢
(௔)ቁ 

(6.2.24c) 

Here, 𝑉ை: ℝே೚×ே → ℝ is called the offset cost function, and penalizes the difference 

between 𝑋௢ and 𝑋௢
(௔). One can consider 𝐽ே

(௔)(⋅) as a relaxation of 𝐽ே(⋅), which is performed 

in order to ensure feasibility in the presence of an externally-set piece-wise constant 

reference signal. 

Corollary 6.2.1 (Asymptotic stability of MPC based on eqs. 6.2.24): Suppose assumptions 

of Theorem 4.3.3 are satisfied as well as 

A. Vessel trajectory prediction function 𝑥ା = 𝑓ோ஻ி(𝑥, 𝑢) is bounded & continuous 

∀(𝑥, 𝑢) ∈ ℤ, 𝑓ோ஻ி(𝑥, 𝑢) ∈ 𝕏௙ and 𝑓ோ஻ி(0,0) = 0 

B. Vessel kinematic model function 𝑥ା = 𝑓ே௢௠(𝑥, 𝑢) is bounded & continuous 

∀(𝑥, 𝑢) ∈ ℤ  

C. Initial state 𝑥଴
ᇱ  lies in the region of attraction & prediction horizon N is sufficiently 

long 

D. Assumption 2 of [203] is satisfied. 

Then, the origin is asymptotically stable in 𝒳ே, where  𝜅௺(𝑥) is the MPC control law 

derived from 6.2.24. 



 

 

Proof: Vessel stage cost ℓ௜ is a positive definite function, representing the collision risk 

comprised by 𝑓௥,௜௝(⋅) and  𝑓ௗ,௜(⋅), which are also positive definite; 𝑓௥,௜௝(⋅) is built using 

𝑒𝑥𝑝(⋅)  (positive definite as well), and  𝑓ௗ,௜(⋅) which represents the norm of state deviations 

from the original trajectory 𝑇ைீ,௜. Since the MPC stage cost is the summation of ℓ௜ for all 

𝑖 ∈ 𝒱௖, then the MPC stage cost is also positive definite. Next, the MPC terminal penalty 

∑ ቂ𝑉௙௜
(𝑋)ቃ௜∈𝒱೎  is also positive definite. Moreover, Assumption D can be satisfied by opting 

the offset function 𝑉ை to be any 𝒦ஶ function. 

Therefore, given Αssumptions A-D, Theorem 1 of [203] can be leveraged to show 

asymptotic nominal stability of the scheme. ∎ 

Next, in order to alleviate a possible computational burden for the MPC optimization 

problem, an important assumption should be made. The formulation of the control scheme 

as-presented would give rise to a high-dimensional search space for the MPC optimization 

problem, thus greatly hindering its effective solution. It is assumed then, that all vessels 

retain their initial speed, with the only controllable variable being the vessel’s rudder angle; 

this way, the total number of control variables is reduced. This approach to the CA problem 

has occurred in the literature [175] and is not simplistic, for two reasons: first, good 

seafaring practice dictates that course change maneuvers are preferred over speed ones, not 

only because they conserve energy, but also because they better emphasize the intentions 

of the vessel to outside observers, such as other vessels in the vicinity. Secondly, since large 

container ships will be examined in the scope this case study, their large longitudinal inertia 

[202] confirms the assumption that the speed remains almost constant during the timeframe 

of a typical CA maneuvering scenario. Therefore, for the scope of this work, the input 

matrix 𝑈 at timestep k is formulated as follows: 

𝑈(𝑘) = ቎
𝑎ଵ(𝑘) 𝑎ଵ(𝑘 + 1) ⋯ 𝑎ଵ(𝑘 + 𝑁 − 1)

⋮ ⋱ ⋮
𝑎ே೎(𝑘) 𝑎ே೎(𝑘 + 1) ⋯ 𝑎ே೎(𝑘 + 𝑁 − 1)

቏ (6.2.24) 

Where 𝑎୧(𝑘) is the rudder angle of vessel i at timestep k. 

Having defined all aspects of the MPC optimization problem, a reiteration of the challenges 

of the CA control problem and how they are addressed by the controller is in order: Firstly, 

the goal of the control design is to generate trajectories for the controlled vessels that are 

risk-free (equation (6.2.5)), smooth (equation (6.2.19)), COLREG-compliant (equation 

(6.2.8)) and not deviative from the original course (equation (6.2.7)). Possible collision risks 
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are assessed by utilizing trajectory predictions for non-controlled (obstacle) vessels in the 

vicinity. The controllable variables are the rudder angles of the vessels (vessel speed is 

considered constant), while a discrete 1st order Nomoto model (equation (6.2.21)) is used 

for the modelling of the vessel dynamics, which was also infused with a noise signal for the 

purpose of accounting for uncertainties and environmental factors. The aforementioned 

vessel dynamics model has been compared to its higher-order nonlinear counterparts in 

[204], and it was shown that vessel course inaccuracies occur only for high yaw rates. Given 

the fact that the proposed CA method is concerned with large vessels with slow dynamics, 

the used vessel dynamics model is adequate for the case. In addition, MPC has shown to be 

robust against model uncertainties or input noise [199]. Finally, the constraints that must be 

adhered to when searching for the optimal solution (Problem (6.2.13)) are the technical 

bounds on the controlled variables (i.e. maximum and minimum rudder angles) and the 

COLREG compliance of the result trajectory. 

6.2.4.3 Data-driven collision avoidance control framework 

Having presented the proposed MPC controller, this section describes its integration within 

a general control framework. As shown in fig. 6.2.3, the framework is comprised by an 

offline and an online process. The offline process corresponds to the RBF trajectory 

prediction model training, using data from a specific area of interest (for example, a port) - 

naturally then, it could be undertaken by the port authority. The online process corresponds 

to the real-time control of autonomous vessels in the presence of obstacle vessels in the area 

of interest. The MPC CA controller, as described in subsection 6.2.4.2, is integrated here 

and is supplied with real time trajectory predictions of all obstacle vessels in order to 

calculate the optimal control actions for the controlled vessels. Since the RBF trajectory 

prediction model has been trained offline in the port authority premises, it is sensible to 

place the MPC controller there too, and communicate the computed control actions per 

control timestep via a communications link with the controlled vessels. Figure 6.2.4 

demonstrates this concept. 



 

 

The OCP (6.2.13) is solved using an active-set sequential quadratic programming (SQP) 

algorithm described in (2.1.4), which involves iterative calls to the objective function [205]. 

As shown in fig. 6.2.5, the integration of the MPC controller in the control framework 

requires the calculation of the obstacle vessel trajectory predictions for every controller 

timestep. Therefore, two main sources of computational complexity arise: The first is the 

evaluation of the RBF trajectory prediction model, which is shown to be in the order of 

magnitude of milliseconds [6], meaning that multiple obstacle vessels can be accounted for 

by the control scheme. The second is the solution of the optimization problem (equation 

(6.2.13)) by the SQP algorithm, which is known to converge quickly and with few objective 

function calls [206]. It is concluded that a typical controller timestep duration, comprised 

 
Figure 6.2.3. The proposed control framework 

 

Figure 6.2.4. An example of two cooperating vessels with a central controller 
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by the two aforementioned sources, will not exceed the order of magnitude of seconds, 

which is considered reasonable given the slow dynamics of large vessels.  

6.2.5 Results 

6.2.5.1 Case Study 

In this subsection, the performance of the proposed multi-ship MPC controller is assessed 

using real-life obstacle ship trajectories, which were sourced and preprocessed as described 

in section 6.2.4. In order to underline the importance of using sophisticated trajectory 

prediction models in the context of CA controller design, the proposed method is compared 

to an MPC controller that uses straight-line predictions for the trajectories of obstacle ships, 

based on their current course and speed [12]. To this end, two crossing scenarios are 

examined, while performance indicators of the generated trajectories are extracted and 

discussed in detail. The simulations were coded and executed on MATLAB 2020b, on a 

computer with an Intel i7 processor and 16 GB RAM. The simulation sample time is 30”. 

Lastly, the tuning and parameters of the methods are shown in Table 6.2.2, while the vessel 

parameters are shown in Table 6.2.3.  

For this case study, two controllable vessels are chosen, moving in parallel to each other 

and encountering an obstacle vessel moving into the port of Miami. For the performance 

evaluation of the two controllers, two scenarios are created; the first contains a head-on 

encounter type, while the second an overtaking maneuver that changes into a crossing 

encounter as time progresses. In the first scenario, the two controlled vessels are leaving 

the port of Miami at a course of 110o, when they encounter a single obstacle on their 

Table 6.2.2 MPC tuning parameters 

Parameter Description Value 
𝑡௖௦௧ Controller sample time 1’ 
ℎ௣ Control horizon 5 
ℎ௖ Prediction horizon 15 
𝑎଴ Risk function scaling parameter 3 
𝑎௥ Risk term weighting parameter 1 
𝑎ௗ Course deviation term weighting parameter 0.05 
𝑎ீ  Control action smoothness term weighting parameter 5 

 

Table 6.2.3. Vessel parameters 

Parameter Description Value 
𝑑௠௜௡ Minimum allowable DCPA for risk calculation 750m 

𝑑௘  Emergency distance 200m 
𝑡௠௜௡ Minimum allowable TCPA for risk calculation 10’ 
𝐾௦ Rudder gain constant 0.5 
𝑇௦ Rudder time constant 2 

 

 



 

 

starboard side which, in turn, is looking to enter the port. In the second scenario, the two 

controlled vessels are overtaking an obstacle vessel on her port side when suddenly, she 

turns port-side in order to enter the port of Miami, crossing into their intended path. The 

challenge posed by the two scenarios is that the two controllable vessels should maintain a 
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safe distance between each other and the obstacle vessel, while also navigating smoothly 

and without unnecessary deviation from their original course. It should also be noted that 

the obstacle vessel is non-controllable and therefore follows a predetermined path, without 

considering other vessels. 

6.2.5.2 Results & Discussion 

 

 
Figure 6.2.5. Scenario 1. The left subfigure column refers to the MPC-SLP scheme, while the right to the 
MPC-RBFP scheme. Subfigures (a1, b1) refer to time instance 3’, (a2, b2) to 9’, (a3, b3) to 10’ and finally, (a4, 
b4) to 16.5’ 



 

 

The response of the MPC controller utilizing straight-line prediction models (hereby 

referred to as ‘MPC-SLP’ for the first scenario is shown in the left column of subfigures 

within Fig. 6.2.5, for the 3-, 9-, 10- and 16.5-minute timesteps. The response of the proposed 

MPC controller utilizing RBF prediction models (hereby referred to as ‘MPC-RBFP’) for 

the same scenario and same time instances are shown in the right column of subfigures 

within Fig. 6.2.6. Next, the responses of MPC-SLP and MPC-RBFP for the second scenario 

are shown in the left and right subfigure columns of Fig. 6.2.8 respectively, for the 6-, 12-, 

13.5-, and 17-minute timesteps. In the aforementioned response figures, the red and blue 

dotted lines denote the original, undisturbed trajectory for controlled vessels 1 & 2, 

respectively, while the black dotted line shows the predetermined path that the obstacle ship 

will follow as the simulation progresses. Next, the red and blue dashed lines denote the 

trajectory that controlled vessels intend to follow, as calculated by the current MPC 

iteration, while the black dashed line shows the current trajectory prediction of the obstacle 

ship, as utilized by the MPC controller. The grey dashed circles have a radius of 𝑑௠௜௡ and 

denote the safe ship domain for the two controlled vessels; should any vessel enter another’s 

domain at any time, a collision risk arises. Lastly, the red-colored and blue-colored 

rectangles mark the controlled vessels 1 & 2 positions, respectively, while the grey 

rectangle marks the obstacle ship’s position; it should be noted that the markers are not to-

scale with the real dimensions of the vessels, since they have been enlarged for graphical 

convenience.   

Firstly, in order to assist the discussion in this subsection, distance plots are generated for 

the controlled vessels that are in closest proximity with the obstacle ship, for each scenario 

(see Fig. 6.2.7). In addition, the performance metrics for each controller in each scenario 

are shown in Table 6.2.4. For the head-on encounter of scenario 1, the correct trajectory 

prediction of the obstacle ship proves vital for the success of the proposed scheme. 

Considering timestep 3 (see Figure 6.2.5.a1, 6.2.5.b1) the MPC-RBFP scheme is already 

applying evasive control actions, since the correct inference of the general direction of the 

obstacle ship has given rise to a possible collision risk in the near future. In contrast, the 

MPC-SLP controller does not apply any control actions yet, because, based on the straight-
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line prediction model that it utilizes, the obstacle vessel will continue north and thus remain 

well clear of the controlled vessels. For the same reason, it takes MPC-SLP another 5’ 

minutes in order to correctly assess the collision risk and apply decisive control actions, but 

by then it is too late; by timestep 9’ (see Figures 6.2.7.a3, 6.2.7.b3), controlled vessel 2 

reaches its CPA with the obstacle ship, with a DCPA of 680m for controlled vessel 2, well 

 

 
Figure 6.2.6 Scenario 2. The left subfigure column refers to the MPC-SLP scheme, while the right to the MPC-
RBFP scheme. Subfigures (a1, b1) refer to time instance 6’, (a2, b2) to 12’, (a3, b3) to 13.5’ and finally, (a4, b4) 
to 17’ 
 



 

 

below the acceptable minimum distance 𝑑௠௜௡, as shown in Figure 6.2.7.a1. In contrast, the 

MPC-RBFP controller generates a smooth, safe, and consistent trajectory, owed to the 

correct trajectory prediction of the obstacle vessel. Not only does it reach an acceptable 

DCPA of 751 meters for controlled vessel 2, but it also manages to apply consistent control 

actions and not significantly deviate from the original course, as shown in Table 6.2.4.  

Next, the performance of the two controllers is assessed in an overtaking/crossing encounter 

in scenario 2. Here, the effect of the used trajectory prediction models is once again 

eminent: At timestep 6 (see Figures 6.2.6.a1, 6.2.6.b1), MPC-RBFP calculates a sharp 

control move to port-side for controlled vessel 1 in anticipation of the obstacle ship’s 

crossing towards the port of Miami; in contrast, MPC-SLP applies a lower rate of steering 

for controlled vessel 1, because the straight-line trajectory prediction places its CPA with 

the obstacle ship at a later time instance. This failure to correctly place the CPAs has adverse 

effects on vessel 2 trajectory, too, since it is displaced unnecessarily to the left in false 

anticipation of a collision risk. In addition, the obstacle ship crosses into the domain of 

Figure 6.2.7. Distance plots for scenarios 1 & 2. The left subfigure column refers to the MPC-SLP scheme, 
while the second to the MPC-RBFP scheme. Note that for scenario 1 (a1, b1) and for scenario 2 (a2, b2), the 
MPC-SLP violates the lower limit on distance from CPA, therefore its trajectories are deemed unsafe. 
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controlled vessel 1 (see Figure 6.2.6.a2) once it changes course towards the Miami port at 

timestep 8’. On the other hand, the MPC-RBFP scheme places controlled vessel 1 in a better 

position to narrowly evade the breach of its safe domain (see Figure 6.2.8.b2), throughout 

the simulation. This performance is owed to the trajectory that the RBF model generated 

for the obstacle vessel, placing its predicted CPA much closer to the real CPA for both 

controlled vessels. Also, it should be noted that for scenario 2, unnecessary deviations from 

the original course are avoided for controlled vessel 2, as indicated by the total deviation 

values in Table 6.2.4. In general, the proposed method achieves a lower overall cost for the 

generated trajectories, as shown in Table 6.2.4, while obtaining a certain degree of 

cooperation between the two vessels, where one makes way for the other, in anticipation of 

their upcoming evasive maneuvers. Moreover, the results show that the proposed method 

exhibits robust characteristics against environmental effects, which are modelled as input 

noise in the vessel dynamic model for the scope of the simulations, while accounting for 

COLREGs. Lastly, the average CPU time evaluation of the MPC calculation was recorded 

as 7 s for both scenarios, which is well within the allocated simulation controller timestep  

𝑡௖௦௧ of 60 s, proving that the proposed method is scalable to more controlled vessels and 

obstacle vessels. 

6.2.6 Conclusions and Future Prospects 
In this section, a data-driven tracking MPC controller utilizing RBF obstacle ship trajectory 

prediction models trained on real AIS data was proposed for the collision avoidance task in 

busy ports or waterways. The simulations have shown that the incorporation of a trajectory 

prediction model with a moderate degree of accuracy greatly benefits the performance of a 

CA controller.  

Table 6.2.4. Performance metrics for the generated trajectories of the MPC-RBFP and MPC-SLP schemes for 
the two simulation scenarios 

   Scenario 1 Scenario 2 

 
 Controlled 

Vessel 
MPC-RBFP MPC-SLP MPC-RBFP MPC-SLP 

Course 
deviations (1) 

 1 1.31 104 2.21 104 0.658 104 0.521 104 
 2 1.49 104 2.85 104 0.404 104 0.529 104 

       Control action 
smoothness (2) 

 1 307.35 476.59 242.12 167.85 
 2 290.94 424.43 92.47 128.41 

       
Risk of trajectory (3)  1 0 4.032 106 0 0 

 2 0 0 0 3.949 106 
       

Cost of trajectory (4) 
 1 9.05 106 1.62 1013 2.63 106 1.49 106 
 2 2.63 106 4.15 107 8.58 105 1.55 1013 

(1) As calculated by equation (14) 
(2) As calculated by equation (26) 
(3) As calculated by equation (12) 
(4) As calculated by equation (24) 

 



 

 

The future prospects of the proposed data-driven MPC CA controller extend further than 

the specific case study presented; other types of systems such as underwater or aerial 

vehicles could benefit from the black-box models of obstacles that the RBF networks 

permit. Since sophisticated RBF obstacle models can detect a collision risk correctly and in 

time, the planning of more economic trajectories for the controlled vehicles can be 

executed. This constitutes a significant benefit towards the economic navigation of 

vehicles, which can be further complemented by the design and development of data-driven 

economic propulsion controllers, as will be shown in the later chapter. 
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Chapter 7:   

Data-Driven Economic Nonlinear Model Predictive Control 

Economic MPC address the need of optimal economic performance of a process, rather 

than the tracking of a specific setpoint. Contrary to tracking NMPC, where the stage cost is 

lower bounded by a 𝒦ஶ function and is usually of the form ℓ௧(𝑥, 𝑢) = 𝑄்𝑥𝑄 + 𝑅்𝑢𝑅, 

economic NMPC can handle generic stage costs, provided that the formulation of its 

respective optimal control problem adheres to the EMPC theoretical framework. As 

discussed in Chapter 4, earlier research works on EMPC obtained nominal asymptotic 

stability, either by using stage cost rotations by some storage function [79] or by terminal-

constraint-based approaches [78]. EMPC has enjoyed multiple applications, with 

significant economic benefit [207]–[209]. 

However, the performance of EMPC controllers depends on the existence of an accurate 

controller model. This motivates the development of data-driven EMPC techniques that 

could handle model discrepancies as well as unknown disturbances so that superior 

economic performance is achieved in practical settings. Several theoretical developments 

of data-driven EMPC based on reinforcement learning (RL) have been proposed in the past 

three years, pertaining to safety and stability of such schemes [210]–[212]. As one of the 

most promising intersections of machine learning and control, RL is a sequential decision-

making computational intelligence algorithm that adapts a parametric internal 

representation of the control process through trial-and-error [38]. Due to its black-box 

nature, RL is well-oriented for usage in conjunction with an MPC formulation. 

The purpose of this chapter is to leverage the latest theoretical developments in EMPC and 

RL-MPC in order to create data-driven EMPC approaches for the economic control of a 

vessel propulsion system. There is significant motivation for this particular choice of case 

study: First, it is naturally related to the work presented in section 6.2, regarding the data-

driven MPC for vessel trajectory control with collision avoidance, since the combination of 

both can result in autonomous data-driven controllers for the economic propulsion and 

navigation of vessels. Second, the creation of economic marine propulsion controllers is of 

significant consequence for the national Greek economy, which heavily relies on 

international freight shipping. In short, the impact of this case study has both academic and 

real-world merits. 



 

 

The chapter is structured as follows: First, an initial EMPC control law utilizing the latest 

theoretical developments is constructed for the vessel propulsion case, in order to 

theoretically establish the concept of using EMPC instead of tracking MPC for this specific 

task. Next, the EMPC control law previously created is leveraged to create a data-driven 

propulsion controller based on RL, capable of handling modelling discrepancies and 

disturbances. In addition, a more detailed vessel propulsion plant model is introduced, 

together with an economic stage cost that accurately reflects the high-level chartering 

economics of freight shipping, thus further establishing the practicality and applicability of 

the data-driven EMPC approach. Lastly, the possibility of extending the created RL-MPC 

controller in order to include navigation objectives of the controlled vessel is explored. 
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7.1 A Vessel Propulsion Controller based on Economic Model Predictive 

Control 

The importance of reducing energy expenditure in vessel propulsion is underlined by recent 

environmental mandates in the maritime sector. Vessel propulsion is a multi-objective 

problem, since the overall energy expenditure of the powertrain must be minimized, while 

the vessel speed must be maximized. This section proposes an economic model predictive 

control approach, which can accommodate powertrain efficiency maps and thus evaluate 

candidate input trajectories in terms of energy efficiency. The proposed EMPC controller 

utilizes recent theoretical developments in order to guarantee stability. Simulation results 

are presented in comparison to a standard MPC scheme, for two different vessel sizes under 

environmental disturbances, and are evaluated in terms of the overall energy expenditure 

and the settling time to the desired vessel speed. Lastly, it is demonstrated that the proposed 

approach achieves a reduction in energy consumption of up to 1.9% in a rough sea scenario. 

7.1.1 Introduction 
Even though shipping remains the most efficient type of bulk transportation of goods, recent 

environmental mandates [213], as well as fuel cost increases, have ushered the maritime 

sector to seek further fuel saving measures, particularly in vessel propulsion. On one hand, 

fuel constitutes 75% of the total expenses of a vessel in a long-distance voyage [214]; this 

incentivizes reduced engine loads and thus, cruising speeds [215]. On the other hand, 

vessels are chartered under tightly-constrained port arrival times, meaning that there exists 

an economic incentive for maximizing the vessel’s speed [216]. It appears then, that these 

two conflicting objectives can be advanced concurrently only if the vessel propulsion 

controller (VPC) operates the powertrain in an energy-efficient manner. 

Previous research works have identified the engine speed of an internal combustion 

powertrain as the parameter of interest regarding fuel consumption [214]. In [217], a 

dynamic optimization problem is formulated over the whole span of the ship’s voyage in 

order to generate economically optimal steady-state engine speeds. In [218], a model 

predictive controller with a standard tracking stage cost that penalizes the distance from a 

reference steady-state engine operation is presented; the aforementioned stage cost implies 

the fuel consumption rate, while improvements are shown to be achieved in simulations.  

Still, even though such control approaches commonly state to minimize energy expenditure, 

in practice the actual economic criteria are not included in the objective function, and the 

desired results are achieved only indirectly. Moreover, it should be noted that energy 

efficiency of powertrains, whether of electric or internal combustion type, should not be 



 

 

assessed only by the engine speed at steady-state. In marine vessels there are multiple cases 

where the engine is displaced from its optimal engine speed; propeller ventilation in rough 

seas can momentarily reduce engine load, thus increasing engine speed for a given power 

input [219], or adverse wind conditions may require the pursuit of a different engine 

setpoint in order to retain the same vessel speed. In other words, optimal economic vessel 

performance must accommodate the energy-efficiency of transient powertrain states, which 

can only be attained by encoding the powertrains’ efficiency map in the objective. 

Application of optimal control with such explicit economic criteria commonly requires the 

problem to be formulated in an economic MPC framework. The consideration of purely 

economic objectives in a receding horizon fashion has shown significant benefits in various 

engineering domains [220]. Traditionally, stability of EMPC schemes was enforced by 

dissipativity-based cost rotations, with or without terminal penalties and Lyapunov-based 

stability [220]. Recently, a gradient-correcting terminal penalty was shown to be necessary 

for stability whenever the economic cost has a non-zero gradient at the steady-state [221]. 

Lastly, this theoretical result has successfully been applied to the energy-optimal 

coordination of autonomous ground vehicles at intersections [207]. To the author’s best 

knowledge, no application of EMPC for the vessel propulsion problem exists. 

The main contribution of this section is the development of a nonlinear EMPC controller 

for the vessel propulsion task under environmental disturbances. The proposed controller 

directly incorporates the economic criterion in the objective function, while also taking into 

account the transient powertrain states. The asymptotic stability of the proposed controller 

is guaranteed by adding a gradient-correcting end penalty in the cost function, to account 

for the non-zero gradient at the economically optimal steady state. Two scenarios are 

simulated; the first is a velocity setpoint change, and the second simulates a high-sea 

condition that induces propeller thrust loss [222].  Comparisons to a standard MPC 

controller for two different vessel types, in order to demonstrate the capabilities of the 

proposed EMPC controller.  

The rest of this section is structured as follows: Subsection 7.1.2 presents the nonlinear 

plant dynamics, as well as the propulsion objectives. In subsection 7.1.3, the proposed 

EMPC formulation is detailed. Subsection 7.1.4 presents the simulation results for the two 

scenarios, and finally, conclusions and plans for future research are drawn in subsection 

7.1.5. 
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7.1.2 Vessel Propulsion Control Problem Statement  

7.1.2.1 Vessel dynamics 

Since this section is concerned with the performance of a vessel propulsion controller, only 

the surge dynamics of the vessel are considered. These consist of the vessel’s hull dynamics, 

as well as the powertrain’s rotational dynamics. The hull dynamics are based on the 

standard non-dimensional form of SNAME [202], while the powertrain dynamics take into 

account friction terms as well as the energy efficiency map. The longitudinal hull dynamics 

are as follows: 

𝑣̇ =
1

𝐿 𝑚
൫𝑋௨௨𝑣ଶ + 𝐿ଶ(1 − 𝜏௡)𝑇௡௡𝑑௣𝑛ଶ + 𝑊௨௨𝑑௪൯ (7.1.1) 

Here, v is the longitudinal speed of the vessel, n is the angular velocity of the propeller, and 

𝑑௪ weighed by 𝑊௨௨ is the longitudinal acceleration induced by the environmental conditions 

such as waves or wind gusts. The parameter 𝑚 is the inertia (including the added mass along 

the longitudinal axis), 𝑋௨௨ is the dissipation parameter, L is the vessel’s length, 𝜏௡ is a 

scaling parameter, and lastly 𝑇௡௡ translates the propeller’s angular velocity to longitudinal 

thrust, and is weighed by the propeller submergence coefficient 𝑑௣ [219]. The propeller itself 

is powered by the powertrain, and assuming that there is no gearbox, n also corresponds to 

the crankshaft’s angular velocity. Therefore, an internal combustion engine can be modeled 

as follows [219]: 

𝑛̇ =
30

𝜋 𝐼௘௣
൫𝑄௔ − 6.28𝑎௙𝑛 − 39.43𝑎௣𝑑௣𝑛ଶ൯ (7.1.2) 

𝑄̇௔ =
1
𝑡௘

(−𝑄௔+𝑄௖) (7.1.3) 

Here, 𝐼௘௣ is the total rotational inertia of the crankshaft and propeller, 𝑄௔ is the generated 

torque by the powertrain, 𝑎௙ is a rotational friction coefficient, and 𝑎௣ relates propeller 

angular velocity to propeller torque. The generated torque 𝑄௔ lags behind the commanded 

torque 𝑄௖ by the delay parameter 𝑡௘, due to the fuel regulator dynamics. The powertrain is 

subject to the following operational constraints 

𝑄௖
୫୧୬ ≤ 𝑄௖ ≤ 𝑄௖

୫ୟ୶ (7.1.4a) 
𝑄௔

୫୧୬ ≤ 𝑄௔ ≤ 𝑄௔
୫ୟ୶ (7.1.4b) 

𝑛୫୧୬ ≤  𝑛  ≤ 𝑛୫ୟ୶ (7.1.4c) 
𝑃୫୧୬ ≤  𝑃  ≤ 𝑃୫ୟ୶ (7.1.4d) 

where P is the output power of the engine. Eqs. (4a-d) form the admissible set of states and 

inputs ℤ = 𝕏 × 𝕌, where 𝕏 and 𝕌 are the admissible state and input spaces, respectively 



 

 

Note that this formalism is not restrictive; other engine types can be accommodated, i.e. 

AC motors [207]. To conclude, the plant model (7.1.1-3) has the following states: 

𝑥 = [𝑣  𝑛  𝑄௔], 𝑥 ∈ 𝕏 (7.1.5) 

and accepts the following inputs and disturbance variables: 

𝑢 = 𝑄௖,   𝑢 ∈ 𝕌 
𝑑 = ൣ𝑑𝑝 𝑑𝑤൧

்
, 𝑑 ∈ 𝔻 

(7.1.6) 

7.1.2.2 Propulsion control objectives 

The two control objectives of a vessel propulsion controller are the minimization of the 

total powertrain energy usage and the minimization of total shipping voyage time. The first 

objective corresponds to the efficient utilization of the powertrain, while the second is 

equivalent to the maximization of the vessel’s surge velocity 𝑣. Considering a discrete finite 

horizon N ahead, the objectives to be minimized can be written as follows at discrete 

timestep k: 

𝐸൫𝑥(𝑡), 𝑢(𝑡)൯ = ෍ ቆන 𝑃൫𝑥(𝑡), 𝑢(𝑡)൯
(௞ାଵ) ೞ்

௞ ೞ்

𝑑𝑡ቇ
ேିଵ

௞ୀ଴

 (7.1.7) 

𝑉൫𝑥(𝑡), 𝑢(𝑡)൯ = − ෍ ቆන 𝑣(𝑡) 𝑑𝑡
(௞ାଵ) ೞ்

௞ ೞ்

ቇ
ேିଵ

௞ୀ଴

 (7.1.8) 

Here, 𝐸൫𝑥(𝑡), 𝑢(𝑡)൯ and 𝑉൫𝑥(𝑡), 𝑢(𝑡)൯ are the average consumed energy and average 

velocity over the horizon N for the given state and input vectors 𝑥(𝑡), 𝑢(𝑡). Next, 

𝑃൫𝑥(𝑡), 𝑢(𝑡)൯ corresponds to the power generated by the powertrain  

𝑃൫𝑥(𝑡), 𝑢(𝑡)൯ = 𝑄௔(𝑡) 𝑛(𝑡) 𝜂௘൫𝑥(𝑡), 𝑢(𝑡)൯ (7.1.9) 

where 𝜂௘൫𝑥(𝑡), 𝑢(𝑡)൯ is the inverse efficiency map of the powertrain (lower values 

correspond to an energy-efficient engine operation); 𝜂௘(∙) ∈ [0,1] is a continuously 

differentiable function, the arguments of which are commonly engine speed 𝑛 and torque 

output 𝑄௔. For a combustion engine, this is equivalent to a fuel consumption map. Lastly, 

note that the form of 𝜂௘ is not binding and can accommodate any type of engine mapping. 

7.1.3 Methodology 
It is intuitive to consider the propulsion control of a vessel as a continuous process, the 

output of which must be pursued economically. For this reason, an economic stage cost 

must be created and minimized under a suitable control scheme. 
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7.1.3.1 Creation of the economic stage cost 

One can create a multi-objective economic stage cost that reflects the objectives as 

presented in subsection 7.1.2. Considering the state and input vectors 𝑥𝑘, 𝑢𝑘 at the discrete 

timestep k of the horizon 𝑁, this stage cost is comprised by the expended energy cost  

ℓ௙(𝑥௞, 𝑢௞) = 𝑆𝐹𝐶 𝑝௙ න ቀ𝑃൫𝑥(𝑡), 𝑢(𝑡)൯ቁ 𝑑𝑡
(௞ାଵ) ೞ்

௞ ೞ்

 (7.1.10) 

and the velocity: 

ℓ௩(𝑥௞, 𝑢௞) = න 𝑣(𝑡) 𝑑𝑡
(௞ାଵ) ೞ்

௞ ೞ்

 (7.1.11) 

Here, SFC and 𝑝௙ are the specific fuel consumption of the engine and the fuel price, 

respectively. In order to simplify the analysis and to accommodate for other type of 

powertrains such as electric motors, SFC and 𝑝௙ take on the nominal value of 1. Thus, the 

objectives (7.1.7), (7.1.8) are written as 𝐸൫𝑥(𝑡), 𝑢(𝑡)൯ = ∑ ℓ௙(𝑥௞, 𝑢௞)ேିଵ
௞ୀ଴  and 

𝑉൫𝑥(𝑡), 𝑢(𝑡)൯ = − ∑ ℓ௩(𝑥௞, 𝑢௞)ேିଵ
௞ୀ଴ , respectively. 

 Note that the two stage costs (7.1.10), (7.1.11) are conflicting, i.e., the pursuit of a 

maximized velocity 𝑉(∙) would lead to increased energy consumption and thus energy cost 

𝐸(∙). Consequently, it is sensible to weigh the two costs using the tradeoff parameter 𝛽 > 0 

in order to create a suitable stage cost: 

ℓ𝛽
𝑓,𝑣

൫𝑥𝑘, 𝑢𝑘൯ = ℓ𝑓൫𝑥𝑘, 𝑢𝑘൯ − 𝛽 ℓ𝑣൫𝑥𝑘, 𝑢𝑘൯ (7.1.12) 

Here, ℓఉ
௙,௩ is a weighted sum of the multi-objective economic cost for the vessel 

propulsion task. It is apparent that 𝛽 acts as a regulation parameter that weighs the 

preference between energy expenditure and vessel velocity. By considering the vessel 

propulsion task as a steady-state process, one can formulate an optimization problem in 

order to yield the optimal steady-states for a given 𝛽. Therefore, ℓఉ
௙,௩ can be considered in 

the following steady-state optimization problem:  

min
௩,ொ

ℓఉ
௙,௩(𝑥௞, 𝑢௞) 

s.t. 𝑣 = 𝐹௩(𝑥, 𝑢), (𝑥, 𝑢) ∈ ℤ 
(7.1.13) 

Here, 𝐹௩(𝑥, 𝑢) is an integrator function that returns the terminal state value of 𝑣 resulting 

from the integration of (7.1.1) over one discretization interval, assuming an initial condition 

𝑥 and constant input 𝑢. Solving for a variety of 𝛽 values, the Pareto front of the multi-

objective problem can be constructed, as shown in Fig. 7.1.1. The desired tradeoff 



 

 

parameter 𝛽ௗ can be computed a priori given a desired steady-state velocity, by solving the 

following problem: 

min
௫,௨

ℓ𝑓(𝑥, 𝑢) 

s.t. 𝑣 = 𝐹௩(𝑥, 𝑢) 
(𝑥, 𝑢) ∈ ℤ 

       ℓ௩(𝑥௞, 𝑢௞) = 𝑣௥ 

(7.1.14a) 
(7.1.14b) 
(7.1.14c) 
(7.1.14d) 

As outlined in [207], the optimal Lagrange multiplier 𝜇௥ of the constraint (7.1.14d) is 

equal to the desired tradeoff parameter 𝛽ௗ. Note that (7.1.14b) represents the surge velocity 

dynamics equation. In other words, the desired reference velocity 𝑣௥ can be assigned by 

setting 𝛽ௗ = 𝜇௥. It is noted that this desired reference velocity can be computed offline 

during standard voyage estimation/chartering; the economic advantage of short voyage time 

is assessed, as influenced by current freight rates and penalties for delayed arrival at the 

destination [216]. 

7.1.3.2 Creation of EMPC controller with gradient-correcting end penalty 

Standard MPC stage costs penalize the distance to a steady-state reference setpoint 

(𝑥௦, 𝑢௦) ∈ 𝑖𝑛𝑡(𝕏 × 𝕌), where 𝕏 and 𝕌 are the admissible state and input spaces, 

respectively. This formulation ensures that the stage cost is bounded from below by a 𝒦ஶ 

function, which is a necessary prerequisite for asymptotic stability. One observes that the 

stage cost (12) presented in subsection 7.1.3.1 is generic, meaning that it is not designed to 

track a target setpoint, but rather economically optimize a process. When such user-

provided stage costs are applied, the resulting nonlinear MPC is considered as an economic 

MPC.  

The stability analysis of EMPC schemes differs from the standard MPC ones, and multiple 

research work has been devoted to this end [220]. The turnpike property of optimal control 

problems, implied by the reachability and the dissipativity properties of the problem at 

hand, has recently been exploited to enable stability guarantees [221], [223]. However, 

EMPC without penalties and constraints cannot stabilize to the optimal steady-state (𝑥௦, 𝑢௦) 

in the cases where the stage cost has a non-zero gradient there [221]. Indeed, the vessel 

propulsion control problem is such a case; as computed by the steady-state Problem 

(7.1.13), the gradients ∇ொℓఉ
௙,௩, ∇௩ℓఉ

௙,௩ at (𝑥௦, 𝑢௦) are nonzero for any nonzero β values. In 

[221], it is shown that in these cases, a linear terminal penalty term that corrects the gradient 

at (𝑥௦, 𝑢௦) can be introduced in order to guarantee stability. This linear terminal penalty is 
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a cost rotation by the optimal steady-state Lagrange multiplier vector 𝜆̅௦, as calculated by 

the steady-state Problem (7.1.13) 

𝑃ఒ(𝑥ே) = 𝑥ே
்  𝜆̅௦ (7.1.15) 

where 𝑥ே is the state vector at the end of the prediction horizon. In order to apply the 

theoretical results of [9], the initial assumptions for the problem must be met. These are the 

linear independence of the state-input constraints (Assumption 1) and the regularity of the 

steady-state optimal problem (7.1.13) (Assumption 2) which is trivially shown for the 

problem at hand. Next, one must verify that the Jacobian linearization of the plant model at 

the optimal steady-state (𝑥௦, 𝑢௦) is controllable, so that the standard 𝑃௅ொோ terminal penalty 

can be applied, which is again true for this system. Then, the EMPC formulation with the 

terminal penalty 

𝑃(𝑥ே) = 𝑃ఒ(𝑥ே) + 𝑃௅ொோ(𝑥ே) (7.1.16) 

given a finite horizon N and sample time 𝑇௦ will exponentially stabilize the system (1)-(6) 

at the optimal steady state [9]. Eq. (7.1.16) comprises two terms; the gradient-correcting 

terminal cost 𝑃ఒ constitutes a type of storage function that is necessary for the local uniform 

exponential stabilization of EMPC, but also for guaranteeing the economic performance of 

the proposed scheme. Its omission would result in the following: Firstly, as outlined in 

Theorem 3 of [221], the EMPC scheme would not stabilize at the economically optimal 

steady state. Secondly, limit-cycle phenomena around (𝑥௦, 𝑢௦) could arise, resulting in 

unnecessary torque command modulation and thus, reduced economic performance (see 

Remark 7 of [221]).  It should be noted that 𝑃ఒ is not substitutive to the cost-to-go term 

𝑃௅ொோ, which is typically added in MPC schemes to account for the infinite-horizon cost. 

Omitting this cost-to-go may lead to the optimal trajectory’s divergence from (𝑥௦, 𝑢௦) 

towards the end of the MPC prediction horizon. Thus, the terminal penalty (7.1.16) ensures 

the stabilization of the proposed EMPC scheme, while also accounting for the infinite-

horizon cost. 



 

 

Note that here, it is assumed that (𝑥௦, 𝑢௦) = (0,0). However, this assumption is not binding, 

since for the problem at hand the optimal steady-state is calculated a priori by problem 

(7.1.13); therefore, the state and input space 𝕏 and 𝕌 can be shifted by 𝑥௦ and 𝑢௦, 

respectively. 

7.1.3.3 OCP formulation of the EMPC controller 

The optimal control problem corresponding to the proposed approach is formulated as 

follows: 

min
௫,௨

𝐽ாெ௉஼(𝑥, 𝑢) (7.1.17a) 

s.t.  𝑥(0) = 𝑥ො଴ (7.1.17b) 
(𝑥, 𝑢) ∈ ℤ (7.1.17c) 

𝑥௞ାଵ = 𝑓( ೞ்)(𝑥௞, 𝑢௞) (7.1.17d) 
𝛽 = 𝛽ௗ (7.1.17e) 

 

where 

𝐽ாெ௉஼(𝑥, 𝑢) = ෍ ቀℓఉ
௙,௩(𝑥௞, 𝑢௞)ቁ + 𝑃(𝑥ே)

ேିଵ

௞ୀ଴

 (7.1.18) 

is the objective function cost and 𝑓( ೞ்) is the discretized model with zero-order hold over 

𝑇௦. 

 

7.1.4 Results 
In this subsection, the performance of the proposed EMPC scheme for the task of vessel 

propulsion control is evaluated and compared to a standard MPC (SMPC) controller for 

 

Figure 7.1.1 Pareto front for different values of the tradeoff parameter β 
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two different vessel types. The two controllers are assessed on their overall economic 

performance in a step and an environmental disturbance scenario. 

7.1.4.1 Setup 

First, the quadratic stage cost of the SMPC controller is introduced: 

ℓ௤ =
1
2

ቀ(𝑣 − 𝑣௦)ଶ𝑄௩ + ൫𝑄௔ − 𝑄௔,௦൯
ଶ

𝑅ቁ (7.1.19) 

This stage cost is of tracking type; it penalizes the distances from the optimal steady-state 

state and input 𝑥௦ and 𝑢௦, which are weighted by the Q and R parameters, respectively. In 

order to perform a fair comparison, these parameters are tuned as follows: 

𝑄௩ = ቀ ଵ
௩೘ೌೣቁ

ଶ
, 𝑅 = ቀ ଵ

ொೌ
ౣ౗౮ቁ

ଶ
         

 (7.1.20) 

The full OCP of the SMPC is formulated as follows: 

min
௫,௨

𝐽ௌெ௉஼(𝑥, 𝑢) (7.1.21a) 

s.t.  𝑥(0) = 𝑥ො଴ (7.1.21b) 
(𝑥, 𝑢) ∈ ℤ (7.1.21c) 

𝑥௞ାଵ = 𝑓( ೞ்)(𝑥௞, 𝑢௞) (7.1.21d) 

where 

𝐽ௌெ௉஼(𝑥, 𝑢) = ෍ ቀℓ௤(𝑥௞, 𝑢௞)ቁ + 𝑃௅ொோ(𝑥ே)
ேିଵ

௞ୀ଴

 (7.1.22) 

Next, the two simulation scenarios are detailed. For completeness’ sake, a very large tanker 

vessel, commonly known as KVLCC2 in the marine engineering literature, as well as a 

medium sized vessel, are examined in the first scenario [224]. The objective of scenario 1 

is to drive the vessel to an optimal steady-state setpoint, where it is assumed that no 

disturbances exist, i.e. 𝑑 = ൣ𝑑௣, 𝑑௪൧
்

= [1, 0]். Scenario 2 represents a sea condition with 

large head waves, inflicting a decelerating force expressed by 𝑊𝑢𝑢𝑑௪, as well as a thrust 

loss due to propeller ventilation, expressed by 𝑇𝑛𝑛𝑑௣. Disturbance variable 𝑑௪ ∈ [0,1] 

represents the modulation of the head wave decelerating force and has a value of 0 when 

no head waves are present. Disturbance variable 𝑑௣ ∈ [0,1] multiplies both the propeller 

thrust coefficient 𝑇𝑛𝑛 and the propeller torque constant 𝑎𝑝. When ventilation is present due 

to large waves, the propeller torque load and thrust periodically drop. When no large waves 

are present, 𝑑௣ is 0. The parameters of the two vessels, the vessel bounds and constraints, 

as well as scenario information are shown in Tables 7.1.1-4, while the disturbance variable 



 

 

profiles 𝑑 for scenario 2 are shown in Fig. 7.1.2; note that these are typical profiles of 

propeller ventilation and wave force upon a vessel for a moderately high sea, as sourced 

from the literature [219], [222], [224]. For both MPC controllers the sample time 𝑇௦ and 

horizon length N are set as 1s and 60, respectively. The plant dynamics 𝑓(𝑥(𝑡), 𝑢(𝑡)) are 

integrated using the explicit Runge-Kutta (4,5) formula for a simulation timestep of 0.5s, 

and the MPC optimization problem is solved using an adaptive interior-point solver. 

Table 7.1.1 Vessel parameters 

# 𝑰𝒆𝒑 
(kg m2) 

𝒂𝒇 

൬
𝑀𝑁𝑚
𝑅𝑃𝑀

൰ 

𝒂𝒑 

൬
𝑀𝑁𝑚
𝑅𝑃𝑀ଶ൰ 

𝒎 
(-)  𝑿𝒖𝒖 

(-) 
𝝉𝒏 
(-) 

𝑻𝒏𝒏 
(-) 

𝒕𝒆 
(-) 

𝑳 
(m) 

𝑾𝒖𝒖 
(m/s2) 

1 1 105 560 390 1.050  -0.043 0.22 3.5 10-5 3 300 -3 
2 0.1 105 168 39 0.500  -0.018 0.22 1.54 10-4 3 100 -1 
 
Table 7.1.2 Vessel bounds & constraints  

# 𝑸𝒄
𝐦𝐢𝐧 

(MNm) 
𝑸𝒄

𝐦𝐚𝐱 
(MNm) 

𝒏𝐦𝐢𝐧 
(RPM) 

𝒏𝐦𝐚𝐱 
(RPM) 

𝑷𝐦𝐢𝐧 
(MW) 

𝑷𝐦𝐚𝐱 
(MW) 

1 0.5 3 20 100 1 30 
2 0.1 0.75 20 120 0.2 9 

 
Table 7.1.3 Scenario 1: Initial conditions and optimal steady-states per vessel 

Vessel Initial conditions Optimal steady-state 

 𝒗𝟎 
(m/s) 

𝑸𝒂,𝟎 
(MNm) 

𝒏𝟎 
(RPM) 

𝒗𝒔 
(m/s) 

𝑸𝒔 
(MNm) 

𝒏𝒔 
(RPM) 

1 6.0 1.0 30 7.0 1.62 55.2 
2 7.0 0.2 58 11.65 0.47 85.97 

 
Table 7.1.4 Scenario 2: Initial conditions and velocity setpoint per vessel 

Vessel Initial conditions Velocity setpoint 

 𝒗𝟎 
(m/s) 

𝑸𝒂,𝟎 
(MNm) 

𝒏𝟎 
(RPM) 

𝒗𝒔 
(m/s) 

1 6.6 1.75 85 6.6 
2 7.5 0.45 75 7.5 

 

 

Figure 7.1.2: Scenario 2: Normalized head wave and propeller submergence profiles representing a high sea 
condition 
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Finally, the computational framework was built in MATLAB and the simulations were ran 

on a i9-9960x processor with 64 GB RAM. 

7.1.5 Results & discussion 
Regarding scenario 1, in Figs. 7.1.3,4, the velocity profiles, as well as the required power 

outputs of the SMPC and EMPC controllers are shown for both vessels, respectively. As 

expected, both controllers converge to the optimal steady-state velocity. However, EMPC 

requires less average power over the simulation period, which corresponds to lower total 

fuel expenditure. Namely, for vessel 1, the SMPC controller over the initial 750 seconds, 

requires a higher engine power input than EMPC, while in vessel 2 this is observed over 

the complete time range. Also, it should be noted that the velocity profiles achieved by the 

two controllers are almost identical, with regards to settling time and steady-state value. 

For easier comparison, analytical results for the two vessels are shown in Table 7.1.5. 

It appears that for both vessels in scenario 1, the proposed EMPC controller successfully 

stabilizes to the desired steady-state, while minimizing energy expenditure in transient. In 

order to reveal the causes of the increased economic performance, one must examine the 

 

 

Figure 7.1.3: Scenario 1, Vessel 1: (a) Velocity 

profile (b) Engine power output  

 

 

Figure 7.1.4: Scenario 1, Vessel 2: (a) Velocity 

profile (b) Engine power output  

 

 

 



 

 

state trajectory in the engine’s inverse efficiency map 𝜂௘(∙) for each scenario. In Figs. 7.1.5-

6, the respective maps of the vessels are shown for scenario 1 (low 𝜂௘(∙) values correspond 

to high efficiency). In vessel 1, it is apparent that the EMPC opts to remain in the high-

efficiency area denoted by blue, whereas SMPC traces an inefficient trajectory by applying 

an aggressive initial control input 𝑄. Next, in vessel 2, suitable engine torque values are 

commanded by the EMPC, so that the engine state (𝑄, 𝑛) remains in the high-efficiency 

“ridge” of the map for as long as possible. Here too, the SMPC controller departs from the 

efficient area and traces an economically suboptimal engine map trajectory. The superior 

transient economic performance of EMPC is owed to the formulation of the economic stage 

cost (7.1.12), that incorporates the powertrain information 𝜂௘(∙). In contrast, SMPC can 

only act based upon its perceived distance from the steady-state setpoint, as is evident by 

its stage cost (7.1.19). This means that it cannot assess the energy efficiency of a candidate 

input trajectory, and therefore its overall economic performance is reduced.  

 

 

Figure 7.1.5: Engine map trajectories for scenario 1, 

vessel 1 in (a) 2D and (b) 3D. Redder colours denote 

higher energy consumption. 

 

 

Figure 7.1.6: (a) Engine map trajectories for 

scenario 2, vessel 1 in (a) 2D and (b) 3D. Redder 

colours denote higher energy consumption. 
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The merits of the EMPC approach are highlighted in transient engine operation during 

scenario 2, which is bound to occur due to propeller ventilation [219] or wave forces (Fig. 

7.1.2). In Figs. 7.1.7-8, the velocity profiles and the engine power outputs of the SMPC and 

EMPC controllers are shown for vessels 1, 2 respectively. Indeed, both controllers manage 

to track a reference velocity as desired, however with different power profiles; from Figs 

7.1.7b, 7.1.8b it is apparent that the EMPC controller draws less power in average from the 

powertrain, for both vessels, by using the engine map efficiently, as demonstrated in Fig. 

7.1.9. In Table 7.1.6, the results of scenario 2 are summarily presented for both vessels, and 

they confirm the merit of the EMPC approach: For a negligible reduction in average sailing 

speed, energy saving returns of up to 1.95% can be reaped. For vessel 1, this corresponds 

 

 

Figure 7.1.7: Scenario 2, Vessel 1: (a) Velocity 

profile (b) Engine power output  

 

 

Figure 7.1.8: (a) Scenario 2, Vessel 2: (a) Velocity 

profile (b) Engine power output 

 

 

Figure 7.1.9: Scenario 2, engine maps of (a) Vessel 1 and (b) Vessel 2 



 

 

to almost 1.5 kWh of energy per minute of operation, while for vessel 2 the respective 

number is 0.5 kWh – therefore, considering the typical cargo ships’ voyage duration of 

multiple months, the economic effects of the EMPC approach are expected to compound 

significantly. It should be noted, that although the EMPC performance comes at a slightly 

increased computational cost, owed to the non-quadratic economic cost function, the 

average computational time needed per iteration is still perfectly acceptable for this 

application. 

7.1.6 Conclusion 
In this section, the concept of using an EMPC approach for the vessel propulsion problem 

has shown its merits in simulation. The proposed EMPC controller enabled the computation 

of efficient engine trajectories, resulting in better transient economic performance. It is 

noted that this EMPC approach can be further extended to other types of propulsion systems 

that prioritize fuel efficiency, such as turbofan engines on airliners. 

Still, the performance of the proposed controller rests on the assumption that there are no 

modelling discrepancies between controller model and real plant; if they exist, then this 

approach will not yield the optimal economic control law. Building on the theoretical 

foundation presented in this section, a data-driven scheme that will achieve the optimal 

economic performance for the problem at hand will be constructed next. 

 

Table 7.1.5 Scenario 1 Simulation Results 

 
Vessel 1 Vessel 2 

𝑡௦ 
(s) 

𝑣௦ 
(m/s) 

𝐸 
(MWh) 

𝑡௦ 
(s) 

𝑣௦ 
(m/s) 

𝐸 
(MWh) 

EMPC 1262 7.00 1.3868 495 11.65 0.3463 
SMPC 1250 7.01 1.3991 490 11.65 0.3563 
Difference % 0.9 -0.1 0.9 1 0 2.8 

𝑡௦ denotes the settling time 
 
Table 7.1.6 Scenario 2 Simulation Results 
 Vessel 1 Vessel 2 

 
Average 
speed 
(m/s) 

𝐸 
(MWh) 

avg. MPC 
evaluation 

time (s) 

Average 
speed 
(m/s) 

𝐸 
(MWh) 

avg. MPC 
evaluation 

time (s) 
EMPC 6.575 0.1045 0.553 7.478 0.0261 0.551 
SMPC 6.576 0.1060 0.432 7.482 0.0266 0.431 
Difference 
% -0.02 -1.52 +21.88 -0.05 -1.95 +21.66 
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7.2 A Data-Driven Vessel Propulsion Controller based on 

Reinforcement Learning and Economic Model Predictive Control 

In the previous section the proof of concept of an EMPC scheme for the vessel propulsion 

control was successfully established, for the case of a perfect controller model. However, 

an effective vessel propulsion controller should not only account for powertrain efficiency 

information & modelling errors, but also encompass the ship’s economic performance 

objectives. In this section we introduce an economic stage cost that reflects the actual vessel 

chartering economics instead of an arbitrary tracking setpoint, in order to create a stable 

economic MPC control law, which is then approximated up to 1st order by a standard MPC. 

This approximation is then used to build a data-driven economic model predictive control 

approach based on reinforcement learning (RL-MPC) for the economic control of vessel 

propulsion. The RL component uses a temporal difference learning scheme to generate 

stable controller parametrizations, which are iteratively applied in order to achieve 

improved closed-loop economic performance. Contrary to other data-driven or adaptive 

MPC approaches, RL-MPC is capable of handling significant structural & parametric plant-

model mismatches and disturbances in real time. Simulation comparisons are performed, 

for off-design and on-design disturbance scenarios, where the merits of the proposed 

method are showcased. The RL-MPC economic controller presented herein is shown to 

track the optimal economic policy, thus bridging efficient real-time propulsion control with 

high-level ship chartering economics. 

7.2.1 Introduction 
During voyage chartering operations, two objectives must be taken into account in order to 

generate the service speed setpoint: the first is the minimization of diesel fuel cost, while 

the second refers to the financial incentive of voyage time minimization [216] due to freight 

transport commercial costs (cost of opportunity, chartering time clauses, etc) [225], and is 

achievable by higher cruising speeds. Typically, a shipowner or charterer would formulate 

an optimization problem involving these two objectives using a model of the real vessel in 

order to determine the economically optimal service speed for their case [226]. 

Unavoidably, this model could account neither for environmental disturbances encountered 

along the voyage, nor for nominal modelling errors; in fact, standard practice in the 

maritime industry has been to simplistically assume that fuel consumption has a cubic 

relationship to vessel speed [227]. 

Even though the vessel propulsion control schemes in the literature claim to practically 

achieve efficient propulsion operation [228], the associated economic objectives do not 



 

 

appear explicitly in the formulated stage cost, meaning that the desired economic 

performance is achieved only indirectly. The EMPC controller presented in section 

7.1.confirmed the economic performance improvement margin over tracking MPC, under 

the assumption that the prediction model was perfect, i.e. there was no plant-model 

mismatch. Unfortunately, this assumption is impossible to guarantee, not only because of 

nominal modelling inaccuracies during control design, but also due to the constantly 

changing characteristics of the vessel propulsion system during operation [229], owed to 

hull & propeller fouling, component deterioration and fuel contamination [202]. Typical 

adaptive control techniques for MPC such as the prediction error minimization (PEM) could 

alleviate modeling inaccuracies by fitting the model on data that are sampled over 

predetermined intervals [25]. This model fitting may succeed whenever the plant-model 

mismatch is merely parametric, however, if there also exist structural differences between 

the two, e.g. the plant is of higher order and/or contains additional terms, then such 

approaches may not deliver the optimal MPC control law [230]. Plant-model structural 

mismatches is very often the case with vessel propulsion systems, since the real system 

dynamics can become highly intricate and detailed, as the large body of related vessel 

modelling literature reveals [202], [222], [224], [231]. 

Recently, a data-driven MPC was presented, capable of handling structural and parametric 

plant-model mismatches by employing reinforcement learning (RL) [212], [232]. As one 

of the most promising intersections of machine learning and control, RL is a sequential 

decision-making algorithm that adapts a parametric internal representation of the control 

process through trial-and-error [38]. By assigning rewards to control actions that result in 

desirable state transitions, a policy (equivalent to a control law) is learned as a state-action 

mapping. By leveraging this central idea, [212] showed that if an RL algorithm uses a 

parametrized MPC controller as the internal representation of the control problem coupled 

with an economic reward function, then the optimal economic policy will be yielded, even 

if the MPC prediction model is structurally mismatched. The definitive advantage of this 

RL-MPC fusion over using generalized parametrizations for RL, such as deep neural 

networks [38], is the existence of safety & stability guarantees for the learned policy, which 

were established by Gros and Zanon [211] using the MPC theoretical framework. 

In this section, an RL-MPC controller is presented for the economic control of the vessel 

propulsion system. First, a tracking MPC is initialized using a tuned stage cost that is a first-

order approximation of the respective EMPC control law [233]. Then, by letting RL adapt 
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the stage and terminal costs, the constraints & the model parameters, the optimal economic 

vessel propulsion control law in the case of parametric and structural plant-model 

mismatches is yielded. Comparisons to the initial tracking MPC are performed and the 

economic capabilities of the proposed RL-MPC are demonstrated in two simulation 

scenarios. The main contributions of this work are as follows: 

 An MPC economic stage cost is presented that encompasses the actual economics 

of vessel propulsion control as denominated during chartering operations [225], 

namely the bunker fuel cost & the freight commercial-related profits for the ship 

owner or charterer. Instead of devising arbitrary control objectives for the vessel 

propulsion system, this approach bridges the high-level charter planning stage with 

the real-time powertrain control of the vessel, with significant economic benefit. 

This economic stage cost can also be readily built by a practitioner with access to 

the economic characteristics of the voyage, enhancing the overall applicability of 

the proposed approach. 

 A data-driven MPC controller is introduced for the economic vessel propulsion task, 

capable of handling parametric & structural plant-model mismatches. These 

mismatches, manifesting as engine efficiency map discrepancies, model-order 

differences & nominal model parametric errors, can render typical adaptive MPC 

techniques invalid. Thus, the proposed scheme paves the way for achieving true 

economic performance in real vessel propulsion systems. In addition, the research 

results yielded in this work can be easily extended to other propulsion systems. 

Next, this section is structured as follows: a more detailed nonlinear vessel plant than the 

one presented in section 7.1., as well as a practical economic stage cost formulation, are 

laid out in subsection 7.2.2. Subsection 7.2.3 describes the theoretical foundation of the 

proposed controller. In subsection 7.2.4, simulation results for two environmental scenarios 

are presented & discussed, and lastly, conclusions are drawn in subsection 7.2.5. 

7.2.2 Vessel Propulsion Control Problem Statement  

7.2.2.1 Vessel dynamics 

Since the objective is to develop economic vessel propulsion controllers, only the vessel 

surge dynamics are included, namely, its hull dynamics and its 4-stroke diesel mechanical 

powertrain propulsion system (fig. 7.2.1). Both the plant and the controller model were 

based on the vessel model of [234], with some modifications necessary for usage as a 

controller simulation model. The motivation of not using the model already presented in 

section 7.1 pertains to its overall simplistic structure, which would not permit the 



 

 

construction of plant and controller model with sufficient structural discrepancy, thus 

dismissing the merits of the controller presented herein.  

The powertrain dynamics are modeled as differential-algebraic equations (DAEs): 

𝑄௘̇ =
1
𝑡ொ

(−𝑄௘ + 𝑀௘) (7.2.1) 

𝑟௣̇ =
1
𝑡௘

ቀ−𝑟௣ + 𝑟௣
௡௢௠ 𝑢௜௖௘

100
ቁ  (7.2.2) 

Here, 𝑄௘ is the current engine output brake torque, 𝑟௣ is an internal engine state variable 

describing turbocharger spooling and fuel rack time-delay dynamics, 𝑢௜௖௘ is the input 

variable representing the torque command as a percentage of the maximum torque that is 

currently available, and lastly 𝑡ொ & 𝑡௘ are time constants. Next, 𝑀௘ is the target engine output 

torque, written as: 

𝑀௘ = 𝑄௘
௡௢௠ ቆ𝑝ଵ ൬

𝑛௘

𝑛௘
௡௢௠൰

ଶ 𝑟௣

𝑟௣
௡௢௠ + 𝑝ଶ ൬

𝑛௘

𝑛௘
௡௢௠൰

𝑟௣

𝑟௣
௡௢௠ + 𝑝ଷቇ (7.2.3) 

This algebraic equation is comprised by a 2nd degree polynomial function with constants 

(𝑝ଵ, 𝑝ଶ, 𝑝ଷ) describing the engine speed – torque envelope of the engine [235], multiplied by 

the maximum indicated brake torque output 𝑄௘
௡௢௠. Here, 𝑛௘ is the current engine speed, and 

𝑛௘
௡௢௠ is the nominal engine speed. Next, the rotational dynamics of the engine are modelled 

as follows: 

𝑛௘̇ =
𝑄௚௕ − 𝑄௣

2𝜋𝐽௧
𝑖௚௕ (7.2.4) 

Here, 𝑄௚௕ is the output torque of the gearbox, 𝑄௣ is the propeller torque, 𝑖௚௕ is the gearbox 

speed reduction ratio, and 𝐽௧ is the total inertia of the powertrain, gearbox, axle & propeller. 

Taking into account gearbox losses, 𝑄௚௕ is denoted as 

𝑄௚௕ = 10ଷ ൭𝑄௘ 𝑖௚௕ − 𝑄௟
௡௢௠ ൬𝑎௚௕ + 𝑏௚௕ ൬

𝑛௘

𝑛௘
௡௢௠൰ + 𝑐௚௕

𝑄௘

𝑄௘
௡௢௠൰൱ (7.2.5) 

where 𝑄௟
௡௢௠ is the nominal gearbox torque loss due to friction, and 𝑎௚௕, 𝑏௚௕, 𝑐௚௕ are the 

torque loss parameters.  

Next, assuming a propeller with a constant pitch, 𝑄௣ is described as: 

𝑄௣ =
1

8𝜂௣
𝐶ொ𝜌𝑣௛

ଶ𝜋𝐷ଷ (7.2.6) 
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Here, 𝜂௣ is the relative rotative efficiency of the propeller, 𝐶ொ is the torque coefficient, 𝜌 is 

the seawater density, 𝐷 is the propeller diameter, and 𝑣௛ is the propeller’s hydrodynamic 

velocity, modelled as follows: 

𝑣௛ = ඨ𝑣௔
ଶ + ቆ𝑐௛ 𝜋

𝑛௘

𝑖௚௕
𝐷ቇ

ଶ

 (7.2.7) 

In the previous equation, 𝑐௛ is a dimensionless constant and 𝑣௔ is the advance speed of 

water w.r.t the propeller, calculated as 

𝑣௔ = 𝑣௦(1 − 𝑓௪) + 𝑣௪ (7.2.8) 

where 𝑓௪ is the wake fraction constant and 𝑣௪ the wave orbital speed. As the final 

component of plant modelling, the vessel surge speed 𝑣௦ is described as follows: 

𝑣௦̇ =
1
𝑚

൬𝐾௣ − 𝑅௩
1 + 𝑤௙

1 − 𝑓௧
൰        (7.2.9) 

Here, 𝑚 is the total mass of the vessel, 𝑓௧ is the thrust deduction factor, 𝑤௙ is a dimensionless 

variable accounting for hull resistance due to waves, while 𝐾௣ is the propeller thrust and 𝑅௩ 

is the hull resistance:  

𝐾௣ = 𝑘௣𝐶்𝜌𝑣௛
ଶ𝜋𝐷ଶ (7.2.10) 

𝑅௩ = 𝑐଴𝑦𝑣௦
ଶ (7.2.11) 

In (7.2.10), 𝑘௣ is a propeller constant and 𝐶் is the propeller thrust coefficient, while in 

(7.2.11), 𝑐଴ is the nominal hull resistance and 𝑦 a multiplication factor accounting for 

fouling [236]. 

Lastly, the wave model describing wave speed 𝑣௪ w.r.t time is 

𝑣௪(𝑡) = 𝜁𝜔 exp ൬𝜔ଶ 𝑧
𝑔

൰ 𝑠𝑖𝑛൫𝑡(−𝑤௞𝑣௦ − 𝜔)൯ 𝒳(𝑡)       (7.2.12) 

 

Figure 7.2.1 Vessel dynamics schematic representation. a) Vessel hull, b) Vessel Propulsion Controller, c) 

Powertrain, d) Gearbox, e) Propeller, f) Sea effects 



 

 

where 𝜁, ω, 𝑧 and 𝑤௞ are the significant wave amplitude, the wave radial frequency, the 

water depth of the propeller and the propeller wave fraction, respectively [237]. In order to 

account for random effects, a random variable 𝒳(1, 0.05) is added as a multiplying factor. 

   To summarize, the plant model comprised by the DAEs (7.2.1-3) has the state variables 

𝑥 = ൣ𝑣௦  𝑛௘ 𝑟௣ 𝑄௘൧
்
, 𝑥 ∈ 𝕏 (7.2.13) 

and accepts the input and disturbance variables 

𝑢 = 𝑢௜௖௘,   𝑢 ∈ 𝕌 (7.2.14a) 

𝑑 = ൣ𝑣௪ 𝑤௙൧
்
, 𝑑 ∈ 𝔻 (7.2.14b) 

where 𝕏, 𝕌 and 𝔻 are the admissible state, input, and disturbance spaces, respectively. 

7.2.2.2 Propulsion economic objectives 

The minimization of the total powertrain fuel consumption and the total shipping voyage 

time are the two economic objectives of a vessel propulsion controller that correspond 

directly to shipping operational costs [8]. These two objectives are translatable as the 

efficient powertrain utilization and the surge velocity maximization, respectively, and can 

be written as follows for a discrete finite horizon N: 

𝐹(𝑥, 𝑢) = ෍ ቆන 𝑃(𝑥, 𝑢) 𝑆𝐹𝐶(𝑥, 𝑢)
(௞ାଵ) ೞ்

௞ ೞ்

𝑑𝑡ቇ
ேିଵ

௞ୀ଴

 (7.2.15a) 

𝑉(𝑥, 𝑢) = − ෍ ቆන 𝑣௦ 𝑑𝑡
(௞ାଵ) ೞ்

௞ ೞ்

ቇ
ேିଵ

௞ୀ଴

 (7.2.15b) 

Here, for state-input vectors 𝑥(𝑡), 𝑢(𝑡), the sums 𝐹൫𝑥(𝑡), 𝑢(𝑡)൯ and 𝑉൫𝑥(𝑡), 𝑢(𝑡)൯ represent 

the expended fuel and the surge velocity, averaged over a horizon of length N. The power 

output of the engine at the current timestep is written as 

𝑃(𝑥, 𝑢) = 𝑄௘ 𝑛௘ (7.2.16) 

which, multiplied with the current specific fuel consumption 𝑆𝐹𝐶(𝑥, 𝑢), results in the 

current fuel consumption. Typically, SFC is represented as a 2D look-up table with engine 

power and speed as indices, however this formulation can be extended to any type of 

mapping describing different powertrains. In addition, similarly to [235], an emission 

minimization objective can also be included using a powertrain’s emission map 
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7.2.3 Methodology 
The RL-EMPC vessel propulsion controller that will be presented in this section is 

initialized on a regular tracking MPC formulation (TMPC), which, in turn, is required to be 

locally-equivalent to a corresponding EMPC control law. This section presents the 

proposed approach and its associated theoretical foundation. 

7.2.3.1 Creation of the improved economic stage cost 

Using the objectives presented in section 7.1, one can create an improved economic stage 

cost for the vessel propulsion task, that reflects the actual operational economic 

performance. Considering the discretized system with state-input vectors 𝑥௞, 𝑢௞, the 

expended fuel and surge velocity values at timestep k are written as 

𝑔௙ = න 𝑃(𝑥, 𝑢) 𝑆𝐹𝐶(𝑥, 𝑢)𝑑𝑡
(௞ାଵ) ೞ்

௞ ೞ்

 (7.2.17) 

𝑔௩ = න 𝑣௦ 𝑑𝑡
(௞ାଵ) ೞ்

௞ ೞ்

 (7.2.18) 

respectively, and the corresponding costs as 

ℓ௙(𝑥௞, 𝑢௞) = 𝑝௙ 𝑔௙ (7.2.19a) 
ℓ௩(𝑥௞, 𝑢௞) = 𝑝௩ 𝑔௩ (7.2.19b) 

where is 𝑝௙ the fuel unit price and 𝑝௩ the surge velocity “price”, with the latter quantifying 

the economic incentive of voyage time minimization [238]. Price 𝑝௩ is nominally composed 

as 𝑝௩ = 𝑠 𝐶 𝐷⁄ , where 𝑠 is the spot rate that the vessel has been chartered at (in $/ton), 𝐶 is 

the vessel’s cargo (in ton), and 𝐷 is the voyage distance (in m). Note that 𝑝௩ is normally 

negative, i.e., it represents profit. An economic stage cost can then be constructed for the 

vessel propulsion task, 

ℓ௣೑,௣ೡ
௙,௩ (𝑥௞, 𝑢௞) = 𝑝௙ 𝑔௙(𝑥௞, 𝑢௞) + 𝑝௩ 𝑔௩(𝑥௞, 𝑢௞) (7.2.20a) 

which can be equivalently also written as 

ℓ௣೑,௣ೡ
௙,௩ (𝑥௞, 𝑢௞) = 𝑝௙ ൭𝑔௙(𝑥௞, 𝑢௞) +

𝑝௩

𝑝௙
𝑔௩(𝑥௞, 𝑢௞)൱ (7.2.20b) 

by factoring 𝑝௙ out. Then, one can formulate a steady-state optimization problem that 

calculates the optimal economic steady-states: 

min
௫,௨

ℓఉ
௙,௩(𝑥௞, 𝑢௞) 

s.t. 𝑣௦ = 𝐹௩ೞ(𝑥, 𝑢), (𝑥, 𝑢) ∈ ℤ, 𝑣௦ ≥ 𝑣௖௟ 
(7.2.21) 

where: 



 

 

ℓఉ
௙,௩(𝑥௞, 𝑢௞) = 𝑔௙(𝑥௞, 𝑢௞) + 𝛽𝑔௩(𝑥௞, 𝑢௞) (7.2.22) 

Here, 𝛽 = 𝑝௩/𝑝௙ stands as a trade-off parameter, 𝐹௩ೞ is the integrator of the surge velocity 

DAE (7.2.9), which returns the terminal value of 𝑣௦  at the end of the discretization interval, 

ℤ is the admissible state-input space, and finally 𝑣௖௟ is the minimum service speed that the 

charter clause permits. Note that cost functions (7.2.22) and (7.2.20b) are interchangeable 

in an optimization context. In addition, the corresponding 𝛽 of an a-priori desired steady-

state velocity 𝑣௥ can also be computed for practical purposes, by solving the following 

optimization problem: 

min
௫,௨

𝑔௙(𝑥, 𝑢) 

s.t. 𝑣௦ = 𝐹௩ೞ(𝑥, 𝑢) 
(𝑥, 𝑢) ∈ ℤ 

𝑔௩(𝑥௞, 𝑢௞) = 𝑣௥ 

(7.2.23a) 
(7.2.23b) 
(7.2.23c) 
(7.2.23d) 

The solution of Problem (7.2.23) will yield the optimal Lagrange multiplier of constraint 

(7.2.23d). By setting 𝛽 equal to this Lagrange multiplier in the original Problem (7.2.21), 

the desired steady-state velocity 𝑣௦
(௦௦) = 𝑣௥ will be returned. Note that, in the real-world 

case, 𝛽 would be properly set as ௣ೡ
௣೑

. 

7.2.3.2 Economic MPC and its locally-equivalent tracking MPC 

Regular TMPC schemes act on a perceived deviation from a reference setpoint, using stage 

costs that are positive definite (usually quadratic). In contrast, EMPC is designed to handle 

the generic stage cost ℓ𝛽
𝑓,𝑣, which, even though indefinite, it reflects the actual economic 

objectives of the vessel propulsion system. The OCP corresponding to an EMPC-based 

vessel propulsion controller can then be described as: 

min
௫,௨

𝐽ாெ௉஼(𝑥, 𝑢) (7.2.24a) 

                         s.t.            𝑥(0) = 𝑥ො଴ (7.2.24b) 
(𝑥, 𝑢) ∈ ℤ (7.2.24c) 

                                    𝑥௞ାଵ = 𝑓( ೞ்)(𝑥௞, 𝑢௞) (7.2.24d) 
𝛽 = 𝛽ௗ (7.2.24e) 
𝑣௦ ≥ 𝑣௖௟ (7.2.24f) 

where 𝛽ௗ is the desired tradeoff parameter resulting from Problem (7.2.14), 𝑓( ೞ்) is the 

prediction model of the propulsion system discretized using a sample time equal to 𝑇௦, and 

𝐽ாெ௉஼  is the economic objective function 
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𝐽ாெ௉஼(𝑥, 𝑢) = ෍ ቀℓఉ
௙,௩(𝑥௞, 𝑢௞)ቁ + 𝑃(𝑥ே)

ேିଵ

௞ୀ଴

 (7.2.25) 

formulated using stage cost (22) and a stabilizing terminal penalty 𝑃(𝑥ே). As shown in 

subsection 7.1.3, a special terminal penalty is required for the stability of this EMPC 

controller, since the gradients ∇௫ℓఉ
௙,௩, ∇௨ℓఉ

௙,௩ at the optimal economic steady state (𝑥௦, 𝑢௦) 

are non-zero [221]: 

𝑃(𝑥ே) = 𝑃௅ொோ(𝑥ே) + 𝑃ఒ(𝑥ே) (7.2.26) 

Penalty function 𝑃 is comprised by the infinite horizon penalty 𝑃௅ொோ typically included in 

MPC schemes, plus the linear terminal penalty 

𝑃ఒ(𝑥ே) = 𝑥ே
்  𝜆௦  (7.2.27) 

where 𝜆௦ is the optimal Lagrange multiplier vector at (𝑥௦, 𝑢௦). 𝑃ఒ represents a storage 

function that allows the exponential stabilization of the vessel propulsion EMPC scheme at 

the optimal steady state.  

   Notwithstanding its stability and economic optimality for the case where there are no 

plant-model mismatches, the EMPC scheme (7.2.24) presents two significant practical 

shortcomings. The first pertains to the tractability of the OCP; algorithms capable of 

handling the non-convexity of Problem (7.2.1) are often hard to deploy in practice. The 

second is related to the practical computation of the optimal Lagrange multiplier 𝜆̅௦; 

inaccuracies between the actual and computed 𝜆̅௦ may arise  in the case of plant-model 

mismatches, which would compromise the stabilization of the system at (𝑥௦, 𝑢௦) [21]. In 

order to circumvent these obstacles, [233], [239] proposed an algorithm for tuning a regular 

TMPC with a quadratic stage cost so as to become a first-order approximation of the 

original EMPC control law, provided that the latter is stabilizing. Given the steady-state 

optimization problem (7.2.21), its Lagrange function ℒ(𝑤) can be defined, where 𝑤 =

(𝑥, 𝑢, 𝜆) is the primal-dual variable vector. By performing a convexification procedure 

represented by the following semi-definite program (SDP), one can yield a positive-definite 

Hessian matrix 𝛨෩ of a new quadratic stage cost ℓொ,ఉ: 

min
௽,௰,ఋ,఍

𝛾𝛿 − 𝜁 + 𝜌‖𝛤‖ (7.2.28a) 

s.t.  𝜁𝛪 ≼ 𝛨 + ℋ(𝛱) + 𝐺௦,஺
் 𝛤𝐺௦,஺ ≼ 𝛿𝐼 (7.2.28b) 

ℋ(𝛱) = ൤𝐴௦
்𝛱𝛢௦ − 𝛱 𝐴௦

்𝛱𝛣௦
𝛣௦

்𝛱𝛢௦ 𝛣௦
்𝛱𝛣௦

൨ (7.2.28c) 

𝛨෩ ≡ 𝛨 + ℋ(𝛱) + 𝐺௦,஺
் 𝛤𝐺௦,஺ (7.2.29) 



 

 

Here, 𝛾 and 𝜌 are problem tuning variables, 𝐴௦, 𝐵௦ represent the 𝑥, 𝑢 gradient vectors of 

system (7.2.13,14) respectively, 𝐺௦,஺ is the 𝑥, 𝑢 gradient of the active inequality constraints, 

and lastly, 𝛨 is the Hessian of the Lagrangian, all computed at the primal dual solution 𝑤௦ 

of Problem (7.2.21). 

7.2.3.3 Reinforcement-Learning-EMPC 

The idea behind RL-MPC is to encapsulate a parametrized MPC controller within RL so as 

to approximate the optimal action-value & value functions, as well as the optimal policy, 

for the economic process at hand. To this end, the vessel propulsion process is denoted as 

a discrete Markov decision process (MDP) with the following stochastic dynamics, 

𝒫[𝑠ା|𝑠, 𝑎] (7.2.30) 

where 𝑠 and 𝑎 are the state and action vectors, and 𝑠ା is the state transition of the discretized 

system represented by (7.2.13,14) (in control notation, 𝑥௞, 𝑢௞ and 𝑥௞ାଵ, respectively). For 

process 𝒫, an economic reward function is created: 

𝐿(𝑠, 𝑎) = ℓఉ
௙,௩(𝑠, 𝑎) + 𝐼ஶ(ℎ(𝑠, 𝑎)) + 𝐼ஶ(𝑔(𝑎)) (7.2.31) 

 The reward function is comprised by the economic stage cost (7.2.22), augmented with 

penalty functions 𝐼ஶ that are activated when the process constraints are violated, as denoted 

by 𝕏𝒫 = 𝑖𝑛𝑡(𝕏 × {𝑣௦ ≥ 𝑣௖௟}). The associated value and action-value functions 𝑉⋆ and 𝑄⋆ 

are then written as: 

𝑄⋆(𝑠, 𝑎) = 𝐿(𝑠, 𝑎) + 𝛾𝔼[𝑉⋆|𝑠, 𝑎] (7.2.32) 
𝑉⋆(𝑠) = 𝑚𝑖𝑛௔ 𝑄⋆(𝑠, 𝑎) = 𝑄⋆൫𝑠, 𝜋⋆(𝑠)൯ (7.2.33) 

These are the Bellman equations for the policy at hand. Here, 𝛾 is a discount factor, 𝔼[⋅] is 

the future expectation and 𝜋⋆ is a state-action mapping function called the policy. Eq. 

(7.2.32) states that the application of action 𝑎 while at state 𝑠 will yield the immediate 

reward 𝐿(𝑠, 𝑎) plus the discounted expectation of future rewards 𝛾𝔼[𝑉⋆|𝑠, 𝑎] that are 

retrieved by following 𝜋⋆ from the next state and onwards. 

Next, the MDP of a mismatched model of the real plant dynamics is 

𝒫[𝑠̂ା|𝑠, 𝑎] (7.2.34) 

and has an associated stage cost defined as 

𝐿෠(𝑠, 𝑎) = 𝑄⋆(𝑠, 𝑎) − 𝛾𝔼[𝑉⋆(𝑠̂ା)|𝑠, 𝑎] (7.2.35) 
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with |𝔼[𝑉⋆(𝑠̂ା)|𝑠, 𝑎]| < ∞. Then, Theorem 1 of [212] has shown that an optimal value 

function of the form 

𝑉෠ே(𝑠) = min
గ

𝔼 ൥𝛾௺𝑉⋆(𝑠̂ே
గ) + ෍ 𝛾௞𝐿෠൫𝑠̂௞

గ, 𝜋(𝑠̂௞
గ)൯

௺ିଵ

఑ୀ଴

൩ (7.2.36) 

can, in theory, yield the optimal policy 𝜋⋆ of the real plant dynamics 𝑠ା, even by using the 

wrong model 𝑠̂ା. Here, 𝛮 is an optimization horizon and 𝑠̂௞
గ are discrete states generated 

over 𝛮 by applying 𝜋. This central idea enables the use of fully parametrized EMPC 

schemes as function approximators within RL. Consider an EMPC controller with its 

individual constituents parametrized by a 𝜃 vector - namely a prediction model 𝑓ఏ
( ೞ்), a stage 

cost 𝑙ఏ, a terminal penalty 𝑃ఏ & a state-input constraint map ℎఏ - characterized by the 

following OCP: 

min
௫,௨,ఙ

𝐽ெ௉஼,ఏ(𝑥, 𝑢, 𝜎) (7.2.37a) 

s.t.     𝑥଴ = 𝑥଴′ (7.2.37b) 
𝑥௞ାଵ = 𝑓ఏ

( ೞ்)(𝑥௞, 𝑢௞) (7.2.37c) 
𝑔(𝑢௞) ≤ 0 (7.2.37d) 

ℎఏ(𝑥௞, 𝑢௞) ≤ 𝜎௞ (7.2.37e) 

Here, 𝜎 is the slack variable vector of the ℓଵ relaxation of the mixed state-input constraints 

ℎఏ denoting 𝕏𝒫, 𝑔 are the constraints denoting 𝕌, and the objective function 𝐽ெ௉஼,ఏ is 

𝐽ெ௉஼,ఏ(𝑥, 𝑢, 𝜎) = 𝜆ఏ(𝑥଴) + 𝛾௺𝑃ఏ(𝑥ே) + ෍ 𝛾௞(𝑙ఏ(𝑥௞, 𝑢௞) + 𝑤்𝜎௞)
௺ିଵ

఑ୀ଴

 (7.2.38) 

where 𝑤 is a slack weight vector and 𝜆ఏ an initial cost function, the role of which will be 

discussed later. Using Problem (7.2.37), the following value and action-value functions can 

be created, 

𝑉ఏ(𝑠) = min
௫,௨,ఙ

𝐽ெ௉஼,ఏ(𝑥, 𝑢, 𝜎), 𝑠. 𝑡 (7.2.37b) − (7.2.37e) (7.2.39a) 

𝑄ఏ(𝑠, 𝑎) = min
௫,௨,ఙ

𝐽ெ௉஼,ఏ(𝑥, 𝑢, 𝜎) 

𝑠. 𝑡 (7.2.37b) − (7.2.37e) 
𝑢଴ = 𝑎 

(7.2.39b) 

which correspond to the policy 𝜋ఏ = 𝑢଴
⋆  (as retrieved from the optimal input sequence 

yielded by Problem (7.2.37)). It is trivially shown that this formulation satisfies the Bellman 

equations: 

𝜋ఏ(𝑠) = 𝑎𝑟𝑔 min
ఈ

𝑄ఏ(𝑠, 𝑎) 
𝑉ఏ(𝑠) = min

ఈ
𝑄ఏ(𝑠, 𝑎) (7.2.40) 



 

 

As discussed in Corollary 2 of [212], this scheme can, in theory, deliver the optimal policy 

𝜋⋆; however, in most practical cases, this is not likely to happen. This is partly due to the 

intricacy of creating an MPC parametrization elaborate enough to capture the structure of 

any 𝑄⋆ and 𝑉⋆, and partly because, even if such a parametrization could be created, the 

computation of the related 𝜃⋆ would be extremely demanding. In short, only an 

approximation of the optimal vessel propulsion policy 𝜋⋆ can be expected in practice. 

   Still, by letting 𝜃 be adapted by classic RL tools, this approximation will be attained, even 

if the vessel propulsion model 𝑓ఏ
( ೞ்) used in Problem (7.2.37) is structurally or 

parametrically mismatched to the real plant 𝑓( ೞ்), denoted by (7.2.13, 14). However, since 

the corresponding stage cost ℓ𝛽
𝑓,𝑣(𝑠, 𝑎) of 𝜋⋆ is generic, the adaptation of 𝜃 may yield a non-

positive-definite value function, therefore compromising the standard, Lyapunov-based 

stability guarantees of the MPC scheme. The inclusion of the initial cost function 𝜆ఏ can 

alleviate this problem [212]: Function 𝜆ఏ acts as a cost rotation per classic economic MPC 

stability theory [79], which enables 𝐽ெ௉஼,ఏ(𝑥, 𝑢, 𝜎) to remain positive-definite without 

disturbing the optimal solutions of 𝑄 and 𝑉 (7.2.39). Provided that the stage cost 𝑙ఏ also 

remains positive-definite throughout 𝜃-adaptation, the scheme (7.2.37-40) as discussed 

here can successfully approximate the optimal vessel propulsion economic policy 𝜋⋆. 

7.2.3.4 Learning for RL-MPC 

Given the value and action-value functions introduced in subsection 7.2.3.1, classic RL 

methods that tune the θ-vector can be employed in order to yield increased closed-loop 

propulsion performance, such as Q-learning. Using the temporal-difference (TD) learning 

method [240], θ-updates can be computed as: 

𝜃 ← 𝜃 + 𝒶𝜏௞∇ఏ𝑄ఏ(𝑠௞, 𝑎௞) (7.2.41) 

Here, θ-updates are computed instantaneously at timestep k as the gradient-descent step of 

the action-value function 𝑄ఏ, using a step size 𝒶 ∈ (0,1]. The TD error 𝜏௞ is computed as: 

𝜏௞ = 𝐿௙(𝑠௞, 𝑎௞) + 𝛾𝑉ఏ(𝑠௞ାଵ) − 𝑄ఏ(𝑠௞, 𝑎௞)   (7.2.42) 

𝐿௙(𝑠௞, 𝑎௞) = ℓఉ
௙,௩(𝑥௞, 𝑎௞) + 𝑤்max൫0, ℎ(𝑥௞, 𝑎௞)൯   (7.2.43) 

where action 𝑎௞ = 𝜋ఏ(𝑠௞), and 𝐿௙ represents the economic reward function corresponding 

to the real process. This initial version of TD-learning, notwithstanding its simplicity, has 

some drawbacks. Firstly, instantaneous parameter updates may become counter-productive 

in the presence of noise and disturbances, which would be prevalent in the system of 
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interest. Secondly, as a gradient-based method, it cannot ensure convergence or 

globalization if the 𝜃-parametrization is nonlinear. Lastly, it does not guarantee that the 

Hessians of the quadratic cost functions 𝑙ఏ and 𝑃ఏ remain positive-definite as the algorithm 

progresses, therefore undermining the well-posedness and stability of the MPC scheme. 

The formulation of an SDP optimization problem that minimizes the TD error over an 

interval spanned by the last 𝑁௨௣ௗ number of steps, subject to positive-definitive constraints, 

alleviates these drawbacks [211]: 

min
ఏ

෍ 𝜏௞ି௝
ଶ

ேೠ೛೏

௝ୀ଴

 (7.2.44a) 

s.t.  𝐻௟ഇ ≻ 0, 𝐻௉ഇ ≻ 0, (7.2.44b) 

   Problem (7.2.44) is solved every 𝑁௨௣ௗ timesteps and converges to a 𝜃⋆ that is used to 

construct a step 𝒶𝜃⋆, which is then applied at a convenient time as 𝜃 ← 𝜃 + 𝒶𝜃⋆. Note that 

for 𝒶𝐻௟ഇ
⋆  & 𝒶𝐻௉ഇ

⋆ , which are the positive-definite step matrices generated by (7.2.44), it is 

trivially shown that their respective additions to  𝐻௟ഇ & 𝐻௉ഇ result in positive-definite 

matrices. Therefore, learning as presented here is guaranteed to generate stable MPC 

control laws. In general, it should also be noted that RL parameter update schemes such as 

(7.2.44) are not expected to yield the global 𝜃 optimum, especially in the case of nonlinear 

value function parametrizations; This drawback is universal in cases of such elaborate 

parametrizations, even when RL is commonly paired with neural-network-based function 

approximators. 

7.2.3.5 RL-MPC agent for vessel propulsion control 

Using the results of the previous subsections, the RL-MPC agent for vessel propulsion 

control can now be constructed. In order to adhere to the central motivation behind RL-

MPC and to ensure the tractability of the OCP in the case of real-life deployment, a lower-

order vessel model 𝑓ఏ is used as the controller prediction model. This model is 

parametrically and structurally mismatched with regards to the vessel plant (7.2.13,14) 

presented in subsection 7.2.2; the structural differences pertain to the absence of the internal 

engine state variable 𝑟௣, the simplified modelling of engine target torque 𝑀௘, and the 

omission of some terms from gearbox friction torque 𝑄௚௕:  

𝑀௘ = 𝑀௘
௡௢௠ ቆ𝑝ଵ ൬

𝑛௘

𝑛௘
௡௢௠൰

ଶ 𝑢௜௖௘

100
+ 𝑝ଶ ൬

𝑛௘

𝑛௘
௡௢௠൰

𝑢௜௖௘

100
+ 𝑝ଷቇ (7.2.45) 

𝑄௚௕ = 10ଷ ൬𝑄௘ 𝑖௚௕ − 𝑄௟
௡௢௠𝑏௚௕ ൬

𝑛௘

𝑛௘
௡௢௠൰ 𝜃ொ೗൰ (7.2.46) 



 

 

Model 𝑓ఏ is thus represented by the following DAE’s, 

𝑄௘̇ =
1
𝑡ொ

(−𝑄௘ + 𝑀௘) + 𝜃ொ೐,௖ (7.2.47) 

𝑛௘̇ =
𝑄௚௕ − 𝑄௣𝜃஼ೂ

2𝜋𝐽௧
𝑖௚௕ + 𝜃௡೐,௖ (7.2.48) 

𝑣௦̇ =
1
𝑚

ቆ𝐾௣𝜃஼೅ −
𝑅௩𝜃ோೡ

1 − 𝑓௧
ቇ + 𝜃௩ೞ,௖ (7.2.49) 

The model has the following state and input variables, 

𝑥 = [𝑣௦ 𝑛௘ 𝑄௘]்  𝑥 ∈ 𝕏,   𝑢 = 𝑢௜௖௘  𝑢 ∈ 𝕌 (7.2.50) 

parametrized by 𝜃௙ഇ = ቂ𝜃ொ೗𝜃ொ೗ 𝜃ோೡ 𝜃஼ೂ 𝜃஼೅ 𝜃ொ೐,௖ 𝜃௡೐,௖ 𝜃௩ೞ,௖ቃ
்
, with default values 𝜃ௗ௘௙

௙ഇ =

[1 1 1 1 0 0 0]். 

   Using the discretized model 𝑓ఏ
(்௦), Problems (7.2.21), (7.2.22) are formulated that yield 

an economic steady state (𝑥௦, 𝑢௦) for a given trade-off parameter 𝛽ௗ. Note that (𝑥௦, 𝑢௦) does 

not necessarily correspond to the optimal economic steady state (𝑥௦
⋆, 𝑢௦

⋆) that would result 

from the real plant 𝑓( ೞ்). Next, using 𝑓ఏ
(்௦), a stabilizing EMPC control law is constructed 

for the vessel propulsion problem, which is then employed in the convexification procedure 

described in subsection 7.2.3.1, in order to yield the first-order quadratic approximation of 

the control law. One can model the newly-created tracking stage cost, the classic LQR 

terminal penalty & the initial cost as fully parametrized quadratic functions of the type: 

𝐹(𝛥𝑤) = 𝛥𝑤்𝐻𝛥𝑤 + ℎ𝛥𝑤 + 𝑐,   𝛥𝑤 = ቂ𝑥
𝑢ቃ − ቂ

𝑥௦
𝑢௦

ቃ (7.2.51) 

Now, the RL-MPC value functions can be initialized with the default parameter vector:  

𝜃ௗ௘௙ = ቀ𝜃ௗ௘௙
௙ഇ  𝐻௟ ℎ௟ 𝑐௟ 𝐻௉ ℎ௉ 𝑐௉ 𝐻ఒ ℎఒ 𝑐ఒቁ (7.2.52) 

where 𝐻∗, ℎ∗, 𝑐∗ are the Hessian matrix, gradient and constant of the respective quadratic 

functions. 

   The RL-MPC agent for vessel propulsion control can now be deployed to the real system. 

Actions are applied based on the policy 𝜋ఏ resulting from the parametrized action-value 

and value functions 𝑄ఏ(𝑠, 𝑎) and 𝑉ఏ(𝑠), and TD-learning is employed in a batch update 

fashion using Problem (7.2.44) in order to approximate the optimal economic policy 𝜋⋆, 

corresponding to the vessel plant 𝑓 (7.2.13,14). The algorithmic framework is summarized 

in fig. 7.2.2. 
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7.2.4 Results 
In this section, the proposed RL-EMPC vessel propulsion controller is evaluated through 

comparisons to a tracking MPC controller, for two types of control scenarios. Simulation 

results are then presented and discussed. 

7.2.4.1 Case study & Setup 

First, the full OCP of the tuned-tracking MPC (TTMPC) used for comparison is presented, 

min
௫,௨,ఙ

𝐽்்ெ௉஼,ఏ೏೐೑
(𝑥, 𝑢, 𝜎) (7.2.53a) 

s.t.     𝑥଴ = 𝑥଴′ (7.2.53b) 

𝑥௞ାଵ = 𝑓ఏ೏೐೑

( ೞ்) (𝑥௞, 𝑢௞) (7.2.53c) 

𝑔(𝑢௞) ≤ 0 (7.2.53d) 
ℎఏ೏೐೑(𝑥௞, 𝑢௞) ≤ 𝜎௞ (7.2.53e) 

with objective function: 

𝐽்்ெ௉஼,ఏ೏೐೑ = ෍ ቀ𝑙ఏ೏೐೑
(𝑥௞, 𝑢௞) + 𝑤்𝜎௞ቁ

௺ିଵ

఑ୀ଴

+ 𝑃ఏ(𝑥ே) (7.2.53f) 

   The choice of TTMPC as a comparison controller is highly intuitive for this context: First 

of all, since it is a 1st-order tracking MPC equivalent of the EMPC vessel propulsion 

controller originally presented in section 7.1 it can be considered as state-of-the-art for this 

application. Secondly, the original EMPC control law may lose the stability guarantees 

granted by its gradient-correcting terminal penalty (this is due to plant-model mismatch, as 

discussed in subsection 7.2.3.2). Third, OCPs (53) & (37) are almost equivalent for 

𝜃 = 𝜃ௗ௘௙, meaning that RLMPC and TTMPC are also similar at initialization, therefore 

ensuring the fair evaluation of the proposed TD-learning scheme. 

  

Figure 7.2.2 Schematic representation of the proposed vessel propulsion control approach. 
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Next, the real plant 𝑓 and the controller model 𝑓ఏ parameters that is used by both controllers 

are shown in Table 7.2.1. Here, the evident parametric discrepancy, coupled with the plant-

model structural mismatch detailed in subsection 7.2.3.5, are expected to challenge the 

RLMPC controller in two respects: First, the computed economic steady state may not be 

optimal for the real plant, i.e., (𝑥௦, 𝑢௦) ≠ (𝑥௦
⋆, 𝑢௦

⋆) and second, the applied policy may differ 

significantly from the optimal one. This challenge is especially salient whenever the 

model’s economic cost formulation does not correspond to the plant’s – for the case study 

at hand, this manifests through an inaccurate specific fuel consumption map 𝑆𝐹𝐶(𝑥, 𝑢) 

[234]. This inaccuracy is evident in fig. 7.2.3, where the plant & model engine SFC 

contours, as well as the corresponding steady-state cost profiles are shown. Lastly, the 

constraints that denote the admissible state-input space ℤ for both controllers are shown in 

Table 7.2.2.  

   In order to showcase the merit of the RLMPC method, two environmental scenarios are 

used, pertaining to normal (on-design) and extreme weather conditions (off-design) 

situations. Information regarding initialization and wave characteristics are shown in Table 

7.2.3, while the modulation of the 𝑤௙ parameter that describes retrograde force due to waves 

acting on the hull is shown in fig. 7.2.4, for both scenarios. In addition, the tuning constants 

 
Figure 7.2.3 a) Contour plot of the engine’s normalized SFC map. Solid lines denote the 
actual plant map, while dashed lines the model’s map. b) The corresponding steady-state 
economic profile for a given 𝛽ௗ = 24.73 and various u. Note that (𝑥௦, 𝑢௦) ≠ (𝑥௦

⋆, 𝑢௦
⋆), i.e. 

the model’s optimum differs from the plant’s one. 
 

 
Figure 7.2.4 Wave hull disturbance 𝑤௙ modulation for the on and the off-design case. 
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of the two controllers are shown in Table 7.2.4. Here, horizon 𝑁 and sample time 𝑇௦ are 

chosen with regards to the dynamics of the vessel model in order to ensure feasibility and 

tractability of the OCP problems, while slack weight 𝑤 is determined in relation to the 

magnitude of the stage cost. The RL parameters 𝑁௨௣ௗ, 𝑎 and 𝛾 are tuned by trial-and-error 

in order to achieve a reasonable learning speed while mitigating the effect of disturbance 

noise in the TD-learning Problem (7.2.44). 



 

 

   Lastly, the simulation framework was built in Python, the OCPs (7.2.37) & (7.2.53) were 

Table 7.2.1 Plant & model parameters 

Symbol Description Plant Model Unit 

𝑡ொ Torque time constant 5 10 s 
𝐽௧ Total rotational inertia 5000 5000 kg m2 

𝑖௚௕ Gearbox speed reduction ratio 4.355 4.355 - 
𝑡௘ Turbo spooling time constant 20 - s 

𝑟௣
௡௢௠ 𝑟௣ nominal value 100 - - 

𝑛௘
௡௢௠ 𝑛௘ nominal value 950 950 RPM 
𝑚 Total mass 38 105 37.5 105 103 kg 
𝑓௧ Thrust deduction factor 0.155 0.155 - 

𝑄௘
௡௢௠ 𝑄௘ nominal value 53 52 kNm 
𝑝ଵ 𝑀௘ 2nd deg polynom. param. 1 0.9297 0.9297 - 
𝑝ଶ 𝑀௘ 2nd deg polynom. param. 2 0.0333 0.0333 - 
𝑝ଷ 𝑀௘ 2nd deg polynom. param. 3 0.15 0.17 - 

𝑄௟
௡௢௠ 𝑄௟ nominal value 1.04 1.04 kNm 

𝑎௚௕ 𝑄௟ param. 1 0.1 - - 
𝑏௚௕ 𝑄௟ param. 2 0.65 0.75 - 
𝑐௚௕ 𝑄௟ param. 3 0.25 - - 
𝑓௪ Wake fraction constant 0.08 0.08 - 
𝐷 Propeller diameter 3 3 m 
𝐶ொ Propeller torque coefficient 0.036 0.035 kNm 
𝜌 Seawater density 1024 1024 kg/m3 

𝑘௣ Propeller constant 2 2 - 
𝐶் Propeller thrust constant 0.16 0.155 kN 
𝑐଴ Nominal hull resistance 6350 6450 kN 
𝑦 Hull fouling factor 1 1 - 
𝑧 Propeller water depth 6.5 6.5 m 
𝑔 Gravitational acceleration 9.81 9.81 m/s2 

𝑐௖ RPM to rad/s conversion 0.1042 0.1042 - 
 

Table 7.2.2 Bounds & Constraints  

 𝒖𝒊𝒄𝒆 
(%) 

𝒏𝒆 
(rad/s) 

𝑸𝒆 
(kNm) 

𝒓𝒑 
(%) 

Lower 20 15 5 10 
Upper 95 95 𝑄௘

௠௔௫(𝑛௘) 100 

𝑄௘
௠௔௫(𝑛௘) = 𝑄௘

௡௢௠ ቆ𝑝ଵ ൬
𝑛௘

𝑛௘
௡௢௠൰

ଶ
+ 𝑝ଶ ൬

𝑛௘

𝑛௘
௡௢௠൰ + 𝑝ଷቇ [𝑝ଵ, 𝑝ଶ, 𝑝ଷ]= 

[0.90, 0.03, 0.22] 
 
Table 7.2.3 Scenario Setup: Initial Conditions & Disturbance parameters 

 𝒙𝟎 𝒖𝟎 𝒑𝒇 𝒑𝒗 𝜻 𝝎 𝒘𝒌 
On-

design [8, 80, 65, 35] 85 10-5 -2.312 10 0.3 0.020 

Off-
design [7, 70, 40, 30] 80 10-5 -2.45 18 0.3 0.025 
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constructed with CasADi tools [241] and solved with qpOASES [242], while the 

simulations took place on a i9-9960x processor with 64 GB RAM. 

7.2.4.2 Results & Discussion 

Regarding the on-design scenario, the state and input profiles are shown for both controllers 

in fig. 7.2.5. The TTMPC controller exhibits a tracking offset from the computed economic 

setpoint computed by Problem (7.2.21) due to environmental disturbances 𝑣௪, 𝑤௙, which 

decrease propulsion efficiency and increase ship resistance, respectively. The RL-MPC 

however, slowly adjusts its parameters and moves toward a different, more economical 

steady-state setpoint, as evident from fig. 7.2.5f. This result can be interpreted by examining 

fig. 7.2.3a, which shows the contour of the engine maps used by the model and the plant, 

respectively. The nominal operation points of the two maps, which correspond to the lowest 

SFC value, are different. The effect of this modelling discrepancy is reflected at the steady-

state economic cost map, plotted throughout the input range for indicative 𝛽ௗ values and 

shown in fig. 7.2.3b. It appears that Problem (21), formulated with 𝑙ఏୀఏ೏೐೑ and the engine 

map shown in fig. 7.2.3a with dashed lines, miscalculates the desired economic setpoint; 

consequently, RL-MPC adapts its 𝜃 parameters towards the optimal setpoint. The engine 

map trajectories for this scenario are shown in fig.7.2.6, where it can be seen that RLMPC 

slowly moves towards the true nominal engine operation point, while modulating the power 

in circles due to the disturbances affecting on the propeller. Also, the evolution of some 

indicative 𝜃-parameters is shown in fig. 7.2.7, where it is shown that the 𝜃-learning process 

tends to converge to a parameter set that corresponds to the new setpoint, which is testimony 

to the effectiveness of the TD-learning optimization Problem (7.2.44). 

Table 7.2.4 MPC & RL Parameters 
Symbol Description Value 

𝛮 MPC prediction horizon 100 
𝑇௦ MPC sampling time 1 s 
𝑤 Constraint slack weight 1000 

𝑁௨௣ௗ RL sample batch length 40 
𝒶 RL step constant 0.35 
𝛾 RL discount factor 0.99 

 



 

 

   The economic efficiency of a vessel propulsion controller is also assessed in an off-design 

scenario setting that represents severe weather conditions. Figs. 7.2.8a-e depict the state 

and feedback profiles, while in fig. 7.2.8f, the plant’s economic stage cost 𝐿௙ is shown. In 

this scenario, it appears that both controllers fail to track the pre-computed setpoint vessel 

speed due to the severe longitudinal wave forces acting on the hull, even though the 

propulsion system is operated at near-maximum capacity. Here, the results of RL-MPC are 

 

Figure 7.2.5 On-design scenario, state & input results: a) Vessel speed, b) Engine speed, 
c) Spool percent, d) Engine torque output, e) Engine controller command, f) Vessel 
propulsion economic cost.  
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highly intuitive: During severe weather, higher engine setpoint operation does not 

correspond to higher velocity due to the wave forces acting on the hull and propeller. This 

means that the economically sensible propulsion strategy is to track a (negligibly) reduced 

speed while applying conservative control actions. The latter is apparent if one examines 

the input profile shown in fig.7.2.8e: TTMPC consistently saturates the input in a naïve 

attempt to track the original velocity setpoint, while RL-MPC modulates the engine torque 

 
Figure 7.2.6 On-design scenario, engine trajectories for the two controllers 

 
 

 
Figure 7.2.7 On-design scenario, 2-norm of cost θ-parameters of RLMPC: a) Stage cost 
Hessian, b) Stage cost gradient, c) Terminal cost Hessian, d) Terminal cost gradient. 

 



 

 

command in order to achieve economic performance, as encapsulated by 𝐿௙. This 

conservative propulsion control strategy also avoids engine overloading, as evident by the 

engine map trajectories for this scenario shown in fig. 7.2.9. Both controllers considerably 

modulate the power output of the engine due to the heavy disturbances acting on hull and 

propeller; however, TTMPC narrowly violates the safe engine operation envelope due to 

 

Figure 7.2.8 Off-design scenario, state & input results: a) Vessel speed, b) Engine speed, 
c) Spool percent, d) Engine torque output, e) Engine controller command, f) Vessel 
propulsion economic cost. 
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the saturation of the input command.  In fig. 7.2.10, the evolution of the 𝜃-parameters for 

the off-design scenario are presented. It should be noted that the convergence of the 𝜃-

parameters is less clear in this case; however, RL parameter convergence is not generally 

expected [212].  

   As discussed in Section 7.2.3.1, the economic performance of the vessel propulsion 

process is not arbitrarily quantified. Instead, it results as a trade-off between the fuel and 

 
Figure 7.2.9 Off-design scenario, engine trajectories for the two controllers  
 

 
Figure 7.2.10 Off-design scenario, 2-norm of cost θ-parameters of RLMPC: a) Stage cost 
Hessian, b) Stage cost gradient, c) Terminal cost Hessian, d) Terminal cost gradient. 
 



 

 

velocity prices 𝑝௙ and 𝑝௩ respectively, with the latter representing the operational incentive 

of freight commercial profit maximization. Therefore, one should not expect the tracking 

of a pre-specified velocity setpoint from RL-MPC, but rather the minimization of the 

economic cost 𝐿௙. The optimal policy 𝜋⋆ that minimizes this 𝐿௙ cannot be known a-priori, 

for two reasons: Firstly, a wrong model 𝑓ఏ may lead to inefficient control laws, as the on-

design scenario results show; the engine map mismatch led to the generation of an 

unsuitable economic setpoint, which RL-MPC had to alter in order to coincide with the 

powertrain’s nominal operation point. Secondly, external disturbances may invalidate a pre-

computed economic policy; as shown in the off-design scenario, RL-MPC successfully 

takes heed of the reduced propulsion efficiency due to the severe sea conditions and adjusts 

its policy accordingly. 

   In addition, one should examine the economic performance of the two controllers, 

calculated using the economic stage cost ℓ௣೑,௣ೡ
௙,௩  that was presented in Section 7.2.3.1, using 

Table 7.2.5 On-Design Scenario Economic Results 

 

Total simulation time (𝑻𝒔𝒊𝒎 = 
600s) t > 400s (new setpoint) 

𝑳𝒇 
($) 

ℓ௙ 
($) 

ℓ௩ 
($) 

𝑳𝒇 
($) 

ℓ௙ 
($) 

ℓ௩ 
($) 

RLMPC -6468.4 3523.7 -9992.1 -2223.4 1374.9 -3598.2 
TTMPC -6369.5 3462.2 -9831.6 -2104.4 1195.5 -3300.1 
Diff. % 1.53 1.75 1.61 5.35 13.04 8.29 

 
Table 7.2.6 Off-Design Scenario Economic Results  

 

Total simulation time 
(𝑻𝒔𝒊𝒎 = 500s) 

Total 𝑳𝒇 
($) 

ℓ௙ 
($) 

ℓ௩ 
($) 

RLMPC -4237.2 3820.0 -8057.1 
TTMPC -4169.0 4047.2 -8216.2 
Diff. % 1.61 5.61 1.96 

 

Figure 7.2.11: Model parametrization evolution 𝜃௙ഇ: a) On-design scenario, b) Off-design 
scenario 
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prices 𝑝௙, 𝑝௩ sourced from Table 7.2.3. It is first reminded that this stage cost, shown in 

figs. 7.2.5f & 8f for the on- and off-design scenarios, respectively, reflects the actual 

operational returns of the vessel, since it prices the fuel cost plus the freight commercial 

profit. For ease of comparison, the economic results of the two simulation scenarios are 

summarized in Tables 7.2.5, 7.2.6.  For the on-design scenario shown in figs. 7.2.5-7, 

RLMPC achieves 1.53% higher operational profit throughout the whole simulation time. 

However, once RLMPC settles in the new setpoint at 𝑡=400 s, a significant 5.35% increase 

in operational profit is recorded from that time, up to the end of the simulation. By observing 

the TD-error containing the true rewards ℓ௣೑,௣ೡ
௙,௩ , RLMPC slowly adjusts the 𝜃-parameters, 

in order to converge towards the true optimal economic setpoint, thus achieving this 

increased performance. In the off-design scenario, a 1.61% profit increase is seen 

throughout the simulation time; here, RL-MPC correctly identifies that the economic trade-

off represented by ℓ௣೑,௣ೡ
௙,௩  requires a reduced service speed in the face of adverse weather 

conditions. To put the results of both scenarios in perspective: For the on-design scenario, 

RLMPC would increase profit by 2142 $/hr when operating at the new setpoint, while 491 

$/hr would be saved for the off-design scenario case. It should be noted that RL-MPC 

achieves this increased economic performance without necessarily generating a sensible 

prediction model 𝑓ఏ, as evident by the model parametrization 𝜃௙ഇ evolution for the two 

scenarios, shown in fig. 7.2.11. As discussed in Section 7.2.3.3, the objective of RL-MPC 

is to approximate 𝜋⋆ by toggling the entirety of the MPC constituents (cost, constraints, & 

model), rather than merely focusing on reducing model prediction error, as in typical system 

identification schemes. 

7.2.5 Conclusion & Future Prospects 
In this section, an RL-MPC controller is presented for the maximization of the economic 

performance of a vessel propulsion system. First, an economic MPC stage cost that 

incorporates the actual high-level chartering economic objectives is built. Then, using this 

stage cost, a data-driven RL-MPC controller for economic vessel propulsion is developed. 

Simulations show that the proposed vessel propulsion controller is able to maximize the 

economic performance by accommodating for model discrepancies and external 

disturbances.  

It should be noted that the results of this section can be further extended to other types of 

propulsion systems, while also incorporating recent research results from the literature that 

combine RL-MPC with system identification [243], or account for safety-critical 

applications [211]. Still, the case of efficient operation of an autonomous vessel’s requires 



 

 

not only the economic utilization of the propulsion system, but also its efficient navigation; 

for this reason, the unification of the results presented herein with the data-driven tracking 

controller capable of & navigation and collision avoidance presented in Section 6.2 is well-

motivated. 
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7.3 A Control Law for the Data-Driven Navigation & Economic 

Propulsion Control of Vessels 

As a continuation of the work presented in Sections 7.2 & 6.2, this chapter constructs a 

stable control law for the data-driven navigation & economic propulsion control of vessels 

(it should be noted that this chapter does not constitute a complete study to this end). There 

exists significant motivation for this endeavour, both from a practical & academic 

perspective: From a practical perspective, the proposal of a data-driven control law that 

incorporates actual vessel economic performance as well as path following can lead to the 

creation of fully autonomous & economic vessel agents, with tangible economic benefit. 

Next, from an academic perspective, a data-driven approach for the combined navigation 

& economic propulsion control of vehicles has not been created so far; two research works 

currently exist that are most relevant: The first constructed a data-driven trajectory tracking 

navigation control law for autonomous vessels using RL-based MPC, however without 

including a detailed modelling of the propulsion system and its respective economic 

objectives [244]. The second research work presented a stabilizing, dual-objective 

continuous-time MPC which did handle both a trajectory tracking & a propulsion energy 

objective for underactuated vehicles [208]; still, since it was not data-driven, it cannot 

handle modelling discrepancies, while also its economic objective formulation remained 

rather simple. To reiterate, the development of a novel, data-driven navigation & economic 

propulsion control law is well-motivated, and this section lays the necessary theoretical 

groundwork to this end. 

7.3.1 Vessel Navigation & Propulsion Control Problem Statement 

7.3.1.1 Kinematics & dynamics of vessel 

In this subsection, the vessel model that incorporates 3DoF in motion as well as the 

propulsion system states is presented. The pose of a vessel is described by 

𝜂 = [𝑥, 𝑦, 𝜓]⊺𝜖ℝଶ × 𝕊 where 𝕊 = [0,2𝜋] is the set of yaw angles 𝜓, while its cartesian 

position in the fixed reference frame described by 𝑝 = [𝑥, 𝑦]⊺. Next, the velocity vector 

𝜈 = [𝑢௩, 𝑣, 𝑟]⊺𝜖ℝଷ includes the body-fixed velocities 𝑢, 𝑣 and the yaw velocity 𝑟. The 

dynamic model of the vessel is then given as [202]: 

𝜂̇ = 𝐽(𝜂)𝜈 (7.3.1a) 
𝑀𝜈̇ + 𝐷(𝜈)𝜈 + 𝐶(𝜈)𝜈 = 𝜏௣ + 𝜏௪ (7.3.1b) 



 

 

Here, 𝑀𝜖ℝଷ×ଷ is the inertia matrix, 𝐷(𝜈)𝜖ℝଷ×ଷ is the water damping matrix, 𝐶(𝜈)𝜖ℝଷ×ଷ 

is the Coriolis matrix, 𝜏௣, 𝜏௪ are the vessel thrust and wave forces, respectively, and lastly, 

𝐽(∙) is the North East Down (NED) reference transformation matrix, denoted as: 

𝐽(𝜂) = ൥
cos(𝜓) −𝑠𝑖𝑛(𝜓) 0
𝑠𝑖𝑛(𝜓) cos(𝜓) 0

0 0 1
൩ (7.3.2) 

Typically, evaluating the thrust vector 𝜏௣ would involve the mapping of the actuators 

installed on the vessel to generate the respective forces and moments for each body-fixed 

direction. Here, without loss of generality, it is assumed that there exists a single thruster 

generating thrust magnitude 𝑓଴ at an azimuth angle of 𝑎଴. Thus, the vessel’s thrust force 

vector 𝜏௣ can be written as follows: 

𝜏௣ = ൦
𝑓଴cos(𝑎଴)
𝑓଴sin(𝑎଴)

𝑓଴ ቀ𝑑௫sin(𝑎଴) − 𝑑௬cos(𝑎଴)ቁ
൪ (7.3.3) 

Here, (𝑑௫, 𝑑௬) is the distance of the thruster from the body-fixed axis of the vessel.  

Next, the thruster dynamics can be presented; typically, the azimuth angle dynamics can be 

described by a time-delay ODE 

𝑎଴̇ =
1
𝑡௔

൫−𝑎଴ + 𝑎଴,௖൯ (7.3.4) 

where 𝑡௔ is a time constant and 𝑎଴,௖ is the azimuth angle command. The thrust magnitude 

𝑓଴ however, encapsulates the propulsion system dynamics and thus requires detailed 

modeling. For this reason, we leverage the internal combustion engine plant model 

presented in Section 7.2.2.1 with DAEs 7.2.1-13, which contains the states ൣ𝑣௦  𝑛௘ 𝑟௣ 𝑄௘൧
்
, 

where 𝑣௦ is the longitudinal velocity, 𝑛௘ is the engine angular velocity, 𝑟௣ is an internal state 

variable describing turbocharger spooling and fuel rack time-delay dynamics, and 𝑄௘ is the 

current engine output brake torque. This model accepts the input 𝑢௜௖௘, which represents the 

torque command to the engine, as a percentage of the maximum torque that is currently 

available. The first step to creating the propulsion system model 𝑓௣௥௢௣(⋅) is to omit the 

velocity 𝑣௦ (7.2.9), since a representation already exists (7.3.1). Next, the propeller thrust 

magnitude 𝑓଴ is written as : 

𝑓଴ = 𝐶்𝜌𝑣௛
ଶ𝜋𝐷ଶ (7.3.5) 
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Here, 𝐶் is a propeller constant, 𝜌 the water density, 𝑣௛  is the propeller’s hydrodynamic 

velocity (which is a function of engine speed 𝑛௘), and 𝐷 the propeller’s diameter. Using 

𝑓௣௥௢௣(⋅) and (7.3.1) the implicit dynamics of the full vessel model 𝑓௙௨௟௟(⋅) encompassing 

the 3DoF hull dynamics as well as the propulsion system can be created: 

⎣
⎢
⎢
⎢
⎢
⎡ 𝜂̇ − 𝐽(𝜂)𝜈

𝑀𝜈̇ + 𝐷(𝜈)𝜈 + 𝐶(𝜈)𝜈 − 𝑎଴𝑓଴ − 𝜏௪

𝑎଴̇ −
1
𝑡௔

൫−𝑎଴ + 𝑎଴,௖൯

𝑓̇௣௥௢௣ − 𝑓௣௥௢௣൫ൣ𝑢௩ 𝑛௘ 𝑟௣ 𝑄௘൧, [𝑢௜௖௘]൯ ⎦
⎥
⎥
⎥
⎥
⎤

= 0 (7.3.6) 

The model 𝑓௙௨௟௟(⋅) contains the states 

𝑥 = ൣ𝜂 𝜈 𝑎଴ 𝑛௘ 𝑟௣ 𝑄௘൧
்
, 𝑥 ∈ 𝕏 (7.3.7) 

and accepts the input and environmental disturbance variables 

𝑢 = ൣ𝑢௜௖௘, 𝑎଴,௖൧,   𝑢 ∈ 𝕌 (7.3.8a) 

𝑑 = 𝜏௪, 𝑑 ∈ 𝔻 (7.3.8b) 

where 𝕏, 𝕌 and 𝔻 are the admissible state, input, and disturbance spaces, respectively. 

7.3.1.2 Control objectives 

The first control objective pertains to the trajectory tracking of a desired pose 𝜂ௗ. Splitting 

the task into position and heading, two respective functions are created [244]: 

𝐶௣௢௦(𝜂) = 𝛿ଶ ቌඨ1 +
(𝑥 − 𝑥ௗ)ଶ + (𝑦 − 𝑦ௗ)ଶ

𝛿ଶ − 1ቍ (7.3.9a) 

𝐶௛௘௔ௗ(𝜂) =
1 − cos (𝜓 − 𝜓ௗ)

2
 (7.3.9b) 

The 𝐶௣௢௦(⋅) function represents a pseudo-Huber distance cost, with attractive numerical 

characteristics [245] for usage in MPC, while 𝐶௛௘௔ௗ(⋅) ensures that no heading angle wrap-

around occurs during calculation. The two functions are combined to form the following 

positive-definite tracking cost function: 

ℓ௧(𝑥, 𝑢) = 𝑞௣௢௦ 𝐶௣௢௦(𝜂) + 𝑞௛௘௔ௗ 𝐶௛௘௔ௗ(𝜂) + 𝑞௔𝑎଴
ଶ  (7.3.7) 

Here, the last term penalizes excessive thruster angle changes and the 𝑞 terms are weights. 

Next, the second control objective pertains to the economic propulsion trade-off ℓఉ
௙,௩ and is 

already described in subsection 7.2.2.2: 

ℓ௣೑,௣ೡ
௙,௩ (𝑥, 𝑢) = 𝑝௙ 𝑔௙(𝑥, 𝑢) + 𝑝௩ 𝑢௩  (7.3.8) 



 

 

Here 𝑔௙ is the expended fuel and 𝑝௙, 𝑝௩ are the fuel unit and cost-of-opportunity prices, 

respectively. Note that  ℓ௣೑,௣ೡ
௙,௩  is a generic function. The two cost functions (7.3.7,8) can be 

combined in order to create the final stage cost, as follows: 

ℓ଴(𝑥, 𝑢) = ℓ௧(𝑥, 𝑢) + ℓ௣೑,௣ೡ
௙,௩ (𝑥, 𝑢)  (7.3.9) 

Note that this is also a generic stage cost, even though ℓ௧(⋅) is quadratic.  

7.3.2 Methodology 
The creation of the control law for the data-driven vessel navigation & economic propulsion 

control follows the same methodological outline as subsection 7.2.3 : The idea is to use 

stage cost ℓ଴(⋅) to generate a stabilizing EMPC control law, which can then be 

approximated up to 1st order by a properly tuned MPC through the procedure described in 

section 7.2 & [239]. Next, this tuned MPC can be paired with RL tools as in 7.2.3.5 in order 

to yield the desired control law, capable of handling modeling mismatches and 

disturbances. 

7.3.2.1 Stabilizing EMPC  

Before formulating the stabilizing EMPC control law, the optimal steady-state for the 

propulsion system must be calculated. First, the propulsion system model 𝑓௣௥௢௣(⋅) is 

augmented by the surge velocity part 𝑢௩ of the hull dynamics kinematic model: 

𝑓௣̇௥௢௣
(௔௨௚.)(𝑥, 𝑢) = ቄ𝑓௣௥௢௣(⋅), ൫−𝑀ିଵ(𝐷(𝜈)𝜈 − 𝐶(𝜈)𝜈 + 𝑎଴𝑓଴ + 𝜏௪)൯

௨ೡ
ቅ (7.3.10) 

Model 𝑓௣௥௢௣
(௔௨௚)(𝑥, 𝑢) consolidates the states 𝑥௣௥௢௣ = ൣ𝑢௩ 𝑛௘ 𝑟௣ 𝑄௘൧ and input 𝑢௣௥௢௣ = 𝑢௜௖௘, 

thus describing the propulsion system & surge dynamics of the vessel. Similar to 7.2.3.1, a 

steady-state optimization problem can be formulated using economic stage cost ℓ௣೑,௣ೡ
௙,௩ (⋅): 

min
௫,௨

ℓ௣೑,௣ೡ
௙,௩ (𝑥௞, 𝑢௞) 

s.t. 𝑥௞ାଵ = 𝑓௣௥௢௣
(௔௨௚),(்௦)(𝑥௞, 𝑢௞), (𝑥, 𝑢) ∈ ℤ 

(7.3.11) 

 This will yield the propulsion system’s optimal economic steady-states 𝑥௣௥௢௣,(௦) and 

𝑢௣௥௢௣,(௦), for given pricing parameters 𝑝௙, 𝑝௩. 

Next, using the economic stage cost ℓ଴(⋅) (7.3.9) of the full system, the OCP of an EMPC 

controller can be formulated as: 

min
௫,௨

𝐽ாெ௉஼(𝑥, 𝑢) (7.3.12a) 

                         s.t.            𝑥(0) = 𝑥ො଴ (7.3.12b) 
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(𝑥, 𝑢) ∈ ℤ (7.3.12c) 
                                        𝑥௞ାଵ = 𝑓௙௨௟௟

( ೞ்)(𝑥௞, 𝑢௞) (7.3.12d) 
𝑝௙ = 𝑝௙,ௗ, 𝑝௩ = 𝑝௩,ௗ (7.3.12e) 

𝜂 = 𝜂ௗ (7.3.12f) 
𝑥(𝑁) = 𝑥ே (7.3.12h) 

Where 𝑝௙,ௗ, 𝑝௩,ௗ are the desired pricing parameters for ℓ௣೑,௣ೡ
௙,௩ (⋅), 𝑓௙௨௟௟

( ೞ்)(⋅) is the system 

model discretized by the sample time 𝑇௦, ℤ is the admissible state-input space, and 𝜂ௗ is a 

vector of reference poses up to the prediction horizon N. Eq. (7.3.10f) represents the 

stability-enforcing terminal constraint of the scheme: Here, 𝑥ே depends on whether 𝜂ௗ(𝑁), 

i.e. the desired pose at the end of the prediction horizon, refers to an intermediate or final 

waypoint; for the first case, 𝑥ே = ൣ𝜂ௗ(𝑁) 𝜈ே 𝑎଴,ே 𝑛௘,(௦) 𝑟௣,(௦) 𝑄௘,(௦)൧, i.e. (the desired 

terminal position and velocity, together with the propulsion system’s optimal economic 

steady-states, while for the second case, 𝑥ே = ൣ𝜂ௗ(𝑁) 0 𝑎଴,ே 0 0 0൧, (i.e. the desired static 

terminal position, with inactive propulsion). Next, 𝐽ாெ௉஼  is the OCP’s objective function: 

𝐽ாெ௉஼(𝑥, 𝑢) = ෍൫ℓ଴(𝑥௞, 𝑢௞)൯ + 𝑃(𝑥ே)
ேିଵ

௞ୀ଴

 (7.3.13) 

Where 𝑃(⋅) is a suitably-chosen terminal penalty. Here, it can be argued that the conditions 

exist for the usage of the gradient-correcting terminal penalty used in subsection 7.1.3: First, 

the system (7.3.7,8) is dissipative, and second, the stage cost ℓ଴(⋅) has a non-zero gradient 

at the optimal steady-state [221] - more specifically, it holds that ∇௫ℓ௣೑,௣ೡ
௙,௩ (𝑥௦, 𝑢௦) ≠ 0, 

∇௨ℓ௣೑,௣ೡ
௙,௩ (𝑥௦, 𝑢௦) ≠ 0, even though ∇ℓ௧(𝑥௦, 𝑢௦) = 0. Therefore, the EMPC control law 

resulting from (7.3.10) is stabilizing. 

7.3.2.2 Outline of RL-based MPC for navigation & economic propulsion 

The stabilizing EMPC control law developed in subsection 7.3.2.1 must first be convexified 

up to 1st order so as to produce a specially-tuned tracking MPC control law, using Problem 

(7.2.28) presented in 7.2.3.2. The solution of this Problem admits a quadratic stage cost ℓொ 

that can subsequently be used to develop a 𝜃-parametrized MPC for usage within RL tools: 

min
௫,௨,ఙ

𝐽ெ௉஼,ఏ(𝑥, 𝑢, 𝜎) (7.3.14a) 

s.t.     𝑥଴ = 𝑥଴′ (7.3.14b) 

𝑥௞ାଵ = 𝑓௙௨௟௟,ఏ
( ೞ்) (𝑥௞, 𝑢௞) (7.3.14c) 

𝑔(𝑢௞) ≤ 0 (7.3.14d) 
ℎఏ(𝑥௞, 𝑢௞) ≤ 𝜎௞ (7.3.14e) 



 

 

This OCP is comprised of a discretized model 𝑓௙௨௟௟,ఏ
( ೞ்) , a terminal penalty 𝑃ఏ, a state-input 

constraint map ℎఏ and a bound constraint map 𝑔. Note that the convexified stage cost 𝑙ொ,ఏ 

can be extended to include collision avoidance objectives built upon data-driven obstacle 

vessel models, as presented in subsection 6.2.4.2. The objective function 𝐽ெ௉஼,ఏ(⋅) is: 

𝐽ெ௉஼,ఏ(𝑥, 𝑢, 𝜎) = 𝜆ఏ(𝑥଴) + 𝛾௺𝑃ఏ(𝑥ே) + ෍ 𝛾௞(𝑙ఏ(𝑥௞, 𝑢௞) + 𝑤்𝜎௞)
௺ିଵ

఑ୀ଴

 (7.3.15) 

Here, 𝑙ఏ is the parametrized stage cost, 𝜆ఏ a parametrized initial cost function required for 

stability as discussed in subsection 7.2.3.4, and 𝑃ఏ a parametrized terminal penalty. This 

MPC is then used to construct the following value and action-value functions for the 

navigation & economic propulsion problem: 

𝑉ఏ(𝑠) = min
௫,௨,ఙ

𝐽ெ௉஼,ఏ(𝑥, 𝑢, 𝜎), 𝑠. 𝑡 (7.2.37b) − (7.2.37e) (7.3.16a) 

𝑄ఏ(𝑠, 𝑎) = min
௫,௨,ఙ

𝐽ெ௉஼,ఏ(𝑥, 𝑢, 𝜎) 

𝑠. 𝑡 (7.2.37b) − (7.2.37e) 
𝑢଴ = 𝑎 

(7.3.16b) 

These value and action-value functions correspond to the policy 𝜋ఏ = 𝑢଴
⋆, as retrieved from 

Problem (7.2.26). Then, RL tools that toggle the 𝜃-parametrization of 𝜋ఏ can be applied, in 

order to approximate the optimal economic policy 𝜋⋆. 

Corollary 1 (Asymptotic stability of data-driven MPC control law 𝜋ఏ): Suppose 

assumptions of Theorem 4.3.3 are satisfied as well as 

A. Initial state 𝑥଴′ lies in the region of attraction & prediction horizon N is sufficiently 

long. 

B. Initial cost 𝜆ఏ(⋅), terminal penalty 𝑃ఏ(⋅), and stage cost 𝑙ఏ(⋅) are all positive 

definite. 

Then, the origin is asymptotically stable in 𝒳ே, and the optimal economic policy 𝜋⋆ can be 

learned. 

Proof: Initial positive-definite values for 𝑙ఏ(⋅) and 𝑃ఏ(⋅) are obtained by using Problem 

(28) presented in 7.2.3.2, and by solving the DARE as discussed in intro, respectively. 

Function 𝜆ఏ(⋅) can be initialized using any positive-definite function [212]. This means that 

Theorem 4.3.3 can be employed to show that 𝐽ெ௉஼,ఏ(⋅) is a Lyapunov function ∎ 
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Using a batch TD-learning scheme such as the one presented in subsection 7.2.3.4 which 

ensures the positive-definitiveness of 𝑙ఏ(⋅), 𝑃ఏ(⋅), and λ஘(⋅) guarantees that the resulting 

RL-MPC data-driven control law is stable. 

Remark: The full creation of the aforementioned control law requires the proper 

parametrization of the vessel model (7.3.7,8) and the tuning of the RL parameters, which, 

together with the actual simulation studies, remain as items of future research. However, 

their similarity to the work already carried out in subsection 7.2.3 is noted. In general, it is 

the author’s opinion that the concept presented here can be further developed & eventually 

applied in practice with little extra effort using section 7.2 as a roadmap.
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Conclusion & Outlook 
This thesis focused on the construction of data-driven MPC schemes and optimization methods by 

employing computational intelligence & machine learning tools. The topic was approached from 

both a theoretical and practical perspective, and the economic benefits of the proposed algorithms 

were showcased over the optimization & MPC control of a wide variety of engineering 

applications. 

First, CI-based methods were developed that addressed the load forecasting task and the optimal 

dispatch of distributed renewable sources. The load prediction task was addressed using a pool of 

selected ML algorithms with an online dynamic selection system; therefore, the advantages of each 

algorithm are combined in order to create a prediction ensemble of high accuracy. It is noted that 

this approach can be generalized to other types of timeseries forecasting problems, characterized 

by stochasticity. Next, a metaheuristic optimization algorithm capable of exploiting structural & 

topological information of networked problems was created, & applied to the optimal power flow 

problem of smart distribution grids. The proposed method employed a community-detection 

algorithm in order to assign effective cooperation sets for a cooperative PSO algorithm, with 

significant economic results. The author notes that this optimization approach could be extended 

to the optimization of other large-scale engineering systems that similarly exhibit topological 

structure. Lastly, it is noted that the two load forecasting & OPF methods presented in this thesis 

could be leveraged to create a smart-grid decision support system. 

Next, two data-driven tracking MPC methods based on RBFN were designed, in order to capture 

nonlinear or otherwise hard-to-model processes. Two representative case studies were chosen: The 

first case study concerned the control of a vehicle’s active suspension, the dimensionality of which 

prohibits the usage of standard linear or ODE-integrated prediction models; the application of RBF 

models for this task leads to significant control performance improvement, over various 

performance indexes. The second data-driven MPC controller addressed the vessel collision 

avoidance task using obstacle trajectory models trained on real vessel data; here, the usage of RBF 

models is mandated due to their black-box nature. It is noted that the future prospects of the 

proposed MPC controllers extend further than the two specific case studies presented here; other 

types of systems that exhibit high nonlinearity & complexity, could benefit from the data-driven 

approach. 

Finally, a data-driven nonlinear EMPC scheme was presented for the economic control of a vessel 

propulsion system: First, a stabilizing EMPC propulsion control law was constructed, with 

significant fuel economy benefits. Serving as a proof of concept, this control law was extended to 
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a data-driven EMPC scheme based on reinforcement learning, using an economic stage cost that 

accurately described the real, high-level chartering economics of freight shipping. This learning 

controller successfully handled structural modelling discrepancies between plant & model, leading 

to higher closed loop economic performances. Finally, the theoretical groundwork of a control law 

that leverages previous results was laid, pertaining to the data-driven autonomous navigation & 

economic propulsion control of vessels.  

Future research will first focus on further developing the aforementioned control law and 

simulating it with various scenarios.  Next, more applications will be explored that would benefit 

from learning-based MPC controllers with theoretical guarantees, such as wastewater plants. In 

general, it is the author’s opinion that the potentialities of CI/ML tools for optimization & data-

driven control have not yet been fully exploited, both from a practical and a theoretical perspective. 

Therefore, he hopes that this thesis will serve as a starting point for future endeavours towards this 

end.
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Appendix Ι: Multi-agent Simulation Framework 

This multi-agent simulation framework was built on MATLAB using standard packages. Oriented 
as a research and development platform for multiagent MPC scenarios, the main objectives were 
modularity, scalablity, as well as debugging & diagnostics tools for visualizing controller output 
and agent intention. Fig. 8.1 shows the simplified class diagram of the simulation framework. 
Access to code repository available upon request to the author. 

 

 
Figure 8.1 Simplified class diagram of the multi-agent simulation framework 
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Appendix ΙI: RL-MPC Simulation Framework 

This RL-MPC simulation framework based on CasADi was built on Python by leveraging the 
capabilities of the tuneMPC package [239]. Main objectives were the standardization of system 
and OCP description and the employment of cutting-edge solvers & MPC development packages 
such as PICOS, ACADO, and others. Fig. 8.2 shows a simplified class diagram of the simulation 
framework. Access to the code repository available upon request to the author. 

 

 
Figure 8.2 Simplified class diagram of the RL-MPC simulation framework 
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