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IHHEPIAHYH

H mapovoa datpifny acyoleitar e T ONpovpyio. GLGTNUATOV EAEYYOV e TPOPAETTIKA LOVTEAQ
(Model predictive control - MPC) Bdocet dedopévav kar pebddowv Pertiotomoinong pe ypnon
epyoreiwv LTOAOYIOTIKNG vonpuoovvng (computational intelligence - CI) kot punyavikng pédbnong
(machine learning - ML). Aaupdvoviotr vwoyn 1660 ot BewpnTikéC OGO Ko 01 TPUKTIKEG TTVUYES
tov MPC pe Bdon v vwoAoYIGTIKT VONIOGUVT KOOMG Kot TG LETAEVPETIKNG PeATIoTOTOINMONC,
Kol Topovo1dlovToL T OTKOVOUIKG TAEOVEKTALATO TWV TPOTEWVOUEV®V aAYopiOu®V og oyéon ue
™ Pedtiotonoinon & tov TPoPAETTIKO EAEYYO £VOG TOIKIAOV PAGUATOS EPOUPLOYDYV UNYOVIKNG.

[Ipwtov, 660V aPopd TN HETOEVPETIKN PEATIOTOTOINGT, £VOG ONUAVTIIKOG GTOYOC TNG TOPOVCOG
STPIPNg elvat 1 AVTILETOTIOT TPOPANUATOV VYNANG SOCTUTIKOTNTOS, LN KVPTMV TPOPANUATOV
pe oamodektn akpifeto emiAvong. I'o to AdYo awtod, emvoeital £vog cuvePyaTikdg aAyOptOpog
OUNVOUG  COUATIOI®MVY, 1KOVOG VO XPNOUYOTOEl  GLUVEPYATIKA OUNVY] OCOUOTWIOV  og
opadomompéveg HeTaPAnTéS oxedlacpov. H opadomoinon mpaypatonoleital e v €popproyn
evOg alyopiBuov evtomicpot kovotnTag otov mivake evoacsinciog tov £etalOUeEVOL GLGTUATOG,
evromilovtag €101 petafAnTéC oyxedlacpod mov eivar dopukd M TOTOAOYIKA aAAnAEvdeTec. H
TpoTEWVOUEVN LEBODOG Tposopot®VETAL GE £voL doKipaoTikod cuatnua e IEEE kat, 6 cuvovaouo
Le éva LovTELO TPOPAEYTS PopTiov pe unyoviky Ldbnom mov avantOCGETOL ETioNG STV TOPOVCH
dtTpiPn], cLVOETEL Pi0 ATOTEAEGUATIKN TPOTOOT] Y10 O0d0TIKO & OIKOVOUIKO EAEYY0 £ELTTVOV
SKTOV.

Agvtepov, oyedialetar évog pun ypappukog ereyktig MPC pe yprion dedopévev tov Baciletor ot
VELPOVIKA HIKTLO GLVAPTHGE®V AKTIVIKNG BAcNS Yo TapakorlovOnon tpoytds. H tumkn anddoon
tov MPC e€aptdtar o€ peydro Pabud amd v moldtnta Tov HoviéAov TpoPAEYNS- av avTo givat
avakpPEc, TOTE 01 KIVNGELS EAEYXOV TOV TPOKVTTOLV atd TN AVGT TOL TPOPALATOS PEATIGTOV
eréyyov Ba elvar pn Péitioteg Yoo to TPAypotikd cvotnua. Avtd onuaiver OtL éva
YPOULKOTOMUEVO HOVTELD €VOG GLGTNUATOS VYNANG OCTOTIKOTNTOS LE ONUOVTIKES UM
ypoppukodtnTeg B eivanl akatdAAnio yw ypnon oto miaicio tov MPC, evdd n avtictoym
OAOKANPOUEVT] LOPON TOV OOPOPIKAOV €EIGOCEMY TOV KPIVETOL VTOAOYIGTIKA damovnpn.
MdaMota, 68 OPIGUEVES TEPMTAOCELS, EVO TETOL0 PUOIKO HOVTELO JAPOPIKMV EEIGMOEMYV UTOPEL
va gtvor e€apetikd dvokoro va dnuovpyndel yio opiopéves TEPTAOCELS, EMPAALOVTOG Lol
npocéyylon Pdoet dedopévav. Q¢ €K TOVTOL, M TAPOVCO OaTPIP| Tpoteivel ™ ypnom &evog
povtédov mpdPreyng MPC pe diktva cuvapmoewv axtivikng Bdong 6mov elvar amapaimro,
YPNOLLUOTOIDVTOS KOTAYEYPAUUEVE OEO0UEVA TOL GLGTHUATOS. H kavotTa TOL TPOTEWOUEVOL
omuatog MPC o100 yepiopd twv ovo mpoavagepbéviov INmmudtov  povielomoinong
TOPOVGIALETOL Y10 TNV TEPIMTMOOT EVOG GUGTILATOG EVEPYTG OVAPTNONG LE VYNAT S10GTATIKOTNTA,
KaOAdG Kot ylo T dnpovpyio LOVTEA®V KIvoOUEV®VY eumodiov Pacel dedopévav yio Tov EAeYY0
TAONYNONG TAOI®V Yo TNV amoPLYN cUYKpovong pe xpnon MPC.

Q¢ epuoikn cvvéyelr g epyaciog oyetwkd pe to MPC mapakorlovOnong tpoyudc, m tpit
OLVEIGPOPA aVTNG TNG daTpPng eivan  dnuovpyio evdg oynuatog otkovopkod MPC Bdoet
OEQOUEVMV Y10l TOV OMOTEAEGLLOTIKO KOl OUKOVOUIKO EAEYYO €VOG GLOTNUATOS TPO®ONG mAoiov. H
OLYKEKPIUEVN EMIAOYT TNG HEAETNG TEpimTONG lvan 1Wwaitepal aTiohoynuUéEVN, KaBOS TpdKeLTol
Yo Vo oVTIKEILEVO DVYNANG OIKOVOIKNG ONUOGIOG Y1 TOV VOLTIAMOKO TOUEN TNG EAANVIKNG
owovouiag. Apywd, katackevdletor évag otabepomomtikog vopog eiéyyov EMPC ywa 10
TPOPANUA TNG OWKOVOUIKNG TpdmoNg mAoiov kol cuykpivetar pe 10 KAacowd MPC  tomov
mopakolovdnone tpoylds, emPefaidvoviag HoL GNUOVTIKY] OPOpE oIV  OTOd0TIKOTNTA
KOVGIHoV. XPNGIUEVOVTOS MG OTOOEIKTIKO OKOAOTATL, TO OMOTEAEGUOTO QT EUTVEOLV TNV
avamtuén evogc EMPC gheyktr| Baciopévov og dedopéva yor tnv tpoéwon mAoiwv mov Paciletot
oV eVIoYLTIKY pddnomn. O adydpiBpog pabnong mov avortuccetan & epappdletan eivar og Béon
va YePLoTel TIC OOMIKEG AmOKAIGES HOVTEAOTOINONG UETOED TPAYUATIKOD CLGTHUOTOS KOl



HOVTEAOV, EMTLYYOAVOVTOS £TGL LYNAOTEPEC EMOOCELS KAEWGTOD Ppdyov Kot, TEMK(A, OmTA
OLKOVOUKE OQEAN.

Télog, mpokeyévou vo a&lomombodv 1060 ta amoteléopota Tov MPC yo v mopakolovOnon
TPoYLag & NG AmoPLYNG GVYKPOoLoNS 0G0 Kot Ta amoteAéspata Tov EMPC yia v oukovopk
TPOMOT TOV TAOIWV, TPOTEIVETAL £VOG VOLLOG EAEYYXOV Y10, TOV EAEYYO TAOYNONG KO OTKOVOUIKNG
TpOwoNG Towv mhoiwv Pdoet dedopévav kot tiBevtot ta Oempntikd Bepédia yio TepUTEP® Epeuva
& avantuén. Téhog, N yvoun tov cuyypagéa givol 0Tl o1 Epyaciec mov mTapovslaloviol oTNV
apovoo datpiPn pmopohv va emektafodv Kol o€ GAAOLG TOUEIG TG UNYOVIKNAG & TPUKTIKEG

EQUPLOYEG.

OEMATIKH ITEPIOXH: Xvotiuoto avtopdton eAEyxov & YTOAOYIoTIKY VOUOoHVN

AEZEIX KAEIAIA: é\eyyog Bdoet dedopévav, otkovopkog EAeyY0S e TPOPAETTIKA LOVTEA,
SIKTLA OKTIVIKOV GUVOPTNGEDV BAONG, VTOAOYICTIKY VONLOGUVT, LETAEVPETIKY fEATIGTOTOIN G,
Bektiotonoinon ounvovs copotwiov, £Evmvo diktva, €vepyn ovaptnor, EAEYXOS TPOMONG
mAolmv, EAeyy0og TAONYNoNG TAOI®V



ABSTRACT

This thesis addresses the creation of data-driven model predictive control (MPC) schemes and
optimization methods utilizing computational intelligence (CI) & machine learning (ML) tools.
Both theoretical and practical aspects of CI-based MPC as well as metaheuristic optimization are
taken into account, and the economic merits of the proposed algorithms are showcased over the
optimization & predictive control of a diverse range of engineering applications.

First, regarding metaheuristic optimization, a significant objective of this thesis is to address high-
dimensional, non-convex problems with reasonable solution accuracy. For this reason, a
cooperative particle swarm algorithm is devised, capable of using cooperative particle sets on
grouped design variables. The grouping occurs by applying a community-detection algorithm over
the sensitivity matrix of the system at hand, thus identifying design variables that are structurally
or topologically interrelated. The proposed method is tested on an IEEE benchmark system, and,
together with a machine-learning ensemble load prediction model that is also developed in this
thesis, an effective proposition for efficient & economic smart grid dispatch is made.

Second, a data-driven tracking nonlinear model predictive controller is devised based on radial
basis function neural networks. Standard MPC performance heavily relies on the quality of the
prediction model; if it is inaccurate, then the control actions yielded by the solution of the optimal
control problem will be suboptimal for the real plant. This means that a linearized model of a high-
dimensional system with significant nonlinearities will be unfit for usage within MPC, while its
respective ODE-integrated form will be too computationally expensive. Such a first-principles
ODE model may be extremely hard to yield for some cases, mandating a data-driven approach.
Therefore, this thesis proposes complementing an MPC prediction model with radial basis function
networks whenever necessary, using recorded plant data. The ability of the proposed MPC scheme
in handling the two aforementioned modelling drawbacks is showcased for the case of a high-
dimensional active suspension plant, as well as for the data-driven vessel trajectory inference for
collision avoidance using MPC.

As a natural continuation of the work on tracking MPC, the third contribution of this thesis is the
creation of a data-driven economic MPC scheme for the efficient & economic control of a vessel
propulsion system. This specific choice of case study is highly motivated, since it is an item of
significant economic importance for the maritime sector of the Greek economy. Initially, a
stabilizing EMPC control law is constructed for the vessel propulsion problem and compared to
standard tracking MPC, confirming a significant difference in fuel-efficiency. Serving as proof of
concept, these results inspire the development of a data-driven EMPC for vessel propulsion based
on reinforcement learning. This learning scheme is able to handle structural modelling
discrepancies between plant and model, therefore achieving higher closed loop performance and
tangible economic benefit.

Lastly, in order to leverage both the collision avoidance tracking MPC and the economic vessel
propulsion EMPC results, a control law for the data-driven navigation & economic propulsion
control of vessels is proposed and its theoretical foundation for further development is laid. Also,
it is the author’s opinion that the work presented in this thesis is extendable to other engineering
domains and practical applications.

SUBJECT AREA: Control Systems & Computational Intelligence
KEYWORDS: data-driven control, economic model predictive control, radial basis function

networks, computational intelligence, metaheuristic search, particle swarm optimization, smart
grids, active suspension, vessel propulsion control, vessel trajectory tracking
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Chapter 1:

Introduction

The extensive arsenal of mathematical programming tools has been put to use against some
of the most challenging engineering optimization problems; indeed, standard deterministic
optimization methods have been implemented successfully, including gradient-based
methods, Newton-Raphson methods, interior point methods [9]-[11] and others. Since
deterministic optimization approaches usually enjoy a solid theoretical foundation and
rigorous proofs of convergence, they can be implemented within sophisticated algorithms
and solve safety-critical optimization problems [12], [13]. Deterministic optimization
methods generally exhibit low computational complexity, which, historically, was a
significant concern to be addressed for real-life implementation. Today, the impressive
developments regarding hardware architecture and embedded computing within a range of
consumer devices and industrial applications, have led to the ever-increasing
dimensionality of engineering & decision-making optimization problems to be solved.
Today’s state-of-the-art commercial & academic deterministic-based solvers that can
address large problems utilize the latest advancements in numerical computing and
mathematical optimization; notable examples include the sparsity-handling CVXGEN
solver [14] or the FORCESpro interior point solver oriented for multistage problems [15].
Still, most of the deterministic-based optimization approaches come with three inherent
disadvantages, namely (a) poor performance on non-convex optimization problems due to
entrapment in local minima, (b) inability to handle mixed design variables and (c)
unsuitability for multi-objective problems, as they cannot easily deal with discontinuous or
concave Pareto fronts [16]. Given that a significant portion of the modern engineering
optimization problems are non-convex, multi-objective in nature and contain mixed integer
and continuous design variables, it is easily understood that nowadays, these methods may

not be the best choice at hand.

Still, the aforementioned deterministic solvers remain the powerhouse of constrained finite-
time optimal control, otherwise called model predictive control. The MPC control
framework uses a dynamic model of the controlled plant in order to predict its response to
a control input; then, based on this model, a constrained optimization problem is formulated
which is solved at each control sampling instance. Since its original inception [17], [18],
the MPC community has developed a mature theoretical foundation in order to address
distributed [19], robust [20], and economic control [21] of systems. This theoretical
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foundation will grant control stability guarantees to a properly formulated MPC scheme
and, if the aforementioned deterministic solvers are employed as well, then numerical
stability will also be afforded. For this reason, MPC has found a number of applications
within the process [22] & automotive [4], [23] industries, as well as vehicle guidance,
navigation & control (GNC) [2], [13], [24]. Notwithstanding its attractive stability
properties, standard MPC performance heavily relies on the quality of the controller model;
if it is inaccurate, then the control actions yielded by the solution of the MPC optimization
problem will not be optimal for the real plant. Typical adaptive control techniques for MPC
[25] could address modeling inaccuracies if they are merely parametric — however, if there
also exist structural differences between the real plant and the controller model, (e.g. the
plant is of higher order) then such techniques may not deliver the optimal control law. In
addition, a large plant model with significant nonlinearities would render a standard
integrated model computationally prohibitive to evaluate in real time, while its linearized
counterpart would also fail to adequately capture the underlying dynamics. Moreover, the
complexity of the actual process to be controlled could be so high, that a mathematical
representation in ODE form would be impossible, thus rendering the MPC approach

ineffective.

The nature of the MPC modelling shortcomings & deterministic optimization flaws that
were previously discussed, hints at the idea of employing computational intelligence (CI)
& machine learning (ML) techniques in order to alleviate them. The domain of CI refers to
the theory, design and development of biologically-inspired algorithmic paradigms,
encompassing the respective scientific disciplines of neural networks (NNs), fuzzy theory
and evolutionary computation. A NN can be used to model black-box dynamics, since it
constitutes a massively parallel network that can learn & generalize through a set of training
examples; notable NN categories include feedforward NNs, convolutional NNs, recurrent
NNs, etc [26]. In turn, as a branch of CI, metaheuristic optimization is motivated by
biological processes such as genetic evolution & swarm intelligence in order to construct
optimization algorithms that overcome the drawbacks associated with deterministic
optimization. These algorithms usually evolve a population of candidate solutions in a
stochastic manner, achieving superior exploration capabilities for optimization problems.
Moreover, they can handle non continuous and concave Pareto fronts, generating several
elements of the optimal set in a single run. Notable swarm intelligence methods include
particle swarm optimization (PSO) & ant colony optimization (ACO), while evolutionary
algorithms include genetic algorithms (GAs) and artificial immune systems. In general, NN

methods have found numerous applications for modeling nonlinear processes in the
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industry [27]-[29] while metaheuristic optimization algorithms have been successfully
implemented in parameter estimation and non-convex optimization of large-scale systems

[4], [30]-[33].

It appears then, that the capabilities of CI-based methods can be leveraged for the design of
novel data-driven MPC schemes & optimization algorithms. Indeed, NN-based models are
an attractive option for substituting - or complementing - first-principle models. Radial
basis function networks (RBFN) in particular are widely considered for modeling nonlinear
dynamics; consisting of a single middle layer, they can be easily trained using the fuzzy
means (FM) algorithm, resulting in models of increased accuracy [34] and low
computational complexity during real-time evaluation [35]. As these advantages are of
significance in the context of predictive control, RBFNs constitute a popular choice in
conjunction with MPC [36]. Another data-driven control approach that can amend
modelling inaccuracy is learning-based MPC [37], which can be constructed by employing
ML tools such as reinforcement learning (RL) [38]. RL is a sequential decision-making
algorithm that adapts a parametric representation of the process using a trial-and-error
procedure. In the case of MPC, the RL component utilizes recorded closed-loop data in
order to learn new controller parametrizations, which are iteratively applied in real-time in
order to achieve improved control performance. In turn, CI methods (particularly,
metaheuristic optimization algorithms), can also be used to address large-scale, non-
convex, multi-modal optimization problems that frequently arise in modern decision-
making schemes. Since metaheuristic optimization algorithms rely on stochastic search,
they are less prone to entrapment in local minima, contrary to standard deterministic
solvers. In addition, they can be extended in order to exploit the structural topology of the
optimization problem, by grouping the design variables accordingly in cooperation sets,
thus creating so-called “cooperative” algorithms; these have been very effective in tackling

high dimensional problems [39], [40].

Motivated by the aforementioned discussion, this thesis approaches data-driven MPC and
optimization from a computational intelligence & machine learning perspective. Therefore,

its main objectives are as follows:

e Regarding MPC, RBF models are employed in order to model highly nonlinear
and/or unknown process dynamics which would be otherwise prohibitive to address
using standard ODE integrated models. In addition, an economic MPC control law

is paired with an RL component, thus producing a data-driven MPC scheme capable
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of handling significant structural & parametric plant-model mismatches and
disturbances in real time.

e Regarding metaheuristic optimization, special interest is placed in creating a
particle-swarm-based algorithm that can handle large problems. For this reason, a
cooperative algorithm together with a design-variable-partitioning scheme is

devised and applied to a high-dimensional decision-making problem.

It should be noted that in the context of this thesis, the case studies used to evaluate these
methods are chosen with two qualities in mind: The first is their ability to highlight the
challenges that Cl-based approaches intend to solve, therefore enhancing its academic
value. The second is relevance to the current objectives of the Greek industrial sector, thus
highlighting the practical merit of this research. To this end, the applications mainly revolve
around efficient smart grid operation, as well as economic navigation and propulsion of

freight vessels.
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1.1 Outline & Contribution

This dissertation is organized into three main parts. The first and second part pertain to
introductory material and required preliminaries, spanning Chapters 1-4. Here, basic
notions of mathematical programming and convex optimization are presented, together
with some notable algorithmic concepts found within MPC solvers and elsewhere. Next, a
brief introduction is given to the CI-based methods that are used in this work: These include
the class of radial basis function NNs together with the fuzzy-means training algorithm, as
well as some notable metaheuristic algorithm categories, such as particle swarm. Lastly, a
short presentation of optimal control & MPC concepts is given in Chapter 4, including basic

stability notions for both tracking and economic MPC that are employed in this thesis.

The third part of this dissertation contains Chapters 5-7 and presents the design & the
application of the proposed methods and algorithms that were developed in the context of

this PhD:

e Chapter 5: Computational Intelligence Methods for efficient Smart Grid
Dispatch
This chapter presents the Cl-based methods that were developed in order to tackle
the two main problems related to smart grid dispatch, namely the accurate load
forecasting task and the efficient power dispatch of distributed renewable sources.
The proposed load prediction algorithm makes use of a pool of several machine-
learning and CI-based models, which are evaluated on-line using a novel dynamic
selection algorithm. This leads to high prediction performance for a number of
horizons, as tested on data from a Greek distribution network substation. Next, a
cooperative particle-swarm algorithm is designed for the optimal power flow
problem of electrical distribution networks with high penetration of photovoltaic
sources. The proposed method makes use of a community-detection algorithm in
order to exploit the topology of the problem and thus assign effective cooperation
sets based on the notion of electrical distance. The economic effectiveness of the
method is demonstrated on an IEEE benchmark system with various scenarios.
Lastly, it is noted that both the load prediction and the optimal power flow methods
proposed here went on to be incorporated in a real smart grid decision support

system.

e Chapter 6: Data-driven Tracking Nonlinear Model Predictive Control
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This chapter presents the design of data-driven tracking MPC methods based on

radial basis function NNs in order to adequately capture nonlinear or otherwise

hard-to-model plant dynamics. Two representative case studies are thus chosen: The

first refers to the control of a vehicle’s active suspension, which, due to its high-

dimensionality and nonlinearity, prohibits the usage of standard linear or ODE-

integrated MPC models. The proposed scheme is evaluated on a detailed full car

model for various road and excitation scenarios. The second case study of this

chapter pertains to the vessel collision avoidance control using obstacle trajectory

models trained on real automatic identification system (AIS) data. Here, the

motivation of using a data-driven MPC approach is that no first-principles model

could address the inference of obstacle vessel trajectories. The proposed control

method utilizes RBF models trained on historic AIS data, leading to safer and more

economical vessel trajectories than using an MPC controller with naive, straight-

line obstacle trajectory predictions.

e Chapter 7: Data-driven Economic Nonlinear Model Predictive Control

In this chapter, a data-driven economic nonlinear MPC scheme is presented for the

economic control of a vessel propulsion system. This specific choice of a case study

is highly motivated, both as a practical continuation of the vessel-control-related

work presented in Chapter 6, and as an item of significant economic importance for

the marine sector of the Greek economy. First, a stabilizing EMPC control law is

constructed for the vessel propulsion case, showing significant fuel-efficiency

improvement compared to a standard MPC. This control law served as a proof of

concept for the development of a data-driven EMPC based on reinforcement

learning, capable of handling structural modelling discrepancies that are ever-

present between real vessel propulsion systems and the respective controller

models. In addition, this RL-based economic MPC scheme incorporates an

economic stage cost that accurately describes the real high-level chartering

economics of freight shipping, rather than an ad-hoc tracking stage cost, leading to

tangible economic improvements, as simulated on various scenarios. Lastly, in

order to combine the aforementioned economic propulsion results & the vessel

trajectory tracking controller from chapter 6, a control law for the data-driven

autonomous navigation & economic propulsion control of vessels is designed and

presented.

Finally, this dissertation is concluded in Chapter 8.
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Chapter 2:

Deterministic and Metaheuristic Optimization

Mathematical optimization, or mathematical programming, is a process that optimizes
(maximizes or minimizes) the value of an objective function with respect to a set of
constraints. Optimization problems arise in all engineering disciplines, and especially in

control systems and control theory in general.

There are two different types of optimization methods that are widely used today.
Deterministic methods use specific rules for moving from one candidate solution to another,
and provide theoretical certificates for the optimality of the reported solution. Non-
deterministic (stochastic or metaheuristic) methods employ probabilistic processes to
evolve candidate solutions. Due to these processes, metaheuristic methods usually do not
provide optimality certificates for their solution, still, they possess certain properties that
deterministic algorithms do not exhibit, such as the ability to converge to better solutions

when the program is non-convex and multi-modal.

In the following chapter, notable methodologies of both categories are briefly presented in
detail from a theoretical point of view, and their relevance as applied solvers for the

optimization problems encountered in this work is highlighted.
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2.1 Deterministic Optimization

This section assumes standard optimization knowledge, namely, types of optimization
problems, characteristics of convex functions, as well as Lagrangian functions and duality
theory. Some general concepts regarding quadratic programs and optimality conditions are
introduced, before presenting notable deterministic optimization methods that are used in

this thesis.

2.1.1 Introduction to Quadratic Programs

Consider the general non-linear program formulation:

min f(x) (2.1.1a)
subjectto g(x) =0 (2.1.1b)
h(x) = 0 2.1.1c)

where f: R™ — R is the objective function, g: R™ — RP? is the equality constraint function,
and h: R™ — RY is the inequality constraint function. Functions f, g, h are assumed to be

continuously differentiable up to two times or more. Setting these functions as

fx)=q"x+ %xTHx (2.1.2a)
gx)=Ax—-b (2.1.2b)
h(x) =Cx—d (2.1.2¢)

where ¢ € R", A € RP*", b € RP, C € R™", d € R™, H € R™" means that Problem
(24) becomes a Quadratic Program (QP). Note that H is usually called “Hessian matrix” of
the problem since H = V? f(x). The Hessian matrix also encapsulates an important property
of QPs: if H > 0, the QP is convex, meaning that solutions are significantly easier to find,
while non-convex QPs with H < 0 may have multiple local minima and therefore are very

hard to solve.

2.1.2  Optimality Conditions

Consider the following unconstrainted optimization problem:

min f(x) (2.1.3)
Where f:D = R, and D is the feasible domain of f, where f a continuous and twice

differentiable function.

Theorem 2.1.1 (Second order Necessary Conditions): Given a local minimizer X* of a twice-

differentiable function f, then

V2 f(x*) = 0 (2.1.4)
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Proof: If V2 f(x*) ¥ 0 then a descent direction p exists so that p” V2 f(x*) p < 0. This
means that once again, there exists a feasible descent direction in which f'(x) can be further
minimized. A step size k > 0 small enough so that Vk € [0, k] we have X* + xp € D and

Vf(x*+kp)T p < 0. Employing the 2" order Taylor expansion yields:

1
f& +kp)=f&)+kVIE +kp)Tp+ Eksz VZf(x)p (2.1.5)
Since the third term of the RHS is < 0, it means that f(x* + kp) < f(x*), i.e. X* is not a

minimizer. |

Next, for the case of continuous convex functions [41], sufficient optimality conditions can

be constructed.

Theorem 2.1.2 (Convex First Order Sufficient Conditions): Given a stationary point X of a

convex function f, then X is indeed the global minimizer x* of f.

Proof: We know that since f is convex, we have for any feasible y:

fMZfE)+VfEI (@ —x) =) (2.1.6)
Assuming the above doesn’t hold, then there exists a y with V f(x*)T (y — x*) < 0. Using

a Taylor expansion

fl +ty—xM) = F&) + 7 fF(&)T (v = x7) +0(t) @.1.7)
Here, the 2™ term is < 0 and the third term can be omitted as t becomes small enough. This
means that f(x* + t(y — x*)) < f(x*), i.e. X* is not a minimizer. m
The above results can be generalized in order to include smooth nonlinear functions f.

Theorem 2.1.3 (Second Order Sufficient Conditions): Given a stationary point X of a
smooth & twice-differentiable function f and

V2 f(X) > 0 (2.1.8)

then X is a strict local minimizer of f.

Proof: The idea is to consider a small closed “ball” B around X so that Vx € B we have
72 f(x) > 0, i.e. f can be considered convex in that region. Then, Theorem 2.1.2 can be

leveraged and the Theorem is proved. m

Consider now the Lagrangian of the general NLP (2.1.1), which is not assumed to be

convex. We write its Lagrangian as

Myron Papadimitrakis
yronTap 40



p m
Lo Av) = F(x) + z A hy(x) + z v; (%) 2.1.9)

with dom £ = D X RP X R™, A; the Lagrange multiplier of inequality constraint h; and v;
the Lagrange multiplier of equality constraint g;. Vectors A, v are otherwise called dual
variables of the problem. The Lagrange dual function can be subsequently defined as the

infimum of the Lagrangian over x:

L(A,v) = inf L(x,1,v) (2.1.10)
X€ED
Note that the Lagrange dual function L(A4,v) can be used to generate a lower bound on the

optimal value x* of Problem (2.1.1):

L(A,v) <x*, VA=0,v (2.1.11)

This lower bound is nontrivial when it also holds (4,v)e dom L. When we also have A >
0, then the respective (4, v) pair is called dual feasible. It is practical to see which (4, v)
pair will yield the best lower bound. For this reason, the Lagrange dual problem is
formulated:

max L(4,v) (2.1.12a)

subjectto 1 = 0 (2.1.12b)
The (1*,v*) pair is referred to as the optimal Lagrange multipliers. Note that this is a convex
optimization problem, regardless of whether the original Problem (2.1.1) is convex. For its

optimal value, denoted as L*, it holds that:
L <x* (2.1.13)

Which is true even when the original problem is not convex. This property is called weak
duality, and the difference x* — L* is called the duality gap. If inequality (2.1.13) is strong,
that is x* = L*, then strong duality holds, meaning that the duality gap is zero. Strong
duality of the Lagrange dual does not hold in general; is a given only if the primal Problem
(2.1.1) 1s convex, otherwise special conditions must be established, called constraint

qualifications. One such constraint qualification is Slater’s condition [41].

Another important concept that arises from strong duality is the following; let x* be a primal

optimal and (4%, v*) the dual optimal points. Then,

14 m
L) < F(x) + z 2 Ry (x*) + Z v gi(x") 2.1.14)
i=1 i=1
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This follows because irelg L(x,A*,v*) is less than or equal to L(x, A, v) at x*. Since A} = 0,
X

h;(x*) = 0, and g;(x*) = 0, it is concluded that

p
ZA; hy(x*) = 0 2.1.15)
i=1
Which also yields:
A hi(x*)=0, i=1,..,p (2.1.16)

This is called the complementary slackness condition, and is equivalently expressed as

A>0-hE)=0 or hi(x*) <0-> A =0 2.1.17)

meaning that A} is zero unless h;(x*) is active (=0) at the optimum.

Using the complementary slackness condition, the Karush-Kuhn-Tucker conditions can be

expressed. Since X* minimizes L(x, A%, v*), this means that its gradient goes to zero [41]:

14 m
VLG A%, v7) = VF(x") + z A Vhy(x*) + z VEVgi(x") = 0 (2.1.18)
i=1 i=1
This results in the following optimality conditions:

Theorem 2.1.4 (Karush-Kuhn-Tucker conditions / First-order necessary conditions for
optimality (FONC)): The primal-dual variable set x*,\*,v* is guaranteed to be optimal

when the following conditions are met:

hy(x*) = 0 (2.1.19)
>0 (2.1.19b)
Ahy(x") = 0 (2.1.19¢)
p
VF(x*) + z A Vhi(x*) = 0 (2.1.19d)
i=1

Proof: See [41]. m

In the above, it is of course assumed that the linear independence constraint qualification
(LICQ) holds. In the case where the problem at hand is convex, then we also have that the
duality gap is zero. Note that the KKT conditions are equivalent to Vf(x*) = 0 condition

for unconstrained optimization.

2.1.3  Newton-based Methods

Newton's method as an optimization technique is applied to the first derivative f' of a
double differentiable function f to find the roots of the derivative (i.e., the solutions of
f'(x) = 0), also known as the stationary points of f. These solutions can be minimum,

maximum, or saddle points.
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The idea behind Newton's method is that the function f under consideration is locally
approximated by a quadratic function, which is minimized in the case where the minimum
of f is sought [42]. This is achieved by constructing a sequence Xx;, which converges to
some x*, for which f'(x*) = 0. That is, x* is a stationary point of f. Thus, f is

approximated by the second-order Taylor expansion:

1
fG) = flq) +Vfg)(x —x) + > (x = x)TV2 f () (x — x). (2.1.20)
The RHS of 3.11 is minimized by the sequence:
Xear = X — [V )]V F ()" (2.1.21)

Taking into account the second-order sufficiency conditions (Theorem 2.1.3), we assume
that near x*, the Hessian matrix V2f(x;) is positive definite. Given continuous second
order derivatives for f, it indeed holds that V?f (x;) > 0 near x*, meaning that the method

is well defined in its neighbourhood [43]. Then, the following hold:

1. If the initial point x is sufficiently close to x*, the sequence (2.1.21) converges to
x* with quadratic convergence.

2. The norm of the gradients ||Vf;|| also quadratically converges to 0.

2.1.4  Active Set Methods

Active set algorithms are widely used for cases of parametric quadratic programs,
significantly boosting the solution speed. The idea is to identify the active constraints within
the set of inequality constraints h(x) before solution. These constraints are subsequently
expressed as equality constraints, resulting in an equality-constrained QP subproblem

which is simpler to solve.

Consider the following convex QP (H = 0):

1
min q”x + =xTHx (2.1.22a)
xERN 2
st.Ax+b =0 (2.1.22b)

Applying the KKT conditions (2.1.19) yields:

Hx* +q—AT™A* =0 (2.1.23a)
Ax*+b =0 (2.1.23b)

A =0 (2.1.23¢)
A(Ax*+b); =0, fori=1,..,p (2.1.23d)

Before applying the active set method to calculate the primal-dual pair (x*,1* ) as well as
the corresponding active set A(x*) € {1, ...,p} that satisfy the KKT conditions, the

following index set notation is used:
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Active inequality index set A c {1, ..., p} (2.1.24a)
Inactive inequality index set I = {1, ..., p}\A (2.1.24b)

Meaning that the following expressions hold:
ba Ap
b = (b_)'A = (A—),Ax +b=>20= Ayx +by 2 0ANDAx+b; =0 (2.1.25)
I I
It can be shown that x* is a global minimizer of Problem (2.1.22) iff there exist index sets

A & T as well as a dual variable A} so that the following (modified) KKT conditions hold:

Hx* +q—A4,"A" =0 (2.1.26a)
Apx* +by =0 (2.1.26b)
Ax* + by =0 (2.1.26¢)

=0 (2.1.26d)
A*

1 = ( /{f),with =0 (2.1.26¢)
It

The dual variable Aj is by definition zero since it is the Lagrange multiplier of an inactive
inequality constraint. The idea is to solve (2.1.26a) and (2.1.26b) for x* and A* iteratively
by changing set A accordingly, until (2.1.26¢) and (2.1.26d) are satisfied. The interested
reader can find a detailed active-set algorithm in source. It is briefly noted that these
algorithms are commonly paired with sequential quadratic programming (SQP) solvers,

where the general NLP (2.1.1) is treated by iteratively solving the following QP:

1
min Vf (x)"p + =pTHp (2.1.27a)
x€ER™ 2
Yh
s.t. h(xy) + o " p=0 (2.1.27b)

It can be shown that this QP has the same active set as the original NLP.

2.1.5 Interior Point Methods

Interior point methods (IPMs) are widely used for solving large convex optimization
problems that include inequality constraints, assuming that they are strictly feasible, so that
an optimal primal-dual variable set x*,A*,v* exists. IPMs employ Newton’s Method as
described in subsection 2.1.3 in order to equivalently solve either sequential equality-
constrained problems, or modified versions of the KKT conditions (2.1.19). The problems
that can be solved span linear programs (LPs), QPs, quadratically-constrained QPs
(QCQPs), and others, as long as f(x), h(x) and g(x) are twice differentiable. The idea is to
replace the non-smooth KKT conditions (2.1.19a-c) with a slacked approximation.
Condition A} h;(x*) = 0 becomes A;h;(x*) = o where o > 0 is a small slack variable, and

the smooth KK T-based problem is formulated:
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q
VF(x) — z V(04 = 0 (2.1.28a)
i=1

Ahi()—0=0, i=1,..,p (2.1.28b)

This problem is solvable using Newton’s method, and is shown that as the relaxation
diminishes, i.e. ¢ — 0, then the slacked solutions (o), A(T) approach the optimal solutions
of the NLP x*, A*. IPMs have exhibited powerful results for the case of QP and other convex

programming problems, as well as general nonlinear programs (2.1.1).

2.1.6 Semi-Definite Programming

A special class of convex programs utilize linear matrix inequalities (LMIs) as constraints:

n
B, + Z Bix; ¥ 0 (2.1.29)
i=1

Here, By . € S, where S¥ is the space of symmetric matrices with dimensions R**¥,
When a convex program involves the constraint of positive-definitiveness of a design

matrix, then it is called a semi-definite program (SDP):

. T
min ¢’ x (2.1.30a)

st. Bg + Xiv Bix; =0 (2.1.30b)
Ax—b=0 (2.1.30c)

It is noted that the SDP form generalizes over LPs, QPs, as well as QCQPs (e.g. if the B;
matrices are set as diagonal, then generalized inequality (2.1.30b) is equivalent to a set of
linear inequalities, thus representing an LP). Multiple applications of SDPs can be found,
pertaining to matrix eigenvalue optimization, matrix norm minimization, etc. Apart from
the specialized SDP solvers that exist, e.g. [44], a useful approach to solving SDPs is using
the barrier method, coupled with an IPM formulation. The SDP (2.1.30) is transformed as:

n
min c’x + u J(By + Z B;x;) (2.1.31a)
xX€ERM ’
i=1
st.Ax—b =0 (2.1.31b)

Where J (+) is called the log barrier function and is denoted as:

J(X) = —Indet (X) (2.1.32)
The benefit of employing this approach is that [IPM methods can readily be used, enjoying
polynomial complexity [45].
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2.2 Metaheuristic Optimization

The typical deterministic optimization methods that were presented in Section 2.1 come
with certain optimality guarantees, which is an important feature. However, they also come
with three inherent disadvantages, namely (a) poor performance on non-convex
optimization problems, (b) inability to handle discrete design variables and (c) unsuitability
for multi-objective problems, as they cannot easily deal with discontinuous or concave
Pareto fronts [16]. Given that a significant portion of engineering optimization problems
are non-convex, multi-objective in nature and contain mixed integer and continuous design
variables, it is easily understood that nowadays, deterministic methods may not be the best
choice for every application. Metaheuristic methods on the other hand, constitute a class of
optimization algorithms, or algorithmic frameworks, that are in principle better equipped to
overcome the difficulties commonly encountered in optimization, and provide better quality

solutions than deterministic approaches.

This section briefly discusses the main categories of metaheuristic methods, and presents

the particle swarm optimization that is used in the context of this thesis in detail.

2.2.1  Brief Literature Review

Evolutionary Computation: Evolutionary computation (EC) is a widely used computer
science discipline, comprising methods that simulate the evolution of members of a
population which are regarded as possible solutions to the optimization problem. Each
individual receives a measure of fitness, and then a selection procedure uses biologically
inspired techniques to stimulate the solutions with high levels of fitness. Genetic algorithms
(GAs) [46] and differential evolution [47] comprise the two most distinctive representatives
of EC, albeit a number of other EC techniques have also been proposed [48]. Genetic
algorithms are search algorithms which iteratively evolve a population of candidate
solutions encoded as chromosomes, through genetically inspired operations like crossover
and mutation; a selection process picks the solutions that will be passed onto the next
iteration. GA techniques are able to perform reliably and can easily collaborate with
existing models and systems [49], as well as integrate into hybrid approaches [50].
Additionally, they are easily scalable with parallel implementation abilities [51], [52] and

they impose no restrictions on the functions they process.

Swarm intelligence: Swarm intelligence methods exhibit characteristics seen in
decentralized, self-organized groups of biological organisms. SI systems typically consist
of a population of simple agents that interact locally with each other and with their

environment; these interactions, albeit local, aim to lead to the emergence of a "smart"
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global behavior. A notable SI method is the ant colony optimization. The main idea is the
simultaneous development of multiple threads (possible solutions) based on local data and
a dynamic memory structure containing information on the quality of previous results. ACO
has proven to be effective in solving combinatorial optimization problems and has found
application in a number of fields in industry [53], but presents some limitations in dealing
with continuous design variables. Various modifications of the original algorithm have been

reported in the literature [54]-[56].

Non-population-based methods: Unlike the previously mentioned categories, which evolve
a population or swarm of solutions, some of the early metaheuristic methods were based on
modifying a single solution, the most prominent being simulated annealing (SA) [57] and
tabu search (TS) [58]. SA draws inspiration from the search of a minimum energy state
which occurs during the process of annealing in metallurgy. Its distinct characteristic is that
it allows for temporarily accepting a worse solution with a probability, which becomes
smaller as the iterations progress. SA tuning involves only a few parameters while an
obvious advantage involves the significantly reduced computational cost as a result of
operating on a single solution; on the other hand, accuracy is usually inferior compared to
population-based methods. Recent advances and SA modifications are reported in [59],
[60]. TS owes its name to the so-called tabu lists, that record the search history in order to
avoid cycling, i.e. revisiting previously found solutions. The basic idea behind TS has been
subjected to a number of modifications, which improve the algorithm’s efficiency [61]. TS
is suitable for large-scale optimization problems as it combines the significant advantage
of reduced computational complexity with reasonable performance in terms of accuracy,

albeit it cannot compete with population-based methods in that respect.

Artificial immune systems: Artificial immune systems (AIS) are inspired by theoretical
immunology, simulating the processes used by the biological immune system to respond to
external threats. AIS follow a distributed model with an absence of any point of total
control, using exclusively local information. Due to their inherent decentralized nature, AIS
require minimal CPU and memory resources, in contrast to population-based techniques.
On the other hand, AIS may need customization in order to solve optimization problems
unlike the rest of the methods presented in this section. AIS-based techniques have been
extensively studied and applied to many engineering fields [62], including power grid
applications [63], [64]. They provide inspiration for hybrid methodologies with remarkable

characteristics [65].
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2.2.2  Particle Swarm Optimization

Particle swarm optimization (PSO) [66] comprises one of the most important swarm
intelligence methodologies. The algorithm encodes a population of possible solutions
(particles), which are driven towards optimality by exchanging local and global
information. Each particle updates its position by considering the best position it had
occupied in the past, the best position of the swarm and stochastic parameters averting the
algorithm from becoming trapped in local minima. PSO requires no special encoding, thus
enjoying an advantage over other metaheuristic methods. Its simplicity, combined with
effectiveness and speed, make PSO ideal for use in applications where computational cost
is a critical parameter. Due to these merits, PSO has been widely used, while various
modifications have been proposed [67], [68], aiming to cure its defects, which are mainly

associated with premature convergence.

The PSO algorithm is described as follows:

Algorithm 2.2.1 Simple particle swarm algorithm
Initialize for every particle i:
Randomize Position x{;, Set best position pjy « x{y, Calculate fitness value f(xfy)
Find best fitness value among particles, set it as current global best pgd.
while termination condition false
for particle i:
Calculate new particle speed as vig' « vl + ¢; - rand(0,1) - (pfy — xfy) + ¢5 -
rand(0,1) - (pga — xfa)
Calculate new particle position x/7* « xf; + viF!

Calculate new fitness value f (ng 1

HF(xid) = f(pla): pla < xia %
Iff(xf) = f(Pha): Pha < xfd 5
ke—k+1

Multiple variants of this basic algorithm exist, pertaining to the addition of inertial weights

[69], constriction factors [70], and cooperative particle partitions [71].
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Chapter 3:

Radial Basis Function Neural Networks

Simple machine learning models (such as linear models) cannot account for the underlying
nonlinearities of a complex engineering system. Methods based on computational
intelligence, e.g. neural networks (NNs), seem to be an attractive alternative, as they are
very effective in modeling nonlinear plants [26] and can be configured to accommodate for
changes in plant parameters. Radial basis function (RBF) NNs constitute a popular neural
network architecture with numerous applications in nonlinear system identification and
control, both in industry and academia [72]. They are widely considered for modeling
nonlinear dynamics, mainly because of their simple structure and increased accuracy [34].
They are comprised of a single hidden layer which is linearly attached to the output layer
of the network, meaning that the employed training algorithms are faster and more efficient

than their more complicated multilayer perceptron (MLP) counterparts [34].

In this section, the basic formulation of RBF NN is presented, as well as the fuzzy-means

training algorithm that is used in the context of this thesis.
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3.1 Basic Formulation

In RBFN, the training procedure aims to find the multidimensional surface that best
approximates a set of training examples. This surface is constructed as a sum of simpler
surfaces exhibiting radial basis symmetry around centers specifically placed in the input
space. Training an RBFN corresponds to finding the number of RBF centers, their
coordinates in the input space and the weights connecting the hidden layer to the output

layer.

A typical RBF NN structure can be found in Fig. 3.1.1. The input layer distributes N input
variables to L nodes of the hidden layer. Each node of the hidden layer is comprised of a
center with NV dimensions. The hidden layer performs a nonlinear transformation that maps
the input space on a new, higher dimensional space. The first step in calculating the output
is to compute the activity p; (u(k))for every node / and every datapoint £; this is calculated
as the Euclidean norm of the difference between the kth input vector u(k) and the /th node

center U;:

N

w (k) = llull) — @yl = Z(u(k) —@)?, k=1,..K G.1.1)

i=1
Using the activity y; (u(k)), the node activation function can be computed. In this work, a

typical activation function is used.

Then, for each datapoint and each node, an activation function value is computed. The

hidden node responses for the k-th datapoint are written as:

Figure 3.1.1: Schematic of an RBF network: The input layer distributes /N input variables to L nodes
of the hidden layer. Each node of the hidden layer is comprised of a center with N dimensions. The
hidden layer performs a nonlinear transformation that maps the input space on a new, higher
dimensional space. The weighted sum of the nodes constitutes the output.
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z(k) = [g(u (u(k))), g (12 ((k))), ..., g(p (k)] (3.12)
The final output value y of the RBF NN is then calculated as a linear combination of the

hidden note responses,

y(k) = z(k)w (3.1.3)
where w is a vector containing synaptic weights. For a given real output vector ¥, after
formulating the vector of hidden node responses Z, the weight vector w can be calculated

trivially by least squares in matrix form:
wl =YTZ (Z"Z)™! (3.1.4)
Thus, it can be concluded that the most important stage of creating the RBF NN is the

establishment of the hidden node centers U;.
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3.2 Fuzzy Means RBF

A standard approach to determine the coordinates of the RBF centers involves the k-means
algorithm [73], for a given number of centers; however, as this number is not a priori
known, a tedious trial-and-error procedure is required to determine it. The fuzzy means
algorithm is well suited for this task [34], because it follows a fuzzy clustering approach in
order to determine the node centers. Consider a system with N normalized input variables
u;. In order to create a fuzzy partitioning of the input space, the domain of each input
variable u; must be segmented into S one-dimensional fuzzy subspaces (FS). Each subspace
A where [ = 1,..., S is created by combining N fuzzy sets for each input direction. It is
possible to define the fuzzy subspaces through the center vector a' containing the centers

and the side vector da.

The resulting subspaces form a grid in the N-dimensional input space, where each node of
the grid is a candidate RBF center. The FM algorithm aims to determine which candidate
nodes will be finally selected as centers. This is accomplished through the use of a

membership function p,; formulated as:

(k) = {1 —di(u(k)), ifdi(u) <1 G2.D)

0, if otherwise

The distance d(u(k)) is computed as

at(u() = | Y (ab; - w k)’ /(VNsa) (3.2.2)

!

where u(k)is the kth input vector, a; j; is the center of the fuzzy subspace Al, 54 is half the

width which is the same for each input, and N is the dimensionality of the input space. Eq.
(3.2.2) defines a surface in the input space that bounds the input vectors that will be covered
by fuzzy subspace Al, or in other words, that will receive nonzero membership degree in
the membership function. The FM algorithm uses a fast-non-iterative procedure to find a
subset of the subspaces, so that all input datapoints are covered by at least one fuzzy
subspace. Therefore, the resulting RBF NN relies only on the number of fuzzy sets s, which

can be yielded through exhaustive search of a short range.
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Chapter 4:
Model Predictive Control

The model predictive control class of control methods originate from the intersection of
mathematical optimization and control theory [74]. The MPC algorithm makes use of a
dynamic model of the plant in order to calculate an approximation of the plant’s future
response to the control inputs. Based on this model, a constrained optimization problem is
formulated online to obtain the optimal sequence of control moves for a given time horizon.
Due to being able to accommodate for plant nonlinearities, and its abilities to handle MIMO
formulations, various physical constraints [75], and multiple objectives [76], MPC has
emerged as a highly successful control scheme with applications in various fields during

the last decades [74].

Consider the following discrete-time dynamical system:

X+1 = [ (Xk Uk) (4.0.1)
Here, u, € R™ is denoted as the input vector and xj, € R™ the state vector. For

generality’s sake, (4.0.1) can also be written in form x* = f(x, u). Given an initial state x,
and a control sequence uy, ..., uy_1 up to timestep N — 1, this discrete time system could

be sequentially simulated to obtain x;, ..., xy.

Next, the foundation of MPC controllers can be laid out in this section.
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4.1 Linear Quadratic Regulator

As a precursor to MPC, it serves to initially present the linear quadratic regulator (LQR).
First, using simple calculations of the system’s (4.0.1) Jacobian around a specific origin, a

linearized discrete-time system is created as follows:

Xk+1 — Axk + Buk (411)
Where A € R™*™ is the state transition matrix and B € R™*™ the input matrix. For

generality in model representation, the output equation can be included,

Yi+1 = CXppqr + Dy, (4.1.2)
however, in this analysis it is set that C = I (i.e. the states are fully measured) and D = 0.
The origin of linearization is considered as the desired optimal control setpoint, which for
simplicity is set to 0. Then, an objective function J(-) is defined measuring the deviation of

sequences U = Uy, ..., Uy_1 and x4, ..., Xy from the setpoint using the sum of squares:

1 N—-1
JGro,w) =3 z 200 ) + Vi () (4.1.3a)
k=0
f(xk,uk) = QTku + RTukR (413b)
Vr(xy) = Q" xnQy (4.1.3¢)

Here, £(-) is called the stage cost and V;(-) the terminal penalty, while matrices Q,R
represent tuning parameters. Large values of Q incentivize the quicker return of the state to
the setpoint, while large values of R penalize large control actions. Matrix Qf weighs the

terminal state penalty. Using (4.1.3a), the optimal finite-horizon linear-quadratic (LQ)

problem can be formulated:

min J (xo, u) (4.1.4)
u
In order to ensure tractability of this optimal control problem (OCP), the Q,R and Qf

matrices must be symmetric and positive-semidefinite. Since x, is known, this problem can
be formulated to be solved with backward dynamic programming (DP). A detailed
presentation is beyond the scope of this thesis, however the main results are stated; the

optimal control policy resulting from the finite-horizon Problem (4.1.4) at each stage k is:

u,=K(k)x k=N-1N-2,..0 (4.1.5)
Where K (k) is the Riccati matrix,

K(k)= —(BTH(k+1)B+R)"BTlH(k+ DA k=N-1N-2,..,0 (4.1.6)

I1(-) is the Riccati iteration defined as
Nk—-1)=0Q0+ATII(k)A— ATII(k)B(BTII(k)B + R)"*BTI1(k)A 4.1.7)
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k=N,N-1,..,0
With [1(N) = Q, as the iterates are calculated backward. Lastly, the optimal cost-to-go is
calculated as follows for up to time N:

1
Je = ExTn(k)x, k=N,N-1,..,0 (4.1.8)

The above notions can be extended for the infinite horizon LQ case, with objective function:

1 (o]
JGrorw) =5 ) £ ) + Vy G ) (4.1.9)
k=0

By again iterating the Riccati equation, the so-called optimal infinite horizon control law

together with the optimal cost-to-go are yielded:

1
ud =Kx V3(x)= ExTH(k)x (4.1.10)
where the gain and Riccati iteration are defined as:
K=—-(B'lB+R)"*BTIIA (4.1.11a)
I1=Q+ATIIA— ATIIB(BTIIB + R)"1BTIIA (4.1.11b)
It is noted that control law (4.1.10) has guaranteed nominal stability given controllability
for the (4, B) pair and Q > 0, R > 0, because then a positive-definite solution of (4.1.11b)

exists and the eigenvalues of (A + BK) are less than unity.
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4.2 Nonlinear Tracking MPC

Even though the infinite-horizon control law u2, generated by DP has guaranteed nominal
stability under mild assumptions, there are multiple practical impediments to its use. These
pertain to the desirability of feedback due to uncertainty, the handling of nonlinear
dynamical systems and the incorporation of constraints in the OCP. The idea of MPC is to
generate the optimal control sequence uj, online for the current timestep given the current
state x, and a finite time horizon, while honoring constraints on states and inputs. Consider

the constraints of the nonlinear discrete-time system (4.0.1):

(x,u) €Z 4.2.1)
Where Z denotes the admissible set of states and inputs X X U, where X and U are the
admissible state and input spaces, respectively. Space Z is generally required to be a convex
polyhedron and can include inequalities, equality constraints, and rate constraints. The OCP

pertaining to a constrained tracking nonlinear MPC (NMPC) is formulated as:

min [y (x,u) (4.2.2a)

x,u
s.t.(x,u) €EZ, xy € Xy (4.2.2b)
Xo = X} (4.2.2¢)
xt = f(x,u) (4.2.2d)

Where the stage cost £(-) and the terminal penalty V¢(-) are denoted as (4.1.3b), (4.1.3¢)

and

N-1
InGew) = > £ w) +Vy (xw) (42.3)
k=0

An additional constraint set Xy © X is also included, which represents the terminal
constraint set. An alternative representation to OCP (4.2.2) can be constructed; considering

space Xr together with Z, the implicit u constraint u € Uy is formed, denoted as:
Uy (x) = {u|(x,u) € Zy} (4.2.4)

Where Zy = {(x, u)|((p(k; X, u),u(k)) € Z,Vk € lg.y_1,9(N; x,u) € Xf}, and ¢ is

some continuous function. Then, (4.2.2) can be written

Jn () = min{Jy Cx, w)u € Uy ()} (4.2.5)
Note that this optimization problem with a design variable of u is parametrized by x,
inserted in both the cost ]y (x,u) and the constraint set Uy (x). Next, Xy is defined, which
represents the subset of x € X for which (4.2.5) has a solution:
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Xy = {x € R|Uy(x) + 0} (4.2.6)
Then, the following Lemma can be stated.
Lemma 4.2.1 (A solution exists for OCP (4.2.5)): Suppose the following assumptions hold:

A. The functions f: Z. = R", £:7Z = Ry,, Vi Xy = Ry are continuous and, without

violating generality, a zero origin is assumed so that f(0,0) =0, £(0,0) =0,
Vf(O) =0.

B. The state-input admissible set Z. = X X U is closed, U and X; < X are compact,
and all sets contain the origin.
Then:
1) Cost function Jy(x,u) is continuous in Zy.
2) The control constraint set Uy (x) is compact.
3) Vx € Xy a solution to Problem (4.2.5) exists.
Proof: See Proposition 2.4 [20] m
Finally, the MPC control law for timestep k can be formulated,
Ky (x) = ug (4.2.7)
where ug is the first element of the optimal control sequence yielded by the solution of
(4.2.5):

u* =arg muin{]N(x, w|u € Uy(x)} (4.2.8)
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4.3 Stability for MPC

Classically, the stability of the MPC control law presented in the previous section employed
Lyapunov-based tools and theorems. Some definitions regarding stability theory are in
order; First, the origin (0,0) € R" is called globally asymptotically stable (GAS) for the
system xj,1 = f(x, u) if the origin is locally stable and if the origin is also globally
attractive. The definition of local stability is: if Ve € R, a § € R, exists so that [x| > §
implies {|p(k;x)| < € |Vk € 1, }, which alternatively is stated as: for small state
perturbations from the origin, subsequent perturbations are also small. Similarly, the origin
is called globally attractive if {|p(k;x)| = 0]k - o, Vx € R™ }. Next, some useful
function classes must be defined: a function is called K -class if it is continuous, zero at the
origin, and strictly increasing; next, a K, -class function is an unbounded K -class function;
and lastly, a continuous function £(+) is a K L-class function if Vk € I, S(:, k) remains a

K -class function and {8 (s,i) - 0 |i > oo, Vs € R, }, while B(s,-) remains nonincreasing.

Finally, the definition of a Lyapunov function can be presented: Suppose that the admissible
state space X € R" of dynamical system xj,; = f(xg, ux) is positive invariant (i.e. if
x(t) € X = x(t) € XV1 > t). Then, a function J: R™ — R, is a Lyapunov function in X
if there exist a4, a, € K, and a positive-definite continuous az function so that Vx € X it

holds:

J(x) = a.(Ix]) (4.3.1a)
J(x) < az(Ix]) (4.3.1b)
J(F ) = f(x) < —az(Ix]) 4.3.1¢)

The basic Lyapunov stability theorem can now be stated.

Theorem 4.3.1 (Lyapunov Stability Theorem): Suppose a system x* = f(x,u), x € X with
X positive invariant. If a Lyapunov function exists in X for this system, then the origin is
asymptotically stable in X, and if X = R", then the origin is GAS. Lastly, if there also exists
a;(|x]) = ci|x|* with a, c¢; € Ry Vi € {1,2,3}, then the origin is called exponentially
stable.

Proof: See Theorem 2.13 [20]. m

Therefore, the idea of MPC stability is to show that the value function J9 ( f (x, Ky (x))) of
the respective OCP is a valid Lyapunov function. It can be shown that when the MPC
constituents ¢, V¢, and Xy are appropriately chosen, then it holds that I ( f (x, Ky (x))) <

I (x) — 2(x, ky (%)).
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Theorem 4.3.2 (Asymptotic stability of the origin): Suppose assumptions of Lemma 4.2.1
(4-C) are satisfied as well as

A. f(x,u) € Xg, and Vf(f(x, u)) —Vr(x) < —f(x,u) .

B. There exist K, functions ay, as so that {£(x,u) = a;(|x|) | V(x,u) € Z} and
C. Weak controllability exists, namely for a Ko-class a(-) function it holds

Un@) < a(lxD) | vx € Xy} (Alternatively X; = {0}, i.e., there exists a terminal

equality constraint to the origin).
D. K-class a,(-) and a,(+) functions exist such that {a;(|x]) < J3(x) < a,(|x])}

and { I3 (£ (2,10 () ) = JH () < =3 (2 10 ()}
Then, the origin of X;41 = [ (xk, Ky (X)) is asymptotically stable in Xy.

Proof: This proof is beyond the scope of this presentation and can be found in [20], see
Proposition 2.15 and 2.16; however, it is noted that the lower bound property for J3(x) is
satisfied by opting for a positive definite stage cost £(x, u), with Q and R also being positive

definite. m

A natural question to ask is whether the existence of a terminal constraint set X¢ is
mandatory for asymptotic stability. There is significant motivation for its omission, since
an OCP without terminal constraints is easier to solve, and the performance of the respective
MPC is usually higher. Consider an OCP which satisfies Assumptions A, B of Lemma 4.2.1

& Assumption A of Theorem 4.3.2 meaning that there exists a local control law ¢: X¢ —» U
which is a Lyapunov function in X¢ (a quadratic and positive definite V¢ fulfils this). The
idea is to implicitly satisfy the requirement of a terminal constraint by replacing V¢ with
BV, where f > 1 a sufficiently large parameter so that the optimal terminal state is
nevertheless within X¢. The full result by Limon et al. [77] is stated:

Theorem 4.3.3 (Stability at the origin; terminally unconstrained MPC): Suppose an OCP
problem with | 16 (x,u) = XNo €0, ug) + BV¢(xy), and the associated x-parametrized

problem ]I(\),’ﬁ (x) = min{]ﬁ(x, u)lu € Uﬂ,N(x)}. Then, the region of attraction T, ,f =
u

{x| ] 1(\),'3 < Nd + ﬁa} where d > 0 such that £(x,u) = d is positive invariant for the system

£
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Proof: See paper [77]. m
The importance of this theorem is that if we require that the initial state x; to lie in the

region of attraction I If , then the terminal constraint is implicitly satisfied and is thus not

needed to be included in the OCP formulation.
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4.4 Nonlinear Economic MPC

The NMPC control law presented in the previous section is well-equipped to handle
tracking problems. These include vehicle navigation and guidance, disturbance rejection,
setpoint tracking of low-level objectives present in industrial processes and others, with
great performance. However, the high-level objectives of such processes dictate the direct,
online optimization of economic goals, which may be generic — i.e., not representable by

tracking cost formulations. This is the motivation behind the creation of economic MPC.
Consider once again a discrete-time dynamical system,

xt = f(x,u) (4.4.1)
and a generic cost function £, (x, u) which does not measure deviation from an origin, but
rather an economic objective of the process; this implies that this cost function may not be

positive definite. The optimal economic steady state (x;, ug) of system resulting from the
pair (f(-), #e(-)) can be calculated as:
— : + —
(x5, us) = arg (gl)gz{{’e(& wlx® = f(x,w)} (4.4.2)
Typically for standard tracking NMPC, this steady-state (xg, us) would be set as the
setpoint with the stage cost formulation, requiring that (x,, ug) is tracked. In EMPC

however, £, (x, u) is used directly as a stage cost. It can be shown that a solution to its OCP

exists.

Theorem 4.4.1 (A solution to the economic OCP exists): Consider the following OCP
problem:

Jen () = min{ Joy (e, wlu € Uy ()} (4.4.32)

N-1
Jon(iuw) = D €oCri ) (44.3b)
k=0

Together with the following assumptions

A. The functions f: Z - R", £,:7Z — Ry, are continuous, meaning that a (X, Us)

exists (4.4.2).

B. The state-input admissible set 7. = X X U is closed. U is compact and uniformly
bounded in X.

C. There is no terminal cost function V, instead the terminal set contains only the

optimal steady state X; = {x;}, and £, is lower bounded.



Development of optimization and data-driven model predictive control methods using computational intelligence
techniques: Design and applications with emphasis on the economic operation of engineering systems

Then, a solution to Problem (4.4.3) exists.
Proof: See Proposition 2.4 [20]. m

Theorem 4.4.1 implies that the EMPC control law k, y is well defined and the closed loop
system is x* = f(x, ke (x)). Note that JQ is not a Lyapunov function due to the non-
positive definite stage cost €. Still, it can be shown that control law k, y (x) can yield an
average closed-loop performance that is economically better than the optimal steady-state
performance (xg, us) [78]; the practical effect is that control law k., y (x) would periodically

cycle the system around the steady-state (x, Ug), instead of stabilizing towards it.

4.4.1 Dissipativity and Stability Analysis

The notion of dissipativity is central to the stability analysis of the EMPC control law
ke n(x). The idea of dissipativity has roots in physical systems: Consider mechanical
energy being supplied to a system by performing work at a given rate. This energy can be
considered as a storage function, translating work on the system to stored energy. For a
dissipative system, the rate of change in the storage function (i.e., stored energy) is strictly
less than the supplied work. Simply put, the system x* = f(x,u) is characterized as
dissipative w.r.t supply rate s:Z — R if a storage function A:X — R exists such that

V(x,u) € Z:

A(f(x,w) — A(x) < s(x,u) (4.4.4)
In addition, strict dissipativity holds w.r.t s and a x,, if a a(-) € K, exists such that

V(x,u) € Z:
A(f(xw) — 2(x) < s(x,u) (4.4.5)
Using the notion of a storage function and dissipativity, one can state the following:

Theorem 4.4.2 (Asymptotic stability of EMPC for dissipative systems): Suppose the
assumptions of Theorem 4.4.1 hold and

A. The function {JOy =Jon() + 2(D}: Xy = R is continuous at the steady state
(%5, Us)

B. The system f(x,u) is strictly dissipative with supply rate s(x,u) = £,(x,u) —
’ge (xS’ us)
Then, the steady-state (x5, us) of x* = f(x, ko (x)) is asymptotically stable in Xy.
Proof: Function J v (+) is no longer a Lyapunov function since . (+) is not positive definite.

Reference [79] constructs a new, rotated stage cost of the form:
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P(x,u) = Lo(x,u) — €o(xg,ug) + A(x) — l(f(x, u)) (4.4.6a)

Since the system is dissipative, it holds that the rotated stage cost #(x, u) has the properties:

P(x,u) = a(lx —x]) & P(xsus) =0 (4.4.6b)
This means that Assumption B of Theorem 4.3.2 is satisfied, and the standard procedure

can be employed in order to show that the new OCP J? is indeed a Lyapunov function,
therefore proving asymptotic stability. m
The stability Theorem 4.4.2 includes periodic processes and time-varying systems. It should

be noted, however, that the creation of the stability-enforcing storage function A(+) is an ad-

hoc procedure, meaning that it may be difficult to compute it for most practical applications.
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Part III: Design & Applications
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Chapter 5:
Computational Intelligence Methods for efficient Smart Grid
Dispatch

Electricity generation and distribution has undergone a major development in the last
decades moving from a conventional centralized generation towards a distributed, small-
scale, producer-consumer (prosumer) model, connected to the distribution network [80].
This evolution has been made possible by the development of a reliable information and
communication infrastructure, but it also gave rise to certain challenges, which were met
through the emergence of the smart grid [81]. The technological framework defined by the
smart grid enables a more reliable, more efficient, and more economical operation, capable
of accommodating increased utilization of renewable energy sources (RES) and energy
storage systems. On one hand, system operators now have an abundance of incoming
information and available control decisions at their disposal in order to control critical
network state variables. On the other hand, they must deal with modern challenges that arise
in the typical operational tasks of the grid [80]. These tasks can be broadly categorized into
two classes of problems, namely optimal power flow (OPF), and resource scheduling (see
fig. 5.0.1). However, there also exists a ubiquitous utility task pertaining to the electric load
forecasting, which encompasses the operational tasks residing in the OPF and resource

scheduling categories.

From an optimization perspective, this new distributed generation paradigm offers
significant potential for the application of new methods, capable of handling the
aforementioned challenges. These methods must be able to cope with a larger amount of

design variables of diverse nature, while taking into account a significant number of

Optimal power flow Scheduling
Active and reactive power Y (  Unit commitment, Demand
dispatch response strategy, etc.
Objectives
—[ Electric Load Forecasting ]->
A
| |
Time | ! .‘ 1 \‘
Horizon Minutes Hours Days Weeks :

Figure 5.0.1: The current paradigm in smart grid dispatch
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incoming state measurements from the grid. In addition, they must provide satisfactory
solution accuracy combined with reasonable computational complexity, even when applied

to multiple optimization objectives.

This chapter employs computational intelligence methods in order to tackle the two main
problems related to smart grid dispatch; the first case-study is the load forecasting task using
an ensemble of multiple machine learning methods, while the second is the OPF problem

using a PSO-based metaheuristic method.
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5.1 Electrical Load Prediction using Machine Learning method

ensembles

The increasing penetration of renewable energy sources tends to redirect the power systems
community’s interest from the traditional power grid model towards the smart grid
framework. During this transition, load forecasting for various time horizons constitutes an
essential electric utility task in network planning, operation, and management. This chapter
presents a novel mixed power-load forecasting scheme for multiple prediction horizons
ranging from 15 min to 24 h ahead. The proposed approach makes use of a pool of models
trained by several machine-learning methods with different characteristics, namely neural
networks, linear regression, support vector regression, random forests, and sparse
regression. The final prediction values are calculated using an online decision mechanism

based on weighting the individual models according to their past performance.

The proposed scheme is evaluated on real electrical load data sensed from a high
voltage/medium voltage substation and is shown to be highly effective, as it results in R?
coefficient values ranging from 0.99 to 0.79 for prediction horizons ranging from 15 min
to 24 h ahead, respectively. The method is compared to several state-of-the-art machine-
learning approaches, as well as a different ensemble method, producing highly competitive

results in terms of prediction accuracy.

5.1.1 Introduction & Literature review

Generation intermittency of RES within the smart grid context has a two-fold effect: from
the distribution system operator (DSO) perspective, uncertainty in distributed generation
compromises the ability to effectively plan short-term power dispatch [82], while from the
energy market bidder perspective, stochasticity severely constrains their bidding strategy
and thus, reduces profit margins [83]. These shortcomings underline the importance of the
application of effective electric load prediction models in the context of multiple
operational aspects of the smart grid, such as power stability and security. Especially in the
case of micro-grids, storage management is critical and cannot be accomplished without
the aid of accurate short-term load forecasts for load shifting and balancing operations [84].
Moreover, the grid extension and the increasing exploitation of smart meters affect the
efficient operation of the grid, leading to a complex and multifaceted framework [85].
Regarding the distribution network on the substation level, load forecasting up to one day
ahead, could be a valuable asset in the grid’s optimization tasks [5]. Such actions can be

carried out, not only by controlling the on-load tap changer and capacitor bank movements,
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which is currently the industry standard, but also by operation scheduling of batteries in the
near future. Load forecasting with multiple time horizons participates in different,
interdependent levels of operation of a power grid and thus can make a significant
contribution to addressing the aforementioned challenges. A pivotal feature of smart grid is
the bidirectional power flow and communication through administrators of generation,
transmission, distribution, and end-users. As a result, the corresponding energy data contain
mixed power-load (hereby referred to as mixed load’). While the majority of the load
forecasting models found in the literature predict the electric load production or
consumption, the differences between them are frequently studied as well. The forecasting
of the so-called net load proves useful for tackling load volatility due to increasing RES
penetration [86]. These net energy load prediction models utilize historic distribution grid
load data as well as measurements of weather features on a substation level in order to infer

the net active power (AP) demand of the distribution grid.

To this end, the field of computational intelligence, and more specifically, the branch of
machine learning [87] has proved to be an invaluable source providing a multitude of
approaches to solving the aforementioned problem. ML comprises methodologies that are
capable of extracting knowledge from historical data in order to develop black-box models,
tackling the problem of requiring specific information about the process and avoiding
altogether the computationally intensive use of first-principle equations. ML algorithms
can exhibit a number of important advantages like efficiency, increased prediction
accuracy, robustness, etc, but require a number of suitable data to do so. Notable ML
methodologies used within load forecasting pertain to linear regression (LR) [88], sparse
coding [89] & support vector regression [90], as well as more advanced neural network
approaches such as feed-forward neural networks [91], RBF networks [28], and others. For

a detailed literature review, the interested reader is referred to [7] as well as Chapter 3.

It 1s apparent from the literature that the problem of electric load forecasting has been
addressed by multiple machine-learning methods, but without any of them achieving
universal superiority in terms of performance. This observation is confirmed not only by
studying the individual research results but also by assessing various benchmark
comparisons in the literature [92]. The inability of universal prediction effectiveness of the
aforementioned models is to be expected taking into account the undesirable characteristics
of the load forecasting problem, which include non-linearities and high levels of noise in
the associated data. Furthermore, load time series are not statistically static [93], due to the

volatile, rapidly changing nature of the weather conditions that affect their power generation
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component. Different classes of machine-learning methods can cope better with some of
these issues but usually underperform with respect to others, e.g., linear models are more
robust to noise but cannot capture the non-linearities present in the load forecasting
problem. To make things worse, though all of these problems are inherent to load
forecasting, their mixture composition changes depending on the time horizon one tries to
predict for, making it impossible to single out a unique machine-learning method that could
outperform the others across different prediction horizons, e.g., linear methods are often
found to perform better in short-term horizons, where data tend to be noisy, but the non-
linearities can usually be adequately approximated by linear models, but mostly fail in
longer time horizons, where the role of the non-linearities is dominant. It should be noted
that the previous observation about the inability of a single method to beat all the others is
not only tied to the context of load forecasting, but reveals a more generic concept in

machine-learning and optimization, as expressed by the “no free lunch” theorem [94].

To remedy this predicament, one could resort to using a multi-model approach [95],
combining multiple machine-learning methods. Unfortunately, in a real-time deployment
scenario, an important practical consideration arises for multi-model schemes: How does
one select the most suitable model from a pool of trained models for the next prediction
timestep? One solution is to employ a rule-based decision system that uses a priori available
knowledge, such as the time of day and measured weather conditions at the substation level.
This presents a significant impediment. Not only are the rules of such a system difficult to
conceptualize, but they also offer no guarantee of continuously optimal model selection.
Doing away with a decision system altogether is also problematic since the individually
generated predictions do not offer any actionable insight by themselves. A practical
workaround is to discard such selection rules and instead employ a weighting system that
assesses models only by using their past prediction performance [96]. The weighting of the
output results of basic forecasting LSTM models in [97] is based on the similarity degree
between target and identified standard values of load consumption. Two different
approaches for determining the weights of multiple forecasters are followed in [98], using
a novel incremental ensemble weight updating strategy and the minimum-error method,
respectively. Alternatively, an extreme learning machine can be employed for combining
the outputs of a pool of forecasts, as in [99]. An intelligent decision-making support scheme,
including predictive performance evaluation, model properties analysis, structure and
fusion strategy optimization, and optimal model preference selection, is incorporated with

an evolutionary ensemble learning method proposed in [100] for short-term load
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forecasting (STLF) problems. Finally, an automated system is established in [101] based
on hidden Markov chains for extracting similar day profiles to obtain the best model from
a library of available forecasting models. Differently from the previous works, the output
neural network (NN) models result from multiple training cycles based on snapshots [102]

or the hidden features of a Random Vector Functional Link network [103].

It has become clear that the necessity of providing mixed load forecasts, and indeed for
multiple short-term horizons, is a factor of paramount importance in the upcoming
transition to smart electricity grids. Moreover, according to the preceding literature review,
it is evident that in order to enhance the predictive capability of a model, it should
incorporate more than one machine-learning methodologies, which of course should be able
to handle the complex dynamic behavior of the mixed load. Finally, such a methodology is
necessary to be applicable in an online implementation, which means that the final
predictions should be provided in a reasonable amount of time and respond to the behavior

of the load through a dynamic decision mechanism.

Realizing the aforementioned requirements and seeking to fill the corresponding research
gaps, a novel forecasting scheme is presented here that is able to efficiently address the
diverse and adverse characteristics of the load forecasting problem for various prediction
horizons. The proposed method seeks to create an ensemble of prediction models based on
multiple machine-learning techniques comprising different beneficial characteristics that
have only been used individually for load forecasting before. Indeed, the sparse coding
method introduced in the proposed model has been published very recently and used for the
first time in ensemble schemes. As the participating techniques excel in different aspects of
the load forecasting problem, their combined usage introduced in this work provides the
ensemble with the ability to outperform each individual method in all the horizons tested.
In order to efficiently combine the different machine-learning techniques, the proposed
method employs an error-based metric on a rolling window of past predictions. This
approach enhances the novelty of the proposed method as it does away with the adversity
exhibited by complex, rule-based model selection systems. By combining the beneficial
characteristics of the aforementioned techniques, the proposed scheme demonstrates
superior performance in terms of prediction accuracy, compared to all the submodels, as
well as a recently proposed MLP model ensemble from the literature [104], through a wide
range of different prediction horizons, spanning from 15 min to 24 h-ahead. Thus, reliable
forecasts can be obtained for: (a) One hour ahead or less, which are valuable for various

applications at the transmission and distribution network, (b) one day ahead, contributing
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to the scheduling of generation sources and (c) intra-day forecasting, so as to achieve better
optimization results. As a result, the introduced model ensemble can become a powerful
tool for administrators and participants in the energy market, easily exploitable in both
operational and managerial tasks of smart grids. It should be noted that, at least to the
author’s best knowledge, no machine-learning approach that is able to handle this range of
prediction horizons has been proposed in the literature. Furthermore, the proposed approach
expands the existing literature by using mixed power-load data, i.e., data that include
renewable generation measurements. Although there is an abundance of work in forecasting
the net power load, the literature on mixed-load forecasting is very scarce. It should be
pointed out that the employment of mixed measurements is aligned with the requirements

of modern smart grids, where the penetration of renewable resources is a key feature.

5.1.2  The load forecasting objective

The load forecasting problem that is of interest in this work spans several different time
horizons: 15 min, 1-hr, 2-hr, 3-hr, 6-hr, and 24-hr. This case study makes use of real data
from a high voltage/medium voltage substation located in mainland Europe, measured
during the years 2017-2018. The corresponding MV distribution network contains multiple
photovoltaic sites; as a result, the data measurements in question constitute mixed power-
load recordings, which correspond to the mixed AP demand of the distribution grid from
the transmission grid. The load measurements have been recorded every minute and contain
the mixed AP demand, as well as cloud coverage, wind speed, humidity, and temperature,
as measured from the substation’s weather station. Due to practical concerns, individual
power generation or weather data from the aforementioned photovoltaic sites should not be
taken into account for the creation of the input dataset since these will normally not be
available for a real-life implementation. In short, in this work, the substation’s historical
measurements of load and weather conditions are available for the creation of a prediction

model of the mixed AP demand of the grid.
5.1.3  Methodology
5.1.3.1 The ensemble algorithm

Recognizing the individual advantages and disadvantages of the machine-learning methods,
the proposed scheme seeks to create an ensemble that will successfully combine their merits
in a single approach. For example, neural-network-based models such as RBF do exhibit
superior prediction performance only as long as the input data point lies well within the

domain of the input training dataset. On the other hand, linear and sparse prediction models,
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in general, show much better extrapolative performance, even though they are unable to
capture more complex, non-linear dynamics. In other words, by toggling between the robust
linear models and the more sensitive but also more effective non-linear ones, a superior

approach to load time series prediction can be constructed.

In order to obtain the best possible performance of each sub-model, their optimal training
configuration has to be determined. Starting with the simpler methods used, a linear and a
sparse regression (SR) model are trained by least squares and fast iterative shrinkage
thresholding algorithm, respectively, the latter being a faster implementation of the
corresponding iterative shrinkage thresholding algorithm used for load forecasting [3]. In
the case of the sparse coding approach, sparsity is induced by the ¢, norm and the
regularization parameter was set by trial and error to 0.01. Subsequently, a random forest
regressor is employed, where the number of decision trees is selected to be 15 so as to keep
the training time at a reasonable level without reducing its predictive ability. As regards the
non-linear methods, an SVR model with Gaussian kernel function was developed [105],
using sequential minimal optimization for training and Bayesian optimization to optimize
the model’s hyperparameters [106]. Two NN models are also introduced, featuring two
different architectures. The first one is a two-layered MLP network trained by the
Levenberg—Marquardt backpropagation algorithm [107], following a 10-fold cross-
validation. The neurons of each layer are chosen by trial and error as 20 and 10. It is noted
that, in order to compensate for the performance dependence of the MLP training methods
to initialization, the training procedure was conducted 10 different times, with different
randomly initialized weights of the network. The second NN uses an RBF architecture and
is trained using the fuzzy means technique [108], an algorithm that has found many
successful applications due to the increased accuracy it provides [4] combined with fast
training times [27]. In this work, the FM algorithm has been tested for a range of fuzzy sets
between 4 and 15. When deployed online, the proposed approach evaluates a MAE metric
on a rolling window of past predictions coming from a pool of trained models in order to
create a weight vector for the next timestep prediction. An important item of the proposed
method to be specified is the length of the rolling window. It can be easily inferred that this
depends not only on the prediction horizon but also on the statistical properties of the
predicted variable (a more volatile, non-stationary time series would require shorter rolling
window horizons). Once the model pool has been populated by trained models, the optimum
length of the rolling window is calculated in an exhaustive search manner over the same
validation data in the range of 3—15 regressive timesteps. The proposed method operates as

follows: For each timestep £, all trained models in the pool are evaluated concurrently. Their
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Figure 5.1.1: Schematic for a two-model version of the proposed method, where y denotes the real
load, y; the prediction of the i-th model, ¥y the weighted prediction and & the current timestep. The
ensemble model recognizes the superiority of y; over ¥, and, within the rolling window, adapts its
weights accordingly, achieving highly accurate prediction for the next timestep £ + 1.

current prediction performance is assessed by applying the MAE metric on their previous

predictions up to a rolling time window of length h,,

A ACEIERICEN]
hw

where J;(k) are the predictions of the i-th model and y are the actual values of the

MAE; (k) = (5.1.1)

timeseries at timestep k. Then, the MAE metric is used to calculate the prediction weight of
each model for the next timestep k + 1

MAE; (k)
N MAE7 (k)
where MAE; is the MAE of the i-th prediction model, N is the total number of models in

(5.1.2)

the model pool, and w; is the prediction weight for the next timestep. The prediction output

of the proposed method is calculated as the weighted sum of the model predictions J;

yk+1) =X wi(k + 1) 9k + 1) (5.1.3)
A snapshot of a two-model example version of the proposed method is shown in fig. 5.1.1.
Note that the proposed method combines the strengths of the individual models by placing
greater weight on the current better-performing model for the time window of length 4,,. At
first, both y; and ¥, models appear ineffective as individual predictors of the y time series.

However, after closer inspection, ¥, performs better for the first half of y, while ¥, for the
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Figure 5.1.2: Operation of the rolling median threshold outlier detection algorithm. The data points
marked as outliers exceed the median value of the time window multiplied by a user-specified

threshold factor.

second half. By placing greater weight on the model with the best past prediction
performance within the horizon 4., the proposed method is able to toggle towards the best

available model for the current circumstance. The result is an overall superior prediction

performance.

5.1.3.2 Data Preprocessing and Model Training

Unavoidably, the substation measurements contain large periods of missing or corrupt data
owing to sensor downtime or malfunction. For the scope of this case study, no missing data
imputation has been performed-instead, corrupted data and outlier removal was the main
focus of the preprocessing operation. Due to the sheer size of the dataset, manual
preprocessing was impossible, mandating the creation of a bad data detection routine.
Corrupted values were decidedly easy to detect since the corresponding AP signal exhibited
unusually low variance around a constant value. However, outlier values on mixed load
data were a challenge to successfully handle—a review of the challenges of this topic, as
well as effective techniques, is available on [109]. The chosen technique must be
sufficiently effective at classifying outliers in data, while avoiding false positives. In this
case study, a rolling median window threshold approach is used, as it was found to
compromise well between the aforementioned points. A two-day snapshot from the
application of this algorithm to raw electrical load data is presented in Figure 5.1.2. The

outliers usually originate from noisy sensor readings [110]. As part of data preprocessing,

Myron Papadimitrakis
yronTap 74



Table 5.1.1. Description of training variables of the forecasting models for the different prediction
horizons examined in the case study. Each row of the table refers to the different groups of input
variables, whereas the last row refers to the output variable.

Prediction 15 min l1h 2h 3h 6h 24 h
Horizon t+1) (t+4) (t+4) ((t+12) (t+24) (t+96)
Current and past  (--7), ), ), P, P, A0,
AP measures i=0,95671  i=0,4,92,668 [=0,8,88,664 i=0,12,84,660 i=0,24,72,648 i=0,96,576

3 3 7 11 23 95
Average Z p(t—n) z p(t—n) Z p(t—n) Z p(t—n) Z p(t—n) z p(t—n)
AP measures n=0 n=0 n=0 n=0 n=0 n=0

4 4 8 12 24 96

Difference POl =) i) 0 (o) ) (i) ) e,
AP measures i=1 i=4 i=8 i=12 i=24 i=96
Weather W)l (), w141, w4,
measures i=0 i=4 i=4,8 i=4,812 i=16,20,24  i=8892,96
Future
AP forecasts () PG 18 pU+12) 24 H(+96)

(output variable)

Next AP forecast

Current .
and past 3 o _ Next AP forecast

AP values

Average
of past
AP values

Next AP forecast
LR

Next AP
final
forecast

Difference

between Next AP forecast
current and SVR
past
AP values
 _ Next AP forecast

Current values
and future
predictions of
weather
characteristics

RF
Next AP forecast

SR

Figure 5.1.3: Overview of the proposed model ensemble. Its application in mixed load forecasting
comprises a series of steps, i.e. raw data acquisition, data preprocessing, collection of input
variables, splitting of the dataset in a training and a testing subset, training of submodels, generation
of the next AP forecast by each submodel, weighting of the individual predictions, and, lastly,
calculation of the next AP final forecast.

a resampling step also took place, where each sample was defined as an average of 15 one-
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minute measurements.

The task of input variable selection is closely related to the prediction horizon. All models
developed in the context of this study are considered autoregressive with exogenous
variables, as they use inputs that consist of previous values of the output and weather data.
A set of inputs was initially constructed for each prediction horizon based on the literature.
Subsequently, the contribution of these variables to the prediction accuracy improvement
was examined by trial and error, sometimes leading to shorter input sets for some of the
horizons. Alternatively, other approaches, such as gradient boosting decision tree and
Pearson correlation coefficient [111], attention mechanism [112], or Exploratory Data
Analysis [113], are considered to have an effective contribution during input features
reduction and selection. However, it is important to note that for each horizon, inputs remain

the same for all machine-learning methods used in the present study.

The selected input variables which all models accept could be divided into 4 categories, as
described in Table 5.1.1, namely (a) current and past AP values, (b) difference between
current and past AP values, (c) average of past AP values, and (d) weather measurements.
It has to be noted that p® values contain the current and past, average and difference
measures of the AP values, p**9) is the output, i.e., the mixed power load s 15-minute
intervals ahead, whereas w® components contain the respective weather-related inputs of

cloud coverage, wind speed, humidity, and temperature, respectively.

Once the preprocessing stage has been completed and input variables have been selected,
the dataset was partitioned in a yearly manner in order to select the training datasets. At this
point, an important consideration should be made. As mentioned in the introductory section,
the load time series consists of a load and generation component. The statistical properties
of both of these components are not static in relation to time, especially on a long-term
scale. The network physically expands, incorporating more consumers as well as RES
generators, each with different load and generation profiles, respectively. Therefore, it
makes sense to select training datasets as close to the actual prediction interval as possible.
Since the available data concern two successive years, the data corresponding to 2017 were
selected as the training subset, and the data corresponding to 2018 were selected as the
testing dataset. A point worth mentioning is that no permutation step is taking place before

training. This means that the data used for testing are considered completely unseen for the
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proposed model, yielding a more reliable forecasting model. Due to confidentiality reasons,
the real and predicted mixed load values have been normalized in order to be presented.
Finally, it should be noted that models that require a validation step during training, namely
models based on MLP and RBF NNs, do so using 10-fold cross-validation, while in the
case of models that require multiple training runs for each training seed, the best-performing
model on the validation data is kept. An overview of the implementation of the proposed
model is provided in Figure 6, which illustrates, in the form of a block diagram, the entire
sequence of steps that take place, starting from the acquisition of the raw AP data from the
substation to the derivation of the final forecasts. It has to be highlighted that this figure is

generic and does not refer to a particular prediction horizon.

At this point, it should be mentioned that in order to evaluate the accuracy of the proposed
method, it was considered appropriate to compare it with a model ensemble from the
literature. To be more specific, a method proposed for load forecasting based on an
ensemble of multiple MLP neural networks is employed [104]. Consequently, following
the experimental protocol described in this work, a number of feed-forward NNs, with a
single hidden layer, were trained on 14 different random initializations of the weights. For
each initialization, the number of neurons in the hidden layer ranged from 3 to 50. The
hyperbolic tangent sigmoid function was selected as the transfer function among the NNs’
layers, while all NNs were trained using the resilient backpropagation algorithm. The neural
networks were arranged in ascending order with respect to the MAPE error on a common
validation set, which, in this case, was defined as 20% of the training dataset. Then, the
networks corresponding to the first 5 MAPE errors were selected, and the final forecasts

were obtained by averaging the individual forecasts of these 5 models.

5.1.4  Results & discussion

In this section, the results of extensive simulations of the proposed model are presented. A
set of scatterplots is shown in fig. 5.1.4, representing the actual versus the predicted values
mixed load values for 1, 2, 3, 6, and 24-h-ahead horizons, respectively, through the whole
testing dataset. The diagonal line implies a complete match between real values and

forecasts. The axes are presented in units of normalized AP.
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Figure 5.1.4 Scatterplots of actual versus predicted mixed load for (a) 15-min, (b) 1-h, (c¢) 2-h, (d)
3-L, (e) 6-h, and (f) 24-h ahead prediction. The predicted values residing on the diagonal line are
identical to the actual values. Each mark refers to a data point and shows the deviation of its
predicted value from its actual value.

Additional results are provided in Table 5.1.2, which contains information about the
forecasting performance of the proposed method in comparison to the individual machine-
learning methods comprising the model pool. In order to distinguish the results for different
prediction time horizons, the table is divided into sections. The accuracy of model
predictions is evaluated through the correlation coefficient (R?), RMSE and MAE,
considering them as representative and efficient criteria [114]. For comparative reasons, the
table also contains the values of the indices for all submodels, as well as their percentage

of ranking in the first place. This quantity, labeled as “Rank 1” in Table 5.1.2, denotes how
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Table 5.1.2: Performance of the proposed multi-model scheme, the MLP model ensemble of [104],
and individual machine-learning models for each prediction horizon. The values of MAE, RMSE,
and R?, achieved by each model, are presented, as well as the percentage that each submodel
achieved the lowest MAE among all submodels.

Method R2 MAE RMSE Rank1
15 min
Proposed 0.98613 0.26120 0.4703 -
MLP ensemble 0.9852 0.2760 0.4869 -
MLP 0.98568 0.26936 0.4782 19.25%
RBF 0.98574 0.27095 0.4773 19.94%
LR 0.98562 0.26700 0.4793 10.49%
SVR 0.98541 0.26931 0.4829 14.23%
RF 0.98373 0.29531 0.5071 24.27%
SR 0.98561 0.26715 0.4795 11.82%
1h
Proposed 0.93793 0.60224 0.9946 -
MLP ensemble 0.9344 0.6330 1.0240 -
MLP 0.91697 0.66794 1.1500 21.56%
RBF 0.93253 0.64235 1.0374 20.77%
LR 0.93168 0.64174 1.0438 8.91%
SVR 0.93008 0.65376 1.0562 10.70%
RF 0.92912 0.67311 1.0614 20.79%
SR 0.93045 0.64079 1.0532 17.27%
2h
Proposed 0.88147 0.88279 1.3767 -
MLP ensemble 0.8838 0.8965 1.3721 -
MLP 0.84455 0.99479 1.5854 20.32%
RBF 0.87052 0.96255 1.4472 18.32%
LR 0.87233 0.93356 1.4377 11.20%
SVR 0.86949 0.93765 1.4537 11.38%
RF 0.86653 0.96596 1.4675 22.94%
SR 0.86953 0.93189 1.4534 15.92%
3h
Proposed 0.84143 1.0599 1.5871 -
MLP ensemble 0.8359 1.0859 1.6192 -
MLP 0.78486 1.2504 1.8538 18.08%
RBF 0.82483 1.1367 1.6727 20.14%
LR 0.82241 1.1270 1.6843 8.74%
SVR 0.81914 1.1512 1.6997 11.82%
RF 0.81895 1.1391 1.7006 23.67%
SR 0.81893 1.1229 1.7007 17.54%
6h
Proposed 0.83251 1.1144 1.6462 -
MLP ensemble 0.8272 1.1951 1.6888 -
MLP 0.83036 1.1758 1.6733 20.77%
RBF 0.80289 1.2848 1.8037 21.31%
LR 0.77800 1.3308 1.9141 10.34%
SVR 0.75400 1.4300 2.0150 16.42%
RF 0.81341 1.2119 1.7549 21.08%
SR 0.77373 1.3413 1.9325 10.08%
24 h
Proposed 0.78474 1.1835 1.8174 -
MLP ensemble 0.7827 1.2372 1.8468 -
MLP 0.78073 1.2313 1.8553 21.93%
RBF 0.73576 14119 2.0367 21.83%
LR 0.75712 1.3188 1.9526 11.16%
SVR 0.73669 1.3031 2.0331 16.82%
RF 0.76487 1.2694 1.9212 16.71%
SR 0.74761 1.3419 1.9905 11.56%

many times each submodel scored the 1st rank among all submodels, i.e., achieved the
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Figure 5.1.5: Pie charts depicting the ranking of the submodels included in the proposed model
ensemble for (a) 15-min, (b) 1-h, (¢) 2-h, (d) 3-h, (e) 6-h, and (f) 24-h ahead prediction. Each pie
chart refers to a ranking position and shows the percentage that each submodel was ranked in that
position. Each submodel is represented by a different color and pattern.

lowest MAE.

The aforementioned form of ranking of the submodels can be seen graphically in fig. 5.1.5.

More specifically, each subfigure 5.1.5a—f refers to 15 min, 1, 2, 3, 6, and 24-h prediction

Myron Papadimitrakis



horizons, respectively. Each one of these subfigures contains 6 pie charts, denoting 1st to

6th rank for the models. To be more specific, each pie chart shows the percentages

corresponding to how many times each submodel ranked in the respective place, according

to its weighted MAE. For example, the 2nd pie of Figure 5.1.5a implies that for 15 min-
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Figure 5.1.6: Results for a randomly selected 12-h window for (a) 15-min, (b) 1-h, (¢) 2-h, (d) 3-
h, (e) 6-h, and (f) 24-h ahead predictions. Subgraphs labeled 1 depict actual and predicted value
results, whereas subgraphs labeled 2 depict the best submodel performance results.
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ahead forecasting, the MLP submodel ranked in the 2nd place among all models with a
percentage of 17%, the SR submodel with a percentage of 21%, etc. Finally, analytical
graphs are provided for each prediction time horizon, with Figure 5.1.6al—f1 to depict
forecasts of 15 min, 1, 2, 3, 6, and 24 h-ahead, respectively, where a randomly chosen 12-
h time window (from 09:00 to 21:00) of real AP values and the respective predictions are
shown for an arbitrarily chosen day belonging to the testing subset (the same day and the
same window is used for all horizons). These graphs are accompanied by Figure 5.1.6a2—
2, which indicates which submodel has the largest weight for every predicted data point

using a bar plot.

At this point, it should be pointed out that providing accurate predictions is indeed a
challenging task due to both grid and data-related reasons. First, the system’s expandability
can be a limiting factor for the accuracy of future forecasts. At the same time, this is
reinforced by inherent characteristics of the load time series, such as non-linearity and
uncertainty. In the face of these challenges, the proposed method seems to be quite
effective, providing reliable predictions. From fig. 5.1.4a—f, conclusions are drawn about
the quality of predictions. When the prediction time horizon is too short (fig. 5.1.4a), the
forecast error is distributed close to the diagonal line, which implies quite accurate
predictions. With increasing prediction horizon, the forecasts become less accurate (fig.
5.1.4b—f), as obviously, the pairs of real and predicted values are scattered further from the

ideal line.

Looking at Table 5.1.2, it is observed that the proposed model outmatches all individual
submodels, and the competitive MLP model ensemble in terms of MAE, and R? and RMSE.
Moreover, this conclusion applies to all prediction time horizons. As the prediction horizon
gets longer, the forecasting error increases, which is absolutely reasonable. The only
exceptions are the R> and RMSE values obtained by the MLP model ensemble for 2 h
prediction horizon, which slightly exceeds those of the proposed model. However, these
differences cannot be considered significant as they are marginal, while on the other hand,
the corresponding value of the MAE index clearly favors the proposed method. A result
worth mentioning is the improvement of the multi-model performance over the current best
sub-model that occurs in most cases while the horizon is getting longer. More specifically,
the reduction of MAE that the proposed approach achieves over the best of the individual
models ranges from 0.03411 to 0.3156. Such an improvement in performance could be

partly explained by the occurrence of uncertainty in the load time series. As the prediction
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horizon is getting longer, the level of uncertainty is also increased, which is better addressed

by the ensemble model than each individual submodel alone.

Regarding the efficiency of the individual models of the pool, the results of MAE, RMSE,
and R? show that there is not just one model to prevail over the others in all cases. For the
shorter prediction horizons and, more specifically, up to 3 h, LR and SR appear to achieve
marginally smaller forecasting errors than their non-linear counterparts. Although the non-
linearities are an intrinsic characteristic of mixed load [115], this behavior becomes more
apparent as the prediction horizon is getting longer. As a result, models which are based on
LR are able to provide robust results for very short-term forecasts. On the other hand, one
major advantage of neural networks is their capability of modelling non-linear systems. An
important observation is that neural networks appear to perform better for longer prediction
horizons, and this can be attributed to the fact that, as the prediction horizon is getting
longer, the non-linear properties of the load are becoming more dominant. Therefore, when
predictions for longer horizons are required, MLP neural networks take the lead. However,
the same does not apply to RBF networks. As stated above, in order for RBF networks to
perform well, dense and suitable data are required. Consequently, their performance is
reduced for 24-h prediction horizons, where the input information is poorer due to the
resampling process. Although the remaining models of the pool, SVR and RF networks,
present a moderate predictive capability, they contribute positively to the overall
performance of the proposed model. This conclusion confirms the need to use multiple

models in order to enhance the reliability of load predictions.

Several quite interesting conclusions can also be drawn from the pie charts in Figure 5.1.5.
Each percentage in the pies represents the degree to which the respective model yielded the
highest weight or equivalently the lowest MAE. The highest percentages of the first rank
(above 18%) belong to MLP, RBF, and RF, and this applies for all horizons except that of
24 h, where SVR takes the place of RF. RF, in particular, scores lower MAE most of the
time when the prediction horizon does not exceed 3 h. Beyond that point, RBF neural
networks outperform the rest of the submodels. An interesting observation is that the
aforementioned models have equally high percentages in the sixth rank. Thus, these
methods either achieve very good or poor performance. This observation is quite significant
and strongly enhances the usefulness and effectiveness of our proposed method. The

percentages of the rest of the pool models are, in most cases, divided into the intermediate
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rankings, with the exception of the high percentage of SVR in the sixth rank for the 6-h

horizon.

5.1.5  Conclusions and Future Prospects

In this section, a multi-model ensemble prediction system was presented for the AP
prediction for various horizons. It should be noted here that a limitation of the present study
is that it did not involve predictions for long-term horizons. Although investigating longer
prediction horizons is outside the scope of this work, the proposed model ensemble could
serve as the basis for designing such a tool. On the other hand, it is quite probable that a
different set of input variables, presenting higher correlation with the long-term evolution
of the mixed load would be needed in this case. Another promising direction for future
research towards this direction includes the integration of graph neural networks, which
have been proved to be a promising candidate due to their ability to successfully interpret

spatiotemporal features of the input data.

Driven by the increased performance of the proposed methodology in mixed load
forecasting, its application could be extended to other critical sectors of the smart grid, such
as forecasting the electricity price and the production from RES, in order to more efficiently
schedule conventional sources. Arguably, the most important smart grid operational aspect
that the proposed load prediction scheme can be incorporated in is the real-time power
dispatch, since accurate short-term load predictions are paramount for the formulation of

the grid’s optimal power flow problem.
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5.2 Optimal Power Flow using Community-detection-based Cooperative

Particle Swarm Optimization

The penetration level of photovoltaic (PV) systems is set to increase in the following years
and already distribution networks (DNs) are straining to overcome the adverse voltage
effects caused by reverse power flows and intermittent generation phenomena. Moreover,
regular voltage optimization approaches that employ PV inverters as control devices,

cannot deal effectively with the escalating dimensionality of the problem.

This section introduces a reactive power optimization method for PV-heavy DNs based on
cooperative particle swarm optimization (PSO). The proposed approach makes use of
multiple swarms, each swarm containing a group of design variables that are interrelated
with respect to the optimization objective; a community detection algorithm is employed to
assign the design variables to the different swarms, by identifying voltage-decoupled zones
of the grid. The different swarms cooperate by exchanging information in order to better
explore the search space, while still solving the optimization problem as a whole. The
feasibility and effectiveness of the proposed scheme are demonstrated through comparisons
with other approaches for various load and generation scenarios on the IEEE 123-bus

distribution system.

5.2.1 Introduction to power dispatch in distribution grids

So far, reactive power optimization strategies using traditional voltage control devices have
proven inadequate to address these concerns [116]. In the past, PV inverters were prohibited
from contributing to reactive power compensation (RPC), constantly operating on a unity
power factor and dealing with any overvoltage issues only by active power curtailment
(APC). Indeed, even though this was the established policy for European DSOs [117], its
effectiveness is challenged [118]: traditional control means, usually implemented on a
substation level, could not address local voltage deteriorations caused by high PV
penetration distributed over the grid [119]. Today, PV inverters have emerged as suitable
control devices, as indicated by various research works [120], [121], and as reflected by the
increasing confidence of DSOs in including them in the optimal reactive power flow

(ORPF) problem formulation [117].

Traditionally, the ORPF problem has been addressed using standard mathematical
optimization methods, such as gradient-based and interior point methods [11]. Since these
methods came with certain disadvantages (the main one being their inability to handle non-

convexity), research interest turned towards metaheuristic methods, which were inherently
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better equipped for the problem at hand: firstly, their stochastic nature allowed them to
overcome local minima, and secondly, their utilization of multiple solution vectors enabled
augmented search domain exploration capabilities. One of the most important
metaheuristics is particle swarm optimization (PSO), which makes use of a population of
potential solutions represented by particles that exchange information in the context of the
problem’s search space. The PSO method was first applied in the context of OPF in [68],
and since then multiple of its variants have been developed that consider technical,
economic and environmental optimization objectives [31], [122]. Still, the ever-increasing
inclusion of PV inverters in the ORPF calculations has led to a stark increase in the number
of design variables to optimize; unfortunately, this surge in the dimensionality of the
optimization problem severely compromises the exploration and exploitation capabilities

of metaheuristic methods, including PSO [123].

To cope with the problem of increasing dimensionality, latest research is mainly oriented
towards more sophisticated, network partition-based approaches that seek to utilize the
underlying topological structure of the grid [124]. The primary motivation has been the
construction of distributed control schemes, requiring the network to be broken up into
loosely coupled zones: [120] applies clustering to formulate an alternating direction method
of multipliers algorithm for the ORPF of a DN, while use grid partitioning methods in order
to identify islands in active distribution networks. A secondary motivation for partition-
based approaches has been the need to reformulate the original problem into tractable and
individually solvable optimization problems, for decentralized schemes [125] or two-level
control strategies [126], [127]. The success of this reformulation originates from the basis
of network partitioning: if the partitions are created in terms of bus voltage sensitivity with
respect to control variable perturbations, then the voltage optimization objective of the
resulting zone-based problems can be pursued in an independent manner. Such an example
is shown in [121], where the voltage profile of each voltage-decoupled zone of the DN is
successfully optimized using a PSO algorithm, by toggling the setpoints of PV inverters in

the zone independently.

On the other hand, decentralized optimization schemes fail to take into account possible
interactions between zones, as complete voltage decoupling is only an ideal assumption.
There exist though a certain class of metaheuristic optimization methods that can exploit
the same premise as decentralized schemes, i.e. grouping the design variables based on the
effect they collectively have on the objective function, while still solving a unified

optimization problem in a centralized way; these methods are called “cooperative” and have
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proven very effective in tackling high dimensional problems. The success of the
aforementioned techniques in complex multimodal optimization has been highlighted in
many works [39], [40] involving diverse optimization problems [128]. To the author’s best

knowledge though, no application of cooperative optimization methods on ORPF exists [1].

In this Section, a novel cooperative PSO (CPSO) framework is presented for the
optimization and control of PV-heavy DNs. The proposed scheme employs multiple
swarms to optimize different zones of the DN, where each zone contains design variables
that are interrelated with respect to the optimization objective. Furthermore, in order to
assign efficiently the design variables to the different swarms, a technique based on the
Girvan-Newman community detection algorithm [129] is proposed. It should be noted that
grouping the design variables to different zones/swarms is used only to facilitate the
algorithm to better explore the search space; nevertheless, the objective function takes into
account the whole grid, solving the optimization problem in a centralized way. Thus, a main
advantage of the proposed scheme is that it retains its effectiveness even in networks with
weakly-decoupled zones (such as networks with a moderate degree of meshing [125]), in
contrast to decentralized voltage optimization schemes. Moreover, the CPSO algorithm
exhibits robust characteristics, as it maintains a high degree of exploration inherent in
population-based algorithms, while also employing a zone-based exploitation capability of
candidate solutions that is necessary in order to overcome the challenges present in DNs.
These characteristics allow it to efficiently cope with the high rate of penetration of PV
systems that increases the optimization problem dimensionality. The proposed method is
assessed for voltage deviation minimization, as well as the minimization of real power

losses for an IEEE distribution grid, under various load and generation profiles.

5.2.2  Optimal Power Flow Problem Statement

The primary task of OPRF is to ensure that the bus voltage magnitudes stay within
operational limits. This is especially needed in PV-heavy distribution grids where cloud
coverage can obscure specific grid areas, thus rendering traditional control means with a
grid-wide effect unsuitable. The communication infrastructure of the smart grid paradigm
has allowed the inclusion of PV inverters as reactive power control devices: by tweaking
the power factor of a PV inverter, an almost real-time dispatch of reactive power at the point

of common coupling is allowed, resulting in increased control versatility. Fig. 5.2.1 shows
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the inverter capability curve; the inverter’s power rating, coupled with the APC that is

applied on the PV’s generated power, denote its operating bounds in PQ space.

The formulation of the voltage deviation minimization problem for a PV-heavy smart

distribution grid with controllable inverters is described below:

min f(u) (5.2.1a)
ueRu
st Pg — Pp, = V; 22w Vi(Gyj costy; + By sindy;) (5.2.1b)
Npus
QGi — QDi = Vi Z . V](GU SinHU + Bl] COSHL']') (521C)
J:
Vlower = Vi = Vupper (5.2.1(1)
APC, <0.8 (5.2.1¢)
—90° < @py, < 90° (5.2.19)
Qk,min < Qk < Qk,max (5'2-1g)
where:
Ppy, APCy, ilEK
Pg, =1 "k 522
Gi { 0, ie¢K (5.2.22)
— Qk' [EK
Qg, = { 0. iek (5.2.2b)
2
Qumin = —\/S,E — (Ppy, APCy) (5.2.2¢)
2
Qkmax = JSi — (Ppy, APCy) (5.2.2d)

where Npy is the number of buses in the network and Py, Q¢,, Pp,, Qp, are the active and
reactive power generation and demand in each bus i, respectively; B;; and G;; are the
susceptance and conductance of the branch connecting the nodes i and j, respectively, while
V; and V; are their corresponding voltage magnitudes; APCy, @py, and Sy are the APC
percentages, the power factor angle, and the nominal power rating of the ks inverter,

respectively; Ppy, is the generated active power of the ki PV panel, while Qi is the

A

Figure 5.2.1: Reactive capability curve of a PV inverter in PQ space.
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generated reactive power of the ks inverter. Lastly, K is the set of bus numbers where PV

installations are placed, and has a length of Npy.

The objective f(u) of the optimization problem is, in the case of voltage deviation
minimization (VDM):

Npus

fw) = Z 11—V (5.2.3)
i=1

where the aim is to minimize the sum of absolute bus voltage magnitude deviations V; from
the nominal value of / p.u, for every bus i. In the case of real power losses minimization
(RPLM):

Niines

HOEI NN (5.2.4)
k=1

where I}, is the magnitude of the electrical current through the resistance Rj, of line k. The
design variable vector u contains the APC and reactive power injection of each PV

installation:

u = [Q1,APCy,Q;,APC,, ... Qy,,, APCy,, ] (5.2.5)
The optimization problem constraints consist of the power flow equations (5.2.1b,¢c), and
the network operational constraints (5.2.1d-g). In this work, Vj,yer and Vyper are set as
0.95, 1.05 and 0.98, 1.02 for the VDM and RPLM objectives, respectively; tighter bounds
must be used in the case of RPLM in order to ensure voltage quality, since the voltage
deviations are not minimized explicitly. In any case, operational constraint (5.2.1d) exists
in order to make sure that no single bus voltage magnitude enters an unsafe operation zone.
Next, APC percent is bounded to 80% in order to promote RES penetration in the grid. It is

assumed that the @ py, of each inverter is unbounded, because the consideration of harmonic

distortion effects of high-power factor angles is beyond the scope of this research. To
summarize, Problem (5.2.1) is a non-convex constrained optimization problem belonging
to the NP-hard class of problems. The inclusion of a realistic modeling of the inverter’s
RPC capability as a function of its APC (as opposed to treating it as a bounded variable)
adds to the total constraint complexity, while the fairly large number of design variables (2

per PV installation) contribute to high dimensionality.
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5.2.3 Methodology
5.2.3.1 Distribution network partitioning

As described earlier, there exist multiple advantages in partitioning a large distribution grid
in terms of facilitating the solution of the optimization problem. Apart from practical
motivations such as the decentralization of grid control, the partitioning of the optimization
problem into smaller ones can alleviate the high problem dimensionality that is nowadays
inherent in grids with a high penetration of distributed generation. More importantly for
this work, cooperative optimization schemes can especially exploit problem partitioning in

order to produce higher-quality solutions.

Since the objective of interest is to minimize the voltage deviations of the grid by optimizing
the active and reactive power of distributed generators, one should seek to partition the
aforementioned grid on a voltage sensitivity basis [124]. In particular, by accounting for
the underlying dynamics of the network, areas that are loosely-coupled in terms of voltage
fluctuation incurred by a reactive, or active power injection on a specific bus can be
identified. Considering only the first-order perturbations on the original power flow
equations (5.2.1b,c), a linearized set of equations occur:

[Aa] Sap SaQ] [jg

avl = Sy, Svo

(5.2.6)

Here, Aa € R¥Nbus is the vector of incremental changes of the voltage angle, AV €
RNbus is the vector of incremental changes of the voltage magnitude, and AP €
R*Nous, AQ € R*Nbus are the perturbations of the reactive and active power, respectively.
The relationship between reactive/active power perturbations and bus voltage magnitudes
and angles is represented by sensitivity matrices; S,p € RNVous*Nous | § , € RNbus*Nbus,
Syp € RNous*Nbus and Sy, € RVbus*Nbus are the voltage angle and magnitude sensitivity
matrices, with regards to active and reactive power, respectively. Keeping in mind the
original motivation for grid partitioning, the Sy and Sy, sensitivity matrices are of interest,
since their physical interpretation refers to the propagation of voltage magnitude variations
through the distribution grid, due to active and reactive power injections at a bus. For

example, the element i, j of the Sy, sensitivity matrix represents the sensitivity of the i-th
bus voltage magnitude to the injected reactive power at bus ;.
In order to yield the optimal grid partitions, one needs to formulate a community detection

problem [130]. Girvan and Newman proposed an algorithm for community detection in

complex networks that does not require a predetermined number of communities (hereby
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referred to as “partitions™) [129]. The algorithm accepts a weighted adjacency matrix (or
edge-weight matrix) that corresponds to the undirected graph structure of the electrical grid

and generates the optimal partitions C* = {C{‘ ,C5 o, C ,’QC} based on a modularity index p:

Npus [Nbus

1 kik; ..
pzﬁz Z (Wij— 2m]>0(1,]) (5.2.7a)

J
m= (1/2)ZZWU, k; = zAij (5.2.7b)
i Jj

Here, W;; is the weighted adjacency matrix, m is the total average edge weight matrix and

k; is the average weight of all edges connected to the i node. 6(i,j) is a membership

function for nodes belonging in the same partition Cy, so that:

. 1, €Ck ..
oan={y ec iriec (52.8)

Since the optimal partitions are sought on a voltage magnitude sensitivity basis, the
weighted adjacency matrix W;; € RNous*Nbus js:

S S

Wij = (@) o Ajj (5.2.9)
Here, o denotes element-by-element multiplication, and 4;; is the graph’s adjacency matrix
(A;; = 1ifan edge from node i to j exists, A;; = 0 if not). $yp, Sy, are symmetric versions
of the Syp and Sy, matrices, created by averaging between the original matrices and their
own transposition:
Syp + Svp’ s Svo+Syg
2 ve 2

The motivation behind this step is the near-unity R/X ratio of distribution grids [131],

(5.2.10)

S j—
Sip =

which corresponds to equal bus voltage sensitivity to active and reactive power injections.
The result is a symmetric weighted adjacency matrix W;; that weighs the network buses in
terms of voltage sensitivity to reactive and active power perturbations, with higher weight
corresponding to a higher degree of voltage coupling [121]. In the end, the Girvan-Newman
algorithm [129] can be applied to the community detection problem, in order to yield the
optimal partitions. These partitions will contain buses that are highly coupled among

themselves with respect to voltage fluctuations.

5.2.3.2 Cooperative PSO for partitioned electrical networks
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The concept of cooperation between candidate solutions of a population has been applied
in various metaheuristics, such as evolutionary algorithms and PSO [132], [133].
Specifically for the PSO category, the first cooperative instance that occurred was the
CPSO-S framework [134], which splits a solution vector of n parts into exactly n 1-D
particles; a generalized version of this approach is introduced in [135], where the solution
vector is split into N, groups with N. < n, where 7 is the length of the solution vector. It is
obvious that a prerequisite for the implementation of cooperative approaches is the

assortment of the n design variables in N. groups.

Therefore, since design variables are grouped on the basis of interrelation with respect to
the optimization objective (that is, depending on whether their perturbations have a similar
system-wide effect), it becomes apparent that for the smart grid voltage optimization
problem, control devices that reside in a highly-coupled network zone should be grouped
together. By utilizing information about the underlying electrical dynamics of the DN, the
partitioning algorithm described in section 2.2 yields the voltage-decoupled zones C*,

which in turn indicate the swarms Py, k&=1,2,.., N¢, where N, is the total number of swarms:

Pi ={Qu,APCy, Q2 APC;, .., Qu,, APCy, } (5.2.11)
Here, Np, is the total number of PV installations that reside in network partition C; (it is
assumed that Np, > 1 for every C;'). For each swarm Py, the particle position Py x;;(t) and
velocity P, v;;(t) are updated according to:

Pevi(t + 1) = wPevy(t + 1) + ¢y1y i (O [Py (8) — Pexij (0)]

+ ¢o7,i (D[P () — P (0)]
Pex;j(t +1) = Pexy(6) + Py, (6 + 1) (5.2.12b)

(5.2.12a)

Where Py y;;(t) stands for the best personal position of particle i, in dimension j for swarm
k at iteration ¢ and P, ¥;(t) denotes the global best position vector of particle i for swarm &
at iteration #; 1y ; (t) and 1, ; (t) are randomly sampled numbers from a uniform distribution
in the range [0 1], while c;, ¢, denote the acceleration coefficients and w the inertia
coefficient. In order to control the exploration-exploitation trade-off, a velocity clamping
constant PV, 1s employed to regulate the particle positions in the range

[_kamax kamax]-

As each swarm P, contains a distinctive part of the original u vector (14), the right
cooperation between the swarms’ agents is essential in order to calculate the fitness function

for the overall optimization problem. This task is feasible by utilizing a context vector up,
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formed by linking each of the particle positions of swarm P with the global best positions

of the remaining swarms:

Up, = [P1 9, e, Pc1 9, PiXiy Piss 9 Py, 9| (5.2.13)

Algorithm 5.2.1 Cooperative particle swarm algorithm
Input: Q¢, Qp, P;, Pp, V : Network parameters
s: Swarm size population
Iter: Maximum number of iterations
C1, 2 W, Py, PrVpax: PSO configuration parameters
Output: u optimized PV installation control vector
1 Initialize the particles Py x; for all swarms k at random positions
2 Calculate fitness f (upk) and set global bests for all swarms P, y(0), &=1,2,..., N.
3: For =1: Iter:
4: For k=1: N,
5
6
8

If stagnation criterion is met for kth swarm:
reset particles Py x;(t)

: For =1: s:
9: Calculate fitness f (upk) and P, y;(t)
11: Calculate global best P, 9(t) for swarm k
12: Fori=l:s:
13: For j=1: Np,:
14: Update velocity P,v;;(t + 1)
15: Update particle's position Pyx;;(t + 1)

This means that despite the fact that the network is partitioned into several distinct sub-
swarms, the fitness function evaluation for each swarm’s individual particle is estimated

using the whole design vector. After forming the context vector up,, the fitness function

evaluation f (u p k) takes place by utilizing the objective function f with respect to swarm .

A problem often encountered by PSO-based schemes is stagnation, which is related to the
problem of particles being trapped in suboptimal solutions during the optimization process.
This phenomenon limits the space exploration capabilities of the particles and is alleviated
by implementing a resetting criterion which is described with detail in [128]. This is
expected to increase the effectiveness of the method, since Problem (5.2.1) contains
multiple local minima, when applied either for RPLM or VDM. The pseudocode for the
proposed CPSO framework is given in Algorithm 5.2.1.

The cooperative PSO approach presents three important features with respect to the ORPF

problem. First, the fitness function is evaluated after updating each part of the solution
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vector that corresponds to the respective swarm particles, resulting in finer-grained credit
assignment. This addresses the classic “two steps forward - one step back” problem often
encountered by PSO schemes, where a solution vector update improves one part of the
solution vector but impairs another. This phenomenon is especially evident for the case of
a network with voltage decoupled zones, where a part of a solution vector that corresponds
to a specific zone may converge faster than others. The second advantage is related to the
increased number of the combinations of different individuals that correspond to different
swarms, boosting in this way the diversity of the solution context vector. Lastly, the third
advantage refers to the robustness of the algorithm, even when applied in networks with
weakly voltage-decoupled zones; CPSO consolidates the partitioned design variables in one

design vector at the end of every iteration, thus taking into account any inter-zonal effects.

5.2.4  Results
5.24.1 Setup

The IEEE 123-bus distribution system [136] is elected as a suitable testbed for the
simulation studies. Its large scale can accommodate a high number of PV installations,
which warrants the application of cooperative optimization methods. Moreover, it is a well-
studied case in the field of zone-based voltage control, therefore providing a reference point
for discussion [120], [121]. The original IEEE 123-bus is an unbalanced system, containing
multiple voltage regulators as well as a tap transformer at the slack bus. For this study,

transformer and regulator taps are considered fixed; this way, only the PV inverter

Figure 5.2.2: The partitioned IEEE 123 network. Red nodes denote PV installations.
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capability is considered for the reactive power optimization. Lastly, the bus numbering is
rearranged for clarity. The modified IEEE 123-bus network is shown in fig 5.2.2; here,
colored areas denote the network partitions as obtained by the application of the community
detection algorithm described in section 2.2. Next, 20 PV installations are placed
throughout the grid, spanning capacities from 140-280 kW. Each inverter’s nominal power
1s +10% of its respective installed PV capacity, as is usual practice. The inverters can curtail

the generated PV power and control the power factor of the injected power in the grid.

To simulate different DN states, three different scenarios are created. The first two are
snapshot scenarios (i.e., static), and are used in order to infer statistical conclusions for the
performance of the proposed method. To be more specific, scenario 1 is used to assess
performance for the VDM objective and represents the phenomenon of partial cloudiness,
resulting in severe undervoltage. Scenario 2 is employed to evaluate the performance of the
RPLM objective and assumes full solar irradiance, resulting in overvoltage in certain buses
of the grid. Scenario 3 is used to demonstrate the applicability of the proposed method, and
refers to the hourly setpoint optimization of PV inverters for a full day; here, both VDM
and RPLM objectives are addressed. PV system specifications and information for
scenarios 1 and 2 are shown in Tables 5.2.1, 5.2.2. The load scaling factor, as well as the
solar irradiation percent for each network zone corresponding to scenario 3 are shown in
fig. 5.2.3. In order to illustrate the effectiveness of the proposed method, two competing
schemes are introduced: the first scheme, based on [121] formulates a decentralized
optimization problem for each network partition, and solves each problem independently
using a PSO algorithm with adaptive weights (the scheme is hereby referred to as “dPSO”).
The second scheme applies a standard centralized PSO algorithm [137] to the original
problem. The proposed method, as well as the two competing schemes, are contrasted with
the network’s default state, where all PV inverters operate at unity power factor and zero
APC. The tuning parameters for each one of the competing schemes are shown in Table
5.2.3; they were selected based on indicative values found in the literature [1], [123], [138],
in conjunction with a trial-and-error procedure. To be more specific, exponentially

decreasing inertia was selected for the proposed CPSO method, while an adaptive inertia
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Figure 5.2.3: Scenario 3 load and solar irradiance profile for each one of the
C; network partitions. This scenario represents a day with partial cloudiness.

technique [137] was found to produce the best results for standard PSO and dPSO. Velocity
clamping constants were selected to a value equal to 20% of the range of each design

variable. Finally, each method uses the same value for the acceleration coefficients ¢; and

Table 5.2.1 Most common optimization objectives

PV Power PV Power
# Bus Capacity  rating Zone | # Bus Capacity rating Zone
1 6 140 155 Cy 11 100 280 310 Cs
2 10 140 155 Cy 12 119 280 310 Cs
3 117 140 155 Cy 13 109 280 310 Cs
4 27 180 200 C, 14 111 280 310 Cs
5 26 180 200 C, 15 78 280 310 Cy
6 41 180 200 C, 16 88 280 310 Cy
7 45 180 200 C, 17 92 280 310 Cy
8 50 180 200 C, 18 82 280 310 Cy
9 55 140 155 Cy 19 21 180 200 C,
10 68 280 310 C; |20 63 280 310 Cs
Table 5.2.2 Snapshot Scenario information
. Slack bus nominal Average irradiance Load multiplier per
Scenario
voltage (p.u.) percent per zone zone
Ci, C, (3 c, |4 C, (C3 (4
1 1.00 100 80 50 50 1 1 1 1
1.02 100 100 100 100 |1.6 1 04 04

Table 5.2.3 Tuning parameters for all methods

Swarm Stall Coefficients Function Inertia Inertia
Scheme . . .
size iterations c1, C2 Tolerance type range
CPSO 30 40 1.2 107 Exponential [1, 0.75]
PSO 30 40 1.49 10 Adaptive [1.1,0.1]
dPSO 30 40 1.49 10 Adaptive [1.1,0.1]
c.
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5.2.4.2 Results & Discussion

Since the three competing schemes are based on stochastic search, multiple runs are needed
to properly assess their performance. To be more specific, a total number of 20 runs for
each scenario is performed, starting from different randomly chosen initial particle
positions in each run. In order to reach valid conclusions regarding the statistical superiority
of the proposed scheme, a #-test between CPSO and each one of its rivals has been applied
for scenarios 1-2. The null hypothesis is that the results produced by the two competing
methodologies are generated by populations with the same mean. Tables 5.2.4, 5.2.5 depict
the average and standard deviation values, as well as the best value for the objective
function from the 20 runs, together with the p-value corresponding to the #-test and the
average number of function evaluations of each method for scenarios 1 and 2, respectively;
the voltage profiles for an indicative run of each scenario are shown in Figs. 5.2.4a-4b.
Regarding scenario 1, CPSO achieves 50% and 68% lower average objective value (sum
of voltage deviations) in comparison to PSO and dPSO, respectively. Similar performance
is recorded for scenario 2 where the objective of RPLM (total power losses in MW) is
addressed: a 28% and 76% improvement is achieved over PSO and dPSO, respectively.
The superiority of CPSO is also confirmed when comparing the best runs of each method:
in scenario 1, CPSO achieves a 25% and 64% improvement over PSO and dPSO,
respectively, while in scenario 2, CPSO scores 14% and 77% improvements over PSO and

dPSO, respectively. The statistical significance of these results is established by the #-test
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Table 5.2.4 Scenario 1: Statistical results for VDM objective

Objective value Objective value Best Average
average standard Objective p-value function
deviation value evaluations'
CPSO 0.7006 0.0603 0.6241 - 5260
PSO 1.4192 0.4183 0.8364 1.73E-08 1760
dPSO 2.2109 0.2295 1.7594 1.71E-25 6520

Table 5.2.5 Scenario 2: Statistical results for RPLM objective

Objective value Objective value Best Average
average standard Objective p-value function
deviation value evaluations?
CPSO 0.01035 0.00072 0.00918 - 8520
PSO 0.01395 0.00202 0.01068 2.513E-08 4560
dPSO 0.04307 0.00230 0.04027 5.543E-37 9240

! convergence to the 1% decimal

2 convergence to the 3 decimal

with a confidence interval of over 99.99%, as indicated by the produced p-values. It should
be noted that the proposed method achieves this performance while staying within voltage
magnitude bounds as specified in subsection 5.2.2, in contrast to dPSO which violates the
upper voltage limit on buses 85-98 for some of the runs corresponding to scenario 2, as also
shown in the indicative run of Fig. 5.2.4b. In addition, the superior performance of the
proposed method retains consistency, i.e., the method converges around the same solution
for each different run. This is indicated by the low value of standard deviation for both
scenarios, and is testimony to the increased search space exploitation capabilities inherent
to the CPSO algorithm. Lastly, it should be emphasized that the proposed method achieves
the aforementioned performance improvements with a reasonable computational burden, as
indicated by the number of average objective function evaluations: when compared to
dPSO, CPSO exhibits consistently lower computational requirements in both scenarios.

However, CPSO is surpassed by standard PSO in this aspect; this is to be expected, as CPSO
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Figure 5.2.4: (a) Bus voltages for the VDM objective on scenario 1 (b) Bus voltages for the RPLM
objective on scenario 2
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Figure 5.2.5: Convergence graph for the best runs of scenario 1. Coloured rectangles denote
convergence to the 1% decimal. Note that the convergence curve of dPSO corresponds to the
successive minimization of the four zone-based optimization problems

applies more objective function evaluations per algorithm iteration than PSO, but on the
other hand, it manages to greatly outperform the latter in terms of optimization

performance.

There exist multiple reasons for the superior statistical performance of CPSO in scenarios
1 & 2. As mentioned earlier, standard PSO suffers from the “two steps forward - one step
back” problem and cannot effectively explore the available search space. This is evident
from the convergence curves of the best runs of scenario 1, that are shown in Fig. 5.2.5;
considering the first 30 iterations, CPSO achieves a rapid improvement in objective value,
in contrast to PSO, which appears to stall multiple times over the same period. Moreover,
CPSO achieves superior exploitation characteristics, since it converges to the 1st decimal
much earlier than PSO. dPSO also sufficiently exploits the search space of each of the four
zone-based optimization problems, which appear as distinct “steps” on the convergence
curve; the quick convergence of each problem to the 1st decimal confirms this observation.
It should be noted that, on one hand, dPSO retains the important practical advantage of
complete decentralization [121], which CPSO and PSO lack. On the other hand, dPSO
exhibits worse exploration capabilities out of the other two schemes. This can be attributed
to the fact that as the algorithm progresses from one zone-based problem to the next, it
cannot account for inter-zone effects, which are strong for the test case selected in this work.

The result is an overall deterioration of optimization performance.

To assess the performance of the proposed scheme in a more demanding application,
scenario 3 was employed, which concerns intra-day hourly voltage control using PV-

inverters. The optimization results for both the VDM and the RPLM objectives are shown
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Figure 5.2.6: (a) Voltage profiles for the VDM control objective on scenario 3 for bus 28 (b)
Voltage profiles for the VDM control objective on scenario 3 for bus 121

in Table 5.2.6 for each daylight hour, while voltage profiles for the VDM objective for 2
indicative buses are shown in Figs. 5.2.6a and 5.2.6b, respectively. In scenario 3, the
superiority of the proposed scheme is also confirmed: for the VDM objective, CPSO scores
a 35% and 47% improvement of performance over the PSO and dPSO schemes

respectively, when assessing the intraday aggregated sums of voltage deviations.

The application of the proposed method for the RPLM objective yields similar performance,
since the proposed method achieves 9.5% and 18% lower real power losses aggregated over
the 8-17hr timeframe, when compared to PSO and dPSO, respectively. Even higher
differences are observed in the 12-15hr timeframe, where the irradiance profiles for each
zone reach their highest values: 21% and 40% real power losses reduction is achieved
compared to PSO and dPSO, respectively; this is due to the higher power output the of PV
panels that enable increased RPC capabilities for the PV inverters. Meanwhile, the lowest
differences between the three methods are observed at 17:00, where the available power
output drops sharply in conjunction with a network load increase; this leads to all required
power being drawn from the slack bus (hence the proportionally higher losses in
comparison to past hours). All in all, the properties of scenario 3 clearly illustrate the
applicability of the proposed scheme: the differences in the available power between PV
installations, which are in turn owed to the zone-based fluctuations of solar irradiance,
greatly hinder the effective exploitation and exploration of the search space; yet, CPSO
manages to exploit candidate solutions in a zone-based manner, while also retaining its
original exploration capabilities, thus arriving at better solutions overall compared to its
rivals. The standard PSO scheme generally outperforms the dPSO one for the VDM and
RPLM objectives for the same reason; the aforementioned fluctuations of solar irradiance

induce strong inter-zone effects, that render dPSO ineffective.
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Table 5.2.6 Scenario 3: Results for the intraday application of VDM and RPLM
objectives

VDM objective (p.u. voltage) RPLM objective (kW)
Time | ~pso  pso dPSO CPSO PSO dPSO
Instance
8hr | 0.0954  0.3650 0.3944 36.7 38.8 41.9
9hr | 0.1072  0.1450 0.1555 30.0 32.5 35.6
10hr | 0.1278  0.1663 0.1498 32.8 33.8 40.6
11hr | 0.1260 0.1651 0.3624 22.9 26.1 26.5
12hr | 0.1203  0.1855 0.2627 20.4 23.8 24.5
13hr | 00717  0.1314 0.1374 11.4 14.6 23.1
14hr | 0.0797  0.1252 0.1564 122 19.4 25.3
15hr | 0.0729  0.1393 0.1154 11.6 13.2 23.5
16 hr | 0.1429  0.1874 0.2073 28.6 31.7 343
17hr | 02087 0.2310 0.2295 126.6 1345 131.8
Sum: | 1.1530  1.8416 2.1714 3332 368.4 407.1

5.2.5 Conclusions & Future Prospects

In this section, a cooperative PSO algorithm employing multiple swarms that are dedicated
to the exploration of different search space partitions is introduced. Moreover, a practical
methodology for the identification of the aforementioned search space partitions for the
ORPF problem is presented, which is built upon the underlying topological characteristics
of the network at hand. This methodology groups highly-coupled design variables together,
with respect to voltage fluctuations incurred by active and reactive power perturbations.
The effectiveness of the CPSO algorithm was demonstrated in simulation studies carried
out in the IEEE 123-bus distribution system, and its performance improvements over a

standard PSO and a decentralized PSO formulation were statistically evaluated.

It should be noted that the proposed community-detection-based CPSO optimization
algorithm can be generalized to other engineering systems that contain a distinct structural
topology, e.g., large industrial processes or other utility networks. To the author’s best
knowledge, no other optimization approach, whether deterministic or metaheuristic, can
encode topological information of the system to be optimized. Lastly, from an academic
perspective, the community detection approach also lays the groundwork for future research

and development of other cooperative metaheuristics [133].
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Chapter 6:

Data-driven Tracking Nonlinear Model Predictive Control

MPC has emerged as a highly successful control scheme with applications in various fields
during the last decades [74]. The MPC algorithm makes use of a dynamic model of the
plant in order to calculate an approximation of the plant’s response to the control inputs.
Based on this model, a constrained optimization problem is formulated online to obtain the
optimum sequence of control moves for a given time horizon. It is apparent that the MPC
scheme effectiveness relies on the prediction accuracy of the plant model, as model
inconsistencies can lead to poor choices regarding the control moves. Thus, in cases of
highly nonlinear plant dynamics, it is a viable strategy to consider nonlinear plant models
[139], integrated using typical Runge-Kutta techniques; on the other hand, such an approach
adds a significant computational load in solving the optimization problem. Due to this
reason, nonlinear MPC approaches are usually coupled with techniques for alleviating the
increased computational burden, like online linearization [140], [141]; still, such techniques

are not always attainable, especially for cases of large models.

In contrast, methods based on computational intelligence, e.g. neural networks (NNs), seem
to be an attractive alternative, as they are very effective in modeling nonlinear plants [26],
and are usually cheaper to evaluate online than Runge-Kutta integrations of first-principle
models. In addition, for systems where proper ODEs are either unavailable or are simply
unable to encapsulate the complexity of the real process, data-driven computational
intelligence methods can be employed due to their black-box nature. Radial basis function
networks in particular are widely considered for modeling nonlinear dynamics, mainly
because of their simple structure and increased accuracy [34]. As these advantages are of
paramount importance in the context of predictive control, RBFNs constitute a popular
choice in conjunction with MPC [36]. This data-driven computational intelligence approach

has enhanced the capabilities of the MPC algorithm with various applications [142]-[144].

The purpose of this chapter is to present data-driven tracking MPC controllers that employ
RBF models in order to address nonlinear or otherwise hard-to-model processes within
MPC’s prediction module. For this reason, two representative cases studies have been
chosen: The first refers to the control of a vehicle’s active suspension system, which
exhibits relatively high-dimensionality and significant nonlinearity, thus rendering linear

models or ODE RK4-based approaches prohibitive. The second addresses the trajectory-
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following control of a vessel with the objective of avoiding moving obstacles; the future
trajectory of these obstacles is unknown, and a data-driven trajectory prediction model built

on past AIS data is required to be employed.
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6.1 Data-driven tracking MPC for active suspension control

Active suspension systems in road vehicles are applied in order to mitigate the road-induced
chassis vertical accelerations more effectively than standard passive suspensions, thus
increasing comfort and handling. Such systems are greatly assisted by road preview
schemes, consisting of special sensors usually based on laser scanners (e.g. LiDAR
sensors), which detect road irregularities ahead of the vehicle and feed this information to
a control system, designed to manipulate the active suspension accordingly. In this section,
a model predictive controller with road preview, incorporating radial basis function models,
is presented as a control scheme for a full car active suspension system. Substituting the
standard linear predictive models with RBF ones, helps to approximate efficiently the
significant nonlinearities present in the suspension system, so as to improve MPC
performance. Special care is taken to alleviate the increased computational complexity
entailed in the RBF models, in order to ensure that online implementation of the controller
is feasible. The proposed scheme is evaluated on a detailed simulated full car model under
various road excitation types, while making use of a realistic approach for incorporating
LiDAR road scanner noise. Comparisons to a passive suspension system, as well as a
standard MPC controller with a fully linear plant model, demonstrate the performance

potential of using RBF prediction models in a road preview MPC context.

6.1.1 Introduction

The suspension system of a conventional road vehicle serves to keep the wheels in a relative
position with the chassis while traveling. The two main design objectives are ride comfort
for passengers, which is directly linked to the vertical acceleration of the vehicle’s chassis,
and road holding capabilities, often expressed as a load variation on the vehicle’s tire [145].
Active suspension systems are usually implemented in vehicles through a hydraulic system
that powers a piston placed in parallel to a conventional spring and damper, allowing for
the direct pursuit of both objectives, i.e. ride comfort and vehicle handling [75]. The piston
is controlled so as to exert desired forces on the wheel in the vertical direction. This system
can achieve the aforementioned objectives in varying road conditions, as well as
compensate for changes in the suspension dynamic behavior, which are inevitable through
the life cycle of the vehicle [143], The challenge of controlling the vertical dynamics of a
vehicle is that its behavior is far from ideal. Notably, hydraulic and geometrical non-
linearities, as well as cubic terms of displacement and velocity exhibited by the springs and

dampers, are the main sources of this behavior; ignoring these characteristics can lead to
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sub-par results. In this respect, nonlinear control strategies need to be considered, so that

the above requirements are addressed.

The development of such strategies has been a topic of research since 1970, and several
methods have been proposed to date. In [146], an adaptive backstepping control method
with a grey signal predictor used for the estimation of system states is applied for the
integrated control of heave and pitch dynamics of a vehicle. A control method that also
utilizes a state predictor is presented in [147], where a Kalman filter is used for the
estimation of the road type, in order to toggle between energy-saving and high-performance
control modes. A similar scheme is presented in [148] that takes the nonlinear dynamics of
the actuators into account, albeit for a half-car suspension model. Various techniques that
can circumvent the suspension nonlinearities have been built upon the classic methodology
of skyhook damping. For example, in [149] a 6 DoF half-car active suspension is controlled
by a combined skyhook damping and fuzzy logic controller, where the original, non-linear
actuator dynamics are approximated by a linear equation. In [150], an adaptive neuro fuzzy
inference controller is presented for the control of a full car active suspension. Initially, a
fraction-order-PID controller is implemented, so that the necessary data for training the
inference model can be generated. Then, the proposed controller is implemented on an
FPGA module in order to accelerate computations. Other neural network-based approaches
have been applied in feedback linearization control schemes [151], [152] for the control of
the full car active suspension vertical dynamics. Lastly, a fuzzy-PID control strategy is
presented in [153] for the vibration control of a linear quarter-car active suspension, using

an evolutionary computation algorithm for the optimization of the control parameters.

A control scheme that can directly accommodate for plant nonlinearities is model predictive
control [74]. Though, as stated earlier, the vertical vehicle dynamics exhibit significant
nonlinearities, up to now it was not the ability of MPC to incorporate nonlinear models, but
rather its other merits, that have made it popular for active suspension design. An additional
motivation is that MPC is suitable for integrating a road preview scheme, which can feed
the active suspension control scheme with valuable information (Fig. 6.1.1). To be more
specific, the vehicle can scan the road ahead using appropriate sensors, and supply this
information to the controller, thus greatly enhancing performance [76]. The performance

potential of MPC preview schemes has been confirmed for active suspensions in terms of
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Figure 6.1.1: Active suspension (a) with and (b) without road preview information

energy expenditure [154]. In real-world applications, this preview technology is realized
with LiDAR sensors, which, nevertheless exhibit a varying degree of measurement noise
[155]. In [75] an MPC controller with preview (MPC-P) was applied to the active
suspension full car problem to minimize roll and heave accelerations under several
constraints, using a reduced model of the plant. Even though the wheel dynamics are not
included in the MPC model on the basis that they exhibit higher frequency dynamics than
the actuator, the proposed scheme achieves satisfactory performance. It should be noted
that the hydraulic actuator dynamics are not included in the modeling stage but are
substituted by the hydraulic actuators’ displacement - this significantly reduces the plant
nonlinearity, since hydraulic fluid flow through the actuator is a nonlinear phenomenon. In
[76] an MPC-P controller with a linear model is created based on a simplified quarter car

plant and compared to a skyhook-damping controller in a real world application.

Even though the results reported in these works are very encouraging, the potential of using
MPC for active suspension design is not yet fully reaped, as the employed linear models
cannot account for the nonlinearities present. Methods based on computational intelligence,
e.g. neural networks (NN5s), seem to be an attractive alternative, as they are very effective
in modeling nonlinear plants [26] and can be configured to accommodate for changes in
plant parameters. Radial basis function networks (RBFN) in particular are widely
considered for modeling nonlinear dynamics, mainly because of their simple structure and
increased accuracy [34]. It should be noted that RBF networks have been used extensively
in automotive system modeling and control: in [144] an RBFN is used for the modeling of
the wheel-slip dynamics of an anti-lock braking system. In [143] adaptive RBFNs are
applied for the modeling of lateral and longitudinal dynamics of a 3 DoF vehicle model, for
usage in a highway lane tracking PD-controller. In [36] an RBF network is used to explicitly

model an MPC controller for the control of a semi-active suspension. Surprisingly, it seems
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that no RBFN approaches for modeling the vertical dynamics of a full car model have been

reported in literature.

The main contributions of the proposed approach are the following:

A method for developing a full car vertical dynamics model based on RBFNs is
introduced. The new approach (a) is purely data-driven and does not make use of
cumbersome first-principle equations, (b) can take into account plant nonlinearities,
and (c) is computationally efficient as it makes use of the FM algorithm for training
the networks.

A nonlinear MPC framework is introduced for active suspension design, making
use of road preview information. Nonlinearities that arise when modeling the
vertical chassis dynamics of the full car are approximated with the aforementioned
RBFN model. To the author’s best knowledge, no MPC-P full car active suspension
control scheme that directly accommodates for model nonlinearities exists, much
less one that applies RBFN models.

A new method for initializing the MPC optimization problem using an inverse
model of the plant [156], which is also based on RBFNs, is used in order to minimize
the computational burden needed for calculating the control actions, without
compromising the model’s predictive abilities. This is an important practical
consideration, so as to ensure real-time implementation of the proposed approach.
A realistic representation of noise induced by the road preview functionality is
devised, based on studies regarding LiDAR sensors [157], [155]. The aim is to
simulate the effect of road preview inaccuracies on the MPC controller

performance, in order to confirm the robustness of the proposed scheme.

The rest of this section is structured as follows: In the next section, the plant equations of

the full car and electrohydraulic actuating system are presented, together with the LIDAR

road preview scheme. Subsection 6.1.3 starts with an introduction to the RBFN architecture

and the FM algorithm and continues with a detailed description of the modeling approach

followed and the produced results. Subsection 6.1.4 introduces the proposed controller,

including a description of the MPC formulation and a discussion about expediting the

solution to the optimization problem through an appropriate solution initialization

technique. Then, in subsection 5 the case study is presented in detail, containing a

description of the setup and the controller tuning procedure, followed by the produced
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results and relative discussion. Finally, the chapter ends with concluding remarks and

directions for future work.

6.1.2  Active Suspension Control Problem Statement
6.1.2.1 Active suspension plant

The electrohydraulic piston-valve system is the powerhouse of an active suspension, since
it is where the control force originates from. Hydraulic fluid is pumped from the oil sump
by the axial pump and raised to the supply pressure. When the power servovalve is open,
high pressure fluid flows to either one of the actuator chambers, while low pressure fluid
flows from the other one back to the sump. Between the two actuator chambers a pressure
difference is created, which results in the actuator force. The dynamics of the actuator
pressure are highly nonlinear [158], since they are nonlinearly related to the hydraulic fluid

flow through the servovalve.

Next, the vertical dynamics of the vehicle are presented. These can be approximated using
a 7 DoF full car model. The model is based on an abstraction of the actual car, which is
modeled as a rectangle representing the sprung inertia, with four masses at each corner,
amounting to the unsprung masses, as shown in Fig. 6.1.2. This model can describe the
heave z, roll 6 and pitch ¢ modes of the sprung mass ms,,, as well as each unsprung mass
heave displacement z,,. Each unsprung mass m.xs can be displaced along the vertical axis,
and 1s connected to the sprung mass by a spring 4, a damper d and a hydraulic actuator that
exerts a force of F, in parallel. The tire stiffness is modeled as a spring k; between each
unsprung mass and the road profile w;. Each actuator is described by a valve displacement
xis and a valve input u;. The inputs to the full car plant are the four valve inputs and the four
road profiles for each wheel. Table 6.1.1 depicts the derivative state equations for the
model; for simplicity, numbered notation is adopted for each state, or input variable. The
index i € {1, 2, 3, 4, 5} corresponds to {Front Left, Front Right, Rear Left, Rear Right,
Chassis}. The index j € {1, 2, 3,4, 5, 6} denotes a specific state, as shown in Table 6.1.1.
For example, x; 5 indicates the actuator pressure state of the front left wheel. The values
employed for model parameters are shown in Table 6.1.2; these values were chosen to
provide a realistic full car representation based on [158] and [159]. Note the nonlinear
spring and damping terms.
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Table 6.1.1: Full car state equations and functions

A. State Differential Equations

Xip = X5, 1 (D /2)(_1)i +x5,2(Lbase /2)s(i) + X5 5 (6.1.1)
56 =4 | (6.12)
= 35y (Byaes 1 2) (1) + 355 (L, / 2)5(0) + 5 (6.1.3)
ﬂ —(l/mmp)( —Fyy (%% )= Fyy (%5000 ) = Fy (W) + 4,55 (6.1.4)
xi,S = a|:Q(xl6’x ) C¥is =4 (Xi,S ~Xig )} (6.1.5)
= (l/r)(—xA +u,) (6.1.6)
( track /2]xx)( Strut ( )+F;trut (4) strut (1) strut (3)) (617)
(Lb‘”e /2]yy)( strut ( ) FWW (2) strut (3) strut (4)) (618)
(l/mspr)( snut( ) strut( ) Flrut(3)+Ftrut (4)) (619)
X5, =X (6.1.10)
54 = Xs1
Xs5 = Xs, (6.1.11)
X5 = Xs 5 (6.1.12)
B. Functions
s()={-1i<2,1i>2} (6.1.13)
Q(xlmx ) G, vaxle\/(['; _Sign(xi,6)xi,5)/p (6.1.14)
F (xz 39Xi4 ) b.s{m (xi,4 _xi,3)_b:ym |xi,4 —Xi3 | +b:~mnlm \/l Xia ~Xi3 | Sign(xi,4 _xi,3) (6-1-15)
F, (xl 12X ) kshn (‘xi,Z _xi,1)+ksnonﬁn (xi,2 X )3 (6.1.16)
Fy (x00w) =k (x.,—w) (6.1.17)
F;tmt(i)zF;cs( X1 X, )+F2n(xz3axz4) Ap X, 5 (6.1.18)

In short, the full car active suspension plant can be described at each continuous time instant

t as a system comprised of 30 states, stored in state matrix X:

X, (0 e x(0)
x@o-=| : . (6.1.19)
X, () o x54(0)

that accepts as input a vector of each wheel’s control signal u:

u(t) = [“1 (2),u,(?),u, (t),u4(t)] (6.1.20)

and a road profile vector w, consisting of the load profile for each separate wheel:

w(t) =[w (), wy (6), w3 (1), w, (1)] (6.1.21)
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Figure 6.1.2: 7 DoF full car model

Table 6.1.2: Full car plant and electrohydraulic system parameters

Symbol Description Value Units
Ps Supply Pressure to Valve 5106 Pa

Ap Actuator Piston Area 3.3510* m?
Cim Leakage constant 22101 -

o Hydraulic Coefficient 4.51 10" N/m®
p Density of Hydraulic Fluid 850 kg/m’
T Time constant of valve 5103 s

Cq Discharge Coefficient 0.7 -

Sxv Valve width 4.1103 m
bl Linear damping coefficient 2000 N s/m
bs™™ Symmetric damping coefficient 400 N s/m
bgnentin Nonlinear damping coefficient 100 N (m/s) 1?2
ke Linear spring coefficient 25000 N/m
kgnontin Nonlinear spring coefficient 2510% N/m?
k¢ Tire spring coefficient 19 10 N/m
brrack Wheel track width 2.5 m
Lbase Wheelbase 4 m

Ixx X moment of inertia 550 kg m?
lyy Y moment of inertia 300 kg m?
Mspr Sprung mass 1800 kg
Muns Unsprung mass 40 kg

6.1.2.2 Road Preview System

In order to measure the real road height profile vector w(¢) onboard LiDAR sensors that

scan the road ahead can be used, such as in [75], [76]. A very detailed description about the
practical aspects of road previewing in active suspensions takes place in [160], while a real-

world implementation is given in [157]. LiDAR sensors are subject to a variety of
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measurement errors, mainly arising from photon interference and scattering [155]. In order
to model such errors, an additive Gaussian noise to all measurements is assumed in [160].
However, it has been observed that LIDAR measurement errors can vary in magnitude, in
relation to the distance of the measured profile, e.g. an almost linearly-increasing error in
relation to distance for a kinematic scanning LiDAR is reported in [161]. A simple
experiment is set up in [157], and an increasing relative error in relation to distance is also
observed. In order to provide a more realistic representation of measurement error induced
by the LiDAR sensor, we assume an additive Gaussian noise for the previewed road, with

increasing standard deviation as the distance from the sensor increases:

w,(d)=w,(d)+L(0,6°(d)), de[0.] (6.1.22)

Here, w,,, denotes the road profile height as measured by the LiDAR sensor, w, the real
road profile height at distance d from the sensor, /, the preview length, and L is a random
value sampled from a Gaussian distribution, where the standard deviation o is a linear

function of d. An example of the measured road w,, is shown in Fig. 6.1.3.
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Figure 6.1.3: 1.5s of scanned-ahead road, in a road preview MPC context. The relative error increases
with the distance from the LiDAR sensor

6.1.3

6.1.3.1

Methodology

Creation of the controller model

The general mathematical notation for a discrete model f of the full car plant is:
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X (k+1)= £ (X (k),u(k),w(k)) (6.1.23a)
w(k) = [w1 (k),w, (k), w,(k),w, (k)] (6.1.23b)
u(k) = [u1 (k),u,(k),u, (k),u4(k)] (6.1.24)

The model faccepts as inputs the current state matrix X (k) (19), the current control vector
u(k) and the current road profile vector w(k) at discrete time 4, and generates the
prediction for the state matrix X(k + 1) at the next discrete instance. In order to
approximate the function matrix f and build a discrete data-driven model of the full car
plant, a suitable input-output dataset must be created. The input data are comprised of a
random road signal to the four wheels and a random valve displacement signal to the four
actuators. The road signal is generated as per the ISO 8606 standard that specifies the power
spectral density of random road profiles of different quality [162] — for the task at hand, a
type ‘E’ road is chosen. The valve displacement signal is generated from a uniform
distribution within the valves’ operating range, namely £10mm. The aforementioned input
is applied on the full car plant, and its output, which consists of the state variables as
described by (6.1.19), is used to create an input-output dataset of 40000 datapoints. The
dataset is subsequently split in a 50-25-25% manner, in order to create the training,
validation and testing subsets, respectively; the first subset is used for calculating the model
parameters, the second for model selection and the third for independently evaluating model

performance.

Once those datasets are acquired, least squares regression on the training subset can be
used in order to obtain the parameters for a discrete linear state model. The goodness of fit
is evaluated on the testing subset using the coefficient of determination (R*) and the mean
absolute error (MAE). The results are shown in Table 6.1.3: as expected, the states (or their
derivatives - for the chassis modes) that contain nonlinear terms, namely

Xi4) Xi5 Xs51,X5, and Xs 3, fail to be modeled sufficiently.

Having in mind that the produced model will be incorporated in a control scheme, it is
important to note that the x; s state corresponds to the actuator pressure of each wheel (and
thus to the control force), hence it is directly related to the effectiveness of the applied
control actions (6.1.5). If the MPC controller over/underestimates it after a control move,
then the control performance will be directly compromised. Similar concerns are raised for
the X5, state derivative, as it represents the controlled variable. Lastly, state derivatives
X5, Xs,3, which concern roll and pitch accelerations, indirectly influence all plant states.
Correctly estimating the particular quantities can have a significant effect to the overall

model performance, but unfortunately the respective equations are nonlinear in nature; this
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is apparent from (6.1.1-12), but also confirmed in practice, as shown in Table 6.1.3. For
this reason, RBFN dynamic models were used for the aforementioned states / state
derivatives, while for the rest of the states, linear models were applied, in order to reduce
the computational cost of calculating the overall model response; it should be noted that
when used for MPC, this model will be evaluated multiple times when solving the

optimization problem, in order to calculate each control action.

A main consideration when training the RBFN models using the FM algorithm is the
choice of the number of fuzzy sets s. The performance of an RBFN model will increase
with increasing fuzzy sets, until it begins to overfit on the training data, thus compromising
its generalization ability, i.e. its performance on new data. Overfitting occurs because the
increasing network complexity allows for modeling the noise present in the training data
[26], a fact which bears a detrimental effect on the network’s ability to make accurate
predictions for new data not included in the training subset. In order to establish the
optimum value for s, a validation data subset must be also employed; to be more specific,
a different network is trained for each value of s in the range {4-20}, using only the training
subset, and then the value of s that maximizes the performance on the validation subset is

chosen [108].

The results for the individual RBFN models used on the independent testing subset are
shown in Table 6.1.3. These include the number of fuzzy sets and centers generated from
the proposed training procedure, as well as prediction metrics on a random road testing
subset. It is clear that the one-step ahead prediction performance of the individual RBFN
models is superior to their linear counterparts, when modelling the highly nonlinear
states/derivatives X; 4, X; 5, X5 1, X5 2, X5 3. Thus, two full car models are created; one with

linear models for all the states, and one applying RBFN models for the nonlinear ones.

The two resulting car models (hereby referred to as “Linear” and “RBF-Linear”) are
essentially one-step-ahead prediction models, but their performance when predicting
multiple steps ahead must be also assessed, in order to evaluate their suitability for
integration in an MPC context. This can be accomplished by recurrently applying the
model, each time using as input states the state predictions produced by the model for the
previous time step. Fig. 6.1.5 compares the 35-step ahead prediction performance of the
two models for a random road profile and control input signal, selected from the
aforementioned testing subset. The RBF-Linear car model clearly outperforms the linear

car model for the multiple-step-ahead prediction of the controlled variable (chassis heave
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Table 6.1.3: Model comparison statistics

Linear model RBFN Model

e e e |l e R maE
X1 0.9960 0.0021 - - - -
Xi2 0.9990 6.1e-4 - - - -
Xi3 0.9855 0.0371 - - - -
X1.4 0.9893 0.0287 5121 9 0.9910 0.0156
Xy 0.9652 0.5159 8131 12 0.9908 0.2425
X6 0.9998 3.36e-5 - - - -
X5, 0.9865 0.3213 5121 9 0.9920 0.1656
Xs 5 0.9909 0.1021 5121 9 0.9946 0.0628
Xs 3 0.9875 0.1204 5121 9 0.9918 0.0852
Xs4 0.9924 0.0014 - - - -
Xs s 0.9962 5.2e-4 - - - -
Xs6 0.9993 5.0e-4 - - - -

The metrics were generated from a random road testing run. Only the results of the front left wheel are

presented; the rest of the wheels are omitted because they exhibit almost identical metrics.

acceleration), as the former achieves a MAE of 0.1082 and an R? of 0.9812, while the latter
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Figure 6.1.4: Linear and RBF-linear car model comparison for multiple-step-ahead evaluation. (a)
heave acceleration modeling comparison, (b) modeling error comparison
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a MAE of 0.1483 and an R? of 0.9528.

6.1.3.2 Model Predictive Controller

The proposed active suspension control scheme involves using an MPC controller, in
conjunction with road preview information. There exist numerous formulations for the
active suspension problem, as far as the design variables in the MPC objective function are
concerned. In [76] wheel load and suspension displacement are explicitly minimized. This
work aims to minimize the chassis heave acceleration, as the proposed scheme is concerned

with vehicle passengers comfort [163].

At each discrete time point £, the following OCP is formulated:

min Jy Cx, u) (6.1.252)
s.t.(x,u) €EZ, xy € Xy (6.1.25b)
Xo = Xg (6.1.25¢)

xt = fapr(x,u) (6.1.25d)

Where the objective function [y (-), quadratic stage cost £(-) and terminal penalty V¢ (-) are

denoted as follows:

N-1
Ju (o) = Z 200 u) + Vi () (6.1.26a)
k=0
i’(xk, uk) = kaka + ukTRuk (6126b)
Vf(XN) = XNTQfo (6126C)

Here, Z = X X U denote the admissible state and input space, X = {0} is the terminal set,
Q € R™*™x R € R™*™ and Q € R™*™ are positive-definite weighting matrices, N is
a prediction horizon, and frpr is the “RBF-Linear” controller model that was constructed

in subsection 6.1.3.1.

Corollary 6.1.1 (Asymptotic stability of MPC (6.1.25-26)): Suppose assumptions of

Theorem 4.4.2 are satisfied as well as

A. State transition function x* = frgp(x,u) is bounded & continuous ¥ (x,u) € Z,

frer(x,u) € X¢ and frpr(0,0) = 0

Then, the origin of x* = frpp(x, ky (x)) is asymptotically stable in Xy, where Ky (x) is

the MPC control law described in (6.1.25).



Development of optimization and data-driven model predictive control methods using computational intelligence
techniques: Design and applications with emphasis on the economic operation of engineering systems

Proof: Given that the stage cost £(-) and the terminal cost Vy(-) are positive definite

functions, together with the assumption that the frpr(:) responses are bounded and
continuous for all admissible (x,u), then Theorem 4.4.2 can be leveraged to show

asymptotic stability of the scheme. m

To ensure real-time implementation of the proposed control scheme 6.1.25-26, the
optimization problem should be solved within one sampling time period, thus enabling the
controller to calculate new actions for each discrete time step. In addition, in order to
accurately track the fast dynamics imposed to the car by the high frequency road excitations,
the controller sampling period should be kept as small as possible [164]. In the case of MPC
controllers, the sampling time is essentially dictated by the time needed to solve the
optimization problem, this being the bottleneck in the control action calculation procedure.
Unfortunately, notwithstanding the improved approximation capabilities throughout the
whole operating region offered by an RBF model, its use in MPC transforms the
optimization problem to a nonlinear one, thus bearing a negative effect on the time required

for obtaining a satisfactory solution.

A standard approach for speeding up the optimization procedure in MPC, is to initialize the
optimization problem formulated during each time step with the optimal control moves u*
resulting from the previous time step, after removing the first move which has already been
implemented. However, this technique may not be adequate for the particular application;
the fast-changing road conditions may in turn cause the car’s state to change rapidly, thus
rendering the previous time step solution obsolete. In this case, the optimizer starts from a

poor initial value, which can lead to longer computational times for solving the problem.

In this work, a more elaborate initialization technique is used, which has been shown to
significantly expedite the solution procedure [156]. To be more specific, an inverse RBF
model of the plant is trained offline. This model can be then applied at each time step to
provide a sequence of actions u,, for the entire control horizon; calculating u;,, is very
fast, because no optimization procedure is involved. On the other hand, it should be noted
that u;,, offers only a feasible trajectory to the setpoint, without taking into account the
aspect of optimality; though directly applying it to the real plant could yield subpar results,
it can be used as a hot-start for the MPC optimizer. Thus, for every new formulation of the
MPC optimization problem occurring at each discrete time step, a suboptimal solution is
first obtained using the inverse model, and then passed on to the optimization solver as an

initial guess. More details about this type of initialization can be found in [156].
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6.1.4  Results
6.1.4.1 Case Study & Setup

In this case study, the proposed RBFN-MPC approach is evaluated on a simulated full car
plant, under various road excitation types. A linear MPC-P controller and a passive full car
suspension are also presented for comparison purposes. The full car plant described in
subsection 6.1.2 is simulated by numerically solving the state equations (6.1.1-12) using a
Runge-Kutta 4-5 formula [165]. Two MPC controllers were created, hereby referred to as
MPC-L and MPC-RBF-L, employing the linear and RBF-linear full car models,
respectively. In both controllers, the MPC optimization problem was solved using an active-
set method, as described in [156]. All simulations were realized in MATLAB environment
and a desktop computer with an Intel 19-9960X CPU and 64 GB of RAM. The sampling

time for both controllers was set to 100ms of simulated time.

The control objective is to maximize passenger comfort. This could be taken as equivalent
to minimizing the heave acceleration, as is done in [75]. However, different, more
sophisticated performance metrics for comfort quantification also exist. ISO 2631 [166]
sets standards for exposure of humans to vibration, and applies not only to vehicles, but to
all vibrating environments as well. According to this standard, humans are more sensitive
to heave acceleration in the range of 4-8 Hz. A more road-vehicle-oriented discussion about
passenger comfort criteria takes place in [163]. It should also be noted that vehicle comfort

should be evaluated both on bump and random road tests, for completeness sake.

In light of the above, it was decided to compare the competing schemes in three
different tests (Fig. 6.1.5): a one-sided pulse bump with a height of 5 cm, a one-sided
symmetric ramp bump with a maximum height of 12 cm and a duration 0of 0.3 s, and a 30m
stretch of random road of class “E” [162], traversed at 10 m/s vehicle speed. For the bump
tests, importance is placed on the max absolute acceleration (MAA), the sum of absolute
errors (SAE) and the settling time; these are deemed important, since any changes to them
are directly perceived by the passengers. For the random road test, besides the sum of
absolute errors, the fast Fourier transform (FFT) of the heave acceleration is computed,
since it gives a clearer picture of controller performance, together with the squared heave

displacement, as dictated by the Steffens comfort metric [163]:

X[em® |=7.62:107 (1+ 1;?} (29)

c
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Figure 6.1.5: Road scenarios for simulation: (a) Right-sided pulse bump, (b) Right-sided ramp
bump, (c) Random road profile

X is the square of the chassis displacement in cm, and f. is its frequency in Hz. The Steffens
criterion sets a bound on the FFT of the chassis heave displacement, which signifies
discomfort. Thus, the furthest away the frequency response of the chassis displacement is
from that bound, the better the vehicle’s suspension is performing. In addition, an important
consideration must be made regarding the road holding capability of the proposed scheme.
This capability can be quantified by the vertical acceleration of each wheel, which should
not be too high, otherwise the tire contact patch may be perturbed or completely detached
from the road, resulting in loss of road holding [145], [167]. While increasing ride comfort
remains as the sole control objective of the proposed scheme, it must be verified that the
road holding capability does not deteriorate in comparison to the passive suspension case.
Therefore, the average root mean square (RMS) values of the vertical acceleration of each

wheel are calculated for the random road case, as it is the case most likely to cause such a

phenomenon.
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Finally, the tuning parameters of the two MPC controllers are presented. Tuning of the two
MPC controllers amounts to determining the optimum values for standard MPC parameters,
namely the prediction and control horizons /4, and 4., the ®,  vectors and the objective
function weights w and 6, but also for the road preview length /,. The reason that /,
constitutes a tuning parameter is that the previewed road information quality deteriorates
over distance due to noise, as discussed in section 2.3; so, there exists a maximum effective

length of previewed road that is useful for the controller.

A low value for the /. parameter is chosen a priori, since it will result to a lower
number of control variables to be optimized online, and thus, to a faster solution of the MPC
problem. The rest of the tuning parameters are optimized offline using the particle swarm
optimization (PSO) method [66]. PSO is a favorable choice, because of its effectiveness in
solving nonlinear optimization problems, in conjunction with its simplicity. The tuning
procedure was run on two cases: the first involves a one-sided pulse bump of 8 cm height,
and the second a random road of class “E”. The tuning optimization objective for both cases
is the minimization of the sum of absolute heave acceleration over the timespan of the
simulation. The results of the tuning procedure for the bump and random road cases for
both controllers are shown in Tables 6.1.4 and 6.1.5, respectively, which contain the
selected values for the tuning parameters described in the first paragraph of this subsection.
Using two different tuning scenarios aims to cater to the differences of two distinct types
of roads that can occur — a well-paved road with the occasional anomaly (bump case) or a
badly paved road or dirt track (random road case). Note that this practice does not violate

the practicality of the proposed scheme in a real-world implementation; the controller could

Table 6.1.4: Bump road tuning parameters

MPC Linear MPC Linear - RBF
hyp 15 15
1, (m) 5 5
Q 9.42 10% Iy_xn, 8.17 10% Ly _xn,
R 1.45 10* Iy xn,, 1.99 10* I,y xn,,
Q¢ 9.30 10* Iy xn, 8.23 10* Iy _xn,

Table 6.1.5: Random road tuning parameters

MPC Linear MPC Linear - RBF
N 7 7
1, (m) 3.1 3.2
Q 9.42 10* Iy, 9.73 10* I _scn,,
R 1.15 10% Iy n,, 5.93 10* Iy xn,,

Q; 9.40 10* I, . 9.60 10* Iy »p,.
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toggle between on-road and off-road modes either manually or automatically [147], as is

the case in most modern vehicles with adjustable suspension today.

6.1.4.2

Results & Discussion

The proposed MPC-RBF-L controller is applied to the road scenarios shown in Fig. 6.1.6,

and compared to MPC-L and a passive suspension. The responses of the two controllers,

along with the passive suspension, are shown in Figs. 6.1.7-9, while numerical results are

given in Tables 6.1.6-8. Each table corresponds to a specific road scenario, and contains the

simulation metrics for the two controllers and the passive suspension, as discussed in

subsection 6.1.4.1.

As far as the pulse bump scenario (Fig. 6.1.7) is concerned, the MPC-RBF-L controller is

able to reduce the SAE by 10% compared to MPC-L, and 28% compared to the passive
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Figure 6.1.6: Results of a pulse bump test: (a) chassis heave acceleration response, (b) chassis heave
displacement, (c) front right pressure of the hydraulic actuator
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Figure 6.1.7: Results of a ramp bump test: (a) chassis heave acceleration response, (b) chassis heave
displacement, (c) front right pressure of the hydraulic actuator

suspension. The settling time also shows significant improvement. In the ramp bump test
(Fig. 6.1.7), the MPC-RBF-L controller reduces the SAE by 11.5% compared to MPC-L,
and 37% compared to the passive suspension. No reduction in settling time is achieved by
the two MPC controllers when compared to the passive suspension in this case — this can
be attributed to the fact that when the road disturbance ended, the absolute value of the
heave acceleration was so small that the controllers decided not to act. The SAE is overall
more effectively reduced on the ramp than the bump test for both MPC controllers. The
reason is that the road disturbance is less abrupt and therefore both controllers can track it

better.

On the random road (Fig. 6.1.8) the proposed controller reduces the SAE by 10% and 20%,
compared to MPC-L and the passive suspension, respectively. Here, the frequency-domain

response is of larger importance: the MPC-RBF-L generally performs well in the 4-8 Hz
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range, with a 44% reduction of the chassis acceleration response at eigenfrequency
compared to the passive car and a 22% reduction compared to MPC-L. This frequency
range is of interest, since any vibrations herein incur the most discomfort for humans,
according to ISO 2631 [166]. The chassis heave frequency response peaks at 4 Hz and then
trails off towards zero for higher frequencies. It appears that both MPC controllers fail to
control any heave acceleration responses over 10Hz. This can be attributed to the high MPC
sample time, which renders both controllers unable to monitor higher frequency responses.
The Steffens control metric though, gives a clear indication of the superiority of the
proposed controller over the rest of the competing schemes. This metric describes a
threshold for vibratory environments that, once exceeded, human discomfort is induced; as
shown in Fig. 6.1.8c, the proposed scheme manages to remain largely below this threshold.
In particular, for the eigenfrequency of the chassis, the MPC-RBF-L reduces the FFT of the
heave displacement by 45.7% compared to the passive suspension and 45.4% compared to
the MPC-L controller. Lastly, by assessing the average RMS value for the vertical

acceleration of each wheel, one sees that both MPC controllers perform slightly worse than
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Figure 6.1.8: Results of a random road test: (a) chassis heave acceleration, (b) chassis heave
acceleration FFT response, (c) chassis heave displacement FFT response

Myron Papadimitrakis
yromap 122



the passive suspension on this respect; the MPC-L vertical wheel acceleration value is
6.31% larger than the passive suspension one, while the respective MPC-RBF-L value is
4.5% larger. This result is to be expected, since the sampling frequency of 10 Hz of both
MPC controllers is lower than the wheel-hop mode frequency, which usually resides in the
10-12 Hz range [167]. Still, this small difference in the aforementioned RMS values does
not constitute a significant deterioration of road holding performance for the proposed
scheme, thus its potential for practical applications in chassis vibration control is not

diminished.

In general, when evaluating SAE as an overall performance metric on the three tests, both
MPC controllers significantly increase riding comfort compared to the passive suspension.
The MPC-L performance, while being better than the passive suspension, significantly
deteriorates when applied to random road conditions; this is due to the limited accuracy of
the linear prediction model. The MPC-RBF-L superior performance in all three tests is
attributed to the better state approximation capabilities of the RBF-linear model, which
enable the computation of more accurate control moves. It should be noted that the actual
time needed by the MPC-RBF-L controller for solving the optimization problem was
measured to be equal, or smaller to the selected controller sampling time, thus allowing for

real-time implementation of the proposed scheme.

6.1.5 Conclusion & Future Prospects

In this section, the application of RBFN models trained with the FM algorithm for the
nonlinear states resulted in the successful modeling of the full car plant. Because of the
increased computational requirements that the usage of nonlinear prediction models entails,
efforts to reduce the overall computational burden of the MPC solution process were made,

namely, through the usage of an inverse model of the plant for initializing the optimization
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Table 6.1.6: Pulse bump simulation results

Performance metrics Passive MPC MPC Linear -
Car Linear RBF

Max absolute acceleration (m/s?) 2.79 2.3 2.33

Settling time (s) 2.85 2.85 1.81

Sum of absolute error (m/s?) 113 90.6 81.4

Table 6.1.7: Ramp bump simulation results

Performance metrics Passive MPC MPC Linear —
Car Linear RBF

Max absolute acceleration (m/s?) 2.054 1.489 1.31

Settling time (s) 1.66 2.02 1.65

Sum of absolute error (m/s?) 101 97.1 81.0

Table 6.1.8: Random road simulation results

. . MPC MPC Linear -

Performance metrics Passive Car Linear RBF

Sum of absolute error (m/s?) 126.61 112.50 101.05

Heave acceleration FzFT at 31.6 57.92 45 14
eigenfrequency (m/s”)

Sguared heave dlsplzacement FFT at 199 1 198 108.1
eigenfrequency (cm-)

Average RMS value for the vertical 5494 5864 5754

acceleration of each wheel (m/s?)

problem. The proposed MPC scheme was implemented using a realistic LIDAR scanning
noise model, tuned using PSO and simulated in three different road scenarios, namely pulse

bump, ramp bump and random road.

In general, this case study has demonstrated the effectiveness of a data-driven MPC
controller constructed using CI techniques for problems with high-dimensionality and high-
nonlinearity. The RBF models used herein are cheaper to evaluate online than the respective
ODE integrations of the first-principle equations of the full car plant, and can achieve
increased accuracy compared to a linearized model. The proposed controller can be
extended to other engineering systems; furthermore, future research plans include the use
of RBF networks for modeling the vehicle lateral and yaw dynamics [168], in order to
accommodate for the significant nonlinearities arising from lateral tire force behavior. The
resulting models could be incorporated in data-driven advanced driver assistance systems
(ADAS), thus producing vehicle stability [169], or active torque vectoring [170] controllers

of increased performance.

Myron Papadimitrakis
yromap 124



6.2 Data-driven tracking MPC for vessel trajectory control with collision

avoidance using real AIS data

The field of automatic collision avoidance for surface vessels has been an active field of
research in recent years, aiming for the decision support of officers in conventional vessels,
or the creation of autonomous vessel controllers. In this chapter, the multi-ship control
problem is addressed using a data-driven model predictive controller that makes use of
obstacle ship trajectory prediction models built on the RBF framework and trained on real
AIS data sourced from an open-source database. The usage of such sophisticated trajectory
prediction models enables the controller to correctly infer the existence of a collision risk
and apply evasive control actions in a timely manner, thus accounting for the slow dynamics
of'a large vessel, such as container ships, and enhancing the cooperation between controlled
vessels. The proposed method is evaluated on a real-life case from the Miami port area, and
its generated trajectories are assessed in terms of safety, economy and COLREG
compliance by comparison with an identical MPC controller utilizing straight-line

predictions for the obstacle vessel.

6.2.1 Introduction

In the last two decades, research on automatic collision avoidance (CA) and optimal path
planning for surface vessels has intensified, driven by the ever-growing density of maritime
traffic in narrow waterways, such as gulfs, ports and canals [171]. Motivated by the design
of autonomous surface vehicles (ASV) controllers, but also aiming for the decision support
of officers on watch (OOW) of conventional vessels [172], control and optimization tools
that ensure the safety and the cost effectiveness of navigational actions are being intensively
developed. These tools are perceptive of the surrounding environment through arrays of
sensors, radars and other positioning and communication aids. In this context, the automatic
identification system encompasses most aforementioned technologies in order to gather
positioning and other vessel data. The already vast AIS comprises an ever-expanding
worldwide maritime trajectory dataset which is made available by vessels, port authorities
and other platforms in charge of efficient and safe maritime path planning. Given the fact
that the majority of vessel accidents are related to erroneous handling rather than equipment
failure or environmental conditions [173], these tools aim to phase out the human OOW as
a vessel controller, or at least augment their navigational decision-making using

optimization- and prediction-based methods.
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The formulation of the trajectory optimization problem used in CA controllers must take
multiple aspects of vessel navigation into account, while being perceptive of their
surrounding environment in real time. The generation of control actions that will result in
a trajectory remaining sufficiently clear from any stationary or moving objects is not the
sole objective: an efficient controller should also ensure the economy of the control actions,
as well as the adherence to the collision avoidance rules, commonly known as the
COLREGs [174]. Multiple CA controllers have been proposed that fulfil the
aforementioned specifications; in [175] a hierarchical multiobjective optimization problem
is formulated, that generates an intermediate waypoint for the controlled vessel while
accounting for the good seamanship rules. In [176] a fuzzy-Bayesian CA controller is
formulated capable of addressing multiple obstacle vessels at once. In [177], optimal
trajectories for the CA problem are generated using a B-Spline-based search algorithm.
Lastly, in [178] a CA controller utilizes a probabilistic method in order to infer the one-
step-ahead position of obstacle vessels, while also accounting for non-COLREG-compliant

obstacle vessels.

In general, it has been observed that controllers that are not model-based can have trouble
incorporating crucial aspects of the trajectory optimization problem, thus compromising
practicality. Without a working model of the controlled vessel, its maneuvering capabilities
cannot be easily included in the formulation, neither can the effect of environmental
conditions be quantified [12], [179]. For these reasons, model predictive control emerges
as an effective control method for the problem at hand, because it utilizes a model of the
plant in order to compute an optimal control trajectory based on the predicted trajectory of
other ships in the vicinity. As a framework, MPC can account for the uncertainties of both
the utilized model of the plant and the trajectory prediction models of other ships, while
also incorporating all possible control objectives (such as navigational risk, course
smoothness or deviation from the original path) in a single cost function. Some CA
controllers based on MPC have been proposed in the literature; a robust MPC controller
utilizing straight-line obstacle vessel trajectory predictions is proposed in [12], capable of
COLREG compliance and handling of multiple obstacles. In [180], motion planning for an
autonomous vessel using a sampling-based MPC method takes place. In [181], an MPC
controller for the CA task is built by approximating the behavior of an LQR controller, thus
ensuring asymptotic stability of the system. In [13], a neural network is used to approximate
the MPC response for the generation of COLREG compliant trajectories for multi ship
encounters, is presented. In addition, MPC has been integrated in distributed control

frameworks of multi-ship schemes; for example, a distributed MPC scheme has been
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employed for a multi-vessel formation controller with collision avoidance capabilities
[182], or for the robust distributed control of multiple vessels operating for the inter-

terminal transport of containers [183].

It becomes apparent that for the scope of the CA task, information about the future
trajectories of other ships plays a central role. Prevalent in non-data driven methodologies
already used for the vessel trajectory prediction (VTP) problem is the first principles-based
modeling technique [184], carrying a number of significant shortcomings, such as their
inherent complexity, which has a greater negative impact due to the fact that the model is
usually employed multiple times within the duration of each MPC sample. In order to
simplify the solution of the employed kinematic differential equations and facilitate the
real-time prediction of future states, these types of models are usually created using several
assumptions which try to approximate real-world conditions, but also make the final model
far less accurate. Therefore, one should employ a more sophisticated, data-driven approach
for the creation of effective trajectory prediction models that are included in MPC
controllers. Machine learning has answered the call of producing highly accurate models
which may be easily integrated in predictive frameworks through the use of black-box
modeling, and more specifically artificial neural network approaches [185]. NNs employ
different architectures in order to remap the original non-linear problem to a higher-
dimensional input space and approximate its dynamics utilizing standard functions. In this
context, various NN techniques have been successfully utilized in control frameworks

solving the vessel trajectory prediction problem.

Feedforward NN architectures, most commonly represented by the multilayer perceptrons
have been employed to solve the VTP problem as in [186], [187], where MLP NNs are
trained using the well-established backpropagation algorithm (BP) outperforming rival
methodologies i.e., linear models and Kalman filters. In [187] a real AIS dataset gathered
from the confined space of a river waterway is used to approximate the vessel dynamics in
such environments. BP has been the baseline of more efficient training methods as in [188],
where different computational intelligence (CI) approaches like differential evolution,
genetic algorithms, and swarm-based techniques are used to modify the original BP
algorithm in order to create more accurate feedforward NN models. Other NN architectures,
like support vector machines have been employed in conjunction with CI optimization
techniques i.e., the particle swarm optimization algorithm, on AIS datasets to solve the VTP

problem [189]. In most cases the inherent abilities of NN architectures which can meet the
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standard of high accuracy are limited to a one-step ahead prediction horizon, in the sense
that multi-step ahead predictions would require an approximation of unknown future states
to be made and present an error enlarged through propagation to the end of the prediction
horizon. Such an error would become critically high after a small number of steps rendering

the control framework useless.

To overcome this problem, long-term trajectory prediction approaches have been devised
with the inclusion of memory features, such as the recurrent neural networks (RNNs) with
their most notable representative i.e., the long short-term memory (LSTM) NNs already
used in the context of the VTP problem [190]-[193]. Besides trajectory modeling and
prediction in open waters, advances have also been made in crowded port waters as in [194],
where another modification of the RNNs, namely the bidirectional gated recurrent unit (Bi-
GRU), is used to address the VTP problem outperforming standard NN methods in such
scenarios. GRUs are promising candidates for predicting the collective behavior of vessel
fleets [195]. Within the context of VTP, RBFs have been integrated in control frameworks
by approximating unknown vessel parameters [196]-[198]. Recently, RBFs have been
applied on real AIS data in order to produce highly accurate models for one-step and multi-
step ahead predictions [6], showing their potential in being integrated to receding horizon

control methodologies.

Remarkably, in the research works regarding the design of CA controllers, there are no
instances where the multi-step-ahead trajectory prediction of moving obstacles is addressed
in such a systematic manner; in most of the reviewed case studies these trajectories are
either known a priori, or there are no obstacle ships present whatsoever. An exception
occurs in [12], where straight line trajectory predictions are employed, based on estimated
current course and speed for the moving obstacle. Indeed, such an approach yields
satisfactory approximation results in an open sea setting where ships are expected to travel
in a straight line but is of little practical use for the cases of narrow gulfs, ports, or canals
where ships need to maneuver in order to navigate through. To the author’s best knowledge,
no such implementation occurs for the design of a multi-ship MPC CA controller, much

less a nonlinear one.

In this section, a multi-ship MPC controller utilizing RBF prediction models is presented
for the CA task. The RBF prediction models are trained using real AIS datasets sourced
from an open-source database, and are integrated in an MPC controller for the trajectory
prediction of obstacle ships that may pose a CA threat. The usage of such sophisticated
prediction models supplies the controller with high-accuracy information, thus allowing for
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the timely application of appropriate control moves that will result in a safe and efficient
trajectory. The proposed method is tested in a CA setting occurring at the Miami port area,
and its performance is illustrated by the comparison with an MPC controller utilizing

straight-line prediction models.

The section is structured as follows. In subsection 6.2.2 the AIS-data-driven methodology
for the creation of the RBF trajectory prediction models is presented. In section 6.2.3 some
preliminaries on maritime collision avoidance and optimal trajectory generation are
described, and later, the proposed method is presented. In section 6.2.4, the case study based
on the port of Miami is outlined, and the simulation results are discussed in depth. Lastly,

in section 6.2.5, concluding remarks are made.

6.2.2  Creation of RBF-based Trajectory Prediction Models

Recently it has been shown [6] that RBF NN trained with the fuzzy means algorithm are
ideal candidates for integration to receding horizon control frameworks in the context of
the VTP problem. RBFs are already very popular in numerous diverse applications where
they have been successfully employed to approximate nonlinear system and process
dynamics in order to predict future states and subsequently participate in the formulation of
robust control frameworks [199]. However, best modeling practices for RBF networks
mandate that a training dataset should be error- and noise-free, a case which is far from
truth when using data from AIS transceivers. AIS data are irregularly sampled and contain
heavy noise, missing data, and erroneous values. Thus, before employing any modeling

technique, proper preprocessing is in order.

The Marine Cadastre service (www.marinecadastre.gov) has been the source of all data

used in this work. MarineCadastre.gov is a is a service which gathers and publicly provides
AIS data to marine planning initiatives. In this work, data from all days between 1° July
2019 and 30" June 2020 have been included and filtered to keep vessels sailing an area
around the port of Miami covered by the geolocation rectangle defined by the latitudes of
25.720° through 25.840° and the longitudes of -80.145° through -80.042°. To conform to
the initial assumption of similar size and similar dynamics we allowed only cargo ships
sailing on engine power into the dataset, further filtering the dataset to yield a total of 180

vessels.

To address the problems of sample irregularity, noise, and erroneous values, the dataset was

resampled to 120 seconds, which was deemed enough to capture the high inertia dynamics
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of large cargo ships. The interpolation technique applied on the data to perform the

resampling was the Akima piecewise cubic interpolation [200] which is quite effective on

Algorithm 6.2.1 Preprocessing algorithm for AIS data
Initialize for every entry i:
Keep Vessel ID, timestamp, latitude, and longitude.
Sort dataset by vessel ID and sort each vessel data by date.
Apply resampling and outlier filtering on the data of each vessel to achieve a resampling
of 120 seconds.
For vessel i:
Split vessel data into trajectories containing ten consecutive vessel positions each.
Create final preprocessed dataset which should contain the vessel ID and final 10-position
trajectories. Reject timestamp information.

geolocation data, performing a mild denoising as well. A heuristic which rejects very far-
off outlier values due to GPS errors was also applied. The trajectories were split in data
samples each one containing ten consecutive vessel positions. Mind that each trajectory’s
starting point should be the last point of the previous one resulting in an overlap of one
point, but this final position will be used as the model’s output, so no actual overlapping
exists within the input data. The resampling and splitting process yielded a total of about
14k samples from 3.1k resampled trajectories of the initial 180 vessels. Algorithm 6.2.1
depicts the step-by-step procedure of preprocessing.

Once the AIS transceiver data has been preprocessed, VTP algorithms can be employed
together with CA techniques in order to identify imminent threats and navigate safely and
efficiently within heavily crowded port areas or open seas. Let us suppose an available AIS
dataset, comprising an arbitrary number of T° trajectories for a total of V vessels, where

v=1,2,..,V . Letus also suppose that the included trajectories contain an arbitrary number

of K™ AIS messages AISm;" (timestamped geolocation and other data). In this work, for

simplicity reasons, we employ the following format in AIS messages

Alsmt ={dey' y' x)') (6.2.1)

t

where k=1,2,..., K™, dt:’t denotes the message timestamp, while y,” and x,f’t are the

respective latitude and longitude contained in the 4-th AIS message for the #-th trajectory
of the v-th vessel. The fact that there are unknown parameters e.g., the state and controls of
the vessels, prohibits the use of kinematics in calculating future vessel states. Nevertheless,
the vessel dynamics exist in the information hidden within the dataset and can be extracted
and, in most cases, approximated by using a black-box modeling technique such as RBF
NNs. We can assume that a common underlying pattern exists in the dynamics of same-

size vessels executing similar maneuvers, for example when approaching or leaving a port,
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when berthing, when crossing waterway paths, etc. Thus, if a suitable dataset of sufficient
size is made available, an RBF NN can be trained to perform one-step-ahead predictions

about a vessel’s future geolocation by using past AIS messages as seen in the following

equations
4y —RBFNN(AISm”'t AISm™ ) 6.2.2
di\:v,f B k k-N ( e )
k+1
Aot — v,t+d’\v,t
oo (623
X1 =% +dxk’+1

where N is the number of past AIS messages given as inputs to the RBF NN.

Delta values of the last position of each sample were used as the model’s output, while the

first nine positions were the model’s input

d’\v,t
{d?;;l}RBFNN(y:" 0w x) (6.24)
k+1

The dy;", and dx}’

4 ' values may be added to the last input position to calculate the final
predicted vessel position. Based on the above procedure, the results of the modeling process
produced an RBF model of very high accuracy [6]. The step-by-step procedure of the

modeling stage can be seen in Algorithm 6.2.2.

Note that, the number of past inputs was determined after a trial-and-error procedure, where
several RBF models were trained using a different number of inputs. After testing inputs in
the range of 3 to 15 past vessel positions, data obtained on model performance showed that

using less than nine inputs produced models with reduced prediction accuracy, while using
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Algorithm 6.2.2 Creation of RBF models for the VTP task
Initialize:
Load final preprocessed dataset
For vessel i:
Replace the final value of all included 10-position trajectories with the

) . dyv,t yv,t _yv,t )
respective delta value according to < " »=1"" “° + so that each trajectory
dxlo X9 —Xg
sample is in the form [yf" oty Xt Lyt xyt dy™ dx”] .

Randomly permute the trajectory samples of i vessel.
Split the trajectory samples of i vessel into training, validation, and testing
subsets (in this work a 50%-25%-25% percentage split is used). Do this so that

all vessels contribute to all three subsets according to the chosen splitting.

Merge all subset samples e.g., all training samples of all vessels together in one
single dataset that will be used for training. Do the same for the validation and testing subsets.

Normalize the inputs and outputs of the training subset. Apply the normalization coefficients to
the validation and testing subsets.

Apply the fuzzy means algorithm on the training and validation dataset using the nine first sets
of y”' —x"" values as inputs and the last set of dy”' —dx®" values as output.

Yield RBF model trained on VTP data

more than nine inputs increased the model’s complexity without any accuracy gain

compared to the model using nine inputs.

Moreover, a series of tests has been performed by the recurrent application of this model
based on a horizon of 5 timesteps for all trajectories of the testing subset, where at each
successive timestep the model had to use an increasing number of its own previous
predictions. As the model uses more of its past predictions, accuracy decreases due to the
enlargement of the propagated prediction error. Such a test can provide intuition on the
models’ ability to be incorporated in receding horizon predictive frameworks. The quality
metrics used for these tests were the root mean squared error (RMSE) and the root mean
squared haversine formula distance (RMSHFD). The haversine formula is commonly used
to measure great circle distances on spherical surfaces. Table 6.2.1 presents the performance
metrics obtained after the recurrent application of the chosen model in order to make
predictions for the full length of the trajectories included in the testing subset of the training
procedure. Mean RMSE values for the two outputs of the model, namely the latitude and
longitude, are provided in degrees, where in can be seen that the error lies in the order of
1.5 thousandth of a degree. The mean RMSHFD metric shows the respective error margin
in meters when combining the two model outputs to get the actual predicted future vessel
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Table 6.2.1. Performance metrics of the produced RBF NN model

RBF NN
Latitude (y) Longitude (x)
Mean RMSE (deg) 1439-10¢ 1567-10°
Best combined RBF models
Mean RMSHFD (m) 1200

position for all tested trajectories. More details on the modeling procedure for the one-step
ahead models, including detailed results and comparison with other machine learning

approaches can be found in [6].

6.2.3  Vessel Collision Avoidance Problem Statement

The objective of maritime collision avoidance is the generation of a risk-free trajectory
which the controlled vessel should follow. A well-defined and effective method of assessing
collision risk in the near future is the closest point of approach (CPA). Stemming from the
concept of the CPA, two metrics are defined: time to CPA (TCPA) and distance to CPA
(DCPA) (see Fig. 6.2.2). A discussion regarding the quick calculation of TCPA and DCPA
using the line-of-sight (LOS) distance between the controlled vessel and the obstacle ship
is presented in [175]. These metrics depict the urgency of the collision danger of vessel 1
with another vessel j as well as its magnitude, and by specifying lowest acceptable
thresholds d,,inand t,;;, concerning the minimum DCPA and minimum TCPA,

respectively, one can construct a risk cost function, as presented in [175]:

exp (ao (dmin — DCPA(T;, Tj) + tmin — TCPA(T, Tj))) -1
frij = if DCPA(T,T;) < dmin and TCPA(T,T;) < timin (6.2.5)

0, if otherwise
Here, a, is a scaling parameter, and T; denotes the trajectory matrix containing the x-y

position of the i vessel for every timestep:

X1 }’1]
xn yn

By combining TCPA and DCPA, the spatial-temporal nature of a maritime collision risk

T, = (6.2.6)

with vessel i is successfully reflected. The physical interpretation of equation (6.2.12) is
that a candidate trajectory with larger minimum distance from an obstacle ship occurring at
an earlier time will always be safer than a path with a smaller minimum distance and/or

earlier time of occurrence. Common values for t,,;,and d,,;,, are 10min and 0.6nm; because
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Figure 6.2.1. Illustration of the CPA metrics, as well as the LOS angle concept.

-

(a) (b)

Figure 6.2.2. (a) a head-on situation between two ships (b) a crossing situation between two ships (give-

way); the orange ship must give way to the crossing ship on its starboard side.

the present work is concerned with CA in busy waterways such as ports, a lower d,,;, value
of 0.4nm is used. In any case, equation (6.2.12) can be readily incorporated in the cost

function of an MPC optimization problem formulation.

A second item in the domain of trajectory generation is efficiency. Vessels should strive to
not deviate too much from their original course, when addressing a collision risk with
another vessel. The efficiency of the generated trajectory T; for vessel i can be reflected by

calculating the sum of absolute deviations from the original trajectory Tyg ;

fai = |Toc: = Ti|- (6.2.7)
Next, an important requirement to be fulfilled when addressing the problem of CA are the
COLREGs [174]. The implementation of the COLREGs restrict the domain of possible
candidate paths according to the type of encounter, for example “head-on”, “crossing” and
“overtaking”. Head-on vessels should pass each other on the port side, while a vessel
crossing from the starboard side should be given way. A visual depiction of the encounter
rules takes place in Fig. 6.2.2. Multiple approaches for the modeling of the COLREG rules
have been made in the literature [172], [175], [178], although these are usually concerned
with a one-step-ahead calculation. However, for the case of an MPC controller, in order to
ensure COLREG compliance for a candidate trajectory, all of its waypoints must be taken
into account. By assuming that the LOS angle is increasing in the anti-clockwise direction,
one needs to evaluate whether the LOS angles of each sequential trajectory timestep

position are increasing monotonically, in order to confirm the compliance of the trajectory

for the ‘head-on’ and ‘give-way’ situations.
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The idea is depicted in Fig. 6.2.4, where a head-on encounter between vessels i and j occurs;
here, the LOS angles for trajectory T; monotonically increase, therefore it is deemed as
compliant. In contrast, the monotonically decreasing LOS angles of the T; trajectory
confirm its non-compliance as per the COLREGs intentions. A penalty for non-compliance
of a vessel i encountering a vessel j in a ‘head-on’ or ‘give-way’ situation can therefore be

formulated,

(6.2.8)

p. — 1, if ALos;; N
Y |0, if otherwise

where ALosy; is the LOS angle vector, calculated for each trajectory point of encountering

vessel i and the current position of encountered vessel ;.

6.2.4  Methodology
6.2.4.1 Vessel Kinematic Model Creation

The generated vessel trajectory, apart from being safe and COLREG compliant, should also
take into account the maneuvering capabilities of the controlled vessel, i.e. it should be
guaranteed that the trajectory is kinematically possible to be tracked by the vessel. The
feasible search domain of the trajectory optimization problem can be constructed by a
purely geometric approach in the case of a one-step-ahead calculation, such as in [175],
where the design variables are the vessel’s next position and course. However, the extension
of this geometric approach to multiple-steps-ahead requires the application of nonlinear
constraints that would bound every sequential vessel position with its previous one, in order
to enforce technical feasibility. For this reason, a model-based approach is preferred. The
Nomoto models constitute a class of vessel course models that are tailored for this task, and
have been widely adopted, not only for the design of CA schemes [201], but also for path
tracking controllers [202]. The 1% order linear Nomoto model is shown as follows:
o
*dt
Here, o is the angular velocity of the vessel, while a is the control input to the vessel’s

4+ w = Ksa (629)

rudder. The maneuvering capabilities of the vessel are reflected by the T and K constants,
called time constants and rudder gain constants, respectively, while typical values are in the

[0.5, 2] range for both. Solving the differential equation (16) by assuming constant rudder
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angle input for a ¢ time interval, the 1% order linear Nomoto model can be discretized as

follows [178]:
t
A0(t) =K a (t —Ts + T exp (F)) (6.2.10)
S
Here, 46 is the course change that would occur if a control input of a was applied and held

for a time period of t. By setting this time period ¢ as the discretization interval At, a course

model can be used to create a discrete vessel position model as follows:

9k+1 = Hk—l + Aﬁk(ak) (62113)
Xp+1 = X + COS(9k+1) Vk At (6211b)
Vik+1 = Yk + Sin(9k+1) Vk At (6211C)

Here, 0y, xi, Vi 1s the current course, horizontal displacement and vertical displacement
according to a global reference frame, respectively, while V}, is the vessel velocity. The
discretization interval At can be set according to the simulation resolution required. Egs.

(6.2.11) constitute a discrete position model L; for the i-th vessel,

with input vector u; = [a V] and state vector x; = [@ x y]. By evaluating the discrete
vessel position model L; for {1,2, ..., n} consecutive timesteps, where 7 the total timesteps,

a trajectory T; can be created for the i-th vessel, as shown in eq. (13).

6.2.4.2 MPC scheme with Collision Avoidance

The MPC framework has demonstrated its aptitude in handling the uncertainties and
nonlinearities of the CA problem multiple times in the literature [12], [24] , however, no
other works have incorporated a data-based obstacle trajectory prediction model in their
formulation, much less a nonlinear one. In MPC, the optimal control moves of the
controlled vessels are calculated for multiple steps ahead by solving a constrained optimal
control problem, with constraints in real time, for each controller sample time t_;. The cost
function of the OCP is constituted by a prediction horizon N. Given a set of controlled
vessels V, = {1, 2, ..., N.} and a set of non-controlled or obstacle vessels V, = {1, 2, ..., N, }
where N, and N,, are the total number of controlled and non-controlled vessels, respectively,
the OCP’s cost function can be formulated as the summation of all the cost functions of the

respective controlled vessels for the ith timestep:

minJy (X(k), U(k), X, (k) (6.2.13a)
s.t. Uk) €U (6.2.13b)
Xo = X (6.2.13¢)
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P(X) =0 (6.2.13d)

Ny(T,, T;) = d, (6.2.13¢)
X = fyomX U) (6.2.13f)
Xo = fRBF(XO) (6.2.13g)

X (k) and X, (k) contain the states of the controlled and obstacle vessels, respectively, in a
single state matrix. U(k) is the input matrix and is created by the horizontal concatenation
of the input vectors of all controlled vessels V., up to horizon N at timestep k:

u (k) wk+1) - u(k+N-1)

U(k) = (6.2.14)

(k) (k+1) o uy (k+N—1)
Next X (k) and X, (k) are created by the horizontal concatenation of the state vectors of all

controlled and non-controlled vessels V, and V,,, respectively, up to the prediction horizon

N.

x (k) x(k+1) - x;(k+N-1)
Xt =| : s (6.2.15a)
xy (k) xn (k+1) - xy(k+N-1)
xo,l(k) Xo,1 (k + 1) xo,l(k + N — 1)
X, =| ; (6.2.15b)
Xo,N, (k) Xon, (k+1) - Xo,N, (k+N-1)

For simplicity, because consecutive state vectors x;(k) up to x;(k + N — 1) constitute a
single trajectory T;(k), one can write X(k) and X,(k) as the concatenation of the

trajectories of the respective vessel sets V., V, as per equation (6.2.15):

Ty (k) To,1 (k)
X, (k) = : (6.2.16)

X(k) = .
Ton, ()

T, (k)

State transition function X* = fy,m (X, U) represents the kinematic model that is used for
the controlled vessels. U represents the admissible input space, X the admissible state space
denoted by constraints (6.2.13¢c-g), and Z = X X U the admissible state-input space. One
can also rewrite X (k) as the vertical concatenation of the two state matrices X (k), X, (k),

containing the trajectories of all vessels V = V. UV,:

X(k) = [Ty(k) ... Tn,(k) Toa(k) - TO,NO(k)]T_ (6.2.17)

Returning to OCP (6.2.13), Jy () represents the cost function:
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N-1
WU, X) = ) [Z (X Ck+), UGk + ), Xo(k + )

7= Liev (6.2.18)
+ z v (XCk+ N = D)+ Z G(U(K))
iev iev

The G (+) function, weighted by the a; parameter, encourages the smoothness of the control

actions and consequently, the generated trajectories of the controlled vessels:

N-1
G(U(k) = ag Z 1Us 410 = Uy ;0| (6.2.19)
j=1

Next, €;(-) is the stage cost function of the i-th controlled vessel, and consolidates the

collision avoidance and course keeping objectives:

6i(X,U, Xo) = ar z (fri® (%)) + Z (fr,ijz (Xi'Xo,-)) ﬁ(@z.zm

JEVAL J€Vo
+agq fa;" (X))
In equation (6.2.20), f;.;;(*) is the collision risk between the i-th and the j-th vessel, as
calculated using their respective trajectories X;(k), X;(k) by applying equation (6.2.5), and
fai(*) is the deviation from the original trajectory Ty ;, as expressed in equation (6.2.7).
Both terms are weighted by the a, and a; weighting parameters, respectively. Since we are
concerned with the safety of the generated trajectory throughout the whole prediction
horizon, the mean collision risk from all vessels in set V\i is evaluated, in contrast to other
approaches [175], where only the maximum collision risk at time 4 is minimized. This way,
all possible collision risks are addressed and reduced simultaneously, thus avoiding the
adverse possibility of evading one collision risk and increasing another. Moreover, the
reason that risk avoidance is entered as a control objective in equation (6.2.20) and not as a
hard optimization constraint is to ensure the feasibility of the OCP (6.2.13) in the case of
the existence of an inescapable collision risk; as shown in equation (6.2.5), risk is a function
of distance to CPA, meaning that the controller will continue to attempt to maximize that
distance, thus continuing to fulfil the control intention. Lastly, the terminal cost for each

vessel Ve, is calculated as the cost of deviation from the original trajectory for the last state:

Vr, (i) = fa* (Xi,N(k))- (6.2.21)

At this point, it must be noted that since the state matrix X (k) consolidates all controlled

vessel trajectories, a degree of cooperation is induced. Lastly, returning to the OCP denoted
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in equation (6.2.13), the U (k) input matrix is bounded by the upper and lower matrices U,,,
U,, respectively. The function P(+) returns the COLREG non-compliance penalties for the
controlled vessels V. as calculated in equation (6.2.8), and are required to be zero via an
equality constraint. The function N;(-) returns the DCPAs of all controlled vessels V,,
requiring them to be above an emergency distance d, (d, < d,;i)- The inclusion of this

constraint in the OCP constitutes a hard guarantee of collision avoidance.

The next item to be addressed regarding the MPC formulation is the used model that maps
the input variables U to the state variables of the controlled vessels X.. Here, the 1% order

linear Nomoto model is used, as described in equation (6.2.11):
xi(k + 1) = fyom(wi, x;(k)), i€V, (6.2.22a)
xi(k+1) = fNom,real(ui +e(w), xi(k)): e(u;) = u; N;(0,02) (6.2.22b)

Note that fyom,(+) represents the controller model and fyom req: the plant model used in
simulations, which contains input noise that accounts for modeling error e and
environmental parameters; N; is a random variable sampled from a Gaussian distribution

with a standard deviation of o.

Finally, the state matrix of the non-controlled vessels X, (k) representing the trajectories of
the obstacles is unknown, and thus an estimation is required, based on past positions. For
this task, the prediction model fzpr(-) presented in Chapter 3 is employed for each non-
controlled vessel j, and its trajectory is estimated using its past nine positions ¥, ; that were

measured:

To,j (k) = fapr (%o, (K, Zo j (k' = 1), .. %o (k' =9)),  jEV, (6223)

Note that, in order to filter out possible noise during obstacle position measurement ¥, ;, a
larger timestep is used, which is a multiple of the controller timestep k, i.e. k' = ak, where
« is an integer. In other words, the obstacle trajectory predictions are refreshed every k',

meaning that the controller uses the same predictions during the range [k', k' + 1].

Still, the deployment of frgr(-) in MPC poses a significant challenge, since its generated
predictions T, ; that form X, (k) enter the objective function Jy(-) as shown in eq. (6.2.18),
and can thus affect its Lyapunov characteristics. It is noted that since X, (k) is refreshed on
a larger sampling time than MPC, it can be considered as a piece-wise constant signal within

the OCP (6.2.13). By furthermore treating it as a control reference signal, one can possibly
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utilize stability results on tracking NMPC for piece-wise constant reference signals, such
as the one recently proposed by Limon et al. [203]: The idea is to add an artificial reference
signal as an extra decision variable in the OCP, in order to circumvent any loss of feasibility
originating from external changes to the setpoint. The convergence to the (original) setpoint
is subsequently pursued by extending the OCP’s objective function Jy (-) with a term that
penalizes the difference of the artificial reference from the setpoint. The new OCP is thus

formulated:

min (X0, U(K), X, (0, X\ (k) ) (6.2.24a)
U)X 1)

s.t. (6.2.13b—h) (6.2.24b)

Where the new objective function | IE,a) is given by:

(x,0,%,x7) =

N-1
] , . () ;
Z [Z £ (X + ), Uk + ), Xo(k + ) = XS (k + ) (6.2.24c)

j=0 Liev

£ G +Vo(X, X5)

eV

+ Z Ve, (X(k + N - 1))

eV

Here, Vy: RNVo*N — R is called the offset cost function, and penalizes the difference

between X, and X, éa). One can consider | Ig,a)(-) as a relaxation of Jy (-), which is performed
in order to ensure feasibility in the presence of an externally-set piece-wise constant

reference signal.

Corollary 6.2.1 (Asymptotic stability of MPC based on eqs. 6.2.24): Suppose assumptions

of Theorem 4.3.3 are satisfied as well as

A. Vessel trajectory prediction function x* = fppr(x,u) is bounded & continuous
V(x, u) € Z, fRBF(x, u.) € Xf andeBF(0,0) =0

B. Vessel kinematic model function x = fyom(x,u) is bounded & continuous
V(x,u) €EZ

C. Initial state x|, lies in the region of attraction & prediction horizon N is sufficiently
long

D. Assumption 2 of [203] is satisfied.

Then, the origin is asymptotically stable in Xy, where ky(x) is the MPC control law
derived from 6.2.24.
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Proof: Vessel stage cost #; is a positive definite function, representing the collision risk
comprised by f;.;;() and f4;(-), which are also positive definite; f..;;(-) is built using
exp(-) (positive definite as well), and f;; ;(-) which represents the norm of state deviations
from the original trajectory Tyg ;. Since the MPC stage cost is the summation of #; for all

i € V., then the MPC stage cost is also positive definite. Next, the MPC terminal penalty
Yiev, [Vfi(X )] is also positive definite. Moreover, Assumption D can be satisfied by opting

the offset function V,, to be any K, function.

Therefore, given Assumptions A-D, Theorem 1 of [203] can be leveraged to show

asymptotic nominal stability of the scheme. m

Next, in order to alleviate a possible computational burden for the MPC optimization
problem, an important assumption should be made. The formulation of the control scheme
as-presented would give rise to a high-dimensional search space for the MPC optimization
problem, thus greatly hindering its effective solution. It is assumed then, that all vessels
retain their initial speed, with the only controllable variable being the vessel’s rudder angle;
this way, the total number of control variables is reduced. This approach to the CA problem
has occurred in the literature [175] and is not simplistic, for two reasons: first, good
seafaring practice dictates that course change maneuvers are preferred over speed ones, not
only because they conserve energy, but also because they better emphasize the intentions
of the vessel to outside observers, such as other vessels in the vicinity. Secondly, since large
container ships will be examined in the scope this case study, their large longitudinal inertia
[202] confirms the assumption that the speed remains almost constant during the timeframe
of a typical CA maneuvering scenario. Therefore, for the scope of this work, the input

matrix U at timestep k is formulated as follows:

a; (k) ay(k+1) - ay(k+N-1)

Uk) = (6.2.24)

aNC(k) aNC(k + 1) o0 aNC(k + N — 1)
Where a;(k) is the rudder angle of vessel i at timestep £.

Having defined all aspects of the MPC optimization problem, a reiteration of the challenges
of the CA control problem and how they are addressed by the controller is in order: Firstly,
the goal of the control design is to generate trajectories for the controlled vessels that are
risk-free (equation (6.2.5)), smooth (equation (6.2.19)), COLREG-compliant (equation

(6.2.8)) and not deviative from the original course (equation (6.2.7)). Possible collision risks
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are assessed by utilizing trajectory predictions for non-controlled (obstacle) vessels in the
vicinity. The controllable variables are the rudder angles of the vessels (vessel speed is
considered constant), while a discrete 1% order Nomoto model (equation (6.2.21)) is used
for the modelling of the vessel dynamics, which was also infused with a noise signal for the
purpose of accounting for uncertainties and environmental factors. The aforementioned
vessel dynamics model has been compared to its higher-order nonlinear counterparts in
[204], and it was shown that vessel course inaccuracies occur only for high yaw rates. Given
the fact that the proposed CA method is concerned with large vessels with slow dynamics,
the used vessel dynamics model is adequate for the case. In addition, MPC has shown to be
robust against model uncertainties or input noise [199]. Finally, the constraints that must be
adhered to when searching for the optimal solution (Problem (6.2.13)) are the technical
bounds on the controlled variables (i.e. maximum and minimum rudder angles) and the

COLREG compliance of the result trajectory.

6.2.4.3 Data-driven collision avoidance control framework

Having presented the proposed MPC controller, this section describes its integration within
a general control framework. As shown in fig. 6.2.3, the framework is comprised by an
offline and an online process. The offline process corresponds to the RBF trajectory
prediction model training, using data from a specific area of interest (for example, a port) -
naturally then, it could be undertaken by the port authority. The online process corresponds
to the real-time control of autonomous vessels in the presence of obstacle vessels in the area
of interest. The MPC CA controller, as described in subsection 6.2.4.2, is integrated here
and is supplied with real time trajectory predictions of all obstacle vessels in order to
calculate the optimal control actions for the controlled vessels. Since the RBF trajectory
prediction model has been trained offline in the port authority premises, it is sensible to
place the MPC controller there too, and communicate the computed control actions per
control timestep via a communications link with the controlled vessels. Figure 6.2.4

demonstrates this concept.
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Figure 6.2.4. An example of two cooperating vessels with a central controller

The OCP (6.2.13) is solved using an active-set sequential quadratic programming (SQP)
algorithm described in (2.1.4), which involves iterative calls to the objective function [205].
As shown in fig. 6.2.5, the integration of the MPC controller in the control framework
requires the calculation of the obstacle vessel trajectory predictions for every controller
timestep. Therefore, two main sources of computational complexity arise: The first is the
evaluation of the RBF trajectory prediction model, which is shown to be in the order of
magnitude of milliseconds [6], meaning that multiple obstacle vessels can be accounted for
by the control scheme. The second is the solution of the optimization problem (equation
(6.2.13)) by the SQP algorithm, which is known to converge quickly and with few objective

function calls [206]. It is concluded that a typical controller timestep duration, comprised
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by the two aforementioned sources, will not exceed the order of magnitude of seconds,

which is considered reasonable given the slow dynamics of large vessels.
6.2.5 Results
6.2.5.1 Case Study

In this subsection, the performance of the proposed multi-ship MPC controller is assessed
using real-life obstacle ship trajectories, which were sourced and preprocessed as described
in section 6.2.4. In order to underline the importance of using sophisticated trajectory
prediction models in the context of CA controller design, the proposed method is compared
to an MPC controller that uses straight-line predictions for the trajectories of obstacle ships,
based on their current course and speed [12]. To this end, two crossing scenarios are
examined, while performance indicators of the generated trajectories are extracted and
discussed in detail. The simulations were coded and executed on MATLAB 2020b, on a
computer with an Intel i7 processor and 16 GB RAM. The simulation sample time is 30”.
Lastly, the tuning and parameters of the methods are shown in Table 6.2.2, while the vessel

parameters are shown in Table 6.2.3.

For this case study, two controllable vessels are chosen, moving in parallel to each other
and encountering an obstacle vessel moving into the port of Miami. For the performance
evaluation of the two controllers, two scenarios are created; the first contains a head-on
encounter type, while the second an overtaking maneuver that changes into a crossing
encounter as time progresses. In the first scenario, the two controlled vessels are leaving

the port of Miami at a course of 110°, when they encounter a single obstacle on their

Table 6.2.2 MPC tuning parameters

Parameter Description Value

test Controller sample time I
hy Control horizon 5
h Prediction horizon 15
ao Risk function scaling parameter

ar Risk term weighting parameter 1
ag Course deviation term weighting parameter 0.05
ag Control action smoothness term weighting parameter 5

Table 6.2.3. Vessel parameters

Parameter Description Value
dmin Minimum allowable DCPA for risk calculation 750m
de Emergency distance 200m
tmin Minimum allowable TCPA for risk calculation 10’
K Rudder gain constant 0.5
T Rudder time constant 2
Myron Papadimitrakis
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starboard side which, in turn, is looking to enter the port. In the second scenario, the two
controlled vessels are overtaking an obstacle vessel on her port side when suddenly, she
turns port-side in order to enter the port of Miami, crossing into their intended path. The

challenge posed by the two scenarios is that the two controllable vessels should maintain a
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safe distance between each other and the obstacle vessel, while also navigating smoothly
and without unnecessary deviation from their original course. It should also be noted that

the obstacle vessel is non-controllable and therefore follows a predetermined path, without

considering other vessels.

6.2.5.2 Results & Discussion

controlled vessel 1 original path controlled vessel 2 original path e obstacle vessel path ——controlled vessel 1 past position

obstacle vessel past positions controlled vessel 2 past position

— — - controlled vessel 1 intentions

— — —controlled vessel 2 intentions

. controlled vessel 1

. controlled vessel 2

Y N
A\ b i
25°46N N ‘\ 25°46N >3 ]
1
\\ \\ \ r ‘\s\ 1
AN \ (R ]
N P \\ ! \EK'».
[} B, Dl &Y [} o,
° b Yo - LN
3 25°45'N \ \ ‘\.,\:\ .‘g 5°45'N 1 LN -"(‘
= kY ® %
| -
25°44N 25%44N
80°00'W 80" 08'W so'oTW 80°06'W 80"os'W BO"O4'W 80" 09'W 800w 80°0T'W 80°06'W 80"0S'W B0"04'W
Longitude Longitude
(al) (b1)
i i [~ T 7
I I ! I
25°46N | I 25°46'N ! 1
4 { ! 'l
N4 N )
GOl | | gy S
3% o
Eoa, oy
] 8 A
- 25°45N - 25°45N
= =
£ — -
© ©
- -
25°44'N | 25"44N
80°09'W 80" 08'W 80°0T'W 80°06'W 80°0S'W 80"04'W 80°00'W 80°08'W so*orw 80" 06'W 80°05'W BO"04'W
Longitude Longitude
(a2) (b2)
T ' T ¥
! 1 i ]
1 | | J 1
25%46'N r t 25%46'N I . ¥
/ I ’
o
=N ©
]
° °
=3 25°4SN = 25%45N
= s
- -
© ©
- -
25°44N F 25°44N
80'09'W 80toe'wW 80°0T'W 80°06'W 80°0S'W 80" 04'W 80°09'W 80"08'W so*orw 80" 06'W 80"05'W BO"04'W
Longitude Longitude
(a3) (b3)
~ T ] F T
25%46'N 25%46'N
] )
° °
=3 25°45N = 25°45N
s =
- -
© ©
- -
254N - 25%44N
80°00'W 80*08'W 80°0OT'W 80°06'W 80°0S'W 80 04'W 80°09'W s0"08'W 80'OT'W 80" 06'W 80°05'W 80°04'W
Longitude Longitude
(ad) (b4)

0

obstacle vessel

— — —obstacle vessel path prediction

Figure 6.2.5. Scenario 1. The left subfigure column refers to the MPC-SLP scheme, while the right to the
MPC-RBFP scheme. Subfigures (al, b1) refer to time instance 3’, (a2, b2) to 9’, (a3, b3) to 10" and finally, (a4,

b4) to 16.5
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The response of the MPC controller utilizing straight-line prediction models (hereby
referred to as ‘MPC-SLP’ for the first scenario is shown in the left column of subfigures
within Fig. 6.2.5, for the 3-, 9-, 10- and 16.5-minute timesteps. The response of the proposed
MPC controller utilizing RBF prediction models (hereby referred to as ‘MPC-RBFP’) for
the same scenario and same time instances are shown in the right column of subfigures
within Fig. 6.2.6. Next, the responses of MPC-SLP and MPC-RBFP for the second scenario
are shown in the left and right subfigure columns of Fig. 6.2.8 respectively, for the 6-, 12-,
13.5-, and 17-minute timesteps. In the aforementioned response figures, the red and blue
dotted lines denote the original, undisturbed trajectory for controlled vessels 1 & 2,
respectively, while the black dotted line shows the predetermined path that the obstacle ship
will follow as the simulation progresses. Next, the red and blue dashed lines denote the
trajectory that controlled vessels intend to follow, as calculated by the current MPC
iteration, while the black dashed line shows the current trajectory prediction of the obstacle
ship, as utilized by the MPC controller. The grey dashed circles have a radius of d,;,;;;, and
denote the safe ship domain for the two controlled vessels; should any vessel enter another’s
domain at any time, a collision risk arises. Lastly, the red-colored and blue-colored
rectangles mark the controlled vessels 1 & 2 positions, respectively, while the grey
rectangle marks the obstacle ship’s position; it should be noted that the markers are not to-
scale with the real dimensions of the vessels, since they have been enlarged for graphical

convenience.

Firstly, in order to assist the discussion in this subsection, distance plots are generated for
the controlled vessels that are in closest proximity with the obstacle ship, for each scenario
(see Fig. 6.2.7). In addition, the performance metrics for each controller in each scenario
are shown in Table 6.2.4. For the head-on encounter of scenario 1, the correct trajectory
prediction of the obstacle ship proves vital for the success of the proposed scheme.
Considering timestep 3 (see Figure 6.2.5.al, 6.2.5.b1) the MPC-RBFP scheme is already
applying evasive control actions, since the correct inference of the general direction of the
obstacle ship has given rise to a possible collision risk in the near future. In contrast, the

MPC-SLP controller does not apply any control actions yet, because, based on the straight-
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Figure 6.2.6 Scenario 2. The left subfigure column refers to the MPC-SLP scheme, while the right to the MPC-
RBFP scheme. Subfigures (al, b1) refer to time instance ¢’, (a2, b2) to 12/, (a3, b3) to 13.5" and finally, (a4, b4)
to 17

line prediction model that it utilizes, the obstacle vessel will continue north and thus remain
well clear of the controlled vessels. For the same reason, it takes MPC-SLP another 5’
minutes in order to correctly assess the collision risk and apply decisive control actions, but
by then it is too late; by timestep 9° (see Figures 6.2.7.a3, 6.2.7.b3), controlled vessel 2
reaches its CPA with the obstacle ship, with a DCPA of 680m for controlled vessel 2, well
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Figure 6.2.7. Distance plots for scenarios 1 & 2. The left subfigure column refers to the MPC-SLP scheme,
while the second to the MPC-RBFP scheme. Note that for scenario 1 (a1, b1) and for scenario 2 (a2, b2), the
MPC-SLP violates the lower limit on distance from CPA, therefore its trajectories are deemed unsafe.

below the acceptable minimum distance d,,;;, as shown in Figure 6.2.7.al. In contrast, the
MPC-RBFP controller generates a smooth, safe, and consistent trajectory, owed to the
correct trajectory prediction of the obstacle vessel. Not only does it reach an acceptable
DCPA of 751 meters for controlled vessel 2, but it also manages to apply consistent control

actions and not significantly deviate from the original course, as shown in Table 6.2.4.

Next, the performance of the two controllers is assessed in an overtaking/crossing encounter
in scenario 2. Here, the effect of the used trajectory prediction models is once again
eminent: At timestep 6 (see Figures 6.2.6.al, 6.2.6.b1), MPC-RBFP calculates a sharp
control move to port-side for controlled vessel 1 in anticipation of the obstacle ship’s
crossing towards the port of Miami; in contrast, MPC-SLP applies a lower rate of steering
for controlled vessel 1, because the straight-line trajectory prediction places its CPA with
the obstacle ship at a later time instance. This failure to correctly place the CPAs has adverse
effects on vessel 2 trajectory, too, since it is displaced unnecessarily to the left in false

anticipation of a collision risk. In addition, the obstacle ship crosses into the domain of
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Table 6.2.4. Performance metrics for the generated trajectories of the MPC-RBFP and MPC-SLP schemes for
the two simulation scenarios

Scenario 1 Scenario 2
Controlled
MPC-RBFP MPC-SLP MPC-RBFP MPC-SLP
Vessel
Course 1 1.31 104 2.21 104 0.658 10* 0.521 10¢
deviations ® 2 1.49 104 2.85 104 0.404 10 0.529 104
Control action 1 307.35 476.59 242.12 167.85
smoothness @ 2 290.94 42443 92.47 128.41
1 0 4.032 106 0 0
Risk of traj &)
isk of trajectory 5 0 0 0 3.949 106
Cost of trajectory @ 1 9.05 10°¢ 1.62 1013 2.63 10¢ 1.49 10¢
jectory 2 2.63 106 415107 8.58 10° 1.55 1013

(1) As calculated by equation (14)
(2) As calculated by equation (26)
(3) As calculated by equation (12)
(4) As calculated by equation (24)

controlled vessel 1 (see Figure 6.2.6.a2) once it changes course towards the Miami port at
timestep 8’. On the other hand, the MPC-RBFP scheme places controlled vessel 1 in a better
position to narrowly evade the breach of its safe domain (see Figure 6.2.8.b2), throughout
the simulation. This performance is owed to the trajectory that the RBF model generated
for the obstacle vessel, placing its predicted CPA much closer to the real CPA for both
controlled vessels. Also, it should be noted that for scenario 2, unnecessary deviations from
the original course are avoided for controlled vessel 2, as indicated by the total deviation
values in Table 6.2.4. In general, the proposed method achieves a lower overall cost for the
generated trajectories, as shown in Table 6.2.4, while obtaining a certain degree of
cooperation between the two vessels, where one makes way for the other, in anticipation of
their upcoming evasive maneuvers. Moreover, the results show that the proposed method
exhibits robust characteristics against environmental effects, which are modelled as input
noise in the vessel dynamic model for the scope of the simulations, while accounting for
COLREGs. Lastly, the average CPU time evaluation of the MPC calculation was recorded
as 7 s for both scenarios, which is well within the allocated simulation controller timestep
tee of 60 s, proving that the proposed method is scalable to more controlled vessels and

obstacle vessels.

6.2.6  Conclusions and Future Prospects

In this section, a data-driven tracking MPC controller utilizing RBF obstacle ship trajectory
prediction models trained on real AIS data was proposed for the collision avoidance task in
busy ports or waterways. The simulations have shown that the incorporation of a trajectory
prediction model with a moderate degree of accuracy greatly benefits the performance of a

CA controller.
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The future prospects of the proposed data-driven MPC CA controller extend further than
the specific case study presented; other types of systems such as underwater or aerial
vehicles could benefit from the black-box models of obstacles that the RBF networks
permit. Since sophisticated RBF obstacle models can detect a collision risk correctly and in
time, the planning of more economic trajectories for the controlled vehicles can be
executed. This constitutes a significant benefit towards the economic navigation of
vehicles, which can be further complemented by the design and development of data-driven

economic propulsion controllers, as will be shown in the later chapter.
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Chapter 7:

Data-Driven Economic Nonlinear Model Predictive Control

Economic MPC address the need of optimal economic performance of a process, rather
than the tracking of a specific setpoint. Contrary to tracking NMPC, where the stage cost is
lower bounded by a K, function and is usually of the form £,(x,u) = QTxQ + RTuR,
economic NMPC can handle generic stage costs, provided that the formulation of its
respective optimal control problem adheres to the EMPC theoretical framework. As
discussed in Chapter 4, earlier research works on EMPC obtained nominal asymptotic
stability, either by using stage cost rotations by some storage function [79] or by terminal-
constraint-based approaches [78]. EMPC has enjoyed multiple applications, with
significant economic benefit [207]-[209].

However, the performance of EMPC controllers depends on the existence of an accurate
controller model. This motivates the development of data-driven EMPC techniques that
could handle model discrepancies as well as unknown disturbances so that superior
economic performance is achieved in practical settings. Several theoretical developments
of data-driven EMPC based on reinforcement learning (RL) have been proposed in the past
three years, pertaining to safety and stability of such schemes [210]-[212]. As one of the
most promising intersections of machine learning and control, RL is a sequential decision-
making computational intelligence algorithm that adapts a parametric internal
representation of the control process through trial-and-error [38]. Due to its black-box

nature, RL is well-oriented for usage in conjunction with an MPC formulation.

The purpose of this chapter is to leverage the latest theoretical developments in EMPC and
RL-MPC in order to create data-driven EMPC approaches for the economic control of a
vessel propulsion system. There is significant motivation for this particular choice of case
study: First, it is naturally related to the work presented in section 6.2, regarding the data-
driven MPC for vessel trajectory control with collision avoidance, since the combination of
both can result in autonomous data-driven controllers for the economic propulsion and
navigation of vessels. Second, the creation of economic marine propulsion controllers is of
significant consequence for the national Greek economy, which heavily relies on
international freight shipping. In short, the impact of this case study has both academic and

real-world merits.
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The chapter is structured as follows: First, an initial EMPC control law utilizing the latest
theoretical developments is constructed for the vessel propulsion case, in order to
theoretically establish the concept of using EMPC instead of tracking MPC for this specific
task. Next, the EMPC control law previously created is leveraged to create a data-driven
propulsion controller based on RL, capable of handling modelling discrepancies and
disturbances. In addition, a more detailed vessel propulsion plant model is introduced,
together with an economic stage cost that accurately reflects the high-level chartering
economics of freight shipping, thus further establishing the practicality and applicability of
the data-driven EMPC approach. Lastly, the possibility of extending the created RL-MPC

controller in order to include navigation objectives of the controlled vessel is explored.



Development of optimization and data-driven model predictive control methods using computational intelligence
techniques: Design and applications with emphasis on the economic operation of engineering systems

7.1 A Vessel Propulsion Controller based on Economic Model Predictive

Control

The importance of reducing energy expenditure in vessel propulsion is underlined by recent
environmental mandates in the maritime sector. Vessel propulsion is a multi-objective
problem, since the overall energy expenditure of the powertrain must be minimized, while
the vessel speed must be maximized. This section proposes an economic model predictive
control approach, which can accommodate powertrain efficiency maps and thus evaluate
candidate input trajectories in terms of energy efficiency. The proposed EMPC controller
utilizes recent theoretical developments in order to guarantee stability. Simulation results
are presented in comparison to a standard MPC scheme, for two different vessel sizes under
environmental disturbances, and are evaluated in terms of the overall energy expenditure
and the settling time to the desired vessel speed. Lastly, it is demonstrated that the proposed

approach achieves a reduction in energy consumption of up to 1.9% in a rough sea scenario.

7.1.1  Introduction

Even though shipping remains the most efficient type of bulk transportation of goods, recent
environmental mandates [213], as well as fuel cost increases, have ushered the maritime
sector to seek further fuel saving measures, particularly in vessel propulsion. On one hand,
fuel constitutes 75% of the total expenses of a vessel in a long-distance voyage [214]; this
incentivizes reduced engine loads and thus, cruising speeds [215]. On the other hand,
vessels are chartered under tightly-constrained port arrival times, meaning that there exists
an economic incentive for maximizing the vessel’s speed [216]. It appears then, that these
two conflicting objectives can be advanced concurrently only if the vessel propulsion

controller (VPC) operates the powertrain in an energy-efficient manner.

Previous research works have identified the engine speed of an internal combustion
powertrain as the parameter of interest regarding fuel consumption [214]. In [217], a
dynamic optimization problem is formulated over the whole span of the ship’s voyage in
order to generate economically optimal steady-state engine speeds. In [218], a model
predictive controller with a standard tracking stage cost that penalizes the distance from a
reference steady-state engine operation is presented; the aforementioned stage cost implies

the fuel consumption rate, while improvements are shown to be achieved in simulations.

Still, even though such control approaches commonly state to minimize energy expenditure,
in practice the actual economic criteria are not included in the objective function, and the
desired results are achieved only indirectly. Moreover, it should be noted that energy

efficiency of powertrains, whether of electric or internal combustion type, should not be
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assessed only by the engine speed at steady-state. In marine vessels there are multiple cases
where the engine is displaced from its optimal engine speed; propeller ventilation in rough
seas can momentarily reduce engine load, thus increasing engine speed for a given power
input [219], or adverse wind conditions may require the pursuit of a different engine
setpoint in order to retain the same vessel speed. In other words, optimal economic vessel
performance must accommodate the energy-efficiency of transient powertrain states, which

can only be attained by encoding the powertrains’ efficiency map in the objective.

Application of optimal control with such explicit economic criteria commonly requires the
problem to be formulated in an economic MPC framework. The consideration of purely
economic objectives in a receding horizon fashion has shown significant benefits in various
engineering domains [220]. Traditionally, stability of EMPC schemes was enforced by
dissipativity-based cost rotations, with or without terminal penalties and Lyapunov-based
stability [220]. Recently, a gradient-correcting terminal penalty was shown to be necessary
for stability whenever the economic cost has a non-zero gradient at the steady-state [221].
Lastly, this theoretical result has successfully been applied to the energy-optimal
coordination of autonomous ground vehicles at intersections [207]. To the author’s best

knowledge, no application of EMPC for the vessel propulsion problem exists.

The main contribution of this section is the development of a nonlinear EMPC controller
for the vessel propulsion task under environmental disturbances. The proposed controller
directly incorporates the economic criterion in the objective function, while also taking into
account the transient powertrain states. The asymptotic stability of the proposed controller
is guaranteed by adding a gradient-correcting end penalty in the cost function, to account
for the non-zero gradient at the economically optimal steady state. Two scenarios are
simulated; the first is a velocity setpoint change, and the second simulates a high-sea
condition that induces propeller thrust loss [222]. Comparisons to a standard MPC
controller for two different vessel types, in order to demonstrate the capabilities of the

proposed EMPC controller.

The rest of this section is structured as follows: Subsection 7.1.2 presents the nonlinear
plant dynamics, as well as the propulsion objectives. In subsection 7.1.3, the proposed
EMPC formulation is detailed. Subsection 7.1.4 presents the simulation results for the two
scenarios, and finally, conclusions and plans for future research are drawn in subsection

7.1.5.
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7.1.2  Vessel Propulsion Control Problem Statement
7.1.2.1 Vessel dynamics

Since this section is concerned with the performance of a vessel propulsion controller, only
the surge dynamics of the vessel are considered. These consist of the vessel’s hull dynamics,
as well as the powertrain’s rotational dynamics. The hull dynamics are based on the
standard non-dimensional form of SNAME [202], while the powertrain dynamics take into
account friction terms as well as the energy efficiency map. The longitudinal hull dynamics

are as follows:

1
V= m(quvz + L2(1 — 1) Tyndpn? + Wyd,,) (7.1.1)

Here, v is the longitudinal speed of the vessel, # is the angular velocity of the propeller, and
d,, weighed by w,, is the longitudinal acceleration induced by the environmental conditions
such as waves or wind gusts. The parameter m is the inertia (including the added mass along
the longitudinal axis), X, is the dissipation parameter, L is the vessel’s length, 7,, is a
scaling parameter, and lastly T}, translates the propeller’s angular velocity to longitudinal
thrust, and is weighed by the propeller submergence coefficient d, [219]. The propeller itself
is powered by the powertrain, and assuming that there is no gearbox, » also corresponds to
the crankshaft’s angular velocity. Therefore, an internal combustion engine can be modeled

as follows [219]:

.30
_ﬂlep

(Qa — 6.28asn — 39.43a,d,n?) (7.1.2)

.1
Qo = t—(—Qa+Qc) (7.1.3)

Here, I, is the total rotational inertia of the crankshaft and propeller, Q, is the generated
torque by the powertrain, ay is a rotational friction coefficient, and a,, relates propeller
angular velocity to propeller torque. The generated torque Q, lags behind the commanded

torque Q. by the delay parameter t,, due to the fuel regulator dynamics. The powertrain is

subject to the following operational constraints

QI < Q. < QI (7.1.4a)
QY™ < Qq < QP (7.1.4b)
nMin < < pmAX (7.1.4¢)
Pmin < p < PmaX (714d)

where P is the output power of the engine. Egs. (4a-d) form the admissible set of states and

inputs Z = X X U, where X and U are the admissible state and input spaces, respectively

Myron Papadimitrakis
yronTap 156



Note that this formalism is not restrictive; other engine types can be accommodated, i.e.

AC motors [207]. To conclude, the plant model (7.1.1-3) has the following states:

x=[vnQ,xeX (7.1.5)

and accepts the following inputs and disturbance variables:

u=0Q, uel

d=f0al.deD (7.1.6)

7.1.2.2 Propulsion control objectives

The two control objectives of a vessel propulsion controller are the minimization of the
total powertrain energy usage and the minimization of total shipping voyage time. The first
objective corresponds to the efficient utilization of the powertrain, while the second is
equivalent to the maximization of the vessel’s surge velocity v. Considering a discrete finite

horizon N ahead, the objectives to be minimized can be written as follows at discrete

timestep k:
N-1 (k+1)Ts
E(x(®),u(t)) = (f P(x(®),u(®)) dt) (7.1.7)
k=0 " KTs
N-1 (k+1)Ts
Vx©u®) = - ( J v(t) dt) (7.1.8)
k=0 " KTs

Here, E (x(t),u(t)) and V(x(t),u(t)) are the average consumed energy and average
velocity over the horizon N for the given state and input vectors x(t),u(t). Next,

P(x(t), u(t)) corresponds to the power generated by the powertrain

P(x(D),u(®)) = Qu(®) n(t) 7 (x(©), u(®)) (7.1.9)
where 7, (x(t), u(t)) is the inverse efficiency map of the powertrain (lower values
correspond to an energy-efficient engine operation); 71,.(-) € [0,1] is a continuously
differentiable function, the arguments of which are commonly engine speed n and torque
output Q,. For a combustion engine, this is equivalent to a fuel consumption map. Lastly,

note that the form of 7, is not binding and can accommodate any type of engine mapping.

7.1.3  Methodology
It is intuitive to consider the propulsion control of a vessel as a continuous process, the
output of which must be pursued economically. For this reason, an economic stage cost

must be created and minimized under a suitable control scheme.
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7.1.3.1 Creation of the economic stage cost

One can create a multi-objective economic stage cost that reflects the objectives as
presented in subsection 7.1.2. Considering the state and input vectors x;, u; at the discrete

timestep & of the horizon N, this stage cost is comprised by the expended energy cost

(k+1)Ts

2 (X u) = SFC py f (P(x(t),u(t))) dt (7.1.10)
KT
and the velocity:
(k+1)Ts
0,0, uy) = f v(t) dt (7.1.11)
KTs

Here, SFC and pys are the specific fuel consumption of the engine and the fuel price,
respectively. In order to simplify the analysis and to accommodate for other type of
powertrains such as electric motors, SFC and py take on the nominal value of 1. Thus, the
objectives (7.1.7), (7.1.8) are written as E(x(t),u(t)) = Xp=g ¢f(xx, ur) and
V(x(),u(t)) = — XN=3 €, (xx, uy), respectively.

Note that the two stage costs (7.1.10), (7.1.11) are conflicting, i.e., the pursuit of a
maximized velocity V (-) would lead to increased energy consumption and thus energy cost
E(-). Consequently, it is sensible to weigh the two costs using the tradeoff parameter f > 0

in order to create a suitable stage cost:

2" (i) = €5 (610 we) = B £o(xi0 1) (7.1.12)
Here, fg’v is a weighted sum of the multi-objective economic cost for the vessel
propulsion task. It is apparent that f acts as a regulation parameter that weighs the
preference between energy expenditure and vessel velocity. By considering the vessel
propulsion task as a steady-state process, one can formulate an optimization problem in
order to yield the optimal steady-states for a given . Therefore, {’g’v can be considered in

the following steady-state optimization problem:

min &5 (xio 1) (7.1.13)
st.v=FE,(x,u), (x,u) €EZ

Here, F,(x,u) is an integrator function that returns the terminal state value of v resulting
from the integration of (7.1.1) over one discretization interval, assuming an initial condition
x and constant input u. Solving for a variety of [ values, the Pareto front of the multi-

objective problem can be constructed, as shown in Fig. 7.1.1. The desired tradeoff
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parameter ; can be computed a priori given a desired steady-state velocity, by solving the

following problem:

rgcl'iun 2:(x,u) (7.1.14a)
s.t. v = E,(x,u) (7.1.14b)
(x,u) € Z (7.1.14¢)
2, Uy) = vy (7.1.14d)

As outlined in [207], the optimal Lagrange multiplier u, of the constraint (7.1.14d) is
equal to the desired tradeoff parameter ;. Note that (7.1.14b) represents the surge velocity
dynamics equation. In other words, the desired reference velocity v, can be assigned by
setting 4 = w,. It is noted that this desired reference velocity can be computed offline
during standard voyage estimation/chartering; the economic advantage of short voyage time
is assessed, as influenced by current freight rates and penalties for delayed arrival at the

destination [216].

7.1.3.2 Creation of EMPC controller with gradient-correcting end penalty

Standard MPC stage costs penalize the distance to a steady-state reference setpoint
(x5,us) € int(Xx U), where X and U are the admissible state and input spaces,
respectively. This formulation ensures that the stage cost is bounded from below by a K,
function, which is a necessary prerequisite for asymptotic stability. One observes that the
stage cost (12) presented in subsection 7.1.3.1 is generic, meaning that it is not designed to
track a target setpoint, but rather economically optimize a process. When such user-
provided stage costs are applied, the resulting nonlinear MPC is considered as an economic

MPC.

The stability analysis of EMPC schemes differs from the standard MPC ones, and multiple
research work has been devoted to this end [220]. The turnpike property of optimal control
problems, implied by the reachability and the dissipativity properties of the problem at
hand, has recently been exploited to enable stability guarantees [221], [223]. However,
EMPC without penalties and constraints cannot stabilize to the optimal steady-state (x, 1)
in the cases where the stage cost has a non-zero gradient there [221]. Indeed, the vessel

propulsion control problem is such a case; as computed by the steady-state Problem
(7.1.13), the gradients VQt’g‘v, vag‘v at (x,, ug) are nonzero for any nonzero S values. In

[221], it is shown that in these cases, a linear terminal penalty term that corrects the gradient

at (x,, ug) can be introduced in order to guarantee stability. This linear terminal penalty is
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a cost rotation by the optimal steady-state Lagrange multiplier vector Ag, as calculated by

the steady-state Problem (7.1.13)

Py(xy) = x5 As (7.1.15)
where x is the state vector at the end of the prediction horizon. In order to apply the
theoretical results of [9], the initial assumptions for the problem must be met. These are the
linear independence of the state-input constraints (Assumption 1) and the regularity of the
steady-state optimal problem (7.1.13) (Assumption 2) which is trivially shown for the
problem at hand. Next, one must verify that the Jacobian linearization of the plant model at
the optimal steady-state (x;, u) is controllable, so that the standard P,y terminal penalty
can be applied, which is again true for this system. Then, the EMPC formulation with the

terminal penalty

P(xy) = Py(xn) + Pror(xy) (7.1.16)
given a finite horizon N and sample time T will exponentially stabilize the system (1)-(6)
at the optimal steady state [9]. Eq. (7.1.16) comprises two terms; the gradient-correcting
terminal cost P, constitutes a type of storage function that is necessary for the local uniform
exponential stabilization of EMPC, but also for guaranteeing the economic performance of
the proposed scheme. Its omission would result in the following: Firstly, as outlined in
Theorem 3 of [221], the EMPC scheme would not stabilize at the economically optimal
steady state. Secondly, limit-cycle phenomena around (x,,ug) could arise, resulting in
unnecessary torque command modulation and thus, reduced economic performance (see
Remark 7 of [221]). It should be noted that P, is not substitutive to the cost-to-go term
Pror, which is typically added in MPC schemes to account for the infinite-horizon cost.
Omitting this cost-to-go may lead to the optimal trajectory’s divergence from (x,us)
towards the end of the MPC prediction horizon. Thus, the terminal penalty (7.1.16) ensures
the stabilization of the proposed EMPC scheme, while also accounting for the infinite-

horizon cost.
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Figure 7.1.1 Pareto front for different values of the tradeoff parameter f

Note that here, it is assumed that (x, u;) = (0,0). However, this assumption is not binding,
since for the problem at hand the optimal steady-state is calculated a priori by problem
(7.1.13); therefore, the state and input space X and U can be shifted by x; and ug,

respectively.

7.1.3.3 OCP formulation of the EMPC controller

The optimal control problem corresponding to the proposed approach is formulated as

follows:
rgLn]EMPC (x,u) (7.1.17a)
st.  x(0) =X, (7.1.17b)
(x,u) €Z (7.1.17¢)
Xeer = £ Qg ug) (7.1.17d)
B =By (7.1.17¢)

where
N-1
_ fv
Jempc(x,u) = Z (15)[; (xk,uk)) + P(xy) (7.1.18)

k=0
is the objective function cost and £ is the discretized model with zero-order hold over

Ty.

7.1.4  Results
In this subsection, the performance of the proposed EMPC scheme for the task of vessel

propulsion control is evaluated and compared to a standard MPC (SMPC) controller for
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two different vessel types. The two controllers are assessed on their overall economic

performance in a step and an environmental disturbance scenario.

7.1.4.1 Setup

First, the quadratic stage cost of the SMPC controller is introduced:

1
tq=5(w =920+ (Qu— Qus) 'R) (7.1.19)

This stage cost is of tracking type; it penalizes the distances from the optimal steady-state
state and input x; and ug, which are weighted by the Q and R parameters, respectively. In

order to perform a fair comparison, these parameters are tuned as follows:

0= () 1 = ()

(7.1.20)
The full OCP of the SMPC is formulated as follows:
min Jgypc (X, u) (7.1.21a)
x,u
st. x(0) =%, (7.1.21b)
(x,u) €Z (7.1.21¢)
Xrr = F 9 Qg u) (7.1.21d)
where
N-1
Jsmpc(x,u) = Z (i’q (xk,uk)) + Por(xy) (7.1.22)
k=0

Next, the two simulation scenarios are detailed. For completeness’ sake, a very large tanker
vessel, commonly known as KVLCC2 in the marine engineering literature, as well as a
medium sized vessel, are examined in the first scenario [224]. The objective of scenario 1
is to drive the vessel to an optimal steady-state setpoint, where it is assumed that no
disturbances exist, i.e. d = [dp, dW]T = [1,0]". Scenario 2 represents a sea condition with
large head waves, inflicting a decelerating force expressed by w,d,,, as well as a thrust
loss due to propeller ventilation, expressed by Tpnd,. Disturbance variable d,, € [0,1]
represents the modulation of the head wave decelerating force and has a value of 0 when
no head waves are present. Disturbance variable d,, € [0,1] multiplies both the propeller
thrust coefficient Ty, and the propeller torque constant a,. When ventilation is present due
to large waves, the propeller torque load and thrust periodically drop. When no large waves
are present, d,, is 0. The parameters of the two vessels, the vessel bounds and constraints,

as well as scenario information are shown in Tables 7.1.1-4, while the disturbance variable

Myron Papadimitrakis
yronTap 162



Table 7.1.1 Vessel parameters

I, o o m X T T te L W

MNm MNm uu n nn e uu

2 o o - - - - - m/s2

kew?) (zor) () © 0 O O O O @ @)
1 110 560 390 1.050  -0.043 0.22 3.510° 3 300 -3
2 0110° 168 39 0.500 -0.018 0.22 1.5410* 3 100 -I

Table 7.1.2 Vessel bounds & constraints

" lein Q:'nax nmin nmax Pmin pmax
(MNm) (MNm) (RPM) (RPM) MW)  (MW)

1 0.5 3 20 100 1 30

2 0.1 0.75 20 120 0.2 9

Table 7.1.3 Scenario 1: Initial conditions and optimal steady-states per vessel

Vessel Initial conditions Optimal steady-state
Vo Qa,O no Vs Qs ns
(m/s) (MNm) (RPM) (m/s) (MNm) (RPM)
1 6.0 1.0 30 7.0 1.62 55.2
2 7.0 0.2 58 11.65 0.47 85.97

Table 7.1.4 Scenario 2: Initial conditions and velocity setpoint per vessel

Vessel Initial conditions Velocity setpoint
Vo Qa,O ny Vg
(m/s) (MNm) (RPM) (m/s)
1 6.6 1.75 85 6.6
2 7.5 0.45 75 7.5

0 10 20 30 40 50 60
Time, t (s)

Figure 7.1.2: Scenario 2: Normalized head wave and propeller submergence profiles representing a high sea
condition

profiles d for scenario 2 are shown in Fig. 7.1.2; note that these are typical profiles of
propeller ventilation and wave force upon a vessel for a moderately high sea, as sourced
from the literature [219], [222], [224]. For both MPC controllers the sample time Ty and
horizon length N are set as 1s and 60, respectively. The plant dynamics f(x(t), u(t)) are
integrated using the explicit Runge-Kutta (4,5) formula for a simulation timestep of 0.5s,

and the MPC optimization problem is solved using an adaptive interior-point solver.
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Finally, the computational framework was built in MATLAB and the simulations were ran

on a 19-9960x processor with 64 GB RAM.

7.1.5 Results & discussion

Regarding scenario 1, in Figs. 7.1.3,4, the velocity profiles, as well as the required power
outputs of the SMPC and EMPC controllers are shown for both vessels, respectively. As
expected, both controllers converge to the optimal steady-state velocity. However, EMPC
requires less average power over the simulation period, which corresponds to lower total
fuel expenditure. Namely, for vessel 1, the SMPC controller over the initial 750 seconds,
requires a higher engine power input than EMPC, while in vessel 2 this is observed over
the complete time range. Also, it should be noted that the velocity profiles achieved by the
two controllers are almost identical, with regards to settling time and steady-state value.

For easier comparison, analytical results for the two vessels are shown in Table 7.1.5.

It appears that for both vessels in scenario 1, the proposed EMPC controller successfully

stabilizes to the desired steady-state, while minimizing energy expenditure in transient. In

Velocity (m/s)
Velocity (m/s)

58: 1 1 1 1 1 1 1 1 : 6: 1 Il 1 | 1 ]

0 200 400 600 800 1000 1200 1400 1600 0 100 200 300 400 500
Time, t (s) sec Time, t (s) sec
(a) (a)
3.5 T T T T T 3r T T T T T
. b E 25 ; ......................................... -
~ —EMPC f —EMPC
gz 5 \\\ - SMPC 2 2k | e EMPC -
g ’ ™ __Pss \24 ss
5] 34l =150 ]
g 2-_ 32 . %
o r ] o qE -
B 3
15F [ - F
[ 280 10 20 30 40 50 60 70 8 05F -
1 ] ] 1 1 1 1 1 L] O: | 1 1 1 1 ]
0 200 400 600 800 1000 1200 1400 1600 0 100 200 300 400 500
Time, t (s) sec Time, t (s) sec
(b) (b)

Figure 7.1.3: Scenario 1, Vessel 1: (a) Velocity Figure 7.1.4: Scenario 1, Vessel 2: (a) Velocity
profile (b) Engine power output profile (b) Engine power output

order to reveal the causes of the increased economic performance, one must examine the
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state trajectory in the engine’s inverse efficiency map 7, (-) for each scenario. In Figs. 7.1.5-
6, the respective maps of the vessels are shown for scenario 1 (low 1, (-) values correspond
to high efficiency). In vessel 1, it is apparent that the EMPC opts to remain in the high-
efficiency area denoted by blue, whereas SMPC traces an inefficient trajectory by applying
an aggressive initial control input Q. Next, in vessel 2, suitable engine torque values are
commanded by the EMPC, so that the engine state (Q,n) remains in the high-efficiency
“ridge” of the map for as long as possible. Here too, the SMPC controller departs from the
efficient area and traces an economically suboptimal engine map trajectory. The superior
transient economic performance of EMPC is owed to the formulation of the economic stage
cost (7.1.12), that incorporates the powertrain information 1,(+). In contrast, SMPC can
only act based upon its perceived distance from the steady-state setpoint, as is evident by
its stage cost (7.1.19). This means that it cannot assess the energy efficiency of a candidate

input trajectory, and therefore its overall economic performance is reduced.

B —-ewmrc 07k ——EMPC,
........ SMPC [
e sS 0.9 ® 58 0.9

25F 55 B : 08 08T 038

= 0.7
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Figure 7.1.5: Engine map trajectories for scenario 1,

vessel 1 in (a) 2D and (b) 3D. Redder colours denote

Figure 7.1.6: (a) Engine map trajectories for

scenario 2, vessel 1 in (a) 2D and (b) 3D. Redder
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The merits of the EMPC approach are highlighted in transient engine operation during
scenario 2, which is bound to occur due to propeller ventilation [219] or wave forces (Fig.
7.1.2). In Figs. 7.1.7-8, the velocity profiles and the engine power outputs of the SMPC and
EMPC controllers are shown for vessels 1, 2 respectively. Indeed, both controllers manage
to track a reference velocity as desired, however with different power profiles; from Figs
7.1.7b, 7.1.8b it is apparent that the EMPC controller draws less power in average from the
powertrain, for both vessels, by using the engine map efficiently, as demonstrated in Fig.
7.1.9. In Table 7.1.6, the results of scenario 2 are summarily presented for both vessels, and
they confirm the merit of the EMPC approach: For a negligible reduction in average sailing

speed, energy saving returns of up to 1.95% can be reaped. For vessel 1, this corresponds

Myron Papadimitrakis
yronTap 166



Table 7.1.5 Scenario 1 Simulation Results

Vessel 1 Vessel 2
ts Vs E ts Vs E
(s) (m/s) (MWh) (s) (m/s) (MWh)
EMPC 1262 7.00 1.3868 495 11.65 0.3463
SMPC 1250 7.01 1.3991 490 11.65 0.3563
Difference % 0.9 -0.1 0.9 1 0 2.8

ts denotes the settling time

Table 7.1.6 Scenario 2 Simulation Results

Vessel 1 Vessel 2
Average E avg. MPC Average E avg. MPC
speed (MWh) evaluation speed (MWh) evaluation
(m/s) time (s) (m/s) time (s)
EMPC 6.575 0.1045  0.553 7.478 0.0261  0.551
SMPC 6.576 0.1060  0.432 7.482 0.0266  0.431
Zﬁere”ce 10.02 152 +21.88 10.05 195 +21.66

to almost 1.5 kWh of energy per minute of operation, while for vessel 2 the respective
number is 0.5 kWh — therefore, considering the typical cargo ships’ voyage duration of
multiple months, the economic effects of the EMPC approach are expected to compound
significantly. It should be noted, that although the EMPC performance comes at a slightly
increased computational cost, owed to the non-quadratic economic cost function, the
average computational time needed per iteration is still perfectly acceptable for this

application.

7.1.6  Conclusion

In this section, the concept of using an EMPC approach for the vessel propulsion problem
has shown its merits in simulation. The proposed EMPC controller enabled the computation
of efficient engine trajectories, resulting in better transient economic performance. It is
noted that this EMPC approach can be further extended to other types of propulsion systems

that prioritize fuel efficiency, such as turbofan engines on airliners.

Still, the performance of the proposed controller rests on the assumption that there are no
modelling discrepancies between controller model and real plant; if they exist, then this
approach will not yield the optimal economic control law. Building on the theoretical
foundation presented in this section, a data-driven scheme that will achieve the optimal

economic performance for the problem at hand will be constructed next.
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7.2 A Data-Driven Vessel Propulsion Controller based on

Reinforcement Learning and Economic Model Predictive Control

In the previous section the proof of concept of an EMPC scheme for the vessel propulsion
control was successfully established, for the case of a perfect controller model. However,
an effective vessel propulsion controller should not only account for powertrain efficiency
information & modelling errors, but also encompass the ship’s economic performance
objectives. In this section we introduce an economic stage cost that reflects the actual vessel
chartering economics instead of an arbitrary tracking setpoint, in order to create a stable
economic MPC control law, which is then approximated up to 1 order by a standard MPC.
This approximation is then used to build a data-driven economic model predictive control
approach based on reinforcement learning (RL-MPC) for the economic control of vessel
propulsion. The RL component uses a temporal difference learning scheme to generate
stable controller parametrizations, which are iteratively applied in order to achieve
improved closed-loop economic performance. Contrary to other data-driven or adaptive
MPC approaches, RL-MPC is capable of handling significant structural & parametric plant-
model mismatches and disturbances in real time. Simulation comparisons are performed,
for off-design and on-design disturbance scenarios, where the merits of the proposed
method are showcased. The RL-MPC economic controller presented herein is shown to
track the optimal economic policy, thus bridging efficient real-time propulsion control with

high-level ship chartering economics.

7.2.1 Introduction

During voyage chartering operations, two objectives must be taken into account in order to
generate the service speed setpoint: the first is the minimization of diesel fuel cost, while
the second refers to the financial incentive of voyage time minimization [216] due to freight
transport commercial costs (cost of opportunity, chartering time clauses, etc) [225], and is
achievable by higher cruising speeds. Typically, a shipowner or charterer would formulate
an optimization problem involving these two objectives using a model of the real vessel in
order to determine the economically optimal service speed for their case [226].
Unavoidably, this model could account neither for environmental disturbances encountered
along the voyage, nor for nominal modelling errors; in fact, standard practice in the
maritime industry has been to simplistically assume that fuel consumption has a cubic

relationship to vessel speed [227].

Even though the vessel propulsion control schemes in the literature claim to practically

achieve efficient propulsion operation [228], the associated economic objectives do not
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appear explicitly in the formulated stage cost, meaning that the desired economic
performance is achieved only indirectly. The EMPC controller presented in section
7.1.confirmed the economic performance improvement margin over tracking MPC, under
the assumption that the prediction model was perfect, i.e. there was no plant-model
mismatch. Unfortunately, this assumption is impossible to guarantee, not only because of
nominal modelling inaccuracies during control design, but also due to the constantly
changing characteristics of the vessel propulsion system during operation [229], owed to
hull & propeller fouling, component deterioration and fuel contamination [202]. Typical
adaptive control techniques for MPC such as the prediction error minimization (PEM) could
alleviate modeling inaccuracies by fitting the model on data that are sampled over
predetermined intervals [25]. This model fitting may succeed whenever the plant-model
mismatch is merely parametric, however, if there also exist structural differences between
the two, e.g. the plant is of higher order and/or contains additional terms, then such
approaches may not deliver the optimal MPC control law [230]. Plant-model structural
mismatches is very often the case with vessel propulsion systems, since the real system
dynamics can become highly intricate and detailed, as the large body of related vessel

modelling literature reveals [202], [222], [224], [231].

Recently, a data-driven MPC was presented, capable of handling structural and parametric
plant-model mismatches by employing reinforcement learning (RL) [212], [232]. As one
of the most promising intersections of machine learning and control, RL is a sequential
decision-making algorithm that adapts a parametric internal representation of the control
process through trial-and-error [38]. By assigning rewards to control actions that result in
desirable state transitions, a policy (equivalent to a control law) is learned as a state-action
mapping. By leveraging this central idea, [212] showed that if an RL algorithm uses a
parametrized MPC controller as the internal representation of the control problem coupled
with an economic reward function, then the optimal economic policy will be yielded, even
if the MPC prediction model is structurally mismatched. The definitive advantage of this
RL-MPC fusion over using generalized parametrizations for RL, such as deep neural
networks [38], is the existence of safety & stability guarantees for the learned policy, which

were established by Gros and Zanon [211] using the MPC theoretical framework.

In this section, an RL-MPC controller is presented for the economic control of the vessel
propulsion system. First, a tracking MPC is initialized using a tuned stage cost that is a first-

order approximation of the respective EMPC control law [233]. Then, by letting RL adapt
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the stage and terminal costs, the constraints & the model parameters, the optimal economic
vessel propulsion control law in the case of parametric and structural plant-model
mismatches is yielded. Comparisons to the initial tracking MPC are performed and the
economic capabilities of the proposed RL-MPC are demonstrated in two simulation

scenarios. The main contributions of this work are as follows:

e An MPC economic stage cost is presented that encompasses the actual economics
of vessel propulsion control as denominated during chartering operations [225],
namely the bunker fuel cost & the freight commercial-related profits for the ship
owner or charterer. Instead of devising arbitrary control objectives for the vessel
propulsion system, this approach bridges the high-level charter planning stage with
the real-time powertrain control of the vessel, with significant economic benefit.
This economic stage cost can also be readily built by a practitioner with access to
the economic characteristics of the voyage, enhancing the overall applicability of
the proposed approach.

e A data-driven MPC controller is introduced for the economic vessel propulsion task,
capable of handling parametric & structural plant-model mismatches. These
mismatches, manifesting as engine efficiency map discrepancies, model-order
differences & nominal model parametric errors, can render typical adaptive MPC
techniques invalid. Thus, the proposed scheme paves the way for achieving true
economic performance in real vessel propulsion systems. In addition, the research

results yielded in this work can be easily extended to other propulsion systems.

Next, this section is structured as follows: a more detailed nonlinear vessel plant than the
one presented in section 7.1., as well as a practical economic stage cost formulation, are
laid out in subsection 7.2.2. Subsection 7.2.3 describes the theoretical foundation of the
proposed controller. In subsection 7.2.4, simulation results for two environmental scenarios

are presented & discussed, and lastly, conclusions are drawn in subsection 7.2.5.
7.2.2  Vessel Propulsion Control Problem Statement
7.2.2.1 Vessel dynamics

Since the objective is to develop economic vessel propulsion controllers, only the vessel
surge dynamics are included, namely, its hull dynamics and its 4-stroke diesel mechanical
powertrain propulsion system (fig. 7.2.1). Both the plant and the controller model were
based on the vessel model of [234], with some modifications necessary for usage as a
controller simulation model. The motivation of not using the model already presented in

section 7.1 pertains to its overall simplistic structure, which would not permit the
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construction of plant and controller model with sufficient structural discrepancy, thus

dismissing the merits of the controller presented herein.

The powertrain dynamics are modeled as differential-algebraic equations (DAEs):

. 1
Qe = g(_Qe + M,) (7.2.1)
1 u;
T nom _l€€
F, = te( R+ et (7.2.2)

Here, Q. is the current engine output brake torque, 7, is an internal engine state variable

describing turbocharger spooling and fuel rack time-delay dynamics, u;.. is the input
variable representing the torque command as a percentage of the maximum torque that is
currently available, and lastly t,, & t, are time constants. Next, M, is the target engine output

torque, written as:

M, = Qrm(p (_ne )Z—TP +p ( Me >_Tp +p (7.2.3)
e e 1 n‘r;om rpnom 2 ngom rpnom 3 e

This algebraic equation is comprised by a 2" degree polynomial function with constants
(p1, p2, p5) describing the engine speed — torque envelope of the engine [235], multiplied by

the maximum indicated brake torque output ¢z°™. Here, n, is the current engine speed, and

ng°™ is the nominal engine speed. Next, the rotational dynamics of the engine are modelled
as follows:
. ng - Qp .
ne = T]tl‘qb (724)

Here, Qg4p is the output torque of the gearbox, @, is the propeller torque, iy, is the gearbox
speed reduction ratio, and J; is the total inertia of the powertrain, gearbox, axle & propeller.
Taking into account gearbox losses, Q4 is denoted as

ne

Qo = 10° (Qe R R L N Q_m)) (729

e e

where Q'™ is the nominal gearbox torque loss due to friction, and agp, byp, Cqp are the

torque loss parameters.

Next, assuming a propeller with a constant pitch, @, is described as:

— 1 C 2 D3
Qp = QPVKT (7.2.6)
8ny,
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(@)

Figure 7.2.1 Vessel dynamics schematic representation. a) Vessel hull, b) Vessel Propulsion Controller, c)

Powertrain, d) Gearbox, ¢) Propeller, f) Sea effects

Here, n,, is the relative rotative efficiency of the propeller, Cy is the torque coefficient, p is

the seawater density, D is the propeller diameter, and v, is the propeller’s hydrodynamic

velocity, modelled as follows:

2

n

v, = |VZ+ (ch n_—eD> (7.2.7)
lgb

In the previous equation, cj is a dimensionless constant and v, is the advance speed of

water w.r.t the propeller, calculated as

Ve =v(1—f,) + v, (7.2.8)
where f,, is the wake fraction constant and v,, the wave orbital speed. As the final

component of plant modelling, the vessel surge speed vy is described as follows:

v, = E(Kp —Ry=— ft) (7.2.9)

Here, m is the total mass of the vessel, f; is the thrust deduction factor, wf is a dimensionless

variable accounting for hull resistance due to waves, while K, is the propeller thrust and R,,

1s the hull resistance:
K, = k,CrpvinD? (7.2.10)
R, = coyvé (7.2.11)

In (7.2.10), k,, is a propeller constant and Cr is the propeller thrust coefficient, while in
(7.2.11), cq is the nominal hull resistance and y a multiplication factor accounting for
fouling [236].

Lastly, the wave model describing wave speed v, w.r.t time is

VA

v, (t) = {w exp (wz g) sin(t(—wyvs — w)) X (£) (7.2.12)
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where {, w, z and w;, are the significant wave amplitude, the wave radial frequency, the
water depth of the propeller and the propeller wave fraction, respectively [237]. In order to

account for random effects, a random variable X (1, 0.05) is added as a multiplying factor.

To summarize, the plant model comprised by the DAEs (7.2.1-3) has the state variables

x=[vs ner, Q] x €X (7.2.13)

and accepts the input and disturbance variables
U= U, UEU (7.2.14a)
d=[v,w].deD (7.2.14b)

where X, U and D are the admissible state, input, and disturbance spaces, respectively.

7.2.2.2 Propulsion economic objectives

The minimization of the total powertrain fuel consumption and the total shipping voyage
time are the two economic objectives of a vessel propulsion controller that correspond
directly to shipping operational costs [8]. These two objectives are translatable as the
efficient powertrain utilization and the surge velocity maximization, respectively, and can

be written as follows for a discrete finite horizon N:

N-1

(k+1)Ts
F(x,u) = Z <f P(x,u) SFC(x,u) dt> (7.2.15a)
k=0 " KTs
N1 (k)T
Vixu) = — z < f v, dt) (7.2.15b)
k=0 " KTs

Here, for state-input vectors x(t), u(t), the sums F (x(t), u(t)) and V(x(t), u(t)) represent
the expended fuel and the surge velocity, averaged over a horizon of length N. The power

output of the engine at the current timestep is written as

P(x,u) = Q, n, (7.2.16)
which, multiplied with the current specific fuel consumption SFC(x,u), results in the
current fuel consumption. Typically, SFC is represented as a 2D look-up table with engine
power and speed as indices, however this formulation can be extended to any type of
mapping describing different powertrains. In addition, similarly to [235], an emission

minimization objective can also be included using a powertrain’s emission map
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7.2.3  Methodology

The RL-EMPC vessel propulsion controller that will be presented in this section is
initialized on a regular tracking MPC formulation (TMPC), which, in turn, is required to be
locally-equivalent to a corresponding EMPC control law. This section presents the

proposed approach and its associated theoretical foundation.

7.2.3.1 Creation of the improved economic stage cost

Using the objectives presented in section 7.1, one can create an improved economic stage
cost for the vessel propulsion task, that reflects the actual operational economic
performance. Considering the discretized system with state-input vectors xj,u;, the

expended fuel and surge velocity values at timestep k are written as

(k+1)Ts
gr = f P(x,u) SFC(x,u)dt (7.2.17)
KTy
(k+1)Ts
gy = f v, dt (7.2.18)
KTy

respectively, and the corresponding costs as
Cr(Xp, ug) = Pr G (7.2.19a)
€5 ui) = Py gy (7.2.19b)
where is py the fuel unit price and p,, the surge velocity “price”, with the latter quantifying
the economic incentive of voyage time minimization [238]. Price p,, is nominally composed
as p, = s C/D, where s is the spot rate that the vessel has been chartered at (in $/ton), C is
the vessel’s cargo (in ton), and D is the voyage distance (in m). Note that p,, is normally

negative, 1.e., it represents profit. An economic stage cost can then be constructed for the

vessel propulsion task,

£, (i ) = Py G Coies i) + Py Go (s i) (7.2.20a)

which can be equivalently also written as

, p
fg;pv(xk’uk) =Py (gf(xk»uk) + p_;gv(xk'uk)> (7.2.20b)

by factoring ps out. Then, one can formulate a steady-state optimization problem that

calculates the optimal economic steady-states:

. fv
min €% (x;, u
nin £ (e ) (7.2.21)
S.t. US = Fvs(x; u)! (x) u) € Z' US 2 vCl

where:
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fg'v(xk»uk) = gr (X, ug) + BGu Xk, ) (7.2.22)
Here, B = p,/py stands as a trade-off parameter, F,_ is the integrator of the surge velocity
DAE (7.2.9), which returns the terminal value of v, at the end of the discretization interval,
Z is the admissible state-input space, and finally v.; is the minimum service speed that the
charter clause permits. Note that cost functions (7.2.22) and (7.2.20b) are interchangeable
in an optimization context. In addition, the corresponding f of an a-priori desired steady-
state velocity v, can also be computed for practical purposes, by solving the following

optimization problem:

min gy Cx, u) (7.2.23)
s.t. vs = B, (x,u) (7.2.23b)
(x,u) €Z (7.2.23¢)

9o (X, ug) = vy (7.2.23d)

The solution of Problem (7.2.23) will yield the optimal Lagrange multiplier of constraint

(7.2.23d). By setting  equal to this Lagrange multiplier in the original Problem (7.2.21),

the desired steady-state velocity p)

s~ = v, will be returned. Note that, in the real-world

case,  would be properly set as ;’—”.
f

7.2.3.2 Economic MPC and its locally-equivalent tracking MPC

Regular TMPC schemes act on a perceived deviation from a reference setpoint, using stage
costs that are positive definite (usually quadratic). In contrast, EMPC is designed to handle
the generic stage cost 2 ", which, even though indefinite, it reflects the actual economic

objectives of the vessel propulsion system. The OCP corresponding to an EMPC-based

vessel propulsion controller can then be described as:

rgcl,iun]EMpC'(x, u) (7.2.24a)

s.t. x(0) = %, (7.2.24b)
(x,u) €Z (7.2.24¢)

Xer1 = 9 (e, w) (7.2.24d)

B =B, (7.2.24¢)

Vs 2 Vg (7.2.24f)

where 8, is the desired tradeoff parameter resulting from Problem (7.2.14), fs) is the
prediction model of the propulsion system discretized using a sample time equal to Ty, and

Jempc 1s the economic objective function
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N-1

Jempc (X, u) = Z (f/];v(xk,uk)) + P(xy) (7.2.25)

k=0
formulated using stage cost (22) and a stabilizing terminal penalty P(xy). As shown in

subsection 7.1.3, a special terminal penalty is required for the stability of this EMPC
controller, since the gradients fof v, Vué’g'v at the optimal economic steady state (x,, )

are non-zero [221]:

P(xy) = Pror(xn) + Pr(xn) (7.2.26)
Penalty function P is comprised by the infinite horizon penalty Ppqg typically included in

MPC schemes, plus the linear terminal penalty

Py(xy) = x5 Ag (7.2.27)
where A is the optimal Lagrange multiplier vector at (x,, ug). P; represents a storage
function that allows the exponential stabilization of the vessel propulsion EMPC scheme at

the optimal steady state.

Notwithstanding its stability and economic optimality for the case where there are no
plant-model mismatches, the EMPC scheme (7.2.24) presents two significant practical
shortcomings. The first pertains to the tractability of the OCP; algorithms capable of
handling the non-convexity of Problem (7.2.1) are often hard to deploy in practice. The
second is related to the practical computation of the optimal Lagrange multiplier Ag;
inaccuracies between the actual and computed A; may arise in the case of plant-model
mismatches, which would compromise the stabilization of the system at (x,, ug) [21]. In
order to circumvent these obstacles, [233], [239] proposed an algorithm for tuning a regular
TMPC with a quadratic stage cost so as to become a first-order approximation of the
original EMPC control law, provided that the latter is stabilizing. Given the steady-state
optimization problem (7.2.21), its Lagrange function L(w) can be defined, where w =
(x,u, A) is the primal-dual variable vector. By performing a convexification procedure
represented by the following semi-definite program (SDP), one can yield a positive-definite

Hessian matrix H of a new quadratic stage cost Yop:

nin, Y6 = +pllrll (7.2.28a)

st. {I<H+HUD)+ Gl Gy <61 (7.2.28b)
ATnIA, — 11 ATIB

HUD) =" . ° P (7.2.28c¢)
BTMA,  BIIB,

H=H+HX(I)+ Gl TGy (7.2.29)
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Here, y and p are problem tuning variables, Ay, Bg represent the x, u gradient vectors of
system (7.2.13,14) respectively, G 4 1s the x, u gradient of the active inequality constraints,

and lastly, H is the Hessian of the Lagrangian, all computed at the primal dual solution wg

of Problem (7.2.21).

7.2.3.3 Reinforcement-Learning-EMPC

The idea behind RL-MPC is to encapsulate a parametrized MPC controller within RL so as
to approximate the optimal action-value & value functions, as well as the optimal policy,
for the economic process at hand. To this end, the vessel propulsion process is denoted as

a discrete Markov decision process (MDP) with the following stochastic dynamics,

Plsy|s, al (7.2.30)
where s and a are the state and action vectors, and s, is the state transition of the discretized
system represented by (7.2.13,14) (in control notation, xj, u; and Xy, respectively). For

process P, an economic reward function is created:

L(s,a) = €57 (s,0) + I (h(s, @) + I (g(@)) (7.2.31)

The reward function is comprised by the economic stage cost (7.2.22), augmented with
penalty functions I, that are activated when the process constraints are violated, as denoted
by Xp = int(X X {vg = v, }). The associated value and action-value functions V, and Q,
are then written as:

Q.(s,a) = L(s,a) + YE[V,|s, a] (7.2.32)
V.(s) = ming Q,(s,a) = Q*(s, T[*(S)) (7.2.33)

These are the Bellman equations for the policy at hand. Here, y is a discount factor, E[-] is
the future expectation and m, is a state-action mapping function called the policy. Eq.
(7.2.32) states that the application of action a while at state s will yield the immediate
reward L(s,a) plus the discounted expectation of future rewards yE[V,|s,a] that are

retrieved by following m, from the next state and onwards.
Next, the MDP of a mismatched model of the real plant dynamics is
P[3,|s, al (7.2.34)

and has an associated stage cost defined as

L(s,a) = Q.(s,a) — YE[Vi($4)]s, a] (7.2.35)
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with |E[V,(5})]|s, a]| < oo. Then, Theorem 1 of [212] has shown that an optimal value

function of the form

N-1
Pu(s) = minE [yNu(g,fvf) £y yki(§;g,n(sf;g))] (7.2.36)
Vs
k=0

can, in theory, yield the optimal policy m, of the real plant dynamics s, , even by using the
wrong model §,. Here, N is an optimization horizon and §f are discrete states generated
over N by applying m. This central idea enables the use of fully parametrized EMPC
schemes as function approximators within RL. Consider an EMPC controller with its
individual constituents parametrized by a 6 vector - namely a prediction model fg(TS), a stage

cost lg, a terminal penalty Py & a state-input constraint map hy - characterized by the

following OCP:

min Jypc,g(x, 1, ) (7.2.37a)
S.t. XO = X0' (7237b)
a1 = 1 (0 we) (7.2.37¢)
g(ue) <0 (7.2.37d)

ho (X, ug) < oy (7.2.37¢)

Here, o is the slack variable vector of the £, relaxation of the mixed state-input constraints
hg denoting Xp, g are the constraints denoting U, and the objective function Jypc g is

N-1

Jupco(x,u,0) = Ag(x) + YN Po(xy) + z Y e (xp, ug) + whay) (7.2.38)

k=0
where w is a slack weight vector and A4 an initial cost function, the role of which will be
discussed later. Using Problem (7.2.37), the following value and action-value functions can

be created,

Vo(s) = )rgEr;]MPC,g (x,u,0), s.t (7.2.37b) — (7.2.37e) (7.2.39a)
QH (S, a) = ;CHLZI;JMPC,H (x! u, O-)
s.t (7.2.37b) — (7.2.37¢) (7.2.39b)
Ug = a

which correspond to the policy mg = ugy (as retrieved from the optimal input sequence
yielded by Problem (7.2.37)). It is trivially shown that this formulation satisfies the Bellman

equations:

m(s) = arg min Qy(s, a)

Vo(s) = min Qg (s, ) (7.2.40)
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As discussed in Corollary 2 of [212], this scheme can, in theory, deliver the optimal policy
T,; however, in most practical cases, this is not likely to happen. This is partly due to the
intricacy of creating an MPC parametrization elaborate enough to capture the structure of
any Q. and V,, and partly because, even if such a parametrization could be created, the
computation of the related 6* would be extremely demanding. In short, only an

approximation of the optimal vessel propulsion policy m, can be expected in practice.

Still, by letting 8 be adapted by classic RL tools, this approximation will be attained, even
if the vessel propulsion model fe(TS) used in Problem (7.2.37) is structurally or
parametrically mismatched to the real plant f{s), denoted by (7.2.13, 14). However, since
the corresponding stage cost {’]ﬂc'v(s, a) of m, is generic, the adaptation of & may yield a non-
positive-definite value function, therefore compromising the standard, Lyapunov-based
stability guarantees of the MPC scheme. The inclusion of the initial cost function A4 can
alleviate this problem [212]: Function A4 acts as a cost rotation per classic economic MPC
stability theory [79], which enables Jypcg(x,u,0) to remain positive-definite without
disturbing the optimal solutions of Q and V (7.2.39). Provided that the stage cost lg also
remains positive-definite throughout #-adaptation, the scheme (7.2.37-40) as discussed

here can successfully approximate the optimal vessel propulsion economic policy 7.

7.2.34 Learning for RL-MPC

Given the value and action-value functions introduced in subsection 7.2.3.1, classic RL
methods that tune the 6-vector can be employed in order to yield increased closed-loop
propulsion performance, such as Q-learning. Using the temporal-difference (TD) learning

method [240], 6-updates can be computed as:

0 <0+ diVQQg(Sk, ak) (7241)
Here, 6-updates are computed instantaneously at timestep & as the gradient-descent step of

the action-value function Qg, using a step size a € (0,1]. The TD error 1, is computed as:

Tk = Le(si, ax) + ¥Vo(Sks1) — Qo (ks ay) (7.2.42)

Le(sp ai) = #g’v(xk, ai) + wmax(0, h(xy, ax)) (7.2.43)
where action a; = mg(sy), and Ly represents the economic reward function corresponding
to the real process. This initial version of TD-learning, notwithstanding its simplicity, has
some drawbacks. Firstly, instantaneous parameter updates may become counter-productive

in the presence of noise and disturbances, which would be prevalent in the system of
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interest. Secondly, as a gradient-based method, it cannot ensure convergence or
globalization if the 8-parametrization is nonlinear. Lastly, it does not guarantee that the
Hessians of the quadratic cost functions lg and Py remain positive-definite as the algorithm
progresses, therefore undermining the well-posedness and stability of the MPC scheme.
The formulation of an SDP optimization problem that minimizes the TD error over an
interval spanned by the last N,,,,; number of steps, subject to positive-definitive constraints,

alleviates these drawbacks [211]:

Nupd
min Z Thoj (7.2.44a)
j=0
st. Hy, >0,Hp, >0, (7.2.44b)

Problem (7.2.44) is solved every Ny,  timesteps and converges to a 8* that is used to

construct a step a0, which is then applied at a convenient time as 6 « 6 + a8*. Note that
for aH 1*9 & aHp »» Which are the positive-definite step matrices generated by (7.2.44), it is
trivially shown that their respective additions to H;, & Hp, result in positive-definite
matrices. Therefore, learning as presented here is guaranteed to generate stable MPC
control laws. In general, it should also be noted that RL parameter update schemes such as
(7.2.44) are not expected to yield the global 8 optimum, especially in the case of nonlinear
value function parametrizations; This drawback is universal in cases of such elaborate
parametrizations, even when RL is commonly paired with neural-network-based function

approximators.

7.2.3.5 RL-MPC agent for vessel propulsion control

Using the results of the previous subsections, the RL-MPC agent for vessel propulsion
control can now be constructed. In order to adhere to the central motivation behind RL-
MPC and to ensure the tractability of the OCP in the case of real-life deployment, a lower-
order vessel model fy is used as the controller prediction model. This model is
parametrically and structurally mismatched with regards to the vessel plant (7.2.13,14)
presented in subsection 7.2.2; the structural differences pertain to the absence of the internal

engine state variable 7, the simplified modelling of engine target torque M,, and the

omission of some terms from gearbox friction torque Q gp:

Ne 2 Ujce Ne Ujce
. n
Qgp = 103 (Qe igh — Q[ ™byp (ﬁ) te) (7.2.46)
e
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Model fy is thus represented by the following DAE’s,

. 1
Q. = g (_Qe + Me) + eQe,c (7.2.47)
. Qo — QpOc, .
Ty = T]t‘%gb + 0, (7.2.48)
1 R,0r,
Vs = m <KP6CT - 1”_ ft) + O (7.2.49)

The model has the following state and input variables,

x=[ven,Q.]" x€X, u=uj,, u€U (7.2.50)
T
parametrized by §/¢ = [901‘9@1 Or, HCQ Ocr 00,.c On,c Gvs,c] , with default values 9£gf =

[1111000].

Using the discretized model fe(Ts), Problems (7.2.21), (7.2.22) are formulated that yield

an economic steady state (x, ug) for a given trade-off parameter ;. Note that (xg, u) does

not necessarily correspond to the optimal economic steady state (x3, uy) that would result

from the real plant ). Next, using fe(Ts), a stabilizing EMPC control law is constructed
for the vessel propulsion problem, which is then employed in the convexification procedure
described in subsection 7.2.3.1, in order to yield the first-order quadratic approximation of
the control law. One can model the newly-created tracking stage cost, the classic LQR

terminal penalty & the initial cost as fully parametrized quadratic functions of the type:

F(Aw) = dw"HAw + haw + ¢, aw =[] - [Zz] (7.2.51)

Now, the RL-MPC value functions can be initialized with the default parameter vector:

Oder = (9§5f Hy hy ¢ Hp hp cp Hy by Cz) (7.2.52)

where H,, h,, c, are the Hessian matrix, gradient and constant of the respective quadratic

functions.

The RL-MPC agent for vessel propulsion control can now be deployed to the real system.
Actions are applied based on the policy my resulting from the parametrized action-value
and value functions Qg (s, a) and Vy(s), and TD-learning is employed in a batch update
fashion using Problem (7.2.44) in order to approximate the optimal economic policy 7,
corresponding to the vessel plant f (7.2.13,14). The algorithmic framework is summarized

in fig. 7.2.2.
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7.2.4  Results
In this section, the proposed RL-EMPC vessel propulsion controller is evaluated through
comparisons to a tracking MPC controller, for two types of control scenarios. Simulation

results are then presented and discussed.

7.2.4.1 Case study & Setup

First, the full OCP of the tuned-tracking MPC (TTMPC) used for comparison is presented,

min]TTMPC,Bdef (x,u,0) (7.2.53a)
x,u,o
S.t. Xg = x()’ (7253b)
Xe+1 = fe(::;(xk: Ug) (7.2.53¢)
gu) <0 (7.2.53d)
hedef(xkiuk) < Ok (72536)
with objective function:
N-1
JrTmMPCO40; = (ledef (xp, ug) + WTUk) + Py (xy) (7.2.531)
k=0

The choice of TTMPC as a comparison controller is highly intuitive for this context: First
of all, since it is a 1%-order tracking MPC equivalent of the EMPC vessel propulsion
controller originally presented in section 7.1 it can be considered as state-of-the-art for this
application. Secondly, the original EMPC control law may lose the stability guarantees
granted by its gradient-correcting terminal penalty (this is due to plant-model mismatch, as
discussed in subsection 7.2.3.2). Third, OCPs (53) & (37) are almost equivalent for
0 = 04¢5, meaning that RLMPC and TTMPC are also similar at initialization, therefore

ensuring the fair evaluation of the proposed TD-learning scheme.

RL Agent

[ Vessel model ] [ Economic stage cost ] - e = = e e e e |
(Ts) fv Value Action-value
f9|9=9de)‘ (30) [BIB=Ba (22) nction ][ function J | Disturdbances

|
|
y W (s) (390) Qq(s,a) (39b) ) | L3
Steady-State OCP I Policy ! Vessel plant
Irrelttzin () Initial 6-vector | mo(s) = arg minQg(s, a) (40) £ (13,14)
0 = Oyer (52) L
[ Steady-State (x, ug, As) ] -T

Record TD error No

(Tk—Nupd: ---.Tk—ka)

Updated B-vector
0 «0+ab*

Initialization Deployment

Stabilizing EMPC
Problem (24)

Quadratic
stage cost
l

EMPC convexification
Problem (28)

Solve 6-optimization
Problem (44)

Figure 7.2.2 Schematic representation of the proposed vessel propulsion control approach.
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Figure 7.2.4 Wave hull disturbance w; modulation for the on and the off-design case.

Next, the real plant f and the controller model fy parameters that is used by both controllers
are shown in Table 7.2.1. Here, the evident parametric discrepancy, coupled with the plant-
model structural mismatch detailed in subsection 7.2.3.5, are expected to challenge the
RLMPC controller in two respects: First, the computed economic steady state may not be
optimal for the real plant, i.e., (x5, us) # (x5, us) and second, the applied policy may differ
significantly from the optimal one. This challenge is especially salient whenever the
model’s economic cost formulation does not correspond to the plant’s — for the case study
at hand, this manifests through an inaccurate specific fuel consumption map SFC(x, u)
[234]. This inaccuracy is evident in fig. 7.2.3, where the plant & model engine SFC
contours, as well as the corresponding steady-state cost profiles are shown. Lastly, the

constraints that denote the admissible state-input space Z for both controllers are shown in

Table 7.2.2.

In order to showcase the merit of the RLMPC method, two environmental scenarios are
used, pertaining to normal (on-design) and extreme weather conditions (off-design)
situations. Information regarding initialization and wave characteristics are shown in Table
7.2.3, while the modulation of the wy parameter that describes retrograde force due to waves

acting on the hull is shown in fig. 7.2.4, for both scenarios. In addition, the tuning constants
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of the two controllers are shown in Table 7.2.4. Here, horizon N and sample time T are
chosen with regards to the dynamics of the vessel model in order to ensure feasibility and
tractability of the OCP problems, while slack weight w is determined in relation to the
magnitude of the stage cost. The RL parameters Nyp,q, a and y are tuned by trial-and-error
in order to achieve a reasonable learning speed while mitigating the effect of disturbance

noise in the TD-learning Problem (7.2.44).
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Table 7.2.1 Plant & model parameters

Symbol Description Plant Model Unit
to Torque time constant 5 10 S
J¢ Total rotational inertia 5000 5000 kg m?
lgp Gearbox speed reduction ratio 4.355 4.355 -
te Turbo spooling time constant 20 - S
o 1, nominal value 100 - -
npom n, nominal value 950 950 RPM
m Total mass 38 10° 37.510° 10° kg
fi Thrust deduction factor 0.155 0.155 -
gom Q. nominal value 53 52 kNm
Py M, 2™ deg polynom. param. 1 0.9297 0.9297 -
D> M, 2™ deg polynom. param. 2 0.0333 0.0333 -
D3 M, 2™ deg polynom. param. 3 0.15 0.17 -
e Q; nominal value 1.04 1.04 kNm
Agp Q; param. 1 0.1 - -
bgp Q, param. 2 0.65 0.75 -
Cgb Q, param. 3 0.25 - -
fw Wake fraction constant 0.08 0.08 -
D Propeller diameter 3 3 m
Co Propeller torque coefficient 0.036 0.035 kNm
p Seawater density 1024 1024 kg/m?
k, Propeller constant 2 2 -
Cr Propeller thrust constant 0.16 0.155 kN
Co Nominal hull resistance 6350 6450 kN
y Hull fouling factor 1 1 -
V4 Propeller water depth 6.5 6.5 m
g Gravitational acceleration 9.81 9.81 m/s*
C. RPM to rad/s conversion 0.1042 0.1042 -

Table 7.2.2 Bounds & Constraints

Uice ne Qe rp
(%) (rad/s) (kNm) (%)
Lower 20 15 5 10
Upper 95 95 QI'**(n,) 100
Qmax(n,) = Qrom ( p ( Ne )2 +p ( e ) +p [p1, P2, P3]=
€ € € 1 njom 2 nxom 3 [0.90, 0.03, 0.22]

Table 7.2.3 Scenario Setup: Initial Conditions & Disturbance parameters

Xo Uy pPr Py 4 ® Wy
dOI.l_ [8, 80, 65,35] 85 10 -2.312 10 0.3 0.020
esign
Offt- 5
desi [7,70,40,30] 80 10 -2.45 18 0.3 0.025
esign

Lastly, the simulation framework was built in Python, the OCPs (7.2.37) & (7.2.53) were
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Table 7.2.4 MPC & RL Parameters

Symbol Description Value
N MPC prediction horizon 100
T, MPC sampling time ls
w Constraint slack weight 1000
Nypa RL sample batch length 40
a RL step constant 0.35
y RL discount factor 0.99

constructed with CasADi tools [241] and solved with gqpOASES [242], while the
simulations took place on a 19-9960x processor with 64 GB RAM.

7.2.4.2 Results & Discussion

Regarding the on-design scenario, the state and input profiles are shown for both controllers
in fig. 7.2.5. The TTMPC controller exhibits a tracking offset from the computed economic
setpoint computed by Problem (7.2.21) due to environmental disturbances v,,, wy, which
decrease propulsion efficiency and increase ship resistance, respectively. The RL-MPC
however, slowly adjusts its parameters and moves toward a different, more economical
steady-state setpoint, as evident from fig. 7.2.5f. This result can be interpreted by examining
fig. 7.2.3a, which shows the contour of the engine maps used by the model and the plant,
respectively. The nominal operation points of the two maps, which correspond to the lowest
SFC value, are different. The effect of this modelling discrepancy is reflected at the steady-
state economic cost map, plotted throughout the input range for indicative B, values and

shown in fig. 7.2.3b. It appears that Problem (21), formulated with lg_g ; and the engine

map shown in fig. 7.2.3a with dashed lines, miscalculates the desired economic setpoint;
consequently, RL-MPC adapts its 8 parameters towards the optimal setpoint. The engine
map trajectories for this scenario are shown in fig.7.2.6, where it can be seen that RLMPC
slowly moves towards the true nominal engine operation point, while modulating the power
in circles due to the disturbances affecting on the propeller. Also, the evolution of some
indicative 8-parameters is shown in fig. 7.2.7, where it is shown that the 8-learning process
tends to converge to a parameter set that corresponds to the new setpoint, which is testimony

to the effectiveness of the TD-learning optimization Problem (7.2.44).
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Figure 7.2.5 On-design scenario, state & input results: a) Vessel speed, b) Engine speed,

c) Spool percent, d) Engine torque output, €) Engine controller command, f) Vessel
propulsion economic cost.

The economic efficiency of a vessel propulsion controller is also assessed in an off-design
scenario setting that represents severe weather conditions. Figs. 7.2.8a-e depict the state
and feedback profiles, while in fig. 7.2.8f, the plant’s economic stage cost Ly is shown. In
this scenario, it appears that both controllers fail to track the pre-computed setpoint vessel
speed due to the severe longitudinal wave forces acting on the hull, even though the

propulsion system is operated at near-maximum capacity. Here, the results of RL-MPC are
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highly intuitive: During severe weather, higher engine setpoint operation does not
correspond to higher velocity due to the wave forces acting on the hull and propeller. This
means that the economically sensible propulsion strategy is to track a (negligibly) reduced
speed while applying conservative control actions. The latter is apparent if one examines
the input profile shown in fig.7.2.8e: TTMPC consistently saturates the input in a naive

attempt to track the original velocity setpoint, while RL-MPC modulates the engine torque
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Figure 7.2.8 Off-design scenario, state & input results: a) Vessel speed, b) Engine speed,

¢) Spool percent, d) Engine torque output, €) Engine controller command, f) Vessel
propulsion economic cost.

command in order to achieve economic performance, as encapsulated by L. This
conservative propulsion control strategy also avoids engine overloading, as evident by the
engine map trajectories for this scenario shown in fig. 7.2.9. Both controllers considerably
modulate the power output of the engine due to the heavy disturbances acting on hull and

propeller; however, TTMPC narrowly violates the safe engine operation envelope due to
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the saturation of the input command. In fig. 7.2.10, the evolution of the 8-parameters for
the off-design scenario are presented. It should be noted that the convergence of the 6-
parameters is less clear in this case; however, RL parameter convergence is not generally

expected [212].
As discussed in Section 7.2.3.1, the economic performance of the vessel propulsion

process is not arbitrarily quantified. Instead, it results as a trade-off between the fuel and
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Table 7.2.5 On-Design Scenario Economic Results

Total mmulaél(;)(;ls )tlme (Tsim = t>400s (new setpoint)
Lf ff fv Lf ‘gf -fv
&) $) $) &) &) $
RLMPC -6468.4 3523.7  -9992.1 | -2223.4 1374.9 -3598.2
TTMPC -6369.5 3462.2  -9831.6 | -2104.4 1195.5 -3300.1
Diff. % 1.53 1.75 1.61 5.35 13.04 8.29

Table 7.2.6 Off-Design Scenario Economic Results

Total simulation time
(T i = 500s)
Total Lf ‘Bf ‘Bv
® &) %)
RLMPC -4237.2 3820.0 -8057.1
TTMPC -4169.0 4047.2 -8216.2
Diff. % 1.61 5.61 1.96
........... —0, ————r——r—y—
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Figure 7.2.11: Model parametrization evolution 876 a) On-design scenario, b) Off-design
scenario

velocity prices py and p,, respectively, with the latter representing the operational incentive
of freight commercial profit maximization. Therefore, one should not expect the tracking
of a pre-specified velocity setpoint from RL-MPC, but rather the minimization of the
economic cost Lg. The optimal policy m, that minimizes this Ly cannot be known a-priori,
for two reasons: Firstly, a wrong model fy may lead to inefficient control laws, as the on-
design scenario results show; the engine map mismatch led to the generation of an
unsuitable economic setpoint, which RL-MPC had to alter in order to coincide with the
powertrain’s nominal operation point. Secondly, external disturbances may invalidate a pre-
computed economic policy; as shown in the off-design scenario, RL-MPC successfully
takes heed of the reduced propulsion efficiency due to the severe sea conditions and adjusts
its policy accordingly.

In addition, one should examine the economic performance of the two controllers,

fv

P that was presented in Section 7.2.3.1, using

calculated using the economic stage cost £
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prices pr,p, sourced from Table 7.2.3. It is first reminded that this stage cost, shown in

figs. 7.2.5f & 8f for the on- and off-design scenarios, respectively, reflects the actual
operational returns of the vessel, since it prices the fuel cost plus the freight commercial
profit. For ease of comparison, the economic results of the two simulation scenarios are
summarized in Tables 7.2.5, 7.2.6. For the on-design scenario shown in figs. 7.2.5-7,
RLMPC achieves 1.53% higher operational profit throughout the whole simulation time.
However, once RLMPC settles in the new setpoint at t=400 s, a significant 5.35% increase

in operational profit is recorded from that time, up to the end of the simulation. By observing

fv

the TD-error containing the true rewards 5, , ,
pr‘V

RLMPC slowly adjusts the 8-parameters,

in order to converge towards the true optimal economic setpoint, thus achieving this
increased performance. In the off-design scenario, a 1.61% profit increase is seen

throughout the simulation time; here, RL-MPC correctly identifies that the economic trade-
off represented by {’£’v requires a reduced service speed in the face of adverse weather
fPv

conditions. To put the results of both scenarios in perspective: For the on-design scenario,
RLMPC would increase profit by 2142 $/hr when operating at the new setpoint, while 491
$/hr would be saved for the off-design scenario case. It should be noted that RL-MPC
achieves this increased economic performance without necessarily generating a sensible
prediction model fy, as evident by the model parametrization 876 evolution for the two
scenarios, shown in fig. 7.2.11. As discussed in Section 7.2.3.3, the objective of RL-MPC
is to approximate m, by toggling the entirety of the MPC constituents (cost, constraints, &
model), rather than merely focusing on reducing model prediction error, as in typical system

identification schemes.

7.2.5 Conclusion & Future Prospects

In this section, an RL-MPC controller is presented for the maximization of the economic
performance of a vessel propulsion system. First, an economic MPC stage cost that
incorporates the actual high-level chartering economic objectives is built. Then, using this
stage cost, a data-driven RL-MPC controller for economic vessel propulsion is developed.
Simulations show that the proposed vessel propulsion controller is able to maximize the
economic performance by accommodating for model discrepancies and external

disturbances.

It should be noted that the results of this section can be further extended to other types of
propulsion systems, while also incorporating recent research results from the literature that
combine RL-MPC with system identification [243], or account for safety-critical

applications [211]. Still, the case of efficient operation of an autonomous vessel’s requires
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not only the economic utilization of the propulsion system, but also its efficient navigation;
for this reason, the unification of the results presented herein with the data-driven tracking
controller capable of & navigation and collision avoidance presented in Section 6.2 is well-

motivated.
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7.3 A Control Law for the Data-Driven Navigation & Economic

Propulsion Control of Vessels

As a continuation of the work presented in Sections 7.2 & 6.2, this chapter constructs a
stable control law for the data-driven navigation & economic propulsion control of vessels
(it should be noted that this chapter does not constitute a complete study to this end). There
exists significant motivation for this endeavour, both from a practical & academic
perspective: From a practical perspective, the proposal of a data-driven control law that
incorporates actual vessel economic performance as well as path following can lead to the
creation of fully autonomous & economic vessel agents, with tangible economic benefit.
Next, from an academic perspective, a data-driven approach for the combined navigation
& economic propulsion control of vehicles has not been created so far; two research works
currently exist that are most relevant: The first constructed a data-driven trajectory tracking
navigation control law for autonomous vessels using RL-based MPC, however without
including a detailed modelling of the propulsion system and its respective economic
objectives [244]. The second research work presented a stabilizing, dual-objective
continuous-time MPC which did handle both a trajectory tracking & a propulsion energy
objective for underactuated vehicles [208]; still, since it was not data-driven, it cannot
handle modelling discrepancies, while also its economic objective formulation remained
rather simple. To reiterate, the development of a novel, data-driven navigation & economic
propulsion control law is well-motivated, and this section lays the necessary theoretical

groundwork to this end.
7.3.1  Vessel Navigation & Propulsion Control Problem Statement
7.3.1.1 Kinematics & dynamics of vessel

In this subsection, the vessel model that incorporates 3DoF in motion as well as the
propulsion system states is presented. The pose of a vessel is described by
n = [x,y,¥]'eR? X S where S = [0,27] is the set of yaw angles ¥, while its cartesian
position in the fixed reference frame described by p = [x,y]". Next, the velocity vector
v = [u,, v,7]"€R? includes the body-fixed velocities u,v and the yaw velocity r. The
dynamic model of the vessel is then given as [202]:

0 =J (v (7.3.1a)
Mv+DW)v+ CWV)v =1, +71) (7.3.1b)
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Here, MeR3*3 is the inertia matrix, D(v)eR3*3 is the water damping matrix, C(v)eR3*3
is the Coriolis matrix, ,, T,, are the vessel thrust and wave forces, respectively, and lastly,

J () is the North East Down (NED) reference transformation matrix, denoted as:
cos(yp) —sin(y) O

J(m) = |sin(y) cos(yp) O (7.3.2)
0 0 1

Typically, evaluating the thrust vector 7, would involve the mapping of the actuators

installed on the vessel to generate the respective forces and moments for each body-fixed

direction. Here, without loss of generality, it is assumed that there exists a single thruster

generating thrust magnitude f; at an azimuth angle of a,. Thus, the vessel’s thrust force
vector T, can be written as follows:

focos(ao)
T, = fosin(a,) (7.3.3)
fo (dxsin(ao) - dycos(ao))

Here, (dy, dy) is the distance of the thruster from the body-fixed axis of the vessel.

Next, the thruster dynamics can be presented; typically, the azimuth angle dynamics can be

described by a time-delay ODE

1
g = t—(—a0 +ag.) (7.3.4)
a

where t, 1s a time constant and a . is the azimuth angle command. The thrust magnitude
fo however, encapsulates the propulsion system dynamics and thus requires detailed
modeling. For this reason, we leverage the internal combustion engine plant model
presented in Section 7.2.2.1 with DAEs 7.2.1-13, which contains the states [vs Ne 1y Qe]T,
where v; is the longitudinal velocity, n, is the engine angular velocity, 7, is an internal state
variable describing turbocharger spooling and fuel rack time-delay dynamics, and Q,, is the
current engine output brake torque. This model accepts the input u;.., which represents the
torque command to the engine, as a percentage of the maximum torque that is currently
available. The first step to creating the propulsion system model f,,o,(-) is to omit the
velocity v (7.2.9), since a representation already exists (7.3.1). Next, the propeller thrust

magnitude f is written as :

fo = CrpvinD? (7.3.5)
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Here, C7 1s a propeller constant, p the water density, v, is the propeller’s hydrodynamic
velocity (which is a function of engine speed n,), and D the propeller’s diameter. Using
forop() and (7.3.1) the implicit dynamics of the full vessel model ff,;;(-) encompassing

the 3DoF hull dynamics as well as the propulsion system can be created:

[ n—=Jmv
Mv+DW)v+CW)v—ayfy — Tw
1 =0 (7.3.6)

ay — P (—ao + aO,c)
_f;)rop - fiorop([uv Ne rp Qe]: [uice]) J

The model ff,,;; () contains the states

x=[nvayn.m, Qe]T, x €X (7.3.7)

and accepts the input and environmental disturbance variables

u = [ujce, age], u€U (7.3.8a)
d=1,,d€D (7.3.8b)

where X, U and D are the admissible state, input, and disturbance spaces, respectively.

7.3.1.2 Control objectives

The first control objective pertains to the trajectory tracking of a desired pose 7n4. Splitting

the task into position and heading, two respective functions are created [244]:

Cpos(1) = 87 \/1 i xd)z;(y —ya) (7.3.9a)
Crong () = 08 g” —Ya) (7.3.9b)

The Cpos(-) function represents a pseudo-Huber distance cost, with attractive numerical

characteristics [245] for usage in MPC, while Cj,,44 () ensures that no heading angle wrap-
around occurs during calculation. The two functions are combined to form the following

positive-definite tracking cost function:

te(x,u) = Qpos Cpos(n) + Gnead Cheaa(n) + Qaaoz (7.3.7)
Here, the last term penalizes excessive thruster angle changes and the g terms are weights.
Next, the second control objective pertains to the economic propulsion trade-off {’g’v and is

already described in subsection 7.2.2.2:

{’;]:;fp,,(x, w) = pr g, u) + py uy (7.3.8)
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Here gy is the expended fuel and py, p,, are the fuel unit and cost-of-opportunity prices,

fv

respectively. Note that ¢, Dy

is a generic function. The two cost functions (7.3.7,8) can be

combined in order to create the final stage cost, as follows:

20, u) = £.(x,u) + €47

D7y (x,u) (7.3.9)

Note that this is also a generic stage cost, even though €,(+) is quadratic.

7.3.2  Methodology

The creation of the control law for the data-driven vessel navigation & economic propulsion
control follows the same methodological outline as subsection 7.2.3 : The idea is to use
stage cost €,(-) to generate a stabilizing EMPC control law, which can then be
approximated up to 1% order by a properly tuned MPC through the procedure described in
section 7.2 & [239]. Next, this tuned MPC can be paired with RL tools as in 7.2.3.5 in order
to yield the desired control law, capable of handling modeling mismatches and

disturbances.

7.3.2.1 Stabilizing EMPC
Before formulating the stabilizing EMPC control law, the optimal steady-state for the

propulsion system must be calculated. First, the propulsion system model fp,(-) is

augmented by the surge velocity part u,, of the hull dynamics kinematic model:

ﬂ;(f:,f')(x’ u) = {ﬁ,mp(.), (—M—l(D(v)v —Cv)v+aefy + TW))uv} (7.3.10)

Model fp(f;;,g )(x,u) consolidates the states Xprop = [u, ne T Q.| and input Uprop = Uices
thus describing the propulsion system & surge dynamics of the vessel. Similar to 7.2.3.1, a

steady-state optimization problem can be formulated using economic stage cost {’{:ﬁpv ():

rgcl’iun f;;;,pv (xp, ug)

(T
s.t. Xk+1 = fi)(f;é;g)( S)(xkluk)l (xl u) €EZ

(7.3.11)

This will yield the propulsion system’s optimal economic steady-states X,yrop (s) and

Uprop,(s)» TOT given pricing parameters py, py,.

Next, using the economic stage cost £,(+) (7.3.9) of the full system, the OCP of an EMPC

controller can be formulated as:

min Jgppc(x, 1) (7.3.12a)
xX,Uu

s.t. x(0) = %, (7.3.12b)
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(x,u) €Z (7.3.12¢)

Xk+1 = ffull(TS)(xk:uk) (7.3.12d)
Pr = Pf,aPv = Pvd (7.3.12¢)
n=1q (7.3.12f)

x(N) = xy (7.3.12h)

Where py g, Py q are the desired pricing parameters for l’{;‘;pv('), f; fuu(TS)(-) is the system

model discretized by the sample time T, Z is the admissible state-input space, and 1, is a
vector of reference poses up to the prediction horizon N. Eq. (7.3.10f) represents the
stability-enforcing terminal constraint of the scheme: Here, xy depends on whether n4(N),
i.e. the desired pose at the end of the prediction horizon, refers to an intermediate or final
waypoint; for the first case, xy = [nd (N) vy Qo n Me(s) Tp,(s) Qe,(s)], i.e. (the desired
terminal position and velocity, together with the propulsion system’s optimal economic
steady-states, while for the second case, xy = [nd (N)Oaoyy00 O], (i.e. the desired static

terminal position, with inactive propulsion). Next, Jgypc 1s the OCP’s objective function:

N-1
Jempc(x,u) = Z(fo(xk»uk)) + P(xy) (7.3.13)
k=0

Where P () is a suitably-chosen terminal penalty. Here, it can be argued that the conditions
exist for the usage of the gradient-correcting terminal penalty used in subsection 7.1.3: First,

the system (7.3.7,8) is dissipative, and second, the stage cost €, () has a non-zero gradient
at the optimal steady-state [221] - more specifically, it holds that Vx{’;:’;f p, (X5, us) # 0,
Vu{’;;;f p,(Xs Us) # 0, even though V¥, (xs,us) = 0. Therefore, the EMPC control law

resulting from (7.3.10) is stabilizing.

7.3.2.2 Outline of RL-based MPC for navigation & economic propulsion

The stabilizing EMPC control law developed in subsection 7.3.2.1 must first be convexified
up to 1% order so as to produce a specially-tuned tracking MPC control law, using Problem

(7.2.28) presented in 7.2.3.2. The solution of this Problem admits a quadratic stage cost £

that can subsequently be used to develop a 8-parametrized MPC for usage within RL tools:

min Jypc,o (x,u,0) (7.3.14a)
st Xg =X (7.3.14b)
Xierr = £ (i i) (7.3.14¢)
gu) <0 (7.3.14d)

hg (i, ug) < oy, (7.3.14¢)
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This OCP is comprised of a discretized model ff(gfl)’e, a terminal penalty Py, a state-input

constraint map hg and a bound constraint map g. Note that the convexified stage cost [ g
can be extended to include collision avoidance objectives built upon data-driven obstacle
vessel models, as presented in subsection 6.2.4.2. The objective function Jypc ¢ (*) is:

N-1
Jupco (6 u,0) = Ag(xg) + ¥ Po(xy) + Z Y (o (e, ug) + whoy) (7.3.15)

k=0
Here, [y is the parametrized stage cost, g a parametrized initial cost function required for
stability as discussed in subsection 7.2.3.4, and Py a parametrized terminal penalty. This
MPC is then used to construct the following value and action-value functions for the

navigation & economic propulsion problem:

Vo(s) = min Jypcg(x,u,0), 5.t (7.2.37b) = (7.2.37e) (7.3.16a)
QQ(S; a) = };nuir(}_]MPC,Q(xl u, O-)
s.t (7.2.37b) — (7.2.37¢) (7.3.16b)
uO =a

These value and action-value functions correspond to the policy Ty = ug, as retrieved from
Problem (7.2.26). Then, RL tools that toggle the 8-parametrization of gy can be applied, in

order to approximate the optimal economic policy 7.

Corollary 1 (Asymptotic stability of data-driven MPC control law mg): Suppose

assumptions of Theorem 4.3.3 are satisfied as well as

A. Initial state x,' lies in the region of attraction & prediction horizon N is sufficiently

long.

B. Initial cost A¢(+), terminal penalty Pg(:), and stage cost lg(:) are all positive
definite.

Then, the origin is asymptotically stable in Xy, and the optimal economic policy m, can be

learned.

Proof: Initial positive-definite values for ly(-) and Py(:) are obtained by using Problem
(28) presented in 7.2.3.2, and by solving the DARE as discussed in intro, respectively.
Function A4 (+) can be initialized using any positive-definite function [212]. This means that

Theorem 4.3.3 can be employed to show that Jypc ¢ (+) is a Lyapunov function m
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Using a batch TD-learning scheme such as the one presented in subsection 7.2.3.4 which
ensures the positive-definitiveness of ly(-), Py(-), and Ag(-) guarantees that the resulting

RL-MPC data-driven control law is stable.

Remark: The full creation of the aforementioned control law requires the proper
parametrization of the vessel model (7.3.7,8) and the tuning of the RL parameters, which,
together with the actual simulation studies, remain as items of future research. However,
their similarity to the work already carried out in subsection 7.2.3 is noted. In general, it is
the author’s opinion that the concept presented here can be further developed & eventually

applied in practice with little extra effort using section 7.2 as a roadmap.
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Conclusion & Outlook

This thesis focused on the construction of data-driven MPC schemes and optimization methods by
employing computational intelligence & machine learning tools. The topic was approached from
both a theoretical and practical perspective, and the economic benefits of the proposed algorithms
were showcased over the optimization & MPC control of a wide variety of engineering

applications.

First, CI-based methods were developed that addressed the load forecasting task and the optimal
dispatch of distributed renewable sources. The load prediction task was addressed using a pool of
selected ML algorithms with an online dynamic selection system; therefore, the advantages of each
algorithm are combined in order to create a prediction ensemble of high accuracy. It is noted that
this approach can be generalized to other types of timeseries forecasting problems, characterized
by stochasticity. Next, a metaheuristic optimization algorithm capable of exploiting structural &
topological information of networked problems was created, & applied to the optimal power flow
problem of smart distribution grids. The proposed method employed a community-detection
algorithm in order to assign effective cooperation sets for a cooperative PSO algorithm, with
significant economic results. The author notes that this optimization approach could be extended
to the optimization of other large-scale engineering systems that similarly exhibit topological
structure. Lastly, it is noted that the two load forecasting & OPF methods presented in this thesis

could be leveraged to create a smart-grid decision support system.

Next, two data-driven tracking MPC methods based on RBFN were designed, in order to capture
nonlinear or otherwise hard-to-model processes. Two representative case studies were chosen: The
first case study concerned the control of a vehicle’s active suspension, the dimensionality of which
prohibits the usage of standard linear or ODE-integrated prediction models; the application of RBF
models for this task leads to significant control performance improvement, over various
performance indexes. The second data-driven MPC controller addressed the vessel collision
avoidance task using obstacle trajectory models trained on real vessel data; here, the usage of RBF
models is mandated due to their black-box nature. It is noted that the future prospects of the
proposed MPC controllers extend further than the two specific case studies presented here; other
types of systems that exhibit high nonlinearity & complexity, could benefit from the data-driven
approach.

Finally, a data-driven nonlinear EMPC scheme was presented for the economic control of a vessel
propulsion system: First, a stabilizing EMPC propulsion control law was constructed, with

significant fuel economy benefits. Serving as a proof of concept, this control law was extended to
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a data-driven EMPC scheme based on reinforcement learning, using an economic stage cost that
accurately described the real, high-level chartering economics of freight shipping. This learning
controller successfully handled structural modelling discrepancies between plant & model, leading
to higher closed loop economic performances. Finally, the theoretical groundwork of a control law
that leverages previous results was laid, pertaining to the data-driven autonomous navigation &

economic propulsion control of vessels.

Future research will first focus on further developing the aforementioned control law and
simulating it with various scenarios. Next, more applications will be explored that would benefit
from learning-based MPC controllers with theoretical guarantees, such as wastewater plants. In
general, it is the author’s opinion that the potentialities of CI/ML tools for optimization & data-
driven control have not yet been fully exploited, both from a practical and a theoretical perspective.
Therefore, he hopes that this thesis will serve as a starting point for future endeavours towards this

end.
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Appendix I: Multi-agent Simulation Framework

main.m
scenario.mat
(™| spawn_agents( ) )
spawn_obstacles( )
simulate( )
$
PostProcessor Agent Obstacle
scenario name name
current_states states states
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Visualizer current_state current_state
P - current_input past_states
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input_names
CreateDynamics
GetResponse
CalculateStateTrajectory

Figure 8.1 Simplified class diagram of the multi-agent simulation framework

This multi-agent simulation framework was built on MATLAB using standard packages. Oriented
as a research and development platform for multiagent MPC scenarios, the main objectives were
modularity, scalablity, as well as debugging & diagnostics tools for visualizing controller output
and agent intention. Fig. 8.1 shows the simplified class diagram of the simulation framework.
Access to code repository available upon request to the author.
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Appendix II: RL-MPC Simulation Framework
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Figure 8.2 Simplified class diagram of the RL-MPC simulation framework

This RL-MPC simulation framework based on CasADi was built on Python by leveraging the
capabilities of the tuneMPC package [239]. Main objectives were the standardization of system
and OCP description and the employment of cutting-edge solvers & MPC development packages
such as PICOS, ACADO, and others. Fig. 8.2 shows a simplified class diagram of the simulation
framework. Access to the code repository available upon request to the author.
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