UNIVERSITY OF WEST ATTICA
ITANENIETHMIO AYTIKHE ATTIKHX FACULTY OF ENGINEERING

EXOAH MHXANIKON S A DEPARTMENT OF ELECTRICAL &
TMHMA HAEKTPOAOTQN KAI g ° ELECTRONICS ENGINEERING
HAEKTPONIKQN MHXANIKQN o
TMHMA MHXANIKQN BIOMHXANIKHE DEPARTMENT OF INDUSTRIAL DESIGN
TXEAIAZHE KAI TAPATQTHE AND
PRODUCTION ENGINEERING
http://www.eee.uniwa.gr http://www.eee.uniwa.gr
http://www.idpe.uniwa.gr http://www.idpe.uniwa.gr
OnBav 250, Abnva-Aryarew 12241 250, Thivon Str.,, Athens, GR-12241, Greece
TnA: +30210 538-1614 Tel: +30 210 538-1614
Awxtpnpatiko Mpoypappa METAMTUXLAK OV Master of Science in
Tovdwv
Texyvnty Noguoovvn kat BaOik MOnon Artificial Intelligence and Deep Learning
https://aidlLuniwa.gr/ https://aidlL.uniwa.gr/

Master of Science Thesis

Applying Reinforcement Learning algorithms for profitable strategies in a stock market
simulator

Student: Theodore Stavrothanasis
Registration Number: AIDL-0015

MSc Thesis Supervisor

Panagiotis Kasnesis
Lecturer

ATHENS-EGALEO, September 2023

http://www.eee.uniwa.gr/
http://www.idpe.uniwa.gr/
http://www.eee.uniwa.gr/
http://www.idpe.uniwa.gr/
https://aidl.uniwa.gr/
https://aidl.uniwa.gr/

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

IMANENIXTHMIO AYTIKHX ATTIKHZ

UNIVERSITY OF WEST ATTICA
FACULTY OF ENGINEERING

EXOAH MHXANIKON S A DEPARTMENT OF ELECTRICAL &
TMHMA HAEKTPOAOTQN KAI : Y ELECTRONICS ENGINEERING
HAEKTPONIKQN MHXANIKQN A
TMHMA MHXANIKON BIOMHXANIKHS DEPARTMENT OF INDUSTRIAL DESIGN
TXEAIAZHE KAI IAPATQTHE AND
PRODUCTION ENGINEERING
http://www.eee.uniwa.gr http://www.eee.uniwa.gr
http://www.idpe.uniwa.gr http://www.idpe.uniwa.gr
OnBav 250, Abnva-Aryarew 12241 250, Thivon Str., Athens, GR-12241, Greece
TnA: +30 210 538-1614 Tel: +30 210 538-1614
Awatpnpatiko Mpdypappa MeTATTUYLXK OV Master of Science in
Tovdwv
Texyvnty Nonuoovvn kat BaOiad MaOnon Artificial Intelligence and Deep Learning

https://aidl.uniwa.qgr/

https://aidl.uniwa.gr/

Merantoakn Awrhopatikny Epyacia

Epappoyn adyopiBumv evioyvtikng pabnong otnv e£opoimon Kepdopopmy Yp1LOTIGTPLOKMV

CTPOTNYIKOV

Dortnts: (ETovpobavicns Oc66mpog)

AM: AIDL-0015

Empirénov KadOnyntig

Havaywotng Kaovéonc

AéKkTOpOg

AOHNA-AITAAEQ, Sentéppprog 2023

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Theodore Stavrothanasis 0015.

http://www.eee.uniwa.gr/
http://www.idpe.uniwa.gr/
http://www.eee.uniwa.gr/
http://www.idpe.uniwa.gr/
https://aidl.uniwa.gr/
https://aidl.uniwa.gr/

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

This MSc Thesis has been accepted, evaluated and graded by the following committee:

Supervisor

Member

Member

Pa N ag | Digitally signed

by Panagiotis

Ot|S Kasnesis
. Date:
Kasnesi 2023.11.06
10:04:25
S +02'00"

Digitally signed
by Charalampos

W Patrikakis
Date:

2023.11.06
10:54:45 +02'00'

Digitally signed
by Georgios

~ Priniotakis

Date: 2023.11.06
11:14:36 +02'00'

Kasnesis Panagiotis

Patrikakis Charalampos

Priniotakis Georgios

Lecturer

Professor

Professor

Electrical & Electronics

Engineering

FElectrical & Electronics

Engineering

Industrial Design &
Production Engineering

Department

University of West Attica

University of West Attica

University of West Attica

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Theodore Stavrothanasis 0015.

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

Copyright © Mg empOroén mavtog diaropatoc. All rights reserved.

MANENIZTHMIO AYTIKHE ATTIKHE Zravpodaviens Oc6dmpoc,
Yenteppprog, 2023

Amayopevetal 1 avtiypa@r, amodnkevorn kot Stovopr] g mapovoos epyaciog, €&
OAOKAPOVL 1 TUAUOTOS OVTNG, Yo EUTOPIKO okomd. Emtpémetar M avatimmon,
amofnkevon Kot dtovopr| Yoo oKomd U KEPOOOGKOTIKO, EKTOLOEVTIKNG 1 EPEVVNTIKNG
@HoNG, VO TV TPoHTOHEST VO OVOPEPETOL 1 TNYN TPOEAELONG KOl VO dlaTnpeiTat To
mopdv unvopo. Epotmiuoata mov agopovv Tn ¥pnon g £pyaciog Yo KePOOGKOMIKO
OKOTO TPEMEL VAL OTEVLOVVOVTOUL TPOG TOVG GLYYPOPELS.

Ol amdyelS Kol To GUUTEPACHOTO TOV TEPLEXOVTAL GE aLTO TO EYYPOPO eKPPALOLV
TOV/TNV CLYYPAPEN TOV Kot OV TPEMEL va epUnveLBel 0Tt aviurpocwnedovv TG BEcELS
oV eMPAEMOVTOG, TNG EMTPOTNG eE€TaoNG N TG emionpeg Béoelg Tov Tunpatog Kot Tov
[3pOpartoc.

AHAQYXH XYTTPA®EA METAIITYXIAKHX AITAQMATIKHY EPT'AXIAX

O xdtwbt vroyeypappévog Xtavpobavdong Oeddmpoc tov Xprotopopov, pe aplduod
untpdov ADDL_0015 petamtuyiaxog eortntg tov AIIME «Teyvnti Nonpoouvvn kot
Babid Mdadnon» tov Tunuoatog Hiektpordywv kor Hiektpovikdyv Mnyavikdv Kot Tov
Tunpatog Mnyavikeov Bropmyovikng Xyxediaong kot [Hapaymyng, e Zyoing Mnyovikdv
tov [Tavemomnpiov Avtikig Attikng,

oMAOve vrevOova o6TL:

«Eipot ovuyypagéag ovTng TG HETOMTUYIOKNG OWTAMUATIKNG epyaciag kot kabe Ponbeia
Vv omoia €iyo yo TNV mPoETOAGian TG Eivol TANP®G OVOYVOPIGHEVT] KOl OVAPEPETOL
otV gpyacio. Emiong, ol 6molec mnyég amd Tig omoieg £kava ypnon SedouEVOV, 1OEDVY 1
AéEewv, elte akpPdg elte TAPAEPACUEVES, OVOPEPOVTAL GTO GUVOAO TOVLG, LE TANPN
avaPOpPd GTOVG GLYYPAPELS, TOV €KOOTIKO 01kOo M TO TEPLOOIKD, GULUTEPIAALPAVOLEVOV
KOL TOV TNYADV TOV EVOEYOUEVOGS ypnotporombnkay and 1o dudiktvo. Eniong, Pefardvem
OTL out M gpyacio &gl ocvyypagel amd HEVO OMOKAEIGTIKO Kol OmOTEAEl TPOIOV
TVELUOTIKNG 1010KTNGi0g TO60 S1kNg pov, 660 kot tov Idpvpatog. H epyacio dev €xet
Katatedel o010 MAOIGIO0 TV OmMOUTHOE®V Yo T ARYN GAAOL TitTAOL GmOVO®V N
EMOLYYEAUATIKNC TIGTOTOINONG TANV TOV TOPOVTOG.

[TapdPaocn g avotépm akadnuaikng pov evBbvng amotedel ovoidon AOYO Yoo TV
avaKANGN TOL SITADUATOG LLOV.)»

O Aniov
Ytavpobavdong Oe6dwpog

—

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 4

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

(Yroypaen gormzti)
Copyright © All rights reserved.

University of West Attica and Theodore Stavrothanasis
September, 2023

You may not copy, reproduce or distribute this work (or any part of it) for commercial
purposes. Copying/reprinting, storage and distribution for any non-profit educational or
research purposes are allowed under the conditions of referring to the original source and of
reproducing the present copyright note. Any inquiries relevant to the use of this thesis for
profit/commercial purposes must be addressed to the author.

The opinions and the conclusions included in this document express solely the author and do
not express the opinion of the MSc thesis supervisor or the examination committee or the
formal position of the Department(s) or the University of West Attica.

Declaration of the author of this MSc thesis

I, Theodore Stavrothanasis (author name, including father’s name) with the following student
registration number: AIDL_0015, postgraduate student of the MSc program in “Artificial
Intelligence and Deep Learning”, which is organized by the Department of Electrical and
Electronic Engineering and the Department of Industrial Design and Production Engineering
of the Faculty of Engineering of the University of West Attica, hereby declare that:

I am the author of this MSc thesis and any help | may have received is clearly mentioned in
the thesis. Additionally, all the sources | have used (e.g., to extract data, ideas, words or
phrases) are cited with full reference to the corresponding authors, the publishing house or the
journal; this also applies to the Internet sources that | have used. I also confirm that | have
personally written this thesis and the intellectual property rights belong to myself and to the
University of West Attica. This work has not been submitted for any other degree or
professional qualification except as specified in it.

Any violations of my academic responsibilities, as stated above, constitutes substantial reason
for the cancellation of the conferred MSc degree.

The author
Stavrothanasis Theodore

(Signature)

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 5

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

To my beloved parents Christophoros and Vassiliki who are no longer with me.

To the esteemed professors of this postgraduate program that contributed to my educational
evolution and academic advancement.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 6

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

Abstract

Financial time series present unique characteristics that an investor, analyst or algorithmic
trader has to take always into account. One of the defining features is their inherent volatility
and non-linearity. Unlike many other forms of data financial markets are influenced by
economic indicators, geopolitical events and investor sentiment. These factors can cause
sudden and unpredictable price movements resulting in extreme volatility and this violates the
assumption of linearity, making traditional statistical methods less effective. They also exhibit
auto-correlation where the value of a variable at one time point is correlated with its value at a
previous point. This auto-correlation can persist over multiple time lags, leading to trends in
the data. ldentifying and modeling these trends is crucial for making informed investment
decisions. They also suffer from "fat-tailed" distributions which mean there are frequent
market crashes and price swings that could not be expected in a normal distribution.
Financial time series are often non-stationary, with statistical properties like mean, standard
deviation, skewness, kurtosis changing over different periods. Financial markets are not only
influenced by macroeconomic factors but also by their own microstructure, which includes
factors like bid-ask spreads, trading volumes, and market orders. Understanding and modeling
market microstructure is crucial for accurately capturing its dynamics.

The main problem in financial markets is how to make profitable investment strategies with
the lower risk that maximize returns. In this thesis we examine the use of Reinforcement
Learning as a tool of decision making which can lead us to strategies with better performance
than buy and hold the underlying asset.

We create ten out-of-sample synthetic time series based on standard normal distribution and
simulate a trading game where we evaluate the effectiveness of major two RL algorithms Q-
learning and REINFORCE.

Our trading simulations demonstrated that the performance of reinforcement learning
algorithms, Q-learning and REINFORCE can be influenced by the stochastic nature of
underlying data. REINFORCE showed an advantage in terms of P/L (profit or loss) for most
seeds, while Q-learning displayed greater consistency in risk-adjusted returns. The unexpected
success of a buy-and-hold strategy for specific seeds underscores the importance of
considering diverse approaches in trading scenarios. These findings emphasize the dynamic
nature of algorithmic trading, where the choice of the optimal strategy depends on the specific
characteristics of the underlying data.

Finally the construction of a portfolio of the ten single equity curves showed acceptable
performance while minimizing the risk. The results seemed quite promising.

Keywords
Betting system, policy based, Q-learning, decision making, trading game, random process
modeling.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 7

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

IHepiinyn

O1 xpNUOTIOTNPLKEG YPOVOGELPES EYOVV TNV OLETAUPATNTA VA TAPOVGLALOVY KATOWL LOVOOLKEL
YOPOKTNPIOTIKA OV TPEMEL vo. AapPavel voyn €vog emMevOLTNG, AVAALTNAG 1 OAYOpOLOg
EMEVOVCEMY OMMG 1 UETAPANTOTNTO KoL 1 PN YPOLMKOTNTA TOVvG. Xe avtifeon pe dGAleg
HOPPEG OEOOUEVMV, Ol YPNUOTICTNPLOKEG ayopes emmpealovtal omd OKOVOUIKOUS OEIKTEG,
YEOTOMTIKA YEYOVOTO KOl TO cuvaicOnua Tov enevoutdv. Avtol ol Tapdyovieg Umopovv va
TPOKOAEGOVV EAPVIKEG KOl OMPOPAENTEC KIVIGES TOV TYOV HE OMOTEAEGUO TNV OKPOid
aotdfelo mapafralovioc v vrdbeon TG YPOUMUKOTNTOG Kol KOOGTOVTOS AlyOTEPO
OTOTEAECUOTIKEG TIG TOPAOOCIOKES oTATIoTIKEG pHebddovs. Tlapovoidlovv emiong
QLTOGVGYETIOT OOV 1) TN MG LETAPANTNG o€ Eva Xpoviko onpeio cuoyetiCeTon pe v Ty
g o€ évo mponyovuevo onueio. H avtocvoyétion avty pmopel va mapopeivel yioo oAl
YPOVIKG onueia, dnpovpydvtag Tdoelg oto dedopéva. O eVIOMGUOC Kol 1 HovVTEAOTOINoT
aVTOV TOV TAce®V glval (OTIKAG ONUOGlog Yoo TN ANYN TEKUNPIOUEVEOV ETEVOVTIKMV
ATOPACEWV.

Ot Katavopég Toug TapoLstdlovy To TPOPANUA TG VIEPVYOUEVNG 0VPAS AOY®D T®V GLYVOV
amOTOU®V PLOICHATOV KOl SOKVUAVGE®Y TOV ayopdv KATL Tov doev PAEmovue o€ o
Kavovikn katavoun. Tig meplocdtepec Qopég val nNon-stationary, pe otatioTikég 1010TNTEG
OTt®OC M HEOT TIUN, M TLTIKY] OTOKALOT, 1| A0EOTNTA KOl 1) KUPTWON Vo dAAALOVV GE SLAPOPES
meplodovg. Eva axdun xopoaktnptotikd TOovg amoteAel M MKPOOOUN TOVLG, 1M omoid
neplapfavel mopdyovieg Omwe To spreads mpooeopdc-{tnong aAAd kot ot dyKol TV
cuvoAloydv. H katovonon kot 1m poviehomoinon ovtng g pkpodoung eivor LoTikng
onuaciog yio v akpipn arotHI®on TG SLVOULIKNG TNG.

To kbplo TPOPANUA GTIC YPNUOTICTNPLUKES AYOPES efvol TOG v ONovpynBodv KePOOPOPES
EMEVOVTIKEG OTPUTNYIKEG HE TO YOUNAOTEPO picko Kot TN LYMAGTEPT 0mddoot. Xe avT ™
Swrpn e€etdlovpe ™ yprion ¢ Evioyvtikng Mdbnong g epyaieiov AMymg amoedcewv
OV UTOPEL VO LLOG 0OMNYNOEL GE GTPATNYIKES VYNAGTEPNG amddoong amd 6Tl Ba pag €dwve o
TUTTIKN ayopdL Kot S1KPATOT) TOV VITOKEIEVOL EPYUAEIOV.

Anpovpyovpe 0éka GUVOETIKEG YPOVOCELPEG e PAOT TNV TLUMIKY KOVOVIKY] KOTOVOUY Kot
TPOCOLOIMVOLLE £VO TOY VIOl CUVOAAAYDV OTOL OELOAOYOVUE TNV OMOTEAEGLOTIKOTITO TMV
dvo koprwv adyopibuwv RL Q-learning kot REINFORCE.

Ot mpocopOIOCEL; GUVOALAY®DV pHoG £0e1Eav OTL 1 Amdd00T TOV OAYOPIOU®Y EVIGYLTIKNG
nabnong Q-learning ka1t REINFORCE pmopobv va ennpeactel amd T GTOYOOTIKY QUG TMV
vrokeipevav dedopévav. O REINFORCE £oeiée 611 mheovektel 66ov apopd to P/L (képdoc iy
Muié) o tig meproocdTepeg e€opowmwoelg, o Q-learning eppdvice peyolvtepn okpifeia oTig
TPOGAPUOCUEVEG GTOV Kivouvo amoddoel. H amposdoknt emtuyio ¢ otpatnyikng “buy
and hold” vy ovykekpiuéveg e€ououdoelg vmoypappiler ™ onuacio ™ e&étaong
OLPOPETIKOY TTpooceyyicemv. Avtd To gvpniuota delyvouv 1n dSuvapuky QOO TV
aAYOPIOIKAV GVVAALOY®V, OOV M €MAOYN NG PEATIOTNG oTpatnyikng e&aptdton amd To
E101KA YOPOKTNPIOTIKA TOV VTOKEIUEVOV OEOOUEVMV.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 8

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

Télog, N Kataokevn €vOg YaPTOPLAOKIOL GLVOLALOVTOG TIG OEKO LELOVOUEVES EEOUOLDCELS
£0€1EE MOOEKTEG EMOOCELS EANYIOTOTTOIOVTAG TOV Kivouvo. Ta amoteAéopata epgovifoviot
OPKETA IKOVOTTOUNTIKA.

AgEerg — Krewora

Yvomua otoynuaticpod, policy based, Q-learning, moayvidt cuvaliaymdv, povielomoinon
GTOYOGTIKNG O10010KAGT0G.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 9

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

Table of Contents

LIST OF TADIES....cee ettt neenre s 12
LLEST OF FIQUIES ...t b bbbttt b e bbbttt enes 12
ACTONYIM INOEX ..ttt et et e st e e e e ese e s seesteese e teeneeeseenbeenteaneesteenteaneennes 15
INTRODUGCTION ...ttt bbbttt sttt s et e b et e sb st e bt beaneaneeneas 16
The SUDJECT O thiS TNESISvviie et te e re e e 16
AIM AN ODJECTIVES ...t b bttt 16
1Y/ 1=] 1 g0 (0] [o] o Y2 SRS 16
Y 4 001 (L TR OT R PP TR 17
1 CHAPTER 1: StOCNASTIC PrOCESSES. .. .viiiiviiiieiiieeiieesireesteesteesteesreesteessreesseesseesreesbeenreeas 18
1.1 RANAOM WaALK ...t bbb 18
1.2 Autocorrelation in Financial TiIMe SErieS ..o 19
1.2.1 Autocorrelation FUNCLION (ACE) ..o 19
1.2.2 Practical SIGNITICANCEcueiiiieiieie ettt 20
0 B o (0 1YV (o I 1 (] o] =] A | SRR 20
2 CHAPTER 2: Reinforcement LEarNiNgcccuueieiereneneseseseeee e 22
2.1 Components of the Reinforcement Learning ProcCess...........ccocuvvieieninenenenieseseenns 22
2.2 DetermMINISTIC POIICY ..ocvviiiicie et 23
2.3 STOCHASTIC POIICY ...t bbb 23
2.4 Markov DeciSion ProCess (MDP)coiiiiiiiie i 24
2.5 Policy and Value FUNCTIONSc.oiiiiiiiiiieee e 25
2.6 Bellman Optimality Equations in Reinforcement Learningccccoccevveveiieieennenn, 25
2.6.1 Optimal State-Value FUNCLION..........c.ccveciicie et 25
2.6.2 Optimal ACtion-Valug FUNCLION..........ccoiiiiiiiieiceee e 26
2.6.3 Solving the Bellman Optimality EQUatiONS...........ccccoiveiiiieiieieece e 26
2.6.4 Value Iteration AIGOrtNMooviiiiii s 26
2.7 Key Concepts and Algorithms in Reinforcement Learning..........ccccccoevenvneninnenenn 27
2.8 Applications of Reinforcement Learning..........cccccvevvvveieeii e s 27
2.9 Temporal DIfference Learning ... 28
2.9.1 TD(0) AIGOTTERM ...ttt 28
2.9.2 Advantages of Temporal Difference Learning...........cccoeveveiieieeieiiiesieese e 29
%) B © T =T g o[Vo SRS S PP TRURPRRRRRN 29
2.10.1 Q-Learning AlGOrthm.........cooiiiiiiic e 30
2.10.2 €-grEAY STFALEQY ... eevetiiteiteitieieeiei ettt b e bbbttt ettt bbbt 31
2.10.3 Some characteristics of off-policy algorithms:cccoovviii i, 31
211 o1 1oV T - To [1=] o1 £ OSSPSR 32
2.12 REINFORCE algorithmcooiii e 33
2.12.1 Trajectories in ReiNfOrcemMent LEAININGccuoiririeiieiese ettt 33
N B -V [T (0] YA = (=] (1] o USSP 34
2.12.3 EXPECIEA FEIUIM ..ottt bbbttt bbbt 35
p N A S T - o [1=] 1 - Lo =T o | RS TTPPRTR 35
2.12.5 Sampling and €SUMALEcccveiierieieiiere ettt e s re e e e e reeee e 36
2.12.6 Gradient eStimation fOrMUIA.............coiiiiiii e 36
3 CHAPTER 3: Related WOIK........cocviiiiieieee ettt 38

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 10

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

4 CHAPTER 4: Trading QAmME.......coiiiiiiieiieeie sttt sttt sse et be e 41
4.1 Random WalK generation............cccoiiiiiiiiiic et 41
4.2 Charts and defiNITIONS.ccviiiiieii et sreeee e 42
4.3 ENVIFONMENT ...ttt b bbbt e e ne e ens 43
4.3.1 RaNdOMWAIKEVN CIASScoiviiiiiiiice e e 44
L I - | (1TSS 45
4.3.3 REWANT FUNCLION ...ttt ettt be b 47
4.4 Discretized Q-18aININGcoiiiiieiie it 48
4.4.1 Training the diSCreteQAGENL.ccviiiie it 49
4.4.2 Simulating a trading game with diSCreteQAGENT.coveiiiiiiiieri s 50
4.5 POLICY Gradient........oovoiiiiiiiiee bbbt 50
45.1 Training with the policy gradient algorithmcccoeviiiiiiiiii s 51
4.6 Implementation @nd FESUITS...........ooiiiiiiiii e 54
4.6.1 SNAIPE FALIO ...eieeieiciieiee et bbbt bbb 55
4.6.2 Random process With SEEA=19ccciiiiiiii i 57
4.6.3 Random process With SEEA=20cceiiriiiiiiiiieieie et 58
4.6.4 Random process With SEEA=2Lccviiiiiiie ittt 59
4.6.5 Random process With SEEUT22ccueiiiiiiiiiiiieiee e 60
4.6.6 Random process With SEEA=23c.eiiiiiiiiie e 61
4.6.7 Random procCess With SEEUT24cuoiiiiiiiiiiieeee s 62
4.6.8 Random process With SEEA=25ccuiiiiiiii i 63
4.6.9 Random procCess With SEEA=26cceiiriiiiiiiiiiiee s 64
4.6.10 Random process With SEEA=28coiiiiiiiieciie e 65
4.6.11 Random process With SEEAT29coeiiiiiiiiiiiieiee s 66
4.7 o] 1 (0] [0 TN o) JET=T=T o KOS 67
5 (@0 0 [0d 11551 o] o S ST 69
6 FULTUFE RESEAICH ...ttt sr et eeneenre e e e 71
Bibliography — References — ONliNg SOUFCES...........coiiiiiiiiiieie e 73
APPENAIX A et bbb bR bbb bbbttt nes 75
F A o] 01T [0 [5l = USSP OPUSURRRR 75

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 11

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

List of Tables

Table 1 Parameters on discrete-Q train algorithm............cccooeiiiii i 49
Table 2 Parameters on REINFORCE algorithmcccooiiiieiiiii e 51
Table 3 Results of trading simulations on various random ProCeSSES.........ccevererererereseenenn. 69
List of figures

Figure 1 Random Walk generated With SEed=18ccecveriiiiiiiieie e 18
Figure 2 Autocorrelation of Random Walk generated in Figure L........ccccooeiivinininnsineeeenn 19

Figure 3 The interaction between an agent and its environment within a Markov Decision

PIOCESS (IMDP).. .ttt ettt ettt e s e b et e e s e e et et e e st e e neesreenteaneenreente e 22
Figure 4 Example of a MDP with three states (green circles) and two actions (orange circles),
With tWO rewards (OFanQge @ITOWS)ciueeueereerieesieaiesieesieeseesseesteaseessessseessesseesseessesseessesssesneesses 24
Figure 5 Q-learning algorithm..........ooiiiiiiiie e 30
Figure 6 Summary of approaches in Reinforcement Learning. The classification is based on
whether we want to model the value or the PoliCYccccooiieiiiiiic i 32
Figure 7 Gradient aSCENE SLFALEQY.ccvviveiieireiie it e ettt e e sae e e sre e reeee e 35
Figure 8 Random Walk generated wWith SEEA=18cccoiiiiiiiiiiiiee s 41
FIQUIe 9 Bar tranSItIONSceiiiiiieieieies bbbt 42

Figure 10 left: pcio for RP with seed=18, middle: distribution, right: autocorrelation function

... 46
Figure 11 left: pcyo for RP with seed=18, middle: distribution, right: autocorrelation function
... 46
Figure 12 left: pcsp for RP with seed=18, middle: distribution, right: autocorrelation function
... 47
Figure 13 left: pcsy for RP with seed=18, middle: distribution, right: autocorrelation function
... 47
Figure 14 left: pcigo for RP with seed=18, middle: distribution, right: autocorrelation function
... 47
Figure 15 ESPISON greedy OPLIONScc.ccveiieiieiieseesie e see e etesee e ae e se e sae e eneesneesreeneeans 49
Figure 16 Running average of rewards for a total of 500 epiSOUES........cccccvevvrieerverrrieiiennn, 50

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 12

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

Figure 17 Average reword during training the policy gradient algorithmc.cccooovvieenen. 54
Figure 18 Equity Process generated With SEE=19.........ccccceriiiiiriiiiieieee s 57
Figure 19 Equity generated applying Q-learning on RP with seed=19..........cccceovrrinirrinnnnn 57
Figure 20 Equity generated applying REINFORCE on RP with seed=19.........c.ccccccevviieennnnn 57
Figure 21 Random Process generated With Seed=20...........ccceevivimriereiiiesiere e 58
Figure 22 Returns generated applying Q-learning on RP with seed=20............c.ccccervvrivrrrnne 58
Figure 23 Returns generated applying REINFORCE on RP with seed=20............cc.ccocvvvrnnne. 58
Figure 24 Random Process generated With Seed=21...........ccccocevrininiinineiniire s 59
Figure 25 Equity generated applying Q-learning on RP with seed=21.........c.ccccccevviriniieennnns 59
Figure 26 Equity generated applying REINFORCE on RP with seed=21............c.cccevvvrrrennenn. 59
Figure 27 Random Process generated With Seed=22..............ccocevrininiinincinineeeeees 60
Figure 28 Equity generated applying Q-learning on RP with seed=22.............cccoovriviivninnenn. 60
Figure 29 Equity generated applying REINFORCE on RP with seed=22..............cccceovrrennn. 60
Figure 30 Random Process generated With SEed=23..........c.cccoeiiiiiii i 61
Figure 31 Equity generated applying Q-learning on RP with seed=23.............cccccevvivieriennenn, 61
Figure 32 Equity generated applying Reinforce on RP with seed=23ccoceviriiininnnnn 61
Figure 33 Random Process generated With Seed=24...........c..ccoceoiininiinineiiinereee s 62
Figure 34 Equity generated applying Q-learning on RP with seed=24.........c..ccccccevviviiviieennnns 62
Figure 35 Equity generated applying REINFORCE on RP with seed=24............c.ccccovervvennenn. 62
Figure 36 Random Process generated With SEed=25...........cccccveiieiieieiiesiere e 63
Figure 37 Equity generated applying Q-learning on RP with seed=25.............cccceoovriiiiininnnnn. 63
Figure 38 Equity generated applying REINFORCE on RP with seed=25...........c..cccceovriennn. 63
Figure 39 Random Process generated With SEEJ=26.............ccceiiiiiiiiiiic i 64
Figure 40 Equity generated applying Q-learning on RP with seed=26.............c.cccccevrrrerrennenn. 64
Figure 41 Equity generated applying REINFORCE on RP with seed=26..............ccccceuvrrvennenn. 64
Figure 42 Random Process generated With Seed=28.............cccceovininiinineiiinees 65
Figure 43 Equity generated applying Q-learning on RP with seed=28.............cccccovrvriinirnnn 65

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 13

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

Figure 44 Equity generated applying REINFORCE on RP with seed=28............c.cccceevvrreennenn. 65
Figure 45 Random Process generated With Seed=29..........c..ccoceiiininiinincinicces 66
Figure 46 Equity generated applying Q-learning on RP with seed=29..........cc.cccoceviniiiinnnn. 66
Figure 47 Equity generated applying REINFORCE on RP with seed=29............ccccccovvieennnns 66
Figure 48 Portfolio of all seeds for Q-learning algorithm.............ccccoovviiiiiiie i, 67
Figure 49 Portfolio of all seeds for REINFORCE algorithmccccooiniiiinincic 67
Figure 50 Comparison of portfolios between the two algorithms...........cccccoeviiniiinenn 68

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 14

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

Acronym Index

ACF: Autocorrelation function

MDP: Markov Decision Process

TD: Temporal difference

DQN: Deep Q Networks

DDPG: Deep Deterministic Policy Gradient
TD: Temporal Difference

TD(0): Temporal Difference with a one-step look ahead
p/l, PnL: profit or loss

RWP: Random Walk Process

SP: Stochastic Process

RP: Random Process

SAC: Soft Actor-Critic

DRQN: deep recurrent Q-network

GRU: Gated Recurrent Unit

LSTM: Long Short-Term Memory

CNN: Convolutional Neural Network

MLP: Multi-layer perceptron

RNN: Recurrent Neural Network

DNN: Deep Neural Network

Adaptive DDPG: Adaptive Deep Deterministic Reinforcement Learning
A3C: Asynchronous Advantage Actor-Critic
SDAE: Stacked Denoising Autoencoder
PPO: Proximal Policy Optimization

PG: Policy Gradient

TFJ-DRL: Time-Driven Feature-Aware Jointly Deep Reinforcement Learning

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 15

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

INTRODUCTION

The evolving domain of artificial intelligence is offering solutions to intricate challenges
across diverse fields. Within this landscape, we technically explore the subject of utilization of
Reinforcement Learning as a tool in the field of algorithmic trading. In this thesis, we delve
into the dynamics of a trading game where Reinforcement Learning can help to make
informed decisions and forge profitable strategies. It is a simulated market governed by
synthetic random processes, where the interplay of data, algorithms, and decision-making
forms the core of our study.

The subject of this thesis

At the heart of this thesis lies the intimidating problem of financial time series the complexity
and inherent chaotic behavior of these intricate data streams. In the world of trading,
understanding these complex dynamics is a paramount challenge. Reinforcement Learning
emerges as a potential solution, promising to unravel the intricacies of financial systems and,
in turn, enable the creation of profitable trading strategies. The timeliness of this pursuit is
evident in the ever-increasing need for innovative approaches to tackle the enigmatic behavior
of financial markets.

Aim and objectives

The aim of this thesis is to synthesize a representative Reinforcement Learning environment
that mimics the dynamics of a market. Within this dynamic environment, our primary
objective is to harness the capabilities of Reinforcement Learning algorithms to craft trading
strategies that outperform the rudimentary 'buy and hold' strategy. To dissect this aim further,
we delineate our objectives:

1. Environment Construction: We endeavor to construct a trading environment that
mirrors the complexities of financial time series

2. Algorithm Selection: Our focus turns to the selection and implementation of
Reinforcement Learning algorithms, with a specific emphasis on Discretized Q-
learning and Policy Gradient methods, which will steer our trading strategies.

3. Profitable Strategy Generation: Leveraging the power of Reinforcement Learning, we
aim to create trading strategies that can consistently yield superior returns compared to
the traditional 'buy and hold' approach.

4. Evaluation on Random Processes: Our research extends to the rigorous evaluation of
these strategies across an array of out-of-sample random processes regarding
effectiveness and profitability.

Methodology

We begin by constructing a simulated trading environment that mimics real-world market
conditions, serving as the playground for our Reinforcement Learning agents.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 16

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

Within this dynamic environment, we implement Reinforcement learning algorithms
specifically, Discretized Q-learning and Policy Gradient methods. These algorithms will
govern the decision-making abilities of our agents.

Then we employ these algorithms to create trading strategies. Notably, these strategies operate
within the constraints of a fixed betting system, without the complexity of money or risk
management, focusing solely on the direction of trades.

Lastly we rigorously evaluate and compare the performance of these strategies in a spectrum
of out-of-sample random processes. This assessment offers a comprehensive view of their
effectiveness and profitability.

Structure

The thesis unfolds across several chapters:

Chapter 1: Introduction to Stochastic Process creation and Autocorrelation: This chapter
delves into the fundamentals of stochastic processes, exploring the practical significance of
autocorrelation functions and their interpretation.

Chapter 2: Reinforcement Learning Fundamentals: Here, we delve into the technicalities
of Reinforcement Learning, dissecting its structural components, deterministic and stochastic
policies, Markov Decision Processes, policy and value functions, Bellman optimality
equations, optimal state-value and action-value functions. We explore the algorithms at the
core of our study, including Q-learning, Policy Gradients, and REINFORCE.

Chapter 3: A survey examining other research papers in the field of decision making in
automated trading and related work.

Chapter 4: Implementation and Analysis: In this chapter we do our research. We
construct the trading environment, delve into the generation of random processes, define state
representations, and reward functions. The chapter completes with the application of
Discretized Q-learning and Policy Gradient algorithms to diverse random processes, with a
focus on comparing their performance.

Chapter 5: Presents the Primary discoveries and conclusions from the Trading
Simulations Game. This chapter includes a comprehensive comparison of the best strategies,
profitability metrics, and in-depth result assessments.

Chapter 6: Suggested some ideas for enhancing the trading simulation results, including
optimizing reward functions, exploring novel metrics, implementing penalties for significant
drawdowns, and refining state representation.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 17

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

1 CHAPTER 1: Stochastic processes

1.1 Random Walk

Random walks are fundamental models used in diverse fields like time series analysis,
finance, physics, and computer science. These models provide a straightforward yet powerful
approach to simulate dynamic systems with random behavior. We use the concept of random
walk generation, focusing primarily on the standard normal random walk formula:

x(®) =x(t—-1)+ % (1.1)

Process - random seed:18

16 4

14

10 4 ' ' = RS —
08

0.6 1

0 2000 4000 6000 8000 10000

Figure 1 Random Walk generated with seed=18

The standard normal random walk involves generating a sequence of values over time, figure
1 shows a random process generated with formula (1.1) and seed=18. Each new value is
obtained by adding a small random increment sampled from a standard normal distribution to
the previous value. Here, x(t) represents the current value, x(t-1) is the previous value, and
N(0,1) is a random variable drawn from a standard normal distribution with mean 0 and
variance 1.

Random walks have found widespread applications, especially in time series analysis. In
finance, they are employed to simulate stock prices and asset prices, allowing for effective risk
analysis and option price estimation. In computer science, random walks are utilized in
various algorithms, such as Monte Carlo simulations and search heuristics, to solve complex
problems. Moreover, random walks are extensively used in physics to model particle
movement, diffusion processes, and Brownian motion.

Although random walk models are versatile, they have limitations. One significant challenge
is their inability to capture long-term dependencies and trends in the data. As each step in the

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 18

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

random walk is independent and identically distributed, it neglects autocorrelation present in
real-world time series data (Brockwell and Davis 2002).

1.2 Autocorrelation in Financial Time Series

Autocorrelation, also known as serial correlation, is a crucial concept in time series analysis,
particularly in the realm of financial data (Campbell, Lo and MacKinlay 1997). It measures
the degree of similarity between observations at different time lags, helping us understand the
persistence of past values in the series. In financial time series, autocorrelation plays a
significant role in revealing underlying patterns and dependencies that may impact asset
prices, stock returns, and other financial variables.

121 Autocorrelation Function (ACF)

The Autocorrelation Function (ACF) is a primary tool used to quantify the autocorrelation in a
time series. It calculates the correlation coefficient between the series and its lagged values at
various time lags (Box, Jenkings and Reinsel G. C. 2015). For a financial time series, the ACF
at lag k is denoted by p(k), and it can be mathematically represented as:

cov(Xe, X¢—x)
k) = 2
plk) Jvar(Xy) * var(X,_y) (-2)

where X; and X;_, represent the values of the financial time series at time t and time t-k,
respectively. cov() denotes the covariance function, and var() represents the variance.

In financial time series analysis, the ACF provides valuable insights into the presence of
autocorrelation patterns. A positive autocorrelation coefficient p(k) > 0 at lag k indicates that
the series tends to follow its past values, suggesting a positive serial correlation (Campbell, Lo
and MacKinlay 1997). On the other hand, a negative autocorrelation coefficient p(k) < 0
suggests a negative serial correlation, indicating that the series exhibits alternating fluctuations
over time. In Figure 2 we see the autocorrelation of RP generated in Figure 1.

100
075 A

050

025 - f‘/\
o.00 :::::_-ii:/:;:x:}_:::::::__:::::::: _____ ——
—0.25 - _/

—0.50

Autocorrelation

—0.75 A

—1.00 T T T T
200010 4000 = alale] 8000 1000

Lag

Figure 2 Autocorrelation of Random Walk generated in Figure 1

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 19

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

1.2.2 Practical Significance

The presence of significant autocorrelation in financial time series can have profound
implications for investment strategies and risk management. Positive autocorrelation might
imply momentum effects, where trends tend to persist, influencing trading decisions and
investment strategies (Campbell, Lo and MacKinlay 1997). Conversely, negative
autocorrelation might indicate mean reversion patterns, leading to different investment
approaches that take advantage of price reversals.

Moreover, understanding the autocorrelation patterns in financial time series is essential for
the development and evaluation of forecasting models. Autocorrelation helps identify the
appropriate lag length for autoregressive models, such as the Autoregressive Integrated
Moving Average (ARIMA) model, enabling better predictions of future asset prices and
returns.

Interpreting an autocorrelation (ACF) chart is essential for understanding the temporal
dependencies and patterns within a time series data. The ACF chart displays the correlation
coefficients between a time series and its lagged versions (previous observations) at various
lags (time intervals).

1.2.3 How to interpret it.

Lag Values on the X-Axis: The x-axis of the ACF chart represents the lag values, which
indicate how many time points back you are looking in the data. Lag O represents the
correlation of the time series with itself at the same time point, which is always 1 (perfect
correlation). As you move along the x-axis, you are comparing the series at different time
points in the past.

Correlation Values on the Y-Axis: The y-axis represents the correlation coefficient between
the original time series and the lagged version of itself. The correlation coefficient ranges from
-1 to 1, where -1 indicates a perfect negative correlation, 1 indicates a perfect positive
correlation, and O indicates no correlation.

Interpretation of Correlation Values:

e Positive Correlation: If the ACF value is close to 1, it indicates a strong positive
correlation between the time series and the lagged version at that lag. In simpler
terms, if the value is high at lag 2, it means that observations at time t and time t-2
are positively correlated.

e Negative Correlation: ACF values close to -1 indicate a strong negative correlation
between the time series and the lagged version. This means that observations at time
t and time t-2 are negatively correlated.

e No Correlation: If the ACF value is close to 0, it suggests that there is little to no
correlation between the time series and the lagged version at that lag.

Statistical Significance: To determine if a correlation is statistically significant, we can look
at the shaded region or confidence intervals around the horizontal axis. If an ACF value
crosses the upper or lower boundary of the confidence interval, it may indicate a significant
correlation at that lag.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Theodore Stavrothanasis 0015. 20

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

Patterns in ACF: Patterns in the ACF chart can reveal seasonality and cyclic behavior in the
data. For example, if we observe regularly spaced peaks at lags of 7, 14, 21, etc., it suggests
weekly seasonality in the data.

Decay in Correlation: In many time series, we may notice that the correlation tends to decay
as the lag increases. This is known as a decaying ACF and indicates that recent observations
have a stronger influence on the current value than observations further in the past.

Interpreting an ACF chart involves examining the correlation values at different lags to
understand the temporal relationships in your time series data. It helps identify patterns,
seasonality, and the influence of past observations on future values, aiding in the selection of
appropriate time series models and forecasting.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 21

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

2 CHAPTER 2: Reinforcement Learning

Reinforcement Learning (RL) is a powerful field of machine learning that addresses the
challenge of decision-making in dynamic and uncertain environments (Sutton and Barto
2018). Unlike supervised learning, where the model is provided with labeled examples to learn
from, and unsupervised learning, where the model must find patterns in unlabeled data, RL
operates through trial and error to learn the best actions to take in different situations.

At the heart of Reinforcement Learning lies the interaction between an agent and an
environment. The agent observes the current state of the environment, selects actions based on
its policy, and receives feedback in the form of rewards (Sutton and Barto 2018). The
objective of the agent is to learn an optimal policy that maximizes the cumulative rewards it
receives over time.

Enwronment

Re War
In terpreter

Jate S

Action

Agent

Figure 3 The interaction between an agent and its environment within a Markov Decision
Process (MDP).!

In a Reinforcement Learning scenario, an agent interacts with an environment by taking
actions based on observations, and its actions are rewarded with either a low or high score,
depending on their effectiveness of its action Figure 3.

2.1 Components of the Reinforcement Learning Process

Agent: The agent is the learner or decision-maker that interacts with the environment. It is
responsible for selecting actions and updating its policy to achieve the best outcomes (Sutton
and Barto 2018).

! Photo: via Wikimedia Commons, CC 1.0
(https://commons.wikimedia.org/wiki/File:Reinforcement_learning_diagram.svg)

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 22

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

Environment: The environment represents the external system with which the agent interacts.
It is dynamic and can change states based on the agent's actions (Sutton and Barto 2018).

State (s): The state is a representation of the current situation of the environment. It captures
all relevant information that the agent needs to make decisions (Sutton and Barto 2018). If it
cannot capture all the relevant information then we regard it as an observation which has
partial information.

Action (a): Actions are the decisions made by the agent based on the current state. The agent's
goal is to learn a policy that maps states to actions to maximize cumulative rewards (Sutton
and Barto 2018).

Policy (r): The policy is the strategy followed by the agent to determine which actions to take
given a particular state. It can be deterministic or stochastic (Sutton and Barto 2018).

Reward (r): The reward is a scalar feedback signal provided by the environment after each
action. It represents the immediate desirability of the action and serves as the basis for the
agent to update its policy (Sutton and Barto 2018).

Trajectory (t): A trajectory is a sequence of states, actions, and rewards that the agent
experiences while interacting with the environment (Sutton and Barto 2018).

2.2 Deterministic Policy

A deterministic policy is a type of policy that maps each state directly to a specific
action with certainty. In other words, given a particular state, the deterministic policy will
always select the same action. Mathematically, it can be represented as:

n(s) = a (2.1)
Where:
e 7(S) is the policy that maps state s to an action a.

An illustration of a deterministic policy is when a robot has a fixed set of rules, guiding it to
take precise actions according to its current state.

2.3 Stochastic Policy

A stochastic policy, on the other hand, is a type of policy that introduces randomness into
the action selection process. Instead of selecting a single deterministic action for each state, a
stochastic policy outputs a probability distribution over the action space for a given state. This
means that it can select different actions with different probabilities for the same state.
Mathematically, it can be represented as:

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 23

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

Where:

n(als) = P(A=a|S =5s) (2.2)

n(als) is the policy that specifies the probability of taking action a in state s.
A: set of all actions
S: set of all states

Stochastic policies are more flexible and allow the agent to explore different actions, even in
situations where the optimal action is uncertain. They are often used in cases where there is a

degree

of uncertainty in the environment or when exploration is required to discover the best

course of action.

2.4

Markov Decision Process (MDP)

Reinforcement Learning problems are often formalized as Markov Decision Processes. An
MDP is defined by a tuple (S, A, P, R, v), where:

Figure

S is a set of possible states in the environment.

A is a set of possible actions that the agent can take.

P is the transition probability, which defines the probability of transitioning from one
state to another after taking a specific action.

R is a value that provides the immediate reward the agent receives after performing an
action in a given state.

v (gamma) is the discount factor that represents the agent's preference for short-term
rewards over long-term rewards (Sutton and Barto 2018).

4 Example of a MDP with three states (green circles) and two actions (orange circles),

with two rewards (orange arrows)?

% by Waldo Alvarez distributed under a CC-BY 4.0 license

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 24

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

2.5 Policy and Value Functions

In Reinforcement Learning, the agent aims to learn an optimal policy (7*) that maximizes the
expected cumulative reward over time. The policy can be represented as a mapping from
states to actions (n: S — A). Additionally, the agent can also learn value functions to evaluate
the desirability of different states and actions.

State-Value Function V(s): The state-value function estimates the expected cumulative reward
starting from a given state s and following a specific policy =. It can be mathematically
represented as:

V(s) = Eg [z Y'relso =s (2.3)
t=0

Where E, denotes the expectation with respect to the policy =, r; represents the reward
received at time step t, and vy is the discount factor (Sutton and Barto 2018).

Action-Value Function Q(s, a): The action-value function estimates the expected cumulative
reward starting from a given state s, taking action a, and following a specific policy =. It can
be expressed as:

Q(sa) = Ey [z Yrelso = 0,a9 = a (2.4)
t=0

where E, denotes the expectation with respect to the policy =, r; represents the reward received
at time step t, and vy is the discount factor (Sutton and Barto 2018).

2.6 Bellman Optimality Equations in Reinforcement Learning

Reinforcement Learning (RL) aims to enable agents to make optimal decisions in dynamic and
uncertain environments. One of the fundamental concepts in RL is the Bellman optimality
equation, which provides a powerful framework to compute the optimal state-value function
and optimal action-value function.

2.6.1 Optimal State-Value Function

The optimal state-value function, denoted as V.(s), represents the expected cumulative reward
starting from state s under the optimal policy (Sutton and Barto 2018). It satisfies the Bellman
optimality equation, given by:

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 25

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

V.(s) = mfxz p(s',ris,a)[r +yV.(s")] (2.5)

s'r
where:

e aisan action in the set of possible actions for state s.

e s'denotes the next state after taking action a from state s.

e rrepresents the immediate reward received after the transition.

e p(s'rk,a) is the probability of transitioning to state s’ and receiving reward r given the
current state s and action a.

e 1y is the discount factor, determining the agent's preference for short-term rewards over
long-term rewards.

The optimal state-value function captures the expected cumulative reward an agent can obtain
from a specific state under the best possible decision-making strategy.

2.6.2 Optimal Action-Value Function

The optimal action-value function, denoted as Q.(s,a), represents the expected cumulative
reward starting from state s, taking action a, and following the optimal policy thereafter
(Sutton and Barto 2018). It satisfies the Bellman optimality equation, given by:

Q.(s,a) = z p(s',rlsa)[r +ymaxQ.(s",a)] (2.6)

where:
e a’denotes an action in the set of possible actions for state s'.

The optimal action-value function quantifies the expected cumulative reward an agent can
achieve by selecting a specific action in a given state and then following the optimal policy.

2.6.3 Solving the Bellman Optimality Equations

Solving the Bellman optimality equations is crucial for finding the optimal value functions,
which in turn allows the agent to determine the best possible policy. Various algorithms, such
as Value Iteration and Q-Learning, are employed to find the solutions.

2.6.4 Value Iteration Algorithm

Value lIteration is an iterative algorithm used to solve the Bellman optimality equation for the
optimal state-value function (Bellman 1957). It starts with an arbitrary value function estimate
and repeatedly updates the estimates until convergence. The update rule for Value Iteration is
given by:

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 26

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

where:

Viers(s) = max)" p(s', rls@)lr + yVi(s")] 27)

s'r

Vk(s) represents the value function estimate at iteration k.

The Bellman optimality equations are essential tools in Reinforcement Learning for
computing the optimal state-value function and optimal action-value function. These equations
serve as the foundation for various RL algorithms that enable agents to learn optimal policies
in uncertain environments. By solving the Bellman optimality equations, agents can make
informed and optimal decisions in a wide range of real-world applications.

2.7

Key Concepts and Algorithms in Reinforcement Learning

Reinforcement Learning includes various algorithms and techniques to solve MDPs and learn
optimal policies. Some of the key concepts and algorithms in RL include:

2.8

Policy Evaluation and Policy Improvement: Policy evaluation is the process of
determining the value function of a given policy m. Policy improvement involves
updating the policy to make better decisions based on the estimated value function.
Model-Based vs. Model-Free RL: RL algorithms can be categorized into model-based
and model-free approaches. Model-based methods build a model of the environment's
dynamics, while model-free methods learn directly from interactions with the
environment.

Temporal Difference (TD) Learning: TD learning is a type of model-free RL algorithm
that combines ideas from dynamic programming and Monte Carlo methods. TD
algorithms learn from incomplete sequences of experiences and update value functions
iteratively.

Q-Learning: Q-learning is a widely used off-policy RL algorithm for learning action-
value functions. It involves updating the Q-values based on the Bellman equation and
does not require knowledge of the environment's dynamics.

Deep Reinforcement Learning: Deep Reinforcement Learning combines RL with deep
neural networks to handle complex and high-dimensional state and action spaces.
Algorithms such as Deep Q Networks (DQNSs) and Deep Deterministic Policy Gradient
(DDPG) have achieved impressive results in various applications.

Applications of Reinforcement Learning

Reinforcement Learning has shown promising results in various real-world applications:

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 27

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

¢ Robotics: RL is used in robotics to teach agents to perform complex tasks like object
manipulation, locomotion, and control.

e Game Playing: RL algorithms have achieved superhuman performance in playing
games like Go, Chess, and Atari games.

e Autonomous Vehicles: RL is employed in autonomous vehicles to make decisions on
navigation, path planning, and collision avoidance.

e Finance: RL is used in financial applications for portfolio optimization, algorithmic
trading, and risk management.

e Healthcare: RL has potential applications in healthcare for personalized treatment
recommendations and optimizing medical treatment protocols.

2.9 Temporal Difference Learning

Temporal Difference (TD) learning is a fundamental and widely-used technique in
Reinforcement Learning that combines aspects of dynamic programming and Monte Carlo
methods (Sutton and Barto 2018). It is a model-free approach, meaning it does not require
explicit knowledge of the environment's dynamics, making it suitable for a broad range of
real-world applications. TD learning enables agents to learn from incomplete experiences
through online updates, providing a powerful tool for sequential decision-making problems.

Temporal Difference learning algorithms operate by bootstrapping, using estimates of future
values to update current value estimates (Sutton and Barto 2018). This approach enables
agents to learn efficiently by iteratively updating their value functions based on the observed
experiences without waiting for the completion of entire episodes or trajectories.

The most fundamental Temporal Difference algorithm is TD(0), which stands for Temporal
Difference with a one-step look ahead (Sutton and Barto 2018). In TD(0), the value function is
updated based on the immediate reward and the estimated value of the next state:

V(se) « V(se) + a(rerr + vV (ser1) = V(sp)) (2.8)
where:

e V(s is the estimated value of state s; at time step t.

e 1141 is the reward received after taking action a: from state s; and transitioning to
state Sey1.

e qisthe learning rate, determining the step size for value updates.

e v is the discount factor, representing the agent's preference for short-term
rewards over long-term rewards.

29.1 TD(0) Algorithm

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 28

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

The TD(0) algorithm is a simple yet powerful method in Temporal Difference learning
(Sutton and Barto 2018). The algorithm proceeds as follows:

Initialize the value function V(s) for all states.

Observe the current state s;.

Take an action at based on the agent's policy.

Receive the reward rt+1 and observe the next state st+1.

Update the value function for the current state using the TD(0) update rule.

v W=

The agent repeats these steps until it reaches the termination condition or a predefined
number of iterations.

2.9.2 Advantages of Temporal Difference Learning

Temporal Difference learning offers several advantages that contribute to its widespread
use in Reinforcement Learning:

e Online Learning: TD algorithms can update their value estimates after each time
step, making them suitable for online and real-time learning scenarios.

e Model-Free Approach: TD learning is model-free, eliminating the need for
explicitly modeling the environment's dynamics, which is often challenging or
impossible in real-world applications.

e Efficiency: TD algorithms use bootstrapping, enabling them to learn from
incomplete experiences, resulting in more efficient learning compared to Monte
Carlo methods.

2.10 Q-Learning

Q-learning is a powerful and widely-used Reinforcement Learning algorithm that aims to learn
the optimal action-value function, denoted as Q(s,a) (Sutton and Barto 2018). The Q-value
represents the expected cumulative reward starting from a state s, taking action a, and
following an optimal policy thereafter.

Q-learning is a model-free algorithm, meaning it does not require explicit knowledge of the
environment's dynamics (Sutton and Barto 2018). Instead, the agent learns from interactions
with the environment, iteratively updating its Q-values to approximate the optimal action-
value function. The primary goal of Q-learning is to find the optimal policy that maximizes the
cumulative reward over time for any given state.

The Q-learning update rule is based on the Bellman equation for the optimal action-value
function, which can be expressed as follows:

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 29

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

Q(spap) « Q(spar) + a(rey +v mfx Q(se+1,2) — Q(sp,ap)) (2.9

where:

o Qs &) is the Q-value for state s; and action a; time step t.
e q isthe learning rate, determining the step size for value updates.
e I IS the reward received after taking action a; from state s; and transitioning to state

S[+]_.
e v is the discount factor, representing the agent's preference for short-term over long-

term rewards.
o max,Q(Sw1, &) represents the maximum Q-value over all possible actions in the next

state St1.

The Q-learning update rule efficiently updates the Q-values based on the observed
experiences, allowing the agent to converge towards the optimal action-value function.

2.10.1 Q-Learning Algorithm

The Q-learning algorithm can be summarized as follows in Figure 5:

f_ Y
Intialize Q-Table
" g
r })
- Choose an Action
5 ? \ J
39]
< ; r 3\
f; * Perform Action
=S L)
o 2
— 4
B T
3 g [Measure Reward
) -§ * ’
& :’ >

Upola\te Q-Table

Figure 5 Q-learning algorithm®

Initialize the Q-values Q(s,a) for all state-action pairs.

Observe the current state s;.

Select an action a; using an exploration-exploitation strategy, such as e-greedy.
Perform the action a; and observe the reward r,; and the next state St.1.

Update the Q-value for the current state-action pair using the Q-learning update rule.

a s wNhE

* image by https://www.datacamp.com/tutorial/introduction-g-learning-beginner-tutorial

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Theodore Stavrothanasis 0015. 30

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

6. Set the current state s; to the next state S.1.
7. Repeat steps 3 to 6 until the termination condition is met or a predefined number of
iterations.

2.10.2 e-greedy Strategy

Initially, the agent is in exploration mode and chooses a random action to explore the
environment. The Epsilon Greedy Strategy is a simple method to balance exploration and
exploitation. The epsilon stands for the probability of choosing to explore and exploits when
there are smaller chances of exploring.

At the start, the epsilon rate is higher, meaning the agent is in exploration mode. While
exploring the environment, the epsilon decreases and agents start to exploit the environment.
During exploration in each iteration, the agent becomes more confident in estimating Q-
values.

Q-learning is model-free, allowing it to be applied to problems where explicit knowledge of
the environment's dynamics is difficult or impossible to obtain. It is an off-policy algorithm,
meaning that it learns the optimal policy while following a different policy during exploration
and data collection. In other words, the agent learns from experiences generated by a different
policy than the one it is trying to improve. This is in contrast to on-policy algorithms, where
the agent learns and updates the policy based on the experiences it collects while following the
current policy.

2.10.3 Some characteristics of off-policy algorithms:

Data Collection: Off-policy algorithms can use data generated by any policy, not just the
policy being currently evaluated or updated (Sutton and Barto 2018). This feature allows the
agent to collect data more efficiently since it can learn from old experiences, which may be
sampled from a different, possibly exploratory, policy.

Importance Sampling: The key technique used by off-policy algorithms is importance
sampling. When the agent learns from data collected by a different policy, it needs to adjust
the learning process to account for the discrepancy between the current policy and the policy
that generated the data. Importance sampling is used to correct for this difference in policies
(Sutton and Barto 2018).

Exploration and Exploitation: Since off-policy algorithms can use data generated by a more
exploratory policy, they have more flexibility in exploration. This means they can explore
more widely and possibly find better solutions. On the other hand, on-policy algorithms are
often more conservative in their exploration because they directly follow the current policy.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 31

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

Stability and Sample Efficiency: Off-policy algorithms can be more sample-efficient and
stable in learning because they can reuse data more effectively. However, importance
sampling introduces variance, and the stability of off-policy algorithms can be influenced by
the discrepancy between the data-generating policy and the policy being updated (Sutton and
Barto 2018).

2.11 Policy Gradients

Policy gradients constitute a family of algorithms utilized for solving reinforcement learning
problems by directly optimizing the policy in the policy space, as opposed to value-based
approaches like Q-learning, which estimate the value function for each state (Sutton and Barto
2018). Policy gradients offer several appealing properties, such as producing stochastic
policies by learning a probability distribution over actions given observations (Sutton and
Barto 2018). In contrast, value-based methods are deterministic and select actions greedily
with respect to the learned value function, potentially leading to under-exploration and
necessitating exploration strategies like e-greedy to address this issue (Sutton and Barto 2018).

A significant advantage of policy gradients is their capability to handle continuous action
spaces without requiring discretization, a necessity for value-based methods (Sutton and Barto
2018). However, policy gradients suffer from high variance estimates of gradient updates,
leading to noisy gradient estimates that can destabilize the learning process. To address this
limitation, extensive research has focused on reducing the variance of gradient updates to
improve algorithm stability (Williams 1992).

Estimate of the
optimal action-value
function

i : ~. Search directly for

~ Policy-Based ™\ he optimal policy
/ Methods \

Value-Based
Methods

| Cross-Entropy \
Monte Carlo

Sarsa

Policy-Gradient
Methods

REINFORCE

DeepiGeNerwork / Estimate the best

weights by
gradient ascent

Figure 6 Summary of approaches in Reinforcement Learning. The classification is based on
whether we want to model the value or the policy*

* source: https://torres.ai

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 32

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

Policy-gradient methods belong to the broader category of Policy-Based methods as shown in
Figure 6, which estimate the optimal policy's weights through gradient ascent (Schulman, et al.
2015). The gradient ascent process begins with an initial guess for the policy's weights that
maximize the expected return. Subsequently, the algorithm evaluates the gradient at that point,
indicating the direction of the steepest increase in the expected return function. Small steps are
then taken in that direction, aiming to reach a new value of the policy's weights that yield a
slightly higher expected return (Schulman, et al. 2015). The algorithm iteratively repeats this
process of evaluating the gradient and taking steps until it converges to an estimate of the
maximum expected return.

Policy-based methods can be used to learn either stochastic or deterministic policies (Sutton
and Barto 2018). In the case of a stochastic policy, the neural network’s output represents an
action vector that forms a probability distribution, rather than returning a single deterministic
action. The agent then selects an action from this probability distribution, meaning that if the
agent encounters the same state twice, it may take different actions each time. This
probabilistic representation of actions offers advantages, including smoother representations
and more stable gradient optimization (Sutton and Barto 2018).

In contrast, deterministic policies with discrete outputs can lead to significant changes in
actions even with small adjustments to the weights. However, when the output is a probability
distribution, small changes to the weights typically result in minor changes in the output
distribution, enhancing the stability of gradient optimization (Sutton and Barto 2018).

The core idea behind policy gradients is the reinforcement of good actions. The method
iteratively adjusts the policy network weights to increase the probabilities of actions that lead
to higher returns and decrease the probabilities of actions that result in lower returns,
ultimately converging to the optimal policy (Sutton and Barto 2018). By reinforcing favorable
actions and reducing the likelihood of unfavorable actions, policy gradients facilitate the
agent's learning process in complex and uncertain environments.

Policy gradients present a powerful family of algorithms for reinforcement learning that
directly optimize policies in the policy space. They offer numerous advantages, such as
handling continuous action spaces and providing stochastic policies (Sutton and Barto 2018).
Despite their high variance estimates, ongoing research aims to improve the stability and
performance of policy gradient methods, making them a valuable tool in solving various real-
world RL problems.

2.12 REINFORCE algorithm

2.12.1 Trajectories in Reinforcement Learning

In Reinforcement Learning, the term "trajectory” denotes sequence of states, actions, and
rewards. Unlike episodes, trajectories are more versatile due to their ability to encompass a
MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Theodore Stavrothanasis 0015. 33

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

complete episode or a segment (Sutton ko1 Barto 2018). The parameter v, known as the
horizon quantifies the length of the trajectory. A trajectory is composed of successive tuples,
encapsulating state-action-reward transitions:

T = (Sg,20,71, 51,21, 72,52, - Ay, Tys1r Sy+1) (2.10)

It is the foundation in REINFORCE method, as it aligns with the maximization of expected
returns, offering a versatile approach applicable to both episodic and continuous tasks
(Williams 1992). While the typical scenario involves employing an entire episode as a
trajectory, this approach is particularly suited to episodic tasks where rewards are exclusively
given at the conclusion of an episode (Williams 1992). This ensures a sufficient amount of
reward information is available for the accurate estimation of expected returns.

2.12.2 Trajectory Return

The concept of return plays a pivotal role in assessing the effectiveness of various policies and
strategies. In essence, the return represents the total rewards an agent can accumulate
throughout a trajectory, which involves a series of transitions comprising states, actions, and
rewards. This return metric helps in evaluating the efficacy of specific actions and policies.

Mathematically, the return at time step t, denoted as Gy, is defined as the summation of
discounted rewards obtained along the trajectory from time step t until the end of the
trajectory. This definition takes the following form:

Ge =Tpp1 F VT4 + VP Tppz +o0 = Z Yoreiks1 (2.11)
k=0

wherer ri.+1 denotes the reward received at time step t+k+1, and vy is the discount factor that
reflects the agent's preference for immediate rewards over delayed ones (Sutton and Barto
2018). The discount factor ensures that future rewards are valued less than present ones,
capturing the notion of time preference in decision-making.

The return can be seen as a measure of the cumulative "worth” of a trajectory to an agent. It
encapsulates the balance between immediate rewards and the potential for future rewards. In
episodic tasks, where trajectories have a clear start and end, the return is typically summed
over the entire trajectory, considering rewards from the current time step until the end of the
episode.

In RL algorithms, optimizing for the return is central to policy learning. The ultimate goal is to
find policies that maximize the expected return over trajectories. This involves identifying
actions that lead to the most favorable sequence of rewards while considering the potential
long-term consequences.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 34

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

2.12.3 Expected return

The objective of this algorithm is to discover the neural network weights denoted as 6, which
maximize the expected return denoted as U(0) and defined as follows:

U®) =) P(x0RE) @.12)

The return R(t) is expressed as a function of the trajectory t. P(t;0) represents the probabilities
associated with each possible trajectory. That probability depends on the neural network
weights 6 and defines the policy used to select the actions in the trajectory, which also
determines the states that the agent observes.

2124 Gradient ascent

One effective approach to find the value of 6 that maximizes the U(6) function, is gradient
ascent. To provide an intuitive visualization, we can think of gradient ascent as a process of
ascending a hill. It involves U(0) taking incremental steps as shown in Figure 7 in the direction
of the gradient, systematically guiding the strategy towards reaching the highest point.
(Sefidian n.d.)

Figure 7 Gradient ascent strategy.”

Mathematically, the update step for gradient ascent can be expressed as:
0 <6+ aVyU(0) (2.13)

where a is the step size that is generally allowed to decay over time (equivalent to the learning
rate decay in deep learning). Once it’s known how to estimate this gradient, this update step it
is repeatedly applied, expecting that 6 converges to the value that maximizes U(0).

> source: https://torres.ai

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 35

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

2.12.5 Sampling and estimate

To apply this method, we must be able of computing the gradient VU(6). However, exact
gradient calculation remains computationally prohibitive, as it demands evaluating every
potential trajectory a task that typically becomes infeasible. Instead, this approach employs
trajectory sampling via the policy and relies on these sampled trajectories to estimate the
gradient. (Sefidian n.d.)

The following pseudo code describes in more detail the behavior of this method and can be
written as:

Input: a differentiable policy parameterization m(a|s; 6)
Step sizea >0
Initialize the policy parameter 0 at random

(1) Use the policy my to collect a trajectory t = (So, ao, f1, S1, a1, 2, S2, ... 8y, ly+1, Sy+1)
(2) Estimate the return of the trajectory t: R(t) = (Go, G, ..., Gy)

where G is the expected return for transition k:
v+1

G < z Y RTIRy
t=k+1

(3) Use the trajectory t to estimate the gradient Vo U (6)
v+1

VoU(®) <) Vologms (@ls)G,
t=0
(4) Update the weights 6 of the policy
0 <0+ aVyU(0)
(5) Loop over steps 1-5 until not converged

2.12.6 Gradient estimation formula

The formula the gives the gradient estimation is

Vo logmg (acls,) (214)

This formula will adjust the weights of the policy 6 in order to increase the log probability of
selecting action a; from state s;. In specific, the policy weights are adjusted by taking a small
step in the direction of this gradient. In that case, it will increase the log probability of
selecting the action from that state, and will decrease the log probability if it takes the opposite
direction. (Sefidian n.d.)

The following equation performs all these updates simultaneously for each state-action pair
(ay, st) at each time step t in the trajectory:

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 36

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

%
z Vg log g (a¢ls,) G, (2.15)
t=0

In a gradient ascent algorithm where the objective is to maximize some probability p we
actually optimize the log probability log(p) for some network parameter theta.

The reason is that it generally works better to optimize log(p) than p due to the gradient of
log(p) that is generally more well-scaled. Probabilities are bounded by 0 and 1 by definition,
so the range of values that the optimizer can operate over is limited and small. (Sefidian n.d.)

In that case, sometimes probabilities may be extremely low near to zero or very high close to
one. This may cause numerical issues when optimizing on a computer with limited numerical
precision. If we instead use a surrogate objective, namely log(p) (natural logarithm), we have
an objective that has a larger “dynamic range” than raw probability space, since the log of
probability space ranges from (-0,0), and this makes the log probability easier to compute.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 37

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

3 CHAPTER 3: Related Work

In his work (Gao 2018) conducted two idealized trading games, the first with one input of
wave-like price time series the "Univariate™ and a second with two inputs a random stepwise
price time series and a noisy signal the "Bivariate”. The first tests whether the agent can
capture the underlying dynamics and the second tests whether the agent can utilize the hidden
relation among the inputs. To model the Q values, various architectures were used like a Gated
Recurrent Unit (GRU), a Long Short-Term Memory (LSTM), a Convolutional Neural
Network (CNN), and a multi-layer perceptron (MLP). Both games ended with a profitable
strategy. The GRU-based agent showed best overall performance in the "Univariate™ game and
the MLP-based agents showed better performance in the Bivariate game.

In his work (Huang 2018) presents a Markov Decision Process (MDP) model tailored for
financial trading tasks, using the deep recurrent Q-network (DRQN) algorithm. To adapt the
learning algorithm to the specifics of financial trading, several key modifications are proposed.
In particular, they adopt a significantly reduced replay memory size, consisting of only a few
hundred samples, in contrast to the larger sizes commonly utilized in modern deep
reinforcement learning algorithms, often in the millions. An innovative action augmentation
technique is introduced to reduce the reliance on random exploration. This technique provides
additional feedback signals for all actions to the agent, enabling the use of a greedy policy
during the learning process. Notably, this approach demonstrates strong empirical
performance, particularly when compared to the more frequently employed ¢-greedy
exploration strategy. It's worth noting that this technique is tailored to the context of financial
trading and operates under specific market assumptions. It is proposed longer sampling
sequences for training recurrent neural networks (RNNSs). This modification not only
facilitates agent training every T steps but also significantly reduces the overall computational
burden, effectively scaling down computation by a factor of T.

In their work (Chen, Luo and Yu 2021) present an approach in which over 100 short-term
alpha factors are employed to characterize the states within the Markov Decision Process
(MDP), diverging from the conventional parameters such as price, volume, and various
technical indicators. In contrast to prior methods involving DQN (deep Q-learning) and BC
(behavior cloning), the study introduces expert knowledge during the training phase. This
approach takes into account both the interactions between the expert and the environment and
those between the agent and the environment when designing the temporal difference error.
The goal is to enhance the agents' adaptability in the inherent noise prevalent in financial data.
The experimental findings demonstrate the clear advantages of this proposed methodology
when compared to three typical technical analysis techniques and two deep learning-based
approaches.

Jeong and Kim use reinforcement learning-based trading systems aimed to maximize profits
and adapt to real financial market conditions, addressing data limitations (Jeong and Kim
2019). First, they introduce an automated trading system that predicts the number of shares to
trade by combining deep Q-networks with a deep neural network (DNN) regressor. Second,

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 38

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

they investigate various action strategies based on Q-values to optimize profits in turbulent
markets. Lastly, transfer learning approaches are proposed to counter overfitting due to limited
financial data. Experimental results across four stock indices show substantial profit increases,
with the combined system outperforming both the market and the standard reinforcement
learning model in all cases.

A novel Adaptive Deep Deterministic Reinforcement Learning approach (Adaptive DDPG)
designed for portfolio allocation tasks, especially in complex and dynamic stock markets (Li,
et al. 2019). This method incorporates optimistic and pessimistic deep reinforcement learning
influenced by prediction errors. The study uses daily prices of Dow Jones 30 stocks for
training and testing. Comparisons with vanilla DDPG, the Dow Jones Industrial Average
index, and traditional min-variance and mean-variance portfolio allocation strategies reveal
that Adaptive DDPG outperforms these baselines in terms of investment returns and the
Sharpe ratio.

This paper (Li, Zheng and Zheng 2019) addresses challenges in algorithmic trading related to
feature extraction and the design of adaptable trading strategies. Unlike previous methods that
relied on domain knowledge and lacked flexibility, the authors propose a novel trading agent
based on deep reinforcement learning. They extend value-based deep Q-network (DQN) and
Asynchronous Advantage Actor-Critic (A3C) approaches and incorporate Stacked Denoising
Autoencoders (SDAEs) and LSTM networks for robust market representation. The
experimental results demonstrate that their trading agent surpasses baseline methods,
consistently delivering stable risk-adjusted returns in both stock and futures markets.

Zhipeng Liang and colleagues explore the application of three cutting-edge continuous
reinforcement learning algorithms, Deep Deterministic Policy Gradient (DDPG), Proximal
Policy Optimization (PPO), and Policy Gradient (PG), in the context of portfolio management
(Liang, et al. 2018). These algorithms, widely used in fields like game playing and robot
control, are evaluated under various settings, including different learning rates, objective
functions, and feature combinations. The experiments, conducted in the China Stock market,
reveal that PG is more suitable for financial markets than DDPG and PPO, despite the latter
two being more advanced. Additionally, the paper introduces an Adversarial Training method
that significantly enhances training efficiency and improves average daily return and Sharpe
ratio in backtesting.

A novel model called TFJ-DRL (Time-Driven Feature-Aware Jointly Deep Reinforcement
Learning) designed to tackle challenges in algorithmic trading is proposed in (Lei, et al. 2020).
This model combines deep learning and reinforcement learning to enhance the learning of
financial signal representations and improve decision-making in trading. It does so by
adaptively selecting and reweighting financial signal features, summarizing the attention
values between historical data and current trends, and iteratively training with supervised deep
learning and reinforcement learning. Experimental evaluations using real-world financial data
with various price trends demonstrate the robust performance and broad applicability of TFJ-
DRL, particularly in terms of increasing investment returns.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 39

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

In their study (Liu, et al. 2022) investigate the use of deep reinforcement learning to enhance
stock trading strategies for maximizing investment returns. It employs daily prices of 30
selected stocks as the training and trading environment, training a deep reinforcement learning
agent to develop an adaptive trading strategy. The agent's performance is assessed and
compared to benchmarks, namely the Dow Jones Industrial Average and the traditional min-
variance portfolio allocation strategy. The results indicate that the proposed deep
reinforcement learning approach outperforms both baselines in terms of both the Sharpe ratio
and cumulative returns.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 40

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

4 CHAPTER 4: Trading game

We will try to handle the problem of acting optimally on a trading game (Gao 2018) applied
not on real financial time series but on synthetic stochastic processes and in particular on
random walk processes. The science of taking an action can be sufficiently modeled with
Reinforcement Learning than using a conventional supervised method. We have also included
the task of taking action with a supervised model and the results show that the problem is
resolved more effectively with RL i.e. an agent taking decisions within an environment trying
to capture the dynamics involved in the process. (Gao 2018).

4.1 Random Walk generation

We use a stochastic process to simulate the actual time series in the game. The series is created
using the formula

x(t) =x(t—-1)+ % (4.1)

X(t) is the value of series at time t
X(t-1) the value at time t-1
N(0,1) is standard normal distribution

In the following Figure 8 we can see the result of applying this formula setting seed=18. We
will use this generated time series as the basis of the research i.e. all the training to an RL
algorithm or a supervised method will be using this seed. Although we refer time series for
simplicity we don’t include time on x axis. It can be regarded that the transition from time t to
t+1 can be any time span for example 1 hour, 2 hours etc.

Process - random seed:18

16 4

14

12

10

0.8 -

0.6

0 2000 4000 6000 8000 10000

Figure 8 Random Walk generated with seed=18

Every process generated either for training or for testing will contain 10000 values. We
consider that 10000 values are enough for an algorithm to capture the underlying dynamics of
the model.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 41

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

4.2 Charts and definitions

|In the following Figure 9 we can see the parts of the process.

3, v3

Figure 9 Bar transitions

Period or bar:

It is considered the transition of going from time t to time t+1 and the transition of value v to
v+1. So in a bar (period) is considered to go from tO to t1 and the respective value from vO to
v1.

Orders:

An order is initiated at the beginning of the bar and is either a long buy or a short sell order. At
the end of the bar for either order there is a close position and at the same time (t+1 now) a
new order is initiated for the next bar according to the model.

Buy order.

The model buys at time t and closes position (sells) at time t+1

(p/Me+1 = Vie1 - Vi Where p/l = profit or loss of order execution at the end of the bar
At this point a profit is logged if vis1 > v or a loss if Vi < v

Short sell order.
The model short sells at time t and closes position (buys) at time t+1

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 42

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

(p/Dt+1 = Vis1 - vy where p/l = profit or loss of order execution at the end of the bar
At this point a profit is logged if vt < Vi or aloss if v > v;

Buy and hold order.

While a “buy and hold” order is not directly supported by the environment, the agent can
effectively replicate it by placing continuous buy orders on each price bar.

Short Sell and hold order.

The same as with “Buy and hold” the agent can effectively replicate it by placing continuous
short sell orders and closing them on each price bar.

Cumulative return
Cum return is the total sum of rewards (profit or loss) over the length of the process

t=k
cum_return(k) = z p/l; (4.2)
t=0

It is considered that on each trade there is a fixed bet. There is no money management. What
we are trying to test is the efficiency of the algorithms not the money management strategies
that my give quite different results.

4.3 Environment

The most critical aspect of the problem lies in the proper construction of the environment, with
two key elements being of importance: defining the state component and formulating the
reward function.

The environment is designed to be compatible with openAl Gym (Brockman, et al. 2016) ,
allowing it to seamlessly integrate with frameworks that operate within such environments.
One notable framework that supports this compatibility is Stable-Baselines3 (Raffin n.d.).

Stable-Baselines3 comprises a set of robust implementations for reinforcement learning
algorithms in PyTorch. It offers a clean and straightforward interface, granting access to fully-
implemented reinforcement learning algorithms. To illustrate the usage of the Stable-
Baselines3 framework, consider the following simple example:

import gym

from stable baselines3 import SAC

Train an agent using Soft Actor-Critic on Pendulum-v0
env = gym.make ("Pendulum-v0")

model = SAC ("MlpPolicy", env, verbose=1)

Train the model

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 43

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

model.learn(total timesteps=20000)
Save the model
model.save ("sac_ pendulum")

Load the trained model

model = SAC.load("sac_pendulum")

Start a new episode

obs = env.reset()

What action to take in state “obs™?

action, _ = model.predict (obs, deterministic=True)
(Raffin n.d.)

The process starts by initializing an OpenAl Gym-compatible (Brockman, et al. 2016)
environment 'Pendulum-v0." Next, it initializes the Soft Actor-Critic (SAC) algorithm.
Training the agent within the environment is accomplished using the ‘learn' method, and the
trained model is subsequently saved using the 'save' method. To generate actions based on the
current environment state, the 'predict' method is used with the state provided as an argument.
This methodology mirrors the approach commonly applied in the scikit-learn library for
supervised learning. After defining the algorithm, training the agent on the environment is
executed with the 'learn' method, while the 'predict’ method is employed to generate actions
based on the current state.

431 RandomWalkEvn class

The environment is implemented with Class RandomWalkEnv(gym.Env): and is initialized
with the arguments.

e size: the length of the process to be generated with a default value of 10000

e random_seed: the random seed to feed the random number generator with a default
value of 18

e equity: The initial equity amount to employ. In all of our scenarios, we have
consistently used 1 to ensure results are comparable.

e enable_metric: It is metric used to assess the progress of the agent. If the agent
performs badly a done=False is triggered to indicate failure and complete the episode.

e zero_start: At the beginning of an episode the index of the process is zero.

Here is a brief explanation of class methods and properties.

__generate_data(seed=18):
Generates the random process with the specified seed.

reset():
Initializes the environment, a necessary step before starting an epoch. It returns an
observation by which we can feed the model. Compatible with openAl.gym

step(action_idx):
It is a function used to take a single step in the game simulation. It returns observation, return,
done, and info. Compatible with openai.gym

render(mode="human’, close=False):
Does nothing. Just used for compatibility with openAl gym.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 44

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

close():
Does nothing. Just used for compatibility with openAl gym.

disp_dataset(extra_str=", save_plot=None):
Displays a plot of the random process generated.

disp_equity(extra_str=", save_plot=None):
Display the equity after the agent has competed a simulation.

_disp_metric():
Used mostly for debugging the metric.

limits():
Shows the upper and lower limits the state can take

save_limits():
Saves the upper and lower values of the state to disk

load_limits():
Loads the upper and lower values from disk

trim_df():
Trims higher and lower state values

steps:
Returns the steps of a simulation

accuracy:
Returns the accuracy of the simulation

p_I:
Returns the total profit or loss after a simulation

observation_space_n:
Returns the number of values of the observation. In that case is a scalar of 5

action_space_n:
Returns the number of actions. In that case is 2

4.3.2 States

State space € RS. Every state representing the environment is a vector (pctyo, pctzo, pCtso,
pCtso, pCtigo). The choice is heuristic and is based in the fact that we want them to have some
autocorrelation that’s to be able to capture some underlying trends as shown in figures 10
through 14. If we choose a vector quite near to the current time t then the autocorrelation
would be negligible.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 45

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

~1 (4.3)

Where pct = percentage change.

Using percentage changes as inputs for time series prediction offers several notable benefits.
Firstly, it helps in normalizing data, making it comparable across different scales and units,
which is essential for the accurate assessment of trends and patterns. Secondly, it inherently
accounts for the relative variations within the data, emphasizing the proportional changes
rather than the absolute values. This can be particularly advantageous when dealing with
variables that exhibit different magnitudes. Furthermore, percentage changes often reveal the
underlying growth or decay rates within a time series, providing valuable insights into the
inherent dynamics of the data. Lastly, they can enhance the interpretability of the models by
expressing predictions in relative terms, facilitating a more intuitive understanding of the
forecasted outcomes.

pet 10 pet_10

020 100
1750 — et 10
015 075
1500
050
010

1250 0z

000 Juipleniioil

-0.25

0.05
1000

0.00

Autocorrelation

750

-0.05 050

500

-010 -0.7%

250

-1.00

-0.15 T u u T
2000 4000 6000 8000 10000

Lag

T T T T T T 0-
0 2000 4000 6000 8000 10000 -015 -010 -005 000 005 QL0 0I5 020

Figure 10 left: pcip for RP with seed=18, middle: distribution, right: autocorrelation function

. pet_20 pct 20 100
2 — @20
1750 075

1500 050

1250 S 025

000 ﬂwﬂﬁmm

-0.25

1000

Autocorrelation

750
-0.50

500
075

250

-1.00

U T T T
2000 4000 6000 8000 10000
Lag

T T T T T T
0 2000 4000 6000 8000 10000

Figure 11 left: pcyo for RP with seed=18, middle: distribution, right: autocorrelation function

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 46

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

pet_30 pet 30
1750

100

— pet 30
075

1500 050

1250 025

200 MW

-0.25

1000

Autocorrelation

750
-0.50

500
075

250

-1.00

™00 M0 00 00 10000
Lag

T T T T T T
0 2000 4000 6000 8000 10000 03

Figure 12 left: pcso for RP with seed=18, middle: distribution, right: autocorrelation function

pet_50 pet 50 100
w50 — piso

1500

1250

1000

Autocorrelation
=
=
=

750

500
-075

250

-1.00 U T T T
2000 4000 6000 8000 o000

Lag

T u T T T T
0 2000 4000 6000 8000 10000

Figure 13 left: pcso for RP with seed=18, middle: distribution, right: autocorrelation function

pet_100 pet_100

100

— pet 100
075
03 1000

050

02
£00 025

AT, R
AT v LT e

-0.25

600

Autocorrelation
=
=
=

400 -050

-0.7%
200

-1.00 U T T T
2000 4000 6000 8000 10000

Lag

T T T T T T
0 2000 4000 6000 8000 10000

Figure 14 left: pcioo for RP with seed=18, middle: distribution, right: autocorrelation function

433 Reward function

Constructing an appropriate reward function is crucial in reinforcement learning for trading
systems. The reward function guides the agent's learning process, helping it make effective
decisions. Reward functions should provide clear signals to the agent, encouraging it to
maximize desired objectives. In our case, where the goal is to maximize profit or minimize
loss in a trading system with fixed bet sizes of 1 currency unit i.e. €1, here are some
considerations and alternative approaches to constructing the reward function:

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 47

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

Profit or Loss (P/L) Reward

Reward the agent with the actual profit or loss after a position closes. This provides a clear
and direct measure of the success of each trade.

Reward for long buys: reward = (exit_price - entry_price) * bet_size
Reward for short sells: reward = (entry_price - exit_price) * bet_size

This approach directly aligns with our trading objective.

4.4 Discretized Q-learning

Discrete Q-leanring algorithm is implemented in discreteQAgent class. The RandomWalkEnv
environment returns observations as a five element array for example, array([0.03539416,
0.04126915, 0.03347519, 0.00899888, 0.04818559]).

So every time the discreteQAgent receives an observation has to quantize it and assigns it to a
state in the Q-table.

The discreteQAgent is initialized with the following arguments.
e env: the environment that the discreteQAgent will interact
e bins_n: number of bins used for state discretization
e alpha: alpha parameter for Q-learning algorithm
e gamma: gamma parameter for Q-learning algorithm

The number of states in the Q-table is equal to the number of bins raised to the number of state
elements. In our case we use 24 bins and 5 state elements so total states = 24°= 7962624
states. So the size of the Q-table depends on the number of bins and the elements of the
observation. If the size of the observation is higher the Q-table will become enormous and
won’t be possible to fit in memory. One way to bypass this is to decrease the number of bins
but decreasing that will decrease also the discretization that’s two or more actual states may be
assigned to the same entry of the Q-table. So when the discreteQAgent receives an observation
from the environment using the env.step() method it will assigns it to the proper state and will
adjust the value function of that state. Then using Q-leanring algorithm calculates the Q-values
for the two actions.

In all seeds we have initialized the algorithm with the following parameters

Parameter Value
bin_n 24
alpha 0.01
gamma 0.9
enable_metric True
Zero_start False

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 48

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

Size of random process 10000
seed 18
episodes 500
eps_strategy 3

Table 1 Parameters on discrete-Q train algorithm

Regarding epsilon strategy we have three options

1.0
1n) = ————— 4.4
epsHn) = T 10 (44
0.5
= S — 4.
eps2(n) 17103 (4.5)
3(n) = —— (4.6)
epso\n) = ——— .
P Vil
10 1 — gps:3 = 1.0/ np.sqrtin + 1)
eps:1 = 1.0/ {1l+n*10e-3)
0.8 eps:2 =05/ (1+n*10e-3)
0.6 1
0.4 1
02
0.0 1 :
0 100 200 300 400 500
Figure 15 Epsilon greedy options
4.4.1 Training the discreteQAgent.

Here is a sample code how we trained the discreteQAgent with table 1 parameters.

env = RandomWalkEnv (size=10000, enable metric=True, zero start=False)
env.save limits()

Q agent = discreteQAgent (env, bins n=24)

episodes = 500

episode lengths, episode rewards, Q = Q agent.train(
episodes=episodes, eps_ strategy=3)

SAVE Q table
with open("Qtable.pkl", "wb") as pkl handle:

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 49

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

pickle.dump (Q, pkl handle)
Q agent.plot running avg(episode rewards)
Q agent.plot totalrewards(episode rewards)

Running Average

12 1

10 1

o 100 200 300 400 500

Figure 16 Running average of rewards for a total of 500 episodes

4.4.2 Simulating a trading game with discreteQAgent.

Here we have the code how to run a trading simulation using the Q-table from the previous
code and generating a random process with seed=29

LOAD Q table
with open("Qtable.pkl", "rb") as pkl handle:
Q table = pickle.load(pkl handle)

env = RandomWalkEnv (size=10000, random seed=29, equity=1)
env.trim df ()
Q agent = discreteQAgent (env, bins n=24)

Q agent.play game(Q table) # play game

Q agent.env.disp dataset (save plot='Q learning')

Q agent.env.disp equity(
extra str='accuracy: '+str(round(env.accuracy, 4)),
save plot='Q learning'

)

4.5 Policy Gradient

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 50

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

45.1 Training with the policy gradient algorithm

The code is training an RL agent using the policy gradient method to perform in the
RandomWalkEnv environment. It aims to maximize the expected cumulative rewards by
updating the policy based on the rewards obtained during training episodes. The training stops
when the agent's performance meets a certain criterion regarding mean cumulative reward.

Parameter Value
size of random process 10000
equity 1
zero_start False
learning_rate 0.003
gamma 0.99

Table 2 Parameters on REINFORCE algorithm

The code to implement the algorithm is presented below

RW_LENGTH = 10000

env = RandomWalkEnv (RW_LENGTH, equity=1, zero_ start=False)
score history = []

score = 0

HIDDEN STIZE = 256

torch.manual seed(0)

model = torch.nn.Sequential (
torch.nn.Linear (env.observation space n, HIDDEN SIZE),
torch.nn.RelLU(),
torch.nn.Linear (HIDDEN SIZE, HIDDEN SIZE // 2),
torch.nn.RelU(),
torch.nn.Linear (HIDDEN SIZE // 2, env.action space n),
torch.nn.Softmax (dim=0)

)

learning rate = 0.003

optimizer = torch.optim.Adam(model.parameters(), lr=learning rate)
Horizon = RW_LENGTH

MAX TRAJECTORIES = 5000 # 25

gamma = 0.99

score = []

running win = 500

start = time.time ()

for trajectory in range (MAX TRAJECTORIES) :
curr_state = env.reset ()
done = False
transitions = []

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 51

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

tot reward = 0

for t in range (Horizon):
act prob = model (torch.from numpy (curr state).float())
act prob = torch.where(torch.isnan(act prob), torch.tensor(0.5),

act prob)
action = np.random.choice (np.array([0,1]), p=act prob.data.numpy())
prev_state = curr state
curr_state, rl, done, _ = env.step(action)

tot reward += rl
transitions.append((prev_state, action, rl))
transitions.append((prev_state, action, t+1))

if done:
break
score.append (tot reward)
reward batch = torch.Tensor ([r for (s,a,r) in transitions])
gamma_powers = torch.pow(gamma, torch.arange(len(transitions)))

batch Gvals= torch.flip(torch.cumsum(torch.flip(reward batch, [0]) *
gamma_powers, dim=0), [0])

expected returns batch = torch.FloatTensor (batch Gvals)
expected returns batch /= expected returns batch.max()
state batch = torch.Tensor([s for (s,a,r) in transitions])
action batch = torch.Tensor([a for (s,a,r) in transitions])
pred batch = model (state batch)

prob batch = pred batch.gather(dim=1, index=action batch.long() .view (-
1,1)) .squeeze ()
loss = —-torch.sum(torch.log(prob batch) * expected returns batch)

loss.backward()
optimizer.step ()
optimizer.zero grad()

if trajectory > 0O:
print ('Trajectory {} mean score: {:.2f}'.format (trajectory,
np.mean (score[-running win:-1])))
if trajectory > 1000:

avg_score = np.mean(score[-running win:-1])
if avg_score > 0.12:
break
torch.save (model, './models/reinforce 1l.torch')

A constant RW_LENGTH is set to 10000, which is the length of a random process in the
environment.

The environment is initialized with specific parameters: RW_LENGTH for the length of the
random walk, equity set to 1, and zero_start set to False.

An empty list called score_history is initalized, which will be used to store scores obtained by

the agent during training.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 52

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

The hidden layers in the neural network to 256.
We set the random seed for PyTorch to ensure the results can be replicated.

We define a neural network model using PyTorch's Sequential module. The network consists
of two linear layers (fully connected layers) with ReLU activation functions and a softmax
activation in the output layer.

Sequential(
(0): Linear(in_features=5, out_features=256, bias=True)
(1): ReLU()
(2): Linear(in_features=256, out_features=128, bias=True)
(3): ReLU()
(4): Linear(in_features=128, out_features=2, bias=True)
(5): Softmax(dim=0)

)

The learning_rate = 0.003 for the optimizer.
An Adam optimizer is initialized to update the model's parameters during training.

The Horizon is set to the same value as RW_LENGTH, indicating the time horizon for each
trajectory in the environment.

The maximum number of trajectories or episodes the agent will use for training

MAX_TRAJECTORIES = 5000: This sets the maximum number of trajectories or episodes
the agent will use for training.

gamma = 0.99: The discount factor (gamma) used in the calculation of expected returns.

score = []: Initializes an empty list score to keep track of the total rewards obtained in each
trajectory.

running_win = 500: Sets the window size for calculating the running average of scores during
training.

The code then enters a loop that iterates through multiple trajectories (episodes) for training
the agent. In each trajectory:

e curr_state is set to the initial state of the environment.

e A nested loop iterates for Horizon time steps (or until the episode ends).

e The model is used to predict the action probabilities (act_prob) based on the current
state.

e An action is sampled from the action probabilities using np.random.choice.

e The action is taken in the environment (env.step(action)), and the reward is obtained
(rl).

e Transitions (state, action, reward) are recorded in the transitions list.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 53

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

e The episode ends if done is True (e.g., if a terminal state is reached).
e The total reward for the trajectory is accumulated in tot_reward.

score.append(tot_reward): The total reward for the current trajectory is added to the score
list.

The code calculates the expected returns for each time step in the trajectory and computes
the loss for policy optimization.

The model's parameters are updated using backpropagation through the loss, and the
gradients are zeroed.

The code checks for a termination condition: if the average score of the last 500 trajectories
(running_win) exceeds 0.12, the training loop breaks.

The training loop prints the mean score of trajectories and terminates when the termination
condition is met.

The model is saved to disk

avergage reward, running window: 200

0.006

0.004

0.002

avg Score

0.000

-0.002

—-0.004

T T T T T T T
0 200 400 600 800 1000 1200
Training Epochs

Figure 17 Average reword during training the policy gradient algorithm

4.6 Implementation and results

In this research, we will conduct a comprehensive analysis involving ten distinct random
processes, each initiated with a unique seed (19, 20, 21, 22, 23, 24, 25, 26, 28, and 29). Our
approach involves the application of Q-learning and REINFORCE models, both pre-trained
using seed = 18, to these random processes. We will systematically evaluate the performance
of these models based on multiple critical metrics.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 54

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

First our evaluation will center on the Profit and Loss (PnL) generated from the resulting
equity curve after applying each model. We will examine the Sharpe ratio, a key indicator of
risk-adjusted returns, and assess the accuracy of these models in predicting the correct side of
trades. This evaluation process will provide valuable insights into the effectiveness of each
reinforcement learning algorithm in the context of trading.

To contextualize our findings, we will compare the Equity PnL of the reinforcement learning
models against the performance of a standard buy-and-hold strategy applied to the underlying
random processes. This comparative analysis will disclose the relative profitability and
efficiency of the reinforcement learning algorithms.

Furthermore, we will delve into the unique characteristics of the equity curve, particularly
focusing on drawdowns and signs that influence the associated risks. By examining these
aspects, we aim to gain a deeper understanding of the risk profiles associated with each trading
strategy.

Lastly, we will extend our investigation to construct a portfolio comprising all ten random
processes. Within this portfolio, we will rigorously evaluate the performance of each
algorithm. Additionally, we will conduct an in-depth comparative analysis between the two
reinforcement learning algorithms, considering their respective strengths, weaknesses, and
distinguishing attributes.

4.6.1 Sharpe ratio

The Sharpe ratio is a measure of the risk-adjusted return of an investment or portfolio. It is
calculated by subtracting the risk-free rate of return from the expected return of the investment
or portfolio and then dividing the result by the standard deviation of the investment's or
portfolio's returns (Fernando 2023).

The formula for the Sharpe ratio is as follows:

R-Rf 4.7)

Sharpe Ratio =

Where:

e Ris the expected return of the investment or portfolio.
e Rfis the risk-free rate of return.
e o (sigma) is the standard deviation of the investment's or portfolio's returns.

If the expected return (R) is less than the risk-free rate (Rf), the numerator of the Sharpe ratio
will be negative. Additionally, if the investment or portfolio has a high level of volatility
(measured by a high standard deviation, o), it will also contribute to a larger denominator.
Consequently, a negative numerator and a large denominator can result in a negative Sharpe
ratio (Fernando 2023).

A negative Sharpe ratio indicates that the investment or portfolio is not providing an adequate
risk-adjusted return, meaning that investors are not being compensated for the level of risk

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 55

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

they are taking on. In other words, the investment is underperforming compared to the risk-
free rate, after accounting for the level of risk involved. Investors typically seek investments or
portfolios with positive Sharpe ratios as they represent a better trade-off between risk and
return (Fernando 2023).

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 56

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

4.6.2 Random process with Seed=19

Process - random seed:19

14

12 4

10

0.8

0.6

0 2000 4000 6000 8000 10000

Figure 18 Random Process generated with seed=19

Equity - random seed:19 Q-learning accuracy: 0.501

18 A

16

14

12

10

0.8 A

0.6

0.4

0.2

Figure 19 Equity generated applying Q-learning on RP with seed=19

Equity - random seed:19 Reinforce accuracy:0.499

3.0 4

25

20

15 A

10 4

0 2000 4000 6000 8000 10000

Figure 20 Equity generated applying REINFORCE on RP with seed=19

The random process (Figure 18) exhibits a loss of -0.51 in absolute terms. When comparing
Q-learning and REINFORCE, Q-learning Figure 19 ends with a profit of 0.2 and a Sharpe
ratio of 0.138, achieving an accuracy of 0.501. On the other hand, REINFORCE Figure 20
achieves a profit of 1.089, a Sharpe ratio of 0.22, and an accuracy of 0.499 in its predictions.
Notably, in this particular seed, REINFORCE outperforms Q-learning despite Q-learning
shows a slightly better accuracy.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 57

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

4.6.3

Random process with Seed=20

Process - random seed:20

25

20

15

10 4

05

0 2000 4000 6000 8000 10000

Figure 21 Random Process generated with seed=20

275

250 4

2.25 4

200 4

175 A

150 A

125 A

100 A

0.75 A

Equity - random seed:20 Q-learning accuracy: 0.509

0 2000 4000 6000 8000 10000

Figure 22 Returns generated applying Q-learning on RP with seed=20

25

204

15 A

10 A

0.5

Equity - random seed:20 Reinforce accuracy:0.508

0 2000 4000 6000 8000 10000

Figure 23 Returns generated applying REINFORCE on RP with seed=20

In this seed the random process ends with a remarkable profit of 1.55 in absolute value (Figure
21). Q-learning ends with a profit of 1.492 and REINFORCE with 1.599. REINFORCE
slightly outperforms in profit buy and hold the random process.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 58

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

4.6.4

Random process with Seed=21

Process - random seed:21

30 4

25

20

15 A

10

0.5 4

0 2000 4000 6000 8000 10000

Figure 24 Random Process generated with seed=21

2254

200 4

175

150 A

125 A

100 A

0.75 A

0.50 A

Equity - random seed:21 Q-learning accuracy: 0.508

0 2000 4000 6000 8000 10000

Figure 25 Equity generated applying Q-learning on RP with seed=21

18 A

16

14

12 A

10

0.8 A

0.6

Equity - random seed:21 Reinforce accuracy:0.504

0 2000 4000 6000 8000 10000

Figure 26 Equity generated applying REINFORCE on RP with seed=21

This is a strongly up-trending process (Figure 24) and buying and holding it gives a profit of
1.5945 which seems unbeatable Figure 24. Both algorithms underperform Q-learning giving
1.214 and REINFORCE 0.74. So in this case buy and hold seems to be a better choice.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 59

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

4.6.5 Random process with Seed=22

Process - random seed:22

16 4

14 4

12 A

10

0.8 A

0.6

0.4 1

0 2000 4000 6000 8000 10000

Figure 27 Random Process generated with seed=22

Equity - random seed:22 Q-learning accuracy: 0.5

150 A

125 A

100 A

0.75 A

0.50 A

0.25 A

0.00 A

—0.25 A

-0.50

0 2000 4000 6000 8000 10000

Figure 28 Equity generated applying Q-learning on RP with seed=22

Equity - random seed:22 Reinforce accuracy:0.501

2754

2504

2254

200 4

175

150

125

100 A

0 2000 4000 6000 8000 10000

Figure 29 Equity generated applying REINFORCE on RP with seed=22

In this seed (Figure 27) buying and holding the random process gives a profit of 0.1659
whereas Q-learning gives 0.299 and REINFORCE outperforms with 1.432! In this case
Reinforce seems to be the best choice.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 60

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

4.6.6 Random process with Seed=23

Process - random seed:23

25

20 4

1359

10 A

0.5 A

0 2000 2000 6000 8000 10000
Figure 30 Random Process generated with seed=23

Equity - random seed:23 Q-learning accuracy: 0.49

10 4

05 A

0.0 1

-1.0 A

0 2000 4000 6000 8000 10000

Figure 31 Equity generated applying Q-learning on RP with seed=23

Equity - random seed:23 Reinforce accuracy:0.498

175 A

150 A

125

100 A

0.75 A

0.50 A

0 2000 4000 6000 8000 10000

Figure 32 Equity generated applying Reinforce on RP with seed=23

A down-trending process (Figure 30) ends with a loss of -2.2792. Q-learning model does not
manage to reverse the trend ending with loss. REINFORCE performs better giving a profit at
the end but with severe fluctuations on its yield.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 61

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

4.6.7 Random process with Seed=24

Process - random seed:24

175

150 A

125 A

100 A

0.75 A

0.50 A

0.25

0 2000 4000 6000 8000 10000

Figure 33 Random Process generated with seed=24

Equity - random seed:24 Q-learning accuracy: 0.492

20 A

18

16

14

12 4

10

0.8 A

0 2000 4000 6000 8000 10000

Figure 34 Equity generated applying Q-learning on RP with seed=24

Equity - random seed:24 Reinforce accuracy:0.501

35 A

3.0 A

25

20 A

15 4

10

0.5 A

0 2000 4000 6000 8000 10000

Figure 35 Equity generated applying REINFORCE on RP with seed=24

Another strong down-trending process (Figure 33) ending with -1.3904 losses. Q-learning
ends with a small profit of 0.38 and severe fluctuations. REINFORCE outperforms with a

profit of 2.808

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 62

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

4.6.8 Random process with Seed=25

Process - random seed:25

175

150 A

125

100 A

0.75 A

0.50 A

0.25

0 2000 4000 6000 8000 10000

Figure 36 Random Process generated with seed=25

Equity - random seed:25 Q-learning accuracy: 0.498

15 4

10 4

0.5 A

0.0

0 2000 4000 6000 8000 10000

Figure 37 Equity generated applying Q-learning on RP with seed=25

Equity - random seed:25 Reinforce accuracy:0.489

15 4

10 4

0.5 4

0 2000 4000 6000 8000 10000

Figure 38 Equity generated applying REINFORCE on RP with seed=25

A very down-trending process (Figure 36) ending with a loss of 0.7387. Q-learning ends with
a small profit but with a severe drawdown at around 7500. REINFORCE is a complete
failure.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 63

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

4.6.9 Random process with Seed=26

Process - random seed:26

16

14

12 A

10

0.8 A

0.6

04

0.2

0 2000 4000 6000 8000 10000

Figure 39 Random Process generated with seed=26

Equity - random seed:26 Q-learning accuracy: 0.503
3.0 I

25 A
20 A
15 A

10 A

0 2000 4000 6000 8000 10000

Figure 40 Equity generated applying Q-learning on RP with seed=26

Equity - random seed:26 Reinforce accuracy:0.5

25

20 A

15 A

10 A

0.5 A

0 2000 4000 6000 8000 10000

Figure 41 Equity generated applying REINFORCE on RP with seed=26

A down-trending process (Figure 39) with a loss of -0.602. Both algos succeed to reverse that
trend and present profit, most notable g-learning with 1.997 and REINFORCE with 0.778. Q-
learning is more stable slightly falling below original equity.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 64

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

4.6.10 Random process with Seed=28

Process - random seed:28

2004

175

150 A

125

100 A

0.75 A

0.50 A

0.25 A

0 2000 4000 6000 8000 10000

Figure 42 Random Process generated with seed=28

Equity - random seed:28 Q-learning accuracy: 0.505

40

35 1

3.0

25

20 A

15

10

0 2000 4000 6000 8000 10000

Figure 43 Equity generated applying Q-learning on RP with seed=28

Equity - random seed:28 Reinforce accuracy:0.502

354

3.0

25

20 A

15 A

10

0.5 A

0 2000 2000 6000 8000 10000
Figure 44 Equity generated applying REINFORCE on RP with seed=28

In this case we have a strong down-trending process ending with a loss -0.5707. Both
algorithms show an impressive capacity to reverse this trend, ultimately concluding with
substantial profits. Q-learning achieves an outstanding performance, yielding a remarkable
profit of 2.857, REINFORCE also excels, securing a profit of 2.128. Throughout this process,
Q-learning consistently maintains its equity above the initial level. Furthermore, Q-learning
exhibits a Sharpe ratio of 0.341, surpassing REINFORCE's ratio of 0.27.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 65

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

4.6.11 Random process with Seed=29

Process - random seed:29

3.0 4

25

20 A

15 A

10 A

0 2000 4000 6000 8000 10000

Figure 45 Random Process generated with seed=29

Equity - random seed:29 Q-learning accuracy: 0.503

15

14

13 4

12 A

b B B

10

09

0.8 A

0.7

0 2000 4000 6000 8000 10000

Figure 46 Equity generated applying Q-learning on RP with seed=29

Equity - random seed:29 Reinforce accuracy:0.497

10 A

0.8 A

0.6

0.4 1

0 2000 2000 6000 8000 10000
Figure 47 Equity generated applying REINFORCE on RP with seed=29

Here we have a strongly up-trending (Figure 45) case where a buy and hold strategy could
yield a profit of 1.8649. Q-learning ends with a profit of 0.303 and REINFORCE fails with a
loss of -0.49. So in this case the simple buy and hold works best.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 66

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

4.7 Portfolio of seeds

Let’s see what would be the result if we make a portfolio of seeds that’s if we trade ten
instruments seeds (19, 20, 21, 22, 23, 24, 25, 26, 28, 29) at the same time, what would be the
result?

Portfolio of the all seeds, Q-learming algorithm

18 1

16 A

Equity

12 4

10 4

0 2000 4000 6000 8000 10000
Time

Figure 48 Portfolio of all seeds for Q-learning algorithm

The equity curve (Figure 48) is much smoother and this is very important. There are no severe
draw-downs except the time between 2100 and 3900 where there is a significant drop in
equity.

Portfolio of the all seeds, Reinforce algorithm

0 2000 4000 6000 8000 10000
Time

Figure 49 Portfolio of all seeds for REINFORCE algorithm

Again the equity curve (Figure 49) for the combination of the yields of results of
REINFORCE is much smoother than individuals and this is much better and acceptable
performance.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 67

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

Let’s see now a comparison of performance between the portfolios of the two algorithms
(Figure 50).

Portfolio comparison Reinforce vs Q-learning

210 -
—— {-learning
Reinforce
158 1
16 1
=
S 14 1
[=
L
o M
o] Ny
0.8 : : : : : :
o 2000 4000 BOO0 BOOOD 10000

Time

Figure 50 Comparison of portfolios between the two algorithms

The comparison shows that REINFORCE portfolio a little outperforms although in the
beginning there is a small drawdown towards 0.9 in the first 500 trades. Both begin to present
remarkable profit after 3000 trades and continue to profit until the end. In general there are no
severe drawdowns, smooth evolution and acceptable performance.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 68

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

5 Conclusions

In this study, we conducted trading simulations based on synthetic random processes with
varying seeds, ranging from seed=19 to seed=29 whereas the agent's training was on seed=18.
Our goal was to evaluate the performance of two prominent reinforcement learning
algorithms, Q-learning and REINFORCE, in the context of trading and compare their results
to a simple buy-and-hold strategy.

The agents in both cases operated within an environment where they initiated their activity
from a randomly selected starting point along the synthetic random process. Throughout their
interactions, the performance of these agents was continually monitored and assessed. In cases
where an agent exhibited mediocre performance, the environment promptly terminated the
ongoing trajectory by signaling 'done=False.' This dynamic evaluation process allowed for the
exploration of various segments of the synthetic process, ensuring that the agents' strategies
were rigorously tested under different conditions and performance scenarios.

Seed Q-learning REINFORCE

Sharpe Sharpe
No | RW p/I .p Accuracy | p/I .p Accuracy | p/| Best on p/I
ratio ratio

19 | -0.5196 | 0.138 0.501 0.2 0.22 0.499 1.089 | REINFORCE

20 | 1.5501 | 0.272 0.509 1.492 | 0.272 | 0.508 1.559 | REINFORCE

21 | 1.5945 | 0.209 0.508 1.214 | 0.173 | 0.504 0.74 Buy and Hold
22 | 0.1659 | 0.073 0.5 0.299 | 0.238 | 0.501 1.432 REINFORCE
23 | -2.2792 | -0.303 | 0.491 -1.046 | 0.2 0.498 0.88 REINFORCE

24 | -1.3904 | 0.156 0.491 0.38 0.267 | 0.501 2.808 | REINFORCE

25 | -0.7387 | 0.095 0.498 0.071 | 0.126 | 0.489 -1.485 | Q-learning

26 | -0.602 | 0.247 0.503 1.997 | 0.173 | 0.5 0.778 | Q-learning

28 | -0.5707 | 0.341 0.504 2.857 | 0.27 0.502 2.128 | Q-learning

29 | 1.8649 | 0.117 0.503 0.303 | -0.014 | 0.497 -0.49 Buy and Hold

Table 3 Results of trading simulations on various random processes

The key findings from our trading simulations:

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 69

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

Q-learning vs. REINFORCE: Analyzing the performance of the two algorithms, we
observed variations in their outcomes across different seeds. While REINFORCE
outperformed Q-learning in terms of profit and loss (P/L) in most cases (five to three), the
results were not consistent across all seed values. This suggests that the effectiveness of these
algorithms can vary depending on the underlying random process.

Best Strategy by P/L: When considering the best-performing strategy based on P/L,
REINFORCE seemed as the superior choice for most seed values. This indicates that
REINFORCE was better at capitalizing on the fluctuations in the synthetic random processes
to generate profits.

Buy and Hold: Interestingly, for specific seeds (e.g., seed=21 and seed=29), a simple buy-
and-hold strategy outperformed both Q-learning and REINFORCE in terms of P/L. This result
emphasizes the significance of exploring and evaluating alternative trading strategies, as they
may, at times, deliver comparable or even superior outcomes.

Risk and Sharpe Ratio: Additionally, we calculated the Sharpe ratio for both Q-learning and
REINFORCE. While REINFORCE exhibited higher Sharpe ratios for some seeds, Q-learning
demonstrated consistency in achieving positive Sharpe ratios, implying a more stable risk-
adjusted performance.

Accuracy: Evaluating the accuracy of the reinforcement learning models the results showed
that accuracy levels were generally slightly above 0.5, indicating that both Q-learning and
REINFORCE had little predictive power in identifying profitable trading opportunities.

In summary, our trading simulations revealed that the performance of reinforcement learning
algorithms, particularly Q-learning and REINFORCE, can be influenced by the stochastic
nature of the underlying data. REINFORCE demonstrated an advantage in terms of P/L for
most seeds, but Q-learning displayed greater consistency in risk-adjusted returns. Furthermore,
the surprising effectiveness of a buy-and-hold strategy for specific seeds emphasizes the
importance of considering a variety of approaches in trading scenarios.

These findings underline the dynamic nature of algorithmic trading, where the choice of the
optimal strategy can depend on the specific characteristics of the underlying data. Future
research could explore additional algorithmic trading strategies, data preprocessing
techniques, and hyper-parameter tuning to further enhance the performance of reinforcement
learning models in this domain.

In general, the policy based algorithm generalizes better and achieves smoother performance
equity curves; something desirable perhaps due to its nature (it uses NN). He also chooses
action, always acting stochastically. Highly stochastic environments are characterized by
significant uncertainty and randomness in the outcomes of actions, which can make learning
and decision-making challenging. Policy-based methods are often well-suited for highly
stochastic environments. They can learn probabilistic policies that explicitly account for
uncertainty. By parameterizing policies, they can model the distribution over actions and adapt
to stochastic outcomes (Sewak 2019).

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 70

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

6 Future Research

Designing an effective reward function is crucial for training a reinforcement learning (RL)
agent for trading. Using profit or loss after a position closes is a reasonable starting point, but
there are ways to make it more efficient and informative. Here are some points to consider:

o Market Benchmark: Compare the agent's performance to a benchmark, like a buy-and-
hold strategy on a market index. This can help the agent learn to outperform a passive
strategy, which is often the goal in trading.

e Learning from Drawdowns: We could give a negative reward when the agent incurs
significant drawdowns. This encourages the agent to learn from its mistakes and avoid
risky strategies that could lead to large losses.

It's important to strike a balance between creating a reward function that encourages desired
behavior and not overcomplicating it, as overly complex reward functions can lead to training
instability. We can experiment with different reward functions and monitor the agent's
performance closely to find the best approach.

e Cumulative Returns: Reward the agent based on the cumulative returns over a
sequence of trades. This can help in reducing the problem of sparse rewards. Reward
could be the total cumulative profit or loss over a given time horizon.

e Custom Metrics: Define custom metrics or composite rewards that consider other
factors specific to our trading strategy, such as drawdown, winning streaks, or losing
streaks.

Constructing an informative state representation is crucial in reinforcement learning. An
effective state should capture relevant information about the market that the agent can use to
make informed decisions. Here are some additional considerations:

Feature engineering:

e Various percentage change inputs

e Various rolling windows for Mean value

e Various rolling windows for standard deviation
e Convolution 1d

e FFT inputs

Feature Importance Analysis:

We can use techniques like SHAP (SHapley Additive exPlanations) or feature importance
scores from various machine learning algorithms to assess which features are most
informative. Evaluate all of them with SHAP and selecting the best.

Dimensionality Reduction:

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 71

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

In case there is a high-dimensional state space, we may consider dimensionality reduction
techniques like Principal Component Analysis (PCA) or t-Distributed Stochastic Neighbor
Embedding (t-SNE) to reduce noise and redundancy in your state.

State Stacking:

Consider stacking multiple historical states to provide the agent with a sense of market
history and trends over time.

The choice of state representation can significantly impact the learning process. It's important
to strike a balance between providing enough information for the agent to make informed
decisions and keeping the state space manageable to avoid the curse of dimensionality.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 72

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

Bibliography — References — Online sources

Bellman, R. Dynamic programming. Princeton University Press, 1957,

Box, G. E., G. M. Jenkings, and Reinsel G. C. Time Series Analysis: Forecasting and Control.
John Wiley & Sons, 2015.

Brockman, Greg, et al. "OpenAl Gym." arXiv, 2016: arXiv.1606.01540.

Brockwell, P. J., and R. A. Davis. Introduction to Time Series and Forecasting. Springer,
2002.

Campobell, J. Y., A. W. Lo, and A. C. MacKinlay. The Econometrics of Financial Markets.
Princeton University Press, 1997.

Chen, Sihang, Weiqi Luo, and and Chao Yu. "Reinforcement Learning with Expert Trajectory
for Quantitative Trading." Arxiv, 2021: 2105.03844.

Fernando, Jason. Sharpe Ratio: Definition, Formula, and Examples. 5 11, 2023.
https://www.investopedia.com/terms/s/sharperatio.asp.

Gao, Xiang. "Deep reinforcement learning for time series: playing idealized trading games."
arXiv, 2018.

Huang, Chien-Yi. "Financial Trading as a Game:A Deep Reinforcement Learning Approach."
Arixiv.org, 2018.

Jeong, G., and H.Y. Kim. "Improving financial trading decisions using deep Q-learning:
Predicting the number of." Expert Systems with Applications, 2019: 125-138.

Lei, K., B. Zhang, Y. Li, M. Yang, and Y Shen. "Time-driven feature-aware jointly deep
reinforcement learning." Expert Systems with Applications, 2020: 140, 112872.

Li, X,, Y. Li, Y. Zhan, and X.Y. Liu. "Optimistic bull or pessimistic bear: Adaptive deep
reinforcement learning.” arXiv, 2019: arXiv:1907.01503.

Li, Y., W. Zheng, and Z. Zheng. "Deep robust reinforcement learning for practical algorithmic
trading." IEEE Access, 2019: 108014-108022.

Liang, Z., H. Chen, J. Zhu, K. Jiang, and Y Li. "Adversarial deep reinforcement learning in
portfolio management.” arXiv, 2018: arXiv:1808.09940.

Liu, Xiao-Yang, Zhuoran Xiong, Shan Zhong, Hongyang Yang, and Anwar Walid. "Practical
Deep Reinforcement Learning Approach for Stock Trading." arXiv, 2022: 1811.07522.

Raffin, Antonin. Stable-Baselines3: Reliable Reinforcement Learning Implementations. n.d.
https://araffin.github.io/post/sb3/.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 73

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

Schulman, J., S. Levine, P. Abbeel, M. Jordan, and P. Moritz. "Trust region policy
optimization.” arxiv.org, 2015: 1502.05477.

Sefidian, Amir Masoud. REINFORCE Algorithm explained in Policy-Gradient based methods
with Python Code. n.d. https://www.sefidian.com/2021/03/01/policy-g/.

Sewak, Mohit. "Policy-Based Reinforcement Learning Approaches." Springer, 2019: 127-
140.

Sutton, R. S., and A. G Barto. Reinforcement Learning: An Introduction. MIT Press, 2018.

Williams, R. J. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Springer, 1992.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 74

Msc Thesis: Applying Reinforcement Learning algorithms for profitable strategies in a stock market simulator

Appendix A

Code in github

Appendix B

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Theodore Stavrothanasis 0015. 75

https://github.com/tstavro/trading-game

	List of Tables
	List of figures
	Acronym Index
	INTRODUCTION
	The subject of this thesis
	Aim and objectives
	Methodology
	Structure

	1 CHAPTER 1: Stochastic processes
	1.1 Random Walk
	1.2 Autocorrelation in Financial Time Series
	1.2.1 Autocorrelation Function (ACF)
	1.2.2 Practical Significance
	1.2.3 How to interpret it.

	2 CHAPTER 2: Reinforcement Learning
	2.1 Components of the Reinforcement Learning Process
	2.2 Deterministic Policy
	2.3 Stochastic Policy
	2.4 Markov Decision Process (MDP)
	2.5 Policy and Value Functions
	2.6 Bellman Optimality Equations in Reinforcement Learning
	2.6.1 Optimal State-Value Function
	2.6.2 Optimal Action-Value Function
	2.6.3 Solving the Bellman Optimality Equations
	2.6.4 Value Iteration Algorithm

	2.7 Key Concepts and Algorithms in Reinforcement Learning
	2.8 Applications of Reinforcement Learning
	2.9 Temporal Difference Learning
	2.9.1 TD(0) Algorithm
	2.9.2 Advantages of Temporal Difference Learning

	2.10 Q-Learning
	2.10.1 Q-Learning Algorithm
	2.10.2 ϵ-greedy Strategy
	2.10.3 Some characteristics of off-policy algorithms:

	2.11 Policy Gradients
	2.12 REINFORCE algorithm
	2.12.1 Trajectories in Reinforcement Learning
	2.12.2 Trajectory Return
	2.12.3 Expected return
	2.12.4 Gradient ascent
	2.12.5 Sampling and estimate
	2.12.6 Gradient estimation formula

	3 CHAPTER 3: Related Work
	4 CHAPTER 4: Trading game
	4.1 Random Walk generation
	4.2 Charts and definitions
	4.3 Environment
	4.3.1 RandomWalkEvn class
	4.3.2 States
	4.3.3 Reward function

	4.4 Discretized Q-learning
	4.4.1 Training the discreteQAgent.
	4.4.2 Simulating a trading game with discreteQAgent.

	4.5 Policy Gradient
	4.5.1 Training with the policy gradient algorithm

	4.6 Implementation and results
	4.6.1 Sharpe ratio
	4.6.2 Random process with Seed=19
	4.6.3 Random process with Seed=20
	4.6.4 Random process with Seed=21
	4.6.5 Random process with Seed=22
	4.6.6 Random process with Seed=23
	4.6.7 Random process with Seed=24
	4.6.8 Random process with Seed=25
	4.6.9 Random process with Seed=26
	4.6.10 Random process with Seed=28
	4.6.11 Random process with Seed=29

	4.7 Portfolio of seeds

	5 Conclusions
	6 Future Research
	Bibliography – References – Online sources
	Appendix A
	Appendix B

		2023-11-06T10:04:25+0200
	Panagiotis Kasnesis

		2023-11-06T10:54:45+0200
	Charalampos Patrikakis

		2023-11-06T11:14:36+0200
	Georgios Priniotakis

