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ΠΕΡΙΛΗΨΗ 

 

Στόχος της παρούσας διατριβής είναι η δημιουργία και η βέλτιστη βαθμονόμηση τεχνικών 

αυτόματου ελέγχου για μη γραμμικά συστήματα, με έμφαση στον έλεγχο μη επανδρωμένων 

εναέριων οχημάτων, χρησιμοποιώντας μεθόδους υπολογιστικής νοημοσύνης. Οι κύριες μέθοδοι 

υπολογιστικής νοημοσύνης που χρησιμοποιήθηκαν είναι τα νευρωνικά δίκτυα ακτινικής βάσης 

(Radial Basis Function Neural Networks, RBF NNs), γνωστά για την απλότητα και τη γρήγορη 

εκπαίδευσή τους, και η συνεργατική βελτιστοποίηση σμήνους σωματιδίων (Cooperative Particle 

Swarm Optimization, CPSO), αναγνωρισμένη για τα βελτιωμένα αποτελέσματα βελτιστοποίησης 

μέσω της συνεργασίας μεταξύ πολλαπλών σμηνών.  

Ένα σημαντικό ζήτημα που αντιμετωπίστηκε σε αυτή τη διατριβή είναι το πρόβλημα του ελέγχου 

μη γραμμικών συστημάτων με τη χρήση μη γραμμικών μεθοδολογιών ελέγχου. Οι κύριες 

μεθοδολογίες ελέγχου που χρησιμοποιούνται είναι η μέθοδος backstepping και η μέθοδος  ελέγχου 

με τη χρήση μοντέλων πρόβλεψης (Model Predictive Control, MPC). Ο έλεγχος backstepping 

χρησιμοποιείται για την παραγωγή ευσταθών εύρωστων ελεγκτών για τη περίπτωση συστημάτων 

αυστηρής ανατροφοδότησης, ενώ η μέθοδος MPC περιλαμβάνει το σχηματισμό και την επίλυση 

ενός προβλήματος βελτιστοποίησης σε πραγματικό χρόνο, επιτρέποντας την ακριβή πρόβλεψη 

της μελλοντικής συμπεριφοράς του συστήματος, αλλά και τον έλεγχο σε πολύπλοκα δυναμικά 

συστήματα με περιορισμούς και διαταραχές. 

Τα κύρια μη γραμμικά συστήματα που διερευνώνται στην παρούσα διατριβή είναι τα μη 

επανδρωμένα εναέρια οχήματα (Unmanned Aerial Vehicles, UAVs), και ιδιαίτερα τα 

τετρακόπτερα εναέρια οχήματα (Quadrotor Unmanned Aerial Vehicles, QUAVs). Ο έλεγχος ενός 

τετρακόπτερου για το πρόβλημα της παρακολούθησης πηγαίας τροχιάς, αποτελεί σημαντική 

πρόκληση λόγω της εγγενώς μη γραμμικής και υποδιεγειρόμενης  φύσης του οχήματος. Στην 

παρούσα διατριβή το πρόβλημα της παρακολούθησης πηγαίας τροχιάς αντιμετωπίστηκε με την 

ανάπτυξη ενός νέου μη γραμμικού ελεγκτή backstepping, ο οποίος ενσωματώνει νευρωνικά 

δίκτυα RBF. Οι ελεγκτές backstepping που έχουν τις ρίζες τους σε εξισώσεις πρώτων αρχών, 

αντιμετωπίζουν τη σημαντική πρόκληση του αποτελεσματικού χειρισμού εγγενών μη 

γραμμικοτήτων, αλλά είναι ευάλωτοι σε μη μοντελοποιημένες δυναμικές και αβεβαιότητες όταν 

εφαρμόζονται σε πρακτικές εφαρμογές.  Για την αντιμετώπιση αυτού του προβλήματος, στην 

παρούσα διατριβή προτείνεται η διαμόρφωση ενός νέου ελεγκτή backstepping με ενσωματωμένα 

νευρωνικά δίκτυα RBF για τον χειρισμό αβεβαιοτήτων κατά την διάρκεια της παρακολούθησης 

πηγαίας τροχιάς του τετρακόπτερου. Με αυτόν τον τρόπο, παρέχεται μια προσέγγιση βασισμένη 



 

σε δεδομένα για τον υπολογισμό των μη-μοντελοποιημένων αβεβαιοτήτων, με σκοπό τον επιτυχή 

έλεγχο του τετρακόπτερου. 

Εκτός από την ανάπτυξη αποτελεσματικών στρατηγικών ελέγχου παρακολούθησης της τροχιάς 

ενός τετρακόπτερου, είναι εξίσου σημαντική και η κατάλληλη βαθμονόμηση των παραμέτρων 

ελέγχου αυτών των μεθόδων. Η δυσκολία στην βαθμονόμηση αυξάνεται όταν χρησιμοποιούνται 

περισσότεροι από ένας ελεγκτές για τη ρύθμιση του συστήματος, κάτι που δημιουργεί μεγάλο 

αριθμό παραμέτρων προς βαθμονόμηση. Για τον σκοπό αυτό, σε αυτή τη διατριβή προτείνεται 

ένα νέο πλαίσιο συνεργατικής βελτιστοποίησης CPSO κατάλληλο για τη βέλτιστη βαθμονόμηση 

των παραμέτρων ενός τετρακόπτερου συστήματος για το πρόβλημα παρακολούθησης πηγαίας 

τροχιάς. Το διαμορφωμένο πλαίσιο ελέγχου περιλαμβάνει δύο υποσυστήματα: έναν ελεγκτή MPC 

για την παρακολούθηση της θέσης και ένα σχήμα PID για τη σταθεροποίηση της στάσης του 

τετρακόπτερου. Ανταλλάσσοντας πληροφορίες, τα δύο σμήνη συνεργάζονται μεταξύ τους για την 

αποτελεσματική εξερεύνηση του χώρου αναζήτησης με σκοπό την εύρεση παραμέτρων 

βαθμονόμησης οι οποίες καλυτερεύουν την ικανότητα παρακολούθησης της επιθυμητής πηγαίας 

τροχιάς. 

Συγχρόνως με την ανάπτυξη ενός αλγορίθμου για τη βέλτιστη βαθμονόμηση των παραμέτρων 

ελέγχου ενός τετρακόπτερου, με στόχο την αντιμετώπιση και την επίλυση προβλημάτων υψηλής 

διαστατικότητας που δεν είναι κυρτά, δημιουργήθηκαν δύο ακόμη νέοι συνεργατικοί αλγόριθμοι 

σμήνους σωματιδίων. Ειδικότερα, αναπτύχθηκαν δύο νέα πλαίσια CPSO για την αντιμετώπιση 

των προβλημάτων που σχετίζονται με τη διαχείριση της άεργους ροής ισχύος (Optimal Reactive 

Power Flow, ORPF) σε έξυπνα κατανεμημένα δίκτυα (Distributed Networks, DNs) και τη 

αναγνώριση των κρίσιμων παραμέτρων σε εγκαταστάσεις επεξεργασίας λυμάτων (Wastewater 

Treatment Plants, WWTPs). Συγκεκριμένα, διαμορφώθηκε ένα νέο συνεργατικό πλαίσιο 

βελτιστοποίησης και ελέγχου CPSO για την αντιμετώπιση του προβλήματος διαχείρισης ισχύος 

σε έξυπνα δίκτυα με υψηλό αριθμό φωτοβολταϊκών (Photovoltaic, PV) συσκευών. Επιπλέον, με 

σκοπό την αναγνώριση των παραμέτρων λειτουργίας σε μοντέλα εγκαταστάσεων επεξεργασίας 

λυμάτων διαμορφώθηκε νέο πλαίσιο CPSO το οποίο χρησιμοποιήθηκε για την επίλυση ενός μη 

γραμμικού προβλήματος βελτιστοποίησης.        

Ένα άλλο κρίσιμο πρόβλημα που αντιμετωπίστηκε σε αυτή τη διατριβή σχετίζεται με τη 

μοντελοποίηση και τον έλεγχο μη γραμμικών χρονικά μεταβαλλόμενων συστημάτων. Σε αυτό το 

πρόβλημα, η δυσκολία δεν αφορά απλώς τη χρήση γραμμικών ή μη γραμμικών μοντέλων, αλλά 

αναφέρεται στο γεγονός ότι το μοντέλο που χρησιμοποιείται πρέπει να είναι προσαρμοστικό, ώστε 

να είναι σε θέση να παρακολουθεί τις αλλαγές στη δυναμική του συστήματος. Στην παρούσα 

διατριβή παρουσιάζεται ένα νέο μη γραμμικό πλαίσιο ελέγχου στο οποίο ενσωματώνονται 



προσαρμοστικά μοντέλα νευρωνικών δικτύων. Συγκεκριμένα, αναπτύχθηκε ένα ολοκληρωμένο 

πλαίσιο μη γραμμικού προσαρμοστικού ελέγχου, για την εξασφάλιση καλής απόδοσης ελέγχου 

σε διάφορες περιοχές λειτουργίας. Ο νόμος ελέγχου του συστήματος κλειστού βρόχου 

αποδεικνύεται ασυμπτωτικά ευσταθής με τη χρήση της θεωρίας ευστάθειας Lyapunov. Στο 

πλαίσιο αυτό διεξάγονται δύο αναλύσεις υποθέσεων, που αφορούν ένα μη γραμμικό 

αυτοπαλινδρομούμενο εξωγενές σύστημα (Nonlinear Autoregressive Exogenous, NARX) και 

έναν χημικό αντιδραστήρα συνεχούς ροής με ανάδευση (Continuous Stirred Tank Reactor, 

CSTR). 

Οι στρατηγικές που παρουσιάζονται στην παρούσα διατριβή αξιολογούνται σε μια σειρά 

αναλύσεων υποθέσεων συμπεριλαμβανομένων προσομοιωμένων σεναρίων. Η 

αποτελεσματικότητα αυτών των προτεινόμενων μεθόδων παρουσιάζεται μέσω συγκρίσεων με 

άλλες προσεγγίσεις που αναφέρονται στη βιβλιογραφία.  
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ABSTRACT 

 

The objective of this dissertation is to develop and fine-tune automatic control techniques for 

nonlinear systems, with a focus on unmanned aerial vehicle control, through the application of 

computational intelligence methods. Specifically, this research focuses on utilizing radial basis 

function networks (RBFNs), known for their simplicity and fast training, and cooperative particle 

swarm optimization (CPSO), recognized for its improved optimization results through 

collaboration among multiple swarms.  

An important issue faced in this dissertation is the problem of controlling nonlinear systems by 

utilizing nonlinear control methodologies, primarily backstepping control and model predictive 

control. Backstepping control offers robustness, and stability for non-strict feedback systems, 

whereas the model predictive control (MPC) method involves formulating and solving an 

optimization problem at discrete time steps, enabling accurate prediction of future system behavior 

and control in complex dynamic systems with constraints and disturbances.  

The main nonlinear systems that are investigated in this dissertation are unmanned aerial vehicles 

(UAVs), with a specific focus on quadrotor vehicles. Controlling the quadrotor, especially 

concerning trajectory tracking, presents a significant challenge due to its inherently nonlinear and 

underactuated nature, characterized by intercoupled terms. In this thesis the trajectory tracking 

problem was addressed by developing a new nonlinear backstepping controller which integrates 

RBF neural networks. Backstepping controllers are based on first-principles equations to face the 

significant challenge of effectively handling inherent nonlinearities, but are vulnerable to 

unmodeled dynamics and uncertainties in practical applications. To tackle this challenge, the thesis 

proposes a novel solution which integrates a backstepping controller with RBF networks for 

handling uncertainties during quadrotor trajectory tracking, thus offering a data-driven 

approximation for handling unmodeled uncertainties. 

In addition to developing an effective tracking control strategy for a quadcopter, it is equally 

important to properly tune its control parameters, especially when more than one controller is used 

for regulating the system. To this end, in this thesis, a novel CPSO optimization framework is 

designed for optimizing the tuning parameters of a quadrotor trajectory tracking control scheme. 

The control framework included two subsystems: an MPC controller for position tracking and a 

PID scheme for attitude stabilization. This approach involves collaborative optimization of the 

numerous controllers tuning parameters, resulting in improved tracking performance, enhanced 

robustness and efficient optimization within reasonable timeframes. 



 

In tandem with the development of an algorithm for the optimal tuning of a quadcopter's control 

parameters, two additional cooperative particle swarm algorithms were also devised to address and 

resolve high-dimensional non-convex problems. To this end, two novel CPSO frameworks were 

formulated to address the problems related to optimal reactive power flow (ORPF) management 

in smart distribution grids and critical parameter identification in WWTPs. To be more specific a 

CPSO optimization and control framework was designed in order to tackle the reactive power flow 

(RPF) problem of photovoltaic-heavy distribution networks. Furthermore, in response to the 

estimation of critical parameters challenges faced in wastewater treatment processes (WWTPs), a 

new CPSO-identification framework was proposed that can be used for solving a nonlinear 

optimization problem. 

This thesis also addresses another crucial issue concerning the modeling and control of nonlinear 

time-varying systems. In this context, the challenge lies not only in choosing between linear and 

nonlinear models but, more importantly, in ensuring that the model employed can adapt its 

parameters so as to effectively track changes in the system's dynamics. In this thesis, a new 

nonlinear control framework is presented in which adaptive neural network models are 

incorporated. A comprehensive framework for nonlinear adaptive control is developed, ensuring 

satisfactory control performance across various operation regions. The control law of the closed-

loop system is proven to be asymptotically stable using Lyapunov stability theory. Two case 

studies are conducted within this framework, involving a nonlinear autoregressive exogenous 

(NARX) system and a time-varying continuous stirred tank reactor (CSTR). 

The strategies presented in this dissertation are evaluated across a range of case studies, including 

simulated scenarios. The effectiveness of these proposed schemes is showcased through 

comparisons with other approaches documented in the bibliography. 
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1. Introduction 

Automatic control refers to the application of different methods and strategies to govern 

and manipulate systems or processes without direct human intervention. In the dynamic 

field of engineering and technology, computational intelligence techniques play an essential 

role in enhancing the efficiency of the control task. These techniques harness the power of 

artificial intelligence and machine learning to enable systems to adjust, improve and make 

decisions in intricate and constantly evolving environments. For example, in industrial 

automation, fuzzy logic controllers are utilized to effectively manage variables like 

temperature and pressure within production processes, securing the optimal product quality 

and uniformity [1], [2]. Similarly, in autonomous vehicles, deep learning neural networks 

are employed to process real-time data and make critical decision, such as identifying and 

classifying objects (e.g., pedestrians, traffic signs, other vehicles) predicting their behavior, 

and planning a safe path for vehicle to follow [3], [4].  

The precision of system modeling is essential for enabling successful regulation results, as 

computational modeling aids in designing, analyzing, and optimizing control systems for 

enhanced efficiency. In last decades, there has been a significant research focus on 

modeling Artificial Neural Networks, commonly referred to as Neural Networks (NNs) 

which are powerful mathematical tools within the realm of computational intelligence, 

capable of modeling unknown systems using input-output data exclusively. The 

construction of a neural network model generally consists of two key phases: initially 

defining the network’s architecture, which includes specifying the quantity of hidden layers 

and neurons, and subsequently, optimizing the network’s parameters associated with 

neurons and synaptic weights through an optimization algorithm that minimizes 

discrepancies between the actual system outputs and the network’s predictions based on a 

training dataset. During this training process, the network internalizes the correlations 

between input and output variables.  

While most traditional neural network training methodologies heavily rely on optimization 

algorithms that demand substantial computational resources and time, radial basis function 

networks [5] stand out as a distinct architecture offering notable advantages, including a 

simpler structure, quicker training algorithms, and enhanced approximation capabilities. 

Due to their advantageous characteristics, RBF networks have seen widespread use in 

modeling [6]–[8] and control [9], [10]. 



 

RBF network training algorithms can be categorized into two groups: one with a 

predetermined hidden neuron count, often time-consuming as they necessitate a trial-and-

error process to determine the correct number of neurons, and another with structure 

selection mechanisms. The k-means [11] clustering algorithm, belonging to the first 

category, is a popular choice for selecting the centers coordinates in the hidden layer. The 

latter category includes algorithms that simultaneously determine network and structure 

parameters [12], [13], but many of them involve extensive computational requirements. In 

any case, once the centers are known the rest of the network’s parameters are defined with 

the use of linear least squares. 

In recent years, the fuzzy-means (FM) algorithm [14] has emerged as a highly effective 

training method for RBF networks, distinguished by its ability to successfully define the 

right number of hidden nodes and compute model parameters. Its’s notable advantages 

include its speed, as it requires only a single pass of training examples, its consistency in 

results since it doesn’t rely on random initializations, and its capacity to simultaneously 

determine both network structure and parameters, thus minimizing the need for iterative 

trials. The wide range of applications [15]–[17] of the FM algorithm showcases the 

efficiency and versatility that it offers in modeling and controlling systems. 

While the right integration and utilization of computational intelligence techniques are 

pivotal for the successful modeling of systems, it is equally important to select capable and 

efficient control methods to achieve optimal outcomes. In practice, many systems exhibit 

nonlinear behavior, making linear control strategies inadequate in dealing with the inherent 

nonlinear traits of these systems. As a result, nonlinear control methods become 

indispensable tools, enabling the design of regulators that can ensure stability, enhance 

performance, and preserve robustness in challenging and dynamically changing operational 

conditions. Despite the numerous advantages offered by some nonlinear control methods, 

such as having the capacity to deliver robust control solution in the face of uncertainties 

and disturbances, manage non-smooth system behavior, handle nonlinear interactions, 

incorporate constraints and adapt to dynamic conditions, the design of nonlinear controllers 

for a specific regulation problem remains a complex and demanding task. 

Backstepping control is a nonlinear control method known for its ability to effectively 

stabilize complex nonlinear strict-feedback systems, making it especially valuable in 

practical applications. It is based on decomposing the problem in several steps, where in 

each step a virtual controller is designed to stabilize the former system, so that in the end 

all the subsystems are stable. Backstepping control’s key features lie in its robustness 
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against uncertainties and disturbances, precise tracking of desired trajectories, adaptability 

to dynamic conditions. For this reason, many researchers have used controlling schemes 

based on the backstepping strategy for various regulation tasks. 

Indeed, a wide variety of backstepping-based controllers have been introduced to address 

system regulation challenges. In [18] six integral backstepping controllers are designed for 

the full autonomous flight of quadrotor, and their effectiveness has been demonstrated 

through real flight experiments. Van et al. in [19] devise an adaptive backstepping 

nonsingular fast terminal sliding controller for tracking control of robot manipulators. The 

controller showcases superior tracking performance when tested on the PUMA560 robot 

compared to other controllers. Wen and Changyun [20] develop two robust adaptive 

algorithms by using backstepping approaches for uncertain nonlinear systems, 

incorporating a Nussbaum function to handle input saturation while ensuring global 

stability and adjustable transient performance. Simulation tracking results on spring-mass 

system signify the controller’s performance in handling input saturation. 

Another important nonlinear control methodology is model predictive control, widely used 

in various fields [21]–[24]. The MPC method relies on the simple idea of using an explicit 

dynamic model of the system to predict the effect of future actions on the output. The 

control actions are determined through an optimization procedure, with the objective of 

minimizing the predicted error. It offers advantages such as the ability to handle complex, 

multivariable systems, address constraints on inputs and states, and handle disturbances and 

uncertainties. MPC’s predictive behavior allows it to make informed control moves based 

on future predictions, making it effective for both tracking desired trajectories and 

regulating tasks. Over the last decades, MPC methodologies have gained substantial 

traction within both the academic sphere [25], [26] and the industry [27], resulting in 

multiple of successful applications [28]. 

A multitude of MPC methodologies have been proposed in the literature in a variety of 

systems, with a common characteristic among the methodologies being the formulation of 

a real-time optimization problem that requires resolution. In [29] an MPC controller is 

devised which utilizes obstacle ship trajectory prediction models based on RBF networks. 

The method is tested with real port-data assessing trajectory safety and efficiency when 

compared with other control techniques. In [30] a MPC scheme is introduced that integrates 

direct and indirect neural control methods by employing an RBF model that accelerates 

optimization problem-solving. The controller’s performance is evaluated on a nonlinear 



 

inverted pendulum on cart. In another interesting publication [31] an adaptive framework 

for robust nonlinear MPC is designed that enhances aircraft control capabilities under 

adverse conditions and disturbances. The controller is tested successfully on a real 

unmanned aerial system. Xia et al. propose a finite-state MPC strategy tailored specifically 

for permanent-magnet brushless DC motors to reduce commutation torque ripple. 

Simulation results verify the method’s ability to minimize commutation torque ripple in 

both dynamic and steady-state conditions.  

Another crucial task regarding MPC optimization is related with the stability of the control 

systems. The literature on MPC stability for dynamic systems, both linear and nonlinear, is 

extensive [25], [32], [33]. Popular methodologies in the literature fall into two main 

categories: those employing a cost function as a Lyapunov candidate function, including 

terminal constraint [34], infinite output prediction horizon [34], terminal cost function [35], 

and terminal constraint set methods [36]; and those relying on state decrease in specific 

norms [37]. 

Considering the critical significance of effectively controlling nonlinear systems, it 

becomes evident that relying on nonlinear controllers presents certain advantages. Indeed, 

the control of nonlinear systems poses a challenging endeavor due to their complex and 

often unpredictable behaviors. In practice, nearly all real-world systems exhibit some kind 

of nonlinear characteristic, making it vital to navigate the nonlinear attributes. These 

systems can exhibit abrupt changes, discontinuities, and intricate interactions among 

variables, rendering conventional linear control methods insufficient for accurately 

capturing their dynamics. 

In this thesis, the central emphasis lies in the in-depth investigation of nonlinear dynamics 

and control strategies within the domain of unmanned aerial vehicles. Over the past few 

decades, vertical takeoff and landing UAVs have garnered significant attention. Among the 

noteworthy UAVs in the family of rotary-wing aircrafts [38], [39], the quadrotor, or 

quadcopter, holds a prominent position. A quadrotor helicopter is a vehicle that features 

four propellers, enabling a reduction in the size of each rotor while maintaining or even 

increasing the total load capacity, compared to single-rotor helicopters. This design 

provides the quadrotor with advantages related with high maneuverability, precise 

movements in limited space, the ability for stationary flight (hovering) and the capacity for 

vertical take-off and landing. The ample set of abilities that the quadrotor possesses has led 

to a growing implementation in several industries such as surveillance, rescue, 

photography, forest patrolling, and agricultural quality inspection [40]–[43]. The escalating 
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practical utility of quadrotors has prompted researchers towards an in-depth study regarding 

their design, modeling and control [44], [45]. 

Examining the dynamics of a quadrotor vehicle through the modeling of their differential 

equations plays a crucial role in analyzing and governing these versatile aerial vehicles. 

Within this context, two traditional frameworks, namely Lagrangian and Newton-Euler 

frameworks, are commonly employed. The Lagrangian formalism [46], [47] approaches the 

dynamics from the perspective of energy, expressing the system in terms of generalized 

coordinates and Lagrangian functions. On the other hand, the Newton-Euler formalism 

[48], [49] at specific point in space and time, providing a spatial perspective of the 

dynamics. In the present thesis the Newton-Euler formalism is selected due to its inherent 

advantages of providing a more direct approach to calculating forces and torques, 

facilitating real time control. Moreover, the system dynamics are represented using the state 

space framework. 

The control of a quadrotor is not a simple task, primarily because it inherently embodies 

characteristics of instability, under actuation, nonlinearity, and a statue as a multiple-input-

multiple-output (MIMO) nonlinear system with strongly couple dynamic terms. Amidst this 

intricate context, the task of controlling a quadrotor for trajectory tracking becomes even 

more challenging. It requires meticulous control of the quadrotor’s dynamic behavior to 

achieve accurate and robust tracking performance. 

Early attempts to quadrotor flight control utilize techniques such as the proportional-

integral-derivative (PID) controller, the linear quadratic regulator (LQR) and the H-infinity 

controller (𝐻∞). Because of their simplicity in implementation and flexibility in parameter 

tuning, PID-based control strategies have been widely adopted by researchers for 

developing autonomous quadrotor flight systems [50]. The LQR controller constitutes 

another standard control scheme for quadrotors, which has been applied for trajectory 

planning  [51] and stability control [52]. In [53] a comparison between the performance of 

PID and LQR controllers is conducted, including experimental results. As far as the 

application of 𝐻∞ for quadrotor control is concerned, Wang et al. [54] designed a tracking 

controller with the use of variation-based linearization to track a reference trajectory. Raffo 

et al. [55], [56] proposed a method for solving the path tracking problem by using and 𝐻∞ 

controller that achieves path following in the presence of external disturbance and model 

uncertainties. Simulation results from both works show the robustness ability of the 𝐻∞ 

controllers. 



 

Although the mentioned control strategies display advantages in terms of simplicity and 

implementation, they heavily rely on linearized system models. However, given the 

underactuated and inherently nonlinear nature of quadrotors, linearization leads to 

imprecise models that only approximate its behavior in regions near the equilibrium points. 

As a response to the challenges, especially in achieving accurate trajectory tracking posed 

by the complex dynamics of quadrotors, researchers have increasingly adopted nonlinear 

control methods to improve the stability and controllability.  

Feedback linearization constitutes a classical way in controlling nonlinear systems. The 

method involves a transformation of the nonlinear control system into a linear one through 

control input and state transformation. Das et al. [57] proposed a two-loop approach 

nonlinear controller with an outer PD loop and an inner feedback linearizing controller loop 

that deals with the coupling dynamics problem of the quadrotor. In [58] a controller is 

designed that combines control strategies, including feedback linearization, to cope with 

the nonlinear dynamics of the system, resulting in satisfactory attitude performance. In [59], 

an effective nonlinear controller is proposed, designed to handle both position tracking and 

attitude stabilization. This controller is successfully implemented on an actual quadrotor 

through a backstepping-feedback linearization approach. This method accounts for physical 

parameter challenges and underwent outdoor experimentation for validation. While 

feedback linearization control overcomes the capabilities of linear controllers, it shares 

some limitations with them. Precise modeling is required, and it can’t efficiently handle 

external disturbances. 

Sliding mode control (SMC) consists of a useful tool when dealing with quadrotor and 

nonlinear systems in general. The main idea of the SMC is to design control strategies that 

compel the system’s state trajectory to adhere near to a predefined manifold in the state 

space. The first applications of the control method were studied by Sira-Ramirez [60] for 

attitude control of a small helicopter. In [61] a model-free based controller is combined 

along with an SMC controller to solve the position and attitude trajectory problem for a 

quadrotor. In another interesting publication [62] the advantages from the utilization of an 

adaptive SMC quadrotor neural network controller for attitude and position control are 

showcased. In [63] a trajectory tracking designing process was combined with a cuckoo 

search algorithm for reducing the power consumption of a quadrotor that uses a terminal 

SMC. Tang et al. [64] propose a fault-tolerant terminal SMC for robust trajectory tracking 

control of a quadrotor under disturbances, parametric uncertainties and actuator faults. 
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While the SMC algorithm can effectively handle the nonlinearities present in quadrotors, it 

is very sensitive to chattering phenomena which could be caused by unmodeled dynamics. 

Backstepping constitutes a control technique which offers advantages such as improved 

robustness against chattering phenomena resulting from unmodeled dynamics while 

effectively addressing the system’s nonlinearity. In [65], a trajectory tracking controller is 

proposed, utilizing a backstepping method with robust compensation theory. [66] presents 

a backstepping adaptive controller by combining it with a prescribed performance function 

that guarantees quadrotor trajectory tracking performance. In [67], a command filter-based 

backstepping control approach with input saturation is employed to address the quadrotor’s 

vehicle trajectory tracking problem. A trajectory tracking fault tolerant controller is applied 

in [68] by using a sliding mode backstepping approach. In [69] a backstepping-based 

quadrotor controller is designed for path following while addressing challenges related with 

unknown vehicle parameters and external disturbances. 

Though the aforementioned backstepping controllers effectively handle nonlinearities, they 

rely on models derived from first principles equations, making them susceptible to 

unmodeled dynamics and uncertainties when applied to real-world systems. Neural 

networks, as black box modeling techniques, are frequently used in conjunction with 

backstepping methodologies, to produce robust controllers that can handle uncertainties. In 

[70], C. Nicol et.al present an early attempt which utilizes NN in a quadrotor for handing 

model uncertainties. Specifically, a neural based quadrotor control scheme is introduced 

capable to attenuate modeling error and wind disturbance through NN weight adaptation. 

In another interesting publication [71], the authors utilize a neural network-based 

backstepping control scheme for quadrotor position and yaw angle desired setpoint 

tracking. [72] introduces a novel backstepping design scheme for the quadrotor, based on 

an NN for modelling uncertainties. In [73], a nonlinear controller based on backstepping 

and PID employs an NN to identify unmodelled dynamics. [74] focuses in solving the finite 

time tracking problem of a quadrotor by utilizing an NN-based control scheme for 

compensating actuator faults and external disturbances. [75] introduces a robust terminal 

sliding mode approach for quadrotor attitude and position control, integrating an RBF NN 

to mitigate the influence of external disturbances. The effectiveness of these NN models 

within the broader control scheme riles heavily on their modeling accuracy, which in turn 

depends on the architecture and training algorithm used. 



 

Selecting RBF networks trained with the FM algorithm as the neural network modeling 

approach constitutes a highly effective choice, thanks the ability of the FM algorithm to 

deliver RBF networks with enhanced accuracy within shorter computational duration. This 

has resulted in the successful integration of the FM algorithm into various nonlinear control 

schemes [10], [15], [16], [30], [76]. 

RBF networks have been used in conjunction with backstepping to oversee a range of 

systems. In [77], an RBF-backstepping scheme was applied to regulate the equilibrium 

position of an electrohydraulic elastic manipulator, even in scenarios with variable stiffness. 

In another instance [78], within an aerial work platform vehicle, a backstepping control 

approach was implemented, incorporating RBF networks to reduce tracking errors in work 

platforms and effectively dampen vibrations. Surprisingly though, the literature is very 

scarce on using integrated RBF-backstepping networks for quadrotor trajectory tracking. In 

the few relative publications, the training procedure involves only the network weights [72], 

while the centers of the RBF network are selected arbitrarily; this could result in a subpar 

model for the uncertainties in terms of accuracy, bearing a detrimental effect on the 

performance of the overall control schemes 

Furthermore, another way to enhance the performance of quadrotor trajectory tracking 

control schemes, involves the application of MPC methodology. In [79], an MPC control 

law is responsible for position control while a feed-forward controller guarantees the 

quadrotor’s stabilization. In [80], a robust MPC controller is implemented in real flight 

scenarios. In [81] a state space error predictive controller is utilized for trajectory tracking, 

while an 𝐻∞ controller stabilizes the attitude of the quadrotor. In [82] the control system is 

split into two subsystems: one for path following using a state-space predictive controller, 

and the other for attitude stabilization using a non-model based active disturbance rejection 

(ADCR) controller with a linear extended state observer strategy. 

Irrespective of the chosen control method, effective parameter tuning is a crucial practical 

task, as inadequately selected controller parameters can impede the performance of a 

quadrotor. Unfortunately, although the MPC method has been highly successful for 

quadrotor control, it is often associated with a cumbersome parameter tuning procedure. 

This can be attributed to the high number of operational parameters that need to be selected, 

which increases further when the MPC method is coupled with different techniques that 

carry their own parameters, as is often the case in quadrotor control. Under such 

circumstances, performing the tuning procedure by trial and error is not effective and a 

mathematical optimization problem needs to be formulated and solved. Unfortunately, 
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when viewing the MPC tuning as an optimization procedure, the high number of design 

variables is not the only obstacle to be encountered; the mixed integer and continuous nature 

of the design variables, combined with a complicated, nonlinear and multimodal objective 

function make the use of conventional optimization methods inadequate.  

Metaheuristic search methods constitute a class of optimization algorithms that are better 

equipped to overcome such difficulties and provide better quality solutions to the tuning 

problem. By relying on stochastic search, metaheuristic search methods reduce the risk of 

getting trapped in local minima, while the generation and evolution of multiple solutions 

bestows increased exploration capabilities. This is due to their ability to solve problems that 

are too difficult or time-consuming to solve using traditional methods. Among the popular 

metaheuristic techniques are genetic algorithms (GA) [83], which emulate natural selection 

to evolve potential solutions over multiple generations; and simulated annealing (SA) [84], 

which emulates the annealing process in metallurgy, iteratively exploring neighboring 

solutions and gradually approaching near-optimal or optimal solutions. Another well-

known technique is the ant colony optimization (ACO) [85] which is inspired by the 

behavior of ants in finding food, where artificial ants navigate solution spaces and deposit 

pheromones to guide the search towards best solutions. However, these metaheuristic 

approaches, exhibit some significant disadvantages including slow convergence, sensitivity 

to parameters and susceptibility to local optima. 

Particle swarm optimization (PSO) [86] is another simple yet effective metaheuristic 

optimization method which belongs to the family of swarm intelligence; it relies on 

simulating the social structure of flocking birds and has been used successfully for tuning 

diverse control schemes [87] and optimization [88].  

Not surprisingly, PSO has been utilized extensively for solving the quadrotor control tuning 

optimization problem. In [89], a PSO tuning process was used in order to design four 

decentralized PID controllers achieving stabilization for the quadrotor's altitude and 

attitude. In [90], a PSO algorithm is used to tune RBF neural networks responsible for 

adjusting the parameters of a PID controller coupled to the quadrotor. Yacef F. et.al in [91], 

implement a PSO-based tuning strategy to an integral back-stepping controller in order to 

achieve height and angle stabilization. PSO has also been used to optimize the control 

parameters in quadrotor path tracking problems. In [92] a path planning solution is 

presented for the inspection of a photovoltaic farm based on a PSO - Bezier curve algorithm. 

In [93], the PSO algorithm optimizes the parameters of an ADCR strategy for the sake of 



 

following a desired path. In the particular work the PSO-ADCR methodology is compared 

with the simple ADCR showing the improvement in settling time, overshoot and desired 

tracking error. In [94], a heterogenous comprehensive learning PSO is utilized to optimize 

the parameters of a quadrotor saturation-based controller in order to perform three-

dimensional trajectories in space. Mahmoodabadi et al. in [95], used a multi-objective high 

exploration PSO algorithm to tune the membership functions of a quadrotor fuzzy controller 

based on the LQR methodology. 

While simple variants of PSO have proven effective for optimizing quadrotor control 

strategies, they do have limitations, including constrained exploration of solution spaces, 

vulnerability to local optima, and decreased efficiency in high-dimensional environments. 

Therefore, the modularity of the respective optimization problem could be better addressed 

by cooperative PSO techniques. CPSO works by dividing a complex optimization problem 

into smaller subproblems and then utilizing multiple sub-swarms of particles to explore 

these sub-problems simultaneously. These sub-swarms collaborate by periodically sharing 

information. This cooperative approach favors diverse exploration and leverages the 

strengths of both local and global search resulting in high-quality-solutions. Numerous 

works [96]–[98] have highlighted the effectiveness of employing cooperative techniques in 

dealing with complex optimization problems and achieving success. While cooperative 

techniques have demonstrated their effectiveness in addressing complex optimization 

problems, it’s noteworthy that, to the best of the author’s knowledge, there is a relative 

scarcity of research on the application of cooperative techniques for tuning quadrotor 

control schemes.  

Another important aspect of MPC control is the choice of the predictive model. The 

majority of MPC methodologies in both literature and industrial applications predominantly 

rely on linear models, with the Dynamic Matrix Control (DMC) [99] being the most popular 

among them. Its widespread acceptance can be attributed to its usage of a linear step 

response model, simplifying parameter determination, and the application of linear or 

quadratic objective function, streamlining the optimization process. However, in practical 

industrial scenarios, nonlinear processes are prevalent. Linear model-based controllers 

perform well primarily within the vicinity of their delivered linear models, but this 

operation region can become severely constrained when substantial nonlinearity is present. 

Neural networks provide an interesting approach to modeling nonlinear systems and have 

been employed as models in MPC control methodologies. A recent overview regarding 

neural network modeling approaches for model predictive control is provided by Ren et al. 
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[100]. Specifically, Lanzetti et al. [101] propose a data-driven modeling approach by 

implementing a recurrent neural network within an MPC controller for managing systems 

commonly encountered in industrial applications. In [102] the authors introduce an MPC 

method for precise tracking in repetitive batch processes, by utilizing neural networks to 

identify system dynamics. Kang et al. [103] introduce an event-triggered MPC approach 

for robotic manipulators by combining neural network-based predive modeling, global 

learning for optimization and event-triggered solving to enhance tracking control on a real-

world robot. 

Introducing non-linear models into an MPC controlled system can help resolve problems 

associated with non-linearity in systems. However, it doesn’t address the case of time-

varying systems, where the use of static MPC framework can lead to poor controller 

performance or even instability. To address the issues arising in the control of time-varying 

processes, various adaptive tuning methods have been proposed. Early efforts regarding 

real-time adaptation or process models in MPC schemes can be witnessed in [104]–[106]. 

It should be noted that all the aforementioned approaches rely on linear models, but in 

recent years, there has been substantial advancement in the development non-linear 

adaptive MPC methods. Hedjar in [107], introduces an adaptive neural network MPC 

controller to address parameter variations and uncertainties in nonlinear systems improving 

tracking performance. In [108] the authors propose an online backpropagation NN to 

effectively control forging process, addressing their inherent time variance and 

nonlinearity. Carughi et al. [109] present an online neural network-enhanced MPC 

methodology for a UAV, improving trajectory tracking and handling actuator faults.  

Another approach in neural-network MPC methods involves the use of RBF models as 

adaptive modeling techniques. The motivation behind this, is that RBF models offer 

enhanced adaptability and modeling accuracy, making them a promising choice for 

adaptive control systems. However, there have been relatively few studies conducted on the 

development of non-linear adaptive MPC methodologies. In [110] the authors introduce a 

control methodology for processes with multiple steady states, using an MPC framework 

with process dynamics modeled by RBF NNs. The approach is successfully applied to a 

challenging CSTR reactor with three steady state points. In another publication [111], a real 

time MPC method with self-organizing RBF NNs for nonlinear systems is proposed, which 

demonstrates effective tracking and disturbance rejection characteristics. Han et al. [112] 

propose a self-organizing recurrent RBF NN improving modeling accuracy with a spiking-



 

based  growing and pruning algorithm and adaptive learning. The designed scheme is 

applied to control dissolved oxygen concentration in a WWTPs, with simulation results 

demonstrating improved model fitting and control performance compared to existing 

methods. 

Motivated by the aforementioned discussion, this thesis aims to contribute to the domains 

of automatic control and computational intelligence, addressing the challenges and gaps 

previously outlined. The primary contributions include: 

• A novel approach for harnessing the CPSO framework has been developed to 

address complex optimization and control challenges in diverse applications. This 

CPSO algorithm is designed to efficiently optimize and control systems facing 

different issues, as demonstrated in two distinct applications. Firstly, the CPSO 

framework was applied to optimize and control distributed networks heavily reliant 

on photovoltaic systems. The scheme leverages the power of multiple swarms to 

optimize distinct zones within the network, effectively managing the growing 

complexity of the optimization problem as photovoltaic systems become more 

integrated. The CPSO algorithm combines exploration capabilities with zone-based 

exploitation for candidate solutions, making it well-suited for the challenges posed 

by these networks. Its effectiveness was assessed in reducing voltage deviations and 

minimizing real power losses in an IEEE distribution grid under various load and 

generation profiles. Additionally, the new CPSO framework was employed to 

identify critical system parameters in a first principles model of a WWTPs. By 

solving a nonlinear optimization problem based on a system identification scheme, 

it successfully estimated crucial parameters in a modified benchmark simulation 

model No.1 (BSM1). The performance of the CPSO algorithm was compared with 

two other PSO algorithms, specifically in the task of estimating the kinetic and 

stoichiometric coefficients of the modified BSM1 model. 

• A new control strategy is proposed for solving the quadrotor trajectory tracking 

problem by utilizing a backstepping-RBF network framework. The proposed 

backstepping controller is designed so as to ensure Lyapunov stability for the 

closed-loop system. It combines a first-principles-based dynamic model of the 

quadrotor, and an RBF network which provides a data-driven approximation of 

unmodelled uncertainties of any type. The RBF network is trained using the FM 

algorithm, enhancing modeling accuracy and thereby enabling improved tracking 

performance in the presence of unmodeled dynamics. This methodology was 



Development and tuning of automatic control methods for nonlinear systems using computational intelligence techniques 

with emphasis on the control of unmanned aerial vehicles 

 

A. Kapnopoulos 

47 

successfully tested in two different trajectory tracking scenarios. The simulation 

results against a classical backstepping control approach confirm the superiority of 

the proposed method. 

• A novel comprehensive framework is introduced, employing cooperative PSO to 

produce an optimized quadrotor trajectory-tracking MPC controller. To be more 

specific, the employed framework comprises two control subsystems, namely an 

MPC controller for dealing with the path following problem and a PID scheme for 

dealing with attitude stabilization. The two different control subsystems require a 

large number of tuning parameters, which are optimized effectively by a cooperative 

PSO scheme, employing multiple swarms in order to handle the different 

components of the solution vector. In this case, two different swarms are used for 

the MPC and PID tuning parameters, respectively; though each swarm controls a 

different set of parameters, they ultimately work together towards bestowing 

improved trajectory tracking abilities to the integrated control framework. The 

proposed approach is evaluated through a series of experiments employing a 

number of different trajectories, while also testing the method’s robustness by 

applying it in trajectories different than the ones used for tuning; performance is 

compared to different metaheuristic search methods through statistical testing.  

• A new nonlinear MPC strategy is developed that employs discrete adaptive dynamic 

RBF models for predicting the future behavior of nonlinear time-varying systems. 

The model adaption is achieved through the adaptive fuzzy means algorithm, which 

provides the benefit of dynamically adjusting both the network’s structure and its 

synaptic weights. The adaptive nonlinear MPC approach is thoughtfully based on 

Lyapunov stability theory by invoking the monotonicity with respect to time of the 

MPC cost function. In this sense, the stability of the closed-loop system is ensured. 

The effectiveness of this approach is illustrated using two different nonlinear 

systems: a NARX system and a time-varying CSTR reactor. In the case of the 

CSTR, the methodology is applied to control a reactor with three equilibrium points. 

The results demonstrate that the proposed controller successfully controls the CSTR 

across its entire operating range. 

The structure of this doctoral thesis is as follows: 

Chapter two introduces the key computational intelligence tools utilized throughout the 

thesis, highlighting the architecture of RBF neural networks and the swarm-based 



 

metaheuristic approach of cooperative PSO. Additionally, it demonstrates an application of 

the CPSO framework for optimizing and controlling photovoltaic-heavy distribution 

networks. Simulation results across diverse scenarios validate the efficacy of CPSO when 

compared to alternate approaches. 

Chapter three introduces the primary control methods utilized in this thesis for nonlinear 

system control, i.e., the backstepping and model predictive control methods. 

Chapter four initiates with an introduction to UAVs and quadrotor dynamics and control, 

subsequently delving into the quadrotor trajectory tracking control problem. 

Chapter five of the PhD dissertation introduces two trajectory tracking control approaches 

for addressing the quadrotor trajectory tracking problem. It includes the induction of a 

Backstepping neural network control scheme and the development of a cooperative PSO 

controller tuning scheme. The effectiveness of these methods is demonstrated through a 

series of simulations and case studies. 

Chapter six of the thesis presents and analyzes a nonlinear MPC strategy incorporating 

adaptive RBF models. The NMPC controller’s efficiency is evaluated through two case 

studies: a nonlinear NARX system and a time-varying CSTR system. Simulation results 

demonstrate the controller’s effectiveness. 

Finally, the conclusion drawn from the completion of the thesis are presented in Chapter 

seven.



 

 

2. Computational Intelligence methods 

 

2.1 Introduction to Computational Intelligence 

Computational intelligence (CI) [113] refers to a field of study that explores the design and 

development of intelligent systems capable of performing complex tasks by simulating 

human-like cognitive processes. CI offers an arsenal of tools that can be applied in diverse 

scientific fields for dealing with problems that would have been difficult to solve with 

conventional approaches. CI mainly focuses on a number of core families of methods, 

which include artificial neural networks, swarm intelligence, artificial immune systems, 

fuzzy systems, evolutionary computation [114]–[117]. 

The objective of CI is to develop systems that learn from experience, adjust to evolving 

environments, make decisions and solve problems without the need for explicit 

programming. Through the utilization of extensive datasets and diverse computational 

techniques, these systems demonstrate intelligent behavior akin to humans such as pattern 

recognition, decision-making and problem-solving. 

This chapter presents the primary computational intelligence methods utilized within the 

scope of this thesis. 

2.2 Radial Basis Function Neural Networks 

Artificial neural networks (ANNs) constitute a standard machine learning technique; 

essentially, they are considered very effective for the modeling of highly nonlinear systems 

or processes, and during the last 20 years they have been extensively used for the realization 

[10] of such models in order to design novel control schemes. 

Radial basis function neural networks (RBFNNs) [117] constitute a popular machine 

learning technique with various applications in nonlinear system identification and system 

control. Due to their simple structure and improved accuracy, RBFNNs are widely 

considered for modeling nonlinear dynamics. 

RBF networks are characterized by a specific architectural design, consisting of a single 

hidden layer that is directly connected to the output layer. This linear connection contributes 

to advantages in terms of training speed and efficiency compared to classical multilayer 

perceptron (MLPs). 

 



 

This section introduces the fundamental formulation of the RBF NNs and describes a 

specific algorithm namely the symmetric fuzzy means for the training of the network, which 

is applied in the context of this thesis. 

2.2.1 RBF Network structure 

An RBF network is a simple feedforward neural network comprising of a single hidden 

layer. A typical RBF NN is shown in Figure 1. The input layer is followed by the hidden 

layer, where a nonlinear transformation takes place. More specifically, each hidden neuron 

utilizes a radial basis function centered around a center vector 𝒄𝒍. In this work the modified 

thin plate spline function is used as the nonlinear radial basis function: 

 𝝋𝒍(𝒌) = 𝝁𝒍(𝒙(𝒌))
𝟐
⋅ 𝒍𝒐𝒈(𝝁𝒍(𝒙(𝒌)) + 𝟏) (1) 

where 𝒙(𝑘) ∈ ℝ𝑁×1 denotes the kth input vector and  𝜑𝑙: ℝ
𝑁×1 → ℝ is the output value of 

the lth hidden neuron and the activity 𝜇𝑙(𝒙(𝑘)) of the lth node is the Euclidean distance 

between the kth input vector and the lth center vector given by  

   𝝁𝒍(𝒙(𝒌)) = ‖𝒙(𝒌) − 𝒄𝒍‖ = √∑(𝒙(𝒌) − 𝒄𝒍)𝟐
𝑵

𝒊=𝟏

 ,   𝒌 = 𝟏,… ,𝑲  (2) 

where 𝐾 is the total number of the data set and 𝒄𝒍 ∈ ℝN×1 indicates the center vector of the 

lth hidden neuron.  

For each data input and each node, an activation function value is calculated. The hidden 

node responses for the kth can be written as: 

𝒛(𝒌) = [ 𝝋(𝝁𝟏(𝒙(𝒌))),𝝋(𝝁𝟐(𝒙(𝒌))), … , 𝝋(𝝁𝑳(𝒙(𝒌)))] (3) 

The output of each hidden neuron 𝒛𝑙  is multiplied by a synaptic weight 𝒘𝒍 and then 

propagated towards the output layer, which consists of a linear combination of weighted 

nonlinear hidden basis functions. The final output of a multi-input and single-output 

(MISO) RBF neural network, can be described as: 

𝒚̂(𝒌) =∑𝒘𝒍(𝒌) ⋅ 𝝋(𝝁𝒍(𝒙(𝒌))

𝑳

𝒍=𝟏

)  (4) 



 

 

where L is the total number of hidden neurons and  𝑤𝑙 is the synaptic weight between each 

hidden and output neuron. 

Having the RBF centers fixed in the hidden layer, the synaptic weights are typically 

calculated using linear regression: 

𝒘𝑻 = 𝒀𝑻 ⋅ 𝒁 ⋅ (𝒁𝑻 ⋅ 𝒁)−𝟏 (5) 

where 𝒁 ∈ ℝ𝐾×𝐿 is a matrix containing the hidden layer outputs, and 𝒀 ∈ ℝ𝐾×1 is a vector 

that includes the target values.  

Thus, establishing the hidden node centers is a vital step in designing of an RBF NN, as it 

holds significant importance for network’s functionality and performance. 

2.2.2 Training of RBF Networks - The Fuzzy Means Algorithm 

The k-means algorithm [11] constitutes a standard approach in determining the coordinates 

of the RBF centers with a predefined number of centers. However, since the appropriate 

number of centers is often unknown in advance, it necessitates an arduous trial-end-error 

process to determine the optimal number. The fuzzy means algorithm [14] is highly suitable 

for addressing this task, because it adopts a fuzzy clustering approach in order to determine 

the node centers.   

Consider for a system with 𝑁 normalized input variables the universe of discourse (domain) 

of each variable 𝑥𝑖, 𝑖 = 1,… ,𝑁 a number 𝑠 of triangular 1-D fuzzy sets: 

𝑻𝒊 = {𝑨𝒊,𝟏, 𝑨𝒊,𝟐,⋅⋅⋅, 𝑨𝒊,𝒔},   𝒊 = 𝟏, 𝟐, … , 𝑵                               (6) 

 

Figure 1: Typical structure of an RBF network 
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where each fuzzy set 𝐴𝑖,𝑗 is characterized by a center 𝛼𝑖,𝑗  𝑖 = 1,… ,𝑁 and 𝑗 = 1,… , 𝑠 and 

its corresponding width 𝛿𝛼𝑖 which for a symmetric input partition i.e., 𝛿𝛼𝑖 = 𝛿𝛼1 = 𝛿𝛼 =

,⋅⋅⋅, = 𝛿𝛼𝑁 = 𝛿𝑎 and can be fully described as: 

𝑨𝒊,𝒋 = {𝒂𝒊,𝒋, 𝜹𝜶} (7) 

Each fuzzy set 𝑨𝑖,𝑗 is described by its own membership function regarding the input  𝒙𝑖(𝑘) 

and is defined as: 

𝝁𝜜𝒊,𝒋(𝒙𝒊(𝒌)) =  
𝟏 −

|𝒙𝒊(𝒌) − 𝒂𝒊,𝒋|

𝜹𝜶
, 𝒊𝒇 𝒙𝒊(𝒌) ∈ [𝒂𝒊,𝒋 − 𝜹𝜶, 𝒂𝒊,𝒋 + 𝜹𝜶]

𝟎, 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

 (8) 

By partitioning the entire input space using the fuzzy principles, we can generate a total of 

S multidimensional fuzzy subspaces 𝜜𝑚, where 𝑚 = 1,… , 𝑆 

𝑺 =∏𝒔𝒊

𝑵

𝒊=𝟏

   (9) 

A compact way to represent each multidimensional subspace can be defined as: 

  𝜜𝒎 = [𝜜𝟏
𝒎, 𝜜𝟐

𝒎, … , 𝜜𝑵
𝒎] ,   𝒎 = 𝟏, 𝟐,… , 𝑺 (10) 

A subset of the above fuzzy subspaces depicts the candidate RBF centers, that are chosen 

so as to cover the data input space in a uniform way. The selection of the right subspace is 

based on the idea of a multidimensional membership function 𝜇𝜜𝑚(𝒙(𝑘)) defining a 

hypersphere of an input vector 𝒙(𝑘) to fuzzy subspace 𝜜𝑚: 

𝝁𝜜𝒎(𝒙(𝒌)) = {
𝟏 − 𝒓𝒅𝒎(𝒙(𝒌)), 𝒊𝒇 𝒓𝒅𝒎(𝒙(𝒌)) ≤ 𝟏  

𝟎, 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞
 (11) 

where 𝑟𝑑𝑚(𝑥(𝑘)) denotes the Euclidean distance between the fuzzy subspace 𝛢𝑚 with the 

input vector 𝑥(𝑘): 

𝒓𝒅𝒎(𝒙(𝒌)) =
[∑ (𝑵

𝒊=𝟏 𝒂𝒊,𝒋
𝒎 − 𝒙𝒊(𝒌))

𝟐]
𝟏
𝟐⁄

[𝜮𝒊=𝟏
𝑵 (𝜹𝜶)𝟐]

𝟏
𝟐⁄

 (12) 



 

 

 

 

An overall view of the fuzzy means algorithm and determination of the closest fuzzy 

subspace to an input vector 𝒙 is given in Figure 2 in which an example of a symmetric fuzzy 

partitioning for a 2-D input space is considered. 

It is important to state here that only a single pass of the data is needed to determine both 

the number and location of RBF centers. This results to a fast-non-iterative procedure to 

find a subset of the subspaces, ensuring that all input data points are covered by at least one 

fuzzy subspace. Consequently, the resulting RBF NN primarily depends on the number of 

fuzzy sets, which can be determined efficiently through an exhaustive search within a 

narrow range. 

2.3 Standard Particle Swarm Optimization 

PSO [86] is a simple yet effective metaheuristic optimization method which belongs to the 

family of swarm intelligence (SI). The algorithm simulates the social structure of flocking 

birds flying in formation. To be more specific, the algorithm encodes a population of 

possible solutions known as particles, which 'fly' through the search space by taking into 

account the personal best location they have visited, as well as the global best solution 

achieved. 

During each iteration, the particles move towards the direction of their own personal best 

solution found so far, as well as in the direction of the global best position found by the 

entire swarm. Each particle of the swarm is characterized by its position 𝑥𝑖(𝑡), its velocity 

 

Figure 2: A 2-D input space fuzzy partition with a circular membership function 
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𝑣𝑖(𝑡) and its best previous position in the search space  𝑖(𝑡), where   (𝑡) denotes the best-

known position of the entire swarm. 

For a fitness function 𝒇 to be minimized and a swarm consisting of 𝒔 particles of 

dimensionality equal to 𝒏, the following equations describe how the particles update their 

current position and velocity: 

𝒗𝒊,𝒋(𝒕 + 𝟏) = 𝒘 ∙ 𝒗𝒊,𝒋(𝒕) + 𝒄𝟏 ∙ 𝒓𝟏,𝒊 ∙ [𝒚𝒊,𝒋(𝒕) − 𝒙𝒊,𝒋(𝒕)] + 𝒄𝟐 ∙ 𝒓𝟐,𝒊 ∙ [𝒚̂𝒋(𝒕) − 𝒙𝒊,𝒋(𝒕)] (13) 

𝒙𝒊(𝒕 + 𝟏) = 𝒙𝒊(𝒕) + 𝒗𝒊(𝒕 + 𝟏) (14) 

where 𝑣𝑖,𝑗, 𝑖 = 1,2, … , 𝑠, 𝑗 = 1,2, … , 𝑛 is the velocity for the 𝑗𝑡ℎ dimension of the 𝑖𝑡ℎ 

particle, 𝑐1, 𝑐  denote the acceleration coefficients, w the inertia coefficient and 𝑟1,𝑖, 𝑟 ,𝑖 are 

two random values sampled from a uniform distribution in the range [0,1]. 

Equation (13) consists of three parts. The first is the momentum or inertia part, that reflects 

the particle's tendency to maintain its current motion. The second is the cognitive part which 

represents the ability of the particle to reflect on its behavior and follow the best personal 

position found in the past. The last part is the social one, which depicts the particles’ 

tendency to follow the optimal position found by their neighbors. 

The personal best position of each particle is updated using the following equation, 

𝒚𝒊(𝒕 + 𝟏) = {
𝒚𝒊(𝒕),

𝒙𝒊(𝒕 + 𝟏),

𝒊𝒇 𝒇(𝒙𝒊(𝒕 + 𝟏) ≥ 𝒇(𝒚𝒊(𝒕))

𝒊𝒇 𝒇(𝒙𝒊(𝒕 + 𝟏) < 𝒇(𝒚𝒊(𝒕))
 (15) 

And the global best position of the swarm is defined as: 

𝒚̂𝒊(𝒕 + 𝟏) = 𝐚𝐫𝐠𝐦𝐢𝐧
𝒚𝒊

𝒇(𝒚𝒊(𝒕 + 𝟏)), 𝟏 ≤ 𝒊 ≤ 𝒔 (16) 

There are various variants of the PSO algorithm that incorporate different elements, such 

as different initialization techniques [118], constrictions factors [119], inertial weights 

[120] and cooperative particle partitions [121]. 

Specifically, in the latter case the inclusion of cooperative particle partitions in the PSO 

scheme proves to be particularly valuable, fostering collaboration among particles and 

greatly improving its performance in complex optimization problems where the search 

space is large or exhibits multiple sub-optimal solutions. 



 

 

2.4 Cooperative Particle Swarm Optimization 

The concept of cooperation between candidate solutions of a population has been applied 

in various metaheuristics, such as evolutionary algorithms and PSO [122], [123]. The 

CPSO-S framework [124] emerged as the first instance of cooperative behaviour within the 

PSO category, by splitting a solution vector of n parts into exactly n 1-D particles; a 

generalized version of this approach is introduced in [121] where the solution vector is split 

into Nc swarms with Nc ≤ 𝑛, where n is the length of the solution vector.  

It is obvious that a prerequisite for the implementation of cooperative approaches is the 

assortment of the n design variables in Nc swarms, which in turn indicate the presence of 

𝑃𝑘 individual distinct swarms, 𝑘 = 1,2, … , 𝑁𝑐. 

For each swarm 𝑃𝑘, the particle position  𝑥𝑖,𝑗
𝑘 (𝑡) and velocity 𝑣𝑖,𝑗

𝑘 (𝑡) are updated according 

to: 

𝒗𝒊𝒋
𝒌 (𝒕 + 𝟏) = 𝒘𝒗𝒊𝒋

𝒌 (𝒕) + 𝒄𝟏𝒓𝟏,𝒊(𝒕)[𝒚𝒊𝒋
𝒌 (𝒕) − 𝒙𝒊𝒋

𝒌 (𝒕)] + 𝒄𝟐𝒓𝟐,𝒊(𝒕)[𝒚̂𝒊
𝒌(𝒕) − 𝒙𝒊𝒋

𝒌 (𝒕)] (17) 

where  𝑖𝑗
𝑘 (𝑡) stands for the best personal position of particle 𝑖, in dimension 𝑗 for swarm 𝑘 

at iteration t and   𝑖
𝑘(𝑡) denotes the global best position vector of particle 𝑖 for swarm k at 

iteration t; 𝑟1,𝑖(𝑡) and 𝑟 ,𝑖(𝑡) are randomly sampled numbers from a uniform distribution in 

the range [0 1], while 𝑐1, 𝑐  denote the acceleration coefficients and 𝑤 the inertia 

coefficient. In order to control the exploration-exploitation trade-off, a velocity clamping 

constant 𝑣𝑚𝑎𝑥
𝑘  is employed to regulate the particle positions in the range [−𝑣𝑚𝑎𝑥

𝑘  𝑣𝑚𝑎𝑥
𝑘 ].  

As each swarm 𝑃𝑘 contains a distinctive part of the original solution vector, the right 

cooperation between the swarms’ agents is essential in order to calculate the fitness function 

for the overall optimization problem. This task is feasible by utilizing a context vector 𝒙𝑃𝑘 

formed by linking each of the particle positions of swarm Pk with the global best positions 

of the remaining swarms: 

𝒙𝑷𝒌 = [ 𝒚̂𝟏, … , 𝒚̂𝒌−𝟏, 𝒙𝒊
𝒌 , 𝒚̂𝒌+𝟏, … , 𝒚̂𝑵𝒄]           (19) 

 This means that despite the fact that the network is partitioned into several distinct sub-

swarms, the fitness function evaluation for each swarm’s individual particle is estimated 

𝒙𝒊𝒋
𝒌 (𝒕 + 𝟏) = 𝒙𝒊𝒋

𝒌 (𝒕) + 𝒗𝒊𝒋
𝒌 (𝒕 + 𝟏)  (18) 



 

using the whole design vector. After forming the context vector 𝒙𝑃𝑘 , the fitness function 

evaluation 𝑓(𝒙𝑃𝑘) takes place by utilizing the objective function f with respect to swarm k. 

A problem often encountered by most PSO-based schemes is stagnation, which is related 

to the problem of particles being trapped in suboptimal solutions during the optimization 

process.  In the case of CPSO where multiple swarms are used, the impairing effects caused 

by stagnation can be magnified [96]. This phenomenon, which limits the space exploration 

capabilities of the particles, can be tackled by introducing a resetting mechanism. The 

mechanism is activated when one of the swarms converges into a small region of the search 

space, while the global best position for one or more of the complementary swarms’ 

changes. When these two conditions are fulfilled simultaneously, the particles of the 

stagnating swarm are reset to new random positions, thus allowing it to discover new areas 

Algorithm 1 Cooperative particle swarm optimization algorithm 

𝑠: Swarm size population 

Iter: Maximum number of iterations 

c1, c2 w, 𝑃𝑘, 𝑣𝑚𝑎𝑥
𝑘 : PSO configuration parameters 

1: Initialize the particles 𝑥𝑖
𝑘 for all swarms 𝑘 at random positions 

2: Calculate fitness 𝑓(𝒙𝑃𝑘) and set global bests for all swarms   𝑘(0), k=1, 2, …, Nc  

3:   For = 1: Iter Do: 

4:      For k = 1: Nc 

5:           If stagnation criterion is met for kth swarm, Then   

6:          reset particles 𝑥𝑖
𝑘(𝑡) 

7:      End 

8:      For =1: s Do: 

9:                Calculate fitness 𝑓( 𝑃𝑘) and  𝑖
𝑘(𝑡) 

10:           End for 

11:           Calculate global best   𝑘(𝑡) for swarm k  

12:           For 𝑖 =1: s Do: 

13:              For j =1: 𝛮𝑃𝑘 Do: 

14:        Update velocity 𝑣𝑖𝑗
𝑘 (𝑡 + 1) 

15:        Update particle's position 𝑥𝑖𝑗
𝑘 (𝑡 + 1) 

16:        End for 

17:          End for 

18:       End for 

19:   End for 

 



 

 

of the search space, which may be better suited to the new global best positions achieved 

by the other swarms. More details on the implementation of the resetting mechanism in 

CPSO schemes can be found in [96]. The resetting mechanism is expected to increase the 

effectiveness of the method, since the optimization problem contains multiple local minima.  

The pseudocode for the proposed CPSO framework is given in Algorithm 1. 

2.4.1 A CPSO based framework for optimization and control of photovoltaic heavy 

distribution networks 

The goal of the proposed approach is the optimization and control of photovoltaic heavy 

distribution networks. by employing multiple swarms that can optimize different DN zones. 

Specifically, a reactive power optimization method for PV-heavy DNs based on CPSO is 

introduced. The proposed scheme employs multiple swarms to optimize different zones of 

the DN, where each zone contains design variables that are interrelated with respect to the 

optimization objective. In order to assign efficiently the design variables to the different 

swarms, a technique is used based on the Girvan-Newman community detection algorithm 

[125]. The proposed method is assessed for voltage deviation minimization, as well as the 

minimization of real power losses for an IEEE distribution grid, under various load and 

generation profiles. 

2.4.1.1 Basic concepts and optimization problem formulation 

The main task within the ORPF problem is to ensure that the bus voltage magnitudes stay 

within operational limits. This is especially needed in PV-heavy distribution grids where 

cloud coverage can obscure specific grid areas, thus rendering traditional control means 

with a grid-wide effect unsuitable. The communication infrastructure of the smart grid 

paradigm has allowed the inclusion of PV inverters as reactive power control devices. 

Within the context of PV-heavy smart distribution grids featuring controllable inverters, a 

challenging problem revolves around the optimization of voltage deviations and real power 

losses. This optimization task focuses on adjusting a set of control variables, while adhering 

to several constraints. The control variables, denoted by 𝑢, signify the active power 

curtailment (APC) and reactive power injection for individual PV installations. A detailed 

presentation of the voltage deviation minimization problem is beyond the scope of this 

thesis and more details can be found in the original publication [126]. 

Two distinct optimization objectives are examined: one aims to reduce voltage deviations 

from a predefined nominal value at each buts, while the other focuses on minimizing real 



 

power losses throughout the system. The control variable vector u contains the APC and 

reactive power injection 𝑄 of each PV installation: 

 = [𝑸𝟏, 𝑨𝑷𝑪𝟏, 𝑸𝟐, 𝑨𝑷𝑪𝟐, … 𝑸𝜨𝑷𝑽, 𝑨𝑷𝑪𝜨𝑷𝑽
] (20) 

In summary, the described problem is a non-convex constrained optimization challenge 

falling within the NP-hard category. The inclusion of a realistic modeling of the inverter’s 

reactive power compensation (RPC) capability as a function of its active power curtailment 

percentages APC (as opposed to treating it as a bounded variable) adds to the total constraint 

complexity, while the fairly large number of design variables (2 per PV installation) 

contribute to high dimensionality. 

2.4.1.2 Cooperative PSO for partitioned electrical networks 

Since the objective of interest is to minimize the voltage deviations of the grid by optimizing 

the active and reactive power of distributed generators, a strategy is proposed based on 

portioning the grid according to its voltage sensitivity. This approach draws inspiration 

from the Girvan and Newman algorithm, a community detection method for complex 

networks that doesn’t require a predefined number of communities (hereby referred to as 

“partitions”) [127]. The algorithm accepts a weighted adjacency matrix (or edge-weight 

matrix) that corresponds to the undirected graph structure of the electrical grid and 

generates the optimal partitions 𝐶∗ = {𝐶1
∗, 𝐶 

∗, … , 𝐶𝑁𝑐
∗ }. A detailed presentation of the 

Girvan and Newman algorithm is beyond the scope of this thesis and more details can be 

found in the original publication [127].  

The Girvan-Newman algorithm can be applied to the community detection problem, in 

order to yield the optimal partitions. These partitions will contain buses that are highly 

coupled among themselves with respect to voltage fluctuations. This information, obtained 

from the Girvan Newman algorithm, assists in organizing PV devices within highly 

interconnected network zones, enhancing smart grid voltage optimization. By utilizing 

information about the underlying electrical dynamics of the DN, the Girvan Newman 

algorithm yields the voltage-decoupled zones 𝐶∗ , which in turn indicate the swarms 𝑃𝑘, 

𝑘 = 1, 2, … , 𝑁𝑐, where Nc is the total number of swarms: 

𝑷𝒌 = {𝑸𝟏, 𝑨𝑷𝑪𝟏, 𝑸𝟐, 𝑨𝑷𝑪𝟐, … , 𝑸𝜨𝑷𝒌
, 𝑨𝑷𝑪𝜨𝑷𝒌

} (21) 



 

 

where, 𝛮𝑃𝑘 is the total number of PV installations that reside in network partition 𝐶𝑖
∗ (it is 

assumed that 𝛮𝑃𝑘 ≥ 1 for every 𝐶𝑖
∗). For each swarm 𝑃𝑘, the particle position 𝑥𝑖𝑗

𝑘 (𝑡) and 

velocity 𝑣𝑖𝑗
𝑘 (𝑡)  are updated according to equations (17)-(18). 

Moreover, as each swarm 𝑃𝑘 contains a distinctive part of the original   vector (20), the 

right cooperation between the swarms’ agents is essential in order to calculate the fitness 

function for the overall optimization problem. This task is feasible by utilizing a context 

vector  𝑃𝑘 formed by linking each of the particle positions of swarm Pk with the global best 

positions of the remaining swarms: 

 𝑷𝒌 = [ 𝒚̂𝟏, … , 𝒚̂𝒌−𝟏, 𝒙𝒊
𝒌 , 𝒚̂𝒌+𝟏, … , 𝒚̂𝑵𝒄] (22) 

The cooperative PSO approach presents three important features with respect to the ORPF 

problem. Firstly, the fitness function is evaluated after updating each part of the solution 

vector that corresponds to the respective swarm particles, resulting in finer-grained credit 

assignment. This addresses the classic “two steps forward - one step back” problem often 

encountered by PSO schemes, where a solution vector update improves one part of the 

solution vector but impairs another. This phenomenon is especially evident for the case of 

a network with voltage decoupled zones, where a part of a solution vector that corresponds 

to a specific zone may quickly converge to an unsatisfactory local minimum, thus limiting 

the whole swarm’s exploration capabilities throughout the search space. 

The second advantage is related to the increase in the solution diversity offered by CPSO 

[121]. Indeed, in the CPSO case, each solution vector becomes a combination of several 

particles which belong to different swarms; thus, the overall solution diversity is increased, 

because different personal and global best solutions are used for updating each particle, 

depending on the swarm it belongs to.  

Lastly, the third advantage refers to the robustness of the algorithm, even when applied in 

networks with weakly voltage-decoupled zones; CPSO consolidates the partitioned design 

variables in one design vector at the end of every iteration, thus taking into account any 

inter-zonal effects. 

2.4.1.3 Setup 

The IEEE 123-bus distribution system [128] is selected as a suitable testbed for the 

simulation studies. Its large scale can accommodate a high number of PV installations, 

which warrants the application of cooperative optimization methods. As described in the 



 

previous section, the network partitions are determined through the utilization of the 

Girvan-Newman algorithm. A large number of PVs are considered in order to create a high 

dimensional search space; therefore, 20 installations are placed throughout the grid, 

spanning capacities from 140-280 kW; their technical specifications are shown in Table 1. 

These capacities represent a typical PV penetration level of a Greek mainland distribution 

grid, and were chosen as so. Each inverter has a nominal power that is +10% higher than 

its corresponding installed PV capacity, as is usual practice. The inverters can curtail the 

generated PV power and control the power factor of the injected power in the grid.  

To simulate different DN states, two different scenarios are created. Both are regarded as 

snapshot scenarios (i.e., static), and are used in order to infer statistical conclusions for the 

performance of the proposed method. The scenarios are outlined below: 

Scenario 1 is used to assess performance for the VDM objective and represents the 

phenomenon of partial cloudiness, resulting in severe undervoltage. The main challenge in 

this scenario is to bring the voltage of each bus as close as possible to the nominal value. 

The scenario information is shown on Table 2.   

Scenario 2 is employed to evaluate the performance of the RPLM objective assuming full 

solar irradiance, which results in overvoltage in certain buses of the grid. In this particular 

Table 1: PV installation specifications 

# 

 

Bus 

PV 

 Capacity 

(kW) 

 Power  

Rating 

(kVA) 

Zone # Bus 

PV 

 Capacity 

(kW) 

Power  

Rating 

(kVA) 

Zone 

1  6 140  155 𝐶1 11 100 280 310 𝐶  

2  10 140  155 𝐶1 12 119 280 310 𝐶  

3  117 140  155 𝐶1 13 109 280 310 𝐶  

4  27 180  200 𝐶  14 111 280 310 𝐶  

5  26 180  200 𝐶  15 78 280 310 𝐶  

6  41 180  200 𝐶  16 88 280 310 𝐶  

7  45 180  200 𝐶  17 92 280 310 𝐶  

8  50 180  200 𝐶  18 82 280 310 𝐶  

9  55 140  155 𝐶1 19 21 180 200 𝐶  

10  68 280  310 𝐶  20 63 280 310 𝐶  

 



 

 

scenario, the primary challenge involves ensuring that the voltage at each bus within the 

network adheres to operational constraints, while simultaneously minimizing power losses. 

Table 3 presents detailed information regarding the scenario.  

In order to illustrate the effectiveness of the proposed method, three competing schemes are 

introduced: the first scheme is a randomly partitioned CPSO scheme (RPCPSO), where the 

respective swarms are not assigned according to the Girvan-Newman partition, but 

randomly. The second scheme, which has been proposed in study [129], formulates a 

decentralized optimization problem for each network partition, and solves each problem 

independently using a PSO algorithm with adaptive weights. The scheme is hereby referred 

to as “decentralized PSO” (dPSO) in this study, and its main difference in comparison to 

the proposed method is the decentralization of zones, namely the absence of inter-zone 

communication. The third scheme applies a standard centralized PSO algorithm [130] to 

the original problem.  

The tuning  parameters for each one of the competing schemes are shown in Table 3; they 

were selected based on indicative values found in the literature [131]–[133], in conjunction 

with a trial-and-error procedure. In order to ensure fairness of comparison, the standard 

Table 3: Tuning parameters for all methods 

Scheme 
Swarm 

size 

 Stall 

iterations 

Coefficients  

c1, c2 

 Function 

Tolerance 

Inertia 

 type 

Inertia 

range 

RPCPSO / 

CPSO 

30  40 1.2  

10-6 Exponential 

[1, 0.75] 

PSO 90  40 1.49  10-6 Adaptive [1.1, 0.1] 

dPSO 30  40 1.49  10-6 Adaptive [1.1, 0.1] 

 

Table 2: Snapshot scenario information 

Scenario 
Slack bus nominal 

voltage (p.u.) 

Average irradiance 

percent per zone 

Load multiplier per 

zone 

  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 

1 1.00 100 80 50 50 1 1 1 1 

2 1.02 100 100 100 100 1.6 1 0.4 0.4 

 

 

 



 

PSO algorithm was allowed a larger swarm size, namely three times the one used by the 

rest of the algorithms; this way, the number of total objective function evaluations across 

all methods was similar, and their performance comparable. 

2.4.1.4 Results and discussion 

Since the three competing schemes are based on stochastic search, multiple runs are needed 

to properly assess their performance. To be more specific, a total number of 20 runs for 

each scenario is performed, starting from different randomly chosen initial particle 

positions in each run. In order to reach valid conclusions regarding the statistical superiority 

of the proposed scheme, a t-test between CPSO and each one of its rivals has been applied 

for scenarios 1-2. 

The null hypothesis is that the results produced by the two competing methodologies are 

generated by populations with the same mean. Tables 4-5 depicts the average and standard 

deviation values, as well as the best value for the objective function from the 20 runs, 

Table 5: Scenario 2: Statistical results for RPLM objective 

 
Objective value 

average 

Objective value 

standard 

deviation 

Best 

Objective 

value 

p-value 

Average 

function 

evaluations2 

CPSO 0.01035 0.00072 0.00918 - 8520 

RPCPSO 0.01164 0.00173 0.00961 1.67E-02 8340 

PSO 0.01230 0.00202 0.01027 2.23E-05 7120 

dPSO 0.04307 0.00230 0.04027 5.543E-37 9240 

2 convergence to the 3rd decimal 

 

Table 4: Scenario 1: Statistical results for VDM objective 

 
Objective 

value average  

Objective 

value standard 

deviation 

Best 

Objective 

value 

p-value 

Average 

function 

evaluations1 

CPSO 0.7006 0.0603 0.6241 - 5260 

RPCPSO 0.8904 0.1482 0.7574 1.67E-04 5120 

PSO 0.9792 0.2746 0.7810 1.89E-04 4960 

dPSO 2.2109 0.2295 1.7594 1.71E-25 6520 

1 convergence to the 1st decimal 

 

 

 



 

 

together with the p-value corresponding to the t-test and the average number of function 

evaluations of each method for scenarios 1 and 2, respectively. Regarding scenario 1, CPSO 

achieves 21%, 28% and 68% lower average objective value (sum of voltage deviations) in 

comparison to RPCPSO, PSO and dPSO, respectively. Similar performance is recorded for 

scenario 2 where the objective of RPLM (total power losses in MW) is addressed: an 11%, 

16% and 76% improvement is achieved over RPCPSO, PSO and dPSO, respectively. The 

superiority of CPSO is also confirmed when comparing the best runs of each method: in 

scenario 1, CPSO achieves a 17%, 20% and 64% improvement over RPCPSO, PSO and 

dPSO, respectively, while in scenario 2, CPSO scores 5%, 11% and 77% improvements 

over RPCPSO, PSO and dPSO, respectively. The statistical significance of these results is 

established by the t-test with a confidence interval of over 98%, as indicated by the 

produced p-values. 

 

Figure 3: Convergence curves for each individual network zone for the best PSO (a) and 

CPSO (b) runs on scenario 1.  

 

Figure 4: Convergence graph for the best runs of scenario 1. Coloured rectangles denote 

convergence to the 1st decimal. Note that the convergence curve of dPSO corresponds to 

the successive minimization of the four zone-based optimization problems 



 

In addition, the superior performance of the proposed method is consistent, i.e., the method 

converges around the same solution for each different run. This is indicated by the low 

value of standard deviation for both scenarios, and is testimony to the increased search 

space exploitation capabilities inherent to the CPSO algorithm. Lastly, it should be 

emphasized that the proposed method achieves the aforementioned performance 

improvements with a reasonable computational burden, as indicated by the number of 

average objective function evaluations: when compared to dPSO, CPSO exhibits 

consistently lower computational requirements in both scenarios. It should be noted that 

CPSO is surpassed by standard PSO in this aspect, but on the other hand it manages to 

greatly outperform the latter in terms of optimization performance. 

There exist multiple reasons for the superior statistical performance of CPSO in scenarios 

1 & 2. First of all, since the RPCPSO approach has randomly assigned each design variable 

in the cooperative swarms, the underlying topology of the network is not utilized. 

Therefore, it fails to properly explore the available search space, in contrast to the proposed 

CPSO approach where the network partitioning information is incorporated. Next, as 

mentioned earlier, standard PSO suffers from the “two steps forward - one step back” 

problem and cannot effectively explore the available search space. This can be shown by 

examining the convergence curves of each individual zone for PSO and CPSO in an 

example run, as illustrated in Figure 3. Here (fig. 3a), it is confirmed that zone convergence 

for PSO is not monotonic, meaning that some updates may improve some parts of the 

solution vector, but worsen others, as reflected in the performance of each zone; this 

phenomenon is especially highlighted at iterations 10-15, where improvement of zone 𝐶  

is temporarily impaired. CPSO’s zone-based approach alleviates this problem as shown by 

the monotonicity of zone convergence (fig. 3b), and is further confirmed by examining the 

overall convergence characteristics, as shown Figure 4: Here, considering the first 30 

iterations, CPSO achieves a rapid improvement in objective value, in contrast to PSO, 

which appears to stall multiple times over the same period. Moreover, CPSO achieves 

superior exploitation characteristics, since it converges to the 1st decimal much earlier than 

PSO. The dPSO approach also sufficiently exploits the search space of each of the four 

zone-based optimization problems, which appear as distinct “steps” on the convergence 

curve; the quick convergence of each problem to the 1st decimal this observation. It should 

be noted that, one hand, dPSO retains the important practical advantage of complete 

decentralization [134], which CPSO and PSO lack.  On the other hand, dPSO exhibits worse 

exploration capabilities out of the other three schemes. This can be attributed to the fact that 

as the algorithm progresses from one zone-based problem to the next, it cannot account for 



 

 

inter-zone effects, which are strong for the test case selected in this work. The result is an 

overall deterioration of optimization performance.  

 

2.4.2 A CPSO based framework for parameter identification in wastewater 

treatment plant modelling  

The objective of this approach is to create an accurate parameter identification system for 

a WWTP using a modified BSM1 model. To achieve this, a customized CPSO framework 

is utilized in order to successfully estimate the values of critical parameters in a detailed 

first principles model of the process, by solving a nonlinear optimization problem which is 

based on a system identification scheme. The resulting model can subsequently be applied 

for energy-efficient optimization by integrating it into control schemes. The proposed 

CPSO is assessed through comparisons with two other PSO algorithms in the task of 

estimating the kinetic and stoichiometric coefficients of the modified BSM1 model. 

2.4.2.1 Basic concepts and problem formulation 

The BSM1 model [135] is a well-known first principles model that is being widely used to 

simulate the dynamic behavior of WWTPs. In this study, the generic BSM1 model was 

customized to match the structural and operational aspects of a real WWTP in Greece, with 

further refinement using real sensor data. The BSM1 model encompasses many critical 

parameters significantly affecting the entire process. Specifically, it includes 14 kinetic and 

5 stoichiometric parameters, each one of them closely related to a certain chemical process.  

The proper adaptation of BSM1 to a specific WWTP requires an accurate estimation of the 

parameters that exist in the model. To achieve this, a system identification scheme is 

proposed that is based on formulating and solving a nonlinear optimization problem. The 

objective of this optimization problem is to minimize the mean squared error (MSE) between 

the data collected from the actual plant and the simulated data produced by the adapted 

BSM1 model, as described by the following equation:  

𝑱 =
𝟏

𝑵
⋅∑(𝒚𝒓 − 𝒚̂)𝟐 

𝑵

𝒊=𝟏

 (23) 

where N corresponds to the total amount of data collected,  𝑟 represents the data collected 

from the actual plant and    denotes the simulated data produced by the adapted model. 



 

The formulated nonlinear optimization problem aims to minimize equation (23) by selecting 

the appropriate values of the aforementioned parameters, which are present in the modified 

BSM1 model. However, a number of undesired properties are observed in this problem, 

including high dimensionality and multimodality, rendering the use of standard optimization 

solvers inappropriate; thus, it is necessary to employ a solver capable of effectively handling 

such properties.  

2.4.2.2 Cooperative PSO for system identification 

Standard PSO could be used to solve this nonlinear, high-dimensional optimization problem. 

In this case, the design variables of the formulated optimization problem are grouped into 

one unique swarm, while the PSO solver concurrently seeks to accurately estimate their 

values. This particular property of the PSO approach, in conjunction with the high number 

of parameters associated with the particular optimization problem, significantly increases 

the difficulty of approaching a satisfying solution and thus of estimating the values of the 

adapted BSM1 model parameters accurately. 

To overcome the problems that appear in the standard PSO methodology, a customized 

cooperative PSO [136] approach is designed for solving the formulated nonlinear 

optimization problem. In this customized CPSO solver, the design variables of the 

optimization problem are separated into several distinct swarms, which are formed by taking 

advantage of the correlations that exist between them. Each swarm, then, explores the search 

space independently trying to approach the best possible solution regarding its own design 

variables, while sharing information in terms of its position with the other swarms. 

In this customized cooperative PSO methodology, each swarm includes only some of the 

design variables and in order to evaluate the objective function, the particles of each swarm 

are combined with the best particles of the other swarms. In this way, a context vector is 

created and the value of the objective function can be directly obtained. Moreover, the 

proposed cooperative approach for solving the formulated nonlinear optimization problem 

exhibits several advantages compared to the standard PSO algorithm. The CPSO solver 

optimizes the design variables separately by grouping them into distinct swarms, thus 

avoiding the two steps forward – one step back problem that appears in the PSO 

methodology. In addition to this, exploration of the search space by each swarm 

independently, while simultaneously exchanging information regarding their best positions 

with the rest of the swarms, significantly enhances the diversity of the final solution. 

Remark: Once the CPSO-based identification is completed, the obtained BSM1 model can 

be used for different purposes involving optimization and control of WWTPs. One potential 



 

 

use is to conduct the necessary step tests on the identified BSM1 model, for developing step 

response predictive models in an economic dynamic matrix control (EDMC) scheme. The 

EDMC controller aims to minimize an objective function, optimizing energy consumption 

and operating costs while adhering to environmental constraints. Further elaboration on the 

EDMC controller is outside the scope of this thesis; interested readers can refer to the 

original publication [137] for additional details. 

2.4.2.3 Set up 

In order to deploy the developed identification scheme, two months of data have been 

collected by the BSM1 model using the nominal values of the parameters, as they are 

defined in [136]. The values of 12 state variables measured by specific sensors in the 

investigated plant, have been stored with a sampling period of 15 minutes, which is suitable 

for designing WWTP automatic control schemes [138]. Then, the data are provided to the 

CPSO solver in order to approximate the values of the 14 kinetic and 5 stoichiometric 

parameters that are present in the modified BSM1 model. 

For comparison purposes, the employed CPSO solver was tested against standard PSO and 

a modified PSO methodology [139]. The algorithms are individually tuned using literature 

suggestions in conjunction with a trial-and-error procedure. Due to the inherent stochastic 

nature of the algorithms, 15 runs are executed for each algorithm and the superiority of 

CPSO is validated by running a two-sample 𝑡 test.  

2.4.2.4 Results and Discussion 

As mentioned previously, the most important advantage of the proposed CPSO 

methodology for solving the nonlinear optimization problem is its ability to separate the 

design variables into several distinct swarms, by taking advantage of the correlations that 

exist between them. In particular, in the formulated optimization problem, the 8 parameters 

associated with the heterotrophic phenomena form the first swarm, while the 5 of them 

linked with the autotrophic phenomena comprise the second swarm. The 3 parameters 

affecting the hydrolysis procedure are included in the third swarm, and the unique 

parameter influencing the ammonification process forms the fourth swarm. Finally, the 

remaining 2 parameters that are closely related to the COD in the biomass of the plant are 

grouped into the fifth swarm. 



 

Table 6 summarizes the results. As it can be seen, the performance of CPSO is superior in 

terms of the best or the average solution with a statistical significance higher than 90%, 

while it also manages to produce more consistent results, as indicated by the standard 

deviation values. The proposed CPSO approach manages to estimate the kinetic and 

stoichiometric coefficients of the modified BSM1 model with high accuracy and 

specifically accomplishes a value for the average objective function equal to 6.8 ⋅ 10− . In 

Figure 5a and 5b, the results of the identified model versus the original one are shown for 

the ammonia and the dissolved oxygen concentration of the last aerobic tank of the second 

line, respectively, while Figure 6 depicts the evolution of the 5 distinct swarms during the 

identification procedure. The presented results have been obtained using validation data 

that have not been used in the identification process. It is clear, that the identification 

procedure is successful, as it produces a highly accurate dynamic model. This result is 

attributed to CPSO, which manages to obtain an accurate estimation of the critical process 

parameters.  

 

 

 

 

Table 6: Performance Metrics 

 

 

Figure 5: Results of the identified model for (a) Ammonia Concentration, (b) Dissolved 

Oxygen Concentration 
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Figure 6: Evolution of the fitness values for each of the 5 swarms 
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3. Nonlinear control methods 

 

3.1 Introduction to nonlinear control methods 

In the field of control engineering, both linear and nonlinear control methods play pivotal 

roles in governing and manipulating dynamic systems in various fields, including 

engineering robotics, energy management and biological systems  

Linear control methods [140] relying on linear system theory, accurately represent systems 

with minor deviations from equilibrium using linear equations. These methods, including 

PID and LQR controllers along with state-space control techniques, perform well for 

relatively simple systems. However, their limitations arise when dealing with complex 

systems exhibiting nonlinearity and uncertainty. In such real-world scenarios, linear control 

approaches may struggle in ensuring satisfactory performance and stability, thus 

underscoring the necessity of nonlinear control approaches. 

Nonlinear control methods [141] on the other hand, are designed to handle systems that 

exhibit nonlinear behavior. These methods are essential because they recognize that the 

behavior of certain systems cannot be accurately described solely by linear equations. To 

address this limitation, they utilize sophisticated mathematical techniques capable of 

capturing the intricate nonlinear dynamics of the system. 

Specifically, nonlinear control excels in handling complex systems [142] accurately 

modeling nonlinearities [143], and providing improved stability [144] particularly for 

systems with significant deviations from equilibrium. Its robustness against uncertainties 

[145] and the ability to adapt in system and environmental conditions make it an essential 

tool for controlling inherently nonlinear systems, chaotic systems, and other complex 

dynamic systems. 

In the upcoming chapter, a concise yet comprehensive theoretical overview of notable 

nonlinear control methodologies will be presented. 

3.2 Backstepping control method 

Backstepping control is a prominent nonlinear method, gaining significant attention in the 

control literature [141], [146]. Unlike conventional control approaches, which struggle with 

highly nonlinear systems, backstepping provides a systematic and recursive strategy to 

stabilize such systems. Backstepping control is a recursive design technique that links the 
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choice of a control Lyapunov function with the design of a feedback controller, 

guaranteeing global asymptomatic stability for strict feedback systems. 

The core principle of backstepping involves breaking down the control problem into 

simpler task, each focusing on an individual state variable. Through the design of feedback 

control laws for each variable, backstepping guides the system’s trajectory toward the 

desired state, ensuring overall stability and convergence.  

3.2.1 Integrator Backstepping 

Consider the special case of integrator backstepping given by the following control system: 

𝝃̇ = 𝒇(𝝃) + 𝒈(𝝃) ∙ 𝜼 (24) 

 

𝜼̇ =   (25) 

Where [𝜉𝛵, 𝜂𝑇] ∈ ℝ𝑛+1 is the state and 𝑢 ∈ ℝ is the control input. The functions 𝒇 ∶ 𝐷 →

ℝ𝑛 and 𝑔 ∶ 𝐷 → ℝ𝑛
 are smooth in a domain 𝐷 ⊂ ℝ𝑛 that contains 𝝃 = 0 and 𝑓(0) = 0.  

Theorem 1 (Backstepping theorem) 

Considering the control system (24)-(25) with smooth vector fields 𝑓 and 𝑔 with 𝑓(0) = 0 

and 𝑔(0) = 0. Let 𝜂 = 𝜑(𝜉) be a stabilizing state feedback law for the subsystem (24). 

Consider that 𝑽𝟏(𝜉) is Lyapunov function such that 

𝝏𝑽𝟏
𝝏𝝃

 ̇[𝒇(𝝃) + 𝒈(𝝃) ∙ 𝝋(𝝃)] ≤ −𝑾(𝝃)  (26) 

where 𝑊(𝜉) is a positive definite. Then the state feedback control law given by: 

 =
𝝏𝝋

𝝏𝝃
∙ [𝒇(𝝃) + 𝒈(𝝃) ∙ 𝜼] −

𝝏𝑽𝟏
𝝏𝝃

∙ 𝒈(𝝃) − 𝜿 ∙ [𝜼 − 𝝋(𝝃)], 𝜿 > 𝟎 (27) 

stabilizes the origin (𝜉, 𝜂) = (0,0) of the system (24)-(25) with the Lyapunov function given 

by: 

𝑽𝟐(𝝃, 𝜼) = 𝑽𝟏(𝝃) +
𝟏

𝟐
∙ [𝜼 − 𝝋(𝝃)]𝟐 (28) 
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Proof: The goal is to design a state feedback control law   that stabilizes the origin (𝝃 = 0,

𝜂 = 0). We assume that the functions 𝑓 and 𝑔 are known. We also assume 𝑓(0) = 0 and  

𝑔(0) = 0.  

Figure 7 depicts the block diagram of control system (24)-(25). This system can be seen as 

a cascade connection of two component parts of which the first is an integrator. By focusing 

in the system (24), we consider variable 𝜼 as a virtual controller input. We suppose that a 

smooth feedback control law exists in the form 𝜂 = 𝜑(𝜉) with 𝜑(0) = 0; such that the 

origin of 

𝝃̇ = 𝒇(𝝃) + 𝒈(𝝃) ∙ 𝝋(𝝃)  (29) 

is asymptotically stable. 

We assume that we know a Lyapunov function 𝑉1(𝜉) that satisfies the inequality 

𝝏𝑽𝟏
𝝏𝝃

 ̇[𝒇(𝝃) + 𝒈(𝝃) ∙ 𝝋(𝝃)] ≤ −𝑾(𝝃)  (30) 

where  𝑊(𝜉) is positive definite. By introducing the terms 𝑔(𝜉) ∙ 𝜑(𝜉)  on the right-hand 

side of equation (24) we can rewrite the control system (24)-(25) in the following manner: 

𝝃̇ = [𝒇(𝝃) + 𝒈(𝝃) ∙ 𝝋(𝝃)] + 𝒈(𝝃) ∙ [𝜼 − 𝝋(𝝃)] (31) 

 

𝜼̇ =   (32) 

 

Figure 7: Backstepping control design for the system (24)-(25) 
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We now proceed to introduce the change of variables: 

𝒛 = 𝜼 − 𝝋(𝝃) (33) 

The output 𝑧 can be viewed as the error between the state 𝜂 and the virtual control  𝜑(𝜉). 

The change in variables results in the following system: 

𝝃̇ = [𝒇(𝝃) + 𝒈(𝝃) ∙ 𝝋(𝝃)] + 𝒈(𝝃) ∙ [𝜼 − 𝝋(𝝃)] (34) 

 

𝒛̇ =  − 𝝋̇(𝝃) (35) 

Since 𝑓, 𝑔 and 𝜑 are known, the derivative  𝜑̇(𝜉) can be calculated the following equation: 

𝝋̇(𝝃) =
𝝏𝝋

𝝏𝝃
∙ [𝒇(𝝃) + 𝒈(𝝃) ∙ 𝜼]  (36) 

Now by taking 𝑣 = 𝑢 − 𝜑̇(𝜉) the transformed system (34)-(35) is reduced to the below 

cascade connection: 

𝝃̇ = [𝒇(𝝃) + 𝒈(𝝃) ∙ 𝝋(𝝃)] + 𝒈(𝝃) ∙ 𝒛 (37) 

 

𝒛̇ = 𝒗 (38) 

The new transformed system given by equations (37)-(38) has the same form as the starting 

control system (24)-(25), despite the fact that the first subsystem has an asymptotically 

stable origin when the input is zero. 

Next, we consider as a candidate Lyapunov function the following positive definite 

function: 

𝑽𝟐(𝝃, 𝜼) = 𝑽𝟏(𝝃) +
𝟏

𝟐
∙ 𝒛𝟐 (39) 

where 𝑉1(𝜉) is a positive definite function.  

By calculating the derivative of the candidate Lyapunov function 𝑉 (𝜉, 𝜂) we obtain the 

following expression: 
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𝑽̇𝟐(𝝃, 𝜼) =
𝝏𝑽𝟏
𝝏𝝃

∙ [𝒇(𝝃) + 𝒈(𝝃) ∙ 𝝋(𝝃)] +
𝝏𝑽𝟏
𝝏𝝃

∙ 𝒈(𝝃) ∙ 𝒛 + 𝒛 ∙ 𝒗 

≤ −𝑾(𝝃) +
𝝏𝑽𝟏
𝝏𝝃

∙ 𝒈(𝝃) ∙ 𝒛 + 𝒛 ∙ 𝒗 

(40) 

We choose the backstepping control 𝑣 as 

𝒗 = −
𝝏𝑽𝟏
𝝏𝝃

∙ 𝒈(𝝃) − 𝜿 ∙ 𝒛,    𝜿 > 𝟎 (41) 

By substituting (41) into (40), we obtain 

𝑽̇𝟐(𝝃, 𝜼) ≤ −𝑾(𝝃) − 𝜿 ∙ 𝒛𝟐 (42) 

The above result shows that the origin (𝜉 = 0, 𝑧 = 0) is asymptotically stable. Since 

𝜑(0) = 0, we can conclude that the origin (𝜉 = 0, 𝜂 = 0) is asymptotically stable for the 

original system (24)-(25).  

Now by considering the equation: 𝑣 = 𝑢 − 𝜑 ̇ (𝜉), and by substituting for 𝑣, 𝑧 and 𝜑̇, the 

following state feedback control law is obtained: 

 =
𝝏𝝋

𝝏𝝃
∙ [𝒇(𝝃) + 𝒈(𝝃) ∙ 𝜼] −

𝝏𝑽𝟏
𝝏𝝃

∙ 𝒈(𝝃) − 𝜿 ∙ [𝜼 − 𝝋(𝝃)] (43) 

This concludes the proof of Theorem 1. ∎ 

3.2.2 General system Backstepping case 

Next, we move from the system (24)-(25) to the more general system of the form: 

𝝃̇ = 𝒇(𝝃) + 𝒈(𝝃) ∙ 𝜼 (44) 

 

𝜼̇ = 𝒇𝜶(𝝃, 𝜼) + 𝒈𝒂(𝝃, 𝜼) ∙   (45) 

where 𝑓𝛼 and 𝑔𝑎 are smooth. If 𝑔𝑎(𝜉, 𝜂) ≠0, the input transformation  

 =
𝟏

𝒈𝒂(𝝃, 𝜼)
∙ [ 𝒂 − 𝒇𝜶(𝝃, 𝜼)] (46) 

will yield (52)-(53) to the following control system: 
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𝝃̇ = 𝒇(𝝃) + 𝒈(𝝃) ∙ 𝜼 (47) 

 

𝜼̇ =  𝒂 (48) 

Thus, if a stabilizable state feedback control law 𝜑(𝜉) and a Lyapunov function V(𝜉) exist 

such that the conditions of Theorem 1 are satisfied for (44) then the Theorem and (46) yield 

 =
𝟏

𝒈𝒂(𝝃, 𝜼)
∙ {
𝝏𝝋

𝝏𝝃
∙ [𝒇(𝝃) + 𝒈(𝝃) ∙ 𝜼] −

𝝏𝑽𝟏
𝝏𝝃

∙ 𝒈(𝝃) − 𝜿 ∙ [𝜼 − 𝝋(𝝃)]

− 𝒇𝜶(𝝃, 𝜼)} 

(49) 

for some 𝜅 > 0 and  

𝑽𝟐(𝝃, 𝜼) = 𝑽𝟏(𝝃) +
𝟏

𝟐
∙ [𝜼 − 𝝋(𝝃)]𝟐 (50) 

as respectively a stabilizing state feedback control law and a candidate Lyapunov function 

for the control system (44)-(45). 

By using the above backstepping methodology recursively we can stabilize systems that are 

in strict feedback form given as follows: 

𝝃̇ = 𝒇𝟎(𝝃) + 𝒈𝟎(𝝃) ∙ 𝜼𝟏 

𝜼𝟏̇ = 𝒇𝟏(𝝃, 𝜼𝟏) + 𝒈𝟏(𝝃, 𝜼𝟏) ∙ 𝜼𝟐 

𝜼𝟐̇ = 𝒇𝟐(𝝃, 𝜼𝟏, 𝜼𝟐) + 𝒈𝟐(𝝃, 𝜼𝟏, 𝜼𝟐) ∙ 𝜼𝟑 

⋮ ⋮ ⋮ 

𝜼̇𝒌−𝟏  = 𝒇𝒌−𝟏(𝝃, 𝜼𝟏, … , 𝜼𝒌−𝟏) + 𝒈𝒌−𝟏(𝝃, 𝜼𝟏, … , 𝜼𝒌−𝟏) ∙ 𝜼𝒌 

𝜼̇𝒌  = 𝒇𝒌(𝝃, 𝜼𝟏, … , 𝜼𝒌) + 𝒈𝒌(𝝃, 𝜼𝟏, … , 𝜼𝒌) ∙   

(51) 

 

where 𝜉 ∈ ℝ𝑛, 𝜂1 to 𝜂𝑘 are scalars, and 𝑓0 to 𝑓𝑘 vanish at the origin.  

By approaching the control system (51) with the backstepping control design procedure, an 

overall stabilizing state feedback 𝑢 = 𝜑𝑘(𝜉, 𝜂1, … , 𝜂𝑘) along with a Lyapunov function 

𝑉𝑘(𝜉, 𝜂1, … , 𝜂𝑘) can be obtained, thus stabilizing the equilibrium of the system. 
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3.3 Model Predictive Control 

Model predictive control is an advanced control strategy widely applied in engineering and 

industry to optimize the performance of complex systems. MPC is a model-based control 

technique that takes into account the dynamic behavior of the system, predicting its future 

response based on a mathematical model. By making predictions about future system 

behavior, the MPC method can intelligently selects control actions to steer the controlled 

system toward desired outcomes, while satisfying constraints. 

3.3.1 Introduction to Model Predictive Control 

Predictive control has been a part of automatic control systems since the early 1980s [147], 

finding extensive applications in both process industries and academia. The key factor 

driving its widespread adoption is its unique capability to predict future outputs and 

optimize the current timeframe effectively.  

The fundamental concept underlying MPC control involves predicting future outputs of a 

dynamic model by incorporating current measurements and system models. These 

predictions are generated by making appropriate adjustments to the input variables. 

MPC controllers offer several significant advantages, including: 

1. Handling MIMO systems: Is well-suited for controlling complex systems with 

multiple inputs and outputs, making it versatile in various industrial applications.  

2. Dealing with constraints: Can effectively accommodate constraints on various 

system variables, ensuring safe and feasible operation within defined limits. 

3. Applicability to different processes: MPC strategy is adaptable to both linear and 

nonlinear processes, making it an ideal choice for diverse control scenarios.  

4. Ease of implementation: MPC controllers offer a user-friendly implementation, 

making them easily accessible to control engineers and personnel responsible for 

system operation.  

MPC is a broad term that encompasses various control methodologies, all sharing a 

common feature: the utilization of a system model to determine optimal control actions, 

through an optimization process. The methodology employed by an MPC-type controller 

is depicted in a simplified manner for the case of a single-input single-output (SISO) system 

in Figure 8. This process can be broadly analyzed and broken down into the following steps:  

1. At each time step 𝑘 the predictions about the future plant outputs are calculated 

based on a model of the system for a predetermined horizon 𝐻𝑝. The prediction 
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horizon Hp is the number of the predicted future time steps and shows how far the 

controller predicts in to the future. The predicted outputs   (𝑘 + 𝑖) where 𝑖 =

1, … , 𝐻𝑝 are based on the past input outputs of the system and the future control 

moves 𝑢(𝑘 + 𝑖 − 1) , 𝑖 = 1,… , 𝐻𝑐 − 1. 

2. The number of control moves to until the future time step 𝐻𝑐 − 1 is called control 

horizon and is symbolized by 𝐻𝑐. Inside the control horizon, the control moves 

change, while outside they remain constant. The control horizon moves 𝑢 are 

estimated by optimizing a cost function 𝐽. The cost function that is often selected is 

a summation of quadratic errors in order to minimize the difference between the 

predicted future outputs and the desired given set points. The control horizon is 

chosen always smaller than the prediction horizon. Usually only the first couple of 

control moves have a significant effect on the predicted output behavior. 

3. After the estimation of control moves 𝑢(𝑘 + 𝑖 − 1) for 𝑖 = 1,… , 𝐻𝑐 − 1at time 

instant, only the first one 𝑢(𝑘) is implemented in the system and the remaining ones 

 

Figure 8: MPC methodology for a SISO system 
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are rejected. After applying 𝑢(𝑘), the real desired output  (𝑘) is calculated. Now 

the prediction and the control horizon shift forward by one time step and the MPC 

controller repeats the same cycle of calculations to compute the optimal 𝑢 for the 

next time step 𝑘 + 1. 

Because of the forward moving nature of the prediction horizon, the MPC method is also 

referred to as receding horizon control.  

3.3.2 Nonlinear Tracking MPC 

As already outlined in the introductory chapter 3, the concept behind the NMPC scheme is 

as follows: at each sampling instant, we optimize the predicted future behavior of the system 

over a finite time horizon 𝑘 = 1,… ,𝑁𝑝 with 𝑁𝑝 ≥ 1. Then, we utilize the first element of 

the obtained optimal control sequence as a feedback control value for the subsequent 

sampling interval. In the section, a mathematical description of this basic idea is provided 

for the constant reference case 𝑥𝑟𝑒𝑓. 

Consider the following nonlinear discrete-time dynamical system: 

𝒙(𝒌 + 𝟏) = 𝒇(𝒙(𝒌),  (𝒌)) (52) 

where 𝑢(𝑘) ∈ 𝑈 represents the input vector and 𝑥(𝑘) ∈ 𝑋 the state vector. In order to find 

a feedback control law which stabilizes the system at  𝑥𝑟𝑒𝑓 is to have 𝑥𝑟𝑒𝑓 being equilibrium 

of the nominal closed system: 

𝒙(𝒌 + 𝟏) = 𝒇(𝒙(𝒌), 𝝁(𝒙(𝒌))) (53) 

where 𝜇(𝑥(𝑘)) is the NMPC-feedback law 𝜇: 𝑋 → 𝑈 . 

A necessary condition for this is that there exists a control value 𝑢∗ ∈ 𝑈 with 

𝒙𝒓𝒆𝒇 = 𝒇(𝒙𝒓𝒆𝒇,  
∗) (54) 

The cost function 𝑙(𝑥, 𝑢), 𝑙: 𝑋 × 𝑈 → ℝ0
+ employed in our optimization should be designed 

to penalize the deviation of the distance of an arbitrary state 𝒙 from the reference state 𝑥𝑟𝑒𝑓.  

Another important requirement regarding the cost function is that when we are in the 

equilibrium 𝑥𝑟𝑒𝑓 and use the control value 𝑢∗ the cost should 0, in order to stay on the 

equilibrium, while outside the cost should be positive, i.e. 
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𝒍(𝒙𝒓𝒆𝒇 ,  
∗) = 𝟎 𝒂𝒏𝒅 𝒍(𝒙,  ) > 𝟎 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 ∈ 𝑿, ∈ 𝑼 𝒘𝒊𝒕𝒉 𝒙 ≠ 𝒙𝒓𝒆𝒇 (55) 

As already mentioned in subsection 3.3.1, one of the main reasons for the success of NMPC 

and MPC controllers in general is its ability to take constraints into consideration. In this 

context, we take into account constraints on both the control input and the system state. 

Thus, we defined a nonempty state constraint set 𝕏 ⊆ 𝑋 and for each 𝑥 ∈ 𝑋 a nonempty 

control constraint set is introduced as 𝕌 ⊆ 𝑈. The idea behind these sets is that we want the 

trajectories to be inside set 𝕏 while the control inputs lie in 𝕌. 

Having a cost function that satisfies (55) and a prediction horizon 𝑁𝑝 ≥ 2, the basic NMPC 

problem can be formulated. In the optimal control problem (OCP) a set of control sequences 

is introduced as 𝕌𝑁(𝑥0) ⊆ 𝑈𝑁 over which the optimization occurs, where 𝑥0 depicts the 

initial point of the system (52). 

𝐦𝐢𝐧⏟
 

𝑱𝑵(𝒙𝟎,  ) 

 𝒔. 𝒕.   (𝒌) ∈ 𝕌, 𝒙(𝒌) ∈ 𝕏 

𝒙(𝟎, 𝒙𝟎) = 𝒙𝟎 

𝒙(𝒌 + 𝟏) = 𝒇(𝒙(𝒌),  (𝒌)) 

(56) 

where 𝐽𝑁 is given by: 

𝑱𝑵(𝒙,  ) = ∑ 𝒍(𝒙(𝒌),  (𝒌))

𝑵𝒑−𝟏

𝒌=𝟎

 (57) 

In the above OCP it is assumed that an optimal control sequence 𝑢∗(. ) exists. However, it 

should be acknowledged that in general, the existence of  𝑢∗(. ) cannot be guaranteed. 

Nevertheless, reasonal continuity and compactness conditions can be imposed to rigorously 

establish the existence of such an optimal control sequence. For specific cases concerning 

a general infinite-dimensional state space, relevant theorems addressing this existence can 

be found in the works Keerthi and Gilbert [148], or Dolezal [149]. 
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3.3.3 Stability of Nonlinear Tracking MPC 

Traditionally, the stability analysis of the MPC control law, as presented in the preceding 

section, relies on Lyapunov-based tools and theorem. In what follows, a brief stability 

analysis for the NMPC scheme is presented with stabilizing terminal constraint.  

Let us present some essential definitions in stability theory. First, the origin (0, 0) ∈ ℝ𝑛 is 

termed asymptotically stable (AS) for the system 𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘)) if the origin is 

locally stable and there exists 𝛿 > 0 such that if ‖𝑥(0,0) − 𝑥𝑒𝑞‖ < 𝛿, then lim
𝑡→∞

‖𝑥(0,0) −

𝑥𝑒𝑞‖ = 0 . Local stability implies that for every 𝜀 ∈ ℝ+ there exists a 𝛿 ∈ ℝ+ such that 

|𝑥| > 𝛿 implies {|𝜑(𝑘; 𝑥)| < 𝜀 | ∀𝑘 ∈ 𝕀+ }.  

Next, the definitions of some useful function classes are given: A function is considered 

𝐾class if it is continuous for all values in its domain, it takes the value of zero at the origin 

and it is strictly increasing. Moreover, a function is considered 𝐾∞class if it possesses all 

the properties of a 𝐾class function, but it is not bounded. Lastly, a function 𝛽(𝑥, 𝑘) is 

considered a 𝐾𝐿 class function if ∀𝑘 ∈ 𝕀+, 𝛽(⋅, 𝑘) remains a 𝒦-class function and 

{𝛽(𝑠, 𝑖) → 0 |𝑖 → ∞, ∀𝑠 ∈ ℝ+}, while 𝛽(𝑠,⋅) remains nonincreasing. 

When applying terminal constraints in the MPC optimization problem, the feedback law is 

only defined for those initial states 𝑥0, for which the optimization problem within the 

NMPC algorithm remains feasible. Feasibility in this context means that there exists a valid 

control sequence that leads to a trajectory starting from 𝑥0 and satisfying both dynamics 

and terminal constraints. Such initial values are called feasible and the set of all the 

respective values create the feasible set. This feasible set is defined as: 

𝕏𝑵 ≔ {𝒙 ∈ ℝ|𝒕𝒉𝒆𝒓𝒆 𝒆𝒙𝒊𝒔𝒕𝒔  (. ) ∈ 𝑼𝑵} (58) 

Theorem 2 Consider the NMPC Problem given by (56) and optimization horizon 𝑁 ∈ ℕ. 

Let the following assumptions hold: 

a. The point 𝑥∗ ∈ 𝕏 is an equilibrium for an admissible control value 𝑢∗, i.e., there 

exists a control value 𝑢∗ ∈ 𝕌(𝑥∗) with 𝑓(𝑥∗, 𝑢∗) = 𝑥∗. 

b. The running cost   𝑙: 𝑋 × 𝑈 → ℝ0
+ satisfies 𝑙(𝑥∗, 𝑢∗) = 0 for 𝑢∗ from a. 

c. Suitable functions 𝑎1, 𝑎 , 𝑎 ∈ 𝐾∞ exist such that  𝑎1(|𝑥|) ≤ 𝐽𝑁(𝑥) ≤ 𝑎 (|𝑥| ) and 

𝑙(𝑥, 𝑢) ≥ 𝑎 (||𝑥||) hold for all 𝑥 ∈ 𝕏 and 𝑢 ∈ 𝑈   

Then the nominal NMPC closed-loop system given by (54) with NMPC-feedback law 𝜇𝛮 

is asymptotically stable on 𝕏𝑁.  
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The Proof of Theorem 2 is beyond the scope of this Thesis; a detailed proof can be found 

in [150].
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4. Introduction to quadrotor dynamics and control 

 

This chapter provides a fundamental overview of UAVs and quadrotors, spotlighting the attributes 

of their dynamics and control mechanisms. Specifically, in subsection 4.1 a detailed examination 

delves into quadrotor dynamics, revealing the intricate interaction of forces dictating their flight. 

Moving forward, subsection 4.3 expands the discourse to encompass the implementation to PID 

control techniques specifically designed for quadrotors. Concluding this chapter, the task of 

quadrotor trajectory tracking is addressed, offering insights into the complexities involved in 

attaining precise autonomous flight paths. 

4.1 Introduction to UAVs and quadrotors 

A UAV refers to an aircraft that operates without the presence of a human pilot. Initially developed 

for military applications, the use of UAVs has rapidly expanded into diverse sectors, including 

scientific research, surveillance, aerial photography, and even product deliveries. Within the realm 

of UAVs, a distinct subgroup known as rotary wing UAVs possesses unique attributes. These 

vehicles are capable oof vertical hovering, takeoff, and landing and exhibit exceptional 

maneuverability. 

One prominent member of the rotary wing UAV family is the quadrotor, commonly referred to as 

a quadcopter. This UAV model employs four motors, each connected to a propeller, to generate 

the necessary thrust for airborne lift. Each rotor is driven by an independent DC motor, converting 

electrical energy into mechanical force. Two of the quadrotor’s motors rotate clockwise, while the 

remaining two rotate counter-clockwise. This arrangement results in the opposite torques 

generated by each rotor being balanced out by their counterpart on the opposite side. This 

configuration of pairs rotating in opposite directions eliminates the need of a tail rotor which 

counterbalances the torque produced by the rotation of the main rotor in the conventional 

helicopter. 

4.2 The quadrotor’s structure and four basic movements 

The quadrotor’s motion is primarily governed by four electric motors, which inherently impose 

limitations on the number of controllable variables during flight missions. Consequently, the 

quadrotor can be categorized as an under-actuated system with 6 degrees of freedom (D.O.F.). 

This configuration complicates the quadrotor control task, since it has only four independent 

control inputs, which are less than the system’s D.O.F. These specific input variables pertain to 

the quadcopter’s essential movements, crucial for stabilizing its attitude and altitude.  
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To obtain to control over the quadrotor, adjustments in the angular velocities 𝛺𝑖 , where 𝑖 = 1,2,3,4 

of the propellers are made. Each rotor generates both the thrust and torque around its center of 

rotation. The proper change of the propeller’s velocity leads to smooth movement of the vehicle 

in space.  

In hovering condition all the propellers rotate with uniform angular velocities to counteract the 

gravitational force. This state allows the quadrotor to sustain flight without external forces or 

torques including movement from its position. Figure 9 shows the quadrotor structure model in 

hovering condition, where all the propellers have the same speed 𝛺𝐻 = 𝛺1 = 𝛺 = 𝛺 = 𝛺 . In 

this position the quadrotor performs stationary flight and forces or torques move it from its current 

state.  

In Figure 9 the main body of the quadrotor is illustrated in black, while the fixed body frame 𝐵 is 

highlighted in red. The blue color represents the angular speeds of the propellers. Each rotor has a 

velocity variable, and to enhance clarity, two arrows are used per propeller: a curved arrow 

signifies rotation direction, and the straight arrow indicates the vertical thrust velocity vector.  

In order to make the quadrotor fly, four variables should be chosen to be controlled. This limitation 

arises from the restriction of achieving only up to four degrees of freedom out of the six available. 

The selection of those four variables is chosen according to the quadrotor’s fundamental 

maneuvers that enable adjustments in both heigh and attitude.  

The four fundamental movements of the quadrotor are namely thrust or throttle 𝑈1, roll 𝑈 , pitch 

𝑈 , and yaw 𝑈 . The thrust command 𝑈1 is provided by uniformly increasing (or decreasing) the 

speeds of all propeller. This action generates a vertical force within the body-fixed frame, causing 

the quadrotor to ascend or descend.  

The roll command 𝑈  is executed by adjusting the speed of the left propeller (increase or decrease) 

while simultaneously adjusting the speed of the right propeller in the opposite direction (decrease 

or increase). This action creates a torque around the 𝑒𝑥
𝑏 axis, causing the quadrotor to turn. 

 

Figure 9: Quadrotor system in hovering condition 
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The pitch command 𝑈  is similar to the roll and is achieved by increasing (or decreasing) the speed 

of the back propeller while simultaneously adjusting the speed of the front propeller in the opposite 

direction. This action results in a torque along the 𝑒𝑦
𝑏, which makes the quadrotor turn.  

The yaw command 𝑈  involves adjusting the speeds of both front and rear propellers together, 

while simultaneously adjusting the speeds of the left right propellers in the opposite manner. This 

generates a torque around the 𝑒𝑧
𝑏, resulting in the quadrotor’s rotation. Yaw is enabled by the 

counter-clockwise rotation of the left-right propellers and the clockwise rotation of the front-back 

pair. 

In Figure 10 the four basic movements of the quadrotor are depicted. The width of each arrow is 

proportional to the propeller’s angular speed. 

4.3 Quadrotor Mathematical Modelling 

The mathematical model of the quadrotor describes the link between the movement and attitude 

with the external influences and input values. Knowing the 4 angular velocities of the propellers 

it is possible to predict the attitude and altitude of the quadcopter. The present model is based on 

the following assumptions: 

• Quadrotor is a rigid body. 

• Quadrotor has a symmetrical structure (the inertia matrix is diagonal). 

• The center of mass and the body fixed frame origin coincide. 

• The propellers are rigid. 

To describe the motion of a 6 D.O.F. rigid body two reference frames are used: 

• The earth inertial frame (E frame) 

• The body fixed frame (B frame) 

 

Figure 10: Four basic movements of the quadrotor 
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4.3.1 Newton-Euler Model 

The quadrotor vehicle is a nonlinear system with under-actuation and strong coupling. Figure 11 

depicts an X-configuration quadrotor, where the four rotors are divided into two pairs of (1,3) and 

(2,4) which rotate in opposite directions in order to compensate for the interaction of the reaction 

torques generated. The right cooperation between the rotors speed ensures the quadrotor’s basic 

movements in aerial space as follows: vertical motion is achieved by increasing or decreasing the 

speed of all rotors; the differential speeds of rotors (1,3) and (2,4) contributes into the roll and 

pitch motions coupled with forward motions respectively, while yaw motion is performed through 

the difference of counter-torques generated by each propeller. 

The translational and rotational dynamics occur using the second Newton's law of linear and 

angular conservation. To describe the kinematics of the quadrotor, two coordinate systems are 

defined, namely the earth-fixed frame 𝐸 = {𝑥𝐸 ,  𝐸 , 𝑧𝐸},  which is considered fixed with respect to 

the earth, and the fuselage, or body-fixed frame 𝐵 = {𝑥𝐵,  𝐵, 𝑧𝐵},  , linked to the rigid body of the 

quadrotor. The two frames are depicted in Figure 11. In this case, the 𝑥𝐵 axis is in the quadrotor’s 

normal flight direction,  𝐵 is orthogonal to 𝑥𝐵 and positive to starboard in the horizontal plane, 

whereas 𝑧𝐵  is oriented in the ascendant sense and orthogonal to the plane created from the vectors 

𝑥𝐵 and  𝐵. The linear position of the quadrotor in frame 𝐸 is denoted with the vector 𝜉 =

[𝑥,  , 𝑧]𝑇 ∈ ℝ  , while the orientation of the quadrotor is described in frame 𝐵 by Euler’s angles 

roll 𝜑, pitch 𝜃, and yaw 𝜓, thus forming the vector 𝜂 = [𝜑, 𝜃, 𝜓]𝑇 ∈ ℝ . Furthermore, let 𝛺 =

[𝑝, 𝑞, 𝑟]𝑇 ∈ ℝ  and 𝑉 = [𝑢, 𝑣, 𝑤]𝑇 ∈ ℝ  denote the angular and linear velocity of the quadrotor 

 

Figure 11: Schematic overview of the earth and body fixed frames of the quadrotor 
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vehicle in frame 𝐵, respectively. Thus, the translational and rotational kinematic model is given 

by: 

𝝃̇ = 𝑹𝒕 ∙ 𝑽
𝜼̇ = 𝑹𝒓 ∙ 𝜴

 (59) 

Where 𝑅𝑡 and 𝑅𝑟 are the transformation matrices between the two frames which are given by [49]: 

𝑹𝒕(𝜼) = [

𝑪 ∙ 𝑪 𝑺𝝋 ∙ 𝑺 ∙ 𝑪 − 𝑪𝝋 ∙ 𝑺 𝑪𝝋 ∙ 𝑺 ∙ 𝑪 − 𝑺𝝋 ∙ 𝑺 
𝑪 ∙ 𝑺 𝑺𝝋 ∙ 𝑺 ∙ 𝑺 − 𝑪𝝋 ∙ 𝑪 𝑪𝝋 ∙ 𝑺 ∙ 𝑺 − 𝑺𝝋 ∙ 𝑪 
−𝑺 𝑺𝝋 ∙ 𝑪 𝑪𝝋 ∙ 𝑪 

] (60) 

 

𝑹𝒓(𝜼) = [

𝟏 𝑺 ∙ 𝑻 𝑪 ∙ 𝑻 
𝟎 𝑪𝝋 −𝑺 
𝟎 𝑺𝝋/𝑪 𝑺𝝋/𝑪 

] (61) 

And 𝑆(∙), 𝐶(∙) and 𝑇(∙) are the abbreviations for sin(∙) , cos(∙) and tan(∙) respectively. 

Assuming null disturbances, the quadrotor’s dynamics equation can be expressed in frame B by: 

𝒎 ∙ 𝑽̇ = −𝜴 × (𝒎 ∙ 𝑽) − 𝑭𝒂𝒆𝒓𝒐 − 𝑭𝒈𝒓𝒂𝒗 + 𝑻

𝑰 ∙ 𝜴̇ = −𝜴 × (𝒎 ∙ 𝜴) −𝜧𝒂𝒆𝒓𝒐 −𝜧𝒈𝒚𝒓𝒐 + 𝝉
 (62) 

 where 𝑚 ∈ ℝ and 𝐼 = 𝑑𝑖𝑎𝑔(𝐼𝑥, 𝐼𝑦, 𝐼𝑧) ∈ ℝ 𝑥   denote the mass and the inertia matrix of the 

quadrotor, 𝐹𝑔𝑟𝑎𝑣 = 𝑚 ∙ 𝑅𝑡
𝑇 ∙ 𝐺 is the force due to gravity (where 𝐺 = [0 0 𝑔]𝑇 is the gravity 

vector), 𝑀𝑔𝑦𝑟𝑜 = [−𝐽𝑟 ∙ 𝑝̇ ∙ 𝛺𝑟 𝐽𝑟 ∙ 𝑞̇ ∙ 𝛺𝑟 0]𝑇 is the gyroscopic moment formed by the rotations 

of the rotors around their axis (where 𝐽𝑟 is the rotor inertia), 𝛺𝑟 are the overall residual rotor speeds, 

and 𝐹𝑎𝑒𝑟𝑜 = 𝐾𝑡 ∙ 𝑉 and 𝑀𝑎𝑒𝑟𝑜 = 𝐾𝑟 ∙ 𝛺  are the aerodynamical drag forces and moments, with 

𝛫𝑡 = 𝑑𝑖𝑎𝑔(𝐾𝑥, 𝐾𝑦, 𝐾𝑧) and 𝛫𝑟 = 𝑑𝑖𝑎𝑔(𝐾𝜑, 𝐾𝜃, 𝐾𝜓) [64], [151] denoting the aero dynamical drag 

coefficient matrices. The rotation of the quadrotor’s propellers generates the forces responsible for 

its movement in space. Each rotor produces a lift force 𝐹𝑖 and a reactive moment 𝑀𝑖. The force 

𝑇 ∈ ℝ  and torque 𝜏 ∈ ℝ  generated by each rotor can be expressed as 𝐹𝑖 = 𝑏 ∙ 𝛺𝑖
 , 𝑀𝑖 = 𝑑 ∙ 𝛺𝑖

  

[18], [152], where 𝑏 is the thrust coefficient, 𝑑 is the drag coefficient and 𝛺𝑖  is the angular velocity 

of rotor 𝑖, 𝑖 ∈ {1,2,3,4}. 
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Proper arrangement of forces and moments leads to a total thrust 𝑇 ∈ ℝ  and a control torque 𝜏 ∈

ℝ   given by: 

𝑻 =

[
 
 
 
 

𝟎
𝟎

𝒃 ∙∑𝜴𝒊
𝟐

𝟒

𝒊=𝟏 ]
 
 
 
 

 (63) 

 

𝝉 = [

𝒍 ∙ 𝒃 ∙ (−𝜴𝟐
𝟐 + 𝜴𝟒

𝟐)

𝒍 ∙ 𝒃 ∙ (−𝜴𝟑
𝟐 + 𝜴𝟏

𝟐)

𝒅 ∙ (𝜴𝟏
𝟐 −𝜴𝟐

𝟐 +𝜴𝟑
𝟐 −𝜴𝟒

𝟐)

] (64) 

Using the Newton Euler formalism equation (62) can be expressed in the inertia frame 𝐸 as: 

𝒎 ∙ 𝒙 = (𝒄𝒐𝒔𝝋 ∙ 𝒔𝒊𝒏 ∙ 𝒄𝒐𝒔 + 𝒔𝒊𝒏𝝋 ∙ 𝒔𝒊𝒏 ) ∙ 𝑼𝟏 −𝑲𝒙 ∙ 𝒙̇

𝒎 ∙ 𝒚 = (𝒄𝒐𝒔𝝋 ∙ 𝒄𝒐𝒔 ∙ 𝒔𝒊𝒏 + 𝒔𝒊𝒏𝝋 ∙ 𝒄𝒐𝒔 ) ∙ 𝑼𝟏 −𝑲𝒚 ∙ 𝒚̇

𝒎 ∙ 𝒛 = 𝒄𝒐𝒔𝝋 ∙ 𝒄𝒐𝒔 ∙ 𝑼𝟏 −𝒎 ∙ 𝒈 − 𝑲𝒛 ∙ 𝒛̇

𝑰𝒙 ∙ 𝝋 =  ̇ ∙  ∙ (𝑰𝒚 − 𝑰𝒛) + 𝒍 ∙ 𝑼𝟐 + 𝑱𝒓 ∙  ̇ ∙ 𝜴𝒓 −𝜥𝝋 ∙ 𝝋̇

𝑰𝒚 ∙   = 𝝋̇ ∙  ∙ (𝑰𝒛 − 𝑰𝒙) + 𝒍 ∙ 𝑼𝟑 + 𝑱𝒓 ∙ 𝝋̇ ∙ 𝜴𝒓 −𝜥 ∙  ̇

𝑰𝒛 ∙   = 𝝋̇ ∙  ̇ ∙ (𝑰𝒙 − 𝑰𝒚) + 𝑼𝟒 −𝜥 ∙  ̇

 (65) 

 

In order to control the flight mechanism of the quadrotor, a control input 𝑈  is defined which 

consists of four control actions 𝑈𝑖, with i ∈ {1,2,3,4}. 𝑈1  is the control action related to the total 

thrust and is responsible for the change of altitude, while 𝑈  , 𝑈    and 𝑈  are control actions related 

to the moments generated around the body axes 𝑥𝐵,  𝐵, 𝑧𝐵, respectively; more specifically, 𝑈  , 𝑈  

and 𝑈  control the desired rotation for the roll angle 𝜑 pitch angle 𝜃 and yaw angle 𝜓 respectively. 

The control input vector 𝑈 is given by: 

[

𝑼𝟏

𝑼𝟐

𝑼𝟑

𝑼𝟒

] =

[
 
 
 
 
𝒃 ∙ ((𝜴𝟏

𝟐 + 𝜴𝟐
𝟐 + 𝜴𝟑

𝟐 + 𝜴𝟒
𝟐)

𝒍 ∙ 𝒃 ∙ (−𝜴𝟐
𝟐 + 𝜴𝟒

𝟐)

𝒍 ∙ 𝒃 ∙ (−𝜴𝟑
𝟐 + 𝜴𝟏

𝟐)

𝒅 ∙ (𝜴𝟏
𝟐 − 𝜴𝟐

𝟐 + 𝜴𝟑
𝟐 − 𝜴𝟒

𝟐) ]
 
 
 
 

 (66) 
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4.3.2 Quadrotor State Space Modeling 

The translational and rotational dynamics of the systems given by (65) can be defined by utilizing 

a state space representation. This new model of the system’s dynamics is a set of first-order 

differential equations, and is given by the following equations: 

𝒙𝟏 = 𝒙
  𝒙𝟐 = 𝒙𝟏̇
𝒙𝟑 = 𝒚
  𝒙𝟒 = 𝒙𝟑̇
𝒙𝟓 = 𝒛
  𝒙𝟔 = 𝒙𝟓̇
 𝒙𝟕 = 𝝋
   𝒙𝟖 = 𝒙𝟕̇
 𝒙𝟗 =  
 𝒙𝟏𝟎 = 𝒙𝟗̇
𝒙𝟏𝟏 =  

   𝒙𝟏𝟐 = 𝒙𝟏𝟏̇

 (67) 

 

𝒙𝟏̇ = 𝒙𝟐

𝒙𝟐̇ = (𝒄𝒐𝒔𝒙𝟕 ∙ 𝒔𝒊𝒏𝒙𝟗 ∙ 𝒄𝒐𝒔𝒙𝟏𝟏 + 𝒔𝒊𝒏𝒙𝟏𝟏 ∙ 𝒔𝒊𝒏𝒙𝟕) ∙
𝑼𝟏

𝒎
−
𝑲𝒙

𝒎
∙ 𝒙𝟐

𝒙𝟑̇ = 𝒙𝟒

𝒙𝟒̇ = (𝒔𝒊𝒏𝒙𝟕 ∙ 𝒔𝒊𝒏𝒙𝟗 ∙ 𝒄𝒐𝒔𝒙𝟏𝟏 + 𝒄𝒐𝒔𝒙𝟏𝟏 ∙ 𝒔𝒊𝒏𝒙𝟕) ∙
𝑼𝟏

𝒎
−
𝑲𝒙

𝒎
∙ 𝒙𝟒

𝒙𝟓̇ = 𝒙𝟔

𝒙𝟔̇ = 𝒄𝒐𝒔𝒙𝟕 ∙ 𝒄𝒐𝒔𝒙𝟗 ∙
𝑼𝟏

𝒎
−
𝒈

𝒎
−
𝑲𝒛

𝒎
∙ 𝒙𝟔

𝒙𝟕̇ = 𝒙𝟖

𝒙𝟖̇ = 𝒙𝟏𝟎  ∙ 𝒙𝟏𝟐 ∙
(𝑰𝒚 − 𝑰𝒛)

𝑰𝒙
+ 𝒍 ∙

𝑼𝟐

𝑰𝒙
+
𝑱𝒓 ∙ 𝒙𝟏𝟎 ∙ 𝜴𝒓

𝑰𝒙
−
𝜥𝝋

𝑰𝒙
∙ 𝒙𝟖

𝒙𝟗̇ = 𝒙𝟏𝟎

𝒙𝟏𝟎̇ = 𝒙𝟖 ∙ 𝒙𝟏𝟐 ∙
(𝑰𝒛 − 𝑰𝒙)

𝑰𝒚
+ 𝒍 ∙

𝑼𝟑

𝑰𝒚 
+
𝑱𝒓 ∙ 𝒙𝟖 ∙ 𝜴𝒓

𝑰𝒚
−𝜥 ∙ 𝒙𝟏𝟎

𝒙𝟏𝟏̇ = 𝒙𝟏𝟐

𝒙𝟏𝟐̇ = 𝒙𝟖 ∙ 𝒙𝟏𝟎 ∙
𝑰𝒙 − 𝑰𝒚

𝑰𝒛
+ 𝒍 ∙

𝑼𝟒

𝑰𝒛
−𝜥 ∙ 𝒙𝟏𝟐

 (68) 

   

The system of twelve nonlinear first -order differential equations provided above, constitutes a 

mathematical representation of the quadrotor dynamics. To solve the above system, classical 

numerical methodologies are employed such as Runge-Kutta methods. The solution of this system 

at each time step yields the spatial position of the quadrotor. 
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4.4 PID setpoint quadrotor control 

Originating in the early 1920s for ship steering automation, PID control systems gained 

prominence in manufacturing due to their versatile performance and tunability without specific 

system models. Their appeal lies in their simple architecture and suitability across processes. The 

acronym “PID” encompasses the Proportional, Integral, and Derivative actions, functioning as a 

three-part feedback mechanism, which computes an error and adjusts through these components 

to enhance control accuracy over time. 

The quadrotor vehicle is characterized as an underactuated system, implying that it can attain a 

limited set of desired states within its six D.O.F., due to the constraint of having only four available 

control inputs. This constraint aligns with quadrotor’s ability to govern only a handful of states, 

and this selection corresponds precisely to the four basic maneuvers outlined in section 4.2. 

Hence, the four principal variables selected for control encompass the quadrotor’s vertical height 

(z), pitch angle (θ), roll angle (φ), and yaw angle (ψ). These four parameters hold the key to 

establishing both altitude stability and height control for the quadrotor.  

To manage the quadrotor’s behavior and uphold in a specific position, it becomes necessary to 

determine the appropriate rotational speeds of the propellers. This procedure is recognized as 

inverse dynamics and, in practice, it is not always attainable and, in numerous instances, lacks a 

unique solution. Developing an inverse model for the quadrotor necessitates the introduction of 

simplifications to the system’s dynamics.  

The fundamental principles of the dynamics are succinctly encapsulated in equations (62) within 

subsection 4.3.1. This equation unveils the interconnection between the quadrotor’s accelerations 

in relation to its basic movements. 

Another system of equations that relates basic movements with the propellers' squared speed is 

described via (69). 

𝑼𝟏 = 𝒃 ∙ (+𝜴𝟐
𝟐 + 𝜴𝟒

𝟐 + 𝜴𝟏
𝟐 + 𝜴𝟑

𝟐)

𝑼𝟐 = 𝒍 ∙  𝒃 ∙ (−𝜴𝟐
𝟐 +𝜴𝟒

𝟐)

 𝑼𝟑 = 𝒍 ∙   𝒃 ∙  (−𝜴𝟏
𝟐 +𝜴𝟑

𝟐)

𝑼𝟒 =  𝒅 ∙  (+𝜴𝟐
𝟐 + 𝜴𝟒

𝟐 − 𝜴𝟏
𝟐 − 𝜴𝟑

𝟐)

 𝜴𝒓  =  𝜴𝟏 − 𝜴𝟐 + 𝜴𝟑 − 𝜴𝟒

 

  

(69) 

The mathematical expression for the control action for the PID controller can be articulated within 

the temporal framework as follows: 
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 (𝒕) =  𝑲𝑷 ∙ 𝒆(𝒕) + 𝑲𝑰 ∙ ∫ 𝒆(𝝉)𝒅𝝉 +
𝒕

𝟎

 𝑲𝑫 ∙
𝒅𝒆(𝒕)

𝒅𝒕
 (70) 

In order to facilitate the implementation of control algorithms, a simplification of the quadrotor 

dynamics is necessary to establish a more accessible inverse model. Equation (62) can be 

restructured based on three key considerations: 

• Simplified angular contributions: Complicated angular terms, arising from cross-

couplings, can be simplified due to minor hovering-induced changes. 

• Handling angular accelerations: Directly referencing angular accelerations to Euler 

angle accelerations, bypassing complexities of frame transformations. 

• Control algorithm focus: With four propellers and a focus on stabilizing attitude and 

height, equations for x and y positions are excluded. 

 

After the above assumptions, equation (71) describes the quadrotor dynamics, which will be used 

for controlling the system. 

𝒛 = −𝒈 + 
𝟏

𝒎
∙ (𝒄𝒐𝒔 ∙ 𝒄𝒐𝒔𝝋) ∙  𝑼𝟏

𝝋 =
𝑼𝟐

𝑰𝒙

  =
𝑼𝟑

𝑰𝒚

  =
𝑼𝟒

𝑰𝒛

 (71) 

 

Where 𝑈1, 𝑈 , 𝑈 , 𝑈  inside (71) are formulated according to (70). 

 

 

 

Figure 12: PID setpoint control block diagram 
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The above block describes the control loop of a quadrotor that performs the task of reaching a set 

of four desired values. The block control algorithm receives the desired values from the task and 

the measured values from the block quadrotor dynamics. The output of the control continues to 

the inverted movement matrix which relates the four basic movements with the rotational speeds 

of the propellers. 

 

In Figure 12 the PID controller algorithm block constitutes the central aspect of the control system, 

processing the desired task and current states to generate signals for fundamental movement, 

mitigating position errors via PID techniques. In the next block namely inverted movement matrix 

the propeller speeds are computed by utilizing the basic movement signal values.  

 

The PID quadrotor control, which centers on reaching desired setpoints, serves as the foundation 

for more intricate challenges such as trajectory tracking. While setpoint control focuses on 

stabilizing quadrotor movements around specific positions, trajectory tracking extends this 

concept by orchestrating a sequence of setpoints to guide the quadrotor along a predefined path. 

This transition from setpoint control to trajectory tracking adds a layer of complexity, demanding 

advanced control strategies to ensure precise and dynamic maneuvering through diverse 

trajectories. 

4.5 The trajectory tracking problem and the PID approach 

The quadrotor operates as an under-actuated system, controlling six degrees of freedom using only 

four motors. This necessitates control of a subset of four degrees of freedom. Notably, control of 

𝑥 and   coordinates rely on pitch and roll orientations, respectively, leading to two distinct subsets 

for control. Commands encompass three position coordinates and yaw orientation, while 

employing roll and pitch orientation controllers.   

The set of first three PID controllers are responsible for the position control of the states 𝑥,  , 𝑧. 

This PID controller block regulates orientation and generates thrust controller 𝑈1 from position 

references (𝑥𝑟𝑒𝑓 ,  𝑟𝑒𝑓, 𝑧𝑟𝑒𝑓).   

After having the position commands 𝑈1, 𝑈𝑥, 𝑈𝑦 calculated, the rest of the quadrotor basic 

commands can be found via the attitude control. The objective of the attitude controller is to ensure 

that the attitude of the quadrotor described by its Euler's angles 𝜑, 𝜃, 𝜓 tracks the desired trajectory 

values 𝜑𝑟 , 𝜃𝑟 , 𝜓𝑟  asymptotically. In order to achieve the above goal, the control inputs U2, U3, U4 

should be estimated in such a way that Euler's angles will follow the desired trajectory attitude 
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angles which are derived from the position controller. An overall control structure of the PID 

trajectory tracking scheme is given in Figure 13. 

The trajectory tracking challenge for quadrotors using PID controllers can be hindered by the 

controllers’ linear nature, struggling with complex nonlinear dynamics, external disturbances, and 

coupling between degrees of freedom. These limitations can lead to imprecise trajectory following 

and oscillations. Employing nonlinear control methods offers advantages by effectively handling 

intricate dynamics, uncertainties, and coupling in quadrotors. Techniques like model predictive 

control and backstepping control already mentioned in chapters 3.2 and 3.3 provide robustness, 

enabling the quadrotor to achieve accurate and stable trajectory tracking, especially in demanding 

scenarios. 

 

Figure 13: Overall PID structure for the trajectory tracking problem 
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5. Development and tuning of automatic control methods for quadrotor 

trajectory tracking 

Within this chapter, two innovative approaches are explored that provide effective solutions to the 

challenging quadrotor trajectory tracking problem. Notably, both methods emphasize the 

utilization of nonlinear control methods to address this complex challenge. These developed 

methods encompass backstepping and MPC strategies, which were previously introduced in 

chapter 4. This chapter also entails comparative evaluations of these methods against alternative 

control techniques, highlighting the efficacy of each of the proposed approaches in advancing 

control design and tuning for quadrotor trajectory tracking. 

5.1 A control strategy for quadrotor trajectory tracking based on backstepping control 

and radial basis function neural networks 

The goal of this section is to tackle the quadrotor trajectory tracking challenge using a novel control 

scheme combining backstepping control and radial basis function NNs. Specifically, the proposed 

control approach is designed so as to guarantee Lyapunov stability of the closed-loop system based 

on a dynamic model of the quadrotor, and an RBF network which provides a data-driven 

approximation of unmodelled uncertainties of any type. The RBF network is trained using the FM 

algorithm, contributing to improved modeling precision and thus enhancing the proposed method 

to deliver improved tracking performance in the presence of unmodelled dynamics. The method 

is evaluated on two different simulated scenarios.  

5.1.1 Quadrotor dynamics 

A typical quadrotor vehicle can be seen in Figure 11. The quadrotor is considered to be a rigid 

body. In what follows we will consider the reference frames as stated in subsection 4.3.1,with 𝐸 =

{𝑥𝐸 ,  𝐸 , 𝑧𝐸}  denoting the inertial reference frame and frame 𝐵 = {𝑥𝐵,  𝐵, 𝑧𝐵} representing the 

body fixed frame. The quadrotor state vector is defined as 𝑋 = [𝑥,  , 𝑧, 𝜑, 𝜃, 𝜓]𝛵 with 6-D.O.F., 

where 𝑥,  , 𝑧 denoting the position fo the quadrotor’s center of mass and 𝜑, 𝜃, 𝜓 being the Euler 

angles for roll, pitch and yaw. Each rotor revolves with angular speed 𝛺𝑖, with 𝑖 = 1, 2, 3, 4. 

5.1.1.1 The core reduced model dynamics 

The construction of a nonlinear model without the effects of aerodynamical forces and moments 

for a quadrotor can be based on equation (65)  as: 
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𝒙 =  
𝑼𝟏

𝒎
⋅ (𝒄𝒐𝒔𝝓 ⋅ 𝒔𝒊𝒏 ⋅ 𝒄𝒐𝒔 + 𝒔𝒊𝒏𝝓 ⋅ 𝒔𝒊𝒏 )

𝒚 =  
𝑼𝟏

𝒎
⋅ (𝒄𝒐𝒔𝝓 ⋅ 𝒔𝒊𝒏 ⋅ 𝒔𝒊𝒏 − 𝒔𝒊𝒏𝝓 ⋅ 𝒄𝒐𝒔 )

𝒛 = −𝒈 +
𝑼𝟏

𝒎
⋅ (𝒄𝒐𝒔𝝓 ⋅ 𝒄𝒐𝒔  )

𝝓 =  ̇ ⋅  ̇ ⋅
(𝑰𝒚 − 𝑰𝒛)

𝑰𝒙
+
𝑱𝒓
𝑰𝒙
⋅  ̇ ⋅ 𝜴𝒓 +

𝒍

𝑰𝒙
⋅ 𝑼𝟐

  = 𝝓̇ ⋅  ̇ ⋅
(𝑰𝒛 − 𝑰𝒙)

𝑰𝒚
−
𝑱𝒓
𝑰𝒚
⋅ 𝝓̇ ⋅ 𝜴𝒓 +

𝒍

𝑰𝒚
⋅ 𝑼𝟑

  =  ̇ ⋅  𝝓̇ ⋅
(𝑰𝒙 − 𝑰𝒚)

𝑰𝒛
+
𝟏

𝑰𝒛
⋅ 𝑼𝟒

 (72) 

where 𝑈 =  [ 𝑈1 𝑈 𝑈  𝑈 ]
𝑇  is given by (69) denotes the control input vector, m is the quadrotor 

mass, 𝑔 is the acceleration due to the gravity on Earth, 𝐼𝑥, 𝐼𝑦, 𝐼𝑧  are the moments of inertia of the 

quadrotor rigid body, 𝐽𝑟 is the moment of inertia of the propeller about its axis, 𝑙 is the distance 

from the center of mass of the quadrotor to the axes of rotation of the propellers and 𝛺𝑟  =  − 𝛺1  +

 𝛺  −  𝛺  +  𝛺 . 

Given that the nonlinear dynamic model in (72) exclusively considers the forces and torques 

generated from the propellers, we label this model as the “the core reduced model” (CRM). The 

core reduced model takes the form of: 

𝑿 = 𝒇(𝑿, 𝑿̇) = 𝜶 ⋅ 𝑼 (73) 

where 

𝒇 =

[
 
 
 
 
 
 
 
 
 
 

𝟎
𝟎
−𝒈

 ̇ ⋅  ̇ ⋅
(𝑰𝒚 − 𝑰𝒛)

𝑰𝒙
+
𝑱𝒓
𝑰𝒙
⋅  ̇ ⋅ 𝜴𝒓

𝝓̇ ⋅  ̇ ⋅
(𝑰𝒛 − 𝑰𝒙)

𝑰𝒚
−
𝑱𝒓
𝑰𝒚
⋅ 𝝓̇ ⋅ 𝜴𝒓

 ̇ ⋅  𝝓̇ ⋅
(𝑰𝒙 − 𝑰𝒚)

𝑰𝒛 ]
 
 
 
 
 
 
 
 
 
 

, (74) 
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𝒂 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝐜𝐨𝐬𝝓 ⋅ 𝐬𝐢𝐧  ⋅ 𝐜𝐨𝐬 + 𝐬𝐢𝐧𝝓 ⋅ 𝐬𝐢𝐧 

𝒎
𝟎 𝟎 𝟎

𝒄𝒄𝒐𝒔𝝓 ⋅ 𝐬𝐢𝐧  ⋅ 𝐬𝐢𝐧 − 𝐬𝐢𝐧𝝓 ⋅ 𝐜𝐨𝐬 

𝒎
𝟎 𝟎 𝟎

𝐜𝐨𝐬𝝓 ⋅ 𝐜𝐨𝐬  )

𝒎
𝟎 𝟎 𝟎

𝟎
𝒍

𝑰𝒙
𝟎 𝟎

 𝟎 𝟎
𝒍

𝑰𝒚
𝟎

𝟎 𝟎 𝟎
𝟏

𝑰𝒛]
 
 
 
 
 
 
 
 
 
 
 
 
 

 (75) 

5.1.1.2 Full model dynamics 

The CRM defined by equations (73)-(75) is a simplified model that does not consider various 

effects that act on the quadrotor like aerodynamic friction, wind gusts, ground effects, gyroscopic 

torques, etc. In scenarios where certain effects are known, it becomes possible to enhance model 

accuracy. For instance, equation (74) can be adjusted to encompass aerodynamic friction, resulting 

in a modified formulation: 

𝒇𝒇 𝒍𝒍 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 −

𝑲𝒙 ∙ 𝒙̇

𝒎

−
𝑲𝒚 ∙ 𝒚̇

𝒎

−
𝑲𝒛 ∙ 𝒛̇

𝒎

 ̇ ⋅  ̇ ⋅
(𝑰𝒚 − 𝑰𝒛)

𝑰𝒙
+
𝑱𝒓
𝑰𝒙
⋅  ̇ ⋅ 𝜴𝒓 −

𝜥𝝋 ∙ 𝝋̇

𝑰𝒙

𝝓̇ ⋅  ̇ ⋅
(𝑰𝒛 − 𝑰𝒙)

𝑰𝒚
−
𝑱𝒓
𝑰𝒚
⋅ 𝝓̇ ⋅ 𝜴𝒓 −

𝜥 ∙  ̇

𝑰𝒚
 

 ̇ ⋅  𝝓̇ ⋅
(𝑰𝒙 − 𝑰𝒚)

𝑰𝒛
−
𝜥 ∙  ̇

𝑰𝒛 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 (76) 

where 𝐾𝑥, 𝐾𝑦, 𝐾𝑧 , 𝛫𝜑 , 𝛫𝜃 , 𝛫𝜓  are the aerodynamic drag coefficients. In the context of this study, 

the more detailed quadrotor model arising by replacing equation (74) with equation (76) will be 

regarded as the complete quadrotor model. Conversely, when only the CRM is accessible, any 

unaccounted dynamics such as aerodynamic drag will manifest as uncertainties: 

𝑿 = 𝒇(𝑿, 𝑿̇) = 𝜶 ⋅ 𝑼 + 𝒉(𝑿, 𝑿̇) (77) 
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where 𝑈, 𝑓, 𝑎 are defined through equations (74), (69) and (76) respectively, and ℎ represents the 

uncertainties defined as: 

𝒉(𝑿, 𝑿̇) = [ 𝒉𝒙, 𝒉𝒚, 𝒉𝒛, 𝒉𝝓, 𝒉 , 𝒉 ]
𝑻
 (78) 

where ℎ𝑥 , ℎ𝑦, ℎ𝑧 account for position uncertainties and ℎ𝜙, ℎ𝜃 , ℎ𝜓 account for Euler angles 

uncertainties. The basic idea behind the proposed approach is that the uncertainties not taken into 

account by the CRM, can be learned by an RBF network, based on input – output data from the 

system.  

5.1.2 Quadrotor Backstepping-RBF controller 

The significance of equation (72) lies in its depiction of the quadrotor’s position’s dependence on 

the Euler angles. With a desired trajectory given by [𝑥 ,   , 𝑧 , 𝜓 ], the desired angles 𝜑  and 𝜃  

must be determined. The proposed scheme encompasses discrete controllers for position, attitude, 

altitude and heading. Specifically, the altitude, attitude, and heading controllers generate the input 

signals 𝑈1, 𝑈 , 𝑈  and 𝑈 , while the position controller is designed to track the desired angles 𝜑  

and 𝜃  by utilizing implicit control signals denoted as 𝑈𝑥 and 𝑈𝑦. These controllers are collectively 

structured through the utilization of the backstepping method using the CRM (73)-(75), while 

concurrently accounting for uncertainties estimated by neural networks. 

In this study, RBF networks are chosen for modeling uncertainties based on their ability to 

approximate intricate data relationships through radial basis activation functions as already pointed 

in subsection 2.2.1. These networks excel at capturing non-linear patterns, performing effectively 

in regression and classification tasks. Their flexibility and capacity to generalize make them well-

suited applications for addressing uncertainties. The RBF networks employed in this context are 

trained using the symmetric fuzzy means algorithm, a method thoroughly detailed in subsection 

2.2.2. This algorithm serves as the cornerstone for effectively training and estimating uncertainties 

in the RBF network’s predictions, contributing to the overarching framework outlined in this 

study. 

5.1.2.1 State Space Representation 

The model in (77) can be represented in state space by using equation (67) with:  

𝑿 = [ 𝒙 𝒙̇ 𝒚 𝒚̇ 𝒛 𝒛̇ 𝝓 𝝓̇    ̇    ̇ ]
𝑻

    = [ 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝒙𝟕 𝒙𝟖 𝒙𝟗 𝒙𝟏𝟎 𝒙𝟏𝟏 𝒙𝟏𝟐 ]
𝑻
 (79) 
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We denote the desired trajectory with the vector given by the following equation: 

𝑿𝒅 = [ 𝒙𝟏
𝒅 𝒙𝟑

𝒅 𝒙𝟓
𝒅 𝒙𝟕

𝒅 𝒙𝟗
𝒅 𝒙𝟏𝟏

𝒅 ]  (80) 

 In order to track the trajectory successfully, the error signal 𝑧𝑖 = 𝑥𝑖
 − 𝑥𝑖 must be zero. 

5.1.2.2 Controller Design 

From (72) we have that  𝑥  and    are given as: 

       
𝒙 =

𝑼𝟏

𝒎
⋅ (𝒄𝒐𝒔𝝓 ⋅ 𝒔𝒊𝒏 ⋅ 𝒄𝒐𝒔 + 𝒔𝒊𝒏𝝓 ⋅ 𝒔𝒊𝒏 )

 𝒚 =
𝑼𝟏

𝒎
⋅ (𝒄𝒐𝒔𝝓 ⋅ 𝒔𝒊𝒏 ⋅ 𝒔𝒊𝒏 − 𝒔𝒊𝒏𝝓 ⋅ 𝒄𝒐𝒔 )

 (81) 

From the above equations we denote as 𝑈𝑥 and 𝑈𝑦 the following equations: 

𝑼𝒙 = 𝒄𝒐𝒔𝝓 ⋅ 𝒔𝒊𝒏 ⋅ 𝒄𝒐𝒔 + 𝒔𝒊𝒏𝝓 ⋅ 𝒔𝒊𝒏 
 𝑼𝒚 = 𝒄𝒐𝒔𝝓 ⋅ 𝒔𝒊𝒏 ⋅ 𝒔𝒊𝒏 − 𝒔𝒊𝒏𝝓 ⋅ 𝒄𝒐𝒔   (82) 

The angles 𝜑  and 𝜃  can be determined by (81) as: 

𝝋𝒅 = 𝐚𝐫𝐜𝐬𝐢𝐧(𝑼𝒙 ⋅ 𝐬𝐢𝐧 𝒅 − 𝑼𝒚 ⋅ 𝐜𝐨𝐬 𝒅)

 𝒅 = 𝐚𝐫𝐜𝐬𝐢𝐧 (
𝑼𝒙 ⋅ 𝐜𝐨𝐬 𝒅 + 𝑼𝒚 ⋅ 𝐬𝐢𝐧 𝒅

𝐜𝐨𝐬𝝋𝒅
) 

 (83) 

Combining equations (77), (78), (81) and (82) we obtain: 

𝒙̇𝟐 = 𝒙 =
𝑼𝟏 ⋅ 𝑼𝒙

𝒎
+
𝒉𝒙
𝒎

 𝒙̇𝟒 = 𝒚 =
𝑼𝟏 ⋅ 𝑼𝒚

𝒎
+
𝒉𝒚

𝒎

 (84) 

We proceed by building the backstepping control law for the following nonlinear second order 

system: 

𝒙𝟏̇ = 𝒙𝟐

𝒙𝟐̇ = (𝒄𝒐𝒔𝒙𝟕 ∙ 𝒔𝒊𝒏𝒙𝟗 ∙ 𝒄𝒐𝒔𝒙𝟏𝟏 + 𝒔𝒊𝒏𝒙𝟏𝟏 ∙ 𝒔𝒊𝒏𝒙𝟕) ∙
𝑼𝟏

𝒎
−
𝒉𝒙
𝒎

 (85) 

  

Step 1: To proceed we define the reference error function for state 𝑥1: 
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𝒛𝟏 = 𝒙𝟏
𝒅 − 𝒙𝟏 (86) 

The time derivative of 𝑧1 is given by: 

𝒛𝟏̇ = 𝒙𝟏
𝒅̇ − 𝒙𝟏̇ = 𝒙𝟏

𝒅̇ − 𝒙𝟐  (87) 

 Considering the Lyapunov function for 𝑧1: 

𝑽𝟏(𝒛𝟏(𝒕)) =
𝟏

𝟐
⋅ 𝒛𝟏

𝟐(𝒕) (88) 

The derivative of the Lyapunov function 𝑉1 is: 

𝑽𝟏̇(𝒛𝟏(𝒕)) = 𝒛𝟏 ⋅ 𝒛𝟏̇ = 𝒛𝟏 ⋅ (𝒙𝟏̇
𝒅 − 𝒙𝟐) (89) 

Step 2:  In what follows we consider a change in variables by introducing the virtual control input 

𝑣1: 

𝒛𝟐 = 𝒗𝟏 − 𝒙𝟐 (90) 

The derivative of the above function variable 𝑧  is: 

𝒛𝟐̇ = 𝒗𝟏̇ − 𝒙𝟐̇ (91) 

By utilizing (91), (89) can be written as: 

𝑽𝟏̇(𝒛𝟏(𝒕)) = 𝒛𝟏 ⋅ (𝒙𝟏̇
𝒅 + 𝒛𝟐 − 𝒗𝟏) (92) 

 The stabilization of 𝑧1 can be obtained by designing the first virtual control input 𝑣1 such that: 

𝒗𝟏 = 𝒙𝟏
𝒅 + 𝒌𝟏 ⋅ 𝒛𝟏,   𝒌𝟏 ∈ ℝ+ (93) 

We proceed with defining the augmented 𝑉  as: 

𝑽𝟐(𝒛𝟏(𝒕), 𝒛𝟐(𝒕)) = 𝑽𝟏(𝒛𝟏(𝒕)) +
𝟏

𝟐
⋅ 𝒛𝟐(𝒕)

𝟐 (94) 

 With the time derivative gibe by: 

𝑽𝟐̇(𝒛𝟏(𝒕), 𝒛𝟐(𝒕)) = −𝒌𝟏 ⋅  𝒛𝟏
𝟐 + 𝒛𝟐 ⋅ (

𝑼𝒙 ⋅ 𝑼𝟏

𝒎
+
𝒉𝒙
𝒎

− 𝒙 𝟏
𝒅 − 𝒌𝟏 ⋅ 𝒛̇𝟏 − 𝒛𝟏) (95) 
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The control law 𝑈𝑥 is designed as: 

𝑼𝒙 = 𝒎 ⋅ 
−
𝒉𝒙
𝒎 + 𝒙 𝟏

𝒅 + 𝒛𝟏 + 𝒌𝟏 ⋅ 𝒛̇𝟏 − 𝒌𝟐 ⋅ 𝒛𝟐

𝑼𝟏
 , 𝒌𝟏,  𝒌𝟐 ∈ ℝ+ (96) 

By choosing the control law given by (96) in equation (95) one obtains 𝑉 ̇(𝑧1(𝑡), 𝑧 (𝑡)) ≤ 0. 

Consequently, the control system (85) by choosing the Lyapunov function (94) and the feedback 

control law as (96) is asymptotically stable according to Theorem 1, given in section 3.2.1 of 

chapter 3. 

Applying the same technique for states 𝑥 , 𝑥 , 𝑥7, 𝑥9 and 𝑥11, we derive all the control laws, 

summarized below: 

𝑼𝟏 =
𝒎

𝐜𝐨𝐬 𝒙𝟕 ⋅ 𝐜𝐨𝐬 𝒙𝟗
⋅ (𝒈 + 𝒙 𝟓

𝒅 + 𝒛𝟓 + 𝒌𝟓 ⋅ 𝒛̇𝟓 − 𝒌𝟔 ⋅ 𝒛𝟔 −
𝒉𝒛
𝒎
)

𝑼𝟐 =
𝑰𝒙
𝒍
⋅ (−𝒇𝟒 + 𝒙 𝟕

𝒅 + 𝒛𝟕 + 𝒌𝟕 ⋅ 𝒛̇𝟕 − 𝒌𝟖 ⋅ 𝒛𝟖 −
𝒉𝝓

𝑰𝒙
)

𝑼𝟑 =
𝑰𝒚

𝒍
⋅ (−𝒇𝟓 + 𝒙 𝟗

𝒅 + 𝒛𝟗 + 𝒌𝟗 ⋅  𝒛̇𝟗 − 𝒌𝟏𝟎 ⋅ 𝒛𝟏𝟎 −
𝒉 

𝑰𝒚
)

𝑼𝟒 = 𝑰𝒛 ⋅ (−𝒇𝟔 + 𝒙 𝟏𝟏
𝒅 + 𝒛𝟏𝟏 + 𝒌𝟏𝟏 ⋅ 𝒛̇𝟏𝟏 − 𝒌𝟏𝟐 ⋅ 𝒛𝟏𝟐 −

𝒉 

𝑰𝒛
)

𝑼𝒙 =
𝒎

𝑼𝟏
⋅ (𝒙 𝟏

𝒅 + 𝒛𝟏 + 𝒌𝟏 ⋅ 𝒛̇𝟏 − 𝒌𝟐 ⋅ 𝒛𝟐 −
𝒉𝒙
𝒎
)

𝑼𝒚 =
 𝒎

𝑼𝟏
⋅ (𝒙 𝟑

𝒅 + 𝒛𝟑 + 𝒌𝟑 ⋅ 𝒛̇𝟑 − 𝒌𝟒 ⋅ 𝒛𝟒 −
𝒉𝒚

𝒎
)

 (97) 

where ℎ𝑥 , ℎ𝑦, ℎ𝑧 , ℎ𝜙, ℎ𝜃 , ℎ𝜓 are approximated by six RBF, trained with the FM algorithm as 

described above. The proposed control framework is summarized in Figure 14. 

 

5.1.3 Trajectory Tracking simulation set up 

This section delves into the generation of flying simulation data, a vital task for creating a dynamic 

environment. Additionally, it covers the critical RBF network training stage, where the network is 

adeptly trained to model system uncertainties using the FM algorithm. Furthermore, performance 

evaluation across two diverse trajectory scenarios showcases the method’s versatility and 

effectiveness. 
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5.1.3.1 Data Generation 

To train the neural networks, a number of data have been generated through flying simulations 

based on the full model, which in this case plays the role of a real quadcopter, exhibiting dynamics 

unmodelled by the CRM. Values for the quadrotor physical parameters can be found in [153] while  

the aerodynamic drag coefficients 𝑘𝑖 are depicted in Table 7. The designed scheme was fully 

programmed in MATLAB environment and the full plant dynamics were solved by using the 

Runge-Kutta (4,5) formula. The full model was excited using random inputs and data were 

collected for all state variables [𝑋 𝑋̇]
𝑇
 and accelerations 𝑋  with a sampling rate of 250 Hz. The 

uncertainties ℎ(𝑋, 𝑋̇) to be given as targets to the neural networks were calculated by utilizing 

equation (77) in the following form: 

𝒉(𝑿, 𝑿̇) = 𝑿 − 𝒇(𝑿, 𝑿̇) − 𝒂 ⋅ 𝑼 (98) 

 In total, a number of 20000 data samples were collected. 

Table 7: Values for Aerodynamic drag coefficients 

 

TABLE I VALUES FOR AERODYNAMIC DRAG COEFFICIENTS 

Aerodynamical 

coefficient 
𝑘𝑥  𝑘  𝑘𝑧  𝑘𝜑  𝑘𝜃  𝑘𝜓  

Value -0.096 -0.222 -0.092 -0.06 -0.06 -0.02 

 

 

Figure 14: RBF-Backstepping control scheme 
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5.1.3.2 RBF Network Training 

The generated data were divided into three separate subsets: 50% for training, 25% for validation, 

and 25% for testing. The training subset was used for determining the model parameters, the 

validation set for selecting the most appropriate model, and the testing for providing an 

independent estimation of the model accuracy. 

In this work, six RBF neural networks were utilized to approximate the uncertainties ℎ(𝑋, 𝑋̇). 

Each RBF network employes two input variables, each corresponding to distinct states for the 

quadrotor. For example, the RBF modelling ℎ𝑥, uses as inputs the state variables 𝑥 and 𝑥̇. 

Model selection for the FM algorithm is controlled by the number of fuzzy subspaces s. The 

optimal value of s for each one of the six trained networks was found by performing an exhaustive 

search procedure in the range [4 - 50]. The model exhibiting the best modelling performance on 

the validation subset was used for each individual uncertainty. The mean absolute error (MAE) 

was used as metric for evaluating the model performance of each RBF network: 

𝑴𝑨 𝒊 =
𝟏

𝑵
⋅∑|𝒚𝒊(𝒌) − 𝒚̂𝒊(𝒌)|

𝑲

𝒌=𝟏

 (99) 

where  𝑖(𝑘) and   𝑖(𝑘) represent the real measurements and model predictions for RBF network 

𝑖, respectively. 

5.1.3.3 Controller Implementation 

To evaluate the performance of the proposed RBF-backstepping controller, two distinct reference 

spatial trajectories scenarios were employed.  

The first simulation was performed on a spiral trajectory, which exhibits simple geometrical 

characteristics. This trajectory is represented by the following equation: 

𝒙𝒓𝒆𝒇(𝒕) = 𝟎. 𝟓 ⋅ 𝒄𝒐𝒔(𝟎. 𝟓 ⋅ 𝒕)

𝒚𝒓𝒆𝒇(𝒕) = 𝟎. 𝟓 ⋅ 𝒔𝒊𝒏(𝟎. 𝟓 ⋅ 𝒕)

𝒛𝒓𝒆𝒇(𝒕) = 𝟏 +
𝒕

𝟏𝟎

 (100) 

The second trajectory, named “complex trajectory”, presents more complicated geometrical 

characteristics and is given by: 
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𝒙𝒓𝒆𝒇(𝒕) = 𝒄𝒐𝒔(𝟎. 𝟏𝟓 ⋅ 𝒕) − 𝒄𝒐𝒔(𝟎. 𝟏𝟓 ⋅ 𝒕)𝟑

𝒚𝒓𝒆𝒇(𝒕) = 𝒔𝒊𝒏(𝟎. 𝟏𝟓 ⋅ 𝒕) − 𝒔𝒊𝒏(𝟎. 𝟏𝟓 ⋅ 𝒕)𝟑

𝒛𝒓𝒆𝒇(𝒕) = 𝟎. 𝟑 ⋅ 𝒕

 (101) 

For both trajectories, the controller sampling time was set equal to 0.1s. The performance of the 

RBF – backstepping method was evaluated against a standard backstepping controller, using only 

the CRM (73)-(75), without taking into account the RBF uncertainty approximation. The 

parameters for both controllers were tuned using particle swarm optimization.  

5.1.4 Results and Discussion 

Table 8 depicts the results for the RBF network training procedure, including the MAE on the 

testing set, the selected number of fuzzy subspaces and the resulting number of RBF centers for 

each of the 6 networks. It can be seen that the FM algorithm manages to select the RBF centers in 

such a way, so as to produce a low MAE value for all the uncertainty models.  The results of the 

two controllers are depicted in Table 9 and Table 10, which include the sum of absolute errors 

(SAE) per dimension and the sum of tracking errors (STE) for both schemes, in the case of the 

spiral and the complex trajectory, respectively. The sum of absolute errors is given by: 

𝑺𝑨 𝒊 =∑|𝒙𝒊(𝒕) − 𝒙𝒊
𝒅(𝒕)|

𝑻𝑺

𝒕=𝟏

 (102) 

where 𝑡 = 1, . . ., 𝑇𝑆 represents the running time of the flight simulation, and 𝑥𝑖(𝑘), 𝑥𝑖
 (𝑘) 

represent the real state measurement and the desired state for the 𝑖𝑡ℎ dimension, with  𝑖 = 𝑥,  , 𝑧. 

The sum of tracking errors, corresponds to the sum of Euclidean distances between the actual 

position of the quadrotor and the reference trajectory and can be used to assess the overall 

performance of the proposed controller; STE is calculated as follows: 

𝑺𝑻 =∑√∑(𝒒𝒊(𝒕) − 𝒑𝒊(𝒕))
𝟐

𝟑

𝒊=𝟏

𝑻𝑺

𝒕=𝟏

 (103) 

where 𝑞(𝑡) = [𝑥   𝑧] and 𝑝(𝑡) = [𝑥     𝑧 ] are vectors representing the actual quadrotor 

Cartesian coordinates and the reference trajectory coordinates at time 𝑡, respectively.  

Visual representations for the performance of the two controllers can be seen in Figures 15-18 

which depict the tracking errors in the three spatial dimensions, and the 3D trajectories for both 

controllers, together with the reference, in the case of the spiral and the complex trajectory, 
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respectively. Taking into account the tracking errors shown in Table 9 regarding the spiral 

trajectory, the RBF – backstepping control scheme outperforms its rival in all spatial dimensions, 

while it manages to produce an improvement of approximately 24% in terms of STE.  

A similar result is obtained for the complex trajectory where once more the proposed control 

method manages to outperform the standard backstepping approach, as it can be seen by examining 

the metrics of Table 10. The proposed approach still produces lower control tracking errors in 

terms of SAE in all three dimensions, while at the same time it achieves a significant improvement 

of 23.3% when taking into account the STE.  

This result is due to the fact that the proposed scheme, enhanced by the efficient performance of 

the RBF models, manages to approximate adequately the effect of aerodynamic friction, which the 

standard backstepping controller fails to capture as it is solely based on the CRM. The difference 

between the two controllers is more obvious in the 3D graphs at the beginning of each trajectory, 

where the proposed method manages to approach the reference more efficiently, but even later, 

the superiority of the RBF-backstepping controller is still visible in graphs depicting the error per 

dimension. Notice that the difference is more significant in the y dimension, which is to be 

expected, as the value used for the drag coefficient 𝑘𝑦 happens to be higher than 𝑘𝑥 and 𝑘𝑧. 

It should be noted that in this simulation, the difference in terms of unmodelled dynamics between 

the two controllers is just due to aerodynamic friction, which is taken into account by the RBF 

networks, but not by the CRM. In a real-world situation though, the difference is expected to be 

significantly higher, due to the increased presence of unmodelled dynamics and uncertainties 

which are not accounted by the CRM, but can be identified by the RBF network (such as ground 

effects, gyroscopic torques, etc.) 
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Table 8: RBF Modeling results on the testing subset 

RBF model 𝒉𝒙 𝒉𝒚 𝒉𝒛 𝒉𝝋 𝒉  𝒉  

# of fuzzy 

subspaces 
29 31 27 27 19 21 

# of RBF 

centers 
77 86 32 67 47 81 

MAE 1.86 E-05 2.47 E-05 1.04E-04 1.10E-06 2.06E-06 1.8E-04 

 

Table 9: Controller tracking errors for the spiral trajectory 

Controller SAE x(m) SAE y(m) SAE z(m) STE (m) 

RBF -

Backstepping 
4.456 3.718 3.902 7.503 

Backstepping 4.539 6.375 4.896 9.877 

 

Table 10: Controller tracking errors for the complex trajectory 

Controller SAE x(m) SAE y(m) SAE z(m) STE (m) 

RBF -

Backstepping 
3.962 2.837 0.1810 5.090 

Backstepping 4.567 4.452 0.2933 6.638 
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Figure 16: 3D Spiral trajectory simulation results 

 

 

Figure 15: Spiral trajectory error for (a) x, (b) y, (c) z dimensions 
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Figure 17: Complex trajectory error for (a) x, (b) y, (c) z dimensions  

 

 

(a)

(c)

(b)

 

Figure 18: 3D Complex trajectory simulation results 
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In summary, the RBF-backstepping controller has showcased its trajectory tracking capabilities 

and its capacity to take into account aerodynamic friction effects. Nevertheless, delving deeper 

into the challenges of quadrotor control, the demand for an efficient multi-controller tuning 

approach becomes more pronounced, given the common use of multiple controllers in trajectory 

tracking schemes. With this in mind, the subsequent section will delve into the imperative need of 

devising such a method within the quadrotor trajectory tracking control framework. 

5.2 A new cooperative PSO optimization approach for tuning an MPC-based quadrotor 

trajectory tracking scheme 

In this section, the objective is to develop a novel method for tuning a quadrotor trajectory-tracking 

MPC framework utilizing cooperative particle swarm optimization. The control framework 

includes two subsystems: an MPC controller for path following and a PID scheme for attitude 

stabilization. These subsystems necessitate numerous tuning parameters, optimized by a CPSO 

scheme. Multiple swarms optimize distinct solution vector components-MPC and PID parameters-

collaboratively enhancing path tracking in the integrated control framework. The approach is 

assessed through diverse trajectory simulation experiments. 

5.2.1 Quadrotor mathematical model 

The quadrotor modeling presented in this section builds upon the analysis conducted in section 

4.3.1, notably relying on Newton-Euler formulation for modeling dynamics. The quadrotor’s 

dynamics equation assuming null disturbances in the body frame is given by equation (62), while 

by using the Newton-Euler formalism (65) expressed in the inertial frame is given by the following 

equation: 

𝒎 ∙ 𝒙 = (𝒄𝒐𝒔𝝋 ∙ 𝒔𝒊𝒏 ∙ 𝒄𝒐𝒔 + 𝒔𝒊𝒏𝝋 ∙ 𝒔𝒊𝒏 ) ∙ 𝑼𝟏 −𝑲𝒙 ∙ 𝒙̇

𝒎 ∙ 𝒚 = (𝒄𝒐𝒔𝝋 ∙ 𝒄𝒐𝒔 ∙ 𝒔𝒊𝒏 + 𝒔𝒊𝒏𝝋 ∙ 𝒄𝒐𝒔 ) ∙ 𝑼𝟏 −𝑲𝒚 ∙ 𝒚̇

𝒎 ∙ 𝒛 = 𝒄𝒐𝒔𝝋 ∙ 𝒄𝒐𝒔 ∙ 𝑼𝟏 −𝒎 ∙ 𝒈 − 𝑲𝒛 ∙ 𝒛̇

𝑰𝒙 ∙ 𝝋 =  ̇ ∙  ∙ (𝑰𝒚 − 𝑰𝒛) + 𝒍 ∙ 𝑼𝟐 + 𝑱𝒓 ∙  ̇ ∙ 𝜴𝒓 −𝜥𝝋 ∙ 𝝋̇

𝑰𝒚 ∙   = 𝝋̇ ∙  ∙ (𝑰𝒛 − 𝑰𝒙) + 𝒍 ∙ 𝑼𝟑 + 𝑱𝒓 ∙ 𝝋̇ ∙ 𝜴𝒓 −𝜥 ∙  ̇

𝑰𝒛 ∙   = 𝝋̇ ∙  ̇ ∙ (𝑰𝒙 − 𝑰𝒚) + 𝑼𝟒 −𝜥 ∙  ̇

 (104) 

The flight control of the quadrotor is achieved through the control input 𝑈, whih is defined by four 

control actions 𝑈𝑖 with, 𝑖 ∈ {1,2,3,4}. The control input is given by equation (66): 
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[

𝑼𝟏

𝑼𝟐

𝑼𝟑

𝑼𝟒

] =

[
 
 
 
 
𝒃 ∙ ((𝜴𝟏

𝟐 + 𝜴𝟐
𝟐 + 𝜴𝟑

𝟐 + 𝜴𝟒
𝟐)

𝒍 ∙ 𝒃 ∙ (−𝜴𝟐
𝟐 + 𝜴𝟒

𝟐)

𝒍 ∙ 𝒃 ∙ (−𝜴𝟑
𝟐 + 𝜴𝟏

𝟐)

𝒅 ∙ (𝜴𝟏
𝟐 − 𝜴𝟐

𝟐 + 𝜴𝟑
𝟐 − 𝜴𝟒

𝟐) ]
 
 
 
 

 (105) 

5.2.2 Controller design 

5.2.2.1 Error MPC position control 

In this section a control framework that deals with the trajectory tracking problem of an 

autonomous discrete-time nonlinear quadrotor system is given. To be more specific, a linear error-

based MPC strategy is constructed in order to control the quadrotor position. The error model 

derived is divided into two different position controllers. The first one controls the altitude of the 

quadrotor via the input 𝑈1 while the second one is responsible for the control in the x-y plane 

through the inputs 𝑢𝑥, 𝑢𝑦, which are derived as follows 

The position system (104) can be rewritten in state space form as 𝜉̅̇(𝑡) = 𝑓 (𝜉̅(𝑡), 𝑢𝜉(𝑡)), where 

𝜉̅(𝑡) = [ 𝑥(𝑡) 𝑢(𝑡)  (𝑡) 𝑣(𝑡) 𝑧(𝑡) 𝑤(𝑡) ] stands for the augmented system state space vetor, and 

𝑢(𝑡), 𝑣(𝑡), 𝑤(𝑡) are the linear velocities of the quadrotor’s mass center: 

𝝃̇̅(𝒕) =

[
 
 
 
 
 
 
 
 
 

 (𝒕)

 𝒙(𝒕) ⋅
𝑼𝟏(𝒕)

𝒎
𝒗(𝒕)

 𝒚(𝒕) ⋅
𝑼𝟏(𝒕)

𝒎
𝒘(𝒕)

−𝒈 + 𝐜𝐨𝐬 ( (𝒕)) ⋅ 𝐜𝐨𝐬 (𝝋(𝒕)) ⋅
𝑼𝟏(𝒕)

𝒎
)]
 
 
 
 
 
 
 
 
 

 (106) 

 where 

 𝒙(𝒕) = 𝐜𝐨𝐬( (𝒕)) ⋅ 𝐬𝐢𝐧( (𝒕)) ⋅ 𝒄𝒐𝒔(𝝋(𝒕)) + 𝒔𝒊𝒏( (𝒕)) ⋅ 𝒔𝒊𝒏(𝝋(𝒕))

 𝒚(𝒕) = 𝒔𝒊𝒏( (𝒕)) ⋅ 𝒔𝒊𝒏( (𝒕)) ⋅ 𝒄𝒐𝒔(𝝋(𝒕)) − 𝒄𝒐𝒔( (𝒕)) ⋅ 𝒔𝒊𝒏 (𝝋(𝒕)))
 (107) 

The reference trajectory is provided off-line and a virtual reference vehicle with the same dynamics 

as the quadrotor is proposed along with the real one on the same track. Assuming that there is no 

external disturbance to the virtual reference quadrotor, the dynamics can be written in the form: 

𝝃̇̅𝒓𝒆𝒇(𝒕) = 𝒇 (𝝃̅𝒓𝒆𝒇(𝒕),  𝝃𝒓𝒆𝒇(𝒕)) (108) 
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where 𝜉𝑟̅𝑒𝑓 = (𝑡) = [ 𝑥𝑟𝑒𝑓(𝑡) 𝑢𝑟𝑒𝑓(𝑡)  𝑟𝑒𝑓(𝑡) 𝑣𝑟𝑒𝑓(𝑡) 𝑧𝑟𝑒𝑓(𝑡) 𝑤𝑟𝑒𝑓(𝑡) ] and 𝑢𝜉𝑟𝑒𝑓(𝑡) =

[ 𝑢𝑥𝑟𝑒𝑓 𝑢𝑦𝑟𝑒𝑓 𝑈1𝑟𝑒𝑓] are the reference state vector and the reference input control, respectively. 

Subtracting the virtual system given by (108) from the augmented position system (106) and using 

the forward Euler method for altitude 𝑧, the error model is obtained as a discrete time linear 

equation: 

𝒙̃𝒓𝒆𝒇(𝒌 + 𝟏) = 𝑨 ⋅ 𝒙̃𝝃(𝒌) +  (𝒌) ⋅  ̃𝝃(𝒌) (109) 

where  𝑥̃𝜉(𝑘) = 𝜉̅(𝑘) − 𝜉𝑟̅𝑒𝑓(𝑘) is the position error vector and 𝑢̃𝜉(𝑘) = 𝑢(𝑘) − 𝑢𝜉𝑟𝑒𝑓(𝑘) is the 

control input error vector. The error model (109) is divided into two discrete state-space 

subsystems, namely the altitude and attitude one. 

The height position error model for the altitude subsystem takes the following form: 

𝒙̃𝒛(𝒌 + 𝟏) = 𝑨𝒛 ⋅ 𝒙̃𝒛(𝒌) +  𝒛(𝒌) ⋅  ̃𝒛(𝒌) (110) 

where matrices 𝐴𝑧 and 𝐵𝑧(𝑘) are given as follows: 

𝑨𝒛 = [
𝟏 𝜟𝒕
𝟎 𝟏

] ,  𝒛(𝒌) = [
𝟎

𝜟𝒕

𝒎
⋅ 𝐜𝐨𝐬( (𝒌)) ⋅ 𝒄𝒐𝒔𝒕(𝝋(𝜿))

] (111) 

with 𝛥𝑡 being the sampling time. 

Successful path tracking for a desired trajectory is possible by finding the suitable control inputs. 

In order to achieve this, an unconstrained MPC problem is designed for solving the tracking error 

problem by utilizing the formulation given of (56) in subsection 3.3.2. The OCP problem takes the 

following form: 

𝐦𝐢𝐧⏟
 ̅𝒛

𝑱𝒛(𝒙̅𝟎,  ̅𝒛) 

 𝒔. 𝒕.   𝒙̅𝒛(𝟎, 𝒙̅𝟎) = 𝒙̅𝟎 

𝒙̃𝒛(𝒌 + 𝟏) = 𝑨𝒛 ⋅ 𝒙̃𝒛(𝒌) +  𝒛(𝒌) ⋅  ̃𝒛(𝒌) 

(112) 

with 𝐽𝑧 is the given by: 

𝑱𝒛(𝒙̅𝟎,  ̅𝒛) = 𝒙𝒛
𝑻 ⋅ 𝑸𝒛 ⋅ 𝒙̅𝒛 +  ̅𝒛

𝑻 ⋅ 𝑹𝒛 ⋅  ̅𝒛 + 𝒙̅𝒛
𝑻(𝒌 + 𝑵𝒑/𝒌) ⋅ 𝑮𝒛 ⋅ 𝒙̅𝒛(𝒌 + 𝑵𝒑/𝒌) (113) 
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where 𝑥̅𝑧 = 𝑥̂̃𝑧 − 𝑥̂̃𝑧𝑟𝑒𝑓, 𝑢̅𝑧 = 𝑢̂̃𝑧 − 𝑢̂̃𝑧𝑟𝑒𝑓 and 𝑥̅𝑧(𝑘 + 𝑁𝑝 /𝑘) = 𝑥̃𝑧(𝑘 + 𝑁𝑝 /𝑘) − 𝑥̃𝑧𝑟𝑒𝑓(𝑘 +

𝑁𝑝/𝑘). Matrices 𝑄𝑧, 𝑅𝑧 and 𝐺𝑧 are positive definite and penalize divergences from the references 

state, input and terminal state, respectively. The predictions of the plant output 𝑥̃𝑧(𝑘 + 𝑗 /𝑘) 

𝑥̃𝑧(𝑘 + 𝑁𝑝 /𝑘) are computed using a linear time-varying state-space model of the vehicle using 

(110) and (111), giving: 

𝒙̃𝒛(𝒌 + 𝟏) = 𝑷𝒛(𝒌/𝒌) ⋅ 𝒙𝒛(𝒌/𝒌) + 𝑯𝒛(𝒌/𝒌) ⋅  ̃𝒛(𝒌) (114) 

where 𝑢̃(𝑘/𝑘) = 𝑈1(𝑘) − 𝑢𝑧𝑟𝑒𝑓(𝑘) and 𝑥̂̃𝑧 ∈ ℝ𝑁𝑝 is the height state-space vector. The reference 

height and input state error vectors are: 

𝒙̂𝒛𝒓𝒆𝒇 = [

𝒙𝒛𝒓𝒆𝒇(𝒌 + 𝟏/𝒌) − 𝒙𝒛𝒓𝒆𝒇(𝒌/𝒌)

⋮
𝒙𝒛𝒓𝒆𝒇(𝒌 + 𝑵𝒑/𝒌) − 𝒙𝒛𝒓𝒆𝒇(𝒌/𝒌)

],    ̂̃𝒛𝒓𝒆𝒇 = [

 ̃𝒛𝒓𝒆𝒇(𝒌/𝒌) −  ̃𝒛𝒓𝒆𝒇(𝒌 − 𝟏/𝒌)

⋮
 ̃𝒛𝒓𝒆𝒇(𝒌 + 𝑵𝒄 − 𝟏/𝒌) −  ̃𝒛𝒓𝒆𝒇(𝒌 − 𝟏/𝒌)

] (115) 

where 𝑁𝑝 is the prediction horizon, showing how far the controller predicts to the future, and 𝑁𝑐 

is the control horizon, which constitutes the number of consecutive moves to be manipulated by 

the controller for minimizing the cost function 𝐽𝑧. The control moves  ̂̃𝒛 at time 𝑘 are evaluated 

by solving the minimization problem (112); however, only the first control move is implemented 

on the system, while the remaining ones are rejected. After applying the control move 𝑢̂̃𝑧𝑟𝑒𝑓(𝑘/𝑘), 

the system moves to a new position at time 𝑘 + 1 and the minimization problem is solved again 

for the new current state, yielding a new control action. 

Thus, the control input applied to the quadrotor is: 

𝑼𝟏(𝒌) =  ̃(𝒌/𝒌) +  𝒛𝒓𝒆𝒇(𝒌) (116) 

In a similar way the x-y motion position error model takes the following form: 

𝒙̂̃𝒙𝒚(𝒌 + 𝟏) = 𝑨𝒙𝒚 ⋅ 𝒙̃𝒙𝒚(𝒌) +  𝒙𝒚(𝒌) ⋅  ̂̃𝒙𝒚(𝒌) (117) 

 where matrices 𝐴𝑥𝑦 and 𝐵𝑥𝑦(𝑘) are given as followed: 

𝑨𝒙𝒚 = [

𝟏 𝜟𝒕 𝟎 𝟎
𝟎 𝟏 𝟎 𝟎
𝟎 𝟎 𝟏 𝜟𝒕
𝟎 𝟎 𝟎 𝟏

] ,  𝒙𝒚(𝒌) =

[
 
 
 
 
 

𝟎 𝟎
𝜟𝒕

𝒎
⋅ 𝑼𝟏(𝒌) 𝟎

𝟎 𝟎

𝟎
𝜟𝒕

𝒎
⋅ 𝑼𝟏(𝒌)]

 
 
 
 
 

 (118) 
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Following the same procedure as above, the OCP problem for the problem of minimizing the 

tracking error in the x-y direction takes the following form: 

𝐦𝐢𝐧⏟
 ̅𝒙𝒚

𝑱𝒙𝒚(𝒙̅𝟎,  ̅𝒙𝒚) 

 𝒔. 𝒕.   𝒙̅𝒙𝒚(𝟎, 𝒙̅𝟎) = 𝒙̅𝟎 

𝒙̂̃𝒙𝒚(𝒌 + 𝟏) = 𝑨𝒙𝒚 ⋅ 𝒙̃𝒙𝒚(𝒌) +  𝒙𝒚(𝒌) ⋅  ̂̃𝒙𝒚(𝒌) 

(119) 

Where the cost function 𝐽𝑥𝑦 is given by: 

𝑱𝒙𝒚(𝒙̅𝟎,  ̅𝒙𝒚) = 𝒙̅𝒙𝒚
𝑻 ⋅ 𝑸𝒙𝒚 ⋅ 𝒙̅𝒙𝒚 +  ̅𝒙𝒚

𝑻 ⋅ 𝑹𝒙𝒚 ⋅  ̅𝒙𝒚 + 𝒙̅𝒙𝒚
𝑻 (𝒌 +𝑵𝒑/𝒌) ⋅ 𝑮𝒙𝒚 ⋅ 𝒙̅𝒙𝒚(𝒌 + 𝑵𝒑/𝒌) (120) 

where 𝑄𝑥𝑦, 𝑅𝑥𝑦 and 𝐺𝑥𝑦 are positive definite matrices. The rest of the matrices are computed in 

similar manner to the height predictive control scheme. 

By minimizing the cost function 𝐽𝑥𝑦, the control input 𝑢̅𝑥𝑦 is obtained, where 𝑢̅𝑥𝑦(𝑘/𝑘) =

[𝑢̅𝑥(𝑘/𝑘)  𝑢̅𝑦(𝑘/𝑘)]
𝑇
 and: 

 𝒙𝒚(𝒌) =  ̅𝒙𝒚(𝒌/𝒌) +  𝒙𝒚𝒓𝒆𝒇(𝒌) (121) 

The error reference state-space vector  𝑥̂̃𝑥𝑦𝑟𝑒𝑓 ∈ ℝ𝑁𝑝 and the reference input 𝑢̂̃𝑥𝑦𝑟𝑒𝑓 are obtained 

in the same way as in the height control mechanism. 

Rewriting equation (107) for time instance 𝑘, we obtain: 

 𝒙(𝒕) = 𝐜𝐨𝐬( (𝒕)) ⋅ 𝐬𝐢𝐧( (𝒕)) ⋅ 𝒄𝒐𝒔(𝝋(𝒕)) + 𝒔𝒊𝒏( (𝒕)) ⋅ 𝒔𝒊𝒏(𝝋(𝒕))

 𝒚(𝒕) = 𝒔𝒊𝒏( (𝒕)) ⋅ 𝒔𝒊𝒏( (𝒕)) ⋅ 𝒄𝒐𝒔(𝝋(𝒕)) − 𝒄𝒐𝒔( (𝒕)) ⋅ 𝒔𝒊𝒏 (𝝋(𝒕)))
 (122) 

By setting 𝜓𝑟𝑒𝑓 = 0 and using (121), (122), the refences values for the roll angle 𝜑𝑟𝑒𝑓 and pitch 

angle 𝜃𝑟𝑒𝑓 are calculated; these are given as set point to the attitude control loop which will be 

described in the next subsection. 

5.2.2.2 PID attitude control 

The role of the position controller lies in generating the desired values for roll and pitch angles. 

These values are determined based on the current reference position of the trajectory. However, 

for the quadrotor system to effectively track the desired trajectory, it becomes essential to compute 

the control inputs 𝑈1, 𝑈 , 𝑈  and 𝑈 . This intricate task is entrusted to the inner attitude controller, 

responsible for regulating the orientation angles 𝜑 and 𝜃. These angles are steered using reference 
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inputs supplied by the outer position controller. In this subsection, the design of the inner attitude 

loop adopts standard PID controllers, as discussed in section 4.4. 

The rotational dynamic model given in section 4.3.1 by equation (62) can be expressed as: 

𝑰 ⋅ 𝜴̇ = 𝝉 (123) 

where (123) can be rewritten using the notation of equations (104) and (105) as: 

𝑰𝒙 ⋅ 𝝋 = 𝑼𝟐

𝑰𝒚 ⋅   = 𝑼𝟑

𝑰𝒛 ⋅   = 𝑼𝟒

 (124) 

The objective of the attitude controller is to ensure that Euler’s angles 𝜑, 𝜃, 𝜓 track the desired 

trajectory values  𝜑𝑟𝑒𝑓 , 𝜃𝑟𝑒𝑓 , 𝜓𝑟𝑒𝑓 asymptotically, by applying the suitable control signals 

𝑈 , 𝑈 , 𝑈  to the quadrotor. Three independent PID controllers are utilized to control the angular 

accelerations of the quadrotor, one for each Euler angle.  

By applying forward Euler method on continuous PID controllers, each controller can be expressed 

in velocity form as follows  

 𝒋(𝒌) = (𝑲𝑷𝒋 +𝑲𝑫𝒋 ⋅ 𝑵𝒋) ⋅ 𝒆𝒋(𝒌)

+ (𝑵𝒋 ⋅ 𝜟𝒕 ⋅ 𝑲𝑷𝒋 +𝑲𝑰𝒋 ⋅ 𝜟𝒕 − 𝟐 ⋅ 𝑲𝑫𝒋 ⋅ 𝑵𝒋 − 𝟐 ⋅ 𝑲𝑷𝒋) ⋅ 𝒆𝒋(𝒌 − 𝟏)

+ (𝑲𝑷𝒋 −𝑲𝑷𝒋 ⋅ 𝑵𝒋 ⋅ 𝜟𝒕 − 𝑲𝑰𝒋 ⋅ 𝜟𝒕 + 𝑲𝑰𝒋 ⋅ 𝑵𝒋 ⋅ 𝜟𝒕
𝟐 ⋅ 𝑲𝑫𝒋 ⋅ 𝑵𝒋)

⋅ 𝒆𝒋(𝒌 − 𝟐) − (𝑵𝒋 ⋅ 𝜟𝒕 − 𝟐) ⋅  𝒋(𝒌 − 𝟏) − (𝟏 − 𝑵𝒋 ⋅ 𝜟𝒕)

⋅  𝒋(𝒌 − 𝟐) 

(125) 

The index 𝑗 with 𝑗 = 1,2,3,4 describes the Euler’s angles 𝜑, 𝜃, 𝜓, while 𝑟𝑗 describes the reference 

angles 𝜑𝑟𝑒𝑓 , 𝜃𝑟𝑒𝑓 , 𝜓𝑟𝑒𝑓, of the 𝑗𝑡ℎ channel. The control signal is denoted by 𝑢𝑗(𝑘) and the error 

signal by ( )je k  at each discrete time instant k . The error signal is the difference between the 

actual value 𝜂𝑗(𝑘) and reference𝑟𝑗. 𝐾𝑃𝑗, 𝐾𝐼𝑗, 𝐾𝐷𝑗 are the controller proportional, integral and 

derivative gains and 𝑁𝑗 is the low pass filter coefficient of the derivative term of the PID controller.  

By using equations (123), (124), the control inputs 𝑈 , 𝑈 , 𝑈  can be estimated through the 

following equations: 
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𝑼𝟐 = 𝑰𝒙 ⋅  𝝋
𝑼𝟑 = 𝑰𝒚 ⋅    
𝑼𝟒 = 𝑰𝒛 ⋅    

 (126) 

An important addition to the proper design of the control strategy takes into consideration the 

saturation bounds for each one of the control signals. With the primary objective of limiting and 

controlling the quadrotor's thrust force, many saturation-constraint based methodologies have been 

developed [154]. The enhancement in quadrotor control design arising from the introduction of 

saturated limits for control signals can be elucidated as follows. Firstly, both the total thrusts 𝑈1 

and control torque 𝝉 are confined within certain bounds due to physical constraints imposed by the 

electrical motors. Secondly, the control inputs need to operate within a certain range that facilitates 

smooth and uninterrupted trajectory tracking. Lastly, enforcing boundaries in input signals 

mitigates flight scenarios that could lead to the quadcopter losing stability. Based on these 

considerations, eight input saturation limits are enforced for the four control inputs 𝑈1, 𝑈 , 𝑈 , 𝑈  

encompassing both upper and lower bounds. This strategic positioning of bounds on control inputs 

ensures the quadrotor’s position and attitude control operates within defined limits, as shown in 

Figure 19. 

5.2.3 Control scheme tuning using a CPSO-based optimizer 

The standard PSO algorithm could be applied for tuning the proposed quadrotor control scheme, 

but in this case, the elements of each particle should contain all the controller parameters to be 

tuned, which should be optimized concurrently; Figure 20 shows the corresponding particle 

structure in this case.  

 

Figure 19: Overall quadrotor control structure 

 

𝑈1

PID Attitude 

Controller

Quadrotor

Dynamics

𝑈 

𝑈 

𝑈 

𝜑, 𝜃, 𝜓

𝑥,  , 𝑧

𝜓𝑟

Trajectory

Generator

𝜑𝑟 ,  𝜃𝑟

State Space MPC 

Position Controller

           

Prediction Horizon

FuturePast

Sample 
Time

Σ

𝐾 
𝑑𝑒 𝑡

𝑑𝑡D

P 𝐾𝑝𝑒 𝑡

I 𝐾𝑖∫ 𝑒 𝜏 𝑑𝜏 

𝑡

0



Development and tuning of automatic control methods for nonlinear systems using computational intelligence techniques with 

emphasis on the control of unmanned aerial vehicles 

 

A. Kapnopoulos 
116 

However, there is a high number of parameters involved, pertaining to the two control subsystems. 

From an optimization perspective, the increased dimensionality of the search space makes it 

difficult to discover even a good suboptimal solution. On the other hand, a distinction can be made 

between two different parts in each particle, where each part controls a different mechanism of the 

integrated control scheme. To be more specific, the first part contains the parameters from the 

position control strategy of the MPC controller, while the second one the parameters from the 

attitude control through the implementation of PID controllers. The existence of two different 

groups of parameters within the particle, leads to the idea of using two cooperative swarms. As 

previously stated in subsection 2.4, the CPSO framework is employed in this context to fine tune 

the quadrotor’s control parameters. This advancement permits the simultaneous optimization of 

both MPC and PID parameters. Throughout the optimization procedure, the two distinct swarms 

independently evolve while maintaining effective information exchange. This integrated approach 

serves to proficiently optimize the quadrotor’s control parameters, further enhancing its 

performance. The particles for the MPC swarm which contain the position control tuning 

parameters are denoted as 𝑃1𝑥𝑖, while the particles of the PID swarm containing the attitude control 

tuning parameters are denoted as 𝑃 𝑥𝑖. 

The following equations display the parameters controlled by each one of the swarms 𝑃1 and 𝑃 : 

𝑷𝟏𝒙𝒊 = [𝑸𝒛𝟏 𝑸𝒛𝟏 𝑹𝒛 𝑮𝒛𝟏 𝑮𝒛𝟐 𝑸𝒙𝒚𝟏 𝑸𝒙𝒚𝟐 𝑹𝒙𝒚 𝑮𝒙𝒚𝟏 𝑮𝒙𝒚𝟐 𝑵𝒄 𝑵𝒑 ] (127) 

 

𝑷𝟐𝒙𝒊 = [𝑲𝑷  𝑲𝑰  𝑲𝑫  𝑵  𝑲𝑷𝝋 𝑲𝑰𝝋 𝑲𝑫𝝋 𝑵𝝋 𝑲𝑷  𝑲𝑰  𝑲𝑫  𝑵  𝑼𝟏  𝑼𝟐 𝑼𝟑 𝑼𝟒 ] (128) 

 For each swarm the position and velocity vector are updated according to the following equations: 

𝑷𝒌𝒗𝒊,𝒋(𝒕 + 𝟏) = 𝒘 ∙ 𝑷𝒌𝒗𝒊,𝒋(𝒕) + 𝒄𝟏 ∙ 𝒓𝟏,𝒊 ∙ [𝑷𝒌𝒚𝒊,𝒋(𝒕) − 𝑷𝒌𝒙𝒊,𝒋(𝒕)] + 𝒄𝟐 ∙ 𝒓𝟐,𝒊 ∙

[𝑷𝒌𝒚̂𝒋(𝒕) − 𝑷𝒌𝒙𝒊,𝒋(𝒕)]  
(129) 

  

 

Figure 20: Overall particle structure in the case of standard PSO 
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𝑷𝒌𝒙𝒊,𝒋(𝒕 + 𝟏) = 𝑷𝒌𝒙𝒊,𝒋(𝒕) + 𝑷𝒌𝒗𝒊,𝒋(𝒕 + 𝟏) (130) 

where the 𝑖𝑡ℎ particle in dimension 𝑗 is represented as 𝑃𝑘𝑥𝑖,𝑗(𝑡) for the swarm 𝑘, the speed for 

particle 𝑖 in dimension 𝑗 is represented as 𝑃𝑘𝑣𝑖,𝑗(𝑡), the personal best position of the 𝑖𝑡ℎ particle 

in dimension 𝑗 is denoted as 𝑃𝑘 𝑖,𝑗(𝑡), and 𝑃𝑘  𝑗(𝑡) represents the best particle position among all 

particles for the 𝑗𝑡ℎ dimension. 

The velocity of each particle 𝑃𝑘𝑣𝑖,𝑗(𝑡) is controlled by a clamping constant 𝑃𝑘𝑣𝑚𝑎𝑥   that regulates 

the maximum velocity update to a defined range of [-𝑃𝑘𝑣𝑚𝑎𝑥 , 𝑃𝑘𝑣𝑚𝑎𝑥]. The addition of the 

clamping constant is used to control the exploration-exploitation trade-off, by affecting the 

particles’ ability to explore a small, or big part of the search space. 

As each swarm is connected to a specific part of the solution vector of the optimization procedure, 

the right cooperation between the agents is essential in order to calculate the fitness function. The 

implementation of this task is feasible by using a context vector. This vector provides a suitable 

context in which the individuals from each swarm can be evaluated. To form the context vector, 

the global best particle    from one swarm, is combined with each particle 𝑥𝑖 , 𝑖 = 1,… , 𝑠 from the 

other swarm. Therefore, in order to calculate the fitness functions for swarm 𝑃𝑘, all the respective 

particles should be concatenated with the global best particle of the complementary swarm 

𝑃( 𝑘) −𝑘  . This concatenation leads to the full set of parameters for both controllers, which is used 

to simulate the quadrotor flight. The fitness function is calculated as the sum of the Euclidean 

distances (SED) between the reference trajectory and the actual quadrotor trajectory during the 

simulation flight, based on the following equation: 

𝒇 = ∑ √∑(𝒒𝒊(𝒕𝒔) − 𝒑𝒊(𝒕𝒔))
𝟐

𝟑

𝒊=𝟏

𝒕𝒆𝒏𝒅

𝒕𝒔=𝟏

 (131) 

where 𝑡𝑠 = 1,… , 𝑡𝑒𝑛  is the running time of the flight simulation, 𝑞(𝑡𝑠) = [𝑥𝑟𝑒𝑓,  𝑟𝑒𝑓 , 𝑧𝑟𝑒𝑓] is the 

vector containing the Cartesian coordinates of the reference altitude and attitude of the quadcopter 

at time 𝑡𝑠, 𝑝(𝑡𝑠) = [𝑥,  , 𝑧] is the vector containing the Cartesian coordinates of the actual altitude 

and attitude achieved by the quadrotor at time 𝑡𝑠, and 𝑡𝑒𝑛  is the end time of the simulation. 

The personal best position 𝑃𝑘 𝑖(𝑡) for each particle 𝑖 of each swarm 𝑘 depicts the best result found 

for this particle up to iteration 𝑡: 
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𝑷𝒌𝒚𝒊(𝒕 + 𝟏) = {
𝑷𝒌𝒚𝒊(𝒕),

  𝑷𝒌𝒙𝒊(𝒕 + 𝟏),

𝒊𝒇 𝒇(𝑷𝒌𝒙𝒊(𝒕 + 𝟏), 𝑷(𝟐𝒌)𝟐−𝒌𝒚̂(𝒕)) ≥ 𝒇(𝑷𝒌𝒚𝒊(𝒕), 𝑷(𝟐𝒌)𝟐−𝒌𝒚̂(𝒕 − 𝟏))

𝒊𝒇 (𝑷𝒌𝒙𝒊(𝒕 + 𝟏), 𝑷(𝟐𝒌)𝟐−𝒌𝒚̂(𝒕)) < 𝒇(𝑷𝒌𝒚𝒊(𝒕), 𝑷(𝟐𝒌)𝟐−𝒌𝒚̂(𝒕 − 𝟏))
  (132) 

  

The global best position of each particle f each particle 𝑖 for each swarm is updated using: 

𝑷𝒌𝒚̂𝒊(𝒕) = 𝐚𝐫𝐠 𝐦𝐢𝐧
𝑷𝒌𝒚𝒊(𝒕)

𝒇 (𝑷𝒌𝒚𝒊(𝒕), 𝑷(𝟐𝒌)𝟐−𝒌𝒚 (𝒕 − 𝟏)) , 𝟏 ≤ 𝒊 ≤ 𝒔 (133) 

Figure 21 depicts a schematic overview of the MPC and PID swarms working together towards 

optimizing the tuning parameters. 

The described algorithm has two important advantages with respect to the optimization procedure 

when used for tuning the controller parameters. The first one is associated with the fitness function 

evaluation after each separate group of controller parameters has been updated. This leads to a 

finer-grained assignment avoiding the classic two steps forward - one step back problem often 

encountered in standard PSO. The second advantage is related to the increased combinations of 

different individuals from different swarms, which boost the solution diversity.  

5.2.4 Experimental Set-up 

This section aims to demonstrate the effectiveness of the proposed tuning methodology through 

simulated experiments. The proposed control scheme was fully programmed in MATLAB® 

 

Figure 21: Overview of the two cooperative swarms, working towards optimizing the tuning 

parameters 
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environment and the simulations were performed by solving the system of ODEs (104) and (105) 

at each time instant to calculate the quadrotor's position and attitude. 

In order to perform the simulations, the values shown in Table 11 were assigned to the quadrotor 

parameters.  

The CPSO algorithm designed was evaluated through the tuning of the quadrotor control 

framework across two scenarios, utilizing distinct reference spatial trajectories. These trajectories 

exhibit varying geometrical characteristics within the 3-D space, necessitating diverse tuning 

strategies for optimal trajectory tracking. A robustness assessment was additionally conducted by 

tuning the controller for one trajectory and subsequently applying it to an unfamiliar trajectory. 

This test aimed to assess the optimizer’s capacity to provide robust quadrotor control parameters 

across different scenarios. 

Table 11: Quadrotor parameters 

Symbol Description Value Unit 

l Arm length 0.24 m 

m Mass of quadrotor 1 kg 

𝐼𝑥  Body moment of inertia around x axis 8 10-3 N m s2 

𝐼𝑦  Body moment of inertia around y axis 8 10-3 N m s2 

𝐼𝑧  Body moment of inertia around z axis 14.2 10-3 N m s2 

𝐽𝑟  Rotational moment of inertia 1.08 10-6 N m s2 

𝑏 Thrust coefficient 54.2 10-6 N s2 

𝑑 Drag coefficient 1.1 10-6 N m s2 

𝐾𝑡  Aero dynamical damping translational 

matrix  

diag(0.048,0.11,0.046) N m s2 

𝐾𝑟 Aero dynamical damping rotational matrix  diag(0.03,0.03,0.01) N m s2 

𝑔 Acceleration due to gravity 9.81 m s2 
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To facilitate comparison, two distinct metaheuristic search methods were employed to fine-tune 

the MPC-PID framework in addition to the cooperative PSO algorithm. The initial approach 

involves a classical PSO algorithm, elaborated upon 2.3. The second method incorporates a genetic 

algorithm that employs binary encoding, scattered crossover, and Gaussian mutation techniques. 

Furthermore, the performance of the MPC-PID framework was also compared to a standard PID-

based control scheme for trajectory tracking [155]. This scheme also utilizes two control loop 

parts, namely the inner loop control (ILC) and the outer loop control (OLC), where ILC is 

responsible for the Euler angle control that regulates the attitude of the vehicle, while OLC 

regulates the position in the x-y-z plane; however, in this case both control subsystems are based 

on PID control, while tuning is performed manually.   

The operational parameters used by COOP-PSO on all experiments, are given in Table 12. 

Parameter selection for all comparison approaches was based on suggestions in literature, along 

with trial and error.  

5.2.5 Results and Discussion 

The first trajectory chosen to evaluate the proposed cooperative optimizer namely the spiral 

trajectory, displays simple geometrical characteristics and constitutes a standard benchmark to 

demonstrate a quadrotors’ ability to fly automatically. 

Table 12: Operational parameters for the proposed cooperative algorithm 

Parameter Symbol Value 

Population 𝑃 25 

Inertia coefficient 𝑤 0.5 

Nostalgia coefficient 𝑐1 1.65 

Envy coefficient 𝑐  1.65 

Velocity clamping coefficient 𝑃𝑘𝑣𝑚𝑎𝑥  0.2 

Maximum number of generations Gen 400 

Convergence constant ε 0.2 
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𝒙𝒓𝒆𝒇(𝒕) = 𝟎. 𝟓 ⋅ 𝒄𝒐𝒔(𝟎. 𝟓 ⋅ 𝒕)

𝒚𝒓𝒆𝒇(𝒕) = 𝟎. 𝟓 ⋅ 𝒔𝒊𝒏(𝟎. 𝟓 ⋅ 𝒕)

𝒛𝒓𝒆𝒇(𝒕) = 𝟏 +
𝒕

𝟏𝟎

 (134) 

The second trajectory (135), is termed “composite” due to its composition from three distinct sub-

trajectories: a spiral [156], a helical cone [157] and a linear dependent [82] trajectory. The 

amalgamation of trajectories exhibiting diverse characteristics renders the optimization process a 

challenging endeavor for the optimizer. 

𝒙𝒓𝒆𝒇(𝒕) =

{
 

 
𝟎. 𝟖 ⋅ 𝐜𝐨𝐬(𝟎. 𝟔 ⋅ 𝒕) 𝒕 ∈ [𝟎, 𝟐𝟐]

𝟔. 𝟓𝟐 − 𝟎. 𝟐𝟔 ⋅ 𝒕 𝒕 ∈ (𝟐𝟐, 𝟑𝟖]

−𝟔 + (𝟔. 𝟐 − 𝟎. 𝟏 ⋅ 𝒕) ⋅ 𝒄𝒐𝒔𝒕(𝟎. 𝟓 ⋅ 𝒕) 𝒕 ∈ (𝟑𝟖, 𝟔𝟓]
−𝟔. 𝟏𝟔𝟔 𝒕 ∈ (𝟔𝟓, 𝟖𝟎]

 

𝒚𝒓𝒆𝒇(𝒕) =

{
 

 
𝟎. 𝟖 ⋅ 𝐬𝐢𝐧(𝟎. 𝟔 ⋅ 𝒕) , 𝒕 ∈ [𝟎, 𝟐𝟐]

𝟎. 𝟑𝟔𝟕 ⋅ 𝒕 − 𝟕. 𝟔𝟐 𝒕 ∈ (𝟐𝟐, 𝟑𝟖]

−𝟔 + (𝟔. 𝟐 − 𝟎. 𝟏 ⋅ 𝒕) ⋅ 𝒔𝒊𝒏𝒕(𝟎. 𝟓 ⋅ 𝒕) 𝒕 ∈ (𝟑𝟖, 𝟔𝟓]
𝟓. 𝟕𝟑 𝒕 ∈ (𝟔𝟓, 𝟖𝟎]

 

 

𝒛𝒓𝒆𝒇(𝒕) = {

𝟎. 𝟏 ⋅ 𝒕 + 𝟐, 𝒕 ∈ [𝟎, 𝟐𝟐]
𝟎. 𝟐𝟐 ⋅ 𝒕 − 𝟎. 𝟔𝟖 𝒕 ∈ (𝟐𝟐, 𝟑𝟖]
𝟏𝟐. 𝟓 − 𝟎. 𝟏𝟐𝟓 ⋅ 𝒕 𝒕 ∈ (𝟑𝟖, 𝟔𝟓]
𝟖. 𝟕 − 𝟎. 𝟎𝟔𝟔 ⋅ 𝒕 𝒕 ∈ (𝟔𝟓, 𝟖𝟎]

 

(135) 

The simulated results also contain a robustness test for the proposed cooperative optimization 

tuning technique. In this case, the tuning parameters generated for the spiral trajectory simulation 

runs, were used to guide the quadrotor so as to follow a new trajectory (136), namely the complex 

helical [94]. The geometry of this trajectory exhibits an elliptic trail with complex characteristics. 

𝒙𝒓𝒆𝒇(𝒕) = 𝒄𝒐𝒔(𝟎. 𝟓 ⋅ 𝒕) − 𝒄𝒐𝒔𝟑(𝟎. 𝟒 ⋅ 𝒕)

𝒚𝒓𝒆𝒇(𝒕) = 𝒔𝒊𝒏(𝟎. 𝟐 ⋅ 𝒕) − 𝒔𝒊𝒏𝟑(𝟎. 𝟒 ⋅ 𝒕)

𝒛𝒓𝒆𝒇(𝒕) = 𝟎. 𝟑 ⋅ 𝒕

 (136) 

Due to the stochastic nature of all metaheuristic optimizers, which produce a different result for 

each run, 20 runs were performed for each trajectory for the cases of COOP-PSO, GA and PSO. 

To validate the results, a t-test between the proposed cooperative strategy and each of the 

comparison methods was implemented. In the cases of GA and PSO the null hypothesis defines 

that the results from COOP-PSO and the rivaling method are generated from normal distributions 
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with equal means, while in the case of PID that the results from COOP-PSO are generated from a 

normal distribution with a mean equal to the fitness generated by the PID approach.   

Based on above, Tables 13-15 present the results for all methods, including the mean fitness values 

and standard deviations, the best fitness values, and p-values resulting from the t-tests for the 

spiral, composite and complex helical trajectories, respectively. The response for the position 

variables x, y, z and the attitude angles φ, θ, ψ for the case of the spiral trajectory is shown in Figure 

22, while the flight of the quadrotor in the 3-D space is visually depicted in Figure 23. Figures 24-

25 and Figures 26-27 present the corresponding results for the cases of the composite trajectory 

and the complex helical trajectory where the robustness case was tested, respectively. For each 

one of the three different trajectories, a randomly selected simulation out of the 20 runs is depicted 

in the figures.  

 

 

Table 13: Tuning performance metrics for the spiral trajectory 

 Fitness 

average 

Fitness standard 

deviation 

Best Fitness p-value 

COOP-PSO 36.59 3.111 32.17 - 

GA 39.80 2.564 34.16 0.001 

PSO 38.47 2.052 35.06 0.029 

PID - - 40.86 6.67E-06 

 

 Table 14: Tuning performance metrics for the composite trajectory 

 Fitness average Fitness standard 

deviation 

Best Fitness p-value 

COOP-PSO 89.47 4.075 82.49 - 

GA 97.12 5.076 84.86 5.99E-06 

PSO 94.97 6.082 83.94 0.002 

PID - - 94.47 2.72E-05 
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Table 15: Robustness metrics for the complex helical trajectory 

 Fitness 

average 

Fitness standard 

deviation 

Best 

Fitness 

p-value 

COOP-PSO 106.81 4.777 98.75 - 

GA 112.25 5.960 101.89 0.003 

PSO 110.51 3.356 100.19 0.007 

PID - - 10E+05 0 

 

 

Figure 22: Spiral trajectory simulation results for (a) position x, (b) position y, (c) position z, 

(d) roll angle φ, (e) pitch angle θ, (f) yaw angle ψ 

 

 

(e)

(a) (b)

(c) (d)

(f)

ReferenceActual Trajectory
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Figure 23: 3-D simulation results for the spiral trajectory 

 

Figure 24: Composite trajectory simulation results for (a) position x, (b) position y, (c) 

position z, (d) roll angle φ, (e) pitch angle θ, (f) yaw angle ψ 

 

ReferenceActual Trajectory

(e)

(a) (b)

(c) (d)

(f)
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Figure 25: 3-D simulation results for the composite trajectory  

 

Figure 26: Complex helical simulation results for (a) position x, (b) position y, (c) position z, 

(d) roll angle φ, (e) pitch angle θ, (f) yaw angle ψ 

(e)

(a) (b)

(c) (d)

(f)

ReferenceActual Trajectory
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As it can be seen by the figures, the attitude and position control schemes satisfy their respective 

goals and the overall control framework manages to track accurately the reference trajectory in all 

cases. The efficiency of the proposed scheme is highlighted by the scores in Tables 13-15 where 

the cooperative PSO-tuned controller results to superior performance metrics over its rivals in all 

the tested trajectories.  

To be more specific, as far as the spiral trajectory is concerned, the proposed approach outperforms 

all the methods used for comparison, producing the best run, which results to the minimum offset 

error from the reference trajectory. More importantly, it also outperforms its rivals in terms of the 

average result produced from the 20 runs, with a statistical significance higher than 97% according 

the produced p-values.  

The composite trajectory forms a more demanding test compared to the spiral one, as it essentially 

comprises three different sub-trajectories, and thus provides a strong indication of the ability of 

the tuning method to cope with reference signals that exhibit different geometrical characteristics. 

In this respect, the COOP-PSO algorithm produces superior results compared to the remaining 

methods, considering either the best produced run, or the average from the 20 runs. Regarding the 

later, the superiority of the proposed approach is confirmed with a statistical significance of 99%.  

 

Figure 27: 3-D simulation results for the complex helical trajectory 
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In the last tested trajectory, namely the complex helical one, the objective was to evaluate the 

robustness of the different tuning methods; this can be assessed by asking the controllers to follow 

a trajectory different than the one used for tuning their parameters. To this end, the control 

parameters that were generated by tuning on the spiral trajectory, were then applied to a situation 

where the quadrotor was asked to follow the complex helical trajectory. The results confirm the 

superiority of the proposed cooperative technique in delivering robust design parameters, both in 

terms of the best run and the average of 20 runs. The p-values produced from the t-test show that 

this conclusion is statistically significant with a confidence level of 99% or higher. From a practical 

point of view, this is an important result, as in a real-world situation it is not expected that the 

quadcopter will be tuned beforehand for all possible trajectories that it may be asked to track – 

most probably at some point during its operation the quadcopter will need to perform moves that 

are not part of the trajectories used for tuning it.  

It should be noted that, besides producing controllers with better tracking abilities and lower offset 

error, the proposed approach also manages to produce consistent results, as indicated by the 

standard deviation values from the average of the 20 runs, which are kept within a reasonable 

range throughout all the scenarios. This outcome comes in contrast with the metrics provided by 

the PSO and GA algorithms, which exhibit variations in standard deviation values, depending 

heavily on the geometry of the respective trajectory. This is a strong indication that the proposed 

approach yields consistent results, even for spatial trajectories with different geometrical 

attributes.  

Among the rest of the competing methods, PSO seems to produce slightly better results compared 

to standard GA on average, albeit noticeably worse than the proposed approach. The standard PID 

control scheme on the other hand produces a tracking error which is considerably higher than the 

rest of the methods for all three tested cases; especially in the third case evaluating the robustness 

of the methods, the tracking error of the PID scheme is orders of magnitude higher, essentially 

failing to follow the reference trajectory. This can be explained by the superiority of the MPC 

scheme employed by the rest of the methods for position control, over the standard PID technique.  

The success of the proposed scheme can be attributed to the cooperation between the two different 

swarms which exchange information while evolving simultaneously. Some insight into this 

cooperation can be obtained through Figure 28, which depicts the respective fitness value per 

generation for the MPC and PID swarms, in the spiral and composite trajectories.  It can be seen 

that the lead in terms of lower fitness value between the two swarms may change many times, as 

each swarm helps the other to evolve through their mutual cooperation. 
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5.3 Qualitative comparison of developed trajectory tracking control methods 

Within this section, a qualitative examination unfolds, highlighting the distinctions between two 

control methodologies developed for quadrotor trajectory tracking, as discussed in sections 5.1 

and 5.2, i.e., the RBF-backstepping controller and the MPC-PID control scheme. Although a 

quantitative comparative analysis poses challenges given the inherent complexities and unique 

traits of each approach, the objective is to clarify their individual advantages, limitations, and 

suitability for this application. 

Starting with the RBF-backstepping controller, it’s crucial to highlight its inherent qualities. The 

controller is known for its asymptotic stability, designed in alignment with Lyapunov stability 

principles, ensuring the system’s gradual convergence towards the desired state. An additional 

advantage lies in its ability to effectively address model uncertainties or disturbances through the 

integration of RBF models, significantly improving tracking performance, especially in scenarios 

where model accuracy is a concern. Furthermore, the step-by-step design process, exemplified in 

Section 5.1.2.2, offers a structured and methodical approach for implementation. 

On the other hand, the MPC-PID controller stands out for its ability to establish a control strategy 

through the resolution of an online optimal control problem, as elaborated in Section 5.2.2.1. 

Importantly, this approach doesn’t require an in-depth comprehension of the dynamics of the 

specific systems, which has the advantageous effect of simplifying the construction of the control 

framework and streamlining the implementation process. Furthermore, the careful selection of the 

CPSO algorithm becomes pivotal in the context of quadrotor control, given that the MPC-PID 

 

Figure 28: Change of best fitness value per generation for the MPC and PID swarms in the 

case of (a) spiral trajectory, (b) composite trajectory 

(a) (b)
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control method involves multiple controllers and, consequently, entails a significant number of 

tuning parameters. 

Despite the merits, both controllers exhibit limitations. The MPC-PID controller relies on a linear 

model within the OCP, which may not accurately capture the inherent nonlinearities of the 

quadrotor model. This drawback can impact control performance, especially in situations where 

nonlinear effects are significant. Additionally, the process of formulating and solving an online 

problem at each discrete time step can be computationally intensive, which can pose a significant 

drawback when implementing this approach on real quadrotors. 

On the contrary, the RBF-backstepping controller, although relying on a classic PSO technique for 

controller tuning, derives its enhanced performance primarily from the incorporation of RBF 

models within the backstepping control framework. This integration significantly enhances 

tracking accuracy and robustness. However, it’s worth noting that this controller’s effectiveness is 

intricately linked to the unique dynamics of the quadrotor it was designed for, which restricts its 

applicability to various UAV platforms. Additionally, it’s imperative to emphasize that the 

backstepping control law is primarily tailored for application in strict feedback systems, which 

represents a notable limitation. 

In summary, the choice between the RBF-backstepping and MPC-PID controllers should be made 

based on specific application requirements and considerations. The RBF-backstepping controller 

stands out for its ability to provide asymptotic stability and manage model uncertainties through a 

clear control law expression. On the other hand, the MPC-PID controller offers a control law 

derived from solving an OCP, and can handle constraints. It's worth emphasizing that the CPSO 

framework is particularly valuable for efficiently fine-tuning a significant number of control 

parameters, especially when dealing with control schemes that involve multiple controllers, as is 

the case with the MPC-PID controller. Hence, the decision should be based on whether priorities 

lie in achieving stability, utilizing explicit control laws, managing constraints, or optimizing tuning 

for a high number of control parameters within the specific application. A meticulous assessment 

of the system's nonlinear characteristics and the operational environment becomes essential in the 

process of choosing the most appropriate controller for quadrotor trajectory tracking assignments.
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6. Development of adaptive nonlinear MPC control scheme using online RBF 

networks  

Within this chapter, we delve into the challenge of devising a control methodology for time-

varying systems, incorporating the use of adaptive online models. To address this challenge, 

specific focus will be on the utilization of nonlinear control techniques, leveraging their 

adaptability and effectiveness in managing the intricacies of time-varying systems. Specifically, 

the proposed control scheme, will be applied towards simulation-based applications, with 

instances including the control of a NARX system and a CSTR reactor, dynamically adjusting its 

model’s parameters in response to system changes, thus ensuring robust and effective control 

evolving dynamics. 

6.1 Introduction to online adaptive models and their vital role in controlling time-varying 

systems 

In the context of time-varying systems, the challenge of control is particularly challenging. These 

kinds of systems demonstrate dynamic behaviors that evolve over time in reaction to varying 

external factors or operational conditions. While static systems find sufficiency in fixed control 

strategies, time-varying systems necessitate dynamic solutions, and at the heart of this requirement 

lies the pivotal role of online adaptive models. 

Online adaptive models, the foundation of effective control in time-varying systems, offer dynamic 

and responsive structures. These models have the unique ability to learn and adapt in real-time, 

which renders them highly suitable for situations characterized by frequently shifting and 

unpredictable dynamics. Online adaptive models excel at adjusting control parameters as new data 

becomes available, ensuring the control system is able to complete its regulation task throughout 

the system’s continually changing conditions. 

To highlight the importance of online adaptive models, one needs to evaluate real-world scenarios 

within the domain of time-varying systems. Regarding autonomous robotic systems, adaptive 

algorithms enable robots to navigate shifting terrains or respond to unforeseen damage, ultimately 

guaranteeing unwavering performance [158], [159]. In the domain of financial markets, adaptive 

trading algorithms adjust strategies to go align accordingly with the perpetually changing market 

conditions, maximizing returns [160]. Moreover, in the aerospace field, online models enable 

aircrafts to maintain stable flight amidst wind turbulence conditions [161]. 

The necessity for online adaptive models occurs from the pivotal requirement to efficiently control 

time-varying systems. These models inherently possess the capacity to adjust and acquire 

knowledge as dynamics evolve, proving significant in achieving the required performance and 
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stability tasks in time-varying systems. Within this context, the adaptive symmetric fuzzy means 

algorithm emerges [162] as a powerful tool.  

6.2 The adaptive symmetric fuzzy means algorithm 

The adaptive symmetric fuzzy means (ASFM) algorithm relies on the fuzzy partitioning technique 

of the input space, as detailed in subsection 2.2.2 of Chapter 2. It is utilized to identify when, and 

which specific centers should be added to, or removed from the network’s hidden layer. To this 

end the algorithm features a dual-level adaptation: the adjustment of connection weights between 

the hidden layer and the output layer, and the altercation of the hidden layer’s structure. 

Upon the initialization of the algorithm, the domain of each input variable 𝑖, 𝑖 = 1,… ,𝑁 requires 

to be partitioned into 𝑐𝑖 symmetrical triangular fuzzy sets. The parameter 𝐿 shows the number of 

nodes in the hidden layer and is initialized as zero. Furthermore, the operational parameters of the 

algorithm necessitate definition, including: the number 𝑁 , representing consecutive times steps 

that a center is not assigned to an input example data before it is removed from the hidden layer of 

the network; the size 𝑁𝑠 defining the moving time window used for retaining input-output 

examples; and the forgetting factor 𝜆 utilized in the Recursive Least Squares (RLS) method. 

Upon receiving the first input example data [𝒙(𝟏),  (1)]  the algorithm initializes the parameter 𝐿 

to 1 and determines the fuzzy subspace 𝑨𝒍 = [𝐴1,𝑗 
𝑙 , 𝐴 ,𝑗 

𝑙 , … , 𝐴𝑁,𝑗𝑁
𝑙 ] that is nearer to the input 

example, according to the minimum distance criterion:  

𝒋𝒊 = 𝐚𝐫𝐠 𝐦𝐚𝐱
𝟏≤𝒋≤𝒄𝒊

[𝝁𝑨𝒊,𝒋(𝒙𝒊(𝟏))] , 𝒊 = 𝟏,… ,𝑵 (137) 

When the first hidden node of the first fuzzy subspace is created, the algorithm commences a 

dynamic center location matrix 𝑪 ∈ ℝ𝐿×𝑁 , which is utilized to store the center location at each 

time instance, and the Activation History Vector (AHV) 𝒉. The center location matrix contains at 

each time instance the centers of the hidden layer nodes and its dimension is 𝐿 × 𝑁. The size of     

AHV is equal to the number of hidden nodes and contains the last time instant that an input 

example was assigned to each fuzzy subspace.  

After the generation of the first hidden node, the dimension 𝑪 is 1 × 𝑁  and 𝒉 contains only one 

element. To be more specific, the center of the initial hidden node is assigned to the single row of 

matrix of 𝑪:     

𝑪𝟏 ← 𝒂𝟏 (138) 
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and the value of the first element of 𝒉 is initialized to1: 

𝒉𝟏(𝟏) = 𝟏 (139) 

Afterwards, the algorithm calculates the vectors 𝒛, 𝒘 and matrix 𝐏, which are calculated at each 

time instant. The vector 𝒛 ∈ ℝ𝐿×1 includes the responses of the hidden layer nodes, while the 

vector 𝒘 ∈ ℝ𝐿×1 contains the connecting weights between the hidden and output layer of the RBF 

network. Lastly matrix 𝐏 ∈ ℝ𝐿×𝐿 is the inverse of the covariance matrix, used in the RLS 

algorithm.  

Naturally, when the first data input example becomes available, all the aforementioned vectors and 

matrices consist of only one element, and their calculation proceeds as follows: 

𝒛(𝟏) = 𝒈(‖𝒙(𝟏) − 𝑪𝟏‖
𝟐
)  (140) 

 

𝒘(𝟏) =
𝒚(𝟏)

𝒛(𝟏)
 (141) 

 

𝐏(𝟏) =
𝟏

𝐳(𝟏)𝟐
 (142) 

where 𝑔(⋅) is the radial basis activation function. This completes the necessary calculations upon 

the arrival of the first input data. The rest of the steps are followed at each discrete time instant 

𝑘 > 1. 

To determine whether a new center should be added at time step 𝑘, the algorithm computes the 

distances between 𝒙(𝑘) and the chosen subspaces and finds the subspace 𝑙0 that exhibits the 

minimum distance 𝑟𝑑𝑙0  from the input data example 𝒙(𝑘). 

𝒓𝒅𝒍𝟎(𝒙(𝒌)) = 𝐦𝐢𝐧
𝟏≤𝒍≤𝑳

𝒓𝒅𝒍[𝒙(𝒌)] (143) 

  

𝒍𝟎 = 𝐚𝐫𝐠 𝐦𝐢𝐧
𝟏≤𝒍≤𝑳

[𝒓𝒅𝒍(𝒙(𝒌))] (144) 

The algorithm only adds a new center when the distance 𝑟𝑑𝑙0 is greater than one, otherwise it does 

not add a new hidden node to the network structure and proceeds with updating the AHV vector.  

When a new node is added the algorithm augments the value of 𝐿  by 1 and determines the new 
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fuzzy subspace 𝐴𝐿 = [𝐴1,𝑗 
𝐿 , 𝐴 ,𝑗 

𝐿 , … , 𝐴𝑁,𝑗𝑁
𝐿 ] that is closer to the new data input 𝑥(𝑘), using the 

minimum distance criterion: 

𝒋𝒊 = 𝐚𝐫𝐠 𝐦𝐚𝐱
𝟏≤𝒋≤𝒄𝒊

[𝝁𝑨𝒊,𝒋(𝒙𝒊(𝒌))] , 𝒊 = 𝟏,… ,𝑵                   (145) 

The center of the created fuzzy subspace is the assigned to the newly introduced hidden layer node 

and the center location matrix is augmented to encompass the new hidden node center:  

𝑪𝑳 ← 𝒂𝑳 (146) 

The AHV vector is also augmented by adding one more element, where the time step 𝑘 is assigned, 

meaning that the 𝑘𝑡ℎ data point represents the most recent input example allocated to the 𝐿𝑡ℎ fuzzy 

subspace. 

𝒉𝑳 = 𝒌 (147) 

When the algorithm has decided not to add a new node to the hidden layer, the AHV is updated as 

follows: 

𝒉𝒍𝟎 = 𝒌 (148) 

That is, the input data 𝑘 is the last one assigned to the 𝑙0 fuzzy subspace, where 𝑙0 is given by 

equation (144) 

Additionally, the algorithm at each time instance checks if a hidden node should be deleted by 

selecting the element of the AHV vector with the minimum value. This corresponds to the fuzzy 

subspace with longest time horizon in the past for which no input examples have been assigned: 

𝒍𝒓 = 𝐚𝐫𝐠 𝐦𝐚𝐱
𝟏≤𝒍≤𝑳

[𝒉𝒍(𝒌)],  (149) 

However, when the inequality 𝒉𝑙𝑟(𝑘) ≤ 𝑘 − 𝑁  holds, then no inputs examples have been 

assigned to the subspace 𝑙𝑟 for 𝑁  sequential time instances. In this case the hidden node 𝑙𝑟 is 

considered redundant and it is deleted. This is possible by deleting the corresponding row of the 

center location matrix 𝑪𝒍𝒓 and element of the AHV 𝒉𝑙𝑟. 

When a new hidden node is added or deleted to the existing network structure, the connection 

weights 𝒘 must be recalculated. In order to achieve this, the moving time window of past input-

output data is loaded and the responses of the current hidden layer structure 𝑅(𝑘) ∈ ℝ𝑁𝑠×𝐿 are 

calculated: 
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𝑹(𝒌) = [

𝒈(‖𝒙(𝒌 − 𝑵𝒔) − 𝑪𝟏‖
𝟐

⋯ 𝒈(‖𝒙(𝒌 − 𝑵𝒔) − 𝑪𝑳‖𝟐
⋮ ⋱ ⋮

𝒈(‖𝒙(𝒌) − 𝑪𝟏‖
𝟐

⋯ 𝒈(‖𝒙(𝒌) − 𝑪𝑳‖𝟐

] (150) 

The new synaptic weights are then calculated via the standard least squares method: 

𝒘(𝒌) = (𝑹𝐓(𝒌) ⋅ 𝑹(𝒌))−𝟏 ⋅ 𝑹𝐓(𝒌) ⋅  𝒀(𝒌) (151) 

where 𝑁𝑠 is the size of the chosen time window and 𝑌(𝑘) ∈ ℝ𝑁𝑠×1 is the vector containing the true 

process outputs over the time window 𝑁𝑠  

The matrix P(𝑘) is also calculated so that the RLS adaptation can be continued in the next time 

step: 

𝐏(𝒌) = (𝑹𝐓(𝒌) ⋅ 𝑹(𝒌))−𝟏 (152) 

When no structural modification in the hidden layer is made, the number and the locations of the 

hidden nodes remain unaltered. In this case the connection weights are updated using the RLS 

algorithm with exponential forgetting, which is described via the following set of equations [163]: 

𝒘(𝒌) = 𝒘(𝒌 − 𝟏) + 𝒒(𝒌) ⋅ (𝒚(𝒌) − 𝒛𝑻(𝒌) ⋅ 𝒘(𝒌 − 𝟏)) (153) 

 

𝒒(𝒌) = 𝐏(𝒌 − 𝟏) ⋅ 𝒛(𝒌) ⋅ (𝝀 + 𝒛𝑻(𝒌) ⋅ 𝐏(𝒌 − 𝟏) ⋅ 𝒛(𝒌))
−𝟏

 (154) 

 

𝐏(𝒌) = (𝑰 − 𝒒(𝒌) ⋅ 𝒛𝑻(𝒌)) ⋅
𝐏(𝒌 − 𝟏)

𝝀
 (155) 

With 𝒚(𝒌) being the system output at time step 𝑘, and 𝜆 being the forgetting factor, meaning that 

at each time instant, the current data point is given unite wight and the input-output example that 

is 𝑛 times old, is weighted by 𝜆𝑛. 

Remark: It is essential to point out that the adaptive SFM training algorithm has been shown to 

offer very high modelling accuracy, due to its ability to adjust the network’s structure, combined 

with relatively low computational times. This property makes it an ideal candidate method for real 

time modeling.  
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The validity of these observations is substantiated through the algorithm’s applications in 

modeling nonlinear dynamical systems, particularly in the context of control regulation tasks. In 

the next subsection a nonlinear MPC scheme is developed with guaranteed stability that utilizes 

the adaptive SFM model training. 

6.3 A new nonlinear MPC control framework with online adjustable RBF neural networks 

The goal of this section is to formulate a novel nonlinear MPC (NMPC) strategy, leveraging 

adaptive RBF neural networks for nonlinear system modeling. In this context, the system’s 

dynamics are meticulously represented by RBF neural networks and fine-tuned online through the 

adaptive SFM algorithm presented in section 6.2. This ASFM-RBF-NMPC approach is based on 

Lyapunov stability theory, ensuring the closed-loop control system’s asymptotic stability. Two 

distinct nonlinear systems are employed to demonstrate its efficacy in various regulation tasks, 

namely a NARX system and a time-varying CSTR reactor. 

6.3.1 Problem formulation and preliminaries 

Consider the quadratic cost function 𝐽 for the constrained finite time OCP problem as: 

𝐦𝐢𝐧⏟
 

𝑱𝑵(𝒙𝟎,  ) 

 𝒔. 𝒕.  𝜟 (𝒌)𝒎𝒊𝒏 ≤ 𝜟 (𝒌) ≤  𝜟 (𝒌)𝒎𝒂𝒙 

 𝒎𝒊𝒏  ≤  (𝒌) ≤  𝒎𝒂𝒙 

𝒙(𝟎, 𝒙𝟎) = 𝒙𝟎 

𝒙(𝒌 + 𝟏) = 𝒇(𝒙(𝒌),  (𝒌)) 

(156) 

with 𝐽𝑁 given by: 

𝑱𝑵(𝒌) = ∑ [𝒓(𝒌 + 𝒊) − 𝒚̂(𝒌 + 𝒊)] 𝐓 ⋅ 𝑸𝒊 ⋅
𝑯𝒑

𝒊=𝟏
[𝒓(𝒌 + 𝟏) − 𝒚̂(𝒌 + 𝟏)] + ∑ 𝜟 (𝒌 +

𝑯 
𝒋=𝟏

𝒋 − 𝟏)𝐓 ⋅ 𝑹𝒋 ⋅ 𝜟 (𝒌 + 𝒋 − 𝟏)𝐓  
(157) 

Where 𝑓( ⋅) depicts the nonlinear process, 𝑟(𝑘) is the reference signal at a time 𝑘,    (𝑘 + 𝑖) is the 

future prediction of the process output, 𝑢(𝑘) is the control signal at time 𝑘, and 𝛥𝑢(𝑘 + 𝑗 − 1)T 

is the incremental control move between two consecutive control signals, 𝐻𝑝 is the prediction 

horizon, 𝑁𝑢 is the control horizon (with  𝐻𝑢 ≤ 𝐻𝑝), and 𝑄, 𝑅 are weighting matrices that penalize 

divergence from reference state and input moves, respectively. MPC is an iterative optimization 

procedure in which the minimization of the performance cost function 𝐽 takes places at each time 
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𝑘. The solution of the above optimal control problem is an optimal control sequence from which 

only the first control signal is implemented into the real system. 

The nonlinear dynamical system is presented by the following nonlinear difference equation: 

𝒚(𝒌 + 𝟏) = 𝒇(𝒚(𝒌),… , 𝒚(𝒌 − 𝒏𝒚 + 𝟏),  (𝒌),… ,  (𝒌 − 𝒏 + 𝟏)) (158) 

where  (𝑘) and 𝑢(𝑘) denote the output and input of the controlled process at time 𝑘, 𝑛𝑦 and 𝑛𝑢 

are the numbers of maximum lags in the outputs and inputs respectively. 

6.3.2 Online Based Neural Network MPC 

A critical issue when forming the MPC problem is the selection of an appropriate model that can 

sufficiently predict the output of the real system. Especially in the case of nonlinear systems the 

selection of a proper predictor equation that can successfully model the nonlinear system dynamics 

is essential in order to guarantee good performance for the given optimization problem. The online 

nonlinear MPC problem is tackled by utilizing a nonlinear RBF neural network model as a 

predictor which can adjust its structure and parameters in real time according to the ASFM 

algorithm mentioned in subsection 6.2. 

The OCP problem formulated by equations (156) and (157) can be rewritten in matrix form by 

using the adjusting RBF neural network (4) to the following nonlinear NMPC OCP: 

𝑱̂(𝒌) = [𝒓(𝒌) − 𝒚̂(𝒌)]𝐓 ⋅ 𝑴 ⋅ [𝒓(𝒌) − 𝒚̂(𝒌)] + 𝚫 (𝒌)𝐓 ⋅ 𝑹 ⋅  𝚫 (𝒌) (159) 

 

𝜟 𝒎𝒊𝒏 ≤ 𝜟 (𝒌) ≤  𝜟 𝒎𝒂𝒙   ∀ 𝒋 ∈ [𝟎,… ,𝑯 − 𝟏] 

𝚫 (𝒌 + 𝑯 + 𝒋) = 𝟎,                   ∀ 𝒋 ≥ 𝟎   

𝒓(𝒌 + 𝑯𝒑 + 𝒋) − 𝒚̂(𝒌 + 𝑯𝒑 + 𝒋) = 𝟎, ∀ 𝒋 ≥ 𝟎 

(160) 

𝒓(𝑘) is the reference vector given at time instance 𝑘,   (𝑘) is the prediction future output vector 

given at time instance 𝑘,  Δ𝑢(𝑘) is the difference in control actions vector, and 𝑴 ∈ ℝ𝐻𝑝×𝐻𝑝, 𝑹 ∈

ℝ𝐻𝑢×𝐻𝑢 are diagonal square matrices related with penalty reference divergence and economy in 

sequential control actions. The above quantities are depicted by the following relations: 

𝒓(𝒌) = [𝒓(𝒌 + 𝟏), 𝒓(𝒌 + 𝟐),⋯ , 𝒓(𝒌 + 𝑯𝒑)]
𝐓
 (161) 
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𝒚̂(𝒌) = [𝒚̂(𝒌 + 𝟏), 𝒚̂(𝒌 + 𝟐),⋯ , 𝒚̂(𝒌 + 𝑯𝒑)]
𝐓
 (162) 

 

𝚫 (𝒌) = [𝜟 (𝒌), 𝜟 (𝒌 + 𝟏),⋯ , 𝜟 (𝒌 + 𝑯 − 𝟏)]𝐓 (163) 

 

𝑴 = [

𝝁(𝟏) ⋯ 𝟎
⋮ ⋱ ⋮
𝟎 ⋯ 𝝁(𝑯𝒑)

] ,   𝑹 = [
𝝆(𝟏) ⋯ 𝟎
⋮ ⋱ ⋮
𝟎 ⋯ 𝝆(𝑯 )

] (164) 

with  𝜇(𝑗) and 𝜌(𝑖) where 𝑗 = 1, … ,𝐻𝑝 and 𝑖 = 1,… ,𝐻𝑢, representing weighting factors given by: 

𝝁(𝟏) ≤ 𝝁(𝟐) ≤ ⋯ ≤ 𝝁(𝑯𝒑) (165) 

 

𝝆(𝟏) ≤ 𝝆(𝟐) ≤ ⋯ ≤ 𝝆(𝑯 ) (166) 

At his stage, it’s crucial to highlight that employing an RBF network for the system model results 

in an output prediction which is nonlinear in control inputs. As a result, an optimizer should be 

considered that takes into account the complexity of the constrained on-line NMPC problem, while 

the convergence for the optimization problem is also a critical aspect to be considered.  

To solve the optimization problem given by equations (159)-(160) the sequential quadratic 

programming (SQP) iterative method is utilized. The basic idea behind the SQP optimizer is that 

a sequence of optimization subproblems is solved, each of which optimizes a quadratic model of 

the objective with a linearization of the respective constraints. An important trait of the algorithm 

is that it can consider constraints on the control input and output variables of the process. This 

feature will be exploited in next section in order to prove the convergence of the closed loop control 

system. 

6.3.3 Stability Analysis 

In this subsection, convergence analysis for the recursive feasibility and stability of the proposed 

NMPC controller is given for the nominal stability case: 

Theorem 3: Suppose that the optimization problem (159)-(160) is feasible at time 𝑘 = 0. Then the 

proposed problem is recursively feasible for the set-point tracking case. 

Proof: Consider the optimal control sequence at a recalculating time instance 𝑡 = 𝑘 as: 
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 ∗(𝒌) = [ ∗(𝒌),  ∗(𝒌 + 𝟏),⋯ ,  ∗(𝒌 + 𝑯𝒑 − 𝟏)]
𝐓
 (167) 

where the respective optimal state sequence is given by: 

𝐲∗(𝒌) = [𝒚∗(𝒌), 𝒚∗(𝒌 + 𝟏),⋯ , 𝒚∗(𝒌 + 𝑯𝒑)]
𝐓
 (168) 

However, at time instance 𝑘 + 𝐻𝑝 the predicted state which starts at time 𝑘 will be inside the 

terminal set which in our case is formed by the zero terminal constraint region. Due to the condition 

imposed by the third equation of (160) for all  (𝑘) inside the zero terminal constraint region and 

for all 𝑡 the existence of an admissible input sequence input 𝑢𝑍𝑇𝐶(⋅) can be guaranteed. 

Now, consider a new control input sequence at time instance 𝑘 + 1 which be constructed based on 

the current optimal sequence: 

 ̃(𝒌 + 𝟏) = {
 ∗(𝒌 + 𝒊), 𝒊 ∈  𝕀[𝟏,𝑯𝒑−𝟏]

 𝒁𝑻𝑪(𝒌 + 𝒊), 𝒊 = 𝑯𝒑
 (169) 

The input  ̃(𝑘 + 1) is admissible and due to the third equation of (160) the predicted state 

trajectory  ̃(𝑘 + 1 + 𝐻𝑝) at the time instance 𝑘 + 1 + 𝐻𝑝 will be inside the terminal region. Thus, 

the optimal control problem has a feasible solution at time instance 𝑡 = 𝑘 + 1, which means that 

the proposed MPC algorithm is recursive feasible. 

This concludes the proof of Theorem 3.∎ 

In what follows, the asymptotic convergence analysis of proposed MPC algorithm will be given. 

The asymptotic stability is investigated for the closed loop control system by utilizing the 

decreasing monotonicity concept of the MPC cost function. The asymptotical convergence of the 

online AFM-RBF-NMPC is discussed in Theorem 4: 

Theorem 4: Consider the nonlinear constrained optimal control problem given by (159)-(160). If 

the weighting factors are constructed via (165) and (166) then the closed loop control system of 

the proposed AFM-RBF-NMPC ensures asymptotic convergence for the no model-plant mismatch 

case. 

The MPC cost functional at time instance 𝑘 has the following form: 

𝑱̂(𝒌) = 𝒆(𝒌)𝐓 ⋅ 𝑴 ⋅ 𝒆(𝒌) + 𝚫 (𝒌)𝐓 ⋅ 𝑹 ⋅  𝚫 (𝒌) (170) 
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          = ∑𝝁(𝒋) ⋅ 𝒆𝟐(𝒌 + 𝒋)

𝑯𝒑

𝒋=𝟏

 +∑𝝆(𝒋) ⋅ 𝚫 𝟐(𝒌 + 𝒋 − 𝟏) 

𝑯 

𝒋=𝟏

 

The optimal control input sequence at time 𝑘 found by the optimization procedure can be defined 

as  ∗(𝑘) = [𝑢(𝑘), 𝑢(𝑘 + 1), … , 𝑢(𝑘 + 𝐻𝑢 − 1)]𝑇. Now the suboptimal control postulated at time 

𝑘 + 1 can be defined as  𝑠(𝑘 + 1) = [𝑢(𝑘 + 1),… , 𝑢(𝑘 + 𝐻𝑢 − 1), 𝑢(𝑘 + 𝐻𝑢 − 1)]𝑇. The 

control sequence  𝑠(𝑘 + 1) is formed based on the control derived at time 𝑘. Therefore, for the 

suboptimal control  𝑠(𝑘 + 1), the cost function can be defined as: 

𝑱̂𝒔(𝒌 + 𝟏) = ∑ 𝝁(𝒋) ⋅ 𝒆𝟐(𝒌 + 𝒋)

𝑯𝒑+𝟏

𝒋=𝟐

 +∑𝝆(𝒋) ⋅ 𝚫 𝟐(𝒌 + 𝒋 − 𝟏) 

𝑯 

𝒋=𝟐

 (171) 

By taking the difference between the cost functions 𝐽𝑠(𝑘 + 1) and 𝐽(𝑘) we have: 

𝑱̂𝒔(𝒌 + 𝟏) − 𝑱̂(𝒌)

= 𝝁(𝑯𝒑) ⋅ 𝒆
𝟐(𝒌 + 𝑯𝒑 + 𝟏) −  𝝁(𝟏) ⋅ 𝒆𝟐(𝒌 + 𝟏) − 𝝆(𝟏) ⋅ 𝚫 𝟐(𝒌)

+ ∑ (𝝁(𝒋 − 𝟏) − 𝝁(𝒋)) ⋅ 𝒆𝟐(𝒌 + 𝒋)

𝑯𝒑−𝟏

𝒋=𝟐

+ ∑ (𝝆(𝒋 − 𝟏) − 𝝆(𝒋)) ⋅ 𝚫 𝟐(𝒌 + 𝒋 − 𝟏)

𝑯 −𝟏

𝒋=𝟐

 

(172) 

Taking into account the terminal constraint equality equation (160) and the relations (165) and 

(166) we can get: 

𝑱̂𝒔(𝒌 + 𝟏) − 𝑱̂(𝒌)

= − 𝝁(𝟏) ⋅ 𝒆𝟐(𝒌 + 𝟏) − 𝝆(𝟏) ⋅ 𝚫 𝟐(𝒌)

+ ∑ (𝝆(𝒋 − 𝟏) − 𝝆(𝒋)) ⋅ 𝚫 𝟐(𝒌 + 𝒋 − 𝟏)

𝑯 −𝟏

𝒋=𝟐

+ ∑ (𝝁(𝒋 − 𝟏) − 𝝁(𝒋)) ⋅ 𝒆𝟐(𝒌 + 𝒋)

𝑯𝒑−𝟏

𝒋=𝟐

≤ 𝟎 

(173) 
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Furthermore, by considering the optimal control sequence at time instance 𝒌 + 𝟏 denoted by 

 ∗(𝒌 + 𝟏) for the optimization problem (159)-(160), then one can state that 𝑱∗(𝒌 + 𝟏) ≤

𝑱̂𝒔(𝒌 + 𝟏). Then one can conclude: 

𝑱̂∗(𝒌 + 𝟏) − 𝑱̂(𝒌) ≤ 𝑱̂𝒔(𝒌 + 𝟏) − 𝑱̂(𝒌) ≤ 𝟎 (174) 

Hence the cost function is monotonically decreasing with respect to time and based on the modified 

Barbalat’s lemma [141]. 

 𝐥𝐢𝐦
𝒕→∞

‖𝒆(𝒕)‖ = 𝟎 (175) 

the ASFM-RBF-NMPC closed loop control system is asymptotically stable.  

This completes the proof of Theorem 4.  

6.3.4 Simulation results and discussion 

To validate the proposed NMPC control technique’s effectiveness, two distinct systems were 

utilized. The first system encompassed a nonlinear benchmark problem described by a NARX 

single input-single output (SISO) discrete time system, serving as a basis for testing the tracking 

ability of the NMPC controller. The second system involved a time-varying nonlinear continuous 

steered tank reactor. To validate the proposed control method, an RBF-NMPC controller was also 

employed, where RBF networks were pre-trained offline using the fuzzy means algorithm. 

Throughout all subsequent simulation, the SQP solver is employed for solving the NMPC problem. 

6.3.4.1 Application 1: Control of a NARX discrete time SISO system 

The system under the certain application is described by the following discrete input-output model: 

𝒚(𝒌) = 𝟎. 𝟕𝟐 ⋅ 𝒚(𝒌 − 𝟏) + 𝟎. 𝟎𝟐𝟓 ⋅ 𝒚(𝒌 − 𝟐) ⋅  (𝒌 − 𝟏) + 𝟎. 𝟎𝟏 ⋅  𝟐(𝒌 − 𝟐) +

𝟎. 𝟐 ⋅  (𝒌 − 𝟑)  
(176) 

The objective is to make the system output  (𝑘) track a reference trajectory utilizing the proposed 

NMPC controller and the time varying reference input 𝑟(𝑘) given by the following equation: 

𝒓(𝒌) = 𝐬𝐢𝐧 (𝒌 ⋅
𝝅

𝟏𝟎𝟎
) , 𝟎 < 𝒌 ≤ 𝟒𝟎𝟎  (177) 

The ASFM method was utilized online in order to identify a suitable RBF configuration for 

modeling the aforementioned system. The input to the RBF model consisted of three previous 

values of the input 𝑢 and two previous values of the output  : 
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𝒙(𝒌) = [𝒚(𝒌 − 𝟏) 𝒚(𝒌 − 𝟐)  (𝒌 − 𝟏)  (𝒌 − 𝟐)  (𝒌 − 𝟑)] (178) 

The operational parameters used by the NMPC controller and the ASFM training algorithm are 

given in Table 16 and Table 17 respectively. Furthermore, Table 18 displays the Mean Absolute 

Error (MAE) results for both control methods implemented in terms of control tracking error. 

Figure 29 illustrates the RBF network prediction responses for both the adaptive SFM and the  

Table 16: Operational parameters for the ASFM RBFNN in application 1  

Parameter Description Value 

𝑁   Number of time steps that a center is not assigned to an 

input example, before it is removed from the hidden layer 

1000 

𝑁𝑠 Size of the moving time window used for storing past 

input-output examples 

200 

𝜆 Forgetting factor for the RLS method 1 

# fuzzy partitions Number of fuzzy subspaces in the entire input space 14 

 

Table 17: Operational parameters for the NMPC controller in application 1 

Parameter Description Value 

𝑁𝑃 Prediction horizon 10 

𝑁𝐶 Control horizon 8 

𝜇(𝑗), 𝑗 = 1,…𝑁𝑝 State variables penalty weighting factors  1.65 

𝜌(𝑗), 𝑗 = 1,…𝑁𝑐 Control input weighting factors 0.7 

𝛥𝑢_𝑚𝑖𝑛 Minimum value of difference in control actions -0.1 

𝛥𝑢_𝑚𝑎𝑥 Maximum value of difference in control actions +0.1 
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offline SFM algorithm. Additionally, Figure 30 displays the closed-loop response of the NARX 

system, while Figure 31 provides the input profile for the proposed ASFM-NMPC controller. 

Figure 32 and Figure 33 track the evolution of the Root Mean Square Error (RMSE) of the output. 

of the output variable y and the hidden layer structure over time, respectively, for both the ASFM 

and offline SFM methods. 

  

Table 18: MAE metrics for NARX system control 

Control Method MAE 

NMPC-ASFM-RBFNN 0.0042 

NMPC-RBFNN 0.0464 

 

 

Figure 29: RBF network predictions using different training methodologies for the NARX 

system 
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Figure 31: ASFM-NMPC controller-input profile for NARX system 

 

 

 

Figure 30: Closed-loop response using the closed loop NMPC controller for NARX system 
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Figure 32: ASFM RBFNN RMSE of output y and hidden layers structure evolution over 

sample iterations for NARX system 

 

 

Figure 33: RBFNN RMSE of output y and hidden layers structure evolution over sample 

iterations in the case of NARX system 
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The figures clearly illustrate that the system’s output y accurately follows the desired trajectory 

throughout the simulation. The effectiveness of our proposed scheme is particularly evident in 

Table 18, where the NMPC-ASFM controller outperforms its competitor, achieving a remarkable 

improvement of 90.9%. This success can be attributed to the enhanced performance of the adaptive 

RBF-NN incorporated within our scheme, as evidenced in Figure 29. In contrast, the offline 

RBFNN predictions fail to capture the system’s behavior when relying solely on offline data from 

the NARX system. 

Figure 30 demonstrates that the proposed ASFM-NMPC approach adeptly follows the desired 

trajectory. This in contrast to the simple RBFNN-NMPC controller, which struggles to efficiently 

track the provided reference. This difficulty arises from its incapacity to incorporate new data from 

adapting the network’s parameters. Additionally, it’s important to highlight that the proposed 

scheme consistently maintains a control input profile where the differences in control action inputs 

remain within the prescribed limits, as specified in Table 17.    

Figure 32 provides insight into the development of the RMSE for the output variable y and the 

hidden layer structure as each new data sample is introduced. 

The initial rise in RMSE for output y can be attributed to the offline training phase of the 𝑓𝑦 𝑅𝐵𝐹 

model. During this phase, the generated input-output data are formed by employing random input 

values within the range of [-1, 1], in accordance with the discrete output equation (176). However, 

as more sample data are incorporated into the ASFM and new centers are added, RMSE 

consistently decreases. This stands in contrast to Figure 32 where the RBF model is exclusively 

trained offline. In Figure 32 the RMSE for the model’s output continually rises and then oscillates 

around a certain value, unable to decrease even when new data samples area available. This 

disparity can be attributed to the offline-SFM’s limitation in adapting to incoming data from the 

system and modifying the network’s structure, a capability presents in its ASFM counterpart. 
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6.3.4.2 Application 2: Control of a multiple steady state CSTR time-varying reactor in 

changing operating regions 

The objective of this application is to control a CSTR reactor utilizing an adaptive RBF network 

model, as the system’s behavior undergoes dynamic shifts over time. The CSTR described by a 

set of nonlinear ODEs which can be found in [164] and is given by the following equations: 

𝒅𝒄𝑨
𝒅𝒕

=
𝑭

𝑽
⋅ (𝒄𝑨,𝒊𝒏 − 𝒄𝑨) − 𝟐 ⋅ 𝒌𝟎 ⋅ 𝐞𝐱𝐩 (−

 

𝑹 ⋅ 𝑻
) ⋅ 𝒄𝑨

𝟐  (179) 

 

𝒅𝑻

𝒅𝒕
=
𝑭

𝑽
⋅ (𝑻𝒊𝒏 − 𝑻) + 𝟐 ⋅

(−𝜟𝑯)𝑹
𝝆 ⋅ 𝑪𝒑

⋅ 𝒌𝟎 ⋅ 𝐞𝐱𝐩 (−
 

𝑹 ⋅ 𝑻
) ⋅ 𝒄𝑨

𝟐 −
𝑼𝜦

𝑽 ⋅ 𝝆 ⋅ 𝒄𝒑
⋅ (𝑻 − 𝑻𝒋) (180) 

where 𝑘0 is the reaction frequency factor, 𝐸 depicts the reaction activation energy, 𝑅 is the gas 

constant, 𝑇 is the temperature and 𝑐𝐴 is the conversion of reactant 𝐴 to product 𝐵. The kinetic 

parameter values of equations are given in Table 19. 

Under specific configurations of the CSTR operational parameters, the process demonstrates the 

presence of multiple stable steady states, both upper and lower, alongside an unstable intermediate 

state. While it is relatively straightforward to control the CSTR when operating around each 

individual stable steady state point, controlling the system through its entire operational range, 

encompassing the unstable steady state, presents a challenging endeavor.  

Consequently, the objective of the subsequent application involves the implementation of an 

NMPC configuration to govern the output concentration 𝑐𝐴, employing the temperature of the 

coolant 𝑇𝑗 as the manipulated variable. The specific focus of this application was to evaluate the 

effectiveness of the proposed method in dynamically modeling the reactor, with particular 

emphasis on scenarios encompassing variations in the operating range. The CSTR was simulated 

by solving a system of ODEs.   

Due to the presence of multiple steady states, it was not feasible to approximate the system 

dynamics across the entire operating range with model of this type: 

𝒄𝑨(𝒌) = 𝒇𝑹 𝑭( 𝑻𝒋(𝒌 − 𝟏), 𝑻𝒋(𝒌 − 𝟐),… , 𝑻𝒋(𝒌 − 𝒊)) (181) 

i.e., a model using as inputs only past values of 𝑇𝑗. This comes up from the fact that for the same 

sequence of inputs, multiple potential values of the concentration 𝑐𝐴(𝑘) exist, contigent on the 

proximity of the CSTR to a particular steady state at that time instant. To address this issue, an 
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ARX (AutoRegressive with eXogenous inputs) model was chosen. This model correlates the 

current concentration 𝑐𝐴(𝑘) not only with the previous coolant temperature 𝑇𝑗(𝑘 − 1) but also with 

preceding values of two state variables: concentration  𝑐𝐴(𝑘 − 1) and the temperature inside the 

reactor 𝑇(𝑘 − 1): 

𝒄𝑨(𝒌) = 𝒇𝑪𝑨𝑹 𝑭( 𝑻𝒋(𝒌 − 𝟏), 𝒄𝑨(𝒌 − 𝟏), 𝑻(𝒌 − 𝟏)) (182) 

The inclusion of such a model, using the previous values of two state variables as inputs, adds 

complexity to the task of calculating predictions over the prediction horizon. At each time step, 

the model (182) is utilized for predicting the next 𝑁𝑝 time steps in the optimization problem (159)-

(160). However, to forecast beyond the first future time instance, input values for both state 

variables during the preceding time steps are needed. Hence, an additional model is vital for 

predicting the dynamic evolution of the second sate variable: 

𝑻(𝒌) = 𝒇𝑻 𝑹 𝑭( 𝑻𝒋(𝒌 − 𝟏), 𝒄𝑨(𝒌 − 𝟏), 𝑻(𝒌 − 𝟏)) (183) 

To simulate scenarios involving changes in the operating region, an initial offline training phase 

was conducted. During this phase, a random dataset, equivalent in size to the moving time window, 

was generated by changing the coolant temperature 𝑇𝑗 within the range [164 350] every 0.5 

seconds, in order to provide the initial training data for the RBF network models. In this range, the 

generated data exclusively pertained to the lower equilibrium region, with all concentrations 

falling below 0.2. The sampling time chosen for the control process was set as well to 0.5 seconds. 

The operational parameters used for training both RBF networks used in this study are shown in 

Table 20.  

The models trained with the ASFM methodology were incorporated into the NMPC configuration 

described in section 6.3.2. The CSTR is initialized at a concentration 𝑐𝐴 equal to 0.1 which 

corresponds to the lower steady state point and then a step to the value of 0.4 occurs, corresponding 

to the unstable state-state point. 

In Table 21, are shown the operational parameters chosen for NMPC controllers used in the CSTR 

system control. Table 22 contains the results for both controllers, including MAE for the closed-

loop response of the CSTR system. Figures 34-35 provide visual representation of the responses 

of the network for the state variables 𝑐𝐴 and 𝑇, comparing the adaptive SFM and the offline SFM 

algorithm. Figure 36 presents the performance of the NMPC controllers and Figure 37, provides a 

view of the input profiles for both controller systems. Finally, Figures 38-39 illustrate the evolution 
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of the RMSE for the concentration 𝑐𝐴 model and the hidden layer structure over time for the ASFM 

and offline SFM methods, respectively.  

Table 20: Operational parameters for the ASFM RBFNN in application 2 

Parameter Description Value 

𝑁   Number of time steps that a center is not assigned 

to an input example, before it is removed from the 

hidden layer 

1000 

𝑁𝑠 Size of the moving time window used for storing 

past input-output examples 

50 

𝜆 Forgetting factor for the RLS method 0.91 

# fuzzy partitions Number of fuzzy subspaces in the entire input 

space 

20 

 

Table 19: CSTR parameter values in application 2 

CSTR Process 

parameters 

Description Values 

𝐹 Flow rate  20 1/s 

𝑉 Volume 100 l 

𝑈𝛬 Rate of change of thermal energy  20000 J/𝑠 ⋅ 𝐾 

𝜌 Density 1000 g/𝑙 

c𝑝 Heat capacity of reactive mixture 4.2  J/𝑔 ⋅ 𝐾  

(−𝛥𝐻)𝑅 Negative change in enthalpy 596619 J/mol 

𝑘0 Reaction frequency factor 6.85E+11 l/s⋅mol 

𝐸 Activation energy 76543.704 J/mol 

𝑇𝑖𝑛 Inlet Temperature 275 K 

𝑐𝐴,𝑖𝑛 Inlet Concentration of species A 1 mol/l 
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Table 21: Operational parameters for the NMPC controller in applications 2 

Parameter Description Value 

𝑁𝑃 Prediction horizon 14 

𝑁𝐶 Control horizon 3 

𝜇(𝑗), 𝑗 = 1,…𝑁𝑝 State variables penalty weighting factors  5.5 

𝜌(𝑗), 𝑗 = 1,…𝑁𝑐 Control input weighting factors 0.1 

𝛥𝑢_𝑚𝑖𝑛 Minimum value of difference in control actions -10 

𝛥𝑢_𝑚𝑎𝑥 Maximum value of difference in control actions +10 

 

Table 22: MAE metrics for CSTR system control  

Control Method MAE 

NMPC-ASFM-RBFNN 0.0286 

NMPC-RBFNN  0.2759 
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Figure 35: RBF network predictions for temperature 𝑻 using different training methodologies 

for the CSTR system 

 

 

Figure 34: RBF network predictions for concentration 𝒄𝑨 using different training 

methodologies for the CSTR system  
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Figure 36: Closed-loop response using NMPC controller for CSTR system 

 

Figure 34:  

 

Figure 37: ASFM-NMPC controller-input profile for CSTR system 
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Figure 39: RMSE of output 𝒄𝑨 and hidden layers structure evolution over sample iterations 

for the simple SFM training algorithm 

 

 

 

Figure 38: RMSE of output 𝒄𝑨 and hidden layers structure evolution over sample iterations 

for the ASMF training algorithm 
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Throughout Figure 34 and Figure 35 it can be clearly seen that the ASFM online training algorithm 

excels in producing network predictions that can accurately track real value of the system, even 

during changes in the system’s operating region for both state variables, 𝐶𝐴 and 𝑇. This stands in 

stark contrast to the simple offline SFM RBF prediction responses, which fails to track the real 

values. This disparity is due to the Offline SFM-RBF model's inability to adapt to the system's 

changing dynamics caused by shifts in the operating region.  

Table 22 presents the results for both controllers, highlighting that the proposed NMPC-ASFM 

controller outperforms its rival with an improvement of 89.6%. This result is evident in Figure 36, 

which depicts the closed-loop response of both NMPC controllers for tracking the desired unstable 

setpoint 𝐶𝐴 𝑟𝑒𝑓 equal to 0.4. The offline controller fails to track the desired setpoint, whereas the 

proposed controller accurately follows the desired trajectory by adding new centers that can 

describe the system's new operating region. It's worth noting that the minor "bump" in the initial 

seconds (0-40s) of the simulation occurs because no new centers were added to the pretrained 

offline models of 𝒇𝑪𝑨𝑹 𝑭 and 𝒇𝑻 𝑹 𝑭. However, as time progresses and new real data inputs 

become available, new centers are added, improving the proposed controller's tracking ability.  

Furthermore, Figure 37 demonstrates the NMPC-ASFM controller's ability to produce input 

control actions that consider the system's changing operating region, effectively steering the CSTR 

𝑐𝐴, state toward the desired setpoint.  

Figure 38 shows the RMSE development for 𝑐𝐴, and the hidden layer structure as each new data 

sample is introduced. Due to the transition to a different operating region, the number of centers 

increases, as new centers are needed to describe the new inputs. The slight initial increase in RMSE 

for 𝑐𝐴, as depicted in Figure 34 is due to the initial offline training phase of the 𝒇𝑪𝑨𝑹 𝑭  and 𝒇𝑻 𝑹 𝑭  

models, which do not include data near the new setpoint. Nevertheless, over time, as additional 

actual system output values are included as input samples in the adaptive RBF models, the RMSE 

steadily decreases. This is attributed to the ASFM's capability to adapt to incoming data from the 

system and adjust the network's structure accordingly. This contrasts with Figure 39, where the 

number of centers remains constant, and the RMSE of the trained offline-RBFNN increases until 

a certain point without decreasing. This occurs because the model's predictions do not align with 

the real values of the system, as shown in Figure 34 and Figure 35.  
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7. Conclusions 

The goal of this dissertation was to harness computational intelligence techniques for the 

development and tuning of automatic control methods, with a primary emphasis on their 

application in unmanned aerial vehicles, to enhance and optimize control strategies for nonlinear 

systems.  

The computational techniques employed in this thesis were instrumental in enhancing the 

effectiveness of nonlinear control methods. Specifically, two prominent nonlinear control 

methodologies were used in this thesis: Backstepping control and model predictive control. 

Backstepping control demonstrated its value as an approach well-suited for managing strict 

feedback systems, benefiting from its inherent stability properties. In contrast MPC stand out as a 

versatile and widely-adopted control technique, proficient in handling MIMO systems, handling 

constraints effectively, ensuring ease of implementation, and showcasing extensive applicability 

across diverse processes and systems. 

The quadrotor is chosen as the central vehicle for control due to its complex and inherently 

nonlinear dynamics, making an ideal platform for developing and enhancing advanced control 

methods. This choice establishes the quadrotor as the primary nonlinear system for implementing 

the previously mentioned control techniques. Within this context, the complexities of nonlinear 

quadrotor dynamics are explored, showcasing the challenges associated with controlling it. The 

quadrotor’s dynamics are modeled using the Newton-Euler model, encapsulating both 

translational and rotational dynamics within a state-space representation. In response to the 

challenge presented by the quadrotor trajectory tracking problem, two specialized automatic 

control methods were developed leveraging both the backstepping and MPC frameworks, 

incorporating computational techniques.  

The first strategy developed to tackle the challenge of quadrotor trajectory tracking involved the 

creation of a new nonlinear control scheme. This scheme was designed by incorporating both 

backstepping control and RBF networks to effectively accommodate uncertainties within the 

model. The developed technique relies on a stabilizing backstepping controller in the Lyapunov 

sense for the closed loop system, and an RBF network which provides a data-driven approximation 

of unmodelled uncertainties of any type. The RBF network is trained using the SFM algorithm, 

enhancing modeling accuracy and enabling superior tracking performance, with the added 

advantages of a straightforward structure and rapid training speed. Crucially, the RBF-

backstepping framework can be readily applied to real-word quadcopters, as RBF networks can 

be easily trained using actual data collected from the quadrotor’s state and accelerations. 
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In contrast to the backstepping approach, MPC offers several advantages, including its ability to 

effectively handling constraints and improved adaptability to various nonlinear systems. The 

conjunction of MPC with PID controllers can lead to improved system performance and 

robustness. However, this integration introduces multiple tuning parameters, creating a need for 

an efficient optimization technique. This challenge is effectively addressed through the 

development of a CPSO framework, which plays a pivotal role in finely adjusting control 

parameters and ultimately enhancing the system’s performance. More specifically, a CPSO 

framework was designed for optimizing the tuning of an MPC-PID-based quadrotor trajectory 

tracking scheme. The control framework developed consists of two subsystems: an MPC controller 

for path following and a PID scheme for attitude stabilization. The subsystem’s tuning parameters 

are optimized respectively via an CPSO. Two different swarms are used for the MPC and PID 

tuning parameters, respectively; though each swarm controls a different set of parameters, they 

ultimately work together towards bestowing improved path tracking abilities to the integrated 

control framework. The proposed scheme excels in producing fine-tuning controllers as 

demonstrated throughout two different trajectory tracking scenarios. Additionally, its robustness 

is evident in successfully evaluating the quadrotor’s tracking performance on a third, previously 

unseen trajectory, demonstrating its adaptability beyond the tuning trajectory. 

In addition to the CPSO optimization framework for the quadrotor trajectory tracking, two CPSO 

schemes were specifically devised to tackle complex issues related to reactive power management 

in smart distribution grids and identifying model parameters in WWTPs. Specifically, the growing 

prevalence of PV installations within smart grids and their influence on reactive power control 

were addressed by developing a specialized CPSO optimization and control framework tailored to 

meet the unique requirements of DNs. Through comprehensive testing across various scenarios, 

this framework showcased its remarkable adaptability and its ability to yield favorable outcomes. 

Furthermore, in the context of tackling the parameter identification issue within WWTPs, a new 

CPSO-based identification framework has been introduced. This framework excels at accurately 

deducing critical parameters within a comprehensive first principles model, by means of solving a 

nonlinear optimization problem integrated in a system identification approach. The efficacy of this 

approach is confirmed through statistical testing, demonstrating its superiority when compared to 

other methodologies. 

Up to this point, the MPC optimization problem that was developed relied on utilizing linearized 

predictive models. However, limitations arose, primarily related to its inability to capture the 

complex and nonlinear behavior of the system. These limitations prompted an exploration of 

alternative modeling approaches, leading to the consideration of RBF network models, which offer 
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a more flexible and accurate representation of the system dynamics. More specifically, a new 

control method was designed that uses RBF network models within a regulatory MPC control 

framework. This nonlinear controller effectively employed the MPC methodology, ensuring 

guaranteed stability by deploying adaptive RBF networks as process models. The closed-loop 

system is asymptotically stable under the assumption of no model-plant mismatch. This hypothesis 

is facilitated by the online nature of the NMPC algorithm, wherein network predictions adapt to 

the current system input-output. Real-time updates of the model’s network and structure were 

achieved through the use of the adaptive SFM algorithm, resulting in an efficient regulatory 

scheme.  

The proposed online controller was assessed in two distinct scenarios: a SISO NARX system and 

a dynamic CSTR reactor, with a direct comparison to an offline NMPC controller. In both cases, 

the proposed controller exhibited superior performance, producing better tracking results 

comparted to its offline counterpart. In the first case, it demonstrated exceptional trajectory 

tracking with minimal modeling error, outperforming the offline controller. In the CSTR setpoint 

tracking scenario, the adaptive online NMPC controller demonstrated the ability to track the 

unstable reference point, in stark contrast to the compared controller, which failed entirely to 

achieve the desired tracking, highlighting the exceptional effectiveness and capability of the 

proposed method.  

In term of future directions, the research will focus on enhancing the adaptive online NMPC 

controller by replacing the FM-LS-RLS adaptation strategy with a novel online adaptation scheme 

based solely on FM-RLS [165]. The FM-RLS algorithm will enable continuous, gradual training 

without the necessity of performing standard least squares whenever the network structure is 

altered. This innovative method is expected to provide several benefits, such as lowering the 

computational load, thus accelerating the overall online network training process, and reducing 

memory needs for storing the online process data. Furthermore, the resulting scheme will be 

evaluated on more complex and demanding control tasks, e.g., satellite control. Additionally, 

within the RBF-backstepping quadrotor trajectory control scheme, there are plans to address 

additional challenges, such as incorporating time-varying external uncertainties and implementing 

online adapting RBF networks within the control framework.
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