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ITEPIAHYH

>10%0¢ ¢ Tapovoag dSTpPne elvor n dnuovpyio Ko M PEATIOTH Pabpovouncn TEXVIKOV
OQLTOUOTOV EAEYYOL YIOL UM YPOUUIKE GUGTNLOTO, HE EUPACT) GTOV EAEYYO UM ETAVOPOUEVOV
EVAEPLOV OYNUATWV, YPNOLUOTOIOVTOS HeBOOOVG VTOAOYIGTIKNG Vonpoovng. Ot kupleg puébodot
VTOAOYIOTIKNG VONUOGHVIG TTOV ypnoiponombnkay ival to veupmvikd diktua aKTvikng fdaong
(Radial Basis Function Neural Networks, RBF NNS), yvootd yio v amlotnto Kot T ypryopn
EKTAOELOT TOVC, Kot 1] GLVEPYOTIKY PeATioTonoinon ounvoug copatidiov (Cooperative Particle
Swarm Optimization, CPSO), avayvopiopévn yio ta BeAtiopévo anoteléopata BEATIOTOTOINONG

HEc® NG cvvepyasiog HETAE) TOALATADY CUNVOV.

‘Eva onpavtikd o mov aviipetonictnke oe autr| m datpiPn eivar to mpdPAnLe Tov eAEyYoL
LN YPOUMIK®V GUOTNUAT®OV He TN ¥PNoN Un yYpoppikov peBodoroyidv eréyyov. Ot khpieg
uebodoroyieg eEAEyyov ov ypnoomotovvtan ivan  péBodog backstepping ko uébodog eréyyov
pe ) ypnon povtéhov mpdPreync (Model Predictive Control, MPC). O éieyyoc backstepping
YPNCLOTOLEITAL Y10 TNV TTOPAYDYT) EVGTAODOV EDPOCTMOV EAEYKTMV Y10, TN TEPITTMON GLGTNUATOV
AVGTNPNG AVATPOPOOITNONG, v 1 LEB0d0og MPC mepthapfdvel To YNUOTIGUO Kat TV emihvon
evog mpoPAnuotoc Pertiotomoinong og TPoyUaTikd ¥pdvo, emiTpémovtag TV okpipn TpdPfieyn
™G HEAAOVTIKNG GUUTEPUPOPAS TOV GUOTHLOTOG, GAAL KOt TOV EAEYYXO GE TOADTAOKA SUVOUIKA

GLGTNLATO, LLE TEPLOPICUOVS KoL SLOTAPOLYES.

Ta kOplo Un YPOUUIKE GUOTHUOTO 7OV JEPELVOVTOL TNV Tapovco dTptPr] eivol To un
emavopopuéva  evaépro. oynuato (Unmanned Aerial Vehicles, UAVS), kot 1dwitepa ta
teTpakontepa evoépla oxnuato (Quadrotor Unmanned Aerial Vehicles, QUAVS). O éheyyoc evig
TETPUKOTTEPOL Yo TO TPOPANUO TNG TapakoAoVONoNG TNyaiag TPOYLAS, amoTEAEl OMUAVTIKN
TPOKANOT AOY® TNG EYYEVMOG UN YPOLLUKNG KOl VTOJIEYEPOUEVIS GVUOTG TOV OYNUOTOC. TNV
Topovca S TpPn To TPOPANU TG TopoKoAoVONoNG TNyl TPOYLAS AVTILETOTICTNKE HE TNV
avamtuén evog véou un ypoauutkod eleyktn backstepping, 0 omoiog EVOOUATOVEL VELPOVIKA
diktvo RBFE. Ou gleyktéc backstepping mov €yovv t1¢ pilec toug o€ €10DCES TPOTOV OPYDV,
AVTILETOTILOVY TN ONUOVTIKY] TPOKANGY TOL OMOTEAECUATIKOV YEPICUOD EYYEVAOV UN
YPOUUIKOTATOV, 0AAL Elval EDAAWTOL GE UM LOVTEAOTONIEVES SVVOUIKES Kat afefotdtnTteg OTOV
epapuoloviol og TPOKTIKES EQapUOYES. [ TV avTIHET®TION VTOV TOL TPOPANUATOC, GTNV
napovca dTpiPn mpoteivetar N Slapdpemon evog véou eheyktr backstepping pe eveopotopéva
vevpwvikd diktva RBF yia tov xepiopd afefoatomtov katd v Stdpkelo e TopakoAovinong

T yaiog TPOYLAS TOV TETPAKOTTEPOVL. Me aVTOHV TOV TPOTO, TAPEYETUL LU0 TPOGEYYIOT| PACIGUEVT



o€ OEOOLEVA Y10, TOV VTTOAOYIGUO TOV UTN-LOVTEAOTOMUEVOV ofeBatoTNTOV, LE GKOTO TOV EMTLYN

ELEYYO TOL TETPAKOTTEPOV.

Ext6g and v avanTuén anoTeAEGUATIKOV GTPOUTNYIKOV EAEYYOL TOPAKOAOVLONONG TNG TPOYLHG
eVOG TETPOKOTTEPOL, ivar €£IGOV ONUOVTIKN Kol 1] KATOAANAN Babpovounon Tov mopopéTpov
eLEYYOL TV TV neBddwv. H dvokoria otnv Pabuovounon avédavetal 6Tov ¥pnoLOTOI00VVTOL
TEPLOCOTEPOL AMO EVOC EAEYKTEG Yo TN POOUION TOL GLGTHHOTOC, KATL TOV ONpOVPYEL LeEYAAO
aplOpd mopapétpmv tpog Padpovouncn. I'io Tov okomd avtd, o€ avTh ™ dTpIPn TpoteiveTan
éva véo mlaiclo cuvepyatikng Pertiotontoinong CPSO katdAAnio yia ™ BértioT Pabuovounon
TOV TOPAUETPOV EVOC TETPOKOTTEPOV CLGTNUOTOG Y10 TO TPOPANLA TapoKoAoVONoNG TNyaing
tpoy1ic. To dapoppopévo Traicto eAéyyov mepthapfavet 0o vrocvotiuata: Evay ereykty MPC
vy v apoakorlovdnon g 0éong kot éva oynuo PID yia ™ otabepomoinon g otdong tov
TETPOKONTEPOV. AVIOAALAGGOVTAG TANPOPOPiES, Ta OVO Gunvn cuvepydlovtol peta&d Toug yio TV
amoteAecpaTikn €Egpedhivnon Tov Y®PoL avalNTnong He OKOMO TNV €VUPECT] TOAPUUETPOV
Babpovoumeong ot omoieg KOAVTEPEVOVY TNV IKOVOTNTO TOPUKOAOVONONG TG EMOLUNTAG TNYyaiog
TPOYLGG.

Zuyxpoveg pe v avantuén evog aiyopifuov yia tn Bértiom Pabpovounon tov mapopéTpov
EAEYYOL £VOG TETPOKOTTEPOL, LLE GTOYO TNV AVTIUETAOTIOT KOL TNV EMIAVGT TPOPANUATOV VYNANS
Ao TATIKOTNTAG TTOV dEV £lvorl KLPTA, Onpovpyiinkav 600 akdun véol cuvepyatikol alydpBpot
ounvoug copotdiov. Ewdwortepa, avantoydnkav dvo véa miaicto CPSO yuo v avtipetonion
TV TpoPfAnudtmv mov oxetilovion pe ™ dayeipton g depyovs pong toyvoc (Optimal Reactive
Power Flow, ORPF) cg é&umva katovepnuéva diktoa (Distributed Networks, DNS) kot ™
avayvoplon ToVv KpIooV TapauéTpmv o eyKataotaoelg eneéepyaciog Avpdtov (Wastewater
Treatment Plants, WWTPS). Xvykekpipévo, Sopopeodnke éva véo ouvepyotikd mAoiclo
BeAtiotomoinong kot eEAéyyov CPSO yio v ovTIHETOTION TOL TPOPANUATOS dlayEiplong 1oYVOG
oge £Eumva dikTva pe LYNAO apBpd potoPortaikdv (Photovoltaic, PV) cuokevdv. EmmAéov, pe
OKOTO TNV aVAYVAOPLIOT] TOV TOPUUETPOV AEITOVPYING GE LOVIEAN EYKATUCTACEWDV EMEEEPYACING
Apdtov dtupopeandnke véo mhiaicto CPSO to omoio ypnoyorodnke yio Ty €niAvon evog un

yYpappkob TpoPAnuatog fertictonoinong.

‘Eva. dAro kpiowyo mpdPfAnuo mov avtipetoniomnke o€ avt) T dwTpipr] oyetileton pe ™
LOVTELOTTOINGN KOl TOV EAEYYXO UM YPOUUIKAOV ¥POVIKA LETOPAAAOUEVOV CLGTNUATOV. ZE ALTO TO
TPOPANUA, 1 SVOKOAIL OEV QLPOPA ATAMDC TN XPNON YPOUUUIKDV 1| U1 YPOUUIKOV LOVTEA®V, GALL
OVOPEPETOL GTO YEYOVOS OTLTO LOVTELOD TTOL YPTCLUOTOLEITAL TTPETEL VAL ELVOL TPOGAPLOGTIKO, DOTE
va givonl og Béom va mopakorovbel Tig oAAayEG 0T SVVOALIKY TOV GLUGTHLOTOG. XTHV TOPOVCH

dwtppn mapovctdletor Eva VEO N YPOUUIKO TAOIGI0 €AEYYOL GTO OMOI0 EVOMUOTOVOVTOL



TPOGOPUOCTIKA LOVTELN VELPOVIKAOV SIKTOM®V. LVYKEKPIUEVO, avamtuyOnke Eva OAOKANP®UEVO
TAQIGLO U1 YPOLUIKOD TPOGOUPLOGTIKOD EAEYYOV, Yio TNV €E0GQAAIOT KAANG ATOd00oT G EAEYYOV
oe Olpopeg meployég Aettovpyiag. O VOHOG €AEYYOL TOL GCULGTHUATOG KAEWGTOL Ppdyov
OTOOEIKVVETOL OCVUTTOTIKO €voTalng pe t ypnon g Bewpioc evotdbeiog Lyapunov. Xto
mAoiclo ovtd oegdyovtar 000 avaAVCES LTOBECEWV, TOL APOPOLV £val U1 YPOUUIKO
avtomoivdpopovuevo emyevéc ovotnua (Nonlinear Autoregressive Exogenous, NARX) kot
&vav yMUIKO avTdpactipo. cuveyovg pong pe avdadevon (Continuous Stirred Tank Reactor,
CSTR).

Ot otpotykéc mov moapovctalovior oty mapovoa OaTpiPr] a&loloyodvtal oe po. GeEpd
avoAboewv  vroBécemv CUUTEPIAOUPOVOUEVOV  TPOCOUOIOUEVOV  GEVOPIOV. H
QOTELECUATIKOTNTO, OVTOV TOV TPOTEWVOUEVOV PeBddmV Tapovstdletal HEGH GLYKPICE®MV LE

dALec Tpooeyyicels mov avapépovtal ot PipAoypaeio.

OEMATIKH HNEPIOXH: Avtopatoc Eleyyog, Yrnoroyiotikn Nonpoobdvn

AEEEIX KAEIAIA: avtopatog Edeyyos, Babuovounon, éleyyog backstepping, vevpwviid diktva
OKTWVIKGOV  cuvaptnoemv Pdong, moapaxorlovnon mnyaiag Tpoylic,
cuvepyatikeés pebevpetikég néBodol, cuvvepyatikdg aryoplOlog ounvoug

cOUATOIOV, TETPUKOTTEPO, VTOAOYIGTIKT VON|LOGVVN






ABSTRACT

The objective of this dissertation is to develop and fine-tune automatic control techniques for
nonlinear systems, with a focus on unmanned aerial vehicle control, through the application of
computational intelligence methods. Specifically, this research focuses on utilizing radial basis
function networks (RBFNSs), known for their simplicity and fast training, and cooperative particle
swarm optimization (CPSO), recognized for its improved optimization results through

collaboration among multiple swarms.

An important issue faced in this dissertation is the problem of controlling nonlinear systems by
utilizing nonlinear control methodologies, primarily backstepping control and model predictive
control. Backstepping control offers robustness, and stability for non-strict feedback systems,
whereas the model predictive control (MPC) method involves formulating and solving an
optimization problem at discrete time steps, enabling accurate prediction of future system behavior

and control in complex dynamic systems with constraints and disturbances.

The main nonlinear systems that are investigated in this dissertation are unmanned aerial vehicles
(UAVs), with a specific focus on quadrotor vehicles. Controlling the quadrotor, especially
concerning trajectory tracking, presents a significant challenge due to its inherently nonlinear and
underactuated nature, characterized by intercoupled terms. In this thesis the trajectory tracking
problem was addressed by developing a new nonlinear backstepping controller which integrates
RBF neural networks. Backstepping controllers are based on first-principles equations to face the
significant challenge of effectively handling inherent nonlinearities, but are vulnerable to
unmodeled dynamics and uncertainties in practical applications. To tackle this challenge, the thesis
proposes a novel solution which integrates a backstepping controller with RBF networks for
handling uncertainties during quadrotor trajectory tracking, thus offering a data-driven

approximation for handling unmodeled uncertainties.

In addition to developing an effective tracking control strategy for a quadcopter, it is equally
important to properly tune its control parameters, especially when more than one controller is used
for regulating the system. To this end, in this thesis, a novel CPSO optimization framework is
designed for optimizing the tuning parameters of a quadrotor trajectory tracking control scheme.
The control framework included two subsystems: an MPC controller for position tracking and a
PID scheme for attitude stabilization. This approach involves collaborative optimization of the
numerous controllers tuning parameters, resulting in improved tracking performance, enhanced

robustness and efficient optimization within reasonable timeframes.



In tandem with the development of an algorithm for the optimal tuning of a quadcopter's control
parameters, two additional cooperative particle swarm algorithms were also devised to address and
resolve high-dimensional non-convex problems. To this end, two novel CPSO frameworks were
formulated to address the problems related to optimal reactive power flow (ORPF) management
in smart distribution grids and critical parameter identification in WWTPs. To be more specific a
CPSO optimization and control framework was designed in order to tackle the reactive power flow
(RPF) problem of photovoltaic-heavy distribution networks. Furthermore, in response to the
estimation of critical parameters challenges faced in wastewater treatment processes (WWTPs), a
new CPSO-identification framework was proposed that can be used for solving a nonlinear

optimization problem.

This thesis also addresses another crucial issue concerning the modeling and control of nonlinear
time-varying systems. In this context, the challenge lies not only in choosing between linear and
nonlinear models but, more importantly, in ensuring that the model employed can adapt its
parameters so as to effectively track changes in the system's dynamics. In this thesis, a new
nonlinear control framework is presented in which adaptive neural network models are
incorporated. A comprehensive framework for nonlinear adaptive control is developed, ensuring
satisfactory control performance across various operation regions. The control law of the closed-
loop system is proven to be asymptotically stable using Lyapunov stability theory. Two case
studies are conducted within this framework, involving a nonlinear autoregressive exogenous

(NARX) system and a time-varying continuous stirred tank reactor (CSTR).

The strategies presented in this dissertation are evaluated across a range of case studies, including
simulated scenarios. The effectiveness of these proposed schemes is showcased through
comparisons with other approaches documented in the bibliography.

SUBJECT AREA: Automatic Control, Computational Intelligence

KEYWORDS: automatic control, backstepping, computational intelligence, cooperative
metaheuristics, cooperative particle swarm optimization, model predictive
control, quadrotor, radial basis function neural networks, trajectory tracking,

tuning






2T0ovg yoveig pov, 2affo kar 'ewpyio.






List of Publications

Journal publications:

A. Kapnopoulos, A. Alexandridis “A cooperative particle swarm optimization approach for tuning
an MPC-based quadrotor trajectory tracking scheme”, Aerospace Science and Technology, 127
(2022), pp 107725. (Impact Factor: 5.6)

M. Papadimitrakis, A. Kapnopoulos, S. Tsavartzidis, A. Alexandridis “A cooperative PSO
algorithm for Volt-VAR optimization in smart distribution grids”, Electric Power Systems
Research, 212 (2022), pp. 108618. (Impact Factor: 3.9)

A. Kapnopoulos, C. Kazakidis A. Alexandridis “Quadrotor trajectory tracking based on
backstepping control and radial basis function neural networks”, Results in Control and
Optimization, 14 (2024) 10335.

Conference publications:

I. Kalogeropoulos, T. Protoulis, I. Kordatos, A. Kapnopoulos, P.L. Zervas, H. Sarimveis, A.
Alexandridis “An integrated PSO-DMC framework for the identification and control of
wastewater treatment plants” 1% International Conference on Sustainable Chemical and
Environment Engineering, Rethymno, Greece (2022)

T. Protoulis, I. Kalogeropoulos, I. Kordatos, A. Kapnopoulos, P.L. Zervas, H. Sarimveis, A.
Alexandridis, “An Identification and Control Framework for Optimizing the Energy Consumption
of a Wastewater Treatment Plant”, IEEE 6™ International Conference and workshop in Obuda on
Electrical and Power Engineering (CANDO EPE), Budapest, Hungary (2023)

Papers under preparation:

Kapnopoulos, A. Alexandridis, “Nonlinear Model Predictive Control Based for an Online
Adjustable RBF Neural Network” (vitd cuyypaon)



Development and tuning of automatic control methods for nonlinear systems using computational intelligence techniques
with emphasis on the control of unmanned aerial vehicles

A. Kapnopoulos
21



Contents

Contents
LIST OF FIGURES ... ..ot ettt e bree e e 25
LIST OF TABLES ...ttt e et e e e s e areeeeans 28
ABBREVIATIONS ...t nnae e 30
1. INTRODUCTION. ..ttt sbe e ssne e nsaeeans 35
2. COMPUTATIONAL INTELLIGENCE METHODS.........cccoeieveee e, 49
2.1 Introduction to Computational INtEHlIgENCE ........ceciueiieiie e 49
2.2 Radial Basis Function Neural NetWOTKS ..ot 49
2.2.1  RBF NEtWOIK SEIUCTUIE.....c.eiitiitiitieieeie ettt sttt n e b nne 50
2.2.2  Training of RBF Networks - The Fuzzy Means Algorithm...........cccoevieveiesce e 51
2.3 Standard Particle SWarm OptimiZation ............ccveriiiiniie e 53
2.4 Cooperative Particle Swarm OptimiZation ............ccoooiiriiiiniee e 55

2.4.1 A CPSO based framework for optimization and control of photovoltaic heavy distribution
DBEWWOTKS ...ttt bbbt bt e h b E e e b e b e R e e b e E b b e k£ e R e e b et eh e bt bt bt e reen e bt 57

2.4.2 A CPSO based framework for parameter identification in wastewater treatment plant modelling

65
3. NONLINEAR CONTROL METHODS........ccoie e 71
3.1 Introduction to nonlinear coNtrol MEthOAS...........ccoiiiiiiiii e 71
3.2 Backstepping cONtrol METNO........cc.oiiiiiiiiii e e 71
3.2.1  INtegrator BACKSIEPPING ... c..ooteiteitieieeieie ettt et b ettt s b e bbb st e e nbenbenne 72
3.2.2  General system BackSteppiNg CASE ........cviiieiiieriiesie ettt 75
3.3 Model PrediCtive CONTIOL .........oooiiiiieeie ettt 77
3.3.1  Introduction to Model Predictive CONLIOL..........ccoiiiiiiiiiie e 77
3.3.2  NONINEAr TraCking MPC ......c.oouiiiiiiiie ettt ebesre e 79
3.3.3  Stability of Nonlinear Tracking MPC...........coci it 81

4. INTRODUCTION TO QUADROTOR DYNAMICS AND CONTROL ........... 83



Development and tuning of automatic control methods for nonlinear systems using computational intelligence techniques
with emphasis on the control of unmanned aerial vehicles

4.1 Introduction to UAVS and QUAAIOTOKS ...........ooiiiiiiiiiieie ettt 83
4.2 The quadrotor’s structure and four basic MOVemMENtS................cccecviiiniiiiiinc e 83
4.3  Quadrotor Mathematical MOEITING........ccooiiiiiiiir e 85

431 NeWLON-EUIEr MOUEL .......coiieiiiiiiie s 86

4.3.2  Quadrotor State SPAace MOGEIING ......ccveviiiiiiiie e eneas 89
4.4 PID setpoint qUAdrotor CONTIOL.........c.civiiiiii i resreene e 90
4.5 The trajectory tracking problem and the PID approach .........cccceeveieiiviieicceseee e 92

5. DEVELOPMENT AND TUNING OF AUTOMATIC CONTROL METHODS
FOR QUADROTOR TRAJECTORY TRACKING ......cccoiiirieiiieeee e 95

5.1 A control strategy for quadrotor trajectory tracking based on backstepping control and radial

Pasis FUNCLION NEUFAl NETWOTKS ........coviiiicii e 95
L0t I R @ 10 - To [ £ (o e Y/ - T 1 ot USSR 95
5.1.2  Quadrotor Backstepping-RBF CONIOIEN ..........cccoriiiiiiiiei e 98
5.1.3  Trajectory Tracking SIMUIAtION SEL UD .....c.ovviiiiiriiiiiiiieiriees e 101
5.1.4  ReSUIS aNd DISCUSSION ....cveiviiiiieierieieie st siesie et ee ettt te st eseeaestesbestesseeseeneeaeseestesneereenes 104

5.2 A new cooperative PSO optimization approach for tuning an MPC-based quadrotor trajectory

LU 10 N [0 T 1T o =TSSR PSR 109
5.2.1  Quadrotor mathematical MOGEL............ccoueiiiiiiiic e 109
LI o011 (0] | T=T o [=1] o [ OSSP 110
5.2.3  Control scheme tuning using a CPSO-based OPtiMIZEr ........c.ccoveiveiiiieie e 115
5.2.4  EXPEriMENTAl SEE-UD .oviiiiiiiiiitiieiet sttt bbbt 118
5.25  RESUIS ANG DISCUSSION ....cveiviiieieierieieiesiesieseeteereeee e ste e steeseeseeseeaesaestesseeseeseeneeaeseessesseeseanes 120

5.3 Qualitative comparison of developed trajectory tracking control methods...........cc.ccccocereninnen. 128

6. DEVELOPMENT OF ADAPTIVE NONLINEAR MPC CONTROL SCHEME
USING ONLINE RBF NETWORKS.......oooiiiiiiiii s 131

6.1 Introduction to online adaptive models and their vital role in controlling time-varying systems

131
6.2 The adaptive symmetric fuzzy means algorithm ..o 132
6.3 A new nonlinear MPC control framework with online adjustable RBF neural networks......... 136
6.3.1  Problem formulation and preliminaries ... 136

A. Kapnopoulos
23



6.3.2  Online Based Neural NEtWOTrK MPC ...ttt 137

6.3.3  SEADIIILY ANAIYSIS ...oviiiiiiee e 138
6.3.4  Simulation results aNd AiSCUSSION ..........ueeiiiiiie ittt s e e e s st e e e sebae e e s sabeeessreeeeas 141
T.  CONGCLUSIONS ..ottt eteetaereae e b e reaarerarererarerareaersrsrererarererarersrarererrrerees 155

REFERENCES ... 159



Development and tuning of automatic control methods for nonlinear systems using computational intelligence techniques
with emphasis on the control of unmanned aerial vehicles

List of figures
Figure 1: Typical structure of an RBF NEIWOIK ...........cccveiieiieiiiie e 51
Figure 2: A 2-D input space fuzzy partition with a circular membership function ........... 53

Figure 3: Convergence curves for each individual network zone for the best PSO (a) and
CPSO (D) rUNS 0N SCENANIO L. ..evveiieiieiiecieeite ettt ettt e e e nneaneesneeee s 63

Figure 4: Convergence graph for the best runs of scenario 1. Coloured rectangles denote
convergence to the 1% decimal. Note that the convergence curve of dPSO corresponds to

the successive minimization of the four zone-based optimization problems..................... 63

Figure 5: Results of the identified model for (a) Ammonia Concentration, (b) Dissolved

OXYJEN CONCENLIALION. .....c.ueiivieieieeiie e et ste e te et e et a et e et esbeebeasaesreenesneesreeeeas 68
Figure 6: Evolution of the fitness values for each of the 5 swarms ..........cccccocviininnnns 69
Figure 7: Backstepping control design for the system (24)-(25) .......ccooeveieniiiincninnnns 73
Figure 8: MPC methodology for a SISO SYStEM .........ccceeveiiiiieieiece e 78
Figure 9: Quadrotor system in hovering condition .............ccccovveveiiiii v 84
Figure 10: Four basic movements of the qUadrotor ..o 85

Figure 11: Schematic overview of the earth and body fixed frames of the quadrotor....... 86

Figure 12: PID setpoint control block diagram ..........cccccveveiieiieieiicse e 91
Figure 13: Overall PID structure for the trajectory tracking problem.............c.cccooeeenis 93
Figure 14: RBF-Backstepping control SCheme ...........cccooviiiiiiiiiineeee e 102
Figure 15: Spiral trajectory error for (a) X, (b) y, (C) Z dIMENSIONS ......ccvevrviririiriririeine 107
Figure 16: 3D Spiral trajectory simulation results ..........cccccoveviiiiiie e, 107
Figure 17: Complex trajectory error for (a) x, (b) y, (C) zdimensions..............ccceeveenen. 108
Figure 18: 3D Complex trajectory simulation resultS............ccccevveiieiviesie e 108
Figure 19: Overall quadrotor control StrUCTUNE ...........cceoviiriiieinieee s 115
Figure 20: Overall particle structure in the case of standard PSO ..........cccccoveniiiiennnnn. 116

Figure 21: Overview of the two cooperative swarms, working towards optimizing the tuning

0L L L1 T TSP 118

A. Kapnopoulos
25


file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571191
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571192
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571193
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571193
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571194
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571194
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571194
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571195
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571195
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571196
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571197
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571198
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571199
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571200
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571201
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571202
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571203
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571204
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571205
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571206
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571207
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571208
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571209
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571210
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571211
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571211

Figure 22: Spiral trajectory simulation results for (a) position X, (b) position y, (c) position

z, (d) roll angle ¢, (e) pitch angle 0, (f) yaw angle y.......ccooeveeiiiiiiiececeeeee e 123
Figure 23: 3-D simulation results for the spiral trajectory..........c.ccoovvvieieienicniiineine 124

Figure 24: Composite trajectory simulation results for (a) position x, (b) position y, (c)

position z, (d) roll angle ¢, () pitch angle 6, (f) yaw angle v .......c.ccceevvvieiveveiiieinenne 124
Figure 25: 3-D simulation results for the composite trajeCtory ..........ccocevevenerieniennnnnns 125

Figure 26: Complex helical simulation results for (a) position x, (b) position y, (c) position

z, (d) roll angle ¢, (e) pitch angle 9, (f) yaw angle w.......ccccccevveveiieiiece e 125
Figure 27: 3-D simulation results for the complex helical trajectory ..........ccccccovevieneee. 126

Figure 28: Change of best fitness value per generation for the MPC and PID swarms in the

case of (a) spiral trajectory, (b) COMPOSIte trajeCtOry .......cccevvieriiiiieieee e 128

Figure 29: RBF network predictions using different training methodologies for the NARX

Figure 31: ASFM-NMPC controller-input profile for NARX system............cccccvevveenen. 144

Figure 32: ASFM RBFNN RMSE of output y and hidden layers structure evolution over
sample iterations fOr NARX SYSIEIM ......c.ooiiiiiiiiiiicec e 145

Figure 33: RBFNN RMSE of output y and hidden layers structure evolution over sample
iterations in the case Of NARX SYSEM .......cccciiiiiiiieii e 145

Figure 34: RBF network predictions for concentration ¢, using different training
methodologies for the CSTR SYSIEM .......ccviiiiiicc e 151

Figure 35: RBF network predictions for temperature T using different training

methodologies for the CSTR SYSIEM ....c..eiiiiiiii e 151
Figure 36: Closed-loop response using NMPC controller for CSTR system .................. 152
Figure 37: ASFM-NMPC controller-input profile for CSTR system...........cccccocevvninnne 152

Figure 38: RMSE of output ¢4 and hidden layers structure evolution over sample iterations
for the ASMF training algorithm .........c.oooiiii i 153

Figure 39: RMSE of output ¢4 and hidden layers structure evolution over sample iterations

for the simple SFM training algorithm ... 153


file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571212
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571212
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571213
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571214
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571214
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571215
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571216
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571216
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571217
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571218
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571218
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571219
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571219
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571220
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571220
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571221
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571222
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571222
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571223
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571223
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571224
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571224
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571225
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571225
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571226
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571227
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571228
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571228
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571229
file:///C:/Desktop/PhD_Thesis_Revised.docx%23_Toc151571229

Development and tuning of automatic control methods for nonlinear systems using computational intelligence techniques
with emphasis on the control of unmanned aerial vehicles

A. Kapnopoulos
27



List of Tables

Table 1: PV installation SPeCIfiCAtIONS...........cocviiiiiiiieieiese e 60
Table 2: Snapshot scenario INformMation............oceiiieieien e 61
Table 3: Tuning parameters for all Methods ............ccovevviiiiieci e 61
Table 4: Scenario 1: Statistical results for VDM 0Dbjective .........c.ccccovevviiiiieiciieieens 62
Table 5: Scenario 2: Statistical results for RPLM 0DBJeCtiVe...........coovvvieiiniiiiiiiis 62
Table 6: Performance METTICS ......c..oviiieieieic e 68
Table 7: Values for Aerodynamic drag coefficients............ccccoevveie i 102
Table 8: RBF Modeling results on the testing SUBSEt ..........c.ccoevveiiieie e, 106
Table 9: Controller tracking errors for the spiral trajectory.........cccoovvvieniiencncinnnn 106
Table 10: Controller tracking errors for the complex trajectory ..........ccovverencnininnnnn. 106
Table 11: QUAArotor PArAMELELS .......eccveiieiirere et se e ae et sre e sneenas 119
Table 12: Operational parameters for the proposed cooperative algorithm..................... 120
Table 13: Tuning performance metrics for the spiral trajectory ...........ccccccevvvevveveineenen. 122
Table 14: Tuning performance metrics for the composite trajectory...........ccocvevverennnne 122
Table 15: Robustness metrics for the complex helical trajectory ... 123
Table 16: Operational parameters for the ASFM RBFNN in application 1 .................... 142
Table 17: Operational parameters for the NMPC controller in application 1.................. 142
Table 18: MAE metrics for NARX System CONtrol ..........cccooviiiiiiiiniiee e 143
Table 19: CSTR parameter values in application 2 ...........ccoceviriiiiiniiiee e 149
Table 20: Operational parameters for the ASFM RBFNN in application 2 .................... 149
Table 21: Operational parameters for the NMPC controller in applications 2................. 150
Table 22: MAE metrics for CSTR System CONtrol..........ccoocoveiiiiiiiinieicie e 150


file:///C:/Desktop/Uniwa_Manuscript_Try_2.docx%23_Toc149619082
file:///C:/Desktop/Uniwa_Manuscript_Try_2.docx%23_Toc149619083
file:///C:/Desktop/Uniwa_Manuscript_Try_2.docx%23_Toc149619084
file:///C:/Desktop/Uniwa_Manuscript_Try_2.docx%23_Toc149619085
file:///C:/Desktop/Uniwa_Manuscript_Try_2.docx%23_Toc149619086
file:///C:/Desktop/Uniwa_Manuscript_Try_2.docx%23_Toc149619087
file:///C:/Desktop/Uniwa_Manuscript_Try_2.docx%23_Toc149619088
file:///C:/Desktop/Uniwa_Manuscript_Try_2.docx%23_Toc149619089
file:///C:/Desktop/Uniwa_Manuscript_Try_2.docx%23_Toc149619090
file:///C:/Desktop/Uniwa_Manuscript_Try_2.docx%23_Toc149619091
file:///C:/Desktop/Uniwa_Manuscript_Try_2.docx%23_Toc149619092
file:///C:/Desktop/Uniwa_Manuscript_Try_2.docx%23_Toc149619093
file:///C:/Desktop/Uniwa_Manuscript_Try_2.docx%23_Toc149619094
file:///C:/Desktop/Uniwa_Manuscript_Try_2.docx%23_Toc149619095
file:///C:/Desktop/Uniwa_Manuscript_Try_2.docx%23_Toc149619096
file:///C:/Desktop/Uniwa_Manuscript_Try_2.docx%23_Toc149619097
file:///C:/Desktop/Uniwa_Manuscript_Try_2.docx%23_Toc149619098
file:///C:/Desktop/Uniwa_Manuscript_Try_2.docx%23_Toc149619099
file:///C:/Desktop/Uniwa_Manuscript_Try_2.docx%23_Toc149619100
file:///C:/Desktop/Uniwa_Manuscript_Try_2.docx%23_Toc149619101
file:///C:/Desktop/Uniwa_Manuscript_Try_2.docx%23_Toc149619102
file:///C:/Desktop/Uniwa_Manuscript_Try_2.docx%23_Toc149619103

Development and tuning of automatic control methods for nonlinear systems using computational intelligence techniques
with emphasis on the control of unmanned aerial vehicles

A. Kapnopoulos
29



Abbreviations

JEGTAVAN [Movemot o Avtiking ATTIKNG

UniwA University of West Attica

EMIT EBvikd Metoopro ITolvteyveio

NTUA National Technical University of Athens
THHM Tuqpa Hiektpordywv ko Hiektpovikdv Mnyovikodv
NNs Neural networks

RBF Radial Basis Function

PSO Particle Swarm Optimization

SFM Symmetric Fuzzy Means

DNs Distributed Networks

ORPF Optimal Reactive Power Flow

WWTPs Wastewater Treatment Plants

MPC Model Predictive Control

UAV Unmanned Aerial Vehicle




Development and tuning of automatic control methods for nonlinear systems using computational intelligence techniques
with emphasis on the control of unmanned aerial vehicles

A. Kapnopoulos
31



Forward

®o Mbeda vo gVYOPIOTNO® KATOOVS avOpdTOLS, TV Oomoimv 1 cvuPoAn vVIMpée

KaBOPIGTIKT Y10 TNV OAOKANPMOT VTG TNG SLOTPPNC.

Apyikd Bo MBsha vo evyapotiom tov emPAémovia Kobnynt) pov AAEEavopo
AAe&avopidn. H eumiotoovvn mov €3€1Ee GTIC SLUVOTOTNTEG LOV, Ol EMIGTNUOVIKEG TOV
ovuPorég Kar 1 cvveyng kaBodynon kot otpiEn Tov, NTav amd Tovg Pacikods Adyovg

OAOKANPMOONC TNG TAPOVGAG S1aTPIPNG.

Emiong ogeilw va gvyapiotiom tov Kabnyntm Atovicio Kavopn kot tov Avaminpot
Kafnynt HAlo Zon yuo tqv cuppetoyn Toug otnv TPLeA] GUUPBOVAELTIKN EMTPOTN Kol

T1G TOADTILES GUUPBOVAESG TOVG KOATE TV EKTTOVNOT TNG STPIPNG.

Evyopiotd axdpa Oeppd to vov kot mponv péEAN tov gpyactnpiov Tniemikovovidv,
eneepyaoiag onuatog kot Evpudv cvotmudtov, Aéomowa Kapapryoniidov, MHpwv
[Momadnuntpdkn, Nwd Topapéro, Oeddmpo IIpwtovAn, Kopddto Iwdvvn kot Mdapio

2TOY1AVVO Y10 TN GUUTOPAGTACT KoL TNV PIAKT TOVS GLVEPYAGIo OAO AVTA TA YPOVIA.

Emunpdobeta vimBw v avarykn va euyoplotinom oo T dTopa Tov Le oTpEaY 6To Taéidt
10V d1dakTopkol pov (Xpnoto, MiydAn, Eon, [lavayuwtn, Eleva, k.a.) kot dltoutépwg tov

QiAo pov Ztdfn mov pe tipud pe t eriia Tov.

Téloc, Ba MBeha va gvyopiomom Wiaitepa Tovg yoveig pov XapPa Koamvomovio ot
l'ewpyio Metvtavn, kot Tov adeded pov Nwkodiao Kamvomovio yia  owpkr| ompién,

dVVOUN Kol KOUPAYLO OV OV TOPELYOV GTN TPOSTADELD OV TY.



Development and tuning of automatic control methods for nonlinear systems using computational intelligence techniques
with emphasis on the control of unmanned aerial vehicles

A. Kapnopoulos
33






Development and tuning of automatic control methods for nonlinear systems using computational intelligence techniques
with emphasis on the control of unmanned aerial vehicles

1. Introduction

Automatic control refers to the application of different methods and strategies to govern
and manipulate systems or processes without direct human intervention. In the dynamic
field of engineering and technology, computational intelligence techniques play an essential
role in enhancing the efficiency of the control task. These techniques harness the power of
artificial intelligence and machine learning to enable systems to adjust, improve and make
decisions in intricate and constantly evolving environments. For example, in industrial
automation, fuzzy logic controllers are utilized to effectively manage variables like
temperature and pressure within production processes, securing the optimal product quality
and uniformity [1], [2]. Similarly, in autonomous vehicles, deep learning neural networks
are employed to process real-time data and make critical decision, such as identifying and
classifying objects (e.g., pedestrians, traffic signs, other vehicles) predicting their behavior,

and planning a safe path for vehicle to follow [3], [4].

The precision of system modeling is essential for enabling successful regulation results, as
computational modeling aids in designing, analyzing, and optimizing control systems for
enhanced efficiency. In last decades, there has been a significant research focus on
modeling Artificial Neural Networks, commonly referred to as Neural Networks (NNSs)
which are powerful mathematical tools within the realm of computational intelligence,
capable of modeling unknown systems using input-output data exclusively. The
construction of a neural network model generally consists of two key phases: initially
defining the network’s architecture, which includes specifying the quantity of hidden layers
and neurons, and subsequently, optimizing the network’s parameters associated with
neurons and synaptic weights through an optimization algorithm that minimizes
discrepancies between the actual system outputs and the network’s predictions based on a
training dataset. During this training process, the network internalizes the correlations

between input and output variables.

While most traditional neural network training methodologies heavily rely on optimization
algorithms that demand substantial computational resources and time, radial basis function
networks [5] stand out as a distinct architecture offering notable advantages, including a
simpler structure, quicker training algorithms, and enhanced approximation capabilities.
Due to their advantageous characteristics, RBF networks have seen widespread use in

modeling [6]-[8] and control [9], [10].
A. Kapnopoulos
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RBF network training algorithms can be categorized into two groups: one with a
predetermined hidden neuron count, often time-consuming as they necessitate a trial-and-
error process to determine the correct number of neurons, and another with structure
selection mechanisms. The k-means [11] clustering algorithm, belonging to the first
category, is a popular choice for selecting the centers coordinates in the hidden layer. The
latter category includes algorithms that simultaneously determine network and structure
parameters [12], [13], but many of them involve extensive computational requirements. In
any case, once the centers are known the rest of the network’s parameters are defined with

the use of linear least squares.

In recent years, the fuzzy-means (FM) algorithm [14] has emerged as a highly effective
training method for RBF networks, distinguished by its ability to successfully define the
right number of hidden nodes and compute model parameters. Its’s notable advantages
include its speed, as it requires only a single pass of training examples, its consistency in
results since it doesn’t rely on random initializations, and its capacity to simultaneously
determine both network structure and parameters, thus minimizing the need for iterative
trials. The wide range of applications [15]-[17] of the FM algorithm showcases the

efficiency and versatility that it offers in modeling and controlling systems.

While the right integration and utilization of computational intelligence techniques are
pivotal for the successful modeling of systems, it is equally important to select capable and
efficient control methods to achieve optimal outcomes. In practice, many systems exhibit
nonlinear behavior, making linear control strategies inadequate in dealing with the inherent
nonlinear traits of these systems. As a result, nonlinear control methods become
indispensable tools, enabling the design of regulators that can ensure stability, enhance
performance, and preserve robustness in challenging and dynamically changing operational
conditions. Despite the numerous advantages offered by some nonlinear control methods,
such as having the capacity to deliver robust control solution in the face of uncertainties
and disturbances, manage non-smooth system behavior, handle nonlinear interactions,
incorporate constraints and adapt to dynamic conditions, the design of nonlinear controllers

for a specific regulation problem remains a complex and demanding task.

Backstepping control is a nonlinear control method known for its ability to effectively
stabilize complex nonlinear strict-feedback systems, making it especially valuable in
practical applications. It is based on decomposing the problem in several steps, where in
each step a virtual controller is designed to stabilize the former system, so that in the end

all the subsystems are stable. Backstepping control’s key features lie in its robustness
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against uncertainties and disturbances, precise tracking of desired trajectories, adaptability
to dynamic conditions. For this reason, many researchers have used controlling schemes

based on the backstepping strategy for various regulation tasks.

Indeed, a wide variety of backstepping-based controllers have been introduced to address
system regulation challenges. In [18] six integral backstepping controllers are designed for
the full autonomous flight of quadrotor, and their effectiveness has been demonstrated
through real flight experiments. Van et al. in [19] devise an adaptive backstepping
nonsingular fast terminal sliding controller for tracking control of robot manipulators. The
controller showcases superior tracking performance when tested on the PUMAS560 robot
compared to other controllers. Wen and Changyun [20] develop two robust adaptive
algorithms by wusing backstepping approaches for uncertain nonlinear systems,
incorporating a Nussbaum function to handle input saturation while ensuring global
stability and adjustable transient performance. Simulation tracking results on spring-mass

system signify the controller’s performance in handling input saturation.

Another important nonlinear control methodology is model predictive control, widely used
in various fields [21]-[24]. The MPC method relies on the simple idea of using an explicit
dynamic model of the system to predict the effect of future actions on the output. The
control actions are determined through an optimization procedure, with the objective of
minimizing the predicted error. It offers advantages such as the ability to handle complex,
multivariable systems, address constraints on inputs and states, and handle disturbances and
uncertainties. MPC’s predictive behavior allows it to make informed control moves based
on future predictions, making it effective for both tracking desired trajectories and
regulating tasks. Over the last decades, MPC methodologies have gained substantial
traction within both the academic sphere [25], [26] and the industry [27], resulting in

multiple of successful applications [28].

A multitude of MPC methodologies have been proposed in the literature in a variety of
systems, with a common characteristic among the methodologies being the formulation of
a real-time optimization problem that requires resolution. In [29] an MPC controller is
devised which utilizes obstacle ship trajectory prediction models based on RBF networks.
The method is tested with real port-data assessing trajectory safety and efficiency when
compared with other control techniques. In [30] a MPC scheme is introduced that integrates
direct and indirect neural control methods by employing an RBF model that accelerates

optimization problem-solving. The controller’s performance is evaluated on a nonlinear
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inverted pendulum on cart. In another interesting publication [31] an adaptive framework
for robust nonlinear MPC is designed that enhances aircraft control capabilities under
adverse conditions and disturbances. The controller is tested successfully on a real
unmanned aerial system. Xia et al. propose a finite-state MPC strategy tailored specifically
for permanent-magnet brushless DC motors to reduce commutation torque ripple.
Simulation results verify the method’s ability to minimize commutation torque ripple in

both dynamic and steady-state conditions.

Another crucial task regarding MPC optimization is related with the stability of the control
systems. The literature on MPC stability for dynamic systems, both linear and nonlinear, is
extensive [25], [32], [33]. Popular methodologies in the literature fall into two main
categories: those employing a cost function as a Lyapunov candidate function, including
terminal constraint [34], infinite output prediction horizon [34], terminal cost function [35],
and terminal constraint set methods [36]; and those relying on state decrease in specific

norms [37].

Considering the critical significance of effectively controlling nonlinear systems, it
becomes evident that relying on nonlinear controllers presents certain advantages. Indeed,
the control of nonlinear systems poses a challenging endeavor due to their complex and
often unpredictable behaviors. In practice, nearly all real-world systems exhibit some kind
of nonlinear characteristic, making it vital to navigate the nonlinear attributes. These
systems can exhibit abrupt changes, discontinuities, and intricate interactions among
variables, rendering conventional linear control methods insufficient for accurately

capturing their dynamics.

In this thesis, the central emphasis lies in the in-depth investigation of nonlinear dynamics
and control strategies within the domain of unmanned aerial vehicles. Over the past few
decades, vertical takeoff and landing UAVs have garnered significant attention. Among the
noteworthy UAVs in the family of rotary-wing aircrafts [38], [39], the quadrotor, or
quadcopter, holds a prominent position. A quadrotor helicopter is a vehicle that features
four propellers, enabling a reduction in the size of each rotor while maintaining or even
increasing the total load capacity, compared to single-rotor helicopters. This design
provides the quadrotor with advantages related with high maneuverability, precise
movements in limited space, the ability for stationary flight (hovering) and the capacity for
vertical take-off and landing. The ample set of abilities that the quadrotor possesses has led
to a growing implementation in several industries such as surveillance, rescue,

photography, forest patrolling, and agricultural quality inspection [40]-[43]. The escalating
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practical utility of quadrotors has prompted researchers towards an in-depth study regarding

their design, modeling and control [44], [45].

Examining the dynamics of a quadrotor vehicle through the modeling of their differential
equations plays a crucial role in analyzing and governing these versatile aerial vehicles.
Within this context, two traditional frameworks, namely Lagrangian and Newton-Euler
frameworks, are commonly employed. The Lagrangian formalism [46], [47] approaches the
dynamics from the perspective of energy, expressing the system in terms of generalized
coordinates and Lagrangian functions. On the other hand, the Newton-Euler formalism
[48], [49] at specific point in space and time, providing a spatial perspective of the
dynamics. In the present thesis the Newton-Euler formalism is selected due to its inherent
advantages of providing a more direct approach to calculating forces and torques,
facilitating real time control. Moreover, the system dynamics are represented using the state

space framework.

The control of a quadrotor is not a simple task, primarily because it inherently embodies
characteristics of instability, under actuation, nonlinearity, and a statue as a multiple-input-
multiple-output (MIMO) nonlinear system with strongly couple dynamic terms. Amidst this
intricate context, the task of controlling a quadrotor for trajectory tracking becomes even
more challenging. It requires meticulous control of the quadrotor’s dynamic behavior to

achieve accurate and robust tracking performance.

Early attempts to quadrotor flight control utilize techniques such as the proportional-
integral-derivative (PID) controller, the linear quadratic regulator (LQR) and the H-infinity
controller (H,,). Because of their simplicity in implementation and flexibility in parameter
tuning, PID-based control strategies have been widely adopted by researchers for
developing autonomous quadrotor flight systems [50]. The LQR controller constitutes
another standard control scheme for quadrotors, which has been applied for trajectory
planning [51] and stability control [52]. In [53] a comparison between the performance of
PID and LQR controllers is conducted, including experimental results. As far as the
application of H,, for quadrotor control is concerned, Wang et al. [54] designed a tracking
controller with the use of variation-based linearization to track a reference trajectory. Raffo
et al. [55], [56] proposed a method for solving the path tracking problem by using and H,,
controller that achieves path following in the presence of external disturbance and model
uncertainties. Simulation results from both works show the robustness ability of the H,,

controllers.
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Although the mentioned control strategies display advantages in terms of simplicity and
implementation, they heavily rely on linearized system models. However, given the
underactuated and inherently nonlinear nature of quadrotors, linearization leads to
imprecise models that only approximate its behavior in regions near the equilibrium points.
As a response to the challenges, especially in achieving accurate trajectory tracking posed
by the complex dynamics of quadrotors, researchers have increasingly adopted nonlinear
control methods to improve the stability and controllability.

Feedback linearization constitutes a classical way in controlling nonlinear systems. The
method involves a transformation of the nonlinear control system into a linear one through
control input and state transformation. Das et al. [57] proposed a two-loop approach
nonlinear controller with an outer PD loop and an inner feedback linearizing controller loop
that deals with the coupling dynamics problem of the quadrotor. In [58] a controller is
designed that combines control strategies, including feedback linearization, to cope with
the nonlinear dynamics of the system, resulting in satisfactory attitude performance. In [59],
an effective nonlinear controller is proposed, designed to handle both position tracking and
attitude stabilization. This controller is successfully implemented on an actual quadrotor
through a backstepping-feedback linearization approach. This method accounts for physical
parameter challenges and underwent outdoor experimentation for validation. While
feedback linearization control overcomes the capabilities of linear controllers, it shares
some limitations with them. Precise modeling is required, and it can’t efficiently handle

external disturbances.

Sliding mode control (SMC) consists of a useful tool when dealing with quadrotor and
nonlinear systems in general. The main idea of the SMC is to design control strategies that
compel the system’s state trajectory to adhere near to a predefined manifold in the state
space. The first applications of the control method were studied by Sira-Ramirez [60] for
attitude control of a small helicopter. In [61] a model-free based controller is combined
along with an SMC controller to solve the position and attitude trajectory problem for a
quadrotor. In another interesting publication [62] the advantages from the utilization of an
adaptive SMC quadrotor neural network controller for attitude and position control are
showcased. In [63] a trajectory tracking designing process was combined with a cuckoo
search algorithm for reducing the power consumption of a quadrotor that uses a terminal
SMC. Tang et al. [64] propose a fault-tolerant terminal SMC for robust trajectory tracking

control of a quadrotor under disturbances, parametric uncertainties and actuator faults.
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While the SMC algorithm can effectively handle the nonlinearities present in quadrotors, it

IS very sensitive to chattering phenomena which could be caused by unmodeled dynamics.

Backstepping constitutes a control technique which offers advantages such as improved
robustness against chattering phenomena resulting from unmodeled dynamics while
effectively addressing the system’s nonlinearity. In [65], a trajectory tracking controller is
proposed, utilizing a backstepping method with robust compensation theory. [66] presents
a backstepping adaptive controller by combining it with a prescribed performance function
that guarantees quadrotor trajectory tracking performance. In [67], a command filter-based
backstepping control approach with input saturation is employed to address the quadrotor’s
vehicle trajectory tracking problem. A trajectory tracking fault tolerant controller is applied
in [68] by using a sliding mode backstepping approach. In [69] a backstepping-based
quadrotor controller is designed for path following while addressing challenges related with

unknown vehicle parameters and external disturbances.

Though the aforementioned backstepping controllers effectively handle nonlinearities, they
rely on models derived from first principles equations, making them susceptible to
unmodeled dynamics and uncertainties when applied to real-world systems. Neural
networks, as black box modeling techniques, are frequently used in conjunction with
backstepping methodologies, to produce robust controllers that can handle uncertainties. In
[70], C. Nicol et.al present an early attempt which utilizes NN in a quadrotor for handing
model uncertainties. Specifically, a neural based quadrotor control scheme is introduced
capable to attenuate modeling error and wind disturbance through NN weight adaptation.
In another interesting publication [71], the authors utilize a neural network-based
backstepping control scheme for quadrotor position and yaw angle desired setpoint
tracking. [72] introduces a novel backstepping design scheme for the quadrotor, based on
an NN for modelling uncertainties. In [73], a nonlinear controller based on backstepping
and PID employs an NN to identify unmodelled dynamics. [74] focuses in solving the finite
time tracking problem of a quadrotor by utilizing an NN-based control scheme for
compensating actuator faults and external disturbances. [75] introduces a robust terminal
sliding mode approach for quadrotor attitude and position control, integrating an RBF NN
to mitigate the influence of external disturbances. The effectiveness of these NN models
within the broader control scheme riles heavily on their modeling accuracy, which in turn

depends on the architecture and training algorithm used.
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Selecting RBF networks trained with the FM algorithm as the neural network modeling
approach constitutes a highly effective choice, thanks the ability of the FM algorithm to
deliver RBF networks with enhanced accuracy within shorter computational duration. This
has resulted in the successful integration of the FM algorithm into various nonlinear control
schemes [10], [15], [16], [30], [76].

RBF networks have been used in conjunction with backstepping to oversee a range of
systems. In [77], an RBF-backstepping scheme was applied to regulate the equilibrium
position of an electrohydraulic elastic manipulator, even in scenarios with variable stiffness.
In another instance [78], within an aerial work platform vehicle, a backstepping control
approach was implemented, incorporating RBF networks to reduce tracking errors in work
platforms and effectively dampen vibrations. Surprisingly though, the literature is very
scarce on using integrated RBF-backstepping networks for quadrotor trajectory tracking. In
the few relative publications, the training procedure involves only the network weights [72],
while the centers of the RBF network are selected arbitrarily; this could result in a subpar
model for the uncertainties in terms of accuracy, bearing a detrimental effect on the

performance of the overall control schemes

Furthermore, another way to enhance the performance of quadrotor trajectory tracking
control schemes, involves the application of MPC methodology. In [79], an MPC control
law is responsible for position control while a feed-forward controller guarantees the
quadrotor’s stabilization. In [80], a robust MPC controller is implemented in real flight
scenarios. In [81] a state space error predictive controller is utilized for trajectory tracking,
while an H,, controller stabilizes the attitude of the quadrotor. In [82] the control system is
split into two subsystems: one for path following using a state-space predictive controller,
and the other for attitude stabilization using a non-model based active disturbance rejection

(ADCR) controller with a linear extended state observer strategy.

Irrespective of the chosen control method, effective parameter tuning is a crucial practical
task, as inadequately selected controller parameters can impede the performance of a
quadrotor. Unfortunately, although the MPC method has been highly successful for
quadrotor control, it is often associated with a cumbersome parameter tuning procedure.
This can be attributed to the high number of operational parameters that need to be selected,
which increases further when the MPC method is coupled with different techniques that
carry their own parameters, as is often the case in quadrotor control. Under such
circumstances, performing the tuning procedure by trial and error is not effective and a

mathematical optimization problem needs to be formulated and solved. Unfortunately,
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when viewing the MPC tuning as an optimization procedure, the high number of design
variables is not the only obstacle to be encountered; the mixed integer and continuous nature
of the design variables, combined with a complicated, nonlinear and multimodal objective

function make the use of conventional optimization methods inadequate.

Metaheuristic search methods constitute a class of optimization algorithms that are better
equipped to overcome such difficulties and provide better quality solutions to the tuning
problem. By relying on stochastic search, metaheuristic search methods reduce the risk of
getting trapped in local minima, while the generation and evolution of multiple solutions
bestows increased exploration capabilities. This is due to their ability to solve problems that
are too difficult or time-consuming to solve using traditional methods. Among the popular
metaheuristic techniques are genetic algorithms (GA) [83], which emulate natural selection
to evolve potential solutions over multiple generations; and simulated annealing (SA) [84],
which emulates the annealing process in metallurgy, iteratively exploring neighboring
solutions and gradually approaching near-optimal or optimal solutions. Another well-
known technique is the ant colony optimization (ACO) [85] which is inspired by the
behavior of ants in finding food, where artificial ants navigate solution spaces and deposit
pheromones to guide the search towards best solutions. However, these metaheuristic
approaches, exhibit some significant disadvantages including slow convergence, sensitivity

to parameters and susceptibility to local optima.

Particle swarm optimization (PSO) [86] is another simple yet effective metaheuristic
optimization method which belongs to the family of swarm intelligence; it relies on
simulating the social structure of flocking birds and has been used successfully for tuning

diverse control schemes [87] and optimization [88].

Not surprisingly, PSO has been utilized extensively for solving the quadrotor control tuning
optimization problem. In [89], a PSO tuning process was used in order to design four
decentralized PID controllers achieving stabilization for the quadrotor's altitude and
attitude. In [90], a PSO algorithm is used to tune RBF neural networks responsible for
adjusting the parameters of a PID controller coupled to the quadrotor. Yacef F. et.al in [91],
implement a PSO-based tuning strategy to an integral back-stepping controller in order to
achieve height and angle stabilization. PSO has also been used to optimize the control
parameters in quadrotor path tracking problems. In [92] a path planning solution is
presented for the inspection of a photovoltaic farm based on a PSO - Bezier curve algorithm.

In [93], the PSO algorithm optimizes the parameters of an ADCR strategy for the sake of
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following a desired path. In the particular work the PSO-ADCR methodology is compared
with the simple ADCR showing the improvement in settling time, overshoot and desired
tracking error. In [94], a heterogenous comprehensive learning PSO is utilized to optimize
the parameters of a quadrotor saturation-based controller in order to perform three-
dimensional trajectories in space. Mahmoodabadi et al. in [95], used a multi-objective high
exploration PSO algorithm to tune the membership functions of a quadrotor fuzzy controller
based on the LQR methodology.

While simple variants of PSO have proven effective for optimizing quadrotor control
strategies, they do have limitations, including constrained exploration of solution spaces,
vulnerability to local optima, and decreased efficiency in high-dimensional environments.
Therefore, the modularity of the respective optimization problem could be better addressed
by cooperative PSO techniques. CPSO works by dividing a complex optimization problem
into smaller subproblems and then utilizing multiple sub-swarms of particles to explore
these sub-problems simultaneously. These sub-swarms collaborate by periodically sharing
information. This cooperative approach favors diverse exploration and leverages the
strengths of both local and global search resulting in high-quality-solutions. Numerous
works [96]-[98] have highlighted the effectiveness of employing cooperative techniques in
dealing with complex optimization problems and achieving success. While cooperative
techniques have demonstrated their effectiveness in addressing complex optimization
problems, it’s noteworthy that, to the best of the author’s knowledge, there is a relative
scarcity of research on the application of cooperative techniques for tuning quadrotor

control schemes.

Another important aspect of MPC control is the choice of the predictive model. The
majority of MPC methodologies in both literature and industrial applications predominantly
rely on linear models, with the Dynamic Matrix Control (DMC) [99] being the most popular
among them. Its widespread acceptance can be attributed to its usage of a linear step
response model, simplifying parameter determination, and the application of linear or
quadratic objective function, streamlining the optimization process. However, in practical
industrial scenarios, nonlinear processes are prevalent. Linear model-based controllers
perform well primarily within the vicinity of their delivered linear models, but this

operation region can become severely constrained when substantial nonlinearity is present.

Neural networks provide an interesting approach to modeling nonlinear systems and have
been employed as models in MPC control methodologies. A recent overview regarding

neural network modeling approaches for model predictive control is provided by Ren et al.
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[100]. Specifically, Lanzetti et al. [101] propose a data-driven modeling approach by
implementing a recurrent neural network within an MPC controller for managing systems
commonly encountered in industrial applications. In [102] the authors introduce an MPC
method for precise tracking in repetitive batch processes, by utilizing neural networks to
identify system dynamics. Kang et al. [103] introduce an event-triggered MPC approach
for robotic manipulators by combining neural network-based predive modeling, global
learning for optimization and event-triggered solving to enhance tracking control on a real-

world robot.

Introducing non-linear models into an MPC controlled system can help resolve problems
associated with non-linearity in systems. However, it doesn’t address the case of time-
varying systems, where the use of static MPC framework can lead to poor controller
performance or even instability. To address the issues arising in the control of time-varying
processes, various adaptive tuning methods have been proposed. Early efforts regarding

real-time adaptation or process models in MPC schemes can be witnessed in [104]-[106].

It should be noted that all the aforementioned approaches rely on linear models, but in
recent years, there has been substantial advancement in the development non-linear
adaptive MPC methods. Hedjar in [107], introduces an adaptive neural network MPC
controller to address parameter variations and uncertainties in nonlinear systems improving
tracking performance. In [108] the authors propose an online backpropagation NN to
effectively control forging process, addressing their inherent time variance and
nonlinearity. Carughi et al. [109] present an online neural network-enhanced MPC

methodology for a UAV, improving trajectory tracking and handling actuator faults.

Another approach in neural-network MPC methods involves the use of RBF models as
adaptive modeling techniques. The motivation behind this, is that RBF models offer
enhanced adaptability and modeling accuracy, making them a promising choice for
adaptive control systems. However, there have been relatively few studies conducted on the
development of non-linear adaptive MPC methodologies. In [110] the authors introduce a
control methodology for processes with multiple steady states, using an MPC framework
with process dynamics modeled by RBF NNs. The approach is successfully applied to a
challenging CSTR reactor with three steady state points. In another publication [111], a real
time MPC method with self-organizing RBF NNs for nonlinear systems is proposed, which
demonstrates effective tracking and disturbance rejection characteristics. Han et al. [112]

propose a self-organizing recurrent RBF NN improving modeling accuracy with a spiking-
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based growing and pruning algorithm and adaptive learning. The designed scheme is

applied to control dissolved oxygen concentration in a WWTPs, with simulation results

demonstrating improved model fitting and control performance compared to existing

methods.

Motivated by the aforementioned discussion, this thesis aims to contribute to the domains

of automatic control and computational intelligence, addressing the challenges and gaps

previously outlined. The primary contributions include:

A novel approach for harnessing the CPSO framework has been developed to
address complex optimization and control challenges in diverse applications. This
CPSO algorithm is designed to efficiently optimize and control systems facing
different issues, as demonstrated in two distinct applications. Firstly, the CPSO
framework was applied to optimize and control distributed networks heavily reliant
on photovoltaic systems. The scheme leverages the power of multiple swarms to
optimize distinct zones within the network, effectively managing the growing
complexity of the optimization problem as photovoltaic systems become more
integrated. The CPSO algorithm combines exploration capabilities with zone-based
exploitation for candidate solutions, making it well-suited for the challenges posed
by these networks. Its effectiveness was assessed in reducing voltage deviations and
minimizing real power losses in an IEEE distribution grid under various load and
generation profiles. Additionally, the new CPSO framework was employed to
identify critical system parameters in a first principles model of a WWTPs. By
solving a nonlinear optimization problem based on a system identification scheme,
it successfully estimated crucial parameters in a modified benchmark simulation
model No.1 (BSM1). The performance of the CPSO algorithm was compared with
two other PSO algorithms, specifically in the task of estimating the kinetic and
stoichiometric coefficients of the modified BSM1 model.

A new control strategy is proposed for solving the quadrotor trajectory tracking
problem by utilizing a backstepping-RBF network framework. The proposed
backstepping controller is designed so as to ensure Lyapunov stability for the
closed-loop system. It combines a first-principles-based dynamic model of the
quadrotor, and an RBF network which provides a data-driven approximation of
unmodelled uncertainties of any type. The RBF network is trained using the FM
algorithm, enhancing modeling accuracy and thereby enabling improved tracking

performance in the presence of unmodeled dynamics. This methodology was
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successfully tested in two different trajectory tracking scenarios. The simulation
results against a classical backstepping control approach confirm the superiority of
the proposed method.

e A novel comprehensive framework is introduced, employing cooperative PSO to
produce an optimized quadrotor trajectory-tracking MPC controller. To be more
specific, the employed framework comprises two control subsystems, namely an
MPC controller for dealing with the path following problem and a PID scheme for
dealing with attitude stabilization. The two different control subsystems require a
large number of tuning parameters, which are optimized effectively by a cooperative
PSO scheme, employing multiple swarms in order to handle the different
components of the solution vector. In this case, two different swarms are used for
the MPC and PID tuning parameters, respectively; though each swarm controls a
different set of parameters, they ultimately work together towards bestowing
improved trajectory tracking abilities to the integrated control framework. The
proposed approach is evaluated through a series of experiments employing a
number of different trajectories, while also testing the method’s robustness by
applying it in trajectories different than the ones used for tuning; performance is
compared to different metaheuristic search methods through statistical testing.

e Anew nonlinear MPC strategy is developed that employs discrete adaptive dynamic
RBF models for predicting the future behavior of nonlinear time-varying systems.
The model adaption is achieved through the adaptive fuzzy means algorithm, which
provides the benefit of dynamically adjusting both the network’s structure and its
synaptic weights. The adaptive nonlinear MPC approach is thoughtfully based on
Lyapunov stability theory by invoking the monotonicity with respect to time of the
MPC cost function. In this sense, the stability of the closed-loop system is ensured.
The effectiveness of this approach is illustrated using two different nonlinear
systems: a NARX system and a time-varying CSTR reactor. In the case of the
CSTR, the methodology is applied to control a reactor with three equilibrium points.
The results demonstrate that the proposed controller successfully controls the CSTR
across its entire operating range.

The structure of this doctoral thesis is as follows:

Chapter two introduces the key computational intelligence tools utilized throughout the

thesis, highlighting the architecture of RBF neural networks and the swarm-based
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metaheuristic approach of cooperative PSO. Additionally, it demonstrates an application of
the CPSO framework for optimizing and controlling photovoltaic-heavy distribution
networks. Simulation results across diverse scenarios validate the efficacy of CPSO when

compared to alternate approaches.

Chapter three introduces the primary control methods utilized in this thesis for nonlinear

system control, i.e., the backstepping and model predictive control methods.

Chapter four initiates with an introduction to UAVs and quadrotor dynamics and control,

subsequently delving into the quadrotor trajectory tracking control problem.

Chapter five of the PhD dissertation introduces two trajectory tracking control approaches
for addressing the quadrotor trajectory tracking problem. It includes the induction of a
Backstepping neural network control scheme and the development of a cooperative PSO
controller tuning scheme. The effectiveness of these methods is demonstrated through a

series of simulations and case studies.

Chapter six of the thesis presents and analyzes a nonlinear MPC strategy incorporating
adaptive RBF models. The NMPC controller’s efficiency is evaluated through two case
studies: a nonlinear NARX system and a time-varying CSTR system. Simulation results

demonstrate the controller’s effectiveness.

Finally, the conclusion drawn from the completion of the thesis are presented in Chapter

seven.



2. Computational Intelligence methods

2.1 Introduction to Computational Intelligence

Computational intelligence (CI) [113] refers to a field of study that explores the design and
development of intelligent systems capable of performing complex tasks by simulating
human-like cognitive processes. CI offers an arsenal of tools that can be applied in diverse
scientific fields for dealing with problems that would have been difficult to solve with
conventional approaches. Cl mainly focuses on a number of core families of methods,
which include artificial neural networks, swarm intelligence, artificial immune systems,

fuzzy systems, evolutionary computation [114]-[117].

The objective of CI is to develop systems that learn from experience, adjust to evolving
environments, make decisions and solve problems without the need for explicit
programming. Through the utilization of extensive datasets and diverse computational
techniques, these systems demonstrate intelligent behavior akin to humans such as pattern

recognition, decision-making and problem-solving.

This chapter presents the primary computational intelligence methods utilized within the

scope of this thesis.

2.2 Radial Basis Function Neural Networks

Artificial neural networks (ANNSs) constitute a standard machine learning technique;
essentially, they are considered very effective for the modeling of highly nonlinear systems
or processes, and during the last 20 years they have been extensively used for the realization

[10] of such models in order to design novel control schemes.

Radial basis function neural networks (RBFNNSs) [117] constitute a popular machine
learning technique with various applications in nonlinear system identification and system
control. Due to their simple structure and improved accuracy, RBFNNs are widely

considered for modeling nonlinear dynamics.

RBF networks are characterized by a specific architectural design, consisting of a single
hidden layer that is directly connected to the output layer. This linear connection contributes
to advantages in terms of training speed and efficiency compared to classical multilayer

perceptron (MLPSs).



This section introduces the fundamental formulation of the RBF NNs and describes a
specific algorithm namely the symmetric fuzzy means for the training of the network, which
is applied in the context of this thesis.

2.2.1 RBF Network structure

An RBF network is a simple feedforward neural network comprising of a single hidden
layer. A typical RBF NN is shown in Figure 1. The input layer is followed by the hidden
layer, where a nonlinear transformation takes place. More specifically, each hidden neuron
utilizes a radial basis function centered around a center vector c;. In this work the modified

thin plate spline function is used as the nonlinear radial basis function:

o1(k) = m(x(0)" - log (m(x(k)) + 1) ()

where x(k) € R¥*1 denotes the kth input vector and ¢;: RV*1 - R is the output value of
the Ith hidden neuron and the activity w;(x(k)) of the Ith node is the Euclidean distance

between the kth input vector and the Ith center vector given by

N
w(x(0) = lx(k) — ¢l = Z(x(k) —e)?, k=1,..K 2)
i=1

where K is the total number of the data set and ¢; € RN*! indicates the center vector of the

Ith hidden neuron.

For each data input and each node, an activation function value is calculated. The hidden

node responses for the kth can be written as:

z(k) = [ p(p1(x(K))), (2 (x(K))), ..., @ (py(x(K)))] ®3)

The output of each hidden neuron z; is multiplied by a synaptic weight w; and then
propagated towards the output layer, which consists of a linear combination of weighted
nonlinear hidden basis functions. The final output of a multi-input and single-output
(MISO) RBF neural network, can be described as:

L
300 = willo) - p(au(x(F)) @
=1



Figure 1: Typical structure of an RBF network

where L is the total number of hidden neurons and w; is the synaptic weight between each
hidden and output neuron.

Having the RBF centers fixed in the hidden layer, the synaptic weights are typically

calculated using linear regression:
wh=y".z.(Z" - 2)71 (5)

where Z € R¥*L is a matrix containing the hidden layer outputs, and Y € R¥*1 s a vector

that includes the target values.

Thus, establishing the hidden node centers is a vital step in designing of an RBF NN, as it

holds significant importance for network’s functionality and performance.

2.2.2 Training of RBF Networks - The Fuzzy Means Algorithm

The k-means algorithm [11] constitutes a standard approach in determining the coordinates
of the RBF centers with a predefined number of centers. However, since the appropriate
number of centers is often unknown in advance, it necessitates an arduous trial-end-error
process to determine the optimal number. The fuzzy means algorithm [14] is highly suitable
for addressing this task, because it adopts a fuzzy clustering approach in order to determine

the node centers.

Consider for a system with N normalized input variables the universe of discourse (domain)

of each variable x;, i = 1, ..., N a number s of triangular 1-D fuzzy sets:

T; = {A,-ll,Ai’Z,..-,A,-’s ,i=1,2,..,N 6)



where each fuzzy set 4; ; is characterized by acenter o;; i =1,..,Nandj =1,...,s and
its corresponding width §a; which for a symmetric input partitioni.e., Sa; = da; = da, =

-+, = 0ay = da and can be fully described as:
Aij = {a;;, 8a} ©)

Each fuzzy set 4, ; is described by its own membership function regarding the input x; (k)
and is defined as:

O aul e oy - saay, + 5a]
By (i (K)) = sa o Sxk)Elay—daa;+ba ®)

0, otherwise

By partitioning the entire input space using the fuzzy principles, we can generate a total of

S multidimensional fuzzy subspaces A™, wherem =1, ..., S

s= ﬂsi ©)

N
i=1

A compact way to represent each multidimensional subspace can be defined as:

Am = [ T’ gl’ ""Aﬁ] Y m= 1I 2! ---;S (10)

A subset of the above fuzzy subspaces depicts the candidate RBF centers, that are chosen
S0 as to cover the data input space in a uniform way. The selection of the right subspace is
based on the idea of a multidimensional membership function psm(x(k)) defining a

hypersphere of an input vector x(k) to fuzzy subspace A™:

1-rd™(x(k)), if rd™(x(k))<1

(11)
0, otherwise

ﬂAm(x(k)) = {
where rd™ (x(k)) denotes the Euclidean distance between the fuzzy subspace A™ with the

input vector x(k):

N Cam —x(k))2] 2
[Zl=1( al,] xl(k)) ]

- (12)
[N, (6a)?] /2

rd™(x(k)) =
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Figure 2: A 2-D input space fuzzy partition with a circular membership function

An overall view of the fuzzy means algorithm and determination of the closest fuzzy
subspace to an input vector x is given in Figure 2 in which an example of a symmetric fuzzy

partitioning for a 2-D input space is considered.

It is important to state here that only a single pass of the data is needed to determine both
the number and location of RBF centers. This results to a fast-non-iterative procedure to
find a subset of the subspaces, ensuring that all input data points are covered by at least one
fuzzy subspace. Consequently, the resulting RBF NN primarily depends on the number of
fuzzy sets, which can be determined efficiently through an exhaustive search within a

narrow range.

2.3 Standard Particle Swarm Optimization

PSO [86] is a simple yet effective metaheuristic optimization method which belongs to the
family of swarm intelligence (SI). The algorithm simulates the social structure of flocking
birds flying in formation. To be more specific, the algorithm encodes a population of
possible solutions known as particles, which 'fly' through the search space by taking into
account the personal best location they have visited, as well as the global best solution

achieved.

During each iteration, the particles move towards the direction of their own personal best
solution found so far, as well as in the direction of the global best position found by the

entire swarm. Each particle of the swarm is characterized by its position x;(t), its velocity



v;(t) and its best previous position in the search space y;(t), where y(t) denotes the best-

known position of the entire swarm.

For a fitness function f to be minimized and a swarm consisting of s particles of
dimensionality equal to n, the following equations describe how the particles update their

current position and velocity:
vij(t+1) =w-vj(0) +cq -1y [¥;(8) — xj(O] + ¢ -7 [P () — x;5(8)] (13)

where v; ;, i =1,2,...,s, j = 1,2,..,n is the velocity for the jth dimension of the ith
particle, c;, ¢, denote the acceleration coefficients, w the inertia coefficientand ry ;, 5 ; are

two random values sampled from a uniform distribution in the range [0,1].

Equation (13) consists of three parts. The first is the momentum or inertia part, that reflects
the particle's tendency to maintain its current motion. The second is the cognitive part which
represents the ability of the particle to reflect on its behavior and follow the best personal
position found in the past. The last part is the social one, which depicts the particles’

tendency to follow the optimal position found by their neighbors.

The personal best position of each particle is updated using the following equation,

_{ ¥, if fOut+1) = f(yi(0)
e+ D= 00 if Ftes 1) < FOMO) (1)
And the global best position of the swarm is defined as:
Pt+1) = argmyiinf(yi(t +1)), 1<i<s (16)

There are various variants of the PSO algorithm that incorporate different elements, such
as different initialization techniques [118], constrictions factors [119], inertial weights
[120] and cooperative particle partitions [121].

Specifically, in the latter case the inclusion of cooperative particle partitions in the PSO
scheme proves to be particularly valuable, fostering collaboration among particles and
greatly improving its performance in complex optimization problems where the search

space is large or exhibits multiple sub-optimal solutions.



2.4 Cooperative Particle Swarm Optimization

The concept of cooperation between candidate solutions of a population has been applied
in various metaheuristics, such as evolutionary algorithms and PSO [122], [123]. The
CPSO-S framework [124] emerged as the first instance of cooperative behaviour within the
PSO category, by splitting a solution vector of n parts into exactly n 1-D particles; a
generalized version of this approach is introduced in [121] where the solution vector is split

into Nc swarms with N¢ < n, where n is the length of the solution vector.

It is obvious that a prerequisite for the implementation of cooperative approaches is the
assortment of the n design variables in Nc swarms, which in turn indicate the presence of

P, individual distinct swarms, k = 1,2, ..., Nc.

For each swarm Py, the particle position x{fj-(t) and velocity v{fj- (t) are updated according

to:

vii(t + 1) = woi(t) + cr, (O [y () — x5(O] + o, (D[P () — xf5(0)]  (17)

xf(t+1) = xf5(0) + vii(t+ 1) (18)

where yi"j(t) stands for the best personal position of particle i, in dimension j for swarm k

at iteration t and $(t) denotes the global best position vector of particle i for swarm k at
iteration t; 4 ;(t) and r, ; (t) are randomly sampled numbers from a uniform distribution in
the range [0 1], while ¢,, c, denote the acceleration coefficients and w the inertia
coefficient. In order to control the exploration-exploitation trade-off, a velocity clamping

constant v ... is employed to regulate the particle positions in the range [—v5 o VX 42 ].

As each swarm P, contains a distinctive part of the original solution vector, the right
cooperation between the swarms’ agents is essential in order to calculate the fitness function

for the overall optimization problem. This task is feasible by utilizing a context vector xp,

formed by linking each of the particle positions of swarm Px with the global best positions

of the remaining swarms:
xp, = [PL, ... L xk yktL, L PN (19)

This means that despite the fact that the network is partitioned into several distinct sub-

swarms, the fitness function evaluation for each swarm’s individual particle is estimated



using the whole design vector. After forming the context vector x,,, the fitness function

evaluation f (x5, ) takes place by utilizing the objective function f with respect to swarm k.
A problem often encountered by most PSO-based schemes is stagnation, which is related
to the problem of particles being trapped in suboptimal solutions during the optimization
process. In the case of CPSO where multiple swarms are used, the impairing effects caused
by stagnation can be magnified [96]. This phenomenon, which limits the space exploration
capabilities of the particles, can be tackled by introducing a resetting mechanism. The
mechanism is activated when one of the swarms converges into a small region of the search
space, while the global best position for one or more of the complementary swarms’
changes. When these two conditions are fulfilled simultaneously, the particles of the

stagnating swarm are reset to new random positions, thus allowing it to discover new areas

Algorithm 1 Cooperative particle swarm optimization algorithm

s: Swarm size population

Iter: Maximum number of iterations

C1, C2 W, Py, vX ,..: PSO configuration parameters

1: Initialize the particles x;* for all swarms k at random positions

2:Calculate fitness f(xpk) and set global bests for all swarms $%(0), k=1, 2, ..., N¢
3: For =1: Iter Do:

4 For k=1: N¢

5 If stagnation criterion is met for kth swarm, Then
6: reset particles x;*(t)

7 End

8 For =1: s Do:

9 Calculate fitness f(up, ) and y;*(¢)
10: End for

11: Calculate global best $*(t) for swarm k
12: For i =1: s Do:

13: For j =1: Np, Do:

14: Update velocity v5(t + 1)

15: Update particle's position x/5(t + 1)
16: End for

17: End for

18: End for

19: End for




of the search space, which may be better suited to the new global best positions achieved
by the other swarms. More details on the implementation of the resetting mechanism in
CPSO schemes can be found in [96]. The resetting mechanism is expected to increase the

effectiveness of the method, since the optimization problem contains multiple local minima.

The pseudocode for the proposed CPSO framework is given in Algorithm 1.

2.4.1 A CPSO based framework for optimization and control of photovoltaic heavy

distribution networks

The goal of the proposed approach is the optimization and control of photovoltaic heavy
distribution networks. by employing multiple swarms that can optimize different DN zones.
Specifically, a reactive power optimization method for PV-heavy DNs based on CPSO is
introduced. The proposed scheme employs multiple swarms to optimize different zones of
the DN, where each zone contains design variables that are interrelated with respect to the
optimization objective. In order to assign efficiently the design variables to the different
swarms, a technique is used based on the Girvan-Newman community detection algorithm
[125]. The proposed method is assessed for voltage deviation minimization, as well as the
minimization of real power losses for an IEEE distribution grid, under various load and

generation profiles.

2.4.1.1 Basic concepts and optimization problem formulation

The main task within the ORPF problem is to ensure that the bus voltage magnitudes stay
within operational limits. This is especially needed in PV-heavy distribution grids where
cloud coverage can obscure specific grid areas, thus rendering traditional control means
with a grid-wide effect unsuitable. The communication infrastructure of the smart grid
paradigm has allowed the inclusion of PV inverters as reactive power control devices.

Within the context of PV-heavy smart distribution grids featuring controllable inverters, a
challenging problem revolves around the optimization of voltage deviations and real power
losses. This optimization task focuses on adjusting a set of control variables, while adhering
to several constraints. The control variables, denoted by u, signify the active power
curtailment (APC) and reactive power injection for individual PV installations. A detailed
presentation of the voltage deviation minimization problem is beyond the scope of this

thesis and more details can be found in the original publication [126].

Two distinct optimization objectives are examined: one aims to reduce voltage deviations

from a predefined nominal value at each buts, while the other focuses on minimizing real



power losses throughout the system. The control variable vector u contains the APC and

reactive power injection Q of each PV installation:
u = [Q1,APCy,Q3,APC,, ... Qy,, APCy,, | (20)

In summary, the described problem is a non-convex constrained optimization challenge
falling within the NP-hard category. The inclusion of a realistic modeling of the inverter’s
reactive power compensation (RPC) capability as a function of its active power curtailment
percentages APC (as opposed to treating it as a bounded variable) adds to the total constraint
complexity, while the fairly large number of design variables (2 per PV installation)

contribute to high dimensionality.

2.4.1.2 Cooperative PSO for partitioned electrical networks

Since the objective of interest is to minimize the voltage deviations of the grid by optimizing
the active and reactive power of distributed generators, a strategy is proposed based on
portioning the grid according to its voltage sensitivity. This approach draws inspiration
from the Girvan and Newman algorithm, a community detection method for complex
networks that doesn’t require a predefined number of communities (hereby referred to as
“partitions”) [127]. The algorithm accepts a weighted adjacency matrix (or edge-weight
matrix) that corresponds to the undirected graph structure of the electrical grid and
generates the optimal partitions C* = {Cf, C;,...,C,*{,C}. A detailed presentation of the

Girvan and Newman algorithm is beyond the scope of this thesis and more details can be

found in the original publication [127].

The Girvan-Newman algorithm can be applied to the community detection problem, in
order to yield the optimal partitions. These partitions will contain buses that are highly
coupled among themselves with respect to voltage fluctuations. This information, obtained
from the Girvan Newman algorithm, assists in organizing PV devices within highly
interconnected network zones, enhancing smart grid voltage optimization. By utilizing
information about the underlying electrical dynamics of the DN, the Girvan Newman
algorithm yields the voltage-decoupled zones C*, which in turn indicate the swarms Py,

k =1,2,..., Nc, where N¢is the total number of swarms:

P ={Q1,APC1, Q3 APC,, ..., Qy,  APCy, } 21)



where, Np, is the total number of PV installations that reside in network partition C;" (it is
assumed that Np, > 1 for every (). For each swarm Py, the particle position x{‘j(t) and

velocity vikj (t) are updated according to equations (17)-(18).

Moreover, as each swarm P, contains a distinctive part of the original u vector (20), the
right cooperation between the swarms’ agents is essential in order to calculate the fitness
function for the overall optimization problem. This task is feasible by utilizing a context

vector up, formed by linking each of the particle positions of swarm P with the global best

positions of the remaining swarms:
up, = [¥L, ... 9L xk, R, 9N (22)

The cooperative PSO approach presents three important features with respect to the ORPF
problem. Firstly, the fitness function is evaluated after updating each part of the solution
vector that corresponds to the respective swarm particles, resulting in finer-grained credit
assignment. This addresses the classic “two steps forward - one step back” problem often
encountered by PSO schemes, where a solution vector update improves one part of the
solution vector but impairs another. This phenomenon is especially evident for the case of
a network with voltage decoupled zones, where a part of a solution vector that corresponds
to a specific zone may quickly converge to an unsatisfactory local minimum, thus limiting

the whole swarm’s exploration capabilities throughout the search space.

The second advantage is related to the increase in the solution diversity offered by CPSO
[121]. Indeed, in the CPSO case, each solution vector becomes a combination of several
particles which belong to different swarms; thus, the overall solution diversity is increased,
because different personal and global best solutions are used for updating each particle,
depending on the swarm it belongs to.

Lastly, the third advantage refers to the robustness of the algorithm, even when applied in
networks with weakly voltage-decoupled zones; CPSO consolidates the partitioned design
variables in one design vector at the end of every iteration, thus taking into account any

inter-zonal effects.

24.1.3 Setup
The IEEE 123-bus distribution system [128] is selected as a suitable testbed for the
simulation studies. Its large scale can accommodate a high number of PV installations,

which warrants the application of cooperative optimization methods. As described in the



previous section, the network partitions are determined through the utilization of the
Girvan-Newman algorithm. A large number of PVs are considered in order to create a high
dimensional search space; therefore, 20 installations are placed throughout the grid,
spanning capacities from 140-280 kW; their technical specifications are shown in Table 1.
These capacities represent a typical PV penetration level of a Greek mainland distribution
grid, and were chosen as so. Each inverter has a nominal power that is +10% higher than
its corresponding installed PV capacity, as is usual practice. The inverters can curtail the

generated PV power and control the power factor of the injected power in the grid.

To simulate different DN states, two different scenarios are created. Both are regarded as
snapshot scenarios (i.e., static), and are used in order to infer statistical conclusions for the
performance of the proposed method. The scenarios are outlined below:

Scenario 1 is used to assess performance for the VDM objective and represents the
phenomenon of partial cloudiness, resulting in severe undervoltage. The main challenge in
this scenario is to bring the voltage of each bus as close as possible to the nominal value.
The scenario information is shown on Table 2.

Scenario 2 is employed to evaluate the performance of the RPLM objective assuming full
solar irradiance, which results in overvoltage in certain buses of the grid. In this particular

Table 1: PV installation specifications

PV Power PV Power
# Bus Capacity Rating Zone |# Bus Capacity Rating Zone

(kW) (kVA) (kW) (kVA)
1 6 140 155 Cy 11 100 280 310 Cs
2 10 140 155 Cy 12 119 280 310 Cs
3 117 140 155 C1 13 109 280 310 Cs
4 27 180 200 C, 14 111 280 310 Cs
5 26 180 200 C, 15 78 280 310 Cy
6 41 180 200 C, 16 88 280 310 Cy
7 45 180 200 C, 17 92 280 310 Cy
8 50 180 200 C, 18 82 280 310 Cy
9 55 140 155 c, |19 21 180 200 C,
10 68 280 310 Cs 20 63 280 310 C3




scenario, the primary challenge involves ensuring that the voltage at each bus within the
network adheres to operational constraints, while simultaneously minimizing power losses.

Table 3 presents detailed information regarding the scenario.

In order to illustrate the effectiveness of the proposed method, three competing schemes are
introduced: the first scheme is a randomly partitioned CPSO scheme (RPCPSO), where the
respective swarms are not assigned according to the Girvan-Newman partition, but
randomly. The second scheme, which has been proposed in study [129], formulates a
decentralized optimization problem for each network partition, and solves each problem
independently using a PSO algorithm with adaptive weights. The scheme is hereby referred
to as “decentralized PSO” (dPSO) in this study, and its main difference in comparison to
the proposed method is the decentralization of zones, namely the absence of inter-zone
communication. The third scheme applies a standard centralized PSO algorithm [130] to

the original problem.

The tuning parameters for each one of the competing schemes are shown in Table 3; they
were selected based on indicative values found in the literature [131]-[133], in conjunction

with a trial-and-error procedure. In order to ensure fairness of comparison, the standard

Table 2: Snapshot scenario information

S . Slack bus nominal Average irradiance | Load multiplier per
cenario
voltage (p.u.) percent per zone zone
c, ¢, C; (€, |, C; (€3 (4
1 1.00 100 80 50 50 1 1 1 1
2 1.02 100 100 100 100 |16 1 04 04
Table 3: Tuning parameters for all methods
sch Swarm Stall Coefficients Function Inertia Inertia
cheme i i i
size iterations oL, &2 Tolerance type range
RPCPSO/ 30 40 1.2 [1,0.75]
CPSO 10  Exponential
PSO 90 40 1.49 10 Adaptive [1.1,0.1]

dPSO 30 40 1.49 10 Adaptive [1.1,0.1]




Table 4: Scenario 1: Statistical results for VDM objective

Obiective Objective Best Average
J value standard Objective p-value  function
value average L Y
deviation value evaluations
CPSO 0.7006 0.0603 0.6241 - 5260
RPCPSO  0.8904 0.1482 0.7574  1.67E-04 5120
PSO 0.9792 0.2746 0.7810  1.89E-04 4960
dPSO 2.2109 0.2295 1.7594  1.71E-25 6520

! convergence to the 1% decimal

Table 5: Scenario 2: Statistical results for RPLM objective

Obiective value Objective value Best Average
Javera o standard Objective p-value function
g deviation value evaluations?
CPSO 0.01035 0.00072 0.00918 - 8520
RPCPSO 0.01164 0.00173 0.00961 1.67E-02 8340
PSO 0.01230 0.00202 0.01027 2.23E-05 7120
dPSO 0.04307 0.00230 0.04027 5.543E-37 9240

2 convergence to the 3" decimal

PSO algorithm was allowed a larger swarm size, namely three times the one used by the
rest of the algorithms; this way, the number of total objective function evaluations across

all methods was similar, and their performance comparable.

2.4.1.4 Results and discussion

Since the three competing schemes are based on stochastic search, multiple runs are needed
to properly assess their performance. To be more specific, a total number of 20 runs for
each scenario is performed, starting from different randomly chosen initial particle
positions in each run. In order to reach valid conclusions regarding the statistical superiority
of the proposed scheme, a t-test between CPSO and each one of its rivals has been applied

for scenarios 1-2.

The null hypothesis is that the results produced by the two competing methodologies are
generated by populations with the same mean. Tables 4-5 depicts the average and standard

deviation values, as well as the best value for the objective function from the 20 runs,



- 3 ~ 3

2 3

£2.5¢ 251

>‘ -

< 2r 5 aof

&_) ]

& 1.5F P15t

E S

% ]' L‘; 1_

£ 0.5F £05F

= =

w2 0 L 1 1 1 1 L L w 0 1 1 1 i L 1 1

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

Iterations 1 —7 —(3 —C Iterations
) [—c1 —c2 —3 —aa] i

Figure 3: Convergence curves for each individual network zone for the best PSO (a) and

CPSO (b) runs on scenario 1.

together with the p-value corresponding to the t-test and the average number of function
evaluations of each method for scenarios 1 and 2, respectively. Regarding scenario 1, CPSO
achieves 21%, 28% and 68% lower average objective value (sum of voltage deviations) in
comparison to RPCPSO, PSO and dPSO, respectively. Similar performance is recorded for
scenario 2 where the objective of RPLM (total power losses in MW) is addressed: an 11%,
16% and 76% improvement is achieved over RPCPSO, PSO and dPSO, respectively. The
superiority of CPSO is also confirmed when comparing the best runs of each method: in
scenario 1, CPSO achieves a 17%, 20% and 64% improvement over RPCPSO, PSO and
dPSO, respectively, while in scenario 2, CPSO scores 5%, 11% and 77% improvements
over RPCPSO, PSO and dPSO, respectively. The statistical significance of these results is
established by the t-test with a confidence interval of over 98%, as indicated by the

produced p-values.
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Figure 4: Convergence graph for the best runs of scenario 1. Coloured rectangles denote
convergence to the 1% decimal. Note that the convergence curve of dPSO corresponds to

the successive minimization of the four zone-based optimization problems



In addition, the superior performance of the proposed method is consistent, i.e., the method
converges around the same solution for each different run. This is indicated by the low
value of standard deviation for both scenarios, and is testimony to the increased search
space exploitation capabilities inherent to the CPSO algorithm. Lastly, it should be
emphasized that the proposed method achieves the aforementioned performance
improvements with a reasonable computational burden, as indicated by the number of
average objective function evaluations: when compared to dPSO, CPSO exhibits
consistently lower computational requirements in both scenarios. It should be noted that
CPSO is surpassed by standard PSO in this aspect, but on the other hand it manages to
greatly outperform the latter in terms of optimization performance.

There exist multiple reasons for the superior statistical performance of CPSO in scenarios
1 & 2. First of all, since the RPCPSO approach has randomly assigned each design variable
in the cooperative swarms, the underlying topology of the network is not utilized.
Therefore, it fails to properly explore the available search space, in contrast to the proposed
CPSO approach where the network partitioning information is incorporated. Next, as
mentioned earlier, standard PSO suffers from the “two steps forward - one step back”
problem and cannot effectively explore the available search space. This can be shown by
examining the convergence curves of each individual zone for PSO and CPSO in an
example run, as illustrated in Figure 3. Here (fig. 3a), it is confirmed that zone convergence
for PSO is not monotonic, meaning that some updates may improve some parts of the
solution vector, but worsen others, as reflected in the performance of each zone; this
phenomenon is especially highlighted at iterations 10-15, where improvement of zone C;
is temporarily impaired. CPSO’s zone-based approach alleviates this problem as shown by
the monotonicity of zone convergence (fig. 3b), and is further confirmed by examining the
overall convergence characteristics, as shown Figure 4: Here, considering the first 30
iterations, CPSO achieves a rapid improvement in objective value, in contrast to PSO,
which appears to stall multiple times over the same period. Moreover, CPSO achieves
superior exploitation characteristics, since it converges to the 1st decimal much earlier than
PSO. The dPSO approach also sufficiently exploits the search space of each of the four
zone-based optimization problems, which appear as distinct “steps” on the convergence
curve; the quick convergence of each problem to the 1% decimal this observation. It should
be noted that, one hand, dPSO retains the important practical advantage of complete
decentralization [134], which CPSO and PSO lack. On the other hand, dPSO exhibits worse
exploration capabilities out of the other three schemes. This can be attributed to the fact that
as the algorithm progresses from one zone-based problem to the next, it cannot account for



inter-zone effects, which are strong for the test case selected in this work. The result is an

overall deterioration of optimization performance.

242 A CPSO based framework for parameter identification in wastewater

treatment plant modelling

The objective of this approach is to create an accurate parameter identification system for
a WWTP using a modified BSM1 model. To achieve this, a customized CPSO framework
is utilized in order to successfully estimate the values of critical parameters in a detailed
first principles model of the process, by solving a nonlinear optimization problem which is
based on a system identification scheme. The resulting model can subsequently be applied
for energy-efficient optimization by integrating it into control schemes. The proposed
CPSO is assessed through comparisons with two other PSO algorithms in the task of

estimating the kinetic and stoichiometric coefficients of the modified BSM1 model.

2.4.2.1 Basic concepts and problem formulation

The BSM1 model [135] is a well-known first principles model that is being widely used to
simulate the dynamic behavior of WWTPs. In this study, the generic BSM1 model was
customized to match the structural and operational aspects of a real WWTP in Greece, with
further refinement using real sensor data. The BSM1 model encompasses many critical
parameters significantly affecting the entire process. Specifically, it includes 14 kinetic and
5 stoichiometric parameters, each one of them closely related to a certain chemical process.

The proper adaptation of BSM1 to a specific WWTP requires an accurate estimation of the
parameters that exist in the model. To achieve this, a system identification scheme is
proposed that is based on formulating and solving a nonlinear optimization problem. The
objective of this optimization problem is to minimize the mean squared error (MSE) between
the data collected from the actual plant and the simulated data produced by the adapted

BSM1 model, as described by the following equation:

N
1
J=5 Q. 0n =P 23)

where N corresponds to the total amount of data collected, y, represents the data collected

from the actual plant and y denotes the simulated data produced by the adapted model.



The formulated nonlinear optimization problem aims to minimize equation (23) by selecting
the appropriate values of the aforementioned parameters, which are present in the modified
BSM1 model. However, a number of undesired properties are observed in this problem,
including high dimensionality and multimodality, rendering the use of standard optimization
solvers inappropriate; thus, it is necessary to employ a solver capable of effectively handling

such properties.

2.4.2.2 Cooperative PSO for system identification

Standard PSO could be used to solve this nonlinear, high-dimensional optimization problem.
In this case, the design variables of the formulated optimization problem are grouped into
one unique swarm, while the PSO solver concurrently seeks to accurately estimate their
values. This particular property of the PSO approach, in conjunction with the high number
of parameters associated with the particular optimization problem, significantly increases
the difficulty of approaching a satisfying solution and thus of estimating the values of the

adapted BSM1 model parameters accurately.

To overcome the problems that appear in the standard PSO methodology, a customized
cooperative PSO [136] approach is designed for solving the formulated nonlinear
optimization problem. In this customized CPSO solver, the design variables of the
optimization problem are separated into several distinct swarms, which are formed by taking
advantage of the correlations that exist between them. Each swarm, then, explores the search
space independently trying to approach the best possible solution regarding its own design

variables, while sharing information in terms of its position with the other swarms.

In this customized cooperative PSO methodology, each swarm includes only some of the
design variables and in order to evaluate the objective function, the particles of each swarm
are combined with the best particles of the other swarms. In this way, a context vector is
created and the value of the objective function can be directly obtained. Moreover, the
proposed cooperative approach for solving the formulated nonlinear optimization problem
exhibits several advantages compared to the standard PSO algorithm. The CPSO solver
optimizes the design variables separately by grouping them into distinct swarms, thus
avoiding the two steps forward — one step back problem that appears in the PSO
methodology. In addition to this, exploration of the search space by each swarm
independently, while simultaneously exchanging information regarding their best positions

with the rest of the swarms, significantly enhances the diversity of the final solution.

Remark: Once the CPSO-based identification is completed, the obtained BSM1 model can

be used for different purposes involving optimization and control of WWTPs. One potential



use is to conduct the necessary step tests on the identified BSM1 model, for developing step
response predictive models in an economic dynamic matrix control (EDMC) scheme. The
EDMC controller aims to minimize an objective function, optimizing energy consumption
and operating costs while adhering to environmental constraints. Further elaboration on the
EDMC controller is outside the scope of this thesis; interested readers can refer to the

original publication [137] for additional details.

24.2.3 Setup

In order to deploy the developed identification scheme, two months of data have been
collected by the BSM1 model using the nominal values of the parameters, as they are
defined in [136]. The values of 12 state variables measured by specific sensors in the
investigated plant, have been stored with a sampling period of 15 minutes, which is suitable
for designing WWTP automatic control schemes [138]. Then, the data are provided to the
CPSO solver in order to approximate the values of the 14 kinetic and 5 stoichiometric

parameters that are present in the modified BSM1 model.

For comparison purposes, the employed CPSO solver was tested against standard PSO and
a modified PSO methodology [139]. The algorithms are individually tuned using literature
suggestions in conjunction with a trial-and-error procedure. Due to the inherent stochastic
nature of the algorithms, 15 runs are executed for each algorithm and the superiority of

CPSO is validated by running a two-sample t test.

2.4.2.4 Results and Discussion

As mentioned previously, the most important advantage of the proposed CPSO
methodology for solving the nonlinear optimization problem is its ability to separate the
design variables into several distinct swarms, by taking advantage of the correlations that
exist between them. In particular, in the formulated optimization problem, the 8 parameters
associated with the heterotrophic phenomena form the first swarm, while the 5 of them
linked with the autotrophic phenomena comprise the second swarm. The 3 parameters
affecting the hydrolysis procedure are included in the third swarm, and the unique
parameter influencing the ammonification process forms the fourth swarm. Finally, the
remaining 2 parameters that are closely related to the COD in the biomass of the plant are

grouped into the fifth swarm.



Table 6 summarizes the results. As it can be seen, the performance of CPSO is superior in
terms of the best or the average solution with a statistical significance higher than 90%,
while it also manages to produce more consistent results, as indicated by the standard
deviation values. The proposed CPSO approach manages to estimate the kinetic and
stoichiometric coefficients of the modified BSM1 model with high accuracy and
specifically accomplishes a value for the average objective function equal to 6.8 - 10~%. In
Figure 5a and 5b, the results of the identified model versus the original one are shown for
the ammonia and the dissolved oxygen concentration of the last aerobic tank of the second
line, respectively, while Figure 6 depicts the evolution of the 5 distinct swarms during the
identification procedure. The presented results have been obtained using validation data
that have not been used in the identification process. It is clear, that the identification
procedure is successful, as it produces a highly accurate dynamic model. This result is

attributed to CPSO, which manages to obtain an accurate estimation of the critical process

parameters.
Table 6: Performance Metrics
Algorithm Fitness Fitness standard Best Average Function p-value
Average deviation Fitness Evaluations
CPSO 0.00068 0.00014 0.00041 2348 -
Standard PSO | 0.00223 0.00244 0.00045 2726 0.0311
Modified PSO 0.00106 0.00076 0.00044 2535 0.0885
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Figure 5: Results of the identified model for () Ammonia Concentration, (b) Dissolved
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3. Nonlinear control methods

3.1 Introduction to nonlinear control methods

In the field of control engineering, both linear and nonlinear control methods play pivotal
roles in governing and manipulating dynamic systems in various fields, including

engineering robotics, energy management and biological systems

Linear control methods [140] relying on linear system theory, accurately represent systems
with minor deviations from equilibrium using linear equations. These methods, including
PID and LQR controllers along with state-space control techniques, perform well for
relatively simple systems. However, their limitations arise when dealing with complex
systems exhibiting nonlinearity and uncertainty. In such real-world scenarios, linear control
approaches may struggle in ensuring satisfactory performance and stability, thus

underscoring the necessity of nonlinear control approaches.

Nonlinear control methods [141] on the other hand, are designed to handle systems that
exhibit nonlinear behavior. These methods are essential because they recognize that the
behavior of certain systems cannot be accurately described solely by linear equations. To
address this limitation, they utilize sophisticated mathematical techniques capable of

capturing the intricate nonlinear dynamics of the system.

Specifically, nonlinear control excels in handling complex systems [142] accurately
modeling nonlinearities [143], and providing improved stability [144] particularly for
systems with significant deviations from equilibrium. Its robustness against uncertainties
[145] and the ability to adapt in system and environmental conditions make it an essential
tool for controlling inherently nonlinear systems, chaotic systems, and other complex

dynamic systems.

In the upcoming chapter, a concise yet comprehensive theoretical overview of notable

nonlinear control methodologies will be presented.

3.2 Backstepping control method

Backstepping control is a prominent nonlinear method, gaining significant attention in the
control literature [141], [146]. Unlike conventional control approaches, which struggle with
highly nonlinear systems, backstepping provides a systematic and recursive strategy to

stabilize such systems. Backstepping control is a recursive design technique that links the
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choice of a control Lyapunov function with the design of a feedback controller,

guaranteeing global asymptomatic stability for strict feedback systems.

The core principle of backstepping involves breaking down the control problem into
simpler task, each focusing on an individual state variable. Through the design of feedback
control laws for each variable, backstepping guides the system’s trajectory toward the
desired state, ensuring overall stability and convergence.

3.2.1 Integrator Backstepping

Consider the special case of integrator backstepping given by the following control system:

§ = fO+9® 1 (24)

n = u (25)

Where [¢T,7T] € R™*1 is the state and u € R is the control input. The functions f : D —
R™and g : D — R™are smooth in adomain D c R" that contains & = 0 and f(0) = 0.

Theorem 1 (Backstepping theorem)

Considering the control system (24)-(25) with smooth vector fields f and g with f(0) = 0
and g(0) = 0. Let n = @(&) be a stabilizing state feedback law for the subsystem (24).
Consider that V(&) is Lyapunov function such that

d
aL;'[f((ng(f) @] < -WE (26)

where W (£) is a positive definite. Then the state feedback control law given by:

a¢
713

v,
13

u= [f(§)+9() n] - g —rk-m—e®), k>0 (27)

stabilizes the origin (¢,) = (0,0) of the system (24)-(25) with the Lyapunov function given
by:

1
V26m = Vi@ +5-m- P ()] (28)
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Proof: The goal is to design a state feedback control law u that stabilizes the origin (¢ = 0,

n = 0). We assume that the functions f and g are known. We also assume f(0) = 0 and
g(0) = 0.

Figure 7 depicts the block diagram of control system (24)-(25). This system can be seen as
a cascade connection of two component parts of which the first is an integrator. By focusing
in the system (24), we consider variable n as a virtual controller input. We suppose that a
smooth feedback control law exists in the form n = @ (&) with ¢(0) = 0; such that the

origin of

§ = fO+9© -0 (29)

is asymptotically stable.

We assume that we know a Lyapunov function V; (£) that satisfies the inequality

av, .

FI3 [F)+9() @] = -W(E) (30)

where W (&) is positive definite. By introducing the terms g(&é) - @ (&) on the right-hand
side of equation (24) we can rewrite the control system (24)-(25) in the following manner:

$ = [fO+9® 0@1+9@) - 0®)] (31)

n = u (32)

— g —® ]

f(S)

f()

Figure 7: Backstepping control design for the system (24)-(25)
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We now proceed to introduce the change of variables:

z=n-¢() (33)

The output z can be viewed as the error between the state n and the virtual control ¢(§).

The change in variables results in the following system:

§ = [fO+9@ 0@l +9® [n— )] (34)

z = u—-9@%) (35)
Since f, g and ¢ are known, the derivative ¢ (&) can be calculated the following equation:

dp

SRORYIOR] (36

®E¢) =

Now by taking v = u — ¢ (&) the transformed system (34)-(35) is reduced to the below

cascade connection:

§ = fO+9® o@1+9@) 2z 37)

z = v (38)

The new transformed system given by equations (37)-(38) has the same form as the starting
control system (24)-(25), despite the fact that the first subsystem has an asymptotically

stable origin when the input is zero.

Next, we consider as a candidate Lyapunov function the following positive definite

function:

VaEm) = Vi@ 4y (29)

where V; (&) is a positive definite function.

By calculating the derivative of the candidate Lyapunov function V,(&,n) we obtain the

following expression:
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V,6m) = = [fO+9@ 0@+ f 9@ -z+zv
(40)
< —Mma+af g z+zv
We choose the backstepping control v as
oy,
v——a—f-g(f)—k-z, k>0 (42)
By substituting (41) into (40), we obtain
V., < -W(§) -k 22 (42)

The above result shows that the origin (6 =0, z = 0) is asymptotically stable. Since
¢(0) = 0, we can conclude that the origin (¢ = 0, n = 0) is asymptotically stable for the
original system (24)-(25).

Now by considering the equation: v = u — ¢ (&), and by substituting for v, z and ¢, the

following state feedback control law is obtained:

=22 r®+9@® m-

T a¢ g — K- [n— 9] (43)

av,
K3
This concludes the proof of Theorem 1. m

3.2.2 General system Backstepping case

Next, we move from the system (24)-(25) to the more general system of the form:

E=fO+9® (44)

n=Ff&n+9.,m u (45)

where f, and g, are smooth. If g,(&,n) #0, the input transformation

will yield (52)-(53) to the following control system:
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E=fO+9® (47)

n=1u, (48)

Thus, if a stabilizable state feedback control law ¢ (&) and a Lyapunov function V(&) exist
such that the conditions of Theorem 1 are satisfied for (44) then the Theorem and (46) yield

dp av,
'{a_f' [f(§) +g(&)nl —a—f-g(E) —Kk-[n— @]
—fa(&m)}

ga(&m) (49)

for some k > 0 and

1
V.(§m) = V1(f)+2' [ — @(®)]? (50)
as respectively a stabilizing state feedback control law and a candidate Lyapunov function
for the control system (44)-(45).

By using the above backstepping methodology recursively we can stabilize systems that are

in strict feedback form given as follows:

E=Fo(®)+90(® m
1= f1(En) + g1(§m1) 2
Ny = f2(§,M1,M2) + 92(§,m1,m2) " M3
(51)
Mi-1 = fr-1E M1 o Mi—1) + Gr-1(E M1 s Mi—1) M

e = &N mi) + 91(ENg, M) " U

where ¢ € R"™, n, to n,, are scalars, and f, to f;, vanish at the origin.

By approaching the control system (51) with the backstepping control design procedure, an
overall stabilizing state feedback u = ¢, (&, 14, ...,n) along with a Lyapunov function

Vi (&,1m4, ..., mx) can be obtained, thus stabilizing the equilibrium of the system.
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3.3 Model Predictive Control

Model predictive control is an advanced control strategy widely applied in engineering and
industry to optimize the performance of complex systems. MPC is a model-based control
technique that takes into account the dynamic behavior of the system, predicting its future
response based on a mathematical model. By making predictions about future system
behavior, the MPC method can intelligently selects control actions to steer the controlled

system toward desired outcomes, while satisfying constraints.

3.3.1 Introduction to Model Predictive Control

Predictive control has been a part of automatic control systems since the early 1980s [147],
finding extensive applications in both process industries and academia. The key factor
driving its widespread adoption is its unique capability to predict future outputs and

optimize the current timeframe effectively.

The fundamental concept underlying MPC control involves predicting future outputs of a
dynamic model by incorporating current measurements and system models. These

predictions are generated by making appropriate adjustments to the input variables.
MPC controllers offer several significant advantages, including:

1. Handling MIMO systems: Is well-suited for controlling complex systems with
multiple inputs and outputs, making it versatile in various industrial applications.

2. Dealing with constraints: Can effectively accommodate constraints on various
system variables, ensuring safe and feasible operation within defined limits.

3. Applicability to different processes: MPC strategy is adaptable to both linear and
nonlinear processes, making it an ideal choice for diverse control scenarios.

4. Ease of implementation: MPC controllers offer a user-friendly implementation,
making them easily accessible to control engineers and personnel responsible for

system operation.

MPC is a broad term that encompasses various control methodologies, all sharing a
common feature: the utilization of a system model to determine optimal control actions,
through an optimization process. The methodology employed by an MPC-type controller
is depicted in a simplified manner for the case of a single-input single-output (SISO) system

in Figure 8. This process can be broadly analyzed and broken down into the following steps:

1. At each time step k the predictions about the future plant outputs are calculated

based on a model of the system for a predetermined horizon H,. The prediction
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2.

3.

A. Kapnopoulos

horizon Hp is the number of the predicted future time steps and shows how far the
controller predicts in to the future. The predicted outputs y(k + i) where i =
1, .., H, are based on the past input outputs of the system and the future control
movesu(k+i—1),i=1,.. ,H, — 1.

The number of control moves to until the future time step H. — 1 is called control
horizon and is symbolized by H.. Inside the control horizon, the control moves
change, while outside they remain constant. The control horizon moves u are
estimated by optimizing a cost function J. The cost function that is often selected is
a summation of quadratic errors in order to minimize the difference between the
predicted future outputs and the desired given set points. The control horizon is
chosen always smaller than the prediction horizon. Usually only the first couple of
control moves have a significant effect on the predicted output behavior.

After the estimation of control moves u(k +i—1) for i =1,... ,H. — lat time

instant, only the first one u(k) is implemented in the system and the remaining ones

Now
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Figure 8: MPC methodology for a SISO system
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are rejected. After applying u(k), the real desired output y(k) is calculated. Now
the prediction and the control horizon shift forward by one time step and the MPC
controller repeats the same cycle of calculations to compute the optimal u for the

next time step k + 1.
Because of the forward moving nature of the prediction horizon, the MPC method is also
referred to as receding horizon control.
3.3.2 Nonlinear Tracking MPC

As already outlined in the introductory chapter 3, the concept behind the NMPC scheme is
as follows: at each sampling instant, we optimize the predicted future behavior of the system
over a finite time horizon k = 1, ..., N, with N,, > 1. Then, we utilize the first element of
the obtained optimal control sequence as a feedback control value for the subsequent
sampling interval. In the section, a mathematical description of this basic idea is provided

for the constant reference case x,..y.

Consider the following nonlinear discrete-time dynamical system:
x(k+1) = f(x(k),u(k)) (52)

where u(k) € U represents the input vector and x (k) € X the state vector. In order to find
a feedback control law which stabilizes the system at x,..¢ is to have x,..r being equilibrium

of the nominal closed system:
x(k + 1) = f(x(k), n(x(K))) (53)

where p(x(k)) is the NMPC-feedback law u: X — U .

A necessary condition for this is that there exists a control value u* € U with
Xref = f(xref' u") (54)

The cost function I(x,u), 1: X x U —» R¢ employed in our optimization should be designed

to penalize the deviation of the distance of an arbitrary state x from the reference state x,.¢.

Another important requirement regarding the cost function is that when we are in the
equilibrium x,..r and use the control value u* the cost should O, in order to stay on the

equilibrium, while outside the cost should be positive, i.e.
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I(Xyef, u*) = 0and I(x,u) > 0 for all x € X, € U with x # X, (55)

As already mentioned in subsection 3.3.1, one of the main reasons for the success of NMPC
and MPC controllers in general is its ability to take constraints into consideration. In this
context, we take into account constraints on both the control input and the system state.
Thus, we defined a nonempty state constraint set X € X and for each x € X a honempty
control constraint set is introduced as U € U. The idea behind these sets is that we want the

trajectories to be inside set X while the control inputs lie in U.

Having a cost function that satisfies (55) and a prediction horizon N,, = 2, the basic NMPC
problem can be formulated. In the optimal control problem (OCP) a set of control sequences
is introduced as UM (x,) € UY over which the optimization occurs, where x, depicts the
initial point of the system (52).

min Jy(xo, u)
u

s.t. u(k) e U,x(k) e X

(56)
x(0, %) = x¢
x(k+1) = f(x(k), u(k))
where Jy is given by:
N1
Jy(xu) = ; 1(x(k), u(k)) (57)

In the above OCP it is assumed that an optimal control sequence u*(.) exists. However, it
should be acknowledged that in general, the existence of u*(.) cannot be guaranteed.
Nevertheless, reasonal continuity and compactness conditions can be imposed to rigorously
establish the existence of such an optimal control sequence. For specific cases concerning
a general infinite-dimensional state space, relevant theorems addressing this existence can
be found in the works Keerthi and Gilbert [148], or Dolezal [149].
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3.3.3 Stability of Nonlinear Tracking MPC

Traditionally, the stability analysis of the MPC control law, as presented in the preceding
section, relies on Lyapunov-based tools and theorem. In what follows, a brief stability

analysis for the NMPC scheme is presented with stabilizing terminal constraint.

Let us present some essential definitions in stability theory. First, the origin (0,0) € R™ is
termed asymptotically stable (AS) for the system x(k + 1) = f(x(k), u(k)) if the origin is
locally stable and there exists § > 0 such that if [[x(0,0) — xq| < 8, then lim [|x(0,0) —

xeq|| = 0 . Local stability implies that for every € € R, there exists a § € R, such that

|x| > & implies {|p(k;x)| < e | Vk €1, }.

Next, the definitions of some useful function classes are given: A function is considered
Kclass if it is continuous for all values in its domain, it takes the value of zero at the origin
and it is strictly increasing. Moreover, a function is considered K,.class if it possesses all
the properties of a Kclass function, but it is not bounded. Lastly, a function S(x, k) is
considered a KL class function if vk € I, B(:, k) remains a K-class function and

{B(s,i) > 0]i » o, Vs € R, }, while (s,-) remains nonincreasing.

When applying terminal constraints in the MPC optimization problem, the feedback law is
only defined for those initial states x,, for which the optimization problem within the
NMPC algorithm remains feasible. Feasibility in this context means that there exists a valid
control sequence that leads to a trajectory starting from x, and satisfying both dynamics
and terminal constraints. Such initial values are called feasible and the set of all the

respective values create the feasible set. This feasible set is defined as:
Xy = {x € R|there exists u(.) € UN} (58)

Theorem 2 Consider the NMPC Problem given by (56) and optimization horizon N € N.

Let the following assumptions hold:

a. The point x* € X is an equilibrium for an admissible control value u*, i.e., there
exists a control value u* € U(x™) with f(x*,u*) = x".

b. The running cost [: X x U —» R satisfies [(x*,u*) = 0 for u* from a.

c. Suitable functions a,, a,, a; € K, exist such that a;(|x|) < Jy(x) < a,(|x|) and

L(x,u) = az(||x||) hold forall x € Xand u € U

Then the nominal NMPC closed-loop system given by (54) with NMPC-feedback law py

is asymptotically stable on Xy .
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The Proof of Theorem 2 is beyond the scope of this Thesis; a detailed proof can be found
in [150].
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4. Introduction to quadrotor dynamics and control

This chapter provides a fundamental overview of UAVs and quadrotors, spotlighting the attributes
of their dynamics and control mechanisms. Specifically, in subsection 4.1 a detailed examination
delves into quadrotor dynamics, revealing the intricate interaction of forces dictating their flight.
Moving forward, subsection 4.3 expands the discourse to encompass the implementation to PID
control techniques specifically designed for quadrotors. Concluding this chapter, the task of
quadrotor trajectory tracking is addressed, offering insights into the complexities involved in

attaining precise autonomous flight paths.

4.1 Introduction to UAVs and quadrotors

A UAV refers to an aircraft that operates without the presence of a human pilot. Initially developed
for military applications, the use of UAVs has rapidly expanded into diverse sectors, including
scientific research, surveillance, aerial photography, and even product deliveries. Within the realm
of UAVs, a distinct subgroup known as rotary wing UAVs possesses unique attributes. These
vehicles are capable oof vertical hovering, takeoff, and landing and exhibit exceptional

maneuverability.

One prominent member of the rotary wing UAV family is the quadrotor, commonly referred to as
a quadcopter. This UAV model employs four motors, each connected to a propeller, to generate
the necessary thrust for airborne lift. Each rotor is driven by an independent DC motor, converting
electrical energy into mechanical force. Two of the quadrotor’s motors rotate clockwise, while the
remaining two rotate counter-clockwise. This arrangement results in the opposite torques
generated by each rotor being balanced out by their counterpart on the opposite side. This
configuration of pairs rotating in opposite directions eliminates the need of a tail rotor which
counterbalances the torque produced by the rotation of the main rotor in the conventional
helicopter.

4.2 The quadrotor’s structure and four basic movements

The quadrotor’s motion is primarily governed by four electric motors, which inherently impose
limitations on the number of controllable variables during flight missions. Consequently, the
quadrotor can be categorized as an under-actuated system with 6 degrees of freedom (D.O.F.).
This configuration complicates the quadrotor control task, since it has only four independent
control inputs, which are less than the system’s D.O.F. These specific input variables pertain to

the quadcopter’s essential movements, crucial for stabilizing its attitude and altitude.
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To obtain to control over the quadrotor, adjustments in the angular velocities 2;, where i = 1,2,3,4
of the propellers are made. Each rotor generates both the thrust and torque around its center of
rotation. The proper change of the propeller’s velocity leads to smooth movement of the vehicle

in space.

In hovering condition all the propellers rotate with uniform angular velocities to counteract the
gravitational force. This state allows the quadrotor to sustain flight without external forces or
torques including movement from its position. Figure 9 shows the quadrotor structure model in
hovering condition, where all the propellers have the same speed 24 =2, =2, = 03 = 2,. In
this position the quadrotor performs stationary flight and forces or torques move it from its current

state.

In Figure 9 the main body of the quadrotor is illustrated in black, while the fixed body frame B is
highlighted in red. The blue color represents the angular speeds of the propellers. Each rotor has a
velocity variable, and to enhance clarity, two arrows are used per propeller: a curved arrow

signifies rotation direction, and the straight arrow indicates the vertical thrust velocity vector.

In order to make the quadrotor fly, four variables should be chosen to be controlled. This limitation
arises from the restriction of achieving only up to four degrees of freedom out of the six available.
The selection of those four variables is chosen according to the quadrotor’s fundamental

maneuvers that enable adjustments in both heigh and attitude.

The four fundamental movements of the quadrotor are namely thrust or throttle U, roll U,, pitch
Us;, and yaw U,. The thrust command U, is provided by uniformly increasing (or decreasing) the
speeds of all propeller. This action generates a vertical force within the body-fixed frame, causing

the quadrotor to ascend or descend.

The roll command U, is executed by adjusting the speed of the left propeller (increase or decrease)
while simultaneously adjusting the speed of the right propeller in the opposite direction (decrease

or increase). This action creates a torque around the e? axis, causing the quadrotor to turn.

Right % Front
Q4 b b Ql
e ey
Back Left
.Q.3 QZ

Figure 9: Quadrotor system in hovering condition
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z ¢
Thrust Roll
6 ¥
Yaw

Pitch

Figure 10: Four basic movements of the quadrotor

The pitch command U5 is similar to the roll and is achieved by increasing (or decreasing) the speed
of the back propeller while simultaneously adjusting the speed of the front propeller in the opposite

direction. This action results in a torque along the efi, which makes the quadrotor turn.

The yaw command U, involves adjusting the speeds of both front and rear propellers together,
while simultaneously adjusting the speeds of the left right propellers in the opposite manner. This
generates a torque around the e?, resulting in the quadrotor’s rotation. Yaw is enabled by the
counter-clockwise rotation of the left-right propellers and the clockwise rotation of the front-back

pair.

In Figure 10 the four basic movements of the quadrotor are depicted. The width of each arrow is

proportional to the propeller’s angular speed.

4.3 Quadrotor Mathematical Modelling

The mathematical model of the quadrotor describes the link between the movement and attitude
with the external influences and input values. Knowing the 4 angular velocities of the propellers
it is possible to predict the attitude and altitude of the quadcopter. The present model is based on

the following assumptions:

e Quadrotor is a rigid body.
e Quadrotor has a symmetrical structure (the inertia matrix is diagonal).
e The center of mass and the body fixed frame origin coincide.

e The propellers are rigid.

To describe the motion of a 6 D.O.F. rigid body two reference frames are used:

e The earth inertial frame (E frame)

e The body fixed frame (B frame)

A. Kapnopoulos
85 pnop



4.3.1 Newton-Euler Model

The quadrotor vehicle is a nonlinear system with under-actuation and strong coupling. Figure 11
depicts an X-configuration quadrotor, where the four rotors are divided into two pairs of (1,3) and
(2,4) which rotate in opposite directions in order to compensate for the interaction of the reaction
torques generated. The right cooperation between the rotors speed ensures the quadrotor’s basic
movements in aerial space as follows: vertical motion is achieved by increasing or decreasing the
speed of all rotors; the differential speeds of rotors (1,3) and (2,4) contributes into the roll and
pitch motions coupled with forward motions respectively, while yaw motion is performed through

the difference of counter-torques generated by each propeller.

The translational and rotational dynamics occur using the second Newton's law of linear and
angular conservation. To describe the kinematics of the quadrotor, two coordinate systems are
defined, namely the earth-fixed frame E = {xg, y5, zg}, which is considered fixed with respect to
the earth, and the fuselage, or body-fixed frame B = {xg, y5, z5}, , linked to the rigid body of the
quadrotor. The two frames are depicted in Figure 11. In this case, the xp axis is in the quadrotor’s
normal flight direction, y is orthogonal to xz and positive to starboard in the horizontal plane,
whereas z is oriented in the ascendant sense and orthogonal to the plane created from the vectors
xg and yg. The linear position of the quadrotor in frame E is denoted with the vector & =
[x,y,z]T € R®, while the orientation of the quadrotor is described in frame B by Euler’s angles
roll ¢, pitch 8, and yaw 1, thus forming the vector n = [¢, 8,¥]" € R3. Furthermore, let 2 =

[p,q,7]" € R3 and V = [u, v,w]” € R3 denote the angular and linear velocity of the quadrotor

E

Figure 11: Schematic overview of the earth and body fixed frames of the quadrotor
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vehicle in frame B, respectively. Thus, the translational and rotational kinematic model is given

by:

(59)

é R,V
n=R, 0
Where R, and R, are the transformation matrices between the two frames which are given by [49]:

Cng S(pSBCIIJ_C(pSIIJ C(pSGCIIJ_S(pSIIJ
Ry(n) =|Co Sy Sy Se Sy —CypCy CpSo Sy —5,Cy (60)
—Sg S(p'Cg C(p'Cg

1 Sg " Tg Cg - Tg
R.=10 €, S (61)
0 S,/Co S,/Co

And S, Cy and T, are the abbreviations for sin(-), cos(-) and tan(-) respectively.

Assuming null disturbances, the quadrotor’s dynamics equation can be expressed in frame B by:

m-V=-2x (m-V) = Faero— Fyrav + T 62)

I-2=-0Xx(m-2) —Mgero— Mgyro + T
where m € R and I = diag(I,,1,,1,) € R®** denote the mass and the inertia matrix of the
quadrotor, F,q, = m - R{ - G is the force due to gravity (where G = [0 0 g]” is the gravity
vector), Myyro = [=Jr P2y Jr-q -2, 0] isthe gyroscopic moment formed by the rotations
of the rotors around their axis (where J,. is the rotor inertia), £2,- are the overall residual rotor speeds,
and F,.,, = KV and M,,.,, = K, - 2 are the aerodynamical drag forces and moments, with
K, = diag(Ky, Ky, K,) and K, = diag(K,, K¢, K, ) [64], [151] denoting the aero dynamical drag
coefficient matrices. The rotation of the quadrotor’s propellers generates the forces responsible for
its movement in space. Each rotor produces a lift force F; and a reactive moment M;. The force
T € R3 and torque T € R® generated by each rotor can be expressed as F; = b - 22, M; = d - 0}
[18], [152], where b is the thrust coefficient, d is the drag coefficient and £2; is the angular velocity
of rotor i, i € {1,2,3,4}.
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Proper arrangement of forces and moments leads to a total thrust T € R3 and a control torque 7 €

R3 given by:

(63)

0
0
T=| &
=1

b-ZQ%

i

l-b-(—05+ 0%
T= l-b-(—03+ 0% (64)
d- (21— 03 + 05 -0

Using the Newton Euler formalism equation (62) can be expressed in the inertia frame E as:

m-X= (cose-sind-cosy + sing - sinY)-U; — K, x

m-y= (cose:cosh siny + sing-cosy)-U; — K,y

m-z= cosp-cos@-U;—m-g—K, -z

L= 609 (I,—1)+1-Uy+], 02, —K, ¢ (65)
Iy'é: ¢'¢'(Iz_1x)+l'u3+]r'(p'nr_K0'9

I,-y = @-0-(I,-1,)+ Uy —Ky -9

In order to control the flight mechanism of the quadrotor, a control input U is defined which
consists of four control actions U;, withi € {1,2,3,4}. U; is the control action related to the total
thrust and is responsible for the change of altitude, while U, , U; and U, are control actions related
to the moments generated around the body axes xg, yg, zg, respectively; more specifically, U, , U;
and U, control the desired rotation for the roll angle ¢ pitch angle 6 and yaw angle 1) respectively.

The control input vector U is given by:

Ul [br (@1 +03 + 03 +05)
Uz | _ l-b-(—05+03)
Us l'b-(—05+0})
Vsl la-(0f-0}+09%-0)

(66)
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4.3.2 Quadrotor State Space Modeling

The translational and rotational dynamics of the systems given by (65) can be defined by utilizing
a state space representation. This new model of the system’s dynamics is a set of first-order

differential equations, and is given by the following equations:

X1 =X
Xo = .x:l
X3 =Y
X4 = .x:g
Xg = Z
Xe — .X:s
_ (67)
X7 =@
Xg = X7
Xg = 0
X10 = X9
X11 =Y
X12 = X11
x'l = X2
. . , , U1 Kx
X, = (cosx;-sinxg-cosxqq + sinxqq - sinx;) -— — X2
x'3 = X4
. . . U1 Kx
Xy = (sinxy-sinxg-cosxqq + €0SXxqq - Sinx;) — ——+x,
m m
X5 = Xe
X = COSX7 ' COSX -ﬂ—g—&-x
6 7 S m  m Y6
X; = Xg (68)
- (I,-1,) Uy Jr %102 K,
x8 = xlo-xlz-—+l-—+———-x3
I, I I, I,
X9 = X10
(Iz_Ix) U3 ]r'xB"Qr
X10 = xs'x1z'l—+l'l—+l——K0'x1o
y y y
X11 = X12
I, —1 U
. 4
X12 = Xg ' X10 L4l —=— Ky %1,
I, I,

The system of twelve nonlinear first -order differential equations provided above, constitutes a
mathematical representation of the quadrotor dynamics. To solve the above system, classical
numerical methodologies are employed such as Runge-Kutta methods. The solution of this system

at each time step yields the spatial position of the quadrotor.

A. Kapnopoulos
89 pnop



4.4 PID setpoint quadrotor control

Originating in the early 1920s for ship steering automation, PID control systems gained
prominence in manufacturing due to their versatile performance and tunability without specific
system models. Their appeal lies in their simple architecture and suitability across processes. The
acronym “PID” encompasses the Proportional, Integral, and Derivative actions, functioning as a
three-part feedback mechanism, which computes an error and adjusts through these components

to enhance control accuracy over time.

The quadrotor vehicle is characterized as an underactuated system, implying that it can attain a
limited set of desired states within its six D.O.F., due to the constraint of having only four available
control inputs. This constraint aligns with quadrotor’s ability to govern only a handful of states,

and this selection corresponds precisely to the four basic maneuvers outlined in section 4.2.

Hence, the four principal variables selected for control encompass the quadrotor’s vertical height
(2), pitch angle (), roll angle (), and yaw angle (y). These four parameters hold the key to
establishing both altitude stability and height control for the quadrotor.

To manage the quadrotor’s behavior and uphold in a specific position, it becomes necessary to
determine the appropriate rotational speeds of the propellers. This procedure is recognized as
inverse dynamics and, in practice, it is not always attainable and, in numerous instances, lacks a
unique solution. Developing an inverse model for the quadrotor necessitates the introduction of

simplifications to the system’s dynamics.

The fundamental principles of the dynamics are succinctly encapsulated in equations (62) within
subsection 4.3.1. This equation unveils the interconnection between the quadrotor’s accelerations

in relation to its basic movements.

Another system of equations that relates basic movements with the propellers' squared speed is
described via (69).

Up= b-(+0;+0%+0%+03%)

U, = l-b-(—0%+0%)
Uz = l- b (0% +03)
U= d- (+05+05-0%-03) (69)
0, = 01—0,+0; -0,

The mathematical expression for the control action for the PID controller can be articulated within

the temporal framework as follows:
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t
u(t) = Kp.e(t)JrKI.f e(n)dr + Kp_dzit)
0

(70)

In order to facilitate the implementation of control algorithms, a simplification of the quadrotor
dynamics is necessary to establish a more accessible inverse model. Equation (62) can be

restructured based on three key considerations:

e Simplified angular contributions: Complicated angular terms, arising from cross-
couplings, can be simplified due to minor hovering-induced changes.

e Handling angular accelerations: Directly referencing angular accelerations to Euler
angle accelerations, bypassing complexities of frame transformations.

e Control algorithm focus: With four propellers and a focus on stabilizing attitude and
height, equations for x and y positions are excluded.

After the above assumptions, equation (71) describes the quadrotor dynamics, which will be used

for controlling the system.

1
z= —g + o (cos@ - cose) - U,
. U,
Q= r
1
5 U, (71)
I,
. U,
V= I

Where U, U,, U3, U, inside (71) are formulated according to (70).

Desired | 24 Pa- 9 a v @
Setpoint PID controller Inverted Movement Quadrotor
Algorithm Matrix Dynamics

z,¢,0,¢

Figure 12: PID setpoint control block diagram
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The above block describes the control loop of a quadrotor that performs the task of reaching a set
of four desired values. The block control algorithm receives the desired values from the task and
the measured values from the block quadrotor dynamics. The output of the control continues to
the inverted movement matrix which relates the four basic movements with the rotational speeds

of the propellers.

In Figure 12 the PID controller algorithm block constitutes the central aspect of the control system,
processing the desired task and current states to generate signals for fundamental movement,
mitigating position errors via PID techniques. In the next block namely inverted movement matrix

the propeller speeds are computed by utilizing the basic movement signal values.

The PID quadrotor control, which centers on reaching desired setpoints, serves as the foundation
for more intricate challenges such as trajectory tracking. While setpoint control focuses on
stabilizing quadrotor movements around specific positions, trajectory tracking extends this
concept by orchestrating a sequence of setpoints to guide the quadrotor along a predefined path.
This transition from setpoint control to trajectory tracking adds a layer of complexity, demanding
advanced control strategies to ensure precise and dynamic maneuvering through diverse

trajectories.

4.5 The trajectory tracking problem and the PID approach

The quadrotor operates as an under-actuated system, controlling six degrees of freedom using only
four motors. This necessitates control of a subset of four degrees of freedom. Notably, control of
x and y coordinates rely on pitch and roll orientations, respectively, leading to two distinct subsets
for control. Commands encompass three position coordinates and yaw orientation, while

employing roll and pitch orientation controllers.

The set of first three PID controllers are responsible for the position control of the states x, y, z.

This PID controller block regulates orientation and generates thrust controller U; from position

references (Xref, Yref: Zref)-

After having the position commands U,, Uy, U, calculated, the rest of the quadrotor basic
commands can be found via the attitude control. The objective of the attitude controller is to ensure
that the attitude of the quadrotor described by its Euler's angles ¢, 6, i tracks the desired trajectory
values ¢,., 8,-, ¢, asymptotically. In order to achieve the above goal, the control inputs U, Us, U4

should be estimated in such a way that Euler's angles will follow the desired trajectory attitude
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angles which are derived from the position controller. An overall control structure of the PID

trajectory tracking scheme is given in Figure 13.

The trajectory tracking challenge for quadrotors using PID controllers can be hindered by the
controllers’ linear nature, struggling with complex nonlinear dynamics, external disturbances, and
coupling between degrees of freedom. These limitations can lead to imprecise trajectory following
and oscillations. Employing nonlinear control methods offers advantages by effectively handling
intricate dynamics, uncertainties, and coupling in quadrotors. Techniques like model predictive
control and backstepping control already mentioned in chapters 3.2 and 3.3 provide robustness,

enabling the quadrotor to achieve accurate and stable trajectory tracking, especially in demanding

scenarios.
Zref ® Xref ®) yref(t) Ul
" PID 5,2
S - PID U, Quadro_tor
Zref(t) xref(t) Yref(t) POSltlon 'll)ref(t) Attitude U DynamICs
3
Control Prer (D) Control Uy
Href (t)
?,0,9

Figure 13: Overall PID structure for the trajectory tracking problem
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5. Development and tuning of automatic control methods for quadrotor
trajectory tracking

Within this chapter, two innovative approaches are explored that provide effective solutions to the
challenging quadrotor trajectory tracking problem. Notably, both methods emphasize the
utilization of nonlinear control methods to address this complex challenge. These developed
methods encompass backstepping and MPC strategies, which were previously introduced in
chapter 4. This chapter also entails comparative evaluations of these methods against alternative
control techniques, highlighting the efficacy of each of the proposed approaches in advancing
control design and tuning for quadrotor trajectory tracking.

5.1 A control strategy for quadrotor trajectory tracking based on backstepping control

and radial basis function neural networks

The goal of this section is to tackle the quadrotor trajectory tracking challenge using a novel control
scheme combining backstepping control and radial basis function NNs. Specifically, the proposed
control approach is designed so as to guarantee Lyapunov stability of the closed-loop system based
on a dynamic model of the quadrotor, and an RBF network which provides a data-driven
approximation of unmodelled uncertainties of any type. The RBF network is trained using the FM
algorithm, contributing to improved modeling precision and thus enhancing the proposed method
to deliver improved tracking performance in the presence of unmodelled dynamics. The method

is evaluated on two different simulated scenarios.

5.1.1 Quadrotor dynamics

A typical quadrotor vehicle can be seen in Figure 11. The quadrotor is considered to be a rigid
body. In what follows we will consider the reference frames as stated in subsection 4.3.1,with E =
{xg,yg, zg} denoting the inertial reference frame and frame B = {xg, y5, zz} representing the
body fixed frame. The quadrotor state vector is defined as X = [x,y,z, ¢, 6,¥]T with 6-D.O.F.,
where x, y, z denoting the position fo the quadrotor’s center of mass and ¢, 8,1 being the Euler

angles for roll, pitch and yaw. Each rotor revolves with angular speed ;, withi = 1, 2, 3, 4.

5.1.1.1 The core reduced model dynamics
The construction of a nonlinear model without the effects of aerodynamical forces and moments

for a quadrotor can be based on equation (65) as:
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U
X = ;1-(cos¢-sin9-cos¢+sin¢-sintp)
U
y = ;1-(cosqb-sine-sint/;—sind)-cosd))

. U,
zZ= —g+;-(cos¢-cos@)

I U M | . l 12
¢:g.lp.(y—z)+]_r.9.gr+_.(]2 (72)
I, I, I,
I,—1 .
60=2¢ II)-M—]—T-(b-.Qr-i-— Us
Iy I Iy
. U1 1
¢_9-¢-(x y)+ U,
I, I,

where U = [U, U,U; U,]T is given by (69) denotes the control input vector, m is the quadrotor

mass, g is the acceleration due to the gravity on Earth, I, 1,, I, are the moments of inertia of the

quadrotor rigid body, J,- is the moment of inertia of the propeller about its axis, [ is the distance

from the center of mass of the quadrotor to the axes of rotation of the propellersand 2, = — 2; +

.Qz - .(23 + .(24_.

Given that the nonlinear dynamic model in (72) exclusively considers the forces and torques

generated from the propellers, we label this model as the “the core reduced model” (CRM). The

core reduced model takes the form of:

where

A. Kapnopoulos

X=fXX)=a-U (73)
0
0
-9
9¢(y IZ)+]_r.9._Qr
f: (I le) ]Ix B (74)
yoh 2 X _ T 4 0,
R s L
9_('#.(1961_1}’)
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Q
I

5.1.1.2 Full model dynamics
The CRM defined by equations (73)-(75) is a simplified model that does not consider various

rcos¢ -sinf - cosyY +sing - siny o o
m
ccosg -sin B - siny —sin¢ - cosYP 0 o
m
cos¢-cos O
m
l (75)
0 — 0 0
I,
0 0 : 0
I,
0 0 o0 1
I,]

effects that act on the quadrotor like aerodynamic friction, wind gusts, ground effects, gyroscopic

torques, etc. In scenarios where certain effects are known, it becomes possible to enhance model

accuracy. For instance, equation (74) can be adjusted to encompass aerodynamic friction, resulting

in a modified formulation:

ffull =

K, x
m-
K,y
m
K, z

(76)

where Ky, K, K,, K,, Ko, Ky, are the aerodynamic drag coefficients. In the context of this study,

the more detailed quadrotor model arising by replacing equation (74) with equation (76) will be

regarded as the complete quadrotor model. Conversely, when only the CRM is accessible, any

unaccounted dynamics such as aerodynamic drag will manifest as uncertainties:

X=f(xX)=a -U+h(XX)

97

(77)
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where U, f, a are defined through equations (74), (69) and (76) respectively, and h represents the

uncertainties defined as:
. T
h(X,X) = [ hy, hy, hy, hy, hg, hy) (78)

where hy, h,, h, account for position uncertainties and hg, hg, hy, account for Euler angles
uncertainties. The basic idea behind the proposed approach is that the uncertainties not taken into
account by the CRM, can be learned by an RBF network, based on input — output data from the

system.

5.1.2 Quadrotor Backstepping-RBF controller

The significance of equation (72) lies in its depiction of the quadrotor’s position’s dependence on
the Euler angles. With a desired trajectory given by [x4, V4, Za, Wa], the desired angles ¢4 and 6,
must be determined. The proposed scheme encompasses discrete controllers for position, attitude,
altitude and heading. Specifically, the altitude, attitude, and heading controllers generate the input
signals Uy, U,, U; and U,, while the position controller is designed to track the desired angles ¢4
and 6, by utilizing implicit control signals denoted as U, and U,,. These controllers are collectively
structured through the utilization of the backstepping method using the CRM (73)-(75), while

concurrently accounting for uncertainties estimated by neural networks.

In this study, RBF networks are chosen for modeling uncertainties based on their ability to
approximate intricate data relationships through radial basis activation functions as already pointed
in subsection 2.2.1. These networks excel at capturing non-linear patterns, performing effectively
in regression and classification tasks. Their flexibility and capacity to generalize make them well-
suited applications for addressing uncertainties. The RBF networks employed in this context are
trained using the symmetric fuzzy means algorithm, a method thoroughly detailed in subsection
2.2.2. This algorithm serves as the cornerstone for effectively training and estimating uncertainties
in the RBF network’s predictions, contributing to the overarching framework outlined in this

study.

5.1.2.1 State Space Representation
The model in (77) can be represented in state space by using equation (67) with:

. . . . p « 1T
X=|xxyyzzd p00y ] (79)
= [ x1 X2 X3 X4 X5 X6 X7 Xg X9 X190 X11 le]T
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We denote the desired trajectory with the vector given by the following equation:

d_[odod od od od od
X4 =[x x§ x8 x4 x§ x4, |

(80)
In order to track the trajectory successfully, the error signal z; = x® — x; must be zero.
5.1.2.2 Controller Design
From (72) we have that X and j are given as:
=— (cos¢ -sinB - cosP + sing - sinyY)
m
(81)
y = Hl (cos¢ - sinB - siny — sin¢ - cosYP)
From the above equations we denote as U, and U,, the following equations:
U,=cos¢p- -sin0-cosyp +sing-siny 82
U, =cos¢p -sin6 - sinyp —sin¢ - cosyp (82)
The angles ¢, and 8, can be determined by (81) as:
@q = arcsin(U, - sinyy — U, - cosppy)
] (Ux ~cospy + U, - sin l[)d> (83)
0, = arcsin
CoS Pgq
Combining equations (77), (78), (81) and (82) we obtain:
U,-U, h
dp=k=—— 4
. _.._Ul'Uy_I_hy (84)
X4 =YY= m m

We proceed by building the backstepping control law for the following nonlinear second order
system:

x'1=x2

. . . . Ui h, (85)
X, = (cosx; - sinxg - COSX11 + Sinxyq - Sinx,;) - — — p

Step 1: To proceed we define the reference error function for state x;:
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z; = x4 —x, (86)
The time derivative of z, is given by:
Z'1=x.‘li—x'1=x.'1l—x2 (87)

Considering the Lyapunov function for z;:

1
Vi(z1(0) = 5 zi(®) (88)
The derivative of the Lyapunov function V; is:
Vi(z1(®) =21 - 21 = 24 - (%1% — x2) (89)

Step 2: In what follows we consider a change in variables by introducing the virtual control input

vy
Z; = Vg — Xy (90)
The derivative of the above function variable z, is:
Zp, = Uy — X, (91)
By utilizing (91), (89) can be written as:
V1(Z1(t)) =1z (x'1d + 2z, —v,) (92)
The stabilization of z; can be obtained by designing the first virtual control input v, such that:
vy =x¢+ky 2z, ki €R* (93)
We proceed with defining the augmented V, as:
Va(22(0), 22(0) = Vy (22(0)) + 5 22(0)? (99
With the time derivative gibe by:

U, Uy h
x 1+Ex—k‘f—k1-21—zl> (95)

Vz(z1(t);zz(t)) =—ky- Z5+2;- (
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The control law U, is designed as:

h, .4 .
——+Xx +Zl+k1'zl—k2'22
Uy=m- - - U ,kq, k, € R* (96)
1

By choosing the control law given by (96) in equation (95) one obtains V,(z,(t),z,(t)) < 0.
Consequently, the control system (85) by choosing the Lyapunov function (94) and the feedback
control law as (96) is asymptotically stable according to Theorem 1, given in section 3.2.1 of

chapter 3.

Applying the same technique for states xs, xs, x, xo and x;,, we derive all the control laws,

summarized below:

U m (+"d+ + ks -z —k h’)
= . Z .Z Z__
1 COS X7 - COS Xg g TXs 5 5°Z5 — Ke " Zg

I,
Uz—l (f4+x7+Z7+k7 Z7—k8 Z8——>

1
U;=-2
37

'<—f5+5zg+z9+k9’29—"10‘210 )
h (97)
Uy =1, ( fo+ XL + 231+ kyy 2131 — Ky Z12—I—>

d hx
x1+Z1+k1 Zl_kZ ZZ—E

. hy
x +Z3+k3'Z3—k4_'Z4_E

where hy, hy, h,, hg, hg, hy, are approximated by six RBF, trained with the FM algorithm as

described above. The proposed control framework is summarized in Figure 14.

5.1.3 Trajectory Tracking simulation set up

This section delves into the generation of flying simulation data, a vital task for creating a dynamic
environment. Additionally, it covers the critical RBF network training stage, where the network is
adeptly trained to model system uncertainties using the FM algorithm. Furthermore, performance
evaluation across two diverse trajectory scenarios showcases the method’s versatility and

effectiveness.
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Zq
z  Altitude U
h,  Controller
x4, vq  Position Controller @,
Reference Xy P U,
Trajectory hoh 7. Attitude Quadrotor X.Y.2.¢.0.Y
X4 Ya Zg ¥4 Y ¢.60 Controller  y,
hg, hg
Va
¥ | Heading Y.
h hy - Controller
RBF NN
T

Figure 14: RBF-Backstepping control scheme

5.1.3.1 Data Generation

To train the neural networks, a number of data have been generated through flying simulations

based on the full model, which in this case plays the role of a real quadcopter, exhibiting dynamics

unmodelled by the CRM. Values for the quadrotor physical parameters can be found in [153] while

the aerodynamic drag coefficients k; are depicted in Table 7. The designed scheme was fully

programmed in MATLAB environment and the full plant dynamics were solved by using the

Runge-Kutta (4,5) formula. The full model was excited using random inputs and data were

collected for all state variables [X X]T and accelerations X with a sampling rate of 250 Hz. The

uncertainties h(X,X) to be given as targets to the neural networks were calculated by utilizing

equation (77) in the following form:

h(X,X)=X-f(X,X)—a-U (98)
In total, a number of 20000 data samples were collected.
Table 7: Values for Aerodynamic drag coefficients
Aerodynamical
coefficient i ey K, kg ke Ky
Value -0.096 -0.222 -0.092 -0.06 -0.06 -0.02
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5.1.3.2 RBF Network Training

The generated data were divided into three separate subsets: 50% for training, 25% for validation,
and 25% for testing. The training subset was used for determining the model parameters, the
validation set for selecting the most appropriate model, and the testing for providing an

independent estimation of the model accuracy.

In this work, six RBF neural networks were utilized to approximate the uncertainties h(X,X).
Each RBF network employes two input variables, each corresponding to distinct states for the

quadrotor. For example, the RBF modelling h,,, uses as inputs the state variables x and x.

Model selection for the FM algorithm is controlled by the number of fuzzy subspaces s. The
optimal value of s for each one of the six trained networks was found by performing an exhaustive
search procedure in the range [4 - 50]. The model exhibiting the best modelling performance on
the validation subset was used for each individual uncertainty. The mean absolute error (MAE)
was used as metric for evaluating the model performance of each RBF network:

K
1 N
MAE, = - kley,-(k) ) (99)

where y; (k) and y;(k) represent the real measurements and model predictions for RBF network
i, respectively.
5.1.3.3 Controller Implementation

To evaluate the performance of the proposed RBF-backstepping controller, two distinct reference

spatial trajectories scenarios were employed.

The first simulation was performed on a spiral trajectory, which exhibits simple geometrical

characteristics. This trajectory is represented by the following equation:

Xref(t) = 0.5-c0s(0.5-t)

Yref(t) = 0.5:-sin(0.5-t) (100)
t

Zref(t) = 1+ 1_0

The second trajectory, named “complex trajectory”, presents more complicated geometrical

characteristics and is given by:
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Xref(t) = ¢0s(0.15-t) — cos(0.15 - )3
Vref(t) = sin(0.15-t) —sin(0.15 - t)3 (101)
Zref(t) = 0.3t

For both trajectories, the controller sampling time was set equal to 0.1s. The performance of the
RBF — backstepping method was evaluated against a standard backstepping controller, using only
the CRM (73)-(75), without taking into account the RBF uncertainty approximation. The

parameters for both controllers were tuned using particle swarm optimization.

5.1.4 Results and Discussion

Table 8 depicts the results for the RBF network training procedure, including the MAE on the
testing set, the selected number of fuzzy subspaces and the resulting number of RBF centers for
each of the 6 networks. It can be seen that the FM algorithm manages to select the RBF centers in
such a way, so as to produce a low MAE value for all the uncertainty models. The results of the
two controllers are depicted in Table 9 and Table 10, which include the sum of absolute errors
(SAE) per dimension and the sum of tracking errors (STE) for both schemes, in the case of the

spiral and the complex trajectory, respectively. The sum of absolute errors is given by:

TS
SAE; = Z|xi(t) — x4(p)| (102)
t=1
where t =1,..., TS represents the running time of the flight simulation, and x;(k), x&(k)

represent the real state measurement and the desired state for the ith dimension, with i = x,y, z.

The sum of tracking errors, corresponds to the sum of Euclidean distances between the actual
position of the quadrotor and the reference trajectory and can be used to assess the overall

performance of the proposed controller; STE is calculated as follows:

s | 3
STE = (q:() — Pi(t))z (103)

where q(t) =[xy z] and p(t) = [x* y® z%] are vectors representing the actual quadrotor

Cartesian coordinates and the reference trajectory coordinates at time t, respectively.

Visual representations for the performance of the two controllers can be seen in Figures 15-18
which depict the tracking errors in the three spatial dimensions, and the 3D trajectories for both

controllers, together with the reference, in the case of the spiral and the complex trajectory,
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respectively. Taking into account the tracking errors shown in Table 9 regarding the spiral
trajectory, the RBF — backstepping control scheme outperforms its rival in all spatial dimensions,
while it manages to produce an improvement of approximately 24% in terms of STE.

A similar result is obtained for the complex trajectory where once more the proposed control
method manages to outperform the standard backstepping approach, as it can be seen by examining
the metrics of Table 10. The proposed approach still produces lower control tracking errors in
terms of SAE in all three dimensions, while at the same time it achieves a significant improvement
of 23.3% when taking into account the STE.

This result is due to the fact that the proposed scheme, enhanced by the efficient performance of
the RBF models, manages to approximate adequately the effect of aerodynamic friction, which the
standard backstepping controller fails to capture as it is solely based on the CRM. The difference
between the two controllers is more obvious in the 3D graphs at the beginning of each trajectory,
where the proposed method manages to approach the reference more efficiently, but even later,
the superiority of the RBF-backstepping controller is still visible in graphs depicting the error per
dimension. Notice that the difference is more significant in the y dimension, which is to be

expected, as the value used for the drag coefficient k,, happens to be higher than k, and k.

It should be noted that in this simulation, the difference in terms of unmodelled dynamics between
the two controllers is just due to aerodynamic friction, which is taken into account by the RBF
networks, but not by the CRM. In a real-world situation though, the difference is expected to be
significantly higher, due to the increased presence of unmodelled dynamics and uncertainties
which are not accounted by the CRM, but can be identified by the RBF network (such as ground

effects, gyroscopic torques, etc.)
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Table 8: RBF Modeling results on the testing subset

RBF model h, h, h, h, hy hy

# of fuzzy 29 31 27 27 19 21

subspaces

# of RBF 77 86 32 67 47 81
centers

MAE 186 E-05 247E-05 1.04E-04 1.10E-06 2.06E-06 1.8E-04

Table 9: Controller tracking errors for the spiral trajectory

Controller SAE x(m) SAE y(m) SAE z(m) STE (m)

RBF -
Backstepping 4.456 3.718 3.902 7.503
Backstepping  4.539 6.375 4.896 9.877

Table 10: Controller tracking errors for the complex trajectory

Controller SAE x(m)

SAEy(m)  SAEz(m) STE (m)
RBF -
Backstepping 3962 2.837 0.1810 5.090
Backstepping 4.567 4.452 0.2933 6.638
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Figure 15: Spiral trajectory error for (a) x, (b) y, (c) z dimensions
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Figure 16: 3D Spiral trajectory simulation results
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In summary, the RBF-backstepping controller has showcased its trajectory tracking capabilities
and its capacity to take into account aerodynamic friction effects. Nevertheless, delving deeper
into the challenges of quadrotor control, the demand for an efficient multi-controller tuning
approach becomes more pronounced, given the common use of multiple controllers in trajectory
tracking schemes. With this in mind, the subsequent section will delve into the imperative need of

devising such a method within the quadrotor trajectory tracking control framework.

5.2 A new cooperative PSO optimization approach for tuning an MPC-based quadrotor

trajectory tracking scheme

In this section, the objective is to develop a novel method for tuning a quadrotor trajectory-tracking
MPC framework utilizing cooperative particle swarm optimization. The control framework
includes two subsystems: an MPC controller for path following and a PID scheme for attitude
stabilization. These subsystems necessitate numerous tuning parameters, optimized by a CPSO
scheme. Multiple swarms optimize distinct solution vector components-MPC and PID parameters-
collaboratively enhancing path tracking in the integrated control framework. The approach is

assessed through diverse trajectory simulation experiments.

5.2.1 Quadrotor mathematical model

The quadrotor modeling presented in this section builds upon the analysis conducted in section
4.3.1, notably relying on Newton-Euler formulation for modeling dynamics. The quadrotor’s
dynamics equation assuming null disturbances in the body frame is given by equation (62), while
by using the Newton-Euler formalism (65) expressed in the inertial frame is given by the following

equation:
m-X= (cosg-sind - cosy + sing - sin)-U; — K, - x
m-y= (cos-cosf:siny +sing-cosyp)-U;— K,y
m-z= cosp-cos@-Uy—-m-g—K, z
L-g=  60-9-(I,-1)+1-Us+)-0-2,—K, ¢ (109
L-6= - U,~I1)+1-Us+], ¢ 02 —Kg- 0
I = @0 (I~ 1)+ Uy~ Ky

The flight control of the quadrotor is achieved through the control input U, whih is defined by four

control actions U; with, i € {1,2,3,4}. The control input is given by equation (66):
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Ul [ ((QF+093 + 03 +0))

l-b-(—03%+ 02
Uz _ ( §+ ‘2*) (105)
u l-b-(—05+02))

Ul a2 - 0%+02-0%

w

5.2.2 Controller design

5.2.2.1 Error MPC position control

In this section a control framework that deals with the trajectory tracking problem of an
autonomous discrete-time nonlinear quadrotor system is given. To be more specific, a linear error-
based MPC strategy is constructed in order to control the quadrotor position. The error model
derived is divided into two different position controllers. The first one controls the altitude of the
quadrotor via the input U; while the second one is responsible for the control in the x-y plane

through the inputs u,, u,,, which are derived as follows

The position system (104) can be rewritten in state space form as E_ W=f (f_ (t), ug (t)), where

E() = [x(®) u(t) y(t) v(t) z(t) w(t) ] stands for the augmented system state space vetor, and

u(t), v(t), w(t) are the linear velocities of the quadrotor’s mass center:

u(t)
Uy (t) ' Uir(lt)
_ v(t)
HOE U4(2) (106)

uy(t) : m

w(t)

|—g + cos (6(1)) - cos (1)) -

U(t)

m

)|
where

u,(t) = cos(P(t)) - sin(0()) - cos(@(®)) + sin(P(t)) - sin(e(t))

w, () = sin((D)) - sin(8(2)) - cos(e(8)) — cos(®) - sin (9(®)) 07

The reference trajectory is provided off-line and a virtual reference vehicle with the same dynamics
as the quadrotor is proposed along with the real one on the same track. Assuming that there is no

external disturbance to the virtual reference quadrotor, the dynamics can be written in the form:

Erer(®) = [ (Erep (8 Ugres (D) (108)
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where gref =) = [xref () uref(t) Vref () VUref () Zref () Wrer ®) ] and Ugref ) =

[ Uxrer Uyrer Urrer] are the reference state vector and the reference input control, respectively.

Subtracting the virtual system given by (108) from the augmented position system (106) and using
the forward Euler method for altitude z, the error model is obtained as a discrete time linear

equation:
Xref(k+1) = A-X¢(k) + B(k) - Uz (k) (109)

where % (k) = £(k) — &..r(k) is the position error vector and @ig (k) = u(k) — uger (k) is the
control input error vector. The error model (109) is divided into two discrete state-space
subsystems, namely the altitude and attitude one.

The height position error model for the altitude subsystem takes the following form:
X,(k+1)=A4, %,(k)+ B,(k) - u,(k) (110)
where matrices A, and B, (k) are given as follows:

0

1 At
A; = [0 1 ]’BZ(k) - % . cos(O(k)) - cost(p(k)) (111)

with At being the sampling time.

Successful path tracking for a desired trajectory is possible by finding the suitable control inputs.
In order to achieve this, an unconstrained MPC problem is designed for solving the tracking error
problem by utilizing the formulation given of (56) in subsection 3.3.2. The OCP problem takes the
following form:
I;lllLl]z(fo, ﬁz)
u,

s.t. EZ(O, fo) = fo (112)

fz(k + 1) = Az ' fz(k) + Bz(k) ' ﬁz(k)

with J, is the given by:

]z(EOrﬁz) = 75 - Qy 'Ez-l'ﬁg ‘R, 'ﬁz+fg(k+Np/k) ’ Gz'fz(k-l'Np/k) (113)
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where X, =X, — Xypep, Uy = Uy — Ugrep and X, (k + Ny /k) = %,(k + Ny /k) — Zpres (k +
N,/k). Matrices Q,, R, and G, are positive definite and penalize divergences from the references
state, input and terminal state, respectively. The predictions of the plant output X,(k + j /k)
fz(k + N, /k) are computed using a linear time-varying state-space model of the vehicle using
(110) and (111), giving:

X,(k+1) = P,(k/k) - x,(k/k) + H,(k/k) - U, (k) (114)

where %i(k/k) = Uy (k) — Uzrep (k) and %, € RM» is the height state-space vector. The reference
height and input state error vectors are:
ﬁzref(k/k) - ﬁzref(k - 1/k)

: (115)
ﬁzref(k + Nc - 1/k) - ﬁzref(k - 1/k)

%zref(k + l/k) - %zref(k/k)

=)

zref » Ugref =

Tyrey (K + Ny JK) — Fyyey (/)

where N, is the prediction horizon, showing how far the controller predicts to the future, and N,
is the control horizon, which constitutes the number of consecutive moves to be manipulated by
the controller for minimizing the cost function J,. The control moves i, at time k are evaluated
by solving the minimization problem (112); however, only the first control move is implemented
on the system, while the remaining ones are rejected. After applying the control move 1, (k/k),
the system moves to a new position at time k + 1 and the minimization problem is solved again

for the new current state, yielding a new control action.

Thus, the control input applied to the quadrotor is:
Ui(k) = u(k/k) + Uzper (k) (116)
In a similar way the x-y motion position error model takes the following form:
Xry(k +1) = Ay - Xy (K) + By (k) - Uy (K) (117)

where matrices A,, and B,,, (k) are given as followed:

0 0
1 At 0 O At
0 1 0 0 m U1l 0
0 0 0 1 At
0 E'Ul(k)_
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Following the same procedure as above, the OCP problem for the problem of minimizing the

tracking error in the x-y direction takes the following form:

@]xy (EO; ﬁxy)
Uyy

s.t. %,,(0,%) = X, (119)

i’xy(k +1) = Axy : iny(k) + Bxy(k) : ﬁxy(k)

Where the cost function J,,, is given by:

Jay(Fo,Uyy) = X0, - Quy - Xny + Uy - Ryyy - Uy + Xay(kK+ Np/K) - Gy - Xpy(k+ Np/k)  (120)

where Q,,, Ryy and G,,, are positive definite matrices. The rest of the matrices are computed in

similar manner to the height predictive control scheme.
By minimizing the cost function J,,, the control input #,, is obtained, where i, (k/k) =

[, (k/k) w,(k/k)]" and:
uxy(k) = ﬁxy(k/k) + uxyref(k) (121)

The error reference state-space vector a?xyref € R and the reference input ﬁxyref are obtained

in the same way as in the height control mechanism.

Rewriting equation (107) for time instance k, we obtain:

u,(®) = cos(P(t)) -sin(6(1)) - cos(e(®)) + sin(p(1)) - sin(p(t))

w, () = sin((@) - sin(O(D) - cos(e(t)) — cos(W(®) - sin (@©)) 2D

By setting ¥,..; = 0 and using (121), (122), the refences values for the roll angle ¢,..; and pitch
angle 6, are calculated; these are given as set point to the attitude control loop which will be

described in the next subsection.

5.2.2.2 PID attitude control

The role of the position controller lies in generating the desired values for roll and pitch angles.
These values are determined based on the current reference position of the trajectory. However,
for the quadrotor system to effectively track the desired trajectory, it becomes essential to compute
the control inputs U;, U,, U3 and U,. This intricate task is entrusted to the inner attitude controller,
responsible for regulating the orientation angles ¢ and 6. These angles are steered using reference
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inputs supplied by the outer position controller. In this subsection, the design of the inner attitude

loop adopts standard PID controllers, as discussed in section 4.4,

The rotational dynamic model given in section 4.3.1 by equation (62) can be expressed as:
I-2=1 (123)

where (123) can be rewritten using the notation of equations (104) and (105) as:

Ix"?: UZ
I,-0= U, (124)
I, Y= U,

The objective of the attitude controller is to ensure that Euler’s angles ¢, 8,1 track the desired
trajectory values @, Orcr, Yrer asymptotically, by applying the suitable control signals
U,, Us;, U, to the quadrotor. Three independent PID controllers are utilized to control the angular

accelerations of the quadrotor, one for each Euler angle.

By applying forward Euler method on continuous PI1D controllers, each controller can be expressed

in velocity form as follows

-ej(k—2)— (Nj-At—2)-uj(k—1) — (1 - N; - At)

The index j with j = 1,2,3,4 describes the Euler’s angles ¢, 8,1, while r; describes the reference

angles @ref, Orer, Yrep, Of the jth channel. The control signal is denoted by u;(k) and the error
signal by €; (k) at each discrete time instant k. The error signal is the difference between the
actual value n;(k) and referencer;. Kpj, K;j, Kpj are the controller proportional, integral and

derivative gains and N; is the low pass filter coefficient of the derivative term of the PID controller.

By using equations (123), (124), the control inputs U,, Us, U, can be estimated through the

following equations:
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Uz Ix-u¢
Us= I, -uy (126)
U4: Izu¢

An important addition to the proper design of the control strategy takes into consideration the
saturation bounds for each one of the control signals. With the primary objective of limiting and
controlling the quadrotor's thrust force, many saturation-constraint based methodologies have been
developed [154]. The enhancement in quadrotor control design arising from the introduction of
saturated limits for control signals can be elucidated as follows. Firstly, both the total thrusts U,
and control torque T are confined within certain bounds due to physical constraints imposed by the
electrical motors. Secondly, the control inputs need to operate within a certain range that facilitates
smooth and uninterrupted trajectory tracking. Lastly, enforcing boundaries in input signals
mitigates flight scenarios that could lead to the quadcopter losing stability. Based on these
considerations, eight input saturation limits are enforced for the four control inputs Uy, U,, Uz, U,
encompassing both upper and lower bounds. This strategic positioning of bounds on control inputs
ensures the quadrotor’s position and attitude control operates within defined limits, as shown in

Figure 19.

5.2.3 Control scheme tuning using a CPSO-based optimizer

The standard PSO algorithm could be applied for tuning the proposed quadrotor control scheme,
but in this case, the elements of each particle should contain all the controller parameters to be
tuned, which should be optimized concurrently; Figure 20 shows the corresponding particle

structure in this case.

State Space MPC Uy
- o Quadrotor |2
Trajectory| (. y .| Position Controller 5 .
Generator | | i 5 7 o PID Attitude ynamics
£,V,.7, /~ — Controller U,
> e
Sy ’79\“ (0,6,
S | (01, 6) Us
kk+1k+2 Sl i U4'

Pr

Figure 19: Overall quadrotor control structure

115 A. Kapnopoulos



Development and tuning of automatic control methods for nonlinear systems using computational intelligence techniques with
emphasis on the control of unmanned aerial vehicles

| Qz, @z, Ry Gy, Gy Quy, Quy, Ruy Gry, Gay, N, N, \K,,H Kig Kng No Ky, K, Ko, Ny Kp, Ki, Ko, Ny Uty Uzg Us, Usy |
¥ T

MPC control parameters PID control parameters

Figure 20: Overall particle structure in the case of standard PSO

However, there is a high number of parameters involved, pertaining to the two control subsystems.
From an optimization perspective, the increased dimensionality of the search space makes it
difficult to discover even a good suboptimal solution. On the other hand, a distinction can be made
between two different parts in each particle, where each part controls a different mechanism of the
integrated control scheme. To be more specific, the first part contains the parameters from the
position control strategy of the MPC controller, while the second one the parameters from the
attitude control through the implementation of PID controllers. The existence of two different
groups of parameters within the particle, leads to the idea of using two cooperative swarms. As
previously stated in subsection 2.4, the CPSO framework is employed in this context to fine tune
the quadrotor’s control parameters. This advancement permits the simultaneous optimization of
both MPC and PID parameters. Throughout the optimization procedure, the two distinct swarms
independently evolve while maintaining effective information exchange. This integrated approach
serves to proficiently optimize the quadrotor’s control parameters, further enhancing its
performance. The particles for the MPC swarm which contain the position control tuning
parameters are denoted as P; x;, while the particles of the PID swarm containing the attitude control

tuning parameters are denoted as P, x;.

The following equations display the parameters controlled by each one of the swarms P, and P,:

P1x; =[Q;1Q,1 R, G,1 G, Qxyl QxyZ ny nyl nyZ N, Np ] (127)

Pyx; = [Kpg K19 Kpg No Kpy K1, Kpp Ny, Kpy Kyyy Kpy Ny Uyp UpgUsgUsp]  (128)
For each swarm the position and velocity vector are updated according to the following equations:

Pojj(t+1) =w-Ppvj(t) + ¢q 11" [Pryij(t) — Prxj(0)] + ¢ -1 -

(129)
[PY;(t) — Pix;j(t)]
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kai,]'(t + 1) = kai,j(t) + kai,]'(t + 1) (130)

where the ith particle in dimension j is represented as Pyx; ;(t) for the swarm k, the speed for
particle i in dimension j is represented as Py v; j(t), the personal best position of the ith particle
in dimension j is denoted as Pyy; ;(t), and P, y;(t) represents the best particle position among all

particles for the jth dimension.

The velocity of each particle P, v; ;(t) is controlled by a clamping constant Py vy,,, that regulates
the maximum velocity update to a defined range of [-PyVimax, PxVmax]- The addition of the
clamping constant is used to control the exploration-exploitation trade-off, by affecting the

particles’ ability to explore a small, or big part of the search space.

As each swarm is connected to a specific part of the solution vector of the optimization procedure,
the right cooperation between the agents is essential in order to calculate the fitness function. The
implementation of this task is feasible by using a context vector. This vector provides a suitable
context in which the individuals from each swarm can be evaluated. To form the context vector,
the global best particle  from one swarm, is combined with each particle x;,i = 1, ..., s from the
other swarm. Therefore, in order to calculate the fitness functions for swarm P, all the respective
particles should be concatenated with the global best particle of the complementary swarm
P 32—« J. This concatenation leads to the full set of parameters for both controllers, which is used
to simulate the quadrotor flight. The fitness function is calculated as the sum of the Euclidean

distances (SED) between the reference trajectory and the actual quadrotor trajectory during the

simulation flight, based on the following equation:

tend 3

£=) D (at) -m)’ (131)
to=1.]i=1

where tg = 1, ..., teng IS the running time of the flight simulation, q(ts) = [Xref, Vres, Zres] is the
vector containing the Cartesian coordinates of the reference altitude and attitude of the quadcopter
attime tg, p(ts) = [x,y, z] is the vector containing the Cartesian coordinates of the actual altitude

and attitude achieved by the quadrotor at time t,, and t,,,4 is the end time of the simulation.

The personal best position P, y;(t) for each particle i of each swarm k depicts the best result found

for this particle up to iteration t:
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Pky,-(t), if f(kai(t + 1)’ P(Zk)z—kj’\(t)) = f(Pkyi(t)' P(Zk)z—ky(t - 1))

Pt +1), if (Pt + 1), P gy i9(0)) < fPoyi(t) Prepid (e — 1)) 52)

Py(t+1) = {

The global best position of each particle f each particle i for each swarm is updated using:

P,yi(t) = arg p‘,f}ii{%)f (Pkyi(t),P(Zk)Z—kf'(t - 1)), 1<i<s (133)

Figure 21 depicts a schematic overview of the MPC and PID swarms working together towards

optimizing the tuning parameters.

The described algorithm has two important advantages with respect to the optimization procedure
when used for tuning the controller parameters. The first one is associated with the fitness function
evaluation after each separate group of controller parameters has been updated. This leads to a
finer-grained assignment avoiding the classic two steps forward - one step back problem often
encountered in standard PSO. The second advantage is related to the increased combinations of

different individuals from different swarms, which boost the solution diversity.

5.2.4 Experimental Set-up

This section aims to demonstrate the effectiveness of the proposed tuning methodology through

simulated experiments. The proposed control scheme was fully programmed in MATLAB®

MPC swarm | Closed Loop System . _PID Swarm
o{Particle Update| : Control Framework . [Particle Updatel—
MPC tuned | | [ [MPC Position | v, u, u, [PIDAttitude | i ] PID tuned
Parameters | Control Control g Parameters
Q2 R, | Uy , U2 Us |U4 | [Kp, Ki, Kp,, Ny Up,, ]
Quy Ryy L2
Gof Gy i Quadrotor : [KPlewKD¢N¢ Ub¢]
N Ny i st 4 i
¢ P m‘ i [Kpg Kig KpgNo Upy]
L I i
[Update personal- Calculate Fitness Update personal-
global best global best

.
6 —
t . - i
2 =
. -
! 05 R N
—

Figure 21: Overview of the two cooperative swarms, working towards optimizing the tuning
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environment and the simulations were performed by solving the system of ODEs (104) and (105)

at each time instant to calculate the quadrotor's position and attitude.

In order to perform the simulations, the values shown in Table 11 were assigned to the quadrotor

parameters.

The CPSO algorithm designed was evaluated through the tuning of the quadrotor control
framework across two scenarios, utilizing distinct reference spatial trajectories. These trajectories
exhibit varying geometrical characteristics within the 3-D space, necessitating diverse tuning
strategies for optimal trajectory tracking. A robustness assessment was additionally conducted by
tuning the controller for one trajectory and subsequently applying it to an unfamiliar trajectory.
This test aimed to assess the optimizer’s capacity to provide robust quadrotor control parameters

across different scenarios.

Table 11: Quadrotor parameters

Symbol Description Value Unit
I Arm length 0.24 m
m Mass of quadrotor 1 kg
L Body moment of inertia around x axis 8103 N m s?
L, Body moment of inertia around y axis 8103 N m s?
I, Body moment of inertia around z axis 14.2 103 N m s?
Jr Rotational moment of inertia 1.08 10°® N m s?
b Thrust coefficient 54.2 10°® N s?
d Drag coefficient 1.1 10°® N m s?

K; Aero dynamical damping translational diag(0.048,0.11,0.046) N m s?

matrix
K, Aero dynamical damping rotational matrix diag(0.03,0.03,0.01) N m s?

g Acceleration due to gravity 9.81 ms
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Table 12: Operational parameters for the proposed cooperative algorithm

Parameter Symbol Value
Population P 25
Inertia coefficient w 0.5
Nostalgia coefficient c1 1.65
Envy coefficient Cy 1.65
Velocity clamping coefficient PrVmax 0.2
Maximum number of generations Gen 400
Convergence constant € 0.2

To facilitate comparison, two distinct metaheuristic search methods were employed to fine-tune
the MPC-PID framework in addition to the cooperative PSO algorithm. The initial approach
involves a classical PSO algorithm, elaborated upon 2.3. The second method incorporates a genetic
algorithm that employs binary encoding, scattered crossover, and Gaussian mutation techniques.
Furthermore, the performance of the MPC-PID framework was also compared to a standard PID-
based control scheme for trajectory tracking [155]. This scheme also utilizes two control loop
parts, namely the inner loop control (ILC) and the outer loop control (OLC), where ILC is
responsible for the Euler angle control that regulates the attitude of the vehicle, while OLC
regulates the position in the x-y-z plane; however, in this case both control subsystems are based

on PID control, while tuning is performed manually.

The operational parameters used by COOP-PSO on all experiments, are given in Table 12.
Parameter selection for all comparison approaches was based on suggestions in literature, along

with trial and error.

5.2.5 Results and Discussion

The first trajectory chosen to evaluate the proposed cooperative optimizer namely the spiral
trajectory, displays simple geometrical characteristics and constitutes a standard benchmark to

demonstrate a quadrotors’ ability to fly automatically.
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Xref(t) = 0.5-c0s(0.5-t)

Yref(t) = 0.5-sin(0.5-t) (134)
t

Zref(t) = 1+ E

The second trajectory (135), is termed “composite” due to its composition from three distinct sub-
trajectories: a spiral [156], a helical cone [157] and a linear dependent [82] trajectory. The
amalgamation of trajectories exhibiting diverse characteristics renders the optimization process a

challenging endeavor for the optimizer.

0.8 :-cos(0.6-t) t €]0,22]
6.52 —0.26 -t t € (22,38]
et =\ _64(6.2-0.1-1)- cost(0.5-t) t€ (38,65]
—6.166 t € (65,80]
0.8 -sin(0.6 - 1), t € [0,22]
0.367 -t —7.62 t € (22,38]
Yref(8) = i—e +(6.2—0.1-t)-sint(0.5-t) te€ (38,65] (135)
5.73 t € (65,80]
0.1-t+2, t € [0,22]
0.22-t—0.68 t€ (22 38]
Zref() = 112.5-0.125-¢ t€ (38,65]

8.7—-0.066-t te(6580]

The simulated results also contain a robustness test for the proposed cooperative optimization
tuning technique. In this case, the tuning parameters generated for the spiral trajectory simulation
runs, were used to guide the quadrotor so as to follow a new trajectory (136), namely the complex
helical [94]. The geometry of this trajectory exhibits an elliptic trail with complex characteristics.

Xrer(t) = c0s(0.5-t) —cos*(0.4-t)
Vref(t) = sin(0.2-t) —sin3(0.4-t) (136)
Zref(t) = 0.3t

Due to the stochastic nature of all metaheuristic optimizers, which produce a different result for
each run, 20 runs were performed for each trajectory for the cases of COOP-PSO, GA and PSO.
To validate the results, a t-test between the proposed cooperative strategy and each of the
comparison methods was implemented. In the cases of GA and PSO the null hypothesis defines

that the results from COOP-PSO and the rivaling method are generated from normal distributions
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with equal means, while in the case of PID that the results from COOP-PSO are generated from a

normal distribution with a mean equal to the fitness generated by the PID approach.

Based on above, Tables 13-15 present the results for all methods, including the mean fitness values
and standard deviations, the best fitness values, and p-values resulting from the t-tests for the
spiral, composite and complex helical trajectories, respectively. The response for the position
variables x, y, z and the attitude angles ¢, 8, y for the case of the spiral trajectory is shown in Figure
22, while the flight of the quadrotor in the 3-D space is visually depicted in Figure 23. Figures 24-
25 and Figures 26-27 present the corresponding results for the cases of the composite trajectory
and the complex helical trajectory where the robustness case was tested, respectively. For each
one of the three different trajectories, a randomly selected simulation out of the 20 runs is depicted
in the figures.

Table 13: Tuning performance metrics for the spiral trajectory

Fitness Fitness standard  Best Fitness p-value
average deviation
COOP-PSO 36.59 3.111 32.17 -
GA 39.80 2.564 34.16 0.001
PSO 38.47 2.052 35.06 0.029
PID - - 40.86 6.67E-06

Table 14: Tuning performance metrics for the composite trajectory

Fitness average  Fitness standard ~ Best Fitness p-value
deviation
COOP-PSO 89.47 4.075 82.49 -
GA 97.12 5.076 84.86 5.99E-06
PSO 94.97 6.082 83.94 0.002
PID - - 94.47 2.72E-05
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Table 15: Robustness metrics for the complex helical trajectory

Fitness Fitness standard Best p-value
average deviation Fitness
COOP-PSO 106.81 4777 98.75 -
GA 112.25 5.960 101.89 0.003
PSO 110.51 3.356 100.19 0.007
PID - - 10E+05 0
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Figure 22: Spiral trajectory simulation results for (a) position x, (b) positiony, (c) position z,
(d) roll angle ¢, (e) pitch angle 9, (f) yaw angle y
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Figure 23: 3-D simulation results for the spiral trajectory
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Figure 24: Composite trajectory simulation results for (a) position x, (b) positiony, (c)

position z, (d) roll angle ¢, (e) pitch angle 6, (f) yaw angle

A. K |
apnopoulos 124



Development and tuning of automatic control methods for nonlinear systems using computational intelligence techniques with

10

< Zref (m}

emphasis on the control of unmanned aerial vehicles

— — — ~ Reference
Actual trajectory

Yo Y o (M)

-5

X Xref (m)

Figure 25: 3-D simulation results for the composite trajectory
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Figure 26: Complex helical simulation results for (a) position x, (b) position y, (c) position z,

(d) roll angle ¢, (e) pitch angle 9, (f) yaw angle y
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Figure 27: 3-D simulation results for the complex helical trajectory

As it can be seen by the figures, the attitude and position control schemes satisfy their respective
goals and the overall control framework manages to track accurately the reference trajectory in all
cases. The efficiency of the proposed scheme is highlighted by the scores in Tables 13-15 where
the cooperative PSO-tuned controller results to superior performance metrics over its rivals in all

the tested trajectories.

To be more specific, as far as the spiral trajectory is concerned, the proposed approach outperforms
all the methods used for comparison, producing the best run, which results to the minimum offset
error from the reference trajectory. More importantly, it also outperforms its rivals in terms of the
average result produced from the 20 runs, with a statistical significance higher than 97% according

the produced p-values.

The composite trajectory forms a more demanding test compared to the spiral one, as it essentially
comprises three different sub-trajectories, and thus provides a strong indication of the ability of
the tuning method to cope with reference signals that exhibit different geometrical characteristics.
In this respect, the COOP-PSO algorithm produces superior results compared to the remaining
methods, considering either the best produced run, or the average from the 20 runs. Regarding the

later, the superiority of the proposed approach is confirmed with a statistical significance of 99%.
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In the last tested trajectory, namely the complex helical one, the objective was to evaluate the
robustness of the different tuning methods; this can be assessed by asking the controllers to follow
a trajectory different than the one used for tuning their parameters. To this end, the control
parameters that were generated by tuning on the spiral trajectory, were then applied to a situation
where the quadrotor was asked to follow the complex helical trajectory. The results confirm the
superiority of the proposed cooperative technique in delivering robust design parameters, both in
terms of the best run and the average of 20 runs. The p-values produced from the t-test show that
this conclusion is statistically significant with a confidence level of 99% or higher. From a practical
point of view, this is an important result, as in a real-world situation it is not expected that the
quadcopter will be tuned beforehand for all possible trajectories that it may be asked to track —
most probably at some point during its operation the quadcopter will need to perform moves that
are not part of the trajectories used for tuning it.

It should be noted that, besides producing controllers with better tracking abilities and lower offset
error, the proposed approach also manages to produce consistent results, as indicated by the
standard deviation values from the average of the 20 runs, which are kept within a reasonable
range throughout all the scenarios. This outcome comes in contrast with the metrics provided by
the PSO and GA algorithms, which exhibit variations in standard deviation values, depending
heavily on the geometry of the respective trajectory. This is a strong indication that the proposed
approach yields consistent results, even for spatial trajectories with different geometrical
attributes.

Among the rest of the competing methods, PSO seems to produce slightly better results compared
to standard GA on average, albeit noticeably worse than the proposed approach. The standard PID
control scheme on the other hand produces a tracking error which is considerably higher than the
rest of the methods for all three tested cases; especially in the third case evaluating the robustness
of the methods, the tracking error of the PID scheme is orders of magnitude higher, essentially
failing to follow the reference trajectory. This can be explained by the superiority of the MPC

scheme employed by the rest of the methods for position control, over the standard PID technique.

The success of the proposed scheme can be attributed to the cooperation between the two different
swarms which exchange information while evolving simultaneously. Some insight into this
cooperation can be obtained through Figure 28, which depicts the respective fitness value per
generation for the MPC and PID swarmes, in the spiral and composite trajectories. It can be seen
that the lead in terms of lower fitness value between the two swarms may change many times, as
each swarm helps the other to evolve through their mutual cooperation.
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Figure 28: Change of best fitness value per generation for the MPC and PID swarms in the

case of (a) spiral trajectory, (b) composite trajectory

5.3 Qualitative comparison of developed trajectory tracking control methods

Within this section, a qualitative examination unfolds, highlighting the distinctions between two
control methodologies developed for quadrotor trajectory tracking, as discussed in sections 5.1
and 5.2, i.e., the RBF-backstepping controller and the MPC-PID control scheme. Although a
quantitative comparative analysis poses challenges given the inherent complexities and unique
traits of each approach, the objective is to clarify their individual advantages, limitations, and

suitability for this application.

Starting with the RBF-backstepping controller, it’s crucial to highlight its inherent qualities. The
controller is known for its asymptotic stability, designed in alignment with Lyapunov stability
principles, ensuring the system’s gradual convergence towards the desired state. An additional
advantage lies in its ability to effectively address model uncertainties or disturbances through the
integration of RBF models, significantly improving tracking performance, especially in scenarios
where model accuracy is a concern. Furthermore, the step-by-step design process, exemplified in

Section 5.1.2.2, offers a structured and methodical approach for implementation.

On the other hand, the MPC-PID controller stands out for its ability to establish a control strategy
through the resolution of an online optimal control problem, as elaborated in Section 5.2.2.1.
Importantly, this approach doesn’t require an in-depth comprehension of the dynamics of the
specific systems, which has the advantageous effect of simplifying the construction of the control
framework and streamlining the implementation process. Furthermore, the careful selection of the

CPSO algorithm becomes pivotal in the context of quadrotor control, given that the MPC-PID
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control method involves multiple controllers and, consequently, entails a significant number of

tuning parameters.

Despite the merits, both controllers exhibit limitations. The MPC-PID controller relies on a linear
model within the OCP, which may not accurately capture the inherent nonlinearities of the
quadrotor model. This drawback can impact control performance, especially in situations where
nonlinear effects are significant. Additionally, the process of formulating and solving an online
problem at each discrete time step can be computationally intensive, which can pose a significant

drawback when implementing this approach on real quadrotors.

On the contrary, the RBF-backstepping controller, although relying on a classic PSO technique for
controller tuning, derives its enhanced performance primarily from the incorporation of RBF
models within the backstepping control framework. This integration significantly enhances
tracking accuracy and robustness. However, it’s worth noting that this controller’s effectiveness is
intricately linked to the unique dynamics of the quadrotor it was designed for, which restricts its
applicability to various UAV platforms. Additionally, it’s imperative to emphasize that the
backstepping control law is primarily tailored for application in strict feedback systems, which
represents a notable limitation.

In summary, the choice between the RBF-backstepping and MPC-PID controllers should be made
based on specific application requirements and considerations. The RBF-backstepping controller
stands out for its ability to provide asymptotic stability and manage model uncertainties through a
clear control law expression. On the other hand, the MPC-PID controller offers a control law
derived from solving an OCP, and can handle constraints. It's worth emphasizing that the CPSO
framework is particularly valuable for efficiently fine-tuning a significant number of control
parameters, especially when dealing with control schemes that involve multiple controllers, as is
the case with the MPC-PID controller. Hence, the decision should be based on whether priorities
lie in achieving stability, utilizing explicit control laws, managing constraints, or optimizing tuning
for a high number of control parameters within the specific application. A meticulous assessment
of the system's nonlinear characteristics and the operational environment becomes essential in the

process of choosing the most appropriate controller for quadrotor trajectory tracking assignments.
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6. Development of adaptive nonlinear MPC control scheme using online RBF
networks
Within this chapter, we delve into the challenge of devising a control methodology for time-
varying systems, incorporating the use of adaptive online models. To address this challenge,
specific focus will be on the utilization of nonlinear control techniques, leveraging their
adaptability and effectiveness in managing the intricacies of time-varying systems. Specifically,
the proposed control scheme, will be applied towards simulation-based applications, with
instances including the control of a NARX system and a CSTR reactor, dynamically adjusting its
model’s parameters in response to system changes, thus ensuring robust and effective control

evolving dynamics.

6.1 Introduction to online adaptive models and their vital role in controlling time-varying

systems

In the context of time-varying systems, the challenge of control is particularly challenging. These
kinds of systems demonstrate dynamic behaviors that evolve over time in reaction to varying
external factors or operational conditions. While static systems find sufficiency in fixed control
strategies, time-varying systems necessitate dynamic solutions, and at the heart of this requirement
lies the pivotal role of online adaptive models.

Online adaptive models, the foundation of effective control in time-varying systems, offer dynamic
and responsive structures. These models have the unique ability to learn and adapt in real-time,
which renders them highly suitable for situations characterized by frequently shifting and
unpredictable dynamics. Online adaptive models excel at adjusting control parameters as new data
becomes available, ensuring the control system is able to complete its regulation task throughout

the system’s continually changing conditions.

To highlight the importance of online adaptive models, one needs to evaluate real-world scenarios
within the domain of time-varying systems. Regarding autonomous robotic systems, adaptive
algorithms enable robots to navigate shifting terrains or respond to unforeseen damage, ultimately
guaranteeing unwavering performance [158], [159]. In the domain of financial markets, adaptive
trading algorithms adjust strategies to go align accordingly with the perpetually changing market
conditions, maximizing returns [160]. Moreover, in the aerospace field, online models enable

aircrafts to maintain stable flight amidst wind turbulence conditions [161].

The necessity for online adaptive models occurs from the pivotal requirement to efficiently control
time-varying systems. These models inherently possess the capacity to adjust and acquire
knowledge as dynamics evolve, proving significant in achieving the required performance and
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stability tasks in time-varying systems. Within this context, the adaptive symmetric fuzzy means

algorithm emerges [162] as a powerful tool.

6.2 The adaptive symmetric fuzzy means algorithm

The adaptive symmetric fuzzy means (ASFM) algorithm relies on the fuzzy partitioning technique
of the input space, as detailed in subsection 2.2.2 of Chapter 2. It is utilized to identify when, and
which specific centers should be added to, or removed from the network’s hidden layer. To this
end the algorithm features a dual-level adaptation: the adjustment of connection weights between

the hidden layer and the output layer, and the altercation of the hidden layer’s structure.

Upon the initialization of the algorithm, the domain of each input variable i, i = 1, ..., N requires
to be partitioned into ¢; symmetrical triangular fuzzy sets. The parameter L shows the number of
nodes in the hidden layer and is initialized as zero. Furthermore, the operational parameters of the
algorithm necessitate definition, including: the number N, representing consecutive times steps
that a center is not assigned to an input example data before it is removed from the hidden layer of
the network; the size N, defining the moving time window used for retaining input-output

examples; and the forgetting factor A utilized in the Recursive Least Squares (RLS) method.

Upon receiving the first input example data [x(1), y(1)] the algorithm initializes the parameter L
to 1 and determines the fuzzy subspace A' = [A];, 4} , ..., A} ;] that is nearer to the input

example, according to the minimum distance criterion:

ji= aréjlsrz?x [uAiJ.(x,-(l))] ,i=1,..,N (137)
When the first hidden node of the first fuzzy subspace is created, the algorithm commences a
dynamic center location matrix € € RE*N | which is utilized to store the center location at each
time instance, and the Activation History Vector (AHV) h. The center location matrix contains at
each time instance the centers of the hidden layer nodes and its dimension is L X N. The size of
AHV is equal to the number of hidden nodes and contains the last time instant that an input

example was assigned to each fuzzy subspace.

After the generation of the first hidden node, the dimension € is 1 X N and h contains only one
element. To be more specific, the center of the initial hidden node is assigned to the single row of

matrix of C:

C! « al (138)
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and the value of the first element of h is initialized tol:
hl(1) =1 (139)

Afterwards, the algorithm calculates the vectors z, w and matrix P, which are calculated at each
time instant. The vector z € RY*1 includes the responses of the hidden layer nodes, while the
vector w € RE*1 contains the connecting weights between the hidden and output layer of the RBF

network. Lastly matrix P € RE*L is the inverse of the covariance matrix, used in the RLS
algorithm.

Naturally, when the first data input example becomes available, all the aforementioned vectors and

matrices consist of only one element, and their calculation proceeds as follows:

z(1) = g(Jx(D) - c*|,) (140)
_y(1)

where g(-) is the radial basis activation function. This completes the necessary calculations upon
the arrival of the first input data. The rest of the steps are followed at each discrete time instant
k>1.

To determine whether a new center should be added at time step k, the algorithm computes the
distances between x(k) and the chosen subspaces and finds the subspace [, that exhibits the

minimum distance rd‘ from the input data example x(k).

rd"(x(k)) = minrd'[x(k)] (143)
ly = arg min[rd'(x(k))] (144)

The algorithm only adds a new center when the distance rd' is greater than one, otherwise it does

not add a new hidden node to the network structure and proceeds with updating the AHV vector.

When a new node is added the algorithm augments the value of L by 1 and determines the new
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fuzzy subspace A" = [A} ;A5 ; , ..., Ay, ] that is closer to the new data input x(k), using the

minimum distance criterion:
Ji= arg max [uA,-,,- (xi(k))] i=1..,N (145)
<J=<c;

The center of the created fuzzy subspace is the assigned to the newly introduced hidden layer node
and the center location matrix is augmented to encompass the new hidden node center:

CL — al (146)

The AHV vector is also augmented by adding one more element, where the time step k is assigned,
meaning that the kth data point represents the most recent input example allocated to the Lth fuzzy

subspace.
ht =k (147)

When the algorithm has decided not to add a new node to the hidden layer, the AHV is updated as

follows:
hlo = k (148)

That is, the input data k is the last one assigned to the [, fuzzy subspace, where [, is given by
equation (144)

Additionally, the algorithm at each time instance checks if a hidden node should be deleted by
selecting the element of the AHV vector with the minimum value. This corresponds to the fuzzy
subspace with longest time horizon in the past for which no input examples have been assigned:

l, = arg max|h'(k)], (149)

1<I<L

However, when the inequality h'7(k) < k — N, holds, then no inputs examples have been
assigned to the subspace [, for N; sequential time instances. In this case the hidden node [, is
considered redundant and it is deleted. This is possible by deleting the corresponding row of the

center location matrix €' and element of the AHV h'r.

When a new hidden node is added or deleted to the existing network structure, the connection
weights w must be recalculated. In order to achieve this, the moving time window of past input-
output data is loaded and the responses of the current hidden layer structure R(k) € RNs*L are

calculated:
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gllx(k=N) =€, - g(lxk—Ng) = Cl;
R(k) = : : (150)
gllxtky—ct, -~ g(lxC) — Ct
The new synaptic weights are then calculated via the standard least squares method:
w(k) = (RT(k) - R(k))™" - R"(k) - Y(k) (151)

where Nj is the size of the chosen time window and Y (k) € R¥s*1 is the vector containing the true

process outputs over the time window N

The matrix P(k) is also calculated so that the RLS adaptation can be continued in the next time

step:
P(k) = (R"(k) - R(k))™" (152)

When no structural modification in the hidden layer is made, the number and the locations of the
hidden nodes remain unaltered. In this case the connection weights are updated using the RLS

algorithm with exponential forgetting, which is described via the following set of equations [163]:

w(k) =w(k—1) + q(k) - (y(k) — 2" (k) - w(k — 1)) (153)

q(k) =P(k—1) - z(k) - (,1 +2zT(k)-P(k—1)- z(k))_l (154)

P(k—1)

- (155)

P() = (I-q(k) - 27 (K))
With y(k) being the system output at time step k, and A being the forgetting factor, meaning that
at each time instant, the current data point is given unite wight and the input-output example that

is n times old, is weighted by A™.

Remark: It is essential to point out that the adaptive SFM training algorithm has been shown to
offer very high modelling accuracy, due to its ability to adjust the network’s structure, combined
with relatively low computational times. This property makes it an ideal candidate method for real

time modeling.

135 A. Kapnopoulos



Development and tuning of automatic control methods for nonlinear systems using computational intelligence techniques with
emphasis on the control of unmanned aerial vehicles

The validity of these observations is substantiated through the algorithm’s applications in
modeling nonlinear dynamical systems, particularly in the context of control regulation tasks. In
the next subsection a nonlinear MPC scheme is developed with guaranteed stability that utilizes
the adaptive SFM model training.

6.3 A new nonlinear MPC control framework with online adjustable RBF neural networks

The goal of this section is to formulate a novel nonlinear MPC (NMPC) strategy, leveraging
adaptive RBF neural networks for nonlinear system modeling. In this context, the system’s
dynamics are meticulously represented by RBF neural networks and fine-tuned online through the
adaptive SFM algorithm presented in section 6.2. This ASFM-RBF-NMPC approach is based on
Lyapunov stability theory, ensuring the closed-loop control system’s asymptotic stability. Two
distinct nonlinear systems are employed to demonstrate its efficacy in various regulation tasks,
namely a NARX system and a time-varying CSTR reactor.

6.3.1 Problem formulation and preliminaries

Consider the quadratic cost function J for the constrained finite time OCP problem as:

min Jy(xq, w)
u

s.t. Au(k)min < Au(k) < Au(k)max

Unin < u(k) < Umax (156)
x(0,x) = xg
x(k+1) = f(x(k),u(k))
with J given by:
In() =Sk + ) — 9k + D] T Q- [r(k + 1) — p(k + D] + T Aulk + 5)

j—1)T-R]--LIu(k+j—1)T

Where f( -) depicts the nonlinear process, r (k) is the reference signal atatime k, y(k + i) is the
future prediction of the process output, u(k) is the control signal at time k, and Au(k +j — 1)T
is the incremental control move between two consecutive control signals, H,, is the prediction
horizon, N,, is the control horizon (with H,, < H,,), and @, R are weighting matrices that penalize
divergence from reference state and input moves, respectively. MPC is an iterative optimization

procedure in which the minimization of the performance cost function J takes places at each time
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k. The solution of the above optimal control problem is an optimal control sequence from which

only the first control signal is implemented into the real system.

The nonlinear dynamical system is presented by the following nonlinear difference equation:
y(k+1) = f(y(k), ..., y(k —ny + 1), uk), ..., u(k —n, + 1)) (158)

where y(k) and u(k) denote the output and input of the controlled process at time k, n,, and n,,

are the numbers of maximum lags in the outputs and inputs respectively.

6.3.2 Online Based Neural Network MPC

A critical issue when forming the MPC problem is the selection of an appropriate model that can
sufficiently predict the output of the real system. Especially in the case of nonlinear systems the
selection of a proper predictor equation that can successfully model the nonlinear system dynamics
Is essential in order to guarantee good performance for the given optimization problem. The online
nonlinear MPC problem is tackled by utilizing a nonlinear RBF neural network model as a
predictor which can adjust its structure and parameters in real time according to the ASFM

algorithm mentioned in subsection 6.2.
The OCP problem formulated by equations (156) and (157) can be rewritten in matrix form by

using the adjusting RBF neural network (4) to the following nonlinear NMPC OCP:

J) = [r(k) —y(IO)]" - M - [r(k) — ¥(k)] + Au(k)" - R - Au(k) (159)

Aupin < Au(k) < Auye, Vj€E|O,.. H,—1]
Au(k+H, +j) =0, Vji=0 (160)
r(k+H,+j)—-y(k+H,+j)=0Vj=>0
r(k) is the reference vector given at time instance k, y(k) is the prediction future output vector
given at time instance k, Au(k) is the difference in control actions vector, and M € R¥»*H» R €

RFu*Hu gre diagonal square matrices related with penalty reference divergence and economy in

sequential control actions. The above quantities are depicted by the following relations:

r(k) = [r(k+ 1), 7k +2), -, 7(k + H,)|" (161)
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Yo = [y(k + 1), 9k +2), -, 9(k + H,)|" (162)
Au(k) = [Au(k), Au(k + 1), -, Au(k + H, — 1)]" (163)
u(1) - 0 p(1) - 0
mM=|: =~ i | R=|: o~ ] (164)
0 - u(H 0 - p(H

with u(j) and p(i) where j =1, ..., H, and i = 1, ..., H,, representing weighting factors given by:

p(1) < pu(2) < - < p(Hp) (165)

p(1) <p(2) < < p(Hy) (166)

At his stage, it’s crucial to highlight that employing an RBF network for the system model results
in an output prediction which is nonlinear in control inputs. As a result, an optimizer should be
considered that takes into account the complexity of the constrained on-line NMPC problem, while

the convergence for the optimization problem is also a critical aspect to be considered.

To solve the optimization problem given by equations (159)-(160) the sequential quadratic
programming (SQP) iterative method is utilized. The basic idea behind the SQP optimizer is that
a sequence of optimization subproblems is solved, each of which optimizes a quadratic model of
the objective with a linearization of the respective constraints. An important trait of the algorithm
is that it can consider constraints on the control input and output variables of the process. This
feature will be exploited in next section in order to prove the convergence of the closed loop control

system.

6.3.3 Stability Analysis

In this subsection, convergence analysis for the recursive feasibility and stability of the proposed

NMPC controller is given for the nominal stability case:

Theorem 3: Suppose that the optimization problem (159)-(160) is feasible at time k = 0. Then the
proposed problem is recursively feasible for the set-point tracking case.

Proof: Consider the optimal control sequence at a recalculating time instance t = k as:
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w (k) = [w (), u' (k + 1), ,w(k+H,—1)] (167)

where the respective optimal state sequence is given by:

y' (k) = [y (), y" (k + 1), -, y" (k + H,)]" (168)

However, at time instance k + H), the predicted state which starts at time k will be inside the
terminal set which in our case is formed by the zero terminal constraint region. Due to the condition
imposed by the third equation of (160) for all y(k) inside the zero terminal constraint region and

for all t the existence of an admissible input sequence input u,r(+) can be guaranteed.

Now, consider a new control input sequence at time instance k + 1 which be constructed based on

the current optimal sequence:

u*(k + l), i€ H[I,Hp—l]

1
uZTc(k + i), i=H ( 69)

u(k+1) = {
p

The input #(k + 1) is admissible and due to the third equation of (160) the predicted state

trajectory y(k + 1 + H,,) at the time instance k + 1 + H,, will be inside the terminal region. Thus,

the optimal control problem has a feasible solution at time instance t = k + 1, which means that

the proposed MPC algorithm is recursive feasible.
This concludes the proof of Theorem 3.m

In what follows, the asymptotic convergence analysis of proposed MPC algorithm will be given.
The asymptotic stability is investigated for the closed loop control system by utilizing the
decreasing monotonicity concept of the MPC cost function. The asymptotical convergence of the
online AFM-RBF-NMPC is discussed in Theorem 4:

Theorem 4: Consider the nonlinear constrained optimal control problem given by (159)-(160). If
the weighting factors are constructed via (165) and (166) then the closed loop control system of
the proposed AFM-RBF-NMPC ensures asymptotic convergence for the no model-plant mismatch

case.

The MPC cost functional at time instance k has the following form:

Jk) =e(k)"-M-e(k) + Au(k)” - R - Au(k) (170)
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Hp Hy
= > u) -2k +) + ) p() - Mut(k+j—1)

j=1 j=1
The optimal control input sequence at time k found by the optimization procedure can be defined
as u*(k) = [u(k),u(k + 1), ...,u(k + H, — 1)]". Now the suboptimal control postulated at time
k+1 can be defined as ug(k+1) = [u(k+1),..,u(k+ H, — 1),u(k + H, — 1)]7. The
control sequence uy(k + 1) is formed based on the control derived at time k. Therefore, for the

suboptimal control ugs(k + 1), the cost function can be defined as:

Hp+1 Hy,
Joe+ D = > p()-e2Ue+)) + ) p()- Mk +j - 1 ary)
j=2 j=2

By taking the difference between the cost functions j;(k + 1) and J(k) we have:

Js(k+1) —J(k)
=u(H,) -e*(k+H,+1)— p(1)-e*(k+1) — p(1) - Au*(k)
Hp-1

+ ) (0G -1 = p()) - €2+ ) 172)
j=2

Hy—1

+ ) (PG -1 = p()- Mk +j -1
j=2

Taking into account the terminal constraint equality equation (160) and the relations (165) and
(166) we can get:

Js(k+1) —J(k)
= —u(1) - e2(k+1) — p(1) - Au?(k)
H,-1

n Z (pG—1) —p()) - Aut(k +j— 1) (173)
j=2

Hp-1

+ ) (G =D = () e2(k+)) <0
j=2
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Furthermore, by considering the optimal control sequence at time instance k + 1 denoted by
u*(k + 1) for the optimization problem (159)-(160), then one can state that J*(k+ 1) <

Js(k + 1). Then one can conclude:
Jk+1)—Jk) <Js(k+1)—J(k) <0 (174)

Hence the cost function is monotonically decreasing with respect to time and based on the modified
Barbalat’s lemma [141].

lim|le(O)]| = 0 (175)

the ASFM-RBF-NMPC closed loop control system is asymptotically stable.

This completes the proof of Theorem 4. &

6.3.4 Simulation results and discussion

To validate the proposed NMPC control technique’s effectiveness, two distinct systems were
utilized. The first system encompassed a nonlinear benchmark problem described by a NARX
single input-single output (SISO) discrete time system, serving as a basis for testing the tracking
ability of the NMPC controller. The second system involved a time-varying nonlinear continuous
steered tank reactor. To validate the proposed control method, an RBF-NMPC controller was also
employed, where RBF networks were pre-trained offline using the fuzzy means algorithm.

Throughout all subsequent simulation, the SQP solver is employed for solving the NMPC problem.

6.3.4.1 Application 1: Control of a NARX discrete time SISO system
The system under the certain application is described by the following discrete input-output model:

y(k) =0.72 - y(k—1) +0.025 - y(k—2) -u(k—1) + 0.01 - u%(k — 2) +

176
0.2 -u(k—3) (70)

The objective is to make the system output y(k) track a reference trajectory utilizing the proposed

NMPC controller and the time varying reference input (k) given by the following equation:

r(k) = sin (k- %), 0 < k < 400 177)

The ASFM method was utilized online in order to identify a suitable RBF configuration for
modeling the aforementioned system. The input to the RBF model consisted of three previous

values of the input u and two previous values of the output y:
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x(k) = [y(k—1) y(k —2) u(k — 1) u(k — 2) u(k — 3)] (178)

The operational parameters used by the NMPC controller and the ASFM training algorithm are
given in Table 16 and Table 17 respectively. Furthermore, Table 18 displays the Mean Absolute
Error (MAE) results for both control methods implemented in terms of control tracking error.
Figure 29 illustrates the RBF network prediction responses for both the adaptive SFM and the

Table 16: Operational parameters for the ASFM RBFNN in application 1

Parameter Description Value

Ny Number of time steps that a center is not assigned to an 1000
input example, before it is removed from the hidden layer

N, Size of the moving time window used for storing past 200
input-output examples

A Forgetting factor for the RLS method 1

# fuzzy partitions Number of fuzzy subspaces in the entire input space 14

Table 17: Operational parameters for the NMPC controller in application 1

Parameter Description Value
Np Prediction horizon 10
N¢ Control horizon 8
n()j=1,..N, State variables penalty weighting factors 1.65
p(j),j=1,..N, Control input weighting factors 0.7
Au_min Minimum value of difference in control actions -0.1
Au_max Maximum value of difference in control actions +0.1
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Table 18: MAE metrics for NARX system control

Control Method MAE
NMPC-ASFM-RBFNN 0.0042
0.0464

NMPC-RBFNN

offline SFM algorithm. Additionally, Figure 30 displays the closed-loop response of the NARX
system, while Figure 31 provides the input profile for the proposed ASFM-NMPC controller.
Figure 32 and Figure 33 track the evolution of the Root Mean Square Error (RMSE) of the output.
of the output variable y and the hidden layer structure over time, respectively, for both the ASFM

and offline SFM methods.

ASFM RBFNN Network Predictions

Real Values
Offline RBFNN Network Predictions

0.5

0
>
5
s
5
o
-0.5

40 60 80 100 120 140 160 180
Time

Figure 29: RBF network predictions using different training methodologies for the NARX

system

143 A. Kapnopoulos



Development and tuning of automatic control methods for nonlinear systems using computational intelligence techniques with
emphasis on the control of unmanned aerial vehicles

1 T T T T T T T
Desired trajectory
NMPC-ASFM-RBFNN Controller
NMPC-Offline-RBFNN Controller
0.5
0
>
5
&
S
@)
-0.5
-1
_1 5 | | | | | | | | |
60 80 100 120 140 160 180 200

20 40
Time

Figure 30: Closed-loop response using the closed loop NMPC controller for NARX system
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Figure 31: ASFM-NMPC controller-input profile for NARX system
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Figure 32: ASFM RBFNN RMSE of output y and hidden layers structure evolution over
sample iterations for NARX system
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Figure 33: RBFNN RMSE of output y and hidden layers structure evolution over sample

iterations in the case of NARX system
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The figures clearly illustrate that the system’s output y accurately follows the desired trajectory
throughout the simulation. The effectiveness of our proposed scheme is particularly evident in
Table 18, where the NMPC-ASFM controller outperforms its competitor, achieving a remarkable
improvement of 90.9%. This success can be attributed to the enhanced performance of the adaptive
RBF-NN incorporated within our scheme, as evidenced in Figure 29. In contrast, the offline
RBFNN predictions fail to capture the system’s behavior when relying solely on offline data from

the NARX system.

Figure 30 demonstrates that the proposed ASFM-NMPC approach adeptly follows the desired
trajectory. This in contrast to the simple RBFNN-NMPC controller, which struggles to efficiently
track the provided reference. This difficulty arises from its incapacity to incorporate new data from
adapting the network’s parameters. Additionally, it’s important to highlight that the proposed
scheme consistently maintains a control input profile where the differences in control action inputs

remain within the prescribed limits, as specified in Table 17.

Figure 32 provides insight into the development of the RMSE for the output variable y and the
hidden layer structure as each new data sample is introduced.

The initial rise in RMSE for output y can be attributed to the offline training phase of the f,, ggr
model. During this phase, the generated input-output data are formed by employing random input
values within the range of [-1, 1], in accordance with the discrete output equation (176). However,
as more sample data are incorporated into the ASFM and new centers are added, RMSE
consistently decreases. This stands in contrast to Figure 32 where the RBF model is exclusively
trained offline. In Figure 32 the RMSE for the model’s output continually rises and then oscillates
around a certain value, unable to decrease even when new data samples area available. This
disparity can be attributed to the offline-SFM’s limitation in adapting to incoming data from the

system and modifying the network’s structure, a capability presents in its ASFM counterpart.
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6.3.4.2 Application 2: Control of a multiple steady state CSTR time-varying reactor in

changing operating regions

The objective of this application is to control a CSTR reactor utilizing an adaptive RBF network
model, as the system’s behavior undergoes dynamic shifts over time. The CSTR described by a

set of nonlinear ODEs which can be found in [164] and is given by the following equations:

dCA F

G =7 Cam—ea) =2 ko-exp(- =) - ar)
ar _F . 14z SR ( £ ) 2" _(T-T,) (180

where k, is the reaction frequency factor, E depicts the reaction activation energy, R is the gas
constant, T is the temperature and c, is the conversion of reactant A to product B. The Kinetic

parameter values of equations are given in Table 19.

Under specific configurations of the CSTR operational parameters, the process demonstrates the
presence of multiple stable steady states, both upper and lower, alongside an unstable intermediate
state. While it is relatively straightforward to control the CSTR when operating around each
individual stable steady state point, controlling the system through its entire operational range,

encompassing the unstable steady state, presents a challenging endeavor.

Consequently, the objective of the subsequent application involves the implementation of an
NMPC configuration to govern the output concentration c4, employing the temperature of the
coolant T; as the manipulated variable. The specific focus of this application was to evaluate the
effectiveness of the proposed method in dynamically modeling the reactor, with particular
emphasis on scenarios encompassing variations in the operating range. The CSTR was simulated

by solving a system of ODEs.

Due to the presence of multiple steady states, it was not feasible to approximate the system

dynamics across the entire operating range with model of this type:
ca(k) = frer(Tj(k—1),Tj(k—2),..,Tj(k—1i)) (181)

i.e., a model using as inputs only past values of T;. This comes up from the fact that for the same
sequence of inputs, multiple potential values of the concentration c, (k) exist, contigent on the
proximity of the CSTR to a particular steady state at that time instant. To address this issue, an
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ARX (AutoRegressive with eXogenous inputs) model was chosen. This model correlates the
current concentration c4 (k) not only with the previous coolant temperature T; (k — 1) but also with
preceding values of two state variables: concentration c,(k — 1) and the temperature inside the
reactor T(k — 1):

ca(k) = fc,rer(Tj(k —1),c4(k — 1), T(k — 1)) (182)

The inclusion of such a model, using the previous values of two state variables as inputs, adds
complexity to the task of calculating predictions over the prediction horizon. At each time step,
the model (182) is utilized for predicting the next N,, time steps in the optimization problem (159)-
(160). However, to forecast beyond the first future time instance, input values for both state
variables during the preceding time steps are needed. Hence, an additional model is vital for
predicting the dynamic evolution of the second sate variable:

T(k) = frrer(Tj(k—1),c4(k—1),T(k - 1)) (183)

To simulate scenarios involving changes in the operating region, an initial offline training phase
was conducted. During this phase, a random dataset, equivalent in size to the moving time window,
was generated by changing the coolant temperature T; within the range [164 350] every 0.5
seconds, in order to provide the initial training data for the RBF network models. In this range, the
generated data exclusively pertained to the lower equilibrium region, with all concentrations
falling below 0.2. The sampling time chosen for the control process was set as well to 0.5 seconds.
The operational parameters used for training both RBF networks used in this study are shown in
Table 20.

The models trained with the ASFM methodology were incorporated into the NMPC configuration
described in section 6.3.2. The CSTR is initialized at a concentration c, equal to 0.1 which
corresponds to the lower steady state point and then a step to the value of 0.4 occurs, corresponding
to the unstable state-state point.

In Table 21, are shown the operational parameters chosen for NMPC controllers used in the CSTR
system control. Table 22 contains the results for both controllers, including MAE for the closed-
loop response of the CSTR system. Figures 34-35 provide visual representation of the responses
of the network for the state variables ¢, and T, comparing the adaptive SFM and the offline SFM
algorithm. Figure 36 presents the performance of the NMPC controllers and Figure 37, provides a
view of the input profiles for both controller systems. Finally, Figures 38-39 illustrate the evolution
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of the RMSE for the concentration ¢, model and the hidden layer structure over time for the ASFM

and offline SFM methods, respectively.

Table 19: CSTR parameter values in application 2

CSTR Process Description Values
parameters

F Flow rate 20 1/s
|4 Volume 100 |
UA Rate of change of thermal energy 20000]/s - K
p Density 1000 g/1
Cp Heat capacity of reactive mixture 42 J/g-K
(—4H)g Negative change in enthalpy 596619 J/mol
ko Reaction frequency factor 6.85E+11 I/s-mol
E Activation energy 76543.704 J/mol
Tin Inlet Temperature 275K
Cain Inlet Concentration of species A 1 mol/I

Table 20: Operational parameters for the ASFM RBFNN in application 2

Parameter Description Value
N, Number of time steps that a center is not assigned 1000
to an input example, before it is removed from the
hidden layer
N, Size of the moving time window used for storing 50

past input-output examples

A Forgetting factor for the RLS method 0.91
# fuzzy partitions Number of fuzzy subspaces in the entire input 20
space
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Table 21: Operational parameters for the NMPC controller in applications 2

Parameter Description Value
Np Prediction horizon 14
N¢ Control horizon 3
n(),j=1,..N, State variables penalty weighting factors 55
p(),j=1,..N, Control input weighting factors 0.1
Au_min Minimum value of difference in control actions -10
Au_max Maximum value of difference in control actions +10

Table 22: MAE metrics for CSTR system control

Control Method MAE
NMPC-ASFM-RBFNN 0.0286
NMPC-RBFNN 0.2759
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Figure 34: RBF network predictions for concentration c4 using different training
methodologies for the CSTR system
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Figure 35: RBF network predictions for temperature T using different training methodologies

for the CSTR system
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Figure 36: Closed-loop response using NMPC controller for CSTR system
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Figure 37: ASFM-NMPC controller-input profile for CSTR system
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Figure 38: RMSE of output ¢4 and hidden layers structure evolution over sample iterations

for the ASMF training algorithm
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Figure 39: RMSE of output ¢4 and hidden layers structure evolution over sample iterations

for the simple SFM training algorithm
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Throughout Figure 34 and Figure 35 it can be clearly seen that the ASFM online training algorithm
excels in producing network predictions that can accurately track real value of the system, even
during changes in the system’s operating region for both state variables, C4 and T. This stands in
stark contrast to the simple offline SFM RBF prediction responses, which fails to track the real
values. This disparity is due to the Offline SFM-RBF model's inability to adapt to the system's

changing dynamics caused by shifts in the operating region.

Table 22 presents the results for both controllers, highlighting that the proposed NMPC-ASFM
controller outperforms its rival with an improvement of 89.6%. This result is evident in Figure 36,
which depicts the closed-loop response of both NMPC controllers for tracking the desired unstable
setpoint C, ... equal to 0.4. The offline controller fails to track the desired setpoint, whereas the
proposed controller accurately follows the desired trajectory by adding new centers that can
describe the system's new operating region. It's worth noting that the minor "bump™ in the initial
seconds (0-40s) of the simulation occurs because no new centers were added to the pretrained
offline models of f¢,gpr and frgpr. However, as time progresses and new real data inputs

become available, new centers are added, improving the proposed controller's tracking ability.

Furthermore, Figure 37 demonstrates the NMPC-ASFM controller's ability to produce input
control actions that consider the system's changing operating region, effectively steering the CSTR

c,, State toward the desired setpoint.

Figure 38 shows the RMSE development for ¢4, and the hidden layer structure as each new data
sample is introduced. Due to the transition to a different operating region, the number of centers
increases, as new centers are needed to describe the new inputs. The slight initial increase in RMSE
for c,, as depicted in Figure 34 is due to the initial offline training phase of the f¢,rgr and fr rgr
models, which do not include data near the new setpoint. Nevertheless, over time, as additional
actual system output values are included as input samples in the adaptive RBF models, the RMSE
steadily decreases. This is attributed to the ASFM's capability to adapt to incoming data from the
system and adjust the network's structure accordingly. This contrasts with Figure 39, where the
number of centers remains constant, and the RMSE of the trained offline-RBFNN increases until
a certain point without decreasing. This occurs because the model's predictions do not align with

the real values of the system, as shown in Figure 34 and Figure 35.

A. K |
apnopoulos 154



Development and tuning of automatic control methods for nonlinear systems using computational intelligence techniques with
emphasis on the control of unmanned aerial vehicles

7. Conclusions

The goal of this dissertation was to harness computational intelligence techniques for the
development and tuning of automatic control methods, with a primary emphasis on their
application in unmanned aerial vehicles, to enhance and optimize control strategies for nonlinear

systems.

The computational techniques employed in this thesis were instrumental in enhancing the
effectiveness of nonlinear control methods. Specifically, two prominent nonlinear control
methodologies were used in this thesis: Backstepping control and model predictive control.
Backstepping control demonstrated its value as an approach well-suited for managing strict
feedback systems, benefiting from its inherent stability properties. In contrast MPC stand out as a
versatile and widely-adopted control technique, proficient in handling MIMO systems, handling
constraints effectively, ensuring ease of implementation, and showcasing extensive applicability

across diverse processes and systems.

The quadrotor is chosen as the central vehicle for control due to its complex and inherently
nonlinear dynamics, making an ideal platform for developing and enhancing advanced control
methods. This choice establishes the quadrotor as the primary nonlinear system for implementing
the previously mentioned control techniques. Within this context, the complexities of nonlinear
quadrotor dynamics are explored, showcasing the challenges associated with controlling it. The
quadrotor’s dynamics are modeled using the Newton-Euler model, encapsulating both
translational and rotational dynamics within a state-space representation. In response to the
challenge presented by the quadrotor trajectory tracking problem, two specialized automatic
control methods were developed leveraging both the backstepping and MPC frameworks,
incorporating computational techniques.

The first strategy developed to tackle the challenge of quadrotor trajectory tracking involved the
creation of a new nonlinear control scheme. This scheme was designed by incorporating both
backstepping control and RBF networks to effectively accommodate uncertainties within the
model. The developed technique relies on a stabilizing backstepping controller in the Lyapunov
sense for the closed loop system, and an RBF network which provides a data-driven approximation
of unmodelled uncertainties of any type. The RBF network is trained using the SFM algorithm,
enhancing modeling accuracy and enabling superior tracking performance, with the added
advantages of a straightforward structure and rapid training speed. Crucially, the RBF-
backstepping framework can be readily applied to real-word quadcopters, as RBF networks can
be easily trained using actual data collected from the quadrotor’s state and accelerations.
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In contrast to the backstepping approach, MPC offers several advantages, including its ability to
effectively handling constraints and improved adaptability to various nonlinear systems. The
conjunction of MPC with PID controllers can lead to improved system performance and
robustness. However, this integration introduces multiple tuning parameters, creating a need for
an efficient optimization technique. This challenge is effectively addressed through the
development of a CPSO framework, which plays a pivotal role in finely adjusting control
parameters and ultimately enhancing the system’s performance. More specifically, a CPSO
framework was designed for optimizing the tuning of an MPC-PID-based quadrotor trajectory
tracking scheme. The control framework developed consists of two subsystems: an MPC controller
for path following and a PID scheme for attitude stabilization. The subsystem’s tuning parameters
are optimized respectively via an CPSO. Two different swarms are used for the MPC and PID
tuning parameters, respectively; though each swarm controls a different set of parameters, they
ultimately work together towards bestowing improved path tracking abilities to the integrated
control framework. The proposed scheme excels in producing fine-tuning controllers as
demonstrated throughout two different trajectory tracking scenarios. Additionally, its robustness
is evident in successfully evaluating the quadrotor’s tracking performance on a third, previously

unseen trajectory, demonstrating its adaptability beyond the tuning trajectory.

In addition to the CPSO optimization framework for the quadrotor trajectory tracking, two CPSO
schemes were specifically devised to tackle complex issues related to reactive power management
in smart distribution grids and identifying model parameters in WWTPs. Specifically, the growing
prevalence of PV installations within smart grids and their influence on reactive power control
were addressed by developing a specialized CPSO optimization and control framework tailored to
meet the unique requirements of DNs. Through comprehensive testing across various scenarios,
this framework showcased its remarkable adaptability and its ability to yield favorable outcomes.
Furthermore, in the context of tackling the parameter identification issue within WWTPs, a new
CPSO-based identification framework has been introduced. This framework excels at accurately
deducing critical parameters within a comprehensive first principles model, by means of solving a
nonlinear optimization problem integrated in a system identification approach. The efficacy of this
approach is confirmed through statistical testing, demonstrating its superiority when compared to

other methodologies.

Up to this point, the MPC optimization problem that was developed relied on utilizing linearized
predictive models. However, limitations arose, primarily related to its inability to capture the
complex and nonlinear behavior of the system. These limitations prompted an exploration of

alternative modeling approaches, leading to the consideration of RBF network models, which offer

A. K |
apnopoulos 156



Development and tuning of automatic control methods for nonlinear systems using computational intelligence techniques with
emphasis on the control of unmanned aerial vehicles

a more flexible and accurate representation of the system dynamics. More specifically, a new
control method was designed that uses RBF network models within a regulatory MPC control
framework. This nonlinear controller effectively employed the MPC methodology, ensuring
guaranteed stability by deploying adaptive RBF networks as process models. The closed-loop
system is asymptotically stable under the assumption of no model-plant mismatch. This hypothesis
is facilitated by the online nature of the NMPC algorithm, wherein network predictions adapt to
the current system input-output. Real-time updates of the model’s network and structure were
achieved through the use of the adaptive SFM algorithm, resulting in an efficient regulatory

scheme.

The proposed online controller was assessed in two distinct scenarios: a SISO NARX system and
a dynamic CSTR reactor, with a direct comparison to an offline NMPC controller. In both cases,
the proposed controller exhibited superior performance, producing better tracking results
comparted to its offline counterpart. In the first case, it demonstrated exceptional trajectory
tracking with minimal modeling error, outperforming the offline controller. In the CSTR setpoint
tracking scenario, the adaptive online NMPC controller demonstrated the ability to track the
unstable reference point, in stark contrast to the compared controller, which failed entirely to
achieve the desired tracking, highlighting the exceptional effectiveness and capability of the

proposed method.

In term of future directions, the research will focus on enhancing the adaptive online NMPC
controller by replacing the FM-LS-RLS adaptation strategy with a novel online adaptation scheme
based solely on FM-RLS [165]. The FM-RLS algorithm will enable continuous, gradual training
without the necessity of performing standard least squares whenever the network structure is
altered. This innovative method is expected to provide several benefits, such as lowering the
computational load, thus accelerating the overall online network training process, and reducing
memory needs for storing the online process data. Furthermore, the resulting scheme will be
evaluated on more complex and demanding control tasks, e.g., satellite control. Additionally,
within the RBF-backstepping quadrotor trajectory control scheme, there are plans to address
additional challenges, such as incorporating time-varying external uncertainties and implementing

online adapting RBF networks within the control framework.
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