

UNIVERSITY OF WEST ATTICA

DEPARTMENT OF INFORMATICS AND COMPUTER

ENGINEERING

MSC IN COMPUTER SCIENCE AND ENGINEERING

Specialization: Information Systems
MASTER THESIS

Development of a web-interface and web service API to support

process mining techniques.

Ilias Merkoureas
Mcse19006

Supervisor:
Dr Georgios Miaoulis, Professor

Development of a web-interface and web service API to support process mining techniques

 1

Development of a web-interface and web service API to support process mining techniques

 2

MASTER THESIS

Development of a web-interface and web service API to support process

mining techniques.

Ilias Merkoureas

Mcse19006

Supervisor:

Dr Georgios Miaoulis, Professor

Examination Committee:

Georgios Miaoulis, Professor
Nikolaos Vasilas, Professor

Athanasios Voulodimos, Assistant Professor

Examination Date 09/04/2021

Development of a web-interface and web service API to support process mining techniques

 3

Development of a web-interface and web service API to support process mining techniques

 4

POSTGRADUATE WORK AUTHOR’S STATEMENT

The following undersigned Merkoureas Ilias of Vasileiou, with registration number
mcse19006 student of the Postgraduate Program Studies Computer Science
and Engineering of the School Department of Informatics and Computer
Engineering of West Attica, I declare that:
«I am the author of this master’s thesis and that all the help I had for its
preparation is fully recognized and refers to the work. Also, any sources from
which I used data, ideas, or words, whether exact or paraphrased, are listed in the
entirety, with full reference to the authors, publisher, or magazine, including any
sources that may have been used by the Internet. I also certify that this work has
been written exclusively by me and is an intellectual property product of both
myself and the Foundation.
Violation of my above academic responsibility is an essential reason for the
revocation of my degree».
I wish to be denied access to the full text of my work until ……………. and upon
my request to the Library and approval of the supervising professor.

The Declarant

Development of a web-interface and web service API to support process mining techniques

 5

Development of a web-interface and web service API to support process mining techniques

 6

SPECIAL THANKS

 This master thesis was completed after persistent efforts, in an
interesting subject, such as process mining. This effort was supported by my
supervising teacher, whom I would like to thank.

 I would also like to thank Mrs. Georgia Theodoropoulou for her valuable
advice.

Development of a web-interface and web service API to support process mining techniques

 7

Development of a web-interface and web service API to support process mining techniques

 8

ABSTRACT

This master thesis deals with the development of a web service application

(web API) which will use the functions of process mining that have already been

implemented in python with library pm4py. A web interface was also developed

which calls with http requests the web service in which the user can apply process

mining techniques online. In this environment there is the possibility of selecting

event logs and applying multiple process automatic retrieval algorithms by selecting

various parameters based on the algorithm. The interface allows the user to select

parameters for the corresponding procedures.

Development of a web-interface and web service API to support process mining techniques

 9

CONTENTS

1. Introduction...14

1.1 Introduction..14

1.2 Theoretical Background.. 15
1.2.1 Xes Standard.. 15
1.2.2 Event Logs.. 15
1.2.3 Process Mining for Python (PM4PY) .. 16
1.2.4 Architecture and features.. 16
1.2.5 Object Management.. 17
1.2.6 Algorithms .. 17

1.3 Process Discovery .. 18
1.3.1 Alpha Miner... 18
1.3.2 Inductive Miner.. 18
1.3.3 Heuristics Miner.. 19

1.4 Conformance Checking... 19
1.4.1 Token-based replay.. 19
1.4.2 Alignments.. 20

1.5 Evaluation .. 21
1.5.1 Replay Fitness.. 21
1.5.2 Precision .. 21
1.5.3 Generalization... 22
1.5.4 Simplicity... 22

2. APPLICATION PROGRAMMING INTERFACE....................................... 23

2.1 API Definition.. 23

2.2 Rest ... 23

2.3 Project’s API... 23

2.3.1.1 Convert xes files to csv... 26

2.3.1.2 Convert csv files to xes... 27

2.3.2.1 View xes file to content... 29

2.3.2.2 View csv file to content... 30

2.3.3.1 View information of xes file... 31

2.3.3.2 View information of csv file... 34

2.3.4.1 Discovery algorithms for xes files... 37

2.3.4.2 Discovery algorithms for csv files... 43

2.3.5.1 Replay results for xes files... 51

2.3.5.2 Replay results for csv files... 53

2.3.6.1 Get alignments for xes files.. 55

Development of a web-interface and web service API to support process mining techniques

 10

2.3.6.2 Get alignments for csv files...56

3. WEB INTERFACE..59

3.1 React Js...59

3.2 React Js and flask..……………60

3.3 Web Pages ..………….62

3.3.1 First Page ...62

3.3.2 File menu …………..…………...63

3.3.3 Discover menu ……….……………..…………...73

3.3.4 Conformance menu ……….…………......................................…………...77

3.4 System Walkthrough ……….…………......................................……….…...83

4. CONCLUSION……..90

5. APPENDIX ……...91

6. REFERENCES …...108

Development of a web-interface and web service API to support process mining techniques

 11

Image Catalogue

Image 2.1: Browser Server Communication.. 25

Image 2.2: System Architecture... 26

Image 2.3: Xes File Contents... 29

Image 2.4: Csv File Contents .. 30

Image 2.5: Xes File Statistics... 32

Image 2.6: Csv File Statistics... 34

Image 2.7: API Alpha Miner... 37

Image 2.8: API Inductive Miner.. 38

Image 2.9: API heuristic miner... 39

Image 2.10: API csv Alpha .. 44

Image 2.11: API csv Inductive ... 45

Image 2.12: API csv Heuristic ... 46

Image 2.13: API replay results... 51

Image 2.14: API csv replay results.. 53

Image 2.15: API alignments.. 55

Image 2.16: API csv alignments.. 57

Image 3.1: First Page ... 62

Image 3.2: File Upload.. 62

Image 3.3: File Upload Complete... 63

Image 3.4: File Upload State.. 63

Image 3.5: File Menu.. 64

Image 3.6: File upload ... 64

Image 3.7: Convert to xes.. 65

Image 3.8: Wrong csv input... 65

Image 3.9: Choose Headers.. 66

Image 3.10: No seperator.. 67

Image 3.11: Wrong seperator.. 68

Image 3.12: Convert completed... 69

Image 3.13: Convert to csv.. 69

Development of a web-interface and web service API to support process mining techniques

 12

Image 3.14: Convert to csv completed... 70

Image 3.15: File Content.. 70

Image 3.16: View State.. 71

Image 3.17: File Info.. 72

Image 3.18: File Info State... 72

Image 3.19: Choose header for file info... 73

Image 3.20: Discover Menu... 74

Image 3.21: Alpha miner site... 75

Image 3.22: Heuristics miner site.. 75

Image 3.23: Inductive miner site.. 76

Image 3.24: Discovery State.. 77

Image 3.25: Conformance menu.. 78

Image 3.26: Replay results site.. 79

Image 3.27: Replay Fitness State.. 80

Image 3.28: Aligments site... 81

Image 3.29: Aligments state... 82

Image 3.30: Running example file upload.. 83

Image 3.31: Running example file upload selected.. 83

Image 3.32: Running example file uploaded... 83

Image 3.33: Running example convert to csv... 84

Image 3.34: Running example convert to csv question...................................... 84

Image 3.35: Running example csv converted... 84

Image 3.36: Running example view.. 85

Image 3.37: Running example rows.. 85

Image 3.38: Running example information menu.. 85

Image 3.39: Running example information.. 86

Image 3.40: Running example discovery menu... 86

Image 3.41: Running example Alpha Miner... 86

Image 3.42: Running example Heuristics Miner Menu.. 87

Image 3.43: Running example Heuristics Miner.. 87

Development of a web-interface and web service API to support process mining techniques

 13

Image 3.43: Running example Heuristics Miner.. 87

Image 3.45: Running example Inductive Miner... 88

Image 3.46: Replay Results Menu.. 88

Image 3.47: Running example algorithm selection for replay............................. 88

Image 3.48: Running example Replay Results... 88

Image 3.49: Running example Alignments menu... 89

Image 3.50: Running example algorithm select for alignments.......................... 89

Image 3.51: Running example Alignments... 89

Development of a web-interface and web service API to support process mining techniques

 14

CHAPTER 1

Introduction

1.1 Introduction

The field of process mining provides tools and techniques to increase the

overall knowledge of a (business) process, by means of analyzing the event data

stored during the execution of the process. Process mining received a lot of

attention from both academia and industry, which led to the development of

several commercial and open-source process mining tools. The majority of these

tools supports process discovery, i.e., discovering a process model that accurately

describes the process under study, as captured within the analyzed event data.

However, process mining also comprises conformance checking, i.e., checking to

what degree a given process model is accurately describing event data, and

process enhancement, i.e., techniques that enhance process models by projecting

interesting information, e.g., case flow and/or performance measures, on top of a

model. The support of such types of process mining analysis is typically limited to

open source, academic process mining tools such as the ProM Framework,

Apromore, Disco, Celonis and others [1].

 The purpose of this master thesis was to develop a system in order to help a

user to apply process mining techniques online. There are already systems that
serve this need offline. This system is implemented in two levels:

 the level of the API, which helps the user to receive data after data mining
techniques so he can view or analyze them in his own way

 the level of the web, at which the user can use it from any device he wants
and doesn’t need to have a system on his computer

Both the API and the interface provide the user data such as the events, the

start events and the end events and how many times they appear in the file (in
absolute value and as a percentage), the transitions and places in order to construct
a petri net, conformance checking results and evaluation data (log fitness, precision,
generalization, simplicity). Also, the project provides functions to help the users view
and convert the file they want to use.

Finally, this master thesis deals with the user’s need to change the petri net that
the process mining techniques produce. This thesis website does not provide a
static image of a petri net, but an html element of the petri net to help the user zoom
in/out and also to give him the ability of drag every transition and place so he can
get a clear result of the process discovery.

Development of a web-interface and web service API to support process mining techniques

 15

1.2 Theoretical Background

1.2.1 XES Standard

The XES standard defines a grammar for a tag-based language whose aim is
to provide designers of information systems with a unified and extensible
methodology for capturing systems behaviors by means of event logs and event
streams is defined in the XES standard. An XML Schema describing the structure
of an XES event log/stream and a XML Schema describing the structure of an
extension of such a log/stream are included in this standard. Moreover, a basic
collection of so-called XES extension prototypes that provide semantics to certain
attributes as recorded in the event log/stream is included in this standard [2].

Several formats have been proposed during the years for the standard storage

of event logs in process mining. The IEEE standard is XES, for which different
implementations exist in the ProM6 process mining framework. Among noticeable
implementations, we can cite XES Lite, that provides a memory-efficient handling
of event logs, while supports the XES standard on relational databases, albeit with
a performance deficit, and DBXES that use relational databases to support some
intermediate calculations. OpyenXES took XES in an open-source Python
implementation and the PM4Py Python process mining library followed obtaining a
full certification [3].

1.2.2 Event Logs

We assume the existence of an event log where each event refers to a case,
an activity, and a point in time. An event log can be seen as a collection of cases.
A case can be seen as a trace/sequence of events.

Event data may come from

 a database system (e.g., patient data in a hospital),

 a comma-separated values (CSV) file or spreadsheet,

 a transaction log (e.g., a trading system),

 a business suite/ERP system (SAP, Oracle, etc.),

 a message log (e.g., from IBM middleware),

 an open API providing data from websites or social media and others [4]

Events are listed together with their attributes in an event log. Attributes that
are typically listed are the case ID, the time stamps of the start and end times, and
other attributes of the event recorded by the IT system. An event log can also be
the documentation of several related business processes [5].

Development of a web-interface and web service API to support process mining techniques

 16

1.2.3 Process Mining for Python (PM4PY)

Pm4py provides a process mining software which is easily extendable, allows
for algorithmic customization and allows user to easily conduct large scale
experiments.

 The data science world, both for classic data science and for cutting-edge

machine learning research is heavily using Python. Other libraries, albeit with a
lower number of features, exist already for the Python language. The bupaR
library supports process mining in the statistical language R, that is widely used in
data science. The main focal points of the novel PM4Py library are:

 Lowering the barrier for algorithmic development and customization when
performing a process mining analysis compared to existing academic tools such
as ProM, RAPIdProM and Apromore.

 Allow for the easy integration of process mining algorithms with algorithms from
other data science fields, implemented in various state-of-the-art Python
packages.

 Create a collaborative eco-system that easily allows researchers and
practitioners to share valuable code and results with the process mining world.

 Provide accurate user-support by means of a rich body of documentation on the
process mining techniques made available in the library.

 Algorithmic stability by means of rigorous testing. [1]

1.2.4 Architecture and features

In order to maximize the possibility to understand and re-use the code, and to
be able to execute large-scale experiments, the following architectural guidelines
have been adopted on the development of PM4Py:

 A strict separation between objects, algorithms (Alpha Miner, Inductive
Miner, alignments) and visualizations in different packages. In the
pm4py.object package, classes to import/export and to store the
information related to the objects are provided, along with some utilities to
convert objects (e.g. process trees into Petri nets); while in the pm4py.algo
package, algorithms to discover, perform conformance checking,
enhancement and evaluation are provided. All visualizations of objects are
provided in the pm4py.visualization package.

 Most functionality in PM4Py has been realized through factory methods.
These factory methods provide a single access point for each algorithm,
with a standardized set of input objects, e.g., event data and a parameters
object. Consider the factory method of the Alpha Miner. Factory methods
allow for the extension of existing algorithms whilst ensuring backward-
compatibility. The factory methods typically accept the name of the variant

Development of a web-interface and web service API to support process mining techniques

 17

of the algorithm to use, and some parameters (shared among variants, or
variant-specific). [1]

1.2.5 Object management

Within process mining, the main source of data are event data, often
referred to as an event log. Such an event log, represents a collection of events,
describing what activities have been performed for different instances of the
process under study. PM4Py provides support for different types of event data
structures:

 Event logs, i.e., representing a list of traces. Each trace, in turn, is a list of
events. The events are structured as key-value maps.

 Event Streams representing one list of events (again represented as key-
value maps) that are not (yet) organized in cases.

Conversion utilities are provided to convert event data objects from one format

to the other. Furthermore, PM4Py supports the use of pandas data frames, which
are efficient in case of using larger event data. Other objects currently supported by
PM4Py include: heuristic nets, accepting Petri nets, process trees and transition
systems. [1]

1.2.6 Algorithms

The PM4Py library provides several mainstream process mining techniques,

including:

 Process discovery: Alpha (+) Miner and Inductive Miner.

 Conformance Checking: Token-based replay and alignments.

 Measurement of fitness, precision, generalization and simplicity of process
models.

 Filtering based on time-frame, case performance, trace endpoints, trace
variants, attributes, and paths.

 Case management: statistics on variants and cases.

 Graphs: case duration, events per time, distribution of a numeric attribute’s
values.

 Social Network Analysis: handover of work, working together,
subcontracting and similar activities networks.[1]

Development of a web-interface and web service API to support process mining techniques

 18

1.3 Process Discovery

Process Discovery algorithms want to find a suitable process model that
describes the order of events/activities that are executed during a process
execution. [6]

1.3.1 Alpha Miner

The alpha miner is one of the most known Process Discovery algorithm and is

able to find:

 A Petri net model where all the transitions are visible and unique and
correspond to classified events (for example, to activities).

 An initial marking that describes the status of the Petri net model when a
execution starts.

 A final marking that describes the status of the Petri net model when a
execution ends.

Although this algorithm has the following disadvantage:

 Cannot handle loops of length one and length two

 Invisible and duplicated tasks cannot be discovered

 Discovered model might not be sound

 Weak against noise [6]

1.3.2 Inductive Miner

The basic idea of Inductive Miner is about detecting a 'cut' in the log (e.g.
sequential cut, parallel cut, concurrent cut and loop cut) and then recur on
sublogs, which were found applying the cut, until a base case is found. The
Directly-Follows variant avoids the recursion on the sublogs but uses the Directly
Follows graph.

Inductive miner models usually make extensive use of hidden transitions,
especially for skipping/looping on a portion on the model. Furthermore, each
visible transition has a unique label (there are no transitions in the model that
share the same label).

Two process models can be derived: Petri Net and Process Tree.

Some advantages of this algorithm are:

 Can handle invisible tasks

 Model is sound

 Most used process mining algorithm [6]

Development of a web-interface and web service API to support process mining techniques

 19

1.3.3 Heuristic Miner

Heuristics Miner is an algorithm that acts on the Directly-Follows Graph,
providing way to handle with noise and to find common constructs (dependency
between two activities, AND). The output of the Heuristics Miner is a Heuristics
Net, so an object that contains the activities and the relationships between them.
The Heuristics Net can be then converted into a Petri net.

It is possible to obtain a Heuristic Net and a Petri Net.

To apply the Heuristics Miner to discover a Heuristics Net, it is necessary to
import a log. Then, a Heuristic Net can be found. There are also numerous
possible parameters that can be inspected by clicking on the following button.

 In addition, this algorithm takes frequency into account, detects short loops
but does not guarantee a sound model.[6]

1.4 Conformance checking

Conformance checking is a technique to compare a process model with an
event log of the same process. The goal is to check if the event log conforms to
the model, and, vice versa.

In PM4Py, two fundamental techniques are implemented: token-based replay and
alignments. [6]

1.4.1 Token-based replay

Token-based replay matches a trace and a Petri net model, starting from
the initial place, in order to discover which transitions are executed and in which
places we have remaining or missing tokens for the given process instance.
Token-based replay is useful for Conformance Checking: indeed, a trace is fitting
according to the model if, during its execution, the transitions can be fired without
the need to insert any missing token. If the reaching of the final marking is
imposed, then a trace is fitting if it reaches the final marking without any missing
or remaining tokens.

In PM4Py there is an implementation of a token that is able to go across

hidden transitions (calculating shortest paths between places) and can be used

with any Petri net model with unique visible transitions and hidden transitions.

When a visible transition needs to be fired and not all places in the preset are

provided with the correct number of tokens, starting from the current marking it is

checked if for some place there is a sequence of hidden transitions that could be

Development of a web-interface and web service API to support process mining techniques

 20

fired in order to enable the visible transition. The hidden transitions are then fired

and a marking that permits to enable the visible transition is reached.

 First, the log is loaded. Then, the Alpha Miner is applied in order to

discover a Petri net. Eventually, the token-based replay is applied. The output of

the token-based replay, stored in the variable replayed_traces, contains for each

trace of the log:

 trace_is_fit: boolean value (True/False) that is true when the trace is
according to the model.

 activated_transitions: list of transitions activated in the model by the token-
based replay.

 reached_marking: marking reached at the end of the replay.
 missing_tokens: number of missing tokens.
 consumed_tokens: number of consumed tokens.
 remaining_tokens: number of remaining tokens.
 produced_tokens: number of produced tokens.

The token-based replay supports different parameters.

1.4.2 Alignments

Alignment-based replay aims to find one of the best alignment between the

trace and the model. For each trace, the output of an alignment is a list of couples

where the first element is an event (of the trace) or » and the second element is a

transition (of the model) or ». For each couple, the following classification could be

provided:

 Sync move: the classification of the event corresponds to the transition
label; in this case, both the trace and the model advance in the same way
during the replay.

 Move on log: for couples where the second element is », it corresponds to
a replay move in the trace that is not mimicked in the model. This kind of
move is unfit and signal a deviation between the trace and the model.

 Move on model: for couples where the first element is », it corresponds to a
replay move in the model that is not mimicked in the trace. For moves on
model, we can have the following distinction:

o Moves on model involving hidden transitions: in this case, even if it
is not a sync move, the move is fit.

o Moves on model not involving hidden transitions: in this case, the
move is unfit and signals a deviation between the trace and the
model.

First, we have to import the log. Subsequently, we apply the Inductive Miner on

the imported log. In addition, we compute the alignments.

Development of a web-interface and web service API to support process mining techniques

 21

With each trace, a dictionary containing among the others the following

information is associated:

 alignment: contains the alignment (sync moves, moves on log, moves on
model)

 cost: contains the cost of the alignment according to the provided cost
function

 fitness: is equal to 1 if the trace is perfectly fitting

Then, a process model is computed, and alignments are also calculated.
Besides, the fitness value is calculated and the resulting values are printed.

1.5 Evaluation

In PM4Py, it is possible to compare the behavior contained in the log and the
behavior contained in the model, in order to see if and how they match. Four
different dimensions exist in process mining, including the measurement of replay
fitness, the measurement of precision, the measurement of generalization, the
measurement of simplicity.[6]

1.5.1 Replay Fitness

The quality dimension of replay fitness describes the fraction of the

behavior in the event log that can be replayed by the process model. Several

different measures exist for this quality dimension. Some measures consider

traces of behavior as whole, checking if the whole trace can be replayed by the

process model. Other measures consider the more detailed level of events within

a trace and try to get a more fine-grained idea of where the deviations are.

Another important difference between existing measures is that some enforce a

process model to be in an accepted end state when the whole trace is replayed.

Others ignore this and allow the process model to remain in an active state when

the trace ends. The most recent and robust technique uses a cost-based

alignment between the traces in the event log and the most optimal execution of

the process model. This allows for more flexibility and distinction between more

and less important activities by changing the costs [7].

1.5.2 Precision

Precision is estimated by confronting model and log behavior: imprecisions

between the model and the log (i.e., situations where the model allows more

behavior than the one reflected in the log) are detected by juxtaposing behavior

allowed by the log and the one allowed by the model. This juxtaposition is done in

Development of a web-interface and web service API to support process mining techniques

 22

terms of an automaton: first, an automaton is built from the alignments. Then, the

automaton is enhanced with behavioral information of the model. Finally, the

enhanced automaton is used to compute the precision [8].

1.5.3 Generalization

Replay fitness and precision only consider the relationship between the
event log and the process model. However, the event log only contains a part of
all the possible behavior that is allowed by the system. Generalization therefore
should indicate if the process model is not “overfit-ting” to the behavior seen in the
event log and describes the actual system. Another explanation for generalization
is the likelihood that the process model is able to describe yet unseen behavior of
the observed system. To date only few measures for generalization exist [7].

1.5.4 Simplicity

The simplicity dimension evaluates how simple the process model is to

understand for a human. This dimension is therefore not directly related to the

observed behavior but can consider the process model solitarily. Since there are

different ways to describe the same behavior using different process models,

choosing the simplest one is obviously best. This is also expressed by Occam’s

razor: “one should not increase, beyond what is necessary, the number of entities

required to explain anything”. However, sometimes a complex process model can

only be simplified by changing the behavior, hence influencing the other quality

dimensions. Several measures exist to measure how simple a process model is,

for an overview we refer to. However, research has also shown that size is the

main complexity indicator [7].

Development of a web-interface and web service API to support process mining techniques

 23

CHAPTER 2

APPLICATION PROGRAMMING INTERFACE

2.1 API Definition

API stands for Application Programming Interface. A Web API is an
application programming interface for the Web. A Browser API can extend the
functionality of a web browser. A Server API can extend the functionality of a web
server [9].

2.2 REST

The REST architecture was introduced in the year 2000, by Thomas

Fielding, and is based on the principles that support the World Wide Web. In

summary, according to the REST principles, REST interfaces rely exclusively on

Uniform Resource Identifiers (URI) for resource detection and interaction, and

usually on the Hypertext Trans-fer Protocol (HTTP) for message transfer. A REST

service URI only provides location and name of the resource, which serves as a

unique resource identifier. The predefined HTTP verbs are used to define the type

of operation that should be performed on the selected resource (e.g., GET to

retrieve, DELETE to remove a resource).

 Possibly due to HTTP’s features (which fit the REST architecture rather

well), long-term presence, and general understandability, REST has become a de

facto standard way for offering a service on the Web. Despite this, REST is merely

an architectural style, provided without standard specifications. This implies that

several decisions have to be made by developers when exposing service APIs,

which may result in diverse APIs and, in some cases, in poor design decisions

(e.g., using a single HTTP verb for retrieving or deleting a resource) [10].

2.3 Project’s API

 For this project an API was developed so the user can get various data
such as petri nets, event dictionaries and others on his browser with a GET
method and also return this data to a website with a POST method. This master
thesis API was developed in python because it is a powerful language for data
analysis and provides many ready-made and useful libraries. For the development
of this API flask was used (https://flask.palletsprojects.com/en/1.1.x/).

Development of a web-interface and web service API to support process mining techniques

 24

 Flask is a micro web framework written in Python. It is classified as a
microframework because it does not require particular tools or libraries. It has no
database abstraction layer, form validation, or any other components where pre-
existing third-party libraries provide common functions. However, Flask supports
extensions that can add application features as if they were implemented in Flask
itself. Extensions exist for object-relational mappers, form validation, upload
handling, various open authentication technologies and several common
framework related tools [11].

When we run flask web application with the command python API.py. A local
IP address is return. In this case it is http://127.0.0.1:5000/. This IP is our endpoint.
We can call this endpoint with two ways POST and GET.

Below there is an example of output when a user starts the API:

 * Serving Flask app "api" (lazy loading)
 * Environment: production
 WARNING: This is a development server. Do not use it in a production
deployment.
 Use a production WSGI server instead.
 * Debug mode: on
 * Restarting with windowsapi reloader
 * Debugger is active!
 * Debugger PIN: 282-941-890
 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

 Bellow there is a UML example of Web Interface communication with the

API and a diagram for the web Interface.

Development of a web-interface and web service API to support process mining techniques

 25

Image 2.1: Browser Server Communication

Development of a web-interface and web service API to support process mining techniques

 26

And an image with the architecture of the system.

Image 2.2: System Architecture

Next, I’ll display some examples of this thesis endpoint.

2.3.1.1 Convert xes files to csv

 The user can convert his uploaded .xes files to .csv, on the server side of
this application. The user has to call the endpoint:
http://127.0.0.1:5000/convertocsv?filename=(name_of_file).xes.

With the help of Swagger Inspector [13] below there is a definition of the
specific endpoint of the API:

get:
 description: Auto generated using Swagger Inspector
 parameters:
 - name: filename
 in: query
 schema:
 type: string
 example: repairexample.xes
 responses:

Development of a web-interface and web service API to support process mining techniques

 27

 '200':
 description: Auto generated using Swagger Inspector
 content:
 application/json:
 schema:
 type: object
 properties: {}
 examples:
 '0':
 value: |
 [
 {
 "csvname": "repairexample.csv"
 }
]

2.3.1.2 Convert csv files to xes

 The user can convert his uploaded .csv files to xes, on the server side of
this application. The user has to call the endpoint:
http://127.0.0.1:5000/convertocsv?filename=(name_of_file).csv&seperator=(csv_c
olumn_separtor)&caseconcept=(the_column to
rename)&conceptname=(the_column to rename)×tamp=(the_column to
rename)&startevent=(the_column to rename)

 get:

 description: Auto generated using Swagger Inspector

 parameters:

 - name: caseconcept

 in: query

 schema:

 type: string

 example: Case%20ID

 - name: filename

 in: query

 schema:

 type: string

 example: running-example.csv

 - name: startevent

 in: query

Development of a web-interface and web service API to support process mining techniques

 28

 schema:

 type: string

 example: Costs

 - name: conceptname

 in: query

 schema:

 type: string

 example: Activity

 - name: seperator

 in: query

 schema:

 type: string

 example: ;

 - name: timestamp

 in: query

 schema:

 type: string

 example: 'dd-MM-yyyy:HH.mm'

responses:

 '200':

 description: Auto generated using Swagger Inspector

 content:

 application/json:

 schema:

 type: object

 properties: {}

 examples:

 '0':

 value: |

 [

 {

 "xesname": "running-example.xes"

 }

]

Development of a web-interface and web service API to support process mining techniques

 29

2.3.2.1 View xes file content

The user can view the content of his uploaded .xes file. The user has to call
the endpoint: http://127.0.0.1:5000/view?filename=(name_of_file).csv.

The following screenshot is an example with the contents of running-
example.xes file.

Image 2.3: Xes File Contents

get:
 description: Auto generated using Swagger Inspector
 parameters:
 - name: filename
 in: query
 schema:
 type: string
 example: repairexample.xes

Development of a web-interface and web service API to support process mining techniques

 30

2.3.2.2 View csv file content

The user can view the content of his uploaded .csv file. The user has to call
the endpoint:

http://127.0.0.1:5000/viewcsv?filename=(name_of_file).csv&seperator=(insert_stri
ng).

The following screenshot is an example with the contents of running-
example.csv file.

Image 2.4: Csv File Contents

Development of a web-interface and web service API to support process mining techniques

 31

 get:

 description: Auto generated using Swagger Inspector

 parameters:

 - name: caseconcept

 in: query

 schema:

 type: string

 example: Case%20ID

 - name: filename

 in: query

 schema:

 type: string

 example: running-example.csv

 - name: startevent

 in: query

 schema:

 type: string

 example: Costs

 - name: conceptname

 in: query

 schema:

 type: string

 example: Activity

 - name: seperator

 in: query

 schema:

 type: string

 example: ;

 - name: timestamp

 in: query

 schema:

 type: string

 example: 'dd-MM-yyyy:HH.mm'

2.3.3.1 View information of xes file

The user can view the content of his uploaded .xes file. The user has to call
the endpoint:

http://127.0.0.1:5000/statistics?filename=(name_of_file).xes.

Development of a web-interface and web service API to support process mining techniques

 32

The following screenshot is an example with the contents of repair-

example.csv file.

Image 2.5: Xes File Statistics

Dictionary key has value all the activities. Activities key has value all the

end activities. Start activities key has value all the start activities. Noevents key

has value the number of all the events. Notraces key has value the number of

traces.

 get:

 description: Auto generated using Swagger Inspector

 parameters:

 - name: filename

 in: query

 schema:

 type: string

 example: repairexample.xes

 responses:

 '200':

Development of a web-interface and web service API to support process mining techniques

 33

 description: Auto generated using Swagger Inspector

 content:

 application/json:

 schema:

 type: object

 properties: {}

 examples:

 '0':

 value: |

 [

 {

 "dictionary": {

 "Analyze Defect": 2208,

 "Archive Repair": 1000,

 "Inform User": 1102,

 "Register": 1104,

 "Repair (Complex)": 1449,

 "Repair (Simple)": 1570,

 "Restart Repair": 406,

 "Test Repair": 3016

 },

 "endactivities": {

 "Archive Repair": 1000,

 "Inform User": 27,

 "Repair (Complex)": 2,

 "Test Repair": 75

 },

 "noevents": 11855,

 "notraces": 1104,

 "startactivities": {

 "Register": 1104

 },

 "tracelist": "{\"['concept:name', 'description']\"}"

 }

]

Development of a web-interface and web service API to support process mining techniques

 34

2.3.3.2 View information of csv file

The user can view the content of his uploaded .csv file. The user has to call
the endpoint:

http://127.0.0.1:5000/csvstatistics?filename=(name_of_file).csv&seperator=

(csv_column_separtor)&caseconcept=(the_column to
rename)&conceptname=(the_column to rename)×tamp=(the_column to
rename)&startevent=(the_column to rename).

The following screenshot is an example with the contents of repair-
example.csv file.

Image 2.6: Csv File Statistics

Test scenarios

 get:

 description: Auto generated using Swagger Inspector

 parameters:

Development of a web-interface and web service API to support process mining techniques

 35

 - name: caseconcept

 in: query

 schema:

 type: string

 example: Case%20ID

 - name: filename

 in: query

 schema:

 type: string

 example: running-example.csv

 - name: startevent

 in: query

 schema:

 type: string

 example: Costs

 - name: conceptname

 in: query

 schema:

 type: string

 example: Activity

 - name: seperator

 in: query

 schema:

 type: string

 example: ;

 - name: timestamp

 in: query

 schema:

 type: string

 example: 'dd-MM-yyyy:HH.mm'

 responses:

 '200':

 description: Auto generated using Swagger Inspector

 content:

 application/json:

 schema:

 type: object

 properties: {}

 examples:

 '0':

Development of a web-interface and web service API to support process mining techniques

 36

 value: |

 [

 {

 "dictionary": {

 "check ticket": 9,

 "decide": 9,

 "examine casually": 6,

 "examine thoroughly": 3,

 "pay compensation": 3,

 "register request": 6,

 "reinitiate request": 3,

 "reject request": 3

 },

 "endactivities": {

 "pay compensation": 3,

 "reject request": 3

 },

 "noevents": 42,

 "notraces": 6,

 "startactivities": {

 "register request": 6

 },

 "tracelist": "{\"['concept:name']\"}"

 }

]

Development of a web-interface and web service API to support process mining techniques

 37

2.3.4.1 Discovery Algorithms for xes files

The web API is using the same endpoint for all three of algorithms (Alpha,

Heuristics, Inductive Miner). Although, you should provide different parameters for

each algorithm. For the Alpha Miner algorithm, the user has to call the endpoint:

http://127.0.0.1:5000/getimage?filename=(name_of_xesfile)&algorithm=1

Image 2.7: API Alpha Miner

Development of a web-interface and web service API to support process mining techniques

 38

For the Inductive Miner algorithm, the user has to call the endpoint:

http://127.0.0.1:5000/getimage?filename=(name_of_xesfile)&algorithm=2

Image 2.8: API Inductive Miner

For the Heuristic Miner algorithm, the user has to call the endpoint:

Development of a web-interface and web service API to support process mining techniques

 39

http://127.0.0.1:5000/getimage?filename=(name_of_xesfile)&algorithm=3

Image 2.9: API heuristic miner

The endpoint returns log_fitness, precision, generalization, simplicity for the
specific algorithm and log file. Next, it returns a petri net as svg file (the endpoint
saves the petri net on server side), netplaces a list of places of petri net,

Development of a web-interface and web service API to support process mining techniques

 40

nettransitions a list of transitions of petrinet and netarcs a list of all the arcs
between places and transitions.

parameters:

 - name: filename

 in: query

 schema:

 type: string

 example: repairexample.xes

 - name: algorithm

 in: query

 schema:

 type: string

 example: '3'

 responses:

 '200':

 description: Auto generated using Swagger Inspector

 content:

 application/json:

 schema:

 type: object

 properties: {}

 examples:

 '0':

 value: |

 [

 {

 "evaluation_result": 0.5073613986657465,

 "generalization": 0.9224983618335266,

 "image": "http://127.0.0.1:5000/static/temp.svg",

 "log_fitness": 0.9445528689593501,

 "netarcs": [

 "(t)Register->(p)pre_Analyze Defect",

 "(t)hid_23->(p)pre_Repair (Simple)",

 "(t)hid_42->(p)pre_Test Repair",

 "(t)hid_30->(p)pre_Inform User",

 "(t)hid_35->(p)pre_Repair (Simple)",

 "(p)intplace_Inform User->(t)Restart Repair",

 "(p)intplace_Test Repair->(t)Archive Repair",

 "(p)intplace_Inform User->(t)Archive Repair",

Development of a web-interface and web service API to support process mining techniques

 41

 "(p)intplace_Test Repair->(t)Restart Repair",

 "(p)pre_Analyze Defect->(t)Analyze Defect",

 "(p)source0->(t)Register",

 "(p)pre_Repair (Complex)->(t)Repair (Complex)",

 "(p)intplace_Analyze Defect->(t)hid_22",

 "(p)intplace_Analyze Defect->(t)hid_23",

 "(t)hid_22->(p)splace_in_Inform User_0",

 "(p)intplace_Inform User->(t)hid_37",

 "(p)pre_Test Repair->(t)Test Repair",

 "(t)hid_23->(p)splace_in_Inform User_0",

 "(p)intplace_Inform User->(t)hid_38",

 "(t)hid_38->(p)sink0",

 "(t)Test Repair->(p)intplace_Test Repair",

 "(t)Archive Repair->(p)sink0",

 "(t)Repair (Complex)->(p)intplace_Repair (Complex)",

 "(p)intplace_Test Repair->(t)hid_40",

 "(p)intplace_Repair (Complex)->(t)hid_26",

 "(p)pre_Repair (Simple)->(t)Repair (Simple)",

 "(p)intplace_Repair (Complex)->(t)hid_27",

 "(p)intplace_Test Repair->(t)hid_42",

 "(p)intplace_Repair (Complex)->(t)hid_28",

 "(p)intplace_Test Repair->(t)hid_43",

 "(p)intplace_Repair (Complex)->(t)hid_29",

 "(t)hid_43->(p)sink0",

 "(t)hid_22->(p)pre_Repair (Complex)",

 "(t)hid_29->(p)sink0",

 "(p)intplace_Analyze Defect->(t)hid_21",

 "(t)Restart Repair->(p)intplace_Restart Repair",

 "(t)Repair (Simple)->(p)intplace_Repair (Simple)",

 "(p)intplace_Repair (Simple)->(t)hid_30",

 "(p)intplace_Restart Repair->(t)hid_44",

 "(p)intplace_Repair (Simple)->(t)hid_31",

 "(p)intplace_Restart Repair->(t)hid_45",

 "(p)pre_Inform User->(t)Inform User",

 "(t)hid_40->(p)pre_Inform User",

 "(p)intplace_Repair (Simple)->(t)hid_32",

 "(t)Analyze Defect->(p)intplace_Analyze Defect",

 "(t)hid_31->(p)pre_Repair (Simple)",

 "(t)hid_11->(p)pre_Inform User",

 "(t)hid_34->(p)pre_Repair (Complex)",

Development of a web-interface and web service API to support process mining techniques

 42

 "(t)Inform User->(p)intplace_Inform User",

 "(t)hid_45->(p)pre_Repair (Simple)",

 "(p)splace_in_Inform User_0->(t)hid_11",

 "(t)hid_37->(p)pre_Test Repair",

 "(t)hid_27->(p)pre_Repair (Complex)",

 "(p)intplace_Inform User->(t)hid_35",

 "(t)hid_28->(p)pre_Test Repair",

 "(t)hid_44->(p)pre_Repair (Complex)",

 "(p)intplace_Inform User->(t)hid_34",

 "(t)hid_21->(p)pre_Analyze Defect",

 "(t)hid_32->(p)pre_Test Repair",

 "(t)hid_26->(p)pre_Inform User"

],

 "netplaces": [

 "pre_Repair (Simple)",

 "source0",

 "intplace_Restart Repair",

 "sink0",

 "intplace_Test Repair",

 "pre_Repair (Complex)",

 "pre_Test Repair",

 "pre_Analyze Defect",

 "splace_in_Inform User_0",

 "intplace_Repair (Complex)",

 "intplace_Inform User",

 "intplace_Analyze Defect",

 "pre_Inform User",

 "intplace_Repair (Simple)"

],

 "nettransitions": [

 "hid_43",

 "hid_22",

 "hid_29",

 "Register",

 "hid_37",

 "hid_30",

 "hid_44",

 "Analyze Defect",

 "Repair (Complex)",

 "hid_38",

Development of a web-interface and web service API to support process mining techniques

 43

 "Repair (Simple)",

 "Inform User",

 "Test Repair",

 "hid_31",

 "Archive Repair",

 "hid_45",

 "Restart Repair",

 "hid_32",

 "hid_11",

 "hid_40",

 "hid_26",

 "hid_23",

 "hid_27",

 "hid_34",

 "hid_21",

 "hid_42",

 "hid_28",

 "hid_35"

],

 "simplicity": 0.5384615384615384

 }

]

2.3.4.2 Discovery Algorithms for csv files

The web API is using the same endpoint for all three of algorithms (Alpha,

Heuristics, Inductive Miner). Although, you should provide different parameters for

each algorithm. For the Alpha Miner algorithm, the user has to call the endpoint:

http://127.0.0.1:5000/getimagecsv?filename=(name_of_csvfile)&algorithm=1&

seperator=(csv_column_separtor)&caseconcept=(the_column to

rename)&conceptname=(the_column to rename)×tamp=(the_column to

rename)&startevent=(the_column to rename)

Development of a web-interface and web service API to support process mining techniques

 44

Image 2.10: API csv Alpha

For the Inductive Miner algorithm, the user has to call the endpoint:

http://127.0.0.1:5000/getimagecsv?filename=(name_of_csvfile)&algorithm=2&

seperator=(csv_column_separtor)&caseconcept=(the_column to

rename)&conceptname=(the_column to rename)×tamp=(the_column to

rename)&startevent=(the_column to rename)

Development of a web-interface and web service API to support process mining techniques

 45

Image 2.11: API csv Inductive

Development of a web-interface and web service API to support process mining techniques

 46

For the Heuristic Miner algorithm, the user has to call the endpoint:

http://127.0.0.1:5000/getimagecsv?filename=(name_of_csvfile)&algorithm=3&
seperator=(csv_column_separtor)&caseconcept=(the_column to

rename)&conceptname=(the_column to rename)×tamp=(the_column to

rename)&startevent=(the_column to rename)

Image 2.12: API csv Heuristic

Development of a web-interface and web service API to support process mining techniques

 47

 get:

 description: Auto generated using Swagger Inspector

 parameters:

 - name: caseconcept

 in: query

 schema:

 type: string

 example: Case%20ID

 - name: filename

 in: query

 schema:

 type: string

 example: running-example.csv

 - name: startevent

 in: query

 schema:

 type: string

 example: Costs

 - name: conceptname

 in: query

 schema:

 type: string

 example: Activity

 - name: seperator

 in: query

 schema:

 type: string

 example: ;

 - name: timestamp

 in: query

 schema:

 type: string

 example: 'dd-MM-yyyy:HH.mm'

 - name: algorithm

 in: query

 schema:

 type: string

 example: '3'

 responses:

Development of a web-interface and web service API to support process mining techniques

 48

 '200':

 description: Auto generated using Swagger Inspector

 content:

 application/json:

 schema:

 type: object

 properties: {}

 examples:

 '0':

 value: |

 [

 {

 "evaluation_result": 0.75,

 "generalization": 0.46345210039759677,

 "image": "http://127.0.0.1:5000/static/temp.svg",

 "log_fitness": 0.9688983855650523,

 "netarcs": [

 "(t)reinitiate request->(p)intplace_reinitiate request",

 "(p)source0->(t)register request",

 "(t)register request->(p)intplace_register request",

 "(t)examine casually->(p)splace_in_decide_examine casually_0",

 "(p)intplace_decide->(t)reject request",

 "(t)reject request->(p)sink0",

 "(p)pre_examine thoroughly->(t)examine thoroughly",

 "(p)intplace_decide->(t)pay compensation",

 "(p)splace_in_decide_examine casually_0->(t)hid_7",

 "(t)pay compensation->(p)sink0",

 "(t)hid_10->(p)pre_examine casually",

 "(p)intplace_register request->(t)hid_9",

 "(p)splace_in_check ticket_0->(t)hid_3",

 "(p)pre_examine casually->(t)examine casually",

 "(t)hid_10->(p)splace_in_check ticket_0",

 "(t)decide->(p)intplace_decide",

 "(t)hid_9->(p)pre_examine thoroughly",

 "(t)hid_4->(p)pre_check ticket",

 "(t)examine thoroughly->(p)pre_decide",

 "(t)check ticket->(p)splace_in_decide_check ticket_0",

 "(t)hid_16->(p)pre_examine thoroughly",

 "(t)hid_17->(p)splace_in_check ticket_1",

 "(p)intplace_decide->(t)reinitiate request",

Development of a web-interface and web service API to support process mining techniques

 49

 "(p)intplace_reinitiate request->(t)hid_17",

 "(t)hid_17->(p)pre_examine casually",

 "(p)splace_in_check ticket_1->(t)hid_4",

 "(t)hid_3->(p)pre_check ticket",

 "(p)intplace_reinitiate request->(t)hid_16",

 "(p)splace_in_decide_check ticket_0->(t)hid_7",

 "(t)hid_9->(p)splace_in_check ticket_0",

 "(p)intplace_register request->(t)hid_10",

 "(t)hid_16->(p)splace_in_check ticket_1",

 "(p)pre_check ticket->(t)check ticket",

 "(p)pre_decide->(t)decide",

 "(t)hid_7->(p)pre_decide"

],

 "netplaces": [

 "splace_in_decide_check ticket_0",

 "pre_check ticket",

 "pre_examine casually",

 "intplace_register request",

 "splace_in_decide_examine casually_0",

 "source0",

 "pre_examine thoroughly",

 "intplace_reinitiate request",

 "pre_decide",

 "intplace_decide",

 "splace_in_check ticket_1",

 "splace_in_check ticket_0",

 "sink0"

],

 "nettransitions": [

 "hid_7",

 "hid_10",

 "hid_9",

 "hid_3",

 "hid_16",

 "register request",

 "hid_4",

 "reject request",

 "pay compensation",

 "hid_17",

 "decide",

Development of a web-interface and web service API to support process mining techniques

 50

 "reinitiate request",

 "examine casually",

 "examine thoroughly",

 "check ticket"

],

 "simplicity": 0.6666666666666666

 }

]

Development of a web-interface and web service API to support process mining techniques

 51

2.3.5.1 Replay results for xes files

For the replay results, the user has to call the endpoint:

http://127.0.0.1:5000/getreplayresults?filename=(name_of_csvfile)&algorithm=(ex

actly_the same numbers as discover process)

Image 2.13: API replay results

 get:

 description: Auto generated using Swagger Inspector

 parameters:

 - name: filename

Development of a web-interface and web service API to support process mining techniques

 52

 in: query

 schema:

 type: string

 example: repairexample.xes

 - name: algorithm

 in: query

 schema:

 type: string

 example: '3'

Development of a web-interface and web service API to support process mining techniques

 53

2.3.5.1 Replay results for csv files

For the replay results for csv files, the user has to call the endpoint:

http://127.0.0.1:5000/getreplayresultscsv?filename=(name_of_csvfile)&sitealgo=(e

xactly_the same numbers as discover

process)&seperator=(csv_column_separtor)&caseconcept=(the_column to

rename)&conceptname=(the_column to rename)×tamp=(the_column to

rename)&startevent=(the_column to rename)

Image 2.14: API csv replay results

get:

 description: Auto generated using Swagger Inspector

 parameters:

 - name: caseconcept

 in: query

 schema:

 type: string

Development of a web-interface and web service API to support process mining techniques

 54

 example: Case%20ID

 - name: filename

 in: query

 schema:

 type: string

 example: running-example.csv

 - name: startevent

 in: query

 schema:

 type: string

 example: Costs

 - name: conceptname

 in: query

 schema:

 type: string

 example: Activity

 - name: seperator

 in: query

 schema:

 type: string

 example: ;

 - name: sitealgo

 in: query

 schema:

 type: string

 example: '3'

 - name: timestamp

 in: query

 schema:

 type: string

 example: 'dd-MM-yyyy:HH.mm'

Development of a web-interface and web service API to support process mining techniques

 55

2.3.6.1 Get alignments for xes files

For the alignments, the user has to call the endpoint:

http://127.0.0.1:5000/getalignments?filename=(name_of_csvfile)&algorithm=(exac

tly_the same numbers as discover process)

Image 2.15: API alignments

 get:

 description: Auto generated using Swagger Inspector

 parameters:

 - name: filename

 in: query

 schema:

Development of a web-interface and web service API to support process mining techniques

 56

 type: string

 example: repairexample.xes

 - name: algorithm

 in: query

 schema:

 type: string

 example: '3'

2.3.6.2 Get alignments for csv files

For the alignments of csv files, the user has to call the endpoint:

http://127.0.0.1:5000/getalignmentscsv?filename=(name_of_csvfile)&sitealgo=(ex

actly_the same numbers as discover

process)&seperator=(csv_column_separtor)&caseconcept=(the_column to

rename)&conceptname=(the_column to rename)×tamp=(the_column to

rename)&startevent=(the_column to rename)

Development of a web-interface and web service API to support process mining techniques

 57

Image 2.16: API csv alignments

Development of a web-interface and web service API to support process mining techniques

 58

get:

 description: Auto generated using Swagger Inspector

 parameters:

 - name: caseconcept

 in: query

 schema:

 type: string

 example: Case%20ID

 - name: filename

 in: query

 schema:

 type: string

 example: running-example.csv

 - name: startevent

 in: query

 schema:

 type: string

 example: Costs

 - name: conceptname

 in: query

 schema:

 type: string

 example: Activity

 - name: seperator

 in: query

 schema:

 type: string

 example: ;

 - name: sitealgo

 in: query

 schema:

 type: string

 example: '3'

 - name: timestamp

 in: query

 schema:

 type: string

 example: 'dd-MM-yyyy:HH.mm'

Development of a web-interface and web service API to support process mining techniques

 59

CHAPTER 3

WEB INTERFACE
3.1 React Js

 React JS is a JavaScript library for building user interfaces.

 The reasons why React Js was chosen to build the interface are:

 React makes it painless to create interactive UIs. Design simple views for
each state in your application, and React will efficiently update and render
just the right components when your data changes. Declarative views make
your code more predictable and easier to debug.

 Build encapsulated components that manage their own state, then
compose them to make complex UIs. Since component logic is written in
JavaScript instead of templates, the user can easily pass rich data through
the app and keep state out of the DOM.

 The user can develop new features in React without rewriting existing code
[12].

 It is easy to make POST calls to the API and retrieve returning JSON
objects.

 Thanks to react flow library (https://reactflow.dev/) the developer can create
a petri net, in which the user can zoom in/out and also move around its
elements, places and transitions.

 Also, thanks to react loader spinner
(https://www.npmjs.com/package/react-loader-spinner) the developer can
create a customized loader to let the user know that the API is processing
data.

Development of a web-interface and web service API to support process mining techniques

 60

3.2 React Js and Flask

 The API has two responsibilities. The first is to respond to post or get

request made to this endpoint and the second is to response web interface

requests.

 Next, we need to install the flask-cors [14] with the pip install flask-cors
command. Flask-cors is looking for requests for a different application.

 Functions that are available on server side:

 savefile: @app.route('/savefile', methods=['POST']).

It is used only from web interface so the user can upload his xes or csv files
and then save them to server.

 headers: @app.route('/headers', methods=['POST'])

It is used only from web interface to return the headers of files.

 convertocsv: @app.route('/convertocsv', methods=['POST', 'GET']).

The user can convert a selected xes file to csv.

 convertoxes: @app.route('/convertoxes', methods=['POST', 'GET']).

The user can convert a selected csv file to xes.

 view: @app.route('/view', methods=['POST', 'GET']).

API returns the header and each row of xes file.

 viewcsv: @app.route('/viewcsv', methods=['POST', 'GET']).

 API returns the header and each row of csv file.

 statistics: @app.route('/ statistics, methods=['POST', 'GET']).

API returns statistics of xes file, such as number of traces, events, start events,
end events.

 csvstatistics: @app.route('/csvstatistics', methods=['POST', 'GET']).

API returns statistics of csv file, such as number of traces, events, start events,
end events.

Development of a web-interface and web service API to support process mining techniques

 61

 getimage: @app.route('/getimage', methods=['POST', 'GET']).

 API returns list of places, transitions and edges of petri net importing a xes file
and also evalution results (log_fitness, precision, simplicity, generalization).

 getimagecsv: @app.route('/getimagecsv', methods=['POST', 'GET']).
 API returns list of places, transitions and edges of petri net importing a csv file
and also evalution results (log_fitness, precision, simplicity, generalization).

 getreplayresults: @app.route('/getreplayresults', methods=['POST', 'GET']).

API returns an array with data such as: Trace is fit, Trace fitness, Activated
Transitions, Reached Marking, Enabled transitions in marking, Transitions with
problems, Missing Tokens, Consumed tokens, Remaining Tokens και
Produced tokens for the selected xes file.

 getreplayresultscsv: @app.route('/getreplayresultscsv', methods=['POST',
'GET']).

API returns an array with data such as: Trace is fit, Trace fitness, Activated
Transitions, Reached Marking, Enabled transitions in marking, Transitions with
problems, Missing Tokens, Consumed tokens, Remaining Tokens και
Produced tokens for the selected csv file.

 getalignments: @app.route('/getalignments', methods=['POST', 'GET'])

API returns a lot of arrays with two rows in purpose of conformance checking

of imported xes file.

 getalignmentscsv: @app.route('/getalignmentscsv', methods=['POST',
'GET'])

API returns a lot of arrays with two rows in purpose of conformance checking

of imported csv file.

Development of a web-interface and web service API to support process mining techniques

 62

3.3 Web pages

3.3.1 First Page

Image 3.1: First Page

 Xes and csv files are stored at server. There is not a session management

and when you press refresh the application redirects you to this page.

 When user hovers File from menu there is only one option upload. The

reason is that he has not upload any file so he can do any other action. When the

user presses the upload option the next page is showed up:

Image 3.2: File Upload

Development of a web-interface and web service API to support process mining techniques

 63

The user can upload any xes or csv file by pressing one click on the box

and then choose the file from windows browser or with drag and drop. In case the

file is csv or xes the image will change to this:

Image 3.3: File Upload Complete

 When the user presses the complete button, web interface redirects to the

main screen.

Image 3.4: File Upload State

Development of a web-interface and web service API to support process mining techniques

 64

3.3.2 File Menu

Image 3.5: File Menu

 Under the file menu there is the option upload so the user can upload more

than one file.

Image 3.6: File upload

Under file menu there are more option if the user has already uploaded at

least one file. The user should select a file from the left menu and then select one

of the options. If the user has not selected any file and presses an option then a

blank screen will appear on the right until the user selects one file from the left

menu. The first option is convert to xes.

Development of a web-interface and web service API to support process mining techniques

 65

Image 3.7: Convert to xes

 In case user does not select a csv file:

Image 3.8: Wrong csv input

 In the opposite view a webpage with four dropdowns will appear so the

user can declare which csv column will be: concept:name, concept:name,

start_event and time:timestamp.

Development of a web-interface and web service API to support process mining techniques

 66

Image 3.9: Choose Headers

Development of a web-interface and web service API to support process mining techniques

 67

 In this case the user has to provide a separator. If he leaves the input blank

then the dropdowns will have null value:

Image 3.10: No seperator

In case user gives wrong separator, the next screen will appear:

Development of a web-interface and web service API to support process mining techniques

 68

Image 3.11: Wrong separator

Otherwise, when the user presses Yes an extra file with the type .xes will

appear on the left menu (Files).

Development of a web-interface and web service API to support process mining techniques

 69

Image 3.12: Convert Completed

 Similar to the last option, convert to csv does not allow the user to convert

a csv file and when the user selects a xes file the following web page appears

Image 3.13: Convert to csv

Development of a web-interface and web service API to support process mining techniques

 70

 In case the user presses yes, on the left files list the converted file appears

with the repairExample.csv.

Image 3.14: Convert to csv completed

 When the user selects the view option, he can either choose a xes or csv

file and an html table will appear with the content of file.

Image 3.15: File Content

 The web interface reads the whole table with post from python flask and

when the user changes the number to results dropdown to 10, then the html table

shows the first 10 rows, when the user changes the number to results dropdown

Development of a web-interface and web service API to support process mining techniques

 71

to 50, then the html table shows the first 10 rows and when the user changes to

the dropdown to all then html table shows all the rows. Until the response is

returned from the API react-loader-spinner is used

(https://www.npmjs.com/package/react-loader-spinner).

 About the Info option, the user can retrieve the next data: number of traces,

number of events, file structure, an event array and how many times each event

appears in the file, a table with start events and one with end events and how

many traces start or end with those events.

Image 3.16: View State

Development of a web-interface and web service API to support process mining techniques

 72

Image 3.17: File Info

 Image 3.18: File Info State

Development of a web-interface and web service API to support process mining techniques

 73

 In case the user selects a csv file then the web interface will first appear a

select header webpage.

Image 3.19: Choose header for file info

3.3.3 Discover Menu

 When the user hovers on Discover Model, then he can choose one of the

discover algorithms as an option: alpha miner, inductive miner, heuristics miner.

Development of a web-interface and web service API to support process mining techniques

 74

Image 3.20: Discover Menu

 In case the user chooses alpha miner then a webpage with a table will

appear which show the Log Fitness, Precision, Generalization and Simplicity

evaluation for the specific file. Also, petri net of the algorithm will appear under the

table. The petri net is developed with react flow, an open-source library which

allow the web user to drag and drop any transition and place of the graph.

Development of a web-interface and web service API to support process mining techniques

 75

Image 3.21: Alpha miner site

For Heuristic Miner:

Image 3.22: Heuristics miner site

Development of a web-interface and web service API to support process mining techniques

 76

And Inductive Miner:

Image 3.23: Inductive miner site

In case the user chooses a csv file and then selects one of the above three

options, then the choose heeder screen will appear and then the web interface will

display the webpage with the table and the petri net.

Development of a web-interface and web service API to support process mining techniques

 77

Image 3.24: Discovery State

3.3.4 Conformance Menu

When the user hovers the menu Conformance then he can select the

option replay results or alignments

Development of a web-interface and web service API to support process mining techniques

 78

In case the user selects replay results, then a dropdown appears with the

three discovery models (alpha miner, Inductive Miner, Heuristics Miner) as option.

If the file is csv, then the other four dropdowns from header select will appear in

this screen as well.

Image 3.25: Conformance menu

When the user selects one of the three algorithms then a table appears

with the following data

 Trace is fit

 Trace fitness

 Activated Transitions

 Reached Marking

 Enabled transitions in marking

 Transitions with problems

 Missing Tokens

 Consumed Tokens

 Remaining Tokens

 Produced Tokens

Development of a web-interface and web service API to support process mining techniques

 79

Image 3.26: Replay results site

Development of a web-interface and web service API to support process mining techniques

 80

Image 3.27: Replay Fitness State

Development of a web-interface and web service API to support process mining techniques

 81

 In case the user selects the other option (alignments) then the same
dropdown appears with the discovery models as option. When the user selects
one algorithm then a lot of tables appear, each one with two rows so the user can
tell if the trace is fit on the process model.

Image 3.28: Alignments site

Development of a web-interface and web service API to support process mining techniques

 82

Image 3.29: Alignment state

Development of a web-interface and web service API to support process mining techniques

 83

3.4 System Walkthrough

For this Walkthrough I used the file running-example.xes which can be

found in the following link https://github.com/pm4py/pm4py-

ws/blob/master/files/event_logs/running-example.xes

 File upload

Image 3.30: Running example file upload

Image 3.31: Running example file upload selected

Image 3.32: Running example file uploaded

Development of a web-interface and web service API to support process mining techniques

 84

 Convert to csv

Image 3.33: Running example convert to csv

Image 3.34: Running example convert to csv question

Image 3.35: Running example csv converted

Development of a web-interface and web service API to support process mining techniques

 85

 View

Image 3.36: Running example view

Image 3.37: Running example rows

 Info

Image 3.38: Running example information menu

Development of a web-interface and web service API to support process mining techniques

 86

Image 3.39: Running example information

 Alpha Miner

Image 3.40: Running example discovery menu

Image 3.41: Running example Alpha Miner

Development of a web-interface and web service API to support process mining techniques

 87

 Heuristics Miner

Image 3.42: Running example Heuristics Miner Menu

Image 3.43: Running example Heuristics Miner

 Inductive Miner

Image 3.44: Running example Inductive Miner Menu

Development of a web-interface and web service API to support process mining techniques

 88

Image 3.45: Running example Inductive Miner

 Replay Results

Image 3.46: Replay Results Menu

Image 3.47: Running example algorithm selection for replay

Image 3.48: Running example Replay Results

Development of a web-interface and web service API to support process mining techniques

 89

 Alignments

Image 3.49: Running example Alignments menu

Image 3.50: Running example algorithm select for alignments

Image 3.51: Running example Alignments

Development of a web-interface and web service API to support process mining techniques

 90

CHAPTER 4

CONCLUSION

This master thesis deals with the development of a web service application

(web API) for process mining. As I mentioned in chapter two the API is developed

with python and pm4py library. The user can easily call the end point and get

response for many functions. He can get json information of the file with one

endpoint (number of traces, number of events, events of file, start and end events)

instead of calling each pm4py function and he can also get percentage of each

event of file. He can also get xes files content in a json objects. Instead of getting

the petri net’s image

from p4mpy he can get as json objects all the information needed to draw his own

petri net and instead of using different functions to get each algorithms evaluation

he now gets four json objects.

This master thesis also deals with the development of a web interface to

represent the json data from API’s response. The interface is created for the user

that don’t want to hit an endpoint to get Json results but want visualized responses

of their actions. The interface is user-friendly, easily accessible and easy to

navigate. The only thing the user has to do is to upload a file for process mining and

then he views the contents of his file as table rows, event information as table rows,

evaluation for a specific algorithm as table rows, a petri net that is not static but he

can even drag places and transitions on screen and conformance results in table

rows.

 In addition, because the project is agile, future recommendations can
easily be implemented either on API or interface. If in the future it is decided to
create a new web interface, the API can be reused. One suggestion is to do
conformance checking using a standard petri net and choosing a log file to run on
top of it. A way to do this, is to make every edge between the nodes animated for
(example change the color of the edge) when a token passed by, so the user can
understand the path of each token. Another future recommendation is to create a
login form for the web interface and an authenticate function in the API. Finally,
colleagues can easily implement their own process mining functions to the API and
create a web page to show their results.

Development of a web-interface and web service API to support process mining techniques

 91

 Appendix

Appendix A) Upload / Save file

Server Side:

file = request.files['file'] #the file react sends

filename = file.filename #name of react sends

splitedfile = filename.split('.')

if(splitedfile[len(splitedfile)-1]) =='xes' or

(splitedfile[len(splitedfile)-1]) =='csv':

#we only save on server side xes csv files

if not os.path.exists('filesfolder/'):

#create folder if doesn't exist

 os.makedirs('filesfolder/')

 if path.exists('filesfolder/'+filename):

#overwrite file if exists

 os.remove('filesfolder/'+filename)

 file.save('filesfolder/'+filename) #save file

APIresults = [{'filename':str(filename)}]

response = jsonify(APIresults)

response.headers.set('Access-Control-Allow-Origin', '*')

return response;

Client Side:

StatechangeFileDone = event => {

 if(this.file.filename!==null){

 this.sendData();

 if (this.file.filename.includes('xes')){

//value of xes files in dictionary is true else false

 this.userfiles.allfiles[this.file.filename]=true

 }else{

 this.userfiles.allfiles[this.file.filename]=false

 }

 this.setState({ fileforupload: false});

//change state when file is uploaded

 const data = new FormData();

 data.append('file', this.file.selectedfile);

 data.append('filename',this.file.filename);

 fetch('http://127.0.0.1:5000/savefile', {

 method: 'POST',

 body: data,

 })

 this.file.filename=null;

 this.file.selectedfile=null;

 }

 }

Development of a web-interface and web service API to support process mining techniques

 92

Appendix B) Convert Csv File

Server Side:

if request.method == 'POST':

 csvinput = request.form.get('filename')

 case_concept_name = str(request.form.get('caseconcept'))

 time_timestamp = str(request.form.get('timestamp'))

 concept_name = str(request.form.get('conceptname'))

 start_event = str(request.form.get('startevent'))

 seperator = str(request.form.get('seperator'))

 if request.method == 'GET':

if (request.args.get('filename') is None) or

(request.args.get('seperator') is None) or

(request.args.get('caseconcept') is None) or

(request.args.get('timestamp') is None) or

(request.args.get('conceptname') is None) or

(request.args.get('startevent') is None):

 return badrequest();

 csvinput = str(request.args.get('filename'))

 case_concept_name = str(request.args.get('caseconcept'))

 time_timestamp = str(request.args.get('timestamp'))

 concept_name = str(request.args.get('conceptname'))

 start_event = str(request.args.get('startevent'))

 seperator = str(request.args.get('seperator'))

 if ".csv" not in csvinput:

 return badrequest();

 log = ""

 dataframe = None

 start = csvinput.replace('.csv', '')

 if path.exists('filesfolder/'+csvinput):

 log_file_path = 'filesfolder/'+csvinput

 log = pd.read_csv(log_file_path, sep=seperator)

 dataframe=pm4py.convert_to_dataframe(log)

dataframe.rename(columns={case_concept_name:

'case:concept:name'}, inplace=True)

dataframe.rename(columns={time_timestamp: 'time:timestamp'},

inplace=True)

dataframe.rename(columns={concept_name: 'concept:name'},

inplace=True)

dataframe.rename(columns={start_event: 'start_event'},

inplace=True)

 log=pm4py.convert_to_event_log(dataframe)

 if path.exists('filesfolder/'+start + '.xes'):

 os.remove('filesfolder/'+start + '.xes')

 pm4py.write_xes(log,'filesfolder/'+ start+".xes")

 APIresults = [{'xesname':str(start + '.xes')}]

 response = jsonify(APIresults)

 response.headers.set('Access-Control-Allow-Origin', '*')

 return response;

 else:

 return filenotfound();

Client Side:

converttostate = () => {

 const data = new FormData();

Development of a web-interface and web service API to support process mining techniques

 93

 data.append('filename',this.props.data); //send filename to API

 var caseconcept = document.getElementById('caseconcept').value;

//get values of dropdown

 var start_event = document.getElementById('start_event').value;

 var timestamp = document.getElementById('timestamp').value;

 var conceptname = document.getElementById('conceptname').value;

 data.append('caseconcept',caseconcept);

 data.append('startevent',start_event);

 data.append('timestamp',timestamp);

 data.append('conceptname',conceptname);

 data.append('seperator',this.props.value.seperator);

 fetch('http://127.0.0.1:5000/convertoxes', {

 method: 'POST',

 body: data,

 }).then(response => (response.json()))

 .then(data => {

 if (data[0].error===undefined){

 this.props.parentCallback(data[0].xesname);

 var url = window.location.href;

 url = url.replace("toxes", "mainmenu");

 window.location.href = url;}

//redirect to main menu after convertion

 });

 }

Appendix C) Convert Xes File

Server Side:

if request.method == 'POST':

 xes = request.form.get('filename')

if request.method == 'GET':

 if request.args.get('filename') is None:

 return badrequest();

 xes = request.args.get('filename')

 if ".xes" not in xes: #file is not xes

 return badrequest();

 if xes is not None:

 start = xes.replace('.xes', '')

 if path.exists('filesfolder/'+xes): #if it exists on server

 log = pm4py.read_xes('filesfolder/'+xes) #get log

 dataframe = pm4py.convert_to_dataframe(log)

#convert it to dataframe

 if path.exists('filesfolder/'+start + '.csv'):

#overwrite if exists

 os.remove('filesfolder/'+start + '.csv')

 dataframe.to_csv('filesfolder/'+start +

'.csv',index=False,na_rep='false') #convert to csv

 APIresults = [{'csvname':str(start + '.csv')}]

 response = jsonify(APIresults)

 response.headers.set('Access-Control-Allow-Origin',

'*')

 return response

 else:

 return filenotfound();

Client Side:

converttostate = () => {

 const data = new FormData();

 data.append('filename',this.props.data);

Development of a web-interface and web service API to support process mining techniques

 94

//send filename to API to convert it

 fetch('http://127.0.0.1:5000/convertocsv', {

 method: 'POST',

 body: data,

 }).then(response => (response.json()))

 .then(data => {

 if (data[0].error===undefined){

 this.props.parentCallback(data[0].csvname);

 var url = window.location.href;

 url = url.replace("tocsv", "mainmenu");

 window.location.href = url;//redirect to mainmenu after the

file convertion

 }

 });

 }

Appendix D) View File

Server Side:

if request.method == 'POST':

 xes = request.form.get('filename')

 if request.method == 'GET':

 xes = request.args.get('filename')

 if (request.args.get('filename') is None) :

 return badrequest();

 if ".xes" not in xes: #if file is not xes

 return badrequest();

 if not path.exists('filesfolder/'+xes):

#if file does not exist on server

 return filenotfound();

 splited = xes.split(".")

 log = pm4py.read_xes('filesfolder/'+xes) #get log from file

 dataframe = pm4py.convert_to_dataframe(log)

 #convert to dataframe

 dataframedict =

dataframe.to_json(orient="index",date_format='iso')

 parsed = json.loads(dataframedict)

 if splited[len(splited)-1] == 'xes':

 apiresults = [

 {

 'view':parsed

 }

]

 response = jsonify(apiresults)

 response.headers.set('Access-Control-Allow-Origin', '*')

 response.headers.set('cache-control', 'public,max-

age=0')

 return response;

Client Side:

StateImage = () => {

 const data = new FormData();

 data.append('filename',this.props.data);

 fetch('http://127.0.0.1:5000/view', {

 method: 'POST',

 body: data,

Development of a web-interface and web service API to support process mining techniques

 95

 }).then(response => (response.json()))

 .then(data => {

 if (data[0].error===undefined){

 this.view.dict= data[0].view;

 this.setState({isok:true}); //when the

API returns data with the content of file

 }

 });

 }

function builddf(dictionary,resultsno){

 var header=[];

 var body=[];

 var tempinside=[];

 const htmlhead=[];

 const dataframe=[];

 const thead = 'stat_';

 var key='';

 var headersaresok=false;

 var counter=0;

 for (var i in dictionary){

 if (resultsno!==-1){

 if(counter===resultsno){

 //shows results until number of dropdown

 break;

 }

 }

 if(headersaresok===false){ //headers of file

 for (const [key] of Object.entries(dictionary[i])) {

 header.push(<td key={i}>{key}</td>);

 }

 headersaresok=true;

 }

 for (var j in dictionary[i]){ //content of file

 key='td'+i+'_'+j;

 if (dictionary[i][j]!==null){

 tempinside.push(<td key={key}>{dictionary[i][j].toString()}</td>);

 }

 else{

 tempinside.push(<td key={key}></td>);

 }

 }

 counter++;

 key='tr'+i;

 body.push(<tr key={key}>{tempinside}</tr>)

 tempinside=[];

 }

htmlhead.push(<thead key={thead}><tr key='0'>{header}</tr></thead>)

const tablekey='table_';

dataframe.push(<table key={tablekey}

className='resultstable'>{htmlhead}<tbody>{body}</tbody></table>)

return dataframe;

}

Development of a web-interface and web service API to support process mining techniques

 96

Appendix E) File Statistics

Server Side:

def firstassignment(log):

 dataframe = None

 stream = converter.apply(log,

variant=converter.Variants.TO_EVENT_STREAM)

 dataframe = pm4py.convert_to_dataframe(log)

 lenlog = len(log) #length of log

 lenevent = len(stream) #number of events

 trace_list = []

 for trace in log:

 trace_list.append(str(list(trace.attributes.keys())))

 unique_trace_list=set(trace_list) #trace list

 dictionary = dict()

 array=1

 dataframe=dataframe.sort_values('concept:name')

 last_value= None

 for event in dataframe['concept:name']:

 if last_value is None:

 last_value=event

 else:

 if not last_value == event:

 dictionary[last_value] = array;

 array = 1

 last_value=event

 else:

 array=array+1

 dictionary[last_value] = array; #all file events

 end_activities=pm4py.get_end_activities(log) #end events

 start_activities=pm4py.get_start_activities(log) #start events

 return lenlog, lenevent,unique_trace_list,

start_activities,end_activities,dictionary;

Client Side:

Infobuild(){

 const data = new FormData();

 data.append('filename',this.props.data);

 fetch('http://127.0.0.1:5000/statistics', {

 method: 'POST',

 body: data,

 }).then(response => (response.json()))

 .then(data => {

 if (data[0].error===undefined){

 this.statistics.notraces=data[0].notraces;

 this.statistics.noevents=data[0].noevents;

 this.statistics.tracelist=data[0].tracelist;

 this.statistics.events=data[0].dictionary;

Development of a web-interface and web service API to support process mining techniques

 97

 this.statistics.startactivities=data[0].startactivities;

 this.statistics.endactivities=data[0].endactivities;

 this.setState({done:true}); //when API returns results

 }

 });

 }

function buildevent(dictionary,noevents,number){

 const eventhtml=[];

 const htmlhead=[];

 const htmlbody=[];

 const thead = 'stat_'+number;

 htmlhead.push(<thead key={thead}><tr

key={`${number}?${0}`}><td>Name</td><td> Number of Events </td><td>

Percentage </td></tr></thead>)

 for (var i in dictionary) {

 const trkey='tr_'+number+'_'+i;

 const trkey2 = trkey+'_2';

 const trkey3 = trkey+'_3';

 htmlbody.push(<tr key={`${number}?${i}`}><td

key={trkey}>{i}</td><td key={trkey2}> {dictionary[i].toString()}

</td><td key={trkey3} >

{(100*parseInt(dictionary[i])/parseInt(noevents)).toFixed(3).toString()}

%</td></tr>)

 }

const tablekey='table_'+number;

eventhtml.push(<table key={tablekey}

className='resultstable'>{htmlhead}<tbody>{htmlbody}</tbody></table>)

 return eventhtml;

 }

function buildactivities(dictionary,notraces,number){

 const eventhtml=[];

 const htmlhead=[];

 const htmlbody=[];

 const thead = 'stat_'+number;

 htmlhead.push(<thead key={thead}><tr

key={`${number}?${0}`}><td>Name</td><td> Number of Traces </td><td>

Percentage </td></tr></thead>)

 for (var i in dictionary) {

 const trkey='tr_'+number+'_'+i;

 const trkey2 = trkey+'_2';

 const trkey3 = trkey+'_3';

 htmlbody.push(<tr key={`${number}?${i}`}><td

key={trkey}>{i}</td><td key={trkey2}> {dictionary[i].toString()}

</td><td key={trkey3} >

{(100*parseInt(dictionary[i])/parseInt(notraces)).toFixed(3).toString()}

%</td></tr>)

 }

 const tablekey='table_'+number;

 eventhtml.push(<table key={tablekey}

className='resultstable'>{htmlhead}<tbody>{htmlbody}</tbody></table>)

 return eventhtml;

 }

Development of a web-interface and web service API to support process mining techniques

 98

Appendix F) Discovery Algorithms

Server Side:

if request.method == 'POST':

 xes = request.form.get('filename')

 sitealgo = request.form.get('sitealgo')

 if request.method == 'GET':

 xes = request.args.get('filename')

 sitealgo = request.args.get('algorithm')

 if (request.args.get('filename') is None) or

(request.args.get('algorithm') is None):

 return badrequest();

 if not path.exists('filesfolder/'+xes):

 return filenotfound();

 splited = xes.split(".")

 log = pm4py.read_xes('filesfolder/'+xes) #get log of xes file

 if splited[len(splited)-1] == 'xes':

 if int(sitealgo) == 1:

#pm4py discover_algo functions for the three algorithms

 net,initial_marking,final_marking =

discover_algo.discover_petri_net_alpha(log)

 elif int(sitealgo) == 2:

 net,initial_marking,final_marking =

discover_algo.discover_petri_net_inductive(log)

 elif int(sitealgo) == 3:

 net,initial_marking,final_marking =

discover_algo.discover_petri_net_heuristics(log)

 fitnesses= pm4py.evaluate_fitness_tbr(log, net,

initial_marking, final_marking)

 evaluationresult = pm4py.evaluate_precision_tbr(log,

net, initial_marking, final_marking)

 evaluation=evaluation_factory.apply(log, net,

initial_marking, final_marking) #evalution object

 netplaces=list(net.places) #petrinet places

 nettransitions=list(net.transitions) #petrinet

transitions

 netarcs=list(net.arcs) #petrinet arcs

 placeslist = []

 transitionlist =[]

 arcslist = []

 for eachplaces in netplaces:

 placeslist.append(str(eachplaces))

 for eachtransition in nettransitions:

 transitionlist.append(str(eachtransition))

 for eacharc in netarcs:

 arcslist.append(str(eacharc))

 file_path="static/temp.svg"

 savesvgfromalgo.save_vis_petri_net(net, initial_marking,

final_marking,file_path)

 apiresults = [{

'image':'http://127.0.0.1:5000/static/temp.svg',

'log_fitness':evaluation['fitness']['log_fitness'],

'evaluation_result':evaluation['precision'],

Development of a web-interface and web service API to support process mining techniques

 99

'generalization':evaluation['generalization'],

 'simplicity':evaluation['simplicity'],

 'netplaces':placeslist,

 'nettransitions':transitionlist,

 'netarcs':arcslist

 }] response =

jsonify(APIresults)

 response.headers.set('Access-Control-Allow-Origin', '*')

 response.headers.set('cache-control', 'public,max-

age=0')

 return response;

Client Side:

StateImage = () => {

 const data = new FormData();

 data.append('filename',this.props.data);

 data.append('sitealgo', '1'); //the same endpoint different

algorithm

 fetch('http://127.0.0.1:5000/getimage', {

 method: 'POST',

 body: data,

 }).then(response => (response.json()))

 .then(data => {

 if (data[0].error===undefined){

this.image.nettransitions=data[0].nettransitions;

 this.image.netplaces=data[0].netplaces;

 this.image.netarcs=data[0].netarcs;

 this.image.image=data[0].image;

 this.image.imageHash= Date.now();

 this.setState({ image:

true,fitness:data[0].log_fitness,precision:data[0].evaluation_result,gen

eralization:data[0].generalization,simplicity:data[0].simplicity});

 }

 });

 }

function removestrings(str){

 var newstr=str.replace('(p)','');

 newstr=newstr.replace('(t)','');

 newstr=newstr.trim();

 return newstr;

}

function buildminer(trans,places,arcs){

 var idstring=1;

 var ycount=100;

 var xcount=0;

 var elements=[];

 var trans_sort_list = trans.sort();

 var transdictionary = {};

 var moved = {};

 transdictionary['start'] = 0;

 transdictionary['end'] = -1;

 for (var x in trans_sort_list) //Drawing the transitions into graph

 {

Development of a web-interface and web service API to support process mining techniques

 100

 transdictionary[trans_sort_list[x]] = idstring;

 moved[trans_sort_list[x]]=false;

 elements.push({ id: idstring.toString(),data: { label:

trans_sort_list[x] },style:{width: '100px'},position: { x:xcount,

y:ycount }});

 ycount+=100;

 idstring++;

 }

 xcount+=200;

 ycount=0;

 var places_sort_list = places.sort();

 for (x in places_sort_list) //Drawing the places into graph

 {

 if(places_sort_list[x].includes('start')){

 elements.push({id:

transdictionary['start'].toString(),type: 'input',data: { label: 'start'

},position: { x: 0, y: 0 },draggable: false,style:{width: '50px',height:

'50px','border-radius': '50%', 'padding-top': '17px','border-

color':'black','background-color': 'green'} });

 }

 else if(places_sort_list[x].includes('end')){

 }

 else{

 transdictionary[places_sort_list[x]] = idstring;

 elements.push({id: idstring.toString(),type: 'input',data: {

label: ' ' },position: { x: xcount, y: ycount },draggable:

true,style:{width: '50px',height: '50px','border-radius': '50%',

'padding-top': '17px','border-color':'black','background-color':

'white'} });

 idstring++;

 }

 moved[places_sort_list[x]]=false;

 ycount+=100;

 }

 xcount+=200;

 elements.push({id: transdictionary['end'].toString(),type:

'input',data: { label: 'end' },position: { x: 950, y: 0 },draggable:

false,style:{width: '50px',height: '50px','border-radius': '50%',

'padding-top': '17px','border-color':'black','background-color':

'orange'} });

 var arcs_sort_list = arcs.sort();

 for (x in arcs_sort_list){

 var left=arcs_sort_list[x].split('->')[0];

 var right=arcs_sort_list[x].split('->')[1];

 elements.push({ id: left.split(',')[0]+'~'+right, source:

transdictionary[removestrings(left)], target:

transdictionary[removestrings(right)],arrowHeadType:'arrowclosed' });

 }

 var rightelemt=[];

Development of a web-interface and web service API to support process mining techniques

 101

 for (x in arcs_sort_list){ //Drawing the arcs into graph

 left=arcs_sort_list[x].split('->')[0];

 right=arcs_sort_list[x].split('->')[1];

 if(removestrings(left).includes('start')){

 rightelemt.push(removestrings(right));

 }

 }

 xcount=200;

 ycount=0;

 for (x in rightelemt){

 for (var ele in elements)

 {

 if

(parseInt(elements[ele].id)===parseInt(transdictionary[rightelemt[x]])){

 elements[ele].position={ x: xcount, y: ycount};

 ycount+=100;

 }

 }

 }

 ycount=0;

 xcount+=200;

 if((rightelemt.length>0)){

 for (var y in rightelemt){

 if (!rightelemt[y].includes('end')){

elements=recursive(arcs_sort_list,elements,rightelemt[y],ycount,xcount,t

ransdictionary,moved); //recursive function to change elements position

from start to end

 }

 }

 }

 return elements;

 }

 function

recursive(arcs_sort_list,elements,rightelemt,ycount,xcount,transdictiona

ry,moved){

 var newrightelemt=[];

 for (var x in arcs_sort_list){

 var left=removestrings(arcs_sort_list[x].split('->')[0]);

 var right=removestrings(arcs_sort_list[x].split('->')[1]);

 if((left)=== (rightelemt)){

 if (moved[right]===false){

 newrightelemt.push((right));

 }

 }

 }

 for (x in newrightelemt){

 for (var ele in elements)

 {

 if

(parseInt(elements[ele].id)===parseInt(transdictionary[newrightelemt[x]]

)){

 elements[ele].position={ x: xcount, y: ycount};

 moved[newrightelemt[x]]=true;

 ycount+=100;

 }

Development of a web-interface and web service API to support process mining techniques

 102

 }

 }

 ycount=0;

 xcount+=200;

 var tempyposition=0;

 if (newrightelemt.length>0){

 for (var y in newrightelemt){

 if (!newrightelemt[y].includes('end')){

 for (ele in elements)

 {

 if

(parseInt(elements[ele].id)===parseInt(transdictionary[newrightelemt[y]]

)){

tempyposition=parseInt(elements[ele].position.y);

 }

 }

elements=recursive(arcs_sort_list,elements,newrightelemt[y],tempypositio

n,xcount,transdictionary,moved);

 }

 }

 }

 return elements;

 }

<div>

 <table>

 <tr>

 <td>

 Log Fitness

 </td>

 <td>

 {this.state.fitness}

 </td>

 </tr>

 <tr>

 <td>

 Log Precision

 </td>

 <td>

 {this.state.precision}

 </td>

 </tr>

 <tr>

 <td>

 Generalization

 </td>

 <td>

 {this.state.generalization}

 </td>

 </tr>

 <tr>

 <td>

 Simplicity

 </td>

 <td>

 {this.state.simplicity}

 </td>

 </tr>

Development of a web-interface and web service API to support process mining techniques

 103

 </table>

 <div className="move50"style={{ height: 1001 }}>

 <ReactFlow elements={minerhtml} />

 </div>

 </div>

Appendix G) Get Replay Results

Server Side:

try:

 if request.method == 'POST':

 xes = request.form.get('filename')

 sitealgo = request.form.get('sitealgo')

 if request.method == 'GET':

 xes = request.args.get('filename')

 sitealgo = request.args.get('algorithm')

 if (request.args.get('filename') is None) or

(request.args.get('algorithm') is None):

 return badrequest();

 if not path.exists('filesfolder/'+xes):

 return filenotfound();

 splited = xes.split(".")

 log = pm4py.read_xes('filesfolder/'+xes)

#get log from xes file

 if splited[len(splited)-1] == 'xes':

 #get net from specific algorithm

 if int(sitealgo) == 1:

 net,initial_marking,final_marking =

discover_algo.discover_petri_net_alpha(log)

 elif int(sitealgo) == 2:

 net,initial_marking,final_marking =

discover_algo.discover_petri_net_inductive(log)

 elif int(sitealgo) == 3:

 net,initial_marking,final_marking =

discover_algo.discover_petri_net_heuristics(log)

 conftbr =

pm4py.conformance_tbr(log,net,initial_marking,final_marking)

 #Pm4py conformance

 returndict=[]

 for each in conftbr:

tempactivate=str(each['activated_transitions']).replace('[', '')

 tempactivate=tempactivate.replace(']', '')

tempreached_marking=str(each['reached_marking']).replace('[', '')

 tempreached_marking=tempreached_marking.replace(']',

'')

temptransitions_with_problems=str(each['transitions_with_problems']).rep

lace('[', '')

temptransitions_with_problems=temptransitions_with_problems.replace(']',

'')

 #Jsons we need to show on site

 tempdict= {

 'trace_is_fit': each['trace_is_fit'],

Development of a web-interface and web service API to support process mining techniques

 104

 'trace_fitness':

each['trace_fitness'],

 'activated_transitions':

tempactivate,

 'reached_marking':

tempreached_marking,

 'enabled_transitions_in_marking':

str(each['enabled_transitions_in_marking']),

'transitions_with_problems':temptransitions_with_problems,

 'missing_tokens':

each['missing_tokens'],

 'consumed_tokens':

each['consumed_tokens'],

 'remaining_tokens':

each['remaining_tokens'],

'produced_tokens':each['produced_tokens']

 }

 returndict.append(tempdict)

 apiresults = [{ 'dictionary': returndict }]

 response = jsonify(apiresults)

 response.headers.set('Access-Control-Allow-Origin', '*')

 response.headers.set('cache-control', 'public,max-

age=0')

 return response;

Client Side:

StateImage = () => {

 const data = new FormData();

 data.append('filename',this.props.data);

 data.append('sitealgo', this.state.selectedalgo);

 fetch('http://127.0.0.1:5000/getreplayresults', {

 method: 'POST',

 body: data,

 }).then(response => (response.json()))

 .then(data => {

 if (data[0].error===undefined){

this.setState({ image: true,dictionary:data[0].dictionary});

 }

 });

 }

function buildevent(dictionary){ ///converts API response into table

 var obj = dictionary;

 const eventhtml=[];

 const htmlhead=[];

 const htmlbody=[];

 const thead = 'stat';

 htmlhead.push(<thead key={thead}><tr key={0}><td>Trace is

fit</td><td> Trace fitness </td><td> Activated Transitions </td><td>

Reached Marking </td>

 <td>Enabled transitions in marking</td><td>Transitions with

problems</td><td>Missing Tokens</td><td>Consumed

Tokens</td><td>Remaining Tokens</td><td>Produced

Tokens</td></tr></thead>)

Development of a web-interface and web service API to support process mining techniques

 105

 for (var i=0;i<obj.length;i++) {

 const trkey='tr_'+i;

 const trkey2 = trkey+'_2';

 const trkey3 = trkey+'_3';

 const trkey4 = trkey+'_4';

 const trkey5 = trkey+'_5';

 const trkey7 = trkey+'_7';

 const trkey8 = trkey+'_8';

 const trkey9 = trkey+'_9';

 const trkey10 = trkey+'_10';

 const trkey11 = trkey+'_11';

 htmlbody.push(<tr key={i}><td

key={trkey}>{obj[i].trace_is_fit.toString()}</td><td key={trkey2}>

{obj[i].trace_fitness} </td><td key={trkey3} >

{obj[i].activated_transitions} </td>

 <td key={trkey4}>{obj[i].reached_marking}</td><td

key={trkey5}>{obj[i].enabled_transitions_in_marking}</td><td

key={trkey7}>{obj[i].transitions_with_problems}</td>

 <td key={trkey8}>{obj[i].missing_tokens}</td><td

key={trkey9}>{obj[i].consumed_tokens}</td><td

key={trkey10}>{obj[i].remaining_tokens}</td><td

key={trkey11}>{obj[i].produced_tokens}</td></tr>)

 }

 const tablekey='table';

 eventhtml.push(<table key={tablekey}

className='resultstable'>{htmlhead}<tbody>{htmlbody}</tbody></table>)

 return eventhtml;

 }

Appendix H) Get Alignments

Server Side:

if request.method == 'POST':

 xes = request.form.get('filename')

 sitealgo = request.form.get('sitealgo')

 if request.method == 'GET':

 xes = request.args.get('filename')

 sitealgo = request.args.get('algorithm')

 if (request.args.get('filename') is None) or

(request.args.get('algorithm') is None):

 return badrequest();

 if not path.exists('filesfolder/'+xes):

 return filenotfound();

 splited = xes.split(".")

 log = pm4py.read_xes('filesfolder/'+xes) #get log from xes

 if splited[len(splited)-1] == 'xes':

 if int(sitealgo) == 1: #get net from specific algorithm

 net,initial_marking,final_marking =

discover_algo.discover_petri_net_alpha(log)

 elif int(sitealgo) == 2:

 net,initial_marking,final_marking =

discover_algo.discover_petri_net_inductive(log)

 elif int(sitealgo) == 3:

 net,initial_marking,final_marking =

discover_algo.discover_petri_net_heuristics(log)

Development of a web-interface and web service API to support process mining techniques

 106

 alignments =

pm4py.conformance_alignments(log,net,initial_marking,final_marking)

#get conformance aligments

 # pretty_print_alignments(alignments)

 returndict=[]

 for each in alignments:

 tempdict= {

 'alignment': each['alignment']

 }

 returndict.append(tempdict)

 apiresults = [{ 'dictionary': returndict }]

 response = jsonify(apiresults)

 response.headers.set('Access-Control-Allow-Origin', '*')

 response.headers.set('cache-control', 'public,max-age=0')

 return response;

Client Side:

StateImage = () => {

 const data = new FormData();

 data.append('filename',this.props.data);

 data.append('sitealgo', this.state.selectedalgo);

 fetch('http://127.0.0.1:5000/getalignments', {

 method: 'POST',

 body: data,

 }).then(response => (response.json()))

 .then(data => {

 if (data[0].error===undefined){

this.setState({ image: true,dictionary:data[0].dictionary});

 }

 });

 }

function buildevent(dictionary){

 var obj = dictionary; //gets reponse from API

 var returnhtml = [];

 for (var i=0;i<obj.length;i++) {

 returnhtml.push(<div

className="pdropwdown">{buildsinglealignemnt(obj[i].alignment,i)}</div>)

; //creates a single table for every object of dictionary

 }

 return returnhtml;

 }

var key=0;

function buildsinglealignemnt(step_list,number){

 var trace_steps=[];

 var model_steps=[];

 var max_label_length = 0;

 var rethtml=[];

 var rethtml2=[];

 var dividerhtml=[];

 var step=[];

 var splitstep = step_list.toString().split(',');

Development of a web-interface and web service API to support process mining techniques

 107

 var i,j;

 for (i=0;i<splitstep.length;i+=2){

 step.push(splitstep[i]+','+splitstep[i+1]);

 }

 for (i=0;i<step.length;i++)

 {

 var insidesplitstep=step[i].toString().split(',');

 trace_steps.push(" " + insidesplitstep[0].toString() + " ")

 model_steps.push(" " + insidesplitstep[1].toString() + " ")

 if ((insidesplitstep[0].length) > max_label_length){

 max_label_length = insidesplitstep[0].toString().length;

 }

 if (insidesplitstep[1].toString().length > max_label_length){

 max_label_length = insidesplitstep[1].toString().length;

 }

 }

 for (i=0;i<trace_steps.length;i++){

 if (trace_steps[i].toString().length - 2 < max_label_length){

 var step_length = trace_steps[i].toString().length - 2;

 var spaces_to_add = max_label_length - step_length;

 for (j=0;j<spaces_to_add;j++){

 if (j % 2 === 0){

 trace_steps[i] = trace_steps[i] + " ";

 }

 else{

 trace_steps[i] = " " + trace_steps[i];

 }

 }

 }

 key++;

 rethtml.push(<td key={key}>{trace_steps[i]}</td>);

 }

 dividerhtml.push(<tr>{rethtml}</tr>);

 for (i=0;i<model_steps.length;i++)

 {

 if ((model_steps[i].length - 2) < max_label_length){

 var step_lengthmodel = model_steps[i].length - 2;

 var spaces_to_addmodel = max_label_length -

step_lengthmodel;

 for (j=0;j<spaces_to_addmodel;j++){

 if (j % 2 === 0){

 model_steps[i] = model_steps[i] + " ";

 }

 else{

 model_steps[i] = " " + model_steps[i];

 }

 }

 }

 key++;

 rethtml2.push(<td key={key} >{model_steps[i]}</td>);

 }

 dividerhtml.push(<tr>{rethtml2}</tr>)

 var finalhtml=[];

 finalhtml.push(<table>{dividerhtml}</table>);

 return finalhtml;

}

Development of a web-interface and web service API to support process mining techniques

 108

REFERENCES

[1] Berti, A., Sebastian van Zeist, Process Mining for Python (PM4Py): Bridging the

Gap Between Process- and Data Science, May 2019.

[2] [Online], https://xes-standard.org/ [Accessed: 27 February 2021]

[3] Berti, A., Increasing Scalability of Process Mining using Event Data frames: How

Data Structure Matters, Process and Data Science department, Lehrstuhl fur

Informatik 9 52074 Aachen,RWTH Aachen University, Germany, July 2019.

[4] Wil van der Aals, Event Logs What kind of data does process mining require?

[5] [Online], https://lanalabs.com/en/glossary/event-log/ [Accessed: 27 February

2021]

[6] [Online], https://pm4py.fit.fraunhofer.de/documentation [Accessed: 27 February

2021]

[7] J. C. A. M. Buijs, Boudewijn F. van Dongen, and Wil van der Aalst., Quality

dimensions in process discovery: The importance of fitness, precision,

generalization and simplicity, March 2014.

[8] Adriansyah A, Wil van der Aalst, Carmona J., Measuring precision of modeled

behavior, Information Systems and e-Business Management, January 2014.

[9] [Online] https://www.w3schools.com/js/js_API_intro.asp [Accessed: 27 February

2021]

[10] Neumann, A., Laranjeiro, N., Bernardino J., An Analysis of Public REST Web

Service APIs, IEEE Transactions on Services Computing, June 2018.

[11] [Online] https://en.wikipedia.org/wiki/Flask_(web_framework) [Accessed: 27

February 2021]

[12] [Online] https://reactjs.org/ [Accessed: 27 February 2021]

[13] [Online] https://swagger.io/tools/swagger-inspector/ [Accessed: 27 February

2021]

[14] [Online] https://flask-cors.readthedocs.io/en/latest/ [Accessed: 21 March 2021]

		2021-04-15T21:48:48+0300
	Georgios Miaoulis

		2021-04-16T02:30:56+0300
	Athanasios Voulodimos

		2021-04-17T23:08:05+0300
	Nikolaos Vasilas

