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Περίληψη 

Σκοπός της διπλωματικής αυτής εργασίας είναι η ανάπτυξη ενός κινητού ρομποτικού συστήματος 

του οποίου οι κινήσεις ελέγχονται ανάλογα με το άνοιγμα/κλείσιμο των ματιών ενός χειριστή μέσω 

μιας σύγχρονης και ενδογενούς Διεπαφής Εγκεφάλου-Υπολογιστή, βασισμένης σε 

Ηλεκτροεγκεφαλογράφημα, η οποία χρησιμοποιεί τα άλφα εγκεφαλικά κύματα. Τα σήματα που 

καταγράφονται φιλτράρονται ανάλογα έτσι ώστε να εξαχθούν τα κατάλληλα χαρακτηριστικά. Τα 

χαρακτηριστικά αυτά εισάγονται σε ένα νευρωνικό δίκτυο, το οποίο εκπαιδεύεται ώστε να 

οδηγήσει το ρομποτικό όχημα επιτυχώς. Τα πειραματικά τεστ τα οποία διεξήχθησαν, απέδειξαν ότι 

το σύστημα που αναπτύχθηκε είναι ικανό να εκτελέσει τις κινήσεις του ρομποτικού οχήματος σε 4 

κατευθύνσεις: ευθεία, όπισθεν, δεξιά και αριστερά, ανάλογα με τα άλφα εγκεφαλικά κύματα του 

χειριστή του συστήματος, με ακρίβεια της τάξης του 92.1%. 
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Ηλεκτροεγκεφαλογράφημα (ΗΕΓ) , Νευρωνικά Δίκτυα, Διεπαφές Εγκεφάλου-Υπολογιστή, Άλφα 

Εγκεφαλικά Κύματα, Έλεγχος Ρομπότ  
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Abstract 

The work presented in this thesis concerns the development of a system which performs motion 

control in a mobile robot in accordance to the eyes’ blinking of a human operator via a synchronous 

and endogenous Electroencephalography-based Brain-Computer Interface, which uses alpha brain 

waveforms. The received signals are filtered in order to extract suitable features. These features are 

fed as inputs to a neural network, which is properly trained in order to properly guide the robotic 

vehicle. Experimental tests executed, proved that the system developed is able to perform 

movements of the robotic vehicle, under control, in forward, left, backward and right direction 

according to the alpha brainwaves of its’ operator, with an overall accuracy equal to 92.1%.  

 

Keywords 

Electroencephalography (EEG), Neural Networks, Brain-Computer Interfaces, Alpha Brainwaves, 

Robot Control 
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1 INTRODUCTION 

1.1 Diploma Thesis Subject 

According to the World Health Organization [1], 15% of the world’s population lives with 

some form of disability, of whom 2-4% experience significant difficulties in functioning. This 

estimate is set to rise due to population aging along with the rapid spread of chronic diseases. It is 

safe to assume that a very significant portion of those percentages concerns people with physical 

disabilities. It is therefore of paramount importance for societies to find ways to improve the quality 

of life of those individuals and whenever possible cure them. 

Focusing on physical disabilities, there are a lot of conditions that can hinder individuals’ 

quality of life. Tetraplegia, Hemiplegia, Parkinson’s Disease are some of the more well-known 

ones. The effects can range from difficulty of movement to loss of movement entirely. 

Although research is ongoing, most of these disorders cannot be cured fully, so the focus has 

shifted more into minimizing the symptoms and providing assistance. Brain-Computer Interfaces, 

which are designed to not depend on the brain’s normal output channels of peripheral nerves and 

muscles have given rise to many exciting applications and possibilities. By utilizing brain signals 

directly, they can be used for rehabilitation purposes or to control assistive systems. 

While it’s indeed a very promising technology, Brain-Computer Interfaces are far from being 

the panacea for all physical disabilities. Recording and classifying signals directly from the brain is 

an arduous task and it requires big and complex systems that offer high resolution. In addition, 

systems have to be simple and user-friendly in order to be applicable to real-world situations. 

This diploma thesis concerns the development of a highly reliable synchronous Brain-

Computer Interface that performs robot motion control via EEG signals using neural networks as a 

classifier and alpha brainwaves as the control signal. By being able to move a robot, users of this 

system could also be able to move any robotic device, such as a robotic wheelchair or arm. 

1.2 Purpose and Goals 

As mentioned in the last section the purpose of this work concerns the development of a 

highly reliable Brain-Computer Interface. The main goals of this project are divided as follows: 

 Develop a system that is user-friendly so that every person could use it with minimal training. 

 The system has to be highly accurate, preferably classifying over 90% of commands correctly. 

 With minor changes, the system can be expanded to drive an assistive system, such as a 

robotic wheelchair. 

 Develop a fully functional system, not a simulation. 

1.3 Methodology 

For this diploma thesis, a top-down approach was followed. The BCI system was broken 

down into the most basic BCI components and functions, which were then separately implemented. 

Moreover, the original purpose was to make each program (subsystem) as modular as possible, 

which made testing and debugging easier.  
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All different components are implemented as classes in different modules, acting 

independently. In the end the main script utilizes all those classes and their functions to form the 

final system. The ease of use in testing and debugging is apparent in the following problem that was 

encountered:  

Originally, the system was developed on a computer running Windows 10. Due to some 

Bluetooth interfacing issues on this operating system, the connection between the computer and the 

board was refused. By only running the EEG acquisition module this problem was isolated rapidly 

and solved. If the system was not modular, this would take a longer time and effort to find isolate. 

In order to evaluate the accuracy of this system, it was tested using healthy human subjects 

executing all available commands after a brief explanation on how the system works. The system’s 

overall accuracy was then derived. Finally, the overall accuracy for different genders and age 

groups was evaluated.  

1.4 Innovation 

The innovation of this system lies in how the control signals are implemented. The alpha 

blocking phenomenon is utilized to form bit sequences which users can manipulate by closing or 

opening their eyes. While in this work a specific number of commands is used, those commands can 

be extended with ease by changing the size of each sequence.  

In addition, this phenomenon is present in all humans in varying degrees, which makes for a 

perfect candidate in developing a BCI that is applicable to a wide range of users while retaining its 

simplicity.  

1.5 Structure 

The rest of this work is organized as follows: Section 2 introduces Electroencephalography 

(EEG), delving deeper into EEG signals and their characteristics, the principles of EEG recording 

and finally, what kind of hardware is used to record EEG signals. Next, in Section 3, machine 

learning is introduced, starting with data and datasets, features and feature extraction and then 

moving on the main topic, which is neural networks. Starting with a single perceptron and moving 

on to Multilayer Perceptrons, the inner workings of neural networks are explained, and finally some 

variations of neural networks and their main areas of applications are shown. Section 4 introduces 

Brain-Computer Interfaces (BCIs), focusing on EEG BCIs, the main brainwaves that are used as 

control signals, how BCIs work and their components and how they are used in controlling assistive 

systems, focusing on robots. This concludes the introductory chapters. 

Next, the main topic is presented and analyzed thoroughly in Section 5, which is Robot 

Motion Control via EEG Signals. All the inner workings and components of the BCI that was 

developed are explained in detail, which are signal acquisition, preprocessing, feature extraction, 

classification and translation.  

The results of this work along with the discussion are presented in Section 6. This diploma 

thesis is concluded in Section 7 and potential future work is laid down. The final pages contain the 

references that were used. 
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2 CHAPTER 1 : Electroencephalography (EEG) 

Communication within the body of mammals takes place via both electrical and chemical 

signals. Electrophysiology is the branch of physiology that studies the electrical activities which are 

associated with bodily parts. The recording of electrophysiological data is performed by placing 

electrodes at the corresponding areas of interest. By this method, there are numerous systems 

developed which are able to monitor the electrical activity and corresponding electrophysiological 

data in various organs such as heart, brain, eyes, muscles, and stomach [2 – 4]. 

Electroencephalography (EEG) is an electrophysiological method which is used in order to 

monitor the electrical activity of the brain by placing electrodes on the external surface of the scalp. 

EEG records variations of voltage caused by the flow of ionic current in the interior of the brain’s 

neurons. 

Hans Berger is credited as being the inventor of EEG, to which he gave the name. Based on a 

small laboratory in Jena, he recorded the first human EEG in 1924. He achieved this feat by using a 

Siemens double-coil galvanometer, with a sensitivity of 130 μV/cm. Because of doubts of the 

validity of his work, it wasn’t until 1929, 5 

years later after his initial discovery that he 

published his findings under the title “On the 

Electroencephalogram of Man”. His findings 

were independently confirmed by British 

scientists Edgar Douglas Adrian and B. H. C. 

Matthews in 1934. Some very important 

findings of Berger besides EEG include the 

discovery of alpha waves, the alpha wave 

blocking phenomenon, the first EEG 

recordings of sleep and many more.  

 

 

 

 

2.1 EEG Signals and their Characteristics 

As mentioned above, EEG measures the electrical activity of the brain, otherwise called 

brainwaves. These brainwaves are divided into the following categories, depending on their 

frequencies [5]: 

• Delta Waves [0 – 4Hz]: Grey Walter was the first to assign the term “delta waves” to 

particular types of slow waves recorded in the EEG of humans. The delta term is associated with a 

frequency range rather than phenomena generating specific electrographic patters. Until now, there 

are two primary sources of delta activities: one originating in the thalamus and another one in the 

cortex. They are prevalent during sleep or anesthesia. 

• Theta Waves [4 – 7Hz]: First recorded in the hippocampus of epileptic patients by 

using indwelling electrodes and also using Magnetoencephalography (MEG) in normal subjects. 

Studies have shown that subjects had an increased frequency and rhythmicity of hippocampal delta 

while they were writing instead of walking or sitting. Moreover, in another experiment, the 

amplitude, frequency and rhythmicity of theta waves increased during silent mental activity. 

 
Figure 1. Hans Berger, inventor of the EEG 
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• Alpha Waves [8 – 13Hz]: As mentioned above, alpha waves were the first brainwaves 

to be discovered, thus marking the beginning of EEG. Alpha waves originate from many different 

areas of the brain, but they are prominent in the occipital lobe, the visual processing center of the 

mammalian brain. Their amplitude is increased whenever the eyes of an individual are closed 

during wakeful relaxation. In contrast, the amplitude of alpha waveforms is diminished for the 

duration of sleep or sleepiness and also when the eyes of an individual are open and mental effort is 

performed. This phenomenon, which was discovered by Berger is called alpha rhythm blocking, or 

alpha blocking. Typical amplitudes for alpha waves are ~100μV. 

• Mu Waves [8 – 13Hz]: Having the same frequency range as alpha waves, mu waves are 

prominent in the sensorimotor and motor cortex, areas of the brain which are separated by the 

central sulcus, otherwise known as the Rolandic fissure. Their amplitude increases during muscular 

relaxation and decreases during muscular movements or imaginary movements. Their amplitudes 

are approximately ~10μV. 

• Beta Waves [14 – 30Hz]: Seldom exceeding an amplitude of 30μV, beta waves are 

encountered mainly over the frontal and central regions of the brain. Beta activity on the central 

region can be motor activity since it’s related to the mu rhythm. Finally, during the entire 

maturational period, beta activity is relatively more prominent in females than in males. 

• Gamma Waves [30Hz]: Gamma waves are fast oscillations found during conscious 

perception. Due to their small amplitudes and high contamination from muscle artifacts their 

importance was overlooked until recently. Research studies suggest that gamma activity is involved 

in attention, working memory and long-term memory processes. 

In addition to brainwaves, some specific EEG signals occur due to stimuli being presented to 

the user. They include steady-state visual-evoked potentials (SSVEPs) and various event related 

potentials (ERPs). 

 

 

Figure 2. DIfferent types of brainwaves and their waveforms 
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2.2 EEG Recording Principles 

 A good starting question about EEG recording is: Where should the electrodes be placed on 

the scalp? This may seem like a simple question, but there a lot of implications resulting from poor 

electrode positioning or in different configurations between subjects. The most important drawback 

is that measurements from different subjects are hard to compare, since humans have different head 

shapes and sizes. For example, a hydrocephalic subject would have totally inconsistent 

measurements in relation to a healthy subject. It is therefore apparent that relative positioning has to 

be utilized.  

 The answer to the above problems is the 10-20 system or International 10-20 system. 

Although there are other configurations (10-10 system or configurations based on the application at 

hand), the 10-20 system is the primary configuration system used in EEG recording. The electrode 

positions are shown in Figure 3. 

 
Figure 3. International 10 - 20 system with relative positions distances 

 

The advantage of the 10-20 system lies in that the electrode positions are determined by 

features present in all humans, namely the inion, nasion and the left and right preauriculars. As seen 

in the figure, odd numbers refer to the left side of the head, while even numbers refer to the right 

side. ‘A1’ and ‘A2’ refer to the left and right earlobes. The ‘z’ positions refer to the midline of the 

head. Finally, ‘Fp’, ‘F’, ‘T’, ‘C’, ‘P’ and ‘O’ refer to the prefrontal, frontal, temporal, central, 

parietal and occipital areas of the brain, correspondingly [13]. 

 There are certainly a lot of requirements and restrictions in EEG recordings, because of their 

small amplitudes and susceptibility to noise. For example, within electrified buildings, the 50 or 60 

Hz electric field on human bodies can be 10 times larger than the EEG signal itself. Moreover, other 

biophysical signals, such as ECG and EMG occur in the same frequencies as EEG signals and they 

are also considered as noise. In addition, the impedance of the scalp diminishes the amplitude of the 

recorded signal. 
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Filtering plays a very significant role in overcoming many of the obstacles mentioned above. 

For the 50/60 Hz noise, a notch filter can be used to suppress that frequency. Moreover, bandpass 

filtering is standard in EEG applications in order to drop unwanted frequencies. Standard filtering 

settings for routine EEG are: 1 Hz for the low frequency filter and 50-70 for the high frequency 

filter. For the reduction of the scalp impedance, conducting gel or paste is placed between the scalp 

and each electrode. 

2.3 EEG Hardware 

As mentioned above, EEG signals are acquired through the placement of electrodes on the head. 

But what about the hardware that is used to acquire this tiny signal (microvolt scale) in a noisy 

environment? The integral components of the 

EEG hardware are the amplifier and the filter. 

The amplifiers used in electrophysiologic 

signals are instrumentation amplifiers. A typical 

instrumentation amplifier setup is shown in 

Figure 4. Their advantage over conventional 

amplifiers is the rejection of signals that are 

identical in both inputs, which are called 

common-mode signals and the amplification of 

differential-mode signals. Their usefulness will 

be demonstrated in the following example. 

Suppose we acquire a signal between the O1 and 

A2 points in the 10-20 system. It is well known 

that the earlobe is the most electrically ‘neutral’ 

part of the head. This means that the only signal that will be present in the earlobe will be the noise 

from outer sources. Of course, this noise will be also present in the O1 region, so this common-

mode signal will be rejected by the amplifier, resulting in the suppression of noise. Plus, the true 

EEG signal will be amplified. The relationship of the common-mode and the differential-mode 

gains is called common mode rejection ratio (CMRR). The higher this value is, the lower will the 

common-mode signal be present in the output of the amplifier. It can be defined as: 

 

Where  is the differential-mode gain and  is the common-mode gain. Finally, filtering the 

signal is necessary to keep only the wanted frequencies; in this case EEG frequencies [6].  

 With digital EEG, after the signal is acquired, it is converted to a digital signal by an ADC 

(Analog to Digital Converter) and is stored or displayed in order to be processed or evaluated 

further. 

 

Figure 4. Typical instrumentation amplifier 



Έλεγχος Κίνησης Ρομποτικού Οχήματος μέσω Ηλεκτρο-εγκεφαλικών Σημάτων 

ΠΑΔΑ, Τμήμα Η&ΗΜ, Διπλωματική Εργασία, Νικόλαος Κοροβέσης   19 

3 CHAPTER 2 : Machine Learning 

Traditional computer programs have their logic and function dictated a priori by well-defined 

commands, which are created by the programmers who made them. While this approach is 

satisfactory for most cases, the advancement of modern technology has paved the way for new 

applications where computers can operate in innovative ways by utilizing algorithms that mimic the 

functions or behaviors of complex biological systems.  

Machine learning is concerned with the question of how to construct computer programs that 

automatically improve with experience. By using sample data from the desired application, a model 

is built which makes predictions without being explicitly programmed to do so. Its advantage over 

conventional methods lies in the fact that some problems don’t have a specific solution or it is very 

hard to define one. Examples of such applications include computer vision, email classification, 

speech recognition, natural language processing and many others. The process in which a model is 

trained based on sample data is called learning.  

There are mainly three categories of learning that take place when training a machine learning 

model.  

• Supervised learning is the process in which the model is learning a function that maps 

the input to an output based on example input-output pairs. The aim of this method is for the model 

to be able to generalize from the training data to unseen data. Supervised training is used for 

classification and regression problems. 

• Unsupervised learning, in contrast to supervised learning, doesn’t use labeled data to 

train the model. Instead, provision is made for a task-independent measure of the quality of 

representation that the model is required to learn and the free parameters of the network are 

optimized with respect to that measure.  

• Reinforcement Learning, in which the learning of an input-output mapping is 

performed through continued interaction with the environment in order to minimize a scalar index 

of performance.  

3.1 Data and Feature Extraction 

3.1.1 Data and Datasets 

In order to expand on feature extraction techniques, we first have to define shortly what data 

is, how we can collect data and talk about datasets. Data represent information. One person’s height 

or weight can be defined as data for that person. Data can be stored in many formats, but since the 

rise of computing, most of the data in our world is stored in digital format. A collection of data is 

called a dataset. In the height and weight example, a collection of these characteristics from many 

people could be regarded as a dataset. Datasets are big tables of data where every row represents an 

instance or observation of an event, and every column different information about that instance. In 

the height and weight example every row would represent a person and there would be a total of 2 

columns for weight and height.  
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3.1.2 Features and Feature Extraction 

In machine learning terminology, every row of a dataset could be described as a feature 

vector and its constituent elements are called features. Most of the times these features are used to 

train classifiers so as to be able to make future predictions based on the previous observations 

contained in the dataset. In the weight and height example, a model could be used to determine a 

person’s sex based on these features. In order to achieve this, there would need to be another 

column in the dataset which is called the target column. Targets refer to what the actual class of the 

feature vector is. A trained model should be able to define the targets correctly based on the input it 

would get.  

It is important to note that in most of the times in real life, the useful information that is stored 

in the dataset is not readily available and it has to be extracted from it. Moreover, some data that is 

stored in the dataset may not be useful for our specific goal or even be redundant. The process of 

receiving the desired information for our task is called feature extraction. Feature extraction 

involves the use of algorithms to transform the data into some useful format, or retain only the 

useful characteristics for our designated task. Since the main purpose of this work is EEG signal 

classification, there will be a focus on feature extraction techniques for EEG signals. Some of the 

most widely used techniques will be mentioned later in this work.  

3.2 Neural Networks [7] 

In its most general form, an Artificial Neural Network (ANN), or simply Neural Network 

(NN) is a machine that is designed to model the way in which the brain performs a particular task or 

function of interest; the network is usually implemented by using electronic components or is 

simulated in software on a digital computer. Neural networks perform useful computations through 

a process of learning. To achieve good performance, neural networks employ a massive 

interconnection of simple computing cells referred to as “neurons” or “processing units”. Thus, a 

definition of a neural network viewed as an adaptive machine can be the following: 

A neural network is a massively parallel distributed processor made up of simple processing 

units that has a natural propensity for storing experiential knowledge and making it available for 

use. It resembles the brain in two respects: 

 1. Knowledge is acquired by the network from its environment through a learning process. 

2. Interneuron connection strengths, known as synaptic weights, are used to store the acquired 

knowledge.  

The fundamental processing unit of a neural network is the neuron, inspired by the biological 

neurons that make up the complex networks in our brains. Below, in Figure 5, a non-linear model of 

a neuron is shown. This model was introduced by Warren McCulloch and Walter Pitts in 1943.  
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Figure 5. Non-linear model of a neuron 

 

As it’s evident from the picture above, the fundamental building blocks of this neuronal model are 

the following: 

 Synapses, which are characterized by their respective synaptic weights. A signal  x_j at the 

input of synapse j connected to neuron k is multiplied by the synaptic weight w_kj.Unlike 

the weight of a synapse in the brain, weights in artificial neurons take positive and negative 

values. 

 Adder, which sums the input signals, weighted by the respective synaptic strengths of the 

neuron. 

 Activation function, which limits the amplitude at the output of a neuron. There are many 

activation functions used in neural networks, some of which are: 

o Sigmoid function, which limits the output in the range [0, 1]. The most common example 

of sigmoid functions is the logistic function, which is characterized from the equation, and 

is depicted in Figure 6 below: 
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Figure 6. Sigmoid activation function 

 

 

o Hyperbolic tangent function, which limits the output in the range [-1,1]. Its advantage is 

that negative inputs will be mapped strongly negative and that zero inputs will be mapped 

near zero. It’s mainly used in classification between two classes. Figure 7 shows the graph 

of the hyperbolic tangent function: 

 

 

 

Figure 7. Hyperbolic tangent activation function 
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o Rectified Linear Unit (ReLU) function, which bounds the input only for negative 

numbers. The range of the function output is [0, ∞]. The ReLU is one of the most used 

activation functions in the world at the moment, primarily in convolutional neural 

networks and deep learning. The equation and graphical depiction for the ReLU are 

shown below (Figure 8). 

 

 

 

Figure 8. Rectified Linear Unit (ReLU) function 

 

 

 Bias, which is denoted by . The bias has the effect of increasing or lowering the net input of 

the activation function, depending on whether it is positive or negative, respectively. 

Mathematically, the neuron  can be successfully described by the pair of equations shown 

below: 

 

 

 

where  are the input signals,  are the respective synaptic weights 

of neuron ,  is the output of the summer and  is the output signal of the neuron. 
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3.2.1 Perceptron 

The most famous algorithm for training a neuron is called the perceptron. It was proposed in 

1958 by Frank Rosenblatt, an American psychologist. It is based on the McCulloch – Pitts model, 

which was described above. A summary of its convergence algorithm is shown below: 

  

   

   

   

   

   

1. Initialization. We start by initializing the weights to a value; 0 is most commonly used. 

Afterwards, we compute the following for a step n=1, 2, … 

2. Activation. In the n time step, activate the perceptron by applying the input vector x(n) and 

the desired output d(n). 

3. Calculation of the real output. Compute the real output of the perceptron according to: 

 

where  is the sign function. 

       4. Weight vector update. Update the weight vector of the perceptron according to the 

following: 

 

where 

 

       5. Continuation. Increment the timestep n by 1 and go to step 2. 

 

It is very important to note that a perceptron can only classify linearly separable patterns 

successfully. 

We can introduce a cost function to the above algorithm which allows for search based on a 

gradient vector. Specifically, we define the perceptron cost function as follows: 
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where X is the total of samples x which are classified wrongly by a perceptron which uses w 

as its weight vector. If all samples are classified correctly, then the set X is an empty set. The main 

characteristic of this cost function is that is it differentiable in respect to the weight vector. 

Consequently, differentiating the function J(w) with respect to w, we get the gradient vector: 

 

 

where the gradient 

 

In the steepest descent method, the weight adjustment in every timestep is applied in the opposite 

direction with respect to the gradient vector ∇J(w). Consequently, the algorithm assumes the form: 

 

The above algorithm can be described as a batch algorithm because for each timestep, a group of 

falsely classified samples is used for the calculation of the adjustment. 

3.3 Multilayer Perceptrons 

After having laid the foundations of the perceptron, it’s time to move on to more complex 

structures of networks, called Multilayer Perceptrons (MLPs). MLPs have 3 basic characteristics: 

 

1. Every neuron model contains a non-linear, differentiable activation function. 

2. The network has one or more layers which remain ‘hidden’ from the input and output 

nodes. 

3. The network displays high connectivity, the extent of which is determined from the 

synaptic weights of the network. 

 

 Due to the high complexity that arises from these characteristics, theoretical analysis of the 

network can prove to be an arduous task. This in turn leads to an increased difficulty in the learning 

process of the network.  

 As a historical note, it is important to state that the shift from a single layer perceptron to a 

multilayer perceptron had been an ongoing problem for AI research scientists in the 20th century 

since their inception from Rosenblatt. The most important factor that stifled the advancement of 

multilayer perceptrons was the inability of scientists to figure out a way to train those networks 

reliably. Moreover, the book Perceptrons by Marvin Minsky and Seymour Papert, published in 

1969 dealt a devastating blow to the flourishing AI research at the time, by criticizing the 

capabilities of neural networks and thus, interest and funding in AI research rapidly declined until 

the early 1990s. This period of time came to be known as the AI winter, gaining its name from the 

term Nuclear winter. 
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One of the major breakthroughs that led to the rise of popularity of neural networks was the 

development of the backpropagation algorithm during the 1980s. Backpropagation involves two 

phases, the feedforward phase and the backpropagation phase. In order two understand these two 

phases, we have to introduce two types of signals that occur into an MLP. 

• Function signals, which are fed on the network input, and propagates through the 

network, producing an output. 

• Error signals, which originate from an output neuron and propagate backwards, layer 

by layer.  

Every hidden or output neuron of an MLP is designed to form two computations: 

• The computation of the function signal which appears on the output of each neuron, 

which is expressed as a linear non-continuous function of the input signal and the synaptic weights 

related with that neuron. 

• The computation of an approximation of the gradient vector, which is needed for the 

backpropagation phase. 

Below, the mathematical expressions for the analysis of the BK algorithm will be formulated. 

The basis for this will be the signal flow graph of a Multilayer Perceptron depicted on Figure 9 

below. 

 

 

 

Figure 9.  Signal flow graph of a multilayer perceptron 

 

Here, the neuron j is fed by a set of function signals which originate from a neuron layer to its 

left. Consequently, the local field produced at the input of the activation function relative to the 

neuron j is: 
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where m is the total number of inputs (not including the bias) which are applied to neuron j. The 

function signal at the output of neuron j is: 

 

The BK algorithm performs a correction on the synaptic weight , , which is 

proportional to the partial derivative (using the chain rule):  

 

  is called total instantaneous error energy and is basically a cost function, which means 

that by minimizing it, the output error will be minimized too, leading to increased performance of 

the network.  is defined as: 

 

 

The set C includes all the neurons in the output layer. The partial derivative  

represents a sensitivity factor, which determines the search direction in the weight space for the 

weight . In simpler terms, we want to adjust the weights in a way that minimizes the cost 

function. Next, the error  is defined as: 

 

Thus 

 

The function signal  on the output of a neuron j is defined as: 

 

Where  is the activation function and  is the local field which is fed in the 

activation function, defined as: 
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This formula is almost identical to the single layer perceptron, but instead of ,  is 

used to note that the output of the previous layer acts as an input to the next layer. By using the 

above, we know that: 

 

 

and 

 

Finally, by taking all the above formulas into account, we can derive the following: 

      (1) 

 

The correction  which is applied into  is defined by the delta rule: 

        (2) 

Where η is the learning rate of the algorithm. The negative sign is used to indicate a gradient 

descent into the weight space (i.e., a direction which will minimize the cost function). The local 

gradient can be defined as: 

       (3) 

Through formulas (1) and (3), formula (2) can be rewritten as: 

 

Depending if the neuron is a hidden or an output neuron, we get the following: 

, if neuron j is an output neuron 

, if neuron j is a hidden neuron 

Now that the above relationships were established, the two phases of the backpropagation 

algorithm can be explained. 

• In the feedforward phase, the synaptic weights do not change throughout the whole 

network and the function signals of the network are calculated for every neuron layer. When the 

output layer is reached, the error is calculated based on the desired and the real output of the 

network. 
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• The backpropagation phase starts at the output layer, sending the error signals to the 

left in all of the network layers and layer by layer, calculating the local gradient recursively. During 

this phase, the synaptic weights are also adjusted accordingly. 

Training can be terminated when one or more stopping conditions are met. Below an 

overview of the backpropagation algorithm will be listed. 

 

 

        1. Initialization. The synaptic weights are chosen from a uniform distribution 

        2. Training examples presentation.  An epoch of training examples is shown to the network. 

        3. Forward computation. The local fields and function signals of the network are computed, 

layer by layer. Then, the error is calculated at the output layer for each neuron. 

        4. Backward computation. The local gradients of the network are computed, which are 

defined as: 

 

        the weights are adjusted according to the delta rule 

 

        5. Iteration. Repeat steps 3 and 4, presenting new training examples to the network, until the 

stopping criterion is satisfied. 

 

3.4 Variations and Applications of Neural Networks 

Since research on neural networks is ongoing, a plethora of variations have been developed 

over the years, which target different applications.  

Radial Basis Function (RBF) Networks, which in their simplest forms consist of three 

layers, the input layer the output layer and the hidden layers. The activation functions of the hidden 

layers are Gaussian functions. RBF networks are distinguished from other neural networks due to 

their universal approximation and faster learning speed. They are mainly used for function 

approximation and systems control. 

Recurrent Neural Networks (RNNs), are a type of neural networks which use sequential data. 

Their main difference over feedforward neural networks is that the outputs of neurons are fed back 

to the neurons of the previous layer. They are mainly used in the fields of Natural Language 

Processing (NLP) and speech recognition.  
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Convolutional Neural Networks (CNNs), feature the convolution and the pooling layers. The 

convolution uses filters that perform convolution operations as it is scanning the input. The 

resulting output is called the feature map. The pooling layer is a downsampling operation, typically 

applied after a convolution layer, which does some spatial invariance. They are mainly used for 

image classification and object recognition. 

Generative Adversarial Networks (GANs), are composed of a generative and a discriminative 

model, where the generative model aims at generating the most truthful output that will be fed into 

the discriminative which aims at differentiating the generated and true image. They are mainly used 

in image and music generation and synthesis and text-to-image translation. 
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4 CHAPTER 3 : Brain-Computer Interfaces 

A Brain-Computer Interface (BCI) is a system that enables communication between brain and 

machines. A BCI, in order to perform its purposes, records brain signals, interprets them and 

produces corresponding commands to a connected machine [8]. BCI technology is used in various 

applications, such as security and authentication, education, neuromarketing and advertisement, 

games and entertainment and several medical applications, such as cognitive neuroscience, brain-

related prevention and diagnosis of health problems, rehabilitation and restoration [9 – 12]. 

A BCI provides an interconnection platform that supports the full duplex communication 

between the brain and an external device. According to the way that BCIs use to set up the brain-

device interconnection, they are classified as non-invasive or invasive. Non-invasive BCIs use 

electrodes placed on the scalp. They are easy and safe to use, low-cost, portable, and offer a 

relatively high temporal resolution. Invasive BCIs use electrodes implanted in the interior of the 

scalp. Comparatively to non-invasive BCIs, they offer higher values of amplitude, spatial resolution 

and resistance to noise. However, they require neurosurgery operations and they are both unsafe and 

expensive. Furthermore, scar tissue decreases the quality of signals received. Practically, non-

invasive BCIs offer are used more often. 

There are various non-invasive methodologies used in BCI technology, such as Positron 

Emission Tomography (PET), functional Magnetic Resonance Imaging (fMRI) and Near-Infrared 

Spectroscopy (NIRS), which study changes made in blood flow, magnetoencephalography (MEG), 

which monitors the magnetic action of the brain, and EEG, which records the electric activity of the 

brain. Both NIRS and fMRI BCIs offer high spatial and temporal resolution, but poor temporal 

resolution. Moreover, MEG and PET BCIs offer high spatial and temporal resolution. However, 

PET BCIs require the inoculation of a radioactive constituent into the bloodstream. Furthermore, 

both fMRI and MEG methods rely on the use of equipment which is not only costly, but also huge. 

EEG BCIs are by far the most popular type, because, despite their relatively poor spatial resolution, 

they have high temporal resolution, low-cost and easy installation [9]. 

Moreover, BCIs are classified as either exogenous or endogenous, according to the nature of 

input signals. Exogenous BCIs analyze the brain activity created due to external stimuli. They are 

easy to set up and offer high bit rates, but they need the continuous response of the user to outward 

incitements which may be either tiring, or even unfeasible. Endogenous BCIs use self-regulation of 

brainwaves without external stimuli. They provide lower data transfer rates but they can be operated 

via free self-control even by users with sensory organs affected or suffering from motor neuron 

diseases [13]. 

Similarly, BCI systems are classified, according to the method used for input data processing, 

as synchronous or asynchronous. Synchronous BCIs analyze the brain signals only after a specific 

prompt and during predefined time intervals. Thus, the overall process is better organized and the 

user is free to make any kind of movements, which would produce artifacts, when brain signals are 

not observed. They also require minimal training and have stable performance and high accuracy. 

Asynchronous BCIs inspect brain signals successively, thus letting the user act at free will. 

Therefore, they offer more natural human-machine interaction. However, they are more complex in 

design and evaluation and require extensive training. Moreover, their performance may vary 

between users, and their accuracy is not very high [13].  
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4.1 Brainwaves for EEG-BCIs 

The most commonly used types of brain waveforms to develop EEG-based BCIs are P300, 

SSVEP, ErrP, ERD/ERS and alpha brainwaves [14]. 

P300 is an event-related positive potential deflection which is caused by the reaction to a 

desired external stimulus of visual, auditory, or tactile modality. P300 waveforms are typically 

measured, with a latency of roughly 250 to 500 ms between stimulus and response, by using 

electrodes located over the parietal lobe of the scalp. 

Steady state visually evoked potentials (SSVEP) are brain waveforms of exogenous type that 

are generated as responses to visual stimulation at specific frequencies ranging from 3.5 Hz to 75 

Hz. Considering that SSVEP signals often have their highest values at medial occipital electrode 

sites, they are supposed to originate mostly from the primary visual cortex. 

Event-related desynchronization and event-related synchronization (ERD/ERS) waves are 

endogenous brain signals, which are generated when performing mental tasks, such as motor 

imagery or mental arithmetic. They can be measured at different cortical locations. 

Error-related potential (ErrP) waveforms are brain signals which are activated every time 

that a subject identifies the commitment of an error which has been made either by himself/herself 

or by another individual during various choice tasks. Waves of this kind can be captured by 

applying electrodes on various brain regions including the anterior cingulate cortex, anterior insula, 

inferior parietal lobe, and intraparietal sulcus, as well as other regions of the cortex, subcortex and 

cerebellum. 

Alpha brainwaves are brain signals which have their amplitude increased whenever the eyes 

of an individual are closed during wakeful relaxation. In contrast, the amplitude of alpha waveforms 

is diminished for the duration of sleepiness and sleep and also when having eyes opened while 

mental effort is performed. This phenomenon is usually referred to as alpha rhythm blocking. Alpha 

brain waveforms can be monitored by applying a number of electrodes on both sides of the 

posterior segments of the scalp, where the occipital lobe, which is the center of visual processing 

activities in the brain, is positioned. 

4.2 BCI Operation 

The operation of a typical BCI system is based on the sequential execution of a number of 

procedures, which namely are signal acquisition, preprocessing, feature extraction, classification, 

translation, and feedback to operator [13, 14], as shown in Figure 10. 

 
Figure 10. Block diagram representing the processes performed in a typical Brain-Computer Interface 
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In EEG-BCIs, signal acquisition is performed by using electrodes which are positioned along 

the scalp of the user. Normally, the settlement of electrodes on the scalp is performed in compliance 

to the International 10-20 system. According to this system, electrodes are located on the scalp at 

10% and 20% of a measured distance from the reference spots including nasion, inion, left and right 

preauricular, as mentioned earlier [13]. 

Preprocessing is the procedure which is carried out in order to reduce the noise from the 

signal and apply some filtering and other methods in order to remove artifacts which are caused by 

endogenous sources, such as motions of eyes, muscles and heart, and exogenous sources, such as 

power-line coupling and impedance mismatch [15]. Preprocessing is usually performed by using 

low-pass, high-pass, band-pass or notch filtering. However, the use of such filters may eliminate 

useful elements of EEG signals having the same frequency band as artifacts [16]. 

In feature extraction, specific features of the signals in time domain or/and frequency domain 

that can expressively differentiate specific classes are extracted and positioned into a feature vector 

in order to enable the classification phase which follows. Autoregressive (AR), Hjorth and EEG 

signal power are commonly used feature extraction techniques [17]. 

During the classification phase, a properly built algorithm is used. This algorithm 

distinguishes between classes which correspond to various brain activity patters by deciding to 

which of these classes every feature vector suits best. Neural networks (NNs) are widely used as 

classifiers in BCIs because they provide the ability to approximate nonlinear decision boundaries 

[18, 19]. Alternatively, linear discriminant analysis (LDA), support vector machines (SVM), and 

statistical classifiers may be used [20]. The advantage of LDA is that it is a simple-to-use 

probabilistic approach based on Bayes’ Rule. On the other hand, NNs have the advantage of being 

able to approximate nonlinear decision boundaries. In cases where a small amount of training data 

is available, the use of SVM is a very good choice. Finally, statistical classifiers have the ability to 

represent the uncertainty that is inherent in brain signals. 

During the translation phase, the extracted signal features are converted into particular 

commands to the device(s) under control, through the use of dedicated translation algorithms. 

Specifically, these algorithms have the ability not only to adapt to the continuing variations of the 

signal features, but also to ensure that the complete device control range is covered by the specific 

signal features from the user. 

Finally, in the feedback to operator phase, the final outcome of the overall operation of the 

BCI system is transferred back to the system operator, so that the performance of the system can be 

evaluated. 

4.3 BCI-Based Robot Control 

An EEG-based brain-controlled robot is a robot that uses an EEG-based BCI to receive 

control commands from its human operator. EEG-based brain-controlled mobile robots can support 

the movement of both elderly people and people who are severely disabled with destructive 

neuromuscular disorders, such as amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), or 

strokes. 

 There are two main classes of EEG-based brain-controlled assistive robots which namely are 

brain-controlled manipulators and brain-controlled mobile robots. Similarly, assistive mobile 

robots are classified in two categories according to their mode of operation [14]. 
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The first category consists of assistive mobile robots which operate under direct BCI control. 

Robots of this kind are controlled exclusively via the commands that their users send to the robots 

controlled via BCI modules, without any additional assistance by robot intelligence elements. For 

this reason, they are less expensive and complex to develop and their users keep the absolute 

motion control. 

 On the other hand, the overall performance of these brain-controlled mobile robots mainly 

depends on the performance of the BCIs, which in many cases may have inadequate speed of 

response and accuracy. Furthermore, the demand for continuous production of motor control 

commands by the users may be extremely tiring for them. 

 The initial example of a robot of this kid was presented in [21] where the left and right turning 

movements of a robotic wheelchair were directly controlled by corresponding motion commands 

translated from user signals. 

 Similarly, in [22] a brain-controlled mobile robot was able to perform forward, left, and right 

motions by using a BCI based on motor imagery. 

 Moreover, in [23] the motion control of a wheelchair is performed via a BCI, which captures 

alpha brainwaves. Specifically, a set of icons corresponding to predefined command are 

sequentially displayed on a screen and the user is able to select the desired command by closing 

his/her eyes as soon as its corresponding icon appears on the display unit. 

 The second category consists of assistive mobile robots which operate under shared control. 

In the robots of this category the control is performed by combining a BCI system along with an 

intelligent controller, such as an autonomous navigation system. Due to their enhanced intelligence, 

robots of this type are safer and less tiring for their users and more accurate in interpreting and 

executing their commands. On the other hand, their development is of higher cost and 

computational complexity. 

 A typical example of shared control in assistive mobile robots is proposed in [24]. In this 

system, the operator, by using a SSVEP BCI system, has the ability to send commands in order to 

move a robotic wheelchair in four directions (forwards, backwards, left and right), while an 

autonomous navigation system executes the delivered commands. 

 Similarly, in [25], by using a P300 BCI, the operator uses a list of predefined location in order 

to select the desired location and the sends this selection to an autonomous navigation system, 

which guides a robotic wheelchair to the selected location. The limitation of the specific system is 

that it is able to be operated only in a known environment. 

 Likewise, in [26] shared control is used. Specifically, the combined use of a P300 BCI 

alongside with an autonomous navigation system is proposed in order to perform the motion control 

of a robotic wheelchair in an environment which is unknown. Moreover, the user has the ability to 

make the wheelchair turn either left or right by focusing correspondingly on one of two relative 

icons at a predefined visual display. 

 In [27] three mental tasks, which namely are the imagination of right- or left-hand movements 

and the generation of words beginning with the same random letter, we used in a BCI system 

applied to a robotic wheelchair. The system developed, which interacts with the user by using a 

PDA screen and speakers, is able to guide the robotic wheelchair both in known and unknown 

environments. 
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5 CHAPTER 4 : Robot Motion Control via EEG Signals 

As was mentioned in the introduction, the purpose of this work is the development of a 

system which performs motion control in a mobile robot in accordance to the eyes’ blinking of a 

human operator via a synchronous and endogenous Electroencephalography-based Brain-Computer 

Interface, which uses alpha brain waveforms. In order to implement this system, a variety of 

software and hardware technologies were utilized. It is therefore important to give a brief 

description of all those tools and their main uses before moving on to the detailed description of this 

work. The technologies will be divided into hardware and software parts. Beginning with 

hardware, the following were used: 

Hardware 

• Raspberry Pi, is a small, yet very powerful single board computer that can also interact 

with its environment through the use of GPIO pins. Over the past years its popularity has risen 

immensely, being used in many maker projects, such as home automation, networking, homemade 

weather forecasting stations. It is also used in education and for few commercial purposes. It 

includes its own operating system called Raspberry Pi OS but can also run many other operating 

systems. 

 

Figure 11. Raspberry Pi 4 (Model B) 
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• Arduino UNO, is a single board microcontroller which allows for rapid prototyping and 

ease of use. It’s easy to program by using the Arduino language, which is similar to C, but with 

many built-in functions that automate a lot of procedures. The Arduino UNO is based on the 

ATmega328P microcontroller. 

 

 

Figure 12. Arduino UNO 

 

 

• OpenBCI Ganglion, is a high quality, affordable biosensing device [28]. It has 4 high-

impedance differential inputs, a driven ground, a positive and a negative voltage supply. The inputs 

can be used as individual differential inputs for measuring EMG or ECG, or they can be 

individually connected to a reference electrode for measuring EEG. Data is sampled at 200Hz on 

each of the 4 channels. Gold-plated cup electrodes were also bought, which are used for EEG 

recording. A conductive gel has to be used in order to lower the impedance between the electrodes 

and the scalp. In this work, a Raspberry Pi 3 model B was used initially for the implementation, but 

was later replaced with then newest Raspberry Pi 4 model. 

   

Figure 13. OpenBCI Ganglion 
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• Dagu Rover 5 Chassis, manufactured by Pololu Electronics, is a durable robot platform 

with caterpillar treads that let it drive over many types of surfaces and uneven terrain. A robot or 

motor controller is required to drive the two built-in DC motors. A unique feature of this chassis is 

the ability to adjust its height by changing the angles at which the gearbox assemblies are mounted 

on the body. The DC motors’ free run current is 210 mA and their stall current is 2.4 A at 7.2 V. 

The maximum speed is 25 cm/s at 7.2 V. 

 

Figure 14. Dagu Rover 5 chassis 

 

• L298N Motor Driver, is an H-bridge Module, which allows for control of speed and 

direction of two DC motors, or the control of a bipolar stepper motor. It can be used with motors of 

voltages between 5V and 35V. The maximum current per channel is 2A, the peak current is 3A, and 

a 5V regulator is included if the motor power is more than 7V. 

 

Figure 15. L298N motor driver module 
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• RJ-45 Cable & HDMI Cable & USB Cable, which are used for the connections. RJ-

45 cables are used primarily in Ethernet networking. HDMI is a proprietary audio/video interface 

for transmitting uncompressed video and compressed or uncompressed digital audio data from an 

HDMI-compliant source device. Universal Serial Bus (USB) is an industry standard that establishes 

specifications for cables and connectors and protocols for connection, communication and power 

supply between computers, peripherals and other computers. 

Software 

• MATLAB, is a proprietary multi-paradigm programming language and numeric 

computing environment developed by MathWorks. MATLAB allows matrix manipulations, 

plotting of functions and data, implementation of algorithms, creation of user interfaces, and 

interfacing with other programs written in other languages. Through the use of toolboxes, the 

capabilities of MATLAB can be extended, providing methods for specific scientific fields, such as 

computer vision, machine learning, signal processing and more. These methods allow for rapid 

prototyping of projects. In this work, it was used for prototyping purposes and for creating datasets. 

This was made possible by analyzing the signals using EEGLAB, a toolbox for EEG signal 

processing and analysis.  

• Python, is an interpreted, high-level and general-purpose programming language. It 

emphasizes code readability and simplicity. It is very easy to learn compared to other programming 

languages, but also very powerful and popular. This has led to the creation of many libraries for 

Python, which have extended its capabilities beyond its general scope. The libraries that were used 

in this work include: NumPy, which is used for numeric computing and utilizes matrices, allowing 

for very fast computations, Matplotlib, which is used for data visualization and plotting, SciPy, 

which is used for scientific computing and contains many modules for tasks common in science and 

engineering. 

• TensorFlow & Keras. TensorFlow is an open-source software library for machine 

learning. It can be used across a range of tasks but has a particular focus on training and inference 

of deep neural networks. It was originally developed by researchers and engineers working on the 

Google Brain team. It provides Python and C++ APIs. Keras is a deep learning API written in 

Python, running on top of TensorFlow. It was developed with a focus on enabling fast 

experimentation. 

• Node.js, is an open-source, cross-platform, JavaScript runtime environment. It executes 

JavaScript outside of a browser. It lets developers use JavaScript to write command line tools and 

for server-side scripting. 

• OpenBCI GUI, which is OpenBCI’s software tool for visualizing, recording and 

streaming data from the OpenBCI boards. Data can be displayed in live-time, played back, saved to 

the computer in .txt format. It was developed with the Processing language, which is in turn based 

on Java. The OpenBCI GUI environment is shown in the figure below. 
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Figure 16. OpenBCI GUI 

 

The implementation of this project will be broken down into parts in accordance with the 

block diagram that represents the processes that take place in a typical Brain-Computer Interface. 

The reasoning behind every technology that was used will be mentioned as well as setbacks that 

were encountered. 

5.1 Signal Acquisition 

In order to acquire the necessary EEG signal, the OpenBCI Ganglion was used along with the 

gold cup electrodes. As for the conductive paste, some was provided by the department of 

neurology of the General Oncological Hospital of Kifisia “Agioi Anargyroi”. The quantity was 

enough for performing initial tests but it was soon depleted. For this purpose, a custom paste was 

made by combining some soap powder with ultrasound gel. The paste that was created 

outperformed the commercial paste but would dry relatively fast. That wasn’t a problem though, 

because once the electrodes were placed on the scalp with the paste, the input impedance wouldn’t 

change despite the dryness of the paste. Moreover, the paste would make the electrodes stick on the 

scalp better than the commercial paste. The products that were used are shown in the figure below. 
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Figure 17. From left to right: Ten20 conductive paste, soap powder, ultrasound gel 

 

Since the signal that was recorded was an EEG signal, all the inputs were individually 

connected to a reference electrode. Before mentioning the final configuration that was used, it is 

important to mention the project’s initial purpose, which was to move the robot using Mu waves, 

which, as it was mentioned in the introduction, originate from the motor cortex. The central idea to 

this is that when a subject moved his/her right arm, the robot would turn right, and when the left 

arm was moved, the robot would turn left. Finally, the robot would move forward when the subject 

would move his/her legs. For this implementation, the following configuration was adopted based 

on the figure below: 

 

Figure 18. The motor homunculus on the precentral gyrus. The motor cortex can be seen in the lateral view of the 

cerebral cortex 
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• An electrode was placed in the ‘Cz’ region for recording Mu waves from leg movements. 

• An electrode was placed in the ‘C4’ region for recording Mu waves from left arm 

movements. 

• An electrode was placed in the ‘C3’ region for capturing Mu waves from right arm 

movements. 

It is important to note that for the arms’ movements, these positions were chosen because the 

hemispheres of the cerebrum and the thalamus represent mainly the contralateral side of the body. 

After extensive trials and signal processing, it was concluded that due to equipment 

limitations, Mu waves couldn’t be captured reliably, so alpha waves were chosen instead to be the 

brain control signal. As it was mentioned before, alpha waves are the prominent EEG wave pattern 

in awake adults while having eyes closed in the frequency range of 8-13 Hz. Generally, EEG-BCIs 

based on rhythms like alpha waveforms are less sensitive to artifacts than other types due to the fact 

that signal monitoring is limited in thin frequency bands. For this reason, a high signal-to-noise 

ratio (SNR) is achieved [15]. Thus, the electrode configuration changed in the following way: 

• An electrode was placed in the ‘O1’ region. 

• An electrode was placed in the ‘O2’ region. 

In both configurations, the reference electrode was 

placed on the left earlobe (A1), while the ground 

electrode was placed on the right earlobe (A2). The 

specific positions were chosen because, although alpha 

rhythms are also generated in other parts of the brain, 

they are considered to exhibit greater amplitude in the 

posterior part of the brain, specifically at derivations 

‘O1’ and ‘O2’ [29]. As it was mentioned before, the 

amplitude of alpha brainwaves diminishes when 

subjects open their eyes. This phenomenon is called 

alpha blocking. By taking advantage of this, subjects 

can form n-bit binary sequences by opening or closing 

their eyes in 2-second intervals. Each bit interval is 

designated by an acoustic cue. 

 

Moreover, since this is a synchronous BCI, a 

button has to be pressed for the recording procedure to start. Increased alpha activity (eyes closed) 

corresponds to a binary ‘1’, while decreased binary activity (eyes open) corresponds to a binary ‘0’. 

As a proof of concept, 4-bit binary sequences were selected to demonstrate the effectiveness of this 

system. In total, 4 control signals were designated for 4 robotic movements as it can be seen in 

Table 1. 

 

Figure 19. Electrode placement setup 
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Table 1. Binary sequences with corresponding robotic movements 

Binary 

Sequence 

Robotic 

Movement 

‘1010’ Forward 

‘0101’ Reverse 

‘1100’ Left 

‘0011’ Right 

 

Following from the electrode placement and the control signal definition, the signals had to be 

recorded and stored in a file in order to create a dataset. For this purpose, the OpenBCI GUI and 

MATLAB were used. Firstly, by using the OpenBCI GUI, the signals were visualized and tests 

were performed to see if the changes in eyes opening/closing would cause a significant effect that 

would be able to be recorded reliably. EEGLAB was used extensively with its many tools and 

functions for EEG analysis. After this was confirmed, the control signals that were recorded were 

saved in a .txt file. It is important to mention that this was the first phase of the dataset creation 

since the signals had to be processed further to make this happen.  

The procedure mentioned in the paragraph above concerns the testing phase of the signal 

acquisition, which concerns the data collection in order to create the dataset. However, for the 

actual implementation, a different setup was used. First of all, it is important to note that the 

OpenBCI Ganglion transmits its data to a computer through the means of a Bluetooth connection. 

While the OpenBCI GUI automatically connects to the board and streams data easily, it is not 

suitable for a custom application. Thus, a script had to be created in order to stream the data from 

the board in real-time. OpenBCI offers many different SDKs in order to stream the data from the 

board directly at present, but at the time this project was developed, the main SDKs available were 

OpenBCI Python and OpenBCI Node.js.  

The Python library was chosen first, since the original goal of this project was to be 

developed solely using Python. Sadly, this was not possible because of the many problems this 

library had, making it unsuitable. It has since been deprecated and replaced by another library, 

BrainFlow, which offers bindings for C++, Python and Java. 

Since the Python library was not usable, the only remaining choice was the Node.js library, 

which proved to be quite versatile.  The script that was created would get the data from the board 

and encode them as JSON objects. Afterwards, with the use of the nanomsg binding for Node.js, the 

script could transmit the data through a TCP connection. This ensured that the data would be 

streamed reliably and more importantly, that many different scripts could get the data at the same 

time, which means that many different objects can be controlled with the same control signals. The 

Node.js script acts as the server in the TCP connection. 

On the other side, a Python script acting as the client in the TCP establishes a connection 

between the two scripts. As soon as a connection is established, the user can start the recording 

process with the push of a button or conclude the program execution. As soon as the recording 

process begins, an acoustic cue is played every 2 seconds in order to inform the user of the start of 
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each recording interval. The user can then close his/her eyes accordingly, depending on what move 

they want to execute. Since the data is received from the two channels, ‘O1’ and ‘O2’, they are 

stored in 2 different NumPy arrays. Moreover, the timestamps of those samples are stored in a 

NumPy array. Each array contains 1604 elements. The reason for this is the sampling frequency of 

the board, which is 200 Hz. This means that every 2-second interval accounts for 401 samples. So, 

for the whole 8-seconds of recording, 1604 samples are stored.  

Plotting the following signals in raw form from both regions ‘O1’ and ‘O2’ using matplotlib, 

we get the figure below. This signal corresponds to a ‘left’ movement. It is evident that by not 

filtering the signal, a conclusion on the sequence that was executed cannot be reached. Following 

from the signal acquisition, preprocessing and feature extraction of the acquired signals are the next 

steps for this project. 

 

Figure 20. Raw EEG signals as recorded from the board 

 

5.2 Preprocessing & Feature Extraction 

5.2.1 Preprocessing 

After the signals were recorded and stored in the NumPy arrays, the preprocessing phase 

began. In order to extract the desired alpha brainwaves from the EEG signals, filtering was applied. 

Specifically, 2 types of filters were utilized, one to remove the mains frequency component, which 

is 50 Hz and one to drop frequencies outside of the alpha range. 

In order to remove the mains frequency, a notch filter was used. Notch filters, also known as 

band-stop filters, reject a very narrow frequency band and leave the rest of the spectrum almost 

unchanged.  In order to define a notch filter, some parameters are needed. These are the cutoff 

frequency  and the quality factor . The following formula connects these two variables. 
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where BW is the bandwidth of the stopband. It is therefore necessary for the bandwidth to be very 

low in order to have a good notch filter. Since the cutoff frequency in this case is 50Hz, the quality 

factor was set to 35, thus giving a bandwidth approximately equal to 1.43 Hz, which is satisfactory 

for this application. The resulting signals from both regions of the brain are shown in the figure 

below for the movement ‘left’. 

 

 

Figure 21. EEG signals after notch filtering 

 

In order to drop the frequencies outside the alpha range, a band-pass filter was utilized. The 

required parameters to define this filter were the passband and stopband edge frequencies, the 

maximum loss in the passband and the minimum attenuation in the stopband. The passband of the 

filter was in the range of 5 – 15 Hz. The stopbands on both sides started 1 Hz away on each side. 

The maximum loss in the passband was set to 0.1 dB and the minimum attenuation in the stopband 

30 dB.  The final signals after both filters were applied are show in the figure below for the 

movement ‘left’. 

 

Figure 22. FInal EEG signals after both filters were applied 
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The SciPy Python library was used to create the two filters and filter the signal. For the 

notch filter, the scipy.signal.iirnotch() function was used. For the bandpass filter, the 

scipy.signal.iirdesign() function was used. It is evident from the function names that both filters are 

Infinite Impulse Response (IIR) filters. The reasoning behind this choice was that IIR filters work 

faster than Finite Impulse Response (FIR) filters and they require less memory space. 

In addition, the above SciPy functions require the frequencies to be normalized before being 

passed as inputs. The values are normalized from 0 to 1, where 1 is the Nyquist frequency . 

Since the sampling frequency of the system is 200 Hz, this is achieved by dividing all frequencies 

with the number 100. 

Signals from both electrodes were filtered with the notch filter and the bandpass filter 

consecutively. Then, the filtered signals were stored again in NumPy arrays for the feature 

extraction phase. From the figures above, it is easy to conclude that the signals correspond to a ‘left’ 

movement. 

5.2.2 Feature Extraction 

Since alpha wave blocking is the reduction of alpha waves’ amplitude, this change can be 

measured by transforming the EEG signal from the time domain to the frequency domain. This is 

achieved by computing the Discrete Fourier Transform (DFT) of the signal using the Fast Fourier 

Transform (FFT) algorithm. The DFT of a signal is defined as follows: 

 

where:  

 is the frequency coefficient (in complex form), 

  corresponds to the frequency (cycles per samples), 

  corresponds to the time unit, 

 is the input sequence. 

The DFT is computed using the scipy.fftpack.fft() function, which returns an array with the 

complex coefficients. Furthermore, the signal side spectrum magnitudes are calculated and stored. 

Then, the magnitudes for the alpha frequency range are then preserved and finally, summed. This 

process is repeated 4 times for each individual control signal; this is because control signals 

comprise of 4 2-second recording intervals.  

 Min-Max normalization is used to scale the features in the range of [0, 1], which are then 

saved as a dataset. The resulting feature vector consists of 8 amplitude sums, 4 for each channel 

(O1, O2). A total of 256 feature vectors are contained within the dataset. A visualization of an 

example feature vector for the movement ‘left’ is depicted in the figure below, where there are 8 

different values, 2 for each bit. It is fairly easy to distinguish each individual bit value; in this case 

‘1100’. 
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Figure 23. Bar chart showing the normalized sum of the FFT amplitudes for each EEG channel 

The exact same procedure described above is also followed for the robot movement but 

instead of being stored in the dataset, the feature vector is directly fed into the classifier input, 

which is the next phase of this work. 

 

5.3 Classification & Translation 

The classifier utilized for this work is a Multilayer Perceptron (MLP) neural network. The 

selection was made because MLP neural networks constitute a very popular machine learning 

technique and there is an abundance of successful applications of MLP neural networks in EEG 

signal classification and BCI research [30, 31]. 

The classifier built consists of an input layer with 8 neurons, since the feature vector contains 

8 amplitude sums, 4 for each channel. Furthermore, there are 4 neurons in the output layer because 

there are 4 available classes (forward, reverse, left and right). Moreover, there are 2 hidden layers, 

each one consisting of 100 neurons. 

The number of layers and neurons was determined by a trial-and-error procedure. 

Specifically, 1 – 3 hidden layers were considered. In addition, for each layer, the number of neurons 

examined was 20 – 200 with a step of 20. In total, 175 different network configurations were 

considered. It was concluded that a 2-hidden layer network with 100 neurons in each layer achieved 

the desired performance in terms of classification accuracy. A graphical depiction of the classifier 

built is illustrated in the figure below. 
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Figure 24. Structure of the neural network built 

 

 

The activation function for the hidden layers is the Rectified Linear Unit (ReLU). The 

advantages of ReLU include increased training speed and less suffering from the vanishing gradient 

problem [31]. As for the output layers, the sigmoid function was used, which bounds the output of 

each layer in the range of [0, 1]. This means that each neuron in the output layer produces 

probabilities of the input being on of the 4 commands. The command with the highest probability is 

selected.  

The loss function used to measure the prediction error of the network during training is binary 

cross-entropy [32], which is widely used in binary classification problems. It is defined as: 

 

where N is the number of samples,  is the target output, and  is the predicted output. The 

training batch size is 16 and 40% of the total data are used for validation. The number of epochs is 

100. Finally, the optimization algorithm used to minimize the prediction error by adjusting the 

weight of each neuron is Adam, using the default hyperparameter values, as described in [33]. All 

models were trained in TensorFlow [34], using the Keras API [35]. In the figure below, the neural 

network model training and validation loss is displayed. It can be distinguished that training could 

take place for a smaller number of epochs, since the loss is already at an acceptable value at around 

25 epochs. 
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Figure 25 Training and validation model loss 

After confirming the accuracy of this model with the tests, it is time to move on to the actual 

implementation. The model’s architecture, weights and all other necessary information are stored in 

HDF5 format. The NumPy arrays that hold the features are joined together and their shape is 

changed so as to be compatible with the neural network’s inputs. The network then classifies the 

features accordingly and outputs it’s prediction. This prediction is used to decide which movement 

will be executed.  

After the prediction is made, the computer connects to a Raspberry Pi via TCP and transmits 

the command. The decoded command is received by the Raspberry Pi which in turn, is connected to 

and Arduino UNO through a serial connection (USB). The command is sent to the Arduino, which 

moves the motors on the robot according to the predicted movement. Since the current required to 

drive the motors is quite high compared to the current that the Arduino can supply, an L298N motor 

driver is used. Each motor is activated for 2 seconds, which is the duration of each movement. The 

final setup is shown on the figure below.  

The Raspberry Pi could have been omitted entirely if the Arduino UNO was equipped with a 

Wi-Fi module such as the ESP8266, lowering the overall cost of implementation of this work. 

Nevertheless, with a Raspberry Pi on the robot, the range of options in future versions of this 

project can be widely extended, since the Raspberry Pi is a very powerful microcomputer. An 

example of this would be mounting a camera on the robot. 
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Figure 26. Final robot setup 

 

 

6 RESULTS & DISCUSSION 

The performance of the developed system was evaluated by using both offline and online data 

which were gathered through a series of experimental tests performed on 12 healthy subjects. 

6.1 Results 

6.1.1 Evaluation with Offline Data 

For the offline evaluation, the system was tested by using prerecorded data gathered from the 

same subjects used for recording the training data. Specifically, a small testing dataset of 50 feature 

vectors representing different movements was used. The neural network classified all of the 

movements correctly. 

6.1.2 Evaluation with Online Data 

After evaluating the system on offline data, a real-time performance analysis was carried out 

by using six female and six male subjects aged 20 to 28, and two female and two male subjects aged 

32 to 40 years. The specific subjects were different from those that were used for the classifier 

training and offline evaluation. For this purpose, an experimental process was carried out. The 

subjects were instructed to move the robot in the following order: forward, reverse, left and right 

consecutively. 

Each one of the 12 subjects was briefed shortly on how the BCI works and how to issue each 

movement command to the robot. A small number of trial runs were performed for the subjects to 
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get acquainted with the procedure. In total, 40 experimental tests were carried out. The total number 

of commands issued was 480. 

The results of the experimental procedure showed that the lowest classification accuracy 

achieved among the subjects was 85% while the highest one was 97.5%. The overall accuracy for 

all commands was 92.1%. The confusion matrix for the total number of commands considered for 

classification is illustrated in the figure below, where green diagonal cells correspond to commands 

that are successfully classified, the red cells correspond to incorrectly classified commands, the gray 

column on the right displays the precision and false recovery rate of the classifier, the gray row in 

the bottom expresses the recall and the false negative rate of the classifier, and the blue cell displays 

the overall accuracy. 

 

Figure 27. Confusion matrix for all issued subject commands 

 

Next, for analysis purposes, the experimental results were studied according to the gender and 

the age of the subjects that participated in the experimental procedure. 

 Specifically, the results were first grouped and analyzed separately for each gender. The 

confusion matrices for the female subjects and the male subjects are depicted in the two figures 

below respectively, where it is shown that the female subjects had a 1.6% higher classification 

accuracy compared to the male subjects (92.9% to 91.3%). 
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Figure 28. Confusion matrix for female subjects 

 

Figure 29. Confusion matrix for male subjects 
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Next, the experimental results were grouped and analyzed according to the age of the 

subjects. The first group contains the results that refer to the eight subjects aged between 20 and 28 

years and the second one the results derived by the four subjects aged between 32 and 40 years. The 

confusion matrices for the group 20 – 28 and the group 32 – 40 are depicted in the figures below, 

where it is shown that these two groups have almost the same precision accuracy (92.2% for the 

subjects aged 20 to 28 and 91.9% for the subjects aged 32 to 40). 

 

 

 

Figure 30. Confusion matrix for ages 20 to 28 
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Figure 31. Confusion matrix for ages 32 to 40 

 

6.2 Discussion 

The overall accuracy of 92.1% achieved by the system is considered to be rather satisfactory, 

especially given the fact that this rate is the result of real-time evaluation. It is also important to note 

that different subjects than the ones used for training were employed for this evaluation, a fact 

which attests to the robustness of the proposed method. 

 Better insight into the results can be gained by looking at the confusion matrix for all issued 

subject commands. It can be seen that the proposed approach not only achieves a satisfactory 

overall success rate, but also provides good performance per each individual movement. 

 Further analysis of inter-class performance shows that in 8.3% of the cases a ‘reverse’ 

command was issued, it was misclassified as a ‘right’ command. Moreover, the command ‘left’ was 

misclassified as a ‘forward’ command at a rate of 5.8% and the ‘right’ command as a ‘reverse’ 

command at a rate of 7.5%. This can be attributed to the fact that there is a short time delay until 

alpha waves amplitudes increase or decrease upon eye closing and opening, respectively. Therefore, 

these amplitudes are calculated into the next bit value, which can lead to errors. 

 A good indicator of the probability of a command being classified wrongly is the Hamming 

distance between each command, shown in the table below. Therefore, the ‘forward’ and ‘reverse’ 

commands are more likely to be misinterpreted into ‘left’ or ‘right’ commands and vice versa. 

Representing each command with more than four bits would increase the Hamming distance and, as 

a result, the system accuracy, but it would also increase the overall recording time since the duration 

of every bit recording is two seconds. 
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Table 2. Hamming distances between robot commands 

Command  
‘1010’ ‘0101’ ‘1100’ ‘0011’ 

Forward ‘1010’ 0 4 2 2 

Reverse ‘0101’ 4 0 2 2 

Left ‘1100’ 2 2 0 4 

Right ‘0011’ 2 2 4 0 

 

The categorization of the experimental results performed according to the age of the subjects 

showed that the deviation in the classification accuracy of the age groups is negligible, probably 

because of the relatively small age difference between the two groups. 

 However, female subjects in the experimental procedure followed, achieved relatively higher 

classification accuracy that the male ones. This can be attributed to the fact that women in general 

exhibit greater alpha amplitudes than men [36, 37]. 

 On the other hand, although the performance of the proposed system was found to be 

successful, it is true that all the participants during the experiments made in this research work were 

healthy. Therefore, in real-life conditions the effectiveness of experimental systems, like the one 

developed in this work, is questionable because it strongly depends on the health conditions of their 

users who are supposed not only to be disabled persons but also having disability of various levels. 

 Moreover, the achievement of successful performance of a mobile robot within the territory of 

a controlled laboratory environment does not guarantee its effectiveness in real-world applications 

where the conditions are variable and fuzzy. 

 Furthermore, the BCI systems that are based on a single signal may not be applicable to all 

users. Therefore, hybrid schemes which make combined use of various types of brain signals can be 

a more complex yet even more effective alternative. 

 

7 CONCLUSIONS & FUTURE WORK 

The work presented here, concerns the development of a control system which guides the 

motion of a mobile robot via a synchronous and endogenous EEG-based BCI, which uses the alpha 

brain waveforms of a human operator. 

 Experiments made, with the involvement of 12 subjects who had minimum training, proved 

that the system developed is able to guide the robotic vehicle under control in forward, left, 

backward and right directions according to the eyes’ blinking of its human operator. The accuracy 

achieved ranges from 85% up to 97.5% among the subjects while the overall accuracy was found to 

be equal to 92.1% for all commands. Further analysis of the experimental data related with the 

classification accuracy between different genders and age groups showed that female subjects 

performed slightly better than male ones (92.9% to 91.3%, respectively), while there was just a 

trivial difference detected between subjects aged from 20 to 28 years and subjects aged from 32 to 

40 years (92.2% to 91.9%, respectively). 
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Considering both the classification accuracy achieved, by applying real-time evaluation, and 

the robustness evinced by the fact that subjects involved during training were different than those 

during the experimental evaluation, it is concluded that this work has the potential to be 

incorporated in applications such as the motion assistance to handicapped persons. 

 In the future, this work can be improved by experimenting with hybrid BCIs where alpha 

brainwaves will be used along with brain signals of other type(s) such as P300 and SSVEP [38].  

 Moreover, task metrics, such as task completion time and path length traveled, and ergonomic 

metric, such as mental workload of participants, can be additionally used for the accomplishment of 

multivariable evaluation of the performance of the system built [14]. 

 Additionally, robot guidance can be assisted via additional sensors embedded into the robotic 

vehicle [39]. 

 The detrimental effect of artifacts on EEG data can be removed by using modern algorithms 

that combine source decomposition with blind source separation and adaptive filtering [40]. 

 Finally, enhanced performance can be achieved by applying advanced methods which have 

been proposed in order to add new knowledge to already learned models of robot semantic 

localization [41]. 
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