

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΕΚΤΙΜΗΣΗ ΑΝΤΙΣΤΑΣΗΣ ΟΛΙΣΘΑΚΑΤΟΥ ΜΟΡΦΗΣ V ΣΕ ΗΡΕΜΟ ΝΕΡΟ

RESISTANCE PREDICTION OF TYPE V PLANING HULL IN CALM WATER

Ονοματεπώνυμο Φοιτήτριας: Τσαγκάρη Ν. Άρτεμις

A.M.: 18393034

Επιβλέπουσα Καθηγήτρια: Σοφία Πέππα, Αν. Καθηγήτρια

Αθήνα, Ιανουάριος 2024

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ

Διπλωματική εργασία

«Εκτίμηση αντίστασης ολισθακάτου μορφής V σε ήρεμο νερό»

Συγγραφέας

Άρτεμις Ν. Τσαγκάρη (Α.Μ.: 18393034)

Επιβλέπουσα Καθηγήτρια

Σοφία Πέππα

Ημερομηνία εξέτασης

13/2/2024

Εξεταστική Επιτροπή

Σοφία Πέππα Αναπληρώτρια Καθηγήτρια Πα.Δ.Α. Θωμάς Μαζαράκος Επίκουρος Καθηγητής Πα.Δ.Α.

Ιωάννης Τίγκας Επίκουρος Καθηγητής Πα.Δ.Α.

ΔΗΛΩΣΗ ΣΥΓΓΡΑΦΕΑ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ

Η κάτωθι υπογεγραμμένη Τσαγκάρη Άρτεμις του Νικολάου και της Κωνσταντίνας, με αριθμό μητρώου 18393034 φοιτήτρια του Πανεπιστημίου Δυτικής Αττικής της Σχολής Μηχανικών του Τμήματος Ναυπηγών Μηχανικών, δηλώνω υπεύθυνα ότι:

«Είμαι συγγραφέας αυτής της διπλωματικής εργασίας και ότι κάθε βοήθεια την οποία είχα για την προετοιμασία της είναι πλήρως αναγνωρισμένη και αναφέρεται στην εργασία. Επίσης, οι όποιες πηγές από τις οποίες έκανα χρήση δεδομένων, ιδεών ή λέξεων, είτε ακριβώς είτε παραφρασμένες, αναφέρονται στο σύνολό τους, με πλήρη αναφορά στους συγγραφείς, τον εκδοτικό οίκο ή το περιοδικό, συμπεριλαμβανομένων και των πηγών που ενδεχομένως χρησιμοποιήθηκαν από το διαδίκτυο. Επίσης, βεβαιώνω ότι αυτή η εργασία έχει συγγραφεί από μένα αποκλειστικά και αποτελεί προϊόν πνευματικής ιδιοκτησίας τόσο δικής μου, όσο και του Ιδρύματος.

Παράβαση της ανωτέρω ακαδημαϊκής μου ευθύνης αποτελεί ουσιώδη λόγο για την ανάκληση του διπλώματός μου».

Η Δηλούσα

Τσαγκάρη Άρτεμις

Ευχαριστίες

Για την συγγραφή της παρούσας διπλωματικής εργασίας, θα ήθελα να ευχαριστήσω θερμά όλους όσους συνέβαλαν είτε έμμεσα είτε άμεσα σε αυτήν. Αρχικά, θα επιθυμούσα να εκφράσω την εκτίμηση και την ευγνωμοσύνη μου στην επιβλέπουσα καθηγήτρια μου, κυρία Σοφία Πέππα, για την ανάθεση του εν λόγω θέματος, αλλά και για την πολύτιμη καθοδήγηση και τις κατατοπιστικές υποδείξεις που ήταν άκρως καθοριστικές για την διαμόρφωση της διπλωματικής μου εργασίας. Επιπλέον, θα ήθελα να ευχαριστήσω την οικογένεια μου για την ενθάρρυνση, τη συμπαράσταση και την κατανόηση τους όλο αυτό το χρονικό διάστημα, καθώς η έλλειψη όλων των ανωτέρω θα δυσχέραινε τη διαδικασία εκπόνησης της εν λόγω διπλωματικής εργασίας.

Περίληψη

Η παρούσα διπλωματική εργασία έχει ως αντικείμενο τη μελέτη της αντίστασης ολισθακάτων με γάστρα μορφής V σε ήρεμο νερό. Ειδικότερα, στα πλαίσια της διπλωματικής εργασίας σχεδιάστηκαν με τη βοήθεια του λογισμικού *Rhinoceros 3D* τρεις διαφορετικές γάστρες μορφής V: δύο ταχύπλοα σκάφη βαθέως V (*Deep – Vee*), καθώς και ένα ταχύπλοο σκάφος διάσωσης με διπλή ακμή (*Double chine*). Για τα σκάφη αυτά εκτιμήθηκε η αντίσταση με χρήση του λογισμικού *Maxsurf* τόσο με εφαρμογή της μεθόδου *Savitsky* όσο και της μεθόδου *Blount - Fox*. Ακολούθησε σύγκριση των αποτελεσμάτων και εξαγωγή των σχετικών συμπερασμάτων για τις ολισθακάτους που μελετήθηκαν. Επιπλέον στα πλαίσια της εργασίας έγινε ιστορική αναδρομή σχετικά με την ανάπτυξη των ταχυπλόων σκαφών και των μεθοδολογιών εκτίμησης της αντίστασης τους.

Λέξεις κλειδιά: ολισθάκατος, αντίσταση σε ήρεμο νερό, μέθοδος Savitsky, μέθοδος Blount - Fox

Abstract

This diploma thesis deals with the study of the resistance of type - V planing hulls in calm water. In particular, within the framework of the thesis, three different types of V-shaped planing hulls were designed with Rhinoceros 3D software: two deep-Vee high-speed boats, as well as a highspeed rescue boat with a double chine. For these vessels, the resistance was calculated using the Maxsurf software, both by applying the Savitsky method and the Blount-Fox method. The results of the study were compared, and pertinent conclusions were made. Furthermore, a brief overview of the development of high-speed crafts and the resistance calculation methodologies was also provided.

Key words: planing hull, calm water resistance, Savitsky method, Blount Fox method.

Περιεχόμενα

Κεφάλαιο 1: Εισαγωγή	1
Κεφάλαιο 2: Ιστορική Αναδρομή Ταχυπλόων Σκαφών	2
2.1 Ιστορική ανασκόπηση	2
2.2 Αντίσταση ολισθακάτων	7
Κεφάλαιο 3: Θεωρητικό Υπόβαθρο	
3.1 Τύποι γάστρας σκαφών	
3.1.1 Γενικά	
3.1.2 Σκάφη εκτοπίσματος	9
3.1.3 Σκάφη ημι-εκτοπίσματος	9
3.1.4 Ολισθάκατοι	11
3.2 Αντίσταση ταχυπλόων σκαφών	14
3.3 Συστηματικές σειρές ταχυπλόων σκαφών	14
3.3.1 Συστηματικές σειρές σκαφών στρογγυλού πυθμένα	15
3.3.2 Συστηματικές σειρές σκαφών με ακμή	16
3.3.3 Ημι-εμπειρικές μέθοδοι εκτίμησης αντίστασης	16
Κεφάλαιο 4: Ολισθάκατοι με γάστρα βαθέως V	32
4.1 Σχεδίαση ολισθακάτου Ι	35
4.2 Σχεδίαση ολισθακάτου ΙΙ	42
4.3 Μελέτη αντίστασης ολισθακάτων γάστρας βαθέως V	47
4.3.1 Εκτίμηση αντίστασης ολισθακάτου Ι με χρήση του λογισμικού Maxsurf	48
4.3.2 Εκτίμηση αντίστασης ολισθακάτου ΙΙ με χρήση του λογισμικού Maxsurf	55
4.3.3 Αποτελέσματα αντίστασης για τις ολισθακάτους Ι, ΙΙ	60
4.3.3.1 Ολισθάκατος Ι	60
4.3.3.2 Ολισθάκατος ΙΙ	66
4.3.3.3 Σύγκριση ολισθακάτων Ι, ΙΙ	70
4.3.4 Διερεύνηση θέσης κέντρου πιέσεων ολισθακάτων Ι, ΙΙ	73
Κεφάλαιο 5: Ολισθάκατος με γάστρα διπλής ακμής	77
5.1 Σχεδίαση ολισθακάτου ΙΙΙ	
5.2 Μελέτη αντίστασης ολισθακάτου γάστρας διπλής ακμής	84
5.2.1 Εκτίμηση της αντίστασης ολισθακάτου ΙΙΙ με χρήση του λογισμικού Maxsurf	84
5.2.2 Σύγκριση αποτελεσμάτων ολισθακάτων Ι, ΙΙ και ΙΙΙ	

5.2.3 Διερεύνηση θέσης κέντρου πιέσεων ολισθακάτου ΙΙΙ	
Συμπεράσματα	
Προτάσεις	
Βιβλιογραφικές Αναφορές	
Παράρτημα	

Κατάλογος Πινάκων

Πίνακας 1: Δεδομένα ολισθακάτου
Πίνακας 2: Ζητούμενα χαρακτηριστικά ολισθακάτου στην κατάσταση ισορροπίας
Πίνακας 3: Σύντομη μέθοδος Savitsky [18]
Πίνακας 4: Κύριες διαστάσεις ολισθακάτων Ι, ΙΙ [23]
Πίνακας 5: Γεωμετρικά - Υδροστατικά χαρακτηριστικά της ολισθακάτου Ι στο Maxsurf
Resistance
Πίνακας 6: Υδροστατικά χαρακτηριστικά της ολισθακάτου Ι με χρήση του προγράμματος
Rhinoceros
Πίνακας 7: Έλεγχος παραμέτρων μεθόδων υπολογισμού αντίστασης ολισθακάτου Ι
Πίνακας 8: Γεωμετρικά - Υδροστατικά χαρακτηριστικά της ολισθακάτου ΙΙ στο Maxsurf
Resistance
Πίνακας 9: Υδροστατικά μεγέθη της ολισθακάτου ΙΙ με χρήση του προγράμματος Rhinoceros 58
Πίνακας 10: Έλεγχος παραμέτρων μεθόδων υπολογισμού αντίστασης ολισθακάτου ΙΙ
Πίνακας 11: Πειραματικά αποτελέσματα ολισθακάτου Ι και ολισθακάτου ΙΙ
Πίνακας 12: Τιμές κέντρου πιέσεων για τη διαδικασία διερεύνησης
Πίνακας 13: Κύριες διαστάσεις ολισθακάτου ΙΙΙ [27]
Πίνακας 14: Γεωμετρικά - Υδροστατικά χαρακτηριστικά ολισθακάτου ΙΙΙ από το Maxsurf
Resistance
Πίνακας 15: Υδροστατικά χαρακτηριστικά ολισθακάτου ΙΙΙ από το Rhinoceros
Πίνακας 16: Έλεγχος παραμέτρων μεγεθών υπολογισμού αντίστασης ολισθακάτου ΙΙΙ
Πίνακας 17: Τιμές κέντρου βάρους (κέντρου πιέσεων) ολισθακάτου ΙΙΙ

Κατάλογος Σχημάτων

Σχήμα 1: Συντελεστής ανωστικής δύναμης για ολισθαίνουσα πρισματική επιφάνεια [18]	. 20
Σχήμα 2: Θέση κέντρου πιέσεων ολισθακάτων συναρτήσει του αριθμού <i>Froude</i> , Fn _B [18]	. 21
Σχήμα 3: Αύξηση τους ενεργού μήκους τριβής εξαιτίας της ύπαρξης του αφρού [18]	24
Σχήμα 4: Νομογράφημα – Συντρέχουσες δυνάμεις [18]	. 29

Κατάλογος Διαγραμμάτων

Διάγραμμα 1: Σύγκριση των αποτελεσμάτων αντίστασης - ταχύτητας ολισθακάτου Ι
Διάγραμμα 2: Σύγκριση των αποτελεσμάτων ισχύος - ταχύτητας ολισθακάτου Ι
Διάγραμμα 3: Γραφική απεικόνιση αποτελεσμάτων δυναμικής διαγωγής - ταχύτητας ολισθακάτου
I
Διάγραμμα 4: Γραφική απεικόνιση αποτελεσμάτων συντελεστή συνολικής αντίστασης -
ταχύτητας ολισθακάτου Ι
Διάγραμμα 5: Γραφική απεικόνιση αποτελεσμάτων συντελεστή υπόλοιπης αντίστασης -
ταχύτητας ολισθακάτου Ι
Διάγραμμα 6: Γραφική απεικόνιση αποτελεσμάτων συντελεστή τριβής – ταχύτητας ολισθακάτου
I

Διάγραμμα 7: Γραφική απεικόνιση αποτελεσμάτων αντίστασης - ταχύτητας ολισθακάτου ΙΙ 66
Διάγραμμα 8: Γραφική απεικόνιση αποτελεσμάτων ισχύος - ταχύτητας ολισθακάτου ΙΙ
Διάγραμμα 9: Γραφική απεικόνιση αποτελεσμάτων δυναμικής διαγωγής - ταχύτητας ολισθακάτου
II
Διάγραμμα 10: Γραφική απεικόνιση αποτελεσμάτων συντελεστή συνολικής αντίστασης -
ταχύτητας ολισθακάτου ΙΙ
Διάγραμμα 11: Γραφική απεικόνιση αποτελεσμάτων συντελεστή υπόλοιπης αντίστασης -
ταχύτητας ολισθακάτου ΙΙ
Διάγραμμα 12: Γραφική απεικόνιση αποτελεσμάτων συντελεστή τριβής - ταχύτητας ολισθακάτου
II
Διάγραμμα 13: Διαφοροποίηση αντίστασης ολισθακάτων Ι, ΙΙ
Διάγραμμα 14: Διαφοροποίηση δυναμικής διαγωγής ολισθακάτων Ι, ΙΙ
Διάγραμμα 15: Επίδραση διαφορετικών κέντρων πιέσεων στην αντίσταση της ολισθακάτου Ι.75
Διάγραμμα 16: Επίδραση διαφορετικών κέντρων πιέσεων στη διαγωγή της ολισθακάτου Ι 75
Διάγραμμα 17: Επίδραση διαφορετικών κέντρων πιέσεων στην αντίσταση της ολισθακάτου ΙΙ 76
Διάγραμμα 18: Επίδραση διαφορετικών κέντρων πιέσεων στη διαγωγή της ολισθακάτου ΙΙ 76
Διάγραμμα 19: Γραφική απεικόνιση αποτελεσμάτων αντίστασης – ταχύτητας ολισθακάτου ΙΙΙ 88
Διάγραμμα 20: Γραφική απεικόνιση αποτελεσμάτων ισχύος – ταχύτητας ολισθακάτου ΙΙΙ 89
Διάγραμμα 21: Γραφική απεικόνιση αποτελεσμάτων δυναμικής διαγωγής - ταχύτητας
ολισθακάτου ΙΙΙ
Διάγραμμα 22: Γραφική απεικόνιση αποτελεσμάτων συντελεστή συνολικής αντίστασης –
ταχύτητας ολισθακάτου ΙΙΙ
 ταχύτητας ολισθακάτου ΙΙΙ
ταχύτητας ολισθακάτου ΙΙΙ

Κατάλογος Εικόνων

Εικόνα 1: Motor launch κατασκευασμένο από τους Priestman Brothers (Cassier's Ma	igazine,
1895) [2]	2
Εικόνα 2: Το σκάφος τύπου proa που σχεδίασε ο R. Munroe [5]	
Εικόνα 3: Αγωνιστικό σκάφος (Uffa Fox 50 Celebration Regatta) [11]	4
Εικόνα 4: Στιγμιότυπο από αγώνα ταχυπλόων σκαφών με νίκη του σκάφους "Miss En	ngland"
(ανοιχτόχρωμο σκάφος) έναντι του "Miss America VII" (σκουρόχρωμο σκάφος) στο Μα	ιϊάμι το
1929 [12]	5
Εικόνα 5: Israeli motor torpedo boat (MTB) [14]	6
Εικόνα 6: Αγωνιστικό σκάφος [15]	6
Εικόνα 7: Σχέδιο ναυπηγικών γραμμών γάστρας ημι-εκτοπίσματος [18]	10

Εικόνα 8: Τρισδιάστατη σχηματική απεικόνιση σκάφους ημι-εκτοπίσματος [20]	11
Εικόνα 9: Σχέδιο ναυπηγικών γραμμών ολισθακάτου με ακμή (σειρά 62) [18]	
Εικόνα 10: Μεταβολή της συνιστώσας της υδροστατικής - υδροδυναμικής άνωσης συν	ναρτήσει
του αριθμού Froude σε τυπική ολισθάκατο [18]	
Εικόνα 11: Ισορροπία ολισθακάτου - Γενική περίπτωση [18]	
Εικόνα 12: Ισορροπία ολισθακάτου - Συντρέχουσες δυνάμεις [18]	
Εικόνα 13: Body Plan ολισθακάτου Ι [23]	
Εικόνα 14: Sheer Plan ολισθακάτου Ι [23]	
Εικόνα 15: Body Plan ολισθακάτου ΙΙ [23]	
Εικόνα 16: Sheer Plan ολισθακάτου ΙΙ [23]	
Εικόνα 17: Στιγμιότυπο οθόνης κατά την εισαγωγή των εικόνων με τα σχέδια γραμ	μών της
ολισθακάτου I (Perspective view)	
Εικόνα 18: Το περίγραμμα (Profile) της ολισθακάτου Ι (Front view)	
Εικόνα 19: Οι εγκάρσιοι νομείς (Half-breadth plan) της ολισθακάτου I (Right view)	
Εικόνα 20: Η καμπύλη της ακμής (Chine) και το διάγραμμα καμπυλότητάς της για την ολι	σθάκατο
I	
Εικόνα 21: Οι καμπύλες του Chine και των Spray Rails σε δισδιάστατη μορφή της ολισθ	ακάτου Ι
(Right view)	
Εικόνα 22: Ο καθοέπτης της πούμνης της ολισθακάτου Ι κατά τη διαδικασία σγεδίασης (α, β) και
στην τελική του μορφή (γ)	
Εικόνα 23: Στινμιότυπο της σγεδίασης της γάστρας του ταγυπλόου Ι σε όλες τις όψεις	
Εικόνα 24: Στινμιότυπο της σγεδίασης επιφανειών της νάστρας της ολισθακάτου Ι σε	όλες τις
όψεις	
Εικόνα 25: Ολισθάκατος Ι - Έλεγγος επιφάνειας γάστρας (Curvature Analysis)	
Εικόνα 26: Ολισθάκατος Ι - Έλεγγος επιφάνειας νάστοας (Zebra)	
Εικόνα 27: Στινμιότυπο οθόνης κατά την εισαγωνή των εικόνων με τα σγέδια ναυ	πηνικών
v_{0} νομιών της o_{1} σθακάτου II (<i>Perspective view</i>)	42
$F_{\rm L}$ με της οποθαιαστου Π (Γ <i>elspectric iner</i>) (Γ <i>elspectric</i>) (Γ <i>els</i>	
Εικόνα 29: Οι ενκάρσιοι νομείς (Half-breadth plan) της ολισθακάτου ΙΙ (Right view)	43
Εικόνα 30: Η καμπύλη της ακιής (<i>Chine</i>) και το διάνοαμμα καμπυλότητάς της νια την ολι	σθάκατο
	43
Εικόνα 31: Οι καμπύλες του Chine και των Spray Rails σε δισδιάστατη μορωή της ολισ	θακάτου
II (Right view)	44
Εικόνα 32: Οι νομείς, ο καθοέπτης και το περίνραμμα του σκάφους σε τρισδιάστατη με	$0000 \pi \pi c$
ολισθακάτου Π	44 A
Εικόνα 33: Στινιμότυπο της σχεδίασης των καμπυλών της νάστοας της ολισθακάτου ΙΙ σε	άλες τις
	45
Εικόνα 34· Στινιμότυπο των επιφανειών της νάστοας της ολισθακάτου ΙΙ σε όλες τις όψε	1c 46
Eucova 3 1. $2ii/\mu$ iovono tav eniquvoiav tij i ao ipag tij oniovakavoo 11 ovonog tig ope Eucova 35: Ολισθάκατος II - Έλεγγος επιφάνειας νάστοας (<i>Curvature Analysis</i>)	46
Εικόνα 35: Ολισθάκατος ΙΙ - Έλεγχος επιφάνειας γάστρας (Carvaia - Tharysis)	
E_1 κόνα 37: Εισαγωνή αρχείου στο Modeler Marsurf	
Eικόνα 38: Ολισθάκατος I - Frame of Reference & Zero point	
Eικόνα 30. Οπουακατος Γ Γιαπε ο περιτρικάτου Ι στο Marsurf Modeler	رب ۱۵
Encova 35 . Δm_1 motors over m_2 mg encova to m_2 modeler	
$\Box i (0 i \alpha + 0)$ $\Box i (i \alpha + 1)$ $\mu = 0 0 0 0 0 i 0 \mu 0 0 0 0 0 0 0 0 0 0 0 0$	

Κεφάλαιο 1: Εισαγωγή

Η αυξανόμενη ζήτηση και ενασχόληση με σκάφη που αναπτύσσουν υψηλές ταχύτητες, έδωσε την ευκαιρία σε πολλά ναυπηγεία να βελτιστοποιήσουν, χρησιμοποιώντας την τεχνογνωσία τους, την σχεδίαση, την συμπεριφορά, καθώς και τις επιδόσεις των ταχυπλόων σκαφών. Οι απαιτήσεις υψηλών ταχυτήτων, χαμηλής κατανάλωσης καυσίμου και ταυτόχρονα ασφαλούς και άνετης πλεύσης, χαρακτηριστικά ζωτικής σημασίας στον τομέα των θαλάσσιων μεταφορών, έχουν οδηγήσει στην πιο στοχευμένη έρευνα και αναζήτηση μη συμβατικών τύπων πλοίου, με αποτέλεσμα τη ραγδαία εξέλιξη των ταχυπλόων σκαφών με το πέρασμα των χρόνων.

Σε συνδυαμό με την αυξημένη ζήτηση των ταχυπλόων σκαφών, η ραγδαία τεχνολογική εξέλιξη έχει επηρεάσει και τον τομέα της ναυτιλίας, με τα αποτελέσματα της να γίνονται αισθητά στην μορφοποίηση τέτοιων σκαφών από την αρχική τους μορφή. Η εξέλιξη της τεχνολογίας, λοιπόν, έχει επιτύχει αναμφισβήτητα, πέραν των υπολοίπων, να διευρύνει τους ορίζοντες των δραστηριοτήτων που πραγματοποιούνται εντός θαλάσσης τόσο αυτών της αναψυχής όσο και των επαγγελματικών εφαρμογών. Παρόλα αυτά, για να να επιτευχθεί ισορροπία μεταξύ όλων των παραπάνω, είναι απαραίτητη η μελέτη των επιδράσεων διαφόρων παραμέτρων, όπως είναι η αντίσταση, οι ελιγμοί και η ναυσιπλοΐα γενικότερα. Γι' αυτόν τον λόγο, είναι σημαντικό να αναφερθεί ότι η ιστορία των ταχυπλόων σκαφών και η βελτίωση των υδροδυναμικών χαρακτηριστικών και επιδόσεών τους αποτελούν με βεβαιότητα δείγμα της ανθρώπινης ανάγκης και μετέπειτα αναζήτησης ταχύτερων, αποδοτικότερων, καθώς και αποτελεσματικότερων τρόπων για θαλάσσιες δραστηριότητες όλων των ειδών, όπως θα δούμε στην συνέχεια.

Αξίζει να σημειωθεί δε ότι η κατασκευή ολισθακάτων αποτελεί εξίσου ιδιαίτερα σημαντικό επίτευγμα για τον άνθρωπο με πολλαπλά οφέλη τόσο στην εξέλιξη του σχεδιασμού όσο και στις επιδόσεις των ταχυπλόων σκαφών γενικότερα. Η διαφοροποίηση αυτού του τύπου γαστρών έναντι των υπολοίπων έγκυται στο ότι σημαντικό τμήμα της γάστρας του σκάφους ανασηκώνεται πάνω από την επιφάνεια του νερού όταν αυτό αποκτήσει υψηλότερες και κατάλληλες ταχύτητες, με αποτέλεσμα την επίτευξη υψηλής και ελεγχόμενης κίνησης με ταυτόχρονη ελαχιστοποίηση της αντίστασης και των κρουστικών φορτίων που δέχεται το εκάστοτε σκάφος σε καταστάσεις ήρεμου νερού. Επιπρόσθετα, η πρόοδος που έχει επιτευχθεί στον τομέα της υδροδυναμικής και τη μορφή της γάστρας των ολισθακάτων ως προς το σχήμα, τη σταθερότητα, την ευελιξία και τη γενικότερη συμπεριφορά και τις επιδόσεις τους στις υψηλότερες ταχύτητες.

Κεφάλαιο 2: Ιστορική Αναδρομή Ταχυπλόων Σκαφών

2.1 Ιστορική ανασκόπηση

Γενικά, οι πρώτες έντονες προσπάθειες για τη δημιουργία ενός καινοτόμου και κυρίως ασφαλούς τύπου σκάφους που θα έχει καλή συμπεριφορά στους θαλάσσιους κυματισμούς και ταυτόχρονα θα συνδύαζε την υψηλή ταχύτητα και την ικανοποιητική μεταφορική ικανότητα με την χαμηλότερη δυνατή κατανάλωση καυσίμου, άρχισαν σταδιακά στα μέσα του 19^{ου} αιώνα. Ωστόσο, διαφορετικές μορφές γαστρών σχεδιάστηκαν και κατασκευάστηκαν ανά τα χρόνια, γεγονός που συνέβαλε στη βελτίωση της σχεδίασης της γάστρας των ταχυπλόων σκάφων.

Η πρώτη επιτυχημένη κατασκευή ταχυπλόου σκάφους χρονολογείται περίπου το 1888 από τα αδέρφια Priestman στην περιοχή Χαλ της Αγγλίας. Συγκεκριμένα, η μηχανή του εν λόγω σκάφους χρησιμοποιούσε ως καύσιμο την κηροζίνη, καθώς επίσης διέθετε και ένα σύστημα ανάφλεξης υψηλής τάσης. Οι καλές επιδόσεις των σκαφών που διέθετε η εταιρεία των αδερφών Priestman, οδήγησε στο να θεωρούνται ως οι πρωτοπόροι της εκτεταμένης παραγωγής τέτοιων σκαφών, τα οποία χρησιμοποιήθηκαν και ως ρυμουλκά από το 1890. Περίπου την ίδια χρονική περίοδο, ο J.G Roots κατασκεύασε σκάφος με κινητήρα εσωτερικής καύσης που δραστηριοποιούταν στον ποταμό Τάμεση. [1]

Εικόνα 1: Motor launch κατασκευασμένο από τους Priestman Brothers (Cassier's Magazine, 1895) [2]

Επιπλέον, το πρώτο καταγεγραμμένο ιστιοφόρο σκάφος με γάστρα ολισθακάτου κατασκευάστηκε το 1898 από τον Commodore Ralph Munroe [3]. Πολλοί ερευνητές ακολουθήσαν, μεταξύ αυτών, ο εφευρέτης Frederick William Lanchester που αντελήφθη τις δυνατότητες των ταχύπλοων σκαφών και ασχολήθηκε με τον αδελφό του περισσότερο από δεκαπέντε χρόνια, προκειμένου να καταφέρει να τα βελτιστοποιήσει όσο ήταν δυνατόν. [4]

Εικόνα 2: Το σκάφος τύπου proa που σχεδίασε ο R. Munroe [5]

Στις αρχές του 20^{ου} αιώνα, έγιναν ακόμα πιο επιτυχημένες προσπάθειες κατασκευής ταχυπλόων σκαφών, ολισθακάτων και μη, με τους αμερικάνους *Jonh Hacker* και *Garfield Wood* να πρωταγωνιστούν σε αυτόν τον τομέα. Οι καινοτόμες ίδεες τους για την εποχή διαδραμάτισαν καθοριστικό ρόλο στην ανάπτυξη τόσο των ολισθακάτων όσο και των υδροπλάνων, αλλά και στην σύνδεση μεταξύ ταχύτητας και υδροδυναμικής με τη γάστρα του πλοίου. Αξίζει να σημειωθεί δε ότι την ίδια περίοδο ξεκίνησαν οι αγώνες ταχυπλόων σκαφών, ενώ από την δεκαετία του 1920 και ύστερα διοργανώνονταν πλέον συστηματικά, φαινόμενο που οδήγησε σε σημαντικά επιτεύγματα όσον αφορά τις ολισθακάτους, διότι για πρώτη φορά χρησιμοποιήθηκαν γάστρες με *step*, γεγονός που εξυπηρετούσε αφενός στη σταθερότερη ανάδυση των σκάφων από το νερό και αφετέρου στη μείωση της αντίστασης.

Πιο αναλυτικά, στις αρχές του 1900 ο Jonh Hacker επινόησε και δημιούργησε γάστρες τύπου V και έθεσε τις βάσεις για την αποκλειστική χρήση βενζινοκινητήρων στα ταχύπλοα σκάφη. Επίσης, το 1911 κατασκεύασε το υδροπλάνο "Kitty Hawk" που θεωρούταν το γρηγορότερο σκάφος που υπήρχε τότε παγκοσμίως μεταξύ του 1911 και του 1915, αφού έφτανε τους 43 κόμβους, ταχύτητα ιδιαίτερα υψηλή για εκείνη την εποχή. Από την άλλη, ο Garfield Wood έγινε ευρέως γνωστός για την κατασκευή των αγωνιστικών ταχυπλόων σκαφών "Miss America", ενώ τα σχέδια του διαδραμάτισαν βασικό ρόλο στο να διευνθούν περαιτέρω τα όρια ταχύτητας. Αξίζει να σημειωθεί ότι η σειρά σκαφών "Miss America" που κατασκεύασε μεταξύ του 1920 και του 1930, ήταν είτε ολισθάκατοι είτε υδροπτέρυγα, με εξαιρετικές επιδόσεις για τα τότε δεδομένα, ενώ το πρώτο σκάφος της σειράς το "Miss America I" του χάρισε την πρώτη του νίκη σε τέτοια διοργάνωση με ανώτατη ταχύτητα τους 56 κόμβους. Το "Miss America X" είναι το τελευταίο και ίσως το πιο γνωστό σκάφος της σειράς, το οποίο κατέκτησε και παγκόσμιο ρεκόρ ταχύτητας το 1932. [6], [7]

Στην Ευρώπη και συγκεκριμένα στην Αγγλία, ο Uffa Fox, ένας Βρετανός σχεδιαστής ταχυπλόων σκαφών, ο οποίος σχεδίαζε ταχύπλοα σκάφη τη δεκαετία του 1920, τελικά, το 1927 κατασκεύασε το "Avenger", ένα ιστιοπλοϊκό αγωνιστικό σκάφος με γάστρα ολισθακάτου, με το οποίο το 1928 κέρδισε 52 από τους 57 αγώνες που συμμετείχε. Οι νίκες του είχαν σαν αποτέλεσμα να διαδοθεί ακόμα περισσότερο η σχεδίαση και η βελτιστοποίηση της μορφής των ολισθακάτων στον αγωνιστικό κόσμο της Αγγλίας και όχι μόνο. Έτσι, ο Huber Scott Paine, ένας άλλος Βρετανός σχεδιαστής σκαφών, εμπνευσμένος από την δουλειά του Fox, στα τέλη του 1828 ξεκίνησε να κατασκευάζει μια σειρά από αγωνιστικά ταχύπλοα σκάφη που ονομάζονταν "Miss England", εκ των οποίων το πρώτο ήταν ολισθάκατος με ακμή (Miss England I), ενώ τα άλλα δύο ήταν υδροπτέρυγα. Τα σκάφη χρησιμοποιήθηκαν σε αγώνες ταχυπλόων σκαφών και κέρδισαν πολλά βραβεία, μεταξύ αυτών και το παγκόσμιο ρεκόρ ταχύτητας με το "Miss England II" η ταχύτητα του οποίου έφθανε τους 86 κόμβους. Πλέον υφίσταται μόνο το "Miss England I" και φιλοξενείται σε μουσείο στο Λονδίνο, ενώ τα άλλα δύο εικάζεται ότι καταστράφηκαν όταν η αποθήκη που φυλάσσονταν βομβαρδίστηκε το 1940. [7], [8], [9], [10]

Εικόνα 3: Αγωνιστικό σκάφος (Uffa Fox 50 Celebration Regatta) [11]

Εικόνα 4: Στιγμιότυπο από αγώνα ταχυπλόων σκαφών με νίκη του σκάφους "*Miss England*" (ανοιχτόχρωμο σκάφος) έναντι του "*Miss America VII*" (σκουρόχρωμο σκάφος) στο Μαϊάμι το 1929 [12]

Τα ταχύπλοα σκάφη, όπως είναι φυσικό, διαδραμάτισαν καθοριστικό ρόλο στη διάρκεια τόσο του Α' Παγκοσμίου Πολέμου, όσο και του Β' Παγκοσμίου Πολέμου. Πιο συγκεκριμένα, τα ταχύπλοα σκάφη στη διάρκεια του Α' Παγκοσμίου Πολέμου, χρησιμοποιούνταν τόσο στην περιπολία και την άμυνα των παράκτιων περιοχών, όσο και στην επίθεση εναντίον των εχθρικών σκαφών. Ο σχεδιασμός και οι επιδόσεις τους ως προς την ταχύτητα, την ευελιξία και τους ελιγμούς δεν τα καθιστούσαν εύκολους στόχους για τα αντίπαλα πολεμικά σκάφη, γεγονός ιδιαίτερα σημαντικό στις μάχες. [13]

Στην διάρκεια του Β' Παγκοσμίου Πολέμου, τα ταχύπλοα σκάφη εξακολουθούσαν να χρησιμοποιούνται ως πολεμικά σκάφη, έχοντας όμως και ορισμένες επιπρόσθετες ιδιότητες. Έτσι, πέραν των περιπολιών και των ενεδρών που πραγματοποιούσαν, χρησιμοποιούνταν και ως σκάφη διάσωσης σε περιπτώσεις έκτακτης ανάγκης. Χαρακτηριστικό παράδειγμα τέτοιων σκαφών αποτελούν οι λέμβοι *MTB (Motor Torpedo Boats)* που χρησιμοποιήθηκαν από το ναυτικό της Αγγλίας και του Καναδά, καθώς και οι λέμβοι *PT (Patrol Torpedo Boats)* που χρησιμοποιήθηκαν από το ναυτικό της Αγγλίας και του Καναδά, καθώς και οι λέμβοι *PT (Patrol Torpedo Boats)* που χρησιμοποιήθηκαν από το τοτιχεία από τις ολισθακάτους στον σχεδιασμό τους, γεγονός που τις καθιστούσε ακόμα πιο γρήγορες, πιο σταθερές και άρα πιο αποτελεσματικές στη λειτουργία τους έναντι άλλων συμβατικών τύπων σκαφών [14]. Μετά τη λήξη του πολέμου, η ναυπηγική βιομηχανία ασχολήθηκε εκτεταμένα με τον τομέα των ταχυπλόων σκαφών, με αποτέλεσμα η σχεδίαση και η κατασκευή ολισθακάτων που πλέουν σε μεγάλες ταχύτητες να αναπτυχθεί σημαντικά.

Εικόνα 5: Israeli motor torpedo boat (MTB) [14]

Μέχρι τα τέλη του 20^{ου} αιώνα, η ραγδαία εξέλιξη της τεχνολογίας, των υλικών κατασκευής των σκαφών, των συστημάτων πρόωσης, αλλά και των τεχνικών σχεδίασης οδήγησαν, όπως είναι φυσικό, στη βελτιστοποίηση των επιδόσεων τόσο των ολισθακάτων όσο και όλων των ταχυπλόων σκαφών γενικότερα. Στις μέρες μας, οι πολλαπλές έρευνες και μελέτες γύρω από θέματα υδροδυναμικής και υπολογιστικής ρευστοδυναμικής μέσω προσωμοιώσεων και δοκιμών σε μοντέλα, οδήγησαν σε περαιτέρω ανάπτυξη και βελτίωση των ολισθακάτων όσον αφορά του σχεδιασμό τους, την συμπεριφορά τους σε θαλάσσιους κυματισμούς και την αποδοτικότητά τους, ώστε να αποτελούν πλέον ένα προσιτό και ασφαλές πλωτό μέσο με ποικίλες εφαρμογές.

Εικόνα 6: Αγωνιστικό σκάφος [15]

2.2 Αντίσταση ολισθακάτων

Η συστηματική έρευνα της συμπεριφοράς των ολισθακάτων, καθώς και η εκτίμηση της αντίστασης τους, διεξάγεται περισσότερο από έναν αιώνα. Αρχικά, πραγματοποιούνταν μελέτες σε επίπεδες πλάκες, ενώ ακολούθησε η έρευνα σε πρισματικές επιφάνειες που ολισθαίνουν, καθώς και σε πρισματικές γάστρες ως κάτι σχηματικά ανάλογο με αυτό της ολισθακάτου. Από τις πρώτες μελέτες σε πρισματικές γάστρες ώς κάτι σχηματικά ανάλογο με αυτό της ολισθακάτου. Από τις πρώτες μελέτες σε πρισματικές γάστρες ήταν αυτές του *Baker* που έλαβαν χώρα το 1910, ενώ τα πρώτα εμπεριστατωμένα πειράματα που έγιναν ευρέως γνωστά, πραγματοποιήθηκαν από τον *Sottorf*. Επιπλέον, το έργο του *Sottorf* ακολούθησαν ο *Shoemaker*, ο *Sedov*, ο *Sambraus* και ο *Locke*. Κύριος σκοπός όλων των ερευνών, λοιπόν, αποτελούσε η συγκέντρωση των πειραματικών αποτελεσμάτων με τα υδροδυναμικά χαρακτηριστικά των ολισθακάτων πρισματικής γάστρας, και η δημιουργία εμπειρικών σχέσεων για τη συσχέτιση τους με την υδροδυναμική άνωση, την αντίσταση, τη διαγωγή και τη βρεχόμενη επιφάνεια των σκαφών, ώστε να μπορούν να χρησιμοποιούνται εκτεταμένα. [16]

Σε αυτή την κατεύθυνση σημαντική ήταν η συνεισφορά του εργαστηρίου Davidson Laboratory of Stevens Institute of Technology το οποίο με τη χρηματοδότηση του Αμερικάνικου ναυτικού, το 1947 επικεντρώθηκε στη θεωρητική και εμπειρική ανάλυση του φαινομένου της ολίσθησης ταχυπλόων σκαφών χρησιμοποιώντας υπάρχοντα δεδομένα και πειράματα. Το 1949 ο Savitsky και ο Korvin - Kroukovsky δημοσίευσαν μία σύνοψη των αποτελεσμάτων των εργαστηριακών μελετών, ενώ ο Murray έναν χρόνο μετά, χρησιμοποίησε τα αποτελέσματα και τα συμπεράσματα της εργασίας για να αναπτύξει μια υπολογιστική μέθοδο που προσδιορίζει την υδροδυναμική συμπεριφορά των ταχυπλόων σκαφών κατά την ολίσθηση. Τέλος, το 1954 οι Savitsky και Neidinger εστιάζοντας στις ήδη υπάρχουσες μελέτες, δημιούργησαν με τη σειρά τους εμπειρικές σχέσεις, προκειμένου να διευρύνουν περισσότερο το εύρος εφαρμογής των παραμέτρων της ανάλυσης. [16]

Κεφάλαιο 3: Θεωρητικό Υπόβαθρο

3.1 Τύποι γάστρας σκαφών

3.1.1 Γενικά

Όπως γνωρίζουμε τα σκάφη μπορούν να κατηγοριοποιηθούν με πολλούς τρόπους ανάλογα με το σχήμα, τη μορφή και τα χαρακτηριστικά της γάστρας που διαθέτουν, την πρόωση που χρησιμοποιούν, την ταχύτητα πλεύσης που αποκτούν και το σύνολο και τον τρόπο των δυνάμεων που δέχονται και υποστηρίζουν [17], [18]. Έτσι, μια κατηγοριοποίση των σκαφών που βασίζεται στο είδος της ανωστικής τους δύναμης που υποστηρίζει τη γάστρα, είναι η ακόλουθη [19]:

- Γάστρες εκτοπίσματος (Displacement hulls)
- Γάστρες ημι-εκτοπίσματος (Semi-displacement hulls)
- Ολισθάκατοι (Planing hulls)

Η επιλογή σχεδίασης και μετέπειτα κατασκευής ενός εκ των ανωτέρω τύπων σκαφών εξαρτάται αφενός από τις ανάγκες που υφίστανται και αφετέρου από τον σκοπό που θα εξυπηρετεί το σκάφος. Είναι σημαντικό να σημειωθεί ότι από τις παραπάνω κατηγορίες, στα ταχύπλοα σκάφη συνήθως συναντώνται οι γάστρες ημι-εκτοπίσματος ή οι ολισθάκατοι, οι οποίες έχουν καλύτερη συμπεριφορά και επιδόσεις στις υψηλότερες ταχύτητες έναντι των γαστρών εκτοπίσματος. Επιπλέον, κάθε τύπος σκάφους διακρίνεται και μέσω ενός αδιάστατου συντελεστή, του αριθμού *Froude*, *Fn_{WL}* ο οποίος ορίζεται ως ο λόγος των αδρανειακών δυνάμεων προς των αντίστοιχων βαρυτικών και προσδιορίζεται από την ακόλουθη σχέση:

$$Fn_{WL} = \frac{V}{\sqrt{g * L_{WL}}}$$

Όπου:

V: ταχύτητα σκάφους [m/s]
 g: επιτάχυνση της βαρύτητας [m/s²]

Lwl: μήκος ισάλου [m]

Έτσι, ανάλογα με την τιμή του εν λόγω αδιάστατου συντελεστή και άρα το εύρος των ταχυτήτων των σκαφών εν πλω, μπορεί να πραγματοποιηθεί επίσης μια επιπρόσθετη διάκριση των σκαφών στις τρεις παραπάνω κατηγορίες, δηλαδή σε σκάφη εκτοπίσματος, σε σκάφη ημι-εκτοπίσματος και σε ολισθακάτους.

Αξίζει να αναφερθεί δε ότι στην περίπτωση των ολισθακάτων, ο αριθμός *Froude* δεν εξαρτάται από το μήκος ισάλου, δεδομένου ότι σε τέτοιου είδους ταχύπλοα σκάφη το συγκεκριμένο μέγεθος δεν παραμένει σταθερό, αλλά μεταβάλλεται διαρκώς. Γι' αυτόν τον λόγο, ο αριθμός *Froude*

προσδιορίζεται συνήθως είτε με βάση το πλάτος είτε με βάση τον όγκο εκτοπίσματος. Έτσι, η παραπάνω σχέση για τον αριθμό *Froude* μπορεί να γραφεί με τις ακόλουθες μορφές [17]:

$$Fn_{B} = \frac{V}{\sqrt{g * B}}$$
$$Fn_{\nabla} = \frac{V}{\sqrt{g * \nabla^{1}/3}}$$

Όπου:

V: ταχύτητα πλεύσης σκάφους [m/s]

g: επιτάχυνση της βαρύτητας [m/s²]

B: πλάτος [m]

 ∇ : όγκος εκτοπίσματος [m³]

3.1.2 Σκάφη εκτοπίσματος

Τα συμβατικά σκάφη εκτοπίσματος, αφενός ο όγκος τους βρίσκεται κάτω από την επιφάνεια του νερού, αφετέρου έχουν τη δυνατότητα να πλέουν μέχρι μια συγκεκριμένη ταχύτητα, η οποία εξαρτάται από το μήκος ισάλου και κατ' επέκταση τον αριθμό *Froude, Fn_{WL}* που στην προκειμένη περίπτωση είναι συνήθως μικρότερος του 0,5. Η αύξηση της ταχύτητας τέτοιων σκαφών έχει σαν αποτέλεσμα την αύξηση της εγκατεστημένης ισχύος σε αρκετά μεγάλο βαθμό, διότι αν και σε μικρότερες ταχύτητες η αντίσταση είναι ανάλογη του τετραγώνου της ταχύτητας, σε υψηλότερες ταχύτητες φτάνει να είναι ανάλογη της τρίτης και της τέταρτης δύναμης της. Αυτός, λοιπόν, είναι και ο λόγος που τα σκάφη εκτοπίσματος πλέουν σε μικρές ταχύτητες. Επομένως, σε αυτήν την κατηγορία σκαφών βρίσκονται τα φορτηγά πλοία, τα δεξαμενόπλοια κτλ., δηλαδή πλοία που χρησιμοποιούνται για τη μεταφορά μεγάλου φορτίου με μικρή, όπως προαναφέρθηκε, πάντα ταχύτητα. [17], [18]

3.1.3 Σκάφη ημι-εκτοπίσματος

Τα σκάφη ημι-εκτοπίσματος διαθέτουν στρογγυλό πυθμένα και το εύρος ταχυτήτων που κινούνται αντιστοιχεί σε αριθμούς *Froude*, *Fn_{WL}* από 0,5 έως 1,3 [18]. Πρόκειται για ταχύπλοα σκάφη με βασικότερο χαρακτηριστικό των σκαφών όταν πλέουν να είναι ότι δέχονται σημαντική δυναμική άνωση παρόλο που δεν ολισθαίνουν. Χρησιμοποιούνται ευρέως στη ναυτιλία ως επαγγελματικά σκάφη, ως σκάφη αναψυχής, καθώς και στο στόλο του πολεμικού ναυτικού [18]. Συνήθως τέτοιες γάστρες έχουν τα ακόλουθα γεωμετρικά χαρακτηριστικά [18]:

- Οι πρωραίοι νομείς έχουν κυρτή μορφή.
- Οι ίσαλοι του πρωραίου τμήματος είναι ευθείες με μικρές γωνίες εισόδου.
- Ο πύθμενας στο πρωραίο μέρος έχει μεγάλη γωνία ανύψωσης.
- Στο πρυμναίο τμήμα η ύπαρξη κεντρικής τρόπιδας.
- Οι διαμήκεις τομές στο πρυμναίο ήμισυ της γάστρας διακρίνονται σε κυρτές ή ευθείες, οι οποίες ανυψώνονται προς την πρύμνη.
- Διαθέτουν πρύμνη άβακος (καθρέπτης).

Εικόνα 7: Σχέδιο ναυπηγικών γραμμών γάστρας ημι-εκτοπίσματος [18]

Αξίζει να σημειωθεί ότι για ταχύτητες που αντιστοιχούν σε αριθμό *Froude* μεγαλύτερο του 0,8, τα σκάφη διαθέτουν ευθείς νομείς και ευθείες διαμήκεις τομές, ενώ για μικρότερες ταχύτητες κατασκευάζονται πιο στρογγυλεμένοι νομείς, καθώς και κυρτές διαμήκεις τομές. Σε αριθμούς *Froude* μικρότερους του 0,7 το βάρος του σκάφους εξισορροπείται από τις υδροστατικές δυνάμεις. Η δυναμική άνωση εμφανίζεται για αριθμό *Froude* μεγαλύτερο του 0,7, ενώ η αύξηση της πραγματοποιείται με ανάλογο τρόπο με αυτόν που μειώνεται η υδροστατική άνωση. Η έναρξη της θετικής συνεισφοράς της υδροδυναμικής άνωσης γίνεται αισθητή μέσω της δυναμικής ανύψωσης του κέντρου βάρους. Οι γάστρες με στρογγυλό πυθμένα και κυρτούς πρωραίους νομείς κατά την πλεύση τους δημιουργούν πλευρικό αφρό, ο οποίος γίνεται όλο και πιο αντιληπτός και επεκτείνεται σταδιακά με την αύξηση της ταχύτητας. [18]

Επιπρόσθετα, η μεταβολή της βρεχόμενης επιφάνειας των σκαφών ημι-εκτοπίσματος εξαρτάται από την ταχύτητα, αλλά και από την δυναμική διαγωγή, ενώ η μείωση της μπορεί να πραγματοποιηθεί μέσω αντιδιαβροχικών λωρίδων (Spray rails) ή μέσω μετακίνησης του κέντρου βάρους προς την πρύμνη. Τέλος, για την ελάττωση της δυναμικής διαγωγής, οι γάστρες ημιεκτοπίσματος διαθέτουν πρυμναία σφήνα. [18]

Εικόνα 8: Τρισδιάστατη σχηματική απεικόνιση σκάφους ημι-εκτοπίσματος [20]

3.1.4 Ολισθάκατοι

Οι ολισθάκατοι αποτελούν τον συνηθέστερο τύπο ταχυπλόων σκαφών που λειτουργούν σε υψηλές ταχύτητες, δηλαδή αριθμούς *Froude* με τιμές που κυμαίνονται από την μονάδα και πάνω. Στη διάρκεια της πλεύσης τους, όταν αναπτυχθούν οι κατάλληλες υδροδυναμικές δυνάμεις, είναι εφικτή η ανύψωση σημαντικού τμήματος της γάστρας του σκάφους εκτός του νερού. Τέτοιου είδους σκάφη βρίσκουν εφαρμογή ως σκάφη περιπολίας και διάσωσης, ως σκάφη αναψυχής, ως αγωνιστικά σκάφη, ως επιβατηγά σκάφη, καθώς και ως σκάφη για το στόλο του πολεμικού ναυτικού. Ορισμένα από τα κύρια σχεδιαστικά χαρακτηριστικά των ολισθακάτων είναι τα εξής [18]:

- Πρύμνη άβακος και οξείες ακμές για την αποκόλληση της ροής στην περιοχή της πρύμνης, αλλά και στις πλευρές.
- Ευθείες διαμήκεις τομές και νομείς χωρίς κυρτότητα, κυρίως πίσω από το πρωραίο τμήμα.
 Η σχεδίαση αυτή οδηγεί στην αποφυγή της δημιουργίας αρνητικών δυναμικών πιέσεων στον πυθμένα του σκάφους.
- Ανυψωμένος πυθμένας στο πρωραίο τμήμα. Με τη σχεδίαση αυτή επιτυγχάνεται η μείωση των κρουστικών φορτίων λόγω των θαλάσσιων κυματισμών και η βελτίωση της ελικτικής ικανότητας του σκάφους.
- Λεπτές γραμμές στην είσοδο. Η σχεδίαση συνεισφέρει στη μείωση της αντίστασης στις μικρότερες ταχύτητες.

Εικόνα 9: Σχέδιο ναυπηγικών γραμμών ολισθακάτου με ακμή (σειρά 62) [18]

Η μορφή των γαστρών των ολισθακάτων είναι συνήθως σχήματος V, καθώς η συγκεκριμένη μορφή σχεδίασης προάγει την ολίσθηση. Η γωνία ανύψωσης του πυθμένα της γάστρας στο πρυμναίο τμήμα του σκάφους μπορεί να ξεπεράσει τις 20° στην περίπτωση γαστρών με βαθύ V (*Deep Vee*), ενώ μπορεί να φτάσει έως τις 30° στο μέσο νομέα στην περίπτωση γαστρών με ιδιαίτερα βαθύ V. Ακόμα, όσον αφορά τα υδροπτέρυγα και τα υδροπλάνα, η γωνία ανύψωσης του πυθμένα μπορεί να φτάσει έως τις 70° στην περιοχή της πρώρας. [18]

Ένα άλλο σύνηθες χαρακτηριστικό των ολισθακάτων είναι η ύπαρξη ακμής (Chine) που είναι πιο αισθητή στο πρυμναίο τμήμα μιας ολισθακάτου και πρόκειται για ένα τμήμα του σκάφους στο οποίο παρουσιάζεται απότομη αλλαγή στην κλίση της γάστρας. Στις πολύ υψηλές ταχύτητες προτιμώνται γαστρές με ακμή, διότι η ανωστική δύναμη σε κατάσταση ολίσθησης είναι μεγαλύτερη, η συμπεριφορά σε θαλάσσιους κυματισμούς είναι καλύτερη και ο προσδιορισμός της βρεχόμενης επιφάνειας είναι πιο σαφής. Κατασκευάζονται ολισθάκατοι και με διπλή ακμή, προκειμένου να επιτευχθεί ακόμα καλύτερη συμπεριφορά σε σχέση με τους θαλάσσιους κυματισμούς και τους ελιγμούς του σκάφους. Παρόλα αυτά, το κύριο μειονέκτημα των ολισθακάτων με ακμή είναι ότι συνήθως παρατηρούνται περισσότερα φαινόμενα σφυρόκρουσης στην πλώρη, και δυσμενείς αποκρίσεις κατά την πλεύση σε κυματισμούς. [18], [19]

Επίσης διακρίνουμε και μορφές γάστρας στρογγυλού πυθμένα παρόλο που η ανωστική δύναμη σε αυτές τις γάστρες όταν ολισθαίνουν είναι μικρότερη. Όπως οι ολισθάκατοι με ακμή, έτσι και αυτές με στρογγυλό πυθμένα, διαθέτουν κάθετη και επίπεδη πρύμνη άβακος και σχεδόν επίπεδο και οριζόντιο πυθμένα, χαρακτηριστικά που εξυπηρετούν σε μεγάλο βαθμό τη συμπεριφορά ολίσθησης του ταχύπλοου σκάφους. [18]

Κατά τη φάση της ολίσθησης, όταν μια ολισθάκατος υπερβεί ένα συγκεκριμένο όριο ταχύτητας για τα δεδομένα της, παύει να έχει τη συμπεριφορά μιας συμβατικής γάστρας εκτοπίσματος με αποτέλεσμα να αναπτύσσονται θετικές υδροδυναμικές πιέσεις στον πυθμένα, παράλληλα αυξάνεται η υδροδυναμική άνωση, ενώ μειώνεται η αντίστοιχη υδροστατική άνωση (Εικόνα 10). Σε αυτήν την κατάσταση, η ροή αποκολλάται από τις ακμές και τον καθρέφτη και μέρος της γάστρας ξεκινά να ανυψώνεται, συμβάλλοντας έτσι στη μείωση της δυναμικά βρεχόμενης επιφάνειας και άρα στη μείωση της αντίστασης λόγω συνεκτικότητας και της αντίστασης κυματισμού. [18], [19]

Εικόνα 10: Μεταβολή της συνιστώσας της υδροστατικής - υδροδυναμικής άνωσης συναρτήσει του αριθμού *Froude* σε τυπική ολισθάκατο [18]

Αξίζει να αναφερθεί ότι στα πλαίσια της συνεχούς μελέτης και εξέλιξης των ολισθακάτων και προκειμένου να βελτιωθεί η υδροδυναμική συμπεριφοράς τους, μπορούν να χρησιμοποιούν κατά τη σχεδίαση τα ακόλουθα [17], [18]:

- Το δίπλωμα του V (Warp), δηλαδή αύξηση της γωνίας ανύψωσης που έχει ο πυθμένας στο πρωραίο τμήμα του σκάφους, το οποίο εξυπηρετεί στην μείωση των αποκρίσεων του σκάφους σε κυματισμούς.
- Η κύρτωση που αποκτά η γραμμή της τρόπιδας προς την πρύμνη (Rocker slope), βελτιώνοντας τη συμπεριφορά του σκάφους σε κυματισμούς μειώνεται όμως η δυναμική άνωση.
- Η κατάλληλη διαμόρφωση της πλώρης με βαθύ V (Deep-Vee Bow), προκειμένου να βελτιώνεται η συμπεριφορά του σκάφους στη σφυρόκρουση στην περιοχή της πλώρης.
- Η τοποθέτηση αντιδιαβροχικών λωρίδων (Spray rails Sray strips) κατά μήκος του σκάφους, οι οποίες μοιάζουν και λειτουργούν σαν ακμές και εξυπηρετούν στον έλεγχο και τη μείωση του αφρού και στον ακριβή προσδιορισμό της βρεχόμενης επιφάνειας.

3.2 Αντίσταση ταχυπλόων σκαφών

Όπως γνωρίζουμε, η σχεδίαση ενός οποιουδήποτε σκάφους αποσκοπεί στην αποτελεσματική κίνηση του στο νερό με την ελάχιστη δυνατή αντίσταση. Έτσι, ο συσχετισμός ανάμεσα στην μορφή της γάστρας και στην προωστήρια εγκατάσταση είναι αυτός που ουσιαστικά εξασφαλίζει την μεγαλύτερη απόδοση με την ταυτόχρονη μειωμένη αντίσταση πρόωσης [19]. Επομένως, η συνολική αντίσταση και οι επιμέρους συνιστώσες της αποτελούν σημαντικές παραμέτρους μέσω των οποίων μπορεί η εξεταστεί η μόνιμη κίνηση των ταχυπλόων σκαφών. Οι κυριότερες συνιστώσες της αντίστασης είναι οι εξής [18], [19]:

- Η αντίσταση τριβής (Frictional Resistance)
- Η αντίσταση ανέμου (Wind Resistance)
- Η αντίσταση κυματισμών (Wave Resistance)
- Η αντίσταση εκ δινών (Eddy Resistance)

Η ολική αντίσταση και κατ' επέκταση η γενικότερη υδροδυναμική συμπεριφορά των ταχυπλόων σκαφών μπορεί να επηρεαστούν ακόμα και από μικρές μεταβολές στη μορφή τους [18], [19]. Έτσι, παράγοντες όπως ο σχεδιασμός και τα χαρακτηριστικά της γάστρας, η διαμήκης κλίση που μπορεί να λάβει, καθώς και οι συνθήκες της θάλασσας διαδραματίζουν καθοριστικό ρόλο στην αντίσταση ενός σκάφους. Επομένως, για τα συμβατικά σκάφη και πόσο μάλλον για τα ταχύπλοα σκάφη, όπως είναι οι ολισθάκατοι, η υλοποίηση κατάλληλων πειραμάτων και προσομοιώσεων, καθώς και η εφαρμογή τόσο υπολογιστικών όσο και εμπειρικών μεθόδων εκτίμησης της αντίστασης σε ήρεμο νερό είναι επιτακτικές για την ολοκληρωμένη κατανόηση του θέματος.

3.3 Συστηματικές σειρές ταχυπλόων σκαφών

Με την πάροδο των χρόνων, έχουν αναπτυχθεί αρκετές συστηματικές σειρές για τα ταχύπλοα σκάφη, δηλαδή οικογένειες γαστρών με παρόμοια χαρακτηριστικά που χρησιμοποιούνται για τη μελέτη της αντίστασης και της υδροδυναμικής συμπεριφοράς τους. Οι συστηματικές σειρές διαφέρουν ως προς την γεωμετρία της γάστρας, αλλά και τις παραμέτρους σχεδίασης αυτών (μορφή νομέων, γωνία ανύψωσης πυθμένα κ.ά), προκειμένου η καθεμία να δίνει ακριβή αποτελέσματα. Γι' αυτόν τον λόγο, υπάρχουν συστηματικές σειρές για σκάφη με ακμή, με διπλή ακμή ή με στρογγυλό πυθμένα κλπ, όπως θα δούμε στις παρακάτω υποενότητες.

3.3.1 Συστηματικές σειρές σκαφών στρογγυλού πυθμένα

Όσον αφορά τα ταχύπλοα σκάφη με στρογγυλό πυθμένα (ημι-εκτοπίσματος και ολισθακάτους), έχουν αναπτυχθεί συστηματικές σειρές για την εκτίμηση της αντίστασης τους, με πιο γνωστές τις ακόλουθες:

- Συστηματική Σειρά NPL (National Physical Laboratory), αναπτύχθηκε από τον Baily στην M. Βρετανία (1976) και αποτελεί την πιο διαδεδομένη συστηματική σειρά της κατηγορίας. Με βάση το πατρικό σκάφος της σειράς, προέκυψαν τα υπόλοιπα σκάφη διατηρώντας σταθερούς τους αδιάστατους συντελεστές μορφής, μεταβάλλοντας ομοιόμορφα τις κύριες διαστάσεις. Οι γάστρες της σειράς διαθέτουν ευθείες ισάλους στην είσοδο, ευθείες διαμήκεις τομές, καθώς και στρογγυλούς νομείς στο πρυμναίο τμήμα, ενώ η διαμήκης θέση του κέντρου άντωσης βρίσκεται σε απόσταση 6,4% του μήκους πρύμνηθεν του μέσου νομέα. Τα πρώτα πέντε σκάφη που δημιουργήθηκαν είχαν σταθερό μήκος και εκτόπισμα, ενώ οι λόγοι μήκος ισάλου προς πλάτος ισάλου κυμαίνονται από 3,33 έως και 7,5 (πατρικό σκάφος L/B = 6,25). Συνολικά, η σειρά περιλαμβάνει τριανταένα πρότυπα σκάφη, τα οποία δοκιμάστηκαν σε ένα εύρος ταχυτήτων που αντιστοιχεί σε αριθμούς Froude από 0,3 έως 1,19. [18]
- Συστηματική Σειρά VTT, αναπτύχθηκε από τους Lahtiharju, Karppinen, Aitta και Hellevaara (1991) στη Φιλανδία και αποτελείται από πέντε πρότυπα σκάφη που αναπτύχθηκαν από το πατρικό σκάφος της συστηματικής σειράς NPL. Καθώς έχουν μικρότερο συντελεστή γάστρας από το πατρικό σκάφος της σειράς NPL, τα εν λόγω σκάφη ικανοποιούν τις απαιτήσεις για μικρά βυθίσματα, ώστε να λειτουργούν στις ακτές της Φιλανδίας, καθώς και για τοποθέτηση συστήματος πρόωσης με υδραυλική αντίδραση (water-jet). [18]
- Συστηματική Σειρά 63, αναπτύχθηκε και παρουσιάστηκε από τον Beys το 1963, με βάση τις δοκιμές σε πέντε πρότυπα ταχύπλοα σκάφη με γάστρες στρογγυλού πυθμένα. Τα σκάφη έχουν τιμές λόγων μήκους προς πλάτος που κυμαίνονται από 2,5 έως και 6,0, και προέκυψαν με κατάλληλες μεταβολές του αντίστοιχου λόγου του πατρικού σκάφους ο οποίος ισούταν με 4. [18]
- Συστηματική Σειρά 64, τα αποτελέσματα της σειράς παρουσιάστηκαν από τον Yeh το 1965, η σειρά περιλαμβάνει εικοσιεπτά πρότυπα ταχυπλόων σκαφών στρογγυλού πυθμένα, τα οποία διέθεταν αρκετά λεπτόγραμμη γάστρα. Γι' αυτόν τον λόγο, αυτή η σειρά εφαρμόζεται κυρίως σε παραμετρικές μελέτες για λεπτόγραμμα σκάφη, διότι η μορφή των γαστρών που διαθέτει είναι, όπως προαναφέρθηκε, πιο εξεζητημένη. Για την ανάπτυξη των σκαφών της Σειράς 64 οι παράμετροι που ελήφθησαν υπόψιν ήταν ο λόγος B/T (από 2 έως 4), ο συντελεστής γάστρας C_B (από 0,35 έως 0,55), και ο λόγος Δ/(0,01L)³ (από 15 έως 50). Τέλος, οι ταχύτητες όπου διεξήχθησαν τα πειράματα αντιστοιχούν σε αριθμούς *Froude* έως 1,5. [18]
- Συστηματική Σειρά SSPA, αναπτύχτηκε από τον Lindgren και τον Williams (1968), αφορά μικρά πολεμικά ταχύπλοα σκάφη και περιλαμβάνει εννέα πρότυπα με σταθερούς τους

συντελεστές C_B, C_X και τη διαμήκη θέση των LCB, LCF. Οι δοκιμές των προτύπων έγιναν για αριθμούς *Froude* έως 1,3. [18]

3.3.2 Συστηματικές σειρές σκαφών με ακμή

Όσον αφορά τις ολισθακάτους, έχουν αναπτυχθεί επίσης ορισμένες συστηματικές σειρές για την εκτίμηση της συνολικής αντίστασης, με πιο γνωστή την ακόλουθη:

Συστηματική Σειρά 62, αναπτύχθηκε από τους Clement και Blount (1963) και απαρτίζεται από πέντε πρότυπα ταχύπλοα σκάφη με ακμή και με λόγους μήκους προς πλάτος στην ακμή (L_P/B_{PX}) που κυμαίνονται από 2,00 έως 7,00. Σε αυτά τα πέντε πρότυπα σκάφη, πραγματοποιήθηκαν πειράματα για τέσσερις καταστάσεις φόρτωσης και για τέσσερις διαμήκεις θέσεις του κέντρου βάρους. Επίσης, στα εν λόγω σκάφη, η γωνία ανύψωσης του πυθμένα είναι σχετικά μικρή και σταθερή, από το μέσον και προς το πρυμναίο τμήμα του σκάφους, και είναι ίση με 12,5 μοίρες, ενώ στην περιοχή της πρύμνης το πλάτος της ακμής είναι περίπου ίσο με το 65% του μέγιστου πλάτους της ακμής. Τέλος, οι νομείς στο πρωραίο τμήμα είναι κυρτοί. [18], [21]

3.3.3 Ημι-εμπειρικές μέθοδοι εκτίμησης αντίστασης

Πέραν των μεθόδων αντίστασης που στηρίζονται στα πειραματικά αποτελέσματα των συστηματικών σειρών, έχουν αναπτυχθεί και διάφορες ημι-εμπειρικές μέθοδοι μέσω των οποίων είναι δυνατή η εκτίμηση της συνολικής αντίστασης ενός ταχυπλόου. Μερικές εξ αυτών είναι οι παρακάτω [18]:

- Η γραφική μέθοδος του Kafali (1959)
- Η γραφική μέθοδος του *Clement* (1964)
- Η μέθοδος του *Savitsky* (*Savitsky*, 1964)
- Η μέθοδος του Van Oortmerssen (Van Oortmerssen, 1971)
- Η μέθοδος των Mercier και Savitsky (Savitsky και Brown, 1976)
- Η μέθοδος του *Tang* (*Ping zhong et al*, 1980)
- Η μέθοδος του *Holtrop* (*Holtrop*, 1984)
- Η μέθοδος του *Compton* (*Compton*, 1986)
- Η μέθοδος του *VTT* (*Lahtiharju et al*, 1991)

Δεδομένου ότι στην παρούσα διπλωματική εργασία, χρησιμοποιείται η ημι-εμπειρική μέθοδος Savitsky στους υπολογισμούς της όσον αφορά την εκτίμηση της συνολικής αντίστασης των υπό εξέταση ολισθακάτων, παρακάτω παρουσιάζεται αναλυτικά η εν λόγω μέθοδος.

<u>Γενικά για τη μέθοδο Savitsky</u>

Η μέθοδος Savitsky αποτελεί την πιο ευρέως διαδεδομένη ημι-εμπειρική μέθοδο για τον προσδιορισμό της ολικής αντίστασης και της ισχύος των ταχυπλόων σκαφών με πρισματική γάστρα όταν βρίσκονται σε κατάσταση ολίσθησης. Η μέθοδος αναπτύχθηκε με βάση τα πειράματα των Savitsky και Neidinger (1954) για την επίπεδη πλάκα. Τα αποτελέσματα της μεθοδολογίας που προτάθηκε από τον Savitsky το 1964, έδειξαν πως η μέθοδος δίνει ακριβή και έγκυρα αποτελέσματα για την πρόβλεψη της συνολικής αντίστασης στις υψηλές ταχύτητες [16], [22]. Επίσης, για να λειτουργεί αποδοτικά και να δώσει τα επιθυμητά αποτελέσματα η μεθοδολογία, ο αριθμός Froude με βάση το πλάτος (Fn_B) πρέπει να κυμαίνεται σε τιμές από 0,6 έως 25. Στη συγκεκριμένη μέθοδο, τα αρχικά δεδομένα που είναι απαραίτητα, προκειμένου να εφαρμοστεί είναι τα εξής:

- Το εκτόπισμα (Δ),
- Το βρεχόμενο πλάτος στην ακμή (Bpx),
- Η γωνία ανύψωσης του πυθμένα (β),
- Η διαμήκης θέση του κέντρου βάρους από τον καθρέπτη (LCG),
- Η υπηρεσιακή ταχύτητα της ολισθακάτου (V),
- Η πυκνότητα (ρ) του νερού και το κινηματικό ιξώδες (ν) σε δεδομένες συνθήκες.

Εμπειρικές μέθοδοι για πρισματικές μορφές

Για μηδενική γωνία ανύψωσης πυθμένα

Αρχικά, τα πειράματα των Savitsky και Neidinger αναφέρονταν στην περίπτωση επίπεδης πλάκας και σύμφωνα με τα αποτελέσματα τους προέκυψε η σχέση που συσχετίζει το αδιάστατο βρεχόμενο μήκος πλάκας $\lambda = L/B$ με το βυθισμένο μήκος $\lambda i = Li/B$ ως εξής:

$$\lambda = \begin{bmatrix} 1,60 * \lambda i - 0,3 * \lambda i^2 & , 0 \le \lambda i \le 1 \\ \lambda i + 0,30 & , 1 \le \lambda i \le 4 \end{bmatrix}$$
(1)

Η ανωτέρω σχέση χρησιμοποιείται σε περιπτώσεις αριθμών *Froude* με βάση το πλάτος (Fn_B) από 0,6 έως 25,0 και για γωνίες διαγωγής (τ) από 2° έως 24°. [18]

Επίσης, το βάρος (W) που μπορεί να υποστηρίξει η πλάκα, υπολογίζεται από την ακόλουθη σχέση για το συντελεστή άνωσης της ολισθαίνουσας επίπεδης πλάκας, C_{L0}:

$$C_{L0} = \frac{W}{\frac{1}{2} * \rho * V^2 * B^2} = \tau^{1,1} * \left(0.0120 * \lambda^{1/2} + \frac{0.0055 * \lambda^{5/2}}{Fn_B^2} \right)$$
(2)

Όπου:

W: εκόπισμα σκάφους [kp]

V: υπηρεσιακή ταχύτητα σκάφους [m/s]

ρ: πυκνότητα θαλασσινού νερού σε θερμοκρασία περιβάλλοντος $[kp*sec^2/m^4]$

Β: πλάτος [m]

Η παραπάνω σχέση ισχύει για αριθμούς *Froude* με βάση το πλάτος (Fn_B) από 0,6 έως 13,0, για γωνίες διαγωγής (τ) από 2° έως 15° και για αδιάστατο βρεχόμενο μήκος μικρότερο ή ίσο του 4. [18]

Για μη μηδενική γωνία ανύψωσης πυθμένα

Σε αντίθεση με προηγουμένως, τώρα θα εξεταστεί η περίπτωση μιας επιφάνειας με σταθερή γωνία ανύψωσης πυθμένα (μη μηδενική γωνία). Στην προκειμένη περίπτωση, υπολογίζεται η διαφορά του βρεχόμενου μήκους της τρόπιδας L_k και το βρεχόμενου μήκους της ακμής L_c, συναρτήσει της γωνίας διαγωγής, τ και της γωνίας ανύψωσης πυθμένα, β από την ακόλουθη σχέση [18]:

$$L_{l} = L_{k} - L_{c} = \frac{B}{\pi} \frac{\tan \beta}{\tan \tau} , \quad Fn_{B} > 2,0$$
(3)

Όπου:

Β: πλάτος [m]

β: γωνία ανύψωσης πυθμένα [deg]

τ: δυναμική διαγωγή [deg]

Η ανωτέρω διαφορά μεταξύ των μηκών αυξάνεται όσο μεγαλώνει η γωνία ανύψωσης του πυθμένα. Επιπλέον ορίζεται το μέσο βρεχόμενο μήκος προς το πλάτος, $\lambda = L_m/B$ από την ακόλουθη σχέση [18]:

$$\lambda = \frac{L_k + L_c}{2B} = \frac{\left(\frac{h}{\sin\tau} - \frac{B}{2\pi}\frac{\tan\beta}{\tan\tau}\right)}{B}$$
(4)

Όπου:

L_m: μέσο βρεχόμενο μήκος [m]

Lk: βρεχόμενο μήκος τρόπιδας [m]

Lc: βρεχόμενο μήκος ακμής [m]

Β: πλάτος [m]

h: βύθισμα τρόπιδας [m]

β: γωνία ανύψωσης πυθμένα [deg]

τ: δυναμική διαγωγή [deg]

Στην συνέχεια, υπολογίζεται ο συντελεστής άνωσης της ολισθαίνουσας πρισματικής επιφάνειας, C_{LB} εφαρμόζοντας την παρακάτω σχέση:

$$C_{LB} = \frac{W}{\frac{1}{2} * \rho * V^2 * B^2} = C_{L0} - (0,0065 * \beta * C_{L0}^{0,6}) , Fn_B > 1,0$$
(5)

Όπου:

W ή Δ: εκόπισμα σκάφους [kp]

V: υπηρεσιακή ταχύτητα σκάφους [m/s]

ρ: πυκνότητα θαλασσινού νερού σε θερμοκρασία περιβάλλοντος [kp*sec²/m⁴]

B: πλάτος [m]

 C_{L0} : συντελεστή άνωσης επίπεδης πλάκας

β: γωνία ανύψης πυθμένα [deg]

Η παραπάνω σχέση που αναφέρεται στον συντελεστή ανωστικής δύναμης (C_{LB}) και επιβεβαιώνεται και πειραματικά απεικονίζεται στο Σχήμα 1. Από το σχήμα φαίνεται ότι οι πρισματικές γάστρες έχουν μειωμένη ανωστική ικανότητα έναντι αυτής των επίπεδων γαστρών με το ίδιο πλάτος και μέσο βρεχόμενο μήκος. [18]

Αξίζει να αναφερθεί ότι κατά την εξέταση της κατάστασης ισορροπίας ενός ταχυπλόου σκάφους, είναι αναγκαία η γνώση του κέντρου πιέσεων του σκάφους. Έτσι, οι Savitsky και Neidinger απέδειξαν πως ο πρώτος όρος της σχέσης για τον υπολογισμό του C_{L0} (Σχέση 2) αφορά μια δυναμική άνωση που ασκείται σε ένα σημείο στα 3/4 L_m μπροστά από τον καθρέπτη του σκάφους, ενώ ο δεύτερος όρος αποτελεί την υδροστατική δύναμη που πρέπει να ασκείται στο 1/3 L_m από τον καθρέπτη. Επομένως, η διαμήκης θέση του κέντρου πιέσεων (L_p), μέσω των ροπών, υπολογίζεται ως εξής [18]:

$$\frac{L_{p}}{L_{m}} = \frac{\tau^{1,1} * \left(\frac{3}{4} * 0,0120 * \lambda^{1/2} + \frac{1}{3} * \frac{0,0055 * \lambda^{5/2}}{Fn_{B}^{2}}\right)}{\tau^{1,1} * \left(0,0120 * \lambda^{1/2} + \frac{0,0055 * \lambda^{5/2}}{Fn_{B}^{2}}\right)}$$

Με κατάλληλες απλοποιήσεις, η σχέση γίνεται:

$$\frac{L_{p}}{L_{m}} = 0.75 - \frac{1}{\left(\frac{5.21 * Fn_{B}^{2}}{\lambda^{2}} + 2.39\right)} , 0.60 \le FnB \le 13.0$$

$$, \lambda \le 4.0$$
(6)

Η παραπάνω σχέση (Σχέση 6) απεικονίζεται στο σχήμα 2. Όπως φαίνεται και στο σχήμα, το κέντρο των πιέσεων πλησιάζει τα $3/4 L_m$ μπροστά από τον καθρέπτη του σκάφους, όσο ο αριθμός *Froude* με βάση το πλάτος (Fn_B) τείνει στο άπειρο, ενώ η γωνία ανύψωσης του πυθμένα (β) και η γωνία δυναμκής διαγωγής (τ) δεν επηρεάζουν τη σχέση 6, γεγονός που επιβεβαιώνεται και πειραματικά. [16], [18]

Σχήμα 1: Συντελεστής ανωστικής δύναμης για ολισθαίνουσα πρισματική επιφάνεια [18]

Σχήμα 2: Θέση κέντρου πιέσεων ολισθακάτων συναρτήσει του αριθμού Froude, FnB [18]

Υπολογισμός αντίστασης ολισθακάτου

Η δύναμη τριβής (D_F) και η κάθετη δύναμη λόγω πιέσεων (N) είναι οι δυνάμεις που ενεργούν σε μια ολισθαίνουσα επιφάνεια και αποτελούν τις βασικές συνιστώσες της αντίστασης [18]. Έτσι προκύπτει πως η συνολική αντίσταση, D (Drag) μπορεί να γραφεί ως εξής:

$$D = W * \tan \tau + \frac{D_F}{\cos \tau}$$
(7)

Όπου:

W: εκτόπισμα σκάφους [kp]

τ: δυναμική διαγωγή [deg]

Df: αντίσταση τριβής [kp]

Ο πρώτος όρος της σχέσης 7 μπορεί να υπολογιστεί άμεσα εφόσον είναι γνωστά το εκτόπισμα και η δυναμική διαγωγή του σκάφους, ενώ η αντίσταση τριβής (D_F) που εμπεριέχεται στο δεύτερο όρο της ανωτέρω σχέσης υπολογίζεται ως εξής:

$$D_{\rm F} = \frac{1}{2} * \rho * V_{\rm m}^2 * S_{\rm F} * (C_{\rm F} + \Delta C_{\rm F})$$
(8)
Όπου:

ρ: πυκνότητα [kp*sec²/m⁴] V_m: μέση ταχύτητα πυθμένα [m/s] S_F : ενεργή επιφάνεια τριβής $[m^2]$ CF: συντελεστής τριβής ΔC_F : συντελεστής συσχέτισης ATTC

Για την εύρεση της αντίστασης τριβής είναι απαραίτητος ο υπολογισμός των επιμέρους μεγεθών που επισέρχονται στη σχέση. Έτσι, η μέση ταχύτητα ροής στον πυθμένα (Vm) υπολογίζεται λαμβάνονας υπόψιν τη δυναμική ανωστική συνιστώσα της σχέσης 2 και τη διόρθωση που αναφέρεται στην ανύψωση του πυθμένα (Σχέση 5) [18]. Ειδικότερα, προσδιορίζεται η τιμή του συντελεστή δυναμικής άνωσης (CLd):

$$C_{Ld} = 0.0120 * \lambda^{1/2} * \tau^{1,1} - 0.0065 * \beta * (0.0120 * \lambda^{1/2} * \tau^{1,1})^{0,6}$$
(9)

0.0

Όπου:

- λ: λόγος μέσου βρεχόμενου μήκους [-]
- β: γωνία ανύψωσης πυθμένα [deg]
- τ: δυναμική διαγωγή [deg]

Ο συντελεστής αυτός χρησιμοποιείται στον υπολογισμό του δυναμικού μέρους του φορτίου:

$$W_{d} = \frac{1}{2} * \rho * V_{m}^{2} * B^{2} * C_{Ld}$$
(10)

Επίσης, η μέση δυναμική πίεση (pd) σύμφωνα με την ανάλυση του Savitsky γράφεται:

$$p_{d} = \frac{W_{d}}{\left(\lambda * B^{2} * \cos\tau\right)} = \frac{C_{Ld} * \rho * V_{m}^{2}}{\left(2\lambda * \cos\tau\right)}$$
(11)

Ο Savistky στην ανάλυση του δεν λαμβάνει υπόψιν τον παράγοντα cosβ ο οποίος θα έπρεπε να βρίσκεται στον παρανομαστή της σχέσης 11. Εφαρμόζοντας λοιπόν την εξίσωση Bernoulli ανάμεσα σε ένα σημείο μπροστά από την πλάκα με ταχύτητα ροής V και σε ένα μέσο σημείο στην ολισθάνουσα επιφάνεια με ταχύτητα ροής V_m και λαμβάνοντας υπόψιν τις σχέσεις 9 – 11, η μέση ταχύτητα του ρευστού στον πυθμένα προσδιορίζεται από την σχέση [18]:

$$V_{\rm m} = V - \left(\frac{1 - p_{\rm d}}{\lambda * \cos \tau}\right)^{1/2} = V - \left(\frac{1 - C_{\rm Ld}}{\lambda * \cos \tau}\right)^{1/2}$$
(12)

Όπου:

CLd: συντελεστής δυναμικής άνωσης

V: ταχύτητα ροής [m/s]

λ: αδιάστατο βρεχόμενο μήκος (λόγος βρεχόμενου μήκους προς πλάτος)

τ: δυναμική διαγωγή [deg]

Η βρεχόμενη επιφάνεια (SF) μπορεί να εκτιμηθεί μέσω της σχέσης:

$$S_F = \frac{\lambda_F * B^2}{\cos \beta}$$
(13)

Όπου:

λ_F: λόγος βρεχόμενου μήκους τριβής προς πλάτος [m]

Β: πλάτος [m]

β: γωνία ανύψωσης πυθμένα [deg]

Για την εύρεση του λόγου βρεχόμενου μήκους τριβής (λ_F) χρησιμοποιείται ο παρακάτω τύπος:

$$\lambda_{\rm F} = \lambda + \Delta \lambda \tag{14}$$

Όπου:

λ: λόγος μέσου βρεχόμενου μήκους

Δλ: διόρθωση του βρεχόμενου μήκους εξαιτίας του αφρού

Αξίζει να σημειωθεί ότι για τη διόρθωση του βρεχόμενου μήκους εξαιτίας του αφρού (Δλ) χρησιμοποιείται το παρακάτω σχήμα (Σχήμα 3). Ο *Savitsky* αναφέρει ότι το εν λόγω σχήμα δεν ενδείκνυται για γωνίες δυναμικής διαγωγής (τ) μικρότερες των 4°, ενώ σε τέτοιες περιπτώσεις η αντίστοιχη διόρθωση είναι μηδενική και δεν λαμβάνεται υπόψιν στους υπολογισμούς. [18]

Σχήμα 3: Αύξηση τους ενεργού μήκους τριβής εξαιτίας της ύπαρξης του αφρού [18]

Τέλος, για τον προσδιορισμό της αντίστασης τριβής και κατ' επέκταση της συνολικής αντίστασης υπολογίζεται ο συντελεστής τριβής (C_F) με βάση τις γνωστές σχέσεις για τον υπολογισμό του συντελεστή αντίστασης επίπεδης πλάκας χρησιμοποιώντας τον αδιάστατο αριθμό *Reynolds* που βασίζεται στη μέση ταχύτητα στον πυθμένα στο λόγο του μήκους τριβής. Έτσι, ο αριθμός *Reynolds* υπολογίζεται από την σχέση:

$$Re = \frac{V_m^* (B^* \lambda_F)}{v}$$
(15)

Όπου:

V_m: μέση ταχύτητα στον πυθμένα [m/s]

λ_F: λόγος βρεχόμενου μήκους τριβής

Β: πλάτος [m]

ν: κινηματικό ιξώδες σε συνθήκες περιβάλλοντος [m²/sec]

Ο συντελεστής αντίστασης τριβής (C_F), ανάλογα με την τιμή του αριθμού *Reynolds*, μπορεί να προσδιοριστεί μέσω των παρακάτω σχέσεων:

$$C_F = 0.074 * Re^{-1/5}$$
 $5 * 10^5 < Re < 10^7$ (16.a)

$$C_{\rm F} = \frac{0.455}{\left(\log_{10} {\rm Re}\right)^{2.58}} \qquad 5 * 10^5 < {\rm Re} < 10^7 \qquad (16.\beta)$$

(ITTC' 57)
$$C_F = \frac{0.075}{(\log_{10}(\text{Re-2}))^2}$$
 $\text{Re} > 10^7$ (16. γ)

(ATTC)
$$\frac{0.242}{\sqrt{C_F}} = \log_{10} (\text{Re} * C_F)$$
 Re > 10⁷ (16.8)

Επιπλέον, η τιμή του συντελεστή συσχέτισης (ΔC_F) πλοίου – προτύπου προκύπτει από την τραχύτητα της βρεχόμενης επιφάνειας [18]. Έτσι, θεωρούμε τα ακόλουθα:

Για χαλύβδινα ταχύπλοα σκάφη:

$$\Delta C_{\rm F} = 0,0004$$

Για ταχύπλοα σκάφη από αλουμίνιο:

$$\Delta C_{\rm F} = 0,00025$$

Για πλαστικά ταχύπλοα σκάφη (παραγωγή με καλούπι):

 $\Delta C_{\rm F} = 0,000$

Ολισθάκατος σε κατάστασης ισορροπίας

Λαμβάνοντας υπόψιν όσα αναφέρθηκαν παραπάνω ο προσδιορισμός της συμπεριφοράς μιας ολισθακάτου στην ισορροπία ολισθακάτου (Εικόνα 11) είναι μια ιδαίτερα σημαντική διαδικασία. Έτσι, χρησιμοποιώντας ως δεδομένα τα μεγέθη που αναγράφονται στον Πίνακα 1 για μία ολισθάκατο, είναι δυνατός ο υπολογισμός των μεγεθών που παρουσιάζονται στον Πίνακα 2, για την κατάστησης ισορροπίας.

ΠΕΡΙΓΡΑΦΗ	ΠΟΣΟΤΗΤΑ
Πλάτος	В
Γωνία ανύψωσης πυθμένα	β
Βάρος	W
Κλίση άξονα έλικας	3
Απόσταση άξονα έλικα από κ. βάρους	f
Θέση κ. βάρους ως προς τον καθρέπτη	L _G
Θέση κ. βάρους πάνω από την τρόπιδα	H _G
Ταχύτητα σκάφους	V

Πίνακας 1: Δεδομένα ολισθακάτου

ПЕРІГРАФН	ΠΟΣΟΤΗΤΑ
Δυναμική διαγωγή	τ
Βρεχόμενο μήκος τρόπιδας	L_k
Βρεχόμενο μήκος ακμής	L _c
Αντίσταση	D
Βύθισμα τρόπιδας	h
Απαιτούμενη ώση έλικας	Т

Πίνακας 2: Ζητούμενα χαρακτηριστικά ολισθακάτου στην κατάσταση ισορροπίας

Αναλύοντας τις δυνάμεις που ενεργούν παράλληλα με την τρόπιδα, προκύπτει το εξής:

$$T * \cos \varepsilon - W * \sin \tau - D_F = 0$$
⁽¹⁷⁾

Εικόνα 11: Ισορροπία ολισθακάτου - Γενική περίπτωση [18]

Επίσης, αναλύοντας τις δυνάμεις που είναι κάθετες με τον άξονα της έλικας, πρόκυπτει το εξής:

N * cos
$$\varepsilon$$
 - W * cos ($\tau + \varepsilon$) + D_F * sin ε = 0 (18)

Επιπλέον, όσον αφορά την ισορροπία των ροπών στο κέντρο βάρους ισχύει ότι:

$$M = T * f - N * c - D_F * a = 0$$
(19)

Όπου:

T: ώση [kp]

f: μοχλοβραχίονας ώσης [m]

N: κάθετη δύναμη που δέχεται η γάστρα [kp]

c: μοχλοβραχίονας ροπής της κάθετης δύναμης γύρω από το κ. βάρους [m]

a: μοχλοβραχίονας δύναμης τριβής [m]

Ο μοχλοβραχίονας ροπής της κάθετης δύναμης (N) που δέχεται η γάστρα της ολισθακάτου γύρω από το κέντρο βάρους δίνεται από τη σχέση:

$$c = L_G - L_p \tag{20}$$

Όπου:

Lg: θέση κ. βάρους από τον καθρέπτη [m]

Lp: κέντρο πιέσεων [m]

Ο μοχλοβραχίονας της δύναμης τριβής (a) υπολογίζεται από την σχέση:

$$a = H_G - \frac{1}{4} * B * \tan \beta$$
⁽²¹⁾

Όπου:

 $H_G:$ θέση κ. βάρους πάνω από την τρόπιδα [m]

Η ισχύς ρυμούλκησης δίνεται από τον τύπο:

EHP
$$\dot{\eta}$$
 Pe = D * V (22)

Όπου:

V: ταχύτητα σκάφους [m/s]

D: συνολική αντίσταση [kp]

Το βύθισμα της τρόπιδας στην περιοχή του καθρέπτη δίνεται από τη σχέση:

 $h = L_k * \sin \tau \tag{23}$

Όπου:

Lk: βρεχόμενο μήκος τρόπιδας [m]

Η δυσκολία επίλυσης της μεθοδολογίας έγκειται στο ότι η γωνία δυναμικής διαγωγής (τ) είναι άγνωστη στην αρχή, ενώ η τιμή που λαμβάνεται στη συνέχεια πρέπει να ικανοποιεί τις εξισώσεις

ισορροπίας. Γι' αυτόν τον λόγο, η αναλυτική μέθοδος Savitsky (Savitsky long – form method), επιλύεται επαναληπτικά υποθέτονας μια αρχική τιμή της δυναμικής διαγωγής, με στόχο την εύρεση της ροπής (M) μέσω της σχέσης 19. [18]

Επίσης, η σχέση 5 αντιστράφεται με τέτοιο τρόπο ώστε ο συντελεστής άνωσης επίπεδης πλάκας (C_{L0}) να είναι ο άγνωστος της εξίσωσης και οι υπόλοιπες μεταβλητές δεδομένες. Σε αυτήν την περίπτωση, ο συντελεστής μπορεί να προσδιοριστεί είτε μέσω του σχήματος 1 είτε με επίλυση της σχέσης 5 με χρήση της μεθόδου *Newton – Raphson* ή της μεθόδου επαναλαμβανόμενης αντικατάστασης. Η τελευταία από τις προαναφερθείσες μεθόδους μπορεί να εκφραστεί γράφοντας τη (n+1)-οστή εκτιμήτρια ως εξής:

$$C_{L0}^{(n+1)} = C_{LB} + 0,0065 * \beta * [C_{L0}^{(n)}]^{0,6}$$

Στην παραπάνω σχέση, ο εκθέτης (n) αφορά την n-οστή εκτιμήτρια, ενώ μια ικανοποιητική αρχική προσέγγιση είναι η $C_{L0}^{(1)} = C_{LB}$, με σκοπό τη γρηγορότερη σύγκλιση των τιμών. [18]

Με ανάλογο τρόπο, η σχέση 2 αντιστρέφεται ώστε ως άγνωστος να θεωρείται ο λόγος μέσου βρεχόμενου μήκους (λ). Στην προκειμένη περίπτωση, η σχέση 2 μπορεί να γραφτεί εκ νέου με την ακόλουθη μορφή:

$$\lambda^{(n+1)} = \left\{ \frac{Fn_B^2 * \left(\frac{C_{L0}}{\tau^{1,1}} * \left[\lambda^{(n)} \right]^{1/2} - 0,0120 \right)}{0,0055} \right\}^{1/2}$$

Στην ανωτέρω έκφραση ως 1η εκτιμήτρια λαμβάνεται η εξής:

$$\lambda^{(1)} = \left(\frac{\mathrm{Fn}_{\mathrm{B}}^{2} * \mathrm{C}_{\mathrm{L0}}}{0,0055 * \tau^{1,1}}\right)^{2/5}$$

Περιγραφή σύντομης μεθόδου Savitsky

Η μέθοδος Savitsky που για την επίλυση της απαιτείται επαναληπτική διαδικασία μπορεί να απλοποιηθεί αν υποθέσουμε ότι το σύνολο των δυνάμεων που επιδρούν στην ολισθάκατο διέρχονται από το κέντρο βάρους της (Εικόνα 12). Η υπόθεση αυτή εισάγει τη σύντομη μέθοδο Savitsky (Savitsky short – form method) και έτσι, η εξίσωση της ροπών (Σχέση 19) λύνεται απευθείας, ενώ το κέντρο πιέσεων και το κέντρο βάρους του σκάφους βρίσκονται στην ίδια διαμήκη θέση, δηλαδή ισχύει το εξής: $L_p = LCG$. [18]

Εικόνα 12: Ισορροπία ολισθακάτου - Συντρέχουσες δυνάμεις [18]

Στην συγκεκριμένη περίπτωση, υφίστανται ορισμένες απλοποιήσεις στους υπολογισμούς κατά την επίλυση της μεθόδου, με αποτέλεσμα να μην είναι απαραίτητη η επαναληπτική διαδικασία που αναφέρθηκε προηγουμένως για την εύρεση του λόγου μέσου βρεχόμενου μήκους προς το πλάτος ($\lambda = L_m/B$), το οποίο μπορεί να προσδιοριστεί με χρήση ανάλογου νομογραφήματος για την περίπτωση συντρεχουσών δυνάμεων (Σχήμα 4) συναρτήσει του αριθμού *Froude* με βάση το πλάτος (Fn_B) και του κέντρου των πιέσεων ως προς το πλάτος (L_P/B). [18]

Σχήμα 4: Νομογράφημα – Συντρέχουσες δυνάμεις [18]

Τα βήματα υπολογισμού της συνολικής αντίστασης και της απαιτούμενης ισχύς ρυμούλκησης ενός σκάφους με χρήση της σύντομης μεθόδου *Savitsky* αναγράφονται στον παρακάτω πίνακα (Πίνακας 3).

BHMA	ПЕРІГРАФН	ΠΟΣΟΤΗΤΑ	ΣΧΕΣΗ
1	Αριθμός <i>Froude</i> με βάση το πλάτος	Fn _B	$Fn_{B} = V / (g * B)^{1/2}$
2	Συντελεστής άνωσης πρισματικού σκάφους	$C_{L\beta}$	σχέση 5
3	Συντελεστής άνωσης επίπεδης πλάκας	C _{L0}	σχέση 5/ σχήμα 1
4	Κέντρο πιέσεων	L _P /B	σχέση 20 για c = 0
5	Λόγος μέσου βρεχόμενου μήκους	λ	σχέση 6/ σχήμα 4
6	Μειωμένος συντελεστής επίπεδης πλάκας	$C_{L0}/\tau^{1,1}$	σχήμα 4
7	Δυναμική διαγωγή	τ	$\tau = [(C_{L0} / \tau^{1,1}) / C_{L0}]^{-1/1,1}$
8	Συντελεστής δυναμικής άνωσης	C _{Ld}	σχέση 9
9	Μέση ταχύτητα πυθμένα	Vm	σχέση 12
10	Διόρθωση βρεχόμενου μήκους τριβής	Δλ	σχήμα 3
11	Λόγος βρεχόμενου μήκους τριβής	$\lambda_{ m F}$	σχέση 14
12	Αριθμός <i>Reynolds</i>	Re	σχέση 15
13	Συντελεστής τριβής	C _F	σχέση 16
14	Συντελεστής συσχέτισης	$\Delta C_{\rm F}$	ανάλογα την τραχύτητα
15	Βρεχόμενη επιφάνεια τριβής	$S_{\rm F}$	σχέση 13
16	Αντίσταση τριβής	$D_{\rm F}$	σχέση 8
17	Αντίσταση	D	σχέση 7
18	Ώση έλικας	Т	σχέση 17
19	Ισχύς ρυμούλκησης	EHP	σχέση 22
20	Βρεχόμενο μήκος τρόπιδας	L _k	σχέση 3
21	Βρεχόμενο μήκος ακμής	L _c	σχέση 3
22	Βύθισμα τρόπιδας	h	σχέση 23

Πίνακας 3: Σύντομη μέθοδος Savitsky [18]

Αξίζει να αναφερθεί ότι οι *Blount* και *Fox* (1976) πρότειναν μια διόρθωση όσον αφορά την εκτίμηση της συνολικής αντίστασης που υπολογίζεται με τη μέθοδο *Savitsky*. Ειδικότερα, πρότειναν την εφαρμογή ενός διορθωτικού συντελεστή M ο οποίος πολλαπλασιάζεται με τη τιμή της αντίστασης κατά *Savitsky*. Ο συντελεστής M δίνεται από τον ακόλουθο τύπο:

$$M = 0.98 + 2 * \left(\frac{LCG}{B_{PX}}\right)^{1.45} * e^{-2(Fn_{\nabla} - 0.85)} - 3 * \left(\frac{LCG}{B_{PX}}\right) * e^{-3(Fn_{\nabla} - 0.85)}$$
(24)

Όπου:

Fn_∇: ογκομετρικός αριθμός *Froude*LCG: διαμήκης θέση του κέντρου βάρους [m]
B_{PX}: πλάτος στην ακμή [m]

Η παραπάνω σχέση, η οποία προέκυψε έπειτα από στατιστική ανάλυση πολλών πειραματικών αποτελεσμάτων, βελτιώνει την εκτίμηση στην περιοχή τοπικού μεγίστου της καμπύλης της αντίστασης (hump), όπου σε αυτές τις περιπτώσεις ο συντελεστής Μ είναι μεγαλύτερος της μονάδας. [17], [18]

Κεφάλαιο 4: Ολισθάκατοι με γάστρα βαθέως V

Η εκτίμηση της αντίστασης πραγματοποιήθηκε αρχικά για δύο ταχύπλοα σκάφη με γάστρα βαθέως V τα οποία είχαν παρόμοιο εκτόπισμα, αλλά διαφορετικά γεωμετρικά χαρακτηριστικά (Πίνακας 4). Ειδικότερα τα σκάφη είχαν διαφορετικές γωνίες ανύψωσης πυθμένα στην πρυμναία κάθετο (A.P.), στην πρωραία κάθετο (F.P.) και στο μέσο νομέα (at midship) με τιμές 20°, 23° και 32° για την ολισθάκτο I και 20°, 22° και 75° για την ολισθάκατο II αντίστοιχα. Ο λόγος μήκους προς πλάτος της ολισθακάτου I είναι μικρότερος από αυτόν της ολισθακάτου II. Τα σκάφη διαθέτουν ευθείς πρωραίους νομείς χωρίς κυρτότητα και διαμήκεις αντιδιαβροχικές λωρίδες (*Spray Rails*). Ο αριθμός και η διάταξη των αντιδιαβροχικών λωρίδων, καθώς και το περίγραμμα της πλώρης διαφέρουν επίσης. Η ολισθάκατος Ι διαθέτει τρεις σειρές από αντιδιαβροχικές λωρίδες (Εικόνα 13) ενώ η ολισθάκατος II δύο σειρές (Εικόνα 15). Η μορφή της πλώρης (*wave-piercing bow*) της ολισθακάτου II έχει σχεδιαστεί έτσι ώστε το σκάφος να πλεονεκτεί στις κινήσεις σε κυματισμούς. Τα γεωμετρικά χαρακτηριστικά των σκαφών σε πλήρη κλίμακα παρουσιάζονται στον Πίνακα 4. Τα στοιχεία προέκυψαν από τα ανάλογα μεγέθη γεωμετρικά όμοιων προτύπων των ολισθακάτων σε κλίμακα 1/6,5 [23].

ΔΕΔΟΜΕΝΑ				
ΜΕΓΕΘΗ	ΣΚΑΦΟΣ Ι	ΣΚΑΦΟΣ ΙΙ	ΜΟΝΑΔΕΣ	
L _{OA}	6,026	7,300	[m]	
L_{WL}	5,174	6,968	[m]	
В	2,002	1,898	[m]	
B _{PX}	2,002	1,800	[m]	
Т	0,520	0,468	[m]	
Н	1,075	1,075	[m]	
V	2,500	2,600	[m ³]	
$\beta_{A.P}$	20	20	[deg]	
β_{MID}	23	22	[deg]	
$\beta_{F.P}$	32	75	[deg]	
L/B	2,586	3,872		

Πίνακας 4: Κύριες διαστάσεις ολισθακάτων Ι, ΙΙ [23]

Τα σχέδια γραμμών των υπό μελέτη σκαφών παρουσιάζουνται στις Εικόνες 13 – 16 αντίστοιχα. Η σχεδίαση της ολισθακάτου Ι ευνοεί τη μείωση της απαιτούμενης ισχύος, καθώς έχει τη μικρότερη αύξηση στη γωνία ανύψωσης πυθμένα μεταξύ των δύο σκαφών στο πρωραίο τμήμα. Η γωνία ανύψωσης πυθμένα στο πρυμναίο τμήμα της γάστρας είναι περίπου 20°, αυξάνεται σταδιακά προς την πρώρα και φθάνει τις 32° στο F.P.. Υπάρχουν τρεις σειρές αντιδιαβροχικών λωρίδων στο κάτω μέρος της γάστρας για τη δημιουργία πρόσθετης άνωσης (Εικόνα 13, 14). Η ανύψωση του πυθμένα κατά το διάμηκες αρχίζει περίπου στο 60% του μήκους της ίσαλου γραμμής (LWL) πρώραθεν του καθρέπτη, ενώ ο πυθμένας στην πρύμνη της ολισθακάτου Ι εκτείνεται προς τα πίσω κατά 2,9% του LWL έτσι ώστε να μειώνεται η γωνία διαγωγής σε υψηλές ταχύτητες. Ο λόγος μήκους προς πλάτος της ολισθακάτου Ι είναι 2,586 και είναι μικρότερος από αυτόν της ολισθακάτου ΙΙ.

Εικόνα 13: Body Plan ολισθακάτου Ι [23]

Εικόνα 14: Sheer Plan ολισθακάτου Ι [23]

Η σχεδίαση της ολισθακάτου ΙΙ χαρακτηρίζεται από την ειδικά διαμορφωμένη πλώρη (wave piercing) η οποία στοχεύει τόσο στη μείωση της αντίστασης όσο και στην καλή δυναμική συμπεριφορά του σκάφους σε κυματισμούς. Η γωνία ανύψωσης πυθμένα του σκάφους είναι 20° στο πρυμναίο τμήμα, ενώ αυξάνεται γρήγορα μέχρι την πλώρη φθάνοντας έως και 75° περίπου (Εικόνα 15). Ο λόγος μήκους προς πλάτος της ολισθακάτου ΙΙ που έχει την τιμή 3,872 και είναι μεγαλύτερος από αυτόν της ολισθακάτου Ι. Ο πυθμένας του σκάφους αρχίζει να ανυψώνεται κατά

το διάμηκες περίπου στο 85% του LWL πρώραθεν του καθρέπτη (Εικόνα 16) και υπάρχουν δύο σειρές αντιδιαβροχικών λωρίδων εκατέρωθεν της γάστρας. Το κάτω μέρος του πρυμναίου τμήματος της γάστρας εκτείνεται προς τα πίσω κατά 4,3% του LWL με σκοπό τη μείωση της γωνίας διαγωγής και της απαιτούμενης ισχύος σε υψηλές ταχύτητες.

Εικόνα 16: Sheer Plan ολισθακάτου ΙΙ [23]

Στις παρακάτω υποενότητες, θα γίνει εκτενής περιγραφή στον τρόπο σχεδίασης των σκαφών με την βοήθεια κατάλληλου λογισμικού, καθώς και στη μελέτη της αντίστασης τους σε ήρεμο νερό με δύο διαφορετικές μεθοδολογίες.

4.1 Σχεδίαση ολισθακάτου Ι

Η σχέδιαση της ολισθακάτου πραγματοποιήθηκε με τη βοήθεια του τρισδιάστατου λογισμικού *Rhinoceros 3D* [24], και κατάλληλη προσαρμογή της εικόνας των ναυπηγικών γραμμών της ολισθακάτου στις διαστάσεις του σκάφους μέσω των εντολών *Import* και *Scale1D* αντίστοιχα. Επίσης, με χρήση της εντολής *Move* οι γραμμές τοποθετήθηκαν κατάλληλα στη *Base Line*, που αποτελεί γραμμή αναφοράς, ώστε να είναι μετέπειτα ευκολότερος ο σχεδιασμός της ολισθακάτου.

Εικόνα 17: Στιγμιότυπο οθόνης κατά την εισαγωγή των εικόνων με τα σχέδια γραμμών της ολισθακάτου Ι (*Perspective view*)

Η πρώτη καμπύλη που σχεδιάστηκε ήταν αυτή του περιγράμματος της ολισθακάτου (*Profile*), οπότε μεταβαίνοντας στην όψη *Front* του *Rhinoceros* και διαλέγοντας το εικονίδιο με την εντολή *Curve: interpolate points*, καθώς και την επιλογή *Start & End tangent* για την κλίση της καμπύλης στην αρχή και το τέλος της, δημιουργήθηκε η εν λόγω καμπύλη (Εικόνα 18).

Εικόνα 18: Το περίγραμμα (Profile) της ολισθακάτου Ι (Front view)

Επόμενο βήμα αποτελεί η σχεδίαση των νομέων του σκάφους όπου για τη σχεδίαση τους και την τοποθέτηση τους στη σωστή διαμήκη θέση, είναι απαραίτητη η γνώση της ισαπόστασης τους

(Frame Spacing). Η ισαπόσταση προσδιορίστηκε ίση με 0,500 m λαμβάνοντας υπόψιν το ολικό μήκος της ολισθακάτου (L_{OA}), καθώς και τον αριθμό τον νομέων που υφίστανται σε αυτήν. Κατόπιν οι νομείς θα τοποθετηθούν με ακρίβεια στο διαμήκες επίπεδο. Επομένως, γνωρίζοντας πλέον την ισαπόσταση των νομέων, μεταβαίνοντας στην όψη *Right*, σχεδιάστηκαν οι νομείς του σκάφους μέσω της εντολής *Curve: interpolate points*, χρησιμοποιώντας το *Start – End tangent* για την ομαλή κλίση των καμπυλών (Εικόνα 19).

Εικόνα 19: Οι εγκάρσιοι νομείς (Half-breadth plan) της ολισθακάτου Ι (Right view)

Σε αυτό το σημείο της σχεδίασης, δημιουργήθηκε μια καμπύλη στο διάμηκες επίπεδο, η οποία απαρτίζεται από τα σημεία των νομέων στα οποία παρουσιάζεται η απότομη αλλαγή κλίσης της γάστρας (Chine line). Το συγκεκριμένο ταχύπλοο σκάφος διαθέτει μία ακμή που δημιουργήθηκε μέσω της εντολής Curve: interpolate points, χρησιμοποιώντας και το Start – End tangent, όπως οι προηγούμενες καμπύλες του σκάφους. Ο έλεγχος της ομαλότητας της καμπύλης της ακμής έγινε μέσω της εντολής Curvature Graph – On, όπως φαίνεται στην Εικόνα 20.

Εικόνα 20: Η καμπύλη της ακμής (Chine) και το διάγραμμα καμπυλότητάς της για την ολισθάκατο Ι

Επιπρόσθετα, το εν λόγω σκάφος εκτός της ακμής (*Chine line*) διαθέτει και τρεις σειρές με αντιδιαβροχικές λωρίδες (*Spray Rails*). Στην Εικόνα 21 παρουσιάζονται καμπύλες της ακμής και των αντιδιαβροχικών λωρίδων της ολισθακάτου Ι στο σχέδιο νομέων.

Εικόνα 21: Οι καμπύλες του Chine και των Spray Rails σε δισδιάστατη μορφή της ολισθακάτου Ι (Right view)

Στη συγκεκριμένη ολισθάκατο, ο καθρέπτης στην πρύμνη είναι υπό κλίση και όχι κατακόρυφος. Επομένως, λαμβάνοντας υπόψιν τον τελευταίο πρυμναίο νομέα της ίδιας μορφής με τον καθρέπτη, κατασκευάζεται ένας ίδιος νομέας, ο οποίος στρέφεται κατάλληλα, ώστε οι δύο νομείς να έχουν κοινή αρχή στο πάνω μέρος του σκάφους, ενώ στο κάτω άκρο η καμπύλη να εφάπτεται στο κάτω μέρος του περιγράμματος της ολισθακάτου (Εικόνα 22 (α) και (β)), προκειμένου να μην υπάρχουν προβλήματα ασυνεχειών μεταξύ των καμπυλών. Στην Εικόνα 22(γ) παρουσιάζεται η ολοκληρωμένη μορφή του καθρέπτη της πρύμνης.

Επιπλέον, κατασκευάστηκε εκ νέου το περίγραμμα της ολισθακάτου, προκειμένου να εφάπτονται οι καμπύλες του περιγράμματος και των νομέων. Πέραν των νομέων και του περιγράμματος του σκάφους, είναι απαραίτητη η κατασκευή του καταστρώματος, η οποία πραγματοποιήθηκε και αυτή με την σειρά της χρησιμοποιώντας την εντολή *Curve: interpolate points*, καθώς και το *Start* – *End tangent* στην τρισδιάστατη όψη του *Rhinoceros (Perspective view)*.

(β)

Εικόνα 22: Ο καθρέπτης της πρύμνης της Ολισθακάτου Ι κατά τη διαδικασία σχεδίασης (α, β) και στην τελική του μορφή (γ)

Στην Εικόνα 23 παρουσιάζεται στιγμιότυπο της σχεδίασης της γάστρας της ολισθακάτου Ι σε όλες τις όψεις, όπως φαίνεται στο πρόγραμμα *Rhinoceros*.

Εικόνα 23: Στιγμιότυπο της σχεδίασης της γάστρας του ταχυπλόου Ι σε όλες τις όψεις

Αφού σχεδιάστηκαν όλες οι απαραίτητες καμπύλες της ολισθακάτου, επόμενο βήμα ήταν η δημιουργία κατάλληλων επιφανειών που θα αποτελέσουν τη γάστρα του σκάφους. Η γάστρα αποτελείται από δώδεκα βασικές επιμέρους επιφάνειες, οι οποίες δημιουργήθηκαν με την εντολή *Curve Network* από το μενού *Surfaces*, ενώ για την κάθε επιφάνεια λαμβάνονταν υπόψιν το αντίστοιχο μέρος του περιγράμματος, των καμπύλων των ακμών, αλλά και τμήματα ορισμένων νομέων που θα αποτελούσαν μέρος της. Αφότου, ολοκληρώθηκε ο σχεδιασμός των επιφανειών στην μια πλευρά του σκάφους, μέσω της εντολής *Join* ενοποιήθηκαν για να αποτελούν μια ενιαία επιφάνεια. Στην συνέχεια, μέσω της εντολής *Mirror* και επιλέγοντας την επιφάνεια που αντιστοιχεί στο μισό σκάφος, έχοντας ως σημείο αναφοράς την αρχή των αξόνων (0,0,0) και έπειτα αναζητώντας προς την πλώρη της ολισθακάτου το σημείο που εμφανίζεται το *End*, δημιουργήθηκε ολόκληρη η γάστρα της ολισθακάτου.

Τέλος, όσον αφορά την επιφάνεια στον καθρέπτη του σκάφους, κατασκευάστηκε με την εντολή *Planar Curves*, ενώ το επάνω μέρος του σκάφους με την εντολή *Cap*, έχοντας ήδη κάνει *Join* τις επιμέρους επιφάνειες, προκειμένου να αποτελούν μια κλειστή επιφάνεια. Το υπό μελέτη ταχύπλοο σκάφος, όπως απεικονίζεται στο πρόγραμμα *Rhinoceros* και στις τρεις όψεις κατά τη σχεδίαση, παρουσιάζεται στην Εικόνα 24.

Εικόνα 24: Στιγμιότυπο της σχεδίασης επιφανειών της γάστρας της ολισθακάτου Ι σε όλες τις όψεις

Αξίζει να αναφερθεί ότι για την πληρέστερη ανάλυση του θέματος, πραγματοποιήθηκε έλεγχος για πιθανά ανοίγματα στις συνδέσεις της γάστρας (naked edges), δηλαδή εάν η γάστρα του σκάφους αποτελεί μια κλειστή επιφάνεια, κάτι το οποίο ισχύει. Επιπλέον, με τις εντολές Curvature Analysis και Zebra που βρίσκονται στο μενού Analyze στην επιλογή Surfaces γίνεται έλεγχος της καμπυλότητας της επιφάνειας προκειμένου να εντοπισθούν οι περιοχές με έντονες μεταβολές της γεωμετρίας της υπό σχεδίαση ολισθακάτου. Ειδικότερα, με την εντολή Curvature Analysis και την επιλογή Gaussian, εμφανίζονται τα διαγράμματα ανάλυσης της καμπυλότητας της επιφάνειας της πλώρης. Από την άλλη, η εντολή Zebra βοηθά στην εκτίμηση της γεωμετρικής συνέχειας και της ομαλότητας της επιφάνειας. Στην προκειμένη περίπτωση, η γάστρα πρέπει να διαθέτει συνέχεια εφαπτομενικού επιπέδου (G₁), ενώ δεν παρουσιάζονται ασυνέχειες. Στις Εικόνες 25, 26 απεικονίζεται η γάστρα του σκάφους στο τελικό στάδιο της σχεδίασης.

Εικόνα 25: Ολισθάκατος Ι - Έλεγχος επιφάνειας γάστρας (Curvature Analysis)

Εικόνα 26: Ολισθάκατος Ι - Έλεγχος επιφάνειας γάστρας (Zebra)

4.2 Σχεδίαση ολισθακάτου ΙΙ

Για τη σχεδίαση του δεύτερου σκάφους με γάστρα βαθέως V (ολισθάκατος II) ακολουθήθηκε η ίδια διαδικασία όπως και στην ολισθάκατο I (ενότητα 4.1), έγινε δηλαδή και εδώ η εισαγωγή της εικόνας των ναυπηγικών γραμμών της ολισθακάτου στο σχεδιαστικό πρόγραμμα *Rhinoceros* [24] και στη συνέχεια η κατάλληλη προσαρμογή των ναυπηγικών γραμμών στις διαστάσεις του σκάφους μέσω των εντολών *Import* και *Scale1D* αντίστοιχα.

Εικόνα 27: Στιγμιότυπο οθόνης κατά την εισαγωγή των εικόνων με τα σχέδια ναυπηγικών γραμμών της ολισθακάτου ΙΙ (*Perspective view*)

Στις Εικόνες 28 έως 33 που ακολουθούν παρουσιάζονται τα βήματα σχεδίασης των καμπύλων της ολισθακάτου ΙΙ με τη σειρά που δημιουργήθηκαν.

Εικόνα 28: Το περίγραμμα (Profile) της ολισθακάτου ΙΙ (Front view)

Εικόνα 29: Οι εγκάρσιοι νομείς (Half-breadth plan) της ολισθακάτου ΙΙ (Right view)

Η εν λόγω ολισθάκατος διαθέτει μια καμπύλη ακμής (*Chine line*), όπως και η ολισθάκατος Ι, για την οποία πραγματοποιήθηκε και έλεγχος καμπυλότητας, μέσω της εντολής *Curvature Graph* – *On*, όπως φαίνεται στην Εικόνα 30.

Εικόνα 30: Η καμπύλη της ακμής (Chine) και το διάγραμμα καμπυλότητάς της για την ολισθάκατο ΙΙ

Επιπλέον, εκτός της καμπύλης της ακμής διαθέτει και δύο σειρές αντιδιαβροχικών λωρίδων (Spray Rails). Έτσι, στην Εικόνα 31 παρουσιάζονται η ακμή (Chine) και οι δύο σειρές αντιδιαβροχικών λωρίδων (Spray Rails) για την ολισθάκατο ΙΙ στο σχέδιο νομέων.

Εικόνα 31: Οι καμπύλες του Chine και των Spray Rails σε δισδιάστατη μορφή της ολισθακάτου ΙΙ (Right view)

Για την ολισθάκατο ΙΙ πραγματοποιήθηκε η ίδια διαδικασία σχεδίασης, όπως και στην ολισθάκατο Ι, σχετικά με τον καθρέπτη της πρύμνης του σκάφους. Λαμβάνοντας δηλαδή υπόψιν τον τελευταίο πρυμναίο νομέα δημιιουργήθηκε ένας ίδιος νομέας πρώραθεν αυτού, ο οποίος τροποποιήθηκε κατάλληλα, ώστε οι καμπύλες σχεδίασης των δύο αυτό νομέων να έχουν κοινή αρχή στο πάνω μέρος του σκάφους, ενώ στο κάτω άκρο η καμπύλη να εφάπτεται στο περίγραμμα της ολισθακάτου, όπως ακριβώς και στην ολισθάκατο Ι.

Εικόνα 32: Οι νομείς, ο καθρέπτης και το περίγραμμα του σκάφους σε τρισδιάστατη μορφή της ολισθακάτου ΙΙ

Στιγμιότυπο του συνόλου των σχεδίων της ολισθακάτου ΙΙ στο πρόγραμμα Rhinoceros παρουσιάζεται στην Εικόνα 33. Μετά την ολοκλήρωση της διαδικασίας σχεδιασμού των

καμπύλων της ολισθακάτου ΙΙ, επόμενο βήμα αποτελεί η δημιουργία των αντίστοιχων επιφανειών που την απαρτίζουν, η οποία πραγματοποιήθηκε μέσω της εντολής *Curve Network* από το μενού *Surfaces*, ενώ μόνο για την επιφάνεια του καθρέπτη επιλέχθηκε η εντολή *Planar Curves*, όπως ακριβώς και προηγουμένως (4.1). Όταν ολοκληρώθηκε η κατασκευή των επιμέρους επιφανειών, ενοποιηθήκαν όλες σε μια ενιαία σύνθετη επιφάνεια μέσω της εντολής *Join*, ενώ έπειτα μέσω της εντολής *Mirror* δημιουργήθηκε η τελική γάστρα της ολισθακάτου ΙΙ.

Εικόνα 33: Στιγμιότυπο της σχεδίασης των καμπυλών της γάστρας της ολισθακάτου ΙΙ σε όλες τις όψεις

Η εικόνα της γάστρας της ολισθακάτου ΙΙ όπως σχεδιάστηκε στο *Rhinoceros* σε όλες τις όψεις παρουσιάζεται στην Εικόνα 34.

Εικόνα 34: Στιγμιότυπο των επιφανειών της γάστρας της ολισθακάτου ΙΙ σε όλες τις όψεις

Αξίζει να αναφερθεί ότι όπως και στην προηγούμενη ολισθάκατο, έτσι και σε αυτήν εκπονήθηκαν οι ανάλογοι έλεγχοι για τις μεταβολές της γεωμετρίας και για τις πιθανές ασυνέχειες της γάστρας, μέσω των εντολών Zebra και Curvature Analysis (Gaussian). Στις Εικόνες 35, 36 φαίνεται η γάστρα του σκάφους με χρήση της εκάστοτε εντολής στο τελικό στάδιο.

Εικόνα 35: Ολισθάκατος ΙΙ - Έλεγχος επιφάνειας γάστρας (Curvature Analysis)

Εικόνα 36: Ολισθάκατος ΙΙ - Έλεγχος επιφάνειας γάστρας (Zebra)

4.3 Μελέτη αντίστασης ολισθακάτων γάστρας βαθέως V

Προκειμένου να πραγματοποιηθεί μια ολοκληρωμένη μελέτη για την εκτίμηση της συνολικής αντίστασης της ολισθακάτου Ι και της ολισθακάτου ΙΙ σε ήρεμο νερό, χρησιμοποιήθηκε το λογισμικό Maxsurf Ultimate v. 23 [25] και εφαρμόστηκε τόσο η μέθοδος Savitsky, όσο και η μέθοδος Blount – Fox. Η μέθοδος Blount – Fox αποτελεί παραλλαγή της μεθόδου Savitsky για την πρόβλεψη της αντίστασης και της ισχύος, λαμβάνοντας υπόψιν έναν πολλαπλασιαστικό συντελεστή, όπως προαναφέρθηκε. Ειδικότερα, η εύρεση των τιμών της συνολικής αντίστασης χρησιμοποιώντας τις ανωτέρω μεθόδους πραγματοποιήθηκε μέσω του λογισμικού Maxsurf Resistance.

Αξίζει να αναφερθεί ότι το λογισμικό Maxsurf Ultimate v. 23 που χρησιμοποιήθηκε μέσω της πλατφόρμας Bentley έχει τη δυνατότητα να αναγνωρίζει αρχεία από το σχεδιαστικό πρόγραμμα Rhinoceros είτε σε μορφή 3DM (3 Dimensional) είτε σε IGES (Initial Graphics Exchange Specification) [25], [26]. Στην παρούσα διπλωματική εργασία, επιλέχθηκε η αποθήκευση των σχεδίων των υπό εξέταση ολισθακάτων και η μετέπειτα εισαγωγή τους στο Maxsurf σε μορφή 3DM. Η μόνη αλλαγή που έγινε στα σχέδια της κάθε γάστρας ήταν ότι δεν έπρεπε να είναι μια ενιαία σύνθετη επιφάνεια (Polysurface), αλλά να αποτελούνται από επιμέρους επιφάνειες, με αποτέλεσμα να χρησιμοποιηθεί η εντολή Explode στο Rhinoceros, για την ομαλή μεταφορά στο Modeler του Maxsurf.

4.3.1 Εκτίμηση αντίστασης ολισθακάτου Ι με χρήση του λογισμικού Maxsurf

Για τον υπολογισμό της συνολικής αντίστασης της ολισθακάτου Ι μέσω του λογισμικού Maxsurf Resistance, έγινε αρχικά εισαγωγή του αρχείου με το σχέδιο της γάστρας σε μορφή 3DM, στο Maxsurf Modeler (Εικόνα 37).

Εικόνα 37: Εισαγωγή αρχείου στο Modeler Maxsurf

Μετά την εισαγωγή της γάστρας της ολισθακάτου στο Maxsurf Modeler, επόμενο βήμα ήταν ο ορισμός των σημείων αναφοράς, μέσω της επιλογής Frame of Reference που βρίσκεται στο μενού Data και αφορά την ακριβή μοντελοποίηση του σχεδίου. Για αρχή, στο παράθυρο που εμφανίζεται μόλις επιλεγεί η εντολή, ορίστηκε ως σημείο αναφοράς στο κατακόρυφο επίπεδο (Vertical Datum) η Baseline, προκειμένου το Zero Point να βρίσκεται πάνω σε αυτήν και για να εμφανιστεί το εν λόγω σημείο επιλέγεται το Find Base, ενώ στην τιμή DWL λαμβάνεται υπόψιν το βύθισμα της ολισθακάτου, δηλαδή τα 0,520 [m].

Στην συνέχεια, όσον αφορά το διαμήκες επίπεδο (Longitudinal Datum), ως σημείο αναφοράς ορίστηκε η πρυμναία κάθετος (Aft Perpendicular) στα 0 [m] και η πρωραία κάθετος (Forward Perpendicular) στα 5,174 [m]. Αξίζει να σημειωθεί ότι επιλέγοντας το Set to DWL, οι ανωτέρω τιμές στο διαμήκες επίπεδο εφαρμόζονται αυτόματα στα επιθυμητά σημεία με βάση την ίσαλο σχεδίασης (DWL), χωρίς να γίνει επιλογή των σημείων αναφοράς από τον χρήστη του προγράμματος. Στην προκειμένη περίπτωση, αν και εφαρμόστηκε η ανωτέρω διαδικασία, τελικά δεν τροποποιήθηκαν τα δεδομένα που είχαν οριστεί, με αποτέλεσμα το μήκος μεταξύ καθέτων και το μήκος ισάλου σχεδίασης να ταυτίζονται. Με την ολοκλήρωση όλων των ανωτέρων ενεργειών, ορίστηκε το σύστημα αναφοράς της ολισθακάτου όπως παρουσιάζεται στην Εικόνα 38.

					DWI
Referen	e pt. Ppt.		MS	=	FP Baseline
Longitudinal D	Patum	Set to DWI	Vertical Date	um 0.52 m	
◯ Midships	2,587 m		Baseline	0 m	Find Base
○ Fwd Perp.	5,174 m	Set to DWL	Other	0 m	
◯ Other	-0,076 m	Aft extent Fwd extent			
Label AP		Default	Label Bas	eline	Default

Εικόνα 38: Ολισθάκατος Ι - Frame of Reference & Zero point

Έτσι, η ολισθάκατος Ι με το κατάλληλο σύστημα αναφοράς, έπειτα από τις τροποποιήσεις που υλοποιήθηκαν παραπάνω, παρουσιάζεται όπως απεικονίζεται στο *Maxsurf Modeler* στην Εικόνα 39.

Εικόνα 39: Στιγμιότυπο οθόνης της ολισθακάτου Ι στο Maxsurf Modeler

Αφού ολοκληρωθούν οι προαναφερθείσες διαδικασίες, πραγματοποιείται αποθήκευση του σχεδίου, προκειμένου να είναι δυνατή η μελλοντική εισαγωγή του αρχείου στο λογισμικό Maxsurf Resistance στο οποίο διεξάγονται οι μελέτες για την αντίσταση των ολισθακάτων. Το επεξεργασμένο αρχείο εισάγεται στο περιβάλλον Maxsurf Resistance μέσω της εντολής Open Design.

Για την εκτίμηση της συνολικής αντίστασης, είναι αναγκαία η συμπλήρωση τόσο των γεωμετρικών όσο και ορισμένων υδροστατικών μεγεθών της ολισθακάτου στον πίνακα δεδομένων, δηλαδή στο παράθυρο *Data* του προγράμματος. Στο συγκεκριμένο πρόγραμμα, τα ζητούμενα μεγέθη συμπληρώνονται στα δεδομένα είτε αυτόματα κατά τη σωστή εισαγωγή του μοντέλου είτε χειροκίνητα από τον χρήστη του προγράμματος στην περίπτωση που δεν υφίσταται κάποιο τρισδιάστατο μοντέλο. Παρόλα αυτά, για την ορθότητα και την εγκυρότητα των στοιχείων του σκάφους έγινε έλεγχος και σύγκριση των στοιχείων που συμπληρώνονται αυτόματα στο πρόγραμμα με τα υδροστατικά στοιχεία που παρέχει το σχεδιαστικό πρόγραμμα *Rhinoceros* (Πίνακας 6).

MAXSURF RESISTANCE				
ΜΕΓΕΘΟΣ	TIMH	ΜΟΝΑΔΑ ΜΕΤΡΗΣΗΣ		
L _{WL}	5,174	[m]		
Beam submmerged	2,002	[m]		
Draft	0,520	[m]		
Displaced Volume	2,499	[m ³]		
Wetted Surface Area	11,757	[m ²]		
Prismatic coeff. (Cp)	0,752	[-]		
Waterpl. Area coeff, (Cwp)	0,845	[-]		
1/2 angle of entrance	34,2	[deg]		
LCG from midships (+ve for'd)	-0,725	[m]		
Transom area	0	[m ²]		
Transom wl beam	0	[m]		
Transom draft	0,520	[m]		
Max sectioanl area	0,642	[m ²]		
Bulb transverse area	0	[m ²]		
Bulb height from keel	0	[m]		
Draft at FP	0,520	[m]		
Deadrise at 50% LWL	23	[deg]		
Hard chine or Round bilge	Hard chine			

Πίνακας 5: Γεωμετρικά - Υδροστατικά χαρακτηριστικά της ολισθακάτου Ι στο Maxsurf Resistance

Frontal Area	0	[m ²]
Headwind	0	[m/s]
Drag Coefficient	0	[-]
Air density	1,293	$[kg/m^3]$
Appendage Area	0	[m ²]
Nominal App. Factor	0	[m]
Appendage Factor	1	[-]
Correlation allowance	use 19th ITTC	[-]
Kinematic viscosity	0,00000118	[m ² /s]
Water Density	1025,9	$[tn/m^3]$

Πίνακας 6: Υδροστατικά χαρακτηριστικά της ολισθακάτου Ι με χρήση του προγράμματος Rhinoceros

RHINOCEROS				
ΜΕΓΕΘΟΣ	TIMH	ΜΟΝΑΔΑ ΜΕΤΡΗΣΗΣ		
Volume Displacement	2,495	[m ³]		
Wetted Surface Area	11,792	[m ²]		
Waterline Length	5,174	[m]		
Maximum Waterline Beam	2,002	[m]		
Water Plane Area	8,752	[m ²]		

Παρατηρούμε ότι οι τιμές των γεωμετρικών και των υδροστατικών μεγεθών της ολισθακάτου όπως προκύπτουν από το πρόγραμμα Maxsurf Resistance και το Rhinoceros ταυτίζονται σε μεγάλο βαθμό, γεγονός που επαληθεύει την εγκυρότητα των δεδομένων της γεωμετρίας της γάστρας. Κατόπιν, επιλέγεται η μέθοδος που θα χρησιμοποιηθεί για τον υπολογισμό της αντίστασης. Στην προκειμένη περίπτωση δεδομένου ότι το υπό μελέτη ταχύπλοο σκάφος είναι ολισθάκατος (planing hull) μορφής V επιλέγονται οι μέθοδοι Savitsky και Blount – Fox. Η ανωτέρω διαδικασία πραγματοποιείται μεταβαίνοντας στην επιλογή Methods του μενού Analysis του Maxsurf Resistance και ύστερα επιλέγοντας αρχικά τη μέθοδο Savitsky Planing και έπειτα τη μέθοδο Blount – Fox στο παράθυρο που εμφανίζεται (Εικόνα 40). Από τον πίνακα δεδομένων, τα μεγέθη που απαιτούνται για την εκπόνηση των συγκεκριμένων μεθόδων είναι το μήκος ισάλου (LwL), το πλάτος (Beam), ο όγκος εκτοπίσματος (Displaced Volume), η διαμήκης θέση του κέντρου βάρους (LCG) μετρημένη από το μέσο του σκάφους, καθώς και η γωνία ανύψωσης του πυθμένα (Deadrise angle). Στους υπολογισμούς και για τις δύο περιπτώσεις ολισθακάτων χρησιμοποιήθηκε ως θέση του LCG άρα και ως θέση του κέντρου των πίσεων στον υπολογισμό της αντίστασης το 75%λ ($\lambda = L_{WL}/B_{PX}$), μπροστά από τον καθρέπτη.

Επιπλέον, πέραν της μεθόδου εκτίμησης αντίστασης στο παράθυρο που εμφανίζεται, είναι δυνατή η επιλογή χρήσης της τροποποίησης που πρότεινε η 19th ITTC όσον αφορά τη διόρθωση του υπολογισμού της αντίστασης. Πιο συγκεκριμένα, η τροποποίηση αναφέρεται στον συντελεστή συσχέτισης, ο οποίος σύμφωνα με την 19th ITTC προκύπτει από δύο συντελεστές, τον συντελεστή τραχύτητας ΔC_F και τον συντελεστή συσχέτισης C_A. Οι εν λόγω συντελεστές υπολογίζονται από τις εξής σχέσεις [26]:

Συντελεστής Τραχύτητας:

$$\Delta C_{\rm F} = 0.044 * \left[\left(\frac{k_{\rm s}}{L_{\rm WL}} \right)^{1/3} - 10 * {\rm Re}^{-1/3} \right] + 0.000125$$
 (25)

Όπου:

 k_s : τυπική τιμή τραχύτητας, ίση με 150 * 10⁻⁶

Lwl: μήκος ισάλου [m]

Συντελεστής Συσχέτισης:

$$C_A = (5,68 - 0,6 * \log_{10} \text{Re}) * 10^{-3}$$
 (26)

Σε αυτό το σημείο, είναι σημαντικό να σημειωθεί ότι το πρόγραμμα ελέγχει αυτόματα τις τιμές των μεγεθών -δεδομένων- που απαιτούνται για τις συγκεκριμένες μεθόδους υπολογισμού της αντίστασης, ώστε να βρίσκονται εντός αποδεκτών ορίων και κατά συνέπεια οι τιμές που θα προκύψουν από τη μελέτη να είναι έγκυρες στο σύνολό τους. Επίσης, σε περίπτωση που κάποια εκ των παραμέτρων βρίσκεται εκτός των ορίων που ορίζει η εκάστοτε μέθοδος, η διαδικασία υπολογισμού πραγματοποιείται κανονικά από το πρόγραμμα, αλλά τα αποτελέσματα που θα ληφθούν είναι στην ευχέρεια του χρήστη να αξιολογηθούν, καθώς μπορεί να έχουν κάποιες διαφοροποιήσεις. Στον Πίνακα 7 παρουσιάζονται οι παράμετροι των μεθόδων Savitsky και Blount & Fox [26], καθώς και τα αποτελέσματα που προκύπτουν σύμφωνα με τα δεδομένα της ολισθακάτου Ι.

Πίνακας 7: Έλεγχος παραμέτρων μεθόδων υπολογισμού αντίστασης ολισθακάτου Ι

ΜΕΘΟΔΟΣ	ΑΠΑΙΤΗΣΕΙΣ	TIMH	ΕΛΕΓΧΟΣ
Sauitalau	$Fn_{B} > 1,0$	min 1,161	Εντός ορίων
Saviisky	$3,07 < L/V^{1/3} < 12,4$	3,812	Εντός ορίων
Diamet & Fam	$Fn_{\nabla} > 1,0$	min 1,410	Εντός ορίων
Blount & Fox	$LCG/L \le 0,46$	0,375	Εντός ορίων

Από τον Πίνακα 7, γίνεται φανερό ότι το σύνολο των κριτηρίων των δύο μεθόδων υπολογισμού, με δύο προϋποθέσεις για την κάθε περίπτωση, πληρούνται για την εν λόγω ολισθάκατο, επόμενως η υπολογιστική διαδικασία εκτελείται κανονικά. Αξίζει να σημειωθεί ότι όσον αφορά τον αριθμό *Froude* εάν οι τιμές των ταχυτήτων είναι μικρότερες από τις προβλεπόμενες, το πρόγραμμα δεν δίνει κάποιο αποτέλεσμα αντίστασης ή ισχύος στις συγκεκριμένες ταχύτητες, γεγονός που δεν ισχύει για τα υπόλοιπα κριτήρια.

Select methods to be computed \qquad $ imes$
Planing Savitsky pre-planing Savitsky planing Blount and Fox Lahtiharju Wyman
Displacement Holtrop Compton Fung van Oortmerssen Series 60 KR Barge resistance
Delft I, II Delft III Analytical
Slender Body Form factor (1+k), including viscous interaction for multihulls
Method User specified value V Use 19th ITTC modified formula for CA
OK Cancel

Εικόνα 40: Επιλογή μεθόδου προσδιορισμού της αντίστασης

Επόμενο βήμα αποτελεί η επιλογή του εύρους ταχυτήτων για το οποίο θα πραγματοποιηθεί η εκτίμηση της αντίστασης, το οποίο γίνεται από το Speed Range του μενού Analysis. Οι τιμές της ταχύτητας του υπό εξέταση σκάφους στην προκειμένη περίπτωση κυμαίνονται από 10 kn έως 45 kn. Εφόσον ολοκληρωθεί η διαδικασία, πραγματοποιείται η επίλυση της εκάστοτε μεθόδου στο

Maxsurf Resistance και στο παράθυρο των αποτελεσμάτων (Results), αναγράφονται οι τιμές της συνολικής αντίστασης της ολισθακάτου εκφρασμένες σε [kN] και της απαιτούμενης ισχύος εκφρασμένες σε [Watt]. Επιπλέον, πέραν των αποτελεσμάτων υπό μορφή πινάκων, παρουσιάζονται και οι γραφικές απεικονίσεις των αποτελεσμάτων της συνολικής αντίστασης σε [kN] συναρτήσει της ταχύτητας σε [kn] (Διάγραμμα 1), αλλά και της απαιτούμενης ισχύος σε [Watt] συναρτήσει της ταχύτητας σε [kn] (Διάγραμμα 2).

Εκτός από τα προαναφερθέντα διαγράμματα, το Maxsurf Resistance παρέχει τη δυνατότητα απεικόνισης διαγραμμάτων δυναμικής διαγωγής, αλλά και ορισμένων συντελεστών της αντίστασης συναρτήσει της ταχύτητας, ανάλογα με τη μέθοδο εκτίμησης αντίστασης που έχει επιλεγεί. Στα Διαγράμματα 3 έως 6 της υποενότητας 4.3.3.1, που ακολουθεί παρουσίαζονται τα αποτελέσματα της δυναμικής διαγωγής (τ), καθώς και του αδιάσταστου συντελεστή συνολικής αντίστασης (C_T), του συντελεστή υπόλοιπης αντίστασης (C_R) και του συντελεστή τριβής (C_F) συναρτήσει της ταχύτητας σε [kn], τόσο με χρήση της μεθόδου Savitsky Planing όσο και με τη μέθοδο Blount & Fox.

Στην Εικόνα 41 παρατίθεται στιγμιότυπο από το λογισμικό *Maxsurf Resistance* με το τρισδιάστατο σχέδιο της ολισθακάτου, τα αποτελέσματα της αντίστασης και της ισχύος σε μορφή πινάκων, καθώς και η γραφική απεικόνιση των αποτελεσμάτων αντίστασης – ταχύτητας.

Εικόνα 41: Στιγμιότυπο οθόνης Maxsurf Resistance με τα αποτελέσματα της αντίστασης και της ισχύος για την ολισθάκατο Ι

4.3.2 Εκτίμηση αντίστασης ολισθακάτου ΙΙ με χρήση του λογισμικού Maxsurf

Για τον υπολογισμό της συνολικής αντίστασης της δεύτερης ολισθακάτου στο Maxsurf, χρησιμοποιήθηκε η διαδικασία που αναλύθηκε στην ενότητα 4.3.1, προσαρμοσμένη στα δεδομένα και τα χαρακτηριστικά της συγκεκριμένης ολισθακάτου. Ειδικότερα, όσον αφορά τα σημεία αναφοράς της γάστρας στο Maxsurf Modeler, στο κατακόρυφο επίπεδο (Vertical Datum) ως σημείο αναφοράς ελήφθη η Baseline και η τιμή DWL θεωρήθηκε ίση με 0,468 [m] όσο και το βύθισμα. Αντίστοιχα, στο διάμηκες επίπεδο (Longitudinal Datum) ως σημείο αναφοράς ελήφθη η πρυμναία κάθετος στο 0 [m], ενώ η πρωραία κάθετος τοποθετήθηκε στα 6,968 [m]. Η παραπάνω διαδικασία παρουσιάζεται και στην επόμενη εικόνα.

Reference pt.	MS FP Baseline
Longitudinal Datum	Vertical Datum
Aft Perp. 0 m Set to DWL	O DWL 0,468 m
O Midships 3,484 m	Baseline O m Find Base
O Fwd Perp. 6,968 m Set to DWL	Other 0 m
Other -0,13 m Aft extent Fwd extent	
Label AP 🖸 Default	Label Baseline 🔽 Default

Εικόνα 42: Ολισθάκατος ΙΙ - Frame of Reference & Zero Point

Τα σχέδια της ολισθακάτου ΙΙ στο *Maxsurf Modeler* μετά την ολοκλήρωση όλων των απαραίτητων ενεργειών που χρειάζονταν απεικονίζεται παρακάτω στην Εικόνα 43.

Εικόνα 43: Στιγμιότυπο οθόνης ολισθακάτου ΙΙ στο Maxsurf Modeler

Μετά την αποθήκευση του αρχείου και την εισαγωγή του στο Maxsurf Resistance, επόμενο βήμα αποτελεί ο έλεγχος ορθότητας των γεωμετρικών και των υδροστατικών μεγεθών της ολισθακάτου ΙΙ που συμπληρώνονται αυτόματα στον πίνακα δεδομένων κατά την εισαγωγή της γάστρας στο πρόγραμμα. Γι' αυτόν τον λόγο, παρατίθεται ο πίνακας δεδομένων που παρέχει το Maxsurf (Πίνακας 8), ώστε να γίνει ο απαραίτητος έλεγχος των δεδομένων με τα υδροστατικά μεγέθη που προέκυψαν από το Rhinoceros κατά τη σχεδίαση του σκάφους (Πίνακας 9).

MAXSURF RESISTANCE				
ΜΕΓΕΘΟΣ	TIMH	ΜΟΝΑΔΑ ΜΕΤΡΗΣΗΣ		
L_{WL}	6,968	[m]		
Beam submmerged	1,800	[m]		
Draft	0,468	[m]		
Displaced Volume	2,599	[m ³]		
Wetted Surface Area	13,430	[m ²]		
Prismatic coeff. (Cp)	0,705	[-]		
Waterpl. Area coeff, (Cwp)	0,759	[-]		
1/2 angle of entrance	12,7	[deg]		
LCG from midships (+ve for'd)	-0,710	[m]		
Transom area	0	[m ²]		
Transom wl beam	0	[m]		
Transom draft	0,468	[m]		
Max sectioanl area	0,529	[m ²]		
Bulb transverse area	0	[m ²]		
Bulb height from keel	0	[m]		
Draft at FP	0,468	[m]		
Deadrise at 50% LWL	22	[deg]		
Hard chine or Round bilge	Hard chine			
Frontal Area	0	$[m^2]$		
Headwind	0	[m/s]		
Drag Coefficient	0	[-]		
Air density	1,293	[kg/m ³]		
Appendage Area	0	[m ²]		
Nominal App. Factor	0	[m]		
Appendage Factor	1	[-]		
Correlation allowance	use 19th ITTC	[-]		
Kinematic viscosity	0,00000118	[m ² /s]		
Water Density	1025,9	$[tn/m^3]$		

Πίνακας 8: Γεωμετρικά - Υδροστατικά χαρακτηριστικά της ολισθακάτου ΙΙ στο Maxsurf Resistance
RHINOCEROS					
ΜΕΓΕΘΟΣ	TIMH	ΜΟΝΑΔΑ ΜΕΤΡΗΣΗΣ			
Volume Displacement	2,596	[m ³]			
Wetted Surface Area	13,512	[m ²]			
Waterline Length	6,968	[m]			
Maximum Waterline Beam	1,816	[m]			
Water Plane Area	9,569	[m ²]			

Πίνακας 9: Υδροστατικά μεγέθη της ολισθακάτου ΙΙ με χρήση του προγράμματος Rhinoceros

Από τους ανωτέρω πίνακες είναι φανερό ότι οι τιμές των γεωμετρικών και των υδροστατικών μεγεθών της ολισθακάτου όπως προκύπτουν από το πρόγραμμα Maxsurf Resistance και το Rhinoceros ταυτίζονται σε μεγάλο βαθμό, γεγονός που επαληθεύει την εγκυρότητα των δεδομένων της γεωμετρίας της γάστρας. Κατόπιν, όπως στην ολισθάκατο Ι επιλέγονται οι μέθοδοι Savitsky Planing και Blount – Fox, αφού και ολισθάκατος ΙΙ έχει γάστρα μορφής V. Επιλέγουμε τις προαναφερθείσες μεθόδους στη ρύθμιση Methods του μενού Analysis (Εικόνα 40), ενώ είναι ενεργοποιημένη και η τροποποίηση της 19th ITTC για τη διόρθωση της αντίστασης (Σχέσεις 25, 26). Τα αρχικά δεδομένα που απαιτούνται για την εκτέλεση των μεθόδων είναι ίδια με πριν, δηλαδή είναι το μήκος ισάλου (LwL), το πλάτος (Beam), ο όγκος εκτοπίσματος (Displaced Volume), η διαμήκης θέση του κέντρου βάρους (LCG) μετρημένη από το μέσον του σκάφους και η γωνία ανύψωσης πυθμένα (Deadrise angle). Επιπλέον, έγινε έλεγχος των προϋποθέσεων για την εφαρμογή των δύο μεθόδων στην ολισθάκατο ΙΙ όπως φαίνεται στον επόμενο πίνακα.

ΜΕΘΟΔΟΣ ΑΠΑΙΤΗΣΕΙΣ TIMH ΕΛΕΓΧΟΣ $Fn_{\rm B} > 1,0$ min 1,224 Εντός ορίων Savitsky $3,07 < L/V^{1/3} < 12,4$ 5,067 Εντός ορίων $Fn_{\nabla} > 1,0$ min 1,401 Εντός ορίων Blount & Fox $LCG/L \le 0.46$ 0,417 Εντός ορίων

Πίνακας 10: Έλεγχος παραμέτρων μεθόδων υπολογισμού αντίστασης ολισθακάτου ΙΙ

Το εύρος ταχυτήτων που θα πραγματοποιηθεί η μελέτη της ολισθακάτου ΙΙ κυμαίνεται από τους 10 kn έως και τους 45 kn, όπως και στο προηγούμενο ταχύπλοο σκάφος. Τα αποτελέσματα της αντίστασης σε [kN], της απαιτούμενης ισχύος σε [Watt], της δυναμικής διαγωγής σε [deg] και ορισμένων αδιάστατων συντελεστών διαφόρων συνιστωσών της αντίστασης συναρτήσει της ταχύτητας σε [kn] παρουσιάζονται στην επόμενη ενότητα (υποενότητα 4.3.3.2) υπό μορφή διαγραμμάτων (Διαγράμματα 7 έως 12).

Στην Εικόνα 44 παρουσιάζεται στιγμιότυπο της τελικής εικόνας στο *Maxsurf Resistance* με τα αποτελέσματα αντίστασης και ισχύος για την ολισθάκατο ΙΙ μετά την ολοκλήρωση της μελέτης.

Εικόνα 44: Στιγμιότυπο οθόνης Maxsurf Resistance με τα αποτελέσματα της αντίστασης και της ισχύος για την ολισθάκατο ΙΙ

4.3.3 Αποτελέσματα αντίστασης για τις ολισθακάτους Ι, ΙΙ

Στις παραπάνω ενότητες της εργασίας σχεδιάστηκαν δύο ολισθάκατοι με γάστρες βαθέως (Deep-Vee) με διαφορές στη σχεδίαση τους, όπως η διαφορετική γωνία ανύψωσης πυθμένα και ο διαφορετικός λόγος L/B. Για τις δύο ολισθακάτους υπολογίστηκε η αντίσταση με τη χρήση των ημι-εμπειρικών μεθόδων Savitsky Planing και Blount & Fox στο Maxsurf Resistance. Τα αποτελέσματα για την αντίσταση, την απαιτούμενη ισχύ, τη δυναμική διαγωγή και τους αδιάστατους συντελεστές της αντίστασης για τις ολισθακάτους Ι και ΙΙ, παρουσιάζονται στις επόμενες υποενότητες.

Επιπλέον, τα αποτελέσματα της αντίστασης, της ισχύος και της δυναμικής διαγωγής των ολισθακάτων Ι, ΙΙ για τις μεθόδους υπολογισμού της αντίστασης στο *Maxsurf Resistance* συγκρίνονται με αντίστοιχα πειραματικά αποτελέσματα [23].

ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΚΑΦΟΥΣ Ι			AI	ΙΟΤΕΛΕΣ	EMATA	ΣΚΑΦΟΥΣ	E II		
V [kn]	D/W	D [kN]	EHP [W]	τ [deg]	V[kn]	D/W	D [kN]	EHP [W]	τ [deg]
10	0,248	6,234	32055,6	11,099	10	0,115	2,993	15392,3	4,885
15	0,229	5,756	44397,5	10,895	15	0,159	4,158	32071,8	6,336
20	0,187	4,710	48439,6	7,997	20	0,167	4,366	44899,8	6,065
25	0,190	4,787	61535,1	5,999	25	0,182	4,745	60997,9	5,056
30	0,191	4,812	74237,6	4,953	30	0,204	5,320	82069,8	4,081
35	0,216	5,422	97586,2	3,999	35	0,225	5,882	105864,1	3,556
40	0,252	6,335	130295,9	3,571	40	0,301	7,856	161585,5	3,572
45	0,320	8,044	186137,0	3,105	45	0,361	9,424	218079,9	2,999

Πίνακας 11: Πειραματικά αποτελέσματα ολισθακάτου Ι και ολισθακάτου ΙΙ

4.3.3.1 Ολισθάκατος Ι

Στα διαγράμματα που ακολουθούν παρουσιάζονται τα αποτελέσματα αντίστασης, ισχύος και διαγωγής των μεθόδων Savitsky Planing και Blount & Fox στο Maxsurf Resistance της ολισθακάτου Ι σε ήρεμο νερό καθώς και τα αντίστοιχα πειραματικά αποτελέσματα [23].

Διάγραμμα 1: Σύγκριση των αποτελεσμάτων αντίστασης - ταχύτητας ολισθακάτου Ι

Διάγραμμα 2: Σύγκριση των αποτελεσμάτων ισχύος - ταχύτητας ολισθακάτου Ι

Διάγραμμα 3: Γραφική απεικόνιση αποτελεσμάτων δυναμικής διαγωγής - ταχύτητας ολισθακάτου Ι

Γενικά, από τα αποτελέσματα της μελέτης που διεξήχθη προέκυψαν τα εξής:

- Η αντίσταση ελαττώνεται μέχρι περίπου τους 25 kn, ενώ στη συνέχεια σταδιακά αυξάνεται μέχρι τους 45 kn και για τις δύο μεθόδους υπολογισμού σε συμφωνία και με τα πειράματα, όπως φαίνεται στο Διάγραμμα 1. Οι αλλαγές στην κλίση της καμπύλης της συνολικής αντίστασης της ολισθακάτου Ι οφείλονται στη μεταβολή της βρεχόμενης επιφάνειας της γάστρας, της δυναμικής ανύψωσης και της διαγωγής του σκάφους, παράμετροι που επηρεάζουν άμεσα την αντίσταση του.
- Στη μέθοδο Blount Fox παρατηρείται στις αρχικές ταχύτητες (μέχρι τους 12 kn) μια μικρή αύξηση στην τιμή της αντίστασης πριν αρχίσει να μειώνεται. Το ίδιο παρατηρείται και στη μέθοδο Savitsky αλλά είναι λιγότερο έντονο, ενώ στα πειράματα δεν υπάρχει κάτι ανάλογο.
- Η ισχύς ρυμούλκησης παρουσιάζει αύξηση καθώς αυξάνεται η ταχύτητα, όπως φαίνεται στο Διάγραμμα 2.
- Η δυναμική διαγωγή (+ πρύμνηθεν) ελαττώνεται σημαντικά με την αύξηση της ταχύτητας, φτάνοντας ως τις 3°, στη μέγιστη ταχύτητα στις δύο μεθοδολογίες και τα πειράματα.

Σε συνδυασμό με τα παραπάνω, παρατηρούμε ότι τα αποτελέσματα των μεθόδων Savitsky Planing και Blount – Fox καθώς και τα αντίστοιχα πειραματικά, είχαν παρόμοια τάση ως προς τις μεταβολές των τιμών, ενώ υφίστανται αποκλίσεις στις τιμές στις περιπτώσεις των υψηλών τιμών των ταχυτήτων (πάνω από 40 kn) σε σχέση με τα πειράματα κυρίως, αλλά και στις χαμηλές τιμές (10 kn – 15 kn). Πιο αναλυτικά, μεταξύ των μεθόδων Savitsky Planing και Blount – Fox

παρατηρείται μια διαφοροποίηση στις τιμές της αντίστασης και της ισχύος που κυμαίνεται από 0,7% έως και 6,0%, το οποίο δικαιολογείται λόγω της ύπαρξης του διορθωτικού συντελεστή στον προσδιορισμό της αντίστασης στη δεύτερη μέθοδο. Επίσης, η απόκλιση των δύο μεθόδων γίνεται περισσότερο αισθητή σε μικρότερες ταχύτητες (10 kn – 15 kn), δεδομένου ότι λειτουργούν καλύτερα και αποδίδουν αποτελεσματικότερα σε υψηλότερες ταχύτητες αμφότερες. Επιπλέον, οι τιμές της αντίστασης και της ισχύος που υπολογίστηκαν με τη μέθοδο *Blount – Fox* είναι μεγαλύτερες από αυτές τόσο της μεθόδου *Savitsky* όσο και των πειραμάτων για ταχύτητες μέχρι περίπου τους 21 kn, ενώ στις υψηλότερες ταχύτητες οι τιμές αντίστασης και ισχύος της μεθόδου είναι οι μικρότερες.

Επίσης, τα πειραματικά αποτελέσματα απείχαν περισσότερο από τις τιμές των μεθόδων που προσδιορίστηκαν στο Maxsurf για την αντίσταση και την ισχύ, ιδίως στις μεγαλύτερες ταχύτητες (40 kn – 45 kn). Πιο συγκεκριμένα, όσον αφορά τη μέθοδο Savitsky Planing, η ποσοστιαία απόκλιση των αποτελεσμάτων αντίστασης και ισχύος με τα αντίστοιχα πειραματικά ήταν περίπου 0,1% - 7,0%, ενώ στους 45 kn φτάνει το 18,0%. Από την άλλη, η απόκλιση των τιμών μεταξύ της μεθόδου Blount – Fox και πειραματικών αποτελεσμάτων σύμφωνα με το επιστημονικό άρθρο ήταν περίπου 3,8% - 20,6% τόσο ως προς την αντίσταση όσο και ως προς την ισχύ. Επιπρόσθετα, στην περίπτωση της διαγωγής, η μεγαλύτερη απόκλιση παρατηρήθηκε κυρίως σε μικρότερες ταχύτητες (10 kn) με ποσοστό απόκλισης 19,0%, ενώ σε όλες τις υπόλοιπες ταχύτητες το ποσοστό δεν ξεπερνούσε το 6,0%.

Όπως έχει ήδη αναφερθεί, το λογισμικό Maxsurf Resistance παρέχει αποτελέσματα των αδιάστατων συντελεστών των συνιστωσών της αντίστασης τα οποία παρουσιάζονται στα παρακάτω διαγράμματα. Ειδικότερα κατωτέρω διαγράμματα (Διαγράμματα 4-6) παρατηρούμε πως σε κάθε περίπτωση οι αδιάστατοι συντελεστές συνολικής αντίστασης (C_T), υπόλοιπης αντίστασης (C_R) και αντίστασης τριβής (C_F) μειώνονται με τη σταδιακή αύξηση της ταχύτητας πλεύσης του σκάφους. Ειδικότερα, οι πρώτοι δύο συντελεστές μειώνονται σε μεγαλύτερο βαθμό και με μεγαλύτερο ρυθμό συγκριτικά με τον συντελεστή τριβής, ο οποίος αν και πιο σταθερός, περίπου από τους 34 kn και μετά, δίνει μεγαλύτερες τιμές έναντι του συντελεστή υπόλοιπης αντίστασης και άρα κατ' επέκταση της αντίστασης τριβής (D_F) έναντι της υπόλοιπης αντίστασης. Στην υπεροχή του συντελεστή υπόλοιπης αντίστασης και της αυτάτασης τριβής στη συνέχεια, συνδλοιπης διαγωγής, ενώ η υπεροχή του συντελεστή τριβής και της αντίστασης τριβής στη συνέχεια, συνδέεται με την αυξημένη τιμή της βρεχόμενης επιφάνειας στις μεγάλες ταχύτητες και τη μείωση της δυναμικής διαγωγής.

Διάγραμμα 4: Γραφική απεικόνιση αποτελεσμάτων συντελεστή συνολικής αντίστασης – ταχύτητας ολισθακάτου Ι

Διάγραμμα 5: Γραφική απεικόνιση αποτελεσμάτων συντελεστή υπόλοιπης αντίστασης – ταχύτητας ολισθακάτου Ι

Διάγραμμα 6: Γραφική απεικόνιση αποτελεσμάτων συντελεστή τριβής – ταχύτητας ολισθακάτου Ι

Όσον αφορά τη σύγκριση των αποτελεσμάτων των συντελεστών μεταξύ των μεθόδων Savitsky Planing και Blount – Fox παρατηρούμε ότι τόσο ο συντελεστής ολικής αντίστασης, όσο και ο συντελεστής υπόλοιπης αντίστασης έχουν λίγο μεγαλύτερες τιμές μέχρι τους 21 kn, στην περίπτωση της μεθόδου Blount – Fox, ενώ μετά την συγκεκριμένη ταχύτητα οι αντίστοιχες τιμές των συντελεστών είναι πολύ κοντά με αυτούς που υπολογίστηκαν με τη μέθοδο Savitsky. Οι συντελεστές ολικής αντίστασης προκύπτουν από τα αποτελέσματα της ολικής αντίστασης που παρουσιάζονται στο Διάγραμμα 1 για τις δύο μεθοδολογίες, όπου σε ταχύτητες μικρότερες των 21 kn, οι τιμές αντίστασης κατά Blount – Fox είναι μεγαλύτερες από τις αντίστοιχες της μεθόδου Savitsky Planing. Επίσης, οι τιμές του συντελεστή τριβής, και για τις δύο μεθόδους είναι ίδιοι σε κάθε ταχύτητα.

4.3.3.2 Ολισθάκατος ΙΙ

Στα επόμενα διαγράμματα παρατίθενται τα αποτελέσματα της μελέτης αντίστασης για την ολισθάκατο ΙΙ.

Διάγραμμα 7: Γραφική απεικόνιση αποτελεσμάτων αντίστασης - ταχύτητας ολισθακάτου ΙΙ

Διάγραμμα 8: Γραφική απεικόνιση αποτελεσμάτων ισχύος - ταχύτητας ολισθακάτου ΙΙ

Διάγραμμα 9: Γραφική απεικόνιση αποτελεσμάτων δυναμικής διαγωγής - ταχύτητας ολισθακάτου ΙΙ

Μετά τη διεξαγωγή της μελέτης της ολισθακάτου ΙΙ προέκυψαν τα ακόλουθα:

- Αύξηση τόσο της αντίστασης όσο και της ισχύος με την αύξηση της ταχύτητας, όπως προκύπτει από τα αποτελέσματα των δύο μεθοδολογιών αλλά και από τα πειραματικά αποτελέσματα (Διάγραμμα 7 και Διάγραμμα 8). Οποιαδήποτε εναλλαγή στη μορφή της καμπύλης του διαγράμματος 7 οφείλεται στη μεταβολή της βρεχόμενης επιφάνειας της ολισθακάτου ΙΙ, της δυναμικής ανύψωσης και της δυναμικής διαγωγής της σε κάθε ταχύτητα.
- Οι τιμές της αντίστασης της μεθόδου Blount Fox είναι σχεδόν σταθερές μεταξύ των ταχυτήτων 16 kn και 22 kn.
- Παρατηρείται αρχικά αύξηση της δυναμικής διαγωγής μέχρι τους 16 kn περίπου, ενώ στη συνέχεια σταδιακά μειώνεται, καταλήγοντας περίπου στις 2,6°, όσο το σκάφος πλέει στη μεγαλύτερη ταχύτητα (Διάγραμμα 9).

Γενικά τα αποτελέσματα των μεθόδων Savitsky Planing και Blount – Fox ως προς την αντίσταση, την ισχύ και τη διαγωγή έχουν μικρές αποκλίσεις παρόλο που συνολικά κάθε μέγεθος παρουσιάζει την ίδια μεταβολή σε κάθε περίπτωση. Πιο συγκεκριμένα, για τις μεθόδους που χρησιμοποιήθηκαν στο λογισμικό Maxsurf Resistance, οι τιμές αντίστασης και της ισχύος ομοιάζουν σε μεγάλο βαθμό με ποσοστό απόκλισης από 0,3% - 4,2%. Ωστόσο σε μικρότερες ταχύτητες (10 kn – 15 kn) παρατηρήθηκε μεγαλύτερη διαφοροποίηση στις τιμές μέχρι 33,0%, γεγονός που υπολογίστηκε με τη μέθοδο Blount – Fox, και αφετέρου στην καλύτερη λειτουργία

των δύο μεθόδων σε υψηλότερες ταχύτητες, το οποίο έρχεται και σε σύνδεση με την προηγούμενη παρατήρηση. Ακόμα, η μέθοδος *Blount – Fox* υπολογίζει μικρότερες τιμές αντίστασης και ισχύος περίπου από τους 25 kn και μετά, συγκριτικά με αυτές της μεθόδου *Savitsky Planing* και των πειραμάτων. Γενικά, οι τιμές της αντίστασης και της ισχύος που υπολογίστηκαν με τη μέθοδο *Blount – Fox* και για την ολισθάκατο ΙΙ είναι μεγαλύτερες από αυτές τόσο της μεθόδου *Savitsky* όσο και των πειραμάτων για ταχύτητες μέχρι περίπου τους 25 kn.

Όσον αφορά τη σύγκριση των αποτελεσμάτων των μεθοδολογιών με τα πειραματικά αποτελέσματα, όπως φαίνεται και από τα διαγράμματα 7 – 9, υπάρχει συμφωνία σε αρκετά μεγάλο βαθμό στο σύνολό τους μέχρι τους 35 kn, ιδίως με την μέθοδο Savitsky Planing. Ειδικότερα, τα αποτελέσματα αντίστασης και ισχύος με τη μέθοδο Savitsky Planing διαφέρουν με αυτά των πειραμάτων περίπου 0,7% - 5,0%, με εξαίρεση στις ταχύτητες που ξεπερνούν τους 40 kn, στις οποίες η ποσοστιαία απόκλιση φτάνει περίπου το 15%. Αντίστοιχα, τα αποτελέσματα για την ισχύ και την αντίσταση με τη μέθοδο Blount – Fox, παρουσιάζουν μεγαλύτερες διαφορές από τα πειραματικά τόσο σε μικρότερες ταχύτητες (10 kn – 15 kn), όσο και σε μεγαλύτερες ταχύτητες (40 kn – 45 kn), αγγίζοντας το 22,5% και το 17,9% αντίστοιχα. Επιπλέον, στην περίπτωση της δυναμικής διαγωγής, η απόκλιση των τιμών των μεθόδων και του πειράματος ήταν έως 3,5% σε όλο το εύρος των ταχυτήτων μέχρι τους 40 kn, ενώ σε μεγαλύτερες ταχύτητες υπήρχε μια απόκλιση της τάξης του 17,9%.

Στη συνέχεια, θα αναλυθούν τα αποτελέσματα των αδιάστατων συντελεστών της αντίστασης που προκύπτουν από τα διαγράμματα 10 – 12.

Διάγραμμα 11: Γραφική απεικόνιση αποτελεσμάτων συντελεστή υπόλοιπης αντίστασης - ταχύτητας ολισθακάτου ΙΙ

Διάγραμμα 12: Γραφική απεικόνιση αποτελεσμάτων συντελεστή τριβής - ταχύτητας ολισθακάτου ΙΙ

Ειδικότερα, όπως και στην πρώτη ολισθάκατο, έτσι και στην ολισθάκατο II οι συντελεστές συνολικής αντίστασης (C_T), υπόλοιπης αντίστασης (C_R) και αντίστασης τριβής (C_F) ελαττώνονται με την αύξηση της ταχύτητας, σε μεγαλύτερο βαθμό και ρυθμό οι δύο πρώτοι σε σχέση με τον

τελευταίο. Ο συντελεστής αντίστασης τριβής και άρα η αντίσταση τριβής (D_F) έχουν μεγαλύτερες τιμές από το συντελεστή υπόλοιπης αντίστασης και την υπόλοιπη αντίστασης αντίστοιχα σε ταχύτητες μεγαλύτερες των 30 kn, φαινόμενο που παρατηρήθηκε και στην ολισθάκατο Ι και σχετίζεται με τη δυναμική διαγωγή και τη βρεχόμενη επιφάνεια της γάστρας σε κατάσταση ολισθήσεως.

Επιπλέον, οι δύο μέθοδοι προσδιορισμού της αντίστασης που ελήφθησαν υπόψιν στο Maxsurf Resistance, παρουσιάζουν ορισμένες διαφορές και στους τρεις αδιάστατους συντελεστές που αναφέρθηκαν. Έτσι, στην περίπτωση της μεθόδου Savitsky Planing, οι συντελεστές συνολικής αντίστασης και υπόλοιπης αντίστασης είναι εμφανώς μικρότεροι ως προς την τιμή τους μέχρι τους 25 kn περίπου, ενώ στη συνέχεια υπερτερούν ελάχιστα έναντι των αντίστοιχων συντελεστών της μεθόδου Blount – Fox. Ο συντελεστής αντίστασης τριβής έχει ίδιες τιμές και με τους δύο τρόπους, καθώς ο διορθωτικός παράγοντας της μεθόδου Blount – Fox δεν τον επηρεάζει.

4.3.3.3 Σύγκριση ολισθακάτων Ι, ΙΙ

Στα επόμενα διαγράμματα αποτυπώνονται τα αποτελέσματα αντίστασης και δυναμικής διαγωγής των ολισθακάτων Ι και ΙΙ που υπολογίστηκαν στο *Maxsurf Resistance* με τη μέθοδο *Savitsky Planing* στο ίδιο εύρος ταχυτήτων 10 kn - 45 kn για το οποίο έγιναν και οι υπολογισμοί.

Αξίζει να σημειωθεί στο σημείο αυτό ότι οι ολισθάκατοι Ι, ΙΙ διαθέτουν παρόμοιο εκτόπισμα αλλά παρουσιάζουν και διαφορές ως προς τα γεωμετρικά τους χαρακτηριστικά. Ειδικότερα, η ολισθάκατος Ι έχει μικρότερη γωνία ανύψωσης πυθμένα προς τη πλώρη και μικρότερο λόγο μήκους προς πλάτος από την ολισθάκατο ΙΙ. Στα διαγράμματα 13 και 14 παρουσιάζονται για τις ολισθακάτους Ι και ΙΙ τα αποτελέσματα αντίστασης με τη μορφή του συντελεστή αντίστασης προς εκτόπισμα (D/W) και της δυναμικής διαγωγής αντίστοιχα συναρτήσει της ταχύτητας (αριθμού *Froude*).

Από το Διάγραμμα 13 παρατηρείται ότι η ολισθάκατος Ι παρουσιάζει μεγαλύτερες τιμές αντίστασης σε μικρότερες ταχύτητες, δηλαδή μέχρι τους 25 kn (Fn_B = 3,0) περίπου, ενώ μετά από αυτήν την ταχύτητα οι τιμές της αντίστασης της ολισθακάτου ΙΙ είναι μεγαλύτερες. Στη γάστρα της ολισθακάτου Ι παρατηρούνται μεγαλύτερες τιμές δυναμικής διαγωγής συγκριτικά με την ολισθάκατο ΙΙ και μάλιστα η διαφορά τους είναι πιο έντονη στις μικρές ταχύτητες, ενώ οι τιμές της διαγωγής μειώνονται απότομα προς τις υψηλότερες ταχύτητες. Αυτό φαίνεται να επιδρά σημαντικά στη μείωση της αντίστασης της ολισθακάτου Ι μέχρι τους 25 kn περίπου. Οι μειωμένες τιμές αντίστασης της ολισθακάτου Ι μέχρι τους 25 kn περίπου. Οι μειωμένες παρατηρείται ραγδαία αύξηση της εν λόγω γωνίας όσο κινούμαστε προς την πλώρη.

Διάγραμμα 13: Διαφοροποίηση αντίστασης ολισθακάτων Ι, ΙΙ

Διάγραμμα 14: Διαφοροποίηση δυναμικής διαγωγής ολισθακάτων Ι, ΙΙ

Επίσης, στον Πίνακα 4 όπου αναγράφονται οι κύριες διαστάσεις και ορισμένα γεωμετρικά χαρακτηριστικά των σκαφών, παρατηρούμε πως ο λόγος L/B του πρώτου ταχυπλόου σκάφους είναι μικρότερος σε σχέση με του δεύτερου, ενώ το πλάτος και το βύθισμα είναι μεγαλύτερα γεγονός που συμβάλει θετικά στην καλύτερη ευστάθεια του σκάφους. Επιπλέον, όπως εξηγήσαμε σε προηγούμενη ενότητα μέρος της γάστρας ενός σκάφους αναδύεται εκτός της επιφάνειας του νερού, όταν αυτό μεταβαίνει στη κατάσταση ολίσθησης. Μια γάστρα που διαθέτει, λοιπόν, μικρότερο λόγο L/B (ή μεγαλύτερο λόγο επιμήκους B/L), όπως συμβαίνει με την ολισθάκατο I, είναι καταλληλότερη στο να φτάσει γρηγορότερα στην κατάσταση ολίσθησης και να ανυψωθεί, καθώς οι μεγάλες τιμές του λόγου επιμήκους επιδρούν ευνοϊκά στη βελτίωση του λόγου άνωσης προς αντίσταση. Για δεδομένο λόγο επιμήκους B/L υπάρχει μία βέλτιστη τιμή για τη βρεχόμενη επιφάνεια που δίνει τη βέλτιστη διαγωγή, η οποία εξαρτάται επιπλέον και από τη γωνία ανύψωσης πυθμένα [18].

Επιπλέον, στο Διάγραμμα 14 φαίνεται ότι η ολισθάκατος Ι έχει σημαντικά μεγαλύτερη δυναμική διαγωγή σε σχέση με την ολισθάκατο ΙΙ στις μικρές ταχύτητες (περίπου στους 10 kn), φαινόμενο που σταδιακά μειώνεται με την αύξηση της ταχύτητας, χωρίς όμως οι τιμές διαγωγής του δεύτερου σκάφους να υπερισχύσουν, παρόλο που στις υψηλές ταχύτητες είναι σχετικά παρόμοιες. Επομένως, λόγω της μεγάλης διαφοράς στην τιμή της διαγωγής, στο πρώτο σκάφος παρατηρούμε και τη μεγαλύτερη υπόλοιπη αντίσταση σε αυτές τις ταχύτητες (Διαγράμματα 5 και 11). Επίσης, μέχρι περίπου τους 30 kn η υπόλοιπη αντίσταση υπερτερεί της αντίστασης τριβής, ενώ μετά την ταχύτητα αυτή η αντίσταση τριβής είναι μεγαλύτερη και για τις δύο ολισθακάτους (Διαγράμματα 6 και 12), γεγονός που καταδεικνύει τη μελέτη για μελλοντική μείωση της βρεχόμενης επιφάνειας των γαστρών σε υψηλότερες ταχύτητες προκειμένου να βελτιωθεί η συμπεριφορά τους.

Επιπρόσθετα, η ύπαρξη των αντιδιαβροχικών λωρίδων (Spray Rails) στις γάστρες των δύο ολισθακάτων βοηθούν στη δημιουργία πρόσθετης άνωσης (Lift) και άρα στην αποδοτικότερη ανύψωση μέρους των σκαφών κατά τη πλεύση τους, καθώς και στη μείωση τόσο του αφρού όσο και τον έλεγχο της βρεχόμενης επιφάνειας της γάστρας. Επομένως, δεδομένου ότι η πρώτη ολισθάκατος διαθέτει τρία ζευγάρια αντιδιαβροχικών λωρίδων, έναντι της δεύτερης που διαθέτει δύο ζευγάρια και αυτά συνεισφέρουν θετικά στη μείωση της αντίστασης περισσότερο σε υψηλές ταχύτητες, είναι αναμενόμενη η μειωμένη τιμή της στην πρώτη ολισθάκατο. Ακόμα, η επέκταση της πρύμνης στον καθρέπτη του σκάφους που συμβάλει στη μείωση της γωνίας διαγωγής των ολισθακάτων έχει ευνοϊκότερη επίδραση για την ολισθάκατο Ι στις υψηλές ταχύτητες καθώς οδηγεί σε περαιτέρω μείωση της αντίστασης της σε σχέση με την ολισθάκατο ΙΙ.

Γενικά όσον αφορά την αντίσταση των ολισθακάτων Ι, ΙΙ σε ήρεμο νερό, η ολισθάκατος Ι έχει καλύτερη συμπεριφορά στο πεδίο ταχυτήτων που μελετήθηκε, διότι παρουσιάζει μειωμένη αντίσταση συγκριτικά με το δεύτερο σκάφος στις υψηλότερες ταχύτητες.

4.3.4 Διερεύνηση θέσης κέντρου πιέσεων ολισθακάτων Ι, ΙΙ

Το κέντρο πιέσεων (Lp) ενός ταχυπλόου κατά την ολίσθηση αποτελεί μεταξύ άλλων σημαντικό παράγοντα στην εκτίμηση της αντίστασης, αφού με οποιαδήποτε μεταβολή της τιμής του, επηρεάζεται τόσο η αντίσταση όσο και η διαγωγή του σκάφους. Έτσι, προκειμένου να εξεταστεί η επίδραση του κέντρου πιέσεων (Lp) και κατά συνέπεια η διαμήκης θέση του κέντρου βάρους (LCG) επί της αντίστασης, έγιναν δοκιμές τοποθετώντας σε τρία διαφορετικά σημεία εφαρμογής το κέντρο πιέσεων, ως εξής:

- 1) $Lp = LCG = 50\% \lambda$
- 2) $Lp = LCG = 75\% \lambda$
- 3) Lp = LCG = LCB

Opou $\lambda = L_{WL}/B_{PX}$

	ΣΚΑΦ	ΡΟΣ Ι	ΣΚΑΦΟΣ ΙΙ		
	Transom	Midship	Transom	Midship	
$LCG = 1/2\lambda =$	1,292	-1,371	1,936	-1,679	
$LCG = 3/4\lambda =$	1,938	-0,725	2,904	-0,710	
LCG = LCB =	2,058	-0,605	2,638	-0,976	

Πίνακας 12: Τιμές κέντρου πιέσεων για τη διαδικασία διερεύνησης

Στις δοκιμές που εξετάσαμε στις προηγούμενες ενότητες το κέντρο πιέσεων (Lp) και κατά συνέπεια η διαμήκης θέση του κέντρου βάρους (LCG) που χρησιμοποιήσαμε ήταν Lp = LCG = 75%λ.

Στην συνέχεια, πραγματοποιήθηκαν οι δοκιμές με τη γάστρα της κάθε ολισθακάτου ξεχωριστά για τις περιπτώσεις Lp = LCG = 50% και Lp = LCG = LCB στο Maxsurf, χρησιμοποιώντας τη μέθοδο Savitsky Planing για τους υπολογισμούς, ενώ στα ακόλουθα διαγράμματα παρουσιάζονται και τα αποτελέσματα που προέκυψαν για τις διάφορες θέσεις του κέντρου πιέσεων.

Πιο αναλυτικά, όσον αφορά την ολισθάκατο Ι στο Διάγραμμα 15 συγκρίνονται οι τιμές της αντίστασης για τις διάφορες περιπτώσεις του κέντρου πιέσεων. Στο εν λόγω διάγραμμα, παρατηρούμε ότι η περίπτωση Lp = 50% δίνει τις μεγαλύτερες τιμές στην αντίσταση στις μικρές ταχύτητες μέχρι τους 25 kn περίπου, έναντι των άλλων δύο περιπτώσεων, ενώ το LCG = LCB δίνει τις μικρότερες τιμές σε αυτή την περιοχή ταχυτήτων. Επιπλέον στην περίπτωση Lp = 50% , εμφανίζεται σημαντική μείωση της αντίστασης γεγονός που δεν παρατηρείται τόσο έντονα στις άλλες δύο περιπτώσεις, για τις οποίες μάλιστα μετά τους 25 kn περίπου αυξάνεται η τιμή της αντίστασης. Σε ταχύτητες μεγαλύτερες των 30 kn η περίπτωση Lp = 50% δίνει τις μικρότερες τιμές στην αντίσταση, έναντι των άλλων δύο περιπτώσεων, ενώ το LCG = LCB δίνει τις μεγαλύτερες τιμές στην αντίσταση, έναντι των άλλων δύο περιπτώσεων μεριστώσεων μεροδιάνει τις μικρότερες τιμές στην αντίσταση της αντίστασης των 30 kn η περίπτωση Lp = 50% δίνει τις μικρότερες τιμές στην αντίσταση του του του του του του του του του μεριστώσεων.

LCG = LCB, παρατηρείται ότι η πρώτη στις χαμηλότερες ταχύτητες παρουσιάζει μεγαλύτερη αντίσταση, ενώ στις υψηλότερες έχει μειωμένη αντίσταση. Επίσης, στο Διάγραμμα 16 συγκρίνονται οι τιμές της διαγωγής για τις τρεις μεταβολές του κέντρου πιέσεων. Σε όλες τις εξεταζόμενες περιπτώσεις παρατηρείται μείωση της δυναμικής διαγωγής, καθώς αυξάνεται η ταχύτητα. Μεταξύ των τριών θέσεων εφαρμογής του κέντρου πιέσεων, μικρότερη διαγωγή παρουσιάζει περίπτωση LCG = LCB σε όλο το εύρος ταχυτήτων, ωστόσο μετά τους 25 kn οι γωνίες διαγωγής των Lp = 75%λ και LCG = LCB, σχεδόν ταυτίζονται. Η περίπτωση Lp = 50%λ εμφανίζει τις μεγαλύτερες τιμές της διαγωγής σε όλο το εύρος ταχυτήτων.

Όσον αφορά την ολισθάκατο ΙΙ, στο Διάγραμμα 17 γίνεται η σύγκριση των τιμών της αντίστασης για τις τρεις διαφορετικές θέσεις του κέντρου πιέσεων. Στο εν λόγω διάγραμμα, παρατηρείται ότι η περίπτωση $Lp = 50\%\lambda$ δίνει τις μεγαλύτερες τιμές στην αντίσταση στις μικρές ταγύτητες μέγρι τους 27 kn περίπου, έναντι των άλλων δύο περιπτώσεων, ενώ το $Lp = 75\%\lambda$ δίνει τις μικρότερες τιμές σε αυτή την περιογή ταχυτήτων. Σημαντική μείωση της αντίστασης παρατηρείται μέχρι τους 27 kn περίπου για Lp = $50\%\lambda$ και στη συνέχεια σχετική αύξηση, ενώ στις άλλες δύο περιπτώσεις η αντίσταση αυξάνεται σταδιακά. Η περίπτωση Lp = 50%λ δίνει την μικρότερη αντίσταση στις υψηλές ταγύτητες, ενώ το $Lp = 75\%\lambda$ δίνει τις μεγαλύτερες τιμές σε αυτή την περιοχή ταχυτήτων. Μεταξύ των περιπτώσεων Lp = 75%λ και LCG = LCB, παρατηρείται ότι η πρώτη στις γαμηλότερες ταγύτητες παρουσιάζει μικρότερη αντίσταση. Επιπλέον, στο Διάγραμμα 18 γίνεται αισθητή η επίδραση του κέντρου πιέσεων στη διαγωγή της ολισθακάτου ΙΙ. Πιο αναλυτικά, οι χαμηλότερες τιμές δυναμικής διαγωγής εμφανίζονται στην περίπτωση Lp = 75%λ, ενώ με τη σταδιακή αύξηση της ταχύτητας πλεύσης, οι τιμές της διαγωγής ταυτίζονται σε μεγαλύτερο βαθμό, ιδίως μεταξύ των περιπτώσεων LCG = 75%λ και LCG = LCB. Όπως και στην ολισθάκατο Ι η μεγαλύτερη δυναμική διαγωγή εμφανίζονται στην περίπτωση Lp = 50% λ για όλο το εύρος ταγυτήτων.

Από όλα τα παραπάνω, είναι φανερό ότι η επίδραση της θέσης που τοποθετείται το κέντρο βάρους (LCG) και άρα το κέντρο πιέσεων (Lp) στην εκτίμηση της αντίστασης των ολισθακάτων χρησιμοποιώντας τη μέθοδο Savitsky Planing είναι σαφώς σημαντική, αφού με μικρές μεταβολές σε αυτήν τη θέση επηρεάζεται τόσο η αντίσταση όσο και η δυναμική διαγωγή σε μικρότερο ή μεγαλύτερο βαθμό κάθε φορά.

Διάγραμμα 15: Επίδραση διαφορετικών κέντρων πιέσεων στην αντίσταση της ολισθακάτου Ι

Διάγραμμα 16: Επίδραση διαφορετικών κέντρων πιέσεων στη διαγωγή της ολισθακάτου Ι

Διάγραμμα 17: Επίδραση διαφορετικών κέντρων πιέσεων στην αντίσταση της ολισθακάτου ΙΙ

Διάγραμμα 18: Επίδραση διαφορετικών κέντρων πιέσεων στη διαγωγή της ολισθακάτου ΙΙ

Κεφάλαιο 5: Ολισθάκατος με γάστρα διπλής ακμής

Το τρίτο υπό μελέτη ταχύπλοο σκάφος (ολισθάκατος ΙΙΙ) στο οποίο θα πραγματοποιηθεί η εκτίμηση της αντίστασης είναι ολισθάκατος με γάστρα διπλής ακμής (*Double chine*) [27], ενώ οι κύριες διαστάσεις της παρουσιάζονται στον ακόλουθο πίνακα:

ΔΕΔΟΜΕΝΑ					
ΜΕΓΕΘΗ	ΣΚΑΦΟΣ ΙΙΙ	ΜΟΝΑΔΕΣ			
L _{OA}	3,758	[m]			
L_{WL}	3,559	[m]			
В	1,363	[m]			
B_{PX}	1,290	[m]			
Т	0,300	[m]			
Н	0,607	[m]			
V	0,904	[m ³]			
β_{MID}	15	[deg]			
L/B	2,759				

Πίνακας 13: Κύριες διαστάσεις ολισθακάτου ΙΙΙ [27]

Τα σχέδια γραμμών της εν λόγω ολισθακάτου που χρησιμοποιήθηκαν στη διπλωματική εργασία παρουσιάζονται στις Εικόνες 45 έως 47.

Εικόνα 45: Body Plan ολισθακάτου ΙΙΙ [27]

					$ \land \land$	H
						Ħ
						7
					H	
		 		\square	7	

Εικόνα 46: Sheer Plan ολισθακάτου ΙΙΙ [27]

Εικόνα 47: Breadth Plan ολισθακάτου ΙΙΙ [27]

Στις παρακάτω υποενότητες, θα γίνει εκτενής αναφορά τόσο στον τρόπο σχεδίασης της ολισθακάτου με τη χρήση του λογισμικού *Rhinoceros 3D*, όσο και στη μελέτη της συνολικής αντίστασης της σε ήρεμο νερό με τις δύο μεθόδους που εφαρμόστηκαν και προηγουμένως.

5.1 Σχεδίαση ολισθακάτου ΙΙΙ

Η σχεδίαση της ολισθακάτου ΙΙΙ πραγματοποιήθηκε εισάγοντας τις ναυπηγικές γραμμές της στο πρόγραμμα *Rhinoceros 3D* και στη συνέχεια προσαρμόζοντας τις εικόνες των σχεδίων στις διαστάσεις του σκάφους μέσω των εντολών *Import* και *Scale1D* αντίστοιχα [24].

Εικόνα 48: Στιγμιότυπο οθόνης των σχεδίων γραμμών της ολισθακάτου ΙΙΙ (Perspective view)

Η διαδικασία σχεδίασης της τρίτης ολισθακάτου είναι παρόμοια με αυτήν των «Ολισθακάτων Ι και ΙΙ» (ενότητες 4.1, 4.2). Οι καμπύλες που απαρτίζουν την ολισθάκατο ΙΙΙ δημιουργήθηκαν χρησιμοποιώντας την εντολή *Curve: interpolate points*, καθώς και την επιλογή *Start & End tangent* για την ομαλή κλίση της καμπύλης, όπως έχει ήδη αναφερθεί. Οι Εικόνες 49 έως 53 που ακολουθούν στην συνέχεια απεικονίζουν τα βήματα σχεδιασμού των καμπύλων της ολισθακάτου ΙΙΙ με την σειρά που δημιουργήθηκαν.

Εικόνα 49: Το περίγραμμα (Profile) της ολισθακάτου ΙΙΙ (Front view)

Εικόνα 50: Το σχέδιο εγκάρσιων τομών (Half-breadth plan) της ολισθακάτου ΙΙΙ (Right view)

Σε αυτό το σημείο αξίζει να αναφερθεί ότι η περιοχή του καθρέπτη διαφοροποιείται σε σχέση με τις προγούμενες ολισθακάτους, αφού ο καθρέπτης είναι κατακόρυφος. Γι' αυτό, η καμπύλη του καθρέπτη του σκάφους (*Transom*) κατασκευάστηκε ακριβώς με τον ίδιο τρόπο που δημιουργήθηκαν όλοι οι νομείς, χωρίς κάποιον επιπλέον μετασχηματισμό. Επίσης, όπως και πριν, ο έλεγχος του σχεδιασμού και της ομαλότητας των νομέων πραγματοποιήθηκε με την εντολή *Curvature Graph – On*, ενώ οποιαδήποτε ασυνέχεια στην καμπυλότητα των νομέων διορθώθηκε. Έτσι, στην Εικόνα 51 παρατίθενται οι τελικές καμπύλες των νομέων μαζί με τα διαγράμματα καμπυλότητας τους.

Εικόνα 51: Οι διορθωμένοι νομείς και τα διαγράμματα καμπυλότητας της ολισθακάτου ΙΙΙ (Perspective view)

Επομένως, η τελική εικόνα της γάστρας του σκάφους μέχρι αυτό το σημείο της σχεδίασης παρουσιάζεται στην επόμενη εικόνα.

Εικόνα 52: Οι νομείς, ο καθρέπτης και το περίγραμμα της ολισθακάτου ΙΙΙ σε τρισδιάστατη μορφή

Είναι σημαντικό να αναφερθεί ότι η ολισθάκατος ΙΙΙ είναι διπλής ακμής (Double Chine) και δεν διαθέτει αντιδιαβροχικές λωρίδες όπως είχαν τα προηγούμενα δύο σκάφη. Οι καμπύλες που εξυπηρετούν στην απότομη αλλαγή της κλίσης της γάστρας, λοιπόν, κατασκευάστηκαν χρησιμοποιώντας την ίδια εντολή με προηγουμένως. Τελικά, η συνολική εικόνα των καμπύλων της ολισθακάτου ΙΙΙ όπως παρουσιάζονται στο πρόγραμμα *Rhinoceros* φαίνεται στην Εικόνα 53.

Εικόνα 53: Στιγμιότυπο της σχεδίασης της γάστρας της ολισθακάτου ΙΙΙ σε όλες τις όψεις

Εφόσον ολοκληρώθηκε ο σχεδιασμός όλων των βασικών καμπύλων της ολισθακάτου ΙΙΙ, ακολουθεί η δημιουργία όλων των επιφανειών που την αποτελούν, κάτι το οποίο έγινε μέσω της εντολής *Curve Network* από το μενού *Surfaces*. Όπως και στα προηγούμενα ταχύπλοα σκάφη η επιφάνεια του καθρέπτη κατασκευάστηκε με την εντολή *Planar Curves*. Μετά την ολοκλήρωση της ανωτέρω διαδικασίας, όλες οι επιμέρους επιφάνειες ενοποιηθήκαν σε μια σύνθετη επιφάνεια μέσω της εντολής *Join*, ενώ μέσω της εντολής *Mirror* δημιουργήθηκε η τελική μορφή της γάστρας της ολισθακάτου ΙΙΙ. Η γάστρα της ολισθακάτου ΙΙΙ όπως φαίνεται στο πρόγραμμα *Rhinoceros* παρουσιάζεται στην Εικόνα 54.

Εικόνα 54: Στιγμιότυπο των επιφανειών της γάστρας της ολισθακάτου ΙΙΙ σε όλες τις όψεις

Τέλος, πραγματοποιήθηκαν ξανά οι προβλεπόμενοι έλεγχοι που αφορούν τις μεταβολές της γεωμετρίας και τις πιθανές ασυνέχειες της γάστρας, μέσω των εντολών Zebra και Curvature Analysis (Gaussian) αντιστοίχως. Έτσι, στις Εικόνες 55, 56 φαίνεται η γάστρα του σκάφους με χρήση της εκάστοτε εντολής στο τελικό στάδιο της σχεδίασης στο πρόγραμμα Rhinoceros.

Εικόνα 55: Ολισθάκατος ΙΙΙ - Έλεγχος επιφάνειας γάστρας (Curvature Analysis)

Εικόνα 56: Ολισθάκατος ΙΙΙ - Έλεγχος επιφάνειας γάστρας (Zebra)

5.2 Μελέτη αντίστασης ολισθακάτου γάστρας διπλής ακμής

Με σκοπό να μελετήσουμε την αντίσταση της ολισθακάτου ΙΙΙ σε ήρεμο νερό, έγινε χρήση του *Maxsurf Resistance* της πλατφόρμας *Bentley*, ενώ πραγματοποιήθηκαν υπολογισμοί με τη μέθοδο *Savitsky* και τη μέθοδο *Blount* - *Fox* [25], [26]. Το αρχείο με τα σχέδια του σκάφους είναι κατάλληλα επεξεργασμένο και αποθηκευμένο με τέτοιο τρόπο, προκειμένου μετέπειτα να εισαχθεί ομαλά και να αναγνωριστεί πλήρως από το περιβάλλον του *Maxsurf*, όπως και στις προηγούμενες ολισθακάτους.

5.2.1 Εκτίμηση της αντίστασης ολισθακάτου ΙΙΙ με χρήση του λογισμικού Maxsurf

Όπως και στις προηγούμενες ολισθακάτους έτσι και σε αυτήν, αρχικά θα γίνει χρήση του Maxsurf Modeler, ώστε να προσδιοριστούν ορισμένοι βασικοί παράμετροι, απαραίτητοι για τη διαδικασία προσδιορισμού της αντίστασης. Έτσι, το σχέδιο της γάστρας θα εισαχθεί σε μορφή 3DM στο Maxsurf Modeler (Εικόνα 57).

Εικόνα 57: Τρόπος εισαγωγής αρχείου στο Maxsurf Modeler

Εφόσον πραγματοποιηθεί η εισαγωγή της γάστρας στο Maxsurf Modeler, το επόμενο βήμα που ακολουθεί είναι ο ορισμός όλων των σημείων αναφοράς, μέσω της επιλογής Frame of Reference που εντοπίζεται στο μενού του Data. Αρχικά, ως σημείο αναφοράς στο κατακόρυφο επίπεδο (Vertical Datum) ορίστηκε η Baseline, ώστε το Zero Point να είναι τοποθετημένο πάνω σε αυτήν, ενώ στην τιμή DWL χρησιμοποιήθηκε το βύθισμα της ολισθακάτου, δηλαδή τα 0,300 [m]. Επιπλέον, ως σημείο αναφοράς στο διάμηκες επίπεδο (Longitudinal Datum) ορίστηκε η πρυμναία κάθετος στο 0 [m] και στη συνέχεια η πρωραία κάθετος τοποθετήθηκε στα 3,559 [m], όσο είναι το μήκος της ισάλου σχεδίασης. Με την ολοκλήρωση της ανωτέρω διαδικασίας προκύπτει το επιθυμητό σύστημα αναφοράς της ολισθακάτου ΙΙΙ (Εικόνα 58).

Reference pt. Zefo pt.	 M	IS FP Baseline	
Longitudinal Datum		Vertical Datum	
Aft Perp. 0 m	Set to DWL	O DWL 0.3 m	
O Midships 1,78 m		Baseline O m Find Base	
O Fwd Perp. 3,559 m	Set to DWL	Other 0 m	
Other 0 m	Aft extent Fwd extent		
Label AP	🗹 Default	Label Baseline 🗹 Default	

Εικόνα 58: Ολισθάκατος ΙΙΙ - Frame of Reference & Zero point

Επομένως, η ολισθάκατος ΙΙΙ σε όλες τις όψεις μαζί με το σύστημα αναφοράς που έχει μετά τις τροποποιήσεις που πραγματοποιήθηκαν, όπως απεικονίζεται στο *Maxsurf Modeler*, φαίνεται παρακάτω στην Εικόνα 59.

Εικόνα 59: Στιγμιότυπο οθόνης της ολισθακάτου ΙΙΙ στο Maxsurf Modeler

Μετά την ολοκλήρωση όλων των ανωτέρω διαδικασιών, επόμενο βήμα είναι η αποθήκευση αυτού του αρχείου, ώστε να εισαχθεί μεταγενέστερα στο πρόγραμμα *Maxsurf Resistance*, για τη μελέτη της συνολικής αντίστασης της ολισθακάτου. Επομένως, μεταβαίνοντας στο ανωτέρω περιβάλλον, εισάγεται το συγκεκριμένο αρχείο μορφής *.msd* με την εντολή *Open Design*.

Όπως είναι γνωστό και από τα προηγούμενα σκάφη, η ορθή συμπλήρωση των γεωμετρικών και των υδροστατικών μεγεθών της ολισθακάτου στο παράθυρο *Data* του προγράμματος είναι άκρως αναγκαία, ώστε να είναι δυνατή η εκτίμηση της αντίστασης. Με την εισαγωγή της γάστρας στο πρόγραμμα όλα τα απαραίτητα μεγέθη και δεδομένα συμπληρώνονται είτε αυτόματα είτε από τον χρήστη, όπως έχει ήδη αναφερθεί, ενώ γίνεται και ο έλεγχος της εγκυρότητάς τους μέσω των διαστάσεων του άρθρου (Πίνακας 13) και αυτών που προέκυψαν από το *Rhinoceros* (Πίνακας 15). Ο πίνακας με τα γεωμετρικά χαρακτηριστικά και τα υδροστατικά μεγέθη της ολισθακάτου ΙΙΙ που ελήφθησαν υπόψιν για αυτή στο *Maxsurf Resistance* (Πίνακας 14), καθώς και ο πίνακας με τα υδροστατικά μεγέθη που προσδιορίστηκαν κατά την σχεδίαση του σκάφους στο *Rhinoceros* (Πίνακας 15) παρουσιάζονται παρακάτω.

MAXSURF RESISTANCE					
ΜΕΓΕΘΟΣ	TIMH	ΜΟΝΑΔΑ ΜΕΤΡΗΣΗΣ			
L _{WL}	3,559	[m]			
Beam submmerged	1,290	[m]			
Draft	0,300	[m]			
Displaced Volume	0,904	[m ³]			
Wetted Surface Area	5,479	[m ²]			
Prismatic coeff. (Cp)	0,814	[-]			
Waterpl. Area coeff. (Cwp)	0,883	[-]			
1/2 angle of entrance	39,7	[deg]			
LCG from midships (+ve for'd)	0,290	[m]			
Transom area	0,312	[m ²]			
Transom wl beam	1,312	[m]			
Transom draft	0,300	[m]			
Max sectioanl area	0,312	[m ²]			
Bulb transverse area	0	[m ²]			
Bulb height from keel	0	[m]			
Draft at FP	0,300	[m]			
Deadrise at 50% LWL	15	[deg]			
Hard chine or Round bilge	Hard chine				

Πίνακας 14: Γεωμετρικά - Υδροστατικά χαρακτηριστικά ολισθακάτου ΙΙΙ από το Maxsurf Resistance

Frontal Area	0	[m ²]
Headwind	0	[m/s]
Drag Coefficient	0	[-]
Air density	1,293	$[kg/m^3]$
Appendage Area	0	[m ²]
Nominal App. Factor	0	[m]
Appendage Factor	1	[-]
Correlation allowance	use 19th ITTC	[-]
Kinematic viscosity	0,00000118	$[m^2/s]$
Water Density	1025,9	$[tn/m^3]$

Πίνακας 15: Υδροστατικά χαρακτηριστικά ολισθακάτου ΙΙΙ από το Rhinoceros

RHINOCEROS					
ΜΕΓΕΘΟΣ	TIMH	ΜΟΝΑΔΑ ΜΕΤΡΗΣΗΣ			
Volume Displacement	0,904	[m ³]			
Wetted Surface Area	5,482	[m ²]			
Waterline Length	3,559	[m]			
Maximum Waterline Beam	1,312	[m]			
Water Plane Area	4,128	[m ²]			

Παρατηρούμε ότι οι τιμές για τα γεωμετρικά και τα υδροστατικά μεγέθη της ολισθακάτου που ελήφθησαν υπόψιν συγκλίνουν μεταξύ τους, όπως φαίνεται στους ανωτέρω πίνακες. Δεδομένου ότι το ταχύπλοο σκάφος αποτελεί γάστρα ολισθακάτου μορφής βαθέως V διπλής ακμής, έγινε χρήση της μεθόδου Savitsky Planing και της μεθόδου Blount - Fox. Οι μέθοδοι εφαρμόζονται επιλέγοντας στο εμφανιζόμενο παράθυρο (Εικόνα 40) την εκάστοτε μέθοδο από το Methods του μενού Analysis, ενώ επιλέγεται ο συντελεστής της 19th ITTC για τη διόρθωση της αντίστασης επίσης. Τα απαραίτητα δεδομένα για την εφαρμογή της συγκεκριμένης μεθόδου, όπως και πριν, είναι το μήκος ισάλου (L_{WL}), το πλάτος (Beam), ο όγκος εκτοπίσματος (Displaced Volume), η διαμήκης θέση του κέντρου βάρους (LCG) μετρημένη από το μέσον του σκάφους, καθώς και η γωνία ανύψωσης πυθμένα (Deadrise angle), ενώ και πάλι τα μεγέθη ελέγχονται από το πρόγραμμα για το εάν βρίσκονται στα επιθυμητά όρια. Η διαμήκης θέση του κέντρου βάρους (LCG) ελήφθη ίση με 75%λ, προκειμένου να χρησιμοποιηθεί και ως θέση του κέντρου πίσεων.

ΜΕΘΟΔΟΣ ΑΠΑΙΤΗΣΕΙΣ		TIMH	ΕΛΕΓΧΟΣ
Savitaky	$Fn_{B} > 1,0$	min 1,046	Εντός ορίων
Savusk y	3,07 < L/V ^{1/3} < 12,4	3,681	Εντός ορίων
Blount & For	$\operatorname{Fn}_{\nabla} > 1,0$	min 1,209	Εντός ορίων
Diouni & I ox	$LCG/L \le 0,46$	0,581	Εκτός ορίων

Πίνακας 16: Έλεγχος παραμέτρων μεγεθών υπολογισμού αντίστασης ολισθακάτου ΙΙΙ

Από τον Πίνακα 16 προκύπτει ότι στην περίπτωση της μεθόδου Savitsky Planing ικανοποιούνται οι απαιτήσεις της μεθόδου, δεδομένου ότι όλα τα κριτήρια βρίσκονται εντός των επιθυμητών ορίων, κάτι που δεν συμβαίνει στη περίπτωση της μεθόδου Blount – Fox, αφού μια εκ των προϋποθέσεων είναι μεγαλύτερη από την απαιτούμενη. Ωστόσο, το πρόγραμμα επιτρέπει να γίνουν οι υπολογισμοί γι' αυτό πραγματοποιήθηκε η μελέτη και με αυτήν τη μέθοδο.

Επιπλέον, επιλέχθηκε το εύρος ταχυτήτων στο οποίο θα πραγματοποιηθεί η μελέτη, μέσω της εντολής Speed Range του μενού Analysis. Οι τιμές της ταχύτητας που θα ληφθούν υπόψιν, κυμαίνονται από 7,238 kn έως 18,149 kn με βάση και το σχετικό επιστημονικό άρθρο [27]. Εφόσον συμπληρωθούν όλα τα απαραίτητα στοιχεία που χρειάζονται για την εκπόνηση των δύο μεθόδων στο λογισμικό Maxsurf Resistance, στο παράθυρο με τα αποτελέσματα (Results) αναγράφονται οι τιμές της αντίστασης σε [kN] και της ισχύος σε [Watt]. Επιπρόσθετα, τα διάγραμμα αντίστασης σε [kN], ισχύος σε [Watt] και δυναμικής διαγωγής τ [deg] συναρτήσει της ταχύτητας σε [kn] παρουσιάζονται παρακάτω.

Διάγραμμα 19: Γραφική απεικόνιση αποτελεσμάτων αντίστασης – ταχύτητας ολισθακάτου ΙΙΙ

Διάγραμμα 20: Γραφική απεικόνιση αποτελεσμάτων ισχύος – ταχύτητας ολισθακάτου ΙΙΙ

Διάγραμμα 21: Γραφική απεικόνιση αποτελεσμάτων δυναμικής διαγωγής - ταχύτητας ολισθακάτου ΙΙΙ

Μετά την ολοκλήρωση της μελέτης για την ολισθάκατο ΙΙΙ προέκυψαν τα εξής: Κατ' αρχάς, ο ρυθμός μεταβολής τόσο της αντίστασης, όσο και της απαιτούμενης ισχύος αυξάνεται με την αύξηση των ταχυτήτων, όπως φαίνεται στα Διαγράμματα 19, 20. Οι αυξανόμενες τιμές της αντίστασης και της ισχύος σχετίζονται με τη μορφή της γάστρας και την ικανότητα της να φτάσει

στη κατάσταση ολίσθησης, στην οποία θα παρουσιάζει καλή υδροδυναμική συμπεριφορά. Επίσης, στο Διάγραμμα 21 παρουσιάζονται οι τιμές της διαγωγής του σκάφους, για τις οποίες παρατηρούμε πως μέχρι περίπου τους 14 kn, η διαγωγή αυξάνεται, ενώ σε μεγαλύτερες ταχύτητες πλεύσης ελαττώνεται.

Στη συνέχεια, όσον αφορά τη σύγκριση των αποτελεσμάτων αντίστασης και ισχύος των μεθόδων Savitsky Planing και Blount – Fox, οι τιμές διαφέρουν μεταξύ τους, αν και γενικά παρουσιάζουν παρόμοια μορφή και τάση ως προς τις μεταβολές που υφίστανται. Ειδικότερα, τα αποτελέσματα ισχύος και αντίστασης της μεθόδου Blount – Fox δίνουν μεγαλύτερες τιμές σε σχέση με τα αντίστοιχα της μεθόδου Savitsky Planing, ενώ οι τιμές συγκλίνουν στη μεγάλη ταχύτητα, με το ποσοστιαίο σφάλμα να κυμαίνεται από 2,3% - 33,8%. Η απόκλιση οφείλεται στη χρήση του διορθωτικού συντελεστή M στη μέθοδο Blount – Fox, αλλά και στην πιθανή ευαισθησία της μεθόδου στον υπολογισμό των ζητούμενων μεγεθών, καθώς ένα κριτήριο της μεθόδου είναι εκτός των επιθυμητών ορίων.

Ακόμα, εκτός από τα ανωτέρω διαγράμματα, όπως και για τις ολισθακάτους I, II, το Maxsurf Resistance παρέχει την δυνατότητα υπολογισμού του συντελεστή συνολικής αντίστασης (C_T), του συντελεστή υπόλοιπης αντίστασης (C_R), καθώς και του συντελεστή τριβής (C_F) συναρτήσει της ταχύτητας σε [kn], μεγέθη τα οποία απεικονίζονται στα παρακάτω διαγράμματα 22-24.

Διάγραμμα 22: Γραφική απεικόνιση αποτελεσμάτων συντελεστή συνολικής αντίστασης – ταχύτητας ολισθακάτου ΙΙΙ

Διάγραμμα 23: Γραφική απεικόνιση αποτελεσμάτων συντελεστή υπόλοιπης αντίστασης – ταχύτητας ολισθακάτου ΙΙΙ

Διάγραμμα 24: Γραφική απεικόνιση αποτελεσμάτων συντελεστή τριβής – ταχύτητας ολισθακάτου ΙΙΙ

Από τα Διαγράμματα 22 – 24 παρατηρούμε πως όλοι οι αδιάστατοι συντελεστές που υπολογίστηκαν ελαττώνονται με την αύξηση της ταχύτητας της ολισθακάτου ΙΙΙ. Ο συντελεστής αντίστασης τριβής (CF) μειώνεται με χαμηλότερο ρυθμό και σε μικρότερο βαθμό, συγκριτικά με

τους συντελεστές συνολικής αντίστασης (C_T) και υπόλοιπης αντίστασης (C_R). Ωστόσο, ο συντελεστής υπόλοιπης αντίστασης και κατ' επέκταση η υπόλοιπη αντίσταση κυριαρχούν σε όλο το εύρος ταχυτήτων έναντι του συντελεστή αντίστασης τριβής και της αντίστασης τριβής αντίστοιχα (D_F), παρόλη την αύξηση της τιμής της εν λόγω συνιστώσας. Επίσης, τα αποτελέσματα των μεθόδων *Savitsky Planing* και *Blount* – *Fox* διαφέρουν και ως προς τους αδιάστατους συντελεστές που ειπώθηκαν προηγουμένως. Τα αποτελέσματα των συντελεστών ολικής αντίστασης της δεύτερης μεθόδου είναι μεγαλύτερα συγκριτικά με της πρώτης, ενώ με την αύξηση της ταχύτητας οι τιμές συγκλίνουν. Ακόμα, ο συντελεστής αντίστασης τριβής έχει παρόμοιες τιμές και για τις δύο μεθόδους.

Η μελέτη της αντίστασης, η οποία περιλαμβάνει τα τελικά αποτελέσματα αντίστασης και ισχύος, το διάγραμμα αντίστασης - ταχύτητας και την τρισδιάστατη απεικόνιση της ολισθακάτου ΙΙΙ στο λογισμικό *Maxsurf Resistance* παρουσιάζονται παρακάτω (Εικόνα 60).

Εικόνα 60: Στιγμιότυπο οθόνης Massurf Resistance μετά τη μελέτη αντίστασης της ολισθακάτου ΙΙΙ

5.2.2 Σύγκριση αποτελεσμάτων ολισθακάτων Ι, ΙΙ και ΙΙΙ

Στην εν λόγω υποενότητα θα πραγματοποιηθεί σύγκριση των αποτελεσμάτων της ολισθακάτου ΙΙΙ και των ολισθακάτων Ι και ΙΙ που εξετάστηκαν προηγουμένως. Έτσι, τα αποτελέσματα εφαρμογής της μεθόδου Savitsky Planing που υπολογίστηκαν στο Maxsurf Resistance και για τις τρεις ολισθακάτους παρουσιάζονται στα Διαγράμματα 25 και 26 με τη μορφή του αδιάστατου λόγου αντίστασης προς εκτόπισμα (D/W) συναρτήσει του αριθμού Froude (FnB). Από το Διάγραμμα 25, παρατηρείται ότι η ολισθάκατος ΙΙΙ έχει τις μικρότερες τιμές αντίστασης (D/W) από τις τρεις ολισθακάτους και ειδικότερα σε σχέση με την ολισθάκατο Ι που έχουν παρόμοια L/B. Οι τιμές αντίστασης της ολισθακάτου Ι είναι οι μεγαλύτερες στις μικρές ταχύτητες και μειώνονται με την αύξηση της ταχύτητας, ενώ οι τιμές αντίστασης για την ολισθάκατο ΙΙ και ΙΙΙ αυξάνονται παρόλο αυτά συνεχίζουν να είναι μικρότερες για Fn_B μικρότερο του 3. Επίσης, στο Διάγραμμα 26 που παρουσιάζεται η μεταβολή της δυναμικής διαγωγής των ολισθακάτων, γίνεται φανερό πως οι τιμές διαγωγής των ολισθακάτων ΙΙ, ΙΙΙ έχουν παρόμοια τάση για αυξομειώσεις, ενώ η ολισθάκατος ΙΙΙ παρουσιάζει τις μικρότερες τιμές για τη δυναμική διαγωγή. Παρόλα αυτά, η ύπαρξη ιδιαιτεροτήτων στη μορφή των γαστρών (chines, spray rails, deadrise angle), καθώς και οι διαφορετικές κυρίες διαστάσεις (διαφορετικό L/B) παίζουν καθοριστικό ρόλο στην τελική συμπεριφορά τους όσον αφορά την αντίσταση.

Διάγραμμα 25: Σύγκριση αποτελεσμάτων αντίστασης (D/W) των σκαφών

Διάγραμμα 26: Σύγκριση αποτελεσμάτων διαγωγής των σκαφών

5.2.3 Διερεύνηση θέσης κέντρου πιέσεων ολισθακάτου ΙΙΙ

Όπως και στις προηγούμενες ολισθακάτους, έτσι και στην προκειμένη περίπτωση θα εξεταστεί η επίδραση του κέντρου πιέσεων (Lp) τόσο στην αντίσταση όσο και στη διαγωγή, μεγέθη σημαντικά για την εκτίμηση της αντίστασης μιας ολισθακάτου. Επομένως, η διαμήκης θέση του κέντρου βάρους και κατ' επέκταση το κέντρο πιέσεων τοποθετήθηκε πέραν του σημείου LCG = 75%λ, για το οποίο έγινε η προηγούμενη μελέτη, σε δύο επιπλέον σημεία: LCG = 50%λ και LCG = LCB Συνολικά έγινε διερεύνηση της αντίστασης σε τρεις θέσεις Lp = LCG επί της ολισθακάτου ΙΙΙ, οι οποίες είναι:

- 1) Lp = LCG = 50% λ, όπου $\lambda = L_{WL}/B_{PX}$
- 2) $Lp = LCG = 75\% \lambda$
- 3) Lp = LCG = LCB

Πίνακας 17: Τιμές κέντρου βάρους (κέντρου πιέσεων) ολισθακάτου ΙΙΙ

-	ΣΚΑΦ	ΟΣ ΙΙΙ
	Transom	Midship
$LCG = 1/2\lambda =$	1,379	-0,400
$LCG = 3/4\lambda =$	2,069	0,290
LCG = LCB =	1,486	-0,294

Στην συνέχεια, πραγματοποιήθηκαν εκ νέου οι δύο νέες δοκιμές στην ολισθάκατο ΙΙΙ στο πρόγραμμα Maxsurf Resistance, ενώ στα διαγράμματα που ακολουθούν παρουσιάζονται τα αποτελέσματα που προέκυψαν με χρήση της μεθόδου Savitsky Planing για τις διάφορες θέσεις του κέντρου πιέσεων. Ειδικότερα, στο Διάγραμμα 27 γίνεται σύγκριση της αντίστασης για τις προαναφερθείσες θέσεις εφαρμογής του κέντρου πιέσεων. Προκύπτει, λοιπόν, ότι στην περίπτωση Lp = 75%λ η αντίσταση, αν και αυξάνεται διαρκώς, παραμένει η μικρότερη σε τιμή σε όλο το εύρος ταχυτήτων, καθιστώντας την περίπτωση αυτή ως την πιο βέλτιστη επιλογή θέσης. Στις άλλες δύο θέσεις εφαρμογής του κέντρου πιέσεων, η αντίσταση αρχικά αυξάνεται μέχρι περίπου τους 10 kn, ενώ στις μεγαλύτερες ταχύτητες ελαττώνεται, με αποτέλεσμα να πλησιάζει τις τιμές της θέσης Lp = 75%λ στη μεγαλύτερη ταχύτητα. Η θέση Lp = LCB δίνει μικρότερες τιμές αντίστασης από όλες τις εξεταζόμενες περιπτώσεις.

Επιπρόσθετα, στο Διάγραμμα 28 παρουσιάζεται η επίδραση της διαμήκους θέσης του κέντρου βάρους της ολισθακάτου ΙΙΙ στη δυναμική διαγωγή σε διάφορες ταχύτητες. Πιο συγκεκριμένα, όπως και στις τιμές της αντίστασης, η περίπτωση Lp = 75%λ, δίνει τις μικρότερες γωνίες διαγωγής σε όλες τις ταχύτητες οι οποίες απέχουν σημαντικά από αυτές των δύο άλλων περιπτώσεων για τις οποίες πραγματοποιήθηκε η διερεύνηση. Επίσης, στις θέσεις Lp = 50%λ, Lp = LCG = LCB οι τιμές της διαγωγής μειώνονται από τους 10 kn και έπειτα.

Από τα διαγράμματα και τα αποτελέσματα που προκύπτουν είναι φανερό πως η θέση του κέντρου πιέσεων στο 75%λ, είναι η πιο ευνοϊκή από πλευράς αντίστασης, αφού για τη συγκεκριμένη περίπτωση η ολισθάκατος ΙΙΙ έχει τις μικρότερες τιμές αντίστασης από τις άλλες περιπτώσεις ειδικά στις μικρότερες ταχύτητες.

Διάγραμμα 27: Επίδραση κέντρου πιέσεων στην αντίσταση της ολισθακάτου ΙΙΙ

Διάγραμμα 28: Επίδραση κέντρου πιέσεων στη διαγωγή της ολισθακάτου ΙΙΙ

Συμπεράσματα

Τα ταχύπλοα σκάφη ανεξαρτήτως μορφής απαιτούν συγχρόνως μικρή αντίσταση και καλή συμπεριφορά σε κυματισμούς τόσο για την ασφαλή λειτουργία τους όσο και για την επίτευξη υψηλών επιδόσεων. Η αντίσταση των ολισθακάτων, αλλά και των ταχυπλόων σκαφών γενικότερα, αποτελεί ένα ιδιαιτέρως σημαντικό ζήτημα στα προβλήματα υδροδυναμικής, καθώς η εκτίμηση της εξαρτάται από τη μορφή και το σχήμα της γάστρας τους, και κατά καιρούς έχουν αναπτυχθεί διάφορες μεθοδολογίες για την εκτίμηση της. Σε αυτήν τη διπλωματική εργασία, σχεδιάστηκαν τρεις γάστρες ολισθακάτων μορφής V και προσδιορίστηκε η αντίσταση τους με βάση τη μέθοδο *Savitsky* και τη μέθοδο *Blount & Fox*.

Ειδικότερα, η σχεδίαση της γεωμετρίας της γάστρας των ολισθακάτων, καθώς και το σύνολο των παραμέτρων που λαμβάνονται υπόψιν επηρεάζουν αναμφισβήτητα όλες τις μελέτες στις οποίες υπόκεινται τα σκάφη, επομένως και τη συνολική αντίσταση τους. Μεγέθη και χαρακτηριστικά, λοιπόν, όπως το μήκος ισάλου, το πλάτος, η γωνία ανύψωσης του πυθμένα, η ύπαρξη ακμής στις γάστρες, η μορφή των νομέων και του καθρέπτη έδειξαν ότι έχουν καθοριστική σημασία στη συμπεριφορά του σκάφους κατά τον υπολογισμό της αντίστασής του. Επίσης, για την εκτίμηση της αντίστασης των σκαφών, είναι σημαντικό να εκτελούνται πειράματα σε πρότυπα καθώς και να χρησιμοποιούνται υπολογιστικές μέθοδοι, πριν την κατασκευή των σκαφών, προκειμένου να εξασφαλίζεται η βέλτιστη υδροδυναμική συμπεριφορά και απόδοση κατά τη λειτουργία τους.

Σε συνδυασμό με το παραπάνω, η μέθοδος που επιλέγεται για τη μελέτη αντίστασης παίζει καθοριστικό ρόλο, καθώς πρέπει να είναι συμβατή με τη γεωμετρία της γάστρας και με τις όποιες μεταβολές υπάρχουν στο σχήμα της, ενώ ταυτόχρονα να παρέχει εγκυρότητα στα αποτελέσματα της. Στην παρούσα διπλωματική εργασία, η επιλογή της ευρέως διαδεδομένης ημι-εμπειρικής μεθόδου Savitsky, καθώς και της μεθόδου Blount - Fox έγιναν με βάση τη συγκεκριμένη γεωμετρία της μορφής V της γάστρας των ολισθακάτων, συμβαδίζοντας με τους περιορισμούς της κάθε μεθοδολογίας. Επιπλέον, τα αποτελέσματα της αντίστασης, της απαιτούμενης ισχύος και της μορφής διαγωγής που υπολογίστηκαν και για τις τρεις ολισθακάτους, τόσο χρησιμοποιώντας τη μέθοδο Savitsky Planing όσο και τη μέθοδο Blount - Fox, συγκρίθηκαν και με πειραματικά δεδομένα αλλά και μεταξύ τους και παρουσίαζαν μικρές αποκλίσεις, γεγονός που αποδεικνύει την αξιοπιστία τους.

Πιο συγκεκριμένα, από τη μελέτη των ολισθακάτων Ι και ΙΙ με γάστρα βαθέως V καθώς και της ολισθακάτου ΙΙΙ μορφής V με διπλή ακμή, που παρουσιάστηκαν στη τέταρτη και στην πέμπτη ενότητα αντίστοιχα, προέκυψαν σημαντικά αποτελέσματα που αφορούν τη συμπεριφορά τους σχετικά με την αντίσταση τόσο σε χαμηλές όσο και υψηλότερες ταχύτητες. Οι ταχύτητες που μελετήθηκαν οι ολισθάκατοι Ι και ΙΙ ήταν μεγαλύτερες, συγκριτικά με αυτές της ολισθακάτου ΙΙΙ, καθώς επρόκειτο για μικρότερο σκάφος. Αξίζει να σημειωθεί πως οι μεταβολές που υφίστανται τα σκάφη στην αντίσταση, στην ισχύ, στη δυναμική διαγωγή, καθώς και στις συνιστώσες της

αντίστασης που μπορούσαν να υπολογιστούν μέσω της επιλογής των συγκεκριμένων μεθόδων εκτίμησης, οφείλονται στη μορφή και τις ιδιαιτερότητες της σχεδίασης της κάθε γάστρας και σε συνέχεια αυτού στη μεταβολή της δυναμικής διαγωγής και της βρεχόμενης επιφάνειας τους, παραμέτρων που επηρέασαν άμεσα τα αποτελέσματα. Γι' αυτό, σε μεταγενέστερο στάδιο μελέτης ίσως να ήταν σκόπιμη η διερεύνηση προκειμένου να μειωθεί σε κάποιο βαθμό η βρεχόμενη επιφάνεια των ολισθακάτων Ι, ΙΙ, προκειμένου να ελαττωθεί περαιτέρω η αντίσταση τριβής και άρα η συνολική τους αντίσταση. Επίσης, με δεδομένο ότι η πλώρη της ολισθακάτου ΙΙ (wavepiercing bow) έχει σχεδιαστεί με τέτοιο τρόπο έτσι ώστε να πλεονεκτεί στις κινήσεις σε κυματισμούς σε υψηλές ταχύτητες, συνίσταται και περαιτέρω διερεύνηση αυτής.

Επιπλέον, τα τελικά αποτελέσματα και οι μεταβολές τους με βάση τους δύο τρόπους υπολογισμού που ελήφθησαν υπόψιν, έχουν γενικά μικρές αποκλίσεις μεταξύ τους, όπως απεδείχθη. Όσον αφορά τις ολισθακάτους Ι, ΙΙ, οι πειραματικές τιμές που παρουσιάζονται στο επιστημονικό άρθρο έχουν ορισμένες αποκλίσεις συγκριτικά με αυτές που υπολογίσαμε με το λογισμικό *Maxsurf Resistance* στην εργασία. Βέβαια, οι ποσοστιαίες αποκλίσεις των τιμών μεταξύ αυτών της μεθόδου *Savitsky Planing* και των πειραμάτων ήταν μικρότερες από ότι χρησιμοποιώντας τη μέθοδο *Blount* – *Fox* και για τις δύο ολισθακάτους. Παρόλα αυτά, οι αποκλίσεις ήταν στην πλειοψηφία τους αποδεκτές, γεγονός που αποδεικνύει την εγκυρότητα των μεθόδων εκτίμησης της αντίστασης που επιλέχθηκαν.

Επιπρόσθετα, έγινε σύγκριση των αποτελεσμάτων της εφαρμογής των δύο μεθοδολογιών υπολογισμού της αντίστασης και συγκεκριμένα της μεθόδου Savitsky και της μεθόδου Blount & Fox. Η γρήση, λοιπόν, των δύο μεθόδων υπολογισμού εξυπηρετεί στην αξιοποίηση όλων των πλεονεκτημάτων του εκάστοτε τρόπου και συγχρόνως αντισταθμίζει τις αδυναμίες και τα σφάλματα που πιθανώς να υφίστανται σε αυτό το στάδιο μελέτης. Επομένως, η ύπαρξη διαφοροποιήσεων και αποκλίσεων στα αποτελέσματα που προέκυψαν ανάμεσα στους δύο τρόπους υπολογισμού και στις τρεις ολισθακάτους, οφείλονται κυρίως στο ότι αν και οι δύο τρόποι υπολογισμού ακολουθούν παρόμοια μεθοδολογία, στις εξισώσεις της μεθόδου Blount - Fox εφαρμόζονται διορθωτικοί συντελεστές σε σχέση με τα αποτελέσματα της μεθόδου Savitsky. Επίσης, η μέθοδος Blount - Fox παρέχει καλύτερα αποτελέσματα αντίστασης στις υψηλές ταχύτητες σε ολισθακάτους με μεταβαλλόμενες γωνίες ανύψωσης πυθμένα, όπως οι δύο πρώτες ολισθάκατοι της εργασίας (ολισθάκατοι Ι και ΙΙ), ενώ η μέθοδος Savitsky έδινε μικρότερες τιμές στις μικρές ταγύτητες. Στην περίπτωση της ολισθακάτου ΙΙΙ, τα αποτελέσματα αντίστασης και ισχύος των μεθόδων Savitsky Planing και Blount - Fox ενώ συγκλίνουν στις υψηλότερες ταχύτητες, ωστόσο, παρουσιάζουν τη μεγαλύτερη απόκλιση μεταξύ τους, ενδεχομένως διότι δεν τηρούνταν πλήρως όλες οι προϋποθέσεις της δεύτερης μεθόδου, με αποτέλεσμα την πιθανή υποεκτίμηση των τελικών αποτελεσμάτων της.

Αξίζει να αναφερθεί ότι η σύγκριση που πραγματοποιήθηκε μεταξύ των δύο πρώτων ολισθακάτων μορφής βαθέως V ως προς τις τιμές της συνολικής αντίστασης, ισχύος και διαγωγής που προσδιορίστηκαν, ήταν ιδιαίτερα κατατοπιστική για τη συμπεριφορά τους σχετικά με τη

αντίσταση και ειδικά για τις επιδόσεις τους σε υψηλότερες ταχύτητες πλεύσης. Η όσο το δυνατόν μικρή αντίσταση σε συνδυασμό με την κατάλληλη τιμή δυναμικής διαγωγής μιας ολισθακάτου όταν αυτή έχει μεταβεί σε κατάσταση ολίσθησης και κινείται σε υψηλές ταχύτητες είναι το υδροδυναμικά επιθυμητό κυρίως από πλευράς αντίστασης και όχι δυναμικής συμπεριφοράς ή ελιγμών, καθώς τότε υπεισέρχονται και επιπρόσθετοι παράγοντες. Πέραν της ανωτέρω σύγκρισης, έγινε και σύγκριση μεταξύ των ολισθακάτων Ι, ΙΙ με την ολισθάκατο ΙΙΙ. Από τα αποτελέσματα αντίστασης που προέκυψαν, συμπεραίνεται ότι σημαντικό ρόλο παίζουν μεταξύ άλλων οι αδιάστατοι λόγοι των κύριων διαστάσεων, η μορφή της γάστρας και οι ιδιαιτερότητες της σχεδίασης, όπως ο αριθμός των ακμών, οι αντιδιαβροχικές λωρίδες κλπ.

Συμπληρωματικά, η διαμήκης θέση του κέντρου βάρους και κατ' επέκταση η διαμήκης θέση του κέντρου πιέσεων, που λαμβάνεται υπόψιν για τους υπολογισμούς της μεθόδου Savitsky για τις ολισθακάτους, αποτελεί βασικό παράγοντα, κυρίως στην κατάσταση ολίσθησης, επηρεάζοντας σημαντικά την αντίσταση και βελτιώνοντας τη συνολική τους απόδοση. Στα πλαίσια της παρούσας διπλωματικής εργασίας, παρατηρήθηκε πως οι τιμές αντίστασης και διαγωγής των ολισθακάτων διαφέρουν σημαντικά όταν μεταβάλλεται η διαμήκης θέσης του κέντρου πιέσεων, έχοντας διαφορετικά αποτελέσματα για τα τρία ταχύπλοα σκάφη που μελετήθηκαν. Επομένως, θα πρέπει να γίνεται με ιδιαίτερη προσοχή η εύρεση της θέσης εφαρμογής του κέντρου πιέσεων (Lp) καθώς υπεισέρχεται και στη μέθοδο πρόβλεψης της αντίστασης.

Καταληκτικά, συμπεραίνουμε ότι οι ολισθάκατοι πρέπει να σχεδιάζονται λαμβάνοντας υπόψη διάφορα υδροδυναμικά χαρακτηριστικά και η εκτίμηση της αντίστασης στο αρχικό στάδιο του σχεδιασμού είναι ιδιαίτερα σημαντική, ώστε αν απαιτείται, οι μορφές της γάστρας να τροποποιούνται κατάλληλα για να βελτιωθεί η αντίσταση και η υδροδυναμική τους συμπεριφορά προκειμένου να επιτυγχάνεται η καλύτερη απόδοση στη λειτουργία τους.

Προτάσεις

Ύστερα από την ενδελεχή μελέτη της αντίστασης ολισθακάτων μορφής V σε ήρεμο νερό, στη συνέχεια παρατίθενται ορισμένες προτάσεις, οι οποίες δύναται να συμβάλλουν στην πληρέστερη ανάλυση του θέματος.

Αρχικά, θα μπορούσαν να πραγματοποιηθούν προσομοιώσεις με χρήση ενός κώδικα CFD (Computational Fluid Dynamics) τόσο για την εκτίμηση της αντίστασης όσο και για τη μελέτη της δυναμικής συμπεριφοράς των σκαφών σε κυματισμούς. Έτσι, θα πραγματοποιούνταν μια πληρέστερη μελέτη για τη βελτιστοποίηση της λειτουργίας των σκαφών.

Μια άλλη πρόταση αποτελεί η προσέγγιση του ήδη υπάρχοντος θέματος της εκτίμησης συνολικής αντίστασης και με κάποια άλλη μέθοδο που ενδείκνυται για τις γάστρες πρισματικής μορφής, όπως η μέθοδος *CAHI*. Η συγκεκριμένη μέθοδος, αν και δεν είναι τόσο γνωστή ευρέως, παρουσιάζει αρκετές ομοιότητες με τη μέθοδο *Savitsky* και εφαρμόζεται ικανοποιητικά σε ολισθακάτους. Η χρήση της μεθόδου και η μετέπειτα σύγκριση των αποτελεσμάτων της με αυτών της παρούσας διπλωματικής εργασίας, θα οδηγήσει στη παρατήρηση και την εύρεση διαφορών που πιθανώς να υφίστανται, καθώς και στην απόκτηση μιας πιο ολοκληρωμένης άποψης για τη συμπεριφορά των ολισθακάτων.

Επιπρόσθετα, μια εναλλακτική πρόταση είναι η κατασκευή προτύπων των ολισθακάτων που μελετήθηκαν σε κατάλληλη κλίμακα, μέσω τρισδιάστατης εκτύπωσης (3D printing), και η πραγματοποίηση πειραμάτων τόσο της αντίστασης σε ήρεμο νερό όσο και της δυναμικής συμπεριφοράς τους σε κυματισμούς σε δεξαμενή δοκιμών. Η συγκεκριμένη πρόταση θα μπορούσε να λάβει χώρα συνδυαστικά με τη μελέτη της συμπεριφοράς των σκαφών με κώδικα CFD που αναφέραμε αρχικά. Με αυτό τον τρόπο καθώς η συγκεκριμένη πρόταση για πειραματικές δοκιμές απαιτεί αρκετούς πόρους, μπορεί αρχικά να γίνουν τα αριθμητικά πειράματα και αφού μετά από επαναλαμβανόμενες δοκιμές βελτιωθεί η σχεδίαση των σκαφών κατόπιν να γίνουν οι τελικές δοκιμές με τα πρότυπα σκαφών στη δεξαμενή.

Εν κατακλείδι, η υιοθέτηση και η εφαρμογή όλων των ανωτέρω προτάσεων ή μέρος αυτών θα οδηγήσει σε περισσότερα και ακριβέστερα αποτελέσματα για την αντίσταση με στόχο τη βελτιστοποίηση της σχεδίασης των ολισθακάτων.

Βιβλιογραφικές Αναφορές

- [1] Wikipedia, «Motorboat,» 2023. [Ηλεκτρονικό]. Available: https://en.wikipedia.org/wiki/Motorboat. [Πρόσβαση 20/8/2023].
- [2] Wikipedia, «Motor Launch Priestman Brothers,» 1/4/2023. [Ηλεκτρονικό]. Available: https://commons.wikimedia.org/wiki/File:Motor_Launch_-_Priestman_Brothers_-_Cassier%27s_1895-09.png. [Πρόσβαση 23/8/2023].
- [3] Wikipedia, «Planing Hull,» 2023. [Ηλεκτρονικό]. Available: https://en.wikipedia.org/wiki/Planing_(boat). [Πρόσβαση 20/8/2023].
- [4] C. Marine, «100 Years of Speedboats,» 2021. [Ηλεκτρονικό]. Available: https://coxmarine.com/blog/speedboats-the-key-moments-in-history-by-cox-marine/.
 [Πρόσβαση 20/8/2023].
- [5] C. Doane, «The Commodore's Story: Raplh Munroe and the Wildrness that was South Florida,» 2022. [Ηλεκτρονικό]. Available: https://wavetrain.net/2022/07/14/the-commodores-story-ralph-munroe-and-the-wilderness-that-was-south-florida/. https://wavetrain.net/wp-content/uploads/2022/07/munroe.08.jpg [Πρόσβαση 24/8/2023].
- [6] Wikipedia, «Garfield Wood,» 2023. [Ηλεκτρονικό]. Available: https://en.wikipedia.org/wiki/Motorboat. [Πρόσβαση 20/8/2023].
- [7] D. Phillips-Birt, «Famous Speedboats of the World,» 1959. [Ηλεκτρονικό]. Available: http://www.lesliefield.com/other_history/famous_speedboats_of_the_world_5_miss_en glands.htm. [Πρόσβαση 20/8/2023].
- [8] T. Dixon, «Uffa Fox Biography,» 2018. [Ηλεκτρονικό]. Available: http://www.uffafox.com/uffabiog.htm. [Πρόσβαση 20/8/2023].
- [9] Wikipedia, «Miss England I,» 2023. [Ηλεκτρονικό]. Available: https://en.wikipedia.org/wiki/Miss_England_I. [Πρόσβαση 20/8/2023].

- [10] Wikipedia, «Miss England II,» 2023. [Ηλεκτρονικό]. Available: https://en.wikipedia.org/wiki/Miss_England_II. [Πρόσβαση 20/8/2023].
- [11] Classic Boat Museum, «Over 60 entries for Uffa Fox Celebratory Regatta,» 2022.
 [Ηλεκτρονικό]. Available: https://www.classicboatmuseum.com/single-post/uffa-fox-celebratory-regatta. [Πρόσβαση 23/8/2023].
- [12] N. Burnham, «Rare footage of Miss England and Miss America VII,» 4 12 2012.
 [Ηλεκτρονικό]. Available: https://www.mby.com/news/rare-footage-of-miss-englandand-miss-america-vii-23885. [Πρόσβαση 24/8/2023].
- [13] Wikipedia, «Coastal Forces of the Royal Navy,» 2023. [Ηλεκτρονικό]. Available: https://en.wikipedia.org/wiki/Coastal_Forces_of_the_Royal_Navy. [Πρόσβαση 8/22/2023].
- [14] Wikipedia, «Motor Torpedo Boat,» 2022. [Ηλεκτρονικό]. Available: https://en.wikipedia.org/wiki/Motor_torpedo_boat. [Πρόσβαση 21/8/2023].
- [15] Liang Yun, Alan Bliault, High Performance Marine Vessels, Springer New York, NY,
 2012. [Ηλεκτρονικό]. Available: https://doi.org/10.1007/978-1-4614-0869-7.
 [Πρόσβαση 14/1/2024].
- [16] D. Savitsky, «Hydrodymanic Design of Planing Hulls,» *Marine Technology*, τόμ. 1, αρ.
 1, 1964.
- [17] Γ. Κ. Πολίτης, Αντίσταση και Πρόωση Πλοίου, Αθήνα: ΕΜΠ, 2019.
- [18] Γ. Ι. Γρηγορόπουλος, Υδροδυναμική Σχεδίαση Μικρών Σκαφών, Σημειώσεις για τους σπουδαστές του 9^{ου} Εξαμήνου, Αθήνα: ΕΜΠ, 2021.
- [19] Σ. Πέππα, Σημειώσεις του μαθήματος Τεχνολογία Μικρών Σκαφών, Αθήνα: ΠΑ.Δ.Α, 2022.
- [20] P. Du Cane, «High-speed small craft,» David & Charles Ltd, Abbot, England, David & Charles Ltd, 1974, p. 465.

- [21] Clement, E.P. & Blount, Donald., «Resistance tests of a systematic series of planing hull forms,», SNAME Transactions. 71. 491-579. 1963. [Ηλεκτρονικό]. Available: https://www.researchgate.net/publication/290124260_Resistance_tests_of_a_systemati c_series_of_planing_hull_forms/citations [Πρόσβαση 1/15/2024].
- [22] D. Savitsky, «Procedures for Hydrodynamic Evaluation of Planing Hulls in Smooth and Rough Water,» *Marine Technology SNAME News*, 1976.
- [23] D. J. Kim, S. Y. Kim, Y. J. You, K. P. Rhee, S. H. Kim, and Y. G. Kim, «Design of High-Speed Planing Hulls for the Improvement of Resistance and Seakeeping Performance, International Journal of Naval Architecture and Ocean Engineering, Vol. 5, Issue 1, pp. 161-177, ISSN 2092-6782,» 2013. [Ηλεκτρονικό]. Available: https://doi.org/10.2478/IJNAOE-2013-0124. [Πρόσβαση 2/8/2023].
- [24] Rhinoceros3d.com, «Rhino 5 for Windows and Mac,» 2019. [Ηλεκτρονικό]. Available: https://www.rhino3d.com/. [Πρόσβαση 15/7/2023].
- [25] Maxsurf, «Naval Architecture Sotfware,» [Ηλεκτρονικό]. Available: https://maxsurf.net
 . [Πρόσβαση 1/8/2023].
- [26] BENTLEY, User Manual MAXSURF Resistance, 2018.
- [27] I. K. A. P. Utama, Sutiyo, I. K. Suastika, A. Sulisetyono, Hasanudin, Y. A. Hermawan,
 W. D. Aryawan, , «Resistance Analysis of Rescue Boat in Calm Water Condition,»
 2021. [Ηλεκτρονικό]. Available: https://iopscience.iop.org/article/10.1088/1757 899X/1052/1/012062. [Πρόσβαση 10/7/2023].

Παράρτημα

					SAV	ITSKY -	PLANIN	[G	
V [kn]	Fn _B	Fnwl	Fnv	D [kN]	EHP [W]	CT*10³	CR *10 ³	CF*10³	τ [deg]
10,000	1,161	0,722	1,410	6,544	33662,836	43,276	40,880	1,613	13,813
10,438	1,212	0,754	1,471	6,575	35302,357	39,913	37,602	1,567	13,840
10,875	1,262	0,785	1,533	6,571	36760,205	36,744	34,508	1,527	13,790
11,313	1,313	0,817	1,595	6,537	38043,485	33,783	31,612	1,493	13,674
11,750	1,364	0,848	1,656	6,479	39165,946	31,038	28,922	1,463	13,504
12,188	1,415	0,880	1,718	6,407	40167,516	28,525	26,443	1,437	13,291
12,625	1,465	0,912	1,780	6,321	41051,212	26,226	24,170	1,415	13,045
13,063	1,516	0,943	1,842	6,225	41832,223	24,128	22,094	1,396	12,775
13,500	1,567	0,975	1,903	6,124	42527,989	22,221	20,206	1,379	12,488
13.938	1.618	1.006	1.965	6.019	43154,397	20,491	18.493	1.364	12.191
14.375	1.669	1.038	2.027	5.913	43725.627	18.924	16.940	1.350	11.888
14.813	1.719	1.070	2.088	5.807	44254.173	17.505	15.533	1,338	11,584
15.000	1.741	1.083	2.115	5,763	44470,382	16.939	14,972	1.333	11,453
15,250	1,770	1,101	2,150	5,704	44750,946	16,221	14,261	1,327	11,280
15,688	1,821	1,133	2,212	5,604	45225,431	15,060	13,109	1,317	10,980
16,125	1,872	1,164	2,273	5,507	45685,846	14,008	12,066	1,308	10,685
16,563	1,922	1,196	2,335	5,415	46139,310	13,055	11,121	1,300	10,396
17,000	1,973	1,227	2,397	5,328	46591,988	12,192	10,264	1,292	10,115
17,438	2,024	1,259	2,458	5,245	47049,227	11,408	9,486	1,285	9,841
17,875	2,075	1,291	2,520	5,167	47515,680	10,695	8,780	1,279	9,576
18,313	2,126	1,322	2,582	5,095	47995,399	10,047	8,137	1,272	9,320
18,750	2,176	1,354	2,643	5,027	48491,935	9,457	7,552	1,266	9,072
19,188	2,227	1,385	2,705	4,965	49008,402	8,919	7,018	1,261	8,832
19,625	2,278	1,417	2,767	4,908	49547,552	8,427	6,530	1,256	8,601
20,000	2,321	1,444	2,820	4,862	50029,589	8,040	6,146	1,252	8,410
20,063	2,329	1,449	2,828	4,855	50111,822	7,978	6,085	1,251	8,379
20,500	2,380	1,480	2,890	4,808	50703,383	7,566	5,676	1,246	8,165
20,938	2,430	1,512	2,952	4,765	51324,180	7,189	5,302	1,242	7,958
21,375	2,481	1,543	3,013	4,727	51975,963	6,842	4,959	1,237	7,760
21,813	2,532	1,575	3,075	4,693	52660,316	6,523	4,643	1,233	7,568
22,250	2,583	1,607	3,137	4,663	53378,683	6,230	4,353	1,229	7,384
22,688	2,633	1,638	3,198	4,638	54132,384	5,959	4,085	1,225	7,207
23,125	2,684	1,670	3,260	4,617	54922,637	5,710	3,838	1,222	7,037
23,563	2,735	1,701	3,322	4,599	55750,569	5,479	3,610	1,218	6,873
24,000	2,786	1,733	3,383	4,586	56617,229	5,265	3,399	1,215	6,715
24,438	2,837	1,764	3,445	4,576	57523,601	5,067	3,203	1,211	6,562
24,875	2,887	1,796	3,507	4,569	58470,612	4,884	3,022	1,208	6,416
25,000	2,902	1,805	3,524	4,568	58748,775	4,834	2,972	1,207	6,375

Πίνακας 1.: Πίνακας αποτελεσμάτων Savitsky Planing για σκάφος Ι

25,313	2,938	1,828	3,568	4,566	59459,138	4,713	2,853	1,205	6,275
25,750	2,989	1,859	3,630	4,566	60490,013	4,555	2,697	1,202	6,139
26,188	3,040	1,891	3,692	4,570	61564,034	4,407	2,552	1,199	6,007
26,625	3,090	1,922	3,753	4,576	62681,965	4,269	2,416	1,196	5,881
27,063	3,141	1,954	3,815	4,586	63844,545	4,141	2,290	1,193	5,759
27,500	3,192	1,986	3,877	4,598	65052,485	4,021	2,172	1,190	5,641
27,938	3,243	2,017	3,939	4,613	66306,480	3,909	2,062	1,187	5,528
28,375	3,294	2,049	4,000	4,631	67607,203	3,804	1,959	1,185	5,418
28,813	3,344	2,080	4,062	4,652	68955,312	3,706	1,862	1,182	5,312
29,250	3,395	2,112	4,124	4,675	70351,454	3,614	1,772	1,179	5,210
29,688	3,446	2,144	4,185	4,701	71796,261	3,528	1,687	1,177	5,111
30,000	3,482	2,166	4,229	4,721	72858,407	3,469	1,630	1,175	5,042
30,125	3,497	2,175	4,247	4,729	73290,357	3,446	1,608	1,174	5,015
30,563	3,548	2,207	4,309	4,760	74834,355	3,370	1,533	1,172	4,923
31,000	3,598	2,238	4,370	4,792	76428,864	3,298	1,463	1,170	4,833
31,438	3,649	2,270	4,432	4,828	78074,482	3,230	1,397	1,167	4,746
31,875	3,700	2,301	4,494	4,865	79771,804	3,167	1,335	1,165	4,663
32,313	3,751	2,333	4,555	4,904	81521,420	3,106	1,276	1,163	4,581
32,750	3,801	2,365	4,617	4,946	83323,915	3,050	1,221	1,160	4,503
33,188	3,852	2,396	4,679	4,989	85179,870	2,996	1,169	1,158	4,427
33,625	3,903	2,428	4,740	5,035	87089,864	2,945	1,119	1,156	4,353
34,063	3,954	2,459	4,802	5,082	89054,473	2,897	1,073	1,154	4,281
34,500	4,005	2,491	4,864	5,131	91074,269	2,851	1,029	1,152	4,212
34,938	4,055	2,523	4,925	5,183	93149,824	2,808	0,987	1,150	4,144
35,000	4,063	2,527	4,934	5,190	93450,917	2,802	0,981	1,150	4,135
35,375	4,106	2,554	4,987	5,236	95281,709	2,767	0,947	1,148	4,079
35,813	4,157	2,586	5,049	5,291	97470,491	2,728	0,910	1,146	4,015
36,250	4,208	2,617	5,110	5,347	99716,738	2,691	0,874	1,144	3,953
36,688	4,258	2,649	5,172	5,405	102021,016	2,656	0,841	1,142	3,894
37,125	4,309	2,681	5,234	5,465	104383,890	2,623	0,809	1,140	3,835
37,563	4,360	2,712	5,295	5,527	106805,926	2,591	0,778	1,138	3,779
38,000	4,411	2,744	5,357	5,590	109287,687	2,560	0,749	1,136	3,724
38,438	4,462	2,775	5,419	5,655	111829,738	2,532	0,722	1,135	3,670
38,875	4,512	2,807	5,480	5,722	114432,643	2,504	0,696	1,133	3,618
39,313	4,563	2,838	5,542	5,790	117096,964	2,478	0,671	1,131	3,568
39,750	4,614	2,870	5,604	5,860	119823,265	2,453	0,647	1,129	3,518
40,000	4,643	2,888	5,639	5,900	121409,195	2,439	0,634	1,128	3,491
40,188	4,665	2,902	5,665	5,931	122612,109	2,429	0,624	1,128	3,470
40,625	4,716	2,933	5,727	6,003	125464,059	2,406	0,603	1,126	3,424
41,063	4,766	2,965	5,789	6,077	128379,678	2,384	0,582	1,124	3,378
41,500	4,817	2,996	5,851	6,153	131359,530	2,363	0,562	1,122	3,334
41,938	4,868	3,028	5,912	6,230	134404,177	2,343	0,544	1,121	3,291
42,375	4,919	3,060	5,974	6,308	137514,070	2,323	0,526	1,119	3,248
42,813	4,969	3,091	6,036	6,388	140689,996	2,305	0,508	1,118	3,207
43,250	5,020	3,123	6,097	6,469	143932,407	2,287	0,492	1,116	3,167
43,688	5,071	3,154	6,159	6,551	147241,868	2,270	0,476	1,114	3,128
44,125	5,122	3,186	6,221	6,635	150618,941	2,254	0,461	1,113	3,090
44,563	5,173	3,218	6,282	6,720	154064,191	2,238	0,447	1,111	3,053
45,000	5,223	3,249	6,344	6,807	157578,183	2,223	0,433	1,110	3,017

	BLOUNT - FOX											
D [kN]	EHP [W]	CT*10³	CR *10 ³	CF*10³	τ [deg]							
6,854	35261,959	45,332	42,936	1,613	13,813							
7,016	37673,009	42,593	40,283	1,567	13,840							
7,096	39696,479	39,679	37,443	1,527	13,790							
7,108	41363,298	36,731	34,560	1,493	13,674							
7,066	42713,835	33,849	31,734	1,463	13,504							
6,989	43817,034	31,117	29,035	1,437	13,291							
6,882	44699,941	28,557	26,501	1,415	13,045							
6,756	45400,336	26,186	24,152	1,396	12,775							
6,617	45955,572	24,012	21,997	1,379	12,488							
6,471	46398,331	22,032	20,033	1,364	12,191							
6,323	46756,614	20,236	18,251	1,350	11,888							
6,175	47054,029	18,613	16,641	1,338	11,584							
6,112	47167,861	17,967	16,000	1,333	11,453							
6,030	47310,242	17,149	15,188	1,327	11,280							
5,891	47541,476	15,831	13,880	1,317	10,980							
5,758	47761,019	14,644	12,702	1,308	10,685							
5,631	47979,690	13,576	11,641	1,300	10,396							
5,512	48206,252	12,614	10,686	1,292	10,115							
5,401	48447,784	11,747	9,825	1,285	9,841							
5,297	48709,983	10,964	9,048	1,279	9,576							
5,201	48997,431	10,257	8,347	1,272	9,320							
5,112	49313,806	9,617	7,712	1,266	9,072							
5,031	49662,065	9,038	7,137	1,261	8,832							
4,957	50044,587	8,512	6,615	1,256	8,601							
4,899	50401,200	8,099	6,206	1,252	8,410							
4,889	50463,293	8,034	6,141	1,251	8,379							
4,828	50919,743	7,598	5,709	1,246	8,165							
4,773	51415,211	7,201	5,315	1,242	7,958							
4,724	51950,750	6,839	4,956	1,237	7,760							
4,681	52527,241	6,507	4,627	1,233	7,568							
4,643	53145,433	6,203	4,326	1,229	7,384							
4,610	53805,974	5,923	4,049	1,225	7,207							
4,582	54509,436	5,667	3,795	1,222	7,037							
4,559	55256,333	5,430	3,561	1,218	6,873							
4,539	56047,142	5,212	3,346	1,215	6,715							
4,525	56882,307	5,011	3,147	1,211	6,562							
4,514	57762,256	4,824	2,963	1,208	6,416							
4,511	58021,953	4,774	2,913	1,207	6,375							

Πίνακας 2.: Πίνακας αποτελεσμάτων Blount - Fox σκάφους Ι

4,507	58687,401	4,652	2,792	1,205	6,275
4,504	59658,152	4,492	2,634	1,202	6,139
4,504	60674,912	4,343	2,488	1,199	6,007
4,507	61738,085	4,205	2,352	1,196	5,881
4,514	62848,081	4,076	2,225	1,193	5,759
4,524	64005,310	3,957	2,107	1,190	5,641
4,537	65210,190	3,845	1,997	1,187	5,528
4,553	66463,143	3,740	1,894	1,185	5,418
4,572	67764,600	3,642	1,798	1,182	5,312
4,593	69114,997	3,551	1,708	1,179	5,210
4,617	70514,777	3,465	1,624	1,177	5,111
4,636	71545,103	3,407	1,567	1,175	5,042
4,644	71964,389	3,384	1,545	1,174	5,015
4,672	73464,291	3,308	1,471	1,172	4,923
4,704	75014,946	3,237	1,402	1,170	4,833
4,737	76616,821	3,170	1,337	1,167	4,746
4,773	78270,392	3,107	1,275	1,165	4,663
4,811	79976,138	3,048	1,217	1,163	4,581
4,851	81734,545	2,991	1,163	1,160	4,503
4,893	83546,103	2,938	1,111	1,158	4,427
4,938	85411,306	2,888	1,063	1,156	4,353
4,984	87330,654	2,841	1,017	1,154	4,281
5,032	89304,649	2,796	0,973	1,152	4,212
5,082	91333,798	2,753	0,932	1,150	4,144
5,089	91628,209	2,747	0,927	1,150	4,135
5,133	93418,611	2,713	0,893	1,148	4,079
5,187	95559,602	2,675	0,857	1,146	4,015
5,242	97757,286	2,638	0,822	1,144	3,953
5,299	100012,184	2,604	0,788	1,142	3,894
5,358	102324,816	2,571	0,757	1,140	3,835
5,418	104695,708	2,540	0,727	1,138	3,779
5,480	107125,386	2,510	0,699	1,136	3,724
5,543	109614,377	2,481	0,672	1,135	3,670
5,608	112163,214	2,454	0,646	1,133	3,618
5,675	114772,429	2,429	0,622	1,131	3,568
5,743	117442,555	2,404	0,598	1,129	3,518
5,783	118995,896	2,390	0,585	1,128	3,491
5,813	120174,129	2,380	0,576	1,128	3,470
5,884	122967,688	2,358	0,555	1,126	3,424
5,956	125823,770	2,336	0,535	1,124	3,378
6,030	128742,915	2,316	0,515	1,122	3,334
6,106	131725,664	2,296	0,497	1,121	3,291
6,182	134772,448	2,277	0,479	1,119	3,248
6,260	137884,032	2,259	0,462	1,118	3,207
6,340	141060,849	2,242	0,446	1,116	3,167
6,421	144303,444	2,225	0,431	1,114	3,128
6,503	147612,364	2,209	0,416	1,113	3,090
6,586	150988,156	2,193	0,402	1,111	3,053
6,671	154431,366	2,179	0,388	1,110	3,017

				SAVITSKY - PLANING					
V [kn]	Fn _B	Fnwl	Fn _⊽	D [kN]	EHP [W]	CT*10 ³	CR *10 ³	CF*10³	τ [deg]
10,000	1,224	0,622	1,401	2,885	14840,566	15,823	12,323	2,325	4,909
10,438	1,278	0,649	1,462	2,986	16033,757	15,034	11,646	2,268	5,054
10,875	1,331	0,677	1,523	3,088	17275,457	14,321	11,041	2,211	5,201
11,313	1,385	0,704	1,584	3,189	18560,983	13,670	10,495	2,154	5,348
11,750	1,439	0,731	1,646	3,294	19908,868	13,085	9,996	2,099	5,495
12,188	1,492	0,758	1,707	3,399	21310,151	12,551	9,534	2,046	5,637
12,625	1,546	0,785	1,768	3,501	22738,236	12,047	9,100	1,994	5,773
13,063	1,599	0,813	1,830	3,599	24183,653	11,568	8,689	1,944	5,900
13,500	1,653	0,840	1,891	3,691	25636,766	11,110	8,294	1,896	6,015
13,938	1,706	0,867	1,952	3,778	27088,397	10,667	7,914	1,851	6,116
14,375	1,760	0,894	2,013	3,858	28530,389	10,240	7,545	1,809	6,202
14,813	1,813	0,922	2,075	3,931	29956,060	9,827	7,186	1,769	6,272
15,000	1,836	0,933	2,101	3,960	30560,773	9,654	7,036	1,753	6,296
15,250	1,867	0,949	2,136	3,997	31360,457	9,428	6,837	1,732	6,325
15,688	1,921	0,976	2,197	4,057	32740,446	9,042	6,499	1,698	6,361
16,125	1,974	1,003	2,258	4,110	34094,624	8,670	6,170	1,666	6,381
16,563	2,028	1,030	2,320	4,157	35423,126	8,313	5,853	1,637	6,386
17,000	2,081	1,058	2,381	4,200	36727,373	7,970	5,548	1,610	6,377
17,438	2,135	1,085	2,442	4,237	38009,788	7,643	5,255	1,585	6,355
17,875	2,188	1,112	2,504	4,271	39273,530	7,332	4,974	1,562	6,321
18,313	2,242	1,139	2,565	4,301	40522,262	7,035	4,707	1,541	6,278
18,750	2,296	1,167	2,626	4,329	41759,950	6,754	4,452	1,521	6,226
19,188	2,349	1,194	2,687	4,355	42990,709	6,489	4,211	1,503	6,167
19,625	2,403	1,221	2,749	4,380	44218,682	6,237	3,982	1,486	6,102
20,000	2,449	1,244	2,801	4,400	45272,110	6,034	3,796	1,472	6,041
20,063	2,456	1,248	2,810	4,403	45447,951	6,001	3,766	1,470	6,031
20,500	2,510	1,275	2,871	4,427	46682,484	5,777	3,562	1,456	5,956
20,938	2,563	1,303	2,932	4,449	47926,087	5,567	3,369	1,442	5,878
21,375	2,617	1,330	2,994	4,473	49182,385	5,369	3,188	1,429	5,798
21,813	2,670	1,357	3,055	4,496	50454,811	5,183	3,018	1,417	5,715
22,250	2,724	1,384	3,116	4,521	51746,600	5,009	2,857	1,406	5,631
22,688	2,778	1,412	3,178	4,546	53060,793	4,844	2,706	1,396	5,546
23,125	2,831	1,439	3,239	4,573	54400,247	4,690	2,565	1,386	5,461
23,563	2,885	1,466	3,300	4,601	55767,636	4,545	2,432	1,377	5,375
24,000	2,938	1,493	3,361	4,630	57165,474	4,409	2,306	1,368	5,290
24,438	2,992	1,520	3,423	4,661	58596,113	4,281	2,189	1,359	5,206
24,875	3,045	1,548	3,484	4,693	60061,767	4,160	2,078	1,352	5,122
25,000	3,061	1.555	3,501	4,703	60487,251	4,127	2,048	1,349	5,098

Πίνακας 3.: Πίνακας αποτελεσμάτων Savitsky Planing σκάφους ΙΙ

25,313	3,099	1,575	3,545	4,728	61564,515	4,047	1,974	1,344	5,038
25,750	3,153	1,602	3,606	4,764	63106,315	3,941	1,876	1,337	4,956
26,188	3,206	1,629	3,668	4,802	64688,978	3,840	1,784	1,330	4,875
26,625	3,260	1,657	3,729	4,841	66314,324	3,746	1,698	1,324	4,796
27,063	3,313	1,684	3,790	4,883	67983,973	3,657	1,617	1,317	4,717
27,500	3,367	1,711	3,852	4,927	69699,496	3,573	1,540	1,311	4,640
27,938	3,420	1,738	3,913	4,972	71462,389	3,494	1,468	1,306	4,565
28,375	3,474	1,765	3,974	5,020	73274,079	3,420	1,400	1,300	4,491
28,813	3,527	1,793	4,035	5,069	75135,931	3,349	1,335	1,295	4,418
29,250	3,581	1,820	4,097	5,120	77049,252	3,283	1,275	1,290	4,347
29,688	3,635	1,847	4,158	5,174	79015,301	3,220	1,218	1,285	4,278
30,000	3,673	1,867	4,202	5,213	80452,575	3,177	1,179	1,282	4,229
30,125	3,688	1,874	4,219	5,229	81035,286	3,160	1,164	1,280	4,210
30,563	3,742	1,902	4,281	5,286	83110,375	3,104	1,113	1,276	4,143
31,000	3,795	1,929	4,342	5,345	85241,698	3,051	1,064	1,271	4,078
31,438	3,849	1,956	4,403	5,406	87430,348	3,000	1,019	1,267	4,014
31,875	3,902	1,983	4,464	5,469	89677,389	2,952	0,976	1,263	3,952
32,313	3,956	2,010	4,526	5,534	91983,854	2,907	0,935	1,259	3,892
32,750	4,010	2,038	4,587	5,600	94350,751	2,864	0,896	1,255	3,832
33,188	4,063	2,065	4,648	5,669	96779,062	2,823	0,859	1,251	3,775
33,625	4,117	2,092	4,709	5,739	99269,749	2,784	0,825	1,248	3,718
34,063	4,170	2,119	4,771	5,811	101823,755	2,747	0,792	1,244	3,663
34,500	4,224	2,147	4,832	5,885	104442,002	2,712	0,760	1,241	3,609
34,938	4,277	2,174	4,893	5,960	107125,398	2,678	0,730	1,237	3,556
35,000	4,285	2,178	4,902	5,971	107514,111	2,674	0,726	1,237	3,549
35,375	4,331	2,201	4,955	6,038	109874,834	2,646	0,702	1,234	3,505
35,813	4,384	2,228	5,016	6,117	112691,187	2,616	0,675	1,231	3,455
36,250	4,438	2,255	5,077	6,198	115575,324	2,587	0,650	1,228	3,406
36,688	4,492	2,283	5,138	6,280	118528,097	2,559	0,625	1,225	3,358
37,125	4,545	2,310	5,200	6,364	121550,349	2,533	0,602	1,222	3,311
37,563	4,599	2,337	5,261	6,450	124642,913	2,507	0,580	1,219	3,265
38,000	4,652	2,364	5,322	6,538	127806,612	2,483	0,559	1,216	3,221
38,438	4,706	2,391	5,383	6,627	131042,263	2,460	0,539	1,213	3,177
38,875	4,759	2,419	5,445	6,718	134350,672	2,438	0,520	1,211	3,135
39,313	4,813	2,446	5,506	6,810	137732,641	2,417	0,502	1,208	3,093
39,750	4,867	2,473	5,567	6,904	141188,964	2,397	0,484	1,205	3,053
40,000	4,897	2,489	5,602	6,959	143197,692	2,386	0,475	1,204	3,030
40,188	4,920	2,500	5,629	7,000	144720,428	2,377	0,468	1,203	3,013
40,625	4,974	2,528	5,690	7,097	148327,817	2,359	0,452	1,200	2,974
41,063	5,027	2,555	5,751	7,196	152011,908	2,341	0,436	1,198	2,936
41,500	5,081	2,582	5,812	7,296	155773,473	2,324	0,422	1,196	2,899
41,938	5,134	2,609	5,874	7,398	159613,280	2,307	0,408	1,193	2,863
42,375	5,188	2,636	5,935	7,502	163532,095	2,291	0,395	1,191	2,828
42,813	5,241	2,664	5,996	7,607	167530,676	2,276	0,382	1,189	2,793
43,250	5,295	2,691	6,058	7,713	171609,781	2,262	0,370	1,187	2,759
43,688	5,349	2,718	6,119	7,821	175770,162	2,248	0,358	1,184	2,726
44,125	5,402	2,745	6,180	7,930	180012,571	2,234	0,347	1,182	2,694
44,563	5,456	2,773	6,241	8,041	184337,754	2,221	0,336	1,180	2,662
45,000	5,509	2,800	6,303	8,153	188746,456	2,208	0,326	1,178	2,631

	BLOUNT - FOX											
D [kN]	EHP [W]	CT*10 ³	CR*10 ³	CF*10³	τ [deg]							
3,862	19866,631	21,182	17,682	2,325	4,909							
4,013	21547,090	20,204	16,815	2,268	5,054							
4,140	23159,917	19,199	15,919	2,211	5,201							
4,246	24709,466	18,198	15,023	2,154	5,348							
4,340	26231,080	17,240	14,151	2,099	5,495							
4,422	27723,063	16,328	13,311	2,046	5,637							
4,490	29161,254	15,451	12,503	1,994	5,773							
4,545	30544,706	14,611	11,731	1,944	5,900							
4,589	31872,501	13,812	10,997	1,896	6,015							
4,623	33144,326	13,052	10,299	1,851	6,116							
4,646	34360,930	12,333	9,638	1,809	6,202							
4,662	35524,393	11,654	9,013	1,769	6,272							
4,666	36007,565	11,375	8,756	1,753	6,296							
4,670	36638,186	11,014	8,424	1,732	6,325							
4,672	37707,045	10,413	7,870	1,698	6,361							
4,670	38736,723	9,850	7,351	1,666	6,381							
4,663	39733,676	9,324	6,865	1,637	6,386							
4,654	40704,738	8,833	6,411	1,610	6,377							
4,644	41656,838	8,377	5,988	1,585	6,355							
4,632	42596,767	7,952	5,595	1,562	6,321							
4,621	43531,009	7,558	5,229	1,541	6,278							
4,610	44465,629	7,192	4,890	1,521	6,226							
4,600	45406,214	6,853	4,575	1,503	6,167							
4,592	46357,849	6,539	4,284	1,486	6,102							
4,586	47185,822	6,289	4,051	1,472	6,041							
4,585	47325,123	6,248	4,014	1,470	6,031							
4,581	48312,152	5,979	3,764	1,456	5,956							
4,579	49322,616	5,729	3,532	1,442	5,878							
4,580	50359,799	5,498	3,317	1,429	5,798							
4,583	51426,635	5,283	3,118	1,417	5,715							
4,589	52525,743	5,084	2,933	1,406	5,631							
4,597	53659,477	4,899	2,761	1,396	5,546							
4,609	54829,955	4,727	2,602	1,386	5,461							
4,623	56039,093	4,567	2,454	1,377	5,375							
4,640	57288,639	4,418	2,316	1,368	5,290							
4,660	58580,192	4,280	2,188	1,359	5,206							
4,682	59915,226	4,150	2,068	1,352	5,122							
4,689	60304,845	4,115	2,035	1,349	5,098							

Πίνακας 4.: Πίνακας αποτελεσμάτων Blount - Fox σκάφους ΙΙ

4,707	61295,111	4,030	1,956	1,344	5,038
4,735	62721,128	3,917	1,852	1,337	4,956
4,765	64194,442	3,811	1,755	1,330	4,875
4,798	65716,268	3,712	1,664	1,324	4,796
4,833	67287,654	3,620	1,579	1,317	4,717
4,871	68909,640	3,533	1,499	1,311	4,640
4,911	70583,223	3,451	1,425	1,306	4,565
4,954	72309,370	3,375	1,354	1,300	4,491
4,998	74089,018	3,303	1,289	1,295	4,418
5,046	75923,078	3,235	1,227	1,290	4,347
5,095	77812,441	3,171	1,169	1,285	4,278
5,132	79196,329	3,127	1,129	1,282	4,229
5,146	79757,980	3,110	1,114	1,280	4,210
5,200	81760,551	3,054	1,062	1,276	4,143
5,256	83820,996	3,000	1,014	1,271	4,078
5,314	85940,146	2,949	0,968	1,267	4,014
5,374	88118,820	2,901	0,924	1,263	3,952
5,436	90357,829	2,856	0,883	1,259	3,892
5,500	92657,974	2,812	0,845	1,255	3,832
5,565	95020,050	2,772	0,808	1,251	3,775
5,633	97444,844	2,733	0,773	1,248	3,718
5,703	99933,138	2,696	0,741	1,244	3,663
5,774	102485,708	2,661	0,709	1,241	3,609
5,848	105103,326	2,628	0,680	1,237	3,556
5,858	105482,626	2,623	0,676	1,237	3,549
5,923	107786,757	2,596	0,652	1,234	3,505
6,000	110536,763	2,566	0,625	1,231	3,455
6,078	113354,105	2,537	0,600	1,228	3,406
6,159	116239,536	2,510	0,576	1,225	3,358
6,241	119193,809	2,484	0,553	1,222	3,311
6,325	122217,671	2,459	0,531	1,219	3,265
6,410	125311,870	2,435	0,511	1,216	3,221
6,497	128477,147	2,412	0,491	1,213	3,177
6,586	131714,244	2,390	0,472	1,211	3,135
6,676	135023,899	2,369	0,454	1,208	3,093
6,768	138406,847	2,350	0,437	1,205	3,053
6,822	140373,150	2,339	0,428	1,204	3,030
6,862	141863,822	2,330	0,421	1,203	3,013
6,957	145395,557	2,312	0,405	1,200	2,974
7,054	149002,781	2,295	0,390	1,198	2,936
7,152	152686,222	2,278	0,376	1,196	2,899
7,251	156446,607	2,261	0,362	1,193	2,863
7,353	160284,659	2,246	0,349	1,191	2,828
7,455	164201,103	2,231	0,337	1,189	2,793
7,559	168196,660	2,217	0,325	1,187	2,759
7,665	172272,050	2,203	0,313	1,184	2,726
7,772	176427,991	2,190	0,302	1,182	2,694
7,881	180665,200	2,177	0,292	1,180	2,662
7,991	184984,395	2,164	0,282	1,178	2,631

			SAVITSKY - PLANING							
V [kn]	Fnwl	Fn _▼	D [kN]	D/W	EHP [W]	CT*10 ³	CR *10 ³	CF*10³	τ [deg]	
7,238	0,630	1,209	0,801	0,090	2982,031	20,552	14,853	3,448	3,642	
7,374	0,642	1,232	0,812	0,092	3080,625	20,076	14,439	3,421	3,676	
7,511	0,654	1,255	0,823	0,093	3181,160	19,622	14,048	3,393	3,709	
7,647	0,666	1,277	0,835	0,094	3283,635	19,189	13,678	3,365	3,744	
7,784	0.678	1.300	0.846	0.095	3388.048	18.777	13.327	3.337	3.779	
7,920	0,689	1,323	0,858	0,097	3494,396	18,383	12,994	3,310	3,815	
8,056	0,701	1,346	0,869	0,098	3602,669	18,006	12,677	3,282	3,851	
8.193	0.713	1.368	0.881	0.099	3712.857	17.645	12.376	3.254	3.888	
8.329	0.725	1.391	0.893	0.101	3824.945	17,300	12,090	3.227	3.925	
8.465	0.737	1.414	0.904	0.102	3938.914	16.968	11.817	3.199	3.963	
8.602	0.749	1.437	0.916	0.103	4054,743	16.649	11,557	3.172	4.002	
8,738	0,761	1,460	0,928	0,105	4172,404	16,343	11,308	3,144	4,040	
8,875	0,773	1,482	0,940	0,106	4291,866	16,047	11,070	3,117	4,080	
9,011	0,784	1,505	0,952	0,107	4413,093	15,763	10,842	3,090	4,119	
9,147	0,796	1,528	0,964	0,109	4536,044	15,488	10,624	3,062	4,159	
9,284	0,808	1,551	0,976	0,110	4660,674	15,222	10,414	3,035	4,200	
9,420	0,820	1,573	0,988	0,111	4786,932	14,965	10,213	3,008	4,240	
9,557	0,832	1,596	1,000	0,113	4914,761	14,716	10,018	2,981	4,281	
9,693	0,844	1,619	1,012	0,114	5044,099	14,475	9,831	2,954	4,321	
9,829	0,856	1,642	1,023	0,115	5174,880	14,241	9,651	2,928	4,362	
9,966	0,868	1,665	1,035	0,117	5307,032	14,013	9,476	2,901	4,402	
9,994	0,870	1,669	1,038	0,117	5334,569	13,967	9,440	2,896	4,411	
10,102	0,879	1,687	1,047	0,118	5440,478	13,791	9,306	2,875	4,443	
10,239	0,891	1,710	1,058	0,119	5575,134	13,575	9,142	2,849	4,483	
10,375	0,903	1,733	1,070	0,121	5710,916	13,365	8,982	2,823	4,522	
10,511	0,915	1,756	1,081	0,122	5847,732	13,159	8,827	2,798	4,562	
10,648	0,927	1,778	1,093	0,123	5985,487	12,958	8,676	2,772	4,600	
10,784	0,939	1,801	1,104	0,125	6124,085	12,761	8,528	2,747	4,638	
10,920	0,951	1,824	1,115	0,126	6263,425	12,569	8,383	2,722	4,676	
11,057	0,963	1,847	1,126	0,127	6403,406	12,380	8,242	2,698	4,712	
11,193	0,974	1,870	1,136	0,128	6543,924	12,195	8,103	2,674	4,748	
11,330	0,986	1,892	1,147	0,129	6684,877	12,013	7,967	2,650	4,782	
11,466	0,998	1,915	1,157	0,131	6826,163	11,834	7,833	2,627	4,816	
11,602	1,010	1,938	1,167	0,132	6967,680	11,659	7,701	2,604	4,848	
11,739	1,022	1,961	1,177	0,133	7109,328	11,486	7,572	2,581	4,879	
11,875	1,034	1,984	1,187	0,134	7251,013	11,316	7,444	2,559	4,908	
12,012	1,046	2,006	1,196	0,135	7392,641	11,148	7,318	2,537	4,936	
12,148	1,058	2,029	1,206	0,136	7534,125	10,983	7,193	2,516	4,963	
12,284	1,069	2,052	1,216	0,137	7682,456	10,831	7,070	2,495	4,988	
12,421	1,081	2,075	1,226	0,138	7832,061	10,682	6,948	2,474	5,012	
12,557	1,093	2,097	1,236	0,139	/981,597	10,535	6,828	2,454	5,034	
12,694	1,105	2,120	1,245	0,140	8131,005	10,390	6,709	2,435	5,054	
12,751	1,110	2,130	1,249	0,141	8193,942	10,329	6,659	2,427	5,062	
12,830	1,117	2,143	1,255	0,142	8280,229	10,247	6,591	2,416	5,072	

Πίνακας 5.: Πίνακας αποτελεσμάτων Savitsky Planing σκάφους ΙΙΙ

12,966	1,129	2,166	1,264	0,143	8429,223	10,105	6,475	2,397	5,089
13,103	1,141	2,189	1,273	0,144	8577,948	9,966	6,360	2,379	5,104
13,239	1,153	2,211	1,281	0,145	8726,371	9,828	6,246	2,361	5,117
13,375	1,164	2,234	1,290	0,145	8874,467	9,692	6,133	2,343	5,129
13,512	1,176	2,257	1,298	0,146	9022,217	9,558	6,021	2,327	5,139
13,648	1,188	2,280	1,306	0,147	9169,611	9,426	5,911	2,310	5,147
13,785	1,200	2,302	1,314	0,148	9316,644	9,296	5,802	2,294	5,154
13,921	1,212	2,325	1,321	0,149	9463,318	9,167	5,695	2,279	5,159
14,057	1,224	2,348	1,329	0,150	9609,641	9,041	5,588	2,263	5,162
14,194	1,236	2,371	1,336	0,151	9755,625	8,916	5,483	2,249	5,164
14,330	1,248	2,394	1,343	0,151	9901,290	8,793	5,379	2,234	5,164
14,467	1,259	2,416	1,350	0,152	10046,658	8,672	5,277	2,220	5,162
14,603	1,271	2,439	1,357	0,153	10191,757	8,553	5,176	2,207	5,160
14,739	1,283	2,462	1,363	0,154	10336,620	8,436	5,077	2,193	5,155
14,876	1,295	2,485	1,370	0,154	10481,281	8,321	4,978	2,181	5,150
15,012	1,307	2,507	1,376	0,155	10625,779	8,208	4,882	2,168	5,143
15,148	1,319	2,530	1,382	0,156	10770,156	8,097	4,787	2,156	5,135
15,285	1,331	2,553	1,388	0,157	10914,455	7,988	4,693	2,144	5,125
15,421	1,343	2,576	1,394	0,157	11058,723	7,881	4,601	2,133	5,115
15,507	1,350	2,590	1,398	0,158	11149,433	7,814	4,544	2,126	5,108
15,558	1,354	2,599	1,400	0,158	11203,007	7,775	4,510	2,121	5,103
15,694	1,366	2,621	1,405	0,159	11347,358	7,672	4,421	2,111	5,091
15,830	1,378	2,644	1,411	0,159	11491,825	7,570	4,333	2,100	5,077
15,967	1,390	2,667	1,417	0,160	11636,461	7,471	4,247	2,090	5,062
16,103	1,402	2,690	1,422	0,160	11781,318	7,373	4,163	2,080	5,047
16,240	1,414	2,712	1,428	0,161	11926,450	7,278	4,080	2,070	5,030
16,376	1,426	2,735	1,433	0,162	12071,910	7,184	3,998	2,061	5,013
16,512	1,438	2,758	1,438	0,162	12217,752	7,092	3,918	2,051	4,995
16,649	1,449	2,781	1,444	0,163	12364,030	7,002	3,840	2,042	4,976
16,785	1,461	2,804	1,449	0,163	12510,797	6,914	3,763	2,034	4,957
16,922	1,473	2,826	1,454	0,164	12658,108	6,827	3,687	2,025	4,937
17,058	1,485	2,849	1,459	0,165	12806,014	6,743	3,613	2,017	4,916
17,194	1,497	2,872	1,465	0,165	12954,571	6,660	3,541	2,009	4,895
17,331	1,509	2,895	1,470	0,166	13103,828	6,579	3,470	2,001	4,873
17,467	1,521	2,918	1,475	0,166	13253,840	6,500	3,400	1,993	4,851
17,603	1,532	2,940	1,480	0,167	13404,655	6,422	3,332	1,986	4,828
17,740	1,544	2,963	1,485	0,168	13556,326	6,346	3,265	1,978	4,805
17,876	1,556	2,986	1,491	0,168	13708,902	6,272	3,200	1,971	4,782
18,013	1,568	3,009	1,496	0,169	13862,432	6,199	3,136	1,964	4,758
18,149	1,580	3,031	1,501	0,169	14016,963	6,128	3,073	1,958	4,734

r					
-	1	BLOUNT	- FOX		
D [kN]	EHP [W]	CT*10 ³	CR *10 ³	CF*10³	τ [deg]
1,02	3807,48	26,24	20,54	3,45	3,64
1,055	4001,250	26,075	20,439	3,421	3,676
1,085	4191,395	25,853	20,279	3,393	3,709
1,113	4378,015	25,585	20,073	3,365	3,744
1,139	4561,214	25,279	19,828	3,337	3,779
1,164	4741,100	24,941	19,552	3,310	3,815
1,187	4917,782	24,579	19,250	3,282	3,851
1,208	5091,371	24,197	18,928	3,254	3,888
1,228	5261,976	23,799	18,590	3,227	3,925
1,247	5429,705	23,390	18,239	3,199	3,963
1,264	5594,667	22,972	17,880	3,172	4,002
1,281	5756,965	22,549	17,514	3,144	4,040
1,296	5916,699	22,122	17,145	3,117	4,080
1,310	6073,968	21,695	16,775	3,090	4,119
1,324	6228,863	21,268	16,404	3,062	4,159
1,336	6381,471	20,843	16,035	3,035	4,200
1,348	6531,876	20,420	15,668	3,008	4,240
1,359	6680,153	20,003	15,305	2,981	4,281
1,369	6826,374	19,590	14,946	2,954	4,321
1,378	6970,602	19,182	14,592	2,928	4,362
1,387	7112,896	18,781	14,244	2,901	4,402
1,389	7142,132	18,699	14,173	2,896	4,411
1,396	7253,308	18,387	13,902	2,875	4,443
1,403	7391,887	17,999	13,566	2,849	4,483
1,411	7528,673	17,619	13,236	2,823	4,522
1,417	7663,703	17,246	12,914	2,798	4,562
1,423	7797,009	16,880	12,598	2,772	4,600
1,429	7928,618	16,522	12,288	2,747	4,638
1,434	8058,555	16,171	11,986	2,722	4,676
1,439	8186,841	15,828	11,690	2,698	4,712
1,444	8313,497	15,493	11,401	2,674	4,748
1,448	8438,541	15,165	11,118	2,650	4,782
1,452	8561,991	14,844	10,843	2,627	4,816
1,455	8683,864	14,530	10,573	2,604	4,848
1,458	8804,180	14,224	10,310	2,581	4,879
1,461	8922,959	13,925	10,053	2,559	4,908
1,463	9040,225	13,633	9,802	2,537	4,936
1,465	9156,001	13,348	9,557	2,516	4,963
1,468	9278,861	13,081	9,321	2,495	4,988
1,471	9402,082	12,823	9,090	2,474	5,012
1,474	9524,153	12,571	8,864	2,454	5,034
1,477	9645,116	12,325	8,644	2,435	5,054
1,478	9695,792	12,222	8,553	2,427	5,062
1.479	9765.016	1 12.084	8.429	2.416	5.072

Πίνακας 6.: Πίνακας αποτελεσμάτων Blount - Fox σκάφους ΙΙΙ

1,482	9883,902	11,849	8,219	2,397	5,089
1,484	10001,830	11,620	8,014	2,379	5,104
1,486	10118,857	11,396	7,814	2,361	5,117
1,487	10235,046	11,178	7,619	2,343	5,129
1,489	10350,462	10,965	7,429	2,327	5,139
1,491	10465,175	10,758	7,243	2,310	5,147
1,492	10579,257	10,556	7,062	2,294	5,154
1,493	10692,780	10,358	6,886	2,279	5,159
1,494	10805,823	10,166	6,714	2,263	5,162
1,495	10918,461	9,979	6,546	2,249	5,164
1,496	11030,775	9,796	6,382	2,234	5,164
1,497	11142,844	9,619	6,223	2,220	5,162
1,498	11254,748	9,445	6,068	2,207	5,160
1,499	11366,569	9,277	5,917	2,193	5,155
1,500	11478,385	9,113	5,770	2,181	5,150
1,501	11590,277	8,953	5,627	2,168	5,143
1,502	11702,323	8,798	5,487	2,156	5,135
1,503	11814,602	8,647	5,352	2,144	5,125
1,503	11927,191	8,499	5,220	2,133	5,115
1,504	11998,171	8,409	5,139	2,126	5,108
1,504	12040,165	8,356	5,091	2,121	5,103
1,505	12153,598	8,217	4,966	2,111	5,091
1,506	12267,562	8,081	4,844	2,100	5,077
1,507	12382,129	7,950	4,726	2,090	5,062
1,509	12497,367	7,822	4,611	2,080	5,047
1,510	12613,344	7,697	4,499	2,070	5,030
1,511	12730,124	7,576	4,390	2,061	5,013
1,512	12847,771	7,458	4,284	2,051	4,995
1,514	12966,346	7,343	4,181	2,042	4,976
1,515	13085,909	7,232	4,081	2,034	4,957
1,517	13206,518	7,123	3,983	2,025	4,937
1,519	13328,227	7,018	3,888	2,017	4,916
1,521	13451,092	6,915	3,796	2,009	4,895
1,523	13575,163	6,816	3,706	2,001	4,873
1,525	13700,492	6,719	3,619	1,993	4,851
1,527	13827,126	6,624	3,534	1,986	4,828
1,529	13955,113	6,533	3,452	1,978	4,805
1,532	14084,498	6,444	3,372	1,971	4,782
1,534	14215,325	6,357	3,294	1,964	4,758
1,537	14347,636	6,272	3,218	1,958	4,734

Στους επόμενους πίνακες, παρουσιάζονται οι τιμές της αντίστασης, της ισχύος και της διαγωγής για κάθε ταχύτητα, καθώς και το κατ' απόλυτη τιμή ποσοστιαίο σφάλμα που υφίσταται μεταξύ των τιμών. Επομένως, η ζητούμενη απόκλιση προσδιορίζεται από την ακόλουθη σχέση:

$\Lambda \pi \dot{\alpha} \dot{\alpha} \dot{\alpha} = (0/2) - 0$	Αποτέλεσμα_1ος τρόπος - Αποτέλεσμα_2ος τρόπος	*	1000/
Anokniol (70) –	Αποτέλεσμα_1ος τρόπος		100/0

X 7 F1 1	SAVITSKY - MAXSURF	AVITSKY - MAXSURF BLOUNT - MAXSURF	
v [Kn]	D [kN]	D [kN]	ΑΠΟΚΛΙΣΗ %
10	6,544	6,544 6,854	
15	5,763	6,112	6,066
20	4,862	4,899	0,743
25	4,568	4,511	1,237
30	4,721	4,636	1,803
35	5,190	5,089	1,950
40	5,900	5,783	1,988
45	6,807	6,671	1,997
X 7 F1 1	SAVITSKY - MAXSURF	BLOUNT - MAXSURF	
у [КП]	RUNNING TRIM [deg]	RUNNING TRIM [deg]	ΑΠΟΚΛΙΖΗ %
10	13,813	13,813	0,000
15	11,453	11,453	0,000
20	8,410	8,410	0,000
25	6,375	6,375	0,000
30	5,042	5,042	0,000
35	4,135	4,135	0,000
40	3,491	3,491	0,000
45	3,017	3,017	0,000
V [kn]	SAVITSKY - MAXSURF	BLOUNT - MAXSURF	
v [KII]	POWER [Watt]	POWER [Watt]	AIIOKAI2II /0
10	33662,836	35261,959	4,750
15	44470,382	47167,861	6,066
20	50029,589	50401,200	0,743
25	58748,775	58021,953	1,237
30	72858,407	71545,103	1,803
35	93450,917	91628,209	1,950
40	121409,195	118995,896	1,988
45	157578.183	154431.366	1.997

Πίνακας 7.: Αποκλίσεις τιμών μεθόδων Savitsky Planing και Blount - Fox σκάφους Ι

X 7 C1 1	SAVITSKY - MAXSURF	EXPERIMENTS [23]		
v [kn]	D [kN]	D [kN]	ΑΠΟΚΛΙΣΗ %	
10	6,544	6,234	4,734	
15	5,763	5,756	0,121	
20	4,862	4,710	3,137	
25	4,568	4,787	4,788	
30	4,721	4,812	1,937	
35	5,190	5,422	4,470	
40	5,900	6,335	7,366	
45	6,807	8,044	18,174	
V [len]	SAVITSKY - MAXSURF	EXPERIMENTS [23]		
v [KN]	RUNNING TRIM [deg]	RUNNING TRIM [deg]	ΑΠΟΚΛΙΖΗ %	
10	13,813	11,099	19,647	
15	11,453	10,895	4,875	
20	8,410	7,997	4,912	
25	6,375	5,999	5,898	
30	5,042	4,953	1,765	
35	4,135	3,999	3,281	
40	3,491	3,571	2,302	
45	3,017	3,105	2,933	
V [kn]	SAVITSKY - MAXSURF	EXPERIMENTS [23]	ΑΠΟΚΑΙΣΗ %	
v [KII]	POWER [Watt]	POWER [Watt]		
10	33662,836	32055,627	4,774	
15	44470,382	44397,542	0,164	
20	50029,589	48439,557	3,178	
25	58748,775	61535,068	4,743	
30	72858,407	74237,622	1,893	
35	93450,917	97586,177	4,425	
40	121409,195	130295,869	7,320	
45	157578,183	186136,955	18,124	

Πίνακας 8.: Αποκλίσεις τιμών μεθόδου Savitsky Planing και πειραμάτων (Kim et al., (2013) [23]) σκάφους Ι

X 7 F1 1	BLOUNT - MAXSURF	EXPERIMENTS [23]		
v [kn]	D [kN]	D [kN]	ΑΠΟΚΛΙΣΗ %	
10	6,854	6,234	9,054	
15	6,112	5,756	5,833	
20	4,899	4,710	3,851	
25	4,511	4,787	6,100	
30	4,636	4,812	3,808	
35	5,089	5,422	6,548	
40	5,783	6,335	9,543	
45	6,671	8,044	20,582	
V [len]	BLOUNT - MAXSURF	EXPERIMENTS [23]		
у [кп]	RUNNING TRIM [deg]	RUNNING TRIM [deg]	AIIOKAIZH %	
10	13,813	11,099	19,647	
15	11,453	10,895	4,875	
20	8,410	7,997	4,912	
25	6,375	5,999	5,898	
30	5,042	4,953	1,765	
35	4,135	3,999	3,281	
40	3,491	3,571	2,302	
45	3,017	3,105	2,933	
V [kn]	BLOUNT - MAXSURF	EXPERIMENTS [23]	ΑΠΟΚΑΙΣΗ %	
v [KII]	POWER [Watt]	POWER [Watt]		
10	35261,959	32055,627	9,093	
15	47167,861	44397,542	5,873	
20	50401,200	48439,557	3,892	
25	58021,953	61535,068	6,055	
30	71545,103	74237,622	3,763	
35	91628,209	97586,177	6,502	
40	118995,896	130295,869	9,496	
45	154431,366	186136,955	20,531	

Πίνακας 9.: Αποκλίσεις τιμών μεθόδου Blount - Fox και πειραμάτων (Kim et al., (2013) [23]) σκάφους Ι

V [less]	SAVITSKY - MAXSURF	BLOUNT - MAXSURF	ΑΠΟΚΛΙΣΗ %	
v [KN]	D [kN]	D [kN]		
10	2,885	3,862	33,867	
15	3,960	4,666	17,823	
20	4,400	4,586	4,227	
25	4,703	4,689	0,302	
30	5,213	5,132	1,561	
35	5,971	5,858	1,889	
40	6,959	6,822	1,972	
45	8,153	7,991	1,993	
V [len]	SAVITSKY - MAXSURF	BLOUNT - MAXSURF		
V [KII]	RUNNING TRIM [deg]	RUNNING TRIM [deg]	ΑΠΟΚΛΙΖΠ 70	
10	4,909	4,909	0,000	
15	6,296	6,296	0,000	
20	6,041	6,041	0,000	
25	5,098	5,098	0,000	
30	4,229	4,229	0,000	
35	3,549	3,549	0,000	
40	3,030	3,030	0,000	
45	2,631	2,631	0,000	
V [kn]	SAVITSKY - MAXSURF	BLOUNT - MAXSURF		
v [KII]	POWER [Watt]	POWER [Watt]		
10	14840,566	19866,631	33,867	
15	30560,773	36007,565	17,823	
20	45272,110	47185,822	4,227	
25	60487,251	60304,845	0,302	
30	80452,575	79196,329	1,561	
35	107514,111	105482,626	1,890	
40	143197,692	140373,150	1,972	
45	188746,456	184984,395	1,993	

Πίνακας 10.: Αποκλίσεις τιμών μεθόδων Savitsky Planing και Blount - Fox σκάφους ΙΙ

X 7 F1 1	SAVITSKY - MAXSURF	EXPERIMENTS [23]	ΑΠΟΚΛΙΣΗ %	
V [KN]	D [kN]	D [kN]		
10	2,885	2,993	3,762	
15	3,960	4,158	4,989	
20	4,400	4,366	0,780	
25	4,703	4,745	0,887	
30	5,213	5,320	2,054	
35	5,971	5,882	1,493	
40	6,959	7,856	12,889	
45	8,153	9,424	15,591	
V [len]	SAVITSKY - MAXSURF	EXPERIMENTS [23]		
V [KII]	RUNNING TRIM [deg]	RUNNING TRIM [deg]	AIIOKAIZII 70	
10	4,909	4,885	0,493	
15	6,296	6,336	0,635	
20	6,041	6,065	0,389	
25	5,098	5,056	0,826	
30	4,229	4,081	3,488	
35	3,549	3,556	0,188	
40	3,030	3,572	17,875	
45	2,631	2,999	13,982	
V [len]	SAVITSKY - MAXSURF	EXPERIMENTS [23]		
V [KII]	POWER [Watt]	POWER [Watt]	AIIOKAIZH 70	
10	14840,566	15392,297	3,718	
15	30560,773	32071,766	4,944	
20	45272,110	44899,801	0,822	
25	60487,251	60997,858	0,844	
30	80452,575	82069,846	2,010	
35	107514,111	105864,051	1,535	
40	143197,692	161585,511	12,841	
45	188746,456	218079,946	15,541	

Πίνακας 11.: Αποκλίσεις τιμών μεθόδου Savitsky Planing και πειραμάτων (Kim et al., (2013) [23]) σκάφους ΙΙ

X 7 F1 1	BLOUNT - MAXSURF	EXPERIMENTS [23]	ΑΠΟΚΛΙΣΗ %	
V [Kn]	D [kN]	D [kN]		
10	3,862	2,993	22,489	
15	4,666	4,158	10,892	
20	4,586	4,366	4,804	
25	4,689	4,745	1,192	
30	5,132	5,320	3,673	
35	5,858	5,882	0,405	
40	6,822	7,856	15,161	
45	7,991	9,424	17,941	
V [len]	BLOUNT - MAXSURF	EXPERIMENTS [23]		
V [KII]	RUNNING TRIM [deg]	RUNNING TRIM [deg]	AIIOKAIZH 70	
10	4,909	4,885	0,493	
15	6,296	6,336	0,635	
20	6,041	6,065	0,389	
25	5,098	5,056	0,826	
30	4,229	4,081	3,488	
35	3,549	3,556	0,188	
40	3,030	3,572	17,875	
45	2,631	2,999	13,982	
V [len]	BLOUNT - MAXSURF	EXPERIMENTS [23]		
v [KII]	POWER [Watt]	POWER [Watt]	AIIOKAIZII 70	
10	19866,631	15392,297	22,522	
15	36007,565	32071,766	10,930	
20	47185,822	44899,801	4,845	
25	60304,845	60997,858	1,149	
30	79196,329	82069,846	3,628	
35	105482,626	105864,051	0,362	
40	140373,150	161585,511	15,111	
45	184984,395	218079,946	17,891	

Πίνακας 12.: Αποκλίσεις τιμών μεθόδου Blount - Fox και πειραμάτων (Kim et al., (2013) [23]) σκάφους ΙΙ

V [len]	SAVITSKY - MAXSURF	BLOUNT - MAXSURF		
v [KN]	D [kN]	D [kN]	ΑΠΟΚΛΙΣΗ %	
7,238	0,801	1,023	27,681	
9,994	1,038	1,389	33,884	
12,751	1,249	1,478	18,329	
15,507	1,398	1,504	7,612	
18,149	1,501	1,537	2,359	
V [len]	SAVITSKY - MAXSURF	BLOUNT - MAXSURF		
v [КП]	EHP [Watt]	EHP [Watt]	ΑΠΟΚΛΙΖΠ 70	
7,238	2982,031	3807,477	27,681	
9,994	5334,569	7142,132	33,884	
12,751	8193,942	9695,792	18,329	
15,507	11149,433	11998,171	7,612	
18,149	14016,963	14347,636	2,359	

Πίνακας 13.: Αποκλίσεις τιμών μεθόδων Savitsky Planing και Blount - Fox σκάφους ΙΙΙ

Προκειμένου να γίνει έλεγχος των αποτελεσμάτων της μεθόδου Savitsky Planing του προγράμματος Maxsurf Resistance, στους επόμενους πίνακες (14 - 19) παρουσιάζονται τα αποτελέσματα και οι ποσοστιαίες αποκλίσεις μεταξύ των αποτελεσμάτων του λογισμικού και των τιμών που υπολογίστηκαν αναλυτικά με τη βοήθεια του Excel και των διαγραμμάτων της σύντομης μεθόδου Savitsky.

	V [kn]							
	10	15	20	25	30	35	40	45
Fnwl	0,722	1,083	1,444	1,805	2,166	2,527	2,888	3,249
V [m/s]	5,144	7,716	10,288	12,860	15,432	18,004	20,576	23,148
FnB	1,161	1,741	2,321	2,902	3,482	4,063	4,643	5,223
CLβ	0,462	0,205	0,115	0,074	0,051	0,038	0,029	0,023
CLo	0,568	0,274	0,165	0,115	0,085	0,067	0,055	0,047
λ	1,900	1,580	1,489	1,380	1,324	1,320	1,319	1,310
CL0/τ^1,1	0,033	0,019	0,016	0,015	0,015	0,015	0,014	0,014
τ^1,1	17,490	14,127	10,049	7,494	5,736	4,595	3,913	3,311
τ [deg]	13,484	11,104	8,147	6,240	4,894	4,000	3,457	2,970
CLd	0,218	0,154	0,100	0,067	0,047	0,035	0,028	0,022
cos(τ)	0.972	0,981	0.990	0.994	0.996	0.998	0.998	0,999

Πίνακας 14.: Πίνακας αποτελεσμάτων σύντομης μεθόδου Savitsky σκάφους Ι

Vm [m/s]	4,831	7,323	9,934	12,543	15,157	17,765	20,356	22,952
Δλ	0,040	0,105	0,179	0,250	0,345	0,000	0,000	0,000
Λf	1,940	1,685	1,668	1,630	1,669	1,320	1,319	1,310
Re	15857943	20879701	28037930	34595990	42794634	39679955	45433829	50878317
CF	0,00273	0,00261	0,00250	0,00242	0,00234	0,00237	0,00232	0,00228
ΔCF	-0,000275	-0,000121	0,000028	0,000126	0,000219	0,000187	0,000244	0,000289
CA	0,00136	0,00129	0,00121	0,00116	0,00110	0,00112	0,00109	0,00106
SF [m^2]	8,447	7,337	7,263	7,097	7,265	5,747	5,743	5,704
DF [kp]	39,286	77,736	139,999	216,091	319,666	348,714	454,369	570,230
D [kp]	654,803	582,147	508,268	497,567	540,240	528,738	609,989	703,923
D [kN]	6,424	5,711	4,986	4,881	5,300	5,187	5,984	6,905

Πίνακας 15.: Αποκλίσεις μεθόδου σκάφους Ι

V [len]	SAVITSKY - MAXSURF	SAVITSKY - SHORT FORM	
v [KN]	D [kN]	D [kN]	ΑΠΟΚΛΙΖΗ %
10	6,544	6,424	1,832
15	5,763	5,711	0,903
20	4,862	4,986	2,542
25	4,568	4,881	6,856
30	4,721	5,300	12,263
35	5,190	5,187	0,062
40	5,900	5,984	1,423
45	6,807	6,905	1,449
X 7 []1	SAVITSKY - MAXSURF	SAVITSKY - SHORT FORM	
V [KN]	EHP [Watt]	EHP [Watt]	ΑΠΟΚΛΙΣΗ %
10	33662,836	33031,829	1,910
15	44470,382	44049,985	0,954
20	50029,589	51279,617	2,438
25	58748,775	62749,876	6,376
30	72858,407	81757,884	10,885
35	93450,917	93353,374	0,104
40	121409,195	123084,519	1,361
45	157578 183	159793 544	1 386

	V [kn]							
	10	15	20	25	30	35	40	45
Fnwl	0,622	0,933	1,244	1,555	1,867	2,178	2,489	2,800
V [m/s]	5,144	7,716	10,288	12,860	15,432	18,004	20,576	23,148
FnB	1,224	1,836	2,449	3,061	3,673	4,285	4,897	5,509
CLβ	0,595	0,264	0,149	0,095	0,066	0,049	0,037	0,029
CLo	0,711	0,339	0,204	0,139	0,103	0,080	0,065	0,054
λ	3,990	3,170	2,700	2,430	2,330	2,285	2,270	2,265
CLo/\pi^1,1	0,130	0,045	0,030	0,025	0,022	0,020	0,020	0,019
τ^1,1	5,469	7,531	6,810	5,643	4,662	3,975	3,278	2,843
τ [deg]	4,687	6,268	5,720	4,822	4,053	3,506	2,943	2,585
CLd	0,089	0,113	0,091	0,068	0,053	0,043	0,033	0,027
cos(τ)	0,997	0,994	0,995	0,996	0,997	0,998	0,999	0,999
Vm [m/s]	5,086	7,576	10,111	12,677	15,256	17,835	20,426	23,008
Δλ	0,353	0,220	0,251	0,310	0,390	0,000	0,000	0,000
Λf	4,343	3,390	2,951	2,740	2,720	2,285	2,270	2,265
Re	33599721	39066463	45379562	52834174	63118927	61988945	70526355	79268487
CF	0,00243	0,00237	0,00232	0,00227	0,00221	0,00222	0,00218	0,00214
ΔCF	-0,000015	0,000052	0,000115	0,000176	0,000244	0,000237	0,000284	0,000325
CA	0,00116	0,00112	0,00109	0,00105	0,00100	0,00100	0,00097	0,00094
SF [m^2]	15,169	11,841	10,306	9,570	9,501	7,981	7,929	7,911
DF [kp]	73,430	126,230	194,153	280,995	399,740	459,461	593,878	746,230
D [kp]	292,142	419,706	462,074	506,798	589,583	623,594	731,658	867,317
D [kN]	2,866	4,117	4,533	4,972	5,784	6,117	7,178	8,508

Πίνακας 16.: Πίνακας αποτελεσμάτων σύντομης μεθόδου Savitsky σκάφους ΙΙ

V [len]	SAVITSKY - MAXSURF	SAVITSKY - SHORT FORM	ΑΠΟΚΛΙΣΗ %	
V [KII]	D [kN]	D [kN]		
10	2,885	2,866	0,654	
15	3,960	4,117	3,963	
20	4,400	4,533	3,019	
25	4,703	4,972	5,711	
30	5,213	5,784	10,952	
35	5,971	6,117	2,450	
40	6,959	7,178	3,143	
45	8,153	8,508	4,356	
X 7 []1				
V [kn]	SAVITSKY - MAXSURF	SAVITSKY - SHORT FORM		
V [kn]	SAVITSKY - MAXSURF EHP [Watt]	SAVITSKY - SHORT FORM EHP [Watt]	ΑΠΟΚΛΙΣΗ %	
V [kn] 10	SAVITSKY - MAXSURF EHP [Watt] 14840,566	SAVITSKY - SHORT FORM EHP [Watt] 14737,207	• ΑΠΟΚΛΙΣΗ % 0,701	
V [kn] 10 15	SAVITSKY - MAXSURF EHP [Watt] 14840,566 30560,773	SAVITSKY - SHORT FORM EHP [Watt] 14737,207 31758,352	AΠΟΚΛΙΣΗ % 0,701 3,771	
V [kn] 10 15 20	SAVITSKY - MAXSURF EHP [Watt] 14840,566 30560,773 45272,110	SAVITSKY - SHORT FORM EHP [Watt] 14737,207 31758,352 46619,004	AΠΟΚΛΙΣΗ % 0,701 3,771 2,889	
V [kn] 10 15 20 25	SAVITSKY - MAXSURF EHP [Watt] 14840,566 30560,773 45272,110 60487,251	SAVITSKY - SHORT FORM EHP [Watt] 14737,207 31758,352 46619,004 63914,133	AΠΟΚΛΙΣΗ % 0,701 3,771 2,889 5,362	
V [kn] 10 15 20 25 30	SAVITSKY - MAXSURF EHP [Watt] 14840,566 30560,773 45272,110 60487,251 80452,575	SAVITSKY - SHORT FORM EHP [Watt] 14737,207 31758,352 46619,004 63914,133 89225,207	AΠΟΚΛΙΣΗ % 0,701 3,771 2,889 5,362 9,832	
V [kn] 10 15 20 25 30 35	SAVITSKY - MAXSURF EHP [Watt] 14840,566 30560,773 45272,110 60487,251 80452,575 107514,111	SAVITSKY - SHORT FORM EHP [Watt] 14737,207 31758,352 46619,004 63914,133 89225,207 110101,122	AΠΟΚΛΙΣΗ % 0,701 3,771 2,889 5,362 9,832 2,350	
V [kn] 10 15 20 25 30 35 40	SAVITSKY - MAXSURF EHP [Watt] 14840,566 30560,773 45272,110 60487,251 80452,575 107514,111 143197,692	SAVITSKY - SHORT FORM EHP [Watt] 14737,207 31758,352 46619,004 63914,133 89225,207 110101,122 147635,118	AΠΟΚΛΙΣΗ % 0,701 3,771 2,889 5,362 9,832 2,350 3,006	

Πίνακας 17.: Αποκλίσεις μεθόδου σκάφους ΙΙ

Πίνακας 18.: Πίνακας αποτελεσμάτων σύντομης μεθόδου Savitsky σκάφους ΙΙΙ

			V [kn]		
	7,238	9,994	12,751	15,507	18,149
Fnwl	0,630	0,870	1,110	1,350	1,580
V [m/s]	3,723	5,141	6,559	7,977	9,336
FnB	1,046	1,445	1,844	2,242	2,624
CLβ	0,749	0,393	0,241	0,163	0,119
CLo	0,837	0,454	0,276	0,200	0,150
λ	4,230	3,560	3,100	2,650	2,610
CLo/\pi^1,1	0,188	0,083	0,047	0,033	0,028
τ^1,1	4,451	5,471	5,925	6,017	5,392
τ [deg]	3,886	4,688	5,040	5,111	4,626
CLd	0,084	0,096	0,097	0,091	0,079
cos(τ)	0,998	0,997	0,996	0,996	0,997

Vm [m/s]	3,685	5,071	6,455	7,839	9,192
Δλ	0,000	0,163	0,160	0,158	0,164
Λf	4,230	3,723	3,260	2,808	2,774
Re	16997497	20583579	22943816	24000328	27803615
CF	0,00270	0,00261	0,00257	0,00256	0,00250
ΔCF	-0,000055	0,000051	0,000108	0,000131	0,000204
CA	0,00134	0,00129	0,00126	0,00125	0,00121
SF [m^2]	7,287	6,414	5,616	4,838	4,779
DF [kp]	20,617	34,087	48,275	61,226	82,705
D [kp]	82,054	108,311	128,163	142,302	156,102
D [kN]	0,805	1,063	1,257	1,396	1,531

Πίνακας 19.: Αποκλίσεις μεθόδου σκάφους ΙΙΙ

V [len]	SAVITSKY - MAXSURF	SAVITSKY - SHORT FORM	ΑΠΟΚΛΙΣΗ %	
v [KII]	D [kN]	D [kN]		
7,238	0,801	0,805	0,511	
9,994	1,038	1,063	2,405	
12,751	1,249	1,257	0,652	
15,507	1,398	1,396	0,117	
18,149	1,501	1,531	2,003	
V [len]	SAVITSKY - MAXSURF	SAVITSKY - SHORT FORM		
V [kn]	SAVITSKY - MAXSURF EHP [Watt]	SAVITSKY - SHORT FORM EHP [Watt]	ΑΠΟΚΛΙΣΗ %	
V [kn] 7,238	SAVITSKY - MAXSURF EHP [Watt] 2982,031	SAVITSKY - SHORT FORM EHP [Watt] 2995,807	ΑΠΟΚΛΙΣΗ % 0,460	
V [kn] 7,238 9,994	SAVITSKY - MAXSURF EHP [Watt] 2982,031 5334,569	SAVITSKY - SHORT FORM EHP [Watt] 2995,807 5460,603	AΠΟΚΛΙΣΗ % 0,460 2,308	
V [kn] 7,238 9,994 12,751	SAVITSKY - MAXSURF EHP [Watt] 2982,031 5334,569 8193,942	SAVITSKY - SHORT FORM EHP [Watt] 2995,807 5460,603 8243,654	AΠΟΚΛΙΣΗ % 0,460 2,308 0,603	
V [kn] 7,238 9,994 12,751 15,507	SAVITSKY - MAXSURF EHP [Watt] 2982,031 5334,569 8193,942 11149,433	SAVITSKY - SHORT FORM EHP [Watt] 2995,807 5460,603 8243,654 11131,944	AΠΟΚΛΙΣΗ % 0,460 2,308 0,603 0,157	

Στους Πίνακες 20-22 που ακολουθούν παρουσιάζονται τα αποτελέσματα της διερεύνησης της επίδρασης του κέντρου πιέσεων (Lp) επί της αντίστασης για τρεις διαφορετικές περιπτώσεις:

- 1) $Lp = 50\% \lambda$ (1/2)
- 2) $Lp = 75\% \lambda$ (3/4)
- 3) Lp = LCB

Opou $\lambda = L_{WL}/B_{PX}$

	1/2	3/4	LCB	1/2	3/4	LCB
V [kn]	D [kN]	D [kN]	D [kN]	τ [deg]	τ [deg]	τ [deg]
10,000	13,177	6,544	5,726	27,362	13,813	11,943
10,438	12,540	6,575	5,804	26,176	13,840	12,071
10,875	11,938	6,571	5,852	25,031	13,790	12,130
11,313	11,374	6,537	5,871	23,934	13,674	12,126
11.750	10.848	6.479	5.865	22.890	13.504	12.066
12,188	10,360	6,407	5,843	21,900	13,291	11,957
12,625	9,907	6,321	5,804	20,965	13,045	11,810
13.063	9.486	6.225	5,753	20.081	12,775	11.631
13 500	9 097	6 124	5 692	19 249	12,488	11 428
13,000	8 735	6.019	5 624	18/165	12,100	11,120
14 375	8,755	5 013	5 552	17,405	12,191	10.074
14,373	0,401	5,915	5,552	17,727	11,000	10,974
14,813	8,090	5,807	5,478	17,032	11,584	10,732
15,000	7,964	5,763	5,4461	16,747	11,453	10,627
15,250	7,802	5,704	5,403	16,377	11,280	10,485
15,688	7,535	5,604	5,329	15,761	10,980	10,237
16,125	7,287	5,507	5,256	15,179	10,685	9,989
16,563	7,056	5,415	5,186	14,631	10,396	9,743
17,000	6,842	5,328	5,118	14,114	10,115	9,500
17,438	6,643	5,245	5,054	13,625	9,841	9,262
17,875	6,458	5,167	4,993	13,163	9,576	9,029
18,313	6,286	5,095	4,937	12,726	9,320	8,802
18,750	6,127	5,027	4,884	12,313	9,072	8,581
19,188	5,978	4,965	4,836	11,921	8,832	8,367
19,625	5,840	4,908	4,791	11,549	8,601	8,159
20,000	5,729	4,862	4,7568	11,246	8,410	7,986
20,063	5,712	4,855	4,751	11,196	8,379	7,958
20,500	5,592	4,808	4,715	10,861	8,165	7,763
20,938	5,482	4,765	4,684	10,543	7,958	7,575
21,375	5,379	4,727	4,656	10,240	7,760	7,393
21,813	5,284	4,693	4,632	9,952	7,568	7,217
22,250	5,196	4,663	4,612	9,677	7,384	7,048
22,688	5,114	4,638	4,596	9,415	7,207	6,884
23,125	5,039	4,617	4,583	9,165	7,037	6,726
23,563	4,970	4,599	4,574	8,926	6,873	6,574
24,000	4,906	4,586	4,569	8,698	6,715	6,427
24,438	4,848	4,576	4,567	8,480	6,562	6,285
24,875	4,794	4,569	4,568	8,271	6,416	6,148
25,000	4,780	4,568	4,5688	8,213	6,375	6,110

Πίνακας 20.: Πίνακας αποτελεσμάτων διερεύνησης κέντρου πιέσεων σκάφους Ι

25,313	4,745	4,566	4,572	8,072	6,275	6,016
25,750	4,701	4,566	4,580	7,880	6,139	5,889
26,188	4,661	4,570	4,590	7,696	6,007	5,766
26,625	4,625	4,576	4,604	7,520	5,881	5,647
27,063	4,593	4,586	4,620	7,351	5,759	5,532
27,500	4,565	4,598	4,640	7,189	5,641	5,421
27,938	4,540	4,613	4,662	7,033	5,528	5,314
28,375	4,518	4,631	4,686	6,883	5,418	5,211
28,813	4,500	4,652	4,713	6,739	5,312	5,111
29,250	4,485	4,675	4,743	6,600	5,210	5,014
29,688	4,473	4,701	4,775	6,466	5,111	4,920
30,000	4,466	4,721	4,7993	6,373	5,042	4,855
30,125	4,463	4,729	4,809	6,337	5,015	4,830
30,563	4,457	4,760	4,846	6,212	4,923	4,742
31,000	4,453	4,792	4,885	6,093	4,833	4,657
31,438	4,451	4,828	4,926	5,977	4,746	4,575
31,875	4,452	4,865	4,970	5,865	4,663	4,495
32,313	4,456	4,904	5,015	5,757	4,581	4,418
32,750	4,461	4,946	5,063	5,653	4,503	4,343
33,188	4,469	4,989	5,113	5,552	4,427	4,270
33,625	4,479	5,035	5,164	5,455	4,353	4,200
34,063	4,491	5,082	5,218	5,360	4,281	4,132
34,500	4,505	5,131	5,273	5,269	4,212	4,065
34,938	4,521	5,183	5,330	5,181	4,144	4,001
35,000	4,523	5,190	5,3387	5,168	4,135	3,992
35,375	4,539	5,236	5,390	5,095	4,079	3,939
35,813	4,558	5,291	5,450	5,012	4,015	3,878
36,250	4,579	5,347	5,513	4,932	3,953	3,819
36,688	4,603	5,405	5,578	4,854	3,894	3,762
37,125	4,627	5,465	5,644	4,778	3,835	3,706
37,563	4,654	5,527	5,712	4,705	3,779	3,652
38,000	4,682	5,590	5,781	4,633	3,724	3,599
38,438	4,711	5,655	5,852	4,564	3,670	3,548
38,875	4,742	5,722	5,925	4,497	3,618	3,498
39,313	4,775	5,790	5,999	4,432	3,568	3,450
39,750	4,809	5,860	6,075	4,368	3,518	3,402
40,000	4,829	5,900	6,1189	4,333	3,491	3,376
40,188	4,844	5,931	6,152	4,306	3,470	3,356
40,625	4,881	6,003	6,231	4,246	3,424	3,312
41,063	4,919	6,077	6,312	4,188	3,378	3,268
41,500	4,958	6,153	6,393	4,131	3,334	3,225
41,938	4,999	6,230	6,477	4,076	3,291	3,184
42,375	5,041	6,308	6,561	4,022	3,248	3,144
42,813	5,084	6,388	6,648	3,969	3,207	3,104
43,250	5,129	6,469	6,735	3,918	3,167	3,066
43,688	5,174	6,551	6,824	3,868	3,128	3,028
44,125	5,221	6,635	6,915	3,820	3,090	2,992
44,563	5,269	6,720	7,006	3,773	3,053	2,956
45,000	5,318	6,807	7,099	3,726	3,017	2,921
	1/2	3/4	LCB	1/2	3/4	LCB
--------	--------	--------	--------	---------	---------	---------
V [kn]	D [kN]	D [kN]	D [kN]	τ [deg]	τ [deg]	τ [deg]
10,000	7,653	2,885	3,540	15,697	4,909	6,527
10,438	7,701	2,986	3,660	15,764	5,054	6,726
10,875	7,705	3,088	3,777	15,741	5,201	6,920
11,313	7,672	3,189	3,889	15,640	5,348	7,106
11,750	7,609	3,294	3,999	15,472	5,495	7,279
12,188	7,522	3,399	4,103	15,251	5,637	7,435
12,625	7,417	3,501	4,198	14,988	5,773	7,569
13,063	7,297	3,599	4,283	14,693	5,900	7,681
13,500	7,168	3,691	4,357	14,376	6,015	7,767
13,938	7,033	3,778	4,419	14,044	6,116	7,828
14,375	6,895	3,858	4,471	13,702	6,202	7,864
14,813	6,757	3,931	4,514	13,356	6,272	7,877
15,000	6,697	3,960	4,529	13,208	6,296	7,875
15,250	6,619	3,997	4,547	13,010	6,325	7,867
15,688	6,485	4,057	4,572	12,666	6,361	7,838
16,125	6,353	4,110	4,591	12,326	6,381	7,791
16,563	6,227	4,157	4,603	11,993	6,386	7,729
17,000	6,105	4,200	4,611	11,667	6,377	7,654
17,438	5,989	4,237	4,616	11,350	6,355	7,568
17,875	5,878	4,271	4,617	11,041	6,321	7,474
18,313	5,773	4,301	4,617	10,743	6,278	7,372
18,750	5,673	4,329	4,615	10,454	6,226	7,265
19,188	5,580	4,355	4,613	10,174	6,167	7,153
19,625	5,492	4,380	4,610	9,904	6,102	7,039
20,000	5,421	4,400	4,609	9,681	6,041	6,939
20,063	5,409	4,403	4,608	9,644	6,031	6,922
20,500	5,332	4,427	4,607	9,393	5,956	6,804
20,938	5,261	4,449	4,607	9,152	5,878	6,685
21,375	5,194	4,473	4,608	8,919	5,798	6,566
21,813	5,133	4,496	4,610	8,694	5,715	6,448
22,250	5,076	4,521	4,614	8,479	5,631	6,331
22,688	5,024	4,546	4,620	8,271	5,546	6,215
23,125	4,977	4,573	4,628	8,071	5,461	6,101
23,563	4,934	4,601	4,638	7,878	5,375	5,988
24,000	4,895	4,630	4,650	7,692	5,290	5,877
24,438	4,861	4,661	4,664	7,513	5,206	5,769
24,875	4,830	4,693	4,681	7,341	5,122	5,662
25,000	4,822	4,703	4,686	7,293	5,098	5,632

Πίνακας 21.: Πίνακας αποτελεσμάτων διερεύνησης κέντρου πιέσεων σκάφους ΙΙ

25,313	4,803	4,728	4,699	7,175	5,038	5,558
25,750	4,780	4,764	4,720	7,015	4,956	5,456
26,188	4,760	4,802	4,743	6,861	4,875	5,357
26,625	4,744	4,841	4,769	6,712	4,796	5,259
27,063	4,731	4,883	4,796	6,568	4,717	5,164
27,500	4,721	4,927	4,826	6,430	4,640	5,072
27,938	4,714	4,972	4,858	6,296	4,565	4,981
28,375	4,711	5,020	4,892	6,167	4,491	4,893
28,813	4,710	5,069	4,929	6,043	4,418	4,808
29,250	4,712	5,120	4,967	5,922	4,347	4,724
29,688	4,716	5,174	5,008	5,806	4,278	4,643
30,000	4,721	5,213	5,038	5,725	4,229	4,586
30,125	4,724	5,229	5,051	5,693	4,210	4,564
30,563	4,733	5,286	5,095	5,584	4,143	4,486
31,000	4,746	5,345	5,142	5,479	4,078	4,411
31,438	4,760	5,406	5,191	5,377	4,014	4,338
31,875	4,777	5,469	5,242	5,279	3,952	4,267
32,313	4,796	5,534	5,295	5,183	3,892	4,197
32,750	4,817	5,600	5,349	5,091	3,832	4,130
33,188	4,841	5,669	5,406	5,001	3,775	4,064
33,625	4,867	5,739	5,465	4,914	3,718	4,000
34,063	4,894	5,811	5,525	4,830	3,663	3,937
34,500	4,924	5,885	5,587	4,748	3,609	3,877
34,938	4,955	5,960	5,651	4,669	3,556	3,817
35,000	4,960	5,971	5,660	4,658	3,549	3,809
35,375	4,988	6,038	5,717	4,592	3,505	3,760
35,813	5,023	6,117	5,785	4,517	3,455	3,703
36,250	5,060	6,198	5,854	4,445	3,406	3,649
36,688	5,099	6,280	5,925	4,375	3,358	3,595
37,125	5,139	6,364	5,997	4,306	3,311	3,543
37,563	5,181	6,450	6,072	4,240	3,265	3,492
38,000	5,225	6,538	6,148	4,175	3,221	3,443
38,438	5,270	6,627	6,225	4,112	3,177	3,395
38,875	5,317	6,718	6,304	4,051	3,135	3,347
39,313	5,366	6,810	6,385	3,992	3,093	3,301
39,750	5,415	6,904	6,468	3,934	3,053	3,257
40,000	5,445	6,959	6,515	3,901	3,030	3,232
40,188	5,467	7,000	6,551	3,877	3,013	3,213
40,625	5,520	7,097	6,637	3,822	2,974	3,170
41,063	5,574	7,196	6,724	3,769	2,936	3,129
41,500	5,630	7,296	6,812	3,717	2,899	3,088
41,938	5,687	7,398	6,902	3,666	2,863	3,048
42,375	5,745	7,502	6,994	3,617	2,828	3,009
42,813	5,805	7,607	7,087	3,569	2,793	2,971
43,250	5,866	7,713	7,181	3,522	2,759	2,934
43,688	5,928	7,821	7,277	3,476	2,726	2,898
44,125	5,992	7,930	7,374	3,431	2,694	2,863
44,563	6,057	8,041	7,472	3,388	2,662	2,828
45,000	6,123	8,153	7,572	3,345	2,631	2,795

	1/2	3/4	LCB	1/2	3/4	LCB
V [kn]	D [kN]	D [kN]	D [kN]	τ [deg]	τ [deg]	τ [deg]
7,238	1,929	0,801	1,599	11,266	3,642	9,142
7,374	1,953	0,812	1,619	11,393	3,676	9,253
7,511	1,975	0,823	1,640	11,513	3,709	9,362
7,647	1,996	0,835	1,660	11,628	3,744	9,468
7,784	2,016	0,846	1,680	11,737	3,779	9,572
7,920	2,035	0,858	1,699	11,838	3,815	9,673
8,056	2,053	0,869	1,718	11,931	3,851	9,770
8,193	2,070	0,881	1,735	12,016	3,888	9,863
8,329	2,085	0,893	1,752	12,092	3,925	9,952
8,465	2,098	0,904	1,769	12,159	3,963	10,034
8,602	2,110	0,916	1,784	12,217	4,002	10,112
8,738	2,120	0,928	1,798	12,265	4,040	10,183
8,875	2,129	0,940	1,812	12,305	4,080	10,249
9,011	2,137	0,952	1,824	12,335	4,119	10,307
9,147	2,143	0,964	1,835	12,355	4,159	10,360
9,284	2,147	0,976	1,846	12,367	4,200	10,405
9,420	2,150	0,988	1,855	12,370	4,240	10,443
9,557	2,152	1,000	1,863	12,365	4,281	10,475
9,693	2,153	1,012	1,870	12,351	4,321	10,500
9,829	2,152	1,023	1,876	12,330	4,362	10,518
9,966	2,150	1,035	1,880	12,302	4,402	10,529
9,994	2,149	1,038	1,881	12,295	4,411	10,531
10,102	2,147	1,047	1,884	12,267	4,443	10,534
10,239	2,143	1,058	1,887	12,225	4,483	10,533
10,375	2,138	1,070	1,889	12,177	4,522	10,526
10,511	2,132	1,081	1,890	12,124	4,562	10,513
10,648	2,125	1,093	1,890	12,065	4,600	10,494
10,784	2,118	1,104	1,889	12,002	4,638	10,470
10,920	2,110	1,115	1,888	11,934	4,676	10,442
11,057	2,101	1,126	1,886	11,862	4,712	10,408
11,193	2,092	1,136	1,883	11,787	4,748	10,370
11,330	2,082	1,147	1,879	11,708	4,782	10,329
11,466	2,072	1,157	1,875	11,627	4,816	10,283
11,602	2,061	1,167	1,871	11,542	4,848	10,234
11,739	2,050	1,177	1,866	11,456	4,879	10,181
11,875	2,039	1,187	1,860	11,367	4,908	10,126
12,012	2,028	1,196	1,854	11,276	4,936	10,068

Πίνακας 22.: Πίνακας αποτελεσμάτων διερεύνηση κέντρου πιέσεων σκάφους ΙΙΙ

12,148	2,016	1,206	1,848	11,184	4,963	10,007
12,284	2,005	1,216	1,842	11,091	4,988	9,944
12,421	1,993	1,226	1,836	10,996	5,012	9,879
12,557	1,982	1,236	1,830	10,901	5,034	9,812
12,694	1,971	1,245	1,823	10,804	5,054	9,744
12,751	1,966	1,249	1,820	10,764	5,062	9,714
12,830	1,959	1,255	1,816	10,707	5,072	9,674
12,966	1,948	1,264	1,810	10,610	5,089	9,603
13,103	1,936	1,273	1,803	10,512	5,104	9,530
13,239	1,925	1,281	1,796	10,415	5,117	9,457
13,375	1,914	1,290	1,788	10,317	5,129	9,382
13,512	1,902	1,298	1,781	10,219	5,139	9,307
13,648	1,891	1,306	1,774	10,121	5,147	9,232
13,785	1,880	1,314	1,767	10,024	5,154	9,156
13,921	1,869	1,321	1,760	9,927	5,159	9,080
14,057	1,858	1,329	1,752	9,830	5,162	9,003
14,194	1,848	1,336	1,745	9,734	5,164	8,926
14,330	1,837	1,343	1,738	9,638	5,164	8,849
14,467	1,827	1,350	1,731	9,543	5,162	8,772
14,603	1,817	1,357	1,724	9,449	5,160	8,696
14,739	1,807	1,363	1,717	9,355	5,155	8,619
14,876	1,797	1,370	1,711	9,262	5,150	8,542
15,012	1,787	1,376	1,704	9,170	5,143	8,466
15,148	1,778	1,382	1,697	9,079	5,135	8,390
15,285	1,769	1,388	1,691	8,989	5,125	8,315
15,421	1,760	1,394	1,685	8,899	5,115	8,239
15,507	1,754	1,398	1,681	8,843	5,108	8,192
15,558	1,751	1,400	1,678	8,810	5,103	8,165
15,694	1,742	1,405	1,672	8,722	5,091	8,090
15,830	1,734	1,411	1,667	8,635	5,077	8,016
15,967	1,726	1,417	1,661	8,549	5,062	7,943
16,103	1,718	1,422	1,655	8,464	5,047	7,870
16,240	1,710	1,428	1,650	8,380	5,030	7,798
16,376	1,702	1,433	1,644	8,297	5,013	7,727
16,512	1,695	1,438	1,639	8,215	4,995	7,656
16,649	1,688	1,444	1,634	8,134	4,976	7,585
16,785	1,681	1,449	1,630	8,053	4,957	7,516
16,922	1,674	1,454	1,625	7,974	4,937	7,447
17,058	1,668	1,459	1,620	7,896	4,916	7,378
17,194	1,661	1,465	1,616	7,818	4,895	7,311
17,331	1,655	1,470	1,612	7,742	4,873	7,244
17,467	1,649	1,475	1,608	7,666	4,851	7,177
17,603	1,644	1,480	1,604	7,592	4,828	7,112
17,740	1,638	1,485	1,601	7,518	4,805	7,047
17,876	1,633	1,491	1,597	7,446	4,782	6,982
18,013	1,628	1,496	1,594	7,374	4,758	6,919
18,149	1,623	1,501	1,591	7,303	4,734	6,856