
PANEPISTHMIO DUTIKHS ATTIKHS
SQOLH MHQANIKWN
TMHMA HLEKTROLOGWN KAI
HLEKTRONIKWN MHQANIKWN
TMHMA MHQANIKWN
BIOMHQANIKHS SQEDIASHS KAI
PARAGWGHS
http://www.eee.uniwa.gr

http://www.idpe.uniwa.gr

Jhb∏n 250, Aj†na-Aigàlew 12241
Thl: +30 210 538-1614
DiatmhmatikÏ PrÏgramma Metaptuqiak∏n
Spoud∏n
Teqnht† Nohmos‘nh kai Bajià Màjhsh
https://aidl.uniwa.gr

UNIVERSITY OF WEST ATTICA
FACULTY OF ENGINEERING

DEPARTMENT OF ELECTRICAL &
ELECTRONICS ENGINEERING

DEPARTMENT OF INDUSTRIAL
DESIGN AND

PRODUCTION ENGINEERING
http://www.eee.uniwa.gr

http://www.idpe.uniwa.gr

250, Thivon Str., Athens, GR-12241, Greece

Tel: +30 210 538-1614

Master of Science in
Artificial Intelligence and Deep Learning

https://aidl.uniwa.gr

Master of Science Thesis

Solving Multiple Sequence Alignment using Deep Reinforcement Learning

Student : Eirini Kotzia
Registration Number: AIDL-0022

Supervisor : Dr. Panagiotis Kasnesis

ATHENS-EGALEO , February 2024

http://www.eee.uniwa.gr
http://www.idpe.uniwa.gr
https://aidl.uniwa.gr
http://www.eee.uniwa.gr
http://www.idpe.uniwa.gr
https://aidl.uniwa.gr

PANEPISTHMIO DUTIKHS ATTIKHS
SQOLH MHQANIKWN
TMHMA HLEKTROLOGWN KAI
HLEKTRONIKWN MHQANIKWN
TMHMA MHQANIKWN
BIOMHQANIKHS SQEDIASHS KAI
PARAGWGHS
http://www.eee.uniwa.gr

http://www.idpe.uniwa.gr

Jhb∏n 250, Aj†na-Aigàlew 12241
Thl: +30 210 538-1614
DiatmhmatikÏ PrÏgramma Metaptuqiak∏n
Spoud∏n
Teqnht† Nohmos‘nh kai Bajià Màjhsh
https://aidl.uniwa.gr

UNIVERSITY OF WEST ATTICA
FACULTY OF ENGINEERING

DEPARTMENT OF ELECTRICAL &
ELECTRONICS ENGINEERING

DEPARTMENT OF INDUSTRIAL
DESIGN AND

PRODUCTION ENGINEERING
http://www.eee.uniwa.gr

http://www.idpe.uniwa.gr

250, Thivon Str., Athens, GR-12241, Greece

Tel: +30 210 538-1614

Master of Science in
Artificial Intelligence and Deep Learning

https://aidl.uniwa.gr

Metaptuqiak† Diplwmatik† Ergas–a

Ep–lush Eujugràmmishc Pollapl∏n Akolouji∏n qrhsimopoi∏ntac
Bajià Enisqutik† Màjhsh

Foit†tria : Eir†nh Kotzià

ArijmÏc Mhtr∏ou: AIDL-0022

EpiblËpwn : Dr. Panagi∏thc KasnËshc

AJHNA AIGALEW, Febrouàrioc 2024

http://www.eee.uniwa.gr
http://www.idpe.uniwa.gr
https://aidl.uniwa.gr
http://www.eee.uniwa.gr
http://www.idpe.uniwa.gr
https://aidl.uniwa.gr

This MSc Thesis has been accepted, evaluated, and graded by the following
committee:

Supervisor Member Member

Kasnesis Panagiotis Patrikakis Charalampos Dominik Grimm

Lecturer Professor Professor

Electrical & Electronic
Engineering

Electrical & Electronic
Engineering

TUM Campus Straubing
for Biotechnology and

Sustainability

University of West Attica University of West Attica

Technical University of
Munich &

Weihenstephan-Triesdorf
University of Applied

Sciences

Solving MSA using Reinforcement Learning

Copyright © Me epif‘laxh pantÏc dikai∏matoc. All rights reserved.

PANEPISTHMIO DUTIKHS ATTIKHS kai Eir†nh Kotzià, Febrouàrioc,
2024

Apagore‘etai h antigraf†, apoj†keush kai dianom† thc paro‘sac ergas–ac, ex olokl†rou † tm†ma-
toc aut†c, gia emporikÏ skopÏ. EpitrËpetai h anat‘pwsh, apoj†keush kai dianom† gia skopÏ mh
kerdoskopikÏ, ekpaideutik†c † ereunhtik†c f‘shc, upÏ thn proÙpÏjesh na anafËretai h phg† pro-
Ëleushc kai na diathre–tai to parÏn m†numa. Erwt†mata pou aforo‘n th qr†sh thc ergas–ac gia
kerdoskopikÏ skopÏ prËpei na apeuj‘nontai proc touc suggrafe–c.
Oi apÏyeic kai ta sumperàsmata pou periËqontai se autÏ to Ëggrafo ekfràzoun ton/thn suggrafËa
tou kai den prËpei na ermhneuje– Ïti antiproswpe‘oun tic jËseic tou epiblËpontoc, thc epitrop†c
exËtashc † tic ep–shmec jËseic tou Tm†matoc kai tou Idr‘matoc.

DHLWSH SUGGRAFEA METAPTUQIAKHS DIPLWMATIKHS
ERGASIAS

H kàtwji upogegrammËnh Eir†nh Kotzià. tou Nikolàou, me arijmÏ mhtr∏ou 0022 metaptuqiak†
foitht†tria tou DPMS «Teqnht† Nohmos‘nh kai Bajià Màjhsh» tou Tm†matoc HlektrolÏgwn kai
Hlektronik∏n Mhqanik∏n kai tou Tm†matoc Mhqanik∏n Biomhqanik†c Sqed–ashc kai Paragwg†c,
thc Sqol†c Mhqanik∏n tou Panepisthm–ou Dutik†c Attik†c,
dhl∏nw upe‘juna Ïti:
«E–mai suggrafËac aut†c thc metaptuqiak†c diplwmatik†c ergas–ac kai kàje bo†jeia thn opo–a e–qa
gia thn proetoimas–a thc e–nai pl†rwc anagnwrismËnh kai anafËretai sthn ergas–a. Ep–shc, oi Ïpoiec
phgËc apÏ tic opo–ec Ëkana qr†sh dedomËnwn, ide∏n † lËxewn, e–te akrib∏c e–te parafrasmËnec,
anafËrontai sto s‘nolÏ touc, me pl†rh anaforà stouc suggrafe–c, ton ekdotikÏ o–ko † to periodikÏ,
sumperilambanomËnwn kai twn phg∏n pou endeqomËnwc qrhsimopoi†jhkan apÏ to diad–ktuo. Ep–shc,
bebai∏nw Ïti aut† h ergas–a Ëqei suggrafe– apÏ mËna apokleistikà kai apotele– proÏn pneumatik†c
idiokths–ac tÏso dik†c mou, Ïso kai tou Idr‘matoc. H ergas–a den Ëqei katateje– sto pla–sio twn
apait†sewn gia th l†yh àllou t–tlou spoud∏n † epaggelmatik†c pistopo–hshc plhn tou parÏntoc.
Paràbash thc anwtËrw akadhmak†c mou euj‘nhc apotele– ousi∏dh lÏgo gia thn anàklhsh tou
dipl∏matÏc mou.
Epijum∏ thn apagÏreush prÏsbashc sto pl†rec ke–meno thc ergas–ac mou mËqri 29 Febrouar–ou
2024 kai Ëpeita apÏ a–ths† mou sth Biblioj†kh kai Ëgkrish tou epiblËpontoc kajhght†.»

H Dhlo‘sa
Eir†nh Kotzià

(Upograf† foitht†/†triac)

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

1

Solving MSA using Reinforcement Learning

Copyright © All rights reserved.

University of West Attica and Eirini Kotzia, February, 2024

You may not copy, reproduce or distribute this work (or any part of it) for commercial pur-
poses. Copying/reprinting, storage and distribution for any non-profit educational or research
purposes are allowed under the conditions of referring to the original source and of reproducing
the present copyright note. Any inquiries relevant to the use of this thesis for profit/commercial
purposes must be addressed to the author.
The opinions and the conclusions included in this document express solely the author and do
not express the opinion of the MSc thesis supervisor or the examination committee or the formal
position of the Department(s) or the University of West Attica.

Declaration of the author of this MSc thesis

I, Eirini Kotzia, Nikolaos, with the following student registration number: 0022, postgraduate
student of the MSc program in “Artificial Intelligence and Deep Learning”, which is organized by
the Department of Electrical and Electronic Engineering and the Department of Industrial Design
and Production Engineering of the Faculty of Engineering of the University of West Attica, hereby
declare that: ,
I am the author of this MSc thesis and any help I may have received is clearly mentioned in the
thesis. Additionally, all the sources I have used (e.g., to extract data, ideas, words or phrases)
are cited with full reference to the corresponding authors, the publishing house or the journal;
this also applies to the Internet sources that I have used. I also confirm that I have personally
written this thesis and the intellectual property rights belong to myself and to the University of
West Attica. This work has not been submitted for any other degree or professional qualification
except as specified in it.
Any violations of my academic responsibilities, as stated above, constitutes substantial reason for
the cancellation of the conferred MSc degree. I wish to deny access to the full text of my MSc
thesis until 29th of February 2024, following my application to the Library of UNIWA and the
approval from my supervisor.

The author
Eirini Kotzia

(Signature)

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

2

Sthn agaphmËnh mou giagià Eudox–a

Solving MSA using Reinforcement Learning

Acknowledgements

At this point, I would like to thank the Department of Biotechnologie und Nach-
haltigkeit (TUMCS) at Campus Straubing for hosting me as a Practical Student. I
would also like to thank Jonathan Pirnay, whose expertise and guidance have been
instrumental, and Prof. Dr. Dominik Grimm, for his academic prowess and men-
torship.
I would also like to acknowledge the support and knowledge from Panagiotis Kasnesis
from the University of West Attica and Prof. Charalampos Z. Patrikakis, who con-
tributed significantly through this cooperation between the two universities. Your
collective guidance and expertise have been the cornerstone of my academic success.
Furthermore, I appreciate the University of Alberta for the ’Fundamentals of Re-
inforcement Learning’ course, which significantly enhanced my understanding of
di�erent Reinforcement Learning concepts. My sincere appreciation to NCBI for
providing Entrez a molecular biology database system, a fundamental resource in
advancing my research and scientific pursuits. Finally, I want to thank Jonathan
Pirnay for acquiring policy-based-self-competition, which served as a foundational
resource for the development of this project.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

4

https://www.ncbi.nlm.nih.gov/Web/Search/entrezfs.html
https://github.com/grimmlab/policy-based-self-competition

Solving MSA using Reinforcement Learning

Abstract

Multiple Sequence Alignment (MSA) is a fundamental task in Bioinformatics, essen-
tial for understanding evolutionary relationships, genetic adaptations, drug design,
and other applications. In general, MSA is a Nondeterministic Polynomially com-
plete problem with many heuristic solvers approaching over the years.
Machine Learning (ML) can handle combinatorial optimization problems by learn-
ing models that generalize in various instances. Recent years have witnessed a surge
of interest in applying Deep Reinforcement Learning (DRL) techniques for training
agents to approach MSAs.
In this work, we introduce IntellAlign, a novel methodology for aligning sequences
using DRL for training and Natural Language Processing (NLP) approach. We build
strong policies with only a few simulations, no previous knowledge, and self-play us-
ing the Gumbel AlphaZero algorithm. Our goal is maximizing a multi-objective
reward based on well-known MSA quality metrics. We also propose attention-based
networks for encoding MSAs. We contribute by achieving full flexibility of the se-
quence shape and by allowing the agent with a stop move to finish the alignment.
We utilize the Glimpse-Pointer Network for pointing a series of positions sequen-
tially to add a gap in the MSA. Finally, we utilize positional encodings for passing
the sequence structural information to the network.
Our algorithm is compared with three well-established aligners (Clustal Omega,
MAFFT, and MUSCLE) on DNA MSAs. The results are promising, showing that
IntellAlign outperforms MAFFT and MUSCLE tools. Moreover, it tends to score
close to the Clustal Omega tool.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

5

Solving MSA using Reinforcement Learning

Keywords

Reinforcement Learning, Multiple Sequence Alignment, Bioinformatics, Deep Learn-
ing, Gumbel AlphaZero, Transformers, NLP

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

6

Solving MSA using Reinforcement Learning

Per–lhyh

H Eujugràmmish Pollapl∏n Akolouji∏n (MSA) e–nai mia jemeli∏dhc ergas–a ston
tomea thc Bioplhroforik†c, apara–thth gia thn katanÏhsh twn exeliktik∏n sqËse-
wn, twn genetik∏n prosarmog∏n, tou sqediasmo‘ farmàkwn kai àllwn efarmog∏n.
Paradosiakà, qrhsimopoio‘ntai euretikËc mËjodoi lÏgw tou Ïti to (MSA) jewre–tai
Ëna pl†rec mh nteterministikÏ prÏblhma poluwnumiko‘ qrÏnou (NP-complete), allà
ja prËpei na eisaqjo‘n pio prohgmËnec l‘seic gia autÏ to prÏblhma sunduastik†c
beltistopo–hshc. Ta teleuta–a qrÏnia Ëqei parathrhje– Ëna k‘ma endiafËrontoc gia
thn efarmog† teqnik∏n Bajiàc Enisqutik†c Màjhshc (DRL) gia thn ekpa–deush mo-
ntËlwn (MSA).
Se aut†n thn ergas–a, parousiàzoume to IntellAlign, mia nËa mejodolog–a gia thn
eujugràmmish akolouji∏n qrhsimopoi∏ntac teqnikËc Bajiàc Enisqutik†c Màjhshc
(DRL) gia thn ekpa–deush kai prosegg–zontac to prÏblhma me teqnikËc Epexerga-
s–ac Fusik†c Gl∏ssac (NLP). Kataskeuàzoume isqurËc strathgikËc me l–gec mÏno
prosomoi∏seic, qwr–c prohgo‘menh empeir–a kai auto-paiqn–di qrhsimopoi∏ntac ton
algÏrijmo Gumbel AlphaZero. StÏqoc mac e–nai na megistopoi†soume mia pollaplh-
antamoib† me bàsh diadedomËnec metrikËc poiÏthtac MSA. Prote–noume ep–shc d–ktua
pou bas–zontai se arqitektonik† Attentiongia thn kwdikopo–hsh MSA. Sumbàlloume
epitugqànontac pl†rh euelix–a tou megËjouc t∏n akolouji∏n kai epitrËpontac ston
pràktora me mia k–nhsh na oloklhr∏sei thn eujugràmmish. Qrhsimopoio‘me to D–ktuo
Glimpse-Pointer prokeimËnou na epide–xoume diadoqikà mia seirà apÏ jËseic stic opo-
–ec Ëna kenÏ ja prosteje– sto MSA. Telikà, qrhsimopoio‘me kwdikopoi†seic jËsewn
gia th metaforà twn domik∏n plhrofori∏n twn akolouji∏n sto d–ktuo
O algÏrijmÏc mac sugkr–netai me kajierwmËna ergale–a eujugrammist∏n (Clustal
Omega, MAFFT kai MUSCLE) se MSAspou periËqoun DNAakolouj–ec. Ta apo-
telËsmata e–nai enjarruntikà, de–qnontac Ïti o IntellAlignmpore– na xeperàsei stic
perissÏterec peript∏seic to MAFFT kai to MUSCLE . EpiplËon, te–nei na epitug-
qànei parÏmoia apotelËsmata me to Clustal Omega.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

7

Solving MSA using Reinforcement Learning

LËxeic-Kleidià

Bajià Enisqutik† Màjhsh, Pollapl† Seiriak† SuntonismËnh Akolouj–a , Bioplh-
roforik†, Bajià Màjhsh, Epexergas–a Fusik†c Gl∏ssac, AlphaZero, Gumbel Al-
phaZero, Transformers

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

8

Contents

1 Introduction 20

1.1 Overview . 20

1.1.1 Significance . 21

1.2 Personal Motivation - Research Aims 22

1.3 Thesis Organization . 24

2 Background and Literature Review 25

2.1 Background . 25

2.1.1 Reinforcement Learning . 25

2.1.2 Markov Decision Process . 28

2.1.3 Deep Reinforcement Learning 32

2.1.4 Monte Carlo Tree Search . 32

2.1.5 From AlphaGo to Gumbel AlphaZero 34

2.1.6 Natural Language Processing 42

9

Solving MSA using Reinforcement Learning

2.2 Literature Review . 47

2.2.1 Exact Alignment . 48

2.2.2 Progressive Alignment . 49

2.2.3 Iterative Alignment . 50

2.2.4 Consistency-Based Alignment 50

2.2.5 Other Approaches . 51

2.2.6 Deep Reinforcement Learning Approaches 51

3 MSA Definition and Score Metrics 54

3.1 Problem Definition . 54

3.2 Score Metrics . 55

3.2.1 Sum of Pairs Score . 56

3.2.2 Gap Penalty . 57

3.2.3 Totally Conserved Score . 59

4 IntellAlign Materials and Methods 60

4.1 RL Environment Construction . 60

4.1.1 State Definition . 60

4.1.2 Action Space . 61

4.1.3 Transition . 62

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

10

Solving MSA using Reinforcement Learning

4.1.4 Terminal Gaps . 62

4.1.5 Complete Column Gaps . 63

4.1.6 Reward . 63

4.1.7 Game Steps . 65

4.2 Model Architecture . 65

4.2.1 Encoder . 66

4.2.2 Decoder . 68

5 Experimental Results 72

5.1 Experimental Goal . 72

5.1.1 Data Acquisition . 73

5.2 Competitors . 74

5.3 Setup . 75

5.3.1 Training Loop . 75

5.3.2 Reward . 75

5.3.3 Replay Bu�er . 75

5.3.4 Loss Functions . 75

5.3.5 Gumbel Sequential Halving 76

5.3.6 Hyperparameters . 76

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

11

Solving MSA using Reinforcement Learning

5.4 Evaluation metrics . 76

5.5 Results . 77

5.5.1 Quantitative analysis . 79

5.5.2 Qualitative analysis . 80

5.5.3 Further Results . 90

5.5.4 Reproducibility . 94

6 Conclusion 96

6.1 Limitations and Future Considerations 97

A Appendices 109

A.1 Exploration - Exploitation . 109

A.2 Example of Needlman-Wunsch algorithm usage 109

A.3 Example of Available Actions . 111

A.4 Example of Transitions . 111

A.5 Example of usage of Read2Tree . 112

A.6 Competitors evaluation strategies . 112

A.6.1 MUSCLE . 112

A.6.2 Clustal Omega . 114

A.6.3 MAFFT . 114

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

12

Solving MSA using Reinforcement Learning

A.7 Training Loop . 114

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

13

List of Tables

5.1 Summary of results . 78

5.2 Settings Ranking (descending order) 80

5.3 Example Test 1 . 83

5.4 Example Test 2 . 84

5.5 Example Test 3 . 85

5.6 Example Test 4 . 86

5.7 Example Test 5 . 87

5.8 Example Test 6 . 88

5.9 Example Test 7 . 89

5.10 Setting 4, performance across seeds œ 42,43,44, averaged ± standard
deviation . 95

14

List of Figures

1.1 Example alignment. In this alignment, red arrows correspond to one-
to-one matching counting from left to right in a column-wise manner. 21

2.1 Interaction of the agent with the environment (Sutton & Barto, 2018) 26

2.2 Rollout and SL Policy Networks . 35

2.3 Transformer Block by Vaswani et al. (2017) 46

2.4 Transformer Architecture by Vaswani et al. (2017) 47

2.5 MCTS for MSA by Edelkamp and Tang (2015) 52

3.1 Example of two di�erent gap insertions that will be equally penalized
in linear gap penalization . 58

4.1 Encoding Scheme . 61

4.2 State Encoder Network Architecture 68

4.3 Value head and Policy Head Structure 71

5.1 Average Objective. Setting 5 . 91

15

Solving MSA using Reinforcement Learning

5.2 Ratio of stopping Setting 5 . 91

5.3 Evaluation every 600 steps. Setting 5 92

5.5 Win-Draw-Lose SP Setting 5 . 92

5.4 Average loss (log scale). Setting 5 . 93

5.6 Win-Draw-Lose TC Setting 5 . 94

5.7 Mean training performance, run with 3 distinct seeds œ 42,43,44.
Shades denote standard errors. 95

5.8 Mean evaluation performance, run with 3 distinct seeds œ 42,43,44.
Shades denote standard errors. 95

A.1 Example dynamic pairwise global alignment approach by Needleman
and Wunsch (1970). Step 1-2 . 110

A.2 Example dynamic pairwise global alignment approach by Needleman
and Wunsch (1970). Step 3 . 111

A.3 Example State - Action Space . 111

A.4 Example Transitions . 112

A.5 Read2Tree correctly classifies the recent SARS-CoV-2 sequences, (Dy-
lus et al., 2023) . 113

A.6 Level 1. Workers running on parallel 115

A.7 Level 2. Experience Worker High-Level Architecture 115

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

16

Glossary

A3C Asynchronous Advantage Actor Critic. 52

AI Artificial Intelligence. 22, 23, 25, 34, 42, 51

APDB Analyze alignments with PDB. 113

BALiBASE Benchmark Alignment dataBASE. 112–114

BLAST Basic Local Alignment Search Tool. 21

BLOSUM Blocks Substitution Matrix. 58

CCG Complete Column Gaps. 63

CNN Convolutional Neural Network. 37, 38, 44, 97

COP Combinatorial Optimization Problem. 20

DNN Deep Neural Network. 23, 32, 35

DRL Deep Reinforcement Learning. 5, 7, 24, 32, 52, 72, 96

EI Evolutionary Information. 22

FF Feed Forward. 70

FFT Fast Furier Transform. 50

GAZ Gumbel Alpha Zero. 73, 75, 76

GELU Gaussian Error Linear Unit. 68, 70

17

Solving MSA using Reinforcement Learning

KL divergence Kullback–Leibler divergence. 42, 75

LSTM Long Short-Term Memory. 52

MAFFT Multiple Alignment using Fast Fourier Transform. 21, 51, 53, 56, 72, 74,
77, 90, 97, 112, 114

MCTS Monte Carlo Tree Search. 23, 32, 33, 35–37, 39, 51, 52, 75, 77, 79, 90, 96

MDP Markov Decision Process. 28–30, 32, 52, 72, 73, 96

MHA Multi Head Attention. 45, 69, 70, 96

ML Machine Learning. 5, 22, 25, 42, 73

MLP MultiLayer perceptron. 68, 70

MRP Markov Reward Process. 28

MSA Multiple Sequence Alignment. 5, 7, 15, 20–24, 47, 49, 51–58, 60, 62–65,
72–74, 77, 81, 96, 97, 114

MSE Mean Squared Error. 36, 38, 42, 75

MUSCLE Multiple Sequence Comparison by Log- Expectation . 50, 51, 53, 56,
72, 74, 77, 79, 90, 97, 112, 114

NCBI National Center for Biotechnology Information. 73

NLP Natural Language Processing. 5, 7, 23, 42–44, 60, 72, 73

NP-complete Nondeterministic polynomial-time complete. 7, 20

RL Reinforcement Learning. 23, 25, 27, 28, 30, 32, 34, 35, 37, 51–53, 73, 109

RNN Recurrent Neural Network. 43, 44

Seq2Seq Sequence to Sequence. 43, 44

SGD Stohastic Gradient Descent. 38

SL Supervised Learning. 25, 35

SP Sum of Pairs. 16, 52, 53, 56, 57, 64, 73, 77, 79–82, 90, 92, 95–97

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

18

Solving MSA using Reinforcement Learning

T-Co�ee Tree-based Consistency Objective Function for alignment Evaluation. 50

TC Totally Conserved or Column Score. 16, 53, 59, 73, 77, 79–81, 90, 94–97

TSP Traveling Salesman Problem. 69, 70

UCT Upper Confidence bounds applied to Trees. 33, 39, 52

WSP Weighted Sum of Pairs. 57

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

19

Chapter 1

Introduction

1.1 Overview

MSA has been a prominent research topic since the late 1960s. MSA refers to the
alignment of more than two DNA, RNA, or protein sequences aiming to extract valu-
able information concerning functional, structural, and evolutionary relationships.
During the alignment process, gaps are introduced within the sequences, resulting in
a new set of modified sequences. MSA lies in the family of combinatorial optimiza-
tion problems (COPs), with the “goal” being finding the optimal solution as a path
over a finite set of possible choices. Moreover, it is defined, in general, as an NP-
complete problem (Wang & Jiang, 1994) with many recognizable heuristic solvers,
each with unique strengths and limitations. Despite decades of research, MSA re-
mains a challenging computational problem without a universally accepted global
solution. This is primarily due to multiple factors, including the ambiguity of the
problem, making it di�cult to define a single “correct” alignment. Such ambiguity
further complicates the evaluation and definition of scoring and objective functions.
Moreover, one of the foremost challenges in MSA is the complexity of the alignment
process. To illustrate this, let’s consider a simple example. Imagine having a set
of three sequences, each of length three and containing only four distinct letters.
For example, in Figure 1.1, if our objective is maximizing vertical matches between
the sequences, shifting the first sequence one cell to the right would yield more
matches than the initial alignment. In this scenario, it is relatively straightforward
for a human to manually align these sequences for a given objective. However, this

20

Solving MSA using Reinforcement Learning

simplicity drastically increases when dealing with larger alignments. Dynamic pro-
gramming has been common and e�cient for approaching MSA problem. Still, the
computational cost grows rapidly with the number N of sequences to be compared
(O(lN), with l being the mean length of sequences) (Carrillo & Lipman, 1988).
While the significance of MSA may not be immediately apparent, its impact extends
across diverse domains. MSA is beneficial for analyzing the taxonomy of sequences,
drug discovery, establishing genotype or phenotype correlations, unraveling evolu-
tionary forces, etc.(Aniba et al., 2010). The following subsection will highlight the
importance of MSA with recent usage examples, aiming to generate some interest
and understanding of the topic. Finally, the introduction will be wrapped up by
discussing this thesis’s motivation and goals.

Figure 1.1: Example alignment. In this alignment, red arrows correspond to one-
to-one matching counting from left to right in a column-wise manner.

1.1.1 Significance

Delving into MSA’s practical applications becomes crucial to understanding its im-
portance. This broader perspective extends beyond focusing only on the MSAs
computational challenges, and it holds particular relevance for research and appli-
cations in various fields.
MSA is a valuable tool to identify similarities among genetic sequences, aiding in
the systematic categorization of species. By aligning and comparing DNA or pro-
tein sequences from di�erent organisms, MSA enables researchers to discern shared
genetic patterns and evolutionary relationships, facilitating the accurate classifica-
tion of species. Modha et al. (2018) claims that the frequency of genetic sequence
submission in databases escalates. They propose the ViCTree tool for taxonomic
clustering, which applies MSA and then BLAST (Altschul et al., 1990) MSA tool
to filter relevant sequences with some predefined criteria. Another great application
example is Read2Tree by Dylus et al. (2023), which utilizes the MAFFT(Katoh et

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

21

Solving MSA using Reinforcement Learning

al., 2002) MSA tool for building phylogenetic trees 1.
Next, Genotype-Phenotype Correlations is a way of finding the mutations within a
given genotype responsible for the presence of a physical trait (Frew et al., 2019).
This process can provide information regarding disease pathogenesis, future disease
progression, severity, etc. SigniSite tool is proposed by Jessen et al. (2013) for find-
ing genotype-phenotype correlations by employing as inputs protein MSAs. More
specifically, given MSAs as inputs accompanied with a real number that quantifies
the presence of a phenotype in a sequence, they predict the probabilities of amino
acids being related to the given phenotype.
Finally, protein structure prediction is a crucial problem for understanding protein
functionalities, which can be vital for making hypotheses on ways to a�ect, control,
or modify them (Darnell, 2020). Most state-of-the-art ML approaches for this prob-
lem employ evolutionary information (EI) derived from MSAs as inputs (Heinzinger
et al., 2022). In the groundbreaking AlphaFold created by DeepMind (Jumper et
al., 2021), MSAs are a key point since they serve as inputs to the network for pass-
ing co-evolution information from the homologous sequences (Fang et al., 2023).
CopulaNet uses directly MSAs as inputs for learning residues co-evolution (Ju et
al., 2021). Another exciting application is related to vaccine development. Langya
henipavirus, a virus of increasing concern since 2018, has captured researchers’ at-
tention due to its relation to deadly viruses. Researchers claim that if studying
proteins is challenging, it becomes much more di�cult when attempting to create
them in a laboratory (Callaway, 2023). Viral mutation and recombination are the
main hardships in vaccine development since they provoke high genetic diversity.
These genetic changes may be intractable and o�er limited vaccines and therapeutic
development time. EVEscape (Thadani et al., 2023) Artificial Intelligence (AI) tool
predicts the evolution of SARS-CoV-2, giving warnings of possible mutation crucial
for vaccine development earlier than lab-based methods. Moreover, EVEscape can
generalize to other viruses, such as HIV. MSAs are utilized as part of the input sets
for training their networks.

1.2 Personal Motivation - Research Aims

At this point, we have established a robust foundation for understanding that MSA:

1
They present an interesting example of classification SARS-CoV-2 and clustering of its vari-

ances (Figure A.5)

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

22

Solving MSA using Reinforcement Learning

• is a scientific combinatorial optimization problem that raises significant chal-
lenges as it is computationally demanding and requires strong decision-making
abilities.

• is a problem with a notable lack of a global solver and a global quality measure,

• can highly contribute to applications that try to solve important problems
facing humanity, such as a pandemic

AI has recently become a prominent tool in addressing challenges in biology and
genetics, with major research groups such as DeepMind showing interest in their re-
search activity. Genomic data, characterized by their complexity and continuously
increasing volume, can benefit from advancements in the AI field. Researchers have
successfully harnessed AI techniques to extract valuable insights from genomic data.
Furthermore, Reinforcement Learning (RL), a subfield of AI, can be helpful in com-
plex decision-making tasks, and MSA is one such domain. By employing Deep
Neural Networks (DNN) to create policies, RL can help discover novel strategies
and alignments, whereas traditional rule-based, heuristic approaches may not yield
innovative results.
We propose a novel approach, IntellAlign, an RL agent that can apply strong MSAs
without any previous knowledge. Our method incorporates NLP techniques, aiming
to design a flexible pipeline compatible with DNA, RNA, and protein structures of
variable lengths and number of sequences to align. To achieve this, we utilize Trans-
former architectures with a Glimpse-Pointer Mechanism. We also employ Positional
Encodings to retain structural information about nucleotide positions. The main
objective is to maximize standard used score metrics for MSAs and to compete with
some of the most known current MSA solvers. For maximizing the objectives with-
out any knowledge of good strategies for solving an MSA, we train our agent using
Gumbel AlphaZero (Danihelka et al., 2022), a recent advancement of the AlphaZero
(Silver et al., 2018) algorithm. AlphaZero allows the agent to learn by playing and
competing with himself, giving no information about a good or bad alignment but
only the game’s rules. Gumbel expansion allows the agent to learn better strategies
in a shorter amount of simulations. Our approach introduces the application of
network-guided MCTS to MSA. While MCTS has been previously applied to MSA
(Edelkamp & Tang, 2015), to our knowledge, there is no substantial work exploring
the integration of network-guided MCTS in the context of MSA.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

23

Solving MSA using Reinforcement Learning

1.3 Thesis Organization

The rest of the thesis is organized as follows:

• Chapter 2 contains essential background considering information on the termi-
nology, notation, algorithms, and network architectures. It equips the reader
with all the required elements for understanding the contents of the subse-
quent Chapters. Additionally, this chapter provides a comprehensive litera-
ture review on current MSA-solving approaches, including Deep Reinforcement
Learning (DRL) works.

• Chapter 3 holds a clear mathematical definition of the MSA problem and
introduces common score and evaluation metrics.

• Chapter 4 delves into materials, methods, and the chosen model architecture.

• Chapter 5 outlines the experimental goals and supplies general details about
the experimental setup. Next, it presents the experimental results and provides
a detailed comparison with other alignment tools. This chapter also analyzes
the results and discusses key findings.

• Chapter 6 summarizes conclusions, discusses limitations, and outlines the fu-
ture scope of research.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

24

Chapter 2

Background and Literature
Review

2.1 Background

In the following subsection, certain key concepts, theories, and terminology utilized
in the subsequent sections are clarified and discussed. Subsections 2.1.1, 2.1.2 are
built upon Sutton and Barto (2018)’s book and Silver (2015)’s lectures.

2.1.1 Reinforcement Learning

Supervised learning (SL) has made remarkable progress in the AI field but relies
heavily on high-quality data to learn e�ectively, which can be impractical, costly, or
even impossible to have in certain scenarios. On the other hand, RL is a branch of
ML that does not require labeled examples. Instead, it draws inspiration from how
animals and humans learn through interactions with their environment. RL, intro-
duces an agent interacting with an environment. Similarly to animals or humans,
the agent tries to learn how to behave using the feedback from the environment
given as rewards or penalties. The agent is responsible for learning the problem dy-
namics and acting accordingly to maximize the rewards. This is a circular process
where the environment contains all the information, and the agent follows a series

25

Solving MSA using Reinforcement Learning

Figure 2.1: Interaction of the agent with the environment (Sutton & Barto, 2018)

of decisions.
Let S be the set of all possible states and A the set of all possible actions. At
each timestep, t, the environment reveals the current situation, namely the state,
St œ S, to the agent. Next, the agent selects an action, At œ A(St), where A(St)
is the set of available actions in the state St. The action At will be applied to the
environment, resulting in a new state St+1. Finally, the agent receives a numerical
reward Rt+1 œ R µ R as a result of the chosen action (Figure 2.1). The rewards can
be either positive or negative due to previous actions.

Policy

At any given timestep t, the agent will choose an action At according to a policy fit.
This policy can be considered as the agent’s strategy. The policy can be stochastic,
meaning that it may produce probabilities of each action for a given state, or it
could be deterministic in cases where the policy maps a state to a specific action. A
policy specifies probabilities over actions At given St in stochastic cases. The policy
changes while the agent gets more knowledge of the environment.

Reward

The reward can be considered as a signal from the environment due to the agent’s
behavior. Rewards can be provided at each timestep (intermediate rewards) or the
end of an episode (episodic rewards). The agent is trying to maximize the reward;
thus, the reward a�ects the policy. Moreover, the agent can influence the reward
through its actions. The reward defines the desired and undesired actions and is the

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

26

Solving MSA using Reinforcement Learning

primary way of learning the optimal way to handle a given task.
Although the reward signal gives feedback to the agent on how to behave, the
agent’s goal is not to maximize the immediate reward. An RL aims to maximize
the cumulative reward in the long run.

Returns

As mentioned earlier, the agent’s goal is to maximize the cumulative reward in the
long run. This is formally defined as the expected return, Gt, and is the total
discounted reward from timestep t. It can be expressed mathematically using the
following geometric formula :

Gt : = Rt+1 +“Rt+2 +“
2
Rt+3 + . . . (2.1)

Gt : =
Œÿ

k=0
“

k
Rt+k+1 (2.2)

where Rt+i is the reward obtained at timestep t + i, and 0 Æ “ Æ 1 is the discount
factor. If the “ value is one, there will be no discounting, leading to an infinite sum
in continuing tasks. So “ is a discount factor that can make Gt always be finite. For
“ close to zero, the agent will pay attention to the immediate rewards. On the other
hand, when “ is closer to 1, the agent is more far-sighted, meaning future rewards
are considered more strongly than immediate rewards.

Model of the Environment

Another element for some RL systems is the model of the environment. In some
cases, models are utilized for planning, leading to model-based methods. In contrast,
in model-free methods, the agent learns solely from experience, and it is hard to plan.
Precisely, in model-based approaches, the model can foresee state transitions and
rewards and thus o�er a significant advantage: the ability to explore various possi-
bilities, plan ahead, and make informed decisions. This process is usually mentioned
as planning in the context of RL.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

27

Solving MSA using Reinforcement Learning

2.1.2 Markov Decision Process

Almost all RL problems can be mathematically formalized as a Markov Decision
Process (MDP). Based on Markov Property, the future is determined only by the
present state and not by the past states. Roughly, the current state includes informa-
tion on the historical states so that the current state is su�cient input to understand
the future. When a RL task satisfies the Markov Property, it is a Markov Reward
Process (MRP). Finite MDPs are the ones that share finite spaces of states and
actions. The dynamics of such an MDP are defined as :

p

1
s

Õ
, r | s,a

2
= Pr

Ó
St+1 = s

Õ
,Rt+1 = r|St = s,At = a

Ô
, (2.3)

Similarly, we can define policy fi as fi(a|s) = Pr{At = a | St = s}, which specifies a
distribution over actions At given St. The policy is assumed to be Markovian, which
depends on the current state (not historical states) and time.
Consider a RL task being a finite MDP with S being a finite set of states and A

being a finite set of actions. Using Equation 2.3 the following can be defined:

• State transition probabilities (or simply transition probabilities),

p(sÕ
|s,a) = Pr

Ó
St+1 = s

Õ
| St = s,At = a

Ô
=

ÿ

rœR
p

1
s

Õ
, r | s,a

2

• Expected Rewards for state-action pairs,

r(s,a) = E [Rt+1 | St = s,At = a] =
ÿ

rœR
r

ÿ

sÕœS
p

1
s

Õ
, r | s,a

2

• Expected Rewards for state-action-next-state triples,

r

1
s,a,s

Õ
2

= E
Ë
Rt+1 | St = s,At = a,St+1 = s

Õ
È

=
q

rœR rp(sÕ
, r | s,a)

p(sÕ | s,a)

Finally, we can summarize a finite MDP as a tuple of (S,A,R,p,r,“).

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

28

Solving MSA using Reinforcement Learning

Value function

The value function expresses the expected return when following a policy fi and
starting from state s. Its importance lies in allowing an agent to assess the quality of
its present situation without waiting for the extended-term consequences to unfold.
The value function (or state-value function) will assert a value for a given state in
long-term consideration. For MDPs, the state-value function can be formally defined
as :

Vfi(s) := Efi [Gt | St = s] (2.4)

Another function we need to define is the state-action-value function, also known as
the quality function. The state-action-value function describes how well the choice
of a particular action is in a given state. More formally, it represents the expected
return when following a policy fi from state s after performing an action a and can
be defined as :

Qfi(s,a) := Efi [Gt | St = s,At = a] (2.5)

Bellman equations are incorporated to simplify the state-value and the state-action-
value estimation. The Bellman equation for the state-value function defines a rela-
tionship between the value of a state and the value of its possible successor states.
Taking advantage of the recursive nature of Vfi(s), the Equation 2.4 can be expanded
into :

Vfi(s) =
ÿ

a

fi(a | s)
ÿ

sÕ

ÿ

r

p

1
s

Õ
, r | s,a

2Ë
r +“Efi

Ë
Gt+1 | St+1 = s

Õ
ÈÈ

’s œ S (2.6)

using the sum of all possible actions, the sum of all possible rewards, and the next
states. Similarly to the definition, it can be considered as a sum of possible outcomes
weighted by the probabilities of their occurrence, fi(a | s)p(sÕ

, r | s,a). In Equation
2.4 we can substitute the expected return of s

Õ for timestep t+1 with the state-value
Vfi for s

Õ owing to their equivalence, as follows:

Vfi(s) =
ÿ

a

fi(a | s)
ÿ

sÕ

ÿ

r

p

1
s

Õ
, r | s,a

2Ë
r +“Vfi

1
s

Õ
2È

(2.7)

Vfi(s) =
ÿ

a

fi(a | s)
ÿ

sÕ,r

p

1
s

Õ
, r | s,a

2Ë
r +“Vfi

1
s

Õ
2È

(2.8)

Note that in Equation 2.8, the sum over possible states and rewards is merged for
notation simplicity into one sum over both. This is the Bellman equation for the
state-value function and captures the relationship between the value of the state

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

29

Solving MSA using Reinforcement Learning

and the values of the possible successor states. The Bellman Equation for the state-
action-value function will be formed similarly but without including the policy fi

since the action is already selected. The expected return for the next state s
Õ needs

to be expressed as a weighted sum over all the possible actions using fi (aÕ
| s

Õ) :

Qfi(s,a) =
ÿ

sÕ,r

p

1
s

Õ
, r | s,a

2
S

Ur +“
ÿ

aÕ
fi

1
a

Õ
| s

Õ
2
Efi

Ë
Gt+1 | St+1 = s

Õ
,At+1 = a

Õ
È
T

V

(2.9)

Again, we can replace the expected return of s
Õ , a

Õ for timestep t+1 using Equation
2.5 resulting to :

Qfi(s,a) =
ÿ

sÕ,r

p

1
s

Õ
, r | s,a

2
S

Ur +“
ÿ

aÕ
fi

1
a

Õ
| s

Õ
2

Qfi

1
s

Õ
,a

Õ
2

T

V (2.10)

Optimal Policies

The primary goal in any RL task is to find a policy that obtains as much reward
as possible in the long run. Consider policies fi1 and fi2, we can say that fi1 is as
good as or better than fi2, fi1 Ø fi2 , if and only the Vfi1(s) Ø Vfi2(s) for every state
s œ S. For any MDP, there exists at least one optimal policy fiú which is as good
as or better than any other policy, fiú Ø fi,’fi. In this case, the optimal policy fiú
will get the greatest value in any given state. All optimal policies share the same
state-value function, called the optimal state-value function, which can be defined
as:

Vú(s) := Efiú [Gt | St = s] = max
fi

Vfi(s) ,’s œ S (2.11)

Optimal policies also share the same state-action value function, the optimal action-
value function, denoted as Qú, which is defined as:

Qú(s) := Efiú [Gt | St = s,At = a] = max
fi

Qfi(s) ,’s œ S,’a œ A(s) (2.12)

Since Vú is the optimal value, intuitively, the expected return over an optimal pol-
icy should be the expected return for the best action given a state. This can be
expressed as:

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

30

Solving MSA using Reinforcement Learning

Vú(s) = max
aœA(s)

Qfiú(s,a) (2.13)

= max
a

Efiú [Gt | St = s,At = a] (2.14)

Or similarly to Equation 2.8

Vú(s) = max
aœA(s)

ÿ

sÕ,r

p

1
s

Õ
, r | s,a

2Ë
r +“Vú

1
s

Õ
2È

(2.15)

where policy reference is replaced by the best action. Finally, the Bellman optimality
equation for the optimal state-action value function, Qú, is defined as:

Qú(s,a) =
ÿ

sÕ,r

p

1
s

Õ
, r | s,a

25
r +“ max

aÕ
Qú

1
s

Õ
,a

Õ
26

(2.16)

Policy Improvement Theorem

Let fi and fi
Õ be any pair of deterministic policies such that:

Qfi

1
s,fi

Õ(s)
2

Ø Vfi(s) ,’s œ S (2.17)

In this case, policy fi
Õ is as good as or better than fi. That is, it must obtain greater

or equal expected return:

VfiÕ (s) Ø Vfi(s) ,’s œ S (2.18)

The policy fi
Õ is an improvement over fi since it improves its value in all states. Note

that in case of a strict inequality of Equation 2.17 at any state, then there must be
strict inequality of Equation 2.18 at that state.
We can define a new greedy policy, fi

Õ as the one that selects actions that are believed
to be the best according to qfi(s,a):

fi
Õ(s) .= argmax

a

qfi(s,a)

= argmax
a

E [Rt+1 +“Vfi (St+1) | St = s,At = a]

= argmax
a

ÿ

sÕ,r

p

1
s

Õ
, r | s,a

2Ë
r +“Vfi

1
s

Õ
2È

(2.19)

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

31

Solving MSA using Reinforcement Learning

Policy improvement is the process of improving an original policy with a new policy
by making it greedy with respect to the value function of the original policy. If
the new greedy policy is as good as but not better than the original fi, then value
functions should equal VfiÕ = Vfi. In this case, using Equation 2.19, we will fall into
the Bellman optimality equation for the value function Equation 2.15.

VfiÕ(s) = max
a

E [Rt+1 +“VfiÕ (St+1) | St = s,At = a]

= max
a

ÿ

sÕ,r

p

1
s

Õ
, r | s,a

2Ë
r +“VfiÕ

1
s

Õ
2È

,’s œ S
(2.20)

This leads to the conclusion that the new, improved policy is strictly better unless
policy fi is already optimal.

2.1.3 Deep Reinforcement Learning

In the previous section, we discussed what an RL is, its components, and how it can
be formulated as an MDP. We also defined value and optimal value functions. Let
us briefly define the Deep Reinforcement Learning DRL domain. DRL is a family
of solution methods for RL which uses powerful representations derived from DNN
to represent di�erent elements of the RL. These could be, for example, the value
function, the policy, or the model. The introduction of deep learning is motivated
by its capability to enable RL to scale and address decision-making problems that
were previously considered intractable (Arulkumaran et al., 2017).

2.1.4 Monte Carlo Tree Search

In sequential decision problems and particularly within the context of model-based
methods, planning algorithms are often employed to explore a sequence of possible
choices and their outcomes. An RL agent could make more sophisticated decisions
using search trees. The search tree can be exhaustively explored when the problem
has a small number of possible cases, but with larger problems, it becomes pro-
hibitively slow and impractical.
Monte Carlo Tree Search (MCTS) is an iterative tree algorithm that balances explo-
ration and exploitation 1. In such trees, nodes denote states, whereas edges represent

1
see section A.1

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

32

Solving MSA using Reinforcement Learning

transitions (actions) from one state to another. This method was first proposed by
Coulom (2006) and Kocsis and Szepesvári (2006) for making computers play the Go
game, as reported by Świechowski et al. (2023). MCTS, consists of four main steps:
selection, expansion, simulation, and backpropagation.

• selection: The algorithm selects, at each level, a node starting from the root
node and terminates when reaching a leaf node. The selection method is called
tree policy and is the rule that is used for selecting a child node among a given
node’s available children.

• expansion: The algorithm expands the current node into at least one child
node. This could include all the possible transitions from the current node to
the next node. This step happens only when the current node is not repre-
senting a terminal state.

• simulation: Involves the simulation of playing an episode until a terminal
state is reached. At this point, the algorithm fetches the payo�s as results
from the game. This step is also mentioned as a rollout.

• backpropagation: Updates information kept the nodes from the last visited
node back to the root node. This information generally refers to each node’s
value and derives from the simulation step. The value accuracy improves with
the number of simulations (Silver et al., 2016).

We summarize these steps in the following pseudocode in Algorithm 1 for a better
understanding. In pseudocode, T represents the set of all nodes. As mentioned
in the selection step, defining a tree policy is crucial for an agent to determine
which action to select for the next move. This policy allows the agent to explore
unseen actions while selecting promising actions in a moderate ratio. The most
commonly employed function for this is called Upper Confidence bounds applied to
Trees (UCT) by Kocsis and Szepesvári (2006) is the following:

a
ú = arg max

aœA(s)

Y
]

[Q(s,a)+C

ı̂ıÙ ln[N(s)]
N(s,a)

Z
^

\ , (2.21)

where Q(s,a) is the average return for choosing action a for state s, N(s) holds the
total number of times state s has been visited so far, and N(s,a) holds the total
number of times that action a has been sampled from state s. Alternative methods
for the selection step include Objective Monte-Carlo (OMC) (Chaslot et al., 2006),
Probability to be Better than Best Move (PBBM) (Coulom, 2006) etc.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

33

Solving MSA using Reinforcement Learning

Algorithm 1 Monte Carlo Tree Search
Input: root node,computational budget

Output: best action

current node Ω root node

while computational budget do
while current node œ T do

last node Ω current node

current node Ω select(current node)
end while
last node Ω expand(last node) Û Leaf Node is expanded
R Ω simulate(last node)
current node Ω last node

while current node œ T do Û Backpropagation step
backpropagate(current node,R)
current node Ω current node.parent

end while
computational budget Ω computational budget≠1

end while
return best action = argmax(root node)

2.1.5 From AlphaGo to Gumbel AlphaZero

AlphaZero (Silver et al., 2018) is one major algorithm accomplishment in the RL
field, developed by the DeepMind team owned by Google. AlphaZero is considered
a significant advancement over its predecessor, AlphaGo (Silver et al., 2016). Before
we dive into AlphaZero, let’s revisit the genesis of AlphaGo.

2.1.5.1 AlphaGo

AlphaGo was designed to master the Go game, which has been considered as one of
the most challenging games in the AI field (Silver et al., 2016). Go is a traditional
board game of Chinese origin, characterized by its simple rules compared to chess.
Despite its apparent simplicity, the possible moves are countless, surpassing the total
count of atoms in the known universe, as reported in “From AI to protein folding:
Our Breakthrough runners-up” (2016). Another challenge has been evaluating the
board positions and the actions (Silver et al., 2016). In 2016, the match between
AlphaGo and Lee Sedol, a professional South Korean Go player often regarded as one

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

34

Solving MSA using Reinforcement Learning

Figure 2.2: Rollout and SL Policy Networks

of the best in his generation, was marked as a monumental moment. AlphaGo won
in a five-game Go match and was later honored with the highest Go grandmaster
rank by the Korea Baduk Association. AlphaGo was initially published in Nature
and later recognized and featured in Science as ’one of the most significant scientific
breakthroughs of 2016’ (“From AI to protein folding: Our Breakthrough runners-
up”, 2016). For detailing the methods employed by AlphaGo, we rely on the original
paper by Silver et al. (2016).

Methods AlphaGo uses SL over a corpus of human expert player moves combined
with RL self-play games for training policy and value DNNs. The algorithm includes
MCTS that combines neural network evaluations with Monte Carlo rollouts. Specif-
ically, the pipeline is divided into three stages.
The first stage includes training a policy network fi

‡(a|s) 2 on numerous randomly
selected expert moves encapsulated as state-action pairs using SL. Moreover, a faster
but weaker rollout policy network fi

„(a|s) is also trained. They apply stochastic gra-
dient ascend to both policies to maximize the log-likelihood of selecting move a for
a given state s. The first network is the SL policy network, and the second one
is the Rollout policy network (as shown in Figure 2.2). A policy network fi

fl with
the same architecture as the SL policy network is then introduced. This network is
the RL policy network, and its weights are initialized with the same values, such as
fl = ‡. The RL policy network is improved using Policy Gradient RL (Sutton et al.,

2
We have violated the notation for weights, transitioning from subscript to superscript for the

weight letter. This change is implemented to prevent confusion with the subscript fi used to denote

policy in Chapter 2 for the value function.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

35

Solving MSA using Reinforcement Learning

2000; Williams, 1992), including self-play and weight update by stochastic gradient
ascend for maximizing the expected game outcome.
Last, a value network is trained V

◊
fi (s) to predict the game’s outcome at a given

moment. Since the optimal value function Vú(s) is unknown and pursued, they
estimate it using the RL-policy network as the strongest one. The weights of the
value network are updated using stochastic gradient ascend to minimize the Mean
Squared Error (MSE) between the network output V

◊
fi (s) and the actual game out-

come, z. The architecture of the value network closely resembles that of the RL
policy network but with a single numerical output and is trained using regression
methods.
One interesting point is that training using successive game frames led to over-fitting
due to their high similarity. To overcome this challenge, 30 million games are gath-
ered. From this dataset, a single random game moment (one frame) is sampled
for training, aiding the value network in generalizing more e�ectively. Previously
(in Section 2.1.4), we have discussed the main components of a MCTS. AlphaGo
combines policy and value networks within a MCTS.
For action selection from the root node of MCTS, a variant of PUCT algorithm
(Rosin, 2011) is utilized :

a
ú
t = argmax

aœA(st)
(Q(st,a)+U (st,a)) (2.22)

where U(s,a) is added for encouraging exploration :

U(s,a) = cpuctP (s,a)

Ò
N(s)

1+N(s,a) (2.23)

where P (s,a) is the prior probability derived by the SL policy network, N(s) is the
visit count of the parent node, and parameter cpuct is a constant determining the
level of exploration.
Starting from the root node, the tree policy is utilized for action selection, transi-
tioning to successive nodes until reaching a leaf node. When reaching a leaf node,
the node is expanded, and the probabilities of selecting available actions from that
state are calculated once using the fi

‡(a|s) from the SL policy network and stored
as prior probabilities, P (s,a) :

P (s,a) = fi
‡(a|s) (2.24)

Next, random rollouts are applied as part of the simulation step from the leaf node up
to the terminal node (where the game finishes) using the fast rollout policy network,
fi

fi(a|s). This leaf node is evaluated using a combination of the actual game outcome,

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

36

Solving MSA using Reinforcement Learning

zL, from the rollout play with the fast rollout policy network and the value networks
V

◊
fi (sL) prediction. This combined leaf node evaluation is formulated as follows:

V (sL) = (1≠⁄)V◊ (sL)+⁄zL (2.25)

where ⁄ is a weighting parameter, and sL represents the leaf state nodes. Finally, at
the backpropagation step, the action values and the visit count are calculated and
stored (for the first time or updated) for all the edges in the tree path. The action
values Q(s, a) are calculated as an average of V (sL) values over all simulations.
N(s,a) is the total number of visits for the edges in all simulations. After applying
many simulations, AlphaGo selects the moves according to the highest number of
visits.

2.1.5.2 AlphaGo Zero - AlphaZero

AlphaGo Zero, introduced by Silver et al. (2017), serves as the successor to AlphaGo.
A year later, AlphaZero (Silver et al., 2018) was published, extending the principles
of AlphaGo Zero to Chess and Shogi games. The goal was to increase performance
and generality. In AlphaGo Zero, Deep Mind drops any expert human knowledge of
the game and relies exclusively on learning using self-play games. They also switch
to one single network for policy and value prediction. The input representation of
the game is simplified. Finally, they apply modifications to the search tree.

AlphaGo Zero Methods AlphaGo Zero, is trained using RL self-play games. In
contrast with AlphaGo, there is only one CNN network, f

◊(s), with ◊ parameters,
that combines the value mentioned above V and policy fi networks. The networks’
parameters ◊ are randomly initialized. In each state s, a MCTS is applied. Inside the
MCTS, similarly to AlphaGo, the Equation 2.22 is employed for selecting an action.
Same as AlphaGo, the node is expanded after reaching a leaf node. The Monte
Carlo step is dropped after the expansion and follows the evaluation step. Like
AlphaGo, the leaf node is evaluated once, but this time using the aforementioned
single network f

◊(s), producing a probability distribution over actions and a state
value representing the agent’s probability of winning the game from state s.

(fi,V) = f
◊(s) (2.26)

Similarly, both are stored as P (s,a), prior probability for each edge, and V (sL) in
the leaf node. Additional exploration is achieved here by adding Dirichlet noise to

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

37

Solving MSA using Reinforcement Learning

the prior probabilities :

P (s,a) = (1≠ Á)fi(a|s)+ Á÷a (2.27)

where ÷ ≥ Dir(0.03) and Á = 0.25. Finally, the backpropagation step is the same as
AlphaGo, where the action values and the visit counts are calculated and updated.
After completing the search, the AlphaGo Zero selects an action from the current
root node state s0 according to the improved policy:

fi
Õ (a | s0) = N (s0,a)1/·

N(s0)1/·
(2.28)

Here, · is a temperature parameter that controls the exploration-exploitation trade-
o�. This parameter varies during self-play, initiating with · = 1 for the first 30 moves
per game to allow exploration and continuing to values close to zero for selecting
the most visited actions.
Self-play is executed asynchronously in parallel. The parameters ◊ of the network
are continuously optimized by evaluating the agents, with the best-performing agent
being retained. Moreover, they are optimized using stochastic gradient descent SGD
with momentum set to 0.9 and learning rate annealing. Finally, the network param-
eters are adjusted to minimize MSE between game outcome and value prediction
and cross-entropy loss between the network probabilities for policy and the search
tree probabilities:

(fi,V) = f◊(s) and l = (z ≠V)2
≠ (fiÕ)T logfi + cÎ◊Î

2 (2.29)

where c is the parameter of L2 weight regularization. This regularization serves the
purpose of minimizing overfitting. Considering the network architecture, it generally
comprises multiple CNN blocks, followed by a policy head that outputs logits for
probabilities and a value head that outputs a scalar value ranging from -1 to 1.

AlphaZero Methods AlphaZero builds upon AlphaGo Zero with a few adjust-
ments to make it applicable to Chess and Shogi. The algorithm and network ar-
chitecture remain the same across several games, such as Go, Chess, and Shogi by
AlphaZero, demonstrating a more general solution. The content of AlphaZero is
supplementary to AlphaGo Zero, highlighting three modifications while maintain-
ing overall similarity.
One key di�erence between AlphaGo Zero and AlphaZero is that the game outcome
is not formed as a binary result of win or loss but tries to predict and optimize the
expected result z. This adjustment is important since, unlike the game of Go, where

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

38

Solving MSA using Reinforcement Learning

outcomes are limited to win or loss, Chess and Shogi introduce the potential for a
draw outcome.
The game of Go is symmetric, meaning that rotation and reflection of the board
do not impact the game’s rules. On the other hand, Chess and Shogi do not have
this property on their board. Therefore, AlphaZero, unlike AlphaGo Zero, abstains
from applying any state augmentations. The board is oriented to the perspective
of the current player. Another distinction is that instead of waiting for an iteration
to complete and updating the network parameters in case there is a better player,
the weights are continuously updated. When an agent initiates self-play, the latest
network checkpoint is fetched.

2.1.5.3 Gumbel Alpha Zero Policy Improvement

AlphaZero can fail to improve its policy network if the number of simulations is
insu�cient to explore the whole action space. AlphaZero applies Dirichlet noise
(Silver et al., 2017) to the prior probabilities in the root node (see Equation 2.27)
to encourage exploring uncertain actions, but this strategy may harm a potential
optimal policy network (Danihelka et al., 2022). In Gumbel AlphaZero and Gumbel
MuZero (Danihelka et al., 2022), an improved version of AlphaZero and MuZero
(Schrittwieser et al., 2020) algorithms is designed by alternating some steps of the
initial algorithms. These alternations involve:

1. the selection of the actions to search on the tree’s root utilizing the Gumbel-
Top-k trick for sampling a subset of the available actions and then using the
same Gumbel distribution for directing the best action selection in the search,

2. the selection of actions at the root node by utilizing the Sequential Halving
algorithm as proposed by Karnin et al. (2013),

3. the action selection from the environment (after the search simulations) with
the final action resulting from the Sequential Halving search process,

4. the update of weights for the policy network in a way that secures an improve-
ment of the policy, based on the root actions values derived from the search,
and finally,

5. the action selection inside the search tree, which instead of the PUCT (Rosin,
2011) algorithm for AlphaZero or UCT as mentioned in a common MCTS, a de-
terministic action selection method is proposed. The aforementioned method

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

39

Solving MSA using Reinforcement Learning

uses an improved policy based on the completed Q values. Then, the action is
not selected directly from the improved policy but from aligning the empirical
visit counts with the intended policy enhancement.

Methods As mentioned, AlphaZero’s original version utilizes Dirichlet noise as
an addition to the policy network to enhance exploration. In contrast, Gumbel
AlphaZero uses the Gumbel-Top-k trick to sample actions without a replacement at
the root node.
Gumbel-Top-k trick (Kool et al., 2019, 2020; Vieira, 2014; Yellott, 1977), is an
extension of the Gumbel-Max trick (Gumbel, 1954; Luce, 1959). Gumbel-Max trick
is a method for sampling from categorical distributions. In the Gumbel-Top-k trick,
a fixed number of actions are sampled from a Gumbel distribution and added to the
prior logits, logits

fi. Prior logits are derived from the logits generated by the policy
network fi, representing an unnormalized categorical distribution. The prior logits
are calculated and stored once during the expansion step of each node. Each action
is sampled sequentially without a replacement to reduce the variance. From this
collection, the top m actions will represent the sampled set Atopm = {A1,A2, . . . ,Am}:

1
g œ Rk

2
≥ Gumbel(0)

Atopm = argtop(g +logitsfi
,m))

Next, given a tree node, the same Gumbel distribution g is utilized to find the action
from Atopm that maximizes Equation 2.30. This action is considered the best, An+1.

An+1 = argmaxaœAtopm
(g(a)+ logitsfi(a)+‡(Q̂(a))) (2.30)

Note that ‡ can be any monotonically increasing function, but the proposed is
formulated as:

‡(Q̂(a)) =
3

cvisit +max
b

N(b)
4

cscale Q̂(a) (2.31)

where maxb N(b) is the maximum number of visits found for the most visited action,
cvisit = 50, and cscale = 1.0.
The Sequential Halving algorithm (Karnin et al., 2013) is added on top to minimize
simple regret in the root node. Given several simulations, n of Sequential Halving,
the search of An+1 is divided into several phases. The number of phases is calculated
using the log2(m) where m is the number of sampled actions to consider. Half of the
considered actions are dropped in each phase, with all actions being equally visited.
At each phase, a set of top actions that maximize Equation 2.30 is kept, leading to
the final single action, An+1. To allocate the number of simulations per phase, the

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

40

Solving MSA using Reinforcement Learning

total simulation budget is divided by the number of phases to determine the number
of simulations allocated per phase. This result is then further divided by mphase to
calculate the number of simulations assigned per action for the current phase. The
number of visits for each action for a given phase can be calculated:

visits =
E

n

log2(m)mphase

F

(2.32)

which divides the total budget of simulations by the number of phases, resulting
in the number of simulations per phase. Then, it is divided by mphase to find the
number of simulations per action for the current phase. The higher the simulation
number, the more visits for each action, thereby leading to a tree with greater depth
and more comprehensive information.
After completing the search, the Sequential Halving algorithm is also utilized for
selecting actions by the agent in the environment. For learning an improved policy,
instead of comparing the policy network with a categorical distribution that relies
on the visit counts of the root actions, Gumbel AlphaZero proposes an improved
policy fi

Õ. For the construction of the improved policy fi
Õ, a vector of completed

Q-values is built in a way that ensures zero advantage to the unvisited actions:

completedQ (a) =

Y
]

[
Q(a) if N(a) > 0
V̂ , otherwise

(2.33)

where Q(a) (similar to AlphaZero) represents the estimated q values for the actions
and is calculated as the mean action value over the simulations. For constructing
the V̂ , they propose to either replace with V = q

a fi(a)q(a) or approximate using
the value network or using a mixed value approximation (Equation 2.34) that is
especially recommended for o�-policy cases.

V̂ := 1
1+ q

b N(b)

Q

aV +
q

b N(b)
q

bœ{b:N(b)>0} fi(b)
ÿ

aœ{a:N(a)>0}
fi(a)Q(a)

R

b . (2.34)

where V is the value approximation from the value network and b represents the
children (i.e. the actions). For the mixed value approximation in the case of zero
visits,

ÿ

b

N(b) = 0 (2.34)
≈∆ V̂ = 1

1V. (2.35)

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

41

Solving MSA using Reinforcement Learning

so the prediction of the value network is used as V̂ == V . Finally, the improved
policy may be defined as :

fi
Õ = softmax(logitsfi +‡(completedQ)) (2.36)

Considering the action selection in non-root nodes in the search tree, improved policy
fi

Õ is utilized, and a deterministic action selection approach is applied that seeks to
minimize the MSE between fi

Õ and the normalized visit counts. This action selection
strategy can be formulated as:

argmax
a

A

fi
Õ(a)≠

N(a)
1+ q

b N(b)

B

(2.37)

Finally, to encourage network fi to improve towards fi
Õ, they utilized the Kullback-

Leibler divergence (KL divergence) between the network’s current policy fi and the
improved policy fi

Õ. This constructs the completed loss l for policy fi :

Lcompleted(fi) = KL
1
fi

Õ
Îfi

2
(2.38)

KL divergence replaces cross-entropy loss in Equation 2.29 that is utilized in Al-
phaGo Zero and AlphaZero.

2.1.6 Natural Language Processing

Computational linguistics or Natural Language Processing (NLP) is a sub-field of AI
that has its roots in the late 1940s after World War II, as reported by Hirschberg and
Manning (2019) and Nadkarni et al. (2011). They also report that early NLP sys-
tems used rule-based systems with computer scientists manually reporting language
rules and vocabulary to enable computers to process text. This approach was very
limited since human language is incredibly complex and nuanced. Subsequently,
researchers explored statistical and probabilistic methods, developing sophisticated
ML techniques that brought about significant advancements in the field. There are
many applications of NLP using ML, namely, machine translation, dialogue systems,
sentiment analysis, generation of speaker state, etc.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

42

Solving MSA using Reinforcement Learning

2.1.6.1 Sequence-to-Sequence

Sequence-to-Sequence (Seq2Seq) is a specific type of neural network commonly used
in NLP tasks where an input sequence (x1, ..,xn) is mapped into an output sequence
(y1, ..,ym). The length of the input and output sequence may not be the same,
n ”= m. Seq2Seq models are usually based on Encoder-Decoder architecture, which
includes:

1. Encoder: Processes the input sequence to summarize all the information into
an encoded representation and emits a context vector C, of fixed length. Con-
text vector encapsulates the input sequence details.

2. Decoder: Consumes the context vector C of the input sequence and generates
an output sequence y by computing the probability over the given output
sequence (y1, ..,ym).

Attention Bahdanau et al. (2014) observed one limitation in previous Seq2Seq ar-
chitectures. A context vector C of a fixed length occasionally struggled to e�ectively
summarize information from long sequences 3. To address this issue, Bahdanau et
al. (2014) introduced an attention mechanism to focus on the most important parts
of the sequences combined with a RNN architecture for both the encoder and the
decoder. The core idea of Attention is to identify the relevant parts of a sequence
and allow the model to pay attention to them 4. In this work, the encoder converts
the input sequence (x1, ..,xn) into a sequence of annotations (h1, ..,hn). The context
vector, then, is computed as a weighted average over all input feature vectors:

ct =
nÿ

j=1
–tjhj (2.39)

where a is the attention vector for each timestep t. The attention vector is calculated
using an attention function that produces normalized weights. These weights are

3
In a Neural Machine Translation task

4
Attention can be applied to non-sequential data as well, but this is not of interest to this

thesis

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

43

Solving MSA using Reinforcement Learning

normalized into probabilities using softmax (Bridle, 1990).

–ij = exp(eij)qn
k=1 exp(eik) (2.40)

where,

eij = a(si≠1,hj) (2.41)

is the score of alignment, between inputs around position j and the output at po-
sition i, where si≠1 is the hidden state from the RNN. There have been several
proposed attention functions, such as Cosine (Graves et al., 2014), Additive (Bridle,
1990), General (Luong et al., 2015) and Dot-product (Luong et al., 2015).

2.1.6.2 Transformers

Among the most notable breakthroughs in the NLP field is the advent of Trans-
formers (Vaswani et al., 2017), an architectural innovation by Google Brain, widely
incorporated in Seq2Seq models. Transformers aimed to overcome the limitations
of previously established methods for sequence modeling, such as RNNs and CNNs,
in terms of both e�ciency and performance. This was achieved with parallelization
and capturing long-range dependencies within sequences. They outperformed all
previous works in two machine translation tasks while requiring notably less train-
ing time.
To gain a deeper understanding of Transformers, we will dive into some key inno-
vations presented by Vaswani et al. (2017), including scaled-dot product attention,
self-attention, and multi-head attention mechanism. Next, we will discuss how these
elements are utilized to form a transformer block. Finally, we will provide a summary
of the overall transformer architecture.

Scaled Dot Product Attention In Transformers, a novel attention mechanism
called ”Scaled Dot-Product Attention” is introduced. Dot-Product attention (Luong
et al., 2015) presents a weakness of vanishing gradients, while the dot products are
getting high values, resulting in extremely small gradients for the softmax function
(Vaswani et al., 2017). To overcome this e�ect, they scale the dot products by the
root of the encoder output dimension.
They also introduce query, key, and value terms and update the definition of the
attention function as the one that maps a query and a set of key-value pairs to an

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

44

Solving MSA using Reinforcement Learning

output. Let Q,K,V be the matrices of query, key, and value, respectively, the scaled
dot-product can be defined as:

Attention(Q,K,V) = softmax
A

QK
T

Ô
dk

B

V (2.42)

where dk is the dimension of queries and keys.

Self-Attention The general attention mechanism works between two sequences.
However, in Transformers, a novel attention mechanism known as Self-Attention is
introduced to capture relationships among elements within a single given sequence.
This practically means that the matrices that depict query, keys, and values are
the same matrix (Q = K = V). This approach holds less computational complexity
while being able to capture dependencies in long sequences. This is particularly
useful for creating a representation of a sequence.

Multihead-Attention In Transformers, a novel attention layer Multi-Head At-
tention layer (MHA) (Equation 2.43) is introduced, which stacks multiple Scaled
Dot-Product Attention layers (Equation 2.42) for h head times that may run in
parallel. Moreover, each query, key, and value is multiplied by a projection weight
matrix, namely, W

Q
,W

K , and W
V . The result of this multiplication is split into

the number of heads to which a Self-Attention is applied. Finally, the result is
concatenated and transformed using a square weight matrix W

O:

MultiHead(Q,K,V) = Concat

Q

cca

Attention
1
QW

Q

1 ,KW
K
1 ,V W

V
1

2

. . . ,

Attention
1
QW

Q

h
,KW

K
h

,V W
V
h

2

R

ddbW
O (2.43)

where W
Q

i
œRdmodel ◊dk ,W

K
i

œRdmodel ◊dk ,W
V
i

œRdmodel ◊dv and W
O

œRhdv◊dmodel

are the projection weight matrices. This technique allows for a stronger and more
complex output representation while each head has the ability to attend to di�erent
segments of the input.

Transformer Block The transformer blocks are the basic component of the
Transformer architecture. The input sequence can not be raw text, so a preparation
step creates the actual input of the Transformer Block. The input sequence is em-
ployed for producing embeddings and positional encodings. Since the Transformers

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

45

Solving MSA using Reinforcement Learning

abandoned the usage of recurrence, the model inherently lacks an understanding of
the position of each element in a sequence. Utilizing Positional Encodings (PE),
they successfully capture positional information inside the sequence, helping the
model track the word order. The summation of the embeddings and the positional
encodings is the encoder’s final input. Specifically, a block consists of a Multihead
Self-Attention layer and a Fully Connected Feed-Forward layer. Both layers are
followed by residual connections (He et al., 2016) around the previous layers and a
Normalization layer (Ba et al., 2016). The whole architecture is presented in Figure
2.3.

Figure 2.3: Transformer Block by Vaswani et al. (2017)

General Architecture The original Transformer, as proposed by Vaswani et al.
(2017), consists of an encoder-decoder architecture. The encoder part comprises
a stack of 6 identical Transformer Blocks. The decoder also comprises a stack
of 6 identical Transformer Blocks with slight modifications. The Transformer is
auto-regressive, while at each timestep, it consumes its previous predictions. The
decoding process is initialized with a Masked Multi-head attention step, which pre-
vents positions from attending to subsequent positions. Subsequently, the decoder
incorporates a cross-attention step, which attends to the encoder output. The cross-
attention is calculated following the formula in Equation 2.43, but in contrast with

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

46

Solving MSA using Reinforcement Learning

self-attention, it employs the encoder output as both queries and keys, with the
decoder’s previous layer output serving as values. This mechanism introduces infor-
mation from the input sequence to the layers of the decoder. Finally, the final layer
is a fully connected feed-forward layer. Similarly to the encoder, all three layers
are followed by residual connections around the previous layers and a normalization
layer. The complete transformer architecture can be shown in Figure 2.4.

Figure 2.4: Transformer Architecture by Vaswani et al. (2017)

2.2 Literature Review

In the past decades, numerous approaches have been introduced for addressing the
MSA problem. Pairwise Alignment is considered the alignment between a pair of
two sequences in contrast with MSA, which involves the alignment of more than
two sequences. Pairwise Alignment can be considered the precursor of MSA. Dy-
namic programming has proven very e�ective for pairwise alignment, but it can be

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

47

Solving MSA using Reinforcement Learning

time-consuming when more sequences are requested to be aligned. On the other
hand, pairwise alignment may be insu�cient in bioinformatics and computational
biology since there is often a need for aligning more than two sequences simultane-
ously. This has led to extensive research on developing more e�cient and flexible
algorithms that can handle multiple sequences.
There have been two main concepts in the Sequence alignment topic-related tech-
niques, namely, global and local alignment.

• Global alignment aims to find the best alignment over the entire length of two
sequences.

• Local alignment, on the other hand, focuses on specific regions. As proposed
by Smith and Waterman (1981), segments of high similarity can be identi-
fied inside sequences. Local alignment is considered beneficial when there are
significant di�erences in the lengths of individual sequences.

Another categorization of the traditional problem approaches can be:

• Exact, which guarantees finding optimal solutions and is usually based on
dynamic programming algorithms,

• Progressive approaches,

• Iterative approaches,

• Consistency-based approaches,

• and others.

2.2.1 Exact Alignment

One of the most famous and historic dynamic programming algorithms for solving
pairwise alignment is proposed by Needleman and Wunsch (1970) and is an exact
alignment. The complexity of this method comes to O(2k

ún
k) where k is the num-

ber of sequences and n is the length of the sequences. This algorithm consists of
three steps. First, a matrix is initialized, then filled using matching and penalty
values, and finally, the sequence alignment is constructed by finding the best path

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

48

Solving MSA using Reinforcement Learning

using traceback 5. Needlman-Wunsch algorithm belongs to the pairwise global align-
ment methods family and was later extended by Murata et al. (1985) to achieve the
alignment of three sequences.
In the following year, Bacon and Anderson (1986) claimed that functional and chem-
ical characteristics of amino acids could be valuable for calculating similarities in se-
quence alignments. They propose a non-binary similarity measure. A set of 8 amino
acid attributes is selected to pass this information. These are structural preference
with subcategories –-helix, —-strand, and —-turn, amphiphilicity with subcategories
hydrophobic and polar, size, and finally, charge with positive and negative subcate-
gories. Each property is set as an axis in a Cartesian coordinate system. Finally, the
similarity score is calculated by scaling the rounded value of the Euclidean distance
minus a positive predefined scaled and rounded constant in the range J0,9K.
Carrillo and Lipman (1988) introduced an approach for reducing the search space.
They claimed that every MSA inherently imposes pairwise alignments on all se-
quence pairs, akin to projecting a path in two-dimensional space. Their strategy also
employs a bounded score for MSAs pairwise combinations (Konagurthu & Stuckey,
2006).

2.2.2 Progressive Alignment

Progressive alignment is a step-by-step hierarchical alignment technique. Sequences
are initially pairwise aligned, and using these intermediate alignments, and then
gradually, more sequences are incorporated into the alignment until all sequences
are aligned into a final alignment. The progressive alignment method is introduced
by Feng and Doolittle (1987). This method involves the computation of a distance
matrix using the Needleman and Wunsch algorithm (Needleman & Wunsch, 1970)
between pairwise alignments and then producing a guided tree to control the align-
ment order. This way, the algorithm prioritizes aligning the most similar sequences
first before proceeding to the less similar ones.
A significant tool, ClustalW, was released by Thompson et al. (1994) and later be-
came the tenth most cited scientific paper of all time by 2014 (Noorden et al., 2014).
This tool’s initial goal was to upgrade the performance of the progressive multiple
alignment method (Feng & Doolittle, 1987) without sacrificing e�ciency and speed.
In ClustalW, it is claimed that the selection of gap penalties is essential, especially
in divergent sequences. This is because, in closely related sequences, any scoring
method works reasonably well due to the dominance of identical residues. To over-

5
A detailed example of Needlman-Wunsch algorithm can be found in section A.2.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

49

Solving MSA using Reinforcement Learning

come this di�culty, they propose a dynamic gap strategy where the gap penalty is
determined by residue and position. At the same time, they also apply A�ne Gap
Penalization (see subsection 3.2.2).
The main drawback of progressive alignment can be summarized by the expression
“once a gap, always a gap”. Progressive alignment methods lack the option for re-
finement and follow a one-way procedure, meaning that prior decisions cannot be
undone. This inflexibility may lead to misalignments due to greediness.

2.2.3 Iterative Alignment

Iterative methods use progressive alignment to compute a sub-optimal intermediate
solution and then optimize this solution by modifying the alignment (Pevsner, 2009).
These methods do not guarantee an optimal solution but are less sensitive and more
flexible than progressive alignment. They are generally an extension of progressive
alignment and can overcome its limitation, which is that once sequences are aligned,
the algorithm cannot revisit or correct earlier alignment decisions. MAFFT tool
by Katoh et al. (2002) includes both progressive alignments using a guide tree and
iterative refinement methods for the entire process, with adjustments to the positions
of gaps and insertions to improve the alignment. To achieve faster alignments while
maintaining high accuracy, it utilizes Fast Fourier Transform (FFT) to rapidly find
homologous segments. They apply modifications in the weight similarity matrix and
gap penalties. Other examples of tree refinement include MUSCLE tool (Edgar,
2004), Dialign tool (Morgenstern, 2004), Praline tool (Simossis & Heringa, 2005),
PRIME tool (Yamada et al., 2006) PRRP (Gotoh, 1996), etc.

2.2.4 Consistency-Based Alignment

Consistency-based methods utilize information about the entire alignment as it is
being generated to guide the pairwise alignments. This information refers to the
posterior probability of a residue aligning with another one. A consistency-based
method was introduced by Notredame et al. (2000), which o�ers slower but more ac-
curate alignments with the goal of overcoming the significant pitfalls arising from the
inherent greediness of this algorithm. This approach, named Tree-based Consistency
Objective Function for alignment Evaluation (T-Co�ee), also generates intermediate
alignments but considers information from all of the sequences during each align-
ment step, not just the ones currently being aligned. T-Co�ee assigns weights in

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

50

Solving MSA using Reinforcement Learning

each pair of aligned residues, indicating the consistency of alignment with residues
from all the other sequences. Other approaches in this category are Probcons (Do
et al., 2005), Probalign (Roshan & Livesay, 2006), L-INS-i variant of MAFFT as
reported by Llados et al. (2021), etc.

2.2.5 Other Approaches

Another interesting approach is the Hybrid Multi-objective Artificial Bee Colony
(HMOABC) by Rubio-Largo et al. (2016). Two objective functions are employed
to cover the quality and consistency of the alignment: Weighted Sum of Pairs with
a�ne gap penalties and Total Column score. This algorithm is based on a swarm-
based evolutionary algorithm, the Artificial Bee Colony (ABC) algorithm, created
by Karaboğa (2005), which imitates the behavior of bees. It is worth noting that
they utilize Kalign2 (Lassmann et al., 2009) as a part of their algorithm to partially
align the sequences. Similarly, Aniba et al. (2010) employs existing aligners as a
foundational element in their algorithm using a traditional AI method, Decision
Trees. They claim that widely used aligners such as ClustalW, Dialign, MAFFT,
MUSCLE, Kalign, and ProbCons present variable strengths and weaknesses based
on the input characteristics. To overcome this di�culty, they developed AlexSys, a
decision tree-based tool that aims to predict the best aligner tool depending on the
input raw alignment.
Edelkamp and Tang (2015) uses MCTS for approaching the MSA task. This time,
in contrast with progressive alignment trees, the root node is empty, and the other
nodes sequentially represent a column in alignment from left to right. Specifically,
the children nodes of the root node are all the possible combinations of the first
column. After each expansion, nodes are created that contain all the possible com-
binations for the next column to the right (Figure 2.5).

2.2.6 Deep Reinforcement Learning Approaches

RL has been first introduced by Mircea et al. (2014) into the field of MSA. Their
algorithm utilizes Q-learning, an o�-policy method, combined with the Needleman
and Wunsch (1970) algorithm. They experience both linear and a�ne gap penaliza-
tion. Their method combines RL with progressive alignment by training an agent
to choose the order of the sequences to align. To overcome the rigidness of aligning
a sequence to a set of already aligned sequences, the alignment happens between the

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

51

Solving MSA using Reinforcement Learning

Figure 2.5: MCTS for MSA by Edelkamp and Tang (2015)

sequence to be aligned and a profile for the set. In this MDP, an action represents
the next state to be selected, and the final goal is to find a path from an initial to a
final state, building a tree. The agent can pick more than once the same sequence,
but in such cases, it receives a high penalty to avoid exploring invalid paths. Again,
Q learning is applied, and for action selection, the ‘-Greedy mechanism is utilized
with a look-ahead step.
Next, Jafari et al. (2019) with the same MDP as Mircea et al. (2014) designs a Long
short-term memory (LSTM) network for Q Values and Asynchronous-Advantage-
Actor-Critic (A3C) algorithm instead of Q learning.
Joeres (2021) utilizes the same MDP as Mircea et al. (2014) and Jafari et al. (2019)
and implements the SARSA algorithm, DQN algorithm (Mnih et al., 2013), A3C,
and UCT algorithm, which represents an enhancement of the MCTS method.
RALIGN, in (Ramakrishnan et al., 2018), is based on a di�erent MDP than the
previous RL approaches, where the agent moves the nucleotides left or right at each
step. Moving a nucleotide involves introducing a gap at its location and prompting
the current nucleotide and all following nucleotides in the designated direction to
shift one position forward. Each state stands to an alignment, and the agent’s re-
ward is calculated using the Sum Of Pairs metric, SP (see subsection 3.2.1). Every
episode contains a fixed number of moves, and the final state selected is the one
where the agent achieved the highest score. This algorithm is trained using A3C
algorithm. Additionally, for sequences with greater length than the fixed model
expected length, a sliding-window heuristic is introduced, applying the model to all
windows within the initial alignment.
DPAMSA, a DRL sequence alignment tool, was introduced by Liu et al. (2023)
recently. In this approach, the agent applies gaps at each timestep per column.
The state is divided into an aligned part for all the previously aligned parts and an
unaligned one for the current and all the successive columns. The agent is trained
using the Q network. The state is flattened into one embedded sequence accompa-
nied by positional encodings. They also use Self-Attention followed by Multilayer

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

52

Solving MSA using Reinforcement Learning

perceptron for calculating the Q values.
None of the aforementioned RL approaches apply a comprehensive comparative
analysis of widely recognized MSA tools (Clustal Omega, MAFFT, MUSCLE) us-
ing the specific SP score parameters that these tools employ for their self-evaluation.
This may lead to an increased performance in the SP score of RL agents as seen in
(Joeres, 2021) compared to the other scores as Totally Conserved or Column (TC)
score where no special parameters di�erentiate the objective.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

53

Chapter 3

MSA Definition and Score Metrics

3.1 Problem Definition

This section presents a clear definition of the MSA problem. The problem is defined
for DNA sequence MSAs but can be easily adapted to RNA and protein sequences.
DNA is a double-stranded, helical molecule constructed from nucleotides, also known
as mononucleotides. These nucleotides comprise three essential components: a phos-
phate group, a pentose sugar, and a nitrogenous base. The nitrogenous bases can
be categorized into two groups: purines and pyrimidines. There are two purines,
adenine and guanine, and three pyrimidines, cytosine, thymine, and uracil, that are
present in nucleic acids. In DNA, there are four distinct types of nucleotides, namely
adenine (A), thymine (T), guanine (G), and cytosine (C) (Klug et al., 2012) .
Let �DNA= {A,T,G,C} be the set of available letters that can be found in DNA
sequences.
An updated set will be defined, including the hyphen symbol ≠, corresponding to a
gap between two letters. Set �Õ

DNA
can be defined as the union of two sets :

�Õ
DNA = {≠}fi{A,T,G,C}

Alternatively, we can rewrite it as:

�Õ
DNA = {≠}fi�DNA

54

Solving MSA using Reinforcement Learning

Let m be the number of sequences requested to be aligned : Seq1,Seq2,Seq3, . . . ,Seqm

where m > 2. Each sequence Seqi has an arbitrary length li and is represented by
a tuple of letters from set �DNA so that each element of tuples Seqi œ �DNA.
Moreover, each element within a sequence will be denoted by the symbol c

1.

Seq1 :
1
c

1
1, c

1
2, c

1
3, . . . , c

1
l1

2

Seq2 :
1
c

2
1, c

2
2, c

2
3, . . . , c

2
l2

2

...
Seqm :

1
c

m

1 , s
m

2 , c
m

3 , . . . , c
m

lm

2

For achieving standardization of sequence lengths, the following method is employed.
Given a set of sequences Seq1,Seq2, ...Seqm, maximum length lmax is utilized for
padding all sequences to it. Sequences are padded to the left using the hyphen gap
symbol ≠.

lmax = max(l1, l2, ..lm)

Seq1 :
1
c

1
1, c

1
2, c

1
3, . . . , c

1
lmax

2

Seq2 :
1
c

2
1, c

2
2, c

2
3, . . . , c

2
lmax

2

...
Seqm :

1
c

m

1 , c
m

2 , c
m

3 , . . . , c
m

lmax

2

The output of the MSA will be an updated set of Seq
Õ
1,Seq

Õ
2, ...,Seq

Õ
m tuples, derived

from adding gaps in selected positions of the initial Seq1,Seq2, ...,Seqm. In this case,
each sequence Seq

Õ
i

will be a tuple of elements that belong to the updated set �Õ
DNA

.
It is essential to find a sophisticated way to select the positions to add gaps to get
an optimal MSA. The output sequences always have a greater or equal length with
the initial Seqs, |Seqs| Æ |Seqs

Õ
|.

3.2 Score Metrics

Metrics are essential for assessing the quality of MSAs. In an ideal scenario, a higher
score signifies a stronger biological relevance. One of the significant challenges in

1
This notation is chosen to prevent any possible confusion with the state notation introduced

earlier in Section 2.1.2

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

55

Solving MSA using Reinforcement Learning

addressing the MSA problem is that it is missing a global function for quantifying
the quality of an alignment. Over the years, researchers have proposed di�erent
score measures or even a combination of those. Defining a score metric for MSA
that can be accurate and easy to calculate can be tricky. The current section will
define three of the most important score metrics for MSA and provide descriptions
of some variations of those.

3.2.1 Sum of Pairs Score

The Sum of Pairs (SP) score, introduced by Carrillo and Lipman (1988), stands out
as one of the most commonly used metrics for quality alignment calculation. This
scoring method is widely adopted in the context of MSA and is utilized by popular
alignment tools such as Clustal Omega (Sievers et al., 2011), MAFFT (Katoh et al.,
2002), MUSCLE (Edgar, 2004), etc. The score can be formulated as:

SP =
lmaxÿ

i=1

m≠1ÿ

j=1

mÿ

k=1
sp(cj

i
, c

k

i) with sp(cj

i
, c

k

i) =

Y
_____]

_____[

gg, if c
j

i
= c

k
i

= ≠

ll, if c
j

i
= c

k
i

lg, if c
j

i
= ≠ or c

k
i

= ≠

ldl if c
j

i
”= c

k
i

(3.1)

where lmax is the total number of columns, m is the number of sequences, sp(cj

i
, c

k
i
)

represents the score for pair (cj

i
, c

k
i
) (Jafari et al., 2019). Moreover, the constants

gg, ll, lg, and ldl œ R are parameters that represent di�erent conditions.
It’s important to note that these scoring parameters may vary in the literature, and
di�erent studies use di�erent values for these conditions. For example, in Thompson
et al. (1994), each residue matching (ll) contributes 1 point, and for any other case,
it is 0. Lall and Tallur (2023), on the other hand, for each residue matching, the
output is 1 point, but for mismatching, there is a penalty of 0.6. Jafari et al. (2019)
and Joeres (2021) propose 2 points for each residue match, -2 points for each residue
mismatch (ldl), -1 point for each residue-gap occurrence (lg), and 0 points in any
other case. Finally, Liu et al. (2023) proposes 4 points for each residue match and
-4 points for every mismatch.
In the evaluation process, particularly when comparing with other studies-aligners,
it’s essential to be aware of those scoring parameters. Ignoring them can result in
inconsistent comparisons based on di�erent criteria.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

56

Solving MSA using Reinforcement Learning

3.2.1.1 Weighted Sum of Pairs

In some cases, SP score can be expanded into a Weighted Sum of Pairs (WSP)
(Rubio-Largo et al., 2016) where each pair (cj

i
, c

k
i
) can be multiplied with a weight

if it is believed to show more interest. In general, WSP allows inserting specific
criteria or preferences into the scoring of residue pairs in an MSA. For example, it
may be more exciting or biologically relevant to catch a match after 20 continuous
pair matches compared to finding a match after only three matches.

3.2.2 Gap Penalty

Gap Penalty is a negative score and is a way for scoring MSAs. In general, adding a
gap while applying an MSA is expected and can indicate an insertion or a deletion
of a residue, and by adding gaps, an optimal alignment can be found. Based on the
hypothesis that excessively fragmenting the sequences in an MSA can diminish the
information contributed by the sequences, the use of gap penalization is intended to
reduce the excessive accumulation of gaps within an alignment. This cost is typi-
cally subtracted from the SP score and cannot serve as an objective on its own. To
adjust the proportion of gaps added, inserting gaps is penalized using four methods,
namely, constant, linear, convex, a�ne, and profile-based.

Constant Gap Penalization represents the simplest way of gap penalization.
In this case, a single gap penalty constant is applied each time a sequence is split
using a gap. We define this cost as the gap opening (denoted as go) cost.

GC := dogo (3.2)

where do is the total number of splits of the sequences within the MSA.

Linear Gap Penalization increases linearly with respect to the number of gaps
added in the MSA. We may define ga as the cost of any gap. Note that in this
method, the total penalty will be the same for a single large gap with many small
gaps. For example, in Figure 3.1, both options of gap insertions will lead to the
same gap penalty.

GC := daga (3.3)

where da is the total number of applied gaps within the MSA.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

57

Solving MSA using Reinforcement Learning

Figure 3.1: Example of two di�erent gap insertions that will be equally penalized
in linear gap penalization

Convex Gap Penalization utilizes a concave gap penalty function as a more
advanced version of Linear Gap Penalization. This method is not widely employed
since it is slower to calculate, and there is uncertainty regarding its potential to
improve the accuracy of an alignment (Ranwez & Chantret, 2020).

A�ne Gap Penalization is the most widely used method among the previous
ones. (Rasmussen & Krink, 2003). Konagurthu and Stuckey (2006) claims that
a�ne gap costs have been shown to be more accurate than linear gap penalties.
This approach diverges gaps into two groups, the opening and extending gaps. For
every instance where a sequence in the alignment is split, indicating the presence of
one or more gaps between two letters, a cost of go + (⁄≠1)ge is calculated, where
go is the gap opening cost and ge is the gap extension cost, and ⁄ the gap length.
Based on this logic, we define the GC for being applicable to the whole MSA such
as:

GC :=
lmaxÿ

i=1

mÿ

j=1
gc(cj

i
) with gc(cj

i
) =

Y
__]

__[

0 if c
j

i
”= ≠

ge, else if i > 1 and c
j

i≠1 = ≠

go, else
(3.4)

Similarly to SP parameters go and ge vary in literature. For example, in (Rubio-
Largo et al., 2016), following the Blocks substitution matrix (BLOSUM) 62, gap
opening is proposed to be six and gap extension 0.85. In the work of Lall and Tallur
(2023), the gap opening cost is 1, while the gap extension cost is 0.4.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

58

Solving MSA using Reinforcement Learning

3.2.3 Totally Conserved Score

The Totally Conserved or Column (TC) Score refers to the sum of the columns
of a sequence alignment where all the residues (nucleotides or amino acids) match
precisely. It can be formulated as:

T C :=
lmaxÿ

i=1
tci with tci =

Y
]

[
1 if all residues match
0 else

(3.5)

where lmax is the total number of columns (see section 3.1).

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

59

Chapter 4

IntellAlign Materials and Methods

This section presents and extensively discusses the materials and methods for Intel-
lAlign, a novel approach for solving MSA.

4.1 RL Environment Construction

4.1.1 State Definition

A matrix of letters initially represents an MSA. In an MSA matrix, each row cor-
responds to one sequence, and each column represents a position in the alignment.
For this reason, a proper data preprocessing stage is required to utilize them in any
deep learning application. The representation is based on traditional NLP encod-
ing methods where each letter corresponds to a token in a predefined dictionary
of words. These letters are then mapped to unique integers. In our architecture,
the sequences are concatenated into a single flattened sequence with an end token
between sequences to distinguish them. Let < END > be the end token. Each
sequence is followed by < END > at the end. Moreover, all sequences are padded
to the same length lmax, which will be the maximum sequence length found in the
alignment, using < GAP > tokens. Next, we add a < STOP > token at the be-
ginning of the alignment. The purpose of the < STOP > token is to provide the
agent with the option to terminate the alignment at any point rather than being

60

Solving MSA using Reinforcement Learning

Figure 4.1: Encoding Scheme

limited to a predefined number of steps. < STOP > token utility will be further
explained in the next subsection. The resulting sequence represents the state of the
environment at timestep t and is defined as:

St :
3

STOP,c
1
1, c

1
2, . . . , c

1
lmaxt

,END,

. . . ,

c
m

1 , c
m

2 , . . . , c
m

lmaxt
,END

4
(4.1)

The maximum sequence length lmaxt may also increase during di�erent timesteps.
The final representation is a flat sequence consisting of all sub-sequences, as shown
in the example in Figure 4.1 1.

4.1.2 Action Space

In the given scenario, available actions may categorized roughly into two categories:
first involves inserting a gap, which entails selecting a specific position to introduce
a gap, causing the remainder of the sequence to shift to the right. The second one
allows the agent to finalize the alignment by stopping the alignment process. The
action space At (Equation 4.2) is represented as a tuple of an arbitrary length at
each step t, precisely matched with the length n of St.
Let At (equation 4.2) be the action space, represented as a tuple of integers ranging
from 0 to n≠1, of an arbitrary length at each step t, precisely matched with the
length n of St. At each timestep t, the agent picks an action from At where action 0
maps to the < STOP > token indicating the end of the game while all other integers

1
To enhance the figures’ visual appeal and comprehensibility, these conventions are applied to

the MSA representation, where ‘S’ signifies the stop token < STOP >, ‘-’ denotes the gap token

< GAP >, and ‘E’ is equivalent to < END > token, highlighted in red color

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

61

Solving MSA using Reinforcement Learning

indicate the position for adding a gap in St. See section A.3 for an example case.

n = (lmax +1) ·m+1
At := (0,1, . . . ,n≠1) (4.2)

4.1.3 Transition

For a given action At, at timestep t, the state St transitions to St+1 = F(St,At) where
F : S ◊A æ S, in a deterministic manner following the state transition function.

Insert(St, i) := St[0 : i]+GAP+St[i+1 : n] (4.3)

St+1 = F(St,At) :=

Y
]

[
St if At = 0
Insert(St,At) if At ”= 0

(4.4)

At each timestep t, it is essential to ensure that all sub-sequences maintain the same
length inside St while adding new gaps. A specific strategy is followed to extend
Equation 4.4 to achieve this. After inserting a gap to a chosen point on a sequence,
all sequences are padded with a GAP at the end, except for the one requested to
add a gap. Through this process, all sequences maintain the same length. If, as
a side e�ect of the previous strategy, the last index of all sequences results being
a < GAP >, the last column is dropped, and: |St+1| = |St|, lmax,t+1 = lmax,t. We
present the complete transition strategy in Algorithm 2 2.

4.1.4 Terminal Gaps

Terminal Gaps are defined as the ones that are attempted to be added at the end
of the alignment. Adding gaps at the end of a sequence is considered undesired and
useless for the alignment. However, drawing inspiration from Schrittwieser et al.
(2020), we opt not to restrict this action to pass domain knowledge of MSA to the
agent. Therefore, for the sake of flexibility and for maintaining loose rules for the
agent, we allow the agent to add gaps at the end of the MSA, and this will transition
the state St into a state St+1 with a new column at the end full of gaps. The game
will automatically end if the agent applies a terminal gap with a high penalty value.

2
see section A.4 for a visual example of state transition

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

62

Solving MSA using Reinforcement Learning

4.1.5 Complete Column Gaps

Complete Column Gaps (CCG) are the ones that result in a column where all
elements are gaps. Columns where all elements are gaps are considered undesired
and o�er no insight for the MSA. Similarly to Terminal Gaps, we do not restrict
this movement, but the game automatically ends after this transition accompanied
by a high penalty value. This functionality operates as a boolean hyperparameter
in our algorithm and thus is not utilized in all the experiments.

Algorithm 2 State Transition
Input: At œ [0,n]flZ
Input: m Ø 3 Û number of sequences
Input: St

Input: lmax

St+1 Ω St

if At ”= 0 then Û if the agent doesn’t decide to stop
picked seq Ω Â

At≠1
lmax

Ê Û sequence that the agent wants to modify
last e Ω St[lmax(picked seq +1)≠1] Û last element of that sequence
St+1 Ω Insert(St+1,At) Û Insert gap
if last e = GAP then

St+1 Ω Remove(St+1, lmax(picked seq +1))
else

for i = 0, ...,m≠1 do
if i ”= picked seq then Û Padding Step

St+1 Ω Insert(St+1, lmax(i+1)+ i) Û Insert gap
end if

end for
end if

end if

4.1.6 Reward

We design an episodic reward, R
a
s so that the agent would get a final reward at

the end of each episode. The reward depends only on the final state of the episode.
Selecting the reward function is challenging, as we aim to compete with other align-
ers. This challenge is compounded by the lack of a universally accepted objective

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

63

Solving MSA using Reinforcement Learning

function for addressing the MSA problem. We propose a multi-objective function
compounded by the two main scoring schemes, namely, SP and T C. The SP score
can be extended with a�ne gap penalization by setting ge œR,ge > 0, go œR,go > 0.

R
a

s := SPs ≠GCs +–T Cs (4.5)

that can be expanded as :

R
a

s :=
lmaxÿ

i=1

Q

a
m≠1ÿ

j=1

mÿ

k=1
sp(cj

i
, c

k

i)≠

mÿ

j=1
gc(cj

i
)+–tci

R

b

with sp(cj

i
, c

k

i) =

Y
]

[
1, if c

j

i
= c

k
i

0, else

with gc(cj

i
) =

Y
__]

__[

0, if c
j

i
”= ≠

ge, else if i > 1 and c
j

i≠1 = ≠

go, else

with tci =

Y
]

[
1, if all residues match
0, else

(4.6)

In Equation 4.6, a multi-objective reward function is presented where ge is the gap
extension penalty and go is the gap opening penalty. Moreover, we employ a scaling
factor – for controlling the magnitude of T C. For sp and tc, we select the same
parameters as proposed by Thompson et al. (1999) where for sp, each residue match
counts as one point while zero points are returned in any other case, and tc gets one
point for a complete column match.
Note that we want to help the agent learn that adding terminal gaps (see subsec-
tion 4.1.4) and creating columns full of gaps (see subsection 4.1.5) is undesired.
To achieve this, the state will not pass through the multi-objective R, but a high
penalty of -100000 will be returned on the spot as a reward. Another technique
would be masking those actions to restrict the agent from selecting them. Although
this could be a solution in our case, calculating masks at each timestep might be
computationally expensive. Consider that for generating masks at each timestep, we
would have needed to calculate the outcome of each possible action selection for a
given budget of simulations and a given maximum number of moves per simulation.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

64

Solving MSA using Reinforcement Learning

4.1.7 Game Steps

Considering the action space previously discussed, solving an MSA can involve vary-
ing numbers of steps to reach an optimal alignment. Determining the exact number
of moves required is challenging due to several factors, such as the number of se-
quences, their lengths, and their similarities. We consider MSA as a game with
a dynamically changing initial setup, where the required number of moves to win
varies each time. Moreover, the winning state is unknown.
To determine when to terminate the game, we employ two strategies. The first one
gives the agent the option to stop the game at any point by selecting action 0 (see
subsection 4.1.2), and the second one involves using the parameter stepsratio. In
the second strategy, we set the maximum number of steps to stepsratio · |S0| where
stepsratio œ (0,1].

4.2 Model Architecture

Our method uses a State Encoder Network f for encoding the sequences. A policy
p and a value h network are also designed, sharing the same encoder part f in a
stacked fashion: fi◊(s) = p(f(s)) and V‹(s) = h(f(s)) . Parameters ◊ and ‹ are the
initialization parameters of the networks. This network receives the MSA repre-
sentation, aka state, and predicts the policy logits and a value. In AlphaZero, the
predicted value corresponded to a scalar estimation of the likelihood of winning the
game from the current position st. In contrast with games like chess, shogi, and Go,
where the goal is to win, draw, or lose the game, the outcome of MSA is determined
by accumulating points, so in our problem, the value estimates the expected num-
ber of points instead of the probability of winning. The number of available actions
for each game moment maps to the length of the current state. One of our main
challenges for the network is that probabilities’ output shape depends on the input
state. Furthermore, an additional challenge for the network to address is that the
input state has a variable length in each timestep since the player can add a gap at
each timestep, which will ascend the length of the MSA by one.
Inspired by Kool et al. (2018), the encoder-decoder architecture is based on Atten-
tion and a Glimpse-Pointer mechanism. The policy and value networks share the
shame encoding part but di�er in the decoder. In the following subsections, the
network components are described in detail.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

65

Solving MSA using Reinforcement Learning

4.2.1 Encoder

4.2.1.1 Encodings-LookUp Embeddings

We design our encoder similar to the architecture proposed by Vaswani et al. (2017),
which utilizes positional encodings such that the resulting embeddings are variant
to the order. We utilize two types of positional encodings to inject some positional
information into the model. Our encodings include information regarding which sub-
sequence that the letter belongs to posseq and its position within the sub-sequence
by possubseq. The output of the encodings is a triple of tuples. We may define them
as:

E = (etoken,posseq,possubseq) (4.7)

For example, for a given flattened set of sequences at a given timestep t,
St = (STOP,A,T,T,A,T,END,T,G,T,A,G,END,T,A,G,≠,≠,END) the result-
ing encoding will be

((0,1,4,4,1,4,5,4,3,4,1,3,5,4,1,3,6,6,5),
(0,1,2,3,4,5,6,1,2,3,4,5,6,1,2,3,4,5,6),
(0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3))

Let gú(eú) be the embedding function with parameters Wú and argument eú. For
example, gtoken(etoken) has parameters Wtoken. Each trainable matrix has dimen-
sions as:

Wtoken œ Rv◊d

Wseq œ Rm◊d

Wsubseq œ Rl◊d

where v is the token vocabulary length, m is the maximum number of sequences, l

is the maximum sequence length length and d is the embedding dimension.
Encoded tuples are passed from g resulting on a triple of simple lookup embedding
vectors : (Embtoken,Embseq,Embsubseq) of d dimensional Emb œ R weights for each
token.

Embtoken = gtoken(etoken)
Embseq = gseq(posseq)

Embsubseq = gsubseq(possubseq)

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

66

Solving MSA using Reinforcement Learning

We aggregate those Emp vectors using element-wise addition into one vector, de-
noted as star embedding, Eú. The learnable star, Eú œRd̃ (equation 4.8), where d̃ is
the latent space dimension. Finally, each token of the input sequence is represented
by a 1◊ d̃ vector.

Eú = Embtoken +Embseq +Embsubseq (4.8)

4.2.1.2 State Encoder Network

Let f : S œ Rd̃ be the State Encoder Network. The state encoder network f consists
of Transformer Blocks. Using encoder structure logic as proposed in Vaswani et al.
(2017), the blocks comprise a stack of five identical layers. We use circumflex to
represent the output of each block as a new estimation of our embeddings.
The aggregated embedding Eú serves as the input of network t. Each Transformer
Block consists of several layers. First Eú passes a Normalization layer (LN) (Ba
et al., 2016), which outputs the normalized Eúnorm (see equation 4.9). The output
Eúnorm is passed from a Multihead Self-Attention of which the output is aggregated
with Eú and passed through another LN (see 4.10).

Eúnorm = LN(Eú) (4.9)

‚E = LN(E ú+MultiHead(Q = Eúnorm,K = Eúnorm,V = Eúnorm)) (4.10)

where Multihead Self-Attention consists of 8 heads. We use a dropout for preventing
overfitting with a probability of randomly omitted units of 0.01 (Hinton et al., 2012).
Then ‚E is fed into a Feed-Forward network FF , added to itself such as:

E = ‚E +FF (‚E) (4.11)

After the Transformer Blocks, there is one last step, where the encoder computes
the state embedding C (, denoted as AVG Context Embedding in Figure 4.2). Here,
we want to encapsulate the entire state of the environment with an embedding of a
fixed shape, and to achieve this, we average E and retrieve a unified vector C, as
defined in equation 4.12. Note that |C| = d ensures the context vector maintains a
consistent and unchanging shape, regardless of the dynamic input states.

C œ Rd = 1
L

Lÿ

i=1
Ei where L is the sequence length (4.12)

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

67

Solving MSA using Reinforcement Learning

Figure 4.2: State Encoder Network Architecture

For the State Encoder Network, FF is a type of multilayer perceptron (MLP) with
the same input and output dimensions along with a hidden layer that has a size four
times the input dimension. This network employs the GELU activation function
within its architecture (Hendrycks & Gimpel, 2016). Figure 4.2 summarizes the
complete State Encoder Network architecture.

4.2.2 Decoder

For a given state s, the encoder generates Es and Cs, with Cs, capturing the char-
acteristics of the entire state. Since the training algorithm is based on the Gumbel
AlphaZero approach, a value head and a policy head are introduced. The value

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

68

Solving MSA using Reinforcement Learning

and policy networks share the same encoding part t but are followed by value head
h‹ : Rd̃

,RL
◊Rd̃

æ R and policy head p◊ : Rd̃
,RL

◊Rd̃
æ RL.

The policy network in our problem shares similarities with rooting problems that
Kool et al. (2018) focused on. In their work on the Traveling Salesman Problem
(TSP), the decoder points to specific nodes to visit next and generates predictions
sequentially using node and context embeddings while masking previously visited
nodes. Similarly, we aim to point out positions to add a gap, but the input state
size varies at each timestep.
Decoding, in our case, occurs sequentially with dynamic embeddings updated at
each timestep. Unlike the TSP algorithm by Kool et al. (2018), our proposed MSA
(policy) decoder does not employ any masks. The policy vector augments at each
timestep while selecting a point at the previous timestep is equivalent to inserting
a gap token into the sequence.

4.2.2.1 Policy head

The policy head, p, aims to generate a probability vector that indicates the most
suitable index within our input sequence to select. Following the model’s position
selection, a gap is introduced, causing the sequence to shift to the right starting
from that point. A Glimpse-Pointing Mechanism is utilized similar to Kool et al.
(2019).

Glimpse mechanism Vinyals et al. (2016) introduces an attention step before
the pointer mechanism called glimpse. Similarly, we utilize a MHA layer (Equa-
tion 4.13) as a glimpse, producing a new context embedding C

Õ. The Attention
takes as input a query vector Q = C œ Rd̃ and E as a set of reference vectors
E = {E1, . . . ,EL} where Ei œ Rd̃.

C
Õ = MultiHead(Q = C,K = E,V = E) (4.13)

where Multihead Self-Attention consists of 8 heads. As reported by Bello et al.
(2016), glimpsing more than once may not help the model improve when using
the same parameters, so we use one attention glimpse step before the pointing
mechanism.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

69

Solving MSA using Reinforcement Learning

Pointer mechanism A final Singlehead Attention layer is introduced to our de-
coder policy head, p, where the state representation Cs serves the query vector and
the key-value vectors are represented by Es. Similarly to Bello et al. (2016), the
pointing mechanism produces a probability distribution over the next index in the
sequence to which an action should be applied.
Singlehead weights, ui are computed similarly to Bello et al. (2016) and Kool et al.
(2018):

ui = F · tanh((W q
C

Õ)T (W k
E)

Ô

d̃

) where u1, . . . ,uL œ [≠F,F] ™ {R} (4.14)

F is a constant that controls the range of the policy logits set to 10. Generally,
ui represents the logit of the probability of adding a gap in a specified position
in the input sequence or ending the alignment (for zero index). This serves the
policy vector fi(a|s). This final layer enables variable length input-output and is
particularly e�ective when the output length matches the input length. The main
characteristic we share with TSP as seen in Kool et al. (2018) is that each timestep
input length matches the output length.

4.2.2.2 Value head

The value head, h, is structured much like the policy head, but instead of producing
a vector, it predicts a single real number as the prediction. Initially, it uses a MHA
layer and then a simple FF network (see equation 4.15).

FeedForward The FF network will applied a MHA layer for value head. This FF
is implemented as a multilayer perceptron (MLP) featuring a series of linear trans-
formation layers followed by non-linear activations (GELU) (Hendrycks & Gimpel,
2016) introducing non-linearity into the network in a stacked fashion. This FF net-
work initially expands the output dimension four times the input dimension, then
maintains this intermediate dimension, and finally reduces the output dimension to
a scalar value:

h = FF(MultiHead(Q = C,K = E,V = E)) (4.15)

where Multihead Self-Attention consists of 8 heads.
The complete design of the decoder’s value and policy head architecture is illustrated
in Figure 4.3.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

70

Solving MSA using Reinforcement Learning

Figure 4.3: Value head and Policy Head Structure

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

71

Chapter 5

Experimental Results

5.1 Experimental Goal

Various solutions with distinct strategies have been proposed for solving MSA. Most
solvers 1, are based on heuristic approaches for addressing the problem. Notably,
DRL is a less commonly used approach in this domain. Many existing DRL ap-
proaches (Jafari et al., 2019; Joeres, 2021; Mircea et al., 2014) utilize the same
MDP where the agent’s task is selecting the order of sequences to align rather than
adding direct gaps. In contrast, in RLALIGN (Ramakrishnan et al., 2018), the
agent actually applies direct modifications as actions to the sequences. However,
RLALIGN uses an architecture of a fixed input shape and applies it as a sliding
window in sub-parts of the MSA for generating candidate actions. Even though the
chosen action is one that maximizes a global score, this strategy raises the limitation
of relying on localized information to generate policies. Another limitation is that
RLALIGN allows the agent to perform a fixed number of steps, in contrast with our
introduced strategy, which allows the agent to stop the game at any time. Addition-
ally, none of the aforementioned and other DRL approaches, such as DPAMSA (Liu
et al., 2023) utilize the same parameters for the evaluation metrics as some major
MSA tools (Clustal Omega, MAFFT, MUSCLE) to create a fair comparison.
We aim to leverage NLP techniques to achieve flexibility in handling variable input

1
for example MAFFT by Katoh et al. (2002), MUSCLE by Edgar (2004), T-Co�ee by

Notredame et al. (2000), ClustalW by Thompson et al. (1994), Clustal Omega by Sievers et al.

(2011), DIALIGN by Morgenstern (2004), etc.

72

Solving MSA using Reinforcement Learning

sizes and use an MDP to enable an agent to build robust policies for addressing
MSA by strategically introducing gaps.
Our primary goal is to train an RL Agent using GAZ algorithm and NLP techniques
to learn using self-play without any previous knowledge. We also aim to create a
comparison with some widely known heuristic MSA solvers. We utilize a multiob-
jective reward function where we want to explore how variations in reward function
parameters impact the performance of the RL agent. Note that we are not inter-
ested in maximizing only one metric (SP or TC) since our competitors present both
metrics in their evaluation. Additionally, we investigate the impact of concepts like
punishing complete column gaps or adjusting the ratio of the maximum number of
steps per episode. Furthermore, we want to evaluate the influence of introducing
synthetic data as training examples on the generalization capabilities of our agent.
Finally, an in-depth comparison is complicated for several reasons, primarily due to
variations in dataset selection, especially when working with DNA sequences and
the chosen optimization objectives. Di�erent objectives lead to di�erent solutions,
making direct comparisons more complex. To ensure a fair comparison, we select
some of the most widely recognized aligner tools and apply the same evaluation
metrics proposed for comparison by Thompson et al. (1999). We also apply a qual-
itative analysis of the MSAs to understand our aligning strengths and weaknesses
or common strategies.

5.1.1 Data Acquisition

We utilize the Biopython tool (Chapman & Chang, 2000) to acquire DNA sequence
data. Biopython tool provides code to access the National Center for Biotechnol-
ogy Information (NCBI) using the Entrez package. Entrez is a molecular biol-
ogy database system that provides access to nucleotide and protein sequence data
(Schuler et al., 1996). From a total number of 38 databases for DNA and protein
sequences, we utilize “nuccore” to download data in FASTA format (Pearson &
Lipman, 1988). Only the “sequence length” criterion is applied for querying DNA
sequence data from NCBI to ensure unbiased data collection. A local collection
of sequences of length 10 is subsequently created in batched FASTA files. DNA
sequences can generally contain 18 possible letters since they may also contain spe-
cial characters apart from the four bases: adenine, guanine, cytosine, and thymine.
In the acquired sequences, we apply a filter to retain only the sequences that are
composed explicitly of the four nucleotide letters. Last, the remaining number of
sequences of length 10 after filtering is 118825.
The ML pipeline involves generating MSAs by both sequences constructed by ran-

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

73

Solving MSA using Reinforcement Learning

domly generated letters and authentic sequences from the local collection. This
process employs an adjustable data ratio ratioreal/fake œ (0,1] to control the bal-
ance between real and synthetic sequences. For the generation of validation and
test datasets, the ratio is set to one, as we aim to apply a fair evaluation exclusively
on authentic MSAs. During the training stage, ratioreal/fake is considered a hyper-
parameter, and we experiment with variable values.
All samples contain from 4 to 5 sequences with a length of 10. The training data
are generated on the fly. The validation set is used as a baseline for keeping the
best model. Both validation and test sets comprise of 256 number of sample MSAs.
For the creation of validation and test sets, an initial set of 512 samples is gener-
ated randomly. Subsequently, half of these samples are sampled randomly for the
validation set, and the remaining 256 are used for constructing the test set.

5.2 Competitors

We compare our approach using three well-established aligners. We utilize the ap-
plication subpackage of Biotite by Kunzmann and Hamacher (2018), which o�ers
interfaces to external software from which we utilize MUSCLE (Edgar, 2004) (ver-
sion 3.8.31), MAFFT (Katoh et al., 2002), and Clustal Omega (Sievers & Higgins,
2018) using default options 2.
To compare validly, the methodology that those tools use to evaluate themselves is
studied and produced similarly to make a fair comparison. In pursuit of a mean-
ingful and equitable comparison, we analyze the datasets each aligner tool uses for
self-evaluation and the metrics it seeks to maximize. Our investigation reveals that
they all utilized SPR and T C scores. The SPR score is defined in Equation A.2,
and it is essentially the ratio of the SP score achieved by the tool to the SPr score
obtained from a reference alignment. Regarding the SP score, all aligners apply
one value for matching and 0 for all other cases. All competitors are evaluated in
proteins and utilized protein reference alignment datasets 3.

2
For MAFFT tool, the –auto flag is enabled, which facilitates automated selection over a set of

programs. This flag chooses a consistency-based program (L-INS-i) in a small number and lengths

of sequences (Katoh et al., 2002).

3
For additional details, we refer to section A.6.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

74

Solving MSA using Reinforcement Learning

5.3 Setup

5.3.1 Training Loop

We train the agent using an improved version of AlphaZero, GAZ, to obtain maxi-
mum performance using a relatively small number of simulations. We utilize multiple
playing processes for playing games with periodically updated network checkpoints.
We update our network checkpoints every 600 training steps using the 256 fixed
initial states from the validation step to play. Moreover, we continuously update
network weights through the learning process of Gumbel MCTS. A visual represen-
tation of the training loop can be found in section A.7.

5.3.2 Reward

For the multiobjective reward function R
a
s (as described in Equation 4.5), we explore

di�erent parameters for –, go and ge. When setting go and ge other than zero, we
introduce an a�ne gap penalization with go > ge.

5.3.3 Replay Bu�er

At each episode, the agent generates experience, which is stored in the Replay
Bu�er when the episode finishes. The elements stored include tuples of states and
the improved policies from Gumbel MCTS at each step, along with the actual game
outcomes such as (st,fi

Õ(st)),(st, zt).

5.3.4 Loss Functions

The policy fi◊ and value V‚ networks are trained using the historic states that
occurred from the interaction with the environment sampled from the replay bu�er.
Equivalent to Gumbel AlphaZero, the loss function for policy network fi◊ is the KL
divergence, and the loss function for the value network is the MSE.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

75

Solving MSA using Reinforcement Learning

5.3.5 Gumbel Sequential Halving

For the Gumbel trick, a maximum of m = 16 actions are sampled without replace-
ment at the root of GAZ’s search tree. A simulation budget of 200 in the tree search
is utilized in almost all the experiments 4. These are the default values as proposed
by Danihelka et al. (2022).

5.3.6 Hyperparameters

For all the conducted experiments, the replay bu�er retains information from the
most recent 1500 episodes for almost all our experiments. We also employed a replay
bu�er of the 2000 most recent episodes for certain experiments. We employ the
Adam optimizer as described by Kingma and Ba (2014), with a fixed learning rate of
0.0001. During each training step, we draw batches of 512 samples. Finally, similarly
to AlphaZero (Equation 2.29), gradients are clipped to have a maximum L2 ≠norm

of 1. The agent plays 80k episodes, maintaining the ratio of approximately two
optimizer steps for every played episode. For the network architecture (as described
in section 4.2), we use a latent dimension of 256 in all experiments.

5.4 Evaluation metrics

During training, we explore di�erent parameters for formulating the reward function.
As previously discussed, all of the aforementioned aligners use SPR and T C as
proposed by Thompson et al. (1999) for evaluation. SPR is a fraction since it
is calculated relatively to a target-aligned reference set. Since we do not use any
target or reference dataset, we drop the scaling part and count raw SP with the
same parameters. On the other hand, T C score is not a relative metric, and it is
also included in the evaluation.

4
We conducted one experiment with a higher simulation budget of 300.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

76

Solving MSA using Reinforcement Learning

5.5 Results

In this section, we present the results from the experiments in comparison with three
established aligners. Our experimental configurations encompass several elements,
including tuning parameters such as –, go, and ge in the scoring function. Specifi-
cally, go and ge are employed for gap penalization. For the – parameter, we use the
value of one in settings 9 and 10 and multiples of ten (10, 20) in all other settings.
A consistent batch size of 512 is generally employed, with one experiment using a
batch size of 1024. All experiments employ 200 simulations in the MCTS, except
for setting 10, with increased simulations of 300. Furthermore, we explore training
the agent with and without CCG. We also vary the maximum number of allowed
steps by tuning stepsratio based on the observed behavior of Clustal Omega on the
validation set. We find a rough average of added gaps in each alignment is about 20
percent of the flattened MSA initial length. Subsequently, we select stepsratio from
a range spanning 0.25 to 0.5. Finally, we fine-tune the ratioreal/fake parameter,
adjusting it within the range of 0.8 to 1 to manage the balance between real and
synthetic training examples. We add only a small proportion of synthetic data to
boost the diversity of training examples, aiming for a better model generalization.
However, in setting 8, we deliberately reduce this proportion to half of the samples
to observe the impact on the learning process.
A summary of our experimental findings can be found in Table 5.1. The competitor
aligner tools are ranked according to their scores, with Clustal Omega leading, then
MAFFT, and MUSCLE ranking last. The second half of the table displays various
experiment settings. The last four columns include the scoring metrics, namely, SP
and TC averaged and summed across the test set.
The results indicate that settings 9, 5, and 4 delivered the best outcomes regarding
average and total scores for SP. Next, considering the TC scores, the highest scores
are observed in settings 6, 8, and 5, with setting 5 exhibiting nearly identical scores
to setting 4. Consequently, settings 4 and 5 are in the top three for both SP and
TC objectives, with setting 5 having a little precedence, especially for SP score over
setting 4.
Even though the speed for execution is not within the scope of this thesis, we want
to provide a rough estimate of the inference time for each episode. The evaluation
on the test set took approximately 2.7 minutes in total and around 0.6 seconds per
example alignment5.

5
Since available resources influence the time metrics, we refer to section 6.1 for details about

the hardware configuration.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

77

Solving
M

SA
using

Reinforcem
entLearning

Method – batch rb simulations CCG go ge stepsratio ratioreal/fake Avg SP Avg TC Sum SP Sum TC

ClustalOmega - - - - - - - - - 26.54 0.66 6795 169
MAFFT - - - - - - - - - 23.54 0.50 6025 128
MUSCLE - - - - - - - - - 23.20 0.38 5938 97
Setting 1 20 512 2000 200 True 0 0 0.4 0.8 21.26 0.34 5442 88
Setting 2 20 1024 2000 200 True 0 0 0.4 0.8 23.55 0.61 6028 156
Setting 3 10 512 1500 200 True 0 0 0.4 0.9 24.02 0.60 6148 154
Setting 4 10 512 1500 200 False 0 0 0.4 0.9 24.45 0.64 6260 164
Setting 5 10 512 1500 200 False 0 0 0.4 1 24.68 0.65 6318 165
Setting 6 10 512 1500 200 False 0.1 0.01 0.4 0.9 23.85 0.77 6105 198
Setting 7 10 512 1500 200 True 0.1 0.01 0.25 1 22.34 0.49 5718 126
Setting 8 10 512 1500 200 False 0 0 0.3 0.5 24.34 0.68 6230 175
Setting 9 1 512 1500 200 True 0 0 0.3 0.8 24.70 0.52 6324 132
Setting 10 1 512 1500 300 True 0 0 0.4 0.8 24.40 0.47 6245 121

Table 5.1: Summary of results

M
Sc

in
ArtificialIntelligence

&
D

eep
Learning,M

Sc
T

hesis
EiriniK

otzia
0022

78

Solving MSA using Reinforcement Learning

5.5.1 Quantitative analysis

In this section, we discuss performance across di�erent settings based on the vari-
ous parameters we have utilized. The discussed results refer to the Table 5.1. The
experiments with the best performance among all settings, for both SP and TC
objectives, are settings 4 and 5. Setting 9 exhibits superior performance in the SP
score, while setting 6 excels in TC, surpassing all other configurations. Even though
both managed to be the first in the ranking for one metric, they fall short of achiev-
ing both objectives, as evidenced (in Table 5.2) by the 7th position in the ranking
for the SP metric for setting 6 and the 6th position for the TC metric for setting 9.
In settings 9 and 10, there is a notable discrepancy between their high SP rankings
and comparatively lower TC rankings. This observation may be attributed to a low
–. Specifically, Clustal Omega (in Table 5.1) yields an average of 26.54 matches for
SP score per alignment, with only 0.66 for TC score. Subsequently, in cases where
– is one, SP and TC scores do not contribute equally to the reward function, which
might lead to a dominance of SP score. Moreover, even though setting 10 has more
simulations in the MCTS it does not perform better than setting 9, which could be
attributed to the longer horizon of the game, where setting 9 performs more steps
for each episode.
Furthermore, settings 4 and 5 have similar performance, with 5 reporting slightly
better results. A plausible explanation for this di�erence could be due to the 10%
synthetic data in the training examples of setting 4. This isn’t necessarily a draw-
back, and its impact may vary across di�erent test sets or with longer training
episodes.
Another interesting observation is that setting 4 and setting 6 share the same param-
eters except for a�ne gap penalization applied in setting 6. A�ne gap penalization
tends to reduce the range of the reward function. Since TC typically gets low values,
this di�erence might help it stand out more in the multiobjective reward function
and potentially make the algorithm more sensitive to variations in TC.
Moreover, the options for setting 4 are the same as setting 3, except that setting
3 incorporates CCG. Interestingly, setting 3 returns worse results in both SP and
TC. This observation raises the possibility that including CCG may be confusing
or potentially not beneficial for the agent.
The findings are encouraging, with settings 2, 3, 4, 5, 6, 8, and 9 exceeding MAFFT
and MUSCLE competitors. None of our models exceeds Clustal Omega in both SP
and TC at the same time. Notably, setting 5 has an average negative di�erence with
Clustal Omega of 1.85 in the SP score and 0.01 in the TC score.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

79

Solving MSA using Reinforcement Learning

Rank SP TC
1 9 6
2 5 8
3 4 4, 5
4 10 2
5 8 3
6 3 9
7 6 7
8 2 10
9 7 1
10 1

Table 5.2: Settings Ranking (descending order)

5.5.2 Qualitative analysis

Metrics are indicators of alignment quality, o�ering quantitative assessments. How-
ever, it is also important to inspect the original alignment outputs and compare
them with those generated by competitor methods. To understand some qualitative
di�erences, a presentation of four example algorithm outputs from the test set is
intended. This will help us understand some algorithm strategies and how they han-
dle specific alignment challenges. Furthermore, manual inspection helps us detect
any undesired or biologically irrelevant behaviors in the alignment, a crucial step
for future optimizations. In the examples, the top table represents the initial align-
ment, while the middle tables hold the output alignment for di�erent settings, and
the Bottom table is the output alignment of Clustal Omega. We selected Clustal
Omega because it stands out as the strongest aligner among our competitors. From
our list of trained models, we select settings 4, 5, 6, and 8 for qualitative analysis.
In the first example (Table 5.3), setting 6 outperforms Clustal Omega with one ad-
ditional match and has the same TC score. Setting 6 decides on longer gaps than
all other settings. The output of setting 6 di�ers only on one element from the one
from Clustal Omega. Clustal Omega moves the first letter (T) of the third sequence,
adding two gaps before the sequence. On the other hand, setting 6 decides to add
a gap before and after the same element (T), which yields a higher SP score.
Next, in the second example (Table 5.4), all our models successfully yielded a TC
match, while setting 6 achieved two matches. Specifically, setting 6 achieves the
same TC match as Clustal Omega and an additional one, accomplishing this by
inserting a gap on the fourth element of the second sequence instead of at the begin-
ning, as performed by Clustal Omega. Settings 4 and 5 share a common strategy of

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

80

Solving MSA using Reinforcement Learning

moving the second sequence to the right to create the TC match on the 9th column.
For sliding the second sequence, both split the sequence into two parts by introduc-
ing a gap. Note that at this point, setting 5 chooses a wiser position to insert a
gap, resulting in an additional two points in the SP score. In this test example, all
our presented models exceed Clustal Omega in SP score. In example 3 (Table 5.5),
all settings exhibited similar behavior by introducing gaps in the second and fourth
sequences. Interestingly, settings 5 and 8 perform identical alignments and score the
highest. This is an example case where Clustal Omega excels over all our settings
in SP score without splitting any sequence by sacrificing one TC match. Similarly
to Clustal Omega, our settings perform the same number of steps (of adding two
gaps).
In example 4 (Table 5.6), Clustal Omega stands out by introducing numerous gaps,
in contrast to our settings, which exhibit a more conservative behavior. Notably, set-
tings 8 and 5, by adding two gaps, achieve the highest SP score among our settings.
Setting 4 stops the alignment one step before setting 5, while setting 6 promptly
ends the alignment without adding any gaps, resulting in the lowest score. This
example can be explained as follows: Sequences 1, 2, 3, and 5 exhibit high similarity
in the right part, whereas the fourth sequence is irrelevant in the right part but
shares some similarities, particularly with sequence 2 in the left part. To achieve
Clustal Omega output, our algorithm should perform 15 gaps while passing through
some less favorable states. This is one hard MSA case example that would need a
more explorative and far-sighted agent to reach the Clustal Omega score.
We include example 5 (Table 5.7) as a case where Clustal Omega introduces a gap
within a sequence, a behavior that is not commonly observed. Two of our settings,
4 and 6, decided to drop the alignment without adding any gap. On the other hand,
setting 8 adds a single gap, causing a shift in the second sequence and resulting in an
additional match. Notably, setting 5 demonstrates superior performance, surpassing
all other settings and even outperforming Clustal Omega itself, achieving 21 matches
through a series of three steps. This serves as a counterexample to the general norm
observed in the previous examples, where Clustal Omega tends to avoid splitting
sequences and tries to add gaps at the beginning or end of sequences. Here, Clustal
Omega splits 2 sequences with two consecutive gaps each, whereas setting 5 adds
fewer gaps and achieves 4 extra matches.
Example 6 (Table 5.8) is a typical example, where setting 5 gets the best score
compared to the other settings. All other settings split sequences into at least one
point, whereas setting 5 does not, which is quite surprising considering that it was
not trained with any gap penalization strategy.
In example 7 (Table 5.9), both Clustal Omega and setting 5 slide sequences in the
same way, leading sequences 1, 2, 4, and 5 align similarly. However, Clustal Omega
deviates by shifting sequence 3 to the left, resulting in a worse alignment for 1 match.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

81

Solving MSA using Reinforcement Learning

This is the third example of setting 6 stopping the alignment without introducing
any gaps. The conservative behavior of setting 6 may contribute to its absence from
the top-ranking positions, particularly when evaluating the SP score.
Analyzing all the examples, we observe a common pattern in our settings, which
tends to introduce a few gaps and often concludes the alignment process early.
This behavior might be beneficial, where the agent can align fine with limited gaps.
However, we also want to achieve a more explorative agent that tries alternative
strategies, especially in future cases involving larger sequences. Moreover, we fre-
quently observe a common intention in the aligners regarding the intended direction
for shifting each sequence (either right or left).

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

82

Solving
M

SA
using

Reinforcem
entLearning

G C C A T C C G G T

G T T T C C T T T C

T A A C G T C G G C

A T C T A G A T C C

G C C A T C C G G T - -

G T - T T C C T T T C -

T A A C G T C G G - C -

A T - - C T A G A T C C

SP-Score = 18,

TC-Score = 0,

Setting 4

G C C A T C C - - G G T

G T T T C C T T T C - -

- T - A A C G T C G G C

A T C T A G A T C C - -

SP-Score = 18,

TC-Score = 0,

Setting 5.

- - - G C C A T C C G G T

G T T T C C T T T C - - -

- T - A A C G T C G G C -

A T C T A G A T C C - - -

SP-Score = 23,

TC-Score = 1,

Setting 6.

G C C A T C C G G T - -

G T T - T C C T T T C -

- T - A A C G T C G G C

A T C T A G A T C C - -

SP-Score = 17,

TC-Score = 0,

Setting 8.

- - - G C C A T C C G G T

G T T T C C T T T C - - -

- - T A A C G T C G G C -

A T C T A G A T C C - - -

SP-Score = 22

TC-Score = 1

ClustalOmega

Table 5.3: Example Test 1

M
Sc

in
ArtificialIntelligence

&
D

eep
Learning,M

Sc
T

hesis
EiriniK

otzia
0022

83

Solving
M

SA
using

Reinforcem
entLearning

A A C C G A A C G T

G A C G A T C G T C

G C T T A G A T G T

G C T G A T G C G A

A A C C G A A C G T -

G A - C G A T C G T C

G C T T A G A T G T -

G C T G A T G C G A -

SP-Score = 23,

TC-Score = 1,

Setting 4

A A C C G A A C G T -

G A C G A T - C G T C

G C T T A G A T G T -

G C T G A T G C G A -

SP-Score = 25,

TC-Score = 1,

Setting 5

A A C C G A A C G T -

G A C - G A T C G T C

- G C T T A G A T G T

- G C T G A T G C G A

SP-Score = 23,

TC-Score = 2,

Setting 6

A A C C G A A C G T -

G A C - G A T C G T C

G C T T A G A T G T -

G C T G A T G C G A -

SP-Score = 23,

TC-Score = 1,

Setting 8

A A C C G A A C G T -

- G A C G A T C G T C

- G C T T A G A T G T

- G C T G A T G C G A

SP-Score = 22,

TC-Score = 1,

ClustalOmega

Table 5.4: Example Test 2

M
Sc

in
ArtificialIntelligence

&
D

eep
Learning,M

Sc
T

hesis
EiriniK

otzia
0022

84

Solving
M

SA
using

Reinforcem
entLearning

G C A A C C A C A G

G A A C T C C A C A

T A A A G T T A A T

T A C T A T C A T C

A C A T T C A C A A

G C A A C C A C A G -

G A - A C T C C A C A

T A A A G T T A A T -

T A - C T A T C A T C

A C A T T C A C A A -

SP-Score = 35,

TC-Score = 1,

Setting 4

G C A A C C A C A G -

G - A A C T C C A C A

T A A A G T T A A T -

T - A C T A T C A T C

A C A T T C A C A A -

SP-Score = 39,

TC-Score = 2,

Setting 5

G C A A C C A C A G -

- G A A C T C C A C A

T A A A G T T A A T -

T - A C T A T C A T C

A C A T T C A C A A -

SP-Score = 38,

TC-Score = 2,

Setting 6

G C A A C C A C A G -

G - A A C T C C A C A

T A A A G T T A A T -

T - A C T A T C A T C

A C A T T C A C A A -

SP-Score = 39,

TC-Score = 2,

Setting 8

- G C A A C C A C A G

G A A C T C C A C A -

T A A A G T T A A T -

T A C T A T C A T C -

- A C A T T C A C A A

SP-Score = 42,

TC-Score = 1,

ClustalOmega

Table 5.5: Example Test 3

M
Sc

in
ArtificialIntelligence

&
D

eep
Learning,M

Sc
T

hesis
EiriniK

otzia
0022

85

Solving
M

SA
using

Reinforcem
entLearning

T C T A T A A C C T

A G G G A T A A A A

C T T T C A A A A C

G G A G G G G G C T

T G A T C C A A A G

- T C T A T A A C C T

A G G G A T A A A A -

C T T T C A A A A C -

G G A G G G G G C T -

T G A T C C A A A G -

SP-Score = 29,

TC-Score = 0,

Setting 4

- T C T A T A A C C T

A G G G A T A A A A -

C T T T C A A A A C -

- G G A G G G G G C T

T G A T C C A A A G -

SP-Score = 30,

TC-Score = 0

Setting 5

T C T A T A A C C T

A G G G A T A A A A

C T T T C A A A A C

G G A G G G G G C T

T G A T C C A A A G

SP-Score = 24,

TC-Score = 0

Setting 6

T - C T A T A A C C T

A G G G A T A A A A -

C T T T C A A A A C -

- G G A G G G G G C T

T G A T C C A A A G -

SP-Score = 30,

TC-Score = 0

Setting 8

- - - - - T C T A T A A C C T

- - A G G G A T A A A A - - -

- - - - C T T T C A A A A C -

G G A G G G G G C T - - - - -

- - - - T G A T C C A A A G -

SP-Score = 34,

TC-Score = 0,

ClustalOmega

Table 5.6: Example Test 4

M
Sc

in
ArtificialIntelligence

&
D

eep
Learning,M

Sc
T

hesis
EiriniK

otzia
0022

86

Solving
M

SA
using

Reinforcem
entLearning

T T T T A T T T G C

T T G C C G A A T C

G G G G G A G A T G

G G T G A T G G G C

T T T T A T T T G C

T T G C C G A A T C

G G G G G A G A T G

G G T G A T G G G C

SP-Score = 16,

TC-Score = 0,

Setting 4

T T T T - A T T T G C

- T T G C C G A A T C

G G G G G A G A T G -

G G T G A T G - G G C

SP-Score = 21,

TC-Score = 0

Setting 5

T T T T A T T T G C

T T G C C G A A T C

G G G G G A G A T G

G G T G A T G G G C

SP-Score = 16,

TC-Score = 0

Setting 6

T T T T A T T T G C -

- T T G C C G A A T C

G G G G G A G A T G -

G G T G A T G G G C -

SP-Score = 17,

TC-Score = 0

Setting 8

- T T - - T T A T T T G C

- T T - - G C C G A A T C

G G G G G A G A T G - - -

- - - G G T G A T G G G C

SP-Score = 17,

TC-Score = 0,

ClustalOmega

Table 5.7: Example Test 5

M
Sc

in
ArtificialIntelligence

&
D

eep
Learning,M

Sc
T

hesis
EiriniK

otzia
0022

87

Solving
M

SA
using

Reinforcem
entLearning

G A C T T G T A T A

A A A A A T G G A T

C C T G T A A T C C

A G A T A A A T T C

G T A T G G G C C C

G A C T T G T A T A -

A A A A A T G G A T -

- C C T G T A A T C C

A G A T A - A A T T C

G T A T G G G C C C -

SP-Score = 28,

TC-Score = 0,

Setting 4

- G A C T T G T A T A

A A A A A T G G A T -

C C T G T A A T C C -

A G A T A A A T T C -

- G T A T G G G C C C

SP-Score = 29,

TC-Score = 0

Setting 5

G - A C T T G T A T A

A A A A A T G G A T -

C C T G T A A T C C -

A G A T A A A T T C -

G T A T G G G C C C -

SP-Score = 26,

TC-Score = 0

Setting 6

G A C T T G T A T A -

A A A A A T G G A T -

C - C T G T A A T C C

A G A T A A A T T C -

G T A T G G G C C C -

SP-Score = 26,

TC-Score = 0,

Setting 8

- G A C T T G T A T A -

A A A A A T G G A T - -

- - C C T G T A A T C C

- - A G A T A A A T T C

- G T A T G G G C C C -

SP-Score = 33,

TC-Score = 0,

ClustalOmega

Table 5.8: Example Test 6

M
Sc

in
ArtificialIntelligence

&
D

eep
Learning,M

Sc
T

hesis
EiriniK

otzia
0022

88

Solving
M

SA
using

Reinforcem
entLearning

A G G G C C G G C G

A T A T A T A T A T

C A A A A C A A C A

T A G T C A T G C G

T T G A T T T T A A

A G G G C C G G C G -

- A T A T A T A T A T

C A A A A C A A C A -

T A G T C A T G C G -

T T G A T T T T A A -

SP-Score = 26,

TC-Score = 0,

Setting 4

- A G G G C C G G C G

A T A T A T A T A T -

C A A A A C A A C A -

- T A G T C A T G C G

T T G A T T T T A A -

SP-Score = 27,

TC-Score = 0

Setting 5

A G G G C C G G C G

A T A T A T A T A T

C A A A A C A A C A

T A G T C A T G C G

T T G A T T T T A A

SP-Score = 24,

TC-Score = 0

Setting 6

A - G G G C C G G C G

A T A T A T A T A T -

C A A A A C A A C A -

T - A G T C A T G C G

T T G A T T T T A A -

SP-Score = 26,

TC-Score = 0,

Setting 8

- - A G G G C C G G C G

- A T A T A T A T A T -

C A A A A C A A C A - -

- - T A G T C A T G C G

- T T G A T T T T A A -

SP-Score = 26,

TC-Score = 0,

ClustalOmega

Table 5.9: Example Test 7

M
Sc

in
ArtificialIntelligence

&
D

eep
Learning,M

Sc
T

hesis
EiriniK

otzia
0022

89

Solving MSA using Reinforcement Learning

5.5.3 Further Results

Additional plots while training are presented for setting 5. In Figure 5.1, we present
the average objective that the agent scores every 128 episodes. It’s important to
note that the observed high turbulence is expected, as each input alignment can
yield a di�erent score not only due to the agent’s behavior but also due to the
inherent variability in the setup. We observe that after 70000 episodes, there are
some points where the average objective function gets higher reward values, which
might indicate that the agent may improve over longer training episodes. However,
the early stagnation observed on the average objective curve prompts consideration
of parameters that might influence the model’s learning process.
In Figure 5.2, we present the ratio of the agent stopping the episode immediately
without adding any gap in every 128 episodes. In an ideal scenario controlled by
an optimal policy, stopping the game without playing suggests that there is no
alternative action that could yield a greater score in the long run. Notably, the
agent tends to stop immediately more frequently at the beginning of the training.
This might be due to the agents’ lack of confidence and understanding of the game
dynamics. At the end of the training, the agent seems to stop the game immediately
less often, which is considered a positive outcome.
In Figure 5.3, the evaluation of Gumbel MCTS in the validation set during training
is presented. In the current plot, each point corresponds to 600 training steps and
is the average objective that the agent achieves in the evaluation steps.
Considering the loss function while optimizing the model, Figure 5.4 presents the
loss curve on a log scale (in the vertical axis). By employing the logarithmic scale,
we provide a more detailed view, especially for lower ranges of loss values. Moreover,
the loss curve is averaged every 128 steps.
Previously, we presented the average and the sum of scores for two di�erent metrics
in Table 5.1. While these metrics provide an overall understanding of how our models
compare with the aligners, they lack the context of performance in individual games.
To address this, we compare our model against other aligners in a win-draw-lose
fashion. Considering the 256 test examples, we present the ratio of times that our
algorithm achieves a score better than other aligners, which we termed as a ‘win’.
Similarly, we present the ratio of times that our model achieved the same score as
other aligners, labeled as a ‘draw.’ and the ratio of times that our model reported
a lower score than other aligners, labeled as ‘lose’. The result of this comparison
for setting 5 is depicted in Figure 5.5 for SP score and Figure 5.6 for TC score,
respectively. The results show that the agent derived from setting 5 scores equal
or better in most of the cases for all the aligners in TC score and for MAFFT and
MUSCLE aligners in SP score. On the other hand, our model loses from Clustal
Omega in SP score around 60% of the times.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

90

Solving MSA using Reinforcement Learning

Figure 5.1: Average Objective. Setting 5

Figure 5.2: Ratio of stopping Setting 5

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

91

Solving MSA using Reinforcement Learning

Figure 5.3: Evaluation every 600 steps. Setting 5

Figure 5.5: Win-Draw-Lose SP Setting 5

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

92

Solving MSA using Reinforcement Learning

Figure 5.4: Average loss (log scale). Setting 5

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

93

Solving MSA using Reinforcement Learning

Figure 5.6: Win-Draw-Lose TC Setting 5

5.5.4 Reproducibility

We conduct a comprehensive evaluation of the performance and robustness of our
algorithm across three di�erent seeds in Figure 5.7 and Figure 5.8. Additionally, we
present the results in the evaluation step of the test set in Table 5.10. We utilize
seeds 42, 43 and 44 for setting 4 6. The di�erent seeds do not present notable
variations in performance.

6
Initially chosen for its promising performance, setting 4 was later surpassed by setting 5

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

94

Solving MSA using Reinforcement Learning

Avg SP Avg TC Sum SP Sum TC
24.41 ± 0.25 0.64 ± 0.02 6235.00 ± 81.55 163.67 ± 4.50

Table 5.10: Setting 4, performance across seeds œ 42,43,44, averaged ± standard
deviation

Figure 5.7: Mean training performance, run with 3 distinct seeds œ 42,43,44. Shades
denote standard errors.

Figure 5.8: Mean evaluation performance, run with 3 distinct seeds œ 42,43,44.
Shades denote standard errors.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

95

Chapter 6

Conclusion

In this thesis, we introduce a novel strategy for addressing the MSA problem. Our
approach relies on Gumbel AlphaZero and a transformer-based architecture. We
believe that our method is a powerful starting point for solving this problem using
no previous knowledge or heuristics in general.
Compared to previous works, we use DRL and introduce a MDP in which the agent
directly a�ects the sequences by adding gaps. We train an agent using Gumbel Alp-
haZero, which reports major performance improvements in games like Go, chess, and
Atari with only a few simulations in the MCTS. Diverging from recent transformer-
based approaches (Dotan et al., n.d.), our utilization of AlphaZero allows the agent
exclusively learn through self-play games without relying on input-target datasets.
This is advantageous in our scenario, where the exact optimal alignment output
is unknown, and an agent can discover novel solutions. A multiobjective reward
function is introduced to maximize two scores simultaneously (SP, TC). Given the
potential performance challenges arising from a rigid definition of allowed steps per
episode, we introduce two strategies. These strategies allow the agent to stop the
alignment at any point over a maximum number of allowed steps relative to the
size of each input shape. Finally, we introduce variability in the training data by in-
cluding a proportion of randomly generated sequences. Our strategy can potentially
scale up to bigger MSAs with larger action spaces and longer episode step horizons.
We enable MHA to enhance our model’s ability to learn complex representations
and understand the inherent sequential patterns. We take advantage of a Glimpse-
Pointing mechanism based on Cross-Multihead Attention and Singlehead Attention.
The Glimpse step introduces extra depth to our decoder. The Pointing mechanism
produces the probability distribution over the MSA. Positional encodings are uti-

96

Solving MSA using Reinforcement Learning

lized to introduce positional information to the model. This architecture provides
flexibility and compatibility with variable MSA shapes, addressing a challenge that
CNN-based approaches, as seen in related work like Ramakrishnan et al. (2018),
may encounter.
In our evaluation, we compare with three well-known aligner tools. We rely on SP
and TC scores, which are found to be common practice in many research studies.
The results are promising, with our algorithm exhibiting the same or even better
performance in TC scores of at least 76% in all cases and SP scores in 39%, 68%, and
75% of the cases for Clustal Omega, MAFFT, and MUSCLE respectively. More-
over, we exceed MAFFT and MUSCLE in the average and sum SP score, and we
are close to Clustal Omega with an average di�erence of approximately 2 matching
points considering SP.
While our approach is promising, it is essential to report certain limitations. This
step creates space for future considerations and refinements that may enhance the
overall performance.

6.1 Limitations and Future Considerations

One major limitation of this project is the absence of examining reference datasets.
Unlike our competitors, who include well-known reference alignments in their eval-
uation process, we did not employ such a strategy. The primary reason is that
those datasets comprise protein sequences rather than DNA sequences. While our
algorithm is suitable for training using protein sequences, we restricted training in
DNA sequences to control the experiment plan. To explore diverse settings within
a constrained timeline and conduct multiple trainings, we limited the MSAs to 4-5
sequences of length 10. In future work, we suggest gradually increasing these sizes,
especially the length of the sequences, to investigate how e�ective our approach is in
more and bigger sequences. This exploration would provide a valuable indicator of
the extent to which the attention mechanism can e�ectively capture long dependen-
cies. Our algorithm is designed with extensive parameterization, allowing for easy
experimentation with di�erent input sizes.
Next, given the complexity of our approach, which involves multiple adjustable pa-
rameters, it is hard to make solid conclusions about the impact of the parameters
on the algorithm. As this work represents a master’s thesis, training on numerous
sets of configurations was not feasible. Future work should involve training on a
more diverse set of configurations to gain a better understanding of the parameters’
e�ect on the performance. Moreover, longer training episodes could be beneficial for

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

97

Solving MSA using Reinforcement Learning

revealing patterns that might not be evident in 80k episodes.
Further research could investigate alternative strategies for positional encodings,
such as sine and cosine functions of di�erent frequencies. Finally, we could explore
a masking strategy for the undesired actions instead of our invalid action penalty
strategy.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

98

Solving MSA using Reinforcement Learning

Additional Information

Hardware and Training Time

One NVIDIA RTX A5000 Graphics Card and a set of 47 CPUs were utilized for
the experiments. These CPUs have a minimum of 1500.000 MHz and a maximum
of 3737.890 MHz. The model has 7122433 parameters Each experiment setting
required approximately two days to complete.

Data-Code Availability

This project was developed using Python 3.10 and Pytorch (Paszke et al., 2017). For
training purposes, Docker containers were employed, utilizing the ’pytorch/pytorch:2.0.1-
cuda11.7-cudnn8-devel’ image from the docker-hub PyTorch images repository. The
project’s required libraries can be found listed in the ’requirements.txt’ file, accessi-
ble on GitHub. The whole project can be found on Github at the following: URL.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

99

https://github.com/EiriniKot/INTELLALIGN

Bibliography

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Ba-
sic local alignment search tool. Journal of Molecular Biology, 215, 403–410.
https://doi.org/10.1016/S0022-2836(05)80360-2

Aniba, M. R., Poch, O., Marchler-bauer, A., & Thompson, J. D. (2010). Alexsys: A
knowledge-based expert system for multiple sequence alignment construction
and analysis. Nucleic Acids Research, 38, 6338. https://doi.org/10.1093/
NAR/GKQ526

Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). Deep
reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34,
26–38. https://api.semanticscholar.org/CorpusID:4884302

Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. https://arxiv.
org/abs/1607.06450v1

Bacon, D. J., & Anderson, W. F. (1986). Multiple sequence alignment. Journal of
Molecular Biology, 191, 153–161. https://doi.org/10.1016/0022-2836(86)
90252-4

Bahdanau, D., Cho, K. H., & Bengio, Y. (2014). Neural machine translation by
jointly learning to align and translate. 3rd International Conference on Learn-
ing Representations, ICLR 2015 - Conference Track Proceedings. https://
arxiv.org/abs/1409.0473v7

Bello, I., Pham, H., Le, Q. V., Norouzi, M., & Bengio, S. (2016). Neural combi-
natorial optimization with reinforcement learning. 5th International Confer-
ence on Learning Representations, ICLR 2017 - Workshop Track Proceedings.
https://arxiv.org/abs/1611.09940v3

Bridle, J. S. (1990). Probabilistic interpretation of feedforward classification network
outputs, with relationships to statistical pattern recognition. Neurocomput-
ing, 227–236. https://doi.org/10.1007/978-3-642-76153-9 28

Callaway, E. (2023). How alphafold and other ai tools could help us prepare for the
next pandemic. Nature, 622, 440–441. https://doi.org/10.1038/D41586-023-
03201-4

100

https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1093/NAR/GKQ526
https://doi.org/10.1093/NAR/GKQ526
https://api.semanticscholar.org/CorpusID:4884302
https://arxiv.org/abs/1607.06450v1
https://arxiv.org/abs/1607.06450v1
https://doi.org/10.1016/0022-2836(86)90252-4
https://doi.org/10.1016/0022-2836(86)90252-4
https://arxiv.org/abs/1409.0473v7
https://arxiv.org/abs/1409.0473v7
https://arxiv.org/abs/1611.09940v3
https://doi.org/10.1007/978-3-642-76153-9_28
https://doi.org/10.1038/D41586-023-03201-4
https://doi.org/10.1038/D41586-023-03201-4

Solving MSA using Reinforcement Learning

Carrillo, H., & Lipman, D. (1988). The multiple sequence alignment problem in
biology. SIAM Journal on Applied Mathematics, 48, 1073–1082. https://doi.
org/10.1137/0148063

Chapman, B., & Chang, J. (2000). Biopython: Python tools for computation biology.
http://www.bris.ac.uk/Depts/Chemistry/MOTM/

Chaslot, G., Uiterwijk, J., Bouzy, B., & Herik, H. (2006). Monte-carlo strategies
for computer go. Proceedings of the 18th BeNeLux Conference on Artificial
Intelligence.

Coulom, R. (2006). E�cient selectivity and backup operators in monte-carlo tree
search. 5th International Conference on Computer and Games, 72–83. https:
//doi.org/10.1007/978-3-540-75538-8 7/COVER

Danihelka, I., Guez, A., Schrittwieser, J., & Silver, D. (2022). Policy improvement
by planning with gumbel.

Darnell, S. (2020). Why structure prediction matters. https://www.dnastar.com/
blog/protein-analysis-modeling/why-structure-prediction-matters/

Do, C. B., Mahabhashyam, M. S., Brudno, M., & Batzoglou, S. (2005). Probcons:
Probabilistic consistency-based multiple sequence alignment. Genome Re-
search, 15, 330. https://doi.org/10.1101/GR.2821705

Dotan, E., Belinkov, Y., Avram, O., Wygoda, E., Ecker, N., Alburquerque, M.,
Keren, O., Loewenthal, G., & Pupko, T. (n.d.). Multiple sequence alignment
as a sequence-to-sequence learning problem.

Dylus, D., Altenho�, A., Majidian, S., Sedlazeck, F. J., & Dessimoz, C. (2023). Infer-
ence of phylogenetic trees directly from raw sequencing reads using read2tree.
Nature Biotechnology 2023, 1–9. https://doi.org/10.1038/s41587-023-01753-
4

Edelkamp, S., & Tang, Z. (2015). Monte-carlo tree search for the multiple sequence
alignment problem. Proceedings of the International Symposium on Combi-
natorial Search, 6, 9–17. https://doi.org/10.1609/SOCS.V6I1.18359

Edgar, R. C. (2004). Muscle: Multiple sequence alignment with high accuracy and
high throughput. Nucleic Acids Research, 32, 1792–1797. https://doi.org/10.
1093/NAR/GKH340

Fang, X., Wang, F., Liu, L., He, J., Lin, D., Xiang, Y., Zhu, K., Zhang, X., Wu,
H., Li, H., & Song, L. (2023). A method for multiple-sequence-alignment-free
protein structure prediction using a protein language model. Nature Machine
Intelligence 2023 5:10, 5, 1087–1096. https://doi.org/10.1038/s42256-023-
00721-6

Feng, D. F., & Doolittle, R. F. (1987). Progressive sequence alignment as a prereq-
uisite to correct phylogenetic trees. 25, 351–360. https://doi.org/10.1007/
BF02603120

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

101

https://doi.org/10.1137/0148063
https://doi.org/10.1137/0148063
http://www.bris.ac.uk/Depts/Chemistry/MOTM/
https://doi.org/10.1007/978-3-540-75538-8_7/COVER
https://doi.org/10.1007/978-3-540-75538-8_7/COVER
https://www.dnastar.com/blog/protein-analysis-modeling/why-structure-prediction-matters/
https://www.dnastar.com/blog/protein-analysis-modeling/why-structure-prediction-matters/
https://doi.org/10.1101/GR.2821705
https://doi.org/10.1038/s41587-023-01753-4
https://doi.org/10.1038/s41587-023-01753-4
https://doi.org/10.1609/SOCS.V6I1.18359
https://doi.org/10.1093/NAR/GKH340
https://doi.org/10.1093/NAR/GKH340
https://doi.org/10.1038/s42256-023-00721-6
https://doi.org/10.1038/s42256-023-00721-6
https://doi.org/10.1007/BF02603120
https://doi.org/10.1007/BF02603120

Solving MSA using Reinforcement Learning

Frew, J. W., Hawkes, J. E., Sullivan-Whalen, M., Gilleaudeau, P., & Krueger,
J. G. (2019). Inter-rater reliability of phenotypes and exploratory genotype-
phenotype analysis in inherited hidradenitis suppurativa. The British journal
of dermatology, 181, 566–571. https://doi.org/10.1111/BJD.17695

From AI to protein folding: Our Breakthrough runners-up. (2016). Science. https:
//www.science.org/content/article/ai-protein- folding-our-breakthrough-
runners

Gotoh, O. (1996). Significant improvement in accuracy of multiple protein sequence
alignments by iterative refinement as assessed by reference to structural align-
ments. Journal of molecular biology, 264, 823–838. https://doi.org/10.1006/
JMBI.1996.0679

Graves, A., Wayne, G., & Danihelka, I. (2014). Neural turing machines. https :
//arxiv.org/abs/1410.5401v2

Gumbel, E. J. (1954). Statistical theory of extreme values and some practical ap-
plications : A series of lectures. https://api.semanticscholar.org/CorpusID:
125881359

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recog-
nition. Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2016-December, 770–778. https://doi.org/
10.1109/CVPR.2016.90

Heinzinger, M., Rost, B., & Steinegger, M. (2022). How to speak protein? - rep-
resentation learning for protein prediction. Universitätsbibliothek der TU
München. https://books.google.de/books?id=Zr3QzwEACAAJ

Hendrycks, D., & Gimpel, K. (2016). Gaussian error linear units (gelus). https :
//arxiv.org/abs/1606.08415v5

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R.
(2012). Improving neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580.

Hirschberg, J., & Manning, C. D. (2019). Advances in natural language processing.
Science. http://science.sciencemag.org/

Ivo Van Walle, L. W., Ignace Lasters. (2005). Sabmark—a benchmark for sequence
alignment that covers the entire known fold space. Bioinformatics, 21 (7),
1267–1268.

Jafari, R., Javidi, M. M., & Rafsanjani, M. K. (2019). Using deep reinforcement
learning approach for solving the multiple sequence alignment problem. SN
Applied Sciences, 1. https://doi.org/10.1007/s42452-019-0611-4

Jessen, L. E., Hoof, I., Lund, O., & Nielsen, M. (2013). Signisite: Identification of
residue-level genotype-phenotype correlations in protein multiple sequence
alignments. Nucleic acids research, 41 (W1), W286–W291.

Joeres, R. (2021). Multiple sequence alignment using deep reinforcement learning.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

102

https://doi.org/10.1111/BJD.17695
https://www.science.org/content/article/ai-protein-folding-our-breakthrough-runners
https://www.science.org/content/article/ai-protein-folding-our-breakthrough-runners
https://www.science.org/content/article/ai-protein-folding-our-breakthrough-runners
https://doi.org/10.1006/JMBI.1996.0679
https://doi.org/10.1006/JMBI.1996.0679
https://arxiv.org/abs/1410.5401v2
https://arxiv.org/abs/1410.5401v2
https://api.semanticscholar.org/CorpusID:125881359
https://api.semanticscholar.org/CorpusID:125881359
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://books.google.de/books?id=Zr3QzwEACAAJ
https://arxiv.org/abs/1606.08415v5
https://arxiv.org/abs/1606.08415v5
http://science.sciencemag.org/
https://doi.org/10.1007/s42452-019-0611-4

Solving MSA using Reinforcement Learning

Ju, F., Zhu, J., Shao, B., Kong, L., Liu, T. Y., Zheng, W. M., & Bu, D. (2021). Cop-
ulanet: Learning residue co-evolution directly from multiple sequence align-
ment for protein structure prediction. Nature Communications 2021 12:1, 12,
1–9. https://doi.org/10.1038/s41467-021-22869-8

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tun-
yasuvunakool, K., Bates, R., Ž́ıdek, A., Potapenko, A., Bridgland, A., Meyer,
C., Kohl, S. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S.,
Jain, R., Adler, J., . . . Hassabis, D. (2021). Highly accurate protein struc-
ture prediction with alphafold. Nature 2021 596:7873, 596, 583–589. https:
//doi.org/10.1038/s41586-021-03819-2

Karaboğa, D. (2005). An idea based on honey bee swarm for numerical optimization.
ournal of Computer and Communications, Vol.2 No.4, March 18, 2014.

Karnin, Z., Koren, T., & Somekh, O. (2013, June). Almost optimal exploration in
multi-armed bandits. In S. Dasgupta & D. McAllester (Eds.), Proceedings
of the 30th international conference on machine learning (pp. 1238–1246,
Vol. 28). PMLR. https://proceedings.mlr.press/v28/karnin13.html

Katoh, K., Misawa, K., Kuma, K. I., & Miyata, T. (2002). Ma�t: A novel method for
rapid multiple sequence alignment based on fast fourier transform. Nucleic
acids research, 30, 3059–3066. https://doi.org/10.1093/NAR/GKF436

Kingma, D. P., & Ba, J. L. (2014). Adam: A method for stochastic optimization. 3rd
International Conference on Learning Representations, ICLR 2015 - Confer-
ence Track Proceedings. https://arxiv.org/abs/1412.6980v9

Klug, W. S., Spencer, C. A., Cummings, M. R., & Palladino, M. A. (2012). Essentials
of genetics, global edition. Pearson UK.

Kocsis, L., & Szepesvári, C. (2006). Bandit based monte-carlo planning. Machine
Learning: ECML 2006, 282–293.

Konagurthu, A. S., & Stuckey, P. J. (2006). Optimal sum-of-pairs multiple sequence
alignment using incremental carrillo and lipman bounds. JOURNAL OF
COMPUTATIONAL BIOLOGY, 13.

Kool, W., van Hoof, H., & Welling, M. (2018). Attention, learn to solve routing
problems! 7th International Conference on Learning Representations, ICLR
2019. https://arxiv.org/abs/1803.08475v3

Kool, W., van Hoof, H., & Welling, M. (2019). Stochastic beams and where to find
them: The gumbel-top-k trick for sampling sequences without replacement.

Kool, W., van Hoof, H., & Welling, M. (2020). Ancestral gumbel-top-k sampling
for sampling without replacement. Journal of Machine Learning Research,
21 (47), 1–36. http://jmlr.org/papers/v21/19-985.html

Kunzmann, P., & Hamacher, K. (2018). Biotite: A unifying open source compu-
tational biology framework in python. BMC Bioinformatics, 19, 1–8. https:
//doi.org/10.1186/S12859-018-2367-Z/FIGURES/6

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

103

https://doi.org/10.1038/s41467-021-22869-8
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://proceedings.mlr.press/v28/karnin13.html
https://doi.org/10.1093/NAR/GKF436
https://arxiv.org/abs/1412.6980v9
https://arxiv.org/abs/1803.08475v3
http://jmlr.org/papers/v21/19-985.html
https://doi.org/10.1186/S12859-018-2367-Z/FIGURES/6
https://doi.org/10.1186/S12859-018-2367-Z/FIGURES/6

Solving MSA using Reinforcement Learning

Lall, A., & Tallur, S. (2023). Deep reinforcement learning-based pairwise dna se-
quence alignment method compatible with embedded edge devices. Scientific
Reports 2023 13:1, 13, 1–10. https://doi.org/10.1038/s41598-023-29277-6

Lassmann, T., Frings, O., & Sonnhammer, E. L. (2009). Kalign2: High-performance
multiple alignment of protein and nucleotide sequences allowing external fea-
tures. Nucleic Acids Research, 37, 858. https : //doi . org/10 .1093/NAR/
GKN1006

Liu, Y., Yuan, H., Zhang, Q., Wang, Z., Xiong, S., Wen, N., & Zhang, Y. (2023).
Multiple sequence alignment based on deep reinforcement learning with self-
attention and positional encoding (P. Robinson, Ed.). Bioinformatics, 39.
https://doi.org/10.1093/BIOINFORMATICS/BTAD636

Llados, J., Cores, F., Guirado, F., & Lérida, J. L. (2021). Accurate consistency-
based msa reducing the memory footprint. Computer Methods and Programs
in Biomedicine, 208, 106237. https://doi.org/10.1016/J.CMPB.2021.106237

Luce, R. D. (1959). Individual choice behavior: A theoretical analysis. Journal of
the Royal Statistical Society. Series A (General), 123. https://doi.org/10.
2307/2343282

Luong, M. T., Pham, H., & Manning, C. D. (2015). E�ective approaches to attention-
based neural machine translation. Conference Proceedings - EMNLP 2015:
Conference on Empirical Methods in Natural Language Processing, 1412–
1421. https://doi.org/10.18653/v1/d15-1166

Mircea, I. G., Bocicor, M. I., & Dı̂incu, A. (2014). On reinforcement learning based
multiple sequence alignment. Studia Universitatis Babes-Bolyai, Informatica.
https://www.cs.ubbcluj.ro/≥studia-i/contents/2014-2/04-MirceaBocicorDincu.
pdf

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
& Riedmiller, M. (2013). Playing atari with deep reinforcement learning.
https://arxiv.org/abs/1312.5602v1

Modha, S., Thanki, A. S., Cotmore, S. F., Davison, A. J., & Hughes, J. (2018). Vic-
tree: An automated framework for taxonomic classification from protein se-
quences. Bioinformatics, 34, 2195. https://doi.org/10.1093/BIOINFORMATICS/
BTY099

Morgenstern, B. (2004). Dialign: Multiple dna and protein sequence alignment at
bibiserv. Nucleic Acids Research, 32, W33. https://doi.org/10.1093/NAR/
GKH373

Murata, M., Richardson, J. S., & Sussman, J. L. (1985). Simultaneous comparison
of three protein sequences. Proceedings of the National Academy of Sciences
of the United States of America, 82, 3073–3077. https://doi.org/10.1073/
PNAS.82.10.3073

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

104

https://doi.org/10.1038/s41598-023-29277-6
https://doi.org/10.1093/NAR/GKN1006
https://doi.org/10.1093/NAR/GKN1006
https://doi.org/10.1093/BIOINFORMATICS/BTAD636
https://doi.org/10.1016/J.CMPB.2021.106237
https://doi.org/10.2307/2343282
https://doi.org/10.2307/2343282
https://doi.org/10.18653/v1/d15-1166
https://www.cs.ubbcluj.ro/~studia-i/contents/2014-2/04-MirceaBocicorDincu.pdf
https://www.cs.ubbcluj.ro/~studia-i/contents/2014-2/04-MirceaBocicorDincu.pdf
https://arxiv.org/abs/1312.5602v1
https://doi.org/10.1093/BIOINFORMATICS/BTY099
https://doi.org/10.1093/BIOINFORMATICS/BTY099
https://doi.org/10.1093/NAR/GKH373
https://doi.org/10.1093/NAR/GKH373
https://doi.org/10.1073/PNAS.82.10.3073
https://doi.org/10.1073/PNAS.82.10.3073

Solving MSA using Reinforcement Learning

Nadkarni, P. M., Ohno-Machado, L., & Chapman, W. W. (2011). Natural language
processing: An introduction. https://doi.org/10.1136/amiajnl-2011-000464

Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the
search for similarities in the amino acid sequence of two proteins. Journal
of Molecular Biology, 48, 443–453. https://doi.org/10.1016/0022-2836(70)
90057-4

Noorden, R. V., Maher, B., & Nuzzo, R. (2014). The top 100 papers. Nature, 514,
550–553. https://doi.org/10.1038/514550a,pmid:25355343

Notredame, C., Higgins, D. G., & Heringa, J. (2000). T-co�ee: A novel method for
fast and accurate multiple sequence alignment. Journal of molecular biology,
302, 205–217. https://doi.org/10.1006/JMBI.2000.4042

O’Sullivan, O., Zehnder, M., Higgins, D., Bucher, P., Grosdidier, A., & Notredame,
C. (2003). Apdb: A novel measure for benchmarking sequence alignment
methods without reference alignments. Bioinformatics, 19, i215–i221. https:
//doi.org/10.1093/BIOINFORMATICS/BTG1029

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., Facebook, Z. D., Research,
A. I., Lin, Z., Desmaison, A., Antiga, L., Srl, O., & Lerer, A. (2017, October).
Automatic di�erentiation in pytorch.

Pearson, W. R., & Lipman, D. J. (1988). Improved tools for biological sequence
comparison. Proceedings of the National Academy of Sciences of the United
States of America, 85 8, 2444–8. https://api.semanticscholar.org/CorpusID:
15966318

Pevsner, J. (2009). Bioinformatics and functional genomics, second edition. Bioin-
formatics and Functional Genomics, Second Edition, 190–192. https://doi.
org/10.1002/9780470451496

Ramakrishnan, R. K., Singh, J., & Blanchette, M. (2018). Rlalign: A reinforcement
learning approach for multiple sequence alignment. Proceedings - 2018 IEEE
18th International Conference on Bioinformatics and Bioengineering, BIBE
2018, 61–66. https://doi.org/10.1109/BIBE.2018.00019

Ranwez, V., & Chantret, N. N. (2020). Strengths and limits of multiple sequence
alignment and filtering methods. In C. Scornavacca, F. Delsuc, & N. Galtier
(Eds.), Phylogenetics in the genomic era (2.2:1–2.2:36). No commercial pub-
lisher — Authors open access book. https://hal.science/hal-02535389

Rasmussen, T. K., & Krink, T. (2003). Improved hidden markov model training for
multiple sequence alignment by a particle swarm optimization - evolutionary
algorithm hybrid. BioSystems, 72, 5–17. https://doi.org/10.1016/S0303-
2647(03)00131-X

Roshan, U., & Livesay, D. R. (2006). Probalign: Multiple sequence alignment us-
ing partition function posterior probabilities. Bioinformatics, 22, 2715–2721.
https://doi.org/10.1093/BIOINFORMATICS/BTL472

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

105

https://doi.org/10.1136/amiajnl-2011-000464
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1038/514550a,pmid:25355343
https://doi.org/10.1006/JMBI.2000.4042
https://doi.org/10.1093/BIOINFORMATICS/BTG1029
https://doi.org/10.1093/BIOINFORMATICS/BTG1029
https://api.semanticscholar.org/CorpusID:15966318
https://api.semanticscholar.org/CorpusID:15966318
https://doi.org/10.1002/9780470451496
https://doi.org/10.1002/9780470451496
https://doi.org/10.1109/BIBE.2018.00019
https://hal.science/hal-02535389
https://doi.org/10.1016/S0303-2647(03)00131-X
https://doi.org/10.1016/S0303-2647(03)00131-X
https://doi.org/10.1093/BIOINFORMATICS/BTL472

Solving MSA using Reinforcement Learning

Rosin, C. D. (2011). Multi-armed bandits with episode context. Annals of Mathe-
matics and Artificial Intelligence, 61 (3), 203–230. https://doi.org/10.1007/
s10472-011-9258-6

Rubio-Largo, Á., Vega-Rodŕıguez, M. A., & González-Álvarez, D. L. (2016). Hybrid
multiobjective artificial bee colony for multiple sequence alignment. Applied
Soft Computing, 41, 157–168. https://doi.org/10.1016/J.ASOC.2015.12.034

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S.,
Guez, A., Lockhart, E., Hassabis, D., Graepel, T., Lillicrap, T., & Silver, D.
(2020). Mastering atari, go, chess and shogi by planning with a learned model.
Nature 2020 588:7839, 588, 604–609. https://doi.org/10.1038/s41586-020-
03051-4

Schuler, G. D., Epstein, J. A., Ohkawa, H., & Kans, J. A. (1996). [10] entrez: Molecu-
lar biology database and retrieval system. Methods in Enzymology, 266, 141–
162. https://doi.org/10.1016/S0076-6879(96)66012-1

Sievers, F., & Higgins, D. G. (2018). Clustal omega for making accurate alignments
of many protein sequences. Protein science : a publication of the Protein
Society, 27, 135–145. https://doi.org/10.1002/PRO.3290

Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R.,
McWilliam, H., Remmert, M., Söding, J., Thompson, J. D., & Higgins, D. G.
(2011). Fast, scalable generation of high-quality protein multiple sequence
alignments using clustal omega. Molecular systems biology, 7. https://doi.
org/10.1038/MSB.2011.75

Silver, D. (2015). Lectures on reinforcement learning.
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche,

G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.
(2016). Mastering the game of go with deep neural networks and tree search.
nature, 529 (7587), 484–489.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanc-
tot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., &
Hassabis, D. (2018). A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play. Science, 362, 1140–1144. https://doi.
org/10.1126/SCIENCE.AAR6404/SUPPL FILE/AAR6404 DATAS1.ZIP

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F.,
Sifre, L., Driessche, G. V. D., Graepel, T., & Hassabis, D. (2017). Mastering
the game of go without human knowledge. Nature 2017 550:7676, 550, 354–
359. https://doi.org/10.1038/nature24270

Simossis, V. A., & Heringa, J. (2005). Praline: A multiple sequence alignment tool-
box that integrates homology-extended and secondary structure information.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

106

https://doi.org/10.1007/s10472-011-9258-6
https://doi.org/10.1007/s10472-011-9258-6
https://doi.org/10.1016/J.ASOC.2015.12.034
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1016/S0076-6879(96)66012-1
https://doi.org/10.1002/PRO.3290
https://doi.org/10.1038/MSB.2011.75
https://doi.org/10.1038/MSB.2011.75
https://doi.org/10.1126/SCIENCE.AAR6404/SUPPL_FILE/AAR6404_DATAS1.ZIP
https://doi.org/10.1126/SCIENCE.AAR6404/SUPPL_FILE/AAR6404_DATAS1.ZIP
https://doi.org/10.1038/nature24270

Solving MSA using Reinforcement Learning

Nucleic Acids Research, 33, W289–W294. https ://doi .org/10.1093/nar/
gki390

Smith, T. F., & Waterman, M. S. (1981). Identification of common molecular sub-
sequences. Journal of molecular biology, 147, 195–197. https://doi.org/10.
1016/0022-2836(81)90087-5

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (Sec-
ond). MIT press.

Sutton, R. S., Mcallester, D., Singh, S., & Mansour, Y. (2000). Policy gradient
methods for reinforcement learning with function approximation. Advances
in Neural Information Processing Systems, 12, 1057–1063.

Świechowski, M., Godlewski, K., Sawicki, B., & Mańdziuk, J. (2023). Monte carlo
tree search: A review of recent modifications and applications. Artificial Intel-
ligence Review, 56, 2497–2562. https://doi.org/10.1007/s10462-022-10228-y

Thadani, N. N., Gurev, S., Notin, P., Youssef, N., Rollins, N. J., Ritter, D., Sander,
C., Gal, Y., & Marks, D. S. (2023). Learning from prepandemic data to
forecast viral escape. Nature 2023 622:7984, 622, 818–825. https://doi.org/
10.1038/s41586-023-06617-0

Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). Clustal w: Improving
the sensitivity of progressive multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight matrix choice. Nucleic
Acids Research, 22, 4673–4680. https://doi.org/10.1093/NAR/22.22.4673

Thompson, J. D., Plewniak, F., & Poch, O. (1999). A comprehensive comparison of
multiple sequence alignment programs. Nucleic acids research, 27 (13), 2682–
2690.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
�L., & Polosukhin, I. (2017). Attention is all you need. Advances in Neural
Information Processing Systems, 2017-December, 5999–6009. https://arxiv.
org/abs/1706.03762v7

Vieira, T. (2014). Gumbel-max trick and weighted reservoir sampling — graduate
descent. https://timvieira.github.io/blog/post/2014/08/01/gumbel-max-
trick-and-weighted-reservoir-sampling/

Vinyals, O., Bengio, S., & Kudlur, M. (2016). Order matters: Sequence to sequence
for sets. 4th International Conference on Learning Representations, ICLR
2016,San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings.

Wang, L., & Jiang, T. (1994). On the complexity of multiple sequence alignment.
Journal of computational biology : a journal of computational molecular cell
biology, 1, 337–348. https://doi.org/10.1089/CMB.1994.1.337

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine Learning 1992 8:3, 8, 229–256. https:
//doi.org/10.1007/BF00992696

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

107

https://doi.org/10.1093/nar/gki390
https://doi.org/10.1093/nar/gki390
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1007/s10462-022-10228-y
https://doi.org/10.1038/s41586-023-06617-0
https://doi.org/10.1038/s41586-023-06617-0
https://doi.org/10.1093/NAR/22.22.4673
https://arxiv.org/abs/1706.03762v7
https://arxiv.org/abs/1706.03762v7
https://timvieira.github.io/blog/post/2014/08/01/gumbel-max-trick-and-weighted-reservoir-sampling/
https://timvieira.github.io/blog/post/2014/08/01/gumbel-max-trick-and-weighted-reservoir-sampling/
https://doi.org/10.1089/CMB.1994.1.337
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696

Solving MSA using Reinforcement Learning

Yamada, S., Gotoh, O., & Yamana, H. (2006). Improvement in accuracy of multiple
sequence alignment using novel group-to-group sequence alignment algorithm
with piecewise linear gap cost. BMC Bioinformatics, 7, 524. https://doi.org/
10.1186/1471-2105-7-524

Yellott, J. I. (1977). The relationship between luce’s choice axiom, thurstone’s theory
of comparative judgment, and the double exponential distribution. Journal
of Mathematical Psychology, 15, 109–144. https://doi.org/10.1016/0022-
2496(77)90026-8

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

108

https://doi.org/10.1186/1471-2105-7-524
https://doi.org/10.1186/1471-2105-7-524
https://doi.org/10.1016/0022-2496(77)90026-8
https://doi.org/10.1016/0022-2496(77)90026-8

Appendix A

Appendices

A.1 Exploration - Exploitation

A common dilemma when it comes to RL is the exploration-exploitation dilemma.
Imagine trying to win an advanced opponent in a cardboard game. In this case,
the expected behavior would be to stick with familiar, reliable moves for a better
chance of winning. This tactic, known as exploitation, involves exploiting known
strategies to maximize the probability of winning. However, occasionally, trying
new, untested moves or strategies is beneficial to improve in a game. Similarly,
in RL, for maximizing their rewards, agents should pick actions that have already
been experienced and found promising. On the other hand, if an agent is overly
conservative and avoids exploration, it might converge to suboptimal solutions and
fail to discover the best strategies. Exploration may produce greater cumulative
rewards in the long run, so there is a need for balance between those two.

A.2 Example of Needlman-Wunsch algorithm us-
age

Here, an example of Needleman-Wunsch for pairwise alignment is illustrated in
Figures A.1 and A.2. First, a matrix D is initialized. In our example, sequences have

109

Solving MSA using Reinforcement Learning

lengths 4 and 5, respectively, resulting in a matrix of shape (4+1)◊ (5+1) = 5◊6.
A scoring schema is introduced where the gap penalty equals -2, a match of letters is
1, and a mismatch is -1. The first row and column of the matrix D are filled (in red)
with a gap score added to the previous cell of the row or column, respectively. The
next step involves the filling of the matrix with a direction starting from the upper
left. The strategy formulated in Equation A.1 is followed for filling each matrix cell
(i, j) starting from (2,2).

D(i, j) = max

Y
_]

_[

D(i≠1, j ≠1)+ subscore (i, j)
D(i≠1, j)≠2
D(i, j ≠1)≠2

(A.1)

where subscore is the substitution score for letters i and j.
The final step, known as the traceback step, begins from the bottom-right corner
of the matrix. During this step, a path is created according to the following rules:
In case of a match between letters such as M(i,0) = M(0, j) for cell i, j, a diagonal
step is made. In any other case, we follow the highest neighbor.

Figure A.1: Example dynamic pairwise global alignment approach by Needleman
and Wunsch (1970). Step 1-2

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

110

Solving MSA using Reinforcement Learning

Figure A.2: Example dynamic pairwise global alignment approach by Needleman
and Wunsch (1970). Step 3

A.3 Example of Available Actions

In the example shown in Figure A.3, a state of three sequences to be aligned is
given. The agent in the initial state can select an action for 0 to 12, where each
action corresponds to a position in the state, indicating where a gap can be added.
If the chosen action is 0, though, the agent selects the < STOP > token, which will
indicate the completion of the alignment process. The episode will then finish.

Figure A.3: Example State - Action Space

A.4 Example of Transitions

The agent plays two steps in the example episode shown in Figure A.4. In the first
step, the agent selects action six. This results in a gap insertion in position six in the
state and a gap insertion at the end of all other sequences to match the maximum
length. In the next timestep, the agent selects to stop the game with A1 = 0. The
episode ends, and final state is S2.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

111

Solving MSA using Reinforcement Learning

Figure A.4: Example Transitions

A.5 Example of usage of Read2Tree

A.6 Competitors evaluation strategies

A.6.1 MUSCLE

MUSCLE (Edgar, 2004) conducts a performance evaluation using four datasets:
BALiBASE, SABmark (Ivo Van Walle, 2005), SMART, and PREFAB.
More specifically, version 2 of the BALiBASE benchmark is employed with reference
sets Ref 1 - Ref 5. They also report that they selected version 1.63 of the SABmark
alignments, with sets containing sequences of three (3) to twenty-five (25) sequences
with an average length of 179 (Edgar, 2004). SABmark includes solely sequences
with mid-low similarity (Ivo Van Walle, 2005).
Next, SMART is also utilized for evaluation, retaining a subset of 267 alignments.
Each of these alignments contains an average of 31 sequences, with an average
sequence length of 175.
Finally, PREFAB version 3.0, the dataset contains 1932 alignments averaging 49
sequences of length 240 (Edgar, 2004). To summarize the characteristics of the test
sets used to evaluate the MUSCLE tool, we can observe that the average number of
sequences per alignment is less than 49, with an average sequence length of around
200.
They compare their results with three alignment tools: ClustalW (Thompson et al.,
1994), T-Co�ee (Notredame et al., 2000), and MAFFT (Katoh et al., 2002). They

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

112

Solving MSA using Reinforcement Learning

Figure A.5: Read2Tree correctly classifies the recent SARS-CoV-2 sequences, (Dylus
et al., 2023)

also employ three specific metrics to measure accuracy: SP score, T C score, and
APDB (O’Sullivan et al., 2003) . It’s worth noting that APDB is unique in that
it relies solely on structural information and does not require a reference alignment
but is designed for protein sequences. SP and TC scores are calculated either on
specific parts of the alignment (in BALiBASE) or in all columns (in SMART). Edgar
(2004) does not define SP and T C but refers to Thompson et al. (1994) for both of
them. For this SP , residues matching gives 1 point, and in all other cases, it gives
no points. SP is also slightly di�erently utilized, dividing it by the reference score
alignment. More specifically, it can be defined as:

SPR = SP

SPr

(A.2)

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

113

Solving MSA using Reinforcement Learning

where r refers to the reference alignment.

A.6.2 Clustal Omega

Clustal Omega is another widely known MSA tool that was released after Clustal
W and Clustal X (Sievers & Higgins, 2018). With Clustal Omega, researchers aim
to achieve scalability for large MSAs without sacrificing accuracy. For evaluating
the tool’s performance, they employ three benchmark datasets, namely BALiBASE,
Prefab, and QuanTest, for testing large alignments. BALiBASE version 3, which
contains 218 protein alignments of an average number of sequences per alignment
21 and sequence length from 88 to 8481. They also use Prefab, which is a collection
of 1682 reference sequence pairs. They utilize SPR as seen in Equation A.2 and
T C scores for evaluation.

A.6.3 MAFFT

MAFFT tool employs BALiBASE as a benchmark to calculate the accuracy of their
proposed method. In their evaluation, they present SP and T C scores as metrics
to measure performance. Likewise, as in MUSCLE, the author refers to (Thompson
et al., 1999) for SP where residues match gives 1 point, and in all other cases, it
gives no points. SP is also measured in comparison with the reference SPr as a
fraction, and it is the same as SPR (Equation A.2).

A.7 Training Loop

In Figure A.6, the high level of the project’s flow is depicted. Multiple workers
are running in parallel on di�erent machines. Each worker is continuously playing
games, updating weights, and evaluating the latest model. All workers have access
to the same network storage and replay bu�er for saving samples, updating model
checkpoints, and fetching the latest checkpoints. Moving to Figure A.7, we aim to
capture all the functionality that occurs inside a single worker.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

114

Solving MSA using Reinforcement Learning

Figure A.6: Level 1. Workers running on parallel

Figure A.7: Level 2. Experience Worker High-Level Architecture

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Eirini Kotzia 0022

115

	Introduction
	Overview
	Significance

	Personal Motivation - Research Aims
	Thesis Organization

	Background and Literature Review
	Background
	Reinforcement Learning
	Markov Decision Process
	Deep Reinforcement Learning
	Monte Carlo Tree Search
	From AlphaGo to Gumbel AlphaZero
	Natural Language Processing

	Literature Review
	Exact Alignment
	Progressive Alignment
	Iterative Alignment
	Consistency-Based Alignment
	Other Approaches
	Deep Reinforcement Learning Approaches

	MSA Definition and Score Metrics
	Problem Definition
	Score Metrics
	Sum of Pairs Score
	Gap Penalty
	Totally Conserved Score

	IntellAlign Materials and Methods
	RL Environment Construction
	State Definition
	Action Space
	Transition
	Terminal Gaps
	Complete Column Gaps
	Reward
	Game Steps

	Model Architecture
	Encoder
	Decoder

	Experimental Results
	Experimental Goal
	Data Acquisition

	Competitors
	Setup
	Training Loop
	Reward
	Replay Buffer
	Loss Functions
	Gumbel Sequential Halving
	Hyperparameters

	Evaluation metrics
	Results
	Quantitative analysis
	Qualitative analysis
	Further Results
	Reproducibility

	Conclusion
	Limitations and Future Considerations

	Appendices
	Exploration - Exploitation
	Example of Needlman-Wunsch algorithm usage
	Example of Available Actions
	Example of Transitions
	Example of usage of Read2Tree
	Competitors evaluation strategies
	MUSCLE
	Clustal Omega
	MAFFT

	Training Loop

		2024-03-07T12:27:18+0200
	Charalampos Patrikakis

		2024-03-08T14:25:42+0200
	Panagiotis Kasnesis

