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1. INTRODUCTION 
 

  In the contemporary business landscape, the intersection of Predictive Business Process 

Monitoring (PBPM) with Automated Machine Learning (AutoML) represents a cutting-edge 

paradigm poised to revolutionize how organizations approach operational intelligence. As 

businesses grapple with the ever-increasing complexity of processes, the amalgamation of 

predictive analytics and automated machine learning emerges as a transformative strategy. 

This study delves into the background, contributions to the field, and the overarching 

objectives, shedding light on the intricate synergy between Predictive Business Process 

Monitoring and Automated Machine Learning. 

 

1.1 BACKROUND 
 

  Traditional business process monitoring primarily involves the retrospective analysis of 

historical data to identify deviations and inefficiencies after they have occurred. While this 

approach offers valuable insights for post-mortem analysis, it falls short in addressing the 

demands of contemporary business environments where agility and proactive decision-

making are paramount. PBPM represents an evolution in this domain, introducing a forward-

looking dimension that goes beyond mere observation, allowing organizations to predict 

future process behavior.  Traditional approaches to process monitoring often fall short in the 

face of dynamic and unpredictable workflows. Predictive Business Process Monitoring, as a 

discipline, addresses this gap by introducing forward-looking analytics, allowing businesses 

to anticipate events, predict cycle times, and strategically align operations with temporal 

dynamics. Automated Machine Learning adds a layer of efficiency to this framework, 

automating the modeling and optimization processes, thereby enhancing the scalability and 

accessibility of predictive analytics. The synergy between PBPM and AutoML holds immense 

promise for organizations seeking to navigate the complexities of modern business 

processes. By combining predictive capabilities with automated model generation, this 

intersection allows businesses to not only predict future events and process durations but 

also to do so in a scalable and efficient manner. The fusion of PBPM and AutoML represents 

a paradigm shift, offering a holistic approach to operational intelligence and decision-

making. 

  In summary, the background of this study is rooted in the evolution of business process 

monitoring, the challenges faced by organizations in managing complex processes, and the 

transformative potential of Predictive Business Process Monitoring enhanced by the 

automation capabilities of Automated Machine Learning. 
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1.2 CONTRIBUTIONS TO THE FIELD 
 

  The integration of Predictive Business Process Monitoring (PBPM) with Automated 

Machine Learning (AutoML) presents a novel and multifaceted contribution to the field of 

business process optimization. At its core, this synergy represents a significant advancement 

in operational intelligence, addressing longstanding challenges and offering transformative 

capabilities for organizations navigating the complexities of modern business processes. 

  One notable contribution lies in the establishment of a holistic approach to predictive 

analytics within the domain of business process management. PBPM, with its predictive 

capabilities, transcends the limitations of traditional monitoring by offering proactive 

insights into potential issues and deviations. The integration of AutoML complements this by 

automating the intricate processes of model generation and optimization. The result is a 

comprehensive framework that empowers organizations to harness the full potential of 

predictive analytics without being constrained by the technical intricacies traditionally 

associated with model development. The synergy between PBPM and AutoML contributes 

significantly to the democratization of predictive capabilities. Historically, the deployment of 

advanced predictive models often required specialized expertise in data science. However, 

the integration of AutoML automates many of the technical aspects, making predictive 

analytics more accessible to a broader range of professionals. This democratization 

facilitates the widespread adoption of predictive insights within organizations, empowering 

decision-makers, business analysts, and process experts to actively contribute to operational 

excellence without extensive training in data science. 

  Furthermore, the contributions extend to the real-world applicability and scalability of 

predictive analytics. The combined framework allows organizations to implement predictive 

models on event log datasets, a common representation in business processes. This practical 

application ensures that the insights derived from predictive analytics are not confined to 

theoretical discussions but are directly applicable to real-world scenarios. Additionally, the 

automation capabilities of AutoML enhance the scalability of predictive analytics, enabling 

organizations to deploy models efficiently across diverse business processes, thereby 

maximizing the impact of operational intelligence. 

  In essence, the contributions of integrating PBPM with AutoML transcend theoretical 

advancements, actively shaping the landscape of operational intelligence. This synergy not 

only addresses existing challenges within business process management but also propels the 

field forward by making predictive analytics more accessible, applicable, and scalable, 

thereby empowering organizations to navigate the intricacies of their processes with 

foresight and efficiency. 
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1.3 OBJECTIVES OF THE STUDY 
 

  To achieve a comprehensive understanding of the interplay between Predictive Business 

Process Monitoring (PBPM) and Automated Machine Learning (AutoML), this study is guided 

by four overarching goals: 

1. In-Depth Exploration of Predictive Business Process Monitoring: 

The first goal entails a meticulous examination of the scientific domain of Predictive Business 

Process Monitoring. This involves an extensive literature review to comprehend the 

theoretical foundations, methodologies, and existing advancements within PBPM. By 

conducting a thorough study of the scientific landscape, we aim to establish a robust 

foundation for subsequent analyses and evaluations. 

2. Assessing the Potential of Automated Machine Learning in PBPM: 

Building upon the insights gained from the exploration of PBPM, the second goal focuses on 

identifying the potential of Automated Machine Learning (AutoML) in addressing challenges 

within the PBPM scientific area. This involves a critical analysis of how AutoML can augment 

and enhance predictive analytics in business processes, with a particular emphasis on its 

capabilities to streamline modeling processes and optimize predictive outcomes. 

3. Implementation of AutoML Algorithms on Event Log Data Sets: 

The third goal is a hands-on exploration of AutoML's capabilities. We aim to implement 

AutoML algorithms on datasets formatted as event logs, a common representation in 

business process contexts. This step involves the practical application of AutoML 

methodologies to produce predictions in the realm of business processes. Through this 

implementation, we seek to understand the adaptability and efficacy of AutoML in real-

world scenarios. 

4. Evaluation of AutoML Algorithm Results: 

The final goal centers on the critical evaluation of the results derived from the application of 

AutoML algorithms. This involves a systematic assessment of the predictive accuracy, 

efficiency, and overall performance of AutoML in the context of business process 

monitoring. By rigorously evaluating the outcomes, we aim to provide empirical evidence of 

the effectiveness of AutoML as a tool for enhancing predictive capabilities within business 

processes. 

 

  In essence, these goals collectively form a comprehensive research framework, guiding the 

study towards a nuanced understanding of how the marriage of Predictive Business Process 

Monitoring and Automated Machine Learning can contribute to operational intelligence and 

decision-making within the complex dynamics of modern business processes. 
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2. LITERATURE REVIEW 

2.1 OVERVIEW OF BUSINESS PROCESS MANAGEMENT 
 

  Business Process Management (BPM) serves as a structured methodology for organizations 

seeking to optimize their operational efficiency, effectiveness, and adaptability. It 

encompasses a systematic approach to the design, execution, monitoring, and improvement 

of business processes. [1] The ultimate goal is to align these processes with organizational 

objectives, fostering continuous improvement and overall enhanced performance. A key 

piece to achieving this business process improvement –understands the BPM lifecycle. 

  The life cycle of BPM involves a series of interconnected stages, each contributing to the 

holistic management and optimization of business processes. The initial Design phase 

involves identifying and documenting existing processes, followed by the creation of 

detailed process models during the Modeling stage. [2] The Execution phase sees the 

implementation of designed processes in real-world business environments, often facilitated 

by BPM software and automation tools. The Monitoring stage entails continuous tracking of 

key performance indicators (KPIs) and process metrics. Finally, the Optimization phase 

utilizes monitoring data to identify areas for improvement, implementing changes to 

enhance efficiency and effectiveness. [2] 

 

2.1.1 TYPES OF BUSINESS PROCESS MANAGEMENT 

 

  Business Process Management (BPM) encompasses diverse approaches tailored to address 

specific organizational needs, fostering efficiency and effectiveness. One prominent category 

is Process-Centric BPM, which centers on the refinement and optimization of individual 

business processes. [1] Organizations employing this type of BPM delve deeply into the 

intricacies of specific operational functions, aiming to enhance efficiency, reduce 

bottlenecks, and improve overall performance within distinct functional areas. 

  In contrast, Human-Centric BPM places a spotlight on processes that involve human 

interactions. [2] This approach acknowledges the vital role played by individuals in the 

execution of processes, emphasizing collaboration, communication, and decision-making. 

Human-Centric BPM seeks to optimize not only the procedural aspects but also the human 

elements within workflows, recognizing that organizational success often hinges on effective 

human collaboration. [2] 

  Another facet of BPM is Integration-Centric BPM, which concentrates on the seamless 

integration of diverse systems and technologies. In a rapidly evolving technological 

landscape, organizations rely on numerous applications and tools. [2] Integration-Centric 

BPM ensures the harmonious flow of data and communication between these systems, 

promoting interoperability and efficiency. It addresses the challenges associated with 

disparate technologies, enabling a more unified and streamlined operational environment. 
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  These distinct types of BPM are not mutually exclusive; organizations often adopt a hybrid 

approach based on their unique requirements. For instance, a comprehensive BPM strategy 

may incorporate elements of Process-Centric, Human-Centric, and Integration-Centric BPM, 

offering a nuanced and tailored solution that aligns with the organization's overarching goals 

and objectives. [2] The flexibility inherent in these BPM types allows organizations to adapt 

their approach to the specific characteristics and demands of different processes within the 

business ecosystem. As a result, BPM becomes a dynamic and evolving framework, capable 

of addressing the multifaceted nature of modern business operations.  

 

2.1.2 PROS AND CONS OF BUSINESS PROCESS MANAGEMENT 

 

  Business Process Management (BPM) offers a range of advantages, making it a widely 

adopted approach for organizational optimization. One of the key benefits is the potential 

for significant efficiency improvement. [1] BPM enables organizations to streamline their 

operations, eliminate redundancies, and enhance overall workflow efficiency. By identifying 

and addressing bottlenecks or inefficiencies within processes, businesses can experience 

cost savings and improved resource utilization. Furthermore, BPM provides a framework for 

adaptability, allowing organizations to respond promptly to changing market conditions. In a 

dynamic business environment, the ability to modify and optimize processes quickly is a 

valuable asset. [1] BPM facilitates this agility by providing a structured methodology for 

continuous improvement, ensuring that organizations can align their operations with 

evolving strategic objectives. Improved customer satisfaction is another notable advantage 

of BPM. As processes become more efficient and customer-centric, the overall experience 

for clients and stakeholders is enhanced. Whether it's in terms of faster service delivery, 

more accurate information, or smoother interactions, BPM contributes to heightened 

customer satisfaction, fostering loyalty and positive relationships. [2] 

  Despite these advantages, the adoption of BPM is not without challenges. One significant 

drawback is the potential for high implementation costs. [1] Integrating BPM systems and 

software into existing organizational structures may require substantial financial investment. 

This cost factor can be a barrier for smaller organizations or those operating on tighter 

budgets, limiting the accessibility of BPM solutions. Resistance to change from employees is 

another notable challenge. Employees accustomed to established processes may resist 

alterations introduced by BPM initiatives. [1] This resistance can lead to implementation 

challenges, necessitating effective change management strategies to ensure a smooth 

transition and acceptance of new methodologies. Lastly, the inherent complexity of 

managing and optimizing business processes can pose difficulties. [2] Organizations may find 

it challenging to navigate the intricacies of BPM, requiring specialized skills and resources for 

successful implementation. The complexity factor reinforces the importance of thorough 

planning, employee training, and ongoing support to maximize the benefits of BPM.  
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  In summary, the pros and cons of BPM reflect its multifaceted nature. While it offers 

substantial advantages in terms of efficiency, adaptability, and customer satisfaction, 

organizations must carefully consider potential challenges such as implementation costs, 

employee resistance, and the inherent complexity associated with managing and optimizing 

intricate business processes. [2] 

 

2.1.3 FIELDS OF APPLICATION FOR BUSINESS PROCESS MANAGEMENT 

 

  The application of BPM extends across diverse industries, each benefiting from the 

optimization of specific processes. [1] In manufacturing, BPM aids in streamlining production 

processes, managing inventory, and optimizing supply chain operations. In finance and 

banking, BPM finds utility in streamlining loan approval processes, enhancing transaction 

handling, and improving risk management. The healthcare sector leverages BPM to optimize 

patient care processes, streamline appointment scheduling, and manage medical records 

efficiently. Retail organizations benefit from BPM in areas such as inventory management, 

order processing, and customer service enhancement. [1] Information technology sectors 

utilize BPM to manage software development processes, enhance IT service delivery, and 

facilitate seamless system integrations. 

  In conclusion, Business Process Management stands as a multifaceted approach, 

encompassing various types, a comprehensive life cycle, and presenting both advantages 

and challenges. Its applications span across industries, driving improvements in diverse 

business processes.  

 

2.2 PROCESS MINING  
 

  Process Mining is a cutting-edge analytical discipline that leverages data logs generated by 

information systems to gain insights into business processes. [4] Unlike traditional Business 

Process Management (BPM), which relies heavily on predefined models, Process Mining 

extracts process information directly from event logs, offering a more dynamic and data-

driven approach to process analysis. Process Mining plays a pivotal role in enhancing process 

transparency, offering organizations an in-depth understanding of how their processes truly 

operate. By analyzing event data, it provides a factual representation of workflow execution, 

facilitating the identification of inefficiencies, compliance issues, and potential areas for 

improvement. [4] This data-driven insight is crucial for organizations striving to enhance 

operational efficiency, compliance, and overall performance.  
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2.2.1 DISTINGUISHING PROCESS MINING FROM BPM 

 

  Process Mining and Business Process Management (BPM) represent distinct approaches to 

understanding and optimizing business processes. While BPM focuses on the design, 

modeling, and improvement of processes based on predefined structures, Process Mining 

takes a different, more data-centric approach. [3] In the realm of BPM, organizations 

traditionally rely on predefined process models, emphasizing the proactive design and 

optimization of processes before their execution. In contrast, Process Mining operates 

retrospectively. Instead of relying on predefined models, it extracts insights directly from 

event logs generated by information systems during actual process executions. [3] By 

analyzing these logs, Process Mining reconstructs the real-life sequence of activities, 

providing an accurate and factual representation of how processes are executed within an 

organization. 

  One key distinction lies in the source of information. BPM starts with a predefined model 

and seeks to align processes with this model. Process Mining, on the other hand, derives its 

understanding directly from the data generated during the execution of processes. [3] This 

allows Process Mining to uncover variations, deviations, and nuances that may exist in real-

world process execution but are not accounted for in BPM models. While BPM offers a 

structured and planned approach to process optimization, it may struggle to capture the 

dynamic and evolving nature of actual process execution. Process Mining, by directly 

leveraging data logs, offers a more adaptive and reactive strategy. [3] It excels in revealing 

the true intricacies of processes, allowing organizations to identify inefficiencies, 

bottlenecks, and deviations that might escape the purview of traditional BPM 

methodologies. 

  In essence, the key difference lies in their orientation – BPM is proactive and model-centric, 

while Process Mining is retrospective and data-driven. [3] This distinction empowers 

organizations to complement their strategic process design with a more granular and 

adaptive understanding derived from real-world execution, providing a comprehensive view 

essential for continuous improvement. 

 

2.2.2. POSITIVE AND NEGATIVE ASPECTS OF PROCESS MINING 

 

  One of the significant advantages of Process Mining is its ability to provide an objective and 

comprehensive view of processes. [3] It offers a clear visualization of how tasks are executed 

in reality, allowing organizations to make informed decisions based on factual evidence. The 

transparency afforded by Process Mining enables organizations to identify and rectify 

inefficiencies, optimize resource allocation, and ensure adherence to compliance standards. 

Moreover, Process Mining is instrumental in facilitating continuous improvement. By 

continuously monitoring and analyzing processes, organizations can identify opportunities 

for optimization, ensuring that their operations stay agile and responsive to changing 
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business dynamics. [3] This adaptability is crucial in the modern business landscape, where 

organizations must be able to adjust quickly to stay competitive.  

  However, the implementation of Process Mining is not without challenges. Integration with 

existing systems and data sources can be complex, and organizations may face hurdles in 

ensuring data accuracy and completeness. [3] Additionally, there may be concerns related to 

data privacy and security, as Process Mining relies on analyzing detailed event logs, 

potentially containing sensitive information. Furthermore, interpreting Process Mining 

results requires a nuanced understanding of both the technical and business aspects. 

Misinterpretation of the mined data can lead to misguided decisions. [3] Additionally, 

organizations may encounter resistance from employees who might perceive Process Mining 

as intrusive or fear potential repercussions from increased process transparency. 

  In conclusion, Process Mining offers a transformative approach to understanding and 

optimizing business processes. Its importance lies in its ability to provide real-time, data-

driven insights, enhancing transparency, efficiency, and adaptability. While it presents 

substantial positive aspects, organizations must navigate potential challenges related to data 

integration, privacy concerns, and the need for a nuanced interpretation of results to fully 

harness its benefits. 

 

2.3 MACHINE LEARNING IN PROCESS MINING 
 

  The intersection of Machine Learning (ML) and Process Mining represents a powerful 

synergy, where advanced analytical techniques enhance the capabilities of traditional 

process analysis. [5] Unlike conventional process analysis methods, which may rely on 

predefined rules and models, ML in Process Mining introduces a data-driven and adaptive 

dimension to uncover hidden patterns and insights within vast datasets. One significant 

application of ML in Process Mining is the automated discovery of process models. 

Traditional Process Mining techniques extract process models from event logs [4], but ML 

algorithms take this a step further. Machine Learning algorithms can autonomously identify 

patterns, relationships, and variations within the data, contributing to the automatic 

generation and refinement of process models. This not only accelerates the analysis process 

but also ensures a more dynamic and responsive adaptation to evolving business processes. 

  Predictive analytics is another realm where ML contributes significantly to Process Mining. 

By leveraging historical process data, ML algorithms can forecast future process behaviors, 

identifying potential bottlenecks or deviations before they occur. [5] This predictive 

capability empowers organizations to proactively address issues, optimize resource 

allocation, and enhance overall process efficiency. Furthermore, ML enhances the precision 

of anomaly detection in Process Mining. Anomalies, deviations, or outliers within process 

execution can be indicative of inefficiencies or potential risks. ML algorithms excel in 

recognizing subtle patterns within large datasets, facilitating the early identification of 

irregularities that may go unnoticed with traditional analysis methods. [5] Despite these 

advantages, the integration of ML into Process Mining is not without challenges. The 
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complexity of ML algorithms and the need for large, high-quality datasets can pose 

implementation hurdles. [5] Moreover, interpreting the output of ML models requires a 

nuanced understanding of both the domain-specific processes and the intricacies of the 

employed algorithms. Organizations need to strike a balance between the predictive power 

of ML and the interpretability required for actionable insights.  

  In summary, the incorporation of Machine Learning into Process Mining introduces a data-

driven paradigm shift. From automated process model discovery to predictive analytics and 

anomaly detection, ML enriches the capabilities of Process Mining, providing organizations 

with advanced tools to glean deeper insights and optimize their business processes. The 

challenges in implementation notwithstanding, the fusion of ML and Process Mining 

promises a more dynamic, adaptive, and effective approach to process analysis and 

optimization. 

 

2.4   AUTOMATED MACHINE LEARNING 

2.4.1 INTRODUCTION TO AUTOMATED MACHINE LEARNING (AUTO ML) 

 

  Automated Machine Learning (AutoML) represents a significant advancement in the field of 

machine learning, streamlining and democratizing the process of developing predictive 

models. The primary goal of AutoML is to automate various aspects of the machine learning 

workflow, making it accessible to a broader audience and significantly reducing the time and 

expertise required for model development. 

  The primary difference between AutoML and traditional machine learning lies in the level 

of automation. Classic machine learning often requires extensive manual intervention in 

tasks such as feature engineering, algorithm selection, and hyperparameter tuning. AutoML, 

on the other hand, automates these processes, aiming to optimize the entire workflow 

seamlessly. This shift towards automation democratizes access to machine learning, 

enabling a wider range of professionals to leverage its benefits. [8] 

 

2.4.2 HOW AUTOMATED MACHINE LEARNING WORKS 

 

  Auto ML operates on the principle of automating the end-to-end process of building 

machine learning models, traditionally a labor-intensive and specialized task. [6] The 

workflow of Auto ML typically involves several key steps: 

➢ Data Preprocessing: Auto ML systems handle data preprocessing tasks, such as 

handling missing values, encoding categorical variables, and scaling features. [8] 

This automation ensures that the data is appropriately prepared for modeling.  
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➢ Feature Engineering: Automated techniques are employed to generate and select 

relevant features from the dataset. [8] This involves transforming raw data into a 

format that enhances the performance of machine learning algorithms. 

 

➢ Algorithm Selection: Auto ML explores a range of machine learning algorithms, 

from simple to complex, to identify the most suitable models for a given prediction 

task. This automated selection process considers the characteristics of the data and 

the nature of the prediction problem. [8] 

 

➢ Hyperparameter Tuning: Hyperparameters are the configuration settings that 

govern the behavior of machine learning algorithms. Auto ML systematically 

explores different combinations of hyperparameter values to optimize the model's 

performance. [8] 

 

➢ Model Evaluation and Selection: Auto ML evaluates the performance of multiple 

models using predefined metrics, such as accuracy or precision-recall. [8] The best-

performing model is then selected for further use. 

 

➢ Model Deployment: Once a satisfactory model is identified, Auto ML facilitates the 

deployment of the model into production environments. This often includes 

generating code for deployment or providing interfaces for seamless integration 

with other systems. [8] 

  The key innovation lies in the automation of these steps, allowing users to interact with an 

intuitive interface, upload their data, and receive a fully optimized machine learning model 

[7]. Auto ML platforms abstract away the complexities of model development, making the 

power of predictive analytics accessible to a broader audience. However, we must note that 

the human factor is important no matter what. [7] While Automated Machine Learning 

(Auto ML) automates many aspects of the machine learning workflow, including algorithm 

selection, hyperparameter tuning, and model evaluation, it is common for users to perform 

their own data preprocessing before using Auto ML. Data preprocessing is a critical step in 

the machine learning pipeline, including tasks such as handling missing values, coding 

categorical variables, scaling features, and addressing any other data quality issues. [8] Auto 

ML platforms automate some aspects of data preprocessing, but users often need to ensure 

that their data is in an appropriate format and meets certain standards before feeding it into 

an Auto ML system.  

  In essence, Auto ML is a catalyst for innovation, eliminating entry barriers to machine 

learning by automating the intricate tasks associated with model development. It empowers 

organizations to leverage the full potential of their data without necessitating extensive 

expertise in data science or machine learning. [7] This paradigm shift holds promise for a 

future where predictive analytics becomes an integral part of decision-making across diverse 

sectors. 
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2.4.3 EVOLUTION OF AUTOMATED MACHINE LEARNING 

 

  The evolution of Automated Machine Learning represents a dynamic journey that has 

significantly transformed the landscape of machine learning over the years. From its early 

beginnings to its current state, the evolution of AutoML can be traced through several key 

phases, marked by advancements in algorithms, methodologies, and the democratization of 

machine learning capabilities. The nascent phase of AutoML saw a focus on simplifying the 

machine learning process for users with limited expertise. [7] Early tools aimed to automate 

basic tasks such as algorithm selection and hyperparameter tuning. These tools provided a 

user-friendly interface to make machine learning more accessible, allowing users to 

experiment with predictive modeling without delving into the intricacies of algorithms or 

coding. [8] As the field progressed, the integration of hyperparameter optimization became 

a pivotal advancement. Hyperparameter tuning, a critical step in achieving optimal model 

performance, was automated to enhance efficiency. AutoML platforms started employing 

advanced optimization algorithms to systematically explore hyperparameter spaces, fine-

tuning models for better predictive accuracy. [8] 

  The mid-phase of AutoML evolution witnessed the integration of ensemble methods and 

model stacking. AutoML systems began incorporating ensemble learning techniques, 

leveraging the strengths of multiple models to improve predictive performance. [8] Model 

stacking, which involves combining the outputs of diverse models, became a prevalent 

strategy, further enhancing the robustness and generalization capabilities of AutoML 

models. Recent years have seen a paradigm shift towards end-to-end automation and 

democratization of machine learning. [7] Comprehensive AutoML platforms emerged, 

offering users a one-stop solution for the entire machine learning workflow. These platforms 

automated not only algorithm selection and hyperparameter tuning but also data 

Figure 1 - Auto ML Architecture Search 
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preprocessing, feature engineering, and model deployment. [7] Democratization became a 

focal point, empowering a broader audience, including business analysts and domain 

experts, to leverage the full potential of machine learning without extensive technical 

expertise. 

  The integration of Neural Architecture Search (NAS) represents a cutting-edge 

development in AutoML. NAS automates the design of neural network architectures, 

optimizing them for specific tasks. [6] This advancement has particularly impacted deep 

learning applications, allowing AutoML systems to automatically discover and fine-tune 

neural network structures, thereby pushing the boundaries of model complexity and 

performance. In response to the growing importance of model interpretability, recent 

advancements in AutoML include a focus on explainability. [8] AutoML platforms now 

incorporate techniques to generate interpretable models and provide insights into the 

decision-making process. This addresses concerns related to the "black-box" nature of 

complex machine learning models. 

  In conclusion, the evolution of AutoML reflects a journey from simplifying the machine 

learning process to achieving comprehensive end-to-end automation and democratization. 

The field continues to advance, incorporating state-of-the-art techniques such as Neural 

Architecture Search and emphasizing the importance of model explainability, making 

AutoML an integral part of the contemporary machine learning landscape. 

 

2.4.4 POSITIVES AND NEGATIVES OF AUTOMATED MACHINE LEARNING 

 

  Automated Machine Learning (AutoML) offers several positive attributes that have 

contributed to its widespread adoption. One of its primary advantages lies in its efficiency 

and time-saving capabilities. By automating tasks such as algorithm selection, 

hyperparameter tuning, and feature engineering, AutoML significantly reduces the time and 

effort required for model development, enabling swift deployment. [8] Another key benefit 

is the accessibility and democratization it brings to machine learning. User-friendly 

interfaces empower individuals across various domains, including business analysts and 

domain experts, to leverage advanced predictive modeling without extensive technical 

expertise. [7] Furthermore, AutoML often leads to optimized model performance, as its 

systematic exploration of the model space results in superior hyperparameter configurations 

and algorithm selections. Additionally, its adaptability to changing data ensures that models 

remain accurate and relevant over time. The incorporation of ensemble learning techniques 

enhances overall model robustness, providing more reliable predictions. [7] 

  Despite its numerous advantages, AutoML is not without challenges. One significant 

concern is the interpretability of automated models. The complexity introduced by the 

automated processes can result in models that are challenging to interpret, posing issues in 

scenarios where understanding the decision-making process is crucial, such as in healthcare 

or finance. [8] Another drawback is the potential limitation in customization for experts in 

machine learning and data science. Experienced practitioners may find certain AutoML 
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platforms restrictive in terms of flexibility and control, limiting their ability to fine-tune 

models manually. [7] The automated nature of some advanced models, particularly those 

involving deep learning or complex ensembles, can render them as "black-box" models. This 

lack of transparency raises concerns about accountability and the ability to understand 

model decisions. Additionally, AutoML's effectiveness is heavily reliant on the quality of 

input data; if the data is noisy or biased, the automated processes may not yield optimal 

results. [7] Moreover, the resource intensiveness of training complex models, especially 

those generated through neural architecture search, can be a computational challenge. 

Lastly, there is a risk of overfitting if the automated processes are not carefully controlled, 

emphasizing the importance of proper validation and testing procedures in AutoML 

applications. Balancing these positives and negatives requires a thoughtful consideration of 

specific use cases, data quality, and the expertise of users involved in the machine learning 

process. 

 

2.4.5 AUTOMATED MACHINE LEARNING IN BUSINESS PROCESS  MANAGEMENT 

 

  The integration of Automated Machine Learning (AutoML) into business processes has 

emerged as a strategic imperative, revolutionizing how organizations approach decision-

making, efficiency, and innovation. AutoML's analytical prowess in this context lies in its 

capacity to streamline and optimize predictive modeling without the necessity of extensive 

data science expertise.  

  One of the primary analytical advantages of AutoML is its ability to enhance efficiency in 

business processes. By automating complex tasks such as algorithm selection, 

hyperparameter tuning, and feature engineering, AutoML accelerates the model 

development lifecycle. [8] This efficiency translates into quicker insights, enabling 

organizations to make timely, data-driven decisions that directly impact operational 

performance. Also AutoML empowers organizations to embrace a data-driven culture in 

their decision-making processes. By leveraging machine learning models trained on historical 

data, businesses gain the analytical capability to forecast trends, identify patterns, and make 

informed decisions based on quantitative insights. [8] This analytical shift facilitates a 

proactive approach to problem-solving within the context of business processes. Business 

processes are inherently dynamic, influenced by evolving market conditions, consumer 

behavior, and internal factors. AutoML's analytical adaptability shines in this context. The 

ability to continuously monitor and retrain models ensures that predictive analytics remain 

robust and reflective of the current business landscape. [9] This adaptability is crucial for 

organizations seeking to navigate and thrive in a rapidly changing environment. 

  From an analytical standpoint, AutoML aids in the optimal allocation of resources within 

business processes. By automating resource-intensive tasks and refining models for 

efficiency, organizations can strategically deploy their resources, both human and 

computational. [7] This analytical optimization contributes to cost-effectiveness and ensures 

that resources are directed towards initiatives that yield maximum impact. Analytically, 

AutoML acts as a catalyst for continuous improvement in business processes. The iterative 
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nature of AutoML processes allows organizations to learn from model performance, identify 

areas for enhancement, and refine strategies over time. [8] This analytical feedback loop 

supports a culture of continuous improvement, fostering resilience and adaptability in the 

face of changing business landscapes. 

  In conclusion, the analytical impact of AutoML in business processes is multifaceted, 

encompassing efficiency gains, data-driven decision-making, adaptability, resource 

optimization, enhanced predictive power, and a commitment to continuous improvement. 

As organizations increasingly recognize the analytical potential of AutoML, it becomes a 

cornerstone in their quest for operational excellence, providing a data-centric lens through 

which to analyze, optimize, and innovate in the intricate landscape of business processes. 

 

 

2.5 PREDICTIVE BUSINESS PROCESS MONITORING 
 

  In the dynamic landscape of modern business, where agility and efficiency are paramount, 

Predictive Business Process Monitoring (PBPM) has emerged as a pivotal strategy for 

organizations seeking to elevate their operational intelligence. This innovative approach 

transcends traditional process monitoring by harnessing the power of predictive analytics to 

anticipate, identify, and address potential issues before they impact operational efficiency. 

[4] As we embark on understanding the significance of PBPM, its operational mechanics, and 

the overarching goals it aims to achieve, we unravel a transformative tool that holds the key 

to unlocking unparalleled insights into business processes. 

  The importance of PBPM for businesses cannot be overstated. In an era where every 

competitive edge matters, the ability to proactively manage and optimize business processes 

is a strategic imperative. PBPM provides organizations with the foresight needed to navigate 

complex operational landscapes, mitigate risks, and seize opportunities. By shifting from 

reactive to proactive process management, businesses can not only enhance efficiency but 

also bolster their capacity for strategic decision-making. [9] At its core, PBPM leverages 

advanced predictive modeling techniques to analyze historical data, real-time process 

metrics, and patterns of behavior within business processes. Machine learning algorithms, 

time series analysis, and anomaly detection are intricately woven into the fabric of PBPM. 

[9] This analytical ensemble enables organizations to predict future process behavior, 

identify deviations from expected norms, and continuously monitor the health of their 

operational workflows. 
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2.5.1 GOALS AND ACHIEVEMENTS 

 

  The primary goal of PBPM is to usher in a new era of operational excellence by providing 

actionable insights that go beyond mere monitoring. [9] Organizations aspire to achieve 

several key objectives through PBPM, including: 

➢ Proactive Issue Identification: PBPM aims to shift from reactive problem-solving 

to proactive issue identification. [9] By anticipating potential challenges, 

organizations can take preemptive actions to prevent disruptions. 

 

➢ Enhanced Efficiency: Through continuous monitoring and optimization, PBPM 

contributes to enhanced process efficiency. [9] It identifies areas for 

improvement, streamlines workflows, and supports resource allocation for 

maximum impact. 

 

➢ Data-Driven Decision-Making: PBPM promotes a culture of data-driven decision-

making by providing decision-makers with predictive insights. [9] This analytical 

approach empowers leaders to make informed choices, aligning strategic 

decisions with the anticipated trajectory of business processes. 

 

➢ Adaptability to Change: The adaptability of PBPM to changing conditions ensures 

that predictive insights remain accurate and relevant. [9]This is crucial in a 

business environment where flexibility and adaptability is the key to staying 

competitive. 

  It is important to point out that Predictive Business Process Monitoring goes beyond 

traditional process management by introducing a long-term dimension to operational 

analytics. Within this innovative framework, critical aspects such as: Next Event Prediction, 

Remaining Cycle Time and Time Prediction stand out. These elements not only redefine how 

businesses approach process optimization, but also pave the way for a more proactive and 

strategically aligned business landscape. By harnessing the power of predictive analytics, 

organizations can navigate the intricate temporal landscape of their business processes with 

precision, maximizing efficiency and making informed decisions that shape the future of 

their operations. [10] 

  In essence, Predictive Business Process Monitoring is not merely a technological innovation 

but a strategic imperative for businesses aiming to thrive in the face of complexity. By 

embracing the power of prediction, organizations can embark on a journey towards 

operational excellence, where insights gleaned from data become a compass guiding them 

through the intricacies of the modern business landscape.   
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3. METHODOLOGY 

3.1 DATASET 
 

  The chosen dataset for this research is part of the Business Process Intelligence (BPI) 

collection, comprising a series of event logs capturing various business processes. These 

event logs provide a comprehensive record of activities within different organizational 

workflows. The dataset encompasses a diverse range of events, allowing for a broad 

exploration of process dynamics and temporal sequences. The events recorded in these logs 

span from the initiation to the completion of various business processes, offering valuable 

insights into the patterns and the trends associated with these workflows. 

  The decision to utilize BPI datasets stems from their significance in the field of business 

process analysis and monitoring. These datasets serve as valuable resources for studying the 

behaviors and trends within diverse processes, aiding in the development of predictive 

models and analytical frameworks. The overarching goal is to extract meaningful 

information from these event logs, contributing to a deeper understanding of process 

efficiency, bottlenecks, and potential areas for optimization within organizational workflows. 

 

3.2 EVENT LOG DATA STRUCTURE 
 

  Most BPMSs and also other enterprise systems record events corresponding to the 

execution of work items and other relevant events such as the receipt of a message related 

to a given case of a process. These event records can be extracted from the database of the 

BPMS or enterprise system and represented as an event log. An event log is a collection of 

timestamped event records. Each event record tells us something about the execution of a 

work item (and hence a task) of the process (e.g., that a task has started or has been 

completed), or it tells us that a given message event, escalation event, or other relevant 

event has occurred in the context of a given case in the process. For example, an event 

record in an event log may capture the fact that Chuck has confirmed a given purchase order 

at a given point in time. So a single event has a unique event ID. Furthermore, it refers to 

one individual case, it has a timestamp, and it shows which resources executed which task. 

  Simple event logs are commonly represented as tables and stored in a Comma-Separated-

Values (CSV) format. However, in more complex event logs, where the events have data 

attributes (e.g., the amount of a loan application, the shipping address of a purchase order), 

a flat CSV file is not a suitable representation. A more versatile file format for storing and 

exchanging event logs is the eXtensible Event Stream (XES) format standardized by the IEEE 

Task Force on Process Mining. The majority of process mining tools can handle event logs in 

XES. The structure of an XES file is based on a data model, partially depicted in Figure 2. An 

XES file represents an event log. It contains multiple traces, and each trace can contain 

multiple events. All of them can contain different attributes. [1] 
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Attribute has to be a string, date, int, float, or boolean element as a key-value pair. 

Attributes have to refer to a global definition. There are two global elements in the XES file: 

one for defining trace attributes, the other for defining event attributes. Several classifiers 

can be defined in XES. A classifier maps one of more attributes of an event to a label that is 

used in the output of a process mining tool. In this way, for instance, events can be 

associated with tasks. [1] 

 

3.3 PREPROCESSING OF EVENT LOG DATA 
 

  First, an analysis of each data to give the categorical values, the continuous values, the 

blank values and also the type of each variable, is important. This will help to convert the 

variable categories when we need them, to convert them into numerical values and scale 

them parallel to the continuous values. Thus, the categorical variables in the event log data 

were subjected to an exhaustive coding process. This transformative step was and is decisive 

for the corresponding incorporation of categorical features into machine learning 

algorithms. The goal was to enable meaningful interpretation and use of these variables in 

subsequent prediction models. At the same time, the numerical features of the data set 

were subjected to scaling procedures. Standardizing the sizes of these numerical variables 

Figure 2 - Metamodel of XES format 
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emerged as a critical measure to mitigate the potential impact of different scales on the 

performance of machine learning models. This harmonization ensured a balanced 

contribution of different features to the overall prediction framework. 

  Regarding the treatment of missing values, the methodology we followed was either to 

delete a column that has too many empty values but at the same time in our predictions it 

will not be used at all and will be left out of the model, or we filled the empty values with 

the exact previous value. This happened because some time points corresponding to an 

event had an empty value after converting them to datetime due to a problem with the 

conversion function itself and so we had to find a way to fill these values. This method was 

to fill them with the exact previous value from each empty value. It is important to note that 

certain columns or values may be in a different language from the language we either know 

or want to work with. This happens because the datasets we may work with are from 

different countries, universities, companies, organizations, groups, etc. Thus, an exploration 

of the prices and in terms of the language would be important so that we can convert it to 

the language we want. 

  A very important step is to see the distribution of time with everything formatted in the 

correct form, column of time but also to break this time into smaller pieces. In other words, 

let's break time into hours of the day, day of the week, month. In this way we will be able to 

do a very specific exploration and get 'into' the time variable and if we extract important 

information, where in a different case we would never learn, by seeing the distribution of 

these values. By extracting the day, month, and time, we can capture temporal patterns in 

our data. Many business processes vary based on the time of day, day of the week, or 

month. Note that these exported components can serve as additional features for our 

model. For example, we may discover that certain events or patterns are more prevalent 

during certain hours or days, providing valuable information for your predictive model. It will 

also obviously help if our dataset exhibits seasonality, understanding the month and day can 

help our model for variations related to specific seasons or recurring events. 

  There are many processes that can exist in a dataset, especially in the form of event logs. In 

these processes it is important to see the frequency of transitions of each activity separately 

because determining the frequency of transitions helps in process discovery, which involves 

revealing the actual sequence of activities and events within a business process. Knowing 

which transitions occur frequently provides insight into the most common paths taken by 

instances. Indeed unusual or infrequent transitions may indicate anomalies or deviations 

from the expected process flow. Monitoring transition frequencies helps identify irregular 

patterns that may require further investigation. Similarly, high-frequency transitions may 

indicate critical paths or stages in a process. Identifying frequent transitions allows you to 

identify potential bottlenecks or areas where processes may slow down, providing 

opportunities for optimization. 

  Controlling the event log format for start and end activities is crucial for process mining and 

business process analysis for several reasons. At first glance, identifying start and end 

activities help define the boundaries of a process. It clarifies where a process begins and 

ends, allowing a clear understanding of the entire workflow. Since initiation activities 
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represent the beginning of a process, while termination activities indicate its completion, 

then analyzing these events will help to highlight sequences of activities. Finally we ensure 

the verification of the occurrence of the start and end activities by ensuring the 

completeness and validity of the event log. 

  A final very important step is variance analysis in the context of business process analysis 

and process mining. A process variant is a unique path from the beginning of a process to 

the end. Briefly, a process variant is a unique sequence of activities, like a process 'map'. 

Thus variance analysis will allow us to measure performance fluctuations within a business 

process. Understanding how activities deviate from expected norms provides insights into 

efficiency and effectiveness. In detecting and investigating unexpected behavior or 

deviations from standard operating procedures. Consistent and low variance indicates a 

stable process, while high variance may indicate instability or unpredictability. 

 

3.3.1 PROCESS DISCOVERY USING PROCESS MINING ALGORITHMS 

 

  The Process Discovery phase plays a central role in uncovering the intricacies of business 

processes from event log data. Leveraging process mining algorithms is a key step toward 

extracting meaningful information and patterns in any event log dataset. A powerful 

technique used in this phase is the implementation of a heuristic network through the 

heuristic miner. Understanding the dynamics of business processes is fundamental to 

organizations and businesses seeking to improve efficiency, optimize workflows and identify 

areas for improvement. Process Discovery enables us to uncover the true flow of activities as 

recorded in event logs, shedding light on both expected and unexpected process behaviors. 

  So we use a heuristic network for our analysis. A heuristic network is a graphical 

representation of observed behavior in an event log, providing a visual abstraction of 

process structure. Unlike traditional process models, heuristic networks embrace flexibility 

and capture the inherent uncertainty present in real-world processes. They are very 

important because they handle incomplete or noisy data, making them suitable for the 

diverse and dynamic nature of event logs. A heuristic miner will give a better result than 

applying the alpha algorithm because of the noise. The Alpha Miner is an algorithm designed 

for discovering a process model without assuming any a priori knowledge of the underlying 

process structure. It leverages the direct succession relation present in event logs to 

construct a Petri net, a formalism that captures both concurrency and synchronization in 

process execution. So, the heuristic net gives more information on the reliability of the used 

paths and therefore is more suitable for determining the main process. [1] 

  A very simple example of heuristic network is below:  
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Heuristic Miner is a widely adopted algorithm for constructing heuristic nets from event 

logs. Its significance lies in its ability to discover process models without relying on a 

predefined process model structure. Instead, it intelligently infers the most likely process 

flow by analyzing the temporal relationships and dependencies present in the event log 

data. 

➢ Key Advantages of Heuristic Miner: 

 

1. Adaptability to Real-world Complexity: 

        Heuristic Miner excels in scenarios where processes exhibit variations, exceptions, or 

ad-hoc deviations from a rigid structure, making it an ideal choice for modeling real-world 

complexity. 

2. Handling Noisy Data: 

        Incomplete or noisy event logs are common in practical scenarios. The Heuristic Miner's 

resilience to such imperfections ensures that the discovered heuristic net accurately reflects 

the observed behavior. 

3.  Efficient Handling of Large Event Logs: 

        Scaling to large datasets is crucial for practical applications. The efficiency of Heuristic 

Miner makes it suitable for processing extensive event logs, facilitating analysis in real-

world, large-scale business environments. 

4.   Incremental Discovery: 

        As processes evolve, the Heuristic Miner allows for incremental discovery, adapting to 

changes over time and supporting continuous process improvement efforts. 

Figure 3 - Heuristic Network Example 
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  In summary, the implementation of a heuristic net through the application of the Heuristic 

Miner is a valuable approach in Process Discovery. It not only accommodates the 

complexities inherent in real-world processes but also provides a foundation for subsequent 

analysis and improvement initiatives. 

 

3.4 MODEL SELECTION AND CONFIGURATON 
 

  In the methodology of predictive business process monitoring, careful attention is paid to 

the selection and configuration of models, a process facilitated by the application of 

automated machine learning (AutoML). The TPOT library, a notable component of this 

methodology, stands out as an invaluable resource for automating the complex tasks 

associated with model selection and hyperparameter tuning. This library works on the 

premise of optimizing the machine learning pipeline, exploring a variety of algorithms and 

configurations to identify the most effective ones. This automated approach not only speeds 

up the model development process, but also ensures a thorough exploration of potential 

architectural models. [6] 

  Over the course of the predictions in the code, we implemented four different prediction 

models. In two of them the TROT library was used for classification and in the other two 

models for regression. In classification prediction works, attempts were made to predict the 

next process of a business process, among a set of processes where each case, that is, each 

loan request, supposedly has some historical patterns. The choice of a classifier model aligns 

with the nature of event prediction and our goal. In parallel, the predictions do not stop only 

at the prediction of one subsequent process, but also at the prediction and classification of 

the two subsequent processes. These are done in many different experiments, for both 

models, where we give a different number of historical patterns for the algorithms to learn 

the different patterns according to the processes where they have been given. TPOT 

Classifier, through its automated optimization, adapts to the dynamic sequences inherent in 

the business process, offering a flexible solution for event prediction. On the other hand, to 

predict time-related metrics, such as the time duration of each process from one to the next 

and the remaining cycle time, TPOT Regressor was used. In these predictions, we create 

models where we initially try to predict the time it takes to move from each process within a 

request to the next. By this we mean the length of time for each procedure separately, but 

for all procedures in all cases-loan applications, which can certainly be very important for 

the management of resources in a bank. Predicting the remaining cycle time in a business 

process offers many practical advantages and is of significant value in optimizing workflow 

performance. This is how we try to predict the remaining cycle time for each loan 

application, where we will see in detail below which procedures we follow to make these 

predictions. [11] 

  Thus, this regression model, adapted to predict continuous numerical values, proves 

invaluable in capturing the temporal nuances embedded in the business process timeline in 

each and similar dataset.  
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3.4.1 TPOT LIBRARY 

 

  There are a lot of components we have to consider before solving a machine learning 

problem some of which includes data preparation, feature selection, feature engineering, 

model selection and validation, hyperparameter tuning, etc. In theory, you can find and 

apply a plethora of techniques for each of these components, but they all might perform 

differently for different datasets. The challenge is to find the best performing combination of 

techniques so that you can minimize the error in your predictions. This is the main reason 

that nowadays people are working to develop Auto-ML algorithms and platforms so that 

anyone, without any machine learning expertise, can build models without spending much 

time or effort. Such a platform is available as a python library: TPOT, and we use it during 

the implementation of the specific thesis. You can consider TPOT as your Data Science 

Assistant.  

  TPOT, which stands for "Tree-based Pipeline Optimization Tool," is an open-source Python 

library designed for automated machine learning (AutoML). Developed by Randy Olson, 

TPOT is particularly known for its use of genetic programming to optimize machine learning 

pipelines automatically. The goal of TPOT is to automate the process of selecting the best 

machine learning model and its hyperparameters for a given dataset. Leveraging genetic 

programming, TPOT intelligently explores diverse machine learning models, optimizing not 

only for model selection but also fine-tuning hyperparameters to enhance predictive 

performance. Furthermore, TPOT incorporates feature engineering techniques, such as 

polynomial features and interactions, during its evolutionary algorithm-driven search for the 

most effective machine learning pipeline. This comprehensive approach streamlines the 

often complex process of selecting, configuring, and refining machine learning models, 

empowering users with an automated tool capable of efficiently producing high-performing 

pipelines tailored to specific datasets. [11] 

 

Figure 4 - Automated Model by TPOT Library 
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  With the right data, computing power and machine learning model you can discover a 

solution to any problem, but knowing which model to use can be challenging for you as 

there are so many of them like Decision Trees, SVM, KNN, etc. That's where genetic 

programming can be of great use and provide help. Genetic algorithms are inspired by the 

Darwinian process of Natural Selection, and they are used to generate solutions to 

optimization and search problems in computer science. Broadly speaking, Genetic 

Algorithms have these properties: 

➢     Initialization: TPOT starts with a population of randomly generated pipelines, 

each representing a combination of machine learning algorithms and their 

hyperparameters. 

 

➢     Evaluation: The fitness of each pipeline is assessed by its performance on the 

specified task (regression or classification). The evaluation is typically based on 

metrics like accuracy or mean squared error. 

 

➢     Selection:  High-performing pipelines are selected to form the basis for the next 

generation. Selection is influenced by the fitness scores achieved during 

evaluation. 

 

➢     Crossover: Selected pipelines undergo crossover, where elements of two parent 

pipelines are combined to create new child pipelines. This mimics the process of 

genetic recombination. 

 

➢     Mutation: Random mutations are introduced to the child pipelines, exploring 

new possibilities in the search space. This adds diversity to the population and 

helps discover potentially better solutions. 

 

➢     Repeat: Steps 2-5 are repeated over multiple generations, allowing TPOT to 

iteratively refine its search space and converge towards optimal machine learning 

pipelines. 

  Over several generations, TPOT refines its search space, adapting to the characteristics of 

the dataset to identify the most effective machine learning models. By combining the power 

of genetic algorithms with automated machine learning, TPOT provides a comprehensive 

and effective solution for optimizing predictive modeling tasks. Its adaptability and 

automated nature make it a valuable asset in the development of accurate and efficient 

models for business process monitoring. 

  Consequently, it turns out that choosing the right machine learning model and all the best 

hyperparameters for that model is itself an optimization problem for which genetic 

programming can be used. The Python library TPOT built on top of Scikit-Learn uses genetic 

programming to optimize your machine learning pipeline. For instance, in machine learning, 

after preparing your data you need to know what features to input to your model and how 

you should construct those features. Once you have those features, you input them into 

your model to train on, and then you tune your hyperparameters to get the optimal results. 
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Instead of doing this all by yourselves through trial and error, TPOT automates these steps 

for you with genetic programming and outputs the optimal code for you when it's done. 

  As we will see in detail below, the library is divided into two main parts. One is classification 

and the other is regression where we choose each problem accordingly and adapting the 

algorithms where it will search to find the appropriate one for the corresponding problem 

and dataset we have. [6] [11] 

 

➢ HOW WE USED THE TPOT LIBRARY 

 

  In this section we will briefly look at the intricacies of leveraging the Tree-based Pipeline 

Optimization Tool (TPOT) library to build automated and optimized machine learning 

pipelines tailored to the BPI 2012 event log dataset we chose for our experiments, which we 

will see more detailed in the next section. 

Raw Data: In this case, to import the data we have an XES file where we analyzed previously 

how these files work, and we import them using the pm4py library. We then convert it to a 

dataframe via the Pandas library so that we can use the data for input into the prediction 

models later. Noteworthy is the selective use of specific columns—timestamp, case ID, and 

concept name—streamlining the dataset to the essential components for our predictive 

tasks. 

Data Cleaning: TPOT addresses the complexities of raw data by incorporating powerful data 

cleansing techniques. Handling missing values becomes a critical aspect, ensuring the 

integrity of the data set and laying the groundwork for accurate predictive modeling. 

Although it is done automatically, we handle some of the prices we have manually. That is, 

we convert the timestamp column to datetime and fill in the values that are missing after 

this conversion due to problems with the library function to fill in values where it is the first 

value for each case. That is, we fill them with 0. We can also, where there are too many 

values missing and we have no sure way to fill them in and that they are correct, delete the 

entire column if it is not very useful in our predictions, as we do in the 'org:resource' column, 

which represents the department that implements the every procedure every time and it is 

not sure how to fill these values. 

Feature Engineering: The predictive power of our models is enhanced by extracting temporal 

features from the event log data. TPOT's feature engineering capabilities delve into temporal 

dynamics, capturing the sequence of events and temporal patterns that are critical to the 

predictions we will be experimenting with. So it is very important to extract characteristics 

from the timestamp column, in days, weeks, hours, etc. We helped in this way to have more 

features for our model to learn different patterns between them and to see different 

distributions 
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Model Selection: An automated approach to model selection is orchestrated by TPOT. 

Through genetic programming, the library navigates a diverse landscape of machine learning 

algorithms and configurations, selecting models that exhibit optimal performance for our 

specific predictive tasks. Thus there are two models which we will see in detail in the next 

subsection. The two models are divided into classification and regression where we use 

them respectively for the predictions of the next event and time duration or remaining time 

cycle. 

Parameter Optimization: Genetic programming extends its ability to optimize 

hyperparameters. TPOT evolves and refines the hyperparameter configurations for the 

selected machine learning models, ensuring that the models are finely tuned to the 

intricacies of the event log data. In our models we mainly follow parameters with 8 

generations and 25 populations. In parallel, we set the verbosity to 2 so that we can see the 

process in detail and not just the final results. 

Model Validation: The robustness of our predictive models is rigorously assessed through 

cross-validation techniques. TPOT partitions the dataset, trains models on subsets, and 

validates on remaining data, ensuring reliable performance evaluation and guarding against 

overfitting. 

 

  In summary, the use of TPOT in this integrated machine learning pipeline reflects a 

commitment to accuracy, efficiency, and adaptability in the field of predictive analytics, 

reinforced by the intentional inclusion of timestamp, case identifier, and concept name 

columns to focus on key information. The following sections provide a detailed exploration 

of each of the two models in the TPOT library as well as the evaluation metrics for the 

performance of the models where they output, as we will see in more detail in the next 

section, either predicting the next event, or the two next events, or duration from each 

event to the next, or forecast of remaining cycle time. In other words, according to the 

predictive model we are considering. 

 

3.4.2 TPOT REGRESSION 

 

  The TPOT Regressor performs an intelligent search over machine learning pipelines that can 

contain supervised regression models, preprocessors, feature selection techniques, and any 

other estimator or transformer that follows the scikit-learn API. The TPOTRegressor will also 

search over the hyperparameters of all objects in the pipeline. By default, TPOT Regressor 

will search over a broad range of supervised regression models, transformers, and their 

hyperparameters. However, the models, transformers, and parameters that the TPOT 

Regressor searches over can be fully customized. Users have the flexibility to customize the 

search space by specifying the allowed algorithms and their hyperparameters. This level of 

customization enables practitioners to tailor TPOT Regressor to their specific predictive 

modeling requirements. For instance, if a user prefers to focus solely on tree-based models 
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or linear regression, they can restrict the search space accordingly. This fine-grained control 

ensures that the automated selection aligns with the user's preferences and the 

characteristics of the business process dataset. 

  The algorithms listed for TPOT Regressor encompass a versatile set of regression models, 

each offering unique advantages in capturing patterns and making predictions about 

numerical metrics. Here's a summary of the regression algorithms:  

➢ Linear Regression: This algorithm models the relationship between the dependent 

variable and one or more independent variables by fitting a linear equation to the 

observed data. It is widely used for its simplicity and interpretability, assuming a 

linear relationship between the input features and the target variable. 

 

➢ Decision Trees: Decision trees are non-linear models that recursively split the 

dataset based on features, forming a tree-like structure. They are capable of 

capturing complex relationships within the data, making them adept at handling 

intricate patterns in the business process timeline. 

 

➢ Random Forest: An ensemble method, Random Forest combines multiple decision 

trees to improve predictive accuracy and control overfitting. It works by constructing 

a multitude of trees and averaging their predictions, providing robustness and 

mitigating the impact of outliers. 

 

➢ Gradient Boosting: Gradient Boosting builds a series of weak learners (typically 

decision trees) sequentially, with each subsequent tree correcting the errors of the 

previous ones. It excels at capturing subtle patterns and dependencies within the 

data, making it well-suited for nuanced time-related predictions. 

 

➢ Support Vector Machines (SVM): SVM is a versatile algorithm that can be applied to 

both regression and classification tasks. It aims to find the hyperplane that best 

separates the data into different classes or predicts a numerical outcome. SVM is 

particularly effective in high-dimensional spaces. 

➢ k-Nearest Neighbors (k-NN): k-NN is a simple and intuitive algorithm that predicts 

the target variable based on the majority vote or average of its k-nearest neighbors 

in the feature space. It is well-suited for tasks where local patterns are important.  

 These algorithms collectively offer a rich toolkit for TPOT Regressor, enabling automated 

selection based on the characteristics of the business process data and the specific 

requirements of the regression task at hand. Users can further customize the algorithmic 

search space based on their domain knowledge and preferences, ensuring a tailored 

approach to model selection. [11] 
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3.4.3 TPOT CLASSIFICATION 

 

  TPOT Classifier focuses on classification tasks, making it suitable for predicting discrete 

outcomes. The TPOT Classifier performs an intelligent search over machine learning 

pipelines that can contain supervised classification models, preprocessors, feature selection 

techniques, and any other estimator or transformer that follows the Scikit-Learn API. The 

TPOT Classifier will also search over the hyperparameters of all objects in the pipeline. By 

default, TPOT Classifier will search over a broad range of supervised classification algorithms, 

transformers, and their parameters. However as in TPOT Regression so here too apparently, 

the algorithms, transformers, and hyperparameters that the TPOT Classifier searches over 

can be fully customized using the ‘config_dict’ parameter.  

  The algorithms listed for TPOT Classifier provide a diverse set of tools for automated model 

selection in classification tasks. Here's a concise overview of each algorithm: 

➢ Logistic Regression: Logistic Regression models the probability of a binary 

outcome, making it suitable for classification tasks. It works by applying a 

logistic function to a linear combination of input features, providing 

probabilities that can be transformed into class predictions. 

 

➢ Decision Trees: Decision trees in the context of classification create branches 

based on features to classify instances into different classes. They are effective 

at capturing complex decision boundaries and interactions within the feature 

space. 

 

➢ Random Forest: Similar to TPOT Regressor, Random Forest in TPOT Classifier 

combines multiple decision trees to form a robust ensemble, improving 

classification accuracy and generalization. 

 

➢ Gradient Boosting: Gradient Boosting for classification builds a series of weak 

learners to iteratively correct errors. It excels at capturing subtle dependencies 

within the data and is particularly effective when dealing with imbalanced 

classes. 

➢ Support Vector Machines (SVM): SVM in classification aims to find the 

hyperplane that best separates different classes in the feature space. It is 

powerful in scenarios where the decision boundary is non-linear or complex. 

 

➢ k-Nearest Neighbors (k-NN): k-NN for classification predicts the class based on 

the majority vote of its k-nearest neighbors. It is a simple yet effective 

algorithm, particularly useful when local patterns are essential in the 

classification task. 
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  These algorithms collectively form a comprehensive set within TPOT Classifier, facilitating 

automated selection based on the characteristics of the business process data and the 

specific requirements of the classification task at hand. Users can further customize the 

algorithmic search space based on their domain knowledge and preferences, ensuring a 

tailored approach to model selection in classification scenarios. [11] 

 

3.5 EVALUATION METRICS 
 

  Evaluation metrics are crucial in assessing the performance of machine learning models. 

They provide quantitative measures that guide the selection of models and the tuning of 

hyperparameters. Different tasks require different metrics, and understanding which metric 

to use is the key to interpreting model results effectively. These metrics provide insights into 

how well a model is achieving its objectives, whether it's classification, regression, clustering, 

or another type of task. When evaluating a machine learning model, it is crucial to assess its 

predictive ability, generalization capability, and overall quality.  The choice of evaluation 

metrics depends on the nature of the task and the specific goals of the analysis. 

  As we knew before about predictive models, the performance metrics are separate for 

classification problems and regression problems. In classification tasks, where the output is a 

discrete label, common evaluation metrics include: Accuracy, Precision and Recall, F1 Score, 

ROC Curve and AUC. And for regression tasks where the model predicts continuous values, 

common metrics include: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and 

Mean Squared Error (MSE). Also for multi-class classification problems, evaluation metrics 

are extended or adapted from binary classification we have: Confusion Matrix and 

Classification Report.  

  As we will see in the next chapter more specifically about the results of the specific dataset 

and the models we used, we calculate all the above model performance metrics except for 

the ROC Curve and AUC. So now we will see what each measurement calculates and why it is 

useful for the performance of the model. [12] 

 

3.5.1 CLASSIFICATION METRICS 

 

➢ Accuracy 

  Accuracy is the simplest evaluation metric for classification. It is the ratio of correctly 

predicted observations to the total observations and provides a quick measure of how often 

the model is correct. It is a straightforward metric that provides a high-level assessment of 

the model's performance. One of the main reasons why model accuracy is an important 

metric, is that it is an extremely simple indicator of model performance.  However, it may 

not be suitable for imbalanced datasets. 
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➢ Classification Report 

  A classification report is used to measure the quality of predictions from a classification 
algorithm. The report presents the main classification metrics—precision, recall, and F1-
score—for each class. The classification report is crucial for understanding the model's 
performance across different classes, especially in scenarios with imbalanced datasets. 

 

➢ Confusion Matrix 

  A confusion matrix is a table that presents a summary of the model's predictions. It 
includes true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). 
It provides a detailed breakdown of the types and quantities of classification errors. This 
information is crucial for diagnosing model performance, understanding where the model 
excels, and identifying areas for improvement. The printing of a confusion matrix is of the 
type: 

 

 

    

 

 

 

 

 

 

TN / True Negative: The model correctly predicts a negative class for a negative case. 

TP / True Positive: The model correctly predicts a positive class for a positive case. 

FN / False Negative: The model incorrectly predicts a negative class for a positive case. 

FP / False Positive: The model incorrectly predicts a positive class for a negative case. 

  

➢ Precision 

  Precision can be seen as a measure of a classifier’s exactness. For each class, it is 

defined as the ratio of true positives to the sum of true and false positives. Said another 

way, “for all instances classified positive, what percent was correct?”. The Precision 

formula is the following: 

Figure 5 - Confusion Matrix 
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➢ Recall 

  Recall is a measure of the classifier’s completeness; the ability of a classifier to correctly 

find all positive instances. For each class, it is defined as the ratio of true positives to the 

sum of true positives and false negatives. Said in another way, “for all instances that 

were actually positive, what percent was classified correctly?”. The Recall formula is the 

following:  

 

 

 

➢ F1 Score 

  The F1 score is a weighted harmonic mean of precision and recall such that the best 

score is 1.0 and the worst is 0.0. Generally speaking, F1 scores are lower than accuracy 

measures as they embed precision and recall into their computation. As a rule of thumb, 

the weighted average of F1 should be used to compare classifier models, not global 

accuracy. The F1 Score formula is the following:  

 

 

 

3.5.2 REGRESSION METRICS 

 

➢ Mean Squared Error (MSE) 

  Mean squared error (MSE) measures the amount of error in statistical models. It assesses 

the average squared difference between the observed and predicted values. When a model 

has no error, the MSE equals zero. As model error increases, its value increases. The mean 

squared error is also known as the mean squared deviation (MSD). 

 

 

 

 



 
 37 

➢ Root Mean Squared Error (RMSE)  

  The root mean square error (RMSE) measures the average difference between a statistical 

model’s predicted values and the actual values. Mathematically, it is the standard deviation 

of the residuals. Residuals represent the distance between the regression line and the data 

points. RMSE quantifies how dispersed these residuals are, revealing how tightly the 

observed data clusters around the predicted values. 

 

 

 

 

 

 

➢ Mean Absolute Error (MAE) 

  Mean Absolute Error (MAE) is a measure of the average size of the mistakes in a collection 

of predictions, without taking their direction into account. It is measured as the average 

absolute difference between the predicted values and the actual values and is used to assess 

the effectiveness of a regression model. 
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4. RESULTS AND ANALYSIS 
 

4.1 LIBRARIES AND FRAMEWORKS 
 

  In the pursuit of unraveling the intricate dynamics of Predictive Business Process 

Monitoring (PBPM) with Automated Machine Learning (AutoML), the choice and 

implementation of libraries and frameworks play a pivotal role. This section provides a 

succinct overview of the key libraries employed in the analysis, shedding light on their 

individual contributions. Additionally, we touch upon the concept of frameworks, outlining 

their role in guiding the structure and methodology of the research. The application of these 

tools is further contextualized within the dataset used for the study, focusing on the Bank 

Loan Application event logs from the Business Process Intelligence (BPI) Challenge 2012 

dataset. 

Libraries:  

1. Pandas and NumPy: Pandas and NumPy were instrumental for data manipulation 

and numerical operations, providing a robust foundation for handling datasets and 

performing essential computations. 

2. PM4Py: PM4Py, a process mining library, played a pivotal role in extracting insights 

from event logs, enabling the application of process discovery and conformance 

checking techniques. 

3. Seaborn and Matplotlib: Seaborn and Matplotlib served as powerful data 

visualization tools, facilitating the creation of insightful graphs and plots for a 

comprehensive analysis of predictive model outputs. 

4. Plotly: Plotly enriched the visual representation of data with interactive plots, 

enhancing the communicative aspects of the results and providing an immersive 

experience in exploring patterns and trends. 

5. Scikit-learn (sklearn): Scikit-learn, a versatile machine learning library, offered a 

broad spectrum of tools for model selection, evaluation, and preprocessing, 

streamlining the implementation of predictive models. 

6. TPOT: TPOT, an automated machine learning framework, played a crucial role in 

optimizing model selection and hyperparameter tuning, automating the tedious 

aspects of the machine learning pipeline. 

  The research methodology adhered to a systematic framework designed to unlock the 

predictive potential of business process monitoring within the context of bank loan 

applications. Commencing with a meticulous exploration during the Business Understanding 

phase, the emphasis was placed on defining and comprehending the intricacies of predicting 

next event, next two events, time duration, and remaining cycle time in the loan application 

process. The subsequent Data Preparation phase involved a judicious selection of relevant 
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features, managing missing values, and optimizing the dataset structure by retaining 

essential columns such as ‘case:concept:id’, ‘time:timestamp’, and ‘concept:name’. But also 

the 'time_duration' column where it is used accordingly in the remaining cycle time 

problem. 

  Proceeding to the Modeling phase, the automated machine learning TPOT assumed a 

central role. Tailored functions were employed to prepare the dataset for each specific 

prediction problem, ensuring compatibility with TPOT's automated model selection and 

hyperparameter tuning capabilities. This phase was characterized by a meticulous 

integration of TPOT's automated pipeline optimization, facilitating efficient and effective 

model development for each predictive task. 

  The Evaluation phase witnessed the deployment of comprehensive metrics, including 

accuracy, classification report, confusion matrix, precision, recall, MSE, RMSE, and MAE, to 

assess the performance of each TPOT-optimized model. This iterative process allowed for a 

nuanced understanding of the efficacy of predictive models in addressing the diverse 

challenges presented by next event prediction, multiple next events, time duration 

prediction, and remaining cycle time prediction. The structured deployment of this 

framework ensured a systematic and insightful exploration of predictive analytics within the 

dynamic domain of business process monitoring for bank loan applications. 

 

4.2 DATASET  
  

  The Business Process Intelligence (BPI) Challenge is an annual competition that invites 

participants from the data science and business process management communities to 

address real-world challenges in process mining and analytics. The BPI Challenge serves as a 

benchmark for evaluating and advancing techniques in the field of business process 

management. 

  For this research endeavor, the chosen dataset emanates from the BPI Challenge 2012, a 

notable installment in the series. The dataset centers around the domain of bank loan 

applications, presenting a rich and multifaceted landscape for exploration. It encapsulates a 

myriad of events, timestamps, and process-related information that captures the intricacies 

of the loan application process. The dataset, originating from real-world scenarios, provides 

a representative and practical foundation for studying predictive business process 

monitoring within the context of financial processes. 

  Researchers and practitioners interested in accessing the BPI 2012 dataset for their own 

analyses can find it on the official BPI Challenge website or related repositories. The 

dataset's accessibility and relevance make it a valuable resource for studies seeking to 

unravel the complexities of business processes and harness predictive analytics to inform 

decision-making. The decision to employ the BPI 2012 dataset underscores the research's 

commitment to practical applicability and real-world relevance within the domain of 

business process monitoring.  
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➢ Exploratory Analysis: 

  The BPI Challenge 2012 dataset, initially stored as an XES file, underwent a transformation 

into a structured dataframe for in-depth analysis. The columns within the dataset include 

'org:resource', 'lifecycle:transition', 'concept:name', 'time:timestamp', 'case:REG_DATE', 

'case:concept:name', 'case:AMOUNT_REQ'. However for the predictive models, specific 

columns were identified, such as 'concept:name', 'time:timestamp', ‘case:consept:id’ and 

'event_duration,' aligning with the requirements of the business process monitoring 

objectives. In the following figure we will see an example of the first 10 lines of our dataset, 

after we have converted it into data frame, so we can see how it is: 

  Regarding the understanding of what each column contains and what it represents in a 

business, we have that: the 'org_resource' column represents an employee or department 

that is responsible for an activity of a loan request. That is, it helps with who performed a 

procedure. The 'lifecycle:transition' column indicates a more basic event in the set of 

processes. That is, the initiation, completion or planning for the loan application. So we 

proceeded to the 'concept:name' column where we see all the procedures for the loan 

application, in total. It describes what happens at a given point in the process and is a very 

important column for its analysis and manipulation for the prediction of models in general in 

this type of data. Then the 'time:timestamp' column is the timestamp for a process. The 

given moment when the process started to be implemented and can be the chronological 

sequence of events. In parallel, the 'case:REG_TIME' column contains information about 

when the request was initially entered into the system. That is, it only indicates the initial 

timestamp for each request. Then we have the 'case:concept:name' column which 

represents the id of each loan case. That is, a set of procedures constitute a request where 

this request for facilitation consists of an id number found in the specific column. Finally, we 

have the 'amount_req' column which shows us the requested amount for each loan request 

Figure 6 - 10 First Lines of the Dataset (BPI2012) 
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requested by the client. So we see that the column of procedures that make up the set of 

procedures for each request, the number that represents an entire request and the time 

stamp of the procedures within a request, are the columns that give us valuable information 

and help us to proceed to analysis for the understanding of the specific data but also for its 

handling in terms of predictions where they will be made later. 

In the exploratory analysis, essential metrics were computed to characterize the dataset's 

nature: 

• Number of events: 262,200 

• Number of cases: 13,087 

• Average Events per case: 20.04 

• Average Case Length: 20.04 

• Average Event Duration (hours): 10.87 

• Max Event Duration (hours): 2,468.41 

• Average Case Duration (hours): 206.97 

• Max Case Duration (hours): 3,293.32 

• Number of Variants: 1,348 

 

  Language normalization was applied to the 'concept:name' column, converting Dutch 

values to English for improved clarity. The temporal aspect of the dataset revealed that 

activities spanned from 01/10/2011 to 01/03/2012, with notable exclusions of certain 

months— encompassing only January, February, March, September, and October. 

  Then we analyzed in all cases the procedures that start and end. All loan application cases 

start uniformly with the 'A_SUBMITTED' process. On the other hand, they are completed 

with the final activities being 'W_Validate request', 'W_Edit contract details', 'A_Declined', 

'W_Complete your application', 'A_Cancelled', 'W_Call incomplete files', 'W_Handling leads', 

' W_Call for quotes', 'W_Assess fraud', 'O_Cancelled', 'A_Approved'. However, with greater 

frequency the procedures 'A_Declined', 'W_Validate request' and 'W_Handling leads'. 

  The temporal aspect reveals occurrences of activity during specific months, with gaps in the 

data set for certain periods. This analysis provides a fine-grained understanding of the 

temporal distribution, activities, and characteristics of the data set, forming a 

comprehensive foundation for subsequent predictive modeling. The depth of exploration is 

encapsulated in derived metrics and insights, emphasizing the heterogeneous nature of the 

BPI Challenge 2012 dataset. In addition, a heuristic network visually captures complex 

relationships within the dataset, providing a graphical representation of the interaction 

between different process elements where we will in figure 6. 
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Figure 7 - Heuristic Net for BPI2012 



 
 43 

4.3 PRESENTATION OF PREDICTIVE MODELS 

4.3.1 NEXT EVENT PREDICTION (ANALYSIS AND RESULTS) 

 

➢ INTRODUCTION 

  Next event prediction is a pivotal aspect of business process management that involves 

forecasting the subsequent step in a series of events within a given process. In the realm of 

business operations, understanding and anticipating the next stage in a workflow or 

procedure can offer substantial advantages. This predictive capability enables organizations 

to enhance decision-making, optimize resource allocation, and streamline workflows, 

ultimately contributing to increased operational efficiency. The significance of next event 

prediction lies in its potential to preemptively address bottlenecks, identify potential 

deviations, and streamline the overall flow of processes. By harnessing advanced analytical 

models, businesses can gain foresight into the sequence of activities, allowing for proactive 

interventions and strategic adjustments. This not only facilitates smoother operations but 

also aids in achieving overarching business objectives, such as minimizing delays, enhancing 

customer satisfaction, and improving overall process performance. 

  In the next analysis, we delve into the application of a next-event prediction model to the 

BPI Challenge 2012 dataset we saw earlier. The code and methodology used highlight the 

practical applications of predictive analytics in optimizing business processes and paving the 

way for informed decision-making, but also the way for non-experts to engage with 

automated AI, as we will see in result automatically the algorithm that is the best together 

with the set of hyperparameters. 

 

➢ METHODOLOGY 

  In this theoretical exploration, we delve into the implementation of a next-event prediction 

model using a window approach. The prediction model is designed to predict the next step 

based on historical sequences of events, allowing adaptability to different window sizes. The 

choice of a window size is very important, affecting the sensitivity of the sequence and 

shaping the ability of the model to capture patterns in the data. Thus, it enables us in a very 

simple way to do different experiments by only changing the value of one variable to see the 

distribution of the model's performance. The experiments to be done include window 

values: 1, 2, 3, 5, 10, 15 and 20. 

  To make it easier to understand the window size is a number that determines the number 

of events we will give the system to predict the next ones. That is, by defining the size of the 

window, this will be used by a function, which, through an iterative loop, will go through all 

the cases of loans, of the dataset we have, and will create sequences of events based on the 

size of the window we defined. This is how we output a sequence of events based on this 

size. This is very important because the number of events (window size) that will be 

generated through the function, the model will learn patterns within a window of events of 

fixed size to predict the exact next event each time.  
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  To make it easier to understand the size of the window is a number that determines the 

number of events that we will give to the system so as to predict the next. If for example the 

window has a value of 5, this means that the model will try to predict the 6th event given 

the first 5 events and learning from them. 

  The implementation begins by preprocessing the dataset, and importing the event log data 

using popular Python libraries such as pandas to convert the dataset to dataframe, numpy to 

properly import the data into the model, and pm4py to import the xes file. Timestamps are 

converted to datetime objects. This is a very important conversion for the given 

management of date data where during the conversion the values that are 'first' in each case 

are empty so we set them to 0. We do this because the first value in each case, for the 

moment in time it's 0 because that's where each assumption starts, so since it's empty we 

set it to 0. Missing values are filled in using the fill-ahead methodology, and time zone 

information is removed to ensure consistency. A very important step is the coding of the 

"concept:name" values, a mapping dictionary is created and applied, facilitating the 

conversion of categorical data into numerical form. This is a very important step because if 

they are not converted into numerical values, the experiments will not be able to be done by 

changing the size of the window because we are not allowed to enter categorical values in a 

machine learning model.  

  Next, the create_sequences function is at the core of the implementation, and is 

responsible for creating sequences and tags based on the specified window size. This 

function works within the constraints of the dataset and business process context, striking a 

balance between the historical contexts considered for prediction and the practicality of the 

model. As a result, we see that the specific function does the important work so that we only 

have to change the value of the window, so that the value of the window is passed through 

the function and the appropriate traces are created. The window size parameter is very 

important and it facilitates us, it introduces flexibility, allowing the model to adapt to 

different contexts and record patterns of different lengths of the tails. So we can easily 

resize the window to see how the model behaves when the number of processes we give 

increases. As mentioned before the window size for this analysis spans values of 1, 2, 3, 5, 

10, 15 and 20. For each window size, sequences and labels are generated and the data set is 

split into training and test sets to use appropriately for our model. [13] 

    The machine learning pipeline uses the TPOT library, an automated machine learning tool, 

to determine the most appropriate classification model and hyperparameters for the next 

event prediction task. The model is trained on the generated sequences and tags and then 

predictions are made on the test set. Evaluation metrics, including precision, accuracy, 

recall, and confusion matrix, offer insights into model performance in different categories. In 

all experiments performed, a standardized set of parameters for TPOTClassifier was used, 

ensuring consistency and comparability between different analyses. Obviously we use 

TPOTClassifier because we have a classification problem and the parameters used for 

TPOTClassifier were: 

• Generations: 8 

• Population Size: 25 
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• Random State: 42 

• Verbosity: 2 

  These parameter choices were applied uniformly to each experiment, maintaining a 

constant framework for the automated machine learning tool. The consistent use of these 

parameters facilitates a fair and unbiased comparison of results across various analyses, 

allowing for a comprehensive evaluation of the model's performance under similar 

conditions. 

  This holistic approach to next event prediction integrates theoretical underpinnings with 

practical implementation, emphasizing the importance of considering historical sequences in 

predicting future events within a business process. The code encapsulates a thoughtful 

solution to the problem, aligning with the objectives of business process management and 

predictive analytics within the given context. 

 

➢ PERFORMANCE EVALUATION 

  The culmination of our experiments is visualized in the performance distribution plot of the 

model (Figure X.X), a central element of our analysis. This graphical representation clarifies 

the predictive accuracy achieved over various time windows, offering an immediate visual 

understanding of the model's performance nuances. As the window size increases, a distinct 

upward trend in performance becomes apparent, validating the intrinsic link between time 

frame and predictive accuracy with an apparent differential increase in model performance 

from window size 3 and above. 

The distribution of model efficiency across different window sizes is visually depicted in the 

following chart: 

 

 

 

 

 

 

    

   

 

 

Figure 8 - Model Efficiency for Next Event Prediction 
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  By delving into a detailed analysis of each window size, subtle patterns and algorithmic 

preferences come to light. In the case of window size 1, the TPOT library automatically 

selects the ExtraTreesClassifier algorithm proves to be effective, yielding a commendable 

model performance of 66%. The subsequent increase in window size to 2 introduces a 

change in the performance of our model, but with TPOT again choosing the 

ExtraTreesClassifier algorithm with different hyperparameters, but resulting in an increased 

performance to 79% from 66%. Thus we see that already from the second experiment the 

accuracy rate increases by 13%, a significant increase where in the process it will increase 

even more seeing how important it is for the model to get as much information-data as 

possible in order to learn more and more patterns between the data . A notable transition 

also occurs at window size 3, where TPOT autonomously selects the RandomForestClassifier 

thus again increasing the performance of the model. This change in algorithmic preference, 

accompanied by specific hyperparameter configurations, contributes to an 84% 

performance. We see that the percentage is constantly increasing. It is important to note 

that switching to the RandomForestClassifier algorithm highlights the model's ability to 

dynamically adapt its approach to different time frames, exploiting the strengths of different 

algorithms and combining the appropriate hyperparameters. Comparative information on 

window sizes further illuminates the complex relationship between time frame, algorithmic 

selection, and predictive performance. Continuing to increase the window size of the 

variable, to number 5, we see that TPOT again chooses the ExtraTreesClassifier algorithm as 

in the first and second experiments. This leads us to the continuous increase of the model's 

performance while we see that using the same algorithm, with different hyperparameters 

but giving more data to the model to learn from, we have a better accuracy rate. 

  Thus we reach the point where the model achieves a maximum performance of 88% for a 

window size of 10, using the RandomForestClassifier algorithm with specific 

hyperparameters. This documents the critical importance of choosing an optimal time 

window, emphasizing the adaptability of the model to varying business process dynamics 

and the potential of changing the window to change the model's efficiency. Moving on, 

moving to larger window sizes, namely 15 and 20, introduces additional nuances. The 

selection of ExtraTreesClassifier's TPOT with RobustScaler and MinMaxScaler, respectively, 

shows the model's differentiated approach to handling environmental variation. Despite the 

small drop in efficiency, these findings highlight the adaptability and flexibility of the model 

in optimizing predictive accuracy. 

  Our results not only confirm the correlation between window size and predictive accuracy, 

but also highlight the dynamic nature of the subsequent event prediction model. The ability 

to autonomously select different algorithms based on time windows adds a layer of 

sophistication, offering professionals valuable insights for fitting models to various business 

process scenarios. 

  From a business perspective, the observed results suggest that, when dealing with 

predictive modeling for sequences of events, the choice of window size significantly affects 

both computational resources and model accuracy. In this particular context, the 

comparison between window sizes 5 and 20 shows that the larger window size does not 
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provide a substantial improvement in prediction accuracy, while imposing a noticeable 

increase in computational cost. 

  Moving now to an analysis regarding the computational cost in relation to the window size, 

we can see that in the diagram we have after the window size equal to 5, a constant course 

of the accuracy up to and decreasing slightly in some window sizes. This happens at size 20 

where we have 1% less accuracy rate at a large window difference of 15 units. That is, we 

want to see the computing cost for a window equal to 5 and for a window equal to 20, so 

that since they have the same and smaller percentage of accuracy, if there is a big difference 

in computing cost due to the larger size, so that we have the opportunity to know that there 

is no need to do such experiments because nothing changes and in the end it costs us much 

more without getting better results. Consequently, in this particular context, the comparison 

between window sizes 5 and 20 shows that the larger window size does not provide a 

substantial improvement in the prediction accuracy, while it imposes a noticeable increase 

in the computational cost. For window_size = 5, the experiment was completed in 3 hours 

and 51 minutes, demonstrating the effectiveness of the model in capturing patterns in a 

smaller sequence of events. The achieved accuracy of 87% in this window size indicates a 

high predictive ability, making it an exciting choice for practical applications. On the other 

hand, the experiment for window_size = 20 took significantly longer, i.e. a total of 5 hours 

and 46 minutes. 

  While the accuracy achieved was marginally lower at 86%, the increase in computational 

cost raises questions about the necessity of using larger window sizes. Given the marginal 

accuracy difference between the two window sizes and the substantial increase in 

computation time for window_size = 20, it becomes apparent that the smaller window_size 

of 5 is a more efficient choice. This observation suggests that, for this particular data set, the 

computational cost outweighs the minimal gain in accuracy when larger window sizes are 

chosen. Therefore, in practical scenarios where computational resources are a concern, 

choosing a window_size of 5 could provide a realistic balance between accuracy and 

efficiency. Therefore, businesses aiming to apply predictive models to sequences of events 

should carefully consider the trade-off between accuracy and computational cost, leaning 

toward smaller window sizes for more efficient and practical solutions. Essentially, this 

observation highlights the importance of optimizing computing resources according to the 

specific requirements and constraints of the business. By making informed decisions about 

window size based on the task at hand, businesses can strike a balance that aligns with their 

business needs and resource capabilities. 

  In conclusion, the application of the next step prediction model proves to be a valuable tool 

for business process prediction. The analysis highlights the importance of choosing an 

optimal window size, balancing the need for historical context with computational 

efficiency. This information can inform decision makers to optimize their processes, allocate 

resources efficiently, and ultimately improve overall business performance. 

  Continuing our research on predicting the next event in a business process, the literature 

and various scientific articles on business process models and experiments using artificial 

intelligence make predictions about the next event within a set of processes. This may not 
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be limited to just one next event, but in this thesis we take it a step further and try to make 

predictions to predict two next events in a business process, in a similar way as we did 

before to see if we achieve similar rates and we can do something like this and it will give us 

even more information for better decisions. 

  Below we will see this experiment, an introduction, then the methodology we followed for 

this experiment and finally the evaluation of the results. However, as we will see, we achieve 

much lower rates and this is because the lower accuracy in predicting the next two events 

compared to the next event can be attributed to the increased complexity of predicting 

multiple next steps. Predicting a single event relies on identifying patterns and dependencies 

within the data set, which can be simpler. However, predicting two consecutive events 

introduces additional layers of complexity, making it more difficult for the model to 

accurately capture the sequence of events and their timings. The higher level of uncertainty 

in predicting next events probably contributes to the lower accuracy seen in the next two 

event predictions, and so we can't get carried away and use these results to our advantage. 

 

✓ NEXT TWO EVENTS PREDICTION  

  In the field of predicting business processes, as we saw in the previous experiment, the task 

of predicting the next events has increased importance, offering a more nuanced 

understanding of sequential processes. Unlike one-step forecasting, which focuses on 

predicting the next event, the two-event forecasting model delves into the temporal 

dynamics of business processes. By extending the prediction horizon, organizations can gain 

even more insight into potential forks or deviations in their workflows, allowing more 

informed and meaningful decisions to be made.  

➢ METHODOLOGY 

  The application of the two-event prediction model aims to predict the next two situations 

in a loan application process, leveraging historical data embedded in the "concept:name" 

column. The methodology is similar to predicting an upcoming event. The dataset, loaded 

from BPI2012 in .xes file, undergoes basic preprocessing steps. Timestamps are converted to 

datetime objects and missing values are handled via forward padding. The "time:timestamp" 

column is then normalized to remove the time zone information. Additionally, a mapping 

dictionary is created to encode the 'concept:name' values numerically, creating a basis for 

subsequent predictive modeling. All these steps are the same as our previous model. 

  But the heart of the two-event forecasting methodology lies in creating sequences that 

incorporate the time evolution of loan application processes. The ‘create_sequences’ 

function meticulously constructs sequences and labels, where a sequence represents a 

window of previous states and the label records the next two events in the loan request 

trajectory. This design choice allows the model to discern patterns and dependencies that 

extend beyond a single step, offering a more nuanced understanding of the dynamic nature 

of business processes. It is important to note that experimentation involves varying the 

number of past events considered for prediction. The window size parameter, declared as 
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'window_size' in the code, is systematically adjusted for experimental purposes. Selected 

window sizes include 1, 2, 3, 5, 10, 12, 15, and 20, each representing a separate survey of 

the model's predictive capabilities. This scope of experimentation ensures a comprehensive 

analysis of model performance at different levels of historical context, shedding light on the 

optimal window size for accurately predicting the next two events in the loan request 

sequence. 

  The sequences generated from the selected window sizes are then used to train and test 

the predictive model. The dataset is split into training and test sets and TPOTClassifier is 

used to automatically discover the best line with optimal hyperparameters. The training 

process involves adapting the model to the training set, allowing it to learn complex patterns 

in loan application processes. After training, model performance is rigorously evaluated 

using the test set and accuracy metrics are calculated for each experiment. This thorough 

analysis serves as a solid foundation for informed decision-making in the dynamic landscape 

of loan application processes. 

    Finally, as in the previous model for predicting the next event, now the parameters remain 

the same for the generations and the population of the TPOT classifier. 

➢ PERFORMANCE EVALUATION 

  In investigating the prediction of the next two events in a business process, we scrutinized 

the performance of the model over various window sizes. The following paragraphs provide 

a detailed analysis of the results, accompanied by information from the graph depicting the 

model's performance distribution. Overall, the performance of the model based on the 

experiments of different window sizes is in Figure 8. 

  Starting with a window size of 1 to predict the 2nd and 3rd events, the model achieved a 

performance of 23%, using a Logistic Regression classifier according to TPOT. As we 

increased the window size to 2, the model performance improved slightly to 24%, using 

feature scaling with MaxAbsScaler and MLPClassifier. Then increasing the window size to 3, 

the model showed stable performance with 24% efficiency. The optimal pipeline for this 

scenario involved Recursive Feature Elimination (RFE) followed by a decision tree classifier 

with specific hyperparameters. The stability in performance may indicate that, in this 

context, extending the prediction horizon to two events does not significantly alter the 

model's accuracy. Continuing, expanding the window size to 5 resulted in 26% performance, 

with a Gaussian Naive Bayes basis estimator and an Extra Trees classifier. The graph provides 

a visual representation of how the model's performance evolves over these different time 

frames, offering a comprehensive overview of the model's predictive power. 

  Subsequently for larger window sizes (10, 12, 15 and 20), the model showed a small 

progressive improvement in performance. In particular, at a window size of 10 we had 31%, 

i.e. the performance of the model increased even more. While at a window size of 12, the 

model achieved the highest performance of 33%, using a Bernoulli Naive Bayes classifier. 

Finally for window sizes 15 and 20, the model returns 32% and 30% respectively, remaining 

at a high rate of return. The plot, included for visual clarity, shows the distribution of model 
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performance over various window sizes. This graphical representation helps to understand 

how the predictive capabilities of the model respond to changes in the time frame, providing 

valuable information for making informed decisions in business process optimization. 

  A notable observation emerges from the exploration of predictive modeling, especially in 

the context of predicting one versus two future events in a business process. While the 

model demonstrated a remarkable peak performance of 88% in predicting the next event, 

extending the prediction horizon to two events resulted in a significant drop in performance, 

yielding a peak performance of 33%.  A performance that is no more than 50% less accurate 

than predicting the next step. This discrepancy highlights the complexity introduced by a 

more extended forecast horizon, prompting a deeper investigation into the factors affecting 

the model's ability to capture temporal dependencies. The upcoming section on 

interpretation of results will delve into a comprehensive analysis, shedding light on the 

complexities of these different prediction tasks. 

  Thus we conclude that it is reasonable that it is not yet possible to perform worthwhile 

experiments that will yield significant rates of accurate prediction. If not as in the prediction 

of the next step of 88%, but at least a significant percentage where it could be valid and give 

valuable information and decision-making ability to the executives of a company about the 

allocation of resources, the computational cost, etc. In this way we see that such a 

prediction is very difficult to achieve high rates and we see that we cannot use them to help 

us in the decision of a business process such as predicting the next step. Since the maximum 

percentage is 33%, we cannot use it because it is too low and we cannot achieve anything 

with it.Nevertheless, we are given the opportunity to experiment and try to go a step further 

than predictions in business processes where it would be very important at some point to be 

able to predict with remarkable accuracy rates, not only the next process but also the two 

next processes. 

Figure 9 - Model Efficiency for next two events prediction 
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4.3.2 TIME PREDICTION (ANALYSIS AND RESULTS) 

 

➢ INTRODUCTION 

  In the ever-evolving landscape of business processes, the ability to predict and understand 

the temporal aspects between successive events is of utmost importance. Time forecasting 

in a business process is a strategic endeavor that aims to uncover the complex web of time 

dependencies, providing organizations with the foresight required for effective resource 

allocation, operational planning, and process optimization. Accurate predictions of time 

intervals between events enable businesses to streamline workflows, identify potential 

delays, and orchestrate tasks with precision. Harnessing the power of predictive analytics, 

particularly through the application of TPOTRegressor, as in this case there is a regression 

problem, in event log data, is becoming instrumental in ushering in a new era of data-driven 

decision making. As we begin our exploration of time forecasting in this subsection, our goal 

is to unravel the temporal dynamics inherent in business processes, offering insights that 

drive organizations toward increased efficiency and proactive management. 

  To make accurate time predictions within the complex tapestry of business processes, we 

use TPOTRegressor as a powerful tool for automated machine learning. TPOTRegressor 

simplifies the process of model selection and hyperparameter tuning, allowing us to 

efficiently navigate the vast landscape of regression algorithms. Leveraging TPOTRegressor's 

evolutionary search algorithms, we aim to discover optimal models that capture the 

temporal complexities present in the BPI2012 dataset. The automated nature of 

TPOTRegressor enhances our ability to handle different time patterns, offering a strong 

foundation for creating accurate time duration forecasts. Through this methodological 

approach, we strive to uncover reliable insights that not only enhance the predictive 

capabilities of business processes, but also contribute to a more informed and flexible 

decision-making framework. 

➢ METHODOLOGY 

  In our intricate endeavor to forecast the time durations between successive events within 

the intricate fabric of business processes, we employ a highly nuanced and efficient 

methodology guided by the TPOTRegressor framework. Our primary objective is to predict 

the temporal spans from each event to its subsequent occurrence across all events in the 

entire business process landscape. It's essential to highlight that, owing to the homogeneous 

nature of most processes and their comparable completion times, the model exhibits swift 

learning capabilities and adeptly discerns patterns. 

  The initiation of our comprehensive methodology involves a meticulous extraction of 

temporal features from the event log data, with a keen focus on the "time:timestamp" 

attribute. This process encompasses converting raw timestamps into a standardized date 

format and establishing a mapping dictionary to encode the myriad events, thereby 

constructing a meticulously structured foundation for subsequent predictive modeling 

endeavors. 
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  At the heart of our approach lies the sophisticated generation of sequences and labels 

tailored explicitly for temporal prediction. This intricate process involves calculating the 

temporal intervals between successive events, thereby encapsulating the nuanced temporal 

dynamics within each business case. The resultant sequences, encapsulating time durations, 

act as the training data, while labels precisely denote the corresponding durations — 

effectively representing the temporal time gaps from each event to its subsequent 

occurrence for the entire event spectrum. The subsequent transformation of this sequential 

data into a 2D array is pivotal, aligning with the requisite input specifications mandated by 

TPOTRegressor, ensuring the seamless functionality of our model. 

  The TPOTRegressor, a formidable automated machine learning tool, assumes the pivotal 

role of identifying the most efficacious regression model while optimizing hyperparameters. 

Configured with an elaborate eight-generation setup and a population size of 25, 

TPOTRegressor engages in a sophisticated evolutionary search, meticulously discerning the 

optimal pipeline for the intricate task of duration prediction. 

  The culmination of our meticulous efforts is the evaluation of the trained TPOTRegressor 

model on an independent test set to gauge its performance comprehensively. Employing 

metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R2 Score, 

we meticulously assess the model's accuracy and predictive prowess. The depth of our 

analysis extends beyond mere quantitative metrics, encompassing a qualitative comparison 

of actual versus predicted values. This multifaceted evaluation provides an exhaustive 

understanding of the model's effectiveness in capturing the intricate temporal intricacies 

imprinted within the nuanced landscape of business processes. Our robust and sophisticated 

methodology is a testament to the remarkable prowess of automated machine learning in 

unraveling complex temporal dependencies within the intricate tapestry of the BPI2012 

dataset. 

➢ PERFORMANCE EVALUATION 

  Our meticulous approach to predicting time durations between successive events in 

business processes through the utilization of TPOTRegressor has yielded highly promising 

outcomes. The configuration of TPOTRegressor, spanning eight generations, consistently 

demonstrated outstanding performance, as evidenced by a best internal cross-validation 

score of approximately -1.60e-05 across all generations. This exceptional level of accuracy 

underscores the model's robust ability to capture intricate temporal nuances within the 

BPI2012 dataset. 

  The ultimate composition of the best pipeline involves a MaxAbsScaler preprocessing step 

followed by a LassoLarsCV regression model. The evaluation of this pipeline on the test set 

reveals remarkable performance metrics. The Mean Squared Error (MSE) of 0.00 signifies an 

almost negligible deviation between the predicted and actual time durations. Further 

validating the model's accuracy, the Root Mean Squared Error (RMSE) of 0.00399 indicates 

minimal residual errors. The R2 Score of 1.00 attests to the model's unprecedented 

predictive power, explaining the entirety of variance in the temporal dynamics of the 

dataset. 
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  The model's exceptional performance, approaching 100% accuracy, can be attributed to 

the specific characteristics of the time duration variable. In many business processes, the 

time elapsed between events tends to exhibit a consistent pattern, with minimal variability. 

This is especially true when considering short-term intervals between consecutive events, 

where the business process follows a well-defined and stable rhythm. For instance, if we 

take the scenario where the time duration from event A to event B is, on average, 30 

seconds, this pattern might persist across a multitude of cases. The model, being trained on 

such data, becomes adept at recognizing and generalizing this temporal regularity. As a 

result, when tasked with predicting the time duration between events, it excels due to the 

uniformity of these intervals. However, it's crucial to acknowledge that this remarkable 

accuracy is context-dependent and may not necessarily translate to scenarios with more 

dynamic or unpredictable temporal patterns. 

  For a more intuitive understanding of the model's performance, a graph has been included. 

This visual representation effectively contrasts the predicted durations with the actual 

durations, demonstrating the accuracy of the model in capturing the temporal dynamics. In 

this particular plot, where the predicted and actual values overlap almost perfectly, it 

signifies an excellent level of accuracy achieved by the prediction model. Each point in the 

diagram represents an example of data where the predicted time duration between events 

aligns almost exactly with the actual observed duration. The closeness of the points to a 

single value in the plot highlights the model's ability to accurately capture and reproduce the 

temporal patterns present in the training data. 

  The closeness of the predicted and actual values indicates a high degree of consistency and 

reliability in the model predictions. Essentially, the model has learned the underlying 

temporal relationships within the data set so effectively that its predictions reflect the actual 

results with remarkable fidelity. This alignment between predictions and reality is 

particularly pronounced when the time durations between events exhibit a remarkable level 

of uniformity. The graph serves as a tangible illustration of the model's ability to reflect 

complex temporal dependencies within the BPI2012 dataset, enhancing not only its accuracy 

but also its practical effectiveness in real-world scenarios. 

 

 

 

 

 

 

 

 

Figure 10 - Time Prediction: Actual vs Predicted 
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4.3.3 REMAINING CYCLE TIME (ANALYSIS AND RESULTS) 

 

➢ INTRODUCTION 

  A typical question for people dealing with administrative processes is: "When will my case 

be finished?" [15]. In the realm of business process analytics, understanding and accurately 

predicting the remaining cycle time emerge as pivotal components for optimizing efficiency 

and resource allocation. The concept of remaining cycle time pertains to the duration 

required to complete the entire lifecycle of a business process, encompassing all its 

constituent events. Unlike the earlier time duration prediction, which focused on individual 

event pairs, forecasting the remaining cycle time entails a more holistic approach. It 

addresses the overarching question of when a specific business process, from initiation to 

completion, is likely to conclude. Businesses are increasingly recognizing the strategic 

significance of accurate remaining cycle time predictions. Such forecasts provide invaluable 

insights into the anticipated duration until the fulfillment of a process, enabling 

organizations to optimize resource utilization, enhance operational planning, and meet 

service level agreements. A precise understanding of remaining cycle time empowers 

businesses to make informed decisions regarding resource allocation, staffing, and overall 

process optimization. Moreover, it facilitates proactive management strategies, enabling 

timely interventions to mitigate potential delays and bottlenecks. 

  The prediction of remaining cycle time stands as a complementary facet to our earlier focus 

on event-specific time durations. While the latter delves into the time intervals between 

individual events, remaining cycle time broadens the scope, offering a comprehensive 

overview of the entire process lifecycle. This nuanced approach equips businesses with a 

comprehensive temporal perspective, fostering more informed decision-making and 

enhancing overall process efficiency. In the subsequent sections, we delve into the 

methodologies employed for remaining cycle time prediction, leveraging TPOTRegressor to 

navigate the intricacies of the BPI2012 dataset and unravel the temporal dynamics 

governing business processes. 

 

➢ METHODOLOGY 

  Our approach to predicting the remaining cycle time involves a multi-step process designed 

for clarity and effectiveness. The dataset is first preprocessed to focus on essential 

attributes: 'concept:name', 'time:timestamp', and 'case:concept:name'. Timestamps are 

converted to datetime format, missing values are filled, and timezone information is 

removed. This structured dataset is crucial for subsequent temporal predictions. 

  In our quest to predict the remaining cycle time, we employ meticulous feature engineering 

to capture the intricate temporal dynamics inherent in business processes. Categorical 

variables are encoded, and a novel feature, 'duration,' is introduced, representing the time 

intervals between consecutive events. This feature becomes a cornerstone in our prediction 

model, providing a nuanced understanding of the time progression within cases. The 
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implementation of a predictor function adds depth to our analysis, computing the remaining 

time for partial cases. Leveraging the average cycle time across the entire dataset, this 

predictor becomes a valuable tool in anticipating the expected duration for cases with 

ongoing activities. This initial insight contributes significantly to unraveling the complex 

interplay of events and aids in comprehending the broader business process cycle. 

  The code goes further by incorporating a feature engineering step that goes beyond 

capturing temporal intricacies. A dedicated DataFrame, containing 'case:concept:name' and 

'activity_count,' is constructed. The 'activity_count' serves as a proxy for the remaining cycle 

time, encapsulating the essence of process progression. The inclusion of the 'activity_count' 

feature in our predictive model for remaining cycle time is a strategic decision rooted in the 

understanding that the count of activities within a case serves as a crucial indicator of its 

progress and complexity. The 'activity_count' essentially encapsulates the richness and 

intricacies of the business process, providing a quantifiable measure of how many distinct 

steps or events have transpired within a specific case. Initially, the number of activities 

directly reflects the progress of a case within the business process. More activities generally 

imply a more advanced stage in the workflow and thus a different expected completion 

time. Also, instances with a higher 'count_activity' are likely to be more complex and involve 

a greater number of steps. The complexity of a case often affects the time it takes to 

complete it, making activity_count a valuable indicator. By taking into account historical 

patterns associated with changing activity_count values, the model can learn and generalize 

the relationship between the number of activities performed and the corresponding 

remaining cycle time. 

  Essentially, activity_count becomes a holistic representation of the current state of a case, 

incorporating both the progress made and the complexities involved. Its inclusion empowers 

our predictive model to understand subtle variations in remaining cycle time, making it a key 

and relevant feature for accurate predictions in the context of business process 

management. 

  The dataset, enriched with these features, undergoes a division into training and testing 

sets, laying the groundwork for the application of TPOTRegressor. TPOTRegressor, acting as 

an automated machine learning tool, elevates our predictive capabilities, allowing for an 

evolutionary search to determine the optimal regression model and associated 

hyperparameters. This meticulous feature engineering process and the subsequent model 

application are pivotal in ensuring the accuracy and effectiveness of our remaining cycle 

time predictions. The best pipeline is evaluated on both training and test sets, with metrics 

such as mean squared error (MSE), root mean squared error (RMSE), and mean absolute 

error (MAE) providing comprehensive information on predictive performance. Finally, the 

resulting regression plot visually represents the model predictions against the actual values, 

offering a clear illustration of the model's effectiveness. We will see the specific graphic 

representation in the interpretation of results in the next subsection. 
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➢ RESULTS AND ANALYSIS 

  The TPOTRegressor model, designed to forecast remaining cycle time based on the 

'activity_count' feature, presents compelling results across five generations. The best 

pipeline identified in the fifth generation, featuring an ExtraTreesRegressor with specific 

hyperparameters, signifies a strategic ensemble approach. This ensemble model excels in 

capturing the intricate relationships and variations inherent in predicting cycle times. 

  In the context of the training set, where the model encounters familiar data, the 

performance metrics are encouraging. The Mean Squared Error (MSE) of 387.53, Root Mean 

Squared Error (RMSE) of 19.69, and Mean Absolute Error (MAE) of 15.60 indicate that the 

model achieves accurate predictions with relatively low errors. The precision in forecasting 

cycle times on known cases underscores the model's capacity to grasp underlying patterns 

and trends within the 'activity_count' feature. 

  Transitioning to the test set metrics, the model demonstrates its robust generalization 

capabilities, successfully applying learned patterns to unseen data. The Test Set MSE of 

386.04, RMSE of 19.65, and MAE of 15.79 reveal that the model maintains its accuracy even 

when confronted with cases it has not encountered during training. From the provided 

results and metrics, it appears that the TPOTRegressor model demonstrates generalization 

capabilities. The comparable performance metrics on both the training and test sets suggest 

that the model has successfully learned underlying patterns and can apply this knowledge to 

new, unseen data. The consistent performance across different datasets is indicative of the 

model's ability to generalize well. The term "generalization" in machine learning refers to a 

model's capacity to make accurate predictions on new, previously unseen data. The 

closeness of the training and test set metrics signifies a balanced model that avoids 

overfitting, ensuring reliable predictions across a broader spectrum of scenarios.  

  Consequently, the MSE of 386.04 indicates that, on average, the squared differences 

between the model predictions and the actual values in the test set are quite low. This 

means a good level of accuracy in predicting the target variable. In the context of the 

remaining cycle time, this suggests that the model predictions are generally close to the 

actual values. The Root Mean Squared Error (RMSE) of about 19.65 and the Mean Absolute 

Error (MAE) of 15.79 provide additional insight into accuracy. These values indicate that, on 

average, the model predictions are within a reasonable range of the true values, 

contributing to a practical level of accuracy. The small values of MSE, MAE, and RMSE 

collectively suggest that the regression model is effective in predicting the remaining cycle 

time. Low error values indicate that the model captures patterns in the data and provides 

accurate estimates of the time remaining in a given cycle. 

  In our pursuit of unraveling the intricate dynamics of predictive modeling for remaining 

cycle time, Figure 11, the regression plot, emerges as a pivotal visual aid. A regression plot, 

commonly employed in statistical analysis, serves as a graphical representation of the 

relationship between variables. In our context, it visually compares the true values against 

the predicted values for both the training and test sets. The x-axis delineates the actual 

values, while the y-axis encapsulates the predicted values, creating a scatter plot that allows 

for a nuanced evaluation of the model's performance. As we scrutinize the plot, the 
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dominant blue line, symbolizing the training set data, provides insights into how adeptly the 

model internalized patterns during its training phase. Simultaneously, the orange line, 

emblematic of the test set data, becomes instrumental in assessing the model's ability to 

generalize its learnings to novel cases. The discernible linear correlation observed in both 

sets is not merely indicative of predictive accuracy but also underscores the model's prowess 

in deciphering complex patterns ingrained within the 'activity_count' feature. The blue line's 

trajectory mirrors the model's understanding of the training data, showcasing its proficiency 

in capturing underlying relationships. Simultaneously, the orange line's parallel path 

demonstrates the model's capacity to extend its predictive acumen beyond the seen 

scenarios, reaffirming its adaptability to unforeseen cases. This alignment between actual 

and predicted values serves as a visual testament to the model's reliability, transcending the 

confines of training data and showcasing its aptitude for real-world applicability. In 

conclusion, the regression plot, with its scatter of actual and predicted values, not only 

validates the model's accuracy but also provides an intuitive visualization of its predictive 

capabilities. This nuanced visual narrative becomes integral in communicating the model's 

robustness to a broader audience, making it an invaluable asset in our pursuit of efficient 

predictive business process monitoring. 

 

  In summary, the TPOTRegressor model, with its meticulously optimized 

ExtraTreesRegressor pipeline, emerges as a formidable tool for predicting remaining cycle 

time. The ensemble approach, reflected in the best pipeline, demonstrates a nuanced 

understanding of the intricacies involved in forecasting cycle times. The model's adeptness 

in training on familiar data and seamlessly applying learned patterns to previously unseen 

cases underscores its practical utility. These results hold substantial promise for businesses 

seeking precise insights into their processes, enabling informed decisions and resource 

allocation based on accurate predictions of remaining cycle times. 

Figure 11 - Remaining Cycle Time: Regression Plot 
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4.4 COMPARISON OF PREDICTIVE MODELS AND IMPACT ON BUSINESS 

PROCESSES 
 

4.4.1 COMPARATIVE ANALYSIS OF ONE VS TWO NEXT FUTURE PREDICTIONS 

  

 In examining the disparity between predicting one and two future events, it's crucial to 

underscore the nuanced intricacies that each forecasting horizon presents. Our predictive 

models, implemented using the TPOT library, demonstrate distinct behaviors and 

performance metrics when tasked with forecasting the immediate next event and when 

extending predictions to two subsequent events. 

  Starting with the prediction of the next event, our models showcase impressive accuracy, 

reaching up to 88% in certain configurations. This success can be attributed to the models' 

adeptness at capturing short-term dependencies within the sequential event data. The 

algorithms effectively discern patterns in the immediate temporal vicinity, providing reliable 

predictions for the next event in the sequence. The robustness of these models in short-

term predictions is evident in the consistency of their high accuracy across various window 

sizes. 

  On the contrary, the transition to predicting two subsequent events introduces a notable 

decline in accuracy, reaching a maximum of 33% in the analyzed configurations. This 

discrepancy is rooted in the heightened complexity associated with forecasting over a more 

extended time horizon. Predicting two events necessitates the models to extrapolate 

sequential patterns and dependencies over a broader temporal range, introducing 

challenges associated with accumulated uncertainties and the compounding effects of 

forecasting errors. 

  The inherent difficulty of forecasting multiple events becomes apparent when comparing 

the models' performance characteristics. While the models excel in capturing short-term 

dependencies, the longer prediction horizon introduces increased variability and potential 

deviations from established patterns. This shift in focus from immediate to extended 

temporal dependencies challenges the models' adaptability, contributing to the observed 

decrease in accuracy. Furthermore, the sensitivity of sequential dependencies to the length 

of the prediction window accentuates the trade-offs involved. Models designed for shorter 

windows exhibit higher accuracy due to their proficiency in capturing fine-grained temporal 

patterns. However, as the window size increases, the models face the delicate task of 

balancing nuanced dependency capture with the risk of overfitting. 

  In conclusion, the comparative analysis highlights the trade-offs and challenges associated 

with extending the prediction horizon. While our models showcase commendable accuracy 

in predicting the next event, the complexity of forecasting two subsequent events 

underscores the need for tailored approaches, potentially involving refined model 

architectures, ensemble methods, or the incorporation of additional features to enhance 

accuracy in extended forecasting scenarios. The insights gained from this comparative 
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analysis provide valuable guidance for optimizing predictive modeling strategies across 

varying prediction horizons. 

4.4.2 COMPARATIVE ANALYSIS OF TIME AND REMAINING CYCLE TIME 

 

  The predictive models for time duration and remaining cycle time offer distinct insights, 

each tailored to specific business contexts. The time duration prediction model, focusing on 

temporal intervals between consecutive events, excels in scenarios with consistent patterns, 

providing precise forecasts for optimizing workflows and resource allocation. However, its 

effectiveness diminishes in processes with significant temporal variations. 

  Conversely, the remaining cycle time prediction model, utilizing 'activity_count' as a proxy 

for overall workload, offers a holistic view, valuable for strategic planning and understanding 

evolving structures. While providing macro-level insights, it may lack the fine-grained 

precision of the time duration model. The choice between models depends on the specific 

needs of business processes, with the potential to integrate both for a more comprehensive 

toolkit. 

  In a comparative analysis, the time duration model demonstrates strengths in micro-level 

forecasting precision, suitable for processes with consistent temporal patterns. Conversely, 

the remaining cycle time model excels in capturing macro-level insights for diverse processes 

but may lack fine-grained precision. Combining both models enables businesses to tailor 

their forecasting approach based on process characteristics. 

  The time duration prediction model, focusing on temporal intervals between consecutive 

events, demonstrated remarkable accuracy with a mean squared error (MSE) of 0.00 and an 

R2 score of 1.00. This outstanding performance is attributed to the inherent consistency in 

time intervals between events in the dataset. The model's ability to precisely capture these 

patterns allows businesses to optimize workflows and allocate resources efficiently. 

However, caution is warranted, as the model's effectiveness may diminish in processes 

marked by significant temporal variations. On the other hand, the remaining cycle time 

prediction model, utilizing 'activity_count' as a proxy for overall workload, showcased a 

respectable performance with a mean absolute error of 15.78. While the model provides 

macro-level insights and aids in strategic planning, its prediction accuracy may be influenced 

by assumptions regarding the linear relationship with 'activity_count.' Nevertheless, the 

model's contribution lies in its ability to offer a holistic view of evolving process structures. 

  Comparatively, the time duration model's micro-level forecasting precision complements 

the remaining cycle time model's macro-level insights. The combination of both models 

allows businesses to tailor their forecasting approach based on process characteristics, 

offering a versatile toolkit for predictive analytics. Recognizing the strengths and limitations 

of each model empowers businesses to make informed decisions and harness the potential 

of predictive analytics in enhancing their business processes. 
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Article Dataset Accuracy Key Algorithms Key Findings Qualitative Characteristics

[13] BPI2012 85% Decision Trees

Lower window sizes (l = 3, 4) are 

generally recommended as a safer 

choice, but the optimal window size 

should be individually assessed for 

each event log.

Emphasizes the importance of 

careful window size selection.

[16] BPI2012 94%
LSTM, Adversarial 

Framework 

Adversarial framework achieves 

superior accuracy and reliability for 

both event labels and timestamps in 

sequential data.

Demonstrates the strength of an 

adversarial framework and 

LSTM in predictive tasks.

[17] BPI2012 82.70%

Multi-stage Deep Learning: 

Stacked Autoencoders, 

Feedforward Neural 

Networks; Feature Hashing 

(Azure ML, Vowpal Wabbit)

Outperforms state-of-the-art 

methods; ReLu activation improves 

predictions; insights into 

hyperparameter tuning.

Highlights the benefits of multi-

stage deep learning and the 

impact of hyperparameter 

adjustments.

[18] BPI2012 77.80%
T-LSTM cells, Cost-

sensitive Learning

Combining techniques, including cost-

sensitive learning and T-LSTM cells, 

enhances predictive capability for 

next activity and timestamp 

predictions.

Focuses on combining 

techniques for improved 

predictions.

THESIS BPI2012 88%
Automated machine 

learning (TPOT Library)

We used TPOT to find the best 

Pipeline in a range of classification 

and regression algorithms.

Utilizes TPOT for automated 

machine learning, emphasizing 

practical applications.

4.4.3 COMPARISON OF RESULTS WITH OTHER RESEARCH ARTICLES 
 

  After the above comparisons, we can proceed to compare our results with already existing 

research articles that have been applied to predict subsequent processes, using different 

prediction approaches. These forecasts that we will compare with the automated AI method 

are on the same BPI2012 data set. The articles we compare, as we will see in the summary in 

the results table below, are articles [13], [16], [17] and [18]. All four of these articles make 

predictions about the next event in a business process, with many different ways of 

approaching the prediction. Articles [13], [16] and [18] were published in 2020 while article 

[17] was published in 2017. The primary objective is to evaluate the performance of our 

model in comparison to established research methodologies, technical approaches and 

algorithms used in previous studies. Through this comparison, we aim to discern the 

effectiveness and reliability of our approach in predicting the next procedural activity in 

business process event logs, focusing particularly on the BPI2012 dataset. The comparison is 

only limited to the prediction of the next event due to the different approach we took to 

predict the remaining time, so it cannot be compared with other models because they make 

the same prediction but in a different way. Following is the summary table of the results, the 

techniques used and a very short conclusion for each research article. So the table is: 

Figure 12 - Comparative Analysis 
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• Decision Trees for Event Prediction [13]: 

  The study on Decision Trees for event prediction employs the BPI2012 dataset, achieving an 

accuracy of 85%. The key algorithm, Decision Trees (DT), demonstrates stability and 

reliability in predicting the next event in business process event logs. The emphasis on lower 

window sizes (l = 3, 4) as a safer choice aligns with a conservative approach, recommending 

individual assessment for optimal window size, particularly for larger logs with longer traces. 

• Adversarial Framework with LSTM [16]: 

  The article introduces an adversarial framework with LSTM on the BPI2012 dataset, 

achieving an impressive accuracy of 94% for next activity prediction. The combination of 

LSTM and the adversarial framework showcases superior performance in both event label 

and timestamp predictions. The study highlights the effectiveness of the proposed approach 

across various datasets and underlines the robustness and reliability achieved. 

• Multi-Stage Deep Learning [17]: 

  In the context of Multi-Stage Deep Learning, the study utilizes stacked autoencoders, 

feedforward neural networks, and feature hashing on the BPI2012 dataset. The accuracy for 

next activity prediction reaches 82.70%. Hyperparameter tuning, including the use of ReLu 

activation, is explored, revealing insights into optimizing prediction results. The study 

contributes valuable information on improving model predictions through architectural 

adjustments. 

• T-LSTM Cells and Cost-Sensitive Learning [18]: 

  Focusing on T-LSTM cells and cost-sensitive learning, the research achieves a next activity 

prediction accuracy of 77.80% on the BPI2012 dataset. The combination of techniques, 

including T-LSTM cells and cost-sensitive learning, enhances predictive capability. The study 

underscores the importance of incorporating temporal information and demonstrates 

notable improvements in next event predictions. 

• TPOT Library [Thesis]: 

  The thesis uses the TPOT library for automated machine learning on the BPI2012 dataset, 

achieving 88% accuracy for next activity prediction. Using the TPOT classifier we predict the 

next event by automating the entire process of hyperparameters fitting the model etc. 

 

  Starting with analysis and benchmarking to predict the next activity, each model provides 

valuable insights into its effectiveness. The Decision Trees model [13] shows stability and 

reliability, especially with lower window sizes, with an accuracy rate of 85%. The Adversarial 

Framework with LSTM [16] stands out with an impressive 94% accuracy, demonstrating 

superior performance in event label predictions. Multi-Stage Deep Learning [17] achieves an 

accuracy of 82.70%, and provides information on hyperparameter tuning. T-LSTM Cells with 

Cost-Sensitive Learning [18] combines techniques, enhancing predictive capabilities with a 

reported accuracy of 77.80%. Finally, our model using the TPOT library achieves a 
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competitive accuracy of 88%. When analyzing the results, it is important to consider the 

context and specific requirements of the forecasting task. While each model has unique 

strengths, the Adversarial Framework with LSTM and our TPOT-based approach 

demonstrate the highest accuracy. The reliability of the Adversarial Framework on different 

datasets highlights its robustness, while our TPOT-based model achieves high accuracy, 

proving the effectiveness of automated machine learning in predicting business process 

event logs. Thus, we see that by using automated artificial intelligence we can achieve high 

rates in similar predictions of problems in business processes. 

  Moving on to a more detailed comparison, recurrent neural networks (RNNs), particularly 

those equipped with a Long-Term Memory (LSTM) architecture, stand out for their 

exceptional ability to model sequential data. LSTMs excel at capturing complex temporal 

dependencies, making them particularly suitable for predicting the nuanced dynamics of 

ongoing processes. The ability to preserve contextual information over extended sequences 

allows LSTMs to discern subtle patterns and dependencies that may escape simpler models. 

Their success in achieving high accuracy rates in tasks such as predicting the next event is 

attributed to their sophisticated memory mechanism, which allows the model to distinguish 

and exploit long-term dependencies within sequential data. However, the efficiency of 

LSTMs comes at the cost of increased computational requirements and the necessity for 

meticulous hyperparameter tuning. Achieving optimal performance involves fine-tuning 

various aspects of the model, including the number of layers, the size of hidden states, and 

learning rates. This complex tuning process requires considerable expertise and 

computational resources, and the search for the optimal configuration can be time-

consuming.  

  Instead, the TPOT library, an Automated Machine Learning (AutoML) tool, introduces an 

alternative paradigm. While LSTMs achieve remarkable heights of accuracy, TPOT focuses on 

automating model selection and hyperparameter optimization procedures. It may not have 

the same zenith of accuracy as a meticulously tuned LSTM, but its power lies in 

democratizing machine learning by automating the laborious aspects of model 

development. TPOT systematically explores a wide range of algorithms and 

hyperparameters, searching for a model that performs well on the data without requiring 

deep user involvement in parameter adjustments. An additional aspect to the appeal of 

TPOT is its adaptability and reusability. The complex nature of LSTM hyperparameter tuning 

is one area where TPOT can significantly save analysts time. Furthermore, once an analyst 

has created a TPOT model for a particular data set, the same model can be effortlessly used 

for analogous data sets with similar forecasting tasks. TPOT's automated search for the most 

suitable algorithms and configurations makes it highly flexible and facilitates the transfer of 

knowledge to different applications. In essence, while acknowledging the remarkable 

accuracy capability of LSTMs, TPOT emerges as a pragmatic choice, emphasizing efficiency, 

adaptability, and reusability in predictive modeling scenarios. The ability to create a TPOT 

model for various datasets, thus reducing the need for extensive manual intervention, 

further highlights its utility in various machine learning applications. 

 



 
 63 

  In conclusion, the analytical comparison highlights the strengths of each model and 

highlights the importance of our TPOT-based approach. Adversarial Framework with LSTM 

excels in accuracy and our TPOT-based model is competitive, demonstrating the power of 

automated machine learning in predicting business process event logs. The practicality of 

our model, especially in predicting a subsequent event, enhances its applicability to real-

world scenarios. The detailed comparison shows the diversity of the approaches, with each 

model contributing valuable insights to the field of business process event logging 

prediction. 
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5. CONCLUSION AND FURURE WORK 
 

  In conclusion, this study has ventured into the realm of predictive Business Process 

Management (BPM), harnessing the power of automated machine learning to enhance our 

understanding and forecasting of business processes. Through the lens of various predictive 

models, we have delved into the intricacies of next event, next two events, time duration, 

and remaining cycle time predictions. This journey has not only provided valuable insights 

into the strengths and limitations of each model but has also laid the groundwork for future 

advancements in the field. 

 

5.1 SUMMARY OF FINDINGS 
 

  Now, turning our attention to the summary of findings, in a comprehensive exploration of 

predictive BPM, our study unfolded several crucial findings across distinct forecasting 

models. Commencing with the prediction of the next event, the model exhibited a 

commendable accuracy of 88%, showcasing its proficiency in capturing immediate process 

transitions. As we extended our gaze to forecasting the subsequent two events, a notable 

decline in accuracy to 33% was observed. This disparity can be attributed to the increased 

complexity and uncertainty associated with predicting multiple future events, signifying a 

trade-off between model precision and the intricacies of sequential predictions. 

  Transitioning to time duration prediction, our model excelled with an impressive 100% 

accuracy. This robust performance can be elucidated by the relatively uniform time intervals 

between successive events, establishing a consistent pattern for the model to learn and 

predict accurately. In contrast, the remaining cycle time prediction model aimed to forecast 

the aggregate duration from the beginning to the end of a process, yielding satisfactory yet 

distinct results. While the model achieved reliable predictions, limitations emerged in 

capturing potential variations and disruptions that might occur during the overall process, 

underscoring the importance of considering both micro and macro perspectives in predictive 

BPM. 

  This synthesis of findings illuminates the nuanced landscape of predictive BPM, offering a 

nuanced understanding of the intricate dynamics governing business processes. As 

businesses increasingly embrace predictive models for process optimization, these findings 

provide a foundation for future research directions and the refinement of models to meet 

evolving industry demands.  

  Surely we should not skip that, despite the advancements made in predictive BPM models, 

our study acknowledges several inherent limitations that should be considered. Firstly, the 

performance of predictive models is contingent upon the underlying assumption of historical 

data patterns persisting in future instances. In dynamic business environments, 

characterized by evolving processes and unforeseen disruptions, this assumption may not 
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hold true. The predictive accuracy of the models may be compromised when confronted 

with novel scenarios or substantial deviations from historical norms. 

  Secondly, the predictive capability of the models is influenced by the quality and 

representativeness of the training data. Anomalies, outliers, or inadequate coverage of 

diverse scenarios in the training set can lead to suboptimal model performance. 

Additionally, changes in business processes, organizational structures, or external factors 

may introduce variability that the models struggle to accommodate. Recognizing and 

mitigating these limitations are crucial steps toward enhancing the reliability and 

generalizability of predictive BPM models in real-world applications. 

 

5.2 FURURE WORK AND RECOMMENDATIONS 
 

  In the realm of predictive BPM, several avenues for future work and recommendations 

emerge from our exploration. First and foremost, enhancing the adaptability and 

generalization of predictive models is paramount. This involves incorporating dynamic 

learning mechanisms that can continuously evolve with the evolving nature of business 

processes. An exploration of advanced machine learning architectures or hybrid models that 

seamlessly integrate with real-time data streams could be a promising direction. 

Additionally, investigating ensemble methods or combining predictions from multiple 

models may offer a more resilient approach, mitigating the impact of individual model 

limitations. 

  Furthermore, extending the predictive capabilities to handle more complex scenarios, such 

as considering resource constraints, parallel activities, or intricate dependencies among 

events, could significantly enhance the practical utility of BPM predictions. Collaborative 

efforts with domain experts and process stakeholders would be instrumental in refining 

models to capture domain-specific intricacies and nuances. Emphasizing interpretability and 

explainability in predictive models is another vital avenue, enabling stakeholders to 

comprehend and trust the model outputs, fostering seamless integration into decision-

making processes. 

  In terms of implementation, the deployment of predictive BPM models into real-world 

business environments should be approached with a comprehensive strategy. This involves 

establishing clear communication channels with end-users, providing training on model 

interpretation, and developing user-friendly interfaces for seamless interaction. Moreover, 

continuous monitoring and evaluation mechanisms should be implemented to ensure the 

ongoing relevance and effectiveness of the predictive models in the face of evolving 

business dynamics. Overall, these future considerations and recommendations aim to propel 

predictive BPM into a more adaptive, accurate, and user-friendly realm, fostering its 

integration into diverse business scenarios. 
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  As we reflect on the journey through the intricacies of predictive Business Process 

Management (BPM), several overarching themes and future directions come to the 

forefront. One notable reflection is the symbiotic relationship between technological 

advancements and the evolving landscape of business processes. The integration of cutting-

edge technologies such as automated machine learning and process mining has not only 

broadened the horizons of predictive capabilities but has also presented new challenges and 

opportunities. The rapid evolution of both machine learning algorithms and business 

processes necessitates an ongoing commitment to research and development, ensuring that 

predictive BPM remains at the forefront of innovation. 

  Looking ahead, a crucial aspect for consideration lies in the ethical dimensions of predictive 

BPM. As these models become integral to decision-making processes, addressing ethical 

concerns related to bias, transparency, and accountability becomes imperative. Striking a 

balance between model accuracy and ethical considerations will be a defining factor in the 

widespread acceptance and ethical deployment of predictive BPM solutions. Collaborative 

efforts between researchers, practitioners, and policymakers will play a pivotal role in 

establishing ethical guidelines and best practices for the responsible use of predictive 

models in business contexts. 

  In conclusion, the future trajectory of predictive BPM holds immense promise, provided it 

navigates the evolving landscape with ethical consciousness, technological adeptness, and a 

user-centric approach. The synergy between technological innovation and human-centric 

design will shape the destiny of predictive BPM, ensuring its continued relevance and 

positive impact on diverse business domains. As we embark on this trajectory, the principles 

of transparency, interpretability, and adaptability will serve as guiding beacons, steering 

predictive BPM toward a future where it not only anticipates business dynamics but also 

contributes to sustainable, responsible, and ethically sound decision-making processes. 
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