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Περίληψη

Αντικείμενο της διπλωματικής εργασίας θα είναι ο σχεδιασμός, ανάπτυξη και αξιολόγηση σε περιβάλλον

προγραμματισμού CUDA ενός αποδοτικού παράλληλων αλγορίθμου SVM για κατηγοριοποίηση

δεδομένων. Η ανάπτυξη του ανωτέρω αλγορίθμου θα γίνει σε γλώσσα C/C++, ενώ η αξιολόγησή

του θα πραγματοποιηθεί σε πραγματικό περιβάλλον σύγχρονων καρτών γραφικών (NVIDIA 1060 και

NVIDIA RTX TITAN) και θα περιλαμβάνει σύγκριση (σε επίπεδο χρόνων απόκρισης, επιτάχυνσης-

speedup και ακρίβειας της κατηγοριοποίησης/accuracy) με μια αντίστοιχή υλοποιήση σε σειριακό

περιβάλλον εκτέλεσης.

Επιστημονική Περιοχή: Παράλληλα Υπολογιστικά Συστήματα

Λέξεις κλειδιά: SVM, CUDA, GPGPU, Παράλληλος Προγραμματισμός, Κατηγοριοποίηση

Δεδομένων
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Abstract

The objective of this thesis will be the design, development and evaluation of an efficient parallel SVM

classifier in a CUDA programming environment. The development of the above classifier will be done

using C/C++, while the evaluation will be performed in a real, modern environment using modern GPUs

(NVIDIA 1060 και NVIDIA RTX TITAN) and will include comparisons (latency, speedup and accuracy

of classification) with an equivalent sequential implementation.

Scientific Field: Parallel Computing Systems

Keywords: SVM, CUDA, GPGPU, Parallel Programming, Data Classification
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Glossary

Term Definition

CUDA Compute Unified Device Architecture: A GPGPU platform and library.

Classifier An algorithm that assigns class labels to data.

GPGPU General Purpose GPU computing: The use of GPUs for accelarion of tasks

other than image processing.

GPU Graphics Processing Unit: A hardware accelarator designed for use in

image processing.

OVA One Versus All: A technique for using binary classifiers for multiclass

classification, by training binary classifiers to separate samples into a

specific class or one of the rest.

OVO One Versus One: A technique for using binary classifiers for multiclass

classification, by training binary classifiers to separate samples into one of

two classes and picking the class most picked.

OVR One Versus Rest: see OVA.

PSMO Parallel SMO: A variant of SMO meant for use in parallel computing

environments.

QP Quadratic Programming: A family of techniques for solving optimization

problems involving quadratic functions.

SMO Sequential Minimization Optimization: An SVM algorithm based on

coordinate descent instead of reliying upon standard QP techniques.

SVM Support Vector Machine: a data classification algorithm

support vector Samples on the margin of the separating hyperplane of an SVM.
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1 Introduction

SVM is a very powerful algorithm used in the classification of both linearly separable and non-linearly

separable data, however the computing power required to train an SVM model is high. Many advance-

ments have been made since it’s inception [6] such as the use of the Sequential Minimal Optimiza-

tion (SMO) algorithm [7], instead of using quadratic programming techniques, and parallelization using

PSVM [8]. This paper will make an attempt at leveraging the PSVM and other improvements in a het-

erogeneous CUDA computing environment. This will be achieved by taking advantage of the inherent

parallelism present in PSVM due to the division of the dataset into smaller independent subsets which

maps very well to the CUDA programming model. The paper will go over the basics of data classifi-

cation, existing improvements on SVMs as well as the CUDA programming model. It will examine

previous work done to improve the efficiency of SVM, including algorithm as well as implementation

specific improvements pertaining to CUDA. An initial naive non-parallel implementation of SVM will

be provided as a benchmark and all steps taken to optimize it will be evaluated for their contribution to

the overall speedup. The main goal of this paper will be the implementation of an efficient parallelized

SVM algorithm that will take full advantage of the heterogeneous computing environment it’s run on to

achieve fast training and prediction times.
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2 Classification

Classification is the process of assigning a class label to each sample of a dataset, an algorithm that

classifies data is called a Classifier. Classification has a wide range of applications ranging from medical

diagnosis [9] to natural language processing [10] and building recognition from aerial photography [11]

to financial fraud detection [12]. As such lots of research has gone into improving Classifiers. This

section will cover the training of classifiers, various categories of classifiers and finally various types of

classifiers used today.

2.1 Learning Strategies

Classification is in it’s simplest form can be split into two distinct phases, the training phase: wherein

the classifier learns how to classify samples, and the prediction phase: wherein the classifier actually

attempts to classify distinct samples. But with more involved techniques and depending on when the

training phase happens there exist multiple training strategies.

2.1.1 Batch Learning

In batch training, the training and prediction phases are distinct and the training happens all at once—

before the prediction stage.

Supervised learning

The datasets used in training are usually annotated with the class label of each data point. In supervised

learning [13], the dataset used in training will be annotated with the class label of each sample. In this

way the classifier can learn to extract sets of features that are representative of each class by summarizing

the common features of samples with the same class label.

16



Unsupervised learning

Techniques that can operate on unlabeled datasets exist and fall under the name of unsupervised learning

[14]. In unsupervised learning, the dataset used in training is not annotated. Unsupervised learning

techniques are used when a training dataset does not exist or is prohibitively expensive, time consuming

or inconvenient to annotate correctly [15].

2.1.2 Online learning

With online learning, as opposed to Batch Learning, the classifier is designed to learn on ℓ + 1 samples,
where ℓ is the number of samples already having been used for training. In other words the classifier
is given an unlabeled sample, it makes a prediction, and then the classifier is given the correct label

which it uses to update it’s model [16, page 20]. Online learning can be used in conjunction with either

unsupervised and supervised learning. Online learning is useful when the training data is prohibitively

large [17], is generated in real time [18] or in general anytime when training has to be interleaved with

prediction.

2.2 Binary and Multiclass

Depending on the number of classes in a dataset there exist two kinds of classification. Binary classifica-

tion is when the number of classes is exactly two andmulticlass classification is for more than two classes.

Not all kinds of classifiers do inherently support multiclass classification, but one can implement mul-

ticlass classifiers by using multiple binary classifiers. There are two main methods of extending binary

classifiers to be used in multiclass classification.

2.2.1 One vs All

One vs All1 (OVA) [19] multiclass classifiers have a classifier for each class. For 𝑛 classes, 𝑛 binary

classifiers are required, one for each class. Each binary classifier distinguishes whether a sample belongs

to one specific class or if it belongs to any of the rest classes. To assign the final class label to the sample

the class label with the highest prediction confidence is used.

1One vs All: Also known as One vs Rest (OVR), One Against All (OAA) or One Against Rest (OAR)

17



2.2.2 One vs One

One vs One2 (OVO) [19] multiclass classifiers have a classifier for every 2-combination3 of classes, for

𝑛 classes (𝑛
2) binary classifiers are required.

(𝑛
2) = 𝑛(𝑛 − 2 + 1)

2(2 − 1)1 = 𝑛(𝑛 − 1)
2 (2.1)

Each binary classifier labels whether a sample belongs to one of it’s two classes classes. The final class

label is assigned to a sample using the class label predicted by the majority of the binary classifiers.

2.3 Linear Classifiers

A linear classifier is a classifier that can only correctly predict the class of all it’s inputs if the dataset is

linearly separable. For a dataset to be linearly separable there must exist at least one hyperplane4 that

can create two half-spaces where each one only contains one class of samples.

more abstractly a set 𝑋 with distinct subsets 𝑋0 and 𝑋1 is said to be linearly separable if there exist

𝑛 + 1, 𝑤1, 𝑤2, …, 𝑤𝑛, 𝑘 where 𝑤𝑖, 𝑘 ∈ ℝ satisfying

𝑛
∑
𝑖=1

𝑤𝑖𝑥𝑖 > 𝑘 (2.2)

𝑛
∑
𝑖=1

𝑤𝑖𝑥𝑖 < 𝑘 (2.3)

where 𝑥𝑖 is the 𝑖-th element of 𝑋0 and 𝑋1 respectively.

Non linear classifiers do not have this limitation.

2.4 Classifiers

This subsection will go over a number of classifiers, as well as their way of operation. It will also go

over the basics of SVM, but more details will be given in Parallelization of SVM

2One vs one: Also known as One Against One (OAO)
32-combination: a distinct selection of 2 elements from a set
4a subset with dimension 𝑛 − 1 where 𝑛 is the dimension of the dataset
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2.4.1 Perceptron

The perceptron was first described as the McCulloch and Pitts neuron by Mcculloch and Pitts [20] in

1943. Based upon that work Rosenbaltt made one of the earliest attempts to replicate a biological neuron

using digital circuits [21, circa 1957]. The effectiveness of the perceptron was criticized by Minsky and

Papert [22] leading to the work being largely ignored and further research to stop until much later.

Today we would describe the perceptron as a binary linear classifier for use in supervised learning. As far

as application of perceptron models go normal single layer perceptrons don’t see much practical usage

due to their simplicity and shortcommings involving non-linearly separable datasets, but they serve as

the foundations of other models such as Multi-Layer Perceptrons or Neural Networks. They also see use

in educational contexts exactly because of their simplicity to serve as an introduction to machine learning

models.

In simple terms it’s a simplified model of brain neurons. It works by evaluating a function 𝑓(𝑥):

𝑓(𝑥) =
⎧{
⎨{⎩

1,
𝑛

∑
𝑖=0

𝑤𝑖 ⋅ 𝑥𝑖 + 𝑏 > 0

0, otherwise
(2.4)

where 𝑤 is a vector of 𝑛 real valued weights 𝑤0, 𝑤1, …𝑥𝑛

x is a vector of 𝑛 real valued samples 𝑥0, 𝑥1, …𝑥𝑛

𝑛 is the number of inputs to the perceptron,

and 𝑏 is a bias term used to shift the activation boundary away from the origin.

2.4.1.1 Training Perceptrons

Training a perceptron involves a number of steps and the use of a label vector 𝑦 of𝑚 elements 𝑦0, 𝑦1…𝑦𝑚

corresponding to each sample vector𝑥. First the values for the𝑤 and 𝑏 are chosen at random. Afterwards,
for an input vector 𝑥, each sample is multiplied with it’s coresponding weight in 𝑤, and the results plus
the 𝑏 are summed up. Then the activation function 𝑓(𝑥) is used on the result and compaired to the

coresponding label in 𝑦 in order to calculate a prediction error using a loss function [23, pages 349-

350]. Using the prediction error, 𝑤 and 𝑏 are adjusted. This is repeated for all 𝑚 input vectors until the

perceptron has reached a satisfactory prediction accuracy.
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2.4.2 Neural Networks

Neural Networks are a wide category of models but in general can be simply thought of as a network

of perceptrons [24]. Many variants exist such as Deep Neural Networks [25] for more complex classi-

fication problems and Convolutional Neural Networks [26] for classification of images. Being such a

wide category, Neural Networks have wide applications in all classification tasks mentioned in Classifi-

cation.

They are comprised by three types of layers:

1. The input layer, with 𝑛 neurons, one for each input sample.

2. The hidden layers, with an arbitrary number of neurons for each layer.

3. The output layer, that can include:

1. only one neuron for simple binary classification

2. multiple ones for confidence based multiclass classification

3. many more for use in other non-classification applications, as for example image generation

where the output layer might include as many or more neurons as the input layer.

2.4.2.1 Training Neural Networks

The details of training a neural network depend on it’s exact variant but the general case is as follows.

First all the weights and bias term are chosen at random. Then the model is an input, with each sample

going throught the network’s neurons’s activation functions. And finally the results are consolidated in

the output layer. Now using backpropagation [27, pages 9-10] and a loss function [23, pages 349-350] the

weights and biases of each neuron are recalculated. This is repeated for many inputs until a satisfactory

model has been trained.

2.4.3 K-Nearest Neighbor

K-Nearest Neighbor also known as k-NN or KNN is an unsupervised learning technique for use in clas-

sification that works by finding the 𝑘 nearest neighbors of an input vector in the feature space and clas-

sifies inputs (also called the queries) according the the most common label of the found neighbors. A

“1”-Nearest Neightbor algorithm is descripbed by Cover and Hart [28]. Of note is the fact that training a

k-NNmodel equals storing the training samples, a fact that restricts a naive implementation of the model

based on the available memory and the size of the training dataset. Non-naive implementations include
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k-D Trees [29] and Ball Trees [30] that attempt to deal with the inefficiencies of the algorithm. It is

loosly related and not to be confused with the Kmeans clustering algorithm [31].

2.4.3.1 Training and Prediction with k-NNs

As mentioned before, training such a model is very simple as it only involves storing the training inputs

and their coresponding labels. The important part is correctly choosing an 𝑘 for the number of neighbors

and the distance metric —both depend on the dataset used. Selecting the value for 𝑘 requires the use of

heuristic hyperparameter optimization techniques. Apart from hyperparameter optimization, it can also

benefit from dimensionality reduction of the feature space. The distance metric can be any Minkowski

distance or in the case of text classfication a Levenshtein distance [32] can be used, again it highly

depends on the shape of the data. Afterwards for a chosen𝑁 , predicting the class of an input is as simple

as finding the 𝑁 closest training inputs

2.4.4 Naive Bayes

Naive Bayes is a classifier based on the Bayes Theorem 2.5 and the “naive” assumption that the features

of the classes are independent of one another.

𝑃(𝐴|𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴)
𝑃(𝐵) (2.5)

From 2.5 and according to Zhang [33]

we can say that the probability that a sample 𝑥 with features < 𝑥1, 𝑥2, ..., 𝑥𝑛 > belongs in class 𝑐 is:

𝑃(𝑐|𝑥) = 𝑃 (𝑥|𝑐)𝑃 (𝑐)
𝑃 (𝑥) (2.6)

And 𝑥 is classified in class 𝐶 iif:

𝑓𝑏(𝑥) = 𝑃(𝐶 = +|𝑥)
𝑃(𝐶 = −|𝑥) ≥ 1, (2.7)

Again given the naive assumption that features are independent:

𝑓𝑛𝑏(𝑥) = 𝑃(𝐶 = +|𝑥)
𝑃(𝐶 = −|𝑥)

𝑛
∏
𝑖=1

𝑃(𝑥𝑖|𝐶 = +)
𝑃(𝑥𝑖|𝐶 = −) (2.8)
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As such the function 𝑓𝑛𝑏(𝑥) is the Naive Bayes Classifier.

2.4.4.1 Types of NB Classifiers

Depending on the feature values of the dataset, specific types of NB Classifiers exist.

• Gaussian Naive Bayes: is used when the feature values follow a guassian (ie. normal) distribution.

For example the heights of people.

• Multinomial Naive Bayes: is used when the features values are distinct counts. For example word

counts.

• Bernoulli Naive Bayes: is used when the feature values can only take on one of two values and

have no ordering. For example when they are booleans.

• Categorical Naive Bayes: is used when the feature values are categorical, in other words they have

no ordering. For example the color of a car.

2.4.4.2 Training and Prediction with Naive Bayes

A Naive Bayes model is trained thought calculating the probabilities needed. First, the a priori probabil-

ities 𝑃(𝑐) of each class are calculated using their frequency of appearance in the training set:

𝑃(𝑐𝑖) = 𝑛𝑖
𝑁 (2.9)

𝑛𝑖 is the number of samples of class 𝑐𝑖 and 𝑁 is the total number of samples.

Then, depending on the exact type of Naive Bayes used, the probability of each feature given a class is

calculated [33].

A kernel function may be used to estimate the probabilities in order to improve it’s performance much

like it’s used for dimensionallity reduction in
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2.4.5 SVM

Support Vector Machines is a linear binary classifier that works by attempting to find the maximally

separating hyperplane between two classes. A hyperplane is an 𝑛 − 1 dimensional vector where 𝑛 is the

dimensionality of the feature space.

Figure 2.4.1: Maximum-margin hyperplane and margin for an SVM trained on two classes. Larhmam /
CC BY-SA 4.0 DEED

2.4.5.1 The Primal Problem

More formally an SVM classifier tries to solve a constrained optimization problem. This section will now

prove that SVM’s problem is a constraint optimization problem. Let 𝑤 to be the separating hyperplane,

𝑏 a bias term and 𝑥 a vector of 𝑛 feature samples.

min
𝑤,𝑏

||𝑊||2
2 (2.10)

Subject to:

𝑦𝑖(𝑤𝑇 + 𝑏) >= 1, for 𝑖 = 1, … , 𝑛 (2.11a)

The problem can also be expressed as a general convex optimization problem of the following form:

min
𝑥

𝑓(𝑥) (2.12)
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Subject to:

𝑔𝑖(𝑥) ≤ 0, for 𝑖 = 1, … , 𝑛 (2.13a)

Substituting with:

𝑓(𝑤, 𝑏) = ||𝑊||2
2 (2.14a)

𝑔𝑖(𝑤, 𝑏) = 1 − 𝑦𝑖(𝑤𝑇 𝑥𝑖 + 𝑏) (2.14b)

As such the problem can finally be written as:

min
𝑤,𝑏

𝑓(𝑤, 𝑏),where 𝑓(𝑤, 𝑏) = ||𝑊||2
2 (2.15)

Subject to:

𝑔𝑖(𝑤, 𝑏) ≤ 0 (2.16a)

𝑔𝑖(𝑤, 𝑏) = 1 − 𝑦𝑖(𝑤𝑇 𝑥𝑖 + 𝑏) (2.16b)

(2.16c)

But for this to actually be a convex optimization problem, it will need to be shown that 𝑓 and all 𝑔𝑖 are

convex functions.

For 𝑓 it is sufficient to show that it’s Hessian matrix is positive semidefinite (PSD). For a matrix to be

PSD it is sufficient to show that ∀𝑧 𝑧𝑇 𝐻𝑧 >= 0.

Proof. The Hessian matrix is defined as such:

𝐻 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜕2𝑓
𝜕𝑥2

1

𝜕2𝑓
𝜕𝑥1 𝜕𝑥2

⋯ 𝜕2𝑓
𝜕𝑥1 𝜕𝑥𝑛

𝜕2𝑓
𝜕𝑥2 𝜕𝑥1

𝜕2𝑓
𝜕𝑥2

2
⋯ 𝜕2𝑓

𝜕𝑥2 𝜕𝑥𝑛

⋮ ⋮ ⋱ ⋮

𝜕2𝑓
𝜕𝑥𝑛 𝜕𝑥1

𝜕2𝑓
𝜕𝑥𝑛 𝜕𝑥2

⋯ 𝜕2𝑓
𝜕𝑥2𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.17)
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As such for 𝑓 , it’s Hessian is:

𝐻 =
⎡
⎢
⎢
⎣

𝜕1/2||𝑊||2
𝜕𝑤2

1
… 𝜕1/2||𝑊||2

𝜕𝑤1𝜕𝑤𝑑

⋮ ⋱ ⋮
𝜕1/2||𝑊||2
𝜕𝑤𝑑𝜕𝑤1

… 𝜕1/2||𝑊||2
𝜕𝑤𝑑𝜕𝑤𝑑

⎤
⎥
⎥
⎦

(2.18)

Knowing that 1/2||𝑊||2 = 1/2 ∑𝑑
𝑖=1 𝑤2

𝑖 , the first partial derivative can be computed to get:

𝐻 =
⎡
⎢
⎢
⎣

𝜕𝑤1
𝜕𝑤1

… 𝜕𝑤1
𝜕𝑤𝑑

⋮ ⋱ ⋮
𝜕𝑤𝑑
𝜕𝑤1

… 𝜕𝑤𝑑
𝜕𝑤𝑑

⎤
⎥
⎥
⎦

(2.19)

Computing the second partial derivative gets us:

𝐻 =
⎡
⎢
⎢
⎣

1 … 0
⋮ ⋱ ⋮
0 … 1

⎤
⎥
⎥
⎦

= 𝐼 (2.20)

Which is obviously the identity matrix. As such:

𝑧𝑇 𝐻𝑧 ≥0 ⇒
𝑧𝑇 𝐼𝑧 ≥0 ⇒
𝑧𝑇 𝑧 ≥0 ⇒

𝑑
∑
𝑖=1

𝑧2
𝑖 ≥0

Which clearly holds true.

Similarly it will shown that all 𝑔𝑖 are convex, because their Hessians are PSD.
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Proof.

𝐻 =
⎡
⎢
⎢
⎣

𝜕2(1−𝑦𝑖(𝑤𝑇 𝑥𝑖+𝑏))
𝜕𝑤1𝜕𝑤𝑑

… 𝜕2(1−𝑦𝑖(𝑤𝑇 𝑥𝑖+𝑏))
𝜕𝑤𝑑𝜕𝑏

⋮ ⋱ ⋮
𝜕2(1−𝑦𝑖(𝑤𝑇 𝑥𝑖+𝑏))

𝜕𝑏𝜕𝑤1
… 𝜕2(1−𝑦𝑖(𝑤𝑇 𝑥𝑖+𝑏))

𝜕𝑏𝜕𝑏

⎤
⎥
⎥
⎦

⇒ (2.21)

𝐻 =
⎡
⎢
⎢
⎣

𝜕−𝑦𝑖𝑥𝑖,1
𝜕𝑤1 … 𝜕−𝑦𝑖𝑥𝑖,1

𝜕𝑏
⋮ ⋱ ⋮

𝜕−𝑦𝑖
𝜕𝑤1

… 𝜕−𝑦𝑖
𝜕𝑏

⎤
⎥
⎥
⎦

= 𝐼 ⇒ (2.22)

𝐻 =
⎡
⎢
⎢
⎣

0 … 0
⋮ ⋱ ⋮
0 … 0

⎤
⎥
⎥
⎦

(2.23)

For which ∀𝑧, 𝑧𝑇 𝐻𝑧 >= 0 clearly holds true.

2.4.5.2 The Dual Problem

The dual form of this problem will be used to solve the primal form of this optimization problem. Intro-

ducing the generalized Lagrangian, defined as:

𝐿(𝑥, 𝑧) = 𝑓(𝑥) +
𝑛

∑
𝑖=1

𝑎𝑖𝑔𝑖(𝑥) (2.24)

Where 𝑎𝑖 are what are known as Lagrange multipliers.

Denote:

𝜃𝑃 (𝑥) = max
𝑎∶𝑎𝑖≥0

𝐿(𝑥, 𝑎)

= max
𝑎∶𝑎𝑖≥0

𝑓(𝑥) +
𝑛

∑
𝑖=1

𝑎𝑖𝑔𝑖(𝑥)
(2.25)

Assume that an 𝑥, violates one primal 𝑔𝑗(𝑥) > 0 constraint. Since the maximum 𝑎 is picked, let

𝑎𝑗 → ∞, to get 𝜃𝑃 (𝑥) = ∞.

Assume that an 𝑥, satisfies all primal 𝑔𝑗(𝑥) ≤ 0 constraint. Let all 𝑎𝑗 = 0, and get 𝜃𝑃 (𝑥) = 𝑓(𝑥).
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From this it is shown that if we assume that x satisfies all primal constraints that the following has the

same optimal solution as the original primal problem:

min
𝑥

𝜃𝑃 (𝑥) = min
𝑥

max
𝑎∶𝑎𝑖≥0

𝐿(𝑥, 𝑎) (2.26)

Let 𝑝∗ = min
𝑥

𝜃𝑃 (𝑥) denote the primal value.

A dual problem is defined as a function:

𝜃𝐷(𝑎) = min
𝑥

𝐿(𝑥, 𝑎) (2.27)

and a dual value:

𝑑∗ = max
𝑎∶𝑎𝑖≥0

𝜃𝐷(𝑎)

= max
𝑎∶𝑎𝑖≥0

min
𝑥

𝐿(𝑥, 𝑎)
(2.28)

The maximum of the minimum of something is obviously less than or equal to the minimum of the

maximum of something, and as such we can see that 𝑑∗ ≤ 𝑝∗

Theorem 1. If there exists an 𝑥∗ that solves the primal problem and an (𝜇∗, 𝜆∗) that solves the dual

problem, such that they both satisfy the Karush-Kuhn-Tucker (KKT) conditions, then the problem is said

to have strong duality. If the problem pair has strong duality, then for any solution 𝑥∗ to the primal prob-

lem and any solution (𝜇∗, 𝜆∗) to the dual problem, the pair 𝑥∗, (𝜇∗, 𝜆∗) must satisfy the KKT conditions

[34].

The KKT conditions are as follows:

𝜕𝐿(𝑥∗, 𝑎∗)
𝜕𝑥𝑖

= 0 ∀𝑖 ∈ 1, … , 𝑛

𝑎∗
𝑖𝑔𝑖(𝑥∗) = 0 ∀𝑖 ∈ 1, … , 𝑛
𝑔𝑖(𝑥∗) ≤ 0 ∀𝑖 ∈ 1, … , 𝑛

𝑎∗
𝑖 ≥ 0 ∀𝑖 ∈ 1, … , 𝑛

(2.29)

If 𝑓 and all 𝑔𝑖 are convex and the 𝑔𝑖 constraints are strictly feasible
5 it is trivial to prove that 𝑑∗ = 𝑝∗.

5strictly feasible: ∃𝑥, 𝑔𝑖(𝑥) < 0, ∀𝑖
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We will now show that the 𝑔𝑖 constraints are strictly feasible:

Proof. If we assume we have a linearly separable dataset then a separating hyperplane 𝑤𝑇 𝑥 + 𝑏 should
correctly classify all samples, in other words 𝑦𝑖(𝑤𝑇 𝑥 + 𝑖 + 𝑏) > 0∀𝑖.

As such we could scale 𝑤 and 𝑏 by an arbitrary number in order for 𝑔𝑖(𝑤, 𝑏) < 0 to hold true, where

𝑔𝑖(𝑤, 𝑏) = 1 − 𝑦𝑖(𝑤𝑇 𝑥𝑖 + 𝑏).

We will now attempt to solve the dual form of the problem:

max
𝑎∶𝑎𝑖≥0

min
𝑤,𝑏

𝑓(𝑤, 𝑏) +
𝑛

∑
𝑖=1

𝑎𝑖𝑔𝑖(𝑤, 𝑏) (2.30)

max
𝑎∶𝑎𝑖≥0

min
𝑤,𝑏

1/2||𝑊||2 −
𝑛

∑
𝑖=1

𝑎𝑖(𝑦𝑖(𝑤𝑇 𝑥𝑖 + 𝑏) − 1) (2.31)

From the first KKT condition in Equation 2.29 we know that all the partial derivatives of the Generalized

Lagrangian will equal 0. Taking the partial derivative in respect to 𝑤𝑗:

𝜕1/2||𝑊||2 − ∑𝑛
𝑖=1 𝑎𝑖(𝑦𝑖(𝑤𝑇 𝑥𝑖 + 𝑏) − 1)

𝜕𝑤𝑗
= 0 ⇒ (2.32)

𝑤𝑗 −
𝑛

∑
𝑖=1

𝑎𝑖𝑦𝑖𝑥𝑖,𝑗 = 0 ⇒ (2.33)

𝑤 =
𝑛

∑
𝑖=1

𝑎𝑖𝑦𝑖𝑥𝑖,𝑗 (2.34)

Substituting Equation 2.34 into Equation 2.31:

max
𝑎∶𝑎𝑖≥0

min
𝑤,𝑏

1/2||𝑊||2 −
𝑛

∑
𝑖=1

𝑎𝑖(𝑦𝑖((
𝑛

∑
𝑗=1

𝑎𝑗𝑦𝑗𝑥𝑗)𝑇 𝑥𝑖 + 𝑏) − 1) (2.35)

Expanding it:
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max
𝑎∶𝑎𝑖≥0

min
𝑤,𝑏

1/2||
𝑛

∑
𝑖=1

𝑎𝑖𝑦𝑖𝑥𝑖||2 −
𝑛

∑
𝑖=1

𝑎𝑖(𝑦𝑖((
𝑛

∑
𝑗=1

𝑎𝑗𝑦𝑗𝑥𝑗)𝑇 𝑥𝑖 + 𝑏) − 1) (2.36)

max
𝑎∶𝑎𝑖≥0

min
𝑤,𝑏

1/2
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

𝑎𝑖𝑎𝑗𝑦𝑖𝑦𝑗𝑥𝑇
𝑖 𝑥𝑗 −

𝑛
∑
𝑖=1

𝑎𝑖(𝑦𝑖((
𝑛

∑
𝑗=1

𝑎𝑗𝑦𝑗𝑥𝑗)𝑇 𝑥𝑖 + 𝑏) − 1) (2.37)

max
𝑎∶𝑎𝑖≥0

min
𝑤,𝑏

𝑛
∑
𝑖=1

𝑎𝑖 − 1/2
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

𝑎𝑖𝑎𝑗𝑦𝑖𝑦𝑗𝑥𝑇
𝑖 𝑥𝑗 − 𝑏

𝑛
∑
𝑖=1

𝑎𝑖𝑦𝑖 (2.38)

Again from the first KKT condition in Equation 2.29 we know that all the partial derivatives of the

Generalized Lagrangian will equal 0. Now taking the partial derivative in respect to 𝑏:

𝜕1/2||𝑊||2 − ∑𝑛
𝑖=1 𝑎𝑖(𝑦𝑖(𝑤𝑇 𝑥𝑖 + 𝑏) − 1)

𝜕𝑏 = 0 ⇒ (2.39)

−
𝑛

∑
𝑖=1

𝑎𝑖𝑦𝑖 = 0 (2.40)

Substituting Equation 2.40 into Equation 2.38:

max
𝑎∶𝑎𝑖≥0

min
𝑤,𝑏

𝑛
∑
𝑖=1

𝑎𝑖 − 1/2
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

𝑎𝑖𝑎𝑗𝑦𝑖𝑦𝑗𝑥𝑇
𝑖 𝑥𝑗 (2.41)

Note that Equation 2.41 no longer includes neither 𝑤, nor 𝑏, so it can be safely expressed without the
minimum. As such we finally get the dual form of the SVM problem that we can solve:

max
𝑎∶𝑎𝑖≥0

𝑛
∑
𝑖=1

𝑎𝑖 − 1/2
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

𝑎𝑖𝑎𝑗𝑦𝑖𝑦𝑗𝑥𝑇
𝑖 𝑥𝑗 (2.42)

Subject to:

𝑛
∑
𝑖=1

𝑎𝑖𝑦𝑖 = 0 (2.43)

Recovering optimal bias parameter

The optimal value for 𝑏 must be one that pushes the separating hyperplane to sit between the furthest

support vector in 𝑤’s direction and the closest support vector of the other class. In other words their
functional margins 𝑦𝑖(𝑤𝑇 𝑥𝑖 + 𝑏) must be equal:
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min
𝑖∶𝑦𝑖=1

𝑤𝑇 𝑥𝑖 + 𝑏 = −( max
𝑖∶𝑦𝑖=−1

𝑤𝑇 𝑥𝑖 + 𝑏) ⇒ (2.44)

𝑏 = −1
2( min

𝑖∶𝑦𝑖=1
𝑤𝑇 𝑥𝑖 + max

𝑖∶𝑦𝑖=−1
𝑤𝑇 𝑥𝑖) (2.45)

2.4.5.3 Kernel Trick

As a linear classifier, a linearly separable dataset is usually required 2.3. But what we can do is perform

a feature transform to a space where it is linearly separable.

Theorem 2. Mercer’s theorem. Let 𝑥 ∈ ℝ𝑙 and a mapping 𝜙:

𝑥 ↦ 𝜙(𝑥) ∈ 𝐻 (2.46)

where 𝐻 is a Hilbert space. The inner product operation has an equivalent representation.

⟨𝜙(𝑥), 𝜙(𝑧)⟩ = 𝐾(𝑥, 𝑧) (2.47)

where ⟨⋅, ⋅⟩ denotes the inner product operation in 𝐻 and 𝐾(𝑥, 𝑧) is a symmetric continuous function

satisfying the following conditions (known as Mercer’s conditions):

∫
𝐶

∫
𝐶

𝐾(𝑥, 𝑧)𝑔(𝑥)𝑔(𝑧)𝑑𝑥𝑑𝑧 ≥ 0 (2.48)

for any 𝑔(𝑥), 𝑥 ∈ 𝐶 ⊂ ℝ𝑙 such that:

∫
𝐶

𝑔(𝑥)2𝑑𝑥 < +∞ (2.49)

where C is a compact (finite) subset of ℝ𝑙. [35]

FromMercer’s theoremwe can assume that a mapping 𝜙 ∶ 𝑅𝑑 → 𝑅𝑑′ from𝑅𝑑 to𝑅𝑑′ has an equivalent

kernel function 𝐾. We can now apply the mapping to the training dataset 𝑋 before training begins and

get a dataset 𝑋′. Then run SVM to find a separating hyperplane on the new 𝑋′ dataset. We will now

need to first apply the transform to any new data points, before we can make predictions on them.

Essentially we have replaced the inner product of the feature vectors with a kernel function𝐾(𝑥1, 𝑥2) =
𝜙(𝑥1)𝑇 𝜙(𝑥2). With this in mind we can rewrite Equation 2.42:
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max
𝑎∶𝑎𝑖≥0

𝑛
∑
𝑖=1

𝑎𝑖 − 1/2
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

𝑎𝑖𝑎𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖, 𝑥𝑗) (2.50)

Subject to:

𝑛
∑
𝑖=1

𝑎𝑖𝑦𝑖 = 0 (2.51)

With:

𝑏 = − 1
2( min

𝑖∶𝑦𝑖=1
∑
𝑎𝑗≠0

𝑎𝑗𝑦𝑗𝐾(𝑥𝑖, 𝑥𝑗) + max
𝑖∶𝑦𝑖=−1

∑
𝑎𝑗≠0

𝑎𝑗𝑦𝑗𝐾(𝑥𝑖, 𝑥𝑗))

𝑤 =
𝑛

∑
𝑖=1

𝑎𝑖𝑦𝑖𝜙(𝑥𝑖)

There are many kernels that are used with SVM:

Table 2.1: Kernels used with SVM

Name Kernel

Linear Kernel ⟨𝑥, 𝑥′⟩
Polynomial Kernel (𝛾⟨𝑥, 𝑥′⟩ + 𝑟)𝑑

Exponential Kernel 𝑒𝑥𝑝(−𝛾||𝑥 − 𝑥′||2)
Radial Basis Function 𝑒𝑥𝑝(−𝛾||𝑥—𝑥′||2)

Where 𝑑 is the degree of the polynomial and 𝑟, 𝛾 are bias parameters.

2.4.5.4 Regularisation

For some non linearly separable datasets, the non separability might be because of a few outliers in the

dataset. In this case using a feature transform might not be the best way to deal with the dataset. What

we can do instead is allow a few samples to be misclassified by adding slack variables. The primal form

with slack variables is defined as such:

min
𝑤,𝑏,𝜉

1/2||𝑊||2 + 𝐶
𝑛

∑
𝑖=1

𝜉𝑖 (2.52)

31



Subject to:

𝑦𝑖(𝑤𝑇 𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 ∀𝑖 ∈ [1, 𝑛] (2.53)

𝜉𝑖 ≥ 0 ∀𝑖 ∈ [1, 𝑛] (2.54)

Where 𝜉𝑖s are the slack variables, and 𝐶 is the misclassification “cost”.

Following the same methodology as before it is trivial to show that the problem function remains convex

and the constraints linear.

The dual form of the regularized SVM problem is defined as:

max
𝑎,𝑟≥0

min𝑤, 𝑏, 𝜉𝐿(𝑤, 𝑏, 𝜉, 𝑎, 𝑟) (2.55)

max
𝑎,𝑟≥0

min𝑤, 𝑏, 𝜉1/2||𝑊||2 + 𝐶
𝑛

∑
𝑖=1

𝜉𝑖 −
𝑛

∑
𝑖=1

𝑎𝑖(𝑦𝑖(𝑤𝑇 𝑥𝑖 + 𝑏) − 1 + 𝜉𝑖) −
𝑛

∑
𝑖=1

𝑟𝑖𝜉𝑖 (2.56)

Subject to:

𝑦𝑖(𝑤𝑇 𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 ∀𝑖 ∈ [1, 𝑛] (2.57)

𝜉𝑖 ≥ 0 ∀𝑖 ∈ [1, 𝑛] (2.58)

From Equation 2.29 again, we know the partial derivatives of the generalized Lagrangian will be equal

to zero. Taking the partial derivative of Equation 2.56 in respect to 𝑤𝑗:
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𝜕𝐿(𝑤, 𝑏, 𝜉, 𝑎, 𝑟)
𝜕𝑤𝑗

= 0 ⇒ (2.59)

𝜕1/2||𝑊||2 + 𝐶 ∑𝑛
𝑖=1 𝜉𝑖 − ∑𝑛

𝑖=1 𝑎𝑖(𝑦𝑖(𝑤𝑇 𝑥𝑖 + 𝑏) − 1 + 𝜉𝑖) − ∑𝑛
𝑖=1 𝑟𝑖𝜉𝑖

𝜕𝑤𝑗
= 0 ⇒ (2.60)

𝑤𝑗 −
𝑛

∑
𝑖=1

𝑎𝑖𝑦𝑖𝑥𝑖,𝑗 = 0 ⇒ (2.61)

𝑤 =
𝑛

∑
𝑖=1

𝑎𝑖𝑦𝑖𝑥𝑖,𝑗

(2.62)

So 𝑤 remains unchanged.

Taking the partial derivative of Equation 2.56 with respect to 𝑏:

𝜕𝐿(𝑤, 𝑏, 𝜉, 𝑎, 𝑟)
𝜕𝑏 = 0 ⇒ (2.63)

𝜕1/2||𝑊||2 + 𝐶 ∑𝑛
𝑖=1 𝜉𝑖 − ∑𝑛

𝑖=1 𝑎𝑖(𝑦𝑖(𝑤𝑇 𝑥𝑖 + 𝑏) − 1 + 𝜉𝑖) − ∑𝑛
𝑖=1 𝑟𝑖𝜉𝑖

𝜕𝑏 = −
𝑛

∑
𝑖=1

𝑎𝑖𝑦𝑖 ⇒

(2.64)
𝑛

∑
𝑖=1

𝑎𝑖𝑦𝑖 = 0 (2.65)

Again this remains unchanged.

Taking the partial derivative of Equation 2.56 in respect to 𝜉𝑖:

𝜕𝐿(𝑤, 𝑏, 𝜉, 𝑎, 𝑟)
𝜕𝜉𝑖

= 0 ⇒ (2.66)

𝜕1/2||𝑊||2 + 𝐶 ∑𝑛
𝑖=1 𝜉𝑖 − ∑𝑛

𝑖=1 𝑎𝑖(𝑦𝑖(𝑤𝑇 𝑥𝑖 + 𝑏) − 1 + 𝜉𝑖) − ∑𝑛
𝑖=1 𝑟𝑖𝜉𝑖

𝜕𝜉𝑖
= −

𝑛
∑
𝑖=1

𝑎𝑖𝑦𝑖 ⇒

(2.67)

𝐶 − 𝑎𝑖 − 𝑟𝑖 = 0 ⇒ (2.68)

𝐶 = 𝑎𝑖 + 𝑟𝑖 (2.69)

Now by substituting the above results into Equation 2.56 the dual regularized form can be rewritten as:
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max
𝑎,𝑟≥0

min𝑤, 𝑏, 𝜉
𝑛

∑
𝑖=1

𝑎𝑖 − 1/2
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

𝑎𝑖𝑎𝑗𝑦𝑖𝑦𝑗𝑥𝑇
𝑖 𝑥𝑗 +

𝑛
∑
𝑖=1

(𝐶 − 𝑎𝑖 − 𝑟𝑖)𝜉𝑖 (2.70)

Subject to:

𝑛
∑
𝑖=1

𝑎𝑖𝑦𝑖 = 0

𝐶 = 𝑎𝑖 + 𝑟𝑖 ∀𝑖 ∈ [1, 𝑛]

We can now note that 𝑟 does not appear in the problem function and that we can always choose 𝑟𝑖 ≥ 0
such that 𝐶 = 𝑎𝑖 + 𝑟𝑖 as long as 𝑎𝑖 ≤ 𝐶 . We can also note that 𝑤, 𝑏 nor 𝜉 appear. Rewriting the

regularized dual form again yields:

max
𝑎

𝑛
∑
𝑖=1

𝑎𝑖 − 1/2
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

𝑎𝑖𝑎𝑗𝑦𝑖𝑦𝑗𝑥𝑇
𝑖 𝑥𝑗 (2.71)

Subject to:

𝑛
∑
𝑖=1

𝑎𝑖𝑦𝑖 = 0 (2.72)

0 ≤ 𝑎𝑖 ≤ 𝐶 ∀𝑖 ∈ [1, 𝑛] (2.73)

Note

The kernel trick from 2.4.5.3 Kernel Trick, still applies.

2.5 Sequential Minimization Optimization

The dual form we have derived in Equation 2.42, as well as the kernelized form in Equation 2.50 can

be solved using standard quadratic programming (QP) solvers. Using those can be very performance

and memory intensive. For that reason many techniques where developed to speed up SVM. One of

the more successful ones was Sequential Minimization Optimization (SMO) which takes the relatively

large QP problem of SVM, breaks it into many smaller ones, and solves them analytically [7]. For
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each optimization step due to the linear constraint in Equation 2.72, two Lagrange multipliers are jointly

optimized at a time.

More specifically a high level overview of how the SMO algorithm works is as follows:

1. Pick one Lagrange multiplier to 𝑎1 optimize, using the First Choice Heuristic.

2. Pick a second Lagrange multiplier 𝑎2 to optimize, using the Second Choice Heuristic.

3. Calculate the prediction error 𝐸𝑖 = Output of SVM on point i − 𝑦𝑖 for the first multiplier.

4. Using the prediction errors, perform what is essentially coordinate descend [36, page 11], to move

both multipliers closer to their optimal value.

5. This is repeated until all multipliers satisfy the KKT conditions, within a small margin 𝜖, the orig-
inal paper [7, page 48, Loose KKT Conditions] recommends a value in the range of 10−2 to 10−3

for the margin.

The First Choice Heuristic attempts to find a Lagrange multiplier that violates the KKT conditions. To

speed up the training multipliers that are bounded6 are ignored –except if a full pass over the training set

has not found a violating multiplier. In this case a full pass over all multipliers is done to find violating

ones.

The Second Choice Heuristic attempts to find a second Lagrange multiplier, 𝑎2, one that maximises the

absolute value of the prediction error on the samples 𝑖1 and 𝑖2 given an already decided 𝑖1.

6bounded multipliers: when 𝑎𝑖 ≠ 𝐶, 𝑎𝑖 ≠ 0
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3 CUDA

Graphics Processing Units (GPU)s, as the name implies, were originally created to accelerate graphical

and image processing applications. Graphics programming at it’s core is an inherently parallel com-

puting problem, thus GPUs where made to support such massively parallel computing. Some of the

earliest attempts at general purpose computing on graphics processing units (GPGPU) where done using

programming models intended for graphics processing which was rather cumbersome and inelegant.

Compute Unified Device Architecture, or what is more commonly known as CUDA, is Nvidia’s GPGPU

Application Programming Interface (API) and computing platform. It includes a C/C++ compiler, nvcc

which is based on LLVM, and a sleuth of libraries for GPU accelerated processing: including but not

limited to cuBLAS (Basic Linear Algebra Subprograms), cuFFT (Fast Fourier Transform) and more.

Official Support for CUDA also exists for Fortran and unoffical support exists in other languages that

support foreign function interfaces (FFI) into C code, using wrappers from third parties.

3.1 Architecture of Nvidia GPUs

Firstly, before diving into the details of the CUDA platform, we will need to define some terms and

lay out the architecture of Nvidias GPUs. GPUs are multiprocessors which support running hundreds of

threads at the same time by employing an architecture called Single-InstructionMultiple-Threads (SIMT).

Much like traditional Single-Instruction Multiple-Data (SIMD) architectures employed by CPUs, SIMT

architectures operate on multiple data with the using the same instruction, but unlike SIMD that takes

advantage of vectorized instructions and registers, the execution of on instruction does not necessarily

happen at the same time, but instead happens concurrently by different threads. To implement such an

architecture Nvidia GPUs are made up of individual CUDA cores equipped with their own registers,

L1 cache and Program Counter (PC)1 arranged into multiple Streaming Multiprocessors (SM)s with

additional shared L2 cache memory. In the context of Nvidia GPUs, the job of the multiprocessor is to

create, manage the execution of and schedule groups of 32 threads, called warps, by partitioning bigger

1In architectures after NVIDIA Volta, where Independent Thread Scheduling was added.
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groups of threads, called thread blocks. Warps execute only a single instruction at a time and as such

in the case of divergence due to different code paths, threads are selectively disabled so that each group

of threads with a divergent code path is executed on it’s own time. While instruction level parallelism

is employed by way of pipelining, all instructions are executed in order and no branch prediction being

employed2.

3.2 Programming Model

The CUDA programming model is a stream programming model where a kernel function (not to be

confused with the kernel functions defined in 2.4.5.3 Kernel Trick) is applied to a stream of data points.

This is an embarrassingly parallel workload that obviously maps very well with to the SIMD architecture

GPUs use. It is also a heterogeneous programming model where a distinction is made between code that

is to be run on the CPU, known as host code, and code that is meant to be run on the GPU, known as

device code. Host code is perfectly normal C/C++ and abides by that language’s syntax and rules, with

the exception of kernel invocation, see 3.2.1 Execution and Threading Model. Device code on the other

hand, while syntactically identical with host code, comes with some major restrictions: Big parts of the

C standard library and C++’s standard template library (STL) are unavailable, with exceptions such as

printf to facilitate the printing of debug information.. Device code also has access to a wide range

of device only library functions and compiler intrinsics. A full list of the restrictions and extensions

available exists in the CUDA C++ Programming Guide [37, see sections: C++ Language Extentions and

C++ Language Support]

3.2.1 Execution and Threading Model

Functions can be marked as host code, device code or kernels, using the compiler attributes __host__

for host code, __device__ for device code and __global__ for kernels. A function can be marked

both __host__ and __device__, to imply that a function can be called from both host and device

code.

Kernel functions are executed in parallel𝑁 times by𝑁 cuda threads. CUDA threads are the lowest class

in the threading model. At the top of the threading model hierarchy are grids, which map to the available

hardware GPUs. Grids are then made up of blocks with multiple blocks being executed concurrently by

one of the SMs of the GPU. Blocks are made up of individual cuda threads which map into individual

2Thankfully, the author calls upon the reader to imagine what speculative execution vulnerabilities like Meltdown/Spectre
would entail on GPUs.
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CUDA cores. Optionally, blocks can also be grouped into thread block clusters to guarantee that they are

run on the same grid in multi-GPU systems. Threads are enumerated sequentially with their own thread

ID, unique within each block, and block ID. While the simplest form of ID is a simple scalar, 2D or 3D

vectors can be used when such shapes of blocks and grid are employed.

Kernel functions must have a return type of void and must be free functions and not methods of any

class. Listing 3.1 contains an example of a kernel function kernel, marked with the __global__

attribute. In main() the syntax used for kernel invocation is demonstrated. Kernel invocation is like a

normal function call except that the function name is prepended with triple angle brackets <<<...>>>

which is know as an execution configuration.

Listing 3.1 CUDA Kernel Invocation

__global__ void kernel() {
printf("Hello from %d!\n", threadIdx.x);

}

int main(void) {
kernel<<<32,32>>>();

return 0;
}

The parameters given in the execution configuration are gridDim of type dim33 denoting the number

and shape of blocks to be used, blockDim of type dim3 denoting the number and shape of threads

to be used by each block, shared_size of type size_t, an optional parameter, denoting the size of

dynamically allocated shared memory for each block and stream an optional parameter defaulting to 0

denoting the id of the stream the kernel will use.

Figure 3.2.1: Grid of Thread Blocks

Builtin variables are provided in device code so that individual threads can use them to index into and

operate on different data:
3dim3: a struct containing the atributes x, y and z of integer type describing a three dimentional vector, can be initiallized
with a single integer to imply a vector with y=1 and z=1
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• gridDim, of type dim3, signifies the shape of the grid

• blockDim, of type dim3, signifies the shape of each block

• blockIdx, of type dim3, signifies the ID of each block

• threadIdx, of type dim3, signifies the ID of each thread

• warpSize, of type int, signifies the size of the warp

Using these builtins, a simple addition between two vectors could be implemented as in Listing 3.2, where

SIZE_OF_VECTORS is smaller than the total number of threads using in the execution configuration for

this kernel.

Listing 3.2 CUDA Addition Kernel

__global__ void add(double *a, double *b, double *result) {
unsigned int tid = threadIdx.x + blockDim.x * blockIdx.x;

if (tid < SIZE_OF_VECTORS) {
result[tid] = a[tid] + b[tid];

}
}

3.2.1.1 Synchronization

Synchronization between threads is achieved using compiler intrinsics. Block wide synchronization,

as in synchronization between threads in the same block, is provided using the __syncthreads()

primitive, which acts like a barrier where all threads in a block must wait until all of them reach it.

Warning

It’s important to note that if one thread in a block reaches a barrier, all threads must eventu-

ally reach it, otherwise a deadlock will happen. Extra caution must be taken when placing

__syncthreads() in conditional branches.

Warp wide synchronization and cooperation is achieved using:

• warp vote intrinsics which implement warp wide reduce and broadcast operations [37, section

Warp Vote Functions]

• warp reduce intrinsics which implement warp wide reductions [37, section Warp Reduce Func-

tions]
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• warp shuffle intrinsics which implement ways for threads exchange variables in a warp without

using any shared memory [37, section Warp Shuffle Functions]

Grid synchronization intrinsics are not provided and as such has been achieved in many different ways,

one of them being by using multiple kernel invocations. Synchronizations happened at the end of each

kernel invocation.

3.2.1.2 Cooperative Kernels

Introduced in CUDA 9, cooperative kernels allowed more granular control of synchronization,

including and not limited to grid wide synchronization, warp barrier synchronization and synchro-

nization between specific groups of blocks. Using this cooperative model is done by including the

cooperative_groups.h header file. Kernel invocation for cooperative kernels differs as it must

make use of the cudaLaunchCooperativeKernel API, instead of execution configuration as

mentioned before.

Synchronization is achieved using barriers on groups of threads. There are many predefined kinds of

thread groups including but not limited to: thread block groups, corresponding to the traditional thread

groups synchronized by __syncthreads(), grid groups, corresponding to an entire grid of threads and

more [37, section Cooperative Groups].

3.2.2 Memory

Memory in CUDA is separated in many different categories, the first one being host and device memory.

Host memory is inaccessible from device code and vise versa. Data must be explicitly moved from the

host to the device and back by using one of the variants of cudaMemcpy*(src, dst, size, kind),

where kind defines if the src and dst are on the host or device side. Device to device and host to host

copying is also supported.

On the device side memory is of four kinds:

• Global memory, very slow memory that is accessible to the entire grid

• Block shared memory, fast memory that is shared across a block, maps to the memory of each SM.

• Local thread memory, very fast memory that is local to each thread, maps to the cache and registers

of individual CUDA cores.

• Constant memory, fast globally accessible memory that is however, immutable
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Figure 3.2.2: Memory Hierarchy

3.2.2.1 Unified Memory

Unified or managed memory, introduced with CUDA, 6 allows the programmer to act as if they operate

on a unified memory space by automagically managing the transfer of data from host to device and

back. This can massively simplify the development of an application by removing the need to manually

manage transfer of data. Unified memorymust be allocated using the cudaMallocManaged()memory

allocation API [37, section Unified Memory Programming], because it requires the use of page-locked

or pinned memory. Pinned memory is simply memory, as far as the host side is concerned, is memory

that cannot be stored with the use secondary storage such as swap memory on *nix systems or pagefiles

on Windows systems.

3.2.3 Compilation

Device code is written in the CUDA instruction set architecture known as PTX, directly using it is as

cumbersome as writing x86_64 assembly is, so as mentioned before, device code is written in an ex-

tended syntax of C/C++. Compilation of host and device code is done using split compilation by first

separating host from device code, with the compiler nvcc compiling the device code into PTX code itself

and handing off the host code to the system’s C compiler (usually gcc or MSVC). During runtime PTX

code is Just In Time (JIT) compiled to machine code and cached for future use.

Tip

clang can also be used to compile CUDA code [38], but it uses what is known as merged parsing,

the clang documentation claims that “[…] clang’s approach allows it to be highly robust to C++
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edge cases, as it doesn’t need to decide at an early stage which declarations to keep and which to

throw away […]” [39].
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4 Parallelization of SVM

The use of parallelization techniques for speeding up SVM has been the topic of a lot of many research

papers. This is because training SVM classifiers is a very performance and memory intensive task that

has lots of potential to make use of parallelization. A lot of the research is focused on GPGPU solutions,

this is due to the high floating point performance of GPUs and their price to performance ratio compared

to other techniques that require entire clusters of hardware to work. This section will cover the use of

both traditional parallelization techniques as well as CUDA based GPGPU techniques and the algorithms

that have been developed using them.

4.1 Parallelization Techniques

There many parallelization techniques that show up in the available body of research. One of them being

the parallelization of the SVM algorithm itself. Another one is the division of big training sets into

smaller parts and then training SVMs on those in parallel with the goal of having a smaller working set

of the dataset in memory. Another technique employed has been parallel grid search, where multiple

version of the same model are trained side by side, with different hyperparametes, in order to find the

optimal hyperparametes for a given dataset.

4.2 Parallel SVM Algorithms:

4.3 P-SMO

Parallel Sequential Minimization Optimization or P-SMO, is an improvement of the SMO algorithm

described in section 2.5. It attempts to break the dataset into 𝑁 parts and then assign each part to one of

𝑁 processors in an effort to minimize training and prediction times.
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The main idea of P-SMO, breaking the dataset into many smaller parts, is based on separating the dataset

into part depending on each sample’s Lagrangian multiplier and the sign of it’s class. More specifically

they define for each processor 𝑘:

𝐼𝑘
0 = {𝑖 ∶ 𝑦𝑖 = 1, 0 < 𝑎𝑖 < 𝐶} ∪ {𝑖 ∶ 𝑦𝑖 = −1, 0 < 𝑎𝑖 < 𝐶} (4.1)

𝐼𝑘
1 = {𝑖 ∶ 𝑦𝑖 = 1, 𝑎𝑖 = 0} (4.2)

𝐼𝑘
2 = {𝑖 ∶ 𝑦𝑖 = −1, 𝑎𝑖 = 𝐶} (4.3)

𝐼𝑘
3 = {𝑖 ∶ 𝑦𝑖 = 1, 𝑎𝑖 = 𝐶} (4.4)

𝐼𝑘
4 = {𝑖 ∶ 𝑦𝑖 = −1, 𝑎𝑖 = 0} (4.5)

Where 𝐶 is the hyperparameter representing the cost of misclassification.

With 𝐼𝑘 for all processors, signifying the all indexes of the dataset the processor 𝑘 has been assigned.

They define then define two bias terms 𝑏𝑙𝑜𝑤 and 𝑏𝑢𝑝 instead of just one:

𝑏𝑘
𝑢𝑝 = min{𝐸𝑖 ∶ 𝑖 ∈ 𝐼0 ∪ 𝐼1 ∪ 𝐼2}

𝑏𝑘
𝑙𝑜𝑤 = max{𝐸𝑖 ∶ 𝑖 ∈ 𝐼0 ∪ 𝐼3 ∪ 𝐼4}

where 𝐸𝑖 is the prediction error on sample 𝑖

(4.6)

And their associated indices as:

𝐼𝑘
𝑢𝑝 = argmin𝐸𝑖

𝐼𝑘
𝑙𝑜𝑤 = argmax𝐸𝑖

(4.7)

Then they match each index, 𝑢𝑝 and 𝑙𝑜𝑤, to one of the two Lagrangian multipliers 𝑎1 and 𝑎2 as defined

in the SMO algorithm in section 2.5, without loss of generality assume that 𝑎1 = 𝑎𝑘
𝑢𝑝 and 𝑎2 = 𝑎𝑘

𝑙𝑜𝑤:

Note

They define the prediction error as 𝐸𝑘
𝑖 = ∑𝑙

𝑗=1 𝑎𝑗𝑦𝑗𝐾(𝑥𝑗, 𝑥𝑖) − 𝑦𝑖, as expected.

For each processor 𝑘:
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𝑎𝑛𝑒𝑤
𝐼𝑙𝑜𝑤

=𝑎𝑜
𝐼𝑙𝑜𝑤

𝑙𝑑 −
𝑦2(𝐸𝑜𝑙𝑑

𝐼𝑙𝑜𝑤
− 𝐸𝑜𝑙𝑑

𝑙𝑜𝑤)
𝜂 (4.8)

𝑎𝑛𝑒𝑤
𝐼𝑢𝑝

=𝑎𝑜𝑙𝑑
𝐼𝑢𝑝

+ (𝑦𝑙𝑜𝑤𝑦𝑢𝑝)(𝑎𝑜𝑙𝑑
𝐼𝑙𝑜𝑤

− 𝑎𝑛
𝐼𝑙𝑜𝑤

𝑒𝑤) (4.9)

Where 𝜂 = 2𝐾(𝑥1, 𝑥2) − 𝐾(𝑥1, 𝑥1) − 𝐾(𝑥2, 𝑥2) and 𝐾(…) is the kernel function. Also, again as
in SMO, both 𝑎𝑙𝑜𝑤 and 𝑎𝑢𝑝 are clipped to (0, 𝐶).

For the stopping criteria they define they the duality gap as the distance between the primal and the dual

objective function and the dual value (which is updated at each step) as:

dual𝑛𝑒𝑤 = dual𝑜𝑙𝑑 −
𝑎𝑛𝑒𝑤

𝐼𝑢𝑝
− 𝑎𝑜𝑙𝑑

𝐼𝑢𝑝

𝑦𝑖
(𝐸𝑜𝑙𝑑

𝐼𝑢𝑝
− 𝐸𝑜𝑙𝑑

𝐼𝑙𝑜𝑤
) + 1/2𝜂(

𝑎𝑛𝑒𝑤
𝐼𝑢𝑝

− 𝑎𝑜𝑙𝑑
𝐼𝑢𝑝

𝑦𝑖
)2 (4.10)

duality gap𝑘 =
𝑙

∑
𝑖=0

𝑎𝑖𝑦𝑖𝐸𝑖 +
𝑙

∑
𝑖=0

𝜖𝑖 (4.11)

Where each processor 𝑝 calculates it’s own duality gap and the final value is given by summing all the

values from each processor:

duality gap
v

∑
𝑝=1

duality gap𝑘 (4.12)

Where 𝑣 is the total number of cpus.

The stop criteria is hit when the duality gap is smaller or equal to the absolute value of the dual value

times a constant 𝜏 = 10−6.

duality gap ≤ 𝜏|𝑑𝑢𝑎𝑙| (4.13)

The pseudocode for the algorithm is in Listing 4.1:

4.3.1 Results

The implementation of P-SMO was done using the MPI (Message Passing Interface) library, a paral-

lel/distributed computing library available for C/C++ and Fortran. Testing was done on an IBM p690

Regata SuperComputer with a total of 7 nodes, each with 32 Power_PC4 1.3Ghz cores. Experiments
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Listing 4.1 P-SMO Pseudocode

for all p procesors
init a[i] = 0
init Error[i] = - y[i]
init gap = 0

done

while gap < tau * |dual| each processor
optimize a[I_up], a[I_low]
update E_i for all indices assigned to processor
calculate b_up, b_low, I_up, I_low and gap of each processor
reduce and broadcast b_up, b_low, I_up, I_low and gap

end

presented by Cao, Keerthi, Ong, et al. [8] in their paper show a sizable speedup when compared to both

their own sequential SMO [7] implementation and state of the art LIBSVM [40] while maintaining high

prediction accuracy.

4.4 Parallel-Parallel SMO

Parallel-Parallel SMO or P2SMO is a P-SMO based GPU accelerated multiclass SVM solver. It takes

advantage of the grid structure offered by CUDA to train 𝑁 binary SVM classifiers, with 𝑃 subsets

of the dataset, in parallel by using 𝑃𝑥𝑁 blocks of threads. By training 𝑁 binary classifiers they can

implement the OVA multiclass classification strategy.

Herrero-Lopez, Williams, and Sanchez [41] show further speedup can be achieved by taking advantage

of the unique implications of the parallel execution. Firstly they employ cross-task caching of kernel

evaluations. More specifically kernel evaluations are shared across the𝑁 different classifiers for samples

that reside in the subset of the dataset split into 𝑃 parts. Secondly to minimize the unnecessary launch

of grids with many idle rows of blocks, due to differing convergence rates of the binary classifiers, they

reduce the number of rows of each grid launched, dynamically, as classifiers reach convergence. Lastly,

inference is also done in parallel by reframing the prediction function as a matrix multiplication between

a matrix 𝑋, that contains the training data, and a vector 𝑧 that contains the sample to be classified. The

matrix multiplication was done using a standard CUBLAS function.
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4.4.1 Results

Two systems were used to obtain performance metrics, one equipped with a GeForce 8800 GT and one

equipped with a Tesla C1060. A speedup on the order of 3-112 times was achieved for inference and a

speedup of 3-57 times was achieved for training all while maintaining high prediction accuracy.

4.5 GPUSVM

Graphics Processing Unit Support Vector Machine (GPUSVM) is a CUDA based SVM package includ-

ing a training tool, a cross validation tool and a prediction tool. In this paper “GPUSVM” is going to be

used to refer to the underlying algorithm of the package. It is based on P-SMO, seen in section 4.3, but

adapted to run in a heterogeneous environment making use of both a GPU and CPU.

The algorithm is modified so that kernel evaluations, the computing of 𝑏𝑘
𝑙𝑜𝑤 and 𝑏𝑘

𝑢𝑝 and the optimization

of the Lagrange multipliers 𝑎𝐼𝑙𝑜𝑤
and 𝑎𝐼𝑢𝑝

are all done on the GPU. In each iteration all the resulting

𝑏𝑘
𝑙𝑜𝑤, 𝑏𝑘

𝑢𝑝 are moved to the host and reduced to the final 𝑏𝑙𝑜𝑤 and 𝑏𝑢𝑝 which are then used in the next

iteration. The outer loop of the algorithm is run on the host, with only the inner loop running on the GPU

—this is also how 𝑏𝑙𝑜𝑤 and 𝑏𝑢𝑝 are supplied to the GPU, by argument, to the CUDA kernel of the inner

loop. In Listing 4.2 we see the pseudocode for GPUSVM.

Listing 4.2 GPUSVM Pseudocode

(device) init a[i] = 0
(device) init Error[i] = - y[i]
(device) init gap = 0

(host) while gap < tau * |dual|
(device) compute K(I_lo,I_up), K(I_up,I,up), K(I_low,I_low)
(device) optimize a[I_up], a[I_low]
(device) compute b_up^p, b_low^p, I_up^p, I_low^p
(host) compute b_up, b_low, I_up, I_low

end

4.5.1 Results

Being a comprehensive package, it makes training SVM models very easy for end users through the

use of the supplied GUI. Testing was done by Li, Salman, Test, et al. [42] on a system with two Intel

Xeon X680 3.3GHz 6 core CPUs, 96GBs of DDR3 1333MHz ECC RAM, six Tesla C2050s with 3GBs

GDDR5 of VRAM and two Tesla C2070s with 6GBs GDDR5 of VRAM. As far as training and inference
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performance, they demonstrated a quite notable speedup compared to state of the art CPU based SVM

solvers such as LIBSVM [40] while maintaining high prediction accuracy.

4.6 PCV

Continued research on GPUSVM lead to the creation of the Parallel Cross-Validation algorithm (PCV),

a parallel SVM solver that implements efficient multitask cross-validation. Cross-validation a technique

used to find the optimal hyperparameters, such as the misclassification cost 𝐶 or the degree of a poly-

nomial kernel, to be used with a specific dataset. The idea behind the technique, dubbed 𝑛-fold cross-
validation, is that to find the optimal hyperparameters for the model, the dataset can be split into 𝑛 parts

with each part being used as the training set and the rest as a testing set. For each fold a different subset

is used as the training set. At the end of the 𝑛 folds, the hyperparameters of the model with the best

accuracy on the testing sets are selected. PCV runs each task with different hyperparameters in parallel

so that the kernel computations as well as the data used in each fold can be shared between tasks. Kernel

computations are stored in a cache that is several times smaller than would be needed to store all needed

kernel computations, as such a strategy of evicting the least recently used computation is used by way of

a Least Recently Used (LRU) list.

4.6.1 Results

Experiments were done on the same system as mentioned in subsection 4.5.1. A massive decrease in

the total number of kernel computations was observed when compared to the previous GPUSVM while

maintaining the same prediction accuracy. This resulted in an even better speedup than before when

compared to LIBSVM, again while preserving a high prediction accuracy.

4.7 SVM-SMO-SDG

SVM-SMO-SDG is a hybrid of P-SMO and Stochastic Gradient Descend (SDG) used to implement an

efficient data parallel SVM solver for use in a heterogeneous computing environment. The advantage

of using the SDG algorithm is by speeding up the optimization of the Lagrangian Multipliers 𝑎1, 𝑎2 by

quickly computing a new weight vector with Equation 4.14 and subsequently obtaining the value for 𝑏
using Equation 4.15 and the prediction error for the samples 𝑥𝑖 and 𝑥𝑗
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𝑤 ← 𝑤 − 𝛾𝑡

⎧{
⎨{⎩

𝜆𝑤, if 𝑦𝑡𝑤𝑇 𝜙(𝑥𝑡) > 1

𝜆𝑤 − 𝑦𝑡𝜙(𝑥𝑡), otherwise
(4.14)

𝑏 = 𝑦 − 𝑤, 𝑥 (4.15)

4.7.1 Results

Experiments were carried out on a system equipped with a dual-core Intel Xeon CPU @ 2.20 GHz with

12GBs of RAM and an NVIDIA Tesla V100 SXM2 with 16GBs of VRAM. They concluded that the use

of SVM-SMO-SDG resulted in further speedups and a significant decrease in memory usage, all while

maintaining prediction accuracy.

Note

SVM-SMO-SDG also maintained a comparable number of support vectors produced to SMO, as

opposed to PCV that produced significantly more.

4.8 C-SVM

Cascade Support Vector Machines of C-SVMs, first developed by Graf, Cosatto, Bottou, et al. [43],

employ the second kind of parallelization mentioned in the intro of this chapter, that is, they partition the

dataset into subsets and using layers of SVMs, they extract the support vectors that get passed onto the

next layer. Essentially each layer of the network acts like a filter that separates important support vectors

from useless data points with only the most important support vectors remaining at the end. A formal

proof of convergence exists on the original paper introducing C-SVMs [43]. Intuitively, data points of

a subset that exist in the margin between two classes, are likely to also exist close to the margin of the

entire dataset. Also the converse must also hold true, with non-support vectors found in a subset of the

dataset also not being support vectors of the entire dataset.
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Figure 4.8.1: Architecture of a binary Cascade SVM [43]

4.8.1 Results

Experiments where performed on a system with a single processor as well as on a cluster of 16 machines,

each equipped with a dual-core AMD 1800 and 2GBs of RAM. Kernel evaluations saw a significant

decrease of asmuch as 30%. A speedup of five to up to ten timeswas observed aswell as improvements in

storage requirements. The accuracy of the resulting models was equivalent or better to that of traditional

SVMs, after convergence was achieved, although satisfactory accuracy could be obtained with even a

single pass through the network.

4.9 ECM

Extreme Cascade Machines (ECM)s is an extension of C-SVMs where Dimensionality Reduction (DR)

is employed in order to reduce the computation requirements of the training. The use of DR is aimed at

reducing the number of features used for training to speedup training and potentially improve accuracy.

4.9.1 Results

Experiments were performed using both Principal Component Analysis (PCA), ISOMAP and Locally

Linear Embedding (LLE) for DR. PCA-SVM showed the greatest speedup compared to C-SVM, as well

as higher accuracy, even succeeding in training where C-SVM did not successfully complete.
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5 Implementation

This section will cover two implementations, the serial SMO SVM solver meant to server as a baseline

and a parallel GPUSVM-based SVM solver. The implementation was written in C++17 and CUDA

121.

5.1 CLI Interface

The usage of both implementations is done through a Command Line Interface (CLI). The resulting

binary can be run as is, to run with the default settings, or it can accept various flags and options.

Note

Parsing of the cli arguments was done with the use of the header-only argparse library [44].

It accepts two positional arguments: DATASET, which is the name of the dataset to use, and ALGO which

indicates whether to run the CPU (Central Processing Unit) algorithm (SMO) or the GPU algorithm

(GPUSVM). It accepts three optional arguments, --threads <integer>, which controls the number

of CUDA threads to be used for the GPU algorithm, --blocks <integer>, which controls the number

of CUDA blocks to be used, and lastly --test which runs a test of the model on the training data, to

obtain a prediction accuracy. The usage of the binary, accessible through the flag --help, follows in

Listing 5.1.

1exact cuda version: Cuda compilation tools, release 12.3, V12.3.107 Build cuda_12.3.r12.3/compiler.33567101_0
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Listing 5.1 Usage of the cli interface

Usage: svm [--help] [--version] [--blocks VAR]
[--threads VAR] [--size VAR] [--test] DATASET ALGO

Positional arguments:
DATASET the dataset to use [nargs=0..1] [default: "linear"]
ALGO algorithm to use [nargs=0..1] [default: "cpu"]

Optional arguments:
-h, --help shows help message and exits
-v, --version prints version information and exits
-b, --blocks number of blocks for CUDA [nargs=0..1] [default: 16]
--threads number of threads for CUDA [nargs=0..1] [default: 128]
--size size of the linear DATASET [nargs=0..1] [default: 1000]
--test test the model after training

5.2 Serial SMO

The serial implementation is meant to serve as a baseline for benchmarking so it’s a faithful implementa-

tion of SMO [7]. In Listing 7.8 we see the outer loop of the SMO algorithm, the outer loop keeps running

until we have examined all examples and changed no multipliers thus made no further progress. In the

case where no progress has been made when checking non-bound multipliers, the entire set of multipliers

is checked before giving up. An iteration limit has also been used to stop training if it has been stuck

slowly optimizing a few multipliers. The inner loop in Listing 7.9 implements the second order choice

heuristics The takeStep() function in Listing 7.10 implements the optimization step of SMO. In the

case of a negative 𝜂, the chosen multiplier is skipped instead of evaluating the objective function at 𝐿
and 𝐻 because in experiments it resulted in reaching the iteration limit due to the algorithm being stuck

when a negative 𝜂 was common.

5.3 Parallel GPUSVM

The parallel implementation is heavily based on GPUSVM [42] and P-SMO [8]. The main difference

when compared to GPUSVM is the use of cooperative kernels and grid synchronization in order to elim-

inate the need to move data from the host to the device and back at each iteration. Instead a grid wide

reduction is implemented to obtain 𝑏𝑙𝑜𝑤 and 𝑏𝑢𝑝, seen in Listing 7.11. The reduction implements the

argmin and argmax operation at the same time, returning two results. In the first stage each CUDA thread

finds a local max and min, as well as their indices. Next a block reduction is performed to obtain block

local results which are then written to global device memory by each thread with threadIdx.x == 0.

In the final stage a grid synchronization is performed and then the first block, the one with blockIdx.x
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== 0, performs a block reduction of the previously mentioned block local results and the results are

written to global memory. Afterwards a grid synchronization is again performed and all threads read the

results into their local memory.

Warning

Attempting to run with too many threads, will cause the occupancy routine to return 0, so running

will be canceled with an exit status of 1, and an appropriate error message.

Because of the use of cooperative kernels, the optimal number of blocks to use can actually be very easily

determined, dynamically. In Listing 5.2 we see the code used to achieve the optimal SM occupancy, the

code is also available on the official CUDA documentation [37]. This is done by querying the platform

for the maximum number of active blocks per SM that can be used with a specific kernel and a specific

number of threads.

Listing 5.2 Calculation of optimal number of blocks

/// This will launch a grid that can maximally fill the GPU, on the default stream with kernel arguments
int numBlocksPerSm = 0;
// Number of threads my_kernel will be launched with
cudaGetDeviceProperties(&deviceProp, dev);
cudaOccupancyMaxActiveBlocksPerMultiprocessor(&numBlocksPerSm, train_CUDA_model, THREADS, 0);
dim3 dimBlock(THREADS, 1, 1);
dim3 dimGrid(deviceProp.multiProcessorCount * numBlocksPerSm, 1, 1);

5.4 Vector Library

In order to better abstract the algorithms as well as to provide code deduplication and promote code reuse

between the two implementations, a thin wrapper library over raw C arrays was developed. The library

provides generic statically sized vector andmatrix types with device and host variants for easy use in both

normal C++ code, and CUDA code. Each type resides in their own header files, but the matrix header

depends on the vector header. To facilitate further abstraction over raw arrays and avoid error prone

manual data moves between host and device, constructors have been implemented that convert from

host vectors to CUDA vectors and vice-versa. A useful functional-style mutate() method is provided

for the vector type, one which accepts a lambda and applies it to each element of the vector, this enabled

an easy and less error-prone way to reason about the data contained vectors. The source code for the

vector and matrix types is provided in the appendix in Listing 7.1 and Listing 7.5.
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6 Experimental Results

This section will go over the experiments and the results obtained as well as the datasets used to perform

the experiments.

6.1 Hardware

Experiments were done on 2 systems, a personal workstation with a WSL (Windows Subsystem for

Linux) based VM on a Windows 11 host, referred to as “WSL” from this point on, and a dedicated

headless GNU/Linux system provided by the university, referred to as “Headless” from this point on.

The hardware specifications for the systems follow in Table 6.1 and Table 6.2.

Table 6.1: WSL System

Component Description

CPU 6-core AMD Ryzen 5 3600 @ 3.60GHz

RAM 24 GB (12GiB allocated to VM)

GPU Nvidia GeForce 1060

VRAM 6GB

Table 6.2: Headless System

Component Description

CPU 8-core AMD Ryzen 7 3700X @ 3.60GHz

RAM 66 GB

GPU Nvidia TITAN RTX

VRAM 24GB
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6.2 Datasets

6.2.1 Linear

A synthetic, linearly separable dataset of various sizes, from one thousand up to ten million, was gener-

ated using the python script in Listing 7.16. In all experiments the accuracy rate stayed above 98%, so

no interesting comparisons are there to be made regarding accuracy. This dataset will be referred to as

the “linear N”,dataset past this point where 𝑁 is the number of samples .

6.2.2 Iris

The iris dataset consists of 150 samples of 4 features of 3 types of iris plants, Iris Setosa, Iris Versicolor

and Iris Virginica. The features are describing the sepal length, sepal width, petal length and petal width.

Each class is represented by 50 samples. One of the classes is linearly separable in respect to the other two,

but the other two are not linearly separable in respect to each other [45]. Due to the separability discussed

above, the accuracy of our classifier was low, as to be expected since it’s only a linear classifier.

6.3 Baseline SMO vs GPUSVM

All sizes of the linear dataset were used to compare the sequential and parallel implementations. In

Figure 6.3.1 we can clearly see that the parallel implementation is several orders of magnitude faster than

the sequential implementation, as long as the dataset is big enough. For small datasets the overhead of the

parallel implementation should be big enough that the sequential implementation is expected completes

training faster. It’s important to note that results using the sequential implementation and a dataset size

of 100000 (hundred thousand) and more do not exist, as the runtime to was prohibitively large, as shown

by the regression represented by the dotted line. The data used can be seen in Table 7.1.

6.4 Varying Number of Threads

Experiments were done using a varying numbers of threads on the linear dataset with 10 million samples.

Recall that due to the use of cooperative kernels, the optimal number of blocks depends on the number of

threads and the GPU installed in the system. Given that number of threads must be a power of two and

such that blockDim.x >= gridDim.x, or more clearly such that there are more threads per block than

blocks, in order for the parallel grid reduction to function correctly, the number of threads experimented
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Figure 6.3.1: Training time of serial SMO and parallel GPUSVM

with were picked such that the above hold true. In Figure 6.4.1, we can see that the number of threads

can have a significant effect on the training time, with one experiment resulting in a 20% slowdown

compared to the rest. The data used can be seen in Table 7.2.

6.5 Small Datasets

For small datasets, as seen before, we would expect the overhead of GPUSVM to actually introduce a

significant slowdown when compared to Sequential SVM. But, as it turns out this is not always true. In

Figure 6.5.1 we see that if the GPU is powerful enough, the parallel implementation can actually compete,

even for small datasets, as show by the data for the Linear 1k dataset on the Headless system equipped

with the Nvidia TITAN RTX. The data used can be seen in Table 7.3.
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7 Conclusions and Future work

As seen from our experimental results the implementation of an efficient parallel classifier using CUDA

can result in significant training time decrease when compared to sequential implementations. Our imple-

mentation was successful in leveraging the compute of the GPU of the systems we had available, but the

implementation did not fully take advantage of the heterogeneous computing environment, that is to say,

the CPU remained largely unused while the GPU did work. Furthermore implementation of different

kernels other than the linear, dot product, kernel was unsuccessful. We also showed that the hardware

used has a significant effect on the training time.

Workwas attempted in order to consider the performance impact of different floating point precisions, but

changing the floating point precision from double to singlewas harder than expected, with half precision

requiring major rework of the code base.

Future work should consider the performance impact that floating point precision, be it single, double,

half or even quarter could have. It could lead to a significant speedup when training but caution should be

exercised that the accuracy of the model is not degraded. Another interesting feature of a parallel SVM

solver would be cooperative kernel evaluation, where threads cooperate to find kernel values, which

could have a significant impact on the training speed of datasets with high dimensionality. Lastly fully

taking advantage of a heterogeneous environment, implementing a hybrid SVM solver that can run on

both the GPU and CPU, should be considered.

With this and the massive body of research already available on the subject of GPGPU in mind, the

benefits of use of GPUs for general purpose computing is evident. Leveraging GPUs for accelerating

the training of SVMs can induce a massive speedup on training time.
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Appendix

Listing 7.1 Generic Vector Implementation

#include <assert.h>
#include <functional>

#include <cooperative_groups.h>

#include "cuda_helpers.h"
#include "types.hpp"

namespace cg = cooperative_groups;

using cg::grid_group;
using cg::this_grid;
using cg::this_thread_block;
using cg::thread_block;

namespace types {

template <typename T>
struct cuda_vector;

template <typename T>
struct base_vector {

idx cols;
T* data;
bool view = false;

__host__ __device__ base_vector() : cols(0), data(nullptr), view(false) {}

__host__ __device__ base_vector(T* start, T* end) : cols(end - start), data(start), view(true) {}

__host__ __device__ base_vector(idx _cols) : cols(_cols), data(nullptr), view(false) {}

__host__ __device__ T& operator[](idx i) {
if (i >= this->cols) {

printf("i:%lu, cols %lu\n", i, this->cols);
}
assert(i < this->cols);
return this->data[i];

}

__host__ __device__ T& operator[](idx i) const {
if (i >= this->cols) {

printf("i:%lu, cols %lu\n", i, this->cols);
}
assert(i < this->cols);
return this->data[i];

}

__host__ __device__ T* begin() { return this->data; }
__host__ __device__ T* end() { return this->data + this->cols - 1; }

void set(T value) {
for (idx i = 0; i < this->cols; i++) {

this->data[i] = value;
}

}

__host__ void mutate(std::function<T(T)> func) {
for (idx i = 0; i < this->cols; i++) {

this->data[i] = func(this->data[i]);
}

}
__host__ __device__ void print(const char* msg) const;

};
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Table 7.1: Raw Data collected for “Training time of serial SMO and parallel GPUSVM”

Training Time Number of Samples System Algorithm

0.164054 1000 WSL SMO

0.138601 1000 WSL SMO

0.150266 1000 WSL SMO

0.158603 1000 WSL SMO

0.165292 1000 WSL SMO

0.181241 1000 WSL SMO

0.168587 1000 WSL SMO

0.176524 1000 WSL SMO

0.138604 1000 WSL SMO

0.165835 1000 WSL SMO

13.737926 10000 WSL SMO

13.410943 10000 WSL SMO

12.427074 10000 WSL SMO

12.833460 10000 WSL SMO

12.589262 10000 WSL SMO

12.775803 10000 WSL SMO

12.498546 10000 WSL SMO

14.093719 10000 WSL SMO

13.116480 10000 WSL SMO

12.336858 10000 WSL SMO

0.219552 1000 WSL GPUSVM

0.173504 1000 WSL GPUSVM

0.170560 1000 WSL GPUSVM

0.179104 1000 WSL GPUSVM

0.170432 1000 WSL GPUSVM

0.171872 1000 WSL GPUSVM

0.195488 1000 WSL GPUSVM

0.176640 1000 WSL GPUSVM

0.166944 1000 WSL GPUSVM

0.169760 1000 WSL GPUSVM

0.191296 10000 WSL GPUSVM
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Table 7.1: Raw Data collected for “Training time of serial SMO and parallel GPUSVM”

Training Time Number of Samples System Algorithm

0.192096 10000 WSL GPUSVM

0.195968 10000 WSL GPUSVM

0.263200 10000 WSL GPUSVM

0.189952 10000 WSL GPUSVM

0.189664 10000 WSL GPUSVM

0.194688 10000 WSL GPUSVM

0.211712 10000 WSL GPUSVM

0.191200 10000 WSL GPUSVM

0.191552 10000 WSL GPUSVM

0.537472 100000 WSL GPUSVM

0.515712 100000 WSL GPUSVM

0.513824 100000 WSL GPUSVM

0.569440 100000 WSL GPUSVM

0.497536 100000 WSL GPUSVM

0.502880 100000 WSL GPUSVM

0.688192 100000 WSL GPUSVM

0.656480 100000 WSL GPUSVM

0.562336 100000 WSL GPUSVM

0.536864 100000 WSL GPUSVM

3.867552 1000000 WSL GPUSVM

3.945248 1000000 WSL GPUSVM

3.844800 1000000 WSL GPUSVM

4.166016 1000000 WSL GPUSVM

3.940032 1000000 WSL GPUSVM

3.842272 1000000 WSL GPUSVM

3.615136 1000000 WSL GPUSVM

3.979904 1000000 WSL GPUSVM

3.818528 1000000 WSL GPUSVM

3.605600 1000000 WSL GPUSVM

33.265182 10000000 WSL GPUSVM

33.515072 10000000 WSL GPUSVM
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Table 7.1: Raw Data collected for “Training time of serial SMO and parallel GPUSVM”

Training Time Number of Samples System Algorithm

33.998623 10000000 WSL GPUSVM

34.535137 10000000 WSL GPUSVM

33.702946 10000000 WSL GPUSVM

33.647678 10000000 WSL GPUSVM

34.509216 10000000 WSL GPUSVM

33.876766 10000000 WSL GPUSVM

32.181438 10000000 WSL GPUSVM

33.760895 10000000 WSL GPUSVM

0.083588 1000 Headless SMO

0.077406 1000 Headless SMO

0.074697 1000 Headless SMO

0.083789 1000 Headless SMO

0.077528 1000 Headless SMO

0.077948 1000 Headless SMO

0.077895 1000 Headless SMO

0.075502 1000 Headless SMO

0.075551 1000 Headless SMO

0.075394 1000 Headless SMO

7.856127 10000 Headless SMO

7.842031 10000 Headless SMO

7.796364 10000 Headless SMO

7.827624 10000 Headless SMO

7.831180 10000 Headless SMO

7.828252 10000 Headless SMO

7.820098 10000 Headless SMO

7.719477 10000 Headless SMO

7.830530 10000 Headless SMO

7.893655 10000 Headless SMO

796.136292 100000 Headless SMO

796.660461 100000 Headless SMO

0.056288 1000 Headless GPUSVM

66



Table 7.1: Raw Data collected for “Training time of serial SMO and parallel GPUSVM”

Training Time Number of Samples System Algorithm

0.053792 1000 Headless GPUSVM

0.059680 1000 Headless GPUSVM

0.051552 1000 Headless GPUSVM

0.050080 1000 Headless GPUSVM

0.059232 1000 Headless GPUSVM

0.060384 1000 Headless GPUSVM

0.147168 1000 Headless GPUSVM

0.144800 1000 Headless GPUSVM

0.057760 1000 Headless GPUSVM

0.143808 10000 Headless GPUSVM

0.062144 10000 Headless GPUSVM

0.052224 10000 Headless GPUSVM

0.141504 10000 Headless GPUSVM

0.438336 10000 Headless GPUSVM

1.041440 10000 Headless GPUSVM

0.138304 10000 Headless GPUSVM

1.194336 10000 Headless GPUSVM

0.151968 10000 Headless GPUSVM

0.180928 10000 Headless GPUSVM

0.268384 100000 Headless GPUSVM

0.177184 100000 Headless GPUSVM

0.182304 100000 Headless GPUSVM

0.161760 100000 Headless GPUSVM

0.177984 100000 Headless GPUSVM

0.188192 100000 Headless GPUSVM

0.176576 100000 Headless GPUSVM

0.152448 100000 Headless GPUSVM

0.171328 100000 Headless GPUSVM

0.218112 100000 Headless GPUSVM

0.412320 1000000 Headless GPUSVM

0.397440 1000000 Headless GPUSVM
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Table 7.1: Raw Data collected for “Training time of serial SMO and parallel GPUSVM”

Training Time Number of Samples System Algorithm

0.398624 1000000 Headless GPUSVM

0.379776 1000000 Headless GPUSVM

0.379072 1000000 Headless GPUSVM

0.383168 1000000 Headless GPUSVM

0.386496 1000000 Headless GPUSVM

0.507232 1000000 Headless GPUSVM

0.411840 1000000 Headless GPUSVM

0.396704 1000000 Headless GPUSVM

1.907008 10000000 Headless GPUSVM

2.169120 10000000 Headless GPUSVM

1.923072 10000000 Headless GPUSVM

1.879392 10000000 Headless GPUSVM

1.904576 10000000 Headless GPUSVM

1.934944 10000000 Headless GPUSVM

1.852192 10000000 Headless GPUSVM

1.883136 10000000 Headless GPUSVM

1.937824 10000000 Headless GPUSVM

2.091296 10000000 Headless GPUSVM

Table 7.2: Raw Data collected for “Training time for differing thread count”

Threads Blocks Training Time System

256 10 3.686752 WSL

256 10 3.841952 WSL

256 10 3.623552 WSL

256 10 3.654976 WSL

256 10 3.622208 WSL

256 10 3.642016 WSL

256 10 3.919136 WSL

256 10 3.599264 WSL

256 10 3.640416 WSL
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Table 7.2: Raw Data collected for “Training time for differing thread count”

Threads Blocks Training Time System

256 10 3.669472 WSL

128 30 2.922784 WSL

128 30 2.635360 WSL

128 30 2.630272 WSL

128 30 2.605664 WSL

128 30 2.609600 WSL

128 30 2.896512 WSL

128 30 2.691360 WSL

128 30 2.624992 WSL

128 30 2.621408 WSL

128 30 2.604608 WSL

64 60 2.579872 WSL

64 60 2.713184 WSL

64 60 2.898784 WSL

64 60 2.597440 WSL

64 60 2.645600 WSL

64 60 2.640224 WSL

64 60 2.646464 WSL

64 60 2.629792 WSL

64 60 2.647680 WSL

64 60 2.627168 WSL

512 72 0.412800 Headless

512 72 0.367968 Headless

512 72 0.363904 Headless

512 72 0.455648 Headless

512 72 0.391936 Headless

512 72 0.437792 Headless

512 72 0.382048 Headless

512 72 0.385728 Headless

512 72 0.397184 Headless

512 72 0.413632 Headless
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Table 7.2: Raw Data collected for “Training time for differing thread count”

Threads Blocks Training Time System

256 144 0.374336 Headless

256 144 0.418240 Headless

256 144 0.401152 Headless

256 144 0.392288 Headless

256 144 0.370464 Headless

256 144 0.369568 Headless

256 144 0.371584 Headless

256 144 0.459456 Headless

256 144 0.375712 Headless

256 144 0.420864 Headless

Table 7.3: Raw Data collected for “Training time for small datasets by algorithm”

Algorithm Dataset Training Time System

SMO Iris 0.008840 WSL

SMO Iris 0.009079 WSL

SMO Iris 0.007134 WSL

SMO Iris 0.007323 WSL

SMO Iris 0.010631 WSL

SMO Iris 0.009631 WSL

SMO Iris 0.010637 WSL

SMO Iris 0.008678 WSL

SMO Iris 0.007629 WSL

SMO Iris 0.008842 WSL

SMO Linear 1k 0.119144 WSL

SMO Linear 1k 0.133577 WSL

SMO Linear 1k 0.154470 WSL

SMO Linear 1k 0.128313 WSL

SMO Linear 1k 0.137159 WSL

SMO Linear 1k 0.128119 WSL

SMO Linear 1k 0.115076 WSL
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Table 7.3: Raw Data collected for “Training time for small datasets by algorithm”

Algorithm Dataset Training Time System

SMO Linear 1k 0.145228 WSL

SMO Linear 1k 0.136425 WSL

SMO Linear 1k 0.114279 WSL

GPUSVM Iris 0.643648 WSL

GPUSVM Iris 0.663008 WSL

GPUSVM Iris 1.043776 WSL

GPUSVM Iris 0.747104 WSL

GPUSVM Iris 0.652000 WSL

GPUSVM Iris 0.611552 WSL

GPUSVM Iris 0.626048 WSL

GPUSVM Iris 0.641760 WSL

GPUSVM Iris 0.610112 WSL

GPUSVM Iris 0.630272 WSL

GPUSVM Linear 1k 0.200192 WSL

GPUSVM Linear 1k 0.190912 WSL

GPUSVM Linear 1k 0.170048 WSL

GPUSVM Linear 1k 0.171424 WSL

GPUSVM Linear 1k 0.169888 WSL

GPUSVM Linear 1k 0.171296 WSL

GPUSVM Linear 1k 0.167328 WSL

GPUSVM Linear 1k 0.169888 WSL

GPUSVM Linear 1k 0.183968 WSL

GPUSVM Linear 1k 0.327616 WSL

SMO Iris 0.008954 Headless

SMO Iris 0.009010 Headless

SMO Iris 0.009594 Headless

SMO Iris 0.010642 Headless

SMO Iris 0.005115 Headless

SMO Iris 0.010198 Headless

SMO Iris 0.009275 Headless

SMO Iris 0.009795 Headless
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Table 7.3: Raw Data collected for “Training time for small datasets by algorithm”

Algorithm Dataset Training Time System

SMO Iris 0.006847 Headless

SMO Iris 0.005070 Headless

SMO Linear 1k 0.076970 Headless

SMO Linear 1k 0.075494 Headless

SMO Linear 1k 0.077067 Headless

SMO Linear 1k 0.074679 Headless

SMO Linear 1k 0.079677 Headless

SMO Linear 1k 0.080738 Headless

SMO Linear 1k 0.076932 Headless

SMO Linear 1k 0.076451 Headless

SMO Linear 1k 0.072776 Headless

SMO Linear 1k 0.077876 Headless

GPUSVM Iris 0.218816 Headless

GPUSVM Iris 0.171680 Headless

GPUSVM Iris 0.170112 Headless

GPUSVM Iris 0.171040 Headless

GPUSVM Iris 0.186432 Headless

GPUSVM Iris 0.171488 Headless

GPUSVM Iris 0.168128 Headless

GPUSVM Iris 0.175040 Headless

GPUSVM Iris 0.170752 Headless

GPUSVM Iris 0.172032 Headless

GPUSVM Linear 1k 0.048672 Headless

GPUSVM Linear 1k 0.213088 Headless

GPUSVM Linear 1k 0.047904 Headless

GPUSVM Linear 1k 0.046816 Headless

GPUSVM Linear 1k 0.048032 Headless

GPUSVM Linear 1k 0.047680 Headless

GPUSVM Linear 1k 0.049472 Headless

GPUSVM Linear 1k 0.048192 Headless

GPUSVM Linear 1k 0.048736 Headless
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Table 7.3: Raw Data collected for “Training time for small datasets by algorithm”

Algorithm Dataset Training Time System

GPUSVM Linear 1k 0.047968 Headless

7.1 Full Project

The full project, including the source code, dataset helper scripts and the markdown source of this paper

will be available online after publication at this public repository.
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Listing 7.2 Generic Vector Implementation cont.

template <typename T = math_t>
struct vector : public base_vector<T> {

vector() = delete;

// sized constructor
vector(idx _cols)

: base_vector<T>(_cols) {
this->data = new T[this->cols];

}

vector(T* start, T* end)
: base_vector<T>(start, end) {}

// move constructor
vector(vector&& other)

: base_vector<T>(other.cols) { // TODO: check if base_vector() is called automagically
// DONE: it is

*this = std::move(other);
}
// move assignment
vector& operator=(vector&& other) {

// puts("vector<T>::move");
// printf("addr %p\n", this);
assert(other.view == false);
delete[] this->data;
this->data = other.data;
this->cols = other.cols;
other.data = nullptr;
other.cols = 0;
return *this;

}

// copy constructor
vector(vector& other)

: base_vector<T>(other.cols) {
// puts("vector<T>::copy const");
*this = other;

}
// copy assignment
vector& operator=(vector& other) {

// puts("vector<T>::copy assign");
if (this->cols != other.cols || this->data == nullptr) { // don't delete[n] just to new[n]

delete[] this->data;
this->data = new T[other.cols];
// printf("%p\n", &this->data);
this->cols = other.cols;

}
memcpy(this->data, other.data, sizeof(T) * other.cols);
return *this;

}

// copy conversion constructor
vector(cuda_vector<T>& other)

: base_vector<T>(other.cols) {
*this = other;

}

// copy convert
vector<T>& operator=(cuda_vector<T>& other) {

if (this->cols != other.cols || this->data == nullptr) {
delete[] this->data;
this->data = new T[other.cols];
this->cols = other.cols;

}
cudaErr(cudaMemcpy(this->data, other.data, sizeof(T) * other.cols, cudaMemcpyDeviceToHost));
return *this;

}

~vector() {
if (!this->view) {

delete[] this->data;
}

}
};
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Listing 7.3 Generic Vector Implementation cont.

template <typename T>
struct cuda_vector : public base_vector<T> {

// sized constructor
cuda_vector(idx _cols)

: base_vector<T>(_cols) {
cudaErr(cudaMalloc(&this->data, sizeof(T) * this->cols));

}
__host__ __device__ cuda_vector(T* start, T* end)

: base_vector<T>(start, end) {}
// move constructor
cuda_vector(cuda_vector&& other) {

*this = std::move(other);
}
// move assignment
cuda_vector& operator=(cuda_vector&& other) {

assert(other.view == false);
cudaErr(cudaFree(this->data));
this->data = other.data;
this->cols = other.cols;
other.data = nullptr;
other.cols = 0;
return *this;

}

// copy constructor
cuda_vector(cuda_vector& other)

: base_vector<T>(other.cols) {
*this = other;

}
// copy assignment
cuda_vector& operator=(cuda_vector& other) {

// puts("vector<T>::copy");
if (this->cols != other.cols || this->data == nullptr) { // don't delete[n] just to new[n]

cudaErr(cudaFree(this->data));
cudaErr(cudaMalloc(&this->data, sizeof(T) * other.cols));
// printf("%p\n", &this->data);
this->cols = other.cols;

}
cudaErr(cudaMemcpy(this->data, other.data, sizeof(T) * other.cols, cudaMemcpyDeviceToDevice));
return *this;

}

// copy conversion constructor
cuda_vector(vector<T>& other)

: base_vector<T>(other.cols) {
*this = other;

}

// conversion
cuda_vector& operator=(vector<T>& other) {

if (this->cols != other.cols || this->data == nullptr) {
cudaErr(cudaFree(this->data));
cudaErr(cudaMalloc(&this->data, sizeof(T) * other.cols));
this->cols = other.cols;

}
cudaErr(cudaMemcpy(this->data, other.data, sizeof(T) * other.cols, cudaMemcpyHostToDevice));
return *this;

}

__host__ __device__ ~cuda_vector() {
#ifndef __CUDA_ARCH__

if (!this->view) {
cudaErr(cudaFree(this->data));

}
#endif

}
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Listing 7.4 Generic Vector Implementation cont.

template <class F>
__device__ void mutate(F func) {

unsigned int tid = blockDim.x * blockIdx.x + threadIdx.x;
unsigned int stride = blockDim.x * gridDim.x;
grid_group grid = this_grid();

for (idx i = tid; i < this->cols; i += stride) {
this->data[i] = func(i);

}
grid.sync();

}

__device__ void set(T value) {
unsigned int tid = blockDim.x * blockIdx.x + threadIdx.x;
unsigned int stride = blockDim.x * gridDim.x;
grid_group grid = this_grid();

// if (tid == 0)
// printf("[%d]: [%p] = value \n", tid, this);
// printf("[%d]: [%i] = value \n", tid, this->cols);
for (idx i = tid; i < this->cols; i += stride) {

// if (tid == 0)
// printf("[%d]: set [%i] = value \n", tid, i);
this->data[i] = value;

}
grid.sync();

}
};

typedef math_t (*Kernel)(base_vector<math_t>, base_vector<math_t>);

// using Kernel = std::function<number(vector<number>, vector<number>)>;

template <>
inline void base_vector<int>::print(const char* msg) const {

for (idx i = 0; i < this->cols; i++) {
printf("%s[%zu]: %*d\n", msg, i, PRINT_DIGITS, this->data[i]);

}
}

template <>
inline void base_vector<double>::print(const char* msg) const {

for (idx i = 0; i < this->cols; i++) {
printf("%s[%zu]: %*.*f\n", msg, i, PRINT_DIGITS, PRINT_AFTER, this->data[i]);

}
}

template <typename T>
void _printd(base_vector<T>& vec, const char* msg) {

vec.print(msg);
}

} // namespace types
#endif
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Listing 7.5 Generic Matrix Implementation

#ifndef MATRIX_HPP
#define MATRIX_HPP 1

#include "types.hpp"
#include "vector.hpp"

namespace types {

template <typename T>
struct cuda_matrix;

template <typename T>
struct base_matrix {

idx rows;
idx cols;
T* data;
base_matrix()

: rows(0),
cols(0),
data(nullptr) {}

base_matrix(idx _rows, idx _cols)
: rows(_rows),

cols(_cols),
data(nullptr) {}

T* begin() {
return this->data;

}

T* end() {
return this->data + rows * cols;

}

auto shape() {
return std::make_tuple(rows, cols);

}
};
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Listing 7.6 Generic Matrix Implementation cont.

template <typename T>
struct matrix : public base_matrix<T> {

// sized constructor
matrix(idx _rows, idx _cols)

: base_matrix<T>(_rows, _cols) {
this->data = new T[_cols * _rows];

}
// move constructor
matrix(matrix&& other)

: base_matrix<T>(other.rows, other.cols) {
*this = std::move(other);

}

// move assignment
matrix& operator=(matrix&& other) {

delete[] this->data;
this->data = other.data;
this->cols = other.cols;
this->rows = other.rows;
other.data = nullptr;
return *this;

}

matrix(matrix& other)
: base_matrix<T>(other.rows, other.cols) {
*this = other;

}

matrix& operator=(matrix& other) {
if (this->cols * this->rows != other.cols * other.rows) {

delete[] this->data;
this->data = new T[other.cols * other.rows];
this->cols = other.cols;
this->rows = other.cols;

}
memcpy(this->data, other.data, other.rows * other.cols * sizeof(T));
return *this;

}

matrix(cuda_matrix<T>& other)
: base_matrix<T>(other.rows, other.cols) {
*this = other;

}

matrix& operator=(cuda_matrix<T>& other) {
if (this->cols * this->rows != other.cols * other.rows || this->data == nullptr) {

free(this->data);
this->data = new T[other.cols * other.rows];
this->cols = other.cols;
this->rows = other.rows;

}
cudaErr(cudaMemcpy(this->data, other.data, sizeof(T) * other.cols * other.rows, cudaMemcpyDeviceToHost));
return *this;

}

~matrix() {
// printf("~matrix: %p\n", this);
delete[] this->data;

}

// returns a vector which does not deallocate it's data, since it's owned by this matrix
vector<T> operator[](idx index) {

assert(index < this->rows);
return vector<T>(&(this->data[index * this->cols]), &(this->data[index * this->cols + this->cols]));

}
vector<T> operator[](idx index) const {

assert(index < this->rows);
return vector<T>(&(this->data[index * this->cols]), &(this->data[index * this->cols + this->cols]));

}

void print() {
for (idx i = 0; i < this->rows; i++) {

for (idx j = 0; j < this->cols; j++) {
printf("%*.*f ", PRINT_DIGITS, PRINT_AFTER, this->data[i * this->cols + j]);

}
puts("");

}
}

};
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Listing 7.7 Generic Matrix Implementationt cont.

template <typename T>
void inline _printd(matrix<T>& mat, const char* msg) {

puts(msg);
mat.print();

}

template <typename T>
struct cuda_matrix : base_matrix<T> {

// sized constructor
cuda_matrix(idx _rows, idx _cols)

: base_matrix<T>(_rows, _cols) {
cudaErr(cudaMalloc(&this->data, sizeof(T) * _cols * _rows));

}
// move constructor
cuda_matrix(matrix<T>&& other)

: base_matrix<T>(other.rows, other.cols) {
*this = std::move(other);

}

// move assignment
cuda_matrix& operator=(matrix<T>&& other) {

cudaErr(cudaFree(this->data));
this->data = other.data;
this->cols = other.cols;
this->rows = other.rows;
other.data = nullptr;
return *this;

}

cuda_matrix(matrix<T>& other)
: base_matrix<T>(other.rows, other.cols) {
*this = other;

}

cuda_matrix& operator=(matrix<T>& other) {
if (this->cols * this->rows != other.cols * other.rows || this->data == nullptr) {

cudaErr(cudaFree(this->data));
cudaErr(cudaMalloc(&this->data, sizeof(T) * other.cols * other.rows));
this->cols = other.cols;
this->rows = other.rows;

}
cudaErr(cudaMemcpy(this->data, other.data, sizeof(T) * other.cols * other.rows, cudaMemcpyHostToDevice));
return *this;

}

~cuda_matrix() {
// printf("~matrix: %p\n", this);
cudaErr(cudaFree(this->data));

}

// returns a vector which does not deallocate it's data, since it's owned by this cuda_matrix
__device__ cuda_vector<T> operator[](idx index) {

return cuda_vector<T>(&(this->data[index * this->cols]), &(this->data[index * this->cols + this->cols]));
}
__device__ cuda_vector<T> operator[](idx index) const {

return cuda_vector<T>(&(this->data[index * this->cols]), &(this->data[index * this->cols + this->cols]));
}

};

} // namespace types
#endif
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Listing 7.8 SMO Implementation Outer Loop

while (numChanged > 0 || examineAll) {
if (epochs % 100 == 0) {

printf(".\n");
std::flush(std::cout);

}
if (false && epochs && epochs % 1000 == 0) {

math_t avg_error = 0;
for (auto e : error) {

avg_error += e;
}
avg_error = avg_error / static_cast<math_t>(error.cols);

printf("\nContinue training? [Y/n]\n");
printf("Already trained for %d epochs.\n", epochs);
printf("Average error on training set: %f\n", avg_error);
int c = getchar();
if (c == 'n') {

puts("Quit training!");
break;

}
if (c != '\n') {

getchar();
}

}
numChanged = 0;

if (examineAll) {
// puts("examine all");
// loop i_1 over all training examples
for (idx i2 = 0; i2 < x.rows; i2++) {

numChanged += examineExample(i2);
}

} else {
// puts("examine some");
// loop i_1 over examples for which alpha is nor 0 nor Cost
for (idx i2 = 0; i2 < x.rows; i2++) {

if (a[i2] != 0.0 || a[i2] != C) {
numChanged += examineExample(i2);

}
}

}
if (examineAll) {

examineAll = false;
} else if (numChanged == 0) {

puts("None changed, so examine all!");
examineAll = true;

}
epochs++;
if (epochs >= 10000) {

puts("Max iteration limit reached!");
break;

}
}
printf("Done!\nTrained for %d epochs.\n", epochs);
auto end = std::chrono::steady_clock::now();
float elapsed_seconds = std::chrono::duration_cast<std::chrono::duration<float>>(end - start).count();
return elapsed_seconds;
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Listing 7.9 SMO Implementation Inner Loop

int examineExample(idx i2) {
// printf("examine example %zu\n", i2);

// lookup error E2 for i_2 in error cache
math_t E2 = error[i2];

math_t r2 = E2 * y[i2];

// if the error is within tolerance and the a is outside of (0, C)
// don't change anything for this i_2
if ((r2 < -tol && a[i2] < C) || (r2 > tol && a[i2] > 0)) {

// number of non-zero & non-C alphas
int non_zero_non_c = 0;
for (idx i = 0; i < a.cols; i++) {

if (a[i] < types::epsilon || fabs(a[i] - C) < types::epsilon) {
continue;

}
non_zero_non_c++;
if (non_zero_non_c > 1) { // no need to count them all

break;
}

}
if (non_zero_non_c > 1) {

idx i1 = second_choice_heuristic(E2);
if (takeStep(i1, i2) == 1) {

return 1;
}

}

// in the following 2 scopes
// iters makes sure we go over all i_1
// i_1 is the current i_1, starting from a random one, increasing until starting_i_1 - 1
// i_1 wraps around if > a.cols

// loop i_1 over all non-zero non-C a, starting at random point
{

idx iters = 0;
idx i1 = 0;
do {

i1 = static_cast<idx>(rand()) % a.cols;
} while (i1 == i2);

do {
if (fabs(a[i1]) < types::epsilon || fabs(a[i1] - C) < types::epsilon) {

continue;
}
if (takeStep(i1, i2) == 1) {

return 1;
}

} while (i1 = (i1 + 1) % a.cols, iters++, iters < a.cols);
}

{
idx iters = 0;
idx i1 = 0;
do {

i1 = static_cast<idx>(rand()) % a.cols;
} while (i1 == i2);

do {
if (takeStep(i1, i2) == 1) {

return 1;
}

} while (i1 = (i1 + 1) % a.cols, iters++, iters < a.cols);
}

}

return 0;
}
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Listing 7.10 SMO Implementation Step

int takeStep(idx i1, idx i2) {
// getchar();
// printf(" takeStep %zu %zu\n", i1, i2);
math_t sign = y[i1] * y[i2];
math_t L = 0, H = 0;

// find low and high
if (y[i1] != y[i2]) {

L = max(0, a[i2] - a[i1]);
H = min(C, C + a[i2] - a[i1]);

} else {
L = max(0, a[i1] + a[i2] - C);
H = min(C, a[i1] + a[i2]);

}
if (fabs(H - L) < types::epsilon) {

// puts(" Low equals High");
return 0;

}

// second derivative (f'')
math_t eta = 2 * Kernel(x[i1], x[i2]) - Kernel(x[i1], x[i1]) - Kernel(x[i2], x[i2]);

math_t a_1 = 0, a_2 = 0;
if (eta < 0) { // if ("under usual circumstances") eta is negative

// puts(" by error");
// error on training examples i_1 and i_2
math_t E1 = error[i1];
math_t E2 = error[i2];

// new a_2
a_2 = a[i2] - (y[i2] * (E1 - E2)) / eta + types::epsilon;

// clip a_2
if (a_2 > H) {

a_2 = H;
} else if (a_2 < L) {

a_2 = L;
}

} else {
// TODO: eq 12.21 again for = f^{old}(x_i) ...
// puts(" by objective eval");
// puts(" skipping..");
return 0;
auto WL = eval_objective_func_at(i1, i2, L);
auto WH = eval_objective_func_at(i1, i2, H);

if (WL > WH) {
a_2 = WL;

} else {
a_2 = WH;

}
}
a_1 = a[i1] + sign * (a[i2] - a_2);

// if the difference is small, don't bother
if (fabs(a[i1] - a_1) < diff_tol) {

// puts("small diff");
return 0;

}

// puts(" changed\n");

a[i1] = a_1;
a[i2] = a_2;
compute_w();
b = compute_b();

error[i1] = predict_on(i1) - y[i1];
error[i2] = predict_on(i2) - y[i2];

return 1;
}
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Listing 7.11 GPUSVM Grid Reduction

__device__ idx_tuple argMin(size_t shared_halfpoint) {
unsigned int tid = blockDim.x * blockIdx.x + threadIdx.x;
unsigned int stride = blockDim.x * gridDim.x;
thread_block threads = this_thread_block();
grid_group blocks = this_grid();

extern __shared__ char shared_memory[];

idx* sindx = reinterpret_cast<idx*>(shared_memory);
math_t* sdata = reinterpret_cast<math_t*>(shared_memory + (sizeof(idx) * shared_halfpoint));

__shared__ math_t block_max;
__shared__ idx block_max_i;
__shared__ math_t block_min;
__shared__ idx block_min_i;
// init block locals
if (threadIdx.x == 0) {

block_max = -types::MATH_T_MAX;
block_max_i = 0;
block_min = +types::MATH_T_MAX;
block_min_i = 0;

}

math_t cur_max;
math_t cur_min;
idx min_i = tid;
idx max_i = tid;
if (tid < a.cols) {

cur_min = a[tid];
// thread local arg min|max
for (idx i = tid + stride; i < a.cols; i += stride) {

// TODO: Take into account indices up, low and both
auto kind = indices[i];
auto tmp = a[i]; // save to local, so it's accessed only once
if (kind == UP || kind == BOTH) {

if (tmp < cur_min) {
cur_min = tmp;
min_i = i;

}
}
if (kind == LOW || kind == BOTH) {

if (tmp > cur_min) {
cur_max = tmp;
max_i = i;

}
}

}
} else {

cur_max = -types::MATH_T_MAX;
cur_min = +types::MATH_T_MAX;

}

// load into to block shared memory
sdata[threadIdx.x] = cur_min;
sindx[threadIdx.x] = min_i;
sdata[threadIdx.x + blockDim.x] = cur_max;
sindx[threadIdx.x + blockDim.x] = max_i;
threads.sync();

// block reduce into sdata[0] and sindx[0]
for (idx offset = 1; offset < blockDim.x; offset *= 2) {

idx index = 2 * offset * threadIdx.x;

if (index < blockDim.x) {
// min
if (sdata[index + offset] < sdata[index]) {

sdata[index] = sdata[index + offset];
sindx[index] = sindx[index + offset];

}
// max (stored offset by blockDim.x)
if (sdata[blockDim.x + index + offset] > sdata[blockDim.x + index]) {

sdata[blockDim.x + index] = sdata[blockDim.x + index + offset];
sindx[blockDim.x + index] = sindx[blockDim.x + index + offset];

}
}

}
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Listing 7.12 GPUSVM Grid Reduction cont.

threads.sync();
// write block result to device global
if (threadIdx.x == 0) {

ddata[blockIdx.x] = sdata[0];
dindx[blockIdx.x] = sindx[0];
ddata[blockDim.x + blockIdx.x] = sdata[blockDim.x + 0];
dindx[blockDim.x + blockIdx.x] = sindx[blockDim.x + 0];

}

blocks.sync();

// perform reduction of block results,
// like above but for block results :^)
if (blockIdx.x == 0) {

// copy device globals to block shared memory
if (threadIdx.x < gridDim.x) {

sdata[threadIdx.x] = ddata[threadIdx.x];
sindx[threadIdx.x] = dindx[threadIdx.x];
sdata[blockDim.x + threadIdx.x] = ddata[blockDim.x + threadIdx.x];
sindx[blockDim.x + threadIdx.x] = dindx[blockDim.x + threadIdx.x];

}
threads.sync();
for (idx offset = 1; offset < blockDim.x; offset *= 2) {

idx index = 2 * offset * threadIdx.x;

if (index < blockDim.x) {
if (sdata[index + offset] < sdata[index]) {

sdata[index] = sdata[index + offset];
sindx[index] = sindx[index + offset];

}
if (sdata[blockDim.x + index + offset] > sdata[blockDim.x + index]) {

sdata[blockDim.x + index] = sdata[blockDim.x + index + offset];
sindx[blockDim.x + index] = sindx[blockDim.x + index + offset];

}
}

}
threads.sync();

}

// write to global memory
if (blockIdx.x + threadIdx.x == 0) { // will the real tid 0 plz stand up

dindx[0] = sindx[0];
dindx[1] = sindx[blockDim.x + 0];

}

blocks.sync();

return {.a = dindx[0], .b = dindx[1]};
}
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Listing 7.13 GPUSVM training device-side code

__device__ void train_device(size_t shared_memory) {
a.set(0);

unsigned int tid = blockDim.x * blockIdx.x + threadIdx.x;
unsigned int stride = blockDim.x * gridDim.x;
grid_group blocks = this_grid();
thread_block threads = this_thread_block();
// IDEA: block locals ?

// thread locals
math_t K_lo_lo;
math_t K_up_up;
math_t K_lo_up;
math_t eta;
math_t a_lo_new;
math_t a_up_new;
math_t a_lo;
math_t a_up;
idx lo;
idx up;

// initialize indices
for (idx i = tid; i < indices.cols; i += stride) { // :^)

if (0 < a[i] && a[i] < C) {
indices[i] = BOTH;
continue;

}
if ((y[i] == 1 && a[i] == 0) || (y[i] == -1 && a[i] == C)) {

indices[i] = UP;
} else {

indices[i] = LOW;
}
// printf("[%d]: indices[%lu] = %s\n", tid, i, indices[i] == UP ? "UP" : indices[i] == LO ? "LO" : "BOTH");

}

// initialize error
// this->error.mutate([this] __device__(idx _i) -> idx { return -this->y[_i]; });
for (idx i = tid; i < error.cols; i += stride) {

error[i] = -y[i];
}
blocks.sync();

// pick b_up and _lo for the first time:
bool picked_lo = false;
bool picked_up = false;
if (tid == 0) {

for (idx i = 0; i < y.cols; i += 1) {
if (y[i] < 0) {

if (!picked_lo) {
lo = i;
picked_lo = true;
if (picked_up) {

break;
}

}
} else {

if (!picked_up) {
up = i;
picked_up = true;
if (picked_lo) {

break;
}

}
}

}
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Listing 7.14 GPUSVM training device-side code cont.

K_lo_lo = Kernel(x[lo], x[lo]);
K_up_up = Kernel(x[up], x[up]);
K_lo_up = Kernel(x[lo], x[up]);
eta = K_lo_lo + K_up_up - 2 * K_lo_up;
math_t a_new = 2 / eta;
// write to global memory
dev_a_up_new = a_new;
dev_a_lo_new = a_new;
a[lo] = a_new;
a[up] = a_new;
dev_lo = lo;
dev_up = up;

// recalculate indices for lo and up
indices[up] = compute_type_for_index(up);
indices[lo] = compute_type_for_index(lo);

}
blocks.sync();
// read from global
a_lo_new = dev_a_lo_new;
a_up_new = dev_a_up_new;
lo = dev_lo;
up = dev_up;

for (idx i = tid; i < error.cols; i += stride) {
error[i] = error[i] - a_lo_new * Kernel(x[lo], x[i]) + a_up_new * Kernel(x[up], x[i]);

}

blocks.sync();
while (dev_b_lo > dev_b_up + 2 * tol) {

if (tid == 0) {
math_t sign = y[up] * y[lo];

K_lo_lo = Kernel(x[lo], x[lo]);
K_up_up = Kernel(x[up], x[up]);
K_lo_up = Kernel(x[lo], x[up]);

eta = K_lo_lo + K_up_up - 2 * K_lo_up;

// update a_I_up , a_I_lo

a_up = a[up];
a_lo = a[lo];

a_up_new = a_up + (y[up] * (error[lo] - error[up])) / eta + types::epsilon;

// clip new a_up
if (a_up_new > C) {

a_up_new = C;
} else if (a_up_new < 0) {

a_up_new = 0;
}

a_lo_new = a_lo + sign * (a_up - a_up_new);
// write to global
dev_a_up_new = a_up_new;
dev_a_lo_new = a_lo_new;

}
blocks.sync();
a_lo_new = dev_a_lo_new;
a_up_new = dev_a_up_new;
a_lo = dev_a_lo;
a_up = dev_a_up;
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Listing 7.15 GPUSVM training device-side code cont.

// recalculate error
for (idx i = tid; i < error.cols; i += stride) {

error[i] = error[i] + (a_lo_new - a_lo) * y[lo] * Kernel(x[lo], x[i]) +
(a_up_new - a_up) * y[up] * Kernel(x[up], x[i]);

}
blocks.sync();

if (tid == 0) {
// set new alphas
a[lo] = a_lo_new;
a[up] = a_up_new;
// recompute index type for up and low
indices[lo] = compute_type_for_index(lo);
indices[up] = compute_type_for_index(up);

}
blocks.sync();

auto result = argMin(shared_memory);
up = result.a;
lo = result.b;

if (tid == 0) {
dev_b_lo = error[lo];
dev_b_up = error[up];

}
blocks.sync();

}
b = (dev_b_lo + dev_b_up) / 2;

}

Listing 7.16 Linearly separable dataset generation script

#!/usr/bin/env python3
# import libraries
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
import sys

sizes = {
"1k": 1000,
"10k": 10_000,
"100k": 100_000,
"1M": 1_000_000,

}

for name, size in sizes.items():
filename= "linear" + name + ".data"
print(filename)
with open(filename, "w") as sys.stdout:

# generate a 2-class classification problem with 1,000 data points,
# where each data point is a 2-D feature vector
(X, Y) = make_blobs(n_samples=size, n_features=3, centers=2,

cluster_std=1.5, random_state=1)

for x, y in zip(X, Y):
for v in x:

print(str(v) + ";", end='')
print(y)
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