
 

 

 

 

UNIVERSITY OF WEST ATTICA 

& 

UNIVERSITY OF LIMOGES 

 

Master’s Thesis 

 

Forgery detection using machine learning and image 

processing 

 

Student: Alexandros Karystinos 

(aivc21007) 

Supervisor: Anastasios L. Kesidis, Professor 

Athens, 2024 



 

2 

 

Forgery detection using machine learning and image 

procesing 

 

Μέλη εξεταστικής επιτροπής συμπεριλαμβανομένου και του Εισηγητή 

 

Η διπλωματική εργασία εξετάστηκε επιτυχώς από την κάτωθι Εξεταστική Επιτροπή 

 

 

Α/α ΟΝΟΜΑ ΕΠΩΝΥΜΟ ΒΑΘΜΙΔΑ/ΙΔΙΟΤΗΤΑ ΨΗΦΙΑΚΗ ΥΠΟΓΡΑΦΗ 

1 Αναστάσιος Κεσίδης Καθηγητής  

2 Πάρις Μαστοροκώστας Καθηγητής  

3 Παναγιώτα Τσελέντη ΕΔΙΠ  

  



 

3 

 

ΔΗΛΩΣΗ ΣΥΓΓΡΑΦΕΑ ΜΕΤΑΠΤΥΧΙΑΚΗΣ ΕΡΓΑΣΙΑΣ 

 

Ο κάτωθι υπογεγραμμένος Καρυστινός Αλέξανδρος του Νικολάου με αριθμό μητρώου 

aivc21007 φοιτητής του Προγράμματος Μεταπτυχιακών Σπουδών Τεχνητή Νοημοσύνη και 

Οπτική Υπολογιστική του Τμήματος Μηχανικών Πληροφορικής της Σχολής Μηχανικών του 

Πανεπιστημίου Δυτικής Αττικής, δηλώνω ότι:  

«Είμαι συγγραφέας αυτής της μεταπτυχιακής εργασίας και ότι κάθε βοήθεια την οποία είχα για 

την προετοιμασία της, είναι πλήρως αναγνωρισμένη και αναφέρεται στην εργασία. Επίσης, οι 

όποιες πηγές από τις οποίες έκανα χρήση δεδομένων, ιδεών ή λέξεων, είτε ακριβώς είτε 

παραφρασμένες,  αναφέρονται στο σύνολό τους, με πλήρη αναφορά στους συγγραφείς, τον 

εκδοτικό οίκο ή το περιοδικό, συμπεριλαμβανομένων και των πηγών που ενδεχομένως 

χρησιμοποιήθηκαν από το διαδίκτυο. Επίσης, βεβαιώνω ότι αυτή η εργασία έχει συγγραφεί από 

μένα αποκλειστικά και αποτελεί προϊόν πνευματικής ιδιοκτησίας τόσο δικής μου, όσο και του 

Ιδρύματος.  

Παράβαση της ανωτέρω ακαδημαϊκής μου ευθύνης αποτελεί ουσιώδη λόγο για την ανάκληση 

του πτυχίου μου». 

 

Ο Δηλών 

                                                                         



 

4 

 

 

Contents 

       ABSTRACT ........................................................................................................................... 7 

       ACKNOWLEDGMENTS .................................................................................................... 9       

1 INTRODUCTION ................................................................................................................ 9 

2 HANDWRITTEN SIGNATURE VERIFICATION TECHNIQUES ............................ 12 

  2.1 Handwritten signature data preprocessing .................................................... 12 

  2.2 Feature Extraction ............................................................................................ 13 

  2.3 Feature Selection ............................................................................................... 15 

  2.4 Online handwritten signatures ........................................................................ 16 

  2.5 Offline handwritten signature ......................................................................... 17 

  2.6 Differences between online and offline handwritten signature .................... 19 

  2.7 Forgeries ............................................................................................................ 20 

  2.8 Handwritten signature verification ................................................................. 21 

3 MACHINE LEARNING APPROACHES ....................................................................... 23 

  3.1 Machine Learning types ................................................................................... 24 

    3.1.1 Supervised learning .......................................................................................... 24 

    3.1.2 Unsupervised learning ...................................................................................... 25 

    3.1.3 Semi-supervised learning ................................................................................. 25 

    3.1.4 Reinforcement Learning .................................................................................. 26 

  3.2 Machine Learning Algorithms ........................................................................ 26 

    3.2.1 Decision Trees ................................................................................................... 26 

    3.2.2 KNN Algorithm ................................................................................................. 29 

    3.2.3 Support Vector Machines Algorithm (SVM) ................................................. 30 

    3.2.4 Logistic Regression Algorithm ........................................................................ 34 

    3.2.5 Naïve Bayes Algorithm ..................................................................................... 36 

    3.2.6 Ensemble Algorithms ....................................................................................... 38 



 

5 

 

    3.2.7 Neural Networks ............................................................................................... 39 

 

4 METHODOLOGY AND EXPERIMENTS ..................................................................... 41 

  4.1 Motivation.......................................................................................................... 41 

  4.2 Datasets .............................................................................................................. 42 

  4.3 Feature Extraction ............................................................................................ 45 

    4.3.1 Initial features ................................................................................................... 45 

    4.3.2 Additional features ........................................................................................... 46 

    4.3.3 Data preparation ............................................................................................... 50 

  4.4 Experiments ....................................................................................................... 51 

    4.4.1 Experiments for dataset 1  ............................................................................... 52 

    4.4.2 Experiments for dataset 2 ................................................................................ 55 

    4.4.3 Experiments for dataset 3 ................................................................................ 59 

5 CONCLUSIONS ................................................................................................................. 63 

6     REFERENCES .................................................................................................................... 65 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

6 

 

 

 

 

 

 

 



 

7 

 

ABSTRACT 

In an era where digital transactions and document authentication play a central role, the need for 

strong and secure methods to verify handwritten signatures is paramount. This thesis explores the 

intersection of traditional signature analysis and modern machine learning techniques to develop 

a reliable signature verification system. The survey begins with a comprehensive review of 

existing signature verification methods, including both conventional image processing techniques 

and advanced machine learning approaches. Challenges posed by the inherent variability of 

human signatures are identified, including differences in writing style and the presence of noise. 

The proposed solution leverages advanced machine learning algorithms, specifically adapted for 

signature recognition such as SVM, Decision Trees, kNN, and others. As in all cases of machine 

learning, in this one too, we use datasets. The datasets used for training and evaluation include a 

diverse collection of handwritten signatures, capturing variations in styles, angles, and levels of 

complexity. In addition, a key feature of this work is that feature extraction techniques are used 

to transform the raw signature data into meaningful representations for the machine learning 

models.  For this purpose, four different feature sets of increasing complexity are proposed to 

improve the overall system performance. 
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1  INTRODUCTION 

The most widely used and recognized method of authenticating a person is through a signature, 

which makes it a target for sophisticated attacks. Forged signature detection and biometric 

applications rely heavily on signature verification. To identify or verify a person's identity, 

biometrics measure their distinctive physical or behavioral characteristics. Iris, hand shape, face, 

and fingerprints are examples of physical features that make up a biometric property. Iris and 

fingerprints are two of those that don't change over time and have very little variation. However, 

they require specialized equipment that is very expensive to capture the biometric image. 

Behavioral features that make up a biometric feature include voice, typing patterns, gait, and 

signature [1]. Speech and signature technologies are among the most advanced. 

One well-known biometric is the handwritten signature. Handwritten signatures have a significant 

advantage over other authentication technologies because they can only be used when a person is 

conscious and willing to write, unlike fingerprints which can be captured even when a person is 

unconscious. Handwritten Signature Verification (HSV) systems are divided into online and 

offline categories. Offline signature verification requires scanning a document with an existing 

signature to create a digitized image. Electronic signature verification, also known as online 

signature verification, uses specialized hardware such as a pressure-sensitive pen or digital tablet 

to capture both the form and dynamics of the writing [2,3]. We will discuss these types in detail 

in the next chapter. 

To extract dynamic features of a signature in addition to its structure, devices such as the 

previously mentioned pressure-sensitive tablets are used in electronic signature verification. 

Dynamic features, that increase the individuality of the signature and the difficulty of forgery, 

include the number and sequence of strokes, the general rhythm of the signature, the pressure of 

the pen at each point, and others [4]. 

Users first register in an electronic signature verification system as shown in Figure 1 by 

providing sample signatures (reference signatures). This test signature is compared to the 

reference signatures for that person when a user submits a signature (test signature) claiming to 

be that person. The user will be banned if the difference exceeds a predetermined level. During 

verification the test signature is compared to each signature in the reference set, resulting in a 

series of distance values [5]. To determine how much the test signature differs from the reference 
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set, a method must be chosen to combine these distance values into a single number and compare 

to a threshold. The minimum, maximum, or average of all distance values can be used to obtain 

the single dissimilarity value. A signature verification system often chooses one of these and 

ignores the others. The variables False Rejection Rate (FRR) of genuine signatures and False 

Acceptance Rate (FAR) of forged signatures are critical in determining how well a signature 

verification system works. Because of the inverse relationship between these two errors, Equal 

Error Rate (EER) where FAR=FRR is often quoted [6]. 

 

Figure 1: Handwritten signature verification system [48] 

 

In general, the steps for verifying a handwritten signature, such as feature extraction and selection 

of  appropriate features, contribute to the final result, but not by themselves. At this point, machine 

learning plays an important role. Specifically, the machine learning models that a user trains. 

These, combined with the classic handwritten signature verification steps, are the ones that help 

to better understand the problem and its solution. The reason these models are useful is that, 

through machine learning, allows us to draw conclusions from some metrics such as accuracy 

and from graphs that are even more familiar to the user. Machine learning is useful in these types 

of systems in general, and not just for signature verification which is our case. Finally, with the 

results that machine learning models provide, we can also understand where such a system has 

"weaknesses" in order to correct them. 

During the thesis we used both feature extraction and machine learning for forgery detection. 

However, apart from these two techniques, we also used some morphological operations. More 

specifically, regarding the feature extraction, we extracted some specific features that essentially 



 

11 

 

represent each of our images and help us study them better. Regarding the morphological 

operations, we used them for our own convenience of the whole process. Regarding the machine 

learning algorithms we used the following ones: 

 Decision Tree 

 kNN 

 Naïve Bayes 

 Support Vector machine (SVM) 

 Neural Network 

 Ensemble Algorithms 

 Naïve Bayes 

 Logistic Regression 

 

About the structure of this thesis is as follows: Chapter 1, provides a general introduction to 

handwritten signatures, focusing on the problem of forgery and its solution. In Chapter 2, we will 

discuss basic features such as feature extraction, feature selection, and required data 

preprocessing. In Chapter 3, we will discuss machine learning models, including decision trees 

and support vector machines, among others and we will mention their advantages and 

disadvantages. Chapter 4 provides a detailed description of the experimental part, including 

figures and tables of the results. We will also refer to the three specific datasets used in our 

experiments. Finally, in Chapter 5, we will present the conclusions drawn from our experiments 

and discuss the potential applications of this system in the future. 
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2  HANDWRITTEN SIGNATURE VERIFICATION 

TECHNIQUES 

In this chapter we will discuss about the differences between offline handwritten signatures and 

online handwritten signatures in more detail, by going into some details about handwritten 

signature feature extraction, data preprocessing, feature selection, and other characteristics. 

2.1  Handwritten signature data preprocessing 

Preprocessing is an important step in signature verification where the the signature image is 

prepared for further analysis and feature extraction. Some common preprocessing steps for 

signature verification include; [7]:  

 Image capture: The signature image is captured using a scanner or camera. The quality of the 

image significantly affects the accuracy of the verification. 

 Image enhancement: The captured signature image may contain noise or artifacts that may 

affect the resolution of the signature. Image enhancement techniques can be used to improve 

image quality and reduce the effects of these artifacts. Common techniques include image 

smoothing, edge detection, and contrast enhancement. 

 Image normalization: Signature size and orientation can vary from case to case, making it 

difficult to compare signatures. Image normalization techniques can be used to scale and 

rotate the signature image to a standard size and orientation, which can simplify the 

comparison process. 

 Data augmentation: To improve the robustness of the signature verification system, it is often 

useful to augment the training data by generating additional signature variations. This can 

include adding noise, rotating the image or resizing the signature. 

Apart from these steps, there are several others that are important and they are as follows: 

 Noise Removal - Noise is often present in scanned signature images. Applying a denoising 

filter, such as a median filter [8] to the image is a typical solution to this problem. 

Morphological techniques are often used to close small gaps and eliminate small patches of 

related components [8, 9].  
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 Signature Representation - Other representations have been considered besides simply using 

the grayscale image as input to the feature extractors. For example signature skeleton, outline, 

ink distribution, high-pressure-areas and directional boundaries are used [8]. 

 Signature Alignment - Alignment is a standard approach for online signature verification, 

while not often used in offline scenarios. Yilmaz [9] proposes applying rotation, scaling and 

translation to align signatures for training. In their spin normalization approach, Kalera et al. 

[10] propose to exploit the first and second order moments of the signature image. 

In general, the preprocessing steps in signature verification aim to improve the quality and 

consistency of the signature image, making it easier to extract relevant features that can be used 

for comparison and classification. 

2.2  Feature Extraction 

As mentioned earlier, handwritten signature recognition is the process of identifying and 

verifying a person's signature from an image or set of images. One of the critical steps in signature 

recognition is feature extraction, which involves identifying relevant features or patterns that can 

be used to distinguish one signature from another.  

 Here are some common feature extraction techniques for handwritten signature recognition [11], 

[12]: 

 Grid-based features 

 Structural features 

 Texture features 

 Statistical characteristics 

 Fourier transform based features 

 Global features 

 Local features 

 Geometric Features 

Grid-based features include dividing the signature image into smaller cells or blocks (which we 

will also do in our experimental part) and computing statistical metrics such as the mean, standard 

deviation, and entropy of the pixel values in each cell. These features can capture the spatial 

distribution of the signature and its overall shape. The size and shape of the grid can vary 
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depending on the size and complexity of the signature. Grid-based features can be further 

enhanced by using techniques such as Gray Level Co-occurrence Matrix (GLCM) to capture the 

spatial relationship between pixels in the signature image.  

Structural features capture the shape and structure of the signature by analyzing the outline and 

shape of the signature. Examples of structural features include the number of vertices, the 

curvature of the signature and the angle between different parts of the signature. These features 

can be extracted using techniques such as chain code or Freeman code, which represent the 

contour of the signature as a sequence of directions. 

Texture features capture the fine details and patterns in the signature, such as the texture of pen 

strokes or the presence of small dots or lines. Texture features can be extracted using techniques 

such as Gabor filters or local binary patterns (LBP). Gabor filters are spatial frequency filters that 

can capture signature texture at different scales and orientations. LBP is a binary pattern that 

captures the local texture of the signature by comparing the intensity values of a pixel with its 

neighbors. 

Statistical features capture the statistical distribution of pixel values in the signature image, such 

as mean, variance, skewness, and kurtosis. These features can be useful for detecting forged 

signatures or signature variations caused by different writing styles. Statistical features can be 

enhanced using techniques such as the wavelet transform, which can capture the statistical 

distribution of the signature at different scales and resolutions. 

Fourier transform-based features analyze the frequency content of the signature by computing the 

Fourier transform of the signature image. These features can capture the overall shape and 

frequency components of the signature. Fourier-based features can be further enhanced using 

techniques such as the Discrete Cosine Transform (DCT), which can capture the frequency 

content of the signature in a compact form.  

The signature is described or represented by global functions. These features, such as length and 

width, are typically extracted from all pixels in the region surrounding the signature image. 

However, global features are easy to extract and are less susceptible to noise than individual parts 

of the signature with small distortions. The global feature vector is not significantly affected by 

them. However, because they depend on the overall orientation of the page, they are susceptible 

to distortion and stylistic changes.  
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Critical intersections and gradients are examples of local features that represent a segment or 

small region of a signature image. These features are typically derived from the pixel distribution 

of a signature, such as its local density. Local features are less affected by other regions of the 

signature and more sensitive to noise in the region of interest. They are much more accurate than 

generic features, but require more computation.  

Geometric features are the features that describe the characteristic geometry of a signature, 

preserving both its global and local feature properties. They have the ability to tolerate 

deformation, style variations, rotation variations, and some degree of translation. In conclusion, 

the choice of feature extraction technique depends on the specific requirements of each 

application and the characteristics of the signature dataset. A combination of different feature 

extraction techniques can be used to capture different aspects of signature features and improve 

recognition performance.  

2.3  Feature Selection 

Feature selection is the process of selecting a subset of relevant features that are most informative 

for the classification task, while discarding irrelevant or redundant features that may introduce 

noise or degrade performance. Some common approaches to feature selection in handwritten 

signature verification systems include [13]; 

 Shape-based features: These features describe the shape of the signature, such as the number 

of strokes, curvature, and aspect ratio. Shape-based features can be extracted using techniques 

such as Fourier descriptors or chain codes. 

 Texture-based features: These features describe the texture or pattern of the signature, such 

as the distribution of ink or the presence of certain strokes. 

 Structural features: These features describe the structural properties of the signature, such as 

the location and orientation of key points or landmarks. They can also be extracted using 

techniques such as Hough transforms or Harris angles. 

 Hybrid approaches: These approaches combine different types of features to capture different 

aspects of the signature. For example, a combination of shape-based and texture-based 

features can provide better performance than either approach alone. 
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The choice of feature selection method depends on the specific requirements of the signature 

verification system, as well as the available data and computing resources. It is important to 

evaluate system performance using different feature selection methods and compare their 

effectiveness to improve accuracy and reduce complexity. 

The goal of feature selection is to minimize the loss of information caused by reducing the feature 

set, so in theory the selection process should not have a negative impact on classification 

performance. A search strategy, a subset evaluation, and a stopping criterion are the three basic 

steps that make up the feature selection process. According to a predefined subset evaluation 

criterion, a typical search technique uses a search strategy to identify the best solution. The search 

process is repeated until a stopping condition is met [13].  

The feature selection problem requires selecting the subset of features with the highest 

discriminative power from the entire collection of available features. For several reasons, the 

selection of a robust subset of features is essential in any classification process. No matter how 

good the learning algorithm is, the performance achieved may not be sufficient if the considered 

feature set does not contain all the data needed to classify samples from different classes. On the 

other hand, the extent of the search space to be explored during the learning phase depends on 

the size of the feature set used to characterize the samples. Finally, the number of features used 

to define the patterns affects the computational cost of the classification [13]. 

2.4  Online handwritten signatures 

Electronic handwritten signatures (or online handwritten signatures) are captured using electronic 

devices such as tablets, touchscreens, or pen-based devices. The signing process involves the 

signer physically writing their signature on the device using a pen or stylus, which is recorded as 

a sequence of digital data points. The sequence of data points captures the dynamic properties of 

the signature, such as stroke order, pen pressure, and pen speed. These dynamic properties make 

electronic signatures more difficult to forge than offline signatures [14]. 

The recognition process for electronic signatures involves analyzing the dynamic properties of 

the signature, which are unique to each signer. The authentication algorithm can compare the 

signer's signature with a stored template or reference signature to verify their identity. Online 

signature recognition systems fall into into two categories: static and dynamic. Static systems 

analyze the shape of the signature and rely on features such as line thickness, curvature, and 
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texture. Dynamic systems, on the other hand, analyze the temporal properties of the signature, 

such as velocity, acceleration, and pressure. They tend to be more accurate than static systems 

because they capture more information about the signature. 

Electronic signature recognition systems can be used in a variety of applications, including 

banking, e-commerce and document management. In banking, electronic signature recognition 

can be used to verify the identity of customers when they sign checks or other financial 

documents. In e-commerce, electronic signature recognition can be leveraged to authenticate 

users during online transactions. In document management, e-signature recognition can be used 

to verify the authenticity of digital documents. These systems face many challenges, such as 

variability in writing styles, differences in hardware, and noise in the data. To overcome these 

challenges, techniques such as feature extraction (discussed above), machine learning algorithms 

(discussed in the introduction), and finally normalization are used. These three methods combined 

help to improve the recognition accuracy. A online handwritten signature is shown below: 

 

Figure 2: Online Handwritten Signature [49]  

2.5  Offline handwritten signature 

Offline handwritten signatures are captured on a piece of paper or other surface using a pen or 

pencil. The signing process involves the signer physically writing his signature on the surface, 
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which creates an image of it. The signature image captures its static properties, such as its shape, 

size, and style. The static properties are less secure than the dynamic properties of electronic 

signatures, because they are more easily reproduced. The recognition process for offline 

signatures involves the analysis of these properties, which are less unique to each signer than the 

dynamic properties of electronic signatures. The authentication algorithm can compare the 

signer's signature with a stored template or a reference signature to verify its identity [15]. 

Offline signature recognition systems can be divided into two categories: holistic and partial. 

Holistic systems analyze the entire signature as a single unit, while partial systems divide the 

signature into smaller units such as strokes or characters. They can also be used in a variety of 

applications, including document authentication and forensics. In document authentication, 

offline signature recognition can be used to verify the authenticity of handwritten signatures on 

physical documents. In the case of forensics, offline signature recognition can be leveraged to 

analyze signatures on legal documents or other evidence. 

These systems also face many challenges, such as variations in writing styles, differences in paper 

quality and lighting, and image noise. To overcome these challenges, signature recognition 

systems use the same techniques as online signature recognition systems. Below is an example 

of a handwritten offline signature: 

 

 

Figure 3: Handwritten offline signature [50] 
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2.6 Differences between online and offline handwritten 

signature 

Here are some more details about the differences between online and offline handwritten 

signatures [16]: 

 Data format: Offline handwritten signatures are usually captured as a 2D image, where the 

signature is represented as a set of black and white pixels. The signature image can be captured 

using a scanner or a camera, and the recognition process involves analysing the shape, texture, 

and statistical properties of the signature image. Electronic handwritten signatures, on the 

other hand, are captured as a sequence of digital data points, where each point represents the 

position and pressure of the pen or stylus at a particular time. The sequence of data points can 

be captured using a tablet, touch screen, or stylus-based device. The recognition process 

involves analysing the dynamic properties of the signature, such as stroke order, pen pressure, 

and pen speed. 

 Dynamic properties: Offline signatures are static and do not record the dynamic properties of 

the signature, unlike electronic signatures which do. 

 Forgery: Offline signatures are more vulnerable to forgery compared to online signatures. For 

example, an attacker can easily forge an offline signature by copying or scanning the image. 

This type of forgery is difficult to detect, as the forged signature looks like the genuine. 

Electronic signatures are more difficult to forge, as they capture the dynamic properties of the 

signature, which as mentioned earlier, are unique to each signer. 

 Recognition accuracy: Online signatures are generally more accurate than offline signatures 

in terms of identification performance. They record more information about the signature, 

including dynamic properties. This additional information helps to improve the accuracy of 

signature recognition systems. Offline signatures, on the other hand, are more susceptible to 

noise and distortion, which can reduce recognition accuracy. 
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2.7  Forgeries 

In the context of handwritten signatures there are several types of forgery such as the following 

[20]: 

 Random forgery: It is produced by the forger without knowing the name of the author or the 

authenticity of the signature. 

 Simple forgery: In this category, the forger has no idea what the signature they are forging 

looks like. This is the easiest type of forgery to detect, because it usually doesn't look anything 

like a genuine signature. It is also sometimes possible for an examiner to identify who did the 

forger from the writing style of the forged signature. 

 Skilled forgery: In this type of forgery, the forger has a sample of the signature to be forged. 

The quality of a forgery depends on: 

a) how much the forger practices before attempting the actual forgery 

b) his skill 

c) his attention to detail when simulating the signature. 

 A skilled forgery looks more like the genuine signature. The problem of signature verification 

becomes more difficult as we move from simple to sophisticated forgery. 

 Freehand forgery: Freehand forgery involves creating a forged signature without attempting 

to duplicate the appearance of the original signature. Instead, the forger may create a signature 

in a different style or format. 

 Detected forgery: This forgery involves tracing over the genuine of the signature to create a 

forgery. Generally this type of forgery is often easier to detect, as the signature may contain 

unnatural or inconsistent events. 

 Cut and paste forgery: Cut and paste involves cutting out a genuine signature from a document 

and pasting it into a different document or location to create a forged signature. 

For the most part, signature forgery is a serious crime that can have serious legal and financial 

consequences, which is why it's important to take the appropriate steps to both prevent it and 

detect it if it does occur. 
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2.8  Handwritten signature verification 

The test signature and the reference signature are compared using the minimum, average, and 

maximum values of the dissimilarity values after applying the feature extraction method. In this 

comparison, a threshold value is used to compare each reference and test signature. If the value 

is nearly the same as the reference signal value, the signature is accepted as authentic, while if 

the difference is greater than this threshold value, the signature is ignored. This threshold may be 

the same for each signature or may vary from signature to signature [17] [18]. Below are presented 

two methods to help verify a handwritten signature: 

 Common limit: As the common limit has the best limit for all authors, it is more advantageous. 

After calculating the differences between the data signatures, a common threshold is selected 

based on the minimum error requirement. 

 Author dependent threshold: The author can only use one person in this type of threshold. 

Compared to ordinary data, the data for this limit should be larger. The writer changes the 

value after each entry in this limit selection format. 

Besides the common threshold and the author-dependent threshold, there are two more methods 

we can use to verify the handwritten signature, which are as follows [19]: 

 Feature-based methods: Feature-based methods analyse the signature image to extract 

relevant features that can be used to distinguish between genuine and forged signatures. 

Common features used in signature verification, include: a) stroke direction, b) stroke width, 

c) curvature and d) texture. These attributes are then compared with a set of reference 

attributes to determine whether the signature is genuine or not. 

 Machine learning methods: Machine learning methods involve training models on a large 

dataset of signature images and their corresponding labels (genuine or forged). These models 

can then be used to classify new signature images as genuine or forged based on their 

similarity to the training data.  

Some of the very common machine learning techniques used for signature verification include: 

 Support Vector Machine (SVM) 

 Random Forest 

 Convolutional Neural Networks (CNN) 
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In the following chapter we will investigate machine learning techniques and their applicability 

to handwritten signature verification. 
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3  MACHINE LEARNING APPROACHES 

Can a machine be considered to think and learn like a human? was the main issue that led to 

machine learning. This research was done mostly in response to Alan Touring's work, 

"Computing Machine and Intelligence", and his study of the possibility of machine thinking [21]. 

Perceptrons and neural networks were discovered as a result of focused study in machine learning. 

Machine Learning (ML) is considered as a filed of Artificial Intelligence (AI), flourished on its 

own in the 1990s and began to progress and develop rapidly. 

"A computer program is said to learn from experience E with respect to some class of tasks T and 

performance measure P if its performance on tasks in T, as measured by P, improves with 

experience E [22]", is Tom Mitchell's statement as a succinct explanation of machine learning. 

Machine learning is the science of using existing data and methods to train machines to learn on 

their own. The learning process is often performed using a model that is learned from existing 

data and used to predict and act in the future. The model is constantly updated, learning as it 

receives new data. The machine learning process is illustrated very clearly in Figure 4 below. 

 

Figure 4: Machine Learning Process [51] 

The first step in the process is to take the data to be used for machine learning purposes are taken 

and put it into the correct format in the first step of the process. This information is then divided 

into three categories: training, testing, and validation data. It is worth noting that the validation 

data is used to avoid an event called overfitting. However, the data is usually split into training 
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and testing halves. The training data is used in the process phase to learn the data and build 

models. In addition, the models are tested using independent test data to either evaluate or correct 

them. The best models are selected during the testing phase. Models are evaluated at the 

validation level if a particular technique, such as neural networks, requires an additional degree 

of validation. The process continues until a certain level of quality is reached or is stopped if none 

of the models perform at a sufficient level. Once models are selected, they are able to make 

predictions, learn from experience, and grow with the system, making them ready for real-world 

applications. 

3.1 Machine Learning types 

There are many different machine learning algorithms and each has a unique set of techniques or 

structures. Nevertheless, algorithms can be distinguished from each other at some level and 

categorised according to certain characteristics that they all have. As a result, algorithms are 

divided into four learning categories: a) supervised learning, b) unsupervised learning, c) semi-

supervised learning, and d) reinforcement learning. 

3.1.1  Supervised learning 

In supervised learning, the input features for the data must be labelled, but more importantly, 

there must be a labelled feature for the desired output value [23]. Each data instance should have 

a single variable that, given its input values or variables, indicates the desired output value. The 

output value should be determined by considering the input variables, which should be limited to 

a manageable and efficient level. It can also be categorical (for requiring classification tasks) or 

continuous (for regression tasks). 

The goal of supervised learning is to build models that represent the training data correctly and 

in a simple way. The accuracy and recall rate of the models are evaluated before they are selected 

from alternative models [24]. It could also be evaluated and improved after being applied to real-

world problems. There are many supervised learning techniques such as Support Vector 

Machines (SVM), Random Forests, k-Nearest Neighbor algorithms (kNN), simple Bayes 

classifiers, artificial neural networks (which we will analyse in the next units). In addition to 

bioinformatics, database marketing, information retrieval, and pattern recognition fields, 
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supervised learning algorithms have other applications, such as image, voice, and speech 

recognition. 

3.1.2  Unsupervised learning  

Unlike supervised learning, in unsupervised learning the data has no prior output label. Knowing 

that the data is unlabelled, the primary goal of the algorithms is to allow the data to learn on its 

own. To arrange the data samples so that those that are related to each other are in the same group, 

regularities, patterns or any other commonalities between the data samples are examined [24]. 

Clustering, Principal Component Analysis (PCA), and Expectation-Maximization (EM) are three 

of the most important unsupervised learning algorithms. The k-means algorithm, hierarchical 

clustering, and other methodologies are some of the different approaches used by the clustering 

algorithm to cluster the data. However, the primary goal, is to group data instances so that they 

are more similar to each other within each cluster than to any other instances belonging to 

different clusters. In other words, there is high similarity within clusters and little similarity 

between clusters. In order to minimise the number of variables, or dimensions in the data and to 

maximise for example learning performance, Principal Component Analysis is performed. 

3.1.3  Semi-supervised learning  

Semi-supervised learning, as the name suggests, is a class of supervised learning algorithms and 

tasks that also use unsupervised learning or unlabeled data. The majority of data used in semi-

supervised learning is unlabeled, with a small amount of labeled data. The combination of the 

two learning strategies is mainly done to improve the overall learning accuracy. Under certain 

conditions, it has been shown to be superior to other supervised approaches [24]. Semi-supervised 

has one drawback and it is this: the labeled data must be produced by highly skilled people, 

increasing the cost of the whole process. 

Inductive learning is another name for semi-supervised learning. By combining the advantages 

of supervised and unsupervised learning algorithms, a semi-supervised method is created. Self-

training, mixed models, co-training, multi-projection learning, graph-based techniques, and semi-

supervised support vector machines are some examples of semi-supervised techniques. 
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3.1.4  Reinforcement Learning 

Powerful machine learning systems are produced using the Reinforcement Learning (RL) method 

in artificial intelligence, which integrates the fields of dynamic programming and supervised 

learning [24]. A decision maker, hypothetically a robot, is assigned a goal and works to achieve 

it by learning on its own and interacting with its environment. As a result, certain requirements 

must be met for a fundamental RL model, and these are: 

 A set of environmental situations. 

 A set of actions. 

 A set of rules that determine the rewards given at the end of transitions. 

 A set of rules that describe what the robot observes. 

3.2 Machine Learning Algorithms 

3.2.1 Decision Trees 

One of the most popular learning techniques is the Decision Tree algorithm, a classification 

method that focuses on an understandable form of representation. Decision Trees use datasets 

consisting of feature vectors, which in turn include a collection of classification features 

characterize the vector and a class feature that identifies the data as belonging to a particular class. 

A decision tree is constructed by iteratively dividing the data set along the feature that best 

categorizes the data into the various existing classes until a predefined stopping criterion is met. 

Since decision trees can be easily displayed in a structured tree style that is simple for humans to 

understand, the representation form helps users get a quick overview of the data. 

The Iterative Dichotomizer 3 (ID3) algorithm and its successor, C4.5, were two of the first for 

decision tree training algorithms. They were created by Ross Quinlan in 1986 and 1993, 

respectively [25] [26]. Many subsequent advances have been built upon these algorithms. 

Directed trees are used as decision support tools and are called decision trees. They serve as 

decision guidelines and examples for later decisions. 

The root node, internal nodes, and terminal nodes, often known as leaves, can be used to 

categorize nodes in decision trees. The root node has no incoming edges and serves as the origin 

of the decision support process. Internal nodes contain at least two outgoing edges and exactly 
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one incoming edge. They include a test based on one of the characteristics of the data set [27]. 

Such a test might ask, for example, "Is the customer older than 35 for the feature age?" A solution 

to a decision problem, which is mainly represented by a class prediction, is located at the leaf 

nodes. Using the category predictions yes and no as an example, a decision problem would be 

whether a customer will make a purchase in an online store or not. Regarding leaf nodes, they 

have only one incoming edge and no outgoing edge. 

Given a node «n», all nodes that follow it and are separated from it by exactly one edge are 

referred to as its children, while «n» is referred to as the parent of all its child nodes. An example 

of a decision tree is shown in Figure 5. For example, a data record with the attributes cold, 

polarBear would be sent to the left subtree, since its temperature property is cold, and then to the 

"North Pole" leaf, which would carry the label with appropriate information. 

 

Figure 5: Decision Tree Algorithm [52] 

A popular data mining technique used primarily for classification purposes, is to train a decision 

tree. Its goal is the prediction of the value of a target feature using a variety of input features. 

When training a decision tree in a supervised setting, patterns in the data are discovered using a 

training set and then the decision tree is constructed. The value of their target property can be 

predicted using a set of samples they have never seen before. The training set includes data 

records of the following format: 

(�⃗�, 𝛶) = ( 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛, 𝑌) 
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where «𝑌» is the desired feature value, «𝑥» is a vector of n input values and «𝑛» is the total 

number of features in the dataset [27]. 

A training set including a target feature, input features, a split criterion, and a stop criterion is 

required in order to train a decision tree and then build a classifier. The separation criterion 

specifies a value for each property at a particular node. By splitting the node using this attribute, 

the information which obtained is quantified by this value. Then, the node is split into the various 

results of each feature using the best value which obtained from all the features. At this stage, all 

generated subtrees are subjected to an iterative application of the process of determining the best 

separation between features until a stopping criterion is reached. 

Common stopping criteria are: 

 The maximum height of the tree when reached. 

 The number of entries in the node should be less than the minimum allowed. 

 The criterion that the best separation should not to exceed a certain threshold in terms of the 

information obtained. 

There is no way to split records across all attribute results if the split attribute is a numeric type. 

This is one of the major improvements of the C4.5 decision tree over ID3. The C4.5 can also 

determine the optimal points for splitting numeric properties by splitting them using the greater 

than or equal to and less than operators. 

This automated approach to decision tree training, can produce very large decision trees with 

relatively weak classification power. Furthermore, the trees are often (over)fitted, meaning they 

are over-matched during training. When these trees are applied to unknown data, the training does 

not perform well. Due to this phenomenon, the practice of pruning has evolved. The goal of this 

technique is to eliminate the least useful or inefficient elements of the decision tree, such as those 

that are over-fitted or based on noisy or inaccurate data. This often results in a further 

improvement in accuracy, while also reducing the size of the tree. Since every real-world dataset 

contains imprecise or noisy data, this step is very important. 

 

Advantages of Decision Trees [28] 

 Compared to other algorithms, the decision tree algorithm requires less effort to prepare data 

during preprocessing. 



 

29 

 

 Does not require data normalization. 

 Does not require data scaling. 

 Missing values in the data do not significantly affect the process of building a decision tree. 

Disadvantages of Decision Trees 

 A small change in the data can cause a large change in its structure.  

 Sometimes the computation can be much more complicated compared to other algorithms. 

 They often require more time to train the model. 

 It is relatively expensive to train because of its complexity. 

 It is not suitable for regression tasks and predicting continuous values. 

3.2.2 kNN Algorithm 

One of the simplest machine learning algorithms is the one called k-nearest neighbors (k-nearest 

neighbors or kNN). Generally, kNN is used for regression and classification. The «k» closest 

training instances in the sample space serve as input for both classification and regression, and 

the result depends on whether case 1 or case 2 was used respectively. Statistical estimation and 

pattern recognition have used both cases of kNN [29]. Regarding the different distance metrics, 

there are a variety available, including Euclidean, squared Euclidean, and Chebyshev. The 

Euclidean distance is the most preferred choice among them to determine the distance between 

two points [30]. Between two points x and y of dimension M, the Euclidean distance [30] (d) is 

given by the mathematical formula: 

𝑑(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑀
𝑖=1  

To categorize an unknown object from known objects, the kNN classifier is used. Let's look at a 

simple example. Figure 6 shows a question mark with a red circle and the plus and minus symbols. 

By calculating the distance between each point and the question point (red circle), we can 

determine its class and determine whether it belongs to the plus or minus (plus and minus). The 

class of the object changes according to the k-value [30]. 
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Figure 6: KNN Algorithm [53] 

Advantages of KNN [31] 

 No Training Period Required- kNN modeling does not require any training period, as the data 

itself is a model that will be the benchmark for future prediction and therefore it is very time 

efficient in improvising for a random modeling on the available data. 

 Easy implementation – kNN is very easy to implement, as all that needs to be calculated is 

the distance between different points based on data of different features and this distance can 

be easily calculated using distance formula like Euclidean or Manhattan. 

 As there is no training period, this new data can be added at any time without affecting the 

model. 

Disadvantages of KNN [31] 

 It does not work well with large amounts of data, as calculating the distances between each 

data instance would be very expensive. 

 It does not work well with high dimensions, as this will complicates the distance calculation 

process to calculate the distance for each dimension. 

 It is sensitive to noisy and missing data. 

 Attribute scaling- Data should be scaled properly across the dimension. 

3.2.3  Support Vector Machines (SVM) 

The SVM algorithm uses a method known as kernel functions to transform nonlinear problems 

into linear ones, which essentially boils down to calculating the distance between two 

observations. This algorithm, also referred to as a large space classifier, determines whether to 

maximize the limit of the sample interval. The most important application of SVM is to simulate 
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the non-linear decision boundary using a nonlinear kernel function. It is considered to be one of 

the best classifiers. It uses a variety of kernels to handle both linear and nonlinear functions. 

Without overcomplicating a system, SVM can be applied to datasets with many features [32]. As 

shown in Figure 7, this algorithm attempts to divide the given points into two classes. 

 

Figure 7: SVM Algorithm [54] 

A data point is misclassified using hyperlayer B. According to Figure 8, hyperlayer A works well 

for categorizing the given data. 

 

Figure 8: Categorization through two hyperlayers [54] 
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The logistic sigmoid function, an s-shaped curve that takes any real number and converts it to a 

value between 0 and 1, is used in the case of logistic regression when we analyze the output of 

the linear function and determine the value within the range 0 and 1. If the value exceeds a 

threshold value, the label 1 is often applied. If not, the label 0 is applied. The logistic regression 

function seeks to determine the probability that 𝑦 = 1 given the input « 𝑥 » where « 𝑥 » and « 𝑦 » 

are the input and output variables, respectively: 

𝑃(𝑦 = 1 | 𝑥) 

To convert the expected values into probabilities, we use the logistic sigmoid function: 

ℎ(𝑥) =
1

1 + e−x
 

where «e» is the base of the natural logarithm, «x» is the input to the function, and ℎ(𝑥) is the 

output, expressed as a number between 0 and 1. The model aims to keep the training example as 

far away from the decision surface as possible. The term "decision surface" refers to a surface in 

a multidimensional state space that divides the space into various segments. Data points on one 

side of a decision surface are from a different category than data points on the other side. A margin 

is the distance between the nearest point and the decision surface, as illustrated in Figure 9. 

 

 

Figure 9: separation between the nearest point and the decision surface [54] 
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The decision surface that offers the largest margin is selected among all other decision surfaces. 

The support vectors are the points closest to the decision surface. There are at least two of them 

for a linearly separable two-dimensional feature space. The decision surface is defined by these 

support vectors [33].There are also many SVM kernels that can be used for classification. SVM 

with a linear kernel performs poorly when a data set is not linearly separable [34]. In this case, 

polynomial nonlinear SVM kernels are used. In order to create nonlinear boundaries between 

classes, nonlinear kernels expand the feature space of the input data. This is achieved by mapping 

the data to a higher dimensional space. This algorithm is extended to nonlinear surfaces using 

such a boundary produced by nonlinear kernels, which resembles a linear hyperplane. 

In our case, the SVM algorithm will essentially try to separate with a straight line (as far as 

possible), those points that belong to class 0 (i.e. fake signature points) and those that belong to 

class 1 (i.e. real signature points ). 

 

Advantages of SVM [35] 

 It is very efficient even with high-dimensional data. 

 When the classes in the data are points are well separated, it works very well. 

 It can be used for both regression and classification problems. 

 It can also work well with image data ((which is perfect for our case because signatures are 

essentially images). 

Disadvantages of SVM [35] 

 If the classes in the data are points that are not well separated, meaning there are overlapping 

classes, it will not perform well. 

 We need to choose an optimal kernel for SVM and this task is difficult. 

 In large data set it requires comparatively more time for training. 

 It is not a probabilistic model, so we cannot explain the classification in terms of probability. 

 It is difficult to understand and interpret SVM model compared to Decision Tree as SVM is 

more complex (in case of application where for some reason we want to choose only these 

two algorithms). 
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3.2.4  Logistic Regression Algorithm 

Logistic regression is the commonly used statistical method in empirical studies involving 

categorical dependent variables. As Allison (1999) demonstrates, a dichotomous dependent 

variable violates the assumptions of homoscedasticity and normality of the error term for the 

linear regression model. Consequently, the standard error estimates will not be consistent 

estimates of the true standard errors, and the coefficient estimates will no longer be efficient. In 

addition, estimating a linear probability model by the ordinary least squares technique will result 

in predicted values that are outside the reasonable range of the probability (0,1). For these reasons, 

the logistic regression model is used when the dependent variable is dichotomous. This model 

converts the probability to odds and then takes the logarithm of them. In this way, both the lower 

and upper bounds of the probability are removed. The logistic regression model has the following 

mathematical form [36]: 

log[
𝑝𝑖

1−𝑝𝑖
] = a + 𝑏1𝑥𝑖1 +  𝑏2𝑥𝑖2 +  𝑏𝑘𝑥𝑖𝑘 

where «i» denotes individual, «𝑝𝑖» represents the probability that the event occurs, «1 − 𝑝𝑖» 

represents the probability that the event does not occur, the ratio of the two represents the 

probabilities of the event, and the expression on the left side represents the log probability, or else 

the logit. On the right-hand side of the equation, " a " represents the intercept, " 𝑏 " represents the 

regression coefficient, and " 𝑥 " is the independent variable (for a more detailed background on 

logistic regression, see also Kleinbaum et al. 1998; McCulloch and Searle 2001; Menard 2010; 

Pedazur 1997; Rencher 2000; Tabachnick and Fidell 2001). 
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Figure 10: Logistic Regression Algorithm [55] 

 

Advantages of Logistic Regression [37] 

 Easy to apply and interpret but also effective in training 

 Predicted parameters give inferences about the importance of each feature 

 Performs well on low-dimensional data. 

 Very effective when the data set has features that are linearly separated. 

 It outputs well-calibrated probabilities along with the classification results. 

Disadvantages of Logistic Regression [37] 

 Exaggerations in high-dimensional data 

 Nonlinear problems cannot be solved by this algorithm since it has a linear decision surface 

 Assumes linearity between dependent and independent variables. 

 It fails to capture complex relationships. 

 Only important and relevant features should be used, otherwise the predictive value of the 

model will be degraded. 
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3.2.5  Naïve Bayes Algorithm 

Naive Bayes is a machine learning algorithm that is often used for classification tasks, such as 

predicting whether an email is spam or not and it is probabilistic. At a high level, the algorithm 

works by calculating the probability that a known data point belongs to each possible class and 

then selecting the class with the highest probability. It is based on Bayes' theorem, which states 

that the probability of a hypothesis (in this case, the class) given some observed evidence (the 

data) is proportional to the probability of the evidence given the hypothesis multiplied by the 

prior probability of the hypothesis [38]. Mathematically this is expressed as follows: 

𝑃(𝐴 | 𝐵) =  
𝑃(𝐵  | 𝐴) 𝑃(𝐴)

𝑃(𝐵)
 

The "naive" part of the algorithm's name comes from the assumption that all features (i.e. the 

input variables) are independent of each other. This is a simplifying assumption that allows the 

algorithm to calculate probabilities more easily, but may not always be true in practice. There are 

many variants of  Naive Bayes, including Gaussian Naive Bayes, Multinomial Naive Bayes, and 

Bernoulli Naive Bayes. The choice of which variant to use, depends on the nature of the data and 

the problem at hand [38]. 

In general, it is a relatively simple and computationally efficient algorithm, which can perform 

well in many classification tasks, especially when the number of features is large and the data is 

sparse. However, its performance may not be good if the independence assumption is violated or 

if the data contains too much noise or outliers. The Naive Bayes algorithm is shown schematically 

below: 
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Figure 11: Naïve Bayes Algorithm [56] 

 

In our case, the Naive Bayes algorithm can be useful by calculating the probability that some 

points (and more specifically values of features) belong to the fake signature and some other 

points belong to the genuine signature. 

 

Advantages of Naive Bayes [39] 

 It is fast and can save a lot of time. 

 It is suitable for solving multi-class prediction problems. 

 If its feature independence assumption holds, it can outperform other models and requires 

much less training data. 

 It is more suitable for categorical input variables than for numerical variables. 

Disadvantages of Naive Bayes [39] 

 It assumes that all predictors (or traits) are independent, which is rarely the case in real life. 

This, limits the applicability of this algorithm to real-world use cases. 

 It addresses the “zero frequency problem” where it assigns zero probability to a categorical 

variable whose category in the test data set was not available in the training data set. This 

problem is addressed by a smoothing technique. 
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 Its estimation can be wrong in some cases, so its output probabilities should not be taken too 

seriously in those cases. 

3.2.6  Ensemble Algorithms 

By mixing predictions from multiple learning algorithms/estimators, ensemble methods aim to 

increase the robustness of an estimator [40]. Ensemble methods are divided into two categories, 

which are as follows: 

 Averaging techniques: The goal is to make predictions using various estimators and then 

average these results [40]. It is argued that a reduced variance makes the combined estimator 

using the mean approximation perform better on average than a single estimator [40].  

 

 Boosting techniques: In contrast to average ensemble techniques, the goal of these techniques 

is to combine a number of weak estimators to create a strong ensemble [40]. By sequentially 

generating simple estimators, these techniques aim to reduce the bias of the generated 

population [40]. 

 

The most popular ensemble algorithms are the following: 

 Random Forest 

 AdaBoost 

 XGBoost 

 Gradient Tree Boosting 

 Stacked Generalization 

 

Figure 12: Ensemble Algorithms [57] 
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Advantages of Ensemble Algorithms [41] 

 Provide accurate prediction results 

 Stable and more robust models. The overall effect of many models is always less noisy than 

the individual models. This leads to stability and robustness of the model. 

 Capture both linear and nonlinear relationships in the data. This is achieved by using two 

different models and forming a set from the two. 

Disadvantages of Ensemble Algorithms [41] 

 Decrease model interpretability. Using ensemble methods reduces the interpretability of the 

model due to increased complexity and makes it very difficult to extract any critical business 

insights at the end. 

 Computational and planning time is high 

 Selecting the models to create an ensemble is an art that is really difficult to dominate. 

 

3.2.7  Neural Networks 

Artificial Neural Network (ANN), commonly called Neural Network (NN), is an algorithm that 

was originally motivated by the goal of having machines that could imitate the human brain. A 

neural network consists of an interconnected group of artificial neurons. They are natural cellular 

systems that are able to receive and store information and use experiential knowledge, just like 

the human mind. ANN's knowledge comes from examples they encounter. In the human nervous 

system, the learning process involves modifications in the synaptic connections between neurons. 

Similarly, ANNs adapt their structure based on the output and input information flowing through 

the network during the learning phase. 

The data processing process in a typical neural network consists of two main steps: the learning 

step and the application step. In the first step, a training database or historical price data is required 

to train the networks. This data set includes an input vector and a known output vector. Each of 

the inputs and outputs represents a node or neuron. There are also one or more hidden layers. The 

goal of the learning phase is to adjust the synaptic weights of the connections between different 

layers or nodes. After setting up the learning samples, in an iterative approach a sample is fed to 

the network and the resulting results are compared with the known outputs. If the result and the 
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unknown output are not equal, the synaptic weights of the connections are changed until the 

difference is minimized. After achieving the desired convergence for the networks in the learning 

process, we move to the application step, where the validation dataset is applied to the network 

for validation [42]. 

 

Figure 13: Neural Networks with hidden layers [58] 

 

Advantages of Neural Networks [43] 

 They can implement tasks that a linear program cannot. 

 When an element is rejected for them, they can continue without problems because of its 

parallel characteristics. 

 They do not need to be reprogrammed. 

 They can be run in any application. 

Disadvantages of Neural Networks [43] 

 They require training to operate 

 Their structure is different from that of microprocessors, so emulation is required. 

 Large neural networks require a lot of processing time. 
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4 METHODOLOGY AND EXPERIMENTS 

4.1 Motivation 

The experimental part of this thesis is implemented using Matlab code.  For this purpose three 

image datasets with signatures were tested. In practice, we created a large table, where each row 

corresponds to an image and the columns correspond to the attributes. In addition, besides to the 

columns with the attributes of each image, two additional columns were also created (the last two 

to be precise). The first column consists only of ones and zeros where one means a signature that 

is genuine and zero means a signature that is forged. The second column contains the active 

pixels, i.e. the sum of pixels in a given area where the signature is present. For the implementation 

we relied on a piece of web code that we have developed further. The main goal of the experiment 

was to improve the accuracy metric as much as possible. That is, the machine learning models to 

distinguish, as far as possible, the forged from the real handwritten signature. Two methods were 

used to achieve this. The first method was to further extract features related to the existing 

features. The second method referred to the creation of patches (parts) where each image is 

divided into four equal parts in order to improve the training process (in practice, each image 

corresponds to four smaller ones). The first patch corresponds to the upper right part of the image, 

the second corresponds to the upper left part of the image, the third to the lower left part of the 

image and finally the fourth to the lower right part of the image. A total of twelve experiments 

were performed. In six of them, our data were the initial features withoud additivies while in the 

remaining six it was the initial features were combined with the additions. In both cases, we 

performed the experiment in the whole image as well as with the patch approach. We performed 

this specific procedure for three different datasets, resulting in a total of twelve experiments. In 

the following sections, we present the datasets, describe the feature extraction and demonstrate 

the experimental results. 
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4.2 Datasets 

In the present work, we have used three different datasets of signature images, which differ in 

size, i.e. the number of signatures under consideration ranges from a few to thousands of images.   

 

1st Dataset 

This dataset comes from an open project on github [44]. It is a dataset consisting of 36 signature 

images in total. In fact, it contains 19 real ones and 17 fake ones. The Figure 14 below shows 

some sample signature images from this dataset. In particular, the first six are genuine signatures, 

while the last three are forged. 

   

   

   

  

Figure 14: First Dataset 
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2nd Dataset 

This dataset is retrieved from the kaggle site [45]. It contains 60 genuine signatures and 60 forged 

ones. The Figure 15 below shows examples from this dataset where, as before, the first six 

signatures are genuine and the rest are forged. 

   

  

 

 
 

 

 

Figure 15: Second Dataset 
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3rd Dataset  

The last dataset we examined is CEDAR [46] a large well-known dataset that contains 3121 

forged signatures and 3121 genuine ones. The Figure 16 below shows some examples where the 

first six signatures are genuine and the rest are forged. 

   

   

   

Figure 16: CRDAR Dataset 
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4.3  Feature Extraction 

Feature extraction is an important part of the proposed methodology, since each signature image 

is expressed as a set of carefully selected features. First, nine features already introduced in [47] 

are listed and then the proposed additional features  are also presented. 

 

4.3.1  Initial features 

Normalized Signature Area (NSA) 

The normalized signature area is a measure of how much space the signature occupies within its 

bounding box. It indicates the relative size of the signature compared to the total available space. 

Aspect Ratio 

The aspect ratio describes the shape of the bounding box of the signature. It indicates whether the 

signature is more elongated (aspect ratio > 1) or more compact (aspect ratio < 1). It can provide 

insight into the overall shape and proportions of the signature. Mathematically it is expressed as 

follows: 

𝐴𝑅 =
𝐿

𝑊
 

Maximum Horizontal Project 

The maximum horizontal projection represents the maximum width of the signature. It refers to 

the total span of the signature along the horizontal axis. 

Endpoints 

Endpoints are points where lines or curves in the signature image end. Counting endpoints can 

be useful in detecting breaks or discontinuities in the signature strokes, that may indicate forgeries 

or irregularities. If M(𝑥1, 𝑦1) is the midpoint and A(𝑥, 𝑦) is the known endpoint, then the 

coordinates B(𝑥2, 𝑦2) of the other endpoint are given by 𝑥2 = 2𝑥1 − 𝑥  and 𝑦2 = 2𝑦1 − 𝑦. 

Centroid of vertically divided images 

It is the pair of centroids (four values) of the two images formed by vertically dividing the main 

image vertically (so it is essentially four numbers when it is a pair). 
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Skew  

The skew angle measures the tilt or slant of the signature image. A positive skew angle indicates 

a clockwise rotation, while a negative skew angle indicates a counterclockwise rotation. Skew 

detection is useful for aligning and normalizing signatures for further analysis. 

4.3.2  Additional features 

In addition to the features mentioned above, we have included additional features to strengthen 

the description of the signature. These features are: 

Entropy 

Entropy quantifies the degree of randomness or information content in the grayscale distribution 

of the signature. Higher entropy values indicate greater variability in the intensity levels, while 

lower entropy values indicate more uniform intensity distribution. Entropy is defined as: 

𝐻(𝑋) =  − ∑ 𝑃(𝑥𝑖)𝑙𝑜𝑔2𝑃(𝑥𝑖)

𝑛

𝑖=1

 

where 𝑋 is a random variable with has 𝑥𝑖 possible outcomes and 𝑃(𝑥𝑖) denotes the corresponding 

probabilities. 

Contrast 

Contrast refers to a calculation of the amount of variation between a pixel and its neighbor across 

the entire image. The range of values for contrast is from 0 to the square of the size of the Gray 

Level Co-occurrence Matrix (GLCM) minus 1. When an image is constant, the contrast value is 

0. In addition, the property known as contrast can also be referred to as variance and inertia. The 

mathematical formula is shown below: 
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𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑|𝑖 − 𝑗|2

𝑖,𝑗

𝑝(𝑖, 𝑗) 

where 

- 𝑖 and 𝑗 represent the intensity values of adjacent pixel pairs in the image,  

- 𝑝(𝑖, 𝑗)  is to the co-occurrence matrix, computed using the gray-matrix function in MATLAB. 

The co-occurrence matrix measures the frequency of intensity value pairs (𝑖, 𝑗) occurring at 

a given distance and angle in the image and 

- The |𝑖 − 𝑗|2 term calculates the squared difference between the intensity values of the 

adjacent pixel pairs. Squaring the difference ensures that positive and negative differences 

contribute equally to the contrast measurement. 

Correlation 

Correlation calculates the degree of correlation between a pixel and its neighbor across the entire 

image. The range of correlation values is between -1 and 1. When an image is perfectly positively 

correlated, the correlation value is 1, while a perfectly negatively correlated image yields a 

correlation of -1. In the case of a constant image, the correlation value is NaN (Not a Number). 

The mathematical formula is shown below: 

∑
(𝑖 − 𝜇𝜄)(𝑗 − 𝜇𝑗)𝑝(𝑖, 𝑗)

𝜎𝜄𝜎𝑗
𝑖,𝑗

 

where:  

- 𝑖 and 𝑗 represent the intensity values of neighboring pixel pairs in the image, 

- 𝑝(𝑖, 𝑗): corresponds to the co-occurrence matrix, 

- 𝜇𝜄 and 𝜇𝑗: represent the means of the intensity values along the x-axis and y-axis, respectively. 

They are computed using the formulas: 

𝜇𝑖 =  ∑ 𝑖 𝑝(𝑖, 𝑗)    for all 𝑖, 𝑗 

         𝜇𝑗 =  ∑ 𝑗 𝑝(𝑖, 𝑗) for all 𝑖, 𝑗 

- 𝜎𝜒 and 𝜎𝑦: represent the standard deviations of the intensity values along the x-axis and y-

axis, respectively. They are calculated with the formulas: 

𝜎𝜒 =  √∑(𝑖 − 𝑢𝑥)2𝑃(𝑖, 𝑗)   for all 𝑖, 𝑗 
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𝜎𝑗 =  √∑(𝑗 − 𝑢𝑦)
2

𝑃(𝑖, 𝑗)    for all 𝑖, 𝑗 

Action 

Returns the sum of the squares in the GLCM. Action also represents the activity or energy present 

in the signature image. It can be related to the overall stroke dynamics and speed of the signer, 

providing information about the fluidity or hesitation in the signature. 

Homogeneity 

Homogeneity calculates a value that quantifies how closely the elements in the GLCM are 

distributed along its diagonal. The range of homogeneity values is between 0 and 1. A 

homogeneity value of 1 indicates that the GLCM is perfectly diagonal, i.e. the elements are 

distributed exclusively along the diagonal. The mathematical formula is shown below: 

∑
𝑝(𝑖, 𝑗)

1 + |𝑖 − 𝑗|
𝑖,𝑗

 

where 

- 𝑖, 𝑗 represent the intensity values of adjacent pixel pairs in the image,  

- 𝑝(𝑖, 𝑗): corresponds to the co-occurrence matrix, and  

- The |𝑖 − 𝑗| term calculates the absolute difference between the intensity values of adjacent 

pixel pairs. Taking the absolute difference ensures that the homogeneity measurement is 

independent of the direction of the intensity difference. 

Area 

Area represents the total number of pixels in the signature image. It provides a measure of the 

overall size or extent of the signature. 

Bounding box 

The bounding box is the smallest rectangular region that encloses the signature image. It provides 

information about the position, size, and orientation of the signature within the image. 

Convex Area 

Convex area measures the total number of pixels within the convex hull of the signature image. 

The convex hull is the smallest convex polygon that contains all of the signature pixels. 

 



 

49 

 

Eccentricity 

Eccentricity characterizes the curvature or roundness of the signature. It measures how much the 

shape deviates from a perfect circle. A value closer to 0 indicates a more circular shape, while a 

value closer to 1 indicates a more elongated shape. 

Isodiameter 

The isodiameter represents the maximum distance between any two pixels in the signature image. 

It provides an estimate of the overall size or span of the signature. 

Euler number 

The euler number measures the topological connectivity of the signature image. It is calculated 

by subtracting the number of holes from the number of objects. A higher Euler number indicates 

a simpler and more connected structure, while a lower Euler number indicates a more complex 

and fragmented structure. 

Extent 

Extent is the ratio of the number of pixels in the signature image to the total number of pixels in 

the bounding box. It provides information about the occupancy of the signature within its 

bounding box. A higher extent value indicates a larger portion of the bounding box is occupied 

by the signature. 

Filled area 

Filled area measures the number of pixels within the closed boundary of the signature image. It 

provides a measure of the total colored area in the signature. 

Orientation 

Orientation specifies the angle between the major axis of the bounding ellipse and the x-axis. It 

provides information about the tilt or rotation of the signature. 
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Perimeter 

Perimeter calculates the length of the boundary or perimeter of the signature image. It provides 

information about the complexity and intricacy of the signature shape. 

 

Solidity 

Solidity is the ratio of the area of the signature image to the area of its convex hull. It describes 

the compactness or solidity of the signature shape. A higher solidity value indicates a more solid 

or filled shape. 

Major axis length 

The major axis length represents the length of the major axis of the bounding ellipse. It provides 

information about the overall size or extent of the signature along its longest dimension. 

Minor axis length 

Minor axis length represents the length of the minor axis of the bounding ellipse. It provides 

information about the overall size or extent of the signature along its shortest dimension. 

4.3.3  Data preparation 

In order to investigate the applicability of the proposed setup, a total of twelve experiments were 

performed. The first four experiments concern the first dataset [44], the next four experiments 

concern the second dataset [45], and the last four experiments concern the CEDAR dataset [46]. 

The three experiments follow the same methodology: in the first experiment (of the four), the 

classification is applied to the whole image using the basic features, in the second, the basic 

features are applied to the four patches that divide the image, in the third, the extended feature set 

is applied to the whole image, while in the fourth, the extented feature set is applied to the four 

patches. The following table summarizes the experiments performed. 
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Table 1. Experiments performed for each dataset  

 Initial features 

Without patches 

Initial features 

With patches 

Extented features 

Without patches 

Extented features 

With patches 

1st Dataset Experiment 1.1 

Result: 

36×11 values 

Experiment 1.2 

Result: 

36×41 values 

Experiment 1.3 

Result: 

36×33 values 

Experiment 1.4 

Result: 

36×133 values 

2nd Dataset Experiment 2.1 

Result: 

120×11 values 

Experiment 2.2 

Result: 

120×41 values 

Experiment 2.3 

Result: 

120×33 values 

Experiment 2.4 

Result: 

120×133 values 

3rd Dataset  Experiment 3.1 

Result: 

2240×11 values 

Experiment 3.2 

Result: 

2240×41 values 

Experiment 3.3 

Result: 

2240×33 values 

Experiment 3.4 

Result: 

2240×133 values 

 

All experiments used the following machine learning models: (i) Support Vector Machines, (ii) 

Decision Trees, (iii) kNN, (iv) Neural Networks, (v) Naïve Bayes, (vi) Logistic Regression, and 

(vii) Ensemble Algorithms. 

4.4 Experiments 

For each dataset, the training and testing accuracy results are summarized to determine which one 

of the seven methods under consideration provides the best performance. In the following tables,  

case 1 refers to initial features without patches, case 2 refers to initial features with patches, Case 

3 refers to extended features without patches and finally case 4 refers to extended features with 

patches. Also, for each dataset sample images are provided showing correctly and incorrectly 

classified samples, while t-SNE visualizations show the disctrubition of the data. t-SNE (t-

distributed Stochastic Neighbor Embedding) is an unsupervised non-linear dimensionality 

reduction technique for data exploration and visualization of high-dimensional data. It provides 

an intuition of how data is arranged in higher dimensions. It is often used to visualize complex 

datasets in two (or three) dimensions, highlighting underlying patterns and relationships in the 

data. The provided t-SNE visulization refers to case 4 of extended features with patches. Different 

distances are visualized, namely, Cosine, Chebyshev and Euclidean. Specifically: 

 Cosine distance: is a measure of the dissimilarity between two non-zero vectors in an 

inner product space. It is derived from the cosine of the angle between the two vectors. 
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 Chebyshev distance: measures the distance between two points as the maximum 

difference over any of their axis values. 

 Euclidean distance: is a measure of the linear distance between two points in Euclidean 

space. 

4.4.1  Experiments for dataset 1  

The first dataset contains 36 images in total (19 images with genuine signatures and 17 images 

with forged signatures). We have downloaded this dataset from the following link: 

https://github.com/Kevv-J/Signature-Verification-using-MATLAB 

Since there are 36 images  in total, it can be considered a small dataset for classification problems. 

 

Table 2. Training accuracy in the 1st dataset for all cases 

Model 

Accuracy % 

(Training) 

Case 1 

Accuracy % 

(Training) 

Case 2 

Accuracy % 

(Training) 

Case 3 

Accuracy % 

(Training) 

Case 4 

Naive Bayes 60,6 81,8 72,7 60,6 

KNN 72,7 78,7 78,7 72,7 

Ensemble 72,7 60,6 78,7 87,8 

SVM 69,6 78,7 81,8 84,8 

Neural Network 69,6 78,7 75,7 81,8 

Decision Tree 60,6 51,5 69,6 90,9 

Logistic Regression 54,5 54,5 54,5 51,5 

 

The experimental results show that Decision Tree provides the maximum validation accuracy in 

case 4 (extended features with patches) with 90.9%. Regarding the accuracy for the test set, all 

algorithms (although in different cases) achieved 100% accuracy. This means that forged 

signatures were correctly distinguished from genuine ones, as shown in the following table. 

 

https://github.com/Kevv-J/Signature-Verification-using-MATLAB
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Table 3. Testing accuracy in the 1st dataset for all cases 

Model 

Accuracy % 

(Testing) 

Case 1 

Accuracy % 

(Testing) 

Case 2 

Accuracy % 

(Testing) 

Case 3 

Accuracy % 

(Testing) 

Case 4 

Naive Bayes 100 66,6 100 66,6 

KNN 66,6 66,6 66,6 100 

Ensemble 66,6 100 100 66,6 

SVM 33,3 66,6 100 100 

Neural Network 33,3 66,6 100 100 

Decision Tree 33,3 66,6 100 66,6 

Logistic Regression 33,3 33,3 33,3 100 

 

The next figures show some examples of correct and incorrect classification examples. 

    

Figure 17 Correctly classified signature examples in the 1st dataset. 

 

    

Figure 18 Misclassification examples in the 1st dataset. 

 

The next three figures demonstrate the 2D t-SNE visualization for the three different distances. 
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Figure 19: Cosine distance of real and forged images of dataset 1 

 

Figure 20: Chebychev distance of real and forged images of dataset 1 
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Figure 21: Euclidean distance of real and forged images of dataset 1 

 

4.4.2  Experiments for dataset 2  

The second dataset contains a total of 120 images (60 images with genuine signatures and 60 

images with forged signatures). This is a medium sized dataset and we have downloaded it from 

the following link: https://www.kaggle.com/datasets/divyanshrai/handwritten-signatures 

Regarding the training process, it can be observed that the algorithm that provides the maximum 

accuracy validation is Neural Network in Case 3 with 85,1%. In case of testing, we observe that 

the algorithms with the maximum testing accuracy are SVM and Neural Network in case 1 with 

91,6% and Naïve Bayes in case 4, with the same percentage.  

 

 

https://www.kaggle.com/datasets/divyanshrai/handwritten-signatures
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Table 4. Training accuracy in the 2nd dataset for all cases 

Model 

Accuracy % 

(Trining) 

Case 1 

Accuracy % 

(Training) 

Case 2 

Accuracy % 

(Training) 

Case 3 

Accuracy % 

(Training) 

Case 4 

SVM 74,1 69,4 78,7 63,8 

Neural Network 75,9 62 85,1 64,8 

KNN 75,9 75 73,1 62,9 

Logistic Regression 59,2 57,4 64,8 51,8 

Decision Tree 61,1 56,4 59,2 58,3 

Ensemble 71,2 62,9 75,9 63,8 

Naive Bayes 65,7 62 63,8 52,7 

 

 

Table 5. Testing accuracy in the 2nd dataset for all cases 

Model 

Accuracy % 

(Testing) 

Case 1 

Accuracy % 

(Testing) 

Case 2 

Accuracy % 

(Testing) 

Case 3 

Accuracy % 

(Testing) 

Case 4 

SVM 91,6 66,6 83,3 83,3 

Neural Network 91,6 75 83,3 83,3 

KNN 83,3 50 83,3 83,3 

Logistic Regression 58,3 66,6 66,6 50 

Decision Tree 66,6 66,6 66,6 75 

Ensemble 83,3 75 83,3 83,3 

Naive Bayes 66,6 83,3 75 91,6 

 

The next figure provides examples of correctly classified images. Specifically, the first two 

signatures are fake and were classified as fake and the other two are real and were classified as 

real. 

    

Figure 22 Correctly classified signature examples in the 2nd dataset. 
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The next figure provides some examples of misclassification. The first two signatures are fake 

and were classified as real and the other two are real and were classified as fake. 

    

Figure 23 Misclassification examples in the 2nd dataset. 

 

The t-SNE analysis for the 2nd dataset is shown in the following three figures. Once again, we see 

that there are difficulties in the separating the two classes. 

 

 

Figure 24: Cosine distance of real and forged images of dataset 2 
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Figure 25: Chebyshev distance of real and forged images of dataset 2 

 

Figure 26: Euclidean distance of real and forged images of dataset 2 

 



 

59 

 

4.4.3  Experiments for dataset 3 

The third dataset (CEDAR) contains 2640 images (1320 images with forged signature and 1320 

images with genuine signature). We have downloaded it from the following link: 

https://paperswithcode.com/dataset/cedar-signature 

and it is a much larger dataset than the other two.  

The best training results are provided by the Ensemble algorithm with 83,4% for case 3. The same 

method provides the best testing accuracy with 87.5% for case 2. 

 

Table 6. Training accuracy in the 3rd dataset for all cases 

Model 

Accuracy % 

(Training) 

Case 1 

Accuracy % 

(Training) 

Case 2 

Accuracy % 

(Training) 

Case 3 

Accuracy % 

(Training) 

Case 4 

SVM 81,2 55,9 81,1 53,7 

Neural Network 77,5 55,5 78,8 49,9 

KNN 49,9 49,9 49,9 49,9 

Logistic Regression 68,6 53,6 71,2 49,9 

Decision Tree 72,4 76,5 74,2 76,5 

Ensemble 80,6 82,6 83,4 83,3 

Naive Bayes 69,1 73,5 65,3 53,7 

 

 

Table 7. Testing accuracy in the 3rd dataset for all cases 

Model Type 

Accuracy % 

(Testing) 

Case 1 

Accuracy % 

(Testing) 

Case 2 

Accuracy % 

(Testing) 

Case 3 

Accuracy % 

(Testing) 

Case 4 

SVM 56,8 80,3 50 78 

Neural Network 77,6 50 82,9 50 

KNN 50 50 50 50 

Logistic Regression 72,3 50 58,7 50 

Decision Tree 79,9 78,7 79,9 71,5 

Ensemble 79,9 87,5 83,7 84,8 

Naive Bayes 54,5 67 71,9 70,4 

 

 

https://paperswithcode.com/dataset/cedar-signature
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The next figure provides examples of correctly classified images where the first two signatures 

are correctly classified as fakes while the other two are correctly classified as real. 

 

 
   

Figure 27 Correctly classified signature examples in the 3rd dataset. 

 

The next figure shows examples of misclassification. The first two signatures are fake and were 

classified as real and the other two are real and were classified as fake. 

 

    

Figure 28 Misclassification examples in the 3rd dataset. 

 

The following three figures domenstrate the results of the t-SNE visualization regarding the 3rd  

dataset. 
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Figure 29: Cosine distance of real and forged images of dataset 3 

 

Figure 30: Chebychev distance of real and forged images of dataset 3 
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Figure 31: Euclidean distance of real and forged images of dataset 3 

 

From the above results it can be seen that the separation in to the two classes is not an easy task 

even in the case of the 1st dataset which has fewer samples. Nevertheless, the experiments with 

different machine learning algorithms showed that some of them provide reasonable classification 

results. 
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5 CONSLUSIONS  

In this thesis, we conducted a literature review on handwritten signature verification systems. 

First, we gave a general introduction to handwritten signature verification systems, as we 

mentioned that the most important steps for forgery detection are feature extraction and machine 

learning. We then discussed in detail the preprocessing of handwritten signature data, feature 

extraction, feature selection, and forgeries and their types. We then focused on the concept of 

machine learning, its importance in forgery verification, its types and the most common 

classifiers, as well as the advantages and disadvantages of each. 

Regarding the experimental part of the thesis, we studied 3 datasets containing genuine and forged 

signatures. The datasets were of different sizes in terms of volume, so we examined the 

performance of the classifiers on few data (dataset 1), on a medium sized dataset (dataset 2), and 

on a large dataset with thousands of samples (dataset 3). In the experimental part, we ran a total 

of twelve experiments, i.e. four cases for each dataset. The first case refers to the original features 

extracted from the whole image without dividing it into patches. In the second case, the image is 

divided into four patches and features are extracted from each patch separately. In the third case, 

the proposed extended set of features is extracted from the whole image. Finally, the fourth case 

refers to extended features extracted from each of the four patches, separately. We presented 

results showing the training and testing accuracy in all cases for all three datasets. In addition, 

especially for the fourth case, we graphically presented the t-SNE results for each dataset when 

Chebyshev, cosine, and Euclidean distances are applied. 

Regarding the experimental result, we observed that in the case where we have few data 

(specifically in all experiments of dataset 1), many classifiers achieve 100% test accuracy. This 

is because the less training data we have, the more likely the classifiers are to correctly predict 

the entire test set. Our experiments also showed that both enriching the extracted features and 

dividing the image into patches have a positive effect on most of the classifiers in terms of both 

training and testing accuracy. This is true for all three datasets. However, in certain cases, some 

of the classifiers achieved low training and testing accuracy, which can be attributed to overfitting 

due to the nature of these classifiers. The t-SNE plots have shown that there is no good separation 

of the data, especially in datasets 2 and 3. The results are characterized by strong class overlap, 

which hinders the separation efficiency of the classifiers. This conclusion does not hold (or at 
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least not to a large extent) for dataset 1, which contains much fewer data samples than the other 

two datasets. In genral, regarding the performance of the classifiers, the experimental results were 

satisfactory. In all datasets and in all cases, good training/testing accuracies were reported.  

In a future work, the efficiency could be further increased by applying deep learning techniques. 

Such an approach would be especially helpful when the amount of data is large, as in the case of 

dataset 3. The high-dimensional enriched features presented in this thesis would potentially 

benefit from the deep nature of such classifiers, resulting in even better class separation between 

forged and genuine signatures. 
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