

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ
ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΚΑΙ ΗΛΕΚΤΡΟΝΙΚΩΝ
ΜΗΧΑΝΙΚΩΝ
ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΗΣ
ΣΧΕΔΙΑΣΗΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ

UNIVERSITY OF WEST ATTICA
FACULTY OF ENGINEERING

DEPARTMENT OF ELECTRICAL & ELECTRONICS
ENGINEERING

DEPARTMENT OF INDUSTRIAL DESIGN AND
PRODUCTION ENGINEERING

http://www.eee.uniwa.gr
http://www.idpe.uniwa.gr

http://www.eee.uniwa.gr

http://www.idpe.uniwa.gr
Θηβών 250, Αθήνα-Αιγάλεω 12241 250, Thivon Str., Athens, GR-12241, Greece
Τηλ: +30 210 538-1614 Tel: +30 210 538-1614
Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Master of Science in
Τεχνητή Νοημοσύνη και Βαθιά Μάθηση
https://aidl.uniwa.gr/

 Artificial Intelligence and Deep Learning
https://aidl.uniwa.gr/

Master of Science Thesis

Artificial Intelligence Methods for Predictive Maintenance

Student: Dimitrios Koikas
Registration Number: AIDL-0021

MSc Thesis Supervisor

Grigorios Nikolaou
Lecturer

ATHENS-EGALEO, February 2024

Artificial Intelligence Methods for Predictive Maintenance

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

Artificial Intelligence Methods for Predictive Maintenance

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Dimitrios Koikas – mscaidl-0021

This MSc Thesis has been accepted, evaluated and graded by the following committee:

Supervisor Member Member

Nikolaou Grigorios Cantzos Demetrios Leligkou Aikaterini-Eleni

Dept. of Industrial Design
and Production Engineering

Dept. of Industrial Design
and Production Engineering

Dept. of Industrial Design
and Production Engineering

University of West Attica University of West Attica University of West Attica

Artificial Intelligence Methods for Predictive Maintenance

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

Artificial Intelligence Methods for Predictive Maintenance

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

Artificial Intelligence Methods for Predictive Maintenance

I knew exactly what to do but, in a much more real sense, I had no idea what to do.

-Michael Scott

0Front page image: https://www.bitdeal.net/ai-in-predictive-maintenance

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

Artificial Intelligence Methods for Predictive Maintenance

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

Artificial Intelligence Methods for Predictive Maintenance

ABSTRACT

The rapid evolution of Artificial Intelligence over the past few years has revolutionised applications
in several fields. Such field is the Predictive Maintenance (PdM) concept. In contrast to reactive or
scheduledmaintenance, it aims to predictwhenmachinery or infrastracture is likely to fail. This approach
is proven to be cost-efficient, preventing unplanned downtime and optimising operational efficiency.

Therefore, it was decided to explore this interesting concept using Machine Learning algorithms on
a benchmark dataset.

Two problems were approached:

• Regression problem - Predict Remaining Useful Life (RUL)

• Classification problem - Classify the condition of the machine (No fault or type of fault)

The process began with performing an Exploratory Data Analysis (EDA) on the provided dataset. After
the necessary manipulation of the data and graphical evaluation, new Features were engineered to serve
the purpose of the tasks. Several Models were tested in order to select the best performing one.

All of the above will be analysed in the following chapters.

Keywords: Predictive Maintenance, Remaining Useful Life, Fault Classification

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

1

Artificial Intelligence Methods for Predictive Maintenance

Table of Contents

Table of Contents 2

List of Figures 4

List of Tables 5

INTRODUCTION 7

Subject 8

Aim and Objectives 8

Methodology 9

Structure 9

1 THE DATASET 11
1.1 Analog sensors . 11
1.2 Digital sensors . 12
1.3 Failures . 13

2 EXPLORATORY DATA ANALYSIS 15
2.1 Getting to know the dataset . 15
2.2 Graphical Representation . 19

2.2.1 First Fault event comparison . 21
2.2.2 Second Fault event comparison . 23
2.2.3 Third Fault event comparison . 25
2.2.4 Conclusions from Graphical comparison . 26

3 FEATURE ENGINEERING 27
3.1 Apply conclusions from EDA . 28
3.2 New features . 28

4 REMAINING USEFUL LIFE ESTIMATION 31
4.1 Useful tools . 32
4.2 RUL estimation for AirLeakFault1 . 33

4.2.1 Preparation . 33
4.2.2 Linear Regression . 34
4.2.3 Decision Tree Regressor . 34
4.2.4 Random Forest Regressor . 35
4.2.5 Gradient Boosting Regressor . 36
4.2.6 XGBoost Regressor . 36
4.2.7 K-Nearest Neighbors Regressor . 37
4.2.8 Result Summarisation . 38

4.3 RUL estimation for AirLeakFault2 and OilLeakFault 38

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

2

Artificial Intelligence Methods for Predictive Maintenance

4.4 RUL estimation Conclusions . 39

5 STATE CLASSIFICATION 41
5.1 Useful Tools . 41
5.2 Machine State Classification . 43

5.2.1 Preparation . 43
5.2.2 Logistic Regression . 43
5.2.3 Decision Tree Classifier . 45
5.2.4 Random Forest Classifier . 46
5.2.5 Gradient Boosting Classifier . 47
5.2.6 XGBoost Classifier . 48
5.2.7 Deep Neural Network . 50

5.3 State Classification Conclusions . 53

6 CONCLUSIONS 55

7 FUTUREWORK 57

Bibliography – References – Online sources 59

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

3

Artificial Intelligence Methods for Predictive Maintenance

List of Figures

1.3.1 Failure occurrence . 13

2.1.1 Initial dataset head rows . 16
2.1.2 Initial dataset tail rows . 16
2.1.3 Datatype information . 16
2.1.4 Dataset Null value check . 17
2.1.5 Dataset Binary value check . 17
2.1.6 Dataset Value Description . 18
2.2.1 Analog features plot for First Fault event . 21
2.2.2 Digital features plot for First Fault event . 22
2.2.3 Analog features plot for Second Fault event . 23
2.2.4 Digital features plot for Second Fault event . 24
2.2.5 Analog features plot for Third Fault event . 25
2.2.6 Digital features plot for Third Fault event . 26

5.2.1 Logistic Regression Confusion Matrix . 44
5.2.2 Decision Tree Confusion Matrix . 45
5.2.3 Random Forest Confusion Matrix . 46
5.2.4 Gradient Boosting Confusion Matrix . 48
5.2.5 XGBoost Confusion Matrix . 49
5.2.6 Training Loss and Accuracy plot . 51
5.2.7 Deep Neural Network Confusion Matrix . 52

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

4

Artificial Intelligence Methods for Predictive Maintenance

List of Tables

2.1 Normal and Fault Dataframes Length . 20

4.1 Linear Regression Model Test Results . 34
4.2 Decision Tree Model Test Results . 35
4.3 Random Forest Model Test Results . 35
4.4 Gradient Boosting Model Test Results . 36
4.5 XGBoost Model Test Results . 37
4.6 K-Nearest Neighbors Model Test Results . 37
4.7 Regression Models Test Results Summarisation . 38
4.8 All RUL estimations . 38

5.1 Logistic Regression Model Results . 44
5.2 Decision Tree Classifier Model Results . 45
5.3 Random Forest Classifier Model Results . 46
5.4 Gradient Boosting Classifier Model Results . 47
5.5 XGBoost Classifier Model Results . 49
5.6 Deep Neural Network Classifier Model Results . 51
5.7 Classifier Model Results Summarisation . 53

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

5

Artificial Intelligence Methods for Predictive Maintenance

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

6

Artificial Intelligence Methods for Predictive Maintenance

INTRODUCTION

Predictive Maintenance (PdM) is a proactive approach used by several organisations to maintain their
machinery and equipment in optimal condition. Unlike traditional maintenance practices, that rely on
specific schedules or reactive repairs after a breakdown, Predictive Maintenance uses operational data
to predict when equipment is likely to fail. By doing so, preventive actions can be taken before failures
occur, leading to minimised downtime, reduced costs, and optimised productivity.

The concept of Predictive Maintenance revolves around the idea of leveraging data from sensors,
Internet of Things (IoT) devices, and other sources to monitor the health and performance of machinery
in real-time. This data is then analysed using analytics techniques such as Machine Learning algorithms
to identify patterns, trends, and anomalies that may indicate issues or failures in the future.

One of the key benefits (and aims) of this concept is its ability to provide early warnings about equip-
ment degradation or failure. By detecting subtle changes in performance metrics or signs of wear, main-
tenance teams can intervene proactively to resolve issues before they escalate into major problems. This
not only helps in extending the lifespan of equipment, but also ensures smooth operation and minimises
the risk of unexpected downtime, which can be costly for businesses.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

7

Artificial Intelligence Methods for Predictive Maintenance

Subject
This Thesis will explore the application of such concept in the Transportation sector. Machinery faults

occurring in public transportation vehicles during their routine operations result in various - direct and
indirect - problems, especially when they lead to trip interruptions. These unpredictable effects extend
beyond just the operator company, affecting customers who rely on transportation services for their daily
needs and responsibilities. Therefore, timely detection of such faults can prevent trip cancellations and
highlight (or prevent) the need to take vehicles out of service.

It is easy to understand the importance and value maintenance brings to the table. Hundreds of trip
cancellations occur in Europe every year. To put things into perspective, 170 trips were canceled in
Portugal during 2017, as mentioned by the authors of the dataset used in this Thesis.

Aim and Objectives
The aim of this Thesis is to explore Predictive Maintenance techniques with Machine Learning Models

to develop and evaluate methodologies for estimating Remaining Useful Life (RUL) and classifying the
state of industrial equipment. By definition, the main objective is to enhance asset reliability andminimise
downtime by proactively identifying potential failures and optimising maintenance activities. To achieve
this, two (2) research questions are set to be investigated.

Firstly, it seeks to assess the effectiveness of different Machine Learning algorithms in accurately
predicting the RUL of equipment based on historical operational data and sensor measurements. This
involves exploring the performance of Regression models in capturing the degradation patterns of equip-
ment over time.

Secondly, the study aims to investigate state Classification methods to categorise equipment into
various operational states, such as Normal or different Fault states. This objective involves evaluating
the capability of classification algorithms, including Decision Trees, Ensemble techniques and Neural
Networks, in distinguishing between different equipment conditions based on feature extraction available
data.

Furthermore, the study seeks to determine the optimal features and feature engineering techniques for
improving the accuracy and robustness of the classification models. By addressing these research ques-
tions, the study aims to provide insights into the selection and implementation of predictive maintenance
strategies that leverage Machine Learning models to optimise asset management practices and enhance
operational efficiency in industrial settings.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

8

Artificial Intelligence Methods for Predictive Maintenance

Methodology
The Methodology is split in the following parts:

• Dataset Exploration and Processing: Historical operational data and sensor measurements from
the equipment under examination are analysed, modifications are made if necessary and conclu-
sions are extracted.

• Feature Engineering: In this step, relevant features that capture the degradation patterns and oper-
ational states of the equipment are selected from the preprocessed data. New features are created
to serve as target variables for the Regression and Classification models.

• Model Development for RULEstimation: Regressionmodels are trained on the feature-engineered
dataset to predict the Remaining Useful Life of the equipment. Various algorithms - including but
not limited to - Linear Regression, Decision Trees and Gradient Boosting, will be evaluated to
identify the most accurate and reliable model for RUL estimation.

• Model Development for State Classification: Another set of Machine Learning models, such as
Decision Trees or Deep Learning classifiers, are developed to classify the operational states of the
machinery. These models are trained on the feature-engineered dataset to differentiate between
Normal and Fault states based on the extracted features.

• Model Evaluation: For each problem (Regression or Classification), the performance of the de-
veloped models is evaluated using appropriate metrics, such as Mean Absolute Error (MAE) or
Root Mean Squared Error (RMSE) for RUL estimation, and Accuracy, Precision, and Recall for
state Classification. The models are validated using part of the dataset as Test data to evaluate
their generalisation capabilities.

Structure
In Chapter 1: THE DATASET, the dataset used in this Thesis is presented and described.

In Chapter 2: EXPLORATORY DATA ANALYSIS, the dataset is explored and comparisons be-
tween Noraml and Fault states are being made with the help of plots.

In Chapter 3: FEATURE ENGINEERING, the dataset is manipulated according to the results of
EDA and new features are created to be used in the models.

In Chapter 4: REMAINING USEFUL LIFE ESTIMATION, several models are developed and eval-
uated to address the Regression problem of RUL prediction.

In Chapter 5: STATE CLASSIFICATION, several models are developed and evaluated to address
the Classification problem of machine state prediction.

In Chapter 6: CONCLUSIONS, the conclusions of this study are presented.

In Chapter 7: FUTURE WORK, some thoughts for possible expansion of this Thesis are presented.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

9

Artificial Intelligence Methods for Predictive Maintenance

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

10

Artificial Intelligence Methods for Predictive Maintenance

Chapter 1

THE DATASET

The dataset is the result of a PredictiveMaintenance project executed by a group of researchers from the
University of Porto in collaboration with urbanmetro in the city of Porto, in Portugal. The dataset contains
information gathered during 2022 (January to June) aiming to create Machine Learning techniques for
identifying anomalies and predicting equipment failures in online systems.

The Data Acquisition System consists of analog and digital sensors. These sensors acquire real-time
information such as pressure, temperature and current consumption along with discrete signals. Along
with this, the metro vehicle was equipped with a GPS device, providing geographical latitude, longitude
and speed.

On top of every metro vehicle, the Air Production Unit (APU) is installed. APU’s role is to provide
air in several units, performing different functions. The most critical of them is the secondary suspen-
sion unit. Responsible for ensuring the vehicle’s height in desired level, irrespective of the number of
passengers onboard, its importance is easy to understand. Therefore, APU’s failure immediately sets the
corresponding vehicle out of order and non-scheduled repair is needed.

The data are collected in 1-second intervals (1 Hz). In the following sections, the collected signal
types will be cited and described.

1.1 Analog sensors
As mentioned earlier, the analog sensors measure pressure, temperature and electric current consumption
at several APU components. Eight signals are collected.

Here is the description:

• TP2 - Pressure on the compressor (bar).

• TP3 - Pressure generated at the pneumatic panel (bar).

• H1 - Valve that is activated when the pressure read by the pressure switch of the command is above
the operating pressure of 10.2 bar (bar).

• DV pressure - Pressure exerted due to pressure drop generated when air dryers towers discharge
the water. When it is equal to zero, the compressor is working under load (bar).

• Reservoirs - Pressure inside the air tanks installed on the trains (bar).

• Oil_Temperature - Temperature of the oil present on the compressor (°C).

• Flowmeter - Airflow on the pneumatic control panel (m3/h).

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

11

Artificial Intelligence Methods for Predictive Maintenance

• Motor_Current - Motor’s current, which should present the following values:
- close to 0 A when the compressor turns off
- close to 4 A when the compressor is working offloaded
- close to 7 A when the compressor is operating under load (A)

1.2 Digital sensors
The digital signals are either 0 (zero) when inactive or 1 (one) when an event triggers them. Eight signals
are collected as well.

Here is the description:

• COMP - Electrical signal of the air intake valve on the compressor. It is active when there is no
admission of air on the compressor, meaning that the compressor turns off or working offloaded.

• DV electric - Electrical signal that commands the compressor outlet valve. When it is active, it
means that the compressor is working under load; when it is not active, it means that the compres-
sor is off or offloaded.

• Towers - Signal that defines which tower is drying the air and which tower is draining the humidity
removed from the air. When it is not active, it means that tower one is working; when it is active,
it means that tower two is working.

• MPG - Is responsible for activating the intake valve to start the compressor under load when the
pressure in the APU is below 8.2 bar. Consequently, it will activate the sensor COMP, which
assumes the same behaviour as the MPG sensor.

• LPS - Signal activated when the pressure is lower than 7 bars.

• Pressure_switch - Signal activated when pressure is detected on the pilot control valve.

• Oil_Level - The oil level on the compressor is active (equal to one) when the oil is below the
expected values.

• Caudal_impulses - Signal produced by the flowmeter indicating the existence of the flow of air
per second.

As for the GPS device, it returns the following information:

• gpsLong - Longitude position (°).

• gpsLat - Latitude position (°).

• gpsSpeed - Speed (km/h).

• gpsQuality - Signal quality.

GPS signal is lost in case the train is crossing a tunnel and returns 0 (zero).

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

12

Artificial Intelligence Methods for Predictive Maintenance

1.3 Failures
Three failures were detected in the 6-month span:

• Two Air Leak Faults

• One Oil Leak Fault

Themaintenance team provided the timeframe of each failure occurrence alongwith the faulty component,
as shown in the figure below:

Figure 1.3.1: Failure occurrence1

This information helps us annotate the dataset. Annotated features will be used as target variables
for the Machine Learning models’ predictions. (see Chapter 3: FEATURE ENGINEERING)

1Source: Veloso, B., Gama, J., Ribeiro, R. & Pereira, P. MetroPT: A Benchmark dataset for predictive
maintenance

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

13

Artificial Intelligence Methods for Predictive Maintenance

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

14

Artificial Intelligence Methods for Predictive Maintenance

Chapter 2

EXPLORATORY DATA ANALYSIS

Exploratory Data Analysis (EDA) is an essential initial step in the data analysis process that involves
examining and understanding the structure, patterns, and characteristics of a dataset. Through EDA, en-
gineers seek to gain insights into the underlying data to inform subsequent analysis and decision-making.
One aspect of EDA involves summarizing the main characteristics of the data, such as its central ten-
dency, dispersion, and distribution. Descriptive statistics, histograms, and box plots are commonly used
to visualize these properties, providing an overview of the dataset’s key features.

Moreover, EDA aims to identify relationships and patterns within the data, uncovering associations
between variables and revealing trends or anomalies that may warrant further investigation. Techniques
such as scatter plots, correlation matrices, and heatmaps are employed to visualize the relationships be-
tween variables and assess their strength and direction. By exploring these relationships, data hypotheses
can be formed and guide subsequent analysis to better understand the underlying mechanisms driving the
data.

Additionally, EDA serves as a crucial step in data preprocessing, helping to detect and addressmissing
values, outliers, and inconsistencies that may impact the quality and validity of subsequent analyses.
Through data cleaning and preprocessing techniques, such as imputation, outlier detection, and feature
scaling, analysts can ensure that the data is properly prepared for modeling and analysis. By thoroughly
exploring and understanding the dataset through EDA, decisions can be made about which analytical
techniques to apply and how to interpret the results accurately, ultimately leading to more robust and
reliable insights.

In this chapter, the steps taken will be presented along with some short code snippets.

2.1 Getting to know the dataset
First of all, the dataset needs to be loaded and see it’s ”head” and ”tail”. This is to make sure of the

Timeframe, have a first look at dataset’s structure and see its shape.

1 import pandas as pd
2 df_raw = pd.read_csv('dataset_train.csv',
3 parse_dates=['timestamp'],
4 infer_datetime_format=True,
5)
6 df_raw.head()
7 df_raw.tail()
8

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

15

Artificial Intelligence Methods for Predictive Maintenance

Figure 2.1.1: Initial dataset head rows

Figure 2.1.2: Initial dataset tail rows

Dataset’s shape is 10.773.587 rows by 21 columns.

Make sure that datatypes on all columns are as expected (float for analog signals, integers for digital
signals).

1 df_raw.info()
2

Figure 2.1.3: Datatype information

All datatypes are in order.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

16

Artificial Intelligence Methods for Predictive Maintenance

It is important to check if there are missing data (null values) in each column.

1 df_raw.isnull().sum()
2

Figure 2.1.4: Dataset Null value check

Ensure that all digital sensors’ readings are indeed binary. This is done by selecting all ”int64”
datatype columns and counting the unique values in each of them.

1 digitalReadings = df_raw.select_dtypes(include=['int64'])
2 digitalCols = list(digitalReadings.columns)
3 digitalCols.remove("gpsSpeed") # definitely not an on-off signal
4
5 for col_name in digitalCols:
6 print(f"Column {col_name} unique values: {digitalReadings[col_name].

nunique()} ")
7

Figure 2.1.5: Dataset Binary value check

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

17

Artificial Intelligence Methods for Predictive Maintenance

We see that the values are indeed Binary. Interestingly enough, Pressure_Switch readings have one
unique value. This means that this feature brings no variability in the dataset, meaning that it needs to be
eliminated later on, during the Feature Engineering stage. (see Chapter 3: FEATURE ENGINEERING)

Finally, let’s see a description of the dataset regarding its min/max values and value distribution

1 df_raw.describe().T
2

Figure 2.1.6: Dataset Value Description

The values make sense. Binary values are indeed 0 (zero) and 1 (one) and the Analog readings are
not extreme. There are some minor and non-senscial negative values, but they will be updated later on as
0 (zero). (see Chapter 3: FEATURE ENGINEERING)

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

18

Artificial Intelligence Methods for Predictive Maintenance

2.2 Graphical Representation
In order to graphically compare the Normal and Fault states, relevant Timeframes need to be selected.

The Fault Timeframes are known, so Normal Timeframes with similar size will be sampled. Since the
”Oil Leak Fault” has more than 280.000 samples, it will be downsampled for readability purposes. (see
Figure 1.3.1)

To begin with, let’s define the Timeframes.

1 # Fault Timeframes
2 T1, T2 = pd.Timestamp("2022-02-28 21:53:00"), pd.Timestamp("2022-03-01

02:00:00")
3 T3, T4 = pd.Timestamp("2022-03-23 14:54:00"), pd.Timestamp("2022-03-23

15:24:00")
4 T5, T6 = pd.Timestamp("2022-05-30 12:00:00"), pd.Timestamp("2022-06-02

06:18:00")
5
6 # Normal Timeframes
7 T1_ok, T2_ok = pd.Timestamp("2022-02-26 21:53:00"), pd.Timestamp

("2022-02-27 02:00:00")
8 T3_ok, T4_ok = pd.Timestamp("2022-03-20 14:54:00"), pd.Timestamp

("2022-03-20 15:24:00")
9 T5_ok, T6_ok = pd.Timestamp("2022-05-21 18:00:00"), pd.Timestamp

("2022-05-21 22:00:00")
10

The respective dataframes are created.

1 # Fault dataframes
2 fault1_df = fault2_df = fault3_df = df
3
4 fault1_df = df[(df['timestamp'] >= T1) & (df['timestamp'] <= T2)]
5 fault2_df = df[(df['timestamp'] >= T3) & (df['timestamp'] <= T4)]
6 fault3_df = df[(df['timestamp'] >= T5) & (df['timestamp'] <= T6)]
7
8 fault1_df = fault1_df.reset_index(drop=True)
9 fault2_df = fault2_df.reset_index(drop=True)
10 fault3_df = fault3_df.reset_index(drop=True)
11
12 # Normal dataframes
13 ok1_df = ok2_df = ok3_df = df
14
15 ok1_df = df[(df['timestamp'] >= T1_ok) & (df['timestamp'] <= T2_ok)]
16 ok2_df = df[(df['timestamp'] >= T3_ok) & (df['timestamp'] <= T4_ok)]
17 ok3_df = df[(df['timestamp'] >= T5_ok) & (df['timestamp'] <= T6_ok)]
18
19 ok1_df = ok1_df.reset_index(drop=True)
20 ok2_df = ok2_df.reset_index(drop=True)
21 ok3_df = ok3_df.reset_index(drop=True)
22

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

19

Artificial Intelligence Methods for Predictive Maintenance

Printing the dataframes’ shapes, it is confirmed they are now comparable and ready to be plotted.

1 # Fault dataframes shape
2 print(fault1_df.shape)
3 print(fault2_df.shape)
4 print(fault3_df.shape)
5
6 # Normal dataframes shape
7 print(ok1_df.shape)
8 print(ok2_df.shape)
9 print(ok3_df.shape)
10

Event Fault DF Length Normal DF Length
Air Leak Fault 1 14.821 14.821
Air Leak Fault 2 1.801 1.801
Oil Leak Fault 13.802 14.401

Table 2.1: Normal and Fault Dataframes Length

The function below will be called to create and display the plots.

The function arguments are the following:

• faultDataframe - Pass the dataframe with the Fault values

• normalDataframe - Pass the dataframe with the Normal values

• featuresList - Pass either the Analog features list or the Digital features list

• type - Define if the features are Analog or Digital (to select the proper plot function)

1 def plotTimeSeries(faultDataframe, NormalDataframe, featuresList, type):
2 fig, axs = plt.subplots(len(featuresList), 1, figsize=(20, 20), sharex=

True)
3
4 for i, feature in enumerate(featuresList):
5 if type='Analog':
6 axs[i].plot(faultDataframe.index, faultDataframe[feature], label=f"{

feature} - Fault State", color='red')
7 xaxislabel='Index'
8 else:
9 axs[i].step(faultDataframe.index, faultDataframe[feature], label=f"{

feature} - Fault State", where='post', color='red')
10 xaxislabel='Index'
11 axs[i].set_ylabel(feature)
12 axs[i].legend(loc='upper right')
13 axs[i].grid(True)
14
15 for i, feature in enumerate(featuresList):
16 axs[i].plot(NormalDataframe.index, NormalDataframe[feature], label=f"{

feature} - Normal State")
17 axs[i].set_ylabel(feature)

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

20

Artificial Intelligence Methods for Predictive Maintenance

18 axs[i].legend(loc='upper right')
19 axs[i].grid(True)
20
21 axs[-1].set_xlabel(xaxislabel)
22 plt.tight_layout()
23 plt.show()
24

Now the graphs will be plotted using the following commands:

1 plotTimeSeries(fault1_df, ok1_df, analogCols, type='Analog')
2 plotTimeSeries(fault1_df, ok1_df, digitalCols, type='Digital')
3
4 plotTimeSeries(fault2_df, ok2_df, analogCols, type='Analog')
5 plotTimeSeries(fault2_df, ok2_df, digitalCols, type='Digital')
6
7 plotTimeSeries(fault3_df, ok3_df, analogCols, type='Analog')
8 plotTimeSeries(fault3_df, ok3_df, digitalCols, type='Digital')
9

2.2.1 First Fault event comparison
Here are the plots for Analog and Digital features during the First Fault event.

Figure 2.2.1: Analog features plot for First Fault event

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

21

Artificial Intelligence Methods for Predictive Maintenance

Figure 2.2.2: Digital features plot for First Fault event

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

22

Artificial Intelligence Methods for Predictive Maintenance

2.2.2 Second Fault event comparison
Here are the plots for Analog and Digital features during the First Fault event.

Figure 2.2.3: Analog features plot for Second Fault event

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

23

Artificial Intelligence Methods for Predictive Maintenance

Figure 2.2.4: Digital features plot for Second Fault event

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

24

Artificial Intelligence Methods for Predictive Maintenance

2.2.3 Third Fault event comparison
Here are the plots for Analog and Digital features during the First Fault event.

Figure 2.2.5: Analog features plot for Third Fault event

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

25

Artificial Intelligence Methods for Predictive Maintenance

Figure 2.2.6: Digital features plot for Third Fault event

2.2.4 Conclusions from Graphical comparison
Observing the plots above, the following conclusions can be drawn:

• The ”Oil_level” feature is not helpful, since its values do not differ. Even when there is an ”Oil
Leak Fault”.

• ”Caudal_impulses” is a signal produced from the ”sensitive” Flowmeter. However, it does not
seem to have a noteworthy behaviour.

• In Fault State 2 and 3, ”TP2”, ”TP3”, ”H1” and ”DV pressure” seem to only have a phase differ-
ence. They behave differently in Fault State 1.

• ”Reservoir” measurements are distinct in Fault State 1 and 2.

Therefore, ”Oil_level” and ”Caudal_impulses” will be dropped during Feature Engineering (see
Chapter 3: FEATURE ENGINEERING). The rest of the features will be used for predictions regard-
ing all cases.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

26

Artificial Intelligence Methods for Predictive Maintenance

Chapter 3

FEATURE ENGINEERING

Feature engineering is a crucial aspect of Machine Learning and Data Analysis that involves trans-
forming raw data into a format that is suitable for training predictive models. It encompasses a variety of
techniques aimed at extracting relevant information from the data and creating new features that can en-
hance the performance of Machine Learning algorithms. Feature engineering is not only about selecting
the right features but also involves processes like scaling, normalization, encoding categorical variables,
handling missing values, and creating interaction terms or polynomial features. The goal is to represent
the data in a way that highlights meaningful patterns and relationships, improving the predictive accuracy
and generalisation of the models.

One of the key reasons why feature engineering is important is its direct impact on the performance
of Machine Learning models. The quality of the features used to train a model can significantly influence
its ability to make accurate predictions. By engineering relevant features, engineers can provide the
model with more informative input, enabling it to learn complex patterns and relationships in the data
more effectively. Moreover, feature engineering can help mitigate issues such as overfitting by reducing
the dimensionality of the feature space or by creating features that are more robust to noise and outliers.
Ultimately, well-engineered features can lead to models that are more efficient and capable of generalising
to never-before seen data.

This concept plays a crucial role in bridging the gap between raw data and actionable insights. It
allows domain experts to leverage their knowledge and intuition about the data to create features that
capture meaningful aspects of the underlying processes. By incorporating domain-specific knowledge
into the feature engineering process, practitioners can design models that are not only accurate but also
aligned with the requirements and constraints of the problem. Additionaly, feature engineering can un-
cover hidden patterns and relationships in the data that may not be apparent at first glance, enabling more
informed decision-making and facilitating a deeper understanding of the underlying mechanisms driv-
ing the observed phenomena. Overall, feature engineering is an essential step in the Machine Learning
pipeline that can unlock the full potential of data and enhance the effectiveness of predictive modeling
tasks.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

27

Artificial Intelligence Methods for Predictive Maintenance

3.1 Apply conclusions from EDA
Based on the findings of the previous chapter, there are values that need to be corrected and features

that need to be dropped. Analog reading negative and close to 0 (zero), must be considered as 0. Also,
features that seem to not have a significant impact will be dropped. GPS device-related features will be
dropped as well, since the approach of this Thesis does not leverage position knowledge (Maintenance
Station, Parking Station) in any way.

Let’s begin with fixing the negative values (see Figure 2.1.6).

1 df.loc[(df['TP2'] < 0), 'TP2'] = 0
2 df.loc[(df['H1'] < 0), 'H1'] = 0
3 df.loc[(df['DV_pressure'] < 0), 'DV_pressure'] = 0
4 df.loc[(df['Motor_current'] < 0), 'Motor_current'] = 0
5

Then, non-useful features will be dropped.

1 columns_to_drop = ['Pressure_switch', 'gpsLat', 'gpsLong', 'gpsQuality', '
gpsSpeed', 'Oil_level', 'Caudal_impulses']

2 df = df.drop(columns = columns_to_drop)
3

3.2 New features
New features need to be introduced to serve as target features for the predictive models. Regarding the
Regression problem of Remaining Useful Life prediction, there will be one feature for each event. The
time of Fault occurrence is known, therefore the new features will be numerical values representing the
time elapsed since the first known sample (2022-01-01 06:00:00).

As for the Classification problem of State predicting, one-hot encoded features will be introduced.
In the beginning, there will be 1 feature representing the presence of each Fault State. Then, ”Air Leak”
faults will be merged and a new, ”No Fault” feature will be created comparing the Fault states. For
example, if either ”Air Leak” or ”Oil Leak” are equal to 1, ”No Fault” will be 0. In contrast, if both are
Fault features are 0, ”No Fault” will be 1.

The features are engineered with the code below. Consider the Fault Timestamps defined as earlier
(T1,T2 for First Fault and so on...)

For RUL events:

1 df_datetime = pd.DataFrame(df['timestamp'], columns=['timestamp'])
2
3 failure_events = [
4 {'start_time':T1, 'end_time':T2},
5 {'start_time':T3, 'end_time':T4},
6 {'start_time':T5, 'end_time':T6},
7]
8
9 for i, event in enumerate(failure_events, start=1):
10 start_time = pd.to_datetime(event['start_time'])
11 end_time = pd.to_datetime(event['end_time'])
12
13 df[f'RUL_event_{i}'] = (start_time - df_datetime['timestamp']).dt.

total_seconds()

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

28

Artificial Intelligence Methods for Predictive Maintenance

14 df[f'RUL_event_{i}'] = df[f'RUL_event_{i}'].clip(lower=0)
15

A negative value means that the error has already occurred, so the .clip() method is used to set such
values to 0. The values need to be transformed to days before feeding them into the Machine Learning
models, because it makes no physical sense to attempt predictions in seconds. Apart from this, it would
bring extremely high variability to the target feature.

For Classification events:

1 df['AirLeakFault1'] = (df['timestamp'].between(T1,T2)).astype(int)
2 df['AirLeakFault2'] = (df['timestamp'].between(T3,T4)).astype(int)
3 df['OilLeakFault3'] = (df['timestamp'].between(T5,T6)).astype(int)
4
5 # Merge Air Leak Faults
6 df['AirLeakFault'] = df['AirLeakFault1'] | df['AirLeakFault2']
7 # The 'OK' class
8 df['NoFault'] = (df['OilLeakFault'] == 0) & (df['AirLeakFault'] == 0)
9 df['NoFault'] = df['NoFault'].astype(int)
10
11 # Drop not useful columns
12 df = df.drop(['AirLeakFault1', 'AirLeakFault2', axis=1)
13 df = df.rename(columns={'OilLeakFault3': 'OilLeakFault'})
14

Firstly, the values of the rows between the Fault Timestamps are set to 1 (one), indicating that the
Fault is currently present. Then, ”AirLeak” faults are merged to a single column using a ”logical OR”
operation, because they belong to the same class. Finally, the ”NoFault” column is introduced, which is
0 (zero) when there is a Fault and 1 (one) when the equipment is in Normal operation.

To summarise, six (6) new features were introduced:

• RUL_event_1 - Time until Fault event 1 occurs (in seconds).

• RUL_event_2 - Time until Fault event 2 occurs (in seconds).

• RUL_event_3 - Time until Fault event 3 occurs (in seconds).

• NoFault - 1 when State is Normal, 0 when there is a Fault.

• AirLeakFault - 1 when there is an Air Leak, 0 when there is not.

• OilLeakFault - 1 when there is an Oil Leak, 0 when there is not.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

29

Artificial Intelligence Methods for Predictive Maintenance

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

30

Artificial Intelligence Methods for Predictive Maintenance

Chapter 4

REMAINING USEFUL LIFE
ESTIMATION

Remaining Useful Life (RUL) is a critical concept in Predictive Maintenance engineering, referring
to the amount of time a system or component is expected to remain operational before it becomes inef-
fective. It is a key metric used to assess the health and reliability of assets, ranging from machinery and
equipment to all sorts of complex systems. Predicting RUL involves analysing historical data, such as
sensor readings, maintenance records, and operational parameters, to model the degradation and failure
patterns of the equipment over time. By forecasting the remaining operational lifespan of important parts,
organizations can optimise maintenance schedules, minimise downtime, and reduce costs by performing
maintenance only when deemed necessary.

Accurate RULpredictions are essential for enabling proactivemaintenance strategies, such as condition-
based maintenance and Predictive Maintenance, which aim to identify and address potential issues before
they lead to costly disruptions. By leveraging advanced analytics techniques, includingMachine Learning
algorithms, organizations can develop predictive models that take into account various factors influenc-
ing asset degradation, such as operating conditions, environmental factors, and usage patterns. These
models provide valuable insights into the health and performance of assets, allowing maintenance teams
to prioritize activities, allocate resources more efficiently, and extend the useful life of equipment and
machinery.

In this chapter, RUL estimations by several algorithms will be presented. Their performance was
tested on predicting the RUL of the First Fault event and the most accurate model was selected to predict
RUL for the remaining Fault events. In order to save computational resources and calculating time, the
dataset was split into 3 separate sub-sets. So, the corresponding dataset will be loaded for each Fault
event.

Various experiments were ran over the course of this study. When the model has the ability to accept
various hyper-parameters, only the best-performing ones are selected and presented. Consider also that
there were Computational Resources limitations, so models’ size is restricted. Regarding tests execu-
tion, the respective class is imported and the model is created. Then, Training is executed and Predictions
are performed. The results are recorded to be compared with the next models. This procedure is being
followed every time.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

31

Artificial Intelligence Methods for Predictive Maintenance

4.1 Useful tools
There are some useful tools that help us to perform various activities regarding data manipulation. Data

need to be split to training and test sets and then scaled, if required by an algorithm. Moreover, some
metrics are needed in order to evaluate the models’ performance. The ”sci-kit learn” library provides all
of the above as well as classes that represent Machine Learning algorithms.

The following code imports a function to split the data, some useful metric functions and a Scaling
function in [0,1) range.

1 from sklearn.model_selection import train_test_split
2 from sklearn.metrics import mean_squared_error, r2_score,

mean_absolute_error
3 from sklearn.preprocessing import MinMaxScaler
4

Four metrics were used to evaluate model performance and will be explained in the next few para-
graphs. For the equations, please consider the following:

• n - the number of samples in the dataset.

• yi - the actual (true) value of the target variable for the ith sample.

• ŷi - the predicted value of the target variable for the ith sample.

• ȳ - the mean of the actual values of the target variable.

The Mean Squared Error (MSE) is a common metric used to evaluate the performance of regression
models in Machine Learning. The MSE measures the average squared deviation of the predicted values
from the actual values. A lower MSE indicates that the model’s predictions are closer to the actual val-
ues, suggesting better performance. Conversely, a higher MSE indicates greater dispersion or variability
between the predicted and actual values, indicating poorer model performance.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (4.1)

However, the Root Mean Squared Error (RMSE) is preferred over MSE because the result is to the
same scale as the target variable, making it more intuitive and easy to interpret.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (4.2)

Another useful metric is R2 score, which represents the proportion of variance in the target variable
that is predictable from the used features. It ranges in (0,1), 0 meaning that the model does not perform
well in explaining the target variable variations, while 1 means that the model perfectly predicts the target
values. However, a perfect R2 score may be hiding an overfitting model. Therefore, it has to be used in
conjuction with other metrics.

R2 = 1−
∑n

i=1(yi − ŷi)2∑
i = 1n(yi − ȳ)2

(4.3)

Finally, Mean Absolute Error (MAE) metric will be used. The main difference with MSE is that
it gives equal weight to all errors regardless of their magnitude, because there is no squaring. For this
reason, it can be considered as a more accurate indicator of model performance.

MAE =
1

n

n∑
i=1

|yi − ŷi| (4.4)

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

32

Artificial Intelligence Methods for Predictive Maintenance

4.2 RUL estimation for AirLeakFault1

4.2.1 Preparation
In the beginning, the dataset is loaded and the ’RUL_event_1’ feature is transformed to ”days”. Then,

the features to be taken into account are selected. Experiments showed that excluding any of the remaining
features leads to worse model performance, making some of the observations in ”2.2.4: Conclusions from
Graphical comparison” section obsolete. Therefore, all features were used.

1 df = pd.read_csv('df_Fault1_ALLROWS.csv',
2 parse_dates=['timestamp'],
3 infer_datetime_format=True,
4)
5 df['RUL_event_1'] = ((df['RUL_event_1']/3600.0)/24).round(3)
6
7 features = ['TP2', 'TP3', 'H1', 'DV_pressure', 'Reservoirs', '

Oil_temperature', 'Flowmeter', 'Motor_current', 'COMP', 'DV_eletric', '
Towers', 'MPG', 'LPS']

8

Next step is to define the Training and Test sets to feed the algorithms with. First, all features are
assigned to X and the target variable to y. After splitting both to Train and Test subsets, Scaling will be
performed to be used in algorithms that require such data.

Rows BEFORE the Fault occurrence will be selected. Training data will be the 90% of all data and
Test data the remaining 10%.

1 X = df.loc[df['RUL_event_1'] > 0, features]
2 y = df.loc[df['RUL_event_1'] > 0, 'RUL_event_1']
3
4 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1,

random_state=42)
5
6 scaler = MinMaxScaler()
7 X_train_scaled = scaler.fit_transform(X_train)
8 X_test_scaled = scaler.transform(X_test)
9

A function to simply call and have the Metric results printed is handy.

1 def print_metrics(model, y_test, y_pred):
2 mse = mean_squared_error(y_test, y_pred).round(3)
3 rmse = round(math.sqrt(mse), 3)
4 r2 = r2_score(y_test, y_pred).round(3)
5 mae = mean_absolute_error(y_test, y_pred).round(3)
6
7 print(f'\n{model} Test Metrics:')
8 print(f'Mean Squared Error (MSE): {mse}')
9 print(f'Root Mean Squared Error (RMSE): {rmse} days')
10 print(f'R2 Score: {r2}')
11 print(f'Mean Absolute Error (MAE): {mae} days')
12

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

33

Artificial Intelligence Methods for Predictive Maintenance

4.2.2 Linear Regression
Linear Regression is a statistical technique used for modeling the relationship between a dependent

variable and one or more independent variables (features). The relation between the variables is assumed
to be linear, meaning that changes in the features are associated with a constant change in the dependent
variable. In its simplest form, linear regression aims to fit a straight line to the data points in such a way
that the sum of the squared differences between the observed and predicted values is minimised. This is
typically done using the method of least squares, where the parameters of the linear model are estimated
to minimise the sum of squared differences. Of course, the relation of variables in our case is non-linear,
but it is tried for the sake of exploring the full breadth of potential models .

1 from sklearn.linear_model import LinearRegression
2
3 linear_model = LinearRegression()
4 linear_model.fit(X_train_scaled, y_train)
5
6 # Test set
7 y_pred = linear_model.predict(X_test_scaled)
8
9 print_metrics('Linear Regression', y_test, y_pred)
10

Mean Squared Error Root Mean Squared Error (days) R2 score Mean Absolute Error (days)
256.05 16.002 0.11 13.608

Table 4.1: Linear Regression Model Test Results

As expected, the results are way off the desired prediction performance, since the variable are not
linearly related.

4.2.3 Decision Tree Regressor
Decision Trees are a powerful Supervised-learning algorithm used for both Regression and Classifi-

cation tasks in Machine Learning. They are easy to understand, and can capture complex relationships
between features and target variables.

The structure of a Decision Tree resembles a flowchart.

• Each internal node represents a decision based on the value of a specific feature

• Each branch represents the outcome of that decision

• Each leaf node represents the final decision (prediction)

The algorithm aims to recursively partition the feature space into regions that are as homogeneous as
possible with respect to the target variable.

1 from sklearn.tree import DecisionTreeRegressor
2
3 tree_model = DecisionTreeRegressor(max_depth=32, random_state=42)
4 tree_model.fit(X_train, y_train)
5
6 # Test set
7 y_pred = tree_model.predict(X_test)
8

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

34

Artificial Intelligence Methods for Predictive Maintenance

9 print_metrics('Decision Tree', y_test, y_pred)
10

Mean Squared Error Root Mean Squared Error (days) R2 score Mean Absolute Error (days)
118.852 10.902 0.587 4.983

Table 4.2: Decision Tree Model Test Results

The algorithm is not performing great, if we consider the R2 score metric. However, Decision Trees
can be used as a base for more advanced models.

4.2.4 Random Forest Regressor
Random Forest is an Ensemble Learning technique that combines the strength of multiple Decision

Trees to improve predictive performance and generalisation. It is one of the most widely used and robust
algorithms for Regression and Classification tasks.

In a Random Forest, a collection of Decision Trees is trained on different subsets of the Training Data
and using different subsets of features. This randomness among the Trees is helping to reduce overfitting
and improve the model’s ability to generalise unseen data. During Training, each Tree in the forest outputs
a prediction and the final prediction is made by aggregating the predictions of all Trees. This is done by
Averaging (Regression tasks) or Voting (Classification tasks).

1 from sklearn.ensemble import RandomForestRegressor
2
3 rf_model = RandomForestRegressor(n_estimators=10, max_depth=32,

random_state=42)
4 rf_model.fit(X_train, y_train)
5
6 # Test set
7 y_pred = rf_model.predict(X_test)
8
9 print_metrics('Random Forest', y_test, y_pred)
10

Mean Squared Error Root Mean Squared Error (days) R2 score Mean Absolute Error (days)
74.356 8.623 0.742 4.794

Table 4.3: Random Forest Model Test Results

Even though Random Forest’s RMSE and MAE metrics are not that different compared to Decision
Tree’s, R2 score is significantly higher, indicating that it performs better.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

35

Artificial Intelligence Methods for Predictive Maintenance

4.2.5 Gradient Boosting Regressor
Gradient Boosting is an Ensemble technique that combines multiple weak learners (typically Decision

Trees) to create a strong predictive model. The main idea behind Gradient Boosting is to iteratively train
a sequence of weak learners in such a way that each subsequent learner focuses on the mistakes made
by the previous learners. Each new learner is fitted to the differences between the actual and predicted
values of the Ensemble’s predictions. In essence, each new learner attempts to correct the errors made by
the Ensemble up to that point.

1 from sklearn.ensemble import GradientBoostingRegressor
2
3 gb_model = GradientBoostingRegressor(n_estimators=20, learning_rate=0.1,

max_depth=8, random_state=42)
4 gb_model.fit(X_train_scaled, y_train)
5
6 # Test set
7 y_pred = gb_model.predict(X_test_scaled)
8
9 print_metrics('Gradient Boosting', y_test, y_pred)
10

Mean Squared Error Root Mean Squared Error (days) R2 score Mean Absolute Error (days)
153.284 12.381 0.467 9.334

Table 4.4: Gradient Boosting Model Test Results

Gradient Boosting is performing worse than Random Forest, possibly because of its outlier and noise
sensitivity, since it builds Trees sequentially. This can lead to severe influence by such samples in the
early stages of Training.

4.2.6 XGBoost Regressor
XGBoost, (eXtreme Gradient Boosting), is a highly efficient and scalable implementation of the Gradi-

ent Boosting algorithm. It is widely regarded as one of the most powerful Machine Learning algorithms,
especially for structured/tabular data.

It builds upon the principles of Gradient Boosting, where an Ensemble of weak learners are sequen-
tially trained to correct the errors of the previous learners. However, XGBoost contains several enhance-
ments that significantly improve its performance, speed, and scalability:

• Regularisation: Incorporates regularisation techniques to prevent overfitting. This helps general-
ising, particularly on noisy datasets.

• Gradient-based optimisation: Efficiently finds the optimal tree structure by minimising a regular-
ized objective function.

• Tree pruning: Implements advanced tree pruning techniques to remove branches that provide
little to no improvement in the model’s performance, reducing model complexity and improving
efficiency.

1 import xgboost as xgb
2
3 xgb_model = xgb.XGBRegressor(objective='reg:squarederror', n_estimators=10,

learning_rate=0.1, max_depth=32, random_state=42)

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

36

Artificial Intelligence Methods for Predictive Maintenance

4 xgb_model.fit(X_train_scaled, y_train)
5
6 # Test set
7 y_pred = xgb_model.predict(X_test_scaled)
8
9 print_metrics('XGBoost', y_test, y_pred)
10

Mean Squared Error Root Mean Squared Error (days) R2 score Mean Absolute Error (days)
104.328 10.214 0.638 7.922

Table 4.5: XGBoost Model Test Results

Even though XGBoost performs better than Gradient Boosting, Random Forest is still more accurate.
It is expected to have similar vulnerabilities to Gradient Boosting, but it was worth a shot to check if it
could outperform Random Forest.

4.2.7 K-Nearest Neighbors Regressor
K-Nearest Neighbors (KNN) is a simple Supervised Learning algorithm. It belongs to the category

of instance-based (or lazy learning) algorithms. In this category, the Model does not learn a mapping or
pattern from input features to output labels during Training. Instead, Predictions are made based on the
similarity of unseen data points to the Training instances.

The idea behind KNN is to Predict the target variable of a new data point by considering the labels of
its nearest neighbors in the feature space, assuming that samples with similar feature values are likely to
have similar target values. A severe drwaback is that it requires the entire Training set to make predictions,
which makes it computationally expensive for large datasets.

1 from sklearn.neighbors import KNeighborsRegressor
2
3 knn_model = KNeighborsRegressor(n_neighbors=5)
4 knn_model.fit(X_train_scaled, y_train)
5
6 # Test set
7 y_pred = knn_model.predict(X_test_scaled)
8
9 print_metrics('KNN', y_test, y_pred)
10

Mean Squared Error Root Mean Squared Error (days) R2 score Mean Absolute Error (days)
84.823 9.21 0.705 5.103

Table 4.6: K-Nearest Neighbors Model Test Results

KNN performed close to Random Forest. It would be interesting to see its performance with a higher
number of neighbors but, as mentioned in this Chapter’s introduction, Computational Resources are lim-
ited at the time of this study.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

37

Artificial Intelligence Methods for Predictive Maintenance

4.2.8 Result Summarisation
This are the results as they derived from the experiments above:

Model Mean Squared Error Root Mean Squared Error (days) R2 score Mean Absolute Error (days)
Linear Regression 256.05 16.002 0.11 13.608
Decision Tree 118.852 10.902 0.587 4.983
Random Forest 74.356 8.623 0.742 4.794

Gradient Boosting 153.284 12.381 0.467 9.334
XGBoost 104.328 10.214 0.638 7.922

K-Nearest Neighbors 84.823 9.21 0.705 5.103

Table 4.7: Regression Models Test Results Summarisation

Random Forest proved to be the most accurate algorithm. However, it is still away from the 90%
threshold (R2 score), were we can consider a Model somewhat reliable. Gradient Boosting and XG-
Boost underperformance implies noise or outliers lurking in the dataset, something that should have been
explored extensively. The nice surprise is K-Nearest Neighbors algorithm, which performs closely to
Random Forest, but unfortunately cannot be further explored, due to it being highly computationally
demanding during prediction.

So, to predict RUL for ”AirLeakFault2” and ”OilLeakFault”, Random Forest algorithm with the
current configuration will be used. The same preparation stage (see Subsection 4.2.1: Preparation) will
be followed for both cases, except that now the target values will be ”RUL_event_2” and ”RUL_event_3”
respectively.

4.3 RUL estimation forAirLeakFault2 andOilLeakFault
Applying Random Forest Model for both cases, the following results are produced, along with the

earlier case:

Fault Mean Squared Error Root Mean Squared Error (days) R2 score Mean Absolute Error (days)
RUL_event_1 74.356 8.623 0.742 4.794
RUL_event_2 166.349 12.898 0.698 7.132
RUL_event_3 184.727 13.591 0.902 8.207

Table 4.8: All RUL estimations

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

38

Artificial Intelligence Methods for Predictive Maintenance

4.4 RUL estimation Conclusions
It can be observed that RMSE and MAE metrics are increased between each case. It is somewhat

expected because the Faults occurred in different point in time, meaning that there are more samples for
the latest Faults than the first event. More variance is introduced, increasing the calculated Means. On
the other hand, R2 score is in a satisfying level regarding the ”OilLeakFault” event. This leads us to
the conclusion that this algorithm demonstrates improved generalisation capabilities when more Training
data are available. For the first 2 Faults, it would be interesting to gain access to even earlier data, in order
to test this hypothesis. Increase volume of data could cost in prediction accuracy, but it needs to be taken
care of not being overly distanced from reality.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

39

Artificial Intelligence Methods for Predictive Maintenance

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

40

Artificial Intelligence Methods for Predictive Maintenance

Chapter 5

STATE CLASSIFICATION

Machine State Classification is a crucial task in various industrial and manufacturing settings where
monitoring and controlling the operational states of machines are of the utmost importance. The objective
of State Classification is to accurately categorise the state of a machine based on sensor data, signals, or
other relevant features. This classification enables real-time monitoring of machine health, identification
of malfunctions, and timely intervention to prevent costly downtime. It can encompass different kinds
of states, such as normal operation or specific Fault conditions, depending on the requirements of the
application and the complexity of the machinery involved. To sum up, it facilitates proactive mainte-
nance strategies, enhances operational efficiency, and improves the overall reliability and performance of
industrial systems.

In this chapter, Classification models will be employed to determine between 3 states, namely ”No-
Fault”, ”AirLeakFault” and ”OilLeakFault”. The respective one-hot encoded target variables are already
engineered during Chapter ”Feature Engineering”.

The same approach as RUL estimation models will be followed. Additionally, random ”NoFault”
samples will be dropped, in order to balance the dataset.

5.1 Useful Tools
Again, ”sci-kit learn” library will provide the classes for the Classification models, data scaling and

metrics. The ”seaborn” library will be used to visualise the confusion matrix for each model.
The following code imports a function to split the data, some metric functions, a Scaling function

and the Seaborn library.

1 from sklearn.model_selection import train_test_split
2 from sklearn.metrics import accuracy_score, precision_score, recall_score,

f1_score
3 from sklearn.metrics import confusion_matrix
4 from sklearn.metrics import classification_report
5 from sklearn.preprocessing import MinMaxScaler
6 import seaborn as sns
7

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

41

Artificial Intelligence Methods for Predictive Maintenance

Four metrics were used to evaluate model performance and will be explained in the next few para-
graphs.

Accuracy is a fundamental metric to evaluate the performance of Classification models in Machine
Learning. It represents the proportion of correctly classified samples among all the samples in the dataset.
Simply said, Accuracy measures the model’s ability to correctly predict the class labels of the data points.

Accuracy =
Number of Correct Predictions
Total Number of Predictions

(5.1)

Precision is a metric used to evaluate the quality of a Classification models. It measures the pro-
portion of correctly predicted positive samples (true positives) among all samples predicted as positive
by the model. Therefore, Precision represents the model’s ability to avoid samples that were incorrectly
classified as positive (false positives).

Precision =
True Positives

True Positives + False Positives
(5.2)

Recall is a metric used to evaluate the ability of a Classification model to correctly identify positive
samples from the entire set of actual positive samples in the dataset. It measures the proportion of cor-
rectly predicted positive samples (true positives) among all instances that are actually positive.

Recall =
True Positives

True Positives + False Negatives
(5.3)

The F1 score metric combines both Precision and Recall into a single metric, providing a balanced
measure of a model’s performance. The harmonic mean is used instead of a simple arithmetic mean to
ensure that the F1 score gives equal weight to Precision and Recall. This means that the F1 score will be
high only if both Precision and Recall are high.

F1 = 2× Precision× Recall
Precision+ Recall

(5.4)

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

42

Artificial Intelligence Methods for Predictive Maintenance

5.2 Machine State Classification

5.2.1 Preparation
First, a list with the State names is created. This is used to select the appropriate features for target data
and assign a name to the prediction labels (0: ”NoFault”, 1:”AirLeakFault”, 2:”OilLeakFault”). After
loading the dataset, the samples are splitted between Training and Test data, with a 80%-20% ratio. Then,
Training data are Scaled in range [0,1) and Test data are flattened, to be fed into the models.

1 target_names = ['NoFault', 'AirLeakFault', 'OilLeakFault']
2 X = df[features]
3 y = df[target_names]
4
5 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)
6
7 y_train_flat = y_train.values.argmax(axis=1)
8 y_test_flat = y_test.values.argmax(axis=1)
9
10 scaler = MinMaxScaler()
11 X_train_scaled = scaler.fit_transform(X_train)
12 X_test_scaled = scaler.transform(X_test)
13

A function to quickly print the metrics for each model is created in this case too.

1 def print_metrics(model, target_names, y_test, y_pred):
2
3 print(f'\n{model} Test Metrics:')
4 print(classification_report(y_test, y_pred, target_names=target_names))
5
6 cm = confusion_matrix(y_test, y_pred)
7 sns.set(rc={'figure.figsize':(15,7)})
8 sns.heatmap(cm, fmt='d', annot=True, xticklabels=target_names,

yticklabels=target_names)
9 plt.xlabel('Predicted Label')
10 plt.ylabel('True Label')
11 plt.title('Confusion Matrix')
12 plt.show()
13

5.2.2 Logistic Regression
Logistic Regression is a statistical method used for binary Classification tasks. It models the probability
that a given input belongs to a class by fitting a logistic function (sigmoid) to the observed data. To
support the current case, it will be extended to execute multiclass Classification using the Multinomial
Logistic Regression technique.

1 from sklearn.linear_model import LogisticRegression
2
3 linear_model = LogisticRegression(max_iter=1000, multi_class='multinomial')
4 linear_model.fit(X_train_scaled, y_train_flat)
5

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

43

Artificial Intelligence Methods for Predictive Maintenance

6 # Test set predictions
7 y_pred = linear_model.predict(X_test_scaled)
8
9 print_metrics('Logistic Regression', target_names, y_test_flat, y_pred)
10

Label Accuracy Precision Recall F1-score
NoFault 0.77 0.86 0.64 0.74

AirLeakFault 0.95 0.81 0.87
OilLeakFault 0.70 0.90 0.79

Table 5.1: Logistic Regression Model Results

Figure 5.2.1: Logistic Regression Confusion Matrix

The accuracy of 77% indicates that the model predicts the labels relatively well. Let’s see the rest of
the metrics for each labels, to better explore how the model behaves for each of them.

For ”NoFault” label, the model performs very well in avoiding False Positives but it does even better
when it comes to ”AirLeakFault” label, with a Precision of 95%. ”OilLeakFault” predictions are the least
precise.

Even though False Positives are avoided relatively well for ”NoFault” and very well for ”AirLeak-
Fault”, it does not succeed in predicting True Positives in an acceptable manner. On the other hand,
”OilLeakFault” True positives are predicted successfully 90% of the time.

F1-score indicates that there is a good balance between Precision and Recall for all state labels.
Overall, the model performs well in predicting ”AirLeakFault” and relatively well when it comes to

”NoFault” and ”OilLeakFault” states.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

44

Artificial Intelligence Methods for Predictive Maintenance

5.2.3 Decision Tree Classifier
Decision Tree will be used in this case as a Classifier. (see Section 4.2.3: Decision Tree Regressor)

1 from sklearn.tree import DecisionTreeClassifier
2
3 tree_model = DecisionTreeClassifier(max_depth=64, random_state=42)
4 tree_model.fit(X_train_scaled, y_train_flat)
5
6 # Test set predictions
7 y_pred = tree_model.predict(X_test_scaled)
8
9 print_metrics('Decision Tree', target_names, y_test_flat, y_pred)
10

Label Accuracy Precision Recall F1-score
NoFault 0.88 0.89 0.87 0.88

AirLeakFault 0.98 0.98 0.98
OilLeakFault 0.86 0.88 0.87

Table 5.2: Decision Tree Classifier Model Results

Figure 5.2.2: Decision Tree Confusion Matrix

It is immediately apparent that Decision Tree performs quite better than Logistic Regression, with a
difference of 11%. This is reflected in the individual metrics.

The model avoids False Positives in a quite high level, for all kinds of Faults, especially when it
comes to ”AirLeakFault” (98%).

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

45

Artificial Intelligence Methods for Predictive Maintenance

Recall’s results are at almost the same level as Precision. This means that True Positives are properly
detected most of the time for all labels.

Overall, the Decision Tree model performs very well across all metrics. It achieves high quality
results for all three classes. ”AirLeakFault” prediction performance is quite impressive too.

5.2.4 Random Forest Classifier
Random Forest will be used in this case as a Classifier. (see Section 4.2.4: Random Forest Regressor)

1 from sklearn.ensemble import RandomForestClassifier
2
3 rf_model = RandomForestClassifier(n_estimators=100, max_depth=64,

random_state=42)
4 rf_model.fit(X_train_scaled, y_train_flat)
5
6 # Test set predictions
7 y_pred = rf_model.predict(X_test_scaled)
8
9 print_metrics('Random Forest', target_names, y_test_flat, y_pred)
10

Label Accuracy Precision Recall F1-score
NoFault 0.91 0.94 0.87 0.90

AirLeakFault 0.99 0.98 0.99
OilLeakFault 0.87 0.94 0.90

Table 5.3: Random Forest Classifier Model Results

Figure 5.2.3: Random Forest Confusion Matrix

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

46

Artificial Intelligence Methods for Predictive Maintenance

As expected, Random Forest leverages the great performance of Decision Tree and achieves even
better results, with an Accuracy of 91%.

False Positives are perfectly avoided for ”AirLeakFault” and the model does so for ”NoFault” too.
”OilLeakFault” Precision is slightly lower compared to the other classes but it is still in an satisfactory
percentage.

True Positive predictions are very well predicted across all classes. Interestingly, the scores are ”sym-
metrical” around the ”AirLeakFault” label. High Precision leads to lower Recall and vice-versa for the 2
remaining states.

Regarding F1-score, it all comes together to a very good Precision-Balance balance for ”NoFault”
and ”OilLeakFault” states and an excellent balance for ”AirLeakFault” predictions.

The Random Forest classifier is a robust performer for this problem and outperforms the previous
models. So far, it predicts the ”AirLeakFault” class more accurately than the others.

5.2.5 Gradient Boosting Classifier
Gradient Boosting will be used in this case as a Classifier. (see Section 4.2.5: Gradient Boosting Regres-
sor)

1 from sklearn.ensemble import GradientBoostingClassifier
2
3 gb_model = GradientBoostingClassifier(n_estimators=10, learning_rate=0.05,

max_depth=5, random_state=42)
4 gb_model.fit(X_train_scaled, y_train_flat)
5
6 # Test set predictions
7 y_pred = gb_model.predict(X_test_scaled)
8
9 print_metrics('Gradient Boosting', target_names, y_test_flat, y_pred)
10

Label Accuracy Precision Recall F1-score
NoFault 0.79 0.84 0.72 0.78

AirLeakFault 0.99 0.73 0.84
OilLeakFault 0.74 0.88 0.81

Table 5.4: Gradient Boosting Classifier Model Results

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

47

Artificial Intelligence Methods for Predictive Maintenance

Figure 5.2.4: Gradient Boosting Confusion Matrix

Even though Gradient Boosting is using Decision Trees at its core, it is performing worse than them.
In fact, its results are similar to Logistic Regression.

Once again, the ”AirLeakFault” predictions are more precise than in any class. Regarding ”OilLeak-
Fault” class, False Positive rate is not that much satisfactory.

Recall’s low percentages indicate a not so good performance because True Positives are not as high
as expected, especially when compared to the rest of the models.

About F1-score, for ”NoFault” state, the 74% score represents a somewhat reasonable balance be-
tween Precision and Recall, but it is not acceptable when we take into account the standards that are set
from previous models.

Overall, Gradient Boosting could not be the algorithm of choice for this problem, but let’s see how
its ”enhanced version”, XGBoost, performs.

5.2.6 XGBoost Classifier
XGBoost will be used in this case as a Classifier. (see Section 4.2.6: XGBoost Regressor)

1 import xgboost as xgb
2
3 xgb_model = xgb.XGBClassifier(objective='reg:squarederror', n_estimators

=80, learning_rate=0.1, max_depth=64, random_state=42)
4 xgb_model.fit(X_train_scaled, y_train_flat)
5
6 # Test set predictions
7 y_pred = xgb_model.predict(X_test_scaled)
8
9 print_metrics('XGBoost', target_names, y_test_flat, y_pred)
10

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

48

Artificial Intelligence Methods for Predictive Maintenance

Label Accuracy Precision Recall F1-score
NoFault 0.91 0.94 0.88 0.91

AirLeakFault 0.99 0.99 0.99
OilLeakFault 0.88 0.94 0.91

Table 5.5: XGBoost Classifier Model Results

Figure 5.2.5: XGBoost Confusion Matrix

XGBoost performs exceptionally well with an Accuracy of 91%, reaching the same level as Random
Forest. ”AirLeakFault” is perfectly precise once again, while the remaining 2 classes are greatly predicted
as well, in terms of avoiding False Positives.

True Positives of ”AirLeakFault” are at a perfect percentage. The recall percentage is high for the
rest of the states.

XGBoost slightly outperforms Random Forest when it comes to F1-score. Even though the difference
is miniscule, we can say that it does the best job so far.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

49

Artificial Intelligence Methods for Predictive Maintenance

5.2.7 Deep Neural Network
Dense Deep Neural Networks are a type of Artificial Neural Network architecture commonly used for
multiclass Classification tasks. These networks consist of multiple layers of neurons organized sequen-
tially, where each neuron in one layer is connected to every neuron in the subsequent layer, as the term
”Dense” indicates.

In a Sequential Dense DNN, the input layer receives the features of the input data, and subsequent
hidden layers process and transform this information through a series of non-linear transformations. Each
hidden layer applies an activation function to the weighted sum of inputs from the previous layer, allowing
the network to learn complex patterns from the data. Finally, the output layer produces the predictions
for each class.

1 import tensorflow as tf
2 from tensorflow.keras.models import Sequential
3 from tensorflow.keras.layers import Dense, BatchNormalization
4
5 nn_model = Sequential([
6 Dense(32, activation='relu', input_shape=(len(features),)),
7 Dense(16, activation='relu'),
8 Dense(len(target_names), activation='softmax'),
9])
10
11 nn_model.compile(optimizer='adam',
12 loss='categorical_crossentropy',
13 metrics=['accuracy'])
14
15 history = nn_model.fit(X_train_scaled, y_train, epochs=50, batch_size=32,

shuffle=True)
16
17 loss = history.history['loss']
18 accuracy = history.history['accuracy']
19 epochs = range(1, len(loss) + 1)
20
21 plt.figure(figsize=(10, 6))
22 plt.plot(epochs, loss, label='Training Loss')
23 plt.plot(epochs, accuracy, label='Training Accuracy')
24
25 plt.title('Training Loss and Accuracy')
26 plt.xlabel('Epochs')
27 plt.ylabel('Loss / Accuracy')
28 plt.legend()
29
30 plt.grid(True)
31 plt.show()
32

Training Loss function was decreased to 0.38 and Training Accuracy was 81%.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

50

Artificial Intelligence Methods for Predictive Maintenance

Figure 5.2.6: Training Loss and Accuracy plot

Now to perform predictions and check the metrics and Confusion Matrix.

1 y_pred = nn_model.predict(X_test_scaled)
2
3 print_metrics('Deep Neural Network', target_names, y_test_flat, y_pred.

argmax(axis=1))
4

Label Accuracy Precision Recall F1-score
NoFault 0.81 0.93 0.66 0.77

AirLeakFault 0.88 0.95 0.92
OilLeakFault 0.73 0.95 0.82

Table 5.6: Deep Neural Network Classifier Model Results

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

51

Artificial Intelligence Methods for Predictive Maintenance

Figure 5.2.7: Deep Neural Network Confusion Matrix

Neural network did not perform that well. It managed to achieve very high Recall percentages for
Fault states but it failed in the ”NoFault” state. Its performance is generally reflected in the F1-score. No-
tice that it performs in a mediocre way for ”NoFault” and ”OilLeakFault” but once again, ”AirLeakFault”
is the most accurately predicted class.

More Training data could lead the model to yield better results. This would require to include more
sample from the Normal operation state and then employ some short of data augmentation technique for
the Fault states’ samples. This approach was not followed in order to fairly explore how all algorithms
types perform.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

52

Artificial Intelligence Methods for Predictive Maintenance

5.3 State Classification Conclusions

Model Accuracy Precision (0 / 1 / 2) Recall (0 / 1 / 2) F1-score (0 / 1 / 2)
Logistic Regression 0.77 0.86 / 0.95 /0.70 0.66 / 0.81 / 0.90 0.74 / 0.87 / 0.79

Decision Tree 0.88 0.89 / 0.98 / 0.86 0.87 / 0.98 / 0.88 0.88 / 0.98 / 0.87
Random Forest 0.91 0.94 / 0.99 / 0.88 0.87 / 0.98 / 0.94 0.90 / 0.99 / 0.90

Gradient Boosting 0.79 0.84 / 0.99 / 0.74 0.72 / 0.73 / 0.88 0.78 / 0.84 / 0.81
XGBoost 0.91 0.94 / 0.99 / 0.88 0.88 / 0.99 / 0.94 0.91 / 0.99 / 0.91

Neural Network 0.81 0.93 / 0.88 / 0.73 0.66 / 0.95 / 0.95 0.77 / 0.92 / 0.82

Table 5.7: Classifier Model Results Summarisation

In this multiclass Classification problem, six (6) different models were evaluated:

• Logistic Regression

• Decision Tree

• Random Forest

• Gradient Boosting

• XGBoost

• Deep Neural Network

Each model was assessed based on its Accuracy, Precision, Recall, and F1-score. The table above sum-
marises the performance of all model’s that were tested.

The Logistic Regression model, being a simple algorithm, demonstrated decent performance across
all metrics. It provided a reasonable balance between Precision and Recall for each class label. However,
its performance was not satisfactory and it was surpassed by more complex models.

The Decision Tree model showed strong performance with high Accuracy, Precision, Recall, and
F1-score for all class labels. Decision Trees are known for being able to handle non-linear relationships
in the data more effectively, which likely contributed to its performance in this task.

The Random Forest model, being an Ensemble technique, leveraged the good aspects of Decision
Trees and performed even better. Accuracy and F1-score reached (or exceeded) the 90% mark for all
equipment operation states. It hit the perfect F1-score for ”AirLeakFault” too!

The Gradient Boosting model, another Ensemble learning technique, provided results with good Ac-
curacy and Precision. However, it did not manage to reach the levels of the earlier models with the
exception of Logistic Regression.

Then, we can see that the XGBoost model emerged as the top performer, even by a slight margin
compared to its ”competitor” (Random Forest). It showcased exceptional Accuracy, Precision, Recall,
and F1-score for all class labels. XGBoost is known for its scalability, efficiency, and robustness, making
it well-suited for complex classification tasks like the one at hand.

Finally, Deep Neural Network model also demonstrated reasonable performance it could not stand
out, especially when Decision Tree more accurately. Deep Neural Networks are capable of capturing
intricate patterns in data through multiple layers of abstraction, making them effective for such complex
tasks. Therefore, it may offer further improvements with additional Training data, hyper-parameter tuning
and optimisation.

The results are further proving that Ensemble techniques tend to perform better than ”simple” mod-
els. They are harnessing the collective ”wisdom” of multiple models to achieve superior performance,
making them a popular choice. This way, they manage to reduce the variance of predictions, improve
generalisation and tend to better capture complex relationships between the samples.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

53

Artificial Intelligence Methods for Predictive Maintenance

To sum up, each model demonstrated its strengths and weaknesses in tackling this Classification
problem. While traditional Machine Learning models offer strong performance, Deep Neural Networks
provide an alternative approach with potential for further improvement and exploration. Ultimately, the
model of choice is dependent on the requirements of the task, the available computational resources and
the desired level of performance.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

54

Artificial Intelligence Methods for Predictive Maintenance

Chapter 6

CONCLUSIONS

After conducting an extensive batch of experiments of various regression algorithms for estimating Re-
maining Useful Life (RUL) and classification algorithms for state classification, several notable insights
have emerged. Firstly, in the realm of RUL estimation, it’s evident that different regression algorithms
exhibit varying degrees of effectiveness. While some algorithms may excel in certain contexts, others
might outperform them in different scenarios. This highlights the importance of selecting the most suit-
able algorithm based on the specific characteristics and complexities of the dataset under consideration.

The results suggest that the performance of regression algorithms heavily depends on the quality
and relevance of the features used for prediction. Algorithms such as Linear Regression are unable to
demonstrate robust performance when dealing with complex, non-linear data. Conversely, more com-
plex algorithms like Random Forest offer superior predictive capabilities when faced with intricate rela-
tionships within the data. Feature Engineering and selection play a crucial role in enhancing the overall
performance of regression models for RUL estimation tasks.

In contrast, the analysis of classification algorithms for state classification unveils a distinct set of
findings. While regression algorithms focus on predicting a continuous numerical value (e.g., RUL),
classification algorithms are geared towards categorizing data into predefined states. The results indicate
that certain algorithms, such as Random Forest or XGBoost, demonstrate high performance in accurately
classifying the states of equipment based on the selected features.

Furthermore, the interpretability of classification algorithms emerges as a notable advantage, par-
ticularly in scenarios where explainability is important. Unlike some regression models that might be
viewed as ”black boxes,” certain classification algorithms offer transparent decision-making processes,
enabling to comprehend the logical path followed behind each classification outcome. This interpretabil-
ity aspect not only facilitates confidence in the model’s predictions but also enables the observer to extract
actionable insights from the outputs.

The findings underscore the importance of employing a diverse set of regression and classification
algorithms in Predictive Maintenance and system monitoring applications. By leveraging the strengths of
different algorithms and tailoring them to the specific requirements of the task at hand, one can harness
the full potential of Machine Learning for optimising maintenance schedules and enhancing operational
efficiency. Additionally, continued research and experimentation with novel algorithms and techniques
hold the promise of further advancing the accuracy and applicability of predictive analytics in industrial
settings.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

55

Artificial Intelligence Methods for Predictive Maintenance

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

56

Artificial Intelligence Methods for Predictive Maintenance

Chapter 7

FUTUREWORK

The study described in the previous chapters can be expanded further. There are more approaches and
experiments that could yield even better results in all tasks.

To begin with, it would be interesting to explore the performance of Neural Networks for RUL esti-
mation. It is possible that this algorithm will detect complex patterns more effectively than the rest of the
models. Due to technical restrictions, such as limited RAM Memory and GPU not available on-demand
(Google Colab was used), this concept was dropped. Therefore, it could be executed in the future with
additional resources.

Staying in Neural Network’s use, Data Augmentation application could lead to interesting results for
the State Classification problem. Usually, when it comes to Neural Networks, the larger the volume of
data, the better the performance of it. There are enough samples of Normal operation state, but the Fault
state samples could be greatly increased. In the case where Data Augmentation does not improve the
models performance, another idea would be to employ Transfer Learning techniques. Choosing a model
designed for similar tasks, pre-trained models’ knowledge is leveraged, saving a great amount of time to
Train and tune the Network from scratch. Also, note that Transfer Learning is observed to perform well
in cases where data are limited, as is the case for the Fault states in our dataset.

Regarding the models’ hyper-parameters, several attempts and combinations were tested to reach the
results presented in the chapters earlier. There is potential for improving though. Testing several values
in an excessive and exhaustive manner through a grid-search, could have better tuned models as a result.

Another interesting approach would be to investigate the effect and performance of Ensemble Model
Stacking technique. To briefly explain the idea of this method, the first step is to Train a diverse set of
Base Models using different algorithms or variations of the same algorithm. Then, each Base Model is
trained on the Training set and makes predictions on the Test set. The predictions of all models now serve
as Training features along with the original Training data, for a model called Meta-learner. Meta-learner
could be any model, such as Logistic Regression, Decision Trees or Neural Networks. Finally, when
predictions are needed for unseen data, a similar pipeline is executed. The Base Models make predictions
individually which are fed to theMeta-learner, tasked to generate the final prediction. This model stacking
takes advantage of the different perspectives of multiple models, each capturing separate of the underlying
patterns in the dataset.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

57

Artificial Intelligence Methods for Predictive Maintenance

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

58

Artificial Intelligence Methods for Predictive Maintenance

Bibliography – References – Online
sources

[1] B. Veloso, J. Gama, R. Ribeiro, and P. Pereira, ”MetroPT: A Benchmark dataset for predictive main-
tenance [Data set],” Zenodo, 2022. [Online]. Available: https://doi.org/10.5281/zenodo.
6854240

[2] O. Surucu, S. A. Gadsden, and J. Yawney, ”Condition Monitoring using Machine Learning: A
Review of Theory, Applications, and Recent Advances,” Expert Systems with Applications, vol.
221, p. 119738, 2023. doi: https://doi.org/10.1016/j.eswa.2023.119738

[3] A. Theissler, J. Pérez-Velázquez, M. Kettelgerdes, and G. Elger, ”Predictive maintenance enabled
by machine learning: Use cases and challenges in the automotive industry,” Reliability Engineering
& System Safety, vol. 215, p. 107864, 2021. doi: https://doi.org/10.1016/j.ress.2021.
107864

[4] S. Schwendemann, Z. Amjad, and A. Sikora, ”A survey of machine-learning techniques for con-
dition monitoring and predictive maintenance of bearings in grinding machines,” Computers in In-
dustry, vol. 125, p. 103380, 2021. doi: https://doi.org/10.1016/j.compind.2020.103380

[5] J. Dalzochio et al., ”Machine learning and reasoning for predictive maintenance in Industry 4.0:
Current status and challenges,” Computers in Industry, vol. 123, p. 103298, 2020. doi: https:
//doi.org/10.1016/j.compind.2020.103298

[6] T. P. Carvalho, F. A. A. M. N. Soares, R. Vita, R. da P. Francisco, J. P. Basto, and S. G. S. Alcalá,
”A systematic literature review of machine learning methods applied to predictive maintenance,”
Computers & Industrial Engineering, vol. 137, no. April, p. 106024, 2019. doi: https://doi.
org/10.1016/j.cie.2019.106024

[7] R. Caruana and A. Niculescu-Mizil, ”An empirical comparison of supervised learning algorithms,”
in Proceedings of the 23rd International Conference on Machine Learning (ICML’06), 2006, pp.
161-168.

[8] T. G. Dietterich, ”Ensemble methods in machine learning,” inMultiple classifier systems, Springer,
Berlin, Heidelberg, 2000, pp. 1-15.

[9] D. H. Wolpert, ”Stacked generalization,” Neural Networks, vol. 5, no. 2, pp. 241-259, 1992.

[10] W. Wang and X. Wang, ”A comprehensive survey of data-driven predictive maintenance and ma-
chine learning in mechanical systems,” Mechanical Systems and Signal Processing, vol. 104, pp.
799-834, 2018.

[11] A. K. Jardine, D. Lin, and D. Banjevic, ”A review on machinery diagnostics and prognostics imple-
menting condition-based maintenance,”Mechanical Systems and Signal Processing, vol. 20, no. 7,
pp. 1483-1510, 2006.

[12] Y. LeCun, Y. Bengio, and G. Hinton, ”Deep learning,” Nature, vol. 521, no. 7553, pp. 436-444,
2015.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

59

https://doi.org/10.5281/zenodo.6854240
https://doi.org/10.5281/zenodo.6854240
https://doi.org/10.1016/j.eswa.2023.119738
https://doi.org/10.1016/j.ress.2021.107864
https://doi.org/10.1016/j.ress.2021.107864
https://doi.org/10.1016/j.compind.2020.103380
https://doi.org/10.1016/j.compind.2020.103298
https://doi.org/10.1016/j.compind.2020.103298
https://doi.org/10.1016/j.cie.2019.106024
https://doi.org/10.1016/j.cie.2019.106024

Artificial Intelligence Methods for Predictive Maintenance

[13] J. Schmidhuber, ”Deep learning in neural networks: An overview,” Neural Networks, vol. 61, pp.
85-117, 2015.

[14] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning: data mining, infer-
ence, and prediction. Springer Science & Business Media, 2009.

[15] C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.

[16] Pandas. ”Documentation.” Retrieved from https://pandas.pydata.org/docs/

[17] NumPy. ”Documentation.” Retrieved from https://numpy.org/doc/stable/

[18] SciPy. ”Documentation.” Retrieved from https://docs.scipy.org/doc/scipy/

[19] Matplotlib. ”Documentation.” Retrieved from https://matplotlib.org/stable/contents.
html

[20] scikit-learn. ”Documentation.” Retrieved from https://scikit-learn.org/stable/
documentation.html

[21] TensorFlow. ”Documentation.” Retrieved from https://www.tensorflow.org/api_docs

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Dimitrios Koikas ‐ AIDL‐0021

60

https://pandas.pydata.org/docs/
https://numpy.org/doc/stable/
https://docs.scipy.org/doc/scipy/
https://matplotlib.org/stable/contents.html
https://matplotlib.org/stable/contents.html
https://scikit-learn.org/stable/documentation.html
https://scikit-learn.org/stable/documentation.html
https://www.tensorflow.org/api_docs

	Table of Contents
	List of Figures
	List of Tables
	INTRODUCTION
	Subject
	Aim and Objectives
	Methodology
	Structure
	THE DATASET
	Analog sensors
	Digital sensors
	Failures

	EXPLORATORY DATA ANALYSIS
	Getting to know the dataset
	Graphical Representation
	First Fault event comparison
	Second Fault event comparison
	Third Fault event comparison
	Conclusions from Graphical comparison

	FEATURE ENGINEERING
	Apply conclusions from EDA
	New features

	REMAINING USEFUL LIFE ESTIMATION
	Useful tools
	RUL estimation for AirLeakFault1
	Preparation
	Linear Regression
	Decision Tree Regressor
	Random Forest Regressor
	Gradient Boosting Regressor
	XGBoost Regressor
	K-Nearest Neighbors Regressor
	Result Summarisation

	RUL estimation for AirLeakFault2 and OilLeakFault
	RUL estimation Conclusions

	STATE CLASSIFICATION
	Useful Tools
	Machine State Classification
	Preparation
	Logistic Regression
	Decision Tree Classifier
	Random Forest Classifier
	Gradient Boosting Classifier
	XGBoost Classifier
	Deep Neural Network

	State Classification Conclusions

	CONCLUSIONS
	FUTURE WORK
	Bibliography – References – Online sources

		2024-07-25T12:15:01+0300
	ELENI AIKATERINI LELIGKOU

		2024-07-25T21:44:08+0300
	DIMITRIOS KANTZOS

		2024-07-26T11:41:51+0300
	Grigorios Nikolaou

