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Abstract

The landscape of artificial intelligence (Al) is being reshaped by Federated Learning
(FL), a decentralized approach to machine learning (ML) that enhances data privacy
and collaborative model training. This thesis delves into the challenges and potential of
FL, focusing on optimizing communication efficiency, enhancing model performance, and
ensuring robustness in diverse settings.

The research encompasses a detailed literature review and the identification of core
challenges in FL. A series of studies were conducted to address specific aspects: optimizing
data transmission and handling diverse model architectures, data partitioning and client
selection, representation learning and federated distillation, incremental learning and
knowledge retention, and training models with limited data. Each study contributed
to the field by developing innovative algorithms, tested in simulated FL environments and
compared with existing methods.

Key findings of the research include improved communication efficiency with
reduced overhead and bandwidth requirements, enhanced model performance in handling
heterogeneous data and model architecture variability, effective strategies to combat
catastrophic forgetting, and methodologies adept at working with limited and scattered
data. The applicability of FL. was demonstrated in practical scenarios, showcasing its
potential in various domains.

In conclusion, the dissertation significantly contributes to the advancement of FL. It
addresses foundational challenges and demonstrates the adaptability and efficacy of FL
in real-world applications. The findings emphasize FL’s role as a method that ensures

privacy, boosts efficiency, and showcases flexibility in the field of AT and ML.

SUBJECT AREA: 11
KEYWORDS: Federated Learning, Communication Efficiency, Model Heterogeneity,

Non-IID Data, Incremental Learning, Data Privacy.
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Chapter 1

Introduction

1.1 Overview of the Dissertation Topic

Federated Learning: A Paradigm Shift in Collaborative Al

Federated Learning (FL) represents a transformative approach in the field of Artificial
Intelligence (AI) and Machine Learning (ML). It is a decentralized learning technique
that enables multiple participants or devices to collaboratively train a shared model
while keeping their data local. This method not only addresses privacy concerns but also
leverages distributed data sources efficiently [2]. FL’s unique attributes — data privacy,
collaborative learning, and decentralized architecture — make it an attractive solution for
a wide range of applications, from healthcare and finance to autonomous vehicles and
IoT devices [3]. This paradigm is particularly relevant in today’s digital era, where data
privacy and security are paramount, and the volume of data generated by edge devices is
colossal.

In contrast to conventional methods that require data centralization, FL harnesses the
power of distributed datasets across numerous devices, enabling learning directly at the
data source. In FL, data remains on local devices (such as smartphones, IoT devices, or
organizational servers) [4]. The ML model is sent to these devices, where it learns from
the local data and then only the model updates (and not the data itself) are sent back to
the central server. This approach is in absolute contrast to traditional ML, where data
from all sources is usually centralized for model training. Therefore, significantly reducing
the risks associated with data transfer, storage, and potential breaches. Moreover, FL is
inherently designed to operate under limited bandwidth and varying network conditions,
making it particularly suited for edge computing scenarios where data is generated in vast
quantities at the network’s edge.

One of the foremost advantages of FL is its inherent privacy-preserving nature [5]. By
design, FL ensures that the raw data remains confined to its original location, typically the
user’s device, and never gets transmitted or centralized. This fundamental aspect of FL
not only mitigates privacy risks but also fortifies data security, making it an exceptionally

suitable approach for industries handling sensitive information, such as healthcare and
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finance.

FL facilitates collaborative yet independent learning, offering a novel paradigm in
the realm of ML. It allows multiple participants, each with their distinct datasets, to
collaboratively contribute to the development of a comprehensive and robust model. This
balanced combination of collective intelligence and private data control is the cornerstone
of FL’s approach. Each participant in an FL network trains a shared model locally on their
dataset, thereby contributing to the learning process without exposing their data. These
local updates are then aggregated to refine and improve a global model. This mechanism
ensures that the model benefits from a wide range of data inputs, encompassing diverse
patterns and scenarios, which significantly enhances its performance and generalizability.
As a result, FL not only fosters a cooperative learning environment but also respects and
maintains the independence and privacy of individual data sources.

In real-world scenarios, data is often distributed unevenly and can be highly
heterogeneous in nature [6]. FL is uniquely suited to handle such diversity, as it allows
each participant to train models on their specific, local dataset, contributing to a more
inclusive and representative global model. This global model benefits from the diverse
insights derived from each local dataset, ensuring that it is not just informed by a single
type of data but is instead representative of a wide array of data sources. This approach
allows FL to create models that are more adaptable and effective in practical situations,
where data diversity is the norm rather than the exception.

The focus of this dissertation is on exploring and addressing the various challenges
and opportunities that FL presents. It aims to delve into strategies for optimizing
communication efficiency, enhancing model performance, and ensuring robustness in
diverse environments. Given the increasing importance of data privacy and the rapid
growth of edge computing, FL is expected to play a crucial role in the future of Al and ML,
making this research both timely and significant. This dissertation aims to contribute to
the growing body of knowledge in FL, providing insights, methodologies, and applications
that can help harness the full potential of this emerging paradigm.

1.2 Research Motivation and Objectives

1.2.1 Bridging Gaps and Harnessing Data Diversity

The motivation behind this research stems from the growing need for
privacy-preserving Al solutions and the challenges associated with centralized data
processing. FL emerges as a promising solution to these challenges, yet it is not without its
own set of complexities and barriers [7]. These include issues related to data heterogeneity,
communication efficiency, model aggregation, and performance optimization under varying
constraints.

In an era where data is becoming increasingly valuable and sensitive, the traditional

methods of centralizing data for ML are no longer viable. This has motivated the
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exploration of FL as a solution that respects user privacy and data security [8]. The
primary objective is to demonstrate how FL can effectively train models without
compromising the confidentiality of the data. Moreover, the increasing regulatory demands
for data protection, exemplified by legislations like the General Data Protection Regulation
(GDPR), Data Act F_-br Data Governance Act E further underscore the urgency of finding
solutions that align with these privacy requirements. FL presents an opportunity to
comply with such regulations while still leveraging the collective power of distributed
data sources for ML. Another motivation behind this research is the need to address
the challenges posed by data accessibility and heterogeneity. Data is often siloed within
organizations and devices, making it difficult to access for centralized training. FL provides
a unique opportunity to leverage this disparate data, facilitating collaborative learning
without the need for data consolidation. The objective here is to showcase how FL
can handle diverse data distributions and varying data quality across different nodes to
collaboratively train robust and generalizable ML models.

The decentralized nature of FL poses significant challenges in terms of maintaining
and improving the model performance. This is particularly true when considering the
dynamic nature of model training over time, a concept central to the study of model
incrementality [9]. In a federated setting, where data is continuously evolving and new
information is constantly being introduced, it’s crucial for models to not only retain
previously learned knowledge but also efficiently incorporate new insights. This concept of
model incrementality, or continual learning, is a key focus of the research. Addressing these
challenges involves developing novel algorithms and strategies that not only enhance model
accuracy and efficiency but also enable the models to adapt and evolve incrementally. The
objective is to refine FL algorithms to handle the incremental nature of learning, where
the model is continually updated and improved as new data becomes available across the
network of devices.

With the rapid increase of IoT devices and edge computing, there’s a growing need
for efficient on-device ML. FL is inherently suited for this purpose as it allows for local
model training on edge devices [10]. This research is motivated by the desire to advance
the field of edge computing by developing FL techniques that are optimized for such
environments. Moreover, the variability in computational architectures across devices
adds another layer of complexity. Devices participating in an FL network can range from
high-powered servers to edge devices with limited processing capabilities. This diversity
necessitates adaptable and flexible model architectures that can efficiently operate across
a wide spectrum of computational resources. The research thus also aims to address how
FL can be tailored to accommodate and optimize for varying computational architectures,
ensuring that the collaborative learning process is efficient and effective regardless of the
hardware capabilities of each participating node.

Finally, this research is driven by the broader goal of preparing for the future landscape

"https://digital-strategy.ec.europa.eu/en/policies/data-act
https://digital-strategy.ec.europa.eu/en/policies/data-governance-act
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of AT and ML, where privacy, data security, and efficient use of resources will be paramount.
By exploring and addressing the challenges within FL, this dissertation aims to contribute
to the development of sustainable, secure, and efficient Al systems for the future, that

align with the evolving demands of our digital society.

1.2.2 Objectives

This dissertation explores the frontiers of FL, a paradigm designed to harness
decentralized data while enhancing privacy and efficiency. It delves into novel
methodologies for handling data diversity, optimizing model performance in complex
scenarios, and demonstrating FL’s versatility across a range of real-world applications.

Exploring Efficient Learning Strategies: Investigating novel methodologies in FL
to handle data diversity and enhance learning efficiency. The primary objective under this
theme is to delve into the development of innovative methodologies within FL that can
efficiently handle diverse data distributions. This involves creating algorithms that can
learn effectively from decentralized data sources, ensuring that the models trained are as
accurate and efficient as possible. The goal is to overcome the challenges posed by data
and system heterogeneity and to enhance the learning efficiency of FL systems, making
them suitable for a wide range of applications and environments.

Optimizing Model Performance: Developing techniques to optimize the
performance of FL. models in diverse and realistic scenarios. This objective is centered
around the enhancement of FL. model performance, particularly in scenarios that mirror
real-world complexities and constraints. The primary aim is to develop algorithms
that not only enhance computational efficiency and model accuracy but also address
the crucial aspects of fast and stable model convergence, efficient communication,
and robustness against Non-Independent and Identically Distributed (Non-IID) data.
A significant focus is on devising strategies that can effectively utilize sparse data,
incorporating techniques like semi-supervised, self-supervised, and transfer learning to
extract maximal information from limited datasets. Additionally, adapting FL models for
resource-constrained environments is key, requiring lightweight model architectures that
maintain high performance despite computational and data limitations. The overarching
goal is to ensure that FL models are optimized to perform seamlessly across a spectrum
of settings, from data-rich to data-scarce scenarios, thus enhancing the applicability and
effectiveness of FL in various real-world applications.

Addressing Real-world Applications: Demonstrating the versatility of FL across
real-world challenges, this research objective focuses on applying FL to various practical
tasks, such as image classification, named entity recognition, and speech recognition.
These applications are pivotal across numerous industries, going beyond domain-specific
boundaries and offering a horizontal applicability to different sectors. The aim is to
illustrate the transformative potential of FL in handling different types of data while

maintaining data privacy and efficiency. This involves deploying FL for different data
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modalities and evaluating its performance in these varied contexts. By successfully
applying FL to these cross-domain tasks, this research underlines the adaptability and
effectiveness of FL, showcasing its potential as a game-changer in industries where data is
distributed and privacy is paramount.

In summary, the objectives outlined above aim to advance the field of FL by enhancing
its efficiency, privacy, security, and real-world applicability. Through innovative research
and practical implementations, this dissertation endeavors to establish FL as a key player
in the future landscape of Al and ML.

1.3 Dissertation Structure and Summaries of Associated

Research Studies

This dissertation is structured to provide an in-depth exploration of FL. It begins
with an introduction that lays the foundation for the topic, detailing the dissertation’s
overarching themes, motivations, and objectives. This section includes a discussion on
the potential of leveraging data diversity and bridging gaps in FL, followed by a clear
delineation of the dissertation’s objectives. Additionally, it presents an overview of the
dissertation structure and a summary of the studies included. The body of the dissertation
is divided into multiple detailed studies, each addressing a specific aspect of FL.

The second chapter serves as a background and literature review, transitioning from
general ML concepts to the more specialized domain of distributed learning, summarizing
existing studies in FL. This includes a deep dive into various strategies employed in FL,
challenges, and opportunities within the field.

Subsequent chapters, from the third to the tenth, are dedicated to individual studies
focusing on different facets of FL, covering principles, privacy-preserving techniques,
data modality heterogeneity, representation learning, incremental learning, and model
architecture variability. Each chapter is dedicated to a specific study, meticulously
structured with an overview, methodology, experimental setup, results, analysis, and
concludes with insightful discussions and findings. The series investigates FL’s application
across domains like image classification, named entity recognition, and 3D action
recognition, addressing challenges from data distribution to knowledge transfer and model
heterogeneity. It progresses to a practical evaluation of FL in real-world scenarios,
showcasing its adaptability, efficiency, and resilience, thereby demonstrating FL