
TMHMA HLEKTROLOGWN KAI HLEKTRONIKWN MHQANIKWN
SQOLH MHQANIKWN, PANEPISTHMIO DUTIKHS ATTIKHS

&

INSTITOUTO TEQNOLOGIWN PLHROFORIKHS KAI
EPIKOINWNIWN

EJNIKO KENTRO EREUNAS KAI TEQNOLOGIKHS ANAPTUXHS

PROGRAMMA DIDAKTORIKWN SPOUDWN ME SUNEPIBLEYH

DIDAKTORIKH DIATRIBH

OmÏspondh, polupraktorik†, bajià kai enisqumËnh

màjhsh

AJANASIOS G. YALTHS

AIGALEW

IOUNIOS 2024

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING,
FACULTY OF ENGINEERING, UNIVERSITY OF WEST ATTICA

&

INFORMATION TECHNOLOGIES INSTITUTE,

CENTRE FOR RESEARCH AND TECHNOLOGY - HELLAS

PROGRAM OF DOCTORAL STUDIES UNDER CO-SUPERVISION

PhD Thesis

Federated, Multi-agent, Deep Reinforcement Learning

ATHANASIOS G. PSALTIS

ATHENS-EGALEO

JUNE 2024

DIDAKTORIKH DIATRIBH

OmÏspondh, polupraktorik†, bajià kai enisqumËnh màjhsh

Ajanàsioc G. Yàlthc

SUN-EPIBLEPWN KAJHGHTHS: Qaràlampoc Patrikàkhc - Kajhght†c,
Tm†ma HlektrolÏgwn & Hlektronik∏n Mhq., PaDA

SUN-EPIBLEPWN EREUNHTHS: PËtroc Dàrac - Ereunht†c A', IPTHL,
EKETA

TRIMELHS SUMBOULEUTIKH EPITROPH:
Qaràlampoc Patrikàkhc - Kajhght†c, Tm. HHM, PaDA
PËtroc Dàrac - Ereunht†c A', IPTHL, EKETA
Dhm†trioc Zarpalàc - Ereunht†c B', IPTHL, EKETA

EPTAMELHS EXETASTIKH EPITROPH

(Upograf†)

Qaràlampoc Patrikàkhc,
Kajhght†c, Tm. HHM, PaDA

(Upograf†)

PËtroc Dàrac,
Ereunht†c A', IPTHL, EKETA

(Upograf†)

Dhm†trioc Zarpalàc,
Ereunht†c B', IPTHL, EKETA

(Upograf†)

ElËnh Aikater–nh Lel–gkou,
Kajhg†tria, Tm. MBSP, PaDA

(Upograf†)

Paraskeu† Zaqarià,
Ep–kourh Kajhg†tria, Tm. MBSP, PaDA

(Upograf†)

QristÏforoc Kàqrhc,
Ep–kouroc Kajhght†c, Tm. HHM, PaDA

(Upograf†)

Ajanàsioc BoulÏdhmoc,
Ep–kouroc Kajhght†c, Sq. HMMU, EMP

Hmeromhn–a exËtashc 21/06/2024

PhD THESIS

Federated, Multi-agent, Deep Reinforcement Learning

Athanasios G. Psaltis

CO-SUPERVISOR from UNIWA: Charalampos Patrikakis, Professor UniWA

CO-SUPERVISOR from ITI-CERTH: Petros Daras, Researcher A', CERTH-ITI

ADVISORY COMMITTEE:

Charalampos Patrikakis, Professor UniWA

Petros Daras, Researcher A', CERTH-ITI
Dimitrios Zarpalas, Researcher B', CERTH-ITI

EXAMINATION COMMITTEE

(Signature)

Charalampos Patrikakis,

Professor UniWA

(Signature)

Petros Daras,

Researcher A', CERTH-ITI

(Signature)

Dimitrios Zarpalas,

Researcher B', CERTH-ITI

(Signature)

Helen C. Leligou,

Professor UniWA

(Signature)

Paraskevi Zacharia,

Assistant Professor UniWA

(Signature)

Christoforos Kachris,

Assistant Professor UniWA

(Signature)

Athanasios Voulodimos,

Assistant Professor NTUA

Examination Date 21/06/2024

Copyright © Me epif‘laxh pantÏc dikai∏matoc. All rights reserved.

PANEPISTHMIO DUTIKHS ATTIKHS, IPTHL-EKETA kai

Ajanàsioc Yàlthc, Io‘nioc, 2024
H paro‘sa didaktorik† diatrib† kal‘ptetai apÏ touc Ïrouc thc àdeiac qr†shc Creative

Commons «Anaforà Dhmiourgo‘ Mh Emporik† Qr†sh 'Oqi Paràgwga 'Erga 4.0 DiejnËc»

(CC BY-NC-ND 4.0). Sunep∏c, to Ërgo e–nai ele‘jero gia dianom† (anaparagwg†, dianom†

kai parous–ash tou Ërgou sto koinÏ), upÏ tic akÏloujec proÙpojËseic:

a˛. Anaforà dhmiourgo‘: O qr†sthc ja prËpei na kànei anaforà sto Ërgo me ton trÏpo

pou Ëqei oriste– apÏ to dhmiourgÏ † ton qorhgo‘nta thn àdeia.

b˛. Mh emporik† qr†sh: O qr†sthc den mpore– na qrhsimopoi†sei to Ërgo autÏ gia

emporiko‘c skopo‘c.

g˛. 'Oqi Paràgwga 'Erga: O Qr†sthc den mpore– na alloi∏sei, na tropopoi†sei † na

dhmiourg†sei nËo ulikÏ pou na axiopoie– to sugkekrimËno Ërgo (pànw apÏ to Ërgo

autÏ).

Apagore‘etai h antigraf†, apoj†keush kai dianom† thc paro‘sac ergas–ac, ex olokl†rou

† tm†matoc aut†c, gia emporikÏ skopÏ. EpitrËpetai h anat‘pwsh, apoj†keush kai dianom†

gia skopÏ mh kerdoskopikÏ, ekpaideutik†c † ereunhtik†c f‘shc, upÏ thn proÙpÏjesh

na anafËretai h phg† proËleushc kai na diathre–tai to parÏn m†numa. Erwt†mata pou

aforo‘n th qr†sh thc ergas–ac gia kerdoskopikÏ skopÏ prËpei na apeuj‘nontai proc

touc suggrafe–c. Oi apÏyeic kai ta sumperàsmata pou periËqontai se autÏ to Ëggrafo

ekfràzoun ton/thn suggrafËa tou kai den prËpei na ermhneuje– Ïti antiproswpe‘oun tic

jËseic tou epiblËpontoc, thc epitrop†c exËtashc † tic ep–shmec jËseic tou Tm†matoc, tou

PADA kai tou EKETA.

DHLWSH SUGGRAFEA DIPLWMATIKHS ERGASIAS

O kàtwji upogegrammËnoc Ajanàsioc Yàlthc tou Gewrg–ou, upoy†fioc didàktorac tou

Tm†matoc HlektrolÏgwn kai Hlektronik∏n Mhqanik∏n thc Sqol†c Mhqanik∏n tou

Panepisthm–ou Dutik†c Attik†c, dhl∏nw Ïti:

«E–mai suggrafËac kai dikaio‘qoc twn pneumatik∏n dikaiwmàtwn ep– thc diatrib†c kai den

prosbàlw ta pneumatikà dikai∏mata tr–twn. Gia th suggraf† thc didaktorik†c mou diatrib†c

den qrhsimopo–hsa olÏklhro † mËroc Ërgou àllou dhmiourgo‘ † tic idËec kai antil†yeic àllou

dhmiourgo‘ qwr–c na g–netai anaforà sthn phg† proËleushc (bibl–o, àrjro apÏ efhmer–da

† periodikÏ, istosel–da k.lp.). Ep–shc, bebai∏nw Ïti aut† h ergas–a Ëqei suggrafe– apÏ

mËna apokleistikà kai apotele– proÏn pneumatik†c idiokths–ac tÏso dik†c mou, Ïso kai tou

Idr‘matoc. Paràbash thc anwtËrw akadhmak†c mou euj‘nhc apotele– ousi∏dh lÏgo gia thn

anàklhsh tou ptuq–ou mou».

O Dhl∏n

Per–lhyh

To top–o thc teqnht†c nohmos‘nhc (TN) anadiamorf∏netai apÏ thn OmÏspondh Màjhsh

(OM), mia apokentrwmËnh prosËggish sth mhqanik† màjhsh (MM) pou enisq‘ei thn

idiwtikÏthta dedomËnwn kai th sunergatik† ekpa–deush montËlwn. Aut† h diatrib† exetàzei

tic prokl†seic kai tic dunatÏthtec thc OM, epikentr∏nontac sthn beltistopo–hsh thc

apodotikÏthtac epikoinwn–ac, thn en–sqush thc apÏdoshc montËlou kai th diasfàlish thc

anjektikÏthtac se diàfora peribàllonta.

H Ëreuna perilambànei mia leptomer† anaskÏphsh thc logoteqn–ac kai thn tautopo–hsh

twn basik∏n prokl†sewn sthn OM. Diex†qjhsan mia seirà apÏ melËtec gia na

antimetwpisto‘n sugkekrimËnec ptuqËc: h beltistopo–hsh thc metàdoshc dedomËnwn kai h

diaqe–rish diàforwn arqitektonik∏n montËlwn, h katanom† dedomËnwn kai h epilog† kÏmbwn,

h màjhsh anaparàstashc kai h omÏspondh apÏstaxh, h stadiak† màjhsh kai h diat†rhsh

gn∏shc, kaj∏c kai h ekpa–deush montËlwn me periorismËna dedomËna. Kàje epimËrouc melËth

sunËbale ston tomËa anapt‘ssontac kainotÏmouc algor–jmouc, touc opo–ouc dok–mase se

prosomoiwmËna peribàllonta OM kai sunËkrine me upàrqousec mejÏdouc.

Ta k‘ria eur†mata thc Ëreunac perilambànoun th belt–wsh thc apodotikÏthtac thc

epikoinwn–ac me meiwmËnec apait†seic uperfÏrtwshc kai e‘rouc z∏nhc, thn en–sqush thc

apÏdoshc tou montËlou sth diaqe–rish eterogen∏n dedomËnwn kai metablhtÏthtac thc

arqitektonik†c tou montËlou, apotelesmatikËc strathgikËc gia thn antimet∏pish thc

katastrofik†c l†jhc kai mejodolog–ec euËliktec se periorismËna kai diaskorpismËna

dedomËna. H efarmosimÏthta thc OM apode–qjhke se praktikà senària, epideikn‘ontac th

dunamik† thc se diàforouc tome–c.

Sumperasmatikà, h diatrib† suneisfËrei shmantikà sthn pro∏jhsh thc OM.

Antimetwp–zei jemeli∏deic prokl†seic kai apodeikn‘ei thn prosarmostikÏthta kai thn

apotelesmatikÏthta thc OM se efarmogËc tou pragmatiko‘ kÏsmou. Ta eur†mata ton–zoun

ton rÏlo thc OM wc mejÏdou pou exasfal–zei thn idiwtikÏthta, auxànei thn apodotikÏthta

kai epideikn‘ei euelix–a ston tomËa thc teqnht†c nohmos‘nhc kai thc mhqanik†c màjhshc.

JEMATIKH PERIOQH: 11
LEXEIS KLEIDIA: OmÏspondh Màjhsh, ApodotikÏthta Epikoinwn–ac, EterogËneia
Arqitektonik†c MontËlou, Eterogen† DedomËna, Stadiak† Màjhsh, IdiwtikÏthta

DedomËnwn.

Abstract

The landscape of artificial intelligence (AI) is being reshaped by Federated Learning

(FL), a decentralized approach to machine learning (ML) that enhances data privacy

and collaborative model training. This thesis delves into the challenges and potential of

FL, focusing on optimizing communication e�ciency, enhancing model performance, and

ensuring robustness in diverse settings.

The research encompasses a detailed literature review and the identification of core

challenges in FL. A series of studies were conducted to address specific aspects: optimizing

data transmission and handling diverse model architectures, data partitioning and client

selection, representation learning and federated distillation, incremental learning and

knowledge retention, and training models with limited data. Each study contributed

to the field by developing innovative algorithms, tested in simulated FL environments and

compared with existing methods.

Key findings of the research include improved communication e�ciency with

reduced overhead and bandwidth requirements, enhanced model performance in handling

heterogeneous data and model architecture variability, e↵ective strategies to combat

catastrophic forgetting, and methodologies adept at working with limited and scattered

data. The applicability of FL was demonstrated in practical scenarios, showcasing its

potential in various domains.

In conclusion, the dissertation significantly contributes to the advancement of FL. It

addresses foundational challenges and demonstrates the adaptability and e�cacy of FL

in real-world applications. The findings emphasize FL’s role as a method that ensures

privacy, boosts e�ciency, and showcases flexibility in the field of AI and ML.

SUBJECT AREA: 11

KEYWORDS: Federated Learning, Communication E�ciency, Model Heterogeneity,

Non-IID Data, Incremental Learning, Data Privacy.

To my newborn son—

for the precious hours we’ve missed,

and for the countless moments we are yet to share..

Euqarist–ec

Embarking on a PhD is a journey of discovery, made possible by the guidance and

support of many. At the forefront, my advisor, Petros Daras, has been instrumental in

shaping my research skills with his remarkable foresight and commitment to excellence. His

patience and guidance through numerous iterations have been invaluable. His mentorship

has been a cornerstone of my development. I am equally grateful to Prof. Charalampos

Patrikakis, my co-advisor, whose expertise and encouragement have been pivotal in refining

my ideas into substantial research. Together, Petros and Charalampos have been the

architects, transforming my raw ideas into research of substance, and helping me navigate

the world of study with great insight. The Visual Computing Lab of CERTH has been a

vital part of my PhD journey, full of inspiration and teamwork. Working with the talented

people there has greatly enriched my experience. Many talks and pair-programming

sessions, especially with Spyridon Thermos, have boosted my skills and sparked a strong

interest in the vast potential of deep learning. I extend my gratitude to my ex-supervisors

Prof. Robby T. Tan, Prof. Manolis Vavalis, and Prof. Elias Houstis, for their influential

perspectives and inspiration. Lastly, my heartfelt appreciation goes to my family—my

wife Mariadora, my parents, and my sister—for their unwavering support and belief in me

throughout this journey.

L–sta Dhmosieusewn

L–sta twn dhmosie‘sewn tou foitht† se sunËdria/periodikà pou Ëginan sta pla–sia thc

ekpÏnhshc thc didaktorik†c diatrib†c.

Dhmosie‘seic se Episthmonikà Periodikà:

1. Psaltis, A., Zafeirouli, K., Leškovský, P., Bourou, S., Vásquez-Correa, JC.,

Garćıa-Pablos, A., Cerezo Sánchez, S., Dimou, A., Patrikakis, CZ., and Daras,

P. Fostering Trustworthiness of Federated Learning Ecosystem through Realistic

Scenarios. Information. 2023; 14(6):342. https://doi.org/10.3390/info14060342

Dhmosie‘seic se Episthmonikà SunËdria:

1. Psaltis, A., Patrikakis, C. Z., and Daras, P. (2022, October). Deep Multi-modal

Representation Schemes for Federated 3D Human Action Recognition. In European

Conference on Computer Vision (pp. 334-352).

2. Psaltis, A., Kastellos, A., Patrikakis, C. Z., and Daras, P. (2023). FedLID:

Self-Supervised Federated Learning for Leveraging Limited Image Data. In

Proceedings of the IEEE/CVF International Conference on Computer Vision (pp.

1039-1048).

3. Psaltis, A., Chatzikonstantinou, C., Patrikakis, C. Z., and Daras, P. (2023).

FedRCIL: Federated Knowledge Distillation for Representation based Contrastive

Incremental Learning. In Proceedings of the IEEE/CVF International Conference

on Computer Vision (pp. 3463-3472).

Upoblhje–sec Ergas–ec se Episthmonikà Periodikà:

N/A

Upoblhje–sec Ergas–ec se Episthmonikà SunËdria:

1. Chatzikonstantinou, C., Psaltis, A., Patrikakis, C. Z., and Daras, P. “FedFMRL:

Federated Distillation by Feature Mixing for Representation based Learning”

ECCVW 2024

2. Kastellos, A., Psaltis, A., Patrikakis, C. Z., and Daras, P. “FedHARM:

Harmonizing Model Architectural Diversity in Federated Learning” ECCV 2024

PerieqÏmena

PerieqÏmena 26

Katàlogoc Sqhmàtwn 30

P–nakac Orolog–ac 35

Katàlogoc Pinàkwn 35

Suntomograf–ec - ArktikÏlexa - Akrwn‘mia 37

1 Introduction 39

1.1 Overview of the Dissertation Topic . 39

1.2 Research Motivation and Objectives . 40

1.2.1 Bridging Gaps and Harnessing Data Diversity 40

1.2.2 Objectives . 42

1.3 Dissertation Structure and Summaries of Associated Research Studies . . . 43

2 Core Concepts of Federated Learning 47

2.1 Transitioning from Machine Learning to Distributed Learning 47

2.2 Introduction to Federated Learning . 49

2.2.1 FL Topologies and Design Principles 49

2.2.2 Concepts and Terminology . 52

2.3 Privacy-Preserving Principles . 52

2.3.1 Key Threats in FL . 54

2.3.2 Existing Mechanisms and Approaches 55

3 Advances and Challenges in Federated Learning 59

3.1 Strategies for Dealing with Federated Systems and Data 59

3.2 Challenges and Opportunities in FL . 59

3.2.1 Communication E�ciency Challenges 60

3.2.2 System-specific Challenges . 62

3.2.3 Data-specific Challenges . 63

3.2.4 Security Challenges . 64

21

4 Study 1: Federated Learning in IID and Non-IID Settings 67

4.1 Overview of the Study . 67

4.2 Methodology . 68

4.2.1 Federated stochastic gradient descent (FedSGD) 69

4.2.2 Federated Averaging (FedAvg) . 70

4.2.3 A federated optimization algorithm - FedProx 72

4.2.4 Federated Optimisation (FedOpt) . 74

4.3 Experimental Setup and Data Description 75

4.3.1 Experiments details . 75

4.4 Results and Analysis . 78

4.4.1 Image Classification . 78

4.4.2 Named entity recognition . 82

4.5 Discussion and Findings . 86

5 Study 2: Addressing Data Modality Heterogeneity in Federated

Learning 87

5.1 Overview of the Study - Introduction to Data Heterogeneity in FL 87

5.1.1 FL methods . 87

5.1.2 DL-based 3D Action Recognition . 89

5.2 Methodology and Approach for Handling Data Modality Heterogeneity . . . 91

5.2.1 Singe-modality analysis . 91

5.2.2 Multi-modal analysis . 93

5.3 Experimental Setup and Data Description - Experimentation and Results . 96

5.3.1 3D Action Recognition Dataset . 96

5.4 Results and Analysis . 99

5.4.1 Single-modality Evaluation . 99

5.4.2 Multi-modal Evaluation . 100

5.5 Discussion and Findings . 101

6 Study 3: Representation Learning and Federated Distillation in FL 103

6.1 Overview of the Study . 103

6.1.1 Challenges and Solutions in Representation Learning 103

6.2 Methodology and Approach . 105

6.2.1 Problem statement . 105

6.2.2 Local client training . 106

6.2.3 Global representation aggregation 107

6.2.4 FedFMRL Algorithm . 108

6.3 Experimental Setup and Results . 110

6.3.1 Dataset settings . 110

6.3.2 Implementation Details . 111

6.3.3 Performance Evaluation . 112

6.4 Insights and Contributions . 115

7 Study 4: Incremental Learning and Knowledge Retention in FL 117

7.1 Overview of the Study . 117

7.1.1 Challenges and Solutions in Incremental Learning 118

7.2 Methodology and Incremental Learning Techniques 119

7.2.1 Problem statement . 119

7.2.2 Federated Knowledge Distillation . 121

7.2.3 Incremental Learning . 123

7.2.4 FedRCIL Algorithm . 124

7.3 Dealing with Knowledge Retention Challenges 124

7.3.1 Knowledge distillation . 124

7.3.2 Incremental learning . 124

7.3.3 Federated Learning Distillation . 127

7.4 Experimental Results and Analysis . 128

7.4.1 Dataset settings . 128

7.4.2 Implementation Details . 128

7.4.3 Performance Evaluation . 129

7.5 Insights and Contributions . 132

8 Study 5: Representation learning with limited data in FL 133

8.1 Overview of the Study . 133

8.1.1 Challenges and Solutions in Representation Learning from limited

data . 134

8.2 Related Work . 136

8.2.1 Contrastive Learning . 137

8.2.2 FL approaches . 137

8.3 Methodology . 139

8.3.1 FedLID Local Supervision . 139

8.3.2 FedLID Global Supervision . 140

8.3.3 Federated aggregation . 140

8.3.4 FedLID Algorithm . 141

8.4 Experiments . 141

8.4.1 Data settings . 141

8.4.2 Implementation details . 144

8.4.3 Performance Evaluation . 145

8.5 Insights and Contributions . 147

9 Study 6: Tackling Model Architecture Variability in FL 151

9.1 Overview of the Study - Rationale Behind Addressing Model Architecture

Variability . 151

9.1.1 Advancements and Challenges in Federated Representation Learning 153

9.2 Strategies for Managing Diverse Model Architectures 154

9.2.1 Local Supervision and Self-supervision Representation Learning . . . 155

9.2.2 Model-Agnostic Global Aggregation 158

9.3 Experimentation in Various Architectural Scenarios 162

9.3.1 Experiment Setup . 162

9.3.2 Evaluation and Results . 163

9.4 Insights and Contributions . 165

10 Study 7: Trustworthiness in Federated Learning 167

10.1 Overview of the Study . 168

10.2 Practical Challenges and Solutions . 169

10.2.1 FL Strategies . 169

10.2.2 FL Security Mechanisms . 170

10.2.3 Data Management . 170

10.3 Case Studies of FL Applications in Di↵erent Domains 172

10.3.1 Face Re-ID . 172

10.3.2 Named Entity Recognition and Classification 179

10.3.3 Audio Speech Recognition . 183

10.3.4 Insights and Contributions . 185

11 Conclusions and Future Work 187

11.1 Summary of Key Findings . 187

11.2 Contributions of the Dissertation . 189

11.2.1 Overall Contributions and Impact to the Field 190

11.3 Limitations and Future Research Directions 191

11.3.1 Limitations . 191

11.3.2 Future Research Directions . 191

11.4 Final Thoughts and Perspectives on FL’s Future 192

A Implementation Tools and Practical Aspects 217

A.1 Review of Tools and Libraries for FL . 217

A.1.1 FL Platform . 218

A.1.2 Privacy Preserving Capabilities of FL Frameworks 221

A.2 Tools and Libraries for FL Implementation 223

A.2.1 FL Topologies and Design Principles 223

A.2.2 FL Platform Processes and Workflow 223

A.2.3 FL Framework . 225

A.2.4 Infrustructure and Implementation Details 226

A.2.5 Workflow Adaptations . 227

B Best Practices and Guidelines for Implementation 229

B.1 Installing NVFLARE for FL training on virtual nodes 229

B.1.1 Requirements . 229

B.1.2 Folder Structure . 229

B.1.3 Modifications on Your Custom Files 230

B.1.4 Setting up the Application Environment and Training the model

with virtual clients . 234

B.2 NVIDIA FLARE remote training on distributed infrastructure 235

B.2.1 Procedure overview . 235

B.2.2 Provisioning - Networking details . 235

B.2.3 Project yaml file . 235

B.2.4 Create your FL workspace . 236

B.2.5 Set-up the FL environment of central server 237

B.2.6 NOTES . 239

C Principal Threats and Mitigation Strategies in Federated Learning 241

C.1 Threats . 241

C.1.1 Data poisoning attacks . 241

C.1.2 Model poisoning attacks . 241

C.1.3 Model inversion attacks . 242

C.2 Defence mechanisms . 243

C.2.1 Data Anonymisation . 243

C.2.2 Di↵erential Privacy . 243

C.2.3 Homomorphic Encryption (HE) . 244

C.2.4 Secure Multiparty Computation (SMC) 245

D Public 3D action recognition datasets 247

E Dataset Preprocessing phase 249

E.1 Preprocessing steps . 249

E.1.1 Dataset Samples . 251

E.2 Ablation studies . 251

F Architecture Variability Challenges 255

F.1 Challenges in Identification and Excitation of Features 255

F.2 Enhanced Feature Extraction: Integrating Multi-Level Network Insights . . 256

F.3 Model Agnostic Block selection . 257

F.3.1 CIFAR-10 . 258

F.3.2 CIFAR-100 . 259

F.3.3 MNIST . 260

Katàlogoc Sqhmàtwn

2.1 A standard FL system, in which N clients or nodes exchange model updates

with a centralized global server. 50

2.2 Federated Learning (FL) schemes based on data distribution. 52

2.3 Infiltration in FL Systems: Here, an intruder targets either the model or

the data in a poisoning assault. 55

3.1 Data vs. Model poisoning attacks on FL system. In the first case, the

data of the third node has been compromised in such a way as to a↵ect the

training process. In the second case, the attacker is trying to interfere with

the main training process. 65

4.1 Benchmark dataset: CIFAR-10 dataset (an example of an IID type).

Source: https://www.cs.toronto.edu/ kriz/cifar.html. 76

4.2 CIFAR-10 real-world data partition among clients. 77

4.3 An extreme highly heterogeneous dataset partition. 77

4.4 Data flow diagram. 78

4.5 Centralised learning performance on CIFAR-10. 79

4.6 FedAvg learning curves for di↵erent ↵. 80

4.7 FedAvg, FedProx, FedOpt learning curves for ↵ = 0.1. 80

4.8 Medium-heterogeneity: Local isolated federated nodes learning curve. . . . 81

4.9 Medium-heterogeneity: Global node learning curve. 82

4.10 High-heterogeneity: Local isolated federated nodes learning curve. 83

4.11 High-heterogeneity: Global node learning curve. 83

4.12 Performance of Centralized Learning on Named Entity Recognition Task. . 83

4.13 Number of training samples per client for di↵erent data partition strategies. 84

4.14 FedAvg F1 score curves for di↵erent data partition strategies. 85

4.15 Local vs Global performance for two random clients. 85

5.1 ‘Colorized’ 3D flow fields for actions: a) ‘Bowling’, b) ‘Baseball swing’,

and c) ‘Tennis forehand’. In (b) the green color indicates that there is an

intense motion of both arms towards the Y direction, which is the case

when someone hits the ball with the baseball bat. 92

27

https://www.cs.toronto.edu/~kriz/cifar.html

5.2 Proposed multi-modal fusion architectures: a) concatenation of the di↵erent

single-modality features at every time instant, b) concatenation of the

di↵erent single-modality features at the LSTM state space, c) simple

stacking of the LSTM state signals, and d) shared/correlated latent

representation features. 93

5.3 Examples of the formed dataset of multi-view action capturings for actions:

a) ‘Tennis backhand’, b) ‘Jumping jacks’ and c) ‘Lunge’. 97

6.1 (a) The outline of the proposed algorithm. (b) The representation

aggregation mechanism on the server-side. 107

6.2 Impact of di↵erent values of the Odiff factor. 113

7.1 The proposed FL scheme utilizes a centralized server to create and share

the aggregated global representations, while several local nodes participate

asynchronously in the training process. 120

7.2 The proposed Federated Multi-scale Representation Knowledge Distillation

scheme. 121

8.1 The proposed FL scheme utilizes a centralized server to create and share

the global model, while several local nodes participate asynchronously in

the training process. 136

8.2 Images from Tiny-ImageNet (left) and the CIFAR-100 (right), showcasing

the contextual similarities of the two datasets. 143

8.3 Comparison of the top-1 accuracy on CIFAR-100 in an IID setting, over

the federated rounds of FedLID and the baseline. The dotted line is the

aggregation of the local models and the training of the centralized server. . 148

8.4 Comparison of the top-1 accuracy on CIFAR-100 in a Non-IID setting, over

the federated rounds of FedLID and the baseline. The dotted line is the

aggregation of the local models and the training of the centralized server. . 149

9.1 Schematic of the proposed FL System Architecture illustrating the feature

extraction and alignment modules on the local dataset of each client that

harmonizes the heterogenous architectures and the fully-supervised training

on the local dataset. The Model-Agnostic Aggregation Mechanism is the

process performed on the main server to create an enriched representation

of the local dataset, derived from all the clients 155

9.2 Representation-centric learning approach. 156

9.3 Visual representation of the gradient visualizations for three di↵erent neural

network architectures applied to the same original image. On the left, the

original image is depicted. Progressing to the right, the subsequent images

represent gradient heatmaps as interpreted by ResNet, E�cientNet, and

MobileNetV3, respectively. These heatmaps highlight areas of the image

that contribute most significantly to the models’ predictions, with warmer

colors indicating higher gradient values and thus greater importance in the

decision-making process of each network. 157

9.4 Diagram of the descriptor construction process from a ResNet architecture,

illustrating the sequential extraction of features from the four distinct blocks

of the model. The feature maps are processed through a Feature Extraction

Module, resulting in a composite image descriptor that encapsulates

multi-scale representations of the input. 160

10.1 Schematic workflow of a basic FL principle. 171

10.2 The use of di↵erent datasets during the FL training. 172

10.3 The use of Weight and Biases environment for tracking the training process. 172

10.4 (a) Low-, (b) Medium- and (c) High-heterogeneity results of global and

local models at each node (ordered as dummy, and nodes 1 to 5). Note that

the results for node 3 are missing within the low heterogeneity setting (a). 175

10.5 Testing results comparing di↵erent heterogeneity settings, for (a) occluded

and (b) non-occluded images. The results are grouped and ordered from

dummy to nodes 1 to 5. 175

A.1 NVIDIA FL Platform. 220

A.2 Building Block View of FL Platform. 224

A.3 Workflow view of FL. 225

A.4 The adopted Star-like topology that utilizes a centralized server to create

and share the global model, while five peripheral nodes participate

asynchronously in the training process. 227

E.1 Human silhouette: Map 3D joint coordinates to 2D space. Estimate human

silhouette based on skeleton data. 250

E.2 RGB information: Map Depth to RGB pixels, and use their colour value

to create RGB image in Depths’ resolution. Remove background based on

depth values around skeleton data. 250

E.3 Depth map based on skeleton representation: Using depth pixels in previous

2d estimation, find the corresponding 3d voxels based on 3d skeleton data). 251

E.4 3D flow: estimates the actual motion field of the action. 251

E.5 RGB data captured from three distinct perspectives while the subject is

engaged in performing three di↵erent actions. 252

F.1 Enhancing feature salience for similarity learning through pooling and

cropping operations. 256

F.2 Schematic overview of the enhanced feature excitation process, illustrating

Multi-Level feature extraction across the NN. 257

Katàlogoc Pinàkwn

2.1 FL related concepts and terminology. 53

2.2 Most relevant attacks within FL. 56

4.1 Closer look at clients’ data distribution for medium (a =1) heterogeneity

variation. 81

4.2 Comparative confusion matrices of participants 0 and 1 in a

medium-heterogenity scenario. 81

4.3 Closer look at clients’ data distribution for high (a =0.1) heterogeneity

variation. 82

4.4 Comparative confusion matrices of participants 0 and 1 in a

high-heterogeneity scenario. 82

4.5 Number of training samples per client for di↵erent data partition strategies. 84

5.1 Action recognition results in D1: a) Single-modality analysis, b)

Multi-modal fusion. Methods indicated with superscripts ‘s’, ‘c’, ‘d’ and ‘f’

incorporate skeleton, color, depth, and flow data, respectively. Accuracy

obtained at server level (AccS), mean Accuracy obtained at node level

(mAccC). In the centralized scenario, all data is gathered in one node, where

mAccC is ‘-’, the exact opposite happens in the local (isolated) scenario

where AccS is ‘-’, while in the federated scenarios, access is permitted to

both local and global data. 99

5.2 Action recognition results in D2: a) Single-modality analysis, b)

Multi-modal fusion. 101

6.1 Comparative evaluation of di↵erent global aggregation schemes. 112

6.2 Experiments with di↵erent methods for alpha calculation. 113

6.3 Impact of di↵erent values of the acap factor. 114

6.4 Experiments with Non-IID data, for di↵erent beta values 114

6.5 Comparative evaluation with baseline methods on CIFAR10 and CIFAR100

datasets. 115

31

7.1 FLDmA : All losses apply to the whole network FLDmB : Each extra loss

apply to the part of the model before it, backprop from layer 1 to layer 3

FLDmC : Each extra loss apply to the part of the model before it, backprop

from layer 3 to layer 1 . 130

7.2 Comparative evaluation with baseline methods and various distillation

schemes. 130

7.3 Experiments with di↵erent values for the contrastive loss coe�cient mu. . . 131

7.4 Experiments with di↵erent bu↵er size (number of previous task models

employed as positives at the contrastive learning). 131

7.5 Experiments with Non-IID data, for di↵erent beta values. Methods

indicated with subscript ‘m’, and ‘c’ utilize multi-loss, and common dataset,

respectively. 132

8.1 Comparison of our method with di↵erent percentages of available data in

the central server. The data in the local clients are divided equally. 145

8.2 Average Accuracy over the local clients on CIFAR-100 udner the IID setting

with ↵ = 1. 146

8.3 Comparison of our method with di↵erent percentages of available data in

the central server. The data in the local clients are divided in an imbalanced

way. 146

8.4 Average Accuracy over the local clients on CIFAR-100 udner the Non-IID

setting with ↵ = 0.5. 147

8.5 Accuracy of the state-of-the-art in weakly annotated scheme with di↵erent

label ratios. FedCA’s total number of local clients is 5, while FedLID is

utilizing a federated system with 10 clients in total. 148

9.1 Accuracy (%) comparison of FL Methods on CIFAR-10 and CIFAR-100

datasets. The validation was performed on the test set of each database,

and the resulting number is the mean accuracy across the clients. 164

9.2 Accuracy Results of the Proposed Method on the MNIST Dataset against

the FedCon system . 165

10.1 Parameters of SVT Privacy for each experiment. 170

10.2 Training data distributions among clients for di↵erent levels of heterogeneity.173

10.3 Testing data distributions among clients. 174

10.4 Verification performance evaluation of the centrally trained and the FL

aggregated model on the global and the local datasets, where low,medium

and high, denotes the level of heterogeneity. 174

10.5 Training data distributions for di↵erent levels of heterogeneity. 176

10.6 Performance comparison between the centrally trained model w/o FL

(baseline) and the globally aggregated model on the global dataset for

di↵erent FL strategies and high level of heterogeneity. 177

10.7 E↵ect of SVT mechanism in global model’s performance. 178

10.8 Performance comparison of global and local models on the local

datasets. Experiment: High level of heterogeneity, FedOpt strategy, w/o

privacy-preserving mechanism. 178

10.9 NERC datasets distribution for the language unbalance heterogeneity

strategy. 180

10.10NERC datasets distribution for the size unbalance heterogeneity strategy. . 180

10.11NERC FL experiments with the language unbalance heterogeneity strategy.

The performance is measured using the F-score. 181

10.12NERC FL experiments with the size unbalance heterogeneity strategy. The

performance is measured using the F-score. 181

10.13NERC FL experiments with SVT privacy (language unbalance data). 182

10.14Data-poisoning experiment, with one of the clients having ‘poisoning’

training data. 182

10.15Summary of FL results for the di↵erent configurations of data heterogeneity

and privacy-preserving approaches. 184

10.16Federated Training in di↵erent heterogeneity and privacy settings for

Dummy node and Site-1. Rows 1 and 2 correspond to low and high

heterogeneity, respectively, and rows 3 and 4 correspond to the high

heterogeneity setting for SVT and PP settings, respectively. 184

A.1 Pros and Cons of di↵erent Federated Learning frameworks focusing on

privacy-preserving aspects. 222

A.2 Privacy preserving methods of di↵erent frameworks. 222

D.1 Public 3D action recognition datasets. *The authors in [1] used a capturing

framework similar to the developed one (i.e. 3 Kinect sensors positioned in

an arced configuration), but generated 80 non-identical views, by varying

the height and the distance of the Kinect sensors from the subjects. 247

E.1 RGB and associated depth data samples obtained from various perspectives

of a subject executing diverse actions. 253

E.2 3D flow fields representing the execution of four distinct actions (jumping,

weight lifting, basketball shooting, and golf swinging) captured at four

sequential time points, spanning from the initiation to the completion of

each task. 254

E.3 Confusion matrices derived from the implemented 3D flow and skeleton

tracking methodologies. 254

F.1 The KL-Divergance of E�cientNet and MobileNetV3 under 100000 of total

clusters on CIFAR-10 dataset. 258

F.2 The KL-Divergence of ResNet and E�cientNet with 100000 total clusters

on CIFAR-10 dataset . 259

F.3 The KL-Divergence of ResNet and MobileNetV3 with 100000 total clusters

on CIFAR-10 dataset . 259

F.4 The KL-Divergance of E�cientNet and MobileNetV3 under 100000 of total

clusters on CIFAR-100 dataset. 260

F.5 KL-Divergence of ResNet and E�cientNet under 100000 of total clusters

on CIFAR-100 dataset . 260

F.6 KL-Divergence of ResNet and MobileNetV3 under 100000 of total clusters

on CIFAR-100 dataset . 260

F.7 KL-Divergence of E�cientNet and MobileNetV3 under 100000 of total

clusters on MNIST dataset . 261

F.8 KL-Divergence of ResNet and E�cientNet under 100000 of total clusters

on MNIST dataset . 261

F.9 KL-Divergence of ResNet and MobileNetV3 under 100000 of total clusters

on MNIST dataset . 261

P–nakac Orolog–ac

XenÏglwssoc Ïroc EllhnikÏc 'Oroc

Federated Learning (FL) OmÏspondh Màjhsh

Knowledge Distillation ApÏstaxh Gn∏shc

Representation Learning Màjhsh Anaparàstashc

Incremental Learning Stadiak† Màjhsh

Self-Supervised Learning AutÏ-EpopteuÏmenh Màjhsh

Data Partitioning DiamËrish DedomËnwn

Machine Learning (ML) Mhqanik† Màjhsh

Artificial Intelligence (AI) Teqnht† Nohmos‘nh

Edge Computing Upologistik† Sto 'Akro

Internet of Things (IoT) Diad–ktuo twn Pragmàtwn

Data Heterogeneity EterogËneia DedomËnwn

Client Selection Epilog† KÏmbou

Adversarial Attacks EqjrikËc EpijËseic

Data Poisoning Dhlhthr–ash DedomËnwn

Model Convergence S‘gklish MontËlou

Communication E�ciency ApodotikÏthta Epikoinwn–ac

Data Privacy ApÏrrhto DedomËnwn

Model Personalization Exatom–keush MontËlou

Di↵erential Privacy DiaforikÏ ApÏrrhto

Homomorphic Encryption Omomorfik† Kruptogràfhsh

Blockchain Technology Teqnolog–a Alus–dac Sustoiqi∏n

Anomaly Detection An–qneush Anwmali∏n

Sustainability BiwsimÏthta

Carbon Footprint Apot‘pwma 'Anjraka

Ethical AI Hjik† Teqnht† Nohmos‘nh

Regulatory Compliance SummÏrfwsh me KanonistikËc Apait†seic

Suntomograf–ec - ArktikÏlexa -

Akrwn‘mia

AEI An∏tato EkpaideutikÏ 'Idruma

ELLAK Ele‘jero LogismikÏ LogismikÏ Anoiqto‘ K∏dika

H/H HlektrolÏgwn/Hlektronik∏n

PADA Panepist†mio Dutik†c Attik†c

FLS Federated Learning Strategies

SMC Secure Multiparty Computation

FL Federated Learning

AI Artificial Intelligence

ML Machine Learning

IoT Internet of Things

5G Fifth Generation (of mobile network technology)

IID Independent and Identically Distributed

Non-IID Non-Independent and Identically Distributed

CNN Convolutional Neural Network

SGD Stochastic Gradient Descent

ReLU Rectified Linear Unit

CLR Contrastive Learning

BYOL Bootstrap Your Own Latent

GAN Generative Adversarial Network

FedAvg Federated Averaging

FedCA Federated Contrastive Aggregation

FedSimCLR Federated SimCLR

MOON Model-Oriented Online Network

FedMatch Federated Matching

FedX Federated X (generic term)

FedCon Federated Consistency

SelfFed Self-Supervised Federated Learning

Adam Adaptive Moment Estimation

ImageNet1k ImageNet Dataset with 1000 classes

Chapter 1

Introduction

1.1 Overview of the Dissertation Topic

Federated Learning: A Paradigm Shift in Collaborative AI

Federated Learning (FL) represents a transformative approach in the field of Artificial

Intelligence (AI) and Machine Learning (ML). It is a decentralized learning technique

that enables multiple participants or devices to collaboratively train a shared model

while keeping their data local. This method not only addresses privacy concerns but also

leverages distributed data sources e�ciently [2]. FL’s unique attributes – data privacy,

collaborative learning, and decentralized architecture – make it an attractive solution for

a wide range of applications, from healthcare and finance to autonomous vehicles and

IoT devices [3]. This paradigm is particularly relevant in today’s digital era, where data

privacy and security are paramount, and the volume of data generated by edge devices is

colossal.

In contrast to conventional methods that require data centralization, FL harnesses the

power of distributed datasets across numerous devices, enabling learning directly at the

data source. In FL, data remains on local devices (such as smartphones, IoT devices, or

organizational servers) [4]. The ML model is sent to these devices, where it learns from

the local data and then only the model updates (and not the data itself) are sent back to

the central server. This approach is in absolute contrast to traditional ML, where data

from all sources is usually centralized for model training. Therefore, significantly reducing

the risks associated with data transfer, storage, and potential breaches. Moreover, FL is

inherently designed to operate under limited bandwidth and varying network conditions,

making it particularly suited for edge computing scenarios where data is generated in vast

quantities at the network’s edge.

One of the foremost advantages of FL is its inherent privacy-preserving nature [5]. By

design, FL ensures that the raw data remains confined to its original location, typically the

user’s device, and never gets transmitted or centralized. This fundamental aspect of FL

not only mitigates privacy risks but also fortifies data security, making it an exceptionally

suitable approach for industries handling sensitive information, such as healthcare and

39

Federated, Multi-agent, Deep Reinforcement Learning

finance.

FL facilitates collaborative yet independent learning, o↵ering a novel paradigm in

the realm of ML. It allows multiple participants, each with their distinct datasets, to

collaboratively contribute to the development of a comprehensive and robust model. This

balanced combination of collective intelligence and private data control is the cornerstone

of FL’s approach. Each participant in an FL network trains a shared model locally on their

dataset, thereby contributing to the learning process without exposing their data. These

local updates are then aggregated to refine and improve a global model. This mechanism

ensures that the model benefits from a wide range of data inputs, encompassing diverse

patterns and scenarios, which significantly enhances its performance and generalizability.

As a result, FL not only fosters a cooperative learning environment but also respects and

maintains the independence and privacy of individual data sources.

In real-world scenarios, data is often distributed unevenly and can be highly

heterogeneous in nature [6]. FL is uniquely suited to handle such diversity, as it allows

each participant to train models on their specific, local dataset, contributing to a more

inclusive and representative global model. This global model benefits from the diverse

insights derived from each local dataset, ensuring that it is not just informed by a single

type of data but is instead representative of a wide array of data sources. This approach

allows FL to create models that are more adaptable and e↵ective in practical situations,

where data diversity is the norm rather than the exception.

The focus of this dissertation is on exploring and addressing the various challenges

and opportunities that FL presents. It aims to delve into strategies for optimizing

communication e�ciency, enhancing model performance, and ensuring robustness in

diverse environments. Given the increasing importance of data privacy and the rapid

growth of edge computing, FL is expected to play a crucial role in the future of AI and ML,

making this research both timely and significant. This dissertation aims to contribute to

the growing body of knowledge in FL, providing insights, methodologies, and applications

that can help harness the full potential of this emerging paradigm.

1.2 Research Motivation and Objectives

1.2.1 Bridging Gaps and Harnessing Data Diversity

The motivation behind this research stems from the growing need for

privacy-preserving AI solutions and the challenges associated with centralized data

processing. FL emerges as a promising solution to these challenges, yet it is not without its

own set of complexities and barriers [7]. These include issues related to data heterogeneity,

communication e�ciency, model aggregation, and performance optimization under varying

constraints.

In an era where data is becoming increasingly valuable and sensitive, the traditional

methods of centralizing data for ML are no longer viable. This has motivated the

A. Psaltis 40

Federated, Multi-agent, Deep Reinforcement Learning

exploration of FL as a solution that respects user privacy and data security [8]. The

primary objective is to demonstrate how FL can e↵ectively train models without

compromising the confidentiality of the data. Moreover, the increasing regulatory demands

for data protection, exemplified by legislations like the General Data Protection Regulation

(GDPR), Data Act 1or Data Governance Act 2, further underscore the urgency of finding

solutions that align with these privacy requirements. FL presents an opportunity to

comply with such regulations while still leveraging the collective power of distributed

data sources for ML. Another motivation behind this research is the need to address

the challenges posed by data accessibility and heterogeneity. Data is often siloed within

organizations and devices, making it di�cult to access for centralized training. FL provides

a unique opportunity to leverage this disparate data, facilitating collaborative learning

without the need for data consolidation. The objective here is to showcase how FL

can handle diverse data distributions and varying data quality across di↵erent nodes to

collaboratively train robust and generalizable ML models.

The decentralized nature of FL poses significant challenges in terms of maintaining

and improving the model performance. This is particularly true when considering the

dynamic nature of model training over time, a concept central to the study of model

incrementality [9]. In a federated setting, where data is continuously evolving and new

information is constantly being introduced, it’s crucial for models to not only retain

previously learned knowledge but also e�ciently incorporate new insights. This concept of

model incrementality, or continual learning, is a key focus of the research. Addressing these

challenges involves developing novel algorithms and strategies that not only enhance model

accuracy and e�ciency but also enable the models to adapt and evolve incrementally. The

objective is to refine FL algorithms to handle the incremental nature of learning, where

the model is continually updated and improved as new data becomes available across the

network of devices.

With the rapid increase of IoT devices and edge computing, there’s a growing need

for e�cient on-device ML. FL is inherently suited for this purpose as it allows for local

model training on edge devices [10]. This research is motivated by the desire to advance

the field of edge computing by developing FL techniques that are optimized for such

environments. Moreover, the variability in computational architectures across devices

adds another layer of complexity. Devices participating in an FL network can range from

high-powered servers to edge devices with limited processing capabilities. This diversity

necessitates adaptable and flexible model architectures that can e�ciently operate across

a wide spectrum of computational resources. The research thus also aims to address how

FL can be tailored to accommodate and optimize for varying computational architectures,

ensuring that the collaborative learning process is e�cient and e↵ective regardless of the

hardware capabilities of each participating node.

Finally, this research is driven by the broader goal of preparing for the future landscape

1
https://digital-strategy.ec.europa.eu/en/policies/data-act

2
https://digital-strategy.ec.europa.eu/en/policies/data-governance-act

41 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

of AI and ML, where privacy, data security, and e�cient use of resources will be paramount.

By exploring and addressing the challenges within FL, this dissertation aims to contribute

to the development of sustainable, secure, and e�cient AI systems for the future, that

align with the evolving demands of our digital society.

1.2.2 Objectives

This dissertation explores the frontiers of FL, a paradigm designed to harness

decentralized data while enhancing privacy and e�ciency. It delves into novel

methodologies for handling data diversity, optimizing model performance in complex

scenarios, and demonstrating FL’s versatility across a range of real-world applications.

Exploring E�cient Learning Strategies: Investigating novel methodologies in FL

to handle data diversity and enhance learning e�ciency. The primary objective under this

theme is to delve into the development of innovative methodologies within FL that can

e�ciently handle diverse data distributions. This involves creating algorithms that can

learn e↵ectively from decentralized data sources, ensuring that the models trained are as

accurate and e�cient as possible. The goal is to overcome the challenges posed by data

and system heterogeneity and to enhance the learning e�ciency of FL systems, making

them suitable for a wide range of applications and environments.

Optimizing Model Performance: Developing techniques to optimize the

performance of FL models in diverse and realistic scenarios. This objective is centered

around the enhancement of FL model performance, particularly in scenarios that mirror

real-world complexities and constraints. The primary aim is to develop algorithms

that not only enhance computational e�ciency and model accuracy but also address

the crucial aspects of fast and stable model convergence, e�cient communication,

and robustness against Non-Independent and Identically Distributed (Non-IID) data.

A significant focus is on devising strategies that can e↵ectively utilize sparse data,

incorporating techniques like semi-supervised, self-supervised, and transfer learning to

extract maximal information from limited datasets. Additionally, adapting FL models for

resource-constrained environments is key, requiring lightweight model architectures that

maintain high performance despite computational and data limitations. The overarching

goal is to ensure that FL models are optimized to perform seamlessly across a spectrum

of settings, from data-rich to data-scarce scenarios, thus enhancing the applicability and

e↵ectiveness of FL in various real-world applications.

Addressing Real-world Applications: Demonstrating the versatility of FL across

real-world challenges, this research objective focuses on applying FL to various practical

tasks, such as image classification, named entity recognition, and speech recognition.

These applications are pivotal across numerous industries, going beyond domain-specific

boundaries and o↵ering a horizontal applicability to di↵erent sectors. The aim is to

illustrate the transformative potential of FL in handling di↵erent types of data while

maintaining data privacy and e�ciency. This involves deploying FL for di↵erent data

A. Psaltis 42

Federated, Multi-agent, Deep Reinforcement Learning

modalities and evaluating its performance in these varied contexts. By successfully

applying FL to these cross-domain tasks, this research underlines the adaptability and

e↵ectiveness of FL, showcasing its potential as a game-changer in industries where data is

distributed and privacy is paramount.

In summary, the objectives outlined above aim to advance the field of FL by enhancing

its e�ciency, privacy, security, and real-world applicability. Through innovative research

and practical implementations, this dissertation endeavors to establish FL as a key player

in the future landscape of AI and ML.

1.3 Dissertation Structure and Summaries of Associated

Research Studies

This dissertation is structured to provide an in-depth exploration of FL. It begins

with an introduction that lays the foundation for the topic, detailing the dissertation’s

overarching themes, motivations, and objectives. This section includes a discussion on

the potential of leveraging data diversity and bridging gaps in FL, followed by a clear

delineation of the dissertation’s objectives. Additionally, it presents an overview of the

dissertation structure and a summary of the studies included. The body of the dissertation

is divided into multiple detailed studies, each addressing a specific aspect of FL.

The second chapter serves as a background and literature review, transitioning from

general ML concepts to the more specialized domain of distributed learning, summarizing

existing studies in FL. This includes a deep dive into various strategies employed in FL,

challenges, and opportunities within the field.

Subsequent chapters, from the third to the tenth, are dedicated to individual studies

focusing on di↵erent facets of FL, covering principles, privacy-preserving techniques,

data modality heterogeneity, representation learning, incremental learning, and model

architecture variability. Each chapter is dedicated to a specific study, meticulously

structured with an overview, methodology, experimental setup, results, analysis, and

concludes with insightful discussions and findings. The series investigates FL’s application

across domains like image classification, named entity recognition, and 3D action

recognition, addressing challenges from data distribution to knowledge transfer and model

heterogeneity. It progresses to a practical evaluation of FL in real-world scenarios,

showcasing its adaptability, e�ciency, and resilience, thereby demonstrating FL’s potential

for dynamic, privacy-preserving, and robust distributed learning in diverse environments

and applications.

The final chapter synthesizes the contributions of the dissertation, discusses limitations,

and suggests future research directions. Appendices provide additional technical details

on implementation tools, best practices, and guidelines, as well as a focused look at

principal threats and mitigation strategies in FL, enhancing the practical applicability

of the dissertation.

Before diving into the detailed chapters of this dissertation, here we briefly overview

43 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

the key studies that underpin this research. These summaries provide a snapshot of

each study’s main focus and findings, o↵ering a clear roadmap for the key research areas

addressed in this dissertation, setting the stage for the detailed exploration and discussion

in the subsequent chapters.

Study 1: The study explores the practical application of FL in two key areas: facial

classification in Computer Vision and named entity recognition in Text Categorization.

It begins with small-scale experiments to test the e↵ectiveness, accuracy, and limitations

of FL in various settings, focusing particularly on the challenges of data distribution,

both IID and non-IID. The experimental phase is methodically structured, progressing

from single-node, limited data scenarios to more complex, highly heterogeneous data

distributions across federated nodes. This approach helps assess the adaptability and

scalability of FL models, revealing their performance under di↵erent data conditions. The

study concludes with valuable insights for advancing FL applications in fields marked by

diverse and uneven data distributions.

Study 2: This comparative study investigates various FL strategies, in the context

of 3D action recognition, focusing on the impact of di↵erent data modalities on system

performance. Key findings include the variable e↵ectiveness of FL strategies in handling

non-IID data distributions and the challenges in multi-modal federated optimization,

particularly in terms of communication overheads and data synchronization. The study

reveals the limitations of traditional FL schemes under complex multi-modal scenarios.

The importance of multi-modal data fusion in enhancing FL performance is emphasized,

but integrating diverse datasets remains a challenge. The study highlights the need

for innovative FL techniques in multi-modal human action recognition to achieve more

accurate, e�cient, and privacy-preserving systems.

Study 3: The third study introduces a novel method for federated distillation weight

aggregation in distributed learning environments. This approach e�ciently transfers

knowledge across federated network nodes, using an advanced algorithm for capturing

and consolidating representations from client nodes at a central server. Key innovations

include an advanced federated distillation scheme, a new aggregation method using feature

mixing and a trainable vector for optimal weight assignment, and extensive validation

of the approach’s e↵ectiveness across diverse FL scenarios. This research significantly

enhances the e�ciency and e↵ectiveness of knowledge transfer in FL systems.

Study 4: The fourth study in this series extends into incremental learning within

computer vision, focusing on overcoming catastrophic forgetting in continual learning

scenarios. It introduces a novel Federated Incremental Learning approach, integrating

multi-scale representation learning with Knowledge Distillation techniques. This method

eliminates the need for central model transfer, a common bottleneck in traditional FL.

Key innovations include a rehearsal-based knowledge distillation technique for e�cient

knowledge transfer across nodes and a contrastive learning algorithm for retaining

knowledge across di↵erent tasks. Extensive experimentation validates the e↵ectiveness of

this approach, demonstrating significant improvements in communication e�ciency and

A. Psaltis 44

Federated, Multi-agent, Deep Reinforcement Learning

robust performance in distributed incremental learning scenarios. This research represents

a major advancement in FL, o↵ering scalable and dynamic learning models for distributed

environments.

Study 5: The fifth study builds on previous advancements in federated distillation and

incremental learning to address challenges in FL environments with limited and unevenly

distributed data. It introduces a novel approach that combines self-supervised and

supervised learning within a federated framework, specifically tailored for scenarios with

sparse and imbalanced data. The study employs a custom self-supervised learning strategy

at the global level for unlabeled data and supervised learning at the local level for labeled

data. This combination leads to a robust and versatile learning mechanism suitable for

various federated settings. Key contributions include a self-supervised learning approach

for e↵ective global data utilization, a hybrid FL scheme that integrates self-supervised and

supervised techniques, and extensive validation showing the superiority of this approach

over fully-supervised methods in standard federated scenarios. This research marks

a significant advancement in FL, particularly in handling limited and scattered data

e�ciently.

Study 6: This part of the research addresses the challenge of managing diverse

model architectures in FL, specifically focusing on models like ResNets, E�cientNets,

and MobileNets. The study introduces a model-agnostic methodology that emphasizes

representation learning over traditional federated averaging. Driven by previous studies,

key components include a combination of supervised and self-supervised learning across

both private and shared datasets, allowing models to adapt to local and global data

contexts. The central node plays a crucial role in aggregating representations from

various models, moving away from Federated Averaging to a more representation-focused

approach. The study also explores feature excitation techniques for aligning local models

with a central model and conducts experiments across di↵erent architectures to assess their

impact on FL. Overall, this research presents a flexible and e�cient strategy for managing

model heterogeneity in FL, enhancing the robustness of learning across federated networks.

Study 7: In the final study, the focus shifts to a practical evaluation of FL in real-world

scenarios. This comprehensive study tests the FL system’s adaptability and resilience in

diverse environments, using a distributed hardware infrastructure to simulate real-world

conditions. It introduces a system adaptation pipeline for integrating AI tools into FL,

conducts experiments across edge devices, and addresses challenges like data heterogeneity

and privacy. Findings reveal FL’s performance under diverse conditions, its resilience to

data poisoning attacks, and its potential for real-world applications. This study bridges

theory and practice, highlighting FL’s viability and challenges in real-world contexts,

signaling its potential for trustworthy applications.

45 A. Psaltis

Chapter 2

Core Concepts of Federated

Learning

2.1 Transitioning from Machine Learning to Distributed

Learning

ML and Deep Learning (DL) are two interconnected fields that have revolutionized

many aspects of technology, particularly in computer vision. ML, a subset of AI, involves

the development of algorithms that can learn from and make predictions or decisions based

on data. These algorithms improve their performance as they are exposed to more data

over time [11]. Traditional ML techniques include linear regression, decision trees, and

support vector machines, which are powerful for a variety of tasks but often require manual

feature selection and tuning.

DL, a more advanced subset of ML, refers specifically to algorithms inspired by

the structure and function of the brain called artificial neural networks. DL has

gained immense popularity due to its ability to automatically and adaptively learn

spatial hierarchies of features from data, which is particularly useful in the field of

computer vision. This approach is known as the ’Deep Learning’ paradigm in computer

vision [12]. DL models, especially Convolutional Neural Networks (CNNs), have shown

exceptional performance in multiple image analysis tasks such as object detection, concept

detection, and image classification, outperforming traditional ML methods in many cases

[13]. The development of DL has been further enhanced by the application of these

techniques to video-classification and action-recognition problems. For instance, the

use of 3-dimensional convolution networks for spatio-temporal feature learning and the

application of recurrent neural networks for dynamic scene representation are notable

advancements [14]. Furthermore, innovations like two-stream architectures for faster

training and more e↵ective temporal information fusion indicate the ongoing evolution

and refinement of DL models in understanding and interpreting visual data [15].

The remarkable advancements in ML and DL, particularly in the realm of computer

47

Federated, Multi-agent, Deep Reinforcement Learning

vision, hinge significantly on the availability of large volumes of data. This ‘big data’

phenomenon, often centralized in nature, poses unique challenges and opportunities. As

the number of smart devices connected to the internet continues to grow exponentially,

they collectively generate an immense stream of data [16]. This surge in data production

from countless sources, including sensors, smartphones, and other IoT devices, emphasizes

the need for advanced and sophisticated learning approaches. These approaches must

not only e�ciently process and learn from such vast datasets but also address concerns

related to data privacy, security, and the ethical use of information. The big data issue

[17], therefore, is not just about managing and analyzing large datasets, but also about

innovatively leveraging this information to further refine and enhance ML models, ensuring

that these technological advancements continue to evolve in a responsible and sustainable

manner.

Access to high-quality data is crucial for the success of data-driven applications in

AI, as it enables the creation of advanced models through data manipulation techniques

like regularization and optimization. However, traditional ML approaches often require

centralized training data, which can pose privacy concerns, especially with sensitive

information (e.g., medical data) that is protected by laws like GDPR. To address these

privacy issues, FL was introduced by Google [18].

FL is a form of distributed ML wherein each participant, or node, maintains data

locally. It operates under a learning protocol that facilitates interaction among nodes

without centralizing data. This approach primarily addresses privacy and confidentiality,

adheres to regulatory compliance, and recognizes the impracticality of moving large

datasets to a central location for processing [5]. In contrast to FL, traditional ML models

centralize training data, either on a single machine or within a data center. This process,

particularly in DL, involves stages like data acquisition, training, and model optimization,

all of which traditionally rely on a degree of trust among collaborators. In scenarios

where data is shared among organizations and data scientists, any breach of trust can

compromise the integrity of the project [19]. In the context of DL, where extensive

regularization and optimization are critical, decentralizing the lifecycle of applications

presents an opportunity. FL enables collaboration in model development without direct

data access, fostering a secure, trust-less environment for parties involved [20].

FL decentralizes the ML process to edge devices, allowing various authorities to

collaboratively develop a shared predictive model while keeping training data local. This

approach is particularly beneficial for geographically dispersed authorities, as it ensures

that sensitive data, potentially containing private information, remains on local devices.

FL has opened new research avenues in ML, especially considering the vast amounts of

data generated by smart devices. This data, rich in personal and sensitive information, is

key to building robust ML models. FL o↵ers a way to utilize this data while preserving

user privacy, posing new challenges in large-scale ML, distributed optimization, and

privacy-preserving data analytics.

A. Psaltis 48

Federated, Multi-agent, Deep Reinforcement Learning

2.2 Introduction to Federated Learning

Originally, the concept of FL was introduced primarily for applications involving mobile

and edge devices. However, there has been a growing interest in applying FL to a broader

range of scenarios, some of which may include only a few, but relatively reliable, clients.

The case studies chosen are representative of such scenarios, where a group of devices

needs to collectively gain insights by analyzing their data, yet are unable to share this

data directly. In these instances, the devices collaborate to train an ML model using their

collective dataset.

2.2.1 FL Topologies and Design Principles

In FL, the training process is distributed across a network of nodes, each possessing

a unique arrangement that significantly influences the training dynamics. The network

topology in FL is crucial because it a↵ects the distribution and aggregation algorithms

used for the model, the required number of communication links for e↵ective training,

and the overall system design cost for setting up and maintaining the training process.

FL can operate both with and without a central server, and the choice of topology

plays a pivotal role in this aspect. In a Star-like topology, nodes connect to a central

server that coordinates the process and aggregates model updates, making it e�cient in

communication but reliant on a central point. The Ring-like topology, in contrast, arranges

nodes in a sequential loop, promoting direct, sequential communication between nodes

without a central server, potentially increasing robustness but requiring more complex

communication protocols. Lastly, the Hybrid topology combines elements of both, seeking

to balance the advantages of centralized and decentralized approaches, optimizing both

communication e�ciency and system resilience [21].

Figure 2.1 illustrates a typical FL system comprising a global or federated server and

numerous clients, denoted as ’N’ clients. In this setup, clients contribute by training

models locally and sending these updated models to the global server. The server’s role is

to aggregate these individual model updates. During each round of federation, the global

server distributes the global model to each client. Clients then train this model using

their own private data. Once training is completed, they transmit the updated model

parameters back to the server. The server integrates these updates to form an enhanced

global model. This cycle is repeated for a predetermined number of federated rounds to

continually refine the model.

Star-like Topology: This represents a network configuration where each

participating node is directly connected to a central server, typically a trusted third-party

entity. In this setup, every node communicates individually with the server, allowing for

a clear, one-to-one communication channel. The core concept of standard FL is to learn

a unified global statistical model from data distributed across a wide range of remote

devices, potentially numbering from tens to millions. The key constraint in this model is

that the data generated by each device are processed locally, and only intermediate model

49 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

Figure 2.1: A standard FL system, in which N clients or nodes exchange model updates

with a centralized global server.

updates are periodically sent to the central server.

The process unfolds as follows: Each device downloads the current global model,

enhances it by learning from its local data, and then sends a summary of these

improvements as a compact update back to the server. This communication is secured,

often using techniques like homomorphic encryption, to ensure privacy. The central server

then averages these updates to refine the shared global model. Notably, all training data

remains on the local device, and the server does not retain individual updates.

The star-like topology in FL facilitates asynchronous learning, meaning the training

process on one node is independent of others, eliminating the need for nodes to wait

for their peers. This structure allows for easy scalability, as adding a new node to the

network is straightforward. However, variability in the configuration of each edge device

leads to di↵erences in training speeds. Factors such as the computational capacity of

the device and the volume of training samples available locally can influence the pace of

learning. The more extensive the training data on a node, the more robust the model

updates it can produce. Communication e�ciency is another consideration; each node

requires two communication links per training round—one to upload its updates to the

server and another to download the latest global model. This dual-link setup is essential

for maintaining the continuous and e↵ective exchange of information between the central

server and the nodes.

A. Psaltis 50

Federated, Multi-agent, Deep Reinforcement Learning

Ring-like Topology: O↵ers an alternative to the Star-like approach by forming a

circular network where each device is connected to two others. This topology doesn’t

rely on a central server for management, instead using a cyclical weight transfer method.

Here, each node processes the model locally and then passes its updated weights to the

next node in the ring, continuing until the model converges. This synchronous training

approach means each node’s training is dependent on its peers, potentially lengthening

the training cycle but allowing for immediate incorporation of updates from one node to

the next.

This topology is more cost-e↵ective than the Star-like topology, as it requires fewer

communication links and no central server, reducing infrastructure costs. However, it

demands similar computational capabilities across all nodes to prevent bottlenecks and

ensure even training progress. The final, converged model is shared among all nodes at

the end of the training process.

Hybrid Topology: Blends the Star-like and Ring-like topologies, integrating nodes

and a server for optimized learning. Groups of nodes are formed based on specific criteria,

such as geographical proximity, and are arranged sequentially within each group. The

training process starts with a global model initialized by a centralized server, similar to

the Star-like topology. This model is distributed to all nodes. Training within each group

begins asynchronously, with each node sequentially processing and then passing model

updates to the next node, reflecting the Ring-like approach.

This topology combines synchronous and asynchronous learning methods: groups start

training asynchronously, while individual nodes within each group operate synchronously.

Although a central server is involved, its computational burden is less than in a purely

Star-like topology, as the workload is more distributed. If the number of groups equals

the number of nodes, the setup essentially becomes akin to a Star-like topology. The

Hybrid Topology thus o↵ers a versatile and adaptable approach, balancing centralized

coordination with localized inter-node training.

Data Partitioning Schemes

Federated Learning Strategies (FLS) are generally classified based on the distribution

of data across the sample and feature spaces, falling into horizontal, vertical, or hybrid

schemes [2]. In brief, horizontal FL involves datasets that share the same feature space

across all devices. Vertical FL, on the other hand, employs disparate datasets with

di↵erent feature spaces to collaboratively train a global model. Hybrid FL merges these

two approaches, combining aspects of both feature and sample distribution.

Horizontal FL: Here, di↵erent parties’ datasets share the same features but di↵er in

samples (Figure 2.2A). Commonly in cross-device settings, parties train local models on

their data and update the global model by averaging these local models. This approach,

exemplified by frameworks like FedAvg [22], is often adopted when data centralization is

not feasible due to legal constraints or when similar organizations aim to collaboratively

51 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

Figure 2.2: Federated Learning (FL) schemes based on data distribution.

enhance their models. Vertical FL: This type (Figure 2.2B) involves datasets with similar

samples but di↵erent features across parties. Approaches in this category typically use

entity alignment techniques [23, 24] to identify overlapping samples for training using

encrypted methods. It’s commonly used in scenarios where di↵erent companies cooperate,

each contributing di↵erent feature sets to the model training. Hybrid FL: Combining

elements of both horizontal and vertical partitioning (Figure 2.2C), this approach addresses

more complex situations where parties have partial overlap in user or feature space. It

often incorporates transfer learning techniques for collaborative model building. However,

current methods, like the secure federated transfer learning system proposed by Liu et

al . [25], tend to be limited in scope, such as being applicable to only two clients. Additional

information regarding the implementation tools and various practical matters is provided

in Appendix A.

2.2.2 Concepts and Terminology

The adoption of standardized terminology in FL plays a crucial role in enhancing

interoperability and streamlining the exchange of information. Understanding and using

a consistent set of terms is a straightforward yet vital step in grasping more complex FL

concepts. Table 2.1 is a compilation of some common terminologies typically encountered

in the FL framework.

2.3 Privacy-Preserving Principles

As opposed to traditional approaches, FL intrinsically enhances privacy and security

as the data is never accessed or processed on central servers. Its goal is to enable di↵erent

entities to collaboratively train a shared ML model while keeping all the training data on

their premises; hence, decoupling the ML process from the data sources.

A. Psaltis 52

Federated, Multi-agent, Deep Reinforcement Learning

Table 2.1: FL related concepts and terminology.
Term Definition / Description

Device

Refers to entities in the FL communication network like nodes or clients. In broader terms,

organizations or institutions in FL are also considered as ’devices’.

· Edge Devices: Points where data is generated and managed, and where the training

process occurs.

· Data Centre: Central locations for data creation and management, and training process

execution.

Database

An organized collection of data or information.

· Centralized Database: Data stored as a unified entity on a single server.

· Decentralized Database: Multiple interconnected servers store and provide data without

a central repository.

· Distributed Database: Data is not centrally stored; each node in the network contains

portions of the overall data.

Human Learning The process of understanding problem aspects and knowing the rules to reach a solution.

Machine Learning

Involves designing systems that learn from examples.

· Model: A trained file recognizing specific patterns, functioning as a parameter-tunable

’black box’.

· Algorithm: Built around a modifiable mathematical function with internal parameters

or weights.

· Model Weights: Learnable parameters in some machine learning models.

· Training: The learning process from data, where algorithms match outputs to inputs.

· Inference: Making predictions using the trained model.

· Validation: Evaluating a trained model with a testing dataset.

Neuron A single learning unit in computational models, applying logic to inputs and producing

outputs.

Neural network A network of interconnected neurons influencing each other, functioning collectively in

learning processes.

Artificial Intelligence (AI) AI tools are based on machine learning algorithms that adapt and learn from data to

perform specific tasks.

Deep Learning A subset of machine learning mimicking human knowledge acquisition, e↵ective with

multiple neural network layers.

Federated Learning A paradigm where an algorithm is trained across multiple devices or servers with local

data samples, without data exchange.

Federation

A collective of computing or network providers adhering to shared operational standards.

· Federated Node: An edge member of the federation, also known as a node, client, device,

worker, or party.

· Federated Aggregator: Coordinates trust among devices, also called a server,

orchestrator, or central node.

· Orchestration: Coordination activities in the application of learning technologies.

· Data Aggregation: The process of combining data from distributed sources.

· Data Anonymization: Removing identifiable information from data sets to maintain

anonymity.

· Data Re-Identification: The risk of matching anonymous data with public or auxiliary

data to reveal private information.

· Federated Data Analysis: Analyzing distributed datasets, also known as Federated

Analysis or Federated Data Mining.

· Client/Server Architecture: Shares models or statistical information with a central server

in federated data analysis.

· Decentralized Architecture: In federated data analysis, it allows for peer-to-peer

information exchange without a central aggregating server.

53 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

In practice, FL distributes the model learning process to the users’ devices, making

it possible to train a global (or master) model from user-specific local models. Each user

updates the local copy of the model using his/her data and sends an updated model

to the server which uses the user’s local model to update the master model. Instead of

transferring the user data to processing servers, only the model updates are transferred. In

other words, FL allows learning robust ML models from a huge amount of data distributed

across isolated silos without transferring or processing it on central servers.

In FL systems, the data stays securely on the client’s side, and the model training

occurs locally. After training, these local models’ parameters are sent to a central node

for the aggregation of a global model. This process, known as Secure Aggregation, ensures

that the specifics of the client’s updates are not transparent to the aggregator. To maintain

user privacy, secure aggregation protocols are incorporated in FL [26, 27]. These protocols

enable the server to merge the local models into a global model without revealing individual

local model details. The aggregation is done by calculating the combined parameters of

the local models without directly accessing them. Consequently, the server cannot misuse

the local model updates or deduce any private user data from them.

While FL o↵ers flexibility and addresses issues related to data governance and

ownership, it does not inherently ensure complete security and privacy. The absence of

robust encryption methods could leave room for attackers to access personally identifiable

information directly from the nodes or disrupt the communication flow. Furthermore,

the distributed nature of the data in FL can make it challenging to maintain the data’s

integrity and quality, essential for reliable results. If local algorithms are not securely

encrypted or the model updates aren’t securely aggregated, there’s a risk of data breaches

or tampering. This could lead to algorithm reconstruction, theft (known as parameter

inference), or leaks, which are critical concerns for many applications. Consequently,

FL requires additional safeguards to defend against attack strategies like data poisoning,

training data reconstruction (also referred to as model inversion), and interception of data

[28].

2.3.1 Key Threats in FL

An FL system o↵ers an initial layer of privacy protection over centralized learning

models by keeping data local to the clients and only sending updated model parameters

to the server. However, research, including findings from the study referenced in [27],

suggests that FL doesn’t fully secure privacy and data security. Even minimal exposure

to original gradients might reveal significant information about local data. Furthermore,

during the training phase, the exchange of model updates can potentially leak sensitive

data, as indicated by studies [29] and [30]. To elevate the privacy and security standards

of FL systems, it’s crucial to explore potential vulnerabilities within the FL network.

Additionally, implementing defense mechanisms against such attacks, as highlighted in

various studies, is essential for enhancing the overall security of the FL framework.

A. Psaltis 54

Federated, Multi-agent, Deep Reinforcement Learning

During the training phase of FL networks, certain types of cyberattacks, known as

poisoning attacks, can occur. These attacks are primarily focused on either corrupting

the dataset (Data Poisoning) or manipulating the local model (Model Poisoning). The

primary objective of these attacks is to alter the FL network’s functionality in a detrimental

manner, consequently degrading the accuracy and performance of the global ML model.

In FL systems, these attacks can originate from either the central server or the FL system’s

client participants. As illustrated in Figure 2.3, data poisoning occurs during the local data

collection phase, whereas model poisoning takes place at the stage of local model training.

Additionally, FL systems are susceptible to other threats such as model inversion attacks

and various backdoor attacks, including bug injections and inference attacks, which can

exploit di↵erent processing steps in the system.

Figure 2.3: Infiltration in FL Systems: Here, an intruder targets either the model or the

data in a poisoning assault.

Table 2.2 categorizes the primary risks to both the dataset - Data Poisoning (DP)

and the algorithmic/computational process - Model Poisoning(MP). The table provides a

detailed description and a fundamental example for each type of attack. For an in-depth

examination, please see the detailed analysis in Appendix C.

2.3.2 Existing Mechanisms and Approaches

As discussed earlier, while FL allows for client-side ML, it doesn’t automatically

provide security and privacy guarantees. Although a significant advantage of FL is the

non-sharing of private data with a central server, this doesn’t preclude the possibility

of adversaries extracting sensitive information from that data. The aforementioned

threats necessitate the development of methods that not only provide stringent privacy

guarantees but are also computationally e�cient, e↵ective in communication, and do not

excessively compromise accuracy. We could broadly categorize these methods into two

major groups: global methods, where model updates produced in each round are private

from all untrusted third parties except the central server, and local methods, where updates

55 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

Table 2.2: Most relevant attacks within FL.
Method Asset threatened Description Example

DP

Re-identification

Attack

Data privacy Breaching data privacy by identifying

individuals in a dataset that has been

anonymized, utilizing additional

information available within the

dataset

Correlating data with other datasets

where the same individuals are

identifiable

Dataset

reconstruction

attack

Data privacy Inferring individual characteristics

from the outputs of computations

performed on a dataset, without

direct access to the dataset itself.

This is also known as feature

re-derivation or attribute inference

Deducing individual data points

using multiple aggregate statistics

corresponding to a single individual

Tracing attack Data privacy Discerning the presence (or absence)

of an individual in a dataset without

specifically identifying them, also

known as membership inference

Making repeated, slightly varied

queries to the dataset and employing

set di↵erencing techniques to isolate

individual information.

MP
Adversarial

attack

Model behaviour Introducing manipulated training

examples, e↵ectively poisoning the

model. These attacks are designed

to be undetectable by human

observation

Introducing biases, such as sexist

or racist tendencies in model

predictions, or creating backdoors,

like spam filters that fail to recognize

specific patterns.

Model-inversion

/reconstruction

attack

Model behaviour Analyzing the algorithm’s behavior,

particularly the information stored in

its weights

Employing algorithms to reconstruct

segments of the training data, relying

on various model parameters

are kept private even from the central server. Key methodologies to bolster data security in

FL encompass techniques like data anonymization, di↵erential privacy (DP), homomorphic

encryption (HE), and secure multiparty computation (SMC).

The design of a robust defence mechanism against data poisoning attacks in FL systems

is a challenging task since most of them are attack-specific and have been designed for a

specific type of attack and they do not work well for other types [31, 32, 33]. The case of

non-IID data among FL clients introduces other challenges in the procedure of developing

an e�cient defence mechanism against data poisoning attacks. Specifically, the work in [34]

presents that the non-IID data increases the di�culty of an accurate defence against data

poisoning attacks. When the data is not identically distributed among FL participants,

each client has its own data distribution, therefore bringing its unique contribution to

the common FL model, which is misleading for most defence mechanisms. Regarding

the model poisoning attacks, participants’ private information can be extracted from the

sharable weights throughout the training process. Therefore, sensitive information can be

revealed either to third-party or to the central server.

Many mechanisms have been developed to enhance the privacy of FL, such as secure

multiparty computation or di↵erential privacy. The aforementioned techniques provide

privacy for the cost of decreased ML model performance. A challenge that should be faced

during the development of a secure FL system is understanding and balancing the trade-o↵

between the privacy-preserving level and the achieved ML performance. The authors in

[35] evaluate the performance of the proposed FL system under various settings of DP

as a privacy-preserving technique and configurations of the FL nodes, investigating the

trade-o↵ between those components and achieved model performance. Specifically, they

demonstrate how the model performance is a↵ected at di↵erent levels of DP when the

number of participants increases as well as in the case of imbalanced client data. Beyond

A. Psaltis 56

Federated, Multi-agent, Deep Reinforcement Learning

providing an adequate level of privacy, it is also essential to implement computationally

cheap FL methods, communication e�cient as well as tolerant dropped devices without

compromising accuracy.

The various privacy approaches of an FL system can be grouped into two categories,

which are global privacy and local privacy. In the former, the central server is a trusted

party and the model updates generated at each round are considered private to all

untrusted participants except the central server. In the latter, all the participants may

be malicious and, therefore, the updates are also private to the server. A very common

approach to prevent leakage of private client data from the shared parameters is the

utilisation of the secure aggregation mechanism of FL. In the last few years, various FL

designs have been introduced that use secure aggregation protocols under various setups.

Bonawitz in [36] introduces a secure aggregation mechanism for FL, which can tolerate

client dropouts. This method uses Shamir’s Secret Sharing [37] and symmetric encryption

to prevent the server from accessing individual model updates. The limitation of this

approach lies in the fact that it requires at least 4 communication rounds between each

client and the aggregator in each iteration.

Bonawitz’s protocol is utilised by the works VerifyNet [38] and VeriFL [39], which

add an extra verification level on top of [36]. The additional verifiability guarantees the

correctness of the aggregation. However, those methods require a trusted party to create

private keys for all clients. Trying to reduce the overhead of [36], the algorithms in [40]

and [41] present secure aggregation mechanisms with polylogarithmic communication and

computation complexity. The main di↵erences in [36] are that those methods replace the

star-like topology of the FL network with random subgroups of clients as well as the secret

sharing is only performed for a set of clients and not for all of them. Both methods [40]

and [41] demand 3 rounds of communication interaction between the server and the clients.

Another approach that reduces the communication and computation overhead compared to

[36] is the Turbo-Aggregate [42]. Specifically, this method utilises a circular communication

topology. The FastSecAgg [43] method uses Fast Fourier Transform multi-secret sharing

for secure aggregation. FastSecAgg is robust against adversaries which adaptively corrupt

clients during the execution of FL procedures.

57 A. Psaltis

Chapter 3

Advances and Challenges in

Federated Learning

3.1 Strategies for Dealing with Federated Systems and Data

Federated Learning di↵ers from Distributed Learning in several key aspects: firstly, FL

typically experiences slower and less stable communication; secondly, it involves a diverse

range of devices with varying computational powers, indicating heterogeneity; thirdly,

FL places a greater emphasis on privacy and security [19]. While many studies assume

trustworthiness in participants and servers, real-world scenarios often involve potentially

untrustworthy actors [44]. Addressing these realities requires optimizing FL algorithms

to tackle practical challenges e↵ectively. The primary concerns for researchers in this

optimization process include managing high communication costs and dealing with both

statistical and structural heterogeneity[45].

3.2 Challenges and Opportunities in FL

In traditional centralized models, data from various sources must be aggregated in a

single location, posing risks of data breaches and misuse [46]. FL, by allowing data to

remain on users’ devices and only sharing model updates, o↵ers a more privacy-preserving

approach. This method reduces the risk of exposing sensitive information while still

enabling the collaborative development of robust ML models. However, FL also faces

challenges related to data heterogeneity and communication e�ciency [45]. Since data

is not uniformly distributed across devices, the resulting models may be biased or

underperforming due to non-IID (not independently and identically distributed) data.

Additionally, the necessity of frequent communication between devices and a central server

for model updates can lead to significant network overhead, particularly when dealing

with large numbers of devices. On the opportunity side, FL opens up new avenues for

leveraging data from a vast array of devices without infringing on user privacy. This

approach is particularly advantageous in sectors like healthcare, forensics and finance,

59

Federated, Multi-agent, Deep Reinforcement Learning

where data sensitivity is paramount [47]. By enabling decentralized training, FL allows

for the creation of personalized models that are more tailored to individual users’ needs

and preferences. Furthermore, FL can lead to more inclusive AI systems [48]. Since data

does not need to be centralized, models can be trained on a diverse set of data sources,

potentially reducing biases inherent in many of today’s AI systems. This decentralized

approach also democratizes AI, allowing smaller entities to participate in and benefit

from AI advancements without the need for extensive data infrastructure. The ability of

FL to process data in situ also paves the way for real-time, on-device decision-making,

enhancing the functionality and responsiveness of smart devices [49]. However, realizing

these opportunities requires overcoming the technical complexities and ensuring robust,

scalable, and secure implementations of FL systems.

3.2.1 Communication E�ciency Challenges

Managing communication overhead is a crucial challenge. Although an exhaustive

review of communication-e�cient distributed learning methods falls outside the scope of

this study, it’s worth noting some broad strategies. These can be categorized into (a)

local updating methods, which focus on local computation to reduce the frequency of

data transmission, and (b) compression schemes, aimed at reducing the size of the data

being communicated. Given the rapid growth in dataset sizes, minimizing communication

overhead is essential for maintaining the flexibility and e�ciency of FL. E↵orts to address

this include cutting down the number of communication rounds and enhancing the speed

of model uploads, which collectively contribute to decreasing the overall update time.

In traditional ML systems, algorithms like Stochastic Gradient Descent (SGD)

operate on large datasets evenly distributed across cloud servers, requiring fast, e�cient

connections for iterative computations. However, in a FL environment, data is dispersed

across numerous devices, often unevenly. To tackle this, FL strategies focus on local

updates and infrequent central server communication. This approach aligns with the

unique challenges of FL, including adhering to data locality requirements and managing

the limited communication capacity of edge devices.

Recent advancements aim to enhance communication e�ciency in FL. The goal is

to minimize server-client communication to reduce data upload times. This is achieved

by varying the number of local updates performed independently on each device during

each communication round, o↵ering greater flexibility in balancing computation and

communication. Such methods have significantly boosted performance, often outpacing

conventional distributed approaches. In FL, optimization techniques that support

adaptable local updates and require minimal client involvement are increasingly preferred.

McMahan et al . [22] conducted pioneering research in FL, focusing on enhancing

communication e�ciency. Their approach involves increasing the amount of computation

done by each client between communication rounds, using a method that averages local

stochastic gradient descent (SGD) updates. They noted the e↵ectiveness of increasing

A. Psaltis 60

Federated, Multi-agent, Deep Reinforcement Learning

parallelism by encouraging more client participation in each training round. Building

on this concept, Nishio and Yonetani [50] developed the FedCs framework. This system

maximizes client engagement in every training round to improve practical e�ciency. They

integrated a maximum mean discrepancy into the FL algorithm, encouraging local models

to learn more e↵ectively from other training devices, thereby accelerating convergence.

Yurochkin et al . [51] proposed the Bayesian Nonparametric FL framework, considered

state-of-the-art due to its ability to merge local models into a federated model without

additional parameters. This innovation reduces the need for extra communication rounds.

Their experiments demonstrated that satisfactory accuracy could be achieved with just a

single round of communication.

While optimizing communication rounds is vital, finding ways to speed up model

updates remains a challenge. Initially, McMahan et al . [52] suggested two approaches

to decrease the time taken for model updates. The first approach, structured updates,

involves transmitting only a portion of the updated model. This can be done through a

low-rank approximation or by using a random mask. Another example is an end-to-end

neural network that compresses updated information into a lower-dimensional space,

thereby easing communication burdens. The second approach, sketched updates, utilizes

a compressed model for updates. In line with this strategy, Zhu and Jin [53] refined Sparse

Evolutionary Training (SET) to transmit only select parameters to the server, similar to

the concept of sketched updates. These methods collectively aim to reduce the amount of

data transferred during model updates, thereby making the update process more e�cient.

In an e↵ort to optimize local training in each round where clients typically run a

fixed number of epochs, Jiang and Ying [54] developed an adaptive approach. In this

method, the number of local training epochs is dynamically determined by the server

based on training time and loss. This adaptive strategy aims to reduce local training

time, especially when the loss diminishes. While the aforementioned algorithms primarily

rely on SGD, this approach might be less e�cient in cases where the function to be

optimized is anisotropic. Addressing this, Liu, Chen, Chen, and Zhang [55] implemented

momentum gradient descent, which incorporates information from previous gradients in

each local training epoch to quicken the pace of convergence.

Local update methods e↵ectively decrease the frequency of communication rounds in

FL, but model compression techniques like sparsification, subsampling, and quantization

are key to reducing the size of data transmitted in each round. These compression

strategies have been widely researched in the context of distributed training within

data-center environments, both empirically and theoretically. In FL settings, unique

challenges arise due to factors like low device participation rates, non-independent and

identically distributed (non-iid) local data, and the application of local updating methods.

To address these issues, several practical strategies have been proposed and implemented

in federated contexts [52, 56, 57]. These include encouraging sparsity and low-rank

structures in updating models, utilizing quantization methods that incorporate structured

random rotation, employing lossy compression and dropout techniques to minimize

61 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

communication from server to device, and applying Golomb lossless encoding. Each of

these approaches aims to optimize data transmission e�ciency while maintaining the

integrity and e↵ectiveness of FL models.

3.2.2 System-specific Challenges

In the context of federated networks, system heterogeneity presents a major challenge

due to the wide variability in device characteristics across the network. Di↵erences in

hardware, network connectivity, and battery life among devices can lead to uneven training

times and introduce complications such as stragglers, which are more common than in

centralized systems. To address these challenges, current methods primarily concentrate

on two areas: allocating resources appropriately for devices with varying capabilities and

enhancing fault tolerance for devices that are more likely to go o✏ine. These approaches

aim to mitigate the impact of system heterogeneity and ensure more consistent and reliable

training across the federated network.

In remote device learning, handling fault tolerance is crucial due to the likelihood

of participant dropouts during training iterations. Smith et al . [58] addressed this by

considering the impact of low participation to mitigate device dropouts. A common

approach is to simply overlook device failures [59], though this could introduce bias if the

dropped devices possess unique data characteristics. For instance, devices in remote areas

with poor connectivity might drop out more frequently, potentially skewing the federated

model towards data from devices with better network conditions. While numerous studies

have explored the convergence of various FL methods, few have focused on the e↵ects of low

participation or the direct impact of device dropouts. To strengthen FL systems against

participant dropouts, some researchers have developed secure aggregation protocols [60]

that can tolerate arbitrary dropouts as long as a su�cient number of users remain. Lib et

al . [61] and Wu et al . [62] also considered the straggler e↵ect, with the former allowing

varied local update times and the latter using a cache structure to store updates from

unreliable users, thereby reducing their negative influence on the global model.

In addressing resource constraints in FL, much of the existing research has concentrated

on e↵ectively allocating resources across heterogeneous devices. Kang et al . [63] considered

client overhead to encourage participation from higher-quality devices. Similarly, Nishio

and Yonetani [50] developed device sampling policies that consider system resources,

aiming to maximize device updates within a set time frame. Tran et al . [64] examined

the e↵ects of heterogeneous power constraints on training accuracy and convergence time,

while Chai et al . [65] focused on how resource disparities, such as CPU, memory, and

network availability, impact FL training time. To promote fair resource distribution,

Li, T. et al . [66] introduced fairness metrics to assess device loss and implemented a

q-Fair optimization goal in FL. These approaches prioritize active sampling based on

system variability, but it’s also beneficial to consider sampling a small yet statistically

representative group of devices.

A. Psaltis 62

Federated, Multi-agent, Deep Reinforcement Learning

3.2.3 Data-specific Challenges

Training federated models becomes particularly challenging when dealing with data

that is not evenly distributed across devices. This poses issues both in modeling the data

and analyzing the convergence of training methods. Traditional ML typically assumes

that data is independently and identically distributed (IID). This assumption works well

in scenarios where data is centrally collected and then distributed for training. However,

in federated settings, data comes from a variety of devices or institutions and often does

not adhere to the IID assumption. This disparity makes training a single global model

on the combined datasets of all clients more complex with non-IID data. To address this

issue, common solutions involve focusing on the global model and modifying the local

training approach, such as adjusting hyperparameters, or incorporating additional steps

into the data preprocessing phase.

The main categories of non-IID data include i) label distribution skew, where the

distribution of labels is di↵erent across di↵erent nodes, ii) feature distribution skew,

where the distribution of features is di↵erent across di↵erent nodes, iii) the same label

but di↵erent features, where the same label is used for di↵erent features across di↵erent

nodes, iv) same features but di↵erent label, where the same features are used for di↵erent

labels across di↵erent nodes and v) quantity skew where the amount of data available at

local nodes is di↵erent [7]. The case ‘same label but di↵erent features’, known as Concept

drift, is mainly related to vertical FL where the clients share overlapped sample IDs with

di↵erent features.

The FedAvg algorithm initially addressed the issue of non-identically distributed data

across devices by averaging local updates on each device. Mohri et al . [67] further

improved this by enhancing the global model to better accommodate a mix of client

distributions, addressing the often-overlooked aspect of fairness that could lead to a

biased centralized model. On the aggregation front, Wang, X. et al . [68] explored

the convergence challenges in FL, particularly in non-IID data environments. They

proposed an adaptive method to minimize the loss function while considering resource

constraints, o↵ering insights into various convergence scenarios for FedAvg under non-IID

conditions. To better understand FedAvg’s performance in statistically heterogeneous

settings, FedProx [69] was developed. It modifies FedAvg slightly to ensure both

theoretical and practical convergence, considering system heterogeneity across devices.

Regarding data preprocessing, Huang, Shea et al . [70] introduced a community-based FL

method using clustering. This approach segregates data into di↵erent clusters for federated

training, addressing non-IID challenges but is less viable for large-scale data due to high

parameter conversion overhead.

For some applications, data augmentation strategies can be employed to make client

data more uniform. One method is to create and globally share a small dataset, which

could be sourced from publicly available data, a non-sensitive subset of client data, or a

condensed version of the raw data. Approaches like MOCHA [6], have leveraged multi-task

63 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

learning to utilize shared representations, personalizing models for individual devices.

Similarly, some researchers have proposed sharing a small data subset among local models

to address non-IID data challenges [71]. Building on this concept, Huang, Yin et al . [72]

incorporated cross-entropy loss into the transmission process and varied local update times

for clients in each training round to mitigate the Non-IID issue.

3.2.4 Security Challenges

FL systems are designed to improve data privacy since the gradient information is

shared between the FL participants, while the transmission of raw data is not required.

However, research studies reveal that FL does not guarantee adequate privacy and security

to the system. Research has shown that even a small fraction of gradients can expose

sensitive information about local data in FL, and sharing model updates during training

can also pose a risk to privacy [73, 74]. For instance, there is evidence about FL attacks

that are able to retrieve speaker information from the transferred gradients when training

FL systems for automatic speech recognition applications [75]. To mitigate these threats

and ensure the privacy and security of FL, it is important to investigate potential attacks

on the FL network and develop defence mechanisms. Some relevant studies provide

useful strategies for protecting FL against such attacks. During the training phase of

FL networks, attacks that occur are known as poisoning attacks. These attacks can

impact either the dataset or the local model, with the goal of modifying the behavior

of the FL network in an undesirable way and distorting the global ML model’s accuracy

and performance. As is already stated, attackers can exploit the communication protocol

amongst di↵erent participants to perform malicious actions, which can target either the

data of each client (Data Poisoning attack) or the shared model parameters (Model

Poisoning attack). Data poisoning attacks compromise the integrity of training data,

while model poisoning attacks target partial or full model replacement during training. In

an FL system, attacks can be performed by either the central server or the participating

clients of the FL system. Figure 3.1 shows that data poisoning is performed at local data

collection, while model poisoning is sourced at the local model training process.

In the case of data poisoning attacks, the attacker aims to degrade the performance

of a set of target nodes by injecting corrupted/poisoned data into nodes. Label flipping

is a data poisoning attack in which malicious nodes change the labels of samples either

arbitrarily or with a specific pattern. In the first case, a di↵erent label is randomly assigned

to a sample in such a way that the global performance of the FL model is reduced. In

the second case, the malicious node assigns specific labels to a set of records with a clear

purpose in mind. Due to the vast number of participants involved in the FL system, it is

not guaranteed who is an honest as well as a credible entity and who is a malicious actor.

Several survey works have been published in the last past years with the aim to review

and summarise the latest papers related to adversarial attacks and threats on FL systems

as well as the possible defense mechanisms. The authors in [76] present an extensive review

A. Psaltis 64

Federated, Multi-agent, Deep Reinforcement Learning

Figure 3.1: Data vs. Model poisoning attacks on FL system. In the first case, the data of

the third node has been compromised in such a way as to a↵ect the training process. In

the second case, the attacker is trying to interfere with the main training process.

of the various threats that can be applied to an FL system as well as their corresponding

countermeasures. Specifically, they provide several taxonomies of adversarial attacks and

their defence methods, depicting a general picture of the vulnerabilities of FL and how

to overcome them. The threats that can introduce vulnerabilities to trustworthy FL

systems, across di↵erent stages of the development procedure are introduced in [77]. This

work analyses the attacks that can be performed by a malicious participant in FL during

data processing, model training, deployment and inference. Additionally, the authors of

this paper aim to assist in the selection of the most appropriate defence mechanism by

discussing specific technical solutions to realize the various aspects of trustworthy FL.

The work [78] provides a review of the concept of FL, threat models and two major

attacks, namely poisoning attacks, and inference attacks, by highlighting the intuitions,

key techniques and fundamental assumptions of the attacks. Some years after, a more

comprehensive survey on privacy and robustness in FL is conducted and presented in [79].

The authors of this work review the various threat models, privacy attacks and poisoning

attacks as well as their corresponding defences. Finally, the paper [8] demonstrates a

comprehensive study regarding the security and privacy aspects that need to be considered

in an FL setup. The results obtained from this research indicate that communication

bottlenecks, poisoning and backdoor attacks are the most specific security threats, while

inference-based attacks are the most crucial to FL privacy.

65 A. Psaltis

Chapter 4

Study 1: Federated Learning in

IID and Non-IID Settings

4.1 Overview of the Study

The preliminary phase of the study was dedicated to validating the practical

application of FL in two distinct domains: Computer Vision, specifically in classifying

faces based on skin color, and text categorization, focusing on named entity recognition.

This phase was underpinned by an exhaustive literature review, complemented by an

in-depth exploration of FL methodologies. Through this process, we conducted a series

of targeted, small-scale experiments, each designed to delve into the specific demands

and potentialities of FL. These experiments were meticulously structured with several

objectives: a) to validate the su�ciency and relevance of the experimental results, b)

to ascertain the accuracy and applicability of the selected workflows, c) to identify

and understand any inherent limitations in addressing complex problems within the

FL framework, d) to verify the practical viability of the proposed solutions and their

congruence with predefined expectations, and e) to accumulate insightful experiences that

could inform future research and application in this field. Additionally, one of the major

objectives of these experiments was to examine the impact of both IID (Independently

and Identically Distributed) and non-IID settings in FL. This aspect is crucial, as the

performance of FL can vary significantly based on the nature of data distribution across

di↵erent nodes. Understanding how FL models perform under these varying conditions

was pivotal to assessing their robustness and adaptability in real-world scenarios.

During the experimental phase, two primary challenges were tackled: the first involved

the development of a system for facial classification based on skin color, and the second

focused on recognizing named entities in textual data. For each challenge, appropriate

datasets were meticulously selected and subjected to thorough pre-processing to ensure

optimal suitability for FL. The development stage was a crucial part of the process,

involving the creation, rigorous testing, and fine-tuning of the initial models. This stage

also included experimenting with various FL architectures to identify the most e↵ective

67

Federated, Multi-agent, Deep Reinforcement Learning

solutions. We employed a diverse range of aggregate algorithms across di↵erent nodes,

evaluating their performance relative to traditional centralized training models.

The study was structured into three distinct experimental evaluations, each tailored

to elucidate FL’s capabilities under varied data heterogeneity scenarios within a federated

setting. The approach was methodically designed to progress from simpler to more

complex data distributions:

a) Single Node with Limited Data: The initial evaluation focused on a single node

handling a constrained dataset. This setup provided baseline insights into FL’s

performance in a minimally distributed environment.

b) Federated Nodes with Even Data Distribution: The second phase expanded

to incorporate federated nodes, with an emphasis on achieving an even distribution

of data between them. This scenario was key in understanding FL’s behavior in a

relatively simple federated system.

c) Federated Nodes with High Data Heterogeneity: The third and most complex

evaluation involved federated nodes, each with significantly less and more unevenly

distributed data compared to a centralized approach. This stage was crucial for

examining FL’s e�ciency and adaptability in handling high data heterogeneity, a

common challenge in real-world applications.

This comprehensive approach not only allowed us to assess the e↵ectiveness of di↵erent

aggregation algorithms in FL settings but also provided invaluable insights into the

adaptability and scalability of FL systems under varying levels of data distribution

complexity. In the final phase of the study, we drew preliminary conclusions, thoroughly

evaluated the outcomes from each experimental setup, and developed strategies for

future advancements. This comprehensive analysis paves the way for more sophisticated

applications of FL in Computer Vision and text categorization, particularly in scenarios

characterized by diverse and uneven data distributions.

4.2 Methodology

In FL, optimization strategies, particularly aggregation algorithms, are crucial as they

merge insights from various devices or nodes while safeguarding users’ or organizations’

private data. The cornerstone of this process is the Federated Averaging algorithm, known

as ”FedAvg,” being a foundational algorithm for distributed training. Since its inception,

numerous adaptations of FedAvg, like ”FedProx” and ”FedOpt,” have been introduced to

tackle the primary challenges in this field.

Delving into the specifics of the FL process, many optimization techniques rely on local

client updates. Here, clients perform multiple model updates locally before communicating

with the central server. This approach significantly cuts down on the communication

required for model training. In this first study, three principal aggregation mechanisms

A. Psaltis 68

Federated, Multi-agent, Deep Reinforcement Learning

were employed and meticulously examined within specific scenarios. These include the

original FedAvg, along with its evolved variants FedProx and FedOpt. Each of these

mechanisms was applied and analyzed to understand their e↵ectiveness and suitability in

di↵erent FL contexts.

Optimization parameters: After selecting the network topology for the nodes, various

parameters of the FL process can be adjusted to enhance the learning outcomes. These

parameters include: a) the number of FL rounds, b) the total count of nodes involved in

the process, c) the proportion of nodes engaged in each iteration, d) the batch size for

each local learning iteration, e) the number of local training iterations prior to aggregation,

and f) the local learning rate. The optimization of these parameters should be tailored to

fit the specific requirements and constraints of the ML application, such as the available

computational resources, memory capacity, and network bandwidth.

FL operates as a protocol combining communication and training, as delineated in

Algorithm 1 (outlined also in [80]). This protocol involves a network comprising several

devices, referred to as clients, and a server that orchestrates the learning process. Each

client possesses a local dataset that remains on the device and is never uploaded to the

server. The primary objective is to develop a global model by integrating the outcomes

of training performed locally by these clients. Algorithm 1 describes a training process

in a FL system involving a predefined set of clients, labeled I = {1, . . . , N}, where each

client has its own local dataset. At the onset of each communication round, indexed by

t 2 {0, E, . . . , (T � 1)E}, the server randomly selects a subset of clients, It, comprising

C · N participants. Key parameters set by the server include the client set I, the client

selection ratio C per round, the total number of communication rounds T , and the number

of local epochs E. In each round, the server distributes the current global algorithm state

to the clients, instructing them to perform local computations based on this global state

and their individual datasets. Following this, clients transmit their updates back to the

server, which then updates the global model by aggregating these client contributions.

This cycle continues until the training process is completed.

4.2.1 Federated stochastic gradient descent (FedSGD)

DL training mainly relies on variants of stochastic gradient descent (SGD). This

method involves calculating gradients on a randomly chosen subset of the entire dataset,

which are then applied to progress one step in the gradient descent process. SGD simplifies

the traditional gradient descent algorithm by computing the gradient on a very small

segment (known as a mini-batch) of the full dataset. In its most extreme stochastic form,

a single data sample is randomly selected for each optimization step. During training the

back-propagation algorithm updates each parameter w by calculating the gradient of F .

For each data point i, Fi(w) represents the loss, where F is the loss function. SGD updates

parameters using the formula:

w := w � ⌘rFi(w) (4.1)

69 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

Algorithm 1 Generic Federated Learning Algorithm
Require: K,T,E, ⌘ . K: number of clients, T : total number of rounds, E: number of

local epochs, ⌘: learning rate

Ensure: wglobal . Global model parameters

1: Initialize wglobal
0

2: for t = 1, 2, . . . , T do . Global training rounds

3: m max(dK · Ce, 1) . Number of selected clients per round

4: St (random set of m clients)

5: for each client k 2 St in parallel do

6: wk
t+1 ClientUpdate(k, wglobal

t , E, ⌘) . Local model update

7: end for

8: wglobal
t+1

Pm
k=1

nk
n wk

t+1 . Aggregate the local models

9: end for

10: return wglobal
T

where ⌘ is the learning rate. An epoch is a full cycle through the dataset. Federated

SGD (FedSGD) extends SGD to federated settings, selecting a random fraction of nodes

and using their data for gradient calculations. In Algorithm 2 the server averages these

gradients, weighted by the data volume of each node. Selective SGD further refines this

by updating parameters with the largest gradients, based on a set threshold ✓.

Algorithm 2 FedSGD Algorithm
Require: N,C, T,E, ⌘ . N: total number of clients, C: fraction of clients, T: global

epochs, E: local epochs, ⌘: learning rate

Ensure: wT . wT : model parameters after T global epochs

1: Initialize w0 . Initial model parameters

2: for t = 1, 2, . . . , T do . Global training epochs

3: m max(C ·N, 1) . Number of selected clients

4: St (random set of m clients)

5: for each client k 2 St in parallel do

6: wk
t+1 wt � ⌘rLk(wt) . Local SGD update

7: end for

8: wt+1 1
m

Pm
k=1w

k
t+1 . Aggregate local models

9: end for

10: return wT

4.2.2 Federated Averaging (FedAvg)

Federated Averaging (FedAvg) extends FedSGD by allowing local nodes to perform

multiple batch updates on their data and exchange updated weights instead of gradients.

This approach is based on the idea that if all nodes begin with the same initialization,

A. Psaltis 70

Federated, Multi-agent, Deep Reinforcement Learning

averaging gradients is e↵ectively the same as averaging weights. Moreover, averaging

weights from the same starting point does not significantly impact the performance of

the averaged model. FedAvg is a more communication-e�cient version of FedSGD and is

the most popular optimization algorithm in FL. Unlike traditional SGD, which aggregates

updates from di↵erent clients immediately after each local step, FedAvg optimizes the

local model using local data and aggregates updates at a centralized device only after

every s� th local step, where s � 1 is typically a small number.

As depicted in Algorithm 3 FedAvg operates by initially running several epochs of

stochastic gradient descent (SGD) on a subset of devices (K) in the network. These

devices then send their model updates to a central server for averaging. The goal in each

FedAvg round is to minimize the global model objective, which is typically a sum of the

weighted average of local loss functions computed on each client. The objective function

can be represented as follows:

minimizew F (w) =
KX

k=1

pkFk(w) (4.2)

Algorithm 3 Federated Averaging (FedAvg) Algorithm

Require: K,T,E, ⌘ . K: number of clients, T : number of communication rounds, E:

number of local epochs, ⌘: learning rate

Ensure: wglobal . Global model parameters

1: Initialize wglobal
0

2: for t = 1, 2, . . . , T do

3: m max(dK · Ce, 1) . Number of selected clients per round

4: St (random set of m clients)

5: for each client k 2 St in parallel do

6: wk
t+1 ClientUpdate(k, wglobal

t)

7: end for

8: wglobal
t+1

Pm
k=1

nk
n wk

t+1 . Aggregate the local models

9: end for

10: return wglobal
T

Here, K represents the total number of devices, pk is a user-defined weight for each

device, and Fk is the local objective function for the k � th device. The round begins

with a random selection of a subset of K clients. The server shares its global model w

with these clients, which independently run SGD on their loss function Fk and return

their updated model wk to the server for aggregation. The server updates its global model

by averaging these local models. This process repeats across n communication rounds.

The number of local epochs in FedAvg is crucial for convergence. More local epochs

mean more local computations and potentially less frequent communication, speeding up

convergence in networks with communication constraints. However, in cases where local

objectives Fk are heterogeneous, too many local epochs can cause devices to converge to

71 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

their local optima rather than the global objective, potentially leading to divergence or

slower convergence. A high number of local epochs also increases the risk of devices failing

to complete training in a given round, necessitating their dropout.

Despite its simplicity and wide applicability, FedAvg, as a fundamental federated

optimization algorithm, must be carefully managed to balance local computation,

communication e�ciency, and convergence to the global objective.

Algorithm 4 ClientUpdate (FedAvg) Algorithm

1: function ClientUpdate(k,w)

2: wk w

3: for e = 1, 2, . . . , E do

4: Batch B (split client k’s data into batches)

5: for each batch b 2 B do

6: wk wk � ⌘rL(wk; b) . Local SGD update

7: end for

8: end for

9: return wk

10: end function

4.2.3 A federated optimization algorithm - FedProx

FedProx is an advanced version of FedAvg, designed to better handle the diverse

capacities of devices in FL. It di↵ers from FedAvg by allowing variable amounts of local

work based on each device’s system resources, thus adapting to network heterogeneity and

reducing communication overhead. The key innovation in FedProx is the introduction of

a proximal term in the local optimization objective, which ensures that local updates stay

closer to the global model. This feature e↵ectively addresses statistical heterogeneity and

eliminates the need for setting a fixed number of local epochs. Importantly, FedProx

includes partial solutions for slower devices, preventing their exclusion and promoting a

more inclusive learning process. Its lightweight modifications to FedAvg facilitate easy

integration into existing frameworks like NVIDIA Flare, with FedAvg being a special

case of FedProx when the proximal term coe�cient µ is zero. This adaptability makes

FedProx a versatile and e↵ective solution for the varying demands of FL environments.

The objective function of FedProx, which extends the objective of FedAvg by adding a

proximal term, aims to solve the following optimization problem:

minimizew F (w) =
KX

k=1

pkFk(w) +
µ

2
kw � wtk2 (4.3)

This proximal regularization term penalizes the squared Euclidean distance between the

local updates and the global model parameters from the previous round, weighted by a

factor µ, as depicted in Algorithm 7.

A. Psaltis 72

Federated, Multi-agent, Deep Reinforcement Learning

Algorithm 5 FedProx Algorithm
Require: K,T,E, ⌘, µ . K: number of clients, T : number of communication rounds, E:

number of local epochs, ⌘: learning rate, µ: proximal term coe�cient

Ensure: wglobal . Global model parameters

1: Initialize wglobal
0

2: for t = 1, 2, . . . , T do

3: m max(dK · Ce, 1) . Number of selected clients per round

4: St (random set of m clients)

5: for each client k 2 St in parallel do

6: wk
t+1 ClientUpdate(k, wglobal

t , µ)

7: end for

8: wglobal
t+1

Pm
k=1

nk
n wk

t+1 . Aggregate the local models

9: end for

10: return wglobal
T

Algorithm 6 ClientUpdate (FedProx) Algorithm

1: function ClientUpdate(k, w, µ)

2: wk w

3: for e = 1, 2, . . . , E do

4: Batch B (split client k’s data into batches)

5: for each batch b 2 B do

6: wk wk � ⌘(rL(wk; b) + µ(wk � w)) . Local SGD update with proximal

term

7: end for

8: end for

9: return wk

10: end function

73 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

4.2.4 Federated Optimisation (FedOpt)

FedOpt represents a significant evolution in FL optimization techniques compared to

its predecessors like FedAvg, FedProx, and FedAvg’s variants. Its primary distinction

lies in the flexibility of employing a diverse range of gradient-based optimizers for both

client-side and server-side (ServerOptimizer) computations. Unlike earlier algorithms that

predominantly use SGD, FedOpt incorporates adaptive optimizers like ADAM, YOGI,

and ADAGRAD. This adaptability allows for more nuanced, client-specific optimization,

leveraging globally aggregated statistics for more informed updates. Additionally, FedOpt

introduces the concept of varying learning rates across di↵erent rounds, accommodating

dynamic learning rate schedules. Its integration into advanced frameworks like NVIDIA

FLARE highlights its ability to maintain communication e�ciency while enhancing

convergence capabilities, a notable advancement over the more rigid structures of prior

algorithms. The global objective function in FedOpt can be represented as:

minimizew F (w) =
KX

k=1

pkFk(w) (4.4)

The objective function of the FedOpt algorithm, as illustrated in Algorithm 6, similar to

other FL algorithms, generally aims to minimize a global loss function that is a weighted

sum of local loss functions. However, the key distinction of FedOpt lies in the optimization

strategy, particularly on the server side, where more sophisticated algorithms (like Adam,

SGD with momentum, etc.) are used instead of simple averaging.

Algorithm 7 FedOpt Algorithm
Require: K,T,E, ⌘,ServerOptimizer . K: number of

clients, T : number of communication rounds, E: number of local epochs, ⌘: learning

rate, ServerOptimizer: server-side optimizer

Ensure: wglobal . Global model parameters

1: Initialize wglobal
0 and ServerOptimizer

2: for t = 1, 2, . . . , T do

3: m max(dK · Ce, 1) . Number of selected clients per round

4: St (random set of m clients)

5: Initialize �wglobal 0 . Global model update

6: for each client k 2 St in parallel do

7: �wk ClientUpdate(k, wglobal
t , E, ⌘)

8: �wglobal �wglobal + pk · �wk . Weighted sum of client updates

9: end for

10: wglobal
t+1 ServerOptimizer(wglobal

t ,�wglobal) . Server optimization step

11: end for

12: return wglobal
T

A. Psaltis 74

Federated, Multi-agent, Deep Reinforcement Learning

Algorithm 8 ClientUpdate (FedOpt) Algorithm

1: function ClientUpdate(k, w,E, ⌘)

2: wk w

3: for e = 1, 2, . . . , E do

4: Batch B (split client k’s data into batches)

5: for each batch b 2 B do

6: wk wk � ⌘rL(wk; b) . Local SGD update

7: end for

8: end for

9: return wk � w . Return model update

10: end function

4.3 Experimental Setup and Data Description

This section delves into a technical analysis of the FL framework, specifically within the

NVFLARE ecosystem, detailing the performance and outcomes of models trained under

various scenarios. It encompasses a series of experiments focused on image classification

and named entity recognition, aiming to explore the influence of FL on the entire training

and evaluation process. These experiments shed light on how various learning algorithms

and alterations in data distribution a↵ect the overall performance of the global model.

4.3.1 Experiments details

Image Classification

The image classification task in this study involves categorizing each input image into

one of several predefined categories. We utilized a DL model trained and evaluated on the

CIFAR-10 dataset for both FL and centralized learning approaches. CIFAR-10, a popular

dataset in computer vision, comprises 60,000 low-resolution (32x32) RGB images across

10 varied classes (illustrated in Figure 4.1). The choice of CIFAR-10 for our experiments

is driven by its manageable image resolution, facilitating multiple FL scenarios to analyze

the e↵ectiveness of di↵erent learning strategies.

For the DL model, we employed a Convolutional Neural Network (CNN) with a

structure comprising three blocks of convolutional layers. Each block contains two

3x3 convolutional layers and a max-pooling layer, followed by three fully connected

layers. While this model doesn’t represent the cutting-edge for the CIFAR-10 dataset, it

e↵ectively illustrates performance variations essential for our study. The primary metric

for evaluating the model’s e↵ectiveness is classification accuracy.

In the centralized training setup for this preliminary study, the entire CIFAR-10

dataset is consolidated at a single node. This setup utilizes 50, 000 images for training

and the remaining 10,000 for testing. The performance of the centralized training model

serves as a benchmark for comparing against various FL algorithms. Regarding the FL

75 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

Figure 4.1: Benchmark dataset: CIFAR-10 dataset (an example of an IID type). Source:

https://www.cs.toronto.edu/ kriz/cifar.html.

experiments, we initially focus on analyzing diverse learning strategies from the previous

section under the assumption of evenly distributed data among participants. Subsequently,

we explore the impact of non-uniform data distribution on classification performance,

emphasizing how di↵erent aggregation methods can enhance outcomes in scenarios with

less homogeneous data. It’s important to note that CIFAR-10 was originally designed for

traditional centralized learning algorithms and is not inherently suited for FL. To adapt

CIFAR-10 for FL, we implement dataset partitioning strategies that mimic realistic data

distributions (as depicted in Figures 4.2 and 4.3). Following Wang’s approach, we employ a

Dirichlet sampling algorithm where the heterogeneity level in terms of data size and class

distribution is governed by a parameter ↵. For consistent comparisons across di↵erent

setups, we use the original CIFAR-10 test set, comprising 10,000 images, as the universal

test set.

To prepare a non-IID/real-world dataset for image classification tasks, one can adopt

the following procedure (also depicted in Figure 4.4):

1. Hyper-parameter Configuration: Define key parameters like the number of classes

per client, total number of clients, and batch size.

2. Dataset Preparation: Start with downloading or acquiring the original dataset. Split

this dataset for training and testing, typically using an 80/20 or 70/30 split.

(a) Data Transformation: Implement data transformations to create a random

distribution for clients, ensuring each client has a varied number of images.

(b) Client-wise Image Distribution: Distribute the images among ’n’ clients,

creating a split that mimics real-world dataset characteristics.

(c) Non-IID Dataset Split: Establish a similar split for the non-IID dataset.

(d) Data Shu✏ing: Shu✏e the images within each client’s dataset to ensure

randomness.

A. Psaltis 76

https://www.cs.toronto.edu/~kriz/cifar.html

Federated, Multi-agent, Deep Reinforcement Learning

Figure 4.2: CIFAR-10 real-world data partition among clients.

Figure 4.3: An extreme highly heterogeneous dataset partition.

(e) Data Loading: Convert the split into a data loader, incorporating image

augmentation, to serve as input for model training.

(f) FL Training: Utilize these datasets in FL to develop advanced models.

(g) Baseline Retraining: Reserve a set of images on the global server for retraining

clients’ models before aggregation. This retraining approach addresses the

challenges posed by non-IID/real-world datasets, ensuring more uniform model

training.

77 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

This comprehensive method ensures that the datasets are e↵ectively prepared for FL,

simulating realistic conditions and variations in data distribution.

Figure 4.4: Data flow diagram.

Name entity recognition

Named Entity Recognition (NER), a subtask of information extraction, focuses on

identifying and classifying entities in unstructured text into predefined categories. For

this task, the DL model is trained on the CoNLL-2003 dataset, a prominent open-source

dataset specifically designed for NER. This dataset comprises 20,745 sentences with

301,415 labeled tokens distributed across 9 classes. It’s divided into a training set

with 20,345 sentences and a test set with 400 sentences. The NER model employs a

Bidirectional Long Short-Term Memory (LSTM) architecture. It starts with an embedding

layer, followed by a bidirectional LSTM layer, and a fully connected layer processes the

LSTM’s output. The model has a total of 236, 809 trainable parameters. Adam stochastic

gradient descent is used as the optimizer, along with a sparse categorical cross-entropy

loss function. Model performance in the FL setup is evaluated using the F1 Score. Both

FL and centralized learning approaches are used for training and experimentation. In

the centralized approach, the entire training dataset is consolidated on a single node.

The performance of this centrally trained NER model serves as a baseline for comparing

subsequent experimental results. The first FL experiment involves training the NER model

with 10 clients, each receiving an equal portion of the training dataset, thus creating a

homogeneous data distribution. The second experiment introduces a heterogeneous data

split, distributing the training dataset unevenly among the 10 clients.

4.4 Results and Analysis

4.4.1 Image Classification

Building on the CIFAR-10 dataset preparation discussed earlier, we examine the

performance of the learning algorithms described in Section 4.2 across various data

distribution scenarios, ranging from identical to non-identical. To streamline the process,

A. Psaltis 78

Federated, Multi-agent, Deep Reinforcement Learning

these experiments are carried out using NVFLARE’s virtual nodes on a single machine,

which e↵ectively reduces the time required for model transmission and overall training

duration.

Centralized Learning

The CIFAR-10 dataset is located on a single node, where the model undergoes

training across 25 epochs. Figure 4.5 displays the classification accuracy achieved by

this centralized training approach, recording an accuracy of 0.8275.

Figure 4.5: Centralised learning performance on CIFAR-10.

FedAvg Learning with non-identical participants

This experiment aims to compare the performance of the global model between

centralized and distributed training setups, using FedAvg, the most basic aggregation

method, under varying degrees of data heterogeneity. The heterogeneity is controlled by

the parameter ↵, with larger ↵ values indicating more uniform data distribution among

participants, and smaller ↵ values leading to each participant having data predominantly

from one class. In our setup, there are 10 participants, and both the local epochs and

communication/aggregation rounds are set to 10. This ensures a comparable number of

iterations across participants as seen in the centralized baseline. We test the model with

four di↵erent ↵ values [1, 0.5, 0.3, 0.1] to create a range of data distributions from identical

to highly non-identical. Figure 4.6 illustrates how classification performance varies with

the Dirichlet parameter ↵. It shows that test accuracy remains close to the centralized

baseline for ↵ = 1 but declines significantly for smaller ↵ values, where participants

have more varied data distributions. This outcome suggests that the FedAvg algorithm

struggles with datasets that are non-identically distributed and highly heterogeneous.

Advanced Learning Strategies with non-identical participants

The experiments we conducted demonstrate that with increasingly heterogeneous data,

more sophisticated FL algorithms are needed. To explore this, we ran experiments

79 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

Figure 4.6: FedAvg learning curves for di↵erent ↵.

using the FedProx and FedOpt learning strategies, focusing on their e↵ectiveness in

enhancing the global model’s performance and convergence in scenarios of high data

distribution heterogeneity. For these experiments, we set the heterogeneity parameter

↵ to 0.1, keeping all other training parameters consistent with the FedAvg experiment.

As depicted in Figure4.7, FedProx matches FedAvg in terms of performance. However,

FedOpt significantly surpasses FedAvg, achieving better results under the same ↵ value

and number of training iterations. FedOpt accomplishes this improvement by employing

a Stochastic Gradient Descent algorithm with momentum for the global model update, as

detailed in Section 4.2. This adaptation showcases the e↵ectiveness of FedOpt in managing

highly heterogeneous data distributions within FL environments.

Figure 4.7: FedAvg, FedProx, FedOpt learning curves for ↵ = 0.1.

In this study using the FedProx algorithm, we carried out several experiments across

a range of ↵ values. The purpose was to underscore the benefits of FL compared to

models trained in isolation. Table 4.1 illustrates the dataset distribution with a moderate

level of heterogeneity, achieved by setting ↵ to 1 for two randomly selected participants.

This distribution results in participants possessing samples across most classes, albeit

with a limited number of samples for some. Figure 4.2 displays the confusion matrices

for participants 0 and 1. These matrices assess the performance of participant models

trained solely with their respective local datasets, as detailed in Table 4.1. The results

indicate that both participants attain commendable performance across most classes.

However, performance dips are noticeable in classes with fewer samples, such as ’truck’

for Participant 0 and ’airplane’ for Participant 1, highlighting the impact of sample

A. Psaltis 80

Federated, Multi-agent, Deep Reinforcement Learning

distribution on model accuracy.

Table 4.1: Closer look at clients’ data distribution for medium (a =1) heterogeneity

variation.
Class/ Participants airplane automobile bird cat deer dog frog horse ship truck

0 1940 433 126 193 840 191 299 243 1284 0

1 22 733 86 786 494 508 876 154 535 209

Table 4.2: Comparative confusion matrices of participants 0 and 1 in a

medium-heterogenity scenario.

Figure 4.8 and Figure 4.9 illustrate the comparative performance of models trained

locally versus a model aggregated globally, particularly under conditions of medium data

heterogeneity (↵ = 1). While the locally trained models demonstrate high classification

accuracy, the globally aggregated model notably outperforms them. This comparison

underscores the advantage of FL, where collective learning from multiple sources enhances

overall model accuracy beyond what individual local models achieve.

Figure 4.8: Medium-heterogeneity: Local isolated federated nodes learning curve.

Continuing our exploration, we conducted experiments with a higher level of data

heterogeneity, setting ↵ to 0.1. Table 4.3 illustrates that under this setting, participants

predominantly have a substantial number of samples from one or two classes, while having

few or no samples from the other classes. Figure 4.4 reveals that the models trained

locally under these conditions exhibit poor performance across most classes. Notably,

these models display a tendency toward bias, as they preferentially predict classes that

81 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

Figure 4.9: Medium-heterogeneity: Global node learning curve.

were more prevalent in their training data. This outcome highlights the challenges and

limitations of local training in scenarios with highly skewed data

Table 4.3: Closer look at clients’ data distribution for high (a =0.1) heterogeneity variation.
Class/Participants airplane automobile bird cat deer dog frog horse ship truck

0 0 814 212 3735 0 2737 0 0 0 0

1 46 291 0 4 0 0 0 0 401 123

Table 4.4: Comparative confusion matrices of participants 0 and 1 in a high-heterogeneity

scenario.

Finally, we again compared locally trained models with a globally aggregated model,

particularly in a scenario with higher data heterogeneity (↵ = 0.1). Figure 4.10 and

Figure 4.11 demonstrate that the locally trained models under this condition have

significantly low overall classification accuracy, approximately 30% and 50% respectively.

In stark contrast, the globally aggregated model attains a much higher accuracy, nearly

70%. This stark di↵erence in performance clearly underscores the enhanced value provided

by the FL paradigm, especially in managing and mitigating the challenges posed by highly

skewed or heterogeneous data distributions.

4.4.2 Named entity recognition

This subsection is dedicated to assessing the e↵ectiveness of di↵erent Named Entity

Recognition (NER) model training approaches in an FL environment, utilizing various data

A. Psaltis 82

Federated, Multi-agent, Deep Reinforcement Learning

Figure 4.10: High-heterogeneity: Local isolated federated nodes learning curve.

Figure 4.11: High-heterogeneity: Global node learning curve.

partitioning techniques. To optimize the process, these experiments are carried out using

NVFLARE’s virtual nodes on a single machine, a method that e↵ectively minimizes the

time required for model transmission and consequently reduces overall training duration.

Centralized Learning

For the centralized learning experiments, we consolidated the dataset on a single node

and trained the NER model over 10 epochs. Figure 4.12 displays the F1 Score achieved

by this centralized training approach. The recorded F1 Score for the centralized model

reaches 85.57%, which serves as a benchmark for evaluating the performance of models

trained under FL setups.

Figure 4.12: Performance of Centralized Learning on Named Entity Recognition Task.

83 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

FedAvg Learning with identical and non-identical participants

Initially, for our FL setup, we divided the training dataset evenly among 10

participants, allotting each client 2, 034 training samples. Subsequently, we implemented

an unequal distribution of the training set among the clients. This unequal split was

conducted in three varying degrees of intensity: mild (split #1), moderate (split #2), and

intense (split #3). Table 4.5 outlines how the training dataset is allocated to each client

under these di↵erent splitting scenarios, showcasing the range of data distributions tested

in the experiments.

Table 4.5: Number of training samples per client for di↵erent data partition strategies.

Client

split
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

Equal split 2034 2034 2034 2034 2034 2034 2034 2034 2034 2034

split #1 1999 2078 2077 1996 2034 1996 2067 2004 2118 1976

split #2 1717 2267 2356 1689 2234 2167 1689 2195 2289 1742

split #3 1035 3080 2075 1569 2895 809 898 3997 2459 1528

To provide a clearer picture of how the training sets are distributed among clients,

Figure 4.13 is presented. This illustration helps in understanding the variance in dataset

allocation across di↵erent splitting strategies. In split #1, the number of training samples

for each client closely resembles the evenly distributed scenario. In split #2, there’s a slight

deviation from this uniform distribution. However, split #3 shows a significant departure,

with a much more uneven distribution of training samples compared to the original equal

splitting. This visual representation in Figure 4.13 e↵ectively highlights the di↵erences in

dataset allocation across the three split types.

Figure 4.13: Number of training samples per client for di↵erent data partition strategies.

Figure 4.14 showcases the F1 Scores obtained from the four distinct experiments

focusing on data splitting strategies. Notably, the F1 Score for Split 1 closely aligns

with that of the heterogeneous splitting scenario. However, as the data distribution

A. Psaltis 84

Federated, Multi-agent, Deep Reinforcement Learning

among clients becomes more diverse, the performance of the federated models deteriorates.

This pattern indicates that the FedAvg algorithm struggles with highly heterogeneous

datasets. This conclusion is consistent with the findings discussed previously, where

similar observations were made and illustrated in Figure 4.10. This trend underscores the

challenges FedAvg faces in adapting to scenarios with significant data variability across

clients.

Figure 4.14: FedAvg F1 score curves for di↵erent data partition strategies.

Analyzing the performance of the federated model trained on the Split 2 dataset

allows us to compare the overall F1 Metric values of the FL model, resulting from Secure

Aggregation, with those of individual clients. For instance, Figure 4.15 demonstrates the

performance of the global FL model alongside that of Client 1 and Client 7 across each

federated round. It’s noticeable from this figure that the global FL model consistently

outperforms the local models in each round of the federated training. This observation

highlights the e↵ectiveness of the federated approach in enhancing model performance

through collaborative learning and aggregation, even in scenarios with non-uniform data

distribution among clients.

Figure 4.15: Local vs Global performance for two random clients.

85 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

4.5 Discussion and Findings

Within this study, we have designed, developed and evaluated a set of FL strategies

under di↵erent learning scenarios. We have extended the insightful analysis of FL

aspects carried out in the previous section, providing several training schemes for the

FL framework. We discuss how the FL framework can be applied to various existing

datasets successfully followed by a complete evaluation of state-of-the-art aggregation

mechanisms. Reflecting on the experimental process and integrating findings from the

analysis conducted, the following insights about FL have emerged:

i. Training Time E�ciency: FL significantly accelerates training time, as evidenced by

parallel computations across nodes facilitating faster algorithm convergence. This

was particularly noticeable in experiments with homogeneous data distribution.

ii. Inference Speed: Using local models for inference, as seen in the NER experiments,

leads to quicker inference times compared to centralized approaches.

iii. Robust Privacy Preservation: FL ensures confidentiality through mechanisms like

Secure Aggregation, demonstrating a strong commitment to privacy preservation, a

key advantage over centralized training.

iv. Easier Collaborative Learning: The distribution of data management and annotation

tasks across federation nodes streamlines collaborative learning. This was illustrated

in the experiments with di↵erent data-splitting strategies, where collaborative

learning improved model performance.

v. Accuracy in Varied Data Environments: The accuracy of FL models remains

competitive with centralized approaches, even in diverse data environments. This

was evident in the CIFAR-10 experiments, where FL models showed resilience in

both homogeneous and heterogeneous data distributions.

vi. Handling Data Heterogeneity: The experiments highlighted that simple FL

algorithms like FedAvg struggle with highly heterogeneous data, pointing to the

need for more sophisticated algorithms in such scenarios.

vii. Trade-o↵s in Model Performance: FL requires balancing model accuracy with device

performance, as seen in experiments where model performance varied with di↵erent

levels of data heterogeneity.

viii. Advantage in Large, Distributed Datasets: FL is particularly beneficial in situations

with large, distributed datasets, as its decentralized nature allows for e�cient data

handling and processing, surpassing the capabilities of centralized training methods.

In summary, while FL shows immense promise, particularly in privacy preservation and

handling distributed datasets, it faces challenges in managing highly heterogeneous data

and balancing accuracy with computational e�ciency. These findings underscore the need

for continued innovation and refinement in FL methodologies.

A. Psaltis 86

Chapter 5

Study 2: Addressing Data

Modality Heterogeneity in

Federated Learning

5.1 Overview of the Study - Introduction to Data

Heterogeneity in FL

Following the continuation of my previous work, I completed the research on global

literature and the current state in the field of FL, with a focus on areas that attract global

research interest such as data and system heterogeneity in image analysis applications,

including image classification, object detection, etc. As a result of this research, I shifted

my focus to developing new methodologies and tools for investigating the problem of data

type heterogeneity in Federated multi-modal 3D Human Action Recognition scenarios.

From this research, the following conclusions were drawn:

5.1.1 FL methods

As stated in the previous section, unlike traditional ML approaches that gather

distributed local data to a central server, FL solution transfers only the local-trained

models, without data exchange, to a centrally located server to build the shared global

model. FL relies on an iterative learning procedure. In particular, at each round, every

client independently estimates an update to the current NN model, based on the processing

of its locally stored data, and communicates this update to a central unit. In this respect,

the collected client-side updates are aggregated to compute a new global model. FL

inherently ensures privacy and security as the data resides in the owner’s premises and is

never accessed or processed by other parties.

87

Federated, Multi-agent, Deep Reinforcement Learning

Addressing heterogeneity

Significant challenges arise when training federated models from data that is not

identically distributed across devices, which does not happen in the case of traditional

DL techniques, where the data distribution is considered as identically independent. In

a naive centralized approach, the generated model could generalise enough and applied

to similar devices, since the data used can explain all variations in the devices and their

environment. However, in reality, data is collected in an uneven fashion and certainly

do not follow an Identically Independent Distribution (IID), making the above solution

harder to be applied. To address this, research was devoted to strategies of DL model

building under the FL paradigm, including the parameters of model exchange among

nodes, local training, model updates based upon secure aggregation and decision on the

weighted average [22, 81, 67, 82, 83].

In particular, McMahan et al . [22] was the first to propose an algorithm to deal with

the constraints imposed by distributed data-centers using a naive averaging approach,

termed as FedAvg. Being by far the most commonly used FL optimization algorithm,

vanilla FedAvg can be viewed as a distributed implementation of the standard Stochastic

gradient descent (SGD) with low communication overhead, wherein the local updates

are aggregated at the end of each round on each node directly. Instead of averaging

the gradients at the server-side, FedAvg optimizes the local version of the model solely

on the local data. An extension to FedAvg was made by Wang et al . [82] proposing a

federated layer-wise learning scheme which incorporates matching and merging of nodes

with similar weights. Towards creating a fair aggregator, Li et al . [81] and Mohri et al . [67]

extended the FedAvg algorithm utilizing data from di↵erent nodes at a time, selected in

such a way that the final outcome is tailored to the problem to be solved, thus mitigating

the learning bias issue of the global model. Several researchers have also studied the

convergence behavior in statistically heterogeneous settings. In [83], authors make a small

modification to the FedAvg method to help ensure convergence. The latter can also be

interpreted as a generalized, re-parameterized version of FedAvg that manages systems

heterogeneity across devices. Recently, [84, 85] applied FL to action recognition tasks,

where the training data may not be available at a single node and nodes have limited

computational and storage resources.

It is worth noting that despite the significant strides in all areas, only a few studies

address the heterogeneity in data modalities [86, 87, 88, 89], mainly due to the multitude

of sensors in edge devices, while the FL-based multi-modal collaborative approach for

human action recognition left unexplored. This observation underscores a pivotal and yet

underexplored area in the current research framework of FL, particularly in its application

to multi-modal human action recognition.

One of the foremost challenges in the domain of FL is the management and integration

of heterogeneous data modalities. This heterogeneity is not confined merely to the

variations in data distributions across di↵erent devices (commonly referred to as non-IID

A. Psaltis 88

Federated, Multi-agent, Deep Reinforcement Learning

data). It also encompasses the diversity in data types, especially pertinent in scenarios

involving multi-sensor edge devices. The integration of varied data forms, such as

visual inputs from cameras and kinetic measurements from accelerometers or gyroscopes,

necessitates distinct methodologies for processing and analysis. The complexity in FL

systems is thus twofold: it involves not only the aggregation of diverse datasets but also

their e↵ective interpretation and processing, all while maintaining stringent standards of

privacy and computational e�ciency.

5.1.2 DL-based 3D Action Recognition

DL techniques have recently been applied in the field of 3D human action recognition

aiming at e�ciently modeling the observed complex motion dynamics. These have been

experimentally shown to significantly outperform the corresponding hand-crafted-based

approaches. DL methods can be roughly divided into the following main categories,

depending on the type of information that is being used: a) single-modality methods

(skeleton-, surface- and flow-based), and b) multi-modal methods.

Skeleton-based methods: Current DL methods mainly focus on the use of

skeleton-tracking data, i.e. they make extensive use of domain-specific knowledge

(employed skeleton-tracker) and relatively straight-forward algorithmic implementations.

Several approaches have been proposed using variants of Recurrent Neural Networks

(RNNs), which adapt the architecture design towards e�ciently exploiting the physical

structure of the human body or employ gating mechanisms for controlling the

spatio-temporal pattern learning process [90, 91, 92, 93]. Despite the suitability of RNNs

in modeling time-evolving procedures, recently CNN-based architectures have also been

introduced [94, 95]. Other studies focus on Graph Convolutional Networks (GCNs), which

generalize CNNs to non-Euclidean feature spaces [96].

Surface-based methods: Inevitably, DL techniques have also been applied to

depth-based action-recognition problems. Wang et al . [97] present three simple, compact,

yet e↵ective representations of depth sequences, termed Dynamic Depth Images (DDI),

Dynamic Depth Normal Images (DDNI) and Dynamic Depth Motion Normal Images

(DDMNI). Additionally, Yanghao et al . [98] describe a multi-task end-to-end joint

classification-regression RNN for e�ciently identifying the action type and performing

temporal localization. In [99], a human pose representation model is proposed, making

use of CNNs and depth sequences that transfers human poses acquired from multiple views

to a view-invariant high-level feature space.

Flow-based methods: Despite the remarkable performance improvements achieved by

the inclusion of optical flow in the 2D action recognition task [100], the respective motion

information in 3D space has been poorly examined. With the advent of real-time 3D

optical flow estimation algorithms [101], this signal has become suitable for real-world

applications since it enables the focus of the analysis procedure to be put on the areas where

motion has been observed. Seeking new means for exploiting the 3D flow information more

89 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

e�ciently, alternative representations of 3D flow fields have been investigated [102, 103].

Multi-modal methods: From the above analysis it can be deduced that the 3D action

recognition-related literature has in principle concentrated on single-modality analysis,

with skeleton-tracking data being by far the most widely used features. However, from the

reported experimental evaluation, it has also become obvious that significant performance

improvements and truly robust 3D action recognition schemes can only be obtained using

multi-modal information. Until now, multi-modal DL schemes for 2D action recognition

have in principle focused on modeling correlations along the spatial dimensions (e.g .

two-stream CNN [104], trajectory-pooled deep-convolutional descriptors [105], feature map

fusion [106]).

On the other hand, for the particular case of 3D actions, Shahroudy et al . [107]

propose a deep auto-encoder that performs common component analysis at each layer

(i.e. factorizes the multi-modal input features into their shared and modality-specific

components) and discovers discriminative features, taking into account the RGB and

depth modalities. The latter again puts emphasis on spatial domain analysis, relying

on the initial extraction of hand-crafted features, while the method is not applicable to

view-invariant recognition scenarios. Zhao et al . [93] propose a two-stream RNN/CNN

scheme, which separately learns an RNN model, using skeleton data, along with the

convolution-based model, trained using RGB information, and lately fuses the obtained

features. Moreover, a graph distillation method is presented in [108], which assists the

training of the model by leveraging privileged modalities dynamically.

In the field of human action recognition, the utilization of multi-modal data promises

a more holistic understanding of human behaviours. The amalgamation of disparate

data sources, such as visual and motion data, o↵ers a richer, more nuanced perspective

than what could be achieved through unimodal data. However, the application of such

a multi-modal approach within a FL framework remains largely uncharted territory.

This gap may stem from the inherent complexities associated with developing algorithms

capable of harmoniously integrating and learning from such varied data sources. These

complexities are not only technical, involving the synchronization and fusion of multiple

data streams, but also ethical, about the safeguarding of privacy across diverse and

potentially sensitive information streams.

Developing FL systems for multi-modal data requires addressing several challenges.

Firstly, there’s the need for robust algorithms that can handle data synchronization and

fusion from various modalities. Secondly, ensuring data privacy while processing such

diverse data sources is critical, especially when dealing with sensitive information like

human actions. Thirdly, the computational and communication overheads in FL systems

increase with the incorporation of multiple data types, requiring e�cient strategies to

handle these increases without significantly impacting performance.

Despite these challenges, exploring FL-based multi-modal collaborative approaches

for human action recognition holds significant potential. Such systems can lead to more

accurate and comprehensive models, as they would be trained on a diverse range of data

A. Psaltis 90

Federated, Multi-agent, Deep Reinforcement Learning

sources reflecting real-world scenarios more closely. Moreover, these models could be more

generalizable and robust against overfitting to a specific data type. Therefore, addressing

this unexplored area could lead to advancements not only in human action recognition

but also in the broader field of FL and its applications.

Observations: Taking into account the above analysis, it can be observed that

certain rich information sources (namely 3D flow) and their e�cient combination with

currently widely used ones (i.e. skeleton-tracking and depth), have barely been studied.

In particular, very few works have concentrated on the problem of multi-modal analysis

for reaching truly robust action recognition results. Moreover, FL-based approaches

have shown considerable potential in single modality analysis, while their potential in

multi-modal scenarios has not been explored yet, with this study being the first, to the

authors’ knowledge, to address this problem by performing modality fusion at di↵erent

levels of granularity in di↵erent FL settings.

The main contributions of this work are summarized as follows:

a) a new methodology for enabling the incorporation of depth and 3D flow

information in DL action recognition schemes,

b) design of multiple Neural-Network (NN) architectures for performing

modality fusion at di↵erent levels of granularity (early, slow, late),

including a new method that reinforces the Long Short-Term Memory (LSTM)

learning capabilities, by modeling complex multi-modal correlations and also

reducing the devastating e↵ects of noise during the encoding procedure,

c) exploration of federated aggregation strategies for incarnating

cross-domain knowledge transfer in distributed scenarios, by either

treating each modality as a unique FL instance, or by performing Federated

modality fusion (aligning or correlating modalities at the local level) and,

d) introduction of a new large-scale 3D action recognition dataset, particularly

suitable for DL-based analysis under the FL configuration.

5.2 Methodology and Approach for Handling Data

Modality Heterogeneity

5.2.1 Singe-modality analysis

Human actions inherently include a temporal dimension (the so-called ‘action

dynamics’), the capturing and encoding of which is of paramount importance for achieving

robust recognition performance.

Skeleton-tracking analysis: With respect to the skeleton modality, a literature

approach is adopted [91], where spatial dependencies among joints and temporal

correlations among frames are modeled at the same time, using a so-called Spatio-Temporal

91 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

LSTM (ST-LSTM) mechanism. The latter aims at encoding the temporal succession of the

representation of its internal state while shifting the recurrent analysis towards the spatial

domain; hence, modeling the action dynamics along with spatial dependency patterns. The

ST-LSTM approach was selected in this work, due to its relatively reduced implementation

complexity, while exhibiting increased recognition performance.

a) b) c)

Figure 5.1: ‘Colorized’ 3D flow fields for actions: a) ‘Bowling’, b) ‘Baseball swing’, and

c) ‘Tennis forehand’. In (b) the green color indicates that there is an intense motion of

both arms towards the Y direction, which is the case when someone hits the ball with the

baseball bat.

Flow and depth analysis: A new methodology for processing and representing flow

(and depth) information is described in this section. One of the major challenges, regarding

3D flow estimation, concerns the corresponding computational requirements, which have

hindered its widespread use so far. However, computationally e�cient 3D flow estimation

algorithms have recently been introduced with satisfactory flow computation accuracy. In

this work, the algorithm of [101] has been employed, which exhibits a processing rate equal

to 24 frames per second (fps). For computing a discriminant 3D flow representation for

each video frame, while taking advantage of the DL paradigm, 3D CNNs are employed, due

to their increased ability to model complex patterns at multiple scales along the spatial

and spatio-temporal dimensions [109]. In particular, as an initialization step, the ‘transfer

learning’ approach has been followed in this work, similarly to the works of [105, 100]

that employ RGB pre-trained models for the case of 2D flow-based analysis. In order to

enable the use of pre-trained 3D CNNs (i.e. models that originally receive as input RGB

information) in the estimation of the proposed 3D flow representation, an appropriate

transformation of 3D flow to RGB-like information is required, as can be seen in Fig. 5.1.

For depth-based analysis, an approach similar to the flow-based one described above is

followed.

Action recognition realization: For performing action recognition, an individual

LSTM network is introduced for every considered modality, namely skeleton-tracking,

depth and flow data. Color information is neglected since it is considered that the type of

the observed action does not depend on the color of the subjects’ clothes. Regarding the

composite 3D CNN-LSTM architecture, the introduced flow and depth representations

A. Psaltis 92

Federated, Multi-agent, Deep Reinforcement Learning

are computed by considering the spatio-temporal features from the last FC layer of the

3D CNN model [110]. For every action instance, the video is split into 16-frame clips

with 8 frames overlap, where a constant number of T clips is selected. For each clip,

depth and flow features are extracted above. The developed single-modality LSTMs are

trained to predict the observed action class at every video segment, while for estimating

an aggregated probability for each action for the entire video sequence, simple averaging

of all corresponding probability values of all clips is performed.

5.2.2 Multi-modal analysis

Di↵erent modalities exhibit particular characteristics with respect to the motion

dynamics that they encode. To this end, a truly robust action recognition system should

combine multiple information sources. In this respect, NN architectures, which realize

di↵erent early, slow, and late fusion schemes of the modalities discussed in Section 5.2.1,

are presented in this section. The proposed modality fusion schemes are generic and

expandable, i.e. they can support a varying number of single-modality data streams in the

form of observation sequences. Particular attention is paid to adapting the FL paradigm

to the multi-modal setting, by proposing a set of federated aggregation strategies tailored

to the cross-domain knowledge transfer scenario.

a) Early fusion b) Slow fusion c) Late fusion d) AE-based fusion

Figure 5.2: Proposed multi-modal fusion architectures: a) concatenation of the

di↵erent single-modality features at every time instant, b) concatenation of the di↵erent

single-modality features at the LSTM state space, c) simple stacking of the LSTM state

signals, and d) shared/correlated latent representation features.

Early fusion: The first investigated modality fusion scheme essentially constitutes

a straight-forward early fusion one, where simple concatenation of the di↵erent

single-modality features is performed at every time instant and the resulting composite

feature vector is subsequently provided as input to an LSTM (Fig. 5.2). In this case, the

LSTM is assigned the challenging task of estimating correlations among feature vectors

of diverse type and unequal dimensionality. In order to account for the di↵erence in the

nature of the single-modality features, every element of each vector is normalized in order

to eventually have a mean value equal to zero and a standard deviation equal to one,

before being provided as input to the LSTM. The same feature normalization procedure

93 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

is followed in all fusion schemes presented in this section.

Slow fusion: In order to better estimate the correlations among data coming

from di↵erent sources and also to handle the problem of the varying dimensionality of

the corresponding feature vectors, a slow fusion scheme is introduced. The aim is to

combine the unimodal data not in the original feature spaces, but in the single-modality

LSTM networks’ state space. For achieving this, the LSTM state signals Hn(t), n 2
{s, d, f} ⌘ {skeleton, depth, flow}, are considered. Then, a composite multi-layer LSTM

is developed, by introducing additional layer(s) on top of the single-modality ones; the

additional LSTM layer(s) receive(s) as input a composite vector that results from the

simple concatenation of the state signals Hn(t), as can be seen in Fig. 5.2.

Late fusion: The early and slow modality fusion schemes rely on feature vector

concatenation techniques. In this section, a novel NN-based late fusion scheme (Fig.

5.2) is introduced, which exhibits the following advantageous characteristics: a) it follows

a CNN-based approach for e�cient modeling of complex cross-modal correlations, and

b) it simultaneously takes into account multi-modal information from multiple frames for

predicting the action class for the currently examined one, contrary to the common practice

of updating the class prediction probabilities by considering only the current frame; the

latter renders the proposed scheme more robust in the presence of noise and enables the

incorporation of the temporal dimension during the estimation of the multi-modal fusion

patterns.

Prior to the application of the proposed late fusion scheme, single-modality analysis is

realized for each information source as detailed in Section 5.2.1. Then, the LSTM state

signals Hn(t) are again considered. Subsequently, for every frame t, the state vectors

Hn(t) of all frames that lie in the interval [t � ⌧, t + ⌧], ⌧ > 0, are stacked, according to

the following expression:

HM (t) = [Hs(t� ⌧) Hd(t� ⌧) Hf (t� ⌧) . . .

. . . Hs(t) Hd(t) Hf (t) . . .

. . . Hs(t+ ⌧) Hd(t+ ⌧) Hf (t+ ⌧)], (5.1)

where HM (t) is the resulting 2D matrix, containing multi-modal information. For

modeling the correlations among the multi-modal data, while simultaneously taking into

account information from multiple frames, a CNN is introduced, which receives as input

the above-mentioned HM (t) matrix and estimates for every frame a corresponding action

class probability vector P(t). The developed CNN consists of two convolutional layers,

which model the correlations among the multi-modal features, and two fully connected

layers, for computing vector P(t). For estimating the action class probabilities of a whole

video sequence, the average of all P(t) values is calculated, taking into account all video

frames.

The developed early and slow fusion schemes rely solely on the use of LSTMs, rendering

them prone to the presence of noise in the input signal, missing also valuable information

from neighboring frames. By comparing equations (5.2) and (5.3), it can be easily observed

A. Psaltis 94

Federated, Multi-agent, Deep Reinforcement Learning

that the proposed CNN-based late fusion scheme allows the modeling of significantly more

detailed and complex multi-modal fusion patterns,

P(t) = WhpH(t) +Bp (5.2)

P(t) = �CNN (HM (t)) (5.3)

where �(.) denotes the transformation learned by the CNN model, P(t) the corresponding

target output, internal state vector H(t), W the learnable weight matrices and B the

biases.

Multi-modal Federated optimization: Optimization strategies and in particular

aggregation algorithms play an important role in FL as they are responsible for combining

the knowledge from all devices/nodes while respecting data’s privacy. Prior to the

application of the proposed multi-modal FL scheme, single-modality FL analysis is realized

for each information source, as already detailed in Section 5.2.1. In particular, two main

aggregation mechanisms have been followed, examined in detail and applied to specific

scenarios, namely, the FedAvg, and FedProx.

FedAvg: In each round, the algorithm performs a series of local SGD model updates

on a subset of clients, followed by a server-side aggregation task, trying to minimize the

following objective function, which is actually the sum of the weighted average of the

clients’ local errors, where Fk is the local objective function for the kth device and pk
specifies the relative impact of each device:

min
w

=
NX

k=1

pkFk(w) (5.4)

FedProx: At each step, the algorithm adaptively selects amounts of work to be

performed locally across devices based on their available systems resources and then

aggregates the partial solutions received so far. The aim here is to minimize the following

objective function hk, which, as in the previous case, takes into account local losses while

constraining local updates to be closer to the previously seen global model, where µ is the

control parameter as described in detail in [80]:

min
w

hk(w;w
t) = Fk(w) +

µ

2
||w � wt||2 (5.5)

Although adapting FL to uni-modal nodes seems to be a trivial task, shifting to more

complex architectures that fuse multi-modal streams, such as the ones described above,

may not be as easy as it seems. In this respect, a naive yet synchronous approach was

followed that first deploys di↵erent fusion schemes locally, and then aggregates the local

updates by applying the optimization mechanisms (i.e. FedAvg, FedProx) as in the simple

case of uni-modal data. However, the latter fails in cases where some nodes have access

to multi-modal local data while others only to uni-modal, hence limiting the scalability of

the system.

Inspired by the works of [107, 111, 112, 89], a modular multi-modal fusion scheme is

proposed, that utilizes Auto-Encoders (AE) from di↵erent data modalities at the local

95 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

level, enabling more advanced FL aggregation schemes at the global level. The main idea

of AE for multimodal learning is to first encode data from a source stream as hidden

representations and then use a decoder to generate features for the target stream. To

this end, the proposed single modality schemes in section 5.2.1 have been adapted to

meet the encoder-decoder requirements (i.e. utilized 3D CNN and LSTM AEs for flow,

depth and skeleton modalities respectively). For clarity, three di↵erent fusion schemes

using AEs were evaluated: a) the Multi-modal AE, where the input modalities were

processed separately with a non-shared encoder-decoder part, after which these hidden

representations from the encoder are constrained by a distance metric (e.g . Euclidean

distance), b) Variational AE (VAE) [113], where the input modalities were projected into a

shared latent space with the objective to minimize the reconstruction loss of both streams

and c) the Correlation AE (CCAE) [114], where feature correlations are captured by

cross-reconstruction with similarity constraints between hidden features, with the objective

to minimize both the reconstruction loss while increasing the canonical correlation between

the generated representations. In a federated setting, at each round, the nodes will locally

train their models to extract non-shared, shared or correlated representations. Then,

local updates from all types of representations are forwarded to the server and aggregated

into a global model by the selected multi-modal optimization algorithm [89]. Since the

representation features have a common structure, the aggregation algorithm is able to

combine models trained on both unimodal and multimodal data. Finally, through a

supervised learning process, in which the resulting encoder is used to extract internal

representations from an annotated dataset, a cross-modal classifier is produced. The

proposed multi-modal aggregation algorithm aims to minimize the following expression,

which is actually the sum of the partial errors of the unimodal and multimodal parts

respectively, balanced by a parameter �, where Fk(wA) is the reconstruction error of

modality A for the kth device.

min
w

=
NAX

k=1

Fk(wA) + �
NABX

k=1

Fk(wA) (5.6)

5.3 Experimental Setup and Data Description -

Experimentation and Results

5.3.1 3D Action Recognition Dataset

The fundamental prerequisite for the application of any DL technique constitutes the

availability of vast amounts of annotated training data. In this context, further details

about the main public 3D action recognition datasets currently available can be found

[115]. In order to further boost research in the field, a large-scale dataset, significantly

broader than most datasets indicated in [115], and in Table D.1 of Appendix D, has been

formed and made publicly available 1.

1
https://vcl.iti.gr/dataset/

A. Psaltis 96

Federated, Multi-agent, Deep Reinforcement Learning

The formed dataset exhibits the following advantageous characteristics: i) It can be

used for reliable performance measurement (only NTU RGB+D dataset[1] exhibits such

wealth of information in the literature). ii) The later[1] is indeed broader in terms of

overall action instances, however, the introduced one involves three times more di↵erent

human subjects (namely 132 participants) though; hence, rendering it highly challenging,

with respect to the exhibited variance in the subjects’ appearance and the execution of the

exact same actions. iii) It can further facilitate the application of DL techniques in the field

of 3D action recognition, where the prerequisite is the presence of multiple, ever larger and

diverse data sources. iv) It contains a large number of sport-related and exercise-related

actions, which do not exist on any other benchmark 3D action dataset, as [1] dataset

mainly supports daily and health-related actions; hence, highlighting its significance. v)

The availability of 3D flow information in the formed dataset can significantly boost the

currently largely untouched field of motion-based 3D action recognition. vi) Provides a set

of validated dataset partition strategies, which ensure that the data splits follow a close-to

real-world distribution, making it suitable for FL applications.

a)

b)

c)

Figure 5.3: Examples of the formed dataset of multi-view action capturings for actions:

a) ‘Tennis backhand’, b) ‘Jumping jacks’ and c) ‘Lunge’.

The formed dataset was captured under controlled environmental conditions, i.e.

with negligible illumination changes (no external light source was present during the

experiments) and a homogeneous static background (all participants were standing in

front of a white wall). For realizing data collection, a capturing framework was developed,

which involved three synchronized Microsoft Kinect II sensors positioned in an arced

configuration. The sensors were placed at a distance of approximately 2.5-3 meters from

the performing subjects. One sensor recorded a frontal view of the subjects, while the

other two captured diametrically opposed views (both forming a 45o angle with respect

to the frontal view direction). The formed dataset contains the following information

sources: a) RGB frames, b) depth maps, c) skeleton-tracking data, and d) 3D flow fields.

Snapshots of the captured video streams are depicted in Fig. 5.3.

Regarding the type of supported human actions, a set of 50 classes was formed.

97 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

Specifically, the set includes 18 sport-related (e.g . ‘Basketball shoot’, ‘Golf drive’, ‘Tennis

serve’, etc.), 25 exercise-related (e.g . ‘Running’, ‘Jumping jacks’, ‘Stretching’, etc.) and 7

common daily-life actions (e.g . ‘Clapping’, ‘Drinking’, ‘Waving hands’, etc.). It needs to

be mentioned that there is a distinction between left- and right-handed actions, i.e. they

correspond to di↵erent classes.

During the capturing phase, a total of 132 human subjects, in the range of 23-44 years

old, participated. All participants were asked to execute all defined actions. The latter

resulted in the generation of approximately 8545 performed unique actions and a total

of 25635 instances, considering the capturing from every individual Kinect as a di↵erent

instance. The length of every recording varied between 2 and 6 seconds.

Additionally, certain dataset partitions are required to make the introduced dataset

suitable for FL application, utilising strategies, which ensure that the data splits follow a

close to real-world distribution. The strategy described by Wang et al . [82] was followed,

to simulate both homogeneous and heterogeneous partitions. This approach is based on a

Dirichlet sampling algorithm, where a parameter ↵ controls the amount of heterogeneity

with respect to data size and classes’ distribution. Overall, the involved human subjects

were randomly divided into training, validation and test sets, each comprising 20%, 30%

and 50% of the total individuals, respectively. Further information regarding the dataset,

encompassing pre-processing steps and extra samples for each modality, is available in

Appendix E.

Data distribution and implementation details: In this section, experimental

results from the application of the proposed 3D action recognition methods are presented.

For the evaluation, the introduced dataset was used as a benchmark, and further, it

was converted into two non-IID dataset variants to support the FL scenarios. One is

replicating the real-life data, i.e. real-world dataset, while the other is the extreme example

of a non-IID dataset (denoted as D1 and D2 respectively). For both datasets, a set of

50 action classes was defined and a total number of 3 nodes was chosen among which

actions are to be distributed. As mentioned above, the parameter ↵ > 0 controls the

identicalness among participants. Di↵erent ↵ values were tested, where with ↵� > 1,

all participants have identical distributions and ↵� > 0, each participant has examples

from only one class. To support D1 the set was divided with medium heterogeneity by

setting ↵ = 1. Therefore, a node can have actions from any number of classes. This type

of dataset replicates the real-world scenario in which di↵erent clients can have di↵erent

types of action. In contrast, for the case of the non-IID set D2, the original dataset was

divided, with a higher level of heterogeneity by setting ↵ = 0.5. Here, nodes tend to

have a significant number of samples from some classes and few or no samples for the

other classes. Each node randomly sampled 1
3 of training, validation and test set data

respectively. The experiments reported in Tables 5.1 and 5.2, highlight the impact of

di↵erent learning algorithms and data distribution variations on local as well as global

model’s performance.

Regarding implementation details, the single-modality and early fusion LSTMs

A. Psaltis 98

Federated, Multi-agent, Deep Reinforcement Learning

Table 5.1: Action recognition results in D1: a) Single-modality analysis, b) Multi-modal
fusion. Methods indicated with superscripts ‘s’, ‘c’, ‘d’ and ‘f’ incorporate skeleton,
color, depth, and flow data, respectively. Accuracy obtained at server level (AccS), mean
Accuracy obtained at node level (mAccC). In the centralized scenario, all data is gathered
in one node, where mAccC is ‘-’, the exact opposite happens in the local (isolated) scenario
where AccS is ‘-’, while in the federated scenarios, access is permitted to both local and
global data.

AccS/mAccC Method Centralized Local FedAvg FedProx

a)
Depth 79.54% / � � / 57.84% 72.63% / 66.18% 73.06% / 66.43%
Skeleton 80.27% / � � / 57.32% 74.12% / 66.45% 74.58% / 66.79%
Flow 85.49% / � � / 60.53% 78.35% / 70.21% 78.83% / 70.55%

b)
Earlysdf 82.75% / � � / 61.28% 76.72% / 68.94% 77.20% / 69.26%
Slowsdf 87.12% / � � / 64.87% 78.84% / 70.82% 79.31% / 71.05%
Latesdf 87.95% / � � / 65.26% 79.25% / 71.48% 79.57% / 71.61%
VAEsdf 84.39% / � � / 62.11% 76.96% / 69.04% 77.25% / 69.47%
CCAEsdf 85.43% / � � / 62.57% 77.31% / 69.18% 77.93% / 69.82%

consisted of three layers, while the slow fusion scheme required the addition of one more

layer on top. In all LSTM configurations, each layer included 2048 units. A set of 32 frames

were uniformly selected for feature extraction, which roughly corresponds to one-third of

the average number of frames per action. For the particular case of 3D CNN, each video

sequence was split into 16-frame clips with 8 frames overlap. Prior to feature extraction,

simple depth thresholding techniques were used to maintain only the subjects’ silhouettes.

Additionally, for depth and flow feature extraction, data transformation (e.g. cropping,

resizing etc.) techniques have been applied.

With respect to the implemented fusion approaches, the ‘Torch2’ scientific computing

framework and 4 Nvidia GeForce RTX 3090 GPUs were used at each node. Zero-mean

Gaussian distribution with a standard deviation equal to 0.01 was used to initialize all NN

weight and bias matrices. All class predictions (both at the node and server-side) were

passed through a softmax operator (layer) to estimate a probability distribution over the

supported actions. The batch size was set equal to 256, while the momentum value was

equal to 0.9. Weight decay with a value of 0.0005 was used for regularization. For the

federated setting, a total number of 100 communication rounds was initially selected. In

each communication round, training on individual clients takes place simultaneously. In

this respect, for the early fusion case, the training procedure lasted 80 epochs, while for

the slow, late and attention-based fusion ones, 30 epochs were shown to be su�cient.

5.4 Results and Analysis

5.4.1 Single-modality Evaluation

In Tables 5.1 and 5.2, quantitative action recognition results are given in the form

of the overall classification accuracy, i.e. the percentage of all action instances that were

correctly classified, for di↵erent federation scenarios based on data availability, namely

the centralized, the local(isolated) and the federated. For the centralised training, the

resulting models are based on the combined training dataset at a central node. The

2
https://pytorch.org

99 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

performance of these models will be used as a benchmark in a thorough evaluation against

the proposed FL algorithms. In the local learning setup, the results models were trained

solely on local datasets at the node level. In all setups, the global test set of all nodes was

used. From the first group (a) of the provided results (i.e. single-modality ones), it can

be seen that the introduced 3D flow representation achieves the highest recognition rates,

among the single-modality features. The latter demonstrates the increased discrimination

capabilities of the flow information stream. It should also be stressed that in all single

modality cases, the centralized approach outperforms the others (both local and federated

ones), in some cases even by a large margin (over 25%), but what can be pointed out is that

the aggregation techniques show a significant improvement compared to the isolated local

version ones (i.e. relative improvement of more than 18%). Summarizing the findings,

it can be stated that federated strategies provide acceptable performance recognition

compared to centralized ones while giving the feeling that it can be increased even further

by incorporating more sophisticated averaging techniques.

5.4.2 Multi-modal Evaluation

Concerning the proposed modality fusion schemes [second (b) group of experiments

in Tables 5.1 and 5.2], it can be observed that the introduced late fusion mechanism

exhibits the highest overall performance. This is mainly due to the more complex and

among multiple frames cross-modal correlation patterns that the developed CNN encodes.

Surprisingly, the early fusion scheme (despite its usual e�ciency in multiple information

fusion tasks) is experimentally shown not to be e↵ective in the current case; this is probably

mainly due to the relatively high dimensionality and significant diversity of the involved

uni-modal features. Examining the behavior of the multi-modal AE schemes in more

detail, it is shown that performance is maximized in the case of the CCAE, highlighting the

added value of the correlation analysis performed at the latent representation layer among

the participating modalities. Despite their potential, none of the proposed AE-based

methods can approach the performance of the slow and late fusion approaches, resulting

in a reduction of the overall classification e�ciency by about 2 � 3%. However, what

makes these methods unique is the ability to train using more than one data stream,

while evaluating with just one. Similarly to the findings of the single mode experiments,

the FL optimization algorithms can provide a reliable solution to the problem, showing

a small drop of 8%. By comparing results obtained in D1 and D2 it is obvious that

more heterogeneous data splits require more advanced FL algorithms. Further analysis,

indicates that the locally trained models achieve very poor performance for most of the

actions and they tend to be biased since visibly prefer predicting the classes that they

presented at training. In contrast to the global aggregated models that exhibit acceptable

performance in both (a) and (b) sets, around 70% on average; thus, clearly highlighting

the added value of the FL paradigm in high-heterogeneous distributions.

A. Psaltis 100

Federated, Multi-agent, Deep Reinforcement Learning

Table 5.2: Action recognition results in D2: a) Single-modality analysis, b) Multi-modal
fusion.
AccS/mAccC Method Centralized Local FedAvg FedProx

a)
Depth 79.54% / � � / 37.26% 64.45% / 60.02% 65.12% / 60.37%
Skeleton 80.27% / � � / 37.25% 66.23% / 61.38% 66.59% / 61.85%
Flow 85.49% / � � / 40.69% 71.02% / 66.19% 71.44% / 66.65%

b)
Earlysdf 82.75% / � � / 41.49% 68.43% / 62.84% 68.84% / 63.24%
Slowsdf 87.12% / � � / 44.73% 70.15% / 65.28% 70.62% / 65.68%
Latesdf 87.95% / � � / 45.37% 72.42% / 66.63% 72.94% / 67.11%
VAEsdf 84.39% / � � / 42.34% 68.77% / 62.98% 69.11% / 63.95%
CCAEsdf 85.43% / � � / 42.71% 69.21% / 63.24% 69.47% / 64.36%

5.5 Discussion and Findings

In this comparative study, we delve into the performance of various FL strategies,

such as FedAvg and FedProx, within the domain of 3D action recognition. Our research

predominantly focuses on the impact of di↵erent data modalities, namely depth, skeleton,

and flow, on the overall system performance. The examination reveals significant

insights into the functionality and limitations of these FL strategies under varied network

conditions and data heterogeneity.

One of the critical findings is the varying e↵ectiveness of FL strategies in handling

non-IID data distributions. The challenges encountered in multi-modal federated

optimization, particularly regarding communication overheads and data synchronization,

are highlighted. This study also explores the strengths and weaknesses of each data

modality and its fusion strategies, including early, slow, and late fusion. It becomes

evident that the fusion of these modalities plays a pivotal role in enhancing the recognition

performance.

Through our experimental data, we observe a distinct performance disparity between

the FL algorithms. FedAvg, while being the most commonly used, shows certain

limitations in its ability to handle complex multi-modal scenarios e↵ectively. In contrast,

FedProx o↵ers an extension with improved performance, particularly in managing systems

heterogeneity across devices. This is crucial in FL environments where data is distributed

across various nodes with di↵erent computational and storage capacities. Additionally, our

analysis sheds light on the e↵ectiveness of multi-modal data fusion in FL. By integrating

various types of data, such as visual inputs from cameras and kinetic measurements from

accelerometers or gyroscopes, FL systems can achieve a more nuanced understanding

of human actions. However, the complexity of integrating these diverse datasets and

interpreting them e↵ectively, all while maintaining privacy and computational e�ciency,

remains a significant challenge.

In conclusion, this study underscores the importance of advancing FL techniques in

multi-modal human action recognition. It highlights the need for innovative solutions to

address the challenges of data heterogeneity and fusion strategies, paving the way for more

accurate, e�cient, and privacy-preserving FL systems in real-world applications.

101 A. Psaltis

Chapter 6

Study 3: Representation Learning

and Federated Distillation in FL

6.1 Overview of the Study

Building upon the insights gained from the initial explorations in computer vision and

text categorization, and the subsequent deep dive into data type heterogeneity in federated

multi-modal 3D human action recognition, the third study in this series introduces a novel

federated distillation weight aggregation method. This innovative approach is tailored for

distributed learning environments, where it addresses the challenge of e�ciently extracting

and transferring knowledge across multiple nodes in a federated network. Central to this

study is the development of an algorithm that adeptly captures meaningful representations

from various client nodes and models this information into actionable knowledge. This

knowledge is then e↵ectively consolidated at a central server using a feature mixing

technique. The aggregated knowledge is subsequently disseminated back to the client

nodes for further refinement and distillation. A series of comprehensive experiments

were conducted to evaluate the e�cacy of this method. These experiments shed light

on the e↵ectiveness of the proposed algorithm in an FL context, particularly highlighting

its capacity to maintain robust performance while significantly curtailing communication

costs. This study, therefore, marks a critical advancement in FL, optimizing the knowledge

transfer process through representation learning and enhancing the overall e�ciency and

e↵ectiveness of distributed learning systems.

6.1.1 Challenges and Solutions in Representation Learning

The exponential growth in smart device usage precipitates a marked augmentation in

data transmission volumes, presenting a significant challenge in the realm of distributed

data management. A paramount concern in this domain is the facilitation of e↵ective

training protocols for decentralized clients, avoiding the necessity for inter-client data

exchange. To overcome this challenge, FL [22] has been developed as a pivotal

103

Federated, Multi-agent, Deep Reinforcement Learning

methodology, enabling training of a centralized model whilst ensuring the retention of

users’ sensitive data exclusively within their personal devices.

Nevertheless, the FL approach involves a communication overhead being proportional

to model sizes. Particularly, models of large size prove to be impractical for deployment.

Furthermore, the necessity for model aggregation in the FL training process imposes a

lack of flexibility in the architecture of client models, as each client is required to train a

model with an identical architectural framework.

Towards this direction, a novel technique known as Federated Distillation (FD)

has been put forward. This approach diverges from the traditional model aggregation

method, opting instead for the exchange and aggregation of client model logits. These

aggregated logits are then utilized in the model distillation phase to disseminate the

knowledge acquired by local datasets among all clients. This alternative methodology

o↵ers advantages such as reduced communication costs, greater flexibility in client

model architecture, and improved handling of non-IID (independently and identically

distributed) data.

This technique was first introduced by Jeong et al . [116], where they proposed using

a Generative Adversarial Network (GAN) as a central model. In this approach, clients

upload per-label averaged soft targets to train the GAN. Subsequently, clients download

the GAN generator and produce samples for underrepresented labels, aiming to achieve an

IID dataset. A prevalent approach in the literature involves the use of a common dataset

accessible to all clients for local distillation, leading to improved model performance. In

[117], Li et al . presented a scenario where each client possesses a small labeled dataset

alongside a larger public dataset accessible to all. The training process involves initial

training on the public dataset, followed by training on the private dataset. Logit vectors

are then transmitted to the server for aggregation. In their study [118], Itahara et

al . introduced a semi-supervised method that employs a labeled private dataset and a

shared unlabeled dataset. They altered the aggregation step by proposing an Entropy

Reduction Aggregation (ERA), demonstrating that using a temperature lower than one

when applying softmax to aggregated logits reduces the entropy of global soft targets.

This approach is particularly beneficial in non-IID settings.

A subset of methods employ the server solely as an aggregator (similar to conventional

FL methods) for locally computed model logits. More recent strategies have incorporated

a server distillation step, which distills a server-side model that can be used to construct

global logits (or soft targets) for broadcasting. For instance, Cheng et al . [119] employ both

a public shared dataset and a private dataset, utillizing smaller client models alongside a

larger server model. The server categorizes instances in the public dataset into correctly

and incorrectly predicted subsets to enhance convergence. In [120], a one-shot distillation

method is introduced. The proposed technique combines distillation and aggregation

mechanisms to support FL. In this approach, client models are fully trained prior to being

transmitted to the server, which then aggregates per-class attention maps.

The methods previously discussed predominantly utilize averaging of client logits as

A. Psaltis 104

Federated, Multi-agent, Deep Reinforcement Learning

their aggregation technique. However, there has been limited exploration of alternatives to

this approach. The proposed technique delves into the fusion process of client logits during

the aggregation process, which we contend is a crucial factor a↵ecting the performance of

the global model. Consequently, this paper introduces an innovative aggregation method

designed to refine the selection criterion. Drawing inspiration from the work of Parvaneh

et al . [121], a feature mixing aggregation method is proposed, though with a di↵erent

objective. In [121], the potential label change resulting from feature mixing identifies the

images that require labeling. Conversely, in our approach, any potential label change is

considered undesirable and leads to a reduction in the weight factor. A trainable alpha

vector for the weighted aggregation of client logits is introduced, while a global model is

maintained on the server side to train this vector. The main contributions of this work

are as follows:

a) The introduction of an innovative federated distillation scheme, which leverages a

global server model to guide the aggregation process, encompassing a more advanced

aggregation of model outputs.

b) The proposal of a novel aggregation method is outlined. This method utilizes feature

mixing and incorporates a trainable vector, designed to assign reduced weight factors

to images that are likely to induce label changes.

c) The e↵ectiveness of the proposed approach is validated through extensive

comparative analysis on one of the most comprehensive publicly accessible

benchmarks, demonstrating its superiority and robustness across a diverse array

of FL scenarios.

6.2 Methodology and Approach

6.2.1 Problem statement

In a federated system, data are inherently confined to individual clients, and their

exchange with other clients is stringently prohibited. Following a common literature

practice in FD systems, each client possesses a distinct local dataset. Additionally, there

exists a public dataset that is shared among all clients. On the server side, a global model

is maintained, which is trained using this global dataset.

A main challenge in the federated distillation systems lies in the aggregation of the

client logits on the server side. The prevailing method in the literature is to simply average

these logits. However, this approach fails to consider that data heterogeneity or varying

sizes of local datasets might lead some local models to transmit lower-quality logits to the

server, which could subsequently decrease local models’ performance during the distillation

process. To address this issue, the proposed method adopts a strategy where client logits

are gradually added, with a specific focus on penalizing those logits that result in a label

change.

105 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

6.2.2 Local client training

The local clients undergo supervised training, where each client is assigned a distinct

segment of the dataset. This allocation remains consistent throughout all federated rounds,

with clients training exclusively on their respective segments. The training subset of the

dataset is used for model training purposes, whereas the validation subset serves to assess

and verify the performance of the models trained by each client. During the training

phase, the Cross-Entropy loss function is utilized:

L(✓) = � 1

M

MX

m=1

KX

k=1

ymk log pmk (6.1)

where ✓ represents the model parameters, M denotes the total number of images, K

the total number of classes, ymk the label of the m, k image and pmk the probability of

the class.

Aside from each client’s training and validation sets, there is a shared communal

dataset accessible to all clients, following the common literature practice ([117], [119]).

This dataset acts as a reference point for addressing the issue of data heterogeneity across

clients. Each client produces model outputs for each sample in the communal dataset at

the end of each federated round. These outputs are then transmitted to the server for

aggregation. To ensure knowledge alignment across all clients, in the subsequent federated

round, each client engages in knowledge distillation using the global anchors derived from

the communal dataset. The knowledge distillation term is computed using the following

expression:

LKL = ||�(ocr)� �(or�1)| | (6.2)

where � represents the network function, ocr signifies the model output of client c at

the federated round r and or�1 denotes the global anchors’ aggregation of the previous

round.

The limited amount of data that is communicated from the clients to the data in

the federated distillation scheme is a disadvantage, as only the output from the model’s

last fully connected layer is sent to the central server. To mitigate this limitation, a

multi-scale knowledge distillation strategy is implemented, drawing inspiration from the

research of [122]. Specifically, each client transmits certain intermediate outputs (also

known as hidden representations), computed over the communal dataset, in addition to

the model’s output; the number and the position of these intermediate outputs can vary

depending on the specific requirements of the problem. Thus, the multi-scale knowledge

distillation term is calculated as follows:

Lmulti�scaleKL =
1

L

LX

l=1

���|�(zNlj)� �(zlj�1)
��� | (6.3)

A. Psaltis 106

Federated, Multi-agent, Deep Reinforcement Learning

Figure 6.1: (a) The outline of the proposed algorithm. (b) The representation aggregation

mechanism on the server-side.

where zNl = fN
l (·), l 2 (1, ..., L), l represent the di↵erent model layers, zNl signifies the

intermediate output at layer l for the client N , with size H ⇤W ⇤C and fN
l (·) denotes the

subnetwork for feature extraction up to the layer l.

6.2.3 Global representation aggregation

A feature mixing aggregation method is proposed in this work, implemented by

linear interpolation, inspired by [121]. For each client, a tensor of random numbers is

generated from separate normal distributions. The mean and standard deviation of these

distributions are determined by a hyperparameter denoted as acap. The dimension of

the tensor is equal to the model output, calculated as nclasses ⇤ nsamples, where Nclasses

represents the number of the dataset classes and nsamples represents the samples’ number

of the communal dataset. This tensor is utilized to perform interpolation between the

current client’s model output and a convex combination of the model outputs from the

previous clients.

The interpolation process begins with the first client’s model output being combined

with the second client’s model output. Subsequently, the model output of the third client

is interpolated with the convex combination of the model outputs from the first two clients,

and so on. The linear interpolation is computed using the following equation:

LA = (1� a) o⇤ + a on (6.4)

where a represents the generated tensor, o⇤ signifies the convex combination of the

107 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

clients’ model outputs (or the first client) and on denotes the model output of the client

n, n 2 [0, nclients], nclients represents the number of clients.

On the server side, there exists a server model that undergoes training using the

communal dataset. The server model output is then compared with the feature mixing of

c⇤ and cn. The Cross-Entropy loss function is utilized as the loss function of the global

model:

LG(✓) = �
1

M

MX

m=1

KX

k=1

ymk log pmk (6.5)

Regarding the loss of the learnable a tensor, it is calculated as follows:

L(a) = � 1

M

MX

m=1

KX

k=1

LAmk log pmk + cnnorm(a) (6.6)

where a represents the alpha tensor and the norm refers to the Frobenius norm of the

tensor. After training the a tensor and prior to the feature mixing step, it is limited to

the range [0, 1). Thus, the Frobenius norm penalizes large values of a.

The process outlined in this section is repeated nclients � 1 times to integrate each

client’s model output for a specified number of epochs (in this work, is set to 5). To

prevent overfitting of the global model, the model gradients are scaled by 1↵Odiff , where

↵ denotes the element-wise division, as indicated below:

(
@LG

@W
)0 = 1↵Odiff ⌦

@LG

@W
, (6.7)

whereW represents the model’s parameters and⌦ denotes the element-wise multiplication.

6.2.4 FedFMRL Algorithm

This section presents the training flow of the FedFMRL procedure, which is organized

into four main algorithms. In Algorithm 9, the main outline of the proposed method is

provided. Algorithm 10 describes the training and update steps within each local client,

while Algorithm 11 details the distillation process carried out by the local clients. Lastly,

in Algorithm 12, the methodology for aggregating global representation is presented.

A. Psaltis 108

Federated, Multi-agent, Deep Reinforcement Learning

Algorithm 9 FD Algorithm
Require: T is the number of communication rounds, N is the total number of clients,

✓il represents the parameters of the local models, ✓g represents the parameters of the

global model,Di
l are the separate datasets for the local clients, Dcm is the dataset of

the communal dataset, Dtest is the common testing dataset, eg are the epochs of the

global model, ⌘ is the learning rate and a⌘ is the learning rate of the alpha tensor.

1: for each i from 1 to N do

2: Initialize local models ✓il
3: Prepare local datasets Di

l

4: end for

5: Initialize global models ✓g

6: initialize tensor a

7: Prepare communal dataset Dcm

8: Prepare common global dataset for evaluation Dtest

9: Server executes:

10: for each Federated round j = 0, 1, 2, . . . do

11: for each client in parallel do

12: ✓lj ClientUpdate(Dl, ✓lj)

13: zj , .. Extract representations from (✓lj)

14: Send representation to server

15: end for

16: aj AnchorAggregation(Dcm, ✓g, zj , N, a, eg, aeta)

17: Distribute the updated global Anchors

18: for each client in parallel do

19: ✓lj+1 KDUpdate(Dex, ✓lj , a)

20: end for

21: end for

22: Validate the updated distillated models on Dtest

Algorithm 10 ClientUpdate Function

1: ClientUpdate(Dl, ✓): . Run on specific client

2: for each local epoch i from 1 to E do

3: for each batch in Dl do

4: ✓l ✓l � ⌘rL(✓l, labels) . Update the client model with Eq. 6.1

5: end for

6: end for

7: return ✓l

109 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

Algorithm 11 DistillationUpdate Function

1: KDUpdate(Dex, ✓l, a): . Run on specific client

2: for each batch in Dex do

3: lmul . Compute Multi Scale loss with Eq. 6.3

4: ldis . Compute Distillation loss with Eq. 6.2

5: L = mc ⇤ lmul + ldis
6: ✓l ✓l � ⌘rL(✓l) . Update the client model with aggregated loss L

7: end for

8: return ✓l

Algorithm 12 AnchorAggregation Function

1: ClientUpdate(Dcm, ✓g, zj , N, a, eg, a⌘):

2: for each i from 1 to N � 1 do

3: for each j from 1 to eg do

4: ✓g ClientUpdate(Dex, ✓g) og thetag

5: LA . Compute linear interpolation with equation 6.4

6: a a� a⌘rL(a, thetag) . Update the a tensor with Eq. 6.6

7: end for

8: end for

9: return aj

6.3 Experimental Setup and Results

6.3.1 Dataset settings

The experimental results of the proposed FedFMRL system, utilizing the CIFAR-10

and CIFAR-100 image classification datasets [123] as a benchmark, are reported in this

section. These datasets were adapted to simulate both IID and non-IID scenarios,

incorporating various FL parameters. In the IID setting, the data was balanced, ensuring

an even distribution among clients. Conversely, in the Non-IID setup, we deliberately

created a scenario with extreme data imbalance. Similarly to prior works [51], a

concentration parameter beta is used to produce the Non-IID data partition among clients.

A total number of 10 participating nodes were involved, with images distributed among

them for experimentation.

IID and Non-IID Settings

As previously mentioned, the parameter ↵ > 0 plays a pivotal role in regulating

the degree of identicalness among participants. In our experimentation, we examined

various values of ↵, with ↵ ! 1 signifying that all participants possess identical data

A. Psaltis 110

Federated, Multi-agent, Deep Reinforcement Learning

distributions, and ↵ ! 0 indicating that each participant exclusively contains examples

from a single class. Values ranging from 0.05 to 1 were selected for ↵ to assess the

performance of the proposed method across di↵erent levels of data heterogeneity. In the

experimental setup, each node randomly sampled 1
10 of training and validation data

respectively, while the test set data were reserved for the final system evaluation, both at

the global and local levels.

6.3.2 Implementation Details

Architecture and Parameters

The architecture of the proposed method is grounded in a distributed structure,

employing the ResNet56 [124] model, for both the local clients and the server model.

The local clients undergo training using a multi-loss approach introduced in [122], which

involves three intermediate outputs corresponding to the outputs of three ResNet layers.

The SGD [125] technique is employed as the optimization technique. The learning rate is

set to 0.1, with a weight decay of 1e�3, a batch size of 64 and mc equals to 0.1. To ensure

comprehensive learning and convergence, the local models are trained for 300 epochs. The

server model is trained for 5 epochs on the communal dataset for each feature mixing

step. The learning rate is set to 0.1, with a weight decay of 1e� 5, and cn equal to 0.01.

Regarding the learning rate of the a tensor, it is 0.1 for the first frac23 of the global

epochs and then increased to 10 for the remaining training process. The DL models are

implemented in Python 3.8 within the PyTorch (version 2.0) [126] environment. The code

for this research will be made publicly available for reference and further exploration.

Federated setting

The training paradigm for the proposed FL system, comprising a central server and 10

local clients, encompasses 6 federated rounds. In each round, local clients are separately

trained for 50 epochs, with no inter-client communication during training. The final

evaluation of the local models is conducted using the test set of the CIFAR-10 and

CIFAR-100 datasets. The training set is divided into a common set that is accessible

to all clients, constituting 20% of the training set, and the remaining 80% is distributed

among the clients. Each client retains 10% of its local data as its local validation set and

uses the rest for its local training set. The training was executed on a single computer

outfitted with 4 GeForce RTX 3090 (VRAM 24GB each) and furnished with 128GB of

RAM.

Baselines

To comprehensively assess the proposed method’s e�cacy, a comparative performance

analysis was conducted using two distinct configurations. Initially, benchmark tests were

carried out using a FedAvg framework, encompassing both IID and non-IID scenarios.

111 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

Furthermore, the proposed method was compared with a scheme of locally isolated clients

(with no communication between them) and a standard federated distillation strategy.

6.3.3 Performance Evaluation

Global aggregation schemes

In this section, the impact of various global aggregation schemes is evaluated. Three

di↵erent methods are subjected to testing:

a) This method involves weighted averaging of the client outputs. For each client, the

factor (1� a) ⇤ ocr (representing the model output of client c at the federated round

r) is added to the soft logits tensor. The final soft logits tensor is then divided by

the product of the number of clients and the acap

b) In this scheme, a linear interpolation is computed, but the o⇤ of the Eq. 6.4 defines

the mean model output of all clients except client n. This is followed by division by

the number of clients.

c) This method follows the process described in Section 6.2.3.

The results (as presented in Table 6.1) demonstrate that linear interpolation is a better

method for representation aggregation compared to weighted averaging. The scheme (c)

achieves better results in both the client and the server sides and has been chosen as the

aggregation scheme for the subsequent experiments.

Scheme Mean Client Accuracy Global Model Accuracy

A 1.00 19.50

B 29.63 19.50

C 29.83 20.88

Table 6.1: Comparative evaluation of di↵erent global aggregation schemes.

Alpha calculation methods

The a tensor can be computed using a closed-form solution or by drawing values from

a Gaussian distribution with a predefined mean and standard deviation for the tensor

a. The closed-form solution introduced in [121] is employed in this regard. Alternately,

in the case of Gaussian-generated a, the tensor can be employed without modifications,

or the method described in Section 6.2.3 for a learnable a tensor can be utilized. As

demonstrated in Table 6.2, a learnable a strategy proved to be more e↵ective in capturing

the diverse properties of each client and assigning the appropriate weight factor to each

client. This strategy has been adopted for the remaining experiments.

A. Psaltis 112

Federated, Multi-agent, Deep Reinforcement Learning

Alpha calculation Mean Client Accuracy Global Model Accuracy

Closed-form 28.73 N/A

Gaussian generated 29.14 N/A
Gaussian generated
with learnable a 29.83 20.88

Table 6.2: Experiments with di↵erent methods for alpha calculation.

0 10 20 30 40
20

30

40

50

Odiff value

A
cc
u
ra
cy

Global Model Accuracy
Mean Client Accuracy

Figure 6.2: Impact of di↵erent values of the Odiff factor.

Impact of the Odiff factor

In this section, the impact of di↵erent values of the Odiff factor on the accuracy

of the server’s model and the clients’ models is examined. According to Figure 6.2 the

global model attains the highest accuracy when Odiff is set to 20. Thus, this value

is employed in the subsequent experiments. It is observed that the client models are

not significantly a↵ected by the variation in the Odiff factor. This outcome is expected

because the global model is directly influenced during training by Odiff , whereas the client

models are indirectly a↵ected due to the output modification of the global model.

Impact of the acap factor

This experiment addresses the e↵ect of di↵erent values of acap on the local models’

accuracy. The acap value determines the mean and standard deviation of the Gaussian

distribution used to generate the initial a values. As it is illustrated in Figure 6.3, the

best results are observed when acap is set to at least 0.5, with the optimal performance

achieved when acap = 0.8. Therefore, this value has been selected for use in the subsequent

experiments.

113 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

acap Mean Client Accuracy

0.1 29.51

0.2 29.61

0.3 29.60

0.4 29.64

0.5 30.03

0.6 30.15

0.7 30.28

0.8 30.41

0.9 30.21

Table 6.3: Impact of di↵erent values of the acap factor.

Impact of non-IID data

Non-IID data often exhibits a wide range of patterns and variations among nodes,

making it challenging to learn a generalized model. Therefore, to assess the impact of

non-IID data on the proposed method, the mean client accuracy of the FedFMRL method

(incorporating the multi-scale knowledge loss, as in Equation 6.3) is compared with the

baseline federated distillation method for di↵erent values of beta, as shown in Fig. 6.4.

The results demonstrate that the FedFMRL scheme outperforms the baseline federated

distillation method across all beta values, highlighting the added value of the feature

mixing and the multi-scale knowledge loss in handling non-IID data.

beta 0.25 0.5 0.75 1 IID

FLD 16.78 22.15 22.82 24.92 30.45

FedFMRL 17.04 24.29 25.49 28.90 37.87

Table 6.4: Experiments with Non-IID data, for di↵erent beta values

Comparison with baseline methods

In this section three baseline methods are compared with FedFMRL, as described in

Section 6.3.2, using CIFAR-10 and CIFAR-100 datasets. In particular, on the CIFAR-100

dataset, FedFMRL achieves remarkable results with a Mean Client accuracy of 37.87%,

surpassing the other methods. This is accompanied by an impressive Global Model

accuracy of 49.04%, indicating the e↵ectiveness of our approach. Similarly, on the

CIFAR-10 dataset, FedFMRL outperforms the other methods with a Mean Client accuracy

of 77.01% and a Global Model accuracy of 78.11%. It is worth noting that FedFMRL

A. Psaltis 114

Federated, Multi-agent, Deep Reinforcement Learning

achieves superior results compared to FedAvg, even though only model outputs and

intermediate representations are shared, and not model parameters. On the other hand,

isolated clients who train separately exhibit the lowest accuracy, which was expected.

However, this comparison underscores the value of the proposed approach.

Method Mean Client Accuracy Global Model Accuracy

CIFAR100

FL(FedAvg) N/A 34.17

Local Isolated Clients 23.29 N/A

FLD 30.45 N/A

FedFMRL 37.87 49.04

CIFAR10

FL(FedAvg) N/A 75.56

Local Isolated Clients 70.12 N/A

FLD 75.46 N/A

FedFMRL 77.01 78.11

Table 6.5: Comparative evaluation with baseline methods on CIFAR10 and CIFAR100

datasets.

6.4 Insights and Contributions

The study presented in this chapter represents a significant stride in this dissertation,

particularly in addressing the challenges of representation learning and federated

distillation. The introduction of a novel federated distillation weight aggregation method,

tailored for distributed learning environments, marks a pivotal advancement. This

approach e↵ectively addresses the challenge of e�ciently extracting and transferring

knowledge across multiple nodes in a federated network, a critical issue in the realm of

distributed data management. The core contribution of this study is the development of an

algorithm that adeptly captures meaningful representations from various client nodes and

models this information into actionable knowledge. The feature mixing technique used for

knowledge consolidation at the central server is particularly innovative. It demonstrates an

e↵ective strategy for managing the complexity inherent in distributed learning systems.

The comprehensive experiments conducted highlight the method’s ability to maintain

robust performance while significantly reducing communication costs, which is a notable

achievement in the field.

Moreover, this study lays a foundational groundwork for exploring model architecture

flexibility in FL, addressing the critical issue of data heterogeneity. By moving away from

conventional model aggregation approaches and focusing on the exchange and aggregation

of client model logits, this research not only advances more e�cient and adaptable

distributed learning systems but also sets the stage for an in-depth examination of model

115 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

architecture flexibility in subsequent studies of this dissertation.

A. Psaltis 116

Chapter 7

Study 4: Incremental Learning

and Knowledge Retention in FL

7.1 Overview of the Study

Following the establishment of an e↵ective federated distillation weight aggregation

method in Study 3, the fourth study in this series extends the exploration further into the

realm of incremental learning within the field of computer vision. This study proposes a

comprehensive approach to tackle the challenge of catastrophic forgetting—a critical issue

in continual learning scenarios. Building upon the foundational concepts of meaningful

representation extraction and knowledge modeling, this research introduces an innovative

FL algorithm that is specifically designed to address the complexities of incremental

learning. This algorithm stands out by eliminating the need for central model transfer,

which is a common bottleneck in traditional FL systems.

Central to this study is the implementation of multi-scale representation learning,

seamlessly integrated with Knowledge Distillation techniques. This integration is pivotal

in facilitating the continual learning process, where the algorithm adeptly combines new

knowledge with previously acquired information, thus preserving the continuity of learning

across di↵erent states. The study also innovatively adapts a contrastive learning technique,

further enriching the learning process by e↵ectively amalgamating existing knowledge with

new insights.

Extensive experimentation underpins this study, providing a thorough evaluation of the

proposed methodology. The results of these experiments are compelling, demonstrating

the method’s significant potential in a FL context. Notably, the study achieves remarkable

results in terms of reducing communication costs and ensuring robust performance across

highly distributed incremental learning scenarios. This advancement, therefore, represents

a significant stride in the evolution of FL, addressing one of the most pressing challenges in

the field and paving the way for more dynamic and resilient learning models in distributed

environments.

117

Federated, Multi-agent, Deep Reinforcement Learning

7.1.1 Challenges and Solutions in Incremental Learning

The ever-increasing number of smart devices leads to a rapid expansion in the amount

of data being exchanged, presenting a substantial challenge, especially when handling

distributed data. This becomes increasingly challenging when new labeled or unlabeled

data are continuously introduced to the system. As a result, the demand for systems that

can e↵ectively exploit these data to adapt to new conditions, i.e. tasks, while minimizing

costs becomes even more pronounced. Several researchers dedicated resources to find

reliable solutions [127], but despite the vast amount of published research on the topic,

the challenge of learning new knowledge without forgetting, particularly in the context of

distributed datasets, still poses significant challenges.

In the realm of computer vision, to achieve truly robust recognition performance and

maintain the capacity to recognize previously seen entities (e.g . objects or scenes) when

encountering new classes or datasets, it is crucial to tackle several pivotal challenges.

These include managing data heterogeneity and model bias e↵ect, communication and

synchronization, privacy and security concerns, as well as ensuring scalability and e�ciency

in processing and training distributed datasets to accommodate the increased complexity

[80]. To tackle these, research e↵orts primarily concentrated on utilizing combinations of

regularization techniques and data synthesis methods to mitigate or alleviate catastrophic

forgetting, while network expansion techniques and rehearsal-based approaches were

explored to expand network capacity and prioritize samples based on their importance

for learning, respectively [128]. Recent advancements in lifelong learning approaches

[129, 130, 131] have gained attention in incremental learning computer vision research,

reshaping the way visual analysis is conducted. These techniques enable to learn generic

learning patterns that can adapt to new tasks and data, allowing the model to continually

improve its learning e�ciency and adaptability. By leveraging knowledge from previous

tasks to facilitate learning new ones, these methods enable more robust and coherent

incremental learning.

While there has been extensive research on applying incremental learning to centralized

data settings, the exploration of its application to federated datasets and tasks, is

still relatively limited, due to data privacy concerns, system heterogeneity constraints,

dynamic data distribution, etc. Under a realistic scenario, end-users, or the nodes of

the system, constantly generate new data that neither necessarily belong to previously

known categories nor follow a specific distribution. In an attempt to understand the

problem and train a general model, older versions of models and data are maintained,

which constantly push the limits of system requirements, inevitably leading to a sudden

significant decrease in their performance in previous tasks. Research groups have devoted

resources to approaches specifically designed for federated settings, leveraging the power of

incremental learning while respecting the decentralized nature of data. These approaches

often involve a range of learning techniques, such as knowledge distillation, life-long

learning, and hybrid approaches to achieve better performance in preserving previous

A. Psaltis 118

Federated, Multi-agent, Deep Reinforcement Learning

knowledge and learning new knowledge incrementally [132, 133, 134, 135].

Through the application of a combination of techniques such as representation learning,

knowledge distillation, and contrastive learning (CLR) in our approach, it becomes feasible

to address the challenges posed by dynamic, heterogeneous, and fragmented data. In

a more specific context, the generation of representations that encompass knowledge

from diverse levels of the model results in a robust feature extractor with enhanced

capabilities. When combined with the Knowledge Distillation approach, this integration

facilitates e↵ective generalization at a federated level, allowing for broader applicability

and improved performance. For incarnating the task incremental step, we leveraged

CLR [136] to distinguish optimal representations by contrasting both global and local

representation samples. The proposed methodology aimed to enhance the overall quality

of representations by creating a latent space where global representations captured shared

knowledge across di↵erent tasks, while task-specific representations were well-separated,

enabling e↵ective discrimination and understanding of individual tasks.

The main contributions of this work are summarized as follows:

(a) A novel Federated Incremental Learning scheme is introduced that

utilizes multi-level representation learning coupled with rehearsal-based knowledge

distillation approaches that support FL optimization algorithms and CRL techniques

in an end-to-end learning manner. The holistic nature of our approach ensures a

robust and scalable solution for incremental learning in federated environments.

(b) A rehearsal-based knowledge distillation technique to transfer this

enriched knowledge to neighboring nodes. Through knowledge distillation,

the learned insights and patterns from the well-mixed representations are e↵ectively

transferred and shared across the federated network.

(c) A contrastive-based learning algorithm that utilizes mixed

representations to retain the knowledge gained from previous tasks

of the incremental scenario. By combining features from di↵erent tasks, our

algorithm encourages the model to learn and preserve valuable information across

di↵erent task domains.

(d) Validate the e↵ectiveness of the proposed approach through extensive

comparisons on one of the broadest publicly available benchmarks,

demonstrating its superiority and robustness across a broad spectrum of FL settings.

7.2 Methodology and Incremental Learning Techniques

7.2.1 Problem statement

In a federated system, the data are inherently localized to individual clients, and

sharing them with other clients is strictly prohibited. The objective of this study is to

119 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

Figure 7.1: The proposed FL scheme utilizes a centralized server to create and share the

aggregated global representations, while several local nodes participate asynchronously in

the training process.

learn from a continuously evolving stream of data that introduces new classes in highly

distributed environments. The data are divided into a sequence of non-overlapping training

tasks, each representing a step of incremental learning. The final goal is to continually

develop a classification model that incorporates knowledge from both current and previous

tasks across various federated nodes. After each task, the model’s performance is evaluated

on all the classes encountered so far, which is the union of classes from all previous tasks.

The proposed methodology involves a federated incremental learning scheme that

combines multi-level representation learning, knowledge distillation approaches coupled

with FL optimization algorithms, and CRL techniques to address the challenges of evolving

data domains, as depicted in Figure 7.1. For the cultivation of individual local clients, the

CIFAR-100[123] dataset is deployed, and partitioned in both a balanced and unbalanced

manner to facilitate experiments that cater to both IID and Non-IID conditions.

This work follows the common practice of using exemplar sets for incremental learning

in computer vision. Exemplars are representative instances of known classes, selected

from the training set. Instead of random sampling, the herding strategy is employed to

choose the most representative exemplars for each class. Mean anchor images from the

previous rounds are computed, and the exemplar set is formed by selecting class images

that approximate these mean anchors [137].

A. Psaltis 120

Federated, Multi-agent, Deep Reinforcement Learning

7.2.2 Federated Knowledge Distillation

Local Supervision Representation Learning

The local clients undergo supervised training using the CIFAR-100 dataset, with

each client being assigned a specific segment of the dataset. This assignment remains

consistent throughout all federated rounds, and the clients receive training on their

allocated segments. The training subset of the dataset is utilized for model training,

while the validation subset is used to evaluate and authenticate the performance of each

client’s trained models. Apart from each client’s training and validation set, a communal

dataset exists that is accessible to all clients. To train the clients’ networks, a classification

head was added to map the feature vectors to the total number of classes in the dataset;

100 in the case of CIFAR-100. The Cross-Entropy was deployed as the loss function for

the training process, and its formula is shown below:

L(✓) = � 1

M

MX

m=1

KX

k=1

ymk log pmk (7.1)

where M is the total number of images, K the total number of classes, ymk the label

of the m, k image and pmk the probability of the class. The stochastic gradient descent

(SGD) [138] algorithm was chosen as the optimization strategy.

Figure 7.2: The proposed Federated Multi-scale Representation Knowledge Distillation

scheme.

One drawback of the federated distillation scheme is the small amount of information

transmitted from the clients to the data since only the model’s output is transmitted to

the central server (i.e. last fully-connected layer). In order to mitigate this drawback,

a scheme of multi-scale knowledge distillation is adopted inspired by the work of

121 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

[139]. More specifically, apart from the model’s output, each client transmits some

intermediate outputs (i.e. hidden representation), where the number and the position

of the intermediate outputs can vary depending on the problem.

Di↵erent-level features can be extracted, let zNl = fN
l (·), l 2 (1, ..., L), where l are the

di↵erent model layers, zNl is the intermediate output at layer l for the client N , with size

H ⇤W ⇤C and fN
l (·) is the subnetwork for feature extraction up to the layer l. Then, the

final form of the feature map can be obtained by concatenating the W ⇤ C height-pooled

slices and the H ⇤ C width-pooled slices for hNl :

�(zNlj�1
) =

"
1

W

WX

w=1

zNlj�1
[:, w, :]

�����

�����
1

W

HX

h=1

zNlj�1
[h, :, :]

#
(7.2)

where [·| |·] denotes concatenation over the channel axis, N is the number of clients,

j is the federated round and �(·) is the network function. The intermediate outputs are

calculated over the communal dataset, therefore all clients extract features from the same

subset. After all intermediate outputs of all clients are extracted, they are averaged per

client, �(zl) =
1
N

PN
n=1 �(zNlr�1

). At the beginning of the next federated round, for each

client, the intermediate outputs are employed as soft labels to minimize the Euclidean

distance between the mean averaged representation of the clients and each client’s local

representation. The multi-scale knowledge distillation term is calculated as:

Lmulti�scaleKL =
1

L

LX

l=1

���|�(zNlj)� �(zlj�1)
��� | (7.3)

Global Distilled Supervision

As previously mentioned, a communal dataset is available and accessible to all clients,

following the common practice in the literature ([117], [140], [119]). This communal dataset

serves as a reference point to address data heterogeneity among the clients in the FL

scheme. At the end of each federated round, every client generates model outputs for each

sample in the common dataset. These outputs are then transmitted to the server side and

averaged across all clients (illustrated in Figure 7.2), similar to the approach described in

7.2.2. In the subsequent federated round, each client performs knowledge distillation using

the global anchors derived from the common dataset, thus, ensuring knowledge alignment

between the clients. The knowledge distillation term is calculated as follows:

LKL =
1

L

LX

l=1

��|�(oNj)� �(oj�1)
�� | (7.4)

where ocr is the model output of client N at the federated round j.

A. Psaltis 122

Federated, Multi-agent, Deep Reinforcement Learning

7.2.3 Incremental Learning

The proposed federate incremental scheme draws inspiration from MOON [135], which

is a simple and e↵ective approach based on FedAvg with lightweight modifications in the

local training phase. However, there are significant di↵erences in our approach. We focus

solely on representation learning at each federated round using knowledge distillation.

Our approach involves extracting stronger representations through a robust aggregation

algorithm. In contrast to MOON, we incorporate CRL, which is typically used for visual

representations, on the aggregated global anchors and their respective local versions (as

presented in Figure 7.1). This allows us to decrease the distance between the representation

learned by the local model and the global aggregated representation of the previous task(s),

while increasing the distance between the representation learned by the local model and

the global aggregated representation of the previous federated round of the same task. By

incorporating these elements, our approach enhances the learning procedure and leverages

the power of CRL in the federated setting. Moreover, the global aggregated representation

of all previous tasks is employed to further enhance the learning procedure.

In the federated incremental architecture, the primary server undergoes training via

a contrastive approach on the dataset Xm = (xim, yim), i = 1, ...N , wherein the labels are

disregarded. Let us assume that node Ni is performing the local training. Each image

from the said dataset serves as the anchor image xim. All of these images are subsequently

passed through the network function �(·), and are then projected into the latent space for

the implementation of CLR as delineated in [136]. During the initialization phase, each

node receives the global aggregated anchors at from the server, which are common for all

clients at the current round. During this process, for each input image xim, we extract

the representation of xim, following the federated knowledge distillation approach defined

above, from the current global aggregated anchors from the previous federated round aj�1
t

as zj�1
t = �aj�1

t (xim), the representation of xim from the aggregated global anchors of

the previous incremental round at�1 as zt�1 = �at�1(xim), and the representation of xim
from the current local anchor being updated ajt as zjt = �at(xim). The feature maps are

harnessed for the calculation of the contrastive loss. The formula for the loss is indicated

below:

acon = � log
exp (sim(zjt , zt�1)/T)

exp (sim(zjt , zt�1)/T) + exp (sim(zjt , z
j�1
t)/T)

(7.5)

where T is the temperature that is a scaling factor used to control the concentration

of the output distribution, a↵ecting the hardness of the positives in the CLR framework.

Since the global model is expected to generate better representations, our objective is to

minimize the distance between zjt and zj�1
t , indicating that the local model aligns with

the previous incremental round’s global anchor’s representations. Additionally, we aim

to maximize the distance between zjt and zt�1, indicating that the updated local anchors

123 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

are diverging from the previous round’s global anchor’s representations and retaining their

own learned representations. Through the implementation of contrastive loss, the network

strives to learn representations that induce proximity between the local image and the

positive anchor global image in the embedding space, whilst ensuring a separation between

the local image and the previous round’s global anchor image. The representations learned

in this manner would have the capacity to segment the latent space in accordance with

the context, without the true comprehension of the task.

7.2.4 FedRCIL Algorithm

In this section, the complete flow of the described procedure is presented. The entire

process is divided into three main algorithms, the Algorithm 13 describes the required

steps for training and updating the network in the main server, while the other two define

the actions for training and updating the network in each local client (i.e. Algorithm 14

for local and Algorithm 15 for global supervision respectively).

7.3 Dealing with Knowledge Retention Challenges

7.3.1 Knowledge distillation

Knowledge distillation is a technique that aims to e�ciently transfer information from

a large model (known as the teacher model) to a smaller one (known as the student model).

The teacher model guides the student model to achieve a better performance through an

iterative learning process. Knowledge distillation is widely used for model deployment on

resource-constrained devices. The concept of distillation learning is introduced in [141],

using soft outputs of the teacher model in order to guide the training of the smaller

model. Moreover, a distillation loss is introduced, combined with the cross entropy loss

to strike a balance between data fitting and mimicking the teacher. In most recent works,

Zhao et al . [142] divides the knowledge distillation into two parts, namely the target and

the non-target. The target knowledge distillation part is a binary logit distillation for

the target class and the non-target knowledge distillation part is a multi-category logit

distillation for non-target classes. In [143], the deviation between the predictions of the

teacher and the student model is addressed. A correlation-based loss is introduced to

capture inter-class and intra-class relations from the teacher. The technique of knowledge

distillation has also extended to the field of FL as described in 7.3.3

7.3.2 Incremental learning

The Incremental Learning problem has been the focus of various studies, encompassing

di↵erent granular settings. Typically, it can be broadly categorized into three

types, depending on the specific characteristics of the incremental scenario, namely

task-incremental learning, class-incremental learning, and domain-incremental learning

[144]. The first two share a similar setting in which new classes are introduced in new

A. Psaltis 124

Federated, Multi-agent, Deep Reinforcement Learning

Algorithm 13 FedRCIL Algorithm

Require: T is the number of communication rounds, N is the total number of clients, ✓il
represents the parameters of the local models, Di

l are the separate datasets for the local

clients, Dex is the dataset of the exemplar set, Dtest is the common testing dataset,

and ⌘ is the learning rate.

1: for each i from 1 to N do

2: Initialize local models ✓il
3: Prepare local datasets Di

l

4: end for

5: Prepare exemplar set Dex

6: Prepare common global dataset for evaluation Dtest

7: Server executes:

8: for each Incremental round t = 0, 1, 2, . . . do

9: for each Federated round j = 0, 1, 2, . . . do

10: for each client in parallel do

11: ✓lj ClientUpdate(Dl, ✓lj)

12: ztj , .. Extract representations from (✓lj)

13: Send representation to server

14: end for

15: atj Aggregate Anchor representations

16: Distribute the updated global Anchors

17: for each client in parallel do

18: ✓lj+1 KDUpdate(Dex, ✓lj , a,mu = 0.5)

19: end for

20: end for

21: Validate the updated distillated models on Dtest

22: end for

Algorithm 14 ClientUpdate Function

1: ClientUpdate(Dl, ✓): . Run on specific client

2: for each local epoch i from 1 to E do

3: for each batch in Dl do

4: ✓l ✓l � ⌘rL(✓l, labels) . Update the client model with Eq. 6.1

5: end for

6: end for

7: return ✓l

125 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

Algorithm 15 DistillationUpdate Function

1: KDUpdate(Dex, ✓l, a, mu): . Run on specific client

2: for each batch in Dex do

3: lmul . Compute Multi Scale loss with Eq. 6.3

4: ldis . Compute Distillation loss with Eq. 6.2

5: lcon . Compute constrastive loss with Eq. 7.5

6: L = mc ⇤ lmul + ldis +mu ⇤ lcon
7: ✓l ✓l � ⌘rL(✓l) . Update the client model with aggregated loss L

8: end for

9: return ✓l

tasks. However, the key distinction between them lies in the inference stage. Unlike other

incremental learning scenarios, where new tasks introduce new classes, domain-incremental

learning addresses the challenge of adapting to shifts in data distribution or domains

while preserving the existing label space. Each scenario presents unique challenges,

such as avoiding catastrophic forgetting, handling domain shifts, or managing imbalanced

data distributions, and requires tailored approaches to ensure e↵ective continual learning

[145]. Therefore, research on incremental learning covers a wide range of approaches,

including regularization-based methods, rehearsal and replay techniques, knowledge

distillation, network expansion, and hybrid approaches that combine multiple strategies

[146, 147, 148, 149, 150, 151, 152].

CRL serves as a potent instrument within the realm of incremental learning. Its

fundamental aim revolves around crafting representations that induce a tendency for

similar instances to congregate in the embedding space (i.e. positive pairs), while

simultaneously propelling dissimilar instances to be dispersed at a greater distance (i.e.

negative pairs). Inspired by the typical CRL framework in [136], recent breakthroughs in

incremental learning argue that contrastively learned representations are robust against

the catastrophic forgetting [153, 129, 154, 130, 131], and could be transferred better to

unseen tasks.

In recent studies, several approaches have been proposed to address the problem of

catastrophic forgetting in di↵erent domains. Cha et al . in [129] propose a rehearsal-based

continual learning algorithm that utilizes CRL and self-supervised distillation to learn

and maintain transferable representations, leading to improved performance in image

classification tasks. In a similar attempt, authors in [154], utilize instance-level and

class-level contrastive losses, along with knowledge distillation and a spatial group-wise

enhanced attention mechanism, to maintain the inner-class assignment information and

alleviate catastrophic forgetting. A novel incremental learning framework is proposed

in [153], which utilizes contrastive one-class classifiers to address catastrophic forgetting in

class incremental learning. Additionally, [131] extends contrastive self-supervised learning

to be primarily based on exemplars and applicable to both labeled and unlabeled data,

enabling few-shot class incremental learning.

A. Psaltis 126

Federated, Multi-agent, Deep Reinforcement Learning

This theory paves the way for an incremental learning task, wherein the network

endeavors to diminish the distance between the current and the previous task instances in

the latent space, while concurrently increasing the space between all the other instances

within the dataset, e↵ectively achieving a balance between stability and plasticity. In

line with this concept, the network aims to grasp the task-specific representation of the

instances in a way that improves their distinguishability in the embedding space. This

facilitates the identification and di↵erentiation of individual instances, making the overall

process simpler.

7.3.3 Federated Learning Distillation

In contrast to traditional centralized ML techniques, FL employs a training approach

where an algorithm is trained through multiple independent sessions, with each session

using its own distinct dataset. FL enables multiple actors to collaboratively train a shared

and resilient ML model without the need to centralize their respective data. Through

this approach, FL e↵ectively addresses concerns related to data privacy, security, and

authorization while allowing for the utilization of diverse and heterogeneous data sources.

Initially, the research on FL has primarily concentrated on enhancing communication

e�ciency and expediting model updates. The groundbreaking work by McMahan et al .

[155] introduces a novel concept of averaging local stochastic gradient descent updates

(known as FedAvg) to increase the overall amount of information used by each client

during communication rounds. To overcome challenges like low device participation

and non-independent and identically distributed (Non-IID) local data, several studies

have explored the use of online knowledge distillation approaches. A novel approach for

federated multi-task distillation is introduced in [156], while Wu et al . [157] presented a

communication-e�cient FL method, utilizing adaptive mutual knowledge distillation and

dynamic gradient compression to reduce communication costs. Similarly, Li et al . [158]

introduces a unified algorithmic framework for Federated Distillation (FD), employing

active data sampling to reduce communication overhead.

Towards this direction, a recently introduced technique has emerged, named FLD

(Federated Learning Distillation), which takes a di↵erent approach, by exchanging and

aggregating client model outputs. This alternative methodology o↵ers distinct advantages

such as reduced communication costs, flexibility in model architecture, and improved

handling of non-IID data distribution. Jeong et al . [116] propose an FLD scheme, where

clients upload per-label averaged soft targets to train a conditional Generative Adversarial

Network (GAN). Li et al . [117] introduce a common dataset accessible to all clients,

training them on the public dataset before their private data. Gong et al . [120] introduce

one-shot distillation where client models are fully trained and then distilled to the server

using attention maps per class. These approaches combine distillation and aggregation

mechanisms to facilitate FL, while also considering the integration of public or shared

datasets.

127 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

Dealing with catastrophic forgetting in FL poses unique challenges that have not been

extensively explored compared to other learning settings. To address this gap, researchers

have proposed a set of models [132, 133, 134] specifically designed for federated scenarios.

These models incorporate techniques such as class-aware gradient compensation, semantic

distillation, adaptive class-balanced pseudo labeling, and forgetting-balanced semantic

compensation. Additionally, a recent study introduced a local model contrastive loss [135]

to enhance individual party training. These approaches e↵ectively mitigate forgetting and

provide solutions for catastrophic forgetting in the FL context.

While there has been notable progress in Federated Incremental Learning, there is

still untapped potential in exploring strategies that leverage the best solutions from

the literature on knowledge distillation and incremental learning and adapt them to the

federated setting. The existing research presents opportunities to develop novel techniques

that e↵ectively address challenges in that field.

7.4 Experimental Results and Analysis

7.4.1 Dataset settings

In this section, experimental results from the application of the proposed FedRCIL

scheme, using the CIFAR-100 image classification dataset as a benchmark, are presented.

The CIFAR-100 dataset was adapted to represent both IID and Non-IID scenarios,

capturing di↵erent FL settings. In the IID setup, the data was balanced, while the Non-IID

setup represented an extreme case of data imbalance. Like previous studies [51], Dirichlet

distribution is utilized to generate the Non-IID data partition among parties, using a

concentration parameter �. Both datasets consisted of 100 categories, and a total of 10

participating nodes were involved, with images distributed among them.

7.4.2 Implementation Details

Architecture and Parameters

The architecture of the proposed method employs a distributed framework, where each

local client utilizes ResNet56 [124]. The ResNet56 model is chosen for its fast training

and satisfactory results. At each local client, the final fully connected layer of the network

is replaced with a projection head to facilitate the Incremental CRL task, allowing the

transition of ResNet feature maps to a new embedding space that supports the CLR

scheme. Meanwhile, the local clients undergo supervised training using the proposed

multi-loss scheme, involving three intermediate outputs corresponding to the outputs of

three ResNet layers. The SGD method is employed with a learning rate of 0.1, the batch

size of the system is 64, the mu and T are set equal to 0.5 and mc equals to 0.1. The

local models are trained for 300 epochs to ensure comprehensive learning and convergence.

Python 3.7 and PyTorch (version 1.7.0) environments are employed for the implementation

of the DL models. The code is available at https://github.com/chatzikon/FedRCIL.

A. Psaltis 128

https://github.com/chatzikon/FedRCIL

Federated, Multi-agent, Deep Reinforcement Learning

Federated setting

The training paradigm for the suggested FL system which comprises a centralized

server and 10 local clients, involves 6 federated rounds without incremental learning. In

each round, the local clients individually undergo training for 50 epochs without any

inter-client communication. The final evaluation of the local models is performed using the

test set of the CIFAR-100 dataset. The training set is divided into a common set accessible

to all clients (20% of the train set), while the remaining 80% is divided among the clients.

In the case of incremental learning, the epochs without any inter-client communication

are 10 and the federated rounds are 30. The incremental learning process consists of

5 di↵erent tasks, each one with 20 unique classes. Each task has a training period of 6

federated rounds that constitute an incremental round. The common set mentioned above

is employed as an exemplar set, with a steady size but with a varying number of samples

per class (i.e. as new tasks arrive, fewer samples per class exist), employing the approach

mentioned in Section 7.2.1.

Baselines

To validate the e↵ectiveness of FedRCIL comprehensively, a comparative performance

analysis was conducted on two distinct configurations. Initially, benchmark experiments

were undertaken within a fully-supervised FedAvg framework, in both IID and Non-IID

scenarios. Furthermore, the proposed approach was compared with a scheme of local

isolated clients (without communication among them) and with a baseline federated

distillation approach.

7.4.3 Performance Evaluation

This section provides a summary of the results obtained through the application of

the proposed scheme in several distinct scenarios under various learning settings. In an

attempt to showcase the distinctive characteristics of our architecture, we conducted direct

comparisons with the proposed baseline methods, depicted in Table 7.2. However, it was

not possible to compare with other methods from the literature, except for FedAvg, due

to the di�culty of adapting state-of-the-art techniques to the specific problem we are

addressing.

Representation learning setting

The accuracy results presented in Table 7.1 investigate various concepts associated

with extracting multi-level and multi-scale representations from local clients. It is shown,

that the FLDmB , where each extra loss is applied to the part of the model before it,

back-propagating with layer 1 loss first and layer 3 loss last, achieved the highest accuracy

of 38.06%. Similarly, FLDmC , with losses back-propagating with layer 3 loss first and layer

1 loss last, obtained a slightly lower accuracy of 37.82%. On the other hand, FLDmA ,

129 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

where all losses apply to the whole network, resulted in the lowest accuracy of 32.03%.

These findings highlight the significance of selectively applying additional losses to specific

parts of the model and the importance of the direction of back-propagation. The results

clearly demonstrate that the proposed method outperforms the conventional cross-entropy

loss approaches.

Multi-loss concept Accuracy

FLD 28.41

FLDmA 32.03

FLDmB 38.06

FLDmC 37.82

Table 7.1: FLDmA : All losses apply to the whole network FLDmB : Each extra loss apply

to the part of the model before it, backprop from layer 1 to layer 3 FLDmC : Each extra

loss apply to the part of the model before it, backprop from layer 3 to layer 1

Federated distillation learning setting

In relation to a comparison with the baseline methods, the proposed approach, achieved

the highest accuracy of 38.06%, suggesting that leveraging a shared dataset and optimizing

multiple objectives simultaneously enhances the learning process. On the other hand,

isolated clients where each client trains independently, had the lowest accuracy of 23.29%,

of course, this was something we expected, but it highlights the added value of the

proposed approach. FL without a common dataset also performed relatively poorly, with

an accuracy of 20.61%. Concerning the investigated FLD schemes, the findings suggest

choice of layer output, and the presence of a common dataset can influence the e↵ectiveness

of distillation. As discernible from Table 7.2, when juxtaposed with the FedAvg, the

proposed approach provides superior results with relative improvement over the baseline

of 11.39%. These findings highlight the importance of collaboration and the potential

benefits of utilizing shared data and optimized loss functions in FL, ultimately leading to

improved accuracy in image classification tasks.

Method Common set Accuracy

FL(FedAvg) 34.17

Local Isolated Clients 23.29

FLDl 20.61

FLDl�1 X 19.71

FLDl X 28.41

FedRCIL (Proposed) X 38.06

Table 7.2: Comparative evaluation with baseline methods and various distillation schemes.

A. Psaltis 130

Federated, Multi-agent, Deep Reinforcement Learning

Incremental learning setting

Table 7.3 presents accuracy results for the proposed method at di↵erent mu settings,

which represent the weight of the contrastive loss in the learning process. Utilization of

the contrastive learning mechanism, results in significantly higher accuracy, contrary to

the case that mu equals to 0, resulting in a significant drop in accuracy. In particular,

the results indicate that the accuracy decreased by around 20% when moving from 1

task to 5 tasks. This significant drop highlights the superior added value of the proposed

incremental mechanism. On the other hand, in the other three cases where mu values are

higher (i.e. 0.25, 0.5, and 1), the results remain favourably comparable.

mu task=1 task=5

FedRCILmu=0

29.54

10.96

FedRCILmu=0.25 26.07

FedRCILmu=0.5 26.79

FedRCILmu=1 25.42

Table 7.3: Experiments with di↵erent values for the contrastive loss coe�cient mu.

In an attempt to investigate the impact of knowledge retention on performance, we

intentionally increased the number of bu↵ers per task progressively from 1 to 4, as depicted

in Table 7.4. Keeping only the most recent task instance (bu↵er size b = 1) yields the

lowest accuracy of 15.76%, indicating its inferior performance. However, as the bu↵er size

increases, accuracy increases significantly, with bu↵er size b = 4 resulting in 26.79%. Bu↵er

size values of 2 and 3 strike a balance between retaining knowledge and model performance,

achieving accuracies of 19.52% and 21.12%, respectively. These findings emphasize the

importance of managing bu↵er size in incremental learning; storing an adequate number

of previous task instances can positively impact performance while storing only the most

recent one results in the worst accuracy. It is evident that balancing the bu↵er size is

crucial for enhancing knowledge transferability and optimizing the proposed method’s

e↵ectiveness in incremental learning settings.

Bu↵er Accuracy

FedRCILb=1 15.76

FedRCILb=2 19.52

FedRCILb=3 21.12

FedRCILb=4 26.79

Table 7.4: Experiments with di↵erent bu↵er size (number of previous task models

employed as positives at the contrastive learning).

Non-IID data typically contain diverse patterns and variations across di↵erent nodes,

131 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

which inherently lead to challenges in learning a generalisable model. In that context,

Table 6.4 presents accuracy results for three di↵erent methods: FLDc, FLDmc, and

the proposed FedRCIL, at various beta values (0.25, 0.5, 0.75, and 1), which control

the non-iidness of the dataset. As beta increases, all methods generally show improved

accuracy. The basic FLDc method achieves the lowest accuracy, ranging from 16.45%

(beta = 0.25) to 22.10% (beta = 1). Introducing multi-loss (FLDmc) leads to

higher accuracy across all beta values, ranging from 18.48% (beta = 0.25) to 28.79%

(beta = 1). Notably, the proposed incremental FedRCIL scheme demonstrates promising

performance, achieving comparable results of 16.62% with an acceptable decrease of

around 10% compared to the IID case. This outcome is particularly impressive considering

the challenging evaluation setting involved in incremental learning tasks.

beta 0.25 0.5 0.75 1 IID

FLDc 16.45 20.01 20.64 22.10 28.41

FLDmc 18.48 24.07 25.86 28.79 38.06

FedRCIL 10.22 13.29 14.82 16.62 26.79

Table 7.5: Experiments with Non-IID data, for di↵erent beta values. Methods indicated

with subscript ‘m’, and ‘c’ utilize multi-loss, and common dataset, respectively.

7.5 Insights and Contributions

This work presented a holistic approach to mitigate catastrophic forgetting and

maximizing knowledge retention in computer vision during incremental learning, by

integrating CRL, FL and rehearsal-based knowledge distillation techniques. Central

to this study’s contribution is the innovative FL algorithm tailored for incremental

learning scenarios. This algorithm is adept at handling catastrophic forgetting, a

common hurdle in continual learning, through the integration of multi-scale representation

learning and Knowledge Distillation techniques. This integration not only facilitates

continual learning but also enhances the quality and relevance of the knowledge transferred

across the federated network. Additionally, the study’s adaptation of CRL techniques

enriches the learning process by combining existing knowledge with new insights, thereby

preserving the continuity of learning across di↵erent states. The experimental results

validate the method’s potential in a FL context. The approach demonstrates significant

potential in reducing communication costs and ensuring robust performance across highly

distributed incremental learning scenarios. These results highlight the e↵ectiveness

of the proposed method in managing and leveraging decentralized data in federated

environments. Furthermore, the study e↵ectively addresses several key challenges in

incremental learning, such as managing data heterogeneity, model bias e↵ect, and ensuring

scalability and e�ciency in processing and training distributed datasets.

A. Psaltis 132

Chapter 8

Study 5: Representation learning

with limited data in FL

8.1 Overview of the Study

Building on the insights from the previous studies, particularly the advancements in

federated distillation and incremental learning, the fifth study embarks on a path to resolve

the challenges posed by limited and unevenly distributed data in FL environments. This

study introduces a pioneering approach that ingeniously combines self-supervised and

supervised learning techniques within a federated framework. This hybrid methodology

is meticulously tailored to accommodate the unique requirements of various federated

scenarios, particularly addressing the complexities associated with sparse and imbalanced

data distributions across di↵erent nodes.

At the heart of this study is a custom self-supervised learning strategy, deployed at the

global level, to harness the untapped potential of unlabeled data e�ciently. This approach

is complemented by supervised learning techniques applied at the local level, enabling the

e↵ective utilization of available labeled data. The synergy of these methods results in a

robust and versatile learning mechanism that excels in diverse federated settings.

The extensive experimentation conducted as part of this study provides a

comprehensive evaluation of the proposed methodologies, shedding light on their specific

characteristics and e↵ectiveness in distributed scenarios. The findings of this research

are significant, as the proposed approach not only achieves outstanding recognition

performance on one of the broadest publicly available datasets but also surpasses all

baseline models by a considerable margin. One of the key strengths of this solution is

its capability to operate e�ciently at the local level without necessitating prior knowledge

about the data distribution or specific characteristics across nodes. This adaptability

makes the approach highly applicable and versatile, addressing a crucial gap in FL

research. Consequently, Study 5 represents a major leap forward in FL, showcasing the

potential of integrating diverse learning techniques to optimize performance in scenarios

characterized by limited and scattered data.

133

Federated, Multi-agent, Deep Reinforcement Learning

8.1.1 Challenges and Solutions in Representation Learning from limited

data

The problem of learning visual models from very few available training data and

scattered distribution poses a significant challenge in the field of ML. The majority of

DL algorithms in general require a substantial amount of data to achieve the desired

performance. However, when it comes to real-world applications, the available data sources

are typically limited and often fragmented, making it challenging to apply traditional

learning techniques. Many research groups have dedicated resources to find reliable

solutions [159], but despite the abundance of published work, the problem of learning

meaningful representation from sparse data still poses significant di�culties.

To achieve truly robust recognition performance in various visual analysis tasks where

limited data are involved, it is essential to address several key issues. These include

ensuring data quality and accurate annotation, mitigating the e↵ects of overfitting and

promoting generalization, handling imbalanced class distributions, etc. [160]. Initially,

the research e↵orts focused on combinations of data pre-processing techniques, domain

adaptation approaches and regularization methods [161, 162, 163, 164, 165, 166,

167, 168]. While these strategies were e↵ective to some extent, recent advances in

representation learning techniques [136, 169, 170] have significantly boosted the field,

literally transforming the way visual analysis is approached. These techniques enable the

extraction of meaningful and discriminative representations from limited data, enhancing

the model’s generalization power, especially on unseen samples. As a result, the extracted

representation can better capture the inherent patterns within the data, enabling models

to leverage limited data more e↵ectively. This, in turn, leads to improved performance

and robustness in achieving the desired task.

While there has been extensive research on applying representation learning to

centralized data settings, the exploration of its application to federated datasets with

incomplete annotations and scarce data samples is still relatively limited, due to data

privacy concerns, data and system heterogeneity constraints, and limited annotations

bottlenecks. Research groups have devoted resources to approaches specifically designed

for federated settings, leveraging the power of representation learning while respecting

the decentralized nature of data. These approaches often involve a range of learning

techniques, such as self-supervised, semi-supervised, unsupervised learning, and transfer

learning [171, 172, 173, 174, 175]. In the context of FL, the principal impediment resides

in the sensitivity of data, rendering it non-transferable from local users to the central

server. Moreover, an associated issue pertains to the quantity of annotated data. The

central server may house semi or fully-annotated data, or data that is an amalgamation

of di↵erent datasets.

In traditional FL a critical limitation faced by local nodes pertains to their constrained

resources, both in terms of data processing and storage capabilities. As a result of

these constraints, the deployment of both self-supervised and semi-supervised learning

A. Psaltis 134

Federated, Multi-agent, Deep Reinforcement Learning

methodologies at the local level becomes infeasible. This challenge accentuates the pressing

need for an innovative approach within FL. Such an approach should have the flexibility

to alternate between and synergistically combine self-supervised and supervised learning

techniques, specifically tailoring them to the distinct dynamics of both local and global

FL rounds. The evolution and integration of these methods can potentially optimize the

FL process, harnessing the strengths of both self-supervision and traditional supervision

within the federated context.

Through the application of self-supervised learning methodologies in our approach,

it becomes plausible to surmount the challenges posed by non-annotated data. In the

proposed specific methodology, we harnessed Contrastive Learning (CLR) [136] with the

objective of discerning the optimal representations by drawing contrasts between each

instance of the dataset and the remainder thereof. This training modality does not

necessitate labels for the data and yields exceptional outcomes, particularly given that

the data requisitioned for training do not demand any annotation e↵ort whatsoever.

In a paradigm involving fully-supervised training of the central server, it is incumbent

that the data are fully-annotated with a high degree of label quality. However, when

employing self-supervised training, there is no requirement for fully annotated data

within the central server, hence enabling us to capitalize on all available data situated

within the central server to construct a highly potent feature extractor that learns data

representations independent of the need for classes.

Contrastingly, local clients acquire representation predicated on the specific annotated

dataset that is accessible to them; hence each client learns the optimal representation

dedicated to the specific dataset. By possessing a locally fine-tuned model for each

distinct local dataset, which when amalgamated on the central server and combined with

the powerful feature extractor located on the centralized server, the updated model will

embody knowledge from each client and from the expansive dataset in the central server.

The main contributions of this work are summarized as follows:

(a) A novel self-supervised learning approach that empowers the central

server to exploit every piece of data within its possession, by leveraging CLR

techniques to explore meaningful representation and extract informative features at

a global level even in scenarios where labeled data are limited.

(b) A hybrid FL scheme that seamlessly blends self-supervised and supervised

techniques, adapting them to the unique dynamics of local and global learning

rounds within the federated context.

(c) Validation of the proposed approach by conducting extensive comparisons

with a fully-supervised learning process within the same FL scheme,

thereby demonstrating the e�cacy of our combination of contrastive and supervised

learning on two standard benchmark databases. Extensive experimentation and

comparative evaluation highlight the advantages of the proposed schemes under

various federated scenarios.

135 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

Figure 8.1: The proposed FL scheme utilizes a centralized server to create and share the

global model, while several local nodes participate asynchronously in the training process.

8.2 Related Work

It is undeniable that there are many annotated datasets available nowadays. However,

it is clear that we cannot constantly access full databases relevant to every imaginable

work. The use of supervised learning approaches, which primarily rely on the availability

of properly annotated datasets, is severely constrained by such obstacles. Self-supervised

learning techniques, in contrast, have the advantage of not requiring annotations,

demonstrating their applicability to a variety of issues. These approaches have shown

tremendous promise when applied to semi-annotated or non-annotated data, providing

outcomes that are, in fact, notable. They achieve the latter by creating a self-supervised

job for learning.

Auto-encoders [176] is one such classic example. When compared to the lack of

annotated data, they prove to be especially useful. In order to decode the latent

representation and return to the original input, autoencoders transpose the input into

a latent space representation first. Replicating the input as accurately as possible is

the main goal. Despite being an unsupervised scheme, Generative Adversarial Networks

(GANs) [177] can function in a self-supervised manner. By learning to perform tasks such

as predicting the rotation of an image [178] or filling in missing parts of an image [179], the

model discovers rich feature representations of the data without requiring explicit labels,

which can then be used for solving demanding computer vision tasks under limited data

A. Psaltis 136

Federated, Multi-agent, Deep Reinforcement Learning

settings.

Recently, similarity learning techniques have attained particular focus. More

specifically, Bootstrap Your Own Latent (BYOL) [180] is a self-supervised learning

algorithm that leverages two neural networks, namely a target network and an online

network. Instead of relying solely on negative samples for learning, BYOL trains the

online network to align its predictions with the output of the target network, which is a

slow-moving average of the online network, thereby learning representations from di↵erent

augmentations of the same image.

8.2.1 Contrastive Learning

CLR serves as a potent instrument within the realm of self-supervised learning

[181, 182, 183]. Its fundamental aim revolves around crafting representations that induce a

tendency for similar instances to congregate in the embedding space, while simultaneously

propelling dissimilar instances to be dispersed at a greater distance. To fulfil this

aspiration, every instance undergoes transformation, yielding a variant distinct from the

original yet preserving the underlying principle intact. This is facilitated through the

deployment of augmentations that possess the ability to modify the appearance of the

instance without distorting its foundational principle [184].

This theory paves the way for a self-supervised learning task, wherein the network

endeavors to diminish the distance between the original and the augmented instances in the

latent space, while concurrently increasing the space between all the other instances within

the dataset. Within this postulate, the network strives to comprehend the representation

of the instances in a manner that enhances their separability in the embedding space,

thereby simplifying the process of discerning distinct instances.

8.2.2 FL approaches

FL is an innovative ML approach that leverages decentralized data and computational

resources to deliver more tailored and flexible applications while upholding the privacy

of users and organizations. FL has demonstrated exceptional results in numerous visual

analysis tasks, such as image classification, object detection and action recognition [185,

186, 187], indicating its robustness and e↵ectiveness in these areas.

The research on FL has focused on increasing communication e�ciency and

accelerating model updates. McMahan et al .’s [155] pioneering work introduced

the concept of averaging local stochastic gradient descent updates to increase the

calculated quantity of each client between communication rounds. To address low device

participation, non-independent and identically distributed (Non-IID) local data, other

studies, employ online knowledge distillation approaches, also called codistillation, for

communication-e�cient FL. Unlike transferring model updates, codistillation focuses on

transmitting the local model prediction on a public dataset that is accessible to multiple

clients. This method proves beneficial in reducing communication costs, particularly when

137 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

the size of the local model exceeds the size of the public data[158, 157, 188]. In a recent

study [135], researchers introduced a novel approach, named MOON, where they propose

a local model constrastive loss comparing representations of global and local models from

successive FL rounds. This technique aims to improve the training of individual parties

by conducting CLR at the model-level, specifically in the feature representation space,

pushing the current local representation closer to the global representation and further

away from the previous local one. Similarly, authors in [71] proposed a distillation-based

regularization method, named FedAlign, that promotes local learning generality while

maintaining excellent resource e�ciency.

In an attempt to leverage the unlabeled data available across multiple nodes, while

utilizing the limited labeled samples, several recent studies explored novel algorithms,

ranging from self-training, and co-training to knowledge distillation. Authors in [189]

proposed a novel semi-supervised method, termed FedMatch, which learns inter-client

consistency between nodes, and decomposes model parameters to reduce interference

between both supervised and unsupervised tasks. Zhang et al . [171] proposed an

unsupervised representation learning algorithm, called FedCA, where each client performs

unsupervised learning on its local data, leveraging techniques such as CLR to capture

meaningful patterns and representations. The learned representations are then aggregated

and refined at a central server, resulting in a powerful and comprehensive representation

model that encapsulates the knowledge from all distributed sources. In a similar approach,

Han et al . [175] introduced FedX, an unsupervised FL framework that learns unbiased

representation from decentralized and heterogeneous local data, by employing a two-sided

knowledge distillation with CLR as a core component. Its adaptable architecture can

be used as an add-on module for existing unsupervised algorithms in federated settings.

Moreover, two federated self-supervised learning frameworks for images with limited labels

were proposed in [172], based on federated CLR with feature sharing (FedCLF). In contrast

to previous approaches that assume labeled data are available at the client-side, Long et

al . [173] introduced FedCon, a novel framework designed to address scenarios where local

client data is unlabeled and only the server has access to labeled data. FedCon tackles

this challenge by employing a contrastive network architecture, which consists of two

subnetworks, enabling e↵ective handling of the unlabeled data on the client-side. Recently,

Khowaja et al . [174] proposed the SelfFed framework that operates in two distinct phases.

The initial phase involves self-supervised pre-training, where a decentralized approach is

employed to train a Swin Transformer-based encoder. In the subsequent phase, referred to

as fine-tuning, the framework incorporates a contrastive network and introduces a novel

aggregation strategy. This phase aims to refine the pre-trained encoder using limited

labeled data specific to the target task.

While these approaches have made significant contributions to FL with limited labeled

data, they have certain limitations. One limitation is the reliance on labeled data on either

the client-side or the server-side. Another limitation is the lack of exploration of meaningful

representations and informative features at a global level. In contrast, the proposed

A. Psaltis 138

Federated, Multi-agent, Deep Reinforcement Learning

method introduces a novel self-supervised learning approach that enables the central server

to harness the entirety of available data within its possession. By utilizing CLR techniques,

this study explores strong representations and extracts informative features at a global

level, even in scenarios where labeled data are limited or unavailable. This allows for more

e↵ective utilization of data and enhances the performance and generalization capabilities

of the final model.

8.3 Methodology

Problem statement: In a federated system, data are inherently localized to

individual clients and the dissemination of this information to other clients is strictly

prohibited. On the other hand, the central server, e↵ectively serving as a simulated

environment for the local clients, has the ability to leverage a substantial volume of data

for training purposes, thereby accommodating a broad array of data variations. The goal

is to train each local model separately to its own subset of data, while the centralized

server is trained in a self-supervised manner on the vast database, with high diversity,

regardless of whether the data are annotated or not, whereas the complete system of the

local clients maintains uniformity in the overall accuracy ascertained in the common test

set.

In the methodology that we advocate, a hybrid learning scheme involving

self-supervised and supervised training strategies is employed. Owing to the substantial

magnitude of images contained within the Tiny-ImageNet[190] dataset, it serves as an

ideal candidate for the training of the central server through the implementation of

unsupervised CLR. On the other hand, for the cultivation of individual local clients,

the CIFAR-100[123] dataset is deployed, partitioned in both a balanced and unbalanced

manner to facilitate experiments that cater to both IID and Non-IID conditions.

CIFAR-100 and Tiny-ImageNet are used since they are contextually similar as shown

in figure 8.2.

8.3.1 FedLID Local Supervision

The local clients are trained in a supervised fashion utilizing the CIFAR-100 dataset.

A distinct segment of the dataset is allocated for each client that remains consistent

throughout all federated rounds, on which they receive training. The training portion of

the dataset is utilized for the purpose of training, while the validation subset serves to

authenticate each of the clients’ models. Notably, the validation set is communal, hence

accessible to all clients. For the purpose of training the clients’ networks, a classification

head was appended that maps the feature vectors to the total number of classes present

in the dataset, amounting to 100. Cross Entropy was deployed as the loss function for the

training process, the formula is displayed below:

139 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

L(✓) = � 1

N

NX

n=1

CX

j=1

yij log pij (8.1)

where N is the total number of images, C the total number of classes, yij the label of

the i, j image and pij the probability of the class. Adam[191] algorithm was chosen as the

optimization strategy.

8.3.2 FedLID Global Supervision

In the federated architecture, the primary server undergoes training via a contrastive

approach on the dataset Xm = (xim, yim), i = 1, ...N , wherein the labels are disregarded.

Each image from the said dataset serves as the anchor image xim. To generate a slightly

variant, positive image denoted xip, image augmentations are utilized. Both of these images

are subsequently passed through the network function �(·), and are then projected into

the latent space for the implementation of CLR as delineated in[136].

The embedding dimensions of the feature map encompass 126 channels. For the

purpose of projection, the final fully connected layer of the model is omitted, and a novel

projection head is a�xed that maps the 512-dimensional latent space to a 126-dimensional

space employing a Rectified Linear Unit (ReLU)[192] activation function. The feature

maps of both the anchor image �i
m = zi and the positive image �i

p = zj are harnessed for

the calculation of the contrastive loss. The formula for the loss is indicated below:

Li,j = log
exp (sim(zi, zj)/T)

P2N
k=1,[k 6=i] exp (sim(zi, zk/T)

(8.2)

where T is the temperature that is a scaling factor used to control the concentration

of the output distribution, a↵ecting the hardness of the positives in the CLR

framework. Through the implementation of contrastive loss, the network strives to learn

representations that induce proximity between the anchor image and the positive image

in the embedding space, whilst ensuring a separation between the anchor image and all

other images within the dataset. The representations learned in this manner would have

the capacity to segment the latent space in accordance with the context, without the true

comprehension of the class.

8.3.3 Federated aggregation

Optimization strategies and in particular aggregation algorithms play an important

role in FL as they are responsible for combining the knowledge from all devices/nodes

while respecting data’s privacy. Although adapting FL to fully-supervised federated

schemes seems to be straightforward, shifting to more complex schemes that involve further

self-supervision steps, as the ones mentioned earlier, can prove to be more challenging

than anticipated. Prior to the application of the proposed self-supervision step, federated

optimization is realized for the locally fully-supervised trained models (Figure 8.1). In

A. Psaltis 140

Federated, Multi-agent, Deep Reinforcement Learning

particular, the broadest aggregation mechanism, namely FedAvg, has been followed,

examined in detail and adapted to the specific scenarios. Firstly, the server distributes

the initial version of the model to each node for training on local data. This first version

can either be pre-trained on a predefined dataset (i.e. ImageNet1k[193]) or be initialized

randomly. In each round, the algorithm performs a set of local model updates (i.e.

cross-entropy loss) on a subset of nodes, followed by a server-side aggregation task, trying

to minimize the following objective function, which is actually the sum of the weighted

average of the clients’ local errors, where Fk is the local objective function for the kth

device and pk specifies the relative impact of each device:

min
w

=
NX

k=1

pkFk(w) (8.3)

In the final step, the updated global model is forwarded to the local nodes for another

round of training. The process is continuing until the global aggregated model is fully

trained and achieves the desired performance.

8.3.4 FedLID Algorithm

In this section, the complete algorithm of the described procedure is presented. The

entire process is divided into two main algorithms, the first one describes the required steps

for training and updating the network in the main server, while the second one defines the

action for training and updating the network in each local client.

Algorithm 17 ClientUpdate Function

1: ClientUpdate(Dl, ✓): . Run on specific client

2: for each local epoch i from 1 to E do

3: for each batch in Dl do

4: ✓l ✓l � ⌘rL(✓l, labels) . Update the client model with Eq. 6.1

5: end for

6: end for

7: return ✓l

8.4 Experiments

8.4.1 Data settings

Within this segment, experimental results from the application of the proposed

Federated Self-Supervised learning strategies are presented. The evaluation process

utilized the CIFAR-100 image classification dataset as a benchmark. This dataset was

adapted into both IID and non-IID variations to reflect di↵erent FL scenarios. One is

replicating the balanced data, i.e. IID dataset, while the other is an extreme example of

141 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

Algorithm 16 FedLID Algorithm

H
Require: C is the total number of clients, ✓g represents the parameters of the global

model, ✓il represents the parameters of the local models, Di
l are the separate datasets

for the local clients, Dg is the dataset of the central server, Dval is the common

validation dataset, and ⌘ is the learning rate.

1: Initialize global model ✓g

2: for each i from 1 to C do

3: Initialize local models ✓il
4: end for

5: Prepare global dataset Dg

6: for each i from 1 to C do

7: Prepare local datasets Di
l

8: end for

9: Prepare common local dataset for validation Dval

10: Server executes:

11: for each Federated round t = 0, 1, 2, . . . do

12: for each client in parallel do

13: ✓lt+1 ClientUpdate(Dl, ✓lt)

14: end for

15: ✓g FedAvg(✓l)Eq.8.3

16: for each global epoch i from 1 to G do

17: for each batch in Dg do

18: ✓g ✓g � ⌘rL(✓g) . Update the global model with Eq. 7.5 (Contrastive

Loss)

19: end for

20: end for

21: Distribute the updated global model to the clients

22: Validate the updated models on Dval

23: end for

A. Psaltis 142

Federated, Multi-agent, Deep Reinforcement Learning

a Non-IID dataset. From both datasets, a set of 100 categories was used with the total

number of participating nodes being 10, among which the images are to be distributed.

IID and Non-IID Settings

Like previous studies [51], the parameter ↵ > 0 controls the identicalness among

participants. Di↵erent ↵ values were tested, where with ↵ ! 1, all participants have

identical distributions and ↵! 0, each participant has examples from only one class. To

support the IID setting, the dataset was divided with medium heterogeneity by setting

↵ = 1. Therefore, a node can have images from any number of classes. In contrast, for

the case of the Non-IID set, the original CIFAR-100 dataset was divided, with a higher

level of heterogeneity by setting ↵ = 0.5. Here, nodes tend to have a significant number

of samples from some classes and few or no samples for the other classes. Each node

randomly sampled 1
10 of training and validation data respectively, while the test set data

were left out for the final system evaluation, both at the global and local levels.

Image augmentations

For the CLR scheme, a data augmentation strategy as the one in SimCLR[136] is

adopted. Initially, a stochastic crop of the image is procured, which is subsequently

subjected to a random horizontal flip. This is then followed by arbitrary distortion

of brightness, contrast, hue, and saturation parameters, complemented by an optional

grayscale transformation. Subsequently, a Gaussian blur filter is administered as the

terminal step of the augmentation process. The image is ultimately resized to dimensions

of 224 × 224 and undergoes normalization.

Figure 8.2: Images from Tiny-ImageNet (left) and the CIFAR-100 (right), showcasing the

contextual similarities of the two datasets.

143 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

8.4.2 Implementation details

Architecture and Parameters

The architecture of the proposed method employs a distributed framework, composed

of a Convolutional Neural Network (CNN)[194], specifically ResNet18[124] is used for

experiments because it is shallow, fast in training and has satisfactory results, that

is deployed both at the centralized server and the local clients, albeit with unique

modifications for each entity. The step-by-step process of the training of the federated

scheme is illustrated in Algorithm 16. For the central server, the final fully connected

layer of the network is replaced with a projection head, enabling the transition of the

ResNet feature map to a new embedding space, thereby facilitating the CLR scheme.

Conversely, the local clients are trained via supervision, resulting in the substitution of

the final fully connected layer with a classification head that maps the feature vectors

to the corresponding classes, the full algorithm of the local supervision is depicted in 17.

Regarding the optimizer, Adam is employed with a learning rate of 0.001 and the batch size

of the system is 256. It is crucial to note that the ResNet model retains knowledge acquired

from the ImageNet1k[193], as it operates on the basis of pre-trained weights. To facilitate

an unbiased comparison between the proposed approach and leading-edge federated

systems, additional experiments are conducted employing the ResNet50 architecture.

Federated setting

In the context of the training paradigm for the suggested FL system – a system

comprising both a centralized server and 10 local clients – a comprehensive training period

of 10 federated rounds is undertaken. Within each of these rounds, the local clients

individually embark on a training process spanning 10 epochs, operating in isolation

without any inter-client communication. Upon completion of their respective training,

the local clients communicate with the central server, transferring their uniquely derived

weights. This information is assimilated by the central server which proceeds to aggregate

the weights and undergoes a training cycle for 60 epochs prior to disseminating the updated

model to the local clients. Post distribution, the refreshed model undergoes an evaluation

process leveraging the common test set accessible to all clients.

Baselines

To a�rm the validity of FedLID as unequivocally as possible, a comparative

performance analysis across two distinct configurations was executed. Initially, benchmark

experiments were undertaken within a fully-supervised federated framework, in both

IID and Non-IID scenarios, wherein the volume of data accessible on the central server

progressively reduced in increments of 20%, ranging from 100% to 20%. Subsequently,

a comparative evaluation was conducted against the following cutting-edge benchmarks:

FedCA and FedSimCLR [171].

A. Psaltis 144

Federated, Multi-agent, Deep Reinforcement Learning

Training Setup

The proposed federated system’s training was executed on a single computer, outfitted

with a GeForce RTX 3090 (VRAM 24 Gbs) and furnished with 32 Gbs of RAM.

8.4.3 Performance Evaluation

IID Setting

The presentation of results, under circumstances of equitably distributed data amongst

the local clients, is delineated below. As discernible from Table 8.1, when juxtaposed with

the fully-supervised framework, FedLID provides superior results (47.52%) with relative

improvement over the baseline of 8.05%, even when pitted against the optimum case

scenario of supervision (43.98%), which implies the utilization of 100% of the data situated

within the central server. As anticipated, the overall accuracy experiences a decline with a

diminishing quantity of training data in the server. Consequently, in situations where the

central server houses extremely limited annotated data, the proposed method surpasses

the conventional supervised FL. Figure 8.3 shows the impact that the training on the server

has on the overall accuracy of a client. The underlying cause for the observed outcome is

that each local client independently assimilates the representation of its specific training

subset. However, when these learned representations converge on the central server, this

disparate information is consolidated. Coupled with the CLR setting deployed on the

server, these combined representations converge closer to the authentic data distribution

of the test set.

Percentage of Data in

the Central Server

Average Accuracy over

the Local Clients

20% 42.15%

40% 41.79%

60% 42.74%

80% 43.81%

100% 43.98%

FedLID(Ours) 47.52%

Table 8.1: Comparison of our method with di↵erent percentages of available data in the

central server. The data in the local clients are divided equally.

It is subsequently discerned that FedLID surpasses the performance metrics of

contemporary state-of-the-art algorithms as shown in Table 8.2. This superior performance

of 47.52% is achieved even when utilizing shallower network architectures and a larger

number of clients, both factors contributing to reduced training data for each individual

local client.

145 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

Method Architectute Clients CIFAR100

FedSimCLR ResNet50 5 34.18%

FedCA ResNet50 5 39.47%

FedLID(Ours) ResNet18 10 47.52%

Table 8.2: Average Accuracy over the local clients on CIFAR-100 udner the IID setting

with ↵ = 1.

Non-IID Setting

Non-IID data typically contain diverse patterns and variations across di↵erent nodes,

which inherently lead to challenges in learning a generalisable model. In that context,

FedLID achieves superior results (48.88%), as depicted in Table 8.3, by leveraging the

inherent structure and relationships within the global data, with a relative improvement

of 39.02% over the baseline system. Figure 8.4 demonstrates the e↵ect that the main server

has on the performance of the client. By pretraining the global aggregated model on a

self-supervised task and subsequently fine-tuning it on the target local supervised task,

the model can e↵ectively exploit the knowledge gained at a global level while adapting

to the specific characteristics of the Non-IID dataset, resulting in improved accuracy and

generalization at the local level. It is entirely plausible in practical federated systems that

the data distributed among local clients may not be evenly distributed, and the server data

could be semi-annotated or non-annotated. Under such realistic conditions, the proposed

methodology outperforms all baseline cases.

Percentage of Data in

the Central Server

Average Accuracy over

the Local Clients

20% 32.83%

40% 33.08%

60% 32.84%

80% 34.32%

100% 35.16%

FedLID(Ours) 48.88%

Table 8.3: Comparison of our method with di↵erent percentages of available data in the

central server. The data in the local clients are divided in an imbalanced way.

In relation to a comparison with state-of-the-art methods, FedLID demonstrates

exceptional performance, outpacing the next closest approach by a 10% margin, as

portrayed in Table 8.4. This impressive outcome is achieved despite the fact that each

client has less data, and the network used is smaller in terms of parameters.

It is evident from the results that the proposed method exhibits improved accuracy on

Non-IID data compared to IID data distributions (48.88% and 47.52% respectively). This

A. Psaltis 146

Federated, Multi-agent, Deep Reinforcement Learning

Method Architectute Clients CIFAR100

FedSimCLR ResNet50 5 33.63%

FedCA ResNet50 5 38.94%

FedLID (Ours) ResNet18 10 48.88%

Table 8.4: Average Accuracy over the local clients on CIFAR-100 udner the Non-IID

setting with ↵ = 0.5.

is due to the fact that in the IID setting, the training data across nodes is representative

of the overall population, and the local model can learn common patterns more e↵ectively,

leading to fast convergence. In addition, the pretext task used for self-supervision is almost

aligned with the target supervised task, thus the fine-tuning process on the balanced

(i.e. uniformly distributed across nodes) dataset does not struggle to align the learned

representation with the task-specific requirements; hence leading to less benefit from

self-supervision step. On the contrary, self-supervised methods often excel in scenarios

where there are variations, complex dependencies, or imbalances in the data distribution,

as they can capture the underlying structure and extract meaningful representations.

Consequently, in homogeneous scenarios, the impact of self-supervision may be relatively

diminished, thus largely explaining the di↵erence in performance.

Weakly annotated setting

In an e↵ort to investigate the impact on performance, we intentionally reduced the

available data to 10%, aiming to create conditions of partial annotation in the local

nodes. This approach allows us to study the consequences both prior to and following

the application of the proposed self-supervised method at the global level. The results

demonstrate that despite the significant reduction in local data and a limited number of

training iterations (10 local epochs and 10 federated rounds), the performance slightly

increases compared to the baseline approach (i.e. FedCA) in the IID setting while the

comparison is favourable in the context of Non-IID, as depicted in Table 8.5. It is evident

that the limited number of local epochs hampers performance improvement, and the

local model has the potential for further convergence, as illustrated by the accompanying

diagrams. Furthermore, it can be observed that increasing the number of communication

rounds consistently enhances performance, showcasing the cumulative strength of the

self-supervised model in the federated aggregation process.

8.5 Insights and Contributions

The fifth study, delving into the field of representation learning with limited data

in FL environments, marks a significant leap forward in addressing some of the most

pressing challenges in FL. The study introduces a novel approach that innovatively

combines self-supervised and supervised learning techniques within a federated framework,

147 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

Label Fraction Setting Method CIFAR100

10%

IID
FedCA 32.09%

FedLID(Ours) 33.51%

Non-IID
FedCA 22.46%

FedLID(Ours) 24.12%

Table 8.5: Accuracy of the state-of-the-art in weakly annotated scheme with di↵erent label

ratios. FedCA’s total number of local clients is 5, while FedLID is utilizing a federated

system with 10 clients in total.

Figure 8.3: Comparison of the top-1 accuracy on CIFAR-100 in an IID setting, over the

federated rounds of FedLID and the baseline. The dotted line is the aggregation of the

local models and the training of the centralized server.

a methodology tailored to navigate the complexities associated with sparse and imbalanced

data distributions across nodes. The heart of this study lies in its custom self-supervised

learning strategy, deployed at the global level, which e↵ectively capitalizes on the untapped

potential of unlabeled data. This strategy is creatively complemented by supervised

learning techniques at the local level, ensuring the optimal utilization of available

labeled data. The synergy of these methodologies results in a robust and versatile

learning mechanism, e↵ective in adapting to various federated settings, especially those

characterized by limited and uneven data distribution. The findings are significant: the

study’s approach not only demonstrates remarkable recognition performance on a broad

publicly available dataset but also outstrips all baseline models by a considerable margin.

One of the standout features of this solution is its ability to function e�ciently at the

local level without requiring prior knowledge of data distribution or specific characteristics

across nodes, a capability that highlights its adaptability. The successful integration of

A. Psaltis 148

Federated, Multi-agent, Deep Reinforcement Learning

Figure 8.4: Comparison of the top-1 accuracy on CIFAR-100 in a Non-IID setting, over

the federated rounds of FedLID and the baseline. The dotted line is the aggregation of

the local models and the training of the centralized server.

self-supervised and supervised methods in this study provides a compelling direction for

future research. It lays the groundwork for exploring the variability of model architectures

across nodes in subsequent studies, potentially leading to even more adaptable and e�cient

FL systems.

149 A. Psaltis

Chapter 9

Study 6: Tackling Model

Architecture Variability in FL

9.1 Overview of the Study - Rationale Behind Addressing

Model Architecture Variability

In the realm of FL, addressing model architecture variability is not just a technical

challenge but a pivotal aspect of the field’s evolution, especially considering the

ever-increasing number of model architectures emerging in the literature. This focus

on architecture variability emerges from the unique nature of FL, where diverse devices

or participants, each with their own data and computational constraints, collaboratively

train a shared model. Modern ML has witnessed an expansion of model architectures, each

tailored to specific types of data and computational tasks. For instance, ResNets (Residual

Networks) [124] have gained popularity for their ability to enable the training of extremely

deep networks by using skip connections. On the other hand, E�cientNets [195] o↵er a

balanced approach, scaling di↵erent dimensions of the network in a compound manner to

achieve remarkable e�ciency and accuracy. Similarly, MobileNets [196] are designed to

provide lightweight, yet e↵ective, neural networks for mobile and edge devices, focusing

on optimized performance in resource-constrained environments. Such architectures have

exceled in a wide spectrum of computer vision tasks including classification[197, 198, 199],

detection[200, 201], retrieval[202, 203].

In the context of FL, this diversity in model architectures presents both challenges

and opportunities, which are elaborated in Chapter 2. Each architecture has unique

characteristics in terms of how it processes data, its computational complexity, and its

suitability for di↵erent types of tasks. For instance, while ResNets might be ideal for

scenarios where high accuracy is paramount, MobileNets could be more appropriate for

FL scenarios involving mobile devices due to their e�ciency and reduced computational

requirements. As detailed in previous studies, in FL, participants ranging from powerful

servers to resource-constrained edge devices collaborate in training a shared model,

151

Federated, Multi-agent, Deep Reinforcement Learning

while each retaining their unique datasets. This setup presents a complex picture

of heterogeneity, not only in terms of computational capabilities but also in data

characteristics. The data across these diverse devices are often non-IID, presenting

significant challenges in model training and performance. Hence, the choice of model

architecture in such a scenario becomes critical. A one-size-fits-all approach is impractical;

instead, a more tailored strategy is required, where the model architecture aligns with the

computational capabilities and data characteristics of each node.

One of the core challenges identified in previous studies is communication e�ciency

in FL [45] since the decentralized nature of FL adds another layer of complexity. The

architecture of models directly influences the data that needs to be communicated between

the central server and distributed nodes. Optimizing these model architectures for diverse

environments can substantially reduce communication overhead. This requires innovative

approaches in model aggregation and updating to accommodate di↵erent architectures

while maintaining the overall e�ciency and e↵ectiveness of the learning process.

Moreover, the foundational promise of FL is its ability to preserve privacy while

training models e↵ectively without the need to centralize data [46]. This entails a distinct

approach where models are tailored to specific data types and privacy requirements

of di↵erent nodes. Variable model architectures allow for this flexibility, addressing

the diverse privacy and security concerns across nodes. Scalability and robustness are

other critical aspects that demand a focus on model architecture variability. As FL

systems expand to include more nodes and diverse applications, robust models capable

of adapting to varying architectures become increasingly important. This scalability

encompasses not just the number of nodes but also the diversity in types of tasks and

data modalities. Furthermore, the real-world applicability of FL spans a broad range

of domains, from healthcare to smart cities. Each application domain might require

di↵erent model architectures due to the nature of the data and specific task requirements.

Therefore, developing strategies to manage architecture variability is crucial for the

practical deployment and success of FL in these diverse fields.

As indicated in prior studies, FL models need to continuously learn and adapt to new

data or tasks, a concept known as incremental learning. This requirement for models to

evolve and incorporate new information without forgetting previous knowledge underscores

the need for flexible architectures that can accommodate such dynamic learning processes.

In addition, the increasing number of model architectures also opens up new directions

for research in FL. It provides an opportunity to explore hybrid models or meta-learning

approaches that can dynamically adapt to the most suitable architecture based on the

task at hand and the nature of the data. Such exploration could lead to more versatile

and powerful FL systems capable of handling a wide range of tasks and data types more

e�ciently.

Considering all the aforementioned aspects, the exploration of model architecture

variability in FL stands as a strategic response to the multitude of challenges and

opportunities inherent in this innovative learning paradigm. It embodies a dedicated

A. Psaltis 152

Federated, Multi-agent, Deep Reinforcement Learning

e↵ort to enhance the e�ciency, scalability, privacy, and real-world applicability of FL. This

attempt builds upon the foundational insights extracted from preceding studies, pushing

the boundaries of what is achievable in collaborative, decentralized learning environments.

Notably, this study is the first, to the authors’ knowledge, to step on this path. It pioneers

in addressing the complexity and diversity of model architectures within the FL framework,

making it a groundbreaker in the field and setting a point of reference for future research

in this area. The proposed FL system is illustrated in Figure 9.1

The main contributions in addressing model architecture variability in FL can be

summarized as follows:

a) Model-Agnostic FL Framework: This study introduces a novel FL approach

that is agnostic to the specific model architectures used across nodes. It successfully

integrates diverse architectures such as ResNet, E�cientNet, and MobileNetV3 in

FL settings, demonstrating the framework’s adaptability to various computational

capabilities and data requirements at each node.

b) Hybrid Learning Approach with Focus on Representation: A key innovation

of this study is the blend of supervised and self-supervised learning paradigms,

focusing on representation learning. This approach optimizes local models based

on their specific data and then aligns them with global data patterns through

self-supervised learning. It signifies a shift away from traditional federated averaging,

emphasizing a representation-centric aggregation method.

c) E�cient Handling of Model Architecture Variability: The study addresses

the challenge of combining outputs from various model architectures during the FL

process. By focusing on the outputs from specific blocks or layers and adopting a

feature excitation method, the study e↵ectively manages the aggregation of learned

representations from di↵erent architectures, ensuring coherence in the federated

system.

9.1.1 Advancements and Challenges in Federated Representation

Learning

The landscape of FL has rapidly evolved, as evidenced by the plethora of research[204,

205, 206, 207, 208, 209, 210] that have tackled its fundamental issues and put forth

inventive ways to improve its e↵ectiveness, confidentiality, and expandability. The promise

of this emerging sector to facilitate collaborative learning without sacrificing data privacy

has garnered a great deal of attention.

Representation learning serves as a cornerstone in the e�cacy of FL, underpinning

the ability to distill and generalize knowledge from distributed data. This foundational

technique facilitates the extraction of informative features, enhancing the collaborative

intelligence of FL models, and enabling them to perform robustly across all client datasets.

The authors of [211] introduced an FL framework that aims to cultivate a common

153 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

data representation among clients while maintaining distinct local heads for each. This

approach capitalizes on the distributed computing resources and performs frequent local

updates targeting low-dimensional parameters to achieve linear convergence and produce

accurate representations. FedX[175] learns neutral representations from diverse local

data by utilizing contrastive learning[212] to enable a bilateral knowledge distillation,

allowing the system to function without the need for shared data features. Due to

privacy constraints, FL schemes are required to excel on limited data on a per-client

basis. Concurrently, as knowledge is centralized through model updates, it is essential for

the aggregated model to assimilate and generalize information across the dataset from all

clients while preventing the loss of client-specific characteristics. The work of Psaltis et

al . [213] demonstrates that contrastive learning can significantly increase the performance

of the local clients even when the distribution is imbalanced and scattered across them.

Li et al . [214] employ contrastive learning at the model level, leveraging the congruence

among model representations to refine the local training processes of individual clients.

FedCA [215] used a shared split of the dataset to align the representations of the images.

The framework is distinguished by its integration of centralized sample representations

from each client to ensure a uniform representation space accessible by all, and a module

that synchronizes each client’s representation with that of a foundational model trained

on publicly available data.

Addressing the aggregation of learned representations on a global scale presents

significant challenges. Despite numerous attempts to synchronize heterogeneous models

across diverse clients, current approaches struggle to achieve seamless architecture

alignment without modifying model structures or directly aggregating model weights.

This limitation points to the untapped potential for innovative methods capable of

integrating diverse architectures without the need for altering client models. Although

existing research has explored methods like distillation techniques or various ensemble

strategies [122, 216, 217, 218, 219], these approaches often necessitate mapping features

into a common latent space to a shared latent space for knowledge integration and weight

aggregation[220, 221, 222, 223, 224]. Such processes typically involve additional training

of either entire networks or specific network components (e.g ., network heads), leading

to increased training durations and reduced e�ciency and scalability, thereby diminishing

the practicality of these solutions.

9.2 Strategies for Managing Diverse Model Architectures

Problem statement: The e↵ective integration and management of a wide array of

diverse model architectures across various nodes in a federated network. This problem

arises due to the heterogeneous nature of FL environments, where nodes, ranging from

high-powered servers to resource-constrained edge devices, each come with their own

unique data characteristics and computational capabilities. The proposed methodology for

managing diverse model architectures in an FL system is designed to be model-agnostic,

A. Psaltis 154

Federated, Multi-agent, Deep Reinforcement Learning

Figure 9.1: Schematic of the proposed FL System Architecture illustrating the feature

extraction and alignment modules on the local dataset of each client that harmonizes the

heterogenous architectures and the fully-supervised training on the local dataset. The

Model-Agnostic Aggregation Mechanism is the process performed on the main server to

create an enriched representation of the local dataset, derived from all the clients

leveraging the strengths of representation learning. This strategy is distinct from

conventional federated averaging, taking advantage of the potency of both supervised and

self-supervised learning paradigms, but lacking the advantage of aggregating the weights of

the models due to the heterogeneity of the architectures. Traditional approaches, including

FedAvg[22], are insu�cient in confronting the challenges posed by the intrinsic diversity

of ML models deployed throughout the network. Moreover, strategies such as model

distillation and the integration of feature fusion at the upper layers, although aimed at

ameliorating these di�culties, do not succeed in providing a substantive resolution. One of

the key aspects of our methodology is the accommodation of various model architectures

across local clients. The technique is particularly concentrated on CNN architectures,

specifically: (i) ResNet, (ii) E�cientNet, and (iii) MobileNetV3. This flexibility ensures

that each local node can select a model that best fits its computational capabilities

and specific data requirements. Such diversity in model architecture is crucial for the

adaptability and personalization of the FL system.

9.2.1 Local Supervision and Self-supervision Representation Learning

Within the methodology described in this research, there are two learning paradigms

integrated, that are applied to distinct subsets of the datasets. Every client in the FL

system has access to three distinct sets of data in terms of distribution: a test set, a

private set, and a shared set. To foster a collaborative learning environment, all clients

have access to the shared set, which is an image collection that is used for training.

Conversely, the private set is a unique group of images for each client that is extracted

from the original training dataset following the subtraction of the images assigned to the

shared set. The training scheme applied to the private set employs a fully supervised

learning procedure, enabling each client to learn and adapt to the distinct attributes and

patterns that derive from the local data. A hybrid learning model is adopted for the shared

155 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

set, encompassing both supervised and self-supervised learning mechanisms. It utilizes the

labels to encourage the learning of specific patterns within the set, while simultaneously

generating a descriptor for each image. The objective is to align the individual descriptors

with a collectively aggregated embedding which is constructed by all the clients, thus

boosting the cohesiveness and e�cacy of the learning process across the federated system.

These shared resources play a pivotal role in the latter stages of the training process,

particularly during the self-supervised learning phase. It serves as a unifying element,

bridging the diverse learning experiences of individual nodes and aligning them with the

broader, global dataset context. Figure 9.2 illustrates this representation-centric learning

approach.

Figure 9.2: Representation-centric learning approach.

Grad-based Feature Extraction Module

The core of our excitation technique is grounded in the observation that the most

influential features are highlighted by the gradients during the backpropagation process.

Drawing inspiration from the insights provided in [225], where the authors underscore

the significance of gradients in evaluating feature importance within their personalized FL

system, the proposed methodology advances this understanding. Gradients within a model

delineate the direction of optimization and e↵ectively indicate the influence of each neural

unit. The feature extraction method we propose builds upon this concept, harnessing the

model’s gradients relative to the ground truth to identify and extract pivotal features from

each block’s output. By selecting features that possess the largest absolute gradients, the

algorithm ensures the inclusion of those with the most substantial impact on the model’s

predictive outcome, thereby enriching the feature descriptor with the most influential

A. Psaltis 156

Federated, Multi-agent, Deep Reinforcement Learning

attributes for the task at hand. The formula 9.1 of the module is depicted below:

gradbj = Topk

 �����
@pcj
@F b

j

�����

!
, k 2 {128, 256, 512, 1024}, b 2 {1, 2, 3, 4} (9.1)

where b represents the block of the model, k number of features to be extracted, j the

training sample, pcj the predictive output of the c-th category. This approach begins

with initial training at each local node using its own private dataset, a critical phase

for developing accurate data representations. These representations lay the groundwork

for the method’s subsequent phases. Following this initial training, every node processes

the images from a shared subset. For each image, the algorithm selects the top features

exhibiting the largest absolute gradients within each of the blocks of the network’s feature

map, as shown in the Algorithm 18 lines 6-12. It is these prominent features, considered

pivotal for the image’s representation, that are then forwarded to the central server. This

process ensures that the most critical aspects of the data are emphasized and aggregated

globally, enhancing the overall learning and representation capability of the system. In

Figure 9.3, Grad-cam[226] was used to visually compare the gradient maps of each block

across the network architectures

A comprehensive evaluation identified the most informative characteristics for

constructing a meaningful feature descriptor, using targeted feature cropping from the

feature maps and various adaptive pooling strategies, ultimately finding that the proposed

Gradient-based Feature Extraction Module outperformed these techniques in feature

selection e�cacy.

Figure 9.3: Visual representation of the gradient visualizations for three di↵erent neural

network architectures applied to the same original image. On the left, the original image

is depicted. Progressing to the right, the subsequent images represent gradient heatmaps

as interpreted by ResNet, E�cientNet, and MobileNetV3, respectively. These heatmaps

highlight areas of the image that contribute most significantly to the models’ predictions,

with warmer colors indicating higher gradient values and thus greater importance in the

decision-making process of each network.

157 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

9.2.2 Model-Agnostic Global Aggregation

The central node in this architecture plays a vital role in aggregating the

representations from each participating node. This aggregation focuses on the outputs

from specific blocks or layers of the models, going beyond the individual di↵erences in

architectures. The process is designed to be model-agnostic, accommodating a wide

variety of models without requiring uniformity. A significant departure from traditional

approaches in our methodology is the avoidance of weight aggregation algorithms. Instead,

we focus on a representation-centric aggregation approach. This shift ensures that the

learning process is more coherent, communication e�cient and e↵ective, particularly

suitable for environments with heterogeneous models. The ultimate goal is to align the

local representations of the shared dataset with the global representation. The global

representation is the aggregation of the local descriptors of each image in the shared

subset, contributed by all participating clients in the FL system. This alignment enhances

the model’s ability to generalize and adapt to new data, improving its performance

across the federated network. The hybrid training approach – combining supervised and

self-supervised learning – ensures that local models are fine-tuned to both their specific

data characteristics and the aggregated knowledge from the shared dataset. In conclusion,

this proposed aggregation methodology o↵ers a flexible and e↵ective approach to managing

diverse model architectures in FL. By focusing on representation learning and adopting

a model-agnostic aggregation approach, it ensures e�cient and robust learning across the

federated network, paving the way for more adaptable and powerful FL systems.

Iterative Representation Refinement and Dual-Loss Aggregation

At the central server, an average representation for each image is computed by

aggregating the feature information received from all clients. This global representation

encapsulates the collective insights of all participating nodes, enriching the understanding

of each image in the shared dataset. The training of the network then proceeds with

a cosine similarity loss function. In each epoch of this training phase, two views of the

data are considered: the global representation and the current local representation of

the network being trained. The first epoch plays a pivotal role as it sets the baseline

for the representations used in a knowledge distillation-inspired learning process. The

representations for the subsequent epochs are then recalculated based on the top feature

indices identified in the previous epoch. This iterative process is refined further by

incorporating both cosine similarity and cross-entropy loss functions into the global

aggregation step. This dual-loss approach allows the model to benefit from the strengths

of both supervised and self-supervised learning paradigms, leading to more robust and

well-rounded representations. By continuously refining the representations and the model

through this iterative process, the FL system e�ciently leverages the most relevant

features of the data, enhancing the model’s performance and adaptability to diverse

datasets. Algorithm 18 provides a detailed illustration of the proposed aggregation

A. Psaltis 158

Federated, Multi-agent, Deep Reinforcement Learning

technique in the suggested FL framework. The algorithm’s goal is to reduce inconsistencies

between the local and global features, promoting uniformity and coherence in the learned

representations across the network. Upon successful alignment of the local models with the

global representation, the updated models are aggregated at the central server, enhancing

the global model with enriched insights from the network’s distributed learning experience.

This strategy ensures that local models not only perform well on their data but also

contribute e↵ectively to the collective intelligence of the federated system.

Image Descriptor - Feature Alignment

The core innovation of the proposed approach is based on the hypothesis that we can

directly map blocks of features across di↵erent model architectures, owing to the similarity

in the information they encode, and then aggregate them accordingly. This strategy

suggests a more streamlined and potentially e↵ective method for combining diverse models

by capitalizing on the inherent parallels in their feature representations. However, in

the journey of aggregating learned representations from di↵erent blocks of each node

in our FL system, we encountered several significant challenges, particularly with the

alignment metrics between node representations, especially with the implementation of

cosine similarity as a measure of alignment. Unexpectedly, the use of cosine similarity

not only failed to enhance the network’s performance but rather led to a decrease in

e↵ectiveness. This issue was further complicated by the observation that for the majority

of the layers, except the last one, the cosine similarity consistently equated to zero. The

equation for cosine similarity is as follows:

cosine similarity(A,B) =
A ·B
kAkkBk =

Pn
i=1AiBiqPn

i=1A
2
i

qPn
i=1B

2
i

(9.2)

where A and B are two vectors for which you are calculating the cosine similarity.

The dot product of A and B is divided by the product of their magnitudes (or Euclidean

norms). The magnitudes are calculated as the square root of the sum of the squared

elements of each vector.

The construction of an image embedding derived from the entirety of a client’s

model, and the utilization of solely the last flattened embedding, did not yield a notable

enhancement in accuracy. This outcome was observed despite each client’s embedding

being a high-dimensional 1920-vector, which was meticulously generated through the

Gradient-based Feature Excitation Algorithm, a variance attributable to the disparate

model architectures and the dimensions of the latent spaces involved.

The main descriptor’s experimentation began with ResNet architectures—ResNet18,

ResNet34, and ResNet50—due to their prevalence in FL literature and computational

constraints. The technique encompasses the strategic extraction of features from all the

blocks of the ResNet architectures to frame a thorough 1920-dimensional embedding,

utilizing the Gradient-based Feature Extraction Module. This process initiates with the

selection of 128 features from the initial main block, followed by the extraction of 256

features from the second block, 512 from the third, and culminating with 1024 from

159 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

the fourth block. In particular, the process of feature elicitation serves as a pivotal

step in harmonizing the local models with a central, aggregated global accumulation

of the descriptors. It starts with an image passing through a neural network, which is

segmented into distinct blocks, each responsible for extracting features at varying levels

of complexity. The early blocks, such as Block1, typically capture elementary features

like edges, while the deeper blocks, such as Block4, discern more intricate patterns. The

outputs of these blocks undergo a selective process where a specific number of features are

chosen based on their activation levels, which are indicative of their importance. These

chosen features are then combined, with the deeper blocks contributing a larger share

of features, reflecting their increased complexity and importance in characterizing the

image. This process is illustrated in Figure 9.4. The reasoning behind this specific

excitation approach is grounded in empirical findings. Experiments have revealed that

similarity metrics for features in the initial layers of both trained and untrained models

are remarkably high, indicating homogeneity in the primitive features extracted by these

layers. Consequently, as the network delves deeper, the need for capturing a broader and

more complex range of features grows, prompting the selection of larger feature maps

from the deeper layers—(128, 256, 512, 1024) respectively—to ensure a comprehensive

representation.

Figure 9.4: Diagram of the descriptor construction process from a ResNet architecture,

illustrating the sequential extraction of features from the four distinct blocks of the model.

The feature maps are processed through a Feature Extraction Module, resulting in a

composite image descriptor that encapsulates multi-scale representations of the input.

A. Psaltis 160

Federated, Multi-agent, Deep Reinforcement Learning

Algorithm 18 Federated Learning with Grad-based Feature Extraction

Require: Di local datasets, f i(✓) model of the local clients, C common subset, R total

communication rounds, E total epochs, lr learning rate

1: for r 1 to R do

2: Local training

3: for i 1 to N do

4: f i(✓) train(f i(✓), Di, LCE)

5: end for

6: Grad-based Feature Extraction Module

7: for i 1 to N do

8: for all b in f i(✓)blocks do

9: bgrad
@PDi

@f i(✓)b,(wh)

10: F i
E ExtractTopK(|bgrad|),K 2 {128, 256, 512, 1024}

11: end for

12: end for

13: Aggregation on Central server

14: for j 1 to C do

15: FEj 1
N

PN
i F i

Ej

16: end for

17: for i 1 to N do

18: for e 1 to E do

19: for j 1 to C do

20: F i
Ej Grad-based Feature Extraction Module(f i(✓), Pj)

21: zjlocal f i(✓)(xj)

22: L ↵LCE(z
j
local, Pj) + (1� ↵)LCOS(F

j
iE , F

E
j)

23: ✓ ✓ � lr ·rL
24: end for

25: end for

26: end for

27: end for

In the Algorithm 18 presented before, LCE and LCOS represent the Cross-Entropy

and Cosine Similarity loss functions that are employed in the training process of the

proposed method. bgrad is the gradient map of the block of the models, PDi represent the

predictions of the i-th dataset of the i-th client’s model. The variables w and h are the

spatial dimensions of the feature maps, F i
E represent the extracted features from the i-th

client’s model, while FEj is the aggregated descriptor manufactured in the main server

and zlocal is the prediction of the model of the xj image and finally, the factor ✓ denote

the weights of the model.

161 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

Harmonizing diverse architecture through block alignment strategies:

Expanding the scope of architectures to include E�cientNet and MobileNetV3,

specifically E�cientNetB0, E�cientNetB1 and MobileNetV3-Small, MobileNetV3-Large,

alongside the ResNet family, a nuanced approach to integration is necessitated by the

variance in the total number of blocks within these models—E�cientNet and MobileNetV3

comprising seven blocks in contrast to ResNet’s four. The incorporation of a diverse

array of architectures, demanded a sophisticated alignment policy to accommodate the

variations in block numbers—seven in E�cientNet and MobileNetV3 as opposed to

four in ResNet. This alignment was meticulously conducted through an analysis of

representational similarity and angular divergence among the models, utilizing cosine

similarity metrics to achieve uniformity in representation spaces. The process entailed

the synchronization of blocks that demonstrated the least angular divergence, taking into

account the orientation and dimensionality of their feature maps. Despite challenges

in direct comparison due to activation function and dimensionality di↵erences, absolute

feature grouping and KL-Divergence analysis enabled precise block alignment across

architectures, fostering a unified FL framework. Consequently, the harmonization of

block connections across ResNet, E�cientNet, and MobileNetV3 architectures is achieved,

paving the way for a cohesive and aligned FL system that leverages the strengths of

diverse model architectures while maintaining the integrity of their unique representational

capacities.

9.3 Experimentation in Various Architectural Scenarios

The exploration of di↵erent model architectures in FL aims to understand how diverse

neural network structures can a↵ect the learning process when distributed across various

nodes. In the series of experiments conducted, the focus was on integrating three di↵erent

core CNN-based architectures ResNet, E�cientNet, and MobileNetV3 to investigate their

performance in FL settings. The initial set of experiments deployed various versions of

ResNet, specifically ResNet18, ResNet34, and ResNet50. Worth noting that, memory

constraints limited the exploration to all these three models, highlighting the practical

challenges of deploying larger and more complex networks in FL. More details on challenges

related to architecture variability and further experimental evaluation can be found in

Appendix F.

9.3.1 Experiment Setup

Datasets

The datasets that are used to validate the Fl system are CIFAR-10, CIFAR-100[123]

and MNIST[194]. The distribution of the data to the clients is in an IID format, where

each client contain the same number of images per class. Regarding the shared subset,

experiments were conducted in a range 5000 - 10000 data instances, to discover the optimal

A. Psaltis 162

Federated, Multi-agent, Deep Reinforcement Learning

number. It was revealed that despite the fact that the alignment process performed better

the bigger the share subset was, the remaining data that were divided to the clients proved

insu�cient for the models to e↵ectively capture their unique patterns, so the total number

of the shared division of the dataset is set to 5000.

Data Augmentations

In the preprocessing phase of the study, a series of image augmentation techniques were

implemented to enhance the diversity of the training dataset. The specific augmentations

applied include horizontal and vertical flip, random crop, brightness adjustment of +/ �
20% and Gaussian blur.

Distribution of the Networks to Clients

The models are allocated to clients utilizing a standardized approach, where each

variation of the networks is selected according to a uniform distribution method, with a

requirement that the method contains at least one of each di↵erent network architectures.

Hyperparameters

The total communication rounds of our experiments are set to 10, while the epochs

of training of each round are set to 25, the batch size is set to 128, the initial learning

rate of the models was 0.01, using One-Cycle LR[227] with the minimum learning rate

being 0.0001 and the optimized of the networks was the Adam[191]. The total number of

variations to the number of clients is 5, 10, 20.

Compared Methodologies

To facilitate a meticulous comparative analysis of the proposed framework’s

performance, we have chosen benchmark methods grounded in the principles of

representation learning. The FL schemes selected for this purpose include PerFCL[228],

FedCon[173], MOON[135], FedSimCLR, FedCA and FedSimSiam[229]. However, it

is important to highlight that the proposed approach diverges from the existing

state-of-the-art methodologies by incorporating a varied architecture at each federated

node. This distinction is a critical factor that should be considered in any comparative

analysis below.

9.3.2 Evaluation and Results

The initial goal was to evaluate the e�cacy of various ResNet models disseminated

among the clients. The resulting performance is the mean accuracy of the corresponding

method across all the clients on the test set of each database. For the evaluation metric,

the accuracy is the mean accuracy of the corresponding method across all the clients

on the validation set of each database. FedHARMres denotes the adaptation of this

163 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

approach, incorporating ResNet architectures for client distribution, and it outperformed

all competing methodologies on the CIFAR-10 dataset across every client configuration as

shown in Table 9.1. A slight decline in performance was observed with an increase in the

number of clients, attributable to the correspondingly reduced dataset available to each

client. The integration of the alignment module significantly enhanced the framework’s

e↵ectiveness, demonstrating its utility and success by achieving an accuracy of 83.87% in a

scenario with 5 clients and 81.51% in a setting with 10 clients. The added value is further

underscored by the fact that, unlike traditional FL strategies, the conventional solution

avoids using weight averaging algorithms and instead opts for dominant feature utilization,

showcasing its flexibility in extracting knowledge from a variety of model architectures.

Transitioning to the CIFAR-100 dataset, the proposed method exhibited superior

performance in the 5-client configuration compared to the benchmark methods achieving

52.38% accuracy, but did not achieve the same level of success in the settings with 10 and

20 clients. This reduction in performance can be attributed to the insu�cient amount of

data per client in the local datasets, which hindered the creation of a robust embedding

capable of accurately representing the data instances across the 100 classes of the dataset.

Table 9.1: Accuracy (%) comparison of FL Methods on CIFAR-10 and CIFAR-100

datasets. The validation was performed on the test set of each database, and the resulting

number is the mean accuracy across the clients.

Method
CIFAR10 CIFAR100

5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients

FedCon - 81.47 - - - -

PerFCL - 75.5 75.1 - 61.2 58.6

MOON - 74.2 73.6 - 60 57.5

FedSimCLR 68.1 - - 39.75 - -

FedCA 71.25 - - 43.30 - -

FedSimSiam 76.27 - - 49.79 - -

FedHARMres 82.88 81.51 78.01 52.38 52.54 38.89

FedHARMrem 83.87 82.03 79.76 53.9 51.49 40.03

In the second set of experiments, the focus shifted to E�cientNet and MobileNetV3

models to accompany the ResNet models, where this variation is portrayed as

FedHARMrem. These architectures are known for their e�ciency and performance on

mobile devices, making them an interesting choice for FL scenarios. In the context of

the CIFAR-10 dataset, the FedHARMrem variation outperforms all other methodologies

evaluated, including FedHARMres, demonstrating superior e�cacy across various client

settings. This enhanced performance is substantiated by considering that architectures

such as E�cientNet and MobileNetV3 exhibit superior performance compared to the

variations of ResNet networks. The augmentation in the quality of representations learned

at the local dataset level indicates that the overall descriptors of the shared subset have

A. Psaltis 164

Federated, Multi-agent, Deep Reinforcement Learning

facilitated the creation of a more significant embedding. Consequently, as it is depicted

in Table 9.1 this has resulted in notable accuracy rates of 83.87%, 82.03%, and 79.76% in

settings with 5, 10, and 20 clients, respectively. This outcome underscores the e↵ectiveness

of integrating advanced neural network architectures for improving the robustness and

representational capacity of embeddings in distributed learning environments.

Table 9.2: Accuracy Results of the Proposed Method on the MNIST Dataset against the

FedCon system

Method
Accuray (%)

5 Clients 10 Clients 20 Clients

FedCon - 98.08 -

FedHARMres 98.79 98.42 97.93

FedHARMrem 98.94 98.65 98.54

Due to the noted lack of comparable outcomes for the MNIST database, an assessment

was carried out, as shown in Table 9.2, in order to compare our framework’s performance

with FedCon’s in a 10-client setting. In this analysis, the FedHARMrem variation

demonstrated superior performance, achieving an accuracy of 98.62%. Furthermore, in

configurations involving 5 and 20 clients, the FedHARMres variation recorded accuracies

of 98.79% and 97.02%, respectively. In contrast, the FedHARMrem variation exhibited

even greater heterogeneity in its performance, achieving remarkable accuracies of 98.97%

in the 5-client setup and 98.01% in the 20-client configuration. This detailed comparison

underscores the robustness and adaptability of the FedHARM variations across di↵erent

benchmark datasets.

9.4 Insights and Contributions

The study presents a comprehensive exploration of model architecture variability

within the FL framework, introducing innovative strategies to incorporate diverse CNNs,

specifically ResNet, E�cientNet, and MobileNet. It highlights the challenges and proposes

solutions for e�cient model aggregation and communication, emphasizing representation

learning and model-agnostic frameworks. The proposed FedHARM approach, especially

FedHARMrem, significantly outperforms existing methods in CIFAR-10, CIFAR-100 and

MNIST IID datasets evaluations, demonstrating the e↵ectiveness of representation-centric

and model agnostic aggregation across di↵erent architectures. This research paves the way

for more adaptable, e�cient, and privacy-preserving FL systems, capable of leveraging

the strengths of di↵erent architectures to improve learning outcomes across decentralized

networks. The study sets the stage for extensive future research, with numerous potential

experiments to further enhance FL, involving an in-depth analysis of data heterogeneity

165 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

among clients, and integrating a wider array of network architectures.

A. Psaltis 166

Chapter 10

Study 7: Trustworthiness in

Federated Learning

In this study, the research trajectory takes a pragmatic turn, focusing on a

comprehensive evaluation of the practical challenges and obstacles inherent in the

FL ecosystem. This horizontal study, which spans across the various themes and

methodologies explored in the previous five studies, aims to bridge the gap between

theoretical advancements and real-world applications of FL. The core of this study lies in

designing and implementing a system adaptation pipeline, meticulously crafted to facilitate

the integration of diverse AI-based tools into the FL framework.

This study embarks on a journey to test the FL system under conditions that mimic

real-world scenarios. By employing a distributed hardware infrastructure, the study

examines the FL system’s resilience and adaptability against a range of challenges,

including tool deployment intricacies, data heterogeneity complexities, and susceptibility

to privacy breaches. These examinations are conducted across a variety of tasks and data

types, providing a holistic understanding of the FL system’s capabilities and limitations.

A carefully curated selection of AI-based tools and corresponding datasets forms the

backbone of the experiments. These tools and datasets are distributed across edge devices,

ensuring that the test conditions closely mirror the diversity and unpredictability of

real-world environments. This approach enables a thorough validation of the FL system

across multiple scenarios, o↵ering a realistic appraisal of its performance.

The outcomes of the experiments conducted as part of this study are pivotal. They

not only provide valuable insights into the performance of models under varied FL

conditions but also shed light on potential issues and limitations encountered during the

FL process. This comprehensive analysis contributes significantly to understanding the

practical challenges of FL, identifying areas that require further research and development.

In essence, this study stands as a critical piece of research that connects the theoretical

underpinnings of FL with its practical implications. By assessing the viability of FL in

real-world settings, this study complements and extends the contributions of the preceding

studies, collectively advancing the field of FL towards more robust, e�cient, and practical

167

Federated, Multi-agent, Deep Reinforcement Learning

solutions.

10.1 Overview of the Study

The e↵ectiveness of AI models is closely tied to the quality and quantity of data

utilized in their training. With the abundance of information available on various

devices, including mobile and servers, there is an opportunity to glean valuable insights.

FL is an innovative ML approach that leverages decentralized data and computational

resources to deliver more tailored and flexible applications while upholding the privacy

of users and organizations. By utilizing FL, it is possible to uphold data protection

laws and regulations, thereby ensuring that privacy is not compromised. FL has

demonstrated exceptional results in numerous analysis tasks, such as image classification,

object detection and action recognition [185, 186, 187], indicating its robustness and

e↵ectiveness in these areas. To elaborate further, FL allows data to remain on individual

devices (cross-device) or servers (cross-silo) rather than being centralized, thereby avoiding

potential privacy breaches. This approach enables users to keep their data safe and secure

while still contributing to the training of ML models. Moreover, FL can handle large and

diverse datasets, which often lead to improved accuracy in analysis tasks. As a result,

FL has emerged as a promising technique that can revolutionize the way AI models are

trained and deployed, all while maintaining the privacy and security of users’ data. FL has

distinct characteristics when compared to distributed learning. Firstly, communication in

FL is often slower and less stable. Secondly, FL involves participants with heterogeneous

devices, which vary in terms of their computing capabilities. Lastly, privacy and security

are emphasized more in FL. Although most studies assume that both participants and

servers are trustworthy, this may not always be the case in reality.

Several studies have been conducted to o↵er a comprehensive understanding of the

current state of FL, its potential applications, and the ongoing e↵orts to overcome its

challenges and limitations [46, 80, 230, 20, 5, 231, 9, 232]. These studies explore various

methods and techniques, such as optimization algorithms for e�cient model aggregation,

privacy-preserving mechanisms, and adaptive learning strategies. A detailed analysis of

these topics is provided in Section 3. While these works acknowledge the potential benefits

of FL, such as collaborative ML across decentralized data sources, privacy preservation,

and empowering edge devices, they predominantly focus on the theoretical aspects.

However, they lack practical and experimental analysis. Therefore, further research and

development are needed to incorporate more practical implementations and experimental

evaluations to validate the theoretical findings and provide real-world insights into the

e↵ectiveness and scalability of existing FL systems [233, 234, 235].

However, implementing and deploying FL systems can be even more challenging due to

a variety of factors such as high communication costs, heterogeneity in data, regulations,

and tasks across di↵erent participating organizations, the autonomy and redundancy of

processing nodes, and the potential for data poisoning incidents. This study aims to

A. Psaltis 168

Federated, Multi-agent, Deep Reinforcement Learning

address these challenges by analyzing and validating the FL system architecture against

these key issues. The contributions of this work can be categorized as follows:

(a) Reporting and comprehensively describing the main challenges faced by FL systems:

This involves identifying and discussing the challenges that FL systems are likely

to encounter during deployment, including data-related challenges such as data

heterogeneity and data privacy concerns, as well as challenges related to system

architecture and design.

(b) Integrating di↵erent tools in the FL system: This involves incorporating

various AI-based tools and technologies into the FL system architecture to

facilitate real-world FL scenarios using distributed hardware infrastructure. This

could include implementing data aggregation techniques, incorporating secure

communication protocols, and integrating privacy-preserving methods for data

sharing and training.

(c) Evaluating the FL system against reported challenges: This objective involves

conducting dedicated experiments for di↵erent tasks and data types to evaluate the

FL system’s performance and accuracy against the challenges identified in objective

(a). This will involve assessing the system’s ability to handle data heterogeneity,

maintain data privacy, and handle data poisoning incidents.

(d) Providing an overall assessment of the developed FL system: The final objective of

this work is to provide an overall assessment of the FL system architecture developed

through this study. This includes analyzing the system’s scalability, e�ciency, and

robustness against the challenges identified in objectives (a) to (c).

Overall, this study seeks to contribute to the overall understanding of the challenges faced

by FL systems and provide solutions to improve their e�ciency, scalability, and security.

The outcomes of this study could have significant implications for the development and

deployment of FL systems in various domains, including healthcare, finance, robotics and

education. Additional details on the best practices and guidelines for implementation can

be found in Appendix B.

10.2 Practical Challenges and Solutions

10.2.1 FL Strategies

Chapter 10.1 presents a detailed description of the FL data-specific challenges related

to local data distribution and dataset size heterogeneity. To tackle data heterogeneity in

the FL process, multiple FL algorithms and strategies have been developed, including more

sophisticated aggregation methods and strategies for more e�cient local training. In our

experiments, we evaluate the performance and the convergence of the global aggregated

model by utilising the three more well-known and widely used FL strategies, the FedAvg,

169 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

FedOpt and FedProx, representing both the classic baselines and current state-of-the-art.

Each of these methods focuses on handling data heterogeneities considering label

distribution skew, feature distribution skew and quantity skew that are highly related to

datasets of the reported AI tools, exploring the e↵ectiveness of these methods on di↵erent

types of data sources such as images, audio, and text.

10.2.2 FL Security Mechanisms

To enhance privacy preservation in the FL system, a Di↵erential Privacy (DP) method

is applied as a security mechanism during the experiments. DP is one of the most

well-known and widely used approaches for privacy preservation, which randomises part of

the system’s behaviour to provide privacy. Additionally, with DP the users can quantify

the level of privacy of the system by selecting the appropriate parameters that achieve the

best trade-o↵ between the FL model performance and privacy level. Specifically, at tests

the SVT (Sparse Vector Technique) Privacy protocol is utilised since it is characterised as

a fundamental method to perform DP. The SVT Privacy is applied as a filter in the FL

set-up of NVFlare, while the definition of it as well as its necessary parameters is done

by the configuration file of the client. The chosen parameters of the SVT Privacy method

are listed in ‘Table 10.1 for each experiment.

Table 10.1: Parameters of SVT Privacy for each experiment.

Experiment ID Fraction Epsilon Noise var

Face-ReID 0.6 0.1 1

VSR 0.6 0.001 0.1, 1

NERC 0.6 0.001, 0.1 0.1, 0.5, 1

ASR 0.6 0.001, 0.1 0.1, 0.5, 1

10.2.3 Data Management

A typical lifecycle of ML models entails their training on example data. In the typical

workflow, a model is trained on large amounts of local data and tested for performance

on a smaller, disjoint, data set. The training itself comprises several rounds of model runs

(i.e., inference) and adjustments in order to converge to an acceptable performance. On

the other hand, FL is a distributed ML paradigm where di↵erent sets of data, typically

disjoint among them, are used at multiple self-sustained training locations, i.e., training

nodes. A schematic representation is drafted in Figure 10.1. Di↵erent versions of local

models are fine-tuned at each federated party, while the final global model is obtained

after their aggregation.

A. Psaltis 170

Federated, Multi-agent, Deep Reinforcement Learning

Figure 10.1: Schematic workflow of a basic FL principle.

In the FL setting, however, the aggregation of multiple models attenuates the

di↵erences among the local models and thus their adaptation to the local data. Multiple

rounds of local training are necessary to reach convergence of the global model. The

adaptation of a model can thus be tracked at each round. The ML training workflow

uses a distinct set of data to train or assess the evolution of the training process. We

distinguish between:

–Training set: A set of examples used for learning, i.e. fitting the best parameters

of the ML model (classifier, detector, etc.). This is the set of positive and negative

examples available at each federated party.

–Validation set: A set of examples, disjoint from the training set, used to assess

the model’s actual performance, at each epoch of the local training process. It is

used by the researchers to examine the training process for possible irregularities

and adjustment of the training optimization parameters. Similarly, it can be used

by researchers to tune any hyper-parameters of an ML model, such as the number

of hidden units in a neural network or any other specific internal settings.

–Test set: A set of examples used only to assess the performance of a fully specified

classifier. During the FL setup, the di↵erent sets introduced aforehand must be

defined at each federated party, as illustrated in Figure 10.2.

171 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

Figure 10.2: The use of di↵erent datasets during the FL training.

In terms of the FL testing of this study, we pursue the testing on local nodes data

as well as on the GLOBAL dataset at each round. While the GLOBAL testing set

evaluates a possible drift in the performance of the initial task, the local datasets give

us a good estimation of how the models are adapting to new data. Moreover, two options

for testing on local data are available: a) testing before the local training, i.e. evaluating

the external knowledge on the local conditions; and b) testing after the local training, i.e.

evaluating the adaptability of the global model to the local conditions. With respect to

the testing of the global model, these two options refer to a) testing the global model after

aggregation, and b) testing the global model before aggregation. The training performance

is monitored using the Weights and Biases environment1. This platform enables research

teams to simultaneously observe the training process, providing a unified perspective on

it. Specifically, it allows for the tracking of training loss and accuracy at every round and

across each federated node, as well as monitoring the overall performance of the global

model, as illustrated in Figure 10.3.

Figure 10.3: The use of Weight and Biases environment for tracking the training process.

10.3 Case Studies of FL Applications in Di↵erent Domains

10.3.1 Face Re-ID

Datasets: In the Federated setting, experiments on the Face Re-Identification tool

involve using di↵erent datasets for both training and testing the model at each federated

1
https://wandb.ai/site

A. Psaltis 172

Federated, Multi-agent, Deep Reinforcement Learning

node. These datasets are carefully selected to cater to various scenarios and final use

cases. The training dataset is the Ms1m-Retinanet, a public dataset published in [236].

The dataset is derived from the Ms1m dataset, which comprises images of celebrities. To

obtain a cleaned version, the images were cropped to a size of 112x112 using Retinanet

and 5 facial landmarks. A pre-trained model based on ArcFace [237] and ethnicity-specific

annotators was then used for semi-automatic refinement. Ultimately, our training dataset

consisted of around 50,000 identities, which were equally distributed among the federated

nodes, with 10,000 identities per node. The experiments were performed using five nodes.

The goal of our experiment was to evaluate the adaptability of the face re-identification

model to face occlusions within a federated framework, under multiple heterogeneity

settings. To create an occluded version of the dataset, the EyesOcclusionGenerator library

was used to add black rectangles over the eyes of the identities in the original dataset.

The final training dataset comprised these two versions of the dataset, with and without

eye occlusions. During training, the image of the identity was randomly selected from one

of the datasets, with a certain probability.

To introduce heterogeneity in the experiments, one of the two datasets

(Ms1m-Retinanet with and without occlusions) was exclusively used for training in some

of the nodes. This was achieved by adjusting the probability of selecting the dataset for

the next batch during training. The specific configuration per training node is given in

Table 10.2. The training was conducted from scratch, with the initial random model being

adapted to the previously unseen examples, and executed over 8 rounds with 10 epochs.

Table 10.2: Training data distributions among clients for di↵erent levels of heterogeneity.

Site-1 Site-2 Site-3 Site-4 Site-5

Low 50%1 50% 50% 50% 50%

Medium 50% 50% 50% 100% 0%

High 50% 100% 100% 0% 0%
1
Represents the percentage of occlusion in the training set.

During the testing phase, and similarly to the test setting of the ArcFace model [237],

we employed multiple datasets, such as LFW , CFP and Age�DB�30 for checking

the convergence on slightly di↵erent domain. The test datasets consisted of both, the

original as well as eye occluded versions. For the sake of simplicity, LFW denoted as D1,

CFP�FP denoted as D2, CFP�FF denoted as D3 and Age�DB�30 denoted as D4

(with their occluded versions denoted as D1
occl, D

2
occl, D

3
occl and D4

occl respectively). The

occluded versions of the testing datasets were produced using the same library used for

the training dataset. These testing datasets were distributed across the individual training

nodes, with each node managing a distinct testing dataset as shown in Table 10.3.

173 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

Table 10.3: Testing data distributions among clients.

Site-1 Site-2 Site-3 Site-4 Site-5 Dummy

D1

D1
occl

D2

D2
occl

D2

D2
occl

D1

D1
occl

D3

D3
occl

D4

D4
occl

Quantitative: We test the face re-identification model performance using the

validation protocols of well-known public face-recognition datasets (i.e. verification

performance of a pair of images). The results of the experiments for the face

re-identification tool are shown in the following Table 10.4.

Table 10.4: Verification performance evaluation of the centrally trained and the FL

aggregated model on the global and the local datasets, where low,medium and high,

denotes the level of heterogeneity.

Dataset Centralised FedAvglow FedAvgmedium FedAvghigh FedAvgDP
1

D4 0.978 0.852 0.85 0.858 N/A

D4
occl 0.834 0.708 0.686 0.683 N/A

D3 0.998 0.966 0.966 0.964 N/A

D3
occl 0.936 0.812 0.818 0.826 N/A

D2 0.974 0.88 0.88 0.885 0.806

D2
occl 0.781 0.703 0.701 0.704 0.642

D1 0.997 0.968 0.967 0.978 0.946

D1
occl 0.969 0.881 0.891 0.887 0.839

1
Equally split dataset and svt privacy.

It should be noted that the last configuration used for the distributed training

encountered issues with the connectivity of some of the nodes, resulting in a lack of results

for some testing datasets. The provided Figures 10.4 (a), (b), and (c) o↵er a comparison

between the local training models obtained from each node and the global model for each

heterogeneity experiment. The accuracy of each model was evaluated on the local test

dataset, with identical results for nodes 1 and 4, as well as 3 and 5. The graphs suggest

that there is a discernible variance in the accuracy of models trained on nodes that solely

utilize occluded data, versus those that do not, as per the various heterogeneity settings

outlined in Table 10.2. This di↵erence is more evident in Figures 10.5 (a) and (b), which

depict non-occluded and occluded images, respectively.

A. Psaltis 174

Federated, Multi-agent, Deep Reinforcement Learning

a) b) c)

Figure 10.4: (a) Low-, (b) Medium- and (c) High-heterogeneity results of global and

local models at each node (ordered as dummy, and nodes 1 to 5). Note that the results

for node 3 are missing within the low heterogeneity setting (a).

a) b)

Figure 10.5: Testing results comparing di↵erent heterogeneity settings, for (a) occluded

and (b) non-occluded images. The results are grouped and ordered from dummy to nodes

1 to 5.

The graphs provided above enable us to compare the accuracy of the local models from

each node within the local dataset across the di↵erent heterogeneity settings outlined in

Table 10.2. Site 1’s model was trained with 50% occluded data in each heterogeneity

experiment, resulting in similar results. However, minor di↵erences suggest the influence

of other nodes on the training of the aggregated model utilized in each round. Site 2, in

contrast, trains solely with occluded data in the high heterogeneity experiment, resulting

in a slight performance decay. Site 3 shows a similar pattern to Site-2, although the

low heterogeneity setting was incomplete due to technical connectivity problems. Site

4’s model is trained solely with occluded data in the medium heterogeneity experiment

and with only non-occluded data in the high heterogeneity experiment. This results in

better performance on the non-occluded version of the dataset, but worse on the occluded

version in the medium heterogeneity experiment. However, in the high heterogeneity case,

the model performs better in both the non-occluded and occluded versions of the testing

dataset. Finally, Site 5 trains exclusively with non-occluded data in the medium and high

heterogeneity experiments. The model performs better on both the non-occluded and

occluded versions of the testing dataset compared to training with 50% occluded data.

175 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

Qualitative: The experimental results indicate that the FL framework produces

inferior results compared to local training. The variance in accuracy in some cases may

be due to longer training times without the FL framework. Interestingly, the results

for di↵erent data heterogeneities were similar, suggesting that heterogeneity had minimal

impact on training. The LFW testing dataset achieved the highest accuracy for both

the occluded and non-occluded versions. Regarding the security preserving mechanism

experiment, due to node connectivity issues, the results cannot be accurately compared to

previous experiments since the number of nodes was reduced. However, it was observed

that the model converged, which is not the case with other tools such as NERC under

similar circumstances. It is important to note that the results for this experiment were

only obtained for some of the testing datasets.

Video Super Resolution

Datasets: For the Video Super Resolution (VSR) task, the dataset used was the

Vimeo90k [238]. This dataset is of high quality and contains a large variety of scenes and

actions, with video clips of a fixed resolution of 448x256. The upscaling factor used for

the experiments was set to 4. The data heterogeneity type that was considered for the

VSR task was quantity skew. This type of heterogeneity aims to simulate unbalanced

data distribution by allocating a di↵erent number of video clips among the FL clients. To

explore di↵erent levels of size heterogeneity, various splitting scenarios were designed.

Table 10.5 presents the data distributions among the five clients based on di↵erent

levels of size heterogeneity. The clients are named Site-1, Site-2, and so on, with each

corresponding to a specific server. The Dummy node is included only for evaluation

purposes and does not contain any training data. In the low-level heterogeneity case, all

clients have a similar number of LR-HR video clip pairs for training. However, in the high

heterogeneity case, the number of samples for each client can be significantly di↵erent,

resulting in an imbalanced distribution of data.

Table 10.5: Training data distributions for di↵erent levels of heterogeneity.

Site-1 Site-2 Site-3 Site-4 Site-5 Dummy

Low 5470 5967 4560 4177 4122 N/A

High 11470 4072 824 1344 6490 N/A

Validation1 760 624 471 462 347 1934
1
Validation data distribution is the same for both heterogeneity scenarios.

Two types of evaluation datasets were created for the VSR task: local and global

evaluation datasets. Each FL client has its own local validation/test dataset, which is

distinct from the local training and validation datasets of other clients. Additionally, a

global validation dataset was created, located on the ‘Dummy ’ node, which contains video

A. Psaltis 176

Federated, Multi-agent, Deep Reinforcement Learning

clips with varied content and actions and a more balanced distribution for evaluating the

performance and generalization of both locally trained models and the globally aggregated

model. The table displays the number of samples per local dataset and the size of the

global dataset, which remain constant across di↵erent levels of heterogeneity.

Quantitative: The VSR task was evaluated using the FedAvg FL method, and the

results are presented in Table 10.6. The evaluation was based on the PSNR metric (dB) on

the global dataset for both the centrally trained model and the globally aggregated model

for di↵erent levels of heterogeneity. The Vimeo90k dataset was used for the experiments,

with an upscaling factor of 4 and the data heterogeneity type being quantity skew. The

locally trained models were evaluated on their respective local validation/test datasets,

while a global validation dataset was used to evaluate the performance and generalization

of both the locally trained models and the globally aggregated one. The centrally trained

model had the highest performance and served as the baseline. The FL global model,

obtained by aggregating the local models’ weights, achieved similar performance to the

central training, with the performance gap being wider in the high heterogeneity case.

These results indicate that the FL approach can successfully handle low to medium levels

of data distribution heterogeneity utilizing a simple aggregation scheme (FedAvg), but for

a higher level of heterogeneity where the gap between the di↵erent local optimal points is

larger, more sophisticated learning strategies are needed.

Table 10.6: Performance comparison between the centrally trained model w/o FL

(baseline) and the globally aggregated model on the global dataset for di↵erent FL

strategies and high level of heterogeneity.

Centralised FedAvgglobal FedProxglobal FedOptglobal

Low 36.15 35.87 - -

High 36.15 35.60 35.63 35.71

To address the issue of high heterogeneity in the size of local datasets, more advanced

FL algorithms and strategies were employed in the experiments. Specifically, the FedOpt

and FedProx methods were used. These two learning strategies have been extensively

used to tackle heterogeneity in federated networks, requiring minor modifications in

the aggregation scheme, and enabling an easy integration into the existing framework.

FedProx adds a regularization term to the local objective minimization algorithm to reduce

the shift between the local and global objectives, while FedOpt enables the use of adaptive

optimizers on the server’s side to improve model convergence. In our experiments, we

want to investigate if these two long-established methods that follow di↵erent approaches

can handle a realistic FL scenario in practice. Table 10.6 provides a comparison of the

evaluation results for the di↵erent FL strategies on the global VSR dataset. As shown,

the FedOpt strategy can more e�ciently handle the quantity skewness than the FedProx

177 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

which achieves a very small improvement. This result can be justified by assuming that the

regularization term of the FedProx method is more suitable for objective shifts resulting

from the label or feature distribution skew. Furthermore, we conducted an experiment

to explore the impact of a privacy-preserving mechanism, specifically the SVT method,

on the performance of the global model (see Table 10.7). In this experiment, a low-level

heterogeneity approach was used to investigate the e↵ects of the privacy mechanism only

on the global model’s performance. The results show that the SVTmethod with a noise var

of 0.1 reduces the model’s performance by almost 3dB. This indicates that it is crucial

to strike the best balance between privacy and performance. A high level of privacy, as

achieved with a noise var of 0.1, may prevent any information leakage, but can result in a

significant decrease in performance.

Table 10.7: E↵ect of SVT mechanism in global model’s performance.

FedAvgglobal FedProxglobal+SV T
1 FedOptglobal+SV T

2

Low 35.87 34.45 32.50
1
noise var=1

2
noise var=0.1

The upcoming experiments focus on the impact of the FL processing on the

performance of the local models. Table 10.8 displays the performance of the local models

and the globally aggregated model on the local validation datasets throughout the FL

training, comprising 12 rounds. The table showcases the di↵erence in performance at each

round.

Table 10.8: Performance comparison of global and local models on the local datasets.

Experiment: High level of heterogeneity, FedOpt strategy, w/o privacy-preserving

mechanism.
Client Model 1 2 3 4 5 6 7 . . . 11 12

Local 34.23 34.75 35.03 35.32 35.44 35.50 35.56 35.72 35.74
Site-3

Global 34.64 27.90 32.65 35.03 34.97 36.02 36.28 36.68 36.70

Through the analysis of Table 10.8, we can gain a deeper understanding of how the FL

process operates. Initially, for at least the first 7 rounds of FL, the local models outperform

the global aggregated model on their respective local datasets. This is because the local

models prioritize minimizing the loss for their specific datasets, whereas the global model

has a more general objective. However, as the FL training process continues, the global

model can handle the di↵erent objectives of the local models through the aggregation

algorithm, eventually achieving better performance than the local models on the local

datasets. The benefits of FL training are more pronounced for clients with limited

A. Psaltis 178

Federated, Multi-agent, Deep Reinforcement Learning

samples and limited performance capabilities, such as Site-3, where the aggregated model

outperforms the local one by 0.12dB.

Qualitative: This sub-section summarizes the key insights and conclusions derived

from the experiments on FL VSR. Firstly, the FL global model can achieve performance

comparable to the ideal centrally trained model, demonstrating the potential of using

distributed training with data available on multiple devices. Secondly, the heterogeneity

in data distribution, caused by variations in the number of samples per client, negatively

impacts the performance of the global model. However, the use of FL strategies developed

to handle heterogeneous data can limit this impact. Thirdly, certain privacy-preserving

mechanisms, such as SVT, can lead to a significant reduction in the FL model’s

performance, highlighting the need to find an optimal balance between performance

and privacy. Lastly, FL can be beneficial for clients lacking su�cient data to build

high-performance models.

10.3.2 Named Entity Recognition and Classification

Datasets: The NERC (Named Entity Recognition and Classification) uses data

from CoNLL datasets, which are widely recognized in the research community. These

datasets contain sentences taken from news articles that are manually labeled with di↵erent

types of entities, such as PER (person), LOC (location), ORG (organization), and MISC

(miscellaneous). To introduce heterogeneity among the FL clients, two strategies have

been followed: a) language heterogeneity and b)size heterogeneity. In terms of language

heterogeneity, examples from English, Spanish, and Dutch have been combined and

unevenly distributed across the subsets used by the clients, resulting in some clients

having more examples from one language than others. As for size heterogeneity, di↵erent

numbers of documents have been scattered across the FL clients, causing some clients

to have significantly more training examples than others, simulating a possible scenario

in which some of the participating clients have little training data in comparison to the

others. The following Tables 10.9,10.10 illustrates the dataset distributions achieved by

implementing the aforementioned heterogeneity approaches. The FL clients are denoted

as Site-1, Site-2, and so on. Additionally, a Dummy node is included as a client with

no training data, solely intended for evaluation purposes and containing data that does

not belong to any client. It is presented how for language heterogeneity strategy the

distribution of training instances per language varies from client to client, while for size

heterogeneity strategy it is the distribution of the total amount of training instances (while

keeping a balance language-wise) which varies among clients.

179 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

Table 10.9: NERC datasets distribution for the language unbalance heterogeneity strategy.

Sets Language Site-1 Site-2 Site-3 Site-4 Site-5 Dummy

train

es 4995 3442 0 1396 0 N/A

en 0 2294 8424 2793 0 N/A

nl 0 1147 0 4415 9483 N/A

total 4995 6884 8424 8381 9483 N/A

validation

es 455 583 0 395 0 1355

en 0 291 1381 395 0 1355

nl 0 291 0 791 1558 1355

total 455 1167 1381 1583 1558 4065

Table 10.10: NERC datasets distribution for the size unbalance heterogeneity strategy.

Sets Language Site-1 Site-2 Site-3 Site-4 Site-5 Dummy

train

es 5089 2544 2544 1272 1272 N/A

en 5089 2544 2544 1272 1272 N/A

nl 5089 2544 2544 1272 1272 N/A

total 15269 7633 7633 3816 3816 N/A

validation

es 507 507 507 507 507 846

en 507 507 507 507 507 846

nl 507 507 507 507 507 846

total 1523 1523 1523 1523 1523 2540

Quantitative: In the context of NERC, an experiment was conducted involving five

clients and one validation Dummy node. The validation node contained more balanced

data, while the five clients had di↵erent levels of data imbalance to simulate heterogeneity.

The goal of the experiment was to evaluate NERC performance in the presence of data

heterogeneity. The evaluation measures the F-score over the detected named entities,

which is the harmonic mean of the precision (the fraction of relevant entities among the

retrieved entities) and recall (the fraction of relevant instances that were retrieved).

A. Psaltis 180

Federated, Multi-agent, Deep Reinforcement Learning

Table 10.11: NERC FL experiments with the language unbalance heterogeneity strategy.

The performance is measured using the F-score.

FL round (only for FL) 1 5 10 15 20 25

Training steps 600 3000 6000 9000 12000 15000

Test data Evaluated model

Dummy data Local Training (baseline) - 0.857 0.886 0.883 0.889 0.895

Site-5 data Local Training (baseline) - 0.863 0.881 0.886 0.898 0.895

Dummy data Aggr. FL model 0.757 0.845 0.856 0.857 0.862 0.856

Site-5 data Aggr. FL model 0.701 0.783 0.804 0.814 0.824 0.809

Table 10.12: NERC FL experiments with the size unbalance heterogeneity strategy. The

performance is measured using the F-score.

FL round (only for FL) 1 5 10 15 20 25

Training steps 600 3000 6000 9000 12000 15000

Test data Evaluated model

Dummy data Local Training (baseline) - 0.854 0.885 0.881 0.887 0.892

Site-5 data Local Training (baseline) - 0.874 0.895 0.898 0.908 0.910

Dummy data Aggr. FL model 0.751 0.833 0.842 0.841 0.840 0.844

Site-5 data Aggr. FL model 0.766 0.812 0.834 0.842 0.855 0.841

The experimental results were positive, with high scores achieved by the di↵erent nodes

despite the presence of data heterogeneity. In addition, privacy-preserving mechanisms

were tested using SVT, and the obtained results for various SVT parameterizations are

presented in Table 10.13 below. The experiments focused on heterogeneity based on

di↵erences in data size, and some cells in the table are empty due to errors encountered

during certain parameter configurations.

181 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

Table 10.13: NERC FL experiments with SVT privacy (language unbalance data).
FL round (only for FL) 1 5 10 15 20 25

Training steps 600 3000 6000 9000 12000 15000

Test data Evaluated model

SV Tfraction:0.6,epsilon:0.001,noise var:1
Dummy data Aggr. FL model 0.021 0.021 0.021 - - -

Site-5 data Aggr. FL model 0.722 0.717 0.723 - - -

SV Tfraction:0.6,epsilon:0.001,noise var:0.5
Dummy data Aggr. FL model 0.029 0.029 0.029 0.029 0.029 0.029

Site-5 data Aggr. FL model 0.706 0.740 0.710 0.728 0.686 0.679

SV Tfraction:0.6,epsilon:0.001,noise var:0.1
Dummy data Aggr. FL model 0.019 0.019 0.019 0.019 0.019 0.019

Site-5 data Aggr. FL model 0.730 0.742 0.728 0.726 0.726 0.718

SV Tfraction:0.6,epsilon:0.1,noise var:1.0
Dummy data Aggr. FL model 0.016 - - - - -

Site-5 data Aggr. FL model 0.723 - - - - -

Looking at Table 10.14, it appears that the federated model becomes excessively noisy

and ine↵ective for the Dummy node, although the reason for this outcome is unclear.

Additionally, a data-poisoning experiment was conducted in which one of the nodes

was provided with ‘poisoned’ data. Specifically, the training data for this node was

manipulated to switch all the labels for individuals (PER) and locations (LOC). The

validation data for this node remained unaltered. This experiment was conducted using

the size-unbalance heterogeneity strategy and the performance was measured using the

F-score.

Table 10.14: Data-poisoning experiment, with one of the clients having ‘poisoning’ training

data.
FL round (only for FL) 1 5 10 15 20 25

Training steps 600 3000 6000 9000 12000 15000

Dummy data Aggr. FL model 0.756 0.817 0.788 0.831 0.837 0.811

Site-1 data (poisoned) Aggr. FL model 1 0.288 0.408 0.408 0.396 0.414 0.411

Site-1 data (poisoned) Aggr. FL model 2 0.76 0.844 0.796 0.838 0.849 0.831

Site-2 data Aggr. FL model 1 0.783 0.843 0.847 0.848 0.852 0.852

Site-5 data Aggr. FL model 1 0.721 0.833 0.827 0.822 0.83 0.843
1
plus 1 round of local training

2
without further local training

Qualitative: Based on the experimental results of the NERC tool using FL, several

conclusions can be drawn. Firstly, data heterogeneity does not pose a significant problem,

indicating that FL is viable in these situations. Both scenarios of heterogeneity devised

are realistic and demonstrate the potential of FL to combine di↵erent data sources.

Secondly, the privacy-preserving mechanism used in the experimentation (SVT) does not

seem to be suitable for the NERC model, leading to a drop in performance to that of a

randomly initialized model. Thirdly, the Federated training approach is robust against

A. Psaltis 182

Federated, Multi-agent, Deep Reinforcement Learning

data poisoning, as it enables learning across datasets from di↵erent stakeholders and results

in a more coherent and robust model. Overall, the findings suggest that FL can be

a valuable approach for NERC models, allowing for joint learning across disparate data

sources and robustness against data poisoning, while careful consideration should be given

to the choice of privacy-preserving mechanism.

10.3.3 Audio Speech Recognition

Datasets: The ASR data consider a di↵erent dataset from the literature for

each client. The considered corpora include the TEDLIUM [239] (node-1), debating

technologies [240] (node-2), Librispeech-other (node-3), Librispeech-clean (node-4) [241],

and the Spoken Wikipedia Corpus2 (node-5). The data configuration is designed to

evaluate the impact of heterogeneity levels on data distribution, which is more realistic for

the application. To ensure equal data amounts in each node, the number of samples from

each corpus is adjusted, and each node is given a subset of 1400 speech recordings for local

training. For experiments with low heterogeneity levels, some samples from TEDLIUMv2

and the Spoken Wikipedia corpus are replaced by samples from debating technologies

and librispeech-other datasets, respectively. The AI used for the pipeline is based on

a Wav2Vec2.0 model [242], which is a self-supervised end-to-end architecture based on

convolutional and Transformer layers. The training hyperparameters were the same for

the five nodes, and included a batch size of 2, a learning rate of 5 ⇥ 10�5 warmed up in

the first 10% of the training time, and a gradient accumulation of 16 steps. The local

training is performed for 5 epochs. The central server is configured to run for 10 rounds

of federated training.

Quantitative: The experiments conducted on ASR include (1) low heterogeneity,

(2) high heterogeneity, (3) high heterogeneity with an SVT privacy-preserving strategy,

and (4) high heterogeneity with a percentile privacy (PP) preserving strategy. The low

heterogeneity experiment aims to evaluate the capabilities of the system to recognize

speech under relatively controlled acoustic conditions, and with noise-controlled levels.

On the contrary, the high heterogeneity experiment introduces datasets with high levels

of noise and in non-controlled acoustic environments. For the SVT and PP we evaluate

several hyperparameters (see Table 10.16) to test the impact of the privacy-preserving

approaches. The main results of these experiments are presented in Table 10.15, where

the performance is evaluated based on the Word Error Rate (WER) after 10 rounds of

federated training in each node.

2
https://nats.gitlab.io/swc/

183 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

Table 10.15: Summary of FL results for the di↵erent configurations of data heterogeneity

and privacy-preserving approaches.

Description
WER

Site-1 Site-2 Site-3 Site-4 Site-5 Dummy

1 Low heterogeneity 17.7 15.3 8.1 2.7 25.8 3.9

2 High heterogeneity 13.5 12.4 7.9 2.8 25.7 3.8

3 SVT1 19.7 15.3 7.8 2.9 24.0 3.6

4 PP2 19.7 15.3 7.8 3.0 24.0 3.6
1
fraction=0.6, eps=[0.001, 0.001, 0.001, 0.1], noise var=[1, 0.5, 0.1, 1]

2
perc=[10,40,70], gamma=0.01

Table 10.16 provide further details on the experimental results for each of the four

ASR experiments. The tables present information on the behaviour of federated training

over 10 rounds, as well as a comparison between the Word Error Rate (WER) before and

after aggregation on local test sets.

Table 10.16: Federated Training in di↵erent heterogeneity and privacy settings for Dummy

node and Site-1. Rows 1 and 2 correspond to low and high heterogeneity, respectively,

and rows 3 and 4 correspond to the high heterogeneity setting for SVT and PP settings,

respectively.

Node Aggr. 1 2 3 4 5 6 7 8 9 10

Before 19.7 18.3 17.9 18.6 19.0 19.0 19.5 19.5 19.4 19.5
Site-1

After 19.9 18.2 18.2 17.9 17.9 17.8 18.2 17.9 17.8 17.81

Dummy After 3.6 3.7 3.7 3.8 3.8 3.9 4.0 4.0 3.9 3.9

Before 13.6 13.6 13.5 13.5 13.4 13.4 13.4 13.3 13.3 13.2
Site-1

After 13.5 13.6 13.5 13.5 13.5 13.5 13.3 13.2 13.2 13.22

Dummy After 3.9 3.8 3.8 3.7 3.7 3.7 3.6 3.6 3.6 3.6

Before 19.8 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7
Site-1

After 19.6 19.7 19.6 19.7 19.6 19.7 19.6 19.7 19.6 19.73

Dummy After 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6

Before 19.8 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7
Site-1

After 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.74

Dummy After 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6

Qualitative: The experiments for Speech Recognition have provided several insights.

Firstly, data heterogeneity did not have a significant impact on the performance of the

speech recognizer, as observed in the Dummy node’s results. This suggests that FL can

A. Psaltis 184

Federated, Multi-agent, Deep Reinforcement Learning

be used to obtain a joint and potentially richer model by combining sources of data that

cannot be otherwise combined. Secondly, the use of SVT and PP privacy-preserving

approaches did not facilitate any improvement of the model during the federated setting.

After the first round, the results for di↵erent nodes did not change (see Table 10.16,

presenting only Site-1 states for simplicity), indicating that these approaches do not help

in learning anything useful for the local model. Note that in the same, highly heterogeneous

setting, without privacy preserving schemes the WER were changing throughout the FL

process, finally reaching lower values.

10.3.4 Insights and Contributions

Summarizing the findings, it could be highlighted that the system adaptation pipeline

is capable of enabling the integration of di↵erent (in terms of modality, domain and

task) AI-based tools into the FL system, and the FL training under realistic conditions.

However, the results showed that the performance of the FL model may be a↵ected by

certain challenges, such as data heterogeneity and the use of specific privacy-preserving

mechanisms. This is highlighted in the low heterogeneity experiment of Table 10.16,

where the WER decreases sequentially in Site-1 after 10 aggregation rounds, unlike the

other experiments. This can be explained by the IID conditions in Experiment 1 (i.e.

the data exhibits IID characteristics), where the central model benefits from the other

nodes’ contributions, leading to a reduction in WER specifically in Site-1. However, in

experiments with higher heterogeneity, the lack of dataset representativeness prevents the

central model from achieving similar improvements in Site-1’s WER. Although there have

been numerous studies on FL recently, there is a lack of research exploring the e↵ectiveness

of presented aggregated methods on di↵erent types of data sources such as images, audio,

and text when used with DL models. Our experiments demonstrate that these existing

studies o↵er minimal or no advantage over the traditional DL approaches. To mitigate

these challenges, appropriate FL strategies need to be selected, such as aggregation

algorithms that handle heterogeneous data and privacy mechanisms that strike a balance

between performance and privacy. Moreover, no substantial problems were identified for

the integration of the tools into the FL framework, except in some specific cases where

the type of ML model hindered any development.

In terms of privacy, the integrated security mechanisms seem to provide a satisfactory

level of protection against privacy attacks, although it is important to find the best

trade-o↵ between performance and privacy. In particular, even though in most cases the

chosen security strategies had no particular impact on the training of the models, specific

privacy-preserving mechanisms (e.g . SVT) could dramatically decrease the FL model’s

performance. In terms of fairness, the chosen aggregation mechanisms seem to mitigate the

potential biases of the ML model, ensuring that the FL system does not yield systematic

advantages to certain privileged nodes. For example, the results in Table 10.4 for the

occluded datasets (D1
occl, D

2
occl, D

3
occl and D4

occl), the centrally trained model’s accuracy

185 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

drops compared to the global datasets. However, the FL aggregated models, particularly

in the case of high-heterogeneity, still exhibit respectable performance, indicating their

ability to handle occluded data under realistic conditions.

Regarding robustness, the results showed that the FL system appears to be resistant

to data poisoning attacks. More specifically, FL appears to be resistant to label-based

data poisoning attacks (intentional or not) and, according to the experiments, even nodes

with poisoned data can benefit from the resulting federated model. In particular, results

in Table 10.14 suggest that despite the poisoned data in Site-1 (the client has intentionally

injected poisoned training data), the aggregated FL model manages to achieve comparable

performance to the models trained on clean data from other sites (Site-2 and Site-5).

This indicates the resilience of the FL system against label-based data poisoning attacks.

However, it is important to test the system’s robustness under di↵erent conditions,

including naturally occurring conditions and those set up by malicious actors.

Finally, as a final observation, we could say that the global FL model can achieve similar

performance to the ideal model trained centrally, taking into account the characteristics

of each node, and each type of data and selecting the appropriate training tools (i.e.

aggregation algorithms and privacy mechanisms). All of the above indicates that the FL

platform has the potential to progress from proof of concept to a trustworthy application,

as long as it is tested and assessed against appropriate performance indicators in a precise

context.

A. Psaltis 186

Chapter 11

Conclusions and Future Work

11.1 Summary of Key Findings

Through a series of comprehensive studies on FL, this dissertation presented significant

advancements and insights into the field, exploring various dimensions from methodologies

to real-world applications and inherent challenges. At the core, FL emerges as a powerful

paradigm for distributed learning, o↵ering significant advantages in terms of training time

e�ciency, inference speed, privacy preservation, collaborative learning, and handling large

distributed datasets. These strengths align FL closely with the current and future needs

of handling data in a privacy-aware, e�cient, and collaborative manner across various

domains.

E�ciency and speed are critical findings, with FL demonstrating the ability to

accelerate training time through parallel computations. This feature was especially notable

in environments with homogeneous data distribution, where FL’s parallel computation

capabilities facilitated faster algorithm convergence. The inference speed, represented

by quicker local model inference times in NER experiments, highlights FL’s potential

for real-time applications. In addition, privacy preservation and collaborative learning

emerged as standout benefits of FL. The use of mechanisms like Secure Aggregation

underscored FL’s capability to maintain confidentiality, showcasing a significant advantage

over centralized training methods in terms of privacy. Furthermore, FL’s decentralized

nature was found to streamline collaborative learning e↵orts, distributing tasks across

federation nodes to enhance overall model performance.

However, the studies also shed light on challenges, particularly regarding FL’s

performance across data heterogeneity. While FL models maintained competitive accuracy

against centralized approaches, simple algorithms like FedAvg struggled with highly

heterogeneous data, suggesting a need for more sophisticated algorithms in such scenarios.

The balance between model accuracy and device performance also posed a dilemma,

highlighting the need for optimization to achieve e�cient model performance without

overloading device capacities.

In exploring data modalities and fusion in the context of 3D action recognition, the

187

Federated, Multi-agent, Deep Reinforcement Learning

variability in FL strategies’ e↵ectiveness became clearly visible, especially in handling

non-IID data distributions. The research underscored the complexity of communication

overheads and data synchronization, while also highlighting the importance of multi-modal

data fusion in enhancing FL performance, though with the challenges of integrating diverse

datasets e↵ectively.

Noteworthy advancements were made through the introduction of novel FL techniques,

such as federated distillation for knowledge transfer and a hybrid approach that combines

self-supervised and supervised learning. These methodologies aimed to address specific

FL challenges, including catastrophic forgetting in incremental learning and the e�cient

handling of sparse and imbalanced data across nodes. Knowledge transfer within FL

is significantly enhanced by advanced representation learning techniques, enabling the

sharing of insights across models and nodes without the direct transfer of data. The e�cacy

of representation learning was found to be closely tied to the strategic application of losses

at di↵erent model layers, emphasizing that tailored approaches to learning and model

optimization can significantly enhance performance. The superior performance of FL

strategies employing shared datasets and federated distillation pointed to the importance

of leveraging collective knowledge, highlighting the value of collaborative and carefully

tailored learning strategies in FL.

Insights from incremental learning settings underscored the importance of balance in

contrastive learning and task memory management, illustrating FL’s adaptability and the

critical role of strategically devised learning strategies. Managing non-IID data through

innovative schemes like FedRCIL showcased FL’s robustness and adaptability in diverse

and challenging data environments, emphasizing the necessity of innovative and flexible

approaches to learning that can e↵ectively handle the complexities of distributed data.

Architectural flexibility and robustness were also highlighted, with studies examining

the variability of model architectures within FL frameworks and proposing solutions for

e�cient model aggregation and communication. These strategies ensure that despite the

heterogeneity of models deployed across di↵erent nodes, the system can still harmonize

learning and knowledge extraction. This exploration underscored FL’s adaptability and

robustness, emphasizing the significance of representation learning in improving learning

outcomes across decentralized networks.

The interconnection of these studies illuminates the pivotal role of sophisticated

representation learning as a fundamental catalyst in FL, particularly in navigating through

the complexities of incremental learning, knowledge transfer, communication e�ciency,

and model architectural variability. Representation learning serves as the backbone of

these FL advancements, enabling systems to distill and leverage complex data patterns

across decentralized environments e↵ectively. In conclusion, while FL shows promising

potential in privacy preservation, e�ciency, and handling distributed datasets, it faces

significant challenges in data heterogeneity and balancing computational e�ciency with

accuracy. The insights from these studies underscore the importance of continued

innovation in FL methodologies and algorithm development to overcome these challenges.

A. Psaltis 188

Federated, Multi-agent, Deep Reinforcement Learning

11.2 Contributions of the Dissertation

This dissertation has provided a comprehensive literature review in the field of FL,

where challenges have been identified and analyzed. Building upon this foundation, a

series of studies were conducted, each targeting distinct yet interrelated challenges within

FL. From optimizing communication e�ciency and model heterogeneity to enhancing

representation learning, knowledge retention, and handling model architecture variability,

these studies collectively contribute to a deeper understanding and advancement of FL.

They not only address specific issues but also add layers of complexity and capability,

broadening FL’s applicability and e↵ectiveness in various scenarios.

The first study addressed two fundamental challenges in FL: communication e�ciency

and model heterogeneity. It recognized that the traditional FL paradigm, while promising,

faced significant hurdles in handling diverse model architectures across di↵erent nodes

and ensuring e�cient communication. The study’s significant contribution was the

development of novel algorithms that optimized data transmission between the central

server and the nodes, thereby reducing bandwidth requirements and communication

overheads. It also proposed adaptive learning algorithms tailored for heterogeneous

models, enhancing the FL system’s overall e↵ectiveness. This foundational work set the

stage for more advanced explorations in the FL domain, emphasizing the importance of

e�cient communication protocols and versatile model architectures.

Building on the groundwork laid by the first study, the second research focused

on optimizing data partitioning and client selection in FL. This study addressed the

challenge of ensuring fair and representative participation of nodes in the learning process,

a crucial aspect for the scalability and e↵ectiveness of FL systems. It introduced

innovative strategies for data distribution and devised more intelligent criteria for selecting

participant nodes. These advancements were pivotal in handling the data imbalance and

ensuring that the learning process was more inclusive and representative of the diverse data

sources in FL. The contributions from this study significantly improved the FL model’s

training process, making it more balanced and e�cient.

The third study brought a novel perspective to FL by focusing on representation

learning and federated distillation. It introduced an innovative federated distillation

weight aggregation method, tailored for e↵ective learning in distributed environments.

The key contribution was an algorithm that facilitated knowledge distillation across

nodes, e↵ectively reducing communication costs and enhancing the e�ciency of the FL

system. This study marked a significant advancement in understanding knowledge transfer

within FL networks, allowing for more e�cient model training processes, especially in

bandwidth-limited scenarios. It highlighted the importance of e↵ective representation

learning and knowledge distillation in improving FL systems’ overall performance.

Addressing the challenge of catastrophic forgetting, the fourth study in the

series proposed an innovative federated incremental learning algorithm. Integrating

representation learning with knowledge distillation and contrastive learning, this study

189 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

focused on retaining knowledge e↵ectively in FL systems. It demonstrated how FL models

could adapt to new conditions and tasks without forgetting previously acquired knowledge,

a critical step towards creating dynamic and robust FL systems. This study’s contributions

were pivotal in enhancing the FL models’ ability to continually learn and evolve, marking

a significant progression in the field.

The fifth study tackled the challenge of training models with limited and scattered data,

a common scenario in FL. It proposed a hybrid approach that combined self-supervised

and supervised learning techniques, focusing on the e�cient use of unlabeled data. This

study’s significant contribution was the development of a flexible learning approach that

could adapt to various data availability scenarios in FL settings. It expanded the FL

domain’s capabilities, demonstrating how systems could operate e�ciently with sparse

data and without prior knowledge of data distribution across nodes.

The final study presents a novel approach to addressing model heterogeneity in FL,

marking the first attempt to tackle this challenge within the field. By exploring strategies

to manage diverse model architectures e↵ectively, the study contributes significantly to

enhancing FL’s adaptability and e�ciency in handling distributed learning scenarios across

varied computational landscapes.

11.2.1 Overall Contributions and Impact to the Field

Collectively, these studies represent a comprehensive journey through the evolving

landscape of FL. From addressing foundational challenges like communication e�ciency

and model heterogeneity to tackling advanced issues like knowledge retention and

adaptation to sparse data scenarios, these studies collectively push the boundaries of

FL. They highlight the progression from understanding basic FL principles to applying

these principles in complex, real-world scenarios. Each study builds upon the insights

and findings of its predecessors, creating a rich tapestry of research that significantly

enhances our understanding and application of FL. The introduction of novel algorithms

and methodologies in these studies has significantly expanded the toolkit available for FL,

making it more adaptable to a range of scenarios and challenges. By addressing both

foundational and advanced challenges in FL, these studies lay a robust groundwork for

future research in the field. They open up new avenues for exploration, particularly

in applying FL in dynamic, real-world environments. Together, they contribute

to transforming FL from a theoretical concept to a practical, robust, and scalable

learning paradigm ready for diverse applications. Moreover, by ensuring balanced data

participation and fair client selection, these studies contribute to developing more ethical

and equitable AI systems, which is crucial in the current landscape where AI’s societal

impact is increasingly examined.

A. Psaltis 190

Federated, Multi-agent, Deep Reinforcement Learning

11.3 Limitations and Future Research Directions

11.3.1 Limitations

The research conducted in this dissertation on FL has certainly pushed the boundaries

of the field, yet there are limitations that pave the way for future research. In fact, while

advancements have been made in communication e�ciency and data partitioning, scaling

these solutions to extremely large and heterogeneous networks remains challenging. The

e�ciency in environments with highly variable network connectivity and computational

capacities needs further exploration. Additionally, this work, though comprehensive,

might have limitations in its generalizability across vastly di↵erent domains, thus the

applicability of the proposed solutions in domains with unique characteristics requires

more investigation. Furthermore, techniques like federated distillation, representation

learning and incremental learning add complexity to FL systems. This complexity

could introduce computational and management overheads that might delay practical

deployment, especially in resource-constrained environments. Lastly, while FL inherently

aims to preserve data privacy, the variatons of data sharing and aggregation in the

proposed FL systems raise new privacy and security concerns. As FL systems become

more complex, ensuring robust privacy and security without compromising on e�ciency

is a growing challenge.

11.3.2 Future Research Directions

Future research in FL should focus on creating algorithms that can e�ciently scale

in extremely large and diverse networks, possibly through novel lightweight models that

require fewer resources, alongside innovative data transmission techniques that reduce

bandwidth usage and speed up communication. Another key area is the exploration

of cross-domain generalizability and transfer learning, essential for adapting FL models

across various domains. Simultaneously, advancing data privacy and security is crucial,

potentially through innovative cryptographic techniques like homomorphic encryption and

decentralized blockchain approaches. Addressing the robustness of FL systems against

adversarial attacks and data poisoning is also pivotal, requiring sophisticated methods

such as advanced anomaly detection and adversarial training. With the expansion of FL,

its energy consumption and environmental impact become significant concerns, calling

for research into energy-e�cient FL algorithms and sustainable deployment strategies.

With the increasing deployment of AI systems, ensuring that FL models are fair and

unbiased is critical. Research into developing fairness-aware algorithms and addressing

ethical considerations in FL will be increasingly important. Lastly, tackling real-world

deployment challenges, including system interoperability and regulatory compliance, is

vital for the broader adoption and practical application of FL technologies. By focusing

on these diverse yet interconnected areas, future research can holistically advance FL,

addressing current limitations and fostering innovation for various applications.

191 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

11.4 Final Thoughts and Perspectives on FL’s Future

Reflecting on the progress and possibilities of FL, it’s evident that this area is at a

crucial point, o↵ering significant opportunities for development and use in di↵erent sectors.

As FL matures, we can anticipate wider industry adoption in sectors such as healthcare,

finance, e-commerce, and smart cities, driven by the demand for privacy-preserving,

collaborative learning solutions. The integration of FL with edge computing is set to

transform IoT and mobile applications by enabling more e�cient data processing and

decision-making at the network’s edge. This will be further accelerated by advancements

in 5G networks, which promise to enhance the performance and scalability of FL

systems. FL’s impact will also expand into cross-disciplinary fields like bioinformatics,

environmental science, and social sciences, opening up new collaborative research

opportunities. One of the key challenges for FL will be tackling data heterogeneity and

skewness, particularly in handling non-IID data and personalizing models to suit individual

user needs. Sustainability and ethical considerations, including energy e�ciency and model

bias, will also gain attention. Ensuring interoperability between di↵erent FL systems

and standardizing protocols will be vital for its broader adoption, requiring collaborative

e↵orts across academia, industry, and regulatory bodies. Lastly, the evolution towards

more human-centric AI solutions in FL will involve integrating user feedback, ethical

AI principles, and societal impacts into the learning process, bringing a new era of

responsible and inclusive AI. The future of FL is not just about technological advancements

but also about creating a more collaborative, privacy-preserving, and user-centric AI

ecosystem. As we move forward, FL will likely become a cornerstone technology in the

AI landscape, reshaping how we think about data sharing, collaborative learning, and

AI-driven solutions.

A. Psaltis 192

Bibliography

[1] A. Shahroudy, J. Liu, T. T. Ng, and G. Wang, “Ntu rgb+d: A large scale dataset

for 3d human activity analysis,” in The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016.

[2] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept and

applications,” ACM Transactions on Intelligent Systems and Technology (TIST),

vol. 10, no. 2, pp. 1–19, 2019.

[3] L. Li, Y. Fan, M. Tse, and K.-Y. Lin, “A review of applications in federated

learning,” Computers & Industrial Engineering, vol. 149, p. 106854, 2020.

[4] M. Aledhari, R. Razzak, R. M. Parizi, and F. Saeed, “Federated learning: A

survey on enabling technologies, protocols, and applications,” IEEE Access, vol. 8,

pp. 140699–140725, 2020.

[5] Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, et al., “A survey on federated

learning systems: Vision, hype and reality for data privacy and protection,” IEEE

Transactions on Knowledge and Data Engineering, 2021.

[6] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated learning

with non-iid data,” ArXiv, 2018.

[7] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji,

K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, et al., “Advances and open

problems in federated learning,” Foundations and Trends® in Machine Learning,

vol. 14, no. 1–2, pp. 1–210, 2021.

[8] V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha, and

G. Srivastava, “A survey on security and privacy of federated learning,” Future

Generation Computer Systems, vol. 115, pp. 619–640, 2021.

[9] J. Ding, E. Tramel, A. K. Sahu, S. Wu, S. Avestimehr, and T. Zhang, “Federated

learning challenges and opportunities: An outlook,” in ICASSP 2022-2022 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pp. 8752–8756, IEEE, 2022.

193

Federated, Multi-agent, Deep Reinforcement Learning

[10] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, and H. V.

Poor, “Federated learning for internet of things: A comprehensive survey,” IEEE

Communications Surveys & Tutorials, vol. 23, no. 3, pp. 1622–1658, 2021.

[11] K. Das and R. N. Behera, “A survey on machine learning: concept, algorithms

and applications,” International Journal of Innovative Research in Computer and

Communication Engineering, vol. 5, no. 2, pp. 1301–1309, 2017.

[12] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep learning

for computer vision: A brief review,” Computational Intelligence and Neuroscience,

vol. 2018, 2018.

[13] D. Bhatt, C. Patel, H. Talsania, J. Patel, R. Vaghela, S. Pandya, et al., “Cnn variants

for computer vision: History, architecture, application, challenges and future scope,”

Electronics, vol. 10, no. 20, p. 2470, 2021.

[14] V. Sharma, M. Gupta, A. Kumar, and D. Mishra, “Video processing using

deep learning techniques: A systematic literature review,” IEEE Access, vol. 9,

pp. 139489–139507, 2021.

[15] Z. Sun, Q. Ke, H. Rahmani, M. Bennamoun, G. Wang, and J. Liu, “Human action

recognition from various data modalities: A review,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2022.

[16] S. B. Atitallah, M. Driss, W. Boulila, and H. B. Ghézala, “Leveraging deep learning

and iot big data analytics to support the smart cities development: Review and

future directions,” Computer Science Review, vol. 38, p. 100303, 2020.

[17] S. Kaisler, F. Armour, J. A. Espinosa, and W. Money, “Big data: Issues and

challenges moving forward,” in 2013 46th Hawaii International Conference on

System Sciences, pp. 995–1004, IEEE, 2013.

[18] B. McMahan and D. Ramage, “Federated learning: Collaborative machine learning

without centralized training data,” 2017.

[19] J. Liu, J. Huang, Y. Zhou, X. Li, S. Ji, H. Xiong, and D. Dou, “From distributed

machine learning to federated learning: A survey,” Knowledge and Information

Systems, vol. 64, no. 4, pp. 885–917, 2022.

[20] S. Banabilah, M. Aloqaily, E. Alsayed, N. Malik, and Y. Jararweh, “Federated

learning review: Fundamentals, enabling technologies, and future applications,”

Information Processing and Management, vol. 59, no. 6, p. 103061, 2022.

[21] M. Ganapathy, An Introduction to Federated Learning and Its Analysis. PhD thesis,

University of Nevada, Las Vegas, 2021.

A. Psaltis 194

Federated, Multi-agent, Deep Reinforcement Learning

[22] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,

“Communication-e�cient learning of deep networks from decentralized data,” in

Artificial Intelligence and Statistics, pp. 1273–1282, PMLR, 2017.

[23] Y. Zhuang, G. Li, and J. Feng, “A survey on entity alignment of knowledge base,”

Journal of Computer Research and Development, vol. 1, pp. 165–192, 2016.

[24] K. Cheng, T. Fan, Y. Jin, Y. Liu, T. Chen, and Q. Yang, “Secureboost: A lossless

federated learning framework,” 2019.

[25] Y. Liu, T. Chen, and Q. Yang, “Secure federated transfer learning,” 2018.

[26] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “Batchcrypt: E�cient

homomorphic encryption for cross-silo federated learning,” in 2020 USENIX Annual

Technical Conference (USENIX ATC 20), pp. 493–506, 2020.

[27] Y. Aono et al., “Privacy-preserving deep learning via additively homomorphic

encryption,” IEEE Transactions on Information Forensics and Security, vol. 13,

no. 5, pp. 1333–1345, 2017.

[28] J. Zhang, H. Zhu, F. Wang, J. Zhao, Q. Xu, and H. Li, “Security and privacy

threats to federated learning: Issues, methods, and challenges,” Security and

Communication Networks, vol. 2022, 2022.

[29] A. Bhowmick, J. Duchi, J. Freudiger, G. Kapoor, and R. Rogers, “Protection against

reconstruction and its applications in private federated learning,” 2018.

[30] L. Melis, C. Song, E. D. De Cristofaro, and V. Shmatikov, “Inference attacks against

collaborative learning,” 2018.

[31] A. Paudice, L. Muñoz-González, A. Gyorgy, and E. C. Lupu, “Detection of

adversarial training examples in poisoning attacks through anomaly detection,”

2018.

[32] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending against

backdooring attacks on deep neural networks,” 2018.

[33] J. Carnerero-Cano, L. Muñoz-González, P. Spencer, and E. C. Lupu, “Regularisation

can mitigate poisoning attacks: A novel analysis based on multiobjective bilevel

optimisation,” 2020.

[34] Y. Tian, W. Zhang, A. Simpson, Y. Liu, and Z. Jiang, “Defending against data

poisoning attacks: From distributed learning to federated learning,” The Computer

Journal, vol. 66, 12 2021.

[35] Z. Anastasakis, K. Psychogyios, T. Velivassaki, S. Bourou, A. Voulkidis, D. Skias,

A. Gonos, and T. Zahariadis, “Enhancing cyber security in iot systems using

195 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

fl-based ids with di↵erential privacy,” in 2022 Global Information Infrastructure and

Networking Symposium (GIIS), pp. 30–34, IEEE, 2022.

[36] A. Segal, A. Marcedone, B. Kreuter, D. Ramage, H. B. McMahan, K. Seth,

K. A. Bonawitz, S. Patel, and V. Ivanov, “Practical secure aggregation for

privacy-preserving machine learning,” in CCS, 2017.

[37] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, no. 11,

pp. 612–613, 1979.

[38] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, “Verifynet: Secure and verifiable

federated learning,” IEEE Transactions on Information Forensics and Security,

vol. 15, pp. 911–926, 2019.

[39] X. Guo, Z. Liu, J. Li, J. Gao, B. Hou, C. Dong, and T. Baker, “V eri fl:

Communication-e�cient and fast verifiable aggregation for federated learning,”

IEEE Transactions on Information Forensics and Security, vol. 16, pp. 1736–1751,

2020.

[40] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova, “Secure

single-server aggregation with (poly) logarithmic overhead,” in Proceedings of

the 2020 ACM SIGSAC Conference on Computer and Communications Security,

pp. 1253–1269, 2020.

[41] B. Choi, J.-y. Sohn, D.-J. Han, and J. Moon, “Communication-computation e�cient

secure aggregation for federated learning,” arXiv preprint arXiv:2012.05433, 2020.

[42] J. So, B. Güler, and A. S. Avestimehr, “Turbo-aggregate: Breaking the quadratic

aggregation barrier in secure federated learning,” IEEE Journal on Selected Areas

in Information Theory, vol. 2, no. 1, pp. 479–489, 2021.

[43] S. Kadhe, N. Rajaraman, O. O. Koyluoglu, and K. Ramchandran, “Fastsecagg:

Scalable secure aggregation for privacy-preserving federated learning,” arXiv

preprint arXiv:2009.11248, 2020.

[44] N. Bouacida and P. Mohapatra, “Vulnerabilities in federated learning,” IEEE Access,

vol. 9, pp. 63229–63249, 2021.

[45] O. Shahid, S. Pouriyeh, R. M. Parizi, Q. Z. Sheng, G. Srivastava, and L. Zhao,

“Communication e�ciency in federated learning: Achievements and challenges,”

2021.

[46] P. M. Mammen, “Federated learning: Opportunities and challenges,” 2021.

[47] S. P. Ramu, P. Boopalan, Q. V. Pham, P. K. R. Maddikunta, T. Huynh-The,

M. Alazab, et al., “Federated learning enabled digital twins for smart cities:

A. Psaltis 196

Federated, Multi-agent, Deep Reinforcement Learning

Concepts, recent advances, and future directions,” Sustainable Cities and Society,

vol. 79, p. 103663, 2022.

[48] Q. Yang, “Toward responsible ai: An overview of federated learning for

user-centered privacy-preserving computing,” ACM Transactions on Interactive

Intelligent Systems (TiiS), vol. 11, no. 3-4, pp. 1–22, 2021.

[49] A. Imteaj, U. Thakker, S. Wang, J. Li, and M. H. Amini, “A survey on federated

learning for resource-constrained iot devices,” IEEE Internet of Things Journal,

vol. 9, no. 1, pp. 1–24, 2021.

[50] T. Nishio and R. Yonetani, “Client selection for federated learning with

heterogeneous resources in mobile edge,” in 2019 IEEE International Conference

on Communications (ICC), pp. 1–7, IEEE, 2019.

[51] M. Yurochkin, M. Agarwal, S. Ghosh, K. Greenewald, N. Hoang, and Y. Khazaeni,

“Bayesian nonparametric federated learning of neural networks,” in International

Conference on Machine Learning, pp. 7252–7261, PMLR, 2019.

[52] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon,

“Federated learning: Strategies for improving communication e�ciency,” 2016.

[53] H. Zhu and Y. Jin, “Multi-objective evolutionary federated learning,” IEEE

Transactions on Neural Networks and Learning Systems, vol. 31, no. 4,

pp. 1310–1322, 2019.

[54] P. Jiang and L. Ying, “An optimal stopping approach for iterative training in

federated learning,” in 2020 54th Annual Conference on Information Sciences and

Systems (CISS), pp. 1–6, IEEE, 2020.

[55] W. Liu, L. Chen, Y. Chen, and W. Zhang, “Accelerating federated learning

via momentum gradient descent,” IEEE Transactions on Parallel and Distributed

Systems, vol. 31, no. 8, pp. 1754–1766, 2020.

[56] S. Caldas, J. Konečný, H. B. McMahan, and A. Talwalkar, “Expanding the reach of

federated learning by reducing client resource requirements,” 2018.

[57] F. Sattler, S. Wiedemann, K. R. Müller, and W. Samek, “Robust and

communication-e�cient federated learning from non-iid data,” IEEE Transactions

on Neural Networks and Learning Systems, vol. 31, no. 9, pp. 3400–3413, 2019.

[58] V. Smith, C. K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated multi-task

learning,” in Advances in Neural Information Processing Systems, vol. 30, 2017.

[59] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, et al.,

“Towards federated learning at scale: System design,” in Proceedings of Machine

Learning and Systems, vol. 1, pp. 374–388, 2019.

197 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

[60] M. Hao, H. Li, X. Luo, G. Xu, H. Yang, and S. Liu, “E�cient and privacy-enhanced

federated learning for industrial artificial intelligence,” IEEE Transactions on

Industrial Informatics, vol. 16, no. 10, pp. 6532–6542, 2019.

[61] S. Li, Y. Cheng, Y. Liu, W. Wang, and T. Chen, “Abnormal client behavior detection

in federated learning,” 2019.

[62] W. Wu, L. He, W. Lin, R. Mao, C. Maple, and S. Jarvis, “Safa: a semi-asynchronous

protocol for fast federated learning with low overhead,” IEEE Transactions on

Computers, vol. 70, no. 5, pp. 655–668, 2020.

[63] J. Kang, Z. Xiong, D. Niyato, H. Yu, Y. C. Liang, and D. I. Kim, “Incentive design

for e�cient federated learning in mobile networks: A contract theory approach,”

in 2019 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS),

pp. 1–5, IEEE, 2019.

[64] N. H. Tran, W. Bao, A. Zomaya, M. N. Nguyen, and C. S. Hong, “Federated

learning over wireless networks: Optimization model design and analysis,” in IEEE

INFOCOM 2019-IEEE Conference on Computer Communications, pp. 1387–1395,

IEEE, 2019.

[65] Z. Chai, H. Fayyaz, Z. Fayyaz, A. Anwar, Y. Zhou, N. Baracaldo, et al., “Towards

taming the resource and data heterogeneity in federated learning,” in 2019 USENIX

Conference on Operational Machine Learning (OpML 19), pp. 19–21, 2019.

[66] T. Li, M. Sanjabi, A. Beirami, and V. Smith, “Fair resource allocation in federated

learning,” 2019.

[67] M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic federated learning,” in

International Conference on Machine Learning, pp. 4615–4625, PMLR, 2019.

[68] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen, “In-edge ai:

Intelligentizing mobile edge computing, caching and communication by federated

learning,” IEEE Network, vol. 33, no. 5, pp. 156–165, 2019.

[69] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence of fedavg

on non-iid data,” 2019.

[70] L. Huang, A. L. Shea, H. Qian, A. Masurkar, H. Deng, and D. Liu, “Patient

clustering improves e�ciency of federated machine learning to predict mortality

and hospital stay time using distributed electronic medical records,” Journal of

Biomedical Informatics, vol. 99, p. 103291, 2019.

[71] M. Mendieta, T. Yang, P. Wang, M. Lee, Z. Ding, and C. Chen, “Local learning

matters: Rethinking data heterogeneity in federated learning,” in Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pp. 8397–8406, 2022.

A. Psaltis 198

Federated, Multi-agent, Deep Reinforcement Learning

[72] L. Huang, Y. Yin, Z. Fu, S. Zhang, H. Deng, and D. Liu, “Loadaboost: Loss-based

adaboost federated machine learning with reduced computational complexity on iid

and non-iid intensive care data,” Plos One, vol. 15, no. 4, p. e0230706, 2020.

[73] A. Bhowmick, J. Duchi, J. Freudiger, G. Kapoor, and R. Rogers, “Protection against

reconstruction and its applications in private federated learning,” 2019.

[74] A. Suri, P. Kanani, V. Marathe, and D. Peterson, “Subject membership inference

attacks in federated learning,” 06 2022.

[75] N. Tomashenko, S. Mdha↵ar, M. Tommasi, Y. Estève, and J.-F. Bonastre, “Privacy

attacks for automatic speech recognition acoustic models in a federated learning

framework,” in ICASSP, pp. 6972–6976, IEEE, 2022.

[76] N. Rodŕıguez-Barroso, D. Jiménez-López, M. V. Luzón, F. Herrera, and

E. Mart́ınez-Cámara, “Survey on federated learning threats: Concepts, taxonomy

on attacks and defences, experimental study and challenges,” Information Fusion,

vol. 90, pp. 148–173, 2023.

[77] Y. Zhang, D. Zeng, J. Luo, Z. Xu, and I. King, “A survey of trustworthy federated

learning with perspectives on security, robustness, and privacy,” arXiv preprint

arXiv:2302.10637, 2023.

[78] L. Lyu, H. Yu, and Q. Yang, “Threats to federated learning: A survey,” arXiv

preprint arXiv:2003.02133, 2020.

[79] L. Lyu, H. Yu, X. Ma, C. Chen, L. Sun, J. Zhao, Q. Yang, and S. Y. Philip, “Privacy

and robustness in federated learning: Attacks and defenses,” IEEE transactions on

neural networks and learning systems, 2022.

[80] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges,

methods, and future directions,” IEEE Signal Processing Magazine, vol. 37, no. 3,

pp. 50–60, 2020.

[81] T. Li, A. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated

optimization in heterogeneous networks,” Proceedings of Machine Learning and

Systems, vol. 2, pp. 429–450, 2020.

[82] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khazaeni, “Federated

learning with matched averaging,” 2020.

[83] M. Asad, A. Moustafa, and T. Ito, “Fedopt: Towards communication e�ciency and

privacy preservation in federated learning,” Applied Sciences, vol. 10, no. 8, p. 2864,

2020.

[84] P. Jain, S. Goenka, S. Bagchi, B. Banerjee, and S. Chaterji, “Federated action

recognition on heterogeneous embedded devices,” 2021.

199 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

[85] K. Doshi and Y. Yilmaz, “Federated learning-based driver activity recognition for

edge devices,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pp. 3338–3346, 2022.

[86] F. Liu, X. Wu, S. Ge, W. Fan, and Y. Zou, “Federated learning for

vision-and-language grounding problems,” in Proceedings of the AAAI Conference

on Artificial Intelligence, vol. 34, pp. 11572–11579, 2020.

[87] P. P. Liang, T. Liu, L. Ziyin, N. B. Allen, R. P. Auerbach, D. Brent,

R. Salakhutdinov, and L. P. Morency, “Think locally, act globally: Federated

learning with local and global representations,” 2020.

[88] P. Guo, P. Wang, J. Zhou, S. Jiang, and V. M. Patel, “Multi-institutional

collaborations for improving deep learning-based magnetic resonance image

reconstruction using federated learning,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pp. 2423–2432, 2021.

[89] Y. Zhao, P. Barnaghi, and H. Haddadi, “Multimodal federated learning on iot data,”

2022.

[90] S. Li, W. Li, C. Cook, C. Zhu, and Y. Gao, “Independently recurrent neural network

(indrnn): Building a longer and deeper rnn,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 5457–5466, 2018.

[91] J. Liu, A. Shahroudy, D. Xu, and G. Wang, “Spatio-temporal lstm with trust gates

for 3d human action recognition,” in European Conference on Computer Vision,

pp. 816–833, Springer, 2016.

[92] M. Liu, H. Liu, and C. Chen, “Robust 3d action recognition through sampling local

appearances and global distributions,” IEEE Transactions on Multimedia, vol. 20,

no. 8, pp. 1932–1947, 2018.

[93] P. Zhang, C. Lan, J. Xing, W. Zeng, J. Xue, and N. Zheng, “View adaptive recurrent

neural networks for high-performance human action recognition from skeleton data,”

2017.

[94] T. S. Kim and A. Reiter, “Interpretable 3d human action analysis with temporal

convolutional networks,” 2017.

[95] H. Liu, J. Tu, and M. Liu, “Two-stream 3d convolutional neural network for

skeleton-based action recognition,” 2017.

[96] L. Shi, Y. Zhang, J. Cheng, and H. Lu, “Adaptive spectral graph convolutional

networks for skeleton-based action recognition,” 2018.

A. Psaltis 200

Federated, Multi-agent, Deep Reinforcement Learning

[97] P. Wang, W. Li, Z. Gao, C. Tang, and P. O. Ogunbona, “Depth pooling

based large-scale 3-d action recognition with convolutional neural networks,” IEEE

Transactions on Multimedia, vol. 20, no. 5, pp. 1051–1061, 2018.

[98] Y. Li, C. Lan, J. Xing, W. Zeng, C. Yuan, and J. Liu, “Online human

action detection using joint classification-regression recurrent neural networks,” in

European Conference on Computer Vision, pp. 203–220, Springer, 2016.

[99] H. Rahmani and A. Mian, “3d action recognition from novel viewpoints,” in CVPR,

June 2016.

[100] Z. Tu, W. Xie, Q. Qin, R. Poppe, R. C. Veltkamp, B. Li, and J. Yuan,

“Multi-stream cnn: Learning representations based on human-related regions for

action recognition,” Pattern Recognition, vol. 79, pp. 32–43, 2018.

[101] M. Jaimez, M. Souiai, J. Gonzalez-Jimenez, and D. Cremers, “A primal-dual

framework for real-time dense rgb-d scene flow,” in 2015 IEEE International

Conference on Robotics and Automation (ICRA), pp. 98–104, IEEE, 2015.

[102] Z. Luo, B. Peng, D. A. Huang, A. Alahi, and L. Fei-Fei, “Unsupervised learning of

long-term motion dynamics for videos,” in CVPR, 2017.

[103] P. Wang, W. Li, Z. Gao, Y. Zhang, C. Tang, and P. Ogunbona, “Scene flow to action

map: A new representation for rgb-d based action recognition with convolutional

neural networks,” in CVPR, 2017.

[104] L. Wang, Y. Qiao, and X. Tang, “Action recognition with trajectory-pooled

deep-convolutional descriptors,” 2015.

[105] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for action

recognition in videos,” 2014.

[106] C. Feichtenhofer, A. Pinz, and A. Zisserman, “Convolutional two-stream network

fusion for video action recognition,” 2016.

[107] A. Shahroudy, T. T. Ng, Y. Gong, and G. Wang, “Deep multimodal feature analysis

for action recognition in rgb+ d videos,” 2016.

[108] Z. Luo, J. T. Hsieh, L. Jiang, J. C. Niebles, and L. Fei-Fei, “Graph distillation for

action detection with privileged information,” in European Conference on Computer

Vision (ECCV), 2018.

[109] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in Neural Information Processing

Systems, pp. 1097–1105, 2012.

[110] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “C3d: generic feature

for video analysis,” 2014.

201 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

[111] B. van Berlo, A. Saeed, and T. Ozcelebi, “Towards federated unsupervised

representation learning,” in Proceedings of the Third ACM International Workshop

on Edge Systems, Analytics and Networking, pp. 31–36, 2020.

[112] Y. Zhao, H. Liu, H. Li, P. Barnaghi, and H. Haddadi, “Semi-supervised federated

learning for activity recognition,” 2020.

[113] J. Zhang, Y. Yu, S. Tang, J. Wu, and W. Li, “Variational autoencoder with cca for

audio-visual cross-modal retrieval,” 2021.

[114] W. Wang, R. Arora, K. Livescu, and J. Bilmes, “On deep multi-view representation

learning,” in International Conference on Machine Learning, pp. 1083–1092, PMLR,

2015.

[115] J. Liu, A. Shahroudy, M. Perez, G. Wang, L. Y. Duan, and A. C. Kot, “Ntu

rgb+d 120: A large-scale benchmark for 3d human activity understanding,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 10,

pp. 2684–2701, 2019.

[116] E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis, and S.-L. Kim,

“Communication-e�cient on-device machine learning: Federated distillation

and augmentation under non-iid private data,” arXiv preprint arXiv:1811.11479,

2018.

[117] D. Li and J. Wang, “Fedmd: Heterogenous federated learning via model distillation,”

arXiv preprint arXiv:1910.03581, 2019.

[118] S. Itahara, T. Nishio, Y. Koda, M. Morikura, and K. Yamamoto, “Distillation-based

semi-supervised federated learning for communication-e�cient collaborative training

with non-iid private data,” IEEE Transactions on Mobile Computing, vol. 22, no. 1,

pp. 191–205, 2021.

[119] S. Cheng, J. Wu, Y. Xiao, and Y. Liu, “Fedgems: Federated learning of larger server

models via selective knowledge fusion,” arXiv preprint arXiv:2110.11027, 2021.

[120] X. Gong, A. Sharma, S. Karanam, Z. Wu, T. Chen, D. Doermann, and A. Innanje,

“Ensemble attention distillation for privacy-preserving federated learning,” in

Proceedings of the IEEE/CVF International Conference on Computer Vision,

pp. 15076–15086, 2021.

[121] A. Parvaneh, E. Abbasnejad, D. Teney, G. R. Ha↵ari, A. Van Den Hengel, and

J. Q. Shi, “Active learning by feature mixing,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pp. 12237–12246, 2022.

[122] A. Psaltis, C. Chatzikonstantinou, C. Z. Patrikakis, and P. Daras, “Fedrcil:

Federated knowledge distillation for representation based contrastive incremental

A. Psaltis 202

Federated, Multi-agent, Deep Reinforcement Learning

learning,” in Proceedings of the IEEE/CVF International Conference on Computer

Vision, pp. 3463–3472, 2023.

[123] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny

images,” 2009.

[124] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in Proceedings of the IEEE conference on computer vision and pattern recognition,

pp. 770–778, 2016.

[125] H. Robbins and S. Monro, “A stochastic approximation method,” The annals of

mathematical statistics, pp. 400–407, 1951.

[126] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,

M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,

“Pytorch: An imperative style, high-performance deep learning library,” arXiv

preprint arXiv:1912.01703, 2019.

[127] M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G. Slabaugh,

and T. Tuytelaars, “A continual learning survey: Defying forgetting in classification

tasks,” IEEE transactions on pattern analysis and machine intelligence, vol. 44,

no. 7, pp. 3366–3385, 2021.

[128] M. Masana, X. Liu, B. Twardowski, M. Menta, A. D. Bagdanov, and J. van de

Weijer, “Class-incremental learning: Survey and performance evaluation on image

classification,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 45, no. 5, pp. 5513–5533, 2023.

[129] H. Cha, J. Lee, and J. Shin, “Co2l: Contrastive continual learning,” in

Proceedings of the IEEE/CVF International Conference on Computer Vision

(ICCV), pp. 9516–9525, October 2021.

[130] G. Yang, E. Fini, D. Xu, P. Rota, M. Ding, M. Nabi, X. Alameda-Pineda,

and E. Ricci, “Uncertainty-aware contrastive distillation for incremental semantic

segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 45, no. 2, pp. 2567–2581, 2022.

[131] D. T. Chang, “Exemplar-based contrastive self-supervised learning with few-shot

class incremental learning,” arXiv preprint arXiv:2202.02601, 2022.

[132] J. Dong, L. Wang, Z. Fang, G. Sun, S. Xu, X. Wang, and Q. Zhu, “Federated

class-incremental learning,” in Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pp. 10164–10173, 2022.

203 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

[133] J. Dong, Y. Cong, G. Sun, Y. Zhang, B. Schiele, and D. Dai, “No one left behind:

Real-world federated class-incremental learning,” arXiv preprint arXiv:2302.00903,

2023.

[134] J. Dong, D. Zhang, Y. Cong, W. Cong, H. Ding, and D. Dai, “Federated incremental

semantic segmentation,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 3934–3943, June 2023.

[135] Q. Li, B. He, and D. Song, “Model-contrastive federated learning,” in Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pp. 10713–10722, 2021.

[136] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for

contrastive learning of visual representations,” in International conference on

machine learning, pp. 1597–1607, PMLR, 2020.

[137] S.-A. Rebu�, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl: Incremental

classifier and representation learning,” in Proceedings of the IEEE conference on

Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

[138] J. Kiefer and J. Wolfowitz, “Stochastic estimation of the maximum of a regression

function,” The Annals of Mathematical Statistics, pp. 462–466, 1952.

[139] Y.-n. Han and J.-w. Liu, “Online continual learning via the meta-learning update

with multi-scale knowledge distillation and data augmentation,” Engineering

Applications of Artificial Intelligence, vol. 113, p. 104966, 2022.

[140] L. Hu, H. Yan, L. Li, Z. Pan, X. Liu, and Z. Zhang, “Mhat: An

e�cient model-heterogenous aggregation training scheme for federated learning,”

Information Sciences, vol. 560, pp. 493–503, 2021.

[141] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,”

arXiv preprint arXiv:1503.02531, 2015.

[142] B. Zhao, Q. Cui, R. Song, Y. Qiu, and J. Liang, “Decoupled knowledge distillation,”

in Proceedings of the IEEE/CVF Conference on computer vision and pattern

recognition, pp. 11953–11962, 2022.

[143] T. Huang, S. You, F. Wang, C. Qian, and C. Xu, “Knowledge distillation from a

stronger teacher,” in Advances in Neural Information Processing Systems (S. Koyejo,

S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, eds.), vol. 35,

pp. 33716–33727, Curran Associates, Inc., 2022.

[144] E. Belouadah, A. Popescu, and I. Kanellos, “A comprehensive study of class

incremental learning algorithms for visual tasks,” Neural Networks, vol. 135,

pp. 38–54, 2021.

A. Psaltis 204

Federated, Multi-agent, Deep Reinforcement Learning

[145] M. Masana, X. Liu, B. Twardowski, M. Menta, A. D. Bagdanov, and J. Van

DeWeijer, “Class-incremental learning: survey and performance evaluation on image

classification,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 45, no. 5, pp. 5513–5533, 2022.

[146] F. M. Castro, M. J. Marin-Jimenez, N. Guil, C. Schmid, and K. Alahari, “End-to-end

incremental learning,” in Proceedings of the European Conference on Computer

Vision (ECCV), September 2018.

[147] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, and Y. Fu, “Large scale incremental

learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), June 2019.

[148] Y. Luo, L. Yin, W. Bai, and K. Mao, “An appraisal of incremental learning

methods,” Entropy, vol. 22, no. 11, p. 1190, 2020.

[149] E. Belouadah and A. Popescu, “Il2m: Class incremental learning with dual memory,”

in Proceedings of the IEEE/CVF international conference on computer vision,

pp. 583–592, 2019.

[150] B. Zhao, X. Xiao, G. Gan, B. Zhang, and S.-T. Xia, “Maintaining discrimination and

fairness in class incremental learning,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), June 2020.

[151] S. Yan, J. Xie, and X. He, “Der: Dynamically expandable representation for class

incremental learning,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 3014–3023, June 2021.

[152] Z. Mai, R. Li, H. Kim, and S. Sanner, “Supervised contrastive replay: Revisiting

the nearest class mean classifier in online class-incremental continual learning,”

in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 3589–3599, 2021.

[153] W. Sun, J. Zhang, D. Wang, Y.-a. Geng, and Q. Li, “Ilcoc: An incremental

learning framework based on contrastive one-class classifiers,” in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

Workshops, pp. 3580–3588, June 2021.

[154] J.-y. Han and J.-w. Liu, “Instance-level and class-level contrastive incremental

learning for image classification,” in 2022 International Joint Conference on Neural

Networks (IJCNN), pp. 1–8, IEEE, 2022.

[155] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas,

“Communication-E�cient Learning of Deep Networks from Decentralized Data,”

in Proceedings of the 20th International Conference on Artificial Intelligence and

205 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

Statistics (A. Singh and J. Zhu, eds.), vol. 54 of Proceedings of Machine Learning

Research, pp. 1273–1282, PMLR, 20–22 Apr 2017.

[156] Z. Wu, S. Sun, Y. Wang, M. Liu, Q. Pan, X. Jiang, and B. Gao, “Fedict: Federated

multi-task distillation for multi-access edge computing,” IEEE Transactions on

Parallel and Distributed Systems, 2023.

[157] C. Wu, F. Wu, L. Lyu, Y. Huang, and X. Xie, “Communication-e�cient federated

learning via knowledge distillation,” Nature communications, vol. 13, no. 1, p. 2032,

2022.

[158] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Communication-e�cient federated

distillation with active data sampling,” in ICC 2022-IEEE International Conference

on Communications, pp. 201–206, IEEE, 2022.

[159] L. Ericsson, H. Gouk, C. C. Loy, and T. M. Hospedales, “Self-supervised

representation learning: Introduction, advances, and challenges,” IEEE Signal

Processing Magazine, vol. 39, no. 3, pp. 42–62, 2022.

[160] Y. Chen, M. Mancini, X. Zhu, and Z. Akata, “Semi-supervised and unsupervised

deep visual learning: A survey,” IEEE transactions on pattern analysis and machine

intelligence, 2022.

[161] X. Wang, D. Kihara, J. Luo, and G.-J. Qi, “Enaet: A self-trained framework

for semi-supervised and supervised learning with ensemble transformations,” IEEE

Transactions on Image Processing, vol. 30, pp. 1639–1647, 2020.

[162] T. Miyato, S.-i. Maeda, M. Koyama, and S. Ishii, “Virtual adversarial training:

a regularization method for supervised and semi-supervised learning,” IEEE

transactions on pattern analysis and machine intelligence, vol. 41, no. 8,

pp. 1979–1993, 2018.

[163] V. Verma, K. Kawaguchi, A. Lamb, J. Kannala, A. Solin, Y. Bengio, and

D. Lopez-Paz, “Interpolation consistency training for semi-supervised learning,”

Neural Networks, vol. 145, pp. 90–106, 2022.

[164] L. Zhang and G.-J. Qi, “Wcp: Worst-case perturbations for semi-supervised deep

learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pp. 3912–3921, 2020.

[165] Y. Chen, X. Zhu, and S. Gong, “Semi-supervised deep learning with memory,” in

Proceedings of the European conference on computer vision (ECCV), pp. 268–283,

2018.

[166] S. Qiao, W. Shen, Z. Zhang, B. Wang, and A. Yuille, “Deep co-training for

semi-supervised image recognition,” in Proceedings of the european conference on

computer vision (eccv), pp. 135–152, 2018.

A. Psaltis 206

Federated, Multi-agent, Deep Reinforcement Learning

[167] Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le, “Self-training with noisy student

improves imagenet classification,” in Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pp. 10687–10698, 2020.

[168] G.-J. Qi, L. Zhang, H. Hu, M. Edraki, J. Wang, and X.-S. Hua, “Global versus

localized generative adversarial nets,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 1517–1525, 2018.

[169] X. Zhai, A. Oliver, A. Kolesnikov, and L. Beyer, “S4l: Self-supervised

semi-supervised learning,” in Proceedings of the IEEE/CVF international conference

on computer vision, pp. 1476–1485, 2019.

[170] T. Chen, S. Kornblith, K. Swersky, M. Norouzi, and G. E. Hinton, “Big

self-supervised models are strong semi-supervised learners,” Advances in neural

information processing systems, vol. 33, pp. 22243–22255, 2020.

[171] F. Zhang, K. Kuang, Z. You, T. Shen, J. Xiao, Y. Zhang, C. Wu, Y. Zhuang,

and X. Li, “Federated unsupervised representation learning,” arXiv preprint

arXiv:2010.08982, 2020.

[172] Y. Wu, D. Zeng, Z. Wang, Y. Sheng, L. Yang, A. J. James, Y. Shi, and

J. Hu, “Federated self-supervised contrastive learning and masked autoencoder for

dermatological disease diagnosis,” arXiv preprint arXiv:2208.11278, 2022.

[173] Z. Long, J. Wang, Y. Wang, H. Xiao, and F. Ma, “Fedcon: A contrastive framework

for federated semi-supervised learning,” arXiv preprint arXiv:2109.04533, 2021.

[174] S. A. Khowaja, K. Dev, S. M. Anwar, and M. G. Linguraru, “Sel↵ed: Self-supervised

federated learning for data heterogeneity and label scarcity in iomt,” arXiv preprint

arXiv:2307.01514, 2023.

[175] S. Han, S. Park, F. Wu, S. Kim, C. Wu, X. Xie, and M. Cha, “Fedx: Unsupervised

federated learning with cross knowledge distillation,” in European Conference on

Computer Vision, pp. 691–707, Springer, 2022.

[176] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with

neural networks,” science, vol. 313, no. 5786, pp. 504–507, 2006.

[177] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” Advances in neural

information processing systems, vol. 27, 2014.

[178] T. Chen, X. Zhai, M. Ritter, M. Lucic, and N. Houlsby, “Self-supervised gans via

auxiliary rotation loss,” in Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, pp. 12154–12163, 2019.

207 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

[179] Y. Song and S. Ermon, “Generative modeling by estimating gradients of the data

distribution,” Advances in neural information processing systems, vol. 32, 2019.

[180] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya,

C. Doersch, B. Avila Pires, Z. Guo, M. Gheshlaghi Azar, et al., “Bootstrap your own

latent-a new approach to self-supervised learning,” Advances in neural information

processing systems, vol. 33, pp. 21271–21284, 2020.

[181] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for

unsupervised visual representation learning,” in Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition, pp. 9729–9738, 2020.

[182] H. Chen, Y. Wang, T. Guo, C. Xu, Y. Deng, Z. Liu, S. Ma, C. Xu, C. Xu,

and W. Gao, “Pre-trained image processing transformer,” in Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition, pp. 12299–12310,

2021.

[183] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised feature learning via

non-parametric instance discrimination,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 3733–3742, 2018.

[184] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu,

and D. Krishnan, “Supervised contrastive learning,” Advances in neural information

processing systems, vol. 33, pp. 18661–18673, 2020.

[185] Y. Liu, A. Huang, Y. Luo, H. Huang, Y. Liu, Y. Chen, L. Feng, T. Chen, H. Yu,

and Q. Yang, “Fedvision: An online visual object detection platform powered by

federated learning,” in Proceedings of the AAAI Conference on Artificial Intelligence,

vol. 34, pp. 13172–13179, 2020.

[186] C. He, A. D. Shah, Z. Tang, D. F. N. Sivashunmugam, K. Bhogaraju, M. Shimpi,

L. Shen, X. Chu, M. Soltanolkotabi, and S. Avestimehr, “Fedcv: a federated learning

framework for diverse computer vision tasks,” arXiv preprint arXiv:2111.11066,

2021.

[187] A. Psaltis, C. Z. Patrikakis, and P. Daras, “Deep multi-modal representation schemes

for federated 3d human action recognition,” in Computer Vision – ECCV 2022

Workshops: Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part VI, (Berlin,

Heidelberg), p. 334–352, Springer-Verlag, 2023.

[188] Z. Mo, Z. Gao, C. Zhao, and Y. Lin, “Feddq: A communication-e�cient federated

learning approach for internet of vehicles,” Journal of Systems Architecture, vol. 131,

p. 102690, 2022.

[189] W. Jeong, J. Yoon, E. Yang, and S. J. Hwang, “Federated semi-supervised learning

with inter-client consistency & disjoint learning,” arXiv preprint arXiv:2006.12097,

2020.

A. Psaltis 208

Federated, Multi-agent, Deep Reinforcement Learning

[190] Y. Le and X. Yang, “Tiny imagenet visual recognition challenge,” CS 231N, vol. 7,

no. 7, p. 3, 2015.

[191] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[192] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann

machines,” in Proceedings of the 27th international conference on machine learning

(ICML-10), pp. 807–814, 2010.

[193] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale

hierarchical image database,” in 2009 IEEE conference on computer vision and

pattern recognition, pp. 248–255, Ieee, 2009.

[194] Y. LeCun, L. Bottou, Y. Bengio, and P. Ha↵ner, “Gradient-based learning applied

to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,

1998.

[195] M. Tan and Q. V. Le, “E�cientnet: Rethinking model scaling for convolutional

neural networks,” in Proceedings of the 36th International Conference on Machine

Learning, pp. 6105–6114, 2019.

[196] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,

M. Andreetto, and H. Adam, “Mobilenets: E�cient convolutional neural networks

for mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[197] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A convnet

for the 2020s,” in Proceedings of the IEEE/CVF conference on computer vision and

pattern recognition, pp. 11976–11986, 2022.

[198] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma,

J. Santamaŕıa, M. A. Fadhel, M. Al-Amidie, and L. Farhan, “Review of deep

learning: Concepts, cnn architectures, challenges, applications, future directions,”

Journal of big Data, vol. 8, pp. 1–74, 2021.

[199] M. Raghu, T. Unterthiner, S. Kornblith, C. Zhang, and A. Dosovitskiy, “Do

vision transformers see like convolutional neural networks?,” Advances in Neural

Information Processing Systems, vol. 34, pp. 12116–12128, 2021.

[200] A. Hammam, F. Bonarens, S. E. Ghobadi, and C. Stiller, “Identifying out-of-domain

objects with dirichlet deep neural networks,” in Proceedings of the IEEE/CVF

International Conference on Computer Vision, pp. 4560–4569, 2023.

[201] L. Stäcker, J. Fei, P. Heidenreich, F. Bonarens, J. Rambach, D. Stricker, and

C. Stiller, “Deployment of deep neural networks for object detection on edge ai

devices with runtime optimization,” in Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV) Workshops, pp. 1015–1022, October 2021.

209 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

[202] S. Lee, H. Seong, S. Lee, and E. Kim, “Correlation verification for image retrieval,”

in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 5374–5384, June 2022.

[203] S. Gkelios, A. Kastellos, Y. Boutalis, and S. A. Chatzichristofis, “Universal image

embedding: Retaining and expanding knowledge with multi-domain fine-tuning,”

IEEE Access, 2023.

[204] J. Wang, S. Guo, X. Xie, and H. Qi, “Federated unlearning via class-discriminative

pruning,” in Proceedings of the ACM Web Conference 2022, pp. 622–632, 2022.

[205] C.-H. Yao, B. Gong, H. Qi, Y. Cui, Y. Zhu, and M.-H. Yang, “Federated multi-target

domain adaptation,” in Proceedings of the IEEE/CVF Winter Conference on

Applications of Computer Vision, pp. 1424–1433, 2022.

[206] H. Yin, A. Mallya, A. Vahdat, J. M. Alvarez, J. Kautz, and P. Molchanov,

“See through gradients: Image batch recovery via gradinversion,” in Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pp. 16337–16346, 2021.

[207] I. R. Dave, C. Chen, and M. Shah, “Spact: Self-supervised privacy preservation

for action recognition,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pp. 20164–20173, 2022.

[208] K. Doshi and Y. Yilmaz, “Federated learning-based driver activity recognition for

edge devices,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR) Workshops, pp. 3338–3346, June 2022.

[209] Q. Meng, F. Zhou, H. Ren, T. Feng, G. Liu, and Y. Lin, “Improving

federated learning face recognition via privacy-agnostic clusters,” arXiv preprint

arXiv:2201.12467, 2022.

[210] D. Chowdhury, S. Banerjee, M. Sannigrahi, A. Chakraborty, A. Das, A. Dey, and

A. D. Dwivedi, “Federated learning based covid-19 detection,” Expert Systems,

vol. 40, no. 5, p. e13173, 2023.

[211] L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai, “Exploiting shared

representations for personalized federated learning,” in International conference on

machine learning, pp. 2089–2099, PMLR, 2021.

[212] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an

invariant mapping,” in 2006 IEEE computer society conference on computer vision

and pattern recognition (CVPR’06), vol. 2, pp. 1735–1742, IEEE, 2006.

[213] A. Psaltis, A. Kastellos, C. Z. Patrikakis, and P. Daras, “Fedlid: Self-supervised

federated learning for leveraging limited image data,” in Proceedings of the

IEEE/CVF International Conference on Computer Vision, pp. 1039–1048, 2023.

A. Psaltis 210

Federated, Multi-agent, Deep Reinforcement Learning

[214] Q. Li, B. He, and D. Song, “Model-contrastive federated learning,” in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

pp. 10713–10722, June 2021.

[215] F. Zhang, K. Kuang, L. Chen, Z. You, T. Shen, J. Xiao, Y. Zhang, C. Wu, F. Wu,

Y. Zhuang, et al., “Federated unsupervised representation learning,” Frontiers of

Information Technology & Electronic Engineering, vol. 24, no. 8, pp. 1181–1193,

2023.

[216] Y. Shen, Y. Zhou, and L. Yu, “Cd2-pfed: Cyclic distillation-guided channel

decoupling for model personalization in federated learning,” in Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pp. 10041–10050, 2022.

[217] N. Tastan and K. Nandakumar, “Capride learning: Confidential and private

decentralized learning based on encryption-friendly distillation loss,” in Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pp. 8084–8092, 2023.

[218] T. Lin, L. Kong, S. U. Stich, and M. Jaggi, “Ensemble distillation for robust model

fusion in federated learning,” Advances in Neural Information Processing Systems,

vol. 33, pp. 2351–2363, 2020.

[219] L. Zhang, L. Shen, L. Ding, D. Tao, and L.-Y. Duan, “Fine-tuning global model

via data-free knowledge distillation for non-iid federated learning,” in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

pp. 10174–10183, June 2022.

[220] J. Jang, H. Ha, D. Jung, and S. Yoon, “Fedclassavg: Local representation learning for

personalized federated learning on heterogeneous neural networks,” in Proceedings

of the 51st International Conference on Parallel Processing, pp. 1–10, 2022.

[221] Y. Tan, G. Long, L. Liu, T. Zhou, Q. Lu, J. Jiang, and C. Zhang, “Fedproto:

Federated prototype learning across heterogeneous clients,” Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 36, no. 8, pp. 8432–8440, 2022.

[222] Y. Tan, G. Long, J. Ma, L. Liu, T. Zhou, and J. Jiang, “Federated learning

from pre-trained models: A contrastive learning approach,” Advances in Neural

Information Processing Systems, vol. 35, pp. 19332–19344, 2022.

[223] W. Huang, M. Ye, and B. Du, “Learn from others and be yourself in heterogeneous

federated learning,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pp. 10143–10153, 2022.

[224] M. Luo, F. Chen, D. Hu, Y. Zhang, J. Liang, and J. Feng, “No fear of heterogeneity:

Classifier calibration for federated learning with non-iid data,” Advances in Neural

Information Processing Systems, vol. 34, pp. 5972–5984, 2021.

211 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

[225] H. Xia, K. Li, and Z. Ding, “Personalized semantics excitation for federated

image classification,” in Proceedings of the IEEE/CVF International Conference on

Computer Vision, pp. 19301–19310, 2023.

[226] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and

D. Batra, “Grad-cam: Visual explanations from deep networks via gradient-based

localization,” in Proceedings of the IEEE international conference on computer

vision, pp. 618–626, 2017.

[227] L. N. Smith, “A disciplined approach to neural network hyper-parameters: Part

1–learning rate, batch size, momentum, and weight decay,” arXiv preprint

arXiv:1803.09820, 2018.

[228] Y. Zhang, Y. Xu, S. Wei, Y. Wang, Y. Li, and X. Shang, “Doubly contrastive

representation learning for federated image recognition,” Pattern Recognition,

vol. 139, p. 109507, 2023.

[229] X. Chen and K. He, “Exploring simple siamese representation learning,”

in Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, pp. 15750–15758, 2021.

[230] P. Singh, M. K. Singh, R. Singh, and N. Singh, “Federated learning: Challenges,

methods, and future directions,” in Federated Learning for IoT Applications,

pp. 199–214, Springer, 2022.

[231] T. R. Gadekallu, Q.-V. Pham, T. Huynh-The, S. Bhattacharya, P. K. R.

Maddikunta, and M. Liyanage, “Federated learning for big data: A survey on

opportunities, applications, and future directions,” arXiv preprint arXiv:2110.04160,

2021.

[232] C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao, “A survey on federated

learning,” Knowledge-Based Systems, vol. 216, p. 106775, 2021.

[233] Q. Li, Y. Diao, Q. Chen, and B. He, “Federated learning on non-iid data silos:

An experimental study,” in 2022 IEEE 38th International Conference on Data

Engineering (ICDE), pp. 965–978, IEEE, 2022.

[234] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, J. Fernandez-Marques, Y. Gao, L. Sani,

K. H. Li, T. Parcollet, P. P. B. de Gusmão, et al., “Flower: A friendly federated

learning research framework,” arXiv preprint arXiv:2007.14390, 2020.

[235] F. Lai, Y. Dai, S. Singapuram, J. Liu, X. Zhu, H. Madhyastha, and M. Chowdhury,

“Fedscale: Benchmarking model and system performance of federated learning at

scale,” in International Conference on Machine Learning, pp. 11814–11827, PMLR,

2022.

A. Psaltis 212

Federated, Multi-agent, Deep Reinforcement Learning

[236] J. Deng, J. Guo, D. Zhang, Y. Deng, X. Lu, and S. Shi, “Lightweight face recognition

challenge,” in Proceedings of the IEEE/CVF International Conference on Computer

Vision Workshops, pp. 0–0, 2019.

[237] J. Deng, J. Guo, J. Yang, N. Xue, I. Kotsia, and S. Zafeiriou, “ArcFace: Additive

angular margin loss for deep face recognition,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 44, pp. 5962–5979, oct 2022.

[238] T. Xue, B. Chen, J. Wu, D. Wei, and W. T. Freeman, “Video enhancement

with task-oriented flow,” International Journal of Computer Vision, vol. 127,

pp. 1106–1125, 2019.

[239] F. Hernandez, V. Nguyen, S. Ghannay, N. Tomashenko, and Y. Esteve, “Ted-lium 3:

Twice as much data and corpus repartition for experiments on speaker adaptation,”

in Speech and Computer: 20th International Conference, SPECOM 2018, Leipzig,

Germany, September 18–22, 2018, Proceedings 20, pp. 198–208, Springer, 2018.

[240] S. Mirkin, M. Jacovi, T. Lavee, H.-K. Kuo, S. Thomas, L. Sager, L. Kotlerman,

E. Venezian, and N. Slonim, “A recorded debating dataset,” arXiv preprint

arXiv:1709.06438, 2017.

[241] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: an asr corpus

based on public domain audio books,” in 2015 IEEE international conference on

acoustics, speech and signal processing (ICASSP), pp. 5206–5210, IEEE, 2015.

[242] A. Baevski et al., “wav2vec 2.0: A framework for self-supervised learning of speech

representations,” Advances in Neural Information Processing Sysrecognitiontems,

vol. 33, pp. 12449–12460, 2020.

[243] A. Shafahi et al., “Poison frogs! targeted clean-label poisoning attacks on neural

networks,” in Advances in Neural Information Processing Systems, vol. 31, 2018.

[244] T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnerabilities in the

machine learning model supply chain,” 2017.

[245] E. Bagdasaryan et al., “How to backdoor federated learning,” in International

Conference on Artificial Intelligence and Statistics, PMLR, 2020.

[246] A. N. Bhagoji et al., “Analyzing federated learning through an adversarial lens,” in

International Conference on Machine Learning, PMLR, 2019.

[247] A. Adler, M. Geierhos, and E. Hobley, “Influence of training data on the

invertability of neural networks for handwritten digit recognition,” in 2021 20th

IEEE International Conference on Machine Learning and Applications (ICMLA),

IEEE, 2021.

213 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

[248] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support vector

machines,” 2013.

[249] K. Psychogyios, T.-H. Velivassaki, S. Bourou, A. Voulkidis, D. Skias, and

T. Zahariadis, “Gan-driven data poisoning attacks and their mitigation in federated

learning systems,” Electronics, vol. 12, no. 8, p. 1805, 2023.

[250] H. Wang, K. Sreenivasan, S. Rajput, H. Vishwakarma, S. Agarwal, J. yong Sohn,

K. Lee, and D. Papailiopoulos, “Attack of the tails: Yes, you really can backdoor

federated learning,” 2020.

[251] L. Xu et al., “Information security in big data: privacy and data mining,” IEEE

Access, vol. 2, pp. 1149–1176, 2014.

[252] E.-M. Schomakers, C. Lidynia, and M. Ziefle, “All of me? users’ preferences

for privacy-preserving data markets and the importance of anonymity,” Electronic

Markets, vol. 30, no. 3, pp. 649–665, 2020.

[253] N. Papernot and I. Goodfellow, “Privacy and machine learning: Two unexpected

allies,” 2021.

[254] M. Abadi et al., “Deep learning with di↵erential privacy,” in Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security, 2016.

[255] C. Gentry, A fully homomorphic encryption scheme. PhD thesis, Stanford University,

2009.

[256] L. J. Aslett, P. M. Esperança, and C. C. Holmes, “A review of homomorphic

encryption and software tools for encrypted statistical machine learning,” 2015.

[257] F. Bourse et al., “Fast homomorphic evaluation of deep discretized neural networks,”

in Annual International Cryptology Conference, Springer, 2018.

[258] C. Zhao et al., “Secure multi-party computation: theory, practice and applications,”

Information Sciences, vol. 476, pp. 357–372, 2019.

[259] S. Truex et al., “A hybrid approach to privacy-preserving federated learning,” in

Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security, 2019.

[260] W. Li, Z. Zhang, and Z. Liu, “Action recognition based on a bag of 3d points,”

in 2010 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition-Workshops, pp. 9–14, IEEE, 2010.

[261] J. Sung, C. Ponce, B. Selman, and A. Saxena, “Human activity detection from rgbd

images,” plan, activity, and intent recognition, vol. 64, 2011.

A. Psaltis 214

Federated, Multi-agent, Deep Reinforcement Learning

[262] B. Ni, G. Wang, and P. Moulin, “Rgbd-hudaact: A color-depth video database

for human daily activity recognition,” in Consumer Depth Cameras for Computer

Vision, pp. 193–208, Springer, 2013.

[263] J. Wang, Z. Liu, Y. Wu, and J. Yuan, “Mining actionlet ensemble for action

recognition with depth cameras,” in Computer Vision and Pattern Recognition

(CVPR), 2012 IEEE Conference on, pp. 1290–1297, IEEE, 2012.

[264] Z. Cheng, L. Qin, Y. Ye, Q. Huang, and Q. Tian, “Human daily action analysis with

multi-view and color-depth data,” in European Conference on Computer Vision,

pp. 52–61, Springer, 2012.

[265] S. Essid, X. Lin, M. Gowing, G. Kordelas, A. Aksay, P. Kelly, T. Fillon, Q. Zhang,

A. Dielmann, V. Kitanovski, R. Tournemenne, A. Masurelle, E. Izquierdo, N. E.

O’Connor, P. Daras, and G. Richard, “A multi-modal dance corpus for research into

interaction between humans in virtual environments,” Journal on Multimodal User

Interfaces, vol. 7, pp. 157–170, Mar 2013.

[266] H. S. Koppula, R. Gupta, and A. Saxena, “Learning human activities and object

a↵ordances from rgb-d videos,” The International Journal of Robotics Research,

vol. 32, no. 8, pp. 951–970, 2013.

[267] O. Oreifej and Z. Liu, “HON4D: Histogram of oriented 4d normals for activity

recognition from depth sequences,” in Computer Vision and Pattern Recognition

(CVPR), 2013 IEEE Conference on, pp. 716–723, June 2013.

[268] P. Wei, Y. Zhao, N. Zheng, and S.-C. Zhu, “Modeling 4d human-object interactions

for event and object recognition,” in 2013 IEEE International Conference on

Computer Vision, pp. 3272–3279, IEEE, 2013.

[269] G. Yu, Z. Liu, and J. Yuan, “Discriminative orderlet mining for real-time recognition

of human-object interaction,” in Asian Conference on Computer Vision, pp. 50–65,

Springer, 2014.

[270] J. Wang, X. Nie, Y. Xia, Y. Wu, and S.-C. Zhu, “Cross-view action modeling,

learning and recognition,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 2649–2656, 2014.

[271] H. Rahmani, A. Mahmood, D. Q. Huynh, and A. Mian, “HOPC: Histogram of

oriented principal components of 3d pointclouds for action recognition,” in European

Conference on Computer Vision, pp. 742–757, Springer, 2014.

[272] K. Wang, X. Wang, L. Lin, M. Wang, and W. Zuo, “3d human activity recognition

with reconfigurable convolutional neural networks,” in Proceedings of the 22nd ACM

international conference on Multimedia, pp. 97–106, ACM, 2014.

215 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

[273] C. Chen, R. Jafari, and N. Kehtarnavaz, “UTD-MHAD: A multimodal dataset for

human action recognition utilizing a depth camera and a wearable inertial sensor,”

in Image Processing (ICIP), 2015 IEEE International Conference on, pp. 168–172,

IEEE, 2015.

[274] H. Rahmani, A. Mahmood, D. Huynh, and A. Mian, “Histogram of oriented

principal components for cross-view action recognition,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, 2016.

[275] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv preprint

arXiv:1606.08415, 2016.

A. Psaltis 216

Appendix A

Implementation Tools and

Practical Aspects

A.1 Review of Tools and Libraries for FL

In our e↵ort to answer the question: ’Is there a framework that can overcome the

aforementioned limitations?’, we proceeded to evaluate various open-source FL frameworks

based on the following criteria: a) Node type: Where does the training take place (e.g.,

edge devices, smartphones, personal computers, or cloud servers)? b) Topology: Should

training be conducted on remote devices, or is local execution su�cient for an experimental

setup? c) Data Privacy: Is protection required from specific security mechanisms to ensure

data privacy? d) GPU: Is GPU execution necessary to accelerate training with a large

number of samples or large models? e) Community: Is it supported by a broad community

and well-documented tools that allow for quick adaptation to the new framework and

assist with bug detection and development? Within this framework, there’s a demand for

a tool that e↵ectively manages and secures the connections between various data owners

and the central entity. This tool is also responsible for coordinating the myriad tasks

vital for successful federated training. It plays a key role in setting up communication

protocols and interfaces with each component of the system. Initially, the tool acquires

the necessary code files for the training process. These files, which might include training

and evaluation scripts or configuration documents, are usually stored in a code versioning

system like GitLab, which is capable of tracking di↵erent versions of the same code. Once

secure communication is established and the new data training is complete, the model

validation outcomes are fed into an experiment tracking system, like Weights and Biases

or MLFLow (further details can be found in Section A.2 below). This setup enables the

tracking of performance metrics and hyperparameters for various training prototypes via

a user-friendly interface included in the tool. Additionally, the tool serves as a model

registry, allowing for the storage of each experimental iteration’s model as annotated

artifacts in a centralized repository. This arrangement facilitates comprehensive oversight

of the entire model development and prototyping process, with all the di↵erent model

217

Federated, Multi-agent, Deep Reinforcement Learning

versions and their respective evaluation metrics systematically organized within a single

platform.

A.1.1 FL Platform

Operational Model

Having explained the FL platform macroscopically, we are ready to dig deeper into the

interrelated processes that take place between the data-owning party (i.e. “FL node”)

and the data scientist (i.e. “FL server”). The initial step involves configuring and

deploying a central orchestration tool that establishes connections between multiple nodes,

ensuring secure data transmission within the system. In preparing for the FL lifecycle,

annotated data is placed in a specific directory designated for this purpose. Concurrently,

the necessary code for data preparation, model training, and validation is organized and

readied for execution. This setup phase is critical for the smooth functioning of the process.

Once the data and code are in place, the system automatically detects the availability of

new data versions, signaling readiness for training. This notification marks the beginning

of the iterations in the FL process, indicating that all preliminary configurations are

complete and the system is primed for the next stages of the learning cycle as detailed

in the dissertation. When there’s a need to fine-tune the model with a new version of

data, the relevant code for training is prepared. This involves adjusting the training and

validation scripts located in the code versioning component and configuring the training

hyperparameters. Triggering the FL orchestration tool then initiates the process, where

the model is sent to the participating nodes holding the data. This procedure is replicated

across multiple data parties, creating a cycle that includes continuous notifications about

new data versions and subsequent training requests. This loop facilitates an ongoing

exchange, ensuring that the model is consistently updated and improved with the latest

data inputs. Scaling down to a single data party scenario, we engage in a secondary

loop within the primary one, focusing on the specific steps and metadata exchanges

within this context. Here’s how the process unfolds: Once the model reaches the data

party, it undergoes training. After training, the metadata or training logs, along with the

saved artifacts, are fed into the ML lifecycle management tool, making them accessible for

analysis. Assuming the training meets expectations, the resulting model is then combined

with models from other nodes, with the data scientist choosing the appropriate weight

aggregation method. Next, the merged model and the validation script are sent back to

the data party for performance evaluation. The results of this evaluation, documented

in the validation logs, are then integrated into the experiment management tool. In the

final phase, the data scientist reviews these outcomes to determine if the performance

metrics meet the required standards. If not, the original model is reinitiated for another

training cycle. Conversely, if the model’s performance is satisfactory, it’s stored in the

model registry, ready for retrieval and deployment for future inference needs.

A. Psaltis 218

Federated, Multi-agent, Deep Reinforcement Learning

FL Orchestrator

The orchestration process in FL involves managing and coordinating the various

aspects of applying learning technologies. The orchestrator, a key player in this setup, is

tasked with managing device connections via secure communication protocols. This role

includes considering specific criteria for device participation, such as the optimal number of

devices, reliable internet connections, and other factors. The orchestrator’s responsibilities

extend to handling potential failures in the FL process, like device crashes, to ensure

uninterrupted training progress. While many orchestration strategies presuppose complete

device participation in every training round, the reality is that full participation does

not always lead to successful training convergence. Therefore, an e↵ective orchestrator

must account for the diverse characteristics of each device, including data variability,

computational capacity, and internet connectivity, to develop the most e↵ective device

selection strategy. This comprehensive analysis is crucial in formulating the most e↵ective

device selection strategy. Thus, the orchestrator’s role is pivotal in answering our initial

query about navigating the challenges in FL, ensuring that each device selected for

participation is optimal based on the collective analysis of these varied parameters. There

are four notable open-source technologies that can fulfil the role of an FL orchestrator,

each having been validated against the aforementioned criteria. These technologies include

the Federated AI Technology Enabler (FATE) 1, Google TensorFlow Federated (TFF) 2,

OpenMined PySyft 3, and NVIDIA Federated Learning Application Runtime Environment

(NVFLARE) 4. Each of these frameworks o↵ers unique features and capabilities that

align with the key requirements for e↵ective orchestration in FL environments. Their

validation against criteria such as device participation, secure communication, and e�cient

management of heterogeneous device properties ensures they are well-equipped to handle

the complexities and challenges of orchestrating FL processes.

Federated AI Technology Enabler (FATE): FATE is an open-source project initiated

by Webank’s AI Department to provide a secure computing framework to support

the federated AI ecosystem. It implements secure computation protocols based

on homomorphic encryption and multi-party computation (MPC). It supports FL

architectures and secure computation of various ML algorithms, including logistic

regression, tree-based algorithms, DL and transfer learning. Google TensorFlow Federated

(TFF): TensorFlow Federated (TFF) is an open-source framework for ML and other

computations on decentralized data. TFF has been developed to facilitate open research

and experimentation with FL, an approach to ML where a shared global model is trained

across many participating clients that keep their training data locally. For example, FL

has been used to train prediction models for mobile keyboards without uploading sensitive

typing data to servers. OpenMined PySyft: Pysyft is an open-source library that enables

1
https://github.com/FederatedAI/FATE

2
https://github.com/tensorflow/federated

3
https://github.com/OpenMined/PySyft

4
https://github.com/NVIDIA/NVFlare

219 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

FL by extending DL frameworks such as PyTorch in a transparent, lightweight, and

user-friendly manner. PyGrid is a peer-to-peer network in order for multiple devices

to collectively train AI models using the PySyft library. Its device in order to establish

a secure connection with the PyGrid network has to create credentials and provide a

token for authentication. NVFLARE: NVFLARE is a domain-agnostic, open-source FL

platform, developed by NVIDIA, used by researchers and data scientists to adapt existing

ML/DL workflow (Pytorch, Tensorflow) to a federated paradigm and enables developers

to build a secure, privacy-preserving o↵ering for a distributed multi-party collaboration.

Flower 5: Flower is an open-source FL framework. It is designed to be flexible and agnostic

to client hardware and ML frameworks, making it adaptable for a wide range of use cases

and environments. Flower facilitates the development and implementation of FL systems

by allowing researchers and developers to run experiments across diverse computational

settings and with various ML algorithms.

Figure A.1: NVIDIA FL Platform.

Figure A.1 illustrates that NVFLARE o↵ers a comprehensive suite of tools and

functionalities for creating a tailored FL environment. It includes extensible management

tools that support secure provisioning through SSL certifications, e�cient orchestration

via an administrative console, and detailed monitoring of the FL process using various

visualization techniques. NVFLARE also features pre-built workflow strategies for both

training and evaluation, which can be integrated with learning algorithms for e↵ective

model aggregation. Additionally, it encompasses privacy-preserving algorithms designed

to safeguard sensitive data and thwart attempts to reverse-engineer ML models. In

NVFLARE, provisioning serves to create a trusted configuration that is system-wide

and applicable to all participants, enabling them to engage in the FL process from

various locations. This involves generating configuration files that contain essential

network information like domain names, IP addresses, and ports, as well as authentication

credentials such as participant certificates. Data scientists or tool developers, who act as

5
https://flower.dev

A. Psaltis 220

Federated, Multi-agent, Deep Reinforcement Learning

administrators in NVFLARE, are responsible for customizing these files according to their

specific needs. They then distribute these configurations to the participants, including the

Orchestrator and various devices, to set up a secure and reliable connection. Once this

connection is in place, the administrator takes on the role of orchestrating the FL process,

which includes initiating, halting, or restarting the distributed training, among other tasks.

A.1.2 Privacy Preserving Capabilities of FL Frameworks

In this section, we will evaluate the FL frameworks described previously, with a

particular emphasis on their capabilities for preserving privacy. FATE: It is designed

to cater to industrial needs, o↵ering secure computation capabilities for various ML

tasks. FATE achieves this by incorporating technologies like Multiparty Computation

and Homomorphic Encryption, making it a robust choice for FL applications in business

contexts. PySyft: For implementing privacy-preserving mechanisms with PySyft,

integrating the PyGrid framework is essential. PyGrid, designed as a peer-to-peer network,

facilitates ML and data privacy. It supports DP and SMC, utilizing HE to achieve these

privacy goals. TensorFlow Federated: Included within this framework is TensorFlow

Privacy, a Python library that facilitates the application of privacy techniques during

ML model training. TensorFlow Privacy particularly focuses on implementing Di↵erential

Privacy by introducing Gaussian or Laplacian noise into the data, depending on specific

values, to enhance privacy protections. NVIDIA Flare: Equipped with the necessary

features to establish a secure FL environment and supports a variety of privacy-preserving

methods, including DP and HE, to facilitate e�cient and secure multi-party distributed

collaboration. PaddleFL 6 is a recognized FL framework notable for its versatility

in handling various FL tasks and its suitability for large-scale deployments. It also

provides support for secure aggregation and incorporates privacy-preserving measures like

Di↵erential Privacy and secure multiparty computations, enhancing its utility in diverse

FL scenarios. Sherpa.ai 7, is an open-source framework designed for FL. It facilitates

the training of ML models in a federated setup and integrates Di↵erential Privacy into

the process. Additionally, several popular FL frameworks exist that do not include

privacy-preserving features. For instance, Flower is an open-source, client-agnostic FL

framework known for its expandability and scalability. It allows researchers to experiment

with and develop tailor-made solutions, though it lacks built-in privacy-preserving

mechanisms. The above-described frameworks are summarized in Table A.1, by presenting

the main pros and cons of di↵erent FL Frameworks regarding the training of ML models

with privacy-preserving capabilities.

Based on the previous analysis, it’s evident that each framework o↵ers distinct

privacy-preserving methods. To determine the most suitable framework for our

experimental needs, a comparison table has been developed. This table, referred to as

6
https://github.com/PaddlePaddle/PaddleFL

7
https://sherpa.ai

221 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

Table A.1: Pros and Cons of di↵erent Federated Learning frameworks focusing on

privacy-preserving aspects.
FL Framework Pros Cons

Easy to use PySyft is only for 1 server and 1 client (Duet)

Provides privacy preserving techniques, like Di↵erential Privacy, Multi-Party Computation and Homomorphic encryption Run only in simulation modePySyft & PyGrid

For real FL scenarios, the PyGrid is needed

Seamless integration with existing TensorFlow ML models It can be used only in simulation mode
TensorFlow Federated

Supports secure aggregation and di↵erential privacy Neither Homomorphic Encryption nor Multi-party computation

Provides privacy-preserving methods such as DP, Homomorphic Encryption, and MPC

Training of ML model between 1 server and many remote clients

GPU training support

It is customizable, supporting both TensorFlow and PyTorch

NVIDIA Flare

Good documentation

It is a new framework, and the support community is not that big

Production Ready It does not establish any di↵erential privacy algorithms

Provides many FL algorithms Doesn’t use GPUs for trainingFATE

Secure computation protocols, based on Homomorphic Encryption and Multi-Party Computation

PaddleFL Provides enough privacy-preserving methods such as DP, MPC and secure aggregation Has poor documentation and has a small community

Provides di↵erential privacy Can run only in simulation mode
Sherpa.ai

It can be easily customizable Limited application scenarios

Supports a great number of clients
Flower

It is customizable
It does not support privacy preserving techniques.

Table A.2, outlines the specific privacy-preserving mechanisms supported by each of the

analyzed frameworks.

Table A.2: Privacy preserving methods of di↵erent frameworks.

FL Framework SA DP HE SMC

PySyft & PyGrid x x x x

TensorFlow Federated x x

NVIDIA Flare x x x x

FATE x x x

PaddleFL x x x

Sherpa.ai x

Flower x

Based on these insights, NVIDIA Flare has been chosen as the FL framework for

this dissertation, as it stands out among other open-source options in terms of its

comprehensive features. NVIDIA Flare enables seamless integration of existing ML and

DL models from TensorFlow or PyTorch into a federated system, facilitating model

training across multiple remote clients with GPU support. Furthermore, it addresses

security concerns related to model exchanges by ensuring the confidentiality and integrity

of data, and safeguarding against threats such as data and model poisoning attacks. This

level of security is attributed to the robust privacy-preserving mechanisms incorporated

within the NVIDIA Flare framework.

A. Psaltis 222

Federated, Multi-agent, Deep Reinforcement Learning

A.2 Tools and Libraries for FL Implementation

A.2.1 FL Topologies and Design Principles

FL involves distributing the training process across a network of nodes, and the

arrangement of this network can significantly impact the model training. The various

topologies used in FL di↵er in factors such as the aggregation algorithm and distribution

of the model, the number of communication links needed for training, and the associated

costs of setting up the training system. It is possible to implement FL with or without

a central server for orchestration. Three common network topologies used in FL are the

Star topology, Ring topology, and Hybrid topology, as documented in Ganapathy’s work

[21]. In a star-like topology for FL, each node communicates with a central server and

only shares small updates to the model with the server. This allows for asynchronous

learning, where nodes can train independently without waiting for other nodes. Adding

new nodes is straightforward, but the speed of training can vary due to di↵erences in device

configurations and the number of training samples. Each node requires two communication

links for each round of communication: one to upload local updates and another to

download the global model from the server. In the Ring-like topology for FL, devices are

connected in a circular data path where each node is connected to two others. The training

process starts with the first node, and a global model is initialized across all clients. Each

node updates the model weights after a fixed number of local iterations and transfers them

to the next adjacent node. This cyclical weight transfer is repeated until convergence, and

the output of the last node is the final model that needs to be redistributed among all

clients. This approach follows synchronous learning, as nodes depend on their peer nodes,

and computational capabilities should be comparable across all nodes. As this topology

does not require a central server, the cost of infrastructure development is lower, and fewer

communication links are needed. The hybrid topology combines the star-like and ring-like

topologies by involving both nodes and a server. Nodes are grouped together and arranged

sequentially, and the first node in each group begins training asynchronously using their

local data. Each node sends its model updates to the next adjacent node in the group after

training for a pre-defined number of local epochs. This process is repeated for all nodes in

each group, following the ring-like topology. The hybrid topology uses a combination of

synchronous and asynchronous learning, and the computational power of the server can

be compromised compared to the star-like topology. If the number of nodes is equal to

the number of groups, it is equivalent to FL in star-like topology.

A.2.2 FL Platform Processes and Workflow

Before starting FL, the data needs to be annotated and split into training and

validation sets. A tool is needed to establish communication protocols and orchestrate

the various tasks necessary for federated training. This tool retrieves code files, executes

the training process, and stores the results in an experiment tracking component. The

223 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

specific tool also acts as a model registry, storing the resulting model version in a central

repository. The best-performing model is chosen and fused with its previous version

using a state-of-the-art weight aggregation method, defined during the configuration of

the orchestration component. Lastly, the fused model is then served back to the FL

platform, ready for deployment. The aforementioned process is illustrated in Figure A.2.

Figure A.2: Building Block View of FL Platform.

Figure A.3 shows the workflow for FL, which involves configuring and deploying the

central orchestration tool to establish connections between nodes and ensure information

security. Annotated data is placed in a specific directory, and the data scientist organizes

code for tasks such as data preparation and model training. Once new training data is in

the data owner’s directory, the FL orchestration tool is triggered, and the model is sent

to the data owner party. After training, metadata and artifacts are ingested into the ML

lifecycle management tool. The FL server merges the locally trained models of each node

utilizing a weighted aggregation method. The aggregated global model and validation

script are sent back to the data owner party for evaluation, and results are assessed by the

data scientist. If necessary, the loop starts over with new training. If the model performs

well, it is stored in the model registry for deployment in inference.

A. Psaltis 224

Federated, Multi-agent, Deep Reinforcement Learning

Figure A.3: Workflow view of FL.

A.2.3 FL Framework

The FL orchestration process refers to the coordination activities performed while

applying learning technologies. The orchestrator is the actor in FL who is responsible for

accepting and forwarding device connections through a secure communication protocol

while taking into consideration certain participation criteria such as the optimal number

225 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

of participating devices, fast internet connection speed and etc. It is responsible for

handling failures in the FL process, including connected devices crashing to ensure the

training will continue to make progress. Most of the orchestration strategies assume full

device participation, that is, all devices participate in every training round. In practice,

the participation of all devices does not guarantee the convergence of the FL training

process. An e�cient orchestrator must take into consideration insights regarding each

device’s heterogeneous properties, considering data heterogeneity and bias, computational

resources, and Internet connection, in order to implement the most e�cient device selection

strategy.

The NVFLARE framework 8 has been selected for the development of the FL platform,

as it supports both DL and traditional ML algorithms, as well as horizontal and vertical

FL. It includes built-in FL aggregation algorithms (e.g ., FedAvg, FedProx, FedOpt,

Sca↵old, Ditto) and supports multiple training and validation workflows (i.e. global

model evaluation, cross-site validation), data analytics, and ML lifecycle management.

NVFLARE also o↵ers privacy preservation with di↵erential privacy and homomorphic

encryption, as well as security enforcement through federated authorization and privacy

policy. It is easily customizable and extensible and can be deployed on the cloud and

on-premise. Additionally, NVFLARE includes a simulator for rapid development and

prototyping, a dashboard UI for simplified project management and deployment, and

built-in support for system resiliency and fault tolerance.

ML lifecycle management

The ML lifecycle involves six processes, including Experimentation and Prototyping,

which is essential for achieving the best model. Model management is necessary to

handle di↵erent model-variants and experiments, track ML metadata, and govern model

deployment. MLflow 9 is an open-source tool for ML lifecycle management that consists

of four components, including MLflow Tracking and MLflow registry. MLflow enables

remote monitoring of training logs, tracking of hyperparameters, evaluation of models

against quality measures and fairness indicators, central storage and retrieval of models,

continuous evaluation of deployed models, and traceability, debugging, and reproducibility

of potential issues. For FL, MLflow Tracking and MLflow registry were deployed, providing

a UI that facilitates the interaction with the MLflow server.

A.2.4 Infrustructure and Implementation Details

Regarding the hardware infrastructure, for the FL experiments, we used 5 physical

nodes located at di↵erent locations across EU (Spain, Greece, Portugal and Cyprus).

Following the star-like topology (see Figure A.4), every local node connects to the central

server and establishes a one-to-one communication. In our case, a central server has been

8
https://nvidia.github.io/NVFlare/

9
https://mlflow.org/

A. Psaltis 226

Federated, Multi-agent, Deep Reinforcement Learning

selected among the 5 nodes that acts as the aggregator server for all the FL experiments

and the other devices are the clients that hold the local datasets. Except for the physical

nodes, we created an extra virtual client (Dummy node) that contains a global dataset

and is used only for evaluation purposes. Overall, we have 1 aggregator server, 5 nodes for

both training and evaluation and 1 virtual node only for validation. Secure communication

between clients and the server is established through a VPN connection to ensure that

sensitive data (parameters) is safely transmitted and prevent unauthorised access. All

the devices that participate in the FL process are almost identical and have the same

resources. The aggregator server has 5 Nvidia RTX 3090 GPUs with 24GB VRAM, 2

nodes (Spain) have 4 Nvidia RTX 3090 GPUs with 24GB VRAM, 1 node (Greece) has 4

Nvidia RTX A5000 GPUs with 24GB VRAM, last two nodes (Cyprus and Portugal) are

equipped with 4 Nvidia RTX 3090 GPUs and 24GB VRAM.

Figure A.4: The adopted Star-like topology that utilizes a centralized server to create

and share the global model, while five peripheral nodes participate asynchronously in the

training process.

A.2.5 Workflow Adaptations

Unlike previous studies that conduct mostly simplified Proof of Concept (PoC)

experiments in federated settings, usually involving virtual nodes, in this work we report

the results and the analysis of large-scale FL experiments for various AI tools, using the

specific hardware infrastructure described, under realistic and demanding scenarios. Since

we conducted the experiments under realistic conditions in physical nodes, we followed

a more sophisticated FL approach than starting the process, training the models and

227 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

evaluating the performance. Firstly, the network configuration file is created to provide

information related to participants including domain names, port numbers or ID addresses

that will be used for the connection with the server. For each di↵erent tool’s experiments,

we use a separate set of ports to avoid conflicts during models training in parallel.

Each developer creates for each of his/her tools a Dockerfile that contains the required

information and packages for the communication establishment with the aggregator and

the deployment of the tools to clients’ sites. The Dockerfile is sent to each client device

through the VPN connection to be built. Once all the clients have the required information,

the FL process starts and follows the FL server’s and clients’ configurations.

The NVFLARE framework o↵ers built-in methods and algorithms but also gives the

capability to build custom methods dedicated to specific needs. In our case, our tools

cover a large range of di↵erent tasks and data types including Face Re-identification (Face

ReID), Video Super-Resolution (VSR), Named Entity Recognition (NERC) and Audio

Speech Recognition (ASR) and is necessary to develop some custom methods to handle

the local training and evaluation, and global aggregation process.

FL Server (Aggregator) Stack: As we mentioned before, we created a virtual

(Dummy) node only for evaluation purposes. The node holds a global dataset that is

used to evaluate the performance and generalisation of both the locally trained and the

global aggregated models. Since the ‘Dummy ’ node does not participate in the training

process we built a custom aggregation method that can identify and exclude the weights

of the Dummy node from the aggregation process. Moreover, the built-in JSON generator

function, which is used to report the results of the FL process in a JSON format, was

modified to enable the usage of MLFlow for the tracking of the training and evaluation

phases by logging parameters, code versions, metrics, and output files. Last, besides the

evaluation of the local models on their local test sets and the global test set, we also

conducted the cross-site evaluation, when all the clients had finished training. During

the cross-site model evaluation, every client validates other clients’ models and the global

model on their local datasets.

FL Client (Data Owner) Stack: The client configuration files contain mainly all

the parameters that are required for the local training process, including model and data

loader arguments, number of local epochs, etc. These parameters are di↵erent for each

tool and the developer is responsible to choose the more suitable ones and create the client

configuration files. The only extra arguments that have been added are a few parameters

related to the MLFlow framework for results reporting.

A. Psaltis 228

Appendix B

Best Practices and Guidelines for

Implementation

The guidelines for using NVIDIA FLARE with PyTorch o↵er a comprehensive and

detailed roadmap for researchers and developers looking to implement FL solutions.

This document covers essential requirements, outlines the necessary folder structure, and

provides step-by-step instructions for custom file modifications. Furthermore, it delves into

the specifics of integrating code with NVIDIA FLARE, ensuring a seamless setup process.

With a focus on practical implementation, these guidelines are designed to facilitate the

development of FL applications, leveraging the advanced capabilities of NVIDIA FLARE

in a PyTorch environment.

B.1 Installing NVFLARE for FL training on virtual nodes

B.1.1 Requirements

NVFLARE requires python >= 3.8.10

Install pip3 install nvflare, in the virtual environment builder to run your tool

B.1.2 Folder Structure

FL application: (e.g. Image classification) The FL application folders can have

the below structure: FL application name (e.g. image classification) config: contains

client and server configurations config fed client.json config fed server.json custom:

contains the custom components of your application network.py dataset.py trainer.py

pt model locator.py pt constants.py ... any other file related to your application

229

Federated, Multi-agent, Deep Reinforcement Learning

B.1.3 Modifications on Your Custom Files

Network & Dataset

The class that creates your model (e.g. Network class) is not related to NVIDIA

FLARE, so no changes are required. Important note: Model class should be nn.Module.

Errors may occur for other types of inherited classes.
class SimpleNetwork (nn . Module) :

def i n i t (s e l f , k e rne l) :

super (SimpleNetwork , s e l f) . i n i t ()

s e l f . conv1 = nn . Conv2d (3 , 6 , k e rne l)

s e l f . pool = nn . MaxPool2d (2 , 2)

s e l f . conv2 = nn . Conv2d (6 , 16 , k e rne l)

s e l f . f c 1 = nn . Linear (16 ∗ 5 ∗ 5 , 120)

s e l f . f c 2 = nn . Linear (120 , 84)

s e l f . f c 3 = nn . Linear (84 , 10)

def forward (s e l f , x) :

x = s e l f . pool (F . r e l u (s e l f . conv1 (x)))

x = s e l f . pool (F . r e l u (s e l f . conv2 (x)))

x = torch . f l a t t e n (x , 1) # f l a t t e n a l l d imens ions e x c e p t ba t ch x = F . r e l u (s e l f . f c 1 (x))

x = F. r e l u (s e l f . f c 2 (x))

x = s e l f . f c 3 (x)

return x

Dataset/DataLoader classes for dataset preprocessing are not related to NVIDIA

FLARE and no changes are required.

Setup

To integrate your code into the NVIDIA FLARE a custom class OurTrainer should be

implemented as an NVIDIA FLARE Executor. Class OurTrainer works similarly to the

main function that you probably use to handle the arguments and set up the optimizer,

loss function and local training. All the parameters required for training should be passed

as arguments to the init() method OurTrainer can take the arguments’ values from the

client configuration file
class OurTrainer (Executor) :

def i n i t (s e l f , l r , epochs , kerne l ,

t ra in task name = AppConstants .TASK TRAIN,

submit model task name=AppConstants .TASK SUBMIT MOD

super (OurTrainer , s e l f) . i n i t ()

s e l f . l r = l r

s e l f . epochs = epochs

s e l f . k e rne l = ke rne l

s e l f . t ra in task name = tra in task name

s e l f . submit model task name = submit model task name

s e l f . exc lude va r s = exc lude va r s

Train ing s e t up

s e l f . model = SimpleNetwork (s e l f . k e rne l)

s e l f . dev i ce = torch . dev i ce (”cuda : 0 ” i f torch . cuda . i s a v a i l a b l e () else ”cpu”) s e l f . model . to (s e l f . dev i ce)

s e l f . l o s s = nn . CrossEntropyLoss ()

s e l f . opt imize r = SGD(s e l f . model . parameters () , l r=l r , momentum=0.9)

Set d a t a s e t

s e l f . t r a i n d a t a s e t = data s e t s . OurDataset tra in (. . .)

s e l f . t r a i n l o a d e r = torch . u t i l s . data . DataLoader (s e l f . t r a i n da t a s e t ,

b a t ch s i z e =64, s h u f f l e=True , num w

Setup th e p e r s i s t e n c e manager to save PT model .

The d e f a u l t t r a i n i n g c o n f i g u r a t i o n i s used by p e r s i s t e n c e manager

in case no i n i t i a l model i s found .

s e l f . d e f a u l t t r a i n c o n f = {” t r a i n ” : {”model” : type (s e l f . model) . name }}
s e l f . pe r s i s t ence manager = PTModelPersistenceFormatManager (

data=s e l f . model . s t a t e d i c t () , d e f a u l t t r a i n c o n f = s e l f . d e f a u l t t r a i n c o n f)

def l o c a l t r a i n (s e l f , f l c t x , weights , a b o r t s i g n a l) :

Set t h e model w e i g h t s s e l f . model . l o a d s t a t e d i c t (s t a t e d i c t=we i g h t s)

Basic t r a i n i n g

A. Psaltis 230

Federated, Multi-agent, Deep Reinforcement Learning

for epoch in range (s e l f . epochs) :

r unn ing l o s s = 0 .0

for i , batch in enumerate (s e l f . t r a i n l o a d e r) :

Everything up to this point is completely independent of NVIDIA FLARE. To integrate

your local train code into the NVIDIA FLARE API, implement the method execute which

is called every time the client receives an updated model from the server with the task

“train”. This is a typical execute function that you can use exactly as it is to enable FL.

Indeed, you can make any modification you want to cover your needs

def execute (s e l f , task name : str , sha r eab l e : Shareable , f l c t x : FLContext , a b o r t s i g n a l : S i gna l) −> Shareable :

try :

i f task name == s e l f . t r a in ta sk name :

Get model w e i g h t s

try :

dxo = from shareab l e (shareab l e)

except :

s e l f . l o g e r r o r (f l c t x , ”Unable to ex t r a c t dxo from shareab l e . ”)

return make reply (ReturnCode .BAD TASK DATA)

Ensure data k ind i s w e i g h t s .

i f not dxo . data kind == DataKind .WEIGHTS:

s e l f . l o g e r r o r (f l c t x , f ” data kind expected WEIGHTS but got {dxo . data kind } i n s t ead . ”)

return make reply (ReturnCode .BAD TASK DATA)

Convert w e i g h t s to t en s o r . Run t r a i n i n g

to r ch we ight s = {k : torch . a s t en s o r (v) for k , v in dxo . data . i tems ()}
s e l f . l o c a l t r a i n (f l c t x , torch we ights , a b o r t s i g n a l)

Check t h e a b o r t s i g n a l a f t e r t r a i n i n g .

l o c a l t r a i n r e t u rn s e a r l y i f a b o r t s i g n a l i s t r i g g e r e d .

i f abo r t s i g n a l . t r i g g e r e d :

return make reply (ReturnCode .TASK ABORTED)

Save th e l o c a l model a f t e r t r a i n i n g .

s e l f . s av e l o ca l mode l (f l c t x)

Get t h e new s t a t e d i c t and send as we i g h t s

new weights = s e l f . model . s t a t e d i c t ()

new weights = {k : v . cpu () . numpy() for k , v in new weights . i tems ()}

outgoing dxo = DXO(data kind=DataKind .WEIGHTS, data=new weights ,

meta={MetaKey .NUM STEPS CURRENT ROUND: s e l f . n i t e r a t i o n s })

return outgoing dxo . t o sha r e ab l e ()

e l i f task name == s e l f . submit model task name :

Load l o c a l model

ml = s e l f . l o ad l o ca l mode l (f l c t x)

Get t h e model parameters and c r e a t e dxo from i t

dxo = mode l l ea rnab l e to dxo (ml)

return dxo . t o sha r e ab l e ()

else :

return make reply (ReturnCode .TASKUNKNOWN)

except :

s e l f . l o g ex c ep t i on (f l c t x , f ”Exception in s imple t r a i n e r . ”)

return make reply (ReturnCode .EXECUTION EXCEPTION)

def s ave l o ca l mode l (s e l f , f l c t x : FLContext) :

run d i r = f l c t x . g e t eng in e () . get workspace () . g e t r un d i r (f l c t x . get prop (ReservedKey .RUNNUM))

mode l s d i r = os . path . j o i n (run d i r , PTConstants . PTModelsDir)

i f not os . path . e x i s t s (mode l s d i r) :

os . makedirs (mode l s d i r)

model path = os . path . j o i n (models d i r , PTConstants . PTLocalModelName)

ml = make model learnable (s e l f . model . s t a t e d i c t () , {})
s e l f . pe r s i s t ence manager . update (ml)

torch . save (s e l f . pe r s i s t ence manager . t o p e r s i s t e n c e d i c t () , model path)

def l o ad l o ca l mode l (s e l f , f l c t x : FLContext) :

run d i r = f l c t x . g e t eng in e () . get workspace () . g e t r un d i r (f l c t x . get prop (ReservedKey .RUNNUM))

mode l s d i r = os . path . j o i n (run d i r , PTConstants . PTModelsDir)

i f not os . path . e x i s t s (mode l s d i r) :

return None

model path = os . path . j o i n (models d i r , PTConstants . PTLocalModelName)

231 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

s e l f . pe r s i s t ence manager = PTModelPersistenceFormatManager (data=torch . load (model path) ,

d e f a u l t t r a i n c o n f=s e l f . d e f a u l t t r a i n c o n f)

ml = s e l f . pe r s i s t ence manager . t o mode l l e a rnab l e (exc lude va r s=s e l f . e x c l ud e va r s)

return ml

Server & Client Configuration files

These .json files contain all the components that the server and the clients need for

the FL training process. Most of them are NVIDIA FLARE built-in components. In the

files below, the components that are used are the minimum ones required for the process.

config fed server.json

{
” fo rmat ve r s i on ” : 2 ,

” s e r v e r ” : {
” hear t bea t t imeout ” : 600

} ,

” t a s k d a t a f i l t e r s ” : [] ,

” t a s k r e s u l t f i l t e r s ” : [] ,

”components” : [

{
” id ” : ”model” ,

”path” : ”models . SimpleNetwork” ,

” args ” : {
” ke rne l ” : 5 ,

}
} ,

{
” id ” : ” p e r s i s t o r ” ,

”name” : ”PTFi leModelPers i stor ” ,

” args ” : {
”model” : ”model”

}
} ,

{
” id ” : ” sha r eab l e g ene r a t o r ” ,

”path” : ” nv f l a r e . app common . sha r eab l e g ene r a to r s . f u l l mod e l s h a r e ab l e g en e r a t o r . Ful lModelShareableGenerator ” ,

” args ” : {}
} ,

{
” id ” : ” aggregator ” ,

”path” : ” nv f l a r e . app common . aggregato r s . in t ime accumulate mode l aggregator . InTimeAccumulateWeightedAggregator” ,

” args ” : {
” expected data k ind ” : ”WEIGHTS”

}
} ,

{
” id ” : ”mode l l oca to r ” ,

”path” : ” p t mode l l o ca to r . PTModelLocator” ,

” args ” : {
}

}
] ,

”workf lows ” : [

{
” id ” : ” s c a t t e r and ga th e r ” ,

”name” : ”ScatterAndGather ” ,

” args ” : {
”m in c l i e n t s ” : 1 ,

”num rounds” : 2 ,

” s ta r t round ” : 0 ,

” wa i t t ime a f t e r m in r e c e i v ed ” : 10 ,

” agg r ega to r i d ” : ” aggregator ” ,

” p e r s i s t o r i d ” : ” p e r s i s t o r ” ,

” s h a r e ab l e g en e r a t o r i d ” : ” sha r eab l e g ene r a t o r ” ,

” t ra in task name ” : ” t r a i n ” ,

” t r a in t imeout ” : 0

}
}

]

}

A. Psaltis 232

Federated, Multi-agent, Deep Reinforcement Learning

config fed server.json

{
” fo rmat ve r s i on ” : 2 ,

” executor s ” : [

{
” tasks ” : [” t r a i n ” , ” submit model ”] ,

” executor ” : {
”path” : ” t r a i n e r . OurTrainer ” ,

” args ” : {
” l r ” : 0 .001 ,

” epochs ” : 3 ,

” ke rne l ” : 5

}
}

}
] ,

” t a s k r e s u l t f i l t e r s ” : [

] ,

” t a s k d a t a f i l t e r s ” : [

] ,

”components” : [

]

}

Extra files

The custom folder contains two extra files, the pt model locator.py and the

pt constants.py, as provided below.

import os

from typing import L i s t

import torch . cuda

from nv f l a r e . ap i s . dxo import DXO

from nv f l a r e . ap i s . f l c o n t e x t import FLContext

from nv f l a r e . app common . abs t ra c t . model import mode l l ea rnab l e to dxo

from nv f l a r e . app common . abs t ra c t . mode l l oca to r import ModelLocator

from nv f l a r e . app common . pt . p t f e d u t i l s import PTModelPersistenceFormatManager

from pt cons tan t s import PTConstants

class PTModelLocator (ModelLocator) :

def i n i t (s e l f , ex c lude va r s=None , model=None) :

super (PTModelLocator , s e l f) . i n i t ()

s e l f . model = model

s e l f . e x c lude va r s = exc lude va r s

def get model names (s e l f , f l c t x : FLContext) −> L i s t [str] :

return [PTConstants . PTServerName]

def l o cate mode l (s e l f , model name , f l c t x : FLContext) −> DXO:

i f model name == PTConstants . PTServerName :

s e r v e r r u n d i r = f l c t x . g e t eng in e () . get workspace () . g e t app d i r (f l c t x . get run number ())

model path = os . path . j o i n (s e r v e r r un d i r , PTConstants . PTFileModelName)

i f not os . path . e x i s t s (model path) :

return None

try :

Load the t o r c h model

dev i ce = ”cuda” i f torch . cuda . i s a v a i l a b l e () else ”cpu”

data = torch . load (model path , map locat ion=dev i ce)

s e l f . l o g i n f o (f l c t x , f ”Loaded {model name} model from {model path } . ”)

except Exception as e :

s e l f . l o g e r r o r (f l c t x , f ”Unable to load model : {e } . ”)

Setup th e p e r s i s t e n c e manager .

i f s e l f . model :

d e f a u l t t r a i n c o n f = {” t r a i n ” : {”model” : type (s e l f . model) . name }}
else :

d e f a u l t t r a i n c o n f = None

Use p e r s i s t e n c e manager to g e t l e a r n a b l e

per s i s t ence manager = PTModelPersistenceFormatManager (data , d e f a u l t t r a i n c o n f=d e f a u l t t r a i n c o n f)

ml = per s i s t ence manager . t o mode l l e a rnab l e (exc lude va r s=None)

233 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

Create dxo and r e t u rn

return mode l l ea rnab l e to dxo (ml)

else :

s e l f . l o g ex c ep t i on (f l c t x , f ”PTModelLocator doesn ’ t r e cogn i z e name : {model name}”)

return None

class PTConstants :

PTServerName = ” s e rv e r ”

PTFileModelName = ”FL global model . pt”

PTLocalModelName = ” loca l mode l . pt”

B.1.4 Setting up the Application Environment and Training the model

with virtual clients

To get started, run this command to generate a poc folder with a server, two clients,

and one admin:

poc −n 2

Copy your application folder (e.g. image classification) to the admin’s working folder:

mkdir −p poc/admin/ t r a n s f e r

cp −r f . . . / a p p l i c a t i o n f o l d e r /∗ poc/admin/ t r a n s f e r

Once you are ready to start the FL system, you can run the following commands to start

all the di↵erent parties. You have to start the server first:

. / poc/ s e r v e r / s ta r tup / s t a r t . sh

Once the server is running you can start the clients in di↵erent terminals (make sure your

terminals are using the environment with NVIDIA FLARE installed).

. / poc/ s i t e −1/s ta r tup / s t a r t . sh

. / poc/ s i t e −2/s ta r tup / s t a r t . sh

In one last terminal, start the admin (default username, password -¿ admin):

. / poc/admin/ s ta r tup / f l admin . sh

With the admin client command prompt successfully connected and logged in, enter the

commands below in order.

upload app appl i cat ion name

Uploads the application from the admin client to the server’s staging area.

set run number 1

Creates a run directory in the workspace for the run number on the server and all clients.

The run directory allows for the isolation of di↵erent runs so the information in one

particular run does not interfere with other runs.

deploy app appl i cat ion name a l l

This will make your application the active one in the run number workspace. After the

above two commands, the server and all the clients know your application will reside in

the run 1 workspace.

A. Psaltis 234

Federated, Multi-agent, Deep Reinforcement Learning

s t a r t app a l l

This start app command instructs the NVIDIA FLARE server and clients to start training.

Once the fl run is complete and the server has successfully aggregated the clients’ results

after all the rounds, run the following commands in the fl admin to shutdown the system.

shutdown a l l

B.2 NVIDIA FLARE remote training on distributed

infrastructure

B.2.1 Procedure overview

Establish a secure connection between the server (central node) and multiple remote

clients (node1, node2). Start the FL process. Train remotely the DL models for each tool.

B.2.2 Provisioning - Networking details

The purpose of provisioning in NVIDIA FLARE is to generate mutually trusted

system-wide configurations for all participants so all of them can join the NVIDIA FLARE

system across di↵erent locations. The configurations usually include, but are not limited

to, the following information: network discovery, such as domain names, port numbers or

IP addresses credentials for authentication, such as certificates of participants and root

authority authorization policy, such as roles, rights and rules tamper-proof mechanism,

such as signatures convenient commands, such as shell scripts with default command line

options to easily start an individual participant.

B.2.3 Project yaml file

This is an example yaml file, describing participants and builders, dedicated to a sample

distributed infrastructure. This is the key file that describes the information which the

provisioning tool will be using to generate startup kits for server, clients and admins.

IMPORTANT NOTE: To avoid any conflict between FL applications that will be running

in parallel, each tool will use a predefined set of ports to establish a connection. The file

with the predefined set of ports for each tool will be sent as soon as possible.
ap i v e r s i o n : 2

name : example pro jec t

d e s c r i p t i o n : NVFlare sample p r o j e c t yaml f i l e

pa r t i c i p an t s :

change example . com to th e FQDN o f t h e s e r v e r

− name : c en t ra l s e rve r name

type : s e r v e r

org : nameOfOrg

f e d l e a r n p o r t : 8534

admin port : 8535

ena b l e b y o c l o a d s Python codes in t h e app . De f au l t i s f a l s e .

enable byoc : t rue

− name : node1

type : c l i e n t

org : nameOfOrg

235 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

enable byoc : t rue

− name : node2

type : c l i e n t

org : nameOfOrg

enable byoc : t rue

− name : admin@mail . com

type : admin

org : nameOfOrg

r o l e s :

− super

The same methods in a l l b u i l d e r s are c a l l e d in t h e i r order d e f i n e d in b u i l d e r s s e c t i o n

bu i l d e r s :

− path : nv f l a r e . l i g h t e r . impl . workspace . WorkspaceBuilder

args :

t emp l a t e f i l e : master template . yml

− path : nv f l a r e . l i g h t e r . impl . template . TemplateBuilder

− path : nv f l a r e . l i g h t e r . impl . s t a t i c f i l e . S t a t i cF i l eBu i l d e r

args :

c o n f i g f o l d e r can be s e t t o inform NVFlare where to g e t c o n f i g u r a t i o n

c o n f i g f o l d e r : c on f i g

when docker image i s s e t t o a docker image name , docker . sh w i l l be g ene ra t ed on s e r v e r / c l i e n t /admin

docker image :

− path : nv f l a r e . l i g h t e r . impl . au th po l i cy . AuthPol icyBui lder

args :

orgs :

nameOfOrg :

− r e l axed

r o l e s :

super : super user o f system

groups :

r e l axed :

desc : org group with re l axed p o l i c i e s

r u l e s :

a l low byoc : t rue

a l l ow cu s t om da ta l i s t : t rue

d i s ab l ed : f a l s e

− path : nv f l a r e . l i g h t e r . impl . c e r t . CertBui lder

− path : nv f l a r e . l i g h t e r . impl . he . HEBuilder

args :

po ly modulus degree : 8192

c o e f f mod b i t s i z e s : [6 0 , 40 , 40]

s c a l e b i t s : 40

scheme : CKKS

− path : nv f l a r e . l i g h t e r . impl . s i gna tu r e . S ignatureBu i lde r

− path : nv f l a r e . l i g h t e r . impl . workspace . D i s t r i bu t i onBu i l d e r

args :

z ip password : f a l s e

NOTES

• Please make sure that the FL server port number is accessible by all participating

sides.

• This file is independent of your application and it should not be added to the

application’s folder.

• Please create a separate folder to put the file (e.g., workspaces).

B.2.4 Create your FL workspace

To create the secure workspace, please use the project.yml file to build a package and

copy it to secure workspace (in the admin site).

cd . / workspaces

p r ov i s i on −p . / p r o j e c t . yml

cp −r . / workspace/ example pro j ec t / prod 00 . / secure workspace

A. Psaltis 236

Federated, Multi-agent, Deep Reinforcement Learning

Workspace structure

workspace

example p r o j e c t

prod\ 00

admin\ name

star tup

s e r v e r \ name

star tup

c l i e n t 1 \ name

star tup

c l i e n t 2 \ name

star tup

. . .

The prod NN folders contain the provisioning results. The tool developer, who holds

the role of the admin in the FL process, should send to each participant (central-1, node1,

node2) the .zip file that contains the information required to establish a secured connection.

B.2.5 Set-up the FL environment of central server

Developers do not have permission to create a virtual environment (venv command)

on the central server. To handle this limitation, developers should setup the environment

using Docker. Below is a basic Dockerfile example that creates a Python env and installs

NVFLARE package (required). Each tool requires di↵erent packages that should be

included and installed.

FROM ubuntu : f o ca l −20220113

RUN apt−get update && apt−get upgrade −y

RUN apt−get i n s t a l l −y python3 python3−pip

TODO: prov ide ve r s i on numbers f o r every Python package

RUN python3 −m pip i n s t a l l n v f l a r e ==2.0.16

CMD [python3]

Each participant(central-1, node1, node2) should build the Docker image by running

the command:

docker bu i ld −−network=host −f Do ck e r f i l e −t f ed e ra t ed : l a t e s t .

Establish connection & start FL process

IMPORTANT: Please before starting the FL process, remove

from each participant’s (central-1, node1, node2) start.sh function

237 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

(/secure workspace/participant name/startup/start.sh) the symbol &, as highlighted

below:

#!/ usr / b in /env bash

DIR=”$ (cd ”$ (dirname ”${BASH SOURCE[0] } ”) ” >/dev/ nu l l 2>&1 && pwd) ”

$DIR/ sub s t a r t . sh #& removed

To get started, copy your application folder to the admin’s working folder (on the

distributed infrastructure, the admin is running on the central server name node)

mkdir −p secure workspace /admin@nameOfOrg . com/ t r a n s f e r

cp −r f . . . / a p p l i c a t i o n f o l d e r /∗ secure workspace /admin@nameOfOrg . com/ t r a n s f e r

Once ready to start the FL system, you can run the following commands to start all the

di↵erent parties. You have to start the server first. On the server’s site run the command

below:

docker run − i t −−network=”host ” −−dns 1 0 . 4 1 . 4 1 . 1 −v

‘pwd ‘ : / f ed f ede ra t ed : l a t e s t

/ f ed / secure workspace / c en t r a l s e rv e r name / s tar tup / s t a r t . sh

Once the server is running you can start the clients:

docker run − i t −−network=”host ” −−dns 1 0 . 4 1 . 4 1 . 1 −v

−−gpus a l l ‘pwd ‘ : / f ed f ede ra t ed : l a t e s t

/ f ed / secure workspace /node1/ s ta r tup / s t a r t . sh

docker run − i t −−network=”host ” −−dns 1 0 . 4 1 . 4 1 . 1 −v

−−gpus a l l ‘pwd ‘ : / f ed f ede ra t ed : l a t e s t

/ f ed / secure worckspace /node2/ s ta r tup / s t a r t . sh

Once the connection between the server and the clients has been established, start the

admin (username: admin name)

docker run − i t −−network host −−dns 1 0 . 4 1 . 4 1 . 1 −v

‘pwd ‘ : / f ed f ede ra t ed : l a t e s t

/ f ed / secure workspace /admin@nameOfOrg . com/ sta r tup / f l admin . sh

With the admin client command prompt successfully connected and logged in, enter

the commands below in order.

upload app appl i cat ion name

Uploads the application from the admin client to the server’s staging area.

set run number 1

Creates a run directory in the workspace for the run number on the server and all

clients. The run directory allows for the isolation of di↵erent runs so the information in

one particular run does not interfere with other runs.

deploy app appl i cat ion name a l l

A. Psaltis 238

Federated, Multi-agent, Deep Reinforcement Learning

This will make your application the active one in the run number workspace. After the

above two commands, the server and all the clients know your application will reside in

the run 1 workspace.

s t a r t app a l l

This start app command instructs the NVIDIA FLARE server and clients to start training.

Once the fl run is complete and the server has successfully aggregated the clients’

results after all the rounds, run the following commands in the fl admin to shutdown the

system.

shutdown a l l

B.2.6 NOTES

• The above process is related to network configuration and independent of the FL

application.

• The application folder should be located on the admin’s site and there is no need to

be sent to each participant.

• You should provide each client with a part of the dataset used to train your models.

239 A. Psaltis

Appendix C

Principal Threats and Mitigation

Strategies in Federated Learning

C.1 Threats

C.1.1 Data poisoning attacks

In data poisoning attacks within FL systems, adversaries aim to manipulate the

training data by introducing a mix of genuine and falsified data. These attacks are

categorized into two types: clean-label and dirty-label. Clean-label attacks [243] involve

altering the training data without changing the labels, as the data’s classification is

correctly verified. In contrast, dirty-label attacks [244], also known as backdoor attacks,

involve tampering with both the data and its labels to induce model misclassification.

An example of this is the label-flipping attack, where labels of legitimate training data

are switched to incorrect classes. The impact of data poisoning on the final model in

FL depends on the level of participant involvement in the attack and the volume of

compromised data.

C.1.2 Model poisoning attacks

On the contrary, model-poisoning attacks in FL involve either partially or completely

altering the model during the training phase. The aim here is to either corrupt the local

model’s weights before they are transmitted to the central server or to embed clandestine

backdoors within the global model [245]. Studies [246] suggest that in FL systems,

model-poisoning attacks tend to be more potent than data-poisoning attacks. This is

primarily because the central server’s aggregator, not being privy to the specifics of the

local updates, lacks the capacity to identify irregularities or verify the accuracy of the

updates it receives.

241

Federated, Multi-agent, Deep Reinforcement Learning

C.1.3 Model inversion attacks

Also known as member inference attacks, are designed to deduce the identities of

the individuals in the training dataset [247]. These attacks investigate the feasibility

of extracting specific training data details from a trained ML model. Such concerns

are particularly pertinent in the context of legal compliance, such as when data storage

limitations are in place or inter-institutional data exchange is restricted. As a result,

model inversion has become a significant area of research in today’s data-centric landscape.

Beyond privacy concerns, model inversion o↵ers insights into the workings of a ML model,

helping to understand its decision-making process and the nature of information retained

within the model. Model inversion can be applied to various predictive systems like linear

regression, decision trees, neural networks, or any ML model that generates predictions

from input data. Essentially, model inversion reverses the model’s function: instead of

making predictions from inputs, it reconstructs input data that the model most confidently

associates with a certain target class. Since the model has learned the characteristics of

its training data, it’s assumed that the reconstructed data could reveal information about

the original training inputs. In such attacks, the adversary has access to the trained model

but not the actual training data.

The impact of data poisoning attacks in image classification tasks is investigated in

[248] using the benchmark dataset MNIST and CIFAR-10. Specifically, this work studies

the impact of data poisoning attacks on FL models regarding various percentages of

malicious participants, random and targeted label flipping and the time of the attack.

A higher percentage of malicious nodes results in higher degradation of the model

performance. Moreover, a targeted data poisoning attack is detected more di�cult.

Finally, the time that an attack is performed is a crucial aspect, while a model that is

trained with malicious nodes up to a point can converge if enough time is given. The work

in [249] presents two variants of data poisoning attacks, namely model degradation and

targeted label attacks. Both of those attacks are based on synthetic images generated by

GANs. Through experiments, it is observed that the GAN-based attacks manage to fool

common federated defences. Specifically, the model degradation attack provokes around

25% accuracy degradation, while the targeted label attack results in label misclassification

of 56%. The authors also introduce a mechanism to mitigate these attacks, which is

based on clean-label training on the server side. A distributed backdoor attack as a data

poisoning attack on FL systems is proposed in [250]. A local trigger is chosen by each

adversary instead of a common global one. During inference, attackers exploit the local

triggers to form global ones. This work compares this kind of attack to a centralised

approach, and they conclude that it is more persistent than the centralised scenarios.

A. Psaltis 242

Federated, Multi-agent, Deep Reinforcement Learning

C.2 Defence mechanisms

C.2.1 Data Anonymisation

Data anonymization, a crucial initial step in data protection, involves transforming

data so it cannot be linked back to individuals. This process can be executed by either

removing sensitive information or introducing random values into the dataset. Typically,

input data contains two kinds of identifiers: direct and indirect. Direct identifiers are

clear attributes like names, locations, and phone numbers that can directly point to

an individual. In contrast, indirect identifiers consist of variable combinations (such

as occupation and educational background) that can indirectly identify an individual

through cross-referencing. Understanding the data’s characteristics is key to implementing

e↵ective anonymization strategies. These strategies should aim to use relevant pseudonyms

for identifiers, ensuring the anonymized data remains ethically sound, reusable, and in

compliance with data protection regulations. Nevertheless, the degree of anonymization

often varies across applications and largely depends on the level of consent provided by

participants for specific anonymization procedures.

Recent literature has introduced various techniques for data privacy through

anonymization before analysis. Yet, anonymization has its privacy limitations, as

adversaries often access auxiliary information about individuals in the data. A notable

example is the statistical de-anonymization of the Netflix Prize movie-ratings dataset [251],

where authors demonstrated this by cross-referencing with publicly available ratings on

IMDb. Additionally, video anonymization e↵orts, like blurring identifiable features [252],

face challenges if features aren’t fully concealed and non-participants view the videos,

necessitating explicit participant consent. These instances highlight that maintaining

privacy through anonymization is complex, especially considering the extent of information

adversaries might already possess [253].

C.2.2 Di↵erential Privacy

Di↵erential Privacy (DP) is a methodology that integrates randomness into certain

aspects of a system’s operations to enhance privacy [254]. In the context of FL, this

approach can be applied to the learning algorithm, although it’s versatile enough to be

used in various algorithmic contexts. The key idea behind incorporating randomness into

a learning algorithm is to obscure any discernible patterns that might be tied to either

the model with its parameters or the training data. Without this layer of randomness,

adversaries could potentially deduce insights about the learning parameters needed for

convergence or predict the likelihood of certain parameters being chosen by the algorithm

for a given dataset. DP e↵ectively mitigates these risks. Broadly, di↵erential privacy

can be categorized into Local Di↵erential Privacy (LDP), Centralized Di↵erential Privacy

(CDP), also known as Global DP, and Distributed Di↵erential Privacy (DDP).

LDP operates by adding noise to data at the local node level, eliminating the need for

243 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

a trusted central authority. In this model, users’ data privacy is protected because the

noise is added before data reaches any central server. Conversely, CDP relies on a trusted

central aggregator to add noise to the raw data received from users, ensuring that responses

to queries on this data cannot be reverse-engineered to reveal private information. While

CDP typically o↵ers more accuracy due to the centralized noise addition, it requires users

to trust the central curator. DDP combines the features of both LDP and CDP, enhancing

client privacy without the need for a fully trusted server and providing better utility than

LDP. In DDP, the noise distribution is contributed by multiple participants and relies on

cryptographic protocols to maintain privacy, balancing the benefits of both localized and

centralized approaches. Applying di↵erential privacy in DL presents several challenges.

There’s a notable trade-o↵ between model performance and data privacy, where adding

more noise to enhance privacy can reduce model accuracy. Often, higher noise levels

(lower values of ✏) necessary for strong privacy protection lead to the need for more

data and extended training time to achieve acceptable accuracy. Additionally, integrating

di↵erential privacy into DL algorithms is complex, and there’s a lack of clear guidelines

on selecting an appropriate privacy budget (✏). Furthermore, empirical experiments on

information leakage provide only a lower bound estimate, as more potent attacks may exist

beyond current methodologies. This means that the true extent of potential information

leakage, especially in the context of membership inference attacks, is di�cult to determine

and may surpass what has been experimentally observed to date.

C.2.3 Homomorphic Encryption (HE)

Homomorphic encryption is a cryptographic method that allows for performing

standard mathematical operations on encrypted data (ciphertext), such that when this

data is decrypted, the outcome is the same as if the operations had been applied to the

original, unencrypted data [255]. However, when dealing with complex mathematical

functions within the ciphertext space, homomorphic encryption can encounter various

limitations, particularly in terms of encryption performance. To address the limitations of

standard Homomorphic Encryption (HE) in DL, various techniques have been developed

that modify statistical methods to align with the properties of homomorphic computation

and employ reasonable approximations where traditional methods are infeasible [256].

Research indicates that the use of standard HE in DL can significantly slow down training

due to the time-intensive encryption and decryption processes. To address this, various

methods have been developed to enhance HE’s e�ciency. Techniques like modifying

neural network activation functions to simpler polynomial forms have been explored

to facilitate HE. Some methods focus on creating scale-invariant and discretized neural

networks, which allow for more e↵ective HE usage, though they may impact accuracy [257].

Additionally, innovative frameworks combine HE with other cryptographic techniques and

computational optimizations, showcasing the evolving landscape of e�cient and secure HE

implementations in neural network applications.

A. Psaltis 244

Federated, Multi-agent, Deep Reinforcement Learning

C.2.4 Secure Multiparty Computation (SMC)

Secure Multiparty Computation (SMC) is a cryptographic method allowing multiple

parties to collaboratively compute a function while keeping their individual inputs and

outputs private [258]. SMC is designed to operate in a secure environment that ensures

zero-knowledge proofs, meaning it can verify the integrity of computations without

revealing any actual data. While universally verifiable zero-knowledge proofs (ZKPs)

play a crucial role in ensuring the integrity and appropriateness of encrypted data, they

often involve complex calculations that can be ine�cient.

In practice, some scenarios may permit the limited disclosure of information, provided

certain security conditions are met. For example, SMC has been adapted for training

ML models like linear regression and neural networks using techniques like stochastic

gradient descent, under assumptions of semi-honest participation. Moreover, multi-party

computation (MPC) protocols have been explored for encrypting sensitive attributes in

ML model training, demonstrating the possibility of fair model training without exposing

sensitive data. These advanced SMC and MPC approaches are designed to maintain

privacy, even under various assumptions about participant behavior, including semi-honest

or malicious actors. However, in real-world applications, algorithms often lean towards

simplicity and practicality, balancing the need for accuracy with the complexity of the

computations involved.

Hybrid methods that merge SMC with DP are emerging to address the limitations of

each approach when dealing with potentially dishonest participants. Such methods aim

to mitigate the inference risks associated with SMC and the accuracy issues caused by

DP’s noise injection. For instance, one approach combines SMC with DP and introduces

a tunable trust parameter to handle various trust scenarios in FL environments [259].

These hybrid techniques typically involve innovative encryption and secure communication

strategies to protect data privacy without significantly compromising model accuracy.

They range from incorporating third-party entities for key management to utilizing

blockchain technology for a fully decentralized learning process, o↵ering a more robust

defense against adversarial and inference attacks in FL systems.

245 A. Psaltis

Appendix D

Public 3D action recognition

datasets

This appendix provides detailed information on the main public datasets currently

available, which are pivotal for the development and evaluation of 3D action recognition

algorithms. The following Table D.1 encapsulates key aspects of each dataset, including

their size, variety of actions, annotation details, and unique characteristics that set them

apart. This compilation aims to facilitate easy comparison and selection of appropriate

datasets for specific research needs or application scenarios in the domain of 3D action

recognition.

Table D.1: Public 3D action recognition datasets. *The authors in [1] used a capturing
framework similar to the developed one (i.e. 3 Kinect sensors positioned in an arced
configuration), but generated 80 non-identical views, by varying the height and the
distance of the Kinect sensors from the subjects.
Datasets Samples Classes Subjects Views Sensor Modalities Year
MSR-Action3D [260] 567 20 10 1 N/A D+3DJoints 2010
CAD-60 [261] 60 12 4 - Kinect v1 RGB+D+3DJoints 2011
RGBD-HuDaAct [262] 1189 13 30 1 Kinect v1 RGB+D 2011
MSRDailyActivity3D [263] 320 16 10 1 Kinect v1 RGB+D+3DJoints 2012
Act4 [264] 6844 14 24 4 Kinect v1 RGB+D 2012
Huawei/3DLife [265] 3740 22 17 5 Kinect v1 RGB+D+3DJoints 2013
CAD-120 [266] 120 10+10 4 - Kinect v1 RGB+D+3DJoints 2013
3D Action Pairs [267] 360 12 10 1 Kinect v1 RGB+D+3DJoints 2013
Multiview 3D Event [268] 3815 8 8 3 Kinect v1 RGB+D+3DJoints 2013
Online RGB+D Action [269] 336 7 24 1 Kinect v1 RGB+D+3DJoints 2014
Northwestern-UCLA [270] 1475 10 10 3 Kinect v1 RGB+D+3DJoints 2014
UWA3D Multiview [271] 900 30 10 1 Kinect v1 RGB+D+3DJoints 2014
O�ce Activity [272] 1180 20 10 3 Kinect v1 RGB+D 2014
UTD-MHAD [273] 861 27 8 1 Kinect v1+WIS RGB+D+3DJoints+ID 2015
UWA3D Multiview II [274] 1075 30 10 5 Kinect v1 RGB+D+3DJoints 2015
NTU RGB+D [1] 56880 60 40 80⇤ Kinect v2 RGB+D+IR+3DJoints 2016
Formed dataset 25636 50 132 3 Kinect v2 RGB+D+3DFlow+3DJoints 2019

247

Appendix E

Dataset Preprocessing phase

E.1 Preprocessing steps

In the preprocessing phase of our dataset analysis, which aims to extract varied

modalities such as skeleton, RGB, depth, and 3D flow, we adhere to a structured sequence

of steps. This process begins with Decoding, involving the transformation of compressed

image or video files into a more analyzable format. Subsequently, we undertake Mapping

Depth to RGB, a crucial step that aligns depth data from sensors with RGB imagery

to create an integrated, multi-dimensional dataset. Following this, Human Silhouette

Estimation is performed to detect and isolate the human figure within these composite

images. This isolation paves the way for Skeleton Representation, where we construct an

intricate skeletal model that accurately portrays the subject’s posture and movements.

To ensure the subject remains the focal point of our analysis, Background Removal

is employed, leveraging depth data to e↵ectively distinguish the subject from their

background. The next step, Cropping, is applied to maintain a consistent and focused

view of the subject throughout the dataset. The final step in our preprocessing protocol

is 3D Flow, where we analyze the subject’s movements in a three-dimensional space, thus

providing a comprehensive and multi-faceted understanding of the dataset.

Decoding: This is the process of converting data from one format to another. In

the context of image or video processing, this often refers to the conversion of compressed

image or video files into a format that can be easily processed. For example, decoding a

video file into a series of individual frames.

Mapping Depth to RGB: In systems that use both depth sensors and RGB cameras,

this step involves aligning the depth information (which indicates how far objects are from

the sensor) with the RGB image. This is crucial because depth sensors and RGB cameras

have di↵erent perspectives and fields of view. The mapping process aligns these two data

sources so that the depth information corresponds accurately to the RGB image, allowing

for more sophisticated analyses, like 3D reconstructions or enhanced object detection.

Human Silhouette Estimation: This step is focused on identifying the outline

or contour of a human figure within an image or video frame. This is often done using

249

Federated, Multi-agent, Deep Reinforcement Learning

Figure E.1: Human silhouette: Map 3D joint coordinates to 2D space. Estimate human

silhouette based on skeleton data.

techniques like background subtraction, edge detection, or DL models trained to recognize

human shapes. The goal is to isolate the figure of the human from the rest of the image

(as illustrated in Figure E.1. This step focuses on identifying the human figure within

the combined depth and RGB data. The depth information can significantly enhance the

accuracy of silhouette estimation compared to using RGB data alone.

Skeleton Representation: Once the human silhouette is estimated, the next step is

often to create a skeleton representation. This involves identifying key points of the body

(like joints) and connecting them in a way that represents the human skeleton. This is

crucial for analyzing human posture, movement, and activities. Depth data can greatly

enhance the accuracy and dimensionality of this model.

Figure E.2: RGB information: Map Depth to RGB pixels, and use their colour value

to create RGB image in Depths’ resolution. Remove background based on depth values

around skeleton data.

Background Removal: This process involves separating the foreground (usually the

main subject, like a human figure) from the background (as depicted in Figure E.2). This

can be done using various techniques, such as chroma keying (green screen techniques),

statistical methods (like Gaussian Mixture Models), or DL approaches. The combination

of depth and RGB data makes background removal more e↵ective. Objects can be more

easily di↵erentiated from the background based on their distance from the sensor, not just

their color or brightness.

Cropping: Cropping is a simple yet essential step where irrelevant parts of the image

or frame are cut out to focus more on the subject of interest. In motion analysis, cropping

A. Psaltis 250

Federated, Multi-agent, Deep Reinforcement Learning

Figure E.3: Depth map based on skeleton representation: Using depth pixels in previous

2d estimation, find the corresponding 3d voxels based on 3d skeleton data).

is often used to center the human figure or to maintain a consistent size and position

of the subject across frames. Cropping can be more accurately achieved by using depth

data to maintain consistent focus on the subject across di↵erent frames (as presented in

Figure E.3).

Figure E.4: 3D flow: estimates the actual motion field of the action.

3D Flow: This term refers to the estimation of three-dimensional movement within

the scene. In the context of human motion analysis, it involves tracking the movement

of the body or limbs in three dimensions over time (as illustrated in Figure E.4). This is

typically achieved through advanced computer vision techniques and involves the use of

depth sensors or stereo cameras to capture 3D data (dense real-time 3Dflow for RGB-D

cameras). The algorithm is implemented on a GPU to achieve real-time performance.

E.1.1 Dataset Samples

The subsequent images showcase a variety of actions and modalities extracted from

the dataset. These visual representations highlight the diverse range of activities and

the di↵erent data modalities that have been derived through our comprehensive analysis

process.

E.2 Ablation studies

Skeleton-tracking or 3D flow features? With respect to the type of information

that is used for realizing 3D action recognition, it was experimentally shown that 3D flow

information exhibited greater potential towards leading to increased action recognition

performance, compared to the cases of skeleton-tracking and depth data. To provide

251 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

Figure E.5: RGB data captured from three distinct perspectives while the subject is

engaged in performing three di↵erent actions.

better insight, the action recognition confusion matrix obtained from the proposed 3D flow

and skeleton information is given in Figure E.3, respectively. In particular, experiments

demonstrate that 3D flow features are advantageous for a wide set of actions, including

arm-related movements (e.g . ‘Hand waving’, ‘Pointing to something with finger’, etc.)

as well as more extensive whole-body movements (like ‘Jump up’ and ‘Standing up’) in

both D1 and D2. On the other hand, skeleton-tracking approaches, which make extensive

use of domain-specific knowledge, are shown to be advantageous when the performed

action involves fine-grained motions (e.g . ‘Reading’, ‘Writing’, etc.). Also, in the case

of slow-performing actions, skeleton-tracking methods seem to perform better compared

to flow-based ones, taking advantage of the ability of the employed skeleton-tracker to

detect the precise position of the human joints. Overall, flow-based methods exhibit

increased potential for reaching improved recognition rates, as long as suitable and robust

representations of the high-dimensional and often noisy 3D flow signal are e�ciently

computed. On the other hand, skeleton-tracking-based methods currently constitute the

most popular category, mainly due to implementation simplicity (i.e. use of skeleton joint

features); however, su↵ering from the limitations of the employed skeleton-tracker (e.g .

presence of noise, failures of accurate detection of human joints, particular requirements

for human posture, etc.).

Complementarity of modalities. Skeleton trackers are prone to noise and

self-occlusions, while it is well-known that side-view skeletal data are less accurate than

the front-view ones. Similarly, the e�ciency of surface features is also significantly a↵ected

by varying capturing perspectives. Additionally, flow features are generally a↵ected by the

quality of the capturing settings (e.g . illumination conditions, distance from the capturing

device, etc.). To this end, it is evident that either modality alone can be ambiguous in

certain cases. However, when features from multiple modalities are combined, action

A. Psaltis 252

Federated, Multi-agent, Deep Reinforcement Learning

Table E.1: RGB and associated depth data samples obtained from various perspectives of

a subject executing diverse actions.

recognition results are experimentally shown to be significantly improved. A critical

question that needs to be answered though is the level at which multi-modal information

should be fused. According to the current experimental evaluation, the late fusion scheme

leads to the highest performance improvement [second (b) group of experiments in Tables

5.1 and 5.2, demonstrating the relatively increased complementarity of the high-order

features. Summarizing all the above observations, the fundamental consideration of the

current work that a truly robust system in the general case is necessary to e�ciently and

adaptively combine multiple information sources (surface, flow, skeleton-tracking) is also

experimentally verified.

253 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

Table E.2: 3D flow fields representing the execution of four distinct actions (jumping,

weight lifting, basketball shooting, and golf swinging) captured at four sequential time

points, spanning from the initiation to the completion of each task.

Table E.3: Confusion matrices derived from the implemented 3D flow and skeleton tracking

methodologies.

A. Psaltis 254

Appendix F

Architecture Variability

Challenges

F.1 Challenges in Identification and Excitation of Features

The core of the excitation technique is grounded in the observation that the most

influential features are highlighted by the gradients during the backpropagation process.

This approach begins with initial training at each local node using its own private dataset,

a critical phase for developing accurate data representations. These representations lay

the groundwork for the method’s subsequent phases. Following this initial training,

every node processes images from a shared dataset. For each image, the algorithm

pinpoints the top features exhibiting the largest absolute gradients within the last block

of the network’ feature map. It is these prominent features, considered pivotal for the

image’s representation, that are then forwarded to the central server. This process

ensures that the most critical aspects of the data are emphasized and aggregated globally,

enhancing the overall learning and representation capability of the system. The proposed

approach, involving the excitation of specific features based on gradients, proved to be

extremely demanding in terms of both RAM and VRAM requirements, rendering it less

suitable for immediate application, but essential for a thorough grasp of the research

direction of the study. Addressing the challenges posed by the high resource demands

of feature extraction with gradients in FL, a practical workaround has been developed.

To overcome these limitations, an alternative method has been adopted. This method

involves pooling the maximum values of the last feature map, a process that significantly

reduces the computational load and memory requirements. After pooling, a random crop

of 1920 features is selected from these pooled features (as depicted in Figure F.1). This

approach maintains the essence of capturing the most significant aspects of the data

while being much less resource-intensive. The training process then employs a similarity

loss function on these 1920 features. The representation learning framework is applied

between the globally aggregated representation and the current representation from the

node undergoing training. This method ensures that the essential features are still being

255

Federated, Multi-agent, Deep Reinforcement Learning

emphasized during the model training, but with a significantly reduced computational

burden. The intuition behind performing this pooling and random cropping technique

at the feature space is to enhance the model’s focus while introducing variability and

robustness in the learning process. By applying these operations in the feature space, the

model is encouraged to learn representations that are invariant to changes in the spatial

arrangement of features within the images.

Figure F.1: Enhancing feature salience for similarity learning through pooling and

cropping operations.

F.2 Enhanced Feature Extraction: Integrating Multi-Level

Network Insights

The scope of the excitation process was expanded to include feature extraction not only

from the final layer but also from blocks throughout the network. This extension allows

for a more comprehensive and nuanced understanding of the image by incorporating a

wider range of feature complexities and insights from across the network’s architecture.

As stated above, the process of feature elicitation serves as a pivotal step in harmonizing

the local models with a central, aggregated global accumulation of the descriptors. It starts

with an image passing through a neural network, which is segmented into distinct blocks,

each responsible for extracting features at varying levels of complexity. The early blocks,

such as Block1, typically capture elementary features like edges, while the deeper blocks,

such as Block4, discern more intricate patterns. The outputs of these blocks undergo a

selective process where a specific number of features are chosen based on their activation

levels, which are indicative of their importance. These chosen features are then combined,

with the deeper blocks contributing a larger share of features, reflecting their increased

complexity and importance in characterizing the image. This process is illustrated in

Figure F.2. The reasoning behind this specific excitation approach is grounded in empirical

findings. Experiments have revealed that similarity metrics for features in the initial

layers of both trained and untrained models are remarkably high, indicating homogeneity

in the primitive features extracted by these layers. Consequently, as the network delves

deeper, the need for capturing a broader and more complex range of features grows,

prompting the selection of larger feature maps from the deeper layers—(128, 256, 512,

1024) respectively—to ensure a comprehensive representation.

A. Psaltis 256

Federated, Multi-agent, Deep Reinforcement Learning

Figure F.2: Schematic overview of the enhanced feature excitation process, illustrating

Multi-Level feature extraction across the NN.

F.3 Model Agnostic Block selection

This section outlines the methods used to align individual blocks of di↵erent network

architectures. To promote the alignment of blocks from di↵erent model architectures,

cosine similarity serves as the primary criterion, with the objective of minimizing the

distances between representations within the framework’s latent space with respect to

angles. Consequently, the rationale behind the selection of specific architectural blocks is

predicated upon the angular congruence of the feature maps with the canonical basis IN .

This methodology underscores the significance of angular relationships in the dimensional

space, aiming to enhance the cohesion and compatibility of representations derived

from various architectures. The divergence between each architectural block is carefully

analyzed, and the di↵erence between each block’s angle distributions is measured using

the Kullback-Leibler (KL) Divergence. Because of the di↵erence in the total number

of parameters in each feature map of the blocks, a probability distribution was created

by grouping the angles of the features of each block into clusters. The assessment of

KL-Divergence is performed over a comprehensive spectrum of cluster counts, spanning

from 10 to 100, 000, to accommodate a diverse array of feature distributions. For simplicity

reasons, the following tables display information for the 100, 000 because they create

meticulous distributions. Additionally, the values change proportionally with the varying

number of clusters. Given the inherent asymmetry of KL-Divergence, a bidirectional

analysis is required for the block alignment selection process. In particular, the divergence

between block A and block B, as well as the opposite, is assessed. The blocks that show

the least amount of KL-Divergence, fulfil the following criterion:

257 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

min (Dist(Min(KL(BlockAkBlockB)),Min(KL(BlockBkBlockA))))

are prioritized for selection, underpinning the methodology’s rigor in finding blocks that

are best aligned with the latent space in terms of feature distribution similarities is this

dual-sided evaluation, which guarantees a more robust and balanced selection criterion.

To obtain precise and representative embeddings from the models while adhering to the

principles of FL, each network undergoes training on a shared subset within the framework.

The KL-Divergences across the angular distributions of each network are evaluated using

randomly selected images from the test set of each dataset. The total number of the

images selected is 3000.

F.3.1 CIFAR-10

The Tables listed below contain information on the KL-Divergence between

di↵erent blocks of di↵erent networks regarding CIFAR-10[123] dataset. Each cell

includes the divergence of the block of the column to the block of the row (Eg.

KL(EfficientNetBlock1||MobileNetV 3Block1) = 0.001835).

Models E�cientNet MobileNetV3

Blocks Block 1 Block 2 Block 3 Block 4 Block5 Block 6 Block 7 Block 1 Block 2 Block 3 Block 4 Block5 Block 6 Block 7

Block 1 0.005879 0.012651 0.070842 0.215922 0.140473 0.392318 0.044772

Block 2 0.030818 0.006274 0.045828 0.179387 0.106278 0.354205 0.027828

Block 3 0.281583 0.075217 0.009656 0.069355 0.031615 0.21361 0.034167

Block 4 1.063728 0.390618 0.111132 0.006046 0.029001 0.06836 0.208333

Block5 0.598605 0.199446 0.036188 0.024056 0.010301 0.127705 0.105826

Block 6 2.112472 0.825165 0.371872 0.07075 0.164182 0.012829 0.419214

E�cientNet

Block 7 1.033316 0.360404 0.109932 0.016545 0.03084 0.071263 0.01631

Block 1 0.000658 0.008668 0.069162 0.215893 0.134941 0.364148 0.195752

Block 2 0.016597 0.000375 0.038273 0.170294 0.095326 0.312184 0.151957

Block 3 0.2037 0.075025 0.001118 0.068833 0.021778 0.181276 0.059095

Block 4 0.786691 0.410465 0.094625 0.002396 0.022825 0.043285 0.007566

Block5 0.454722 0.207749 0.027223 0.017547 0.0008 0.097498 0.01514

Block 6 1.670294 1.060446 0.453854 0.119542 0.255016 0.011901 0.096735

MobileNetV3

Block 7 0.142643 0.077629 0.049577 0.131956 0.08263 0.238474 0.001073

Table F.1: The KL-Divergance of E�cientNet and MobileNetV3 under 100000 of total

clusters on CIFAR-10 dataset.

Table F.1 suggests a minimal divergence between E�cientNet[195] and

MobileNetV3[196] within identical blocks. The reason behind that observation is

that both use inverted residual blocks as their main blocks, in combination with the same

activation function GeLU[275], the distribution of both the features and the angles of the

features are very similar and as a result the KL-Divergence is relatively similar. In this

regard, the definitive factor for the selection of the blocks to be aligned is the divergence

of the blocks of ResNet with E�cientNet and MobileNetV3.

Because of the similarities between the architectures of E�cientNet and MobileNetV3

the blocks with the least divergence with the ResNet are the same. The first blocks

selected for alignment are Block 1 of ResNet to Block 1 from E�cientNet and MobileNetV3

considering that in the early layers, the models capture foundational features. Through

A. Psaltis 258

Federated, Multi-agent, Deep Reinforcement Learning

Models ResNet E�cientNet

Blocks Block 1 Block 2 Block 3 Block 4 Block 1 Block 2 Block 3 Block 4 Block5 Block 6 Block 7

Block 1 0.00068 0.009418 0.070512 0.217583 0.136534 0.366056 0.197521

Block 2 0.008634 0.001059 0.046743 0.184004 0.106979 0.328151 0.165089

Block 3 0.129047 0.039654 0.007132 0.093103 0.037369 0.214194 0.079328

ResNet

Block 4 0.269671 0.178571 0.102454 0.14866 0.120816 0.220349 0.116449

Block 1 0.000844 0.004542 0.044459 0.05661

Block 2 0.022239 0.000935 0.022616 0.036883

Block 3 0.263621 0.093574 0.007314 0.029765

Block 4 0.972336 0.45886 0.138387 0.164514

Block5 0.563572 0.241052 0.048686 0.079718

Block 6 1.823545 0.944402 0.371399 0.334205

E�cientNet

Block 7 0.914604 0.424828 0.119697 0.125557

Table F.2: The KL-Divergence of ResNet and E�cientNet with 100000 total clusters on

CIFAR-10 dataset

Models ResNet E�cientNet

Blocks Block 1 Block 2 Block 3 Block 4 Block 1 Block 2 Block 3 Block 4 Block5 Block 6 Block 7

Block 1 0.000521 0.010571 0.069895 0.216046 0.136486 0.394767 0.03977

Block 2 0.017129 0.001193 0.046293 0.182598 0.106987 0.3567 0.02268

Block 3 0.190005 0.033726 0.008253 0.092526 0.037184 0.241281 0.012748

ResNet

Block 4 0.493389 0.148775 0.132785 0.156051 0.12151 0.22951 0.008341

Block 1 0.000305 0.005873 0.047327 0.059397

Block 2 0.026366 0.001416 0.020607 0.035027

Block 3 0.261355 0.092127 0.007181 0.030475

Block 4 0.969529 0.456105 0.138102 0.163456

Block5 0.566486 0.240318 0.048223 0.078827

Block 6 2.097124 1.127375 0.452288 0.355203

E�cientNet

Block 7 0.203899 0.084832 0.021394 0.005267

Table F.3: The KL-Divergence of ResNet and MobileNetV3 with 100000 total clusters on

CIFAR-10 dataset

the next layers the models compress the information capturing more complex patterns, so

as a result Block 2 of ResNet to Block 2, Block 3 of ResNet to Block 6 from E�cientNet

and MobileNetV3, are selected for alignment. Lastly in the latest stages of the network,

high-level features are created and consequently, the last blocks of the network are chosen

to be aligned as well. Tables F.2 and F.3 depict the relationships of the divergence between

the models.

F.3.2 CIFAR-100

Respectively, similar blocks are selected for the experiments on CIFAR-100 [123].

Table F.4 demonstrates that the deviations between the blocks of MobileNetV3 and

E�cientNet are minimal, leaving ResNet to be the decisive factor for the alignment process.

Tables F.5 and F.6 present that, Block 1 is chosen from all the models correspondingly,

again for the reason that the networks in the early stages are creating primitive features.

Afterwards features from Block 2 and 3 of ResNet are aligned with Block 3 and 6 of

E�cientNet and MobileNetV3, and the last blocks of E�cientNet and MobileNetV3 with

Block 4 of ResNet.

259 A. Psaltis

Federated, Multi-agent, Deep Reinforcement Learning

Models E�cientNet MobileNetV3

Blocks Block 1 Block 2 Block 3 Block 4 Block5 Block 6 Block 7 Block 1 Block 2 Block 3 Block 4 Block5 Block 6 Block 7

Block 1 0.218016 0.225205 0.279187 0.301317 0.35913 0.632259 3.439775

Block 2 0.646587 0.113911 0.205709 0.608357 1.019514 1.460066 4.859446

Block 3 0.523589 0.152365 0.123351 0.318149 0.549371 0.9263 4.155667

Block 4 0.500756 0.213124 0.237336 0.190708 0.382663 0.711786 3.79824

Block5 0.413825 0.244891 0.27113 0.209605 0.219905 0.490568 3.35256

Block 6 0.830855 0.627157 0.655093 0.683079 0.553999 0.484121 3.23499

E�cientNet

Block 7 0.350184 0.854192 0.907638 0.671597 0.410047 0.503168 0.310968

Block 1 0.315756 0.481272 0.501972 0.686995 0.669719 1.943845 4.585647

Block 2 0.407339 0.184537 0.612249 1.181815 1.316692 2.034639 4.595812

Block 3 0.564628 0.585293 0.531754 1.127809 1.275242 2.079318 4.836214

Block 4 0.317165 0.264614 0.331715 0.193839 0.552991 1.087678 3.327951

Block5 0.410864 0.227647 0.258031 0.215528 0.185277 1.423999 2.804323

Block 6 0.206348 0.282273 0.273307 0.400506 0.391776 0.202472 2.241201

MobileNetV3

Block 7 3.942595 4.402738 4.219353 4.153589 4.014203 3.995513 2.143859

Table F.4: The KL-Divergance of E�cientNet and MobileNetV3 under 100000 of total

clusters on CIFAR-100 dataset.

Models ResNet E�cientNet

Blocks Block 1 Block 2 Block 3 Block 4 Block 1 Block 2 Block 3 Block 4 Block5 Block 6 Block 7

Block 1 1.527542 2.93446 1.77745 1.727654 1.618638 1.640933 2.579126

Block 2 2.240503 2.63346 1.724869 2.394215 2.275536 2.266125 2.846146

Block 3 2.794784 3.213168 3.034002 2.964275 2.841339 2.219722 2.848801

ResNet

Block 4 5.070035 5.542254 5.351492 5.277848 5.136278 5.111487 2.31144

Block 1 0.750634 1.694717 2.444256 5.633593

Block 2 1.961719 3.157287 4.121835 7.273275

Block 3 1.361294 1.328863 3.290359 6.600445

Block 4 1.095784 2.003874 2.855458 6.236753

Block5 0.927186 1.567833 2.322489 5.697388

Block 6 0.804173 1.470818 2.171293 5.482268

E�cientNet

Block 7 1.561258 1.643336 2.817603 2.739593

Table F.5: KL-Divergence of ResNet and E�cientNet under 100000 of total clusters on

CIFAR-100 dataset

Models ResNet MobileNetV3

Blocks Block 1 Block 2 Block 3 Block 4 Block 1 Block 2 Block 3 Block 4 Block5 Block 6 Block 7

Block 1 1.527587 1.987513 2.042162 1.820525 1.582829 1.69002 1.199633

Block 2 2.787722 2.69214 2.245111 2.502557 2.331263 2.315515 2.747835

Block 3 2.717752 3.275182 3.330914 3.076456 2.78985 2.262766 2.548909

ResNet

Block 4 5.03948 5.604024 5.665168 5.396529 5.086102 5.14348 0.25019

Block 1 1.052453 1.582353 1.967604 4.227482

Block 2 2.323507 3.564837 4.535146 7.637055

Block 3 2.407682 2.252267 4.772423 7.868003

Block 4 1.44966 2.535469 3.479917 6.869772

Block5 1.748393 1.439395 2.162265 5.571014

Block 6 1.936717 1.80364 1.551285 5.852958

MobileNetV3

Block 7 1.772577 0.580721 0.595913 0.574538

Table F.6: KL-Divergence of ResNet and MobileNetV3 under 100000 of total clusters on

CIFAR-100 dataset

F.3.3 MNIST

For the experiments conducted on MNIST, comparable segments were utilized. The

data presented in Table F.7 reveals that the variations between the blocks of MobileNetV3

and E�cientNet are negligible, making ResNet the critical element in the selection

procedure. The findings in Tables F.8 and F.9 indicate that Block 1 was selected

across all models due to the networks’ initial phase of generating fundamental features.

A. Psaltis 260

Federated, Multi-agent, Deep Reinforcement Learning

Subsequently, features from Blocks 2 and 3 in ResNet were matched with Blocks 5 and 6 in

E�cientNet and MobileNetV3, while the terminal blocks of E�cientNet and MobileNetV3

were aligned with Block 4 of ResNet.

Models E�cientNet MobileNetv3

Blocks Block 1 Block 2 Block 3 Block 4 Block5 Block 6 Block 7 Block 1 Block 2 Block 3 Block 4 Block5 Block 6 Block 7

Block 1 0.375764 0.225656 0.284473 0.306678 0.363175 0.630568 3.429651

Block 2 0.657979 0.111261 0.204987 0.609633 1.024846 1.459824 4.860414

Block 3 0.536652 0.154311 0.180737 0.320509 0.557993 0.92878 4.156884

Block 4 0.508262 0.214294 0.239394 0.257865 0.381126 0.714614 3.785969

Block5 0.427617 0.245588 0.271616 0.214523 0.225214 0.488582 3.346678

Block 6 0.442059 0.326228 0.355437 0.282869 0.254402 0.493589 3.215776

E�cientNet

Block 7 0.319523 0.849829 0.903803 0.668827 0.410229 0.499954 0.121892

Block 1 0.325667 0.488054 0.511519 0.694075 0.673376 0.956554 1.596348

Block 2 0.405954 0.133582 0.606061 1.18025 1.310485 2.04354 4.622935

Block 3 0.622085 0.583395 0.52985 1.122583 1.272181 2.085007 4.864075

Block 4 0.719485 0.569809 0.73605 0.498195 0.558976 1.090538 3.348655

Block5 0.413348 0.225154 0.860232 0.675015 0.184865 1.421698 1.815149

Block 6 0.807721 0.927952 1.272558 0.863452 0.891632 0.704155 2.254381

MobileNetv3

Block 7 3.953618 4.406078 4.223471 4.149524 4.008356 3.976949 1.248096

Table F.7: KL-Divergence of E�cientNet and MobileNetV3 under 100000 of total clusters

on MNIST dataset

Models ResNet E�cientNet

Blocks Block 1 Block 2 Block 3 Block 4 Block 1 Block 2 Block 3 Block 4 Block5 Block 6 Block 7

Block 1 1.524062 1.929616 1.774342 1.718894 2.611252 2.622048 1.576289

Block 2 2.343066 2.633757 2.463694 2.394114 2.275392 2.752528 2.842223

Block 3 2.802145 3.219258 3.036476 2.965269 2.834455 2.105753 2.649185

ResNet

Block 4 5.067357 5.532251 5.341099 5.26471 5.11854 5.074895 2.263853

Block 1 0.746333 1.696947 2.427737 5.571439

Block 2 1.968233 3.17052 4.115116 7.229506

Block 3 1.366197 2.406117 3.292945 6.569581

Block 4 1.09441 2.009629 2.838689 6.189712

Block5 1.823052 1.168775 2.308678 5.644603

Block 6 0.802034 1.471349 0.156008 5.42015

E�cientNet

Block 7 0.953877 2.639661 0.813958 0.711726

Table F.8: KL-Divergence of ResNet and E�cientNet under 100000 of total clusters on

MNIST dataset

Models ResNet MobileNetV3

Blocks Block 1 Block 2 Block 3 Block 4 Block 1 Block 2 Block 3 Block 4 Block5 Block 6 Block 7

Block 1 1.525567 1.983046 2.03604 1.815649 1.576418 1.685058 2.203933

Block 2 2.681143 2.688445 2.747319 2.506776 2.227699 2.309004 2.745187

Block 3 2.711325 3.265555 3.325846 3.077801 2.785244 2.264283 2.547512

ResNet

Block 4 5.009112 5.582396 5.647033 5.38646 5.066082 5.127199 0.249085

Block 1 1.050996 1.589903 2.971241 4.203535

Block 2 2.319361 3.573894 4.526082 7.590049

Block 3 2.402607 3.759075 4.763455 7.828729

Block 4 1.452412 2.541946 3.466919 6.82742

Block5 1.750935 1.441558 2.149365 5.522265

Block 6 1.030959 1.806461 2.114404 5.802558

MobileNetV3

Block 7 1.772484 1.577201 2.499037 0.576745

Table F.9: KL-Divergence of ResNet and MobileNetV3 under 100000 of total clusters on

MNIST dataset

261 A. Psaltis

	Περιεχόμενα
	Κατάλογος Σχημάτων
	Κατάλογος Πινάκων
	Πίνακας Ορολογίας
	Συντομογραφίες - Αρκτικόλεξα - Ακρωνύμια
	Introduction
	Overview of the Dissertation Topic
	Research Motivation and Objectives
	Bridging Gaps and Harnessing Data Diversity
	Objectives

	Dissertation Structure and Summaries of Associated Research Studies

	Core Concepts of Federated Learning
	Transitioning from Machine Learning to Distributed Learning
	Introduction to Federated Learning
	FL Topologies and Design Principles
	Concepts and Terminology

	Privacy-Preserving Principles
	Key Threats in FL
	Existing Mechanisms and Approaches

	Advances and Challenges in Federated Learning
	Strategies for Dealing with Federated Systems and Data
	Challenges and Opportunities in FL
	Communication Efficiency Challenges
	System-specific Challenges
	Data-specific Challenges
	Security Challenges

	Study 1: Federated Learning in IID and Non-IID Settings
	Overview of the Study
	Methodology
	Federated stochastic gradient descent (FedSGD)
	Federated Averaging (FedAvg)
	A federated optimization algorithm - FedProx
	Federated Optimisation (FedOpt)

	Experimental Setup and Data Description
	Experiments details

	Results and Analysis
	Image Classification
	Named entity recognition

	Discussion and Findings

	Study 2: Addressing Data Modality Heterogeneity in Federated Learning
	Overview of the Study - Introduction to Data Heterogeneity in FL
	FL methods
	DL-based 3D Action Recognition

	Methodology and Approach for Handling Data Modality Heterogeneity
	Singe-modality analysis
	Multi-modal analysis

	Experimental Setup and Data Description - Experimentation and Results
	3D Action Recognition Dataset

	Results and Analysis
	Single-modality Evaluation
	Multi-modal Evaluation

	Discussion and Findings

	Study 3: Representation Learning and Federated Distillation in FL
	Overview of the Study
	Challenges and Solutions in Representation Learning

	Methodology and Approach
	Problem statement
	Local client training
	Global representation aggregation
	FedFMRL Algorithm

	Experimental Setup and Results
	Dataset settings
	Implementation Details
	Performance Evaluation

	Insights and Contributions

	Study 4: Incremental Learning and Knowledge Retention in FL
	Overview of the Study
	Challenges and Solutions in Incremental Learning

	Methodology and Incremental Learning Techniques
	Problem statement
	Federated Knowledge Distillation
	Incremental Learning
	FedRCIL Algorithm

	Dealing with Knowledge Retention Challenges
	Knowledge distillation
	Incremental learning
	Federated Learning Distillation

	Experimental Results and Analysis
	Dataset settings
	Implementation Details
	Performance Evaluation

	Insights and Contributions

	Study 5: Representation learning with limited data in FL
	Overview of the Study
	Challenges and Solutions in Representation Learning from limited data

	Related Work
	Contrastive Learning
	FL approaches

	Methodology
	FedLID Local Supervision
	FedLID Global Supervision
	Federated aggregation
	FedLID Algorithm

	Experiments
	Data settings
	Implementation details
	Performance Evaluation

	Insights and Contributions

	Study 6: Tackling Model Architecture Variability in FL
	Overview of the Study - Rationale Behind Addressing Model Architecture Variability
	Advancements and Challenges in Federated Representation Learning

	Strategies for Managing Diverse Model Architectures
	Local Supervision and Self-supervision Representation Learning
	Model-Agnostic Global Aggregation

	Experimentation in Various Architectural Scenarios
	Experiment Setup
	Evaluation and Results

	Insights and Contributions

	Study 7: Trustworthiness in Federated Learning
	Overview of the Study
	Practical Challenges and Solutions
	FL Strategies
	FL Security Mechanisms
	Data Management

	Case Studies of FL Applications in Different Domains
	Face Re-ID
	Named Entity Recognition and Classification
	Audio Speech Recognition
	Insights and Contributions

	Conclusions and Future Work
	Summary of Key Findings
	Contributions of the Dissertation
	Overall Contributions and Impact to the Field

	Limitations and Future Research Directions
	Limitations
	Future Research Directions

	Final Thoughts and Perspectives on FL’s Future

	Implementation Tools and Practical Aspects
	Review of Tools and Libraries for FL
	FL Platform
	Privacy Preserving Capabilities of FL Frameworks

	Tools and Libraries for FL Implementation
	FL Topologies and Design Principles
	FL Platform Processes and Workflow
	FL Framework
	Infrustructure and Implementation Details
	Workflow Adaptations

	Best Practices and Guidelines for Implementation
	Installing NVFLARE for FL training on virtual nodes
	Requirements
	Folder Structure
	Modifications on Your Custom Files
	Setting up the Application Environment and Training the model with virtual clients

	NVIDIA FLARE remote training on distributed infrastructure
	Procedure overview
	Provisioning - Networking details
	Project yaml file
	Create your FL workspace
	Set-up the FL environment of central server
	NOTES

	Principal Threats and Mitigation Strategies in Federated Learning
	Threats
	Data poisoning attacks
	Model poisoning attacks
	Model inversion attacks

	Defence mechanisms
	Data Anonymisation
	Differential Privacy
	Homomorphic Encryption (HE)
	Secure Multiparty Computation (SMC)

	Public 3D action recognition datasets
	Dataset Preprocessing phase
	Preprocessing steps
	Dataset Samples

	Ablation studies

	Architecture Variability Challenges
	Challenges in Identification and Excitation of Features
	Enhanced Feature Extraction: Integrating Multi-Level Network Insights
	Model Agnostic Block selection
	CIFAR-10
	CIFAR-100
	MNIST

		2024-07-17T20:06:51+0300
	Petros Daras

		2024-07-17T20:08:24+0300
	Petros Daras

		2024-07-17T22:07:12+0300
	DIMITRIOS ZARPALAS

		2024-07-17T22:07:47+0300
	DIMITRIOS ZARPALAS

		2024-07-18T18:23:21+0300
	CHARALAMPOS PATRIKAKIS

		2024-07-18T18:23:48+0300
	CHARALAMPOS PATRIKAKIS

		2024-07-19T09:24:05+0300
	ELENI AIKATERINI LELIGKOU

		2024-07-19T10:26:08+0300
	ΠΑΡΑΣΚΕΥΗ ΖΑΧΑΡΙΑ

		2024-07-19T10:26:39+0300
	ΠΑΡΑΣΚΕΥΗ ΖΑΧΑΡΙΑ

		2024-07-19T19:12:46+0300
	ΧΡΙΣΤΟΦΟΡΟΣ ΚΑΧΡΗΣ

		2024-07-22T10:38:22+0300
	ELENI AIKATERINI LELIGKOU

		2024-07-24T08:28:47+0300
	ΧΡΙΣΤΟΦΟΡΟΣ ΚΑΧΡΗΣ

		2024-07-24T09:17:57+0300
	Athanasios Voulodimos

		2024-07-24T09:18:31+0300
	Athanasios Voulodimos

