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Abstract 

Reinforcement Learning (RL) represents a crucial and rapidly advancing domain within 

Machine Learning, focusing on the resolution of sequential decision-making challenges. It plays 

a pivotal role in the development of contemporary technologies, evidenced by its application in 

various sophisticated fields. For instance, RL algorithms are integral to the functioning of 

autonomous vehicles, enabling self-driving cars to navigate complex environments safely and 

efficiently. In industrial robotics, RL is utilized to optimize processes and improve precision, 

enhancing the automation of manufacturing and operational tasks. Moreover, in the realm of 

Natural Language Processing (NLP), RL contributes to advancements in systems designed for 

question answering, where the algorithms learn to understand and generate human-like 

responses. The gaming industry also benefits significantly from RL, with algorithms capable of 

mastering complex games, demonstrating strategic thinking and adaptability. 

 

This thesis delves into two primary areas: the impact of transfer learning on the performance of 

RL algorithms and the implementation of a transformers-based architecture for learning 

representations of both states and actions. The proposed architecture, named JASE-DQN (Joint 

Action and State Embeddings Deep Q-Network), introduces a novel approach by concurrently 

learning latent representations of state and action attributes, as well as their interdependencies. 

Transfer learning process is facilitated through the integration of pretrained models for state and 

action representations within a cross-attention transformer framework. 

 

The use of pretrained models in JASE-DQN significantly enhances the learning efficiency 

compared to traditional RL algorithms. In empirical studies, particularly focusing on the game 

Pac-Man, the JASE-DQN architecture demonstrated a remarkable reduction in training time by 

nearly 50% when compared with the standard Deep Q-Network (DQN) algorithm. This 

reduction in training time without sacrificing performance showcases the effectiveness of 

integrating transfer learning with cross-attention mechanisms. 

 

Additionally, the thesis explores the transferability of pretrained embeddings to different 

environments. For example, when applying the embeddings learned from the Ms. Pac-Man 

game to a new environment, specifically the game Alien, the JASE-DQN algorithm not only 

matched the performance of the DQN algorithm but did so in approximately 75% less training 

time. Moreover, the JASE-DQN achieved an approximate 25% improvement in performance, 

measured by the average reward, highlighting its capability in leveraging prior knowledge for 

enhanced learning and adaptation. 

 

These findings underscore the transformative potential of combining pretrained embeddings 

within a cross-attention transformers framework in RL. The JASE-DQN architecture seems able 

to not only accelerate the learning process but also to improve the performance when compared 

to DQN algorithm. This dual benefit is particularly significant for applications requiring quick 

adaptation but also high efficiency, such as dynamic and unpredictable environments. 
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In conclusion, this thesis presents a compelling case for the adoption of advanced architectural 

strategies in RL, such as the JASE-DQN. By leveraging the strengths of transfer learning and 

transformer-based models, it is possible to achieve substantial gains in both learning speed and 

effectiveness. The results achieved in this research illustrate a promising direction for future 

work in RL, emphasizing the importance of sophisticated representation learning techniques in 

enhancing the capability of RL systems. 

 

Keywords 

Reinforcement Learning, Transfer Learning, Deep Learning, Transformers, Atari Games, 

Embeddings 
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INTRODUCTION 

Reinforcement Learning (RL) is a dynamic and rapidly evolving sector of Machine Learning 

that has garnered substantial attention for its ability to solve complex sequential decision-

making problems. From powering self-driving cars and enabling sophisticated industrial 

robotics to enhancing Natural Language Processing (NLP) tasks such as question answering and 

transforming the landscape of gaming, RL stands at the forefront of technological innovation. 

The advancements in RL over recent years underscore its potential to revolutionize various 

fields, making it a cornerstone of modern AI research and application. 

The subject of this thesis 

This thesis explores the integration of transfer learning into RL algorithms to address the critical 

issue of lengthy training times and suboptimal performance in new environments. As RL models 

often require extensive training to achieve proficiency, the ability to transfer knowledge from 

pretrained models presents a compelling opportunity to enhance efficiency. This is particularly 

important given the growing complexity and scale of RL tasks in real-world applications. The 

focus of this research is on developing a method that leverages pretrained state and action 

embeddings within a cross-attention transformer architecture to significantly accelerate learning 

and improve performance across diverse RL environments. 

Aim and objectives 

The primary aim of this thesis is to demonstrate how the integration of transfer learning with a 

cross-attention mechanism can enhance the performance and learning speed of RL algorithms. 

The specific objectives are: 

1. To investigate the effectiveness of pretrained state and action embeddings in RL. 

2. To develop a cross-attention transformer architecture that fuses these embeddings. 

3. To evaluate the impact of this approach on the learning time and performance compared 

with a Deep Q-Network (DQN) algorithm in playing atari games (eg. Ms Pac-Man). 

4. To assess the generalizability of the pretrained embeddings in new gaming 

environments, specifically the game Alien. 

These objectives will be pursued through a series of research questions, including: 

• How do pretrained embeddings influence the learning efficiency of RL algorithms? 

• What improvements in performance can be observed when applying the cross-attention 

mechanism? 

• Can the benefits observed in one environment (Pac-Man) be transferred to another 

(Alien)? 
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Methodology 

 The methodology adopted in this thesis involves several key steps: 

• Pretrained Embeddings: State and action embeddings are pretrained on diverse tasks 

to capture a wide range of features. 

• Developing the Architecture: A cross-attention transformer architecture is designed to 

integrate these pretrained embeddings into RL models. 

• Implementing the Model: The integrated model is implemented using the Intrinsic 

Curiosity Module. 

• Evaluation and Testing: The model is tested on the game Pac-Man to measure 

reductions in learning time and improvements in performance. 

• Generalization Assessment: The pretrained embeddings are further evaluated in a 

different environment, the game Alien, to assess their generalizability and effectiveness. 

Innovation 

This thesis introduces several innovative elements: 

1. Cross-Attention Mechanism: The use of a cross-attention mechanism to integrate 

pretrained state and action embeddings in RL is novel and has shown to significantly 

enhance learning efficiency. 

2. Transfer Learning Application: Applying transfer learning in this specific manner to RL 

tasks demonstrates a new approach to overcoming the challenges of lengthy training 

periods and poor performance in novel environments. 

3. Empirical Evaluation: By providing empirical evidence of reduced training times and 

improved performance in different gaming environments, this research offers practical 

insights into the benefits of this innovative approach. 

Structure 

The structure of this thesis is organized into the following chapters: 

1. Chapter 1: Background and Literature Review – Introduces the basic principles of 

reinforcement learning as well as some of the main methodological frameworks. Surveys 

existing research on reinforcement learning (RL), transfer learning, and attention 

mechanisms. 

2. Chapter 2: Atari Games in the Gym Library – Presents an overview of the games Ms 

Pac-Man, Alien and Bank Heist which will be used to evaluate the performance of 

reinforcement learning (RL) algorithms. 

3. Chapter 3: Methodology - Details the methodological framework, including the 

pretraining of embeddings and the design of the cross-attention transformer architecture. 

4. Chapter 4: Results - Presents the results of training both DQN and JASE-DQN 

algorithms on the Ms. Pac-Man game. This chapter also includes a comparative analysis 

of the two algorithms, explores the application of transfer learning to the Alien and Bank 

Heist environments, and provides a detailed discussion of the performance metrics. 
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5. Chapter 5: Conclusions - Summarizes the findings, discusses the implications of the 

research, and suggests directions for future work. 

 

 

This comprehensive structure ensures a thorough exploration of the research questions and a 

clear presentation of the innovative contributions of this thesis. 
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1   CHAPTER 1: Background and Literature Review 

This chapter provides a comprehensive overview of the key concepts and methodologies that 

form the foundation of this thesis. It begins with an introduction to Reinforcement Learning 

(RL) and its advanced form, Deep Reinforcement Learning (DRL). The chapter then explores 

the architecture and functionality of Deep Q-Networks (DQNs) and the innovative application 

of transformers in machine learning. Finally, it discusses the principles of transfer learning and 

presents a literature review of relevant research, highlighting the contributions and gaps that this 

thesis aims to address. 

 

1.1 Reinforcement Learning 

Reinforcement Learning (RL) is a subfield of Machine Learning concerned with how agents 

ought to take actions in an environment to maximize cumulative reward. It is distinguished by 

its focus on learning from interaction and the trade-off between exploration (of uncharted 

territory) and exploitation (of current knowledge). RL has been instrumental in solving complex 

decision-making problems where the optimal solution is not immediately clear and must be 

discovered through trial and error. 

 
Figure 1: Fundamental interaction loop in Reinforcement Learning 

 

Figure 1 illustrates the fundamental interaction loop between an agent and its environment in 

Reinforcement Learning (RL). Here is a detailed explanation: 

1. State (𝑆𝑡): At any given time step 𝑡, the agent observes the current state of the 

environment, denoted as 𝑆𝑡. 

2. Action (𝐴𝑡): Based on the observed state 𝑆𝑡, the agent selects and performs an action 

𝐴𝑡. 

3. Environment Response: The action 𝐴𝑡 affects the environment, resulting in a new state 

𝑆𝑡+1 and a reward 𝑅𝑡+1 at the next time step 𝑡+1. 
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4. Reward (𝑅𝑡): The reward 𝑅𝑡 is a scalar feedback signal received by the agent from the 

environment at time step 𝑡t, which evaluates the immediate impact of the action 𝐴𝑡. 

5. Next State (𝑆𝑡+1): The environment transitions to a new state 𝑆𝑡+1 as a consequence of 

the action 𝐴𝑡. 

The loop can be described mathematically with the following notation: 

1. At time 𝑡: 

a. The agent is in state 𝑆𝑡. 

b. The agent takes action 𝐴𝑡. 

2. At time 𝑡+1: 

c. The agent receives reward 𝑅𝑡+1 based on the previous state 𝑆𝑡 and action 𝐴𝑡. 

d. The environment transitions to a new state 𝑆𝑡+1. 

 

Formally: 𝑆𝑡

𝐴𝑡
→ (𝑅𝑡+1, 𝑆𝑡+1) 

 

The process repeats, with the agent using the reward and new state information to inform its 

next action, continuing the cycle of interaction. This loop encapsulates the agent's goal to learn 

a policy 𝜋 that maximizes the cumulative reward over time. 

 

1.2 Q-Learning 

Q-Learning is a model-free reinforcement learning algorithm designed to learn the value of 

actions in a given state. It is an off-policy algorithm, meaning it learns the value of the optimal 

policy independently of the agent’s actions. The core objective of Q-Learning is to estimate the 

optimal action-value function 𝑄∗(𝑠, 𝑎), which indicates the maximum expected cumulative 

reward achievable from state 𝑠 by taking action 𝑎 and following the optimal policy thereafter. 

The Q-Learning process involves initializing a Q-table to store estimated values for each state-

action pair. The agent interacts with the environment by selecting actions (often using an 

epsilon-greedy policy to balance exploration and exploitation), receiving rewards, and 

transitioning to new states. The Q-values are updated using the Q-learning formula: 

𝑄𝑛𝑒𝑤(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼 (𝑅(𝑠, 𝑎) + 𝛾 𝑚𝑎𝑥𝑎′𝑄′(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)) 

where: 

• 𝑠 is the current state 

• 𝑎 is the action taken in the current state 

• 𝑄(𝑠, 𝑎) expected cumulative reward by taking action 𝑎 from state 𝑠 

• 𝑅(𝑠, 𝑎) is the actual reward received after taking action 𝑎 from state 𝑠 

• 𝑠′ is the next state 

• 𝑎′ is the next action taken in state 𝑠′ 
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• 𝑚𝑎𝑥𝑎′𝑄′(𝑠′, 𝑎′) is the maximum Q-value for the next state 𝑠′ over all possible actions 

𝑎′ 

• 𝛼 is the learning rate 

• 𝛾 is the discount factor, a parameter between 0 and 1. It determines the importance of 

future rewards with values closer to 1 makes future rewards more important. 

The main task in Q-Learning is to develop a function 𝑓𝜃(𝑠, 𝑎) that accurately predicts Q-values. 

The problem formulation is, use 𝑓𝜃(𝑠, 𝑎) to predict the terms 𝑄̂(𝑠, 𝑎) and 𝑄̂′(𝑠′, 𝑎′) with respect 

to the minimization problem: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝜃 𝐿𝜃(𝑄̂(𝑠, 𝑎), 𝑄̂𝑛𝑒𝑤(𝑠, 𝑎)) 

where: 

• 𝐿𝜃 can be any loss function for regression problems (e.g. MSE, RMSE, MAE) 

• 𝑄̂(𝑠, 𝑎) =  𝑓𝜃(𝑠, 𝑎) 

• 𝑄̂𝑛𝑒𝑤(𝑠, 𝑎) =  𝑄̂(𝑠, 𝑎) + 𝛼 (𝑅(𝑠, 𝑎) + 𝛾 𝑚𝑎𝑥𝑎′𝑄′̂(𝑠′, 𝑎′) − 𝑄̂(𝑠, 𝑎)) 

1.3 Alternatives to Q-Learning 

In Reinforcement Learning (RL), there are several alternatives to value-based methods (Q-

Learning), each with its own approach to learning optimal policies. The main alternatives 

include: 

Policy-based methods which focus directly on learning the policy that maps states to actions 

without necessarily estimating value functions. They optimize the policy by maximizing the 

expected cumulative reward. The most well known algorithm is Proximal Policy Optimization 

(PPO). 

Actor-critic methods  which combine aspects of both value-based and policy-based methods. 

The actor learns the policy, while the critic estimates the value function. An example of these 

methods is the algorithm Deep Deterministic Policy Gradient (DDPG), an off-policy algorithm 

that can operate over continuous action spaces, combining Q-learning with policy gradients. 

Model-based methods which involve creating a model of the environment's dynamics (i.e., 

transition and reward functions). The agent uses this model to plan and make decisions. An 

example of this class of algorithms is Monte Carlo Tree Search (MCTS) that builds a search tree 

using simulated outcomes to make decisions, often used in game playing. 

1.4 Deep Reinforcement Learning  

Deep Reinforcement Learning (DRL) combines the principles of RL with Deep Learning, using 

neural networks to approximate the decision-making policy and value functions. This 

combination allows DRL to handle high-dimensional state spaces and complex environments, 

making it suitable for a wide range of applications from robotics to game playing. 
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1.4.1 Deep Q-Networks DQN 

Deep Q-Networks (DQNs) represent a groundbreaking approach in deep reinforcement learning 

(DRL), utilizing a deep neural network to approximate the Q-function, which estimates the 

expected reward for taking specific actions in given states. Introduced by DeepMind in their 

seminal work "Playing Atari with Deep Reinforcement Learning" [1], DQNs achieved a 

significant milestone in the field of reinforcement learning by enabling agents to master complex 

video games. This was exemplified by the mastery of seven Atari 2600 games from the Arcade 

Learning Environment, where the extensive state space renders traditional methods ineffective. 

1.4.2 Advancements and Variations in the DQN Framework 

Within the Deep Q-Network (DQN) framework, numerous advancements and variations have 

been devised to enhance learning stability and efficiency. Double DQNs, as presented by Van 

Hasselt, Guez, and Silver in their influential paper "Deep Reinforcement Learning with Double 

Q-learning" [2], mitigate the overestimation bias inherent in the Q-learning algorithm by 

decoupling action selection from action evaluation. This approach yields more accurate value 

estimates and improved performance. 

 

Dueling DQNs, introduced by Wang et al. in "Dueling Network Architectures for Deep 

Reinforcement Learning" [3], propose a novel network architecture that separately estimates the 

state value function and the advantage function for each action. This separation allows the 

network to learn which states are valuable independently of the effects of each action within 

those states, resulting in more efficient and reliable learning. 

Prioritized Experience Replay, detailed by Schaul et al. in "Prioritized Experience Replay" [4], 

modifies the standard experience replay mechanism by prioritizing significant transitions. This 

ensures the agent learns more effectively from experiences that have a substantial impact on 

learning. By sampling more frequently from these prioritized experiences, the agent focuses on 

learning from crucial states and actions, thereby accelerating the training process and enhancing 

convergence. 

Each of these innovations addresses specific challenges within the DQN framework, 

contributing to the evolution of more robust and efficient reinforcement learning algorithms. 

1.5 Transformers 

Transformers, as originally introduced by Vaswani et al. in "Attention Is All You Need" [5], 

have revolutionized various machine learning tasks beyond their initial application in Natural 

Language Processing (NLP). Their ability to handle sequential data without the constraints 

inherent in recurrent architectures marks a significant advancement. The core innovation of 

transformers lies in their self-attention mechanism, which dynamically weighs the importance 

of different elements within the input sequence. This mechanism enables transformers to capture 

long-range dependencies and contextual relationships more effectively, leading to superior 

performance across a wide range of tasks. 
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1.5.1 Transformer Architecture: Key Components 

The transformer architecture has revolutionized machine learning tasks, particularly in Natural 

Language Processing (NLP), due to its ability to handle sequential data efficiently. At its core, 

the transformer consists of an encoder-decoder structure as shown in Figure 2. The encoder maps 

an input sequence to a continuous representation, while the decoder uses this representation to 

generate an output sequence.  

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Encoder-Decoder Structure [5] 

Multi-head attention mechanisms are crucial in this architecture, allowing the model to focus on 

different parts of the input sequence simultaneously. Each attention head operates 

independently, computing scaled dot-product attention, and their outputs are concatenated and 

linearly transformed as shown in Figure 3. This multi-faceted attention process helps the model 

capture various aspects of the data's context.  
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Figure 3: The multi-head attention mechanism, illustrating how multiple attention heads operate in 

parallel [5] 

Additionally, the transformer employs positional encoding to inject information about the 

position of each token in the sequence, since the architecture itself does not inherently consider 

the order of tokens. This encoding uses sine and cosine functions to generate unique positional 

vectors added to the input embeddings, enabling the model to learn positional relationships as 

shown in Figure 4. Together, these components form a powerful and flexible architecture capable 

of learning complex dependencies in data. 

 

 

 
Figure 4: Visualization of positional encoding, where unique positional information is added to input 

embeddings 

1.5.2 Beyond NLP: Applications of Transformers 

Transformers have transcended their initial application in Natural Language Processing (NLP) 

and are now being utilized across a variety of domains. A notable adaptation is in computer 

vision with the development of Vision Transformers (ViTs) as described by Dosovitskiy et al. 

[6]. ViTs treat image patches as sequence data, applying the transformer architecture to process 

these patches and achieve state-of-the-art results in image classification tasks. A typical example 

of the Vision Transformer is shown in Figure 5. This approach leverages the transformer's ability 
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to model long-range dependencies, providing a powerful alternative to convolutional neural 

networks (CNNs). 

Furthermore, transformers have found applications in Reinforcement Learning (RL), where they 

enhance the learning process by improving context understanding and sequence processing, as 

explored by Agarwal et al. [7]. By integrating transformers into RL frameworks, agents can 

better manage temporal dependencies and long-term planning, leading to more efficient learning 

and superior performance in complex environments. The versatility of transformers in handling 

sequential data and their ability to model intricate relationships have made them a valuable tool 

across various machine learning tasks beyond NLP. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: The structure of Vision Transformers architecture 

1.6 Transfer Learning 

Transfer Learning involves leveraging knowledge gained from one domain or task to improve 

learning performance in a different but related domain or task. This approach is particularly 

useful in scenarios where the target task has limited data, making it difficult to train a model 
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from scratch. By transferring knowledge from a pretrained model, we can achieve faster 

convergence and better performance. In the context of Reinforcement Learning (RL), transfer 

learning can dramatically reduce training time and enhance the effectiveness of algorithms, 

making it a crucial technique for modern AI applications. 

1.6.1 Importance of Transfer Learning 

Transfer Learning is important for several reasons: 

• Efficiency: By utilizing pretrained models, Transfer Learning significantly reduces the 

amount of data and time required to train new models. This is especially beneficial in 

RL, where training from scratch can be time-consuming and computationally expensive. 

• Performance: Transfer Learning can improve the performance of models on target tasks 

by incorporating knowledge learned from related tasks. This leads to more robust and 

accurate models, which are critical for applications like robotics, self-driving cars, and 

complex games. 

• Overcoming Data Scarcity: In many real-world scenarios, obtaining a large amount of 

labeled data for training is challenging. Transfer Learning addresses this issue by 

allowing models to leverage existing data from similar tasks, thus mitigating the problem 

of data scarcity. 

• Generalization: Models trained with Transfer Learning often generalize better to new 

tasks and environments, as they build upon a broader base of knowledge. This  

 

 

adaptability is crucial for applications that require models to perform well in diverse and 

dynamic settings. 

1.4.2 Applications of Transfer Learning in RL 

In Reinforcement Learning (RL), Transfer Learning has been applied in various ways to enhance 

the learning process: 

• Pretrained Policy Networks: Initializing RL agents with policy networks pretrained on 

related tasks can significantly accelerate the learning process. As explored by Mini et al. 

[8], this approach enables agents to achieve higher performance more quickly, 

effectively leveraging the knowledge gained from previous tasks to improve efficiency 

in new environments. 

• Feature Transfer: Transfer Learning allows for the reuse of features learned from one 

environment to another, which is particularly advantageous in visual-based RL tasks 

where feature extraction can be computationally intensive. Yin et al. [9] demonstrated 

the effectiveness of this approach in reducing the need to learn these features from 

scratch in new environments, thus saving computational resources and time. 

• Reward Shaping: Transferring knowledge about reward structures from one task to 

another can help shape the reward function of the target task. This method, discussed by 

Doncieux [10], leads to more efficient learning and better alignment with desired 
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outcomes, enabling agents to quickly adapt to new tasks by utilizing prior knowledge 

about rewards. 

The ability of Transfer Learning to enhance efficiency, performance, and generalization makes 

it a vital tool in the development of advanced RL systems. By providing a foundation for the 

rapid advancement and deployment of intelligent agents in diverse applications, Transfer 

Learning continues to drive progress in the field, enabling more robust and adaptable RL 

solutions. 

1.7 Literature Review 

1.7.1 Transfer Learning 

The literature on transfer learning in deep reinforcement learning (DRL) provides substantial 

evidence of its impact on improving the efficiency and performance of reinforcement learning 

algorithms. A common theme across the reviewed papers is the utilization of transfer learning 

to address the challenges of data scarcity, computational expense, and lengthy training times in 

RL. 

 

Firstly, the integration of transfer learning into DRL frameworks has been shown to enhance 

learning efficiency. By leveraging pretrained models or knowledge from related tasks, these 

methods significantly reduce the need for extensive data and computation, leading to faster 

convergence. For instance, Zhu et al. [11] highlight how pretrained models expedite the learning 

process by providing a robust starting point. This aligns with the goals of this thesis, which 

employs pretrained state and action embeddings to accelerate learning in new environments. 

 

Secondly, the literature underscores the role of transfer learning in improving model 

performance. Transferring knowledge from previously learned tasks enables RL agents to 

achieve higher performance on target tasks. Gao et al. [12] discuss how this transfer of 

knowledge helps agents perform better by building on past experiences. In our approach, cross-

attention mechanisms between pretrained state and action embeddings are employed to refine 

the learning process and achieve superior results. 

 

Another significant aspect highlighted in the reviewed studies is the focus on generalization. 

Transfer learning methods enable RL agents to apply their knowledge to new tasks and domains, 

which is critical for developing adaptable and robust models. This thesis similarly emphasizes 

the ability of cross-attention mechanisms to enhance the generalization capabilities of RL 

agents, facilitating better adaptation to novel environments. 

 

Furthermore, several studies explore the combination of transfer learning with other techniques 

to boost the learning process. For example, the use of rigorous simulation methods and multitask 

learning frameworks in conjunction with transfer learning has shown to improve overall learning 

outcomes. Parisotto et al. [13] illustrate how combining these techniques leads to more effective 

learning. Our methodology incorporates a cross-attention transformer architecture to integrate 

pretrained embeddings, leveraging the strengths of both transfer learning and advanced neural 

network architectures. 

 

In conclusion, the reviewed literature supports the effectiveness of transfer learning in 

enhancing the efficiency, performance, and generalization of reinforcement learning algorithms. 
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The commonalities between these studies and our thesis highlight the relevance and potential of 

using cross-attention mechanisms between pretrained state and action embeddings to improve 

RL outcomes in new environments. 

1.7.2 Action Representations 

Action representations in deep reinforcement learning (DRL) have been attracting significant 

attention in enhancing learning efficiency and overall performance. One notable example is 

provided by Chen et al. [14], who propose a method for learning action embeddings that enable 

the transfer of knowledge across tasks with differing state-action spaces. Their innovative 

approach not only creates informative action embeddings but also significantly accelerates the 

policy learning process, leading to notable improvements across a variety of tasks. This method 

addresses the challenges associated with task variability and demonstrates the potential for more 

efficient policy learning in diverse environments. 

 

Similarly, Chandak et al. [15] highlight the substantial benefits of learning action 

representations. By decomposing a policy into components that operate in low-dimensional 

action spaces, their technique significantly enhances generalization over large sets of actions. 

This decomposition allows reinforcement learning agents to infer the outcomes of actions that 

are similar to those previously taken, thereby improving their performance in real-world 

scenarios. 

 

Furthermore, Kim et al. [16] present an action-driven contrastive representation method that 

prioritizes essential features for decision-making while disregarding irrelevant details. This 

approach, which is particularly effective in environments such as Atari and OpenAI ProcGen 

benchmarks, substantially boosts both sample efficiency and generalization. By focusing on the  

 

critical features necessary for action decisions, this method ensures that the learning process is 

more robust and adaptable to new observations, thereby enhancing the agent's overall 

performance and generalization capabilities. 

 

Moreover, the work of Fujimoto et al. [17] introduces SALE, a novel approach for learning 

state-action embeddings that model the intricate interaction between state and action. This 

method significantly enhances the performance of continuous control algorithms. By integrating 

SALE into the TD3 algorithm, resulting in the development of the TD7 algorithm, they achieve 

substantial performance gains on OpenAI gym benchmark tasks. The success of SALE in 

improving the TD7 algorithm highlights the potential of advanced state-action representations 

to dramatically enhance learning efficiency and outcomes in DRL. The modeling of state-action 

interactions allows for more precise and effective policy learning, particularly in continuous 

control tasks. 

 

The reviewed literature robustly supports the effectiveness of action representations in 

enhancing the efficiency, performance, and generalization of reinforcement learning algorithms. 

It aligns with the goals of this thesis, which aims to employ advanced state and action 

embeddings to improve RL outcomes in Atari environments. 
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2   CHAPTER 2: Atari Games in the Gym Library 

The OpenAI Gym library provides a rich set of environments designed to develop and evaluate 

reinforcement learning (RL) algorithms. Among these environments, the collection of Atari 

2600 games has become a standard benchmark for testing and comparing the performance of 

RL agents. This chapter provides an overview of the Atari games available in the Gym library 

[26], with a focus on three specific games: Pac-Man, Alien, and Bank Heist. We will compare 

and evaluate their similarities and differences, highlighting the unique challenges and features 

each game presents. 

2.1 Overview of Atari Games in the Gym Library 

The Atari 2600 games provided by the Gym library serve as an ideal testbed for RL research 

due to their diverse gameplay mechanics, varying levels of complexity, and the requirement for 

strategic decision-making. These games range from simple single-screen action games to more 

complex multi-level adventures. Each game offers distinct challenges in terms of state 

representation, action space, and reward structures, making them suitable for evaluating 

different aspects of RL algorithms. 

Some popular Atari games included in the Gym library are: 

• Breakout: A game where the player controls a paddle to bounce a ball and break bricks. 

• Space Invaders: A shooting game where the player must defend against waves of alien 

invaders. 

• Pong: A table tennis simulation where the player competes against an AI opponent. 

• Frostbite: A game where the player builds igloos while avoiding enemies. 

Among these, we will focus on Pac-Man, Alien, and Bank Heist due to their popularity and the 

unique challenges they present. 

2.2 Description of Pac-Man 

Pac-Man is a classic arcade game where the player controls Pac-Man through a maze, eating 

pellets while avoiding ghosts, as shown in Figure 6. The primary objectives of Pac-Man are: 

▪ Collecting Pellets: Pac-Man must eat all the pellets in the maze to advance to the next 

level. 

▪ Avoiding Ghosts: Four ghosts (Blinky, Pinky, Inky, and Clyde) roam the maze and 

attempt to capture Pac-Man. If caught, Pac-Man loses a life. 

▪ Eating Power Pellets: Eating power pellets gives Pac-Man temporary invincibility, 

allowing him to eat the ghosts for extra points. 

▪ Fruit Bonuses: Fruits periodically appear near the center of the maze and can be eaten 

for extra points. 
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Figure 6: The maze layout of Pac-Man, illustrating the pathways and locations of pellets and ghosts [26] 

Possible Actions: 

- NOOP: No operation; Ms. Pac-Man remains stationary. 

- UP: Directs Ms. Pac-Man to move upwards in the maze. 

- RIGHT: Directs Ms. Pac-Man to move right in the maze. 

- LEFT: Directs Ms. Pac-Man to move left in the maze. 

- DOWN: Directs Ms. Pac-Man to move downwards in the maze. 

- UPRIGHT: Directs Ms. Pac-Man to move diagonally up and to the right. 

- UPLEFT: Directs Ms. Pac-Man to move diagonally up and to the left. 

- DOWNRIGHT: Directs Ms. Pac-Man to move diagonally down and to the right. 

- DOWNLEFT: Directs Ms. Pac-Man to move diagonally down and to the left. 

Points and Bonuses: 

o Small Pellets: 10 points each. 

o Power Pellets: 50 points each. 

o Ghosts: Eating ghosts after consuming a power pellet gives points in a progressive 

manner (200, 400, 800, 1600). 

o Fruits: Points vary by fruit type and level, ranging from 100 to 5000 points. 

• Strawberry: 200 points. 

• Pretzel: 700 points. 

• Apple: 1000 points. 

• Pear: 2000 points. 

• Banana: 5000 points. 
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Key features of Pac-Man include: 

o Maze Navigation: The game involves navigating through a fixed maze with various 

pathways and dead ends. 

o Strategic Planning: Players must devise strategies to collect pellets efficiently while 

avoiding or confronting ghosts. 

o Dynamic Difficulty: The behavior of the ghosts changes as the player progresses, 

increasing the game's difficulty. 

Pac-Man's combination of navigation, evasion, and occasional aggression provides a rich 

environment for testing RL algorithms. 

2.3 Description of Alien 

Alien is a survival-based game where the player navigates through different levels, avoiding or 

destroying aliens, as shown in Figure 7. The primary objectives of Alien are: 

▪ Surviving Alien Attacks: Players must avoid or eliminate aliens that appear on the 

screen. 

▪ Navigating Levels: Each level has a different layout, requiring players to adapt their 

strategies accordingly. 

▪ Collecting Power-ups: Power-ups may appear, providing temporary advantages such as 

increased firepower or invincibility. 

 

▪  

Figure 7: A gameplay screen from Alien, showing the player character, enemies, and level layout [26] 
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Possible Actions: 

- NOOP: No operation; the player character remains stationary. 

- FIRE: Fires a weapon in the direction the player is facing. 

- UP: Directs the player character to move upwards in the level. 

- RIGHT: Directs the player character to move right in the level. 

- LEFT: Directs the player character to move left in the level. 

- DOWN: Directs the player character to move downwards in the level. 

- UPRIGHT: Directs the player character to move diagonally up and to the right. 

- UPLEFT: Directs the player character to move diagonally up and to the left. 

- DOWNRIGHT: Directs the player character to move diagonally down and to the right. 

- DOWNLEFT: Directs the player character to move diagonally down and to the left. 

- UPFIRE: Moves up and fires simultaneously. 

- RIGHTFIRE: Moves right and fires simultaneously. 

- LEFTFIRE: Moves left and fires simultaneously. 

- DOWNFIRE: Moves down and fires simultaneously. 

- UPRIGHTFIRE: Moves diagonally up-right and fires simultaneously. 

- UPLEFTFIRE: Moves diagonally up-left and fires simultaneously. 

- DOWNRIGHTFIRE: Moves diagonally down-right and fires simultaneously. 

- DOWNLEFTFIRE: Moves diagonally down-left and fires simultaneously. 

Points and Bonuses: 

o Eggs: 10 points each. 

o Pulsar: 100 points. 

o 1st Alien: 500 points. 

o 2nd Alien: 1,000 points. 

o 3rd Alien: 2,000 points. 

o Completed Screen: 1 point. 

o Rocket: 500 points. 

o Saturn: 1,000 points. 

o Star Ship: 2,000 points. 

o 1st Surprise: 2,000 points. 

o 2nd Surprise: 3,000 points. 

o 3rd Surprise: 5,000 points. 

Key features of Alien include: 

- Level Variety: Each level introduces new challenges and enemy types, requiring 

continuous adaptation. 

- Combat Mechanics: The game involves a significant amount of shooting and dodging, 

testing the player's reflexes and tactical planning. 

-  
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- Resource Management: Players must manage their limited ammunition and power-ups 

effectively. 

Alien's emphasis on survival, level navigation, and resource management makes it a challenging 

environment for RL agents. 

2.4 Description of Bank Heist 

Bank Heist is a strategy game where the player controls a character attempting to rob banks 

while avoiding police capture, as shown in Figure 8. The primary objectives of Bank Heist are: 

▪ Robbing Banks: The player must enter banks, collect money, and escape without getting 

caught. 

▪ Avoiding Police: Police patrol the streets and attempt to capture the player. 

▪ Resource Collection: Players can collect keys to open banks and other useful items. 

 

 

Figure 8: The city map in Bank Heist, displaying banks, streets, and police patrols [26] 

 

Possible Actions: 

- NOOP: No operation; the player character remains stationary. 

- FIRE: Fires a weapon in the direction the player is facing. 

- UP: Directs the player character to move upwards in the level. 

- RIGHT: Directs the player character to move right in the level. 

- LEFT: Directs the player character to move left in the level. 

- DOWN: Directs the player character to move downwards in the level. 

- UPRIGHT: Directs the player character to move diagonally up and to the right. 
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- UPLEFT: Directs the player character to move diagonally up and to the left. 

- DOWNRIGHT: Directs the player character to move diagonally down and to the right. 

- DOWNLEFT: Directs the player character to move diagonally down and to the left. 

- UPFIRE: Moves up and fires simultaneously. 

- RIGHTFIRE: Moves right and fires simultaneously. 

- LEFTFIRE: Moves left and fires simultaneously. 

- DOWNFIRE: Moves down and fires simultaneously. 

- UPRIGHTFIRE: Moves diagonally up-right and fires simultaneously. 

- UPLEFTFIRE: Moves diagonally up-left and fires simultaneously. 

- DOWNRIGHTFIRE: Moves diagonally down-right and fires simultaneously. 

- DOWNLEFTFIRE: Moves diagonally down-left and fires simultaneously. 

Points and Bonuses: 

o Bank Values: 

• First Bank: $10.00 

• Second Bank: $20.00 

• Third Bank: $30.00 

• Fourth Bank: $40.00 

• Fifth Bank: $50.00 

• Sixth Bank: $60.00 

• Seventh Bank: $70.00 

• Eighth Bank: $80.00 

• Ninth Bank: $90.00 

o Cop Car Values: 

• One Cop Car in Pursuit: $10.00 

• Two Cop Cars in Pursuit: $30.00 

• Three Cop Cars in Pursuit: $50.00 

o Bonus Points for Level 1: 

• Bankersfield: $93.00 

• Silver Dollar: $186.00 

• Flat Broke: $279.00 

• Heistown: $372.00 

o Add $372.00 per level to these values for the other levels. 

Key features of Bank Heist include: 

o Open-World Navigation: The game features a city map with multiple banks and hiding 

spots. 

o Stealth and Strategy: Players must use stealth and strategic planning to avoid police and 

successfully rob banks. 

o Dynamic Enemies: Police behavior changes based on the player's actions, increasing the 

game's complexity. 
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Bank Heist's combination of open-world exploration, stealth, and strategic planning offers a 

unique challenge for RL algorithms. 

2.5 Comparison of Pac-Man, Alien, and Bank Heist 

While Pac-Man, Alien, and Bank Heist are all part of the Atari 2600 game collection, they 

present distinct gameplay mechanics and challenges: 

Similarities: 

➢ Objective-Driven Gameplay: All three games have clear objectives (collecting pellets, 

surviving attacks, robbing banks) that guide the player's actions. 

➢ Obstacle Avoidance: Each game requires players to avoid enemies (ghosts, aliens, 

police) to succeed. 

➢ Resource Management: Players must manage resources (power pellets, ammunition, 

keys) effectively to achieve their goals. 

Differences: 

➢ Game Structure: 

o Pac-Man features a fixed maze with repetitive structure across levels. 

o Alien offers varied levels with different layouts and increasing difficulty. 

o Bank Heist provides an open-world environment with a city map and multiple 

objectives. 

➢ Gameplay Mechanics: 

o Pac-Man focuses on navigation and evasion within a confined space. 

o Alien emphasizes survival and combat, requiring quick reflexes and tactical 

decisions. 

o Bank Heist combines stealth and strategy, involving careful planning and 

resource collection. 

➢ Enemy Behavior: 

o In Pac-Man, ghosts have predictable patterns but can adapt to the player's actions. 

o In Alien, enemies appear and move dynamically, presenting continuous threats. 

o In Bank Heist, police patrols react to the player's actions, necessitating strategic 

evasion. 

2.6 Evaluation of Similarities and Differences 

The comparison of Pac-Man, Alien, and Bank Heist highlights the diversity of challenges and 

gameplay mechanics these games offer. This diversity makes them suitable for evaluating 

different aspects of RL algorithms: 

- Pac-Man: Ideal for testing navigation, strategy, and dynamic adaptation to enemy 

behavior within a structured environment. 
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- Alien: Suitable for evaluating survival tactics, combat efficiency, and adaptability to 

varied level designs. 

- Bank Heist: Excellent for assessing strategic planning, stealth, and resource management 

in an open-world setting. 

Each game presents unique opportunities and challenges for RL research, making them valuable 

benchmarks for developing and testing advanced RL algorithms. By comparing these games, 

we gain insights into the strengths and limitations of various RL approaches, ultimately guiding 

the development of more robust and efficient algorithms. 

By understanding the similarities and differences among these games, we can better design and 

evaluate RL algorithms tailored to specific types of challenges, enhancing their applicability and 

performance across diverse environments. 
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3   CHAPTER 3: Methodology 

This chapter details the methodology employed in our study, focusing on the application of Deep 

Q-Networks (DQN) to the Ms. Pac-Man game and the new proposed algorithm JASE-DQN. An 

in-depth description of the preprocessing steps, network architecture, and hyperparameters used 

in our experiments is provided. 

3.1 DQN on Ms. Pac-Man 

The DQN algorithm serves as the primary benchmark for this analysis. Initially developed by 

DeepMind, DQN has demonstrated significant success in various Atari games, making it an 

ideal candidate for our study on Ms. Pac-Man. 

3.1.1 Pre-Processing of states 

Preprocessing the states is a crucial step to ensure the input data is manageable and relevant for 

the learning algorithm. For the Ms. Pac-Man game, the following preprocessing steps were 

applied: 

➢ Resizing and Grayscaling: The observation space was transformed from its original 

dimensions of (210, 160, 3) to (84, 84) by converting the image to grayscale and 

downsampling. This reduces the complexity of the input data while retaining essential 

features for gameplay. 

➢ Normalization: All frames were normalized by dividing pixel values by 255, scaling the 

values to the range [0, 1]. This standardization helps in stabilizing and accelerating the 

learning process. 

➢ Frame Skipping: By default, 4 frames were skipped when an action was selected. This 

technique reduces the frequency of actions and focuses on significant state changes. 

➢ Stacking Frames: Four sequential frames were stacked to form the input state, providing 

temporal context to the agent. This method, introduced in DeepMind’s paper, helps the 

agent understand the motion and dynamics within the game. 

3.1.2 Network Architecture 

The network architecture for the DQN used in Ms. Pac-Man is designed to process the input 

frames and output Q-values for each possible action, as shown in Figure 9. 

3.1.2.1 Deep Q-Network 

The architecture consists of the following layers: 

➢ Input Layer: The input consists of 4 stacked frames from the Ms. Pac-Man game, with 

dimensions typically being (4, Height, Width), where Height and Width are determined 

by the game resolution (84, 84 in this case). 
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➢ Conv2D Layer 1: This convolutional layer has 32 channels, with a kernel size of 8x8, 

stride 4x4, and ReLU activation function. It processes the input frames to generate a 

feature map. 

➢ Conv2D Layer 2: This layer has 64 channels, with a kernel size of 4x4, stride 2x2, and 

ReLU activation function. It further processes the feature maps produced by the first 

convolutional layer. 

➢ Conv2D Layer 3: This layer has 64 channels, with a kernel size of 3x3, stride 1x1, and 

ReLU activation function. It continues processing the feature maps from the second 

convolutional layer. 

➢ Flatten Layer: The 3D output from the last convolutional layer is flattened into a 1D 

array, preparing it for the fully connected layers. 

➢ Dense Layer: A fully connected layer with 512 neurons and ReLU activation function 

processes the flattened array to learn non-linear combinations of high-level features. 

➢ Output Layer: This fully connected layer has 9 neurons, corresponding to the 9 possible 

actions in the Ms. Pac-Man game. It outputs the Q-values for each action. 

This architecture yields a total of 3,377,490 trainable parameters.

 

Figure 9: Deep Q-Network Architecture 

3.1.2.2 Double Q Learning 

In the context of Deep Q-Networks (DQN), the use of online and target networks has proven to 

be a critical advancement according to Van Hasselt et al. [18]. This dual-network approach 

offers several benefits that enhance the stability and efficiency of the learning process. 

Primarily, the target network addresses the moving target problem inherent in Q-learning by 

providing a stable reference for generating target Q-values. This stability is crucial for mitigating 

the risk of divergence or oscillation in Q-values, which can otherwise destabilize the learning 

process. By periodically updating the target network to match the online network, we ensure 

that the learning remains smooth and converges more reliably.  
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Moreover, the use of target networks significantly reduces overestimation bias, a common issue 

in Q-learning, leading to more accurate policy decisions. This is especially beneficial when  

 

combined with techniques such as Double DQN, which further separate action selection and 

evaluation to refine the learning process. Additionally, the stability provided by the target 

network enhances learning efficiency, reducing the number of updates required and thereby 

accelerating convergence. This efficiency is particularly valuable in complex environments with 

high-dimensional state and action spaces, where stable targets enable the agent to develop more 

sophisticated strategies.  

Overall, the inclusion of online and target networks in our methodology not only improves the 

stability and efficiency of the learning process but also ensures robust performance across 

different tasks, aligning perfectly with the objectives of our research. 

3.1.2.3 Experience Replay 

In addition, a replay buffer is utilized to effectively mitigate the issue of catastrophic forgetting. 

A replay buffer stores a diverse set of past experiences (an experience is considered a quadruple 

of state, action, reward, next state), which are randomly sampled during training. This approach 

ensures that the agent learns from a broad range of states and actions, rather than overfitting to 

recent experiences.  

By maintaining a diverse and representative sample of the environment's dynamics, the replay 

buffer helps in stabilizing the learning process and promotes more robust policy development. 

This method not only enhances the stability and efficiency of the learning process but also 

ensures that the agent retains valuable knowledge over time, preventing the rapid loss of 

previously acquired skills that can occur in sequential learning without such a mechanism as 

indicated by Wang, Z. et al. [21]. 

Advancements in replay buffer techniques, such as Prioritized Experience Replay (PER) 

developed by Schaul, T. et al. in the paper “Prioritized experience replay”, offer additional 

benefits. PER prioritizes experiences based on their significance, often measured by the  

magnitude of their temporal-difference (TD) error. This prioritization allows the agent to focus 

on learning from the most informative experiences, leading to faster and more efficient learning. 

By sampling important experiences more frequently, PER enhances the overall performance and 

robustness of reinforcement learning models. 

However, for simplicity, a simple replay buffer is used in our framework. While PER provides 

significant advantages, a simple replay buffer is easier to implement and still effectively 

prevents catastrophic forgetting by maintaining a diverse set of experiences for the agent to learn 

from. This approach ensured the stability and efficiency necessary for our research objectives. 
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3.1.2.4 Optimizer 

The Adam optimizer, introduced by Kingma and Ba [19], is utilized for updating the weights of 

the network due to its numerous advantages, making it a popular choice for training neural 

networks. 

First, it combines the benefits of two other popular optimizers, AdaGrad and RMSProp, by using 

adaptive learning rates for each parameter. This adaptivity results in faster convergence and 

greater stability during training, as Adam adjusts the learning rates based on the gradients' 

magnitudes.  

Second, Adam maintains separate learning rates for each parameter, which can lead to improved 

performance on models with sparse gradients or in high-dimensional spaces. Additionally, 

Adam efficiently computes the moving averages of gradients and their squared gradients, which 

helps in handling noisy or sparse gradients typical in complex models.  

Overall, these features make Adam a robust choice for optimizing neural networks, offering 

quicker convergence, better handling of varied learning rates, and improved performance across 

a range of tasks. 

3.1.2.5 Loss function 

SmoothL1Loss is used as the loss function of this network as it offers significant benefits, 

particularly in scenarios where outlier data points could otherwise distort training. Unlike Mean 

Squared Error (MSE), SmoothL1Loss is less sensitive to outliers due to its quadratic and linear 

components, which prevent it from magnifying errors as drastically as MSE does. It combines 

the advantages of both L1 and L2 loss because it behaves like the L2 loss when the absolute 

error is small (less than 1) and like the L1 loss when the absolute error is large. SmoothL1Loss 

is defined as follows: 

𝑆𝑚𝑜𝑜𝑡ℎ𝐿1𝐿𝑜𝑠𝑠(𝑥) = {
0.5𝑥2, 𝑖𝑓 |𝑥| < 1
|𝑥| − 0.5,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

This characteristic not only aids in enhancing the stability of training but also reduces the 

likelihood of encountering exploding gradients (Girshick, 2015) [20] a common issue in deep 

learning when gradients become excessively large and disrupt the learning process. By 

smoothing out extreme errors, SmoothL1Loss promotes stable gradient values, thereby 

enhancing the overall training stability and convergence of your neural network. 

3.1.3 Hyperparameters 

The following hyperparameters were used in the DQN training process: 

- Gamma (Discount Factor): 0.9 

- Exploration Rate (Epsilon): Initially set to 1.0 
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- Exploration Rate Decay: 0.99999 

- Minimum Exploration Rate: 0.1 

- Replay Buffer Size: 100,000 

- Batch Size: 32 

- Number of Episodes: 5,000 

- Learning Rate: 0.00025 

- Online Network Update Frequency: Every 3 new experiences 

- Target Network Update Frequency: Every 10,000 experiences 

- Minimum Number of Experiences Before Training: 10,000 

These hyperparameters were tailored to the specific requirements of the Ms. Pac-Man game. 

3.2 Training State & Action Encoders 

In this section, we describe the methodology for training state and action encoders, essential 

components for enhancing the efficiency and effectiveness of reinforcement learning through 

intrinsic motivation. 

3.2.1 The Intrinsic Curiosity Module 

The Intrinsic Curiosity Module (ICM) is a framework designed to improve exploration in 

reinforcement learning by incorporating intrinsic motivation. Intrinsic curiosity is driven by the 

agent’s own experience and the desire to reduce prediction errors about its environment, rather 

than relying solely on extrinsic rewards provided by the environment. Figure 10 presents the 

entire mechanism of this framework. This approach helps the agent explore more efficiently, 

particularly in environments with sparse or deceptive rewards. We will describe the main 

components of ICM module, but we encourage you to learn more about this module in Brown 

and Zai's book Deep Reinforcement Learning in Action [23]. 

The ICM consists of several components: 

Forward-Prediction Model 

The forward-prediction model, 𝑓, is defined as: 

𝑓: (𝑆𝑡, 𝑎𝑡) →  𝑆𝑡+1
̂   

Here, 𝑆𝑡 is the state at time t, 𝑎𝑡 is the action taken, and 𝑆𝑡+1 is the predicted next state. This 

model predicts the next state based on the current state and the action performed. 

Inverse Model 

The inverse model, 𝑔, is defined as: 

𝑔: (𝑆𝑡, 𝑆𝑡+1) →  𝑎𝑡̂ 
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This function takes a state 𝑆𝑡 and the subsequent state 𝑆𝑡+1, and returns a prediction for the 

action 𝑎𝑡̂ that led to the transition from 𝑆𝑡 to 𝑆𝑡+1. 

Encoder Model 

On its own, the inverse model is not particularly useful. It is tightly coupled with the encoder 

model, denoted 𝜑.  

The encoder function 𝜑 is defined as: 

𝜑: 𝑆𝑡 → 𝑆𝑡̃ 

This function takes a state 𝑆𝑡 and returns an encoded state 𝑆𝑡̃, where the dimensionality of 𝑆𝑡̃ is 

significantly lower than the raw state 𝑆𝑡. The encoded state 𝑆𝑡̃ captures the essential features of 

the original state in a more compact form. 

Coupled Models 

With the encoder model, the forward model and the inverse model are reformulated to work 

on the encoded states. The forward model becomes a function that predicts the encoded next 

state: 

𝑓: 𝜑(𝑆𝑡) × 𝑎𝑡 →  𝜑(𝑆̂𝑡+1) 

Here, 𝜑(𝑆̂𝑡+1) refers to the prediction of the encoded next state. Similarly, the inverse model is 

reformulated to predict the action based on the encoded states: 

𝑔: 𝜑(𝑆𝑡) ×  𝜑(𝑆𝑡+1) →  𝑎𝑡̂ 

These reformulations ensure that the predictions and actions are based on the more compact 

and informative encoded states rather than the raw states. 

The combination of these models within the ICM framework facilitates the training of state 

encoder. By focusing on intrinsic curiosity, the agent learns to explore its environment more 

thoroughly and efficiently, driven by the need to reduce the prediction error of its own internal 

models. This approach enhances the agent's ability to generalize knowledge across different 

environments and tasks, ultimately leading to more robust and effective learning outcomes. 
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Figure 10: Diagram of Intrinsic Curiosity Module [19] 

3.2.2 Alternatives 

In this section, we explore alternatives to the standard DQN algorithm by incorporating encoded 

states and actions (embeddings) into the Q-Learning algorithm. Our goal is to create a more 

efficient learning process by utilizing these embeddings. Specifically, we aim to: 

• Use the encoded states (embeddings) in the Q-Learning algorithm. 

• Create action embeddings to represent each action of the game. 

• Train the state encoder and action encoder in an offline manner by gathering experiences 

of DQN. 

3.2.2.1 State Encoder & Inverse Model 

The state encoder and inverse model are essential components for embedding the states. The 

state encoder is implemented as a series of convolutional layers, batch normalization, max-

pooling, and dropout layers to effectively reduce the dimensionality of the input states and 

capture relevant features. A sequence of these layers together form a convolutional block, as per 

Figure 11. Below is a detailed explanation of the architecture: 

1. Convolutional Block 1: 

o Two convolutional layers each have 64 filters, a kernel size of 3x3, and a stride 

of 1. ReLU activation function is applied to both convolutional layers. These 

layers help in feature extraction from the input state. 

o Batch Normalization Layer to stabilize and speed up the training process by 

normalizing the inputs of each layer. 

o Max-pooling layer with a pool size of 2x2 are used to downsample the feature 

maps, reducing their spatial dimensions and computational load. 

o Dropout layer with a dropout rate of 0.1 is used to prevent overfitting by 

randomly dropping units during training. 

2. Convolutional Block 2: 

o Same as Convolutional Block 1 
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3. Convolutional Block 3: 

o Same as Convolutional Block 1, but with a kernel size 2x2 in convolutional 

layers. 

4. Convolutional Block 4: 

o Same as Convolutional Block 3, but with 128 filters in convolutional layers. 

 

 

Figure 11: Convolutional Block of State Encoder 

The output of the state encoder is an embedding vector of 1152 elements, which is created by 

adding a flatten layer after the 4 convolutional blocks, as per Figure 12.  

 

Figure 12: State Encoder 

The inverse model is designed to predict the action taken between two consecutive state 

embeddings, as shown in Figure 13. It includes: 
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1. Encoder: 

o The encoder model, is used to encode the states into a lower-dimensional 

representation (embedding). 

2. Fully Connected Layers: 

o The inverse model consists of fully connected layers that take the concatenated 

encoded states as input and predict the action taken. The layers are configured 

with 512 neurons and a final layer corresponding to the number of possible 

actions. 

 

Figure 13: Inverse Model 

Training the State Encoder by Inverse Model 

As described earlier, training of the state encoder is done by the inverse model. The training of 

the inverse model involves the following steps: 

1. Loss Function: Cross Entropy Loss is used, which is suitable for classification tasks 

where the model predicts a probability distribution over classes (actions in this case). 

2. Optimizer: Adam optimizer is employed with a learning rate of 10−4 and a weight decay 

of 0.01. Adam is an adaptive learning rate optimization algorithm that is efficient for 

large datasets and high-dimensional parameter spaces. 

3. Learning Rate Scheduler: A linear learning rate scheduler, is used to adjust the learning 

rate periodically. The step size is set to 30 epochs, and the learning rate is reduced by a 

factor of 0.8 every 30 epochs. This helps in fine-tuning the learning rate and preventing 

it from becoming too high or too low during training. 

3.2.2.2 Action Encoder & Forward Model  

The action encoder and forward model work together to predict the next state given the current 

state and action, as shown in Figure 14. The action encoder is an embedding layer, which helps 

represent each action in a continuous vector space. 
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1. Action Encoder: 

o The action encoder is implemented as an embedding layer within the forward 

model. This layer converts discrete actions into continuous embeddings, which 

can then be used in conjunction with state embeddings. 

2. State Encoder: 

o The state encoder, is pre-trained and loaded with its trained weights. 

3. Fully Connected Layers: 

o The forward model uses fully connected layers to combine the state and action 

embeddings. The input to the first layer is the concatenated state and action 

embeddings, followed by layers of 1152 neurons that refine this combined 

representation. 

 

Figure 14: Action Encoder and Forward Model 

Training the Action Encoder by Forward Model 

Training of the action encoder is done by the forward model. The training of the forward model 

involves the following steps: 

1. Loss Function: Smooth L1 Loss is used, which is suitable for regression tasks and is not 

sensitive to outliers. 

2. Optimizer: Adam optimizer is employed with a learning rate of 10−6 and a weight decay 

of 0.05. 

These architectural choices enable the effective training of state and action encoders, which can 

be utilized in the Q-Learning algorithm to enhance learning efficiency and speed. By 

incorporating these embeddings, we aim to generalize the learned knowledge across different 

environments and tasks more effectively. 
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3.3 JASE-DQN 

This section introduces the JASE-DQN algorithm, which aims to enhance the traditional DQN 

framework by incorporating cross-attention mechanisms between states and actions to compute 

the expected rewards (Q-values) of state-action pairs. This approach is able to leverage pre-

trained state and action encoders to utilize "previous knowledge" from either the same or 

different environments, thereby improving the learning efficiency and effectiveness. 

3.3.1 Architecture 

The architecture of the JASE-DQN consists of three primary components: a state encoder, an 

action encoder, and an attention mechanism, as per Figure 15. A detailed description of the 

architecture is provided below: 

Input: 

• The algorithm receives four stacked frames from the environment as input, representing 

the current state. These frames are similar to those used in the standard DQN algorithm, 

capturing temporal context and motion information essential for understanding the 

environment dynamics. 

State Encoder: 

• The input state is transformed into an embedding via the state encoder. The architecture 

of the state encoder aligns with that described in Section 3.2.2.1 (State Encoder & 

Inverse Model), featuring multiple convolutional layers designed to extract spatial 

features from the raw input frames. 

• The sequence of layers includes: 

o Conv2D Layer 1: 64 channels, kernel size of 3x3, and stride of 1. 

o Conv2D Layer 2: 64 channels, kernel size of 3x3, and stride of 1. 

o Batch Normalization Layer: Applied after each convolutional layer to stabilize 

the learning process. 

o Max Pooling Layer: Reduces spatial dimensions by taking the maximum value 

over 2x2 regions. 

o Dropout Layer: Applied with a probability of 0.1 to prevent overfitting. 

• This architecture is repeated with varying configurations, progressively reducing spatial 

dimensions and increasing the depth of feature maps until a final encoded state 

representation is obtained. 

Action Encoder: 

• The action encoder is represented by an embedding matrix of size 9×256, where each of 

the 9 possible actions is encoded into a 256-dimensional vector. This matrix functions 

as a lookup table, with each row corresponding to the embedding of a specific action. 

• This method allows for abstract representation of actions in a high-dimensional space, 

facilitating nuanced distinctions based on their effects on the environment. 
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Cross-Attention Mechanism: 

• The encoded state and action embeddings are processed through multiple attention 

mechanisms to compute the expected rewards of state-action pairs. 

• The cross-attention mechanism functions as follows: 

o Attention Modules: Nine cross-attention modules, each configured with query 

(q), key (k), and value (v) dimensions of 512, 512, and 100, respectively, are 

employed. Layer normalization is applied to the outputs to ensure stable 

gradients and efficient learning. 

▪ The attention mechanism enables the model to focus on different aspects 

of the state-action pairs, learning the dependencies and interactions 

between them. 

o Concatenation: The output vectors from the cross-attention modules are 

concatenated to form a comprehensive representation. This aggregated vector 

captures a holistic view of the state-action interactions. 

• Dense Layer: A fully connected layer with 512 neurons processes the concatenated 

vector, learning complex, non-linear relationships between the state and action 

embeddings, further refining the state-action value estimations. 

• Output Layer: The final fully connected layer consists of 9 neurons, each corresponding 

to one of the possible actions in the Ms. Pac-Man game. This layer outputs the Q-values 

for each action, representing the expected future rewards for taking each action in the 

given state. 

By integrating the attention mechanism, the JASE-DQN algorithm extends the traditional DQN 

framework, incorporating action representations in q values calculation and also the ability to 

utilize prior knowledge through pre-trained state and action encoders. This architecture results 

in a total of 7,432,145 trainable parameters, with 7,184,593 generated by the Q-network, 

245,248 by the state encoder, and 2,304 by the action embeddings. 

 
Figure 15: JASE-DQN Architecture 
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The Double Q-Learning approach was utilized similarly to the standard DQN as well as the 

experience replay mechanism. The same data pre-processing of states as DQN is applied before 

feeding states to state encoder. Additionally, SmoothL1Loss loss function and Adam optimizer 

are selected for training the algorithm, similarly with DQN. This ensures that the observed 

differences in performance are attributable to the algorithmic enhancements rather than 

variations in these fundamental components. However, due to the architectural differences 

between the networks, certain hyperparameters, such as the learning rate, were adjusted to 

optimize the performance of the JASE-DQN algorithm. These changes were necessary to 

accommodate the unique requirements and characteristics of the network, ensuring stable and 

efficient learning. 

3.3.2 Hyperparameters 

The following hyperparameters were used in the JASE-DQN training process: 

- Gamma (Discount Factor): 0.9 

- Exploration Rate (Epsilon): Initially set to 1.0 

- Exploration Rate Decay: 0.99999 

- Minimum Exploration Rate: 0.1 

- Replay Buffer Size: 100,000 

- Batch Size: 32 

- Number of Episodes: 5,000 

- Q Network (Multi-Head Cross Attention) Learning Rate: 0.000055 

- State Encoder Learning Rate: 0.00001 

- Action Encoder Learning Rate: 0.000001 

- Online Network Update Frequency: Every 3 new experiences 

- Target Network Update Frequency: Every 10,000 experiences 

- Minimum Number of Experiences Before Training: 10,000 

These hyperparameters were tailored to the specific requirements of the Ms. Pac-Man game 

and JASE-DQN algorithm. 
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4   CHAPTER 4: Results 

This chapter presents the results of training both the DQN and JASE-DQN algorithms on the 

game Ms. Pac-Man. Subsequently, a comparative analysis of these algorithms' performances is 

conducted. Furthermore, the chapter explores the application of transfer learning, utilizing pre-

trained state and action encoders from the Ms. Pac-Man environment within the JASE-DQN 

architecture, to the Alien and Bank Heist environments. The performance of each algorithm is 

evaluated based on the rolling average reward over the last 100 episodes, with each episode 

being a complete game session until game over. 

4.1 DQN on Ms. Pac-Man 

In the context of our experiments, the DQN algorithm demonstrated significant proficiency 

when applied to the Ms. Pac-Man game. Over the training period, DQN achieved an average 

episode reward of 2,600, as illustrated in Figure 17. This performance metric serves as a robust 

indicator of the algorithm's ability to learn and adapt to the complexities of the game 

environment. 

 

 

Figure 16: Rolling average loss function values of DQN for 5000 episodes 

While the reward outcomes were promising, an examination of the loss function revealed a less 

straightforward pattern. As depicted in Figure 16, the loss function exhibited fluctuating 

behavior throughout the training process. Unlike the reward metric, which showed a clear trend 

of improvement, the loss function's values oscillated without a consistent directional pattern, 

sometimes increasing and other times decreasing. This variability suggests that the loss function  
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alone may not be a reliable indicator of the learning progress or the ultimate performance of the 

DQN algorithm. 

The results obtained from the DQN algorithm on Ms. Pac-Man establish a critical baseline for 

comparative analysis with the JASE-DQN algorithm. By setting a benchmark with an average 

episode reward of 2,600, these findings enable a meaningful evaluation of the enhancements or 

deficiencies introduced by the JASE-DQN approach. This baseline is pivotal for assessing the 

efficacy of employing pre-trained state and action encoders within the JASE-DQN framework, 

particularly in terms of their contribution to performance improvements in the Ms. Pac-Man 

game environment. 

 

 

Figure 17: Rolling average reward of DQN in playing Ms Pac-Man for 5000 episodes 
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4.2 JASE-DQN on Ms Pac-Man 

This section details the performance results of the JASE-DQN algorithm on Ms. Pac-Man, 

both with and without the use of pre-trained encoders for states and actions. 

4.2.1 Without pre-trained encoders 

When the JASE-DQN algorithm was employed without the benefit of pre-trained encoders, it 

managed to achieve an average episode reward of 2,100, as shown in Figure 19. This outcome, 

while notable, did not surpass the performance of the standard DQN algorithm. The behavior of 

the loss function during training was characteristic of reinforcement learning processes, 

exhibiting a general decreasing trend interspersed with numerous spikes, depicted in Figure 18. 

Such fluctuations are typical in reinforcement learning, reflecting the trial-and-error nature of 

the algorithm as it explores and learns from the game environment. 

 

 

Figure 18: Rolling average loss function values of JASE-DQN without using pre-trained encoders for 5000 

episodes 
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Figure 19: Rolling average reward of JASE-DQN without using pre-trained encoders in playing Ms Pac-

Man for 5000 episodes 

4.2.2 With pre-trained encoders 

To enhance the learning efficiency of the JASE-DQN algorithm, state and action encoders were 

pre-trained using the most recent 20,000 experiences (state, action, reward, and next state) 

collected from the DQN agent. The state encoder was initially trained using the inverse model, 

followed by training the action encoder with the forward model and the already trained state 

encoder, as detailed in Section 3.2.2. The data were split into 80%, 10%, and 10% for training, 

validation, and test sets, respectively, and the training spanned 200 epochs. The F1-score of the 

inverse model on the test set was 0.5, while the RMSE of the forward model was 0.8. Despite 

these results not being highly impressive and acknowledging significant room for improvement, 

the objective was not to develop highly sophisticated encoders due to the extensive training time 

required. Consequently, these pre-trained encoders were integrated into the JASE-DQN 

architecture, with their weights fine-tuned during the training of the Q-network. This strategy 

aimed to expedite the learning process by utilizing the prior knowledge embedded in the 

encoders. 

The use of pre-trained state and action encoders resulted in a marked improvement in the 

algorithm's performance. Specifically, the JASE-DQN algorithm achieved an average episode 

reward of 2,250, as illustrated in Figure 20. This performance gain underscores the efficacy of 

incorporating pre-trained encoders, which facilitated faster adaptation and learning within the 

game environment. The fine-tuning of encoder weights during training proved beneficial, 

allowing the algorithm to refine its understanding of the game dynamics more rapidly compared 

to the non-pre-trained version. 
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Figure 20: Rolling average reward of JASE-DQN with pre-trained encoders in playing Ms Pac-Man for 

5000 episodes 

Overall, the inclusion of pre-trained encoders in the JASE-DQN framework not only enhanced 

the learning speed but also improved the ultimate reward outcomes, demonstrating a valuable 

strategy for optimizing reinforcement learning algorithms. 

4.3 DQN vs JASE-DQN on Ms Pac-Man 

The comparison between the DQN and JASE-DQN algorithms on Ms. Pac-Man reveals 

insightful distinctions in their learning behaviors and performance outcomes. Initially, the 

JASE-DQN algorithm, when deployed without the aid of pre-trained encoders, could not surpass 

the average reward achieved by the standard DQN algorithm. Up to the first 3000 episodes, both 

algorithms exhibited similar trends, with DQN maintaining a slight performance edge. However, 

post the 3,000-episode mark, the DQN algorithm clearly outperformed the JASE-DQN, as 

depicted in Figure 21. 

Conversely, the inclusion of pre-trained encoders significantly altered the performance 

dynamics of the JASE-DQN. Fine-tuning of the state and action encoders was tested over two 

different durations: up to 2,000 episodes and up to 5,000 episodes. It was observed that 

extending fine-tuning to 5,000 episodes resulted in better performance compared to fine-tuning 

for only 2,000 episodes, although the improvement was not substantially significant. 
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Figure 21: Comparison between rolling average rewards of JASE-DQN without using pre-trained 

encoders along with DQN 

A critical observation is that the JASE-DQN, when equipped with pre-trained encoders, 

demonstrated a markedly faster learning curve. For instance, the JASE-DQN achieved an 

average episode reward of 2,000 within the first 1300 episodes, whereas the DQN required 

approximately 2,800 episodes to reach a similar reward level, as illustrated in Figure 22. This 

accelerated learning indicates that the pre-trained encoders enabled the JASE-DQN to grasp 

the game characteristics more swiftly, providing a notable advantage in the early stages of 

training. In summary, while the JASE-DQN without pre-trained encoders struggled to match 

the performance of the standard DQN, the integration of pre-trained encoders not only 

improved its overall performance but also significantly hastened the learning process. This 

highlights the potential of leveraging pre-trained models to enhance the efficiency and 

effectiveness of reinforcement learning algorithms. 
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Figure 22: Comparison between rolling average rewards of JASE-DQN and DQN with different durations 

of fine tuning for state and action encoders. 

4.4 DQN vs JASE-DQN on Alien 

In this section, we explore the performance of DQN and JASE-DQN algorithms when applied 

to the game Alien. For this evaluation, state and action encoders pre-trained from the JASE-

DQN agent in the Ms. Pac-Man environment were utilized. 

The results clearly demonstrate that the JASE-DQN, equipped with pre-trained encoders from 

the Ms. Pac-Man environment, significantly outperformed the standard DQN in playing Alien.  

As illustrated in Figure 23, the JASE-DQN quickly adapted to the new environment, achieving 

an average reward exceeding 900 within the first 1,500 episodes. Over the course of 5,000 

episodes, it reached a maximum average reward of 950. In contrast, the DQN algorithm 

managed to achieve an average reward of only 800 after 5,000 episodes. 

 

 

 

 

 

 

 

 



UNIVERSITY OF WEST ATTICA 

FACULTY OF ENGINEERING 

Department of Electrical & Electronics Engineering 

Department of Industrial Design & Production Engineering 

MSc in Artificial Intelligence and Deep Learning 

Transferable State & Action Embeddings in Deep Reinforcement Learning 

Eleftheriou Dimitrios aidl-0038    57 

 

 

Figure 23: Comparison between rolling average rewards of JASE-DQN using pre-trained encoders along 

with DQN in playing Alien 

To facilitate adaptation to the new environment, the state and action encoders were not frozen. 

This allowed the JASE-DQN to fine-tune these encoders, thereby capturing the unique 

characteristics and dynamics of the Alien game. The substantial improvement in performance 

highlights the efficacy of leveraging pre-trained encoders from one environment and adapting 

them to another, underscoring the potential of transfer learning in reinforcement learning. 

Overall, the JASE-DQN's ability to utilize previously acquired knowledge from the Ms. Pac-

Man environment and successfully apply it to the Alien environment resulted in superior 

performance and faster learning compared to the standard DQN. This experiment showcases the 

versatility and effectiveness of pre-trained models in enhancing the capabilities of reinforcement 

learning algorithms across different tasks. 

4.5 DQN vs JASE-DQN on Bank Heist 

In this section, we analyze the performance of the DQN and JASE-DQN algorithms in the game 

Bank Heist. For this comparison, state and action encoders trained from the JASE-DQN agent 

in the Alien environment were used. This selection was made based on the reasoning that 

although Bank Heist has many different characteristics compared to both Alien and Ms. Pac-

Man, it is perhaps more similar to Alien than Ms. Pac-Man. 

Initially, the JASE-DQN with pre-trained encoders from the Alien environment performed 

comparably to the DQN in playing Bank Heist. As shown in Figure 24, both algorithms had 

similar performance up to approximately 1800 episodes. The state and action encoders were not 

frozen during this period, allowing them to adapt to the new environment's characteristics. 
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Figure 24: Comparison between rolling average rewards of JASE-DQN using pre-trained encoders along 

with DQN in playing Bank Heist 

However, as training progressed, the JASE-DQN with pre-trained embeddings struggled to 

adapt to the game characteristics as effectively as the DQN. By the end of 5000 episodes, the 

DQN achieved an average reward of 120, whereas the JASE-DQN only reached an average 

score of 30. This significant disparity highlights the challenge of transferring learned 

representations between environments with distinct dynamics and characteristics. 

The stark difference in performance underscores the fact that Bank Heist is considerably 

different from both Ms. Pac-Man and Alien. Despite the initial similarities that might exist 

between Alien and Bank Heist, the unique aspects of Bank Heist necessitate environment-

specific training to achieve optimal performance. 

These findings emphasize the limitations of transfer learning in reinforcement learning, 

particularly when applied across vastly different environments. While pre-trained models can 

provide a head start in some scenarios, as demonstrated by the initial performance parity, they 

may not always suffice for long-term adaptation and mastery of new, distinct environments. 
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5   CHAPTER 5: CONCLUSIONS 

In this chapter, we synthesize the findings and insights gained from our extensive 

experimentation with the DQN and JASE-DQN algorithms across different game environments. 

Our research aimed to investigate the efficacy of these algorithms in various contexts, focusing 

particularly on the integration of state and action encoders, and the potential benefits of 

leveraging pre-trained models through transfer learning. 

5.1 Overview of Experiments 

Our experiments were conducted across three primary environments: Ms. Pac-Man, Alien, and 

Bank Heist. Initially, we trained both DQN and JASE-DQN algorithms on the Ms. Pac-Man 

environment to establish a baseline performance and compare the effectiveness of the two 

approaches. Subsequently, we explored the application of transfer learning by utilizing pre-

trained encoders from Ms. Pac-Man in the Alien and Bank Heist environments, examining how 

well the knowledge acquired in one game could be transferred to another. 

5.2 Performance in Ms. Pac-Man 

The DQN algorithm demonstrated robust performance in the Ms. Pac-Man environment, 

achieving an average episode reward of 2600. This served as a strong baseline for comparison 

with the JASE-DQN algorithm. The loss function for DQN exhibited expected behavior typical 

of reinforcement learning processes, with fluctuations that did not provide significant insights 

into the learning dynamics but indicated ongoing adjustments and learning. 

In contrast, the JASE-DQN algorithm achieved an average episode reward of 2100 without 

using pre-trained encoders. Although slightly lower than DQN, this performance was 

noteworthy given the additional complexity introduced by the state and action encoders. The 

loss function for the JASE-DQN without pre-trained encoders showed a decreasing trend with 

frequent spikes, a common occurrence in reinforcement learning due to the stochastic nature of 

the training process. 

When pre-trained encoders were introduced, the performance of the JASE-DQN algorithm 

improved, achieving an average episode reward of 2250. This indicates that the pre-trained 

encoders facilitated faster learning and adaptation to the game environment, leveraging the 

knowledge encoded during the initial training phase. Fine-tuning these encoders during the 

training of the Q-network further enhanced the algorithm’s ability to adapt and optimize its 

strategy. 
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5.3 Comparative Analysis on Ms. Pac-Man 

Comparing the performance of DQN and JASE-DQN on Ms. Pac-Man revealed several key 

insights. The JASE-DQN without pre-trained encoders initially mirrored the trend of DQN up 

to approximately 3000 episodes, with DQN performing slightly better. Beyond this point, DQN 

outperformed JASE-DQN, underscoring the challenges of optimizing complex architectures 

without prior knowledge. 

However, the scenario changed significantly when pre-trained encoders were utilized. The 

JASE-DQN with pre-trained encoders demonstrated a markedly different learning trajectory, 

particularly benefiting from fine-tuning up to 5000 episodes. The most significant advantage 

was observed in the early stages of training; the JASE-DQN achieved an average episode reward 

of 2000 within the first 1300 episodes, whereas DQN required 2800 episodes to reach a similar 

reward level. This rapid learning highlights the efficacy of transfer learning in expediting the 

training process by leveraging previously acquired knowledge. 

5.4 Transfer Learning in Alien Environment 

In the Alien environment, the JASE-DQN with pre-trained encoders from the Ms. Pac-Man 

environment exhibited superior performance compared to the DQN. The state and action 

encoders were allowed to adapt to the new environment, which proved beneficial. The JASE-

DQN achieved an average reward exceeding 900 within the first 1500 episodes and peaked at 

950 by 5000 episodes. In contrast, the DQN attained an average reward of only 800 over the 

same duration. These results underscore the potential of transfer learning to enhance 

performance in related but distinct environments, leveraging pre-trained models to accelerate 

learning and achieve higher rewards more rapidly. 

5.5 Transfer Learning in Bank Heist Environment 

The application of transfer learning in the Bank Heist environment presented a different set of 

challenges. Using state and action encoders pre-trained in the Alien environment, the JASE-

DQN initially performed similarly with the DQN up to 1800 episodes. However, as training 

continued, the JASE-DQN struggled to adapt to the unique characteristics of the Bank Heist 

game. By 5000 episodes, the DQN had achieved an average reward of 120, significantly 

outperforming the JASE-DQN, which managed an average score of only 30. 

This stark contrast highlights the limitations of transfer learning when applied to environments 

with substantially different dynamics. While the pre-trained encoders provided a temporary 

advantage, they were insufficient for long-term adaptation and mastery of the Bank Heist 

environment. This outcome underscores the importance of environment-specific training and 

the challenges inherent in transferring knowledge across disparate contexts. 
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5.6 Final Thoughts and Future Work 

The findings from our experiments reveal a nuanced understanding of the strengths and 

limitations of DQN and JASE-DQN algorithms, particularly in the context of transfer learning. 

While pre-trained encoders can significantly expedite the learning process and enhance 

performance in related environments, their effectiveness is related within the similarity of the 

source and target environments. In cases where the environments are vastly different, as 

demonstrated by the Bank Heist experiments, the benefits of transfer learning diminish, 

necessitating tailored training approaches. 

Future research could explore hybrid approaches that combine the strengths of both methods, 

perhaps by dynamically adjusting the reliance on pre-trained encoders based on the observed 

performance in the target environment. Additionally, investigating more sophisticated 

techniques for adapting pre-trained models to new environments, such as meta-learning or 

continual learning frameworks, could further enhance the versatility and effectiveness of 

transfer learning in reinforcement learning applications. Furthermore, simultaneously training 

the encoder components along with the Q-network could lead to more efficient feature 

extraction and representation learning. By jointly optimizing these parts, the agent might better 

adapt to varying environments, improving the overall robustness and performance of the RL 

algorithms. Lastly, investigating policy gradient methods, such as Proximal Policy Optimization 

(PPO) can provide insights into their potential advantages in handling high-dimensional or 

continuous action spaces. Comparing these methods with value-based approaches could uncover 

scenarios where policy gradient methods offer superior performance and stability. 

In conclusion, while the JASE-DQN algorithm with pre-trained encoders shows promising 

potential, especially in accelerating learning and achieving higher rewards quickly, the choice 

of source and target environments plays a crucial role in determining the overall success of 

transfer learning strategies. This research lays the groundwork for further exploration into 

optimizing and generalizing reinforcement learning algorithms across diverse and complex 

environments. 
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