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ΠΕΡΙΛΗΨΗ 

 

 

Η παρούσα διπλωματική εργασία παρουσιάζει μια ολοκληρωμένη επισκόπηση του 

Hyperledger Fabric, εμβαθύνοντας στην αρχιτεκτονική, τα δομικά του στοιχεία και τις 

λειτουργίες του. Το πρώτο μέρος της εργασίας εστιάζει σε μια λεπτομερή ανάλυση των 

βασικών στοιχείων, της ροής εργασιών και των ρόλων που παίζουν οι επιμέρους οντότητες 

όπως ο Πάροχος Υπηρεσιών Μέλους, οι ομότιμοι κόμβοι και η υπηρεσία ordering στο 

Hyperledger Fabric. Επιπλέον, αυτή η μελέτη επεκτείνεται και περιλαμβάνει τα Hyperledger 

Iroha και Sawtooth, παρέχοντας μια ενδελεχή εξέταση και σύγκριση με το Fabric. 

Στο δεύτερο μέρος, η μελέτη παίρνει μια πρακτική τροπή καθώς αναπτύσσεται ένα δίκτυο 

Hyperledger Fabric. Μέσα σε αυτό το δοκιμαστικό δίκτυο, ένα έξυπνο συμβόλαιο 

υποβάλλεται σε ελέγχους και αξιολογείται η απόδοσή του. Η αξιολόγηση υπερβαίνει το 

Fabric, επεκτείνοντας σε μια εικονική μηχανή Ethereum, επιτρέποντας μια ολοκληρωμένη 

αξιολόγηση της λειτουργικότητας και της απόδοσης του έξυπνου συμβολαίου σε 

διαφορετικά περιβάλλοντα blockchain. Με τη βοήθεια του Hyperledger Caliper, θα 

πραγματοποιηθεί συγκριτική αξιολόγηση απόδοσης της αλυσίδας μπλοκ Hyperledger Fabric 

και μιας αλυσίδας μπλοκ Ethereum.  
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ABSTRACT 

 

 

This thesis presents a comprehensive overview of Hyperledger Fabric, delving into its 

architecture, components, and functionalities. The first part of the thesis focuses on a detailed 

analysis of key components, workflow, and the role of entities such as Membership Service 

Provider, peer nodes, and the ordering service in Hyperledger Fabric. Furthermore, this 

exploration extends to include Hyperledger Iroha and Sawtooth, providing a thorough 

examination and comparison with Fabric.  

 

The Hyperledger Foundation serves as a leading consortium for the development of open-

source blockchain frameworks and tools. Chapter 1 explores the foundation's mission, 

governance structure, and its role in advancing enterprise blockchain adoption. It delves into 

the diverse range of projects under the Hyperledger umbrella, highlighting key initiatives and 

collaborative efforts driving innovation in the blockchain space. Chapter 2 focuses on 

Hyperledger Fabric, one of the flagship frameworks developed by the Hyperledger 

community. Fabric offers a modular and scalable architecture, catering to the diverse needs 

of enterprise blockchain applications. This chapter delves into Fabric's core components, 

including its permissioned network model, identity management system, and smart contract 

capabilities. It also explores Fabric's privacy and confidentiality features, consensus 

mechanisms, and real-world use cases across various industries. 

 

In Chapter 3, the spotlight shifts to Hyperledger Iroha, a distributed ledger platform 

designed for simplicity and ease of integration. This chapter examines Iroha's approach to 

privacy, access control, and smart contract execution, offering insights into its design 

principles and use case scenarios. Chapter 4 delves into Hyperledger Sawtooth, another 

prominent blockchain framework renowned for its modular design and flexible architecture. 

The chapter explores Sawtooth's transaction execution model, scalability features, and its 

role in enabling diverse use cases ranging from supply chain management to healthcare data 

sharing. 
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Finally, Chapter 5 presents a comprehensive comparison of Hyperledger Fabric, Iroha, and 

Sawtooth, analyzing their respective strengths, weaknesses, and suitability for different 

enterprise blockchain applications. Key factors such as consensus mechanisms, smart 

contract capabilities, privacy features, and scalability are evaluated to provide readers with a 

holistic understanding of these frameworks and their implications for blockchain adoption in 

various industries. 

 

In the second part, the study takes a practical turn as a Hyperledger Fabric testnet is 

deployed. Within this testnet, a smart contract undergoes rigorous testing, and its 

performance is evaluated. The assessment goes beyond Fabric, extending to an Ethereum 

Virtual Machine, allowing for a comprehensive evaluation of the smart contract's 

functionality and performance across different blockchain environments. With the help of 

Hyperledger Caliper, a performance benchmarking of Hyperledger Fabric blockchain and an 

Ethereum blockchain will conducted .Caliper is a blockchain performance benchmark 

framework, which allows users to test different blockchain solutions with predefined use 

cases, and get a set of performance test results. The chapter will delve into the setup and 

configuration of Caliper for Fabric and Ethereum networks, providing insights into the test 

scenarios and parameters used to benchmark these platforms. Through rigorous testing and 

analysis, readers will gain valuable insights into the comparative performance of Fabric and 

Ethereum, helping them make informed decisions when selecting a blockchain framework for 

their enterprise applications. 

 

 
 
 
ΕΠΙΣΤΗΜΟΝΙΚΗ ΠΕΡΙΟΧΗ: Distributed Ledger Technology  
ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: blockchain, Hyperledger Fabric, DLT, benchmark 
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Chapter 1  - The Hyperledger Foundation 
 

Before getting into what Hyperledger Fabric is, one needs to understand what Hyperledger is 

specifically. Hyperledger stands as a pioneering collection of open-source projects dedicated 

to advancing the development of blockchain-based distributed ledgers. The overarching goal 

is to establish essential frameworks, standards, tools, and libraries that empower the creation 

of robust blockchains and associated applications. This chapter delves into the formation and 

structure of Hyperledger, emphasizing its pivotal role in supporting and hosting these projects 

through the Hyperledger Foundation. 

 

1.1 Overview 

 

While Hyperledger isn't an organization in the traditional sense, a cryptocurrency network, or 

a standalone blockchain system, its significance lies in its role as a collaborative hub[1]. Unlike 

cryptocurrency-focused networks such as Bitcoin, Hyperledger doesn't support its own 

cryptocurrency. Instead, it serves as a foundational infrastructure and standards provider for 

the development of diverse blockchain-based systems and applications tailored for industrial 

use. Think of Hyperledger as an inclusive ecosystem, fostering collaboration among diverse 

projects. Under its umbrella, these projects adhere to a shared design philosophy, ensuring 

interoperability and adherence to defined standards. The absence of a native cryptocurrency 

aligns with its enterprise-focused mission, emphasizing the development of practical 

solutions for industrial applications. 

 



Hyperledger Fabric: Study, deployment and comparison 

18 
 

 

Figure 1.1 - Hyperledger Foundation Business Development Call - Feb 2024[2] 

 

1.2 Hyperledger Technology Layers 

 

In terms of the architecture, Hyperledger uses the following key business components: 

 

Consensus Layer: At the core of Hyperledger's architecture is the consensus layer, a critical 

component responsible for establishing agreement on the order and validating the 

correctness of transactions within a block. This layer ensures that all participants in the 

network are aligned on the sequence of transactions, fostering a unanimous and secure 

ledger. 

 

Smart Contract Layer: The smart contract layer is dedicated to processing transaction 

requests and authorizing only those deemed valid. This layer plays a pivotal role in automating 

and executing predefined contractual agreements, enhancing the efficiency and reliability of 

the transaction processing mechanism. 

 

Communication Layer: Facilitating peer-to-peer message transport, the communication layer 

ensures seamless interaction between network participants. This layer is vital for maintaining 
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connectivity and enabling the swift and secure exchange of information across the distributed 

ledger. 

 

Identity Management Services: In the realm of Hyperledger, identity management services 

are integral for maintaining and validating the identities of users and systems. Establishing 

trust on the blockchain is contingent upon the accurate and secure identification of 

participants, making this layer foundational for the overall security and integrity of the 

system. 

 

API (Application Programming Interface): The API layer acts as a bridge, enabling external 

applications and clients to interface seamlessly with the blockchain. This layer facilitates 

interoperability, allowing for the integration of diverse applications, systems, and clients, 

thereby expanding the scope and utility of the Hyperledger framework. 

 

1.3 Hyperledger Projects 

 

Hyperledger employs  an umbrella strategy by fostering distributed ledger frameworks, 

libraries, smart contract engines, and different corporate blockchain technologies. The 

project places a strong emphasis on distributed ledger component innovation and 

reusability.A few of them are listed below[2]. 

 

Hyperledger Besu: Besu emerges as a cornerstone within the Hyperledger ecosystem, 

presenting an open-source enterprise blockchain platform. Leveraging the Ethereum Virtual 

Machine (EVM), it not only supports Ethereum-based applications but goes beyond, 

incorporating features tailored to meet the stringent requirements of enterprise 

environments. This platform exemplifies adaptability and flexibility in constructing 

permissioned networks. 

 

Hyperledger Indy: Diving into decentralized identity management, Hyperledger Indy offers a 

specialized distributed ledger. It equips developers with libraries, reusable components, and 

tools essential for creating robust digital identities on the blockchain. Within the expansive 



Hyperledger Fabric: Study, deployment and comparison 

20 
 

Hyperledger umbrella, Indy plays a pivotal role in advancing secure and decentralized identity 

solutions. 

 

Hyperledger Fabric: Standing out as a resilient, scalable, and flexible distributed ledger 

platform, Hyperledger Fabric takes center stage. With a modular architecture, it showcases 

pluggable implementations of diverse components, providing a solution tailored to the 

intricate needs of various economic ecosystems. This exploration delves into the unique 

attributes that make Hyperledger Fabric a standout player within the Hyperledger project. 

 

Hyperledger Sawtooth: Addressing the critical balance between smart contract safety and 

decentralization, Hyperledger Sawtooth takes its place as an enterprise blockchain platform. 

Its innovative approach isolates the core system from the application domain, granting 

developers the freedom to articulate business rules in their preferred programming language. 

This chapter uncovers the features that set Hyperledger Sawtooth apart in the realm of 

distributed ledger technologies. 

 

Hyperledger Iroha: A straightforward distributed ledger technology, draws inspiration from 

the Japanese Kaizen principle of eliminating excessiveness (muri). It offers fundamental 

functionalities for managing assets, information, and identities, while also serving as a reliable 

and efficient crash fault-tolerant tool for enterprise needs. 
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Figure 1.2 - Hyperledger projects - Feb 2024[3] 

 

1.4 Hyperledger's Robust Ecosystem 

 

Hyperledger has garnered substantial support from a diverse array of organizations, 

exceeding 250 and continually expanding[4]. The roster of supporters encompasses major 

players in the tech industry, including Airbus, Daimler, IBM, SAP, Huawei, Fujitsu, Nokia, 

Samsung, and financial giants like American Express and JP Morgan. Their endorsement 

highlights the broad applicability of Hyperledger across diverse sectors and industries. In 

addition to established enterprises, blockchain-focused startups such as Blockstream and 

ConsenSys contribute to Hyperledger's ecosystem. Their involvement underscores the 

collaborative nature of Hyperledger, where both seasoned industry leaders and pioneering 

startups find common ground for advancing blockchain technology. 

 

The assertion regarding the absence of a Hyperledger coin[5] emphasizes the strategic 

direction of Hyperledger. By steering clear of cryptocurrency pursuits, Hyperledger mitigates 
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political challenges associated with maintaining a globally consistent currency. This decision 

fortifies the foundation of the Hyperledger Project, emphasizing its commitment to industrial 

applications of blockchain technology rather than speculative currency-driven schemes. The 

deliberate choice to abstain from promoting a cryptocurrency sets Hyperledger apart, aligning 

its goals with the development of practical and industrial blockchain applications. This 

strategic move shields Hyperledger from the volatility and controversies often associated with 

currency-backed blockchains, consolidating its focus on fostering innovative solutions for 

real-world challenges. 
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Chapter 2 - Fabric 
 

This chapter unravels the complexities of Hyperledger Fabric, positioning it as the blockchain 

framework of choice for enterprises and medium-sized companies. The journey begins with 

an exploration of Fabric's modular structure, serving as a foundational platform for the 

development of diverse blockchain-based solutions within private enterprises. 

 

Hyperledger Fabric is a plug-and-play blockchain architecture designed to be used in private 

organizations. It serves as a basis for the development of blockchain-based solutions and 

applications. Originally developed by Digital Asset and IBM, Hyperledger Fabric is now a 

cooperative cross-industry project that is housed at the Linux Foundation. Fabric was the first 

Hyperledger project to come out of the "greenhouse" and be released in July 2017. 

 

Networks, applications, and other blockchain-based projects can be developed on top of the 

framework. The purpose of Fabric is to create private blockchains that can be utilized by a 

single business or a collection of related organizations that connect to other blockchain 

implementations. Fabric's architecture is broken down to showcase its salient characteristics, 

each designed to meet the particular requirements of private blockchain deployments. The 

focus of the conversation is Fabric's dedication to privacy, which is upheld by a Membership 

Service Provider (MSP) via a permissioned membership structure. The importance of privacy 

cannot be overstated, especially in sectors where maintaining data secrecy is critical. 

 

2.1 Features 

 

Identity and Access Management (IAM) is of utmost importance in a Fabric network. Fabric 

requires all computers within its network to be identified; potential members of a network 

supported by Fabric must sign up and provide their identity through an MSP. A 

"permissioned" membership is what this is. For many sectors, maintaining data privacy is 

crucial, and for this reason alone, Fabric seems like a good choice. It is crucial to remember 

that Fabric does not mandate permissions for every component of a blockchain; instead, the 

decision to demand permissions rests with the network designer.  
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Several other distinctive features set Fabric apart, three of the more pivotal being channels, 

scalability, and modularity. Fabric introduces the concept of channels, allowing the 

partitioning of ledgers to facilitate the creation of segregated transactions for enhanced data 

privacy. Members of the network may create a separate set of transactions that are not visible 

to the larger network. This allows for more sensitive data to be segregated from nodes who 

do not require access. Scalability emerges as another standout feature, enabling the network 

to efficiently process large amounts of data with a minimal set of resources. Similar to other 

implementations, the system can process vast amounts of data with fewer resources even 

though the number of nodes participating in the network can increase quickly. This makes it 

possible to take the best of both worlds. A limited number of nodes can be used to start a 

blockchain, and it can grow as needed. Actually Fabric is one of the better performing 

platforms available today both in terms of transaction processing and transaction 

confirmation latency. According to a paper published in March of 2019, Fabric can scale up to 

20000 TPS [6]. 

 

Lastly, the modular architecture of Fabric is made to support the addition and implementation 

of distinct components at various points in time. Many of the  elements are optional and can 

be added later or entirely skipped without impairing functioning. The purpose of this feature 

is to empower an organization to decide what needs to be implemented and what can wait. 

The process of reaching consensus, membership services for identity, the ledger store itself, 

certain access APIs, and chaincode integration are a few of the modular, or "plug-and-play," 

components. 

 

2.2 Key Components 

 

After discussing  the essential features of Hyperledger Fabric, it’s time to examine its 

architecture and corresponding key components.Hyperledger Fabric 2.0's architecture aims 

to offer scalability, flexibility, and modularity. It is made up of multiple parts that come 

together to offer an enterprise blockchain application development platform with distributed 

ledger capabilities. 
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2.2.1 Nodes 

 

In Hyperledger Fabric, a "node" is any computing device that is a component of a certain 

network. They are arranged in groups and communicate with one another according to rules 

established by logical entities. They can be mainly divided into three categories: Client nodes, 

Peer nodes, and  Orderer nodes. 

Client Node: This node submits the transaction invocation to the endorsers on behalf of the 

end user. These nodes converse with ordering service nodes as well as the peer nodes. 

Transactional activities are started by clients who create them. A transaction is started by the 

client sending a PROPOSE statement to a group of peers who approve it. 

Peer Node: Hyperledger Fabric is known to facilitate peer-to-peer networks, and Peer nodes 

are the core components of a Fabric network. They fulfill critical roles such as ledger 

maintenance, smart contract execution, transaction validation, and transaction endorsement 

before committing them to the ledger. These peers come in two distinct types: endorsing 

peers and committing peers. Endorsing peers engage in transaction simulation and 

subsequent endorsement, while committing peers execute the vital task of committing 

endorsed transactions to the ledger. 

Orderer Node: Orderer nodes play a crucial role in managing the consensus mechanism within 

the Hyperledger Fabric network. These nodes are responsible for receiving endorsed 

transactions from peer nodes, packaging them into blocks, and establishing a total order of 

transactions across the network. Fabric supports various consensus algorithms, such as Kafka, 

Raft, and others, providing flexibility in consensus mechanisms. The primary functions of 

orderer nodes include receiving transaction proposals from clients, ordering them into blocks, 

and distributing these blocks to the endorsing and committing peers in the network. By doing 

so, orderer nodes establish a consistent transaction order and ensure that all peers maintain 

a synchronized view of the blockchain ledger. This orchestration of transaction ordering and 

distribution is essential for maintaining the integrity and reliability of the blockchain 

network[7]. 
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2.2.2 Channels 

 

Channels are foundational components within Hyperledger Fabric, integral for network 

establishment and operation[8]. Every network must include at least one channel, typically 

initiated with the creation of a system channel during network bootstrapping. This system 

channel serves as a conduit for disseminating network configuration details and membership 

information. Moreover, it hosts system chaincodes essential for ongoing network 

functionality and governance. 

 

Beyond the system channel, developers engage with application channels, which are pivotal 

from a development standpoint. These channels are versatile and can be customized to suit 

specific application requirements. Unlike system channels, there is no limit to the number of 

application channels that can be created within a network. Each application channel can 

accommodate multiple deployed chaincodes, offering developers flexibility in structuring 

their decentralized applications. When creating a new channel, developers define the access 

permissions for its members, tailoring access levels to suit distinct roles and responsibilities. 

For instance, certain clients may be restricted to ledger querying capabilities, ideal for audit 

purposes or regulatory compliance. Overall, channels in Hyperledger Fabric provide a 

mechanism for organizing network participants and governing access to shared resources, 

contributing to the platform's robustness and adaptability in diverse enterprise 

environments. 
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Figure 2.1 - Channels in Fabric network [9] 

 

2.2.3 Chaincode 

 

In the realm of blockchain technology, the term chaincode primarily finds its application 

within the Hyperledger Fabric platform, denoting the smart contracts responsible for defining 

a blockchain network's business logic and regulations. These code segments hold paramount 

significance in executing predetermined instructions and automating processes within the 

blockchain. Chaincode serves as a cornerstone in ensuring the efficient, secure, and tailored 

operation of blockchain networks, aligning precisely with the requirements of a given 

application.[10] 
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Figure 2.2 - Chaincode example [11] 

 

Chaincode essentially embodies Hyperledger Fabric's rendition of smart contracts, serving as 

the vehicle to encapsulate business logic. It governs the access and modification of ledger 

data, facilitating the automation of intricate processes. Chaincode offers versatility by 

supporting various programming languages such as Go, Node.js, or Java and is deployed to 

endorser nodes and network channels, thereby furnishing specific functionalities for diverse 

blockchain applications. Its adaptable nature empowers it to cater to an array of industry 

requirements and use cases. Chaincode serves as the backbone for decentralized applications 

(dApps) on Hyperledger Fabric, it is responsible for managing the application's state and 

ensuring the consistent execution of agreed-upon terms. It operates as the transaction 

processor, implementing the rules collectively endorsed by transaction-involved parties. 

Chaincode life cycle includes approval, activation, and installation. This guarantees that, prior 

to execution, chaincode is appropriately deployed, examined, and approved by the relevant 

network participants. These essential Fabric components enable the safe and decentralized 

execution of business operations by defining the guidelines for transaction processing, data 

validation, and state modifications. 

 

2.2.4 Membership Services Provider (MSP) 
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Figure 2.3 - Fabric MSP as a real world scenario [12] 

 

The Membership Service Provider is a pivotal component responsible for managing identity 

and access control policies for network participants within the Hyperledger Fabric framework. 

It plays a crucial role in authenticating and authorizing participants, thereby ensuring secure 

interactions within the network. MSPs facilitate diverse membership models, including 

Certificate Authorities (CAs) and token-based systems, thereby enabling flexible management 

of network memberships. As a module integrated within Hyperledger Fabric, MSP oversees 

the management of identities, certificates, and cryptographic materials for network entities, 

encompassing peers, orderers, clients, and administrators. 

 

MSP handles the creation, issuance, and revocation of digital certificates that serve as the 

identity credentials for network participants. These certificates are used to prove the 

authenticity and authority of an entity to access the network and interact with other peers. It 

relies on CAs to issue certificates to network participants, employing two distinct types of 

CAs[13]: 

Registration Authority (RA): The RA is responsible for authenticating users and clients, as well 

as registering their identities with the CA. It validates the identity of entities requesting 

certificates, ensuring the integrity of the certificate issuance process. 

Intermediate Certificate Authority (Intermediate CA): Intermediate CAs function to issue 

certificates on behalf of the root CA. They are often deployed to establish a hierarchical 
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structure for certificate issuance, enhancing both security and manageability within the 

network. 

Moreover, Hyperledger Fabric supports the creation of multiple MSPs within a single network, 

with each MSP representing a distinct organization. This capability enables the establishment 

of multi-organization consortium networks, facilitating separate identity management for 

each participating organization. 

 

 

 

Figure 2.4 - Fabric MSP diagramm [13] 

 

2.2.5 Ledger 

 

In Hyperledger Fabric, the distributed ledger serves as a tamper-proof repository that records 

all network transactions. It comprises two essential components: the blockchain (‘chain’) and 

the state database. The state database captures the current state of assets, reflecting their 

latest values and configurations. On the other hand, the chain guarantees the integrity and 

transparency of the ledger by providing an immutable record of all transactions executed 

within the network. Together, these components form a robust foundation for maintaining 

an accurate and trustworthy ledger in Hyperledger Fabric[14]. 

 

The chain serves as a transaction log organized into hash-linked blocks. Each block contains a 

sequence of transactions, and its header includes a hash of the block's transactions and a hash 

of the preceding block's header. This structure ensures that all transactions are 
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chronologically ordered and cryptographically linked together. As a result, the integrity of the 

ledger is maintained, as any attempt to tamper with the data would require breaking these 

hash links. The hash of the latest block encompasses all preceding transactions, ensuring that 

all peers have access to a consistent and trustworthy ledger state.The chain is stored on the 

peer's file system, which can be either local or attached storage. This storage mechanism 

efficiently supports the append-only nature of blockchain workloads, allowing new 

transactions to be added to the chain while preserving the historical integrity of the ledger. 

 

 

 

Figure 2.5 - Fabric Ledger explained [14] 

 

The ledger's current state data, also known as World State, represents the latest values for all 

keys ever included in the chain transaction log. This current state is pivotal for efficient 

chaincode invocations, as transactions are executed against this data. To ensure the efficiency 

of chaincode interactions, the latest values of all keys are stored in a state database. This state 

database acts as an indexed view into the chain's transaction log and can be regenerated from 

the chain whenever necessary. Upon peer startup, the state database automatically recovers 

or generates the latest data before accepting transactions. Hyperledger Fabric provides two 

options for the state database: LevelDB and CouchDB. LevelDB, embedded in the peer process 

by default, stores chaincode data as key-value pairs. Alternatively, CouchDB serves as an 

optional external state database, offering additional query support, particularly beneficial 
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when chaincode data is modeled as JSON. This enables rich queries of the JSON content, 

enhancing flexibility and usability[14]. 

 

2.2.6 Consensus 

 

In distributed ledger technology, the concept of consensus has often been narrowly 

associated with a specific algorithm focused solely on agreeing upon the order of 

transactions. However, Hyperledger Fabric emphasizes a broader understanding of 

consensus, recognizing its fundamental role in the entire transaction flow. Consensus in 

Hyperledger Fabric encompasses more than just transaction ordering[15]; it extends to the 

complete verification of a set of transactions, from proposal and endorsement to ordering, 

validation, and commitment. In essence, consensus in Fabric represents the comprehensive 

validation of the accuracy of a block composed of transactions. 

 

While many distributed blockchains like Ethereum and Bitcoin operate on a permissionless 

basis, allowing any node to participate in the consensus process, Hyperledger Fabric adopts a 

distinct approach. In Fabric, transaction ordering is handled by the specialized node known as 

the orderer, which, along with other orderer nodes, constitutes an ordering service. Unlike 

the probabilistic consensus algorithms utilized in permissionless blockchains, Fabric employs 

deterministic consensus algorithms. This means that any block validated by a peer is assured 

to be both final and accurate. Consequently, the ledger in Hyperledger Fabric cannot 

experience forks, as is common in other distributed and permissionless blockchain networks. 

 

As mentioned, consensus in Fabric extends beyond simply agreeing on the order of 

transactions within a block. It involves a series of checks and balances throughout the 

transaction lifecycle to ensure the integrity and security of the ledger. The consensus in the 

Hyperledger Fabric network is a result of the cooperation of different nodes, the whole 

transaction flow and differs radically from the public blockchain probabilistic consensus 

mechanisms. There are basically three mechanisms that take part in reaching the consensus. 

Endorsement policies dictate which specific members must endorse a transaction, ensuring 

that it meets the required criteria before it can be committed to the ledger. System 

chaincodes enforce these policies, verifying that sufficient endorsements are present and 



Hyperledger Fabric: Study, deployment and comparison 

33 
 

derived from the appropriate entities. Additionally, a versioning check ensures agreement on 

the current state of the ledger before appending new blocks, guarding against double spend 

operations and other threats to data integrity. Identity verifications are ongoing throughout 

the transaction flow, with access control lists implemented at various hierarchical layers of 

the network. Payloads are repeatedly signed, verified, and authenticated as transaction 

proposals traverse different architectural components. The ordering service is not responsible 

for the content of transactions but for the order of transactions. It also forms the blockchain 

- a single, final source of truth in the network. 

 

2.2.6.1 Endorsement policies 

 

Endorsement policies in Hyperledger Fabric determine the criteria for endorsing transactions 

before they can be committed to the ledger. These policies mandate that each transaction 

must receive an endorsement from a specified number of endorsing peers in accordance with 

the endorsement policy[16]. The endorsement policies can be configured based on either the 

number of signatures required or the specific identities of the endorsing peers. This flexibility 

allows organizations to tailor endorsement policies according to their specific security and 

governance requirements. Example endorsement policies might be: 

 

 

● Peers A, B, C, and F must all endorse transactions of type T 

● A majority of peers in the channel must endorse transactions of type U 

● At least 3 peers of A, B, C, D, E, F, G must endorse transactions of type V 

 

Each chaincode has an endorsement policy that dictates what organizations need to execute 

the smart contracts. The results are signed by the peers. If the endorsement policy is satisfied 

and all peers return the same value, the content of the transaction is considered valid. 

 

2.2.6.2 Multi-version concurrency control (MVCC) 
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In the context of Hyperledger Fabric, concurrency control mechanisms detect and handle 

concurrent reads and writes to the same blocks so that ledger consistency is maintained. If 

multiple transactions attempt to modify the same data simultaneously, potential conflicts 

may arise. This mechanism ensures that the versions of keys read during the endorsement 

phase of a transaction remain unchanged during the validation phase. By doing so, it prevents 

scenarios where old values are read after they have been modified by another concurrent 

transaction. If a transaction attempts to validate while another transaction has already 

updated the versions of the keys listed in its read set, the MVCC validation will fail. 

 

In the case of a read-write conflict, where two clients attempt to update and read the same 

key simultaneously, MVCC validation plays a crucial role. For instance, if user1 submits TX1 

and user2 submits TX2 concurrently, both transactions may read and update the same value 

(Value1) associated with Key1. After endorsement and ordering, TX1 modifies the value and 

version of Key1 to value1 and version1. However, during MVCC validation, TX2 fails because 

the version of Key1 in its read set does not match the version in the ledger. As a result, the 

MVCC validation identifies the inconsistency between the ledger and the endorsement result, 

leading to an MVCC error[17]. 

 

2.2.6.3 Ordering mechanism 

 

The ordering phase comes after the Endorsement phase; it agrees to the sequential order of 

the execution of the Hyperledger decided earlier. The ordering mechanism in Hyperledger 

Fabric 2.0 comprises three distinct implementations: Raft, Kafka, and SOLO. The Kafka and 

SOLO implementations are deprecated in v2.x[18] 

 

Raft: Raft is a crash fault-tolerant (CFT) ordering service using the Raft protocol within 

etcd[19]. Operating on a "leader and follower" model, Raft elects a leader node per channel, 

whose decisions are then replicated by follower nodes[20]. Unlike Kafka-based ordering 

services, Raft offers simpler setup and management, making it more accessible for users. 

Additionally, Raft's design facilitates contributions from different organizations[21], allowing 
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for the establishment of a distributed ordering service comprising nodes from multiple 

entities. 

 

Raft has emerged as the consensus mechanism of choice for numerous Hyperledger Fabric 

deployments, owing to several compelling advantages. Firstly, its simplicity sets it apart, 

offering a straightforward understanding, implementation, and debugging process in 

comparison to more complex consensus algorithms like Paxos. This simplicity accelerates the 

deployment process and reduces the likelihood of errors during configuration and operation. 

Moreover, Raft boasts impressive scalability capabilities, capable of accommodating a large 

number of nodes within the network. This scalability factor is pivotal for ensuring the 

resilience and efficiency of large-scale deployments, making it an attractive option for 

enterprise-grade blockchain networks.  Raft excels in facilitating quick leader elections[22] 

swiftly replacing failed leaders to minimize disruptions and maintain network continuity. It 

prioritizes safety, providing robust guarantees for system consistency even in the event of 

network failures or node crashes. This resilience ensures that critical blockchain operations 

proceed smoothly and reliably, bolstering confidence in the integrity and stability of the 

Hyperledger Fabric network. Collectively, these advantages position Raft as a highly desirable 

consensus mechanism for Hyperledger Fabric deployments, offering simplicity, scalability, 

rapid leader election, and robust safety measures. 

 

Kafka: Similar to Raft-based ordering, Apache Kafka is a crash fault-tolerant implementation 

that adopts a "leader and follower" node setup. Kafka relies on a ZooKeeper ensemble for 

management tasks. While Kafka-based ordering services have been accessible since Fabric 

v1.0, some users might perceive the added administrative burden of managing a Kafka cluster 

as daunting or undesirable. 

 

SOLO: In the SOLO implementation, a single ordering node orchestrates the transaction flow, 

ensuring transactions are arranged chronologically and executed in an orderly manner. The 

Solo implementation of the ordering service is intended for testing only. 

 

2.3 Transaction flow 
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Enterprises opt for Hyperledger Fabric due to its dependable and swift transaction processing. 

Unlike public blockchains, which typically employ the order-execute-validate method, 

Hyperledger Fabric adopts the execute-order-validate approach for transaction execution. In 

this method, transactions are initially executed, often in parallel as requested. Once executed, 

these transactions are then sent to an ordering service for sequencing[23]. Below is a 

breakdown of the entire transaction process. 

 

When a transaction is initiated, the end user utilizes the client application to submit the 

request to the Software Development Kit (SDK). The SDK translates the transaction request 

into a transaction proposal, which is then signed by the end user's distinctive cryptographic 

signature. Subsequently, the SDK transmits the transaction proposal to the designated peers 

responsible for endorsement, adhering to the specified endorsement policy. Upon receiving 

the transaction proposal, the endorsing peers first verify its validity. This validation process 

ensures that: 

 

 

● The transaction proposal is properly structured. 

● The transaction proposal has not been previously submitted. 

● The cryptographic signature of the transaction proposal is authentic. 

● The end user possesses the necessary authorization to execute the requested action 

on the channel or network[54]. 

 

If the transaction proposal passes these validation checks, the endorsing peers proceed to 

invoke the specified chaincode function. The input provided in the proposal is passed as 

arguments to this function, triggering its execution. However, at this stage, no changes are 

applied to the ledger. The proposal responses collected from all the endorsing peers are 

matched, and the application verifies their signatures. The transaction isn't submitted to the 

ordering service if the end user only queried some data. 

 

Following the execution, the chaincode function generates an output, comprising a response 

value, a write set, and a read set. This output, along with the cryptographic signatures of the 

endorsing peers, is then dispatched back to the SDK. The SDK subsequently parses the 
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transaction response, making it accessible to the application. The transactions then are 

forwarded to the ordering service, which aggregates them into blocks. The ordering service 

establishes a total order of transactions across the network, ensuring consistency and 

determinism. Once a sufficient number of peers agree on the results of a transaction, it is 

added to the ledger and distributed to all peers in the network. This step marks the first time 

that transactions are given an ordering. Until transactions are added to the ledger, there is no 

concept of one transaction happening before or after another. The addition of transactions 

to the ledger ensures that the entire network has a consistent and agreed-upon record of all 

transactions, establishing a definitive order and history of events within the blockchain. 

 

Once ordered into blocks, the transactions undergo validation by the endorsing peers. Each 

transaction is validated independently by a subset of peers according to the endorsement 

policy. The peers verify the correctness of the transaction results and ensure that they comply 

with the predefined rules. Validated transactions are then committed to the ledger by the 

committing peers. Once committed, these transactions become a permanent part of the 

immutable ledger and are visible to all participants in the network. This ensures transparency 

and trust in the system, as all network participants have access to the same verified and 

unalterable record of transactions. 

 

By employing the execute-order-validate method, Hyperledger Fabric ensures a robust and 

efficient transaction flow, meeting the performance and reliability requirements of enterprise 

applications. 
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Figure 2.6 - The transaction flow in Fabric network [24] 

 

2.3.1 Strong Data consistency and finality 

 

Strong consistency is a fundamental property in distributed systems that guarantees all nodes 

within the system observe the same data concurrently, irrespective of the node accessed. Put 

simply, any write operation is immediately reflected in subsequent read operations across all 

nodes, ensuring consistency across the entire system. This ensures a linear ordering of 

operations, effectively rendering the system as a unified and coherent entity, despite its 

distributed nature[25]. Public permissionless blockchains typically use a variety of methods 

(such Proof of Work or Proof of Stake) to make sure that all of the blockchain nodes concur 

on transactions. The probabilistic finality of the state is the result of those probabilistic 

algorithms. It indicates that a block does not become final once it is appended to the chain; 

rather, it becomes final with a high probability and is reversible in the event that a network 

forks. In contrast, a transaction in Hyperledger Fabric has absolut finality once it is committed 

to the chain. Since the ordering service, which maintains the consensus, is centralized and 

deterministic, there are no forks. Blockchain is immutable and this absolute finality of 

Hyperledger Fabric blockchain is very important for enterprise applications. 

  



Hyperledger Fabric: Study, deployment and comparison 

39 
 

Chapter 3 - Iroha 
 

Hyperledger Iroha, another blockchain framework under The Linux Foundation's Hyperledger 

umbrella[26], offers a straightforward and adaptable solution for infrastructure projects 

seeking distributed ledger technology. Initially contributed by Soramitsu, Hitachi, NTT Data, 

and Colu, Iroha prioritizes simplicity and ease of integration. It targets industries like identity 

and finance, providing a domain-driven C++ programming language for mobile application 

development tailored to specific business requirements. Notably, Iroha features a modular 

design, emphasizing client application development and introducing the crash fault-tolerant 

consensus algorithm YAC (Yet Another Consensus Algorithm). This algorithm, like others, 

orchestrates a step-by-step process to address challenges and execute a sequence of 

instructions effectively[27]. 

 

3.1 Overview 

 

Hyperledger Iroha offers a versatile set of features for blockchain development. Iroha 

supports cross-platform application development, allowing developers to build applications 

for various platforms, including mainframe and mobile. It is compatible with popular 

programming languages such as JS, Java, iOS, and Python. The framework seamlessly operates 

across multiple operating systems, including Linux, Windows, and macOS, ensuring 

accessibility and flexibility. It offers support for multiple keys or multi-signature 

functionalities, facilitating transaction settlements requiring numerous signatures. Its 

modular and plug-in design simplifies adoption for developers, while a comprehensive range 

of code libraries enhances ease of maintenance and deployment. With its modular and plug-

in design, Iroha offers an intuitive and developer-friendly environment. It provides extensive 

code libraries for easy maintenance, deployment, and hassle-free application development. 

Additionally, Iroha facilitates streamlined asset management, secure control over user 

activities and roles, and features a modular design architecture that fosters the blockchain 

ecosystem. 
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In contrast to public blockchains like Ethereum and Bitcoin, Iroha operates as a permissioned 

network, restricting access to authorized participants. It does not rely on a proof-of-work 

mechanism for transaction verification, eliminating issues of slowness or latency associated 

with high transaction volumes. Although Iroha does not have a native cryptocurrency, eligible 

participants can generate cryptocurrencies for enterprise use within the network.  

 

 

3.2 Architecture 

 

Hyperledger Iroha comprises several key components that collectively facilitate its 

functionality: 

Model classes represent essential system entities within the framework. Torii, acting as a 

gateway, serves as the primary input and output interface for clients. It operates as a single 

gRPC server, enabling clients to interact with peers across the network. Torii operates 

asynchronously, allowing for non-blocking RPC calls. It handles both commands (transactions) 

and queries (read access) from clients. The Network component governs the interaction 

among peers within the network while consensus oversees the agreement among peers 

regarding the content of the blockchain. Iroha utilizes the YAC mechanism, a practical 

Byzantine fault-tolerant(PBFT) algorithm based on voting for block hash[28]. 

 

 

 

Figure 3.1 - Iroha architecture components [29] 
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On the business logic level, the simulator generates a temporary snapshot of storage to 

validate transactions by executing them against this snapshot. It verifies the validity of 

transactions, forming a verified proposal comprising only valid transactions, Validator 

classes ensure the adherence to business rules and validate the format of transactions or 

queries. These validators perform two distinct types of validation: stateless validation and 

stateful validation. Stateless validation involves quick schema and signature checks of 

transactions, while stateful validation involves verifying permissions and assessing the 

current world state view to ensure compliance with desired business rules and policies. 

Synchronizer facilitates the synchronization of new peers into the system or reconnects 

temporarily disconnected peers. Lastly, Ametsuchi serves as the ledger block storage, 

encompassing a block index (currently Redis), block store (currently flat files), and a world 

state view component (currently PostgreSQL). 

 

In the Iroha network, three key participants play integral roles: 

Clients interact with the network, accessing permitted data and executing state-changing 

actions known as transactions. These transactions comprise atomic operations called 

commands. For example, a transaction might involve transferring funds to multiple 

recipients through distinct commands. If the initiator lacks sufficient funds to cover all 

transactions within a single transaction, the entire transaction will be rejected. Peers 

maintain the network's current state and possess individual copies of the shared ledger. 

Each peer operates as a distinct entity with its own address, identity, and trust level. Iroha 

supports both single-peer instances and clustered setups, where different computers fulfill 

various functions such as ledger storage, indices management, validation, and peer-to-peer 

communication. The ordering service organizes transactions into a predetermined 

sequence. It employs various algorithms for this task, with Kafka being a favored choice. It's 

essential to cluster distributed solutions like Kafka to prevent a single point of failure. 

 

3.3 Command-driven Architecture 
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As Iroha is a special purpose framework for asset, identity & supply chain management, it 

allows users to perform common functions with some prebuilt commands and queries which 

negates the need to write cumbersome and hard to test smart contracts, enabling developers 

to complete simple tasks faster and reliably with less risk. 

 

Iroha simplifies the concept of smart contracts by transforming them into fixed commands, 

streamlining the development process and ensuring consistency in transaction execution. 

Despite this approach, Iroha remains an open-source project with an extensible design, 

allowing developers to enhance its functionality by adding new features. However, 

customizing Iroha requires a deep understanding of its codebase, as developers must navigate 

the framework's architecture to implement tailored solutions that meet specific use cases 

and requirements. Commands are utilized to initiate transactions that modify the ledger's 

state, representing actions like asset transfers or account creation. These commands are 

submitted by clients and executed by network nodes to enact changes to the ledger's data. 

In contrast, queries provide read-only access to the ledger, allowing clients to retrieve 

information such as account balances or transaction history without modifying the ledger's 

state. While smart contracts can enforce complex business logic on a blockchain, commands 

and queries in Iroha focus on managing transactions and accessing ledger data, serving as 

essential tools for clients to interact with the network. 

 

Scope Commands 

Account CreateAccount 

AddSignatory 

RemoveSignatory 

SetAccountQuorum 

SetAccountDetail 

Assets CreateAsset 

AddAssetQuantity 

SubtractAssetQuantity 

TransferAsset 
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Domains CreateDomain 

Peer AddPeer 

Permissions  CreateRole 

AppendRole 

DetachRole 

GrantPermission 

RevokePermission 

 

Table 1 - Prebuilt commands in Iroha 

 

Scope Queries 

Account GetAccount 

GetAccountAssets 

GetAccountDetail 

GetSignatories 

Transactions GetTransactions 

GetAccountTransactions 

GetAccountAssetTransactions 

GetPendingTransactions 

Assets GetAssetInfo 

Peer AddPeer 

Permissions  GetRoles 

GetRolePermissions 

 

Table 2  - Prebuilt queries in Iroha 
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3.4 YAC 

 

YAC [28], is founded on a process of voting for block hash. Once validated, blocks are subject 

to collaboration with other blocks to determine commit decisions and propagate them across 

peers. YAC's core functions comprise ordering and consensus. 

 

Ordering orchestrates the sequential arrangement of transactions, assembling them into 

proposals, and disseminating them across the network to peers. The ordering service acts as 

the hub for establishing the transaction sequence and broadcasting proposals. It's important 

to note that while ordering sets the transaction order, it doesn't handle the stateful validation 

of transactions. However, it's crucial to acknowledge that the current implementation of the 

ordering service poses a single point of failure, rendering Hyperledger Iroha neither crash 

fault-tolerant nor Byzantine fault-tolerant. On the other hand, consensus ensures agreement 

on blocks based on identical proposals, facilitating the synchronized progression of the ledger. 

 

Despite the outlined steps for achieving consensus, scenarios exist where consensus may fail. 

One such scenario involves a broken leader, where the leader exhibits unfair behavior in vote 

collection or delays in responding with a commit message. Peers mitigate this risk by setting 

a time limit for receiving commit messages from the leader; if the timer expires, the next peer 

in the order list assumes leadership. Another potential failure scenario arises from the 

ordering service forwarding transactions that fail stateless validation. In response, peers must 

remove these transactions from the proposal and recalculate the hash based on the 

remaining valid transactions to rectify the situation. 

 

3.5 Transaction Flow 

 

In the transaction flow of Hyperledger Iroha[30], a client starts by creating and sending a 

transaction to the Torii gate, which then routes it to a peer responsible for stateless validation. 

After this initial validation step, the transaction proceeds to the ordering gate, which 

determines the optimal strategy for connecting to the ordering service. The ordering service 

organizes transactions into proposals, which are essentially unsigned blocks containing 

ordered transactions. These proposals are then forwarded to peers in the consensus network. 
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Notably, proposals are dispatched only when a sufficient number of transactions have 

accumulated or a specific time threshold has been reached, ensuring that empty proposals 

are not transmitted. 

 

Following this, each peer undergoes stateful validation in the Simulator, where the proposal's 

contents are verified. Subsequently, a block comprising only validated transactions is 

constructed by each peer. These validated blocks are then forwarded to the consensus gate, 

where the YAC consensus logic is applied. Based on this logic, a leader is elected, and an 

ordered list of peers is established. Peers participate in the consensus process by signing and 

sending their proposed blocks to the leader. If the leader receives a sufficient number of 

signed proposed blocks, it initiates a commit message, signaling that the proposed block 

should be applied to the chain of every participating peer. Upon receipt of the commit 

message, the proposed block becomes the next block in the chain of each peer, facilitated by 

the synchronizer component. 

 

 

 

Figure 3.2 - The transaction flow in Iroha network [31] 
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Chapter 4 - Sawtooth 
 

Overview  

 

Hyperledger Sawtooth emerges as a robust corporate blockchain platform tailored to develop 

distributed ledger networks and applications, particularly geared towards enterprise use 

cases. Its design philosophy revolves around ensuring the integrity of distributed ledgers and 

fortifying smart contracts, catering specifically to the demands of enterprise-grade 

applications. Sawtooth adopts a Blockchain as a Service (BaaS) approach, offering a 

comprehensive suite of tools and functionalities to facilitate seamless deployment and 

management of blockchain networks. 

 

The hallmark of Sawtooth lies in its modularity, which empowers companies and consortiums 

to tailor policies according to their domain-specific requirements. This modular architecture 

provides the flexibility for applications to select transactional, permissioning, and consensus 

algorithms that align best with their unique business needs. Unlike many existing blockchain 

platforms, where core functionalities and applications coexist on the same infrastructure, 

Sawtooth's design decouples these components, potentially enhancing both security and 

performance aspects of the system. Core architecture is built separately from the application 

domain, which allows developers to write business rules in preferred languages without 

knowing the internal structure of the system. This chapter delves deeper into the intricacies 

of Hyperledger Sawtooth, exploring its modular design, customizable features, and its 

significance in driving enterprise blockchain adoption. 

 

4.1 Features 

 

Hyperledger Sawtooth stands as a modular platform designed to construct, deploy, and 

operate distributed ledgers, also known as blockchains. At its heart lies the "Proof of Elapsed 

Time" (PoET) consensus algorithm , leveraging trusted execution environments (TEEs) to 

ensure fair and efficient consensus[32]. Offering a modular framework, Sawtooth 

accommodates pluggable consensus algorithms, catering to both permissioned and 
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permissionless networks. The cornerstone of Sawtooth is its distributed ledger, meticulously 

logging all transactions and smart contract executions. Replicated across all network nodes, 

this ledger facilitates parallel transaction processing for enhanced performance. Additionally, 

Sawtooth features a smart contract engine, simplifying the deployment and execution of 

smart contracts. Complementing these functionalities is a user-friendly RESTful API for 

seamless ledger interaction and transaction submission. The system was designed in a way 

that lets developers specify their own policy, rules, permissions, and consensus algorithms. 

Thus, you can create applications with native business logic or build smart contract-based 

virtual machines, and both types can run on the same blockchain. 

 

 

Figure 4.1 - Proof of Elapsed Time Mechanism [33] 

 

Sawtooth is engineered for scalability, capable of supporting networks comprising thousands 

of nodes and processing millions of transactions per second. Its adaptability makes it suitable 

for a wide array of applications, including supply chain management, digital asset tracking, 

and voting systems[34]. By segregating the core ledger system from application-specific 

environments, Sawtooth streamlines application development while upholding system 
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security. Developers can define application-specific business rules without delving into the 

intricacies of the underlying ledger architecture, enabling the creation of applications in their 

preferred programming languages. During the development stage, the core system remains 

insulated from any impact stemming from resource sharing. Hyperledger Sawtooth boasts 

compatibility with a diverse array of programming languages such as Go, C++, Python, 

JavaScript, Rust, among others. This broad language support provides developers with a 

multitude of exciting avenues for implementing blockchain solutions and applications. This 

design fosters the development of applications that can be hosted, managed, and utilized 

independently of the core blockchain network. 

 

The challenges of permissioned networks are addressed by enabling the deployment of node 

clusters with independent permissioning, eliminating the need for centralized services that 

might compromise data privacy. Permissions, including roles and identities, are stored on the 

blockchain, ensuring accessibility for all network users. Additionally, Sawtooth implements a 

parallel scheduler that enables transactions to be executed concurrently. It achieves 

transaction isolation by ensuring that each transaction's execution is independent of others, 

while still preserving contextual changes based on the state locations accessed by the 

transaction. Despite the potential for conflicts when modifying the same state multiple times, 

Sawtooth enables transactions to be executed in parallel, mitigating the risk of double-

spending. This parallel scheduling mechanism[35] provides a substantial speed boost 

compared to serial execution, enhancing the overall performance of the system. Moreover, 

Sawtooth's compatibility with Ethereum is enhanced through the Seth[36] integration 

project, allowing for the deployment of EVM smart contracts on the Sawtooth platform. This 

interoperability expands Sawtooth's capabilities, enabling developers to leverage Ethereum's 

ecosystem while benefiting from Sawtooth's performance and scalability features. 

 

4.2 Consensus algorithms and dynamic consensus 

 

Hyperledger Sawtooth offers a flexible architecture with support for various pluggable 

consensus algorithms to meet diverse application needs. The default consensus algorithm, 

PoET, leverages TEEs to ensure fair and efficient consensus. PoET[37] employs random leader 
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election and wait time mechanisms for leader selection, providing equal opportunities to all 

participants.Sawtooth also supports the Practical Byzantine Fault Tolerance algorithm, well-

suited for permissioned networks with known participants, as it employs a replica voting 

process to achieve consensus. Raft, another supported algorithm, is designed for distributed 

systems with dynamic changes, utilizing a leader-based approach for efficient network 

partition recovery. For testing and development purposes, Sawtooth offers the Devmode 

consensus mechanism, enabling parallel transaction processing without requiring consensus. 

Other advanced algorithms like Proof of Authority (PoA) and Proof of Stake (PoS) can be 

integrated by installing corresponding consensus engines. 

 

Sawtooth's architecture effectively decouples consensus from transaction semantics, 

abstracting the core concepts underlying the consensus process. By providing a consensus 

interface through which consensus engines communicate with the validator via the consensus 

API, Sawtooth enables the integration of diverse consensus implementations. This modular 

approach allows for the seamless plugging in of various consensus mechanisms, empowering 

users to tailor the consensus protocol to their specific requirements and preferences. 

 

4.3 Architecture 

 

Sawtooth operates on an asynchronous client/server pattern, where clients send requests to 

the server and receive 0 or more replies in response. The server can process multiple requests 

and replies simultaneously, providing a flexible interaction model. The platform also offers a 

RESTish API for convenient interaction with the validator, supporting common JSON/HTTP 

standards. This API serves as a separate process, allowing clients to submit transactions and 

retrieve block data through a language-neutral interface. Errors in transaction processing are 

communicated back to clients via a JSON envelope, containing standardized error codes and 

messages. Additionally, query parameters are supported to customize request formation, and 

endpoints provide references to ledger resources such as blocks and transactions. 

 

Transaction processors handle business logic and validate incoming transactions, ensuring 

their compliance with predefined rules before adding them to the ledger. These processors 
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consist of a Processor class provided by the SDK and application-specific Handler classes 

responsible for transaction validation and execution. The architecture supports customization 

through additional transaction handlers, which can be invoked using the apply method or 

metadata method. Moreover, Sawtooth's consensus API has been revamped to operate as a 

separate process termed the 'consensus engine.' This modular design enhances flexibility and 

language independence for integrating diverse consensus algorithms. The consensus engine 

comprises three processors: BlockPublisher, BlockVerifier, and ForkResolver, each 

responsible for distinct consensus-related tasks. Validators in Hyperledger Sawtooth validate 

blocks and batches of transactions using predefined rules and permissions. The validation 

process includes verifying on-chain transaction permissions and applying on-chain block 

validation rules. Validators ensure network integrity and communication between nodes, 

managing transactions, blocks, and supporting consensus engines. Sawtooth supports both 

serial and parallel(default) scheduling of transactions, enabling efficient handling and 

execution of transactions while preventing issues such as double spending. The validator 

process consists of two primary components: the chain controller, which manages the 

blockchain's state and determines chain head updates, and the block manager and publisher, 

responsible for creating new candidate blocks with valid transactions. 
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Figure 4.2 - Architecture of Sawtooth network [38] 

 

 

 

4.4 Transaction Families 

 

In Hyperledger Sawtooth, transaction updates within the blockchain framework are 

facilitated through the use of transaction families, which serve as a key component for 

capturing state changes and implementing transaction logic. These transaction families are 

essentially groups of operations or transaction types that are permitted on the shared ledger. 

By organizing transactions into families, Sawtooth offers a flexible approach to managing the 

level of versatility and risk within a network. 

 

Transaction families act as "safer" smart contracts, providing a predefined set of acceptable 

smart contract templates, rather than requiring developers to create smart contracts from 
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scratch. This abstraction allows for greater consistency and reliability in transaction execution 

while reducing the potential for errors or vulnerabilities. Moreover, Sawtooth's transaction 

families support a variety of programming languages, including Javascript, Java, C++, Python, 

and Go, offering developers the flexibility to leverage their preferred language for 

implementing transaction logic. One of the key features of Hyperledger Sawtooth is its 

support for specifying the address or namespace of data within the ledger. This capability 

provides developers with the flexibility to define, share, and reuse data across different 

transaction families, enhancing interoperability and data management within the blockchain 

network. By allowing businesses to bring their own transaction families and adapt them to 

their specific needs, Sawtooth empowers organizations to tailor their blockchain solutions to 

suit their unique requirements and use cases. 

 

Sawtooth offers a diverse array of transaction families, each serving a specific purpose within 

the blockchain framework. The BlockInfo transaction family, for instance, enables the storage 

of various information related to blocks, providing users with a means to document and track 

block-related data effectively. Meanwhile, the Smallbank transaction family is designed for 

testing and analyzing business quality, offering a valuable tool for evaluating the performance 

and reliability of blockchain-based business processes. Another essential transaction family in 

Sawtooth is the Settings family, which facilitates the storage of on-chain configurations and 

serves as a reference model for managing system settings efficiently. The Validator Registry 

transaction family plays a crucial role in adding validators to the system, ensuring the integrity 

and security of the network by managing validator nodes effectively.  

 

The IntegerKey transaction family is particularly noteworthy for its ability to test deployed 

ledgers comprehensively without requiring additional resources, offering developers a 

streamlined approach to ledger testing and validation. On a lighter note, the XO transaction 

family injects a touch of entertainment into the network with a game of tic-tac-toe, 

showcasing Sawtooth's versatility in accommodating diverse use cases. The Identity 

transaction family focuses on preserving permissioned data for validators, storing crucial 

information such as public keys to maintain the integrity and security of the network. Lastly, 

the Seth transaction family in Sawtooth provides a valuable feature by enabling the 

integration of Ethereum-based applications within the network. With Seth, users gain the 
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ability to utilize Solidity-based smart contracts and other applications developed for the 

Ethereum platform directly on the Sawtooth blockchain. This interoperability expands the 

range of use cases and applications that can be implemented on the Sawtooth network, 

offering developers more options and flexibility in building decentralized applications. 

Additionally, leveraging Ethereum-compatible smart contracts opens up opportunities for 

collaboration and integration with existing Ethereum ecosystems, further enriching the 

Sawtooth ecosystem with a diverse range of decentralized applications and services. 

 

4.5 Transaction Flow 

 

Initiating a transaction requires a private key generated by the SDK's signing module, serving 

as proof of identity. Each transaction consists of a signature and a binary encoded payload, 

with the encoding defined by the transaction processor. Dependencies can be specified within 

transactions, dictating prerequisite operations that must be fulfilled before the current one 

can proceed, enabling complex transaction sequences. 

 

Once constructed, transactions are bundled into batches and forwarded to the validator, 

which requests processing by the transaction processor. Upon validation, batches are 

deemed atomic units of change within the Sawtooth network. If any operation within a batch 

fails, the entire batch is rejected. The validator employs a BlockCache to manage a working 

set of blocks and monitor processing status, while the BlockStore retains only valid blocks, 

and the BlockCache handles new and invalid blocks, facilitating parallel execution. 

 

Subsequently, transaction batches reach the Journal, accommodating pluggable consensus 

algorithms like Proof of Work, Proof of Elapsed Time, and Practical BFT algorithms. The 

Journal routes batches and blocks for ledger appending. The completer within the Journal 

ensures all dependencies are met before batches proceed to the BlockPublisher for validation 

and inclusion in a block. Upon block completion, the completer confirms fulfillment of 

dependencies before routing blocks to the chain controller for validation and fork resolution. 

Finally, validated blocks undergo ChainUpdate via the BlockStore, which maintains a 

chronological ledger of all blocks, tracing back to the Genesis blocks. 
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Chapter  5 - Comparison  
 

In the realm of enterprise blockchain frameworks, Hyperledger Fabric, Sawtooth, and Iroha 

stand out as prominent solutions, each offering unique features and design philosophies 

tailored to diverse business requirements. A comparative analysis of these frameworks 

illuminates their respective strengths and trade-offs, providing valuable insights for 

organizations seeking to deploy blockchain solutions. Fabric, with its modular architecture 

and support for pluggable consensus algorithms, prioritizes flexibility and scalability, making 

it suitable for a wide range of enterprise applications. Conversely, Sawtooth's emphasis on 

modularity and ease of integration appeals to organizations seeking a customizable and 

adaptable blockchain platform. Meanwhile, Hyperledger Iroha's simplicity and focus on 

mobile application development make it particularly well-suited for identity and finance-

related use cases. 

 

Hyperledger Fabric, as a leading enterprise blockchain framework, encompasses several key 

components, including channels, smart contracts (chaincode), and a modular consensus 

mechanism. Channels enable the creation of isolated communication pathways within the 

network, facilitating data privacy and access control. Fabric's support for pluggable consensus 

algorithms, such as Raft, offers flexibility in tailoring the network's performance and fault 

tolerance to specific requirements. Transaction execution in Fabric follows a multi-step 

process, involving endorsement, ordering, and validation, ensuring consistency and 

immutability of ledger data across the network. Moreover, Fabric's permissioned architecture 

allows for granular control over access rights and governance, making it well-suited for 

consortiums and regulated industries. 

 

In contrast, Hyperledger Sawtooth distinguishes itself with its modular design, which enables 

developers to choose consensus algorithms and transaction semantics that best suit their use 

cases. Sawtooth's support for parallel transaction execution enhances scalability and 

throughput, making it suitable for high-performance applications. The framework's smart 

contract engine, Sawtooth Lake, simplifies the deployment and execution of smart contracts, 

while its RESTful API facilitates interaction with the ledger. Additionally, Sawtooth's 
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compatibility with Ethereum smart contracts through the Seth integration expands its 

applicability to a broader developer community.  

 

Iroha distinguishes itself with a unique architecture that emphasizes modularity and 

extensibility, making it a compelling choice for various enterprise blockchain applications. 

Operating within a permissioned network model, Iroha leverages the YAC algorithm to 

achieve high throughput and low latency, ensuring efficient transaction processing. This 

architectural approach enables seamless integration of custom smart contract logic, 

empowering developers to customize the platform according to specific requirements. 

Additionally, Hyperledger Iroha provides user-friendly client libraries and software 

development kits, streamlining the development process for decentralized applications and 

enhancing accessibility for developers. Iroha emerges as a simple and easy-to-incorporate 

blockchain framework, focusing on use cases in identity and finance industries. Despite their 

differences, all three frameworks share a common goal of enabling enterprises to leverage 

blockchain technology for enhanced transparency, security, and efficiency in various 

industries. Through a comprehensive examination of Fabric, Sawtooth, and Iroha, this chapter 

aims to provide valuable insights into the considerations and challenges involved in selecting 

the most suitable framework for enterprise blockchain deployments. 

 

 

Factor per 

platform 

Fabric Iroha Sawtooth 

Differentiators Extendable 

deployment 

architecture, channels 

 

Universal peer role, 

SQL state, 

linearly scalable 

consensus 

 

Transaction 

processors, 

pluggable 

components 

 

Regional 

awareness 

China and the rest of 

the world 

Asia,especially Japan USA 
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Permission Level Permissioned Permissioned Permissioned and 

Permissionless 

BFT Support 

 

Only on v3.0.0-beta 

March 14, 2024 

+ + 

Transaction 

Processing 

Endorsing Peers and 

Ordering Services 

Universal role peers Validators + Parallel 

transactions 

Consensus 

Algorithm 

Raft YAC PoET 

EVM Support No No Yes 

Smart Contract 

Technology 

Chaincode Commands and 

queries 

Transaction Families 

 

Table 3 - Platform Comparison 

 

 

 

5.1 Private and Public Network 

 

Sawtooth stands out with its provision of two blockchain variants, allowing users to 

seamlessly switch between permissioned and permissionless access based on their specific 

needs. This dual offering provides unparalleled flexibility, enabling businesses to tailor their 

blockchain solutions to diverse scenarios. In contrast, Iroha is primarily a permissioned ledger 

platform, emphasizing secure and controlled access for enterprise applications. Fabric, on the 

other hand, is known for its privacy features, making it ideal for private networks where 

access rights are paramount. Fabric's architecture facilitates swift transactions and data 

partitioning, ensuring efficient performance even with a reduced number of network nodes. 
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5.2 Privacy and IAM 

 

All three frameworks approach privacy, identity, and access management with distinct 

methodologies tailored to the diverse needs of enterprise applications. Fabric, known for its 

sophisticated privacy features, offers a fine-grained access control model that enables 

organizations to define granular permissions for network participants through the use of 

channels. Fabric channels serve as isolated communication pathways within the network, 

allowing organizations to segregate transactions and data into distinct groups. Each channel 

operates with its own set of participants, ensuring that transactions are visible only to the 

parties involved. Fabric leverages identity management through Membership Service 

Providers within each channel, allowing each member to have a unique digital identity and 

ensuring that transactions are executed only by authorized parties. Additionally, Fabric 

integrates private data collections, enabling selective disclosure of sensitive information to 

specific network participants while maintaining data confidentiality across the network. 

 

In contrast, Hyperledger Iroha adopts a permissioned network model with a focus on 

simplicity and ease of integration. While Iroha provides identity management capabilities 

through digital signatures and cryptographic keys, its primary emphasis is on streamlined 

access control mechanisms suitable for straightforward use cases. Iroha's permissioned 

ledger architecture restricts access to predefined network participants, ensuring that only 

authorized entities can transact on the network. However, Iroha's approach to privacy and 

identity is less nuanced compared to Fabric, making it more suitable for applications requiring 

basic access controls and uncomplicated identity management. Sawtooth, as mentioned 

before, stands out with its modular design and support for both permissioned and 

permissionless blockchain variants. Sawtooth offers flexibility in identity management 

through its pluggable consensus algorithms, enabling organizations to choose the 

authentication mechanisms that best align with their security requirements. Additionally, 

Sawtooth's support for multiple permissioning mechanisms allows for fine-tuned access 

control policies, facilitating secure interaction among network participants. However, 

Sawtooth's approach to privacy and identity management may require more customization 

compared to Fabric's comprehensive privacy features, making it better suited for applications 

where adaptability and extensibility are paramount. 
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5.3 Consensus 

 

Fabric offers a pluggable consensus model, allowing organizations to choose the most suitable 

algorithm for their network requirements. Among the supported algorithms is Raft, a leader-

based protocol designed for fault tolerance and quick leader election. Raft is considered a CFT 

consensus algorithm. It is designed to handle crash faults, where nodes fail by stopping to 

respond or crash but do not exhibit Byzantine behavior. Raft focuses on ensuring the 

availability and consistency of the system in the presence of these types of failures, making it 

suitable for scenarios where Byzantine faults are less of a concern. However, it does not 

provide Byzantine fault tolerance and may not be suitable for environments where Byzantine 

faults are more likely to occur. Fabric also supports Practical Byzantine Fault Tolerance, a 

consensus algorithm known for its resilience against Byzantine faults, making it ideal for 

permissioned networks where trust among participants is essential. 

 

Hyperledger Iroha implementation of the YAC algorithm,  is based on voting for block hash. 

YAC focuses on simplicity and efficiency, making it suitable for applications requiring high 

throughput and low latency. While it may not offer the same level of fault tolerance as PBFT, 

YAC provides a balance between performance and reliability. Sawtooth, on the other hand, 

offers a modular consensus architecture that supports multiple algorithms, including Practical 

Byzantine Fault Tolerance and Crash Fault Tolerance. PBFT ensures Byzantine fault tolerance 

by requiring a two-thirds majority agreement among nodes, while CFT ensures network 

resilience by tolerating node failures without compromising data consistency. 

 

Each of these consensus mechanisms has its strengths and weaknesses, making them suitable 

for different use cases. Fabric's pluggable consensus model offers flexibility and customization 

options, while Iroha's YAC algorithm prioritizes simplicity and efficiency. Sawtooth's modular 

architecture allows for experimentation with various consensus algorithms, making it suitable 

for diverse network requirements. Ultimately, the choice of consensus mechanism depends 

on factors such as network scalability, security requirements, and performance 

considerations. 
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5.4 Smart Contracts 

 

Smart contracts play a pivotal role in blockchain networks, automating the execution of 

predefined agreements and transactions without the need for intermediaries. In Hyperledger 

Fabric, smart contracts, known as chaincodes, are written in familiar programming languages 

such as Go, JavaScript, or Java. Fabric supports both stateless and stateful smart contracts, 

allowing developers to define business logic that interacts with the ledger's state. Chaincodes 

in Fabric are executed within a secure and isolated environment called the "execution 

environment," ensuring the integrity and confidentiality of transactions. Fabric's modular 

architecture enables the deployment of multiple chaincodes on different channels, facilitating 

the segregation of business logic and data across distinct organizational entities. 

 

Iroha simplifies smart contract development with its domain-driven programming model and 

support for a wide range of programming languages, including C++, JavaScript, and Java. 

Iroha's smart contracts, referred to as commands and queries, focus on modularity and 

extensibility, enabling developers to create custom logic tailored to specific use cases. Unlike 

Fabric and Sawtooth, Iroha's smart contracts are fixed commands rather than programmable 

scripts, offering a simplified approach to decentralized application development. However, 

this fixed design provides a level of predictability and security, making it suitable for 

applications requiring high throughput and low latency, such as identity management and 

financial services. 

Hyperledger Sawtooth employs a flexible approach to smart contracts, supporting both 

Ethereum-compatible smart contracts through the Seth integration and custom transaction 

processors for more specialized use cases. Additionally, Sawtooth utilizes transaction families, 

which are akin to smart contracts in other blockchain platforms, allowing developers to define 

custom transaction types and associated business logic. These transaction families 

encapsulate specific sets of operations or domain-specific functionality within the blockchain 

network. Sawtooth's smart contracts and transaction families are written in languages like 

Python or Rust and run within transaction processors, providing developers with the flexibility 

to implement complex business logic tailored to their unique use cases. 
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5.5 Transaction Execution 

 

Another critical aspect for comparison between the three frameworks is transaction 

execution efficiency and how each of them approaches the optimization of performance 

while maintaining integrity and security. In Fabric, transactions are executed within 

chaincodes, ensuring security and flexibility in state transitions. However, the endorsement 

policy mechanism, where transactions must be endorsed by a predefined number of peers, 

can introduce overhead and potentially impact efficiency, particularly in networks with 

stringent endorsement requirements. On the other hand, Hyperledger Iroha prioritizes 

efficiency with its streamlined transaction execution model. Atomic commands executed 

directly by nodes, eliminating the need for complex smart contracts. This approach results in 

high throughput and low latency, making Iroha ideal for applications requiring rapid 

transaction processing and scalability. By simplifying transaction execution, Iroha minimizes 

computational overhead and resource consumption, enhancing overall network efficiency. 

 

Similarly, Hyperledger Sawtooth emphasizes efficiency through its modular architecture and 

flexible transaction processing models. Sawtooth allows developers to choose between 

parallel and sequential transaction execution, enabling optimization for specific use cases. 

Additionally, Sawtooth's support for pluggable consensus algorithms enhances efficiency by 

providing options to tailor consensus mechanisms to the network's requirements. By offering 

a balance between flexibility and performance, Sawtooth ensures efficient transaction 

execution while accommodating diverse application needs. 

 

Overall, Fabric, Iroha, and Sawtooth demonstrate different approaches to transaction 

execution efficiency, each suited to specific use cases and requirements. While Fabric 

emphasizes security and flexibility, Iroha prioritizes simplicity and performance, and 

Sawtooth offers a versatile solution with customizable transaction processing models. By 

optimizing transaction execution efficiency, these frameworks enable the development of 

scalable and robust blockchain applications across various industries and domains. 
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5.6 Conclusion 

 

In conclusion, Hyperledger Fabric, Iroha, and Sawtooth represent three distinct blockchain 

frameworks within the Hyperledger ecosystem, each offering unique features and capabilities 

tailored to different use cases and requirements. Fabric stands out for its sophisticated 

privacy features, fine-grained access control, and support for complex multi-party workflows. 

Iroha emphasizes simplicity, modularity, and high throughput, making it well-suited for 

applications in finance, identity management, and mobile development. Sawtooth 

distinguishes itself with its flexible architecture, support for Ethereum-compatible smart 

contracts, and modular consensus algorithms, providing developers with the flexibility to 

build custom blockchain solutions that meet their specific needs. 

 

Despite their differences, all three frameworks share common characteristics such as robust 

security, scalability, and support for smart contracts. They enable developers to build 

decentralized applications with tailored business logic while ensuring the integrity and 

security of transactions on the blockchain. Moreover, their modular architectures and 

support for pluggable components empower developers to customize and extend the 

frameworks to address diverse use cases and industry requirements. As blockchain 

technology continues to evolve Fabric, Iroha, and Sawtooth will play crucial roles in driving 

innovation and adoption across various industries. Whether it's implementing supply chain 

solutions, improving identity management, or enhancing financial services, these frameworks 

provide the foundation for building scalable, secure, and interoperable blockchain networks 

that empower organizations to transform their business processes and drive value in the 

digital economy. 
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Chapter 6 - Deployment and benchmarks 
 

In this chapter, a performance benchmarking exercise is conducted to compare two 

blockchain networks utilizing different consensus mechanisms. The first network is based on 

Hyperledger Fabric using the Raft consensus algorithm, while the second network is built on 

Hyperledger Besu, an EVM-compatible platform, employing the Quorum Byzantine Fault 

Tolerance (QBFT) consensus mechanism.The primary objective is to deploy a Fabric test 

network and a Besu test network and deploy identical chaincode and smart contracts across 

both networks for a fair comparison. Leveraging Hyperledger Caliper, a benchmarking tool, 

performance evaluations will be conducted under these networks. Subsequently, a second 

Fabric test network will be deployed based on Fabric's 3.0 beta version. Fabric v3.0 is the first 

release(March 2024) to provide a BFT ordering service based on the SmartBFT consensus 

library. The benchmarks are re-run to juxtapose the results and ascertain the comparative 

efficacy of the two consensus approaches. Through this iterative process, the aim is to glean 

insights into the performance disparities and nuances between Raft and BFT in Fabric, 

elucidating their implications for blockchain network deployments. The metrics on the 

benchmarks include Send Rate—the rate at which Caliper issued the transactions, Latency 

(max/min/avg)—statistics relating to the time taken in seconds between issuing a transaction 

and receiving a response, and Throughput—the average number of transactions processed 

per second. 

 

To provide a comprehensive comparison, the following table outlines the basic characteristics 

of each network selected for this benchmarking analysis. These networks have been chosen 

due to their distinctive consensus mechanisms and architectural designs, which are pivotal in 

assessing their performance across various transaction workloads: 

 

Network Consensus 

Mechanism 

Deployment 

model 

Key Characteristics  
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Hyperledger 

Fabric(Raft) 

Raft Docker 

container 

Simplified single-node Raft 

consensus, no TLS CA, certificates 

from root CAs, container isolation 

Hyperledger 

Fabric(BFT) 

Practical Byzantine 

Fault Tolerance 

(BFT) 

Docker 

container 

Enhanced fault tolerance, BFT 

consensus for Byzantine fault 

resilience, similar architecture to 

Raft 

Hyperledger 

Besu 

IBFT Docker 

container 

Ethereum client, IBFT for high 

fault tolerance, supports public 

and private networks 

 

 

Table 4 - Selected networks key characteristics 

 

Reasons for Selection: 

1. Hyperledger Fabric with Raft: Chosen for its straightforward and efficient consensus 

mechanism suitable for typical enterprise blockchain applications. Its single-node setup 

makes it an ideal candidate for testing and educational purposes. 

2. Hyperledger Fabric with BFT: Included to evaluate the performance of a Byzantine Fault 

Tolerant consensus in Fabric. BFT provides higher fault tolerance, making it relevant for more 

secure and resilient applications. 

3. Hyperledger Besu: Selected to compare an Ethereum-based blockchain with IBFT 

consensus, highlighting differences in transaction handling and network performance relative 

to Fabric's solutions. Besu’s compatibility with both public and private networks offers 

insights into versatile blockchain deployment scenarios. 

 

These networks provide a balanced spectrum of blockchain solutions, each with unique 

features and consensus mechanisms that make them suitable for different use cases. The 

forthcoming sections will delve into the detailed performance analysis of these networks, 
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including both query and transaction tests. The results are presented in the following tables, 

providing a comparative evaluation of their capabilities. 

 

 

6.1 Caliper 

 

Hyperledger Caliper[39], originating in 2017, has evolved into a useful tool for assessing 

blockchain platform performance. Within the Hyperledger project, it serves as an open-

source solution tailored for standardized performance evaluations across diverse blockchain 

systems. Its modular architecture allows for easy extension and customization, adapting to 

evolving requirements. Addressing the critical need for objective performance evaluation in 

blockchain, Caliper provides standardized benchmarks and metrics. It empowers application 

developers and system designers by enabling evaluation of transaction success rates, 

throughput, latency, and resource utilization. Hyperledger Caliper's significance lies in filling 

the gap for a universally accepted tool to compare blockchain platform performances. By 

furnishing diverse performance metrics, it aids clients in selecting the most suitable 

blockchain implementation for their specific needs. 

 

Hyperledger Caliper supports various blockchain platforms, including Hyperledger Fabric, 

Sawtooth, and Ethereum, ensuring comprehensive performance evaluations. It offers 

versatile benchmark tests, encompassing smart contract execution, consensus mechanisms, 

and transaction processing, facilitating thorough comparisons among different blockchain 

platforms. Compatible with multiple programming languages such as JavaScript, TypeScript, 

and Python, Caliper ensures ease of use and integration within diverse development 

environments. The tool generates detailed performance reports, complete with 

comprehensive metrics and graphical representations, facilitating clear interpretation and 

analysis of benchmark results. Seamless integration into existing blockchain development 

workflows ensures minimal disruption and efficient incorporation into established processes. 
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6.2 Fabric test network 

 

The provided test network within the fabric-samples[40] repository serves as an educational 

tool for developers to gain familiarity with Hyperledger Fabric. Designed for local machine 

deployment, it facilitates experimentation with smart contracts and applications. However, 

it's essential to recognize that this network isn't intended as a blueprint for production setups. 

Modifying the provided scripts is discouraged, as it could lead to network instability. The 

network architecture comprises two peer organizations and an ordering organization. It 

simplifies the ordering service by employing a single node Raft consensus mechanism. 

Notably, a TLS Certificate Authority (CA) isn't deployed, and all certificates originate from root 

CAs for streamlined configuration. Deployed via Docker Compose, the network isolates nodes 

within a container network, limiting direct connections to external Fabric nodes. This 

approach reduces complexity but isn't suitable for inter-network communication. 

 

In a Fabric network, each participant, whether a node or user, must belong to an organization 

to engage with the network. The test network in question comprises two peer organizations, 

Org1 and Org2, along with a single orderer organization responsible for managing the 

network's ordering service. Peers serve as the backbone of Fabric networks, responsible for 

storing the blockchain ledger and validating transactions before they are committed. These 

peers execute smart contracts containing the logic governing asset management within the 

ledger. In the test network setup, each organization operates a single peer, labeled as 

peer0.org1.example.com and peer0.org2.example.com, respectively. 

 

Within a Fabric network, an ordering service plays a pivotal role in establishing transaction 

order, essential for maintaining consistency across distributed peers. While peers validate and 

add transactions to the ledger, they do not determine the transaction order. This 

responsibility falls on the ordering service, ensuring agreement on transaction sequencing 

among geographically dispersed peers. The ordering service streamlines transaction 

validation and commitment for peers. Upon receiving endorsed transactions, ordering nodes 

reach consensus on transaction order and package them into blocks. These blocks are then 

disseminated to peer nodes, where they are appended to the blockchain ledger. 
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In the test network, a single node Raft ordering service is utilized, operated by the orderer 

organization under the identifier orderer.example.com. However, production networks 

typically feature multiple ordering nodes managed by one or more organizations. These 

nodes collaborate using the Raft consensus algorithm to finalize transaction order across the 

network, ensuring robustness and fault tolerance. With the peer and orderer nodes 

operational, we're ready to create a Fabric channel to facilitate transactions between Org1 

and Org2. Channels serve as private communication layers exclusively accessible to 

designated network participants, remaining concealed from other network members. Each 

channel operates with its distinct blockchain ledger. 

 

To initiate the channel creation process, organizations extend invitations to their respective 

peers to join the channel. Invited peers then "join" the channel, enabling them to store the 

channel ledger and validate transactions occurring within it. Creating a Fabric channel 

involves several steps. First, each organization extends invitations to its peers to join the 

channel. Invited peers accept these invitations, gaining access to the channel's ledger. 

Configuration parameters, such as policies and access controls, are established for the 

channel. Peers validate transactions within the channel based on the defined policies. Lastly, 

participating peers store and update the channel's ledger to reflect validated transactions.By 

establishing this dedicated communication channel, Org1 and Org2 can securely transact with 

each other, leveraging blockchain technology's immutability and transparency. 

 

6.3 Besu test network 

 

For the EVM network, the chosen solution is the quorum-dev-quickstart[41] Besu 

network.  Hyperledger Besu is an Ethereum client tailored to cater to enterprise needs across 

both public and private permissioned network scenarios, boasting an adaptable EVM 

implementation. Its versatility extends to compatibility with test networks like Sepolia and 

Görli. Noteworthy is Besu's inclusion of diverse consensus algorithms, encompassing Proof of 

Stake, Proof of Work, and Proof of Authority (such as IBFT 2.0, QBFT, and Clique). Moreover, 

its intricate permissioning schemes are meticulously crafted to suit consortium environments, 

ensuring robust governance and access control within such settings.This quickstart package 

offers developers a streamlined approach to setting up a local development environment 
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tailored specifically for Besu blockchain development. Leveraging Docker containers, the 

quickstart provides a pre-configured Besu network with essential components such as 

transaction nodes, block-making nodes, and consensus mechanisms. 

 

The quorum-dev-quickstart simplifies the setup process, enabling developers to focus on 

building and testing their applications rather than dealing with the intricacies of network 

configuration. Alongside the core Besu network, the package includes a suite of development 

tools like Truffle and Remix, facilitating smart contract development and application testing. 

These tools enhance the development workflow, allowing for rapid iteration and refinement 

of decentralized applications. 

 

In the Besu network provided, the architecture is structured around several key components, 

each playing a vital role in the operation and consensus of the network. Each quickstart setup 

consists of 4 validators and one RPC node.These nodes communicate with each other via the 

RPC interface, facilitating the exchange of data and coordination of network activities. 

 

One of the defining features of the Besu network is its consensus mechanism, which governs 

how transactions are validated and added to the blockchain. The Besu based Quorum variant 

uses the Istanbul BFT 2.0 consensus mechanism,a proof of authority (PoA) consensus 

protocol. In IBFT 2.0 networks, approved accounts, known as validators, validate transactions 

and blocks. Validators take turns to create the next block. Before inserting the block onto the 

chain, a super-majority (greater than or equal to 2/3) of validators must first sign the block. 

 

6.4 Benchmark configuration 

 

To run a benchmark with Hyperledger Caliper, one needs to establish the foundation of the 

blockchain network by setting up the network configuration files, smart contracts, and the 

benchmark configuration file. The process begins with crafting the network configuration 

files, which serve as blueprints defining the topology of the blockchain network. These files 

typically outline the structure of the network, including details such as the number of nodes, 

organizations, consensus algorithms, and any other relevant parameters. For instance, in the 
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case of Hyperledger Fabric, a ̀ test-network.yaml` file is created to specify the peers, orderers, 

channels, and other essential network details. If working with other blockchain platforms like 

Sawtooth or Ethereum, corresponding network configuration files tailored to their specific 

requirements must be crafted. Figures a and b show the configurations used to conduct this 

benchmark. 

 

 

 

Figure 6.1 - Test-network.yml for fabric 

 

 

 

Figure 6.2 - Network-config.json for Besu 
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Next, the user must develop or obtain the smart contracts that will be deployed and executed 

on the blockchain network. Smart contracts contain the business logic governing transactions 

and interactions within the network. For Hyperledger Fabric, these contracts are typically 

written in Go, JavaScript, or Java, while for Ethereum-based networks, they're coded in 

Solidity. It is important to ensure that the smart contracts align with the chosen programming 

language and version of the blockchain platform. Solidity contracts should be compiled into 

bytecode for deployment on the Ethereum network, while Fabric smart contracts need to be 

packaged for installation on the Fabric network.Simple.sol and Simple.go shown in Figures 7.3 

and 7.4 were used on this benchmark. Both implementations serve similar purposes of 

facilitating basic financial transactions on a blockchain network. They allow for account 

opening, balance querying, and fund transfers between accounts. While one is implemented 

using Hyperledger Fabric's chaincode in Go, the other is a smart contract written in Solidity 

for execution on the Ethereum Virtual Machine (EVM). Despite the differences in the 

underlying blockchain platforms and programming languages, the core functionalities 

provided by both implementations remain consistent.  

 

 

Figure 6.3 - Simple.sol  

 

Once the network and smart contracts are in place, the user can proceed to craft the 

benchmark configuration file, which serves as the blueprint for the benchmarking process. 

This file outlines various parameters such as the workload to be executed, the number of 

transactions to be generated, the rate control mechanism, and any additional arguments 

required by the workload modules or rate control mechanism. The user should specify the 
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workload modules for each benchmarking round, configure the rate control mechanism to 

determine the transaction rate, and define any other parameters necessary for the 

benchmarking process. Figure 7.5 shows the configuration used on this test. This 

configuration file defines multiple test rounds, each with a specific workload to be executed 

against the deployed smart contract. The simpleArgs section defines arguments used by the 

workloads, such as initial account balances and the number of accounts. The test section 

specifies the name and description of the benchmark, as well as the number of workers to be 

used. Each round within the rounds section describes a specific test scenario, including the 

number of transactions, the transaction rate, and the workload module to be executed. Lastly, 

the monitors section configures resource monitoring for Docker containers running the 

network components, including peers and orderers, to capture resource utilization metrics 

during the benchmark execution.  
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Figure 6.4 - Query and transfer functions on simple.go chaincode 

 

In the "Query Round - 5000 transactions at 100 TPS," the goal is to assess query performance 

by executing 5000 transactions at a fixed rate of 100 TPS. This round utilizes the query.js 

workload module to simulate queries against the smart contract, enabling analysis of 

response time and throughput. Similarly, the "Query Round - 5000 transactions at 200 TPS" 

evaluates query performance but at a higher transaction rate of 200 TPS. This round employs 

the same query.js workload module to execute queries, facilitating a comparison of 

performance metrics across different transaction rates. 
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Shifting focus to transfer functionality, the "Transfer Round - 1000 transactions at 5 TPS" tests 

transfers between accounts at a fixed rate of 5 TPS. Using the transfer.js workload module, 

this round aims to assess transaction throughput and latency under a lower TPS scenario.The 

subsequent "Transfer Round - 1000 transactions at 10 TPS" and "Transfer Round - 1000 

transactions at 20 TPS" increase the transaction rates to 10 TPS and 20 TPS, respectively. 

These rounds aim to evaluate scalability and performance under higher transaction rates, 

utilizing the same transfer.js workload module for comparison. 

 

Overall, these rounds offer a comprehensive evaluation of the smart contract's performance 

across different transaction types and rates. The comparative analysis provides insights into 

scalability, efficiency, and responsiveness under varying workloads, facilitating informed 

decision-making for optimizing the smart contract's performance. 
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Figure 6.5 - Config.yaml defines workloads and benchmark rounds 

 

Finally, the benchmark can be executed using the Caliper CLI. The user should utilize the `npx 

caliper launch manager` command, providing the path to the benchmark configuration file 

and the path to the network configuration as arguments. Throughout the benchmarking 

process, performance metrics such as transaction throughput, latency, and resource 

utilization should be monitored. Once the benchmark concludes, Caliper will generate a 
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comprehensive report containing detailed performance statistics and analysis, enabling the 

user to evaluate the efficacy of the blockchain network under various conditions. 

6.4.1 Fabric network with BFT 

 

In March 2024, Hyperledger Fabric introduced the beta version 3.0, which includes the 

Byzantine Fault Tolerance consensus mechanism as a notable feature. This update enables 

users to retest the network using the BFT consensus algorithm alongside the existing Raft 

consensus mechanism. However, it's important to note that this BFT functionality is currently 

available only in the beta version 3.0 of Hyperledger Fabric. Conducting benchmark tests with 

both consensus mechanisms offers valuable insights into their respective performance 

characteristics and can inform decision-making regarding network deployment and 

optimization strategies. 

 

6.5 Comparison and takeaways 

 

By focusing on key performance metrics such as transaction throughput, latency, and success 

rates, the evaluation seeks to provide comprehensive insights into the networks' ability to 

handle both read and write-intensive workloads. By analyzing those metrics, this thesis will 

try to shed light on the comparative strengths and weaknesses of each network's query and 

transaction functionality, offering valuable insights for blockchain developers and network 

architects. The results of the benchmark analysis are presented in the following tables. 

 

 

 

Table 5 - Test results for Besu 
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Table 6 - Test results for Fabric using Raft 

 

 

 

Table 7 - Test results for Fabric using BFT 

 

The query tests reveal intriguing similarities in performance among the three networks, 

suggesting a level of parity in their query handling capabilities. Across different transaction 

rates, all three networks consistently maintain high success rates, indicating robustness in 

query execution. Similarly, latency metrics exhibit comparable trends, with minor fluctuations 

observed between the networks. Hyperledger Besu, Fabric with BFT consensus, and Fabric 

with Raft consensus all demonstrate commendable response times for query transactions, 

underscoring their efficiency in processing read requests. These findings suggest a degree of 

uniformity in query performance across the evaluated blockchain networks, hinting at the 

resilience and reliability of their query functionalities. 

 

Moreover, the consistency in performance metrics across the three networks implies a level 

playing field in terms of query processing efficiency. While each network may employ distinct 

consensus mechanisms and architectural designs, the query tests indicate that they all excel 

in providing timely and accurate responses to query transactions. This uniformity in 

performance underscores the maturity and robustness of blockchain technology, wherein 

different networks can achieve comparable levels of efficiency in handling read-intensive 

workloads. As such, developers and enterprises evaluating blockchain solutions for query-

intensive applications can draw confidence from the consistent performance exhibited by 
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Hyperledger Besu, Fabric with BFT consensus, and Fabric with Raft consensus in this 

benchmark analysis. 

 

Upon closer examination of the transfer transactions, it becomes evident that both 

Hyperledger Fabric with Raft and BFT consensus encountered varying degrees of failures, 

particularly attributed to MVCC errors during transaction execution. These errors resulted in 

a higher number of failures compared to Hyperledger Besu, which experienced no such issues. 

MVCC errors signify challenges in managing concurrent transactions and accessing shared 

data, potentially leading to inconsistencies in transaction outcomes and network 

performance. 

 

 

 

Figure 6.6 - MVCC Error while executing transaction in Fabric 

 

While both Fabric networks experienced these errors, there are notable differences in their 

performance metrics. Hyperledger Fabric with Raft demonstrated faster transaction 

processing speeds and lower latencies compared to its BFT counterpart. Despite experiencing 

MVCC errors, Fabric with Raft maintained a higher success rate and exhibited superior 

performance in handling transfer transactions, showcasing its resilience and efficiency. 

Conversely, Fabric with BFT consensus exhibited slightly higher latencies and lower 

throughputs, indicating potential scalability challenges under similar transaction loads.This 

comparison underscores the strengths and weaknesses of each consensus mechanism. Raft's 

simplicity and fast leader election process contribute to its robustness and efficiency in 

managing transaction concurrency and ensuring data consistency. On the other hand, BFT 

consensus, while offering strong fault tolerance and Byzantine fault resistance, may introduce 

overhead and complexity that impact performance, especially in scenarios with high 

transaction rates.Hyperledger Besu demonstrates robustness in transaction handling with 
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consistently high success rates and minimal errors, it is worth noting that it exhibits lower 

transaction throughput compared to Hyperledger Fabric. Despite its reliability, Besu's slower 

transaction processing speed may pose challenges for applications requiring high transaction 

throughput or low-latency transaction execution. 

 

 

 

       Figure 6.7 - Round 3 metrics        Figure 6.8 - Round 3 Success Rate 

 

 

 

       Figure 6.9 - Round 4 metrics        Figure 6.10 - Round 4 Success Rate 
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      Figure 6.11 - Round 5 metrics       Figure 6.12 - Round 5 Success Rate 

 

Overall, this comparative analysis highlights the nuanced trade-offs between consensus 

mechanisms and their impact on network performance. Raft's simplicity and efficiency make 

it well-suited for transaction-heavy applications where fast processing and low latencies are 

paramount. In contrast, BFT consensus, while offering strong fault tolerance, may introduce 

complexities that affect performance, especially under high transaction loads. Hyperledger 

Besu, while reliable, may face challenges in handling high transaction throughput due to its 

slower processing speed. Ultimately, blockchain developers and enterprises must carefully 

evaluate their performance requirements and consider the strengths and weaknesses of each 

network to make informed decisions when selecting a blockchain solution for their specific 

use case. Moving forward, continued research, experimentation, and optimization efforts will 

be essential to unlock the full potential of these blockchain frameworks and enable their 

seamless integration into diverse enterprise ecosystems. 
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