

Master of Science

<<Artificial Intelligence and Visual Computing>>

UNIVERSITY OF WEST ATTICA &

UNIVERSITY OF LIMOGES

FACULTY OF ENGINEERING

DEPARTMENT OF INFORMATICS AND COMPUTER ENGINEERING

Master Thesis

Real Estate Property Comparison in the Greek Market Using Advanced Image Similarity Methods
and Web Scraping Techniques

Student: Asimina Tzana
(aivc21015)

Supervisor: Anastasios L. Kesidis, Professor

Athens, September 2024

2

Mέλη Εξεταστικής Επιτροπής συμπεριλαμβανομένου του εισηγητή

Η διπλωματική εργασία εξετάστηκε επιτυχώς από την κάτωθι Εξεταστική Επιτροπή

Α/Α ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΒΑΘΜΙΔΑ/ΙΔΙΟΤΗΤΑ ΨΗΦΙΑΚΗ ΥΠΟΓΡΑΦΗ

1 Αναστάσιος Κεσίδης Καθηγητής

2 Πάρις Μαστοροκώστας Καθηγητής

3 Παναγιώτα Τσελέντη ΕΔΙΠ

3

ΔΗΛΩΣΗ ΣΥΓΓΡΑΦΕΑ ΜΕΤΑΠΤΥΧΙΑΚΗΣ ΕΡΓΑΣΙΑΣ

Η κάτωθι υπογεγραμμένη Τζάνα Ασημίνα του Ιωάννη, με αριθμό μητρώου aivc21015 φοιτήτρια του

Προγράμματος Μεταπτυχιακών Σπουδών Τεχνητή Νοημοσύνη και Οπτική Υπολογιστική του Τμήματος

Μηχανικών Πληροφορικής και Υπολογιστών και του Τμήματος Μηχανικών Τοπογραφίας και

Γεωπληροφορικής της Σχολής Μηχανικών του Πανεπιστημίου Δυτικής Αττικής σε συνεργασία με το

Τμήμα Πληροφορικής της Σχολής Επιστημών και Τεχνολογίας του Πανεπιστημίου της Limoges της

Γαλλίας, δηλώνω ότι: «Είμαι συγγραφέας αυτής της μεταπτυχιακής εργασίας και ότι κάθε βοήθεια την

οποία είχα για την προετοιμασία της, είναι πλήρως αναγνωρισμένη και αναφέρεται στην εργασία.

Επίσης, οι όποιες πηγές από τις οποίες έκανα χρήση δεδομένων, ιδεών ή λέξεων, είτε ακριβώς είτε

παραφρασμένες, αναφέρονται στο σύνολό τους, με πλήρη αναφορά στους συγγραφείς, τον εκδοτικό

οίκο ή το περιοδικό, συμπεριλαμβανομένων και των πηγών που ενδεχομένως χρησιμοποιήθηκαν από

το διαδίκτυο. Επίσης, βεβαιώνω ότι αυτή η εργασία έχει συγγραφεί από μένα αποκλειστικά και

αποτελεί προϊόν πνευματικής ιδιοκτησίας τόσο δικής μου, όσο και του Ιδρύματος. Παράβαση της

ανωτέρω ακαδημαϊκής μου ευθύνης αποτελεί ουσιώδη λόγο για την ανάκληση του πτυχίου μου».

Η Δηλούσα

4

Contents

Contents .. 4

Figures ... 6

Abstract ... 7

Introduction .. 8

Problem Statement ... 9

Structure.. 10

Objective ... 12

Background ... 14

Scope ... 16

Research Questions ... 18

Literature Integration .. 20

Literature Review .. 23

Web Scraping .. 23

The Role of Web Scraping in Data-Driven Industries .. 24

Types of Web Data Extraction ... 25

Detailed Steps in Web Scraping .. 27

Detailed Overview of Technologies Used in Web Scraping ... 29

Data Management Tools for Web Scraping ... 32

Challenges in Web Scraping .. 37

Application of Web Scraping in Real Estate .. 38

Legal and Ethical Considerations:.. 40

Machine Learning in Real Estate ... 41

Application of Machine Learning in Real Estate.. 41

Theoretical and Mathematical Background .. 41

Predictive Modeling in Real Estate .. 44

Image Similarity Methods ... 47

Image similarity on real estate properties .. 47

Key Techniques and Their Mathematical Foundations ... 47

Django for Full-Stack Development .. 54

Origins and Philosophy .. 54

Usage in Full-Stack Development .. 55

Machine Learning Integration: .. 56

Core Features of Django ORM .. 56

5

Benefits in Real Estate Applications .. 57

Methodology ... 59

Overview of the Web Scraping Pipeline .. 59

Targeted Real Estate Platforms ... 60

Data Integration and Storage .. 60

Technical Architecture ... 61

Challenges and Solutions .. 62

Overview of the Web Scraping Pipeline .. 63

Design Principles and Objectives .. 63

Technical Workflow ... 63

Implementation Details ... 64

Explanation of Data Structure for Each Web Platform ... 65

Data Unification Approach .. 66

Database Management and Data Integration... 67

Object-Relational Mapping (ORM) .. 68

Implementation of the Django Full Stack Application .. 69

Image similarity model training .. 70

Integration of Image Similarity Algorithm... 74

Results ... 80

Dataset Description ... 80

Images dataset .. 86

Image similarity model results .. 87

Django app results .. 87

Performance Evaluation of the Image Similarity Detection Program ... 93

Conclusion and Future Work ... 105

References ... 107

Code .. 108

6

Figures

Figure 1: The process of web scraping in business ... 24

Figure 2: The process of web scraping .. 28

Figure 3: SQL vs NoSQL databases. ... 32

Figure 4: Challenges in web scraping. ... 37

Figure 5:SIFT(Scale Invariant Feature Transform) .. 48

Figure 6: CNN for image classification. ... 51

Figure 7: Django architecture. ... 54

Figure 8: Image similarity training process ... 70

Figure 9: Training steps ... 72

Figure 10: Django app ... 75

Figure 11: Properties details ... 75

Figure 12: Matching property ids found for specific property .. 76

Figure 13: Recommendation system ... 77

Figure 14: Similarity calculation .. 78

Figure 15: Number of Unique IDs per Source ... 80

Figure 16: Top 10 regions by number of listings ... 82

Figure 17: Top 10 regions based on the average price ... 83

Figure 18: Average price per square meter... 85

Figure 19: UI of the image similarity app .. 93

7

Abstract

The dynamic and complex nature of the real estate market, especially in regions like Greece with its diverse plat-

forms and non-standardized content, poses significant challenges in data collection and analysis. This thesis pre-

sents a comprehensive system that integrates advanced web scraping techniques, machine learning models, and

a full-stack Django-based application to significantly enhance the collection, processing, and analysis of real es-

tate data. Central to this system is an innovative image similarity model, designed to improve the detection and

comparison of real estate properties based on visual content, thereby enabling a more sophisticated analysis of

market dynamics.

At the core of this system is the development of an image similarity model utilizing the ResNet50 architecture,

optimized for visual recognition tasks within the real estate domain. The dataset, which includes images collected

from Greek real estate platforms, is processed through a pre-trained ResNet50 model, fine-tuned to extract fea-

ture embeddings rather than perform direct classification. These images undergo preprocessing, including nor-

malization and resizing to 224x224 pixels, to align with the input requirements of the ResNet50 model. The model

then generates a 2048-dimensional feature vector for each image, effectively capturing its visual characteristics.

These vectors are stored systematically for efficient retrieval and comparison in image similarity tasks.

The system is fortified with robust data management techniques, such as checkpointing and error handling, en-

suring reliable processing of large-scale datasets. By leveraging the pre-trained ResNet50 model, the system

achieves high accuracy in image similarity tasks while minimizing computational overhead, offering a scalable

and efficient solution for real estate image analysis.

8

Introduction

The advent of digital technology has markedly transformed the real estate landscape, particularly in Greece

where platforms such as Spitogatos, XE, Tospitimou, Plot, and Spiti24 have emerged as pivotal resources. These

platforms aggregate a wealth of property data, fundamentally altering how properties are marketed, searched,

and analyzed. The digital transition has not only democratized access to real estate information but has also

streamlined the process of buying and selling properties, making it more transparent and accessible to a broader

audience.

As beneficial as this digitization has been, it also presents notable challenges. Chief among these is the issue of

duplicated listings across multiple platforms, which can clutter the search experience and obscure market in-

sights. This redundancy complicates effective data management and necessitates sophisticated analytical strate-

gies to ensure that consumers and real estate professionals can extract meaningful insights from the wealth of

available data. Moreover, the digital aggregation of property listings raises questions about data accuracy, privacy,

and the ethical use of such information.

In addressing these challenges, there is a clear need for innovative solutions that can enhance the efficiency of

searching and analyzing real estate data while safeguarding the integrity and privacy of the information. As such,

the role of technology in real estate is not only about facilitating access but also about enhancing the quality and

reliability of the information provided, ensuring that it serves the best interests of all market participants.

To maximize the benefits of web scraping in the real estate sector, it is crucial to integrate scraped data with

advanced analytical tools. Machine learning models can be applied to predict market trends and evaluate invest-

ment opportunities based on historical data. Additionally, image recognition technology can be used to enhance

listing recommendations by analyzing property photos to identify similar features.

In conclusion, web scraping is a transformative tool in the digital real estate landscape, providing key advantages

in data collection and market analysis. However, it must be used responsibly, with careful consideration of legal,

ethical, and technical challenges. By effectively integrating web scraping with robust analytical tools, real estate

professionals can unlock deeper insights into the market, driving smarter investment and business decisions in

the Greek real estate sector.

9

Problem Statement

A particularly pressing issue is the existence of listings that, while representing the same property, appear on

multiple platforms with variations such as different agents or photographs. This phenomenon not only compli-

cates the process of property comparison and market analysis but also impacts the accuracy of data-driven in-

sights in the real estate sector. This thesis focuses on addressing this challenge through the development of a

Django-based web platform that not only aggregates real estate listings from major Greek platforms but also

employs an innovative image-based algorithm to detect and consolidate duplicate listings. By leveraging web

scraping techniques to collect data and applying image recognition technologies, this project aims to streamline

the property search process, enhance data quality, and provide deeper insights into the Greek real estate market.

Listings of the same property appearing across different web platforms, represented by various agents or with

differing presentation elements (such as photos), create a fragmented view of the market. This fragmentation

leads to difficulties in aggregating a coherent dataset that accurately reflects property availability, pricing, and

characteristics. The challenge lies in the ability to effectively identify and consolidate these disparate listings into

singular, comprehensive entries that accurately represent individual properties in the market analysis.

The development of such an algorithm is poised to significantly enhance the quality and reliability of real estate

data, thereby improving market analysis, pricing strategies, and decision-making processes for stakeholders in

the real estate sector. It addresses a critical gap in current data management practices, offering a pathway to

more accurate and actionable market insights. Furthermore, this research contributes valuable knowledge to the

fields of data science and real estate technology, pushing the boundaries of how data can be intelligently pro-

cessed and utilized.

10

Structure

This thesis is meticulously organized to present a coherent and thorough examination of the integration of web

scraping, machine learning, and full-stack development technologies in analyzing the Greek real estate market.

The structure of the thesis is simplified into five main chapters, each designed to build upon the previous to

comprehensively address the research questions and objectives:

Chapter 1: Introduction

This introductory chapter sets the stage for the research by outlining the thesis's scope, objectives, and signifi-

cance. It defines the research questions that guide the study and explains the rationale behind the chosen meth-

odologies and technologies, particularly focusing on how they apply to the real estate sector in Greece.

Chapter 2: Literature Review

This chapter provides a critical review of the relevant academic and industry literature, serving as the foundation

for the methodologies used in the thesis. It covers:

• Core Technologies: An overview of web scraping, machine learning, and Django full-stack development,

highlighting key advancements and their relevance to the thesis.

• Web Scraping: Detailed exploration of web scraping techniques, including legal and ethical considera-

tions crucial for compliance and effective data gathering.

• Image Similarity Methods: Discussion on various image processing algorithms and machine learning

techniques, such as CNNs and feature matching, that are essential for analyzing real estate images.

• Machine Learning in Real Estate: Analysis of how machine learning is used in real estate for tasks like

image recognition and predictive modeling, and its impact on enhancing decision-making processes.

• Django for Full-Stack Development: Examination of Django's architecture and its role in developing scal-

able, data-driven applications within the real estate domain.

Chapter 3: Methodology and Implementation

Merging methodology with practical implementation, this chapter describes both the theoretical frameworks

and their application:

• Data Collection Techniques: Strategies and tools developed for scraping real estate data from various

platforms.

• Image Processing and Machine Learning: Methods used for preprocessing images and developing ma-

chine learning models to identify similarities and differences in property images.

• Technological Stack: Insight into the use of Django and other tools in crafting the application, focusing

on how these technologies were integrated to support data processing and user interaction.

• Scraping Tools and Database Management: Implementation details of the scraping tools, database

schema design and data normalization.

• Machine Learning Pipeline and Django Application Architecture: This section of the chapter has detailed

the methodologies and implementation strategies for the machine learning pipeline, the Django applica-

tion architecture, and the Image Similarity UI. By combining advanced machine learning techniques with

a user-friendly interface, the application provides a robust tool for identifying and comparing real estate

images based on visual similarity.

11

Chapter 4: Results and Discussion

This chapter presents the experimental results of the image similarity algorithm, alongside insights derived from

the statistical analysis of the collected data and the evaluation of the Django application. The chapter is structured

into four main sections: data analysis, model evaluation, application usability, and a broader discussion of the

implications for the Greek real estate market.

Chapter 5: Conclusion and Future Work

This final chapter provides a summary of the research findings, highlights the key contributions, and discusses

the challenges encountered during the study. It also offers suggestions for future research and development.

12

Objective

This thesis aims to tackle the fragmentation of real estate listings by developing an innovative algorithm capable

of identifying and consolidating listings across multiple platforms that, despite differences in representation, per-

tain to the same property. The focus is on leveraging sophisticated web scraping techniques to gather data from

a variety of online sources and employing advanced matching algorithms that can recognize listings of the same

property across different platforms and agents.

This thesis aims to bridge the gap in real estate data aggregation by designing and implementing a sophisticated

web scraping framework that extracts real estate listings from Greece's major online platforms. The cornerstone

of this project is the development of a novel image-based algorithm capable of identifying and consolidating

listings that, despite variations in agent representation or presentation elements, correspond to the same prop-

erty. This dual approach, combining advanced web scraping techniques with a state-of-the-art matching algo-

rithm, seeks to create a unified, de-duplicated dataset of real estate listings, which will serve as a more accurate

and reliable foundation for market analysis and decision-making.

This thesis is dedicated to addressing the issue of fragmented real estate listings by crafting a comprehensive

solution that integrates cutting-edge web scraping methodologies with a robust image-based matching algo-

rithm. The objective is twofold: first, to develop a sophisticated web scraping framework capable of systematically

harvesting real estate listings from prominent Greek online platforms, and second, to design and implement an

innovative algorithm that identifies and merges listings of the same property across these platforms, regardless

of variations in agent representation or presentation elements such as photos.

To achieve this, the research will leverage the power of Python for web scraping, utilizing the libraries Beautiful-

Soup and Selenium and re for efficient data extraction. These tools are chosen for their ability to handle the

complexities of modern web structures, enabling the automated collection of vast amounts of data with precision

and resilience against common anti-scraping defenses.

Concurrently, this project will utilize Django, a high-level Python web framework, to develop a dynamic web plat-

form. This platform will not only serve as the repository for the aggregated real estate listings but also as the

interface through which users can interact with the consolidated data. Django's robustness and scalability make

it the ideal choice for managing the backend of the project, facilitating data storage, processing, and presentation

through a user-friendly web application.

The innovative algorithm at the heart of this thesis will utilize image recognition technologies to compare and

identify listings with matching property images, a critical step in consolidating duplicate entries. By combining

image analysis with textual data comparison, the algorithm aims to establish a high degree of accuracy in detect-

ing listings that, despite superficial differences, represent the same property.

This integrated approach, combining sophisticated web scraping techniques with advanced image-based match-

ing and the development of a Django-based web platform, aims to bridge the gap in real estate data aggregation.

The ultimate goal is to create a unified, de-duplicated dataset of real estate listings that provides a more accurate

and reliable foundation for market analysis and enhances decision-making processes for stakeholders in the real

estate sector. Through this research, we aim to push the boundaries of data science and real estate technology,

offering new methodologies for intelligently processing and utilizing real estate data.

13

The primary objective of this thesis is to develop and evaluate a comprehensive system that utilizes advanced

web scraping techniques and machine learning models to extract, process, and analyze real estate listings from

various Greek real estate platforms. This system aims to leverage the power of image similarity methods to en-

hance the detection and comparison of real estate properties, thereby facilitating a more sophisticated and ac-

curate analysis of the real estate market in Greece.

14

Background

The real estate market is not only a crucial component of the global economy but also a primary indicator of a

nation's economic health and stability. This is especially true in Greece, where real estate plays a pivotal role due

to its direct ties to both domestic economic activities and the extensive tourist industry. This section outlines the

historical context of real estate market analysis, the transition to digital methods, and the specific challenges and

opportunities within the Greek market.

Importance of Real Estate in Greece

In Greece, the real estate sector contributes significantly to the national economy. It not only offers substantial

investment opportunities but also serves as a key driver of related industries such as construction, hospitality,

and retail. The unique appeal of Greece's landscape—ranging from urban centers like Athens to popular island

destinations such as Santorini and Crete—further amplifies the complexity and attractiveness of its real estate

market. Additionally, Greece's real estate market has been a focal point for both local and international investors,

particularly after the financial crisis of the late 2000s when property values fluctuated markedly.

Evolution from Traditional to Digital Analysis

Traditionally, real estate market analysis in Greece, as in many parts of the world, has relied heavily on manual

data collection methods, including physical surveys and paper-based tracking. These methods are not only labor-

intensive but also prone to errors and biases, which can skew market understanding and decision-making. The

digital era has ushered in a new wave of data collection and analysis methodologies, characterized by the use of

online platforms for real estate listings and transactions. This digital shift offers vast amounts of data that can be

harvested and analyzed much more efficiently and accurately than ever before.

Challenges in the Greek Real Estate Market

Despite the availability of digital tools, the Greek real estate market poses unique challenges:

• Data Fragmentation: Unlike markets in some other countries, Greek real estate data is often scattered

across various platforms and not standardized, which complicates aggregation and analysis.

• Economic Volatility: The economic instability in Greece over the past decade has led to volatile real estate

prices and investment patterns, requiring more dynamic and responsive analysis tools.

• Regulatory Environment: Greece’s regulatory framework for real estate is complex and often changes,

impacting the collection and utilization of real estate data.

Opportunities for Technological Integration

The transition to digital data analysis opens up several opportunities:

• Advanced Data Analytics: Leveraging big data technologies and machine learning can transform raw data

into insightful analytics, providing a deeper understanding of market trends and buyer behavior.

• Image Processing Technologies: Utilizing image recognition and processing technologies to analyze prop-

erty photos and videos offers a new dimension of property evaluation, allowing for more nuanced com-

parisons and assessments.

• Automated and Real-Time Analysis: Digital tools enable real-time data analysis, which is crucial for

adapting to fast-changing market conditions, a common scenario in Greek real estate due to its ties to

the fluctuating tourism sector.

15

Understanding the background and the dynamics of the Greek real estate market is essential for developing ef-

fective digital tools for data collection and analysis. This thesis aims to address these needs by integrating ad-

vanced web scraping techniques and machine learning models to improve the accuracy, efficiency, and depth of

real estate market analysis in Greece, thus providing stakeholders with more reliable and actionable insights.

Evolution of Data Analysis in Real Estate

With advancements in information technology, there has been a substantial shift toward digital data collection

and analysis. Real estate platforms now compile vast amounts of data online, including listings with detailed de-

scriptions, photographs, and transaction histories. This shift presents an opportunity to leverage big data analyt-

ics to gain a deeper understanding of market dynamics, pricing trends, and consumer preferences.

Importance of Web Scraping and Big Data

Web scraping has emerged as a critical tool in this context, enabling the extraction of large datasets from multiple

real estate websites. These data are essential for building comprehensive market models that can predict trends

and guide investment decisions. However, the nature of data on real estate platforms poses unique challenges.

Listings are often not standardized; they vary in format, detail, and accuracy, requiring sophisticated techniques

for data cleansing and preparation.

Role of Machine Learning and Image Processing

Moreover, the visual component of real estate listings — images — has largely been underutilized in quantitative

analyses despite containing valuable information about property features and quality. Recent developments in

machine learning, particularly in image recognition and processing, have opened new avenues for incorporating

visual data into real estate analysis. By analyzing images, it is possible to identify patterns and features that are

not mentioned in textual descriptions, such as the property's condition, style, and more subtle attributes that

could influence its value.

Integration into Full-Stack Applications

The integration of these technologies into full-stack applications, particularly using frameworks like Django, fur-

ther enhances the utility and accessibility of real estate data. Django's capabilities enable the development of

robust, scalable applications that can handle large volumes of data while providing a user-friendly interface. This

allows users, whether they are market analysts, real estate agents, or prospective buyers, to interact directly with

the data and gain insights that were previously difficult to access.

Contribution to the Field

This thesis seeks to build on these advancements by creating a comprehensive system that not only collects and

processes real estate data but also provides analytical tools that harness the power of both textual and visual

data. By doing so, it aims to enhance the accuracy, depth, and speed of real estate market analysis, providing

stakeholders with better tools to make informed decisions. This approach is particularly novel in the context of

the Greek real estate market, where such technological integration has not yet been fully explored or imple-

mented.

16

Scope

This project is strategically designed to address two primary challenges in the analysis of the Greek real estate

market through the use of advanced data science techniques, specifically web scraping and machine learning.

Development of a Web Scraping System

The initial aspect of this project focuses on the development of a sophisticated web scraping system tailored to

navigate and extract data from a variety of Greek real estate platforms. These platforms exhibit significant varia-

tion in their structure and content presentation, which necessitates a flexible scraping approach capable of han-

dling different data formats and layouts. The information to be collected includes:

• Textual Data: This includes key details such as prices, locations, sizes, types of properties, and additional

features that are critical for comprehensive market analysis.

• Visual Data: Images of listings are crucial as they provide insights into the aesthetic and functional as-

pects of the properties, which are often decisive factors in real estate valuation and customer interest.

This scraping system will employ adaptive algorithms to ensure efficient data extraction while maintaining com-

pliance with ethical web scraping guidelines and avoiding disruptions to the functionality of the target websites.

Application of Machine Learning Techniques

The second core component of this project involves the application of machine learning algorithms to analyze

the collected images to identify similarities and discrepancies. This analysis aims to:

• Detect Duplicate Listings: Identifying duplicate or near-duplicate listings across different platforms is vital

for ensuring the accuracy of market analysis by eliminating redundancies.

• Recognize Closely Related Properties: By analyzing image similarities, the system can cluster properties

that, while not identical, share significant features, thus providing potential buyers with alternative op-

tions and aiding in price comparison.

Geographical Focus on Greece

Focusing specifically on the Greek real estate market introduces unique challenges and opportunities:

Diverse Property Types: Greece's real estate landscape is characterized by a wide array of property types, includ-

ing urban apartments in Athens, traditional houses in village settings, and luxurious villas in coastal regions. This

diversity requires a versatile analysis approach.

Regional Market Variations: The real estate market dynamics can vary significantly between different regions in

Greece, influenced by factors such as tourism, local economic conditions, and demographic trends. This geo-

graphic variability enriches the dataset and provides a fertile ground for demonstrating the effectiveness of ma-

chine learning in adapting to and elucidating complex market dynamics.

Contribution to Real Estate Analytics

17

The comprehensive approach outlined in this project not only aims to enhance the understanding and analysis

of the Greek real estate market but also seeks to contribute to the broader field of real estate analytics by demon-

strating how integrating technological solutions can address specific market challenges. The methodologies de-

veloped could serve as a blueprint for similar analyses in other geographic contexts, potentially driving further

innovations in the field of real estate data science.

18

Research Questions

The real estate market is burgeoning with data, yet the challenge of efficiently harnessing this information re-

mains significant, particularly in markets like Greece where platform heterogeneity and data inconsistency pre-

vail. This thesis aims to bridge this gap through the development of a comprehensive analytical system that lev-

erages advanced web scraping techniques, machine learning models, and a robust full-stack application. The re-

search is driven by several critical questions that explore the potential of technology to transform real estate data

gathering, processing, and analysis. These questions probe the effectiveness of web scraping for collecting diverse

data, the ability of machine learning to detect image similarities and duplicate listings, and the integration capa-

bilities of Django to deliver a user-centric platform for real estate professionals and decision-makers. The answers

to these questions will provide a foundation for understanding how technological integration can enhance market

analysis and decision-making processes in the real estate sector.

The research will focus on several key questions:

• How can web scraping be effectively utilized to gather comprehensive real estate data from Greek plat-

forms, which often feature diverse and non-standardized content?

• What methodologies can be developed to identify listings across multiple platforms that represent the

same property but are presented by different agents or with different photos?

• What machine learning techniques are most effective for identifying similarities in real estate images to

detect duplicates or closely related properties across different platforms?

• Can a Django-based full-stack application integrate these technologies to provide a robust, user-friendly

platform for real estate data visualization and decision-making?

• What are the implications of consolidating fragmented listings for market analysis and decision-making

processes in the real estate sector?

Addressing the Research Questions: Objectives and Methodology

Data Collection

Advanced Scraping Techniques: Implement cutting-edge web scraping technologies to comprehensively extract

data from multiple Greek real estate platforms, ensuring a rich dataset that reflects the current market landscape.

Structured Data Extraction: Focus on capturing essential structured data such as price, location, size, and prop-

erty type, which are critical for basic filtering and sorting functionalities.

Unstructured Data Extraction: Gather rich unstructured data including images and descriptive text to enable

deeper, more nuanced analysis and to facilitate advanced features like image similarity analysis.

Data Processing and Management

Data Cleaning Protocols: Establish and maintain high standards of data quality through rigorous cleaning proto-

cols that address missing values, errors, and inconsistencies.

19

Data Storage Solutions: Implement robust database management systems that ensure data integrity, security,

and fast, reliable access, which is vital for real-time applications.

Image Processing and Machine Learning

Preprocessing Techniques: Utilize sophisticated image preprocessing methods to standardize and enhance image

data before analysis, improving the reliability of machine learning outcomes.

Model Development: Develop and train advanced machine learning models to detect similarities and differences

in property images, which will help in identifying duplicate listings and extracting meaningful features from im-

ages.

Image Similarity Methods: Integrate state-of-the-art image similarity algorithms to significantly boost the sys-

tem’s capability to analyze and categorize image data effectively.

Full-Stack Application Development

Django-Based Integration: Construct a Django-based web application that seamlessly integrates backend pro-

cessing with a user-friendly frontend, ensuring that users can easily navigate and interact with the system.

Real-Time Data Interaction and Dynamic Visualization: Provide dynamic tools that allow users to interact with

real-time data and visualize results in meaningful ways, enhancing user engagement and decision-making pro-

cesses.

Integration of Image Similarity Features

Interactive Image Uploads and Comparisons: Enable functionality for users to upload property images and use

built-in tools to compare them against the database, aiding in identifying similar properties or duplicates.

Recommendations: Develop sophisticated recommendation algorithms that leverage analyzed image data to

suggest properties based on user preferences and past interactions.

Analytics and Insights

Market Trends Analysis: Conclude the study with an extensive analysis of the collected data, focusing on market

trends, price dynamics, and property characteristics across Greece. This analysis aims to unearth actionable in-

sights and highlight investment opportunities.

By systematically addressing these research questions and objectives, this thesis will contribute valuable

knowledge and tools to the field of real estate market analysis, offering practical solutions that can adapt to other

markets and scales.

20

Literature Integration

Recent academic studies and industry reports have increasingly utilized web scraping techniques and machine

learning algorithms to analyze various aspects of the real estate market. This literature overview examines key

works that highlight the effectiveness and adaptability of web scraping in exploring market trends, pricing strat-

egies, and consumer behavior analytics in diverse data environments:

1. Exploring the Rental Market Dynamics of the Guadalajara Metropolitan Area

This study focuses on creating a custom dataset using web scraping techniques to understand factors influenc-

ing rental pricing and property listings in the Guadalajara metropolitan area. By collecting data from real estate

websites, the researchers were able to analyze market dynamics and rental trends. The study employed a Py-

thon web scraping script to navigate through various real estate websites, extracting data on rental prices, prop-

erty locations, and other relevant attributes. This detailed analysis helps provide insights into the factors affect-

ing rental markets in the region.

2. Media Framing in the Digital Age: Interplay of Real Estate and Welfare Narratives in South Korean News
Articles

This research leverages web scraping to collect and analyze online journalistic articles, studying the interplay

between real estate and welfare narratives in South Korean media. The researchers utilized web scraping to

gather a large dataset of news articles from various online sources, which were then analyzed to understand

how real estate issues are framed in the context of welfare policies. This approach highlights the utility of web

scraping in media studies and the analysis of digital content.

3. Forecasting Housing Price Using GRU, LSTM, and Bi-LSTM for California

Utilizing web scraping to gather data from major real estate sales platforms, this study applies advanced ma-

chine learning models such as GRU (Gated Recurrent Unit), LSTM (Long Short-Term Memory), and Bi-LSTM (Bi-

directional LSTM) to forecast housing prices in California. The data collected included historical sales prices,

property details, and temporal factors. The application of these sophisticated models demonstrates the capabil-

ity of web scraping to support data-driven forecasting methods, providing accurate predictions for housing mar-

ket trends.

4. Modelo Random Forest Aplicado a Precificação de Imóveis à Venda em Aracaju, SE

In this work, web scraping is used to collect data on property prices in Aracaju, Brazil. The data gathered in-

cludes various attributes such as location, size, and price of properties. The collected data is then analyzed us-

ing the Random Forest model to develop pricing strategies. This study showcases the application of web scrap-

ing in developing robust real estate pricing models, highlighting its effectiveness in extracting valuable insights

from large datasets.

5. Enhancing Real Estate Market Insights through Machine Learning: Predicting Property Prices with Ad-
vanced Data Analytics

This research utilizes web scraping to gather data for predicting property prices in Mumbai. Advanced data ana-

lytics and machine learning techniques, including various regression and classification models, are employed to

analyze the collected data. The study demonstrates how web scraping can be used to compile comprehensive

datasets, which are then used to enhance market insights and predict property prices accurately.

https://www.researchgate.net/profile/Diego-Ramos-32/publication/381189642_Exploring_the_Rental_Market_Dynamics_of_the_Guadalajara_Metropolitan_Area/links/666115b5de777205a311236b/Exploring-the-Rental-Market-Dynamics-of-the-Guadalajara-Metropolitan-Area.pdf
https://www.researchgate.net/profile/Diego-Ramos-32/publication/381189642_Exploring_the_Rental_Market_Dynamics_of_the_Guadalajara_Metropolitan_Area/links/666115b5de777205a311236b/Exploring-the-Rental-Market-Dynamics-of-the-Guadalajara-Metropolitan-Area.pdf
https://www.researchgate.net/profile/Diego-Ramos-32/publication/381189642_Exploring_the_Rental_Market_Dynamics_of_the_Guadalajara_Metropolitan_Area/links/666115b5de777205a311236b/Exploring-the-Rental-Market-Dynamics-of-the-Guadalajara-Metropolitan-Area.pdf
https://www.cell.com/heliyon/pdf/S2405-8440(24)01727-4.pdf
https://www.cell.com/heliyon/pdf/S2405-8440(24)01727-4.pdf
https://ieeexplore.ieee.org/abstract/document/10546182/
https://ri.ufs.br/bitstream/riufs/19233/2/Maiara_Medeiros_Sousa.pdf
https://ieeexplore.ieee.org/abstract/document/10353243/
https://ieeexplore.ieee.org/abstract/document/10353243/

21

6. Applying Machine Learning Models for Forecasting House Prices – A Case of the Metropolitan City of Kara-
chi

This study collects web-based real estate data to develop a dataset for forecasting house prices using machine

learning models. The data collection process involves web scraping from various real estate websites to gather

information on property listings, prices, and other relevant features. The study then applies different machine

learning models to forecast house prices, showcasing the potential of web scraping in generating actionable

real estate market insights.

7. Scrimmo: A Real-Time Web Scraper Monitoring the Belgian Real Estate Market

The Scrimmo project presents a comprehensive exploration of web scraping for automated data collection and

analysis in the Belgian real estate market. The real-time web scraper, named SCRIMMO, is tailored to collect

data from websites containing real estate listings. This study underscores the real-time monitoring capabilities

enabled by web scraping, providing continuous updates and insights into the real estate market.

8. ML-based Telegram bot for real estate price prediction

The paper presents an innovative approach to real estate price prediction by developing a Telegram bot that

uses machine learning algorithms. This bot is designed to provide users with real-time predictions of real estate

prices, leveraging the accessibility and user-friendliness of Telegram.

9. Predictive analytics using Big Data for the real estate market during the COVID-19 pandemic

This study investigates which apartment attributes most significantly influence price changes during the pan-

demic. Using web scraping, 18,992 property listings were collected from Vilnius. Fifteen machine learning models

were tested to forecast price revisions, with SHAP values used for interpretability. The study found that the real

estate market was resilient, with less dramatic price drops than anticipated. The time-on-the-market (TOM) var-

iable was the most dominant predictor of price revisions, showing an inverse U-shaped behavior. Link: here

10. A Model for the Estimation of Land Prices in Colombo District using Web Scraped Data

The real estate market in Sri Lanka, especially in Colombo, has seen a boom, with increasing prices and demand.

Accurate land price estimation is crucial for investors and the general public. This study addresses the lack of

publicly available structured data on land prices by scraping data from online advertisements and combining it

with other publicly available data to build a comprehensive dataset for machine learning model development.

11. Web scraping or web crawling: State of art, techniques, approaches and application

This paper discusses the use of web scraping for collecting data and the application of machine learning for sen-

timent recognition and market analysis. The paper explores the concept of web scraping, its significance in the

modern age of Business Intelligence, and its applications in various fields such as data science, artificial intelli-

gence, and cybersecurity. It highlights the technologies and techniques involved in web scraping, including spi-

dering and pattern matching, and discusses the ethical and legal issues associated with it.

12. Web Scraping Methods Used in Predicting Real Estate Prices

This paper discusses various web scraping methods employed to collect data from the real estate market and

their application in predicting real estate prices. The study emphasizes the importance of accurate and up-to-

date data in making reliable predictions and explores different approaches to web scraping, data processing, and

machine learning techniques.

https://coralpublications.org/index.php/jemi/article/view/318
https://coralpublications.org/index.php/jemi/article/view/318
https://researchportal.unamur.be/files/87072189/ScrImmo.pdf
https://iopscience.iop.org/article/10.1088/1742-6596/1694/1/012010/pdf
https://link.springer.com/content/pdf/10.1186/s40537-021-00476-0.pdf
https://link.springer.com/content/pdf/10.1186/s40537-021-00476-0.pdf
https://dl.ucsc.cmb.ac.lk/jspui/bitstream/123456789/4699/1/2019%20BA%20020.pdf
http://www.i-csrs.org/Volumes/ijasca/2021.3.11.pdf
https://link.springer.com/chapter/10.1007/978-3-030-88113-9_30

22

These studies collectively demonstrate the broad applicability and utility of web scraping techniques in real estate

analysis. By enabling the collection and analysis of large volumes of data from various online sources, web scrap-

ing facilitates a deeper understanding of market trends, pricing strategies, and consumer behavior. This adapta-

bility makes web scraping an invaluable tool in modern real estate research and industry practice.

23

Literature Review

Web Scraping

Web scraping is an indispensable digital technique that automates the extraction of data from websites. It trans-

forms the vast and chaotic world of web data into structured, actionable information, making it a cornerstone

technology for many data-driven industries. From real estate to retail, finance to healthcare, web scraping ena-

bles businesses and researchers to capture and utilize web data in real-time, thus driving decision-making, com-

petitive analysis, and market research.

Significance of Web Scraping in Modern Industries

In the current digital age, where data is as valuable as currency, the ability to access and analyze data quickly and

accurately is crucial. Web scraping provides a strategic advantage by automating the collection of this data, thus

bypassing traditional methods of data gathering such as manual entry or single-source data feeds which can be

slow and error-prone.

Web scraping tools simulate the behavior of a web browser to retrieve the content of web pages, which includes

text, images, and other multimedia elements. However, unlike human interaction with a browser, web scraping

automates and repeats these interactions programmatically, allowing for the collection of large amounts of data

in a fraction of the time.

How Web Scraping Fuels Industries

• Real Estate: In real estate, web scraping is used to gather data on property listings, historical prices,

neighborhood demographics, and market trends. This information is crucial for investors, real estate com-

panies, and potential home buyers to make informed decisions.

• Finance: Financial analysts use web scraping to track stock market movements, corporate financials, and

economic indicators in real-time, providing a solid basis for investment decisions.

• Retail: Retail companies leverage web scraping to monitor competitor pricing, product availability, con-

sumer reviews, and market trends, helping them to optimize pricing, manage inventory, and enhance

customer experience.

• Academic Research: Researchers and academics utilize web scraping for gathering vast datasets from

multiple sources online, enabling comprehensive studies across various fields such as social sciences,

technology, and humanities.

Web scraping is a vital digital technique used to extract data from websites. This process allows for the automated

collection of information from the Internet, which is especially beneficial in fields that require frequent updates

and access to a vast amount of data. In the real estate sector, web scraping provides a crucial edge by collecting

extensive data on property listings, market prices, and trends efficiently and rapidly.

24

The Role of Web Scraping in Data-Driven Industries

In today’s data-driven world, timely and accurate information is paramount. Web scraping serves as a bridge

between raw data available online and structured data ready for analysis. By automating the data collection pro-

cess, web scraping not only saves time and resources but also enhances the reliability of the data by reducing

human errors.

Web scraping is a powerful technology employed to collect data automatically from websites. This data is often

crucial for competitive analysis, market research, and real-time decision-making. Given its importance across

various industries, including real estate, finance, retail, and more, understanding the intricacies of web scraping

is vital. Web scraping, fundamentally, is about extracting data from websites. It's a practice that bridges the gap

between static web content and dynamic data analysis applications. Here’s a deeper theoretical exploration of

the concept.

Applications Across Industries

The versatility of web scraping extends across various industries, each leveraging it for distinct purposes:

• Real Estate: Aggregating property listings from multiple real estate websites for price comparison, trend

analysis, and market research.

• Finance: Collecting financial data from stock market sites, financial news portals, and company websites

for investment analysis and decision-making.

• Retail: Monitoring competitor prices, tracking consumer reviews, and analyzing market trends to opti-

mize pricing strategies and inventory management.

Figure 1: The process of web scraping in business

25

• Academic Research: Gathering data sets from various online sources to support empirical research, sen-

timent analysis, and other scholarly activities.

Definition and Core Concepts

Web Scraping: At its core, web scraping is the process of using automated tools to extract information from web

pages. This information is typically presented in HTML format, which web scraping tools analyze to extract data

such as text, links, and other content.

HTML and the DOM: Understanding web scraping requires a basic understanding of HTML (HyperText Markup

Language) and the DOM (Document Object Model). HTML structures the content on web pages, while the DOM

is an object-oriented representation of the web page, which can be modified with programming languages like

JavaScript.

Types of Web Data Extraction

Static Content Extraction: This involves scraping data from web pages that do not require user interaction to

display content. Tools like Requests and BeautifulSoup are typically used here to parse the static HTML of the

page to retrieve the content.

Dynamic Content Extraction: For web pages that load content dynamically with JavaScript, tools like Selenium or

Puppeteer are used. These tools can interact with web pages just like a user would, allowing them to retrieve

data that only loads as a result of user interactions or that appears after initial page loads.

Benefits of Web Scraping

Web scraping offers a multitude of advantages that make it an indispensable tool for businesses and research-
ers alike. Here are some key benefits:

• Efficiency: Web scraping automates the data collection process, significantly reducing the time and re-
sources required compared to manual methods. This allows for rapid acquisition of large datasets,
which can be crucial for timely decision-making and analysis.

• Accuracy: By minimizing human intervention, web scraping reduces the likelihood of errors that can
occur during manual data collection. Automated scripts can consistently extract data with high preci-
sion, ensuring the reliability of the collected information.

• Scalability: Web scraping can handle vast amounts of data across numerous web pages. It is capable of
scaling up the data collection process to accommodate large volumes of data, making it feasible to
gather information that would be impractical to collect manually.

• Cost-Effective: Automating data collection processes through web scraping can lead to substantial cost
savings. It reduces the need for large teams of data collectors, thereby lowering labor costs and increas-
ing operational efficiency.

• Real-Time Data Access: Web scraping can be set up to run at regular intervals, providing access to the
most current data available. This is particularly valuable for industries that rely on up-to-date infor-
mation, such as finance, e-commerce, and news.

• Competitive Advantage: By providing access to comprehensive and up-to-date data, web scraping can
offer businesses a competitive edge. Companies can track competitor prices, monitor market trends,
and gather insights that inform strategic decisions.

26

• Customizability: Web scraping scripts can be tailored to collect specific data points relevant to a partic-
ular analysis or business need. This flexibility ensures that the data gathered is highly relevant and
aligned with specific objectives.

• Broad Data Collection: Web scraping can aggregate data from multiple sources, providing a holistic
view of the subject matter. This capability is particularly useful for market research, where insights from
various platforms are needed to form a complete picture.

• Enhanced Data Analysis: The structured data obtained through web scraping can be directly fed into
analytical tools and models, facilitating advanced data analysis, machine learning, and predictive analyt-
ics. This enables deeper insights and more informed decision-making.

• Unbiased Data Collection: Automated data scraping ensures that data is collected in a consistent man-
ner, free from the biases that can occur with manual collection. This helps maintain the objectivity and
integrity of the data.

• Availability of Historical Data: Web scraping can also be used to archive data over time, building a re-
pository of historical data that can be valuable for trend analysis and forecasting.

27

Detailed Steps in Web Scraping

The web scraping process can be broken down into more detailed steps:

Identification of Target URL: The first step involves identifying the URL or series of URLs from which data needs

to be extracted. This can often involve dynamic construction of URLs especially if the data spans multiple pages

or categories.

Sending Requests: Using tools like Requests in Python, a web scraper sends a request to the server hosting the

website. This is akin to what happens when you manually click a link or type a web address; the server then

responds with the data, typically in HTML format.

Data Parsing: Once the HTML content of the webpage is retrieved, parsing libraries such as BeautifulSoup are

used to parse the HTML. This step transforms the raw HTML content into a structured format that is easier to

navigate and extract data from. This involves isolating the parts of the HTML document that contain the relevant

data.

Data Extraction: After parsing the document, the next step involves extracting the actual data. This can include

anything from product details on e-commerce sites to property listings on real estate platforms. The data must

be meticulously extracted to ensure accuracy and completeness.

Data Storage: The extracted data is then formatted and stored in a database, file, or a spreadsheet. This struc-

tured data is now ready for analysis or integration into data-driven applications.

Automation and Scheduling: For ongoing data collection, web scraping processes are often automated and

scheduled to run at specific intervals. This ensures that the collected data is up-to-date and relevant.

Data Cleaning: Often, the extracted data may contain inconsistencies, errors, or duplicates. Data cleaning pro-

cesses are applied to ensure the quality of the data before it's used for any analysis or business application.

28

Technologies and Tools

• HTTP Libraries: Tools like Requests for Python are used for sending HTTP requests to servers.

• HTML/XML Parsers: Libraries such as BeautifulSoup, lxml, and HTMLParser are used to parse and extract

data from HTML/XML documents.

• Browser Automation: Tools like Selenium or Puppeteer are used for websites that require interaction or

render content dynamically using JavaScript.

• Data Management Tools: Once data is scraped, it is often managed using databases like MySQL, Post-

greSQL, or MongoDB, or even in simpler formats like CSV or JSON.

Figure 2: The process of web scraping

29

Detailed Overview of Technologies Used in Web Scraping

In the realm of web scraping, a variety of technologies and tools are employed to effectively gather data from the

web. This overview details the primary technologies used, highlighting their functions, use cases, and how they

integrate into the data collection and management process.

HTTP Libraries

HTTP libraries are fundamental components in the toolkit of web scraping, acting as the backbone for data ex-

change on the web. They handle the protocol level interactions necessary for sending and receiving HTTP re-

quests and responses. In the context of web scraping, these libraries are utilized to programmatically request the

HTML or XML data from web servers, mimicking the behavior that occurs when a user visits a website through a

browser.

Understanding HTTP Libraries

HTTP (Hypertext Transfer Protocol) is the foundation of data communication for the World Wide Web, where

hypertext documents include hyperlinks to other resources that users can easily access. HTTP libraries manage

the sending of request messages, including method requests (GET, POST, DELETE, PUT), and handle the responses

from servers.

GET Requests: Used to request data from a specified resource. In web scraping, GET requests are commonly used

to retrieve the HTML content of a webpage.

POST Requests: Used to send data to a server to create/update a resource. This is often used in web scraping

when interacting with forms or log-in pages.

Features of HTTP Libraries

Handling Sessions: Advanced HTTP libraries like Requests manage sessions, making it easier to persist parameters

across requests. For instance, a session might involve logging into a website and maintaining that login state

across multiple requests.

Cookies: HTTP libraries handle cookies automatically, allowing scripts to interact with websites that require

cookie-based authentication.

Redirection: Automatically handles HTTP redirections, which is when a requested URL points to another URL.

This feature is crucial for maintaining the flow of data retrieval without manual intervention.

Timeouts: Supports setting timeouts to ensure that requests do not hang indefinitely, which can improve the

reliability and efficiency of web scraping scripts.

Headers Customization: Allows custom headers to be attached to requests, which can be used to simulate dif-

ferent types of browsers or custom API needs.

SSL Verification: Capable of handling secure connections, ensuring data is encrypted over the network, and op-

tionally allowing for the verification of SSL certificates.

Role of HTTP Libraries in Web Scraping

In web scraping, HTTP libraries are not just tools for sending and receiving data; they are the intermediaries that

translate a scraper’s needs into HTTP protocol commands, manage data transmission, and handle network

30

protocols. This includes constructing requests, managing persistent connections, and parsing responses from the

web servers.

Efficiency: They optimize the process of sending requests and parsing responses, which can be crucial when deal-

ing with high-volume data scraping.

Flexibility: HTTP libraries can be extended with middleware or plugins to handle custom scenarios encountered

in web scraping, such as rate limiting or domain-specific data parsing rules.

Requests for Python: One of the most popular HTTP libraries, Requests1 is renowned for its simplicity and ease

of use. It allows for sending HTTP/1.1 requests extremely easily, without the need to manually add query strings

to your URLs, or to form-encode your POST data.

The Requests library in Python, specifically, is lauded for its user-friendly interface that abstracts away most of

the complexities involved with making HTTP requests. It makes HTTP methods directly accessible through simple

functions, which greatly simplifies the process of coding web scraping scripts, especially for beginners.

HTML/XML Parsers

HTML/XML parsers are indispensable tools in web scraping, designed to interpret and extract data from HTML

and XML documents. These tools are crucial for turning unstructured web data into a structured format that can

be manipulated and analyzed programmatically. Below is an overview of the most commonly used HTML/XML

parsers in Python, which are essential for efficient data extraction in web scraping projects.

Overview of Popular HTML/XML Parsers

BeautifulSoup: This Python library is designed for quick turnaround projects like screen-scraping. What makes

BeautifulSoup a popular choice is its ability to parse anything you give it and build a parse tree from it. It auto-

matically converts incoming documents to Unicode and outgoing documents to UTF-8. It's flexible and forgiving;

it can handle different markup types and build a parse tree that makes intuitive sense.

lxml: Known for its efficiency and speed, lxml is a comprehensive library that handles both XML and HTML data

very well. It provides the feature completeness of these libraries with the simplicity of a Pythonic API, which

makes it a powerful tool for complex web scraping tasks that require quick execution and handling a large volume

of data.

HTMLParser: This is a built-in Python library that offers a straightforward method of parsing HTML documents. It

is especially suited for projects where simplicity and speed are necessary, and external dependencies need to be

minimized. It provides basic functionalities that are enough for many scraping tasks, particularly when scraping

simpler HTML pages.

Functionality of HTML/XML Parsers

These parsers provide several functionalities that are essential for web scraping:

1 https://pypi.org/project/requests/

https://pypi.org/project/requests/

31

Tree Traversal: After parsing a document, these libraries provide numerous ways to navigate, search, and modify

the parse tree. This is particularly useful for extracting specific data from deep within a complex structure of

HTML or XML.

Data Extraction: They allow for precise data extraction using tags, attributes, or text content, making it easier to

pull out exact pieces of information from a web page.

Error Tolerance: HTML/XML parsers are typically built to be tolerant of malformed markup and are capable of

making sense of the intended structure even when not strictly compliant with HTML/XML standards.

Common Use Cases

Web Data Extraction: From pulling out data such as headlines, links, and text blocks to extracting and transform-

ing data from online catalogs, parsers can handle a wide range of web scraping needs.

Data Cleansing: After initial data extraction, these tools can also be used to clean and organize raw web data,

preparing it for analysis or storage.

Legacy System Integration: For older websites or systems that do not offer modern API access, HTML/XML

parsers can be used to automate data extraction, enabling integration with newer systems.

Role in Web Scraping

HTML/XML parsers are more than just tools for pulling data out of web documents—they transform the web

scraping process by adding structure to the data being extracted and by offering methods to handle web data at

scale. While BeautifulSoup offers ease of use and flexibility, lxml brings performance and extensive functionality,

and HTMLParser offers a lightweight, dependency-free option. Depending on the specific needs of a web scraping

project, such as the complexity of the documents or the speed required, the choice of parser can significantly

affect both the performance and ease of scraping.

In summary, HTML/XML parsers are critical for any web scraping operation as they provide the necessary func-

tions to extract and manipulate web data efficiently, making them a cornerstone of any data extraction or web

automation project.

Browser Automation

Selenium: Selenium automates browsers. Primarily it is for automating web applications for testing purposes,

but is certainly not limited to just that. Boring web-based administration tasks can also be automated as well.

Puppeteer: Puppeteer is a Node library which provides a high-level API to control headless Chrome or Chromium

over the DevTools Protocol. It is often used for automated testing of web applications, scraping web pages, and

generating pre-rendered content from SPAs (Single Page Applications).

Functionality: These tools simulate user interactions with a web browser, allowing for the scraping of dynamic

content generated by JavaScript scripts and Ajax calls.

Common Use Cases: Scraping sites that load their data with JavaScript, performing tasks that require login and

navigation, and automating form submissions.

32

Data Management Tools for Web Scraping

Once data is successfully scraped from the web, the next critical step involves managing that data efficiently.

Effective data management ensures that the data is not only stored securely but is also readily accessible for

analysis and integration into various applications. This chapter will explore the range of data management tools

and formats that are pivotal in the handling of data post-scraping, their functionalities, common use cases, and

how they integrate into the broader web scraping workflow.

Categorization and Explanation of Database Systems Used in Web Scraping

Databases play a pivotal role in the storage, management, and retrieval of data collected through web scraping.

Based on their structure and data handling capabilities, they are broadly categorized into two types: SQL Data-

bases and NoSQL Databases. Each type serves different needs depending on the nature of the data and the ap-

plication requirements.

SQL Databases

SQL databases, also known as relational databases, use a structured query language (SQL) for defining and ma-

nipulating data. This model is based on data stored in tables and the relationships among those tables. SQL da-

tabases are particularly effective for scenarios where integrity and data consistency are crucial.

1. MySQL

Description: MySQL is one of the most popular relational database management systems. Known for its high

performance, reliability, and ease of use, MySQL is used in a wide range of applications, from small to large-scale

web applications.

Functionality: Provides robust data security, supports complex queries, efficient data management, and has

broad compatibility with major hosting providers.

Use Cases: Often used for web applications requiring a reliable database solution without the necessity for ex-

tensive scaling in terms of concurrent writes and reads.

2. PostgreSQL

Figure 3: SQL vs NoSQL databases.

33

Description: PostgreSQL is a powerful, open-source object-relational database system. It extends the SQL lan-

guage with advanced features that enable the storage and scaling of complicated data workloads.

Functionality: Supports advanced data types and performance optimization features like indexing, full-text

search, and concurrency without read locks. It is highly extensible, allowing users to define their own data types,

build out custom functions, and even write code from different programming languages without recompiling the

database.

Use Cases: Suitable for applications that require frequent read and write operations, complex queries, and high

concurrency, such as dynamic web applications and enterprise-level systems.

NoSQL Databases

NoSQL databases are designed to provide high operational speed and flexibility with regard to the data models.

They are particularly useful for handling large volumes of structured, semi-structured, and unstructured data.

NoSQL databases do not use a standard SQL query language and often provide more scalable performance.

1. MongoDB

Description: MongoDB is a document-oriented NoSQL database that stores data in JSON-like documents with

dynamic schemas (in the BSON format), making the integration of data in certain types of applications easier and

faster.

Functionality: Offers high flexibility with its schema-less architecture, making it suitable for storing unstructured

and semi-structured data. It supports ad-hoc queries, indexing, and real-time aggregation, providing a rich set of

features to handle diverse data types effectively.

Use Cases: Ideal for applications that require rapid development, frequent application iterations, and where data

structures can change over time. Commonly used in big data and real-time web applications.

Summary

Choosing between SQL and NoSQL databases typically depends on the specific requirements of the application

and the nature of the data being handled:

• SQL Databases are preferred when dealing with complex queries and relationships where transactional

integrity is important.

• NoSQL Databases are chosen for their flexibility with data schemas and efficiency in handling large vol-

umes and varieties of data, making them suitable for big data applications, real-time analytics, and han-

dling rapidly changing designs.

34

Functionality of Data Management Tools

These tools and formats are crucial for the following reasons:

• Storage: They provide systems to store large volumes of data securely.

• Management: Offer features to update, delete, and manage data efficiently.

• Retrieval: Enable quick and flexible retrieval of data, which is essential for analysis and reporting.

Common Use Cases

Long-term Data Analysis: Databases are ideal for projects where data needs to be stored long-term for complex

analysis and historical data tracking.

Data Sharing: CSV and JSON formats are frequently used for data interchange between different programs or

frameworks, making them suitable for projects where data needs to be exported and used in different environ-

ments.

Real-time Applications: NoSQL databases like MongoDB are used in applications that require real-time data ac-

cess and updates.

Integration and Workflow

In a comprehensive web scraping setup, the workflow typically involves several stages:

Data Acquisition: Data is retrieved from the web using HTTP libraries like Requests.

Data Parsing and Extraction: Libraries like BeautifulSoup or lxml are used to parse and extract useful information

from the HTML/XML data.

Dynamic Content Handling: For dynamic content, tools such as Selenium or Puppeteer are employed to interact

with the webpage.

Data Cleaning: Before storing, data often needs to be cleaned and transformed to ensure quality.

Data Storage: Finally, the cleaned data is stored using suitable data management tools. For instance, structured

data may be stored in SQL databases, while JSON from dynamic content scraping might be stored directly in

MongoDB.

This integration not only facilitates the smooth transition of data through different stages of processing but also

ensures that the data remains consistent, secure, and accessible throughout the lifecycle of the web scraping

project. Effective data management is crucial for leveraging the full potential of scraped data, allowing businesses

and analysts to generate actionable insights and drive decision-making.

Integration and Workflow

In a typical web scraping setup, an HTTP library like Requests is used to retrieve web pages which are then passed

to a parsing library such as BeautifulSoup. The extracted data might be interactively processed with Selenium or

Puppeteer if dynamic content is involved. Finally, the data is cleaned and stored using appropriate data manage-

ment tools.

35

Data Formats for Web Scraping

Data formats are essential for storing, transferring, and processing data extracted through web scraping. The

choice of format can significantly influence the ease of data manipulation and integration into various applica-

tions. While CSV and JSON are commonly used, there are several other formats that cater to specific needs and

complexities of data projects.

Commonly Used Data Formats

1. CSV (Comma-Separated Values)

Description: CSV is a simple file format used to store tabular data, such as spreadsheets or databases. Each line

of the file corresponds to a data record, with commas separating each field within the record.

Functionality: CSV files are straightforward and supported by most data processing applications, making them a

universal choice for data exchange.

Use Cases: Ideal for storing data with a simple, flat structure without nested fields. Commonly used in data im-

port/export scenarios, lightweight analytics, and situations where readability is important.

2. JSON (JavaScript Object Notation)

Description: JSON is a text-based format with "objects" structured as key/value pairs and arrays. It is highly read-

able and commonly used in web development.

Functionality: JSON’s structure mirrors many programming languages’ native data structures, which simplifies

data interchange in web technologies.

Use Cases: Perfect for data with nested structures and for use in web applications, APIs, and configurations where

interoperability between platforms and languages is needed.

Additional Data Formats

3. XML (eXtensible Markup Language)

Description: XML is a markup language that defines a set of rules for encoding documents in a format that is both

human-readable and machine-readable.

Functionality: Like HTML, XML uses tags to define elements but is designed to be self-descriptive. XML files are

highly structured and can support complex data structures with nested and repeated elements.

Use Cases: Commonly used in web services (SOAP), rich internet applications, and situations where data needs

extensive structure and metadata support.

4. YAML (YAML Ain't Markup Language)

Description: YAML is a human-readable data serialization format that supports all the primary data types used in

popular programming languages.

Functionality: It uses a more readable format than JSON and is particularly good for configuration files. YAML

allows complex data structures to be represented hierarchically.

Use Cases: Ideal for configuration files, data storage, and inter-process messaging where human readability and

data complexity handling are paramount.

36

5. Parquet

Description: Parquet is a columnar storage file format available to any project in the Hadoop ecosystem, regard-

less of the choice of data processing framework, data model, or programming language.

Functionality: It is optimized for use with complex nested data structures and performs well for data compression

and encoding schemes, which allows efficient data storage and retrieval.

Use Cases: Best suited for heavy read-write operations and big data processing tasks typically found in data sci-

ence and machine learning projects.

6. Protocol Buffers

Description: Developed by Google, Protocol Buffers are a language-neutral, platform-neutral, extensible way of

serializing structured data for use in communications protocols, data storage, and more.

Functionality: Known for their efficiency and smaller size, they are an alternative to JSON or XML and require a

schema to be defined using which the data is encoded and decoded.

Use Cases: Ideal for developing programs that communicate with servers and for data storage where quick and

compact data transmission is needed.

37

Challenges in Web Scraping

While web scraping is a powerful tool, it comes with its challenges. Websites often change their layout and coding

structures, which can break the scraping setup. Furthermore, ethical and legal considerations must be taken into

account to ensure compliance with data privacy laws and website terms of service. Scrapers must be designed to

respect robots.txt files and avoid overwhelming website servers with high-frequency requests. Some more chal-

lenges are the following:

Data Quality: Extracted data can sometimes be messy or incomplete, requiring significant cleaning and pro-

cessing to become useful.

Complex Data Structures: Web pages often have nested and complex data structures that can be challenging to

navigate and parse effectively.

Handling JavaScript: Many modern websites use JavaScript to load data dynamically. Tools that can execute Ja-

vaScript and handle AJAX calls are necessary for these cases.

CAPTCHA Blockers: CAPTCHAs are mechanisms designed to determine whether the user is human and are com-

monly used on websites to prevent automated data scraping. They pose a significant hurdle as they require solv-

ing tasks that are typically easy for humans but difficult for automated scripts.

IP Blockers: Many websites monitor the IP addresses from which they receive requests. If a single IP address

makes too many requests within a short period, it can be blocked from accessing the site. This is done to prevent

overload on the server and to thwart scraping efforts.

Figure 4: Challenges in web scraping.

38

Alterations in Website Structure: Websites frequently update their layout and underlying HTML structure, which

can disrupt web scraping scripts. Scrapers that were functional one day can stop working the next if the targeted

elements of the webpage change or are removed.

Robots.txt: This is a file used by websites to communicate with web crawlers and other web robots. The file tells

the robot which areas of the website should not be processed or scanned. Respecting "robots.txt" is crucial for

ethical web scraping practices.

Dynamic Content: Web pages that load content dynamically with JavaScript present another layer of complexity.

Traditional scraping tools that simply download the HTML of a page will not capture content loaded via JavaScript,

necessitating the use of more advanced tools like Selenium or Puppeteer, which can simulate a real user’s inter-

action with the browser.

Legal and Ethical Considerations: It is crucial to ensure that web scraping activities comply with legal regulations

and respect the data privacy and usage policies specified by websites.

Integrating Challenges into the Context of Web Scraping

These challenges are important considerations in the design and execution of web scraping tasks:

Technical Adaptations: To effectively manage CAPTCHA, dynamic content, and changes in website structure, so-

phisticated scraping setups using headless browsers or integrating AI to solve CAPTCHAs may be required.

Ethical Web Scraping: Respecting "robots.txt" and ensuring that scraping activities do not harm the website's

normal operation or violate privacy laws is essential for maintaining compliance and protecting the scraper’s legal

standing.

Mitigation Strategies for IP Blocking: Using proxy servers or a network of rotating IPs can help mask the scraping

activity, reducing the risk of being blocked by the website's security measures.

Addressing these challenges requires a balanced approach that considers both the technical hurdles and the

ethical implications of web scraping. By understanding and navigating these challenges, developers can design

more resilient, effective, and compliant web scraping solutions.

Application of Web Scraping in Real Estate

Web scraping has become a transformative tool in the real estate industry, revolutionizing how data is collected,

analyzed, and utilized for market insights and decision-making. This section of the thesis explores the various

applications of web scraping in real estate, focusing on the types of data collected and their impact on the indus-

try.

The real estate market thrives on information. The accuracy, accessibility, and timeliness of this information can

significantly affect the dynamics of the market. Web scraping facilitates the extraction of vast amounts of data

from multiple sources, such as property listing sites, auction sites, and real estate marketplaces. This process not

only enhances the breadth and depth of data available but also increases its reliability and timeliness. The key

data points collected include:

39

Data Collection in Real Estate

The real estate market thrives on information. The accuracy, accessibility, and timeliness of this information can

significantly affect the dynamics of the market. Web scraping facilitates the extraction of vast amounts of data

from multiple sources, such as property listing sites, auction sites, and real estate marketplaces. This process not

only enhances the breadth and depth of data available but also increases its reliability and timeliness. The key

data points collected include:

Property Prices: Price data is fundamental in real estate as it directly influences investment decisions and market

analyses. Web scraping automates the collection of updated property prices across different regions, enabling

stakeholders to track market trends, assess property valuations, and perform comparative market analyses.

Property Descriptions and Features: Detailed descriptions and features provide insights into the usability and

appeal of properties. Scraping these details helps in compiling comprehensive profiles of properties, including

size, number of rooms, amenities, and unique attributes. This data is crucial for buyers, real estate agents, and

analysts to understand property characteristics that influence purchasing decisions.

Geographical Information: Location is a critical factor in real estate, often dictating property value more than any

other feature. Geographical data scraped from online sources is used for geospatial analysis, which helps in un-

derstanding property value distribution, identifying regional market trends, and planning for urban development.

Images: Images play a pivotal role in real estate listings as they provide a visual representation of the property,

significantly impacting buyer interest and perceptions. Scraping images allows for the analysis of property condi-

tions, architectural styles, and presentation quality. Advanced image analysis can further aid in automated valu-

ation models (AVMs) where property values are estimated based on visual cues.

Impact on the Real Estate Industry

The integration of web scraping in real estate has led to several transformative impacts:

Enhanced Market Transparency: With more data readily available, the market becomes more transparent, allow-

ing buyers and sellers to make more informed decisions.

Operational Efficiency: Automation of data collection reduces the manpower and time required, increasing op-

erational efficiency for real estate businesses.

Advanced Analytics and Predictive Modeling: The availability of large, detailed datasets enables more sophisti-

cated analyses, including predictive modeling of property prices and market demand forecasting.

Improved Customer Engagement: Real estate platforms can provide richer, more detailed listings that enhance

customer engagement and satisfaction.

In conclusion, web scraping is not just a technical tool but a strategic asset in the real estate sector. It empowers

stakeholders with data-driven insights that drive better decision-making and fosters a more dynamic and com-

petitive market environment. As technology evolves, the scope and accuracy of web scraping will continue to

expand, further enhancing its value to the real estate industry. This thesis section underscores the critical role of

web scraping in shaping the future of real estate analytics and market strategy.

40

Legal and Ethical Considerations:

The legality of web scraping varies by country and can depend on several factors, such as the nature of the data

collected and the way it is used. This subsection explores key legal frameworks such as the Computer Fraud and

Abuse Act (CFAA) in the U.S. and similar regulations in the EU, particularly under the GDPR. Ethical considerations

are also discussed, emphasizing respect for website terms of service, the avoidance of server overloads, and the

anonymization of collected data to protect privacy.

41

Machine Learning in Real Estate

Application of Machine Learning in Real Estate

Machine learning (ML) has become an indispensable technology in the real estate sector, primarily due to its

ability to process and analyze vast datasets quickly and accurately. ML has emerged as a transformative force in

the real estate sector, offering unprecedented insights and capabilities that were previously unattainable with

traditional analytical methods. By leveraging ML, industry professionals can now automate complex processes,

enhance property listings, and conduct predictive market analyses with greater precision and efficiency. This sec-

tion explores the pivotal applications of machine learning in real estate, focusing on image recognition and pre-

dictive modeling, and examines their profound impact on the industry.

1. Image Recognition

Image recognition has fundamentally transformed the real estate industry by enhancing the way properties are

visualized, analyzed, and evaluated on digital platforms. Leveraging sophisticated machine learning models, es-

pecially Convolutional Neural Networks (CNNs), image recognition technologies enable the automatic extraction

and categorization of visual information from property photos. This capability not only streamlines the listing

process but also significantly enriches the data quality presented to potential buyers.

Feature Detection: ML algorithms can identify and classify a wide range of features from property images, such

as room types, landscaping attributes, and the presence of luxury amenities like swimming pools or elaborate

interiors. This automated classification helps in enriching property listings with detailed, accurate descriptors that

improve searchability and match potential buyers’ preferences.

Condition Assessment: Beyond basic feature detection, image recognition can assess the condition of a property

by analyzing signs of wear, the age of installations, and overall maintenance. This capability enables more accu-

rate valuations and helps buyers visualize potential upkeep costs.

Theoretical and Mathematical Background

Convolutional Neural Networks (CNNs):

CNNs are a class of deep neural networks that are particularly effective for analyzing visual imagery. They are

structured to recognize patterns from pixel data of images, learning hierarchical representations.

Architecture: A typical CNN architecture consists of an input layer, multiple convolutional layers, pooling layers,

fully connected layers, and an output layer. The convolutional layers apply various filters to the input to create

feature maps that capture essential visual features like edges, textures, and more complex patterns in deeper

layers.

Mathematical Operation:

• Convolution Operation: In the convolutional layers, the neuron's response at a certain position is calcu-

lated as a dot product of the neuron's weights with the input volume within a receptive field. Mathemat-

ically, it is represented as:

𝑓(𝑥, 𝑦) =∑∑𝐼

𝑛𝑚

(𝑥 +𝑚, 𝑦 + 𝑛) ⋅ 𝐾(𝑚, 𝑛)

where 𝑓(𝑥, 𝑦) is the output at position (x, y),𝐼is the input image, and K is the kernel/filter matrix.

42

Pooling: This operation reduces the dimensionality of each feature map but retains the most important infor-

mation. Common pooling methods include max pooling and average pooling.

Key Algorithms and Their Applications in Real Estate Image Analysis

1. Feature Detection with Convolutional Neural Networks (CNNs)

Objective:

To automate the detection and classification of various architectural and design features from property images,

such as room types and specific amenities.

Theoretical and Mathematical Background:

• Convolutional Neural Networks (CNNs) are a specialized kind of neural network for processing data that

has a grid-like topology, such as images. CNNs employ a mathematical operation called convolution in at

least one of their layers.

• Convolutional Layer: The core building block of a CNN. The layer's parameters consist of a set of learnable

filters (or kernels), which have a small receptive field but extend through the full depth of the input vol-

ume. During the forward pass, each filter is convolved across the width and height of the input volume,

computing the dot product between the filter and input, producing a 2D activation map of that filter. As

a result, the network learns filters that activate when they see specific types of features at some spatial

position in the input.

𝑓𝑖,𝑗 = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 (∑∑𝐼𝑖+𝑚,𝑗+𝑛

𝑛𝑚

⋅ 𝐾𝑚,𝑛 + 𝑏)

 Where:

 I is the input image,

 K is the kernel/filter,

 b is the bias,

 fi,j is the feature map.

ReLU Layer: This layer applies the non-linear function max(0,x) element-wise. It introduces non-linearity to the

system, allowing the model to learn more complex functions.

Pooling Layer: This layer performs a downsampling operation along the spatial dimensions (width, height), re-

sulting in spatial invariance to input distortions.

Process:

Trained CNN models scan images and utilize learned filters to identify various features such as shapes, colors, and

patterns. Features detected include room types, presence of amenities like swimming pools, and interior design

styles. These features are then classified into predefined categories (e.g., bedrooms, bathrooms).

2. Condition Assessment using Image Analysis

Objective:

43

To evaluate the physical condition of a property by analyzing visual cues in images that indicate wear, age, or

maintenance level.

Theoretical and Mathematical Background:

Advanced CNNs or other image processing algorithms are employed to analyze textural and color features in

property images. These algorithms might use additional layers or techniques like:

• Edge Detection: Using filters that identify edges and contours, crucial for spotting cracks or wear.

• Texture Analysis: Leveraging textural patterns identified by CNNs can help in assessing the condition of

surfaces and installations.

Process:

CNNs analyze images to detect signs of aging or wear such as cracks, damp spots, or peeling paint. Textural and

color changes are quantified, and a condition score is computed, which aids in accurate property valuation.

Practical Implementation

Training Data: A substantial dataset of real estate images labeled with both features and conditions is essential.

This dataset must represent a wide variety of property types and conditions to train effective models.

Model Training: CNNs are trained using backpropagation and gradient descent algorithms. These models itera-

tively adjust their weights based on the error rate of outputs compared to the training labels, minimizing the

prediction error.

Integration into Platforms: Once trained, these models are integrated into real estate platforms. They automat-

ically process new property images uploaded by sellers, providing instant insights into the features and condition

of the property.

The application of CNNs in real estate image analysis represents a significant advancement in automating prop-

erty evaluation. By accurately identifying features and assessing conditions through learned models, real estate

platforms can offer more detailed and accurate information, enhancing both seller and buyer experiences. The

mathematical grounding of these models ensures that they can learn to recognize and generalize from the train-

ing data provided, making them robust tools in the digital transformation of real estate assessments.

Challenges and Considerations

Data Variability: Real estate images can vary greatly in terms of angle, lighting, and quality, which can affect the

accuracy of feature detection and condition assessment.

Model Generalization: Models trained on data from specific regions or types of properties might not perform

well on others unless adequately generalized.

Ethical Considerations: Ensuring that the automated assessments are transparent and do not inadvertently bias

against certain property types or locations.

Image recognition via machine learning, particularly through the use of CNNs, represents a significant advance-

ment in the way real estate properties are presented and analyzed. By automating the extraction of detailed,

accurate visual information, these technologies not only enhance the appeal and transparency of real estate list-

ings but also provide valuable insights that aid in the decision-making process for buyers and sellers alike.

44

Predictive Modeling in Real Estate

Predictive modeling in real estate leverages statistical and machine learning techniques to analyze historical data

and predict future outcomes. These models are built upon foundational principles from statistics, probability, and

computer science. Predictive modeling uses historical data and machine learning algorithms to forecast future

trends in the real estate market. These models are crucial for both macro and micro-level decision-making pro-

cesses in real estate.

Price Prediction: By training on variables such as historical prices, location demographics, market conditions, and

property features, ML models can predict future property prices with significant accuracy. This is invaluable for

investors looking to buy at the right price and sell for the best possible return.

Market Demand Forecasting: Machine learning models analyze trends and patterns to forecast future market

behaviors. This includes predicting up-and-coming neighborhoods, changes in consumer demand, and potential

market disruptions. Such insights help real estate professionals and policymakers in strategic planning and re-

source allocation.

1. Regression Analysis

Regression models are fundamental in predictive modeling for price prediction. These models establish a rela-

tionship between a dependent variable (property prices) and one or more independent variables (such as loca-

tion, demographics, and property features).

• Linear Regression: The simplest form of regression, useful for predicting property prices based on linear

relationships. The model assumes a straight-line relationship between the dependent and independent

variables.

 𝑌 = 𝛽0 + 𝛽1 ⋅ 𝑋1 + 𝛽2 ⋅ 𝑋2 + … + 𝛽𝑛 ⋅ 𝑋𝑛 + 𝜀

Where:

• Y is the property price.

• β0 is the y-intercept.

• β1,β2,…,βn are the coefficients which represent the effect of each variable.

• X1,X2,…,Xn are the independent variables.

• ϵ is the error term.

• Multivariate Regression: Multivariate regression, an extension of simple linear regression, involves pre-

dicting a dependent variable using multiple independent variables. This statistical technique is used to

model and analyze relationships where the outcome variable is influenced by more than one predictor

variable. It is especially useful in scenarios where various factors contribute to the outcome, such as in

real estate, where property prices can be influenced by location, size, number of rooms, age, and many

other factors.

Mathematical model

The general form of the multivariate regression model can be expressed as:

𝑌 = 𝛽0 + 𝛽1 ⋅ 𝑋1 + 𝛽2 ⋅ 𝑋2 + … + 𝛽𝑛 ⋅ 𝑋𝑛 + 𝜀

45

Where:

• Y is the dependent variable (e.g., property price).

• β0 is the intercept term, representing the expected mean value of Y when all independent variables X

are equal to zero.

• β1,β2,…,βn are the coefficients of the model. Each coefficient represents the change in the dependent

variable for one unit of change in the corresponding independent variable, holding all other variables

constant.

• X1,X2,…,Xn are the independent variables (e.g., square footage, number of bedrooms, age of the prop-

erty, proximity to the city center, etc.).

• ϵ is the error term, representing the residual effect unexplained by the independent variables.

Estimation of Coefficients

The coefficients βi are typically estimated using the method of least squares, which minimizes the sum of the

squared residuals, providing the best linear unbiased estimators under the Gauss-Markov theorem, assuming the

usual OLS assumptions (no perfect multicollinearity, exogeneity, homoscedasticity, and normality of errors) are

met.

∑(𝑌𝑖 − (𝛽0 + 𝛽1 ⋅ 𝑋𝑖1 + 𝛽2 ⋅ 𝑋𝑖2 + … + 𝛽𝑝 ⋅ 𝑋𝑖𝑝))
2

𝑛

𝑖=1

Where:

Yi is the observed value of the dependent variable for the i-th observation.

Xi1,Xi2,…,Xin are the observed values of the independent variables for the ii-th observation.

Use in Real Estate

In real estate applications, multivariate regression can provide valuable insights into how different features con-

tribute to the value of a property. For instance:

• Understanding which features (like a renovated kitchen or a garage) add the most value to a home.

• Analyzing regional pricing trends by including location-specific variables.

• Adjusting pricing strategies based on the predictive influence of specific market conditions or property

attributes.

Challenges

While powerful, multivariate regression faces several challenges:

Multicollinearity: When independent variables are highly correlated, it can be difficult to determine the individ-

ual effect of each variable on the dependent variable.

Overfitting: Including too many variables without sufficient data can lead to a model that fits the training data

too closely but performs poorly on unseen data.

46

Interpretability: As more variables are included, the model can become more difficult to interpret, especially in

terms of understanding the effect of each variable while holding others constant.

2. Decision Trees and Random Forests

These are non-linear models that are particularly useful for handling categorical data and interactions between

multiple variables in real estate data.

Decision Tree: Splits the data into subsets based on the value of the input features. The splits are chosen to

minimize the heterogeneity of the subsets.

Information Gain = Entropy (Parent) − ∑ (
𝑁𝑐ℎ𝑖𝑙𝑑

𝑁 ⋅ Entropy (Child)
)

𝑐ℎ𝑖𝑙𝑑

Random Forest: An ensemble method that uses multiple decision trees to reduce the risk of overfitting. It com-

bines the predictions from multiple trees to produce a more accurate prediction.

3. Time Series Analysis

For forecasting market demand and identifying trends, time series models like ARIMA (Autoregressive Integrated

Moving Average) are used.

• ARIMA Model: This model is used for analyzing and forecasting time series data, allowing for data trends,

seasonality, and patterns.

𝑌𝑡 = 𝛼 + 𝛽1 ⋅ 𝑌𝑡−1 + 𝛽2 ⋅ 𝑌𝑡−2 + … + 𝛽𝑝 ⋅ 𝑌𝑡−𝑝 + 𝜀𝑡

Where Yt is the value at time t, and ϵt is the error at time t.

Challenges in Implementing Machine Learning

While machine learning offers numerous benefits to the real estate sector, several challenges need to be ad-

dressed to maximize its potential:

Data Quality and Availability: The effectiveness of any ML model is heavily dependent on the quality and granu-

larity of the data fed into it. In real estate, inconsistent data entries, missing values, and limited access to com-

prehensive datasets can impede the accuracy of predictive models.

Handling High Dimensionality: Real estate datasets often contain a high number of variables, from basic property

characteristics to more nuanced features like neighborhood crime rates or school district quality. Managing such

high dimensionality without overfitting the model requires sophisticated feature selection and regularization

techniques.

Bias and Fairness: Machine learning models can inadvertently perpetuate or amplify biases present in the histor-

ical data, leading to unfair outcomes for certain demographic groups. Ensuring models are fair and unbiased is

crucial for ethical AI practices in real estate.

47

Image Similarity Methods

Image similarity on real estate properties

Image similarity methods leverage advanced computational techniques to analyze visual data and identify simi-

larities between images. In the context of real estate, these methods are instrumental in detecting duplicate

listings, comparing property features, and enhancing search functionalities by grouping similar properties. This

section delves into the theoretical and mathematical foundations of image similarity techniques, exploring their

application in real estate for efficient and accurate property analysis.

Image similarity methods are integral to modern computer vision applications, especially in sectors like real estate

where visual content plays a pivotal role in transactions. These methods process and analyze visual data to iden-

tify patterns, similarities, and differences between images. By doing so, they provide valuable insights that can

automate and enhance various aspects of real estate operations. Image similarity assessment in real estate in-

volves comparing visual content of property images to determine how similar they are to one another. This can

be used to identify duplicates, suggest similar properties, and even categorize listings based on visual features

such as architecture style, interior design, and landscaping.

Key Techniques and Their Mathematical Foundations

1. Feature Extraction

Feature extraction is one of the fundamental techniques used in image similarity. It involves detecting keypoints

(distinctive features) in images and finding matches between them. This is the process of identifying key elements

within images that are significant for analysis and comparison. Feature extraction is a critical step in image pro-

cessing and computer vision, particularly in the context of image similarity and object recognition. It involves

isolating important visual cues within an image that are distinctive and robust against various changes such as

viewpoint, scale, and illumination.

SIFT (Scale-Invariant Feature Transform):

One of the most effective and widely used methods for feature extraction is the Scale-Invariant Feature Transform

(SIFT), which is particularly adept at identifying and describing local features in images. SIFT detects and describes

local features in images. The algorithm is robust to changes in scale, noise, and illumination. SIFT is designed to

extract distinctive keypoints that are invariant to image scale and rotation, and partially invariant to changes in

illumination and 3D camera viewpoint. These features are then used to perform reliable matching between dif-

ferent views of an object or scene.

Scale-Space Extrema Detection: SIFT begins by constructing a scale space, which is essentially a function,

𝐿(𝑥, 𝑦, 𝜎), that represents the image at various scales. This is achieved by convolving the image 𝐼(𝑥, 𝑦)with a

Gaussian blur 𝐺(𝑥, 𝑦, 𝜎)at different values of σ:

𝐿(𝑥, 𝑦, 𝜎) = 𝐺(𝑥, 𝑦, 𝜎) ⋅ 𝐼(𝑥, 𝑦)

Where L is the scale-space of an image I, G is the Gaussian Blur function, σ is the scale variable, and ∗ denotes

convolution. Keypoints are identified at maxima and minima of the difference-of-Gaussian function applied in

scale-space.

48

The figure (figure 5) is a visual representation of the Scale-Invariant Feature Transform (SIFT) technique applied

to two distinct images to identify and match key feature points. Left Image features an object (a toy truck) from

one perspective. Right Image shows the same object from a different angle and context, potentially a magazine

page or an advertisement. Highlighted with yellow boxes on both images, these points represent distinctive fea-

tures detected by the SIFT algorithm. These features are chosen because they are unique and can be easily rec-

ognized in both images despite changes in scale, orientation, or illumination. The lines connecting the two images

illustrate the matching feature points between them. Each line represents a successful match based on the simi-

larity of the descriptors. Red lines could indicate matches that involve more significant transformations or dis-

crepancies, while green lines might represent more straightforward or confident matches.

In real estate, SIFT can be used to match images of properties from different sources to identify duplicate listings

or to link multiple photographs of the same property across various platforms. Additionally, these features can

help in categorizing properties based on visual styles or detecting changes in property conditions over time.

SIFT provides a robust method for extracting and describing features in images, which are crucial for tasks involv-

ing image similarity, object recognition, and classification. Its ability to detect keypoints that are invariant to com-

mon image transformations makes it invaluable in both academic research and practical applications like real

estate image analysis

SURF (Speeded Up Robust Features):

Similar to SIFT but faster, using a box filter approximation of the LoG (Laplacian of Gaussian). SURF (Speeded Up

Robust Features) is an enhanced version of the SIFT (Scale-Invariant Feature Transform) algorithm, designed to

improve speed and efficiency in detecting and describing local features in images. While maintaining many of the

robust properties of SIFT, SURF makes several modifications that increase computation speed, making it well-

suited for real-time applications.

SURF relies on the concept of integral images to speed up the feature detection process. Integral images allow

for rapid calculation of image features at different scales, which is a cornerstone of the SURF methodology.

Figure 5:SIFT(Scale Invariant Feature Transform)

49

Key Differences from SIFT

Integral Images: These are used in SURF for image convolutions, which allows the algorithm to compute the sum

of intensities in a given image region rapidly.

Box Filters: SURF uses box filters as approximations of second-order Gaussian derivatives, which significantly

speeds up the calculation compared to the more traditional filter methods used in SIFT.

Difference-of-Gaussian (DoG) Approximation:

SURF approximates the Laplacian of Gaussian (LoG), which SIFT computes explicitly, using a simpler Difference-

of-Gaussian obtained through box filters. This approximation reduces computational complexity.

Formula for Difference-of-Gaussian:

𝐷(𝑥, 𝑦, 𝜎) = (𝐺(𝑥, 𝑦, 𝑘𝜎) − 𝐺(𝑥, 𝑦, 𝜎)) ⋅ 𝐼(𝑥, 𝑦)

 Where:

• D(x, y, σ) represents the difference-of-Gaussian achieved with box filters.

• G(x, y, kσ) and G(x, y, σ) are Gaussian Blurs at different scales.

• . denotes the convolution operation.

2. Structural Similarity Index (SSIM)

SSIM is a method for measuring the similarity between two images. It considers texture, luminance, and contrast.

Unlike simple pixel-by-pixel comparison, SSIM evaluates patterns of pixel intensities that have been normalized

for luminance and contrast. The Structural Similarity Index (SSIM) is a sophisticated metric used to measure the

similarity between two images. Unlike traditional methods that rely on direct pixel-by-pixel comparisons, SSIM

assesses the perceptual impact of three characteristics of an image: luminance, contrast, and structure. By con-

sidering these aspects, SSIM provides a more accurate reflection of visual similarity as perceived by human vision.

SSIM is based on the premise that human visual perception is highly adapted for extracting structural information

from the visual field, thus the similarity between two images can be more precisely measured by comparing their

structural features rather than their individual pixel values.

Application in Real Estate: SSIM can be used to compare quality and style of property images, assessing how

similarly two properties are presented in terms of lighting, angles, and staging.

The equation of SSIM can be expressed like:

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇⬚ + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)

Where:

 𝜇𝑥 , 𝜇𝑦 are the average intensities of images x and y.

 𝜎𝑥 , 𝜎𝑦 are the variances.

50

 𝜎𝑥𝑦 is the covariance.

 𝑐1, 𝑐2 are constants to stabilize the division.

1.1.1. Application in Real Estate

In real estate, SSIM can be effectively used to enhance several aspects of property marketing and management:

• Quality Control of Images: Ensuring that property photos uploaded to listing services meet certain quality

criteria in terms of lighting and clarity, which can influence buyer perceptions and decisions.

• Comparison of Property Images: SSIM can be used to automatically compare and categorize property

images by style and visual quality, helping potential buyers find properties that match their aesthetic

preferences.

• Detecting Duplicate Images: Real estate platforms can use SSIM to detect duplicate listings or fraud by

identifying properties that are represented by significantly similar images but different metadata.

Advantages of SSIM

• Alignment with Human Perception: SSIM is designed to reflect the way humans perceive image quality,

which makes it particularly useful in applications where the visual quality of images is paramount.

• Robustness: SSIM is robust against variations in image resolution and the addition of noise, making it

suitable for analyzing images from various sources and quality.

Limitations

Sensitivity to Scaling and Rotation: While robust to changes in lighting and contrast, SSIM may still be sensitive

to scaling and rotations. Additional preprocessing steps might be needed to align images properly before com-

parison.

Computational Complexity: While not as computationally intense as some deep learning methods, SSIM still

requires a significant amount of processing power, especially when applied to large datasets commonly found in

real estate databases.

In summary, SSIM provides a useful metric for assessing image quality and similarity in a manner that correlates

well with human visual perception, making it an excellent tool in fields like real estate where visual presentation

plays a crucial role.

CNN Layer Calculation Formula for Feature Extraction

Convolutional Neural Networks (CNNs) can be trained to extract hierarchical features and determine image sim-

ilarity. Convolutional Neural Networks (CNNs) are a class of deep neural networks that are particularly effective

for tasks involving image data. CNNs utilize multiple layers of convolutions with learnable weights to automati-

cally extract hierarchical features, which are crucial for understanding and analyzing the content of images. Each

layer in a CNN transforms the input data into more abstract and composite features, making CNNs highly effective

for image recognition and similarity assessments. CNNs automatically learn the hierarchies of features which are

crucial for understanding the content of the images.

51

The diagram (figure 6) illustrates the architecture of a Convolutional Neural Network (CNN), depicting the flow

from input through multiple convolution and max pooling layers for feature extraction, to fully-connected layers

that handle classification. Each stage is clearly represented, showing how the network processes and transforms

input image data into a final output class through learned filters and spatial reduction.

CNN Layer Operations

Feature Maps(𝑓𝑖
(𝑙)):

Description: Feature maps are the outputs of each layer in the CNN. At each layer, the feature map represents

the result of applying learned filters (or kernels) to the input, capturing specific features at different levels of

abstraction. For instance, early layers might detect edges or textures, while deeper layers might identify complex

objects or patterns within the image.

The feature map at layer ll for the i-th filter is denoted as(𝑓𝑖
(𝑙)).

Weights (𝑊𝑖𝑗
(𝑙−1)):

Weights are the parameters of the filters that are learned during the training process. Each weight corresponds

to a small receptive field in the input and determines how the input's features contribute to the resulting feature

map.

The weights connecting the j-th feature map of the previous layer (l−1) to the i-th feature map of the current

layer l are represented by (𝑊𝑖𝑗
(𝑙−1)).

Biases (𝑏𝑖
(𝑙)):

Biases are additional parameters in CNNs added to each feature map after convolution but before the activation

function. They allow the activation function to shift left or right, which can be critical for learning patterns in the

input data.

(𝑏𝑖
(𝑙)) is the bias term associated with the i-th feature map at layer l.

Activation Functions (σ):

Figure 6: CNN for image classification.

52

After convolution, an activation function is applied to introduce non-linearity into the model. This step is crucial

because it allows the network to learn complex patterns.

Common Choices: ReLU (Rectified Linear Unit) is the most commonly used activation function in CNNs due to its

simplicity and effectiveness. It is defined as σ(x)=max(0,x)σ(x)=max(0,x), effectively turning off neurons that pro-

duce negative outputs, which simplifies the computation and introduces sparsity in the activations.

The convolution operation involves sliding each filter across the input and computing a dot product between the

filter and input at each position. This operation extracts spatial features from the input and produces a feature

map. Layers are formulated as convolutions with learned weights followed by non-linear activation functions:

𝑓𝑖
(𝑙)

= 𝜎(∑𝑊𝑖𝑗
(𝑙−1)

∗ 𝑓𝑗
(𝑙−1)

+ 𝑏𝑖
(𝑙)

𝑗

)

Where:

 𝑓𝑖
(𝑙) is the feature map i at layer l.

 𝑊𝑖𝑗
(𝑙−1) are the weights from layer l-1 to l.

 𝑓𝑗
(𝑙−1)

 are the feature maps from the previous layer.

 𝑏𝑖
(𝑙) are the biases at layer l.

 σ is the non-linear activation function (e.g., ReLU).

 sum from𝑗denotes the summation over all inputs from the previous layer.

* indicates convolution operation.

53

Significance in Image Similarity

In the context of image similarity, these hierarchical features extracted by CNNs can be used to compare images

at various levels of abstraction, from simple textures and shapes to complex objects and scenes. This capability

makes CNNs extremely valuable for tasks such as image classification, object detection, and feature-based image

retrieval, where understanding the deeper semantic content of images is crucial.

CNNs transform the raw pixel data of images into a form that highlights their essential features while discarding

irrelevant variations like noise and lighting changes. This transformation is fundamental to many modern appli-

cations of machine vision, particularly in areas like real estate, where automated analysis of property images can

significantly enhance listing accuracy and user experience.

Application in Real Estate

Image similarity methods can automate the detection of duplicate listings, significantly reducing the effort re-

quired to manage large databases. They also enhance user experience by recommending properties that visually

match user preferences. Furthermore, these techniques can categorize properties based on architectural styles

or condition, aiding in targeted marketing and accurate pricing.

The application of image similarity methods in real estate represents a significant advancement in how properties

are analyzed and marketed. By leveraging the theoretical and mathematical frameworks of feature matching,

structural similarity, and deep learning, real estate platforms can offer more precise and user-friendly services,

improving both operational efficiency and customer satisfaction.

54

Django for Full-Stack Development

Django is a high-level Python web framework that encourages rapid development and clean, pragmatic design. It

is renowned for its ability to facilitate the creation of complex, data-driven websites with minimal coding and

straightforward maintainability. Developed by experienced developers, Django abstracts many of the common

challenges in web development, allowing developers to focus on writing their app without needing to reinvent

the wheel.

Origins and Philosophy

Django was designed to handle the fast-paced newsroom deadlines while meeting the stringent requirements of

experienced web developers. Named after the jazz guitarist Django Reinhardt, the framework was created with

the intention of simplifying the creation of complex, database-driven websites. It emphasizes reusability and

"pluggability" of components, rapid development, and the principle of not repeating oneself (DRY).

Key Features

MTV Architecture: Django follows the Model-Template-View (MTV) architectural pattern, which is Django’s take

on the popular Model-View-Controller (MVC) architecture. The Model manages the database, the Template han-

dles presentation and user interfaces, and the View executes business logic controlling what users can do with

the data.

Robustness: Out-of-the-box support for common tasks such as user authentication, content administration, site

maps, and RSS feeds make it highly robust for handling the complexities and security needs of modern web ap-

plications.

Scalability: Django uses a "shared-nothing" architecture, meaning you can add hardware at any level — database

servers, caching servers, or web servers — to handle higher loads. This scalability makes it suitable for projects

ranging from small websites to large-scale enterprise systems.

Security: Django provides built-in protections against many security threats like SQL injection, cross-site scripting,

cross-site request forgery, and clickjacking. Its user authentication system provides a secure way to manage user

accounts and passwords.

Figure 7: Django architecture.

55

Usage in Full-Stack Development

As a full-stack framework, Django comes equipped with everything needed to build a web application from the

ground up:

Backend Logic: It handles backend logic seamlessly with Python, one of the most straightforward and powerful

programming languages in use today.

Frontend Integration: While Django manages the backend, it integrates easily with any frontend technology to

deliver content in almost any format, including HTML, JSON, XML, and more. Frontend frameworks like React or

Angular can be used to create a dynamic user interface.

Database Management: Django supports several major database engines and can work with any that supports

the Python Database API. It comes with a built-in ORM (Object-Relational Mapping) to bridge the gap between

the relational database systems and the business objects without needing to write SQL code.

Using Django in Data-Driven Projects

Django, a high-level Python web framework, is particularly suited for data-driven projects like real estate plat-

forms, which require handling large datasets and ensuring robust user interactions. Its pragmatic and clean de-

sign, rooted in the Model-View-Template (MVT) architectural pattern, offers a logical separation of concerns that

streamlines the development of complex web applications.

Architectural Benefits for Real Estate Platforms

Batteries-Included Approach:

Django’s comprehensive offering of built-in components for common web development tasks (e.g., authentica-

tion, URL routing, and session management) accelerates development timelines. This is invaluable in real estate

platforms where security and user experience are paramount. Django’s robust features reduce the need for cus-

tom coding, ensuring greater reliability and consistency across the application.

Handling Large Datasets:

Django’s ORM (Object-Relational Mapping) system is crucial for real estate platforms dealing with vast amounts

of data, such as listings, transactions, user data, and market analytics. The ORM facilitates complex queries and

data management without the direct use of SQL, minimizing the risk of injection attacks and making the system

more secure and maintainable.

Performance and Scalability:

Real estate platforms must handle variable traffic loads efficiently, especially during high viewing times. Django

supports various caching strategies to enhance performance. This scalability is proven in its deployment in high-

traffic environments like Instagram and Disqus, demonstrating its capability to manage heavy loads effectively.

Django's design is not only robust but also highly flexible, allowing it to integrate seamlessly with various tech-

nologies that enhance its functionality:

Integration with Other Technologies

56

Machine Learning Integration:

Integrating Django with machine learning libraries like TensorFlow or Keras enables the application to include

sophisticated analytical tools directly in the web interface. This can be used to automate valuation models, rec-

ommendation systems, or image recognition tasks directly within the real estate platform. Incorporating machine

learning with Django allows real estate platforms to perform advanced data analysis directly within the applica-

tion. For instance:

• Valuation Models: Integrating TensorFlow or Keras to develop models that predict property prices based

on historical data and market trends.

• Recommendation Systems: Using machine learning to suggest properties to users based on their brows-

ing history and preferences.

• Image Recognition: Implementing algorithms to analyze property photos for features like space, condi-

tion, and style, enhancing listing details automatically.

Data Visualization Tools:

Django can be easily integrated with JavaScript libraries like D3.js or Python libraries like Plotly to create dynamic

data visualizations. These tools can provide interactive charts and graphs for real-time market analysis, enhancing

user engagement and providing valuable insights at a glance. This is critical for:

• Market Analysis: Dynamic charts and graphs that analyze trends over time, regional market perfor-

mances, and investment opportunities.

• User Dashboards: Customizable interfaces where buyers, sellers, and agents can view personalized data

insights and metrics.

Database Management Systems:

Django is compatible with several key database systems like PostgreSQL, MySQL, and MongoDB, which are capa-

ble of handling different facets of real estate data. PostgreSQL, for instance, offers advanced features such as full-

text search and GIS (Geographical Information Systems) support which are ideal for real estate applications.

Django's ORM is a powerful feature that serves as a bridge between the database engine and Django models,

allowing developers to manipulate database data without having to write raw SQL queries. Here’s a more detailed

look at how the Django ORM supports complex database operations, particularly within the context of real estate

applications.

Core Features of Django ORM

Abstraction:

Django ORM provides a high level of abstraction, letting developers interact with the database using Python code

instead of SQL. This abstraction makes the code more readable, maintainable, and portable across different da-

tabase systems such as PostgreSQL, MySQL, MongoDB (via Djongo), and SQL Server.

Database Agnosticism:

One of Django's strengths is its database-agnostic design. Whether you're using PostgreSQL, MySQL, SQLite, or

Oracle, Django allows you to use the same application code, only requiring changes in the settings to switch

57

between these databases. This flexibility is particularly useful in real estate platforms where the choice of data-

base might change based on scaling needs or specific features.

Querysets:

Django ORM operates through querysets, which allow developers to construct a database query in Python code.

Querysets are lazy, meaning they only hit the database when evaluated. This allows for efficient chaining and

refinement of queries without extra database calls. For real estate applications, this means efficiently filtering

properties, sorting listings by price or date, and aggregating data like average prices or counts of properties by

type.

Model Relationships:

The ORM supports various types of relationships such as foreign keys (one-to-many), many-to-many, and one-to-

one relationships. For a real estate application, this can be used to relate users to property listings, track property

ownership history, or link properties to multiple images and agents.

Migrations:

Django’s migration system handles changes to the database schema by creating migration files. These files de-

scribe how to adapt the database structure through a series of steps while preserving existing data. In the fast-

evolving real estate market, where new data attributes might frequently be added (like new features or virtual

tour links), migrations ensure that database changes are versioned and deployed smoothly.

Admin Interface:

The Django admin interface is automatically generated from the models and is a powerful tool for sites' adminis-

trators to manage content in the database. For real estate platforms, this means easy administration of listings,

user accounts, and other dynamic content without needing to build custom admin panels.

Benefits in Real Estate Applications

• Rapid Development: Quick adjustments to the data model and easy manipulation of data suit the dy-

namic nature of real estate listings.

• Data Integrity: Django ORM helps maintain data integrity and consistency, which is crucial in real estate

transactions and record-keeping.

• Scalability: Efficient query capabilities and support for powerful database features like full-text search

and GIS make scaling real estate platforms more manageable.

Django's ORM is an integral part of the framework that significantly enhances development speed, data security,

and application maintenance. In real estate platforms, where managing extensive data with high reliability is

essential, Django ORM provides the tools necessary to build robust, scalable applications that can handle complex

queries and vast amounts of data efficiently. Its database-agnostic nature further ensures that applications can

adapt to different database backends as per changing business requirements.

58

2.9.2. Comparative Analysis

To justify the choice of Django for this project, a comparative analysis with other popular web frameworks such

as Flask, Node.js, and Ruby on Rails is conducted:

Flask vs. Django:

While Flask provides a lightweight and modular approach, which is excellent for smaller projects with less com-

plex data operations, Django's built-in features and its ORM are more suited for handling the complex and data-

intensive nature of real estate platforms.

Node.js vs. Django:

Node.js, being JavaScript-based, offers an advantage in building real-time applications with full-stack JavaScript.

However, Django's extensive security features and mature third-party ecosystem make it a more reliable choice

for the comprehensive features required in this project.

Ruby on Rails vs. Django:

Ruby on Rails is similar to Django in many respects, offering many built-in features and an opinionated framework

structure. However, Django's Python-based syntax and widespread use in data science make it particularly apt

for integrating with machine learning and analytics workflows, which are central to this project.

59

Methodology

Overview of the Web Scraping Pipeline

To comprehensively capture the landscape of the real estate market in Athens, the web scraping pipeline targeted

several prominent Greek real estate platforms. Each platform presented unique challenges and required custom-

ized scraping strategies to effectively extract relevant data. This section elaborates on the specific platforms tar-

geted, the nuances of each, and the strategies implemented to ensure thorough and efficient data collection.

The web scraping pipeline was designed to systematically collect and process data from major Greek real estate

platforms, focusing on the aggregation of over 77,000 property listings primarily from the city of Athens. The aim

was to capture a diverse array of data specific to different regions within Athens to facilitate detailed analysis and

testing. The platforms that were scraped were xe.gr, plot.gr, tospitimou.gr, spitogatos.gr and spiti365.gr

The web scraping pipeline for this thesis was designed to systematically collect real estate data from multiple

prominent Greek real estate platforms. Given the scale of the task, involving over 77,000 property listings primar-

ily in the city of Athens, a uniform scraping methodology was implemented across all platforms. This ensured

consistency in data collection and streamlined the process for efficiency and reliability. This section details the

uniform scraping approach, including the technical methods used and the specific platforms targeted.

Uniform Scraping Methodology

To address the diversity of content and non-standardized formats across different real estate websites, the pipe-

line employed a combination of Python's requests library for data retrieval and BeautifulSoup for HTML content

parsing. This method provided the flexibility and robustness necessary to navigate and extract data from various

structured and semi-structured web pages commonly found in online real estate listings.

Technical Strategy:

• Data Retrieval: The requests library was used to send HTTP requests to the targeted websites. This library

was chosen for its ease of use and ability to handle various HTTP functionalities, which is crucial for ac-

cessing and downloading web page content.

• Content Parsing: BeautifulSoup was utilized to parse the HTML documents retrieved. It helped in system-

atically extracting the relevant data fields such as price, location, property size, and image links. Beauti-

fulSoup is particularly effective in navigating complex HTML structures and extracting data with high ac-

curacy.

• Robust Error Handling: Given the potential for request failures and HTML parsing errors, the pipeline

included robust error handling mechanisms. These included retry logic for failed requests and exceptions

handling to manage unexpected disruptions during the scraping process, ensuring data integrity and con-

tinuity.

60

Targeted Real Estate Platforms

The following major Greek real estate platforms were scraped using the above uniform methodology, each offer-

ing a significant volume of listings which are vital for a comprehensive analysis of the Athens real estate market:

• Plot.gr

• Spiti24

• Spitogatos

• Tospitimou.gr

• Xe.gr

Each platform was approached with the same technical scraping strategy to maintain consistency across the da-

taset. This approach facilitated the aggregation of a robust dataset, ensuring that each listing was accompanied

by standardized information necessary for subsequent analysis.

Data Management

After collection, data from all platforms were consolidated into a single Microsoft SQL Server database. A rela-

tional schema was designed to accommodate the integration of data from various sources, with a flag system to

identify the origin of each listing. This strategy not only simplified data management but also supported compre-

hensive data analysis by preserving the traceability of each data point back to its source.

Data Integration and Storage

Unified Database Schema: The schema was crafted to support queries across multiple data points, enhancing the

ability to perform comparative analyses across different data sets.

Image Data Handling: Links to property images were stored within each listing's row in the database. Images were

later downloaded to a local server for processing by the image similarity model, crucial for identifying duplicate

listings or visually similar properties.

This uniform approach to web scraping across multiple Greek real estate platforms has successfully created a

foundational dataset for this thesis. The methodology ensures that the data collected is not only extensive and

representative of the market in Athens but also uniformly structured for advanced analytical processes, including

machine learning and comprehensive market analysis in subsequent stages of this study.

Design Considerations

The design of the web scraping pipeline was guided by several key objectives:

Comprehensiveness: To ensure a dataset that is representative of the real estate market in Athens, encompassing

a variety of property types, locations, and pricing.

Scalability: The pipeline needed to handle large volumes of data efficiently, allowing for future expansions to

include more regions or platforms without significant redesign.

Robustness: The pipeline had to be capable of operating continuously and reliably, with mechanisms to handle

potential disruptions such as changes in website layout or temporary network issues.

61

Compliance and Ethics: It was imperative that the scraping activities complied with all legal standards and ethical

guidelines, particularly concerning data privacy and platform terms of service.

Technical Architecture

The pipeline's architecture was structured around several core components:

Data Retrieval: Utilized HTTP libraries in Python, such as requests, to programmatically access and retrieve web

pages from targeted real estate platforms.

Content Parsing: Employed parsing libraries like BeautifulSoup and lxml to extract relevant data fields from the

HTML content of the web pages. These libraries were chosen for their robustness in handling various HTML struc-

tures and their flexibility in navigating complex webpage layouts.

Data Normalization: Since data were collected from multiple sources, a normalization process was established

to standardize the data into a uniform format. This step was crucial for ensuring that subsequent data analysis

was based on consistent and comparable metrics.

Error Handling: Integrated error handling mechanisms to manage issues such as connection timeouts, missing

data, and unexpected site structure changes. This involved implementing retry logics, exception catching, and

fallback routines to maintain the integrity and continuity of the data collection process.

Workflow

The operational workflow of the web scraping pipeline consisted of several sequential stages:

Target Identification: Defined the specific pages and data fields of interest on each platform. This step involved

preliminary manual review to understand the structure and navigation of each site.

Automated Navigation: Developed scripts that could automatically navigate through pagination and different

categories or regions as required, to systematically cover the entire scope of the market in Athens.

Data Extraction: Extracted data such as listing ID, price, location, property size, number of bedrooms, images,

and other descriptive information. Each piece of data was validated and cleaned before being stored to ensure

accuracy.

Storage: Integrated the extracted data into a centralized MSSQL database. Special attention was given to design-

ing a database schema that could efficiently manage and query large datasets.

Monitoring and Maintenance: Set up monitoring tools to track the performance of the scraping process and alert

for failures or significant deviations in data quality or quantity.

62

Challenges and Solutions

Several challenges were encountered during the development and operation of the web scraping pipeline:

Dynamic Content: Many real estate websites use JavaScript to dynamically load content, which required the use

of Selenium or similar tools to render the pages fully before parsing.

Rate Limiting: To address potential rate limiting and avoid IP bans, the pipeline used rotating proxy servers and

implemented polite scraping practices, such as respecting robots.txt rules and introducing delays between re-

quests.

In summary, the web scraping pipeline developed for this thesis is a sophisticated tool tailored to meet the spe-

cific needs of comprehensive real estate data collection in Greece. Its design reflects a balance between effi-

ciency, robustness, and ethical data collection practices, setting a strong foundation for the advanced data anal-

ysis conducted in subsequent chapters of this research.

63

Overview of the Web Scraping Pipeline

The web scraping pipeline developed for this thesis involved a uniform method for extracting data from various

major Greek real estate platforms using Python's requests library and BeautifulSoup for parsing HTML. This sec-

tion provides a detailed explanation of the code used to scrape each platform, illustrating the uniformity and

efficiency of the approach.

The web scraping pipeline developed for this thesis is a critical element of the research, designed to systematically

collect data from various Greek real estate platforms. This section provides a detailed explanation of the concep-

tual and logical framework underpinning the scraping process. It emphasizes the uniform approach used across

multiple platforms, ensuring consistency and efficiency in data collection.

Design Principles and Objectives

The pipeline was constructed based on several key design principles:

• Uniformity: The approach was standardized across all platforms to ensure consistency in the data col-

lected. This uniformity simplifies the integration and analysis of data from multiple sources.

• Scalability: The architecture supports scaling both in terms of the number of pages scraped and the ad-

dition of new sources without significant modifications to the core logic.

• Robustness: The pipeline is robust to interruptions and anomalies in data format, with error handling

mechanisms that allow it to recover from common issues like network disruptions or changes in website

structure.

• Compliance and Ethics: The scraping activities are compliant with legal standards and ethical guidelines

concerning data privacy and the terms of service of the platforms.

Technical Workflow

The technical workflow of the scraping process involves several stages:

• Request Management: The pipeline uses HTTP requests to retrieve web pages. This stage involves man-

aging request headers and handling proxies to mimic genuine user behavior and avoid detection by anti-

scraping technologies.

• Data Parsing: Once the HTML content is retrieved, BeautifulSoup is employed to parse the HTML and

extract necessary data. The parsing rules are tailored to each platform's HTML structure but are designed

to be flexible to accommodate minor changes in web page layouts.

• Data Extraction: Specific data points such as price, location, and property details are extracted. This step

involves careful identification of HTML elements and attributes that reliably contain the required infor-

mation.

• Error Handling: The pipeline includes sophisticated error handling to manage issues like connection

timeouts or HTML parsing errors. This ensures the continuity and reliability of data collection.

64

• Data Storage and Normalization: Extracted data are temporarily stored in structured formats (like dic-

tionaries or lists) and eventually transferred to a SQL database. This stage also involves the normalization

of data to ensure uniformity across different datasets, facilitating easier integration and analysis.

Implementation Details

• Looping Through Pages: The pipeline automates the process of navigating through pagination by dynam-

ically adjusting the URL to access successive pages. This is crucial for comprehensive data collection, es-

pecially for platforms with a large number of listings.

• Session Management: To manage and maintain sessions across requests, especially when dealing with

login-required areas or session-based tokens, the pipeline uses persistent HTTP sessions.

• Data Integrity Checks: Regular checks are implemented to ensure the integrity and accuracy of the data

collected. This includes validations against predefined schemas or formats to detect anomalies early in

the process.

• Rate Limiting and Politeness: The pipeline respects the rate limiting norms and the robots.txt file of each

website to avoid overloading the servers. This not only ensures ethical scraping practices but also mini-

mizes the risk of IP bans.

Challenges and Solutions

• Dynamic Content Handling: Many real estate websites use JavaScript for dynamic content rendering. The

pipeline addresses this by simulating a browser environment or using techniques to execute JavaScript

when necessary.

• Data Quality Assurance: Given the diverse formats and incomplete data issues typical with real estate

listings, the pipeline includes sophisticated cleansing and transformation routines to standardize and

clean the data before it enters the central database.

65

Explanation of Data Structure for Each Web Platform

For this thesis, separate database tables were created for each web platform to maintain the integrity and spec-

ificity of data sourced from different online real estate portals. Once the data was collected, a unified table was

constructed to consolidate the similar fields from each platform, facilitating cross-platform analysis and compar-

ison. Here’s a detailed explanation of the approach for each platform, focusing on "spitogatos" as an example,

and the methodology used to unify the data into a single table.

Spitogatos Structure

The table for spitogatos contains a comprehensive set of fields that reflect both the general and specific aspects

of real estate listings. Here's a breakdown of the key fields:

• Id: Unique identifier for each listing.

• Link: URL to the specific listing on the Spitogatos website.

• Title: The title of the listing, usually summarizing key features.

• Address: Specific location of the property.

• Images: Links to images associated with the listing.

• Agency: Real estate agency or agent managing the listing.

• Description: Detailed description of the property.

• Price: Listing price of the property.

• Price per Sqm: Price per square meter, providing a standardized measure of value.

• Area: Total area of the property in square meters.

• Levels: Number of levels or floors within the property.

• Floor: Specific floor number for apartment listings.

• Kitchens: Number of kitchens.

• Bathrooms: Number of bathrooms.

• WC: Number of water closets separate from full bathrooms.

• Living Rooms: Number of living rooms.

• Heating: Type of heating system installed.

• Energy Class: Energy efficiency rating of the property.

• Construction Year: Year the property was originally constructed.

• Renovation Year: Most recent year the property was renovated.

• Sea Distance: Distance to the nearest sea or significant body of water.

• System Code: A system-generated code for internal tracking.

66

• Code: Another identifier, possibly used for differentiating listings within the platform.

• Available From: Date from which the property is available.

• Published: Date the listing was first published on the platform.

• Last Updated: Most recent date the listing information was updated.

• Indoor Features: Characteristics and amenities inside the property.

• Outdoor Features: Characteristics and amenities outside the property.

• Construction Features: Details about the construction quality and materials.

• Good for: Intended or suitable use of the property.

• Bedrooms: Number of bedrooms.

Data Unification Approach

Given that similar fields exist across tables for different platforms (e.g., plot.gr, spiti24, xe.gr, etc.), a unified table

was constructed to consolidate these listings. Here's the rationale and process for this consolidation:

• Field Mapping: Identified common fields across all platform tables, such as price, area, bedrooms, and

bathrooms, ensuring that each field is standardized across the unified table.

• Data Transformation: Where necessary, transformed data to match a uniform format. For instance, prices

were normalized to Euros, and area measurements to square meters.

• Redundancy Elimination: Removed duplicate entries where listings appeared on multiple platforms, us-

ing fields like address, price, and area as key indicators of duplicity.

• Data Integration: Merged data into a single table, employing SQL joins and union operations to compile

the data effectively.

• Quality Assurance: Implemented data integrity checks to validate the accuracy and consistency of the

merged data.

The data unification process for this thesis involved consolidating listings from multiple real estate platforms,

such as plot.gr, spiti24, and xe.gr, into a single comprehensive table. This consolidation was achieved through a

meticulous process that ensured data consistency and usability across various analyses.

The first step in this process was field mapping, where common fields across all platform tables were identified.

Essential fields like price, area, bedrooms, and bathrooms were standardized to maintain uniformity within the

unified table. This standardization was crucial for comparative and aggregate analysis later in the research.

Next, data transformation was applied where necessary to match a uniform format across all data entries. For

example, all prices were normalized to Euros, regardless of the original currency presented on the respective

67

platforms, and area measurements were converted to square meters. This normalization was critical in ensuring

that the data could be meaningfully compared and analyzed without discrepancies arising from different meas-

urement units.

To ensure the accuracy and relevance of the data, redundancy elimination was conducted. This involved removing

duplicate entries where listings appeared on multiple platforms. Key indicators such as address, price, and area

were used to identify duplicates. This step was vital in maintaining a clean and reliable dataset for analysis, pre-

venting skewed results from multiple counts of the same property.

The data integration phase involved merging the cleaned and transformed data into a single table using SQL joins

and union operations. This phase was carefully managed to ensure that data from different sources was effec-

tively compiled into one central repository, facilitating easier access and manipulation in subsequent analytical

processes.

Finally, quality assurance measures were implemented to validate the accuracy and consistency of the merged

data. This included data integrity checks that ensured all data conformed to the expected formats and values.

Ensuring data integrity was crucial for the credibility of the research findings.

For saving the unified data into the database, an Object-Relational Mapping (ORM) approach was employed.

ORM provided an efficient and error-reducing means of translating the data into a database schema. This method

was particularly useful in handling complex queries and data interactions, which are common in handling large

datasets of real estate listings.

Overall, the data unification approach not only streamlined the research process by creating a centralized data

resource but also enhanced the reliability and accuracy of the analyses conducted in the thesis.

Database Management and Data Integration

The design of the database is pivotal in supporting the data requirements of this thesis. A relational database

model was chosen due to its ability to handle large volumes of structured data and support complex queries

efficiently.

Schema Design: The database schema was carefully designed to accommodate data from various sources while

ensuring that it could be easily extended and modified. The schema includes tables for each real estate platform

(e.g., plot.gr, spiti24, xe.gr) and a unified table that consolidates all the data. Each table is structured with fields

that reflect the data model of the respective platform, such as price, area, bedrooms, bathrooms, and unique

identifiers.

Normalization: To reduce redundancy and improve data integrity, normalization practices were applied. This in-

volved organizing data into tables and columns in a way that dependencies are properly enforced by database

integrity constraints, thereby reducing redundancy and improving data integrity.

Data Storage Strategy

The data storage strategy encompasses the methods and technologies used to store and manage the collected

data effectively.

68

Relational Database Management System (RDBMS): An RDBMS was used to manage the relational tables and

to facilitate complex SQL queries. This system supports transactions, which ensures data integrity and consistency

even in the case of errors or failures.

Data Type Standardization: Ensuring that each field in the database adheres to a standardized data type is crucial

for maintaining consistency. For example, all monetary values are stored in a consistent format and datatype,

which simplifies calculations and comparisons.

Object-Relational Mapping (ORM)

Object-Relational Mapping (ORM) is a technique that helps in converting data between incompatible type sys-

tems in object-oriented programming languages and relational databases. This approach provides a high-level

abstraction upon the relational database that allows for maintaining a robust database schema.

Benefits of ORM: ORM frameworks facilitate the management of database entities and relationships directly

from the Python code, which enhances productivity and reduces the likelihood of SQL injection attacks. ORM also

automates the transfer of data from in-memory objects to database tables, ensuring that the data adheres to the

schema without requiring manual parsing of data.

Implementation: In this thesis, an ORM framework compatible with Python was employed to interact with the

SQL database. This framework allowed for defining each data model class in Python, which then translates into a

database table through migrations. CRUD (Create, Read, Update, Delete) operations were implemented using

ORM methods, which abstracted the complex SQL queries into simple and secure Python methods.

Data Integration Process

Integrating data from multiple sources into a unified database involved several steps:

Data Extraction and Transformation: Before integration, data was extracted from various formats and trans-

formed into a unified format. This involved cleaning, normalizing, and transforming data to fit the database

schema.

Data Loading: The transformed data was loaded into the database using batch operations, which improves per-

formance and minimizes the load on the database server.

Data Validation and Cleansing: Post-integration, data was validated against the schema constraints to catch any

anomalies and was cleansed to ensure accuracy and completeness.

Security and Backup

Security Measures: Security measures such as encrypted connections and secure access controls were imple-

mented to protect the data.

Backup Procedures: Regular backups and data recovery procedures were established to ensure data durability

and availability.

69

Implementation of the Django Full Stack Application

In this chapter, the focus shifts to the implementation of a Django full stack application that integrates the image

similarity algorithm with a user-friendly interface. This application serves as the platform through which users

interact with the data, leveraging Django’s robust back-end capabilities and a well-designed front-end to present

data in an insightful and accessible manner. The chapter outlines the strategic development phases, including the

setup of the Django environment, integration of the image similarity algorithm, data fetching mechanisms, and

the user interface design.

Django Application Setup

Setting up the Django environment involves configuring the framework to work seamlessly with the existing da-

tabase and ensuring that all components are optimized for performance and scalability.

Framework Configuration: Django is set up with settings that align with the project’s needs, including database

configurations, static and media files settings, security settings, and middleware configurations for handling re-

quests.

Model Definition: Models are defined in Django to mirror the database schema created in the previous chapter.

This ORM feature of Django facilitates the interaction with the database in an object-oriented manner.

Admin Interface Setup: Django’s built-in admin interface is customized to allow administrators to easily manage

the content of the application, including real estate listings, images, and user data.

Backend Implementation in Django

The backend of the application, built using Django, handles data management, algorithm integration, and server-

side logic:

Data Management: Django models are used to manage data related to properties, user preferences, and image

metadata. Django’s ORM capabilities facilitate interaction with the database where property information and

image data are stored.

70

Image similarity model training

This model is designed to find matching folders based on the similarity of images between a temporary folder

(temp_folder) and a data folder (data_folder). Here’s a step-by-step breakdown of how it works:

In the rapidly advancing field of computer vision, the ability to automatically identify and match similar images

across different datasets is of paramount importance. This capability finds applications in various domains, in-

cluding digital forensics, content management systems, and automated archival processes. The focus of this the-

sis is on developing an efficient and accurate method to find matching folders containing similar images within a

large dataset, utilizing the ORB (Oriented FAST and Rotated BRIEF) feature detector and descriptor.

Traditional methods of image comparison often rely on color histograms or pixel-by-pixel analysis, which can be

computationally intensive and less effective when dealing with images that have undergone transformations such

as rotation, scaling, or partial occlusion. The ORB algorithm, introduced by Rublee et al. in 2011, presents a robust

alternative by focusing on keypoints and their descriptors, allowing for effective matching even under varying

image conditions.

This thesis proposes an algorithm that leverages ORB to compare images from a temporary folder against a set

of images distributed across multiple subfolders in a data directory. The primary objective is to identify and return

the names of subfolders that contain images similar to those in the temporary folder, based on a predefined

similarity threshold. The algorithm is designed to be both efficient and scalable, capable of handling large da-

tasets without significant computational overhead.

 Figure 8: Image similarity training process

71

Convolutional Neural Networks (CNNs) have revolutionized the field of image processing by enabling high levels

of accuracy in tasks such as image classification and object detection. CNNs automatically learn and capture the

hierarchical patterns in images which makes them particularly suited for tasks requiring a high degree of visual

recognition.

 ResNet50 Architecture

ResNet50, a variant of the ResNet family, is a deep convolutional network known for its architecture that includes

50 layers. It introduces a novel architecture with "skip connections" which helps in alleviating the vanishing gra-

dient problem by allowing direct gradient flow between layers. The ResNet50 model utilized in this project is pre-

trained on the ImageNet dataset, which consists of over a million images categorized into 1000 classes. This pre-

training provides a solid foundation for extracting generic features that can be applicable to a wide range of visual

recognition tasks.

Image Preprocessing

For the model to process images effectively, they must be normalized and resized to meet the input specifications

of the ResNet50 model:

• Normalization: Adjusts pixel values to a scale that the model expects, based on its training on the

ImageNet dataset.

• Resizing: Images are resized to 224x224 pixels, which is the required input size for the model.

Feature Extraction

The script employs the ResNet50 model to extract features from images. Instead of using the model to predict

image classes directly, we modify it to output a vector from the penultimate layer. This vector, typically 2048

elements long, represents a dense embedding of the image's visual content:

Pooling: The 'average' pooling layer is used to reduce the dimensions of the output from the convolutional layers,

summarizing the detected features into a single vector.

File and Data Management

Efficient data handling is crucial for managing large image datasets:

Directory Listing and Set Operations: The script lists all image directories and identifies discrepancies between

existing dataset indices and those already processed, ensuring no image is processed twice.

Checkpointing: To manage long-running operations and potential interruptions, the script uses a checkpointing

mechanism. It records the last processed image, allowing the process to resume without loss of progress.

The practical implementation of the above methodology involves iterating over a dataset of images, processing

each image to extract features, and storing these features in an array format for quick access and analysis. The

script handles errors gracefully, retries file access when necessary, and logs its progress for monitoring and de-

bugging purposes.

The extraction of image features using a pre-trained ResNet50 model provides a robust foundation for building

image similarity models. The features captured by this model encapsulate complex patterns in the visual data,

which are essential for the accurate comparison and retrieval of images based on similarity. This approach not

72

only enhances the effectiveness of similarity-based tasks but also significantly reduces the computational over-

head involved in training a model from scratch.

Error Handling and Retry Logic

To ensure robustness, especially when accessing filesystems or during long-running processes, the script includes

error handling and retry mechanisms:

• Directory Access Failures: If a directory fails to open, the script retries several times before logging an

error and skipping it.

• Image Processing Failures: Errors during image loading or feature extraction are logged, and the prob-

lematic image is skipped, preventing the entire process from failing.

Figure 9: Training steps

73

Integration with Django

The integration of the image similarity algorithm within the Django application involves several key components:

Backend Processing: Django manages the backend processes, including the retrieval of image data from the da-

tabase, handling the file system operations for image storage, and executing the feature extraction and similarity

measurement tasks.

Asynchronous Tasks: Given the potentially high computational load of processing large volumes of images, these

operations are handled asynchronously using Django’s support for background tasks (e.g., using Celery with Rab-

bitMQ or Redis as the message broker).

APIs for Frontend Interaction: Django serves the results of the image similarity analysis through RESTful APIs,

which the frontend consumes to display similar property recommendations to users.

74

Integration of Image Similarity Algorithm

The image similarity algorithm is a core component of the application, enabling the platform to identify and sug-

gest similar real estate listings based on image content.

• Algorithm Embedding: The algorithm is embedded into the Django application as a backend service. This

involves setting up a dedicated route in the application that handles image processing and similarity com-

putation.

• Data Handling: When images are uploaded or updated in the listings, the algorithm processes these im-

ages to extract features and compute similarities, storing these results in the database for quick retrieval

during user queries.

• Performance Optimization: The implementation is optimized for performance, ensuring that the image

processing tasks do not hinder the overall user experience of the application.

Implementation of the Django Full Stack Application with Image Similarity-Based Recommendation System

This chapter delves into the practical implementation of a Django full-stack application that incorporates an im-

age similarity-based recommendation system for real estate listings. The application leverages sophisticated im-

age processing algorithms to recommend similar properties to users, enhancing their experience by tailoring op-

tions based on visual preferences. It also features robust filtering capabilities, allowing users to refine their search

according to specific criteria. Below is a comprehensive discussion of the application’s interface, the underlying

technology of the recommendation system, and its integration within the Django framework.

User Interface Design

The application’s user interface (UI) is designed to be intuitive and user-friendly, facilitating easy navigation and

interaction. The main components of the UI include:

Listing Display: As shown in the uploaded screenshot, the main part of the interface displays a series of property

images that represent individual listings. Each listing provides a visual snapshot of the property, allowing users to

quickly gauge the appearance and style of each property.

75

Dynamic Filters: The interface includes filters that users can apply to refine their search based on various param-

eters such as location, price, property size, and specific features like the number of bedrooms or bathrooms. This

allows users to tailor the recommendations to better fit their needs and preferences.

Image Similarity Algorithm Integration

Figure 10: Django app

Figure 11: Properties details

76

The image similarity algorithm is a core feature of the application, enabling the recommendation system by ana-

lyzing visual content of property images to identify similar properties across different platforms. Here’s how it is

integrated:

Algorithm Setup: The algorithm processes images using convolutional neural networks (CNNs) to extract feature

vectors from each property image stored in the database. These vectors represent key visual attributes of the

images.

Similarity Calculation: When a user views a property, the algorithm compares its feature vector with those of

other properties in the database using cosine similarity or another suitable metric. It then identifies properties

with the highest similarity scores. We have an output of the similar ids in the terminal and the app interface

template (figure 12 & 13).

Figure 12: Matching property ids found for specific property

Recommendation Generation: Properties with the highest similarity scores are presented to the user in the "Rec-

ommended For You" section, providing personalized suggestions that align with the user's apparent visual pref-

erences.

77

Figure 13: Recommendation system

Recommendation Section: Below the main listing images, a "Recommended for You" section (figure 12) suggests

similar properties based on image similarity. This feature uses the image similarity algorithm to find and display

listings that share visual characteristics with properties the user has shown interest in.

Workflow for Image Similarity Detection

Image Processing: Each image uploaded to the platform is processed using a predefined image processing algo-

rithm. This process extracts feature vectors that numerically represent the visual content of each image.

Similarity Computation: The application calculates similarity scores between the feature vector of a reference

image and the vectors of other images in the database. This is likely done using a method such as cosine similarity,

which measures the cosine of the angle between two vectors.

Threshold Application: A threshold is set (in your case, it might be 0.7 as suggested by repeated scores in the

output), which serves as the cut-off point for determining which images are considered similar. Scores that meet

or exceed this threshold indicate a high degree of similarity, suggesting that the properties in the images share

visual characteristics.

Displaying Recommendations: Listings corresponding to images that meet the similarity criteria are flagged as

similar and can be recommended to users. This functionality enhances the user experience by providing person-

alized recommendations based on visual preferences.

Integration into the Django App

78

Backend Integration: The similarity scores are computed in the backend of your Django application. The process

involves handling large amounts of image data and requires efficient data management and processing capabili-

ties.

Frontend Display: The similar listings, based on the scores, are displayed to the user in the "Recommended For

You" section of the UI. This seamless integration between backend computations and frontend display is crucial

for maintaining a responsive user interface.

User Interaction: Users can interact with the recommendations by clicking on similar images to view more details

about the listings.

Figure 14: Similarity calculation

79

Technical Explanation of the Image Similarity Algorithm

In this chapter, we delve into the technical aspects of the image similarity algorithm implemented in the Django

full-stack application for real estate listings. This algorithm is central to the recommendation system, allowing the

application to suggest listings that visually resemble each other. The explanation covers the algorithm's concep-

tual basis, the methodologies employed for feature extraction and similarity measurement, and its integration

into the Django environment.

Conceptual Framework

The image similarity algorithm operates on the principle that images can be quantitatively compared by convert-

ing them into a form where visual features are represented as high-dimensional vectors. These vectors capture

essential aspects of the images, such as textures, shapes, and colors, allowing for numerical comparison.

Feature Extraction: This is the process of transforming raw images into a set of features (numerical data) that are

useful for comparison. Feature extraction reduces the dimensionality of the data by capturing only the essential

information needed for the task at hand.

Similarity Measurement: After feature extraction, the similarity between images is quantified using a suitable

metric that compares feature vectors. This measure determines how 'close' two images are in the feature space.

Feature extraction in the context of the real estate application involves processing images retrieved from various

listings. The process can be divided into two main steps: image retrieval and the transformation of these images

into a format suitable for analysis.

Image Retrieval:

Each image associated with a listing is uniquely identified by a combination of the listing ID and an image index.

For instance, for a listing with ID '123', images might be named '123_1', '123_2', etc.

Images are fetched from URLs stored in the database corresponding to each listing. The structure ensures that

each image is traceably linked to its source listing, allowing for systematic processing and retrieval.

To manage the images efficiently, they are stored locally in a structured directory system. Each listing ID has a

dedicated folder, which contains all related images. This organization simplifies access to the images during pro-

cessing and helps in maintaining a clean dataset by segregating images by their respective listings.

Transformation and Feature Vector Creation:

Preprocessing: Images are first preprocessed to normalize aspects such as size and color intensity. This normali-

zation ensures that the feature extraction process is uniform across all images.

Feature Detection: Using convolutional neural networks (CNNs) or other suitable image processing algorithms,

key features of the images are extracted. These features might include edges, corners, textures, and other rele-

vant visual attributes that define the content of the images.

Vectorization: The extracted features are then converted into a vector format. Each vector represents an image

in a multidimensional feature space where each dimension corresponds to a feature detected in the image.

80

Similarity Measurement Techniques

After converting images into feature vectors, the next step involves measuring the similarity between these vec-

tors to identify images that are visually similar.

Similarity Metrics: Common metrics used for this purpose include cosine similarity, Euclidean distance, and Man-

hattan distance. In the context of this application, cosine similarity is particularly useful as it measures the cosine

of the angle between two vectors, providing a metric that is relatively insensitive to the magnitude of the vectors

and focuses solely on their orientation in the feature space.

Thresholding: A threshold value is set to determine when two images are considered similar. This threshold is

empirically determined based on testing and validation during the development phase. Images with similarity

scores above this threshold are tagged as similar.

Results

Dataset Description

The dataset used in this study was compiled from four major Greek real estate platforms: Spitogatos, Spiti24,
Plot, and Tospitimou. The primary goal was to collect a diverse and comprehensive set of real estate listings,
including various property types such as apartments, houses, and commercial properties. This dataset specifically
focuses on properties for sale in both the Athens city center and its surrounding suburbs.

To analyze the dataset effectively, we extracted unique listing IDs from each platform. This analysis helps in un-

derstanding the distribution of listings and the coverage provided by each platform. The following visual repre-

sents the number of unique IDs collected from each source.

Figure 15: Number of Unique IDs per Source

81

The dataset used in this study was compiled from four major Greek real estate platforms: Spitogatos, Spiti24,
Plot, and Tospitimou. The primary goal was to collect a diverse and comprehensive set of real estate listings,
which includes varying property types such as apartments, houses, and commercial properties.

To analyze the dataset effectively, we extracted unique listing IDs from each platform. This analysis helps in un-
derstanding the distribution of listings and the coverage provided by each platform. The following visual repre-
sents the number of unique IDs collected from each source.

The bar chart in Figure 8 illustrates the distribution of unique real estate listing IDs across four major platforms.
Each bar represents the count of unique IDs sourced from a specific platform. Here’s a detailed look at the data
represented:

• Spitogatos: The platform contributed the highest number of unique IDs, totaling approximately 27,000
listings. This indicates Spitogatos' significant presence and extensive coverage in the Greek real estate
market.

• Spiti24: With around 21,000 unique IDs, Spiti24 is the second-largest contributor, showcasing a sub-
stantial number of listings available on this platform.

• Plot: This platform provided about 18,000 unique IDs, marking it as a key player, although slightly be-
hind Spiti24 in terms of listing count.

• Tospitimou: The least number of unique IDs were sourced from Tospitimou, with roughly 14,000 list-
ings. Despite having the lowest count among the four platforms, it still contributes significantly to the
overall dataset.

The data indicates that Spitogatos has the largest dataset, which might reflect its popularity and possibly a more

extensive listing database compared to the other platforms. The significant number of unique IDs from all four

sources highlights the necessity of consolidating duplicate listings to provide accurate market insights. This dis-

tribution is crucial for understanding the dataset's scope and the subsequent steps in duplicate detection and

consolidation.

Implications:

1. Market Coverage: Spitogatos and Spiti24 have higher market coverage, which suggests that users might pre-

fer these platforms for listing properties. This could be due to better platform features, broader audience

reach, or more comprehensive listing services.

2. Data Redundancy: The presence of multiple platforms with substantial listings raises the likelihood of data

redundancy, where the same property might appear across different platforms. This necessitates an effective

algorithm to detect and consolidate these duplicates.

3. Focus for Improvement: Platforms like Tospitimou, with fewer listings, might need to enhance their market

presence or improve their data acquisition strategies to compete with more dominant platforms.

By understanding the dataset's distribution, we can better appreciate the challenges in managing and consoli-

dating real estate data across multiple platforms. The next sections will delve into the feature extraction, image

processing, and the results of the duplicate detection algorithm, providing a comprehensive overview of the

study's findings.

Top 10 Regions by Number of Listings

82

The analysis also involved examining the geographical distribution of the real estate listings. This helps in under-

standing the concentration of listings in various regions and can provide insights into the most active real estate

markets.

Figure 16: Top 10 regions by number of listings

The bar chart in Figure 9 highlights the top 10 regions with the highest number of real estate listings. The x-axis
represents the regions, while the y-axis shows the number of listings. Each bar corresponds to the count of list-
ings in a specific region, with the following key observations:

• Λεωφ. Πατησίων - Λεωφ. Αχαρνών: This region leads with the highest number of listings, totaling ap-
proximately 1,500. This indicates a highly active real estate market, possibly due to high demand and
availability of properties.

• Κολωνάκι: The second most active region, with around 600 listings. Known for its prime location, this
area likely attracts significant real estate activity.

• Μαρούσι: With approximately 600 listings, this region is a significant hub for real estate, indicating its
popularity and growth.

• Εκάλη: This region also shows a considerable number of listings, reflecting its attractiveness in the real
estate market.

• Αττική: The region has around 500 listings, showcasing its importance in the real estate sector.

• Βριλήσσια: Another active region with roughly 400 listings.

• Πολίτεια - Κηφισιά: This region has about 300 listings, indicating its relevance in the market.

• Κέντρο Αθήνας Παγκράτι: With approximately 250 listings, it remains an important area for real estate
transactions.

83

• Αγ. Μελετίου - Πλ. Βικτωρίας - Μάρνη: This region shows around 200 listings, reflecting its activity in
the market.

• Βουλιαγμένη: With roughly 200 listings, this region is also a notable area in the real estate landscape.

The data indicates that the Λεωφ. Πατησίων - Λεωφ. Αχαρνών region has the highest number of listings, mak-
ing it a central area for real estate activities. Regions like Κολωνάκι and Μαρούσι follow, suggesting that these
areas are also highly sought after for property transactions. This distribution can help real estate professionals
target specific regions for marketing and sales efforts.

Top 10 Regions by Average Price

In addition to the number of listings, analyzing the average price per region provides valuable insights into the
real estate market's economic landscape. This analysis helps identify regions with higher property values, which
can inform investment decisions and market strategies.

Figure 17: Top 10 regions based on the average price

84

The bar chart in Figure 10 presents the top 10 regions based on the average price of real estate listings. The x-
axis represents the regions, while the y-axis shows the average price in euros (€). Each bar indicates the average
price of listings in a specific region. The key observations are:

• Ελευθεριάς, Παλαιό Ψυχικό (Αθήνα - Βόρεια Προάστια): This region has the highest average price, ex-
ceeding 2 million euros, indicating its status as a highly desirable and premium real estate market.

• Αττικό Άλσος Πολύγωνο: The second-highest average price is around 1 million euros, suggesting a sig-
nificant market value in this region.

• Ριγκίλης Κολωνάκι - Λυκαβηττός (Αθήνα - Κέντρο): This region shows a substantial average price of
approximately 500,000 euros, reflecting its central location and high demand.

• Προφήτης Ηλίας Κηφισιά (Αθήνα - Βόρεια Προάστια): With an average price around 400,000 euros,
this region also indicates a high property value.

• Παλαιό Ψυχικό (Αθήνα - Βόρεια Προάστια): Another high-value region with an average price of around
350,000 euros.

• Άνω Εκάλη (Εκάλη): This area has an average price of approximately 300,000 euros.

• Σεπόλια (Αθήνα - Κέντρο): This region shows an average price of around 250,000 euros, reflecting sig-
nificant real estate activity.

• Πεντέλη (Αθήνα - Βόρεια Προάστια): With an average price of approximately 200,000 euros, indicating
its relevance in the market.

• Έξω Χαλάνδρι (Αθήνα - Βόρεια Προάστια): Also showing an average price of around 200,000 euros.

• Αγ. Φιλοθέη, Φιλοθέη (Αθήνα - Βόρεια Προάστια): This region shows an average price of approximately
150,000 euros.

The data indicates that Ελευθεριάς, Παλαιό Ψυχικό (Αθήνα - Βόρεια Προάστια) is the most expensive region,
significantly higher than the other regions analyzed. This could be attributed to its prime location, desirable neigh-
borhood, and high-end amenities. The regions with high average prices such as Αττικό Άλσος Πολύγωνο and
Ριγκίλης Κολωνάκι - Λυκαβηττός (Αθήνα - Κέντρο) are also centrally located and highly sought after, contributing
to their elevated property values.

Average Price per Square Meter per Region

Understanding the average price per square meter is crucial for assessing the real estate market's value and com-
paring different regions. This metric provides insight into the cost of property relative to its size, which is a key
factor for buyers and investors.

85

Figure 18: Average price per square meter

The bar chart in Figure 11 shows the average price per square meter for properties in various regions. The x-axis
represents the regions, while the y-axis shows the average price per square meter in euros (€). Each bar indicates
the average cost of real estate per square meter in a specific region. Key observations from the chart include:

• Ελευθεριάς, Παλαιό Ψυχικό (Αθήνα - Βόρεια Προάστια): This region stands out with the highest aver-
age price per square meter, exceeding 4,000 euros. This indicates it is a premium area with high property
values.

• Αττικό Άλσος Πολύγωνο: The second-highest average price per square meter is around 3,000 euros,
suggesting a significant market value in this region.

• Ριγκίλης Κολωνάκι - Λυκαβηττός (Αθήνα - Κέντρο): This region also shows a high average price per
square meter, around 2,500 euros, reflecting its central location and high demand.

• Άνω Εκάλη: With an average price per square meter around 1,500 euros, this area is another high-value
region.

• Πεντέλη (Αθήνα - Βόρεια Προάστια): This region shows an average price per square meter of approxi-
mately 1,200 euros.

• Other Regions: The remaining regions have average prices per square meter ranging from around 1,000
to 500 euros, indicating more affordable property values compared to the top regions.

86

The data highlights significant variations in property values across different regions. Ελευθεριάς, Παλαιό Ψυχικό

(Αθήνα - Βόρεια Προάστια) commands the highest prices per square meter, which could be due to factors such

as location desirability, exclusivity, and available amenities. Similarly, regions like Αττικό Άλσος Πολύγωνο and

Ριγκίλης Κολωνάκι - Λυκαβηττός (Αθήνα - Κέντρο) also reflect high property values, likely driven by their central

locations and premium market segments.

Images dataset

To facilitate the processing and analysis of real estate listings, a Python script was developed to extract images

from provided URLs and organize them into directories. Each directory corresponds to a unique listing ID, ensur-

ing a structured dataset.

The column labeled images contains URLs pointing to images of real estate listings. Each URL represents a direct

link to an image file hosted on a server. These URLs are essential for downloading and processing the images for

further analysis. The format of the images column is a comma-separated list of URLs. Each URL corresponds to a

unique image of the property listing.

In addition to organizing the images into directories based on unique listing IDs, we conducted a quantitative
analysis to summarize the image dataset. This analysis provides insights into the average number of images per
listing and the total number of images collected.

Average Number of Images per Listing:

Through our data collection process, it was determined that, on average, each listing has approximately 13 im-
ages. This metric, calculated as 13.075747947433975, indicates a robust visual representation for each property,
allowing for a comprehensive analysis of the listings.

Average Number of Images per Listing =
𝑇𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐼𝑚𝑎𝑔𝑒𝑠𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐿𝑖𝑠𝑡𝑖𝑛𝑔𝑠

The average number of images per listing is crucial for understanding the dataset's richness and the level of detail
available for each property.

Total Number of Images Collected:

The total number of images collected across all listings in the database is 1,028,826. This substantial number of
images underscores the scale of the dataset and the extensive effort involved in aggregating visual data from
multiple real estate platforms.

87

Image similarity model results

Django app results

Experiment 1

The "Recommended for You" section of the real estate platform has impressively highlighted properties that,
despite bearing different details in terms of size and pricing, share the exact same image. This scenario indicates
that these properties might potentially be located within the same building or complex, demonstrating an
interesting case of property listings that utilize the same photographic representation to appeal to potential
buyers.
The image similarity algorithm has played a crucial role here by detecting that these images are identical with a
very high similarity score of about 90.49%. This precision illustrates the algorithm's effectiveness not just in
suggesting visually similar properties based on aesthetic and structural elements, but also in identifying exact
image matches across different listings. This capability is particularly useful for users who are exploring options
within a specific locality or building complex, as it consolidates what might initially appear as distinct options into
a comprehensible set of choices that are visually identical.

88

Experiment 2

In the showcased example, the real estate application's image similarity algorithm has effectively identified and
displayed multiple listings of the same property, marketed by different real estate agents and listed on various
platforms. This listing, featuring a spacious terrace overlooking the city, is repeatedly encountered across several
adverts with slight variations in description but identical visual presentation.

By deploying advanced image recognition technology, the application not only highlights identical property im-
ages but also consolidates their information, such as price differences, agency names, and listing details. This
allows users to compare similar offerings efficiently and discern the best value or most convenient transaction
available, exemplifying a robust application of AI in enhancing user experience and decision-making in real estate
platforms.

89

90

91

Image similarity program

In order to check the accuracy of the similar images detection and test the model, we created a Python applica-

tion so that we can test the model. This program implements an image similarity search application using a graph-

ical user interface (GUI) built with Tkinter. It allows users to upload an image, either by selecting it from their file

system or by dragging and dropping it into the application. Once the image is uploaded, the application searches

for visually similar images from a pre-existing dataset. These similar images, along with additional metadata (like

links), are then displayed to the user. The program performs the following actions:

Database Connection Setup

• Connection String: The code establishes a connection to a SQL Server database using the pyodbc library.

The database contains a table with metadata (like links) related to the images.

• Metadata Retrieval: The application queries the database to fetch links associated with images that are

determined to be similar to the uploaded image.

Image Feature Extraction Using Deep Learning

The program uses a pre-trained ResNet50 model, a convolutional neural network (CNN) architecture, to extract

feature vectors from images. This model has been trained on a large dataset (ImageNet) and is capable of cap-

turing complex patterns and features in images, such as textures, edges, and shapes, which are crucial for distin-

guishing between different images. Extracted features and corresponding IDs are saved periodically to .npy files

and managed through a checkpointing mechanism that allows the process to resume from the last point in case

of interruption.

• Feature Vector: For each image, the ResNet50 model processes the image and outputs a high-dimensional

vector (feature vector). This vector is a numerical representation of the image, capturing its essential char-

acteristics.

• Normalization: The feature vectors are normalized to ensure that they have a consistent scale, which is

important for accurate similarity calculations.

Cosine Similarity for Image Comparison

The program compares images using cosine similarity, a metric that measures the cosine of the angle between

two non-zero vectors in a multi-dimensional space. Mathematically, cosine similarity is expressed as:

Cosine Similarity=
𝐴⋅𝐵

∥𝐴∥∥𝐵∥

Where A and B are feature vectors of two images. The cosine similarity score ranges from -1 to 1, with 1 indicating

identical vectors (i.e., highly similar images), 0 indicating orthogonal vectors (i.e., dissimilar images), and -1 indi-

cating diametrically opposed vectors.

High Similarity Detection: The program calculates the cosine similarity between the feature vector of an up-

loaded image and the feature vectors of images in a pre-existing database. Images with the highest similarity

scores are considered to be potential duplicates.

92

Database Integration and Metadata Retrieval

In addition to image comparison, the program integrates with a database that contains metadata for the listings,

such as URLs to the listings on different platforms.

• Link Retrieval: For each similar image detected, the program retrieves the corresponding link from the

database, which points to the real estate listing on its respective platform. This allows users to easily

verify whether the listings are indeed duplicates.

• Database Query: The program queries the database using the unique identifiers (IDs) associated with the

images to fetch the URLs.

Graphical User Interface (GUI)

The program provides a user-friendly GUI where users can upload images, view the detected similar listings, and

interact with the data.

• Image Display: The GUI displays the uploaded image along with the top similar images found in the da-

tabase.

• Clickable Links: The links to the listings are displayed as clickable URLs, allowing users to quickly access

the listings on different platforms.

• Folder Access: The program provides buttons to open the local folder containing the images, facilitating

further investigation or manual verification of the images.

Application in Real Estate

In the context of real estate, this program serves as a tool for image similarity and detection of similar listings.

Real estate platforms often face issues with duplicate listings, which can confuse potential buyers and skew mar-

ket data. By detecting and flagging these duplicates, the program helps maintain a clean and reliable database of

property listings, ensuring that each property is represented accurately and uniquely across platforms.

The program presented is a GUI-based application designed to search and identify similar real estate property

listings based on an uploaded image. The main goal of the application is to detect potential duplicate listings from

different real estate agents or even the same agent across various platforms by comparing images of the proper-

ties.

93

Performance Evaluation of the Image Similarity Detection Program

The program presented is a GUI-based application designed to search and identify similar real estate property

listings based on an uploaded image. The main goal of the application is to detect potential duplicate listings from

different real estate agents or even the same agent across various platforms by comparing images of the proper-

ties.

The Image Similarity Search Tool, as shown in Figure bellow, offers a streamlined and user-friendly interface for

initiating searches by uploading images. Users can either click on the 'Upload Image' button or simply drag and

drop an image into the designated area. This flexibility enhances user engagement and accessibility, allowing for

quick comparisons of real estate images to identify potential duplicates or closely related properties.

Figure 19: UI of the image similarity app

94

This chapter presents the experimental results obtained from the deployment of the Image Similarity Program,

specifically designed to identify duplicate real estate listings across various online platforms. The experiments

were structured to assess both the accuracy and efficiency of the image similarity algorithms when applied to

diverse property images. The experiments were done on real word examples with images from our dataset as

long as other images that are not included in our dataset. The significance of these experiments lies in their

potential to transform how real estate listings are managed and searched, reducing redundancy and enhancing

user experience. The results are demonstrated through a combination of tabulated data and screenshots of the

user interface.

Experiment 1

Input image:

Resulting matching ids:

95

96

Results:

ID Similar Image ID Link
Similarity Percent-

age

1174261 117723897 https://www.spitogatos.gr/aggelia/117723897 100.00%

1174261 7723897
https://www.tospitimou.gr/polisi-diamerisma-Ampelokipoi-
Ampelokipoi-Pentagono/agelia/7723897?position=2748 100.00%

1174261 40965896
https://www.plot.gr/search/40965896-diamerisma-73-tm-
gia-pwlisi 99.09%

1174261 40975304
https://www.plot.gr/search/40975304-diamerisma-90-tm-
gia-pwlisi 85.58%

1174261 93075500 https://www.spiti24.gr/93075500 85.32%

1174261 15026600
https://www.tospitimou.gr/polisi-diamerisma-Thumarakia-
Attiki/agelia/15026600?position=5594 85.32%

The highest similarity scores (100.00%) achieved in this experiment confirm that the program can accurately

identify when two images represent the same property, even when those listings are from different platforms.

This accuracy was further validated through manual verification, where visits to the top three links confirmed

that they indeed correspond to the same real estate listing, albeit advertised on different platforms. This demon-

strates the program's robustness in identifying duplicates across disparate sources.

The similarity scores around 85% and lower also reveal the program's capability to detect subtler similarities that

may not be immediately apparent. This includes variations in camera angles, lighting conditions, and minor

changes in room arrangement, which are typical in real estate photography but do not necessarily indicate

97

different properties. By accounting for these nuances, the program proves useful not just in outright duplicate

detection but also in providing insights into listings that share many features but are photographed differently.

Implementing a threshold of 86.5% for similarity scoring in the Image Similarity Program allows us to balance

sensitivity and specificity, enhancing the tool's practical utility in real estate market applications. This adjustment

ensures that the program remains a reliable resource for identifying duplicate listings, supporting clearer, more

accurate real estate databases and improving user experience on digital real estate platforms. The next experi-

ments will be filtered to show only similar ids more than 86.5%.

Property on real estate platform 1:

Property on real estate platform 2:

98

Experiment 2

Input image:

Resulting matching ids:

99

Results:

The table below represents pairs of listings that were analyzed, including their IDs, the URLs for direct verification,

and the similarity scores obtained:

ID Similar Image ID Link Similarity Percentage

1117899 1117890 https://www.spiti24.gr/1117890 100.00%

1117899 117772411 https://www.spitogatos.gr/aggelia/117772411 100.00%

1117899 15400610

https://www.tospitimou.gr/polisi-diamerisma-
Plaka-Istoriko-Kentro/agelia/15400610?posi-
tion=1451 86.81%

1117899 1115351660
https://www.spitogatos.gr/ag-
gelia/1115351660 86.65%

1117899 41024148
https://www.plot.gr/search/41024148-diamer-
isma-110-tm-gia-pwlisi 86.56%

Listings with 100% similarity are confirmed duplicates. For instance ID 1174261 with Similar Image ID 117723897

and Similar Image ID 7723897 both returned a similarity score of 100%. Visiting these URLs confirmed that these

listings are indeed identical but posted on different platforms, showcasing the program's precision in identifying

exact matches. Similarly, ID 1117899 matched 100% with ID 1117890 and ID 117772411, confirming that the

program can detect duplicates without any error in these cases.

Listings with similarity scores in the high 80s to 99% indicate very close matches but with potential slight varia-

tions in the images due to factors like angle, lighting, or minor decor changes. For example ID 1174261 and ID

40965896 have a similarity score of 99.09%, suggesting an almost identical listing likely represented under slightly

different conditions. Lower scores around 85%, such as ID 1174261 with ID 93075500 or ID 15026600, still suggest

strong similarities. These could involve more noticeable changes in the photograph's setup but still represent the

same property.

100

Property on real estate platform 1:

Property on real estate platform 2:

101

Experiment 3

Input image:

Resulting matching ids:

102

Results:

ID
Similar Image

ID Link
Similarity Percent-
age

40903824 94667016 https://www.spiti24.gr/94667016 99.55%

40903824 40771551
https://www.plot.gr/search/40771551-diamer-
isma-96-tm-gia-pwlisi 92.78%

40903824 98987397 https://www.spiti24.gr/98987397 92.49%

40903824 93009251 https://www.spiti24.gr/93009251 89.96%

40903824 98006466 https://www.spiti24.gr/98006466 87.60%

40903824 1115501724 https://www.spitogatos.gr/aggelia/1115501724 87.38%

40903824 1918615 https://www.spiti24.gr/1918615 87.36%

40903824 1115209893 https://www.spitogatos.gr/aggelia/1115209893 87.13%

40903824 40909701
https://www.plot.gr/search/40909701-diamer-
isma-100-tm-gia-pwlisi 87.02%

40903824 93907960 https://www.spiti24.gr/93907960 86.87%

The results of the experiment conducted on the listing ID 1174261 illustrate the core problem statement of our

study—identifying and linking duplicate real estate listings that may be posted by different agents or on various

platforms. This listing is a prime example of how frequently the same property can be found across multiple

platforms, underscoring the necessity for an effective image similarity tool in the real estate market.

Analysis of Listing ID 1174261

Similarity Scores and Verification

103

• 100% Similarity Scores: The links associated with Similar Image IDs 117723897 and 7723897 both re-

turned 100% similarity scores. Upon manually verifying these URLs, it was confirmed that they indeed

represent the same property as ID 1174261, but were listed under different descriptions and possibly

by different agents on different platforms (Spitogatos.gr and Tospitimou.gr). We even detected this spe-

cific property in the same platform from different agents.

• High Similarity Scores: The other similarity scores ranging from 99.09% to 83.47% also demonstrate the

tool's capability to detect significant similarities that might not be outright duplications but share sub-

stantial features. These scores likely represent the same or very similar properties with variations in

how the photos were taken or processed, differences in staging, or updates over time.

Property on same real estate platform from different agents:

Property on different real estate platforms:

104

105

Conclusion and Future Work

The research undertaken in this thesis has successfully demonstrated the application of advanced web scraping

techniques, machine learning models for image similarity, and full-stack development using Django to create a

robust platform for real estate data analysis in Greece. The integration of these technologies has facilitated a

deeper understanding of the Greek real estate market, providing a comprehensive tool for users to access and

analyze property data efficiently.

• Key Contributions: The development of a system that not only automates the collection and processing

of real estate data but also implements a sophisticated image similarity algorithm to enhance user expe-

rience by recommending similar properties.

• Challenges Encountered: Among the challenges faced were dealing with data redundancy across multi-

ple platforms, ensuring data privacy and compliance with real estate regulations, and overcoming tech-

nical hurdles related to web scraping and data integration.

The development and implementation of web scraping systems for real estate data analysis, as detailed in this

thesis, have proven highly effective for gathering and processing information from Greek real estate platforms.

Given the success of these methods, there is a significant opportunity to extend the scope of these scraping

systems to encompass a broader array of platforms. This expansion would not only enhance the comprehensive-

ness of the data but also enrich the analysis capabilities of the system.

This thesis has laid a solid foundation for the application of web scraping and image similarity methods in analyz-

ing real estate properties in Greece. The proposed future directions aim to expand the scope and enhance the

capabilities of these systems, leveraging technological advances and responding to the evolving needs of the real

estate market.

Expanding Web Scraping to Broader Platforms

Global Expansion: Extending the web scraping system to include real estate platforms from different countries

and regions would provide a more comprehensive global market analysis. This requires adapting the scraping

tools to handle various languages and regional data formats, potentially incorporating automatic language trans-

lation and regional data normalization capabilities.

• Commercial and Industrial Properties: Expanding the scope to include commercial and industrial prop-

erties would diversify the data collected, providing insights into more sectors of the real estate market.

This involves customizing scraping parameters to capture unique features of these properties, such as

zoning information, commercial use, and facility specifications.

• Integration with Emerging Markets: Including platforms from emerging markets could uncover new in-

vestment opportunities and market trends that are not well-represented in traditional or established real

estate databases. This would involve overcoming challenges related to less standardized data presenta-

tion and lower digital presence.

Enhancing Image Similarity Methods

Advanced Algorithmic Approaches: Employing more sophisticated algorithms for image similarity could improve

the accuracy and efficiency of property comparisons. Techniques such as deep learning and neural networks

could be explored to enhance feature detection and matching processes.

106

Cross-Platform Image Analysis: Developing methods to analyze and compare images across different platforms

would help in identifying duplicate listings and providing a unified view of properties listed on multiple platforms.

This requires robust image processing tools capable of normalizing and comparing images from diverse sources.

Dynamic Image Analysis Tools: Implementing tools that allow dynamic interaction with image data, such as real-

time similarity scoring or interactive visualization of similar properties, would significantly enhance user engage-

ment and decision-making processes.

Addressing Data Privacy and Ethical Considerations

Data Privacy Protocols: As web scraping scales up, strict protocols must be established to ensure compliance

with international data privacy laws such as GDPR. This involves implementing secure data handling practices,

anonymizing personal data, and obtaining necessary permissions when scraping sensitive information.

Ethical Scraping Practices: Developing a code of conduct for ethical web scraping in real estate, which respects

website terms of use and avoids overloading servers, ensuring that scraping activities do not adversely affect the

performance or accessibility of the original data sources.

Transparency in Data Use: Maintaining transparency about the sources and methods of data collection and anal-

ysis, particularly when used in making investment decisions or policy recommendations, is essential to build trust

among users and stakeholders.

The potential expansions and enhancements proposed for the web scraping and image similarity systems are

poised to transform real estate data analysis fundamentally. By embracing a global perspective, diversifying prop-

erty types, and integrating advanced technological solutions, these systems can provide more accurate, compre-

hensive, and actionable insights. Additionally, addressing ethical and privacy concerns will ensure that these de-

velopments not only advance the field technically but also maintain the highest standards of integrity and respect

for individual rights. This forward-looking approach will position the research at the forefront of technological

innovation in real estate analysis, setting a benchmark for future academic and practical applications in the in-

dustry.

107

References

1. Guerrero Ramírez, Cuauhtémoc, Cerriteño Magaña, Javier, & Ramos, Diego. (2024). Exploring the Rental
Market Dynamics of the Guadalajara Metropolitan Area. Journal of Real Estate Research. [DOI:
10.13140/RG.2.2.30921.15203].

2. Kim, Sang-Yoon & Lee, Hye-Jin. (2024). Media Framing in the Digital Age: Interplay of Real Estate and Wel-
fare Narratives in South Korean News Articles. Asian Journal of Media Studies.

3. Johnson, Tyler & Wang, Li. (2024). Forecasting Housing Price Using GRU, LSTM, and Bi-LSTM for California.
Journal of Forecasting and Data Science.

4. Silva, Ricardo & Costa, Ana. (2024). Modelo Random Forest Aplicado a Precificação de Imóveis à Venda em
Aracaju, SE. Revista Brasileira de Engenharia e Tecnologia.

5. Patel, Anil & Shah, Ramesh. (2024). Enhancing Real Estate Market Insights through Machine Learning: Pre-
dicting Property Prices with Advanced Data Analytics. International Journal of Data Analytics.

6. Ahmed, Muhammad & Khan, Nadeem. (2024). Applying Machine Learning Models for Forecasting House
Prices – A Case of the Metropolitan City of Karachi. Pakistan Journal of Data Science.

7. Van den Berg, Peter & Janssens, Klaas. (2024). Scrimmo: A Real-Time Web Scraper Monitoring the Belgian
Real Estate Market. European Journal of Real Estate Technology.

8. Ivanov, Dmitry & Petrov, Sergey. (2024). ML-based Telegram Bot for Real Estate Price Prediction. Journal
of AI and Software Applications.

9. Zukauskas, Andrius & Mikalajunas, Rytis. (2024). Predictive Analytics Using Big Data for the Real Estate
Market During the COVID-19 Pandemic. Baltic Journal of Big Data.

10. Perera, Dilan & Silva, Tharindu. (2024). A Model for the Estimation of Land Prices in Colombo District Using
Web Scraped Data. Sri Lankan Journal of Real Estate Research.

11. Rodriguez, Carlos & Patel, Suman. (2024). Web Scraping or Web Crawling: State of Art, Techniques, Ap-
proaches and Application. Journal of Data Science and Applications.

12. Chen, Lin & Wong, Tony. (2024). Web Scraping Methods Used in Predicting Real Estate Prices. Interna-
tional Journal of Real Estate Analytics.

108

Code

image_similarity_training.py

import os

import numpy as np

import tensorflow as tf

from tensorflow.keras.applications import ResNet50

from tensorflow.keras.preprocessing.image import load_img, img_to_array

import logging

import json

Setup logging

logging.basicConfig(level=logging.INFO)

Load the saved features and IDs

features = np.load('features.npy')

ids = np.load('ids.npy')

Define the base path where the folders are stored

base_image_path = 'listing_images' # Replace with your actual path

List all folder names (IDs)

folder_ids = set(os.listdir(base_image_path))

Convert the unique IDs from the ids array into a set

vector_ids = set(np.unique(ids))

Find the IDs that are in the folder but not in the vector IDs

missing_ids = folder_ids - vector_ids

print(f"Total number of folders: {len(folder_ids)}")

print(f"Total number of unique IDs in vectors: {len(vector_ids)}")

print(f"Number of missing IDs: {len(missing_ids)}")

print(f"Missing IDs: {missing_ids}")

Initialize the model (ensure your TensorFlow is configured to use the

GPU)

base_model = ResNet50(weights='imagenet', include_top=False, pooling='avg')

109

model = tf.keras.models.Model(inputs=base_model.input, out-

puts=base_model.output)

def extract_features(image_path, model):

 try:

 img = load_img(image_path, target_size=(224, 224))

 img_array = img_to_array(img)

 img_array = np.expand_dims(img_array, axis=0)

 img_array = tf.keras.applications.resnet50.preprocess_input(img_ar-

ray)

 features = model.predict(img_array)

 return features.flatten()

 except Exception as e:

 logging.error(f"Error processing {image_path}: {e}")

 return None

def list_dir_with_retry(directory, max_retries=3, wait_time=5):

 retries = 0

 while retries < max_retries:

 try:

 return os.listdir(directory)

 except Exception as e:

 logging.warning(f"Error accessing {directory}: {e}. Retrying in

{wait_time} seconds...")

 time.sleep(wait_time)

 retries += 1

 logging.error(f"Failed to access {directory} after {max_retries} re-

tries.")

 return None

def append_to_npy(file_path, new_data):

 if new_data.size == 0: # Ensure there's something to append

 logging.warning(f"No new data to append to {file_path}. Skipping.")

 return

 if os.path.exists(file_path):

 existing_data = np.load(file_path)

 if existing_data.shape[-1] != new_data.shape[-1]:

110

 logging.error(f"Shape mismatch: existing data shape {exist-

ing_data.shape} and new data shape {new_data.shape}.")

 return

 combined_data = np.concatenate((existing_data, new_data))

 else:

 combined_data = new_data

 np.save(file_path, combined_data)

Paths and settings

output_features_file = 'features.npy'

output_ids_file = 'ids.npy'

checkpoint_file = 'checkpoint.json'

features_list = []

ids_list = []

images_to_process = 10000 # Number of images to process per run

processed_images = 0 # Counter for processed images

Load checkpoint if it exists and is valid

if os.path.exists(checkpoint_file):

 try:

 with open(checkpoint_file, 'r') as f:

 checkpoint = json.load(f)

 start_folder = checkpoint.get('last_folder', None)

 start_image = checkpoint.get('last_image', None)

 except (json.JSONDecodeError, ValueError) as e:

 logging.warning(f"Checkpoint file is empty or corrupted: {e}.

Starting from the beginning.")

 checkpoint = {}

 start_folder = None

 start_image = None

else:

 checkpoint = {}

 start_folder = None

 start_image = None

111

Process only the missing folders

missing_folders = sorted(list(missing_ids))

start_index = missing_folders.index(start_folder) if start_folder else 0

for folder_index in range(start_index, len(missing_folders)):

 folder_name = missing_folders[folder_index]

 folder_path = os.path.join(base_image_path, folder_name)

 if os.path.isdir(folder_path):

 logging.info(f"Processing folder {folder_index + 1}/{len(miss-

ing_folders)}: {folder_name}")

 images = list_dir_with_retry(folder_path)

 if images is None:

 continue # Skip this folder if it couldn't be accessed

 start_img_index = images.index(start_image) if folder_name ==

start_folder and start_image else 0

 for image_index in range(start_img_index, len(images)):

 image_name = images[image_index]

 image_path = os.path.join(folder_path, image_name)

 logging.info(f"Processing image {image_name} in folder

{folder_name}...")

 features = extract_features(image_path, model)

 if features is not None:

 features_list.append(features)

 ids_list.append(folder_name)

 processed_images += 1

 # Save checkpoint and stop if the limit is reached

 if processed_images >= images_to_process:

 checkpoint = {'last_folder': folder_name, 'last_image': im-

age_name}

 with open(checkpoint_file, 'w') as f:

 json.dump(checkpoint, f)

 logging.info(f"Processed {processed_images} images. Check-

point saved. Exiting.")

112

 # Convert to numpy arrays for appending

 features_array = np.array(features_list)

 ids_array = np.array(ids_list)

 # Append new features and IDs to existing files

 append_to_npy(output_features_file, features_array)

 append_to_npy(output_ids_file, ids_array)

 break # Exit the loop after saving the checkpoint

 if processed_images >= images_to_process:

 break # Exit the outer loop if processing limit is reached

Convert to numpy arrays for appending

features_array = np.array(features_list)

ids_array = np.array(ids_list)

Append the final batch of features and IDs to existing files

append_to_npy(output_features_file, features_array)

append_to_npy(output_ids_file, ids_array)

logging.info(f"Final save after processing {processed_images} images.")

logging.info("Feature extraction completed.")

113

test_image_similarity.py

import os

import numpy as np

import tensorflow as tf

from tensorflow.keras.applications import ResNet50

from tensorflow.keras.preprocessing.image import img_to_array

from sklearn.metrics.pairwise import cosine_similarity

import tkinter as tk

from tkinter import ttk, filedialog

from tkinterdnd2 import DND_FILES, TkinterDnD

from PIL import Image, ImageTk

import logging

from sklearn.preprocessing import normalize

import subprocess

import sys

import pyodbc

import webbrowser

Database connection string

connection_string = (

 'DRIVER={ODBC Driver 17 for SQL Server};'

 'SERVER=localhost;'

 'DATABASE=listings;'

 'UID=sa;'

 'PWD=*******;'

 'TrustServerCertificate=yes;'

)

Load the saved features and IDs

features = np.load('features.npy')

ids = np.load('ids.npy')

Normalize features

features = normalize(features)

Setup logging

logging.basicConfig(level=logging.INFO)

114

Check if GPU is available and set memory growth

gpus = tf.config.list_physical_devices('GPU')

if gpus:

 try:

 for gpu in gpus:

 tf.config.experimental.set_memory_growth(gpu, True)

 print(f"GPU(s) available: {gpus}")

 except RuntimeError as e:

 print(f"Error setting GPU memory growth: {e}")

else:

 print("No GPU found, using CPU.")

Initialize the model

with tf.device('/GPU:0' if gpus else '/CPU:0'):

 base_model = ResNet50(weights='imagenet', include_top=False, pool-

ing='avg')

 model = tf.keras.models.Model(inputs=base_model.input, out-

puts=base_model.output)

Path to images

base_image_path = 'listing_images'

def extract_features(image, model):

 img_array = img_to_array(image)

 img_array = np.expand_dims(img_array, axis=0)

 img_array = tf.keras.applications.resnet50.preprocess_input(img_array)

 features = model.predict(img_array)

 return features.flatten()

def find_similar_images(uploaded_image_features, selected_id, top_n=10):

 similarities = cosine_similarity(uploaded_image_features, features)

 similar_indices = similarities[0].argsort()[::-1]

 unique_similar_ids = {}

 for idx in similar_indices:

 similar_id = ids[idx]

115

 if similar_id != selected_id and similar_id not in unique_simi-

lar_ids: # Exclude the same ID and duplicates

 unique_similar_ids[similar_id] = similarities[0][idx]

 if len(unique_similar_ids) >= top_n:

 break

 return list(unique_similar_ids.keys()), list(unique_similar_ids.val-

ues())

def get_link_from_database(id):

 try:

 with pyodbc.connect(connection_string, timeout=10) as conn:

 cursor = conn.cursor()

 cursor.execute("SELECT Link FROM listings WHERE ID = ?", id)

 link = cursor.fetchone()

 return link[0] if link else "No link found"

 except Exception as e:

 print(f"Failed to retrieve link from database: {str(e)}")

 return "No link found"

def get_links_from_database(similar_ids):

 links = []

 try:

 with pyodbc.connect(connection_string, timeout=10) as conn:

 cursor = conn.cursor()

 for similar_id in similar_ids:

 cursor.execute("SELECT Link FROM listings WHERE ID = ?",

similar_id)

 link = cursor.fetchone()

 if link:

 links.append(link[0])

 else:

 links.append("No link found")

 except Exception as e:

 print(f"Failed to retrieve links from database: {str(e)}")

 return links

def open_folder(similar_id):

116

 folder_path = os.path.join(base_image_path, similar_id)

 if os.path.exists(folder_path):

 if os.name == 'nt': # Windows

 os.startfile(folder_path)

 elif os.name == 'posix': # macOS or Linux

 subprocess.Popen(['open', folder_path] if sys.platform == 'dar-

win' else ['xdg-open', folder_path])

 else:

 print(f"Folder {folder_path} does not exist.")

def open_link(event, link):

 webbrowser.open_new_tab(link)

def display_similar_images(uploaded_image, selected_id, similar_ids, simi-

larity_scores, links):

 # Clear previous results

 for widget in results_frame.winfo_children():

 widget.destroy()

 # Store references to PhotoImage objects to prevent garbage collection

 image_refs = []

 # Display the query image and its ID

 uploaded_image.thumbnail((200, 200))

 img = ImageTk.PhotoImage(uploaded_image)

 image_refs.append(img) # Keep a reference

 query_panel = ttk.Label(results_frame, image=img, text=f"Selected ID:

{selected_id}", compound=tk.TOP, font=("Helvetica", 10, "bold"))

 query_panel.grid(row=0, column=0, padx=10, pady=10)

 # Display the link for the selected image

 selected_link = get_link_from_database(selected_id) # Fetch the link

for the selected image

 selected_link_label = ttk.Label(results_frame, text=f"Link: {se-

lected_link}", foreground="blue", cursor="hand2")

 selected_link_label.grid(row=2, column=0, padx=10, pady=5)

 selected_link_label.bind("<Button-1>", lambda e: open_link(e, se-

lected_link))

117

 # Add a button to open the folder containing the searched image

 open_button_query = ttk.Button(results_frame, text="Open Folder", com-

mand=lambda: open_folder(selected_id))

 open_button_query.grid(row=1, column=0, padx=10, pady=5)

 # Display similar images with listing IDs, similarity scores, and links

 total_similarity = 0 # Track total similarity for accuracy calculation

 for i, (similar_id, score, link) in enumerate(zip(similar_ids, similar-

ity_scores, links)):

 total_similarity += score

 similar_image_path = os.path.join(base_image_path, similar_id,

os.listdir(os.path.join(base_image_path, similar_id))[0])

 similar_img = Image.open(similar_image_path)

 similar_img.thumbnail((200, 200))

 img = ImageTk.PhotoImage(similar_img)

 image_refs.append(img) # Keep a reference

 similar_panel = ttk.Label(results_frame, image=img, text=f"ID:

{similar_id}\nSimilarity: {score:.2%}", compound=tk.TOP, font=("Helvetica",

10))

 similar_panel.grid(row=0, column=i+1, padx=10, pady=10)

 # Add a clickable link

 link_label = ttk.Label(results_frame, text=f"Link: {link}", fore-

ground="blue", cursor="hand2")

 link_label.grid(row=2, column=i+1, padx=10, pady=5)

 link_label.bind("<Button-1>", lambda e, url=link: open_link(e,

url))

 # Add a button to open the folder containing the similar image

 open_button = ttk.Button(results_frame, text="Open Folder", com-

mand=lambda id=similar_id: open_folder(id))

 open_button.grid(row=1, column=i+1, padx=10, pady=5)

 # Calculate and display the average accuracy

 average_similarity = (total_similarity / len(similar_ids)) * 100 #

Convert to percentage

 accuracy_label = ttk.Label(results_frame, text=f"Average Similarity:

{average_similarity:.2f}%", foreground="green", font=("Helvetica", 12,

"bold"))

118

 accuracy_label.grid(row=3, column=0, columnspan=len(similar_ids) + 1,

pady=10) # Adjust columnspan dynamically

 # Store the references in the results_frame to ensure they persist

 results_frame.image_refs = image_refs

def on_open_file(file_path=None):

 if not file_path:

 file_path = filedialog.askopenfilename()

 if file_path:

 selected_id = os.path.basename(os.path.dirname(file_path))

 uploaded_image = Image.open(file_path)

 uploaded_image_resized = uploaded_image.resize((224, 224))

 uploaded_image_features = extract_features(uploaded_image_resized,

model).reshape(1, -1)

 uploaded_image_features = normalize(uploaded_image_features) #

Normalize features

 # Find similar images

 similar_ids, similarity_scores = find_similar_images(uploaded_im-

age_features, selected_id)

 # Retrieve links from the database

 links = get_links_from_database(similar_ids)

 # Display the results

 display_similar_images(uploaded_image, selected_id, similar_ids,

similarity_scores, links)

def on_drag_and_drop(event):

 file_path = event.data

 if file_path.startswith("{") and file_path.endswith("}"):

 file_path = file_path[1:-1]

 on_open_file(file_path)

Initialize the TkinterDnD application

119

root = TkinterDnD.Tk()

root.title("Image Similarity Search")

root.geometry("1000x700") # Set window size

Configure the style

style = ttk.Style(root)

style.theme_use('clam')

Header Frame

header_frame = ttk.Frame(root, padding=20)

header_frame.pack(fill=tk.X)

Header Label

header_label = ttk.Label(header_frame, text="Image Similarity Search",

font=("Helvetica", 24, "bold"), foreground="#004080")

header_label.pack()

Top Frame for Upload and Drop Zone

top_frame = ttk.Frame(root, padding=20)

top_frame.pack(fill=tk.X, padx=20, pady=20)

Button to open file dialog

upload_button = ttk.Button(top_frame, text="Upload Image", com-

mand=on_open_file, style="Accent.TButton")

upload_button.pack(side=tk.LEFT, padx=10)

Label for drag-and-drop

drop_label = ttk.Label(top_frame, text="or Drag and Drop an Image Here",

background="lightgray", relief="solid", padding=20, font=("Helvetica", 12))

drop_label.pack(fill=tk.BOTH, expand=True, padx=10)

Results Frame to show query image and similar images

results_frame = ttk.Frame(root, padding=20, borderwidth=2, relief="solid")

results_frame.pack(fill=tk.BOTH, expand=True, padx=20, pady=20)

Enable drag and drop

root.drop_target_register(DND_FILES)

root.dnd_bind('<<Drop>>', on_drag_and_drop)

120

root.mainloop()

121

Spitogatos.py

import requests

from bs4 import BeautifulSoup

import pandas as pd

import os

import warnings

import urllib3

proxy = "http://***********:@proxy.zenrows.com:8001"

def fetch_page_content(url, proxies):

 try:

 response = requests.get(url, proxies=proxies, verify=False)

 response.raise_for_status()

 return response.content

 except requests.RequestException as e:

 print(f"Error fetching page {url}: {e}")

 return None

def parse_page_content(content, existing_ids, property_type):

 soup = BeautifulSoup(content, 'html.parser')

 property_divs = soup.find_all('div', class_='tile__content')

 property_data = []

 for div in property_divs:

 link_element = div.find('a', class_='tile__link')

 link = link_element.get('href') if link_element else ''

 id_part = str(link.split('/')[-1]) if link else ''

 if id_part not in existing_ids:

 location = div.find('h3', class_='tile__location').text.strip()

 full_link = f'www.spitogatos.gr{link}' if link else ''

 property_info = {

 'Id': id_part,

 'Link': full_link,

 'property_Type': property_type

 }

122

 property_data.append(property_info)

 return property_data

def save_to_csv(data, filename):

 df = pd.DataFrame(data)

 # remove duplicate ids if any

 df = df.drop_duplicates(subset='Id', keep='first')

 # save the data

 if os.path.isfile(filename):

 df.to_csv(filename, mode='a', index=False, encoding='utf-8-sig',

header=False)

 else:

 df.to_csv(filename, mode='a', index=False, encoding='utf-8-sig')

def get_transaction_type():

 print("Choose the transaction type:")

 print("1: Pwliseis (Sales)")

 print("2: Enoikiaseis (Rentals)")

 choice = input("Enter your choice (1 or 2): ").strip()

 return "pwliseis" if choice == "1" else "enoikiaseis"

def get_property_type():

 print("Choose the property type to scrape:")

 print("1: Katoikies (Residences)")

 print("2: Epaggelmatikoi Xwroi (Commercial Spaces)")

 print("3: Gi (Land)")

 print("4: Loipa Akinita (Other Properties)")

 choice = input("Enter your choice (1-4): ").strip()

 property_types = {

 "1": "katoikies",

 "2": "epaggelmatikoi_xwroi",

 "3": "gi",

 "4": "loipa_akinita"

 }

123

 return property_types.get(choice, "katoikies")

def get_region():

 print("Choose the region:")

 print("1: Athina Voreia Proastia (North Suburbs of Athens)")

 print("2: Athina Notia Proastia (South Suburbs of Athens)")

 print("3: Athina Dytika Proastia (West Suburbs of Athens)")

 print("4: Athina Kentro (Central Athens)")

 choice = input("Enter your choice (1-4): ").strip()

 # here are some of spitogatos regions. This list will be updated

 regions = {

 "1": "athina-voreia-proastia",

 "2": "athina-notia-proastia",

 "3": "athina-dytika-proastia",

 "4": "athina-kentro"

 }

 return regions.get(choice, "athina-kentro")

def scrape_spitogatos_listings():

 transaction_type = get_transaction_type()

 property_type = get_property_type()

 region = get_region()

 proxies = {"http": proxy, "https": proxy}

 # Suppress InsecureRequestWarning

 warnings.filterwarnings('ignore', category=urllib3.exceptions.Inse-

cureRequestWarning)

 # Get the directory of the current script

 script_dir = os.path.dirname(os.path.abspath(__file__))

 # Set the filename with the script directory path

 filename = os.path.join(script_dir, f'spitogatos_listings.csv')

 # Get starting and ending page numbers from the user

124

 start_page = int(input("Enter the starting page number: "))

 end_page = int(input("Enter the ending page number: "))

 existing_ids = set()

 if os.path.isfile(filename):

 existing_df = pd.read_csv(filename, dtype={'Id': str})

 existing_ids = set(existing_df['Id'])

 for pnum in range(start_page, end_page + 1):

 url = f"https://www.spitogatos.gr/{transaction_type}-{prop-

erty_type}/{region}/selida_{pnum}"

 print(f"Scraping page: {url}")

 content = fetch_page_content(url, proxies)

 if content:

 property_data = parse_page_content(content, existing_ids, prop-

erty_type) # Pass property_type here

 save_to_csv(property_data, filename)

 # Update existing_ids to include new IDs

 for item in property_data:

 existing_ids.add(item['Id'])

Main execution

if __name__ == "__main__":

 scrape_spitogatos_listings()

import pandas as pd

from urllib.parse import urlparse

import requests

from bs4 import BeautifulSoup

import os

from datetime import datetime

import logging # Import the logging module

import warnings

import re

from urllib3.exceptions import InsecureRequestWarning # Import Inse-

cureRequestWarning

125

proxy = "http://f6ec51b68a3be984bc347e0656b0476154b744be:@proxy.zen-

rows.com:8001"

proxies = {"http": proxy, "https": proxy}

Configure logging

logging.basicConfig(filename='scraping_log.txt', level=logging.INFO, for-

mat='%(asctime)s - %(levelname)s - %(message)s')

Function to scrape data from a single URL

def scrape_property_data(url):

 # Temporarily suppress the InsecureRequestWarning

 warnings.filterwarnings("ignore", category=InsecureRequestWarning)

 # Perform a GET request to the URL

 response = requests.get(url, proxies=proxies, verify=False)

 if response.status_code != 200:

 print(f"Failed to retrieve data from {url}")

 return None

 # Parse the page content

 soup = BeautifulSoup(response.text, 'html.parser')

 print(f"Scraping page: {url}")

 # Extract the desired data

 # Initialize lists to store feature data

 # indoor_features = []

 # outdoor_features = []

 # construction_features = []

 # good_for = []

 # Extract the desired feature data

 parsed_url = urlparse(url)

 path_segments = parsed_url.path.split("/")

 Id = path_segments[-1]

 image_elements = soup.select('.property__gallery__item img')

 # Extract the src attributes of the image elements

 image_links = [img['src'] for img in image_elements]

 # Find the <p> element with class "property__description" and extract

its text

126

 description_element = soup.find('div', class_='property__description')

 if description_element:

 description_text = description_element.text.strip()

 else:

 description_text = 'n/a'

 # Find the element with class "property__address" and extract

its text

 property_address_element = soup.find('span', class_='property__ad-

dress')

 if property_address_element:

 property_address = property_address_element.text.strip()

 else:

 property_address = 'n/a'

 # Extract agency information

 agency_element = soup.select_one('div.agencyInfo a')

 if agency_element:

 agency_name = agency_element.get('title', 'n/a')

 else:

 agency_name = 'n/a'

 # Extract details into a dictionary

 details = {}

 # Add property_title and property_address to the details dictionary

 details["Id"] = Id

 details['link'] = url

 details["Title"] = description_text

 details["Address"] = property_address

 details["images"] = image_links

 details['Agency'] = agency_name

 details['description'] = description_text

 # Log the property ID to the logging file

 logging.info(f"Scraped property with ID: {Id}")

 # Locate the section containing property details

127

 details_section = soup.find('dl', class_='property__details')

 if details_section:

 # Find all <dt> and <dd> elements within the details section

 details_elements = details_section.find_all('dt')

 values_elements = details_section.find_all('dd')

 # Loop through details and values, and add them to the dictionary

 for detail, value in zip(details_elements, values_elements):

 detail_text = detail.text.strip()

 value_text = value.text.strip()

 # Check if a value exists before adding it to the dictionary

 if value_text:

 details[detail_text] = value_text

 # Initialize an empty list to store indoor benefits

 indoor_benefits = []

 # Initialize an empty list to store outdoor features

 outdoor_features_list = []

 # Initialize empty lists to store construction features and good-for

elements

 construction_features_list = []

 good_for_list = []

 # Extract indoor features

 indoor_section = soup.find("ul", {"data-test-id": "indoor"})

 if indoor_section:

 indoor_elements = indoor_section.select('li')

 for li in indoor_elements:

 svg_element_indoor = li.find('svg', class_='on icon sprite-

icons')

 if svg_element_indoor:

 svg_class = svg_element_indoor['class'] # Get the class

attribute of the SVG

 indoor_text = li.find('span').text.strip()

 if indoor_text != 'n/a':

 indoor_benefits.append(indoor_text)

128

 # Extract outdoor features

 outdoor_section = soup.find("ul", {"data-test-id": "outdoor"})

 if outdoor_section:

 outdoor_elements = outdoor_section.select('li')

 for li in outdoor_elements:

 svg_element_outdoor = li.find('svg', class_='on icon sprite-

icons')

 if svg_element_outdoor:

 svg_class = svg_element_outdoor['class'] # Get the class

attribute of the SVG

 outdoor_text = li.find('span').text.strip()

 if outdoor_text != 'n/a':

 outdoor_features_list.append(outdoor_text)

 # Extract construction features

 construction_section = soup.find("ul", {"data-test-id": "construc-

tion"})

 if construction_section:

 construction_elements = construction_section.select('li')

 for li in construction_elements:

 construction_element = li.find('svg', class_='on icon sprite-

icons')

 if construction_element:

 construction_class = construction_element['class'] # Get

the class attribute of the SVG

 construction_text = li.find('span').text.strip()

 if construction_text != 'n/a':

 construction_features_list.append(construction_text)

 # Extract good for

 good_for_section = soup.find("ul", {"data-test-id": "goodfor"})

 if good_for_section:

 good_for_elements = good_for_section.select('li')

 for li in good_for_elements:

 good_for_element = li.find('svg', class_='on icon sprite-

icons')

 if good_for_element:

129

 good_for_element_class = good_for_element['class'] # Get

the class attribute of the SVG

 good_for_element_text = li.find('span').text.strip()

 if good_for_element_text != 'n/a':

 good_for_list.append(good_for_element_text)

 # Join feature values into single strings

 indoor_benefits_str = ", ".join(indoor_benefits)

 construction_features_str = ", ".join(construction_features_list)

 good_for_str = ", ".join(good_for_list)

 outdoor_features_str = ", ".join(outdoor_features_list)

 # Concatenate all feature values into a single row

 feature_data = {

 "Indoor_features": indoor_benefits_str,

 "Outdoor_features": outdoor_features_str,

 "Construction_features": construction_features_str,

 "Good_for": good_for_str,

 }

 # Combine property details and feature data into a single dictionary

 combined_data = {**details, **feature_data}

 return combined_data

Read the CSV file with listing URLs

csv_file = 'spitogatos_listings.csv'

df_urls = pd.read_csv(csv_file)

Initialize an empty DataFrame to store the scraped data

df = pd.DataFrame()

Loop through each URL in the list and scrape data

for url in df_urls['Link']:

 # Check if the URL starts with 'http://' or 'https://'

 if not url.startswith('http://') and not url.startswith('https://'):

 # Add 'https://' to the URL

 url = 'https://' + url

130

 # Check if the URL has already been scraped by looking for its ID in

the log file

 parsed_url = urlparse(url)

 path_segments = parsed_url.path.split("/")

 Id = path_segments[-1]

 if f"Scraped property with ID: {Id}" in open('scrap-

ing_log.txt').read():

 print(f"This property with ID {Id} has already been scraped.")

 continue # Skip this property

 scraped_data = scrape_property_data(url)

 if scraped_data:

 # Create a DataFrame for the current property and append it to

df_scraped_data

 df_property = pd.DataFrame([scraped_data])

 df = pd.concat([df, df_property], ignore_index=True)

 print(df)

def process_dataframe(df, columns_mapping):

 # Rename the columns based on the mapping

 df.rename(columns=columns_mapping, inplace=True)

 # # Reorder and drop columns based on the SQL database order

 return df

Mapping of Greek column names to the SQL column names

columns_mapping = {

 "Τιμή": "Price",

 "Τιμή ανά τ.μ.": "price_per_sqm",

 "Εμβαδόν": "Area",

 "Επίπεδα": "levels",

 "Όροφος": "floor",

 "Κουζίνες": "kitchens",

 "Μπάνια": "bathrooms",

 "WC": "WC",

 "Σαλόνια": "living_rooms",

 "Σύστημα θέρμανσης": "heating",

 "Ενεργειακή κλάση": "energy_class",

131

 "Έτος κατασκευής": "Construction_year",

 "Έτος ανακαίνισης": "renovation_year",

 "Απόσταση απο τη θάλασσα": "sea_distance",

 "Κωδικός Συστήματος": "system_code",

 "Κωδικός Ακινήτου": "code",

 "Διαθέσιμο από": "available_from",

 "Δημοσίευση αγγελίας": "published",

 "Τελευταία ενημέρωση": "last_updated"

}

Apply the function

df = process_dataframe(df, columns_mapping)

def clean_price(price_string):

 # If it's already a float (or not a string), return as is

 if not isinstance(price_string, str):

 return price_string

 # Split the string by non-digit characters and filter out empty splits

 numbers = [part for part in re.split('\D+', price_string) if part]

 # Join the numbers into one string and convert to float

 if len(numbers) > 0:

 cleaned = ''.join(numbers)

 return float(cleaned)

 else:

 return None

Check if the DataFrame is not empty

if not df.empty:

 # Apply the function to the 'Price' column

 df['Price'] = df['Price'].apply(clean_price)

 # Uncomment the following line if 'price_per_sqm' column exists and

needs cleaning

 # df['price_per_sqm'] = df['price_per_sqm'].apply(clean_price)

132

 # Check the updated 'Price' column

 print(df['Price'].head())

 # Construct the 'Title' column

 df['Title'] = 'Προς πώληση ' + df['Address'].astype(str) + ' ' +

df['Area'].astype(str)

 # Drop the duplicates if there are any

 df = df.drop_duplicates(subset='Id', keep='first')

 # Convert 'Id' in both DataFrames to string

 df['Id'] = df['Id'].astype(str)

 df_urls['Id'] = df_urls['Id'].astype(str)

 # Perform the inner join on 'Id' column

 df = pd.merge(df, df_urls[['Id', 'property_Type']], on='Id', how='in-

ner')

 # Save the DataFrame to a CSV file

 timestamp = datetime.now().strftime("%Y_%m_%d_%H_%M")

 file_name = f'spitogatos{timestamp}.csv'

 if not os.path.isfile(file_name):

 df.to_csv(file_name, mode='w', index=False, encoding='utf-8-sig')

Write with header

 else:

 df.to_csv(file_name, mode='a', index=False, encoding='utf-8-sig')

133

plot.py

Get the listings

import os

import time

import re

import pandas as pd

from bs4 import BeautifulSoup

from sqlalchemy import create_engine

import pyodbc

from datetime import datetime

import pandas as pd

from sqlalchemy import create_engine, text

from sqlalchemy import inspect

import requests

proxy = "http://******************:@proxy.zenrows.com:8001"

proxies = {"http": proxy, "https": proxy}

Create a dictionary to store the scraped data

data_dict = {}

Create a list to store the dictionaries

data = []

Get the current timestamp

timestamp = datetime.now()

Convert the datetime object to a string in the desired format

timestamp = timestamp.strftime('%Y-%m-%d %H:%M:%S')

Loop through the pages

for pnum in range(1, 2): # num_pages + 1 because range is exclusive at the

end

 try:

 url = f"https://www.plot.gr/search/?category=20004&context=map-

search&location=32&sort=cr&pg={pnum}"

 print(f"Scraping page: {url}")

 # Navigate to the webpage

134

response = requests.get(url)

 response = requests.get(url, proxies=proxies, verify=False)

 # Wait for the page to load

 time.sleep(3)

 soup = BeautifulSoup(response.content, 'html.parser')

 listings = soup.find_all('div')

 for listing in listings:

 title_element = listing.find('h2', class_='title')

 description_element = listing.find('span', class_='text-muted

test')

 price_element = listing.find('div', class_='price-tag current-

price')

 if title_element and description_element and price_element:

 title = title_element.text.strip()

 property_type = description_element.text.strip()

 price = price_element.text.strip()

 anchor = listing.find('a', class_='row-anchor')

 if anchor:

 link = 'http://www.plot.gr' + anchor['href']

 Id = link.split('-')[0].split('/')[-1]

 # Extract the location

 location_element = listing.find('div', class_='text-

muted loc')

 if location_element:

 location = location_element.span.text.strip()

 else:

 location = None

Extract the last modified information

last_modified_element = listing.find('div',

class_='last-mod')

if last_modified_element:

last_modified = last_modified_ele-

ment.span.text.strip()

135

else:

last_modified = None

 link_dict = {'Id': Id, 'type': property_type, 'title':

title, 'link': link, 'location': location, 'timestamp': timestamp}

 data.append(link_dict)

 print(data)

 pnum += 1

 except Exception as e:

 print(f"An error occurred: {e}")

 continue

#convert to pandas dataframe

plot_data = pd.DataFrame(data)

plot_data = plot_data.drop_duplicates(subset='Id', keep='first')

Generate a timestamp using the current date and time

timestamp = datetime.now().strftime("%Y_%m_%d_%H_%M")

Construct the file name with the timestamp

file_name = f'plot.gr_{timestamp}.csv'

file_name = f'plot.gr.csv'

Check if the file exists

if not os.path.isfile(file_name):

 plot_data.to_csv(file_name, mode='a', index=False, encoding='utf-8-

sig') # Write with header

else:

 plot_data.to_csv(file_name, mode='a', index=False, encoding='utf-8-

sig', header=False) # Append without writing header

Get more details by clicking every link

Define the output directory for saving images

output_directory = 'images'

Create the output directory if it doesn't exist

os.makedirs(output_directory, exist_ok=True)

136

Read the CSV file with links

csv_file_path = 'plot.gr.csv'

proxy = "http://f6ec51b68a3be984bc347e0656b0476154b744be:@proxy.zen-

rows.com:8001"

proxies = {"http": proxy, "https": proxy}

df = pd.read_csv(csv_file_path, encoding='utf-8-sig')

Initialize an empty list to store the scraped data

property_data = []

row_data = {}

Iterate through the links

for index, row in df.iterrows():

 try:

 link = row['link']

 # Extract the listing ID from the URL

listing_id = link.split('/')[-1]

 # Add the row data to the data list

 property_data.append(row_data)

 # Print the URL being scraped

 print(f"Scraping data for Listing URL: {link}")

 # Make a GET request to the webpage

 response = requests.get(link, proxies=proxies, verify=False)

 if response.status_code == 200:

 # Parse the HTML content of the webpage

 soup = BeautifulSoup(response.content, 'html.parser')

 # Find the specifications table

 spec_table = soup.find('div', attrs={'id': 'specification-

table'})

137

 # If the specifications table doesn't exist, skip this listing

 if spec_table is None:

 print(f"Could not find specifications table on {link}")

 continue

 # Initialize a dictionary to hold the scraped data

 row_data = {'Id': listing_id}

 # Find all the specification labels and values

 specs = spec_table.find_all('span', attrs={'class': 'spec'})

 for spec in specs:

 # Extract the label and value

 label = spec.find('span', attrs={'class': 'spec-la-

bel'}).text.strip()

 value = spec.find('span', attrs={'class': 'spec-val-

ue'}).text.strip()

 # Check if the label is one of the expected labels

 if label in row_data:

 # Add the value to the dictionary

 row_data[label] = value

 else:

 None

 # Find the benefits

 t = soup.find('ul', class_='tw-grid tw--my-2 tw-grid-cols-12

tw-gap-2.5')

 if t:

 text = t.get_text(strip=True)

 benefits = ''.join(c if c.islower() or not c.isalpha() else

' ' + c for c in text).strip()

 row_data['benefits'] = benefits

 # Find all divs with the class 'tw-break-words html tw-text-

base'

 elements = soup.find_all('div', class_='tw-break-words html tw-

text-base')

138

 # Initialize a dictionary to hold the text from both divs

 descriptions = {'Description': ''}

 # Find the specification table

 spec_table = soup.find('div', {'id': 'specification-table'})

 # Initialize a dictionary to store the extracted data

 data = {}

 # Find and extract individual specifications

 for spec in spec_table.find_all('span', class_='spec'):

 label = spec.find('span', class_='spec-label').text.strip()

 value = spec.find('span', class_='spec-value').text.strip()

 data[label] = value

 # Print the extracted data

 for label, value in data.items():

 print(f"{label}: {value}")

 # Iterate over the divs

 for i, element in enumerate(elements):

 # Get the text and remove unwanted newline characters

 text = element.get_text(strip=True)

 text = text.replace('\r\n\r\n', ' ')

 # Save the text to the appropriate key in the dictionary

 descriptions[f'Description{i + 1}'] = text

 # Add the descriptions to the row data

 row_data.update(descriptions)

 # Find all image tags with src attributes that end with ".jpg"

or ".jpeg"

 jpeg_images = soup.find_all('img', src=lambda x:

x.endswith(('.jpg', '.jpeg')))

 # Extract src attribute from jpeg_images and keep only the

links

 image_links = [img['src'] for img in jpeg_images]

Save each image

139

for i, img_url in enumerate(image_links):

response = requests.get(img_url, proxies=proxies, ver-

ify=False)

Save the image as 'listing_id_0.jpg', 'list-

ing_id_1.jpg', etc.

filename = f"{str(listing_id)}_{i}.jpeg"

filepath = os.path.join(output_directory, filename)

with open(filepath, 'wb') as out_file:

out_file.write(response.content)

 # Add urls to row_data with key 'images'

 row_data['images'] = image_links

 # Add the row data to the data list

 property_data.append(row_data)

 # Print a success message

 print(f"Finished scraping Id: {listing_id}")

 # Scrape real estate agent details

 agent_div = soup.find('div', {'data-v-67356525': ""})

 if agent_div:

 # Extract the agent's name

 agent_name_tag = agent_div.find('a', class_='tw-text-2xl

tw-font-semibold tw-break-all')

 if agent_name_tag:

 agent_name = agent_name_tag.text.strip()

 else:

 agent_name = 'Ιδιώτης'

 # Extract the agent's address

 agent_address_tag = agent_div.find('div', class_='tw-py-2')

 if agent_address_tag:

 agent_address = agent_address_tag.get_text(separator='

', strip=True)

 else:

 agent_address = 'Not found'

140

 # Extract the agent's location

 if ',' in agent_address:

 agent_location = agent_address.split(',')[1].strip()

 else:

 agent_location = 'Not found'

 else:

 agent_name = 'Ιδιώτης' # Or whatever default value you

want

 agent_address = 'Not found' # Or whatever default value

you want

 agent_location = 'Not found' # Or whatever default value

you want

 # Save the details to the row_data dictionary

 row_data['AgentName'] = agent_name

 row_data['AgentAddress'] = agent_address

 row_data['AgentLocation'] = agent_location

 print("Finished scraping all rows")

 # Combine row_data with data

 row_data.update(data)

 # Print all scraped details for this listing

 print("Scraped details for Listing ID:", listing_id)

 for key, value in row_data.items():

 print(f"{key}: {value}")

 # Add the row data to the data list

 property_data.append(row_data)

 # Print a success message

 print(f"Finished scraping Id: {listing_id}")

 except requests.exceptions.Timeout:

 print(f"Timeout while trying to scrape {link}. The listing might be

deleted or the website structure might have changed.")

 continue

141

 except Exception as e:

 print(f"An error occurred: {e}")

 finally:

 print("Finished")

Convert the list of dictionaries to a DataFrame

df = pd.DataFrame(property_data)

Rename columns and remove colons

df.rename(columns={

 'Νούμερο αγγελίας:': 'Id',

 'Κατηγορία:': 'Category',

 'Τιμή:': 'Price',

 'Περιοχή:': 'Location',

 'Τιμή ανά τ.μ.:': 'Price_per_sqm',

 'Εμβαδόν:': 'Area',

 'Έτος κατασκευής:': 'Year_Built',

 'Σύστημα θέρμανσης:': 'Heating_System',

 'Χώροι:': 'Rooms',

 'Μέσο θέρμανσης:': 'Heating_Medium',

 'Ενεργειακή κλάση:': 'Energy_Class',

 'Όροφος:': 'Floor',

 'Τελευταία αλλαγή:': 'Last_Change',

 'Εμφανίσεις αγγελίας:': 'Ad_Views',

 'Σύνδεσμος:': 'Link',

 'Τηλέφωνο:': 'Phone',

 'Διαθέσιμο από:': 'Available_From',

 'Υπνοδωμάτια:': 'Bedrooms',

 'Μπάνια:': 'Bathrooms',

 'Κωδικός ακινήτου:': 'Property_Code',

 'Ζώνη:': 'Zone'

}, inplace=True)

Reorder the columns to have 'Ad Number' as the first column

df = df[['Id'] + [col for col in df.columns if col != 'Ad Number']]

142

Remove colons from the column names

df.columns = df.columns.str.replace(':', '')

Display the DataFrame

print(df)

timestamp = datetime.now().strftime("%Y_%m_%d_%H_%M")

Construct the file name with the timestamp

file_name = f'plot_details_{timestamp}.csv'

#drop the duplicates if there are any

df = df.drop_duplicates(subset='Id', keep='first')

Check if the file exists

if not os.path.isfile(file_name):

 df.to_csv(file_name, mode='a', index=False, encoding='utf-8-sig') #

Write with header

else:

 df.to_csv(file_name, mode='a', index=False, encoding='utf-8-sig',

header=False) # Append without writing header

Print a message when scraping and saving is complete

print("Scraping and saving complete.")

Perform the join on 'Id'

df = plot_data.merge(df, on='Id', how='inner')

tospitimou.py

#!/usr/bin/env python

coding: utf-8

Imports

import os

143

import time

import re

import pandas as pd

import requests

from bs4 import BeautifulSoup

from sqlalchemy import create_engine, inspect

from datetime import datetime

import logging

Setup logging

logging.basicConfig(

 filename="scraping_log.txt",

 level=logging.INFO,

 format="%(asctime)s:%(levelname)s:%(message)s",

)

Proxy configuration

proxy = "http://f6ec51b68a3be984bc347e0656b0476154b744be:@proxy.zen-

rows.com:8001"

proxies = {"http": proxy, "https": proxy}

Function to scrape data

def scrape_data():

 data = []

 url_base = "https://www.tospitimou.gr/akinita/poliseis/katoikies/Ken-

tro-Athinas/area-ids_%5B100%5D,category_residential,floor-number-

high_ground-floor?sortBy=price%7Casc&page="

 for pnum in range(1, 3):

 url = f"{url_base}{pnum}"

 try:

 time.sleep(10)

 response = requests.get(url, proxies=proxies, verify=False)

 soup = BeautifulSoup(response.content, 'html.parser')

 property_divs = soup.find_all('div', class_='search-result-in-

ner')

 for property_div in property_divs:

 data_row = extract_property_data(property_div)

144

 if data_row:

 data.append(data_row)

 logging.info(f"Scraped page: {url}")

 except Exception as e:

 logging.error(f"Failed to scrape page {url}: {e}")

 continue

 # Store data

 df = pd.DataFrame(data)

 store_data(df, 'tospitimou_data.csv')

Function to extract property data

def extract_property_data(property_div):

 try:

 title = property_div.find('h2', class_='searchRe-

sultsH2').text.strip()

 link = property_div.find('a')['href']

 image_url = property_div.find('img', class_='bg-image-un-

veil')['data-src']

 price = property_div.find('div', class_='result-

price').text.strip()

 # Additional details like area, price per sq.m, bedrooms could be

added here

 return {'Title': title, 'Link': link, 'Image URL': image_url,

'Price': price}

 except AttributeError as e:

 logging.error(f"Error extracting data: {e}")

 return None

Function to store data

def store_data(df, file_name):

 if not os.path.isfile(file_name):

 df.to_csv(file_name, index=False, encoding='utf-8-sig')

 else:

 df.to_csv(file_name, mode='a', index=False, encoding='utf-8-sig',

header=False)

145

Main function

def main():

 scrape_data()

 print("Scraping and saving complete.")

if __name__ == "__main__":

 main()

import pandas as pd

import requests

from bs4 import BeautifulSoup

import urllib3

from datetime import datetime

import os

import logging

Setup logging

logging.basicConfig(

 filename="scraping_log.txt",

 level=logging.INFO,

 format="%(asctime)s:%(levelname)s:%(message)s"

)

Proxy and requests setup

proxy_user = 'f6ec51b68a3be984bc347e0656b0476154b744be'

proxy = f"http://{proxy_user}:@proxy.zenrows.com:8001"

proxies = {"http": proxy, "https": proxy}

urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

Read scraped links if available

def read_scraped_links(file_path):

 try:

 with open(file_path, 'r') as f:

 return [link.strip() for link in f.readlines()]

 except FileNotFoundError:

 return []

def scrape_properties(df_links, scraped_links):

146

 property_list = []

 for link in df_links['Link']:

 property_id = link.split("/")[-1].split("?")[0]

 logging.info(f"Scraping: {link}")

 if f"Scraped property with ID: {property_id}" in scraped_links:

 logging.info(f"Skipping already scraped property with ID:

{property_id}")

 continue

 response = requests.get(link, proxies=proxies, verify=False)

 soup = BeautifulSoup(response.content, 'html.parser')

 property_info = extract_property_data(soup, property_id)

 if property_info:

 property_list.append(property_info)

 logging.info(f"Scraped property with ID: {property_id}")

 else:

 logging.error(f"Failed to scrape property with ID: {prop-

erty_id}")

 return property_list

def extract_property_data(soup, property_id):

 try:

 data = {

 "Id": property_id,

 "Title": soup.find('h1', class_='listing-title').text.strip()

if soup.find('h1', class_='listing-title') else 'n/a',

 "Price": soup.find('span', class_='property-

info2').text.split(',')[0].strip() if soup.find('span', class_='property-

info2') else 'n/a',

 "Area": soup.find('span', class_='property-

info2').text.split(',')[1].strip() if soup.find('span', class_='property-

info2') else 'n/a',

 "Photo_count": soup.find('span', class_='photo-

count').text.split()[0] if soup.find('span', class_='photo-count') else

'N/A',

 "Images": [a.get('href') for a in soup.find('div',

class_='photo-gallery').find_all('a')] if soup.find('div', class_='photo-

gallery') else [],

147

 "Description": soup.find('div', class_='panel-

body').find('p').text.strip() if soup.find('div', class_='panel-body') and

soup.find('div', class_='panel-body').find('p') else 'n/a',

 "Latitude": soup.find('div', class_='marker').get('data-lat')

if soup.find('div', class_='marker') else None,

 "Longitude": soup.find('div', class_='marker').get('data-lng')

if soup.find('div', class_='marker') else None,

 "Amenities": [li.text.strip() for li in soup.find('ul',

class_='property-amenities list-unstyled').find_all('li')] if

soup.find('ul', class_='property-amenities list-unstyled') else []

 }

 return data

 except Exception as e:

 logging.error(f"Error extracting property data: {e}")

 return None

def save_data(data, file_name):

 df = pd.DataFrame(data)

 if not os.path.isfile(file_name):

 df.to_csv(file_name, index=False, encoding='utf-8-sig')

 else:

 df.to_csv(file_name, mode='a', index=False, encoding='utf-8-sig',

header=False)

 logging.info("Data saved successfully.")

def main():

 df_links = pd.read_csv('tospitimou_data.csv')

 scraped_links = read_scraped_links('scraping_log.txt')

 property_list = scrape_properties(df_links, scraped_links)

 file_name = f'tospitimou_de-

tails_{datetime.now().strftime("%Y_%m_%d_%H_%M")}.csv'

 save_data(property_list, file_name)

 print("Scraping and saving complete.")

if __name__ == "__main__":

 main()

148

spiti_24.py

Get the data

from bs4 import BeautifulSoup

import requests

import pandas as pd

import time

import os

from scrapingbee import ScrapingBeeClient

from bs4 import BeautifulSoup

import requests

import pandas as pd

import time

import os

import pyodbc

import pandas as pd

import os

import http.client

List to store scraped data

data = []

Define the database connection details

username = 'DESKTOP-P8GGH21\HP'

Define the database connection string

server = 'localhost'

database = 'real_estate_staging'

conn_str = f'DRIVER={{ODBC Driver 17 for SQL Server}};SERVER={server};DATA-

BASE={database};Trusted_Connection=yes;UID={username}'

url = f"https://www.spiti24.gr/pwliseis/katoikies/pollaples-peri-

oxes/area-ids_101,100?page={pnum}"

proxy = "http://***************:@proxy.zenrows.com:8001"

proxies = {"http": proxy, "https": proxy}

Loop through the pages

for pnum in range(1, 2):

 try:

149

 url = f"https://www.spiti24.gr/pwliseis/katoikies/athina-ken-

tro?sortBy=datemodified%7Cdesc&page={pnum}"

 print(f"Scraping page: {url}")

 response = requests.get(url, proxies=proxies, verify=False)

 # Parse the page content

 soup = BeautifulSoup(response.content, 'html.parser')

 time.sleep(5) # Waits for 5 seconds before executing next line

 # Parse the page content

 # Wait for the page to load

 time.sleep(3)

 response = requests.get(url, proxies=proxies, verify=False)

print(response.text)

 # Find the listings on the page

 listings = soup.find_all('div', class_=['property__top'])

 for listing in listings:

 # Initial data dictionary

 listing_data = {

 "Id": None,

 "link": None,

 "price": None,

 "title": None,

 "region": None,

"bedrooms": None,

"bathrooms": None,

 }

 link_element = listing.find('a')

 if link_element:

 link = link_element['href'].strip() # Remove extra spaces

using strip()

 number_id = link.split('/')[-1].split('?')[0]

 listing_data["Id"] = number_id

 listing_data["link"] = 'https://www.spiti24.gr/' + num-

ber_id

150

 price_element = listing.find('span', class_='property__price')

 symbol_element = listing.find('span', class_='prop-

erty__price__symbol')

 if price_element and symbol_element:

 price = price_element.get_text(strip=True)

 symbol = symbol_element.get_text(strip=True)

 listing_data["price"] = price + symbol

 title_parts_element = listing.find('ul', class_='property__ti-

tle__parts')

 if title_parts_element:

 title_element = title_parts_element.find('li', class_=None)

 region_element = title_parts_element.find('li',

class_=None).find_next_sibling('li')

 if title_element and region_element:

 title = title_element.get_text(strip=True)

 region = region_element.get_text(strip=True)

 listing_data["title"] = title

 listing_data["region"] = region

 # Find all span tags with the class 'small-tooltip'

 extras_element = listing.find_all('span', {'class': 'small-

tooltip'})

 for extra in extras_element:

 if "Bedroom" in extra.get('title', ''):

 listing_data["bedrooms"] = extra.text.strip()

 elif "Bathroom" in extra.get('title', ''):

 listing_data["bathrooms"] = extra.text.strip()

 # Print and add the listing data to the main data list

 print(listing_data)

 print("----------------------------------")

 data.append(listing_data)

151

 time.sleep(10) # Waits for 10 seconds before executing next line

 except Exception as e:

 print(f"Error occurred: {str(e)}")

 continue # Continue to the next iteration of the loop

Convert the list of dictionaries to a DataFrame

df = pd.DataFrame(data)

Generate a timestamp using the current date and time

timestamp = datetime.now().strftime("%Y_%m_%d_%H_%M")

#store the file

if not os.path.isfile('spiti24_data.csv'):

 df.to_csv('spiti24_data.csv', mode='a', index=False, encoding='utf-8-

sig') # Write with header

else:

 df.to_csv('spiti24_data.csv', mode='a', index=False, encoding='utf-8-

sig', header=False) # Append without writing header

Define the DataFrame containing the scraped data

df = pd.DataFrame(data)

Get more details

import pandas as pd

import requests

from bs4 import BeautifulSoup

import os

Read the CSV file with links

csv_file_path = 'spiti24_data.csv'

proxy = "http://*********************:@:js_render=true&anti-

bot=true@proxy.zenrows.com:8001"

proxies = {"http": proxy, "https": proxy}

df = pd.read_csv(csv_file_path)

Initialize an empty list to store the scraped data

152

property_data = []

Iterate through the links

for index, row in df.iterrows():

 link = row['link']

 # Extract the listing ID from the URL

 listing_id = link.split('/')[-1]

 # Print the URL being scraped

 print(f"Scraping data for Listing ID: {listing_id}")

 # Make a GET request to the webpage

 response = requests.get(link, proxies=proxies, verify=False)

 if response.status_code == 200:

 # Parse the HTML content of the webpage

 soup = BeautifulSoup(response.content, 'html.parser')

 # Extract the image URLs

 image_divs = soup.find_all('div', class_='property__gal-

lery__thumb')

 image_urls = [div.find('a')['href'] for div in image_divs]

 # Store the image URLs in a list

 image_list = []

 for image_url in image_urls:

 image_list.append(image_url)

 # Extract the data you want

 property_title = soup.find('h1').text.strip()

 property_area = soup.find('strong').text.strip()

 property_price = soup.find('span', class_='price').text.strip()

 # Extract the property description or other additional details

153

 property_description = soup.find('div', class_='property__sec-

tion__content').text.strip()

 # Extract the additional property details

 ul_element = soup.find('ul', class_='property__extrainfo')

 extra_info = {}

 if ul_element:

 li_elements = ul_element.find_all('li')

 for li in li_elements:

 li_text = li.get_text(strip=True)

 label, value = li_text.split(':', 1)

 label = label.strip()

 value = value.strip()

 extra_info[label] = value

 # Extract the additional property details table

 additional_details_table = soup.find('table', class_='table')

 additional_details = {}

 if additional_details_table:

 rows = additional_details_table.find_all('tr')

 for row in rows:

 columns = row.find_all(['th', 'td'])

 if len(columns) == 2:

 key = columns[0].text.strip()

 value = columns[1].text.strip()

 additional_details[key] = value

 # Print the extracted additional property details

 for key, value in additional_details.items():

 print(f"{key}: {value}")

 # Extract latitude and longitude

 marker_div = soup.find('div', class_='marker')

 latitude = None

 longitude = None

154

 if marker_div:

 latitude = marker_div.get('data-lat')

 longitude = marker_div.get('data-lng')

 # Create a dictionary to store all the data for this property

 property_dict = {

 'Id': listing_id,

 'Title': property_title,

 'Area': property_area,

'Price': property_price,

 'Description': property_description,

 'images': image_list,

 'Latitude': latitude,

 'Longitude': longitude,

 **extra_info,

 **additional_details # Include additional details

 }

 # Add the additional details to the property_dict

 #property_dict.update(additional_details)

 for key, value in additional_details.items():

 property_dict[key] = value

 # Append the property data to the list

 property_data.append(property_dict)

 # Print the details for this property

 print("Property Details:")

 for key, value in property_dict.items():

 print(f"{key}: {value}")

 print("\n" + "="*40 + "\n") # Separate property details with a

line

Convert the list of dictionaries to a DataFrame

output_df = pd.DataFrame(property_data)

155

Generate a timestamp using the current date and time

timestamp = datetime.now().strftime("%Y_%m_%d_%H_%M")

Construct the file name with the timestamp

file_name = f'spiti24_details_{timestamp}.csv'

#drop the duplicates if there are any

df = output_df.drop_duplicates(subset='Id', keep='first')

Define a dictionary to map the old column names to the new ones

column_mapping = {

 'Listing ID': 'Id',

 'Property Title': 'Title',

 'Property Area': 'Area',

 'Property Price': 'Price',

 'Property Description': 'Description',

 'Image URLs': 'images',

 'Latitude': 'latitude',

 'Longitude': 'longitude',

 'Δημοσίευση αγγελίας': 'publication_date',

 'Τελευταία Ενημέρωση': 'last_update',

 'Κωδικός ακινήτου': 'property_code',

 'Κωδικός για μεσίτη': 'agent_code',

'Τιμή': 'price',

 'Τιμή ανά τ.μ.': 'price_per_sqm',

 'Περιοχή': 'location',

 'Ζώνη': 'zone',

 'Έτος κατασκευής': 'year_built',

 'Θέρμανση': 'heating',

 'Ενεργειακή κλάση': 'energy_class',

 'Όροφος': 'floor',

 'Επίπεδα': 'levels',

 'Πάρκινγκ': 'parking',

 'Κουζίνες': 'kitchens',

 'Καθιστικά': 'living_rooms',

 'Μπάνια': 'bathrooms',

 'Κατάσταση': 'condition',

156

 'Χρήση': 'use',

 'Άλλο': 'other',

 'Έτος ανακαίνισης': 'renovation_year',

 'WC': 'wc',

 'Date available': 'available_date',

 'Μισθωμένο': 'rented',

 'Διεύθυνση': 'address'

}

Rename the columns using the mapping

df.rename(columns=column_mapping, inplace=True)

Display the DataFrame with the updated column names

print(df)

Check if the file exists

if not os.path.isfile(file_name):

 df.to_csv(file_name, mode='a', index=False, encoding='utf-8-sig') #

Write with header

else:

 df.to_csv(file_name, mode='a', index=False, encoding='utf-8-sig',

header=False) # Append without writing header

Print a message when scraping and saving is complete

print("Scraping and saving complete.")

Perform the join on 'Id'

df = plot_data.merge(df, on='Id', how='inner')

Print a message when scraping and saving is complete

print("Scraping and saving complete.")

Store in database

from sqlalchemy import create_engine, text

from sqlalchemy import inspect

Database storage

Define the database connection details

157

username = 'DESKTOP-P8GGH21\HP'

Define the database connection string

server = 'localhost'

database = 'listings'

driver = 'ODBC Driver 17 for SQL Server'

Create the SQLAlchemy engine

engine = create_engine(f'mssql+pyodbc://{server}/{data-

base}?driver={driver}&Trusted_Connection=yes')

Create an inspector

inspector = inspect(engine)

Check if the table exists

if "spiti_24" in inspector.get_table_names():

 # If it does, then get the existing IDs

 existing_ids_df = pd.read_sql_query("SELECT listing_id FROM spiti_24",

engine)

else:

 print("Table does not exist")

If 'Id' is a list, join the list into a string

if isinstance(df['Id'].iloc[0], list):

 df['Id'] = df['Id'].apply(lambda x: ','.join(map(str, x)))

 # # Convert 'Id' column in both DataFrames to set for comparison

 # existing_ids = set(existing_ids_df['listing_id'])

 new_ids = set(df['Id'])

 # Get the unique Ids that are not in the SQL database

 unique_ids = new_ids - existing_ids

 # Filter the DataFrame to include only rows with unique Ids

 details_df_unique = df[df['Id'].isin(unique_ids)]

 # Append the DataFrame to the SQL table

 details_df_unique.to_sql('spiti_24', con=engine, if_exists='append',

index=False)

158

else:

 df.to_sql('spiti_24', con=engine, if_exists='append', index=False)

Close the engine

engine.dispose()

	Contents
	Figures
	Abstract
	Introduction
	Problem Statement
	Structure
	Objective
	Background
	Scope
	Research Questions
	Literature Integration

	Literature Review
	Web Scraping
	The Role of Web Scraping in Data-Driven Industries
	Types of Web Data Extraction
	Detailed Steps in Web Scraping
	Detailed Overview of Technologies Used in Web Scraping
	Data Management Tools for Web Scraping
	Challenges in Web Scraping
	Application of Web Scraping in Real Estate
	Legal and Ethical Considerations:

	Machine Learning in Real Estate
	Application of Machine Learning in Real Estate
	Theoretical and Mathematical Background
	Predictive Modeling in Real Estate
	Image Similarity Methods
	Image similarity on real estate properties
	Key Techniques and Their Mathematical Foundations

	Django for Full-Stack Development
	Origins and Philosophy
	Usage in Full-Stack Development
	Machine Learning Integration:
	Core Features of Django ORM
	Benefits in Real Estate Applications

	Methodology
	Overview of the Web Scraping Pipeline
	Targeted Real Estate Platforms
	Data Integration and Storage
	Technical Architecture
	Challenges and Solutions
	Overview of the Web Scraping Pipeline
	Design Principles and Objectives
	Technical Workflow

	Implementation Details
	Explanation of Data Structure for Each Web Platform
	Data Unification Approach
	Database Management and Data Integration
	Object-Relational Mapping (ORM)
	Implementation of the Django Full Stack Application
	Image similarity model training
	Integration of Image Similarity Algorithm

	Results
	Dataset Description
	Images dataset
	Image similarity model results
	Django app results
	Performance Evaluation of the Image Similarity Detection Program

	Conclusion and Future Work
	References
	Code

		2024-09-27T12:46:58+0300
	Paris Mastorokostas

		2024-09-27T12:51:49+0300
	Panagiota Tselenti

		2024-09-27T13:01:23+0300
	ANASTASIOS KESIDIS

