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Abstract 

The dynamic and complex nature of the real estate market, especially in regions like Greece with its diverse plat-

forms and non-standardized content, poses significant challenges in data collection and analysis. This thesis pre-

sents a comprehensive system that integrates advanced web scraping techniques, machine learning models, and 

a full-stack Django-based application to significantly enhance the collection, processing, and analysis of real es-

tate data. Central to this system is an innovative image similarity model, designed to improve the detection and 

comparison of real estate properties based on visual content, thereby enabling a more sophisticated analysis of 

market dynamics. 

At the core of this system is the development of an image similarity model utilizing the ResNet50 architecture, 

optimized for visual recognition tasks within the real estate domain. The dataset, which includes images collected 

from Greek real estate platforms, is processed through a pre-trained ResNet50 model, fine-tuned to extract fea-

ture embeddings rather than perform direct classification. These images undergo preprocessing, including nor-

malization and resizing to 224x224 pixels, to align with the input requirements of the ResNet50 model. The model 

then generates a 2048-dimensional feature vector for each image, effectively capturing its visual characteristics. 

These vectors are stored systematically for efficient retrieval and comparison in image similarity tasks. 

The system is fortified with robust data management techniques, such as checkpointing and error handling, en-

suring reliable processing of large-scale datasets. By leveraging the pre-trained ResNet50 model, the system 

achieves high accuracy in image similarity tasks while minimizing computational overhead, offering a scalable 

and efficient solution for real estate image analysis. 
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Introduction 

The advent of digital technology has markedly transformed the real estate landscape, particularly in Greece 

where platforms such as Spitogatos, XE, Tospitimou, Plot, and Spiti24 have emerged as pivotal resources. These 

platforms aggregate a wealth of property data, fundamentally altering how properties are marketed, searched, 

and analyzed. The digital transition has not only democratized access to real estate information but has also 

streamlined the process of buying and selling properties, making it more transparent and accessible to a broader 

audience. 

As beneficial as this digitization has been, it also presents notable challenges. Chief among these is the issue of 

duplicated listings across multiple platforms, which can clutter the search experience and obscure market in-

sights. This redundancy complicates effective data management and necessitates sophisticated analytical strate-

gies to ensure that consumers and real estate professionals can extract meaningful insights from the wealth of 

available data. Moreover, the digital aggregation of property listings raises questions about data accuracy, privacy, 

and the ethical use of such information. 

In addressing these challenges, there is a clear need for innovative solutions that can enhance the efficiency of 

searching and analyzing real estate data while safeguarding the integrity and privacy of the information. As such, 

the role of technology in real estate is not only about facilitating access but also about enhancing the quality and 

reliability of the information provided, ensuring that it serves the best interests of all market participants. 

To maximize the benefits of web scraping in the real estate sector, it is crucial to integrate scraped data with 

advanced analytical tools. Machine learning models can be applied to predict market trends and evaluate invest-

ment opportunities based on historical data. Additionally, image recognition technology can be used to enhance 

listing recommendations by analyzing property photos to identify similar features. 

In conclusion, web scraping is a transformative tool in the digital real estate landscape, providing key advantages 

in data collection and market analysis. However, it must be used responsibly, with careful consideration of legal, 

ethical, and technical challenges. By effectively integrating web scraping with robust analytical tools, real estate 

professionals can unlock deeper insights into the market, driving smarter investment and business decisions in 

the Greek real estate sector. 
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Problem Statement 

A particularly pressing issue is the existence of listings that, while representing the same property, appear on 

multiple platforms with variations such as different agents or photographs. This phenomenon not only compli-

cates the process of property comparison and market analysis but also impacts the accuracy of data-driven in-

sights in the real estate sector. This thesis focuses on addressing this challenge through the development of a 

Django-based web platform that not only aggregates real estate listings from major Greek platforms but also 

employs an innovative image-based algorithm to detect and consolidate duplicate listings. By leveraging web 

scraping techniques to collect data and applying image recognition technologies, this project aims to streamline 

the property search process, enhance data quality, and provide deeper insights into the Greek real estate market. 

Listings of the same property appearing across different web platforms, represented by various agents or with 

differing presentation elements (such as photos), create a fragmented view of the market. This fragmentation 

leads to difficulties in aggregating a coherent dataset that accurately reflects property availability, pricing, and 

characteristics. The challenge lies in the ability to effectively identify and consolidate these disparate listings into 

singular, comprehensive entries that accurately represent individual properties in the market analysis. 

The development of such an algorithm is poised to significantly enhance the quality and reliability of real estate 

data, thereby improving market analysis, pricing strategies, and decision-making processes for stakeholders in 

the real estate sector. It addresses a critical gap in current data management practices, offering a pathway to 

more accurate and actionable market insights. Furthermore, this research contributes valuable knowledge to the 

fields of data science and real estate technology, pushing the boundaries of how data can be intelligently pro-

cessed and utilized.  
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Structure 

This thesis is meticulously organized to present a coherent and thorough examination of the integration of web 

scraping, machine learning, and full-stack development technologies in analyzing the Greek real estate market. 

The structure of the thesis is simplified into five main chapters, each designed to build upon the previous to 

comprehensively address the research questions and objectives: 

Chapter 1: Introduction 

This introductory chapter sets the stage for the research by outlining the thesis's scope, objectives, and signifi-

cance. It defines the research questions that guide the study and explains the rationale behind the chosen meth-

odologies and technologies, particularly focusing on how they apply to the real estate sector in Greece. 

Chapter 2: Literature Review 

This chapter provides a critical review of the relevant academic and industry literature, serving as the foundation 

for the methodologies used in the thesis. It covers: 

• Core Technologies: An overview of web scraping, machine learning, and Django full-stack development, 

highlighting key advancements and their relevance to the thesis. 

• Web Scraping: Detailed exploration of web scraping techniques, including legal and ethical considera-

tions crucial for compliance and effective data gathering. 

• Image Similarity Methods: Discussion on various image processing algorithms and machine learning 

techniques, such as CNNs and feature matching, that are essential for analyzing real estate images. 

• Machine Learning in Real Estate: Analysis of how machine learning is used in real estate for tasks like 

image recognition and predictive modeling, and its impact on enhancing decision-making processes. 

• Django for Full-Stack Development: Examination of Django's architecture and its role in developing scal-

able, data-driven applications within the real estate domain. 

 

Chapter 3: Methodology and Implementation 

Merging methodology with practical implementation, this chapter describes both the theoretical frameworks 

and their application: 

• Data Collection Techniques: Strategies and tools developed for scraping real estate data from various 

platforms. 

• Image Processing and Machine Learning: Methods used for preprocessing images and developing ma-

chine learning models to identify similarities and differences in property images. 

• Technological Stack: Insight into the use of Django and other tools in crafting the application, focusing 

on how these technologies were integrated to support data processing and user interaction. 

• Scraping Tools and Database Management: Implementation details of the scraping tools, database 

schema design and data normalization. 

• Machine Learning Pipeline and Django Application Architecture: This section of the chapter has detailed 

the methodologies and implementation strategies for the machine learning pipeline, the Django applica-

tion architecture, and the Image Similarity UI. By combining advanced machine learning techniques with 

a user-friendly interface, the application provides a robust tool for identifying and comparing real estate 

images based on visual similarity. 
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Chapter 4: Results and Discussion 

This chapter presents the experimental results of the image similarity algorithm, alongside insights derived from 

the statistical analysis of the collected data and the evaluation of the Django application. The chapter is structured 

into four main sections: data analysis, model evaluation, application usability, and a broader discussion of the 

implications for the Greek real estate market. 

 

Chapter 5: Conclusion and Future Work 

This final chapter provides a summary of the research findings, highlights the key contributions, and discusses 

the challenges encountered during the study. It also offers suggestions for future research and development. 
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Objective 

This thesis aims to tackle the fragmentation of real estate listings by developing an innovative algorithm capable 

of identifying and consolidating listings across multiple platforms that, despite differences in representation, per-

tain to the same property. The focus is on leveraging sophisticated web scraping techniques to gather data from 

a variety of online sources and employing advanced matching algorithms that can recognize listings of the same 

property across different platforms and agents.  

This thesis aims to bridge the gap in real estate data aggregation by designing and implementing a sophisticated 

web scraping framework that extracts real estate listings from Greece's major online platforms. The cornerstone 

of this project is the development of a novel image-based algorithm capable of identifying and consolidating 

listings that, despite variations in agent representation or presentation elements, correspond to the same prop-

erty. This dual approach, combining advanced web scraping techniques with a state-of-the-art matching algo-

rithm, seeks to create a unified, de-duplicated dataset of real estate listings, which will serve as a more accurate 

and reliable foundation for market analysis and decision-making. 

This thesis is dedicated to addressing the issue of fragmented real estate listings by crafting a comprehensive 

solution that integrates cutting-edge web scraping methodologies with a robust image-based matching algo-

rithm. The objective is twofold: first, to develop a sophisticated web scraping framework capable of systematically 

harvesting real estate listings from prominent Greek online platforms, and second, to design and implement an 

innovative algorithm that identifies and merges listings of the same property across these platforms, regardless 

of variations in agent representation or presentation elements such as photos. 

To achieve this, the research will leverage the power of Python for web scraping, utilizing the libraries Beautiful-

Soup and Selenium and re for efficient data extraction. These tools are chosen for their ability to handle the 

complexities of modern web structures, enabling the automated collection of vast amounts of data with precision 

and resilience against common anti-scraping defenses. 

Concurrently, this project will utilize Django, a high-level Python web framework, to develop a dynamic web plat-

form. This platform will not only serve as the repository for the aggregated real estate listings but also as the 

interface through which users can interact with the consolidated data. Django's robustness and scalability make 

it the ideal choice for managing the backend of the project, facilitating data storage, processing, and presentation 

through a user-friendly web application. 

The innovative algorithm at the heart of this thesis will utilize image recognition technologies to compare and 

identify listings with matching property images, a critical step in consolidating duplicate entries. By combining 

image analysis with textual data comparison, the algorithm aims to establish a high degree of accuracy in detect-

ing listings that, despite superficial differences, represent the same property. 

This integrated approach, combining sophisticated web scraping techniques with advanced image-based match-

ing and the development of a Django-based web platform, aims to bridge the gap in real estate data aggregation. 

The ultimate goal is to create a unified, de-duplicated dataset of real estate listings that provides a more accurate 

and reliable foundation for market analysis and enhances decision-making processes for stakeholders in the real 

estate sector. Through this research, we aim to push the boundaries of data science and real estate technology, 

offering new methodologies for intelligently processing and utilizing real estate data. 
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The primary objective of this thesis is to develop and evaluate a comprehensive system that utilizes advanced 

web scraping techniques and machine learning models to extract, process, and analyze real estate listings from 

various Greek real estate platforms. This system aims to leverage the power of image similarity methods to en-

hance the detection and comparison of real estate properties, thereby facilitating a more sophisticated and ac-

curate analysis of the real estate market in Greece.  
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Background 

The real estate market is not only a crucial component of the global economy but also a primary indicator of a 

nation's economic health and stability. This is especially true in Greece, where real estate plays a pivotal role due 

to its direct ties to both domestic economic activities and the extensive tourist industry. This section outlines the 

historical context of real estate market analysis, the transition to digital methods, and the specific challenges and 

opportunities within the Greek market. 

Importance of Real Estate in Greece 

In Greece, the real estate sector contributes significantly to the national economy. It not only offers substantial 

investment opportunities but also serves as a key driver of related industries such as construction, hospitality, 

and retail. The unique appeal of Greece's landscape—ranging from urban centers like Athens to popular island 

destinations such as Santorini and Crete—further amplifies the complexity and attractiveness of its real estate 

market. Additionally, Greece's real estate market has been a focal point for both local and international investors, 

particularly after the financial crisis of the late 2000s when property values fluctuated markedly. 

Evolution from Traditional to Digital Analysis 

Traditionally, real estate market analysis in Greece, as in many parts of the world, has relied heavily on manual 

data collection methods, including physical surveys and paper-based tracking. These methods are not only labor-

intensive but also prone to errors and biases, which can skew market understanding and decision-making. The 

digital era has ushered in a new wave of data collection and analysis methodologies, characterized by the use of 

online platforms for real estate listings and transactions. This digital shift offers vast amounts of data that can be 

harvested and analyzed much more efficiently and accurately than ever before. 

Challenges in the Greek Real Estate Market 

Despite the availability of digital tools, the Greek real estate market poses unique challenges: 

• Data Fragmentation: Unlike markets in some other countries, Greek real estate data is often scattered 

across various platforms and not standardized, which complicates aggregation and analysis. 

• Economic Volatility: The economic instability in Greece over the past decade has led to volatile real estate 

prices and investment patterns, requiring more dynamic and responsive analysis tools. 

• Regulatory Environment: Greece’s regulatory framework for real estate is complex and often changes, 

impacting the collection and utilization of real estate data. 

Opportunities for Technological Integration 

The transition to digital data analysis opens up several opportunities: 

• Advanced Data Analytics: Leveraging big data technologies and machine learning can transform raw data 

into insightful analytics, providing a deeper understanding of market trends and buyer behavior. 

• Image Processing Technologies: Utilizing image recognition and processing technologies to analyze prop-

erty photos and videos offers a new dimension of property evaluation, allowing for more nuanced com-

parisons and assessments. 

• Automated and Real-Time Analysis: Digital tools enable real-time data analysis, which is crucial for 

adapting to fast-changing market conditions, a common scenario in Greek real estate due to its ties to 

the fluctuating tourism sector. 
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Understanding the background and the dynamics of the Greek real estate market is essential for developing ef-

fective digital tools for data collection and analysis. This thesis aims to address these needs by integrating ad-

vanced web scraping techniques and machine learning models to improve the accuracy, efficiency, and depth of 

real estate market analysis in Greece, thus providing stakeholders with more reliable and actionable insights. 

Evolution of Data Analysis in Real Estate 

With advancements in information technology, there has been a substantial shift toward digital data collection 

and analysis. Real estate platforms now compile vast amounts of data online, including listings with detailed de-

scriptions, photographs, and transaction histories. This shift presents an opportunity to leverage big data analyt-

ics to gain a deeper understanding of market dynamics, pricing trends, and consumer preferences. 

Importance of Web Scraping and Big Data 

Web scraping has emerged as a critical tool in this context, enabling the extraction of large datasets from multiple 

real estate websites. These data are essential for building comprehensive market models that can predict trends 

and guide investment decisions. However, the nature of data on real estate platforms poses unique challenges. 

Listings are often not standardized; they vary in format, detail, and accuracy, requiring sophisticated techniques 

for data cleansing and preparation. 

Role of Machine Learning and Image Processing 

Moreover, the visual component of real estate listings — images — has largely been underutilized in quantitative 

analyses despite containing valuable information about property features and quality. Recent developments in 

machine learning, particularly in image recognition and processing, have opened new avenues for incorporating 

visual data into real estate analysis. By analyzing images, it is possible to identify patterns and features that are 

not mentioned in textual descriptions, such as the property's condition, style, and more subtle attributes that 

could influence its value. 

Integration into Full-Stack Applications 

The integration of these technologies into full-stack applications, particularly using frameworks like Django, fur-

ther enhances the utility and accessibility of real estate data. Django's capabilities enable the development of 

robust, scalable applications that can handle large volumes of data while providing a user-friendly interface. This 

allows users, whether they are market analysts, real estate agents, or prospective buyers, to interact directly with 

the data and gain insights that were previously difficult to access. 

Contribution to the Field 

This thesis seeks to build on these advancements by creating a comprehensive system that not only collects and 

processes real estate data but also provides analytical tools that harness the power of both textual and visual 

data. By doing so, it aims to enhance the accuracy, depth, and speed of real estate market analysis, providing 

stakeholders with better tools to make informed decisions. This approach is particularly novel in the context of 

the Greek real estate market, where such technological integration has not yet been fully explored or imple-

mented. 
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Scope 

This project is strategically designed to address two primary challenges in the analysis of the Greek real estate 

market through the use of advanced data science techniques, specifically web scraping and machine learning. 

Development of a Web Scraping System 

The initial aspect of this project focuses on the development of a sophisticated web scraping system tailored to 

navigate and extract data from a variety of Greek real estate platforms. These platforms exhibit significant varia-

tion in their structure and content presentation, which necessitates a flexible scraping approach capable of han-

dling different data formats and layouts. The information to be collected includes: 

• Textual Data: This includes key details such as prices, locations, sizes, types of properties, and additional 

features that are critical for comprehensive market analysis. 

• Visual Data: Images of listings are crucial as they provide insights into the aesthetic and functional as-

pects of the properties, which are often decisive factors in real estate valuation and customer interest. 

This scraping system will employ adaptive algorithms to ensure efficient data extraction while maintaining com-

pliance with ethical web scraping guidelines and avoiding disruptions to the functionality of the target websites. 

Application of Machine Learning Techniques 

The second core component of this project involves the application of machine learning algorithms to analyze 

the collected images to identify similarities and discrepancies. This analysis aims to: 

• Detect Duplicate Listings: Identifying duplicate or near-duplicate listings across different platforms is vital 

for ensuring the accuracy of market analysis by eliminating redundancies. 

• Recognize Closely Related Properties: By analyzing image similarities, the system can cluster properties 

that, while not identical, share significant features, thus providing potential buyers with alternative op-

tions and aiding in price comparison. 

 

Geographical Focus on Greece 

Focusing specifically on the Greek real estate market introduces unique challenges and opportunities: 

Diverse Property Types: Greece's real estate landscape is characterized by a wide array of property types, includ-

ing urban apartments in Athens, traditional houses in village settings, and luxurious villas in coastal regions. This 

diversity requires a versatile analysis approach.  

Regional Market Variations: The real estate market dynamics can vary significantly between different regions in 

Greece, influenced by factors such as tourism, local economic conditions, and demographic trends. This geo-

graphic variability enriches the dataset and provides a fertile ground for demonstrating the effectiveness of ma-

chine learning in adapting to and elucidating complex market dynamics. 

 

 

 

Contribution to Real Estate Analytics 
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The comprehensive approach outlined in this project not only aims to enhance the understanding and analysis 

of the Greek real estate market but also seeks to contribute to the broader field of real estate analytics by demon-

strating how integrating technological solutions can address specific market challenges. The methodologies de-

veloped could serve as a blueprint for similar analyses in other geographic contexts, potentially driving further 

innovations in the field of real estate data science. 
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Research Questions 

The real estate market is burgeoning with data, yet the challenge of efficiently harnessing this information re-

mains significant, particularly in markets like Greece where platform heterogeneity and data inconsistency pre-

vail. This thesis aims to bridge this gap through the development of a comprehensive analytical system that lev-

erages advanced web scraping techniques, machine learning models, and a robust full-stack application. The re-

search is driven by several critical questions that explore the potential of technology to transform real estate data 

gathering, processing, and analysis. These questions probe the effectiveness of web scraping for collecting diverse 

data, the ability of machine learning to detect image similarities and duplicate listings, and the integration capa-

bilities of Django to deliver a user-centric platform for real estate professionals and decision-makers. The answers 

to these questions will provide a foundation for understanding how technological integration can enhance market 

analysis and decision-making processes in the real estate sector. 

The research will focus on several key questions: 

• How can web scraping be effectively utilized to gather comprehensive real estate data from Greek plat-

forms, which often feature diverse and non-standardized content? 

• What methodologies can be developed to identify listings across multiple platforms that represent the 

same property but are presented by different agents or with different photos? 

• What machine learning techniques are most effective for identifying similarities in real estate images to 

detect duplicates or closely related properties across different platforms? 

• Can a Django-based full-stack application integrate these technologies to provide a robust, user-friendly 

platform for real estate data visualization and decision-making? 

• What are the implications of consolidating fragmented listings for market analysis and decision-making 

processes in the real estate sector? 

 

Addressing the Research Questions: Objectives and Methodology 

Data Collection 

Advanced Scraping Techniques: Implement cutting-edge web scraping technologies to comprehensively extract 

data from multiple Greek real estate platforms, ensuring a rich dataset that reflects the current market landscape. 

Structured Data Extraction: Focus on capturing essential structured data such as price, location, size, and prop-

erty type, which are critical for basic filtering and sorting functionalities. 

Unstructured Data Extraction: Gather rich unstructured data including images and descriptive text to enable 

deeper, more nuanced analysis and to facilitate advanced features like image similarity analysis. 

 

Data Processing and Management 

Data Cleaning Protocols: Establish and maintain high standards of data quality through rigorous cleaning proto-

cols that address missing values, errors, and inconsistencies. 
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Data Storage Solutions: Implement robust database management systems that ensure data integrity, security, 

and fast, reliable access, which is vital for real-time applications. 

 

Image Processing and Machine Learning 

Preprocessing Techniques: Utilize sophisticated image preprocessing methods to standardize and enhance image 

data before analysis, improving the reliability of machine learning outcomes. 

Model Development: Develop and train advanced machine learning models to detect similarities and differences 

in property images, which will help in identifying duplicate listings and extracting meaningful features from im-

ages. 

Image Similarity Methods: Integrate state-of-the-art image similarity algorithms to significantly boost the sys-

tem’s capability to analyze and categorize image data effectively. 

 

Full-Stack Application Development 

Django-Based Integration: Construct a Django-based web application that seamlessly integrates backend pro-

cessing with a user-friendly frontend, ensuring that users can easily navigate and interact with the system. 

Real-Time Data Interaction and Dynamic Visualization: Provide dynamic tools that allow users to interact with 

real-time data and visualize results in meaningful ways, enhancing user engagement and decision-making pro-

cesses. 

 

Integration of Image Similarity Features 

Interactive Image Uploads and Comparisons: Enable functionality for users to upload property images and use 

built-in tools to compare them against the database, aiding in identifying similar properties or duplicates. 

Recommendations: Develop sophisticated recommendation algorithms that leverage analyzed image data to 

suggest properties based on user preferences and past interactions. 

 

Analytics and Insights 

Market Trends Analysis: Conclude the study with an extensive analysis of the collected data, focusing on market 

trends, price dynamics, and property characteristics across Greece. This analysis aims to unearth actionable in-

sights and highlight investment opportunities. 

By systematically addressing these research questions and objectives, this thesis will contribute valuable 

knowledge and tools to the field of real estate market analysis, offering practical solutions that can adapt to other 

markets and scales. 
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Literature Integration 

Recent academic studies and industry reports have increasingly utilized web scraping techniques and machine 

learning algorithms to analyze various aspects of the real estate market. This literature overview examines key 

works that highlight the effectiveness and adaptability of web scraping in exploring market trends, pricing strat-

egies, and consumer behavior analytics in diverse data environments: 

1. Exploring the Rental Market Dynamics of the Guadalajara Metropolitan Area 

This study focuses on creating a custom dataset using web scraping techniques to understand factors influenc-

ing rental pricing and property listings in the Guadalajara metropolitan area. By collecting data from real estate 

websites, the researchers were able to analyze market dynamics and rental trends. The study employed a Py-

thon web scraping script to navigate through various real estate websites, extracting data on rental prices, prop-

erty locations, and other relevant attributes. This detailed analysis helps provide insights into the factors affect-

ing rental markets in the region. 

2. Media Framing in the Digital Age: Interplay of Real Estate and Welfare Narratives in South Korean News 
Articles 

This research leverages web scraping to collect and analyze online journalistic articles, studying the interplay 

between real estate and welfare narratives in South Korean media. The researchers utilized web scraping to 

gather a large dataset of news articles from various online sources, which were then analyzed to understand 

how real estate issues are framed in the context of welfare policies. This approach highlights the utility of web 

scraping in media studies and the analysis of digital content.  

3. Forecasting Housing Price Using GRU, LSTM, and Bi-LSTM for California 

Utilizing web scraping to gather data from major real estate sales platforms, this study applies advanced ma-

chine learning models such as GRU (Gated Recurrent Unit), LSTM (Long Short-Term Memory), and Bi-LSTM (Bi-

directional LSTM) to forecast housing prices in California. The data collected included historical sales prices, 

property details, and temporal factors. The application of these sophisticated models demonstrates the capabil-

ity of web scraping to support data-driven forecasting methods, providing accurate predictions for housing mar-

ket trends.  

4. Modelo Random Forest Aplicado a Precificação de Imóveis à Venda em Aracaju, SE 

In this work, web scraping is used to collect data on property prices in Aracaju, Brazil. The data gathered in-

cludes various attributes such as location, size, and price of properties. The collected data is then analyzed us-

ing the Random Forest model to develop pricing strategies. This study showcases the application of web scrap-

ing in developing robust real estate pricing models, highlighting its effectiveness in extracting valuable insights 

from large datasets.  

5. Enhancing Real Estate Market Insights through Machine Learning: Predicting Property Prices with Ad-
vanced Data Analytics 

This research utilizes web scraping to gather data for predicting property prices in Mumbai. Advanced data ana-

lytics and machine learning techniques, including various regression and classification models, are employed to 

analyze the collected data. The study demonstrates how web scraping can be used to compile comprehensive 

datasets, which are then used to enhance market insights and predict property prices accurately.  

https://www.researchgate.net/profile/Diego-Ramos-32/publication/381189642_Exploring_the_Rental_Market_Dynamics_of_the_Guadalajara_Metropolitan_Area/links/666115b5de777205a311236b/Exploring-the-Rental-Market-Dynamics-of-the-Guadalajara-Metropolitan-Area.pdf
https://www.researchgate.net/profile/Diego-Ramos-32/publication/381189642_Exploring_the_Rental_Market_Dynamics_of_the_Guadalajara_Metropolitan_Area/links/666115b5de777205a311236b/Exploring-the-Rental-Market-Dynamics-of-the-Guadalajara-Metropolitan-Area.pdf
https://www.researchgate.net/profile/Diego-Ramos-32/publication/381189642_Exploring_the_Rental_Market_Dynamics_of_the_Guadalajara_Metropolitan_Area/links/666115b5de777205a311236b/Exploring-the-Rental-Market-Dynamics-of-the-Guadalajara-Metropolitan-Area.pdf
https://www.cell.com/heliyon/pdf/S2405-8440(24)01727-4.pdf
https://www.cell.com/heliyon/pdf/S2405-8440(24)01727-4.pdf
https://ieeexplore.ieee.org/abstract/document/10546182/
https://ri.ufs.br/bitstream/riufs/19233/2/Maiara_Medeiros_Sousa.pdf
https://ieeexplore.ieee.org/abstract/document/10353243/
https://ieeexplore.ieee.org/abstract/document/10353243/
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6. Applying Machine Learning Models for Forecasting House Prices – A Case of the Metropolitan City of Kara-
chi 

This study collects web-based real estate data to develop a dataset for forecasting house prices using machine 

learning models. The data collection process involves web scraping from various real estate websites to gather 

information on property listings, prices, and other relevant features. The study then applies different machine 

learning models to forecast house prices, showcasing the potential of web scraping in generating actionable 

real estate market insights.  

7. Scrimmo: A Real-Time Web Scraper Monitoring the Belgian Real Estate Market 

The Scrimmo project presents a comprehensive exploration of web scraping for automated data collection and 

analysis in the Belgian real estate market. The real-time web scraper, named SCRIMMO, is tailored to collect 

data from websites containing real estate listings. This study underscores the real-time monitoring capabilities 

enabled by web scraping, providing continuous updates and insights into the real estate market.  

8. ML-based Telegram bot for real estate price prediction 

The paper presents an innovative approach to real estate price prediction by developing a Telegram bot that 

uses machine learning algorithms. This bot is designed to provide users with real-time predictions of real estate 

prices, leveraging the accessibility and user-friendliness of Telegram.  

9. Predictive analytics using Big Data for the real estate market during the COVID-19 pandemic 

This study investigates which apartment attributes most significantly influence price changes during the pan-

demic. Using web scraping, 18,992 property listings were collected from Vilnius. Fifteen machine learning models 

were tested to forecast price revisions, with SHAP values used for interpretability. The study found that the real 

estate market was resilient, with less dramatic price drops than anticipated. The time-on-the-market (TOM) var-

iable was the most dominant predictor of price revisions, showing an inverse U-shaped behavior. Link: here 

10. A Model for the Estimation of Land Prices in Colombo District using Web Scraped Data 

The real estate market in Sri Lanka, especially in Colombo, has seen a boom, with increasing prices and demand. 

Accurate land price estimation is crucial for investors and the general public. This study addresses the lack of 

publicly available structured data on land prices by scraping data from online advertisements and combining it 

with other publicly available data to build a comprehensive dataset for machine learning model development. 

11. Web scraping or web crawling: State of art, techniques, approaches and application 

This paper discusses the use of web scraping for collecting data and the application of machine learning for sen-

timent recognition and market analysis. The paper explores the concept of web scraping, its significance in the 

modern age of Business Intelligence, and its applications in various fields such as data science, artificial intelli-

gence, and cybersecurity. It highlights the technologies and techniques involved in web scraping, including spi-

dering and pattern matching, and discusses the ethical and legal issues associated with it.  

12. Web Scraping Methods Used in Predicting Real Estate Prices 

This paper discusses various web scraping methods employed to collect data from the real estate market and 

their application in predicting real estate prices. The study emphasizes the importance of accurate and up-to-

date data in making reliable predictions and explores different approaches to web scraping, data processing, and 

machine learning techniques.  

https://coralpublications.org/index.php/jemi/article/view/318
https://coralpublications.org/index.php/jemi/article/view/318
https://researchportal.unamur.be/files/87072189/ScrImmo.pdf
https://iopscience.iop.org/article/10.1088/1742-6596/1694/1/012010/pdf
https://link.springer.com/content/pdf/10.1186/s40537-021-00476-0.pdf
https://link.springer.com/content/pdf/10.1186/s40537-021-00476-0.pdf
https://dl.ucsc.cmb.ac.lk/jspui/bitstream/123456789/4699/1/2019%20BA%20020.pdf
http://www.i-csrs.org/Volumes/ijasca/2021.3.11.pdf
https://link.springer.com/chapter/10.1007/978-3-030-88113-9_30
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These studies collectively demonstrate the broad applicability and utility of web scraping techniques in real estate 

analysis. By enabling the collection and analysis of large volumes of data from various online sources, web scrap-

ing facilitates a deeper understanding of market trends, pricing strategies, and consumer behavior. This adapta-

bility makes web scraping an invaluable tool in modern real estate research and industry practice.  
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Literature Review 

Web Scraping 

Web scraping is an indispensable digital technique that automates the extraction of data from websites. It trans-

forms the vast and chaotic world of web data into structured, actionable information, making it a cornerstone 

technology for many data-driven industries. From real estate to retail, finance to healthcare, web scraping ena-

bles businesses and researchers to capture and utilize web data in real-time, thus driving decision-making, com-

petitive analysis, and market research. 

Significance of Web Scraping in Modern Industries 

In the current digital age, where data is as valuable as currency, the ability to access and analyze data quickly and 

accurately is crucial. Web scraping provides a strategic advantage by automating the collection of this data, thus 

bypassing traditional methods of data gathering such as manual entry or single-source data feeds which can be 

slow and error-prone. 

Web scraping tools simulate the behavior of a web browser to retrieve the content of web pages, which includes 

text, images, and other multimedia elements. However, unlike human interaction with a browser, web scraping 

automates and repeats these interactions programmatically, allowing for the collection of large amounts of data 

in a fraction of the time. 

How Web Scraping Fuels Industries 

• Real Estate: In real estate, web scraping is used to gather data on property listings, historical prices, 

neighborhood demographics, and market trends. This information is crucial for investors, real estate com-

panies, and potential home buyers to make informed decisions. 

• Finance: Financial analysts use web scraping to track stock market movements, corporate financials, and 

economic indicators in real-time, providing a solid basis for investment decisions. 

• Retail: Retail companies leverage web scraping to monitor competitor pricing, product availability, con-

sumer reviews, and market trends, helping them to optimize pricing, manage inventory, and enhance 

customer experience. 

• Academic Research: Researchers and academics utilize web scraping for gathering vast datasets from 

multiple sources online, enabling comprehensive studies across various fields such as social sciences, 

technology, and humanities. 

Web scraping is a vital digital technique used to extract data from websites. This process allows for the automated 

collection of information from the Internet, which is especially beneficial in fields that require frequent updates 

and access to a vast amount of data. In the real estate sector, web scraping provides a crucial edge by collecting 

extensive data on property listings, market prices, and trends efficiently and rapidly.  
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The Role of Web Scraping in Data-Driven Industries 

In today’s data-driven world, timely and accurate information is paramount. Web scraping serves as a bridge 

between raw data available online and structured data ready for analysis. By automating the data collection pro-

cess, web scraping not only saves time and resources but also enhances the reliability of the data by reducing 

human errors. 

Web scraping is a powerful technology employed to collect data automatically from websites. This data is often 

crucial for competitive analysis, market research, and real-time decision-making. Given its importance across 

various industries, including real estate, finance, retail, and more, understanding the intricacies of web scraping 

is vital. Web scraping, fundamentally, is about extracting data from websites. It's a practice that bridges the gap 

between static web content and dynamic data analysis applications. Here’s a deeper theoretical exploration of 

the concept. 

Applications Across Industries 

The versatility of web scraping extends across various industries, each leveraging it for distinct purposes: 

• Real Estate: Aggregating property listings from multiple real estate websites for price comparison, trend 

analysis, and market research. 

• Finance: Collecting financial data from stock market sites, financial news portals, and company websites 

for investment analysis and decision-making. 

• Retail: Monitoring competitor prices, tracking consumer reviews, and analyzing market trends to opti-

mize pricing strategies and inventory management. 

 

Figure 1: The process of web scraping in business 
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• Academic Research: Gathering data sets from various online sources to support empirical research, sen-

timent analysis, and other scholarly activities. 

 

Definition and Core Concepts 

Web Scraping: At its core, web scraping is the process of using automated tools to extract information from web 

pages. This information is typically presented in HTML format, which web scraping tools analyze to extract data 

such as text, links, and other content. 

HTML and the DOM: Understanding web scraping requires a basic understanding of HTML (HyperText Markup 

Language) and the DOM (Document Object Model). HTML structures the content on web pages, while the DOM 

is an object-oriented representation of the web page, which can be modified with programming languages like 

JavaScript. 

 

Types of Web Data Extraction 

Static Content Extraction: This involves scraping data from web pages that do not require user interaction to 

display content. Tools like Requests and BeautifulSoup are typically used here to parse the static HTML of the 

page to retrieve the content. 

Dynamic Content Extraction: For web pages that load content dynamically with JavaScript, tools like Selenium or 

Puppeteer are used. These tools can interact with web pages just like a user would, allowing them to retrieve 

data that only loads as a result of user interactions or that appears after initial page loads. 

Benefits of Web Scraping 

Web scraping offers a multitude of advantages that make it an indispensable tool for businesses and research-
ers alike. Here are some key benefits: 

• Efficiency: Web scraping automates the data collection process, significantly reducing the time and re-
sources required compared to manual methods. This allows for rapid acquisition of large datasets, 
which can be crucial for timely decision-making and analysis. 

• Accuracy: By minimizing human intervention, web scraping reduces the likelihood of errors that can 
occur during manual data collection. Automated scripts can consistently extract data with high preci-
sion, ensuring the reliability of the collected information. 

• Scalability: Web scraping can handle vast amounts of data across numerous web pages. It is capable of 
scaling up the data collection process to accommodate large volumes of data, making it feasible to 
gather information that would be impractical to collect manually. 

• Cost-Effective: Automating data collection processes through web scraping can lead to substantial cost 
savings. It reduces the need for large teams of data collectors, thereby lowering labor costs and increas-
ing operational efficiency. 

• Real-Time Data Access: Web scraping can be set up to run at regular intervals, providing access to the 
most current data available. This is particularly valuable for industries that rely on up-to-date infor-
mation, such as finance, e-commerce, and news. 

• Competitive Advantage: By providing access to comprehensive and up-to-date data, web scraping can 
offer businesses a competitive edge. Companies can track competitor prices, monitor market trends, 
and gather insights that inform strategic decisions. 
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• Customizability: Web scraping scripts can be tailored to collect specific data points relevant to a partic-
ular analysis or business need. This flexibility ensures that the data gathered is highly relevant and 
aligned with specific objectives. 

• Broad Data Collection: Web scraping can aggregate data from multiple sources, providing a holistic 
view of the subject matter. This capability is particularly useful for market research, where insights from 
various platforms are needed to form a complete picture. 

• Enhanced Data Analysis: The structured data obtained through web scraping can be directly fed into 
analytical tools and models, facilitating advanced data analysis, machine learning, and predictive analyt-
ics. This enables deeper insights and more informed decision-making. 

• Unbiased Data Collection: Automated data scraping ensures that data is collected in a consistent man-
ner, free from the biases that can occur with manual collection. This helps maintain the objectivity and 
integrity of the data. 

• Availability of Historical Data: Web scraping can also be used to archive data over time, building a re-
pository of historical data that can be valuable for trend analysis and forecasting. 
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Detailed Steps in Web Scraping 

The web scraping process can be broken down into more detailed steps: 

Identification of Target URL: The first step involves identifying the URL or series of URLs from which data needs 

to be extracted. This can often involve dynamic construction of URLs especially if the data spans multiple pages 

or categories. 

Sending Requests: Using tools like Requests in Python, a web scraper sends a request to the server hosting the 

website. This is akin to what happens when you manually click a link or type a web address; the server then 

responds with the data, typically in HTML format. 

Data Parsing: Once the HTML content of the webpage is retrieved, parsing libraries such as BeautifulSoup are 

used to parse the HTML. This step transforms the raw HTML content into a structured format that is easier to 

navigate and extract data from. This involves isolating the parts of the HTML document that contain the relevant 

data. 

Data Extraction: After parsing the document, the next step involves extracting the actual data. This can include 

anything from product details on e-commerce sites to property listings on real estate platforms. The data must 

be meticulously extracted to ensure accuracy and completeness. 

Data Storage: The extracted data is then formatted and stored in a database, file, or a spreadsheet. This struc-

tured data is now ready for analysis or integration into data-driven applications. 

Automation and Scheduling: For ongoing data collection, web scraping processes are often automated and 

scheduled to run at specific intervals. This ensures that the collected data is up-to-date and relevant. 

Data Cleaning: Often, the extracted data may contain inconsistencies, errors, or duplicates. Data cleaning pro-

cesses are applied to ensure the quality of the data before it's used for any analysis or business application. 
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Technologies and Tools 

• HTTP Libraries: Tools like Requests for Python are used for sending HTTP requests to servers. 

• HTML/XML Parsers: Libraries such as BeautifulSoup, lxml, and HTMLParser are used to parse and extract 

data from HTML/XML documents. 

• Browser Automation: Tools like Selenium or Puppeteer are used for websites that require interaction or 

render content dynamically using JavaScript. 

• Data Management Tools: Once data is scraped, it is often managed using databases like MySQL, Post-

greSQL, or MongoDB, or even in simpler formats like CSV or JSON. 

  

 

Figure 2: The process of web scraping 
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Detailed Overview of Technologies Used in Web Scraping 

In the realm of web scraping, a variety of technologies and tools are employed to effectively gather data from the 

web. This overview details the primary technologies used, highlighting their functions, use cases, and how they 

integrate into the data collection and management process. 

HTTP Libraries 

HTTP libraries are fundamental components in the toolkit of web scraping, acting as the backbone for data ex-

change on the web. They handle the protocol level interactions necessary for sending and receiving HTTP re-

quests and responses. In the context of web scraping, these libraries are utilized to programmatically request the 

HTML or XML data from web servers, mimicking the behavior that occurs when a user visits a website through a 

browser. 

Understanding HTTP Libraries 

HTTP (Hypertext Transfer Protocol) is the foundation of data communication for the World Wide Web, where 

hypertext documents include hyperlinks to other resources that users can easily access. HTTP libraries manage 

the sending of request messages, including method requests (GET, POST, DELETE, PUT), and handle the responses 

from servers. 

GET Requests: Used to request data from a specified resource. In web scraping, GET requests are commonly used 

to retrieve the HTML content of a webpage. 

POST Requests: Used to send data to a server to create/update a resource. This is often used in web scraping 

when interacting with forms or log-in pages. 

Features of HTTP Libraries 

Handling Sessions: Advanced HTTP libraries like Requests manage sessions, making it easier to persist parameters 

across requests. For instance, a session might involve logging into a website and maintaining that login state 

across multiple requests. 

Cookies: HTTP libraries handle cookies automatically, allowing scripts to interact with websites that require 

cookie-based authentication. 

Redirection: Automatically handles HTTP redirections, which is when a requested URL points to another URL. 

This feature is crucial for maintaining the flow of data retrieval without manual intervention. 

Timeouts: Supports setting timeouts to ensure that requests do not hang indefinitely, which can improve the 

reliability and efficiency of web scraping scripts. 

Headers Customization: Allows custom headers to be attached to requests, which can be used to simulate dif-

ferent types of browsers or custom API needs. 

SSL Verification: Capable of handling secure connections, ensuring data is encrypted over the network, and op-

tionally allowing for the verification of SSL certificates. 

Role of HTTP Libraries in Web Scraping 

In web scraping, HTTP libraries are not just tools for sending and receiving data; they are the intermediaries that 

translate a scraper’s needs into HTTP protocol commands, manage data transmission, and handle network 
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protocols. This includes constructing requests, managing persistent connections, and parsing responses from the 

web servers. 

 

Efficiency: They optimize the process of sending requests and parsing responses, which can be crucial when deal-

ing with high-volume data scraping. 

Flexibility: HTTP libraries can be extended with middleware or plugins to handle custom scenarios encountered 

in web scraping, such as rate limiting or domain-specific data parsing rules. 

Requests for Python: One of the most popular HTTP libraries, Requests1 is renowned for its simplicity and ease 

of use. It allows for sending HTTP/1.1 requests extremely easily, without the need to manually add query strings 

to your URLs, or to form-encode your POST data. 

The Requests library in Python, specifically, is lauded for its user-friendly interface that abstracts away most of 

the complexities involved with making HTTP requests. It makes HTTP methods directly accessible through simple 

functions, which greatly simplifies the process of coding web scraping scripts, especially for beginners. 

HTML/XML Parsers 

HTML/XML parsers are indispensable tools in web scraping, designed to interpret and extract data from HTML 

and XML documents. These tools are crucial for turning unstructured web data into a structured format that can 

be manipulated and analyzed programmatically. Below is an overview of the most commonly used HTML/XML 

parsers in Python, which are essential for efficient data extraction in web scraping projects. 

Overview of Popular HTML/XML Parsers 

BeautifulSoup: This Python library is designed for quick turnaround projects like screen-scraping. What makes 

BeautifulSoup a popular choice is its ability to parse anything you give it and build a parse tree from it. It auto-

matically converts incoming documents to Unicode and outgoing documents to UTF-8. It's flexible and forgiving; 

it can handle different markup types and build a parse tree that makes intuitive sense. 

lxml: Known for its efficiency and speed, lxml is a comprehensive library that handles both XML and HTML data 

very well. It provides the feature completeness of these libraries with the simplicity of a Pythonic API, which 

makes it a powerful tool for complex web scraping tasks that require quick execution and handling a large volume 

of data. 

HTMLParser: This is a built-in Python library that offers a straightforward method of parsing HTML documents. It 

is especially suited for projects where simplicity and speed are necessary, and external dependencies need to be 

minimized. It provides basic functionalities that are enough for many scraping tasks, particularly when scraping 

simpler HTML pages. 

Functionality of HTML/XML Parsers 

These parsers provide several functionalities that are essential for web scraping: 

 

1 https://pypi.org/project/requests/ 

https://pypi.org/project/requests/
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Tree Traversal: After parsing a document, these libraries provide numerous ways to navigate, search, and modify 

the parse tree. This is particularly useful for extracting specific data from deep within a complex structure of 

HTML or XML. 

Data Extraction: They allow for precise data extraction using tags, attributes, or text content, making it easier to 

pull out exact pieces of information from a web page. 

Error Tolerance: HTML/XML parsers are typically built to be tolerant of malformed markup and are capable of 

making sense of the intended structure even when not strictly compliant with HTML/XML standards. 

 

Common Use Cases 

Web Data Extraction: From pulling out data such as headlines, links, and text blocks to extracting and transform-

ing data from online catalogs, parsers can handle a wide range of web scraping needs. 

Data Cleansing: After initial data extraction, these tools can also be used to clean and organize raw web data, 

preparing it for analysis or storage. 

Legacy System Integration: For older websites or systems that do not offer modern API access, HTML/XML 

parsers can be used to automate data extraction, enabling integration with newer systems. 

Role in Web Scraping 

HTML/XML parsers are more than just tools for pulling data out of web documents—they transform the web 

scraping process by adding structure to the data being extracted and by offering methods to handle web data at 

scale. While BeautifulSoup offers ease of use and flexibility, lxml brings performance and extensive functionality, 

and HTMLParser offers a lightweight, dependency-free option. Depending on the specific needs of a web scraping 

project, such as the complexity of the documents or the speed required, the choice of parser can significantly 

affect both the performance and ease of scraping. 

In summary, HTML/XML parsers are critical for any web scraping operation as they provide the necessary func-

tions to extract and manipulate web data efficiently, making them a cornerstone of any data extraction or web 

automation project. 

Browser Automation 

Selenium: Selenium automates browsers. Primarily it is for automating web applications for testing purposes, 

but is certainly not limited to just that. Boring web-based administration tasks can also be automated as well. 

Puppeteer: Puppeteer is a Node library which provides a high-level API to control headless Chrome or Chromium 

over the DevTools Protocol. It is often used for automated testing of web applications, scraping web pages, and 

generating pre-rendered content from SPAs (Single Page Applications). 

Functionality: These tools simulate user interactions with a web browser, allowing for the scraping of dynamic 

content generated by JavaScript scripts and Ajax calls. 

Common Use Cases: Scraping sites that load their data with JavaScript, performing tasks that require login and 

navigation, and automating form submissions.  
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Data Management Tools for Web Scraping 

Once data is successfully scraped from the web, the next critical step involves managing that data efficiently. 

Effective data management ensures that the data is not only stored securely but is also readily accessible for 

analysis and integration into various applications. This chapter will explore the range of data management tools 

and formats that are pivotal in the handling of data post-scraping, their functionalities, common use cases, and 

how they integrate into the broader web scraping workflow. 

Categorization and Explanation of Database Systems Used in Web Scraping 

Databases play a pivotal role in the storage, management, and retrieval of data collected through web scraping. 

Based on their structure and data handling capabilities, they are broadly categorized into two types: SQL Data-

bases and NoSQL Databases. Each type serves different needs depending on the nature of the data and the ap-

plication requirements. 

 

SQL Databases 

SQL databases, also known as relational databases, use a structured query language (SQL) for defining and ma-

nipulating data. This model is based on data stored in tables and the relationships among those tables. SQL da-

tabases are particularly effective for scenarios where integrity and data consistency are crucial. 

1. MySQL 

Description: MySQL is one of the most popular relational database management systems. Known for its high 

performance, reliability, and ease of use, MySQL is used in a wide range of applications, from small to large-scale 

web applications. 

Functionality: Provides robust data security, supports complex queries, efficient data management, and has 

broad compatibility with major hosting providers. 

Use Cases: Often used for web applications requiring a reliable database solution without the necessity for ex-

tensive scaling in terms of concurrent writes and reads. 

2. PostgreSQL 

 

Figure 3: SQL vs NoSQL databases. 
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Description: PostgreSQL is a powerful, open-source object-relational database system. It extends the SQL lan-

guage with advanced features that enable the storage and scaling of complicated data workloads. 

Functionality: Supports advanced data types and performance optimization features like indexing, full-text 

search, and concurrency without read locks. It is highly extensible, allowing users to define their own data types, 

build out custom functions, and even write code from different programming languages without recompiling the 

database. 

Use Cases: Suitable for applications that require frequent read and write operations, complex queries, and high 

concurrency, such as dynamic web applications and enterprise-level systems. 

NoSQL Databases 

NoSQL databases are designed to provide high operational speed and flexibility with regard to the data models. 

They are particularly useful for handling large volumes of structured, semi-structured, and unstructured data. 

NoSQL databases do not use a standard SQL query language and often provide more scalable performance. 

1. MongoDB 

Description: MongoDB is a document-oriented NoSQL database that stores data in JSON-like documents with 

dynamic schemas (in the BSON format), making the integration of data in certain types of applications easier and 

faster. 

Functionality: Offers high flexibility with its schema-less architecture, making it suitable for storing unstructured 

and semi-structured data. It supports ad-hoc queries, indexing, and real-time aggregation, providing a rich set of 

features to handle diverse data types effectively. 

Use Cases: Ideal for applications that require rapid development, frequent application iterations, and where data 

structures can change over time. Commonly used in big data and real-time web applications. 

Summary 

Choosing between SQL and NoSQL databases typically depends on the specific requirements of the application 

and the nature of the data being handled: 

• SQL Databases are preferred when dealing with complex queries and relationships where transactional 

integrity is important. 

• NoSQL Databases are chosen for their flexibility with data schemas and efficiency in handling large vol-

umes and varieties of data, making them suitable for big data applications, real-time analytics, and han-

dling rapidly changing designs. 
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Functionality of Data Management Tools 

These tools and formats are crucial for the following reasons: 

• Storage: They provide systems to store large volumes of data securely. 

• Management: Offer features to update, delete, and manage data efficiently. 

• Retrieval: Enable quick and flexible retrieval of data, which is essential for analysis and reporting. 

 

Common Use Cases 

Long-term Data Analysis: Databases are ideal for projects where data needs to be stored long-term for complex 

analysis and historical data tracking. 

Data Sharing: CSV and JSON formats are frequently used for data interchange between different programs or 

frameworks, making them suitable for projects where data needs to be exported and used in different environ-

ments. 

Real-time Applications: NoSQL databases like MongoDB are used in applications that require real-time data ac-

cess and updates. 

Integration and Workflow 

In a comprehensive web scraping setup, the workflow typically involves several stages: 

Data Acquisition: Data is retrieved from the web using HTTP libraries like Requests. 

Data Parsing and Extraction: Libraries like BeautifulSoup or lxml are used to parse and extract useful information 

from the HTML/XML data. 

Dynamic Content Handling: For dynamic content, tools such as Selenium or Puppeteer are employed to interact 

with the webpage. 

Data Cleaning: Before storing, data often needs to be cleaned and transformed to ensure quality. 

Data Storage: Finally, the cleaned data is stored using suitable data management tools. For instance, structured 

data may be stored in SQL databases, while JSON from dynamic content scraping might be stored directly in 

MongoDB. 

This integration not only facilitates the smooth transition of data through different stages of processing but also 

ensures that the data remains consistent, secure, and accessible throughout the lifecycle of the web scraping 

project. Effective data management is crucial for leveraging the full potential of scraped data, allowing businesses 

and analysts to generate actionable insights and drive decision-making. 

Integration and Workflow 

In a typical web scraping setup, an HTTP library like Requests is used to retrieve web pages which are then passed 

to a parsing library such as BeautifulSoup. The extracted data might be interactively processed with Selenium or 

Puppeteer if dynamic content is involved. Finally, the data is cleaned and stored using appropriate data manage-

ment tools. 
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Data Formats for Web Scraping 

Data formats are essential for storing, transferring, and processing data extracted through web scraping. The 

choice of format can significantly influence the ease of data manipulation and integration into various applica-

tions. While CSV and JSON are commonly used, there are several other formats that cater to specific needs and 

complexities of data projects. 

Commonly Used Data Formats 

1. CSV (Comma-Separated Values) 

Description: CSV is a simple file format used to store tabular data, such as spreadsheets or databases. Each line 

of the file corresponds to a data record, with commas separating each field within the record. 

Functionality: CSV files are straightforward and supported by most data processing applications, making them a 

universal choice for data exchange. 

Use Cases: Ideal for storing data with a simple, flat structure without nested fields. Commonly used in data im-

port/export scenarios, lightweight analytics, and situations where readability is important. 

2. JSON (JavaScript Object Notation) 

Description: JSON is a text-based format with "objects" structured as key/value pairs and arrays. It is highly read-

able and commonly used in web development. 

Functionality: JSON’s structure mirrors many programming languages’ native data structures, which simplifies 

data interchange in web technologies. 

Use Cases: Perfect for data with nested structures and for use in web applications, APIs, and configurations where 

interoperability between platforms and languages is needed. 

Additional Data Formats 

3. XML (eXtensible Markup Language) 

Description: XML is a markup language that defines a set of rules for encoding documents in a format that is both 

human-readable and machine-readable. 

Functionality: Like HTML, XML uses tags to define elements but is designed to be self-descriptive. XML files are 

highly structured and can support complex data structures with nested and repeated elements. 

Use Cases: Commonly used in web services (SOAP), rich internet applications, and situations where data needs 

extensive structure and metadata support. 

4. YAML (YAML Ain't Markup Language) 

Description: YAML is a human-readable data serialization format that supports all the primary data types used in 

popular programming languages. 

Functionality: It uses a more readable format than JSON and is particularly good for configuration files. YAML 

allows complex data structures to be represented hierarchically. 

Use Cases: Ideal for configuration files, data storage, and inter-process messaging where human readability and 

data complexity handling are paramount. 
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5. Parquet 

Description: Parquet is a columnar storage file format available to any project in the Hadoop ecosystem, regard-

less of the choice of data processing framework, data model, or programming language. 

Functionality: It is optimized for use with complex nested data structures and performs well for data compression 

and encoding schemes, which allows efficient data storage and retrieval. 

Use Cases: Best suited for heavy read-write operations and big data processing tasks typically found in data sci-

ence and machine learning projects. 

 

6. Protocol Buffers 

Description: Developed by Google, Protocol Buffers are a language-neutral, platform-neutral, extensible way of 

serializing structured data for use in communications protocols, data storage, and more. 

Functionality: Known for their efficiency and smaller size, they are an alternative to JSON or XML and require a 

schema to be defined using which the data is encoded and decoded. 

Use Cases: Ideal for developing programs that communicate with servers and for data storage where quick and 

compact data transmission is needed. 
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Challenges in Web Scraping 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While web scraping is a powerful tool, it comes with its challenges. Websites often change their layout and coding 

structures, which can break the scraping setup. Furthermore, ethical and legal considerations must be taken into 

account to ensure compliance with data privacy laws and website terms of service. Scrapers must be designed to 

respect robots.txt files and avoid overwhelming website servers with high-frequency requests. Some more chal-

lenges are the following: 

Data Quality: Extracted data can sometimes be messy or incomplete, requiring significant cleaning and pro-

cessing to become useful. 

Complex Data Structures: Web pages often have nested and complex data structures that can be challenging to 

navigate and parse effectively. 

Handling JavaScript: Many modern websites use JavaScript to load data dynamically. Tools that can execute Ja-

vaScript and handle AJAX calls are necessary for these cases. 

CAPTCHA Blockers: CAPTCHAs are mechanisms designed to determine whether the user is human and are com-

monly used on websites to prevent automated data scraping. They pose a significant hurdle as they require solv-

ing tasks that are typically easy for humans but difficult for automated scripts. 

IP Blockers: Many websites monitor the IP addresses from which they receive requests. If a single IP address 

makes too many requests within a short period, it can be blocked from accessing the site. This is done to prevent 

overload on the server and to thwart scraping efforts. 

 

Figure 4: Challenges in web scraping. 
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Alterations in Website Structure: Websites frequently update their layout and underlying HTML structure, which 

can disrupt web scraping scripts. Scrapers that were functional one day can stop working the next if the targeted 

elements of the webpage change or are removed. 

Robots.txt: This is a file used by websites to communicate with web crawlers and other web robots. The file tells 

the robot which areas of the website should not be processed or scanned. Respecting "robots.txt" is crucial for 

ethical web scraping practices. 

Dynamic Content: Web pages that load content dynamically with JavaScript present another layer of complexity. 

Traditional scraping tools that simply download the HTML of a page will not capture content loaded via JavaScript, 

necessitating the use of more advanced tools like Selenium or Puppeteer, which can simulate a real user’s inter-

action with the browser. 

Legal and Ethical Considerations: It is crucial to ensure that web scraping activities comply with legal regulations 

and respect the data privacy and usage policies specified by websites. 

 

Integrating Challenges into the Context of Web Scraping 

These challenges are important considerations in the design and execution of web scraping tasks: 

Technical Adaptations: To effectively manage CAPTCHA, dynamic content, and changes in website structure, so-

phisticated scraping setups using headless browsers or integrating AI to solve CAPTCHAs may be required. 

Ethical Web Scraping: Respecting "robots.txt" and ensuring that scraping activities do not harm the website's 

normal operation or violate privacy laws is essential for maintaining compliance and protecting the scraper’s legal 

standing. 

Mitigation Strategies for IP Blocking: Using proxy servers or a network of rotating IPs can help mask the scraping 

activity, reducing the risk of being blocked by the website's security measures. 

Addressing these challenges requires a balanced approach that considers both the technical hurdles and the 

ethical implications of web scraping. By understanding and navigating these challenges, developers can design 

more resilient, effective, and compliant web scraping solutions. 

 

Application of Web Scraping in Real Estate 

Web scraping has become a transformative tool in the real estate industry, revolutionizing how data is collected, 

analyzed, and utilized for market insights and decision-making. This section of the thesis explores the various 

applications of web scraping in real estate, focusing on the types of data collected and their impact on the indus-

try. 

The real estate market thrives on information. The accuracy, accessibility, and timeliness of this information can 

significantly affect the dynamics of the market. Web scraping facilitates the extraction of vast amounts of data 

from multiple sources, such as property listing sites, auction sites, and real estate marketplaces. This process not 

only enhances the breadth and depth of data available but also increases its reliability and timeliness. The key 

data points collected include: 
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Data Collection in Real Estate 

The real estate market thrives on information. The accuracy, accessibility, and timeliness of this information can 

significantly affect the dynamics of the market. Web scraping facilitates the extraction of vast amounts of data 

from multiple sources, such as property listing sites, auction sites, and real estate marketplaces. This process not 

only enhances the breadth and depth of data available but also increases its reliability and timeliness. The key 

data points collected include: 

Property Prices: Price data is fundamental in real estate as it directly influences investment decisions and market 

analyses. Web scraping automates the collection of updated property prices across different regions, enabling 

stakeholders to track market trends, assess property valuations, and perform comparative market analyses. 

Property Descriptions and Features: Detailed descriptions and features provide insights into the usability and 

appeal of properties. Scraping these details helps in compiling comprehensive profiles of properties, including 

size, number of rooms, amenities, and unique attributes. This data is crucial for buyers, real estate agents, and 

analysts to understand property characteristics that influence purchasing decisions. 

Geographical Information: Location is a critical factor in real estate, often dictating property value more than any 

other feature. Geographical data scraped from online sources is used for geospatial analysis, which helps in un-

derstanding property value distribution, identifying regional market trends, and planning for urban development. 

Images: Images play a pivotal role in real estate listings as they provide a visual representation of the property, 

significantly impacting buyer interest and perceptions. Scraping images allows for the analysis of property condi-

tions, architectural styles, and presentation quality. Advanced image analysis can further aid in automated valu-

ation models (AVMs) where property values are estimated based on visual cues. 

 

Impact on the Real Estate Industry 

The integration of web scraping in real estate has led to several transformative impacts: 

Enhanced Market Transparency: With more data readily available, the market becomes more transparent, allow-

ing buyers and sellers to make more informed decisions. 

Operational Efficiency: Automation of data collection reduces the manpower and time required, increasing op-

erational efficiency for real estate businesses. 

Advanced Analytics and Predictive Modeling: The availability of large, detailed datasets enables more sophisti-

cated analyses, including predictive modeling of property prices and market demand forecasting. 

Improved Customer Engagement: Real estate platforms can provide richer, more detailed listings that enhance 

customer engagement and satisfaction. 

In conclusion, web scraping is not just a technical tool but a strategic asset in the real estate sector. It empowers 

stakeholders with data-driven insights that drive better decision-making and fosters a more dynamic and com-

petitive market environment. As technology evolves, the scope and accuracy of web scraping will continue to 

expand, further enhancing its value to the real estate industry. This thesis section underscores the critical role of 

web scraping in shaping the future of real estate analytics and market strategy. 
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Legal and Ethical Considerations: 

The legality of web scraping varies by country and can depend on several factors, such as the nature of the data 

collected and the way it is used. This subsection explores key legal frameworks such as the Computer Fraud and 

Abuse Act (CFAA) in the U.S. and similar regulations in the EU, particularly under the GDPR. Ethical considerations 

are also discussed, emphasizing respect for website terms of service, the avoidance of server overloads, and the 

anonymization of collected data to protect privacy. 
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Machine Learning in Real Estate 

Application of Machine Learning in Real Estate 

Machine learning (ML) has become an indispensable technology in the real estate sector, primarily due to its 

ability to process and analyze vast datasets quickly and accurately. ML has emerged as a transformative force in 

the real estate sector, offering unprecedented insights and capabilities that were previously unattainable with 

traditional analytical methods. By leveraging ML, industry professionals can now automate complex processes, 

enhance property listings, and conduct predictive market analyses with greater precision and efficiency. This sec-

tion explores the pivotal applications of machine learning in real estate, focusing on image recognition and pre-

dictive modeling, and examines their profound impact on the industry. 

1. Image Recognition 

Image recognition has fundamentally transformed the real estate industry by enhancing the way properties are 

visualized, analyzed, and evaluated on digital platforms. Leveraging sophisticated machine learning models, es-

pecially Convolutional Neural Networks (CNNs), image recognition technologies enable the automatic extraction 

and categorization of visual information from property photos. This capability not only streamlines the listing 

process but also significantly enriches the data quality presented to potential buyers. 

Feature Detection: ML algorithms can identify and classify a wide range of features from property images, such 

as room types, landscaping attributes, and the presence of luxury amenities like swimming pools or elaborate 

interiors. This automated classification helps in enriching property listings with detailed, accurate descriptors that 

improve searchability and match potential buyers’ preferences. 

Condition Assessment: Beyond basic feature detection, image recognition can assess the condition of a property 

by analyzing signs of wear, the age of installations, and overall maintenance. This capability enables more accu-

rate valuations and helps buyers visualize potential upkeep costs. 

Theoretical and Mathematical Background 

Convolutional Neural Networks (CNNs): 

CNNs are a class of deep neural networks that are particularly effective for analyzing visual imagery. They are 

structured to recognize patterns from pixel data of images, learning hierarchical representations. 

Architecture: A typical CNN architecture consists of an input layer, multiple convolutional layers, pooling layers, 

fully connected layers, and an output layer. The convolutional layers apply various filters to the input to create 

feature maps that capture essential visual features like edges, textures, and more complex patterns in deeper 

layers. 

Mathematical Operation: 

• Convolution Operation: In the convolutional layers, the neuron's response at a certain position is calcu-

lated as a dot product of the neuron's weights with the input volume within a receptive field. Mathemat-

ically, it is represented as: 

𝑓(𝑥, 𝑦) =∑∑𝐼

𝑛𝑚

(𝑥 +𝑚, 𝑦 + 𝑛) ⋅ 𝐾(𝑚, 𝑛) 

where 𝑓(𝑥, 𝑦) is the output at position (x, y),𝐼is the input image, and K is the kernel/filter matrix. 
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Pooling: This operation reduces the dimensionality of each feature map but retains the most important infor-

mation. Common pooling methods include max pooling and average pooling. 

Key Algorithms and Their Applications in Real Estate Image Analysis 

1. Feature Detection with Convolutional Neural Networks (CNNs) 

Objective: 

To automate the detection and classification of various architectural and design features from property images, 

such as room types and specific amenities. 

Theoretical and Mathematical Background: 

• Convolutional Neural Networks (CNNs) are a specialized kind of neural network for processing data that 

has a grid-like topology, such as images. CNNs employ a mathematical operation called convolution in at 

least one of their layers. 

• Convolutional Layer: The core building block of a CNN. The layer's parameters consist of a set of learnable 

filters (or kernels), which have a small receptive field but extend through the full depth of the input vol-

ume. During the forward pass, each filter is convolved across the width and height of the input volume, 

computing the dot product between the filter and input, producing a 2D activation map of that filter. As 

a result, the network learns filters that activate when they see specific types of features at some spatial 

position in the input. 

𝑓𝑖,𝑗 = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 (∑∑𝐼𝑖+𝑚,𝑗+𝑛

𝑛𝑚

⋅ 𝐾𝑚,𝑛 + 𝑏) 

    Where: 

        I is the input image, 

        K is the kernel/filter, 

        b is the bias, 

        fi,j is the feature map. 

ReLU Layer: This layer applies the non-linear function max(0,x) element-wise. It introduces non-linearity to the 

system, allowing the model to learn more complex functions. 

Pooling Layer: This layer performs a downsampling operation along the spatial dimensions (width, height), re-

sulting in spatial invariance to input distortions. 

Process: 

Trained CNN models scan images and utilize learned filters to identify various features such as shapes, colors, and 

patterns. Features detected include room types, presence of amenities like swimming pools, and interior design 

styles. These features are then classified into predefined categories (e.g., bedrooms, bathrooms). 

2. Condition Assessment using Image Analysis 

Objective: 
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To evaluate the physical condition of a property by analyzing visual cues in images that indicate wear, age, or 

maintenance level. 

Theoretical and Mathematical Background: 

Advanced CNNs or other image processing algorithms are employed to analyze textural and color features in 

property images. These algorithms might use additional layers or techniques like: 

• Edge Detection: Using filters that identify edges and contours, crucial for spotting cracks or wear. 

• Texture Analysis: Leveraging textural patterns identified by CNNs can help in assessing the condition of 

surfaces and installations. 

Process: 

CNNs analyze images to detect signs of aging or wear such as cracks, damp spots, or peeling paint. Textural and 

color changes are quantified, and a condition score is computed, which aids in accurate property valuation. 

Practical Implementation 

Training Data: A substantial dataset of real estate images labeled with both features and conditions is essential. 

This dataset must represent a wide variety of property types and conditions to train effective models. 

Model Training: CNNs are trained using backpropagation and gradient descent algorithms. These models itera-

tively adjust their weights based on the error rate of outputs compared to the training labels, minimizing the 

prediction error. 

Integration into Platforms: Once trained, these models are integrated into real estate platforms. They automat-

ically process new property images uploaded by sellers, providing instant insights into the features and condition 

of the property. 

The application of CNNs in real estate image analysis represents a significant advancement in automating prop-

erty evaluation. By accurately identifying features and assessing conditions through learned models, real estate 

platforms can offer more detailed and accurate information, enhancing both seller and buyer experiences. The 

mathematical grounding of these models ensures that they can learn to recognize and generalize from the train-

ing data provided, making them robust tools in the digital transformation of real estate assessments. 

Challenges and Considerations 

Data Variability: Real estate images can vary greatly in terms of angle, lighting, and quality, which can affect the 

accuracy of feature detection and condition assessment. 

Model Generalization: Models trained on data from specific regions or types of properties might not perform 

well on others unless adequately generalized. 

Ethical Considerations: Ensuring that the automated assessments are transparent and do not inadvertently bias 

against certain property types or locations. 

Image recognition via machine learning, particularly through the use of CNNs, represents a significant advance-

ment in the way real estate properties are presented and analyzed. By automating the extraction of detailed, 

accurate visual information, these technologies not only enhance the appeal and transparency of real estate list-

ings but also provide valuable insights that aid in the decision-making process for buyers and sellers alike.  
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Predictive Modeling in Real Estate 

Predictive modeling in real estate leverages statistical and machine learning techniques to analyze historical data 

and predict future outcomes. These models are built upon foundational principles from statistics, probability, and 

computer science. Predictive modeling uses historical data and machine learning algorithms to forecast future 

trends in the real estate market. These models are crucial for both macro and micro-level decision-making pro-

cesses in real estate.  

Price Prediction: By training on variables such as historical prices, location demographics, market conditions, and 

property features, ML models can predict future property prices with significant accuracy. This is invaluable for 

investors looking to buy at the right price and sell for the best possible return. 

Market Demand Forecasting: Machine learning models analyze trends and patterns to forecast future market 

behaviors. This includes predicting up-and-coming neighborhoods, changes in consumer demand, and potential 

market disruptions. Such insights help real estate professionals and policymakers in strategic planning and re-

source allocation. 

1. Regression Analysis 

Regression models are fundamental in predictive modeling for price prediction. These models establish a rela-

tionship between a dependent variable (property prices) and one or more independent variables (such as loca-

tion, demographics, and property features). 

• Linear Regression: The simplest form of regression, useful for predicting property prices based on linear 

relationships. The model assumes a straight-line relationship between the dependent and independent 

variables. 

                                                               𝑌 = 𝛽0 + 𝛽1 ⋅ 𝑋1 + 𝛽2 ⋅ 𝑋2 + … + 𝛽𝑛 ⋅ 𝑋𝑛 + 𝜀 

Where: 

• Y is the property price. 

• β0 is the y-intercept. 

• β1,β2,…,βn are the coefficients which represent the effect of each variable. 

• X1,X2,…,Xn are the independent variables. 

• ϵ is the error term. 

• Multivariate Regression: Multivariate regression, an extension of simple linear regression, involves pre-

dicting a dependent variable using multiple independent variables. This statistical technique is used to 

model and analyze relationships where the outcome variable is influenced by more than one predictor 

variable. It is especially useful in scenarios where various factors contribute to the outcome, such as in 

real estate, where property prices can be influenced by location, size, number of rooms, age, and many 

other factors. 

 

Mathematical model 

The general form of the multivariate regression model can be expressed as: 

𝑌 = 𝛽0 + 𝛽1 ⋅ 𝑋1 + 𝛽2 ⋅ 𝑋2 + … + 𝛽𝑛 ⋅ 𝑋𝑛 + 𝜀 
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Where: 

• Y is the dependent variable (e.g., property price). 

• β0 is the intercept term, representing the expected mean value of Y when all independent variables X 

are equal to zero. 

• β1,β2,…,βn are the coefficients of the model. Each coefficient represents the change in the dependent 

variable for one unit of change in the corresponding independent variable, holding all other variables 

constant. 

• X1,X2,…,Xn are the independent variables (e.g., square footage, number of bedrooms, age of the prop-

erty, proximity to the city center, etc.). 

• ϵ is the error term, representing the residual effect unexplained by the independent variables. 

Estimation of Coefficients 

The coefficients βi are typically estimated using the method of least squares, which minimizes the sum of the 

squared residuals, providing the best linear unbiased estimators under the Gauss-Markov theorem, assuming the 

usual OLS assumptions (no perfect multicollinearity, exogeneity, homoscedasticity, and normality of errors) are 

met. 

∑(𝑌𝑖 − (𝛽0 + 𝛽1 ⋅ 𝑋𝑖1 + 𝛽2 ⋅ 𝑋𝑖2 + … + 𝛽𝑝 ⋅ 𝑋𝑖𝑝))
2

𝑛

𝑖=1

 

Where: 

Yi is the observed value of the dependent variable for the i-th observation. 

Xi1,Xi2,…,Xin are the observed values of the independent variables for the ii-th observation. 

Use in Real Estate 

In real estate applications, multivariate regression can provide valuable insights into how different features con-

tribute to the value of a property. For instance: 

• Understanding which features (like a renovated kitchen or a garage) add the most value to a home. 

• Analyzing regional pricing trends by including location-specific variables. 

• Adjusting pricing strategies based on the predictive influence of specific market conditions or property 

attributes. 

Challenges 

While powerful, multivariate regression faces several challenges: 

Multicollinearity: When independent variables are highly correlated, it can be difficult to determine the individ-

ual effect of each variable on the dependent variable. 

Overfitting: Including too many variables without sufficient data can lead to a model that fits the training data 

too closely but performs poorly on unseen data. 
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Interpretability: As more variables are included, the model can become more difficult to interpret, especially in 

terms of understanding the effect of each variable while holding others constant. 

 

2. Decision Trees and Random Forests 

These are non-linear models that are particularly useful for handling categorical data and interactions between 

multiple variables in real estate data. 

Decision Tree: Splits the data into subsets based on the value of the input features. The splits are chosen to 

minimize the heterogeneity of the subsets. 

Information Gain = Entropy (Parent) − ∑ (
𝑁𝑐ℎ𝑖𝑙𝑑

𝑁 ⋅ Entropy (Child)
)

𝑐ℎ𝑖𝑙𝑑

 

 

Random Forest: An ensemble method that uses multiple decision trees to reduce the risk of overfitting. It com-

bines the predictions from multiple trees to produce a more accurate prediction. 

3. Time Series Analysis 

For forecasting market demand and identifying trends, time series models like ARIMA (Autoregressive Integrated 

Moving Average) are used. 

• ARIMA Model: This model is used for analyzing and forecasting time series data, allowing for data trends, 

seasonality, and patterns. 

𝑌𝑡 = 𝛼 + 𝛽1 ⋅ 𝑌𝑡−1 + 𝛽2 ⋅ 𝑌𝑡−2 + … + 𝛽𝑝 ⋅ 𝑌𝑡−𝑝 + 𝜀𝑡 

Where Yt is the value at time t, and ϵt is the error at time t. 

 

Challenges in Implementing Machine Learning 

While machine learning offers numerous benefits to the real estate sector, several challenges need to be ad-

dressed to maximize its potential: 

Data Quality and Availability: The effectiveness of any ML model is heavily dependent on the quality and granu-

larity of the data fed into it. In real estate, inconsistent data entries, missing values, and limited access to com-

prehensive datasets can impede the accuracy of predictive models. 

Handling High Dimensionality: Real estate datasets often contain a high number of variables, from basic property 

characteristics to more nuanced features like neighborhood crime rates or school district quality. Managing such 

high dimensionality without overfitting the model requires sophisticated feature selection and regularization 

techniques. 

Bias and Fairness: Machine learning models can inadvertently perpetuate or amplify biases present in the histor-

ical data, leading to unfair outcomes for certain demographic groups. Ensuring models are fair and unbiased is 

crucial for ethical AI practices in real estate.  
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Image Similarity Methods  

Image similarity on real estate properties 

Image similarity methods leverage advanced computational techniques to analyze visual data and identify simi-

larities between images. In the context of real estate, these methods are instrumental in detecting duplicate 

listings, comparing property features, and enhancing search functionalities by grouping similar properties. This 

section delves into the theoretical and mathematical foundations of image similarity techniques, exploring their 

application in real estate for efficient and accurate property analysis. 

Image similarity methods are integral to modern computer vision applications, especially in sectors like real estate 

where visual content plays a pivotal role in transactions. These methods process and analyze visual data to iden-

tify patterns, similarities, and differences between images. By doing so, they provide valuable insights that can 

automate and enhance various aspects of real estate operations. Image similarity assessment in real estate in-

volves comparing visual content of property images to determine how similar they are to one another. This can 

be used to identify duplicates, suggest similar properties, and even categorize listings based on visual features 

such as architecture style, interior design, and landscaping. 

Key Techniques and Their Mathematical Foundations 

1. Feature Extraction 

Feature extraction is one of the fundamental techniques used in image similarity. It involves detecting keypoints 

(distinctive features) in images and finding matches between them. This is the process of identifying key elements 

within images that are significant for analysis and comparison. Feature extraction is a critical step in image pro-

cessing and computer vision, particularly in the context of image similarity and object recognition. It involves 

isolating important visual cues within an image that are distinctive and robust against various changes such as 

viewpoint, scale, and illumination.  

SIFT (Scale-Invariant Feature Transform): 

One of the most effective and widely used methods for feature extraction is the Scale-Invariant Feature Transform 

(SIFT), which is particularly adept at identifying and describing local features in images. SIFT detects and describes 

local features in images. The algorithm is robust to changes in scale, noise, and illumination. SIFT is designed to 

extract distinctive keypoints that are invariant to image scale and rotation, and partially invariant to changes in 

illumination and 3D camera viewpoint. These features are then used to perform reliable matching between dif-

ferent views of an object or scene. 

Scale-Space Extrema Detection: SIFT begins by constructing a scale space, which is essentially a function, 

𝐿(𝑥, 𝑦, 𝜎), that represents the image at various scales. This is achieved by convolving the image 𝐼(𝑥, 𝑦)with a 

Gaussian blur 𝐺(𝑥, 𝑦, 𝜎)at different values of σ: 

𝐿(𝑥, 𝑦, 𝜎) = 𝐺(𝑥, 𝑦, 𝜎) ⋅ 𝐼(𝑥, 𝑦) 

Where L is the scale-space of an image I, G is the Gaussian Blur function, σ is the scale variable, and ∗ denotes 

convolution. Keypoints are identified at maxima and minima of the difference-of-Gaussian function applied in 

scale-space.  
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The figure (figure 5) is a visual representation of the Scale-Invariant Feature Transform (SIFT) technique applied 

to two distinct images to identify and match key feature points. Left Image features an object (a toy truck) from 

one perspective. Right Image shows the same object from a different angle and context, potentially a magazine 

page or an advertisement. Highlighted with yellow boxes on both images, these points represent distinctive fea-

tures detected by the SIFT algorithm. These features are chosen because they are unique and can be easily rec-

ognized in both images despite changes in scale, orientation, or illumination. The lines connecting the two images 

illustrate the matching feature points between them. Each line represents a successful match based on the simi-

larity of the descriptors. Red lines could indicate matches that involve more significant transformations or dis-

crepancies, while green lines might represent more straightforward or confident matches. 

In real estate, SIFT can be used to match images of properties from different sources to identify duplicate listings 

or to link multiple photographs of the same property across various platforms. Additionally, these features can 

help in categorizing properties based on visual styles or detecting changes in property conditions over time.  

SIFT provides a robust method for extracting and describing features in images, which are crucial for tasks involv-

ing image similarity, object recognition, and classification. Its ability to detect keypoints that are invariant to com-

mon image transformations makes it invaluable in both academic research and practical applications like real 

estate image analysis 

SURF (Speeded Up Robust Features): 

Similar to SIFT but faster, using a box filter approximation of the LoG (Laplacian of Gaussian). SURF (Speeded Up 

Robust Features) is an enhanced version of the SIFT (Scale-Invariant Feature Transform) algorithm, designed to 

improve speed and efficiency in detecting and describing local features in images. While maintaining many of the 

robust properties of SIFT, SURF makes several modifications that increase computation speed, making it well-

suited for real-time applications. 

SURF relies on the concept of integral images to speed up the feature detection process. Integral images allow 

for rapid calculation of image features at different scales, which is a cornerstone of the SURF methodology. 

 

Figure 5:SIFT( Scale Invariant Feature Transform) 
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Key Differences from SIFT 

Integral Images: These are used in SURF for image convolutions, which allows the algorithm to compute the sum 

of intensities in a given image region rapidly. 

Box Filters: SURF uses box filters as approximations of second-order Gaussian derivatives, which significantly 

speeds up the calculation compared to the more traditional filter methods used in SIFT. 

Difference-of-Gaussian (DoG) Approximation: 

SURF approximates the Laplacian of Gaussian (LoG), which SIFT computes explicitly, using a simpler Difference-

of-Gaussian obtained through box filters. This approximation reduces computational complexity. 

Formula for Difference-of-Gaussian: 

𝐷(𝑥, 𝑦, 𝜎) = (𝐺(𝑥, 𝑦, 𝑘𝜎) − 𝐺(𝑥, 𝑦, 𝜎)) ⋅ 𝐼(𝑥, 𝑦) 

    Where: 

• D(x, y, σ) represents the difference-of-Gaussian achieved with box filters. 

• G(x, y, kσ) and G(x, y, σ) are Gaussian Blurs at different scales. 

• . denotes the convolution operation. 

 

2. Structural Similarity Index (SSIM) 

SSIM is a method for measuring the similarity between two images. It considers texture, luminance, and contrast. 

Unlike simple pixel-by-pixel comparison, SSIM evaluates patterns of pixel intensities that have been normalized 

for luminance and contrast. The Structural Similarity Index (SSIM) is a sophisticated metric used to measure the 

similarity between two images. Unlike traditional methods that rely on direct pixel-by-pixel comparisons, SSIM 

assesses the perceptual impact of three characteristics of an image: luminance, contrast, and structure. By con-

sidering these aspects, SSIM provides a more accurate reflection of visual similarity as perceived by human vision. 

SSIM is based on the premise that human visual perception is highly adapted for extracting structural information 

from the visual field, thus the similarity between two images can be more precisely measured by comparing their 

structural features rather than their individual pixel values. 

Application in Real Estate: SSIM can be used to compare quality and style of property images, assessing how 

similarly two properties are presented in terms of lighting, angles, and staging. 

The equation of SSIM can be expressed like: 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇⬚ + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
 

 

Where: 

   𝜇𝑥 , 𝜇𝑦 are the average intensities of images x and y. 

   𝜎𝑥 , 𝜎𝑦 are the variances. 
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    𝜎𝑥𝑦 is the covariance. 

   𝑐1, 𝑐2 are constants to stabilize the division. 

 

1.1.1. Application in Real Estate 

In real estate, SSIM can be effectively used to enhance several aspects of property marketing and management: 

• Quality Control of Images: Ensuring that property photos uploaded to listing services meet certain quality 

criteria in terms of lighting and clarity, which can influence buyer perceptions and decisions. 

• Comparison of Property Images: SSIM can be used to automatically compare and categorize property 

images by style and visual quality, helping potential buyers find properties that match their aesthetic 

preferences. 

• Detecting Duplicate Images: Real estate platforms can use SSIM to detect duplicate listings or fraud by 

identifying properties that are represented by significantly similar images but different metadata. 

Advantages of SSIM 

• Alignment with Human Perception: SSIM is designed to reflect the way humans perceive image quality, 

which makes it particularly useful in applications where the visual quality of images is paramount. 

• Robustness: SSIM is robust against variations in image resolution and the addition of noise, making it 

suitable for analyzing images from various sources and quality. 

Limitations 

Sensitivity to Scaling and Rotation: While robust to changes in lighting and contrast, SSIM may still be sensitive 

to scaling and rotations. Additional preprocessing steps might be needed to align images properly before com-

parison. 

Computational Complexity: While not as computationally intense as some deep learning methods, SSIM still 

requires a significant amount of processing power, especially when applied to large datasets commonly found in 

real estate databases. 

In summary, SSIM provides a useful metric for assessing image quality and similarity in a manner that correlates 

well with human visual perception, making it an excellent tool in fields like real estate where visual presentation 

plays a crucial role. 

CNN Layer Calculation Formula for Feature Extraction 

Convolutional Neural Networks (CNNs) can be trained to extract hierarchical features and determine image sim-

ilarity. Convolutional Neural Networks (CNNs) are a class of deep neural networks that are particularly effective 

for tasks involving image data. CNNs utilize multiple layers of convolutions with learnable weights to automati-

cally extract hierarchical features, which are crucial for understanding and analyzing the content of images. Each 

layer in a CNN transforms the input data into more abstract and composite features, making CNNs highly effective 

for image recognition and similarity assessments. CNNs automatically learn the hierarchies of features which are 

crucial for understanding the content of the images. 
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The diagram (figure 6) illustrates the architecture of a Convolutional Neural Network (CNN), depicting the flow 

from input through multiple convolution and max pooling layers for feature extraction, to fully-connected layers 

that handle classification. Each stage is clearly represented, showing how the network processes and transforms 

input image data into a final output class through learned filters and spatial reduction. 

CNN Layer Operations 

Feature Maps(𝑓𝑖
(𝑙)): 

Description: Feature maps are the outputs of each layer in the CNN. At each layer, the feature map represents 

the result of applying learned filters (or kernels) to the input, capturing specific features at different levels of 

abstraction. For instance, early layers might detect edges or textures, while deeper layers might identify complex 

objects or patterns within the image. 

The feature map at layer ll for the i-th filter is denoted as(𝑓𝑖
(𝑙)). 

Weights (𝑊𝑖𝑗
(𝑙−1)): 

Weights are the parameters of the filters that are learned during the training process. Each weight corresponds 

to a small receptive field in the input and determines how the input's features contribute to the resulting feature 

map. 

The weights connecting the j-th feature map of the previous layer (l−1) to the i-th feature map of the current 

layer l are represented by (𝑊𝑖𝑗
(𝑙−1)). 

Biases (𝑏𝑖
(𝑙)): 

Biases are additional parameters in CNNs added to each feature map after convolution but before the activation 

function. They allow the activation function to shift left or right, which can be critical for learning patterns in the 

input data. 

(𝑏𝑖
(𝑙)) is the bias term associated with the i-th feature map at layer l. 

Activation Functions (σ): 

 

Figure 6: CNN for image classification. 
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After convolution, an activation function is applied to introduce non-linearity into the model. This step is crucial 

because it allows the network to learn complex patterns. 

Common Choices: ReLU (Rectified Linear Unit) is the most commonly used activation function in CNNs due to its 

simplicity and effectiveness. It is defined as σ(x)=max(0,x)σ(x)=max(0,x), effectively turning off neurons that pro-

duce negative outputs, which simplifies the computation and introduces sparsity in the activations. 

The convolution operation involves sliding each filter across the input and computing a dot product between the 

filter and input at each position. This operation extracts spatial features from the input and produces a feature 

map. Layers are formulated as convolutions with learned weights followed by non-linear activation functions: 

𝑓𝑖
(𝑙)

= 𝜎(∑𝑊𝑖𝑗
(𝑙−1)

∗ 𝑓𝑗
(𝑙−1)

+ 𝑏𝑖
(𝑙)

𝑗

) 

Where: 

    𝑓𝑖
(𝑙) is the feature map i at layer l. 

    𝑊𝑖𝑗
(𝑙−1) are the weights from layer l-1 to l. 

    𝑓𝑗
(𝑙−1)

 are the feature maps from the previous layer. 

    𝑏𝑖
(𝑙) are the biases at layer l. 

    σ is the non-linear activation function (e.g., ReLU). 

    sum from𝑗denotes the summation over all inputs from the previous layer. 

* indicates convolution operation. 
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Significance in Image Similarity 

In the context of image similarity, these hierarchical features extracted by CNNs can be used to compare images 

at various levels of abstraction, from simple textures and shapes to complex objects and scenes. This capability 

makes CNNs extremely valuable for tasks such as image classification, object detection, and feature-based image 

retrieval, where understanding the deeper semantic content of images is crucial. 

CNNs transform the raw pixel data of images into a form that highlights their essential features while discarding 

irrelevant variations like noise and lighting changes. This transformation is fundamental to many modern appli-

cations of machine vision, particularly in areas like real estate, where automated analysis of property images can 

significantly enhance listing accuracy and user experience. 

Application in Real Estate 

Image similarity methods can automate the detection of duplicate listings, significantly reducing the effort re-

quired to manage large databases. They also enhance user experience by recommending properties that visually 

match user preferences. Furthermore, these techniques can categorize properties based on architectural styles 

or condition, aiding in targeted marketing and accurate pricing. 

The application of image similarity methods in real estate represents a significant advancement in how properties 

are analyzed and marketed. By leveraging the theoretical and mathematical frameworks of feature matching, 

structural similarity, and deep learning, real estate platforms can offer more precise and user-friendly services, 

improving both operational efficiency and customer satisfaction. 
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Django for Full-Stack Development 

Django is a high-level Python web framework that encourages rapid development and clean, pragmatic design. It 

is renowned for its ability to facilitate the creation of complex, data-driven websites with minimal coding and 

straightforward maintainability. Developed by experienced developers, Django abstracts many of the common 

challenges in web development, allowing developers to focus on writing their app without needing to reinvent 

the wheel. 

 

Origins and Philosophy 

Django was designed to handle the fast-paced newsroom deadlines while meeting the stringent requirements of 

experienced web developers. Named after the jazz guitarist Django Reinhardt, the framework was created with 

the intention of simplifying the creation of complex, database-driven websites. It emphasizes reusability and 

"pluggability" of components, rapid development, and the principle of not repeating oneself (DRY). 

Key Features 

MTV Architecture: Django follows the Model-Template-View (MTV) architectural pattern, which is Django’s take 

on the popular Model-View-Controller (MVC) architecture. The Model manages the database, the Template han-

dles presentation and user interfaces, and the View executes business logic controlling what users can do with 

the data. 

Robustness: Out-of-the-box support for common tasks such as user authentication, content administration, site 

maps, and RSS feeds make it highly robust for handling the complexities and security needs of modern web ap-

plications. 

Scalability: Django uses a "shared-nothing" architecture, meaning you can add hardware at any level — database 

servers, caching servers, or web servers — to handle higher loads. This scalability makes it suitable for projects 

ranging from small websites to large-scale enterprise systems. 

Security: Django provides built-in protections against many security threats like SQL injection, cross-site scripting, 

cross-site request forgery, and clickjacking. Its user authentication system provides a secure way to manage user 

accounts and passwords. 

 

Figure 7: Django architecture.  
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Usage in Full-Stack Development 

As a full-stack framework, Django comes equipped with everything needed to build a web application from the 

ground up: 

Backend Logic: It handles backend logic seamlessly with Python, one of the most straightforward and powerful 

programming languages in use today. 

Frontend Integration: While Django manages the backend, it integrates easily with any frontend technology to 

deliver content in almost any format, including HTML, JSON, XML, and more. Frontend frameworks like React or 

Angular can be used to create a dynamic user interface. 

Database Management: Django supports several major database engines and can work with any that supports 

the Python Database API. It comes with a built-in ORM (Object-Relational Mapping) to bridge the gap between 

the relational database systems and the business objects without needing to write SQL code. 

Using Django in Data-Driven Projects 

Django, a high-level Python web framework, is particularly suited for data-driven projects like real estate plat-

forms, which require handling large datasets and ensuring robust user interactions. Its pragmatic and clean de-

sign, rooted in the Model-View-Template (MVT) architectural pattern, offers a logical separation of concerns that 

streamlines the development of complex web applications. 

Architectural Benefits for Real Estate Platforms 

Batteries-Included Approach: 

Django’s comprehensive offering of built-in components for common web development tasks (e.g., authentica-

tion, URL routing, and session management) accelerates development timelines. This is invaluable in real estate 

platforms where security and user experience are paramount. Django’s robust features reduce the need for cus-

tom coding, ensuring greater reliability and consistency across the application. 

Handling Large Datasets: 

Django’s ORM (Object-Relational Mapping) system is crucial for real estate platforms dealing with vast amounts 

of data, such as listings, transactions, user data, and market analytics. The ORM facilitates complex queries and 

data management without the direct use of SQL, minimizing the risk of injection attacks and making the system 

more secure and maintainable. 

Performance and Scalability: 

Real estate platforms must handle variable traffic loads efficiently, especially during high viewing times. Django 

supports various caching strategies to enhance performance. This scalability is proven in its deployment in high-

traffic environments like Instagram and Disqus, demonstrating its capability to manage heavy loads effectively. 

Django's design is not only robust but also highly flexible, allowing it to integrate seamlessly with various tech-

nologies that enhance its functionality: 

Integration with Other Technologies 
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Machine Learning Integration: 

Integrating Django with machine learning libraries like TensorFlow or Keras enables the application to include 

sophisticated analytical tools directly in the web interface. This can be used to automate valuation models, rec-

ommendation systems, or image recognition tasks directly within the real estate platform. Incorporating machine 

learning with Django allows real estate platforms to perform advanced data analysis directly within the applica-

tion. For instance: 

• Valuation Models: Integrating TensorFlow or Keras to develop models that predict property prices based 

on historical data and market trends. 

• Recommendation Systems: Using machine learning to suggest properties to users based on their brows-

ing history and preferences. 

• Image Recognition: Implementing algorithms to analyze property photos for features like space, condi-

tion, and style, enhancing listing details automatically. 

Data Visualization Tools: 

Django can be easily integrated with JavaScript libraries like D3.js or Python libraries like Plotly to create dynamic 

data visualizations. These tools can provide interactive charts and graphs for real-time market analysis, enhancing 

user engagement and providing valuable insights at a glance. This is critical for: 

• Market Analysis: Dynamic charts and graphs that analyze trends over time, regional market perfor-

mances, and investment opportunities. 

• User Dashboards: Customizable interfaces where buyers, sellers, and agents can view personalized data 

insights and metrics. 

Database Management Systems: 

Django is compatible with several key database systems like PostgreSQL, MySQL, and MongoDB, which are capa-

ble of handling different facets of real estate data. PostgreSQL, for instance, offers advanced features such as full-

text search and GIS (Geographical Information Systems) support which are ideal for real estate applications. 

Django's ORM is a powerful feature that serves as a bridge between the database engine and Django models, 

allowing developers to manipulate database data without having to write raw SQL queries. Here’s a more detailed 

look at how the Django ORM supports complex database operations, particularly within the context of real estate 

applications. 

Core Features of Django ORM 

Abstraction: 

Django ORM provides a high level of abstraction, letting developers interact with the database using Python code 

instead of SQL. This abstraction makes the code more readable, maintainable, and portable across different da-

tabase systems such as PostgreSQL, MySQL, MongoDB (via Djongo), and SQL Server. 

Database Agnosticism: 

One of Django's strengths is its database-agnostic design. Whether you're using PostgreSQL, MySQL, SQLite, or 

Oracle, Django allows you to use the same application code, only requiring changes in the settings to switch 
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between these databases. This flexibility is particularly useful in real estate platforms where the choice of data-

base might change based on scaling needs or specific features. 

Querysets: 

Django ORM operates through querysets, which allow developers to construct a database query in Python code. 

Querysets are lazy, meaning they only hit the database when evaluated. This allows for efficient chaining and 

refinement of queries without extra database calls. For real estate applications, this means efficiently filtering 

properties, sorting listings by price or date, and aggregating data like average prices or counts of properties by 

type. 

 

Model Relationships: 

The ORM supports various types of relationships such as foreign keys (one-to-many), many-to-many, and one-to-

one relationships. For a real estate application, this can be used to relate users to property listings, track property 

ownership history, or link properties to multiple images and agents. 

Migrations: 

Django’s migration system handles changes to the database schema by creating migration files. These files de-

scribe how to adapt the database structure through a series of steps while preserving existing data. In the fast-

evolving real estate market, where new data attributes might frequently be added (like new features or virtual 

tour links), migrations ensure that database changes are versioned and deployed smoothly. 

Admin Interface: 

The Django admin interface is automatically generated from the models and is a powerful tool for sites' adminis-

trators to manage content in the database. For real estate platforms, this means easy administration of listings, 

user accounts, and other dynamic content without needing to build custom admin panels. 

 

Benefits in Real Estate Applications 

• Rapid Development: Quick adjustments to the data model and easy manipulation of data suit the dy-

namic nature of real estate listings. 

• Data Integrity: Django ORM helps maintain data integrity and consistency, which is crucial in real estate 

transactions and record-keeping. 

• Scalability: Efficient query capabilities and support for powerful database features like full-text search 

and GIS make scaling real estate platforms more manageable. 

Django's ORM is an integral part of the framework that significantly enhances development speed, data security, 

and application maintenance. In real estate platforms, where managing extensive data with high reliability is 

essential, Django ORM provides the tools necessary to build robust, scalable applications that can handle complex 

queries and vast amounts of data efficiently. Its database-agnostic nature further ensures that applications can 

adapt to different database backends as per changing business requirements. 
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2.9.2. Comparative Analysis 

To justify the choice of Django for this project, a comparative analysis with other popular web frameworks such 

as Flask, Node.js, and Ruby on Rails is conducted: 

Flask vs. Django: 

While Flask provides a lightweight and modular approach, which is excellent for smaller projects with less com-

plex data operations, Django's built-in features and its ORM are more suited for handling the complex and data-

intensive nature of real estate platforms. 

Node.js vs. Django: 

Node.js, being JavaScript-based, offers an advantage in building real-time applications with full-stack JavaScript. 

However, Django's extensive security features and mature third-party ecosystem make it a more reliable choice 

for the comprehensive features required in this project. 

Ruby on Rails vs. Django: 

Ruby on Rails is similar to Django in many respects, offering many built-in features and an opinionated framework 

structure. However, Django's Python-based syntax and widespread use in data science make it particularly apt 

for integrating with machine learning and analytics workflows, which are central to this project. 
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Methodology 

Overview of the Web Scraping Pipeline 

To comprehensively capture the landscape of the real estate market in Athens, the web scraping pipeline targeted 

several prominent Greek real estate platforms. Each platform presented unique challenges and required custom-

ized scraping strategies to effectively extract relevant data. This section elaborates on the specific platforms tar-

geted, the nuances of each, and the strategies implemented to ensure thorough and efficient data collection. 

The web scraping pipeline was designed to systematically collect and process data from major Greek real estate 

platforms, focusing on the aggregation of over 77,000 property listings primarily from the city of Athens. The aim 

was to capture a diverse array of data specific to different regions within Athens to facilitate detailed analysis and 

testing. The platforms that were scraped were xe.gr, plot.gr, tospitimou.gr, spitogatos.gr and spiti365.gr 

The web scraping pipeline for this thesis was designed to systematically collect real estate data from multiple 

prominent Greek real estate platforms. Given the scale of the task, involving over 77,000 property listings primar-

ily in the city of Athens, a uniform scraping methodology was implemented across all platforms. This ensured 

consistency in data collection and streamlined the process for efficiency and reliability. This section details the 

uniform scraping approach, including the technical methods used and the specific platforms targeted. 

Uniform Scraping Methodology 

To address the diversity of content and non-standardized formats across different real estate websites, the pipe-

line employed a combination of Python's requests library for data retrieval and BeautifulSoup for HTML content 

parsing. This method provided the flexibility and robustness necessary to navigate and extract data from various 

structured and semi-structured web pages commonly found in online real estate listings. 

Technical Strategy: 

• Data Retrieval: The requests library was used to send HTTP requests to the targeted websites. This library 

was chosen for its ease of use and ability to handle various HTTP functionalities, which is crucial for ac-

cessing and downloading web page content. 

• Content Parsing: BeautifulSoup was utilized to parse the HTML documents retrieved. It helped in system-

atically extracting the relevant data fields such as price, location, property size, and image links. Beauti-

fulSoup is particularly effective in navigating complex HTML structures and extracting data with high ac-

curacy. 

• Robust Error Handling: Given the potential for request failures and HTML parsing errors, the pipeline 

included robust error handling mechanisms. These included retry logic for failed requests and exceptions 

handling to manage unexpected disruptions during the scraping process, ensuring data integrity and con-

tinuity. 
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Targeted Real Estate Platforms 

The following major Greek real estate platforms were scraped using the above uniform methodology, each offer-

ing a significant volume of listings which are vital for a comprehensive analysis of the Athens real estate market: 

• Plot.gr 

• Spiti24 

• Spitogatos 

• Tospitimou.gr 

• Xe.gr 

Each platform was approached with the same technical scraping strategy to maintain consistency across the da-

taset. This approach facilitated the aggregation of a robust dataset, ensuring that each listing was accompanied 

by standardized information necessary for subsequent analysis. 

Data Management 

After collection, data from all platforms were consolidated into a single Microsoft SQL Server database. A rela-

tional schema was designed to accommodate the integration of data from various sources, with a flag system to 

identify the origin of each listing. This strategy not only simplified data management but also supported compre-

hensive data analysis by preserving the traceability of each data point back to its source. 

 

Data Integration and Storage 

Unified Database Schema: The schema was crafted to support queries across multiple data points, enhancing the 

ability to perform comparative analyses across different data sets. 

Image Data Handling: Links to property images were stored within each listing's row in the database. Images were 

later downloaded to a local server for processing by the image similarity model, crucial for identifying duplicate 

listings or visually similar properties. 

This uniform approach to web scraping across multiple Greek real estate platforms has successfully created a 

foundational dataset for this thesis. The methodology ensures that the data collected is not only extensive and 

representative of the market in Athens but also uniformly structured for advanced analytical processes, including 

machine learning and comprehensive market analysis in subsequent stages of this study. 

Design Considerations 

The design of the web scraping pipeline was guided by several key objectives: 

Comprehensiveness: To ensure a dataset that is representative of the real estate market in Athens, encompassing 

a variety of property types, locations, and pricing. 

Scalability: The pipeline needed to handle large volumes of data efficiently, allowing for future expansions to 

include more regions or platforms without significant redesign. 

Robustness: The pipeline had to be capable of operating continuously and reliably, with mechanisms to handle 

potential disruptions such as changes in website layout or temporary network issues. 
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Compliance and Ethics: It was imperative that the scraping activities complied with all legal standards and ethical 

guidelines, particularly concerning data privacy and platform terms of service. 

 

Technical Architecture 

The pipeline's architecture was structured around several core components: 

Data Retrieval: Utilized HTTP libraries in Python, such as requests, to programmatically access and retrieve web 

pages from targeted real estate platforms. 

Content Parsing: Employed parsing libraries like BeautifulSoup and lxml to extract relevant data fields from the 

HTML content of the web pages. These libraries were chosen for their robustness in handling various HTML struc-

tures and their flexibility in navigating complex webpage layouts. 

Data Normalization: Since data were collected from multiple sources, a normalization process was established 

to standardize the data into a uniform format. This step was crucial for ensuring that subsequent data analysis 

was based on consistent and comparable metrics. 

Error Handling: Integrated error handling mechanisms to manage issues such as connection timeouts, missing 

data, and unexpected site structure changes. This involved implementing retry logics, exception catching, and 

fallback routines to maintain the integrity and continuity of the data collection process. 

Workflow 

The operational workflow of the web scraping pipeline consisted of several sequential stages: 

Target Identification: Defined the specific pages and data fields of interest on each platform. This step involved 

preliminary manual review to understand the structure and navigation of each site. 

Automated Navigation: Developed scripts that could automatically navigate through pagination and different 

categories or regions as required, to systematically cover the entire scope of the market in Athens. 

Data Extraction: Extracted data such as listing ID, price, location, property size, number of bedrooms, images, 

and other descriptive information. Each piece of data was validated and cleaned before being stored to ensure 

accuracy. 

Storage: Integrated the extracted data into a centralized MSSQL database. Special attention was given to design-

ing a database schema that could efficiently manage and query large datasets. 

Monitoring and Maintenance: Set up monitoring tools to track the performance of the scraping process and alert 

for failures or significant deviations in data quality or quantity. 
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Challenges and Solutions 

Several challenges were encountered during the development and operation of the web scraping pipeline: 

Dynamic Content: Many real estate websites use JavaScript to dynamically load content, which required the use 

of Selenium or similar tools to render the pages fully before parsing. 

Rate Limiting: To address potential rate limiting and avoid IP bans, the pipeline used rotating proxy servers and 

implemented polite scraping practices, such as respecting robots.txt rules and introducing delays between re-

quests. 

In summary, the web scraping pipeline developed for this thesis is a sophisticated tool tailored to meet the spe-

cific needs of comprehensive real estate data collection in Greece. Its design reflects a balance between effi-

ciency, robustness, and ethical data collection practices, setting a strong foundation for the advanced data anal-

ysis conducted in subsequent chapters of this research. 
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Overview of the Web Scraping Pipeline 

The web scraping pipeline developed for this thesis involved a uniform method for extracting data from various 

major Greek real estate platforms using Python's requests library and BeautifulSoup for parsing HTML. This sec-

tion provides a detailed explanation of the code used to scrape each platform, illustrating the uniformity and 

efficiency of the approach. 

The web scraping pipeline developed for this thesis is a critical element of the research, designed to systematically 

collect data from various Greek real estate platforms. This section provides a detailed explanation of the concep-

tual and logical framework underpinning the scraping process. It emphasizes the uniform approach used across 

multiple platforms, ensuring consistency and efficiency in data collection. 

Design Principles and Objectives 

The pipeline was constructed based on several key design principles: 

• Uniformity: The approach was standardized across all platforms to ensure consistency in the data col-

lected. This uniformity simplifies the integration and analysis of data from multiple sources. 

• Scalability: The architecture supports scaling both in terms of the number of pages scraped and the ad-

dition of new sources without significant modifications to the core logic. 

• Robustness: The pipeline is robust to interruptions and anomalies in data format, with error handling 

mechanisms that allow it to recover from common issues like network disruptions or changes in website 

structure. 

• Compliance and Ethics: The scraping activities are compliant with legal standards and ethical guidelines 

concerning data privacy and the terms of service of the platforms. 

 

Technical Workflow 

The technical workflow of the scraping process involves several stages: 

• Request Management: The pipeline uses HTTP requests to retrieve web pages. This stage involves man-

aging request headers and handling proxies to mimic genuine user behavior and avoid detection by anti-

scraping technologies. 

• Data Parsing: Once the HTML content is retrieved, BeautifulSoup is employed to parse the HTML and 

extract necessary data. The parsing rules are tailored to each platform's HTML structure but are designed 

to be flexible to accommodate minor changes in web page layouts. 

• Data Extraction: Specific data points such as price, location, and property details are extracted. This step 

involves careful identification of HTML elements and attributes that reliably contain the required infor-

mation. 

• Error Handling: The pipeline includes sophisticated error handling to manage issues like connection 

timeouts or HTML parsing errors. This ensures the continuity and reliability of data collection. 
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• Data Storage and Normalization: Extracted data are temporarily stored in structured formats (like dic-

tionaries or lists) and eventually transferred to a SQL database. This stage also involves the normalization 

of data to ensure uniformity across different datasets, facilitating easier integration and analysis. 

 

Implementation Details 

• Looping Through Pages: The pipeline automates the process of navigating through pagination by dynam-

ically adjusting the URL to access successive pages. This is crucial for comprehensive data collection, es-

pecially for platforms with a large number of listings. 

• Session Management: To manage and maintain sessions across requests, especially when dealing with 

login-required areas or session-based tokens, the pipeline uses persistent HTTP sessions. 

• Data Integrity Checks: Regular checks are implemented to ensure the integrity and accuracy of the data 

collected. This includes validations against predefined schemas or formats to detect anomalies early in 

the process. 

• Rate Limiting and Politeness: The pipeline respects the rate limiting norms and the robots.txt file of each 

website to avoid overloading the servers. This not only ensures ethical scraping practices but also mini-

mizes the risk of IP bans. 

Challenges and Solutions 

• Dynamic Content Handling: Many real estate websites use JavaScript for dynamic content rendering. The 

pipeline addresses this by simulating a browser environment or using techniques to execute JavaScript 

when necessary. 

• Data Quality Assurance: Given the diverse formats and incomplete data issues typical with real estate 

listings, the pipeline includes sophisticated cleansing and transformation routines to standardize and 

clean the data before it enters the central database. 
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Explanation of Data Structure for Each Web Platform 

For this thesis, separate database tables were created for each web platform to maintain the integrity and spec-

ificity of data sourced from different online real estate portals. Once the data was collected, a unified table was 

constructed to consolidate the similar fields from each platform, facilitating cross-platform analysis and compar-

ison. Here’s a detailed explanation of the approach for each platform, focusing on "spitogatos" as an example, 

and the methodology used to unify the data into a single table. 

Spitogatos Structure 

The table for spitogatos contains a comprehensive set of fields that reflect both the general and specific aspects 

of real estate listings. Here's a breakdown of the key fields: 

• Id: Unique identifier for each listing. 

• Link: URL to the specific listing on the Spitogatos website. 

• Title: The title of the listing, usually summarizing key features. 

• Address: Specific location of the property. 

• Images: Links to images associated with the listing. 

• Agency: Real estate agency or agent managing the listing. 

• Description: Detailed description of the property. 

• Price: Listing price of the property. 

• Price per Sqm: Price per square meter, providing a standardized measure of value. 

• Area: Total area of the property in square meters. 

• Levels: Number of levels or floors within the property. 

• Floor: Specific floor number for apartment listings. 

• Kitchens: Number of kitchens. 

• Bathrooms: Number of bathrooms. 

• WC: Number of water closets separate from full bathrooms. 

• Living Rooms: Number of living rooms. 

• Heating: Type of heating system installed. 

• Energy Class: Energy efficiency rating of the property. 

• Construction Year: Year the property was originally constructed. 

• Renovation Year: Most recent year the property was renovated. 

• Sea Distance: Distance to the nearest sea or significant body of water. 

• System Code: A system-generated code for internal tracking. 
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• Code: Another identifier, possibly used for differentiating listings within the platform. 

• Available From: Date from which the property is available. 

• Published: Date the listing was first published on the platform. 

• Last Updated: Most recent date the listing information was updated. 

• Indoor Features: Characteristics and amenities inside the property. 

• Outdoor Features: Characteristics and amenities outside the property. 

• Construction Features: Details about the construction quality and materials. 

• Good for: Intended or suitable use of the property. 

• Bedrooms: Number of bedrooms. 

 

 

Data Unification Approach 

Given that similar fields exist across tables for different platforms (e.g., plot.gr, spiti24, xe.gr, etc.), a unified table 

was constructed to consolidate these listings. Here's the rationale and process for this consolidation: 

• Field Mapping: Identified common fields across all platform tables, such as price, area, bedrooms, and 

bathrooms, ensuring that each field is standardized across the unified table. 

• Data Transformation: Where necessary, transformed data to match a uniform format. For instance, prices 

were normalized to Euros, and area measurements to square meters. 

• Redundancy Elimination: Removed duplicate entries where listings appeared on multiple platforms, us-

ing fields like address, price, and area as key indicators of duplicity. 

• Data Integration: Merged data into a single table, employing SQL joins and union operations to compile 

the data effectively. 

• Quality Assurance: Implemented data integrity checks to validate the accuracy and consistency of the 

merged data. 

 

The data unification process for this thesis involved consolidating listings from multiple real estate platforms, 

such as plot.gr, spiti24, and xe.gr, into a single comprehensive table. This consolidation was achieved through a 

meticulous process that ensured data consistency and usability across various analyses. 

The first step in this process was field mapping, where common fields across all platform tables were identified. 

Essential fields like price, area, bedrooms, and bathrooms were standardized to maintain uniformity within the 

unified table. This standardization was crucial for comparative and aggregate analysis later in the research. 

Next, data transformation was applied where necessary to match a uniform format across all data entries. For 

example, all prices were normalized to Euros, regardless of the original currency presented on the respective 
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platforms, and area measurements were converted to square meters. This normalization was critical in ensuring 

that the data could be meaningfully compared and analyzed without discrepancies arising from different meas-

urement units. 

To ensure the accuracy and relevance of the data, redundancy elimination was conducted. This involved removing 

duplicate entries where listings appeared on multiple platforms. Key indicators such as address, price, and area 

were used to identify duplicates. This step was vital in maintaining a clean and reliable dataset for analysis, pre-

venting skewed results from multiple counts of the same property. 

The data integration phase involved merging the cleaned and transformed data into a single table using SQL joins 

and union operations. This phase was carefully managed to ensure that data from different sources was effec-

tively compiled into one central repository, facilitating easier access and manipulation in subsequent analytical 

processes. 

Finally, quality assurance measures were implemented to validate the accuracy and consistency of the merged 

data. This included data integrity checks that ensured all data conformed to the expected formats and values. 

Ensuring data integrity was crucial for the credibility of the research findings. 

For saving the unified data into the database, an Object-Relational Mapping (ORM) approach was employed. 

ORM provided an efficient and error-reducing means of translating the data into a database schema. This method 

was particularly useful in handling complex queries and data interactions, which are common in handling large 

datasets of real estate listings. 

Overall, the data unification approach not only streamlined the research process by creating a centralized data 

resource but also enhanced the reliability and accuracy of the analyses conducted in the thesis. 

 

Database Management and Data Integration 

The design of the database is pivotal in supporting the data requirements of this thesis. A relational database 

model was chosen due to its ability to handle large volumes of structured data and support complex queries 

efficiently. 

Schema Design: The database schema was carefully designed to accommodate data from various sources while 

ensuring that it could be easily extended and modified. The schema includes tables for each real estate platform 

(e.g., plot.gr, spiti24, xe.gr) and a unified table that consolidates all the data. Each table is structured with fields 

that reflect the data model of the respective platform, such as price, area, bedrooms, bathrooms, and unique 

identifiers. 

Normalization: To reduce redundancy and improve data integrity, normalization practices were applied. This in-

volved organizing data into tables and columns in a way that dependencies are properly enforced by database 

integrity constraints, thereby reducing redundancy and improving data integrity. 

Data Storage Strategy 

The data storage strategy encompasses the methods and technologies used to store and manage the collected 

data effectively. 
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Relational Database Management System (RDBMS): An RDBMS was used to manage the relational tables and 

to facilitate complex SQL queries. This system supports transactions, which ensures data integrity and consistency 

even in the case of errors or failures. 

Data Type Standardization: Ensuring that each field in the database adheres to a standardized data type is crucial 

for maintaining consistency. For example, all monetary values are stored in a consistent format and datatype, 

which simplifies calculations and comparisons. 

 

Object-Relational Mapping (ORM) 

Object-Relational Mapping (ORM) is a technique that helps in converting data between incompatible type sys-

tems in object-oriented programming languages and relational databases. This approach provides a high-level 

abstraction upon the relational database that allows for maintaining a robust database schema. 

Benefits of ORM: ORM frameworks facilitate the management of database entities and relationships directly 

from the Python code, which enhances productivity and reduces the likelihood of SQL injection attacks. ORM also 

automates the transfer of data from in-memory objects to database tables, ensuring that the data adheres to the 

schema without requiring manual parsing of data. 

Implementation: In this thesis, an ORM framework compatible with Python was employed to interact with the 

SQL database. This framework allowed for defining each data model class in Python, which then translates into a 

database table through migrations. CRUD (Create, Read, Update, Delete) operations were implemented using 

ORM methods, which abstracted the complex SQL queries into simple and secure Python methods. 

 

Data Integration Process 

Integrating data from multiple sources into a unified database involved several steps: 

Data Extraction and Transformation: Before integration, data was extracted from various formats and trans-

formed into a unified format. This involved cleaning, normalizing, and transforming data to fit the database 

schema. 

Data Loading: The transformed data was loaded into the database using batch operations, which improves per-

formance and minimizes the load on the database server. 

Data Validation and Cleansing: Post-integration, data was validated against the schema constraints to catch any 

anomalies and was cleansed to ensure accuracy and completeness. 

 

Security and Backup 

Security Measures: Security measures such as encrypted connections and secure access controls were imple-

mented to protect the data. 

Backup Procedures: Regular backups and data recovery procedures were established to ensure data durability 

and availability. 
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Implementation of the Django Full Stack Application 

In this chapter, the focus shifts to the implementation of a Django full stack application that integrates the image 

similarity algorithm with a user-friendly interface. This application serves as the platform through which users 

interact with the data, leveraging Django’s robust back-end capabilities and a well-designed front-end to present 

data in an insightful and accessible manner. The chapter outlines the strategic development phases, including the 

setup of the Django environment, integration of the image similarity algorithm, data fetching mechanisms, and 

the user interface design. 

Django Application Setup 

Setting up the Django environment involves configuring the framework to work seamlessly with the existing da-

tabase and ensuring that all components are optimized for performance and scalability. 

Framework Configuration: Django is set up with settings that align with the project’s needs, including database 

configurations, static and media files settings, security settings, and middleware configurations for handling re-

quests. 

Model Definition: Models are defined in Django to mirror the database schema created in the previous chapter. 

This ORM feature of Django facilitates the interaction with the database in an object-oriented manner. 

Admin Interface Setup: Django’s built-in admin interface is customized to allow administrators to easily manage 

the content of the application, including real estate listings, images, and user data. 

Backend Implementation in Django 

The backend of the application, built using Django, handles data management, algorithm integration, and server-

side logic: 

Data Management: Django models are used to manage data related to properties, user preferences, and image 

metadata. Django’s ORM capabilities facilitate interaction with the database where property information and 

image data are stored. 
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Image similarity model training 

This model is designed to find matching folders based on the similarity of images between a temporary folder 

(temp_folder) and a data folder (data_folder). Here’s a step-by-step breakdown of how it works: 

In the rapidly advancing field of computer vision, the ability to automatically identify and match similar images 

across different datasets is of paramount importance. This capability finds applications in various domains, in-

cluding digital forensics, content management systems, and automated archival processes. The focus of this the-

sis is on developing an efficient and accurate method to find matching folders containing similar images within a 

large dataset, utilizing the ORB (Oriented FAST and Rotated BRIEF) feature detector and descriptor. 

Traditional methods of image comparison often rely on color histograms or pixel-by-pixel analysis, which can be 

computationally intensive and less effective when dealing with images that have undergone transformations such 

as rotation, scaling, or partial occlusion. The ORB algorithm, introduced by Rublee et al. in 2011, presents a robust 

alternative by focusing on keypoints and their descriptors, allowing for effective matching even under varying 

image conditions. 

This thesis proposes an algorithm that leverages ORB to compare images from a temporary folder against a set 

of images distributed across multiple subfolders in a data directory. The primary objective is to identify and return 

the names of subfolders that contain images similar to those in the temporary folder, based on a predefined 

similarity threshold. The algorithm is designed to be both efficient and scalable, capable of handling large da-

tasets without significant computational overhead. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 8: Image similarity training process 
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Convolutional Neural Networks (CNNs) have revolutionized the field of image processing by enabling high levels 

of accuracy in tasks such as image classification and object detection. CNNs automatically learn and capture the 

hierarchical patterns in images which makes them particularly suited for tasks requiring a high degree of visual 

recognition. 

 ResNet50 Architecture 

ResNet50, a variant of the ResNet family, is a deep convolutional network known for its architecture that includes 

50 layers. It introduces a novel architecture with "skip connections" which helps in alleviating the vanishing gra-

dient problem by allowing direct gradient flow between layers. The ResNet50 model utilized in this project is pre-

trained on the ImageNet dataset, which consists of over a million images categorized into 1000 classes. This pre-

training provides a solid foundation for extracting generic features that can be applicable to a wide range of visual 

recognition tasks. 

Image Preprocessing 

For the model to process images effectively, they must be normalized and resized to meet the input specifications 

of the ResNet50 model: 

• Normalization: Adjusts pixel values to a scale that the model expects, based on its training on the 

ImageNet dataset. 

• Resizing: Images are resized to 224x224 pixels, which is the required input size for the model. 

Feature Extraction 

The script employs the ResNet50 model to extract features from images. Instead of using the model to predict 

image classes directly, we modify it to output a vector from the penultimate layer. This vector, typically 2048 

elements long, represents a dense embedding of the image's visual content: 

Pooling: The 'average' pooling layer is used to reduce the dimensions of the output from the convolutional layers, 

summarizing the detected features into a single vector. 

File and Data Management 

Efficient data handling is crucial for managing large image datasets: 

Directory Listing and Set Operations: The script lists all image directories and identifies discrepancies between 

existing dataset indices and those already processed, ensuring no image is processed twice. 

Checkpointing: To manage long-running operations and potential interruptions, the script uses a checkpointing 

mechanism. It records the last processed image, allowing the process to resume without loss of progress. 

The practical implementation of the above methodology involves iterating over a dataset of images, processing 

each image to extract features, and storing these features in an array format for quick access and analysis. The 

script handles errors gracefully, retries file access when necessary, and logs its progress for monitoring and de-

bugging purposes. 

The extraction of image features using a pre-trained ResNet50 model provides a robust foundation for building 

image similarity models. The features captured by this model encapsulate complex patterns in the visual data, 

which are essential for the accurate comparison and retrieval of images based on similarity. This approach not 
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only enhances the effectiveness of similarity-based tasks but also significantly reduces the computational over-

head involved in training a model from scratch. 

Error Handling and Retry Logic 

To ensure robustness, especially when accessing filesystems or during long-running processes, the script includes 

error handling and retry mechanisms: 

• Directory Access Failures: If a directory fails to open, the script retries several times before logging an 

error and skipping it. 

• Image Processing Failures: Errors during image loading or feature extraction are logged, and the prob-

lematic image is skipped, preventing the entire process from failing. 

 

  

Figure 9: Training steps 
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Integration with Django 

The integration of the image similarity algorithm within the Django application involves several key components: 

Backend Processing: Django manages the backend processes, including the retrieval of image data from the da-

tabase, handling the file system operations for image storage, and executing the feature extraction and similarity 

measurement tasks. 

Asynchronous Tasks: Given the potentially high computational load of processing large volumes of images, these 

operations are handled asynchronously using Django’s support for background tasks (e.g., using Celery with Rab-

bitMQ or Redis as the message broker). 

APIs for Frontend Interaction: Django serves the results of the image similarity analysis through RESTful APIs, 

which the frontend consumes to display similar property recommendations to users. 

  



74 

 

Integration of Image Similarity Algorithm 

The image similarity algorithm is a core component of the application, enabling the platform to identify and sug-

gest similar real estate listings based on image content. 

• Algorithm Embedding: The algorithm is embedded into the Django application as a backend service. This 

involves setting up a dedicated route in the application that handles image processing and similarity com-

putation. 

• Data Handling: When images are uploaded or updated in the listings, the algorithm processes these im-

ages to extract features and compute similarities, storing these results in the database for quick retrieval 

during user queries. 

• Performance Optimization: The implementation is optimized for performance, ensuring that the image 

processing tasks do not hinder the overall user experience of the application. 

 

Implementation of the Django Full Stack Application with Image Similarity-Based Recommendation System 

This chapter delves into the practical implementation of a Django full-stack application that incorporates an im-

age similarity-based recommendation system for real estate listings. The application leverages sophisticated im-

age processing algorithms to recommend similar properties to users, enhancing their experience by tailoring op-

tions based on visual preferences. It also features robust filtering capabilities, allowing users to refine their search 

according to specific criteria. Below is a comprehensive discussion of the application’s interface, the underlying 

technology of the recommendation system, and its integration within the Django framework. 

User Interface Design 

The application’s user interface (UI) is designed to be intuitive and user-friendly, facilitating easy navigation and 

interaction. The main components of the UI include: 

Listing Display: As shown in the uploaded screenshot, the main part of the interface displays a series of property 

images that represent individual listings. Each listing provides a visual snapshot of the property, allowing users to 

quickly gauge the appearance and style of each property. 
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Dynamic Filters: The interface includes filters that users can apply to refine their search based on various param-

eters such as location, price, property size, and specific features like the number of bedrooms or bathrooms. This 

allows users to tailor the recommendations to better fit their needs and preferences. 

 

Image Similarity Algorithm Integration 

Figure 10: Django app 

Figure 11: Properties details 



76 

 

The image similarity algorithm is a core feature of the application, enabling the recommendation system by ana-

lyzing visual content of property images to identify similar properties across different platforms. Here’s how it is 

integrated: 

Algorithm Setup: The algorithm processes images using convolutional neural networks (CNNs) to extract feature 

vectors from each property image stored in the database. These vectors represent key visual attributes of the 

images. 

Similarity Calculation: When a user views a property, the algorithm compares its feature vector with those of 

other properties in the database using cosine similarity or another suitable metric. It then identifies properties 

with the highest similarity scores. We have an output of the similar ids in the terminal and the app interface 

template (figure 12 & 13). 

 

Figure 12: Matching property ids found for specific property 

Recommendation Generation: Properties with the highest similarity scores are presented to the user in the "Rec-

ommended For You" section, providing personalized suggestions that align with the user's apparent visual pref-

erences. 
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Figure 13: Recommendation system 

 

Recommendation Section: Below the main listing images, a "Recommended for You" section (figure 12) suggests 

similar properties based on image similarity. This feature uses the image similarity algorithm to find and display 

listings that share visual characteristics with properties the user has shown interest in. 

Workflow for Image Similarity Detection 

Image Processing: Each image uploaded to the platform is processed using a predefined image processing algo-

rithm. This process extracts feature vectors that numerically represent the visual content of each image. 

Similarity Computation: The application calculates similarity scores between the feature vector of a reference 

image and the vectors of other images in the database. This is likely done using a method such as cosine similarity, 

which measures the cosine of the angle between two vectors. 

Threshold Application: A threshold is set (in your case, it might be 0.7 as suggested by repeated scores in the 

output), which serves as the cut-off point for determining which images are considered similar. Scores that meet 

or exceed this threshold indicate a high degree of similarity, suggesting that the properties in the images share 

visual characteristics. 

Displaying Recommendations: Listings corresponding to images that meet the similarity criteria are flagged as 

similar and can be recommended to users. This functionality enhances the user experience by providing person-

alized recommendations based on visual preferences. 

Integration into the Django App 
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Backend Integration: The similarity scores are computed in the backend of your Django application. The process 

involves handling large amounts of image data and requires efficient data management and processing capabili-

ties. 

Frontend Display: The similar listings, based on the scores, are displayed to the user in the "Recommended For 

You" section of the UI. This seamless integration between backend computations and frontend display is crucial 

for maintaining a responsive user interface.  

User Interaction: Users can interact with the recommendations by clicking on similar images to view more details 

about the listings.  

 

 

 

  

Figure 14: Similarity calculation 
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Technical Explanation of the Image Similarity Algorithm 

In this chapter, we delve into the technical aspects of the image similarity algorithm implemented in the Django 

full-stack application for real estate listings. This algorithm is central to the recommendation system, allowing the 

application to suggest listings that visually resemble each other. The explanation covers the algorithm's concep-

tual basis, the methodologies employed for feature extraction and similarity measurement, and its integration 

into the Django environment. 

Conceptual Framework 

The image similarity algorithm operates on the principle that images can be quantitatively compared by convert-

ing them into a form where visual features are represented as high-dimensional vectors. These vectors capture 

essential aspects of the images, such as textures, shapes, and colors, allowing for numerical comparison. 

Feature Extraction: This is the process of transforming raw images into a set of features (numerical data) that are 

useful for comparison. Feature extraction reduces the dimensionality of the data by capturing only the essential 

information needed for the task at hand. 

Similarity Measurement: After feature extraction, the similarity between images is quantified using a suitable 

metric that compares feature vectors. This measure determines how 'close' two images are in the feature space. 

Feature extraction in the context of the real estate application involves processing images retrieved from various 

listings. The process can be divided into two main steps: image retrieval and the transformation of these images 

into a format suitable for analysis. 

Image Retrieval: 

Each image associated with a listing is uniquely identified by a combination of the listing ID and an image index. 

For instance, for a listing with ID '123', images might be named '123_1', '123_2', etc. 

Images are fetched from URLs stored in the database corresponding to each listing. The structure ensures that 

each image is traceably linked to its source listing, allowing for systematic processing and retrieval. 

To manage the images efficiently, they are stored locally in a structured directory system. Each listing ID has a 

dedicated folder, which contains all related images. This organization simplifies access to the images during pro-

cessing and helps in maintaining a clean dataset by segregating images by their respective listings. 

Transformation and Feature Vector Creation: 

Preprocessing: Images are first preprocessed to normalize aspects such as size and color intensity. This normali-

zation ensures that the feature extraction process is uniform across all images. 

Feature Detection: Using convolutional neural networks (CNNs) or other suitable image processing algorithms, 

key features of the images are extracted. These features might include edges, corners, textures, and other rele-

vant visual attributes that define the content of the images. 

Vectorization: The extracted features are then converted into a vector format. Each vector represents an image 

in a multidimensional feature space where each dimension corresponds to a feature detected in the image.  
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Similarity Measurement Techniques 

After converting images into feature vectors, the next step involves measuring the similarity between these vec-

tors to identify images that are visually similar. 

Similarity Metrics: Common metrics used for this purpose include cosine similarity, Euclidean distance, and Man-

hattan distance. In the context of this application, cosine similarity is particularly useful as it measures the cosine 

of the angle between two vectors, providing a metric that is relatively insensitive to the magnitude of the vectors 

and focuses solely on their orientation in the feature space. 

Thresholding: A threshold value is set to determine when two images are considered similar. This threshold is 

empirically determined based on testing and validation during the development phase. Images with similarity 

scores above this threshold are tagged as similar. 

Results 

Dataset Description 

The dataset used in this study was compiled from four major Greek real estate platforms: Spitogatos, Spiti24, 
Plot, and Tospitimou. The primary goal was to collect a diverse and comprehensive set of real estate listings, 
including various property types such as apartments, houses, and commercial properties. This dataset specifically 
focuses on properties for sale in both the Athens city center and its surrounding suburbs. 

To analyze the dataset effectively, we extracted unique listing IDs from each platform. This analysis helps in un-

derstanding the distribution of listings and the coverage provided by each platform. The following visual repre-

sents the number of unique IDs collected from each source. 

 

Figure 15: Number of Unique IDs per Source 
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The dataset used in this study was compiled from four major Greek real estate platforms: Spitogatos, Spiti24, 
Plot, and Tospitimou. The primary goal was to collect a diverse and comprehensive set of real estate listings, 
which includes varying property types such as apartments, houses, and commercial properties. 

To analyze the dataset effectively, we extracted unique listing IDs from each platform. This analysis helps in un-
derstanding the distribution of listings and the coverage provided by each platform. The following visual repre-
sents the number of unique IDs collected from each source. 

The bar chart in Figure 8 illustrates the distribution of unique real estate listing IDs across four major platforms. 
Each bar represents the count of unique IDs sourced from a specific platform. Here’s a detailed look at the data 
represented: 

• Spitogatos: The platform contributed the highest number of unique IDs, totaling approximately 27,000 
listings. This indicates Spitogatos' significant presence and extensive coverage in the Greek real estate 
market. 

• Spiti24: With around 21,000 unique IDs, Spiti24 is the second-largest contributor, showcasing a sub-
stantial number of listings available on this platform. 

• Plot: This platform provided about 18,000 unique IDs, marking it as a key player, although slightly be-
hind Spiti24 in terms of listing count. 

• Tospitimou: The least number of unique IDs were sourced from Tospitimou, with roughly 14,000 list-
ings. Despite having the lowest count among the four platforms, it still contributes significantly to the 
overall dataset. 

The data indicates that Spitogatos has the largest dataset, which might reflect its popularity and possibly a more 

extensive listing database compared to the other platforms. The significant number of unique IDs from all four 

sources highlights the necessity of consolidating duplicate listings to provide accurate market insights. This dis-

tribution is crucial for understanding the dataset's scope and the subsequent steps in duplicate detection and 

consolidation. 

Implications: 

1. Market Coverage: Spitogatos and Spiti24 have higher market coverage, which suggests that users might pre-

fer these platforms for listing properties. This could be due to better platform features, broader audience 

reach, or more comprehensive listing services. 

2. Data Redundancy: The presence of multiple platforms with substantial listings raises the likelihood of data 

redundancy, where the same property might appear across different platforms. This necessitates an effective 

algorithm to detect and consolidate these duplicates. 

3. Focus for Improvement: Platforms like Tospitimou, with fewer listings, might need to enhance their market 

presence or improve their data acquisition strategies to compete with more dominant platforms. 

By understanding the dataset's distribution, we can better appreciate the challenges in managing and consoli-

dating real estate data across multiple platforms. The next sections will delve into the feature extraction, image 

processing, and the results of the duplicate detection algorithm, providing a comprehensive overview of the 

study's findings. 

Top 10 Regions by Number of Listings 
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The analysis also involved examining the geographical distribution of the real estate listings. This helps in under-

standing the concentration of listings in various regions and can provide insights into the most active real estate 

markets. 

 

Figure 16: Top 10 regions by number of listings 

 

The bar chart in Figure 9 highlights the top 10 regions with the highest number of real estate listings. The x-axis 
represents the regions, while the y-axis shows the number of listings. Each bar corresponds to the count of list-
ings in a specific region, with the following key observations: 

• Λεωφ. Πατησίων - Λεωφ. Αχαρνών: This region leads with the highest number of listings, totaling ap-
proximately 1,500. This indicates a highly active real estate market, possibly due to high demand and 
availability of properties. 

• Κολωνάκι: The second most active region, with around 600 listings. Known for its prime location, this 
area likely attracts significant real estate activity. 

• Μαρούσι: With approximately 600 listings, this region is a significant hub for real estate, indicating its 
popularity and growth. 

• Εκάλη: This region also shows a considerable number of listings, reflecting its attractiveness in the real 
estate market. 

• Αττική: The region has around 500 listings, showcasing its importance in the real estate sector. 

• Βριλήσσια: Another active region with roughly 400 listings. 

• Πολίτεια - Κηφισιά: This region has about 300 listings, indicating its relevance in the market. 

• Κέντρο Αθήνας Παγκράτι: With approximately 250 listings, it remains an important area for real estate 
transactions. 
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• Αγ. Μελετίου - Πλ. Βικτωρίας - Μάρνη: This region shows around 200 listings, reflecting its activity in 
the market. 

• Βουλιαγμένη: With roughly 200 listings, this region is also a notable area in the real estate landscape. 

The data indicates that the Λεωφ. Πατησίων - Λεωφ. Αχαρνών region has the highest number of listings, mak-
ing it a central area for real estate activities. Regions like Κολωνάκι and Μαρούσι follow, suggesting that these 
areas are also highly sought after for property transactions. This distribution can help real estate professionals 
target specific regions for marketing and sales efforts. 

 

Top 10 Regions by Average Price 

In addition to the number of listings, analyzing the average price per region provides valuable insights into the 
real estate market's economic landscape. This analysis helps identify regions with higher property values, which 
can inform investment decisions and market strategies. 

 

Figure 17: Top 10 regions based on the average price  
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The bar chart in Figure 10 presents the top 10 regions based on the average price of real estate listings. The x-
axis represents the regions, while the y-axis shows the average price in euros (€). Each bar indicates the average 
price of listings in a specific region. The key observations are: 

• Ελευθεριάς, Παλαιό Ψυχικό (Αθήνα - Βόρεια Προάστια): This region has the highest average price, ex-
ceeding 2 million euros, indicating its status as a highly desirable and premium real estate market. 

• Αττικό Άλσος Πολύγωνο: The second-highest average price is around 1 million euros, suggesting a sig-
nificant market value in this region. 

• Ριγκίλης Κολωνάκι - Λυκαβηττός (Αθήνα - Κέντρο): This region shows a substantial average price of 
approximately 500,000 euros, reflecting its central location and high demand. 

• Προφήτης Ηλίας Κηφισιά (Αθήνα - Βόρεια Προάστια): With an average price around 400,000 euros, 
this region also indicates a high property value. 

• Παλαιό Ψυχικό (Αθήνα - Βόρεια Προάστια): Another high-value region with an average price of around 
350,000 euros. 

• Άνω Εκάλη (Εκάλη): This area has an average price of approximately 300,000 euros. 

• Σεπόλια (Αθήνα - Κέντρο): This region shows an average price of around 250,000 euros, reflecting sig-
nificant real estate activity. 

• Πεντέλη (Αθήνα - Βόρεια Προάστια): With an average price of approximately 200,000 euros, indicating 
its relevance in the market. 

• Έξω Χαλάνδρι (Αθήνα - Βόρεια Προάστια): Also showing an average price of around 200,000 euros. 

• Αγ. Φιλοθέη, Φιλοθέη (Αθήνα - Βόρεια Προάστια): This region shows an average price of approximately 
150,000 euros. 

The data indicates that Ελευθεριάς, Παλαιό Ψυχικό (Αθήνα - Βόρεια Προάστια) is the most expensive region, 
significantly higher than the other regions analyzed. This could be attributed to its prime location, desirable neigh-
borhood, and high-end amenities. The regions with high average prices such as Αττικό Άλσος Πολύγωνο and 
Ριγκίλης Κολωνάκι - Λυκαβηττός (Αθήνα - Κέντρο) are also centrally located and highly sought after, contributing 
to their elevated property values. 

 

Average Price per Square Meter per Region 

Understanding the average price per square meter is crucial for assessing the real estate market's value and com-
paring different regions. This metric provides insight into the cost of property relative to its size, which is a key 
factor for buyers and investors. 
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Figure 18: Average price per square meter 

 

The bar chart in Figure 11 shows the average price per square meter for properties in various regions. The x-axis 
represents the regions, while the y-axis shows the average price per square meter in euros (€). Each bar indicates 
the average cost of real estate per square meter in a specific region. Key observations from the chart include: 

• Ελευθεριάς, Παλαιό Ψυχικό (Αθήνα - Βόρεια Προάστια): This region stands out with the highest aver-
age price per square meter, exceeding 4,000 euros. This indicates it is a premium area with high property 
values. 

• Αττικό Άλσος Πολύγωνο: The second-highest average price per square meter is around 3,000 euros, 
suggesting a significant market value in this region. 

• Ριγκίλης Κολωνάκι - Λυκαβηττός (Αθήνα - Κέντρο): This region also shows a high average price per 
square meter, around 2,500 euros, reflecting its central location and high demand. 

• Άνω Εκάλη: With an average price per square meter around 1,500 euros, this area is another high-value 
region. 

• Πεντέλη (Αθήνα - Βόρεια Προάστια): This region shows an average price per square meter of approxi-
mately 1,200 euros. 

• Other Regions: The remaining regions have average prices per square meter ranging from around 1,000 
to 500 euros, indicating more affordable property values compared to the top regions. 
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The data highlights significant variations in property values across different regions. Ελευθεριάς, Παλαιό Ψυχικό 

(Αθήνα - Βόρεια Προάστια) commands the highest prices per square meter, which could be due to factors such 

as location desirability, exclusivity, and available amenities. Similarly, regions like Αττικό Άλσος Πολύγωνο and 

Ριγκίλης Κολωνάκι - Λυκαβηττός (Αθήνα - Κέντρο) also reflect high property values, likely driven by their central 

locations and premium market segments. 

Images dataset 

To facilitate the processing and analysis of real estate listings, a Python script was developed to extract images 

from provided URLs and organize them into directories. Each directory corresponds to a unique listing ID, ensur-

ing a structured dataset. 

The column labeled images contains URLs pointing to images of real estate listings. Each URL represents a direct 

link to an image file hosted on a server. These URLs are essential for downloading and processing the images for 

further analysis. The format of the images column is a comma-separated list of URLs. Each URL corresponds to a 

unique image of the property listing.  

In addition to organizing the images into directories based on unique listing IDs, we conducted a quantitative 
analysis to summarize the image dataset. This analysis provides insights into the average number of images per 
listing and the total number of images collected. 

Average Number of Images per Listing: 

Through our data collection process, it was determined that, on average, each listing has approximately 13 im-
ages. This metric, calculated as 13.075747947433975, indicates a robust visual representation for each property, 
allowing for a comprehensive analysis of the listings. 

Average Number of Images per Listing = 
𝑇𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐼𝑚𝑎𝑔𝑒𝑠𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐿𝑖𝑠𝑡𝑖𝑛𝑔𝑠
 

The average number of images per listing is crucial for understanding the dataset's richness and the level of detail 
available for each property. 

Total Number of Images Collected: 

The total number of images collected across all listings in the database is 1,028,826. This substantial number of 
images underscores the scale of the dataset and the extensive effort involved in aggregating visual data from 
multiple real estate platforms. 

 

  



87 

 

Image similarity model results 

Django app results 

Experiment 1 

The "Recommended for You" section of the real estate platform has impressively highlighted properties that, 
despite bearing different details in terms of size and pricing, share the exact same image. This scenario indicates 
that these properties might potentially be located within the same building or complex, demonstrating an 
interesting case of property listings that utilize the same photographic representation to appeal to potential 
buyers. 
The image similarity algorithm has played a crucial role here by detecting that these images are identical with a 
very high similarity score of about 90.49%. This precision illustrates the algorithm's effectiveness not just in 
suggesting visually similar properties based on aesthetic and structural elements, but also in identifying exact 
image matches across different listings. This capability is particularly useful for users who are exploring options 
within a specific locality or building complex, as it consolidates what might initially appear as distinct options into 
a comprehensible set of choices that are visually identical. 
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Experiment 2 

In the showcased example, the real estate application's image similarity algorithm has effectively identified and 
displayed multiple listings of the same property, marketed by different real estate agents and listed on various 
platforms. This listing, featuring a spacious terrace overlooking the city, is repeatedly encountered across several 
adverts with slight variations in description but identical visual presentation.  

By deploying advanced image recognition technology, the application not only highlights identical property im-
ages but also consolidates their information, such as price differences, agency names, and listing details. This 
allows users to compare similar offerings efficiently and discern the best value or most convenient transaction 
available, exemplifying a robust application of AI in enhancing user experience and decision-making in real estate 
platforms. 
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Image similarity program 

In order to check the accuracy of the similar images detection and test the model, we created a Python applica-

tion so that we can test the model. This program implements an image similarity search application using a graph-

ical user interface (GUI) built with Tkinter. It allows users to upload an image, either by selecting it from their file 

system or by dragging and dropping it into the application. Once the image is uploaded, the application searches 

for visually similar images from a pre-existing dataset. These similar images, along with additional metadata (like 

links), are then displayed to the user. The program performs the following actions: 

Database Connection Setup 

• Connection String: The code establishes a connection to a SQL Server database using the pyodbc library. 

The database contains a table with metadata (like links) related to the images. 

• Metadata Retrieval: The application queries the database to fetch links associated with images that are 

determined to be similar to the uploaded image. 

Image Feature Extraction Using Deep Learning 

The program uses a pre-trained ResNet50 model, a convolutional neural network (CNN) architecture, to extract 

feature vectors from images. This model has been trained on a large dataset (ImageNet) and is capable of cap-

turing complex patterns and features in images, such as textures, edges, and shapes, which are crucial for distin-

guishing between different images. Extracted features and corresponding IDs are saved periodically to .npy files 

and managed through a checkpointing mechanism that allows the process to resume from the last point in case 

of interruption. 

• Feature Vector: For each image, the ResNet50 model processes the image and outputs a high-dimensional 

vector (feature vector). This vector is a numerical representation of the image, capturing its essential char-

acteristics. 

• Normalization: The feature vectors are normalized to ensure that they have a consistent scale, which is 

important for accurate similarity calculations. 

Cosine Similarity for Image Comparison 

The program compares images using cosine similarity, a metric that measures the cosine of the angle between 

two non-zero vectors in a multi-dimensional space. Mathematically, cosine similarity is expressed as: 

Cosine Similarity=
𝐴⋅𝐵

∥𝐴∥∥𝐵∥
 

Where A and B are feature vectors of two images. The cosine similarity score ranges from -1 to 1, with 1 indicating 

identical vectors (i.e., highly similar images), 0 indicating orthogonal vectors (i.e., dissimilar images), and -1 indi-

cating diametrically opposed vectors. 

High Similarity Detection: The program calculates the cosine similarity between the feature vector of an up-

loaded image and the feature vectors of images in a pre-existing database. Images with the highest similarity 

scores are considered to be potential duplicates. 
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Database Integration and Metadata Retrieval 

In addition to image comparison, the program integrates with a database that contains metadata for the listings, 

such as URLs to the listings on different platforms. 

• Link Retrieval: For each similar image detected, the program retrieves the corresponding link from the 

database, which points to the real estate listing on its respective platform. This allows users to easily 

verify whether the listings are indeed duplicates. 

• Database Query: The program queries the database using the unique identifiers (IDs) associated with the 

images to fetch the URLs. 

Graphical User Interface (GUI) 

The program provides a user-friendly GUI where users can upload images, view the detected similar listings, and 

interact with the data. 

• Image Display: The GUI displays the uploaded image along with the top similar images found in the da-

tabase. 

• Clickable Links: The links to the listings are displayed as clickable URLs, allowing users to quickly access 

the listings on different platforms. 

• Folder Access: The program provides buttons to open the local folder containing the images, facilitating 

further investigation or manual verification of the images. 

Application in Real Estate 

In the context of real estate, this program serves as a tool for image similarity and detection of similar listings. 

Real estate platforms often face issues with duplicate listings, which can confuse potential buyers and skew mar-

ket data. By detecting and flagging these duplicates, the program helps maintain a clean and reliable database of 

property listings, ensuring that each property is represented accurately and uniquely across platforms. 

The program presented is a GUI-based application designed to search and identify similar real estate property 

listings based on an uploaded image. The main goal of the application is to detect potential duplicate listings from 

different real estate agents or even the same agent across various platforms by comparing images of the proper-

ties.  
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Performance Evaluation of the Image Similarity Detection Program 

The program presented is a GUI-based application designed to search and identify similar real estate property 

listings based on an uploaded image. The main goal of the application is to detect potential duplicate listings from 

different real estate agents or even the same agent across various platforms by comparing images of the proper-

ties. 

The Image Similarity Search Tool, as shown in Figure bellow, offers a streamlined and user-friendly interface for 

initiating searches by uploading images. Users can either click on the 'Upload Image' button or simply drag and 

drop an image into the designated area. This flexibility enhances user engagement and accessibility, allowing for 

quick comparisons of real estate images to identify potential duplicates or closely related properties. 

  

Figure 19: UI of the image similarity app 
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This chapter presents the experimental results obtained from the deployment of the Image Similarity Program, 

specifically designed to identify duplicate real estate listings across various online platforms. The experiments 

were structured to assess both the accuracy and efficiency of the image similarity algorithms when applied to 

diverse property images. The experiments were done on real word examples with images from our dataset as 

long as other images that are not included in our dataset. The significance of these experiments lies in their 

potential to transform how real estate listings are managed and searched, reducing redundancy and enhancing 

user experience. The results are demonstrated through a combination of tabulated data and screenshots of the 

user interface. 

Experiment 1 

Input image: 

 

 

 

 

 

 

 

 

Resulting matching ids: 
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Results: 

ID Similar Image ID Link 
Similarity Percent-

age 

1174261 117723897 https://www.spitogatos.gr/aggelia/117723897 100.00% 

1174261 7723897 
https://www.tospitimou.gr/polisi-diamerisma-Ampelokipoi-
Ampelokipoi-Pentagono/agelia/7723897?position=2748 100.00% 

1174261 40965896 
https://www.plot.gr/search/40965896-diamerisma-73-tm-
gia-pwlisi 99.09% 

1174261 40975304 
https://www.plot.gr/search/40975304-diamerisma-90-tm-
gia-pwlisi 85.58% 

1174261 93075500 https://www.spiti24.gr/93075500 85.32% 

1174261 15026600 
https://www.tospitimou.gr/polisi-diamerisma-Thumarakia-
Attiki/agelia/15026600?position=5594 85.32% 

 

The highest similarity scores (100.00%) achieved in this experiment confirm that the program can accurately 

identify when two images represent the same property, even when those listings are from different platforms. 

This accuracy was further validated through manual verification, where visits to the top three links confirmed 

that they indeed correspond to the same real estate listing, albeit advertised on different platforms. This demon-

strates the program's robustness in identifying duplicates across disparate sources. 

The similarity scores around 85% and lower also reveal the program's capability to detect subtler similarities that 

may not be immediately apparent. This includes variations in camera angles, lighting conditions, and minor 

changes in room arrangement, which are typical in real estate photography but do not necessarily indicate 
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different properties. By accounting for these nuances, the program proves useful not just in outright duplicate 

detection but also in providing insights into listings that share many features but are photographed differently. 

Implementing a threshold of 86.5% for similarity scoring in the Image Similarity Program allows us to balance 

sensitivity and specificity, enhancing the tool's practical utility in real estate market applications. This adjustment 

ensures that the program remains a reliable resource for identifying duplicate listings, supporting clearer, more 

accurate real estate databases and improving user experience on digital real estate platforms. The next experi-

ments will be filtered to show only similar ids more than 86.5%. 

Property on real estate platform 1: 

Property on real estate platform 2: 
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Experiment 2 

Input image: 

 

 

 

 

 

 

 

 

 

 

 

Resulting matching ids: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



99 

 

 

 

Results: 

The table below represents pairs of listings that were analyzed, including their IDs, the URLs for direct verification, 

and the similarity scores obtained: 

ID Similar Image ID Link Similarity Percentage 

1117899 1117890 https://www.spiti24.gr/1117890 100.00% 

1117899 117772411 https://www.spitogatos.gr/aggelia/117772411 100.00% 

1117899 15400610 

https://www.tospitimou.gr/polisi-diamerisma-
Plaka-Istoriko-Kentro/agelia/15400610?posi-
tion=1451 86.81% 

1117899 1115351660 
https://www.spitogatos.gr/ag-
gelia/1115351660 86.65% 

1117899 41024148 
https://www.plot.gr/search/41024148-diamer-
isma-110-tm-gia-pwlisi 86.56% 

 

Listings with 100% similarity are confirmed duplicates. For instance ID 1174261 with Similar Image ID 117723897 

and Similar Image ID 7723897 both returned a similarity score of 100%. Visiting these URLs confirmed that these 

listings are indeed identical but posted on different platforms, showcasing the program's precision in identifying 

exact matches. Similarly, ID 1117899 matched 100% with ID 1117890 and ID 117772411, confirming that the 

program can detect duplicates without any error in these cases. 

Listings with similarity scores in the high 80s to 99% indicate very close matches but with potential slight varia-

tions in the images due to factors like angle, lighting, or minor decor changes. For example ID 1174261 and ID 

40965896 have a similarity score of 99.09%, suggesting an almost identical listing likely represented under slightly 

different conditions. Lower scores around 85%, such as ID 1174261 with ID 93075500 or ID 15026600, still suggest 

strong similarities. These could involve more noticeable changes in the photograph's setup but still represent the 

same property. 
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Property on real estate platform 1: 

Property on real estate platform 2: 
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Experiment 3 

Input image: 

 

 

 

 

 

 

 

 

 

 

Resulting matching ids:  
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Results: 

ID 
Similar Image 

ID Link 
Similarity Percent-
age 

40903824 94667016 https://www.spiti24.gr/94667016 99.55% 

40903824 40771551 
https://www.plot.gr/search/40771551-diamer-
isma-96-tm-gia-pwlisi 92.78% 

40903824 98987397 https://www.spiti24.gr/98987397 92.49% 

40903824 93009251 https://www.spiti24.gr/93009251 89.96% 

40903824 98006466 https://www.spiti24.gr/98006466 87.60% 

40903824 1115501724 https://www.spitogatos.gr/aggelia/1115501724 87.38% 

40903824 1918615 https://www.spiti24.gr/1918615 87.36% 

40903824 1115209893 https://www.spitogatos.gr/aggelia/1115209893 87.13% 

40903824 40909701 
https://www.plot.gr/search/40909701-diamer-
isma-100-tm-gia-pwlisi 87.02% 

40903824 93907960 https://www.spiti24.gr/93907960 86.87% 

 

The results of the experiment conducted on the listing ID 1174261 illustrate the core problem statement of our 

study—identifying and linking duplicate real estate listings that may be posted by different agents or on various 

platforms. This listing is a prime example of how frequently the same property can be found across multiple 

platforms, underscoring the necessity for an effective image similarity tool in the real estate market. 

Analysis of Listing ID 1174261 

 
Similarity Scores and Verification 
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• 100% Similarity Scores: The links associated with Similar Image IDs 117723897 and 7723897 both re-

turned 100% similarity scores. Upon manually verifying these URLs, it was confirmed that they indeed 

represent the same property as ID 1174261, but were listed under different descriptions and possibly 

by different agents on different platforms (Spitogatos.gr and Tospitimou.gr). We even detected this spe-

cific property in the same platform from different agents. 

• High Similarity Scores: The other similarity scores ranging from 99.09% to 83.47% also demonstrate the 

tool's capability to detect significant similarities that might not be outright duplications but share sub-

stantial features. These scores likely represent the same or very similar properties with variations in 

how the photos were taken or processed, differences in staging, or updates over time. 

 

Property on same real estate platform from different agents: 

 

 

 

Property on different real estate platforms: 
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Conclusion and Future Work 

The research undertaken in this thesis has successfully demonstrated the application of advanced web scraping 

techniques, machine learning models for image similarity, and full-stack development using Django to create a 

robust platform for real estate data analysis in Greece. The integration of these technologies has facilitated a 

deeper understanding of the Greek real estate market, providing a comprehensive tool for users to access and 

analyze property data efficiently. 

• Key Contributions: The development of a system that not only automates the collection and processing 

of real estate data but also implements a sophisticated image similarity algorithm to enhance user expe-

rience by recommending similar properties. 

• Challenges Encountered: Among the challenges faced were dealing with data redundancy across multi-

ple platforms, ensuring data privacy and compliance with real estate regulations, and overcoming tech-

nical hurdles related to web scraping and data integration. 

The development and implementation of web scraping systems for real estate data analysis, as detailed in this 

thesis, have proven highly effective for gathering and processing information from Greek real estate platforms. 

Given the success of these methods, there is a significant opportunity to extend the scope of these scraping 

systems to encompass a broader array of platforms. This expansion would not only enhance the comprehensive-

ness of the data but also enrich the analysis capabilities of the system. 

This thesis has laid a solid foundation for the application of web scraping and image similarity methods in analyz-

ing real estate properties in Greece. The proposed future directions aim to expand the scope and enhance the 

capabilities of these systems, leveraging technological advances and responding to the evolving needs of the real 

estate market. 

Expanding Web Scraping to Broader Platforms 

Global Expansion: Extending the web scraping system to include real estate platforms from different countries 

and regions would provide a more comprehensive global market analysis. This requires adapting the scraping 

tools to handle various languages and regional data formats, potentially incorporating automatic language trans-

lation and regional data normalization capabilities. 

• Commercial and Industrial Properties: Expanding the scope to include commercial and industrial prop-

erties would diversify the data collected, providing insights into more sectors of the real estate market. 

This involves customizing scraping parameters to capture unique features of these properties, such as 

zoning information, commercial use, and facility specifications. 

• Integration with Emerging Markets: Including platforms from emerging markets could uncover new in-

vestment opportunities and market trends that are not well-represented in traditional or established real 

estate databases. This would involve overcoming challenges related to less standardized data presenta-

tion and lower digital presence. 

 

Enhancing Image Similarity Methods 

Advanced Algorithmic Approaches: Employing more sophisticated algorithms for image similarity could improve 

the accuracy and efficiency of property comparisons. Techniques such as deep learning and neural networks 

could be explored to enhance feature detection and matching processes. 
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Cross-Platform Image Analysis: Developing methods to analyze and compare images across different platforms 

would help in identifying duplicate listings and providing a unified view of properties listed on multiple platforms. 

This requires robust image processing tools capable of normalizing and comparing images from diverse sources. 

Dynamic Image Analysis Tools: Implementing tools that allow dynamic interaction with image data, such as real-

time similarity scoring or interactive visualization of similar properties, would significantly enhance user engage-

ment and decision-making processes. 

Addressing Data Privacy and Ethical Considerations 

Data Privacy Protocols: As web scraping scales up, strict protocols must be established to ensure compliance 

with international data privacy laws such as GDPR. This involves implementing secure data handling practices, 

anonymizing personal data, and obtaining necessary permissions when scraping sensitive information. 

Ethical Scraping Practices: Developing a code of conduct for ethical web scraping in real estate, which respects 

website terms of use and avoids overloading servers, ensuring that scraping activities do not adversely affect the 

performance or accessibility of the original data sources. 

Transparency in Data Use: Maintaining transparency about the sources and methods of data collection and anal-

ysis, particularly when used in making investment decisions or policy recommendations, is essential to build trust 

among users and stakeholders. 

The potential expansions and enhancements proposed for the web scraping and image similarity systems are 

poised to transform real estate data analysis fundamentally. By embracing a global perspective, diversifying prop-

erty types, and integrating advanced technological solutions, these systems can provide more accurate, compre-

hensive, and actionable insights. Additionally, addressing ethical and privacy concerns will ensure that these de-

velopments not only advance the field technically but also maintain the highest standards of integrity and respect 

for individual rights. This forward-looking approach will position the research at the forefront of technological 

innovation in real estate analysis, setting a benchmark for future academic and practical applications in the in-

dustry. 
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Code   

image_similarity_training.py 

import os 

import numpy as np 

import tensorflow as tf 

from tensorflow.keras.applications import ResNet50 

from tensorflow.keras.preprocessing.image import load_img, img_to_array 

import logging 

import json 

 

# Setup logging 

logging.basicConfig(level=logging.INFO) 

 

# Load the saved features and IDs 

features = np.load('features.npy') 

ids = np.load('ids.npy') 

 

# Define the base path where the folders are stored 

base_image_path = 'listing_images'  # Replace with your actual path 

 

# List all folder names (IDs) 

folder_ids = set(os.listdir(base_image_path)) 

 

# Convert the unique IDs from the ids array into a set 

vector_ids = set(np.unique(ids)) 

 

# Find the IDs that are in the folder but not in the vector IDs 

missing_ids = folder_ids - vector_ids 

 

print(f"Total number of folders: {len(folder_ids)}") 

print(f"Total number of unique IDs in vectors: {len(vector_ids)}") 

print(f"Number of missing IDs: {len(missing_ids)}") 

print(f"Missing IDs: {missing_ids}") 

 

# Initialize the model (ensure your TensorFlow is configured to use the 

GPU) 

base_model = ResNet50(weights='imagenet', include_top=False, pooling='avg') 
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model = tf.keras.models.Model(inputs=base_model.input, out-

puts=base_model.output) 

 

def extract_features(image_path, model): 

    try: 

        img = load_img(image_path, target_size=(224, 224)) 

        img_array = img_to_array(img) 

        img_array = np.expand_dims(img_array, axis=0) 

        img_array = tf.keras.applications.resnet50.preprocess_input(img_ar-

ray) 

        features = model.predict(img_array) 

        return features.flatten() 

    except Exception as e: 

        logging.error(f"Error processing {image_path}: {e}") 

        return None 

 

def list_dir_with_retry(directory, max_retries=3, wait_time=5): 

    retries = 0 

    while retries < max_retries: 

        try: 

            return os.listdir(directory) 

        except Exception as e: 

            logging.warning(f"Error accessing {directory}: {e}. Retrying in 

{wait_time} seconds...") 

            time.sleep(wait_time) 

            retries += 1 

    logging.error(f"Failed to access {directory} after {max_retries} re-

tries.") 

    return None 

 

def append_to_npy(file_path, new_data): 

    if new_data.size == 0:  # Ensure there's something to append 

        logging.warning(f"No new data to append to {file_path}. Skipping.") 

        return 

     

    if os.path.exists(file_path): 

        existing_data = np.load(file_path) 

        if existing_data.shape[-1] != new_data.shape[-1]: 
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            logging.error(f"Shape mismatch: existing data shape {exist-

ing_data.shape} and new data shape {new_data.shape}.") 

            return 

        combined_data = np.concatenate((existing_data, new_data)) 

    else: 

        combined_data = new_data 

 

    np.save(file_path, combined_data) 

 

# Paths and settings 

output_features_file = 'features.npy' 

output_ids_file = 'ids.npy' 

checkpoint_file = 'checkpoint.json' 

 

features_list = [] 

ids_list = [] 

 

images_to_process = 10000  # Number of images to process per run 

processed_images = 0  # Counter for processed images 

 

# Load checkpoint if it exists and is valid 

if os.path.exists(checkpoint_file): 

    try: 

        with open(checkpoint_file, 'r') as f: 

            checkpoint = json.load(f) 

        start_folder = checkpoint.get('last_folder', None) 

        start_image = checkpoint.get('last_image', None) 

    except (json.JSONDecodeError, ValueError) as e: 

        logging.warning(f"Checkpoint file is empty or corrupted: {e}. 

Starting from the beginning.") 

        checkpoint = {} 

        start_folder = None 

        start_image = None 

else: 

    checkpoint = {} 

    start_folder = None 

    start_image = None 
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# Process only the missing folders 

missing_folders = sorted(list(missing_ids)) 

start_index = missing_folders.index(start_folder) if start_folder else 0 

 

for folder_index in range(start_index, len(missing_folders)): 

    folder_name = missing_folders[folder_index] 

    folder_path = os.path.join(base_image_path, folder_name) 

    if os.path.isdir(folder_path): 

        logging.info(f"Processing folder {folder_index + 1}/{len(miss-

ing_folders)}: {folder_name}") 

 

        images = list_dir_with_retry(folder_path) 

        if images is None: 

            continue  # Skip this folder if it couldn't be accessed 

 

        start_img_index = images.index(start_image) if folder_name == 

start_folder and start_image else 0 

 

        for image_index in range(start_img_index, len(images)): 

            image_name = images[image_index] 

            image_path = os.path.join(folder_path, image_name) 

            logging.info(f"Processing image {image_name} in folder 

{folder_name}...") 

            features = extract_features(image_path, model) 

            if features is not None: 

                features_list.append(features) 

                ids_list.append(folder_name) 

                processed_images += 1 

 

            # Save checkpoint and stop if the limit is reached 

            if processed_images >= images_to_process: 

                checkpoint = {'last_folder': folder_name, 'last_image': im-

age_name} 

                with open(checkpoint_file, 'w') as f: 

                    json.dump(checkpoint, f) 

                logging.info(f"Processed {processed_images} images. Check-

point saved. Exiting.") 
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                # Convert to numpy arrays for appending 

                features_array = np.array(features_list) 

                ids_array = np.array(ids_list) 

 

                # Append new features and IDs to existing files 

                append_to_npy(output_features_file, features_array) 

                append_to_npy(output_ids_file, ids_array) 

                 

                break  # Exit the loop after saving the checkpoint 

 

    if processed_images >= images_to_process: 

        break  # Exit the outer loop if processing limit is reached 

 

# Convert to numpy arrays for appending 

features_array = np.array(features_list) 

ids_array = np.array(ids_list) 

 

# Append the final batch of features and IDs to existing files 

append_to_npy(output_features_file, features_array) 

append_to_npy(output_ids_file, ids_array) 

 

logging.info(f"Final save after processing {processed_images} images.") 

logging.info("Feature extraction completed.")  
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test_image_similarity.py 

import os 

import numpy as np 

import tensorflow as tf 

from tensorflow.keras.applications import ResNet50 

from tensorflow.keras.preprocessing.image import img_to_array 

from sklearn.metrics.pairwise import cosine_similarity 

import tkinter as tk 

from tkinter import ttk, filedialog 

from tkinterdnd2 import DND_FILES, TkinterDnD 

from PIL import Image, ImageTk 

import logging 

from sklearn.preprocessing import normalize 

import subprocess 

import sys 

import pyodbc 

import webbrowser 

 

# Database connection string 

connection_string = ( 

    'DRIVER={ODBC Driver 17 for SQL Server};' 

    'SERVER=localhost;' 

    'DATABASE=listings;' 

    'UID=sa;' 

    'PWD=*******;' 

    'TrustServerCertificate=yes;' 

) 

 

# Load the saved features and IDs 

features = np.load('features.npy') 

ids = np.load('ids.npy') 

 

# Normalize features 

features = normalize(features) 

 

# Setup logging 

logging.basicConfig(level=logging.INFO) 



114 

 

 

# Check if GPU is available and set memory growth 

gpus = tf.config.list_physical_devices('GPU') 

if gpus: 

    try: 

        for gpu in gpus: 

            tf.config.experimental.set_memory_growth(gpu, True) 

        print(f"GPU(s) available: {gpus}") 

    except RuntimeError as e: 

        print(f"Error setting GPU memory growth: {e}") 

else: 

    print("No GPU found, using CPU.") 

 

# Initialize the model 

with tf.device('/GPU:0' if gpus else '/CPU:0'): 

    base_model = ResNet50(weights='imagenet', include_top=False, pool-

ing='avg') 

    model = tf.keras.models.Model(inputs=base_model.input, out-

puts=base_model.output) 

 

# Path to images 

base_image_path = 'listing_images' 

 

def extract_features(image, model): 

    img_array = img_to_array(image) 

    img_array = np.expand_dims(img_array, axis=0) 

    img_array = tf.keras.applications.resnet50.preprocess_input(img_array) 

    features = model.predict(img_array) 

    return features.flatten() 

 

def find_similar_images(uploaded_image_features, selected_id, top_n=10): 

    similarities = cosine_similarity(uploaded_image_features, features) 

    similar_indices = similarities[0].argsort()[::-1] 

 

    unique_similar_ids = {} 

    for idx in similar_indices: 

        similar_id = ids[idx] 
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        if similar_id != selected_id and similar_id not in unique_simi-

lar_ids:  # Exclude the same ID and duplicates 

            unique_similar_ids[similar_id] = similarities[0][idx] 

        if len(unique_similar_ids) >= top_n: 

            break 

 

    return list(unique_similar_ids.keys()), list(unique_similar_ids.val-

ues()) 

 

def get_link_from_database(id): 

    try: 

        with pyodbc.connect(connection_string, timeout=10) as conn: 

            cursor = conn.cursor() 

            cursor.execute("SELECT Link FROM listings WHERE ID = ?", id) 

            link = cursor.fetchone() 

            return link[0] if link else "No link found" 

    except Exception as e: 

        print(f"Failed to retrieve link from database: {str(e)}") 

        return "No link found" 

 

def get_links_from_database(similar_ids): 

    links = [] 

    try: 

        with pyodbc.connect(connection_string, timeout=10) as conn: 

            cursor = conn.cursor() 

            for similar_id in similar_ids: 

                cursor.execute("SELECT Link FROM listings WHERE ID = ?", 

similar_id) 

                link = cursor.fetchone() 

                if link: 

                    links.append(link[0]) 

                else: 

                    links.append("No link found") 

    except Exception as e: 

        print(f"Failed to retrieve links from database: {str(e)}") 

    return links 

 

def open_folder(similar_id): 
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    folder_path = os.path.join(base_image_path, similar_id) 

    if os.path.exists(folder_path): 

        if os.name == 'nt':  # Windows 

            os.startfile(folder_path) 

        elif os.name == 'posix':  # macOS or Linux 

            subprocess.Popen(['open', folder_path] if sys.platform == 'dar-

win' else ['xdg-open', folder_path]) 

    else: 

        print(f"Folder {folder_path} does not exist.") 

 

def open_link(event, link): 

    webbrowser.open_new_tab(link) 

 

def display_similar_images(uploaded_image, selected_id, similar_ids, simi-

larity_scores, links): 

    # Clear previous results 

    for widget in results_frame.winfo_children(): 

        widget.destroy() 

 

    # Store references to PhotoImage objects to prevent garbage collection 

    image_refs = [] 

 

    # Display the query image and its ID 

    uploaded_image.thumbnail((200, 200)) 

    img = ImageTk.PhotoImage(uploaded_image) 

    image_refs.append(img)  # Keep a reference 

    query_panel = ttk.Label(results_frame, image=img, text=f"Selected ID: 

{selected_id}", compound=tk.TOP, font=("Helvetica", 10, "bold")) 

    query_panel.grid(row=0, column=0, padx=10, pady=10) 

 

    # Display the link for the selected image 

    selected_link = get_link_from_database(selected_id)  # Fetch the link 

for the selected image 

    selected_link_label = ttk.Label(results_frame, text=f"Link: {se-

lected_link}", foreground="blue", cursor="hand2") 

    selected_link_label.grid(row=2, column=0, padx=10, pady=5) 

    selected_link_label.bind("<Button-1>", lambda e: open_link(e, se-

lected_link)) 
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    # Add a button to open the folder containing the searched image 

    open_button_query = ttk.Button(results_frame, text="Open Folder", com-

mand=lambda: open_folder(selected_id)) 

    open_button_query.grid(row=1, column=0, padx=10, pady=5) 

 

    # Display similar images with listing IDs, similarity scores, and links 

    total_similarity = 0  # Track total similarity for accuracy calculation 

    for i, (similar_id, score, link) in enumerate(zip(similar_ids, similar-

ity_scores, links)): 

        total_similarity += score 

        similar_image_path = os.path.join(base_image_path, similar_id, 

os.listdir(os.path.join(base_image_path, similar_id))[0]) 

        similar_img = Image.open(similar_image_path) 

        similar_img.thumbnail((200, 200)) 

        img = ImageTk.PhotoImage(similar_img) 

        image_refs.append(img)  # Keep a reference 

        similar_panel = ttk.Label(results_frame, image=img, text=f"ID: 

{similar_id}\nSimilarity: {score:.2%}", compound=tk.TOP, font=("Helvetica", 

10)) 

        similar_panel.grid(row=0, column=i+1, padx=10, pady=10) 

         

        # Add a clickable link 

        link_label = ttk.Label(results_frame, text=f"Link: {link}", fore-

ground="blue", cursor="hand2") 

        link_label.grid(row=2, column=i+1, padx=10, pady=5) 

        link_label.bind("<Button-1>", lambda e, url=link: open_link(e, 

url)) 

 

        # Add a button to open the folder containing the similar image 

        open_button = ttk.Button(results_frame, text="Open Folder", com-

mand=lambda id=similar_id: open_folder(id)) 

        open_button.grid(row=1, column=i+1, padx=10, pady=5) 

 

    # Calculate and display the average accuracy 

    average_similarity = (total_similarity / len(similar_ids)) * 100  # 

Convert to percentage 

    accuracy_label = ttk.Label(results_frame, text=f"Average Similarity: 

{average_similarity:.2f}%", foreground="green", font=("Helvetica", 12, 

"bold")) 
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    accuracy_label.grid(row=3, column=0, columnspan=len(similar_ids) + 1, 

pady=10)  # Adjust columnspan dynamically 

 

    # Store the references in the results_frame to ensure they persist 

    results_frame.image_refs = image_refs 

 

def on_open_file(file_path=None): 

    if not file_path: 

        file_path = filedialog.askopenfilename() 

 

    if file_path: 

        selected_id = os.path.basename(os.path.dirname(file_path)) 

         

        uploaded_image = Image.open(file_path) 

        uploaded_image_resized = uploaded_image.resize((224, 224)) 

        uploaded_image_features = extract_features(uploaded_image_resized, 

model).reshape(1, -1) 

        uploaded_image_features = normalize(uploaded_image_features)  # 

Normalize features 

 

        # Find similar images 

        similar_ids, similarity_scores = find_similar_images(uploaded_im-

age_features, selected_id) 

 

        # Retrieve links from the database 

        links = get_links_from_database(similar_ids) 

 

        # Display the results 

        display_similar_images(uploaded_image, selected_id, similar_ids, 

similarity_scores, links) 

 

def on_drag_and_drop(event): 

    file_path = event.data 

    if file_path.startswith("{") and file_path.endswith("}"): 

        file_path = file_path[1:-1] 

    on_open_file(file_path) 

 

# Initialize the TkinterDnD application 
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root = TkinterDnD.Tk() 

root.title("Image Similarity Search") 

root.geometry("1000x700")  # Set window size 

 

# Configure the style 

style = ttk.Style(root) 

style.theme_use('clam') 

 

# Header Frame 

header_frame = ttk.Frame(root, padding=20) 

header_frame.pack(fill=tk.X) 

 

# Header Label 

header_label = ttk.Label(header_frame, text="Image Similarity Search", 

font=("Helvetica", 24, "bold"), foreground="#004080") 

header_label.pack() 

 

# Top Frame for Upload and Drop Zone 

top_frame = ttk.Frame(root, padding=20) 

top_frame.pack(fill=tk.X, padx=20, pady=20) 

 

# Button to open file dialog 

upload_button = ttk.Button(top_frame, text="Upload Image", com-

mand=on_open_file, style="Accent.TButton") 

upload_button.pack(side=tk.LEFT, padx=10) 

 

# Label for drag-and-drop 

drop_label = ttk.Label(top_frame, text="or Drag and Drop an Image Here", 

background="lightgray", relief="solid", padding=20, font=("Helvetica", 12)) 

drop_label.pack(fill=tk.BOTH, expand=True, padx=10) 

 

# Results Frame to show query image and similar images 

results_frame = ttk.Frame(root, padding=20, borderwidth=2, relief="solid") 

results_frame.pack(fill=tk.BOTH, expand=True, padx=20, pady=20) 

 

# Enable drag and drop 

root.drop_target_register(DND_FILES) 

root.dnd_bind('<<Drop>>', on_drag_and_drop) 
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root.mainloop()  
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Spitogatos.py 

import requests 

from bs4 import BeautifulSoup 

import pandas as pd 

import os 

import warnings 

import urllib3 

 

proxy = "http://***********:@proxy.zenrows.com:8001" 

 

def fetch_page_content(url, proxies): 

    try: 

        response = requests.get(url, proxies=proxies, verify=False) 

        response.raise_for_status() 

        return response.content 

    except requests.RequestException as e: 

        print(f"Error fetching page {url}: {e}") 

        return None 

 

def parse_page_content(content, existing_ids, property_type): 

    soup = BeautifulSoup(content, 'html.parser') 

    property_divs = soup.find_all('div', class_='tile__content') 

    property_data = [] 

 

    for div in property_divs: 

        link_element = div.find('a', class_='tile__link') 

        link = link_element.get('href') if link_element else '' 

        id_part = str(link.split('/')[-1]) if link else '' 

         

        if id_part not in existing_ids: 

            location = div.find('h3', class_='tile__location').text.strip() 

            full_link = f'www.spitogatos.gr{link}' if link else '' 

            property_info = { 

                'Id': id_part,  

                'Link': full_link,  

                'property_Type': property_type 

            } 
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            property_data.append(property_info) 

 

    return property_data 

 

def save_to_csv(data, filename): 

    df = pd.DataFrame(data) 

    # remove duplicate ids if any 

    df = df.drop_duplicates(subset='Id', keep='first') 

    # save the data 

    if os.path.isfile(filename): 

        df.to_csv(filename, mode='a', index=False, encoding='utf-8-sig', 

header=False) 

    else: 

        df.to_csv(filename, mode='a', index=False, encoding='utf-8-sig') 

 

def get_transaction_type(): 

    print("Choose the transaction type:") 

    print("1: Pwliseis (Sales)") 

    print("2: Enoikiaseis (Rentals)") 

    choice = input("Enter your choice (1 or 2): ").strip() 

    return "pwliseis" if choice == "1" else "enoikiaseis" 

 

def get_property_type(): 

    print("Choose the property type to scrape:") 

    print("1: Katoikies (Residences)") 

    print("2: Epaggelmatikoi Xwroi (Commercial Spaces)") 

    print("3: Gi (Land)") 

    print("4: Loipa Akinita (Other Properties)") 

    choice = input("Enter your choice (1-4): ").strip() 

 

    property_types = { 

        "1": "katoikies", 

        "2": "epaggelmatikoi_xwroi", 

        "3": "gi", 

        "4": "loipa_akinita" 

    } 
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    return property_types.get(choice, "katoikies") 

 

def get_region(): 

    print("Choose the region:") 

    print("1: Athina Voreia Proastia (North Suburbs of Athens)") 

    print("2: Athina Notia Proastia (South Suburbs of Athens)") 

    print("3: Athina Dytika Proastia (West Suburbs of Athens)") 

    print("4: Athina Kentro (Central Athens)") 

    choice = input("Enter your choice (1-4): ").strip() 

     

    # here are some of spitogatos regions. This list will be updated 

    regions = { 

        "1": "athina-voreia-proastia", 

        "2": "athina-notia-proastia", 

        "3": "athina-dytika-proastia", 

        "4": "athina-kentro" 

    } 

 

    return regions.get(choice, "athina-kentro") 

 

def scrape_spitogatos_listings(): 

    transaction_type = get_transaction_type() 

    property_type = get_property_type() 

    region = get_region() 

    proxies = {"http": proxy, "https": proxy} 

 

    # Suppress InsecureRequestWarning 

    warnings.filterwarnings('ignore', category=urllib3.exceptions.Inse-

cureRequestWarning) 

     

    # Get the directory of the current script 

    script_dir = os.path.dirname(os.path.abspath(__file__)) 

 

    # Set the filename with the script directory path 

    filename = os.path.join(script_dir, f'spitogatos_listings.csv') 

 

    # Get starting and ending page numbers from the user 
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    start_page = int(input("Enter the starting page number: ")) 

    end_page = int(input("Enter the ending page number: ")) 

 

    existing_ids = set() 

    if os.path.isfile(filename): 

        existing_df = pd.read_csv(filename, dtype={'Id': str}) 

        existing_ids = set(existing_df['Id']) 

         

    for pnum in range(start_page, end_page + 1): 

        url = f"https://www.spitogatos.gr/{transaction_type}-{prop-

erty_type}/{region}/selida_{pnum}" 

        print(f"Scraping page: {url}") 

        content = fetch_page_content(url, proxies) 

        if content: 

            property_data = parse_page_content(content, existing_ids, prop-

erty_type)  # Pass property_type here 

            save_to_csv(property_data, filename) 

             

            # Update existing_ids to include new IDs 

            for item in property_data: 

                existing_ids.add(item['Id']) 

 

# Main execution 

if __name__ == "__main__": 

    scrape_spitogatos_listings() 

 

import pandas as pd 

from urllib.parse import urlparse 

import requests 

from bs4 import BeautifulSoup 

import os 

from datetime import datetime 

import logging  # Import the logging module 

import warnings 

import re 

from urllib3.exceptions import InsecureRequestWarning  # Import Inse-

cureRequestWarning 
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proxy = "http://f6ec51b68a3be984bc347e0656b0476154b744be:@proxy.zen-

rows.com:8001" 

proxies = {"http": proxy, "https": proxy} 

 

# Configure logging 

logging.basicConfig(filename='scraping_log.txt', level=logging.INFO, for-

mat='%(asctime)s - %(levelname)s - %(message)s') 

 

# Function to scrape data from a single URL 

def scrape_property_data(url): 

    # Temporarily suppress the InsecureRequestWarning 

    warnings.filterwarnings("ignore", category=InsecureRequestWarning)     

    # Perform a GET request to the URL 

    response = requests.get(url, proxies=proxies, verify=False) 

    if response.status_code != 200: 

        print(f"Failed to retrieve data from {url}") 

        return None 

     

    # Parse the page content 

    soup = BeautifulSoup(response.text, 'html.parser') 

    print(f"Scraping page: {url}") 

    # Extract the desired data 

 

    # Initialize lists to store feature data 

    # indoor_features = [] 

    # outdoor_features = [] 

    # construction_features = [] 

    # good_for = [] 

 

    # Extract the desired feature data 

    parsed_url = urlparse(url) 

    path_segments = parsed_url.path.split("/") 

    Id = path_segments[-1] 

    image_elements = soup.select('.property__gallery__item img') 

    # Extract the src attributes of the image elements 

    image_links = [img['src'] for img in image_elements] 

    # Find the <p> element with class "property__description" and extract 

its text 
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    description_element = soup.find('div', class_='property__description') 

    if description_element: 

        description_text = description_element.text.strip() 

    else: 

        description_text = 'n/a' 

    # Find the <span> element with class "property__address" and extract 

its text 

    property_address_element = soup.find('span', class_='property__ad-

dress') 

    if property_address_element: 

        property_address = property_address_element.text.strip() 

    else: 

        property_address = 'n/a' 

 

    # Extract agency information 

    agency_element = soup.select_one('div.agencyInfo a') 

    if agency_element: 

        agency_name = agency_element.get('title', 'n/a') 

    else: 

        agency_name = 'n/a' 

         

    # Extract details into a dictionary 

    details = {} 

 

    # Add property_title and property_address to the details dictionary 

    details["Id"] = Id 

    details['link'] = url 

    details["Title"] = description_text  

    details["Address"] = property_address 

    details["images"] = image_links 

    details['Agency'] = agency_name 

    details['description'] = description_text 

     

    # Log the property ID to the logging file 

    logging.info(f"Scraped property with ID: {Id}")     

     

    # Locate the section containing property details 
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    details_section = soup.find('dl', class_='property__details') 

 

    if details_section: 

        # Find all <dt> and <dd> elements within the details section 

        details_elements = details_section.find_all('dt') 

        values_elements = details_section.find_all('dd') 

 

        # Loop through details and values, and add them to the dictionary 

        for detail, value in zip(details_elements, values_elements): 

            detail_text = detail.text.strip() 

            value_text = value.text.strip() 

 

            # Check if a value exists before adding it to the dictionary 

            if value_text: 

                details[detail_text] = value_text 

 

     # Initialize an empty list to store indoor benefits 

    indoor_benefits = [] 

    # Initialize an empty list to store outdoor features 

    outdoor_features_list = [] 

    # Initialize empty lists to store construction features and good-for 

elements 

    construction_features_list = [] 

    good_for_list = [] 

 

    # Extract indoor features 

    indoor_section = soup.find("ul", {"data-test-id": "indoor"}) 

    if indoor_section: 

        indoor_elements = indoor_section.select('li') 

        for li in indoor_elements: 

            svg_element_indoor = li.find('svg', class_='on icon sprite-

icons') 

            if svg_element_indoor: 

                svg_class = svg_element_indoor['class']  # Get the class 

attribute of the SVG 

                indoor_text = li.find('span').text.strip() 

                if indoor_text != 'n/a': 

                    indoor_benefits.append(indoor_text) 
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    # Extract outdoor features 

    outdoor_section = soup.find("ul", {"data-test-id": "outdoor"}) 

    if outdoor_section: 

        outdoor_elements = outdoor_section.select('li') 

        for li in outdoor_elements: 

            svg_element_outdoor = li.find('svg', class_='on icon sprite-

icons') 

            if svg_element_outdoor: 

                svg_class = svg_element_outdoor['class']  # Get the class 

attribute of the SVG 

                outdoor_text = li.find('span').text.strip() 

                if outdoor_text != 'n/a': 

                    outdoor_features_list.append(outdoor_text) 

 

    # Extract construction features 

    construction_section = soup.find("ul", {"data-test-id": "construc-

tion"}) 

    if construction_section: 

        construction_elements = construction_section.select('li') 

        for li in construction_elements: 

            construction_element = li.find('svg', class_='on icon sprite-

icons') 

            if construction_element: 

                construction_class = construction_element['class']  # Get 

the class attribute of the SVG 

                construction_text = li.find('span').text.strip() 

                if construction_text != 'n/a': 

                    construction_features_list.append(construction_text) 

 

    # Extract good for 

    good_for_section = soup.find("ul", {"data-test-id": "goodfor"}) 

    if good_for_section: 

        good_for_elements = good_for_section.select('li') 

        for li in good_for_elements: 

            good_for_element = li.find('svg', class_='on icon sprite-

icons') 

            if good_for_element: 
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                good_for_element_class = good_for_element['class']  # Get 

the class attribute of the SVG 

                good_for_element_text = li.find('span').text.strip() 

                if good_for_element_text != 'n/a': 

                    good_for_list.append(good_for_element_text) 

 

    # Join feature values into single strings 

    indoor_benefits_str = ", ".join(indoor_benefits) 

    construction_features_str = ", ".join(construction_features_list) 

    good_for_str = ", ".join(good_for_list) 

    outdoor_features_str = ", ".join(outdoor_features_list)                

 

    # Concatenate all feature values into a single row 

    feature_data = { 

        "Indoor_features": indoor_benefits_str, 

        "Outdoor_features": outdoor_features_str, 

        "Construction_features": construction_features_str, 

        "Good_for": good_for_str, 

    } 

 

    # Combine property details and feature data into a single dictionary 

    combined_data = {**details, **feature_data} 

    return combined_data 

 

# Read the CSV file with listing URLs 

csv_file = 'spitogatos_listings.csv' 

df_urls = pd.read_csv(csv_file) 

 

# Initialize an empty DataFrame to store the scraped data 

df = pd.DataFrame() 

 

# Loop through each URL in the list and scrape data 

for url in df_urls['Link']: 

    # Check if the URL starts with 'http://' or 'https://' 

    if not url.startswith('http://') and not url.startswith('https://'): 

        # Add 'https://' to the URL 

        url = 'https://' + url 
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    # Check if the URL has already been scraped by looking for its ID in 

the log file 

    parsed_url = urlparse(url) 

    path_segments = parsed_url.path.split("/") 

    Id = path_segments[-1] 

    if f"Scraped property with ID: {Id}" in open('scrap-

ing_log.txt').read(): 

        print(f"This property with ID {Id} has already been scraped.") 

        continue  # Skip this property 

         

    scraped_data = scrape_property_data(url) 

    if scraped_data: 

        # Create a DataFrame for the current property and append it to 

df_scraped_data 

        df_property = pd.DataFrame([scraped_data]) 

        df = pd.concat([df, df_property], ignore_index=True) 

        print(df) 

         

def process_dataframe(df, columns_mapping): 

    # Rename the columns based on the mapping 

    df.rename(columns=columns_mapping, inplace=True) 

    # # Reorder and drop columns based on the SQL database order     

    return df 

 

# Mapping of Greek column names to the SQL column names 

columns_mapping = { 

    "Τιμή": "Price", 

    "Τιμή ανά τ.μ.": "price_per_sqm", 

    "Εμβαδόν": "Area", 

    "Επίπεδα": "levels", 

    "Όροφος": "floor", 

    "Κουζίνες": "kitchens", 

    "Μπάνια": "bathrooms", 

    "WC": "WC", 

    "Σαλόνια": "living_rooms", 

    "Σύστημα θέρμανσης": "heating", 

    "Ενεργειακή κλάση": "energy_class", 
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    "Έτος κατασκευής": "Construction_year", 

    "Έτος ανακαίνισης": "renovation_year", 

    "Απόσταση απο τη θάλασσα": "sea_distance", 

    "Κωδικός Συστήματος": "system_code", 

    "Κωδικός Ακινήτου": "code", 

    "Διαθέσιμο από": "available_from", 

    "Δημοσίευση αγγελίας": "published", 

    "Τελευταία ενημέρωση": "last_updated" 

} 

 

# Apply the function 

df = process_dataframe(df, columns_mapping) 

 

def clean_price(price_string): 

    # If it's already a float (or not a string), return as is 

    if not isinstance(price_string, str): 

        return price_string 

 

    # Split the string by non-digit characters and filter out empty splits 

    numbers = [part for part in re.split('\D+', price_string) if part] 

     

    # Join the numbers into one string and convert to float 

    if len(numbers) > 0: 

        cleaned = ''.join(numbers) 

        return float(cleaned) 

    else: 

        return None 

 

# Check if the DataFrame is not empty 

if not df.empty: 

    # Apply the function to the 'Price' column 

    df['Price'] = df['Price'].apply(clean_price) 

 

    # Uncomment the following line if 'price_per_sqm' column exists and 

needs cleaning 

    # df['price_per_sqm'] = df['price_per_sqm'].apply(clean_price) 
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    # Check the updated 'Price' column 

    print(df['Price'].head()) 

 

    # Construct the 'Title' column 

    df['Title'] = 'Προς πώληση ' + df['Address'].astype(str) + ' ' + 

df['Area'].astype(str) 

 

    # Drop the duplicates if there are any 

    df = df.drop_duplicates(subset='Id', keep='first') 

 

    # Convert 'Id' in both DataFrames to string 

    df['Id'] = df['Id'].astype(str) 

    df_urls['Id'] = df_urls['Id'].astype(str) 

 

    # Perform the inner join on 'Id' column 

    df = pd.merge(df, df_urls[['Id', 'property_Type']], on='Id', how='in-

ner') 

 

    # Save the DataFrame to a CSV file 

    timestamp = datetime.now().strftime("%Y_%m_%d_%H_%M") 

    file_name = f'spitogatos{timestamp}.csv' 

    if not os.path.isfile(file_name): 

        df.to_csv(file_name, mode='w', index=False, encoding='utf-8-sig')  

# Write with header 

    else: 

        df.to_csv(file_name, mode='a', index=False, encoding='utf-8-sig')  
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plot.py 

# ### Get the listings 

import os 

import time 

import re 

import pandas as pd 

from bs4 import BeautifulSoup 

from sqlalchemy import create_engine 

import pyodbc 

from datetime import datetime 

import pandas as pd 

from sqlalchemy import create_engine, text 

from sqlalchemy import inspect 

import requests 

 

proxy = "http://******************:@proxy.zenrows.com:8001" 

proxies = {"http": proxy, "https": proxy} 

 

# Create a dictionary to store the scraped data 

data_dict = {} 

 

# Create a list to store the dictionaries 

data = []  

 

# Get the current timestamp 

timestamp = datetime.now() 

# Convert the datetime object to a string in the desired format 

timestamp = timestamp.strftime('%Y-%m-%d %H:%M:%S') 

 

# Loop through the pages 

for pnum in range(1, 2):  # num_pages + 1 because range is exclusive at the 

end 

    try: 

        url = f"https://www.plot.gr/search/?category=20004&context=map-

search&location=32&sort=cr&pg={pnum}" 

        print(f"Scraping page: {url}") 

        # Navigate to the webpage 
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#         response = requests.get(url)         

        response = requests.get(url, proxies=proxies, verify=False) 

        # Wait for the page to load 

        time.sleep(3) 

        soup = BeautifulSoup(response.content, 'html.parser') 

        listings = soup.find_all('div') 

 

        for listing in listings: 

            title_element = listing.find('h2', class_='title') 

            description_element = listing.find('span', class_='text-muted 

test') 

            price_element = listing.find('div', class_='price-tag current-

price') 

 

            if title_element and description_element and price_element: 

                title = title_element.text.strip() 

                property_type = description_element.text.strip() 

                price = price_element.text.strip() 

 

                anchor = listing.find('a', class_='row-anchor') 

                if anchor: 

                    link = 'http://www.plot.gr' + anchor['href'] 

                    Id = link.split('-')[0].split('/')[-1] 

 

                    # Extract the location 

                    location_element = listing.find('div', class_='text-

muted loc') 

                    if location_element: 

                        location = location_element.span.text.strip() 

                    else: 

                        location = None 

 

#                     # Extract the last modified information 

#                     last_modified_element = listing.find('div', 

class_='last-mod') 

#                     if last_modified_element: 

#                         last_modified = last_modified_ele-

ment.span.text.strip() 
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#                     else: 

#                         last_modified = None 

 

                    link_dict = {'Id': Id, 'type': property_type, 'title': 

title, 'link': link, 'location': location, 'timestamp': timestamp} 

                    data.append(link_dict) 

                    print(data) 

                    pnum += 1 

     

    except Exception as e: 

        print(f"An error occurred: {e}") 

        continue 

 

#convert to pandas dataframe 

plot_data = pd.DataFrame(data) 

plot_data = plot_data.drop_duplicates(subset='Id', keep='first') 

 

# Generate a timestamp using the current date and time 

timestamp = datetime.now().strftime("%Y_%m_%d_%H_%M") 

 

# Construct the file name with the timestamp 

# file_name = f'plot.gr_{timestamp}.csv' 

file_name = f'plot.gr.csv' 

 

# Check if the file exists 

if not os.path.isfile(file_name): 

    plot_data.to_csv(file_name, mode='a', index=False, encoding='utf-8-

sig')  # Write with header 

else: 

    plot_data.to_csv(file_name, mode='a', index=False, encoding='utf-8-

sig', header=False) # Append without writing header 

 

# ### Get more details by clicking every link 

# Define the output directory for saving images 

output_directory = 'images' 

 

# Create the output directory if it doesn't exist 

os.makedirs(output_directory, exist_ok=True) 
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# Read the CSV file with links 

csv_file_path = 'plot.gr.csv' 

proxy = "http://f6ec51b68a3be984bc347e0656b0476154b744be:@proxy.zen-

rows.com:8001" 

proxies = {"http": proxy, "https": proxy} 

df = pd.read_csv(csv_file_path, encoding='utf-8-sig') 

 

# Initialize an empty list to store the scraped data 

property_data = [] 

row_data = {} 

 

# Iterate through the links 

for index, row in df.iterrows(): 

    try: 

        link = row['link'] 

 

        # Extract the listing ID from the URL 

#         listing_id = link.split('/')[-1] 

 

        # Add the row data to the data list 

        property_data.append(row_data) 

         

        # Print the URL being scraped 

        print(f"Scraping data for Listing URL: {link}") 

 

        # Make a GET request to the webpage 

        response = requests.get(link, proxies=proxies, verify=False) 

 

        if response.status_code == 200: 

            # Parse the HTML content of the webpage 

            soup = BeautifulSoup(response.content, 'html.parser') 

 

            # Find the specifications table 

            spec_table = soup.find('div', attrs={'id': 'specification-

table'}) 

 



137 

 

            # If the specifications table doesn't exist, skip this listing 

            if spec_table is None: 

                print(f"Could not find specifications table on {link}") 

                continue 

 

            # Initialize a dictionary to hold the scraped data 

            row_data = {'Id': listing_id} 

 

            # Find all the specification labels and values 

            specs = spec_table.find_all('span', attrs={'class': 'spec'}) 

 

            for spec in specs: 

                # Extract the label and value 

                label = spec.find('span', attrs={'class': 'spec-la-

bel'}).text.strip() 

                value = spec.find('span', attrs={'class': 'spec-val-

ue'}).text.strip() 

 

                # Check if the label is one of the expected labels 

                if label in row_data: 

                    # Add the value to the dictionary 

                    row_data[label] = value 

                else: 

                    None 

 

            # Find the benefits 

            t = soup.find('ul', class_='tw-grid tw--my-2 tw-grid-cols-12 

tw-gap-2.5') 

            if t: 

                text = t.get_text(strip=True) 

                benefits = ''.join(c if c.islower() or not c.isalpha() else 

' ' + c for c in text).strip() 

                row_data['benefits'] = benefits 

 

            # Find all divs with the class 'tw-break-words html tw-text-

base' 

            elements = soup.find_all('div', class_='tw-break-words html tw-

text-base') 
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            # Initialize a dictionary to hold the text from both divs 

            descriptions = {'Description': ''} 

            # Find the specification table 

            spec_table = soup.find('div', {'id': 'specification-table'}) 

 

            # Initialize a dictionary to store the extracted data 

            data = {} 

 

            # Find and extract individual specifications 

            for spec in spec_table.find_all('span', class_='spec'): 

                label = spec.find('span', class_='spec-label').text.strip() 

                value = spec.find('span', class_='spec-value').text.strip() 

                data[label] = value 

 

            # Print the extracted data 

            for label, value in data.items(): 

                print(f"{label}: {value}") 

            # Iterate over the divs 

            for i, element in enumerate(elements): 

                # Get the text and remove unwanted newline characters 

                text = element.get_text(strip=True) 

                text = text.replace('\r\n\r\n', ' ') 

 

                # Save the text to the appropriate key in the dictionary 

                descriptions[f'Description{i + 1}'] = text 

 

            # Add the descriptions to the row data 

            row_data.update(descriptions) 

 

            # Find all image tags with src attributes that end with ".jpg" 

or ".jpeg" 

            jpeg_images = soup.find_all('img', src=lambda x: 

x.endswith(('.jpg', '.jpeg'))) 

 

            # Extract src attribute from jpeg_images and keep only the 

links 

            image_links = [img['src'] for img in jpeg_images] 

#             # Save each image 
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#             for i, img_url in enumerate(image_links): 

#                 response = requests.get(img_url, proxies=proxies, ver-

ify=False) 

 

#                 # Save the image as 'listing_id_0.jpg', 'list-

ing_id_1.jpg', etc. 

#                 filename = f"{str(listing_id)}_{i}.jpeg" 

#                 filepath = os.path.join(output_directory, filename) 

 

#                 with open(filepath, 'wb') as out_file: 

#                     out_file.write(response.content) 

 

            # Add urls to row_data with key 'images' 

            row_data['images'] = image_links 

 

            # Add the row data to the data list 

            property_data.append(row_data) 

            # Print a success message 

            print(f"Finished scraping Id: {listing_id}") 

 

            # Scrape real estate agent details 

            agent_div = soup.find('div', {'data-v-67356525': ""}) 

            if agent_div: 

                # Extract the agent's name 

                agent_name_tag = agent_div.find('a', class_='tw-text-2xl 

tw-font-semibold tw-break-all') 

                if agent_name_tag: 

                    agent_name = agent_name_tag.text.strip() 

                else: 

                    agent_name = 'Ιδιώτης' 

 

                # Extract the agent's address 

                agent_address_tag = agent_div.find('div', class_='tw-py-2') 

                if agent_address_tag: 

                    agent_address = agent_address_tag.get_text(separator=' 

', strip=True) 

                else: 

                    agent_address = 'Not found' 
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                # Extract the agent's location 

                if ',' in agent_address: 

                    agent_location = agent_address.split(',')[1].strip() 

                else: 

                    agent_location = 'Not found' 

 

            else: 

                agent_name = 'Ιδιώτης'  # Or whatever default value you 

want 

                agent_address = 'Not found'  # Or whatever default value 

you want 

                agent_location = 'Not found'  # Or whatever default value 

you want 

 

            # Save the details to the row_data dictionary 

            row_data['AgentName'] = agent_name 

            row_data['AgentAddress'] = agent_address 

            row_data['AgentLocation'] = agent_location 

 

            print("Finished scraping all rows") 

            # Combine row_data with data 

            row_data.update(data) 

 

            # Print all scraped details for this listing 

            print("Scraped details for Listing ID:", listing_id) 

            for key, value in row_data.items(): 

                print(f"{key}: {value}") 

 

            # Add the row data to the data list 

            property_data.append(row_data) 

            # Print a success message 

            print(f"Finished scraping Id: {listing_id}") 

                 

    except requests.exceptions.Timeout: 

        print(f"Timeout while trying to scrape {link}. The listing might be 

deleted or the website structure might have changed.") 

        continue 
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    except Exception as e: 

        print(f"An error occurred: {e}") 

    finally: 

        print("Finished") 

 

# Convert the list of dictionaries to a DataFrame 

df = pd.DataFrame(property_data) 

 

# Rename columns and remove colons 

df.rename(columns={ 

      

    'Νούμερο αγγελίας:': 'Id', 

    'Κατηγορία:': 'Category', 

    'Τιμή:': 'Price', 

    'Περιοχή:': 'Location', 

    'Τιμή ανά τ.μ.:': 'Price_per_sqm', 

    'Εμβαδόν:': 'Area', 

    'Έτος κατασκευής:': 'Year_Built', 

    'Σύστημα θέρμανσης:': 'Heating_System', 

    'Χώροι:': 'Rooms', 

    'Μέσο θέρμανσης:': 'Heating_Medium', 

    'Ενεργειακή κλάση:': 'Energy_Class', 

    'Όροφος:': 'Floor', 

    'Τελευταία αλλαγή:': 'Last_Change', 

    'Εμφανίσεις αγγελίας:': 'Ad_Views', 

    'Σύνδεσμος:': 'Link', 

    'Τηλέφωνο:': 'Phone', 

    'Διαθέσιμο από:': 'Available_From', 

    'Υπνοδωμάτια:': 'Bedrooms', 

    'Μπάνια:': 'Bathrooms', 

    'Κωδικός ακινήτου:': 'Property_Code', 

    'Ζώνη:': 'Zone' 

}, inplace=True) 

 

# Reorder the columns to have 'Ad Number' as the first column 

df = df[['Id'] + [col for col in df.columns if col != 'Ad Number']] 
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# Remove colons from the column names 

df.columns = df.columns.str.replace(':', '') 

 

# Display the DataFrame 

print(df) 

 

timestamp = datetime.now().strftime("%Y_%m_%d_%H_%M") 

 

# Construct the file name with the timestamp 

file_name = f'plot_details_{timestamp}.csv' 

 

#drop the duplicates if there are any 

df = df.drop_duplicates(subset='Id', keep='first') 

 

# Check if the file exists 

if not os.path.isfile(file_name): 

    df.to_csv(file_name, mode='a', index=False, encoding='utf-8-sig')  # 

Write with header 

else: 

    df.to_csv(file_name, mode='a', index=False, encoding='utf-8-sig', 

header=False) # Append without writing header 

# Print a message when scraping and saving is complete 

print("Scraping and saving complete.") 

 

# Perform the join on 'Id' 

df = plot_data.merge(df, on='Id', how='inner') 

 

 

 

 

 

tospitimou.py 

#!/usr/bin/env python 

# coding: utf-8 

 

# Imports 

import os 
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import time 

import re 

import pandas as pd 

import requests 

from bs4 import BeautifulSoup 

from sqlalchemy import create_engine, inspect 

from datetime import datetime 

import logging 

 

# Setup logging 

logging.basicConfig( 

    filename="scraping_log.txt", 

    level=logging.INFO, 

    format="%(asctime)s:%(levelname)s:%(message)s", 

) 

 

# Proxy configuration 

proxy = "http://f6ec51b68a3be984bc347e0656b0476154b744be:@proxy.zen-

rows.com:8001" 

proxies = {"http": proxy, "https": proxy} 

 

# Function to scrape data 

def scrape_data(): 

    data = [] 

    url_base = "https://www.tospitimou.gr/akinita/poliseis/katoikies/Ken-

tro-Athinas/area-ids_%5B100%5D,category_residential,floor-number-

high_ground-floor?sortBy=price%7Casc&page=" 

    for pnum in range(1, 3): 

        url = f"{url_base}{pnum}" 

        try: 

            time.sleep(10) 

            response = requests.get(url, proxies=proxies, verify=False) 

            soup = BeautifulSoup(response.content, 'html.parser') 

            property_divs = soup.find_all('div', class_='search-result-in-

ner') 

 

            for property_div in property_divs: 

                data_row = extract_property_data(property_div) 
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                if data_row: 

                    data.append(data_row) 

            logging.info(f"Scraped page: {url}") 

        except Exception as e: 

            logging.error(f"Failed to scrape page {url}: {e}") 

            continue 

 

    # Store data 

    df = pd.DataFrame(data) 

    store_data(df, 'tospitimou_data.csv') 

 

# Function to extract property data 

def extract_property_data(property_div): 

    try: 

        title = property_div.find('h2', class_='searchRe-

sultsH2').text.strip() 

        link = property_div.find('a')['href'] 

        image_url = property_div.find('img', class_='bg-image-un-

veil')['data-src'] 

        price = property_div.find('div', class_='result-

price').text.strip() 

 

        # Additional details like area, price per sq.m, bedrooms could be 

added here 

         

        return {'Title': title, 'Link': link, 'Image URL': image_url, 

'Price': price} 

    except AttributeError as e: 

        logging.error(f"Error extracting data: {e}") 

        return None 

 

# Function to store data 

def store_data(df, file_name): 

    if not os.path.isfile(file_name): 

        df.to_csv(file_name, index=False, encoding='utf-8-sig') 

    else: 

        df.to_csv(file_name, mode='a', index=False, encoding='utf-8-sig', 

header=False) 
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# Main function 

def main(): 

    scrape_data() 

    print("Scraping and saving complete.") 

 

if __name__ == "__main__": 

    main() 

import pandas as pd 

import requests 

from bs4 import BeautifulSoup 

import urllib3 

from datetime import datetime 

import os 

import logging 

 

# Setup logging 

logging.basicConfig( 

    filename="scraping_log.txt", 

    level=logging.INFO, 

    format="%(asctime)s:%(levelname)s:%(message)s" 

) 

 

# Proxy and requests setup 

proxy_user = 'f6ec51b68a3be984bc347e0656b0476154b744be' 

proxy = f"http://{proxy_user}:@proxy.zenrows.com:8001" 

proxies = {"http": proxy, "https": proxy} 

urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) 

 

# Read scraped links if available 

def read_scraped_links(file_path): 

    try: 

        with open(file_path, 'r') as f: 

            return [link.strip() for link in f.readlines()] 

    except FileNotFoundError: 

        return [] 

 

def scrape_properties(df_links, scraped_links): 
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    property_list = [] 

    for link in df_links['Link']: 

        property_id = link.split("/")[-1].split("?")[0] 

        logging.info(f"Scraping: {link}") 

 

        if f"Scraped property with ID: {property_id}" in scraped_links: 

            logging.info(f"Skipping already scraped property with ID: 

{property_id}") 

            continue 

 

        response = requests.get(link, proxies=proxies, verify=False) 

        soup = BeautifulSoup(response.content, 'html.parser') 

        property_info = extract_property_data(soup, property_id) 

        if property_info: 

            property_list.append(property_info) 

            logging.info(f"Scraped property with ID: {property_id}") 

        else: 

            logging.error(f"Failed to scrape property with ID: {prop-

erty_id}") 

 

    return property_list 

 

def extract_property_data(soup, property_id): 

    try: 

        data = { 

            "Id": property_id, 

            "Title": soup.find('h1', class_='listing-title').text.strip() 

if soup.find('h1', class_='listing-title') else 'n/a', 

            "Price": soup.find('span', class_='property-

info2').text.split(',')[0].strip() if soup.find('span', class_='property-

info2') else 'n/a', 

            "Area": soup.find('span', class_='property-

info2').text.split(',')[1].strip() if soup.find('span', class_='property-

info2') else 'n/a', 

            "Photo_count": soup.find('span', class_='photo-

count').text.split()[0] if soup.find('span', class_='photo-count') else 

'N/A', 

            "Images": [a.get('href') for a in soup.find('div', 

class_='photo-gallery').find_all('a')] if soup.find('div', class_='photo-

gallery') else [], 



147 

 

            "Description": soup.find('div', class_='panel-

body').find('p').text.strip() if soup.find('div', class_='panel-body') and 

soup.find('div', class_='panel-body').find('p') else 'n/a', 

            "Latitude": soup.find('div', class_='marker').get('data-lat') 

if soup.find('div', class_='marker') else None, 

            "Longitude": soup.find('div', class_='marker').get('data-lng') 

if soup.find('div', class_='marker') else None, 

            "Amenities": [li.text.strip() for li in soup.find('ul', 

class_='property-amenities list-unstyled').find_all('li')] if 

soup.find('ul', class_='property-amenities list-unstyled') else [] 

        } 

        return data 

    except Exception as e: 

        logging.error(f"Error extracting property data: {e}") 

        return None 

 

def save_data(data, file_name): 

    df = pd.DataFrame(data) 

    if not os.path.isfile(file_name): 

        df.to_csv(file_name, index=False, encoding='utf-8-sig') 

    else: 

        df.to_csv(file_name, mode='a', index=False, encoding='utf-8-sig', 

header=False) 

    logging.info("Data saved successfully.") 

 

def main(): 

    df_links = pd.read_csv('tospitimou_data.csv') 

    scraped_links = read_scraped_links('scraping_log.txt') 

    property_list = scrape_properties(df_links, scraped_links) 

    file_name = f'tospitimou_de-

tails_{datetime.now().strftime("%Y_%m_%d_%H_%M")}.csv' 

    save_data(property_list, file_name) 

    print("Scraping and saving complete.") 

 

if __name__ == "__main__": 

    main() 
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spiti_24.py 

### Get the data 

from bs4 import BeautifulSoup 

import requests 

import pandas as pd 

import time 

import os 

from scrapingbee import ScrapingBeeClient 

from bs4 import BeautifulSoup 

import requests 

import pandas as pd 

import time 

import os 

import pyodbc 

import pandas as pd 

import os 

import http.client 

 

# List to store scraped data 

data = [] 

 

# Define the database connection details 

username = 'DESKTOP-P8GGH21\HP' 

# Define the database connection string 

server = 'localhost' 

database = 'real_estate_staging' 

conn_str = f'DRIVER={{ODBC Driver 17 for SQL Server}};SERVER={server};DATA-

BASE={database};Trusted_Connection=yes;UID={username}' 

 

# url = f"https://www.spiti24.gr/pwliseis/katoikies/pollaples-peri-

oxes/area-ids_101,100?page={pnum}" 

proxy = "http://***************:@proxy.zenrows.com:8001" 

proxies = {"http": proxy, "https": proxy} 

 

# Loop through the pages 

for pnum in range(1, 2): 

    try: 
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        url = f"https://www.spiti24.gr/pwliseis/katoikies/athina-ken-

tro?sortBy=datemodified%7Cdesc&page={pnum}" 

        print(f"Scraping page: {url}") 

        response = requests.get(url, proxies=proxies, verify=False) 

        # Parse the page content 

        soup = BeautifulSoup(response.content, 'html.parser') 

        time.sleep(5)  # Waits for 5 seconds before executing next line 

 

        # Parse the page content 

        # Wait for the page to load 

        time.sleep(3) 

        response = requests.get(url, proxies=proxies, verify=False) 

#         print(response.text) 

         

        # Find the listings on the page 

        listings = soup.find_all('div', class_=['property__top']) 

 

        for listing in listings: 

             

            # Initial data dictionary 

            listing_data = { 

                "Id": None, 

                "link": None, 

                "price": None, 

                "title": None, 

                "region": None, 

#                 "bedrooms": None, 

#                 "bathrooms": None, 

            } 

 

            link_element = listing.find('a') 

            if link_element: 

                link = link_element['href'].strip()  # Remove extra spaces 

using strip() 

                number_id = link.split('/')[-1].split('?')[0] 

                listing_data["Id"] = number_id 

                listing_data["link"] = 'https://www.spiti24.gr/' + num-

ber_id 
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            price_element = listing.find('span', class_='property__price') 

            symbol_element = listing.find('span', class_='prop-

erty__price__symbol') 

 

            if price_element and symbol_element: 

                price = price_element.get_text(strip=True) 

                symbol = symbol_element.get_text(strip=True) 

                listing_data["price"] = price + symbol 

 

            title_parts_element = listing.find('ul', class_='property__ti-

tle__parts') 

 

            if title_parts_element: 

                title_element = title_parts_element.find('li', class_=None) 

                region_element = title_parts_element.find('li', 

class_=None).find_next_sibling('li') 

 

                if title_element and region_element: 

                    title = title_element.get_text(strip=True) 

                    region = region_element.get_text(strip=True) 

                    listing_data["title"] = title 

                    listing_data["region"] = region 

 

            # Find all span tags with the class 'small-tooltip' 

            extras_element = listing.find_all('span', {'class': 'small-

tooltip'}) 

            for extra in extras_element: 

                if "Bedroom" in extra.get('title', ''): 

                    listing_data["bedrooms"] = extra.text.strip() 

                elif "Bathroom" in extra.get('title', ''): 

                    listing_data["bathrooms"] = extra.text.strip() 

 

            # Print and add the listing data to the main data list 

            print(listing_data) 

            print("----------------------------------") 

            data.append(listing_data) 
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        time.sleep(10)  # Waits for 10 seconds before executing next line 

 

    except Exception as e: 

        print(f"Error occurred: {str(e)}") 

        continue  # Continue to the next iteration of the loop 

 

# Convert the list of dictionaries to a DataFrame 

df = pd.DataFrame(data) 

 

# Generate a timestamp using the current date and time 

timestamp = datetime.now().strftime("%Y_%m_%d_%H_%M") 

 

#store the file 

if not os.path.isfile('spiti24_data.csv'): 

    df.to_csv('spiti24_data.csv', mode='a', index=False, encoding='utf-8-

sig')  # Write with header 

else: 

    df.to_csv('spiti24_data.csv', mode='a', index=False, encoding='utf-8-

sig', header=False)  # Append without writing header 

 

# Define the DataFrame containing the scraped data 

df = pd.DataFrame(data) 

 

 

# ### Get more details 

import pandas as pd 

import requests 

from bs4 import BeautifulSoup 

import os 

 

# Read the CSV file with links 

csv_file_path = 'spiti24_data.csv' 

proxy = "http://*********************:@:js_render=true&anti-

bot=true@proxy.zenrows.com:8001" 

proxies = {"http": proxy, "https": proxy} 

df = pd.read_csv(csv_file_path) 

 

# Initialize an empty list to store the scraped data 
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property_data = [] 

 

# Iterate through the links 

for index, row in df.iterrows(): 

    link = row['link'] 

     

    # Extract the listing ID from the URL 

    listing_id = link.split('/')[-1] 

     

    # Print the URL being scraped 

    print(f"Scraping data for Listing ID: {listing_id}")     

     

    # Make a GET request to the webpage 

    response = requests.get(link, proxies=proxies, verify=False) 

     

    if response.status_code == 200: 

        # Parse the HTML content of the webpage 

        soup = BeautifulSoup(response.content, 'html.parser') 

 

        # Extract the image URLs 

        image_divs = soup.find_all('div', class_='property__gal-

lery__thumb') 

        image_urls = [div.find('a')['href'] for div in image_divs] 

 

        # Store the image URLs in a list 

        image_list = [] 

 

        for image_url in image_urls: 

            image_list.append(image_url) 

 

        # Extract the data you want 

        property_title = soup.find('h1').text.strip() 

        property_area = soup.find('strong').text.strip() 

        property_price = soup.find('span', class_='price').text.strip() 

 

        # Extract the property description or other additional details 
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        property_description = soup.find('div', class_='property__sec-

tion__content').text.strip() 

 

        # Extract the additional property details 

        ul_element = soup.find('ul', class_='property__extrainfo') 

        extra_info = {} 

         

        if ul_element: 

            li_elements = ul_element.find_all('li') 

            for li in li_elements: 

                li_text = li.get_text(strip=True) 

                label, value = li_text.split(':', 1) 

                label = label.strip() 

                value = value.strip() 

                extra_info[label] = value 

                 

        # Extract the additional property details table 

        additional_details_table = soup.find('table', class_='table') 

        additional_details = {} 

 

        if additional_details_table: 

            rows = additional_details_table.find_all('tr') 

            for row in rows: 

                columns = row.find_all(['th', 'td']) 

                if len(columns) == 2: 

                    key = columns[0].text.strip() 

                    value = columns[1].text.strip() 

                    additional_details[key] = value 

 

        # Print the extracted additional property details 

        for key, value in additional_details.items(): 

            print(f"{key}: {value}") 

             

        # Extract latitude and longitude 

        marker_div = soup.find('div', class_='marker') 

        latitude = None 

        longitude = None 
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        if marker_div: 

            latitude = marker_div.get('data-lat') 

            longitude = marker_div.get('data-lng')     

 

        # Create a dictionary to store all the data for this property 

        property_dict = { 

            'Id': listing_id, 

            'Title': property_title, 

            'Area': property_area, 

#             'Price': property_price, 

            'Description': property_description, 

            'images': image_list, 

            'Latitude': latitude, 

            'Longitude': longitude, 

            **extra_info, 

            **additional_details  # Include additional details 

 

        } 

         

        # Add the additional details to the property_dict 

        #property_dict.update(additional_details) 

        for key, value in additional_details.items(): 

            property_dict[key] = value 

        # Append the property data to the list 

        property_data.append(property_dict) 

         

        # Print the details for this property 

        print("Property Details:") 

        for key, value in property_dict.items(): 

            print(f"{key}: {value}") 

        print("\n" + "="*40 + "\n")  # Separate property details with a 

line 

 

# Convert the list of dictionaries to a DataFrame 

output_df = pd.DataFrame(property_data) 
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# Generate a timestamp using the current date and time 

timestamp = datetime.now().strftime("%Y_%m_%d_%H_%M") 

 

# Construct the file name with the timestamp 

file_name = f'spiti24_details_{timestamp}.csv' 

 

#drop the duplicates if there are any 

df = output_df.drop_duplicates(subset='Id', keep='first') 

 

# Define a dictionary to map the old column names to the new ones 

column_mapping = { 

    'Listing ID': 'Id', 

    'Property Title': 'Title', 

    'Property Area': 'Area', 

    'Property Price': 'Price', 

    'Property Description': 'Description', 

    'Image URLs': 'images', 

    'Latitude': 'latitude', 

    'Longitude': 'longitude', 

    'Δημοσίευση αγγελίας': 'publication_date', 

    'Τελευταία Ενημέρωση': 'last_update', 

    'Κωδικός ακινήτου': 'property_code', 

    'Κωδικός για μεσίτη': 'agent_code', 

#     'Τιμή': 'price', 

    'Τιμή ανά τ.μ.': 'price_per_sqm', 

    'Περιοχή': 'location', 

    'Ζώνη': 'zone', 

    'Έτος κατασκευής': 'year_built', 

    'Θέρμανση': 'heating', 

    'Ενεργειακή κλάση': 'energy_class', 

    'Όροφος': 'floor', 

    'Επίπεδα': 'levels', 

    'Πάρκινγκ': 'parking', 

    'Κουζίνες': 'kitchens', 

    'Καθιστικά': 'living_rooms', 

    'Μπάνια': 'bathrooms', 

    'Κατάσταση': 'condition', 
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    'Χρήση': 'use', 

    'Άλλο': 'other', 

    'Έτος ανακαίνισης': 'renovation_year', 

    'WC': 'wc', 

    'Date available': 'available_date', 

    'Μισθωμένο': 'rented', 

    'Διεύθυνση': 'address' 

} 

 

# Rename the columns using the mapping 

df.rename(columns=column_mapping, inplace=True) 

 

# Display the DataFrame with the updated column names 

print(df) 

 

# Check if the file exists 

if not os.path.isfile(file_name): 

    df.to_csv(file_name, mode='a', index=False, encoding='utf-8-sig')  # 

Write with header 

else: 

    df.to_csv(file_name, mode='a', index=False, encoding='utf-8-sig', 

header=False) # Append without writing header 

# Print a message when scraping and saving is complete 

print("Scraping and saving complete.") 

 

# Perform the join on 'Id' 

df = plot_data.merge(df, on='Id', how='inner') 

# Print a message when scraping and saving is complete 

print("Scraping and saving complete.") 

 

 

# ### Store in database 

from sqlalchemy import create_engine, text 

from sqlalchemy import inspect 

 

# Database storage 

# Define the database connection details 
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username = 'DESKTOP-P8GGH21\HP' 

# Define the database connection string 

server = 'localhost' 

database = 'listings' 

driver = 'ODBC Driver 17 for SQL Server' 

 

# Create the SQLAlchemy engine 

engine = create_engine(f'mssql+pyodbc://{server}/{data-

base}?driver={driver}&Trusted_Connection=yes') 

 

# Create an inspector 

inspector = inspect(engine) 

 

# Check if the table exists 

if "spiti_24" in inspector.get_table_names(): 

    # If it does, then get the existing IDs 

    existing_ids_df = pd.read_sql_query("SELECT listing_id FROM spiti_24", 

engine) 

else: 

    print("Table does not exist") 

 

# If 'Id' is a list, join the list into a string 

if isinstance(df['Id'].iloc[0], list): 

    df['Id'] = df['Id'].apply(lambda x: ','.join(map(str, x))) 

 

    # # Convert 'Id' column in both DataFrames to set for comparison 

    # existing_ids = set(existing_ids_df['listing_id']) 

    new_ids = set(df['Id']) 

 

    # Get the unique Ids that are not in the SQL database 

    unique_ids = new_ids - existing_ids 

 

    # Filter the DataFrame to include only rows with unique Ids 

    details_df_unique = df[df['Id'].isin(unique_ids)] 

 

    # Append the DataFrame to the SQL table 

    details_df_unique.to_sql('spiti_24', con=engine, if_exists='append', 

index=False) 
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else: 

    df.to_sql('spiti_24', con=engine, if_exists='append', index=False) 

 

# Close the engine 

engine.dispose() 
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