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ABSTRACT 

 

 Monogenic obesity caused by mutations in the Melanocortin-4 Receptor 

(MC4R) gene remains a significant health challenge, despite numerous efforts to find 

effective treatments. The MC4R is a promising target for drug development due to its 

role in energy homeostasis and adipose tissue formation. This thesis explores the 

hybridization of Machine Learning and Molecular Modeling techniques to identify 

potential ligands that may act as agonists against the obesity-associated MC4R.  

 This study aimed to develop a predictive model using a dataset of 1,906 

chemical compounds and 208 RDKit molecular descriptors to classify molecules 

based on their activity against MC4R. Additionally, 2,000 natural compounds were 

evaluated using three molecular docking software platforms to identify potential 

ligands for human MC4R (hMC4R) based on interaction patterns and binding 

affinities. The machine learning model was used to predict ligand activity, and their 

properties were further analyzed using two ADMET tools.  

 The final model demonstrated strong efficiency of activity prediction,   

achieving 94.28% accuracy and an AUC of 0.98.  The molecular docking experiments 

identified six natural compounds as potential hMC4R ligands, with most sharing the 

same chemical scaffold. However, the ADMET analysis did not yield accurate or 

reliable results, limiting the ability to fully assess the safety profiles of the identified 

compounds. Despite this limitation, the findings suggest that the flavone scaffold 

could serve as a template for designing novel agonists. 

 

Keywords: Final project, Obesity, hMC4R, Machine Learning, Molecular 

Modeling, Molecular Docking, ADMET prediction, Ligands, Drug Design. 
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Introduction 
 

 In the present world, where technological advancements play a pivotal role in 

shaping daily life, it is possible to address challenges that were once 

considered impossible. The adaptation and utilization of these advancements in 

biomedical research led to discoveries aimed primarily at enhancing the quality of 

human life. At the core of this research area are Machine Learning techniques. More 

specifically, the use of Machine Learning techniques to study the properties, 

characteristics, and behavior of chemical compounds significantly impacts the 

discovery of innovative drugs due to their enhanced computational power and 

accuracy. Furthermore, merging Machine Learning techniques with Computational 

Chemistry tools accelerates and guides the rational search of novel pharmaceutical 

substances. 

 Obesity is among the diseases that pose a public health challenge and demands 

urgent attention and intervention. Undeniably, obesity has risen to become one of the 

most widespread chronic health issues globally, posing an increased risk of morbidity. 

Moreover, the percentage of the population affected by this condition has steadily 

increased over the years. It is responsible for the development of life-threatening 

conditions, including diabetes mellitus, arterial hypertension, and myocardial 

infarction. The factors contributing to the disease and the forms in which it occurs 

vary. Of particular interest is obesity resulting from inherited disorders and gene 

mutations. A typical example is monogenic obesity, which is regarded as a rare and 

severe form of the condition triggered by a mutation in a specific gene. 

 Despite the rarity of the phenomenon, the mutated melanocortin-4 receptor 

(MC4R) is responsible for a higher proportion of obesity in adults and children due to 

genetic factors. As a consequence, researchers are focusing on mutations in the gene 

encoding MC4R and subsequently, on the functionality of the receptor. 

 These reasons render MC4R an attractive potential target for developing and 

clinically testing drug therapies for hereditary obesity. Current studies focus on 

identifying agonists, which are molecules that bind to the receptor and trigger its 

activation, resulting in a biological response akin to that of the natural signaling 

molecule. 

 In this thesis, virtual screening techniques are employed alongside the 

development of Machine Learning models to predict the activity of chemical 

compounds against the obesity-associated MC4R. In particular, through the utilization 

of suitable data processing methods, Machine Learning, and Statistical Analysis 

techniques, this study aims to identify the molecular descriptors (biomarkers) of 

chemical compounds that distinctly differentiate active compounds from non-active 

ones. Subsequently, using a crystal structure of MC4R with the confirmed ligand 

SHU9119, potential active compounds against the receptor will be examined through 

the application of Molecular Docking. Lastly, the outcomes of both procedures will be 

correlated and further assessed based on the Absorption, Distribution, Metabolism, 

Excretion, and Toxicity (ADMET) criteria. 

 Chapter 1 outlines the theoretical concepts and methodologies employed in 

this study. Specifically, it explores the obesity epidemic, analyzing the biological 

target and its relevance to human health. Fundamental concepts of Machine Learning 

and Statistical Analysis are also explained. Additionally, the chapter elucidates 

Computational Chemistry tools, including virtual screening and ADMET prediction. 

 Chapter 2 expounds on the materials and the procedures used in this study to 
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analyze the available data and obtain results. It outlines the selection and processing 

of the dataset to prepare it for Machine Learning algorithms and subsequent Statistical 

Analysis. Additionally, it details the process of molecular docking of potential ligands 

to MC4R and how these results are correlated with the developed machine-learning 

models for molecule qualification. Last but not least, it describes the further 

assessment of their metabolic properties. 

 Chapter 3 presents the results derived from the applied computational 

procedures. In more detail, diagrams illustrating the results of machine learning and 

statistical analysis on the optimal model are provided. Molecular docking results are 

presented in summary tables and through representative poses of the chemical 

compounds within the receptor's binding site. Selected ADMET properties are also 

highlighted. 

 Chapter 4 provides a brief discussion of our findings and suggests potential 

future steps to enhance our research. 

 Limitations and challenges in this thesis primarily stemmed from the materials 

used. The large dataset size led to time-consuming computations during the 

development of machine learning models. Similarly, one of the available molecular 

docking software platforms required significant computational power, resulting in a 

slow docking process. 
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Chapter 1: Theoretical Background  
 

1.1 The Disease of Obesity 
 

 In recent decades, research conducted in the domain of health has 

demonstrated the exponential growth of obesity across a wide range of the human 

population worldwide. According to the World Health Organization (WHO), since 

1948, obesity has been defined as a chronic and complex disease characterized by 

excess deposits of adipose tissue in the body, subsequently affecting an individual’s 

health. It has been demonstrated to have a direct correlation with a higher probability 

of developing diabetes mellitus, cardiovascular disease including myocardial 

infarction and arterial hypertension, deterioration of both bone and reproductive 

health, and various types of cancer. 

 A practical measure to estimate body weight based on clinical observation is 

the Body Mass Index (BMI). This indicator was established as a criterion for 

evaluating the risk and likelihood of diseases associated with increased accumulation 

of adipose tissue in the body, as previously stated. ΒΜΙ is calculated using the body 

mass measured in kilograms (kg) and the height of the patient calculated in meters 

(m). Understandably, it does not take into consideration parameters such as age or 

gender. As a consequence, it is expected to overestimate or underestimate the 

presence of obesity in some cases. However, the long-term practice of this method has 

resulted in a plethora of available data thus permitting comparisons and conclusions 

based on age and gender. To this day, it continues to be a commonly utilized 

technique for categorizing obese patients by experts, due to its simplicity and lack of 

invasiveness.  

 Table 1.1 presents the classification of patients according to the BMI value 

[1].  

 

𝐵𝑀𝐼 =  
𝑚 (𝑘𝑔)

ℎ2 (𝑚2 )
, 

                                                                                                          (1.1) 
 

where 𝑚 is the mass of the body and ℎ is the height of the individual.   

 
Table 1.1 Classification of patients according to the BMI. 

            

Classification ΒΜΙ (kg/m2) Risk 

Underweight <18.5 Low 

Normal weight 18.5 – 24.9 Normal 

Overweight 25.0 – 29.9 Increased 

Obesity (Stage I) 30.0 – 34.9 Average 

Obesity (Stage II) 35.0 – 39.9 High 

Obesity (Stage III) >40 Extremely high 

 

 Following statistical studies implemented by WHO in the year 2022, it is 

estimated that 43% of adults in the world are identified as overweight, while 16% are 
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classified as obese, demonstrating a more than doubling of rates for a period of 3 

decades. Remarkable rates are also evident in children, in comparison to previous 

years, with rates of approximately 20% [2]. In European countries, around 60% of 

adults fall into the overweight and obese category, whereas the corresponding figure 

for children is 8%. In addition, it is estimated that excess weight beyond the normal 

range is responsible for over 1.2 million deaths each year in Europe [3].  

 The rapid progression of the probability of occurrence of the disease in the 

general population has led to the necessity of investigating the causes of the 

phenomenon. Scientific research to date reinforces the notion that obesity is a 

multifactorial disease as environmental, behavioral, and biological causes contribute 

to the establishment of a positive energy balance (Figure 1.1). Both environmental 

and behavioral causes are associated with changes in energy balance. More 

specifically, when energy intake exceeds expenditure over time, the body accumulates 

fat, leading to weight gain. Biological factors hinder the attainment of energy balance, 

further increasing its complexity. For instance, biological factors may include 

neuroendocrine disorders or alterations in the gut microbiome. Nonetheless, 

researchers are particularly interested in the impact of genetic mutations on the onset 

and course of this condition [4]. 

 

 
 

Fig. 1.1: Energy balance illustration [4]. 

 

 Further investigation on the influence of the genetic code on metabolic 

disorders has led to the discovery of over 250 obesity-related genes and gene markers, 

documenting the existence of a genetic predisposition [5]. Therefore, obesity from a 

genetic perspective is divided into three subgroups: monogenic, polygenic, and 

syndromic obesity. Monogenic obesity stems from mutations in a single gene, 

polygenic obesity results from a combination of mutations of multiple genes, and 

syndromic obesity is associated with inherited disorders, like intellectual disability 

[6]. 

 Monogenic obesity is classified as the rarest and most severe form of the 

disease, due to the reduced feeling of satiety and increased appetite. The first evidence 

demonstrating the association between weight change and a defective gene was 

presented in 1997 by Montague et al. [7]. More precisely, the researchers reported an 

association between mutations in the gene responsible for encoding leptin, identifying 

it as a crucial regulator of energy homeostasis. So far, about 20 individual, gene-

related disorders leading to autosomal obesity have been documented. 
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 The table below (Table 1.2) summarizes the prevalently acknowledged genes 

associated with the development of monogenic obesity. It has been observed that 

these gene mutations are located in the leptin – melanocortin pathway of the Central 

Nervous System (CNS) and are critical in the regulation of energy homeostasis [4], 

[6], [8]. 

 
Table 1.2 Examples of genes related to monogenic obesity development. 

 

Gene Encoded Protein Main Function Classification Statistics 

LEP Leptin Protein hormone 

produced by adipocytes 

that regulates energy 

intake 

 

Severe type, 

occurs in the 

early days of 

life 

Less than 100 

patients, 

worldwide 

LEPR Receptor of leptin Binds leptin and 

activates the synthesis 

of POMC 

 

Severe type, 

occurs in the 

early days of 

life 

 

About 2-3% 

of severe, 

early obesity 

cases 

POMC Pro-

opiomelancortin 

A precursor polypeptide 

of melanocortins 

Severe type, 

occurs in the 

early months 

of life 

 

Less than 10 

patients, 

worldwide 

MC4R Receptor of 

melanocortin 4 

Binds α-MSH, it is 

expressed in the 

hypothalamus and 

activates anorexigenic 

signals 

 

Severe type, 

occurs during 

childhood 

About 2-3% 

of obesity 

cases in 

children and 

adults 

PCSK1 Proprotein 

Convertase 

Subtilisin/Kexin 

Type 1 

Participates in the 

biosynthesis of insulin 

Severe type, 

occurs during 

childhood 

Less than 20 

patients 

worldwide 

 

1.2 Introduction to the Biological Target 
 

1.2.1 Protein receptors 
 

 Proteins are biochemical compounds that are among the most versatile 

macromolecules in living systems. They play vital roles in numerous biological 

processes, providing mechanical support, catalyzing biochemical reactions, and 

facilitating movement. The diverse functions of proteins arise from both the variety 

and the specialized roles of their constituent building blocks, known as amino acids. 

Amino acids are interconnected by peptide bonds, forming polypeptide chains and 

define the complex, three-dimensional (3D) structure of proteins. They consist of a 

central carbon atom, an amino group, a carboxyl group, a hydrogen atom and a side 

group (R), which is different for each amino acid [9], [10]. 
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 Cell boundaries are defined by intrinsically impermeable barriers known as 

membranes, which prevent molecules produced inside the cell from escaping and 

foreign molecules from entering. Despite this barrier, transport systems exist, making 

it possible to regulate the movement of specific molecules, allowing certain 

substances to enter and others to be expelled. These systems rely on membrane 

proteins, such as pumps and channels. However, the cell membrane remains 

impermeable to larger, polar signaling molecules, like hormones. To receive signals 

from the external environment, different types of specialized, integrated membrane-

bound proteins called receptors interact with these signaling molecules and transmit 

the information into the cell's interior.  

 A receptor typically consists of extracellular and intracellular structural 

domains. The signaling molecule, known as a ligand, is recognized by a specific 

binding site on the receptor's extracellular side. This interaction leads to the formation 

of the receptor-ligand complex, resulting in both structural changes in the receptor 

and the intracellular region. These alterations induce changes in the concentration of 

small molecules, called second messengers, which relay the information to produce a 

response from the cell. One critical second messenger is cyclic adenosine 

monophosphate (cAMP). Before its termination, the signaling process modifies the 

function of molecules that directly regulate metabolic pathways, gene expression, and 

even the transmission of nerve impulses. 

 One of the most significant categories of protein receptors is the seven- 

transmembrane (7TM) receptors, which penetrate the membrane's lipid bilayer seven 

times (Figure 1.2). Upon binding with a ligand, these receptors change their 

stereochemistry, subsequently activating G proteins (G from guanylonucleotide), 

hence the term G protein-coupled receptors (GPCRs). When activated, G proteins 

stimulate the activity of adenylate cyclase, which increases the concentration of 

cAMP. Mutations in the genes encoding these receptors are associated with multiple 

diseases. As a result, the majority of drugs target the receptors to modify their 

function [9]. 

 

 
 

Fig. 1.2: Schematic representation of a GPCR. There is a N-terminal extracellular region 

(the end with a free amino group) and three extracellular loops interacting with a ligand 

molecule along with a C-terminal intracellular region (the end with a free carboxyl group) 

and three intracellular loops interacting with a G protein [11-12].  

 

1.2.2 The melanocortin system 
 

 The melanocortin system is defined as an extremely important and complex 

component of human physiology. 
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 It consists of melanocortins, a group of peptide hormones derived from the 

post-translational cleavage of the gene product of pro-opiomelanocortin (POMC) 

[13]. The most prevalent melanocortins are melanocyte-stimulating hormones (α-

MSH, β-MSH, γ-MSH) and adrenocorticotropic hormone (ACTH). They actively 

participate in various physiological functions within the human body, including skin 

pigmentation, immune function, and appetite regulation. A common feature of 

melanocortins is the amino acid sequence His-Phe-Arg-Trp, a pharmacophore 

essential for the biological activity of these peptides [14]. 

 

 
 

Fig. 1.3: The chemical structure of endogenous ligand α-MSH. 

 

 The protein receptors within the melanocortin system are part of the larger 

family of GPCRs. These receptors originate from five distinct genes that encode them, 

each bearing a corresponding name (MC1R through MC5R). Research conducted so 

far indicates both their different tissue distribution and functionality. Melanocortin 

receptors are activated by one or more melanocortin peptides (α-MSH, β-MSH, γ-

MSH, ACTH). These signaling molecules lead to an increase in cAMP concentration, 

regulating the functions associated with each receptor of this system [13]. 

 In contrast to melanocortins, which act as receptor agonists, the melanocortin 

system features two endogenous antagonists: the agouti and agouti-related protein 

(AgRP) peptides. They are the only inhibitory peptides identified among the 7TM 

family, distinguished by their selectivity [14]. 

 Table 1.3 briefly presents the five subtypes of melanocortin receptors. It is 

worth noting that all of the melanocortin receptors are associated with cAMP 

generation via the stimulatory G protein Gs and adenylate cyclase. 

 
Table 1.3 The five receptors of the melanocortin system. 

 

Receptor Expression Main Function Agonist Antagonist 

MC1R Melanocytes, skin 

glands, hair 

follicle, testis, 

pituitary etc 

 

Skin and hair 

pigmentation, 

inflammation 

α-ΜSH,  

ACTH 

Agouti 

MC2R Adrenal cortex, 

skin, adipocytes 

Steroidgenesis ACTH Agouti 

     

MC3R Brain, placenta, 

testis, heart, gut 

Energy 

homeostasis 

α-ΜSH,  

β-MSH,  

γ-ΜSH, 

ACTH 

Agouti, 

AgRP 
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Table 1.3 (Continued). 

 

MC4R Brain, adipose 

tissue 

Energy 

homeostasis, 

sexual behavior 

α-ΜSH,  

β-MSH,  

ACTH 

 

Agouti, 

AgRP 

MC5R Adrenal gland, 

kidney,adipose 

tissue, lymph 

node, lung, testis, 

uterus etc 

Exocrine function 

(sebaceous gland 

secretion) 

α-ΜSH,  

ACTH 

- 

 

 This thesis investigates the melanocortin-4 receptor (MC4R). 

 

1.2.3 The melanocortin-4 receptor 
 

 MC4R gene, which is located on chromosome 18q21.3, encodes the 

melanocortin-4 receptor (MC4R), member of the melanocortin protein receptor family 

[15]. This receptor (Figure 1.4) is a GPCR consisting of 332 amino acids. It plays a 

central role in regulating appetite, maintaining energy balance, and influencing the 

formation of adipose tissue in the body, as indicated by pharmacological and genetic 

studies in both animal and human models [16]. 

 

 
 

Fig. 1.4: Theoretical model of the human MC4R with AgRP. As evident, N-terminus is 

represented in dark blue, C-terminus in red, and the seven transmembrane helices (TMH) in 

gray. The extracellular (ECL) and intracellular (ICL) loops are represented by different 

colors. The boundary amino acids of TMH are labeled according to the protein sequence 

alignment (adapted from [17], [18]). 
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 It is mainly expressed in the CNS and more specifically, in the paraventricular 

nucleus of the hypothalamus of the brain. Receptor activity is regulated by two 

functionally antagonistic populations of neurons associated with eating behavior: 

 

i. The anorexigenic pro-opiomelanocortin/cocaine-amphetamine related 

transcript (POMC/CART) neurons. 

ii. The orexigenic agouti-related peptide/neuropeptide Y (AgRP/NPY) neurons 

[19]. 

 

Agonists, such as a-MSH, activate the receptor and regulate the feeling of satiety. In 

contrast, the endogenously produced AgRP antagonist inhibits the receptor's activity 

and leads to an increase in levels of appetite.  

 The consequences of inhibiting MC4R function, such as hyperphagia, 

hyperinsulinemia, and hyperglycemia, were demonstrated in 1997, by Huszar et al. 

[20], in a study conducted on animal models of mice. Over the years, research on the 

human MC4R and its mutations has elucidated the receptor's role in adipose tissue 

formation and energy balance regulation. So far, over 100 different mutations of 

MC4R gene have been documented in large samples of obesity-affected populations, 

making it the most prevalent form of the disease stemming from genetic disorders 

[21].   

 In conclusion, understanding the role of MC4R in the regulation of both 

energy balance and metabolism, in general, is significant in domains of research 

related to the discovery of targeted, therapeutic interventions against monogenic 

obesity. 

 

1.2.4 Contemporary treatments 
 

 Over three decades ago, research efforts aimed at discovering 

pharmacotherapy for this type of monogenic obesity, centering on the utilization of 

regulatory hormones, specifically MSH. However, these hormones, as discerned in 

Table 1.3, lack specificity concerning the melanocortin receptor subtype. In 

addition, they demonstrated adverse side effects in clinical trials, such as skin 

hyperpigmentation and Addison's disease. Consequently, this proposal was ultimately 

dismissed. This indication created an urgent need to identify molecules exhibiting 

similar activity to endogenously produced agonists, characterized by a higher degree 

of selectivity. The molecules considered as potential agonists are divided into three 

categories:  

 

i. Linear peptide agonists. 

ii. Cyclic peptide agonists. 

iii. Non-peptide agonists. 

 

It is noted that linear peptides, due to their structure, demonstrate a significant 

resemblance to melanocortin peptide hormones, but cyclic peptides exhibit stronger 

interactions with the receptor. In addition, non-peptide molecules possess high levels 

of selectivity. 

 Some potential MC4R ligands, such as melanotan II, despite their promising 

results during computational studies, failed in clinical trials [16].  

 In the year 2020, the first pharmaceutical treatment was approved by the Food 

and Drug Administration (FDA), targeting obesity originating from genetic 
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predisposition [22]. Setmelanotide (also known as RM-49 or commercially as 

Imcivree) may be prescribed for individuals with POMC, PCSK1, and 

LEPR deficiencies, who are seeking weight management solutions. This treatment is 

suitable for children (aged 6 and above) and adults, who carry these mutations in the 

leptin-melanocortin pathway. It is a cyclic peptide, showing 20 times higher 

selectivity towards MC4R, compared to the natural ligand α-MSH. In addition, as 

noted by Hammad et al. [21]. , Setmelanotide presents a higher binding affinity to 

MC4R, in contrast with the endogenous form of α-ΜSH. Unlike previous clinically 

tested molecules, this cyclic peptide does not exhibit cardiovascular side effects such 

as tachycardia or increased blood pressure, highlighting its safety profile for 

therapeutic use [22].  

 Figure 1.5 illustrates the chemical structure of Setmelanotide. 

 

 
 

Fig. 1.5: The structure of Setmelanotide [23]. 

 

1.3 Fundamentals of Machine Learning 
 

 The term "Machine Learning" encompasses the scientific field dedicated to the 

various ways in which computers are trained, learn, and adapt based on data. It is a 

fusion of computer science and mathematics, arising from the computational 

challenges of constructing predictive models when analyzing vast quantities of data. 

Machine learning is based heavily on statistical concepts, including probability, but 

excels in capabilities, such as decision-making [24]. The process of designing and 

developing a Machine Learning model consists of 3 stages: training, testing and final 

evaluation. 

 In general, when referring to “models” in the context of Machine Learning, a 

specification of a mathematical (or probabilistic) relationship that exists between 

different variables is implied [25]. 

 A dataset is a collection of observations, known as data, organized in a way 

that facilitates processing, manipulation, and analysis. Typically, data within a dataset 

originate from authoritative sources of scientific literature. Datasets, which are 

utilized for research purposes, are retrieved from databases. A database is defined as a 

digital repository for the storage, organization, and efficient management of a large 

amount of information.  
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 The information within a dataset that supplies the algorithms is referred to as 

features. The quality and the number of features utilized to train a Machine Learning 

model are directly related to its performance and the accuracy of its predictive 

capabilities [24]. Before constructing a reliable model, it is necessary to consider 

these parameters to avoid certain risks. For instance, overfitting is a frequent 

challenge in Machine Learning. A model performs well on the data used its training 

but struggles to generalize, leading to poor performance on new data. This 

phenomenon is characterized by high variance in the model, stemming from a large 

number of parameters, rendering the model overly complex. This means that the 

model identifies specific inputs rather than the factors that contribute to predicting the 

desired output. Likewise, a model may present underfitting, i.e. high bias. This 

indicates that it is not complex enough to capture the pattern of the training data, so it 

performs poorly on new data [25], [26]. 

 

 
 

Fig. 1.6: Overfiiting and underfitting illustrated by the comparison of a linear decision 

boundary to non-linear decision boundaries of higher complexity [26]. 

 

 Table 1.4 provides the definitions of the terms “Variance” and “Bias” [26]. 

 
Table 1.4 Variance and Bias. 

 

Terminology in Machine Learning 

Variance A consistency (or variability) measure of a 

model's prediction for the classification of a 

particular example, after retraining. 

Bias A systematic error measure, unrelated to 

randomness, i.e. how much the predictions 

deviate from the correct values. 

 

 In general, there are 4 main categories of Machine Learning. These are 

Supervised Learning, Unsupervised Learning, Semi-supervised Learning, and 

Reinforcement Learning [27]. 

 

 Supervised Learning 

 

The purpose of Supervised Machine Learning is to train a model using a set of 

examples as data inputs, which are categorized into predefined classes. More 

specifically, labeled training data are utilized to create a model capable of predicting 
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reliable outcomes for future, unidentified (unlabeled) data [26], [28]. This category 

consists of two main methods: classification and regression. Classification involves 

assigning data to discrete classes based on available characteristics. On the other 

hand, regression focuses on predicting continuous values, rather than discrete ones, 

according to a given set of characteristics [24], [29]. 

 

 Unsupervised Learning 

 

In contrast to Supervised Learning, where data labels are known before model 

training, Unsupervised Learning creates predictive models and operates without pre-

existing data labels or information about data structure. Different algorithms are 

applied to identify similarities and differences, clustering data based on naturally 

occurring patterns. In other words, clustering algorithms are exploratory data 

analysis techniques, employed to categorize objects into groups according to their 

degree of similarity. Since it is a data-driven process, it does not require any 

intervention from a human observer [24]. 

 

 Semi-supervised Learning 

 

This category is a combination of the two previous types of machine learning. It 

operates using both labeled and unlabeled data. The main goal is to create an 

algorithm characterized with higher performance than the one achieved through the 

application of Supervised Learning alone [29]. This type of model training is used 

when some missing outputs can be approximated using available training data [24]. 

 

 Reinforcement Learning 

 

The aim in Reinforcement Learning is to develop a system, known as agent, which 

automatically improves its performance by interacting with a specific environment 

through trial and error. This type of learning is based on rewards and penalties, aiming 

to increase these rewards or minimize risks [24]. Since information about the current 

state of the environment typically includes the reward signal, this method can be 

considered a field related to Supervised Learning [26]. 

 

 
 

Fig. 1.7: Illustrations of the 4 main categories of Machine Learning [30]. 

  

 In conclusion, the appropriate selection of a Machine Learning technique 

depends on factors such as the type of available data, the field of application, and the 

objectives pursued each time. These ensure the development of an efficient, high-

performance model capable of supporting new data. 
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1.3.1 Supervised learning and classifiers 
 

 Machine Learning in Data Science is evolving into an exceptionally 

important research tool. It finds extensive application in a multitude of scientific 

domains and industries for data analysis. For such purposes, this thesis utilizes 

Supervised Learning methodologies. 

 A classifier is characterized as a decision-making algorithm, or a mathematical 

model, designed to sort input data into one of the Ci (i=1, 2, 3...n) categories. 

As previously noted, inputs are regarded as features, commonly presented in the form 

of a vector [31], [32]. 

 The most common classification problems are listed in Table 1.5 [29]. 

 
Table 1.5 Binary and Multiclass classification. 

 

Types of Classification 

Binary Two classes of data available, such as 

"true-false", "normal-malignant", 

"active-non-active". 
 

Multiclass 

 

Multiple classes of data available 

(n>2). 

 

 It is worth noting that Supervised Learning algorithms are divided into two 

subcategories: parametric and non-parametric models. In parametric 

models, parameters are calculated from the training data to create a function. As a 

result, this function classifies the unknown data, without requiring the assistance of a 

training set. Such algorithms include the Perceptron, Logistic Regression, Linear 

Support Vector Machine (SVM), and Linear Discriminant Analysis (LDA). On the 

contrary, non-parametric models lack a fixed set of parameters, are flexible, and 

constantly adapt to the complexity of the data. Examples include K-Nearest 

Neighbors (KNN), SVM with nonlinear kernels, Decision Tree/Random Forest [26]. 

 Supervised Learning classifiers that appear frequently in scientific literature 

are presented below: 

 

 Κ-Nearest Neighbors (KNN) 

 

The Nearest Neighbors classifier is one of the simplest prediction models available. 

Quite deliberately, they disregard much of the information, as the prediction for each 

new record depends on a few points closest to it. The KNN is often characterized as a 

"lazy learner" since it does not train a predictive model. Instead, it stores the training 

data and makes predictions based on the set of k-similar instances (k=1, 2...n, where k 

is a predetermined number). A measure commonly used is the Euclidean distance. 

Each new observation is assigned to a class according to the majority vote of k-

nearest neighbors. In this approach, the classifier is continuously adjusted during data 

collection, while its accuracy is dependent on the dataset's quality. Admittedly, it is an 

algorithm of computational complexity, which increases linearly with the amount of 

training data. [24], [26], [29]. 
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𝑑𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 = √𝛴𝑖=1 
𝑛 (𝑥𝑖 − 𝑦𝑖)2 , 

    (1.2) 

 

where 𝑥𝑖 and 𝑦𝑖 are the two observations between of which the distance is calculated 
[34]. 

 

 
 

Fig. 1.8: Illustration of the KNN classifier by Author. 

 

 Naïve Bayes 
 

Bayesian classifiers are a set of algorithms based on Bayes' theorem, i.e. a practice 

for calculating the conditional probability based on prior knowledge and the naive 

assumption that each feature is independent of the other. The formula for Bayes’ 

theorem is presented below: 

 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
, 

(1.3)   

 

where 𝑃(𝐴|𝐵) corresponds to the probability of an event A occurring when event B 

has occurred, given new information 𝑃(𝐵|𝐴), and a prior belief in the probability of 

the event 𝑃(𝐴). 𝑃(𝐵) corresponds to the probability of event B [34]. 
 

Specifically, Bayes’ theorem establishes a relationship between a class variable 𝑦 and 

a dependent feature vector 𝑥1 through 𝑥𝑗 [35]. In the context of Machine Learning, 

Naïve Bayes classifier is based on:  

 

𝑃(𝑦|𝑥1 …  𝑥𝑗) =
𝑃(𝑥1 …  𝑥𝑗|𝑦)𝑃(𝑦)

𝑃(𝑥1 …  𝑥𝑗)
 , 

(1.4) 
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where 𝑃(𝑦|𝑥1 …  𝑥𝑗) is called the posterior probability of class 𝑦 (observation), given 

its values for the 𝑗 features, 𝑥1 …  𝑥𝑗, 𝑃(𝑥1 …  𝑥𝑗|𝑦) is the likelihood of an 

observation’s values for features 𝑥1 …  𝑥𝑗, given their class 𝑦, 𝑃(𝑦) is the prior belief 

for the probability of class 𝑦 and lastly, 𝑃(𝑥1 …  𝑥𝑗) is the marginal probability [34]. 

 

The user selects the statistical distribution of the probability for each feature in the 

data. In most cases, the Gaussian Naïve Bayes classifier, which follows the normal 

distribution, is preferred.  

 

𝑃(𝑥𝑖|𝑦) =
1

√2𝜋𝜎𝑦
2

 exp (−
(xi − μ𝑦)2

2𝜎𝑦
2

), 

(1.5) 

 

where 𝜎𝑦
2 and 𝜇𝑦 are the variance and mean values of feature 𝑥𝑖 for class 𝑦 [34], 

[35]. 

 

It is worth noting, that Bayesian classification has the ability to perform quite well 

even with limited amounts of training data.  

 

 
 

Fig. 1.9: Illustration of the Naïve Bayes classifier by Author (inspired by Destin Gong [33]). 

 

 Logistic Regression 
 

Logistic Regression is a binary, predictive classification model with a high level of 

performance on linearly separable classes. More specifically, a linear model (e.g. α0 

+αix) is included within the logistic function  
1

1+𝑒−𝑧 , also known as the sigmoid 

function. 

 

𝑃(𝑦𝑖 = 1|𝑋) =
1

1 + 𝑒−(𝑎0+𝑎1𝑥)
 , 

                                      (1.6) 

 

where 𝑃(𝑦𝑖 = 1|𝑋) is the probability of the i-th observation, 𝑦𝑖 is class 1, 𝑋 is the 

training data and 𝑎0, 𝑎1 are parameters to be learned. 
 

Thereby, the output is constrained between 0 and 1. If the probability 

𝑃(𝑦𝑖 = 1|𝑋) is greater than 0.5, class 1 is predicted; otherwise, class 0 is predicted. In 
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essence, the new inputs are assigned to one of the two data classes after comparing the 

probability to a predefined threshold [34].  

 

 
 

Fig. 1.10: Illustration of the Logistic Regression classifier by Author (inspired by Destin 

Gong [33]). 

 

 Decision Trees 

 

A Decision Tree utilizes a tree structure to represent several possible decision paths 

and associated outcomes for each one. The decision rules are linked in a chain-like 

manner. The initial rule is positioned at the top of the tree, with subsequent rules 

branching off below it. Each node in the Decision Tree represents a query and each 

branch represents a possible outcome, leading to new nodes. A branch without a 

decision rule at the end is called a leaf and represents a class label [24]. When a leaf 

node is accessed by a data sample, the label of the corresponding node will be 

assigned to the sample. To elaborate, each new instance is sorted by checking the 

feature specified by a particular node, beginning from the root of the tree and 

continuing to the branch corresponding to the feature value. The commonly used 

criteria for classification are the Gini coefficient and Entropy [29]. 

 

𝐺𝑖𝑛𝑖(𝐸) = 1 − ∑ 𝑝𝑖2

𝑐

𝑖=1

  

                                          (1.7) 

 

where 𝐺𝑖𝑛𝑖(𝐸) is the Gini coefficient, 𝑐 is the total number of events and 𝑝𝑖 is the 

probability of an event occurring for each 𝑖 event. 
 

𝛨(𝑥) =  − ∑ 𝑝(𝑥𝑖 )𝑙𝑜𝑔2𝑝(𝑥𝑖 )

𝑛

𝑖=1

 

                                     (1.8) 

 

where 𝛨(𝑥) is the entropy of the random variable 𝑥, 𝑛 is the total number of events 

and 𝑝(𝑥𝑖 ) is the probability of event 𝑥𝑖 occuring. 
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One of the most well-known algorithms that fall into the category of decision trees is 

the Classification and Regression Tree (CART), a binary tree in which each root 

represents a single input and a split point on that variable. The leaf nodes contain an 

output, which is used to make predictions. In general, decision trees are mainly 

used in simpler, straightforward problems, and on small data sets, representing both 

linear and non-linear relationships efficiently. However, these classifiers exhibit 

problems of overfitting [24]. 

 

 
 

Fig. 1.11: Illustration of the Decision Tree classifier by Author (inspired by Destin Gong 

[33]). 

 

 Random Forest 

 

The Random Forest classifier is an extension of the previous algorithm. It is a 

technique that aims to improve accuracy by combining multiple models [27]. This 

method uses the “parallel ensembling” technique, which fits multiple decision tree 

classifiers, as shown in Figure 1.12, on different subsets of the data. The majority 

vote is utilized for classification. This reduces the issue of overfitting while remaining 

unaffected by noise [24], [29]. 

 

 
Fig. 1.12: Illustration of the Random Forest classifier by Author (inspired by Destin Gong 

[33]). 



Chapter 1 

31 

 Support Vector Machine (SVM) 

 

Classification using the SVM algorithm is achieved based on the position of the data 

in relation to a boundary line between two classes. Initially, the data are plotted as 

points in an n-dimensional space, where feature values correspond to coordinates. The 

border represents the hyperplane, which maximizes the distance between points from 

different classes. SVM is known as a non-probabilistic, binary algorithm since it 

separates the data into two classes mainly used on small datasets. Otherwise, model 

training becomes complex and time-consuming. The model uses a subset of the 

training data to make the classification more efficient [24]. 

 

 
 

Fig. 1.13: Illustration of the SVM classifier by Author (inspired by Destin Gong [33]). 

 

 Artificial Neural Networks (ANN) 

 

An Artificial Neural Network (ANN) is a prediction model inspired by the 

functioning of the human brain, commonly used as a classifier. The simplest neural 

network is called Perceptron, consisting of a single neuron with n binary inputs and 

one output node. It computes a weighted sum of the inputs. Perceptron is triggered if 

the sum is greater than or equal to 0. The equation used for separation in Perceptron 

is: 

 

𝑑(𝑥) = (𝛴𝑖=1
𝑛 𝑤𝑖𝑥𝑖) + 𝑤𝑛+1, 

 (1.9) 

 

where w represents the weights and 𝑤𝑛+1 = 1. 
 

The unknown pattern x is classified into one of two categories depending on whether 

the value of the function is closest to 1 or -1.  In Figure 1.14, if d(x) > 0, the pattern is 

classified as category 1, and if d(x) < 0, it is classified as category 2. When d(x) = 0, 

the pattern isn't classified into any category [36]. 
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Fig. 1.14: Schematic representation of Perceptron (adapted from [36]). 

 

This simple model is mainly limited to linearly separable matters. It is well 

known that the structure of the brain is inconceivably complex. A prediction model 

that approximates how it functions is the feedforward artificial neural network - 

multilayer perceptron (MP), which has distinct layers of neurons, connected in a 

specific sequence. This structure comprises an input layer, one or more hidden layers, 

and the output layer. The input layer is responsible for forwarding the data input. Each 

hidden layer consists of neurons that receive outputs from the preceding layer, process 

them making calculations, and transmit the results to the subsequent layer. The output 

layer produces the final outputs. Each neuron, except for the input layer, has a weight 

corresponding to each of its inputs and a bias. Usually, the bias equals 1 and is 

added to the weights vector. If the goal is the binary classification of data, a sigmoid 

function output layer could be used, scaling the output between 0 and 1, reflecting the 

probability of prediction [25]. 

 

1.3.2 Data pre-processing  
 

 Data preprocessing refers to the process performed on raw data to make it 

suitable for input to other processing procedures, such as those of Machine 

Learning. Once obtained, there is a possibility that the data may contain some errors. 

These errors include unnecessary information and noise. Therefore, data pre-

processing influences the performance of a model. In general, there are no specific 

rules for the selection of a pre-processing method, but there is a dependence on the 

type of data. [37]. 

 In Machine Learning, normalization, which involves adjusting the scaling of 

data, is a common preprocessing task. This is necessary because the classifiers 

mentioned earlier assume that all features are scaled the same. In most cases, scales 

are selected either between 0 and 1 or between -1 and 1. There are a variety of 

techniques for data normalization.  

 In this thesis, some of the most frequently used methods found in scientific 

literature are presented below: 

 

Category 1 
 
 
 
 
 
 
 
 
 
Category 2 
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 Min-Max Scaling 

 

Min-max Scaling is the most basic normalization methodology. The minimum and 

maximum values of a feature are used to change the data scale within 

a certain range. Typically, it is preferred in Neural Networks. 

 

𝑥′𝑖 =
𝑥𝑖 − min (𝑥)

max(𝑥) − min (𝑥)
, 

(1.10) 

 

where 𝑥 is the feature vector, 𝑥𝑖 is an individual element of the feature 𝑥, and 𝑥′𝑖 is 
the adjusted element. 

 

 Standardization 

 

Standardization is an alternative to the previous method so that the characteristics 

follow a standard normal distribution. The data are adjusted to have a mean equal to 0 

and a standard deviation equal to 1. 

 

𝑥′𝑖 =
𝑥𝑖 − �̅�

𝜎
, 

 (1.11) 

 

where 𝑥𝑖 is an individual element of the feature 𝑥, �̅� is the mean and σ is the standard 
deviation. 

 

 Euclidian Norm 

 

In normalization techniques, such as those described above, data scaling is applied to 

the features. However, scale change can also be applied along individual observations. 

In the Euclidean Norm, the values of individual observations are adjusted so that the 

sum of their lengths equals 1. This approach is employed in scenarios where multiple 

equivalent features exist. 

 

‖𝑥‖2 = √𝑥1
2 + 𝑥2

2 + ⋯ + 𝑥𝑛
2 , 

(1.12) 

 

where 𝑥 corresponds to an individual observation and 𝑥𝑛 is the value of the 
observation for the n-th feature [34]. 

 

1.3.3 Feature selection and dimensionality reduction 
 

 In most cases, when handling high-dimensional datasets, it is necessary to 

prioritize the most significant features. Performing feature selection and reduction 

procedures before training a Machine Learning model is crucial. This helps eliminate 

misleading or redundant features that carry similar semantic interpretations. These 

approaches aim to reduce the dimensions of the dataset, retaining only high-quality 

features that provide useful information. As a result, this methodology prevents 
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overfitting and reduces computational complexity, shortening the training time of 

a model, and enhancing its performance.  

 Feature selection methodologies are distinguished into three categories: filters, 

wrappers, and embedded/hybrid methods. Filter methodologies select the 

most important features for model development according to their statistical 

properties. In contrast, wrapper methodologies use trial and error to find the subset of 

features that yields the highest predictive ability. Finally, embedded methodologies 

select a subset of features with high significance as an extension of the training 

process to learning algorithms.  However, it should be noted, that filter methods are 

characterized by low computational cost but with inefficient reliability in 

classification as compared to wrapper methods, which are better suitable for high 

dimensional data sets. Embedded/hybrid methods have been recently 

developed and utilize the advantages of both filter and wrapper approaches. A hybrid 

approach uses an independent test and a performance evaluation function of 

the features subset [34], [38]. 

 A few indicative examples of such techniques are described below: 

 

 Variance Thresholding 

Variance Thresholding is one of the simplest feature reduction techniques. According 

to this practice, low-variance features are deemed less useful to be included in the 

development of an efficient model, compared to those of high-variance. The selection 

of the variance threshold is subjective and determined by the user. 

𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑛𝑎𝑚𝑒𝑉𝑎𝑟(𝑥) =
1

𝑛
∑(𝑥𝑖 − 𝜇)2,

𝑛

𝑖=1

 

(1.13) 

where 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑛𝑎𝑚𝑒𝑉𝑎𝑟(𝑥) equals to the variance of a feature, 𝑥 is the vector of a 

feature, 𝑥𝑖 is an individual value of the feature and μ is its mean value. 

Thus, features whose variance value does not meet the threshold value are removed 

from the subsequent calculations [34].  

 

 Significance Test Ranking 

 

The application of a Test of Significance between classes is widely used to assess the 

ability to identify patterns of individual features. The criterion for sorting the 

features is defined as the presence of a statistically significant difference between the 

classes of the feature in question [39]. Any Test of Significance starts with a null 

hypothesis equal to 0, representing the theory that is proposed as an assertion. In this 

process, the null hypothesis posits the absence of a statistically significant difference 

between classes. Conversely, the alternative hypothesis is proposed to verify the test 

and is deemed true when the null hypothesis is rejected. Depending on the data 

distribution, whether normal or not, an appropriate test is selected (e.g. t-test, chi-

squared tests, ANOVA, Mann Whitney Wilcoxon U-test, etc.). The probability, 

denoted by the variable 𝑝 (𝑝 − 𝑣𝑎𝑙𝑢𝑒), is then calculated and compared with a 

predefined threshold. A small 𝑝, typically below the threshold, indicates opposition to 
the null hypothesis, suggesting that the feature is relevant and should be 
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retained [40]. Tests of Significance assess each feature separately, disregarding 

possible relationships of dependence. 

 

 Correlation Ranking 
 

This approach is commonly utilized in cases where there is a suspicion of a high 

correlation among available features in a high-dimensional data set. Generally, a 

correlation matrix is created to summarize and quantify linear relationships between 

variables. If two features are highly correlated, the information they provide is 

considered identical and one of them is discarded [34]. This matrix displays the 

correlation coefficient (e.g. Pearson's 𝑟), depicting the linear pairwise dependence of 
characteristics. The coefficient ranges from -1 to 1, where a value of 1 indicates a 

perfect agreement between a pair of features, a value of 0 denotes that there is no 

dependence, and a value of -1 signifies that there is complete disagreement, with one 

'ranking' being the inverse of the other [26].   

  

 Mixed Criterion 
 

The Mixed Criterion technique is a combination of the Test of Significance and 

Correlation Ranking methods described previously. This process is performed to 

ensure that features selected in correlation analysis exhibit a relatively high degree of 

statistically significant difference between the available classes. Typically, combining 

these methods further reduces the number of features contributing to the final 

predictive model, thereby ensuring that they contain significant information. 

 

 Principal Component Analysis (PCA) 
 

When examining a set of available data and addressing specific problems to be 

resolved each time, it may be desirable to maintain the variance, while reducing the 

number of features [34]. Principal Component Analysis (PCA) is an unsupervised 

dimensionality reduction technique of the original data matrix, whereby patterns in 

the data are detected and identified according to the correlation between features [26]. 

More specifically, this procedure aims to identify the principal components (new 

variables) in a high-dimensional space, retaining the highest variance. Subsequently, 

the data are projected into a new subspace with dimensions equal to or smaller than 

the original. PCA is a process assuming linear relationships between variables and is 

highly influenced by the scale of the data. Even when the input features exhibit a 

degree of correlation, the principal components are uncorrelated with each other [26], 

[38]. 

 

 Recursive Feature Elimination (RFE) Wrapper 

Recursive Feature Elimination (RFE) is one of the most widely utilized feature 

selection techniques. It is an automated method used to determine the importance of 

available features [34]. The basic idea is to train a model iteratively, using 

classification algorithms such as the SVM classifier, involving parameters 

or otherwise, weights. The main requirement is the normalization of the data. Initially, 

the model is trained using all available features. During RFE, according to the model 

fit, weights are assigned to the features. The features with the lowest parameter 

values are then removed, and the process is repeated for the remaining ones [41]. This 
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method is combined with cross-validation evaluation to determine the optimal number 

of features required for designing a robust and representative model [34]. Cross-

validation is described in more detail in the next subsection. 

1.3.4 Evaluation methods 
 

 Evaluation methodologies in machine learning are crucial for 

assessing the performance, reliability, and generalizability of predictive 

models. These methodologies encompass a wide range of techniques for estimating 

classifiers' predictive capabilities and reviewing their suitability for specific 

applications. The term "accuracy", which represents the percentage of correctly 

classified data, is extensively employed. It's essential that a model not only fits well 

with training data but also performs sufficiently on predictions involving new, 

unknown data. Some commonly used evaluation methodologies for these purposes are 

presented below: 

 

 Self-Consistency  

 

In Self-Consistency, the classifier is trained once and evaluated using all available 

data. Each data point is classified into one of the available classes, providing a 

preliminary assessment of the data, primarily focusing on the separability of classes 

rather than the accuracy parameter. 

 

 Hold-Out 

 

The Hold-Out approach is one of the most fundamental techniques for evaluating a 

classification algorithm. It entails splitting the data set into two subsets: a subset of 

data for training the model and a subset of data for testing the model's performance. 

The proportion of this random division depends on the size of the original data set. 

Usually, this ratio is selected equal to 70-30 or 80-20. Model training utilizes only the 

training set, while performance evaluation is calculated using the testing set. Despite 

its directness, this method is highly dependent and sensitive to the random way in 

which the data are divided into the two subsets. 

 

 Cross-Validation 

 

Cross-Validation involves dividing the available data into several subsets or folds. 

The model is trained on a portion of the total subsets and tested on the remaining 

ones. This process is repeated multiple times using different subsets for training and 

validation of the classifier. The results of each iteration are averaged to estimate the 

overall performance of the model. Some special cases can be distinguished: 

 

i. Leave-One-Out. As previously explained for Cross-Validation techniques, this 

approach is iterative. In the Leave-One-Out method, the process is repeated as 

many times as there are data points in the dataset [42]. In each performed 

iteration, the classifier is trained using all but one of the available data points 

[31]. Subsequently, the model's performance is estimated using the data point 

excluded from the training process. It is a method with a low level of bias, 

since each validation is performed on a single data point. At the same time, 

there is no randomness in the way the data are separated, so the 



Chapter 1 

37 

evaluation is characterized as stable. Nevertheless, it is a time-consuming and 

computationally expensive process, resulting in its primarily application on 

smaller, balanced datasets. 

 

ii. K-fold Cross-Validation. In K-fold Cross-Validation, the dataset is split into 𝑘 

equal folds or subsets. In each iteration, 𝑘 − 1 folds are used to train the 

model, while the remaining fold is used for model evaluation. This process is 

repeated 𝑘 times, with each fold serving as the validation set once.  

 

iii. External Cross-Validation. Through this approach, the data are randomly 

divided into three parts (for example, 40%, 30%, and 30%) and follow two 

types of validation: internal and external. In the internal, the system is 

designed with 40% of the data and evaluated from the first 30% of the data. 

This process is performed repeatedly for different combinations of features 

until the combination that returns the highest classification accuracy is 

obtained. The best performing system is then used in the so-called external 

validation to classify the remaining data, in this case, the remaining 30%. The 

total procedure is repeated at least 10 times. The generalization performance 

of the classifier is estimated by averaging the performance in each iteration. It 

is a methodology that requires a vast amount of available data to separate them 

into corresponding groups. 

 

 Bootstrap 

 

The Bootstrap method is primarily preferred for smaller datasets. It is similar to hold-

out, except that the data sample for model training can be selected randomly, but in 

such a way that the same patterns appear more than once (re-substitution) [42]. 

 

 The performance estimation of a model is primarily calculated using the Truth 

Table, also known as the confusion matrix. Table 1.6 provides an example of such a 

table for a binary classification problem with two categories, K1 and K2: 

 
Table 1.6 Truth Table of a binary classification problem. 

 

 
TRUTH TABLE 

Experimental 

classification 

Computational classification 

 Κ1 Κ2 

Κ1 TP FN 

Κ2 FP TN 

 

TP is the number of correctly classified cases (true positive values) and TN is the 

number of incorrectly classified cases (true negative values). Similarly, FP and FN are 

false predictions. 

 

The accuracy of the classification, as a measure of quality, is calculated as: 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 × 100 

 (1.14) 

 

Significant evaluation parameters include sensitivity (or recall), which measures the 

model's ability to correctly identify true positive cases (e.g., abnormal cases), and 

specificity, which measures the model's ability to correctly identify true negative cases 

(e.g., normal cases). 

 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(1.15) 

 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(1.16) 

 

Furthermore, precision is a performance metric which denotes the proportion of 

predicted positive cases that are in fact positive [43]. 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(1.17) 

 

Finally, the F1-score, also known as the F-measure, is a score that represents the 

harmonic mean of the recall and precision. The relative contribution of recall and 

precision to the F1-score are considered equal. Like precision, the F1-score ranges 

from 0 to 1, where 1 indicates perfect performance [44]. 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

(1.18) 

 

1.4 Essential Tools for Statistical Analysis 

 Machine learning is widely adopted as a research tool in healthcare-related 

disciplines. Admittedly, it relies heavily on statistical concepts. Statistical Analysis 

provides the theoretical foundation and a variety of tools upon which a large part of 

Machine Learning techniques is based, rendering these two disciplines interrelated. 

Statistical concepts are pivotal for interpreting, visualizing, and validating, and by 

extension, supporting the results produced by Machine Learning models. In 

summary, the merging of disciplines makes it a powerful tool that contributes to 

decision-making.  

 This subsection describes tools within the scope of Statistical Analysis that are 

utilized in the context of this thesis. 

 

 Tests of Significance 

 

Significance testing, aside from serving as a feature reduction technique, is an 

example of a common methodology used for evaluating model results. Its operational 
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principles were discussed in subsection 1.3.3 and it represents one of the simplest 

methods for comparing and assessing relationships between variables. Typically, the 

data encountered in biomedical applications are hardly normally distributed or their 

distribution is unknown. Hence, the Mann-Whitney Wilcoxon U-test is employed as a 

Test of Significance. This non-parametric statistical test requires no assumptions 

about the data distribution and applies to two unpaired classes of data. The data 

examined each time should correspond to two random, independent samples. 

These samples are combined, and calculations are performed, assuming their origin to 

be negligible. The statistical test yields the 𝑈 parameter, which determines the 

probability 𝑝 using tables or specialized software. As noted, this value is compared to 

a predefined threshold. Depending on whether it is lower or higher than this threshold, 

the null hypothesis is either rejected or retained, respectively.  

 

 Receiver Operating Characteristic (ROC) curves 

 

Receiver Operating Characteristic (ROC) curves are a schematic representation 

used to further evaluate the performance of binary classification. This method owes 

its origins to radar systems, where it was developed as a technique to separate signal 

and noise [45]. In essence, it's a graph used to visualize the model's ability 

to separate data into two classes for specific attributes. A ROC curve plots the 

coordinates of the points using "sensitivity" as the y-axis and "1-specificity", which is 

the percentage of false positives, as the x-axis, as shown in Figure 1.15. 

 

 
 

Fig. 1.15: ROC curve [46]. 
 

The Area Under the Curve (AUC) is a measure of accuracy defined as the area 

enclosed by the graph of the ROC curve. An ideal case of a ROC curve corresponds 

to an AUC equal to 1. The more the curve shifts up and to the left, the more the 

accuracy of a test increases, as the sensitivity tends towards 1 and the percentage of 

false positive results tends towards 0. In general, for a model's performance to be 

deemed acceptable, the AUC value should typically exceed 0.8 [46]. 
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 Box plots 

 

Another approach of graphical representation that is broadly utilized in interpreting 

and evaluating the results of a model is box plots. It is a simple descriptive statistics 

method defined for the schematic representation of numerical data from a series of 

observations. Typically, in biomedical applications, it is a useful approach to compare 

the distribution of data between classes on a particular feature. A box plot can be 

represented either vertically or horizontally. It is considered essential to present its 

constituent parts for its proper interpretation. 

 

 
 

Fig. 1.16: Horizontal box plot [47].  

 

As evident from Figure 1.16, the box is structured by the lower quartile (Q1, 25th 

percentile) and the upper quartile (Q3, 75th percentile), which constitute a percentage 

equal to 25% of the data respectively. The vertical line, which divides the box into 

two parts, represents the median and indicates that 50% of the data appears to the 

right and 50% to the left. The whiskers extend on either side of the box to a length 

equal to 1.5 times the interquartile range. Their edges correspond to a representative 

minimum and maximum value, while the points outside the whiskers indicate extreme 

data values [48]. 

 

1.5 Basic Concepts of Computational Chemistry 
 

 Undoubtedly, Computational Chemistry lies at the heart of the design and 

discovery of new drugs. The advancement of mathematical algorithms has facilitated 

their broader application in the field of chemistry, particularly in the development of 

in silico methodologies. This term refers to the simulation of molecular systems and 

the performance of necessary calculations using a computer, aiming for property 

prediction and further study of physicochemical changes of chemical 

compounds. Molecular Modeling derives from Theoretical Chemistry and is the root 

of in silico studies. It guides in vitro experimental studies and, consequently, advances 

research in the field. Molecular Modeling encompasses various capabilities, including 

the 3D representation of molecules, the calculation of molecular properties, the 

investigation of molecule binding to receptors, the development of Quantitative 

Structure-Activity Relationship models (QSAR), and the study of metabolic 

properties (Absorption-Distribution-Metabolism-Excretion-Toxicity, ADMET) [49]. 

Therefore, Computational Chemistry in Pharmaceutics aims to improve the 

experimental process as much as possible to produce new and safe pharmaceutical 

products. 
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1.5.1 Chemical databases 
 

 As already mentioned, a database is an important tool that contains a plethora 

of stored information.  

 One of the most common models that database systems follow is the relational 

model, a simple approach to representing data in the form of tables or else matrixes. 

Generally, column headers represent the titles of different fields while rows represent 

the values or the records of a matrix structure [50]. In the context of Machine 

Learning, each column is considered an attribute, and each row is an individual 

observation. 

 In the pharmaceutical search, access to information related to small molecules, 

their activity, and other properties is critical. However, there is no specific 

requirement from institutions, such as scientific journals, for researchers to submit the 

results of small molecule tests to databases. Information published in articles is 

presented in an unstructured form, such as images, which makes it difficult to retrieve 

and process. At the same time, new research on disease mechanisms may alter 

existing knowledge. These factors have led to the development of open-access 

databases, which collect bibliographic data by conducting systematic reviews. 

This type of data fuels algorithms and in silico experiments for investigating 

biological systems [51]. 

 Depending on the specific problem at hand, relevant data is sought in 

specialized libraries. Nowadays, there are many public databases dedicated to 

medicinal chemistry applications. For example, one of the commonly employed 

databases for retrieving chemical compounds used in pharmaceutical research is the 

ZINC library. In addition, PubChem provides information on the physicochemical 

properties of millions of elements, along with access to relevant scientific articles 

[52]. ChEMBL is a public database focusing on bioactive molecules covering a range 

of properties, targets, and organisms. Other sources focus on more specific properties, 

such as the binding energy of micromolecules and thus, the binding affinity of the 

ligand to the macromolecule. Databases, such as PDBbind, collect this kind 

of information on protein-ligand complexes from the Protein Data Bank (PDB), an 

international repository of macromolecular structures [53].   

 

1.5.2 Molecular representation 
 

 It is widely acknowledged that molecules are practically real entities and for 

their various applications, it's essential to extract information about their structure or 

chemical properties. Thus, symbolic representations allow the derivation of the 

necessary information about the molecule in question. The amount and type of 

information are directly linked to the complexity of the molecular representation, 

selected according to the problem at hand. Categories of molecular representation are 

commonly distinguished based on spatial dimension. 

 

 0-Dimensional (0D) 

 

The chemical formula is the simplest form of molecular representation and captures 

the number and presence of chemical elements. The 0D representation is independent 

of information related to molecular structure and connectivity between atoms. 
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 1-Dimensional (1D) 

 

Molecules are represented by a count of their structures, such as molecular fragments, 

functional groups, or substituents. It does not require complete knowledge of the 

molecular structure. 

 

 2-Dimensional (2D) 

 

This representation takes into account the connectivity of atoms in terms of the 

presence and nature of chemical bonds. Usually, the molecule is perceived as 

a graph, whose edges are bonds and the vertices are atoms. 

 

 3-Dimensional (3D) 

 

In 3D representation, the molecule is viewed as a geometric object in space, taking 

into account the nature of the atoms, their connectivity, and spatial configuration. 

Cartesian coordinates (x-y-z) are utilized for this purpose. 

 

 4-Dimensional (4D) 

 

The fourth dimension is used to characterize and quantify the interactions of a 

molecule with the active site of a receptor [54], [55].    

 

 Figure 1.17 illustrates the molecular representation of ibuprofen based on 

spatial dimensionality. 

 

            
 
Fig. 1.17: Graphical representation of ibuprophen (1D through 4D, adapted from [54], [55]). 

 

 In Computational Chemistry, molecules need to be in a machine-readable 

format to undergo computational processes. As computers and their processing power 

have evolved, flexible methods of molecular representation have been developed. The 

most prevalent category is string representations. They consist of characters from the 

American Standard Code for Information Interchange (ASCII) character encoding 

standard, offering the advantage of being a method that is easily comprehensible by 

humans [56]. The Simplified Molecular Input Line Entry System (SMILES) format is 

the most popular line notation, specifically designed for computer use by chemists. It 

was created by David Weininger in 1986 at the US Environmental Research 

Laboratory (USEPA). It was further developed at Daylight Chemical Information 

Systems, encoding stereochemistry in an intuitive way [57]. It is a specification for 

describing the structure of organic chemical molecules using short ASCII strings. The 

rules developed for representation through SMILES apply to almost any chemical 

structure. To begin with, neighboring atoms are positioned adjacent to each other, 
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with the symbols of the atoms identical to those on the periodic table. However, it's 

important to note that hydrogen atoms are not explicitly represented. Branches in the 

molecular structure are denoted by enclosures in parentheses. In linear representations 

of cyclic structures, a bond is severed at each ring, and the atoms of the connecting 

ring are subsequently followed by the same digit in the text 

representation. Additionally, atoms within an aromatic ring are denoted by lowercase 

letters [58]. Daylight introduced a commercial product for generating canonical 

SMILES, but since their algorithm was proprietary, other commercial and open-

source software developers created their own algorithms for generating canonical 

SMILES. For instance, in 2005, the IUPAC International Chemical Identifier 

(InChI) was released for the first time providing a canonical representation linking 

information from various databases on the same chemical compounds, since there was 

a need for a community standard for a canonical linear representation.  In short, to 

achieve this, the InChI algorithm uses a normalization procedure, a canonicalization 

algorithm, and a layered structure to help identify isomers. InChI resolves many of the 

chemical ambiguities that are not addressed by SMILES, particularly concerning the 

stereogenic centers, tautomers, and valence issues. However, InChI is difficult to 

interpret by humans in most cases [57]. 

 Table 1.7 lists the symbolism of chemical bonds as represented in SMILES 

[58].  

 A few representative examples of SMILES are illustrated in Figure 1.18. 

 
Table 1.7 Canonical SMILES symbolism of chemical bonds. 

 

Bonds 
SMILES 

Symbolism 

Single - 

Double = 

Triple # 

Aromatic : 

  

 

 
Fig. 1.18: Representative examples of SMILES [55]. 
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1.5.3 Molecular descriptors 
 

 As time has progressed and technology has evolved in the scientific field of in 

silico and computer-aided drug discovery research, there's been a growing necessity 

to encapsulate the complexity of molecules and their molecular attributes in a manner 

that facilitates the implementation of mathematical calculations for their analysis [59]. 

Thus, molecular descriptors were defined, which are measurable concepts directly 

related to the structure and representation of molecules. More specifically, a 

molecular descriptor can be determined as the final result of a logical and 

mathematical process that converts the chemical information of a molecule 

into useful numbers or the result of a standard experiment encoding different aspects 

of its structure and activity. Applications, such as predictions of protein-ligand 

interactions, ligand-based virtual screening, and molecular similarity studies, are 

based on sets of molecular descriptors [54], [55].  

 As already mentioned, the manner in which molecules are represented is 

linked to molecular descriptors and the type of information that can be derived. This 

information typically encompasses physical, chemical, and topological characteristics. 

Molecular descriptors are computed using a variety of computational tools and 

libraries, including RDKit, CDK, and PyBel, among others. 

 Depending on the logic underlying them, they are clustered into two main 

categories: “Classical” molecular descriptors (MDs) and binary fingerprints (FPs). 

 

 “Classical” Molecular Descriptors (MDs) 

 

To date, hundreds of MDs have been proposed, each capturing the unique properties 

of molecules in various ways. They are designed to encode either a single feature or a 

set of features of varying complexity into a single number [54]. The majority of MDs 

can be classified, as it is apparent, according to the dimensionality of the molecular 

representation, and are indicated as integer, binary, or continuous numbers. 

 

MDs can be subjected to scaling, selection, and feature reduction techniques and for 

this reason; they are exploited as inputs to algorithms for the design of Machine 

Learning models. 

 

Table 1.8 provides representative examples and abbreviations of various libraries used 

for molecular descriptors, categorized by their dimensionality [60]. 

 
Table 1.8 Examples of common MDs. 

 

Type Common MDs’ Symbolism Definition 

1D 

 Weight  Molecular weight 
 

 Mr  Molar refractivity 
 

 logP(o/w) 

 

 Log of the octanol/water partition 

coefficient 

2D  a_nN 
 Number of N atoms in the 

molecule 
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Table 1.8 (Continued). 
 

2D 

 b_Double  Number of double non-aromatic 

bonds 

 

 vsa_acc  Approximate sum of VDW 
surface area of H bond acceptors 

3D 

 ASA+  Solvent accessible surface area of 

all atoms with positive partial 

charge 

 

 Pmi  Principal moment of inertia 

 

 Vol 

 

 VDW volume 

 

 Binary Fingerprints (FPs) 

 

Unlike MDs, FPs are a complete, binary representation of the structural parts of a 

molecule. They are a more complex form of descriptors and depend on the how rows 

of bits are converted and encoded by the 1D and 2D molecular representation [61]. 

They represent the presence ("1") or absence ("0") of specific functional groups and 

are only meaningful when used as a whole. FPs are mainly applied to perform fast 

calculations involving molecular similarity or molecular diversity. Recently, they 

have also started to be exploited to study bioactivity patterns by calculating the 

frequency of molecular fragments [54]. There are many types of FPs, which cover a 

wide range of different subgroups and use different numbers of bits. 

 

Typical categories of FPs are listed in Table 1.9 [61]. 

 
Table 1.9 Paradigms of FPs types. 

 

Type Common Approaches Definition 

Substructure 

keys-based 

FPs 

 MACCS  Two variants: 960 and 166 

structural keys (bits), based on 

SMARTS patterns, covering 

most of chemical features  

 

 PubChem FP  881 bits, commonly used for 
similarity searching and 

neighboring 

 

 BCI FPs  The standard substructure 
includes 1052 bits , but can be 

modified by the user 
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Table 1.9 (Continued). 

 

Topological 

or path-

based FPs 

 Daylight FP  Consisting of up to 2048 bits, it 
encodes all possible 

connectivity pathways through 

a given length molecule 

Circular 

FPs 

 Molprint2D  Encodes the atom 

environments of each atom of 

the molecular connectivity 

table, which are represented by 

strings of various sizes  

 

 ECFPs  They represent circular atom 

neighborhoods and produce 

FPs of variable length, based 

on the Morgan algorithm. 

Mostly used with a diameter of 

4 (ECFP4) 

 

 Figure 1.19 provides an example of a molecule’s representation using FPs. 

 

 
 

Fig. 1.19: Simplified fingerprint generation: the hashing function sets just 1 bit per pattern 

[62]. 

 
1.5.4 Virtual screening 
 

 According to Walters, Stahl, and Murcko in “Virtual Screening – An 

Overview”, Virtual Screening (VS) involves utilizing high-performance computing 

techniques to identify potential drug candidates for a specific target by analyzing large 

databases of chemical compounds [63]. It has become a fundamental aspect of the 

drug discovery process since its purpose is highly correlated to finding novel chemical 

structures and therefore, new scaffolds that bind to a macromolecular target of 

interest. As a result, it acts as a filter for the selection, synthesis, or purchase of 

compounds and promotes the rational search for potential medicinal products.   

 First and foremost, it’s essential to understand that VS is a 

significantly wide domain encompassing a variety of available methods for its 
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purposes. Consequently, VS methodologies and techniques are divided into two 

general types: Ligand-based VS and Structure-based VS.    

 

 Ligand-based VS methodology 

 

The basic principle, which underlies ligand-based VS approaches, is the 

supposition that molecules sharing certain relevant and identical features with 

confirmed ligands should exhibit similar properties and effects concerning 

a specific, biological target. These features, or molecular similarities, are presented in 

the format of molecular descriptors, discussed in detail in section 1.5.3 of this thesis. 

For ligand-based VS to be conducted, one or more active compounds known to bind 

to the selected target, as well as an available database of molecules are 

mandatory. The process begins with calculating molecular descriptors. The next step 

involves preparing the database to meet the requirements of the most significant 

descriptors and the selected ligand-based method. There are several techniques 

distinguished, differing in complexity: 

 

i. Similarity Search. A straightforward approach is the application of a 

similarity search. When executing this type of search, since there is no specific 

way to quantify the similarity between molecules, multiple coefficients can be 

measured and reviewed accordingly. For instance, Tanimoto is the most 

widespread similarity coefficient dependent on fingerprint bits. Distance 

similarity measures, such as Euclidean distance, are commonly employed as 

well. The difference between these techniques is that the Tanimoto coefficient 

takes into consideration the presence of common features whereas Euclidean 

distance considers the dissimilarity of attributes. The practice of similarity 

searches results in a list of compounds, often referred to as nearest neighbors. 

These compounds are ranked based on the resemblance of the reference 

compound and the structures being searched. The list can be constrained to a 

specific number of nearest neighbors or compounds surpassing a certain 

similarity threshold. Determining this threshold lacks a general rule, 

particularly since there isn't a similarity value that definitively discriminates 

between active and inactive compounds.  

 

Table 1.10 presents an example of a similarity search based on the Tanimoto 

coefficient, ranging from 0 to 1. In this case, the coefficient has been 

calculated according to Daylight FPs with a fixed length of 1024 bits. As 

evident from their chemical structures, the first two pairs of molecules differ 

only by the substitution of a methyl group with chlorine. The last example 

indicates a pair of compounds with low similarity [64]. 

 
Table 1.10 Similarity search based on the Tanimoto coefficient. 

 

Molecule 1 Molecule 2 
Tanimoto 

Coefficient 

  
0.286 
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Table 1.10 (Continued). 

 

  

0.851 

 

 

 
 

 

 

 

 

0.055 

 

 

 

ii. Machine Learning Models.  A more complex approach involves the 

utilization of chemical compound datasets with known activities to train 

machine learning models. These models exceed in advantages, in contrast to 

the previously noted methods, and intend to identify compounds that share 

structural similarities with known active compounds, distinguishing active 

from inactive molecules. The activity of the chemical compounds in a dataset 

is represented through MPs or FPs. Machine learning is used for the 

development of prediction models and thus, to relate structural information of 

chemical compounds to biological activity. Since these techniques also 

involve information related to the inactivity of molecules, considering a 

specific target, Structure-Activity Relationship (SAR) patterns can be extracted 

[64], [65]. A SAR is a qualitative association between a chemical substructure 

and its presence in chemical compounds, exhibiting certain biological effects, 

also known as endpoints.  The necessity to reduce cost and time, coupled with 

the evaluation of vast amounts of molecules resulted in the development 

of Quantitative Structure-Activity Relationships (QSARs). A QSAR is a 

mathematical model that quantitatively relates a numerical measure of 

chemical structure, such as a physicochemical property, to a physical property 

or an endpoint [66]. Nowadays, QSAR modeling is divided into different 

types, deriving from the dimensionality of molecular descriptors (1D to nD). 

In this thesis, the term QSAR specifically refers to Classical 2D-QSAR 

methods, which entail comparing structural features like 2D-pharmacophores 

with biological activities. It is a theoretical method used in drug discovery and 

development that aims to identify a statistically significant correlation in 

two different approaches: between the chemical structure and continuous 

properties, such as 𝑝𝐼𝐶50, 𝐾𝑖, etc., or between the chemical structure and 
categorical, binary, biological, or toxicological properties. The first approach 

utilizes regression techniques, whereas the second one classification 
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techniques. Thus, QSARs are employed in four main areas: to prioritize 

existing chemicals for further testing or evaluation, to classify and label new 

chemicals, to assess the risk of new and existing chemicals and to fill possible 

data gaps. However, it should be noted that the development of predictive 

models faces major obstacles originating from the data quality, such as errors 

in chemical structure and experimental results, and thus, data curation 

procedures are applied.  For the sake of completeness, such procedures 

involve the removal of organometallics, counter ions, mixtures, and 

inorganics, the normalization of specific chemotypes, structural cleaning, such 

as detection of valence violations, and standardization of tautomeric forms. 

Additional curation elements include averaging, aggregating, or removal of 

duplicates to produce a single bioactivity result [67], [68].  

 

The workflow of QSAR-based VS is presented in Figure 1.20. 

 

 
 

Fig. 1.20: The datasets are collected from external sources. After data curation and the 

development of QSAR models, compounds from chemical libraries predicted as active are 

prioritized for in vitro assays. Subsequently, in vivo assays are conducted [67]. 

 

A substantial downside of ligand-based VS methodologies is that they focus solely on 

the ligand, neglecting information associated with the target. 

 

 Structure-based VS methodology 

 

Structured-based VS methods often referred to as receptor-based or target-based 

methods, apply different techniques in comparison to those of ligand-based VS, 

focusing on the interactions between a ligand and a certain drug target. The main 
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requirement for these approaches is the availability of a 3D structure, obtained from 

X-ray crystallography or other structure elucidation methods, such as Nuclear 

Magnetic Resonance (NMR) spectroscopy, or even computational methods like 

homology modeling. There are two fundamental, complimentary structured-based VS 

techniques, differing in their methodology and purposes: 

 

i. Active-site derived pharmacophore methods.  These types of methods take into 

consideration a pharmacophoric model constructed from a 3D structure of the 

target, to capture the underlying ligand-receptor pattern of interactions and the 

general active-site topology [65]. According to 1998 IUPAC, a pharmacophore is 

“the ensemble of steric and electronic features that is necessary to ensure the 

optimal supramolecular interactions with a specific biological target structure 

and to trigger, or to block its biological response”. Therefore, it is not a real 

molecular representation or association of functional groups, but an abstract 

concept that represents the possible interactions between molecules and the target 

of interest. 3D pharmacophore modeling is, also, based on the theory that 

molecules exhibiting similar chemical functionalities and spatial arrangement lead 

to biological activity on the same target. To demonstrate significant predictive 

power, it discards information that is not directly related to the binding site and 

classifies interactions to pharmacophoric properties, such as hydrophobic areas, 

positively and negatively charged groups, and hydrogen bonds (donors and 

acceptors). These properties are represented by geometric entities, shown in 

Figure 1.21. In addition, the parameter of the Root Mean Square Deviation 

(RMSD), which quantitatively measures the average distance between atoms, is 

calculated and utilized for structure comparison of the biomolecules, evaluating 

how well a predicted ligand pose matches a reference pose. Catalyst, Molecular 

Operating Environment (MOE), and LigandScout are examples of pharmacophore 

VS software platforms [69]. The formula of RMSD is presented below [70]: 

 

𝑅𝑀𝑆𝐷(𝑎, 𝑏) = √
1

𝑛
∑(𝑎𝑖𝑥 − 𝑏𝑖𝑥)2 + (𝑎𝑖𝑦 − 𝑏𝑖𝑦)

2
+ (𝑎𝑖𝑧 − 𝑏𝑖𝑧)2

𝑛

𝑖=1

 , 

(1.19) 

 

where 𝑎𝑖 and 𝑏𝑖 refer to molecule “1” and molecule “2”, respectively. The 

subscripts x, y, z correspond to Cartesian coordinates. 
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Fig. 1.21: Geometric representations of pharmacophoric features 1—hydrogen bond acceptor 

(HBA), 2—hydrogen bond donor (HBD), 3—negative ionizable (NI), 4—positive ionizable 

(PI), 5—hydrophobic (H), 6—aromatic (AR), 7—exclusion volume (XVOL) [71]. 

 

ii. Molecular Docking. A fundamental structure-based VS type, which is 

commonly used in research, is Molecular Docking. Molecular Docking 

intends to predict the structure of the intermolecular complex formed between 

two or more constituent molecules, usually a small molecule and a protein 

target. This is the reason why this method is also referred to as protein-ligand 

docking in related literature. Docking protocols can be described as a 

combination of two complimentary components, since they include the 

computational adjustment of candidate ligands to a protein target, using search 

algorithms, followed by the application of a scoring function to estimate the 

binding probability of a small molecule to the protein [72]. To put it in other 

words, the search for the precise ligand conformations and orientations, 

namely referred to as posing, is implemented by various docking algorithms. 

In addition, scoring functions predict binding free energies (kJ/mol, kcal/mol), 

in order to evaluate and rank poses of chemical compounds, calculated by 

docking algorithms [65].  

 

To comprehend this methodology, the principles underlying Molecular 

Docking are going to be explained. Since the receptor is a macromolecule, 

drug compounds bind to a specific region. When working with a protein 

receptor this region is called binding pocket. The force that impels the binding 

of molecules to the receptor is their stereoelectronic properties. These 

determine whether attractive, repulsive, steric or electrostatic forces will be 

exerted. In the context of ligand-protein binding, Gibbs free energy (ΔG) is 

associated with binding affinity, representing the stability of the complex and 

quantifies the strength of interactions between a drug molecule and a receptor. 

It is the sum of electrostatic (ΕΙ), inductive (II), non-polar (NPI) and 

hydrophobic (HI) interactions between said molecules, reduced by the term 

expressing the loss of energy or entropy (ΔG*). At this point, it is essential to 

mention that the presence of hydrogen bonds, as electrostatic forces of 

attraction, is responsible for stabilizing the protein-ligand complex. 
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𝛥𝐺𝑡𝑜𝑡𝑎𝑙 = 𝛥𝐺𝐸𝐼 + 𝛥𝐺𝐼𝐼+ 𝛥𝐺𝑁𝑃𝐼 + 𝛥𝐺𝐻𝐼 − 𝛥𝐺∗ 
(1.20) 

 

where 𝛥𝐺𝑡𝑜𝑡𝑎𝑙 corresponds the sum of Gibbs free energies. The subscripts 

indicate the energies of the referred interactions and 𝛥𝐺∗the parameter of 
entropy. 

 

It is, also, defined as the energy of the complex reduced by the energies of the 

receptor and the ligand.  

 

𝛥𝐺𝑏𝑖𝑛𝑑 =  𝛥𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − (𝛥𝐺𝑙𝑖𝑔𝑎𝑛𝑑 + 𝛥𝐺𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟) 

(1.21) 

 

where 𝛥𝐺𝑏𝑖𝑛𝑑 corresponds to the binding affinity, 𝛥𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥 is equal to Gibbs 

energy of the complex, 𝛥𝐺𝑙𝑖𝑔𝑎𝑛𝑑 is equal to Gibbs energy of the ligand and 

𝛥𝐺𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟 the Gibbs energy of the receptor. 

 

The several intermolecular interactions that occur when drug molecules 

approach the receptor are significant for the theoretical study and development 

of new pharmaceutical products. Examples of Molecular Docking software 

platforms are Autodock Vina, Glide (Schrödinger Suite) and SwissDock [73], 

[74]. 

 

 
 

Fig. 1.22: Example of Molecular Docking using CSF1R by Schrödinger’s computational 

platform (Maestro Glide) [75]. 

 

 To conclude with, if both target and ligand structures are known in virtual 

screening, the whole information can be used in a combined approach. 
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Fig. 1.23: Sequence of methods (adapted from [76]). 
 

1.5.5 ADMET properties 
 

 For a thorough in silico study of a receptor's potential ligands, Molecular 

Modeling provides the ability to analyze their metabolic properties. The acronym 

ADMET stands for the study of Absorption, Distribution, Metabolism, and Excretion 

of bioactive substances, covering the pharmacokinetics of molecules, as well 

as various Toxicities. In short, using special computational techniques, the path of the 

potential drug within the organism is determined in the early stages of the research 

process. An approximate evaluation is conducted to determine if the drug molecule 

will bind to the biological target, how long it will stay in the bloodstream and its 

potential adverse effects on the body [77].   

 The body's absorption of a medicine varies depending on the method of 

administration. Generally, the absorption of active substances from orally or rectally 

administered medicines is called enteral. In contrast, absorption following 

intravenous, intramuscular, or any other route of administration that bypasses the 

gastrointestinal tract is called parenteral. This distinction arises from the first-pass 

effect, where a significant amount of the drug is neutralized by enzymes in the 

stomach, intestines, and liver cells.  Calculating the percentage of an active substance 

that enters the bloodstream is of utmost importance. For this reason, the parameter of 

bioavailability is defined [78].   

 

𝑏𝑖𝑜𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑡ℎ𝑒 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑚𝑒𝑑𝑖𝑐𝑖𝑛𝑒 𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑡ℎ𝑒 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑚𝑒𝑑𝑖𝑐𝑖𝑛𝑒 𝑎𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑒𝑟𝑒𝑑
 

(1.22) 

 The pharmaceutical substances do not remain in the bloodstream; instead, they 

move to the biological target and are distributed to tissues and cells through the blood 

vessels. In most cases, the majority of active substances need to pass through the cell 

membrane. Factors such as molecular weight determine the ability of a drug to move 

from the plasma to the extracellular fluid, while further transport within the cell, in the 

case of an intracellular target, depends on the drug's lipophilic nature. On the 

contrary, if the target is a protein receptor, the substance binds directly to it [79].  In 

ADMET prediction, the blood-brain barrier (BBB), a semipermeable and extremely 
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selective system in the CNS, is specifically addressed [80].   In short, it is a protective 

membrane that encloses the capillaries of the circulatory system in the brain and 

protects it from the passive diffusion of unwanted, polar compounds of blood 

circulation. 

 
 

Fig. 1.24: Schematic representation of the various drug-distribution pathways [79]. 

 

 The majority of small molecules used as drugs are xenobiotics, meaning they 

are foreign to the physiological biochemistry of the human body. Consequently, upon 

entering the body, they are targeted by a range of metabolic enzymes as a defense 

mechanism. The enzymes, in this case, modify the unfamiliar structure to facilitate its 

elimination from the body. The majority of molecules undergo metabolic reactions, 

resulting in the formation of metabolites. Depending on the case, they might either 

lose the activity of the original drug or become more active. Identifying the 

metabolites of a new drug is necessary before its approval. The reactions that 

occur during metabolism are classified into Phase I reactions, such as oxidation, 

reduction, and hydrolysis, and Phase II reactions, where new polar groups are 

attached to enhance the water solubility of metabolic products. The active groups 

produced in Phase I serve as substrates for Phase II reactions.  

 The excretion of pharmaceutical substances is inextricably linked to their 

structure and various properties. It happens either through the elimination of their 

original structure or the excretion of their metabolites. Excretion is achieved in 

different routes, such as urine, sweat, and respiration. In general, the liver and kidneys 

are considered the main organs of excretion. The pharmacokinetic parameter, which 

quantifies the ability of the body to eliminate the drug after its entrance into the 

systemic circulation, is called clearance. The final clearance of the drug is equivalent 

to the combined result of all the individual elimination processes it 

undergoes. Clearance, from a specific organ, depends on its blood flow and the drug's 

extraction ratio, which refers to the percentage of the drug in the blood excreted from 

the organ on each passage through the same organ. 

 

𝐶𝐿𝑜𝑟𝑔𝑎𝑛 = 𝑄 ∗ 𝐸 , 
(1.23)  

 

where 𝑄 is the blood flow of the organ and 𝐸 the extraction ratio. 

 

 Finally, the toxicity factor is also taken into consideration. While dosage 

undeniably influences the likelihood of toxicities, the active substance of a drug can 

interact with enzymes and receptors outside the intended biological target, leading to 
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side effects. In addition, there is the possibility of the production of toxic metabolites. 

For these reasons, it's crucial to be able to predict various side effects that may arise in 

the body, particularly hepatotoxicity [79], [80].    

 Predicting these properties, along with assessing the affinity of new molecules 

to the receptor in the early stages of designing a potential drug, determines its 

suitability for further experimental in vitro studies. 

 

1.6 Survey of Related Research 
 

 The identification of ligands for MC4R has been an active area of research due 

to its critical role in regulating energy homeostasis, appetite, and body weight, as 

previously noted. Multiple studies have focused on characterizing both agonists and 

antagonists of MC4R to understand its function and therapeutic potential. This 

subsection reviews the methodologies and findings from recent surveys that have 

contributed to discovering MC4R ligands, focusing on their potential as treatments for 

monogenic obesity. 

 As evident, this thesis concentrates on a combined drug discovery strategy 

based on machine learning models and molecular docking tools. Researchers have 

previously addressed such methods to accelerate the drug-designing process and 

direct the subsequent in vitro experiments. For instance, in 2018, Zhang et al. [81] 

employed this combined approach to identify acetyl-CoA carboxylase (ACC) 

inhibitors. They developed machine learning models using molecular descriptors to 

distinguish between active and inactive chemical compounds, thus refining the 

screening process. Their research proposes that an initial model-based search using 

machine learning classifiers, followed by molecular docking, can enhance the 

precision in identifying potential hits for a specific target. Additionally, recent efforts 

have focused on developing computational tools that integrate molecular modeling 

and machine learning to advance rational drug design. In 2023, Xia et al. [82] discuss 

their efforts in creating such a tool, detailing the challenges and limitations 

encountered during their study, as well as outlining future steps for further 

improvements. 

 Regarding MC4R, numerous studies have been conducted to identify potential 

agonists for the treatment of obesity, utilizing the advantages of both data science and 

computational chemistry: 

 In 2002, Andersson and Lundstedt [83] introduced a hierarchical design 

approach for establishing QSAR models focused on MC4R. This method prioritizes 

the selection of a representative subset of compounds from a larger candidate set for 

QSAR model development. The utilized set of compounds shared a phenyl ring as a 

common structural core and was characterized as a suitable scaffold for investigation. 

Their model demonstrated strong predictive capabilities and has been used to design 

new chemical compounds with enhanced activity. 

 A few years later, in 2005, Cai et al. [84] conducted extensive studies to 

convert non-selective ligands of the melanocortin family receptors into selective 

analogues. They used computational techniques to explore the 3D structures of the 

bioactive forms of Melanotan II (MT-II) and SHU9119, by developing 3D 

topographical models of the ligands. Additionally, they explored the SAR of α-MSH, 

β-MSH and γ-MSH in various ways to use as templates for potent and stable ligands. 

 Numerous efforts targeting MC4R have successfully identified potent and 

selective agonists. In 2018, Gonçalves, Palmer and Meldal [16], provide valuable 

insights on recent advancements and collective efforts in this area, particularly 
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emphasizing the critical structural differences in molecules that lead to strong 

selectivity. They point out that the majority of efforts focus on peptide agonists, 

specifically cuclyc peptides, which show the highest agonist activity. This focus on 

peptides is largely driven by their structural similarity to the natural hormone POMC, 

which plays a key role in regulating MC4R activity.  

 In 2019, Falls and Zhang [85] constructed a homology model of MC4R to 

perform docking studies. To optimize and validate their model, they selected the 

endogenous ligand α-MSH and the small molecule agonist THIQ. They conducted 

point mutation studies on four different MC4R mutations to assess the impact of these 

polymorphisms on the binding affinity of α-MSH and Setmelanotide. The researchers 

suggest that their work could serve as a valuable platform for designing future 

selective and potent ligands, particularly those that can simultaneously interact with 

the orthosteric and allosteric binding sites, addressing the lack of available 

crystallographic data. 

 Similar to this thesis, a year later Martin et al. [86] employed the novel co-

crystal structure of MC4R-SHU9119 (PDB: 6W25) for their molecular docking 

experiments. Their goal was to enhance the selectivity of MC4R peptide ligands by 

designing a series of cyclic peptides based on this crystal complex, leading to the 

discovery of ligands with improved affinity for MC4R. Additionally, they conducted 

in vitro pharmacological characterization of these analogues for further evaluation. 

 In summary, the existing research on MC4R agonists has made significant 

progress in identifying potent and selective compounds as ligands. However, there are 

still ongoing challenges in achieving long-term stability and specificity. This study 

employs a combination of machine learning and molecular modeling techniques to 

identify potential MC4R ligands, with a specific focus on non-peptidic agonists. The 

following sections will provide an exploration of the methodology and related results.



 

57 

Chapter 2: Materials and Methods 
 

2.1 Computational Tools 
 

 All computational tasks were performed using a laptop equipped with an 

Intel(R) Core(TM) i3-4000M processor (CPU) operating at 2.40GHz, 6 GB DDR3 

RAM, a 1 TB HDD for storage, and an Intel HD 4600 graphics card. The system 

operated on Windows 10 Home 64-bit. The hardware and software configurations 

ensured efficient handling of the computational requirements of this research. 

 

2.2 Machine Learning Model Development  
 

 Visual Studio Code, an Integrated Development Environment (IDE), was used 

along with Python 3.9.12 for developing and running scripts for data processing and 

analysis. Python is a high-level programming language commonly associated with 

data-related tasks, due to its simplicity and range of available packages and libraries. 

 

2.2.1 Dataset  
 

 The dataset utilized for the purposes of this thesis was obtained from 

ChEMBL (https://www.ebi.ac.uk/chembl/). As noted, it is a chemical database of 

bioactive molecules with pharmaceutical properties, managed and curated manually 

by the European Bioinformatics Institute (EBI), part of the European Molecular 

Biology Laboratory (EMBL). As the largest open-access source of medicinal 

chemistry data, it provides information on small molecules, including their chemical 

structure, biological activity, mechanisms of action against biological targets, and 

genome. This knowledge is derived from a variety of scientific literature, bioassays, 

and calculated properties. The latest versions of ChEMBL (Figure 2.1) include patent 

data and additional information from other databases. Datasets are available in 

multiple formats, typically exported as Comma Separated Values (CSV) files [87], 

[88]. 

 

 
 

Fig. 2.1: Illustration of the ChEMBL database [87]. 
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 The dataset is a subset of activities titled as “Bioactivity data for target 

CHEMBL259-IC50”, containing 2,177 records. These records correspond to 

chemical compounds tested against the human MC4R and additional information, 

such as the Molecule ChEMBL ID, Molecule Name, Molecular Weight, AlogP, 

SMILES and IC50 associated characteristics like Standard Relation and Standard 

Value. 

 The IC50 or half-maximal inhibitory concentration value, is a measure of the 

concentration of a drug or compound required to inhibit a particular biological 

or biochemical process by 50% [89]. Typically, when dealing with this type of binary 

classification problem a threshold corresponding to the Standard Value of the IC50 is 

selected. This is a common practical approach in the early stages of drug discovery. In 

this case, a threshold of 10 μM is employed as a filter to configure the initial dataset 

obtained from ChEMBL, to label chemical compounds as “Active” or “Not Active” 

towards the target of MC4R. This general rule considers chemical compounds with 

IC50 less than or equal to 10 μM as “Active”, indicating sufficient potency towards the 

target. Chemical compounds with IC50 greater than10 μM are considered “Not Active” 

[90]. 

 For duplicate chemical compounds, the IC50 values were reviewed. If the 

values differed among duplicates, the median IC50 was calculated and used to replace 

the existing values, ensuring consistency. Additionally, chemical preprocessing was 

performed on the SMILES representations, where salts and counter ions were 

removed to standardize the compounds. This procedure improves data quality by 

focusing solely on the compounds, ensures that different representations of the same 

molecule are treated as identical and simplifies the subsequent calculations. After 

completing this process, duplicate chemical compounds with identical information 

were removed and records with missing data were excluded. This resulted in a curated 

dataset of 1,906 chemical compounds. An IC50 threshold filter of 10 μM was then 

applied to the dataset. This process is used to label each record, ensuring accurate 

classification for further analysis. Consequently, 825 of these compounds were 

categorized as “Active” and 1,081 as “Not Active”. To generate features for machine 

learning models, the RDKit package was used in a Python environment to compute 

molecular descriptors. Chem.SmilesMolSupplier, a function in the RDKit library, was 

utilized to read chemical structures from SMILES strings of each chemical compound 

in the dataset. Then, Descriptors._descList, a list within the RDKit library containing 

tuples of descriptor names and their functions, was used to compute 208 molecular 

descriptors. These descriptors are predefined in RDKit to represent properties of 

molecules, such as the MolWt, which corresponds to their molecular weight.  

 Table 2.1 lists such representative examples. Their definitions and 

interpretations are available and can be explored through relevant literature [91]. 

 
Table 2.1 Representative examples of RDKit molecular descriptors.  

 

RDKit: Examples of Molecular Descriptors 

MolWt BertzCT NumHAcceptors 

MaxAbsEstateIndex Chi0 MolLogP 

qed Kappa1 fr_Al_COO 

NumValenceElectrons LabuteASA FpDensityMorgan1 

MaxPartialCharge PEO_VSA1 BCUT2D_MRLOW 

BalabanJ NumAromaticRings HallKierAlpha 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/biochemical-process
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 At this point of the thesis, I would like to acknowledge Dr. Matsoukas Minos 

and PhD candidate Panagiotopoulos Vasilios for providing the dataset, appropriately 

processing it, and calculating the molecular descriptors. 

 

2.2.2 Practical implementation  
 

 The ultimate goal is to build a high-accuracy machine learning model that 

predicts the activity of chemical compounds against MC4R. Initially, the dataset was 

examined to identify and remove zero-variance features. Zero-variance features, or 

constant features, have the same value for every record within the dataset, rendering 

them uninformative. In the utilized dataset, molecular descriptors with all zero values 

were observed and removed to improve the model's performance.  

 In this case, as evident, we are dealing with a binary classification problem. 

The first step for implementing the machine learning process is to split the initial 

dataset into training and test subsets: the training set is used to fit training models, 

whereas the test set is used to evaluate the performance of the trained model. 

Typically, the training set comprises the largest portion of the dataset. During the first 

process, the utilized classification algorithm sees the input features and the 

corresponding labels of each record in the data. Then, the trained model is used to 

predict the labels of unseen data from the test set to assess its generalization ability.  

Finally, these predictions are compared to the actual labels of the test set to measure 

the model's accuracy or other relevant metrics, such as sensitivity or specificity. The 

data was split using a 70-30 ratio to approach the problem. 

 Subsequently, the preprocessing.StandardScaler function from the scikit-learn 

library was used to scale each feature. This function standardizes features by 

removing the mean and scaling to unit variance, as described in subsection 1.3.2. The 

scaler was first applied to the training set using the fit_transform method. The same 

scaler was then applied to the test set using the transform method, ensuring that the 

test set was scaled based on the training set's parameters, preventing any biases. 

 After scaling the data, the next step involved conducting feature selection to 

pinpoint the most significant features and eliminate those that don't contribute to the 

model's predictive power. Specifically, tree-based algorithms, such as CART or 

ensembles of decision trees like Random Forest, offer an approach that evaluates the 

importance of features based on the reduction in the criterion applied to split points, 

like Entropy or Gini described in subsection 1.3.1. The importance of the features is 

determined by the feature_importances_ attribute, calculated as the mean and 

standard deviation of accumulation of the impurity reduction within each tree [92], 

[93]. The function was executed for 50 epochs, during which the top features were 

retained for each epoch. The frequency of appearance was evaluated by counting the 

occurrences of each feature, as a way to rank their significance. By applying this 

feature selection technique, the top 10 features were identified and selected, which 

were subsequently used to execute the machine learning algorithms, as an approach to 

enhance the performance of our models. 

 To systematically explore and evaluate all possible combinations of the 10 

available features, we employed the (𝑛
𝑘

) binomial coefficient method.  

 

(
𝑛

𝑘
) =

𝑛!

𝑘! (𝑛 − 𝑘)!
 , 

(2.1) 
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where 𝑛 represents the total number of available features, and 𝑘 corresponds to the 
number of features chosen in each combination. 

 

 A custom function was developed utilizing the combinations object from the 

itertools module, which generates all possible feature combinations to be used as 

input for the algorithms.  

 In total, 11 classifiers from the scikit-learn library were tested on the training 

data, and their performance was evaluated using K-fold Cross-Validation over 10 

folds. This procedure was conducted to search for the best feature combination, based 

on the accuracy metric, ultimately selecting the classifier with the optimal 

performance.  

 The classifiers, their module and respective class are presented in the 

following table (Table 2.2). 

 
Table 2.2 List of employed classifiers. 

 

Module Classifiers (Class) 

sklearn.neighbors 
 NearestCentroid 

 KNeighborsClassifier 

sklearn.naive_bayes  GaussianNB 

sklearn.discriminant_analysis  LinearDiscriminantAnalysis 

sklearn.linear_model 
 LogisticRegression 

 Perceptron 

sklearn.svm  LinearSVC 

sklearn.tree  DecisionTreeClassifier 

sklearn.ensemble 

 RandomForestClassifier 

 GradientBoostingClassifier 

 ExtraTreesClassifier 

 

 The selected model was trained and then further evaluated on the test set over 

10 epochs to assess its performance. This evaluation aimed to detect any biases, 

overfitting, or underfitting. In addition, this helped in understanding how well the 

model generalized on unseen data estimating the performance metrics by averaging 

the results over multiple epochs. 

 Finally, statistical analysis was performed for the molecular descriptors in the 

optimal feature combination. While it is not always mandatory, it is generally 

beneficial for the features within a model to present statistical difference between 

classes in binary classification. To identify features that exhibit a significant statistical 

difference between “Active” and “Not Active” chemical compounds, the Mann-

Whitney U test was applied with a significance threshold of 𝑝 ≤ 0.001. This 

approach helps to identify key features for further investigation of their potential 

biological and chemical relevance. 
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2.3 Molecular Docking Experiments 
 

 In the present study, the molecular docking experiments conducted to advance 

our understanding of MC4R are presented. As mentioned above, this technique is 

essential in drug design and discovery since it helps identify potential interactions 

between small molecules and their target proteins. By simulating these interactions, 

we aim to identify potential ligands in an effort to understand their mechanisms of 

action. This approach complements our previous work with machine learning models 

by providing detailed insights into the behavior of molecules. 

 

2.3.1 Crystal structure preparation 
 

 To conduct the molecular docking experiments, the available bibliography was 

researched to identify crystal structures of the human MC4R (hMC4R). This involved 

a thorough review of scientific literature and databases to ensure that we employed 

accurate and relevant structural data for the purposes of this thesis. As a result, the 

crystal structure with entry ID 6W25 from the RCSB Protein Data Bank was selected. 

 The Protein Data Bank (PDB) was founded in 1971 as the first open-access 

digital data repository, housing 3D structures of biomolecules such as proteins and 

nucleic acids. The archive of this database (Figure 2.2) is managed by the Worldwide 

Protein Data Bank (wwPDB) partnership [94]. The Research Collaboratory for 

Structural Bioinformatics Protein Data Bank (RCSB PDB) serves as the United States 

data center for the global PDB archive. Funded by the National Science Foundation, 

the National Institutes of Health, and the US Department of Energy, the RCSB PDB 

has become an indispensable tool for both research and education in fields such as 

biology, health, and biotechnology. Understanding the 3D structures of biological 

macromolecules is crucial, particularly for studies aiming to elucidate their functions 

in human health and disease. These 3D structure data are primarily obtained through 

NMR, electron microscopy, and macromolecular crystallography [95]. 
 

 

 
 

Fig. 2.2: Illustration of the PDB (adapted from [96]). 

 

 The crystal structure with entry ID 6W25 corresponds to MC4R in complex 

with SHU9119, obtained through X-ray diffraction at a resolution of 2.75 Å. 
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SHU9119 (C54H71N15O9) is an antagonistic peptide of MC4R. It is a shortened, 

modified, and circularized derivative of NDP-α-MSH, displaying a related binding 

mode. SHU9119 binds in the upper part of MC4R ligand-binding pocket (LBP) in a 

pattern similar to agonists, making it suitable for experiment conduction in this study. 

It acts as an antagonist due to specific interactions that prevent receptor activation 

[22].  

 The 3D illustration of this complex, as provided in the PDB, and the structure 

of SHU9119, are presented in Figure 2.3.  

 

 

 

 
Fig. 2.3: 6W25: 3D crystal structure of MC4R in complex with SHU9119 (left) and chemical 

structure of SHU9119 (right) [97]. 

 

 To ensure the successful execution of subsequent experiments, the crystal 

structure was prepared using the Maestro platform, a comprehensive Graphical User 

Interface (GUI) for molecular modeling. It is part of the Schrödinger Suite - a 

collection of computational tools designed for drug discovery. It integrates various 

functionalities to perform computational tasks, including molecular visualization, 

structure preparation, and molecular docking. The Protein Preparation Wizard, a tool 

within Maestro, addresses common structural issues and generates reliable all-atom 

protein models [98]. During this process, the pH was adjusted to 7.0 ± 0.5. Non-

receptor entities not required for the docking analysis, such as the ligand and water 

molecules not involved in bridging interactions between the ligand and target amino 

acids were removed. Missing hydrogen atoms were added, and protonation states for 

ionizable residues were assigned. Additionally, the receptor underwent energy 

minimization using the OPLS3 force field to achieve a stable, low-energy 

configuration. 

 

2.3.2 Software applications 
 

 In the molecular docking experiments, two distinct approaches were adopted. 

The first approach involved docking studies into the crystallized MC4R with natural 

compounds possessing a molecular weight below 500 Da, which aligns with 

Lipinski's Rule of 5 for rational drug design. The second approach concentrated on 
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docking with natural compounds exceeding 500 Da, reflecting the molecular weights 

of approved medicinal products targeting the same receptor (for example, 

Setmelanotide).  

 The selection of natural compounds for this study was performed with purpose 

and strategic intent. Natural compounds include organic molecules produced by 

organisms, especially microbes, and plants, as secondary metabolites. They are known 

for their non-toxic properties and bioactivity, making them ideal candidates for drug 

discovery and development [99]. 

 In this thesis, 2000 natural compounds were tested against hMC4R. These 

natural compounds were retrieved from the ZINC database in Structure Data File 

(SDF) format, with a significant proportion originating from the natural products 

library of the Specs Company, a leading provider of compound management services 

and research compounds [100]. 

 The ZINC database is a comprehensive collection of chemical compounds 

formatted for research applications, such as virtual screening software and molecular 

binding experiments. Developed by the Irwin and Shoichet Laboratories at the 

Department of Pharmaceutical Chemistry, University of California, San Francisco 

(UCSF), ZINC provides access to biologically relevant 3D molecular structures. The 

database offers over 750 million commercially available compounds, organized into 

subsets and catalogs with advanced filtering options to facilitate small molecule 

searches. A key feature of ZINC is its integration of market-available compounds 

with high-value substances, including metabolites, natural products, and drugs from 

scientific literature. ZINC is regularly updated with new data and is accessible online 

in various versions, such as ZINC15 and ZINC20 [101], [102]. 

 For a thorough analysis and validation, three in silico tools were employed in 

the molecular docking experiments. These tools were selected for their 

complementary features and robust capabilities in molecular docking: 

 

i. Webina. Webina (https://durrantlab.pitt.edu/webina/) is an open-source library 

and web application developed by the Department of Biological Sciences of 

the University of Pittsburgh. It runs AutoDock Vina, a popular docking 

program, entirely in the web browser, producing ligand poses and the 

corresponding docking scores. To be more precise, docking calculations take 

place on the user’s computer instead of a remote server, allowing the user to 

visualize results (poses) on their browser [103]. 

  

 In addition, Grid-based Ligand Docking with Energetics (Glide, for short), a 

molecular docking software within Maestro developed by Schrödinger, Inc., was 

utilized to further investigate the chemical compounds that were shortlisted using 

Webina. Glide uses a series of hierarchical filters to search for possible locations of 

the ligand in the active-site region of the receptor. The shape and properties of the 

receptor are represented on a grid by different sets of fields that provide progressively 

more accurate scoring of the ligand pose. As a result, a combination of force-field-

based scoring functions predicts the binding affinity of the ligand to the target 

receptor [104].This thesis incorporates two Glide docking methodologies: 

 

ii. Glide-SP. Glide-SP or Standard Precision Glide is a “softer”, more forgiving 

function adept at identifying ligands with a reasonable propensity to bind, 

even in cases where the Glide pose has notable imperfections. This version 

minimizes false negatives, providing a balance between computational 
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efficiency and accuracy, when docking on a large number of chemical 

compounds is necessary.  

 

iii. Glide-XP. Glide-XP or Extra Precision Glide imposes severe penalties for 

poses violating established physical chemistry principles, such as ensuring that 

charged and strongly polar groups are properly exposed to solvent. It is more 

adept at reducing false positives and particularly useful in lead optimization or 

other studies where only a limited number of compounds are considered 

experimentally, requiring each computationally identified compound to be as 

high in quality as possible [105], [106]. 

 

 It should be noted that the natural compounds were prepared accordingly for 

the docking experiments. Each software has its method for converting SDF files into 

the required format. Webina automatically formulates the molecular structures using 

the PDBQTConverter App. Similarly, Maestro employs LigPrep to prepare the 

molecules in Protein Data Bank, Partial Charge (Q) and Atom Type (T) (PDBQT) 

format, which is compatible with Glide. During the conversion of files from SDF to 

PDBQT format, hydrogen atoms are added to the molecule, and partial atomic 

charges to the atoms are assigned to the selected pH (7.0 ± 0.5) accordingly. 

Hydrogen atoms are significant for the geometry of the compounds, and the charges 

are essential for the electrostatic interactions modeling. 

 

2.3.3 Validation process 
  

 The objective of the molecular docking experiments in this thesis is to identify 

a list of chemical compounds that act as potential ligands to hMC4R. To accomplish 

this, various validation steps are conducted to confirm the accuracy of the docking 

results.  

 Firstly, the superposition of the ligand SHU9119 was performed using all 

three in silico tools to find a configuration that closely matches the one in the crystal 

structure of 6W25. The binding affinity of this configuration was recorded for each 

noted software. These alignments were used as a reference point for the docking 

experiments with natural compounds.  

 To define the region of interest for the target protein hMC4R, an appropriately 

sized grid box was generated. Generally, it is advisable to make this 3D box as small 

as possible while still encompassing the protein’s active site, as defined by the ligand 

in complex. This approach provides a more accurate measure of the effective search 

space. The grid box is specified in terms of the Cartesian coordinate system. In this 

case, for the box center is located at (x, y, z) = (135, 4, 103) and for the box size the 

dimensions in Å are (x, y, z) = (17, 17, 18). 

 Additionally, the interaction pattern between SHU9119 and hMC4R was 

documented to facilitate the selection process of the final molecules. The interaction 

pattern between each natural product and hMC4R was recorded and compared to that 

of the ligand in complex. To achieve this, the open-access Protein-Ligand Interaction 

Profiler (PLIP, https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index) was used 

for analyzing the docking results from Webina.  The PLIP web server provides 

detailed results for all binding sites in the input structure, including atom-level 

binding information, and a 3D interactive visualization. For the docking results 

obtained from Glide for the shortlisted molecules, as previously noted, a tool within 

Maestro was used to generate a 2D projection of the protein-ligand interactions. The 
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Ligand Interaction Diagram visually presents how the ligand interacts with the target 

protein, highlighting both the binding interactions and the solvent-exposed regions of 

the molecules. A 4 Å cut-off was used. This approach captures the majority of 

electrostatic interactions and any hydrogen interactions that are significant in our 

protein-ligand complex. 

 

2.4 Machine Learning and Docking Hybridization 
 

 A significant focus of this thesis is to explore how the combination of machine 

learning models with molecular docking results can enhance the drug design research 

process. To accomplish this, the model that provided the strongest classification was 

employed to categorize the final chemical compounds obtained from the in silico 

experiments. 

 For this part of the study, MetaboAnalyst 6.0, a freely accessible platform for 

comprehensive metabolomics data analysis and interpretation 

(https://www.metaboanalyst.ca/) was employed. The platform offers various 

applications including statistical analysis, biomarker analysis, and dose response 

analysis. It was selected for its automated procedures and ability to facilitate the 

analysis of complex data, including results derived from machine learning models. 

 Initially, for the natural compounds that were distinguished among the 2000 as 

potential ligands of hMC4R, the RDKit molecular descriptors were calculated, as 

described in subsection 2.1.1. A new CSV file was created containing the IDs of the 

chemical compounds from the ChEMBL dataset, their labels, and the molecular 

descriptors included in the best feature combination. This file was appended with the 

IDs and the identical molecular descriptors of the final natural compounds.  

 The CSV file was uploaded to MetaboAnalyst’s Biomarker Analysis module, 

which offers the ROC curve-based evaluation approach to potential biomarkers 

identification and model performance evaluation.  

 MetaboAnalyst detected 3 groups of data in the CSV: Active, Not Active and 

Unlabeled chemical compounds.  In this module, the platform provides multiple data 

normalization procedures.  For consistency, we opted for the Auto Scaling procedure. 

The best combination of biomarkers was manually selected to create the biomarker 

models using the Random Forest classifier. This module allows users to hold out a 

subset of samples for extra validation purposes, as well as to predict class for new 

samples (Unlabeled). This performs 100 cross-validations and averages the results to 

produce the ROC curve. Additionally, it calculates the predictive accuracy based on 

these validations and predicts the labels for the final natural compounds based on their 

probability scores. 

 

2.5 ADMET Prediction 
 

 To further validate and cross-check the results, two different open-access 

computational tools were employed to study the metabolic properties of the final 

molecules. The SMILES strings were used to generate the ADMET properties. Both 

computational tools utilize a neural network framework to generate predictions and 

present the results in a tabular format. We aimed to compare the characteristics of our 

selected natural compounds with those of the FDA-approved drug Setmelanotide. 

 The first tool we employed is the ADMETlab 3.0 web server 

(https://admetlab3.scbdd.com/), which predicts pharmacokinetics and toxicity 
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properties of molecules with comprehensive and precise models, covering major 

endpoints. ADMETlab 3.0 is developed and maintained by the CBDD team of Central 

South University, the HIT team of National University of Defense Technology, and 

the Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University 

[107].  

 In addition, we decided to utilize a novel ADMET prediction tool, ADMET-AI 

1.3.1 (https://admet.ai.greenstonebio.com/), developed by the Department of 

Computer Science at Stanford University. This tool offers an efficient method for 

predicting ADMET properties, providing results at a faster rate [108]. 
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Chapter 3: Results 
 

3.1 Machine Learning Results 
 

 In this section, the results from the Machine Learning models are presented. 

 

3.1.1 Optimal feature combination 
 

 Among the 10 features identified through the feature selection process, a 

combination of 7 RDKit molecular descriptors proved to be the most effective for 

building a robust machine learning model.  

 Table 3.1 lists the final results of the K-fold cross-validation procedure, 

highlighting the molecular descriptors that achieved optimal model performance. The 

classifier that attained the highest efficiency is the RandomForestClassifier, using the 

default parameters from the scikit-learn library. Furthermore, a brief interpretation is 

provided [109] - [111]. 

 
Table 3.1 Optimal feature combination. 

 

RDKit Descriptor Brief Interpretation 

VSA_EState6  The 6th of the 10 VSA_EState molecular descriptors. They 

quantify the surface area contributions of different types of 

atoms or bonds within a molecule.  

 

MaxAbsEStateIndex  It refers to the maximum absolute value of the E-State 

indices across all atoms in the molecule. 

 

PEOE_VSA8  The 8th of the 14 PEOE_VSA molecular descriptors. They 

intend to capture the direct electrostatic interactions within 

a certain range of atomic partial charges of  0 ≤ 𝑥 ≤ 0.05. 
 

Kappa2  The 2nd of the 3 kappa shape indexes. It is a measure of 

molecular branching and connectivity. 

 

MolMR  The Molecular Weight of a molecule expressed in Da. 

 

BCUT2D_MRLOW  Lowest eigenvalue weighted by Crippen Molar 

Refractivity (Crippen MRR) 

 

Kappa3  The 3rd of the 3 kappa shape indexes. It involves complex 

connectivity information and is influenced by the presence 

of rings or cyclic structures. 

  

 To provide a deeper understanding of the concepts listed in Table 3.1, a more 

detailed examination is necessary: 

 The VSA_Estate and MaxAbsEStateIndex are molecular descriptors that use 

E-State indices and surface area contributions. EState or E-state is a concept 

developed by Kier and Hall [112] that corresponds to an Electrotopological State 
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index, which is used to describe the electronic environment and topology of atoms 

within a molecule. Thus, the E-State index is a measure of the electronic accessibility 

of a specific atom and can be interpreted as a probability of interaction with another 

molecule. However, this type of descriptors is not considered electronic, but 

descriptors of atom polarity and steric accessibility [109].  

 The Van der Waals Surface Area (VSA) is a value obtained by considering the 

shape of each atom to be a sphere with a radius equal to that of Van der Waals. At this 

point, it is important to note that the surface area of an atom in a molecule is the 

amount of surface area of that atom not contained in any other atom of the molecule 

[113]. 

 The atomic partial charge is calculated using the Partial Equalization of 

Orbital Electronegativity (PEOE) method, which was developed by Marsili and 

Gasteiger [114] through a topological iterative approach. In other words, partial 

charges are assigned to atoms of a molecule based on their electronegativities and 

neighboring atoms. As evident, the PEOE_VSA descriptors are numerical values that 

correspond to the electron density distribution across molecular surface areas. 

 The Kier alpha-modified shape or kappa descriptors are a group of molecular 

descriptors developed by Kier and Hall, which are associated with the different shape 

contribution of heteroatoms and hybridization states. As a result, they offer a way to 

describe the structural characteristics of molecules, which is crucial for drug design. 

 Finally, Burden-Cas-University of Texas eigenvalues (BCUT) are based on 

the Burden approach, which considers three matrices whose diagonal elements 

correspond to i) atomic charge-related values, ii) atomic polarizability-related values, 

and iii) atomic H-bond abilities. The BCUT2D descriptors are a specific type of 

BCUT descriptors calculated based on a 2D representation of the molecular structure 

[109]. 

 Table 3.2 displays the mean and standard deviation of the performance metrics 

obtained from the K-fold cross-validation for the RandomForestClassifier with the 

optimal feature set. As evident, the scores are relatively high, demonstrating the 

effectiveness of the selected feature combination and the classifier. 

 
Table 3.2 Average performance metrics from K-fold cross-validation for the 

RandomForestClassifier. 

 

Metrics MEAN STD.DEV 

Sensitivity 90.75 % 1.53 % 

Specificity 94.19 % 0.83 % 

Accuracy 92.71 % 1.07 % 

F1-score 0.91 0.01 

Precision 0.92 0.01 

AUC 0.97 0.01 

 

3.1.2 Model validation 
 

 As previously noted, the model was separately trained over 10 epochs to 

provide a comprehensive view of its performance, to detect biases, underfitting or 

overfitting.  
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 Table 3.3 presents the average performance metrics of the test set evaluated 

over 10 epochs for the selected classifier. Furthermore, Figure 3.1 illustrates the ROC 

curve for the final results across 10 epochs, providing a visual representation of the 

performance. 

 
Table 3.3 Average performance metrics over 10 epochs for the RandomForestClassifier. 

 

Metrics MEAN (%) STD.DEV (%) 

Sensitivity 93.02 0.87 

Specificity 95.25 0.89 

Accuracy 94.28 0.44 

F1-score 0.93 0.00 

Precision 0.94 0.01 

AUC 0.98 0.00 

 

 
 

Fig. 3.1: ROC curve of the optimal feature combination, using RandomForestClassifier over 

10 epochs (AUC=0.98). 

 

 For comparative analysis, Table 3.4 presents the mean and standard deviation 

of the performance metrics, for all classifiers used in this thesis, evaluated over 10 

epochs, highlighting the Random Forest classifier. 
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Table 3.4 Average performance metrics (mean and standard deviation) over 10 epochs for all 

classifiers. 

 

Model 
Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 
F1 Precision AUC 

KNN 
91.45 
1.69 

91.64 
0.79 

91.56 
1.00 

0.90 
0.01 

0.89 
0.01 

0.95 
0.01 

Bayes. 
92.62 
5.50 

80.77 
6.79 

85.91 
1.95 

0.85 
0.01 

0.79 
0.05 

0.92 
0.01 

LDA 
88.63 
1.56 

87.62 
1.96 

88.06 
1.20 

0.87 
0.01 

0.85 
0.02 

0.94 
0.01 

LogReg 
87.18 
1.35 

89.78 
1.13 

88.65 
0.45 

0.87 
0.01 

0.87 
0.01 

0.94 
0.01 

Percep. 
74.15 
20.21 

84.07 
6.32 

79.77 

10.64 
0.75 
0.16 

0.77 
0.12 

0.84 
0.14 

SVM 
87.22 
1.57 

89.07 
1.10 

88.27 
1.08 

0.87 
0.01 

0.86 
0.01 

0.94 
0.01 

RF 
93.02 
0.87 

95.25 
0.89 

94.28 
0.44 

0.93 
0.00 

0.94 
0.01 

0.98 
0.00 

CART 
89.80 
1.49 

92.22 
1.24 

91.17 
0.60 

0.90 
0.01 

0.90 
0.01 

0.91 
0.01 

XGB 
92.18 
1.99 

94.88 
0.90 

93.71 
1.00 

0.93 
0.01 

0.93 
0.01 

0.97 
0.01 

Ada 
92.54 
1.21 

91.60 
0.9 

92.01 
0.86 

0.91 
0.01 

0.89 
0.01 

0.97 
0.01 

GBT 
93.87 
1.59 

94.14 
0.88 

94.02 
0.69 

0.93 
0.01 

0.92 
0.01 

0.97 
0.00 

ET 
93.79 
1.99 

94.26 
1.29 

94.06 
0.99 

0.93 
0.01 

0.93 
0.01 

0.97 
0.01 

 
3.2 Statistical Analysis Results 
 

 The following figures (Figure 3.2-3.5) illustrate the results of the statistical 

analysis for the molecular descriptors detailed in Table 3.1, specifically comparing the 

two classes of a single feature. The figures include boxplots and ROC curves for the 

features where there is a statistically significant difference, and the AUC exceeds a 

threshold of 0.8. As evident these features are MaxAbsEstateIndex, PEOE_VSA8, 

Kappa_2 and BCUT2D_MRLOW. 
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Fig. 3.2: MaxAbsEstateIndex boxplots (left) and ROC curve (AUC=0.89) between classes 

(right). 

 

 

 

 

 

Fig. 3.3: PEOE_VSA8 boxplots (left) and ROC curve (AUC=0.88) between classes (right). 
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Fig. 3.4: Kappa2 boxplots (left) and ROC curve (AUC=0.91) between classes (right). 

 

 

 

 

 

Fig. 3.5: BCUT2D_MRLOW boxplots (left) and ROC curve (AUC=0.91) between classes 

(right). 
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3.3 Molecular Docking Results 
 

 Maestro and PLIP were utilized to visualize and analyze the interactions 

between hMC4R and SHU9119. The derived results were further validated against the 

existing literature.  

 Table 3.5 highlights the direct ligand interactions with the target protein. It is 

worth noting that the hydrophobic interactions are not presented since all the 

transmembrane helices, the N-terminus, and ECL2 regions are involved, rendering 

them quite expansive. These regions are illustrated in Figure 1.5. 

 
Table 3.5 MC4R-SHU9119 (PDB: 6W25) interaction pattern. 

 

MC4R-SHU9119 Interactions 

Salt Bridge (SB) ASP126 

Hydrogen Bond(HB) 

GLU100 

THR101 

ASN123 

SER188 

HIS264 

 

π-π Interactions (pi-pi) 
PHEN51 

TYR268 

 

 Figure 3.6 displays SHU9119 within the binding site of hMC4R, as visualized 

using the Maestro platform. In the figure, hydrogen bonds are depicted in yellow, salt 

bridges in pink, and pi-pi interactions in cyan dashed lines. 

 

 
 

Fig. 3.6: SHU9119 in the binding site of hMC4R (PDB: 6W25), as visualized using Maestro. 

SBs are presented in pink color, HBs in yellow color and pi-pi interactions in cyan dashed 

lines. 
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 It should be noted that MC4R-SHU9119 complex exhibits a classical seven-

transmembrane helical bundle with a small orthosteric binding pocket containing 

SHU9119 and Ca2+, a metal ion with strong electron density. The Ca2+ is coordinated 

by two main-chain carbonyl oxygen atoms in SHU9119 and three negatively charged 

residues in MC4R. Several studies suggest that the coordination of the Ca²⁺ plays a 

critical role as a cofactor in the ligand-binding process [115]. 

 The following tables (Table 3.6-3.7) summarize the most significant findings 

from the molecular docking experiments. 

 Table 3.6 lists the Docking Scores (kcal/mol) of the chemical compounds 

qualified as potential ligands from the set of 2,000 natural compounds, for each 

software employed in this thesis. Additionally, the Docking Score of SHU9119 is 

presented, which was used to validate our selections. The first compound 

(ZINC000000487423) resulted from the first approach, which involved docking 

natural compounds with a molecular weight below 500 Da. The remaining 

compounds, which exceed this threshold, were identified through the second docking 

approach. 

 
Table 3.6 Docking Scores (kcal/mol) of the final selection of chemical compounds with 

MC4R (PDB: 6W25). 

 

Compounds Docking Score (kcal/mol) 

 
Glide-SP Glide-XP Webina 

SHU9119 (validation) -11.710 -14.580 -7.800 

1 ZINC000000487423 -6.968 -5.671 -7.149 

2 ZINC000004349406 -5.787 -10.771 -8.178 

3 ZINC000169724085 -7.737 -11.953 -8.360 

4 ZINC000299817569 -6.286 -8.875 -7.086 

5 ZINC000095913431 -6.999 -10.300 -8.774 

6 ZINC000095913799 -5.548 -9.382 -8.189 

 

 Figure 3.7 demonstrates the validation process, which is the optimal 

superimposition of the 3D crystal configurations with the docked structure of 

SHU9119 for Glide-SP (-11.710 kcal/mol) and Glide-XP (-14.580 kcal/mol). 
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Fig. 3.7:  Validation. Optimal superimposition of the 3D crystal configurations with the 

docked structure of SHU9119 using Glide-SP (left) and Glide-XP (right). 

 

 Table 3.7 presents the interaction patterns of the selected compounds into 

hMC4R as identified by each software. The common amino acids that form 

interactions, compared to the co-crystallized ligand are highlighted in blue. These 

common amino acids and the Docking Scores were used as criteria for the final 

selection of chemical compounds in the molecular docking results. 

 
Table 3.7 Interaction patterns of the final selection of natural compounds into hMC4R (PDB: 

6W25). 

 

Compounds Interaction Pattern 

 
Glide-SP Glide-XP PLIP 

SHU9119 (validation) 

HB: GLU100, THR101, ASN123, SER188, HIS264  

SB: ASP126 

pi-pi: PHE51, TYR268 

1 ZINC000000487423 
HB: PHE184, 

SER188 

HB: ASP126, 

SER188 

HB: ASP126 

(2), ILE129, 

CYS130, 

SER188 

2 ZINC000004349406 

HB: ASP122, 

ASP126 (2), 

SER188(2), 

ASP189  

pi-pi: HIS264, 

TYR268 

HB: GLU100, 

ASP122, 

ASP126, 

PHE184, 

HIS264 

HB: GLU100, 

ASN123, 

ASP126, 

SER188, 

ASP189(3), 

TYR268 
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Table 3.7 (Continued). 

 

3 ZINC000169724085 

HB: GLU100, 

ASP126(2), 

HIS264 

HB: ASP122 
(2), PHE184, 

HIS264, 

TYR268, 

ASN285 

HB: ASN123, 
SER188(2), 

ASP189, 

HIS264 

pi-pi: PHE284 

4 ZINC000299817569 

HB: ASP122, 

ASP126, 

PHE184, 

SER188, 

LEU288  

pi-pi: HIS264 

HB: ASP122, 

ASN123, 

PHE184, 

HIS264, 

ASN285 

HB: GLN43, 

ASN123, 

ASP126, 

PHE184, 

SER188(2), 

TYR268, 

ASN285  

pi-pi: TYR268 

5 ZINC000095913431 

HB: ASP122, 

SER188, 

ASN123, 

PHE184, 

HIS261, 

ASN285 

HB: GLU100, 

ASP122(3), 

HIS264  

pi-pi: TYR268 

HB: GLU100, 

ASN123, 

ILE129, 

SER188(3), 

HIS264, 

TYR268  

pi-pi: PHE284 

6 ZINC000095913799 

HB: GLU100, 

ASP122, 

ASN123, 

ASP126, 

SER188, 

ASP189, 

HIS264 

HB: GLU100, 

ASP122, 

ASP126(2), 

SER188, 

ASP189, 

TYR268 

HB: GLU100, 

ASN123, 

ASP126, 

ILE129, 

SER188, 

ASP189(3), 

TYR268 

 

 To provide clarity, the subsequent figures (Figure 3.8-3.13) display the 

chemical structures of the final natural compounds and their respective ZINC library 

IDs. 

 

 

 
 

Fig. 3.8: ZINC000000487423. 
 

Fig. 3.9: ZINC000004349406. 
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Fig. 3.10: ZINC000169724085. 
 

Fig. 3.11: ZINC000299817569. 

  

  

  
 

Fig. 3.12: ZINC000095913431. 

 

Fig. 3.13: ZINC000095913799. 

 As indicated by the previous figures, five out of the six natural compounds 

identified as potential ligands of hMC4R share a common scaffold that belongs to a 

specific category of polyphenolic compounds. These compounds are classified as 

flavonoids, specifically flavones. Flavonoids derive from the secondary metabolism 

of plants, typically vascular plants and some mosses. The basic skeleton of flavones is 

distinguished by a non-saturated 3-C chain and a double bond between C-2 and C-3 

[116].   

  
 

Fig. 3.14: Basic structure and numbering system of flavonoids 

(left) and flavones (right) [116]. 

 

3.3.1 Protein-ligand binding pose prediction using PLIP 
 

 The following figures (Figure 3.15-3.20) provide visual representations of 3D 

binding poses of the final molecules with the target protein, as generated using the 
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PLIP open-access platform. The yellow color corresponds to the potential ligand, 

whereas the blue formations belong to the target protein. 

 

 

 

 

 

 
 

Fig. 3.15:  Representative 3D binding pose of 

ZINC000000487423 at MC4R binding site 

(PDB: 6W25) using PLIP. 

 

 

Fig. 3.16: Representative 3D binding pose of 

ZINC000004349406 at MC4R binding site 

(PDB: 6W25) using PLIP. 

 

 

 

 
Fig. 3.17: Representative 3D binding pose of 

ZINC000169724085 at MC4R binding site 

(PDB: 6W25) using PLIP. 

 

 

Fig. 3.18: Representative 3D binding pose of 

ZINC000299817569 at MC4R binding site 

(PDB: 6W25) using PLIP. 
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Fig. 3.19: Representative 3D binding pose 

of ZINC000095913431 at MC4R binding 

site (PDB: 6W25) using PLIP. 

 

Fig. 3.20: Representative 3D binding pose of 

ZINC000095913799 at MC4R binding site 

(PDB: 6W25) using PLIP 

 

 

  

 

 

 
 

3.3.2 Protein-ligand binding pose prediction using Maestro 
 

 The following figures (3.21-3.26) provide visual representations of the 2D 

Ligand Interaction Diagram, and the 3D binding poses of the final selection with the 

target protein, as generated using the Maestro platform. These figures provide 

information about how the ligand is interacting with the protein of interest.  

 When examining the Ligand Interaction Diagram, we can analyze the 

interactions between the ligand and the surrounding residues within the binding 

pocket. The protein residues are depicted as being connected along a black line, with 

varying orientations. If a residue points away from the ligand, it indicates that the 

backbone of the residue is facing the ligand. Conversely, if a residue points toward the 

ligand, it signifies that the side chain of that residue is oriented toward the ligand. 

Finally, regions shaded in grey represent solvent-exposed areas. 

 For the 3D interaction poses, as previously noted, the yellow color 

corresponds to the hydrogen bonds and the cyan to the pi-pi interactions. 
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Fig 3.21: Representative 2D Ligand Interaction Diagram (left) and 3D binding pose (right)  

of ZINC000000487423 into the hMC4R binding site (PDB: 6W25) using Maestro. HBs are represented in yellow 

dashed lines. 

 

  
 

Fig. 3.22: Representative 2D Ligand Interaction Diagram (left) and 3D binding pose (right)  

of ZINC000004349406 into the hMC4R binding site (PDB: 6W25) using Maestro. HBs are represented in yellow 

dashed lines. 
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Fig. 3.23: Representative 2D Ligand Interaction Diagram (left) and 3D binding pose (right)  

of ZINC000169724085 into the hMC4R binding site (PDB: 6W25) using Maestro. HBs are represented in yellow 

dashed lines. 

 

  
 

Fig. 3.24: Representative 2D Ligand Interaction Diagram (left) and 3D binding pose (right)  

of ZINC000299817569 into the hMC4R binding site (PDB: 6W25) using Maestro. HBs are represented in yellow 

and pi-pi interactions in cyan dashed lines. 
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Fig. 3.25: Representative 2D Ligand Interaction Diagram (left) and 3D binding pose (right)  

of ZINC000095913431 into the hMC4R binding site (PDB: 6W25) using Maestro. HBs are represented in yellow 

dashed lines. 

  

 
 

 

Fig. 3.26: Representative 2D Ligand Interaction Diagram (left) and 3D binding pose (right)  

of ZINC000095913799 into the hMC4R binding site (PDB: 6W25) using Maestro. HBs are represented in yellow 

dashed lines. 
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3.4 MetaboAnalyst Results  
 

 The figures presented (Figure 3.27-3.28) below are obtained through the 

MetaboAnalyst 6.0 open-access software. As previously noted, we manually selected 

the combination of features listed in Table 3.1 to create the biomarker models using 

the Random Forest classifier.  

 Figure 3.27 illustrates the ROC curve for 100 cross-validations. The results 

were averaged to generate the plot. 

 The first diagram in Figure 3.28 shows the average of predicted class 

probabilities of each sample across the 100 cross-validations. The algorithm uses a 

balanced sub-sampling approach, the classification boundary is located at the center 

(x = 0.5, the dotted line). Additionally, the box plot provides a visual representation of 

the predictive accuracy. The average accuracy based on 100 cross validations is 

0.936.  

 
Table 3.8 Prediction of final natural compounds. 

 

Compounds Probability Class 

ZINC000000487423 0.99 Not Active 

ZINC000004349406 0.69 Not Active 

ZINC000169724085 0.83 Active 

ZINC000299817569 0.71 Active 

ZINC000095913431 0.76 Active 

ZINC000095913799 0.77 Not Active 

 

 

 

 

 
Fig. 3.27: Predicted class probabilities (left) and box plot of predictive accuracy (right) using 

MetaboAnalyst. 
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Fig. 3.28: ROC curve for 100 cross-validations using MetaboAnalyst. 

 

3.5 ADMET Results 
 

 The following tables (Table 3.9-3.12) display the ADMET prediction results 

obtained from both tools for the natural compounds identified by our model as Active 

against MC4R.  We have focused on key properties that we deemed significant for 

evaluating the chemical compound's characteristics. It is evident from our results that 

these tools employ different underlying methods to make their predictions. 

 Table 3.9 illustrates the predictions for Setmelanotide, while the subsequent 

tables (Table 3.10-3.12) detail the predictions for the compounds we have evaluated.  

 The Human Intestinal Absorption (HIA) is considered as a basic requirement 

for a molecule’s effectiveness, since it is considered as an indicator of oral 

bioavailability. A molecule with an absorbance below 0.3 is regarded as having poor 

absorption. 

 The BBB Penetration indicates a molecule’s ability to cross the BBB. The 

output presented in the tables corresponds to the probability of a chemical compound 

crossing this barrier and accumulating in the brain within the range of 0 and 1 [117]. 

 Cytochromes P450 or CYPs are isozymes in the liver, which serve as major 

drug-metabolizing enzymes. We selected to present the CYP34A enzyme, since it’s 

the key enzyme responsible for Phase I metabolism [118]. The output presented is the 

probability of a chemical compound to be considered an inhibitor or substrate within 

the range of 0 and 1. 

 The drug’s half-life (T1/2) is an alternative measure of clearance, 

corresponding to the reduction of its active substance by 50%. 

 Finally, Drug Induced Liver Injury (DILI) is another measure to assess 

hepatotoxicity. The output listed in the tables is the probability of a molecule to be 

DILI-positive within the range of 0 and 1 [117].   
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Table 3.9 Setmelanotide ADMET prediction. 

 

SETMELANOTIDE 

 ADMETlab ADMET-AI 

Physicochemical Properties   

MW (Da) 1116.49 1117.33 

LogP -0.535 -3.18 

Absorption   

HIA 0-0.1 0.51 

Distribution   

BBB Penetration (cm/s) 0-0.1 0.11 

Metabolism   

CYP3A4 Inhibitor 0-0.1 0.62 

CYP3A4 Substrate 0.9-1.0 0.78 

Excretion   

T1/2 (hr) 3.083 33.63 

Toxicity   

DILI 0.942 0.48 

 
Table 3.10 ZINC000169724085 ADMET prediction. 

 

ZINC000169724085 

 ADMETlab ADMET-AI 

Physicochemical Properties   

MW (Da) 724.22 724.67 

LogP 0.938 -2.25 

Absorption   

HIA 0.7-0.9 0.05 

Distribution   

BBB Penetration (cm/s) 0-0.1 0.08 

Metabolism   

CYP3A4 Inhibitor 0-0.1 0.01 

CYP3A4 Substrate 0-0.1 0.02 

Excretion   

T1/2 (hr) 4.708 40.97 

Toxicity   

DILI 0.972 0.57 
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Table 3.11 ZINC000299817569 ADMET prediction. 

 

ZINC000299817569 

 ADMETlab ADMET-AI 

Physicochemical Properties   

MW (Da) 742.23 742.28 

LogP -0.072 -2.69 

Absorption   

HIA 0.9-1.0 0.08 

Distribution   

BBB Penetration (cm/s) 0-0.1 0.05 

Metabolism   

CYP3A4 Inhibitor 0-0.1 0.03 

CYP3A4 Substrate 0-0.1 0.45 

Excretion   

T1/2 (hr) 4.055 58.84 

Toxicity   

DILI 0.867 0.70 

 
Table 3.12 ZINC000095913431 ADMET prediction. 

 

ZINC000095913431 

 ADMETlab ADMET-AI 

Physicochemical Properties   

MW (Da) 756.21 756.66 

LogP 0.83 -2.84 

Absorption   

HIA 0.5-0.7 0.05 

Distribution   

BBB Penetration (cm/s) 0-0.1 0.06 

Metabolism   

CYP3A4 Inhibitor 0-0.1 0.01 

CYP3A4 Substrate 0-0.1 0.44 

Excretion   

T1/2 (hr) 5.31 46.99 

Toxicity   

DILI 0.908 0.68 
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 There are slight differences in the outputs of each computational tool. 

ADMETlab provides its predictions as probability ranges, while ADMET-AI presents 

them as distinct values. While MW is practically equivalent, the same cannot be said 

for LogP. In the case of HIA, the predictions are opposite. The BBB penetration 

values predicted by both tools are approximately equal. According to the ADMETlab 

documentation, these values are considered empirically “excellent”. The metabolism 

of the final compounds, when compared with Setmelanotide, is suboptimal. The half-

life predictions in ADMET-AI are approximately 10 times greater than those from 

ADMETlab. According to the results, both Setmelanotide and the natural compounds 

are classified as high DILI-positive, indicating a significant risk of liver injury. 
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Chapter 4: Discussion   
 

 Obesity remains one of the most pressing global health challenges, despite 

extensive efforts to address the issue. In this study, we focused on the severe type of 

monogenic obesity and its association with MC4R, which plays a crucial role in its 

appearance during early childhood. Our goal was to combine machine learning 

models with molecular modeling techniques, focusing on molecular docking, to 

identify potential ligands for MC4R that may act as agonists to regulate appetite. By 

employing this hybrid approach, we aimed to discover chemical compound scaffolds 

that could be further investigated in vitro, contributing to the drug design process. 

 The first significant findings emerged from the application of machine 

learning techniques and the development of predictive models that estimate the 

activity of chemical compounds against the protein target of interest. After thorough 

investigation, we successfully developed a model with effective performance, 

resulting from the combination of 7 molecular descriptors out of the 208 available of 

the RDKit Library: VSA_EState6, MaxAbsEstateIndex, PEOE_VSA8, Kappa2, 

MolMR, BCUT2D_MRLOW, and Kappa3. Understanding the chemical and 

biological significance of these molecular descriptors is essential for interpreting our 

results. Our model considers the MW of molecules, their chemical structure and 

attributes associated with atom polarity and steric accessibility. 

 We developed a model that achieved an impressive accuracy of 92.71% with a 

standard deviation of 1.07% over 10 epochs, using the Random Forest Classifier. It 

demonstrated a precision of 0.92, with a standard deviation of 0.01, and a high F1-

score, indicating reliable positive predictions and minimal false positives. It needs to 

be noted that in the context of this thesis, the "Active" chemical compounds are 

considered the positive class, while the "Not Active" compounds are the negative 

class. Additionally, the model yielded an AUC of 0.98 with no standard deviation, 

highlighting its exceptional ability to distinguish between the two classes for these 

specific molecular descriptors. 

 The subsequent statistical analysis using the Mann-Whitney U-test indicates 

that most of the molecular descriptors in our model show statistically significant 

differences between the two classes. Additionally, by examining each feature with 

ROC curve analysis, we visually assessed the separability of molecular descriptors 

between classes. This separability is further illustrated by the box plots we present. 

Although there are some outliers, the boxes for the two classes do not overlap, and the 

median values are distinctly higher for one class compared to the other. We 

determined the descriptors with a p-value≤0.001 and an AUC>0.8. 
MaxAbsEstateIndex, PEOE_VSA8, Kappa2, and BCUT2D_MRLOW, exhibit 

both statistically significant differences and strong separability between "Active" and 

"Not Active" chemical compounds. 

 In parallel with the machine learning analysis, we performed molecular 

docking studies to investigate the interaction patterns and binding affinities of 

chemical compounds as potential MC4R ligands. We selected six compounds for 

further examination based on docking simulations conducted with three different 

computational tools. Initially, we focused on hydrogen bonds, since they indicate 

strong binding, and subsequently on potential pi-pi interactions. We also evaluated 

whether the compounds formed bonds with amino acids common to SHU9119.  

 Our first approach of molecular docking on natural compounds with a MW 

below 500 Da did not yield promising results, with only one compound 
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(ZINC000000487423) falling into this category. However, our second approach, 

which involved molecules with MW greater than 500 Da, demonstrated more 

potential. 

 We noticed that the molecules that interact best with the receptor are 

flavonoids, particularly flavones. This category of compounds is abundant in plants, 

fruits and vegetables. Recent research has explored the role of flavonoids in appetite 

regulation, metabolic enhancement, and overall obesity management. These findings 

emerged from the compelling need to search for natural and safe alternatives of 

commonly used anti-obesity medications that do not cause side effects such as high 

blood pressure, heart palpitations, or depression. In particular, flavones have been 

studied for their antioxidant and anti-inflammatory properties, and it has also been 

proven that they can influence the metabolism of adipose tissue. A number of in vitro 

and in vivo studies indicate that a diet high in flavones reduces visceral adiposity by 

inhibiting adipogenesis. Furthermore, these studies suggest that flavones could be 

effective as dietary supplements for modulating the feeling of satiety, in general. 

Nevertheless, clear evidence is still lacking regarding the effectiveness of flavones in 

regulating obesity related to CNS gene mutations. Our findings suggest that flavones 

may act as regulators for MC4R [119], [120].  

 However, it is important to note that these natural compounds we identified 

from the ZINC library contain glucosinolate components, which may undergo 

hydrolysis. As shown in Figures 3.22 to 3.26, these compounds are exposed to 

solvents, which could facilitate this process. Nevertheless, a significant number of 

hydrogen bonds are formed with the flavone portion of the molecules. This suggests 

that even if the glucosinolate component is hydrolyzed, the flavones will remain 

intact, maintaining their functional interactions. 

 Taken together, the machine learning model was used to predict the activity of 

these six chemical compounds against MC4R. Our model predicted that only three of 

the six final compounds are active against the obesity-associated receptor. These 

compounds, ranked in descending order of predicted activity, are 

ZINC000169724085 with a probability of 0.83, ZINC000095913431 with a 

probability of 0.76, and ZINC000299817569 with a probability of 0.71. 

 To further assess the ADMET properties of these molecules, we utilized two 

different open-access software platforms. We compared their predicted characteristics 

to those of the FDA-approved drug Setmelanotide, offering a benchmark for 

evaluating the potential of these compounds. However, upon examining the results in 

Tables 3.9 to 3.12, we identified some limitations. Notably, there are significant 

discrepancies in the probability predictions for certain properties between the two 

tools. In particular, these differences are evident in HIA, CYP3A4 Substrate, and 

T1/2. Additionally, these computational tools failed to accurately predict the T1/2 of 

Setmelanotide to a high degree, which is known to be approximately 11 hours [121]. 

We believe that this discrepancy may be attributed to differences in the neural 

network frameworks employed by each platform, as well as the distinct datasets used 

during their training. This suggests that we cannot derive fully accurate results from 

this computational experiment. 

 In summary, this thesis contributes valuable insights to the potential role of 

flavones as ligands of MC4R to regulate the disease of obesity as a novel therapeutic 

option. In addition, it underscores the necessity to explore further the genetic 
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influences and predisposition that contribute to the complexity of obesity as a 

multifactorial condition. 

 
4.1 Future Steps 
 

 To further evaluate our findings and better understand how flavones impact 

obesity, future steps should include: 

 

i. Molecular Dynamics (MDs) Simulations. MDs simulations will provide a 

detailed, atomic-level understanding of the receptor's behavior and reveal how 

flavones interact with it at a molecular level. 

 

ii. In vitro experiments. Laboratory experiments will further validate the effects 

of flavones on biological processes, such as adipose tissue formation. 

 

iii. Molecular Docking on peptides. This approach will allow us to explore a 

different library of compounds and investigate their mechanisms, focusing on 

those with structural similarities to the native ligands of hMC4R. 

 

 These steps will help clarify the potential and limitations of flavones in obesity 

regulation and guide the development of targeted therapeutic strategies. 
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