

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ

Πτυχιακή Εργασία

Ανάπτυξη λογισμικού για την αξιολόγηση της ποιότητας γεωδαιτικών μετρήσεων GNSS

Φοιτητής: Σλαβάκης Χαράλαμπος ΑΜ: 11079

Επιβλέπων Καθηγητής

Γιαννίου Μιχαήλ

Καθηγητής ΠΑ.Δ.Α

Αθήνα-Αιγάλεω, Οκτώβριος 2024

UNIVERSITY OF WEST ATTICA FACULTY OF ENGINEERING DEPARTMENT OF SURVEYING AND GEOINFORMATICS ENGINEERING

Thesis

Development of software for quality evaluation of geodetic GNSS observations

Student: Slavakis Charalampos Registration Number: 11079

Supervisor

Gianniou Michail

Professor of UNI.W.A

Athens - Egaleo, October 2024

Η Πτυχιακή Εργασία έγινε αποδεκτή και βαθμολογήθηκε από την εξής τριμελή επιτροπή:

(Ονοματεπώνυμο),	(Ονοματεπώνυμο),	(Ονοματεπώνυμο),
(βαθμίδα)	(βαθμίδα)	(βαθμίδα)
Γιαννίου Μιχαήλ	Παγούνης Βασίλειος	Ανδριτσάνος Βασίλειος
Καθηγητής	Καθηγητής	Καθηγητής
(Υπογραφή)	(Υπογραφή)	(Υπογραφή)

Copyright \mathbb{C} Me επιφύλαξη παντός δικαιώματος. All rights reserved.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ και Σλαβάκης Χαράλαμπος, Οκτώβριος, 2024

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τους συγγραφείς.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα του και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις θέσεις του επιβλέποντος, της επιτροπής εξέτασης ή τις επίσημες θέσεις του Τμήματος και του Ιδρύματος.

ΔΗΛΩΣΗ ΣΥΓΓΡΑΦΕΑ ΠΤΥΧΙΑΚΗΣ ΕΡΓΑΣΙΑΣ

Ο κάτωθι υπογεγραμμένος Σλαβάκης Χαράλαμπος του Ιωάννη, με αριθμό μητρώου 11079, φοιτητής του Πανεπιστημίου Δυτικής Αττικής της Σχολής Μηχανικών του Τμήματος Μηχανικών Τοπογραφίας και Γεωπληροφορικής, δηλώνω υπεύθυνα ότι:

«Είμαι συγγραφέας αυτής της πτυχιακής εργασίας και ότι κάθε βοήθεια την οποία είχα για την προετοιμασία της είναι πλήρως αναγνωρισμένη και αναφέρεται στην εργασία. Επίσης, οι όποιες πηγές από τις οποίες έκανα χρήση δεδομένων, ιδεών ή λέξεων, είτε ακριβώς είτε παραφρασμένες, αναφέρονται στο σύνολό τους, με πλήρη αναφορά στους συγγραφείς, τον εκδοτικό οίκο ή το περιοδικό, συμπεριλαμβανομένων και των πηγών που ενδεχομένως χρησιμοποιήθηκαν από το διαδίκτυο. Επίσης, βεβαιώνω ότι αυτή η εργασία έχει συγγραφεί από μένα αποκλειστικά και αποτελεί προϊόν πνευματικής ιδιοκτησίας τόσο δικής μου, όσο και του Ιδρύματος.

Παράβαση της ανωτέρω ακαδημαϊκής μου ευθύνης αποτελεί ουσιώδη λόγο για την ανάκληση του πτυχίου μου».

> Ο Δηλών Σλαβάκης Χαράλαμπος

N

ΕΥΧΑΡΙΣΤΙΕΣ

Με την παρούσα πτυχιακή εργασία ολοκληρώνεται ο κύκλος των σπουδών μου στο Τμήμα Μηχανικών Τοπογραφίας και Γεωπληροφορικής του Πανεπιστημίου Δυτικής Αττικής.

Θα ήθελα να ευχαριστήσω θερμά τον επιβλέποντα καθηγητή μου, κ. Μιχαήλ Γιαννίου, για την υποστήριξη και την καθοδήγησή του κατά τη διάρκεια εκπόνησης αυτής της εργασίας.

Επίσης, θα ήθελα να ευχαριστήσω την οικογένειά μου και τους φίλους μου για τη συμπαράσταση και τη στήριξή τους καθ' όλη τη διάρκεια των σπουδών μου.

ΠΕΡΙΛΗΨΗ

Το δορυφορικό σύστημα πλοήγησης Galileo διαθέτει ήδη μεγάλο αριθμό δορυφόρων και χρησιμοποιείται καθημερινά σε διάφορες εφαρμογές. Για τον λόγο αυτό, έχει ενδιαφέρον η σύγκριση της ποιότητας των μετρήσεών του με αυτές του συστήματος GPS. Παράλληλα, παρατηρείται η αυξανόμενη χρήση δεκτών χαμηλότερου κόστους σε σχέση με τους γεωδαιτικούς δέκτες που κυριαρχούν στις επαγγελματικές εφαρμογές. Στο πλαίσιο αυτό, το Εργαστήριο Γεωδαισίας-Τοπογραφίας-GNSS του Πανεπιστημίου Δυτικής Αττικής (ΠΑ.Δ.Α.) έχει εγκαταστήσει έναν μόνιμο σταθμό αναφοράς που χρησιμοποιεί γεωδαιτικό δέκτη, καθώς και δύο επιπλέον δέκτες, έναν μεσαίου και έναν χαμηλού κόστους, για ερευνητικούς σκοπούς.

Στο πλαίσιο της παρούσας εργασίας, αναπτύχθηκε λογισμικό για τη συγκριτική αξιολόγηση των πρωτογενών μετρήσεων των συστημάτων GNSS. Το λογισμικό αυτό έχει τη δυνατότητα να αναλύει το σηματοθορυβικό λόγο (SNR) καθώς επίσης και να ανιχνεύει σφάλματα ολίσθησης κύκλων (cycle slips), συμβάλλοντας έτσι στην καλύτερη κατανόηση των παραμέτρων που επηρεάζουν την ποιότητα των μετρήσεων υπό διάφορες συνθήκες.

Πραγματοποιήθηκαν δύο μελέτες για την αξιολόγηση του λογισμικού και των δεκτών. Η πρώτη μελέτη έλαβε χώρα στην περιοχή της Αγίας Παρασκευής, όπου συγκρίθηκαν δύο γεωδαιτικοί δέκτες. Ο ένας δέκτης τοποθετήθηκε σε ταράτσα κτηρίου χωρίς εμπόδια, ενώ ο δεύτερος τοποθετήθηκε διαδοχικά κάτω από δύο δέντρα, με στόχο να διερευνηθεί η επίδραση των εμποδίων στην ποιότητα των μετρήσεων σε σύγκριση με την καταγραφή σε ανοικτό περιβάλλον. Η δεύτερη μελέτη διεξήχθη στο Πανεπιστήμιο Δυτικής Αττικής (ΠΑ.Δ.Α.), όπου χρησιμοποιήθηκαν οι τρεις εγκατεστημένοι δέκτες διαφορετικού κόστους για να μελετηθεί κατά πόσο το κόστος του δέκτη επηρεάζει την ποιότητα των μετρήσεων. Τα αποτελέσματα από την ανάλυση των δεδομένων που συλλέχθηκαν επαλήθευσαν τη σωστή λειτουργία του λογισμικού που αναπτύχθηκε και ανέδειξαν τη συσχέτιση μεταξύ κόστους δέκτη και ποιότητας μετρήσεων.

Λέξεις κλειδιά

GNSS, Galileo, GPS, Σηματοθορυβικός λόγος, Ολίσθηση κύκλων, MATLAB

ABSTRACT

The satellite navigation system Galileo has already a many operational satellites and is used regularly in various daily applications. For this reason, it is interesting to compare the quality of its measurements with those of the GPS system. At the same time, there is an increasing use of low-cost receivers, which are considerably cheaper compared to the geodetic receivers that dominate professional applications. In this context, the Geodesy-Surveying-GNSS Laboratory of the University of West Attica (UniWA) has installed a permanent reference station operating on a geodetic receiver, as well as two less expensive receivers, one of medium and one of low cost, for research purposes.

In the context of this work, software was developed for the comparative evaluation of the raw measurements of GNSS systems. This software has the ability to analyze the signal-to-noise ratio (SNR) as well as to detect cycle slips, thus contributing to a better understanding of the parameters that affect the quality of measurements under various conditions.

Two studies were conducted to evaluate the software and the receivers. The first study took place in the area of Agia Paraskevi, where two geodetic receivers were compared. One receiver was placed on the roof of an building that offers unobstructed sky view, while the second one was placed successively under two trees, with the aim of investigating the effect of obstacles on the quality of the measurements. The second study was conducted at the University of Western Attica, where three installed receivers of different costs were used to assess role of the receiver cost on the quality of the measurements. The results from the analysis of the collected data verified the correct operation of the developed software and highlighted the correlation between receiver cost and measurement quality.

Keywords

GNSS, Galileo, GPS, Signal to Noise Ratio, Cycle slips, MATLAB

Π	ΈΡΙΛ	HΨł	Η	6
A	BSTR	AC	Γ	7
Σ	YNTC	OMO	ΟΓΡΑΦΙΕΣ	. 10
1	EĽ	ΣΑΓ	ΏΓΗ	. 11
2	ΘF	ΞΩΡΙ	НТІКО УПОВАЮРО	. 12
	2.1	GN	ISS και γεωδαιτικές εφαρμογές	. 12
	2.1	.1	GPS	. 13
	2.1	.2	GLONASS	. 13
	2.1	.3	Galileo	. 14
	2.1	.4	BeiDou	. 14
	2.2	Γεα	υδαιτικές μετρήσεις GNSS	. 15
	2.3	Пот	ιότητα μετρήσεων GNSS	. 16
	2.3	.1	Θόρυβος μέτρησης – SNR	. 16
	2.3	.2	Διακοπές λήψης (loss of lock) – Ολίσθηση κύκλων	. 17
	2.3	.3	Παράγοντες που επηρεάζουν την ποιότητα των μετρήσεων	. 18
	2.4	Μέ	θοδοι ανίχνευσης και διόρθωσης ολίσθησης κύκλων	. 19
	2.4	.1	Μέθοδος Ionospheric Residual	. 20
	2.4	.2	Μέθοδος των διαφορών	. 21
	2.4	.3	Άλλες μέθοδοι	. 23
	2.5	Δια	θέσιμα λογισμικά για τον εντοπισμό ολίσθησης κύκλων	. 25
3	ПА	APO	ΥΣΙΑΣΗ ΛΟΓΙΣΜΙΚΟΥ ΠΟΥ ΑΝΑΠΤΥΧΘΗΚΕ	. 27
	3.1	Εισ	αγωγή στο Matlab και στο Λογισμικό	. 27
	3.2	Πη	γαίος κώδικας και εκτέλεση λογισμικού	. 28
	3.3	Cas	se 1: Snr Analysis	. 31
	3.4	Cas	se 2: Cycle Slip Detection	. 37
4	AN	ΙΑΛ	ΥΣΗ ΔΕΔΟΜΕΝΩΝ	. 46
	4.1	Ave	άλυση SNR	. 46
	4.1	.1	Περιοχή μελέτης	. 46
	4.1	.2	Στοιχεία εξοπλισμού	. 51
	4.1	.3	Σύγκριση αποτελεσμάτων	. 52

4	.2 Про	οσδιορισμός Ολίσθησης Κύκλων (Cycle Slips)54
	4.2.1	Σύγκριση μετρήσεων κάτω από δέντρα54
	4.2.1.	1 Περιοχή μελέτης και εξοπλισμός 55
	4.2.1.	2 Μέθοδος Ionorspheric Residual 55
	4.2.1.	3 Μέθοδος Διαφορών
	4.2.2	Σύγκριση δεκτών χαμηλού κόστους
	4.2.2.	1 Περιοχή μελέτης
	4.2.2.	2 Στοιχεία εξοπλισμού
	4.2.2.	3 Μέθοδος Ionorspheric Residual 82
	4.2.2.	4 Μέθοδος Διαφορών94
	4.2.3	Σύγκριση μεθόδων προσδιορισμού ολίσθησης κύκλων
	4.2.4	Σύγκριση ανάμεσα στα δορυφορικά συστήματα GPS - Galileo 104
	4.2.5	Σύγκριση των σημάτων στους δέκτες μεσαίου και χαμηλού κόστους 106
5	ΣΥΜΠ	ΕΡΑΣΜΑΤΑ 108
BIB	ΑΙΟΓΡ Α	ΑΦΙΑ - ΔΙΑΔΙΚΤΥΑΚΕΣ ΠΗΓΕΣ 110
ПА	РАРТН	MA A'

ΣΥΝΤΟΜΟΓΡΑΦΙΕΣ

GNSS	Global Navigation Satellite System
GPS	Global Positioning System
GLONASS	GLObal Navigation Satellite System
BDS	BeiDou Navigation Satellite System
SNR	Signal to Noise Ratio
DOP	Dilution of Precision
RFI	Radio Frequency Interferences
BPSK	Binary Phase Shift Keying
BOC	Binary Offset Carrier
TMBOC	Time-Multiplexed Binary Offset Carrier
CBOC	Composite Binary Offset Carrier
AltBOC	Alternate Binary Offset Carrier
PIR	Phase Ionospheric Residual
FBMWA	Forward and Backward Moving Window Averaging
IOD	Ionospheric Delay
TEQC	Toolkit for GPS/GLONASS Data Editing Quality Checking and Translation

1 ΕΙΣΑΓΩΓΗ

Τα Παγκόσμια Δορυφορικά Συστήματα Πλοήγησης (GNSS) έχουν καθιερωθεί ως βασική τεχνολογία για ακριβείς γεωδαιτικές μετρήσεις, παρέχοντας τη δυνατότητα προσδιορισμού θέσης με ακρίβεια χιλιοστών σε παγκόσμια κλίμακα. Συστήματα όπως το GPS, το GLONASS, το Galileo και το BeiDou χρησιμοποιούνται σε ποικίλες εφαρμογές, όπως η τοπογραφία, η πλοήγηση, η γεωφυσική έρευνα και η παρακολούθηση γεωδυναμικών φαινομένων. Ωστόσο, οι μετρήσεις GNSS επηρεάζονται από διάφορα σφάλματα, όπως το φαινόμενο πολλαπλών διαδρομών (multipath), οι ατμοσφαιρικές επιδράσεις και οι ολισθήσεις κύκλων, τα οποία μειώνουν την ακρίβεια και την αξιοπιστία των δεδομένων.

Ο σκοπός της παρούσας πτυχιακής εργασίας είναι η ανάπτυξη λογισμικού για τη συγκριτική αξιολόγηση της ποιότητας των πρωτογενών γεωδαιτικών μετρήσεων GNSS. Το λογισμικό, το οποίο αναπτύχθηκε στο περιβάλλον MATLAB, παρέχει δυνατότητες ανάλυσης και οπτικοποίησης του σηματοθορυβικού λόγου (SNR) καθώς και του εντοπισμού ολισθήσεων κύκλων έτσι ώστε να υπάρξει καλύτερη κατανόηση των παραμέτρων που επηρεάζουν την ακρίβεια των μετρήσεων υπό διάφορες συνθήκες.

Είναι γνωστό ότι η τιμές του σηματοθορυβικού λόγου αντανακλούν άμεσα την ποιότητα των μετρήσεων. Έτσι, ένας βασικός στόχος του λογισμικού που αναπτύχθηκε ήταν να αναπαριστά γραφικά τις τιμές του SNR για όλο το διάστημα της μέτρησης, για όποιο δορυφόρο και για όποιο από τα σήματα που εκπέμπει ο συγκεκριμένος δορυφόρος επιλέξει ο χρήστης. Σε ότι αφορά τον εντοπισμό ολίσθησης κύκλων, ο στόχος ήταν να μπορεί ο χρήστης να κάνει τον έλεγχο σε επίπεδο ενός δέκτη, καθώς η πιο συνηθισμένη μέθοδος είναι αυτή των διαφορών η οποία όμως προϋποθέτει την ύπαρξη δύο δεκτών, οπότε δεν προκύπτει άμεσα, σε ποιόν από τους δύο δέκτες έχει συμβεί η ολίσθηση κύκλων. Η μέθοδος των διαφορών πάντως αξιοποιήθηκε στο πλαίσιο της εργασίας για διασταύρωση των αποτελεσμάτων του λογισμικού, καθώς είναι μία ιδαιίτερα αξιόπιστη μέθοδος, αν και δεν μπορεί να εφαρμοστεί όταν διαθέτουμε μετρήσεις ενός μόνο δέκτη.

Στόχος της εργασίας είναι η χρήση των δυνατοτήτων του λογισμικού για την ανάλυση δεδομένων από δύο διαφορετικές μελέτες που πραγματοποιήθηκαν. Η πρώτη μελέτη είχε ως στόχο τη σύγκριση των δεδομένων ανάμεσα σε δύο ίδιους γεωδαιτικούς δέκτες υψηλής ποιότητας, πραγματοποιήθηκε στην περιοχή της Αγίας Παρασκευής, όπου ο ένας τοποθετήθηκε σε ταράτσα κτηρίου ώστε να υπάρχουν όσο το δυνατόν λιγότερα εμπόδια και multipath. Ο δεύτερος δέκτης τοποθετήθηκε διαδοχικά κάτω από δύο δέντρα, προκειμένου να αναλυθεί κατά πόσο η παρουσία φυλλωμάτων επηρεάζει την ποιότητα των μετρήσεων.

Η δεύτερη μελέτη επικεντρώνεται στη σύγκριση των δεδομένων μεταξύ δεκτών διαφορετικού κόστους. Η μελέτη αυτή πραγματοποιήθηκε στο Πανεπιστήμιο Δυτικής Αττικής (ΠΑ.Δ.Α.), όπου υπάρχει εγκατεστημένος ένας μόνιμος σταθμός αναφοράς που χρησιμοποιεί γεωδαιτικό δέκτη, καθώς και δυο δέκτες, ένας μεσαίου και ένας χαμηλού κόστους. Η σύγκριση αυτή πραγματοποιήθηκε με αφορμή την αυξανόμενη χρήση δεκτών χαμηλού κόστους σε γεωδαιτικές εφαρμογές και έχει ως στόχο την αξιολόγηση της συσχέτισης μεταξύ κόστους δέκτη και ποιότητας μετρήσεων.

2 ΘΕΩΡΗΤΙΚΟ ΥΠΟΒΑΘΡΟ

2.1 GNSS και γεωδαιτικές εφαρμογές

Τα Παγκόσμια Δορυφορικά Συστήματα Πλοήγησης (Global Navigation Satellite Systems, GNSS) είναι μια τεχνολογία που επιτρέπει τον προσδιορισμό θέσης και χρόνου οπουδήποτε στον πλανήτη, χρησιμοποιώντας σήματα από δορυφόρους σε τροχιά γύρω από τη Γη. Εκτός από τις απλές χρήσεις τους, τα GNSS χρησιμοποιούνται ευρέως και σε γεωδαιτικές εφαρμογές που απαιτούν ακριβή δεδομένα προσδιορισμού θέσης. Βασικές εφαρμογές περιλαμβάνουν τις τοπογραφικές μετρήσεις, όπου τα συστήματα GNSS επιτρέπουν την ακριβή καταγραφή σημείων και αποστάσεων με τεχνικές όπως ο στατικός και ο κινηματικός προσδιορισμός θέσης, προσφέροντας ακρίβεια mm σε τοπογραφικές εφαρμογές. Επιπλέον, χρησιμοποιούνται για την παρακολούθηση γεωδυναμικών φαινομένων, όπως η κίνηση των τεκτονικών πλακών, σεισμών και καθιζήσεων, παρέχοντας σημαντικά δεδομένα για τη γεωφυσική. Άλλες εφαρμογές περιλαμβάνουν τη χαρτογράφηση και τα συστήματα γεωγραφικών πληροφοριών (GIS), όπου τα GNSS βοηθούν στη συλλογή και ανάλυση γεωχωρικών δεδομένων, επιτρέποντας την ακριβή απεικόνιση περιοχών και τη διαχείριση γης. Υπάρχουν τέσσερα κύρια συστήματα GNSS που είναι σε λειτουργία, το καθένα αναπτυγμένο από διαφορετικές χώρες τα οποία απεικονίζονται στην Εικόνα 2.1 και παρουσιάζονται παρακάτω.

Εικόνα 2.1 Τα τέσσερα βασικά GNSS (www.bodet-time.com)

2.1.1 GPS

Το GPS (Global Positioning System) αναπτύχθηκε από τις ΗΠΑ και είναι το πιο γνωστό και διαδεδομένο δορυφορικό σύστημα. Ξεκίνησε να σχεδιάζεται τη δεκαετία του 1970 και το σύστημα κηρύχθηκε πλήρως λειτουργικό το 1993. Το σύστημα αποτελείται σήμερα από 31 δορυφόρους που βρίσκονται σε μεσαίας περί τη Γη τροχιά (βλ. Εικόνα 2.2), καθώς και από ένα παγκόσμιο δίκτυο εδάφους (το Τμήμα Ελέγχου) που παρακολουθεί και ελέγχει τους δορυφόρους (Teunissen, 2017).

Εικόνα 2.2: Αστερισμός δορυφόρων GPS (gps.gov)

2.1.2 GLONASS

Το GLONASS (Global Navigation Satellite System) είναι ένα δορυφορικό σύστημα που αναπτύχθηκε από την πρώην Σοβιετική Ένωση και προσφέρει παρόμοιες υπηρεσίες με το GPS. Η ανάπτυξη του ξεκίνησε τη δεκαετία του 1970 και ο πρώτος δοκιμαστικός δορυφόρος εκτοξεύτηκε το 1982. Το σύστημα έγινε πλήρως λειτουργικό το 1995 με 24 δορυφόρους (Εικόνα 2.3). Παρά τις προκλήσεις που αντιμετώπισε στις αρχές του 2000 με τον περιορισμένο αριθμό ενεργών δορυφόρων για κοντά μια δεκαετία, το GLONASS έφτασε ξανά στο πλήρες επίπεδο κάλυψης το (Teunissen, 2017).

Εικόνα 2.3: Αστερισμός δορυφόρων GLONASS (esa.int)

2.1.3 Galileo

Το Galileo είναι το παγκόσμιο δορυφορικό σύστημα πλοήγησης που έχει αναπτυχθεί στην Ευρώπη, αποτελείται σήμερα από 25 λειτουργικούς δορυφόρους (από ένα σύνολο 32 δορυφόρων που βρίσκονται σε τροχιά) συνολικά, όπου όλοι εκτός από δύο, βρίσκονται σε τρία κυκλικά επίπεδα μεσαίας περί τη Γη τροχιάς (Εικόνα 2.4). Βρίσκεται υπό πολιτικό έλεγχο και παρέχει τις αρχικές του υπηρεσίας από τον Δεκέμβριο του 2016. Είναι διαλειτουργικό με τα συστήματα GPS και GLONASS, τα παγκόσμια δορυφορικά συστήματα πλοήγησης των ΗΠΑ και της Ρωσίας (European Space Agency, 2024), (European Union Agency for the Space Programme, 2024).

Εικόνα 2.4: Αστερισμός δορυφόρων Galileo (gmv.com)

2.1.4 BeiDou

Το BeiDou (BDS) είναι το δορυφορικό σύστημα πλοήγησης που αναπτύχθηκε από την Κίνα και παρέχει παρόμοιες υπηρεσίες με το GPS και το GLONASS. Η ανάπτυξή του ξεκίνησε τη δεκαετία του 1990, και το σύστημα έχει εξελιχθεί από μια περιφερειακή υπηρεσία που κάλυπτε την Κίνα και την περιοχή Ασίας-Ειρηνικού σε ένα πλήρως λειτουργικό παγκόσμιο σύστημα. Η αρχική έκδοση του συστήματος, γνωστή ως BDS-1, παρείχε περιφερειακή κάλυψη, αλλά από το 2020 το BeiDou έχει επεκταθεί σε παγκόσμια κλίμακα με τη χρήση περισσότερων από 30 δορυφόρων (Εικόνα 2.5), παρέχοντας ακριβή δεδομένα θέσης, χρόνου και ταχύτητας σε διάφορους χρήστες ανά τον κόσμο (Lu et al., 2020).

Εικόνα 2.5: Αστερισμός δορυφόρων BeiDou (everythingrf.com)

2.2 Γεωδαιτικές μετρήσεις GNSS

Οι μετρήσεις GNSS χωρίζονται σε δύο κύριες κατηγορίες: τις Μετρήσεις Κώδικα (Pseudorange Measurements) και τις Μετρήσεις Φάσης Φέροντος Σήματος (Carrier Phase Measurements).

Οι μετρήσεις κώδικα (Pseudorange Measurements) βασίζονται στον υπολογισμό της ψευδοαπόστασης, δηλαδή της εκτιμώμενης απόστασης μεταξύ του δορυφόρου και του δέκτη, με βάση τον χρόνο που χρειάζεται το σήμα να φτάσει από τον δορυφόρο στον δέκτη. Οι μετρήσεις απόστασης με τον κώδικα ονομάζονται ψευδοαποστάσεις γιατί περιέχουν σημαντικότατα σφάλματα λόγω των σφαλμάτων των χρονομέτρων των δορυφόρων και των δεκτών, όπως φαίνεται στην Εικόνα 2.6. Αυτές οι μετρήσεις προσφέρουν σχετικά χαμηλότερη ακρίβεια και χρησιμοποιούνται κυρίως σε εφαρμογές όπως η πλοήγηση αυτοκινήτων.

Εικόνα 2.6: Μετρήσεις κώδικα δέκτη (gssc.esa.int)

Από την άλλη πλευρά, οι μετρήσεις φάσης του φέροντος σήματος (Carrier Phase Measurements) είναι πιο ακριβείς και χρησιμοποιούνται σε εφαρμογές όπως η γεωδαισία, όπου απαιτείται ακρίβεια χιλιοστού. Η μέθοδος βασίζεται στη μέτρηση της διαφοράς φάσης ανάμεσα στο σήμα που παράγεται από το δέκτη και στο σήμα που εκπέμπεται από το δορυφόρο, επιτρέποντας τον ακριβή υπολογισμό αποστάσεων (Εικόνα 2.7).

Εικόνα 2.7:Διάγραμμα της μέτρησης φάσης (gssc.esa.int)

Ωστόσο, οι μετρήσεις GNSS μπορεί να επηρεαστούν από διάφορα σφάλματα, που επηρεάζουν την ακρίβεια των δεδομένων. Αυτά περιλαμβάνουν την ολίσθηση κύκλων (cycle slips), η οποία είναι ασυνέχειες στη λήψη της φάση του σήματος με μέγεθος ενός ή περισσοτέρων κύκλων λόγω προβλημάτων στη λήψη του σήματος, όπως παρεμβολές ή εμπόδια. Άλλα σφάλματα περιλαμβάνουν τα σφάλματα ιονόσφαιρας και τροπόσφαιρας, όπου η διέλευση του σήματος μέσω της ατμόσφαιρας μπορεί να προκαλέσει καθυστερήσεις ή διαταραχές που επηρεάζουν την ακρίβεια των μετρήσεων. Το φαινόμενο του (multipath), όπου το σήμα ανακλάται σε επιφάνειες προτού φτάσει στον δέκτη, μπορεί επίσης να προκαλέσει σημαντικά σφάλματα. Τέλος, τα σφάλματα γεωμετρίας δορυφόρων (DOP) σχετίζονται με τη διάταξη των δορυφόρων στον ουρανό και μπορεί να επηρεάσουν την ακρίβεια των μετρήσεων, ειδικά όταν οι δορυφόροι είναι κοντά μεταξύ τους (Teunissen, 2017).

2.3 Ποιότητα μετρήσεων GNSS

Η ποιότητα των μετρήσεων GNSS εξαρτάται από διάφορους παράγοντες, οι οποίοι μπορούν να επηρεάσουν την ακρίβεια και την αξιοπιστία των δεδομένων θέσης που λαμβάνονται από το σύστημα.

2.3.1 Θόρυβος μέτρησης – SNR

Ο θόρυβος μέτρησης GNSS είναι ένας σημαντικός παράγοντας που επηρεάζει την ποιότητα των δεδομένων, και συνδέεται στενά με τον λόγο σήματος προς θόρυβο (SNR: Signal to Noise ratio). Το SNR μετρά την ισχύ του σήματος σε σχέση με τον θόρυβο που το συνοδεύει, και χρησιμοποιείται ως

δείκτης για την αξιολόγηση της ποιότητας των μετρήσεων. Όταν το SNR είναι υψηλό τότε δείχνει ότι το σήμα GNSS είναι ισχυρό και έχει λιγότερο θόρυβο, κάτι που οδηγεί σε ακριβέστερες μετρήσεις. Σε αυτές τις περιπτώσεις, τα σφάλματα όπως η ολίσθηση κύκλων (cycle slips) ή το φαινόμενο multipath είναι λιγότερο πιθανά. Συνήθως παρατηρείται σε ανοικτές περιοχές χωρίς εμπόδια και με καλή ατμοσφαιρική διαύγεια. Όταν το SNR είναι χαμηλό, το σήμα είναι πιο επιρρεπές σε θόρυβο, γεγονός που μπορεί να οδηγήσει σε ανακρίβειες, όπως απώλεια σήματος ή διακοπές λήψης (Loss of Lock). Το χαμηλό SNR είναι συχνότερο σε περιοχές με εμπόδια, όπως κτίρια, δέντρα, ή κάτω από δύσκολες καιρικές συνθήκες (Liu et al., 2023).

2.3.2 Διακοπές λήψης (loss of lock) – Ολίσθηση κύκλων

Ο όρος loss of lock (απώλεια σήματος) αναφέρεται στην κατάσταση όπου ο δέκτης GPS χάνει προσωρινά την ικανότητά του να παρακολουθεί και να καταγράφει συνεχώς τη φάση του σήματος από τον δορυφόρο. Αυτό το φαινόμενο μπορεί να προκληθεί από διάφορους παράγοντες, όπως φυσικά εμπόδια (π.χ., κτίρια ή βουνά), ηλεκτρομαγνητικές παρεμβολές ή απότομες κινήσεις του δέκτη. Η απώλεια αυτή διακόπτει την ομαλή λήψη των δεδομένων και συνδέεται με σφάλματα λόγω ολίσθησης κύκλων (cycle slips), όπου χάνονται κύκλοι του φέροντος κύματος και απαιτείται να αποκατασταθεί η διαδικασία καταγραφής τους (Xu, 2007).

Η ολίσθηση κύκλων (cycle slips) αναφέρεται σε μια διακοπή στη συνεχή καταγραφή της φάσης του σήματος κατά τη λήψη δεδομένων GPS. Αυτή η διακοπή προκαλεί ένα ξαφνικό "άλμα" στις παρατηρήσεις της φάσης (βλ. Εικόνα 2.8), το οποίο αντιστοιχεί σε έναν ακέραιο αριθμό κύκλων. Αυτό το γεγονός διαταράσσει τη συνέχεια των δεδομένων της φάσης και δυσχεραίνει την επίλυση της ασάφειας στις μετρήσεις του GPS. (Xu, 2007).

Εικόνα 2.8:Ολίσθηση κύκλων (Karaim et al, 2014)

2.3.3 Παράγοντες που επηρεάζουν την ποιότητα των μετρήσεων

Οι μετρήσεις GNSS επηρεάζονται από διάφορους παράγοντες που μπορούν να επηρεάσουν την ακρίβεια και την αξιοπιστία τους. Οι κυριότεροι παράγοντες περιλαμβάνουν την ποιότητα του δέκτη και της κεραίας, τις ατμοσφαιρικές επιδράσεις (ιονόσφαιρα, τροπόσφαιρα), τις ηλεκτρομαγνητικές παρεμβολές, και τα χαρακτηριστικά του σήματος GNSS.

Ποιότητα Δέκτη και Κεραίας

Όπως θα αναλυθεί και παρακάτω στην παρούσα πτυχιακή, η ποιότητα του δέκτη GNSS και της κεραίας παίζει καθοριστικό ρόλο στην αξιοπιστία των μετρήσεων. Ένας υψηλής ποιότητας δέκτης με προηγμένες δυνατότητες φιλτραρίσματος και επεξεργασίας σήματος μπορεί να βελτιώσει την ακρίβεια των μετρήσεων μειώνοντας τα σφάλματα που προέρχονται από θορύβους και παρεμβολές.

Ατμοσφαιρικές Επιπτώσεις: Ιονόσφαιρα και Τροπόσφαιρα

Η ατμόσφαιρα της Γης επηρεάζει σημαντικά τα σήματα GNSS, κυρίως μέσω της ιονόσφαιρας και της τροπόσφαιρας. Η ιονόσφαιρα, που περιέχει φορτισμένα σωματίδια, μπορεί να καθυστερήσει ή να διασκορπίσει το σήμα, ιδιαίτερα κατά τη διάρκεια έντονης ηλιακής δραστηριότητας ή γεωμαγνητικών καταιγίδων. Αυτό προκαλεί διαφορές στο χρόνο άφιξης του σήματος, επηρεάζοντας την ακρίβεια της θέσης. Αντίστοιχα, η τροπόσφαιρα προκαλεί καθυστερήσεις λόγω της υγρασίας και της πυκνότητας της ατμόσφαιρας, ειδικά σε περιοχές με έντονες καιρικές συνθήκες.

Ηλεκτρομαγνητικές Παρεμβολές (RFI)

Οι ηλεκτρομαγνητικές παρεμβολές (RFI: Radio Frequency Interferences) προέρχονται από άλλες ηλεκτρονικές συσκευές ή από ανθρώπινες δραστηριότητες, όπως τα ραδιοκύματα, που μπορεί να προκαλέσουν θόρυβο ή παρεμβολές στο σήμα GNSS. Αυτές οι παρεμβολές μπορούν να οδηγήσουν σε απότομες διακοπές της λήψης σήματος ή και στην εμφάνιση ολίσθησης κύκλων ή ακόμα και σε αδυναμία λήψης των σημάτων από το δέκτη. Για την αντιμετώπιση των παρεμβολών, οι δέκτες χρησιμοποιούν προηγμένες τεχνικές φιλτραρίσματος και παρακολούθησης σήματος (Kim et al, 2014).

<u>Χαρακτηριστικά Σήματος GNSS</u>

Επιπλέον, με βάση το άρθρο των Gianniou, Mastoris, κ.ά., (2022), η απόδοση των σημάτων GNSS εξαρτάται από τον ρυθμό του κωδικού εύρους (ranging code) και από τη μέθοδο διαμόρφωσης. Το BPSK, που χρησιμοποιείται στα παλαιότερα σήματα του GPS, του GLONASS, και του BeiDou-2, προσφέρει αξιοπιστία, ενώ οι σύγχρονες τεχνικές αναδιαμόρφωσης, όπως το BOC και οι παραλλαγές του (TMBOC, CBOC, AltBOC), βελτιώνουν την ακρίβεια και την ανθεκτικότητα των σημάτων, προσφέροντας καλύτερη απόδοση σε σύγχρονα συστήματα GNSS, όπως το Galileo.

Γενικά η ποιότητα του σήματος GNSS επηρεάζεται από διάφορους παράγοντες, όπως η συχνότητα του σήματος, η γεωμετρία των δορυφόρων και η θέση τους στον ουρανό. Τα σήματα που προέρχονται από δορυφόρους χαμηλής γωνίας ανύψωσης είναι πιο πιθανό να επηρεαστούν από θόρυβο και παρεμβολές. Επίσης, τα σήματα πολλαπλών συχνοτήτων (dual-frequency) μπορούν να προσφέρουν υψηλότερη ακρίβεια, διότι επιτρέπουν τη διόρθωση των ατμοσφαιρικών επιδράσεων με μεγαλύτερη ακρίβεια σε σύγκριση με τα σήματα μίας συχνότητας (Kim et al, 2014).

2.4 Μέθοδοι ανίχνευσης και διόρθωσης ολίσθησης κύκλων

Στα πρώτα στάδια της χρήσης του GPS, οι στατικές εφαρμογές αποτέλεσαν το κύριο πεδίο ενδιαφέροντος για την ανίχνευση της ολίσθησης κύκλων (cycle slips). Οι στατικές παρατηρήσεις, όπου οι μετρήσεις πραγματοποιούνται σε σταθερά σημεία, επιτρέπουν την εφαρμογή πιο απλών μεθόδων ανίχνευσης λόγω της περιορισμένης δυναμικής των δεδομένων. Μία από τις πρώτες και πιο διαδεδομένες μεθόδους είναι η μέθοδος (Phase Ionospheric Residual, PIR), η οποία χρησιμοποιήθηκε κυρίως για τη στατική ανίχνευση της ολίσθησης κύκλων (cycle slips). Η μέθοδος αυτή, αναπτύχθηκε αρχικά από τον Goad το 1985, και βασίζεται στην ανάλυση του Ionospheric Residual. Η πολυωνυμική προσαρμογή (Polynomial Fitting), εισήχθη από τους Lichtenegger και Ηofmann-Wellenhof το 1989, και εφαρμόζεται κυρίως στις στατικές μετρήσεις. Αυτή η μέθοδος (High-Order and Time-Difference Method), προτάθηκε από τον Kleusberg το 1993 και χρησιμοποιείται για τον εντοπισμό ολίσθησης κύκλων με βάση τις διαφορές μεταξύ διαδοχικών παρατηρήσεων. Αυτή η μέθοδος είναι στατικές συνθήκες, αλλά μπορεί να εμφανίζει περιορισμούς όταν εφαρμόζεται στη ποτατικές συνθήκες, αλλά μπορεί να εμφανίζει περιορισμούς όταν εφαρμόζεται σε περιπτώσεις μεταδολές.

Με την ανάπτυξη των τεχνολογιών GPS και την ανάγκη για ακριβείς κινηματικές μετρήσεις, αναπτύχθηκαν πιο σύνθετες μέθοδοι για την ανίχνευση και τη διόρθωση της ολίσθησης κύκλων, οι οποίες είναι κατάλληλες για τις απαιτήσεις των κινηματικών συνθηκών. Η μέθοδος φιλτραρίσματος Kalman είναι από τις πιο διαδεδομένες στις κινηματικές εφαρμογές. Αυτή η μέθοδος εφαρμόζεται σε πραγματικό χρόνο και χρησιμοποιείται ευρέως λόγω της ικανότητας της να εντοπίζει και να διορθώνει την ολίσθηση κύκλων ενώ ο δέκτης βρίσκεται σε κίνηση. Ο αλγόριθμος Kalman συνδυάζει τις μετρήσεις φάσης και κώδικα για τον προσδιορισμό και τη διόρθωση της ολίσθησης κύκλων, κάτι που τον καθιστά ιδανικό για εφαρμογές με πολλές μεταβολές. Η γραμμική συνδυαστική μέθοδος Melbourne-Wübbena είναι επίσης εξαιρετικά χρήσιμη, καθώς είναι ανεξάρτητη από τη γεωμετρία του δορυφορικού συστήματος και την ιονόσφαιρα, καθιστώντας την κατάλληλη για συνθήκες ταχείας ιονοσφαιρικής μεταβολής, οι οποίες είναι συχνές στις κινηματικές μετρήσεις. Τέλος, ο αλγόριθμος εξομάλυνσης (Forward and Backward Moving Window Averaging, FBMWA) είναι μία πρόσφατη

εξέλιξη που επιτρέπει την ανίχνευση ακόμα και των μικρότερων ολισθήσεων κύκλων με μεγάλη ακρίβεια σε κινηματικές συνθήκες.

Η εξέλιξη των μεθόδων ανίχνευσης και διόρθωσης της ολίσθησης κύκλων αντικατοπτρίζει την προσαρμογή των τεχνικών στις αυξημένες απαιτήσεις των σύγχρονων γεωδαιτικών και κινηματικών μετρήσεων. Καθώς οι εφαρμογές του GPS επεκτείνονται και απαιτούνται υψηλότερα επίπεδα ακρίβειας, οι μέθοδοι αυτές συνεχίζουν να εξελίσσονται, εξασφαλίζοντας τη βέλτιστη απόδοση ακόμη και στις πιο απαιτητικές συνθήκες.

2.4.1 Μέθοδος Ionospheric Residual

Η μέθοδος Ionospheric Residual αποτελεί μια αποτελεσματική τεχνική για την ανίχνευση και διόρθωση της ολίσθησης κύκλων (cycle slips) στα δεδομένα GNSS, ειδικά όταν χρησιμοποιούνται πολλαπλές συχνότητες. Οι ολισθήσεις κύκλου προκαλούν προβλήματα στις μετρήσεις φάσης, επηρεάζοντας την ακρίβεια του προσδιορισμού θέσης. Η μέθοδος βασίζεται στην ανάλυση των υπολοίπων που προκαλούνται από την ιονόσφαιρα όταν οι φάσεις των σημάτων σε διαφορετικές συχνότητες συγκρίνονται μεταξύ τους.

Όταν τα σήματα περνούν μέσω της ιονόσφαιρας, εισάγονται σφάλματα που εξαρτώνται από τη συχνότητα, και αυτά τα σφάλματα δεν μπορούν να αφαιρεθούν εντελώς. Σε ένα ιδανικό περιβάλλον κενού, το ιονοσφαιρικό σφάλμα θα ήταν μηδενικό. Ωστόσο, λόγω της ιονόσφαιρας, το Ionospheric Residual υπάρχει και μεταβάλλεται αργά με την πάροδο του χρόνου καθώς ο δορυφόρος κινείται και οι συνθήκες στην ιονόσφαιρα αλλάζουν (Roberts, 2017).

To Ionospheric Residual υπολογίζεται με βάση τη διαφορά φάσης μεταξύ δύο διαφορετικών συχνοτήτων, όπως οι L1 και L2 για το GPS. Η εξίσωση που το περιγράφει είναι η εξής:

$$IR_a = \phi_a - \phi_b \cdot \left(\frac{f_a}{f_b}\right) + \epsilon \tag{1}$$

Όπου στην εξίσωση (1) ϕ_a και ϕ_b είναι οι φάσεις των σημάτων στις συχνότητες f_a και f_b αντίστοιχα, και ϵ είναι τα σφάλματα που προκύπτουν από την ιονόσφαιρα, την τροπόσφαιρα, τον θόρυβο του δέκτη, καθώς και από την ακέραια ασάφεια φάσης (Roberts, 1997). Όταν τα δεδομένα δεν εμφανίζουν ολίσθηση κύκλων, οι τιμές του Ionospheric Residual μεταξύ διαδοχικών χρονικών στιγμών είναι πολύ παρόμοιες.

Η παρουσία ολίσθησης κύκλων προκαλεί απότομη μεταβολή στο Ionospheric Residual. Αυτό επιτρέπει τον εντοπισμό της ολίσθησης κύκλων, καθώς η μέθοδος συγκρίνει το Ionospheric Residual μεταξύ δύο διαδοχικών χρονικών στιγμών (εποχών) χρησιμοποιώντας την εξίσωση:

$$\delta IR = \left(\phi_a - \phi_b \cdot \frac{f_a}{f_b}\right)_i - \left(\phi_a - \phi_b \cdot \frac{f_a}{f_b}\right)_{i-1} \quad (2)$$

Αν μια ολίσθηση κύκλων έχει συμβεί μεταξύ δύο εποχών *i* και *i* – 1, τότε μία ή και οι δύο φάσεις ϕ_a ή ϕ_b θα έχουν επηρεαστεί, οδηγώντας σε απότομη αλλαγή στο Ionospheric Residual. Αυτή η μέθοδος είναι ιδιαίτερα χρήσιμη όταν συνδυάζεται με πολλαπλές συχνότητες και μπορεί να εφαρμοστεί σε συνδυασμό με άλλες τεχνικές για την ακριβή ανίχνευση και διόρθωση της ολίσθησης κύκλων (Roberts, 2017).

2.4.2 Μέθοδος των διαφορών

Άλλη μία μέθοδος που χρησιμοποιείται για την ανίχνευση αυτών των σφαλμάτων, χρησιμοποιούνται οι απλές, διπλές και τριπλές διαφορές των μετρήσεων, οι οποίες επιτρέπουν την εξάλειψη διαφόρων σφαλμάτων και την ενίσχυση των χαρακτηριστικών που αναδεικνύουν τις ολισθήσεις κύκλου (Εικόνα 2.9).

Εικόνα 2.9: Απλές, Διπλές, Τριπλές Διαφορές (Jia et al., 2016)

<u>Απλές Διαφορές</u>

Η απλές διαφορές (single differences) υπολογίζονται μεταξύ των παρατηρήσεων φάσης από δύο δέκτες που παρακολουθούν το ίδιο δορυφόρο. Αυτή η διαφορά μπορεί να χρησιμοποιηθεί για την εξάλειψη κοινών σφαλμάτων, όπως τα σφάλματα του δορυφόρου.

$$SD_{i}^{P-Q,m}(t_{1}) = \lambda_{m}^{-1} \left(r_{i}^{P-Q}(t_{1}) - c\delta t^{P-Q} + d^{P-Q}(t_{1}) + \varepsilon_{i}^{P-Q,m}(t_{1}) \right) + N_{i}^{P-Q,m}(t_{1})$$
(3)

Στην εξίσωση (3), $SD_i^{PQ,m}(t_1)$ είναι η απλή διαφορά για τον δορυφόρο i, που παρατηρείται από τους δέκτες P και Q στη συχνότητα m, r_i^P και r_i^Q είναι οι αποστάσεις από τον δορυφόρο i στους δέκτες Pκαι Q αντίστοιχα, λ_m είναι το μήκος κύματος της συχνότητας m, δt^{P-Q} είναι η διαφορά στο ρολόι μεταξύ των δεκτών P και Q, $d^{P-Q}(t_1)$ είναι η διαφορά στην καθυστέρηση του υλισμικού (hardware) των δεκτών, $\varepsilon_i^{P-Q,m}(t_1)$ είναι τα σφάλματα πολλαπλής διαδρομής και θορύβου και $N_i^{PQ,m}(t_1)$ είναι η ακέραιη ασάφεια (integer ambiguity) για τη συγκεκριμένη διαφορά.

Διπλές Διαφορές

Η διπλές διαφορές (double differences) υπολογίζονται ως η διαφορά μεταξύ των απλών διαφορών που λαμβάνονται για δύο διαφορετικούς δορυφόρους, παρατηρούμενους από δύο διαφορετικούς δέκτες. Η διπλή διαφορά εξαλείφει επιπλέον τα σφάλματα της ιονόσφαιρας και του δέκτη, αφήνοντας μόνο τα σφάλματα που σχετίζονται με την τροχιά του δορυφόρου και τα σφάλματα πολλαπλής διαδρομής (multipath) (Jia et al., 2016).

$$DD_{i-j}^{PQ,m}(t_1) = \lambda_m^{-1} \left(\varepsilon_{i-j}^{P-Q,m}(t_1) + N_{i-j}^{P-Q,m}(t_1) \right)$$
(4)

Όπου στην εξίσωση (4), $DD_{i-j}^{PQ,m}(t_1)$ είναι η διπλή διαφορά μεταξύ των δορυφόρων i και j, μεταξύ των δεκτών P και Q στη συχνότητα , $\varepsilon_{i-j}^{P-Q,m}(t_1)$ περιλαμβάνει τα σφάλματα πολλαπλής διαδρομής και θορύβου και $N_{i-j}^{P-Q,m}(t_1)$ είναι η διαφορά ακέραιης ασάφειας.

<u>Τριπλές Διαφορές</u>

Οι τριπλές διαφορές (triple differences) υπολογίζονται ως η διαφορά των διπλών διαφορών που λαμβάνονται σε διαδοχικές εποχές (epochs). Η τριπλή διαφορά εξαλείφει την ασάφεια των ακέραιων κύκλων (integer ambiguity) και εντοπίζει την ολίσθηση κύκλων με τη σύγκριση των διαφορών σε συνεχόμενες χρονικές στιγμές. Αυτό καθιστά τις τριπλές διαφορές ιδιαίτερα αποτελεσματικές για τον εντοπισμό απότομων αλλαγών στα δεδομένα, όπως η ολίσθηση κύκλων (Jia et al., 2016).

$$TD_{i-j}^{PQ,m}(t_{2-1}) = \lambda_m^{-1} \left(\varepsilon_{i-j}^{P-Q,m}(t_{2-1}) \right)$$
(5)

Όπου στην εξίσωση (5) $TD_{i-j}^{PQ,m}(t_{2-1})$ είναι η τριπλή διαφορά μεταξύ των δορυφόρων i και j, που παρατηρούνται από τους δέκτες P και Q στη συχνότητα m, υπολογισμένη μεταξύ των εποχών t_1 και t_2 και $\varepsilon_{i-j}^{P-Q,m}(t_{2-1})$ είναι τα σφάλματα πολλαπλής διαδρομής και θορύβου για τους δορυφόρους i και j.

Οι απλές, διπλές και τριπλές διαφορές παρέχουν μια ιεραρχική προσέγγιση για την ανίχνευση και τη διόρθωση της ολίσθησης κύκλων, επιτρέποντας την απομόνωση και την ανάλυση των χαρακτηριστικών εκείνων των δεδομένων που υποδεικνύουν την παρουσία τέτοιων σφαλμάτων. Ειδικά η τριπλές διαφορές είναι εξαιρετικά αποτελεσματικές για την αναγνώριση μικρών ολισθήσεων κύκλου, που μπορεί να μην εντοπίζονται από τις απλές ή διπλές διαφορές.

2.4.3 Άλλες μέθοδοι

Αλγόριθμος Forward and Backward Moving Window Averaging (FBMWA)

Ο αλγόριθμος Forward and Backward Moving Window Averaging (FBMWA) αποτελεί μια μέθοδο για την ανίχνευση της ολίσθησης κύκλων (cycle slips) στις μετρήσεις GNSS, η οποία χρησιμοποιείται κυρίως σε εφαρμογές μετ-επεξεργασίας. Ο αλγόριθμος λειτουργεί με τη διαδικασία εξομάλυνσης σε δύο κατευθύνσεις, προς τα εμπρός και προς τα πίσω, για έναν καθορισμένο αριθμό χρονικών στιγμών (epochs). Αυτή η διπλής κατεύθυνσης προσέγγιση ενισχύει την ικανότητα του αλγορίθμου να μειώνει τον θόρυβο στις μετρήσεις, καθιστώντας τον ιδιαίτερα αποτελεσματικό στην ανίχνευση των ολισθήσεων κύκλων. Η αρχή του FBMWA είναι ότι πραγματοποιεί εξομάλυνση των διαφορών φάσης στις μετρήσεις σε δύο κατευθύνσεις για τον υπολογισμό των ολισθήσεων κύκλων. Ο αλγόριθμος των εποχών για τη βέλτιστη ανίχνευση των ολισθήσεων (Hieu et al., 2014).

Η βασική εξίσωση που περιγράφει τον αλγόριθμο είναι:

$$\Delta \Phi = \frac{1}{n} \sum_{i=1}^{n} \left(\varphi_i^{forward} + \varphi_i^{backward} \right) \tag{6}$$

Όπου $\Delta \phi$ είναι η διαφορά φάσης, $\varphi_i^{forward}$ και $\varphi_i^{backward}$ είναι οι μετρήσεις φάσης προς τα εμπρός και προς τα πίσω αντίστοιχα και *n* είναι ο αριθμός των εποχών.

<u>Αλγόριθμος Kalman</u>

Ο αλγόριθμος Kalman αποτελεί έναν από τους πιο διαδεδομένους αλγόριθμους για την ανίχνευση και διόρθωση των ολισθήσεων κύκλων (cycle slips) σε μετρήσεις GNSS. Χρησιμοποιείται για την εκτίμηση της κατάστασης ενός συστήματος που εξελίσσεται με το χρόνο και υπόκειται σε τυχαίο θόρυβο. Ο αλγόριθμος βασίζεται στη συνεχή εκτίμηση των παραμέτρων του συστήματος και την προσαρμογή της εκτίμησης με βάση τα νέα δεδομένα που λαμβάνονται. Στην περίπτωση των GNSS, χρησιμοποιείται για να ανιχνεύσει σφάλματα στις μετρήσεις, όπως η ολίσθηση κύκλων, συνδυάζοντας δυναμικές προβλέψεις με τις μετρήσεις σε πραγματικό χρόνο. Ο Kalman λειτουργεί με δύο βασικά στάδια: την πρόβλεψη (prediction) και την ενημέρωση (update). Στο πρώτο στάδιο, το σύστημα προβλέπει την επόμενη κατάσταση με βάση το τρέχον μοντέλο, ενώ στο δεύτερο στάδιο η πρόβλεψη βελτιώνεται με βάση τα δεδομένα που λαμβάνονται (Hieu et al., 2014).

Η μαθηματική μορφή του αλγορίθμου είναι ως εξής:

Πρόβλεψη κατάστασης:

$$x_{k|k-1} = F_{k,k-1}x_{k-1|k-1} + B_{k-1}u_{k-1}$$
(7)

Πρόβλεψη διακύμανσης σφάλματος:

$$P_{k|k-1} = F_{k,k-1}P_{k-1|k-1}F_{k,k-1}^T + G_{k-1}Q_{k-1}G_{k-1}^T$$
(8)

Ενημέρωση μετρήσεων (με την εισαγωγή νέων δεδομένων):

$$K_k = P_{k|k-1} H_k^T (H_k P_{k|k-1} H_k^T + R_k)^{-1}$$
(9)

$$x_{k|k} = x_{k|k-1} + K_k(y_k - H_k x_{k|k-1})$$
(10)

$$P_{k|k} = P_{k|k-1} - K_k H_k P_{k|k-1} \tag{11}$$

Polynomial Fitting

Ο αλγόριθμος της πολυωνυμικής προσαρμογής (Polynomial Fitting) είναι μια μέθοδος που χρησιμοποιείται ευρέως για την ανίχνευση της ολίσθησης κύκλων στις μετρήσεις φάσης φορέα των GNSS. Αυτή η μέθοδος είναι απλή και εύκολη στην προγραμματιστική εφαρμογή, αλλά επηρεάζεται από τα σφάλματα των παρατηρήσεων και τους ρυθμούς δειγματοληψίας (Wang et al.,2016).

Το μοντέλο της πολυωνυμικής προσαρμογής περιγράφεται από την ακόλουθη εξίσωση:

$$\tilde{u}_i = a_0 + a_1(t_1 - t_0) + a_2(t_1 - t_0)^2 + \dots + a_n(t_i - t_0)^n$$
(12)

Αφού γίνουν οι πρώτες παρατηρήσεις και υπολογιστούν οι συντελεστές, η μέθοδος μπορεί να χρησιμοποιηθεί για την πρόβλεψη των μελλοντικών τιμών φάσης. Εάν οι παρατηρηθείσες και προβλεπόμενες τιμές αποκλίνουν σημαντικά, μπορεί να υπάρχει ολίσθηση κύκλων.

2.5 Διαθέσιμα λογισμικά για τον εντοπισμό ολίσθησης κύκλων

<u>G-Nut/Anubis</u>

To G-Nut/Anubis είναι ένα λογισμικό ανοικτού κώδικα που τρέχει σε λογισμικό Linux, αναπτύχθηκε από το Geodetic Observatory Pecny (GOP) στο Research Institute of Geodesy, Topography and Cartography (RIGTC) της Τσεχίας, με στόχο την ποιοτική και ποσοτική ανάλυση δεδομένων GNSS. Η ανάπτυξή του ξεκίνησε το 2011, και έχει εξελιχθεί σε ένα εργαλείο για τον έλεγχο της ποιότητας των δεδομένων, την ανίχνευση ολισθήσεων κύκλων (cycle slips) και τη διαχείριση παρατηρήσεων GNSS από συστοιχίες δορυφόρων, όπως GPS, Galileo, BeiDou και GLONASS. Για την εύρεση της ολίσθησης κύκλων χρησιμοποιεί την μέθοδο Melbourne-Wübbena η οποία εντοπίζει απότομες αλλαγές στις φάσεις των σημάτων GNSS (Vaclavovic et al.,2016).

<u>TEQC</u>

To TEQC (Toolkit for GPS/GLONASS Data Editing, Quality Checking, and Translation) αναπτύχθηκε από τη UNAVCO το 1996 και αποτέλεσε ένα βασικό εργαλείο για την επεξεργασία, τη μετάφραση και τον ποιοτικό έλεγχο δεδομένων GNSS. Χρησιμοποιείται ευρέως για την ανίχνευση ολίσθησης κύκλων (cycle slips), την ανάλυση πολλαπλών διαδρομών (multipath) και την αξιολόγηση της ποιότητας των δεδομένων GNSS. Χρησιμοποιείται για τον εντοπισμό και την επεξεργασία σφαλμάτων στις μετρήσεις, με ιδιαίτερη έμφαση στη διόρθωση της ολίσθησης κύκλων (cycle slips). Η ανίχνευση της ολίσθησης κύκλων βασίζεται στον υπολογισμό του ρυθμού αλλαγής της καθυστέρησης της ιονόσφαιρας (IOD -Ionospheric Delay) (Estey & Meertens, 1999).

Λογισμικό σε Matlab για την ανίχνευση ολίσθησης κύκλων σε GPS δέκτες

Το MATLAB λογισμικό για την επεξεργασία των cycle slips στο GPS παρουσιάστηκε από τον Zhen Dai το 2012. Το λογισμικό αυτό επικεντρώνεται στην ανίχνευση και διόρθωση των cycle slips για τα σήματα GPS L1 και L2. Υποστηρίζει τη χρήση αλγορίθμων για επεξεργασία σε πραγματικό χρόνο. Το λογισμικό επιτρέπει στον χρήστη να ρυθμίζει παραμέτρους αλγορίθμων και να προσθέτει συνθετικά cycle slips για σκοπούς δοκιμής. Χρησιμοποιεί τις μεθόδους High-Order and Time-Difference Method και Polyominal Fitting για την ανίχνευση της ολίσθησης κύκλων. Για τη βελτίωση της ανίχνευσης των cycle slips, συνδυάζοντας μεθόδους φάσης και κώδικα. Οι μετρήσεις Doppler ενσωματώνονται επίσης καθώς είναι λιγότερο ευαίσθητες στην ολίσθηση κύκλων (Dai, 2012).

Κατά τη διάρκεια της εκπόνησης της παρούσας πτυχιακής, το λογισμικό χρησιμοποιήθηκε για την επαλήθευση των αποτελεσμάτων που προέκυψαν από το λογισμικό που αναπτύχθηκε στο πλαίσιο της μελέτης. Ωστόσο, το λογισμικό αυτό σε κάποιες περιπτώσεις αποδείχθηκε αναξιόπιστο, καθώς τα αποτελέσματα που παρήχθησαν δεν ήταν συνεπή με τις παραμέτρους που είχαν οριστεί εξ αρχής.

3 ΠΑΡΟΥΣΙΑΣΗ ΛΟΓΙΣΜΙΚΟΥ ΠΟΥ ΑΝΑΠΤΥΧΘΗΚΕ

3.1 Εισαγωγή στο Matlab και στο Λογισμικό

Το κεφάλαιο αυτό παρουσιάζει το λογισμικό που αναπτύχθηκε για την ανάλυση της ποιότητας των δεδομένων GNSS χρησιμοποιώντας το περιβάλλον MATLAB. Το MATLAB είναι ένα ισχυρό εργαλείο που χρησιμοποιείται ευρέως για την ανάλυση δεδομένων, τον προγραμματισμό και την επίλυση προβλημάτων μηχανικής και επιστήμης. Η γλώσσα προγραμματισμού MATLAB παρέχει ένα φιλικό προς τον χρήστη περιβάλλον με εύκολη πρόσβαση σε μια ευρεία γκάμα λειτουργιών για ανάλυση δεδομένων, οπτικοποίηση και υπολογιστική μαθηματική υποστήριζη.

Σημαντικό εργαλείο του MATLAB για την επεξεργασία δεδομένων GNSS είναι το Navigation Toolbox. Το Navigation Toolbox προσφέρει αλγόριθμους και εργαλεία για την προσομοίωση, την ανάλυση και την οπτικοποίηση δεδομένων πλοήγησης. Περιλαμβάνει λειτουργίες για την επεξεργασία δεδομένων από διαφορετικά συστήματα δορυφορικής πλοήγησης και παρέχει εργαλεία για την ανάλυση της απόδοσης των συστημάτων αυτών, όπως ο υπολογισμός της ακρίβειας θέσης.

Το λογισμικό που αναπτύχθηκε στο πλαίσιο αυτής της εργασίας εκμεταλλεύεται τις δυνατότητες του MATLAB και του Navigation Toolbox για την επεξεργασία και την ανάλυση της ποιότητας των δεδομένων GNSS από αρχεία RINEX. Το λογισμικό αυτό προσφέρει δύο κύριες λειτουργίες, την ανάλυση και οπτικοποίηση των τιμών του σηματοθορυβικού λόγου (SNR Analysis) και την ανίχνευση ολίσθησης κύκλων (Cycle Slip Detection). Είναι σχεδιασμένο να είναι φιλικό προς τον χρήστη, παρέχοντας διαδραστικά μενού για την επιλογή αρχείων και παραμέτρων ανάλυσης.

3.2 Πηγαίος κώδικας και εκτέλεση λογισμικού

Η ονομασία του λογισμικού είναι GNSS_data_Quality_Analyzer. Το σύνολο του πηγαίου κώδικα δίνεται στο ΠΑΡΑΡΤΗΜΑ Α΄. Στη συνέχεια του κεφαλαίου παρουσιάζονται αναλυτικά οι λειτουργίες του λογισμικού. Για την εκκίνηση του λογισμικού στο περιβάλλον Matlab, ο χρήστης πρέπει να επιλέζει το πλήκτρο Run (Εικόνα 3.1).

MATLAB R2024a - academic use		- 0 ×
HOME PLOTS APPS	EDITOR PUBLISH VIEW	🕌 💰 🖄 🎼 🐨 🖙 🤁 🕐 🛛 Search Documentation 🔗 🌲 CHARALABOS 🕶
🛃 👵 🛟 🗁 🖾 Find F	es 🛃 🚺 🖏 Variable * 🚆 🕼 Analyze Code 📰 🕲 Preferences 🖓 🔞 Community	
New New New Open 10 Come	a Import Clean a Save Workspace Favorites 🔗 Run and Time Layout 🖓 Save Push. Add-Ons Help 🕈 Request Support	
Script Live Script • •	🔪 Data Data 😥 Clear Workspace 👻 👻 🔯 Clear Commands 👻 😴 🖓 Clear MATLAB	
FILE	VARIABLE CODE ENVIRONMENT RESOURCES	A
← → C → Users + m	amp + Desktop + RINEX	A to Materia
Name e	Childs Date Ousity Analyzer m V 4	U vongace U
1154352a 20o		Name A Value
1154352b.20e	2 clear;	
11093521.20e	3 close all;	
GNSS_Data_Quality_Analyzer.m	4	
HALN1540.23o	5 % Συνάρτηση για φιλτράρισμα δεδομένων	
testddd0_Converted_into_RNX_3_0 (1)	5 Subtraction filtereducta = extractanonilteruda(data, sat)	
TM0600GER_U_20240900000_01D_305	<pre>8 filteredData = data(data.SatelliteID == sat, :);</pre>	
UWA100GRC_R_20240010000_01D_305	9 - end	
UWA100GRC_R_20240900000_01D_305	10	
	11 % Συνάρτηση για την εκτύπωση των αποτελεσμάτων σε figure	
	12 Function statterbata(alibata, aliselectedofumis, alisats, alienss)	
	14	
	15 for setIndex = 1:2	
	<pre>16 data = allData{setIndex};</pre>	
	<pre>17 selectedColumns = allSelectedColumns(setIndex);</pre>	
	10 satnumber = allsats(setIndex); % Anobnysuukvo (altopo) 19 selectedGNSS = allGNSS(setIndex): % Anobnysuukvo GNSS	
	20	
	21 % Προσδιορισμός του προθέματος με βάση το GNSS	
	22 switch selectedGNSS	
	23 case 'GPS'	
	24 prefix = 0 ;	
	26 prefix = 'R';	
	27 case 'Galileo'	
	<pre>28 prefix = 'E';</pre>	*
		,
	Command Window	
	New to MAILAB/ see resources for <u>cuetting started</u> .	Â
	ją >>	
Uetans V		
Select a file to view details		
Panada		

Εικόνα 3.1: Εκκίνηση λογισμικού

Μετά την εκκίνηση του λογισμικού, εκτελείται η εντολή uigetfile (Εικόνα 3.2) και εμφανίζεται ένα παράθυρο περιήγησης αρχείων των Windows, το οποίο ζητά από τον χρήστη να επιλέξει το αρχείο RINEX για την επεξεργασία των δεδομένων (Εικόνα 3.3). Αφού πραγματοποιηθεί επιλογή του αρχείου, η εντολή uigetfile αποθηκεύει το όνομα του αρχείου καθώς και τη διαδρομή του (path) για την εύρεση του αρχείου.

Για τη σωστή λειτουργία του λογισμικού, το αρχείο που πρέπει να επιλεγεί είναι αυτό που περιέχει τις παρατηρήσεις των δορυφόρων (RINEX observation file). Η ύπαρξη αρχείου εφημερίδων (RINEX navigation file) δεν απαιτείται καθώς το λογισμικό δεν χρησιμοποιεί στοιχεία των εφημερίδων των δορυφόρων.

```
% Επιλογή αρχείου απο τον χρήστη
[file, path] = uigetfile('*.*', 'Select a RINEX file');
Εικόνα 3.2: Πηγαίος κώδικας για την εντολή uigetfile
```


Ανάπτυξη λογισμικού για την αξιολόγηση της ποιότητας γεωδαιτικών μετρήσεων GNSS

Εικόνα 3.3: Παράθυρο για την επιλογή αρχείου Rinex

Σε περίπτωση που ακυρωθεί η επιλογή αρχείου εμφανίζεται στον χρήστη μήνυμα ενημέρωσης μέσω ξεχωριστού παραθύρου (βλ. κώδικα Εικόνας 3.4), όπως φαίνεται στην Εικόνα 3.5.

```
% Έλεγχος αν έχει ακυρωθεί η επιλογή
if isequal(file, 0)
msgbox('User canceled file selection.', 'No Selection', 'warn');
return;
end
```

Εικόνα 3.4: Πηγαίος κώδικας για την ακύρωση επιλογής αρχείου

Εικόνα 3.5: Παράθυρο ενημέρωσης χρήστη για την ακύρωση αρχείου

Στην συνέχεια, με την χρήση της εντολής menu (Εικόνα 3.6) εμφανίζεται ένα ξεχωριστό παράθυρο μέσω του οποίου δίνεται η δυνατότητα στον χρήστη να επιλέξει ανάμεσα σε δυο εφαρμογές, την SNR Analysis και την Cycle Slips Detection (Εικόνα 3.7).

```
% Επιλογή του task
Epilogh = menu('Choose an option:', 'SNR Alanysis', 'Cycle Slip Detection');
```

Εικόνα 3.6 Πηγαίος κώδικας για την εντολή menu

Εικόνα 3.7: Παράθυρο επιλογής εφαρμογής

Ανάλογα με την επιλογή που κάνει ο χρήστης, χρησιμοποιείται η εντολή switch, η οποία είναι μια συνθηματική εντολή. Αυτή η εντολή χρησιμοποιείται για την εκτέλεση μιας ενέργειας όταν ικανοποιείται μια συγκεκριμένη συνθήκη. Στην προκειμένη περίπτωση, υπάρχουν δύο cases: το SNR Analysis και το Cycle Slip Detection. Ανάλογα με την επιλογή του χρήστη, το πρόγραμμα προχωρά στο αντίστοιχο case, το οποίο περιέχει ξεχωριστό κώδικα για τις δύο αυτές εφαρμογές. Σε περίπτωση που ο χρήστης ακυρώσει την επιλογή της εφαρμογής, εμφανίζεται παράθυρο το οποίο τον ενημερώνει για την ακύρωση όπως φαίνεται στις Εικόνες 3.8 και 3.9.

```
if Epilogh == 0
    msgbox('User canceled task selection.', 'No Selection', 'warn');
    return;
end
```

Εικόνα 3.8: Πηγαίος κώδικας για την ακύρωση της επιλογής εφαρμογής

No Sel	ection	∓ △ - ×
A	User canceled tas	k selection.
	ОК	

Εικόνα 3.9: Παράθυρο ενημέρωσης για την ακύρωση επιλογής εφαρμογής

3.3 Case 1: Snr Analysis

Σε περίπτωση επιλογής της εφαρμογής SNR Analysis, αρχικά, με τη χρήση της συνάρτησης fullfile και των δεδομένων που αποθηκεύτηκαν κατά την επιλογή του αρχείου RINEX, δημιουργείται το μονοπάτι προς το αρχείο και μέσω της εντολής rinexread το λογισμικό διαβάζει το αρχείο (Εικόνα 3.10).

```
% Path του αρχείου
filePath = fullfile(path, file);
% Διαβάζει το Rinex
data = rinexread(filePath);
Εικόνα 3.10: Πηγαίος κώδικας για την ανάγνωση του αρχείου RINEX
```

Στη συνέχεια, σε έναν βρόχο που εκτελείται δύο φορές, καθώς απαιτείται ένα ζεύγος δορυφόρων για την εκτέλεση της ανάλυσης SNR, χρησιμοποιείται η εντολή menu για την εμφάνιση ενός παραθύρου επιλογών. Αυτό το παράθυρο επιτρέπει την επιλογή του συστήματος GNSS όπως φαίνεται στις Εικόνες 3.11 και 3.12. Σημειώνεται ότι, τα GNSS που δίνονται προς επιλογή είναι αυτά που περιέχονται στο αρχείο RINEX που επέλεξε ο χρήστης.

```
for setIndex = 1:2
    try
        % Εμφάνιση διαθέσιμων GNSS επιλογών
        gnssOptions = fieldnames(data);
        gnssChoice = menu('Choose a GNSS:', gnssOptions);
```


Εικόνα 3.12: Παράθυρο επιλογής GNSS

Σε περίπτωση που ο χρήστης ακυρώσει την επιλογή GNSS, εμφανίζεται παράθυρο το οποίο ενημερώνει τον χρήστη για την ακύρωση όπως φαίνεται στις Εικόνες 3.13 και 3.14.

```
% Ἑλεγχος οτί ο χρήστης ακύρωσε την επιλογή του GNSS
if gnssChoice == 0
    msgbox('User canceled GNSS selection.', 'No Selection', 'warn');
    return;
end
```


Εικόνα 3.14: Παράθυρο ενημέρωσης για την ακύρωση επιλογής GNSS

Αφού πραγματοποιηθεί η επιλογή του GNSS, μέσω της εντολής menu και ενός νέου παραθύρου, ζητείται από τον χρήστη να επιλέξει τον δορυφόρο (Εικόνες 3.15 και 3.16). Σημειώνεται ότι, οι δορυφόροι που δίνονται προς επιλογή είναι αυτοί που περιέχονται στο αρχείο RINEX που επέλεξε ο χρήστης.

% Εμφάνιση διαθέσιμων δορυφόρων για το επιλεγμένο GNSS satOptions = unique(data.(selectedGNSS).SatelliteID); % Μετατροπή των επιλεγμένων δορυφόρων σε cell array για να % εμφανίζεται στον χρήστη σε menu satOptionsStr = cellstr(num2str(satOptions));

satChoice = menu('Choose a satellite:', satOptionsStr);

Εικόνα 3.15: Πηγαίος κώδικας για την επιλογή των δορυφόρων

MENU	∓ △ - ×
Choose	a satellite:
3	
5	
9	
24	
25	
31	

Εικόνα 3.16: Παράθυρο για την επιλογή του δορυφόρου

Σε περίπτωση που ο χρήστης ακυρώσει την επιλογή δορυφόρου, εμφανίζεται παράθυρο το οποίο ενημερώνει τον χρήστη για την ακύρωση όπως φαίνεται στις Εικόνες 3.17 και 3.18.

```
% Έλεγχος αν ο χρήστης έχει ακυρώσει την επιλογή
if satChoice == 0
msgbox('User canceled satellite selection.', 'No Selection', 'warn');
return;
end
Εικόνα 3.17: Πηγαίος κώδικας για την ακύρωση της επιλογής δορυφόρων
```


Εικόνα 3.18: Παράθυρο ενημέρωσης για την ακύρωση επιλογής δορυφόρου

Αφού γίνει η επιλογή του δορυφόρου, τα δεδομένα φιλτράρονται μέσω της συνάρτησης filteredData, η οποία έχει οριστεί στην αρχή του κώδικα (Εικόνα 3.19). Στη συνέχεια, με τη χρήση της εντολής listdlg, ο χρήστης μπορεί να επιλέξει τα σήματα που θέλει να συγκρίνει, από μια λίστα που περιέχει στήλες με πληροφορίες σχετικά με τις τιμές SNR του σήματος. Οι στήλες αυτές ξεκινούν με το γράμμα "S" και ακολουθούν την κωδικοποίηση που χρησιμοποιείται για το SNR από το πρότυπο RINEX για την έκδοση 3.05 (Ι. Romero,2020). Εάν δεν υπάρχουν διαθέσιμες στήλες που να πληρούν τα κριτήρια, εμφανίζεται μήνυμα που ενημερώνει τον χρήστη ότι δεν υπάρχουν διαθέσιμες στήλες για επιλογή και η διαδικασία τερματίζεται (Εικόνες 3.20 και 3.21).

```
% Συνάρτηση για φιλτράρισμα δεδομένων
function filteredData = extractAndFilterData(data, sat)
% Φιλτράρει τα δεδομένα με βάση την επιλογή του δορυφόρου
filteredData = data(data.SatelliteID == sat, :);
end
```

Εικόνα 3.19: Πηγαίος κώδικας function filteredData

```
% Φιλτράρισμα των δεδομένων ανάλογα με τις επιλογές του χρήστη
filteredData = extractAndFilterData(data.(selectedGNSS), sat);
% Εμφάνιση διαθέσιμων στηλών για το επιλεγμένο GNSS
columnOptions = fieldnames(filteredData);
% Φιλτράρισμα στηλών που ξεκινούν με "S" και έχουν 3 χαρακτήρες
validColumns = columnOptions(startsWith(columnOptions, 'S') & strlength(columnOptions) == 3);
% Ελεγχος αν υπάρχουν έγκυρες στήλες
if isempty(validColumns)
    disp('No valid columns starting with "S" and having 3 characters.');
    return;
end
% Πολλαπλή επιλογή στηλών
columnIndices = listdlg('ListString', validColumns, 'PromptString', 'Choose frequency bands:', 'SelectionMode', 'multiple');
```

Εικόνα 3.20: Πηγαίος κώδικας για την εμφάνιση των διαθέσιμων στηλών σε λίστα

×
Choose frequency bands:
S1X S8X
Select all
OK Cancel

Εικόνα 3.21: Λίστα για την επιλογή του σήματος για SNR Analysis

Σε περίπτωση που ο χρήστης ακυρώσει την επιλογή δορυφόρου, εμφανίζεται παράθυρο το οποίο ενημερώνει τον χρήστη για την ακύρωση (Εικόνες 3.22 και 3.23.)

Εικόνα 3.22: Πηγαίος κώδικας για την ακύρωση επιλογής σήματος

Εικόνα 3.23: Παράθυρο ενημέρωσης για την ακύρωση επιλογής σήματος

Κλείνοντας το βρόχο for, εντός του βρόχου περιλαμβάνεται η συνθήκη try-catch, η οποία χρησιμοποιείται για τη διαχείριση πιθανών σφαλμάτων κατά την εκτέλεση της διαδικασίας. Συγκεκριμένα, το τμήμα try εκτελεί τον κώδικα κανονικά, αλλά αν προκύψει κάποιο σφάλμα (error), η εκτέλεση δεν διακόπτεται. Αντίθετα, η ροή του προγράμματος περνά στο τμήμα catch (βλ. Εικόνα 3.24), όπου εμφανίζεται μήνυμα που ενημερώνει τον χρήστη για το σφάλμα και τον λόγο που το προκάλεσε.

```
catch exception
    fprintf('Error reading or processing file: %s\n', file);
    disp(exception.message)
    end
end
```

Εικόνα 3.24: Πηγαίος κώδικας για το τμήμα catch

Μέσω της εντολής questdlg γίνεται η ερώτηση στον χρήστη για την αποθήκευση των επιλεγμένων στοιχείων σε ένα αρχείο excel (Εικόνες 3.25 και 3.26).

```
% Ερώτηση αν ο χρήστης θέλει να αποθηκεύσει τα δεδομένα σε excel
extractFiles = questdlg('Do you want to extract the selected data sets to Excel files?', 'Save Files', 'Yes', 'No', 'No');
if isequal(extractFiles, 'Yes')
  % Αποθηκέυη τα δεδομένα στο excel
  for setIndex = 1:2
     excelFileName = sprintf('Set_%d_Data.xlsx', setIndex);
     writetimetable(allData{setIndex}, excelFileName);
     fprintf('Set %d data saved to Excel: %s\n', setIndex, excelFileName);
    end
end
```

Εικόνα 3.25: Πηγαίος κώδικας για την αποθήκευση των δεδομένων σε αρχείο excel

Εικόνα 3.26: Παράθυρο ερώτησης για την αποθήκευση των δεδομένων σε αρχείο excel

Τέλος, ο κώδικας του πρώτου case κλείνει με την εμφάνιση δυο γραφημάτων με τα επιλεγμένα σήματα του κάθε δορυφόρου έτσι ώστε να πραγματοποιηθεί η σύγκριση μεταξύ τους. Αυτό πραγματοποιείται με την συνάρτηση scatterData όπου έχει οριστεί στην αρχή του κώδικα (Εικόνες 3.27 και 3.28).

Εικόνα 3.27 Πηγαίος κώδικας function για την εμφάνιση των διαγραμμάτων

Εικόνα 3.28 Γραφήματα που παράγει το λογισμικό
3.4 Case 2: Cycle Slip Detection

Σε περίπτωση επιλογής της εφαρμογής Cycle Slip Detection, η αρχική διαδικασία είναι παρόμοια με αυτή της εφαρμογής SNR Analysis. Αφού επιλεγεί το αρχείο, η συνάρτηση fullfile δημιουργεί το μονοπάτι προς το επιλεγμένο αρχείο Rinex (Εικόνα 3.29).

```
case 2
% Κώδικας για τα Cycle Slips
% Path του αρχείου
filePath = fullfile(path, file);
```

Εικόνα 3.29: Πηγαίος κώδικας για την συνάρτηση fullfile

Μέσα στη συνθήκη try, η συνάρτηση rinexread διαβάζει το αρχείο RINEX και εμφανίζει ένα παράθυρο για την επιλογή του συστήματος GNSS από τον χρήστη (Εικόνες 3.30 και 3.31). Σημειώνεται ότι, τα GNSS που δίνονται προς επιλογή είναι αυτά που περιέχονται στο αρχείο RINEX που επέλεξε ο χρήστης. Η συγκεκριμένη εφαρμογή καλύπτει την ανάλυση δεδομένων από τα συστήματα GNSS, GPS, Galileo και BeiDou. Στη συνέχεια, μέσω ενός βρόγχου if, ελέγχεται αν ο χρήστης έχει ακυρώσει την επιλογή του συστήματος GNSS. Σε περίπτωση που η επιλογή έχει ακυρωθεί, εμφανίζεται ένα παράθυρο με μήνυμα που ενημερώνει τον χρήστη ότι η διαδικασία επιλογής έχει ακυρωθεί (Εικόνα 3.32). Αφού πραγματοποιηθεί αυτός ο έλεγχος και δεν έχει τερματιστεί η εφαρμογή λόγω ακύρωσης της επιλογής, το λογισμικό αποθηκεύει το επιλεγμένο σύστημα GNSS.

```
try
  % Διαβάζει το αρχείο Rinex
  data = rinexread(filePath);
  % Δίνει τα διαθέσιμα GNSS για επιλογή από τον χρήστη
  gnssOptions = fieldnames(data);
  gnssOptions = intersect(gnssOptions, {'GPS', 'Galileo', 'BeiDou'});
  gnssChoice = menu('Choose a GNSS:', gnssOptions);
  % Έλεγχος αν έχει ακυρωθεί η επιλογή
  if gnssChoice == 0
    msgbox('User canceled GNSS selection.', 'No Selection', 'warn');
    return;
  end
  % To επιλεγμένο GNSS
  selectedGNSS = gnssOptions{gnssChoice};
```

Εικόνα 3.30: Πηγαίος κώδικας για την επιλογή GNSS

MENU	∓ △ − ×
Choose	e a GNSS:
BeiDo	u
GPS	
Galile	0

Ανάπτυξη λογισμικού για την αξιολόγηση της ποιότητας γεωδαιτικών μετρήσεων GNSS

Εικόνα 3.32: Παράθυρο για την επιλογή GNSS

No Sel	ection	푸		- >	ζ
A	User canceled GNSS	sele	ecti	on.	
	ОК				

Εικόνα 3.31: Παράθυρο ενημέρωσης για την ακύρωση επιλογής GNSS

Στη συνέχεια, εμφανίζεται ένα παράθυρο στον χρήστη για την επιλογή δορυφόρου (Εικόνες 3.33 και 3.34). Σημειώνεται ότι, οι δορυφόροι που δίνονται προς επιλογή είναι αυτοί που περιέχονται στο αρχείο RINEX που επέλεξε ο χρήστης. Μετά την επιλογή, το λογισμικό ελέγχει αν ο χρήστης έχει ακυρώσει τη διαδικασία. Εφόσον η επιλογή δεν έχει ακυρωθεί, το λογισμικό αποθηκεύει τον επιλεγμένο δορυφόρο. Σε περίπτωση ακύρωσης, εμφανίζεται παράθυρο που ενημερώνει τον χρήστη για την ακύρωση της επιλογής (Εικόνα 3.35).

```
% Δίνει τους διαθέσιμους δορυφόρους για επιλογή από τον χρήστη
satOptions = unique(data.(selectedGNSS).SatelliteID);
satOptionsStr = cellstr(num2str(satOptions));
satChoice = menu('Choose a satellite:', satOptionsStr);
% Έλεγχος αν έχει ακυρωθεί η επιλογή
if satChoice == 0
msgbox('User canceled satellite selection.', 'No Selection', 'warn');
return;
end
% Ο επιλεγμένος δορυφόρος
sat = satOptions(satChoice);
```

Εικόνα 3.33: Πηγαίος κώδικας για την επιλογή δορυφόρου

MENU	∓ △ - ×
Choose	a satellite:
2	
3	
4	
5	
6	
7	
9	
16	
30	

Εικόνα 3.35: Παράθυρο για την επιλογή του δορυφόρου

No Selection	∓ △ - ×
User canceled	satellite selection.
0	к

Εικόνα 3.34:Παράθυρο ενημέρωσης για την ακύρωση επιλογής δορυφόρου

Ακολουθεί το φιλτράρισμα των δεδομένων με βάση τις επιλογές του χρήστη, έτσι ώστε να εμφανιστούν σε παράθυρο οι διαθέσιμες στήλες που ξεκινούν με το γράμμα "L", εμπεριέχουν δεδομένα και αντιστοιχούν στις μετρήσεις φάσης της φέρουσας συχνότητας. Αφού προσδιοριστούν οι στήλες, εμφανίζονται στον χρήστη μέσω παραθύρου για να πραγματοποιήσει την επιλογή του (Εικόνες 3.36 και 3.37). Σε περίπτωση που δεν υπάρχουν διαθέσιμες στήλες με δεδομένα για να εμφανιστούν, εμφανίζεται ένα παράθυρο που ενημερώνει τον χρήστη ότι δεν υπάρχουν διαθέσιμες στήλες για επιλογή. Επίσης, αν ο χρήστης ακυρώσει την επιλογή των στηλών, εμφανίζεται παράθυρο που τον ενημερώνει για την ακύρωση της επιλογής σημάτων (Εικόνες 3.38 και 3.39).

```
% Φιλτράρει τα δεδομένα με βάση την επιλογή με τη συνάρτηση
% extractAndFilterData
filteredData = extractAndFilterData(data.(selectedGNSS), sat);
% Δείχνει τις διαθέσιμες στήλες για επιλογή από τον χρήστη
columnOptions = fieldnames(filteredData);
maxColumns = length(columnOptions);
validColumns = cell(1, maxColumns);
«Τσεκάρει ποιές στήλες ξεκινάνε με το γράμμα L και έχουν 3 γραμματα
%έτσι ώστε να μας δώσει τις στήλες με τα δεδομένα των συχνοτήτων
count = 0;
for i = 1:maxColumns
    columnName = columnOptions{i};
    if startsWith(columnName, 'L') && strlength(columnName) == 3 && ...
           ~all(ismissing(filteredData.(columnName)))
        count = count + 1;
        validColumns{count} = columnName;
    end
end
validColumns = validColumns(1:count);
if isempty(validColumns)
    msgbox('No valid columns available for selection.', 'No Columns', 'warn');
    return;
end
% Ζητάει από τον χρήστη να επιλέξει τις συχνότητες
columnIndices = listdlg('ListString', validColumns, 'PromptString', 'Choose columns for frequencies:', 'SelectionMode', 'multiple');
```

Εικόνα 3.36: Πηγαίος κώδικας για την επιλογή των στηλών που περιέχουν τις μετρήσεις φάσεις

	×
Choose columns for	
fraguancias:	_
L1C	
12X	
L5X	
Select all	
Canc	e

Εικόνα 3.37: Παράθυρο επιλογής σημάτων

```
% Έλεγχος αν ο χρήστης ακύρωσε την επιλογή
if isempty(columnIndices)
    disp('User canceled column selection.');
    return;
end
```

Εικόνα 3.38: Πηγαίος κώδικας για την ακύρωση της επιλογής

No Co	umns	∓ △ - ×
A	User canceled colum	n selection.
	ОК	

Εικόνα 3.39: Παράθυρο ενημέρωσης για την ακύρωση επιλογής σημάτων

Στις πρώτες γραμμές του κώδικα του λογισμικού έχουν οριστεί τα μήκη κύματος για τα σήμα του κάθε συστήματος GNSS (Εικόνα 3.40). Με βάση τις επιλογές του χρήστη στα προηγούμενα βήματα, οι στήλες δεδομένων πολλαπλασιάζονται με το αντίστοιχο μήκος κύματος του επιλεγμένου συστήματος GNSS (Εικόνα 3.41), προκειμένου να μετατραπούν οι μετρήσεις φάσης σε μονάδες μήκους (m).

```
% factors για κάθε συχνότητα
FrequencyBands.GPS.L1 = 0.190293673;
FrequencyBands.GPS.L2 = 0.244210213;
FrequencyBands.GPS.L5 = 0.254828049;
FrequencyBands.Galileo.L1 = 0.190293673;
FrequencyBands.Galileo.L5 = 0.25481722;
FrequencyBands.Galileo.L6 = 0.234441805;
FrequencyBands.Galileo.L7 = 0.24834937;
FrequencyBands.Galileo.L1 = 0.190293486;
FrequencyBands.BeiDou.L1 = 0.190293486;
FrequencyBands.BeiDou.L5 = 0.254828049;
FrequencyBands.BeiDou.L5 = 0.254828049;
FrequencyBands.BeiDou.L6 = 0.236332465;
FrequencyBands.BeiDou.L7 = 0.24834937;
FrequencyBands.BeiDou.L8 = 0.251547001;
```

Εικόνα 3.40: Μήκη κύματος για κάθε GNSS

```
% Με βάση το επιλεγμένο GNSS και τα ονόματα των συχνοτήτων πολλ/ζει τα σωστά
% FrequencyBands
for i = 1:length(selectedColumns)
   columnName = selectedColumns{i};
   if strcmp(selectedGNSS, 'GPS')
       if startsWith(columnName, 'L1')
            factor = FrequencyBands.GPS.L1;
       elseif startsWith(columnName, 'L2')
            factor = FrequencyBands.GPS.L2;
        elseif startsWith(columnName, 'L5')
           factor = FrequencyBands.GPS.L5;
        else
            error('No multiplication factor found for column: %s', columnName);
       end
   elseif strcmp(selectedGNSS, 'Galileo')
       if startsWith(columnName, 'L1')
            factor = FrequencyBands.Galileo.L1;
       elseif startsWith(columnName, 'L5')
            factor = FrequencyBands.Galileo.L5;
       elseif startsWith(columnName, 'L6')
           factor = FrequencyBands.Galileo.L6;
        elseif startsWith(columnName, 'L7')
            factor = FrequencyBands.Galileo.L7;
        elseif startsWith(columnName, 'L8')
           factor = FrequencyBands.Galileo.L8;
        else
            error('No multiplication factor found for column: %s', columnName);
       end
   elseif strcmp(selectedGNSS, 'BeiDou')
       if startsWith(columnName, 'L1')
            factor = FrequencyBands.BeiDou.L1;
       elseif startsWith(columnName, 'L2')
            factor = FrequencyBands.BeiDou.L2;
       elseif startsWith(columnName, 'L5')
           factor = FrequencyBands.BeiDou.L5;
        elseif startsWith(columnName, 'L6')
            factor = FrequencyBands.BeiDou.L6;
        elseif startsWith(columnName, 'L7')
           factor = FrequencyBands.BeiDou.L7;
        elseif startsWith(columnName, 'L8')
            factor = FrequencyBands.BeiDou.L8;
        else
            error('No multiplication factor found for column: %s', columnName);
       end
   end
   % κάνει τον πολλ/σμό
   dataTable.(columnName) = filteredData.(columnName) * factor;
end
```

Εικόνα 3.41: Πηγαίος κώδικας για την επιλογή του σωστού μήκους κύματος και του πολλ/σμου

Πραγματοποιείται η αφαίρεση ανάμεσα στις στήλες που έχουν πολλαπλασιαστεί με τα μήκη κύματος έτσι ώστε να προκύψει το Ionospheric Residual. Το λογισμικό έχει την δυνατότητα να πραγματοποιήσει την αφαίρεση ανάμεσα σε όλους τους δυνατούς συνδυασμούς ανάμεσα στις επιλεγμένες στήλες. Επίσης κατά την διαδικασία της αφαίρεσης, ελέγχεται αν υπάρχουν κελιά (εποχές) τα οποία δεν εμπεριέχουν δεδομένα και εξαιρούνται από τη διαδικασία (Εικόνα 3.42).

```
% Δίνει όλους τους δυνατούς συνδυασμούς για την αφαίρεση
combinations = nchoosek(1:length(selectedColumns), 2);
numCombinations = size(combinations, 1);
diffColumnNames = cell(1, numCombinations);
for i = 1:numCombinations
    col1 = selectedColumns{combinations(i, 1)};
    col2 = selectedColumns{combinations(i, 2)};
   L1 = dataTable.(col1);
   L2 = dataTable.(col2);
   % Έλεγχος αν υπάρχουν δεδομένα και κάνει την αφαίρεση
    validIndices = ~ismissing(L1) & ~ismissing(L2);
    if any(validIndices)
       diff = NaN(size(L1));
        diff(validIndices) = L1(validIndices) - L2(validIndices);
        diffColumnName = sprintf('%s - %s', col1, col2);
        dataTable.(diffColumnName) = diff;
       diffColumnNames{i} = diffColumnName;
    end
end
% βγάζει τις άδειες τιμές
diffColumnNames = diffColumnNames(~cellfun('isempty', diffColumnNames));
```

Εικόνα 3.42: Πηγαίος κώδικας για την αφαίρεση

Στη συνέχεια υπολογίζονται οι χρονικές διαφορές του Ionospheric Residual έτσι ώστε να προσδιοριστούν οι ολισθήσεις κύκλων. Το λογισμικό υπολογίζει τις διαφορές μεταξύ διαδοχικών γραμμών και αποθηκεύει τις απόλυτες τιμές των αποτελεσμάτων σε έναν νέο πίνακα (Εικόνα 3.43)

```
figure;
% Κάνει την αφαίρεση από γραμμή σε γραμμή
for i = 1:length(diffColumnNames)
    diffColumnName = diffColumnNames{i};
    dIonRes = NaN(tableHeight, 1);
    if ismember(diffColumnName, dataTable.Properties.VariableNames)
        dIonRes(2:end) = dataTable.(diffColumnName)(2:end) -
        dataTable.(['d', diffColumnName]) = abs(dIonRes);
```

Εικόνα 3.43 Πηγαίος κώδικας για τις διαφορές των χρονικών στιγμών

Τα αποτελέσματα του πίνακα ελέγχονται για το αν υπερβαίνουν το καθορισμένο όριο με βάση το οποίο διατυπώνεται η ύπαρξη ολίσθησης κύκλων (cycle slips) (Εικόνα 3.44). Όσα αποτελέσματα υπερβαίνουν το όριο αποθηκεύονται και στη συνέχεια εμφανίζονται στο γράφημα με κόκκινο χρώμα μαζί με τις υπόλοιπες τιμές των χρονικών διαφορών, οι οποίες εμφανίζονται με μπλε χρώμα (Εικόνα 3.45). Το λογισμικό παράγει ένα γράφημα για το Ionospheric Residual (Γράφημα 3.1) και ένα γράφημα για τις χρονικές διαφορές μεταξύ διαδοχικών γραμμών (Γράφημα 3.2).

```
% Έλεγχος των τιμών που ξεπερνούν το όριο
threshold = 0.5;
exceedThreshold = dataTable.(['d', diffColumnName]) > threshold;
dataTable.(['Cycle Slips_', diffColumnName]) = exceedThreshold;
```

Εικόνα 3.44: Πηγαίος κώδικας για τον έλεγχο των τιμών που ξεπερνούν το όριο

FileName = extractBefore(file, 7);

Γράφημα 3.2 Γράφημα που παράγεται από το λογισμικό για τις χρονικές διαφορές του Ionospheric Residual

Τέλος, γίνεται η ερώτηση στον χρήστη αν θέλει να αποθηκεύσει τα αποτελέσματα τα οποία απεικονίζονται και στα διαγράμματα σε αρχείο Excel (Εικόνες 3.46 και 3.47).

% Ρωτάει τον χρήστη για αποθήκευση του αρχείου Excel answer = questdlg('Do you want to save the results to Excel?', 'Save to Excel', 'Yes', 'No', 'Yes');

Εικόνα 3.46: Πηγαίος κώδικας για την ερώτηση αποθήκευσης αποτελεσμάτων σε excel

Εικόνα 3.47: Παράθυρο ερώτησης αποθήκευσης αποτελεσμάτων στο excel

4 ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

Στο παρόν κεφάλαιο, με τη χρήση των δύο λειτουργιών του λογισμικού, SNR Analysis και Cycle Slip Detection, θα παρουσιαστούν συγκριτικές μελέτες που πραγματοποιήθηκαν, συμβάλλοντας στην επαλήθευση της σωστής λειτουργίας του λογισμικού, στην καλύτερη κατανόηση της αξιολόγησης της ποιότητας των γεωδαιτικών μετρήσεων καθώς και στη διερεύνηση της ποιότητας των μετρήσεων διαφόρων δεκτών. Συγκεκριμένα αναλύθηκαν τα δεδομένα τεσσάρων δεκτών: ενός δέκτη RTK, του μόνιμου σταθμού αναφοράς UWA1 του Εργαστηρίου Γεωδαισίας-Τοπογραφίας-GNSS του ΠΑΔΑ, ενός γεωδαιτικού δέκτη μέσου κόστους και ενός δέκτη χαμηλού κόστους.

4.1 Ανάλυση SNR

Όπως αναφέρθηκε στο θεωρητικό υπόβαθρο, το SNR (Signal-to-Noise Ratio) αντιπροσωπεύει τον λόγο της ισχύος του σήματος προς τον θόρυβο που χαρακτηρίζει τις μετρήσεις GNSS. Η ανάλυση επικεντρώνεται στο πώς η ποιότητα των μετρήσεων ανταποκρίνεται στο SNR, ειδικά σε συνθήκες μειωμένης ορατότητας, όπου το σήμα υποβαθμίζεται λόγω της παρουσίας εμποδίων, όπως τα δέντρα. Παράλληλα, εξετάζεται και η ορθή λειτουργεία του λογισμικού.

4.1.1 Περιοχή μελέτης

Η μελέτη έλαβε χώρα στην περιοχή της Αγίας Παρασκευής, όπως απεικονίζεται και στην Εικόνα 4.1, στις 17 Δεκεμβρίου του 2020 και μεταξύ των ωρών 09:38 με 10:28. Στην Εικόνα 4.2 φαίνεται η ακριβής θέση των στάσεων που χρησιμοποιήθηκαν για την μελέτη. Επίσης, στον Πίνακα 4.1 απεικονίζονται οι χρονικές διάρκειες μετρήσεων της κάθε στάσης. Το διάστημα καταγραφής των μετρήσεων είναι 5 sec.

Εικόνα 4.2: Περιοχή μελέτης

Εικόνα 4.1: Προσδιορισμός Θέσης Στάσεων

	ANOIKTOY		
17/12/2020	OPIZONTA	ΣΤΑΣΗ 1	ΣΤΑΣΗ 2
Ώρα έναρξης	09:38	09:57	10:18
Ώρα Λήξης	10:36	10:15	10:28
Διάρκεια μέτρησης			
(min)	58	18	10

Πίνακας 4.1: Χρόνοι μέτρησης στάσεων

Αρχικά, ένας από τους δέκτες τοποθετήθηκε σε ταράτσα κτηρίου, όπως φαίνεται και στην Εικόνα 4.3, σε σημείο με ανοιχτό ορίζοντα, εξασφαλίζοντας έτσι ότι οι μετρήσεις δεν θα είναι επηρεασμένες από εμπόδια. Αυτή η στάση ονομάστηκε "ANOIKTOY OPIZONTA" και οι μετρήσεις της χρησιμοποιήθηκαν ως αναφορά για τη σύγκριση με τις άλλες δύο στάσεις όπως θα φανεί και αργότερα στην σύγκριση των μεθόδων για τον προσδιορισμό της ολίσθησης κύκλων. Για τον λόγο αυτό, ο συγκεκριμένος δέκτης ήταν σε λειτουργία καθ' όλη τη διάρκεια των μετρήσεων, με χρόνο καταγραφής 58 λεπτά.

Εικόνα 4.3: Στάση "ΑΝΟΙΧΤΟΥ ΟΡΙΖΟΝΤΑ"

Στην συνέχεια για την ΣΤΑΣΗ 1 ο δέκτης τοποθετήθηκε κάτω από ένα πεύκο, όπως φαίνεται και στην Εικόνα 4.4, όπου τα κλαδιά και το φύλλωμα του ξεκινούσαν σε μεγαλύτερο ύψος από αυτό του δέκτη, με χρόνο καταγραφής 18 λεπτά.

Εικόνα 4.4: Θέση δέκτη στην ΣΤΑΣΗ 1

Τέλος, ο δέκτης μεταφέρθηκε και τοποθετήθηκε κάτω από δέντρο με πιο χαμηλό φύλλωμα, σχεδόν στο ύψος του δέκτη, όπως φαίνεται και στην Εικόνα 4.5. Ο χρόνος καταγραφής του δέκτη στην ΣΤΑΣΗ 2 ήταν 10 λεπτά.

Εικόνα 4.5: Θέση δέκτη στην ΣΤΑΣΗ 2

4.1.2 Στοιχεία εξοπλισμού

Για τις μετρήσεις χρησιμοποιήθηκε ένα ζεύγος σύγχρονων γεωδαιτικών δεκτών GNSS. Πιο συγκεκριμένα, πρόκειται για δέκτες Trimble R8s.

Τα βασικά χαρακτηριστικά των δεκτών Trimble R8s που χρησιμοποιήθηκαν είναι:

- Δορυφορικά σήματα που καταγράφονται ταυτόχρονα.
 - GPS: L1C/A, L1C, L2C, L2E, L5
 - GLONASS: L1C/A, L1P, L2C/A, L2P, L3
 - SBAS: L1C/A, L5 (Για τους δορυφόρους SBAS που καταγράφουν δεδομένα στο L5)
 - Galileo: E1, E5A, E5B
 - BeiDou (COMPASS): B1, B2
- RTK engine για ταχύτερο initialization τυπικά ταχύτερο των 8 sec.
- Ρυθμός καταγραφής 1 Hz, 2 Hz, 5 Hz, 10 Hz ή 20 Hz επιλέξιμος από το χρήστη.
- Ο δέκτης έχει τη δυνατότητα ταυτόχρονης λειτουργίας σε P-Processing και RTK μετρήσεις.
- Δυνατότητα συνεχών μετρήσεων ανά 15 sec με χρήση κατά μέσο όρο 14 δορυφόρων.
- Αντοχή σε υγρασία και σκόνη σύμφωνα με τα διεθνή πρότυπα IP67.
- Ενσωματώνει τη δυνατότητα καταγραφής static μετρήσεων με το πάτημα ενός μόνο κουμπιού, χωρίς τη χρήση χειριστηρίου (Power up mode).
- Θερμοκρασίες λειτουργίας -40°C έως +65°C

Εικόνα 4.6: Δέκτης Trimble R8s. (φυλλάδιο τεχνικών προδιαγραφών Trimble R8s)

4.1.3 Σύγκριση αποτελεσμάτων

Η σύγκριση ξεκίνησε μεταξύ της θέσης "ANOIKTOY OPIZONTA" (Εικόνα 4.3), η οποία χρησιμοποιείται ως σημείο αναφοράς, και της Στάσης 1 (Εικόνα 4.1), που βρίσκεται κάτω από ένα πεύκο, του οποίου το φύλλωμα ξεκινά σε μεγαλύτερο ύψος από αυτό του δέκτη. Επιλέχθηκαν οι δορυφόροι G09 του συστήματος GPS και E05 του συστήματος Galileo, καθώς παρουσιάζουν παρόμοιες γωνίες ανύψωσης και αζιμούθιου, όπως αποτυπώνεται στο Γράφημα 4.1, όπου απεικονίζεται το Skyplot.

Γράφημα 4.1: Skyplot για G09 και E05

Στο Γράφημα 4.2 παρουσιάζονται οι τιμές του SNR των δορυφόρων G09 και E05 στη θέση "ANOIKTOY OPIZONTA". Η συχνότητα L1 και E1 απεικονίζεται με μπλε χρώμα, ενώ η συχνότητα L2 και E5 με πορτοκαλί. Παρατηρώντας το γράφημα, διαπιστώνεται ότι οι τιμές των E1 και E5 είναι ελαφρώς καλύτερες από εκείνες των L1 και L2, χωρίς να παρατηρείται σημαντική διαφορά μεταξύ τους.

Γράφημα 4.2: SNR δορυφόρων G09 και E05 στη στάση ΑΝΟΙΧΤΟΥ ΟΡΙΖΟΝΤΑ

Στο Γράφημα 4.3 απεικονίζονται οι τιμές του SNR των δορυφόρων G09 και E05 στη Θέση 1, κάτω από το πεύκο. Συγκρίνοντας αυτό το γράφημα με το Γράφημα 4.2, παρατηρούνται μεγαλύτερες διακυμάνσεις στο SNR, οι οποίες δεν είναι τόσο σταθερές όσο στο Γράφημα 4.2. Επιπλέον, οι τιμές του SNR είναι εμφανώς χαμηλότερες, με τον δορυφόρο E05 να καταγράφει τις καλύτερες τιμές σε σύγκριση με τον G09.Επίσης, τα σήματα του στις δύο συχνότητες (E1 και E5) του E05 σχεδόν ταυτίζονται, ενώ η ισχύς της L2 του G09 είναι σαφώς ασθενέστερη από την L1, σε αντίθεση με ότι ισχύει για τη θέση του ανοιχτού ορίζοντα. Το γεγονός αυτό αναδεικνύει μία υπεροχή του Galileo σε ότι αφορά τη δεύτερη συχνότητα. (E5 / L2).

Γράφημα 4.3: SNR δορυφόρων G09 και E05 στη στάση 1

Τέλος, στο Γράφημα 4.4 απεικονίζονται οι τιμές SNR των δορυφόρων στη Στάση 2, η οποία βρίσκεται κάτω από ένα δέντρο του οποίου το φύλλωμα ξεκινάει στο ύψος του δορυφόρου. Για άλλη μία φορά τα σήματα E1 και E5 φαίνεται να έχουν καλύτερες τιμές από τα L1 και L2.

Γράφημα 4.4: SNR δορυφόρων G09 και E05 στη Στάση 2

4.2 Προσδιορισμός Ολίσθησης Κύκλων (Cycle Slips)

Στα πλαίσια της παρούσας πτυχιακής εργασίας χρησιμοποιήθηκαν δύο μέθοδοι για τον προσδιορισμό των κύκλων ολίσθησης. Η πρώτη είναι η μέθοδος Ionospheric Residual, η οποία ενσωματώθηκε στο λογισμικό για τον προσδιορισμό των κύκλων ολίσθησης. Η δεύτερη είναι η μέθοδος των απλών, διπλών και τριπλών διαφορών, η οποία χρησιμοποιήθηκε για την επαλήθευση των αποτελεσμάτων που προκύπτουν από το λογισμικό. Η μέθοδος των τριπλών διαφορών είναι εν γένει πιο αποτελεσματική, αλλά έχει το μειονέκτημα ότι προϋποθέτει την ύπαρξη δύο δεκτών. Αντίθετα η μέθοδος Ionospheric Residual μπορεί να εφαρμοστεί και για έναν μόνο δέκτη.

4.2.1 Σύγκριση μετρήσεων κάτω από δέντρα

Για την πρώτη μελέτη, χρησιμοποιήθηκαν μετρήσεις από δύο δέκτες, ο ένας τοποθετήθηκε σε ταράτσα κτηρίου ώστε να λειτουργεί υπό συνθήκες ανοικτού ορίζοντα (clear sky) και να μην υπάρχουν παρεμβολές στα σήματα των δορυφόρων και ο δεύτερος τοποθετήθηκε διαδοχικά σε 2 στάσεις, κάτω από δέντρα. Ο λόγος που επιλέχθηκαν οι συγκεκριμένες μετρήσεις προς σύγκριση είναι για να εξακριβωθεί αν στις μετρήσεις με εμπόδια οι δέκτες χάνουν το σήμα των δορυφόρων με αποτέλεσμα αυτό να οδηγεί σε ολίσθηση κύκλων.

4.2.1.1 Περιοχή μελέτης και εξοπλισμός

Για την μελέτη χρησιμοποιήθηκαν οι ίδιες μετρήσεις, στην ίδια περιοχή μελέτης και με τον ίδιο εξοπλισμό όπως περιγράφεται στην υποενότητα 4.1 Ανάλυση SNR.

4.2.1.2 Μέθοδος Ionorspheric Residual

Όπως αναφέρεται και σε προηγούμενο κεφάλαιο, η μέθοδος Ionospheric Residual χρησιμοποιείται για τον προσδιορισμό ολίσθησης κύκλων συγκρίνοντας δύο συχνότητες ενός δορυφόρου. Επίσης, είναι η μέθοδος που χρησιμοποιείται από το λογισμικό για τον προσδιορισμό ολίσθησης κύκλων. Επομένως, η διαδικασία θα πραγματοποιηθεί για όλους τους δορυφόρους κάθε στάσης ξεχωριστά, σε 2 GNSS: GPS και Galileo.

Η ανάλυση ξεκίνησε με τα δεδομένα από τους δορυφόρους του GPS στη στάση "ANOIKTOY OPIZONTA". Στη χρονική διάρκεια των 58 λεπτών που ο δέκτης ήταν ενεργός, καταγράφηκαν δεδομένα από 11 δορυφόρους του GPS. Αναλύοντας τα δεδομένα του δορυφόρου G09 στις συχνότητες L1-L2, όπως φαίνεται και στο Γράφημα 4.5, παρατηρείται ότι έχουν καταγραφεί δεδομένα καθ' όλη τη διάρκεια της λειτουργίας του δορυφόρου χωρίς διακοπές στη λήψη του σήματος.

Γράφημα 4.5: Ionospheric Residual σε L1C - L2W για τον G09 για την στάση "ANOIXTOY OPIZONTA"

Επίσης, στο Γράφημα 4.6 διαπιστώνεται ότι δεν παρατηρούνται κύκλοι ολίσθησης και ότι δεν υπάρχει σημαντική διακύμανση στις χρονικές διαφορές.

Γράφημα 4.6: Χρονικές διαφορές του Ionospheric Residual για τον G09 για την στάση "ANOIXTOY OPIZONTA"

Επιπλέον, στον Πίνακα 4.2 απεικονίζονται τα δεδομένα των πρώτων 80 εποχών, τα οποία προέκυψαν από την ανάλυση των μετρήσεων μέσω του λογισμικού, χρησιμοποιώντας τη μέθοδο του Ionospheric Residual. Όπως φαίνεται, οι τιμές της στήλης "dIonRes L1C-L2W" είναι πολύ κοντά στο μηδέν, γεγονός που υποδηλώνει την ύπαρξη ελάχιστου θορύβου στα δεδομένα. Αυτό είναι αναμενόμενο, καθώς ο δέκτης, όπως προαναφέρθηκε, ήταν τοποθετημένος σε οροφή κτηρίου, ώστε να ελαχιστοποιούνται οι παρεμβολές από εμπόδια. Την ίδια συμπεριφορά παρουσίασαν και τα δεδομένα από τους υπόλοιπους 10 δορυφόρους που καταγράφηκαν κατά τη διάρκεια λειτουργίας του δέκτη.

rowTimes	IonRes (L1C - L2W)	dionRes (L1C - L2W)	Cycle Slips (L1C - L2W)	rowTimes	IonRes (L1C - L2W)	dlonRes (L1C - L2W)	Cycle Slips (L1C - L2W)
9:38:40	0,410752162		FALSE	9:42:00	0,412938897	0,000678703	FALSE
9:38:45	0,410184212	0,00056795	FALSE	9:42:05	0,412196752	0,000742145	FALSE
9:38:50	0,410269611	8,53986E-05	FALSE	9:42:10	0,410309676	0,001887076	FALSE
9:38:55	0,409137134	0,001132477	FALSE	9:42:15	0,413313154	0,003003478	FALSE
9:39:00	0,409587272	0,000450138	FALSE	9:42:20	0,411178708	0,002134446	FALSE
9:39:05	0,411014259	0,001426987	FALSE	9:42:25	0,412123851	0,000945143	FALSE
9:39:10	0,411248744	0,000234485	FALSE	9:42:30	0,412146077	2,22251E-05	FALSE
9:39:15	0,411632299	0,000383556	FALSE	9:42:35	0,411118526	0,001027551	FALSE
9:39:20	0,409665737	0,001966562	FALSE	9:42:40	0,411403999	0,000285473	FALSE
9:39:25	0,41062019	0,000954453	FALSE	9:42:45	0,412585426	0,001181427	FALSE
9:39:30	0,409395784	0,001224406	FALSE	9:42:50	0,412718676	0,00013325	FALSE
9:39:35	0,409836452	0,000440668	FALSE	9:42:55	0,413797058	0,001078382	FALSE
9:39:40	0,411596499	0,001760047	FALSE	9:43:00	0,412912246	0,000884812	FALSE
9:39:45	0,410295993	0,001300506	FALSE	9:43:05	0,411770549	0,001141697	FALSE
9:39:50	0,41026412	3,18736E-05	FALSE	9:43:10	0,411272679	0,00049787	FALSE
9:39:55	0,412398424	0,002134304	FALSE	9:43:15	0,411570877	0,000298198	FALSE
9:40:00	0,411167718	0,001230706	FALSE	9:43:20	0,412024491	0,000453614	FALSE
9:40:05	0,411446676	0,000278957	FALSE	9:43:25	0,41346129	0,0014368	FALSE
9:40:10	0,411617804	0,000171129	FALSE	9:43:30	0,413217165	0,000244126	FALSE
9:40:15	0,411532044	8,57599E-05	FALSE	9:43:35	0,414634947	0,001417782	FALSE
9:40:20	0,411129136	0,000402909	FALSE	9:43:40	0,413020719	0,001614228	FALSE
9:40:25	0,41299073	0,001861595	FALSE	9:43:45	0,413033508	1,27889E-05	FALSE
9:40:30	0,410653178	0,002337553	FALSE	9:43:50	0,414797008	0,0017635	FALSE
9:40:35	0,411017805	0,000364628	FALSE	9:43:55	0,413271602	0,001525406	FALSE
9:40:40	0,410887677	0,000130128	FALSE	9:44:00	0,416566968	0,003295366	FALSE
9:40:45	0,410836842	5,08353E-05	FALSE	9:44:05	0,415951811	0,000615157	FALSE
9:40:50	0,412663575	0,001826733	FALSE	9:44:10	0,415466692	0,000485118	FALSE
9:40:55	0,412013326	0,000650249	FALSE	9:44:15	0,414496329	0,000970364	FALSE
9:41:00	0,411039587	0,000973739	FALSE	9:44:20	0,414813627	0,000317298	FALSE
9:41:05	0,413310356	0,002270769	FALSE	9:44:25	0,415124584	0,000310957	FALSE
9:41:10	0,411826	0,001484357	FALSE	9:44:30	0,415283315	0,000158731	FALSE
9:41:15	0,411933772	0,000107773	FALSE	9:44:35	0,4154801	0,000196785	FALSE
9:41:20	0,412203308	0,000269536	FALSE	9:44:40	0,416025773	0,000545673	FALSE
9:41:25	0,411515035	0,000688273	FALSE	9:44:45	0,416412871	0,000387099	FALSE
9:41:30	0,412130274	0,000615239	FALSE	9:44:50	0,416292518	0,000120353	FALSE
9:41:35	0,412012894	0,00011738	FALSE	9:44:55	0,415049441	0,001243077	FALSE
9:41:40	0,411847942	0,000164952	FALSE	9:45:00	0,4165022	0,001452759	FALSE
9:41:45	0,411480021	0,000367921	FALSE	9:45:05	0,415798295	0,000703905	FALSE
9:41:50	0,412704226	0,001224205	FALSE	9:45:10	0,417082969	0,001284674	FALSE
9:41:55	0,412260193	0,000444032	FALSE	9:45:15	0,416388594	0,000694375	FALSE

Πίνακας 4.2: Δεδομένα μεθόδου Ionospheric Residual για τον G09 για την στάση "ANOIXTOY OPIZONTA"

Η ίδια διαδικασία ακολουθήθηκε και για το σύστημα Galileo. Σε αυτή την περίπτωση, κατά τη χρονική διάρκεια που ο δέκτης ήταν ενεργός, καταγράφηκαν δεδομένα από 6 δορυφόρους. Αυτή τη φορά επιλέχθηκε ο δορυφόρος E09 και πραγματοποιήθηκε ανάλυση ανάμεσα στα σήματα L1X-L8X (κωδικοποίηση σημάτων κατά RINEX), όπου το L8X αποτελείται από τις συχνότητες E5a και E5b. Όπως παρατηρείται στο Γράφημα 4.7, ο δέκτης κατέγραψε δεδομένα καθ' όλη τη χρονική διάρκεια που ήταν ενεργός, χωρίς να υπάρξει διακοπή του σήματος και χωρίς μεγάλες διακυμάνσεις.

Γράφημα 4.7: Ionospheric Residual σε L1X - L8X για τον Ε09 για την στάση "ANOIXTOY OPIZONTA"

Τα ίδια συμπεράσματα προκύπτουν και από την ανάλυση στο Γράφημα 4.8 στο οποίο απεικονίζονται οι χρονικές διαφορές των εποχών στο Ionospheric Residual. Τα δεδομένα δεν παρουσιάζουν ολίσθηση κύκλων.

Γράφημα 4.8: Χρονικές διαφορές του Ionospheric Residual για τον Ε09 για την στάση "ANOIXTOY OPIZONTA"

Τέλος, στον Πίνακα 4.3 απεικονίζονται τα δεδομένα των πρώτων 80 εποχών, τα οποία προέκυψαν από την ανάλυση των μετρήσεων μέσω του λογισμικού, χρησιμοποιώντας τη μέθοδο του Ionospheric Residual. Όπως και στο GPS, οι τιμές της στήλης "dIonRes (L1X - L8X)" είναι πολύ κοντά στο μηδέν, γεγονός που υποδηλώνει την ύπαρξη ελάχιστου θορύβου στα δεδομένα.

rowTimes	IonRes (L1X - L8X)	dionRes (L1X - L8X)	Cycle Slips (L1X - L8X)	rowTimes	lonRes (L1X - L8X)	dIonRes (L1X - L8X)	Cycle Slips (L1X - L8X)
9:38:40	-1,090827655		FALSE	9:42:00	-1,028674114	0,002449542	FALSE
9:38:45	-1,088563547	0,002264109	FALSE	9:42:05	-1,029154923	0,000480808	FALSE
9:38:50	-1,087865885	0,000697661	FALSE	9:42:10	-1,026761733	0,00239319	FALSE
9:38:55	-1,086163674	0,001702212	FALSE	9:42:15	-1,026421752	0,000339981	FALSE
9:39:00	-1,083910991	0,002252683	FALSE	9:42:20	-1,02433645	0,002085302	FALSE
9:39:05	-1,082349248	0,001561742	FALSE	9:42:25	-1,022969048	0,001367401	FALSE
9:39:10	-1,080434687	0,001914561	FALSE	9:42:30	-1,021340288	0,00162876	FALSE
9:39:15	-1,078820672	0,001614016	FALSE	9:42:35	-1,019912444	0,001427844	FALSE
9:39:20	-1,07730303	0,001517642	FALSE	9:42:40	-1,018137496	0,001774948	FALSE
9:39:25	-1,076441199	0,000861831	FALSE	9:42:45	-1,016715027	0,001422469	FALSE
9:39:30	-1,0749113	0,001529898	FALSE	9:42:50	-1,014953148	0,00176188	FALSE
9:39:35	-1,073477779	0,001433522	FALSE	9:42:55	-1,014542103	0,000411045	FALSE
9:39:40	-1,071800869	0,00167691	FALSE	9:43:00	-1,011789542	0,002752561	FALSE
9:39:45	-1,070734859	0,00106601	FALSE	9:43:05	-1,010825586	0,000963956	FALSE
9:39:50	-1,068479717	0,002255142	FALSE	9:43:10	-1,008674942	0,002150644	FALSE
9:39:55	-1,066857528	0,001622189	FALSE	9:43:15	-1,008606095	6,88471E-05	FALSE
9:40:00	-1,064474158	0,00238337	FALSE	9:43:20	-1,006267611	0,002338484	FALSE
9:40:05	-1,062432174	0,002041984	FALSE	9:43:25	-1,004371781	0,00189583	FALSE
9:40:10	-1,059888732	0,002543442	FALSE	9:43:30	-1,003612813	0,000758968	FALSE
9:40:15	-1,058523796	0,001364935	FALSE	9:43:35	-1,00093212	0,002680693	FALSE
9:40:20	-1,05711231	0,001411486	FALSE	9:43:40	-1,000364259	0,000567861	FALSE
9:40:25	-1,055543195	0,001569115	FALSE	9:43:45	-0,998761624	0,001602635	FALSE
9:40:30	-1,054123543	0,001419652	FALSE	9:43:50	-0,996038459	0,002723165	FALSE
9:40:35	-1,053744376	0,000379167	FALSE	9:43:55	-0,994168758	0,001869701	FALSE
9:40:40	-1,051115986	0,00262839	FALSE	9:44:00	-0,992362764	0,001805995	FALSE
9:40:45	-1,049681626	0,00143436	FALSE	9:44:05	-0,991388991	0,000973772	FALSE
9:40:50	-1,047112852	0,002568774	FALSE	9:44:10	-0,990055051	0,001333941	FALSE
9:40:55	-1,046625882	0,00048697	FALSE	9:44:15	-0,987932164	0,002122886	FALSE
9:41:00	-1,043532774	0,003093109	FALSE	9:44:20	-0,986787699	0,001144465	FALSE
9:41:05	-1,041369088	0,002163686	FALSE	9:44:25	-0,98500865	0,00177905	FALSE
9:41:10	-1,040163402	0,001205686	FALSE	9:44:30	-0,982892297	0,002116352	FALSE
9:41:15	-1,039798114	0,000365287	FALSE	9:44:35	-0,98089518	0,001997117	FALSE
9:41:20	-1,037331425	0,00246669	FALSE	9:44:40	-0,979379926	0,001515254	FALSE
9:41:25	-1,036675386	0,000656039	FALSE	9:44:45	-0,97891251	0,000467416	FALSE
9:41:30	-1,034119669	0,002555717	FALSE	9:44:50	-0,975691143	0,003221367	FALSE
9:41:35	-1,033885047	0,000234623	FALSE	9:44:55	-0,974701848	0,000989296	FALSE
9:41:40	-1,034512054	0,000627007	FALSE	9:45:00	-0,97345937	0,001242477	FALSE
9:41:45	-1,032932311	0,001579743	FALSE	9:45:05	-0,970933836	0,002525534	FALSE
9:41:50	-1,03113614	0,001796171	FALSE	9:45:10	-0,969354875	0,001578961	FALSE
9:41:55	-1,031123657	1,24834E-05	FALSE	9:45:15	-0,967508845	0,00184603	FALSE

Πίνακας 4.3: Δεδομένα μεθόδου Ionospheric Residual για τον Ε09 για την στάση "ANOIXTOY OPIZONTA"

Η ανάλυση των δεδομένων συνεχίζεται με τη στάση 1. Κατά τη χρονική διάρκεια των 18 λεπτών που ο δέκτης ήταν ενεργός, καταγράφηκαν δεδομένα από 8 δορυφόρους του συστήματος GPS. Όπως και στην προηγούμενη στάση, πραγματοποιήθηκε ανάλυση όλων των δορυφόρων για τις συχνότητες L1 - L2, ενώ επιλέχθηκε ο δορυφόρος G09 για την απεικόνιση των αποτελεσμάτων. Στο Γράφημα 4.9 παρατηρείται ότι, ενώ ο δέκτης κατέγραψε δεδομένα καθ' όλη τη χρονική διάρκεια που ήταν ενεργός, υπάρχει πολύ μεγαλύτερη διακύμανση σε σύγκριση με τα δεδομένα του αντίστοιχου δορυφόρου της στάσης "ΑΝΟΙΧΤΟΥ ΟΡΙΖΟΝΤΑ".

Παρατηρώντας το γράφημα των χρονικών διαφορών στο Γράφημα 4.10, καθώς και τα δεδομένα που προέκυψαν από την ανάλυση του λογισμικού και απεικονίζονται στον Πίνακα 4.4, δεν εντοπίζονται κύκλοι ολίσθησης.

Γράφημα 4.10: Χρονικές διαφορές του Ionospheric Residual για τον G09 για την στάση 1

rowTimes	IonRes (L1C - L2W)	dionRes (L1C - L2W)	Cycle Slips (L1C - L2W)	rowTimes	IonRes (L1C - L2W)	dionRes (L1C - L2W)	Cycle Slips (L1C - L2W)
9:57:50	-1,944094449		FALSE	10:01:10	-1,874631353	0,002762921	FALSE
9:57:55	-1,946962181	0,002867732	FALSE	10:01:15	-1,874438372	0,000192981	FALSE
9:58:00	-1,95148864	0,004526459	FALSE	10:01:20	-1,880217444	0,005779073	FALSE
9:58:05	-1,952564433	0,001075793	FALSE	10:01:25	-1,87216216	0,008055285	FALSE
9:58:10	-1,949498162	0,003066272	FALSE	10:01:30	-1,872130927	3,12328E-05	FALSE
9:58:15	-1,954608172	0,005110011	FALSE	10:01:35	-1,868033741	0,004097186	FALSE
9:58:20	-1,944567632	0,01004054	FALSE	10:01:40	-1,873679586	0,005645845	FALSE
9:58:25	-1,951951645	0,007384013	FALSE	10:01:45	-1,86988052	0,003799066	FALSE
9:58:30	-1,944635466	0,00731618	FALSE	10:01:50	-1,849751085	0,020129435	FALSE
9:58:35	-1,939298335	0,00533713	FALSE	10:01:55	-1,861977909	0,012226824	FALSE
9:58:40	-1,932648182	0,006650154	FALSE	10:02:00	-1,842568409	0,0194095	FALSE
9:58:45	-1,929467704	0,003180478	FALSE	10:02:05	-1,841687169	0,00088124	FALSE
9:58:50	-1,931859661	0,002391957	FALSE	10:02:10	-1,841925483	0,000238314	FALSE
9:58:55	-1,931758765	0,000100896	FALSE	10:02:15	-1,837717265	0,004208218	FALSE
9:59:00	-1,933081895	0,00132313	FALSE	10:02:20	-1,845424596	0,007707331	FALSE
9:59:05	-1,930789445	0,002292451	FALSE	10:02:25	-1,84443868	0,000985917	FALSE
9:59:10	-1,931303822	0,000514377	FALSE	10:02:30	-1,84640231	0,00196363	FALSE
9:59:15	-1,930771578	0,000532243	FALSE	10:02:35	-1,851207651	0,004805341	FALSE
9:59:20	-1,92758156	0,003190018	FALSE	10:02:40	-1,845356546	0,005851105	FALSE
9:59:25	-1,929478724	0,001897164	FALSE	10:02:45	-1,840089004	0,005267542	FALSE
9:59:30	-1,927985486	0,001493238	FALSE	10:02:50	-1,827574436	0,012514569	FALSE
9:59:35	-1,921335284	0,006650202	FALSE	10:02:55	-1,824330349	0,003244087	FALSE
9:59:40	-1,920127477	0,001207806	FALSE	10:03:00	-1,82678872	0,002458371	FALSE
9:59:45	-1,918900639	0,001226839	FALSE	10:03:05	-1,832948297	0,006159578	FALSE
9:59:50	-1,916677933	0,002222706	FALSE	10:03:10	-1,832117748	0,00083055	FALSE
9:59:55	-1,9128282	0,003849734	FALSE	10:03:15	-1,838781599	0,006663851	FALSE
10:00:00	-1,907884281	0,004943918	FALSE	10:03:20	-1,842235822	0,003454223	FALSE
10:00:05	-1,899312094	0,008572187	FALSE	10:03:25	-1,843276486	0,001040664	FALSE
10:00:10	-1,903667185	0,004355092	FALSE	10:03:30	-1,846679956	0,00340347	FALSE
10:00:15	-1,904130764	0,000463579	FALSE	10:03:35	-1,851107839	0,004427884	FALSE
10:00:20	-1,896338768	0,007791996	FALSE	10:03:40	-1,849034019	0,002073821	FALSE
10:00:25	-1,893770333	0,002568435	FALSE	10:03:45	-1,844324626	0,004709393	FALSE
10:00:30	-1,884649437	0,009120896	FALSE	10:03:50	-1,844829276	0,00050465	FALSE
10:00:35	-1,883032467	0,00161697	FALSE	10:03:55	-1,843044054	0,001785222	FALSE
10:00:40	-1,876623254	0,006409213	FALSE	10:04:00	-1,846590225	0,003546171	FALSE
10:00:45	-1,871745903	0,004877351	FALSE	10:04:05	-1,850199822	0,003609598	FALSE
10:00:50	-1,86891738	0,002828524	FALSE	10:04:10	-1,851452947	0,001253124	FALSE
10:00:55	-1,866444066	0,002473313	FALSE	10:04:15	-1,853965174	0,002512228	FALSE
10:01:00	-1,866875898	0,000431832	FALSE	10:04:20	-1,858795814	0,00483064	FALSE
10:01:05	-1,871868432	0,004992533	FALSE	10:04:25	-1,861308038	0,002512224	FALSE

Πίνακας 4.4: Δεδομένα μεθόδου Ionospheric Residual για τον G09 στην στάση 1

Προχωρώντας στην ανάλυση των δεδομένων που καταγράφηκαν από τους δορυφόρους του συστήματος Galileo, παρατηρήθηκε ότι κατά τη διάρκεια της λειτουργίας του δέκτη καταγράφηκαν δεδομένα από 6 δορυφόρους. Παρακάτω θα αναλυθούν τα δεδομένα δύο δορυφόρων του συστήματος Galileo.

Για τον δορυφόρο E09, στο Γράφημα 4.2-7 και στον Πίνακα 4.2-4, διακρίνεται ότι μεταξύ της χρονικής στιγμής 10:10:00 και 10:10:05, ο δορυφόρος έχασε το σήμα για λιγότερο από 5 δευτερόλεπτα. Αυτό επιβεβαιώνεται από την απουσία εποχών στις μετρήσεις, αλλά και από το γεγονός ότι το Ionospheric Residual έχει μετατοπιστεί. Στη συνέχεια, μετά από δύο λεπτά, μεταξύ της χρονικής στιγμής 10:12:05 και 10:12:10, ο δέκτης χάνει ξανά το σήμα από τον δορυφόρο και το Ionospheric Residual μετατοπίζεται για δεύτερη φορά.

Παρόμοια παρατήρηση γίνεται και στο Γράφημα 4.12, καθώς και στον Πίνακα 4.5, όπου στις εποχές με χρονικές στιγμές 10:10:05 και 10:12:10, οι τιμές εμφανίζονται αυξημένες, φτάνοντας τα 0,13119 και 0,13178 αντίστοιχα. Ωστόσο, με βάση το όριο που έχει οριστεί για την ανίχνευση ολίσθησης κύκλων, το οποίο είναι 0,5, αυτές οι τιμές δεν αποδεικνύουν την ύπαρξη ολίσθησης κύκλων.

1 1 9	1 /		y 11	,	c /	,	aviaa
Αναπτυζη	λονισμικου	νια την	αζιολονηση	της ποιοτητας	νεωδαιτικων	μετρησεων	(7/88)
		/			/	pro	

rowTimes	IonRes (L1X - L8X)	dionRes (L1X - L8X)	Cycle Slips (L1X - L8X)	rowTimes	IonRes (L1X - L8X)	dionRes (L1X - L8X)	Cycle Slips (L1X - L8X)
9:58:10	-0,912450571		FALSE	10:01:30	-0,874576252	0,000620611	FALSE
9:58:15	-0,914482657	0,002032086	FALSE	10:01:35	-0,870837439	0,003738813	FALSE
9:58:20	-0,905943234	0,008539423	FALSE	10:01:40	-0,87005512	0,000782318	FALSE
9:58:25	-0,915921096	0,009977862	FALSE	10:01:45	-0,871932823	0,001877703	FALSE
9:58:30	-0,907148097	0,008772999	FALSE	10:01:50	-0,86861543	0,003317393	FALSE
9:58:35	-0,905691188	0,001456909	FALSE	10:01:55	-0,875059366	0,006443936	FALSE
9:58:40	-0,902043864	0,003647324	FALSE	10:02:00	-0,871119637	0,003939729	FALSE
9:58:45	-0,895878613	0,006165251	FALSE	10:02:05	-0,873751983	0,002632346	FALSE
9:58:50	-0,895935889	5,72763E-05	FALSE	10:02:10	-0,874880765	0,001128782	FALSE
9:58:55	-0,894540235	0,001395654	FALSE	10:02:15	-0,874761607	0,000119157	FALSE
9:59:00	-0,896453887	0,001913652	FALSE	10:02:20	-0,874452159	0,000309449	FALSE
9:59:05	-0,900762144	0,004308257	FALSE	10:02:25	-0,872300211	0,002151947	FALSE
9:59:10	-0,895512424	0,00524972	FALSE	10:02:30	-0,872359097	5,88857E-05	FALSE
9:59:15	-0,895279765	0,000232659	FALSE	10:02:35	-0,873510741	0,001151644	FALSE
9:59:20	-0,895746205	0,00046644	FALSE	10:02:40	-0,87305183	0,000458911	FALSE
9:59:25	-0,897273559	0,001527354	FALSE	10:02:45	-0,872465517	0,000586312	FALSE
9:59:30	-0,896235619	0,00103794	FALSE	10:02:50	-0,869385783	0,003079735	FALSE
9:59:35	-0,892912522	0,003323097	FALSE	10:02:55	-0,872586552	0,003200769	FALSE
9:59:40	-0,888740044	0,004172478	FALSE	10:03:00	-0,872936998	0,000350446	FALSE
9:59:45	-0,886723682	0,002016362	FALSE	10:03:05	-0,871823907	0,001113091	FALSE
9:59:50	-0,887230959	0,000507277	FALSE	10:03:10	-0,878007304	0,006183397	FALSE
9:59:55	-0,884395435	0,002835523	FALSE	10:03:15	-0,877208639	0,000798665	FALSE
10:00:00	-0,891172603	0,006777167	FALSE	10:03:20	-0,876934305	0,000274334	FALSE
10:00:05	-0,879621953	0,01155065	FALSE	10:03:25	-0,876879659	5,46463E-05	FALSE
10:00:10	-0,880372606	0,000750653	FALSE	10:03:30	-0,878783494	0,001903836	FALSE
10:00:15	-0,881127343	0,000754736	FALSE	10:03:35	-0,878644731	0,000138763	FALSE
10:00:20	-0,881173171	4,58285E-05	FALSE	10:03:40	-0,880151637	0,001506906	FALSE
10:00:25	-0,881459936	0,000286765	FALSE	10:03:45	-0,882155109	0,002003472	FALSE
10:00:30	-0,88104514	0,000414796	FALSE	10:03:50	-0,883265093	0,001109984	FALSE
10:00:35	-0,883435749	0,002390608	FALSE	10:03:55	-0,882078484	0,001186609	FALSE
10:00:40	-0,883104254	0,000331495	FALSE	10:04:00	-0,881444793	0,000633691	FALSE
10:00:45	-0,886720747	0,003616493	FALSE	10:04:05	-0,880535051	0,000909742	FALSE
10:00:50	-0,886875197	0,000154451	FALSE	10:04:10	-0,878568485	0,001966566	FALSE
10:00:55	-0,884528067	0,00234713	FALSE	10:04:15	-0,877965827	0,000602659	FALSE
10:01:00	-0,883196913	0,001331154	FALSE	10:04:20	-0,875097614	0,002868213	FALSE
10:01:05	-0,882144265	0,001052648	FALSE	10:04:25	-0,875405584	0,00030797	FALSE
10:01:10	-0,881976929	0,000167336	FALSE	10:04:30	-0,876865119	0,001459535	FALSE
10:01:15	-0,878424328	0,003552601	FALSE	10:04:35	-0,874968786	0,001896333	FALSE
10:01:20	-0,878041383	0,000382945	FALSE	10:04:40	-0,870223768	0,004745018	FALSE
10:01:25	-0,875196863	0,00284452	FALSE	10:04:45	-0,865174111	0,005049657	FALSE

Πίνακας 4.5: Δεδομένα μεθόδου Ionospheric Residual για τον Ε09 στην στάση 1

Για τον δορυφόρο E31, στα δεδομένα που καταγράφηκαν από τον δέκτη κατά τη διάρκεια της λειτουργίας του, παρατηρήθηκε απώλεια σήματος διάρκειας 1 λεπτού και 15 δευτερολέπτων. Μετά την αποκατάσταση του σήματος, παρατηρείται ολίσθηση κύκλων.

Όπως φαίνεται και στο Γράφημα 4.13, κατά τη σύγκριση των σημάτων L1X – L8X, παρατηρείται διακοπή στην λήψη σήματος από τον δορυφόρο για 15 δευτερόλεπτα, από τις 09:59:10 έως τις 09:59:25 Σε αυτό το σημείο δεν σημειώνεται ολίσθηση κύκλων. Στην συνέχεια, ο δέκτης χάνει το σήμα για 1 λεπτό και 15 δευτερόλεπτα.

Γράφημα 4.13: Iono
spheric Residual σε L1X – L8X για τον E31 στην στάση 1

Όπως φαίνεται στο Γράφημα 4.14, τη χρονική στιγμή 10:00:40, όταν ο δέκτης επανακτά το σήμα, η τιμή των χρονικών διαφορών φτάνει τους 12 κύκλους. Αυτό επιβεβαιώνεται και στον Πίνακα 4.6, όπου παρουσιάζονται οι πρώτες 80 εποχές του δορυφόρου E31. Στην προκειμένη περίπτωση, η αυξημένη τιμή που παρατηρήθηκε μεταξύ των χρονικών διαφορών του Ionospheric Residual δεν πρέπει να ερμηνευθεί ως ολίσθηση κύκλων, καθώς οφείλεται στην προηγούμενη διακοπή λήψης του σήματος. Για τον λόγο αυτό, στον πίνακα επισημαίνεται με γαλάζιο χρώμα, σε αντίθεση με το κόκκινο που θα χρησιμοποιηθεί αργότερα για τις περιπτώσεις πραγματικής ολίσθησης κύκλων (cycle slips).

rowTimes	IonRes (L1X - L8X)	dIonRes (L1X - L8X)	Cycle Slips (L1X - L8X)	rowTimes	IonRes (L1X - L8X)	dionRes (L1X - L8X)	Cycle Slips (L1X - L8X)
9:57:50	-1,390711412		FALSE	10:02:20	-13,13359356	0,001993593	FALSE
9:57:55	-1,39556358	0,004852168	FALSE	10:02:25	-13,13450093	0,000907369	FALSE
9:58:00	-1,393459823	0,002103757	FALSE	10:02:30	-13,13522045	0,000719525	FALSE
9:58:05	-1,394773178	0,001313355	FALSE	10:02:35	-13,13560349	0,000383034	FALSE
9:58:10	-1,39060396	0,004169218	FALSE	10:02:40	-13,13932034	0,003716853	FALSE
9:58:15	-1,393090922	0,002486963	FALSE	10:02:45	-13,13829781	0,001022525	FALSE
9:58:20	-1,391434714	0,001656208	FALSE	10:02:50	-13,13772856	0,000569254	FALSE
9:58:25	-1,39224742	0,000812706	FALSE	10:02:55	-13,13994348	0,00221492	FALSE
9:58:30	-1,395170514	0,002923094	FALSE	10:03:00	-13,13629685	0,003646631	FALSE
9:58:35	-1,392178159	0,002992354	FALSE	10:03:05	-13,13668642	0,000389569	FALSE
9:58:40	-1,394433986	0,002255827	FALSE	10:03:10	-13,1385436	0,001857184	FALSE
9:58:45	-1,38870075	0,005733237	FALSE	10:03:15	-13,13776118	0,000782419	FALSE
9:58:50	-1,389062624	0,000361875	FALSE	10:03:20	-13,14062293	0,002861742	FALSE
9:58:55	-1,389119048	5,64232E-05	FALSE	10:03:25	-13,13858195	0,002040975	FALSE
9:59:00	-1,38399915	0,005119897	FALSE	10:03:30	-13,13672146	0,001860488	FALSE
9:59:05	-1,383213546	0,000785604	FALSE	10:03:35	-13,13410715	0,002614312	FALSE
9:59:10	-1,379034493	0,004179053	FALSE	10:03:40	-13,13481032	0,000703171	FALSE
9:59:15			FALSE	10:03:45	-13,13598799	0,001177672	FALSE
9:59:20			FALSE	10:03:50	-13,13371098	0,002277013	FALSE
9:59:25	-1,382438734		FALSE	10:03:55	-13,13547424	0,001763258	FALSE
10:00:40	-13,13809652	11,75565778	TRUE	10:04:00	-13,13605162	0,000577383	FALSE
10:00:45	-13,13262459	0,00547193	FALSE	10:04:05	-13,13370192	0,002349705	FALSE
10:00:50	-13,12594148	0,006683111	FALSE	10:04:10	-13,13210195	0,001599967	FALSE
10:00:55	-13,13093488	0,004993398	FALSE	10:04:15	-13,1337231	0,001621146	FALSE
10:01:00	-13,12974414	0,001190737	FALSE	10:04:20	-13,13182911	0,001893986	FALSE
10:01:05	-13,1269306	0,002813537	FALSE	10:04:25	-13,13299778	0,001168672	FALSE
10:01:10	-13,12784126	0,000910658	FALSE	10:04:30	-13,13100824	0,00198954	FALSE
10:01:15	-13,12582809	0,002013173	FALSE	10:04:35	-13,1318486	0,000840355	FALSE
10:01:20	-13,12755954	0,001731455	FALSE	10:04:40	-13,12927347	0,002575122	FALSE
10:01:25	-13,1260217	0,001537845	FALSE	10:04:45	-13,1317693	0,002495822	FALSE
10:01:30	-13,12710794	0,001086246	FALSE	10:04:50	-13,12795113	0,003818162	FALSE
10:01:35	-13,12807903	0,000971086	FALSE	10:04:55	-13,12449966	0,00345147	FALSE
10:01:40	-13,12553336	0,00254567	FALSE	10:05:00	-13,12971922	0,00521956	FALSE
10:01:45	-13,12984479	0,004311431	FALSE	10:05:05	-13,13067799	0,000958771	FALSE
10:01:50	-13,1330945	0,003249705	FALSE	10:05:10	-13,12783824	0,002839752	FALSE
10:01:55	-13,13498438	0,001889884	FALSE	10:05:15	-13,12615005	0,001688194	FALSE
10:02:00	-13,13603141	0,00104703	FALSE	10:05:20	-13,12995588	0,003805827	FALSE
10:02:05	-13,1346814	0,001350012	FALSE	10:05:25	-13,12811986	0,001836017	FALSE
10:02:10	-13,13371034	0,00097106	FALSE	10:05:30	-13,12405749	0,004062373	FALSE
10:02:15	-13,13558715	0,001876812	FALSE	10:05:35	-13,12517387	0,001116388	FALSE

Πίνακας 4.6: Δεδομένα μεθόδου Ionospheric Residual για τον E31 στην στάση 1

Η ανάλυση των δεδομένων για το Ionospheric Residual θα ολοκληρωθεί με την εξέταση των δεδομένων που καταγράφηκαν στη Στάση 2. Ο δορυφόρος στο συγκεκριμένο σημείο παρέμεινε ενεργός για 10 λεπτά, από τις 10:18 έως τις 10:28. Κατά τη διάρκεια που ο δέκτης ήταν ενεργός, για το σύστημα GPS καταγράφηκαν δεδομένα από 7 δορυφόρους. Υπενθυμίζεται ότι η Στάση 2 βρίσκεται κάτω από δέντρο με φυλλώματα στο ύψος του δέκτη.

Αξίζει να σημειωθεί ότι, για ορισμένους δορυφόρους, όπως ο G04, δεν καταγράφηκαν αρκετά δεδομένα στην L2W, με αποτέλεσμα η σύγκριση να γίνεται μεταξύ λίγων εποχών ανάμεσα σε L1C και L2W.

Όπως απεικονίζεται στο Γράφημα 4.15, τα δεδομένα στα οποία έγινε η σύγκριση ξεκινούν από την χρονική στιγμή 10:26:55 έως το τέλος λειτουργίας του δέκτη στις 10:28:35. Επίσης, στον Πίνακα 4.7, όπου απεικονίζονται όλες οι εποχές στις οποίες έχουν καταγραφεί δεδομένα, παρατηρείται ότι λείπουν δεδομένα και στα δύο σήματα μεταξύ των εποχών σε αυτό το χρονικό διάστημα.

Γράφημα 4.15 Ionospheric Residual σε L1C – L2W για τον G04 στην στάση 2

Ωστόσο, στο Γράφημα 4.16 με τις χρονικές διαφορές παρατηρείται ότι δεν εμφανίζεται ολίσθηση κύκλων.

Γράφημα 4.16: Χρονικές διαφορές του Ionospheric Residual για τον G04 για την στάση 2

rowTimes	IonRes (L1C - L2W)	dionRes (L1C - L2W)	Cycle Slips (L1C - L2W)	rowTimes	IonRes (L1C - L2W)	dionRes (L1C - L2W)	Cycle Slips (L1C - L2W)
10:18:30			FALSE	10:24:05			FALSE
10:18:35			FALSE	10:24:10			FALSE
10:18:40			FALSE	10:24:15			FALSE
10:18:45			FALSE	10:24:20			FALSE
10:18:50			FALSE	10:24:25			FALSE
10:18:55			FALSE	10:24:30			FALSE
10:19:00			FALSE	10:24:35	0		FALSE
10:19:05			FALSE	10:24:40			FALSE
10:19:10			FALSE	10:25:20		5c 5c	FALSE
10:19:15			FALSE	10:25:25			FALSE
10:19:20			FALSE	10:25:30			FALSE
10:19:25			FALSE	10:25:35			FALSE
10:19:30			FALSE	10:25:40			FALSE
10:19:35			FALSE	10:25:45			FALSE
10:19:40			FALSE	10:25:50			FALSE
10:19:45			FALSE	10:25:55			FALSE
10:19:50			FALSE	10:26:00			FALSE
10:19:55			FALSE	10:26:05			FALSE
10:20:00			FALSE	10:26:10		2 2	FALSE
10:20:05			FALSE	10:26:15			FALSE
10:20:10			FALSE	10:26:20			FALSE
10:20:15			FALSE	10:26:25			FALSE
10:20:20			FALSE	10:26:30			FALSE
10:20:25			FALSE	10:26:35			FALSE
10:20:30			FALSE	10:26:40			FALSE
10:20:35			FALSE	10:26:45			FALSE
10:20:40			FALSE	10:26:50			FALSE
10:20:45			FALSE	10:26:55	23,79341354		FALSE
10:20:50			FALSE	10:27:00	23,7770238	0,016389739	FALSE
10:20:55			FALSE	10:27:05	23,78114773	0,004123922	FALSE
10:21:00			FALSE	10:27:10	23,78219524	0,001047511	FALSE
10:21:05			FALSE	10:27:15	23,78111463	0,001080606	FALSE
10:21:10			FALSE	10:27:20	23,79426482	0,013150189	FALSE
10:21:15			FALSE	10:27:25	23,78219476	0,01207006	FALSE
10:21:20			FALSE	10:27:30	23,78104756	0,001147203	FALSE
10:21:25			FALSE	10:27:35	23,77474657	0,00630099	FALSE
10:21:30			FALSE	10:27:40	23,78642833	0,011681765	FALSE
10:21:35			FALSE	10:27:45	23,7919763	0,005547963	FALSE
10:21:40			FALSE	10:27:50	23,78517738	0,006798919	FALSE
10:21:45			FALSE	10:27:55	23,78298991	0,002187464	FALSE
10:21:50			FALSE	10:28:00	23,79333328	0,010343373	FALSE
10:21:55			FALSE	10:28:05	23,81116788	0,0178346	FALSE
10:22:00			FALSE	10:28:10	23,83229139	0,02112351	FALSE
10:22:05			FALSE	10:28:15	23,8100787	0,022212695	FALSE
10:22:10			FALSE	10:28:20			FALSE
10:22:15			FALSE	10:28:25	23,82043251		FALSE
10:22:20			FALSE	10:28:30	23,81389684	0,006535672	FALSE
10:22:25			FALSE	10:28:35	23,82418314	0,010286298	FALSE
10:22:30			FALSE				

Πίνακας 4.7: Δεδομένα μεθόδου Ionospheric Residual για τον G04 στην στάση 2

Τέλος, για το σύστημα Galileo καταγράφηκαν δεδομένα για 6 δορυφόρους. Επιλέχθηκε ο δορυφόρος E09, καθώς είναι ο μοναδικός δορυφόρος που παρουσίασε ολίσθηση κύκλων. Για τους υπόλοιπους δορυφόρους, αν και ο δέκτης βρισκόταν κάτω από δέντρο, καταγράφηκαν δεδομένα καθ' όλη τη διάρκεια λειτουργίας του, χωρίς ιδιαίτερες διακοπές στο σήμα.

Παρατηρώντας το Γράφημα 4.17, φαίνεται ότι υπάρχει διακοπή λήψης του σήματος σε δύο χρονικές στιγμές. Η πρώτη είναι από τις 10:25:50 έως τις 10:27:10, όπου ο δέκτης ξαναβρίσκει το σήμα, και η δεύτερη είναι από τις 10:27:30 έως τις 10:28:15, όπου ο δέκτης ξαναβρίσκει το σήμα για τα τελευταία δευτερόλεπτα πριν από το τέλος της λειτουργίας του.

Στο Γράφημα 4.18, ωστόσο απεικονίζεται μόνο μια κόκκινη κουκίδα ως ένδειξη για ολίσθηση κύκλων στην χρονική στιγμή 10:28:15. Πιθανότατα, να εμφανιζόταν και άλλη ένδειξή νωρίτερα, στην χρονική στιγμή 10:27:10, καθώς έχει προηγηθεί διακοπή λήψης του σήματος αλλά όπως φαίνεται και στον Πίνακα 4.8, ο δέκτης δεν έχει καταγράψει αρκετά δεδομένα στο σήμα L8X για την συγκεκριμένη χρονική στιγμή. Και σε αυτή την περίπτωση η αυξημένη τιμή ανάμεσα στις χρονικές διαφορές του Ionospheric Residual δεν πρέπει να ερμηνευθεί ως ολίσθηση κύκλων καθώς οφείλεται στην προηγούμενη διακοπή λήψης του σήματος.

Πίνακας 4.8: Χρονική στιγμή από τα δεδομένα που παράγει το λογισμικό

rowTimes	L1X	L8X	IonRes L1X - L8X	dIonRes L1X - L8X	Cycle Slips_L1X - L8X
17/12/2020 10:27	25431834,37				FALSE

1 1 4	1	,		9 11		,	c .	. ,	,	CNICC
$A v \alpha \pi \tau n r$	nim	$n\sigma m con$	$m\alpha \tau n$	$v \alpha c n \lambda \alpha$	inan	$\tau n \subset \pi O O T$	$i \tau \alpha c$ using	$\alpha_1 \tau_1 \kappa_0 v$	$\mu e \tau n n \sigma e m v$	$(\tau N N)$
11/0/11/05/	i no	iominou	yia in	v usiono	'IJUII	$\eta \leq n 0 i 0 i $		$\alpha i i \alpha \omega i j$	ucipijocov	OT IDD
				• •					, ,	

rowTimes	IonRes (L1X - L8X)	dionRes (L1X - L8X)	Cycle Slips (L1X - L8X)	rowTimes	lonRes (L1X - L8X)	dionRes (L1X - L8X)	Cycle Slips (L1X - L8X)
10:18:30	4,758169644		FALSE	10:22:40	4,833523568	0,008475807	FALSE
10:18:35	4,759135813	0,000966169	FALSE	10:22:45	4,832785286	0,000738282	FALSE
10:18:40	4,763252851	0,004117038	FALSE	10:22:50	4,835838169	0,003052883	FALSE
10:18:45	4,765378751	0,0021259	FALSE	10:22:55	4,846620414	0,010782246	FALSE
10:18:50	4,760948099	0,004430652	FALSE	10:23:00	4,837933086	0,008687329	FALSE
10:18:55	4,760290649	0,00065745	FALSE	10:23:05	4,850725252	0,012792166	FALSE
10:19:00	4,764690273	0,004399624	FALSE	10:23:10	4,852063049	0,001337796	FALSE
10:19:05	4,762789786	0,001900487	FALSE	10:23:15	4,853007194	0,000944145	FALSE
10:19:10	4,76403201	0,001242224	FALSE	10:23:20	4,853577282	0,000570089	FALSE
10:19:15	4,768158045	0,004126035	FALSE	10:23:25	4,857992448	0,004415166	FALSE
10:19:20	4,769839652	0,001681607	FALSE	10:23:30	4,86101757	0,003025122	FALSE
10:19:25	4,770889949	0,001050297	FALSE	10:23:35	4,863814015	0,002796445	FALSE
10:19:30	4,77908238	0,008192431	FALSE	10:23:40	4,861903753	0,001910262	FALSE
10:19:35	4,770533871	0,008548509	FALSE	10:23:45	4,866822835	0,004919082	FALSE
10:19:40	4,769626513	0,000907358	FALSE	10:23:50	4,862402819	0,004420016	FALSE
10:19:45	4,768929865	0,000696648	FALSE	10:23:55	4,86354053	0,001137711	FALSE
10:19:50	4,769187137	0,000257272	FALSE	10:24:00	4,864069782	0,000529252	FALSE
10:19:55	4,768828608	0,000358529	FALSE	10:24:05	4,864734616	0,000664834	FALSE
10:20:00	4,771038637	0,002210028	FALSE	10:24:10	4,864234004	0,000500612	FALSE
10:20:05	4,771201987	0,00016335	FALSE	10:24:15	4,863940835	0,000293169	FALSE
10:20:10	4,772878699	0,001676712	FALSE	10:24:20	4,871367216	0,007426381	FALSE
10:20:15	4,771308176	0,001570523	FALSE	10:24:25	4,876649737	0,005282521	FALSE
10:20:20	4,766992684	0,004315492	FALSE	10:24:30	4,876845781	0,000196043	FALSE
10:20:25	4,762400325	0,004592359	FALSE	10:24:35	4,880967755	0,004121974	FALSE
10:20:30	4,763653174	0,001252849	FALSE	10:24:40	4,879344165	0,00162359	FALSE
10:20:35	4,76344901	0,000204165	FALSE	10:24:45	4,885079142	0,005734976	FALSE
10:20:40	4,768257815	0,004808806	FALSE	10:24:50	4,884425804	0,000653338	FALSE
10:20:45	4,769846328	0,001588512	FALSE	10:24:55	4,888987988	0,004562184	FALSE
10:20:50	4,773332067	0,003485739	FALSE	10:25:00	4,89057979	0,001591802	FALSE
10:20:55	4,779240981	0,005908914	FALSE	10:25:05	4,88916038	0,00141941	FALSE
10:21:00	4,78379089	0,004549909	FALSE	10:25:10	4,891590945	0,002430566	FALSE
10:21:05	4,779882941	0,003907949	FALSE	10:25:15	4,895810928	0,004219983	FALSE
10:21:10	4,781194929	0,001311988	FALSE	10:25:20	4,897619978	0,001809049	FALSE
10:21:15	4,79269097	0,011496041	FALSE	10:25:25	4,902398594	0,004778616	FALSE
10:21:20	4,791844055	0,000846915	FALSE	10:25:30	4,903883409	0,001484815	FALSE
10:21:25	4,792584009	0,000739954	FALSE	10:25:35	4,908091143	0,004207734	FALSE
10:21:30	4,803374413	0,010790404	FALSE	10:25:40	4,916013274	0,007922132	FALSE
10:21:35	4,806809515	0,003435101	FALSE	10:25:45	4,921179015	0,005165741	FALSE
10:21:40	4,812961817	0,006152302	FALSE	10:25:50	4,926297382	0,005118366	FALSE
10:21:45	4,817051105	0,004089288	FALSE	10:27:10			FALSE
10:21:50	4,819610696	0,002559591	FALSE	10:27:15	9,100543361		FALSE
10:21:55	4,823869862	0,004259165	FALSE	10:27:20	9,106652409	0,006109048	FALSE
10:22:00	4,831672739	0,007802878	FALSE	10:27:25	9,105763055	0,000889353	FALSE
10:22:05	4,830582447	0,001090292	FALSE	10:27:30	9,101421468	0,004341587	FALSE
10:22:10	4,83338052	0,002798073	FALSE	10:28:15	5,035920914	4,065500554	TRUE
10:22:15	4,839097515	0,005716994	FALSE	10:28:20	5,03418709	0,001733825	FALSE
10:22:20	4,834101714	0,004995801	FALSE	10:28:25	5,031652067	0,002535023	FALSE
10:22:25	4,839641485	0,005539771	FALSE	10:28:30	5,029428221	0,002223846	FALSE
10:22:30	4,831558518	0,008082967	FALSE	10:28:35	5,033146758	0,003718536	FALSE
10:22:35	4,841999374	0,010440856	FALSE				

Πίνακας 4.9: Δεδομένα μεθόδου Ionospheric Residual για τον Ε09 στην στάση 2

4.2.1.3 Μέθοδος Διαφορών

Παρακάτω θα αναλυθούν τα δεδομένα που προκύπτουν από τη μέθοδο των διαφορών. Συγκεκριμένα, θα χρησιμοποιηθεί η στάση "ANOIXTOY OPIZONTA" ως βάση, καθώς έχει καταγράψει μετρήσεις στις ίδιες χρονικές στιγμές και με τους δύο δορυφόρους. Στη συνέχεια, θα γίνει σύγκριση των δεδομένων ενός ζεύγους δορυφόρων, από τη μία στάση με τα δεδομένα της άλλης στάσης. Η διαδικασία αυτή θα επαναληφθεί και για τις δύο στάσεις διαδοχικά, για τα συστήματα GPS και Galileo, προκειμένου να εξεταστούν οι διαφορές στα σήματα.

Η ανάλυση θα ξεκινήσει με τους δορυφόρους του συστήματος GPS G09 και G30, για τη στάση "ANOIXTOY OPIZONTA" και τη Στάση 1, χρησιμοποιώντας το σήμα L1C. Στον Πίνακα 4.10 παρουσιάζονται οι 30 πρώτες εποχές που έχει καταγράψει ο δέκτης για τους συγκεκριμένους δορυφόρους. Παρατηρώντας τις στήλες των διαφορών, διαπιστώνεται ότι δεν υπάρχει μεγάλη διακύμανση μεταξύ τους. Πιο συγκεκριμένα, στη στήλη των τριπλών διαφορών, οι τιμές είναι πολύ κοντά στο μηδέν, γεγονός που υποδηλώνει ότι τα δεδομένα δεν παρουσιάζουν μεγάλες μεταβολές μεταξύ των χρονικών στιγμών και επομένως έχουν μικρό θόρυβο.

Το ίδιο παρατηρείται και στην σύγκριση στο σήμα L2W που απεικονίζεται στον Πίνακα 4.11 καθώς και εδώ τα δεδομένα δεν παρουσιάζουν μεγάλες μεταβολές μεταξύ τους και οι τριπλές διαφορές βρίσκονται πολύ κοντά στο μηδέν.

rowTimes	G09 L1C Clear Sky	Δ	G09 L1C Stasi 1	G30 L1C Clear Sky	Δ	G30 L1C Stasi 1	Απλές Διαφορές	Διπλές Διαφορές	Τριπλές Διαφορές
9:57:55	109418599,4	-123866,35	109542465,7	115833012,9	-140364,14	115973377	16497,79		
9:58:00	109420210,2	-121050,58	109541260,8	115818267,8	-137545,70	115955813,5	16495,12	2,67	
9:58:05	109421827,9	-118235,25	109540063,2	115803532,4	-134727,76	115938260,2	16492,51	2,61	0,06
9:58:10	109423453,1	-115420,94	109538874	115788807,3	-131910,78	115920718,1	16489,84	2,67	-0,06
9:58:15	109425086,1	-112605,71	109537691,9	115774092,9	-129092,87	115903185,7	16487,16	2,68	-0,01
9:58:20	109426726,6	-109790,50	109536517,1	115759388,7	-126275,03	115885663,7	16484,53	2,63	0,05
9:58:25	109428374	-106975,17	109535349,2	115744694,3	-123456,96	115868151,3	16481,79	2,74	-0,11
9:58:30	109430028,3	-104160,89	109534189,2	115730009,6	-120639,97	115850649,6	16479,08	2,70	0,04
9:58:35	109431689	-101347,59	109533036,6	115715334,3	-117823,99	115833158,3	16476,39	2,69	0,01
9:58:40	109433357,7	-98534,27	109531892	115700669,8	-115007,94	115815677,7	16473,68	2,72	-0,03
9:58:45	109435033,4	-95720,58	109530754	115686015,1	-112191,53	115798206,6	16470,95	2,73	-0,01
9:58:50	109436716,3	-92907,07	109529623,4	115671370,5	-109375,32	115780745,8	16468,24	2,71	0,02
9:58:55	109438408,3	-90092,63	109528500,9	115656737,9	-106558,16	115763296	16465,53	2,71	-0,01
9:59:00	109440106,7	-87278,43	109527385,2	115642114,6	-103741,25	115745855,9	16462,82	2,71	0,00
9:59:05	109441811,9	-84464,89	109526276,8	115627500,9	-100924,96	115728425,9	16460,07	2,75	-0,04
9:59:10	109443524,4	-81651,27	109525175,6	115612897,5	-98108,63	115711006,1	16457,36	2,71	0,04
9:59:15	109445244,2	-78837,47	109524081,7	115598304,3	-95292,09	115693596,4	16454,62	2,73	-0,02
9:59:20	109446971,2	-76023,77	109522995	115583721,2	-92475,59	115676196,8	16451,82	2,80	-0,06
9:59:25	109448704,9	-73210,31	109521915,2	115569147,8	-89659,36	115658807,1	16449,04	2,78	0,02
9:59:30	109450445,9	-70397,25	109520843,1	115554584,4	-86843,56	115641428	16446,31	2,73	0,05
9:59:35	109452194,4	-67584,00	109519778,4	115540031,6	-84027,54	115624059,2	16443,53	2,78	-0,05
9:59:40	109453950,4	-64769,92	109518720,3	115525489,2	-81210,63	115606699,8	16440,71	2,83	-0,05
9:59:45	109455713,7	-61955,06	109517668,8	115510957	-78393,02	115589350	16437,96	2,75	0,07
9:59:50	109457483,5	-59141,36	109516624,8	115496434,3	-75576,50	115572010,8	16435,14	2,82	-0,07
9:59:55	109459261,2	-56327,28	109515588,5	115481922,4	-72759,57	115554682	16432,30	2,84	-0,03
10:00:00	109461046,1	-53513,29	109514559,4	115467420,7	-69942,82	115537363,5	16429,53	2,77	0,08
10:00:05	109462837,9	-50699,61	109513537,5	115452928,9	-67126,29	115520055,2	16426,68	2,85	-0,09
10:00:10	109464637,2	-47884,88	109512522,1	115438447,5	-64308,74	115502756,3	16423,86	2,82	0,03
10:00:15	109466443,1	-45069,58	109511512,7	115423975,7	-61490,63	115485466,4	16421,05	2,80	0,02

Πίνακας 4.10: Διαφορές του σήματος L1C ανάμεσα σε G09 - G30 για τη στάση ΑΝΟΙΧΤΟΥ ΟΡΙΖΟΝΤΑ και τη Στάση 1

1 / 9	1 /	<i>y</i>	1 /	,	c /	,	CITCC
$\Delta v \alpha \pi \tau v / \nu r$	$1 \wedge m \sigma m r m r n r$	$m\alpha \tau m \alpha \sigma \alpha \sigma \alpha$	$i o n n \sigma n$	$\tau n \subset \pi \Omega \Omega \sigma n \tau \Omega \sigma \Omega$	$v c c d d a \tau v c d v$	nerongeon	1 - /////
A v u u u u u u	no n	$\gamma i \alpha i n \gamma \alpha c i 0$	$\lambda O m O m$			$u_{G} u_{G} u_{G$	UTIDD
		1				F	

rowTimes	G09 L2L Clear Sky	Δ	G09 L2L Stasi 1	G30 L2L Clear Sky	Δ	G30 L2L Stasi 1	Απλές Διαφορές	Διπλές Διαφορές	Τριπλές Διαφορές
9:57:55	85261244,7	-96528,99	85357773,68	90259493,25	-109377,16	90368870,42	12848,17		
9:58:00	85262499,89	-94334,89	85356834,78	90248003,58	-107180,98	90355184,56	12846,09	2,08	
9:58:05	85263760,48	-92141,15	85355901,63	90236521,47	-104985,20	90341506,67	12844,05	2,04	0,05
9:58:10	85265026,83	-89948,18	85354975,01	90225047,33	-102790,16	90327837,49	12841,98	2,08	-0,04
9:58:15	85266299,35	-87754,47	85354053,82	90213581,56	-100594,40	90314175,96	12839,93	2,05	0,03
9:58:20	85267577,64	-85560,82	85353138,47	90202123,76	-98398,68	90300522,44	12837,85	2,07	-0,02
9:58:25	85268861,32	-83367,03	85352228,35	90190673,59	-96202,81	90286876,4	12835,78	2,08	0,00
9:58:30	85270150,37	-81174,11	85351324,47	90179231,01	-94007,76	90273238,77	12833,65	2,12	-0,05
9:58:35	85271444,44	-78981,90	85350426,34	90167795,67	-91813,49	90259609,16	12831,59	2,07	0,06
9:58:40	85272744,71	-76789,69	85349534,4	90156368,76	-89619,18	90245987,94	12829,49	2,10	-0,03
9:58:45	85274050,47	-74597,17	85348647,64	90144949,56	-87424,58	90232374,14	12827,40	2,09	0,01
9:58:50	85275361,78	-72404,83	85347766,6	90133538,16	-85230,13	90218768,29	12825,31	2,10	-0,01
9:58:55	85276680,23	-70211,75	85346891,98	90122136,14	-83034,95	90205171,1	12823,20	2,11	-0,01
9:59:00	85278003,69	-68018,88	85346022,57	90110741,38	-80839,96	90191581,34	12821,08	2,12	-0,01
9:59:05	85279332,37	-65826,52	85345158,89	90099354,11	-78645,47	90177999,57	12818,95	2,14	-0,02
9:59:10	85280666,77	-63634,08	85344300,85	90087974,81	-76450,92	90164425,73	12816,84	2,10	0,03
9:59:15	85282006,93	-61441,51	85343448,44	90076603,52	-74256,21	90150859,73	12814,70	2,14	-0,03
9:59:20	85283352,63	-59249,01	85342601,63	90065240,05	-72061,54	90137301,59	12812,54	2,17	-0,03
9:59:25	85284703,58	-57056,70	85341760,27	90053884,11	-69867,08	90123751,19	12810,38	2,16	0,01
9:59:30	85286060,15	-54864,70	85340924,85	90042536,04	-67672,96	90110209	12808,27	2,11	0,04
9:59:35	85287422,66	-52672,57	85340095,23	90031196,22	-65478,65	90096674,87	12806,08	2,18	-0,07
9:59:40	85288790,94	-50479,74	85339270,68	90019864,46	-63283,66	90083148,11	12803,92	2,16	0,02
9:59:45	85290164,95	-48286,34	85338451,29	90008540,69	-61088,11	90069628,8	12801,77	2,15	0,02
9:59:50	85291543,97	-46093,85	85337637,82	89997224,26	-58893,42	90056117,68	12799,57	2,20	-0,05
9:59:55	85292929,22	-43901,05	85336830,27	89985916,36	-56698,42	90042614,78	12797,37	2,20	-0,01
10:00:00	85294320,03	-41708,31	85336028,35	89974616,31	-54503,55	90029119,85	12795,23	2,14	0,07
10:00:05	85295716,26	-39515,82	85335232,08	89963323,98	-52308,85	90015632,82	12793,03	2,20	-0,06
10:00:10	85297118,33	-37322,49	85334440,82	89952039,81	-50113,36	90002153,18	12790,87	2,16	0,04
10:00:15	85298525,5	-35128,77	85333654,27	89940763,08	-47917,43	89988680,51	12788,67	2,20	-0,04

Πίνακας 4.11: Διαφορές του σήματος L2 ανάμεσα σε G09 - G30 για τη στάση ΑΝΟΙΧΤΟΥ ΟΡΙΖΟΝΤΑ και τη Στάση 1

Στη συνέχεια, αναλύονται τα δεδομένα που έχουν καταγραφεί στις δύο προηγούμενες στάσεις από το σύστημα Galileo. Για την ανάλυση θα χρησιμοποιηθούν τα σήματα L1X και L8X των δορυφόρων E09 και E11. Όπως φαίνεται στον Πίνακα 4.12, όπου απεικονίζονται οι πρώτες 40 εποχές κατά τη σύγκριση των δορυφόρων για το σήμα L1X, παρατηρείται μεγάλη διαφορά στις τιμές, όπως φαίνεται από τις απλές και τις διπλές διαφορές, στην ίδια εποχή που παρατηρήθηκε και στη μέθοδο του Ionospheric Residual, 10:00:40 όπου ο δέκτης έχασε το σήμα του δορυφόρου για ένα λεπτό και δεκαπέντε δευτερόλεπτα (09:59:25 – 10:00:40). Σημειώνεται στην προηγούμενη διακοπή λήψης του σήματος. Για τον λόγο αυτό, απεικονίζεται με γαλάζιο χρώμα.

rowTimes	G09 L1X Clear Sky	Δ	G09 L1X Stasi 1	G30 L1C Clear Sky	Δ	G30 L1X Stasi 1	Απλές Διαφορές	Διπλές Διαφορές
9:58:10	130302136,1	-114082,03	130416218,1	142429993,9	-114119,66	142544113,6	37,63	
9:58:15	130309226,9	-111274,36	130420501,2	142437232,2	-111312,01	142548544,2	37,65	-0,02
9:58:20	130316320,8	-108466,06	130424786,9	142444480,7	-108503,73	142552984,4	37,67	-0,02
9:58:25	130323417,4	-105658,66	130429076	142451738,8	-105696,52	142557435,3	37,86	-0,19
9:58:30	130330516,5	-102851,98	130433368,5	142459006,5	-102889,79	142561896,3	37,82	0,04
9:58:35	130337617,9	-100046,72	130437664,6	142466283,3	-100084,58	142566367,9	37,86	-0,05
9:58:40	130344722,9	-97240,13	130441963	142473570,8	-97278,03	142570848,9	37,90	-0,04
9:58:45	130351830,6	-94433,85	130446264,4	142480868,1	-94471,81	142575339,9	37,96	-0,06
9:58:50	130358941,1	-91628,67	130450569,8	142488175,2	-91666,69	142579841,9	38,01	-0,05
9:58:55	130366056,6	-88821,01	130454877,6	142495494,1	-88859,12	142584353,2	38,11	-0,10
9:59:00	130373174,2	-86014,24	130459188,4	142502822,1	-86052,42	142588874,5	38,18	-0,07
9:59:05	130380294,2	-83208,05	130463502,2	142510159,5	-83246,37	142593405,9	38,32	-0,14
9:59:10	130387417,3	-80401,68	130467819	142517506,9	-80440,08	142597947	38,40	-0,08
9:59:15	130394543,4	-77595,21	130472138,6	142524864,3				
9:59:20	130401672,4	-74788,55	130476461	142532231,5				
9:59:25	130408803,9	-71982,81	130480786,7	142539608,1	-72021,28	142611629,4	38,47	
10:00:40	130516138,5	-29868,79	130546007,3	142651444,6	-29852,98	142681297,5	-15,81	54,28
10:00:45	130523319,2	-27057,86	130550377,1	142658980,1	-27042,13	142686022,2	-15,73	-0,08
10:00:50	130530503,4	-24246,41	130554749,8	142666525,7	-24230,75	142690756,5	-15,66	-0,07
10:00:55	130537689,7	-21434,98	130559124,7	142674080,4	-21419,30	142695499,7	-15,69	0,02
10:01:00	130544879,5	-18623,00	130563502,5	142681645,3	-18607,46	142700252,8	-15,54	-0,14
10:01:05	130552072,7	-15810,81	130567883,6	142689220,4	-15795,29	142705015,7	-15,52	-0,02
10:01:10	130559268,2	-12999,10	130572267,3	142696804,4	-12983,64	142709788,1	-15,46	-0,06
10:01:15	130566466,7	-10187,76	130576654,5	142704398,4	-10172,34	142714570,7	-15,42	-0,04
10:01:20	130573667,4	-7376,45	130581043,9	142712001,2	-7361,09	142719362,2	-15,36	-0,06
10:01:25	130580871,2	-4565,90	130585437,1	142719613,8	-4550,55	142724164,4	-15,35	-0,01
10:01:30	130588078,2	-1754,64	130589832,8	142727236,3	-1739,30	142728975,6	-15,34	-0,01
10:01:35	130595288	1056,02	130594232	142734868,4	1071,26	142733797,2	-15,24	-0,10
10:01:40	130602500,7	3867,85	130598632,9	142742510,1	3883,05	142738627,1	-15,20	-0,04
10:01:45	130609716	6679,42	130603036,6	142750161,1	6694,59	142743466,5	-15,17	-0,04
10:01:50	130616934,4	9490,99	130607443,4	142757821,8	9506,12	142748315,7	-15,12	-0,04
10:01:55	130624155,7	12302,62	130611853,1	142765492,2	12317,68	142753174,5	-15,07	-0,06
10:02:00	130631380,7	15115,16	130616265,6	142773172,9	15130,16	142758042,7	-15,00	-0,07
10:02:05	130638608,3	17927,58	130620680,7	142780862,8	17942,49	142762920,3	-14,91	-0,09
10:02:10	130645839,5	20741,38	130625098,1	142788563,1	20756,22	142767806,8	-14,84	-0,07
10:02:15	130653073,2	23555,58	130629517,6	142796272,4	23570,36	142772702	-14,78	-0,05
10:02:20	130660309,2	26368,19	130633941	142803990,7	26382,92	142777607,8	-14,73	-0,06
10:02:25	130667548,4	29181,21	130638367,2	142811718,8	29195,87	142782522,9	-14,65	-0,07
10:02:30	130674790,5	31994,49	130642796	142819456,5	32009,17	142787447,3	-14,68	0,03
10:02:35	130682035,5	34808,40	130647227,1	142827203,7	34823,01	142792380,7	-14,61	-0,07

Ανάπτυξη λογισμικού για την αξιολόγηση της ποιότητας γεωδαιτικών μετρήσεων GNSS

Πίνακας 4.12: Διαφορές του σήματος L1 ανάμεσα σε Ε09 - Ε31 για τη στάση ΑΝΟΙΧΤΟΥ ΟΡΙΖΟΝΤΑ και τη Στάση 1

Το ίδιο παρατηρείται και στο σήμα L8X, όπου καταγράφεται μεγάλη διαφορά στις τιμές στην ίδια εποχή, 10:00:40, όταν χάθηκε το σήμα του δορυφόρου για ένα λεπτό και δεκαπέντε δευτερόλεπτα (09:59:25 – 10:00:40). Σε αντίθεση με το σύνηθες, όπου σε περίπτωση ολίσθησης κύκλων εμφανίζεται μεγάλη διαφορά σε ένα από τα δύο σήματα του δορυφόρου, σε αυτήν την περίπτωση παρατηρείται και στα δύο σήματα. Όπως φαίνεται και στον Πίνακα 4.13, όπου απεικονίζονται οι πρώτες 40 εποχές, η τιμή των διπλών διαφορών στο σήμα L8X είναι μικρότερη από αυτήν που παρατηρήθηκε στο σήμα L1X.

Στην ενότητα που ακολουθεί, θα αναλυθεί περαιτέρω τι συμβαίνει όταν παρατηρείται ολίσθηση κύκλων και στα δύο σήματα, μέσα από τη σύγκριση των δύο μεθόδων.

Anderen En	lowerunoń			noco Serencian	unania com CNCC
Αναπιόζη	λογισμικου	για την αςιολογηση	της ποιοτητάς	γεωσαπικων	μετρησεων σινδδ

rowTimes	G09 L8X Clear Sky	Δ	G09 L8X Stasi 1	G30 L8X Clear Sky	Δ	G30 L8X Stasi 1	Απλές Διαφορές	Διπλές Διαφορές
9:58:10	98572723	-86302,84	98659025,84	107747374,8	-86327,13	107833701,9	24,30	
9:58:15	98578087,15	-84178,87	98662266,03	107752850,5	-84203,18	107837053,7	24,30	-0,01
9:58:20	98583453,66	-82054,38	98665508,04	107758333,9	-82078,72	107840412,7	24,34	-0,03
9:58:25	98588822,17	-79930,64	98668752,81	107763824,6	-79955,08	107843779,7	24,44	-0,10
9:58:30	98594192,62	-77807,38	98672000	107769322,6	-77831,82	107847154,4	24,45	-0,01
9:58:35	98599564,73	-75685,21	98675249,94	107774827,5	-75709,68	107850537,2	24,47	-0,02
9:58:40	98604939,61	-73562,03	98678501,64	107780340,5	-73586,55	107853927	24,51	-0,04
9:58:45	98610316,55	-71439,08	98681755,64	107785860,8	-71463,64	107857324,4	24,55	-0,04
9:58:50	98615695,64	-69316,99	98685012,63	107791388,6	-69341,58	107860730,2	24,59	-0,04
9:58:55	98621078,42	-67193,00	98688271,43	107796925,3	-67217,67	107864142,9	24,67	-0,08
9:59:00	98626462,83	-65069,71	98691532,55	107802468,9	-65094,40	107867563,3	24,68	-0,01
9:59:05	98631849,08	-62946,87	98694795,95	107808019,6	-62971,64	107870991,2	24,77	-0,08
9:59:10	98637237,64	-60823,86	98698061,49	107813577,8	-60848,68	107874426,5	24,82	-0,05
9:59:15	98642628,52	-58700,79	98701329,31	107819143,7				
9:59:20	98648021,56	-56577,57	98704599,13	107824716,9				
9:59:25	98653416,47	-54455,06	98707871,53	107830297,2	-54479,92	107884777,2	24,86	
10:00:40	98734614,33	-22596,09	98757210,42	107914900,8	-22626,60	107937527,4	30,51	-5,64
10:00:45	98740046,5	-20469,66	98760516,17	107920601,4	-20500,19	107941101,6	30,53	-0,02
10:00:50	98745481,23	-18342,82	98763824,05	107926309,6	-18373,38	107944683	30,56	-0,03
10:00:55	98750917,65	-16215,99	98767133,64	107932024,7	-16246,55	107948271,2	30,56	0,00
10:01:00	98756356,7	-14088,74	98770445,45	107937747,5	-14119,41	107951866,9	30,66	-0,10
10:01:05	98761798,32	-11961,34	98773759,66	107943478	-11992,01	107955470	30,68	-0,01
10:01:10	98767241,6	-9834,30	98777075,9	107949215,3	-9865,03	107959080,3	30,72	-0,05
10:01:15	98772687,25	-7707,54	98780394,79	107954960	-7738,30	107962698,3	30,76	-0,04
10:01:20	98778134,53	-5580,79	98783715,33	107960711,5	-5611,61	107966323,1	30,81	-0,05
10:01:25	98783584,18	-3454,62	98787038,81	107966470,4	-3485,45	107969955,8	30,82	-0,01
10:01:30	98789036,15	-1327,94	98790364,09	107972236,8	-1358,76	107973595,5	30,82	0,00
10:01:35	98794490,35	798,33	98793692,02	107978010,4	767,41	107977243	30,92	-0,10
10:01:40	98799946,74	2925,46	98797021,28	107983791,3	2894,52	107980896,8	30,94	-0,02
10:01:45	98805405,05	5052,38	98800352,67	107989579,2	5021,41	107984557,8	30,97	-0,03
10:01:50	98810865,68	7179,33	98803686,36	107995374,5	7148,30	107988226,2	31,03	-0,06
10:01:55	98816328,58	9306,27	98807022,32	108001177,1	9275,22	107991901,8	31,04	-0,01
10:02:00	98821794,26	11433,95	98810360,31	108006987,5	11402,83	107995584,6	31,12	-0,08
10:02:05	98827261,83	13561,52	98813700,32	108012804,8	13530,35	107999274,5	31,16	-0,05
10:02:10	98832732,22	15690,13	98817042,1	108018630	15658,93	108002971,1	31,20	-0,04
10:02:15	98838204,42	17819,04	98820385,38	108024462,1	17787,80	108006674,3	31,24	-0,04
10:02:20	98843678,45	19946,75	98823731,69	108030301	19915,50	108010385,5	31,26	-0,02
10:02:25	98849154,81	22074,80	98827080,02	108036147,2	22043,46	108014103,8	31,33	-0,07
10:02:30	98854633,4	24203,02	98830430,38	108042000,7	24171,71	108017829	31,31	0,02
10:02:35	98860114,24	26331,72	98833782,52	108047861,5	26300,35	108021561,1	31,37	-0,05

Πίνακας 4.13: Διαφορές του σήματος L8 ανάμεσα σε E09 - E31 για τη στάση ΑΝΟΙΧΤΟΥ ΟΡΙΖΟΝΤΑ και τη Στάση 1

Η ανάλυση συνεχίζεται με τις στάσεις "ΑΝΟΙΧΤΟΥ ΟΡΙΖΟΝΤΑ" και Στάση 2, και τους δορυφόρους G09 και G30 του συστήματος GPS. Ο δέκτης κατέγραψε δεδομένα για τους δύο δορυφόρους και στα δύο σήματα, από την χρονική στιγμή 10:18:30 έως την 10:26:20. Στον Πίνακα 4.14, που βρίσκεται παρακάτω, απεικονίζονται οι πρώτες 40 εποχές του σήματος L1C που έχει καταγράψει ο δέκτης. Υπάρχουν διακοπές στο σήμα και παρατηρούνται κενά στα δεδομένα, καθώς ο δέκτης δεν κατάφερε να καταγράψει μετρήσεις για όλες τις συχνότητες σε όλες τις εποχές. Ενδεχομένως, αν υπήρχαν τα πλήρη δεδομένα, να είχε καταγραφεί ολίσθηση κύκλων.

rowTimes	G09 L1C Clear Sky	Δ	G09 L1C Stasi 2	G30 L1C Clear Sky	Δ	G30 L1C Stasi 2	Απλές Διαφορές	Διπλές Διαφορές
10:18:30	110033212,2	577289,31	109455922,8	112507089,2	577065,80	111930023,4	223,51	
10:18:35	110036578,6	580170,84	109456407,8	112494957,5	579947,31	111915010,2	223,53	-0,03
10:18:40	110039952,7	583053,42	109456899,2	112482837,5	582829,80	111900007,7	223,62	-0,09
10:18:45	110043333,8	585935,54	109457398,2	112470728,5	585711,85	111885016,7	223,69	-0,07
10:18:50	110046722,6	588819,13	109457903,5	112458631,3	588595,42	111870035,9	223,71	-0,02
10:18:55	110050118,1	591702,36	109458415,8	112446544,8	591478,58	111855066,2	223,78	-0,07
10:19:00	110053519,9	594585,36	109458934,5	112434468,6	594361,49	111840107,2	223,86	-0,08
10:19:05	110056928,6	597470,02	109459458,6	112422403,4	597246,06	111825157,4	223,96	-0,10
10:19:10	110060344	600353,85	109459990,1	112410348,9	600129,80	111810219,1	224,05	-0,10
10:19:15	110063766,2	603238,07	109460528,2	112398305,4	603014,00	111795291,3	224,07	-0,01
10:19:20	110067196,2	606124,17	109461072	112386273,5	605900,04	111780373,4	224,14	-0,07
10:19:25	110070632,6	609009,31	109461623,3	112374252,2	608785,10	111765467,1	224,21	-0,08
10:19:30	110074075,9	611894,62	109462181,3	112362241,9	611670,30	111750571,6	224,32	-0,11
10:19:35	110077526,3	614780,25	109462746	112350242,6	614555,86	111735686,7	224,39	-0,07
10:19:40	110080984,4	617666,47	109463317,9	112338255,1	617442,00	111720813,1	224,47	-0,09
10:19:45	110084449,8	620554,28	109463895,5	112326279,1	620329,78	111705949,3	224,50	-0,03
10:19:50	110087922,3	623441,88	109464480,5	112314314,2	623217,28	111691096,9	224,60	-0,10
10:19:55	110091401,7	626329,67	109465072	112302360,2	626105,11	111676255,1	224,56	0,04
10:20:00	110094888,4	629217,51	109465670,9	112290417,6	628992,92	111661424,7	224,59	-0,04
10:20:05	110098382	632106,62	109466275,3	112278486,1	631881,98	111646604,1	224,64	-0,05
10:20:10	110101882,5	634996,11	109466886,4	112266565,5	634771,46	111631794	224,66	-0,02
10:20:15	110105389,8	637886,44	109467503,4	112254655,9	637661,78	111616994,1	224,66	0,00
10:20:20	110108904,8	640777,34	109468127,4	112242757,9	640552,60	111602205,3	224,74	-0,08
10:20:25	110112427,4	643669,38	109468758	112230871,8	643444,59	111587427,2	224,79	-0,06
10:20:30	110115956,4	646561,32	109469395,1	112218996	646336,53	111572659,5	224,79	0,00
10:20:35	110119491,9	649452,48	109470039,4	112207130,9				
10:20:40	110123034,4	652344,74	109470689,7	112195276,9	652119,93	111543157	224,81	
10:21:35	110162466,3	-891237,15	111053703,5	112065619,1				
10:21:40	110166092,8	-888341,36	111054434,1	112053898,6	-888540,92	112942439,5	199,56	
10:21:45	110169726,6	-885443,74	111055170,3	112042189,4	-885643,40	112927832,8	199,66	-0,09
10:21:50	110173367,1	-882545,27	111055912,4	112030491,3	-882744,95	112913236,2	199,68	-0,03
10:21:55	110177014,2	-879646,70	111056660,9	112018803,8				
10:23:20	110240101,1	-830294,68	111070395,8	111821841,7	-830470,37	112652312,1	175,68	
10:23:25	110243875,7	-827387,53	111071263,2	111810357	-827563,26	112637920,3	175,72	-0,04
10:23:30	110247656,7	-824479,52	111072136,2	111798883	-824655,29	112623538,3	175,77	-0,05
10:23:35	110251444,2	-821571,06	111073015,2	111787419,6	-821746,97	112609166,6	175,91	-0,13
10:23:40	110255238,8	-818662,44	111073901,2	111775967,6	-818838,31	112594805,9	175,88	0,03
10:23:45	110259040,8	-815753,39	111074794,1	111764527,1	-815929,37	112580456,5	175,98	-0,10
10:23:50	110262850,1	-812843,28	111075693,3	111753098,2	-813019,29	112566117,5	176,01	-0,03
10:23:55	110266665,4	-809934,20	111076599,6	111741679,6	-810110,32	112551789,9	176,12	-0,11

1 / 9 1 /	y 1/	,	c /	/ CNICC
$A v \alpha \pi \tau n / n / \alpha v n \sigma u v \alpha n v \alpha v n \sigma u v \alpha v n v n$	$\eta \alpha \tau \eta \gamma \alpha \gamma \eta \alpha \eta \eta \sigma \eta$	$\tau n \subset \pi \cap (\cap \tau n \tau \alpha \subset v)$	$scordantikov \mu$	$s \tau_0 n \sigma s \omega v (\tau N N)$
1100000000000000000000000000000000000		ins noisen in or y	$coourner \mu$	

Στον πίνακα 4.15 απεικονίζονται οι 40 πρώτες εποχές που έχει καταγράψει ο δέκτης για το σήμα L2L. Όπως και στην ανάλυση του σήματος L1C, έτσι και στην ανάλυση του σήματος L2L, δεν παρατηρείται ολίσθηση κύκλων. Υπάρχουν διακοπές στο σήμα για ορισμένα δευτερόλεπτα, αλλά ο δέκτης δεν έχει καταφέρει να καταγράψει δεδομένα σε όλες τις χρονικές στιγμές έτσι ώστε να μπορέσει να γίνει ο προσδιορισμός ολίσθησης κύκλων.

Πίνακας 4.14: Διαφορές του σήματος L1 ανάμεσα σε G09 - G30 για τη στάση ΑΝΟΙΧΤΟΥ ΟΡΙΖΟΝΤΑ και τη Στάση 2
rowTimes	G09 L2L Clear Sky	Δ	G09 L2L Stasi 2	G30 L2L Clear Sky	Δ	G30 L2L Stasi 2	Απλές Διαφορές	Διπλές Διαφορές
10:18:30	85740163,41	449825,91	85290337,5	87667865,36	449654,32	87218211,04	171,59	
10:18:35	85742786,62	452071,27	85290715,35	87658412,13	451899,66	87206512,48	171,61	-0,02
10:18:40	85745415,75	454317,42	85291098,33	87648967,94	454145,75	87194822,19	171,67	-0,06
10:18:45	85748050,38	456563,23	85291487,15	87639532,38	456391,52	87183140,86	171,72	-0,04
10:18:50	85750691,04	458810,20	85291880,84	87630106	458638,45	87171467,55	171,75	-0,03
10:18:55	85753336,89	461056,87	85292280,02	87620687,95	460885,08	87159802,87	171,80	-0,05
10:19:00	85755987,63	463303,36	85292684,27	87611277,95	463131,51	87148146,44	171,85	-0,05
10:19:05	85758643,77	465551,15	85293092,62	87601876,48	465379,23	87136497,25	171,92	-0,07
10:19:10	85761305,07	467798,28	85293506,79	87592483,33	467626,34	87124856,99	171,94	-0,03
10:19:15	85763971,77	470045,72	85293926,06	87583098,75	469873,76	87113225	171,96	-0,02
10:19:20	85766644,44	472294,64	85294349,8	87573723,27	472122,61	87101600,66	172,03	-0,07
10:19:25	85769322,18	474542,79	85294779,39	87564356,03	474370,70	87089985,33	172,09	-0,06
10:19:30	85772005,3	476791,08	85295214,22	87554997,34	476618,94	87078378,41	172,15	-0,05
10:19:35	85774693,86	479039,61	85295654,25	87545647,25	478867,42	87066779,84	172,19	-0,05
10:19:40	85777388,48	481288,61	85296099,87	87536306,38	481116,34	87055190,04	172,27	-0,08
10:19:45	85780088,82	483538,86	85296549,96	87526974,41	483366,58	87043607,83	172,28	-0,01
10:19:50	85782794,69	485788,92	85297005,76	87517651,13	485616,54	87032034,59	172,38	-0,10
10:19:55	85785505,87	488039,16	85297466,72	87508336,35	487866,77	87020469,58	172,38	0,00
10:20:00	85788222,76	490289,42	85297933,35	87499030,44	490116,99	87008913,45	172,43	-0,05
10:20:05	85790945,03	492540,67	85298404,36	87489733,09	492368,19	86997364,9	172,48	-0,05
10:20:10	85793672,73	494792,23	85298880,5	87480444,36	494619,74	86985824,62	172,49	-0,01
10:20:15	85796405,73	497044,43	85299361,3	87471164,11	496871,90	86974292,21	172,52	-0,03
10:20:20	85799144,63	499297,08	85299847,55	87461892,98	499124,49	86962768,49	172,59	-0,06
10:20:25	85801889,56	501550,62	85300338,94	87452631,05	501378,00	86951253,05	172,61	-0,03
10:20:30	85804639,4	503804,08	85300835,32	87443377,21	503631,44	86939745,78	172,64	-0,03
10:20:35	85807394,34	506056,91	85301337,42	87434131,69				
10:20:40	85810154,73	508310,63	85301844,1	87424894,82				
10:21:35	85840880,87	-694480,45	86535361,32	87323862,79				
10:21:40	85843706,67	-692224,00	86535930,66	87314729,9				
10:21:45	85846538,21	-689966,11	86536504,31	87305605,91				
10:21:50	85849374,99	-687707,55	86537082,54	87296490,47				
10:21:55	85852216,85	-685448,93	86537665,78	87287383,34				
10:23:20	85901375,44	-646992,82	86548368,26	87133906,44				
10:23:25	85904316,67	-644727,52	86549044,19	87124957,35	-644888,07	87769845,42	160,55	
10:23:30	85907262,96	-642461,53	86549724,48	87116016,56	-642622,07	87758638,64	160,55	0,00
10:23:35	85910214,21	-640195,20	86550409,41	87107084,04	-640355,87	87747439,91	160,67	-0,12
10:23:40	85913171,06	-637928,74	86551099,8	87098160,4	-638089,38	87736249,79	160,65	0,02
10:23:45	85916133,62	-635661,94	86551795,56	87089245,77	-635822,67	87725068,44	160,73	-0,08
10:23:50	85919101,9	-633394,33	86552496,24	87080340,12	-633555,10	87713895,22	160,77	-0,04
10:23:55	85922074,88	-631127,50	86553202,39	87071442,48	-631288,35	87702730,83	160,85	-0,08

Ανάπτυξη λογισμικού για την αξιολόγηση της ποιότητας γεωδαιτικών μετρήσεων GNSS

Πίνακας 4.15: Διαφορές του σήματος L2 ανάμεσα σε G09 - G30 για τη στάση ΑΝΟΙΧΤΟΥ

Τέλος, αναλύονται τα δεδομένα για τους δορυφόρους E09 και E25 του συστήματος Galileo. Ο δέκτης κατέγραψε δεδομένα και για τους δύο δορυφόρους και στα δύο σήματα, από την χρονική στιγμή 10:18:30 έως την 10:28:35. Ξεκινώντας με τις τελευταίες 40 εποχές του σήματος L1X, που απεικονίζονται στον Πίνακα 4.16, παρατηρούνται αυξημένες τιμές σε δύο εποχές: στην εποχή με χρονική στιγμή 10:27:10 και στην εποχή με χρονική στιγμή 10:28:15. Πριν από τις δύο εποχές έχει προηγηθεί διακοπή της λήψης του σήματος για ορισμένα δευτερόλεπτα, επομένως οι αυξημένες τιμές δεν ερμηνεύονται ως ολίσθηση κύκλων.

1 / 2 1	,	y 11	,	c /	/ CN	aa
Αναπτηζη λονισμ	$i\kappa\alpha$) via τnv	ασιολουηση	της ποιοτητάς '	$v \in \omega \partial \alpha i \tau i \kappa \omega v$	μετοησεων (τΝ)	11
11/0/1/05/1/10/10/10		agiono pijon		recountinces		50

rowTimes	E09 L1X Clear Sky	Δ	E09 L1X Stasi 2	E25 L1C Clear Sky	Δ	E25 L1X Stasi 2	Απλές Διαφορές	Διπλές Διαφορές
10:23:25	132586130	-827335,77	133413465,7	131867047,2	-827493,78	132694541	158,02	0,00
10:23:30	132594128	-824427,86	133418555,9	131852675,7	-824585,86	132677261,6	157,99	0,02
10:23:35	132602128,5	-821519,52	133423648	131838311,3	-821677,53	132659988,8	158,01	-0,02
10:23:40	132610132,2	-818610,95	133428743,2	131823954,6	-818768,99	132642723,6	158,04	-0,03
10:23:45	132618139,3	-815702,00	133433841,3	131809605,9	-815860,03	132625465,9	158,03	0,00
10:23:50	132626149,9	-812792,00	133438941,9	131795265,1	-812950,05	132608215,2	158,04	-0,01
10:23:55	132634162,5	-809883,00	133444045,5	131780931	-810041,08	132590972,1	158,08	-0,03
10:24:00	132642178,5	-806973,78	133449152,3	131766604,8	-807131,88	132573736,7	158,10	-0,02
10:24:05	132650197,3	-804063,91	133454261,2	131752286	-804222,00	132556508	158,09	0,01
10:24:10	132658218,9	-801154,58	133459373,5	131737974,5	-801312,65	132539287,2	158,07	0,01
10:24:15	132666242,9	-798245,35	133464488,2	131723670,1	-798403,41	132522073,5	158,06	0,01
10:24:20	132674269,6	-795336,48	133469606	131709372,9	-795494,49	132504867,4	158,01	0,05
10:24:25	132682299	-792427,64	133474726,7	131695083,1	-792585,69	132487668,8	158,05	-0,04
10:24:30	132690332,8	-789517,02	133479849,9	131680802,3	-789675,04	132470477,3	158,02	0,03
10:24:35	132698369,3	-786605,92	133484975,3	131666528,8	-786763,90	132453292,7	157,98	0,04
10:24:40	132706408,8	-783694,29	133490103,1	131652262,7	-783852,29	132436115	158,00	-0,02
10:24:45	132714450,8	-780782,79	133495233,6	131638004	-780940,76	132418944,7	157,97	0,03
10:24:50	132722496	-777870,72	133500366,7	131623753	-778028,72	132401781,7	158,00	-0,04
10:24:55	132730544,2	-774957,75	133505501,9	131609509,7	-775115,66	132384625,3	157,91	0,09
10:25:00	132738595,7	-772043,51	133510639,2	131595274,4	-772201,41	132367475,8	157,90	0,01
10:25:05	132746650,6	-769129,29	133515779,9	131581047	-769287,25	132350334,2	157,97	-0,06
10:25:10	132754708,3	-766214,61	133520922,9	131566827,1	-766372,58	132333199,7	157,97	-0,01
10:25:15	132762768,9	-763298,91	133526067,8	131552614,8	-763456,89	132316071,7	157,98	0,00
10:25:20	132770832,5	-760384,21	133531216,7	131538410,3	-760542,14	132298952,4	157,93	0,05
10:25:25	132778898,1	-757470,72	133536368,9	131524212,4	-757628,69	132281841,1	157,97	-0,05
10:25:30	132786967,8	-754554,99	133541522,8	131510023,2	-754712,94	132264736,2	157,94	0,03
10:25:35	132795039,9	-751640,30	133546680,2	131495841,1	-751798,19	132247639,3	157,89	0,06
10:25:40	132803115,1	-748724,85	133551840	131481667	-748882,70	132230549,7	157,85	0,04
10:25:45	132811193,7	-745808,31	133557002	131467500,8	-745966,11	132213466,9	157,80	0,05
10:25:50	132819276	-742890,70	133562166,7	131453343,1	-743048,57	132196391,7	157,88	-0,08
10:27:10	132948952,6	-696238,87	133645191,5	131227827,4	-696377,65	131924205,1	138,78	19,09
10:27:15	132957080,4	-693321,34	133650401,7	131213796,5	-693460,12	131907256,6	138,79	-0,01
10:27:20	132965210,2	-690405,47	133655615,7	131199772,5	-690544,18	131890316,7	138,71	0,08
10:27:25	132973343,2	-687490,05	133660833,2	131185756,4	-687628,80	131873385,2	138,75	-0,04
10:27:30	132981478,5	-684574,45	133666053	131171747,7	-684713,22	131856460,9	138,77	-0,02
10:28:15	133054820,2	-658311,04	133713131,2	131046012	-658469,98	131704482	158,94	-20,17
10:28:20	133062982,8	-655394,29	133718377,1	131032079,5	-655553,21	131687632,7	158,93	0,01
10:28:25	133071148,8	-652477,06	133723625,9	131018155,2	-652635,98	131670791,2	158,92	0,01
10:28:30	133079317,8	-649560,04	133728877,9	131004239,1	-649718,94	131653958	158,90	0,02
10:28:35	133087489	-646643,20	133734132,2	130990329,9				

Πίνακας 4.16: Διαφορές του σήματος L1 ανάμεσα σε E09 – E25 για τη στάση ΑΝΟΙΧΤΟΥ ΟΡΙΖΟΝΤΑ και τη Στάση 2

Στον Πίνακα 4.17 απεικονίζονται οι 40 τελευταίες εποχές του σήματος L8X. Με γαλάζιο χρώμα έχουν μαρκαριστεί οι εποχές στις οποίες έχουν βρεθεί αυξημένες τιμές στο σήμα L1X. Όπως φαίνεται, στην εποχή με χρονική στιγμή 10:27:10, ο δέκτης δεν έχει καταγράψει τα απαραίτητα δεδομένα για το σήμα στη Στάση 2, με αποτέλεσμα να μην είναι δυνατή η επαλήθευση των αυξημένων τιμών και στο σήμα L8X. Γι' αυτό και η μέθοδος Ionospheric Residual δεν εμφάνισε ολίσθηση κύκλων.

rowTimes	E09 L8X Clear Sky	Δ	E09 L8X Stasi 2	E25 L8X Clear Sky	Δ	E25 L8X Stasi 2	Απλές Διαφορές	Διπλές Διαφορές
10:23:25	100300547,9	-625853,36	100926401,3	99756577,14	-625988,90	100382566	135,55	-0,01
10:23:30	100306598,4	-623653,54	100930251,9	99745705,26	-623789,07	100369494,3	135,53	0,01
10:23:35	100312650,7	-621453,40	100934104,1	99734838,65	-621588,94	100356427,6	135,55	-0,01
10:23:40	100318705,5	-619253,09	100937958,5	99723977,91	-619388,66	100343366,6	135,56	-0,02
10:23:45	100324762,8	-617052,48	100941815,3	99713123,22	-617188,04	100330311,3	135,56	0,01
10:23:50	100330822,7	-614851,11	100945673,8	99702274,5	-614986,66	100317261,2	135,54	0,02
10:23:55	100336884,2	-612650,47	100949534,6	99691430,84	-612786,03	100304216,9	135,56	-0,02
10:24:00	100342948,2	-610449,67	100953397,9	99680593,15	-610585,25	100291178,4	135,58	-0,02
10:24:05	100349014,4	-608248,38	100957262,8	99669761,08	-608383,94	100278145	135,57	0,02
10:24:10	100355082,7	-606047,49	100961130,2	99658934,57	-606183,04	100265117,6	135,55	0,02
10:24:15	100361152,8	-603846,69	100964999,4	99648113,37	-603982,22	100252095,6	135,53	0,02
10:24:20	100367224,9	-601646,13	100968871	99637297,65	-601781,63	100239079,3	135,50	0,03
10:24:25	100373299,1	-599445,60	100972744,7	99626487,49	-599581,14	100226068,6	135,55	-0,05
10:24:30	100379376,6	-597243,74	100976620,4	99615684,13	-597379,26	100213063,4	135,52	0,02
10:24:35	100385456,2	-595041,51	100980497,7	99604886,32	-595177,00	100200063,3	135,50	0,02
10:24:40	100391537,9	-592838,89	100984376,8	99594094,17	-592974,39	100187068,6	135,50	0,00
10:24:45	100397621,7	-590636,34	100988258	99583307,51	-590771,84	100174079,3	135,49	0,01
10:24:50	100403707,8	-588433,39	100992141,2	99572526,76	-588568,90	100161095,7	135,51	-0,02
10:24:55	100409796,2	-586229,74	100996025,9	99561751,77	-586365,19	100148117	135,45	0,05
10:25:00	100415887,1	-584025,14	100999912,3	99550982,86	-584160,57	100135143,4	135,43	0,02
10:25:05	100421980,6	-581820,56	101003801,1	99540219,93	-581956,03	100122176	135,47	-0,04
10:25:10	100428076,2	-579615,62	101007691,8	99529462,73	-579751,10	100109213,8	135,48	-0,01
10:25:15	100434173,9	-577409,91	101011583,8	99518711,21	-577545,40	100096256,6	135,49	-0,01
10:25:20	100440274	-575204,95	101015479	99507965,57	-575340,41	100083306	135,45	0,04
10:25:25	100446375,6	-573000,90	101019376,5	99497224,96	-573136,40	100070361,4	135,50	-0,05
10:25:30	100452480,3	-570795,18	101023275,4	99486490,95	-570930,66	100057421,6	135,48	0,02
10:25:35	100458586,7	-568590,22	101027177	99475762,31	-568725,67	100044488	135,45	0,03
10:25:40	100464695,6	-566384,69	101031080,3	99465039,65	-566520,14	100031559,8	135,45	0,00
10:25:45	100470806,9	-564178,34	101034985,3	99454323,05	-564313,75	100018636,8	135,41	0,04
10:25:50	100476921,1	-561971,16	101038892,3	99443612,84	-562106,66	100005719,5	135,50	-0,08
10:27:10	100575020,6			99273011,77	-526800,43	99799812,2		
10:27:15	100581169,1	-524455,81	101105624,9	99262397,46	-524593,35	99786990,8	137,54	
10:27:20	100587319,3	-522249,96	101109569,3	99251788,4	-522387,45	99774175,85	137,49	0,04
10:27:25	100593471,8	-520044,48	101113516,3	99241185,36	-520181,98	99761367,34	137,50	-0,01
10:27:30	100599626,1	-517838,87	101117465	99230587,81	-517976,36	99748564,17	137,49	0,01
10:28:15	100655108,6	-497987,01	101153095,6	99135469,66	-498123,55	99633593,21	136,54	0,96
10:28:20	100661283,5	-495780,52	101157064,1	99124929,83	-495917,05	99620846,87	136,53	0,01
10:28:25	100667461	-493573,68	101161034,7	99114396,21	-493710,18	99608106,39	136,50	0,02
10:28:30	100673640,9	-491367,00	101165007,9	99103868,71	-491503,45	99595372,16	136,45	0,05
10:28:35	100679822,3	-489160,42	101168982,7	99093346,49	-489296,89	99582643,38	136,474	-0,02

Πίνακας 4.17: Διαφορές του σήματος L8 ανάμεσα σε E09 – E25 για τη στάση ΑΝΟΙΧΤΟΥ ΟΡΙΖΟΝΤΑ και τη Στάση 2

4.2.2 Σύγκριση δεκτών χαμηλού κόστους

Για τη δεύτερη μελέτη, χρησιμοποιήθηκαν τρεις διαφορετικοί δέκτες, προκειμένου να εξεταστεί η συμπεριφορά τους στην εμφάνιση ολίσθησης κύκλων. Συγκεκριμένα, χρησιμοποιήθηκε ο γεωδαιτικός δέκτης του Εργαστηρίου Γεωδαισίας-Τοπογραφίας (ΠΑ.Δ.Α.), ένας δέκτης μεσαίου κόστους, και ένας δέκτης χαμηλού κόστους. Μέσω αυτής της σύγκρισης, μπορούμε να εξάγουμε συμπεράσματα σχετικά με το πόσο επηρεάζεται η ακρίβεια των μετρήσεων από το κόστος και την ποιότητα των δεκτών.

4.2.2.1 Περιοχή μελέτης

Η μελέτη έλαβε χώρα στην περιοχή του Αιγάλεω, όπως απεικονίζεται και στην Εικόνα 4.7, στις 30 Μαρτίου του 2024 και οι δέκτες έχουν καταγράψει δεδομένα για 24 ώρες. Το διάστημα καταγραφής των μετρήσεων είναι 30 sec.

Εικόνα 4.7: Πανεπιστήμιο Δυτικής Αττικής (Google Earth 2022)

Όπως και στην προηγούμενη μελέτη, έτσι και εδώ ο γεωδαιτικός δέκτης του ΠΑ.Δ.Α., ο οποίος είναι ο υψηλότερης ποιότητας από τους τρεις, χρησιμοποιήθηκε ως σημείο αναφοράς για τη σύγκριση με τους δύο δέκτες χαμηλού κόστους (Εικόνα 4.8).

Εικόνα 4.8: Γεωδαιτικός του Εργαστηρίου Γεωδαισίας-Τοπογραφίας (ΠΑ.Δ.Α)

Στις Εικόνες 4.9 και 4.10 απεικονίζονται οι θέσεις των δύο δεκτών χαμηλού κόστους, TM0600 και TT3100, κατά τη διάρκεια της μελέτης.

Εικόνα 4.10: Θέσεις δεκτών ΤΤ3100 και ΤΜ0600

Εικόνα 4.9: Θέσεις δεκτών ΤΤ3100 και ΤΜ0600

4.2.2.2 Στοιχεία εξοπλισμού

Γεωδαιτικός Δέκτης (ΠΑ.Δ.Α.)

Ο γεωδαιτικός δέκτης του Πανεπιστημίου Δυτικής Αττικής αποτελείται από τον δέκτη Spectral Precision SP90M και την κεραία Trimble Zephyr Geodetic III.

Τα βασικά χαρακτηριστικά του δέκτη Spectral Precision SP90M και της κεραίας Trimble Zephyr Geodetic III είναι:

Δέκτης: Spectral Precision SP90M

- Δορυφορικά σήματα που καταγράφονται ταυτόχρονα:
 - GPS L1 C/A, L1P (Y), L2P (Y), L2C, L5, L1C
 - GLONASS L1 C/A, L1P, L2 C/A, L2P, L3, L1/L2 CDMA 1
 - GALILEO E1, E5a, E5b, E6
 - BeiDou B1, B2, B3 1
 - QZSS L1 C/A, L1s, L1C, L2C, L5
 - IRNSS L5
 - SBAS L1 C/A, L5
- Αντοχή σε υγρασία και σκόνη σύμφωνα με τα διεθνή πρότυπα IP67.
- Θερμοκρασία λειτουργίας: -40° έως +65°C

Κεραία: Trimble Zephyr Geodetic III

- Ευρεία ζώνη παρακολούθησης συχνοτήτων GNSS:
 - GPS: L1, L2, L5
 - GLONASS: L1, L2, L3
 - BeiDou: B1, B2, B3
 - Galileo: E1, E2, E5, E6

- SBAS: WAAS, EGNOS, QZSS, Gagan, MSAS, OmniSTAR & Trimble RTX

• Θερμοκρασία λειτουργίας: -40° έως +75°C

Εικόνα 4.11: Δέκτης SP90M (spectralgeospatial.com)

Εικόνα 4.12: Κεραία Trimble Zephyr Geodetic III (geotech.gr)

<u>Δέκτης μεσαίου κόστους</u>

Ο δέκτης μεσαίου κόστους αποτελείται από τον δέκτη Piksi Multi και την κεραία Harxon GPS500

Τα βασικά χαρακτηριστικά του δέκτη Piksi Multi και της κεραίας Harxon GPS500 είναι:

Δέκτης: Piksi Multi

- Δορυφορικά σήματα που καταγράφονται ταυτόχρονα:
 - GPS: L1/L2
 - GLONASS: G1/G2
 - BeiDou: B1/B2
 - Galileo: E1/E5b
 - -SBAS
- Θερμοκρασία λειτουργίας: -40° έως +85°C

Εικόνα 4.13: Δέκτης Piksi® Multi (canalgeomatics.com)

Κεραία: Harxon GPS500

- Σήματα που λαμβάνονται:
 - GPS: L1, L2
 - GLONASS: L1, L2
 - Galileo: E1
 - BeiDou: B1,B2,B3
 - QZSS: L1,L2
 - SBAS: L1
- Θερμοκρασία λειτουργίας: -55° έως +85°C
- Αντοχή σε υγρασία και σκόνη σύμφωνα με τα διεθνή πρότυπα IP67

Εικόνα 4.14: Κεραία Harxon GPS500 (harxon.com)

Δέκτης χαμηλού κόστους

Ο δέκτης μεσαίου κόστους αποτελείται από τον δέκτη U-blox ZED-F9P και την κεραία

Τα βασικά χαρακτηριστικά του δέκτη U-blox ZED-F9P και της κεραίας είναι:

Δέκτης: U-blox ZED-F9P

- Δορυφορικά σήματα που καταγράφονται ταυτόχρονα:
 GPS: L1C/A, L2C, L5
 - GLONASS: L1OF, L2OF
 - Galileo: E1B/C, E5b, E5a
 - BeiDou: B1I, B2I, B2a
 - QZSS: L1C/A L1S L5, L2C
 - SBAS: L1C/A
 - NavIC: L5
- Θερμοκρασία λειτουργίας: -40° έως +85°C

Εικόνα 4.15:Δέκτης U-blox ZED-F9P (φυλλάδιο τεχνικών προδιαγραφών ZED-F9P)

4.2.2.3 Μέθοδος Ionorspheric Residual

Ανάλυση δεδομένων σταθμού αναφοράς ΠΑ.Δ.Α.

Η ανάλυση ξεκίνησε με τη μελέτη των δεδομένων που καταγράφηκαν από το σταθμό αναφοράς του ΠΑ.Δ.Α για το σύστημα GPS. Κατά τη χρονική διάρκεια που ο δέκτης ήταν ενεργός, καταγράφηκαν δεδομένα για 31 δορυφόρους, εκ των οποίων σε 24 δορυφόρους καταγράφηκαν δεδομένα και στις δύο συχνότητες L1C και L2L. Στην πλειοψηφία των δεδομένων οι καταγραφές εμφανίζουν κύκλους ολίσθησης, το οποίο όμως ήταν αναμενόμενο λόγω της πολύ μικρής γωνίας αποκοπής που χρησιμοποιείται. Παρακάτω θα αναλυθούν τα δεδομένα του δορυφόρου G12 και οι σύγκριση θα γίνει στα σήματα L1C, L2L.

Όπως φαίνεται στο Γράφημα 4.19, κατά το χρονικό διάστημα που έχουν καταγραφεί δεδομένα για τα δύο σήματα, δεν παρατηρείται διακοπή του σήματος ούτε μεγάλη διακύμανση στα δεδομένα του Ionospheric Residual.

Γράφημα 4.19: Ionospheric Residual σε L1C – L2L για τον G12 του δέκτη του ΠΑ.Δ.Α.

Επίσης στο Γράφημα 4.20 καθώς και στον Πίνακα 4.18 όπου απεικονίζονται οι πρώτες 80 εποχές δεν παρατηρείται ολίσθηση κύκλων και τα χρονικές διαφορές είναι πολύ κοντά στο μηδέν.

Γράφημα 4.20: Χρονικές διαφορές του Ionospheric Residual για τον G12 του δέκτη του ΠΑ.Δ.Α.

1 1 9 1 1	¥ 17	,	c /	,	anda
Αναπτηζη λονισμικου	νια την αειολονηση	της ποιοτητάς νει	$M \partial \alpha i \tau i \kappa m v$	μετοησεων	(τNSS)
11,0000000,000000000	//01/				01100

rowTimes	IonRes (L1C - L2L)	dionRes (L1C - L2L)	Cycle Slips (L1C - L2L)	rowTimes	IonRes (L1C - L2L)	dionRes (L1C - L2L)	Cycle Slips (L1C - L2L)
4:44:30	0,505951419		FALSE	5:04:30	1,579477742	0,009764906	FALSE
4:45:00	0,519887634	0,013936214	FALSE	5:05:00	1,591329608	0,011851866	FALSE
4:45:30	0,553547833	0,033660199	FALSE	5:05:30	1,606870081	0,015540473	FALSE
4:46:00	0,579390187	0,025842354	FALSE	5:06:00	1,615896244	0,009026162	FALSE
4:46:30	0,603031527	0,02364134	FALSE	5:06:30	1,64052657	0,024630327	FALSE
4:47:00	0,626305018	0,02327349	FALSE	5:07:00	1,654792309	0,014265738	FALSE
4:47:30	0,650758386	0,024453368	FALSE	5:07:30	1,672518302	0,017725993	FALSE
4:48:00	0,691370904	0,040612519	FALSE	5:08:00	1,691503491	0,018985189	FALSE
4:48:30	0,713918269	0,022547364	FALSE	5:08:30	1,706299126	0,014795635	FALSE
4:49:00	0,746161148	0,032242879	FALSE	5:09:00	1,72467871	0,018379584	FALSE
4:49:30	0,769044805	0,022883657	FALSE	5:09:30	1,741367925	0,016689215	FALSE
4:50:00	0,809257932	0,040213127	FALSE	5:10:00	1,753851745	0,01248382	FALSE
4:50:30	0,836309135	0,027051203	FALSE	5:10:30	1,774527788	0,020676043	FALSE
4:51:00	0,868805967	0,032496832	FALSE	5:11:00	1,795391034	0,020863246	FALSE
4:51:30	0,897998091	0,029192124	FALSE	5:11:30	1,803840883	0,008449849	FALSE
4:52:00	0,933552422	0,035554331	FALSE	5:12:00	1,827222522	0,023381639	FALSE
4:52:30	0,958837301	0,025284879	FALSE	5:12:30	1,836592298	0,009369776	FALSE
4:53:00	0,989523407	0,030686107	FALSE	5:13:00	1,849986866	0,013394568	FALSE
4:53:30	1,015683755	0,026160348	FALSE	5:13:30	1,864618436	0,014631569	FALSE
4:54:00	1,046928182	0,031244427	FALSE	5:14:00	1,878888533	0,014270097	FALSE
4:54:30	1,071502876	0,024574693	FALSE	5:14:30	1,894801591	0,015913058	FALSE
4:55:00	1,102899659	0,031396784	FALSE	5:15:00	1,905744895	0,010943305	FALSE
4:55:30	1,132431634	0,029531974	FALSE	5:15:30	1,926060263	0,020315368	FALSE
4:56:00	1,158122912	0,025691278	FALSE	5:16:00	1,934428446	0,008368183	FALSE
4:56:30	1,187750161	0,029627249	FALSE	5:16:30	1,945140507	0,010712061	FALSE
4:57:00	1,22251223	0,03476207	FALSE	5:17:00	1,947476566	0,002336059	FALSE
4:57:30	1,254194785	0,031682555	FALSE	5:17:30	1,962619483	0,015142918	FALSE
4:58:00	1,290460307	0,036265522	FALSE	5:18:00	1,967645209	0,005025726	FALSE
4:58:30	1,321952712	0,031492405	FALSE	5:18:30	1,967767801	0,000122592	FALSE
4:59:00	1,364364855	0,042412143	FALSE	5:19:00	1,97436364	0,006595839	FALSE
4:59:30	1,384658609	0,020293754	FALSE	5:19:30	1,986585926	0,012222286	FALSE
5:00:00	1,423642442	0,038983833	FALSE	5:20:00	1,985842966	0,000742961	FALSE
5:00:30	1,445966136	0,022323694	FALSE	5:20:30	1,991278302	0,005435336	FALSE
5:01:00	1,478400838	0,032434702	FALSE	5:21:00	2,001360074	0,010081772	FALSE
5:01:30	1,491933104	0,013532266	FALSE	5:21:30	1,998178475	0,003181599	FALSE
5:02:00	1,518525939	0,026592836	FALSE	5:22:00	2,005577303	0,007398829	FALSE
5:02:30	1,52863941	0,01011347	FALSE	5:22:30	2,008922976	0,003345672	FALSE
5:03:00	1,544287328	0,015647918	FALSE	5:23:00	2,009668063	0,000745088	FALSE
5:03:30	1,558168769	0,013881441	FALSE	5:23:30	2,013959061	0,004290998	FALSE
5:04:00	1,569712836	0,011544067	FALSE	5:24:00	2,024644021	0,01068496	FALSE

Πίνακας 4.18: Δεδομένα μεθόδου Ionospheric Residual για τον G12 του δέκτη του ΠΑ.Δ.Α.

Στη συνέχεια, αναλύονται τα δεδομένα του συστήματος Galileo, εστιάζοντας στον δορυφόρο E19. Ο δέκτης κατέγραψε δεδομένα για τον συγκεκριμένο δορυφόρο από την χρονική στιγμή 00:38 έως τις 17:44. Όπως απεικονίζεται και στο Γράφημα 4.21, κατά το διάστημα αυτό σημειώθηκαν τρεις διακοπές στο σήμα.

Η πρώτη διακοπή συμβαίνει στην αρχή των μετρήσεων και διαρκεί 3 λεπτά. Ακολούθως, ο δέκτης ανακτά το σήμα για μία εποχή, πριν το χάσει ξανά για επιπλέον 3 λεπτά. Στις δύο αυτές περιπτώσεις, όπου ο δέκτης χάνει το σήμα, δεν καταγράφηκαν επαρκή δεδομένα ώστε να εμφανιστεί ολίσθηση κύκλων. Μετά την αποκατάσταση του σήματος, ο δέκτης συνεχίζει να καταγράφει δεδομένα μέχρι τις 08:16:30, οπότε και χάνει ξανά το σήμα για 2 λεπτά.

Με την επαναφορά του σήματος, παρατηρείται η πρώτη αυξημένη τιμή στην εποχή με χρονική στιγμή 08:18:00, όπως αποτυπώνεται και στο γράφημα, όπου καταγράφεται σημαντική μετατόπιση στις τιμές των δεδομένων. Η καταγραφή δεδομένων συνεχίζεται μέχρι τις 08:25:30, όταν το σήμα χάνεται για τελευταία φορά, αυτή τη φορά για πέντε ώρες. Όταν ο δέκτης ξαναβρίσκει το σήμα του δορυφόρου στις 13:38:30, σημειώνεται και η τελευταία αυξημένη τιμή.

Γράφημα 4.21: Ionospheric Residual σε L1C - L7Q για τον E19 του δέκτη του ΠΑ.Δ.Α.

Στο Γράφημα 4.22 όπου φαίνονται οι διαφορές ανάμεσα στις χρονικές στιγμές του Ionospheric Residual, καθώς και στον Πίνακα 4.19 όπου απεικονίζονται 80 εποχές κοντά στις 3 διακοπές του σήματος, παρατηρείται ότι οι τιμές είναι πολύ μεγάλες. Ωστόσο, και στις δύο περιπτώσεις, οι αυξημένες τιμές παρατηρούνται μετά από διακοπή στη λήψη του σήματος και, ως εκ τούτου, δεν ερμηνεύονται ως ολίσθηση κύκλων.

Γράφημα 4.22: Χρονικές διαφορές του Ionospheric Residual για τον Ε19 του δέκτη του ΠΑ.Δ.Α.

1 1 9 1	,	y 11	,	c /	,	anda
Αναπτυζη λονισμικ	ου νια τηι	α απιολονηση	της ποιοτητας	νεωδαιτικων	μετοησεων	(τ/VSS)
11,00000000,000000000000000000000000000		5,0,00,10,10,1		100000000000000000000000000000000000000	pic ip. 10000 i	01100

rowTimes	IonRes (L1C - L7Q)	dionRes (L1C - L7Q)	Cycle Slips (L1C - L7Q)	rowTimes	IonRes (L1C - L7Q)	dionRes (L1C - L7Q)	Cycle Slips (L1C - L7Q)
0:38:30	-0,191739161		FALSE	8:12:00	8,268248696	0,109979238	FALSE
0:39:00	-0,208629429	0,016890269	FALSE	8:12:30	8,385255903	0,117007207	FALSE
0:39:30	-0,222342756	0,013713326	FALSE	8:13:00	8,514522549	0,129266646	FALSE
0:40:00	-0,24840904	0,026066285	FALSE	8:13:30	8,652187929	0,13766538	FALSE
0:40:30	-0,262203	0,01379396	FALSE	8:14:00	8,775723204	0,123535275	FALSE
0:43:00		· · · · · · · · · · · · · · · · · · ·	FALSE	8:14:30	8,9088022	0,133078996	FALSE
0:46:30	-3,709125347		FALSE	8:15:00	9,046057988	0,137255788	FALSE
0:47:00	-3,718619924	0,009494577	FALSE	8:15:30	9,199172672	0,153114684	FALSE
0:47:30	-3,728137076	0,009517152	FALSE	8:16:00	9,352651831	0,153479159	FALSE
0:48:00	-3,745295003	0,017157927	FALSE	8:16:30	9,501776811	0,14912498	FALSE
0:48:30	-3,759917822	0,014622819	FALSE	8:18:30	-42,65068422	52,15246103	TRUE
0:49:00	-3,770038098	0,010120276	FALSE	8:19:00	-42,49433769	0,156346526	FALSE
0:49:30	-3,786254227	0,016216129	FALSE	8:19:30	-42,33501741	0,159320284	FALSE
0:50:00	-3,804586153	0,018331926	FALSE	8:20:00	-42,18133497	0,153682437	FALSE
0:50:30	-3,815483723	0,010897569	FALSE	8:20:30	-42,02952965	0,151805319	FALSE
0:51:00	-3,827165045	0,011681322	FALSE	8:21:00	-41,87110274	0,158426911	FALSE
0:51:30	-3,846941907	0,019776862	FALSE	8:21:30	-41,71691067	0,154192075	FALSE
0:52:00	-3,860268135	0,013326228	FALSE	8:22:00	-41,55305231	0,163858362	FALSE
0:52:30	-3,881493159	0,021225024	FALSE	8:22:30	-41,40148239	0,151569918	FALSE
0:53:00	-3,897193208	0,01570005	FALSE	8:23:00	-41,23299567	0,168486722	FALSE
0:53:30	-3,91760223	0,020409022	FALSE	8:23:30	-41,07499444	0,158001225	FALSE
0:54:00	-3,933411933	0,015809704	FALSE	8:24:00	-40,91617719	0,15881725	FALSE
0:54:30	-3,950582724	0,017170791	FALSE	8:24:30	-40,76483621	0,15134098	FALSE
0:55:00	-		FALSE	8:25:00	-40,61307593	0,15176028	FALSE
0:55:30			FALSE	8:25:30	-40,457413	0,155662932	FALSE
0:56:00	-3,985275056		FALSE	13:38:30	-1,313838206	39,14357479	TRUE
0:56:30	-4,004129447	0,018854391	FALSE	13:39:00	-1,42225242	0,108414214	FALSE
0:57:00	-4,022203311	0,018073864	FALSE	13:39:30	-1,522600118	0,100347698	FALSE
0:57:30	-4,036626119	0,014422808	FALSE	13:40:00			FALSE
0:58:00	-4,044504751	0,007878631	FALSE	13:40:30		°	FALSE
0:58:30	-4,054689486	0,010184735	FALSE	13:41:00	-1,795828145		FALSE
0:59:00	-4,0642098	0,009520315	FALSE	13:41:30	-1,882774681	0,086946536	FALSE
0:59:30	-4,080406517	0,016196717	FALSE	13:42:00	-1,980455078	0,097680397	FALSE
1:00:00	-4,091987796	0,011581279	FALSE	13:42:30	-2,072433125	0,091978047	FALSE
1:00:30	-4,101782259	0,009794462	FALSE	13:43:00	-2,169220127	0,096787002	FALSE
1:01:00	-4,110992935	0,009210676	FALSE	13:43:30	-2,258276053	0,089055926	FALSE
1:01:30	-4,125915635	0,014922701	FALSE	13:44:00	-2,348631788	0,090355735	FALSE
1:02:00	-4,134181287	0,008265652	FALSE	13:44:30	-2,436510488	0,0878787	FALSE
1:02:30	-4,138512041	0,004330754	FALSE	13:45:00	-2,524473052	0,087962564	FALSE
1:03:00	-4,150190074	0,011678033	FALSE	13:45:30	-2,627630092	0,10315704	FALSE

Πίνακας 4	19. Δεδομένα	μεθόδου	Ionospheric	Residual via	τον Ε19 τ	ου δέκτη το	η ΠΑΛΑ
THVUKUS T.	19. <u>Deoopevu</u>	μευυυυυ	ronospherie	Residual ylu	IOV LIVI	.00 06601 0	J0 ПА.Д.А.

Ανάλυση δεδομένων δέκτη μέσου κόστους

Η μελέτη συνεχίζεται με τον δέκτη μεσαίου κόστους TT3100 και τους δορυφόρους του συστήματος GPS. Κατά τη διάρκεια που ο δέκτης ήταν ενεργός, καταγράφηκαν δεδομένα από 29 δορυφόρους, εκ των οποίων οι 24 περιλαμβάνουν μετρήσεις και στις δύο συχνότητες L1C - L2S. Παρακάτω θα αναλυθούν τα δεδομένα του δορυφόρου G12. Ο δέκτης κατέγραψε δεδομένα από τις 05:00 έως τις 12:00. Σε αυτή τη χρονική διάρκεια, όπως απεικονίζεται και στα Γραφήματα 4.23 και 4.24 καθώς και στον Πίνακα 4.20, δεν παρατηρούνται διακοπές στη λήψη του σήματος ούτε μεγάλες μετατοπίσεις στις μετρήσεις.

rowTimes	IonRes (L1C - L2S)	dIonRes (L1C - L2S)	Cycle Slips (L1C - L2S)	rowTimes	IonRes (L1C - L2S)	dionRes (L1C - L2S)	Cycle Slips (L1C - L2S)
4:59:00	2,199035674		FALSE	5:19:00	2,812089369	0,003511902	FALSE
4:59:30	2,232450195	0,03341452	FALSE	5:19:30	2,824362412	0,012273043	FALSE
5:00:00	2,267238066	0,034787871	FALSE	5:20:00	2,828151628	0,003789216	FALSE
5:00:30	2,290015306	0,022777241	FALSE	5:20:30	2,837519724	0,009368096	FALSE
5:01:00	2,314720925	0,024705619	FALSE	5:21:00	2,838670399	0,001150675	FALSE
5:01:30	2,334472638	0,019751713	FALSE	5:21:30	2,838685755	1,53556E-05	FALSE
5:02:00	2,35376773	0,019295093	FALSE	5:22:00	2,843677387	0,004991632	FALSE
5:02:30	2,377959777	0,024192046	FALSE	5:22:30	2,847286317	0,003608931	FALSE
5:03:00	2,38827949	0,010319714	FALSE	5:23:00	2,844507821	0,002778497	FALSE
5:03:30	2,400597367	0,012317877	FALSE	5:23:30	2,856959265	0,012451444	FALSE
5:04:00	2,418475058	0,01787769	FALSE	5:24:00	2,860375028	0,003415763	FALSE
5:04:30	2,430647198	0,01217214	FALSE	5:24:30	2,871960841	0,011585813	FALSE
5:05:00	2,443047762	0,012400564	FALSE	5:25:00	2,868589669	0,003371172	FALSE
5:05:30	2,452736717	0,009688955	FALSE	5:25:30	2,879322529	0,010732859	FALSE
5:06:00	2,466723215	0,013986498	FALSE	5:26:00	2,881587427	0,002264898	FALSE
5:06:30	2,481153816	0,014430601	FALSE	5:26:30	2,883960258	0,002372831	FALSE
5:07:00	2,496558163	0,015404347	FALSE	5:27:00	2,890116867	0,006156608	FALSE
5:07:30	2,506482139	0,009923976	FALSE	5:27:30	2,889242236	0,000874631	FALSE
5:08:00	2,525131155	0,018649016	FALSE	5:28:00	2,89584624	0,006604005	FALSE
5:08:30	2,537554484	0,012423329	FALSE	5:28:30	2,895536348	0,000309892	FALSE
5:09:00	2,556895059	0,019340575	FALSE	5:29:00	2,900808513	0,005272165	FALSE
5:09:30	2,573790453	0,016895395	FALSE	5:29:30	2,907197174	0,006388661	FALSE
5:10:00	2,583651409	0,009860955	FALSE	5:30:00	2,908051573	0,000854399	FALSE
5:10:30	2,602735344	0,019083936	FALSE	5:30:30	2,911230829	0,003179256	FALSE
5:11:00	2,620804466	0,018069122	FALSE	5:31:00	2,914061319	0,00283049	FALSE
5:11:30	2,636713844	0,015909377	FALSE	5:31:30	2,921874441	0,007813122	FALSE
5:12:00	2,656131051	0,019417208	FALSE	5:32:00	2,924571943	0,002697501	FALSE
5:12:30	2,668418676	0,012287624	FALSE	5:32:30	2,924843315	0,000271372	FALSE
5:13:00	2,679647084	0,011228409	FALSE	5:33:00	2,926107492	0,001264177	FALSE
5:13:30	2,702182204	0,022535119	FALSE	5:33:30	2,936455131	0,010347638	FALSE
5:14:00	2,720194764	0,018012561	FALSE	5:34:00	2,929321241	0,00713389	FALSE
5:14:30	2,73394483	0,013750065	FALSE	5:34:30	2,926469069	0,002852172	FALSE
5:15:00	2,745893545	0,011948716	FALSE	5:35:00	2,931022599	0,00455353	FALSE
5:15:30	2,763294261	0,017400716	FALSE	5:35:30	2,930117987	0,000904612	FALSE
5:16:00	2,772385582	0,009091321	FALSE	5:36:00	2,929752655	0,000365332	FALSE
5:16:30	2,781962246	0,009576663	FALSE	5:36:30	2,930319875	0,00056722	FALSE
5:17:00	2,793759082	0,011796836	FALSE	5:37:00	2,921337638	0,008982237	FALSE
5:17:30	2,799932845	0,006173763	FALSE	5:37:30	2,928505108	0,00716747	FALSE
5:18:00	2,809395608	0,009462763	FALSE	5:38:00	2,927042868	0,00146224	FALSE
5:18:30	2,815601271	0,006205663	FALSE	5:38:30	2,932158571	0,005115703	FALSE

Πίνακας 4.20: Δεδομένα μεθόδου Ionospheric Residual για τον G12 του δέκτη TT3100

Για το σύστημα Galileo, ο δέκτης έχει καταγράψει δεδομένα για 34 δορυφόρους εκ των οποίων οι 22 έχουν δεδομένα και στις δυο συχνότητες L1B - L7I. Παρακάτω θα αναλυθούν τα δεδομένα του δορυφόρου E19.

Για τον συγκεκριμένο δορυφόρο έχουν καταγραφεί δεδομένα από τις 02:00 έως τις 17:30. Από το Γράφημα 4.25 προκύπτει ότι ο δέκτης κατέγραψε συνεχόμενα δεδομένα μέχρι τις 08:00, όπου και χάνει το σήμα του δορυφόρου. Ο δορυφόρος επανεμφανίζεται μετά από 6 ώρες, στις 14:02. Από εκείνο το σημείο και μετά, ο δέκτης καταγράφει συνεχόμενα δεδομένα μέχρι που χάνει ξανά το σήμα του δορυφόρου στις 17:25:30.

Στο Γράφημα 4.26, οι 6 τιμές των εποχών που εμφανίζουν ολίσθηση κύκλων επισημαίνονται με κόκκινο χρώμα. Όλες οι ολισθήσεις εμφανίζονται μετά την χρονική στιγμή 14:02:00, όταν ο δέκτης ξαναβρίσκει το σήμα του δορυφόρου μετά από διακοπή περίπου 6 ωρών.

Γράφημα 4.26: Χρονικές διαφορές του Ionospheric Residual για τον Ε19 του δέκτη TT3100

Είναι σημαντικό να σημειωθεί ότι στον Πίνακα 4.21, ο οποίος περιλαμβάνει 100 εποχές κοντά στις χρονικές στιγμές εμφάνισης της ολίσθησης κύκλων, παρατηρείται πως, με εξαίρεση την πρώτη αυξημένη τιμή που προκύπτει μετά από διακοπή στη λήψη του σήματος και συνεπώς δεν ερμηνεύεται ως ολίσθηση κύκλων και απεικονίζεται με γαλάζιο χρώμα, οι υπόλοιπες τιμές εμφανίζονται σε διαδοχικές εποχές, χωρίς να προηγηθεί εμφανής διακοπή λήψης και απεικονίζονται με κόκκινο χρώμα. Ωστόσο, δεδομένου ότι ο δέκτης καταγράφει δεδομένα σε διαστήματα 30 δευτερολέπτων, είναι πιθανό η απώλεια του σήματος να έχει συμβεί εντός αυτού του χρονικού διαστήματος, γεγονός που θα μπορούσε να εξηγήσει την έλλειψη εμφανών διακοπών λήψης στα δεδομένα, παρά την εμφάνιση ολίσθησης κύκλων.

rowTimes	IonRes (L1B - L7I)	dionRes (L1B - L7I)	Cycle Slips (L1B - L7I)	rowTimes	IonRes (L1B - L7I)	dlonRes (L1B - L7I)	Cycle Slips (L1B - L7I)
8:00:00	11,99804442	0,10119332	FALSE	17:01:00	-20,60990421	0,011040729	FALSE
8:00:30	12,10169543	0,103651013	FALSE	17:01:30	-20,61033691	0,0004327	FALSE
8:01:00	12,19100992	0,089314491	FALSE	17:02:00	-20,6120759	0,001738988	FALSE
8:01:30	12,30533029	0,114320368	FALSE	17:02:30	-20,61785946	0,005783562	FALSE
8:02:00	12,41899593	0,113665637	FALSE	17:03:00	-20,61999201	0,002132546	FALSE
8:02:30	12,53549985	0,11650392	FALSE	17:03:30	-20,62767213	0,007680126	FALSE
8:03:00	12,64323736	0,107737511	FALSE	17:04:00	-20,63299781	0,005325675	FALSE
8:03:30	12,75385509	0,110617727	FALSE	17:04:30	-20,63708822	0,004090417	FALSE
8:04:00	12,85818346	0,104328372	FALSE	17:05:00	-20,64280423	0,005716003	FALSE
8:04:30	12,98733709	0,129153632	FALSE	17:05:30	-20,63930554	0,003498685	FALSE
8:05:00	13.10211871	0.114781618	FALSE	17:06:00	-20,66033864	0.021033101	FALSE
8:05:30	13,21522641	0.1131077	FALSE	17:06:30	-43.8767901	23.21645145	TRUE
8:06:00	13,33068213	0.115455724	FALSE	17:07:00	-43,88691847	0.010128371	FALSE
8:06:30	13,46750237	0.136820238	FALSE	17:07:30	-43,8834812	0.003437266	FALSE
8:07:00	13,58474494	0.117242571	FALSE	17:08:00	-43,89089715	0.00741595	FALSE
8:07:30	13.68476755	0.10002261	FALSE	17:08:30	-43.89911624	0.008219086	FALSE
8:08:00	13,80008462	0.115317065	FALSE	17:09:00	-43.91210238	0.012986142	FALSE
8:08:30	13,91656281	0.11647819	FALSE	17:09:30	-43.53493169	0.377170689	FALSE
8.09.00	14.02397786	0.107415058	FALSE	17:10:00	-43 5306947	0.004236989	FALSE
8:09:30	14.1307769	0.106799036	FALSE	17:10:30	-43.554518	0.023823302	FALSE
8:10:00	14,24235586	0.11157896	FALSE	17:11:00	-43.55233561	0.002182398	FALSE
14:02:00	-10.7914762	25.03383206	TRUE	17:11:30	-43,56046135	0.008125748	FALSE
14:02:30	-8.880210664	1,911265537	TRUE	17:12:00	-43.5699192	0.009457842	FALSE
14:03:00	-8.954572532	0.074361868	FALSE	17:12:30	-43.57348441	0.003565215	FALSE
14:03:30	-9.040758427	0.086185895	FALSE	17:13:00	-43.57648845	0.003004037	FALSE
14:04:00	-9.118023124	0.077264696	FALSE	17:13:30	-43.58741067	0.010922227	FALSE
14:04:30	-9.205147624	0.0871245	FALSE	17:14:00	-43.58267079	0.004739884	FALSE
14:05:00	-12.50090407	3.295756444	TRUE	17:14:30	-43,59091284	0.008242048	FALSE
14:05:30	-12.57685934	0.075955268	FALSE	17:15:00	-43.58911774	0.001795102	FALSE
14:06:00	-12,65142128	0,074561946	FALSE	17:15:30	-43,41648409	0,172633648	FALSE
14:06:30	-12,71277235	0.061351068	FALSE	17:16:00	-43,41077029	0.005713802	FALSE
14:07:00	-12.786757	0.073984649	FALSE	17:16:30	-42,47355608	0.937214207	TRUE
14:07:30	-12.85280095	0.066043947	FALSE	17:17:00	-42,47018391	0.003372166	FALSE
14:08:00	-12,92133808	0,068537135	FALSE	17:17:30	-42,46977261	0,000411298	FALSE
14:08:30	-12,98252474	0.06118666	FALSE	17:18:00	-42,48197879	0,012206171	FALSE
14:09:00	-13,0544356	0,071910854	FALSE	17:18:30	-42,48454129	0,002562504	FALSE
14:09:30	-13,10949096	0,055055369	FALSE	17:19:00	-42,48121761	0,003323678	FALSE
14:10:00	-13,1785152	0,069024231	FALSE	17:19:30	-42,49302394	0,011806328	FALSE
14:10:30	-13,2297099	0,051194705	FALSE	17:20:00	-42,49739593	0,004371986	FALSE
14:11:00	-13,29096117	0,061251268	FALSE	17:20:30	-42,50361928	0,006223351	FALSE
14:11:30	-13,35319294	0,062231775	FALSE	17:21:00	-42,51289381	0,009274531	FALSE
14:12:00	-13,39632443	0.043131486	FALSE	17:21:30	-42.5128343	5,95078E-05	FALSE
14:12:30	-13.4643457	0,068021268	FALSE	17:22:00	-42.52127998	0.00844568	FALSE
14:13:00	-13,5157566	0,051410902	FALSE	17:22:30	-42,51481182	0,006468158	FALSE
14:13:30	-13,55905263	0.043296035	FALSE	17:23:00	-42,52244478	0.007632956	FALSE
14:14:00	-13.62003311	0.060980473	FALSE	17:23:30	-41,96929198	0.553152796	TRUE
14:14:30	-13,66903799	0.049004886	FALSE	17:24:00	-41,96224335	0.007048629	FALSE
14:15:00	-13,72799301	0.058955014	FALSE	17:24:30	-41.96714777	0.004904415	FALSE
14:15:30	-13,78400333	0.056010325	FALSE	17:25:00	-41.78795114	0.179196626	FALSE
14:16:00	-13 8285767	0.044573367	FALSE	17:25:30	-41 78078325	0.007167887	FALSE

Πίνακας 4.21: Δεδομένα μεθόδου Ionospheric Residual για τον G12 του δέκτη TT3100

<u>Ανάλυση δεδομένων δέκτη χαμηλού κόστους</u>

Τελευταίος δέκτης προς ανάλυση είναι ο χαμηλού κόστους TM0600. Κατά την χρονική διάρκεια που ο δέκτης ήταν ενεργός, για το σύστημα GPS, καταγράφηκαν δεδομένα για 30 δορυφόρους εκ των οποίων οι 24 έχουν δεδομένα και στις δυο συχνότητες L1C – L2L. Παρακάτω θα αναλυθούν τα δεδομένα που έχει καταγράψει ο δέκτης για τον δορυφόρο G12.

Ο δέκτης κατέγραψε δεδομένα για τον συγκεκριμένο δορυφόρο από τις 04:41 έως τις 12:15. Αν και σε αυτό το χρονικό διάστημα δεν παρατηρείται εμφανής διακοπή στη λήψη του σήματος, υπάρχει σημαντική μετατόπιση στις μετρήσεις προς το τέλος της περιόδου καταγραφής, όπως φαίνεται στο Γράφημα 4.27. Επιπλέον, καταγράφονται 33 ολισθήσεις κύκλων, όπως απεικονίζεται στο Γράφημα 4.28. Οι ολισθήσεις παρατηρούνται κυρίως κατά την πρώτη και την τελευταία ώρα λήψης δεδομένων. Αυτό πιθανώς οφείλεται στο γεγονός ότι κατά τις συγκεκριμένες χρονικές στιγμές ο δορυφόρος βρίσκεται σε πολύ χαμηλή γωνία ανύψωσης.

Γράφημα 4.27: Χρονικές διαφορές του Ionospheric Residual για τον G12 του δέκτη TM0600

Όπως φαίνεται και στο Γράφημα 4.29, όπου απεικονίζεται η γωνία ανύψωσης του δορυφόρου, από τις 05:00 έως τις 06:00 η γωνία κυμαίνεται μεταξύ 6 και 31 μοιρών, ενώ από τις 11:00 έως τις 12:00 μειώνεται στις 29 έως 7 μοίρες, πριν το σήμα χαθεί εντελώς.

Γράφημα 4.29: Γωνία ανύψωσης δορυφόρου G12 (Trimple Gnss Planning)

Επιπλέον, όπως και στην ανάλυση του δορυφόρου Ε19 με τον δέκτη TT3100, οι ολισθήσεις κύκλων εμφανίζονται σε συνεχόμενες εποχές χωρίς να υπάρχει εμφανής διακοπή στη λήψη του σήματος. Στον Πίνακα 4.22 απεικονίζονται αποσπασματικά 200 εποχές, οι οποίες καλύπτουν την πρώτη και την τελευταία ώρα της καταγραφής των δεδομένων.

rowTimes	IonRes (L1B - L7I)	dionRes (L1B - L7I)	Cycle Slips (L1B - L7I)	rowTimes	IonRes (L1B - L7I)	dionRes (L1B - L7I)	Cycle Slips (L1B - L7I)
4:54:00	-2,595382646	0,022808652	FALSE	11:25:30	-41,34589727	0,095498927	FALSE
4:54:30	-2,572694428	0,022688217	FALSE	11:26:00	-41,2750286	0,070868671	FALSE
4:55:00	-2,531528633	0,041165795	FALSE	11:26:30	-41,19258998	0,082438622	FALSE
4:55:30	-2,511967435	0,019561198	FALSE	11:27:00	-41,10537172	0,087218262	FALSE
4:56:00	-2,474937197	0,037030239	FALSE	11:27:30	-58,35509020	0.065886538	EALSE
4:57:00	-2,4106449	0,040068738	FALSE	11:28:30	-58,19864199	0,090567734	FALSE
4:57:30	-6,038340703	3,627695803	TRUE	11:29:00	-58,12520692	0,073435068	FALSE
4:58:00	-6,009838469	0,028502233	FALSE	11:29:30	-58,04100747	0,084199451	FALSE
4:58:30	-6,226272658	0,216434188	FALSE	11:30:00	-57,95012543	0,090882037	FALSE
4:59:00	-6,196463577	0,02980908	FALSE	11:30:30	-57,88242422	0,067701209	FALSE
5:00:00	-4.909504876	1,251396317	TRUE	11:31:30	-57,71399601	0.092560124	FALSE
5:00:30	-4,873371426	0,03613345	FALSE	11:32:00	-57,63365898	0,080337036	FALSE
5:01:00	-4,853599969	0,019771457	FALSE	11:32:30	-57,55214518	0,081513796	FALSE
5:01:30	-5,576405082	0,722805113	TRUE	11:33:00	-57,47820814	0,073937044	FALSE
5:02:00	-5,558384139	0,018020943	FALSE	11:33:30	-57,39366211	0,084546026	FALSE
5:02:50	-5,528717134	0,029087003	FALSE	11:34:30	-57,22665344	0.080432728	FALSE
5:03:30	-5,508041002	0,015575949	FALSE	11:35:00	-57,14051498	0,086138461	FALSE
5:04:00	-5,492667928	0,015373074	FALSE	11:35:30	-57,05864851	0,081866473	FALSE
5:04:30	-5,484792337	0,007875592	FALSE	11:36:00	-56,97694052	0,081707988	FALSE
5:05:00	-5,483843338	0,000948999	FALSE	11:36:30	-56,89804878	0,078891736	FALSE
5:06:00	-5,4551746	0,028088538	FAISE	11:37:00	-56,7254887	0,079078985	FALSE
5:06:30	-5,442461319	0,005529009	FALSE	11:38:00	-56,64638734	0,079101365	FALSE
5:07:00	-5,424376	0,01808532	FALSE	11:38:30	-56,56074612	0,08564122	FALSE
5:07:30	-5,40963975	0,01473625	FALSE	11:39:00	-56,47726463	0,083481491	FALSE
5:08:00	-5,379679918	0,029959831	FALSE	11:39:30	-56,36904803	0,108216595	FALSE
5:08:30	-5,35519/2/3	0,024482645	FALSE	11:40:00	-56,27805928	0,090988755	FALSE
5:09:30	-5.333310492	0.027007397	FALSE	11:40:50	-62.95117003	6.744759418	TRUE
5:10:00	-5,312836424	0,020474069	FALSE	11:41:30	-58,24664414	4,704525892	TRUE
5:10:30	-5,298626095	0,014210328	FALSE	11:42:00	-58,15274039	0,093903754	FALSE
5:11:00	-5,279956438	0,018669657	FALSE	11:42:30	-58,05387307	0,098867316	FALSE
5:11:30	-5,259932436	0,020024002	FALSE	11:43:00	-57,97020696	0,083666109	FALSE
5:12:00	-7,920014328	0.005152747	FAISE	11:43:30	-57 79477118	0.087304048	FALSE
5:13:00	-7,908233564	0,012628216	FALSE	11:44:30	-57,69849788	0,096273292	FALSE
5:13:30	-7,893718164	0,0145154	FALSE	11:45:00	-57,61172018	0,086777706	FALSE
5:14:00	-6,168120015	1,725598149	TRUE	11:45:30	-57,51391488	0,097805299	FALSE
5:14:30	-6,166052792	0,002067223	FALSE	11:46:00	-57,420093	0,093821883	FALSE
5:15:00	-6,161016867	0,005035926	FALSE	11:46:30	-57,33060974	0,089483261	FALSE
5:16:00	-8,07949812	1,94463354	TRUE	11:47:30	-57,11676217	0,098027587	FALSE
5:16:30	-8,074046388	0,005451731	FALSE	11:48:00	-57,01988895	0,096873216	FALSE
5:17:00	-8,058556568	0,01548982	FALSE	11:48:30	-56,91932397	0,100564986	FALSE
5:17:30	-8,059019577	0,000463009	FALSE	11:49:00	-56,80796608	0,111357886	FALSE
5:18:00	-8,042238709	0,016780868	FALSE	11:49:30	-56,70645899	0,10150709	FALSE
5:19:00	-8.020398732	0.014424618	FALSE	11:50:30	-56,49213479	0.092947204	FALSE
5:19:30	-8,024971657	0,004572924	FALSE	11:51:00	-56,36656484	0,125569951	FALSE
5:20:00	-8,00878026	0,016191397	FALSE	11:51:30	-56,25483233	0,111732505	FALSE
5:20:30	-8,007441174	0,001339085	FALSE	11:52:00	-56,1281395	0,126692835	FALSE
5:21:00	-8,009286221	0,001845047	FALSE	11:52:30	-56,01961963	0,108519871	FALSE
5:22:00	-7 997146714	0,004241288	FALSE	11:53:30	-55 77300805	0,11803779	FALSE
5:22:30	-7,983964555	0,01318216	FALSE	11:54:00	-78,12017209	22,34716404	TRUE
5:23:00	-7,97537154	0,008593015	FALSE	11:54:30	-74,83163854	3,288533546	TRUE
5:23:30	-7,978643216	0,003271677	FALSE	11:55:00	-74,69568118	0,135957368	FALSE
5:24:00	-7,973161262	0,005481955	FALSE	11:55:30	-74,58640609	0,109275084	FALSE
5:24:30	-7,96/12/342	0,00603392	FALSE	11:56:00	-74,45150156	0,13490453	FALSE
5:25:30	-7,952842206	0.005739208	FALSE	11:57:00	-74,20526654	0.116839435	FALSE
5:26:00	-7,960090417	0,007248212	FALSE	11:57:30	-74,07201423	0,133252308	FALSE
5:26:30	-7,946793135	0,013297282	FALSE	11:58:00	-73,9068401	0,16517413	FALSE
5:27:00	-7,961373743	0,014580607	FALSE	11:58:30	-73,78579185	0,121048246	FALSE
5:27:30	-7,943908781	0.00637554	FALSE	11:59:00	-79,9837304	0,19/93855	FAISE
5:28:30	-7,933377296	0,016907025	FALSE	12:00:00	-79,68689889	0,139849387	FALSE
5:29:00	-7,937706932	0,004329637	FALSE	12:00:30	-79,55242526	0,134473633	FALSE
5:29:30	-7,932826228	0,004880704	FALSE	12:01:00	-79,39857018	0,153855074	FALSE
5:30:00	-7,932509273	0,000316955	FALSE	12:01:30	-79,2383434	0,160226785	FALSE
5:30:30	-7,918640114	0,013869159	FAISE	12:02:00	-79,07916954	0,1591/385/	FALSE
5:31:30	-7,924424831	0,007719409	FALSE	12:03:00	-78,74451673	0,173293717	FALSE
5:32:00	-7,914725907	0,009698924	FALSE	12:03:30	-78,57538089	0,169135835	FALSE
5:32:30	-7,904113434	0,010612473	FALSE	12:04:00	-78,39407893	0,181301963	FALSE
5:33:00	-7,899193794	0,004919641	FALSE	12:04:30	-78,20966246	0,184416473	FALSE
5:33:30	-7,908241574	0,00904778	FALSE	12:05:00	-78,03788463	0,171777826	FALSE
5:34:30	-9,126823422	1,224262919	TRUE	12:06:00	-77,63017773	0.22545021	FALSE
5:35:00	-9,126121443	0,000701979	FALSE	12:06:30	-77,45060413	0,179573599	FALSE
5:35:30	-8,885398749	0,240722694	FALSE	12:07:00	-96,28310956	18,83250543	TRUE
5:36:00	-8,886440869	0,00104212	FALSE	12:07:30	-96,06270839	0,220401168	FALSE
5:36:30	-11,09553012	2,209089253	TRUE	12:08:00	-95,84164751	0.238401907	FALSE
5:37:30	-9,627300166	0,008824758	FALSE	12:09:00	-95,34538077	0.25777493	FALSE
5:38:00	-9,629347157	0,002046991	FALSE	12:09:30	-95,09020649	0,255174283	FALSE
5:38:30	-9,615561604	0,013785552	FALSE	12:10:00	-96,78721056	1,697004069	TRUE
5:39:00	-9,618115813	0,002554208	FALSE	12:10:30	-96,5206281	0,266582455	FALSE
5:39:30	-9,614628069	0,003487743	FALSE	12:11:00	-96,24814967	0,272478428	FALSE
5:40:00	-9,611156784	0,012961444	FALSE	12:11:30	-95.63124267	0,309829935	FALSE
5:41:00	-9,609695278	0,001461506	FALSE	12:12:30	-109,0394329	13,40819027	TRUE
5:41:30	-9,613942459	0,004247181	FALSE	12:13:00	-110,8851418	1,845708817	TRUE
5:42:00	-9,612195265	0,001747195	FALSE	12:13:30	-110,5492953	0,335846432	FALSE
5:42:30	-9,611472342	0,000722922	FALSE	12:14:00	-109,174198	1,375097308	TRUE
5:43:00	-9,61580158	4 422725-05	FALSE	12:14:30	-106,9061952	2,268002834	TRUE

Πίνακας 4.22: Δεδομένα μεθόδου Ionospheric Residual για τον G12 του δέκτη TM0600

Η ανάλυση της μεθόδου Ionospheric Residual για τους τρεις δέκτες θα ολοκληρωθεί με την εξέταση των δεδομένων του συστήματος Galileo. Κατά τη διάρκεια της λειτουργίας του, ο δέκτης κατέγραψε δεδομένα από 35 δορυφόρους, εκ των οποίων οι 23 περιλαμβάνουν μετρήσεις και στις δύο συχνότητες, L1C και L7Q. Στη συνέχεια, θα αναλυθούν τα δεδομένα του δορυφόρου E19, καθώς είναι ο δορυφόρος που παρουσίασε τις περισσότερες ολισθήσεις κύκλων. Συγκεκριμένα, στα δεδομένα του παρατηρούνται 392 ολισθήσεις κύκλων.

Έχουν καταγραφεί δεδομένα ανάμεσα στις ώρες 00:40 και 18:00, με μία διακοπή του σήματος του δορυφόρου διάρκειας 4 ωρών μετά τις 08:45 (Γράφημα 4.30).

Όπως φαίνεται και στο Γράφημα 4.31, οι ολισθήσεις εμφανίζονται κυρίως κατά τα χρονικά διαστήματα 00:40 – 02:00, 07:00 – 08:45 και από τις 13:45 μέχρι τις 18:00 όπου χάνεται το σήμα του δορυφόρου.

Στο Γράφημα 4.32, όπου απεικονίζεται η γωνία ανύψωσης του δορυφόρου E19 κατά τα χρονικά διαστήματα που αναφέρθηκαν παραπάνω, η γωνία ανύψωσης κυμαίνεται γύρω στις 25 μοίρες. Σε συνδυασμό με τα δεδομένα του συστήματος GPS από τον ίδιο δέκτη, φαίνεται ότι όταν η γωνία ανύψωσης είναι κάτω από τις 30 μοίρες, ο δέκτης αντιμετωπίζει προβλήματα στην καταγραφή δεδομένων, με αυξημένη πιθανότητα διακοπής της λήψης του σήματος.

Γράφημα 4.32: Γωνία ανύψωσης δορυφόρου E19 (Trimple Gnss Planning)

rowTimes	IonRes (L1C - L7Q)	dionRes (L1C - L7Q)	Cycle Slips (L1C - L7Q)	rowTimes	IonRes (L1C - L7Q)	dionRes (L1C - L7Q)	Cycle Slips (L1C - L7Q)	rowTimes	IonRes (L1C - L7Q)	dionRes (L1C - L7Q)	Cycle Slips (L1C - L7Q)
0:41:30	4,295952242	1,737444941	TRUE	8:19:30	-59,15134165	0,177766524	FALSE	13:47:00	-13,70352164	0,088667646	FALSE
0:42:00	3,985840484	0,310111757	FALSE	8:20:00	-60,48882235	1,337480702	TRUE	45381,57	-11,09663103	2,606890608	TRUE
0:42:30	4,707362339	0,721521854	TRUE	8:20:30	-59,58434362	0,904478736	TRUE	45381,58	-12,39978195	1,303150915	TRUE
0:43:00	3,22600593	1,481356408	TRUE	8:21:00	-59,94428247	0,359938856	FALSE	13:48:30	-11,96279399	0,436987955	FALSE
0:43:30	5,185839679	1,959833749	TRUE	8:21:30	-60,03348824	0,089205764	FALSE	13:49:00	-12,07981543	0,117021438	FALSE
0:44:00	5,086147577	0,099692103	FALSE	8:22:00	-61,65405169	1,620563451	TRUE	45381,58	-9,367040951	2,712774478	TRUE
0:44:30	3,841880966	1,244266611	TRUE	8:22:30	-64,52225141	2,868199721	TRUE	13:50:00	-9,197712366	0,169328585	FALSE
0:45:00	4,310699288	0,468818322	FALSE	8:23:00	-64,25872039	0,263531014	FALSE	13:50:30	-10,32052621	1,122813839	TRUE
0:45:30	4,309163257	0,00153603	FALSE	8:23:30	-64,11575814	0,142962251	FALSE	13:51:00	-10,91816499	0,59763879	TRUE
0:46:00	4,299715523	0,009447735	FALSE	8:24:00	-63,95193131	0,163826834	FALSE	13:51:30	-8,031291198	2,886873797	TRUE
0:46:30	4,283291437	0,016424086	FALSE	8:24:30	-65,56521514	1,613283835	TRUE	13:52:00	-8,106883511	0,075592313	FALSE
0:47:00	4,282726232	0,000565205	FALSE	8:25:00	-66,66552204	1,100306895	TRUE	13:52:30	-8,658555128	0,551671617	TRUE
0:47:30	4,263992824	0,018733408	FALSE	8:25:30	-66,73894944	0,073427398	FALSE	13:53:00	-8,717601594	0,059046466	FALSE
0:48:00	3,989108007	0,274884816	FALSE	8:26:00	-66,55871857	0,180230867	FALSE	13:53:30	-6,540858671	2,176742923	TRUE
0:48:30	3,982011549	0,007096458	FALSE	8:26:30	-66,41967821	0,139040358	FALSE	13:54:00	-6,363205634	0,177653037	FALSE
0:49:00	3,710219827	0,271791723	FALSE	8:27:00	-68,75241395	2,332735743	TRUE	13:54:30	-8,944259331	2,581053697	TRUE
0:49:30	5,459827475	1,749607649	TRUE	8:27:30	-67,86624512	0,886168838	TRUE	13:55:00	-8,317864813	0,626394518	TRUE
0:50:00	5,415401213	0,044426262	FALSE	8:28:00	-69,68407518	1,817830063	TRUE	13:55:30	-6,172533292	2,145331521	TRUE
0:50:30	6,425646994	1,010245781	TRUE	8:28:30	-69,52140931	0,162665874	FALSE	13:56:00	-6,011784181	0,160749111	FALSE
0:51:00	4,91784304	1,507803954	TRUE	8:29:00	-69,36917409	0,152235217	FALSE	13:56:30	-16,58275643	10,57097225	TRUE
0:51:30	6,116769839	1,198926799	TRUE	8:29:30	-69,2195707	0,149603385	FALSE	13:57:00	-13,68127531	2,901481126	TRUE
0:52:00	5,857534286	0,259235553	FALSE	8:30:00	-69,06711291	0,152457796	FALSE	13:57:30	-12,78107083	0,90020448	TRUE
0:52:30	6,089807939	0,232273653	FALSE	8:30:30	-72,18482606	3,11771315	TRUE	13:58:00	-13,83740462	1,056333795	TRUE
0:53:00	5,580439415	0,509368524	TRUE	8:31:00	-74,53981634	2,354990285	TRUE	13:58:30	-13,66674097	0,170663659	FALSE
0:53:30	4,835538939	0,744900476	TRUE	8:31:30	-74,24572193	0,294094414	FALSE	13:59:00	-11,76943638	1,897304583	TRUE
0:54:00	4,81134833	0,024190608	FALSE	8:32:00	-74,11018407	0,135537863	FALSE	13:59:30	-11,8224033	0,052966915	FALSE
0:54:30	4,795062978	0,016285352	FALSE	8:32:30	-74,01465299	0,095531072	FALSE	14:00:00	-11,87160628	0,049202982	FALSE
0:55:00	4,776739232	0,018323746	FALSE	8:33:00	-74,8387435	0,824090503	TRUE	14:00:30	-13,48810668	1,616500404	TRUE
0:55:30	5,531707693	0,754968461	TRUE	8:33:30	-74,72867266	0,11007084	FALSE	14:01:00	-13,57947749	0,091370806	FALSE
0:56:00	5,993665829	0,461958136	FALSE	8:34:00	-74,63855683	0,09011583	FALSE	14:01:30	-13,65015791	0,070680425	FALSE
0:56:30	6,959563542	0,965897713	TRUE	8:34:30	-76,18361193	1,545055099	TRUE	14:02:00	-13,71878706	0,068629146	FALSE
0:57:00	5,971767724	0,987795819	TRUE	8:35:00	-22,18693986	53,99667206	TRUE	14:02:30	-13,81835668	0,099569622	FALSE
0:57:30	6,194842804	0,223075081	FALSE	8:35:30	-20,3622423	1,824697558	TRUE	14:03:00	-10,4334234	3,384933285	TRUE
0:58:00	5,692421649	0,502421156	TRUE	8:36:00	-22,68647573	2,324233424	TRUE	14:03:30	-12,22169782	1,788274422	TRUE
0:58:30	5,418436754	0,273984894	FALSE	8:36:30	-17,88325639	4,803219337	TRUE	14:04:00	-12,30302834	0,081330519	FALSE
0:59:00	6,640860032	1,222423278	TRUE	8:37:00	-18,95309646	1,069840074	TRUE	14:04:30	-12,39158681	0,088558473	FALSE
0:59:30	8,104004811	1,463144779	TRUE	8:37:30	-23,85230962	4,899213154	TRUE	14:05:00	-12,46503147	0,073444661	FALSE
1:00:00	7,352118332	0,75188648	TRUE	8:38:00	-22,22747188	1,624837734	TRUE	14:05:30	-12,52036278	0,055331305	FALSE
1:00:30	7,08590002	0,266218312	FALSE	8:38:30	-23,44529585	1,21/823967	TRUE	14:06:00	-12,61550418	0,095141403	FALSE
1:01:00	7,328256059	0,24235604	FALSE	8:39:00	-19,90423626	3,541059587	TRUE	14:06:30	-8,722964272	3,892539907	TRUE
1:01:30	7,563380949	0,23512489	FALSE	8:39:30	-19,444844	0,459392264	FALSE	14:07:00	-8,764230024	0,041265752	FALSE
1:02:00	8,046074677	0,482693728	FALSE	8:40:00	-19,23698769	0,207856312	FALSE	14:07:30	-8,825741105	0,061511081	FALSE
1:02:30	7,671359956	0,3/4/14/21	FALSE	8:40:30	-23,7860668	4,549079109	TRUE	14:08:00	-8,38927301	0,436468095	FALSE
1:03:00	8,796243235	1,124883279	TRUE	8:41:00	-21,6387599	2,14/306893	TRUE	14:08:30	-9,939945012	1,5506/2002	TRUE
1:03:30	7,583955754	1,21228/482	TRUE	0:41:30	-19,211/9869	2,426961213	TRUE	14:09:00	-10,02114348	0,081198473	TRUE
1:04:00	5,81/69114	1,766264614	TRUE	8:42:00	-19,65949431	0,447695617	FALSE	14:09:30	-6,409122359	3,512021126	TRUE
1:04:30	8,17609027	2,35839913	TRUE	8:42:30	-20,62586273	0,966368418	TRUE	14:10:00	-7,200345274	0,791222915	TRUE
1:05:00	0,02927942	1,540810851	EALCE	8:43:00	-22,54883097	1,922968242	TRUE	14:10:30	-8,400245386	1,259900112	EALCE
1.05:30	7 101067710	0,241683304	TRUE	0.43:30	10 45302000	1,245945949	TRUE	14:11:00	-6,520169742	0,059924357	TRUE
1.00.00	/,10100//18	0,713471003	INUE	0.44.00	-19,45208009	1,00000920	INUC	19.11.30	-3,342011832	3,1/013/911	INUC

Πίνακας 4.23: Απόσπασμα 150 εποχών από το αρχείου που παράγει το λογισμικό για την ολίσθηση κύκλων

4.2.2.4 Μέθοδος Διαφορών

Για τη μέθοδο των διαφορών, ο σταθμός αναφοράς του ΠΑ.Δ.Α. θα χρησιμοποιηθεί ως σημείο αναφοράς, με σκοπό τη σύγκριση των δύο χαμηλού κόστους δεκτών. Η ανάλυση θα ξεκινήσει με τους δορυφόρους του συστήματος GPS G12 και G18, συγκρίνοντας τα δεδομένα του σταθμού αναφοράς του ΠΑ.Δ.Α. με αυτά του δέκτη TT3100, χρησιμοποιώντας το σήμα L1C. Στα δεδομένα που προκύπτουν από τη σύγκριση των δύο δεκτών, δεν παρατηρείται ολίσθηση κύκλων (Πίνακας 4.24).

rowTimes	G12 L1C UNIWA	Δ	G12 L1C TT3100	G18 L1C UNIWA	Δ	G18 L1C TT3100	Απλές Διαφορές	Διπλές Διαφορές	Τριπλές Διαφορές
9:48:30	111467132,5	1842,97	111468975,44	130998891,5	-13627,40	130985264,15	15470,37		
9:49:00	111514047,4	1800,73	111515848,10	130885991,3	-13618,46	130872372,87	15419,19	-51,18	
9:49:30	111561253,2	1760,32	111563013,51	130773105,4	-13607,48	130759497,92	15367,80	-51,39	-0,21
9:50:00	111608749	1720,38	111610469,36	130660235,8	-13595,60	130646640,16	15315,98	-51,82	-0,43
9:50:30	111656535,2	1680,18	111658215,37	130547385,2	-13583,66	130533801,56	15263,84	-52,15	-0,33
9:51:00	111704611,6	1636,58	111706248,15	130434555,8	-13574,77	130420981,07	15211,35	-52,48	-0,34
9:51:30	111752978,4	1596,66	111754575,11	130321750,3	-13561,81	130308188,48	15158,48	-52,88	-0,39
9:52:00	111801635,7	1554,36	111803190,02	130208970,8	-13550,99	130195419,82	15105,35	-53,13	-0,25
9:52:30	111850583,3	1510,52	111852093,85	130096219,9	-13541,17	130082678,75	15051,69	-53,66	-0,53
9:53:00	111899820,6	1470,66	111901291,27	129983499,6	-13527,15	129969972,41	14997,82	-53,87	-0,21
9:53:30	111949348,2	1428,77	111950776,97	129870812,5	-13514,75	129857297,79	14943,53	-54,29	-0,42
9:54:00	111999166,2	1385,32	112000551,48	129758161,7	-13503,61	129744658,13	14888,92	-54,61	-0,32
9:54:30	112049274,2	1344,97	112050619,22	129645549,1	-13489,01	129632060,10	14833,98	-54,94	-0,34
9:55:00	112099672,6	1300,45	112100973,05	129532977,3	-13478,19	129519499,15	14778,64	-55,33	-0,39
9:55:30	112150361,1	1257,64	112151618,76	129420448,7	-13465,33	129406983,36	14722,98	-55,67	-0,33
9:56:00	112201340	1213,57	112202553,59	129307966,2	-13453,38	129294512,84	14666,95	-56,03	-0,36
9:56:30	112252608,8	1168,30	112253777,09	129195531,9	-13442,29	129182089,61	14610,59	-56,36	-0,33
9:57:00	112304166,9	1125,66	112305292,60	129083147,6	-13428,23	129069719,33	14553,90	-56,70	-0,34
9:57:30	112356015,3	1082,09	112357097,39	128970816,4	-13414,80	128957401,65	14496,89	-57,01	-0,31
9:58:00	112408153,6	1034,11	112409187,68	128858541,1	-13405,39	128845135,68	14439,51	-57,38	-0,37
9:58:30	112460581,1	993,73	112461574,88	128746323,2	-13388,14	128732935,09	14381,87	-57,64	-0,26
9:59:00	112513298,3	948,35	112514246,65	128634165,6	-13375,44	128620790,21	14323,78	-58,08	-0,44
9:59:30	112566305,1	901,29	112567206,42	128522071	-13364,13	128508706,92	14265,42	-58,37	-0,28
10:00:00	112619601,8	861,77	112620463,53	128410041,9	-13344,95	128396696,98	14206,71	-58,71	-0,34
10:00:30	112673187,2	820,94	112674008,11	128298080	-13326,79	128284753,19	14147,73	-58,98	-0,27
10:01:00	112727061,5	783,20	112727844,66	128186187,9	-13305,17	128172882,68	14088,37	-59,36	-0,38
10:01:30	112781224,8	738,25	112781963,00	128074368,3	-13290,39	128061077,87	14028,64	-59,73	-0,37
10:02:00	112835677,5	694,91	112836372,42	127962624,2	-13273,71	127949350,48	13968,63	-60,01	-0,28
10:02:30	112890419,3	656,32	112891075,66	127850957,9	-13251,98	127837705,91	13908,29	-60,33	-0,32
10:03:00	112945451,6	603,72	112946055,28	127739373,3	-13243,94	127726129,36	13847,65	-60,64	-0,31
10:03:30	113000771,9	558,59	113001330,46	127627870,4	-13228,07	127614642,29	13786,66	-60,99	-0,35
10:04:00	113056380,5	512,75	113056893,21	127516452,5	-13212,57	127503239,97	13725,32	-61,34	-0,34
10:04:30	113112277,6	472,73	113112750,35	127405122,3	-13190,98	127391931,30	13663,71	-61,61	-0,28
10:05:00	113168462,6	425,90	113168888,52	127293881,5	-13175,87	127280705,60	13601,77	-61,94	-0,33
10:05:30	113224936,5	374,81	113225311,29	127182733,4	-13164,67	127169568,76	13539,48	-62,29	-0,35
10:06:00	113281698,6	327,52	113282026,16	127071680,7	-13149,38	127058531,29	13476,89	-62,59	-0,30
10:06:30	113338748	287,52	113339035,56	126960724,7	-13126,44	126947598,27	13413,97	-62,92	-0,33
10:07:00	113396085,4	247,00	113396332,35	126849868,8	-13103,74	126836765,04	13350,74	-63,23	-0,31
10:07:30	113453710,6	201,20	113453911,79	126739115,1	-13086,04	126726029,04	13287,24	-63,50	-0,27
10:08:00	113511623,3	147,60	113511770,93	126628466,2	-13075,82	126615390,39	13223,41	-63,83	-0,33

Πίνακας 4.24: Διαφορές ανάμεσα σε G12-G18 του δέκτη του ΠΑ.Δ.Α και του ΤΤ3100 για το σήμα L1C

Παρόμοια παρατήρηση γίνεται και στα δεδομένα που έχουν καταγραφεί για τα σήματα L2L. Δεν παρατηρούνται αυξημένες τιμές που θα μπορούσαν να υποδηλώνουν την ύπαρξη ολίσθησης κύκλων.

rowTimes	G12 L2L UNIWA	Δ	G12 L2C TT3100	G18 L2L UNIWA	Δ	G18 L2C TT3100	Απλές Διαφορές	Διπλές Διαφορές	Τριπλές Διαφορές
9:48:30	86857484,63	1432,62	86858917,25	102077069,2	-10610,31	102066458,92	-12042,93		
9:49:00	86894041,6	1399,71	86895441,31	101989095,7	-10603,39	101978492,27	-12003,09	39,84	
9:49:30	86930825,28	1368,18	86932193,46	101901133,2	-10594,83	101890538,39	-11963,01	40,08	0,25
9:50:00	86967834,9	1337,04	86969171,94	101813183,4	-10585,59	101802597,82	-11922,64	40,37	0,29
9:50:30	87005070,79	1305,73	87006376,53	101725248,5	-10576,31	101714672,18	-11882,05	40,59	0,22
9:51:00	87042532,81	1271,76	87043804,57	101637330,1	-10569,31	101626760,75	-11841,07	40,97	0,38
9:51:30	87080221,2	1240,66	87081461,85	101549430,2	-10559,23	101538870,99	-11799,88	41,19	0,22
9:52:00	87118135,84	1207,66	87119343,50	101461550,7	-10550,76	101450999,95	-11758,43	41,46	0,27
9:52:30	87156276,78	1173,52	87157450,29	101373693,5	-10543,16	101363150,29	-11716,68	41,75	0,29
9:53:00	87194643,41	1142,47	87195785,88	101285860	-10532,22	101275327,79	-11674,69	41,99	0,25
9:53:30	87233236,25	1109,84	87234346,09	101198052,5	-10522,53	101187530,00	-11632,38	42,31	0,32
9:54:00	87272055,37	1075,98	87273131,36	101110273,3	-10513,89	101099759,41	-11589,88	42,50	0,19
9:54:30	87311100,56	1044,54	87312145,10	101022523,8	-10502,55	101012021,24	-11547,10	42,78	0,27
9:55:00	87350371,94	1009,84	87351381,78	100934806,1	-10494,10	100924312,04	-11503,95	43,15	0,38
9:55:30	87389869,4	976,48	87390845,88	100847122,1	-10484,16	100836637,92	-11460,64	43,30	0,15
9:56:00	87429593,14	942,16	87430535,30	100759474	-10474,80	100748999,16	-11416,96	43,69	0,39
9:56:30	87469542,75	906,91	87470449,66	100671863,3	-10466,15	100661397,18	-11373,05	43,90	0,22
9:57:00	87509717,85	873,68	87510591,53	100584291,6	-10455,13	100573836,51	-11328,81	44,24	0,34
9:57:30	87550119,1	839,72	87550958,82	100496761,4	-10444,67	100486316,74	-11284,39	44,42	0,18
9:58:00	87590746,24	802,35	87591548,59	100409274,6	-10437,34	100398837,29	-11239,70	44,70	0,28
9:58:30	87631598,84	770,87	87632369,70	100321832,7	-10423,85	100311408,84	-11194,72	44,98	0,28
9:59:00	87672677,06	735,50	87673412,56	100234437,7	-10414,01	100224023,70	-11149,51	45,21	0,23
9:59:30	87713980,99	698,82	87714679,81	100147091,8	-10405,21	100136686,60	-11104,03	45,48	0,27
10:00:00	87755510,73	668,02	87756178,75	100059796,9	-10390,28	100049406,65	-11058,30	45,73	0,25
10:00:30	87797265,51	636,19	87797901,70	99972554,34	-10376,12	99962178,22	-11012,31	46,00	0,27
10:01:00	87839245,4	606,77	87839852,17	99885366,22	-10359,34	99875006,88	-10966,11	46,20	0,20
10:01:30	87881450,46	571,73	87882022,19	99798234,58	-10347,78	99787886,80	-10919,51	46,60	0,40
10:02:00	87923881,06	537,97	87924419,03	99711161,79	-10334,79	99700827,00	-10872,76	46,75	0,15
10:02:30	87966536,95	507,88	87967044,83	99624149,58	-10317,82	99613831,76	-10825,70	47,06	0,32
10:03:00	88009419,11	466,89	88009886,00	99537201,06	-10311,53	99526889,53	-10778,42	47,28	0,22
10:03:30	88052525,72	431,77	88052957,49	99450316,22	-10299,17	99440017,05	-10730,94	47,48	0,20
10:04:00	88095856,98	396,03	88096253,01	99363497,7	-10287,15	99353210,55	-10683,19	47,75	0,27
10:04:30	88139413,09	364,88	88139777,97	99276747,4	-10270,30	99266477,10	-10635,18	48,01	0,26
10:05:00	88183193,5	328,39	88183521,90	99190066,79	-10258,55	99179808,24	-10586,95	48,23	0,22
10:05:30	88227199	288,61	88227487,61	99103458,49	-10249,79	99093208,70	-10538,40	48,55	0,32
10:06:00	88271429,15	251,75	88271680,89	99016924,41	-10237,93	99006686,48	-10489,68	48,72	0,17
10:06:30	88315883,13	220,56	88316103,68	98930465,75	-10220,05	98920245,71	-10440,60	49,07	0,35
10:07:00	88360561,43	188,99	88360750,43	98844085,05	-10202,37	98833882,68	-10391,36	49,24	0,17
10:07:30	88405464,11	153,31	88405617,42	98757783,99	-10188,54	98747595,45	-10341,85	49,51	0,27
10:08:00	88450590,81	111,52	88450702,33	98671564,59	-10180,52	98661384,07	-10292,04	49,81	0,30

Πίνακας 4.25: Διαφορές ανάμεσα σε G12-G18 του δέκτη του ΠΑ.Δ.Α και του TT3100 για το σήμα L2 Η ανάλυση συνεχίζεται με το σύστημα Galileo και τους δορυφόρους Ε04 και Ε19. Η αρχική σύγκριση πραγματοποιείται στο σήμα L1. Όπως φαίνεται στον Πίνακα 4.26, όπου απεικονίζονται 50 εποχές από τη σύγκριση των δορυφόρων, με κόκκινο χρώμα έχουν μαρκαριστεί οι εποχές στις οποίες οι τιμές των τριπλών διαφορών ξεπερνούν τη μονάδα, υποδεικνύοντας την παρουσία ολίσθησης κύκλων. Επιπλέον, δεν παρατηρείται εμφανής διακοπή του σήματος.

rowTimes	E04 L1C UNIWA	Δ	E04 L1B TT3100	E19 L1C UNIWA	Δ	E19 L1B TT3100	Απλές Διαφορές	Διπλές Διαφορές	Τριπλές Διαφορές
17:01:00	129191956,9	1369,69	129190587,2	143559109,1	-10820,38	143569929,5	12190,07	26,09	-0,19
17:01:30	129168674,8	1323,33	129167351,5	143618596	-10840,54	143629436,5	12163,88	26,19	-0,11
17:02:00	129145806,2	1280,78	129144525,4	143678384,3	-10856,72	143689241,1	12137,51	26,37	-0,17
17:02:30	129123353	1229,49	129122123,6	143738473,8	-10881,43	143749355,3	12110,92	26,59	-0,22
17:03:00	129101314,2	1179,87	129100134,4	143798861,5	-10904,32	143809765,8	12084,19	26,72	-0,13
17:03:30	129079692,4	1131,36	129078561	143859547,6	-10925,91	143870473,5	12057,27	26,93	-0,21
17:04:00	129058486,7	1076,64	129057410,1	143920529,5	-10953,55	143931483,1	12030,20	27,07	-0,14
17:04:30	129037698	1030,22	129036667,8	143981805,5	-10972,77	143992778,2	12002,99	27,21	-0,14
17:05:00	129017327,3	1004,92	129016322,4	144043375	-10970,64	144054345,6	11975,56	27,43	-0,22
17:05:30	128997375,6	964,78	128996410,8	144105236,4	-10983,20	144116219,6	11947,97	27,59	-0,16
17:06:00	128977842,5	919,13	128976923,4	144167387,4	-11001,05	144178388,4	11920,17	27,80	-0,21
17:06:30	128958729,1	863,82	128957865,3	144229827,1	-10906,47	144240733,6	11770,29	149,88	-122,08
17:07:00	128940035,4	819,07	128939216,3	144292553,4	-10923,13	144303476,5	11742,21	28,09	121,79
17:07:30	128921761,5	772,26	128920989,3	144355564,4	-10941,74	144366506,1	11713,99	28,21	-0,13
17:08:00	128903909,6	725,21	128903184,4	144418860	-10960,34	144429820,3	11685,55	28,44	-0,22
17:08:30	128886479	669,18	128885809,9	144482437,8	-10987,80	144493425,6	11656,98	28,58	-0,14
17:09:00	128869470,1	627,08	128868843	144546295,8	-11001,16	144557297	11628,23	28,74	-0,16
17:09:30	128852883,2	578,41	128852304,8	144610432,6	-11023,00	144621455,6	11601,41	26,82	1,92
17:10:00	128836719,8	532,06	128836187,7	144674847,7	-11040,24	144685887,9	11572,30	29,11	-2,29
17:10:30	128820979,6	501,78	128820477,8	144739538,6	-11041,28	144750579,8	11543,06	29,25	-0,13
17:11:00	128805662,3	454,42	128805207,9	144804503	-11059,26	144815562,2	11513,68	29,37	-0,12
17:11:30	128790768,8	410,98	128790357,8	144869739,9	-11073,15	144880813	11484,14	29,55	-0,18
17:12:00	128776299,5	357,79	128775941,7	144935247,7	-11096,66	144946344,4	11454,44	29,69	-0,15
17:12:30	128762254,3	310,48	128761943,8	145001024,5	-11114,15	145012138,7	11424,63	29,82	-0,12
17:13:00	128748633,3	265,70	128748367,6	145067068,2	-11128,91	145078197,1	11394,61	30,02	-0,20
17:13:30	128735436,7	211,99	128735224,7	145133377,3	-11152,39	145144529,7	11364,38	30,23	-0,21
17:14:00	128/22665,4	168,75	128/22496,/	145199950,6	-11165,35	145211115,9	11334,10	30,28	-0,05
17:14:30	128710320,5	119,94	128710200,5	145266787,1	-11183,70	145277970,8	11303,64	30,46	-0,18
17:15:00	128698401,1	62,77	128698338,3	145333884,3	-11210,24	145345094,5	112/3,01	30,63	-0,17
17:15:30	128686908,4	16,53	128686891,9	145401241,4	-11226,63	145412468	11243,16	29,85	0,78
17:16:00	1286/5842,6	-32,87	1286/58/5,4	145468856,6	-11245,13	145480101,7	11212,26	30,90	-1,05
17:16:30	128665203,3	-/8,59	128665281,8	145536727,7	-11264,74	145547992,5	11186,15	26,11	4,79
17:17:00	128654990,2	-128,22	128655118,5	145604852,9	-11283,19	145616136	11154,97	31,18	-5,06
17:17:30	128645205,1	-175,00	128645380,1	1456/3231,3	-11298,61	145684529,9	11123,61	31,35	-0,18
17:18:00	12003304/	224,81	1280300/1,8	145741860,8	-11310,66	145/551/7,0	11092,07	31,34	-0,18
17:10:00	120020910,3	-276,50	12002/194,0	145810735,0	-11356,75	145622076,4	11000,44	31,03	-0,09
17:19:00	120010413,3	272.05	128018733,7	1450/0320 2	-11351,11	145050217,5	10006 79	21.02	-0,10
17:30:00	128010558,4	176 62	120010/11,4	145545255,2	-11305,73	145900009	10950,78	31,93	-0,19
17:20:00	128002031,3	420,03	128005117,5	146099716	-11391,32	146100116.2	10932.47	32,03	-0,17
17:20:30	128588680.9	-407,73	12859555555	140088710	-11400,20	146170232.2	10932,47	32,22	-0,12
17:21:00	128582318	-558 60	128582876 7	146220157.8	-11414,03	1462/058/ 1	10967.62	32,30	-0,14
17:22:00	128576383.9	-604 57	128576988 5	146299736 5	-11420,52	146311176 1	10807,02	32,40	-0,12
17.22.00	128570979	-656 55	128571534 5	146370551 2	-11458.81	146382010	10802.26	32,02	-0,14
17.22.30	128565800 4	-703.80	128566504.2	146441600 1	-11473 19	146453073 2	10769 37	32,74	-0,12
17.23.30	128561151.6	-749 41	128561901	146512882 1	-11488 72	146524370.8	10739 31	30.07	2 82
17.24.00	128556930.9	-791 /0	128557722 3	146584394 6	-11497 61	146595892.2	10706.20	33,11	-3.04
17:24:30	128553138 5	-843 70	128553982.2	146656136.4	-11516.57	146667652.9	10672.87	33,11	-0.23
17:25:00	128549774.4	-892.15	128550666 5	146728105.6	-11532.56	146739638.1	10640 41	32.46	0,23
17:25:30	128546838.6	-941.54	128547780 1	146800300 5	-11548 42	146811849	10606.89	33 52	-1.06
21120.00	1200-10000,0	512,54	1200 11 / 00,1	1.000000000	110-10,42	110011045	10000,00	55,52	1,00

Πίνακας 4.26: Διαφορές ανάμεσα σε E04-E19 του δέκτη του ΠΑ.Δ.Α και του TT3100 για το σήμα L1 Στον Πίνακα 4.27 απεικονίζονται οι ίδιες 50 εποχές αλλά στο σήμα L7. Με κόκκινο είναι μαρκαρισμένες οι εποχές που στην L1 εμφανίζουν αυξημένες τιμές, επομένως και ολίσθηση κύκλων. Ωστόσο εδώ παρατηρείται ότι οι τιμές είναι φυσιολογικές πράγμα που σημαίνει ότι η ολίσθηση κύκλων συμβαίνει στο σήμα L1 και δεν επηρεάζει το L7.

rowTimes	E04 L7Q UNIWA	Δ	E04 L7I TT3100	E19 L7Q UNIWA	Δ	E19 L7I TT3100	Απλές Διαφορές	Διπλές Διαφορές	Τριπλές Διαφορές
17:01:00	98991370,34	1113,69	98990256,65	109999892,6	-8318,10	110008210,7	9431,79	19,96	-0,15
17:01:30	98973530,92	1078,17	98972452,75	110045473,5	-8333,54	110053807	9411,71	20,07	-0,11
17:02:00	98956008,25	1045,56	98954962,7	110091285,4	-8345,89	110099631,3	9391,45	20,26	-0,19
17:02:30	98938803,97	1006,27	98937797,7	110137328	-8364,84	110145692,8	9371,10	20,35	-0,09
17:03:00	98921917,17	968,26	98920948,91	110183599,1	-8382,38	110191981,4	9350,63	20,47	-0,12
17:03:30	98905349,85	931,09	98904418,77	110230098,8	-8398,95	110238497,8	9330,03	20,60	-0,13
17:04:00	98889101,4	889,13	98888212,27	110276825,2	-8420,11	110285245,4	9309,24	20,79	-0,18
17:04:30	98873172,44	853,58	98872318,86	110323777	-8434,82	110332211,8	9288,40	20,85	-0,06
17:05:00	98857563,86	834,20	98856729,66	110370953,7	-8433,19	110379386,9	9267,39	21,01	-0,16
17:05:30	98842276,23	803,44	98841472,79	110418354	-8442,79	110426796,8	9246,23	21,16	-0,15
17:06:00	98827309,36	768,46	98826540,89	110465976,2	-8456,50	110474432,7	9224,96	21,26	-0,10
17:06:30	98812664,13	726,10	98811938,03	110513819,6	-8477,50	110522297,1	9203,60	21,36	-0,10
17:07:00	98798340,45	691,79	98797648,66	110561882,7	-8490,28	110570372,9	9182,07	21,53	-0,17
17:07:30	98784338,43	655,92	98783682,51	110610163,8	-8504,52	110618668,3	9160,44	21,63	-0,09
17:08:00	98770659,74	619,86	98770039,89	110658663,1	-8518,77	110667181,9	9138,62	21,81	-0,18
17:08:30	98757303,95	576,93	98756727,02	110707378,6	-8539,80	110715918,4	9116,73	21,89	-0,08
17:09:00	98744271,2	544,68	98743726,52	110756308,8	-8550,05	110764858,8	9094,73	22,00	-0,11
17:09:30	98731561,85	507,39	98731054,46	110805452,6	-8565,23	110814017,8	9072,63	22,11	-0,11
17:10:00	98719176,96	471,88	98718705,08	110854809,6	-8578,43	110863388	9050,30	22,32	-0,21
17:10:30	98707116,34	448,65	98706667,69	110904378	-8579,30	110912957,3	9027,95	22,35	-0,03
17:11:00	98695379,8	412,37	98694967,43	110954155,9	-8593,03	110962749	9005,40	22,56	-0,20
17:11:30	98683967,95	379,10	98683588,85	111004142,7	-8603,66	111012746,3	8982,76	22,64	-0,09
17:12:00	98672881,11	338,34	98672542,78	111054337	-8621,68	111062958,7	8960,01	22,74	-0,10
17:12:30	98662119,27	302,06	98661817,2	111104737,5	-8635,06	111113372,6	8937,12	22,89	-0,15
17:13:00	98651682,44	267,74	98651414,7	111155342,4	-8646,39	111163988,8	8914,13	22,99	-0,10
17:13:30	98641570,86	226,61	98641344,24	111206150,7	-8664,40	111214815,1	8891,02	23,11	-0,12
17:14:00	98631785,11	193,47	98631591,64	111257161,4	-8674,30	111265835,7	8867,78	23,24	-0,12
17:14:30	98622326,04	156,07	98622169,97	111308373,8	-8688,37	111317062,1	8844,44	23,34	-0,10
17:15:00	98613193,04	112,25	98613080,79	111359785,9	-8708,68	111368494,6	8820,93	23,50	-0,16
17:15:30	98604387,07	76,84	98604310,23	111411397,3	-8720,52	111420117,8	8797,36	23,58	-0,07
17:16:00	98595908,09	38,99	98595869,1	111463206,3	-8734,66	111471941	8773,65	23,71	-0,13
17:16:30	98587755,95	3,94	98587752,01	111515211,5	-8745,91	111523957,4	8749,85	23,80	-0,09
17:17:00	98579930,46	-34,09	98579964,55	111567411,3	-8760,02	111576171,3	8725,93	23,92	-0,12
17:17:30	98572432,79	-69,93	98572502,72	111619805,2	-8771,81	111628577	8701,88	24,05	-0,13
17:18:00	98565262,39	-108,08	98565370,47	111672391,4	-8785,84	111681177,2	8677,76	24,12	-0,07
17:18:30	98558419,45	-149,08	98558568,53	111725168,7	-8802,59	111733971,3	8653,51	24,25	-0,13
17:19:00	98551904,18	-182,88	98552087,07	111778135,9	-8812,02	111786947,9	8629,14	24,37	-0,12
17:19:30	98545717,05	-221,61	98545938,66	111831291,9	-8826,30	111840118,2	8604,69	24,45	-0,08
17:20:00	98539857,63	-262,73	98540120,35	111884634,9	-8842,84	111893477,7	8580,12	24,57	-0,12
17:20:30	98534325,87	-294,21	98534620,09	111938163,7	-8849,68	111947013,4	8555,47	24,65	-0,08
17:21:00	98529122,48	-330,27	98529452,76	111991877,7	-8860,93	112000738,7	8530,66	24,81	-0,16
17:21:30	98524247,12	-363,91	98524611,04	112045775	-8869,69	112054644,7	8505,78	24,88	-0,07
17:22:00	98519700,24	-399,07	98520099,31	112099854,8	-8879,87	112108734,7	8480,80	24,98	-0,10
17:22:30	98515481,49	-438,90	98515920,4	112154115,4	-8894,53	112163010	8455,63	25,17	-0,19
17:23:00	98511590,9	-475,12	98512066,01	112208555,5	-8905,52	112217461	8430,41	25,23	-0,05
17:23:30	98508028,93	-510,07	98508538,99	112263174,2	-8915,19	112272089,4	8405,13	25,28	-0,06
17:24:00	98504794,93	-542,25	98505337,18	112317969,5	-8921,97	112326891,5	8379,72	25,41	-0,13
17:24:30	98501889,11	-582,30	98502471,42	112372940,5	-8936,52	112381877	8354,22	25,50	-0,10
17:25:00	98499311,43	-619,42	98499930,86	112428085,7	-8948,04	112437033,8	8328,62	25,60	-0,09
17:25:30	98497061,97	-657,27	98497719,24	112483404	-8960,15	112492364,1	8302,88	25,74	-0,14

Πίνακας 4.27: Διαφορές ανάμεσα σε Ε04-Ε19 του δέκτη του ΠΑ.Δ.Α και του TT3100 για το σήμα L7

Η επόμενη σύγκριση θα πραγματοποιηθεί ανάμεσα στον σταθμό αναφοράς του ΠΑ.Δ.Α. και στον δέκτη χαμηλού κόστους TM0600 για το σύστημα GPS, εστιάζοντας στους δορυφόρους G12 και G18 στο σήμα L1. Στον Πίνακα 4.28 απεικονίζονται οι τελευταίες 50 εποχές, όπου παρατηρείται ολίσθηση κύκλων, όπως υποδεικνύεται από τις αυξημένες τιμές στις εποχές που είναι μαρκαρισμένες με κόκκινο χρώμα.

rowTimes	G12 L1C TM0600	Δ	G12 L1C UNIWA	G18 L1C TM0600	Δ	G18 L1C UNIWA	Απλές Διαφορές	Διπλές Διαφορές	Τριπλές Διαφορές
11:27:00	121341486,21	4658960,67	126000446,9	107379706,51	4659497,35	112039203,9	-536,68	89,81	-0,01
11:27:30	121455456,77	4642346,21	126097803	107331353,41	4642793,06	111974146,5	-446,85	89,83	0,02
11:28:00	121569619,19	4625720,82	126195340	107283447,59	4626077,85	111909525,4	-357,03	89,83	-0,01
11:28:30	121683977,32	4609079,67	126293057	107235994,66	4609346,90	111845341,6	-267,22	89,80	-0,02
11:29:00	121798534,62	4592417,50	126390952,1	107189001,25	4592594,99	111781596,2	-177,50	89,73	-0,07
11:29:30	121913291,78	4575732,77	126489024,6	107142470,34	4575820,43	111718290,8	-87,66	89,84	0,11
11:30:00	122028249,63	4559023,72	126587273,3	107096404,75	4559021,66	111655426,4	2,06	89,72	-0,12
11:30:30	122143414,97	4542282,18	126685697,1	107050813,55	4542190,36	111593003,9	91,81	89,75	0,03
11:31:00	122258782,82	4525512,20	126784295	107005694,70	4525330,66	111531025,4	181,54	89,72	-0,03
11:31:30	122374359,04	4508705,89	126883064,9	106961056,26	4508434,68	111469490,9	271,21	89,67	-0,05
11:32:00	122490136,66	4491869,85	126982006,5	106916893,41	4491508,97	111408402,4	360,87	89,66	-0,01
11:32:30	122606123,97	4474994,29	127081118,3	106873216,76	4474543,77	111347760,5	450,52	89,64	-0,02
11:33:00	122722320,10	4458079,41	127180399,5	106830027,73	4457539,39	111287567,1	540,03	89,51	-0,14
11:33:30	122838722,89	4441125,19	127279848,1	106787326,76	4440495,61	111227822,4	629,58	89,55	0,04
11:34:00	122955335,33	4424128,17	127379463,5	106745119,16	4423409,12	111168528,3	719,05	89,47	-0,08
11:34:30	123072140,55	4407102,95	127479243,5	106703390,10	4406294,44	111109684,5	808,50	89,46	-0,01
11:35:00	123189130,60	4390057,02	127579187,6	106662134,31	4389159,07	111051293,4	897,95	89,45	-0,01
11:35:30	123306308,25	4372985,53	127679293,8	106621356,19	4371998,25	110993354,4	987,28	89,33	-0,12
11:36:00	123423659,64	4355902,49	127779562,1	106581044,40	4354825,90	110935870,3	1076,59	89,31	-0,02
11:36:30	123541192,83	4338796,65	127879989,5	106541209,68	4337630,76	110878840,4	1165,89	89,30	-0,01
11:37:00	123658918,98	4321657,86	127980576,8	106501864,89	4320402,75	110822267,6	1255,12	89,22	-0,07
11:37:30	123776834,30	4304487,52	128081321,8	106463008,35	4303143,28	110766151,6	1344,25	89,13	-0,10
11:38:00	123894933,50	4287289,91	128182223,4	106424637,24	4285856,59	110710493,8	1433,32	89,08	-0,05
11:38:30	124013227,67	4270052,25	128283279,9	106386765,18	4268529,86	110655295	1522,39	89,06	-0,02
11:39:00	124131710,59	4252779,57	128384490,2	106349388,15	4251168,17	110600556,3	1611,40	89,01	-0,05
11:39:30	124250368,65	4235484,34	128485853	106312494,42	4233784,05	110546278,5	1700,28	88,88	-0,13
11:40:00	124369188,81	4218178,04	128587366,9	106276072,92	4216389,00	110492461,9	1789,04	88,76	-0,12
11:40:30	124488165,30	4200865,37	128689030,7	106240120,34	4198987,55	110439107,9	1877,82	88,78	0,02
11:41:00	124607293,44	4183550,46	128790843,9	106204634,16	4181583,97	110386218,1	1966,49	88,66	-0,12
11:41:30	124726581,06	4166223,90	128892805	106169624,43	4164168,80	110333793,2	2055,10	88,61	-0,05
11:42:00	124846020,17	4148891,38	128994911,6	106135085,10	4146747,73	110281832,8	2143,65	88,55	-0,06
11:42:30	124965601,19	4131561,21	129097162,4	106101008,39	4129329,17	110230337,6	2232,04	88,39	-0,16
11:43:00	125085331,42	4114224,75	129199556,2	106067404,04	4111904,34	110179308,4	2320,41	88,36	-0,03
11:43:30	125205211,00	4096880,39	129302091,4	106034274,53	4094471,71	110128746,2	2408,69	88,28	-0,08
11:44:00	125325237,14	4079530,78	129404767,9	106001618,95	4077033,91	110078652,9	2496,87	88,18	-0,10
11:44:30	125445401,85	4062181,89	129507583,7	105969431,31	4059596,92	110029028,2	2584,97	88,10	-0,08
11:45:00	125565698,24	4044839,29	129610537,5	105937706,77	4042166,31	109979873,1	2672,97	88,01	-0,09
11:45:30	125686130,02	4027497,42	129713627,4	105906451,22	4024736,56	109931187,8	2760,86	87,88	-0,13
11:46:00	125806687,71	4010165,19	129816852,9	105875657,09	4007316,58	109882973,7	2848,60	87,75	-0,13
11:46:30	125927375,69	3992836,51	129920212,2	105845330,70	3989900,19	109835230,9	2936,32	87,71	-0,04
11:47:00	126048202,24	3975501,83	130023704,1	105815482,36	3972477,94	109787960,3	3023,89	87,58	-0,14
11:47:30	126169161,10	3958165,75	130127326,8	105786107,79	3955054,44	109741162,2	3111,31	87,42	-0,16
11:48:00	126290257,29	3940822,29	130231079,6	105757209,17	3937628,63	109694837,8	3193,66	82,35	-5,07
11:48:30	126411497,32	3923463,41	130334960,7	105728804,83	3920182,42	109648987,2	3280,99	87,33	4,98
11:49:00	126532877,08	3906091,55	130438968,6	105700887,63	3902723,44	109603611,1	3368,11	87,12	-0,22
11:49:30	126654397,90	3888704,62	130543102,5	105673460,76	3885249,46	109558710,2	3455,16	87,05	-0,07
11:50:00	126776066,28	3871294,48	130647360,8	105646532,80	3867752,38	109514285,2	3542,09	86,93	-0,12
11:50:30	126897870,58	3853871,18	130751741,8	105620093,90	3850242,26	109470336,2	3628,93	86,83	-0,10
11:51:00	127019821,74	3836422,29	130856244	105594156,81	3832706,72	109426863,5	3715,57	86,64	-0,19
11:51:30	127141910,81	3818955,82	130960866,6	105568714,67	3815153,70	109383868,4	3802,12	86,55	-0,09

Πίνακας 4.28: Διαφορές ανάμεσα σε G12-G18 του δέκτη του ΠΑ.Δ.Α και του TM0600 για το σήμα L1

Στον Πίνακα 4.2-28, όπου απεικονίζονται οι ίδιες εποχές όπως στο σήμα L1, αλλά αυτή τη φορά για το σήμα L2, παρατηρούνται περισσότερες ολισθήσεις κύκλων. Επίσης, οι μετρήσεις των εποχών που ήταν επηρεασμένες από ολισθήσεις κύκλων στην L1, εμφανίζουν αυξημένες τιμές και στο σήμα L2.

rowTimes	G12 L2L TM0600	Δ	G12 L2L UNIWA	G18 L2L TM0600	Δ	G18 L2L UNIWA	Απλές Διαφορές	Διπλές Διαφορές	Τριπλές Διαφορές
11:27:00	94551976,02	3630133,01	98182109,03	83672579,24	3630766,09	87303345,33	633,08	-70,03	-0,06
11:27:30	94640854,88	3617115,69	98257970,57	83634901,61	3617749,74	87252651,35	634,05	0,97	71,00
11:28:00	94729812,35	3604160,78	98333973,12	83597572,49	3604724,88	87202297,37	564,10	-69,95	-70,92
11:28:30	94818922,21	3591193,67	98410115,87	83560596,27	3591687,78	87152284,05	494,12	-69,98	-0,04
11:29:00	94908187,33	3578210,14	98486397,47	83523978,16	3578634,30	87102612,47	424,17	-69,95	0,04
11:29:30	94997608,15	3565209,05	98562817,2	83487720,38	3565563,24	87053283,62	354,19	-69,98	-0,03
11:30:00	95087185,33	3552189,08	98639374,41	83451825,18	3552473,32	87004298,5	284,24	-69,96	0,02
11:30:30	95176924,27	3539143,66	98716067,94	83416299,62	3539358,05	86955657,68	214,39	-69,84	0,11
11:31:00	95266820,99	3526076,15	98792897,13	83381142,17	3526220,62	86907362,79	144,47	-69,92	-0,08
11:31:30	95356880,00	3512980,38	98869860,38	83346359,04	3513054,92	86859413,96	74,54	-69,93	-0,01
11:32:00	95447096,00	3499861,38	98946957,38	83311946,50	3499866,10	86811812,59	4,71	-69,83	0,10
11:32:30	95537475,39	3486711,61	99024187	83277912,83	3486646,46	86764559,29	-65,15	-69,86	-0,03
11:33:00	95628017,53	3473531,13	99101548,66	83244259,14	3473396,27	86717655,4	-134,86	-69,71	0,15
11:33:30	95718720,65	3460320,04	99179040,69	83210985,74	3460115,41	86671101,15	-204,63	-69,77	-0,06
11:34:00	95809587,14	3447075,66	99256662,79	83178096,84	3446801,22	86624898,06	-274,43	-69,80	-0,03
11:34:30	95900603,86	3433809,22	99334413,09	83145580,83	3433465,06	86579045,89	-344,16	-69,73	0,07
11:35:00	95991764,58	3420526,68	99412291,27	83113433,52	3420112,86	86533546,38	-413,82	-69,66	0,06
11:35:30	96083071,52	3407224,25	99490295,76	83081658,49	3406740,75	86488399,23	-483,50	-69,67	-0,01
11:36:00	96174513,82	3393912,80	99568426,62	83050246,80	3393359,70	86443606,5	-553,10	-69,60	0,07
11:36:30	96266097,80	3380583,55	99646681,36	83019206,80	3379960,93	86399167,73	-622,63	-69,53	0,07
11:37:00	96357832,14	3367228,62	99725060,76	82988548,59	3366536,54	86355085,13	-692,08	-69,45	0,07
11:37:30	96449713,82	3353849,18	99803563	82958270,86	3353087,60	86311358,46	-761,58	-69,50	-0,05
11:38:00	96541738,85	3340448,44	99882187,29	82928371,35	3339617,49	86267988,84	-830,95	-69,37	0,13
11:38:30	96633915,77	3327016,49	99960932,27	82898860,75	3326116,14	86224976,89	-900,35	-69,40	-0,03
11:39:00	96726239,79	3313557,24	100039797	82869735,89	3312587,53	86182323,42	-969,70	-69,35	0,05
11:39:30	96818700,17	3300080,50	100118780,7	82840987,64	3299041,44	86140029,08	-1039,06	-69,36	-0,01
11:40:00	96911286,94	3286595,12	100197882,1	82812607,33	3285486,85	86098094,18	-1108,27	-69,21	0,15
11:40:30	97003995,59	3273104,65	100277100,2	82784592,45	3271927,26	86056519,71	-1177,39	-69,12	0,09
11:41:00	97096850,33	3259584,56	100356434,9	82756940,94	3258366,04	86015306,98	-1218,52	-41,14	27,98
11:41:30	97189782,46	3246102,26	100435884,7	82729660,72	3244795,75	85974456,47	-1306,51	-87,98	-46,85
11:42:00	97282851,52	3232596,40	100515447,9	82702747,05	3231220,87	85933967,92	-1375,53	-69,02	18,96
11:42:30	97376031,13	3219092,42	100595123,6	82676193,82	3217647,97	85893841,8	-1444,45	-68,92	0,10
11:43:00	97469327,07	3205583,48	100674910,5	82650008,67	3204070,19	85854078,86	-1513,29	-68,84	0,08
11:43:30	97562739,37	3192068,41	100754807,8	82624193,49	3190486,37	85814679,86	-1582,04	-68,75	0,08
11:44:00	97656265,88	3178549,23	100834815,1	82598747,65	3176898,46	85775646,1	-1650,77	-68,73	0,03
11:44:30	97749900,32	3165030,62	100914930,9	82573666,43	3163311,21	85736977,64	-1719,41	-68,64	0,09
11:45:00	97843637,41	3151516,93	100995154,3	82548946,07	3149728,92	85698674,99	-1788,00	-68,60	0,04
11:45:30	97937479,95	3138003,79	101075483,7	82524591,16	3136147,29	85660738,46	-1856,50	-68,49	0,11
11:46:00	98031420,63	3124498,17	101155918,8	82500595,82	3122573,23	85623169,05	-1924,94	-68,45	0,04
11:46:30	98125462,85	3110995,25	101236458,1	82476964,92	3109002,01	85585966,93	-1993,24	-68,30	0,15
11:47:00	98219612,93	3097487,77	101317100,7	82453706,52	3095426,28	85549132,79	-2061,50	-68,26	0,04
11:47:30	98313866,19	3083979,09	101397845,3	82430817,32	3081849,50	85512666,82	-2129,59	-68,09	0,16
11:48:00	98408226,46	3070464,70	101478691,2	82408298,96	3068270,95	85476569,91	-2193,75	-64,16	3,93
11:48:30	98502698,79	3056938,26	101559637	82386165,75	3054676,52	85440842,27	-2261,74	-67,99	-3,83
11:49:00	98597279,97	3043401,83	101640681,8	82364412,13	3041072,12	85405484,25	-2329,72	-67,97	0,02
11:49:30	98691971,10	3029853,55	101721824,6	82343040,60	3027456,04	85370496,64	-2397,50	-67,79	0,18
11:50:00	98786777,13	3016287,24	101803064,4	82322057,81	3013821,98	85335879,79	-2465,26	-67,75	0,04
11:50:30	98881689,20	3002710,55	101884399,7	82301456,14	3000177,71	85301633,86	-2532,84	-67,58	0,18
11:51:00	98976715,56	2989114,07	101965829,6	82281245,46	2986513,69	85267759,15	-2600,38	-67,54	0,04
11:51:30	99071849,44	2975503,83	102047353,3	82261420,50	2972835,98	85234256,48	-2667,85	-67,47	0,07

Πίνακας 4.29: Διαφορές ανάμεσα σε G12-G18 του δέκτη του ΠΑ.Δ.Α και του ΤΜ0600 για το σήμα L2

Τέλος, θα αναλυθούν τα δεδομένα που έχουν καταγράψει οι δέκτες του συστήματος Galileo για τους δορυφόρους Ε07 και Ε19. Ξεκινώντας με το σήμα L1 και τις τελευταίες 50 εποχές που απεικονίζονται στον Πίνακα 4.30, παρατηρείται ότι δεν εμφανίζεται ολίσθηση κύκλων.

rowTimes	E04 L1C UNIWA	Δ	E04 L1C TM0600	E19 L1C UNIWA	Δ	E19 L1C TM0600	Απλές Διαφορές	Διπλές Διαφορές	Τριπλές Διαφορές
17:01:00	129191956,9	-5974249,76	135166206,6	143559109,1	-5986376,94	149545486,1	12127,18	26,11	-0,18
17:01:30	129168674,8	-5987275,00	135155949,8	143618596	-5999376,06	149617972,1	12101,05	26,13	-0,02
17:02:00	129145806,2	-6000282,48	135146088,7	143678384,3	-6012357,11	149690741,5	12074,63	26,42	-0,29
17:02:30	129123353	-6013275,09	135136628,1	143738473,8	-6025323,08	149763796,9	12047,98	26,65	-0,23
17:03:00	129101314,2	-6026254,85	135127569,1	143798861,5	-6038276,10	149837137,6	12021,25	26,74	-0,09
17:03:30	129079692,4	-6039236,07	135118928,5	143859547,6	-6051230,42	149910778	11994,34	26,91	-0,17
17:04:00	129058486,7	-6052225,56	135110712,3	143920529,5	-6064192,77	149984722,3	11967,20	27,14	-0,23
17:04:30	129037698	-6065219,71	135102917,7	143981805,5	-6077159,69	150058965,2	11939,98	27,23	-0,09
17:05:00	129017327,3	-6078211,34	135095538,7	144043375	-6090123,86	150133498,9	11912,52	27,46	-0,23
17:05:30	128997375,6	-6091202,62	135088578,2	144105236,4	-6103087,55	150208324	11884,92	27,60	-0,14
17:06:00	128977842,5	-6104193,79	135082036,3	144167387,4	-6116050,91	150283438,3	11857,12	27,81	-0,21
17:06:30	128958729,1	-6117175,04	135075904,2	144229827,1	-6129004,22	150358831,3	11829,18	27,93	-0,13
17:07:00	128940035,4	-6130157,40	135070192,8	144292553,4	-6141958,49	150434511,9	11801,08	28,10	-0,16
17:07:30	128921761,5	-6143134,74	135064896,3	144355564,4	-6154907,55	150510471,9	11772,81	28,28	-0,18
17:08:00	128903909,6	-6156102,28	135060011,9	144418860	-6167846,62	150586706,6	11744,34	28,47	-0,19
17:08:30	128886479	-6169058,46	135055537,5	144482437,8	-6180774,24	150663212	11715,78	28,56	-0,09
17:09:00	128869470,1	-6182008,89	135051479	144546295,8	-6193695,95	150739991,8	11687,06	28,72	-0,16
17:09:30	128852883,2	-6194956,72	135047839,9	144610432,6	-6206614,88	150817047,5	11658,15	28,91	-0,19
17:10:00	128836719,8	-6207897,61	135044617,4	144674847,7	-6219526,64	150894374,3	11629,03	29,12	-0,21
17:10:30	128820979,6	-6220836,58	135041816,2	144739538,6	-6232436,36	150971974,9	11599,78	29,25	-0,13
17:11:00	128805662,3	-6233772,86	135039435,2	144804503	-6245343,21	151049846,2	11570,35	29,43	-0,19
17:11:30	128790768,8	-6246708,44	135037477,3	144869739,9	-6258249,23	151127989,1	11540,79	29,55	-0,12
17:12:00	128776299,5	-6259633,96	135035933,4	144935247,7	-6271145,03	151206392,7	11511,07	29,73	-0,17
17:12:30	128762254,3	-6272552,44	135034806,7	145001024,5	-6284033,58	151285058,1	11481,14	29,93	-0,21
17:13:00	128748633,3	-6285466,96	135034100,2	145067068,2	-6296918,14	151363986,4	11451,17	29,96	-0,03
17:13:30	128735436,7	-6298383,13	135033819,8	145133377,3	-6309804,06	151443181,4	11420,94	30,24	-0,27
17:14:00	128722665,4	-6311294,76	135033960,2	145199950,6	-6322685,44	151522636	11390,68	30,26	-0,02
17:14:30	128710320,5	-6324198,79	135034519,3	145266787,1	-6335558,97	151602346	11360,18	30,50	-0,24
17:15:00	128698401,1	-6337091,59	135035492,6	145333884,3	-6348421,12	151682305,4	11329,53	30,65	-0,15
17:15:30	128686908,4	-6349988,82	135036897,2	145401241,4	-6361287,53	151762528,9	11298,70	30,83	-0,18
17:16:00	128675842,6	-6362882,47	135038725	145468856,6	-6374150,23	151843006,8	11267,76	30,94	-0,11
17:16:30	128665203,3	-6375773,71	135040977	145536727,7	-6387010,40	151923738,1	11236,69	31,07	-0,13
17:17:00	128654990,2	-6388646,69	135043636,9	145604852,9	-6399852,18	152004705	11205,49	31,20	-0,13
17:17:30	128645205,1	-6401503,69	135046708,8	145673231,3	-6412677,78	152085909,1	11174,08	31,41	-0,21
17:18:00	128635847	-6414348,42	135050195,4	145741860,8	-6425490,99	152167351,7	11142,58	31,51	-0,10
17:18:30	128626916,3	-6427190,86	135054107,1	145810739,6	-6438301,79	152249041,4	11110,93	31,65	-0,14
17:19:00	128618413,3	-6440028,35	135058441,6	145879866,2	-6451107,47	152330973,7	11079,12	31,81	-0,16
17:19:30	128610338,4	-6452865,06	135063203,5	145949239,2	-6463912,25	152413151,5	11047,19	31,93	-0,12
17:20:00	128602691,3	-6465691,12	135068382,4	146018856,4	-6476706,25	152495562,6	11015,14	32,06	-0,13
17:20:30	128595471,8	-6478519,15	135073991	146088716	-6489502,08	152578218,1	10982,93	32,20	-0,15
17:21:00	128588680,9	-6491343,46	135080024,3	146158817,3	-6502293,98	152661111,3	10950,52	32,41	-0,21
17:21:30	128582318	-6504166,04	135086484,1	146229157,8	-6515084,11	152744241,9	10918,07	32,45	-0,04
17:22:00	128576383,9	-6516986,19	135093370,1	146299736,5	-6527871,62	152827608,2	10885,43	32,63	-0,18
17:22:30	128570878	-6529802,25	135100680,3	146370551,2	-6540654,89	152911206,1	10852,63	32,80	-0,17
17:23:00	128565800,4	-6542616,26	135108416,6	146441600,1	-6553436,00	152995036,1	10819,74	32,89	-0,09
17:23:30	128561151,6	-6555428,19	135116579,8	146512882,1	-6566214,87	153079097	10786,68	33,06	-0,17
17:24:00	128556930,9	-6568229,06	135125160	146584394,6	-6578982,63	153163377,2	10753,57	33,11	-0,05
17:24:30	128553138,5	-6581022,40	135134160,9	146656136,4	-6591742,59	153247879	10720,19	33,38	-0,27
17:25:00	128549774,4	-6593818,29	135143592,6	146728105,6	-6604505,03	153332610,6	10686,74	33,45	-0,06
17:25:30	128546838,6	-6606611,33	135153449,9	146800300,5	-6617264,45	153417565	10653,12	33,62	-0,17

Πίνακας 4.30: Διαφορές ανάμεσα σε Ε04-Ε19 του δέκτη του ΠΑ.Δ.Α και του ΤΜ0600 για το σήμα L1

Προχωρώντας στο σήμα L7 και στον Πίνακα 4.31 όπου απεικονίζονται οι ίδιες εποχές με το σήμα L1 παρατηρείται ότι δεν εμφανίζεται ολίσθηση κύκλων μόνο σε 4 εποχές. Οι υπόλοιπες 46 εμφανίζουν αυξημένες τιμές.

rowTimes	E04 L7Q UNIWA	Δ	E04 L7Q TM0600	E19 L7Q UNIWA	Δ	E19 L7Q TM0600	Απλές Διαφορές	Διπλές Διαφορές	Τριπλές Διαφορές
17:01:00	98991370,34	-4577658,03	103569028,4	109999892,6	-4586820,91	114586713,5	9162,88	19,96	-3,83
17:01:30	98973530,92	-4587638,43	103561169,3	110045473,5	-4596784,24	114642257,7	9145,81	17,07	2,89
17:02:00	98956008,25	-4597605,24	103553613,5	110091285,4	-4606729,83	114698015,2	9124,59	21,22	-4,15
17:02:30	98938803,97	-4607560,61	103546364,6	110137328	-4616661,85	114753989,8	9101,25	23,35	-2,13
17:03:00	98921917,17	-4617506,13	103539423,3	110183599,1	-4626584,80	114810183,9	9078,67	22,58	0,77
17:03:30	98905349,85	-4627452,79	103532802,6	110230098,8	-4636511,90	114866610,7	9059,11	19,56	3,02
17:04:00	98889101,4	-4637405,74	103526507,1	110276825,2	-4646441,13	114923266,4	9035,39	23,72	-4,16
17:04:30	98873172,44	-4647362,31	103520534,7	110323777	-4656379,85	114980156,8	9017,54	17,84	5,88
17:05:00	98857563,86	-4657316,92	103514880,8	110370953,7	-4666308,40	115037262,1	8991,48	26,07	-8,22
17:05:30	98842276,23	-4667271,27	103509547,5	110418354	-4676250,59	115094604,6	8979,32	12,16	13,91
17:06:00	98827309,36	-4677225,56	103504534,9	110465976,2	-4686185,58	115152161,8	8960,01	19,30	-7,14
17:06:30	98812664,13	-4687172,24	103499836,4	110513819,6	-4696109,87	115209929,5	8937,63	22,39	-3,08
17:07:00	98798340,45	-4697119,76	103495460,2	110561882,7	-4706040,88	115267923,5	8921,12	16,51	5,88
17:07:30	98784338,43	-4707063,44	103491401,9	110610163,8	-4715956,88	115326120,7	8893,44	27,68	-11,17
17:08:00	98770659,74	-4716999,59	103487659,3	110658663,1	-4725871,29	115384534,4	8871,70	21,74	5,94
17:08:30	98757303,95	-4726927,07	103484231	110707378,6	-4735772,80	115443151,4	8845,73	25,97	-4,23
17:09:00	98744271,2	-4736850,09	103481121,3	110756308,8	-4745672,89	115501981,7	8822,80	22,94	3,03
17:09:30	98731561,85	-4746771,14	103478333	110805452,6	-4755576,79	115561029,4	8805,65	17,15	5,78
17:10:00	98719176,96	-4756686,89	103475863,8	110854809,6	-4765471,23	115620280,8	8784,34	21,31	-4,16
17:10:30	98707116,34	-4766601,18	103473717,5	110904378	-4775361,14	115679739,1	8759,96	24,38	-3,07
17:11:00	98695379,8	-4776513,40	103471893,2	110954155,9	-4785250,78	115739406,7	8737,38	22,58	1,80
17:11:30	98683967,95	-4786425,06	103470393	111004142,7	-4795136,77	115799279,5	8711,71	25,67	-3,09
17:12:00	98672881,11	-4796329,02	103469210,1	111054337	-4805021,05	115859358,1	8692,03	19,68	5,98
17:12:30	98662119,27	-4806227,63	103468346,9	111104737,5	-4814894,79	115919632,3	8667,16	24,87	-5,19
17:13:00	98651682,44	-4816123,20	103467805,6	111155342,4	-4824770,20	115980112,6	8647,00	20,15	4,72
17:13:30	98641570,86	-4826019,97	103467590,8	111206150,7	-4834644,81	116040795,5	8624,84	22,17	-2,01
17:14:00	98631785,11	-4835913,33	103467698,4	111257161,4	-4844511,06	116101672,4	8597,73	27,10	-4,93
17:14:30	98622326,04	-4845800,81	103468126,8	111308373,8	-4854377,15	116162750,9	8576,34	21,40	5,70
17:15:00	98613193,04	-4855679,72	103468872,8	111359785,9	-4864230,46	116224016,4	8550,74	25,60	-4,20
17:15:30	98604387,07	-4865562,00	103469949,1	111411397,3	-4874088,17	116285485,4	8526,17	24,57	1,02
17:16:00	98595908,09	-4875441,53	103471349,6	111463206,3	-4883944,08	116347150,4	8502,55	23,62	0,95
17:16:30	98587755,95	-4885319,26	103473075,2	111515211,5	-4893805,93	116409017,4	8486,67	15,88	7,74
17:17:00	98579930,46	-4895182,96	103475113,4	111567411,3	-4903641,74	116471053	8458,78	27,89	-12,01
17:17:30	98572432,79	-4905034,46	103477467,3	111619805,2	-4913473,17	116533278,4	8438,71	20,07	7,82
17:18:00	98565262,39	-4914876,51	103480138,9	111672391,4	-4923286,05	116595677,4	8409,54	29,17	-9,10
17:18:30	98558419,45	-4924716,80	103483136,2	111725168,7	-4933101,14	116658269,8	8384,33	25,20	3,97
17:19:00	98551904,18	-4934553,34	103486457,5	111778135,9	-4942917,34	116721053,2	8364,00	20,33	4,87
17:19:30	98545717,05	-4944389,25	103490106,3	111831291,9	-4952723,79	116784015,6	8334,53	29,47	-9,14
17:20:00	98539857,63	-4954217,02	103494074,6	111884634,9	-4962528,99	116847163,9	8311,98	22,56	6,91
17:20:30	98534325,87	-4964046,29	103498372,2	111938163,7	-4972330,56	116910494,3	8284,27	27,70	-5,15
17:21:00	98529122,48	-4973872,71	103502995,2	111991877,7	-4982121,92	116973999,7	8249,21	35,06	-7,36
17:21:30	98524247,12	-4983697,80	103507944,9	112045775	-4991924,51	117037699,5	8226,71	22,49	12,57
17:22:00	98519700,24	-4993521,04	103513221,3	112099854,8	-5001728,60	117101583,4	8207,56	19,16	3,34
17:22:30	98515481,49	-5003341,09	103518822,6	112154115,4	-5011519,52	117165634,9	8178,43	29,13	-9,97
17:23:00	98511590,9	-5013159,66	103524750,6	112208555,5	-5021310,84	117229866,4	8151,18	27,25	1,88
17:23:30	98508028,93	-5022976,63	103531005,6	112263174,2	-5031108,50	117294282,7	8131,88	19,31	7,94
17:24:00	98504794,93	-5032785,05	103537580	112317969,5	-5040898,59	117358868,1	8113,54	18,33	0,97
17:24:30	98501889,11	-5042587,74	103544476,9	112372940,5	-5050671,75	117423612,2	8084,01	29,53	-11,20
17:25:00	98499311,43	-5052392,39	103551703,8	112428085,7	-5060447,78	117488533,5	8055,39	28,62	0,91
17:25:30	98497061,97	-5062194,86	103559256,8	112483404	-5070228,54	117553632,5	8033,67	21,72	6,91

Πίνακας 4.31: Διαφορές ανάμεσα σε Ε04-Ε19 του δέκτη του ΠΑ.Δ.Α και του ΤΜ0600 για το σήμα L7

4.2.3 Σύγκριση μεθόδων προσδιορισμού ολίσθησης κύκλων

Κατά τη διάρκεια της παρούσας πτυχιακής εργασίας, για τον προσδιορισμό της ολίσθησης κύκλων χρησιμοποιήθηκαν δύο μέθοδοι: η μέθοδος Ionospheric Residual και η μέθοδος των διαφορών. Η βασική διαφορά μεταξύ των δύο μεθόδων έγκειται στα δεδομένα που χρειάζονται για τον προσδιορισμού της ολίσθησης κύκλων. Η μέθοδος Ionospheric Residual απαιτεί τη χρήση δύο σημάτων από έναν δορυφόρο, καθώς στο πρώτο στάδιο γίνεται η αφαίρεση των σημάτων μεταξύ τους. Αντίθετα, στη μέθοδο των διαφορών απαιτείται ένα ζεύγος δορυφόρων, οι οποίοι έχουν καταγράψει δεδομένα στα ίδια σήματα την ίδια χρονική στιγμή, ώστε να πραγματοποιηθεί η σύγκριση και ο προσδιορισμός της ολίσθησης κύκλων. Αυτός ήταν και ο κύριος λόγος που η μέθοδος Ionospheric Residual επιλέχθηκε για χρήση από το λογισμικό.

Όπως προκύπτει και θεωρητικά, η μέθοδος Ionospheric Residual μπορεί να προσδιορίσει σε ποια εποχή υπάρχει ολίσθηση κύκλων ανάμεσα στα δύο σήματα, αλλά δεν μπορεί να καθορίσει σε ποιο σήμα συμβαίνει αυτό (Πίνακας 4.32).

	E04 TM0600								
rowTimes	IonRes L1C - L7Q	dionRes L1C - L7Q	Cycle Slips_L1C - L7Q						
30/3/2024 6:37:00	2.6479	0.0071	FALSE						
	E04 UNIWA								
rowTimes	IonRes L1C - L7Q	dionRes L1C - L7Q	Cycle Slips_L1C - L7Q						
30/3/2024 6:37:00	1.4248	0.0086	FALSE						
	E19 T	M0600							
rowTimes	IonRes L1C - L7Q	dionRes L1C - L7Q	Cycle Slips_L1C - L7Q						
30/3/2024 6:37:00	-7.1637	10.8891	TRUE						
E19 UNIWA									
rowTimes	IonRes L1C - L7Q	dionRes L1C - L7Q	Cycle Slips_L1C - L7Q						
30/3/2024 6:37:00	-2.8968	0.0248	FALSE						

Πίνακας 4.32: Εποχή από τα δεδομένα της μεθόδου Ionospheric Residual που εντοπίζεται ολίσθηση κύκλων για όλους τους δορυφόρους

Αντίθετα, η μέθοδος των διαφορών όχι μόνο καταφέρνει να προσδιορίσει την εποχή στην οποία παρατηρείται ολίσθηση κύκλων, αλλά και το συγκεκριμένο σήμα του ζεύγους των δορυφόρων στο οποίο συμβαίνει η ολίσθηση. Ωστόσο, η μέθοδος αυτή δεν μπορεί να προσδιορίσει σε ποιον από τους δύο δορυφόρους παρουσιάζεται η ολίσθηση (Πίνακας 4.33).

rowTimes	Τριπλές Διαφορές L1 E04-E19	Τριπλές Διαφορές L7 E04-E19
30/3/2024 6:37:00	0.32	44.12

Πίνακας 4.33: Εποχή από τα δεδομένα της μεθόδου των διαφορών που εντοπίζεται ολίσθηση κύκλων

Επιπροσθέτως, όπως παρατηρήθηκε και στις δύο μελέτες, η μέθοδος Ionospheric Residual αδυνατεί να εντοπίσει την ολίσθηση κύκλων όταν αυτή συμβαίνει με ίσο μέγεθος και στις δύο συχνότητες. Αυτό επιβεβαιώθηκε μέσω της σύγκρισης των δύο αρχείων δεδομένων που προέκυψαν από τις αντίστοιχες μεθόδους. Στον Πίνακα 4.34 παρουσιάζονται οι τριπλές διαφορές δύο εποχών από τα δεδομένα της μεθόδου των διαφορών για τους δορυφόρους E04 και E19 του συστήματος Galileo, χρησιμοποιώντας τους δέκτες του ΠΑ.Δ.Α. και TM0600, όπου εντοπίστηκε ισότιμη ολίσθηση κύκλων και στα δύο σήματα.

rowTimes	Τριπλές Διαφορές L1 E04-E19	Τριπλές Διαφορές L7 E04-E19
30/3/2024 5:36:30	3.17	2.42
30/3/2024 5:37:00	-2.69	-2.03

Πίνακας 4.34: Εποχές που έχει εντοπιστεί ολίσθηση κύκλων και στα δυο σήματα

Στον Πίνακα 4.35 παρουσιάζονται οι αντίστοιχες εποχές χρησιμοποιώντας τη μέθοδο Ionospheric Residual. Καμία από τις τιμές στη στήλη "dIonRes L1C-L7Q" δεν παρουσιάζει αυξημένες τιμές. Αντιθέτως, οι τιμές εμφανίζονται φυσιολογικές και κοντά στο μηδέν. Ως εκ τούτου, η μέθοδος δεν εντοπίζει την ύπαρξη ολίσθησης κύκλων, όπως αυτή έχει επιβεβαιωθεί μέσω της μεθόδου των διαφορών στον Πίνακα 4.34.

E04 TM0600			
rowTimes	IonRes L1C - L7Q	dionRes L1C - L7Q	Cycle Slips_L1C - L7Q
30/3/2024 5:36:30	1.9638	0.0064	FALSE
30/3/2024 5:37:00	1.9709	0.0071	FALSE
E04 UNIWA			
rowTimes	IonRes L1C - L7Q	dlonRes L1C - L7Q	Cycle Slips_L1C - L7Q
30/3/2024 5:36:30	0.7516	0.0016	FALSE
30/3/2024 5:37:00	0.7550	0.0034	FALSE
E19 TM0600			
rowTimes	IonRes L1C - L7Q	dionRes L1C - L7Q	Cycle Slips_L1C - L7Q
30/3/2024 5:36:30	1.6328	0.0135	FALSE
30/3/2024 5:37:00	1.6502	0.0174	FALSE
E19 UNIWA			
rowTimes	IonRes L1C - L7Q	dionRes L1C - L7Q	Cycle Slips_L1C - L7Q
30/3/2024 5:36:30	-5.0212	0.0107	FALSE
30/3/2024 5:37:00	-5.0098	0.0114	FALSE

Πίνακας 4.35: Αντίστοιχες εποχές όλων των δορυφόρων από την μέθοδο Ionospheric Residual

4.2.4 Σύγκριση ανάμεσα στα δορυφορικά συστήματα GPS - Galileo

Κατά τη διάρκεια της σύγκρισης των τριών δεκτών διαφορετικού κόστους, η οποία πραγματοποιήθηκε στην προηγούμενη υποενότητα, εξετάστηκαν 4 ζεύγη δορυφόρων για τα συστήματα GPS (G03-G09, G12-G18, G29-G31, G29-G25) και Galileo (E04-E19, E03-E09, E11-E12, E21-E27), με στόχο τον προσδιορισμό των ολισθήσεων κύκλων στα δεδομένα που καταγράφηκαν από τους δέκτες μέσω της μεθόδου των διαφορών. Πιο συγκεκριμένα, δημιουργήθηκαν διπλές και τριπλές διαφορές μεταξύ των δεκτών UNIWA1 και TM0600, καθώς και των δεκτών UNIWA1 και TT3100. Από τα δεδομένα που συλλέχθηκαν, και όπως φαίνεται στο Γράφημα 4.33, όπου απεικονίζεται το άθροισμα των ολισθήσεων κύκλων για τα ζεύγη των δορυφόρων που συγκρίθηκαν ανά δορυφορικό σύστημα, προκύπτει ότι το δορυφορικό σύστημα GPS εμφάνισε μεγαλύτερο αριθμό ολισθήσεων κύκλων (cycle slips) σε σύγκριση με το σύστημα Galileo.

Γράφημα 4.33: Το άθροισμα των ολισθήσεων κύκλων για τα ζεύγη των δορυφόρων που συγκρίθηκαν ανά δορυφορικό σύστημα

Στο Γράφημα 4.34 απεικονίζονται οι ολισθήσεις κύκλων για τα σήματα L1 και L2 στα ζεύγη δορυφόρων που χρησιμοποιήθηκαν για το σύστημα GPS, καθώς και ο συνολικός αριθμός των ολισθήσεων κύκλων ανά σήμα. Παρατηρείται ότι, για τα ζεύγη G12-G18, G29-G31 και G29-G25, ο αριθμός των ολισθήσεων κύκλων στο σήμα L2 είναι μεγαλύτερος συγκριτικά με το σήμα L1. Εξαίρεση αποτελεί το ζεύγος δορυφόρων G03-G09, όπου παρατηρείται υψηλότερος αριθμός ολισθήσεων κύκλων στο σήμα L1.

Παρόλο που πραγματοποιήθηκε επιβεβαίωση των δεδομένων για τη συγκεκριμένη περίπτωση, απαιτείται περαιτέρω διερεύνηση για να κατανοηθεί πλήρως η αιτία αυτής της ασυνήθιστης διαφοράς.

Γράφημα 4.34: Ολισθήσεις κύκλων στα σήματα L1 και L2 του GPS

Γράφημα 4.35: Άθροισμα των ολισθήσεων κύκλων στα σήματα L1 και L2 του GPS χωρίς το ζεύγος G03-G09

Αυτό δεν ισχύει στην περίπτωση του συστήματος Galileo και των σημάτων L1 και L7, όπως φαίνεται στο Γράφημα 4.36, όπου οι ολισθήσεις κύκλων στο σήμα L7 είναι αισθητά περισσότερες σε σύγκριση με τις ολισθήσεις που έχουν εντοπιστεί στο σήμα L1.

Γράφημα 4.36: Ολίσθηση κύκλων στα σήματα L1 και L7 του Galileo

4.2.5 Σύγκριση των σημάτων στους δέκτες μεσαίου και χαμηλού κόστους

Παρατηρώντας τα παρακάτω γραφήματα, επιβεβαιώνεται ότι το κόστος του δέκτη επηρεάζει την ποιότητα και την αξιοπιστία των καταγεγραμμένων μετρήσεων.

Πιο συγκεκριμένα, στο Γράφημα 4.37 απεικονίζεται ο συνολικός αριθμός ολισθήσεων κύκλων που καταγράφηκαν από τους δέκτες TM0600 και TT3100, ανά δορυφόρο, για τα σήματα L1 και L2 του συστήματος GPS, χρησιμοποιώντας τη μέθοδο του Ionospheric Residual. Είναι εμφανές ότι στα δεδομένα του δέκτη χαμηλού κόστους (TM0600) παρατηρούνται σημαντικά περισσότερες ολισθήσεις κύκλων σε σύγκριση με τα δεδομένα του δέκτη μεσαίου κόστους (TT3100).

Γράφημα 4.37: Ολισθήσεις κύκλων ανά δορυφόρο για τους δέκτες TM0600 και TT3100 στο σύστημα GPS

Αντίστοιχα, στο Γράφημα 3.38 απεικονίζεται ο συνολικός αριθμός ολισθήσεων κύκλων που καταγράφηκαν από τους δέκτες TM0600 και TT3100, ανά δορυφόρο, για τα σήματα L1 και L7 του συστήματος Galileo, χρησιμοποιώντας τη μέθοδο του Ionospheric Residual. Και εδώ προκύπτει το ίδιο αποτέλεσμα, δηλαδή ότι οι ολισθήσεις κύκλων είναι εμφανώς περισσότερες στα δεδομένα που έχουν καταγραφεί για τον δέκτη χαμηλού κόστους (TM0600). Ειδικότερα, για τον δορυφόρο E19, όπως αναφέρεται και στις σελίδες 92 και 93, παρατηρήθηκαν 392 ολισθήσεις κύκλων. Αυτό αποδίδεται στην χαμηλή γωνία ανύψωσης του δορυφόρου, γεγονός που προκαλεί προβλήματα στην καταγραφή των δεδομένων, αυξάνοντας την πιθανότητα διακοπής της λήψης του σήματος. Ο εν λόγω αριθμός δεν εμφανίζεται στο Γράφημα 4.38, ώστε να αναδειχθεί πιο καθαρά η διαφορά στον αριθμό ολισθήσεων κύκλων που καταγράφηκαν από τον δέκτη TT3100 ανά δορυφόρο.

Γράφημα 4.38: Ολισθήσεις κύκλων ανά δορυφόρο για τους δέκτες ΤΜ0600 και ΤΤ3100 στο σύστημα Galileo

5 ΣΥΜΠΕΡΑΣΜΑΤΑ

Στην παρούσα πτυχιακή εργασία αναπτύχθηκε λογισμικό για τη συγκριτική αξιολόγηση των πρωτογενών μετρήσεων των συστημάτων GNSS. Το λογισμικό αυτό παρέχει τη δυνατότητα ανάλυσης του σηματοθορυβικού λόγου (SNR) και ανίχνευσης σφαλμάτων ολίσθησης κύκλων (cycle slips). Με τη χρήση αυτών των λειτουργιών, πραγματοποιήθηκε ανάλυση δεδομένων που προέκυψαν από συγκριτικές μελέτες ανάμεσα σε δέκτες διαφορετικού κόστους και ποιότητας, καθώς και σε περιβάλλοντα με ποικίλες συνθήκες και εμπόδια. Τα αποτελέσματα που προέκυψαν από την έρευνα παρουσιάζονται συνοπτικά στα παρακάτω συμπεράσματα, προσφέροντας πολύτιμα ευρήματα για την απόδοση και αξιοπιστία των συστημάτων GNSS καθώς και των δεκτών που χρησιμοποιήθηκαν.

Το MATLAB αποδείχθηκε ένα ιδιαίτερα εύχρηστο και αποτελεσματικό εργαλείο για την ανάπτυξη του λογισμικού, καθώς παρέχει ένα φιλικό προς τον χρήστη περιβάλλον και πληθώρα ενσωματωμένων λειτουργιών για την επεξεργασία, ανάλυση και οπτικοποίηση των δεδομένων GNSS. Η δυνατότητα του MATLAB να διαβάζει αρχεία RINEX, η αξιοπιστία του στις πράξεις πινάκων, καθώς και η ποιότητα των γραφημάτων που παράγει, συνέβαλαν ουσιαστικά στην επίτευξη αξιόπιστων αποτελεσμάτων και βοήθησαν στην καλύτερη κατανόηση του σηματοθορυβικού λόγου (SNR) καθώς και στην σωστή ανίχνευση των ολισθήσεων κύκλων.

Η ανάλυση του σηματοθορυβικού λόγου (SNR) έδειξε ότι το σύστημα Galileo υπερέχει ελαφρώς σε σχέση με το σύστημα GPS όσον αφορά την ποιότητα των σημάτων. Πιο συγκεκριμένα, οι τιμές SNR που καταγράφηκαν για τους δορυφόρους του Galileo ήταν κατά μέσο όρο υψηλότερες από αυτές του GPS, γεγονός που υποδεικνύει καλύτερη ποιότητα σήματος και λιγότερο θόρυβο. Αυτή η υπεροχή παρατηρήθηκε ιδιαίτερα στις συχνότητες L2 και E5, όπως φαίνεται από τη σύγκριση των τιμών SNR σε διάφορες περιπτώσεις μετρήσεων.

Σύμφωνα με τη βιβλιογραφία, δεν υπάρχει κάποια μέθοδος ανίχνευσης ολίσθησης κύκλων (cycle slips) που να υπερέχει καθολικά έναντι όλων των άλλων. Κάθε μέθοδος έχει τα δικά της πλεονεκτήματα και μειονεκτήματα, γεγονός που την καθιστά κατάλληλη για διαφορετικές εφαρμογές και συνθήκες μέτρησης.

Είναι απαραίτητο να λαμβάνεται υπόψη ότι οι αυξημένες τιμές στο Ionospheric Residual, οι οποίες προκύπτουν έπειτα από διακοπή λήψης του σήματος, δεν πρέπει να ερμηνεύονται ως ολίσθηση κύκλων (cycle slips). Αυτές οι αυξημένες τιμές μπορεί να οφείλονται στη διακοπή λήψης και όχι σε πραγματική μεταβολή της φάσης του σήματος. Ως εκ τούτου, πρέπει να γίνεται προσεκτική ανάλυση των τιμών, ώστε να διασφαλίζεται η σωστή αξιολόγηση των δεδομένων και να αποφεύγονται λανθασμένες ερμηνείες.
Από την ανάλυση των μετρήσεων που πραγματοποιήθηκαν για τους δέκτες διαφορετικού κόστους προέκυψε ότι ο δέκτης μεσαίου κόστους (TT3100) παρουσίασε απόδοση συγκρίσιμη με εκείνη του γεωδαιτικού δέκτη του ΠΑ.Δ.Α. σε ό,τι αφορά την ποιότητα των μετρήσεων και την ακρίβεια των δεδομένων. Αντίθετα, ο δέκτης χαμηλού κόστους (TM0600) κατέγραψε τον μεγαλύτερο αριθμό ολισθήσεων κύκλων (cycle slips) και παρουσίασε σημαντική απόκλιση στην απόδοση συγκριτικά με τους άλλους δύο δέκτες.

Επίσης, από την ανάλυση των δεδομένων προέκυψε ότι η μέθοδος Ionospheric Residual δεν είναι ικανή να ανιχνεύσει ισόποσες ολισθήσεις κύκλων (cycle slips) που συμβαίνουν ταυτόχρονα και στις δύο συχνότητες ενός δορυφόρου. Αντίθετα, η μέθοδος των διαφορών έχει τη δυνατότητα να εντοπίσει τέτοιες ολισθήσεις, καθιστώντας την πιο αποτελεσματική για την ανάλυση πολύπλοκων περιπτώσεων όπου οι ολισθήσεις κύκλων επηρεάζουν περισσότερες από μία συχνότητες.

Όπως επιβεβαιώθηκε και στην ανάλυση των δεδομένων, η σύγκριση των δορυφορικών συστημάτων GPS και Galileo έδειξε ότι τα σήματα L2 και L7 (κωδικοποίηση σημάτων κατά RINEX) είναι πιο ευάλωτα και παρουσιάζουν μεγαλύτερο αριθμό ολισθήσεων κύκλων (cycle slips) σε σχέση με τα σήματα L1. Αυτό υποδεικνύει ότι τα σήματα L2 και L7 επηρεάζονται περισσότερο από περιβαλλοντικούς παράγοντες και διακοπές στη λήψη, γεγονός που μπορεί να επηρεάσει την ακρίβεια των μετρήσεων, ιδιαίτερα σε περιπτώσεις με εμπόδια ή παρεμβολές.

ΒΙΒΛΙΟΓΡΑΦΙΑ - ΔΙΑΔΙΚΤΥΑΚΕΣ ΠΗΓΕΣ

European Space Agency – *What is Galileo?* https://www.esa.int/Applications/Satellite_navigation/Galileo/What_is_Galileo

European Union Agency of the Space Programme – *Constellation Information* <u>https://www.gsc-</u>europa.eu/system-service-status/constellation-information

Lu, M., & Yao, Z. (2020). BeiDou navigation satellite system. *Position, navigation, and timing technologies in the 21st century: Integrated satellite navigation, sensor systems, and civil applications, 1,* 143-170.

Kapalan, E. D., & Hegarty, C. J. (2006). Understanding GPS: Principles and Application. *London: Artech House*.

Teunissen, P. (2017). Springer Handbook of Global Navigation Satellite Systems.

Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2007). GNSS-global navigation satellite systems: GPS, GLONASS, Galileo, and more. Springer Science & Business Media.

Kim, M., Seo, J., & Lee, J. (2014). A comprehensive method for GNSS data quality determination to improve ionospheric data analysis. *Sensors*, 14(8), 14971-14993.

Liu, Q., Li, W., Zhang, S., Nan, Y., Peng, J., & Ma, Z. (2023). Analysis of signal-to-noise ratio retrieved from multi-GNSS satellite data of land surface reflections. *GPS Solutions*, 27(3), 151.

Hieu, L. V., Ferreira, V. G., He, X., & Tang, X. (2014). Study on cycle-slip detection and repair methods for a single dual-frequency global positioning system (GPS) receiver. *Boletim de Ciências Geodésicas*, 20(4), 984-1004.

Wang, Y. K., Li, K., Zhao, L., Li, Z., & Wei, J. (2016). A new modified method for cycle-slips detection based on polynomial fitting method. In *China Satellite Navigation Conference (CSNC) 2016 Proceedings: Volume I* (pp. 135-143). Springer Singapore.

Vaclavovic, P., & Dousa, J. (2016). G-Nut/Anubis: open-source tool for multi-GNSS data monitoring with a multipath detection for new signals, frequencies and constellations. In *IAG 150 Years: Proceedings of the IAG Scientific Assembly in Postdam, Germany, 2013* (pp. 775-782). Springer International Publishing.

Estey, L. H., & Meertens, C. M. (1999). TEQC: the multi-purpose toolkit for GPS/GLONASS data. GPS solutions, 3(1), 42-49.

Dai, Z. (2012). MATLAB software for GPS cycle-slip processing. GPS solutions, 16(2), 267-272.

Romero, I. (2020). RINEX: the receiver independent Exchange format version 3.05. *ESA/ESOC/Navigation* Support Office: Darmstadt, Germany.

Gianniou, M., Mastoris, D., Argyrakis, P., & Christou, M. (2022). Performance of Galileo for geodetic positioning under challenging signal reception conditions. *EUREF Annual Symposium, June 1-3*, Zagreb, Croatia.

Xu, G., & Xu, Y. (2007). GPS. Springer-Verlag Berlin Heidelberg.

Roberts, G. W. (2017) Triple Frequency multi-GNSS Cycle Slip Detection using Ionospheric Residuals. FIG Working Week 2017, Helsinki

Karaim, M., Karamat, T. B., Noureldin, A., & El-Shafie, A. (2014). GPS cycle slip detection and correction at measurement level. *Br. J. Appl. Sci. Technol*, 4(29), 4239-4251.

ΠΑΡΑΡΤΗΜΑ Α΄

```
clc;
clear;
close all;
% Συνάρτηση για φιλτράρισμα δεδομένων
function filteredData = extractAndFilterData(data, sat)
    % Φιλτράρει τα δεδομένα με βάση την επιλογή του δορυφόρου
    filteredData = data(data.SatelliteID == sat, :);
end
% Συνάρτηση για την εκτύπωση των αποτελεσμάτων σε figure
function scatterData(allData, allSelectedColumns, allSats, allGNSS)
    figure;
    for setIndex = 1:2
        data = allData{setIndex};
        selectedColumns = allSelectedColumns{setIndex};
        satNumber = allSats{setIndex}; % Αποθηκευμένος αριθμός δορυφόρου
        selectedGNSS = allGNSS{setIndex}; % Αποθηκευμένο GNSS
        % Προσδιορισμός του προθέματος με βάση το GNSS
        switch selectedGNSS
            case 'GPS'
                prefix = 'G';
            case 'GLONASS'
                prefix = 'R';
            case 'Galileo'
                prefix = 'E';
            case 'BeiDou'
                prefix = 'C';
        end
        % Sublot για κάθε σετ
        subplot(1, 2, setIndex);
        hold on;
        for i = 1:length(selectedColumns)
            scatter(data.Time, data.(selectedColumns{i}), 'filled', ...
                 'DisplayName', sprintf('%s', selectedColumns{i}));
        end
        xlabel('GPS Time', 'FontWeight', 'bold');
        ylabel('SNR (DB - Hz)', 'FontWeight', 'bold');
title(sprintf('SNR of Satellite %s%d', prefix, satNumber));
        legend('Location', 'northeast');
        grid on;
        hold off;
        fontsize(16, "points")
        ylim([10 80]);
    end
end
% factors για κάθε συχνότητα
FrequencyBands.GPS.L1 = 0.190293673;
FrequencyBands.GPS.L2 = 0.244210213;
FrequencyBands.GPS.L5 = 0.254828049;
FrequencyBands.Galileo.L1 = 0.190293673;
```

FrequencyBands.Galileo.L5 = 0.25481722;

```
FrequencyBands.Galileo.L6 = 0.234441805;
FrequencyBands.Galileo.L7 = 0.24834937;
FrequencyBands.Galileo.L8 = 0.251547001;
FrequencyBands.BeiDou.L1 = 0.192039486;
FrequencyBands.BeiDou.L2 = 0.192039486;
FrequencyBands.BeiDou.L5 = 0.254828049;
FrequencyBands.BeiDou.L6 = 0.236332465;
FrequencyBands.BeiDou.L7 = 0.24834937;
FrequencyBands.BeiDou.L8 = 0.251547001;
% Επιλογή αρχείου απο τον χρήστη
[file, path] = uigetfile('*.*', 'Select a RINEX file');
if isequal(file, 0)
    msgbox('User canceled file selection.', 'No Selection', 'warn');
    return;
end
% Επιλογή του task
Epilogh = menu('Choose an option:', 'SNR Alanysis', 'Cycle Slip Detection');
if Epilogh == 0
    msgbox('User canceled task selection.', 'No Selection', 'warn');
    return;
end
switch Epilogh
    case 1
        % Κώδικας για snr_analysis
        % Πίνακες καταχώρησης μετρήσεων και επιλεγμένων στηλών
        allData = cell(1, 2);
        allSelectedColumns = cell(1, 2);
        allSats = cell(1, 2); % Προσθήκη πίνακα για τους δορυφόρους
allGNSS = cell(1, 2); % Δημιουργία κελιού για το GNSS
        % Path του αρχείου
        filePath = fullfile(path, file);
        % Διαβάζει το Rinex
        data = rinexread(filePath);
        for setIndex = 1:2
             try
                 % Εμφάνιση διαθέσιμων GNSS επιλογών
                 gnssOptions = fieldnames(data);
                 gnssChoice = menu('Choose a GNSS:', gnssOptions);
                 if gnssChoice == 0
                     msgbox('User canceled GNSS selection.', 'No Selection', 'warn');
                     return;
                 end
                 % Αποθηκεύει το επιλεγμένο GNSS
                 selectedGNSS = gnssOptions{gnssChoice};
                 allGNSS{setIndex} = selectedGNSS;
                 % Εμφάνιση διαθέσιμων δορυφόρων για το επιλεγμένο GNSS
                 satOptions = unique(data.(selectedGNSS).SatelliteID);
                 satOptionsStr = cellstr(num2str(satOptions));
```

```
satChoice = menu('Choose a satellite:', satOptionsStr);
        if satChoice == 0
        msgbox('User canceled satellite selection.', 'No Selection', 'warn');
            return;
        end
        % Αποθηκεύει τον επιλεγμένο δορυφόρο
        sat = satOptions(satChoice);
        allSats{setIndex} = sat;
        % Φιλτράρισμα των δεδομένων ανάλογα με τις επιλογές του χρήστη
        filteredData = extractAndFilterData(data.(selectedGNSS), sat);
        % Εμφάνιση διαθέσιμων στηλών για το επιλεγμένο GNSS
        columnOptions = fieldnames(filteredData);
       validColumns = columnOptions(startsWith(columnOptions, 'S') &
       strlength(columnOptions) == 3);
        if isempty(validColumns)
              disp('No valid columns starting with "S" and having 3
              characters.');
            return;
        end
        columnIndices = listdlg('ListString', validColumns, 'PromptString',
        'Choose frequency bands:', 'SelectionMode', 'multiple');
        if isempty(columnIndices)
        msgbox('User canceled frequency band selection.', 'No Selection',
       'warn');
            return;
        end
        selectedColumns = validColumns(columnIndices);
        selectedTable = filteredData(:, selectedColumns);
        allData{setIndex} = selectedTable;
        allSelectedColumns{setIndex} = selectedColumns;
    catch exception
        fprintf('Error reading or processing file: %s\n', file);
        disp(exception.message)
    end
end
% Scatter των δεδομένων από τα δυο σετ
scatterData(allData, allSelectedColumns, allSats, allGNSS);
extractFiles = questdlg('Do you want to extract the selected data sets to Excel
files?', 'Save Files', 'Yes', 'No', 'No');
if isequal(extractFiles, 'Yes')
    for setIndex = 1:2
        excelFileName = sprintf('SNR_Analysis_Set_%d.xlsx', setIndex);
        writetimetable(allData{setIndex}, excelFileName);
        fprintf('Set %d data saved to Excel: %s\n', setIndex, excelFileName);
    end
end
```

```
case 2
   % Κώδικας για τα Cycle Slips
   % Path του αρχείου
   filePath = fullfile(path, file);
   try
       % Διαβάζει το αρχείο Rinex
       data = rinexread(filePath);
       % Δίνει τα διαθέσιμα GNSS για επιλογή από τον χρήστη
        gnssOptions = fieldnames(data);
        gnssOptions = intersect(gnssOptions, {'GPS', 'Galileo', 'BeiDou'});
       gnssChoice = menu('Choose a GNSS:', gnssOptions);
       % Έλεγχος αν έχει ακυρωθεί η επιλογή
        if gnssChoice == 0
            msgbox('User canceled GNSS selection.', 'No Selection', 'warn');
            return;
        end
       % Το επιλεγμένο GNSS
        selectedGNSS = gnssOptions{gnssChoice};
       % Δίνει τους διαθέσιμους δορυφόρους για επιλογή από τον χρήστη
        satOptions = unique(data.(selectedGNSS).SatelliteID);
        satOptionsStr = cellstr(num2str(satOptions));
        satChoice = menu('Choose a satellite:', satOptionsStr);
       % Έλεγχος αν έχει ακυρωθεί η επιλογή
        if satChoice == 0
            msgbox('User canceled satellite selection.', 'No Selection', 'warn');
            return;
        end
       % Ο επιλεγμένος δορυφόρος
        sat = satOptions(satChoice);
       % Φιλτράρει τα δεδομένα με βάση την επιλογή με τη συνάρτηση
       % extractAndFilterData
       filteredData = extractAndFilterData(data.(selectedGNSS), sat);
       % Δείχνει τις διαθέσιμες στήλες για επιλογή από τον χρήστη
        columnOptions = fieldnames(filteredData);
        maxColumns = length(columnOptions);
       validColumns = cell(1, maxColumns);
       %Τσεκάρει ποιές στήλες ξεκινάνε με το γράμμα L και έχουν 3 γραμματα
       %έτσι ώστε να μας δώσει τις στήλες με τα δεδομένα των συχνοτήτων
        count = 0;
        for i = 1:maxColumns
            columnName = columnOptions{i};
            if startsWith(columnName, 'L') && strlength(columnName) == 3 && ...
                    ~all(ismissing(filteredData.(columnName)))
                count = count + 1;
                validColumns{count} = columnName;
            end
        end
        validColumns = validColumns(1:count);
        if isempty(validColumns)
```

Ανάπτυξη λογισμικού για την αξιολόγηση της ποιότητας γεωδαιτικών μετρήσεων GNSS

```
msgbox('No valid columns available for selection.', 'No Columns',
                'warn');
                return;
            end
            % Ζητάει από τον χρήστη να επιλέξει τις συχνότητες
               columnIndices = listdlg('ListString', validColumns, 'PromptString',
'Choose columns for frequencies:', 'SelectionMode', 'multiple');
            % Έλεγχος αν ο χρήστης ακύρωσε την επιλογή
            if isempty(columnIndices)
                 disp('User canceled column selection.');
                 return;
            end
            selectedColumns = validColumns(columnIndices);
            % Δημιουργεί έναν πίνακα με βάση το μέγεθος του timetable με τα δεδομένα
            % για να γίνει η αποθήκευση των μετρήσεων σε δεύτερο χρόνο
            tableHeight = height(filteredData);
            rowTimes = filteredData.Time;
            dataTable = table(rowTimes);
            % Με βάση το επιλεγμένο GNSS και τα ονόματα των συχνοτήτων πολλ/ζει τα
σωστά
            % FrequencyBands
            for i = 1:length(selectedColumns)
                 columnName = selectedColumns{i};
                 if strcmp(selectedGNSS, 'GPS')
                     if startsWith(columnName, 'L1')
                         factor = FrequencyBands.GPS.L1;
                     elseif startsWith(columnName, 'L2')
                         factor = FrequencyBands.GPS.L2;
                     elseif startsWith(columnName, 'L5')
                         factor = FrequencyBands.GPS.L5;
                     else
                         error('No multiplication factor found for column: %s',
columnName);
                     end
                 elseif strcmp(selectedGNSS, 'Galileo')
                     if startsWith(columnName, 'L1')
                         factor = FrequencyBands.Galileo.L1;
                     elseif startsWith(columnName, 'L5')
                         factor = FrequencyBands.Galileo.L5;
                     elseif startsWith(columnName, 'L6')
                         factor = FrequencyBands.Galileo.L6;
                     elseif startsWith(columnName, 'L7')
                         factor = FrequencyBands.Galileo.L7;
                     elseif startsWith(columnName, 'L8')
                         factor = FrequencyBands.Galileo.L8;
                     else
                         error('No multiplication factor found for column: %s',
columnName);
                     end
                elseif strcmp(selectedGNSS, 'BeiDou')
                    if startsWith(columnName, 'L1')
                         factor = FrequencyBands.BeiDou.L1;
                     elseif startsWith(columnName, 'L2')
                         factor = FrequencyBands.BeiDou.L2;
                     elseif startsWith(columnName, 'L5')
```

```
factor = FrequencyBands.BeiDou.L5;
                    elseif startsWith(columnName, 'L6')
                        factor = FrequencyBands.BeiDou.L6;
                    elseif startsWith(columnName, 'L7')
                        factor = FrequencyBands.BeiDou.L7;
                    elseif startsWith(columnName, 'L8')
                        factor = FrequencyBands.BeiDou.L8;
                    else
                        error('No multiplication factor found for column: %s',
columnName);
                    end
                end
                % κάνει τον πολλ/σμό
                dataTable.(columnName) = filteredData.(columnName) * factor;
            end
            % Δίνει όλους τους δυνατούς συνδυασμούς για την αφαίρεση
            combinations = nchoosek(1:length(selectedColumns), 2);
            numCombinations = size(combinations, 1);
            diffColumnNames = cell(1, numCombinations);
            for i = 1:numCombinations
                col1 = selectedColumns{combinations(i, 1)};
                col2 = selectedColumns{combinations(i, 2)};
                L1 = dataTable.(col1);
                L2 = dataTable.(col2);
                % Έλεγχος αν υπάρχουν δεδομένα και κάνει την αφαίρεση
                validIndices = ~ismissing(L1) & ~ismissing(L2);
                if any(validIndices)
                    diff = NaN(size(L1));
                    diff(validIndices) = L1(validIndices) - L2(validIndices);
                    diffColumnName = sprintf('%s - %s', col1, col2);
                    dataTable.(diffColumnName) = diff;
                    diffColumnNames{i} = diffColumnName;
                end
            end
            % βγάζει τις άδειες τιμές
            diffColumnNames = diffColumnNames(~cellfun('isempty', diffColumnNames));
            figure;
            % Κάνει την αφαίρεση από γραμμή σε γραμμή και κάνει plot
            for i = 1:length(diffColumnNames)
                diffColumnName = diffColumnNames{i};
                dIonRes = NaN(tableHeight, 1);
                if ismember(diffColumnName, dataTable.Properties.VariableNames)
                      dIonRes(2:end) = dataTable.(diffColumnName)(2:end) -
                      dataTable.(diffColumnName)(1:end-1);
                    dataTable.(['d', diffColumnName]) = abs(dIonRes);
                    % Έλεγχος των τιμών που ξεπερνούν το όριο
                    threshold = 0.5:
                    exceedThreshold = dataTable.(['d', diffColumnName]) > threshold;
                    dataTable.(['Cycle Slips_', diffColumnName]) = exceedThreshold;
                    % Plotting
                    subplot(2, length(diffColumnNames), i);
                    scatter(dataTable.rowTimes, dataTable.(diffColumnName), 'filled');
                    xlabel('GPS Time', 'fontweight', 'bold');
```

Ανάπτυξη λογισμικού για την αξιολόγηση της ποιότητας γεωδαιτικών μετρήσεων GNSS

Ανάπτυξη λογισμικού για την αξιολόγηση της ποιότητας γεωδαιτικών μετρήσεων GNSS

```
ylabel('Ionospheric Residual (m)','fontweight','bold');
          title(['Satellite ', num2str(sat), ' ', selectedGNSS,
          Ionospheric Residual ','(', diffColumnName,')']);
        legend('Location', 'northwest');
        fontsize(16, "points");
        grid on;
        subplot(2, length(diffColumnNames), length(diffColumnNames) + i);
          scatter(dataTable.rowTimes, dataTable.(['d', diffColumnName]),
           'filled');
        hold on;
          scatter(dataTable.rowTimes(exceedThreshold), dataTable.(['d',
          diffColumnName])(exceedThreshold), 'filled', 'MarkerFaceColor',
           'red');
        xlabel('GPS Time', 'fontweight', 'bold');
        ylabel('Ionospheric Residual (m)','fontweight','bold');
title(['Satellite ', num2str(sat), ' ', selectedGNSS, ' time
difference of Ionospheric Residual (', diffColumnName,')']);
        legend('Location', 'northwest');
        fontsize(16, "points");
        grid on;
        maxValue = max(dataTable.(['d', diffColumnName]));
        % Όρια για του άξονα Υ για το plot
        ylim([0, maxValue*1.5]);
    end
end
FileName = extractBefore(file, 7);
% Ρωτάει τον χρήστη για αποθήκευση του αρχείου Excel
  answer = questdlg('Do you want to save the results to Excel?', 'Save to
  Excel', 'Yes', 'No', 'Yes');
if strcmp(answer, 'Yes')
    % Δημιουργία αρχείου excel
    switch selectedGNSS
        case 'GPS'
            prefix = 'G';
         case 'GLONASS'
            prefix = 'R';
         case 'Galileo'
            prefix = 'E';
         case 'BeiDou'
             prefix = 'C';
    end
    % Δημιουργία του ονόματος του αρχείου με το prefix
    excelFileName = sprintf('%s_%s%d_cycle_slips_%s.xlsx', selectedGNSS,
   prefix, sat, FileName);
    % Αποθήκευση όλων των δεδομένων στο φύλλο AllData πρώτα
    writetable(dataTable, excelFileName, 'Sheet', 'AllData');
    % Προσθήκη των υπόλοιπων φύλλων για κάθε συνδυασμό
    for i = 1:length(diffColumnNames)
```

```
% Εξαγωγή μόνο των δεδομένων που αντιστοιχούν στον τρέχοντα
             συνδυασμό
            combinationData = dataTable(:, {'rowTimes', diffColumnNames{i}, ...
strcat('d', diffColumnNames{i}), strcat('Cycle Slips_',
              diffColumnNames{i});
            % Υπολογισμός του count των cycle slips
              cycleSlipsCount = sum(dataTable.(strcat('Cycle Slips_',
              diffColumnNames{i})));
            % Δημιουργία πίνακα με το count των cycle slips
       countTable = table({''}, cycleSlipsCount, 'VariableNames', {' ', 'Cycle
       Slips Summary'});
            % Αποθήκευση των δεδομένων στο Excel
      writetable(combinationData, excelFileName, 'Sheet', diffColumnNames{i});
            % Αποθήκευση του πίνακα με το count στο τέλος του φύλλου
       writetable(countTable, excelFileName, 'Sheet', diffColumnNames{i},
       'Range', 'E1');
        end
      disp(['Data with cycle slips and summary saved to Excel: ',
      excelFileName]);
    end
catch exception
    fprintf('Error reading or processing file: %s\n', file);
    disp(exception.message)
end
```

end