UNIVERSITY OF WEST ATTICA
FACULTY OF ENGINEERING
DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Diploma Thesis

Software defined networking and network functions virtualization technologies

Student: FATSEAS IOANNIS
Registration Number: 18387152

Supervisor

CHARALAMPOS Z. PATRIKAKIS
Professor Dept. of Electrical and Electronics Engineering

ATHENS-EGALEO, September 2024



Software defined networking and network functions virtualization technologies

ITANEHIXTHMIO AYTIKHXE ATTIKHX
2XXOAH MHXANIKQN
TMHMA HAEKTPOAOI'QN & HAEKTPONIKQN MHXANIKQN

Awthopatikn Epyacia

AIKTO®G1] 0PLOUEVT] 0TTO AOYIGHIKO KOl
TEYVOLOYIES EIKOVIKOTTOINONG OIKTVOKAOV AEITOVPYLMOV

®ovmiig: PATEEAY IQANNHE
AM: 18387152

Emprénov Kadnyntig

XAPAAAMIIOX ITATPIKAKHX
KoOnyntmig oto Tpunqpo Hiektpordyowv kot Higktpovik@v Mnyavikov

AOHNA-AITAAEQ, Xentéppprog 2024

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 2



Software defined networking and network functions virtualization technologies

H Aumlopatikny Epyocio éywve amodekt kot fabporoynonie and tv €ENG TPIUEAT emTpom):

?‘V “<—=~ CHARALAMPOS
PATRIKAKIS

Date: 2024.10.08

00:05:33 +03'00'

(Yroypagn)

Date: 2024.10.07
16:40:26 +03'00"

S KARKAZI

(Yroypogn)

Xapdraumog IMotpucdkng, [Moavayiwng Kapralng, EAévn Agliyxov,
Koabnyntig Avaminpotc Kadnynmcg Kabnynrpia
Digitally signed
by PANAGIOT] Seialsonedty | ) ey Digitally signed by

ELENI AIKATERINI

AIKATERIN LeLiGkou

Date: 2024.10.07

| LELIGKOU 12:52:51 +03100°

(Yroypaon)

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 3




Software defined networking and network functions virtualization technologies

Copyright © Mg emevroén mavtog dwoudpatog. All rights reserved.

MANEIIXTHMIO AYTIKHXE ATTIKHX kot IQANNHE ®ATZEAX,
Yenténpprog, 2024

ATayopeveTal 1 ovVTLYpaQt], OTOONKEVOT Kot S1VOUN TG TOPOVGOS EPYOTIAG, £ OAOKANPOL
N TUWLOTOG VTG, Yo EUTOPIKO okomd. Emtpénetar | avotdnmon, amrodnkevon Kot dtavoun
Y. OKOTO U1 KEPOOGKOTIKO, EKTOUOEVTIKNG 1| EPEVVNTIKNG PUONG, VIO TNV TpolimdBeon va
AVOPEPETOL M TTNYN TPOEAELONG Kot vaL dtoTnpeital To mopdv pvoua. Epotipate mov apopovv
TN XPNON TG EPYACTOGC Y10 KEPOOOKOTIKO GKOTO TPEMEL VAL areLHVHVOVTAL TPOS TOLG GLYYPOUPELS.

Ol amdYELS KOl TO. CUUTEPACUOTO TOV TTEPIEXOVTOL GE OVTO TO EYYPUPO EKQPALOVYV TOV/TNV
oLYYPOQPED TOL KOl Ogv TPEMEL Vo epuNvevdel 0Tl avtimpoowmevovy TIG 0€oelg Tov
eMPAETOVTOC, TNG EMITPOTNG £EETAIONG N TIG emionpeg B€oelg Tov Tunpartog kKon tov IdpHatog.

AHAQXH XYITTPA®EA AIITAQMATIKHYE EPT'AXIAX

O xbrwb vroyeypoppévog lodvvng @atcéag tov Nikordov, pe apBpd untpoov 18387152
eountg tov IMavemomuiov Avtikrg Attikng g ZyoAng MHXANIKQN tov Tunpatog
HAEKTPOAOI'QN KAI HAEKTPONIKOQN MHXANIKQN,

MAOVO vaevOvva oTL:

«Eipat ovyypaeéag avtng e dumhopotikng epyoaciog Kot 6tt kébe Ponfeta v omoia iya yia
TNV TPOETONOGIO TNG Elval TANP®G avayvoOPIGUEV Kot ovopépeTar oty epyacia. Emxiong, ot
omoteg mNyEC amd TIG omoieg £kava xpnomn dedopévav, Wedv N AéEewv, eite akpPag ite
TAPOPPACIEVES, OVAPEPOVTOL GTO GUVOAD TOVG, LE TANPN OVAQPOPE GTOLS GLYYPUQEIS, TOV
eKO0TIKO 0lKO M TO TEPLOOIKO, GULUTEPIAOUPOVOUEVOV KOl TOV TNYOV TOV EVOEXOUEVOS
xpnooromdnkav and to dtadiktvo. Eniong, efordvm 6t avth 1 epyacia £xet cvyypagel and
HEVA ATOKAEIGTIKA Ko AmOTEAEL TPOIOV TVELUATIKNG 1010KTNGI0G TOGO KNG LoV, OGO KO TOVL
[3pHparoc.

[MapdPaocn g avotépo akadnuaikng pov evdovng amotedel ovsLOIN AOYO Yo TNV avaKAnon
TOV SUTADUOTOG LLOV.

O Aniov
lodvvng Patcéag

o i

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 4



Software defined networking and network functions virtualization technologies

Abstract

The intersection of virtualization, cloud computing, software-defined networking (SDN) and
Network Functions Virtualization (NFV) represents a profound shift in how modern networks are
architected, managed and optimized. These technologies break free from the strict boundaries of
hardware-centric models, turning the digital ecosystem toward agile, scalable and software-driven
infrastructures. This thesis explores these technologies, and its main goal is to help readers understand
how they work, which are the components they consist of, and which are their advantages in today’s
demanding IT world. More emphasis will be given to SDN and NFV, which, when harmonized within
virtualized cloud infrastructures, unlock new dimensions of network automation, agility and
operational efficiency. This study highlights their critical role in shaping the next generation of fully
programmable, software-centric networks, leading the way to a more connected and responsive

digital future.

Keywords

Cloud Computing, Virtualization, Virtual Machines, Containers, Kubernetes, Software-Defined

Networking, Network Function Virtualization

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 5



Software defined networking and network functions virtualization technologies

Iepidnyn

H oAAnAenidpacn tng £KOVIKOTOINoNG, TNG VEQPOUTOAOYIGTIKNG, THG OIKTOMONG TTov Kabopiletal amd
Aoyiopko (SDN) ko g eikovikomoinong dtktvak®mv Acttovpydv (NFV) cuvietd pia ovclootikn
aAAayn otov TpoOTo LEe Tov omoio oyedtalovtal, dtayelpiloviat Kot EATIGTOTOI00VTAL TAL GUYYPOVA
diktva. Ot teyvoroyieg avtég EEPebyoLV amd To AVGTNPE OPLoL TOV HOVIEAMY TOV EXIKEVIPDOVOVTOL
oto hardware, oTpépovtog To YNeLoKoO TOMTo TPOG EVEMKTES, EMEKTACIUES Kot KaBodNyoOUEVEG 0o
Aoylopko vrodoués. H mapovoa epyacio peAetd autég TIg TeXVOAOYieC KOl 0 PaciKOG TG 6TOYOG
elvatl va Bondncel ToVG avayvAdGTEG VoL KOTOVOT| GOV TMG AEITOLPYOVV, TTolo Etvart To doUKd oTotyEia
a7to T0 OTO10 TOTEAOVVTOL KO TTOL0L VAL TOL TAEOVEKTILOTOL TOVG GTOV CUEPIVO OTONTNTIKO KOGHO
mg mAnpoeopikne. Ilepiocotepn éupoon Oa do0el oto SDN ko oto NFV, ta omoia, dtav
EVOPUOVIGTOVV GTO TANIGLO €KOVILOUEVOV VTOOOUMY VEQOLG, Oivouv VEEC OLVOTOTNTEG OTNV
OLTOLOTOTOINGT), 6TV gVEAETID Kot 6T AELITOVPYIKT amodoTIKOTNTA VO dtkTvov. H pedémn avtm
avadEIKVOEL TOV  KPIGIHo pPOAO  TOVG OTN  SWUHOPPMOON NG  emMOUEVNG  YEVIAG TANP®G
TPOYPOUUOTILOUEVOV SIKTOMV UE EMIKEVIPO TO AOYIGIKO, OO1YOVTOS GE £VOL IO GLVOEDEUEVO KoL

EVEMKTO YNOoKO LEAAOV.
A£Eearg — KA 101G

Ewovikomoinon, Nepobdmoroyiotikry, Awtdowon  kabopillopevn and  Aoyiopkd  (SDN),

Ewovikomoinon diktvakdv Asttovpyidv (NFV)

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 6



Software defined networking and network functions virtualization technologies

Contents
I TS 0 T U 1SS 8
YN T o] =L o 1= ol 1o = SRS 9
INTRODUCGTION ...ttt e e e e e s et e e e e e bt e e e e e eabaeeeesaabeeeeeaasbaeeeesreneeenns 11
Diploma Thesis SUBJECT....ccciiiiiiiiiiiiiiiiiiii e tieeeiesrssessstrensssssiesssssstessssssasssssssssnsssssssnssssssennss 11
PUIrpose and ODJeCtIVES. .. .ccuiiiiieiiiiiiiiiiiiiiiin it tiesesesteaessstrenssssttessssssrensssssaenssssssensssssssnssssssannss 11
(LY =14 3 o T Lo o T - 12
I 4 ot 41 =N 12
1 CHAPTER 1% : Virtualization Technology and Cloud Computing...........ccccccovevnnne. 13
1.1 Virtualization TEChNOIOgY ......ccccuiiiiiiiiiiiiiiiirinrc e rrssssessessssessesssssssennssens 13
1.1.1 WHhat is VIrtU@liZation? ... ...ttt e e e e e e et rr e e e e e e e e e ebarba e e e e e e e e nnbraaaeeeaeeenns 13
1.1.2 [ Y =T Y T o PPNt 15
1.1.3 VAo (U Y Y, =T o 11 =R 16
1.1.4 [ ToYol =T g @o ] =11 o [T £ SRS 18
1.1.5 Benefits Of VIrtUaliZation ........ocuuiii i et e e e e e e e e nrae e e e nreeas 19
1.2 (T o1 1= =TS 19
13 CloUd COMPULING....ciieeeeiiiieeiiiiieeeeirteneeerreneeesrenssessrenssessrenssessrenssesssensssssrensssssrenssssssensssssnennns 21
1.3.1 Cloud Computing SErViCe MOUEIS ...cccuuieiiieiiie ettt e e ette e e e tre e e e e bae e e e e beee e e e baeeeeeanenas 21
1.3.2 Cloud Deployments MOGEIS...........eeeiciiiiicciee e et eetee e e e ebee e e e e bee e e e s nbaeeeeenrenas 22
1.3.3 Advantages of Cloud COMPULING ......veiiieiiie ettt e e e e e et e e e eeara e e e seabteeesansreeeean 24
2 CHAPTER 2" : Software Defined NetWOIKing ...........cccceveevvviveeeieereeeeeeeeseveeenenn, 25
2.1 HOW SDIN WOFKS? ....ceiiiieciiiieieritiecessennneseennneeseennsseseennsssseennssessensssssesnsssssesnsssssennsssssennssnnnens 25
2.2 Basic Architecture Of SDIN ......c..ciiiieiiiieiecerretecereeeeeeseenneeereennsseseennssesesnsssssesasssssennsssssennssseens 26
23 [0 = 4 { [ 1Y VPR 27
2.4 SDIN CONEIOIIEIS....ciiiiiiiiiueiiiiiiiiirnrisiisstrrrrraesse st rr e s saasssssss st e e e saassssssssssneesnnssssssssssnessnnnsssns 29
2.5 SDN N 5G ANd BG.....ceueuiiiieeiiiiiieeiiiiieniiiiienesieiienesestrenessstrensssssssnsssssssnsssssssnssssssenssssssansssssssnnss 30
2.6 Benefits Of SDN ....ccuuuuiiiiiiiiiiiieiiiiiniinrrrieisissirrrssssesssssssssrsssasssssssssssrnesssssssssssssnersssnsssssssssns 31
3 CHAPTER 3" : Network Functions Virtualization (NFV).........ccccceooeeeieiicireenne, 33
3.1 The Evolution of Network Architecture .........ccceeiiiiiieiiiiiiciiiirircrrrec e rennee s sennenens 33
3.2 ETSI NFV FrameWOrK ...ccceeuiiiiieiiiiiieieiiineieriennsietiensssessensssessensssssssnsssssssnsssssssnsssssssnssssssnnsssssane 35
33 MANO FrameWOrK ......ccveeiiiiieiiiiiiieiiiienieniesrenesieseennsessensssesssnsssssssnsssssssnsssssesnssssssnnsssssans 36
3.4 Benefits OFf NFV ...ttt rrnesse s senas e s senassesssnsssssasnsssssasnsssssesnsssssennssssnane 37
3.5 OPENSEACK ..ereeniieeereenitiietteenereaereaereaseernseeresseressssensersnsessasessnssssasssssnsessnssssnsessnssssassssansesansenee 38
3.6 OpenStack iMPlemMeNntation ......cccivieireiiiiiirnereerreeereeneereseeenserensereasersnsessasessnssesasssssnsesensenes 39
4 LO70] a1 [ U ES] o] o 3OS ROPSPRPRON 44
5 Bibliography — References — Onling SOUICES.........cccooiiiiiiiiieieie e 45

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 7



Software defined networking and network functions virtualization technologies

List of Figures

Figure 1.1: Virtualizing RESOUICES. ... .ut ettt e e e 14
Figure 1.2: Types of Virtualization........... ..o e 15
Figure 1.3: Where the hypervisoris located [6]...........ccooviiiiiiiii i 15
Figure 1.4: Two types of NYPervisors [7]......c.ooeiriiiii e e, 16
Figure 1.5: Cloning a Virtual Maching [8].........c.ooriiiiiiii e 17
Figure 1.6: Docker running three containers on a basic Linux computer system [9]................... 18
Figure 1.7: How a Kubernetes system 100ks like [10]........ccoooiiiiiiii e, 20
Figure 1.8: Architecture of Kubernetes cluster [10].........coviiiiiiiiii e 20
Figure 1.9: The architecture of Kubernetes [10].........ccoiiriiiiiiiii e 21
Figure 1.10: Cloud computing service modelS [4]......oveniiniiri e 22
Figure 1.11: Deployment locations for different cloud types [16]............cooiiiiiiiiiiiiiin 24
Figure 2.1: A traditional network [19].... ..., 25
Figure 2.2: Software-defined Network with a centralized controller [19].......................oal. 26
Figure 2.3: SDN architeCture [21]......oviniiii e 27
Figure 2.4: OpenFlow architeCture [22]........conriniiii e 28
Figure 2.5: Idealized SDN controller [22].........coiiiriii e 29
Figure 2.6: 5G/6G network system architecture [24].........cooveiriiiiiii e 31
Figure 3.1: Traditional Network Devices [25].......coiriiriiiii e 33
Figure 3.2: Transition t0 NFV [25]..... o 34
Figure 3.3: High-Level ETSI NFV framework [25]........coovriiiiiii e 35
Figure 3.4: NFV MANO architectural framework..............coooiiiiiiiiii e 36
Figure 3.5: Benefits Of NFV [25]. ... e 37
Figure 3.6: OpenStack dashboard (HOFMZON)....... ..ot 40
Figure 3.7: LiSt OF FUNNING SEIVICES. ... vttt e e e 40
Figure 3.8: Lists of available images and flavors. ... 41
Figure 3.9: The FirSt INSTANCE. ..ot e e e e e e 42
Figure 3.10: The SeCONd INSTANCE. ... ...ttt ettt ettt et et et e et e e e 42
Figure 3.11: OpenStack’s dashboard OVervieW.............ooiiriitiiiiiiii i, 43

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 8



Software defined networking and network functions virtualization technologies
Figure 3.12: The two created instances in the dashboard......................ocoi

Alphabetic Index

API: Application Programming Interface

COTS: Commercial Off the Shelf

CPU: Central Processing Unit

EIGRP: Enhanced Interior Gateway Routing Protocol
ETSI: European Telecommunications Standards Institute
GUI: Graphical User Interface

laaS: Infrastructure as a Service

IBM: International Business Machines Corporation
IOT: Internet of Things

IT: Information Technology

KVM: Kerne-based Virtual Machine

LTE: Long-Term Evolution

MANO: Management and Orchestration

MPLS: Multiprotocol Label Switching

NBI: Northbound Interface

NFV: Network Function Virtualization

NFVI: NFV Infrastructure

NFVO: NFV Orchestrator

OS: Operating System

OSPF: Open Shortest Path Fist

OVF: Open Virtualization Format

PaaS: Platform as a Service

PC: Personal Computer

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 9



Software defined networking and network functions virtualization technologies
SaaS: Software as a Service

SBI: Southbound Interface

SDN: Software Defined Networking
VIM: Virtualized Infrastructure Manager
VMM: Virtual Machine Monitor

VMs: Virtual Machines

VNF: Virtualized Network Function

VNFM: Virtualized Network Manager

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas

10



Software defined networking and network functions virtualization technologies

INTRODUCTION

In an era defined by the dramatic growth of digital devices, the demand for scalable, flexible and cost-
effective network infrastructures has never been greater. Traditional network architectures, which
focus on dedicated hardware devices to control network traffic and have high operational costs, have
struggled to keep up with the agility required by modern applications and services. As a result, the
networking field has changed in many ways due to the synergy of several technologies such as
virtualization, containerization, cloud computing, SDN and NFV. Virtualization once limited mainly
to computing, has evolved into a fundamental part of modern network architectures. Because of the
fact that it creates virtual versions of physical resources that are typically attached to physical
hardware, virtualization makes resource utilization more efficient, simplifies management and
improves scalability. Containerization a more recent advancement extends the benefits of
virtualization by offering lightweight, portable units of software, known as containers, that
encapsulate applications and their dependencies. Cloud computing builds on these concepts because
it offers on-demand access to computing resources over different places. Each of these technologies
have transformed the landscape of IT infrastructure, giving businesses the opportunity to deploy and
scale services with exceptional speed and efficiency. At the same time the evolution of SDN has
redefined how networks are managed and controlled. By separating the control plane from the data
plane, SDN gives in network management a more centralized and programmable approach, making
networks much more responsive and adaptable. In a similar way, NFV transforms network services
by not using dedicated hardware for specific network functions. This transition from hardware-centric
to software-driven architectures reduces both capital and operational costs while enhancing hardware
flexibility. As these technologies converge, they present a good opportunity to create dynamic,
programmable, and automated networks that will be capable of meeting the huge demands of next-
generation services like 5G, 6G and IoT.

Diploma Thesis Subject

This thesis is a survey on modern network architectures such as SDN and NFV. Both of these
architectures are driving forces behind the transformation of networking because their technological
design focuses on having flexible networks with inbuilt support for large multitenant environments.
They provide agility, scalability and cost savings by simplifying network management; that’s why
most cloud providers and enterprises embrace them.

Purpose and objectives

The main goal of this thesis is to explore and analyze the network technologies that shape modern
networking and computing infrastructures, specifically virtualization, cloud computing, Kubernetes,
Software Defined Networking (SDN) and Network Functions Virtualization (NFV). The thesis aims
to provide a comprehensive understanding of how these technologies operate individually and
synergistically to enhance network flexibility, scalability and efficiency. This study is mainly
addressed to students, researchers and professionals in the field of computer science, IT and network
engineering who are interested in gaining a deeper understanding of modern network technologies
and applying advanced networking concepts in real-world scenarios.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 11



Software defined networking and network functions virtualization technologies

Methodology

This thesis adopts a theoretical and descriptive approach to explore network technologies such as
SDN and NFV. Given the nature of research, the study does not involve complex practical
experiments or simulations but rather focuses on a comprehensive analysis of the existing body of
knowledge. The research is based on a literature review to gather information from books, academic
journals, white papers and conference proceedings.

Structure

This thesis is organized into three major chapters. The first chapter provides an overview of
virtualization, detailing the role of hypervisors, virtual machines and containers. Then it explores
cloud computing, covering various service and deployment models and presenting some of the cloud
computing benefits. The second chapter focuses on Software Defined Networking (SDN), explaining
its architecture and highlighting its contribution in modern networks. The third chapter examines how
NFV works. It discusses the components of the NFV framework, such as Virtual Networks Functions
(VNFs), the NFV infrastructure (NFVI) and the Management and Orchestration layer (MANO). This
chapter also includes a brief description of OpenStack and its basic components and a small
implementation of a private cloud infrastructure.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 12



Software defined networking and network functions virtualization technologies

1 CHAPTER 1% : Virtualization Technology and Cloud Computing

This chapter centers around virtualization technology and cloud computing, which have become
indispensable components of modern IT infrastructure and the digital economy. The first part of this
chapter begins with an introduction to the history of virtualization, how it works and its benefits. This
is followed by an examination of hypervisors, virtual machines, docker containers and their role. A
The chapter then shifts to cloud computing, covering the various service models such as laaS, PaaS
and SaaS. Different cloud deployment models are also analyzed, including public, private, hybrid and
community clouds, with a focus on their characteristics and use cases. A summary of the advantages
of cloud computing will be presented at the end. Overall, this chapter will provide a solid foundation
for understanding both virtualization and cloud computing, two key components of the advanced
networking technologies that will be discussed in later chapters.

1.1 Virtualization Technology

The field of virtualization has undergone significant advancements over the past few decades and has
played a very important role in the development of modern computing environments. The concept of
virtualization can be tracked all the way back to the 1960s when IBM (International Business
Machines Corporation) introduced the idea to optimize the use of expensive mainframe computers.
In this period IBM developed the CP-40 and CP-67 systems. These systems allowed multiple users
to run different operating systems simultaneously on one machine. This early form of virtualization,
known as time-sharing, enabled more efficient use of computing resources and helped for future
developments. Over the years virtualization technology continued to make steps forward with the
introduction of virtual machines (VMs) and in 1972, IBM’s VM/370 was released. VM/370 allowed
users to run isolated instances of multiple operating systems on a single mainframe. Although there
were many advancements virtualization was barely used outside mainframe environments because it
was too expensive and the technology was very complex [1] [2]. The 1990s was a turning point for
virtualization with the introduction of x86-based servers which were more affordable. In 1998,
VMware was founded whose technology allowed organizations to consolidate workloads onto fewer
servers something that reduced hardware costs dramatically. Virtualization saw a huge advancement
in the early 2000s because of the growth of cloud computing. For most service providers virtualization
was a key factor, which allowed them to manage and allocate resources across a distributed network
of servers. Moreover, at this time, hypervisors became more sophisticated, with the development of
both Type 1 and Type 2 hypervisors. In the 2010s, virtualization became more and more popular
thanks to the rise of containerization. Platforms like Docker provided a fast and more secure way for
developers to deploy, create and manage applications. [3] Today, virtualization remains a
foundational technology, helping many cloud computing models and services and has an enduring
impact on the IT landscape.

1.1.1 What is Virtualization?

Virtualization is a core technology in today’s IT world, making better use of physical hardware by
creating virtual versions of servers, networks, storage, and operating systems. It works by using
software called a hypervisor, which lets multiple operating systems run on a single physical machine
at the same time. The hypervisor takes care of managing these operating systems, known as guest
OS, and how they use the system’s resources like the CPU, memory and storage. Each virtual machine
acts like its own separate computer, with its own application software and guest OS, as illustrated in

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 13



Software defined networking and network functions virtualization technologies
Figure 1.1. The job of a hypervisor is to ensure that these VMs stay isolated from each other while

running on the same host, so whatever happens in one virtual machine doesn’t affect the others. Then
there’s something called a virtual appliance, which is basically a complete software package ready to
be installed on one or more VMs. It’s usually delivered in OVF files and makes it easy to deploy
applications [4].

7 r N 4 B
APP APP APP
L \ J - J
Guest [ Guest |||[ Guest
0OS L oS J1IL 0OS
{ R h
Hyperviser
\ y,
{ \
Host OS
\ v
{ \
Server Hardware
\ y

Figure 1.1: Virtualizing Resources

There are several types of virtualization that aim to optimize specific aspects of computing resources.
Some of them are:

Network virtualization: According to IBM, “Network virtualization uses software to create a “view”
of the network that an administrator can use to manage the network from a single console.” This
software abstracts the physical network infrastructure, such as routers and switches to create virtual
networks that can be managed and controlled by the administrator without having contact with the
underlying physical hardware. As a result, the whole network management becomes more simplified
[5]. Some examples of network virtualization are software-defined networking and network function
virtualization, which will be examined in depth in the following chapters.

Server virtualization: This type of virtualization divides the central physical server into multiple
virtual servers. Each one of these servers can operate its own operating system and applications.
Server virtualization is widely used in the IT infrastructure and the logic behind it, is the minimization
of costs by increasing the utilization of existing resources.

Desktop virtualization: It allows users to access their desktop virtually, by a different device from
anywhere in the world. It is very useful for organizations that need to manage a big number of
desktops or maybe want to support remote work.

Storage virtualization: Storage virtualization makes all the storage devices on the network accessible
and manageable as if they were a single storage device. In particular, storage virtualization places all
storage devices into a virtual shared pool, from which they can then be allocated to any virtual
machine on the network as required [5].

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 14



Software defined networking and network functions virtualization technologies
Application virtualization: This is a kind of virtualization in which applications run in isolated virtual

environments separate from the operating system. This isolation allows applications to be deployed
on any compatible system without affecting other native applications.

Types of Virtualization

Network Server Desktop Storage Application
Virtualization Virtualization Virtualization Virtualization Virtualization

Figure 1.2: Types of Virtualization

1.1.2 Hypervisors

One of the most important components of virtualization is the hypervisor. A hypervisor also known
as virtual machine monitor (VMM), is a software layer that is responsible for the creation, execution
and management of virtual machines on a host machine. More specifically it allocates hardware
resources such as CPU, memory and storage to the VMs in such a way as to ensure that each VM
operates efficiently and independently. A hypervisor is located between the hardware and the virtual
machines as shown in Figure 1.3 [6].

Virtual
Machine

Hypervisor

Hardware

Figure 1.3: Where the hypervisor is located [6]

Two types of hypervisors exist:

Type 1 hypervisors (often referred as bare metal) are installed directly on the physical hardware of a
host machine which means that there isn’t intermediate layer between the physical hardware and the

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 15



Software defined networking and network functions virtualization technologies
hypervisor. As a result, type 1 are more efficient than the type 2 hypervisors, providing much better

performance. This also makes them very secure as there is no intermediary between them and the
CPU that an attacker could possibly compromise. Thus, they are more useful in enterprises, data
centers and cloud computing platforms where high performance, resource efficiency and scalability
are crucial. Some well-known examples of the type 1 hypervisors are VMware vSphere/ESXi, KVM,
Microsoft Hyper-V, Citrix XenServer and Red Hat Enterprise Virtualization [6].

Type 2 hypervisors (frequently referred as hosted hypervisors) run on top of a conventional operating
system. Unlike type 1 hypervisors, which have a direct interface with the underlying hardware, type
2 hypervisors are installed as applications within a host OS, and they rely on the host operating system
to manage hardware resources. Their installation process is very easy and quick (through a GUI), and
once the hypervisor is installed, it runs as a regular application in the system [6]. A few paradigms of
the type 2 hypervisors are Oracle’s VirtualBox, VMware Workstation and Microsoft virtual PC.

Guest OS Guest OS

Guest OS Guest OS Hypervisor

Hypervisor

Host OS

Hardware

Hardware

TYPE 1 HYPERVISOR TYPE 2 HYPERVISOR

Figure 1.4: Two types of hypervisors [7]

1.1.3 Virtual Machines

A virtual machine (VM) could be seen as a physical server because it can run an operating system
and has resources for applications to use. But, in contrast to a physical server, which runs only one
operating system at a time, a big number of VMs can operate on a single physical server, each one of
them with a different OS and applications. If someone would like to understand VVMs better, he could
say that VMs are just a collection of files that define its virtual hardware and disk space. The
configuration file specifies the virtual resources like processor, memory and storage. A VM could
also be compared to a blank server, ready to be set up with whatever software and virtual hardware
configuration is needed [6].

VMs exist both as files that define their configuration and as active instances in memory when they’re
running. Using a VM could possibly feel like working with a physical server, making everyday tasks
UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 16



Software defined networking and network functions virtualization technologies
like managing applications and adjusting settings, but the real advantage of VMs is their file-based

nature, which makes them easy to manage, move and replicate, just like any other data file on a
computer. For example, even an amateur PC user can easily transfer a VM to another location,
duplicate it or create backups in the same way he would do with a simple document file. As can be
seen, this flexibility and simplicity make VMs extremely useful [6]. However, there are some cons to
using VMs, like the fact that VMs need time to build and regenerate. Also, VMs take up a lot of
storage space. These problems can be overcome by other technologies, such as containers, which will
be examined in a later section.

1131 Virtual Machine Cloning

Before server virtualization, provisioning a physical server required a lot of time, money and a lot of
effort. Ordering a server could take weeks, and once it arrived, administrators had to install the
operating system, apply updates, configure storage, install tools and connect it to the network, a
process that could take several days or even longer. One of the benefits of virtual machines is that
this process is much faster. An existing server can be cloned by just copying its files. While cloning
might take minutes or a few hours depending on various factors, it’s still significantly quicker and
cheaper than setting up a physical server and of course it requires less time and manpower [6].

Y Clone Virtual Machine X

New machine name and path

Name: Oraclelinux-Dev001-Clone

Path: B9 /home/exampleVirtualBox VMs v

Clone type Snapshots
o Full Clone o Current machine state
Linked Clone Everything

' ' Clone options

MAC Address Policy: | Include all network adapter MAC addresses v
Additional Options Keep Disk Names

Keep Hardware UUIDs
Guided Mode \7 Clone Cancel

Figure 1.5: Cloning a Virtual Machine [8]

1.1.3.2 Virtual Machine Templates

VM templates are preconfigured VMs used to quicky create fully set up servers. In addition to clones,
templates are not running and must be converted back into a VM for updates or changes. When the
updates are applied, the VM is converted again back into a template. In the same way that clones do,
each VM created from a template requires a unique identity. Creating a VM from a template is much
faster than setting up a physical server. Templates can deliver not only operating systems but also
preinstalled applications, allowing users to quickly deploy ready-to-use virtual machines. That’s the
reason why some vendors even provide applications as downloadable VM templates for easy
deployment [6].

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 17



Software defined networking and network functions virtualization technologies
1.14 Docker Containers

UNIX-style operating systems originally used the concept of a “jail” to restrict a program’s access to
certain protected resources. Over time, this evolved into the idea of containers, whose purpose was
to isolate processes from other resources. While containers have been valuable for security in most
cases, manually creating them is a complex and prone to errors procedure. So, a solution to this was
Docker which simplifies this process by automatically building containers following the best
practices, enhancing security and reducing costs. By using Docker, users can stay up to date with
container technology, saving a lot of their time, without the need to have deep technical knowledge
[9]. To the question, is the container actually virtualization? The answer in no! If an organization is
not using Docker, it relies on VMs for isolation which involves running a complete operating system
and requires significant time and resources. In case of the Docker, containers run directly on the host’s
Linux kernel, avoiding the need for virtual hardware and extra operating systems layers. As a result,
they don’t consume resources by running redundant systems.

Container Container Container
space A space B space C

Database

E Docker CLI
| Command line / ¥

Web server

Hello World

Docker daemon

Operating system

10
CPU Memory

Network interface | Persistent storage Devices

Figure 1.6: Docker running three containers on a basic Linux computer system [9].

When using Docker, two main programs run on a machine. The Docker daemon, which is always
running, and the Docker CLI, which users use to give the necessary commands. As we can see in
Figure 1.6, Docker containers are child processes of the Docker daemon, each running in its isolated
memory [9].

If we wanted to use an analogy to define Docker container, we could say that Docker container is like
a shipping container for applications, where inside it there are all the things we will need to run an
application. Docker’s job is to run, copy and distribute these containers in the same way shipping
containers are handled in transport. The “box” that stores an application in Docker is called an image,
which is a snapshot of all the files required for a container. We can create multiple containers from
the same image, but each container will be isolated and will not share filesystem changes with others.
Docker images are the core units for software distribution in the Docker ecosystem and Docker uses
registries and indexes to manage and distribute these images [9].

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 18



Software defined networking and network functions virtualization technologies
So, what are the difficulties that someone might face and Docker solves them? First of all, the process

of installing and managing software can be a complex one due to the large variety of installation
methods and the potential conflicts between applications. It sometimes requires very careful planning
and regular updates to ensure that applications are compatible and safe. All of these difficulties
become even more when additional software is added and the risk for errors and security problems
increases. Someone could say that these challenges are common and normal, but wouldn’t it be better
if there was a way to avoid them and save valuable time? Docker does exactly that because it
simplifies these processes by making installation and management more straightforward [9].

1.15 Benefits of Virtualization

e Reduced Hardware Costs: Virtualization allows organizations to reduce hardware purchases,
power consumption and maintenance costs by combining multiple virtual machines onto one
physical server.

e Flexibility: Virtual machines can be created and modified very easily. As a result, they allow
dynamic allocation of resources based on the needs of each costumer.

e Increased Utilization: Virtual machines share the available computing resources of a physical
server in an efficient way.

e |Isolation and Security: Virtual machines operate independently and are isolated from each
other, so in case of a threat or failure there is no impact on other VMs or the overall system.

e Simplified Management and Deployment: Virtual environments can be managed through
centralized management tools that provide features such as live migration and cloning. Also
new VMs can be deployed very fast by cloning existing VMs or using pre-configured
templates.

1.2 Kubernetes

As Google’s infrastructure kept growing, managing thousands of deployable components became
increasingly difficult. In an attempt to handle the complexity of running hundreds of thousands of
servers, Google developed Borg and after a few years, Omega, which streamlined software
deployment and maximized infrastructure efficiency. At that time, even small gains in resource
utilization meant huge cost savings for a company of that scale. After years of using these systems
internally, Google released Kubernetes in 2014, an open-source platform built on their experience
with Borg and Omega to help other companies manage large-scale deployments [10]. Kubernetes is
a software platform that simplifies the process of deploying and managing containerized applications
across many servers, without requiring from users to know the internal details of each app. In this
way, it ensures that applications run independently of each other, which is extremely important,
especially for the cloud providers, which want to maximize hardware utilization and at the same time
want to maintain isolation between apps [10].

Kubernetes is made of a master node and multiple worker nodes, in which developers submit their
apps to the master and Kubernetes delivers them to the cluster. Kubernetes handles infrastructure
tasks like service discovery, scaling and load balancing, allowing developers to emphasize on

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 19



Software defined networking and network functions virtualization technologies
building new features for their projects. Furthermore, Kubernetes makes sure that apps can

communicate with each other no matter where they’re deployed and at the same time optimizes
resource usage by dynamically relocating apps as needed.

Tens or thousands of worker nodes exposed

App descriptor as a single deployment platform
/»“A\( \/_Y \
Developer 1x 7~

QT
© O — |Al A
=@ »
S eRe
B

Figure 1.7: How a Kubernetes system looks like [10]

5x

AR

2x

>0|0|©

Two different nodes exist that a Kubernetes cluster can split on. The first is the master node that hosts
the Control Plane, whose basic job is to control the cluster’s operations. The most important
components of the Control plane are the Kubernetes API server for communication purposes, the
Scheduler for assigning tasks to worker nodes, the Controller Manager for cluster-level tasks like
replication and failure handling, and etcd, which stores the cluster’s configuration. The second type
is the worker nodes, whose job is to execute the containerized programs. They rely on components
such as Docker, the Kubelet, which oversees containers and kube-proxy, which is responsible for
load-balancing network traffic between app parts [10].

Control Plane (master)

E==————
<— API server !
B

Controller \

Manager Kubelet kube-proxy

/

Worker node(s)

Scheduler

Container Runtime

Figure 1.8: Architecture of Kubernetes cluster [10]

If a user wants to run an application on Kubernetes, he starts by packaging it into container images.
After that he uploads them to an image registry and then he provides a description to the Kubernetes
API. The description that he provided has details about what the application’s components are and
what the connection is between them. It also contains information about where they should run and
how many replicas to create. Kubernetes then uses the Scheduler to assign containers to worker nodes
and the Kubelet pulls (on each node) the necessary images and runs them as illustrated in Figure 1.9.
When the application is eventually deployed, Kubernetes makes sure that it matches user’s

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 20



Software defined networking and network functions virtualization technologies
description. If something breaks (for example a container crashes or a node goes down), Kubernetes

automatically restarts the container or moves it to another node. Another feature of Kubernetes is that
the user can easily adapt the app by just changing the number of replicas and if he wants, he also has
the option to let Kubernetes do it based on real-time statistics such as network traffic or CPU load.
Finally, to keep things simple for users, Kubernetes assigns services with a static IP, so even if
containers are moved or replicated, users can always connect to them [10].

Worker nodes
Image registry
(@ o0en A°
4‘—& .\:}‘:\‘ - ‘\“.\ Docker i Docker

= Kubelet“kube—proxy Kubelet | kube-proxy
1x [ £ > A
G O Control Plane O \“_‘ O
(master) .,
Q s Docker - Docker
2x
A = Kubelet | kube-proxy Kubelet | kube-proxy

App descriptor

O]

Legend:

Docker Docker
<> Container image Multiple containers
running “together”
|§| Container (not fully isclated) | Kubelet | kube-proxy Kubelet | kube-proxy

Figure 1.9: The architecture of Kubernetes [10]

1.3 Cloud Computing

Cloud computing could be defined as the delivery of computing services such as physical or virtual
servers, data storage, networking, software and more over the Web without the need to manage or
own the underlying infrastructure [11]. Cloud computing follows a pay-as-you-go model. Once
someone is connected to the cloud, he can access as many computing resources as he needs and be
billed for what he actually uses. This condition lets the cloud providers to share resources among
several customers, making it more efficient and often cheaper than everyone having their own
separate systems. Similar to how most people buy electricity from a power company instead of
generating it on their own, using the cloud is usually an easier and cheaper solution for most of them
than maintaining private servers at their workplaces or houses. The whole idea is just to outsource
these services to a provider who can deliver them more efficiently [4].

131 Cloud Computing service models

e Infrastructure as a Service (laaS):
It is a cloud computing service model that provides on-demand access to customers on cloud-
hosted computing hardware, such as servers, storage and network resources. Customers can
manage the infrastructure from their own PC (via the internet) by paying a subscription

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 21



Software defined networking and network functions virtualization technologies
without the need for physical hardware investment and maintenance. In this way, the need for

upfront capital expenditures on hardware is reduced significantly, allowing customers to save
money. Google Cloud, Microsoft Azure and Amazon Web Services are some of the biggest
cloud services providers in the world [12].

e Platform as a service (PaaS):

It is a type of cloud computing services that provides a cloud-based platform allowing
customers to develop, manage and run applications. Customers do not handle or control the
underlying cloud infrastructure, something for which the cloud provider is responsible. As a
result, users don’t have to install physical hardware and software to develop or run a new
application. In most cases, users just access the PaaS through a GUI, where they can build,
test and deploy their applications very quickly and at a low cost. The Microsoft Azure App
Services, Amazon Web Services and Google App Engine are some of the leading PaaS
providers [12].

e Software as a service (SaaS):

It is a form of cloud computing where the provider delivers software applications over the
internet to clients and manages all the hardware and software resources used by the
application. All software upgrades and updates, as well as security and performance, are the
responsibility of the provider. Clients simply access SaaS applications through a web browser
from any device that is connected to the internet. In our days, most people use some form of
Saas in their lives. Some of the most basic everyday SaaS applications are social media like
Instagram, email services and streaming services such as YouTube and Netflix [12].

/Software as a — \
Service (Saas) | Application
/PI atfori as.a Middleware\

Service (PaaS)

Operating
System

/Infrastructure as a \
Service (laaS)

Virtualization
Hypervisor

=)

Figure 1.10: Cloud computing service models [4]

1.3.2 Cloud Deployments Models

Cloud deployment models define how cloud services become available to users, who controls the
servers, and the location where these servers are hosted. Also, it specifies what changes could be
made and what the cloud infrastructure is going to look like. Companies have to make the right choice

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 22



Software defined networking and network functions virtualization technologies
of a cloud model if they want to have a successful cloud implementation, so a careful study and an

accurate selection of a model are necessary in order to avoid a serious risk of failure in the
implementation. According to previous researches on cloud computing, the cloud deployment models
have been categorized as the following [13].

Public cloud:

The public cloud is a cloud deployment model in which the infrastructure services are open
to the general public. These services are provided over the internet and are owned and hosted
by third-party cloud service providers such as Amazon Web Services (AWS), Microsoft
Azure and Google Cloud Platform (GCP). It is a pay-as-you-go service, which means that
customers expenses are based on how much of the product they have actually used. So, it is
appropriate for enterprises that need quick access to specific amounts of resources. The zero-
setup cost and the absence of infrastructure management are some additional advantages of
the public cloud. However, since there are a lot of users who use the same resources, it raises
big security and privacy concerns [14].

Private cloud:

In contrast with the public cloud, the private cloud offers exclusive access to a single user or
organization and it’s not accessible by the public. Its services are maintained on a private
network and it’s not mandatory for customers to share their hardware with someone else. It
can be managed and hosted either by the user or by a third-party provider. One of the main
advantages of private cloud is the enhanced security measures. For many companies, the
security of their data is of major importance, so that’s why they prefer a private cloud model
that is protected by powerful firewalls, plenty of security tools and in most cases by a whole
IT department [14].

Hybrid Cloud:

The hybrid cloud is a cloud deployment model that combines two or more cloud architectures.
It provides great flexibility because businesses can design their own custom solutions based
on their specific needs. But considering the complexity of setting up a hybrid cloud, this model
is more useful for businesses that need to separate their private and sensitive data. For
instance, hospitals can store their sensitive data on a private cloud and at the same time store
other less important data on a public cloud [15].

Community Cloud:

The community cloud operates in such a way that services are shared among a group of
organizations. These organizations have common goals and shared concerns, such as policies
and security requirements. It is managed and operated either by one or more organizations in
the community or a third-party provider and it offers many benefits, such as better security,
low running costs and collaboration between multiple businesses. But, if an organization
wants to make any changes, it is not easy to implement them as all data and resources are
shared between them and thus there will be consequences for the other organizations [14].

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 23



Software defined networking and network functions virtualization technologies

133

o=

Public cloud
(external) '

]
Off premises On premises
(external) (internal)

Figure 1.11: Deployment locations for different cloud types [16]

Advantages of Cloud Computing

Reduced costs: Cloud computing is a pay-as-you-go activity which means that users have to
pay only for the resources they use. As a result, the total capital expenditures and the costs for
maintaining physical hardware are reduced [4].

Data loss prevention: Cloud service providers offer disaster recovery and backup options. So,
in case of an emergency or hardware malfunction, the data that are stored in the cloud and not
locally are safe [17].

Rapid elasticity: Cloud services offer on-demand access to resources and for that reason they
have the ability to scale up or down according to their clients’ needs [4].

Increased Effectiveness: Cloud computing allows cloud consumers to prioritize their limited
resources on developing solutions to enterprise issues rather than investing in the maintenance
and deployment of computing infrastructure, thereby enhancing the effectiveness of the
organization [4].

Energy Efficiency: Cloud service providers have the ability to share their storage, networking
and data center resources effectively across multiple cloud customers which means that the
total amount of power consumption will be reduced [4].

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 24



Software defined networking and network functions virtualization technologies

2 CHAPTER 2" : Software Defined Networking

This chapter provides a deep dive into software-defined networking (SDN), a revolutionary
technological approach on how networks are managed that connects applications, network devices
and services, enabling centralized and programmable network control. SDN represents a change from
traditional networking, making it feasible to program network devices and do them scalable and
flexible by providing dynamic management through software applications. By centralizing the
network’s intelligence in a software controller, the SDN controller, which is reside between network
devices and applications, SDN simplifies network operations and facilitates automated network
management, making it a critical technology for data centers and cloud environments [18]. This
chapter focuses on SDN architecture, OpenFlow, SDN controllers and SDN benefits. It also presents
information about the SDN in 5G and 6G networks.

2.1 How SDN Works?

As we said, network control needs to be centralized, moving away from the traditional model where
each device operates as an isolated unit. This shift to centralized control makes simpler the
processes of network discovery, management and connectivity, all of which are very complicated in
large conventional networks. So, in case of a change or whenever a new application is added, by
having centralized control, the entire network becomes programmable and there is no need to
manually configure every device [19].

Furthermore, a distinct separation between the network OS and the applications running on it is very
essential and this is accomplished through an application programming interface (API). This
separation allows third parties to develop applications easily and rapidly, leading to a significant pace
of innovation. This marks a significant shift in networking because applications now need to interact
with network control systems far more frequently than they did a couple of years ago. All of these
concepts define SDN as we know it today [19].

SDN could be seen as a flexible system that centralizes network control. With the help of an API, this
system allows different applications to manage the forwarding plane of network devices. Essentially,
SDN removes the decision-making intelligence from the network devices to a central controller. But
to understand this better, in Figure 2.1, a traditional network is presented.

() () ()

(2e) (2ee) [A0e)

Control Plane

Flow Table

Control Plane

Flow Table

|

() () ()

[2ee) [avp) ()

Control Plane

Flow Table

™ @ @)

Control Plane

|

Flow Table

Figure 2.1: A traditional network [19]

Control Plane

Flow Table

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 25




Software defined networking and network functions virtualization technologies
In a typical network setup, every switch and router operates independently and runs its own

applications, such as VolP, monitoring and load balancing. Each of these devices needs to be
configured separately, and as data travels through the network, each device makes routing decisions
based on its local settings. This means that if there are any changes to the flows or applications, every
device must be updated individually, which can be a complicated and a time-consuming process [19].

Now, let’s take a look at the SDN approach (Figure 2.2). In this model, the intelligence and
applications that traditionally reside within the switches and routers are moved to a centralized
controller. This controller serves as the command center for the network, which makes it
programmable and much easier to manage. Applications communicate with this central controller,
which then directs their functionalities across the entire network. The controller also oversees the
traffic flows, using flow tables that it updates and distributes to each network device. These flow
tables collect detailed data and send it back to the central controller, making the resolution of possible

issues a lot easier [19].
W W W @

Central Control

Open Flow Open Flow
| Flow Table | | Flow Table |
Open Flow
| Flow Table ]
Open Flow Open Flow
| Flow Table | | Flow Table |

Figure 2.2: Software-defined Network with a centralized controller [19]

2.2 Basic Architecture of SDN

In order to overcome the drawbacks of classical networking architectures, software-defined
networking architecture has arisen as a solution. The architecture of SDN has many differences from
the traditional networking architectures because its purpose is to offer a more dynamic, programmable
and flexible approach to managing network resources. SDN achieve to do this by dividing the control
plane from the data plane, which means that it lets administrators utilize network resources, makes
resource provisioning simpler and enables programmability through software [20].

The SDN architecture can be broken down into three primary layers as shown in Figure 2.3, the
Control Layer, the Data Layer and the Application Layer.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 26



Software defined networking and network functions virtualization technologies

Application layer

SDN application SDN application Application plane

SDN northbound interfaces (NBls)
A-CPI: Application-controller plane interface

Control layer

SDN controller Controller plane

D-CPI: Data-controller plane interface
SDN southbound interface

Network Nletwork Infrastructure layer
element Network element Data plane
element

Figure 2.3: SDN architecture [21]

Application Layer: As the name indicates, this layer contains a lot of network applications (such as
VolIP prioritization, firewalls, QoS management tools, etc.) and scripts that interact with the control
layer through its northbound interface (NBI), requesting application resources according to needs
[19].

Control Layer: The control layer is the central layer of the SDN architecture and it includes the SDN
controller, which is making decisions about how packets should be routed and handled. Although this
is a separate concept from the control plane, this layer also contains the centralized control plane of
the network. Moreover, this layer connects the application and the infrastructure layer.

Infrastructure Layer: Finally, there is the infrastructure layer, which includes the actual network
devices (switches and routers) that are responsible for forwarding messages across the network. These
devices route network traffic to where it needs to go according to the controller's rules and policies.

These three layers communicate with each other via APIs. APIs are software interfaces that allow
two applications to communicate with each other and they are necessary not only for network
automation but for all kinds of applications. In SDN architecture, REST APIs are usually used to
communicate between applications and the SDN controller via the Northbound Interface (NBI).
NETCONF and RESTCONF are two of the APIs that are used for the communication between the
SDN controller and the network devices via the Southbound Interface (SBI).

2.3 Openflow

Network engineers face difficulties with virtualizing routers and switches because of the fact that
these devices are closed proprietary systems. This means that each device’s internal functions, such
as traffic management and data movement, are not transparent, forcing engineers to configure each
one individually. This process can be quite difficult when it comes to large networks that are
constantly changing, where updates are slow and the network's response to changes is delayed. The
solution to improving network management is to split the control and data planes, enabling centralized
control through an API. This approach was successfully used as a solution to the problem of enterprise
WiFi, where a centralized controller allowed administrators to manage many access points without
manually updating each one. As a result, the access points were made simpler, with their basic role

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 27



Software defined networking and network functions virtualization technologies
being packet forwarding, while all the complex functions were moved to the controller. Now,

networks that are moving towards SDN are adopting this concept with OpenFlow becoming the
primary protocol for centralized management.

LACP RSTP OSPF s

Switch Control Plane

OpenFlow Controller

Openflow
Protocol

Switch ""-.___. Switch

Switch

. Switch

Figure 2.4: OpenFlow architecture [22]

Switch

Switch

Figure 2.4 demonstrates the OpenFlow architecture and shows how it works.

In OpenFlow, a flow table is structured around three fields: a packet header that specifies the
characteristics of the flow, the action that need to be taken for every one of the flows, and statistics
that monitor the flow’s packets and bytes [19]. OpenFlow switches must support four basic tasks:

e Forward specified packets to a designated port which ensures that the packets are directed
along a defined path through the network.

e Encapsulate and send specified packets to the controller which is used for the first packet of
a new flow. This permits the controller to decide whether to add the flow to the table or not.

e Drop specified packet flow which is crucial for security purposes.

e Process packets.

There are some valid concerns about the reliability, scalability and performance of controllers that
dynamically manage flows. Despite these concerns, testing has shown that even a basic setup can
handle thousands of new flows per second, which is sufficient enough for large networks like those
in colleges. That’s why many switch vendors adopted OpenFlow into their devices because it provides
a high level of control to users over their networks. OpenFlow also allows users to create customized
flows and optimize traffic paths based on real-time conditions, in contrast to traditional routing
protocols, which often ignore bandwidth and congestion. This last feature is also found in
Multiprotocol Label Switching (MPLS) but because MPLS is a Layer 3 protocol, it is limited by the
vendor’s capabilities, making OpenFlow (which operates a Layer 2) particularly useful in data centers
where MPLS isn’t applicable [19].

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 28



Software defined networking and network functions virtualization technologies

2.4 SDN Controllers

The SDN controller could be characterized as the central brain of a software-defined network. It
manages the communication between the application layer and the physical network devices and has
a complete overview of all network devices, their connections and the optimal paths between them.
This centralized view permits the controller to quickly and intelligently manage traffic flows and
respond to failures more efficiently than a traditional network. An idealized controller is shown in
Figure 2.5. Unlike conventional routing protocols such as EIGRP and OSPF, which need to detect a
failure, announce it, run algorithms, and update routing tables (which takes time), the SDN controller
has already a broad overview of all possible routes. As a result, it can switch to an alternative path in
a very short period of time without the need to recalculate, which is something very important as the
network becomes faster and more seamless [19]. However, centralized controllers may have to deal
with performance issues and sometimes become bottlenecks. One way to avoid this is to deploy many
controllers, which will serve as peers and backups. It is very important for the controllers to keep a
consistent global view of the network otherwise possible false data may lead to poor network
decisions. A common solution involves using publish systems like HyperFlow, which allows
controllers to publish updates when changes occur, keeping all controllers synchronized. Another
approach, “SDNi”, facilitates communication between controllers across SDN domains, giving them
the opportunity to share network status and coordinate decision-making procedures [23].

[ 0sGIFRAMEWORK |

Network Services Platform API (NB APIs)
Network Service Functions
Sling_|f Topology }j Host Network Orchestration Service Management
~—— | | Manager J| Manager J| Tracker Functions Functions —
Switch || Pwdg.
Manager || Manager
(‘U \
- I
3 =
v -
& £
= =
& £
= [| || tavanativefunction callsor Rec | API | REST/HTTP ||| 2
£ 5
= ( ) 3
3 | Abstraction Layer I
-+ . 7
SB Protocol ] [ PCEP ] ‘ OF x.y
— \ e S
SB Proto Libraries PCEP Libraries OpenFlow Libraries
PCEP I " OpenFlow I
Network Elements

Figure 2.5: Idealized SDN controller [22]

There are plenty of SDN controllers on the market, some of which are developed and maintained by
big companies, while others are open-source. Here are some worth mentioning examples:

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 29



Software defined networking and network functions virtualization technologies
OpenDaylight: It is among the most widely used open-source SDN controllers. It is written in Java

and it supports many southbound APIs, including OpenFlow, NETCONF and BGP-LS.

ONOS: It is an open-source SDN controller that was created by the Open Networking Foundation. It
is programmed in Java and it supports protocols such as OpenFlow and NETCONF.

Ryu: It is a component-based controller framework written in Python that supports multiple protocols,
including OpenFlow, NETCONF and OF-config.

Floodlight: It is an open-source SDN controller written in Java that supports OpenFlow protocols 1.0
through 1.5.

Cisco Application Policy Infrastructure Controller (APIC): It is Cisco’s ACI main centralized
controller and it is designed to provide automation and management especially for data centers.

VMware NSX: It is a distributed control system that can manage virtual networks and overlay
transport tunnels over an existing infrastructure [19].

2.5 SDN in 5G and 6G

5G and 6G technologies are designed to solve key issues in both business and network performance,
improving things like user experience, data handling and connectivity. These technologies are
designed to handle high traffic in busy areas, provide fast and reliable service and support applications
like smart cities and industrial control systems. For instance, they will enable large-scale data
collection in smart cities while they use very little power and will offer ultra-reliable, low-latency
connections for things like self-driving cars and manufacturing. To make all these possible, the
network architecture needs to be flexible and adaptable and to be able to adjust according to the
specific needs of different scenarios. Moreover, it needs to support seamless coordination between
different network technologies (like RAT) and to offer broader coverage and greater network capacity
while remaining backward compatible with older systems [24].

If we want to deal with the significant challenges of 5G and 6G, some of which are broad coverage,
low latency and low power connections, new technical solutions are needed. For example, for wide
area coverage, we need to use lower frequency bands and improve how efficiently the spectrum is
used. Furthermore, large-scale antenna arrays, combined with better multi-user access methods, can
boost network performance while in high-traffic areas, techniques such as ultra-dense networking and
full-spectrum access help increase the speed of data and the overall capacity. When it comes to lower
power, large-scale connections such as those needed for smart cities and 10T devices, the main focus
is on improving device connectivity and cutting power consumption. Finally, for low-latency, high-
reliability scenarios, the minimization of transmission delays and the optimization of network
signaling is the key [24].

In earlier wireless network designs, managing functions like control and data processing was very
complex and it required base stations, service networks and gateways to work together. This made
optimizing network very difficult, especially if we think that there wasn’t a central controller and that
manufacturers had their own unique systems. So, operators had left with limited flexibility and

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 30



Software defined networking and network functions virtualization technologies
minimum innovation; that’s why the concept of software-defined networking was introduced. In

5G/6G networks, the architecture consists of three main layers: control accessing and forwarding.
The control layer centralizes network management, while in the meantime the access and forwarding
layer handle user data across many wireless technologies. Virtualization allows for dynamic
allocation of resources, making the network more efficient and responsive, with high reliability and
low latency for users. The control layer plays a crucial role in managing the entire network, with key
modules handling tasks such as radio resource management, mobility (trucking users and managing
handovers), policy control (setting network rules and managing QoS) and path management
(choosing the best data routes on user and network information). Of course, all these modules make
sure that the network performance will be smooth. Moreover, the system is quite flexible because it
uses APIs, whose job is to manage the infrastructure and help to improve user’s experience [24].

The control cloud is a step forward from traditional LTE networks because it centralizes and redefines
network control by turning functions into software and virtualizing network elements. It also gathers
information from both the access cloud and the forwarding cloud and for that reason it enables
centralized control [24]. The access cloud or intelligent RAN, is designed for flexible coverage based
on specific requirements and it virtualizes wireless resources, making it easy to adapt to different user
demands. In addition, with a user-centric virtual cell, it reduces unnecessary switching and creates a
better overall experience by allowing users to connect according to their location. Lastly, the
forwarding cloud handles high-speed data traffic and it is controlled by the control cloud, which
optimizes the data flow, aiming to reduce latency [24]. In Figure 2.6, a 5G/6G network system
architecture is presented.

Network
cxXposure
Control iy Control Path Network IT

resource
Cloud e strategy ‘management system

Network Traditional
resource network
scheduling adapter

Mobility Information
management centre

| Network Controller

L] g/ ]
Access ,i < Forward
Cloud KRN Cloud

e
L B
el

N

Figure 2.6: 5G/6G network system architecture [24]

2.6 Benefits of SDN

e Improves network agility and makes the deployment of applications and services faster.

e Creates virtual Ethernet networks without the complexity and limitations of the VLANS.

e Simplifies configuration and link setup, which makes networks easier to manage.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 31



Software defined networking and network functions virtualization technologies

Lowers capital expenditure (CapEx) by using switches that run on off-the-shelf chips.

e Enables precise traffic management based on individual traffic flows.

e Supports dynamic movement, replication and allocation of virtual resources.

e Facilitates centralized orchestration for efficient application delivery and resource
provisioning.

e Simplifies the implementation of quality of service (QoS).

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 32



Software defined networking and network functions virtualization technologies

3 CHAPTER 3" : Network Functions Virtualization (NFV)

Network functions virtualization (NFV) is rapidly reshaping the networking world by moving away
from customized hardware to more flexible and software-based solutions. These changes support the
growing demands for scalable, elastic and agile networks that are essential for cloud-based services
[25]. This chapter first explores the transition from traditional networks to NFV, its basic concepts,
ETSI’s NFV framework and the benefits of NFV. Furthermore, it includes a review of OpenStack
and presents a simple OpenStack implementation.

3.1 The Evolution of Network Architecture

If someone want to understand why the networking industry is quickly adopting NFV, it’s important
to consider the evolution of networks and the challenges they face today. Despite the fact that in
today’s world, the networks have improved in speed and capacity, they still face problems with the
demands of cloud services, huge data centers and loT. Traditional networks cannot handle the new
reality effectively. For example, traditional data transport networks, like early phone and telegram
systems, were designed with a focus on low latency, high availability and minimal data loss. All of
these networks were relied on specialized hardware that was built for specific functions and had a
specific software inside them. With the passage of time, however, the demand for bandwidth became
gigantic, making these devices a bottleneck. So, service providers had to find new technologies such
as NFV to overcome these constrains [25].

Separate Appliance for each Function

Proprietary Software:
Designed to Run on Custom Hardware

Proprietary Hardware:
Custom FPGA/ASIC/Optics/CPU ...

Fixed Network Function

Limited Scalability:
Physical Space and Power Limitations

Figure 3.1: Traditional Network Devices [25]

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 33



Software defined networking and network functions virtualization technologies

Some of the limitations of the traditional network devices were:
Flexibility Limitations

Manageably Issues

Scalability Constrains

Time-To-Market Challenges

Capacity Over-Provisioning

High Operational Costs

Migration Considerations

No ok owhE

Network Function Virtualization takes the central idea of virtualization, which is already common in
data centers with servers, and applies it to network devices. Instead of using dedicated hardware for
specific network functions, NFV allows these functions to be run as software on shared hardware.
This means that the software is separated from the hardware, which also means that network functions
are no longer depend on customized equipment. With the help of NFV, off the shelf hardware (COTS)
can run virtual versions of firewalls, routers and more, making the networks more adaptable and
cheaper to operate. This leads to changes about how networks are built and managed and enables new

designs and innovations that weren’t possible before [25].

Separate Appliance for each Function

Proprietary Software:
Designed to Run on Custom Hardware

Proprietary Hardware:
Custom FPGA/ASIC/Optics/CPU ...

Fixed Network Function

Limited Scalability:
Physical Space and Power Limitations

¢

&

€

-

i
(&&9

NFV Router

AN

/

Virtualized Function on High Capacity Device

Software with Open APls
Designed to Run on Generic Hardware

Generic (COTS) Hardware:
Standard FPGA/ASIC/Optics/CPU ...

Flexible Network Function

Cloud Scale:
Span Across Multiple Locations

NFV Router
NFV Router
NFV Router
NFV Router
NFV Switch
NFV Switch

Figure 3.2: Transition to NFV [25]

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas

34



Software defined networking and network functions virtualization technologies

3.2 ETSI NFV Framework

NFV was introduced in 2012 by a group of service providers to address the challenges of relying on
new hardware for network services. Among these challenges were the deployment cost, design
changes, the complexity of the hardware and the rapid obsolescence of equipment. In order to solve
these issues, NFV was proposed as a solution. In 2013, some leading telecom operators formed a
group known as ETSI with the purpose of creating standards for NFV. The three main criteria they
focused on were the full split of software and hardware (decoupling), the precise control and
monitoring of the network and a way to make the deployment of the network functions scalable and
automated [25]. As a result, an architectural framework specifying separated areas of focus, as shown
in Figure 3.3, was created from these requirements.

Virtualized Network Functions (VNFs)

VNF #2 VNF #1 VNF #3 Sewdohoee
(NAT) (FW) (RTR)

NFV Management and
Orchestration (MANO)

Network Functions Virtualization Infrastructure (NFVI)

Virtual Compute Virtual Storage Virtual Network (eeedepece

Virtualization Layer

Computing and Storage Hardware Network Hardware

Figure 3.3: High-Level ETSI NFV framework [25]

This framework covers the management of VNFs, their interactions, data flow between VNFs and
resource allocation. So, all these tasks were divided into three components:

= Network Functions Virtualization Infrastructure block (NFVI): This component is the
base of the entire architecture. It includes the hardware (servers, ram, disk storage, NAS,
switches, firewalls) needed to run virtual machines, the software that enables
virtualization and the virtualized resources (such as virtual network, virtual storage and
virtual compute) [25] [26].

= Virtualized Network Function block (VNF): This component utilizes the virtual machines
provided by NFVI and enhances them by incorporating software that executes the
virtualized network functions [25].

= Management and Orchestration block (MANO): MANO is a different part of the
architecture that interact with both the NFVI and VNF blocks. It is responsible for
managing all the resources from the infrastructure layer and creating, deleting and
managing resource allocation for the VNFs [25].

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 35



Software defined networking and network functions virtualization technologies

For someone to understand this framework, he must first start with understanding the concept of
VNFs. VNFs are software implementations of network functions like firewalls, NAT devices or
routers, which operate separately from the physical hardware. These VNFs can run on general-
purpose hardware, known as COTS, rather than on specialized devices. Virtualization technologies,
such as hypervisors or containers, enable multiple VNFs to share hardware resources efficiently.
Moreover, VNFs need the necessary infrastructure to operate, so the NFVI helps them by using COTS
hardware as a pool of resources that can be dynamically allocated as required by the VNFs. This setup
allows flexibility, but it also means that VNFs cannot control the hardware resources they use and
therefore they rely on the virtualization layer to manage resource allocation without knowing about
other VNFs sharing the same hardware. To effectively manage this virtualized environment, the ETSI
framework includes the MANO block. MANO has the responsibility to oversee the deployment,
operation and interconnection of VNFs on the NFV1 and ensure that all resources are allocated right.
It could be characterized as the central management system, providing detailed visibility into the
operational status and the usage of the resources. Because of this, MANO is the best interface for
collecting utilization statistics from the operational and billing systems [25].

3.3 MANO Framework

The previous section gave an overview of the ETSI NFV architecture and its core components. The
ETSI framework goes even further by breaking these components into specific functional blocks,
each with its own role and responsibilities. In this section, a short reference will be given to the most
important elements that compose the management and orchestration block (MANO).

S ——
0s{Ma-nfvd j|
. 0SS/BSS — NFV Orchestration (NFVO) =1 |
| T I v - I
{ : I 4 < |Or-vnfm £ T I
| : : I
I i | NS VNF NFV NFVI |
I : 4
! : : Catalog | Catalog Instances||Resources|| |
I i |
I I Vel-anm-em VNF I
T EM I Manager |
: I (VNFM) |
= : Ve-Vnfm-vnf :
VNF | + Vi-Vnfm |
y |
CH- |
TVENE g Virtual I
] Nf-Vi Or-Vi
_ NFVI : : IanUIastructure ; I
| anager |
| (vim) NFV-MANO |
S L U S |
Figure 3.4: NFV MANO architectural framework
UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 36



Software defined networking and network functions virtualization technologies

The MANO block is composed of the Virtualized Infrastructure Manager (VIM), Virtualized
Network Manager (VNFM) and NFV Orchestrator (NFVO).

The Virtualized Infrastructure Manager controls and manages the interaction between NFV and NFVI
resources. It also owns useful deployment and monitoring tools that keep a detailed inventory of
hardware resources.

The VNF Manager is responsible for lifecycle management of VNF instances. It is also responsible
for initialize, update, scale, query and terminate VVNF instances.

The NFV Orchestrator is the pivotal component that allocates resources for a VNF through the VIM
and hands it over to the VNF manager for lifecycle management. Moreover, it is responsible for
instantiation, policy management, KPI monitoring and performance measurement.

The NFVO is further supported by four repositories. The Network Service Catalog (NS Catalog)
which contains usable network services, VNF catalog which contains all the available VNF
descriptors, NFVI resources repository which tracks all the resources that were used and NFV
instances which keeps a record of all relationships between VNFs and NS.

34 Benefits of NFV

Faster Scalability Leveraging
I;Ia;)c(ii\ll)vizre Service and Existing Agility
ty Life Cycle Elasticity Tools

NFV Benefits

Figure 3.5: Benefits of NFV [25]

e Hardware Flexibility: Network operators can use flexible, standard hardware and easily adjust
their resources compared to traditional equipment that requires costly upgrades [25].

e Faster Service Life Cycle: NFV enables rapid, on-demand deployment and removal of
network functions, something which will significantly reduce setup times and costs compared
to traditional hardware installations [25].

e Agility: It is the capability to swiftly deploy, modify or relocate VNFs across the network as
needed [25].

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 37



Software defined networking and network functions virtualization technologies
e Scalability: It allows quick resource adjustments and workload distribution for virtual network

functions [25].

e Leveraging Existing Tools: NFV can leverage and reuse the deployment and management
tools, which will lead to faster deployments without the need for new tools and additional
costs [25].

e Rapid Development and Vendor Independence: Networks operators can quickly adopt
different vendors’ solutions without high costs and they can rapidly develop new features with
open-source support [25].

e Validation of New Solutions: NFV makes testing solutions more cost effective by allowing
test setups without having to replicate the full production environment [25].

e Amorphous Service Offering: NFV helps network providers to add or scale down services

depending on demand and shift resources to different locations according to needs [25].

3.5 OpenStack

Traditional applications that run on VMs are most of the time managed by coordination tools like
VMware and rely on high availability through traditional infrastructure like SAN storage. But cloud-
based applications, such as Hadoop and MySQL, are built completely differently because they are
designed to scale horizontally across multiple servers and to handle failures independently of the
infrastructure. Unlike common applications that depend on high availability, cloud applications
expect failures and manage their own resiliency, making monolithic architectures unsuitable. As a
result, Cloud platforms take a different approach from virtualization. They don’t rely on shared
infrastructure for availability but instead they prefer to use commodity hardware for horizontal scaling
and they move application resiliency up the software stack. This philosophy enables cloud-based
applications to operate in an efficient way without the need for expensive and redundant infrastructure
[19].

OpenStack is a cloud management platform designed to handle this new architecture. It’s an open-
source project supported by major tech companies that acts as an operating system for building public
and private clouds. Among many other things, OpenStack is a VIM solution, which means that it
offers control over NFV infrastructure, handling storage networking and compute across both virtual
machines and physical hardware. The platform also allows users to easily deploy, manage and remove
VMs within the cloud environment [27]. OpenStack consists of multiple components. The most
important ones are:

Nova: This is the primary controller in any laaS system and its basic job is to control and
automate computer resources.

Horizon: This is a GUI that users enter to manage and monitor the whole network.

Neutron: This is a system that its purpose is to manage networking and IP address assignment.
Glance: This is an image service that manages disk and server images.

Keystone: This is a system that provides authentication and identity services.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 38



Software defined networking and network functions virtualization technologies
Cinder: This is a block storage service that it is designed to give users storage resources and it

virtualizes block storage device management.

OpenStack is a critical component in NFV architectures, especially in telecommunication
environments, because of its flexible and multi-tenant infrastructure. Its standardized interfaces allow
seamless orchestration of NFV elements such as virtual machines, containers and storage, simplifying
the management of tasks through automation. In fact, its architecture is well-proven for creating
scalable clouds by using existing tools such as APIs and other services. OpenStack integrates without
difficulty with Kubernetes especially in telecom sectors preparing for 5G, where containers usually
outperform virtual machines. As a result, OpenStack, NFV and containerization form an ideal
combination.

3.6 OpenStack implementation

In this simple OpenStack implementation, a basic private cloud environment will be set up. The
easiest and most straightforward way to deploy OpenStack is a single-node installation, where all the
OpenStack services run on a single machine. In this case, this will be done using DevStack, a set of
scripts which will automate the installation and configuration of OpenStack components. The base
operating system will be an Ubuntu Desktop which will run inside Oracle’s VirtualBox.

The first step is to download and install DevStack from the official repository with the following
command:

$ git clone https://opendev.org/openstack/devstack

Next, a configuration file named local.conf in the DevStack directory must be created. This file will
contain the basic configuration for a minimal installation of DevStack. This can be done using:

% cd devstack

% cat <<EOL > local.conf
[[local|localrc]]
ADMIN PASSWORD=password

DATABASE PASSWORD=password
RABBIT_PASSWORD=pass

SERVICE PASSWORD=password
HOST IP=your server ip

EOL

After the configuration, the DevStack’s installation script is:

Once the installation is complete, OpenStack will be accessible through the Horizon dashboard by
opening a web browser and going to the following address: http://user’s_server_ip/dashboard. Users
can login by using the credentials they set in the local.conf file.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 39



Software defined networking and network functions virtualization technologies

B I3 Devstack—Devstackdo X | £3 Login - OpenStack Dashb X | + v o &)

« ¢} O R 100215 A g 8 =
c—
] |l
=
openstack.

Login

User Name

Password

E:A

Figure 3.6: OpenStack dashboard (Horizon)

After the installation the core services can be checked that they run properly from the OpenStack
CLI:

$ openstack service list

$ openstack service list

01c2cb1104fe4271abfan260c6510d40 block-storage
04ce495ced604cb5b7ba583d941dcced placement placement
0679259055174b2b9fd65af4e3a1880a cinderv3 volumev3
Da67042e3eb242eebd2dfed442255de77 neutron network
263cfb485e324968%af3aaecbb103f94 nova compute
86ab7ffe972b4bea95241a706cB8591e8 nova_legacy compute_legacy
c2c23694292642d79cc6lede2e2a8d2d keystone identity
dbea491e378b441cae30112479d9%ef5a

Figure 3.7: List of running services
We can set up a new project and a new user to start testing OpenStack, using the next commands:

$ openstack project create --domain default --description "Test Project” name_of project

% openstack user create --domain default --password-prompt name of user

Also, we can ensure that the required components are available such images, flavors, networks and
keypairs with the following commands:

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 40



Software defined networking and network functions virtualization technologies
openstack image list
openstack flavor list

openstack network list
openstack keypair list

S openstack image list

———————— +
Status |
———————— +
active |
———————— +

Is Public |
——————————— +

|
|
|
I
|
16384 |
1.micro 256 ] ] = |
cirros2s6 256 ] |
ds512M 512 |
ds1G 1024 |
ds2G 2048 |
|

——————————— +

Figure 3.8: Lists of available images and flavors

If one of these components is missing, we have to create it. For example, if we want to create an SSH
keypair the command is:

$ openstack keypair create --public-key ~/.ssh/id rsa.pub mykey

If we want to create a new network and a subnet, the commands are:

$ openstack network create mynetwork

$ openstack subnet create --network mynetwork --subnet-range 10.0.8.8/24 mysubnet

Now that we have the necessary components, we can launch VM instances with the following
command:

$ openstack --os-project-name <project name> server create --image <image name> --flavor <flavor_name>

--network <network name> --key-name <keypair name> <instance_name>

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 41



Software defined networking and network functions virtualization technologies

$ openstack role add --project test_project --user admin member
g $ openstack --os-project-name test_project server create --image cirros-0.6.2-x86_64-disk -
-flavor mi.nano --network shared --key-name mykey giannisf
SR

-flavor mi.micro

0S-DCF:diskConfig
0S-EXT-AZ:availability_zone
0S-EXT-STS:power_state
0S-EXT-STS:task_state
0S-EXT-STS:vm_state
0S-SRV-USG:launched_at
0S-SRV-USG:terminated_at
accessIPv4

accessIPV6

addresses

adminPass

config_drive
created
flavor
hostId

id

image

key_name

LELT
os-extended-volumes:volumes_attached
progress
project_id
properties
security_groups
status

updated

user_id

network shared

0S-EXT-A
0S-EXT-STS:
0S-EXT-STS:
0S-EXT-STS:
0S-SRV-USG:
0S-SRV-USG
accessIPv4
accessIPv6
addresses
adminPass
config_drive

created

flavor

hostId

id

image

key_name

name
os-extended-volumes:volumes_attached
progress

project_id

properties

security_groups

status

updated

user_id

vailability_zone
power_state
task_state
vm_state
launched_at
:terminated_at

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas

MANUAL

NOSTATE
scheduling
building
None

None

CKQ89QenZR5s

2024-09-09T04:39:18Z
ml.nano (42)

81cb40ab-8ec9-423e-9678-5a05f3a51f0e

cirros-0.6.2-x86_64-disk (2e45ff89-19ed-4224-a62d-db7a%4aca2a3)
mykey

giannisf

[]

(]

0c35211baged4e8daaa232d0e®0916b1

name="'default’

BUILD

2024-09-09T704:39:17Z
715cd6334ea24955bc74f5ba8c551c6e

Figure 3.9: The first instance

$ openstack --os-project-name test_project server create --image cirros-0.6.2-x86_64-disk -
--key-name mykey giannisf2

MAN

NOSTATE
scheduling
building
None

None

tETfbUbATIHS

2024-09-09T704:43:04Z
mil.micro (84)

ceb224a6-4308-4d4a-9335-eb9ee6478ad3

cirros-0.6.2-x86_64-disk (2e45ff89-19ed-4224-a62d-db7a94aca2a3)
mykey

giannisf2

[1

(¢}

0c35211baged4e8daaa232d0e009

name="default'’

BUILD

2024-09-09T04:43:04Z
715cd6334ea24955bc74f5ba8c551c6e

Figure 3.10: The second instance

42



Software defined networking and network functions virtualization technologies

B 3 Devstack— Devstack dc X | £3 Instance Overview - Ope X | + v B o &
“ (&) O R 10.0.2.15/dashboard/project w ® © 8 =
3 openstack = test_project v & admin v
Profeet v Overview
API Access
Compute v wsin
Limit Summary
Compute
Instances . '
Images
Key.Pairs Instances VCPUs RAM
Server Groups Used 2of 10 Used 2 of 20 Used 448MB of 50GB
Volume
Volumes
Network >
|dentity >
Volumes Volume Snapshots Volume Storage
Used 0 of 10 Used 0 of 10 Used 0B of 1000GB
Network
Floating IPs Security Groups Security Group Rules Networks Ports Routers
Allocated 0 of 50 Used 1 of 10 Used 4 of 100 Used 0 of 100 Used 2 of 500 Used 0 of 10

BONES O™ E @Rt

Figure 3.11: OpenStack’s dashboard overview

(B | IS Devstack —DevStack dc X | £3 Instances - OpenStack D: X | + v = o &
< C O & 10.0.2.15/dashboard/project/instances w ® é =
—
= = openstack = test_project v & admin v
Project v
Project / Compute / Instances
API Access
_— . Instances
Overview
m Instance ID =~ Filter & Launch Instance Delete Inst: More Actions +
Images Displaying 2 items
Inst: i K Availabilit Py
Key Pairs velance M9 1p Address Flavor ) Status VURRTY v O A Actions
Name Name Pair Zone State
Server Groups
cirros-0.6.
Viitines N 0O giannisf2 2-x86_64- 192.168.233.114 mi.micro mykey Active nova None Running 1 minute Create Snapshot | v
disk
Nefworls > cios-0.6.
0O  giannisf 2-x86_64- 192.168.233.160 mi.nano mykey Active nova None  Running 5 minutes Create Snapshot | v
Identity > disk

Displaying 2 items

’! "@& @Gﬁ'aumghtctrl

Figure 3.12: The two created instances in the dashboard

That was a simple way to create an instance in OpenStack using the OpenStack CLI. We can further
manage and customize instances by resizing or attaching volumes through the OpenStack CLI or

Horizon dashboard.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 43



Software defined networking and network functions virtualization technologies

4  Conclusions

The convergence of virtualization, containerization, cloud computing, SDN and NFV is changing
significantly the modern network architectures. This thesis has explored how these technologies work
in synergy to satisfy the ever-increasing demands for flexible, scalable and cost-effective network
solutions. Because they abstract physical resources and decouple network functions from hardware,
these innovations have made a big step toward more agile and software-driven infrastructures that
can quickly adapt to dynamic and complex network environments. Virtualization has proven to play
an important role in networking by utilizing resources efficiently and simplifying management.
Meanwhile containerization is a technology that offers lightweight, portable solutions that make the
deployment of applications very fast, especially inside cloud-native environments. Together these
technologies have changed to a great extent the way that resources are provisioned and managed,
making cloud computing the best option for scalable and on-demand services. SDN has completely
changed network control because it has left from the traditional model in which each device works
as an isolated unit and has moved to centralized management through a controller. Finally, NFV, by
virtualizing traditional network functions, has advanced even further in the direction of software-
defined infrastructures, which means lower capital and operational expenses plus rapid deployment
of network services.

Through the analysis presented in this thesis, it is clear that the integration of SDN, NFV and
containerized environments within cloud infrastructures has huge potential for future network
evolution. These technologies not only optimize the performance of the networks but also introduce
new levels of automation, flexibility and customization. Their big impact is especially obvious in
emerging fields such as 5G and 6G networks, where the ability to deploy and manage services
dynamically, is paramount.

In conclusion, this thesis tries to help readers understand how SDN and NFV are essential components
in the development of next-generation network infrastructures. These technologies enable a shift
away from hardware-centric architectures toward fully software-based, programmable and automated
networks. As our area is characterized by 5G, 10T and edge computing, the continued evolution of
these technologies will be definitive if we want to build flexible, scalable and intelligent networks.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 44



Software defined networking and network functions virtualization technologies

5

(1]

(2]

(3]
(4]
(5]
(6]

(7]

(8]

(9]

Bibliography — References — Online Sources

R. J. Creasy, "The Origin of the VM/370 Time-Sharing System," in IBM Journal of Research and
Development, vol. 25, no. 5, pp. 483-490, Sep. 1981, doi: 10.1147/rd.255.0483.

R. R. P. Goldberg, "Survey of virtual machine research," in Computer, vol. 7, no. 6, pp. 34-45, June
1974, doi: 10.1109/MC.1974.6323581.

“What is containerization? | IBM.” https://www.ibm.com/topics/containerization [Accessed June 2024]

E. Bauer and R. Adams, Reliability and availability of cloud computing. Wiley-IEEE Press, 2012.

“What is virtualization? | IBM.” https://www.ibm.com/topics/virtualization [Accessed June 2024]

M. Portnoy, Virtualization essentials. Indianapolis, In Wiley Pub., Inc, 2012.

A. K. Alnaim, A. M. Alwakeel and E. B. Fernandez, "A Pattern for an NFV Virtual Machine
Environment," 2019 IEEE International Systems Conference (SysCon), Orlando, FL, USA, 2019, pp.
1-6, doi: 10.1109/SYSCON.2019.8836847.

“Oracle VM VirtualBox User Manual,” Feb. 04, 2020.
https://docs.oracle.com/en/virtualization/virtualbox/6.0/user/clone.html [Accessed June 2024]

J. Nickoloff, Docker in Action. Manning Publications, 2016.

[10] M. Luksa, Kubernetes in action. Manning Publications, 2018.

[11] “What is cloud computing? | IBM.” https://www.ibm.com/topics/cloud-computing [Accessed May

2024]

[12] “What are IAAS, PAAS and SAAS? | IBM.” https://www.ibm.com/topics/iaas-paas-saas [Accessed

May 2024]

[13] T. Diaby and B. B. Rad, "Cloud Computing: A review of the Concepts and Deployment Models,"

International Journal of Information Technology and Computer Science (I1JITCS), vol. 9, no. 6, pp. 50-
58, 2017.

[14] GeeksforGeeks, “Cloud deployment models,” GeeksforGeeks, May 03, 2023.

https://www.geeksforgeeks.org/cloud-deployment-models/ [Accessed May 2024]

[15] “Cloud Deployment Model - javatpoint,” www.javatpoint.com. https://www.javatpoint.com/cloud-

deployment-model [Accessed June 2024]

[16] B. Sosinsky, Cloud Computing Bible. John Wiley & Sons, 2011.

[17] “Advantages of Cloud Computing | Google Cloud,” Google Cloud.

https://cloud.google.com/learn/advantages-of-cloud-computing [Accessed June 2024]

[18] Z. MakaroV, “A survey on next generation networks and cloud computing,” Uniwa.gr, 2021, doi:

https://polynoe.lib.uniwa.gr/xmlui/handle/11400/577.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 45


https://www.ibm.com/topics/containerization
https://www.ibm.com/topics/virtualization
https://docs.oracle.com/en/virtualization/virtualbox/6.0/user/clone.html
https://www.ibm.com/topics/cloud-computing
https://www.ibm.com/topics/iaas-paas-saas
https://www.geeksforgeeks.org/cloud-deployment-models/
https://www.javatpoint.com/cloud-deployment-model
https://www.javatpoint.com/cloud-deployment-model
https://cloud.google.com/learn/advantages-of-cloud-computing
https://polynoe.lib.uniwa.gr/xmlui/handle/11400/577

Software defined networking and network functions virtualization technologies
[19] J. Doherty, SDN and NFV Simplified: A Visual Guide to Understanding Software Defined Networks
and Network Function Virtualization, Addison-Wesley Professional, 2016.

[20] M. Karakus and A. Durresi, “A survey: Control plane scalability issues and approaches in Software-
Defined Networking (SDN),” Computer Networks, vol. 112, pp. 279-293, Jan. 2017, doi:
https://doi.org/10.1016/j.comnet.2016.11.017.

[21] Open Networking Foundation, "SDN architecture," no. 1, 2014.
[22] T. D. Nadeau and K. Gray, SDN: Software Defined Networks. O’Reilly Media, 2013.
[23] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A Survey on Software-Defined

Networking,” IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp. 27-51, 2015, doi:
https://doi.org/10.1109/comst.2014.2330903.

[24] Q. Long, Y. Chen, H. Zhang, and X. Lei, “Software Defined 5G and 6G Networks: a Survey,” Mobile
Networks and Applications, vol. 27, no. 5, pp. 1792-1812, Nov. 2019, doi: 10.1007/s11036-019-
01397-2.

[25] R. Chayapathi, S. F. Hassan, and P. Shah, Network Functions Virtualization (NFV) with a Touch of
SDN. Addison-Wesley Professional, 2016.

[26] M. S. Bonfim, K. L. Dias, and S. F. L. Fernandes, “Integrated NFV/SDN Architectures,” ACM
Computing Surveys, vol. 51, no. 6, pp. 1-39, Feb. 2019, doi: 10.1145/3172866.

[27] K. Gray and T. D. Nadeau, Network Function Virtualization. Morgan Kaufmann, 2016.

UNIWA, Department of Electrical & Electronics Engineering, Diploma Thesis, loannis Fatseas 46


https://doi.org/10.1016/j.comnet.2016.11.017
https://doi.org/10.1109/comst.2014.2330903

		2024-10-07T12:52:51+0300
	ELENI AIKATERINI LELIGKOU


		2024-10-07T16:40:26+0300
	PANAGIOTIS KARKAZIS


		2024-10-08T00:05:33+0300
	CHARALAMPOS PATRIKAKIS




