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Abstract

In the �eld of aerospace engineering, the optimization of airfoil design plays a critical role in enhancing
aircraft performance. This thesis proposes a novel algorithm for Uncertainty Quanti�cation, which facil-
itates the solution of Navier - Stokes through an iterative process. UQ is carried out by employing Monte
Carlo and Polynomial Chaos methods. This methodology aims to improve computational e�ciency while
accurately assessing the impact of various parameters, such as Reynolds number and airfoil camber, on
aerodynamic characteristics.

The study emphasizes the UQ results, revealing how variations in Reynolds number and airfoil camber
signi�cantly in�uence aerodynamic characteristics. The �ndings highlight critical areas of uncertainty,
particularly around the leading and trailing edges of the airfoil and the wake region, where variations in
�ow conditions introduce signi�cant �uctuations.

While the research demonstrates the algorithm's e�ectiveness, limitations are acknowledged, par-
ticularly in handling unsteady �ows and complex geometries, as well as the need for improvements in
directly computing lift and drag forces. Future work may involve integrating the developed algorithm
with machine learning models for design optimization and extending its capabilities to accommodate
more intricate �ow conditions.
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Περίληψη

Στον τομέα της αεροδιαστημικής μηχανικής, η βελτιστοποίηση του σχεδιασμού της αεροτομής διαδραματίζει
κρίσιμο ρόλο στην ενίσχυση των επιδόσεων των αεροσκαφών. Στην παρούσα διατριβή προτείνεται ένας
νέος αλγόριθμος για την ποσοτικοποίηση της αβεβαιότητας, ο οποίος διευκολύνει την επίλυση των Navier -
Stokes μέσω μιας επαναληπτικής διαδικασίας. Η UQ πραγματοποιείται με τη χρήση μεθόδωνMonte Carlo και
πολυωνυμικού χάους. Η μεθοδολογία αυτή αποσκοπεί στη βελτίωση της υπολογιστικής αποτελεσματικότη-
τας, ενώ παράλληλα αξιολογεί με ακρίβεια την επίδραση διαφόρων παραμέτρων, όπως ο αριθμός Reynolds
και η κύρτωση της αεροτομής, στα αεροδυναμικά χαρακτηριστικά.
Η μελέτη δίνει έμφαση στα αποτελέσματα της UQ, αποκαλύπτοντας πώς οι μεταβολές του αριθμού

Reynolds και της κύρτωσης της αεροτομής επηρεάζουν σημαντικά τα αεροδυναμικά χαρακτηριστικά. Τα
ευρήματα αναδεικνύουν κρίσιμες περιοχές αβεβαιότητας, ιδιαίτερα γύρω από τα μπροστινά και πίσω άκρα
της αεροτομής και την περιοχή του απόνερα, όπου οι μεταβολές στις συνθήκες ροής εισάγουν σημαντικές
διακυμάνσεις.
Αν και η έρευνα καταδεικνύει την αποτελεσματικότητα του αλγορίθμου, αναγνωρίζονται οι περιορισμοί,

ιδίως στο χειρισμό ασταθών ροών και πολύπλοκων γεωμετριών, καθώς και η ανάγκη για βελτιώσεις στον
άμεσο υπολογισμό των δυνάμεων άνωσης και αντίστασης. Η μελλοντική εργασία μπορεί να περιλαμβάνει
την ενσωμάτωση του αλγορίθμου που αναπτύχθηκε με μοντέλα μηχανικής μάθησης για τη βελτιστοποίηση

του σχεδιασμού και την επέκταση των δυνατοτήτων του για την αντιμετώπιση πιο περίπλοκων συνθηκών

ροής.

Λέξεις - κλειδιά: Uncertainty Quanti�cation, Aerodynamic Design, Navier-Stokes Equations,
Reynolds Number, Airfoil Optimization
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Chapter 1

Introduction

Within the �elds of aerospace and aeronautical engineering, the continuous pursuit for optimal perfor-
mance drives the re�nement of aerodynamic structures. Airfoil design is a crucial element in�uencing
aircraft performance. A well-designed airfoil signi�cantly impacts the lift, drag, and overall aircraft
e�ciency [50], laying the groundwork for ongoing advancements and innovation in the industry.

The origins of aeronautical engineering can be traced back several centuries. There are examples of
human experimentation with �ight, from antiquity and mythology, notably the myth of Icarus [81]. An
early approach to the design of �ying machines was made by Leonardo da Vinci in the 1500s who, among
others, he designed the ornithopter [50], [82]. A few centuries later, substantial progress in the science
of aeronautics was made by the "father of aerial navigation", Sir George Cayley [39]. Cayley introduced
several pioneering concepts for aircraft, including gliders, various types of airplanes, and even a primary
helicopter. However, one of his fundamental works was the formulation of the four basic aerodynamic
forces that a�ect �ight: lift, weight, thrust, and drag. In the early 1900s, the �rst documented powered
�ight was achieved by the Wright brothers [30]. Following this pivotal accomplishment, the demand for
e�cient and safe aircraft for both military and civilian purposes drove researchers and manufacturers to
develop new tools and methodologies for the study and design of such systems. It is also noteworthy to
mention the signi�cant advancements in wing design with the development of the NACA airfoil series
(4-digit, 5-digit, 6-digit, etc.) in 1933. This type of airfoil was designed and named after the National
Advisory Committee for Aeronautics (NACA). In order to simulate �ight conditions more accurately,
the committee conducted extensive testing in a variable-density wind tunnel for large Reynolds number
values. Through this research, a technical report was published in 1933 containing 78 wings with di�erent
characteristics [51], and the generated data enabled researchers and manufacturers to choose the most
appropriate wing for a given application and is used to this day.

Over time, the advancement of aeronautics has increasingly relied on computational methods [52].
Prior to 1960, the use of such methods was not common in aerodynamic studies. Instead, manual
calculations and extensive wind tunnel testing were the norm. However, from 1960 onwards, researchers
used digital computers for simple calculations and the analysis of individual aircraft components.

One of the most fundamental computational and modelling techniques is the Finite Element Method
(FEM). The basic theory of FEM for structural analysis was published in 1943 by mathematician R.
Courant [92], [29]. Nevertheless, the concept of �nite elements was �rst described by M. J. Turner in
1953 as part of an internal research program at Boeing. From the mid-1960s to the early 1990s, FEM
was rapidly developed and gradually became an indispensable tool for researchers and scientists [92], and
in the following decades, its applications expanded in areas such as industrial application and material
modelling [63]. Today, FEM is used for solving a variety of problems associated with structural, thermal,
and �uid dynamics analysis, and can be implemented through software such as ANSYS[1].

One of the most common CFD problems that has captured the interest of researchers through the
years, is Uncertainty Quanti�cation (UQ). Initially neglected by researchers [56], the impact of uncer-
tainty and randomness was eventually recognized after the end of the 19th century, and its study began
to be included in the development of more robust and reliable models. In the early stages of uncertainty
analysis, up until the late 20th century, probability theory played a central role. A notable contribution
was made by Lot� Zadeh, who introduced the theory of fuzzy sets in 1965 [107]. Another signi�cant
method is Polynomial Chaos Expansion, developed to mathematically characterize data and numerical
errors consistently [37]. Finally, in the mid-20th century, one of the most widely adopted methods,
the Monte Carlo simulation, was developed. The principal developers of the Monte Carlo method were
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Stanislaw Ulam and John von Neumann. The method was conceived by Ulam, who based its fundamental
theory on the principles of gambling.

The focus of the present Research is the uncertainties present in aerodynamic simulations. These
uncertainties pose signi�cant obstacles that must be managed to achieve robust design and optimization
methodologies regarding airfoil structures. While extensive research has been conducted on the aero-
dynamics of NACA airfoils, this thesis proposes a new algorithm developed to calculate steady-state
�ows under uncertainty. This algorithm employs a Newton-type iterative method for solving the coupled
Navier-Stokes equations describing the problem and aims to address the uncertainties in �ow calculation
by conducting faster and less computationally expensive simulations. The ultimate goal is to apply this
knowledge to optimize aircraft design, resulting in more durable and e�cient structures.

The thesis is organized as follows:

� Chapter 2: Theoretical Background

� Chapter 3: Methodology

� Chapter 4: Results

� Chapter 5: Discussion

� Chapter 6: Conclusions
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Chapter 2

Theoretical Background

2.1 Basic aerodynamics principles

The science of aeronautical and aerospace engineering has not only impacted science and technology but
also everyday life. The modernization of air transport, the development of geolocation systems, and
space exploration are just a few examples of their importance to humanity. However, as the focus of this
thesis lies in the optimization of airfoils, some theoretical background must be established, like the basic
principles of aerodynamics, which allowed the design and construction of the various types of aircraft as
we know them today.

2.1.1 Air properties

As this thesis focuses on aerospace applications, the �uid medium considered is atmospheric air. The
air is characterized by properties such as mass, speci�c volume, density, viscosity, and temperature. The
two most relevant ones for this study are density and viscosity.

� Density (ρ): is de�ned as the �uid mass per unit volume, as indicated by its formula

ρ =
m

V
(2.1)

� Viscosity: can be classi�ed as,

� Dynamic viscosity (µ): the measure of its resistance to �ow when an external force is
applied [18]

� Kinematic viscosity (ν): the ratio of the dynamic viscosity to the �uid density

ν =
µ

ρ
(2.2)

The following table (Table 2.1) shows the main properties of atmospheric air at 20◦C, at sea level:

Quantity Symbol Value Measurement Unit
Density ρ 1.204 kg/m3

Viscosity µ 1.8× 10−5 Pa · s

Table 2.1: Air properties

2.1.2 Aerodynamic forces

In J. Anderson's book, Fundamentals of Aerodynamics [17], the aerodynamic forces exerted on a body,
e.g. a wing, are de�ned as the result of the pressure distribution and the shear stresses, acting vertically
and tangentially on the surface, respectively. The shear stress is a result of the "pull" exerted on the
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Figure 2.1: Pressure and shear stress on the surface of an airfoil [17]

Figure 2.2: Shear stress distribution on airfoil surface [50]

surface of the airfoil due to the friction between the airfoil and the air stream. This force acts tangentially
to the surface. Similarly, the pressure acts perpendicular to the surface, as indicated in Figure 2.1. The
resulting shear stress distribution is shown in Figure 2.2.

Often used when studying the aerodynamic behavior of bodies, the free-�ow velocity, denoted as V∞,
is considered as the air's velocity measured at an 'in�nite' distance from the body, such that it is a�ected
by neither the geometry of the body nor the boundaries of the domain.

The four fundamental aerodynamic forces developed are (Figure 2.3) [17], [49]:

1. Thrust (T): The primary propulsive force responsible for the forward movement of a body, such
as an aircraft.

2. Drag (D): The resistive force that opposes thrust, thereby hindering the forward motion of the
body.

3. Lift (L): The force that enables the elevation of the body, contributing signi�cantly to �ight.

4. Weight (W): The force resulting from the gravitational attraction of the Earth.

The aforementioned forces' values are set depending on the application. For example, during �ight,
the lift and thrust of the aircraft require overcoming the forces of weight and drag that are developed.
Therefore, with proper aircraft design, the desired values of these forces can be achieved.

2.1.3 Dimensionless numbers

To study the 2D �ow around a NACA airfoil, in addition to the basic aerodynamic forces, it is essential to
understand several key dimensionless numbers. These numbers are crucial for analyzing and predicting
the aerodynamic performance of the airfoil. The most important dimensionless numbers include:

Figure 2.3: Aerodynamic forces on an airfoil
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� The Reynolds number is de�ned as the inertia forces over the viscous forces. It provides a measure
of comparison among the di�erent types of �ow. For low Reynolds numbers, the viscous forces
dominate, resulting in a smooth and steady �ow, known as laminar �ow. On the other hand, as
the Reynolds number increases, the inertia forces prevail, causing the �ow to become turbulent.
Viscous (or laminar) �ows become turbulent after a 'threshold' Reynolds number value, named
critical Reynolds number, Re = Rec. Its value changes depending on the application, e.g. in
pipeline �ow applications, the critical Reynolds number has a value of Rec = 2000.
As previously stated, the Reynolds number is a key factor in determining the �ow regime. Table
2.2 illustrates the various �ow regimes based on the Reynolds number [88].

Reynolds number (critical) < 105 105 < Re < 106 > 106

Flow regime Laminar Transition Turbulent

Table 2.2: Flow regimes based on Reynolds number

Laminar �ow is de�ned as a �uid motion in which the layers of the �uid move in a smooth and
parallel manner, with minimal mixing between the layers. The transition �ow regime, as indicated
by its name, represents a transition from laminar to turbulent behavior. The �ow gradually becomes
less predictable, with intermittent turbulence and �uctuations. Last, on the turbulent �ow regime,
the �uid exhibits a high degree of unpredictability, with eddies varying in size superimposed upon
the main �ow. Turbulent �ow is a complex process which is much more probable in practical
applications than the laminar �ow [58].

It is de�ned by the formula:

Re =
ρ · v · L
µ

=
v · L
ν

(2.3)

where: v: the velocity of the �uid relative to the object, L: a characteristic length (such as the
diameter of a pipe or the chord length of an airfoil), µ: the dynamic viscosity of the �uid.

� Mach number (Ma): The Mach number is the ratio of the velocity of a �uid to the velocity of
sound in that �uid [11].

Ma =
v

vs
(2.4)

The speed of sound in air at 20◦C is:
vs = 343m/s

The Mach number is a crucial concept in the study of �uid �ows, as it allows us to distinguish between
di�erent types of �ow regimes. Fluid �ows can be distinguished according to their velocity as: Subsonic,
Transonic, Sonic, Supersonic, Hypersonic and Hypervelocity. The Mach number values corresponding to
the speci�c �ow types are presented in the following table (Table 2.3) [59]:

Regime Subsonic Transonic Sonic Supersonic Hypersonic Hypervelocity
Mach <0.8 0.8 - 1.2 1.0 1.2 - 5.0 5.0 - 10.0 >10.0

Table 2.3: Flow regimes categorized by Mach number at standard conditions

2.1.4 Boundary layer

The boundary layer is a crucial concept of �uid mechanics, which describes a small area between the
bulk �ow, characterized by the outer (or free-stream as mentioned above) velocity U∞, and the solid
wall. The thickness of the boundary layer is not constant, but it develops in the direction of the �ow.

Figure 2.4 illustrates a well-known example of �uid �ow over a horizontal plate. The �uid �ows at a
velocity of u∞(= V∞). The surface of the plate is not smooth, consequently, it exhibits frictional forces
when in contact with the mass of the �uid. This results in zero �uid velocity at the surface of the plate.
However, as we move vertically away from the surface of the plate, the e�ect of the plate on the �ow,
namely the frictional forces, decreases, resulting in a gradual increase in velocity. Finally, the thickness
of the boundary layer, δx, is formed at the point where the �uid velocity reaches 0.99u∞.

The boundary layer thickness can be computed by the following formula [70]:
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Figure 2.4: Boundary layer on �at plate

Figure 2.5: Visualisation of the �ow separation [97]

δ99
x

= η99Re
1
2
x (2.5)

where: Re is the Reynolds number and η99 is a constant with a value of 0.49 for equilibrium �ows,
and for non-equilibrium �ows its value may vary up to 0.99.

2.1.5 Flow separation

A key factor a�ecting the performance of the airfoil is the �ow separation. This phenomenon consists of
the separation of the �ow from the airfoil surface. It can be caused either by a severe adverse pressure
gradient or by geometric de�ection of the airfoil (increase in angle of attack). Flow separation initiates
within the boundary layer when the shear stress in the wall reaches a zero value due to �ow deceleration
(White, 2009). This phenomenon results in the formation of an unstable region characterized by elevated
turbulence levels and recirculation zones. Flow recirculations may potentially form instabilities such as
von Karman and Kelvin-Helmholtz [97]. A schematic illustration of the separation phenomenon is
provided in Figure 2.5.

It is widely acknowledged that separation is almost always associated with a decrease in lift, a drag
increase, and pressure recovery losses. Furthermore, as discussed in the section on angle of attack,
separation of the �ow from the airfoil surface is the primary cause of the stall e�ect, which results in a
signi�cant reduction in lift and drag due to the dominance of the aircraft's weight. Factors such as lift
and drag contribute to wing e�ciency, and the occurrence of separation has a detrimental e�ect on it
[41].

2.2 Fundamental Equations

The basic equations that govern the dynamics of �uids form the foundation upon which the study of the
behavior of �uids under various conditions is based. These equations integrate fundamental principles
such as the conservation of mass, �ow, and energy. The application of these equations enables the predic-
tion of �ow patterns, pressure distributions, and velocity �elds, thereby facilitating the optimization of
the design, construction, and operation of aircraft and their components. The aforementioned equations
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include the Conservation of Mass, Momentum, and Energy, as well as the Navier Stokes Equations
[100].

2.2.1 Conservation of Mass, Energy and Momentum

Conservation of Mass

The conservation of mass describes that mass cannot be created or destroyed, i.e. that mass remains
constant within a control volume. It is also known as the continuity equation. In summary, the time
rate of change of mass in a control volume at a given time is equal to the net rate of mass �ow in the
control volume at that time [100].

The conservation of mass for a compressible �uid in three-dimensional Cartesian coordinates can be
described by the following equation:

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0 =⇒ ∂ρ

∂t
+∇ · (ρu) = 0 (2.6)

The �rst term from the left side of the equation is the rate of change in time of the density (mass
per unit volume), while the remaining three partial derivatives describe the pure mass �ow out of the
element through its boundaries, which is referred to as the convection term.

In the case of an incompressible �uid, which is of particular relevance to the present research, the
density ρ is assumed to be constant. Consequently, equation 2.6 becomes:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 =⇒ ∇ · (u) = 0 (2.7)

where: ρ is the �uid density, u is the velocity component in the x-direction, v is the velocity component
in the y-direction, and w is the velocity component in the z-direction

Conservation of Momentum

Newton's second law of motion concerns the momentum of a body. Speci�cally, it states that the
component of the forces applied to a body is equal to the rate of change of the body's momentum.
Conservation of momentum, therefore, means that the momentum of a system remains constant, it is
not created or destroyed.

The conservation of form equation in three dimensions is given by the following three equations:

� x-component:

∂(ρu)

∂t
+
∂(ρuu)

∂x
+
∂(ρuv)

∂y
+
∂(ρuw)

∂z
=
∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

+ ρfx (2.8)

where: σxx, σxy, and σxz are the components of the stress tensor, and fx is the body force per unit
mass in the x-direction.

� y-component:

∂(ρv)

∂t
+
∂(ρvu)

∂x
+
∂(ρvv)

∂y
+
∂(ρvw)

∂z
=
∂σyx
∂x

+
∂σyy
∂y

+
∂σyz
∂z

+ ρfy (2.9)

where: σyx, σyy, and σyz are the components of the stress tensor, and fy is the body force per unit
mass in the y-direction.

� z-component:

∂(ρw)

∂t
+
∂(ρwu)

∂x
+
∂(ρwv)

∂y
+
∂(ρww)

∂z
=
∂σzx
∂x

+
∂σzy
∂y

+
∂σzz
∂z

+ ρfz (2.10)

where: σzx, σzy, and σzz are the components of the stress tensor, and fz is the body force per unit
mass in the z-direction.
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Conservation of Energy

The energy equation is derived from the 1st thermodynamic law which expresses the conservation of
energy within a system. It is described by the general equation [23]:

∂(ρCpT )

∂t
+ (U⃗ · ∇)(ρCpT ) = ṪG + [∇ · α∇(ρCpT )]− (ρCpT )(∇ · U⃗) (2.11)

and for an incompressible medium, in Cartesian coordinates:

∂T

∂t
+ Ux

∂T

∂x
+ Uy

∂T

∂y
+ Uz

∂T

∂z
=

ṪG
ρCp

+

[
∂

∂x

(
α
∂T

∂x

)
+

∂

∂y

(
α
∂T

∂y

)
+

∂

∂z

(
α
∂T

∂z

)]
(2.12)

where: Cp is the speci�c heat capacity at constant pressure, T is the temperature, Ux, Uy, Uz are

the components of the velocity vector U⃗ in the x, y, z directions respectively, ṪG is the volumetric heat
source term, α is the thermal di�usivity.

2.2.2 Navier-Stokes Equations

The Navier-Stokes equations are a system of partial di�erential equations that play a crucial role in the
study of �uid �ows. They were �rst conceptualized by Claude-Louis Navier and further developed by
George Gabriel Stokes. These equations are based on three important physical principles [?] [48]:

1. Newton's law of viscosity:
It de�nes the relationship between the shear stress and the shear rate in a �uid subjected to
mechanical stress, as shown in the following equation [35]:

Shear stress

Shear rate
= constant = viscosity or coe�cient of viscosity (2.13)

2. The conservation of mass (see Eqs. 2.8 through 2.10)

3. Newton's second law:
It de�nes the relationship between force, mass, and acceleration, expressed as:

Force = mass× acceleration (2.14)

In this manner, the Navier-Stokes equations are de�ned in a region Ω, for 0 < t ≤ T as follows:

ρ

(
∂u

∂t
+ u · ∇u

)
− µ∆u+∇p = f (2.15)

∇ · u = 0 (2.16)

2.3 Airfoils

2.3.1 De�nition of an airfoil

The airfoil is arguably the most crucial component of an aircraft, as it serves as the primary source of lift
and thrust. The airfoil has a signi�cant e�ect on the cruising speed, takeo�, landing distances, stalling
speed, handling qualities (particularly in proximity to the stall), and overall aerodynamic e�ciency
throughout the entirety of the �ight. An airfoil constitutes the shape of a wing, designed speci�cally
to generate an aerodynamic force containing both drag and lift as it traverses through a �uid medium
[84], or as per John D. Anderson's de�nition in Basic Principles of Aerodynamics, an airfoil refers to
any cross-section of the wing in a plane parallel to the xz plane if we assume that the wing span extends
along the y-axis. A more detailed comprehension of this de�nition can be obtained from Figure 2.6.

Airfoils are used in a variety of applications, including aeronautics, the automotive industry, and
energy applications such as the construction of wind turbine blades. The speci�c application of an airfoil
is determined by its shape and geometric design characteristics.
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Figure 2.6: Airfoil section [84]

Figure 2.7: Characteristics of airfoil [19]

2.3.2 Airfoil geometry

Basic geometric characteristics

All airfoils, regardless of their speci�c type, are characterized a set of common geometric parameters.
Figure 2.7 illustrates the most important geometrical dimensions of an airfoil.

� The mean camber line which represents the average distance between the upper and lower
surface,

� The extreme points at the front and rear of the airfoil, the leading edge and trailing edge,
respectively,

� The characteristic length of the airfoil or otherwise chord (c), which is the line joining the leading
and trailing edge,

� The camber (m), i.e. the maximum distance between the mean camber line and the chord,
measured perpendicular to the chord, and

� The thickness (t) of an airfoil, which is the distance between its upper and lower surfaces, mea-
sured perpendicular to the chord.

Furthermore, in the context of three-dimensional wings, there is another geometrical component, the
wing's span (b or s). However, the span is a parameter that will not be considered in this thesis, as it is
not applicable to two-dimensional airfoils.

Angle of attack

Another important variable for the study of the �ow around airfoils is the angle of attack, denoted as α,
which is the angle between the wind velocity vector representing the relative motion between the aircraft
and the atmosphere and the chord line [67], as depicted in Figure 2.8 [17]. The angle of attack a�ects
signi�cantly the generation of the lift on the airfoil. As illustrated in Figure 2.9, there is a nearly linear
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Figure 2.8: Graphical representation of the angle of attack versus the forces exerted on the airfoil surface

increase in lift as the angle of attack increases. However, at high values of attack, as depicted in Figure
2.9, the generation of the lift ceases abruptly. That point is referred to as stall, and in such conditions,
the boundary layer separates from the airfoil's surface [93].

The stall angle, i.e. the angle of attack at which stall occurs may vary, but a good approximation
is considered to be around 8◦ − 10◦. Figure 2.10 depicts the summary of the lift characteristics of
NACA64A006, a thin airfoil computed by numerous RANS models.

Center of pressure and aerodynamic center

As previously stated in Section 2.1.2, when �uid �ows around a body, such as air, a pressure �eld is
created which produces a force and moment. The center of pressure is de�ned as the point where the
magnitude of the said moment is equal to zero [87].

The direction in which the airfoil rotates depends on the position of the center of pressure. With that
said, clockwise and counterclockwise rotation occurs, respectively, in the positive and negative pressure
zones (see Figure 2.11).

Consequently, the center of pressure is the point situated on the chord line (between the leading
and trailing edge), which cannot be rotated. As the center of pressure is dependent on the pressure
distribution along the airfoil, it varies with the angle of attack.

Finally, the aerodynamic center of an airfoil can be de�ned as the point on the chord line where the
pitching moment coe�cient remains constant with changes in the angle of attack [87]. It is assumed
that the aerodynamic forces are only applied at this point, thus simplifying the analysis. In the case of
symmetric airfoils, according to the thin airfoil theory [54], the aerodynamic center is typically at 25%
of the chord length from the leading edge. However, in the case of cambered airfoils, this position may
vary slightly. Nevertheless, in most cases, it is presumed to be �xed at the 25% chord position.

2.3.3 Aerodynamic behavior of airfoils

The aerodynamic behavior of an airfoil depends on several key factors, each playing a critical role in
the generation of lift and drag. Some of them are the geometry of the airfoil, the angle of attack, the
smoothness of the surface, and the �ow characteristics.

The geometry of an airfoil depends on several factors. One of them is the thickness ratio, an important
parameter for the generation of lift and drag. Increased maximum thickness results in enhanced maximum
lift and lift-to-drag ratio. However, there is a threshold, beyond which, drag is signi�cantly increased
due to potential laminar separation. Furthermore, increasing the thickness ratio typically improves
aerodynamic performance by increasing maximum lift, zero lift angle of attack, lift/drag ratio, and
pitching moment, while simultaneously decreasing drag [14].
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Figure 2.9: Variation of lift as a function of angle of attack [93]

Figure 2.10: Stall angles[57]
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Figure 2.11: Rotation of airfoil according to the location of the center of pressure [87]

As previously stated in Sub-Section 2.3.2, the angle of attack in�uences the aerodynamic performance
of an airfoil, by causing variations in velocity and pressure along the upper and lower surfaces of the
airfoil. The di�erence in pressure values results in the generation of lift force, until a point where the
airfoil stalls and the lift force is suddenly decreased. The stall point indicates the optimal angle of attack,
on which maximum lift is achieved before the stalling phenomenon occurs. This point has been computed
to correspond to approximately a = 10◦ [13].

Another parameter that impacts lift and drag characteristics, as well as stall attributes, is surface
roughness. Speci�cally, the surface roughness not only in�uences �ow transition, but also boundary layer
separation, resulting in increased drag, and a delay in stall separation [106].

Finally, the �ow characteristics are considered a critical parameter a�ecting the airfoil's overall aero-
dynamic behavior. As previously stated, the type of �ow (laminar to turbulent) is determined by
calculating the Reynolds number. A higher Reynolds number indicates a more turbulent �ow, which
means higher drag, and a delay of �ow separation from the airfoil surface [25].

2.4 NACA airfoils

The NACA airfoil series was developed by the Langley Research Center of the National Advisory Com-
mittee for Aeronautics in 1929 [12], following a comprehensive investigation of a family of airfoils within
the Langley variable-density tunnel. The NACA airfoils are de�ned by a set of mathematical equations
that describe their shape. According to the speci�c characteristics of each type, such as thickness, cam-
ber, and the position of maximum thickness and maximum camber, they are assigned a sequence of digits
that distinguishes them. The resulting airfoil pro�les that were presented in a technical report by NACA
in 1933 [51], represent a benchmark in the design, analysis, and optimization of aircraft wings, propellers,
and other similar aerodynamic structures. In this section, the fundamental design characteristics and
underlying theory of NACA airfoils are explored in detail.

2.4.1 The 4-digit NACA airfoil

The design of NACA airfoils was based on an extensive methodology with the objective of optimizing the
aerodynamic performance. The shape and geometrical characteristics of NACA airfoils are determined by
a series of mathematical equations. Through these equations specify key parameters including thickness,
camber, and their respective positions along the chord.

However, two are the critical parameters identi�ed in the aforementioned NACA report: the thickness
form, and the shape of the mean line, which determine the airfoil's shape and impact its aerodynamic
characteristics.

The Commission studied and recorded the various types of airfoils, while also assigning names to them.
Thus, the �rst type of NACA airfoil was the 4 - digit NACA airfoil, denoted by the code NACA xxxx,
which will also be the main focus of this thesis. By understanding the meaning of each digit separately
researchers and manufacturers are able to select the appropriate airfoil for their speci�c needs.

For example, a NACA 2315 has:

� Maximum camber of 2% of the chord
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� At a position of 0.3 of the chord from the leading edge

� Maximum thickness of 15% of the chord

Note that symmetrical airfoils are denoted as NACA 00xx.
The speci�c characteristics of the NACA airfoils which determine their shape can be calculated by

a set of certain equations and assumptions established by the Committee, which will be presented in
Section 3.3.1 of the Methodology chapter.

2.5 Computational Fluid Dynamics

2.5.1 The Finite Element Method

The Finite Element Method (FEM) is a powerful numerical technique widely used by engineers and
scientists to solve partial di�erential equations (PDEs) in complex systems [31]. It o�ers �exibility and
e�ciency in approximating the solutions of di�erential equations when their analytical computation is
di�cult [40].

FEM represents a continuous geometry as a set of discrete shapes called �nite elements, which are
connected by points called nodes. These points are situated at the boundaries of the elements and are
the site of any interaction with neighboring elements. Furthermore, at the nodes, the values of the �eld
variables are known, although the variation in the continuous �eld is not known due to its complexity.
Therefore, through the nodes and simple functions called interpolation models, the speci�c variation
is approximated. The resulting system of equations (�eld equations), which is in the form of matrix
equations, is solved for the values at the nodes, providing the �nal approximate solutions to the entirety
of elements.

General Description of the Method

Solving any continuous problem using the �nite element method always involves following a clear, step-
by-step process, which can be described as follows [80] [101] [43] [65]:

/
Step 1: Discretization and Element Type Selection

In the initial step of the Finite Element Method, the computational domain is divided into discrete,
non-overlapping sub-regions, called elements. The solution is calculated at points situated at the vertices
of each element, within them, or on their edges. These points are called nodes.

There are various types of elements, shown in Figure 2.12. The choice of the appropriate element type
depends on the speci�c requirements of the problem. One crucial parameter is the size of the elements.
The use of smaller elements is often preferred, as it enhances the accuracy of the solution. However,
this approach increases the computational approach. Therefore, it is necessary to take into consideration
both the accuracy of the results and the computational resources available. Additionally, the element
shape must be determined at this stage as it a�ects the solution of the problem. For example, for one-
dimensional problems consisting of a curve, the elements are in the form of straight segments that form
the original curve. Similarly, for two-dimensional arrays, the elements are triangular or quadrilateral,
and as the complexity of the array increases in three dimensions, the shapes become more complex. So
tetrahedra, triangular prisms, or orthogonal bricks are chosen to represent three-dimensional structures.

/
Step 2: Interpolation Functions

Once the �eld has been discretized, the �nite elements and their nodes have been formed. Knowing
the form of the unknown function governing the problem, it is calculated at the nodes. Therefore, for
each of the elements, so-called interpolation functions are de�ned using the node values, which have the
form of a polynomial. The interpolation functions are also called shape functions.

In nonlinear CFD problems, particularly when using iterative methods like Newton-Raphson, a linear
system of equations is de�ned. Speci�cally, starting from an initial guess u0 one iteration step of the
Newton-Raphson scheme is given by:

∂F (uk)

∂u
· 1uk+1 = −F (uk) (2.17)
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Figure 2.12: Di�erent types of mesh cells [2]
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where u is a vector of unknown values, and the nonlinear system equations for u given by:

F (u) = 0 (2.18)

A popular approach for the solution of said equation systems is the use of a Jacobian matrix ∂F (uk)
∂u

[110].

Step 3: Governing Equations and Boundary Conditions

The governing equations are related to the physics of the problem to be solved. As discussed in sub-
section 2.2, these equations are the continuity, momentum, and energy equations [16]. These equations
are integrated over each element, by converting their strong form into their weak form using methods like
the Galerkin method. Consequently, the shape functions are applied. At this stage, essential boundary
conditions describing the physical problem should be enforced.

Step 4: Global System of Equations and Solution

The equations and boundary conditions resulting from the previous step of the methodology are
assembled into a system in which the problem as a whole is included [6]. This system is then solved
using straightforward or iterative approaches.

It should be noted that FEM is applied to the convection part of the transport equations. This
causes stabilization problems, which is addressed by applying stabilization techniques such as Streamline
Upwinding Petrov-Galerkin (SUPG), and Taylor-Galerkin (TG) [78] [27].

The �nal step in the FEM process is post-processing and analysis of the results. Once primary
variables such as velocity and pressure are determined, derived quantities such as vorticity, streamlines,
or heat �ux can be calculated. Additionally, post-processing tools are used to visualize the �ow �eld, to
better understand the �ow behavior, and to verify the accuracy of the solution.

Advantages and Disadvantages

The �nite element method o�ers a number of advantages and disadvantages when employed in the study
of �uid mechanics systems. These are presented in Table 2.4

Advantages Disadvantages

Modelling of complex geometries
The construction of an appropriate mesh, especially for complex
geometries, is challenging. The quality of the mesh a�ects the
accuracy of the solution.

Adaptability and reduced computa-
tional costs as designers can quickly
model di�erent designs and materials,
saving time and money

Detailed parameter tuning is required to achieve convergence,
which can be time-consuming.

High accuracy, especially in denser
meshes with larger numbers of elements

Despite its accuracy, as the method assumes linear behavior within
cells, the presence of error, especially in more sophisticated non-
linear problems, must be taken into account.

Useful for time-dependent simulations,
where deformations in one region de-
pend on changes in other regions

The choice of the appropriate data type a�ects the accuracy.
Poorly shaped elements can introduce errors.

Easy boundary condition integration
While e�cient for simpler one- and two-dimensional problems,
the method can be computationally expensive for complex three-
dimensional geometries.

Table 2.4: Advantages and Disadvantages of the Finite Element Method

2.5.2 CFD meshing

In the previous subsection the basic principles of the Finite Element Method were discussed, including
discretization. Based on this concept, the numerical solution of complex problems is approached within
the context of CFD through the process of discretization, whereby the computational domain of interest
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into elements or cells. The discrete collection of elements is referred to as mesh. The process of generating
the mesh is called "meshing" and its purpose is to simplify the resolution of the partial di�erential
equations that govern the behavior of �uids in CFD simulations.

Types of meshes

In general, meshes can be classi�ed into two main categories: structured and unstructured. Each type
has its own distinct characteristics, advantages, and challenges and their use depends on the complexity
of the �ow problem in question. [100]

In a structured mesh, points are positioned at the junctions of coordinate lines. Furthermore, the
number of neighboring mesh points for internal mesh points is �xed. A structured mesh is characterized
by its ability to be represented in an I × J matrix of tetrahedra for two-dimensional geometries or an
I × J × K matrix of hexahedra for three-dimensional geometries. As their use can be applicable to
simpler shapes, the visualization of the geometries examined can become challenging as their complexity
increases. In this instance, the computational domain is divided into subdomains containing structured
mesh, which facilitates denser meshing in areas that require enhanced resolution.

In an unstructured mesh, each cell is treated as a building block. The "unstructured" characterization
refers to meshes in which no particular cell shape is used. In the majority of cases, combinations of trian-
gular and quadrilateral elements are employed for two-dimensional �ow calculations, whereas tetrahedral
and hexahedral elements are used in three-dimensional �ows. One advantage of an unstructured mesh
is that it can be used to analyze more complex geometric shapes while maintaining a low computational
cost for mesh generation. Additionally, automated techniques have been developed and used in industry
to facilitate the generation of unstructured meshes. Finally, mesh density can be increased for more
detailed analysis in speci�c regions is more in a more straightforward way with unstructured meshes
compared to structured meshes.

Meshing parameters

In the process of generating a mesh, there are two fundamental properties to consider [26]:

1. Mesh density: how �ne or coarse a mesh will highly depend on the accuracy requirements of
the domain or geometry under consideration. For example, regions exhibiting greater velocity
gradients, or are situated in proximity to geometry or boundary layer surfaces typically necessitate
the use of a more re�ned mesh to e�ectively capture the more intense �oe phenomena occurring
therein.

2. Mesh geometry: as mentioned above, some of the cell shapes that can be used depending on the
dimensions of the domain are: triangles, tetrahedra, hexahedra etc.

2.5.3 Meshing techniques

There are multiple methods for the generation of the mesh. The main ones are as follows [91]:

� Automatic meshing:As the name suggests, automatic meshing enables the user to create the
mesh and its components (elements connected by nodes) in an automated manner. This kind of
method can be appealing to users who may not have experience with modelling and CFD simu-
lations, as it o�ers a way of conducting accurate mathematical modelling, without requiring deep
knowledge of such simulations. Automated methods are also employed for industrial applications
because they help conserve time and e�ort and allow a shift in focus toward innovation and design
improvement. However, a signi�cant disadvantage of automatic meshing is the fact that it lacks
complete control over the mesh con�guration, as certain parameters can only be de�ned through
manual approaches.

� Manual meshing: In this approach, the user discretizes the computational domain rather than
automatically by a software algorithm. In contrast to automatic meshing, the manual mesh o�ers
the user complete control of the mesh generation process, enabling real-time adjustments that
align with the simulation requirements. However, the manual mesh con�guration is dependent on
user input, thus it is susceptible to human error. Additionally, modelling with manual meshes can
be time-consuming and overly complicated for inexperienced users. Consequently, achieving high
accuracy of simulation results requires expertise.
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2.6 Uncertainty Quanti�cation

This thesis examines the problem of Uncertainty Quanti�cation (UQ), with a particular focus on two-
dimensional NACA airfoils. As outlined by Ghanem in his book Handbook of Uncertainty Quanti�cation
[36], �Uncertainty quanti�cation is the rational process by which proximity between predictions and ob-
servations is characterized. It can be thought of as the task of determining appropriate uncertainties
associated with model-based predictions.

UQ is used for the optimization of the design and control of NACA aifoils. It helps account for uncer-
tainties in airfoil geometry, operating conditions, and material properties. This allows for adjustments
to airfoil parameters to improve performance. UQ also plays a key role in validating numerical models
through comparison of simulation results with experimental data.

2.6.1 Types of Uncertainty

The term "uncertainty" refers to situations where important information about the requisite data,
like their quantity, type, or distribution are unknown, or insu�cient. Uncertainty can be encountered
throughout the simulation process, from the generation to the evaluation of the data.

When it comes to uncertainty, there are two principal categories associated with data: aleatoric and
epistemic [76].

Aleatoric uncertainty is also known as irreducible uncertainty [98] because of its objective character
[61]. This means that such uncertainties cannot be contained, as they are linked to the physical variability
of a system, such as changes in material properties, manufacturing tolerances, and so forth. They are
handled through variable modelling, as well as the use of probabilistic approaches.

Epistemic uncertainty can also be found as ignorance uncertainty [83] and it is more subjective [61],
as it is a result of the lack of familiarity with the physical model under study. Such discrepancies are
attributed to assumptions or simpli�cations made while formulating the physical problem and can be
reduced by obtaining additional data regarding the physical model.

In the context of the study of airfoils, the uncertainties that arise can also be of a geometric and
operational nature [69].

Geometric uncertainties arise because of small di�erences in the shape of the airfoil caused by man-
ufacturing limits or unexpected changes the geometry has undergone during operation, like bending or
deformation. For example, the structure may be deformed under loading. However, it is possible to
consider that the geometric uncertainty is associated with the variation of airfoil shape parameters, such
as thickness, maximum camber, or even the radius of the leading edge [64].

Similarly, operational uncertainties are associated with the �ow and operational conditions of the air-
foil. Such uncertainties may relate to Mach number, Reynolds number, or angle of attack. Modi�cations
to these parameters have the potential to in�uence the performance and stability of the airfoil [90].

In conclusion, it is clear that both geometric and operational uncertainties a�ect the performace of
the airfoils. By addressing them, the reliability of the airfoil's design is improved, making it possible for
researchers to create more accurate models of airfoil behavior.

2.6.2 Theoretical Framework

Depicted in �gure 2.13 [108], are the main components of the UQ process. Following the experimental
design, the characterization of the input parameters is one of the initial steps of the forward UQ. This
process includes the sensitivity analysis (global or local), or the uncertainty propagation.

It is possible that the input uncertainties may not be available at the time of the research, which could
result in the "lack of input uncertainty information" issue. In such instances, the backward or inverse UQ
process [74] [96] is employed, including model calibration and Bayesian Inference. The inverse process
is based on comparisons between computations and experiments, in order to reduce output uncertainty
[74].

Simulation-based uncertainty quanti�cation is a common method, but it has signi�cant disadvantages
such as slow convergence rates, especially in applications with a high computational cost of each sample
[103]. A decreased number of samples can be achieved by the method of experimental design while
ensuring the same e�ect of full factorial design [79]. An alternative approach to handling computationally
expensive simulations is the surrogate model or response surface method [103]. With this approach, an

approximate functional model mapping M̂ is provided, in place of the true mapping M .
Furthermore, the model uncertainty is a parameter that requires attention. In general, it is crucial to

account for the inherent uncertainty due to the geometrical characteristics of the model, the numerical
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Figure 2.13: The framework and main process of UQ (pink boxes) [108]

methods employed, and the parameters involved. Techniques such as model averaging, model selec-
tion, and parameter optimization assist in managing this uncertainty, thereby leading to more reliable
predictions.

2.6.3 UQ Methods

Uncertainty Quanti�cation (UQ) is a process of quantifying uncertainties related to the calculation
of Quantities Of Interest (QOIs), with the aim of taking into account all sources of uncertainty and
quantifying the contribution of these sources to the overall uncertainty of the system [71]. It is a key step
when it comes to aerodynamic analysis and is often used to validate methods and models constructed
for aerospace applications, thus ensuring safety and risk management.

By identifying, recognizing, and quantifying the uncertainty that occurs in complex geometries and
aerodynamic phenomena, we are able to develop more e�cient and reliable solutions with applications
in both aerospace and air transport.

As previously mentioned in subsection 2.6.1, the uncertainties investigated in any application fall
into two broad categories: aleatoric and epistemic. Given the nature of each type of uncertainty, it is
possible to constrain them using various techniques. Aleatoric uncertainties are typically irreducible and
essentially stochastic as they are primarily due to the variability of the system [32], but also to input
values (initial and boundary conditions). Usually, such uncertainties can be reduced by reconstructing
the stochastic terms to achieve greater accuracy in the initial and boundary conditions. The variance in
aleatory uncertainties can be propagated in the simulation. Conversely, epistemic uncertainties can be
reduced by addressing the source of the uncertainty, which is often model inadequacy. Therefore, it is
the researcher's responsibility to reduce them. To mitigate such uncertainties, high-�delity models are
employed, which entails an increased computational cost.

In the �eld of computational �uid dynamics, a number of techniques are employed to quantify uncer-
tainty in the output of quantities of interest. These include interval analysis, propagation of uncertainty
using sensitivity derivatives, Monte Carlo simulations, moment methods, and polynomial chaos. This
subsection examines the fundamental techniques employed in the present thesis to ful�ll the uncertainty
quanti�cation (UQ) methodology: the Monte Carlo and Polynomial Chaos methods.
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Monte Carlo Methods

Monte Carlo is a widely used computational technique based on carrying out computational tests cor-
responding to N random samples which follow a prescribed probability distribution. In the context of
uncertainty quanti�cation, MC methods are used to propagate uncertainties through a model and assess
their impact on the output.

As per its de�nition, this method draws, randomly, samples from the input probability space, in this
case the joint probability density function (PDF) of the input random variables. Then, these samples
are evaluated to estimate the mean and standard deviation of the output, characterized as Quantities of
Interest (QoIs).

For a general stochastic problem, the mean E[v(x, t, w)] and variance V [v(x, t, w)] of the output v
can be approximated using the MC method as follows:

E[v(x, t, ω)] ≈ 1

N

N∑
i=1

v(x, t, ξi(ω)), (2.19)

V [v(x, t, ω)] ≈ 1

N − 1

N∑
i=1

(v(x, t, ξi(ω))− E[v(x, t, ω)])
2
, (2.20)

where N represents the number of samples, ξi(ω) is the i-th Monte Carlo sample of the vector of d
independent random variables ξ = {ξ1, . . . , ξd} associated with d uncertain parameters, and v(x, t, ξi(ω))
is the output at ξi(ω).

The Monte Carlo method has signi�cant advantages, such as simplicity of implementation, non-
intrusiveness, and insensitivity to the number of random variables. However, it typically requires a large
number of samples to achieve accurate results, therefore increasing the computational cost.

In computational �uid dynamics (CFD), the computational cost of running such a large number of
simulations is often prohibitive, necessitating the exploration of more e�cient yet accurate alternatives
[75].

Polynomial Chaos Methods

Polynomial Chaos (PC) is a mathematical technique used in uncertainty quanti�cation (UQ) to repre-
sent and propagate uncertainties through computational models. The general idea behind Polynomial
Chaos is to express uncertain model inputs (e.g., parameters, initial conditions) as random variables and
then represent the model outputs as a series of orthogonal polynomials in terms of these random variables.

Polynomial Chaos Expansion

A more recent numerical method for estimating uncertainty is that of Polynomial Chaos Expansions,
which was introduced by Wiener [102] [55] in 1938, in the form of Homogenous Chaos Expansion [72].
In PCE, every uncertain parameter in a system is represented by a random variable, denoted as ξ, with
the total number of these variables indicated by nv. For practical purposes, the number of polynomial
terms is �nite, represented by np.

When dealing with multiple uncertain parameters, the expansion must use multi-variable polynomials,
not just single-variable ones. The number of multi-variable polynomials, P, depends on nv and np as
shown in Equation 2.21:

P =
(nv + np)!

nv! · np!
− 1 (2.21)

The system variable Y (t) can be expanded using a multi-variable polynomial basis Ψ as shown in
Equation 2.22:

Y (t) =

P∑
i=0

yi(t)Ψi (2.22)

A general second-order random process X(θ) can be described as a series expansion in terms of these
polynomials, as shown in Equation 2.23 [104]:
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X(θ) = a0Ψ0 + a1Ψ1(ξ1(θ)) + a2Ψ2(ξ2(θ)) + · · · =
∞∑
i=0

aiΨi(ξi(θ)) (2.23)

This can be simpli�ed as in Equation 2.24:

X(θ) =

P∑
i=0

αiΨi(ξ(θ)) (2.24)

In PCE, the polynomials can be extended to Hermite or to other types of polynomials, like Legendre
and Laguerre polynomials, which correspond to uniform and exponential distributions, respectively [104].

Once variables are expanded using the chosen polynomial basis, a Galerkin projection is applied by
integrating each component of the system with the polynomial basis over its valid region (denoted as Ω).

The inner product of the polynomials is computed as shown in Equation (10):

⟨Ψi,Ψj ,Ψk⟩ =
∫
Ω

Ψi(ξ)Ψj(ξ)Ψk(ξ)w(ξ)dξ (2.25)

Where w(ξ) is a weighting function speci�c to the polynomial basis, given by Equation (11):

w(ξ) =
1√
2π
e−

ξ2

2 (2.26)

Finally, the number of inner products that need to be calculated can be substantial, especially for
systems with many variables and higher-order polynomials, as indicated by Equation 2.27:

Number of inner products = (number of polynomial inner products)number of uncertain variables (2.27)

The PCE allows for direct computation of the statistical properties of the model output, such as
mean, variance, and higher moments.

Methods that make use of polynomial chaos have signi�cant advantages that make them particularly
attractive in uncertainty quanti�cation studies. However, they are also characterized by limitations that
may complicate some procedures or even preclude the use of such methods in some applications. PCE
has been proven to be an appealing choice for handling uncertainty quanti�cation problems. While using
this kind of method, uncertainties can be measured accurately by matching random input values to
their corresponding outputs using orthogonal polynomials. Additionally, PCE is useful when it comes
to solving problems that contain multiple random variables. It is usually more e�ective than other
methods, which are sensitive to large numbers of variables. Nevertheless, in some cases that require
higher-order polynomials, the use of PCE methods is not recommended. Techniques like the Stochastic
Galerkin Method (SGM) achieve high accuracy by e�ciently minimizing error. However, great care
should be taken with the information feeding into the PCE sampling, as if the data are di�erent from
those contained in the initial assumptions, there is a risk that a signi�cant error will be produced. Lastly,
athough PCE methods are often less computationally expensive than Monte Carlo sampling, we have
to be cautious of the computational resources available, as they can also be computationally demanding
[62] [66].

2.7 Iterative Methods

An important class of methods for solving linear systems consists of approximating solutions using
iterative methods. Iterative methods are essential in CFD for solving large, complex systems of equations
derived from discretized �uid �ow equations. Another approach for solving such systems is the use
of direct methods -like the Gauss elimination- which is based on algebraic elimination. Unlike direct
methods, iterative methods obtain the solution by an iterative process, in which an initial assumption
of the solution is substituted into the system of equations, to compute the error, resulting in successive
approximations until convergence is achieved. Examples of iterative methods used in CFD include the
Gauss-Seidel method, the Successive Over-Relaxation (SOR) method, and the Newton Method [15] [45].
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Figure 2.14: Graphical representation of the Newton's method [45]

2.7.1 Newton Method

In this thesis, an iterative Newton's method is employed to solve the uncoupled Navier Stokes equations
system. Newton's method is characterized by its quadratic convergence, meaning it converges when the
initial guess is su�ciently close to the actual root. The primary limitation of this method is that it is
required to calculate the derivative f ′(x) of the nonlinear function f(x).

Newton's method can be graphically presented in Figure 2.14. The function f(x) is nonlinear, and
its derivative g(x) is tangent to f(x).The function g(x) is used to locally approximate the f(x). The root
of g(x) = 0 is then used as the next approximation for the root of f(x) = 0. This process is iteratively
repeated until convergence is achieved, which can be mathematically represented as [45]:

f ′(xi) = slope of f(x) =
xi+1 − xi
f ′(xi)

(2.28)

Solving this equation for xi+1, under the condition that f(xi+1) = 0, gives:

xi+1 = xi −
f(xi)

f ′(xi)
(2.29)

This equation is applied iteratively until one or both of the following convergence criteria are met:

|xi+1 − xi| ≤ ϵ1 and/or |f(xi+1)| ≤ ϵ2 (2.30)

The Newton's method, also known as Newton-Rhapson (N-R), is a widely used optimization tech-
nique, known for its robustness and reliability. Consequently, it is a preferred choice for many optimiza-
tion problems. Nevertheless, in practice, obtaining the second derivative can be challenging, which limits
the method's applicability in certain situations [77]. Another limitation of the method is the possibil-
ity of failure to converge when applied to polynomials with only complex roots if the initial guess is a
real number [95]. This potential for divergence emphasizes the necessity of considering the method's
limitations in speci�c applications.

In general, the N-R method remains a powerful and versatile optimization tool, o�ering signi�cant
advantages. However, its limitations, particularly in cases where the second derivative is di�cult to
obtain or when dealing with certain types of polynomials, must be carefully evaluated in the context of
the speci�c problem at hand.
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Chapter 3

Methodology

To address the issue at hand, an algorithm employing an approximate iterative Newton method is
employed to solve each of the equations comprising the Navier-Stokes system of equations under steady-
state conditions. The Monte Carlo method is used to generate samples of the uncertain parameters
associated with the research problem, applying the Hammersley pseudo-random method. Polynomial
chaos is used in the context of uncertainty quanti�cation to express the �eld variables associated with
the �ow.

3.1 Methodology Overview

The methodology employed to address the research question is outlined in the logic diagram presented
in Figure 3.1.

Firstly, the initial conditions are established and the samples are generated utilizing a Monte Carlo
method. Subsequently, the uncertain parameters of the problem are de�ned. A joint probability density
function (PDF) is generated to estimate the total uncertainty resulting from the combined e�ect of both
uncertain parameters. Subsequently, the samples for the uncertain variables are generated and stored
for utilization in the following stages of the methodology.

A pivotal stage is the determination of the coordinates that constitute each NACA airfoil. In this step,
the perimeter of any NACA airfoil is created, according to the designer's preference. This is achieved
through the application of equations and principles established in the 1933 NACA report [6], which will
be presented in detail below.

The third step is the creation of a grid to discretize the problem domain, thereby simplifying the
problem and facilitating its solution. A suitable mesh generation function is de�ned, which accepts as
input the desired angle of attack and mesh density. The function allows for the rotation of the wing,
which enables the angle of attack to be adjusted while assuming a constant horizontal �ow.

A polygon is constructed within the rectangle, comprising all points of the rotated (or unrotated)
coordinates of the airfoil. The aforementioned polygon will be excluded from the construction of the
mesh, as it represents solid geometry. The position of the �eld should be such that the center is located
at a su�cient distance from the walls to ensure that the �ow conditions are properly represented. Finally,
an unstructured, two-dimensional mesh is created in an automated manner using an appropriate library
and functions, with the geometry of the airfoil in question excluded as previously mentioned.

Eventually, the mesh generation function is employed, whereby the input parameters (angle of attack,
mesh density) and boundary conditions are de�ned.

In order to de�ne the boundary conditions, it is necessary to utilize function spaces to determine the
type of the basic quantities, namely velocity as a vector and pressure as a gradient.

Next, the solution of the Navier-Stokes equations is carried out, and the aforementioned boundary
conditions are de�ned. In addition, the uncertain variables that have been set are also taken into account.

In the �nal stage of the methodology, the �ow function is calculated for a given two-dimensional
velocity vector u, that is to say, a scalar �eld that describes the �ow patterns in a two-dimensional �uid
�eld. The �ow vorticity, which represents the local rotation of the �uid, is calculated. Based on these
values and the data obtained following the solution of the model, the mean and standard deviation are
calculated. The data must be stored in appropriate �les for subsequent analysis.

The code used to solve the problem in question in this thesis was developed in the Python pro-
gramming language. The main Software used to solve the Navier-Stokes equations and, more generally,
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Figure 3.1: Logic diagram of the methodological approach
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di�erential equations by �nite element methods, is the textitFEniCS Project [5]. Speci�cally, the soft-
ware component DOLFIN [4] is employed, which provides the problem-solving environment and serves
as a computational backend, and mshr for the mesh generation [7]. Additionally, the NumPy library [8]
is used to execute mathematical operations with the use of matrices, ChaosPy [3] facilitated uncertainty
quanti�cation through the application of polynomial chaos methods.

Summing up, the methodology described involves the following steps:

1. Sample Generation: Initial conditions are set, and samples are generated using the Monte Carlo
method. Uncertain parameters and their joint probability density function (PDF) are de�ned to
estimate total uncertainty.

2. NACA Airfoil Coordinates: Coordinates for NACA airfoils are determined using equations
from the 1933 NACA report.

3. Grid and Mesh Creation: A grid is created to discretize the domain, with a mesh generation
function taking the angle of attack and mesh density as inputs. The airfoil geometry is excluded
from the mesh.

4. Boundary Conditions: Boundary conditions are de�ned using function spaces for velocity and
pressure.

5. Navier-Stokes Solution: The Navier-Stokes equations are solved, considering the boundary
conditions and uncertain variables. Flow patterns and vorticity are calculated.

6. Data Analysis: Mean and standard deviation are calculated from the model data, which is stored
for analysis.

3.2 Cases Set Up

As previously stated, the initial step is to establish the initial conditions for the cases to be considered.
The requisite input values are the Reynolds number, the standard deviation, and the number of samples
to be generated by the Monte Carlo method employed.

The Reynolds number is a crucial parameter in the analysis of the air�ow around an airfoil, as it serves
as a measure of comparison between the di�erent �ow types. Various tests are carried out for di�erent
values of Reynolds number, applied to di�erent types of airfoil, as presented in Table 4.3 in Section 4.2.1
. The Reynolds number samples generated are set to follow a uniform distribution function within the
interval of [Re · (1− standard deviation), Re · (1 + standard deviation)], and the free �ow velocity (U∞)
is introduced and set to follow a normal distribution with mean µ = 1 and standard deviation σ = 0.1.

The desired number of samples is generated in accordance with a joint probability density function
of the Reynolds number and U∞, employing the Monte Carlo method, in particular, the quasi-Monte
Carlo/Halton sequence. The way in which samples are obtained through this sequence is described in
Section 2.6.3.

Finally, the resulting parameter values are stored for use in the next steps of the methodology.

3.3 Design Approach

The problem is initially addressed by constructing the two-dimensional geometry of the airfoil. The
speci�c types of airfoils studied are speci�ed in Section 4.2.1. The airfoil is situated inside an appro-
priately computational domain containing a mesh to properly represent the existing �ow phenomena.
This section outlines these three crucial steps for the creation of the computational domain in which the
simulation will take place.

3.3.1 NACA Airfoil Design

The development and design of NACA airfoils involve precise calculations to de�ne their shape and
characteristics.

Through calculations and conditions set by the NACA researchers, from the general equation de-
scribing the pro�le of an airfoil:
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Figure 3.2: Method of calculating coordinates of NACA airfoils [51]

±y = α0

√
x+ α1x+ α2x

2 + α3x
3 + α4x

4 (3.1)

The equation for NACA airfoils, which have a thickness of about 20% of their chord, was derived:

±y = 0.29690
√
x− 0.12600x− 0.35160x2 + 0.24830x3 − 0.10150x4 (3.2)

If a di�erent thickness is required, the more general formula can be utilized by multiplying the above
equation with the appropriate factor:

±y =
t

20
(0.29690

√
x− 0.12600x− 0.35160x2 + 0.24830x3 − 0.10150x4) (3.3)

Furthermore, the following calculation can be used to determine the radius of the leading edge:

rt =
1

2

(
t

0.20
α0

)2

= 1.10t2 (3.4)

Where t is the thickness of the airfoil.
As previously stated, the mean line is a crucial parameter in the NACA airfoil design. It is represented

by a general equation:

yc = b0 + b1x+ b2x
2 (3.5)

The leading and trailing points' coordinates for a NACA airfoil were de�ned at x = 0, yc = 0 and
x = 0, yc = 0, respectively.

The parameter yc corresponds to the geometric locus of the points belonging to the chord of the
airfoil.

To calculate the curvature of the mean line, the maximum of the entire curve must be determined.

yc =
m

(1− p2)
[(1− 2p) + 2px− x2] ⇒ yc =

m

p2
(2px− x2) (3.6)

The wing pro�le coordinates consist of xu and yu for the upper surface and xl and yl for the lower
surface. Additionally, θ denotes the angle between the tangent of the mean line and the x-axis:

θ = tan−1 dyc
dx

(3.7)

The report authors provided a diagram that presents the design elements of an airfoil and o�ers
examples of how to calculate the aforementioned parameters:

The upper and lower surface coordinates can be calculated using the formulas obtained from the
diagram in Figure 2.8 [51].

xu = x− yt sin θ (3.8)

yu = yc + yt cos θ (3.9)
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Figure 3.3: Graphical representation of NACA 2412 as generated from the code

xl = x+ yt sin θ (3.10)

yl = yc − yt cos θ (3.11)

Finally, the center for the radius of the leading edge is placed at the tangent of the mean line to the
leading edge.

In conclusion, the methodology described above serves as the foundation for the e�cient design of
NACA airfoils. By using the aforementioned accurate calculations, engineers are able to determine the
optimal NACA airfoil type for aerodynamic applications that require speci�c characteristics.

In this thesis, the above calculations were incorporated into the problem-solving code in order to
visualize the geometry of the airfoil, with the ability to switch between di�erent types, e.g. 4418, 0012,
etc. This a�ords the code considerable �exibility, enabling the study of di�erent airfoils in terms of their
characteristics. A portion of this code is presented in the Appendix A. An example of the generated
geometry of a NACA 2414 airfoil is provided in Figure 3.3.

3.3.2 Mesh generation

During the mesh creation phase, the coordinates obtained by the above calculations were used for the
formation of the two-dimensional geometry of any NACA airfoil, whether symmetrical or not. In addition
to the various airfoil characteristics and �ow velocities, the study also encompasses di�erent angles of
attack, which had to be incorporated into the code. A suitable procedure containing the construction of
matrices allows the airfoil to be rotated in order to properly represent the di�erent angles of attack. The
center of rotation is considered to be the aerodynamic center which, as previously discussed in subsection
2.3.2, is taken at 25% of the airfoil chord, where c = 1.

Afterwards, the orthogonal computational domain is constructed. Its dimensions and the position of
the airfoil within the computational domain are derived from the work of Sener and Arsku [86]. The
rectangle dimensions are 30c · 20c. The aerodynamic center of the airfoil is situated at the midpoint of
the vertical dimension, with the assumption that its position is at y = 0. It is therefore assumed that
the airfoil is equidistant from the upper and lower sides of the domain. Furthermore, the leading edge
of the airfoil is located at a distance of 10c, which results in the domain represented in Figure 3.4.

The mesh type selected for this thesis is the unstructured as opposed to the structured type. Fur-
thermore, the mesh is automatically generated. The aforementioned options o�er signi�cant advantages,
which are discussed in greater detail in Subsection 2.5.3.

The automated creation of the mesh was performed using the FeniCS software, speci�cally the mesh
generator, mshr. This library enables the visualization of geometries, such as airfoils, which can be formed
from basic shapes such as circles, rectangles, and polygons. Once the airfoil geometry under consideration
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Figure 3.4: Computational domain

is de�ned, the algorithm discretizes the �eld with minimal input data and user intervention. In particular,
the input parameter required to generate the mesh is the mesh density, which can be adjusted to produce
a mesh of varying coarseness or �neness. An example of the generated mesh around a NACA 2412 airfoil
is illustrated in Figure 3.5.

Once the mesh has been successfully generated, any necessary re�nements can be made in accordance
with the requirements of the simulation (see example in Figure 3.5). Furthermore, the preferred angle
of attack can be set.

3.4 Boundary Conditions

In the context of UQ in �ows around NACA airfoils, the identi�cation of appropriate boundary conditions
plays a crucial role in �ow visualization and the accuracy of the computational results. Boundary
conditions represent the in�uence of the environment on the model [33] and signi�cantly a�ect the
solution of the governing equations. In the present case, the boundary conditions applied are as follows:

� Inlet: De�nes the region from which the �uid enters the computational domain. This region
corresponds to the left-hand edge of the computational domain.

� Outlet: De�nes the �uid's exit region from the computational domain, which corresponds to its
right edge.

� No-slip wall: In the area where it is applied, the �uid velocity is assumed to be the same as that
of the wall [33], i.e. zero for a stationary wall. This area refers to the surface of the airfoil.

� Symmetry: This boundary condition is used to simplify the simulation and is applied to the upper
and lower edges of the computational domain.

These boundary conditions are integral to the simulation, and ensure that the �uid �ow around the
NACA airfoil is accurately modeled, taking into account the uncertainties in the aerodynamic analysis.
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(a) Example mesh (mesh density = 20)

(b) Example mesh (zoomed in)

Figure 3.5: Example mesh for mesh density = 20

3.5 Model Solver

This research is mainly focused on the solution of the Navier-Stokes equations. To this end, a custom
model solver has been developed, as seen in Subsection 3.5.3. This solver has been designed to handle
complex interactions between the �uid �ow and the airfoil geometry. As explained in the previous
sections, boundary conditions and stabilization techniques must be incorporated into the code. This
approach guarantees that the velocity and pressure �elds can be reliably and e�ciently computed, as
they are essential for evaluating the aerodynamic performance of the airfoil under varying conditions.

3.5.1 Discretization and Monte Carlo Simulation Results

As previously mentioned, the discretization process is one of the main steps of the CFD simulations.
The elements used for the construction of the mesh are of Langragian type, one the most commonly
used element types. A positive integer k is considered as the order of the Lagrange element. On simpler
meshes, like the 2D mesh employed in this thesis, on each mesh element, u is a polymomial of order k.
In general, for a mesh element of type T , u belongs to the Lagrange shape function space Lagk(T ). For
each of the node points of an element pi, there is a degree of freedom Ui = u(pi) and a basis function ϕi.

Considering that the basis functions are continuous:

u =
∑
i

Uiϕi (3.12)

The Lagrange element of order 1 is called the linear element and the Lagrange element of order 2 is
called the quadratic element. For scalar �elds such as pressure, linear Lagrange elements are employed,
while for vector �elds like velocity, quadratic elements are used. In the speci�c code written for this
thesis, these elements are combined into a mixed element, that simultaneously represents the velocity
and pressure �elds. Based on these elements, the required function spaces are de�ned. The mixed
function space W represents the combined space for both velocity and pressure, enabling the solution of
these �elds, simultaneously. For the velocity and pressure �elds respectively, their function spaces are
denoted V and Q.

1 P1 = FiniteElement("Lagrange", mesh.ufl_cell (), 1)

2 P2 = VectorElement("Lagrange", mesh.ufl_cell (), 2)

3 TH = MixedElement(P2, P1
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4

5 W = FunctionSpace(mesh , TH)

6 V = FunctionSpace(mesh , P2)

7 Q = FunctionSpace(mesh , P1)

Listing 3.1: Finite elements and Function Spaces

Consequently, the previously computed Monte Carlo simulation results of the velocity and pressure
�elds are loaded for further processing. Each Monte Carlo simulation contributes to the reconstruction of
a mean velocity �eld which is applied to the mixed function space. The velocity and pressure components
are extracted, as well as the corresponding data ofW and they are compared to the velocity and pressure
�elds of the current simulation, resulting in a relative residual, This residual provides a measure of the
di�erence between the current and past velocity �elds.

3.5.2 Main Solver

Inside the main solver portion of the code, the Navier-Stokes equations are solved under the speci�ed
boundary conditions. Speci�cally, the way the boundary conditions established in Section 3.4 are applied,
is presented on Table 3.1.

Boundary Condition Operation

Inlet
Applies to the speci�ed inlet velocity to the domain boundary
where the �uid enters

Outlet
Sets the pressure to zero at the outlet, allowing the �uid to exit
the domain

No-slip
Enforces a zero velocity condition on the airfoil surface, ensuring
the �uid adheres to the surface

Symmetry
Ensures that the vertical component of the velocity is zero along
the top and bottom boundaries (symmetry planes)

Table 3.1: Boundary Conditions

Apart from solving the Navier-Stokes equations, the model solver is also responsible for managing
the iterative method involved in the UQ process. The initial values of velocity (u0) and pressure (p0)
�elds serve as the initial guess from which the iterative process begins. The values are both set to zero.
The inlet velocity is considered a constant vector with a magnitude of the free stream velocity, which
was speci�ed during the �rst step of the methodology (see Section 3.2), in the horizontal direction. The
outlet pressure is set to a constant value of zero, representing zero gauge pressure at the outlet.

In the following step, the variational forms needed to solve the Navier-Stokes equations are de�ned.
These forms are also known as the weak forms of the momentum and continuity equation. The weak
form of each equation can be expressed by multiplying its non-dimensional form with a test function.

To achieve numerical stabilization, two basic techniques are used which restrict the oscillations and
instabilities that occur during the simulation. Such techniques include the Streamline-Upwind Petrov-
Galerkin (SUPG) method and the Pressure-Stablizing Petrov-Galerkin method (PSPG).

� SUPG: This is a widely used method of stabilization, especially in the context of transportation
problems. In such problems, SUPG has the main advantage of limiting the unphysical oscillations
that may arise in the solution, as is common with standard Galerkin methods. This approach
ensures the stability and accuracy of the solution, even in cases in which the Reynolds number
approaches high values [24]. The stabilization term introduced is proportional to the square of the
mesh cell diameter (h) and the user-de�ned parameter beta (β).

1 # stabilization parameter

2 h = CellDiameter(mesh)

3 beta = 0.05

4 delta = beta*h*h

5

6 # add SUPG stabilization

7 F += delta*inner(grad(u), grad(v))*dx

Listing 3.2: SUPG stabilization
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� PSPG: It is a stabilization technique, which contributes to the achievement of accuracy and
stability in the simulations of incompressible �uid �ows. This approach focuses on the analysis
of the pressure �eld. In order to obtain a smooth pressure �eld, a stabilization term is added to
the pressure equation, which results in a reduction of the simulation oscillations, even in coarser
meshes [47] [53].

1 F += tau*inner(grad(q), r)*dx

Listing 3.3: PSPG stabilization

The iterative process which is performed in a parallel computing context, which allows for the e�cient
distribution of computational tasks across multiple processors. The simulation uses key variables that
are initialized from the data structure obtained in the �rst step of the methodology. These variables are:

� The total number of Monte Carlo samples,

� The parameter samples used to run the simulation,

� The Reynolds number and the relative standard deviation to quantify the uncertainty,

� The maximum number of iterations, which is de�ned as 100, and the convergence tolerance for the
iterative procedure, which is de�ned as 10−10,

� Variables that record the values of the residuals after each iteration, and which ensure the start of
the iterative loop.

Within each of the iterations, the velocity and pressure �elds are calculated separately. After process-
ing all samples, the maximum residual from the current iteration is calculated, which is used to evaluate
the convergence of the solution.

The iterative process is completed by storing all relevant data, including the number of samples,
residuals, and key parameters for further analysis and veri�cation.

The last stage of the methodology, as mentioned above, is the stage of extraction of results and post-
processing. In this step, the mean and standard deviation of the calculated solutions for the velocity and
pressure �elds are calculated. These quantities represent the uncertainty in the �ow �eld due to changes
in the input parameters. In addition, the �ow function is calculated, which provides insight into the �ow
patterns around the airfoil. Data such as velocity and pressure values are stored for visualization and
further analysis.

In the next subsection, a numerical formulation designed to solve the Navier-Stokes equations for
�uid �ow under uncertain conditions will be presented. This approach aims to improve computational
e�ciency while providing a framework for capturing the e�ects of uncertainty in �uid dynamics problems
and is the novelty of this thesis.

3.5.3 Numerical Formulation

Unlike traditional approaches, this methodology utilizes polynomial chaos expansions to model pressure
and velocity as stochastic variables, which allows for a comprehensive quanti�cation of uncertainty in
�ow �elds. By reformulating the Navier-Stokes equations for each term of the polynomial expansion, a
set of coupled nonlinear equations is obtained. The complexity in solving these equations is addressed
by applying Newton's iterative method, which decouples the nonlinear terms, allowing each system to
be solved separately.

The basic parameters of the problem (pressure (p), velocity vector (u), and temperature (T)), to
be used in its solution, are expressed in polynomial form, applying the Polynomial Chaos method, as
follows:

p(x) =

P∑
i=1

pi(x)ψi

u(x) =

P∑
i=1

ui(x)ψi

T (x) =

P∑
i=1

Ti(x)ψi

(3.13)
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Where: x: the spatial domain, and ψi: the basis functions of the polynomial chaos.
The Navier - Stokes equations are formulated for the �eld variables for k ∈ (0, P ) as follows:

∇ · uk = 0 (3.14)

∂uk
∂t

+

P∑
i=0

P∑
j=0

Cij (ui · ∇)uj = −∇pk +
1

Rek
∆uk + fk (3.15)

∂Tk
∂t

+

P∑
i=0

P∑
j=0

Cij∇ · (uiTj) = Prk∆Tk (3.16)

Where: t: time, Re: Reynolds number, Pr: Prandtl number, f : forcing term, such as gravity, and
Cijk: multiplication tensor

Cijk =
⟨ψiψjψk⟩
⟨ψkψk⟩

(3.17)

As can be seen from the above formulas, the nonlinear terms of the momentum and energy equations
construct P + 1 systems of equations, which in turn constitute a system of equations of such magnitude
that its solution is extremely costly. To study and quantify uncertainty for two-dimensional �ows, an
iterative algorithm based on Newton's method for optimization problems is applied. The Newton or
Newton-Raphson method is a method of successive approximations to �nd approximate solutions to a
problem. Each approach is based on the estimate of the previous iteration, as indicated by the general
form of the method:

xn+1 = xn − [F ′(xn)]
−1F (xn) (3.18)

To solve the non-linear equation:

F (x) = 0 (F : X → Y ) (3.19)

Where X, Y : Banach �elds, F ′: the derivative of F , xi: the approximation corresponding to iteration
i, and i = 0, 1, ...: the iteration number [34]. For each equation k of the system of equations (see Equations
7 - 9), only the nonlinear term is coupled and can be split:

P∑
i=0

P∑
j=0

Cijk(ui · ∇)uj =

k−1∑
i=0

k−1∑
j=0

Cijk(ui · ∇)uj + (uk · ∇)uk +

P∑
i=k+1

P∑
j=k+1

Cijk(ui · ∇)uj (3.20)

P∑
i=0

P∑
j=0

Cijk∇ · (uiTj) =
k−1∑
i=0

k−1∑
j=0

Cijk∇ · (uiTj) +∇ · (ukTk) +
P∑

i=k+1

P∑
j=k+1

Cijk∇ · (uiTj) (3.21)

Replacing Eq. 3.20 and 3.21 to Eqs. 3.15 and 3.16 we obtain the basic equations governing the
problem:

∇ · uk = 0 (3.22)

(uk · ∇)uk +∇pk − 1

Rek
∇2uk − fk = −fu ̸=uk

(3.23)

∇ · (ukTk)− Pr∇Tk = −fT ̸=Tk
(3.24)

where:

fu̸=uk
=

k−1∑
i=0

k−1∑
j=0

Cijk(ui · ∇)uj + (uk · ∇)uk +

P∑
i=k+1

P∑
j=k+1

Cijk(ui · ∇)uj (3.25)

fT ̸=Tk
=

k−1∑
i=0

k−1∑
j=0

Cijk∇ · (uiTj) +∇ · (ukTk) +
P∑

i=k+1

P∑
j=k+1

Cijk∇ · (uiTj) (3.26)
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The system of equations 3.22 - 3.24 is solved by Newton's method, which is used iteratively among
the P +1 systems of equations of the uncertainty quanti�cation problem to solve each k sets of equations
of system 3.22 - 3.24 separately, rather than together, connected. The nonlinear terms fu ̸=uk

and fT ̸=Tk

are treated as source terms, estimated from the old iteration n − 1 or previous solutions in the same
iteration.
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Chapter 4

Results

4.1 Benchmark Case

A variety of techniques and methods are used for the veri�cation of the code. A widely known benchmark
case is the lid-driven cavity. This geometry, as the name suggests, is a square cavity constructed by three
solid walls in which no-slip boundary conditions prevail. The upper side of the square is, in essence, a
lid moving with a tangential unit velocity. The unit square representing the geometry studied in this
problem is shown in Figure 4.1. In this particular application, the Navier-Stokes and continuity equations
are solved.

In addition, for sampling the uncertain parameters of the problem, as in the basic methodology
applied in this thesis, the Monte Carlo method is used, using the Hammersley pseudo-random method.
The quantities of interest (QOIs) of the uncertainty quanti�cation study are selected, which are allowed
to deviate ±0.1% from their mean value. The quantities under uncertainty are the Reynolds number
and the lid velocity. The resulting samples can be represented in a space of sample parameters, which
is shown in Figure 4.2. The sample values of ulid and Re follow normal and uniform distributions
respectively. It should be noted that the number of samples used depends on several factors, including
the complexity of the problem and the desired level of accuracy. Nevertheless, it is necessary to take into
account the computational resources available to perform the simulation.

To solve the Navier-Stokes equations, FEM is employed for the discretization of the non-linear equa-
tions. The mesh constructed for the application of the FEM consists of N ×N triangular-shaped cells,
with the cell size decreasing near the walls of the cavity. The mesh for N = 20 is demonstrated in Figure
4.3.

For the present benchmark case, in order to establish a baseline for comparison, two separate scenarios
have been examined for the low Reynolds numbers:

� Re = 100

� Re = 400

The following subsections present the results of the simulations of the lid-driven cavity problem for
the aforementioned Reynolds numbers.

4.1.1 Streamline plots

A particularly valuable set of results is that of the mean �ow �elds, which include contour plots of
velocity, pressure, and stream function. Such plots are an illustration of the spatial distribution of the
magnitude of these speci�c quantities, providing valuable insight into areas of increased velocity and
pressure, as well as the behavior of the �ow, by focusing on the density of the streamlines.

Starting from the �rst set of plots of Figure 4.4, these plots display the variations of di�erent �uid
dynamics parameters such as the velocity, the pressure, and the stream function. It is important to note
that Figure ?? refers to the Reynolds number with a value of 100. The plot of Figure 4.4a shows the
velocity �eld contours inside the cavity. In the plot, vortices can be clearly observed. The primary vortex
dominates near the center of the unit square cavity, while smaller, secondary vortices may start to form
on the bottom corners (at this resolution, only the bottom left secondary vortex is visible). One may
also observe that denser lines occur around the vortices, especially the main one, indicating high-velocity
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Figure 4.1: Geometry and boundary conditions of the lid-driven cavity

Figure 4.2: Sample parameter space of lid-driven cavity
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Figure 4.3: Generated mesh for the lid-driven cavity

gradients around the eddy formation, which is typical in lid-driven cavity �ows. In Figure 4.4b, the
contour plot re�ects the pressure gradient within the cavity. On the top corners of the geometry, regions
of high pressure can be seen, likely due to the movement of the lid, while the lowest pressure region is
located at the bottom of the primary vortex. Similar pressure contours are presented in the work of J.
Banaszek et al. [21]. Lastly, the stream function contour plots give an overview of the �ow structure, as
well as the position of the primary and secondary vortices.

(a) Velocity (b) Pressure (c) Streamfunction

Figure 4.4: Contour Plots of Velocity, Pressure, and Streamfunction for Lid-Driven Cavity Flow at
(Re = 100)

Similar to the plots of the Figure ??, the mean streamline contours for Re = 400 are presented in
Figure 4.5. The velocity plot shows similarities regarding the �ow structure and the formation of vortices.
However, compared to the Re = 100 case, the primary vortex seems to have shifted upward and to the
right, with denser streamlines around it, indicating stronger inertial e�ects that are expected with the
increase of Reynolds number. Additionally, the pressure distribution is relatively smooth due to the low
Reynolds number. The stream function plot shows the shift of the primary vortex in the cavity, as well
as the increase in the size of the secondary vortices near the bottom corners (not visible in the Figure),
which could mean that the recirculation regions have also increased.

In the work of M. Gupta and J. Kalita [42], a table containing the strength and location of the centers
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(a) Velocity
(b) Pressure (c) Streamfunction

Figure 4.5: Contour Plots of Velocity, Pressure, and Streamfunction for Lid-Driven Cavity Flow at
(Re = 400)

of primary vortex for the lid-driven square cavity problem, for various Reynolds numbers. Such results
come from di�erent scienti�c papers cited in [99], [38], [85], and [46], and are presented in the table below
(Table 4.1)

Re Source ψmin x y
S. P. Vanka [99] -0.103 0.6188 0.7375
U. Ghia et al. [38] -0.103 0.6172 0.7344

100 R. Schreiber et al. [85] -0.103 0.6167 0.7417
S. Hou et al. [46] -0.103 0.6196 0.7373

M. Gupta et al. [42] -0.103 0.6125 0.7375
S. P. Vanka [99] -0.114 0.5563 0.6000
U. Ghia et al. [38] -0.114 0.5547 0.6055

400 R. Schreiber et al. [85] -0.113 0.5571 0.6071
S. Hou et al. [46] -0.112 0.5608 0.6078

M. Gupta et al. [42] -0.113 0.5500 0.6125

Table 4.1: Comparison of ψmin, x, and y for Re = 100 and Re = 400 [42]

For the Re = 100 and Re = 400 cases, the following results occur:

Re ψmin x y
100 -0.1026 0.6111 0.7378
400 -0.0984 0.6363 0.7034

Table 4.2: Comparison of ψmin, x, and y for Re = 100 and Re = 400

Table 4.1 provides the results from di�erent research papers for both Re = 100 and Re = 400. The
values of the strength of the primary vortex, as well as the horizontal and vertical positions of the vortex
center, respectively, serve as comparison targets to the results of the simulation we performed, in order to
validate our method. Regarding the simulation results presented in Table 4.2, for Re = 100 the minimum
streamfunction, ψmin, aligns closely with the previous data in Table 4.1. Additionally, the vortex center
position seems to be similar to other �ndings. However, for Re = 400 there are some variations when
comparing the results. The ψmin value indicates a slightly stronger vortex, as well as a shift to the
vortex center.

4.1.2 Uncertainty Quanti�cation

In this methodology, the Uncertainty Quanti�cation analysis was conducted by analyzing the standard
deviation contour plots for velocity, pressure, and streamfunction. These plots demonstrate the areas
and the magnitude of the variations computed for each �eld, with higher values of standard deviation
being highlighted with warmer colors.
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(a) Re = 100

(b) Re = 400

Figure 4.6: Standard deviation of velocity for the lid-driven cavity
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(a) Re = 100

(b) Re = 400

Figure 4.7: Standard deviation of pressure for the lid-driven cavity
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(a) Re = 100

(b) Re = 400

Figure 4.8: Standard deviation of streamfunction for the lid-driven cavity
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By comparing the plots of Figures 4.6a - 4.8b, we can recognize the regions with the higher �uctua-
tions for each quantity from the mean value. The velocity standard deviation plot may indicate moderate
variability, however, signi�cant uncertainty is observed near the top boundary of the domain. This means
that although the �ow is relatively stable throughout the domain, the interaction with the lid introduces
increased uncertainty to the velocity �eld. On the other hand, the pressure distribution seems to be uni-
form, as it is seen by the consistent color throughout the computational domain, with uncertainty being
decreased by increasing the Reynolds number. This could be linked to stronger unsteady phenomena
for lower Reynolds numbers. Lastly, particularly interesting can be the streamfunction contour plots
that showcase the variations of the overall �ow behavior, with the lower standard deviation values being
concentrated in the position of the main vortex.

4.1.3 Code Convergence

A particularly important part of the post-processing of the simulation results is the examination of the
code convergence. The convergence rate of the code is visualized by graphs showing the curves of the
residual norm as a function of the number of iterations performed by the code until convergence.

The residual norm is a measure of the convergence of the numerical solution to the solution corre-
sponding to the steady state. The smaller the value of the residual norm, the faster the code converges.

As it is illustrated in Figure 4.9, higher Reynolds numbers result to slower convergence. This phe-
nomenon can be explained by the increase in the complexity of the �ow at higher Reynolds numbers.
Moreover, the �ow becomes not only more complex but also more unstable, with stronger recirculations.

Such diagrams prove useful for outlining the �ow behavior under di�erent conditions and adjust-
ing various parameters according to the simulation requirements, such as time step and mesh density.
Additionally, they provide information on the e�ciency of the solver, especially in more complex �ow
conditions.

A comparison of the two plots presented in Figure 4.9 for the cases Re = 100 and Re = 400 reveals
a clear di�erence in their respective curves, in terms of the number of iterations required for code
convergence. In particular, the number of iterations increases signi�cantly with increasing Reynolds
number. The more stable conditions prevailing in the initial case result in a more rapid convergence.

The plots are generated speci�cally for the benchmark case with the objective of testing and evaluating
the capabilities of the code and its sensitivity to changes in the parameters characterizing the problem.
As evidenced in the above analysis, changes to the problem parameters have a considerable impact on
the convergence of the code. This should be taken into consideration when adapting and applying the
code to more complex problems, such as �ow simulation around a NACA airfoil, which is the key focus
of this thesis.

4.2 NACA Airfoil Simulation

4.2.1 Simulation Parameters

In this thesis, uncertainty quanti�cation was performed both on di�erent types of NACA airfoils and for
di�erent �ow conditions, i.e. di�erent Reynolds numbers.

It is important to consider that di�erent airfoil geometries, from completely symmetrical, such as
NACA 0012, to highly cambered airfoils, such as NACA 4412. In this way, the in�uence of the shape of
the airfoil on the occurrence of uncertainties can be investigated. In addition, the wide range of Reynolds
numbers (103−107) allows the study of �ows from laminar, to �ows exhibiting fully developed turbulent
�ow.

For each of the possible combinations of airfoil type - Re number, the mean value and standard
deviation of certain �ow characteristics: velocity, pressure, and streamfunction are calculated. The mean
value plots illustrate the behavior of the �ow, while the standard deviation is a measure of uncertainty
in the �ow �elds.

The cases for which tests were performed are presented in Table 4.3.

4.2.2 NACA Airfoil Results - Mean Contour Plots

In this subsection, the results of the simulations carried out for symmetric and cambered airfoils are
presented. For the purpose of clarity, only two of the examined cases mentioned in the Table 4.3 are
shown and compared:
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(a) Re = 100

(b) Re = 400

Figure 4.9: Code convergence
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NACA Airfoil Type Reynolds Numbers (Re)
NACA 0012 1,000
NACA 2412 10,000
NACA 4412 100,000

1,000,000
10,000,000

Table 4.3: Test cases for NACA airfoils and reynolds numbers

Figure 4.10: Geometry of NACA 0012 airfoil

� The laminar �ow case, Re = 103, and

� The turbulent �ow case, Re = 107

The remaining results are presented in Appendix A.

Symmetric Airfoil

The symmetric airfoil on which uncertainty quanti�cation was performed is NACA 0012. Its shape is
shown in Figure 4.10. It is included among the most widely used airfoil types for aerodynamic studies
because of its simple geometry. NACA 0012 was studied for various Reynolds numbers to evaluate its
behavior and the e�ect of imposed conditions on velocit and pressure.

Mean distributions for NACA 0012

The mean contour plots are a way of representing the average �ow behavior around the NACA airfoil.
By examining the mean distributions, we extract information about the regions of high or low velocities
and pressures, as well as the streamline patterns.

Mean velocity contour plots
Figures 4.11a and 4.11b show the plots of the average velocity for each of the aforementioned Reynolds

numbers. In the centre of the �gure, the shape of the airfoil is visible, which is considered to be a solid
geometry. The di�erent colours in this graph represent di�erent �ow velocity values, as indicated by the
colour bar at the bottom of the �gure. Based on these colourings, the lowest, up to zero, velocity values
are observed near the surface of the airfoil, and as we move away from it, the velocity increases until it
reaches the free-�ow velocity value.

Around the surface of the airfoil, the boundary layer is observed. In addition, the wake region is
observed behind the trailing edge of the airfoil, which implies a reduced velocity with respect to V∞.

Mean pressure contour plots
Another particularly useful type of graph is the contour plots of mean pressure. These types of plots

provide information on how the pressure varies within the computational domain. As in the case of mean
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(a) Re = 103

(b) Re = 107

Figure 4.11: Velocity magnitude contour plot around a NACA 0012 airfoil
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velocity contour plots, the size of the corresponding pressure plots is determined by the colors of the
color bar at the bottom of the plots.

The pressure distribution has a signi�cant in�uence on the generation of aerodynamic forces and, in
particular, lift. Graphs 4.12a and 4.12b show the pressure distribution around a NACA 0012 airfoil for
Reynolds numbers 103 and 107. When examining these charts, it is wise to focus on two key elements:
the stagnation point and the wake region.

(a) Re = 103

(b) Re = 107

Figure 4.12: Pressure magnitude contour plot around a NACA 0012 airfoil

Cambered Airfoils

The next stage in the tests conducted is to study the �ow behavior around two commonly used cambered
airfoils: the NACA 2412 (??), and the NACA 4412 (4.13).

In general, cambered airfoils are used in applications where higher lift is required. The asymmetry
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Figure 4.13: Geometry of NACA 4412 airfoil

that characterizes the geometry of these airfoils, unlike symmetrical airfoils, facilitates the generation of
lift, even at zero angle of attack.

The contour plots relating to this type of airfoil are presented in the �gures 4.14a to 4.15b.

Mean distributions for NACA 2412

The NACA 2412 airfoil is a moderately curved airfoil (with a curvature of 2% of the string length).
From the results of the simulations, it is expected that conditions for generating moderate lift at low
angles of attack are met. In addition, �ow separation occurs earlier than in symmetric airfoils. Figures
4.14a - 4.15b show the distributions of mean velocity and pressure, respectively.

Mean velocity contour plots
See Figures 4.14a and 4.14b.
Mean pressure contour plots
See Figures 4.15a and 4.15b.

Mean distributions for NACA 4412

NACA 4412 has a higher percentage of camber (4%) than NACA 2412. Such airfoils are used in
applications of increased lift, such as in slow-�ying aircraft and some propellers. This increased lift is the
result of the pressure di�erence between the upper and lower surfaces of the airfoil. Also, the separation
of the �ow is more prominent than in the case of airfoils with a smaller camber. The mean velocity an
pressure contour plots relating to this type of airfoil are presented in the �gures ?? - ??.

Mean velocity contour plots
See Figures 4.16a and 4.16b.
Mean pressure contour plots
See Figures 4.17a and 4.17b.

4.2.3 Uncertainty Quanti�cation Results

This section presents the basic diagrams from which the quanti�cation of uncertainty is obtained. The
standard deviation contour plots provide information on the variation and uncertainty within the com-
putational domain and help the analyst to identify the areas that are most sensitive to changes in �ow
conditions and also in the geometry of the airfoil. In particular, the cases that are analyzed are the same
as those in the 4.2.2 section.

The contour plots of the standard deviation are analyzed and compared with those of the mean value
of the �ow characteristics. Typically, areas of high standard deviation are shaded in warmer colors,
indicating a larger deviation of the magnitude from the calculated mean. This study is particularly
important for assessing the behavior of various airfoils under di�erent conditions.
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(a) Re = 103

(b) Re = 107

Figure 4.14: Velocity magnitude contour plot around a NACA 2412 airfoil
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(a) Re = 103

(b) Re = 107

Figure 4.15: Pressure magnitude contour plot around a NACA 2412 airfoil
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(a) Re = 103

(b) Re = 107

Figure 4.16: Velocity magnitude contour plot around a NACA 4412 airfoil
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(a) Re = 103

(b) Re = 107

Figure 4.17: Pressure magnitude contour plot around a NACA 4412 airfoil
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Standard Deviation Contour Plots - Velocity

The contour plots of the standard deviation of velocity show the variability of the velocity �eld within
the computational domain. The areas with the largest standard deviation are also associated with the
largest uncertainty due to changes in the input parameters. Key areas that should be given special
attention when quantifying uncertainty are the two edges of the airfoil, the leading and trailing edge,
and the wake region, due to the unsteady phenomena that develop, such as �ow separation, turbulence,
etc.

NACA 0012

See Figures 4.18a and 4.18b.

(a) Re = 103

(b) Re = 107

Figure 4.18: Standard deviation of velocity contour plot for a NACA 0012 airfoil
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NACA 2412

See Figures 4.19a and 4.19b.

(a) Re = 103

(b) Re = 107

Figure 4.19: Standard deviation of velocity contour plot for a NACA 2412 airfoil

NACA 4412

See Figures 4.20a and 4.20b.

Standard Deviation Contour Plots - Pressure

The contour plots of the pressure standard deviation reveal, similarly to the velocity standard deviation
plots, how the pressure varies in the computational domain. Areas of small standard deviation in these
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(a) Re = 103

(b) Re = 107

Figure 4.20: Standard deviation of velocity contour plot for a NACA 4412 airfoil
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plots imply stable pressure with small variations. Such phenomena are more pronounced in laminar
�ows, and the standard deviation increases as the �ow becomes more turbulent. Also in these diagrams,
the leading edge with the stagnation point and the trailing edge with the wake region play a key role.

NACA 0012

See Figures 4.21a and 4.21b.

(a) Re = 103

(b) Re = 107

Figure 4.21: Standard deviation of pressure contour plot for a NACA 0012 airfoil

NACA 2412

See Figures 4.22a and 4.22b.
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(a) Re = 103

(b) Re = 107

Figure 4.22: Standard deviation of pressure contour plot for a NACA 2412 airfoil
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NACA 4412

See Figures 4.23a and 4.23b.

(a) Re = 103

(b) Re = 107

Figure 4.23: Standard deviation of pressure contour plot for a NACA 4412 airfoil
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Chapter 5

Discussion

By examining the individual graphs in �gure 4.11, it is bene�cial to make a comparison between the two
Reynolds number cases. For reduced values of the Reynolds number, the �ow is governed by viscous
forces. This explains the di�erence in boundary layer thickness visible between the two graphs, with the
boundary layer on the Re = 107 case being much thinner due to reduced viscous forces. Moreover, in
the case of Re = 103, the wake region appears to be wider compared to the case of Re = 107 in which
this region narrows signi�cantly. A wider wake region is accompanied by stronger viscous e�ects, which
increases the drag force that develops. In inviscid �ows, no drag force occurs.

By comparing the graphs 4.15a and 4.15b, we can observe key di�erences due to the di�erent �ow
conditions. For both Re = 103 and Re = 107, the region of maximum pressure in front of the leading
edge of the airfoil is identi�ed. This is the stagnation point, where the �ow hits the airfoil head-on and
its velocity is minimized. In �ows characterized by high Reynolds numbers (Re = 107), the stagnation
point appears to be more localized than in the case of Re = 107.

In addition, an area of low pressure is visible around the upper and lower surface of the airfoil. These
areas indicate an acceleration of the �ow due to the shape of the airfoil, creating lift. In the case of
the lower Reynolds number, the low-pressure distribution appears to be symmetrical due to the laminar
�ow and the symmetrical shape of the airfoil in question. However, in the case of turbulent �ow, the
low-pressure region extends over a larger area of the computational domain. This phenomenon implies
a higher �ow acceleration and generation of a higher buoyancy force.

Also of interest is the wake region, which provides useful information about the �ow behavior around
the NACA 0012 airfoil. In Figure 4.15a, the wake occupies a larger area. The wider wake area indicates
a more pronounced drag force. In graph 4.15b a narrower wake area is observed. This means that the
�ow does not separate the airfoil surface as fast as in the case of Re = 103.

As far as convex airfoils are concerned, there are signi�cant di�erences in the �ow behavior around
this type of airfoil compared to symmetrical airfoils.

The contour plots of the mean velocity show that the two airfoils exhibit similar behavior, both for
Re = 103 and Re = 107. Except for the larger wake region, which is typical for laminar �ow, the �ow
separation occurs earlier than the symmetric airfoils, due to the curvature of the shape of these airfoils.
As the Reynolds number increases, so does the lift applied to the airfoil surface. Particularly at high
Reynolds numbers, the �ow remains attached to the surface for a longer distance before separating,
resulting in a thinner wake area, more e�cient lift generation, and thus reduced drag and improved
aerodynamic performance.

The mean pressure contour plots have as their main component the pressure di�erence developed
between the upper and lower surfaces of the airfoil. In both NACA 2412 and NACA 4412, the pressure
developed on the upper surface is signi�cantly lower than on the lower surface. As mentioned, this
pressure di�erence is due to the asymmetry in the geometry of the curved airfoils, giving them the
ability to generate lift even at zero angle of attack.

For the uncertainty quanti�cation stage, simulations were performed for the cases in Table 4.3, of
which the two extreme cases regarding the Reynolds number are presented and analyzed for the three
types of airfoils under consideration, NACA 0012, NACA 2412, and NACA 4412. The contour plots
which are obtained for the standard deviation for the velocity and pressure magnitudes provide important
information about the presence of uncertainties as the input parameters change.

When observing the plots for the lowest Reynolds number, they appear to be similar due to the steady
nature of the �ow. For NACA 0012, the plot indicates minimal standard deviation as inferred from the
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colorings compared to the corresponding color bar values at the bottom of the graph. In general, the
�ow appears uniform around the airfoil with small variations in velocity at both ends of the airfoil. By
changing the geometry of the airfoil, and introducing camber in its shape, the standard deviation also
increases, especially at the trailing edge. The camber causes more complex �ow phenomena, especially in
the wake region, increasing the presence of uncertainties. This phenomenon is con�rmed by the contour
plot corresponding to the standard deviation of the �ow velocity around NACA 4412. The even higher
camber causes more uncertainty at the trailing edge, as higher values of standard deviation values are
visible in this region, which also extends for a larger area in the wake region.

As can be seen from the graphs 4.21a to 4.23b, the �ow for Re = 107 follows a similar behavior to the
case of Re = 103, with the change of the geometry of the airfoil under consideration. However, in these
cases, the existence of uncertainties is intensi�ed due to the change in the �ow conditions determined
by the value of the Reynolds number. Consequently, the greatest uncertainty is observed in the case
described by Figure 4.23b, as it involves the most complex geometry and turbulent and unsteady �ow.

Moving on to the analysis of the plots representing the standard deviation of pressure, one of the �rst
observations is that there are not as signi�cant changes in the pressure �eld as there were in the velocity
�eld. However, there are key points that are more sensitive to changes in the problem parameters. The
graph 4.21a shows a uniform pressure �eld, as the standard deviation shows little to no variation. This
is due to the low Reynolds number and the symmetric shape of the airfoil. A similar picture is seen
in the graph 4.21b, indicating that the change in �ow conditions introduces signi�cant uncertainties in
the solution for this particular airofoil. As for the graphs involving the standard deviation of velocity,
the standard uncertainty increases with increasing airfoil curvature and also with increasing Reynolds
number. Of particular interest is the case of the graph 4.23b, in which regions of increased standard
deviation are observed. This phenomenon is not a result of changing input data, but of the instability
that the code exhibits in more complex cases of geometry and �ow conditions. One solution to this
problem is to further increase the stabilization parameter for the stabilization method applied, SUPG.

In summary, the study presented in the previous chapters provides valuable insight into the aerody-
namic characteristics of di�erent airfoil shapes under varying �ow conditions, described by the Reynolds
number. The importance of the viscosity in shaping �ow behavior is clearly highlighted through the mean
velocity contour plots, with lower Reynolds numbers resulting in thicker boundary layers and wider wake
regions. Therefore, drag is increased. On the contrary, in higher Reynolds numbers the �ow is attached
to the airfoil surface for longer which contributes to the e�cient lift generation. The information ob-
tained by the mean contour plots is critical for the robust aerodynamic design and the optimization of
the airfoil's performance.

Furthermore, the uncertainty quanti�cation analysis gives a clear image of how the variations in
�ow characteristics, as well as the shape of the airfoil, impact its overall performance. It is evident by
the contour plots that there are certain high-risk areas of the airfoil that are susceptible to introducing
uncertainty and therefore should be taken into consideration during the design of the airfoil. These
regions include the leading and trailing edges of the airfoil, and the wake region. Additionally, as the
�ow regimes and the geometry of the airfoil become more complex, the uncertainties present become
even more signi�cant, making UQ analysis an indispensable part of aerodynamics study, and further
reinforcing the objective of the present research.
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Chapter 6

Conclusions

The study presented in this thesis focused on the development and evaluation of a new algorithm to
quantify uncertainty in simpler geometries, such as the lid-driven cavity, or, more importantly, in more
sophisticated shapes like the NACA airfoils. This novel approach attempts to solve the Navier-Stokes
equations, by uncoupling them and solving them separately and iteratively. For the completion of this
task, the iterative Newton method is employed. The main objective of this method is to achieve faster
and less computationally expensive simulations, than the traditional methods solving the coupled form
of the simulations. Finally, UQ was conducted for various NACA airfoil types and �ow conditions, for
which the Monte Carlo and Polynomial Chaos methods were employed.

Through comprehensive analysis, the study reveals how the Reynolds number and the airfoil design
impact the behavior of the �ow around it. Higher Reynolds numbers lead to thinner boundary layers
and narrower wake regions, which proves to be bene�cial for lift generation. Conversely, �ows with low
Reynolds numbers are characterized by increased drag and diminished aerodynamic e�ciency. However,
an important observation was made about the signi�cance of the camber on an airfoil, which itself
produces lift, a property that may be useful for applications where maximum lift generation is required
for low angles of attack.

However, the substance of this thesis is the UQ analysis. The UQ results underscore the critical impact
of the varying Reynolds numbers and airfoil camber on �ow characteristics. It was found that when
introducing complexity into the �ow or the geometry itself, uncertainty is more pronounced, especially
in high-risk parts of the airfoil which were easier to identify through the simulations. Recognizing these
regions is critical for the improvement of aerodynamic design and the performance of airfoils.

While the present research has aimed to enhance our understanding of UQ in aerodynamic simula-
tions, it comes with its own limitations. The current algorithm faces challenges when applied to unsteady
�ows and complex geometries, especially at higher angles of attack. However, after taking appropriate
measures like applying stabilization techniques, the method could be applied to even turbulent �ows and
cambered airfoils.

Considering those limitations, future research should focus on addressing these limitations, so that
the algorithm can give us more comprehensive results, including data from tests conducted for di�erent
angles of attack, drag and lift coe�cient plots, and, overall more stable and even more reliable results.
Later on, a proposed use for this algorithm could be its inclusion in machine learning models constructed
for optimization, to facilitate robust design and produce more e�cient airfoils.

In summary, this thesis highlights the role of uncertainty quanti�cation in aerodynamic modeling
and airfoil design. By recognizing and quantifying uncertainties, the proposed algorithm can serve as
a valuable tool for enhancing aerodynamic design and enabling faster, more reliable simulations in the
future.
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Appendix A

Additional Results

A.1 Mean Distributions

A.1.1 NACA 0012

See Figures A.2 and A.2.

A.1.2 NACA 2412

See Figures A.4 and A.4.

A.1.3 NACA 4412

See Figures A.6 and A.6.

A.2 Standard Deviation

A.2.1 NACA 0012

See Figures A.7 and A.8.

A.2.2 NACA 2412

See Figures A.9 and A.10.

A.2.3 NACA 4412

See Figures A.11 and A.12.
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(a) Re = 104

(b) Re = 105

(c) Re = 106

Figure A.1: Velocity magnitude contour plot around a NACA 0012 airfoil
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(a) Re = 104

(b) Re = 105

(c) Re = 106

Figure A.2: Pressure magnitude contour plot around a NACA 0012 airfoil
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(a) Re = 104

(b) Re = 105

(c) Re = 106

Figure A.3: Velocity magnitude contour plot around a NACA 2412 airfoil
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(a) Re = 104

(b) Re = 105

(c) Re = 106

Figure A.4: Pressure magnitude contour plot around a NACA 2412 airfoil
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(a) Re = 104

(b) Re = 105

(c) Re = 106

Figure A.5: Velocity magnitude contour plot around a NACA 4412 airfoil
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(a) Re = 104

(b) Re = 105

(c) Re = 106

Figure A.6: Pressure magnitude contour plot around a NACA 4412 airfoil
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(a) Re = 104

(b) Re = 105

(c) Re = 106

Figure A.7: Standard deviation of velocity contour plot for a NACA 0012 airfoil
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(a) Re = 104

(b) Re = 105

(c) Re = 106

Figure A.8: Standard deviation of pressure contour plot for a NACA 0012 airfoil
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(a) Re = 104

(b) Re = 105

(c) Re = 106

Figure A.9: Standard deviation of velocity contour plot for a NACA 2412 airfoil
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(a) Re = 104

(b) Re = 105

(c) Re = 106

Figure A.10: Standard deviation of pressure contour plot for a NACA 2412 airfoil
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(a) Re = 104

(b) Re = 105

(c) Re = 106

Figure A.11: Standard deviation of velocity contour plot for a NACA 4412 airfoil

76



(a) Re = 104

(b) Re = 105

(c) Re = 106

Figure A.12: Standard deviation of pressure contour plot for a NACA 4412 airfoil
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